Abstract. We discuss for an affine variety Y embedded in affine space X two sets of integers attached to $Y \subseteq X$ via local and de Rham cohomology spectral sequences. We give topological interpretations, study them in small dimension, and investigate to what extent one can attach them to projective varieties.

Contents

1. Introduction 2
2. Čech–de Rham numbers 4
 2.1. Basic structure results 4
 2.2. Degeneration 7
 2.3. Affine complements 8
 2.3.1. High cohomology groups of the affine complement 8
 2.3.2. Integrals of Eulerian modules 9
 2.4. On Veronese maps 12
3. Lyubeznik numbers 18
 3.1. Basic properties 18
 3.2. Lyubeznik numbers and projective schemes 18
 3.2.1. Determinantal ideals 19
 3.2.2. Toric varieties 20
 3.2.3. Horospherical varieties 21
 3.3. Lyubeznik numbers in small dimension 21
 Acknowledgements 26
References 26

TR was supported by DFG Emmy-Noether-Fellowship RE 3567/1-2. UW was supported by the NSF and by Simons Foundation Collaboration Grant for Mathematicians #580839. WZ was supported by the NSF grant DMS#1752081.
1. Introduction

Notation 1.1. Throughout we will use the following conventions: K will be a field of characteristic zero, $I \subseteq R_n = K[x_1, \ldots, x_n]$, $X = \text{Spec}(R_n)$ an ideal in the polynomial ring in n indeterminates and the associated affine space. Our default affine variety will be $Y := \text{Var}(I) \subseteq X$, with complement $U = X \setminus Y$, and if I is homogeneous then

$$\hat{Y} := \text{Proj}(R_n/I) \subseteq \mathbb{P}^{n-1}_K$$

will be the projective scheme to I, with complement $\hat{U} := \mathbb{P}U = \mathbb{P}^{n-1}_K \setminus \hat{Y}$. The homogeneous irrelevant ideal of R_n will be denoted $m = \langle x_1, \ldots, x_n \rangle$ and d will stand for $\dim(\hat{Y})$. \hfill \diamond

Hartshorne’s seminal work [Har75] begins with

The idea of using differential forms and their integrals to define numerical invariants of algebraic varieties goes back to Picard and Lefschetz... and then outlines the development of this branch of mathematics until the writing of his article on algebraic de Rham cohomology. While originally the base field was the complex numbers \mathbb{C}, Hartshorne works in greater generality over fields K of characteristic zero. It has become clear since, particularly through the work of Lyubeznik [Lyu93], that Kashiwara’s framework of D-modules is the right set-up for these investigations. This article is a contribution to this general theme, with the two main characters defined as follows.

If a variety Y' can be embedded into a smooth K-variety X' of K-dimension n, one can define the de Rham homology and cohomology functors of Y' as

$$H^q_{\text{dR}}(Y') := H^{2n-q}_{\text{dR}}(X', \Omega^\bullet_{X'}), \quad H^q_{\text{dR}}(Y') := \mathbb{H}^q(X', \Omega^\bullet_{X'}).$$

Here, $\mathbb{H}(\cdot)$ denotes hypercohomology functor on complexes of sheaves, $\Omega^\bullet_{X'}$ is the de Rham complex (relative to K) of X', and the hat denotes completion along Y'. Hartshorne proves that these quantities do not depend on X' or on the chosen embedding of Y', and demonstrates many interesting facts about these two functors.

We focus on de Rham homology for a moment, under the assumption that X' is affine. Then hypercohomology collapses to global sections since the modules in $\Omega^\bullet_{X'}$ are coherent, equal to exterior powers of the free $\mathcal{O}_{X'}$-module $\Omega^1_{X'}$ of rank n given by the Kähler differentials on X'. The set-theoretic sections-with-support functor on a coherent sheaf agrees with algebraic local cohomology. In particular, $H^{2n-q}_{\text{dR}}(X', \Omega^\bullet_{X'})$ is just local cohomology $H^{2n-q}_{\text{dR}}(\hat{Y}, \hat{\Omega}^\bullet_{\hat{Y}})$ of the module of i-forms (identifying sheaves with their global sections).

The sheaf $\omega_X := \Omega^0_X$ has a natural right module structure over the ring \mathcal{D}_X of K-linear differential operators on X. The global sections of the sheaf of differential operators \mathcal{D}_X on X are the elements of the Weyl algebra

$$D_n = R_n \langle \partial_1, \ldots, \partial_n \rangle$$

where ∂_i stands for the partial differentiation operator $\frac{\partial}{\partial x_i}$. On the other hand, Ω^\bullet_X is the free \mathcal{O}_X-module of rank $\binom{n}{i}$ generated by the symbols $dx = dx_{j_1} \wedge \cdots \wedge dx_{j_i}$ with $I \subseteq 2^n$ and $|I| = i$, and the global sections of ω_X are the elements of the right D_n-module $D_n/\partial \cdot D_n := D_n/(\partial_1, \ldots, \partial_n)D_n$.

Let us write $\Omega^\bullet_{D,X}$ for the Koszul co-complex on \mathcal{D}_X generated by left multiplication by the derivations $\partial_1, \ldots, \partial_n$. This is a free resolution of right \mathcal{D}_X-modules for ω_X shifted right n steps, and yields an explicit form of the de Rham cohomology functors

$$H^i_{\text{dR}}(\cdot) := H^{i-n}(X, \omega_X \otimes_{\mathcal{D}_X} \mathcal{L}_{\partial}) = H^i(\Omega^\bullet_{D,X} \otimes_{\mathcal{D}_X} (-))$$

from the category of left \mathcal{D}_X-modules to the category of K-vector spaces. Since the constituents of $\Omega^\bullet_{D,X}$ are \mathcal{D}_X-free and X is D-affine, for each left \mathcal{D}_X-module \mathcal{M} with global sections M one has

$$H^i_{\text{dR}}(\mathcal{M}) = H^{i-n}(D_n/\partial \cdot D_n \otimes_{D_n} \mathcal{M}).$$
ON LYUBEZNIK TYPE INVARIANTS

If \(M \) is holonomic, these vector spaces are \(\mathbb{K} \)-finite since they are the cohomology of the \(D \)-module theoretic direct image functor under the map to a point [HTT08]. We return to de Rham homology \(\mathbb{H}^{2n-q}_{dR}(X, \Omega^n_X) \) with \(X \) equal to affine \(n \)-space. Since \(\Omega^n_X \) is finite free over \(\mathcal{O}_X \), there is a natural identification of \(H_Y^i(\Omega^n_X) \) with \(\Omega_X^i \otimes_{\mathcal{O}_X} H_Y^i(\mathcal{O}_X) \). The complex

\[
\ldots \rightarrow \Omega_X^{i-1} \otimes_{\mathcal{O}_X} H_Y^i(\mathcal{O}_X) \rightarrow \Omega_X^i \otimes_{\mathcal{O}_X} H_Y^i(\mathcal{O}_X) \rightarrow \Omega_X^{i+1} \otimes_{\mathcal{O}_X} H_Y^i(\mathcal{O}_X) \rightarrow \ldots
\]

with differential induced by the usual exterior derivative is quasi-isomorphic to the complex \(\Omega_{D,X}^i \otimes_{D_X} H_Y^i(\mathcal{O}_X) \).

Since \(X \) is affine, \(\Gamma(X,-) \) induces a spectral sequence for hypercohomology,

\[(1.0.1) \quad H^{2p}_{dR}(H^n_Y(R_n)) \Rightarrow \mathbb{H}^{p+q}_{dR}(\Omega^n_X) = H^{2n-p-q}_{dR}(Y)\]

that has been considered in [Swi17, Lemma 2.16] in the complete local case, and in [Bri20] in the context we are working in. We note that over the complex numbers, the abutment is naturally equal to the reduced singular cohomology of \(U := X \setminus Y \), so there is a spectral sequence

\[(1.0.2) \quad E^p_{p,q} = H^{2p}_{dR}(H^n_Y(R_n)) \Rightarrow H^{p+q-1}(U; \mathbb{C})\]

to the reduced cohomology of \(U \). For \(I = \mathfrak{m} \), the abutment is \(H^n_{dR}(H^n_Y(R_n)) = \mathbb{C}[2n] \), the reduced cohomology of the \((2n-1)\)-sphere shifted by one. For details see for example [Har77, p. 67] and [LSW16, Thm. 3.1].

The articles [Swi17, Bri20] proceed to show that the \(E_r \)-pages, \(r \geq 2 \), of these spectral sequences are isomorphic for all embeddings of \(Y \). In consequence, the terms on pages \(r \geq 2 \) of \((1.0.1)\) are numerical invariants of \(Y \).

Definition 1.2. Let \(Y = \text{Var}(I) \) be an affine variety embedded in \(X = \text{Spec}(R_n) \) defined by the ideal \(I \subseteq R_n = \mathbb{K}[x_1, \ldots, x_n] \) over the field \(\mathbb{K} \) of characteristic zero. For \(r \geq 2 \), the \((r,p,q)\)-Cech–de Rham number of \(Y \) is the dimension

\[\rho^{r}_{p,q}(Y) := \dim_{\mathbb{K}}(E^r_{p,q}(1.0.1)) \]

of the corresponding entry in the spectral sequence \((1.0.1)\). If \(r = 2 \) we denote \(\rho^{r}_{p,q}(Y) = H^{n-p,0}_d(H^{n-q}((R_n))) \).

Switala defined these ideals for ideals in the power series ring [Swi17, Dfn. 2.23]; they are well-defined by [Swi17, Prop. 2.17] and [Bri20, Thm. 1.1]. The dimensions \(\rho^{r}_{p,q} \) are invariant under field extensions, and one can compute them algorithmically over any field of definition for \(I \), see [OT99, OT01, Wa00].

A related construction appeared in [Lyu93], where Lyubeznik shows that the socle dimensions of the \(E_2 \)-terms of the Grothendieck spectral sequence

\[(1.0.3) \quad E^{p,q}_2 = H^{n,p}_{m}(H_X^n(R_n)) \Rightarrow H^{n+q}_{m}(R) \]

are independent of the closed embedding of \(Y = \text{Spec}(R_n/I) \) into any affine space \(\mathbb{K}^n = \text{Spec}(R_n) \) and uses it to define numerical invariants

\[\lambda^{p,q}(R_n/I) := \dim_{\mathbb{C}} \text{Hom}(R/\mathfrak{m}, H^{n,p}_{m}(H^{n-q}_X(R_n))). \]

These numbers, known as Lyubeznik numbers, have been investigated for nearly three decades and are indeed functions of the ring \(R/I \) (and do not depend on the presentation of \(R/I \) as a quotient of a polynomial ring). For detailed information on the history and the status quo we refer to the survey articles [NnBWZ16, WZ20].

In this article we develop further the theory of the Lyubeznik numbers on one side, and on the other describe a number of properties that the invariants introduced by Switala and Bridgland enjoy.

More precisely, in the next section we study the Čech–de Rham numbers for small dimension of \(Y \), and investigate the collapse of the corresponding spectral sequence. We identify some classes of examples where this collapse happens on the \(E_2 \)-page, and explain why this is so for subspace arrangements, by stringing together known results of Goresky–MacPherson, and Alvarez–García–Zarzuela. We also explore the behavior of the Čech–de Rham numbers under Veronese maps.
In the third section we discuss Lyubeznik numbers. We elaborate on the results from [RSW21] by establishing some classes of projective varieties Y with Picard number one that have most Lyubeznik numbers of the affine cone Y independent of the embedding. That includes determinantal varieties, certain toric varieties, and horospherical varieties. We also prove for certain projective varieties of dimension four or less that their Lyubeznik numbers are independent of the embedding.

Some known facts.

Since we will have to refer to them a few times, we state here some results from the literature.

Remark 1.3. (1) If K is of characteristic zero, then local cohomology, algebraic de Rham cohomology, injective dimension, dimension, socle dimension all behave well under field extensions. Since all varieties are defined by a finite number of data, one can restrict all questions we discuss from the given field K to a field of definition for I, and then extend to C. In particular, we can assume that $K = C$ whenever it is convenient.

(2) (Lyu93 (4.4.iii)) Suppose $Y \subseteq X = \mathbb{A}^n_C$ is an affine variety. Then the local cohomology module $H^n_i(R)$ has support dimension at most $n - i$, and it vanishes if $i < c := \text{codim}(Y, X)$. If Y is equi-dimensional and $i > c$, then $H^n_i(R)$ has support dimension less than $n - i$.

(3) (Lyu93 Thm. 2.4) If M is a holonomic D-module, then $H^i_m(M)$ is a finite sum of copies of the (Artinian, indecomposable) injective hull $H^i_m(R)$ of $K = R_n/m$. More generally, one has for all holonomic modules that

$$\text{injdim}_R(M) \leq \dim \text{Supp}(M).$$

Thus, all right derived functors of R-modules with derivation level greater than $n - i$ vanish on $H^n_i(R)$, and those of derivation level $n - i$ vanish if I is equi-dimensional and $i > c$.

(4) We will also have to refer to equivariant D_X-modules. For details on equivariance of D-modules, see for example [LW19].

(5) Let $I \subseteq R = \mathbb{K}[x_1, \ldots, x_n]$ be a homogeneous ideal such that $\dim(R/I) \geq 2$. Assume that \mathbb{K} is separably closed. Hartshorne proved in [Har63] Theorem 7.5] that if $\text{Proj}(R/I)$ is connected then $H^n_i(R) = H^{n-1}_i(R) = 0$, and named this result the Second Vanishing Theorem. This theorem subsequently has been extended to the local settings as follows: Let R be either a complete regular local ring of dimension n that contains a separably closed coefficient field or an unramified complete regular local ring of dimension n in mixed characteristic with a separably closed residue field. Let $I \subseteq R$ be an ideal. Then $H^n_i(R) = H^{n-1}_i(R) = 0$ if and only if $\dim(R/I) \geq 2$ and the punctured spectrum of R/I is connected, [Ogu73, PS73, HL90, Zha21].

The following is a special case of a more general result comparing direct image to a point and restriction to a point.

Lemma 1.4 ([RW18 Lemma 3.3]). Suppose $\mathbb{K} = C$ and $X = \mathbb{C}^n$. Assume that \mathcal{M} is a regular holonomic D_X-module and its global sections form a standard graded R_n-module. Suppose further that \mathcal{M} is (strongly) equivariant as a D-module with respect to the \mathbb{C}^*-action corresponding to this grading. Then its de Rham cohomology groups agree with the restriction groups to the origin of the holonomically dual module. In particular, the dimensions of these groups satisfy

$$\dim_C(H^n_i^{\text{dr}}(\mathcal{M})) = \dim_C(\text{Hom}_{R_n}(R_n/m, H^{n-i}_m(D(\mathcal{M}))),$$

where D is the holonomic duality functor.

2. Čech–de Rham numbers

2.1. Basic structure results.

Basic properties of the de Rham functor imply that $\rho_{p,q}$ is zero for p outside the interval $[0, n]$. On the other hand, local cohomology $H^n_i(R)$ is nonzero only when $\text{codim}(I) \leq j \leq n$, and so $\rho_{p,q}$ is zero for q outside the interval $[0, \text{dim}(Y)]$. Our first statement on these numbers is that they are confined to a triangular region:
Proposition 2.1. The Čech–de Rham numbers satisfy for all \(r \geq 2 \) that
\[
\rho_{p,q}(Y) = 0 \quad \text{if} \quad p > q.
\]

Before entering the proof we set up some notation and collect several facts and from \([\text{Dim04}]\) \([\text{HTT08}]\) \([\text{KS94}]\) on constructible sheaves and the Riemann–Hilbert correspondence. All spaces mentioned in the sequel are assumed to be algebraic.

Remark 2.2. Let \(X \) be a smooth algebraic variety.

(1) For any algebraic map \(f \) between algebraic sets we denote, on the level of constructible sheaves, the usual direct and inverse image functors by \(f_* \) and \(f^{-1} \), and the proper direct and exceptional inverse image functors by \(f'_* \) and \(f'^{\dagger} \) respectively. For the sake of notational brevity, we mean by these symbols always the derived functors on the appropriate derived categories (so that, for example, we write \(j_* \) instead of \(Rj_* \) as a functor on the bounded derived category of constructible sheaves). This abuse of notation is common in the relevant literature.

(2) On the level of \(\mathcal{D} \)-modules, we will use \(f_+ \) and \(f_\dagger \) for the usual and proper direct image functors, and \(f^+ \) and \(f^\dagger \) for the usual and exceptional inverse image functors. For reference and comparison, our \(\mathcal{D} \)-functors \(f_+, f_\dagger, f^+, f^\dagger \) are (in this sequence) denoted by \(f_!, f_{\dagger!}, f^!, f^{\dagger!} \) in \([\text{HTT08}]\).

(3) The Riemann–Hilbert correspondence sets up an equivalence between the derived category of bounded complexes of \(\mathcal{D}_X \)-modules with holonomic cohomology, and the derived category of bounded complexes of constructible sheaves \(D^{b}_{c.s.}(X) \). The correspondence is induced by the de Rham functor \(\Omega^*_X \otimes_{\mathbb{Z}}^L (-) \) computed on the analytic space attached to \(X \).

Under this correspondence, taking cohomology of a complex of \(\mathcal{D}_X \)-modules corresponds to an operation on complexes of constructible sheaves that is denoted \(\mathcal{P}H \); it is not the same as taking cohomology of complexes of constructible sheaves. We call perverse exact any functor on the derived category that commutes with \(\mathcal{P}H \).

(4) Suppose \(f: X \to X' \) is a morphism of smooth algebraic varieties. Under the Riemann–Hilbert correspondence, the functors for \(\mathcal{D} \)-modules correspond to those on constructible sheaves as follows:
\[
DR_{X'} \circ f_+ \simeq f_* \circ DR_X; \quad DR_{X'} \circ f_\dagger \simeq f_{\dagger!} \circ DR_X; \quad DR_X \circ f^+ \simeq f^! \circ DR_{X'}; \quad DR_X \circ f^{\dagger!} \simeq f'^{\dagger!} \circ DR_{X'}.
\]
(The last two identifications are not misprints; for inverse images, the Riemann–Hilbert correspondence via the de Rham functor aligns a regular inverse image with an exceptional one).

(5) Consider an open embedding \(j: U \hookrightarrow X \) and a closed embedding \(i: Z \hookrightarrow X \) where \(Z \) is closed (and, \textit{a fortiori}, constructible) and where \(U \) is the complement of \(Z \) in \(X \). We have the following properties of induced functors for complexes of constructible sheaves:

- \(i_! \) is exact and perverse exact;
- \(i^{-1} \) is exact but usually not perverse exact;
- \(i^! \) and \(j_* \) are usually neither exact nor perverse exact;
- \(j^{-1} \) is exact and perverse exact;
- \(j_! \) is exact but usually not perverse exact.

(6) In the situation of the previous item, we have the following distinguished triangles, Verdier dual to one another, in \(D^{b}_{c.s.}(X) \):
\[
\begin{align*}
& i_! i^! F^* \to F^* \to j_* j^{-1} F^* \xrightarrow{+1}, \\
& j_! j^{-1} F^* \to F^* \to i_{\dagger!} F^* \xrightarrow{+1}.
\end{align*}
\]

(7) We will always denote by \(a_S \) the map from a space \(S \) to a point, which we occasionally denote with \(pt \) and occasionally identify with the vertex of a cone if a cone is present.

We now enter the
Proof of Proposition 2.1. It suffices to consider $r = 2$. We will use the Riemann–Hilbert correspondence to translate $p_{p,q} = \dim_{\mathbb{C}}(H_{dR}^{n-p}(H_I^{n-q}(R_n)))$ into the language of constructible sheaves. The de Rham functor takes the local cohomology $H_I^{n-q}(\mathcal{O}_X)$ to $\mathcal{D}(\mathbb{C})\mathcal{C}_X[n] \simeq h_!(p^q\mathcal{H}_\mathcal{D})$ where $h : Y \to X = \mathbb{A}^n$ is the canonical embedding, $\mathcal{C}_X[n]$ is the constant sheaf on X shifted to the left by n and $\omega_Y = \mathbb{D}\mathcal{C}_Y$ is the (topological) dualizing complex $R\text{Hom}_{\mathbb{C}}(\mathcal{C}_Y, \mathcal{C}_Y)$ for constructible sheaves on Y. (We use \mathbb{D} also to denote Verdier duality, the operation corresponding to holonomic duality under the Riemann–Hilbert correspondence).

By Remark 1.3 $\dim(\text{Supp}(h_!(p^q\mathcal{H}_\mathcal{D}))) = \dim(\text{Supp}(H_I^{n-q}(R))) \leq q$. Set $Y_q := \text{Supp}(p^q\mathcal{H}_\mathcal{D})$ and denote by

$$i_q : Y_q \to Y \quad \text{and} \quad j_q : Y \setminus Y_q \to Y$$

the embeddings of Y_q and its complement into Y and denote by $\hat{i}_q : Y_q \to X$ resp. $\hat{j}_q : X \setminus Y_q \to X$ the corresponding embeddings of Y_q and its complement into X.

On the level of $\mathcal{D}X$-modules with support in Y_q, this gives an exact triangle

$$R\Gamma_{Y_q} \to \text{id} \to (\hat{j}_q)_+ (\hat{i}_q)^! \to$$

that corresponds via Riemann–Hilbert to

$$(i_q)_!(i_q)^! \to \hat{j}_q_+ (\hat{j}_q)^- \to$$

for constructible sheaves.

Since the support of $p^q\mathcal{H}_\mathcal{D}$ is Y_q, $((j_q)_!(j_q)^! p^q\mathcal{H}_\mathcal{D}) = 0$ and so $(i_q)_!(i_q)^! p^q\mathcal{H}_\mathcal{D} \simeq p^q\mathcal{H}_\mathcal{D}$. In particular $\mathcal{G}_q := (i_q)_!(i_q)^! p^q\mathcal{H}_\mathcal{D}$ is a perverse sheaf on Y_q satisfying $(i_q)_!(i_q)^! p^q\mathcal{H}_\mathcal{D} = p^q\mathcal{H}_\mathcal{D}$. As \hat{i}_q is proper, we find that $(\hat{i}_q)_!(\mathcal{G}_q) = (\hat{i}_q)_!(\mathcal{G}_q) = p^q\mathcal{H}_\mathcal{D}$ and it follows that the hypercohomology of \mathcal{G}_q agrees with the hypercohomology of $p^q\mathcal{H}_\mathcal{D}$.

But the hypercohomology $\mathbb{H}^k(F)$ vanishes for $k \notin [-q,0]$ and every perverse sheaf F on Y_q (see e.g. [Dim04 Corollary 5.2.18] and [Dim04 Proposition 5.2.20]). The claim follows now from

$$\rho_{p,q}^2 = \dim(H_{dR}^{n-p}(H_I^{n-q}(R_n))) = \dim(\mathbb{H}^{-p}(p^q\mathcal{H}_\mathcal{D})) = \dim(\mathbb{H}^{-p}(\mathcal{G}_q)).$$

\[\square \]

Remark 2.3. If I is homogeneous, a more elementary argument can be made. Indeed, the local cohomology module $H_I^{p}(R_n)$ is Eulerian (see Definition 2.11 below). This means that the Lie algebra action induced from the differentiating the module \mathcal{C}-action corresponding to the grading agrees with the action of the Lie algebra via the universal enveloping algebra to the Weyl algebra. In other words, $H_I^{p}(R_n)$ is equivariant and [RW18 Lem. 3.3] applies in the form of Lemma 1.3.

Holonomic duality does not affect the support of the underlying module and preserves the category of regular holonomic \mathcal{D}-modules. Thus, for graded I we have that $H_{dR}^{n-p}(H_I^{n-q}(R_n)) = 0$ if and only if $H_{dR}^p(\mathcal{D}(H_I^{n-q}(R_n))) = 0$. This latter vanishing holds whenever $\dim(\text{Supp}(H_I^{n-q}(R_n))) < p$ since $H_{dR}^p(M)$ is zero whenever $p > \dim(\text{Supp}(M))$. [Har67]. But by Remark 1.3 $\dim(\text{Supp}(H_I^{n-q}(R_n))) \leq q$. \[\diamond \]

If one pictures the $\rho_{p,q}^2$ as a table, it thus takes the following general form, assuming that Y is embedded into $\mathbb{A}^n_\mathbb{C}$, cut out by the ideal $I \subseteq R$ of dimension d:

$$P^r(Y) := ((\rho_{p,q}^r)) := \begin{pmatrix} \rho_{0,0} & \cdots & \rho_{0,d} \\ \vdots & \ddots & \vdots \\ \rho_{d,0} & \cdots & \rho_{d,d} \end{pmatrix}$$

Here, p is the row index counting downward, q the column index counting towards the right, and the arrows of the Čech–de Rham spectral sequence point North to Northeast.
2.2. Degeneration. Switala raised in [Swi17, Question 8.2] the following question for a complete local ring A with coefficient field \mathbb{K} of characteristic zero:

"Does the local Hodge–de Rham homology spectral sequence degenerate at E_2?"

One can ask a similar question for the affine scenario. We discuss interesting classes where this question has a positive answer.

Example 2.4. Suppose $Y = \text{Var}(I)$ is a complex subspace arrangement. Let P_Y be its intersection lattice, the collection of all possible intersections of the components of Y, ordered by inclusion. (This differs from standard notation in arrangement theory, where the order is the reverse). We agree that P_Y has a unique maximal element corresponding to the ambient space, but it may have several minimal elements as we do not insist that I be homogeneous (so, the arrangement may not be central).

It is well-known that the cohomology of the complement $\mathbb{C}^n \setminus Y$ is determined by the combinatorics of P: building on work of Brieskorn, Orlik and Solomon [OSS80] showed that the cohomology algebra of this complement is given by a purely combinatorial algebra constructed from the matroid of the arrangement.

Goresky and MacPherson [GMSS, III, Thm. 1.3] proved that the Betti numbers of the complement can be computed as a sum of non-negative integers, one for each element of P_Y. Here, the integers for each flat $p \in P$ are computed as Betti numbers of the simplicial complex $K(p)$. (While Goresky and MacPherson phrase this in terms of relative homology for the pair $(K(p), K(p'))$, the space $K(p)$ is contractible and one can convert into an absolute homology without harm).

Álvarez, García and Zarzuela established the degeneration on page two of a certain spectral sequence

\[
E_2^{i,j} = \lim_{\leftarrow p \in P_Y} H^i_p(R_n) \implies H^{i+j}(R_n)
\]

for the local cohomology groups $H^i_p(R_n)$, the inverse limits being taken over the poset P_Y viewed as a category with a morphism for each containment. In [AMGLZA03, Thm. 1.2], the structure of the derived inverse limits is explained as direct sums of modules $H^i_p(R)$ with codim$(I_p) = j$ and multiplicity given by the topological Betti numbers of $K(p)$. In [AMGLZA03, Cor. 1.3], this is used to give a formula for the cohomology groups of the complement of Y, by translating the Goresky–McPherson formula.

The affine complement of an affine space is homotopy equivalent to a sphere, hence applying the de Rham functor to a module of the form $H^i_p(R)$ gives exactly one (reduced) cohomology group. Thus, the entries of the E_2-page of the Čech–de Rham spectral sequence (1.0.2) correspond exactly to the composition factors of $H^{i+j}_p(R)$ in the spectral sequence (2.2.1) from [AMGLZA03] on one side, and to the direct summands for $H^*(\mathbb{C}^n \setminus Y)$ in [GMSS] on the other. It follows that for complex subspace arrangements Y the Čech–de Rham spectral sequence collapses on the E_2-page.

In small dimensions we show that Switala’s question has a positive answer as well.

Proposition 2.5. If I is homogeneous and $\dim(\text{Var}(I)) \leq 3$ then the Čech–de Rham spectral sequence degenerates at E_2.

Proof. Let Y be of dimension 2 or less. If follows from Proposition 2.4 that no nonzero differential can exist in the spectral sequence.

Let now $\dim(Y) = 3$. Then Proposition 2.4 implies that then there might be at most one nonzero differential,

\[
d_2 : H^{n-2}_d(R_n) \to H^*_d(R_n),
\]

linking $\rho_{2,2}$ and $\rho_{0,3}$.

Assume for the time being that Y is purely 3-dimensional. Remark 1.3 says that $\dim(\text{Supp}(H^*_d(R_n))) < i$ for $i < 3$. In particular, by Lemma 1.3 $\dim(H^{n-2}_d(R_n))$ equals the socle dimension of $H^2_m(D^*H^*_d(R_n)) = 0$. Thus, the degeneration of the spectral sequence is forced.
Now relax the equi-dimensionality condition and let Y_3 and Y' be the 3-dimensional and smaller dimensional components of Y respectively. Then $Y_3 \cap Y'$ is of dimension 1 or less, and the Mayer–Vietoris sequence implies that $H^{n-3}_{Y_3}(R_n) \oplus H^{n-3}_{Y'}(R_n) = H^{n-3}_Y(R_n)$ and that there is a short exact sequence
\begin{equation}
0 \rightarrow H^{n-2}_{Y_3}(R_n) \oplus H^{n-2}_{Y'}(R_n) \rightarrow H^{n-2}_Y(R_n) \rightarrow C \rightarrow 0
\end{equation}
where C is a (graded) submodule of $H^{n-1}_{Y_3 \cap Y'}(R_n)$. In particular, the dimension of the support of C is one or less by Remark 1.3 and so $H^{\leq n-2}_{\text{dR}}(C)$ is zero, being dual to the socle of $H^m_{\leq 2}(C) = 0$.

Applying the de Rham functor, the resulting long exact sequence shows that $H^{n-2}_{\text{dR}}(H^{n-2}_{Y_3}(R_n) \oplus H^{n-2}_{Y'}(R_n))$ equals $H^{n-2}_{\text{dR}}(H^{n-2}_{Y_3}(R_n))$. Then the map (22.2.2) is the direct sum of the corresponding d_2-morphism for Y_3 and for Y' separately. But it is zero on $H^{n-2}_{\text{dR}}(H^{n-2}_{Y_3}(R_n))$ since the source of d_2 is zero in that case, and it is zero on $H^{n-2}_{\text{dR}}(H^{n-2}_{Y'}(R_n))$ since the target is zero in that case. □

2.3. **Affine complements.** In the next two subsections we investigate to what extent the cohomology of the affine complement, or its table of Čech–de Rham numbers, of a homogeneous variety Y is determined by the associated projective variety \tilde{Y}. We start with looking at the top cohomology group of the affine complement, and then investigate the affine complement under Veronese maps. In the process we review some algorithmic ideas that lead to a condition on the de Rham classes of graded \mathcal{D}-modules on affine space.

So, throughout, \tilde{Y} is a projective variety and $Y \subseteq \mathbb{C}^n$ is a cone for \tilde{Y}.

2.3.1. **High cohomology groups of the affine complement.**

Remark 2.6. Let \tilde{Y} be a projective variety with cone $Y = \text{Spec} \left(R_n / I \right)$. The following facts are due to Ogus [Ogu73]. Let
\begin{equation}
\begin{aligned}
f_Y &:= \min(k \in \mathbb{N} | H^\ell_Y(R) \text{ is Artinian for all } \ell > k) \\
v_Y &:= \min(k \in \mathbb{N} | H^\ell_Y(R) \text{ is zero for all } \ell > k).
\end{aligned}
\end{equation}

(1) The number $n - f_Y$ is intrinsic to \tilde{Y}, it does not depend on the choice of the cone Y. [Ogu73, Thm. 4.1].
(2) The number $n - v_Y$ is intrinsic to \tilde{Y}, it does not depend on the choice of the cone Y. [Ogu73, Thm. 4.4] and the remark following it.

In particular,
\begin{equation}
\rho_{p,q}^r = 0 \begin{cases} & \text{if } q < n - v_Y, \\
& \text{or } p > 0 \text{ and } q < n - f_Y. \end{cases}
\end{equation}

We show next that in fact the top de Rham cohomology group of the affine cone complement is usually determined by \tilde{Y}.

Lemma 2.7. Let $X = \mathbb{A}^n_\mathbb{C}$ and suppose $\tilde{Y} \subseteq \mathbb{P}X = \mathbb{P}^{n-1}_\mathbb{C}$ is defined by the homogeneous ideal $I \subseteq R_n := \Gamma(X, \mathcal{O}_X)$. Let $Y = \text{Var}(I) \subseteq X$ and assume that Y has codimension at least two. Then the index and the dimension of the top non-vanishing de Rham cohomology group of $U := X \setminus Y$ is encoded on \tilde{Y}.

Proof. We recall Alexander duality, compare [Ive86, V.6.6]: if \mathbb{P} is a \mathbb{C}-orientable manifold and \tilde{Y} a closed subset then the topological local cohomology group $H^2_Y(\mathbb{P}; \mathbb{C})$ is canonically identified with the \mathbb{C}-dual of the cohomology with compact support $H^2_{\text{dR}}(\mathbb{P}^\ell; \mathbb{C})$. If Y is, in addition, compact, the latter is just $H^2_{\text{dR}}(\mathbb{P}^\ell; \mathbb{C})$.

On the other hand, [Ive86, II.9.2] states the existence of a long exact sequence
\begin{equation}
(2.3.1) \quad H^i_Y(\mathcal{F}) \rightarrow H^i(\mathcal{F}) \rightarrow H^i(\mathcal{F} \setminus \tilde{Y}; \mathbb{C}) \xrightarrow{\partial} \end{equation}
where \(F \) is a sheaf of Abelian groups on \(P \) and we ease notation by ignoring the pull-backs of \(F \) to \(\tilde{Y} \) and its complement respectively. Notice that one can get this long exact sequence by applying hypercohomology to the first triangle in Remark 2.2 (4). We use these with \(\mathbb{P} = \mathbb{P} X \) and \(\tilde{Y} \) as above.

Via Poincaré duality, the map \(H^r_Y(\mathbb{P} X; \mathbb{C}) \to H^i(\mathbb{P} X; \mathbb{C}) \) becomes \(H^{2n-2-i}(\tilde{Y}; \mathbb{C})^\vee \to H^{2n-2-i}(\mathbb{P} X; \mathbb{C})^\vee \). This is the dual of \(H^{2n-2-i}(\mathbb{P} X; \mathbb{C}) \to H^{2n-2-i}(\tilde{Y}; \mathbb{C}) \) induced by restriction from \(\mathbb{P} X \) to \(\tilde{Y} \). The restriction \(H^r(\mathbb{P} X; \mathbb{C}) \to H^i(\tilde{Y}; \mathbb{C}) \) is injective\(^1\) for \(i \leq \dim Y \) and necessarily zero for \(i > \dim C(\tilde{Y}) \) since \(\tilde{Y} \) is a CW-complex of dimension \(2 \dim C(\tilde{Y}) \). Thus, one can determine from the topological Betti numbers of \(\tilde{Y} \) alone the sizes of the kernels of the left-most morphisms in display (2.3.1). This in turn determines the sizes of the cohomology groups of \(\mathbb{P}U := \mathbb{P} X \setminus \tilde{Y} \).

As \(\text{codim}(Y) \geq 2 \), \(U \) is simply connected by \([\text{God71}]\) Thm. 2.3. Thus, the \(\mathbb{C}^* \)-fiber bundle \(U \to \mathbb{P} U \) has a Leray spectral sequence

\[
H^i(\mathbb{P} U; H^j(C^*(\mathbb{C})) \Rightarrow H^{i+j}(U; \mathbb{C})
\]

in which the coefficients on the left are global (in a trivial vector bundle). Let \(m \) be the largest index with \(H^m(\mathbb{P} U; \mathbb{C}) \neq 0 \). Since all differentials out of and into \(H^m(\mathbb{P} U; H^1(C^*(\mathbb{C})) \neq 0 \) are zero, \(m + 1 \) must be the largest index with \(H^{m+1}(U; \mathbb{C}) \neq 0 \) and \(\dim_C H^m(\mathbb{P} U; \mathbb{C}) = \dim_C H^{m+1}(U; \mathbb{C}) \).

Corollary 2.8. Let \(Y \) be an affine variety defined by the homogeneous ideal \(I \subseteq R_n = \mathbb{C}[x_1, \ldots, x_n] \). If the local cohomology group \(H^1_I(R) \) is Artinian and \(H^1_I(R_n) = 0 \) then the socle dimension \(s \) of \(H^1_I(R) \) is a function of the projective variety \(\tilde{Y} = \mathbb{P} Y \) and does not depend on the choice of the cone \(Y \).

Proof. Let \(X = \text{Spec} \ R \) and set \(U = X \setminus Y \). By \([\text{LSW16}]\) Thm. 3.1, \(s = \dim_C H^{n+\ell-1}(U; \mathbb{C}) \), and \(U \) has no higher non-vanishing cohomology groups. Now use the previous lemma.

Remark 2.9. Even if \(H^1_I(R) \) is not Artinian, the dimension \(\dim_C H^1_{3R}(H^1_I(R_n)) \) is encoded by \(\tilde{Y} \).

2.3.2. **Integrals of Eulerian modules.** We investigate next to what extent the \(\rho^r_{p,q} \) or the abutment terms \(H^r_{\text{dR}}(Y) \) of the Čech–de Rham spectral sequence are independent of the cone \(Y \) (i.e., the line bundle \(L \) on \(\tilde{Y} \) that induces the cone). In the following we show that replacing \(L \) by a power of itself does not change the \(H^r_{\text{dR}}(Y) \).

For this we give an account on the main results on algorithmic computation of the integral of a \(D_n \)-module along \(\partial_1, \ldots, \partial_n \). See \([\text{OT99, OT01, Wal00}]\) for details, and a generalization to the case when \(M \) is a bounded complex of finitely generated modules that has holonomic cohomology.

We define a grading \(\text{gr}^i_{\tilde{Y}}(D_n) := \{ P \in D_n \mid \deg(P) = i \} \) on \(D_n \) by setting

\[
\deg(x_j) = 1 = -\deg(\partial_j)
\]

for all \(1 \leq j \leq n \). With it we define a filtration on \(D_n \) by

\[
\tilde{V}^k(D_n) = \bigoplus_{i \leq k} \text{gr}^i_{\tilde{Y}}(D_n).
\]

Let \(M \) be a \(D_n \)-module, finitely generated by elements \(m_1, \ldots, m_r \), and choose integers \(s_1, \ldots, s_r \). Then define a filtration on \(M \) by setting

\[
\tilde{V}^k(M) = \bigoplus_{i=1}^r \tilde{V}^{k-s_i}(D_n) \cdot m_i.
\]

Denote the operator \(- \sum_{j=1}^n \partial_j \cdot x_j \) by \(\tilde{E} \).

\(^1\)The cohomology fundamental class of \(Y \) in \(H^{2 \dim C(\tilde{Y})}(\mathbb{P} X; \mathbb{C}) \) evaluates on the homology class of a generic \(\mathbb{P}^{n-1-\dim C(\tilde{Y})} \subseteq \mathbb{P} X \) to the 0-cycle given by the intersection of \(\tilde{Y} \) with that generic subspace. But this intersection is the degree of \(\tilde{Y} \), hence positive. Thus the restriction of the class represented by this subspace on \(\mathbb{P} X \), a generator of \(H^{2 \dim C(\tilde{Y})}(\mathbb{P} X; \mathbb{C}) \), to \(\tilde{Y} \) is nonzero. But cohomology of projective space is a polynomial algebra in the hyperplane section, and if the \(\dim C(\tilde{Y}) \)-power of the hyperplane restricts to a nonzero class on \(\tilde{Y} \) then so do all smaller powers.
It is a result of Kashiwara [Kas78] that when M is holonomic there is a b-function for integration $\hat{b}_M(s)$. This is a univariate polynomial that satisfies
\[(2.3.2)\]
\[\hat{b}_M(E + n + k) \cdot \hat{V}^k(M) \subseteq \hat{V}^{k-1}(M)\]
for all $k \in \mathbb{Z}$. We describe now ideas that lead to a proof for Proposition 2.12 below.

As before, let ω_n be the right D_n-module $(D_n/\partial \cdot D_n)$ where $\partial = \{\partial_1, \ldots, \partial_n\}$. This is a free rank one R_n-module, and can be naturally identified with the D_n-module $\text{Ext}_{D_n}^1(R_n, D_n)$, and with the global sections of the right D_X-module of top differential forms $\Omega_X \cdot dx_1 \wedge \ldots \wedge dx_n$, [HTT08]. Give it a \hat{V}-filtration by placing the generator $1 + \partial \cdot D_n$ into \hat{V}-level n.

The D-module theoretic direct image functor π_+ for the projection map $\pi : \mathbb{C}^n \to \mathbb{C}^0$ can on global sections be identified with $\omega_n \otimes_{D_n} (_)$ shifted by n, computing the Tor-functors against ω_n. This derived tensor product can be viewed as the tensor product of ω_n with a free D_n-resolution F^\bullet of the input module M, or of a free resolution K^\bullet of ω with M, or of the tensor product of K^\bullet with F^\bullet. There are natural morphisms from the last scenario to the two former ones that induce isomorphisms on cohomology.

One major difficulty in identifying $\pi_+(M)$ is that its homology consists of finite-dimensional vector spaces with no further module structure, while the modules that appear in the complex are infinite-dimensional vector spaces with no further module structure.

A free resolution F^\bullet of M is \hat{V}-strict if each F^i is equipped with a \hat{V}-filtration $\hat{V}(F^i)$ such that every differential $\delta^i : F^i \to F^{i+1}$ satisfies $\delta^i(\hat{V}(F^i)) \subseteq \hat{V}(\hat{V}(F^{i+1}))$ and moreover $\delta^i(\hat{V}(F^i)) \cap \hat{V}(\hat{V}(F^{i+1})) = \delta^i(\hat{V}(F^i))$. It is a theorem of algorithmic algebraic analysis that finitely generated \hat{V}-filtered D_n-modules do allow \hat{V}-strict resolutions of finite length. The \hat{V}-filtration on F^\bullet induces a quotient filtration on $\omega \otimes_{D_n} F^\bullet$. This filtered complex may not be strict anymore, but still the morphisms will respect the filtration. The \hat{V}-filtration on $\omega_n \otimes_{D_n} F^\bullet$ is bounded below while on F^\bullet it is not. Moreover, $\text{gr}^\delta \hat{V}(F^i)$ is infinite dimensional over \mathbb{C}, while each $\text{gr}^\delta \hat{V}(\omega_n \otimes_{D_n} F^i)$ is \mathbb{C}-finite. Nonetheless, the \mathbb{C}-dimension of each $\omega_n \otimes_{D_n} F^i$ is still infinite.

Let ℓ be the largest and s the smallest integral root of the b-function $\hat{b}_M(s)$.

Theorem 2.10 (Integration Theorem [OT99, OT01]). With notation as introduced above, the morphisms
\[\omega_n \otimes_{D_n} F^\bullet \leftarrow \hat{V}^\ell(\omega_n \otimes_{D_n} F^\bullet) \to \hat{V}^\ell(\omega_n \otimes_{D_n} F^\bullet)/\hat{V}^{s-1}(\omega_n \otimes_{D_n} F^\bullet)\]
are quasi-isomorphisms.

In other words, every cohomology class of $\text{Tor}^{D_n}_*(\omega_n, M)$ has a representative inside $\hat{V}^\ell(\omega_n \otimes_{D_n} F^\bullet)$, and the complex $\hat{V}^{s-1}(\omega_n \otimes_{D_n} F^\bullet)$ is exact.

Note that the subquotient complex $\hat{V}^\ell(\omega_n \otimes_{D_n} F^\bullet)/\hat{V}^{s-1}(\omega_n \otimes_{D_n} F^\bullet)$ is, in contrast to $\omega_n \otimes_{D_n} F^\bullet$, \mathbb{C}-finite, reducing the computation of $\pi_+(M)$ to finite-dimensional linear algebra in this subquotient complex.

One can now just as well resolve ω_n and M, or just ω_n, and obtain other complexes that represent $\omega_n \otimes_{D_n} M$. A natural resolution for ω_n is the cohomological Koszul complex K^\bullet on the left-multiplications on D_n by the various ∂_j. (So, K^\bullet is the complex of global sections of $\Omega^\bullet_{D,X}$.) The module K^\bullet has a natural generating set given by the size-ℓ-subsets of $1, \ldots, n$. We place these generators in \hat{V}-level ℓ and extend \hat{V} to each K^i by D_n-linearity. Since ∂_i is in \hat{V}-level -1, this produces a \hat{V}-strict resolution of ω_n. Having resolutions K^\bullet, F^\bullet with \hat{V}-filtration, there is an induced \hat{V}-filtration on $K^\bullet \otimes_{D_n} F^\bullet$.

The complex $K^\bullet \otimes_{D_n} M$ is sometimes called the (affine, global) de Rham complex of M. If M is a space of functions on which one can differentiate, multiplication by ∂_i in K^\bullet corresponds to differentiation by x_i in the usual de Rham complex.

Suppose now that $M = \bigoplus_{\ell \in \mathbb{Z}} M_\ell$ is a graded module over the graded ring D_n, with homogeneous generators m_1, \ldots, m_r of degrees s_1, \ldots, s_r. Choosing the degrees of the generators as shifts (i.e., $s_i = \deg(m_i)$) for the
\(\tilde{V}\)-filtration on \(M\) one obtains a direct sum of the graded components of \(M\),

\[
(2.3.3) \quad \tilde{V}^k(M) = \sum_{i=1}^{r} \tilde{V}^{k-s_i}(D_n) \cdot m_i = \bigoplus_{t \leq k} M_t.
\]

Since the twisted Euler operator \(\tilde{E} = -\sum_{j=1}^{n} \partial_j x_j\) is \(\tilde{V}\)-homogeneous of degree zero, the defining equation (2.3.2) becomes

\[
\tilde{b}_M(\tilde{E} + n + k) \cdot M_k = 0
\]
f for all \(k \in \mathbb{Z}\).

For \(\tilde{V}\)-graded \(M\) one can arrange the resolution \(F^\bullet\) to respect this grading, and \(K^\bullet\) is graded in any case. If now \(\eta_F\) is a cohomology class generator in \(H^i(\omega_n \otimes_{D_n} F^\bullet)\), one can lift it into \(K^n \otimes_{D_n} F^i\) and then chase it into a class \(\eta_K\) of \(K^\bullet \otimes_{D_n} M\), since Tor is a balanced functor. The grading of the resolutions involved implies that the \(\tilde{V}\)-level of this class in \(K^\bullet \otimes_{D_n} M\) is the same as the \(\tilde{V}\)-level of \(\eta_F\) in \(\omega_n \otimes_{D_n} F^\bullet\).

We recall the notion of an Eulerian \(D_n\)-module.

Definition 2.11 (MZ14). The graded \(D_n\)-module \(M = \bigoplus_{i \in \mathbb{Z}} M_i\) is Eulerian if for every homogeneous \(m \in M_i\) one has \((\sum_{j=1}^{n} x_j \partial_j)m = i \cdot m\).

In terms of \(\tilde{E}\) this is equivalent to \((\tilde{E} + n + \deg(m))m = 0\).

Eulerian \(D_n\)-modules are a very special case of Brylinski’s monodromic modules, which are those on which the Euler operator has a minimal polynomial. They include (iterated) local cohomology modules \(H^0_{I_1}(\ldots (H^0_{I_k}(R_n)\ldots)\) for homogeneous ideals \(I_1, \ldots , I_k\).

Proposition 2.12. Let \(M\) be a finitely generated Eulerian \(D_n\)-module. Then every nonzero cohomology class of \(\omega_n \otimes_{D_n} M\) has degree zero.

Proof. Since the module is Eulerian, we have \((\tilde{E} + n + \deg(m))m = 0\) for every homogeneous \(m \in M\). We put the \(\tilde{V}\)-filtration on \(M\) that is induced by a finite set of homogeneous generators as in (2.3.3), with shifts \(s_i = \deg(m_i)\). Then, a \(b\)-function for integration is given by \(\tilde{b}(s) = s\). The conclusion is immediate from the Integration Theorem 2.10. \(

Remark 2.13. Let us call quasi-Eulerian a graded monodromic \(D_n\)-module \(M\). Then one can easily generalize Proposition 2.12 to: if \(M\) is quasi-Eulerian then the degree of every cohomology class of \(\omega_n \otimes_{D_n} M\) must be an integral root of the minimal polynomial of \(\tilde{E}\) on \(M\).

There is a version of the Integration Theorem for complexes of holonomic modules (more generally, for complexes that have a \(b\)-function for integration), see [Wal00]. This allows a further generalization to finite graded complexes with quasi-Eulerian cohomology.

We now consider the Eulerian \(D_n\)-module that arises as the localization \(M = R_n[1/f]\) of \(R_n\) at a homogeneous polynomial \(f\). It is clear that this is an Eulerian module since the Euler operator \(E\) acts on a rational homogeneous function of degree \(k\) by multiplication with \(k\). Thus, \(K^\bullet \otimes_{D_n} M\) is \(\tilde{V}\)-graded and every class in \(\omega_n \otimes_{D_n} M\) has native degree zero.

If one reads elements of \(K^\ell \otimes M\) as differential \(\ell\)-forms on \(M\), this implies that the cohomology of \(K^\bullet \otimes_{D_n} M\) is spanned as vector space by differential forms of degree zero: forms of the type

\[
\sum_{i_1 \leq \ell} \frac{g_I dx_I}{f^{k_I}}
\]

where \(dx_I = \wedge_{i \in I} dx_i\), where \(g_I\) is a homogeneous element of \(R_n\), and where \(\deg(g_I) + \ell = k_I \cdot \deg(f)\). Similarly, integrating a graded complex \(M^\bullet\) with Eulerian cohomology modules yields a de Rham complex of \(M^\bullet\) with cohomology groups concentrated in degree zero.
Corollary 2.14. If I is a homogeneous ideal then the de Rham cohomology of the affine complement $U(I) = X \setminus \Var(I)$ of the affine variety $\Var(I) \subseteq X \subseteq \CC^n$ is generated by chains of differential forms of degree zero. Moreover, the de Rham cohomology groups $H^i_{\mathrm{dR}}(H^1_{\mathbb{R}}(R))$ all are concentrated in degree zero. □

Proof. The Grothendieck comparison theorem asserts that the cohomology of $K^\bullet \otimes_{D_{\mathbb{C}}} C^\bullet$ is the de Rham cohomology of $U(I)$. The rest follows from Proposition 2.12. □

Remark 2.15. Since multiplication by $\CC \ni \lambda \neq 0$ is an isomorphism on $U(f)$, the de Rham cohomology of $U(f)$ of a divisor is spanned by homogeneous differential forms (homothety eigenvectors) for all homogeneous $f \in R_n$. Alex Dimca pointed out that path-connectedness of \CC^* implies that this multiplication is in fact homotopy equivalent to the identity, and thus does not change the class. Hence, the cohomology of $U(f)$ must be eigenvectors to eigenvalue 1, and thus of degree zero. ∴

2.4. On Veronese maps. Throughout this subsection, $2 \leq d, n \in \mathbb{N}$. Let

$$v^d_n: X = \mathbb{A}^n_{\mathbb{C}} \rightarrow \mathbb{A}^N_{\mathbb{C}} := W$$

be the d-th Veronese morphism on the affine level, so $N = \binom{n+d-1}{d}$. If n, d are understood, we abbreviate v^d_n to just v. We set $X' := v(X) \subseteq W$, $W^o = W \setminus \{0\}$, $X^o := X \setminus \{0\}$ and $X'^o := X' \setminus \{0\}$.

Let $R_n = \CC[x_1, \ldots, x_n] = O_X(X)$ and $R_N = \CC[y_S | S \in \mathbb{N}^n, |S| = d] = O_W(W)$. Let $I \subseteq R_n$ be a homogeneous ideal and Y the associated variety. Denote U the complement $X \setminus Y$, and let Y', U' the images of Y, U under v. Let U_W be the complement $W \setminus v(Y)$. We wish to compare here the cohomology of the affine complements of Y and Y'.

Note that $v^\#: R_N \rightarrow R_n$ sends $y_S \rightarrow x^S$ in multi-index notation. The d-th roots of unity μ_d act diagonally on X, as well as on every other variety of a homogeneous ideal of R_n, by multiplication on each x_i. Moreover, v is the orbit map to this action, followed by inclusion into W. The image of v has a unique isolated singularity at the origin, and v is a $d : 1$ covering of X'^o by X^o.

Note that μ_d is the covering group of the map $U \rightarrow U'$, and its order d is nonzero in \CC. Under these circumstances, $H^\bullet(U'; \CC)$ is the group of μ_d-invariants in $H^\bullet(U; \CC)$. Using the de Rham manifestation of $H^\bullet(U; \CC)$, in which we showed that every class has a representative that is of degree zero, the entire space $H^\bullet(U; \CC)$ is μ_d-invariant, so that

$$H^\bullet_{\mathrm{dR}}(U; \CC) = H^\bullet_{\mathrm{dR}}(U'; \CC).$$

In what follows, we replace de Rham cohomology by singular cohomology, since we will have need to step outside the category of smooth algebraic varieties. Known comparison theorems over \CC assure functorial isomorphisms between these cohomology theories whenever both exist.

It will turn out to be useful to know the cohomology of $W \setminus X' = W^o \setminus X'^o$. Note that X'^o has the homology of the homotopy $(2n-1)$-sphere X^o and is a closed submanifold of the $2N$-dimensional manifold W^o, the latter being homotopy equivalent to the $(2N-1)$-sphere S^{2N-1}. Alexander duality gives an isomorphism $H^i_{\mathrm{X}^o}(W^o; \CC) \cong \text{Hom}_{\mathbb{C}}(H^{2N-1-2i-i}(X'^o; \CC), \CC)$ with the dual of compactly supported cohomology, [Ve96, Alexander Duality, V.6.6]. But then X'^o being a $2n$-dimensional real manifold yields by Poincaré duality that $\text{Hom}_{\mathbb{C}}(H^{2N-1-2i}(X'^o; \CC), \CC) \cong H^{2n-2N+1}(X^o; \CC)$, [HTS2, I(5.4)]. The latter is \CC for $i = 2N-1$ and $i = 2N-2n$, and zero otherwise. In the long exact sequence

$$\cdots \rightarrow H^i_{\mathrm{X}^o}(W^o; \CC) \rightarrow H^i(W^o; \CC) \rightarrow H^i(W^o \setminus X'^o; \CC) \rightarrow H^i_{\mathrm{X}^o}(W^o; \CC) \rightarrow \cdots$$

we have $H^i_{\mathrm{X}^o}(W^o; \CC) \neq 0$ only when $i = 2N-1, 2(N-n)$ and $H^i(W^o; \CC) \neq 0$ only if $i = 2N-1, 0$. The map $\CC = H^2N-1(W^o; \CC) \rightarrow H^{2N-1}(W^o; \CC) = \CC$ is surjective (hence bijective) since $W^o \setminus X'^o$ is homotopy equivalent to an open subset of a $(2N-1)$-sphere and so $H^{2N-1}(W^o \setminus X'^o; \CC) = 0$. It follows that

$$(2.4.1) \quad H^i(W \setminus X'; \CC) = H^i(W^o \setminus X'^o; \CC) = \begin{cases} \CC & \text{if } i = 0, 2(N-n) - 1; \\ 0 & \text{else.} \end{cases}$$
Next we compute the cohomology of $U_W = W \setminus Y', Y' = v(Y)$ where $Y = \Var(I)$ for some homogeneous ideal $I \subseteq R_n$. Since $U' = v(U)$ is an embedded submanifold of U_W with complex codimension $N - n$, we can consider the tubular neighborhood T' of U' that arises via the tubular neighborhood theorem as the total space of the normal bundle of U' in U_W. Then

$$U_W = W \setminus Y' = (W \setminus X') \cup U' = (W \setminus X') \cup T',$$

with intersection $(W \setminus X') \cap T' = T^\circ$.

As U', U_W are complex manifolds, the removal of the zero section U' from T' leaves a space T'° homotopic to an oriented sphere bundle $S^q \hookrightarrow T'^\circ \to U'$ where

$$q = 2(N - n) - 1.$$

The q-sphere bundle T° yields a Gysin sequence

$$\cdots \to H^i(T'^\circ; \mathbb{C}) \xrightarrow{\pi^\ast} H^{i-q}(U'; \mathbb{C}) \xrightarrow{e} H^{i+1}(U'; \mathbb{C}) \xrightarrow{\pi^\ast} H^{i+1}(T'^\circ; \mathbb{C}) \to \cdots$$

Here, $\pi: T'^\circ \to U'$ is the fibration map, π^\ast is the pullback under this map, and e is the Euler class of the bundle T'° when restricted from relative cohomology to absolute cohomology on T. The map π^\ast is special to the situation of bundles with fibers homotopic to compact manifolds, and is induced by integration along the fibers in the following sense. For any oriented \mathbb{R}^k-bundle $E \to B$ with $E^\circ = E \setminus B$ there is a fundamental class $u \in H^k(E, E^\circ; \mathbb{Z})$ that restricts in each fiber to the canonical class in $H^k(\mathbb{R}^k, \mathbb{R}^k \setminus \{0\}; \mathbb{Z})$; this canonical class is the given orientation on the bundle (an orientation is a global section of the orientation bundle with fiber $H^k(\mathbb{R}^k, \mathbb{R}^k \setminus \{0\}; \mathbb{Z})$). The existence of the fundamental class is the content of the Thom isomorphism theorem for oriented vector bundles, and the cup product with u sets up an isomorphism $u_U^\cup:\ H^j(E; \mathbb{Z}) \to H^{j+k}(E, E^\circ; \mathbb{Z})$. The cap product with the Poincaré dual of u induces an isomorphism $H^j(E, E^\circ; \mathbb{Z}) \to H_{j-k}(E; \mathbb{Z})$, the “integration along the fibers” above (compare [MS74, Ch. 9-12]). The image of u in $H^k(E; \mathbb{Z})$ is the Euler class (by definition). If the fiber dimension k is large, $H^k(E; \mathbb{Z}) = H^{k-1}(E; \mathbb{Z}) = 0$. In that case, the Euler class of the bundle must be zero and then u corresponds to the class in $H^{k-1}(E^\circ; \mathbb{Z})$ with the property that it restricts in each fiber to the canonical generator of $H^{k-1}(\mathbb{R}^k \setminus \{0\}; \mathbb{Z})$.

Our Gysin sequence above arises from the long exact sequence to the pair (T', T'°) with replacements coming from the Thom isomorphism and the fact that U', T' are homotopic.

Since $\dim_{\mathbb{C}}(U') = n$, $H^i(U'; \mathbb{C}) = 0$ if $i \geq 2n$. On the other hand, the Euler class is of homological degree $q+1 = 2(N-n)$. Thus, if $2(N-n) \geq 2n$ then either the source or the target of the Euler map $H^{i-q}(U'; \mathbb{C}) \xrightarrow{e} H^{i+1}(U'; \mathbb{C})$ is zero for every i. But $N = \binom{n+d-1}{n-1} \geq 2n$ for $n, d \geq 2$ unless $d = n = 2$, and usually much larger. Thus the Gysin sequence splits into isomorphisms

\begin{align}\label{2.4.2}
H^i(T'^\circ; \mathbb{C}) &\xrightarrow{\pi^\ast} H^{i-q}(U'; \mathbb{C}) = H^i(T'; \mathbb{C}) &\text{if } i \geq 2n; \\
H^i(T'; \mathbb{C}) &= H^i(U'; \mathbb{C}) \xrightarrow{\pi^\ast} H^i(T'; \mathbb{C}) &\text{if } i < 2n. \tag{2.4.3}
\end{align}

Note that the composition $H^i(T'; \mathbb{C}) \to H^i(T'^\circ; \mathbb{C}) \to H^i(U'; \mathbb{C})$ is an isomorphism since $U' \hookrightarrow T'$ is a homotopy equivalence; so the left map is an isomorphism if and only if the right one is. Now consider the Mayer–Vietoris sequence to the pair $(W \setminus X') \cup T' = U_W$ with $T'^\circ = (W \setminus X') \cap T'$:

$$\cdots \to H^i((W \setminus X') \cup T'; \mathbb{C}) \to H^i(W \setminus X'; \mathbb{C}) \oplus H^i(T'; \mathbb{C}) \to H^i(T'^\circ; \mathbb{C}) \to \cdots$$

Here, each (component of a) map is the natural restriction, possibly with a (-1) factor.

If $i < 2n$, the map $H^i(T'; \mathbb{C}) \to H^i(T'^\circ; \mathbb{C})$ in the Mayer–Vietoris sequence is therefore the identity by \ref{2.4.2}. It follows that in this range, $H^i((W \setminus X') \cup T'; \mathbb{C}) \to H^i(W \setminus X'; \mathbb{C})$ is an isomorphism as well. But in that range, by \ref{2.4.3}, only $H^0(W \setminus X'; \mathbb{C})$ is nonzero and so $H^i((W \setminus X') \cup T'; \mathbb{C})$ is zero for $0 < i < 2n$.

If $2n-1 \leq i < q$, then $H^i((W \setminus X') \cup T'; \mathbb{C})$ vanishes since $H^i(W \setminus X'; \mathbb{C}) = H^i(T'; \mathbb{C}) = H^i(T'^\circ; \mathbb{C}) = 0$.

Let us look at the situation when \(i = q \):

\[
H^{q-1}(T' \circ; \mathbb{C}) \to H^q((W \setminus X') \cup T'; \mathbb{C}) \to H^q(W \setminus X'; \mathbb{C}) \oplus H^q(T'; \mathbb{C}) \to \]

\[
H^q(T' \circ; \mathbb{C}) \to H^{q+1}((W \setminus X') \cup T'; \mathbb{C}) \to H^{q+1}(W \setminus X'; \mathbb{C}) \oplus H^{q+1}(T'; \mathbb{C}) \to 0 \]

If one restricts the morphism \(H^q(W \setminus X'; \mathbb{C}) \to H^q(T' \circ; \mathbb{C}) \) to the intersection with a small ball around a generic point of \(Y' \), both spaces become homotopic to \(S^q \) and so the morphism \(H^q(W \setminus X'; \mathbb{C}) \to H^q(T' \circ; \mathbb{C}) \) restricts to an isomorphism \(C \to \mathbb{C} \). But since \(H^q(W \setminus X'; \mathbb{C}) \) and \(H^q(T' \circ; \mathbb{C}) \) are also equal to \(C \), the morphism \(H^q(W \setminus X'; \mathbb{C}) \to H^q(T' \circ; \mathbb{C}) \) is an isomorphism. Thus, \(H^q(U_W; \mathbb{C}) = H^{q+1}(U_W; \mathbb{C}) = 0 \).

If \(i > q \), \(H^i(T'; \mathbb{C}) = H^i(W \setminus X'; \mathbb{C}) = 0 \). Thus, \(H^{i-q}(U'; \mathbb{C}) = H^i(T' \circ; \mathbb{C}) = H^{i+1}((W \setminus X') \cup T'; \mathbb{C}) \).

We have proved

Proposition 2.16. We use notation as defined at the start of Subsection 2.4. Let \(T' \to U' \) be the normal bundle of \(U' \) in \(W' \). With \(U_W := W \setminus Y' = (W \setminus X') \cup T' \), and \(q = \frac{n+2-d}{n-1} > 2n \) we have on the level of reduced cohomology for every \(i \in \mathbb{Z} \) the isomorphisms

\[
H^i(U'; \mathbb{C}) \xrightarrow{\pi^*} H^i(T'; \mathbb{C}) \xrightarrow{e_0 \cup \delta^*} H^{i+q}(T' \circ; \mathbb{C}) \xrightarrow{\delta^*} H^{i+q+1}(U_W; \mathbb{C})
\]

Here \(e \in H^{q+1}(T', T' \circ; \mathbb{Z}) \) is the Euler class of the bundle, \(e_0 \in H^q(T' \circ; \mathbb{Z}) \) is its preimage, the vertical \(\delta^* \) is the connecting morphism for the pair \((T', T' \circ; \mathbb{C}) \), and the horizontal \(\delta^* \) is the connecting morphism for the Mayer–Vietoris spectral sequence for the cover \(U_W = (W \setminus X') \cup T' \).

In particular, the singular reduced cohomology groups of the complements of the cones \(Y \) and \(Y' \) over \(\tilde{Y} \) are the same up to a cohomological shift by \(q + 1 = 2(N - n) \).

Corollary 2.17. If \(Y \subseteq X = \mathbb{C}^n \) is homogeneous and of equi-dimension three, then the Čech–de Rham numbers \(\rho_{p,q}^\circ(Y) \) are invariant under Veronese maps of \(Y \).

Proof. With \(Y' \subseteq W \) and notation as in Subsection 2.4 the Čech–de Rham spectral sequence degenerates for dimensional reasons by Proposition 2.5. According to Proposition 2.16 the two complements have the same reduced cohomology up to a shift by the relative dimension. Hence, up to that same shift, the two Čech–de Rham spectral sequences have the same abutment. The degeneration shows that the abutment determines the \(\rho_{p,q} \), except for the numbers \(\rho_{2,2}^\circ + \rho_{0,0}^\circ = \dim H^0_{\text{Br}}(U) \). However, \(\rho_{2,2}^\circ \) is the dimension of \(H^2_{\text{Br}}(H^1_{\text{Br}}(R)) \) and thus equals the socle dimension of \(H^2_{\text{Br}}(\mathbb{R}H^1_{\text{Br}}(R)) \) by Lemma 1.4. But equi-dimensionality and Remark 1.7 show that \(H^2_{\text{Br}}(\mathbb{R}H^1_{\text{Br}}(R)) = 0 \). This settles the case \(r = 2 \). But no higher nonzero differentials can exist by degeneration.

It turns out that, similarly to the corresponding result on Lyubeznik numbers in [RSW21], the Čech–de Rham numbers of level two do not change under Veronese maps of projective varieties.

Theorem 2.18. Let \(\tilde{Y} \) be a projective variety and suppose \(Y \) is a cone for \(\tilde{Y} \), embedded into an affine space \(X \). Then the Čech–de Rham numbers \(\rho_{k,\ell}^\circ \) do for \(k \geq 2 \) not depend on \(Y \) but are a function of \(\tilde{Y} \) alone.

The overall plan of the proof is quite similar to the proof in [RSW21] that the \(\lambda_{k,\ell} \) are (largely) unchanged under Veronese maps. We start with translating the \(\rho_{k,\ell} \) into objects of constructible sheaves involving the Verdier dual \(\omega_Y \) of the constant sheaf on \(Y \). After some rewriting we use Lemma 1.4 to exchange a direct
image functor to a point for the pullback to the origin and then to use an adjunction triangle to reformulate them in terms of Y^0. We finally lift to \tilde{Y} on which one uses an interpretation in terms of Chern classes.

During the proof we shall use the following diagram of maps

\[
\begin{array}{ccc}
\{0\} & \xrightarrow{i} & \{0\} \\
\downarrow j_Y & & \downarrow j_Y \\
Y & \xrightarrow{h} & C^n =: X \\
\downarrow j_Y & & \downarrow j_Y \\
Y_0 & \xrightarrow{h_0} & C^n \setminus \{0\} =: X^0 \\
\downarrow p & & \downarrow p \\
\tilde{Y} & \xrightarrow{g} & \mathbb{P}^{n-1}
\end{array}
\]

Proof. The Čech–deRham numbers of level 2 are given by

\[
\rho_{k,\ell} := \dim H_{dR}^{n-k} H_I^{n-\ell} R = \dim p^* \mathcal{H}^{-k} a_* (p^* \mathcal{H}^{n-\ell} h|_X \mathbb{C}[n]).
\]

(The shift from $-n+k$ on the left to $-k$ on the right occurs since the de Rham functor used in the Riemann–Hilbert correspondence arises from the “natural” algebraic de Rham functor—which goes along with the tensor product with ω—by analytification and a shift by n).

We have

\[
\begin{align*}
p^* \mathcal{H}^{-k} a_* (p^* \mathcal{H}^{n-\ell} h|_X \mathbb{C}[n]) & \overset{(a)}{=} p^* \mathcal{H}^{-k} a_* (p^* \mathcal{H}^{n-\ell} h|_X \mathbb{C}[n]) \\
& \overset{(b)}{=} p^* \mathcal{H}^{-k} a_* (p^* \mathcal{H}^{n-\ell} h|_Y \mathbb{C}[n]) \\
& \overset{(c)}{=} p^* \mathcal{H}^{-k} a_* (p^* \mathcal{H}^{n-\ell} h|_Y \mathbb{C}[n]) \\
& \overset{(d)}{=} p^* \mathcal{H}^{-k} a_* (p^* \mathcal{H}^{n-\ell} h|_Y \mathbb{C}[n]) \\
& \overset{(e)}{=} p^* \mathcal{H}^{-k} (i_Y)_* (p^* \mathcal{H}^{n-\ell} h|_Y \mathbb{C}[n]) \\
& \overset{(f)}{=} p^* \mathcal{H}^{-k} (i_Y)_* (p^* \mathcal{H}^{n-\ell} h|_Y \mathbb{C}[n]) \\
\end{align*}
\]

(2.4.4)

The justifications are as follows: (a) holds since the real dimension of X is $2n$; (b) follows from the definition of ω_Y; (c) holds since h is a closed embedding and hence $h|_Y$ is perverse exact; (d) comes from $h_* = h|_Y$ for closed embeddings; (e) is Lemma 3.3 in [RW18].

We have the following triangle from the inclusion of the origin into Y:

\[
j_Y j^{-1}_{Y'} (p^* \mathcal{H}^{n-\ell} h|_{Y'}) \rightarrow p^* \mathcal{H}^{n-\ell} h|_{Y'} \rightarrow i_Y i^{-1}_{Y'} (p^* \mathcal{H}^{n-\ell} h|_{Y'}) \overset{+1}{\rightarrow}
\]
and it induces the following long exact sequence

\[\cdots \rightarrow p\mathcal{H}^{-3}i_Y! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \rightarrow \]

\[p\mathcal{H}^{-2}j_Y! (j_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \rightarrow 0 \rightarrow p\mathcal{H}^{-1}i_Y! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \rightarrow \]

\[p\mathcal{H}^{0}j_Y! (j_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \rightarrow p\mathcal{H}^{-\ell} \omega_Y \rightarrow p\mathcal{H}^{0}i_Y! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \rightarrow 0 \]

We now use that \(k \geq 2 \), which yields the following isomorphisms from the long exact sequence above:

\[
p\mathcal{H}^{-k}i_Y! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \simeq p\mathcal{H}^{-k+1}j_Y! (j_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \tag{2.4.5}
\]

with justifications as follows: (f) since \(j_Y \) is open and so \((j_Y)^{-1}\) is perverse exact; (g) is dual to the fact that \(\mathbb{C}_{Y_s} = \pi^{-1}\mathbb{C}_{\overline{Y}} \); (h) is because \(\pi \) is smooth so that \(\pi^![-1] \) is perverse exact.

We have then

\[
p\mathcal{H}^i a_Y! p\mathcal{H}^{-k}j_Y! \pi^! (p\mathcal{H}^{-\ell+1} \omega_{\overline{Y}}) \simeq p\mathcal{H}^i a_Y! (p\mathcal{H}^{-k}(i_Y)! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y))) = 0 \quad \text{for} \quad i \neq 0
\]

since \(p\mathcal{H}^{-n+k}i_Y! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \) is at most supported on a point. A spectral sequence argument shows therefore that

\[
p\mathcal{H}^{0} a_Y! p\mathcal{H}^{-k}j_Y! \pi^! (p\mathcal{H}^{-\ell+1} \omega_{\overline{Y}}) \simeq p\mathcal{H}^{-k}a_Y! j_Y! \pi^! (p\mathcal{H}^{-\ell+1} \omega_{\overline{Y}}). \tag{2.4.6}
\]

Summarizing we have for \(k \geq 2 \) that

\[
p\mathcal{H}^{-k}a_*(p\mathcal{H}^{n-\ell} h! \mathbb{C}_{V}[n]) \overset{(i)}{\simeq} p\mathcal{H}^{-k} (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y) \tag{2.4.7}
\]

\[
\overset{(j)}{=} p\mathcal{H}^{0} a_Y!i_Y! (p\mathcal{H}^{-k}(i_Y)! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y)) \overset{(k)}{=} p\mathcal{H}^{0} a_Y! (p\mathcal{H}^{-k}i_Y! (i_Y)^{-1}(p\mathcal{H}^{-\ell} \omega_Y)) \tag{2.4.8}
\]

where (i) follows from display \(\text{[2.4.4]} \); (j) follows since \(a_Y \circ i_Y \) is the identity on \(\{0\} \); (k) is since \(i_Y! \) is perverse exact as \(i_Y \) is closed; (l) comes from displays \(\text{[2.4.4]} \) and \(\text{[2.4.5]} \).

Now let \(\mathcal{L} \) be the quasi-coherent pullback of \(\mathcal{O}_{\mathbb{P}^{n-1}}(1) \) via \(g \). By abuse of notation we denote the total space of the corresponding line bundle by the same letter. Notice that \(Y^\circ \simeq \mathcal{L} \setminus \{\text{zero section}\} \). Consider the
Putting everything together we get that
\[\pi^{-1}[1] = \pi'[−1] \] is perverse exact, and the last one because cohomology of compact supports is the cohomology of the exceptional direct image functor.

From the closed embedding of \(\tilde{Y} \) into \(L \) arises a triangle
\[(2.4.9) \quad j_!(\tilde{j}^{-1}q^{-1}(p^\ell H^{-\ell}(\omega_Y))) \rightarrow q^{-1}(p^\ell H^{-\ell}(\omega_Y)) \rightarrow \tilde{i}!\tilde{i}^{-1}q^{-1}(p^\ell H^{-\ell}(\omega_Y)) \rightarrow +1 \]
Applying \(q_! \) we get
\[\pi_!\pi^{-1}G_{-\ell+1} \rightarrow q_!q^{-1}G_{-\ell+1} \rightarrow G_{-\ell+1} \xrightarrow{+1} \]
where we have set \(G_{-\ell} := p^\ell H^{-\ell}\omega_Y \) and used \(\pi = q \circ \tilde{j} \). We have \(G \simeq q\tilde{j}^!G \simeq qG^{-1}G[2] \) for any \(G \in \text{Perv}(\tilde{Y}) \) since \(q \) is smooth of relative dimension 1. This gives the triangle
\[\pi_!\pi^{-1}G_{-\ell+1} \rightarrow G_{-\ell+1}[-2] \rightarrow G_{-\ell+1} \xrightarrow{+1} \]
As in [RSW21 (1.3.1)], this triangle is dual to a triangle \(\mathcal{F} \rightarrow \mathcal{F}[2] \rightarrow p_*\pi^!\mathcal{F} \xrightarrow{+1} \) where the first map is induced by
\[e \otimes 1 : C_Y \otimes \mathcal{F} \rightarrow C_Y[2] \otimes \mathcal{F}, \]
with \(e \in \text{Hom}_{D^b_{\text{c}, c}(\tilde{Y})}(C_Y, C_Y[2]) \simeq \text{Hom}_{D^b_{\text{c}, c}(\tilde{Y})}(C, R\Gamma(\tilde{Y}; C_Y[2])) \simeq H^2(\tilde{Y}; \mathbb{C}) \) is the image of the Euler class of the vector bundle \(L \).

We get a long exact sequence
\[\rightarrow \mathbb{H}^{k+2}_c(\tilde{Y}, \pi_!\pi^{-1}G_{-\ell+1}) \rightarrow \mathbb{H}^{k-2}_c(\tilde{Y}, G_{-\ell+1})(-1) \rightarrow \mathbb{H}^{k+2}_c(\tilde{Y}, G_{-\ell+1}) \rightarrow \mathbb{H}^{k+3}_c(\tilde{Y}, \pi_!\pi^{-1}G_{-\ell+1}) \rightarrow \]
In particular we get short exact sequences
\[0 \rightarrow \mathbb{H}^{k+1}_c(\tilde{Y}, G_{-\ell+1}) \rightarrow \mathbb{H}^{k+2}_c(\tilde{Y}, \pi_!\pi^{-1}(p^\ell H^{-\ell}(\omega_Y))) \rightarrow \mathbb{H}^{k}_c(\tilde{Y}, G_{-\ell+1}) \rightarrow 0 \]
where
\[\mathbb{H}^{k+1}_c(\tilde{Y}, G_{-\ell+1}) := \text{coker} \left(\mathbb{H}^{k-1}_c(\tilde{Y}, G_{-\ell+1})(-1) \rightarrow \mathbb{H}^{k+1}_c(\tilde{Y}, G_{-\ell+1}) \right) \]
\[\mathbb{H}^{-k}_c(\tilde{Y}, G_{-\ell+1}) := \text{ker} \left(\mathbb{H}^k_c(\tilde{Y}, G_{-\ell+1})(-1) \rightarrow \mathbb{H}^{k+2}_c(\tilde{Y}, G_{-\ell+1}) \right) \]
Putting everything together we get that
\[\rho_{k,\ell} = \dim \mathbb{H}^{k+2}_c(\tilde{Y}, \pi_!\pi^{-1}(p^\ell H^{-\ell}(\omega_Y))) = \dim \mathbb{H}^{k+1}_c(\tilde{Y}, G_{-\ell+1}) + \dim \mathbb{H}^{k}_c(\tilde{Y}, G_{-\ell+1}) \]
is unchanged under Veronese maps for \(k \geq 2 \), since the Euler class of a bundle power is a multiple of the original Euler class (and so over \(\mathbb{C} \) kernels and cokernels are preserved).

\[\square \]

3. Lyubeznik numbers

In this section we study the Lyubeznik numbers and their spectral sequence. After surveying some known facts we discuss to what extent a projective variety determines the Lyubeznik numbers of its cone(s). We look first specifically at varieties of Picard number 1, listing some examples and open questions. After that we discuss cases where in small dimension the Lyubeznik tables of all cones agree.

3.1. Basic properties. We should begin with drawing some parallels to the Čech–de Rham numbers. Quite immediately, being defined as the socle dimensions of the \(E_2 \)-terms in the Grothendieck spectral sequence (1.0.3), the Lyubeznik numbers vanish for \(q \notin [\text{codim}(I), n] \) and for \(p \notin [0, n] \). In fact, similarly to the \(\rho_{p,q} \), Lyubeznik numbers fit into a triangular region

\[
\Lambda(Y) := \begin{pmatrix}
\lambda_{0,0} & \cdots & \cdots & \lambda_{0,d} \\
0 & \cdots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{d,d}
\end{pmatrix}.
\]

In this picture, the differentials of the Grothendieck spectral sequence point South to Southeast.

Remark 3.1. The fact that the abutment is \(H_n^m(R) \) implies that the entries

\[
\lambda_{0,d} = \lambda_{1,d} = 0
\]

always vanish unless the dimension of \(I \) is less than two, in which cases the Lyubeznik tables are (1) and

\[
\begin{pmatrix}
\vdots \\
1
\end{pmatrix}
\]

respectively. The number \(\lambda_{d,d} \) is never zero by [Lyu93] and related to connectedness issues. For example, if \(\dim(Y) = 2 \) then \(\Lambda = \begin{pmatrix}
\vdots & a - 1 & \vdots \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & a
\end{pmatrix} \) where \(a \) is the number of connected components of the punctured spectrum of the ring defining the purely 2-dimensional part of \(I \). [Wal01] [Kaw02]. By [Zha07], \(\lambda_{d,d} \) is the number of connected components of the Hochster–Huneke graph of the completed strict Henselization of \(R/I \).

It was first observed in [GLS98] that the Lyubeznik numbers encode interesting topological information also in higher dimension. However, it is often not easy to decode this information. García and Sabbah concentrate on the case of an isolated singularity and find that the topology of the singularity link carries all information on \(\Lambda \). Other relations to connectedness dimensions are discussed in the survey [NnBWZ16].

A new angle was introduced in [RSW21] by applying the theory of perverse sheaves and mixed Hodge modules to the problem. Indeed, over \(\mathbb{C} \), the local cohomology groups \(H^p(U/I) \) are, as the pushforward of the structure sheaf on \(U(I) \) to \(\mathbb{C}^n \), all equipped with a natural mixed Hodge module structure. The corresponding perverse sheaves carry information on the intersection homology of \(U(I) \). Using this connection it is proved in [RSW21] that if \(I \) is homogeneous then the \(\lambda_{p,q}(R/I) \) can be recovered from the kernel and cokernel of certain maps of sheaves on the corresponding projective scheme, at least as long as \(p > 1 \).

3.2. Lyubeznik numbers and projective schemes. Suppose \(\tilde{Y} \) is a projective variety in \(\mathbb{P}^n_{\mathbb{K}} \), with defining ideal \(I \subseteq R_n = \mathbb{K}[x_1, \ldots, x_n] \). Different embeddings of \(\tilde{Y} \) give rise to different ideals in different polynomial rings, and thus potentially to different sets of Lyubeznik numbers. That this is indeed a possibility was shown to be the case in [RSW21] Sections 2.2, 2.3] where a projective variety with two embeddings is
constructed that produce (partially) different $\lambda_{p,q}$; see also [Wan20]. On the other hand, if \tilde{Y} is smooth or an \mathbb{Q}-homology manifold or analytically locally a set-theoretic complete intersection, then all cones for \tilde{Y} yield the same Lyubeznik numbers [GLS98, Swi13, RSW21].

That examples of cones over \tilde{Y} with varying Lyubeznik numbers exist over \mathbb{C} is rather surprising at first, since similar examples cannot exist in any positive characteristic. Indeed, it is shown in [Zha11] that Lyubeznik numbers in finite characteristic can be seen as eigenvalues of certain operators on sheaves that are intrinsic to the projective variety associated to I.

An interesting feature of [RSW21] is the realization that the non-vanishing Lyubeznik numbers of a homogeneous ideal can, for $p > 1$, be viewed as a measure for the failure of a certain morphism of perverse sheaves to be an isomorphism. All known examples of projective varieties with possibly varying Lyubeznik numbers of their cones come from varieties with Picard number at least two. An application of [RSW21] Prop. 3 is that most Lyubeznik numbers are unchanged under Veronese maps.

Lemma 3.2. Let Y be a cone over the projective variety $\tilde{Y} \subseteq \mathbb{P}^{n-1}_\mathbb{C}$. Let v^d_n be the d-th Veronese applied to the cone Y, and write $Y' = v^d_n(Y)$ for the new cone. Then for $p \geq 2$, the Lyubeznik numbers $\lambda_{p,q}(Y)$ and $\lambda_{p,q}(Y')$ agree.

In particular, if the Picard number \tilde{Y} equals one, then the Lyubeznik numbers $\lambda_{\geq 2,q}(Y)$ to cones over \tilde{Y} are independent of the cone.

Proof. Let ι_1, ι_2 be two embeddings of \tilde{Y} into projective spaces $\mathbb{P}^{n-1}_\mathbb{K}, \mathbb{P}^{m-1}_\mathbb{K}$ and denote $Y_1 \subseteq X_1, Y_2 \subseteq X_2$ the two cones over \tilde{Y}, sitting in the respective affine spaces that belong to the two embeddings. Let L_1, L_2 be the associated line bundles on \tilde{Y} obtained as pullbacks of $\mathcal{O}_{\mathbb{P}^{n-1}_\mathbb{K}}(1)$ and $\mathcal{O}_{\mathbb{P}^{m-1}_\mathbb{K}}(1)$ respectively. Then by [RSW21] Prop. 1, 2, 3, the Lyubeznik numbers $\lambda_{p,q}$ of \tilde{Y} that belong to Y_i and have $p \geq 2$ are determined by the (co)kernel sizes of the Chern classes of L_i on certain cohomology groups of \tilde{Y} with rational coefficients. These cohomology groups themselves (see [RSW21] Prop. 2) do not depend on the bundles L_i.

If ι_2 is the d-fold Veronese applied to ι_1 then the (first) Chern class of L_2 is d times that of L_1. In particular, their kernels and cokernels on \mathbb{Q}-spaces are identical and the first claim follows.

Now suppose that the target of the natural map

$$\phi: \text{Pic}(\tilde{Y}) \longrightarrow \text{Pic}(\tilde{Y}) \otimes_\mathbb{Z} \mathbb{Q}$$

is \mathbb{Q}. If ι_1, ι_2 are both projective embeddings of \tilde{Y}, ampleness implies that $q(L_i) > 0$. Then if $\phi(L_1) = q_1$ and $\phi(L_2) = q_2$, both positive rational numbers, we have for $k \gg 0$ with $kq_1, kq_2 \in \mathbb{N}$ that $L_1^{k|q_1|} = L_2^{k|q_2|}$. Then by the first part of the proof, $\iota_1, \iota_1^{kq_1}, \iota_2^{kq_1}$ and ι_2 all yield the same Lyubeznik numbers $\lambda_{p,q}$ for $p \geq 2$ (where we write ι^t for the t-th Veronese of the embedding ι).

For $p < 2$, we do not know how to compare the $\lambda_{p,q}$ of different cones.

Problem 3.3. Is it true that if the Picard number of \tilde{Y} is one, then all Lyubeznik numbers of all cones Y of \tilde{Y} agree?

Here are three interesting sets of varieties to which this lemma applies.

3.2.1. Determinantal ideals.

Proposition 3.4. The Lyubeznik numbers $\lambda_{p,q}$ with $p \geq 2$ of (the cones over) the projective determinantal varieties $\tilde{Y}_{m,n,t}$ cut out by the $t \times t$ minors of an $m \times n$ matrix of indeterminates are unique.

Proof. Let $A_{m,n,t}$ be the ring obtained as quotient of the polynomial ring $\mathbb{K}[x_{i,j} | 1 \leq i \leq m, 1 \leq j \leq n]$ by the t-minors of the matrix $x := ((x_{i,j}))$.

The case $t = 1$ is trivial. If $t = 2$, the associated projective variety is the product of two projective spaces, and in particular smooth. By [GLS98], or [Swi15], the Lyubeznik numbers of $\tilde{Y}_{m,n,2}$ are independent of the embedding.

Now consider the case $t > 2$. By [BYSS Cor. 8.4], the divisor class group of $A_{m,n,t}$ is \mathbb{Z}, a generator being the ideal $I_{m,n,t-1}$ of $A_{m,n,t}$ generated by the $(t-1)$-minors of the first $t-1$ rows (or columns) of x.

Since determinantal varieties are normal, they satisfy condition $(*)$ in [Har77 Page 130]. By [Har77 Exercise II.6.3], there is a short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \text{Cl}(\tilde{Y}) \rightarrow \text{Cl}(Y) \rightarrow 0$, Y the cone over \tilde{Y}, where the last map factors through the class group $\text{Cl}(\tilde{Y} \setminus P)$ of the complement of the origin in Y. For $t \geq 2$ this implies that $\text{Cl}(\tilde{Y}_{m,n,t}) = \mathbb{Z} \oplus \mathbb{Z}$. In this sequence, $1 \in \mathbb{Z}$ is sent to the generic hyperplane section of \tilde{Y}. In order to determine the Picard group of $\tilde{Y}_{m,n,t}$ we need by [Har77 Prop. II.6.15] to determine the Cartier classes of $\text{Cl}(\tilde{Y}_{m,n,t})$. From the preceding, this amounts to checking which multiples of $I_{m,n,t-1}$ are Cartier on the punctured spectrum of $A_{m,n,t}$. One sees easily that for $t = 2$, $I_{m,n,t-1}$ is Cartier on the punctured spectrum. For $t > 2$ only its trivial power is Cartier: by the coordinate change expounded in [LSW10], powers of $I_{m,n,t-1}$ are locally principal on the open set $U_{x_1,1}$ if and only if corresponding powers of $I_{m-1,n-1,t-2}$ are locally principal everywhere on $Y_{m-1,n-1,t-1}$; for $t = 3$ this is clearly not so. Hence the Picard group of $\tilde{Y}_{m,n,t}$ is \mathbb{Z} for $t > 2$. Now use Lemma 3.2.

\[\square \]

Remark 3.5. In particular, the Lyubeznik numbers $\lambda_{p,q}$ of determinantal varieties computed by Lörincz and Raicu in [LR20] for the standard embedding equal those of any embedding, at least for $p \geq 2$.

Remark 3.6. Suppose G is a semisimple linear algebraic group, P a parabolic subgroup and w an element of the Weyl group of G. The Schubert variety $X_P(w) := BwP/P$ sits inside the homogeneous space G/P, and every line bundle on $X_P(w)$ is the restriction of a line bundle on G/P, [Mat88]. In particular, the Picard group of $X_P(w)$ is generated by the Schubert divisors (the Schubert varieties inside $X_P(w)$ of codimension one), [Bri03 Prop. 2.2.8].

Problem 3.7. Compute the Lyubeznik numbers of Schubert varieties in their Schubert divisor embeddings.

\[\diamond \]

3.2.2. Toric varieties. Suppose \tilde{Y} is the toric variety attached to a complete fan Δ that is projective. If Δ is smooth, or at least simplicial, then the Picard group of \tilde{Y} is a free Abelian group generated by the torus invariant (Cartier) divisors corresponding to the n rays of Δ, [CLS11 Thm. 4.2.1]. The ambient lattice imposes $d := \dim(\tilde{Y})$ many independent relations on these divisors, so that $\text{Pic}(\tilde{Y}) = \mathbb{Z}^{n-d}$. In order for this number to be 1, there is very little choice for Δ; it forces \tilde{Y} to be a weighted projective space. These are \mathbb{Q}-homology manifolds and thus yield the same Lyubeznik numbers under all embeddings by [RSW21].

However, singular fans fail the Picard rank formula above and can have Picard group \mathbb{Z} with greater variety. The Picard group is free if the fan is full-dimensional by [CLS11 Thm. 4.2.5], and equals the inverse limit of the quotient lattices $M/M(\sigma)$, taken modulo M by [CLS11 Thms. 4.2.1,4.2.9].

Example 3.8. If Δ is a complete rational fan in \mathbb{Z}^3, one can use the description of the Picard group via support functions to show that if Δ has at most one simplicial cone, then the Picard group of the associated toric variety is rank one. For example, the fan over the sides of a cube leads to a projective three-fold with Picard number one. The generating support function takes the value zero on one square and one on the opposing square (see [Ful93 Exa. 1.5.(3)]). Our next result shows that all projective toric threefolds have their Lyubeznik table independent of the embedding.
Theorem 3.9. Let \tilde{Y} be the projective variety to a complete projective fan in \mathbb{Z}^3 with Picard number $\tilde{p} + 1$. Then for any cone Y over \tilde{Y} its Lyubeznik numbers take the form

$$\Lambda(Y) = \begin{pmatrix} \cdot \...
Theorem 3.14 (Proposition III.3.2 in [Har75]). Let \hat{Y}, Y, P be the same as in Theorem 3.13. Then $H^p_{dR}(Y) = 0$ and there are two exact sequences:

$$0 \to \mathbb{K} \to H^0_{dR}(\hat{Y}) \to H^1_{dR}(Y) \to 0$$

and

$$0 \to H^1_{dR}(\hat{Y}) \to \cdots$$

where the maps $H^1_{dR}(\hat{Y}) \to H^{i+2}_{dR}(\hat{Y})$ are given by the cup product with the Chern class $\xi \in H^3_{dR}(\hat{Y})$ of the hyperplane section (i.e., the first Chern class of $\mathcal{O}_Y(1)$).

Proof of Theorem 3.14. The case when $j \leq 1$ is clear from the long exact sequence above.

Since the Picard group of \hat{Y} has rank 1, any two very ample line bundles on \hat{Y} have a common power. It is thus sufficient to consider the case where the two ample line bundles in question are \mathcal{L} and \mathcal{L}^m.

Let $\xi(\mathcal{L}) \in H^2_{dR}(\hat{Y})$ be the first Chern class of \mathcal{L}, represented by a generic hyperplane section with the embedding given by \mathcal{L}. Then we have $\xi(\mathcal{L}^m) = m\xi(\mathcal{L})$. Since the cup product is linear and $\text{char}(\mathbb{K}) = 0$, the maps $H^1_{dR}(\hat{Y}) \to H^2_{dR}(\hat{Y})$ and $H^1_{dR}(Y) \to H^2_{dR}(Y)$ have the same rank. Therefore $\dim_k(\ker(H^4_{dR}(\hat{Y}) \to H^{i+2}_{dR}(\hat{Y})))$ and $\dim_k(\ker(H^3_{dR}(Y) \to H^{i+2}_{dR}(Y)))$ depend only on \hat{Y}, but not on the choice of the embedding (or equivalently, not on the choice of ample line bundles \mathcal{L}). When $j \geq 2$ we have

$$\dim_k(H^4_{dR}(\hat{Y}) = \dim_k(\ker(H^4_{dR}(\hat{Y}))) + \dim_k(\ker(H^3_{dR}(Y) \to H^{i+2}_{dR}(Y))))$$

hence the conclusion holds for $\dim_k(H^j_{dR}(Y))$ when $j \geq 2$.

Corollary 3.15. Assume that the Picard group of \hat{Y} has rank 1. Then $\lambda_{p,q}$ is independent of embeddings for all $q < n - f_Y$, with f_Y as in Remark 2.6.

Proof. Assume $q < n - f_Y$. Since $\text{Supp}(H^{n-q}_{dR}(R_n)) \subseteq \{m\}$, [Lyu93] shows that $H^{n-q}_r(R_n) \cong H^{n}_m(R_n)^{\lambda_{0,q}}$ and $H^0_m(H^{n-q}_{dR}(R_n)) = 0$ for $p \geq 1$. Hence $\lambda_{p,q} = 0$ for all $p \geq 1$ (and $q < n - f_Y$).

Let $D(\mathcal{L})$ denote the Matlis dual. Then $D(H^i_{dR}(R_n)) \cong \hat{R}_n^{\lambda_{0,n-i}}$ whenever $H^i_{dR}(R_n)$ is Artinian. On the other hand, [Ogu73] Proposition 2.2, Theorem 2.3] shows that, for $q < n - f_Y$,

$$D(H^{n-q}_{dR}(R_n)) \cong H^0_{dR}(\hat{X}, \mathcal{O}_\hat{X}) \cong \hat{R}_n \otimes H^p_{dR}(Y)$$

where Y denotes the affine cone of \hat{Y} with vertex P and \hat{X} denotes the formal completion of Spec(\hat{R}_n) along the subscheme defined by I. This shows that $\dim_k(H^p_{dR}(Y)) = \lambda_{0,q}$. Hence $\lambda_{0,q}$ depends only on \hat{Y} by Theorem 3.13.

Remark 3.16. An alternative way to look at Corollary 3.15 arises through Proposition 2.16 for $q > f_Y$, the multiplicities of $H^m_{dR}(R_n)$ in $H^i_{dR}(R_n)$ are exactly the Betti numbers $H^{n-1+j}(U)$ where U is the affine complement of Y, because of the spectral sequence $1.0.2$. By Proposition 2.16 these do not change under Veronese maps.

We now consider the effect of Serre’s conditions (S_t) in R_n/I on the Lyubeznik numbers.

Remark 3.17. Assume that “\hat{Y} satisfies (S_t) locally everywhere”, by which we mean that each local ring $\mathcal{O}_{\hat{Y},p}$ of the projective scheme $\hat{Y} = \text{Proj}(R_n/I)$ satisfies Serre condition (S_t).

Let Y be the cone Spec(R_n/I) as always and P the vertex; then the punctured cone $Y^o = Y \setminus P$ is a bundle over \hat{Y}. It follows that every local ring of Y^o also is (S_t). So for each non-maximal prime ideal p of R_n such that $\text{dim}(R_n/I)_p \geq t$, one has depth$(R_n/I)_p \geq t$.

In general, if $(A, n) \to (A', n')$ is a faithfully flat morphism, then $\text{depth}(A') = \text{depth}(A) + \text{depth}(A'/nA)$.
If A' is the strict Henselization A'^{sh} or the completion \hat{A} of A, then A' is faithfully flat over A. Therefore,

$$\text{depth} \left(\left(\left((R_n/I_p)^{\sim} \right)^{sh} \right)^{\sim} \right) \geq t.$$

\[\diamond \]

Lemma 3.18. If \tilde{Y} is equi-dimensional and locally everywhere (S_2) then the off-diagonal entries $\lambda_{i-1,i}$ vanish for $1 < i < d := \text{dim}(\tilde{Y}) + 1$, and $H^{n-1}_I(R_n)$ is Artinian and injective.

Proof. By Remark 3.17 for each non-maximal prime ideal p of R_n with $\text{dim}((R_n/I_p)^{\sim}) \geq 2$, we have

$$\text{depth} \left(\left(\left((R_n/I_p)^{\sim} \right)^{sh} \right)^{\sim} \right) \geq 2.$$

Hence the punctured spectrum of this ring is connected by [Har62]. The Second Vanishing Theorem implies that $H^{\geq \text{codim}(P)-2}_I(R_n)_p = 0$ for each prime ideal P such that $\text{dim}((R_n/I_p)^{\sim}) \geq 2$. Therefore the support dimension of $H^i_I(R_n)$ with $n - 1 > i > n - d$ is at most equal to $n - i - 2$ and so $H^{n-1}_mH^{n-1}_I(R) = 0$ by Grothendieck’s vanishing theorem. For $H^{n-1}_I(R_n)$, localization shows in conjunction with the Hartshorne–Lichtenbaum theorem that its support is at best at P. By Lyubzenik’s work, it is hence Artinian and injective. \[\square \]

For the next three result we will use the following reduction.

Lemma 3.19. Let \tilde{Y} be an equi-dimensional projective variety of dimension at least two. If the Lyubeznik numbers for the cones over all connected components of \tilde{Y} are independent of the choice of the cone then the same is true for \tilde{Y} itself.

Proof. Let Y', Y'' be two cones for \tilde{Y} and let $\tilde{Y} = \tilde{Y}_1 \sqcup \tilde{Y}_2$ be a disconnection. The resulting cones Y'_1, Y''_1 and Y'_2, Y''_2 satisfy: $Y'_1 \cap Y''_2$ and $Y''_1 \cap Y'_2$ both equal the origin. Let I'_1, I'_2 be the defining ideals for Y'_1, Y''_1 and I''_1, I''_2 be a disconnection. The resulting cones Y'_1, Y''_1 and Y'_2, Y''_2 by $I'_1, I'_2 \subseteq R_{n'}$ and $I''_1, I''_2 \subseteq R_{n''}$ respectively. All these ideals have dimension three or more.

Then $H^q_I(R_{n'}) = H^q_{I'_1}(R_{n'}) \oplus H^q_{I'_2}(R_{n'})$ and $H^q_{I'}(R_{n''}) = H^q_{I''_1}(R_{n''}) \oplus H^q_{I''_2}(R_{n''})$ for all $q < n - 1$ as follows from the Mayer–Vietoris sequence.

It follows that, apart from $q = n, n - 1$, the Lyubeznik numbers satisfy $\lambda_{p,q}(Y') = \lambda_{p,q}(Y'_1) + \lambda_{p,q}(Y'_{2'})$ and $\lambda_{p,q}(Y'') = \lambda_{p,q}(Y''_1) + \lambda_{p,q}(Y''_{2''}).$ By the presumed embedding independence of $\Lambda(Y'_1)$ and $\Lambda(Y'_2)$, the same follows for $\Lambda(Y)$, except for columns $n, n - 1$.

In column n all entries in all cases are zero by the Hartshorne–Lichtenbaum theorem. So is the diagonal entry $\lambda_{1,1}$ for all three ideals by equi-dimensionality. Thus, $\lambda_{0,1}(Y'_i) = \lambda_{0,1}(Y'_1) + \lambda_{0,1}(Y'_{2'}) + 1$ for $i = 1, 2$ as follows from the Grothendieck spectral sequence (which implies that the alternating sum of all $\lambda_{p,q}$ is 1). Therefore, all Lyubeznik numbers of \tilde{Y} are embedding independent. \[\square \]

Theorem 3.20. Let \tilde{Y} be an equi-dimensional projective scheme of dimension two, which

1. either satisfies locally everywhere Serre’s condition S_2,
2. or has Picard number one.

Then the Lyubeznik numbers of all affine cones Y over \tilde{Y} agree. ©

Proof. Let Y be any cone over \tilde{Y}. It is a scheme of pure dimension 3, and thus by Remark 1.3 the Lyubeznik table of Y is

$$\begin{pmatrix}
\lambda_{0,1} & \lambda_{0,2} & \cdots \\
\lambda_{0,2} & \lambda_{1,2} & \cdots \\
\cdots & \lambda_{2,3} & \cdots \\
\cdots & \cdots & \lambda_{3,3}
\end{pmatrix}.$$
By Lemma 3.19 we can assume that \tilde{Y} is connected. That assures that $\lambda_{0,1}$ is zero by the Second Vanishing Theorem [Har68, Theorem 7.5].

If \tilde{Y} is (S_2) locally everywhere then by Lemma 3.18 $H^{n-2}_I(R_n)$ has support dimension zero and is the top local cohomology module, and so $\lambda_{1,2} = 0$. It follows from [Lyu93] that $H^{n-2}_I(R_n)$ is injective. By Corollary 2.8 the socle dimension $\lambda_{0,2}$ of this module is determined by the topology of \tilde{Y}. Finally, the convergence of the spectral sequence to $H^n_m(R_n)$ implies that $\lambda_{2,3} = \lambda_{0,2}$.

Suppose now that \tilde{Y} has Picard number one. Then by Lemma 3.2 the $\lambda_{i,j}$ with $i > 1$ are a function of \tilde{Y} alone. The only possibly nonzero differentials are:

- on page two the morphism $E^{0,n-2}_2 \rightarrow E^{2,n-3}_2$ and $E^{1,n-2}_2 \rightarrow E^{3,n-3}_2$;
- on page three the morphism $E^{0,n-1}_3 \rightarrow E^{3,n-3}_3$.

Convergence of the spectral sequence forces $E^{0,n-2}_2 \rightarrow E^{2,n-3}_2$ to be an isomorphism, and the maps $E^{1,n-2}_2 \rightarrow E^{3,n-3}_2$ and $E^{0,n-1}_3 \rightarrow E^{3,n-3}_3$ to be injective. Moreover, the cokernel of $E^{3,n-1}_3 \rightarrow E^{3,n-3}_3$ must be one copy of $H^n_m(R_n)$.

Since all modules in $E^{p,q}_{\geq 2}$ are injective, socle dimensions are additive in short exact sequences. Thus, $\lambda_{0,2} = \lambda_{0,3}$, and $\lambda_{1,3} = \lambda_{1,2} + \lambda_{0,1} + 1 = \lambda_{1,2} + 1$. This settles the claim for $\lambda_{0,2}$. But $\lambda_{3,3}$ is a function of \tilde{Y} by [Zha07], and it follows that $\lambda_{1,2}$ is a function of \tilde{Y} as well.

Theorem 3.21. Let \tilde{Y} be a projective complex scheme that is of equi-dimension three. Assume that every local ring $\mathcal{O}_{\tilde{Y},\tilde{y}}$ satisfies (S_2) and that the Picard group of \tilde{Y} has rank 1. Then $\Lambda(Y)$ is independent of the choice of the cone Y for \tilde{Y}.

Proof. By Lemma 3.19 we can assume that \tilde{Y} is connected. This forces $\lambda_{0,1}(Y) = 0$ for any cone Y of \tilde{Y} by the Second Vanishing Theorem [Har68, Theorem 7.5].

Using the equi-dimensionality and the (S_2)-property, the Lyubeznik table is by Remark 1.3 and Lemma 3.18 equal to

$$
\Lambda = \begin{pmatrix}
\cdot & \lambda_{0,2} & \lambda_{0,3} & \cdot \\
\cdot & \cdot & \lambda_{1,3} & \cdot \\
\cdot & \cdot & \cdot & \lambda_{2,4} \\
\cdot & \cdot & \cdot & \lambda_{3,4} \\
\cdot & \cdot & \cdot & \lambda_{4,4}
\end{pmatrix}.
$$

Moreover, $H^{n-2}_I(R_n)$ is supported only in the origin, hence injective. By Corollary 2.8 its socle dimension is the dimension of the top de Rham group of the affine cone complement. By Proposition 2.10 this dimension is well-defined. Thus, $\lambda_{0,2}$ is a function of \tilde{Y} alone, reflecting the de Rham group $H^{2n-2}(A^n_k \setminus Y)$ independent of the choice of the cone.

Convergence of the spectral sequence forces, similarly to the proof of Theorem 3.20, that $\lambda_{3,4} = \lambda_{1,3} + \lambda_{0,2}$ and that $\lambda_{2,4} = \lambda_{0,3}$. By the Picard number condition, $\lambda_{2,4}$ is the same for every cone, and hence so is $\lambda_{0,3}$.

Since $\lambda_{0,2}$ is a function of \tilde{Y}, and since $\lambda_{2,4}$ is independent of the embedding by the Picard number condition, the same is true for $\lambda_{1,3}$.

Theorem 3.22. Let \tilde{Y} be a projective complex scheme of equi-dimension four. Assume that \tilde{Y} is locally everywhere (S_3), and that the Picard group of \tilde{Y} has rank 1. Then $\Lambda(Y)$ is independent of the choice of the cone Y for \tilde{Y}.

Proof. By Lemma 3.19 we can assume that \tilde{Y} is connected. This forces $\lambda_{0,1}(Y) = 0$ for any cone Y of \tilde{Y} by the Second Vanishing Theorem [Har68, Theorem 7.5].

2 This isomorphism property holds for any ideal I of dimension greater than two.
Write $\tilde{Y} = \text{Proj}(R/I)$ where $R = \mathbb{C}[x_1, \ldots, x_n]$. Since (S_3) implies (S_2), Remark 1.3 and Lemma 3.18 assure that the Lyubeznik table of R/I is

$$
\Lambda = \begin{pmatrix}
\vdots & \lambda_{0,2} & \lambda_{0,3} & \lambda_{0,4} & \vdots \\
\vdots & \vdots & \lambda_{1,3} & \lambda_{1,4} & \vdots \\
\vdots & \vdots & \vdots & \lambda_{2,4} & \lambda_{2,5} \\
\vdots & \vdots & \vdots & \vdots & \lambda_{3,5} \\
\vdots & \vdots & \vdots & \vdots & \lambda_{0,5,5}
\end{pmatrix}.
$$

Now take a prime p of height $n - 2$ that contains I. Then $\text{depth}((R_n/I)_p) = 3$ and so by [DT16] Corollary 2.8, $(H^0_{(n-2)-3+1}(R_n))_p = 0$. Thus, $\dim(H^3_{(n-4)}(R_n)) \leq 1$ and $\lambda_{2,4} = 0$.

Localizing at primes of height $n - 1$ yields, with the result of Dao and Takagi [DT16 Corollary 2.8], that $H^3_{n-5}(R_n)$ and $H^3_{n-3}(R_n)$ are Artinian. It follows that $\lambda_{1,3} = 0$, and $f_Y \leq n - 3$. By Corollary 3.14 since the Picard number is one, $\lambda_{0,2}$ and $\lambda_{0,3}$ are independent of the embedding choice.

Convergence of the spectral sequence to $H^n_m(R)$ forces that

$$
\lambda_{0,4} = \lambda_{2,5} \quad \text{and} \quad \lambda_{1,4} = \lambda_{3,5} - \lambda_{0,3} \quad \text{(and} \quad \lambda_{0,2} = \lambda_{4,5}).
$$

As the Picard number is one, the $\lambda_{i,j}$ are independent of embeddings for all $i \geq 2$ and all j. This then fixes all $\lambda_{p,q}$.

Proof of Theorem 3.21. Toric projective varieties are connected and locally the spectra of semigroup rings to saturated semigroups. They are hence normal, and by Hochster’s theorem Cohen–Macaulay, [Hoc72]. The coordinate ring R_n/I of the cone Y thus has a Lyubeznik table as in the proof of Theorem 3.21. Moreover, $H^3_{n-2}(R_n)$ is Artinian.

Additional vanishings are due to the (S_3)-condition. As in the proof of Theorem 3.22 localization at a prime of R_n of height $n - 1$ shows with [DT16 Thm. 2.8] that the support of $H^3_{n-5}(R_n)$ is zero-dimensional, hence $\lambda_{1,3} = 0$.

At this point, let us assume that \tilde{Y} is not a hypersurface, and hence of codimension two or more.

If $\lambda_{0,2}$ is nonzero, it is therefore the dimension of $H^3_{nR}(H^3_{n-2}(R_n)) = H^3_{n-3}(U; \mathbb{C})$ where U is the affine complement of Y. By the spectral sequence argument in the proof of Lemma 2.7, it also equals the dimension of the top cohomology group $H^2_{n-4}(\mathbb{P}U; \mathbb{C})$ of the projective complement $\mathbb{P}U$.

The long exact sequence (2.3.1) takes the form

$$
H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to H^3_{\mathbb{Y}}(\mathbb{P}U; \mathbb{C}) \to H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to \cdots
$$

and by [Ive86 V.6.6] $H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C})$ is dual to $H^1(\tilde{Y}; \mathbb{C}) = H^1(\tilde{Y}; \mathbb{C})$. But projective toric varieties (or more generally toric varieties to a fan with a full-dimensional cone) are simply connected by [Pan93 3.2]. So $H^1(\tilde{Y}; \mathbb{C})$ and $H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C})$ are zero.

The morphism $H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to H^3_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C})$ is via Alexander and Poincaré duality dual to the (injective) restriction morphism $H^2(\mathbb{P}^{n-1}; \mathbb{C}) \to H^2(\tilde{Y}; \mathbb{C})$, hence itself surjective. It follows that $H^2_{n-4}(\mathbb{P}U; \mathbb{C}) = H^2_{n-3}(U; \mathbb{C}) = 0$, and hence $\lambda_{0,2}$ and $H^3_{n-2}(R_n)$ are both zero.

It now follows that actually the Artinian module $H^3_{n-3}(R_n)$ is the top local cohomology group of I, and $H^2_{n-5}(\mathbb{P}U; \mathbb{C})$ is the top cohomology group of $\mathbb{P}U$. Repeating the above computations, we now have a long exact sequence

$$
0 = H^2_{n-5}(\mathbb{P}^{n-1}; \mathbb{C}) \to H^2_{n-5}(\mathbb{P}U; \mathbb{C}) \to H^2_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to H^2_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to \cdots
$$

in which the arrow $H^2_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C}) \to H^2_{\mathbb{Y}}(\mathbb{P}^{n-1}; \mathbb{C})$ is dual to the (injective) morphism $H^2(\mathbb{P}^{n-1}; \mathbb{C}) \to H^2(\tilde{Y}; \mathbb{C})$, and where $H^2_{n-5}(\mathbb{P}U; \mathbb{C}) = H^2_{n-4}(U; \mathbb{C})$ is a vector space of dimension $\lambda_{0,3}$.

\[\Box\]
For projective toric varieties (and more generally, when all cones of the fan are top-dimensional), the Picard group of \tilde{Y} is isomorphic to $H^2(\tilde{Y};\mathbb{C})$, [CLS11, Thm. 12.3.2]. The long exact sequence above thus shows the equation $\lambda_{0,3} = \tilde{p}$.

Finally, by convergence of the spectral sequence, $\lambda_{4,4} = 1$ and $\lambda_{3,4} = \lambda_{0,2} = 0$ and $\lambda_{2,4} = \lambda_{0,3}$.

This settles the problem for all embeddings in which \tilde{Y} is not a hypersurface. If in some embedding \tilde{Y} happens to be a hypersurface, necessarily in $\mathbb{P}^4_{\mathbb{C}}$, its Lyubeznik table is trivial for this embedding, simply for lack of higher local cohomology. On the other hand, [Gro05, Exp. XII, Cor 3.7] asserts that the Picard group of \tilde{Y} is then cyclic, equal to that of $\mathbb{P}^4_{\mathbb{C}}$. Thus, \tilde{p} is zero and we see that all Lyubeznik tables of \tilde{Y} agree. □

Acknowledgements

We would like to thank Winfried Bruns, Boris Pasquier and Alex Dimca for helpful conversations.

References

[AMGLZA03] Josep Álvarez Montaner, Ricardo García López, and Santiago Zarzuela Armengou, Local cohomology, arrangements of subspaces and monomial ideals, Adv. Math. 174 (2003), no. 1, 35–56. MR 1959890

[Bri05] Michel Brion, Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, pp. 33–85. MR 2143072

[Bri20] Nicole Bridgland, On the de Rham homology of affine varieties in characteristic 0, arXiv:2006.01334.

[BT82] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304

[BV88] Winfried Bruns and Udo Vetter, Determinantal rings, Monografías de Matemática [Mathematical Monographs], vol. 45, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1988. MR 986492

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322

[Dim04] Alexandru Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004. MR 2050072

[DT16] Hailong Dao and Shunsuke Takagi, On the relationship between depth and cohomological dimension, Compos. Math. 152 (2016), no. 4, 876–888. MR 3484116

[Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. MR 1234037

[GLS98] R. García López and C. Sabbah, Topological computation of local cohomology multiplicities, vol. 49, 1998, Dedicated to the memory of Fernando Serrano, pp. 317–324. MR 1677136

[GM88] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724

[God71] Claude Godbillon, Éléments de topologie algébrique, Hermann, Paris, 1971. 142547

[God71] Claude Godbillon, Éléments de topologie algébrique, Hermann, Paris, 1971. 142547

[Gro05] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 4, Société Mathématique de France, Paris, 2005, Séminaire de Géométrie Algébrique du Bois Marie, 1962, Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original. MR 2171939

[Har62] Robin Hartshorne, Complete intersections and connectedness, Amer. J. Math. 84 (1962), 497–508. MR 142547

[Har67] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, 1961, Springer-Verlag, Berlin-New York, 1967. MR 0224620

[Har68] Robin Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403–450. MR 232780

[Har75] Robin Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 5–99. MR 432647

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157

[HL90] C. Huneke and G. Lyubeznik, On the vanishing of local cohomology modules, Invent. Math. 102 (1990), no. 1, 73–93. MR 1069246

[Hoc72] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376

[HTT08] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008, Translated from the 1995 Japanese edition by Takeuchi. MR 2357361

[Ive86] Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190
THOMAS REICHELT, MATHEMATISCHES INSTITUT, UNIVERSITÄT HEIDELBERG, IM NEUENHEIMER FELD 205, 69120 HEIDELBERG, GERMANY

Email address: treichelt@mathi.uni-heidelberg.de

ULI WALTHER, PURDUE UNIVERSITY, DEPT. OF MATHEMATICS, 150 N. UNIVERSITY ST., WEST LAFAYETTE, IN 47907, USA

Email address: walther@math.purdue.edu

WENLIANG ZHANG, DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607

Email address: wlzhang@uic.edu