Heat shock cognate protein 70 encodes antigenic epitopes recognised by HLA-B4601-restricted cytotoxic T lymphocytes from cancer patients

K Azuma1, S Shichijo*,1, H Takedatsu1, N Komatsu1, H Sawamizu1 and K Itoh1
1Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan

Heat shock cognate protein 70 (HSC70), a highly conserved protein and a member of the family of molecular chaperones, has the ability to induce cytotoxic T lymphocyte (CTL) responses through binding and carrying antigenic peptides. We demonstrated in this study that the HSC70 gene encodes two antigenic peptides recognised by HLA-B46-restricted and tumour-reactive CTLs established from tumour-infiltrating lymphocytes of a colon cancer. These HSC70-derived peptides, at amino-acid positions 106–114 and 233–241, had the ability to induce HLA-B46-restricted and peptide-specific CTLs, which are reactive to tumour cells, from peripheral blood mononuclear cells of the majority of epithelial cancer patients tested. These results, along with those from the previous studies, indicate the two ways of HSC70 involvement in the immune response to tumours: chaperones and antigens, and thus may provide a new insight for the development of HSC70-directed cancer-specific immunotherapy.

Keywords: CTL; HLA-B46; tumour epitopes; heat shock cognate protein 70; cancer vaccine

MATERIALS AND METHODS

Tumour cell lines

The epithelial cancer cell lines used in this study were OSC20 (HLA-B46+, oral cancer), Ca9-22 (HLA-B46+, oral cancer), MKN45 (HLA-B46+, stomach cancer), Kuma-1 (HLA-B46+, head and neck cancer), SW620 (HLA-B46+, colon cancer), COLO320 (HLA-B46+, colon cancer), KWS (HLA-B46+, stomach cancer), COS-7 (SV40 transformed African Green monkey kidney cell), and Epstein–Barr virus (EBV)-transformed B cell line (EBV-B) (HLA-B46+) established from peripheral blood mononuclear cells (PBMCs) of a colon cancer patient from whom the OKB-CTL line was established. Details of these cell lines were reported elsewhere (Azuma et al., 2003).

Identification of the cDNA clone

The HLA-B46-restricted and tumour cell-reactive CTL (OKB-CTL) line was established from tumour-infiltrating lymphocytes (TILs) of a patient with colon cancer (HLA-A0207/3101, –B4601/5101, –Cw1) by incubation with interleukin-2 (IL-2) (100 U ml⁻¹) alone for more than 50 days by the methods as reported previously (Ito et al., 2001). The surface phenotypes of the CTLs were investigated by immunofluorescence assay with anti-CD3, -CD4, -CD8, anti-CD16 (Nichirei, Tokyo, Japan), and anti-NkD2D (R&D Systems, Inc, Mckinley, NE, USA) monoclonal antibodies (mAbs) with FACScan as reported previously (Azuma et al., 2003).
The cDNA expression gene cloning method, described previously (Shichijo et al., 1998), was used to identify genes coding for tumour antigens recognised by the OKB-CTL. In brief, (A) + RNA of the SW620 tumour cells was converted to cDNA, ligated to the Sall adapter, and inserted into the expression vector pCMVSPORT-2 (Invitrogen, San Diego, CA, USA). cDNAs of HLA-B4601, -B5201, -B5101, and -A0207 were obtained by reverse transcription (RT)–polymerase chain reaction (PCR) and cloned into the eukaryotic expression vector pCR3 (Invitrogen). A measure of 200 ng of the plasmid DNA pools as well as the clones of the SW620 cDNA library were mixed with 200 ng of the HLA-B4601 cDNA in 120 μl of OPTI-MEM (Invitrogen) for 30 min. A 50 μl aliquot of the mixture was then added to the COS-7 cells (5 × 10⁶), followed by incubation for 5 h. RPMI-1640 medium containing 10% foetal calf serum (FCS) was then added and cultured for 2 days followed by addition of the OKB-CTLs (5 × 10⁴ cells per well). After an 18-h incubation, 100 μl of supernatant was collected and tested for the production of interferon-γ (IFN-γ) by enzyme-linked immunosorbent assay (ELISA) in a duplicate assay. DNA sequencing of a positive cDNA clone was performed with a dyeoxyxynucleotide sequencing method using a DNA Sequencing kit (Perkin-Elmer, Foster, CA, USA) and analysed by an ABI PRISM™ 377 DNA Sequencer (Perkin-Elmer).

Northern and Western blot analyses

Preparation of the RNA (5 μg per lane), the transfer of RNA to nylon membranes, and the subsequent hybridisation processes have been described elsewhere (Shichijo et al., 1998). A 3₂P-labelled 704 bp fragment of AccI-digested HSC70 cDNA was used as a probe, which has 74% homology with the stress-inducible heat shock protein 70 (HSP70) at the nucleotide level. The membranes were washed four times and then autoradiographed. The expressions of HSC70 and HSP70 were investigated at the protein level by means of Western blotting with anti-Hsc70 (Product #:SPA-815, Stressgen, Victoria, Canada) and anti-Hsp70 (Product #:SPA-810, Stressgen) mAbs, respectively. HSP70 is a family of HSp5, and has 74 and 81% sequence homology with HSC70 at the nucleotide and amino-acid levels, respectively. The method for Western blotting was reported elsewhere (Yang et al., 1999).

Peptides and CTL assay

Peptides capable of binding to the HLA-B4601 molecules were sought in the literature with regard to peptides for HLA-B4601-binding motifs (third amino acids (aa) were K, R, N, I, P, and F, and ninth aa were Y or F) (Barber et al., 1996), and the following 10 different peptides (>70% purity) were synthesised for screening (HSC70-3-41, HSC70-59-67, HSC70-69-77, HSC70-106-114, HSC70-136-144, HSC70-233-241, HSC70-237-245, HSC70-239-246, HSC70-346-354, HSC70-451-459, and HSC70-537-545). For further studies, two peptides (HSC70-106-114 and HSC70-233-241, with >90% purity) were obtained. For the detection of antigenic peptides, COS-7 (5 × 10⁵) cells transfected with the HLA-B4601, HLA-B5101, or HLA-B5201 cDNA were pulsed with each of 20 peptides at five different concentrations for 2 h, and then incubated with CTLs for 18 h. The supernatants were collected to measure IFN-γ by ELISA (limit of sensitivity: 10 pg ml⁻¹) in a duplicate assay.

Cytotoxic T lymphocyte induction from cancer patients

Peripheral blood mononuclear cells from 80 epithelial cancer patients (40 non-small-cell lung cancer patients, 30 prostate cancer patients, and 10 colon cancer patients) and also from 40 HDs were provided for screening of serological expression of HLA-B types. Subsequently, PBMCs from 10 HLA-B46 + cancer patients (five lung cancer and five prostate cancer patients) and four HLA-B46 + HD served as subjects for the CTL induction assay. Informed consent was obtained from all subjects. The HLA-class I of PBMCs was serotyped by conventional serological methods, as reported previously (Yang et al., 1999). The HLA-B alleles were also genotyped by the methods as reported previously (Azuma et al., 2003), and all of them were B4601, which was expected since the genotype of B46 in Asians is predominantly (>95%) a B4601 (Imanishi et al., 1992; Barber et al., 1996; Akesaka et al., 2000). For the induction of peptide-specific CTLs, PBMCs (1 × 10⁶ cells per well) were incubated with 10 μM of each peptide in a round-bottom 96-well microculture plate (Nunc, Roskilde, Denmark) in 200 μl culture medium containing IL-2, as reported previously (Maeda et al., 2002). On the fourth and seventh days of culture, half of the medium was replaced with a new medium containing a corresponding peptide. On the 10th day, the cells were harvested, washed, and tested in duplicate assays for their ability to produce IFN-γ in response to HLA-B4601-transfected COS-7 cells pulsed with a corresponding peptide or a negative control peptide, which can bind to HLA-B4601 molecules (p53-204 -212) (Azuma et al., 2003). The peptide-stimulated PBMCs were further incubated for more than 10 days, and their cytotoxicity against OSC20 (HLA-B46 +) tumour cells, Kuma-1 (HLA-B46 +) tumour cells, and PHA-blastoid T cells (HLA-B46 +) was tested by a standard 6-h ⁵¹Cr-release assay, as reported previously (Azuma et al., 2003). To inhibit CTL activity, 20 μg ml⁻¹ of anti-HLA-class I (W6/32, IgG2a), anti-CD4 (Nu-Thi, IgG1), anti-HLA-B, C (B1-23, IgG2a), anti-CD8 (Nu-Ts/c, IgG2a), and anti-HLA-class II (H-DR-1, IgG2a) mAbs were used (Azuma et al., 2003). Anti-CD14 (ML-H14, IgG2a) mAb served as a negative control. For the cold target inhibition assay, unlabeled cells of HLA-B46 + EBV-B cells were incubated with a corresponding or a control peptide for 2 h, washed, and added to the ⁵¹Cr-labelled targets at a cold:hot target ratio of 20:1. Two-tailed Student’s t-test was employed for the statistical analysis for this entire study.

RESULTS

Identification of the gene and its expression

HLA-B46-restricted and tumour-reactive CTLs (OKB-CTLs) were used for cDNA screening to clone genes. Although the details regarding the characteristics of the OKB-CTLs were reported elsewhere (Azuma et al., 2003), we have tested the expression of CTL (CD3 and CD8) and NK cell markers (CD16 and NKD2D) on OKB-CTLs that were used as indicator cells for cloning of genes in this study, to exclude possible involvement of NK cell-mediated recognition of target cells. The surface phenotypes of the OKB-CTLs were CD3⁺ (>98%) CD8⁺ (>90%) CD4⁻ (<5%) CD16⁻ (<1%) NKD2D⁺ (<1%). The results suggest no involvement of NK cell-mediated recognition of target cells in the case of the OKB-CTLs used in this study.

A total of 1 × 10⁸ cDNA clones from the cDNA library of SW620 tumour cells and HLA-B4601 cDNA were cotransfected to the COS-7 cells followed by a test of their ability to stimulate IFN-γ production by the OKB-CTLs. After repeated experiments, one cDNA clone, 3H, was identified. Representative results from the three different experiments are shown in Figure 1A. The sequence of 3H proved to be 2218 base pairs (bp), and it was almost identical to that of the stress-inducible HSPA8 (HSC70), although it was 36 bp shorter at the 5'-end and 6 bp shorter at the 3'-end than the registered sequence of HSPA8 (Accession No.: NM 006597). Neither mutation nor polymorphism was found in the sequence. Its open reading frame started from 43 to 1980 bp. It encodes 641 aa’s and has 81% of homology at the aa levels with the stress-inducible heat shock protein 70 (HSA70) with 646 aa’s.

The OKB-CTLs recognised COS-7 cells cotransfected with the clone 3H gene and the HLA-B4601 gene in a dose-dependent fashion. The results of three separate experiments are shown in...
Figure 1A. In contrast, the OKB-CTLs failed to recognise COS-7 cells cotransfected with the clone 3H and the HLA-B5201, -B5101, or the HLA-A0207 gene. The OKB-CTLs also failed to recognise COS-7 cells transfected with either the HLA-B4601 gene or clone 3H alone (data not shown). The mRNA expression of clone 3H in various tumour cells and normal cells was analysed by Northern blotting, and the representative result is shown in Figure 1B. It was highly expressed in Ca9-22, SW620, OSC20, Kuma-1, and MKN45 cell lines. The mRNA expression of HSC70 in various tumour cells and normal cells was analysed by Northern blotting. Representative results are given in the figure. (C) The expression levels of the constitutively expressed HSC70 or the stress-inducible HSP70 in the samples used for Northern blotting were investigated at the protein level by means of Western blotting with anti-Hsc70 or -Hsp70 mAb, respectively, to further investigate the expression of HSP family in tumour cells. (D) Recognition of an HSC70-derived peptide by the OKB-CTLs. Various doses of the peptides were loaded onto HLA-B4601-transfected COS-7 cells for 2 h followed by addition of the OKB-CTLs at an E/T ratio of 10:1. After 18 h incubation, the culture supernatants were collected in order to measure the IFN-γ production. The values represent means of duplicate assays.
tumour cells. HLA-B46+ tumour cells were susceptible to lysis by the OKB-CTLs, as reported elsewhere (Azuma et al., 2003). In contrast, it was moderately expressed in KWS and COLO320, and weakly expressed in PHA-blastoid T cells and PBMCs. HLA-B46+ PHA-blastoid T cells were not lysed by the OKB-CTLs as reported previously (Azuma et al., 2003).

The expression levels of the constitutively expressed HSC70 or the stress-inducible HSP70 in the samples used for Northern blotting were investigated at the protein level by means of Western blotting with anti-Hsc70 or -Hsp70 mAb, respectively, to further investigate the expression of HSP family in tumour cells. HSP70 is a family of HSPs, and has 74 and 81% sequence homology with HSC70 at the nucleotide and aa levels, respectively. Expression levels of HSC70 in all the tumour cells and PHA-blast were higher than that in PBMCs, while those of HSP70 in all the tumour cells were higher than that in PHA-blast, which in turn was higher than that of PBMCs (Figure 1C).

Identification of CTL-directed epitopes

To identify the CTL-directed epitopes of HSC70, 10 kinds of HSC70-derived nonapeptides with HLA-B46-binding motifs were loaded on COS-7 cells transfected with HLA-B4601 or HLA-B5201 gene as a negative control, and then were tested for their ability to stimulate IFN-γ production by the OKB-CTLs. Two peptides, HSC70106–114 and HSC70233–241, were recognised by the OKB-CTLs in a dose-dependent fashion, and the highest IFN-γ production was observed at the concentration of 1μM peptide (Figure 1D). These two peptides were then tested for their ability to induce HLA-B46-restricted and tumour-reactive CTLs from the PBMCs of 10 HLA-B46+ cancer patients and 4 HD (Figure 2A).

Higher levels of IFN-γ production (>100 pg ml$^{-1}$) by recognition of the corresponding peptide were observed in the following cases: HSC70106–114 peptide-stimulated PBMCs from six of 10 cancer patients and two of four HD; and HSC70233–241 peptide-stimulated PBMCs from three of 10 cancer patients and zero of four HD (Figure 2A). All of these PBMCs from cancer patients, but not from those of any HDs, also produced higher levels of IFN-γ production (>100 pg ml$^{-1}$) in response to OSC20 (HLA-B46+ HSC70+) but not in response to Kuma-1 cells (HLA-B46 HSC70-) (Figure 2A). The background IFN-γ production in response to the Kuma-1 tumour cells ($<$50 pg ml$^{-1}$) was subtracted in the Figure 2A. Then, the cytotoxicity of the peptide-stimulated PBMCs from six cancer patients and those from two HDs was confirmed by a 6-h 51Cr-release assay, and the representative results of cancer patients were shown in Figure 2B.

Figure 2 Determination of CTL epitope peptides. (A) Two peptides, HSC70106–114 and HSC70233–241, were tested for their ability to induce HLA-B46-restricted and tumour-reactive CTLs from the PBMCs of HLA-B46+ 10 cancer patients and four HDs. The details of the method are described in the Materials and Methods section. The data showed amounts of IFN-γ produced by peptide-treated PBMC in response to HLA-B4601-transfected COS7 cells pulsed with the corresponding peptides (left column) and OSC20 (HLA-B46+) tumour cells (right column) at an E/T ratio of 20:1. The background IFN-γ release in response to HLA-B4601-transfected COS7 cells pulsed with a control peptide (p53204–212) ($<$50 pg ml$^{-1}$) was also subtracted from the figure. The values represent the means of duplicate assays. (B) The cytotoxicity of the peptide-treated PBMCs from seven cancer patients against OSC20 (HLA-B46+), Kuma-1 (HLA-B46-), and PHA-blastoid T cells was confirmed by a 6-h 51Cr-release assay. Values represent the means of triplicate assays at three different E/T ratios. *P<0.05 by a two-tailed Student’s t-test.
HSC70, gp96, HSP70, and calreticulin isolated from cancer cells have been shown to elicit cancer-specific immunity against a wide range of cancers in animal models (Tamura et al, 1997; Srivastava et al, 1998; Dressel et al, 1999; Robert et al, 2001; Udono et al, 2001). In this study, we have reported for the first time that HSC70 gene encodes two nonmutated epitopes, at positions 106–114 and 233–241.

DISCUSSION

HSC70 is a highly conserved protein through various species; it is a member of the family of molecular chaperones and plays an important role in protein synthesis and folding, due to its ability to prevent misfolding and aggregation and to promote folding and transport to the endoplasmic reticulum by the transporter associated with antigen processing. The chaperoned peptides can be channelled into the endogenous class I presentation pathway of a subset of professional antigen-presenting cells, which are then able to prime CD8-positive CTLs. Further, purified preparations of HSC70, gp96, HSP70, and calreticulin isolated from cancer cells have been shown to elicit cancer-specific immunity against a wide range of cancers in animal models (Tamura et al, 1997; Srivastava et al, 1998; Dressel et al, 1999; Robert et al, 2001; Udono et al, 2001). In this study, we have reported for the first time that HSC70 gene encodes two nonmutated epitopes, at positions 106–114 and 233–241.
The HLA-B46 allele is expressed exclusively in Asians, but not in other ethnic groups. This allele is expressed in 30% of Singapore Chinese, 28% of the Thai population, 9% of Japanese, and 8% of Koreans, whereas it is expressed in <1% of Caucasians, Blacks, and Indians (Imanishi et al, 1992, Barber et al, 1996). We have tested HLA-B expression at the serological level from 80 epithelial cancer patients, including 10 colon cancer patients, but because of its lower frequency in Japanese, PBMCs from only 10 HLA-B46 + cancer patients (five lung cancer and five prostate cancer patients) and four HLA-B46 - HD served as subjects for the CTL induction assay. Owing to the limitation of available PBMCs for the study, the experiments using these PBMCs were repeated twice in the patients' PBMCs and three times in the PBMCs from HDs. Although the amounts of IFN-γ produced by the peptide-stimulated PBMCs were relatively low, this is in part due to the small numbers of PBMCs used for the induction assay (10³ cells per well). Regardless of this limitation, however, all the data shown in this study were consistent and reproducible. In particular, the HLA-restricted cytotoxicity against tumour cells by means of the ⁵¹Cr-release assay was always obtained from the peptide-reactive PBMCs from six cancer patients by means of IFN-γ-release assay. In contrast, the HLA-restricted cytotoxicity against tumour cells was never obtained from the peptide-reactive PBMCs from two HDs by means of IFN-γ-release assay. Subsequently, CTL precursors reacting to HSC70 peptides and tumour cells might mainly be found in the circulation of substantial numbers of cancer patients, while the CTLs to autologous HSC70 peptides are under immunological tolerance in HDs. However, because of a limited numbers of samples, further studies on HLA-B46 - PBMCs from colon cancer or the other types of cancers as well as PBMCs from HDs are needed to confirm the results shown in this study.

ACKNOWLEDGEMENTS

We thank Dr Pierre G Coulie of Catholique de Louvain University, Brussels, Belgium for providing anti-HLA-B,C (B1-23, IgG2a) mAb. This study was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan (No. 12213134 to KI), from the Japan Society for the Promotion of Science (No. 14570526 to SS), and from the Ministry of Health and Welfare, Japan (No. H14-trans-002, 11-16, and H12-cancer-004 to KI, and No. H14-cancer-033 to SS).

REFERENCES

Akesaka T, Kashiwase K, Shimamura M, Ishikawa Y, Tanaka H, Fujii M, Akaza T, Hando K, Yuasa S, Takahashi T, Juji T (2000) Identification of a novel HLA-B46 allele, B*4602, in Japanese. Tissue Antigens 55: 460 – 462
Azuma K, Shichijo S, Maeda Y, Nakatsura T, Nonaka Y, Fujii T, Koike K, Itoh K (2003) Mutated p53 gene encodes a non-mutated epitope recognized by HLA-B4601-restricted and tumor cell-reactive CTLs at tumor site. Cancer Res 63: 854 – 858
Barber LD, Percival L, Valiante NM, Chen L, Lee C, Gumperz JE, Phillips JH, Lanier LL, Bigge JC, Parekh RB, Parham P (1996) The inter-locus recombinant HLA-B*4601 has high selectivity in peptide binding and functions characteristic of HLA-C. J Exp Med 184: 735 – 740
Blachere NE, Li Z, Chandra-r-K, Ryo W, Raikar NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein – peptide complexes, reconstituted in vitro, elicit antigen-specific T lymphocyte response and tumour immunity. J Exp Med 186: 1315 – 1322
Boon T, van der Bruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183: 725 – 729
Chen D, Androlewicz MJ (2001) Heat shock protein 70 moderately enhances peptide binding and transport by the transporter associated with antigen processing. Immunol. Letters 75: 143 – 148
Ciocca DR, Clark GM, Tandon AK, Fuqua SA, Welch WJ, McGuire WL (1993) Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 85: 570 – 574
Ciocca DR, Green S, Elledge RM, Clark GM, Pugh R, Radvin P, Lew D, Martino S, Osborne CK (1998) Heat shock proteins hsp27 and hsp70: lack of correlation with response to tamoxifen and clinical course of disease in estrogen receptor-positive metastatic breast cancer (a south-west oncology group study). Clin Cancer Res 4: 1263 – 1266
Dressel R, Lübers M, Walter L, Herr W, Gunther E (1999) Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. Eur J Immunol 29: 3925 – 3933
Gohara R, Imai N, Kikumura T, Yamada A, Hida N, Ichiki M, Mayumi K, Miyazaki K, Ashihara Y, Yano T, Tamura M, Okabe E, Yamada H, Ozumi R, Itoh K (2002) Phase I clinical study of cyclophilin B peptide vaccine for patients with lung cancer. J Immunother 25: 439 – 444
Imanishi T, Akaza T, Kimura A, Tokunaga K, Gojobori T (1992) Allele and haplotype frequencies for HLA and complement loci in various ethnic groups. In Proceedings of the Eleventh International Histocompatibility
Workshop and Conference, pp. 1065–1220. Oxford, UK: Oxford University Press

Ito M, Shichijo S, Tsuda N, Ochi M, Harashima N, Saito N, Itoh K (2001) Molecular basis of T cell-mediated recognition of pancreatic cancer cells. Cancer Res 61: 2038–2046

Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Gerundolo V, Dupont B, Chen Y-T, Old LJ, Knuth A (2000) Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97: 4760–4765

Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92: 1564–1572

Kaur J, Ralhan R (1995) Differential expression of 70-kDa heat shock protein in human oral tumorigenesis. Int J Cancer 63: 774–779

Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Apella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91: 6458–6462

Maeda Y, Ito M, Harashima N, Nakatsura T, Hida N, Imai N, Sato Y, Shichijo S, Todo S, Itoh K (2002) Cleavage and polyadenylation specificity factor (CPSF)-derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients. Int J Cancer 99: 409–417

Ralhan R, Kaur J (1995) Differential expression of Mr 70000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin Cancer Res 1: 1217–1222

Robert J, Menoret A, Basu S, Cohen N, Srivastava PK (2001) Phylogenetic conservation of the molecular and immunological properties of the chaperones gp96 and hsp70. Eur J Immunol 31: 186–195

Shichijo S, Nakao M, Imai Y, Takasu H, Kawamoto M, Niiya F, Yang D, Toh Y, Yamana H, Itoh K (1998) A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J Exp Med 187: 277–288

Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8: 657–666

Tamura Y, Peng P, Liy K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278: 117–120

Udono H, Yamano T, Kawabata Y, Ueda M, Yui K (2001) Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 13: 1233–1242

van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647

Wang F, Bade E, Kuniyoshi C, Spears L, Jeffery G, Marty V, Groschen S, Weber J (1999) Phase I trial of a MART-1 peptide vaccine with incomplete Freund’s adjuvant for resected high-risk melanoma. Clin Cancer Res 5: 2756–2765

Wang Y, Kelly CG, Singh M, McGowan EG, Carrara A-S, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169: 2422–2429

Yang D, Nakao M, Shichijo S, Sasatomi T, Takasu H, Matsumoto H, Mori K, Hayashi A, Yamana H, Shirouzu K, Itoh K (1999) Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restricted cytotoxic T lymphocytes in cancer patients. Cancer Res 59: 4056–4063

Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumor suppressor protein. EMBO J 20: 4634–4638