Polylogarithms and a Zeta Function for Finite Places of a Function Field

Anatoly N. Kochubei

Institute of Mathematics,
National Academy of Sciences of Ukraine,
Tereshchenkivska 3, Kiev, 01601 Ukraine
E-mail: kochubei@i.com.ua

Running head: “Polylogarithms and a Zeta Function”

*Partially supported by CRDF under Grant UM1-2421-KV-02, and by DFG, Grant 436 UKR 113/72
Abstract

We introduce and study new versions of polylogarithms and a zeta function on a completion of $\mathbf{F}_q(x)$ at a finite place. The construction is based on the use of the Carlitz differential equations for \mathbf{F}_q-linear functions.

Key words: \mathbf{F}_q-linear function; polylogarithms; zeta function
1 INTRODUCTION

It was shown in [12, 13] that the basic notions and results of analytic theory of differential equations have their natural counterparts in the setting of the function field arithmetic.

Consider the field $\mathbb{F}_q(x)$ of rational functions with coefficients from the Galois field \mathbb{F}_q of characteristic $\nu > 0$, $q = \nu^v$, $v \in \mathbb{Z}_+$. Let $\pi \in \mathbb{F}_q[x]$ be a monic irreducible polynomial, $\deg \pi = \delta$. The absolute value $|t|_\pi$, $t \in \mathbb{F}_q(x)$, is defined as follows. We write $t = \pi^n \alpha/\alpha'$ where $n \in \mathbb{Z}$, and π does not divide α, α'. Then $|t|_\pi = |\pi|^n| \pi|_\pi = q^{-\delta}$. As usual, $|0|_\pi = 0$. Let K_π be the completion of $\mathbb{F}_q(x)$ with respect to the metric determined by this absolute value. Then the cardinality of its residue field equals q^δ, and a full system of representatives of the residue classes consists of all polynomials from $\mathbb{F}_q[x]$ of degrees $< \delta$ (see Sect. 3.1 in [22]). Denote by Ω_π the completion, with respect to the canonical extension of the absolute value, of an algebraic closure of K_π.

A function f defined on a \mathbb{F}_q-subspace K_π' of K, with values in Ω_π, is called \mathbb{F}_q-linear if $f(t_1 + t_2) = f(t_1) + f(t_2)$ and $f(\alpha t) = \alpha f(t)$ for any $t, t_1, t_2 \in K_\pi'$, $\alpha \in \mathbb{F}_q$.

The simplest example is an \mathbb{F}_q-linear polynomial $f(t) = \sum a_k t^{q^k}$, $a_k \in \Omega_\pi$. The set of \mathbb{F}_q-linear polynomials (as well as some wider classes of \mathbb{F}_q-linear functions) forms a ring with the usual addition and the composition as the multiplication operation. The function $f(t) = t$ is the unit element in this ring.

In the theory of differential equations over K_π developed in [12, 13] the unknown functions are \mathbb{F}_q-linear, and the role of a derivative is played by Carlitz’s operator

$$d = \sqrt[n]{\Delta}, \quad (\Delta u)(t) = u(xt) - xu(t) \quad (1)$$

(in [12, 13] the case $\pi(x) = x$ was considered, but many results carry over to the general case). The meaning of a polynomial (or holomorphic) coefficient in the function field case is not a multiplication by a coefficient, but the action of a polynomial (or a power series) in the operator τ, $\tau u = u^\alpha$. Such equations are known for many special functions on K_π (like analogs of the power, exponential, Bessel, and hypergeometric functions; see [3, 4, 7, 13, 17, 18]). It appears that the Carlitz differential equations can be used for defining new special functions with interesting properties.

In this paper we consider an analog of the function $-\log(1-t)$ defined via the equation

$$(1 - \tau)du(t) = t, \quad t \in K_\pi, \quad (2)$$

a counterpart of the classical equation $(1-t)u'(t) = 1$.

Starting from a solution $l_1(t)$ of (2) defined by a \mathbb{F}_q-linear power series convergent for $|t|_\pi < 1$ (that is for $|t|_\pi \leq q^{-\delta}$; we consider only $t \in K_\pi$, while the functions may take their values in Ω_π), we define a sequence of “polylogarithms” $l_k(t)$, $\Delta l_k = l_{k-1}$, $k \geq 2$, and show that all these functions can be extended to continuous non-holomorphic solutions of the same equations on the “closed” unit disk $O_\pi = \{t \in K_\pi : |t|_\pi \leq 1\}$. Their values at $t = 1$ can be seen as “special values” of a kind of a zeta function.

Note that the existing definitions of the polylogarithms and zeta for function fields (see [6, 8, 2]) are based on the use of the “infinite” x^{-1}-completion of $\mathbb{F}_q(x)$, though a part of the results in [6, 8, 2] is extended to finite places. Our approach leads to an apparently different zeta, but also with some interesting properties. In particular, if $\pi = x$, and if we identify the
value of a polylogarithm $l_k(1)$ not with $\zeta(k)$ but with $\zeta(x^{-k})$, we obtain a function ζ defined on a subset of K_x. Then we show that ζ has a natural continuous F_q-linear extension onto the whole field K_x. Thus ζ is purely an object of the characteristic κ arithmetic, in contrast to Goss’s zeta function which is interpolated from natural numbers onto \mathbb{Z}_κ.

The author is grateful to D. Thakur for numerous useful discussions.

2 A LOGARITHM-LIKE FUNCTION

Let us look for a F_q-linear holomorphic solution

$$u(t) = \sum_{n=0}^{\infty} a_n t^{q^n}$$

of the equation (2). It follows from the definition (1) that

$$du(t) = \sum_{n=1}^{\infty} a_n^{1/q} [n]^{1/q} t^{q^n-1}$$

where $[n] = x^{q^n} - x$. Substituting into (2) we find that

$$\sum_{j=0}^{\infty} \left(a_{j+1}^{1/q} [j+1]^{1/q} - a_j [j] \right) t^{q^j} = t.$$

We see that the equation (2) is satisfied if and only if a_0 is arbitrary, $a_1 = [1]^{-1}$,

$$a_{j+1} = a_j^{q} [j]^{q} / [j+1], \quad j \geq 1,$$

and we find by induction that $a_j = [j]^{-1}$.

Let $l_1(t)$ be the solution (3) of the equation (2) with $a_0 = 0$. Then

$$l_1(t) = \sum_{n=1}^{\infty} \frac{t^{q^n}}{n}.$$

By Lemma 2.13 from [14]

$$||n||_\pi = \begin{cases} q^{-\delta}, & \text{if } \delta \text{ divides } n; \\ 1, & \text{otherwise}. \end{cases}$$

Hence the series (4) converges for $|t|_\pi \leq q^{-\delta}$.

Note that $l_1(t)$ is different from the well-known Carlitz logarithm \log_C (see [3]), the inverse function to the Carlitz exponential e_C. Analogies motivating the introduction of special functions are not so unambiguous, and, for instance, from the composition ring viewpoint, \log_C is an analog of e^{-t}, though in other respects it is a valuable analog of the logarithm. By the way, another possible analog of the logarithm is a continuous function $u(t)$, $|t|_\pi \leq 1$, satisfying the
equation $\Delta u(t) = t$ (an analog of $tu'(t) = 1$) and the condition $u(1) = 0$. In fact, $u = D_1$, the first hyperdifferential operator; see [10], especially the proof of Theorem 3.5 in [10].

Now we consider continuous non-holomorphic extensions of l_1. We will use the following simple lemma.

Lemma 1. Consider the equation

$$z^q - z = \xi, \quad \xi \in \Omega_\pi.$$ (6)

If $|\xi|_\pi = 1$, then all the solutions z_1, \ldots, z_q of the equation (6) are such that $|z_j|_\pi = 1$, $j = 1, \ldots, q$. If $|\xi|_\pi < 1$, then there exists a unique solution z_1 of the equation (6) with $|z_1|_\pi = |\xi|_\pi$. This solution can be written as

$$z_1 = - \sum_{j=0}^{\infty} \xi^j.$$ (7)

For all other solutions we have $|z_j|_\pi = 1$, $j = 2, \ldots, q$.

Proof. Let $|\xi|_\pi = 1$. If some solution z_j of the equation (6) is such that $|z_j|_\pi < 1$, the ultra-
metric inequality would imply $|\xi|_\pi < 1$. If $|z_j|_\pi > 1$, then $|z_j|^q_\pi > |z_j|_\pi$, so that $\xi = |z_j|^q_\pi > 1$, and we again come to a contradiction.

Now suppose that $|\xi|_\pi < 1$. Then the series in (7) converges and defines a solution of

(6), such that $|z_1|_\pi = |\xi|_\pi$. All other solutions are obtained by adding elements of F_q to z_1. Therefore $|z_2|_\pi = \ldots = |z_q|_\pi = 1$. ■

Denote by $f_i(t), i = 0, 1, 2, \ldots$, the sequence of normalized Carlitz polynomials, that is $f_i(t) = D_i^{-1}e_i(t)$,

$$D_0 = 1, \quad D_i = [i][i-1]q \cdots [1]q^{i-1}, \quad e_0(t) = t,$$

$$e_i(t) = \prod_{\omega \in F_q[x], \deg \omega < i} (t - \omega), \quad i \geq 1.$$

It is known [20, 5] that $\{f_i\}$ is an orthonormal basis of the space of continuous F_q-linear functions $O_\pi \to \Omega_\pi$ (in [20, 5] the functions $O_\pi \to K_\pi$ are considered; the general case follows from Proposition 6 in [1]).

Theorem 1. The equation (2) has exactly q^δ continuous solutions on O_π coinciding with (4) as $|t|_\pi \leq q^{-\delta}$. These solutions have the expansions in the Carlitz polynomials

$$u = \sum_{i=0}^{\infty} c_if_i$$ (8)

where the coefficients c_1, \ldots, c_δ are arbitrary solutions of the equations

$$c_i^q - c_i + 1 = 0,$$

$$c_i^q - c_i + [i]q c_i^q = 0, \quad 1 \leq i \leq \delta - 1,$$ (9) (10)
higher coefficients are found from the relations
\[c_n = \sum_{j=0}^{\infty} (c_{n-1}[n-1])^{q+1}, \quad n \geq \delta + 1, \quad (11) \]

and the coefficient \(c_0 \) is determined by the relation
\[c_0 = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{c_i}{L_i}, \quad (12) \]

\(L_i = [i][i-1] \ldots [1] \).

Proof. Looking for a solution of (2) of the form (8), writing the equation (2) as \(du(t) - \Delta u(t) = t \), and using the relations
\[df_i = f_{i-1}, \quad \Delta f_i = [i]f_i + f_{i-1}(i \geq 1), \quad df_0 = \Delta f_0 = 0 \]
(see [7][11][13]), we find that
\[\sum_{i=0}^{\infty} \left(c_{i+1}^{1/q} - c_{i+1} - c_i[i] \right) f_i(t) = f_0(t), \quad t \in O_\pi. \]
This is equivalent to the equation (9) for \(c_1 \) and the sequence of relations (10) for \(c_i \), \(2 \leq i < \infty \). The coefficient \(c_0 \) remains arbitrary so far.

By Lemma 1 there are \(q \) solutions of (9) and \(q \) solutions of each equation (10) with \(1 \leq i \leq \delta - 1 \). For all of them \(|c_j|_\pi = 1, 1 \leq j \leq \delta \). Consider the equations
\[c_n^q - c_n + [n-1]c_n^q = 0, \quad n \geq \delta + 1. \quad (13) \]
If \(n = \delta + 1 \), we use (5) and Lemma 1 to show that the corresponding equation (13) has the solution (11) with \(|c_{\delta+1}|_\pi = q^{-\delta q} \) and \(q - 1 \) other solutions with the absolute value 1. Choosing at each subsequent step the solution (11) we obtain the sequence \(c_n \), such that
\[|c_n|_\pi \leq q^{-\delta q^n-\delta}, \quad n \geq \delta + 1, \quad (14) \]
so that \(|c_n|_\pi \to 0 \), and the series (8) indeed determines a continuous \(\mathbb{F}_q \)-linear function on \(O_\pi \).

Since
\[f_i(t) = \sum_{j=0}^{i} (-1)^{i-j} \frac{1}{D_j L_{i-j}^q} t^{q^j} \]
(see [7]), we see that
\[\lim_{t \to 0} \frac{f_i(t)}{t} = (-1)^i \frac{1}{L_i}. \]
Therefore, if we choose \(c_0 \) according to (12), then our solution \(u \) is such that
\[\lim_{t \to 0} t^{-1} u(t) = 0. \quad (15) \]
Note that $|L_n|_\pi = q^{-\delta[n]}$ (where $[\cdot]$ denotes the integral part of a real number), so that the series in (12) is convergent.

By a result of Yang [23], it follows from (14) that u is locally analytic; specifically, it is analytic on any ball of the radius $q^{-\delta}$. Thus it can be represented for $|t|_\pi \leq q^{-\delta}$ by the convergent power series (3), in which $a_0 = 0$ by (15). Therefore $u(t) = l_1(t)$ for $|t|_\pi \leq q^{-\delta}$, as desired.

Any other continuous solution of the equation (2) on O_π is obtained inevitably by the same procedure, but with $|c_1|_\pi = \ldots = |c_N|_\pi = 1$, $|c_n|_\pi < 1$, if $n \geq N\delta + 1$, for some $N > 1$, and with some $c_0 \in \Omega_\pi$. In this case by Lemma 1

$$|c_{N+1}|_\pi = q^{-\delta q}, \quad |c_{N+1}|_\pi = q^{-\delta q}, \quad |c_{N+1}|_\pi = q^{-\delta(q^{l+1}+q)}$$

(here we have to proceed more accurately than in (14), in order to obtain a precise estimate).

More generally, we have

$$|c_{(N+l)}|_\pi = q^{-\delta(q^{l+1}+q)}.$$ \hspace{1cm} (16)

Indeed, this was shown above for $l = 1$. If (16) is true for some l, then

$$|c_{(N+l)}|_\pi = q^{-\delta\{(q^l+q^l)q+q\}},$$

and so on, so that

$$|c_{(N+l)}|_\pi = q^{-\delta\{(q^l+q^l)q+q\}q^l} = q^{-\delta(q^l+q^l+q^{2l}+q^l)},$$

and (16) is proved.

Let us consider the valuation $v_\pi(t)$, $t \in K_\pi$, connected with the absolute value by the relation $|t|_\pi = q^{-\delta v_\pi(t)}$. The equality (16) means that

$$v_\pi(c_{(N+l)}_\pi) = q^l + q^{l-1} + \ldots + q^l, \quad l = 1, 2, \ldots.$$ \hspace{1cm} (17)

Suppose that our solution coincides with the series (4) for $|t|_\pi \leq q^{-\delta}$. By F_q-linearity this means the analyticity of the solution on any ball of the radius $q^{-\delta}$. Then [23]

$$v_\pi(c_n) - \sum_{i=2}^{\infty} q^n - q^i \to \infty \quad \text{as} \quad n \to \infty$$

(we use the specialization of the result from [23] for the case of F_q-linear functions), that is

$$v_\pi(c_n) - \frac{q^n - q^{n-\delta}}{q^\delta - 1} \to \infty \quad \text{as} \quad n \to \infty.$$

In particular,

$$v_\pi(c_{(N+l)}_\pi) - \frac{q^{l(N+l-1)} - q^\delta}{q^\delta - 1} \to \infty \quad \text{as} \quad l \to \infty.$$ \hspace{1cm} (18)

However by (17)

$$v_\pi(c_{(N+l)}_\pi) = q^{l(N+l-1)} \frac{q^{l+1} - q^\delta}{q^\delta - 1}.$$
which contradicts (18), since \(N \geq 2 \). \(\blacksquare \)

In fact continuous solutions which satisfy (12) and have the coefficients \(c_n \) of the form (11), but starting from some larger value of \(n \), are also extensions of the functions (4), but from smaller balls.

Below we denote by \(l_1(t) \) a fixed solution of the equation (2) on \(O_\pi \) coinciding with (4) for \(|t|_\pi \leq q^{-\delta} \), as described in Theorem 1. Of course, \(l_1 \) depends on \(\pi \), but we will not indicate this dependence explicitly for the sake of brevity.

3 POLYLOGARITHMS

The polylogarithms \(l_n(t) \) are defined recursively by the equations

\[
\Delta l_n = l_{n-1}, \quad n \geq 2,
\]

which agree with the classical ones \(tl'_n(t) = l_{n-1}(t) \). If we look for analytic \(F_q \)-linear solutions of (19), such that \(t^{-1}l_n(t) \to 0 \) as \(t \to 0 \), we obtain easily by induction that

\[
l_n(t) = \sum_{j=1}^{\infty} \frac{t^{q^j}}{|j|!}, \quad |t|_\pi \leq q^{-\delta}.
\]

In order to find continuous extensions of \(l_n \) onto \(O_\pi \), we consider the Carlitz expansions

\[
l_n = \sum_{i=0}^{\infty} c_i^{(n)} f_i, \quad n = 2, 3, \ldots.
\]

Consider first the dilogarithm \(l_2 \). We have

\[
\Delta l_2 = \sum_{i=0}^{\infty} \left(c_{i+1}^{(2)} + [i]c_i^{(2)} \right) f_i,
\]

so that

\[
c_{i+1}^{(2)} + [i]c_i^{(2)} = c_i, \quad i = 0, 1, 2, \ldots,
\]

where \(c_i \) are the coefficients described in Theorem 1. The recursion (22) leaves \(c_0^{(2)} \) arbitrary and determines all other coefficients in a unique way:

\[
c_n^{(2)} = (-1)^n L_{n-1} \sum_{j=n}^{\infty} (-1)^j \frac{c_j}{L_j}, \quad n \geq 1,
\]

where we set \(L_0 = 1 \).

Indeed, the series in (23) is convergent, since \(c_n \) satisfies the estimate (14), while \(|L_n|_\pi = q^{-\delta[\frac{n}{\pi}]_{\text{int}}} \). For \(n = 1 \) the equality (23) means, due to (12), that \(c_1^{(2)} = c_0 \), which coincides with (22) for \(i = 0 \). If (23) is proved for some \(n \), then

\[
c_{n+1}^{(2)} = c_n - [n]c_n^{(2)} = c_n + (-1)^{n+1} L_n \sum_{j=n}^{\infty} (-1)^j \frac{c_j}{L_j} = (-1)^{n+1} L_n \sum_{j=n+1}^{\infty} (-1)^j \frac{c_j}{L_j},
\]
as desired.
We have
\[
\left| \frac{c_j}{L_j} \right| = q^\delta \left(\left\lfloor \frac{j}{\pi} \right\rfloor - q^{j-\delta} \right).
\]
Thus for \(n > \delta \)
\[
\left| \sum_{j=n}^{\infty} (-1)^j \frac{c_j}{L_j} \right| \leq \sup_{j \geq n} \left| \frac{c_j}{L_j} \right| \leq \sup_{j \geq n} q^{j-\delta q^{j-\delta}} = \delta^{-1} q^\delta \sup_{j \geq n} (\delta q^{j-\delta}) q^{-\delta q^{j-\delta}}.
\]
The function \(z \mapsto z^{-\delta} \) is monotone decreasing for \(z \geq 1 \). Therefore
\[
\left| \sum_{j=n}^{\infty} (-1)^j \frac{c_j}{L_j} \right| \leq q^n \cdot q^{-\delta q^{n-\delta}}, \quad n > \delta,
\]
so that by (23)
\[
\left| c_n^{(2)} \right| \pi \leq q^{\delta+1} \cdot q^{-\delta q^{n-\delta}}, \quad n > \delta.
\]
Using Yang’s theorem again we find that \(l_2 \) is analytic on all balls of the radius \(q^{-\delta} \). If we choose \(c_0^{(2)} \) in such a way that
\[
c_0^{(2)} = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{c_i^{(2)}}{L_i},
\]
the solution (21) of the equation (19) with \(n = 2 \) is a continuous extension of the dilogarithm \(l_2 \) given by the series (20) with \(n = 2 \).

Repeating the above reasoning for each \(n \), we come to the following result.

Theorem 2. For each \(n \geq 2 \), there exists a unique continuous \(\mathbf{F}_q \)-linear solution of the equation (19) coinciding for \(|t|_\pi \leq q^{-\delta} \) with the polylogarithm (20). The solution is given by the Carlitz expansion (21) with
\[
\left| c_i^{(n)} \right| \leq C_n q^{-\delta q^{i-\delta}}, \quad i > \delta, \quad C_n > 0,
\]
\[
c_0^{(n)} = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{c_i^{(n)}}{L_i},
\]

4 Fractional Derivatives

Starting from this section and to the end of the paper we assume that \(\pi = x \).

In this section we introduce the operator \(\Delta^{(\alpha)}_\pi \), \(\alpha \in O_x \), a function field analog of the Hadamard fractional derivative \((t^a \frac{d}{dt})^a \) from real analysis (see [12]).

Denote by \(\mathcal{D}_k(t) \), \(k \geq 0 \), \(t \in O_x \), the sequence of hyperdifferentiations defined initially on monomials by the relations \(\mathcal{D}_0(x^n) = x^n \), \(\mathcal{D}_k(1) = 0 \), \(k \geq 1 \),
\[
\mathcal{D}_k(x^n) = \binom{n}{k} x^{n-k},
\]
where it is assumed that \(^{(n)} = 0\) for \(k > n\). \(D_k\) is extended onto \(F_q[x]\) by \(F_q\)-linearity, and then onto \(O_x\) by continuity. The sequence \(\{D_k\}\) is an orthonormal basis of the space of continuous \(F_q\)-linear functions on \(O_x\) \([10]\) \([5]\).

Let \(\alpha \in O_x\), \(\alpha = \sum_{n=0}^{\infty} \alpha_n x^n\), \(\alpha_n \in F_q\). Denote \(\hat{\alpha} = \sum_{n=0}^{\infty} (-1)^n \alpha_n x^n\). The transformation \(\alpha \mapsto \hat{\alpha}\) is a \(F_q\)-linear isometry. For an arbitrary continuous \(F_q\)-linear function \(u\) on \(O_x\) we define its “fractional derivative” \(\Delta^{(\alpha)} u\) at a point \(t \in O_x\) by the formula

\[
(\Delta^{(\alpha)} u)(t) = \sum_{k=0}^{\infty} (-1)^k D_k(\hat{\alpha}) u(x^k t).
\]

The series converges for each \(t\), uniformly with respect to \(\alpha\), since \(|D_k(\hat{\alpha})|_x \leq 1\) and \(u(x^k t) \to 0\). Thus \(\Delta^{(\alpha)} u\) is, for each \(t\), a continuous \(F_q\)-linear function in \(\alpha\).

Our understanding of \(\Delta^{(\alpha)}\) as a kind of a fractional derivative is justified by the following lemma contained in \([10]\) (Corollary 3.10). We give a simple independent proof.

Lemma 2. \(\Delta^{(x^n)} = \Delta^n\), \(n = 1, 2, \ldots\)

Proof. By the definition of \(D_k\), it follows from (24) that

\[
(\Delta^{(x^n)} u)(t) = \sum_{k=0}^{n} \binom{n}{k} (-x)^{n-k} u(x^k t).
\]

If \(n = 1\), then \((\Delta^{(x)} u)(t) = u(x t) - x u(t) = (\Delta u)(t)\). Suppose we have proved that \(\Delta^{(x^{n-1})} = \Delta^{n-1}\). Then

\[
(\Delta^n u)(t) = \Delta \left(\Delta^{(x^{n-1})} u \right)(t)
= \sum_{k=0}^{n-1} \binom{n-1}{k} (-x)^{n-1-k} u(x^{k+1} t) - x \sum_{k=0}^{n-1} \binom{n-1}{k} (-x)^{n-1-k} u(x^k t)
= \sum_{k=1}^{n} \binom{n-1}{k-1} (-x)^{n-k} u(x^k t) + \sum_{k=0}^{n-1} \binom{n-1}{k} (-x)^{n-1-k} u(x^k t)
= u(x^n t) + \sum_{k=1}^{n-1} \left\{ \binom{n-1}{k-1} + \binom{n-1}{k} \right\} (-x)^{n-k} u(x^k t) + (-x)^n u(t) = (\Delta^{(x^n)} u)(t),
\]
as desired. \(\blacksquare\)

It follows from Lemma 2 that \(\Delta^{(x^n)} \circ \Delta^{(x^m)} = \Delta^{(x^{n+m})} = \Delta^{(x^n \cdot x^m)}\), which prompts the following composition property.

Lemma 3. For any \(\alpha, \beta \in O_x\)

\[
\Delta^{(\alpha)} \left(\Delta^{(\beta)} u \right)(t) = \left(\Delta^{(\alpha \beta)} u \right)(t).
\]
Proof. Using the Leibnitz rule for hyperderivatives (see [4]) we have

\[
(\Delta^{(\alpha)} \circ \Delta^{(\beta)} u)(t) = \sum_{k=0}^{\infty} (-1)^k \mathcal{D} \tilde{\beta} \sum_{l=0}^{\infty} (-1)^l \mathcal{D} \tilde{\alpha} u(x^{k+l} t)
\]

\[
= \sum_{n=0}^{\infty} (-1)^n u(x^n t) \sum_{k+l=n} \mathcal{D} \tilde{\beta} \mathcal{D} \tilde{\alpha} = \sum_{n=0}^{\infty} (-1)^n \mathcal{D} \eta (\tilde{\alpha} \tilde{\beta}) u(x^n t) = (\Delta^{(\alpha \beta)} u)(t). \quad \blacksquare
\]

5 ZETA FUNCTION

We define \(\zeta(t), t \in K_x \), setting \(\zeta(0) = 0, \zeta(x^{-n}) = \ln(1), \quad n = 1, 2, \ldots, \)

and

\(\zeta(t) = (\Delta^{(\theta_0 + \theta_1 x + \cdots)} l_n)(1), \quad n = 1, 2, \ldots, \)

if \(t = x^{-n}(\theta_0 + \theta_1 x + \cdots), \theta_j \in \mathbb{F}_q \). The correctness of this definition follows from Lemma 3. It is clear that \(\zeta \) is a continuous \(\mathbb{F}_q \)-linear function on \(K_x \) with values in \(\Omega_x \).

In particular, we have

\(\zeta(x^m) = (\Delta^{m+1} l_1)(1), \quad m = 0, 1, 2, \ldots. \)

The above definition is of course inspired by the classical polylogarithm relation

\[
\left(z \frac{d}{dz} \right) \sum_{n=1}^{\infty} \frac{z^n}{n^s} = \sum_{n=1}^{\infty} \frac{z^n}{n^{s-1}}.
\]

Let us write down some relations for “special values” \(\zeta(x^n), n \in \mathbb{N} \). Let us consider the expansion of \(l_n(t) \) in the sequence of hyperdifferentiations. We have

\(l_n(t) = \sum_{i=0}^{\infty} (\Delta^i l_n)(1) \mathcal{D}_i(t) \)

(see [10]). Therefore

\(l_n(t) = \sum_{i=0}^{\infty} \zeta(x^{-n+i}) \mathcal{D}_i(t), \quad n \in \mathbb{N}, \ t \in O_x. \quad (25)\)

In particular, combining (25) and (20) we get

\[
\sum_{j=1}^{\infty} \frac{t^j}{[j]^n} = \sum_{i=0}^{\infty} \zeta(x^{-n+i}) \mathcal{D}_i(t), \quad |t|_x \leq q^{-1}.
\]

Let us consider the double sequence \(A_{n,r} \in K_x, A_{n,1} = (-1)^{n-1} L_{n-1}, \)

\(A_{n,r} = (-1)^{n+r} L_{n-1} \sum_{0 < i_1 < \ldots < i_{r-1} < n} \frac{1}{[i_1][i_2] \ldots [i_{r-1}]}, \quad r \geq 2. \)
This sequence appears in the expansion \([19]\) of a hyperdifferentiation \(\mathcal{D}_r\) in the normalized Carlitz polynomials
\[
\mathcal{D}_r(t) = \sum_{n=0}^{\infty} A_{n,r} f_n(t), \quad t \in O_x.
\]
Its another application \([9]\) is the expression of the Carlitz difference operators \(\Delta_n, \Delta_1 = \Delta\),
\[
(\Delta_n u)(t) = (\Delta_{n-1} u)(xt) - x^{q^{n-1}} (\Delta_{n-1} u)(t),
\]
via the iterations \(\Delta^r\):
\[
\Delta_n = \sum_{r=1}^{n} A_{n,r} \Delta^r, \quad n \geq 1.
\]
For coefficients of the expansion (21) we have \(c_i^{(n)} = (\Delta_i l_n)(1), i \geq 1 \) (see \([7]\)), and by (27)
\[
c_i^{(n)} = \sum_{r=1}^{i} A_{i,r} (\Delta^r l_n)(1) = \sum_{r=1}^{i} A_{i,r} \zeta(x^{r-n}).
\]
Since \(c_0^{(n)} = \zeta(1-x^n)\), we have (see Theorems 1,2)
\[
\zeta(1-x^n) = \sum_{i=1}^{\infty} (-1)^{i+1} L_{i-1}^{-1} \sum_{r=1}^{i} A_{i,r} \zeta(x^{r-n}).
\]
The identity (29) may be seen as a distant relative of Riemann’s functional equation for the classical zeta.

Since \(\mathcal{D}_r(t)\) is not differentiable \([19]\), the interpretation of the sequence \(\{A_{i,r}\}\) given in (26) shows, by a result of Wagner \([21]\), that \(L_{i-1}^{-1} A_{i,r} \to 0\) as \(i \to \infty\). Thus it is impossible to change the order of summation in (29).

Finally, consider the coefficients of the expansion (8) for \(l_1\). As in (28), we have an expression
\[
c_i = \sum_{r=1}^{i} A_{i,r} \zeta(x^{r-1}).
\]
By Theorem 1, for \(i \geq 2\) we have
\[
c_i = \sum_{j=0}^{\infty} (z_i)^q^j, \quad z_i = c_{i-1}^q [i-1]^q \in \Omega_x.
\]
The series in (30) may be seen as an analog of \(\sum j^{-z}\). This analogy becomes clearer if, for a fixed \(z \in \Omega_x, |z|_x < 1\), we consider the set \(S\) of all convergent power series \(\sum_{n=1}^{\infty} z^n\) corresponding to sequences \(\{j_n\}\) of natural numbers. Let us introduce the multiplication \(\otimes\) in \(S\) setting \(z^n \otimes z^l = z^{n+l}\) and extending the operation distributively (for a similar construction
in the framework of q-analysis in characteristic 0 see \cite{15}). Denoting by \prod_p^\otimes the product in S of elements indexed by prime numbers we obtain in a standard way the identity

$$c_i = \prod_p^\otimes \sum_{n=0}^\infty (z_i)^{q^n}$$

(the infinite product is understood as a limit of the partial products in the topology of Ω_x), an analog of the Euler product formula.
References

[1] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964), 117–180.

[2] G. W. Anderson and D. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990), 159–191.

[3] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137–168.

[4] L. Carlitz, Some special functions over $GF(q, x)$, Duke Math. J. 27 (1960), 139–158.

[5] K. Conrad, The digit principle, J. Number Theory 84 (2000), 230–237.

[6] D. Goss, v-Adic zeta functions, L-series and measures for function fields, Invent. Math. 55 (1979), 107–119.

[7] D. Goss, Fourier series, measures, and divided power series in the theory of function fields, K-Theory 1 (1989), 533–555.

[8] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996.

[9] S. Jeong, Continuous linear endomorphisms and difference equations over the completions of $F_q[T]$, J. Number Theory 84 (2000), 276–291.

[10] S. Jeong, Hyperdifferential operators and continuous functions on function fields, J. Number Theory 89 (2001), 165–178.

[11] A. N. Kochubei, F_q-linear calculus over function fields, J. Number Theory 76 (1999), 281–300.

[12] A. N. Kochubei, Differential equations for F_q-linear functions, J. Number Theory 83 (2000), 137–154.

[13] A. N. Kochubei, Differential equations for F_q-linear functions II: Regular singularity, Finite Fields Appl. 9 (2003), 250–266.

[14] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, 1983.

[15] M. B. Nathanson, Additive number theory and the ring of quantum integers, math.NT/0204006.

[16] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.

[17] D. Thakur, Hypergeometric functions for function fields, Finite Fields Appl. 1 (1995), 219–231.

[18] D. Thakur, Hypergeometric functions for function fields II, J. Ramanujan Math. Soc. 15 (2000), 43–52.
[19] J. F. Voloch, Differential operators and interpolation series in power series fields, *J. Number Theory* **71** (1998), 106–108.

[20] C. G. Wagner, Interpolation series for continuous functions on π-adic completions of $GF(q,x)$, *Acta Arithm.* **17** (1971), 389–406.

[21] C. G. Wagner, Linear operators in local fields of prime characteristic, *J. Reine Angew. Math.* **251** (1971), 153–160.

[22] A. Weil, *Basic Number Theory*, Springer, Berlin, 1967.

[23] Z. Yang, Locally analytic functions over completions of $\mathbf{F}_p(U)$, *J. Number Theory* **73** (1998), 451–458.