Homogenization of elliptic boundary value problems in Lipschitz domains

Carlos E. Kenig · Zhongwei Shen

Received: 22 June 2010 / Revised: 20 September 2010 / Published online: 2 October 2010
© Springer-Verlag 2010

Abstract In this paper we study the L^p boundary value problems for $\mathcal{L}(u) = 0$ in \mathbb{R}^{d+1}_+, where $\mathcal{L} = -\text{div}(A\nabla)$ is a second order elliptic operator with real and symmetric coefficients. Assume that A is periodic in x_{d+1} and satisfies some minimal smoothness condition in the x_{d+1} variable, we show that the L^p Neumann and regularity problems are uniquely solvable for $1 < p < 2 + \delta$. We also present a new proof of Dahlberg’s theorem on the L^p Dirichlet problem for $2 - \delta < p < \infty$ (Dahlberg’s original unpublished proof is given in the Appendix). As the periodic and smoothness conditions are imposed only on the x_{d+1} variable, these results extend directly from \mathbb{R}^{d+1}_+ to regions above Lipschitz graphs. Consequently, by localization techniques, we obtain uniform L^p estimates for the Dirichlet, Neumann and regularity problems on bounded Lipschitz domains for a family of second order elliptic operators arising in the theory of homogenization. The results on the Neumann and regularity problems are new even for smooth domains.

Mathematics Subject Classification (2000) 35J25
1 Introduction

Let \(\mathcal{L} = -\operatorname{div}(A \nabla) \) be a second order elliptic operator defined in \(\mathbb{R}^{d+1} = \{ X = (x, t) \in \mathbb{R}^d \times \mathbb{R} \} \), \(d \geq 2 \). We will always assume that the \((d+1) \times (d+1) \) coefficient matrix

\[
A = A(X) = (a_{i,j}(X)) \text{ is real and symmetric},
\]

and satisfies the ellipticity condition,

\[
\mu |\xi|^2 \leq a_{i,j}(X) \xi_i \xi_j \leq \frac{1}{\mu} |\xi|^2 \text{ for all } X, \xi \in \mathbb{R}^{d+1},
\]

where \(\mu > 0 \). In this paper we shall be interested in boundary value problems for \(\mathcal{L}(u) = 0 \) in the upper half-space \(\mathbb{R}_{+}^{d+1} = \mathbb{R}^d \times (0, \infty) \) with \(L^p \) boundary data, under the assumption that the coefficients are periodic in the \(t \) variable,

\[
A(x, t + 1) = A(x, t) \text{ for } (x, t) \in \mathbb{R}^{d+1}.
\]

More precisely, we will study the solvabilities of the \(L^p \) Dirichlet problem \((D)_p\)

\[
\begin{cases}
\mathcal{L}(u) = 0 \text{ in } \Omega = \mathbb{R}_{+}^{d+1}, \\
u = f \in L^p(\partial \Omega) \text{ n.t. on } \partial \Omega \text{ and } (u)^* \in L^p(\partial \Omega),
\end{cases}
\]

the \(L^p \) Neumann problem \((N)_p\)

\[
\begin{cases}
\mathcal{L}(u) = 0 \text{ in } \Omega = \mathbb{R}_{+}^{d+1}, \\
\frac{\partial u}{\partial \nu} = f \in L^p(\partial \Omega) \text{ on } \partial \Omega \text{ and } N(\nabla u) \in L^p(\partial \Omega),
\end{cases}
\]

where \(\frac{\partial u}{\partial \nu} \) denote the conormal derivative associated with operator \(\mathcal{L} \), and the \(L^p \) regularity problem \((R)_p\)

\[
\begin{cases}
\mathcal{L}(u) = 0 \text{ in } \Omega = \mathbb{R}_{+}^{d+1}, \\
u = f \in \hat{W}^{1,p}(\partial \Omega) \text{ n.t. on } \partial \Omega \text{ and } N(\nabla u) \in L^p(\partial \Omega).
\end{cases}
\]

Here \((u)^*\) denotes the usual nontangential maximal function of \(u \) and \(N(\nabla u) \) a generalized nontangential maximal function of \(\nabla u \). By \(u = f \) n.t. on \(\partial \Omega \) we mean that \(u(X) \) converges to \(f(P) \) as \(X \to P \) nontangentially for a.e. \(P \in \partial \Omega \). Under the periodic condition \((1.3)\) as well as some (necessary) local solvability conditions on \(\mathcal{L} \), we will show that the \(L^p \) Dirichlet problem is uniquely solvable for \(2 - \delta < p < \infty \), and the \(L^p \) Neumann and regularity problems are uniquely solvable for \(1 < p < 2 + \delta \). Furthermore, the solution to the Dirichlet problem satisfies the estimate \(\|(u)^*\|_p \leq C \|u\|_p \), while the solutions to the \(L^p \) Neumann and regularity problems satisfy \(\|N(\nabla u)\|_p \leq C \|u\|_p \).