The Underrated Carbonate Radical (CO$_3$•$^-$) – Detoxification and Reduced Formation by Melatonin

Rüdiger Hardeland*

University of Goettingen, Germany

Received: July 27, 2017; Published: August 09, 2017

*Corresponding author: Rüdiger Hardeland, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Buergerstr. 50, D-37073 Göttingen, Germany

Abstract

Carbonate radicals are frequently overlooked or underrated oxidants that have a considerably larger range of action than the short-lived hydroxyl radicals. They possess sufficient reactivity for abstracting electrons or hydrogen atoms from many biomolecules. Carbonate radicals are formed in several reactions, e.g., via hydrogen abstraction from bicarbonate by a hydroxyl radical, through interaction of a formate radical with bicarbonate and, most importantly, from the peroxynitrite-carbon dioxide adduct. All these pathways of formation indicate an important role of carbon dioxide and bicarbonate levels for the generation of carbonate radicals and, therefore, many oxidizing reactions with aromates can be considerably enhanced by adding bicarbonate. Under physiological and, even more, pathophysiological conditions, high CO$_2$/HCO$_3^-$ concentrations are found in mitochondria and in situations of under-perfusion or ischemia. Increased levels of nitric oxide considerably increase via generation of peroxynitrite the formation of carbonate radicals, effects of relevance with regard to inflammation, Alzheimer’s disease, stroke, and all pathologies related to mitochondrial dysfunction. Melatonin counteracts both the formation and persistence of carbonate radicals, by down regulating inducible and neuronal NO synthases, by scavenging carbonate radicals, and by protecting mitochondria. By interaction with carbonate radicals, melatonin is converted to N$^\alpha$-acetyl-N$^\gamma$-formyl-5-methoxykynuramine (AFMK), another protective compound, which is metabolized to N$^\alpha$-acetyl-5-methoxynoradaverine (AMK). AMK also down regulates inducible and neuronal NO synthases and scavenges carbonate radicals as well as various reactive oxygen species.

Keywords: Carbonate Radical; Ischemia; Mitochondria; Peroxynitrite; Tyrosine Nitration

Introduction

Damage to biomolecules by reactive oxygen species is often attributed to the hydroxyl radical, because of its particularly high reactivity that enables this intermediate to interact with countless other compounds. However, the high reactivity leads to the consequence of a very short half-life of about a nanosecond and, thus, of an extremely short range of action. The carbonate radical (CO$_3$•$^-$) differs considerably in this regard. Despite its lower reactivity, it is still capable of abstracting electrons or hydrogen atoms from the same molecules that would undergo these reactions with hydroxyl radicals. While the awareness of damage by hydroxyl radicals is widely present in the community, this is not the case with regard to carbonate radicals. However, it seems important to direct researchers’ attention to the pathophysiological relevance of CO$_3$•$^-$, especially because of the fact that this symmetric radical, by virtue of resonance stabilization, has a much longer lifetime and, thus, a more far-reaching action [1]. This property makes CO$_3$•$^-$ particularly dangerous with regard damage of important biomolecules, including nucleic acids and proteins [2,3].

CO$_3$•$^-$ can be formed in different ways. One possibility consists in the abstraction of a hydrogen atom from bicarbonate by a hydroxyl radical:

\[\text{HCO}_3^- + \bullet \text{OH} \rightarrow \text{CO}_3\text{•}^- + \text{H}_2\text{O} \]

In this case, CO$_3$•$^-$ is a more far-reaching mediator of the hydroxyl radical. Another pathway is based on the interaction of CO$_2$ with the superoxide anion, which represents the most abundant free radical in biological material. The formate radical (CO$_3$•$^-$) generated by electron transfer further reacts with bicarbonate, to give a formate anion [4]:

\[\text{CO}_2 + \text{O}_2\text{•}^- \rightarrow \text{CO}_3\text{•}^- + \text{O}_2 \]

\[\text{CO}_3\text{•}^- + \text{HCO}_3^- \rightarrow \text{CO}_3\text{•}^- + \text{HCOO}^- \]

Most importantly, CO$_3$•$^-$ can derive from peroxynitrite (ONOO$^-$) [3,5-7], a particularly damaging intermediate that is formed by combination of nitric oxide with superoxide:

\[\text{•NO} + \text{O}_2\text{•}^- \rightarrow \text{ONOO}^- \]
Protonation of ONOO⁻ leads to a decay into •OH and •NO₂ but the damage in biological material by oxidation and nitration is rather limited [7]. However, an alternate possibility of generating free radicals from ONOO⁻ leads to higher rates of oxidation and nitrination [7,8], in which CO₂•⁻ is involved:

\[
\text{ONOO}^- + \text{CO}_2 \rightarrow \text{ONOOCO}_2^- \rightarrow \text{CO}_2\cdot^- + \cdot\text{NO}_2
\]

The formation of the peroxynitrite-CO₂ adduct is decisive for CO₂•⁻ at more substantial rates relative to the previously discussed reactions leading to this radical [3,5-9]. In particular, the combination of CO₂•⁻ and •NO₂ is a highly effective nitrating mixture for phenolic and indolic compounds that is based on the combination of hydrogen abstraction and •NO₂ addition and, notably, differs profoundly from the classic, non-radical nitration reaction of aromates [8]. This should deserve more future consideration when discussing nitrination of tyrosyl residues in proteins.

Damage by Free Radicals in Relation to CO₂ Abundance

The enhanced formation of CO₂•⁻ at high CO₂ and HCO₃⁻ concentrations should direct researchers’ attention to the pathophysiologically relevant conditions and sites. In chemical systems, many oxidation reactions can be considerably enhanced by adding HCO₃⁻, under avoidance of pH changes [9]. Increased levels of 3-nitrotyrosyl residues in atherosclerotic plaques have been repeatedly described, e.g., in refs. [10-13]. These findings have been largely related to inflammatory processes, which is not wrong, since inflammation is associated with formation of both •NO and O₂•⁻, the reactants that combine to peroxynitrite. However, the role of CO₂•⁻, which is in equilibrium with HCO₃⁻ and which leads to the adduct ONOOOCO₂⁻, has usually not been considered. As components of the most important buffer in the blood, CO₂ and its product HCO₃⁻ are abundantly available in the circulation. Under conditions of hypo-perfusion, e.g., by atherosclerosis, their local concentrations are elevated and favor CO₂•⁻ formation. This is even more the case in ischemia, also directly after reperfusion. This is also evident from data on increased 3-nitrotyrosine [14-16]. Notably, tyrosine nitrination does not only affect proteins in the circulation, thereby, contributing to protease-resistant, poorly removable plaques, but also causes dysfunctionality of cell biologically important molecules. For example, under conditions of ischemia/reperfusion, voltage-dependent anion channels [17] and the H₂O₂-eliminating thioredoxin [18] were inactivated in the heart by tyrosine nitrination. In endothelial cells, tyrosine nitrination of the antioxidant regulator Keap1 (kelch-like ECH-associated protein 1) stimulated its transfer into the nucleus [19]. A full record of such effects would exceed the scope of this article. Finally, increased peroxynitrite formation and tyrosine nitrination in neurodegenerative processes, in particular, Alzheimer’s disease, should be mentioned [20-22]. In particular, tyrosine nitrination of Aβ peptides was reported to increase aggregation and plaque formation [22].

In mitochondria, peroxynitrite formation and damage by its derivatives, CO₂•⁻ and •NO₂, is of utmost importance, since this causes interruptions of electron flux, increased electron leakage, oxidative/nitrative stress to the entire cell and, at a certain degree of severity, cell death. Details of these processes and consequences have been summarized elsewhere [23-29]. Recurring to the role of CO₂ as a component of the CO₂•⁻ generating peroxynitrite adduct, it is important to remember that the Krebs cycle continuously generates CO₂ and, therefore, steadily provides high levels to enhance adduct formation and its decomposition products, CO₂•⁻ and •NO₂. In addition to the generation of O₂•⁻ by electron leakage and the existence of a mitochondrial inducible NO synthase [30], the high availability of CO₂ makes mitochondria particularly vulnerable to damage by CO₂•⁻.

Multiple Levels of Protection by Melatonin Against Damage by CO₂•⁻

Melatonin is known to interact with various free radicals [31], but most studies have focused on hydroxyl radicals. It seems important to underline the capacity of melatonin to also scavenge the carbonate radical [1,23,33], which is frequently underrated and may contribute more strongly than previously believed to damage of DNA, proteins, organelles, in particular, mitochondrion and other cell constituents. The earliest report [32] stated that, contrary to expectation, no stable nitrated products were obtained with melatonin. Instead, the main product was a product formed by pyrrole ring cleavage, N⁵-acetyl-N⁷-formyl-5-methoxykynuramine (AFMK) [1], a meanwhile frequently investigated metabolite. In the reaction system used, a substantial participation of hydroxyl radicals that might have been generated from a concurrent decay of ONOOH was excluded, since the reaction also took place in the presence of the •OH scavenger dimethyl sulfoxide [1]. Moreover, the formation of AFMK was concluded to result from sequential actions of CO₂•⁻ and O₂•⁻, which would well conform to the relatively high cellular and organellar abundance of O₂•⁻. Direct scavenging of the CO₂•⁻ precursor peroxynitrite by melatonin, which has been repeatedly claimed in the literature, will not be discussed here, because this possibility is difficult to distinguish from actions of its radical derivatives in biological material. Concerning the quantitative contribution of scavenging by melatonin to overall detoxification, its low amounts have to be considered. In this regard, a substantial role can only be present in cells or organelles that produce or accumulate melatonin. Notably, melatonin is not only synthesized in the pineal gland, but also in numerous other tissues and cells [34]. Accumulation of melatonin has been described in mitochondria [29,35]. However, even in those organs, compartments or body fluids in which melatonin levels are low, the formation of AFMK is possible. This is insofar important as AFMK also represents a protective compound [36], which is especially generated under inflammatory conditions [29,37] and has been shown, in patients with viral meningitis, to attain in the cerebrospinal fluid levels by orders of magnitude higher than melatonin [38]. At least in part, protection by AFMK may be attributed to its deformedylated metabolite AMK (N⁵-acetyl-5-methoxykynuramine), which is formed by arylamine formalidase or hemoperoxidases [37]. AMK is also a potent scavenger of various reactive oxygen species and carbonate radicals [37,39], and also of •NO and other reactive nitrogen species [8,9,40,41]. Nitration by the peroxynitrite-derived radicals CO₂•⁻ and •NO₂ has been specifically demonstrated [8].
Contrary to melatonin, which also scavenges •NO, AMK does not re-donate •NO, but rather forms a stable product, 3-acetamidomethyl-6-methoxycinnolinone [8,40]. Both melatonin and AMK possess additional, regulatory properties that reduce the formation of peroxynitrite and CO$_3$$^••$. Melatonin protects mitochondria in manifold ways and prevents excessive electron leakage, thereby reducing the levels of O$_2$$^••$ effects that are accompanied by additional upregulations of antioxidant enzymes including MnSOD [9,24,25,28,29,31]. Moreover, inducible NO synthase (iNOS) is downregulated and neuronal NO synthase (nNOS) inhibited at low concentrations of melatonin [9,25,28-31]. The concomitant reduction of O$_2$$^••$ and •NO sets limits to the formation of ONOO$^-$ and, therefore, its products ONOO$^•$CO$_2$, CO$_3$$^••$ and •NO$_2$ conclusions that are well in accordance with the observed attenuation of tyrosine nitration by melatonin [19,30,42,43].

Conclusion

Carbonate radicals should be considered much more in the future as damaging intermediates, which undergo reactions similar to those of hydroxyl radicals. Compared to •OH, the lower reactivity of CO$_3$$^••$ is outweighed by its longer lifetime and more far-reaching action. The contribution of CO$_2$ levels to their formation deserves further attention in the pathologies related to oxidative damage, mitochondrial dysfunction and tyrosine nitration. Melatonin, in conjunction with its metabolites AFMK and AMK, represents a promising option for counteracting damage by CO$_3$$^••$.

References

1. Harde land R, Poggeler B, Niebergall R, Zelosko V (2003) Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrroly ring cleavage. J Pineal Res 34(1): 17-25.
2. Shafirovich V, Dou randin A, Huang W, Geacintov NE (2001) The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem 276(27): 24621-24626.
3. Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25(4-5): 392-403.
4. Epperlein MM, Novozoc-Zadeh J, Jayasena SD, Hothersall JS, Noronha-Dutra A, et al. (1998) Nature and biological significance of free radicals generated during bicarbonate hemodialysis. J Am Soc Nephrol 9(3): 457-463.
5. Ducrocq C, Blanchard B, Pignatelli B, Oshihama H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55(8-9): 1068-1077.
6. Squadrito GL, Cueto R, Splensker AE, Valavanidis A, Zhang H, et al. (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuro protection by uric acid. Arch Biochem Biophys 376(2): 333-337.
7. Pryor WA, Ho.uk KN, Foote CS, Fukuto JM, Igmar AJ, et al. (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol 291(3): R491-R511.
8. Guenther AL, Schmidt SL, Laatsch H, Potts SO, Ness H, et al. (2005) Reactions of the melatonin metabolite AMK (N-acetyl-5-methoxykynuramine) with reactive nitrogen species: formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK. J Pineal Res 39(3): 251-260.
9. Hardeland R (2011) Melatonin and its metabolites as anti-nitrosating and anti-nitrating agents. J Exp Integr Med 1(2): 67-81.
10. Deppe C, Havik X, Renkin J, Vanoverschelde JL, Wijns W (1999) Expression of inducible nitric oxide synthase in human coronary atherosclerotic plaque. Cardiovasc Res 41(2): 465-472.
11. Mohiuddin I, Chai H, Lin PH, Lumsden AB, Yao Q, et al. (2006) Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res 133(2): 143-149.
12. Pacher P, Beckman JS, Lia ulet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1): 315-424.
13. Di Donato JA, Aulak K, Huang Y, Wagner M, Gerstenecker G, et al. (2014) Site-specific nitration of apo lipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J Biol Chem 289(15): 10276-10292.
14. Bas DF, Topcuoglu MA, Gursoy-Ozdemir Y, Saatci I, Bodur E, et al. (2012) Plasma 3-nitrotyrosine estimates the reperfusion-induced cerebral vascular stress, whereas matrix metalloproteinases mainly reflect plasma activity: a study in patients treated with thrombolysis or endovascular recanalization. J Neurosci 123(2): 138-147.
15. Tajes M, IB-Raga G, Palomer E, Ramos-Fernández E, Guix FX, et al. (2013) Nitro-oxidative stress after neuronal ischemia induces protein “nitro tyrosination” and cell death. Oxid Med Cell Longev 2013: 826143.
16. Korkmaz A, Kolankaya D (2013) Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury. J Surg 56(1): 6-14.
17. Yang M, Camara AK, Wakin BF, Zhou Y, Gadi cherla AK, et al. (2012) Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: reduction by peroxynitrite scavenging Biochim Biophys Acta 1817(11): 2049-2059.
18. Liu Y, Qu Y, Wang R, Ma Y, Xia C, et al. (2012) The alternative crossoptalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am J Physiol Endocrinol Metab 303(7): E841-E852.
19. Tao RR, Huang JY, Shao XJ, Ye WF, Tian Y, et al. (2013) Ischemic injury promotes Keap1 nitration and disturbance of antioxidative responses in endothelial cells: a potential vasoprotective effect of melatonin. J Pineal Res 54(3): 271-281.
20. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8): 2653-2657.
21. Teunissen CE, de Vente J, Steinbusch HW, De Brujin C (2002) Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 23(4): 485-508.
22. Kummer MP, Hermes M, Delekate A, Hammerschmidt T, Kumar S, et al. (2011) Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71(5): 833-844.
23. Raddi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33(11): 1451-1464.
24. Hardeland R (2009) Neuroprotection by radical avoidance: search for suitable agents. Molecules 14(12): 5054-5102.
25. Hardeland R (2009) Melatonin, mitochondrial electron flux and leakage: recent findings and resolution of contradictory results. Adv Stud Biol 1(5): 207-230.
26. Castro L, Demicheli V, Törtora V, Raddi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45(1):37-52.
27. Raddi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288(37): 26464-26472.
28. Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4): 325-356.

29. Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflamming. Prog Neurobiol 127-128: 46-63.

30. García JA, Ortiz F, Miana J, Doerrier C, Fernández-Ortiz M, et al. (2017) Contribution of inducible and neuronal nitric oxide synthases to mitochondrial damage and melatonin rescue in LPS-treated mice. J Physiol Biochem 73(2): 235-244.

31. Hardeland R (2005) Antioxidative protection by melatonin – Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27(2): 119-130.

32. Zhang H, Squadrito GL, Pryor WA (1998) The reaction of melatonin with peroxynitrite: formation of melatonin radical cation and absence of stable nitrated products. Biochem Biophys Res Commun 251(1): 83-87.

33. Zhang H, Squadrito GL, Uppu R, Pryor WA (1999) Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol 12(6): 526-534.

34. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, et al. (2011) Melatonin – A pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93: 350-384.

35. Messner M, Hardeland R, Rodenbeck A, Huether G (1998) Tissue retention and subcellular distribution of continuously infused melatonin in rats under near physiological conditions. J Pineal Res 25(4): 251-259.

36. Tan DX, LC Manchester, S Burkhardt, RM Sainz, JC Mayo, et al. (2001) N'-Acetyl-N'-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15(12): 2294-2296.

37. Hardeland R, Tan D-X, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47(2): 109-126.

38. Silva SO, Ximenes VF, Livramento JA, Catalani LH, Campa A (2005) High concentrations of the melatonin metabolite, N'-acetyl-N'-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immune modulatory mechanism. J Pineal Res 39(3): 302-306.

39. Ressmeyer A-R, Mayo JC, Zelosko V, Sáinz RM, Tan D-X, et al. (2003) Antioxidant properties of the melatonin metabolite N'-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Report 8(5): 205-213.

40. Hardeland R, Backhaus C, Fadavi A, Hess M (2007) N'-acetyl-5-methoxykynuramine contrasts with other tryptophan metabolites by a peculiar type of NO scavenging: cyclization to a cinnolinone prevents formation of unstable nitrosoamines. J Pineal Res 43(1): 104-105.

41. Hardeland R, Backhaus C, Fadavi A (2007) Reactions of the NO redox forms NO; •NO and HNO (protonated NO–) with the melatonin metabolite N'-acetyl-5-methoxykynuramine. J Pineal Res 43(4): 382-388.

42. Aladag MA, Turkoz Y, Parlakpinar H, Ozen H, Egri M, et al. (2009) Melatonin ameliorates cerebral vasospasm after experimental subarachnoidal haemorrhage correcting imbalance of nitric oxide levels in rats. Neurochem Res 34(11): 1935-1944.

43. Blanco S, Hernández R, Franchelli G, Ramos-Álvarez MM, Peinado MÁ (2017) Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage. Nitric Oxide 62: 32-43.