ON THE CLASSIFICATION OF 3-DIMENSIONAL
$SL_2(\mathbb{C})$-VARIETIES

STEFAN KEBEKUS

Abstract. In the present work we describe 3-dimensional complex SL_2-
varieties where the generic SL_2-orbit is a surface. We apply this result to
classify the minimal 3-dimensional projective varieties with Picard-number 1
where a semisimple group acts such that the generic orbits are 2-dimensional.
This is an ingredient of the classification [Keb98] of the 3-dimensional relat-
ively minimal quasihomogeneous varieties where the automorphism group is
not solvable.

1991 Mathematics Subject Classification: Primary 14M17; Secondary
14L30, 32M12

Contents

1. Introduction 1
2. On the Normality of Fibers of the Categorical Quotient 2
3. Neighborhoods of fibers 3
4. An Application 7
4.1. Proof the Theorem 1.1 9
References 11

1. Introduction

In [Keb98] we give a classification of the 3-dimensional relatively minimal quasi-
homogeneous projective varieties where the automorphism group is linear algebraic
and not solvable. By “relatively minimal” we mean varieties having at most \mathbb{Q}-
factorial terminal singularities and allowing an extremal contraction of fiber type.
These varieties always occur at the end of the minimal model program if one starts
with a projective rational quasihomogeneous manifold whose automorphism group
is not solvable.

Certain aspects of this project utilize results on non-transitive $SL_2(\mathbb{C})$-actions
which in our opinion are of separate interest. We have chosen to present these here
as opposed to including them in the midst of the classification work, where the
methods are essentially different.

The aim of the first part of this paper is to describe 3-dimensional complex
SL_2-varieties where the generic SL_2-orbit is a surface. More precisely, we give
elementary criteria for the fibers of the categorical quotient to be irreducible or
normal and describe neighborhoods of reduced fibers (see proposition 3.1). We
reduce to this case by using concretely constructed equivariant GALOIS coverings
which are étale in codimension one. Under certain restrictions on the isotropy
group, a stronger classification is known —see [Arz98].
In the main part of the paper we apply these results to yield the following ingredient of the classification in [Keb98].

Theorem 1.1. Let X be a \mathbb{Q}-factorial projective 3-dimensional variety with Picard-number $\rho(X) = 1$ having at most terminal singularities. Assume that a semisimple linear algebraic group S acts algebraically on X such that generic S-orbits are 2-dimensional. Then X is isomorphic to the smooth 3-dimensional quadric or to one of the (weighted) projective spaces \mathbb{P}_3, $\mathbb{P}_{(1,1,1,2)}$ or $\mathbb{P}_{(1,1,2,3)}$.

The author wishes to thank A. T. Huckleberry for support and many valuable discussions. The author also would like to thank H. Flenner and S. Ishii for advice on matters regarding the singularities.

2. **On the Normality of Fibers of the Categorical Quotient**

Recall that for an affine variety the quotient is defined as the spectrum of the ring of invariant functions. The following are the results of this section:

Proposition 2.1. Let X be an irreducible complex affine 3-dimensional normal SL_2-variety. Then all fibers of the categorical quotient map $q : X \to Y$ are irreducible. If X is additionally Cohen-Macaulay, then a q-fiber is normal if it is reduced.

Under additional assumptions on the singularities, the claim is true for non-reduced fibers as well.

Proposition 2.2. In the setting of proposition 2.1 assume additionally that X has at most canonical singularities. Then every fiber of the categorical quotient is normal with it’s reduced structure.

Before proceeding with the proofs we recall two elementary facts: First, the only normal affine complex SL_2-surfaces with non-trivial action are

- the smooth affine quadric \mathbb{Q}^2_2: this space is SL_2-homogeneous. The isotropy group of a point is a torus.
- \mathbb{P}_2 minus a quadric curve: this is a quotient of \mathbb{Q}^2_2 by \mathbb{Z}_2. We denote it by $\mathbb{Q}^2_2/\mathbb{Z}_2$. The isotropy group is the normalizer of a torus.
- the affine cone over a rational normal curve: we denote this by \mathbb{F}^n, where n is the degree of the curve. The isotropy is generated by a unipotent part and a cyclic group, isomorphic to \mathbb{Z}_n. This space contains an open SL_2-orbit and an SL_2-fixed point.

See [Huc86] for a more detailed description.

Second, if X is a 3-dimensional SL_2-variety with non-trivial action and $D_1 \subset X$ is a divisor, then SL_2 acts non-trivially on D_1. This follows directly from a linearization argument; see [HO80, I.1.5] for matters concerning linearization. In particular, if X is affine and D_2 is another divisor, then $D_1 \cap D_2$ must be a single point.

Proof of proposition 2.1. Assume without loss of generality that $\dim Y = 1$, for the proposition is trivial otherwise. Since all q-fibers are connected, we must rule out the possibility that there is a point $y \in Y$ such that $q^{-1}(y)$ is connected and not irreducible. If this was the case, then the irreducible components of $q^{-1}(y)$ can only meet in the unique SL_2-fixed point in $q^{-1}(y)$, i.e. $q^{-1}(y)$ is not connected in codimension one. On the other hand, HARTSHORNE’s connectedness theorem states that X is connected in dimension 2 (see [Eis95, Thm. 18.12 and the preceding discussion]). Now Y is normal, hence smooth, so that $q^{-1}(y)$ is CARTIER. In this situation GROTHENDIECK’s connectedness theorem shows that $q^{-1}(y)$ must be connected in dimension 1 (see [Gro62, exp. XIII]), a contradiction.
If X is Cohem-Macaulay, then every q-fiber automatically satisfies Serre’s condition S_2 (see [Rei87]). If it is reduced, it’s singular set is either the unique SL_2-fixed point or empty. The normality follows directly from Serre’s criterion.

Proof of proposition 2.2. Again it is sufficient to consider the case that $\dim Y = 1$. If $y \in Y$ is a point such that $q^{-1}(y)$ has multiplicity $m > 1$, let Δ be an analytic neighborhood of y, isomorphic to a disk and let $\tilde{q} : \tilde{X} \to \Delta$ be the mth root fibration, associated to the restriction of q to Δ. If \tilde{y} denotes the (reduced) preimage if y in Δ, then $\tilde{q}^{-1}(\tilde{y})$ is reduced. The map $\tilde{X} \to X$ is an SL_2-equivariant cyclic cover, branched only over the unique SL_2-fixed point point in $q^{-1}(y)$, if at all. This has two consequences: first, [Rei80, prop. 1.7] applies, showing that \tilde{X} has canonical singularities, so that \tilde{X} is Cohem-Macaulay and $\tilde{q}^{-1}(\tilde{y})$ is normal. Secondly, because the induced map $\tilde{q}^{-1}(\tilde{y}) \to q^{-1}(y)$ is just the quotient by the action of the Galois group, $q^{-1}(y)_{\text{red}}$ must also be normal.

There exists a preprint of I. V. Arzhantsev where, using the techniques of [LV83], a proof of proposition 2.2 is indicated for arbitrary normal singularities.

3. Neighborhoods of fibers

Now we consider the neighborhood of reduced fibers.

Proposition 3.1. In the setting of proposition 2.1, if Y is a curve and $y \in Y$ is a point such that $q^{-1}(y)$ is reduced, then there exists a Zariski-open neighborhood Δ of y such that $q^{-1}(\Delta)$ is equivariantly isomorphic to one of the following:

- a product $\mathbb{F}_a^n \times \Delta$ where SL_2 acts on \mathbb{F}_a^n only
- $\{(x,y,z), \delta \in \mathbb{C}^3 \times \Delta | 4xz - y^2 = P(\delta)\}$, where $P \in O(\Delta)$, having zeros only at y and SL_2 acts on \mathbb{C}^3 via the 3-dimensional irreducible representation.
- a quotient of the latter by \mathbb{Z}_2, acting with weights $(1,1,1)$ on \mathbb{C}^3 and trivially on Δ.

The proof follows from two technical considerations. Recall from [Kra85, II.2.4] that there is an equivariant embedding $i : X \to \oplus V_{k_i}$, where the V_{k_i} are irreducible SL_2-representation spaces.

Lemma 3.2. There exists a $j \in \mathbb{N}$ such that the projection $\pi : \oplus V_{k_i} \to V_{k_j}$ is a closed embedding if restricted to $q^{-1}(y)$.

Proof. We consider the possibilities for the central fiber separately:

- if $q^{-1}(y) \cong \mathbb{Q}_2^n / \mathbb{Z}_2$: then every non-trivial equivariant map is a closed embedding because the isotropy of $\mathbb{Q}_2^n / \mathbb{Z}_2$ is maximal.
- if $q^{-1}(y) \cong \mathbb{Q}_2^n$: the only possible images of an SL_2-equivariant morphism which is not an embedding are $\mathbb{Q}_2^n / \mathbb{Z}_2$ and $\{0\}$. Both have normalizers of tori in their isotropy groups, but \mathbb{Q}_2^n has not. Thus, there must be a projection with image \mathbb{Q}_2^n. This must be an embedding.
- if $q^{-1}(y) \cong \mathbb{F}_a^n$: one has to rule out that all projection map $q^{-1}(y)$ to $\{0\}$ or to \mathbb{F}_a^n, $k > 1$, this being the only possible images. Assume to the contrary and let $U < SL_2$ be a unipotent subgroup. It’s fixed point set is a line C, isomorphic to \mathbb{C}, and all projections map C to $\{0\}$ or are branched covers, ramified at zero. Thus, the rank of the Jacobian of $i|_C$ drops at zero —a contradiction to i being an embedding.

Having embedded the central fibers, we show that the restriction to a neighboring q-fiber is injective as well.
Lemma 3.3. There exists a Zariski-open neighborhood U of y such that for all $\eta \in U$ the restriction of π a the q-fiber $X_\eta = q^{-1}(y)$ is a closed embedding.

Proof. Choose U to be a maximal neighborhood of $y \in Y$ such that $\pi(X_\eta) \neq 0$ for all $\eta \in Y$ and such that all q-fibers over $U \setminus \{y\}$ are isomorphic. Use the classification of the 2-dimensional algebraic subgroups of SL_2 to see that this is always possible. Again we perform a case-by-case check:

$q^{-1}(y) \cong F^2_n$: in this case V_{k_n} must be \mathbb{C}^2. As $\pi(X_\eta) \neq \{0\}$, we have $\pi(X_\eta) \cong F^2_1$ and X_η must be isomorphic to F^2_1 itself, there being no SL_2-equivariant cover.

$q^{-1}(y) \cong F^3_n$: here V_{k_n} is the irreducible 3-dimensional representation space. The only SL_2-invariant divisors in here are F^3_2 and smooth quadrics. Arguing as above, one must show that the generic q-fiber X_η is not isomorphic to a cover of F^3_2 or Q_2^3, i.e. $X_\eta \not\cong F^3_1$. If this was the case, then linearize the center Z of SL_2 at a smooth point of $q^{-1}(y)$. This gives an analytic curve germ $C \subset X$, invariant under Z and intersecting $q^{-1}(y)$ transversally in a single point. As Z is not contained in the isotropy group of any point in X_η other than 0, C must intersect the neighboring fiber twice. This is a contradiction to $q^{-1}(y)$ being reduced.

$q^{-1}(y) \cong F^a_n$ where $n = 3$ or $n > 4$: a similar linearization argument as above, using a \mathbb{Z}_n from the isotropy group of a generic point in $q^{-1}(y)$, shows that the generic X_η must contain a \mathbb{Z}_n-fixed curve. Classification yields that $X_\eta \cong F^a_{k_n}$ for one $k \in \mathbb{N}$. But k must be 1: every X_η contains a curve which is \mathbb{Z}_{k_n}-fixed and $q^{-1}(y)$ must, too.

$q^{-1}(y) \cong F^3_4$: here V_{k_4} is the irreducible 5-dimensional representation space where the only SL_2-invariant surfaces are F^a_4 or are isomorphic to Q_2^3/\mathbb{Z}_2. The linearization argument used above rules out that $X_\eta \cong Q_2^3$ or a cover of F^a_4.

$q^{-1}(y) \cong Q_2^3$: here V_{k_3} contains two types of 2-dimensional SL_2-orbits: Q_2^3 and F^3_1. We know that $\pi(X_\eta) \cong Q_2^3$, as otherwise $\pi(X_\eta)$ must contain a U-pointwise fixed curve and $\pi(q^{-1}(y))$ must, too. A contradiction. Again $\pi(X_\eta)$ must be injective as there is no SL_2-equivariant cover of Q_2^3.

$q^{-1}(y) \cong Q_2^3/\mathbb{Z}_2$: apply the linearization argument involving a generic isotropy group, i.e. the normalizer of a torus to see that the neighboring q-fibers cannot be isomorphic to Q_2. Now argue as in the last case.

With this information we start the

Proof of proposition 3.1. Choose $\Delta \subset Y$ as in lemma 3.3. Then the map $(\pi \circ \iota) \times q : X \to V_{k_2} \times Y$ is injective if restricted to $q^{-1}(\Delta)$.

Recall that every irreducible representation space of SL_2 contains a unique SL_2-orbit whose closure is isomorphic to F^a_n. Thus the claim of proposition 3.1 holds if all q-fibers are isomorphic to F^a_n.

If $q^{-1}(y) \cong F^3_2$, and the generic fiber is a smooth quadric, then $q^{-1}(\Delta)$ can be equivariantly embedded into $V_2 \times \Delta$. Equip V_2 with coordinates (x, y, z), fix a torus $T < SL_2$ and note that it’s fixed point set V_2^T is a 1-dimensional linear subspace. If y is the linear coordinate on V_2^T, then the intersection $X^T := X \cap (V_2^T \times \Delta)$ is given by $\{ -y^2 = P(\delta) \}$ where $P \in O(\Delta)$. This is because X^T is 2:1 over Δ and invariant under multiplication of V_2 with -1. By choice of Δ, P has no zero on $\Delta \setminus \{0\}$. Now X being uniquely determined by X^T as $X = SL_2 \cdot X^T$ shows that X is given by $\{(x, y, z), \delta \in \mathbb{C}^3 \times \Delta \mid 4xz - y^2 = P(\delta) \}$, all SL_2-invariant surfaces in V_2 being given as $4xz - y^2 = \text{const}$ after proper choice of coordinates. Thus, the claim is shown as well.
If all fibers are isomorphic to \(\mathbb{Q}^n_2 \) and \(V_{k_j} \neq V_2 \), then argue similarly: \(V_{k_j}^T \) is 1-dimensional and \(X^T = X \cap (V_{k_j}^T \times \Delta) \) is given by \(\{ -y^2 = P(\delta) \} \) where \(P \in \mathcal{O}^*(\Delta) \).

We show that \(X \) is isomorphic to \(\{(x, y, z, \delta) \in \mathbb{C}^3 \times \Delta | 4xz - y^2 = P(\delta) \} \). \(X_2 \subset V_2 \cap \Delta \). A linear identification of \(V_2^T \) and \(V_{k_j}^T \) yields an isomorphism between \(X^T \) and \(X_{k_j}^T \). Let \(\Gamma^T \subset (V^T_2 \times \Delta) \times (V^T_{k_j} \times \Delta) \subset (V_2 \times \Delta) \times (V_{k_j} \times \Delta) \) be the graph and set \(\Gamma := SL_2 \Gamma \subset (V_2 \times \Delta) \times (V_{k_j} \times \Delta) \). Now \(X^T \) and \(X_{k_j}^T \) both having isotropy group \(T \) at any point implies that \(\Gamma \) is the graph of a bijective morphism, i.e. an isomorphism between the (normal) varieties \(X \) and \(X_2 \).

If \(q^{-1}(y) \equiv \mathbb{F}_3^a \) or all fibers are isomorphic to \(\mathbb{Q}^n_2/\mathbb{Z}_2 \) one uses the same line of argumentation with the only difference that the \(SL_2 \)-invariant surfaces in the 5-dimensional representation space are given by the ideal

\[
3d^2 - 8ce + 4\delta e, \quad cd - 6be + \delta d
\]
\[
3bd - 48ae + 26c + 2\delta^2, \quad c^2 - 36ae + 2\delta e + \delta^2
\]
\[
bc - 6ad + \delta b, \quad 3b^2 - 8ac + 4\delta a.
\]

This variety is a quotient of \(\{4xz - y^2 = \delta \} \) by \(\mathbb{Z}_2 \), where the \(SL_2 \)-equivariant quotient map is given by \((x, y, z) \mapsto (x^2, 2xy, 2xz + y^2, 2yz, z^2)\).

The next lemma covers a special case which we will need to consider later.

Proposition 3.4. In the setting of proposition 3.1, if \(Y \cong \mathbb{C} \) and all fibers over \(Y \setminus \{0\} \) are isomorphic, then \(X \) is equivariantly isomorphic to

- \(\mathbb{P}^n_n \times \mathbb{C} \) where \(SL_2 \) acts on \(\mathbb{P}^n_n \) only
- \(X_k := \{(x, y, z) \in \mathbb{C}^3 \times \Delta | 4xz - y^2 = \delta^k \} \) where \(k \in \mathbb{N} \) and \(SL_2 \) acts on \(\mathbb{C}^3 \) via the 3-dimensional irreducible representation.
- a quotient of the latter by \(\mathbb{Z}_2 \), acting with weights \((1,1,1)\) on \(\mathbb{C}^3 \) and trivially on the base.

Proof. If all \(q \)-fibers are isomorphic to \(\mathbb{F}_3^a \), then proposition 3.1 shows the local triviality. Note that the only automorphisms of \(\mathbb{F}_3^a \) commuting with the \(SL_2 \)-action are in \(\mathbb{C}^* \). But \(H^1(\mathbb{C}, \mathbb{C}^*) \) is trivial so that the local trivializations glue together to give a global one.

If the generic fiber is \(\mathbb{Q}^n_2 \), then employ the same methods as in the proof of proposition 3.1: embed \(X \rightarrow \oplus V_{k_j} \times \mathbb{C} \) and assume that \((\pi_0 \times Id) : \oplus V_{k_j} \times \mathbb{C} \rightarrow V_{k_0} \times \mathbb{C} \) is an embedding, if restricted to \(q^{-1} \) of a neighborhood of \(y \). Choose a torus \(T \) and let \(X^T \subset V^T_{k_0} \) be the \(T \)-fixed point set. Assuming without loss of generality that \(y = 0 \), \((\pi_0 \times Id)(X^T) \) is given as \(\{-y^2 = c \cdot \delta^k \cdot \prod (y_j - \delta)^{m_j} \} \) where \(y_j \neq 0 \), \(\delta \) is to coordinate on \(Y \cong \mathbb{C} \) and \(c \neq 0 \) is a constant. We know that \(X^T \) is locally (analytically) reducible over each of the \(y_j \). It’s \((\pi_0 \times Id)\)-image is, as well. Thus, the \(m_j \) are even.

Let \(U_0 \subset \mathbb{C} \) be the maximal set such that all fibers are isomorphic to \(\mathbb{Q}^n_2 \). To construct an isomorphism \(X_k \rightarrow X \) over \(U_0 \), it is necessary to find an isomorphism between \(X^T \cap q^{-1}(U_0) \) and \(X^T_{k_j} := \{-y^2 = \delta^k \mid \delta \in U_0 \} \) and then apply the construction from the proof of proposition 3.1, involving the graph \(\Gamma \). Note that \(X^T \cap q^{-1}(U_0) \) and \(X^T_{k_j} \) are both smooth and have a birational morphism onto \((\pi_0 \times Id)(X^T)\), the latter being given by

\[
X^T_k \rightarrow (\pi_0 \times Id)(X^T)
\]
\[
(y, \delta) \mapsto \left(y \prod (y_j - \delta)^{m_j}, \sqrt{\delta} \right).
\]

Thus, they must be isomorphic. Now the construction gives an isomorphism over \(U_0 \).
If $U_0 \subset \mathbb{C}$ is not the whole of \mathbb{C}, then set $U_1 := \mathbb{C} \setminus \{y_1, \ldots, y_k\}$. Recall that V_{k_0} is necessary 3-dimensional, equip it with coordinates x, y and z and set

$$
\{4xz - y^2 = \delta^k\} \to \{4xz - y^2 = \delta^k \cdot \prod (y_j - \lambda)^{m_j}\}
$$

$$
((x, y, z), \delta) \mapsto (\prod (y_j - \delta)^{m_j} (x, y, z), \delta)
$$

where $((x, y, z), \delta)$ are coordinates on $\mathbb{C}^3 \times \mathbb{C}$.

We have to show that the two local isomorphisms over U_0 and U_1 agree. Note that the only automorphisms of \mathbb{P}^2_2 commuting with the SL_2-action are in \mathbb{Z}_2. Now $H^1(\mathbb{C}, \mathbb{Z}_2)$ being trivial shows that after multiplying one of the local isomorphisms with (-1), if necessary, we can always glue.

Again the analogous construction works if the generic fiber is isomorphic to $\mathbb{P}^2_2/\mathbb{Z}_2$.

\[\square\]

Remark 3.5. Propositions 3.1 and 3.4 could also be proved using elementary deformation theory, see [Pin74].

Now we describe certain quasi-projective varieties which will play an important role in the next chapter. For this, a categorical quotient of a quasi-projective variety is an invariant affine surjective morphism $q : X \to Y$ which is a categorical quotient on an affine cover of the base.

Proposition 3.6. Let X be a quasi-projective normal complex SL_2-variety with at most terminal singularities and categorical quotient $q : X \to \mathbb{P}_1$. If every q-fiber over $\mathbb{P}_1^* \subset \mathbb{P}_1$ is isomorphic to \mathbb{C}^2, then the singularities of X are of type $\frac{1}{2} (1, 1, -1)$ and $\frac{1}{2} (1, 1, -1)$ (i.e. are locally isomorphic to $\mathbb{C}^2/\mathbb{Z}_n$, where \mathbb{Z}_n acts with weights $(1, 1, -1)$) and X is toric. Here n and m are the multiplicities of the exceptional q-fibers.

Proof. Set $X^* := q^{-1}(\mathbb{P}_1^*)$. By proposition 3.1, X^* is a locally trivial \mathbb{C}^2-bundle. Since the transition functions must commute with SL_2, they are in O^*, and X^* must be the sum of two line bundles. However, Pic$(\mathbb{P}_1^*) = 0$, so that X^* is isomorphic to the trivial bundle. Choose two different unipotent subgroups U_1, $U_2 < SL_2$ and two sections σ_1 and σ_2 in X^* over \mathbb{P}_1^* which do not have zeros and such that σ_i is pointwise U_i-fixed. The σ_i yield an isomorphism $X^* \to \mathbb{C}^2 \times \mathbb{P}_1^*$. Let $(\mathbb{P}_1^*)^3$ act on X^* in these coordinates by

$$(r, s, t)((x, y), \lambda) \mapsto ((rx, sy), t\lambda)$$

Set $X^0 := q^{-1}(\mathbb{C})$ and let n be the multiplicity of $q^{-1}(0)$. Let $\gamma : \tilde{X}^0 \to X^0$ be the nth root fibration. By proposition 3.4, X^0 is the trivial \mathbb{C}^2-bundle over \mathbb{C}. Choosing sections τ_i as above yields coordinates $((\tilde{x}, \tilde{y}), \lambda)$ on \tilde{X}^0. Then the closures of the pull-back of the σ_i are given by $\tilde{\gamma}^{-1}(\sigma_1) = \{x = 0, y = \lambda^{k_1}\}$ and $\tilde{\gamma}^{-1}(\sigma_2) = \{x = \lambda^{k_2}, y = 0\}$ and the $(\mathbb{P}_1^*)^3$-action on X^* pulls back to $(r, s, t)((\tilde{x}, \tilde{y}), \lambda) \mapsto ((t^{k_2}rx, r^{k_2}sy, t\lambda)$. In particular, the $(\mathbb{P}_1^*)^3$-action can be extended to the whole of \tilde{X}^0.

By construction, X^0 is a cyclic quotient of \tilde{X}^0 by the group \mathbb{Z}_n. If $(f, \lambda) \in \mathbb{C}^2 \times \mathbb{C}$ and $\xi \in \mathbb{Z}_n$ is a primitive root, then we may write without loss of generality $\xi(f, \lambda) = (a(\xi, \lambda)f, \xi \cdot \lambda)$, where $a(\xi, \lambda) \in Aut(\mathbb{P}_n_0)$, commuting with SL_2, i.e. $a(\xi, \lambda) \in \mathbb{P}_1^*$. Since there is no non-constant algebraic morphism from \mathbb{C} to \mathbb{C}^*, $a(\xi, \lambda)$ does not depend on λ. We may thus view \mathbb{Z}_n as acting on $\mathbb{C}^2 \times \mathbb{C}$ with weights $(a, a, 1)$. Note that the \mathbb{Z}_n-quotient map commutes with the action of $(\mathbb{P}_1^*)^3$, i.e. X^0 is toric. A similar argument over $\mathbb{P}_1 \setminus \{0\}$ shows that X is toric.

In order to show that X has singularities of type $\frac{1}{n}(1, 1, -1) = \frac{1}{a}(-1, -1, 1)$, i.e. that $a = 1$, note that the a and n must be coprime (this is because γ is etale in codimension one). The classification theory of terminal singularities asserts that
only $a = -1$ is possible if the quotient is supposed to be terminal, see [Rei87, sect. 5.1]. Again, the same argument applies to $q^{-1}(\mathbb{P}_1 \setminus \{0\})$.

4. An Application

Our main goal here is to prove theorem 1.1, but first we construct the example which is actually realized.

Example 4.1. Let X be the weighted projective space $\mathbb{P}_{(1,1,2,3)}$. By [Ful93, p. 35], identify X with the toric variety X whose fan is constructed from the vectors e_1, e_2, e_3 and $v = (-1, -2, -3) \in \mathbb{Z}^3$, i.e. whose cones are generated by any three of these vectors. We claim that X has \mathbb{Q}-factorial terminal singularities and Picard-number $\rho(X) = 1$. Furthermore, SL_2 acts on X such that the generic orbit is 2-dimensional.

X has \mathbb{Q}-factorial terminal singularities: The cones generated by (e_1, e_2, e_3) and (e_2, e_3, v) describe smooth varieties. The cone generated by (e_1, e_2, v) can be brought into the form $(e_1, e_2, (-1, -2, 3))$ using the matrix $\text{Diag}(1, 1, -1) \in GL(2, \mathbb{Z})$. The latter cone is known (see [Ful93, p. 35]) to describe the singularity $\mathbb{C}^3/\mathbb{Z}_3$, where \mathbb{Z}_3 acts with weights $(1, 1, -1)$. Analogously,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} (e_1, e_3, v) = (e_1, e_3, (-1, 2, -1)).$$

This describes the singularity $\mathbb{C}^3/\mathbb{Z}_2$, where \mathbb{Z}_2 acts with weights $(1, 1, 1)$. Both singularities are terminal —compare [Rei87, thm. on p. 379].

X has Picard-number one: By [Ful93, p. 64f], $\text{Pic}(X) = \mathbb{Z}$.

SL$_2$-action: If $[x : y : z : u]$ are weighted homogeneous coordinates associated to the weights $(1, 1, 2, 3)$, let SL_2 act on x and y via the 2-dimensional representation.

Since the proof of theorem 1.1 is rather long, we subdivide it into a number of lemmata. For the rest of this paper, we use the notation of theorem 1.1 without mentioning it further.

Lemma 4.2. In the situation of theorem 1.1, $S \cong SL_2$.

Proof. If it was not, then the generic S-orbit is a homogeneous divisor. Two of them don’t intersect, a contradiction to $\rho(X) = 1$.

Lemma 4.3. Every irreducible S-invariant divisor $D_\alpha \subset X$ is S-quasihomogeneous and it’s normalization is isomorphic to either

1. the projective cone over the rational normal curve of degree n, \mathbb{P}_n, where S acts with a fixed point (this includes \mathbb{P}_2),
2. \mathbb{P}_2, where S acts via the 3-dimensional irreducible SL_2-representation, or
3. the Hirzebruch surface Σ_0, where S acts diagonally

There exists a curve $C \subset X$, $C \cong \mathbb{P}_1$ such that (set-theoretically) $C = D_\alpha \cap D_\beta$ for all S-invariant divisors D_α and D_β. Furthermore, every irreducible S-invariant divisor is locally (analytically) irreducible at any point of C.

Proof. We have remarked at the very beginning that D_α cannot be pointwise S-fixed. Suppose that the generic S-orbit in D_α was 1-dimensional. Then D_β intersects D_α in finitely many orbits and therefore has empty intersection with a generic S-orbit in D_α, a contradiction to $\rho(X) = 1$. Consequently, D_α is S-quasihomogeneous and if $\eta : D_\alpha \to D_\alpha$ is the normalization, then classification
(see [Huc86]) shows that \tilde{D}_α must be isomorphic to a variety in the list, or to Σ_n, $n > 0$ with S stabilizing two sections.

Due to $\rho(X) = 1$ there is a number $k \in \mathbb{N}$ such that kD_3 is CARTIER and ample. In particular, $\eta^*(kD_3)$ is an effective ample divisor with S-invariant support. This is possible in all cases save Σ_n, $n > 0$. In the allowed cases, there is a unique irreducible S-invariant curve $C \subset \tilde{D}_\alpha$ which yields the assertion. \hfill \square

One of the key points in the proof of theorem 1.1 is the following local description of the D_α in the neighborhood of C.

Lemma 4.4. Let $x \in C$ and $T < S$ be a torus fixing x. Then there exists a 2-dimensional T-representation space E with positive weights, a neighborhood V of $0 \in E$, a neighborhood Δ of $0 \in \mathbb{C}$ and an immersion $\phi : V \times \Delta \to U \subset X$ with the following properties:

1. $\phi^{-1}(C) = \{0\} \times \Delta$
2. $D_\alpha \subset X$ is an S-invariant divisor if and only if there exists a T-invariant curve $N \subset E$ such that $\phi^{-1}(D_\alpha) = N \times \Delta$.

Proof. Let $U \subset T_xX$ be a sufficiently small neighborhood of 0 and let $\lambda : U \to X$ be a linearization of the T-action. As C is smooth, the tangent space $T_xC \subset T_xX$ coincides with one of the weight spaces. Take two weight vectors v_1 and $v_2 \in T_xX$ which, together with T_xC span the whole space T_xX. Let E be the space spanned by v_1 and v_2.

As a first step, we claim that after replacing T by T^{-1}, if necessary, all weights of the T-action on T_xX are positive. In order to show this it is sufficient to show that for generic $y \in U$ the T-orbit Ty contains x in the closure. This, however, is true because $\lambda(y)$ is contained in an S-invariant divisor and $x \in T_y$ by the classification of lemma 4.3.

In order to construct the map ϕ, note that $\lambda|_V$ is immersive. The image of the tangential map $T(\lambda|_V)$ is transversal to T_xC. Let $H < S$ be a unipotent one-parameter group not fixing x. The associated vector field, evaluated at x is contained in T_xC so that the map $\phi : V \times H \to X \quad (v, h) \mapsto h \cdot \lambda(v)$ has maximal rank at $(0, 0)$. Thus, ϕ is invertible in a small neighborhood. Property (1) holds by construction.

In order to show property (2) it is sufficient to consider irreducible D_α. Claim that D_α is S-invariant if and only if there exists a point $y \in D_\alpha \cap U$ such that $D_\alpha = \overline{H.T.y}$. Indeed, if D_α is S-invariant, then it contains C, and therefore also a point $y \in D_\alpha \cap \lambda(V) \setminus C$ and $\overline{T.y}$ is necessarily a curve containing x in the closure. Therefore $\overline{T.y}$ is not H-invariant and $\overline{H.T.y}$ is an irreducible component of D_α, hence equal to D_α. This shows already that if we set $N := T.\phi^{-1}(y)$, then $\phi(N \times \Delta)$ is contained in D_α. If $\phi^{-1}(D_\alpha) \neq N \times \Delta$, then it contains another irreducible component, a contradiction to the local irreducibility of D_α. \hfill \square

We utilize the local description to draw conclusions concerning the global configuration of the divisors D_α.

Corollary 4.5. There are at least two different S-invariant divisors D_0 and D_∞ in X which are smooth along C. Unless X is isomorphic to the smooth 3-dimensional quadric \mathbb{Q}_3, to \mathbb{P}_3 or to $\mathbb{P}(1,1,1,2)$, the normalizations are isomorphic to $\tilde{D}_0 \cong \mathbb{F}_n$ and $\tilde{D}_\infty \cong \mathbb{F}_m$ with $n, m > 1$. If \tilde{D}_α is the normalization of a generic S-invariant divisor, then either

1. m and n are coprime and $\tilde{D}_\alpha \cong \mathbb{P}_2$ where S acts with a fixed point, or
2. m and n are even, $\frac{m}{q}$, $\frac{n}{q}$ are coprime and $\tilde{D}_\alpha \cong \Sigma_0$, or
3. m and n are divisible by four, $\frac{m}{q}$, $\frac{n}{q}$ are coprime and $\tilde{D}_\alpha \cong \mathbb{P}_2$ where S acts via the 3-dimensional irreducible representation.

Proof. Taking N to be one of the weight spaces in E, lemma 4.4 immediately yields D_0 and D_∞. Note that by lemma 4.3 two S-invariant divisors intersect in C only so that the generic S-invariant divisor D_α does not meet the singular set of X. Use the standard argument linearizing the S-action at a fixed point to exclude the possibility that $D_\alpha \cong \mathbb{P}_n$ where $n > 1$. Thus, D_α is smooth away from C.

Secondly, remark that if X is a cone then the classification from [Mor82, thm. 3.3 and cor. 3.4] yields that $X \cong \mathbb{P}_3$ or $\mathbb{P}_{(1,1,1,2)}$ if X is assumed to have \mathbb{Q}-factorial and terminal singularities; note that a cone over Σ_0 is never \mathbb{Q}-factorial as there are Weyl-divisors intersecting in a single point.

Recall that X is isomorphic to a cone or to \mathbb{Q}_3 if there is a CARTIER divisor in X which is isomorphic to \mathbb{P}_2 or Σ_0; see [Bád82, thms. 1 and 5] for the cases that X is smooth or that $D_\alpha \cong \mathbb{P}_2$ and [Bád84, thm. 3] for the remaining case.

Thus, excluding this case amounts to saying that the normalizations of D_0 and D_∞ are isomorphic to \mathbb{P}_*, since otherwise $D_\alpha \setminus C$ would be homogeneous, would not intersect the (finite) singular set of X and would thus be CARTIER. The indices n and m are exactly the weights of the T-action on E, as given by lemma 4.4. The possible weights of the T-action on the SL_2-quasihomogeneous surfaces D_α (see the classification of lemma 4.3) and the fact that N must be singular give conditions (1)–(3).

Note that the set of semi-stable points with respect to the unique lifting of the SL_2-action to $\mathcal{O}(D_\alpha)$ is $X \setminus C$. Let $q : X \setminus C \to Y$ denote the resulting quotient in the sense of geometric invariant theory.

Corollary 4.6. We have $Y \cong \mathbb{P}_1$ and either $X \cong \mathbb{Q}_3$, \mathbb{P}_3 or $\mathbb{P}_{(1,1,1,2)}$ or and there are points $0, \infty \in \mathbb{P}_1$ such that $q^{-1}(0) = n'D_0$, $q^{-1}(\infty) = m'D_\infty$ and all other q-fibers are reduced. Here $n' = n$, $\frac{n}{2}$ or $\frac{n}{4}$, according to the cases of corollary 4.5; m' similarly.

Proof. The description of lemma 4.4 guarantees that the quotient map extend to a rational map $X \dasharrow Y$ which becomes regular if we perform a weighted blow-up of C with weights n and m. Since the exceptional set of this blow-up is rational, Y is, as well. Thus $Y \cong \mathbb{P}_1$. In particular, all q-fibers are linearly equivalent, and the D_α are linearly equivalent up to positive multiplicities.

In order to see that all the D_α have multiplicity 1 as q-fibers, it is sufficient to see that the divisors D_α are linearly equivalent. By lemma 4.4, D_α is locally given by a curve N having the equation $x^{(n')} = y^{(m')}$, $D_0 = \{x = 0\}$ and $D_\infty = \{y = 0\}$. Thus,

$$D_0.D_\alpha = n'C, \quad D_1.D_\alpha = n'C, \quad D_\alpha.D_\alpha = n'm'C.$$

Consequently

$$D_0 \sim \frac{1}{n'}D_\alpha \quad \text{and} \quad D_\infty \sim \frac{1}{m'}D_\alpha$$

as \mathbb{Q}-divisors. This finishes the proof.

4.1. Proof the Theorem 1.1. With these preparations we start the proof the main theorem 1.1. If $X \cong \mathbb{Q}_3$, \mathbb{P}_3 or $\mathbb{P}_{(1,1,1,2)}$, we can stop here. Otherwise, we are in one of the cases (1)–(3) or corollary 4.5. We treat these cases separately.

Proof of 1.1 in case (1) of corollary 4.5. By proposition 3.1, all q-fibers over $\mathbb{P}_1 \setminus \{0, \infty\}$ are isomorphic to \mathbb{C}^2. By proposition 3.6, X has two singularities of type $\frac{1}{m}(1,1,-1)$ and $\frac{\infty}{m}(1,1,-1)$, and $X \setminus C$ is toric. Since X is smooth along C, the associated vector fields extend to X, showing that X is toric, too.
Consequence: X can be given as a fan in \mathbb{Z}^3. Let σ_1 and $\sigma_2 \subset \mathbb{Z}^3$ be the cones describing the smooth $(\mathbb{C}^*)^3$-fixed points on C, σ_3 describe the point $\frac{1}{n}(1,1,-1)$ and σ_4 be associated to $\frac{1}{m}(1,1,1)$. There can be no further fixed points.

Choose coordinates such that σ_1 is spanned by the unit vectors $(e_1,e_2, e_3) \subset \mathbb{Z}^3$. Because every cone is spanned by four rays, there must be a vector $v = (a, b, c) \in \mathbb{Z}^3$ such that σ_2, σ_3 and σ_4 are spanned by 2 unit vectors and v each. After renaming the e_i, if necessary, assume that $\sigma_2 = (e_1, e_2, v), \sigma_3 = (e_1, e_3, v)$ and $\sigma_4 = (e_2, e_3, v)$.

We will find out the possibilities for v. First, note that two cones must not intersect in anything but a face. Thus, a, b and c must be negative. We use the local description of the singularities:

- σ_2 is smooth: consequently, (e_1, e_2, v) must be a basis of \mathbb{Z}^3 and $c = -1$.
- σ_3 is $\frac{1}{n}(1,1,-1)$: It is known (see [Ful93, p. 35]) that the cone generated by $(e_1, e_3, -(n-1)e_1 + ne_2 - e_3)$ corresponds to a singularity of type $\frac{1}{n}(1,1,-1)$. Thus, there exists a $g \in GL(3, \mathbb{Z})$ such that $g(e_1, e_3, -(n-1)e_1 + ne_2 - e_3) = (e_1, e_3, (a, b, -1))$. Calculating the product

\[
\begin{pmatrix}
1 & \alpha & 0 \\
0 & \beta & 0 \\
0 & \gamma & 1 \\
\end{pmatrix}
\begin{pmatrix}
-(n-1) \\
1 \\
-1 \\
\end{pmatrix}
= \begin{pmatrix}
-n + 1 + \alpha n \\
\beta n \\
\gamma n - 1 \\
\end{pmatrix}
\]

yields $\gamma = 0$, and $a \in \mathbb{Z}n + 1$. Since $\text{det } g = \pm 1$, $\beta \in \pm 1$. The inequality $b < 0$ gives $b = -n$.

- σ_4 is $\frac{1}{m}(1,1,1)$: Similar to the above there is a $g \in GL(3, \mathbb{Z})$ such that $g(e_2, e_3, me_3 - (m-1)e_2 - e_3) = (e_1, e_3, (a, b, -1))$. The same calculation shows $a = -m$ and $b \in \mathbb{Z}m + 1$.

Summarizing the above, we need to find all n and m such that there are numbers $\mu, \nu \in \mathbb{Z}$ with

\[
\begin{align*}
\text{(1)} & \quad m = \mu n - 1 \\
\text{(2)} & \quad n = \nu m - 1 \\
\end{align*}
\]

By assumption, n and m are coprime so that we can always assume without loss of generality that $n > m > 1$. Then equation 1 holds iff $\mu = 1$ and $m = n - 1$. Inserting this into equation 2 gives $m(\nu - 1) = 2$ which in turn implies $m = 2$. Now compare v to the description of example 4.1.

Proof of 1.1 in case (2) of corollary 4.5. Let us begin by giving a detailed description of this case over a trivialization. Set $X_0 := X \setminus D_\infty$. By corollary 4.6, $q^{-1}(0)$ has support on D_0 and multiplicity n'; this is the only q-fiber with non-trivial multiplicity over \mathbb{C}. Let $\tilde{q} : X_0 \to \mathbb{C}$ be the n'th root fibration associated to $q : X^0 \to \mathbb{C}$. Now X_0 is a quotient of X_k by the cyclic group $\mathbb{Z}_{n'}$ acting freely in codimension 1. Choose an analytic disk $\Delta \subset \mathbb{C}$ around 0 which is $\mathbb{Z}_{n'}$-invariant. Then, after proper choice of coordinates, $\tilde{q}^{-1}(\Delta) \cong \{4x^2 - y^2 = \delta^k\}$ as ensured by proposition 3.1.

It is elementary to see that every automorphism of $\tilde{q}^{-1}(\Delta)$ over Δ commuting with SL_2 is given by $((x, y, z), \delta) \to (\pm t^\delta(x, y, z), t\delta)$ for some $t \in \mathbb{C}^*$. Thus, the action of $\mathbb{Z}_{n'}$ on X_k extends to $\mathbb{C}^3 \times \Delta$ where $\tilde{q}^{-1}(\Delta)$ is SL_2-equivariantly embedded. Since the action of $\mathbb{Z}_{n'}$ must commute with SL_2, the weights of the $\mathbb{Z}_{n'}$-action on $\mathbb{C}^3 \times \{0\}$ must be equal.

An analogous construction can be given at ∞. We now show that n' and m' are not coprime. This contradicts the assumption.

Consider the following cases:

- $k = 0$: In this case there is no SL_2-fixed point in $\tilde{q}^{-1}(\Delta)$, and consequently none on D_0. Thus, X must be a cone or \mathbb{Q}_3; see the proof of corollary 4.5 for this. A contradiction to the assumption.
\(k = 1 \): In this case \((x, y, z)\) are coordinates for \(\tilde{X}\). The quotient is terminal iff the weights are of the form \((a, -a, 1)\) (see [Rei87, sect. 5.1]). Thus, \(n' = 2\).

\(k > 1 \): Note that there is no \(\mathbb{Z}_{n'}\)-fixed subspace in \(\mathbb{C}^3 \times \Delta\). In this situation [Mor85, Thm. 12] shows that \(n'\) must be 4.

Now apply the same argumentation to \(D_\infty\) and realize that the coprimeness assertion of corollary 4.5 is necessarily violated. This yields the claim. \(\square\)

Proof of 1.1 in case (3) of corollary 4.5. As before, set \(X^0 := X \setminus D_\infty\) and consider the divisor \(L := K_{X^0} - D_0\). By adjunction formula, \(L|_{D_0} = K_{D_0}\) which has index \(\frac{q}{2}\). Thus, the index of \(L\) in \(X^0\) is in \(\frac{q}{2}\mathbb{N}\). Now perform the cyclic cover associated to \(L\) (see [Rei80, cor. 1.9] for details): \(\gamma : X^0 \to X^0\). Stein factorization gives a diagram

\[
\begin{array}{ccc}
\tilde{X}^0 & \xrightarrow{\gamma} & X^0 \\
\downarrow q & & \downarrow q \\
\tilde{Y} & \xrightarrow{\gamma} & Y
\end{array}
\]

where we can choose \(\tilde{Y}\) to be normal, hence smooth. We are interested in the preimage of \(D_0\). First, note that every vector field on \(X^0 \setminus \text{Sing}(X^0)\) can be lifted to \(\tilde{X} \setminus q^{-1}(\text{Sing}(X^0))\). Since \(\tilde{X}\) is normal, we obtain an action of the associated 1-parameter group on \(\tilde{X}\). In particular, since \(S\) is simply connected, \(S\) acts on \(\tilde{X}^0\) in a way that \(\gamma\) is equivariant.

As a next step we need to show that \(q^{-1}(0)\) is reduced. By corollary 4.6, \(q^{-1}(0)\) has multiplicity \(n' = \frac{q}{2}\). On the other hand, generic \((\gamma \circ q)\)-fibers have at least \(\frac{q}{2}\) components. This is due to the fact that \(D_\alpha \cong \mathbb{P}_2\), where \(SL_2\) acts without fixed point, admits only \(\Sigma_0\) as a connected \(S\)-equivariant cover. Consequence: \(q^{-1}(0) = \gamma^{-1}(D_0)\) is reduced and isomorphic to \(\mathbb{P}_2^1\). Now apply the argumentation from the proof in case (2). \(\square\)

References

[Arz98] I. V. Arzhantsev. On \(SL_2\)-actions of complexity one. Izvestiya RAN, 61(4):685–698, 1998.

[Bád82] L. Bădescu. On Ample Divisors. Nagoya Math. J., 86:155–171, 1982.

[Bád84] L. Bădescu. Hyperplane Sections and Deformations. In L. Bădescu and D. Popescu, editors, *Algebraic Geometry Bucharest 1982*. volume 1056 of Lecture Notes in Mathematics. Springer, 1984.

[Eis95] D. Eisenbud. *Commutative Algebra with a View Toward Algebraic Geometry*, volume 150 of Graduate Texts in Mathematics. Springer, 1995.

[Ful93] W. Fulton. *Introduction to Toric Varieties*. Number 131 in Annals of Mathematics Studies. Princeton University Press, 1993.

[Ge82] A. Grothendieck. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), volume 2 of Advanced studies in pure mathematics. North-Holland Publ. Co., Amsterdam, 1962.

[HO80] A. Huckleberry and E. Oeljeklaus. Classification Theorems for Almost Homogeneous Spaces. Institut Elie Cartan, 1980.

[Huc86] A. Huckleberry. The classification of homogeneous surfaces. Expo. Math., 4, 1986.

[Keb98] S. Kebekus. Relatively Minimal Quasihomogeneous Projective 3-Folds. to appear, 1998.

[Kra85] H. Kraft. Geometrische Methoden in der Invariantentheorie, volume D1 of Aspekte der Mathematik. Vieweg, 1985.

[LV83] D. Luna and T. Vust. Plongements d’espaces homogènes. Comment Math. Helv., 58:245–245, 1983.

[Mor82] S. Mori. Threefolds whose canonical bundles are not numerically effective. Ann. of Math., 116, 1982.

[Mor85] S. Mori. On 3-Dimensional Terminal Singularities. Nagoya Math. J., 98:43–66, 1985.

[Pin74] H. Pinkham. Deformations of Cone with Negative Grading. Journal of Algebra, 30, 1974.

[Rei80] M. Reid. Canonical 3-folds. In Arnaud Beauville, editor, *Algebraic Geometry Angers 1979*. Alphen aan den Rijn, 1980. Sijthoff & Noordhoff.

[Rei87] M. Reid. Young Person’s Guide to Canonical Singularities. *Proceedings of Symposia in Pure Mathematics*, 46, 1987.
E-mail address: stefan.kebekus@uni-bayreuth.de

Stefan Kebekus, Mathematisches Institut der Universität Bayreuth, 95440 Bayreuth, Germany, FAX: +49 (0)921/55-2785