Large, high quality single-crystals of the new Topological Kondo Insulator, SmB₆

M. Ciomaga Hatnean, M. R. Lees, D. MfK. Paul & G. Balakrishnan

Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.

SmB₆ has recently been predicted to be a Topological Kondo Insulator, the first strongly correlated heavy fermion material to exhibit topological surface states. High quality crystals are necessary to investigate the topological properties of this material. Single crystal growth of the rare earth hexaboride, SmB₆, has been carried out by the floating zone technique using a high power xenon arc lamp image furnace. Large, high quality single-crystals are obtained by this technique. The crystals produced by the floating zone technique are free of contamination from flux materials and have been characterised by resistivity and magnetisation measurements. These crystals are ideally suited for the investigation of both the surface and bulk properties of SmB₆.

The rare earth hexaborides (RB₆) have been studied for their interesting properties for many decades. Magnetic rare earth hexaborides such as CeB₆ have been investigated in great detail [1-3], whilst LaB₆ is of interest for its extraordinary electron emitting properties and use in Electron Microscopes [4-6]. Of the other rare earth hexaborides, SmB₆ is known to be a Kondo insulator and has been a material that has intrigued physicists for many years [7-9]. Kondo insulators have been known for a long time, and are heavy electron (fermion) materials where the local magnetic moments are screened by the itinerant electrons. The hybridisation of the conduction electrons with the magnetic moments below a certain temperature leads to the formation of an energy gap in the density of states [10-13].

Following recent theoretical work by Dzero et al. it has been suggested that SmB₆ is a Topological Kondo Insulator exhibiting topological surface properties [14-16]. As a result, there has been renewed interest in this previously well studied Kondo insulator. SmB₆ exhibits an insulator to metal transition at around 50 K and this coincides with the opening of the gap due to the Kondo behaviour [17-19]. At low temperatures (<5 K) the resistivity shows a saturation behaviour unlike in most insulators, where the resistivity continues to rise. At ambient pressures, SmB₆ is a mixed valent material exhibiting antiferromagnetic correlations, but no magnetic ordering. When subjected to pressures, SmB₆ is known to go into a metallic, magnetically ordered state [20-22].

Since the proposal that SmB₆ could exhibit topological behaviour, there has been intense activity amongst experimentalists looking for evidence of topological surface states through angle resolved photoemission (ARPES) experiments, and other related surface techniques [18-22]. An estimation of the Kondo insulating gap has also been attempted by tunnelling techniques [23].

In order to observe the topological surface states and perform detailed experiments on these materials, high quality single crystals are a prerequisite. For the crystal growth of hexaborides, two different methods are used: (i) crystal growth by the flux technique, using Al flux, as has been successfully carried out for the whole family of rare earth hexaborides [24,25] and (ii) crystal growth by the floating zone technique using either R.F. heating or lamp heating. The rare earth hexaboride materials have very high melting temperatures (~2500°C) and therefore melting these materials requires the use of Xenon arc lamps, if using an optical furnace, to reach these high temperatures. The flux-grown crystals are usually very small in size (~1 mm edge) and most of the recent experimental work performed and published on SmB₆ has been on crystals produced by this technique.

For many studies however, large, clean, defect free crystals are preferred and the floating zone technique is the ideal route to prepare such samples. Crystals of some hexaborides including SmB₆ have been grown from a melt using R.F. heating [26]. This paper describes the crystal growth and characterisation of large, high quality single-crystals of SmB₆ by the floating zone technique using Xenon arc lamps. The crystals obtained are free from any contamination from fluxes or crucibles and are ideal for the crucial experiments necessary to establish the true behaviour of both the surfaces and the bulk of SmB₆.
SmB$_6$ is known to melt congruently, similar to LaB$_6$, CeB$_6$ and NdB$_6$. Results
on several points covering the entire surface. Two patterns corresponding to a
crystal are the Laue patterns of one of the facets, taken along the crystal
taken from the cross section of the boule at the tip, show that the
obtained along the whole length of the faceted faces. Laue patterns
from the faceted sides (shown in Fig. 1(a)). Identical patterns were
had a dark black colour. The X-ray Laue patterns of the as-grown
within the first few millimeters of the growth and the boules obtained
the boules as examined by Laue X-ray diffraction patterns indicate that the
the two faceted faces, at 180 degrees with respect to each other.
the flux grown crystals 30,31. The flattening of the resistance observed
magnitude of the resistivity, as well the temperature at which there is
improvement in the growth conditions was observed. The lamp
boules as examined by Laue X-ray diffraction patterns indicate that the crystals were of good quality (see
standard aluminium flux technique 25. The crystals have well defined
mm edge. Whilst these may be easier to produce with flat surfaces
unaligned along specific crystallographic
to within the limit of the X-ray diffraction technique. The observed
there is an upturn in the resistivity indicating the onset of the transition to
the resistivity at low temperatures (shown in the inset) due to the saturation in the resistivity
respectively. This saturation is a feature observed in the SmB$_6$ crystals produced
by the flux technique as well as here by the floating zone technique.

The temperature dependence of the magnetisation in different
applied magnetic fields for a piece of the single crystal is shown in
Fig. 4. The increase in the resistivity just below 60 K coincides with a
very sharp rise in the susceptibility seen in the measurement made in
low field (500 Oe). This is followed by a broad maximum at lower
temperature and an upturn at base temperature. Data collected in
higher fields (5 and 20 kOe) exhibit only the broad hump, which
shifts to higher temperature with increasing field, and the low tem-
peratures upturn. The temperature dependence of the susceptibility of
of our crystals is consistent with what is expected for this Kondo insu-
lar. The features seen in our low field magnetic susceptibility mea-
surements are much sharper than those reported previously 32-34.

Discussion
The congruent melting property of SmB$_6$ facilitates the growth of
single crystals from the melt. The sizes of the crystals grown by the
optical floating zone technique are much larger than those that can
be obtained by the flux technique. The crystalline quality of the
boules as examined by Laue X-ray diffraction patterns indicate that the faceted faces of the crystal boules exhibit identical patterns, on the
two faceted faces, at 180 degrees with respect to each other.

As a comparison, we have also produced SmB$_6$ crystals via the
standard aluminium flux technique 25. The crystals have well defined
shiny faces and the maximum sizes produced are roughly 0.5 to 1 ~
mm edge. These may be easier to produce with flat surfaces
required for some studies, they often have contamination from the
flux materials used. The crystals produced by the optical floating
zone technique, in addition to being much bigger, are free of any
inclusions and of extremely good quality. Another advantage of these
large crystals is that specimens aligned along specific crystallographic
directions can be cut from the boule for experiments.

To summarise, we have successfully produced large single crystals
of the new Topological Kondo Insulator, SmB$_6$, by the floating zone
technique using a Xenon arc lamp furnace. Examination of the crys-
tals with X-ray Laue diffraction indicates that the quality of the
crystals is good. The crystals obtained are free of any contamination
when examined by powder X-ray diffraction on the crushed crystals.
They exhibit all the hallmarks of a Kondo Insulator in both resistivity

Results
SmB$_6$ is known to melt congruently, similar to LaB$_6$, CeB$_6$ and
NdB$_6$. Figure 1(a) shows a photograph of a portion of a crystal
boule of SmB$_6$, grown by the floating zone method. The obtained
crystals were 7 to 8 mm in diameter and about 20 to 25 mm long.
The maximum power of the lamps needed to maintain a stable
molten zone throughout the growth was around 70%. Excessive
evaporation of the SmB$_6$ prevented us from maintaining a stable
molten zone for longer than the 25 to 30 mm of growth. This is
unlike the growth conditions encountered by us for the other con-
gruent melting hexaborides, where longer growths were possible 27.
Growth were also attempted using high gas pressures (up to
0.7 MPa argon gas pressure) to suppress the evaporation, but no
improvement in the growth conditions was observed. The lamp
power used for the growth of the SmB$_6$ crystals is below the ~
85% required for the growth of LaB$_6$ using the same furnace and
we therefore believe that growth of larger diameter crystals is possible
by this technique. The crystal boules developed well defined facets,
within the first few millimeters of the growth and the boules obtained
had a dark black colour. The X-ray Laue patterns of the as-grown
crystal boules indicate that the crystals were of good quality (see
Figure 1). The Laue patterns were taken along the length of the boule,
from the faceted sides (shown in Fig. 1(a)). Identical patterns were
obtained along the whole length of the faceted faces. Laue patterns
taken from the cross section of the boule at the tip, show that the
crystal growth direction was only a few degrees away from the [110]
direction (see Figure 1(b)). Consistent Laue patterns were obtained at
several positions on the cross section, two of which are shown in
Fig. 1(a).

Due to the extreme hardness of the borides in general, the crystals
needed to be cut using the spark erosion technique. The cut surfaces,
and magnetisation measurements. The crystals produced are ideal for the investigation of both surface as well as bulk properties, to understand the existence of topological surface states in this interesting Kondo insulator. Measurements of the low temperature properties on crystal specimens oriented along specific crystallographic axes can be performed using these large crystals, and these experiments are currently under progress. Crystals can also be obtained by the same route using isotopically enriched 11B as shown previously by us for other members of the hexaboride family. For neutron scattering investigations, however, in addition to using the 11B isotope, the highly absorbing Sm would also need to be replaced with the less absorbing 154Sm isotope.

Figure 2 | Powder X-ray diffraction pattern of a crushed sample of the as-grown SmB$_6$ crystal. The data obtained (red), the fit to the data using Rietveld refinement (black line), as well as the difference curve (blue line) are shown.

Methods
Commercial samarium hexaboride powder (99.9% Cerac, USA) was used as starting material for making the feed and seed rods. The powder was mixed with a small amount of PVA or PVB binder, ground well and pressed into rods of approximately 6 mm diameter and 60 to 70 mm length. The resulting rods were sintered in a furnace in a flow of argon gas at 1550 °C for 12 h. Before starting the sintering process, the furnace was evacuated to give a vacuum of ~10$^{-5}$ mbar (~10$^{-3}$ Pa). The sintered rods were used for the crystal growth. The crystal growth was carried out by the floating zone method, using a Xenon arc lamp furnace (CSI FZ-T-12000-X-VI-VP, Crystal Systems Incorporated, Japan). This furnace has four arc lamps with a total output power of 12 kW and is capable of reaching temperatures close to ~2800 °C. The crystal growth was carried out in about 3 bars argon gas pressure and a flow of argon gas of up to 10 l/min, using a maximum growth rate of ~18 mm/h. Both the feed and the seed rods were counter-rotated at 30 rpm to ensure efficient mixing and

Figure 3 | Temperature dependence of the dc resistivity for a single crystal of SmB$_6$. The resistivity increases rapidly below 60 K before flattening at temperatures below 3.5 K (see inset).

Figure 4 | Magnetic susceptibility (M/H) as a function of temperature for a single crystal of SmB$_6$. The data for an applied field of 500 Oe were collected on warming after cooling in zero-field (ZFCW, open symbols) and on cooling in the same field (FCC, closed symbols). No significant hysteresis is seen between these two data sets. Data were also collected in FCC mode in applied fields of 5 and 20 kOe.
homogeneity. Polycrystalline rods were used as seeds for the first growth and the crystals obtained were used as seeds for subsequent growths.

The crystal boules produced were first examined using X-ray Laue diffraction to check the quality of the grown SmB$_6$ crystals. Spark erosion was used to cut slices from the grown boule for subsequent measurements. Powdered samples of single crystal boules were analysed using X-ray diffraction (XRD) performed at room temperature in a Panalytical X-ray diffractometer using Cu K$_α$ radiation (λ = 1.5406 Å). The X-ray data were analysed with the FullProf software suite. Composition analysis on the crystals grown was carried out by EDAX on a scanning electron microscope.

Temperature dependent magnetisation measurements were made in the temperature range 1.8 to 300 K, and in applied magnetic fields of 5 kOe at 20 kOe, using a Quantum Design PPMS-5S SQUID Magnetometer. DC resistivity measurements were carried out on rectangular bar shaped samples by the standard four probe technique using a Quantum Design Physical Property Measurement System (PPMS) in the temperature range 1.8 to 300 K.

1. Effantin, J. M. et al. Magnetic Phase diagram of CeB$_6$. J. Magn. Magn. Mater. 47–48, 145–148 (1985).
2. Regnault, L. P. et al. Inelastic neutron scattering study of rare earth hexaboride CeB$_6$. J. Magn. Magn. Mater. 76–77, 413–414 (1988).
3. Tanaka, T., Bannai, E., Kawai, S. & Yamane, T. Growth of high purity LaB$_6$ crystals by the multi-float zone process. J. Crys. Growth 30, 193–197 (1975).
4. Otani, S., Hiraoka, H., Ide, M. & Ishizawa, Y. Thermionic emission properties of rare earth added LaB$_6$ crystal cathodes. J. Alloy. Compd. 189, L1–L3 (1992).
5. Aeppli, G. & Fisk, Z. Kondo Insulators. Comments Condens. Matter Phys. 16, 155–165 (1992).
6. Risborough, P. Heavy Fermion semiconductors. Adv. Phys. 49, 257–320 (2000).
7. Coleman, P. Heavy Fermions: Electrons at the edge of magnetism. Handbook of Magnetism and Advanced Magnetic Materials (Wiley, New York, 2007). Vol. 1, 95–148.
8. Wachtler, P. Handbook on the Physics and Chemistry of Rare Earths Vol. 19, (Eds. Gneidner Jr, K. A. & Eyring, L.J.) (North Holland, Amsterdam, 1994).
9. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo Insulators. Phys. Rev. Lett. 104, 106-408 (2010).
10. Dzero, M., Sun, K., Coleman, P. & Galitski, V. A theory of Topological Insulators. Phys. Rev. B 85, 045130 (2012).
11. Fu, L., Kane, C. L. & Mele, E. J. Topological Insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
12. Moore, J. E. & Balents, L. Topological invariants of time reversal invariant band structures. Phys. Rev. B 75, 121306 (R) (2007).
13. Roy, B. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009).
14. Menth, A., Buehler, E. & Geballe, T. Magnetic and semiconducting properties of SmB$_6$, Phys. Rev. Lett. 22, 295–297 (1969).
15. Allen, J., Batlogg, B. & Wachtler, P. Large low temperature Hall effect and resistivity in mixed valent SmB$_6$. Phys. Rev. B 20, 4807–4813 (1979).
16. Cooley, J., Aronson, M., Fisk, Z. & Canfield, P. SmB$_6$: Kondo insulator or exotic metal? Phys. Rev. Lett. 74, 1629 (1995).
17. Barla, A. et al. High pressure ground state of SmB$_6$: Electronic conduction and long range magnetic order. Phys. Rev. Lett. 94, 166401 (2005).
18. Miyazaki, H., Hajiri, T., Ito, T., Kunii, S. & Kimura, S. Momentum dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB$_6$. Phys. Rev. B 86, 075105 (2012).
19. Xu, N. et al. Surface and bulk electronic structure of the strongly correlated electron system SmB$_6$, and implications for a topological Kondo insulator. arXiv:1306.5664.
20. Jiang, J. et al. Observation of in-gap surface states in the Kondo insulator SmB$_6$ by photoemission. arXiv:1306.3678.
21. Neupane, M. et al. Surface electronic structure of a topological Kondo insulator candidate SmB$_6$: insights from high-resolution ARPES. arXiv:1306.4634.
22. Frantzeskakis, E. et al. Kondo hybridisation and the origin of metallic states at the (001) surface of SmB$_6$. arXiv:1308.0151.
23. Yee, M. M. et al. Imaging the Kondo Insulating gap in SmB$_6$. arXiv:1308.1085.
24. Canfield, P. C. & Fisk, Z. Growth of single crystals from metallic fluxes. Phil. Mag. Part B 65, 1117–1123 (1992).
25. Fisk, Z. et al. Magnetic transport and thermal properties of ferromagnetic EuB$_6$. J. Appl. Phys. 50, 1911 (1979).
26. Otani, S., Nakagawa, H., Nishi, Y. & Kieda, N. Floating Zone Growth and high temperature hardness of rare earth hexaboride crystals: LaB$_6$, CeB$_6$, PrB$_6$, NdB$_6$, and SmB$_6$. J. Solid State Chem. 154, 238–241 (2000).
27. Balakrishnan, G., Lees, M. R. & Paul, D. M. Growth of large single crystals of rare earth hexaborides. J. Cryt. Growth 256, 206–209 (2003).
28. Rodriguez-Carvajal, J. Recent advances in the magnetic structure determination by neutron powder diffraction. Phys. B. Condens. Matter 192, 55–69 (1993).
29. Tarascon, J. M., Isikawa, Y., Chevalier, B., Etourneau, J. & Hagenmuller, P. Valence transition of samarium in hexaboride solid solutions Sm$_{1-x}$M$_xB_x$ (M = YB$_6$, SrB$_6$, LaB$_6$, YB$_4$, TiB$_4$). J. Physique 41, 1135–40 (1980).
30. Kim, D. J., Grant, T. & Fisk, Z. Limit cycle and anomalous capacitance in the Kondo Insulator. Phys. Rev. Lett. 109, 096601 (2012).
31. Flachbart, K. et al. Energy gap of intermediate valent SmB$_6$ studied by point-contact spectroscopy. Phys. Rev. B 64, 085101 (2001).
32. Yeo, S., Song, K., Hur, N., Fisk, Z. & Schlottmann, P. Effects of Eu doping on SmB$_6$ single crystals. Phys. Rev. B 85, 115125 (2012).
33. Gabani, S. et al. Magnetic properties of SmB$_6$ and Sm$_{1-x}$La$_x$B$_6$ solid solutions. Czech. J. Phys. 52, A225–228 (2002).
34. Glushkov, V. V. et al. Spin gap formation in SmB$_6$, Physica B 378–380, 614–615 (2006).
ERRATUM: Large, high quality single-crystals of the new Topological Kondo Insulator, SmB$_6$

M. Ciomaga Hatnean, M. R. Lees, D. M. K. Paul & G. Balakrishnan

The original version of this Article contained a typographical error in the spelling of the author D. M. K. Paul, which was incorrectly given as D. M. K. Paul and D. M. c K. Paul in the HTML and PDF versions of this Article respectively. This has now been corrected in both the PDF and HTML versions of the Article.