Clinical characteristics and risk factors of patients with severe COVID-19 in Jiangsu province, China: a retrospective multicentre cohort study

Songqiao Liu (liusongqiao@ymail.com)
Department of Critical Care Medicine, Southeast University
https://orcid.org/0000-0002-1875-1131

Huanyuan Luo
Department of clinical science

Yuancheng Wang
Department of radiology

Luis E. Cuevas
Department of clinical sciences

Duolao Wang
Department of Clinical sciences

Shenghong Ju
Department of Radiology

Yi Yang
Department of Critical care medicine

Research article

Keywords: COVID-19; SARS-CoV-2; pneumonia; severity; severe; critically ill

DOI: https://doi.org/10.21203/rs.3.rs-23940/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Coronavirus Disease-2019 (COVID-19) has become a major health event that endangers people health throughout China and the world. Understanding the factors associated with COVID-19 disease severity could support the early identification of patients with high risk for disease progression, inform prevention and control activities, and potentially reduce mortality. This study aims to describe the characteristics of patients with COVID-19 and factors associated with severe or critically ill presentation.

Methods: Multicentre retrospective cohort study of all individuals with confirmed Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections diagnosed at 24 COVID-19-designated hospitals in Jiangsu province between the 10th January and 15th March 2020. Demographic, clinical, laboratory, and radiological data were collected at hospital admission and data on disease severity were collected at from admission. Patients were categorised as asymptomatic/mild/moderate, and severe/critically ill according to the worst level of COVID-19 recorded during hospitalisation.

Results: A total of 625 patients, 64 (10.2%) were severe/critically ill and 561 (89.8%) were asymptomatic/mild/moderate. All patients were discharged and no patients died. Patients with severe/critically ill COVID-19 were more likely to be older, to be single onset (i.e. not to a cluster of cases in family/community), to have a medical history of hypertension and diabetes; had higher temperature, faster respiratory rates, lower peripheral capillary oxygen saturation (SpO_2), and higher CT image quadrant scores and pulmonary opacity percentage; had increased C-reactive protein, fibrinogen, and D-dimer on admission; and had lower white blood cells, lymphocyte, and platelet counts and albumin on admission than asymptomatic/mild/moderate cases. Multivariable regression showed that odds of being a severe/critically ill case were associated with age (year) (OR 1.06, 95%CI 1.03-1.09), lymphocyte count ($10^9/L$) (OR 0.25, 95%CI 0.08-0.74), and pulmonary opacity in CT (per 5%) on admission (OR 1.31, 95%CI 1.15-1.51).

Conclusions: Severe or critically ill patients with COVID-19 is about one-tenths of patients in Jiangsu. Age, lymphocyte count, and pulmonary opacity in CT on admission were associated with risk of severe or critically ill COVID-19.

Background

Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was first reported from Wuhan, Hubei province, China, in December 2019 and spread quickly from a focal outbreak with 41 cases to over 7 410,000 cases with more than 136,000 deaths affecting more than 140 countries by June 2020.\(^1\) The World Health Organization (WHO) declared a pandemic affecting all continents the 11\(^{th}\) March 2020.\(^2\)

China has reported over 84,000 confirmed cases by the 16\(^{th}\) June.\(^1\) Although the epicentre of the epidemic was located in Wuhan, other provinces became affected in the following weeks. In a case series
of the first 44,672 confirmed cases, 1023 patients had died, with a crude case fatality rate (CFR) of 2.3%, and mortality was higher among critically ill patients, who had a CFR of 49%. In Hubei, the proportion of severe COVID-19 cases was higher than in other provinces (17.7% and 7.0%, respectively) and cases outside the epicentre Hubei may have other differences due to active case finding, better screening tests and ever-increasing disease awareness. Compared to China, the crude CFR in South Korea is lower among both males (1.1%) and females (0.4%), and the crude CFR in Australia (1.4%) and in countries of the European Union (EU) and European Economic Area (EEA) was also lower (1.5%), while the crude CFR in Italy was much higher (7.2%).

COVID-19 initial symptoms are not specific, presenting with fever, and cough, which can then resolve spontaneously or progress to shortness of breath, dyspnoea, and pneumonia, leading to severe acute respiratory syndrome (SARS), renal failure, coagulation dysfunction, multiple organ failure and death. Asymptomatic patients or patients with mild or moderate symptoms were mainly found by COVID-19 testing of those who had contacted patients confirmed with COVID-19, or had been to or had contacted with visitors from Wuhan, or had no identifiable exposure but had some COVID-19 related symptoms. Understanding the factors associated with COVID-19 disease severity could support the early identification of patients with high risk for disease progression and inform prevention and control activities and reduce mortality. Furthermore, understanding differences in the epidemiology and characteristics of patients outside Hubei is important for disease forecasting and to inform prevention and control strategies. Hubei is the epicentre of COVID-19, so patients outside Hubei may have different profiles of epidemiology and characteristics, e.g. route of infection and age pattern. Knowing those profiles may help predict the severity of COVID-19.

Age, comorbidities, c-reactive protein, albumin, cytokine, lactate dehydrogenase, D-dimer, albumin, platelet, lymphocyte, neutrophil, smoking, cough, expectoration, chest pain, dyspnea, CT manifestations, et al., have been reported to be associated with the severity of COVID-19 in some small studies in China, and other countries.

Jiangsu, a province in China over 600 km from Hubei without common geographical borders and 80 million population, reported over 600 patients infected with COVID-19. We report here an analysis of all cases in Jiangsu province from the 10th January 2020 to the 15th March 2020 to describe the epidemiological and clinical characteristics of cases and to identify risk factors for severe/critically ill COVID-19 presentation. Previous studies were mostly small and descriptive in nature. Our study will use data from the whole Jiangsu province and make inferential statistical analyses by means of multivariate regression model to control for possible confounding factors and identify independent risk factors of becoming a severe/critically ill case.

Methods

Study Design and Population
This is a multicentre retrospective cohort study. All patients were included if they (1) were clinically diagnosed and then confirmed to have COVID-19 in Jiangsu province up to the 15th March 2020, and (2) fulfilled the diagnostic criteria for the “Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)” released by National Health Commission & National Administration of Traditional Chinese Medicine of China. The diagnosis of COVID-19 was based on epidemiological history, clinical manifestations, and laboratory confirmation. Patients without medical records were excluded.

The Ethics Committee of Zhongda Hospital, Affiliated to Southeast University, approved the study protocols (2020ZDSYLL013–P01 and 2020ZDSYLL019–P01). Patient informed consent was waived due to the retrospective study and the public health emergency.

Data Measures

The primary outcome was severe or critically ill within the follow up period. Patients were categorised by disease severity into (1) asymptomatic or mild, (2) moderate, and (3) severe or critically ill, according to “Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)”.

Asymptomatic infections were defined as the absence of clinical symptoms with a positive nucleic acid test (real-time reverse transcriptase–polymerase chain reaction assay, RT-PCR, for SARS-CoV-2). Mild COVID-19 disease was defined as the presence of mild clinical symptoms without respiratory distress and the absence of imaging manifestations of pneumonia. Moderate disease was defined as the presence of fever, with respiratory symptoms and an image of pneumonia in computer tomography (CT) scans. Severe disease was defined as the presence of at least one of a) respiratory distress, a respiratory rate ≥ 30 beats / min; oxygen saturation in resting state ≤ 93% or an arterial blood oxygen partial pressure / oxygen concentration ≤ 300 mmHg (1 mmHg = 0.133kPa). Critically ill was defined as having respiratory failure requiring mechanical ventilation, shock or combined organ failure requiring intensive care unit (ICU) monitoring and treatment. Clustering onset defined as familial clustering and single onset was not. All patients followed up to the 15th March 2020.

Data was collected using case record forms and electronic medical record systems and included epidemiological, laboratory and imaging information, treatment and clinical outcome provided by the Data Center of Jiangsu Provincial Health Commission without any patient’s personal information. Information of patients transferred to other hospitals was retrieved from the destination hospital. The day of admission to a COVID-19-designated hospital was considered the first day of hospitalisation. The severity of illness was assessed by two physicians. Severity was assessed at days 1, 2, 3, 4, 5, 6, 7 and 14 after admission and patients were followed for up to discharge. ICU admissions were recorded. Imaging grading was performed by two independent radiologists with more than 5 years’ experience in pulmonary imaging. Chest CT axial sections were divided into quadrants (left and right anterior and posterior) by drawing horizontal and vertical lines through the centre of the chest. Quadrant scores were estimated as the sum of quadrants with pulmonary opacities extending from the proximal to the distal end of the chest.
and ranged from 0 and 4. Pulmonary opacity was visually estimated and assigned a percentage of pulmonary opacity area in the area of bilateral lungs, rounded to the nearest 5%.

Statistical Analysis

Variables

Primary outcome variable was the occurrence of severe/critically ill case. Predictive variables included age, exposure type, types of disease onset, initial symptoms, medical history, supportive treatments, and medical drugs, vital signs (including body temperature, heart rate (HR), respiratory rate, and peripheral capillary oxygen saturation (SpO$_2$)), CT image parameters (including quadrant score and pulmonary opacity), and laboratory parameters (including white blood cells count, neutrophil, lymphocyte, platelet, albumin, creatinine, C-reactive protein, activated partial thromboplastin time, fibrinogen, and D-dimer). Those variables were measured at hospital admission.

Statistical Analysis

Continuous variables were described using means (standard deviations, SD) or medians (with inter-quartile range, IQR) by disease severity and were compared using ANOVA or Kruskal-Wallis tests as appropriate. Categorical variables were summarised using frequencies and percentages and compared using Fisher exact tests.

Logistic regression models were used to identify the risk factors for having a severe or critically ill status. Analysis was performed in 2 steps. Firstly, a univariate logistic regression model was fitted for each variable based on completed cases. As there are many potential predictors, we chose the variables for univariate regression analysis if a variable is significant at 5%. Respiratory rate and SpO$_2$ were not included in the regression analyses since they were part of criterion for classifying the disease severity. All variables selected for univariate regression analysis were also included in the second stage of the multivariate logistic regression. Missing covariates at admission were imputed with multiple imputation using a Markov Chain Monte Carlo simulation method with 10 iterations. In the logistic regression analysis, odds ratios for having a disease progression for each variable were calculated along with 95% confidence intervals (CIs). A sensitivity analysis was performed on the completed cases. The 2-tailed P < 0.05 was considered as statistically significant for all analyses. The analyses were performed using SAS 9.4 (SAS Institute).

Results

From the 10th January 2020 to 15th March 2020, 721 suspected cases with possible COVID-19 were admitted in 24 hospitals in Jiangsu province, China, while 90 cases were excluded because of negative reverse transcriptase–polymerase chain reaction assay (Figure 1). 631 cases were diagnosed with COVID-19 totally. Of these, 625 (99.0%) had retrievable medical records and were included in the analysis.
Table 1 describes the characteristics of patients at the time of admission by disease severity and Table S1 provides a more detailed description of the five severity categories. 561 (89.8%) patients were asymptomatic/mild/moderate and 64 (10.2%) patients were severe or critically ill. Patients with severe/critically ill COVID-19 were more likely to be older and to be single onset (i.e. not to a cluster of cases in family/community). Patients with severe/critically ill presentation were more likely to have a medical history of hypertension and diabetes. Patients with severe/critically ill COVID-19 on admission had higher temperature, faster respiratory rates, lower SpO$_2$, and higher CT image quadrant scores and pulmonary opacity percentage (Table 1 and Table S1).

Table 1: Demographic and clinical characteristics of patients with COVID-19 at admission*
Category	Characteristics	Severe/Critically ill				P-value
		Yes (N=64)	No (N=561)	All (N=625)		
Demographic, n/N(%)						
Male		41/64(64.1%)	288/561(51.3%)	329/625(52.6%)	0.0534	
Female		23/64(35.9%)	273/561(48.7%)	296/625(47.4%)		
Age (year) 64,59.53(13.43)	61,42.72(16.73)	625,44.44(17.19)	<.0001			
≤18 years		0/64(0.0%)	37/561(6.6%)	37/625(5.9%)	<.0001	
19-44 years		6/64(9.4%)	255/561(45.5%)	261/625(41.8%)		
45-64 years		32/64(50.0%)	216/561(38.5%)	248/625(39.7%)		
65+ years		26/64(40.6%)	53/561(9.4%)	79/625(12.6%)		
Exposure type, n/N(%)						
Imported cases		25/64(39.1%)	194/561(34.6%)	219/625(35.0%)	0.4765	
Local cases		39/64(60.9%)	367/561(65.4%)	406/625(65.0%)		
Types of disease onset, n/N(%)						
Single onset		40/64(62.5%)	270/561(48.1%)	310/625(49.6%)	0.0294	
Clustering onset		24/64(37.5%)	291/561(51.9%)	315/625(50.4%)		
Initial symptoms, n/N(%)						
Fever		52/64(81.3%)	360/561(64.2%)	412/625(65.9%)	0.0063	
Cough		44/64(68.8%)	300/561(53.5%)	344/625(55.0%)	0.0200	
Sputum		25/64(39.1%)	141/561(25.1%)	166/625(26.6%)	0.0168	
Medical history, n/N(%)						
Hypertension		19/64(29.7%)	72/561(12.8%)	91/625(14.6%)	0.0003	
Diabetes		10/64(15.6%)	30/561(5.3%)	40/625(6.4%)	0.0015	
Stroke		2/64(3.1%)	8/560(1.4%)	10/624(1.6%)	0.2736	
Vital signs, N,mean(SD)						
Temperature (°C)		64,37.30(0.94)	561,37.02(0.70)	625,37.05(0.73)	0.0040	
HR (bpm)		64,89.98(15.06)	561,86.84(13.25)	625,87.17(13.46)	0.0772	
Respiratory rate (breath per min)		64,20.98(4.87)	561,18.87(2.04)	625,19.08(2.56)	<.0001	
SpO₂ (%)		64,95.53(4.70)	561,97.92(1.15)	625,97.68(1.99)	<.0001	
CT image, N,median(IQR)						
Quadrant score (1-4)		58,4.0(4.0-4.0)	438,2.0(1.0-4.0)	496,2.0(1.0-4.0)	<.0001	
Pulmonary opacity (%)		58,50.0(35.0-70.0)	438,20.0(5.0-30.0)	496,20.0(5.0-40.0)	<.0001	
Laboratory test, N,median(IQR)						
WBC Count (10⁹/L)		52,4.3(3.4-5.8)	461,5.0(4.0-6.3)	513,4.9(3.9-6.2)	0.0440	
Cases with severe/critically ill presentation were more likely to have increased C-reactive protein, fibrinogen, and D-dimer than asymptomatic/mild/moderate cases. Similarly, severe/critically ill cases had lower white blood cells, lymphocyte, and platelet counts and albumin (Table 1). As expected, severe cases were more likely to use supportive treatments and medical drugs, including antibiotics and antivirals (Table 2).

Table 2: Clinical management and outcome

Category	Characteristics	Severe/Critically ill	All	P-value	
		Yes (N=64)	No (N=561)		
			All (N=625)		
Neutrophil (10^9/L)		52,2.9(2.0-4.4)	455,3.0(2.2-4.0)	507,3.0(2.2-4.0)	0.7435
Lymphocyte (10^9/L)		52,0.7(0.5-1.0)	453,1.4(1.0-1.8)	505,1.3(0.9-1.7)	<.0001
Platelet (10^9/L)		48,154.0(118.0-185.0)	446,188.5(154.0-222.0)	494,183.5(151.0-219.0)	<.0001
Albumin (g/L)	48,39.7(34.2-41.4)	432,42.0(38.0-45.7)	480,41.4(38.0-45.1)	<.0001	
Creatinine (umol/L)	49,64.0(51.0-83.0)	427,63.8(51.0-79.0)	476,63.9(51.0-79.0)	0.6950	
C-reactive protein (mg/L)	44,40.1(8.6-92.7)	430,10.0(2.6-19.3)	474,10.0(2.7-22.6)	<.0001	
Activated partial thromboplastin time (s)	54,32.6(28.5-36.5)	459,32.2(27.9-37.4)	513,32.2(28.0-37.2)	0.8158	
Fibrinogen (g/L)	53,4.3(3.2-5.9)	443,3.4(2.7-4.1)	496,3.5(2.7-4.2)	<.0001	
D-dimer (mg/L)	51,0.3(0.2-1.0)	424,0.2(0.1-0.4)	475,0.2(0.1-0.4)	0.0003	

Continuous variables: ANOVA or Kruskal-Wallis tests as appropriate; categorical variables: Fisher exact tests.
Category	Clinical management and outcome	n(%) or median(IQR)	Severe/Critically ill			
	Yes (N=64)	No (N=561)	All (N=625)	P-value		
Supportive treatments	Inotropic and vasoconstrictive agents	5(7.8%)	0(0.0%)	5(0.8%)	<.0001	
	Nasal cannula	53(82.8%)	168(29.9%)	221(35.4%)	<.0001	
	Mask	12(18.8%)	2(0.4%)	14(2.2%)	<.0001	
	High-flow nasal cannula oxygen therapy	24(37.5%)	1(0.2%)	25(4.0%)	<.0001	
	Non-invasive ventilation	34(53.1%)	0(0.0%)	34(5.4%)	<.0001	
	Intermittent mandatory ventilation	5(7.8%)	0(0.0%)	5(0.8%)	<.0001	
	Prone position	17(26.6%)	1(0.2%)	18(2.9%)	<.0001	
	Continuous renal replacement therapy	1(1.6%)	0(0.0%)	1(0.2%)	0.1024	
	Extracorporeal membrane oxygenation	2(3.1%)	0(0.0%)	2(0.3%)	0.0103	
	Lung transplantation	2(3.1%)	0(0.0%)	2(0.3%)	0.0103	
Medical drugs	Traditional Chinese medicine	29(45.3%)	69(12.3%)	98(15.7%)	<.0001	
	Immunoglobulin	50(78.1%)	106(18.9%)	156(25.0%)	<.0001	
	Interferon	47(73.4%)	456(81.3%)	503(80.5%)	0.1363	
	Antioxidants	35(54.7%)	117(20.9%)	152(24.3%)	<.0001	
	Glucocorticoid	52(81.3%)	90(16.0%)	142(22.7%)	<.0001	
	Thymosin	43(67.2%)	101(18.0%)	144(23.0%)	<.0001	
	Neurotrophic drugs	21(32.8%)	81(14.4%)	102(16.3%)	0.0005	
	Any antibiotics	59(92.2%)	277(49.4%)	336(53.8%)	<.0001	
	Any antivirals	64(100%)	516(92.0%)	580(92.8%)	0.0098	
	Clinical outcome	Death	0(0.0%)	0(0.0%)	NC	
		Hospital stay	21.5(15.0-29.0)	15.0(12.0-21.0)	16.0(12.0-22.0)	<.0001

None of the patients died and 625 (100%) of patients were discharged by the end of study (15th March 2020). The results from the univariate and multivariate logistic regression analyses are presented in
Table 3. Factors independently associated with severe or critically ill infection included age (year) (OR, 95%CI 1.06, 1.03-1.09), lymphocyte count (10^9/L) (OR 0.25, 0.08-0.74), and pulmonary opacity in CT (per 5%) on admission (OR 1.31, 95%CI 1.15-1.51). Sensitivity analysis showed that they remained statistically significant in a logistic model with only above three variables based on the completed cases without missing data.

Table 3: Factors associated with severe/critically ill in patients with COVID-19: Results from logistic regression analysis

Variables	Univariate analysis*			Multivariate analysis**	
	Odds ratio (95%CI)	P-value	Odds ratio (95%CI)	P-value	
Age (year)	1.07(1.05,1.09)	<.0001	1.06(1.03,1.09)	<.0001	
Single onset	1.80(1.05,3.06)	0.0311	0.92(0.43,1.96)	0.8275	
Fever	2.42(1.26,4.64)	0.0078	1.50(0.64,3.54)	0.3542	
Cough	1.91(1.10,3.33)	0.0216	1.24(0.54,2.87)	0.6110	
Sputum	1.91(1.12,3.27)	0.0183	1.12(0.48,2.60)	0.7994	
Hypertension	2.87(1.59,5.18)	0.0005	1.06(0.47,2.40)	0.8874	
Diabetes	3.28(1.52,7.07)	0.0025	1.64(0.52,5.22)	0.4004	
Temperature (°C)	1.59(1.15,2.19)	0.0046	0.95(0.61,1.47)	0.8133	
Lymphocyte (10^9/L)	0.03(0.01,0.08)	<.0001	0.25(0.08,0.74)	0.0161	
Platelet (10^9/L)	0.99(0.98,0.99)	0.0003	1.00(0.99,1.00)	0.5147	
Albumin (g/L)	0.91(0.87,0.96)	0.0002	0.99(0.92,1.07)	0.8344	
C-reactive protein (mg/L)	1.02(1.01,1.02)	<.0001	1.00(0.99,1.01)	0.9789	
Fibrinogen (g/L)	1.87(1.50,2.32)	<.0001	1.04(0.72,1.49)	0.8327	
D-dimer (mg/L)	1.28(1.06,1.55)	0.0088	1.17(0.83,1.66)	0.3625	
Quadrant score (1-4)	2.28(1.71,3.05)	<.0001	0.90(0.56,1.47)	0.6811	
Pulmonary opacity (per 5%)	1.38(1.28,1.49)	<.0001	1.31(1.15,1.51)	0.0001	

* Univariate analysis is based on the complete cases without missing value.
** Multivariate analysis is based on imputed values for missing data in Lymphocyte, Platelet, Albumin, C-reactive protein, Fibrinogen, D-dimer, Quadrant score and Pulmonary opacity using multiple imputation method.

Discussion

In this large multicentre cohort, 64 (10.2%) of 625 patients were severe or critically ill. This proportion of severe or critically ill cases is lower than the 17.7% reported among the 44 672 cases from Wuhan but similar to the 7.0% reported for areas outside Hubei province; which are lower than reported from several case series from Wuhan including 13 (32%) ICU admission among 41 cases with 6 (15%) deaths; 11 (11%) deaths among 99 cases; and 36 (26.1%) ICU admissions among 138 patients, with 6 deaths (4.3%). The lower proportion than that in Hubei is likely due to several factors, including more adequate medical resources, better disease recognition and testing capacity, earlier identification of asymptomatic
and mild cases and a more informed supportive care in COVID-19-designated hospitals. The proportion of critically ill cases in early stage of COVID-19 outbreak in New York City, USA was much higher (22% [257]) than in China, with 14.2% treated in the ICU and 23.6% required mechanical ventilation reported in other studies.29 Singapore also reported a higher proportion of severe cases in an early study (33.3% [6]).30 A more recent study from USA reported 5.8% (7,162) of cases suffered from severe COVID-19,31 which is lower than in China. The proportions of severe COVID-19 in different countries vary a lot, which may result from quite different study designs, the COVID-19 outbreak stages when data were collected, population characteristics, health resources, government response measurements, et al.

Despite this being a hospital-based study, some patients had no symptoms. This is likely due to testing of contacts after the identification of an index case and the policy of hospitalization of all infected individuals at the initial stages of the epidemic, independently of the presence of symptoms. Fever, cough, and sputum were very common among patients and more frequent in patients with severely or critically illness. Fever and cough are the most common symptoms in SARS and MERS cases.32,33 Fever is a primary symptom for cytokine storms, with the production of high concentrations of cytokines stimulating abnormally excessive immune responses and inflammation.34-36 Vital signs showed severe or critically ill patients had higher body temperature and respiratory rate, and lower SpO₂ on admission. SpO₂ <90% has been used as a marker for the use of glucocorticoids during the outbreak,37 and the oxygenation saturation index is associated with acute respiratory distress syndrome (ARDS) severity and increased mortality.38,39

Sex seems to have no effect on severe COVID-19. Although early reports from Wuhan indicated more men than women had severe COVID-19,9,11,26 following studies reported similar proportions of men and women admitted to ICUs, suggesting sex differences disappeared with higher incidence. Earlier reports may have included more males due to a higher occupational infection risk for males in the markets and congregation places.10

Our study found that age was independently associated with severe or critically ill presentation. Age is a well well-established factor for severe/critically ill COVID-19 for individuals > 60, and especially over 80 years old.40,41 Similarly, previous reports have indicated patients in ICUs are older than non-ICU patients,10 and that CFRs are higher among older individuals.9,11,26 Older patients also have faster disease progression than younger patients,42 which is similar to the MERS and SARS presentations, in which, older age (> 60 or 45) is associated with disease severity (MERS),43,44 and mortality.45,46 Older age reflects a greater likelihood of underlying medical conditions such as hypertension and diabetes, which predisposes to immunological vulnerabilities. Also, age-related immunosenescence may also contribute to the severe disease.47

In Wuhan, many asymptomatic patients had abnormal lung CT findings on admission, which then progressed to diffuse ground-glass opacities and consolidation.48 In Jiangsu, several asymptomatic cases also had radiological changes presented as low quadrant scores and pulmonary opacity scores on
admission and severe/critically-ill cases had higher CT quadrant and pulmonary opacity scores than moderate cases. Our study also identified pulmonary opacity as an independent predictor of severe/critical illness. This is consistent with the previous study reporting that the CT visual quantitative evaluation of acute lung inflammatory lesions involving each lobe in severe or critical cases was significantly higher than less severe cases.⁴⁹

We found severe or critically ill patients had more obvious damage of white blood cells and immune cells such as lymphocytes with lymphocytes identified as an independent predictor of more severe disease. COVID-19 may cause the reduced T lymphocytes, especially CD4 + T and CD8 + T cells, leading to reduced IFN-γ production, which may be related to the severity of disease.⁵⁰ In addition, severe or critically ill patients showed more serious organ dysfunction like reduce albumin on admission which may be a sign of reduced liver production and increased gastrointestinal or renal loss, and increased fibrinogen on admission responding to systemic inflammation and tissue damage, and more fierce inflammatory response presented as much higher level of inflammatory markers, such as C-reactive protein.⁵¹-⁵³

This study has several strengths. Firstly, this is one of the largest studies describing the clinical characteristics of patients with COVID-19 and risk factors for severe/critically ill infection outside the Wuhan epicentre. Secondly, the cohort includes almost all COVID-19 cases in the province, which may have reduced selection bias. Thirdly, Jiangsu province, which is far from Hubei, provides an opportunity to assess the epidemiological, laboratory and clinical features of cases imported from other provinces and local cases. Fourthly, asymptomatic and mild cases were included, which provides a more comprehensive description of the characteristics of COVID-19 cases with a broad spectrum of disease severity.

There are also limitations that need mentioning. Firstly, laboratory and radiological data had a large amount of missing data preventing their integration in the analysis. Secondly, the predictive factors identified may be subject to uncontrolled confounders by unknown/unmeasured factors such as occupation and pregnancy. Medical staff and pregnant women may have different severity profiles. Thirdly, this is a retrospective observational study and data is susceptible to measurement and information bias.

Conclusion

In conclusion, this study demonstrates that patients with COVID-19 in Jiangsu had a low rate of severe or critically ill presentation, with no deaths recorded. The COVID-19 severity is associated with epidemiological and clinical characteristics, laboratory tests, and radiological findings. Age, lymphocyte count, and pulmonary opacity in CT on admission were independently associated with risk of severe or critically ill COVID-19 presentation.

Highlights

- About one-tenths of patients with COVID-19 in Jiangsu had severe or critically ill presentation
• All patients were discharged and no patients died by the end of study
• Risk of severe or critically ill COVID-19 patients increased with age
• Low lymphocyte count and high pulmonary opacity score in CT on admission were associated high risk of severe or critically ill COVID-19

Declarations

Ethics approval and consent to participate

This study was conducted in accordance with the International Council for Harmonisation Guidelines for Good Clinical Practice and the Declaration of Helsinki. The Ethics Committee of Zhongda Hospital, Affiliated to Southeast University, approved the study protocols (2020ZDSYLL013–P01 and 2020ZDSYLL019–P01). Patient informed consent was waived due to the retrospective study and the public health emergency.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported, in part, by the National Natural Science Foundation of China (81971885, 81971888) and the Scientific research project of Jiangsu Health Committee(H2018048).

Authors’ Contributions

YY, SJ and DW conceived and designed the study. SL, HL and YW contributed to the literature search. SL, YW, SJ, YY, and DW contributed to data collection, quality checks and data management. DW, SJ, SL, HL, LEC, YW and YY contributed to data analysis and results presentation. DW, SJ, SL, LEC, HL and YY were responsible for results interpretation. SL, HL, YW, DW, LEC, SJ, and YY contributed in the drafting and review of the manuscript.

Acknowledgements
We thank all patients and their families involved in the study. We thank all the doctors and nurses who are working to combat COVID-19.

References

1. World Health Organization. Coronavirus disease (COVID-19) Situation Report – 144. Accessed 13 June 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

2. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Accessed 13 June 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19--11-march-2020.

3. Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2): 145-151.

4. Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity of COVID-19 in South Korea. Int J Infect Dis. 2020;93:339-344.

5. COVID-19 National Incident Room Surveillance Team. COVID-19, Australia: epidemiology report 17 (Fortnightly reporting period ending 24 May 2020). Commun Dis Intell (2018). 2020;44.

6. European Centre for Disease Prevention and Control. Coronavirus disease 2019 (COVID-19) in the EU/EEA and the UK – eighth update. Accessed 13 June 2020. https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-rapid-risk-assessment-coronavirus-disease-2019-eighth-update-8-april-2020.pdf.

7. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. 2020. doi: 10.1001/jama.2020.4344. Online ahead of print.

8. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.

9. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.

10. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.

11. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481.

12. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. 2020;382(24):2372-2374.

13. Mitra AR, Fergusson NA, Lloyd-Smith E, et al. Baseline characteristics and outcomes of patients with COVID-19 admitted to intensive care units in Vancouver, Canada: a case series. CMAJ. 2020;cmaj.200794.
14. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med.* 2020;8(5):475-481.

15. Li K, Wu J, Wu F, et al. The clinical and chest ct features associated with severe and critical covid-19 pneumonia. *Invest Radiol.* 2020;55(6):327-331.

16. Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. *Ann Clin Microbiol Antimicrob.* 2020;19(1):18.

17. Gao F, Zheng KI, Wang XB, et al. Obesity is a risk factor for greater COVID-19 severity. *Diabetes Care.* 2020;dc200682.

18. Li J, Li M, Zheng S, et al. Plasma albumin levels predict risk for nonsurvivors in critically ill patients with COVID-19. *Biomark Med.* 2020;10.2217/bmm-2020-0254.

19. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. *J Allergy Clin Immunol.* 2020;S0091-6749(20)30495-4.

20. Li Y, Zhao K, Wei H, et al. Dynamic relationship between D-dimer and COVID-19 severity. *Br J Haematol.* 2020;10.1111/bjh.16811.

21. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. *Clin Chim Acta.* 2020;506:145-148.

22. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. *Obesity (Silver Spring).* 2020;10.1002/oby.22831.

23. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region - case series. *N Engl J Med.* 2020;382(21):2012-2022.

24. National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). *Chin Med J (Engl).* 2020;133. doi: 10.1097/CM9.00000000000000819.

25. Sun Q, Qiu H, Huang M, Yang Y. Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province. *Ann Intensive Care.* 2020;10(1):33.

26. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet.* 2020;395(10223):497-506.

27. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. *Lancet.* 2020;395(10239):1763-1770.

28. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. *JAMA.* 2020;323(20):2052-2059.

29. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. *BMJ.*
30. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. *JAMA*. 2020;323(15):1488-1494.

31. CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12-March 28, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(13):382-386. doi: http://dx.doi.org/10.15585/mmwr.mm6913e2.

32. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. *BMJ*. 2020;368:m606.

33. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. *JAMA*. 2020;323(13):1239–1242.

34. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. *Clin Immunol.* 2020;214:108393.

35. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. *Blood*. 2014;124(2):188-195.

36. Cron R, Behrens EM. *Cytokine Storm Syndrome*. 1st ed. Springer International Publishing; 2019.

37. Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. *Lancet Respir Med*. 2020;8(3):e11-e12.

38. DesPrez K, McNeil JB, Wang C, Bastarache JA, Shaver CM, Ware LB. Oxygenation saturation index predicts clinical outcomes in ARDS. *Chest*. 2017;152(6):1151-1158.

39. Chen WL, Lin WT, Kung SC, Lai CC, Chao CM. The value of oxygenation saturation index in predicting the outcomes of patients with acute respiratory distress syndrome. *J Clin Med*. 2018;7(8).

40. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. *Viruses*. 2020;12(2).

41. Wu J, Li W, Shi X, et al. Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). *J Intern Med*. 2020;10.1111/joim.13063.

42. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. *J Med Virol*. 2020;92(4):441-447.

43. Feikin DR, Alraddadi B, Qutub M, et al. Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia, 2014. *Emerg Infect Dis*. 2015;21(11):2029-2035.

44. Ko JH, Park GE, Lee JY, et al. Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. *J Infect*. 2016;73(5):468-475.

45. Majumder MS, Kluberg SA, Mekaru SR, Brownstein JS. Mortality risk factors for middle east respiratory syndrome outbreak, South Korea, 2015. *Emerg Infect Dis*. 2015;21(11):2088-2090.
46. Chan JWM, Ng CK, Chan YH, et al. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003;58(8):686-689.
47. Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol. 2009;30(7):301-305.
48. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-434.
49. Li K, Fang Y, Li W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020;1-10.
50. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-2629.
51. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.
52. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10(3):319-329.
53. Jousilahti P, Salomaa V, Rasi V, Vahtera E, Palosuo T. The association of C-reactive protein, serum amyloid A and fibrinogen with prevalent coronary heart disease–baseline findings of the PAIS project. Atherosclerosis. 2001;156(2):451-456.

Figures

721 suspected cases with possible COVID-19 were admitted in 24 hospitals in Jiangsu province from January 10, 2020 to March 15, 2020

90 cases excluded because real-time reverse transcriptase–polymerase chain reaction assays showed negative

631 cases with confirmed COVID-19

6 cases excluded due to missing medical records

625 COVID-19 cases included in the analysis

Figure 1

Study flow diagram
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 20200619SupplementaryTableS1BMCR1clean.pdf