A remark on inverse scattering for time dependent Hartree equations

M Watanabe
Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
E-mail: m-watanabe@math.sci.hokudai.ac.jp

Abstract. We consider an inverse scattering problem of identifying a common potential and an interaction potential acting on particles from the scattering operator defined by the solution to the time dependent Hartree equation. In this paper we give a reconstruction procedure for them in the case of two-particle systems.

1. Introduction

Let $V(x)$ be a common potential acting on particles and $v_{jk}(x)$, $1 \leq j < k \leq N$ be interactions between j-th and k-th particles. Then the time dependent Hartree equation, which is derived from an N-body Schrödinger equation, is given in the form:

$$i \partial_t u_j = -\Delta u_j + V(x)u_j + \sum_{k \neq j}^N (v_{jk} * |u_k|^2)u_j, \quad j = 1, \cdots, N,$$

(1)

where $u_j = u_j(t, x) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}$ are unknown functions, $i = \sqrt{-1}$, Δ is the n-dimensional Laplacian and $*$ denotes the convolution. In this paper we study an inverse scattering problem of identifying a common potential $V(x)$ and interactions $v_{jk}(x)$, $1 \leq j < k \leq N$.

In [9], inverse scattering problem for a simple case of the Hartree equation (1) given by

$$i \partial_t u = -\Delta u + V(x)u + \lambda(|\cdot|^{-\sigma} * |u|^2)u$$

(2)

was studied. Moreover, it was given that a reconstruction procedure to identify $V(x)$ and λ from the corresponding scattering operator. In case $V(x) \equiv 0$, reconstruction formulae for σ and λ were given in [10]. To derive the reconstruction formula for σ, it was essentially important that the identity

$$T[\phi_R] = R^{n-2n-2} T[\phi], \quad \text{for any } R \in \mathbb{R}$$

(3)

holds, where $T[\phi] = \lim_{\epsilon \to 0} \frac{1}{\pi} \langle [S - I](\epsilon \phi), \phi \rangle$, S is the scattering operator for (2) in the case of $V(x) \equiv 0$ and $\langle \cdot, \cdot \rangle$ denotes the inner product in $L^2(\mathbb{R}^n)$ (see [10, p. 1481]). In case $V(x) \not\equiv 0$, however, it is not expected that we have the simple identity like (3). So, the aim of this paper is to give a new method for the reconstruction of σ.

Throughout this paper, we denote the norm of $L^p = L^p(\mathbb{R}^n)$ and the usual Sobolev space $H^{k,p} = H^{k,p}(\mathbb{R}^n)$ of order k in L^p by $\| \cdot \|_p$ and $\| \cdot \|_{k,p}$, respectively; in particular, we abbreviate
Suppose that Assumption I and Assumption II are satisfied. Then there exists Theorem 2.1. proved by Yajima [19] (for the other results in the multidimensional case holds for all $\phi = (\phi_1, \cdots, \phi_N)$.

2. Problem and result
To state our problem and result, we first construct the scattering operator for (1). Let $H_0 = -\Delta$, $H = H_0 + V(x)$ and $D_{\alpha} = D_{\alpha_1} \cdots D_{\alpha_n}$ with $D_j = -i\partial/\partial x_j$.

Assumption I
We assume that the real valued function $V(x)$ satisfies,

(i) H has no eigenvalues and no zero resonance.

(ii) For $\delta > (3n)/2 + 1$, $p_0 > n/2$ and multi-indices $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $|\alpha| \leq 1 + l_0$,

\[
\sup_{x \in \mathbb{R}^n} (x')^\delta \left(\int_{|x-y| \leq 1} |D_{\alpha}^n V(y)|^{p_0} \, dy \right)^{1/p_0} < \infty,
\]

where $l_0 = 0$ if $n = 3$ and $l_0 = [(n - 1)/2]$ if $n \geq 4$.

Assumption II
We assume that the real valued function $v_{jk}(x)$ satisfies,

\[
|v_{jk}(x)| \leq \lambda |x|^{-\sigma}, \quad 2 \leq \sigma \leq 4 \text{ and } \sigma < n,
\]

where λ is a positive constant.

We remark that under Assumption I, wave operators $W_{\pm} : = s-lim_{t \to \pm \infty} e^{itH} e^{-itH_0}$ exist and are complete, where the limit is taken in the strong topology of L^2. Moreover they are bounded in $H^{1,p}$ for $1 \leq p \leq \infty$. Furthermore an $H^{1,p} - H^{1,p'}$ estimate on e^{-itH}:

\[
\|e^{-itH}f\|_{1,p} \leq c |t|^{-d} \|f\|_{1,p'}
\]

holds for all $t \neq 0$, $2 \leq p \leq \infty$ and $f \in L^2 \cap H^{1,p'}$, where $d = n(1/p' - 1/2)$. These results were proved by Yajima [19] (for the other results in the multidimensional case $n \geq 3$, see Yajima [17, 18]). By these results, we easily obtain the following theorem. The proof was given in [7] and [9]. We also refer to papers [1], [4], [5] and [8] on the Cauchy problem for the Hartree equations.

In what follows, we denote by $u(t)$ the function $u(t, \cdot)$.

Theorem 2.1. Suppose that Assumption I and Assumption II are satisfied. Then there exists $\rho > 0$ such that for any $\phi^{(-)}_j \in H^{1,2}$ with $\|\phi^{(-)}_j\|_{1,2} < \rho$, $j = 1, 2, \cdots N$, (1) admits a unique solution

\[
u_j \in L^\infty(\mathbb{R}; H^{1,2}) \cap L^3(\mathbb{R}; H^{1,q}), \quad \frac{1}{q} = \frac{1}{2} - \frac{2}{3n}, \quad j = 1, 2, \cdots, N
\]

satisfying

\[
\lim_{t \to -\infty} \|u_j(t) - e^{-itH_0} \phi^{(-)}_j\|_{1,2} = 0, \quad j = 1, 2, \cdots, N.
\]

Moreover there is a unique $\phi^{(+)}_j \in H^{1,2}$ such that

\[
\lim_{t \to -\infty} \|u_j(t) - e^{-itH_0} \phi^{(+)}_j\|_{1,2} = 0, \quad j = 1, 2, \cdots, N.
\]
The map $S: \phi^(-) \rightarrow \phi^(+)$ which relates asymptotic states at $t = -\infty$ and $t = +\infty$ is called the scattering operator and is defined by

$$ (S_j \phi)(x) = (W_+^* P_j W_- \phi)(x), \quad j = 1, 2, \cdots N, $$

(6)

where

$$ (P_j \phi)(x) = \phi_j(x) + \frac{1}{i} \int_{\mathbb{R}} e^{itH} F_j(u(t)) \, dt, $$

(7)

$$ F_j(u(t)) = \sum_{k \neq j} (v_{jk} * |u_k|^2)u_j, $$

and $u(t)$ is the solution to (1) constructed in theorem 2.1.

We now state our problem and result. Our inverse problem is: for given functions $\{(S_j \phi)(x), \phi_j(x)\}, j = 1, 2, \cdots N$, find $V(x)$ and $v_{jk}(x)$, $1 \leq j < k \leq N$.

Consider two-particle systems $(j = 1, 2)$ with the interaction of the form $v_{12}(x) = v(x) = \lambda |x|^{-\sigma}$, where λ and σ are constants such that

$$ \lambda \neq 0, \quad 2 \leq \sigma \leq 4 \quad \text{and} \quad \sigma < n. $$

(8)

Obviously, $n \geq 3$.

In this paper we prove the following:

Theorem 2.2. Suppose that Assumption I and Assumption II are satisfied. Then there is a reconstruction procedure to identify λ, σ and $V(x)$ for any $x \in \mathbb{R}^n$ from functions $\{(S_j \phi)(x), \phi_j(x)\}, j = 1, 2$.

3. Proof of Theorem 2.2

In this section we give a reconstruction procedure for $V(x)$, σ and λ, respectively.

Reconstruction of $V(x)$

Since wave operators W_\pm exist and are complete under Assumption I, the scattering operator for linear Schrödinger operator $H = H_0 + V(x)$ is defined by $S_V := W_+^* W_-$. As was proved in [9], the identity

$$ \frac{d}{d\varepsilon} S_j(\varepsilon \phi) \bigg|_{\varepsilon = 0} = S_V \phi_j $$

holds, where the derivative exists in the strong topology of $H^{1,2}$. Hence, by the well known result that S_V uniquely determine $V(x)$ (see, e.g., [2] or [3]), we can reconstruct $V(x)$ from $S_j \phi$.

Reconstruction of σ

Since $V(x)$ is already known, we can compute wave operators W_\pm. It follows from the definition of the scattering operator (6) that we find $P_j = W_+ S W_-^*$. As in [7, Lemma 3 p. 299], small amplitude limit $L_j[\phi] := \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \langle [P_j - I] (\varepsilon \phi), \phi_j \rangle$ exists for any $\phi_j \in H^{1,2}$, $j = 1, 2$ and is given by

$$ L_j[\phi] = \iint_{\mathbb{R} \times \mathbb{R}^n} e^{-itH} \phi_j F_j(e^{-itH} \phi) \, dx \, dt. $$
We note that in our case, L_1 and L_2 are given by

\[
L_1[\phi] = \lambda \int_{\mathbb{R} \times \mathbb{R}^n} (| \cdot | \sigma \ast |e^{-itH_0} \phi_2|^2)(x) |e^{-itH} \phi_1(x)|^2 \, dx \, dt,
\]

and

\[
L_2[\phi] = \lambda \int_{\mathbb{R} \times \mathbb{R}^n} (| \cdot | \sigma \ast |e^{-itH_0} \phi_1|^2)(x) |e^{-itH} \phi_2(x)|^2 \, dx \, dt,
\]

respectively. Thus by Fubini’s theorem, $L_1[\phi] = L_2[\phi]$. Define $\phi_R(x) = \phi(Rx)$. Then we have

\[
(e^{-itH} \phi_R)(x) = (e^{-iR^2tH_0} \phi)(Rx),
\]

where $H_R = H_0 + R^{-2}V(x/R)$. See [15, pp. 1232-1233] for the detail. Using this identity and (9), we find by a simple computation that

\[
R^{2+2n-\sigma} L_1[\phi_R] = \lambda \int_{\mathbb{R} \times \mathbb{R}^n} (| \cdot | \sigma \ast |e^{-itH_0} \phi_2|^2)(x) |e^{-itH_0} \phi_1(x)|^2 \, dx \, dt.
\]

Next we show that the right-hand side of (10) converges to

\[
\lambda \int_{\mathbb{R} \times \mathbb{R}^n} (| \cdot | \sigma \ast |e^{-itH_0} \phi_2|^2)(x) |e^{-itH_0} \phi_1(x)|^2 \, dx \, dt
\]

as $R \to \infty$. To prove this, write $v_R(t) = e^{-itH_R} \phi_1(x)$, $w_R(t) = e^{-itH_R} \phi_2(x)$, $v_0(t) = e^{-itH_0} \phi_1(x)$, and $w_0(t) = e^{-itH_0} \phi_2(x)$. Then

\[
\left| \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast |w_R(t)|^2)|v_R(t)|^2 \, dx \, dt - \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast |w_0(t)|^2)|v_0(t)|^2 \, dx \, dt \right|
\]

\[
\leq \left| \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast \{w_R(t) - w_0(t)\}|\overline{w}_R(t))|v_R(t)|^2 \, dx \, dt \right|
\]

\[
+ \left| \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast w_0(t)|\overline{w}_R(t)) \{v_R(t) - v_0(t)\}|\overline{v}_R(t)\} \, dx \, dt \right|
\]

\[
+ \left| \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast w_0(t)|\overline{w}_R(t) - \overline{w}_0(t)) \{v_0(t)\}|\overline{v}_R(t)\} \, dx \, dt \right|
\]

\[
+ \left| \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast |w_0(t)|^2) v_0(t) \{\overline{v}_R(t) - \overline{v}_0(t)\} \, dx \, dt \right|.
\]

It follows from the Hardy-Littlewood inequality and the Hölder inequality that

\[
\left| \int_{\mathbb{R} \times \mathbb{R}^n} (\cdot | \sigma \ast \{w_R(t) - w_0(t)\}|\overline{w}_R(t))|v_R(t)|^2 \, dx \, dt \right|
\]

\[
\leq \int_{\mathbb{R}} \left| \left< e^{itH_R} \left[(\cdot | \sigma \ast \{w_R(t) - w_0(t)\}|\overline{w}_R(t)) \right] v_R(t) \right>, \phi_1 \right| \, dt
\]

\[
\leq \|\phi_1\| \int_{\mathbb{R}} \left\| \left[(\cdot | \sigma \ast \{w_R(t) - w_0(t)\}|\overline{w}_R(t)) \right] v_R(t) \right\| \, dt
\]

\[
\leq C \|\phi_1\| \int_{\mathbb{R}} \|w_R(t) - w_0(t)\|_{2a} \|w_R(t)\|_{2b} \|v_R(t)\|_{2b} \, dt,
\]

where a, b and h satisfy

\[
\frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{h} - 1 \right) = 1 - \frac{\sigma}{n}, \quad \sigma < n.
\]
By means of L^p ($2 \leq p \leq \infty$) strong convergence of $e^{-itH_R} \to e^{-itH_0}$ as $R \to \infty$ (see Weder [13, p. 3644] or Weder [15, pp. 1233-1234]), we find that the integrand of (12) vanishes as $R \to \infty$. The same argument shows that the other terms of the right-hand side of (12) vanish as $\lim_{R \to \infty} R^2 \leq \infty$. Thus we find that $\lim_{R \to \infty} R^2 \leq 1$. Hence, if $2 \leq \sigma \leq 4$ and $\sigma < n$, it follows from Sobolev imbedding theorem that

$$\|w_R(t) - w_0(t)\|_{2a} \leq C_1 \|w_0(t)\|_{2a} \leq 2C\|w_0(t)\|_{1,q} \|v_0(t)\|_{1,q},$$

where $1/q = 1/2 - 2/(3n)$. Since w_0, $v_0 \in L^2(\mathbb{R}; H^{1,q})$ (see Mochizuki [6, pp. 148-151]), it follows from the dominated convergence theorem that the right-hand side of (11) vanishes as $R \to \infty$. The same argument shows that the other terms of the right-hand side of (12) vanish as $R \to \infty$. Thus we find that $\lim_{R \to \infty} R^2 \leq 2 + 2n - \sigma$. Choosing any $\gamma \neq 0$, we compute the limit $R^\gamma L_1[\phi_R]$ as $R \to \infty$. If the limit does not exist, it means that $\gamma > 2 + 2n - \sigma$. Next we take $\gamma_1 < \gamma$. If $R^{\gamma_1} L_1[\phi_R] \to 0$ as $R \to \infty$, then we find that $\gamma_1 < 2 + 2n - \sigma$. We choose a constant γ_2 such that $\gamma_1 < \gamma_2 < \gamma$ and compute the limit $R^{\gamma_2} L_1[\phi_R]$ again. Thus, repeating this computation till the limit $R^{\gamma_2} L_1[\phi_R]$ tends to some non-zero constant, we can reconstruct σ by $\sigma = 2 + 2n - \rho$.

Reconstruction of λ

Once $V(x)$ and σ are determined, we can easily obtain the formula from (9) that

$$\lambda = \frac{L_1[\phi]}{\int_{\mathbb{R}^n} (|\cdot|^{-\sigma} * |e^{-itH_0}\phi_2|^2(x))e^{-itH_0}\phi_1(x)^2 \, dx \, dt},$$

if $\phi_j \neq 0$, $j = 1, 2$. We note that in the step of determining σ, the value of the limit $\lim_{R \to \infty} R^{\gamma} L_1[\phi_R]$ are already known. Hence, using the identity (10), we can derive another formula for λ:

$$\lambda = \lim_{R \to \infty} \frac{R^{\gamma} L_1[\phi_R]}{\int_{\mathbb{R}^n} (|\cdot|^{-\sigma} * |e^{-itH_0}\phi_2|^2(x))e^{-itH_0}\phi_1(x)^2 \, dx \, dt}.$$

The proof is complete.

References

[1] Chadam J M and Glassey R T 1975 Global existence of solutions to the Cauchy problem for time-dependent Hartree equations J. Math. Phys. 16 1122-30

[2] Enss V and Weder R 1995 The geometrical approach to multidimensional inverse scattering J. Math. Phys. 36 3902-21

[3] Faddeev L D 1956 Uniqueness of the solution of the inverse scattering problem Vestn. Leningrad. Univ. 11 126-30

[4] Hayashi N and Ozawa T 1987 Time decay of solutions to the Cauchy problem for time-dependent Schrödinger-Hartree equations Comm. Math. Phys. 110 467-78

[5] Isozaki H 1983 On the existence of solutions to time dependent Hartree-Fock equations Publ. RIMS, Kyoto Univ. 19 107-15

[6] Mochizuki K 1989 On small data scattering with cubic convolution nonlinearity J. Math. Soc. Japan. 41 143-60

[7] Sasaki H and Watanabe M 2005 Uniqueness on identification of cubic convolution nonlinearity J. Math. Anal. Appl. 309 294-306
[8] Wada T 1999 Scattering theory for time-dependent Hartree-Fock type equation *Osaka J. Math.* **36** 905-18

[9] Watanabe M 2001 Inverse scattering for the nonlinear Schrödinger equation with cubic convolution nonlinearity *Tokyo J. Math.* **24** 59-67

[10] Watanabe M 2002 Reconstruction of the Hartree-type nonlinearity *Inverse Problems* **18** 1477-81

[11] Weder R 1997 Inverse scattering for the nonlinear Schrödinger equation *Comm. Partial Differential Equations* **22** 2089-103

[12] Weder R 2000 $L^p - L^q$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential *J. Func. Anal.* **170** 37-68

[13] Weder R 2001 Inverse Scattering for the Nonlinear Schrödinger Equation II. Reconstruction of the Potential and the Nonlinearity in the multidimensional case *Proc. Amer. Math. Soc.* **129** 3637-45

[14] Weder R 2001 Inverse scattering for the non-linear Schrödinger equation: reconstruction of the potential and the non-linearity *Math. Meth. Appl. Sci.* **24** 245-54

[15] Weder R 2005 Scattering for the forced non-linear Schrödinger equation with a potential on the half-line *Math. Methods Appl. Sci.* **28** 1219-36

[16] Weder R 2005 The forced non-linear Schrödinger equation with a potential on the half-line *Math. Methods Appl. Sci.* **28** 1237-55

[17] Yajima K 1995 The $W^{k,p}$-continuity of wave operators for Schrödinger operators *J. Math. Soc. Japan* **47** 551-81

[18] Yajima K 1994 The $W^{k,p}$-continuity of wave operators for Schrödinger operators II, Positive potentials in even dimensions $m \geq 4$ *Spectral and Scattering Theory Lecture Notes in Pure and Appl. Math.* vol 161, ed M Ikawa and M Dekker (New York) 287-300

[19] Yajima K 1995 The $W^{k,p}$-continuity of wave operator for Schrödinger operators III, even dimensional cases $m \geq 4$ *J. Math. Sci. Univ. Tokyo.* **2** 311-46