Single Top Quark Production at the Tevatron

Matthias Kirsch

on behalf of the DØ and CDF collaborations
Experimental setup

FNAL, Batavia, IL, USA
proton-antiproton collider
center of mass energy: 1.96 GeV
two multipurpose detectors
Top quark production @ Tevatron

- top pair production via strong interaction:

\[\sigma_{\bar{t}t} = 6.77 \pm 0.42 \text{ pb} \]

[N. Kidonakis, R. Vogt, Phys. Rev. D 68 114014 (2003)]

- single top production via electroweak interaction:

\[\sigma_{s-channel} = 0.88 \pm 0.14 \text{ pb} \]

[Z. Sullivan, Phys. Rev. D 70 114012 (2004)]

\[\sigma_{t-channel} = 1.98 \pm 0.30 \text{ pb} \]

Every 3rd top quark event is a single top event!

All cross sections for \(m(\text{top}) = 175 \text{ GeV} \)
Physics with single top quark events

- Measurement of the production cross sections:
 - σ_{s+t} combined
 - σ_s, σ_t individually
- Direct measurement of CKM matrix element $|V_{tb}|$
- Study top quark spin polarization
- Understand single top as background process
- Establish analysis techniques for small signals
- Search for new physics:
 - Heavy gauge bosons
 - Anomalous Wtb couplings
 - Charged Higgs production
 - ...

Single top is an exciting field!
Event selection

- One isolated high-\(E_T\) lepton (electron or muon)
- Missing transverse energy (from the neutrino)
- 2-4 jets
- at least one b-tagged jet (to reduce multijet background)
Challenge of single top

- We expect ~50 signal events per fb$^{-1}$
- Still, signal is lower than background uncertainty
 - Counting experiment not possible
 - Use multivariate analysis techniques

Event selection

\[\text{discriminating variables} \rightarrow \text{Multivariate analysis} \rightarrow \text{Cross section} \]
Based on 0.9 fb\(^{-1}\) of Tevatron RunII data

Using (up to) 24 analysis channels

Three different multivariate analysis techniques:

- Boosted decision trees
- Bayesian neural networks
- Matrix element method

[Phys. Rev. Lett. 98, 181802 (2007)]
s+t cross section measurements

Single top quark production describes high discriminant distributions!
Consistent results with three different multivariate classifiers
Combining the three analyses

- Use the BLUE method (*Best Linear Unbiased Estimator*) to combine the results
- Determine correlations and weights from ensembles

	BDT	BNN	ME
BDT	1	0.66	0.64
BNN	0.66	1	0.59
ME	0.64	0.59	1

- **Expected** $\sigma_{s+t} : 3.0 \pm 1.3 \text{ pb}$
- **Measured** $\sigma_{s+t} : 4.7 \pm 1.3 \text{ pb}$

- **Expected sensitivity**: 2.3σ
- **Observed significance**: 3.6σ

Evidence for single top quark production!

[arXiv.org:0803.0739, accepted by PRD]
• Calculate contours for different levels of confidence in the t-channel vs. s-channel plane

• Analysis based on Boosted Decision Tree analysis (optimised for s+t channel)

Measurement is in good agreement with the SM prediction
Measurement of $|V_{tb} x f^L_1|$

- Based on result of Boosted Decision Tree analysis
- Assumptions:
 - $|V_{tb}|^2 \gg |V_{td}|^2 + |V_{ts}|^2$
 - Left-handed form factor $f^L_1 = 1$
 - No constraint on number of generations
Results of the CDF Collaboration

- Based on 2.2 fb⁻¹ of Tevatron RunII data
- Four different multivariate analysis techniques:
 - Boosted decision trees
 - Neural networks
 - Matrix element method
 - Multivariate likelihood function
s+t cross section measurements (I)

Boosted Decision Trees

Neural Networks

Exp. sensitivity: 4.6σ
Obs. significance: 2.8σ

$\sigma_{\text{Single Top}} = 1.9^{+0.8}_{-0.7} \text{ pb}$

Exp. sensitivity: 4.4σ
Obs. significance: 3.2σ
s+t cross section measurements (II)

Matrix Elements

Likelihood Function

CDF Run II Preliminary, L=2.2 fb⁻¹

- **exp. sensitivity:** 4.5σ
- **obs. significance:** 3.4σ

σ_{Single Top} = 2.2^{+0.8}_{-0.7} pb

CDF Run II Preliminary, 2.2 fb⁻¹

- s-channel
- t-channel
- WCC/WC
- Wbb
- W+LF
- z+jets
- Diboson
- non-W

σ_{s+t} = 1.8^{+0.9}_{-0.8} pb

exp. sensitivity: 3.4σ
obs. significance: 2.0σ
Combining three analyses

- Use another Neural Network to combine Neural Network, Likelihood Function and Matrix Element analyses
- Cross check with BLUE method gives similar result

LF	ME	NN	
LF	1	0.60	0.74
ME	1	0.61	
NN	1		1

A 5σ observation of single top is around the corner!

exp. sensitivity: 5.1σ
obs. significance: 3.7σ
Measurement of $|V_{tb}|$

- Extract $|V_{tb}|$ from combined analysis
- Assuming a flat prior on $|V_{tb}|^2$

Measurement of $|V_{tb}|$

- $|V_{tb}| = 0.89 \pm 0.14$ (exp.) ± 0.07 (theory)
s- and t-channel search

- Use Neural Networks from the combined analysis
- Adding an additional s-channel Neural Network for 2 jets and 1 b-tag
- Perform a 2 parameter likelihood fit to data

Example for ttbar
Neural Network template

\[
\sigma_{t\text{-channel}} = 0.8^{+0.7}_{-0.6} \text{ (stat. + syst.) pb}
\]
\[
\sigma_{s\text{-channel}} = 1.6^{+0.9}_{-0.8} \text{ (stat. + syst.) pb}
\]
\textbf{SM single top summary}

- Both CDF and DØ perform several analyses searching for the production of single top quarks

- Individual analyses and the combinations are in good agreement with the SM predictions

\[
\begin{array}{|c|c|c|}
\hline
& \text{CDF and DØ tb+tqb Cross Section} & \\
\hline
\text{CDF Decision Trees} & 1.9 \pm 0.8 \pm 0.7 \text{ pb} & \\
2.2 \text{ fb}^{-1} & \\
\hline
\text{CDF Matrix Elements} & 2.2 \pm 0.8 \pm 0.7 \text{ pb} & \\
2.2 \text{ fb}^{-1} & \\
\hline
\text{CDF Neural Networks} & 2.0 \pm 0.9 \pm 0.8 \text{ pb} & \\
2.2 \text{ fb}^{-1} & \\
\hline
\text{CDF Likelihood Funcs.} & 1.8 \pm 0.9 \pm 0.8 \text{ pb} & \\
2.2 \text{ fb}^{-1} & \\
\hline
\text{CDF Combination preliminary} & 2.2 \pm 0.7 \pm 0.7 \text{ pb} & \\
& \\
\hline
\text{DØ Decision Trees} & 4.9 \pm 1.4 \pm 1.4 \text{ pb} & \\
0.9 \text{ fb}^{-1} & \\
\hline
\text{DØ Matrix Elements} & 4.8 \pm 1.6 \pm 1.4 \text{ pb} & \\
0.9 \text{ fb}^{-1} & \\
\hline
\text{DØ Bayesian NNs} & 4.4 \pm 1.6 \pm 1.4 \text{ pb} & \\
0.9 \text{ fb}^{-1} & \\
\hline
\text{DØ Combination PRD} & 4.7 \pm 1.3 \pm 1.3 \text{ pb} & \\
& \\
\hline
N. Kidonakis, PRD 74, 114012 (2006) & \\
Z. Sullivan, PRD 70, 114012 (2004) & \\
\hline
\end{array}
\]
Searches for New Physics

W'

FCNC
DØ [PRL 99:191802 (2007)]

charged Higgs
Search for W'

- Analysis performed in 0.9 fb$^{-1}$
- Search for W'_R and W'_L separately
- Selection similar to single top analyses
- Binned likelihood analysis using \sqrt{S}

Diagrams:

- **Left Diagram:**
 - Graph: Events/20 GeV vs. \sqrt{s} [GeV]
 - Symbols: data, W' 700 GeV, W' 800 GeV, single top, $t\bar{t}$, W+jets, multijets

- **Right Diagram:**
 - Graph: Events/20 GeV vs. \sqrt{s} [GeV]
 - Symbols: data, W' 700 GeV, W' 800 GeV, single top, $t\bar{t}$, W+jets, multijets
Search for W'

- Fit region with $\sqrt{S} > 400 \text{ GeV}$
- Set 95% C.L for W'_L and W'_R masses and couplings:
 - $M(W'_L) > 731 \text{ GeV}$
 - $M(W'_R; l, q) > 739 \text{ GeV}$
 - $M(W'_R; q, q) > 768 \text{ GeV}$

Phys. Rev. Lett. 100, 211803 (2008)
Search for W'

- Analysis of 1.9 fb^{-1} of RunII data using single top selection
- Assume SM-like couplings to fermions for mass analysis
- Use b-tagged events with 2 or 3 jets
- Fit invariant mass of reconstructed W and the two leading jets

![Graphs showing M_{WJJ} distributions for 2 jets 1 tag and 3 jets 1 tag with data and various contributions.]

KS: 16.3%
Chi2/DoF: 13.4/20: 84.1%

KS: 93.7%
Chi2/DoF: 15.7/17: 52.7%
Search for W'

- Set 95% C.L. on W' mass and couplings
- Result:
 - $M(W') > 800 \text{ GeV}$ ($M(W') > M(\nu_R)$)
 - $M(W') > 825 \text{ GeV}$ ($M(W') < M(\nu_R)$)

Limits on heavy gauge boson production in single top final state!
Search for charged Higgs

- Two-Higgs Doublet Model (2HDM) extension to the SM predicts five Higgs bosons, two carry electric charge (H^+, H^-)
- Three types of 2HDMs in order to avoid FCNCs:
 - Type I: One doublet gives mass to all quarks and leptons
 - Type II: One doublet gives mass to up-type quarks and neutrinos, other doublet gives mass to down-type quarks and charged leptons
 - Type III: Two doublets contribute to quark and lepton masses. Top-charm mixing parameter ξ [H.-H. He and C.-P. Yuan, PRL 83 (1999) 28]
- Cross sections up to:
 - Type I: \sim10pb (Type I)
 - Type II: \sim0.5pb (Type II) with $\tan \beta = 100$
 - Type III: \sim0.1 pb (Type III) with $\xi=5$
Search for charged Higgs

- Analyse events with 2 jets, one or two b-tags, and an electron or a muon (4 channels)
- Binned likelihood fit on reconstructed invariant mass of jets and reconstructed W

95% CL Upper Limit on 2HDM Types-I & -III H^+ Production

95% CL Upper Limit on 2HDM Type-II H^+ Production

Limits on 2HDM cross sections!
Summary & Outlook

- Both DØ and CDF see 3σ evidence for single top quark production
- First direct measurements of $|V_{tb}|$
- Transfer of analysis techniques to signal processes beyond Standard Model in progress

- Excellent Tevatron performance combined with high efficiency data taking promises interesting measurements in the single top final state in the (near) future!
Backup
Systematic uncertainties

DØ

Source of Uncertainty	Size
Top pairs normalization	18%
W+jets & multijets normalization	18–28%
Integrated luminosity	6%
Trigger modeling	3–6%
Lepton ID corrections	2–7%
Jet modeling	2–7%
Other small components	Few %
Jet energy scale	1–20%
Tag rate functions	2–16%

+ systematics affecting shape

CDF

Syst. Uncertainty	Rate	Shape
Jet Energy Scale	0...16%	
Initial state radiation	0...11%	
Final state radiation	0...15%	
Parton Distribution Function	2...3%	
MC Generator	1...5%	
Event Detection Efficiency	0...9%	
Luminosity	6%	
NN Flavor-Separator		
Mistag model		
Q2 scale in ALPGEN MC		
Input variable mismodeling		
Wbb+Wcc normalization	30%	
Wc normalization	30%	
Mistag normalization	17...29%	
Top-pair normalization & mtop	23%	

HQ&L2008, Melbourne, Australia | Matthias Kirsch | RWTH Aachen University | June 5th 2008
Cross checks

• Check background modelling in
 ➢ W+jets dominated region ($H_T < 175$ GeV)
 ➢ Region dominated by top pair production ($H_T > 300$ GeV)
Do we see single tops?

- Look at high BDT output
- Looking at reconstructed top quark mass and q(lepton) * η(untagged jet) distribution (Tevatron specific t-channel variable)

Distributions in good agreement with SM single top hypothesis
Boosted Decision Trees

- Machine learning technique, widely used in social sciences
- Extension to a cut-based analysis
- Cut at each node on variable giving the best separation
- Use adaptive boosting to dilute the discrete output of a single decision tree
- Reweight misclassified events
- Calculate purity p in each final leaf (discriminant)
Matrix method

- Uses the 4-vectors of reconstructed leptons and jets
- Use matrix elements of main signal and background Feynman diagrams to compute an event probability density for signal and background hypotheses

\[
P_i(\vec{x}) = \frac{1}{\sigma} \int \ldots \int \sum_{\text{comb}} d^n \sigma_i(\vec{y}) dq_1 dq_2 f(q_1) f(q_2) W(\vec{x} ; \vec{y})
\]

\[D_S(\vec{x}) = \frac{P_S(\vec{x})}{P_S(\vec{x}) + P_{bkgd}(\vec{x})}\]

- Calculate discriminant D (S = s- or t-channel):