BOUNDDEDNESS OF MULTIDIMENSIONAL HAUSDORFF OPERATORS ON L^1 AND H^1 SPACES

ELIJAH LIFLYAND

ABSTRACT. For a wide family of multivariate Hausdorff operators, a new stronger condition for the boundedness of an operator from this family on the real Hardy space H^1 by means of atomic decomposition.

2000 Mathematics Subject Classification. Primary 47B38, 42B10; Secondary 46E30.

Key words and phrases: Hausdorff operator, real Hardy space, atomic decomposition, eigenvalues.

1. Introduction

In the one-dimensional case Hausdorff operators on the real line were introduced in [3] and studied on the Hardy space in [7]. As in [1], we define a multidimensional Hausdorff type operator by

$$ (Hf)(x) = (H_\Phi f)(x) = (H_{\Phi,A} f)(x) = \int_{\mathbb{R}^n} \Phi(u) f(xA(u)) \, du, $$

where $A = A(u) = (a_{ij})^n_{i,j=1} = (a_{ij}(u))^n_{i,j=1}$ is the $n \times n$ matrix with the entries $a_{ij}(u)$ being measurable functions of u. This matrix may be singular at most on a set of measure zero; $xA(u)$ is the row n-vector obtained by multiplying the row n-vector x by the matrix A. Of course, xA can be written as $A^T x^T$, where both matrix and vector are transposed, the latter to a column vector.

We are going to prove sufficient conditions, in terms of Φ and A, for the boundedness of the whole range of Hausdorff type operators (1) in $H^1(\mathbb{R}^n)$.

Before proving the result we give natural assumptions on Φ and A, which provide the boundedness of the Hausdorff operator in $L^1(\mathbb{R}^n)$.

Let the following condition be satisfied:

$$ \|\Phi\|_{L_A} = \int_{\mathbb{R}^n} |\Phi(u)| |\det A^{-1}(u)| \, du < \infty, $$

or $\varphi(u) = \Phi(u) \det A^{-1}(u) \in L^1(\mathbb{R}^n)$.

Among the other basic properties of Hausdorff operators, one may find in [1], in slightly different terms, that the operator Hf is bounded taking L^1 into L^1, with

$$ \|Hf\|_{L^1} \leq \|\Phi\|_{L_A} \|f\|_{L^1}. $$
It was proved in [8] that the same condition provides the boundedness of Hausdorff type operators on $H^1(\mathbb{R}^n)$ for diagonal matrices A with all diagonal entries equal to one another.

We denote

$$\|B\| = \|B(u)\| = \max_j (|b_{1j}(u)| + \ldots + |b_{nj}(u)|),$$

where b_{nj} are the entries of the matrix B, to be the operator ℓ-norm. We will say that $\Phi \in L^*_{\Lambda}$ if

$$\|\Phi\|_{L^*_{\Lambda}} = \int_{\mathbb{R}^n} |\Phi(u)| \|B(u)\|^n du < \infty.$$

The following result was proved by Lerner and Liflyand [5] for the boundedness of Hausdorff type operators in $H^1(\mathbb{R}^n)$ for general matrices A. The proof used duality argument.

Theorem 1. The Hausdorff operator Hf is bounded on the real Hardy space $H^1(\mathbb{R}^n)$ provided $\Phi \in L^*_{\Lambda}$, and

$$\|Hf\|_{H^1(\mathbb{R}^n)} \leq \|\Phi\|_{L^*_{\Lambda}} \|f\|_{H^1(\mathbb{R}^n)}.$$

(3)

The difference in conditions $\Phi \in L_{A^{-1}}$ and $\Phi \in L^*_{\Lambda}$ seemed to be quite natural. In [5] and then in [6] the problem of the sharpness of Theorem 1 was posed. We will prove that a weaker condition provides the boundedness of Hausdorff type operators on $H^1(\mathbb{R}^n)$. The proof will be based on atomic decomposition of $H^1(\mathbb{R}^n)$.

In what follows $a \ll b$ means that $a \leq Cb$ for some absolute constant C but we are not interested in explicit indication of this constant.

2. **Main result and proof**

Let $\|B\|_2 = \max_{|x|=1} |Bx^T|$, where $| \cdot |$ denotes the Euclidean norm. It is known (see, e.g., [4, Ch.5, 5.6.35]) that this norm does not exceed any other matrix norm. We will say that $\Phi \in L^2_B$ if

$$\|\Phi\|_{L^2_B} = \int_{\mathbb{R}^n} |\Phi(u)| \|B(u)\|^2 du < \infty.$$

The following result is true.

Theorem 2. The Hausdorff operator Hf is bounded on the real Hardy space $H^1(\mathbb{R}^n)$ provided $\Phi \in L^2_{\Lambda^{-1}}$, and

$$\|Hf\|_{H^1(\mathbb{R}^n)} \ll \|\Phi\|_{L^2_{\Lambda^{-1}}} \|f\|_{H^1(\mathbb{R}^n)}.$$

(4)

Proof. Let $a(x)$ denote an atom (a $(1, \infty, 0)$-atom), a function satisfying the following conditions:

$$\text{supp } a \subset B(x_0, r);$$

(5)
\(||a||_\infty \leq \frac{1}{|B(x_0, r)|}; \)

\(\int_{\mathbb{R}^n} a(x) \, dx = 0. \)

It is well known that

\(||f||_{H^1} \sim \inf \{ \sum_k |c_k| : f(x) = \sum_k c_k a_k(x) \}, \)

where \(a_k \) are atoms.

The other value to which \(||f||_{H^1} \) is equivalent is

\(\sum_{p=0}^n \int_{\mathbb{R}^n} |R_p f(x)| \, dx, \)

where \(R_0 f \equiv f \) and \(R_p \) are \(n \) Riesz transforms (see, e.g., [9]).

We now have

\[||\mathcal{H} f||_{H^1} = ||\int_{\mathbb{R}^n} \Phi(u) f(\cdot A(u)) \, du||_{H^1} \]
\[\ll \sum_{p=0}^n \int_{\mathbb{R}^n} |R_p \mathcal{H} f(x)| \, dx \leq \int_{\mathbb{R}^n} |\Phi(u)| \sum_{p=0}^n ||R_p f(\cdot A(u))||_{L^1} \, du \]
\[\ll \int_{\mathbb{R}^n} |\Phi(u)| ||f(\cdot A(u))||_{H^1} \, du. \]

We wish to estimate the right-hand side from above by using (8). Let

\[f(xA(u)) = \sum_k c_k a_k(xA(u)). \]

We will show that multiplying \(a_k(xA(u)) \) by a constant depending on \(u \) (actually on \(A(u) \)) we get an atomic decomposition of \(f \) itself, with no composition in the argument. Since we analyze all such decompositions for \(f \), the upper bound will be \(||f||_{H^1} \) times the mentioned constant, which completes the proof.

Thus, let us figure out when, or under which transformation \(a_k(xA(u)) \) becomes an atom. We have

\[\int_{\mathbb{R}^n} a_k(xA(u)) \, dx = \int_{a_k(xA(u)) \neq 0} a_k(xA(u)) \, dx, \]

and under substitution \(xA(u) = v \) the integral becomes \(\int_{\mathbb{R}^n} a_k(v) \, dv \) times a Jacobian depending only on \(u \). This integral vanishes because of (7).

The support of \(a_k(xA(u)) \) is \(< xA, xA > \leq r^2 \), an ellipsoid. To use known results, let us represent it in the transposed form \(< A^T x^T, A^T x^T > \leq r^2 \).

Let us solve the following extremal problem. We are looking for the min of the quadratic form \(< Bx^T, Bx^T > \), where \(B \) is a non-singular \(n \times n \) real-valued matrix - we denote the linear transformation and its matrix with the same symbol - on the unit sphere \(< x^T, x^T > = 1 \).
Denoting by B^* the adjoint to B, we arrive to the equivalent problem for $<B^*Bx, x^T>$. Since $(B^*)^* = B$, the operator B^*B is self-adjoint:

$$<B^*Bx, y> = <Bx, By> = <x, B^*By>,$$

and thus positive definite. Since B is non-singular, the same B^*B is.

If a transformation is positive definite, all its eigenvalues are non-negative; if it is also non-singular all the eigenvalues are strictly positive. Define the minimal eigenvalue of B^*B by l_1.

By Theorem 1 from Ch.II, §17 of [2], for self-adjoint C the form $<Cx, x>$ on the unit sphere attains its minimum equal to the least eigenvalue of C.

Hence the solution of the initial problem is just l_1. We mention also that the matrix of the adjoint real transformation is the transposed initial. Therefore, the desired minimum is the least eigenvalue l_1 of B^TB.

It follows from this by taking $B = A^T$

$$l_1 < x^T, x^T> = <A^Tx^T, A^Tx^T> \leq r^2,$$

and every point of the ellipsoid $<A^Tx^T, A^Tx^T> \leq r^2$ lies in the ball $<x^T, x^T> \leq r^2/l_1$, where l_1 is the minimal eigenvalue of the matrix A^TA.

It remains to check the ∞ norm. Instead of the measure of the ball in (6) we must have the measure of the ball of radius $r/\sqrt{l_1}$. This is achieved by multiplying $a_k(xA(u))$ by $l_1^{n/2}$ and hence $l_1^{n/2}a_k(xA(u))$ is an atom. Correspondingly,

$$||f(A(u))||_{H^1} \ll l_1^{-n/2} ||f||_{H^1},$$

and finally Hf belongs to H^1 provided

$$\int_{\mathbb{R}^n} |\Phi(u)| l_1^{-n/2}(u) \, du < \infty.$$

Further, $l_1^{-n/2} = L_n^{n/2}$, where L_n is the maximal eigenvalue of the matrix $(A^TA)^{-1} = A^{-1}(A^T)^{-1}$. But it is known that such L_n is equal to the spectral radius of the corresponding matrix $A^{-1}(A^T)^{-1}$ and, in turn, to $||A^{-1}||_2^2$. Replacing $l_1^{-n/2}(u)$ in (11) with the obtained bound completes the proof.

As is mentioned above, the obtained condition (11) is weaker that (3) but of course still more restrictive than (2).

3. Acknowledgements

The author is grateful to T. Bandman, S. Kislyakov, and A. Lerner for stimulating discussions.

References

[1] G. Brown and F. Móricz, ‘Multivariate Hausdorff operators on the spaces $L^p(\mathbb{R}^n)$’, J. Math. Anal. Appl. 271 (2002), 443–454.
[2] I.M. Gel’fand, ‘Lectures on Linear Algebra’, Interscience Publishers, 1978.
[3] C. Georgakis, ‘The Hausdorff mean of a Fourier-Stieltjes transform’, Proc. Am. Math. Soc. 116 (1992), 465–471.
[4] R. A. Horn and Ch. R. Johnson, ‘Matrix analysis’, Cambridge Univ. Press, Cambridge, 1985.
[5] A. Lerner and E. Liflyand, ‘Multidimensional Hausdorff operators on the real Hardy space’, J. Austr. Math. Soc. 83(2007), 79–86.
[6] E. Liflyand, ‘Open Problems on Hausdorff Operators’, In: Complex Analysis and Potential Theory, Proc. Conf. Satellite to ICM 2006, Gebze, Turkey, 8-14 Sept. 2006; Eds. T. Aliyev Azeroglu and P.M. Tamrazov; World Sci., 2007, 280–285.
[7] E. Liflyand and F. Móricz, ‘The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb{R})$', Proc. Am. Math. Soc. 128 (2000), 1391–1396.
[8] F. Móricz, ‘Multivariate Hausdorff operators on the spaces $H^1(\mathbb{R}^n)$ and $BMO(\mathbb{R}^n)$’, Analysis Math. 31 (2005), 31–41.
[9] F. Weisz, ‘Singular integrals on product domains’, Arch. Math. 77 (2001), 328–336.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT-GAN 52900, ISRAEL

E-mail address: liflyand@yahoo.com, liflyand@math.biu.ac.il
URL: www.math.biu.ac.il/~liflyand