DUAL GRAPHS OF EXCEPTIONAL DIVISORS

JÁNOS KOLLÁR

Let X be a complex algebraic or analytic variety. Its local topology near a point $x \in X$ is completely described by the link $L(x \in X)$, which is obtained as the intersection of X with a sphere of radius $0 < \epsilon \ll 1$ centered at x. A regular neighborhood of $x \in X$ is homeomorphic to the cone over $L(x \in X)$; cf. [GM88, p.41].

One can study the local topology of X by choosing a resolution of singularities $\pi: Y \to X$ such that $E_x := \pi^{-1}(x) \subset Y$ is a simple normal crossing divisor and then relating the topology of E_x to the topology of the link $L(x \in X)$. This approach, initiated in [Mum61], has been especially successful for surfaces.

The topology of a simple normal crossing divisor E can in turn be understood in 2 steps. First, the E_i are smooth projective varieties, and their topology is much studied. A second layer of complexity comes from how the components E_i are glued together. This gluing process can be naturally encoded by a finite cell complex $D(E)$, called the dual graph or dual complex of E; see Definition 5. Given $x \in X$ and a resolution $\pi: Y \to X$, the dual complex $D(E_x)$ depends on the resolution chosen, but its homotopy type does not; we denote it by $DR(x \in X)$ (see [Thu07, Ste08, ABW11]).

Using this approach [KK11] proved that for every finitely presented group Γ there is a complex algebraic singularity $(x \in X)$ (of dimension 3) such that $\pi_1(L(x \in X)) \cong \Gamma$. The proof starts with first constructing a simple normal crossing variety E such that $\pi_1(E) \cong \pi_1(D(E)) \cong \Gamma$ and then realizing E as the exceptional divisor on a resolution of a singularity $(x \in X)$, yielding a chain of isomorphisms

$$\pi_1(L(x \in X)) \cong \pi_1(DR(0 \in X)) \cong \pi_1(D(E)) \cong \Gamma.$$

The aim of this note is to go further and prove that not just $\pi_1(DR(0 \in X))$ but $DR(0 \in X)$ can be arbitrary.

Theorem 1. Let T be a connected, finite cell complex. Then there is a normal singularity $(0 \in X_T)$ whose dual complex $DR(0 \in X_T)$ is homotopy equivalent to T.

It is interesting to connect properties of $DR(0 \in X)$ with algebraic or geometric properties of the singularity $(0 \in X)$. A quasi projective variety X has rational singularities if for one (equivalently every) resolution of singularities $p: Y \to X$ and for every algebraic (or holomorphic) vector bundle F on X, the natural maps $H^i(X, F) \to H^i(Y, p^*F)$ are isomorphisms. That is, for purposes of computing cohomology of vector bundles, X behaves like a smooth variety. See [KM98, Sec.5.1] for details.

It is known that if X has rational singularities then $DR(0 \in X)$ is \mathbb{Q}-acyclic, that is, $H^i(DR(0 \in X), \mathbb{Q}) = 0$ for $i > 0$, see for example [KK11, Lem.39]. The fundamental groups of the $DR(0 \in X)$ for rational singularities were determined in [KK11]: these are exactly those finitely presented groups G for which
$H^1(G, \mathbb{Q}) = H^2(G, \mathbb{Q}) = 0$ (sometimes called \mathbb{Q}-superperfect groups). Our next result determines the possible homotopy types of $\mathcal{D}(0 \in X)$ for rational singularities.

Theorem 2. Let T be a connected, finite, \mathbb{Q}-acyclic cell complex. Then there is a rational singularity $(0 \in X)$ whose dual complex $\mathcal{D}(0 \in X)$ is homotopy equivalent to T.

While these are much stronger results than the fundamental group versions, most of the work needed to prove these theorems was already done in [Kol11, KK11].

The main technical result of [KK11] proves that for every compact simplicial complex T there is a projective simple normal crossing variety Z such that $\mathcal{D}(Z)$ is homotopy equivalent to T, while the main technical result of [Kol11] shows that for every projective simple normal crossing variety Z there is a normal singularity $(0 \in X)$ and a partial resolution $\pi : X' \to X$ such that $Z \cong \pi^{-1}(0) \subset X'$.

If $\dim Z \leq 4$ then X' has only very simple singularities which are easy to resolve. This was sufficient to control $\pi_1(\mathcal{D}(0 \in X))$. However, as $\dim Z$ increases, X' has more and more complicated singularities given locally by equations of the form

$$x_1 \cdots x_n = t \cdot \det \begin{pmatrix} y_{11} & \cdots & y_{1m} \\ \vdots & \ddots & \vdots \\ y_{m1} & \cdots & y_{mm} \end{pmatrix}$$

where n, m are arbitrary and (x_i, y_{ij}, t) are local coordinates.

If $\dim Z = 2$, then the only singularity that appears is the ordinary 3-fold double point $(x_1x_2 = ty_{11})$. The first somewhat complicated singularity

$$(x_1x_2x_3 = t \cdot (y_{11}y_{22} - y_{12}y_{21})) \subset \mathbb{C}^8$$

appears when $\dim Z = 6$.

In this paper we start with the varieties constructed in [Kol11, KK11] and resolve these singularities. Surprisingly, the resolution process described in [Kol11, KK11] leaves the dual complex unchanged and we get the following.

Theorem 3. Let Z be a projective simple normal crossing variety of dimension n. Then there is a normal singularity $(0 \in X)$ of dimension $(n+1)$ and a resolution $\pi : Y \to X$ such that $E := \pi^{-1}(0) \subset Y$ is a simple normal crossing divisor and its dual complex $\mathcal{D}(E)$ is naturally identified with $\mathcal{D}(Z)$.

4 (Open problems).

(4.1) It might be possible to describe all complexes that occur on resolutions of $(n+1)$-dimensional varieties. It is clear that $\dim \mathcal{D}(E) \leq n$ but I do not know any other restrictions.

Starting with an n-dimensional complex T, the constructions of [Kol11, KK11] give a $(2n+1)$-dimensional singularity $(0 \in X)$ such that $\mathcal{D}(0 \in X)$ is homotopy equivalent to T. This increase of the dimension may not be necessary.

(4.2) The singularities constructed in Theorems 1-2 are not isolated. It would be interesting to construct isolated examples.

(4.3) As shown by [KK11], links of isolated singularities are much more complicated topologically than smooth projective varieties. As a starting point of further investigations, it would be useful to understand the precise relationship between $\mathcal{D}(0 \in X)$ and the topology of the link of an isolated singularity.
(4) As we noted, given a singularity \((0 \in X)\) and a resolution \(\pi : Y \to X\) such that \(E := \pi^{-1}(0)\) is a simple normal crossing divisor, the homotopy type \(\mathcal{D}R(0 \in X)\) of the dual complex \(\mathcal{D}(E)\) does not depend on the choice of \(\pi : Y \to X\).

Note that if \(p : X' \to X\) is a proper birational morphism such that \(E' := \pi^{-1}(0)\) is a simple normal crossing divisor, then the dual complex \(\mathcal{D}(E')\) is defined even if \(X'\) is singular.

It is possible that \(\mathcal{D}(E')\) is in fact homotopy equivalent to \(\mathcal{D}R(0 \in X)\) as long as \(X'\) has rational singularities. (The latter condition is actually quite weak, for instance it holds if none of the strata of \(E\) are contained in \(\text{Sing } X\).)

(5) Assume that \((X, \Delta)\) is dlt \([\text{KM}98, 2.37]\). Since dlt implies rational, \(\mathcal{D}R(x \in X)\) a \(\mathbb{Q}\)-acyclic for every point \(x \in X\). Furthermore, \(\pi_1(\mathcal{D}R(x \in X)) = 1\) by \([\text{Kol93}]\) and \([\text{Tak03}]\). Thus \(\mathcal{D}R(x \in X)\) is contractible iff it is \(\mathbb{Z}\)-acyclic. It would be very interesting to decide whether \(\mathcal{D}R(x \in X)\) is contractible or not. For quotient singularities this is proved in \([\text{KST11}]\).

Related results are treated in \([\text{Kol07a}]\) and \([\text{HX09}]\).

Definition 5 (Dual graphs). Let \(X\) be a variety with irreducible components \(\{X_i : i \in I\}\). We say that \(X\) is a simple normal crossing variety (abbreviated as snc) if the \(X_i\) are smooth and every point \(p \in X\) has an open (Euclidean) neighborhood \(p \in U_p \subset X\) and an embedding \(U_p \hookrightarrow \mathbb{C}^{n+1}_p\) such that \(U_p \subset (z_1 \cdots z_{n+1} = 0)\). A stratum of \(X\) is any irreducible component of an intersection \(\cap_{i \in J} X_i\) for some \(J \subset I\).

The combinatorics of \(X\) is encoded by a cell complex \(\mathcal{D}(X)\) whose vertices are labeled by the irreducible components of \(X\) and for every stratum \(Z \subset \cap_{i \in J} X_i\) we attach a \((|J| - 1)\)-dimensional cell. Note that for any \(j \in J\) there is a unique irreducible component of \(\cap_{i \in J \setminus \{j\}} X_i\) that contains \(Z\); this specifies the attaching map. \(\mathcal{D}(X)\) is called the dual complex or dual graph of \(X\). (Although \(\mathcal{D}(X)\) is not a simplicial complex in general, it is an unordered \(\Delta\)-complex in the terminology of \([\text{Hat02}]\) p.534).

Definition 6 (Dual graphs associated to a singularity). Let \(X\) be a normal variety and \(x \in X\) a point. Choose a resolution of singularities \(\pi : Y \to X\) such that \(E_x := \pi^{-1}(x) \subset Y\) is a simple normal crossing divisor. Thus it has a dual complex \(\mathcal{D}(E_x)\).

The dual graph of a normal surface singularity has a long history. Higher dimensional versions appear in \([\text{Kul77}]\ [\text{Per77}]\ [\text{Gor80}]\ [\text{FM83}]\) but systematic investigations were started only recently; see \([\text{Thu07}]\ [\text{Ste08}]\ [\text{Pay09}]\ [\text{Pay11}]\).

It is proved in \([\text{Thu07}]\ [\text{Ste08}]\ [\text{ABW11}]\) that the homotopy type of \(\mathcal{D}(E_x)\) is independent of the resolution \(Y \to X\). We denote it by \(\mathcal{D}R(x \in X)\).

The proof of Theorem 4 starts with the following, which is a combination of Theorem 29 and Lemma 39 of \([\text{KK11}]\).

Theorem 7. Let \(T\) be a finite cell complex. Then there is a projective simple normal crossing variety \(Z_T\) such that

1. \(\mathcal{D}(Z_T)\) is homotopy equivalent to \(T\),
2. \(\pi_1(Z_T) \cong \pi_1(T)\) and
3. \(H^i(Z_T, \mathcal{O}_{Z_T}) \cong H^i(T, \mathbb{C})\) for every \(i \geq 0\). □

8 (Summary of the construction of \([\text{Kol11}]\)). Let \(Z\) be a projective local complete intersection variety of dimension \(n\) and choose any embedding \(Z \subset P\) into a smooth
Let H be the complete intersection of $(N - n - 1)$ general sections of $L(-Z)$. Set

$$Y := B_{(-Z)}Y_1 := \text{Proj}_1 \sum_{m=0}^{\infty} \mathcal{O}_{Y_1}(mZ).$$

(Note that this is not the blow-up of Z but the blow-up of its inverse in the class group.)

It is proved in [Kol11] that the birational transform of Z in Y is a Cartier divisor isomorphic to Z and there is a contraction morphism

$$Z \subset Y \quad \downarrow \quad \downarrow \pi \quad (\text{S}1)$$

such that $Y \setminus Z \cong X \setminus \{0\}$. If Y is smooth then $\mathcal{D}(0 \in X) = \mathcal{D}(Z)$ and we are done with Theorem. However, the construction of [Kol11] yields a smooth variety Y only if $\dim Z = 1$ or Z is smooth. (It is easy to see that not every simple normal crossing variety Z can be realized as a hypersurface on a smooth variety, so this limitation is not unexpected.)

Thus we need to understand the singularities of Y and resolve them.

In order to do this, we need a very detailed description of the singularities of Y. This is a local question, so we may assume that $Z \subset \mathbb{C}^N$ is a complete intersection defined by $f_1 = \cdots = f_{N-n} = 0$. Let $Z \subset Y_1 \subset \mathbb{C}^N$ be a general complete intersection defined by equations

$$h_{i,1}f_1 + \cdots + h_{i,N-n}f_{N-n} = 0 \quad \text{for} \quad i = 1, \ldots, N-n-1.$$

Let $H = (h_{ij})$ be the $(N-n) \times (N-n)$ matrix of the system and H_i the submatrix obtained by removing the ith column. By [Kol11] or [Kol12, Sec.3.2], an open neighborhood of $Z \subset Y$ is defined by the equations

$$(f_i = (-1)^j \cdot t \cdot \det H_i : i = 1, \ldots, N-n) \subset \mathbb{C}^N \times \mathbb{C}_t. \quad (\text{S}2)$$

Assume now that Z has simple normal crossing singularities. Up-to permuting the f_i and passing to a smaller open set, we may assume that df_2, \ldots, df_{N-n} are linearly independent everywhere along Z. Then the singularities of Y all come from the equation

$$f_1 = -t \cdot \det H_1. \quad (\text{S}3)$$

Our aim is to write down local normal forms for Y along Z.

On \mathbb{C}^N there is a stratification $\mathbb{C}^N = R_0 \supset R_1 \supset \cdots$ where R_i is the set of points where $\text{rank } H_i \leq (N-n-1) - i$. Since the h_{ij} are general, $\text{codim}_W R_i = i^2$ and we may assume that every stratum of Z is transversal to each $R_i \setminus R_{i+1}$. Let $S \subset Z$ be any stratum and $p \in S$ a point such that $p \in R_m \setminus R_{m+1}$. We can choose local coordinates $\{x_1, \ldots, x_d\}$ and $\{y_{rs} : 1 \leq r, s \leq m\}$ such that, in a neighborhood of p,

$$f_1 = x_1 \cdots x_d \quad \text{and} \quad \det H_1 = \det (y_{rs} : 1 \leq r, s \leq m).$$

Note that $m^2 \leq \dim S = n - d$, thus we can add $n - d - m^2$ further coordinates y_{ij} to get a complete local coordinate system on S.

Then the n coordinates $\{x_k, y_{ij}\}$ determine a map

$$\sigma : \mathbb{C}^N \times \mathbb{C}_t \to \mathbb{C}^n \times \mathbb{C}_t$$
such that \(\sigma(Y) \) is defined by the equation
\[
x_1 \cdots x_d = t \cdot \det(y_{rs} : 1 \leq r, s \leq m).
\]
Since \(df_2, \ldots, df_{N-n} \) are linearly independent along \(Z \), we see that \(\sigma|_Y \) is étale along \(Z \subset Y \).

We can summarize these considerations as follows.

Proposition 9. Let \(Z \) be a normal crossing variety of dimension \(n \). Then there is a normal singularity \((0 \in X) \) of dimension \(n+1 \) and a proper, birational morphism \(\pi : Y \to X \) such that \(\text{red} \pi^{-1}(0) \cong Z \) and for every point \(p \in \pi^{-1}(0) \) we can choose local étale or analytic coordinates called \(\{ x_i : i \in I_p \} \) and \(\{ y_{rs} : 1 \leq r, s \leq m_p \} \) (plus possibly other unnamed coordinates) such that one can write the local equations of \(Z \subset Y \) as
\[
(\prod_{i \in I_p} x_i = t = 0) \subset (\prod_{i \in I_p} x_i = t \cdot \det(y_{rs} : 1 \leq r, s \leq m_p)) \subset \mathbb{C}^{n+2}. \]

10 (Determinantal varieties). We have used the following basic properties of determinantal varieties. These are quite easy to prove directly; see [Har95, 12.2 and 14.16] for a more general case.

Let \(V \) be a smooth, affine variety, and \(\mathcal{L} \subset \mathcal{O}_V \) a finite dimensional sub vector space without common zeros. Let \(H = (h_{ij}) \) be an \(n \times n \) matrix whose entries are general elements in \(\mathcal{L} \). For a point \(p \in V \) set \(m_p = \text{corank} H(p) \). Then there are local analytic coordinates \(\{ y_{rs} : 1 \leq r, s \leq m_p \} \) (plus possibly other unnamed coordinates) such that, in a neighborhood of \(p \),
\[
\det H = \det(y_{rs} : 1 \leq r, s \leq m_p).
\]
In particular, \(\text{mult}_p(\det H) = \text{corank} H(p) \), for every \(m \) the set of points \(R_m \subset V \) where \(\text{corank} H(p) \geq m \) is a subvariety of pure codimension \(m^2 \) and \(\text{Sing} R_m = R_{m+1} \).

11 (Inductive set-up for resolution). The object we try to resolve is a triple
\[
(Y, E, F) := (Y, \sum_{i \in I} E_i, \sum_{j \in J} a_j F_j)
\]
where \(Y \) is a variety over \(\mathbb{C} \), \(E_i, F_j \) are codimension 1 subvarieties and \(a_j \in \mathbb{N} \). (The construction \(\boxplus \) produces a triple \((Y, E := Z, F := \emptyset) \). The role of the \(F_j \) is to keep track of the exceptional divisors as we resolve the singularities of \(Y \).)

We assume that \(E \) is a simple normal crossing variety and for every point \(p \in E \) there is a (Euclidean) open neighborhood \(p \in Y_p \subset Y \), an embedding \(\sigma_p : Y_p \hookrightarrow \mathbb{C}^{\text{dim} Y+1} \), subsets \(I_p \subset I \) and \(J_p \subset J \), a natural number \(m_p \in \mathbb{N} \) and local coordinates in \(\mathbb{C}^{\text{dim} Y+1} \) called
\[
\{ x_i : i \in I_p \}, \{ y_{rs} : 1 \leq r, s \leq m_p \}, \{ z_j : j \in J_p \} \quad \text{and} \quad t
\]
(plus possibly other unnamed coordinates) such that one can write the local equation of \(\sigma_p(Y_p) \subset \mathbb{C}^{\text{dim} Y+1} \) as
\[
\prod_{i \in I_p} x_i = t \cdot \det(y_{rs} : 1 \leq r, s \leq m_p) \cdot \prod_{j \in J_p} z_j^{a_j}. \]
Furthermore, \(\sigma_p(E_i) = (t = x_i = 0) \cap \sigma_p(Y_p) \) for \(i \in I_p \) and \(\sigma_p(F_j) = (z_j = 0) \cap \sigma_p(Y_p) \) for \(j \in J_p \). (We do not impose any compatibility condition between the local equations on overlapping charts.)

We say that \((Y, E, F) \) is resolved at \(p \) if \(Y \) is smooth at \(p \).

The key technical result of the paper is the following.
Proposition 12. Let (Y, E, F) be a triple as above. Then there is a resolution of singularities $\pi : (Y', E', F') \to (Y, E, F)$ such that

1. Y' is smooth and E' is a simple normal crossing divisor,
2. $E' = \pi^{-1}(E)$,
3. every stratum of E' is mapped birationally to a stratum of E and
4. π induces an identification $D(E') = D(E)$.

Proof. The resolution will be a composite of explicit blow-ups of smooth subvarieties (except at the last step). We use the local equations to describe the blow-up centers locally. Thus we need to know which local subvarieties can be defined globally. For example, choosing a divisor F_{j_1} specifies the local divisor $(z_{j_1} = 0)$ at every point $p \in F_{j_1}$. Similarly, choosing two divisors E_{i_1}, E_{i_2} gives the local subvarieties $(t = x_{i_1} = x_{i_2} = 0)$ at every point $p \in E_{i_1} \cap E_{i_2}$. (Here it is quite important that the divisors E_i are themselves smooth. The algorithm does not seem to work if the E_i have self-intersections.) Note that by contrast $(x_{i_1} = x_{i_2} = 0) \subset Y$ defines a local divisor which has no global meaning. Similarly, the vanishing of any of the coordinate functions y_{rs} has no global meaning.

To a point $p \in \text{Sing } E$ we associate the local invariant

$$\text{Deg}(p) := (\text{deg}_x(p), \text{deg}_y(p), \text{deg}_z(p)) = (|I_p|, m_p, \sum_{j \in I_p} a_j).$$

It is clear that $\text{deg}_x(p)$ and $\text{deg}_z(p)$ do not depend on the local coordinates chosen. We see in (14) that $\text{deg}_y(p)$ is also well defined if $p \in \text{Sing } E$. The degrees $\text{deg}_x(p), \text{deg}_y(p), \text{deg}_z(p)$ are constructible and upper semi continuous functions on $\text{Sing } E$.

Note that Y is smooth at p iff either $\text{Deg}(p) = (1, *, *)$ or $\text{Deg}(p) = (*, 0, 0)$. If $\text{deg}_x(p) = 1$ then we can rewrite the equation (11)2 as

$$x' = t \cdot \prod_j z_j^{a_j} \quad \text{where} \quad x' := x_1 + t \cdot (1 - \det(y_{rs})) \cdot \prod_j z_j^{a_j},$$

so if Y is smooth then $(Y, E + F)$ has only simple normal crossings along E. Thus the resolution constructed in Theorem 3 is a log resolution.

The usual method of Hironaka would start by blowing up the highest multiplicity points. This introduces new and rather complicated exceptional divisors and I have not been able to understand explicitly how the dual complex changes.

In our case, it turns out to be much better to look at a locus where $\text{deg}_y(p)$ is maximal but instead of maximizing $\text{deg}_x(p)$ or $\text{deg}_z(p)$ we maximize the dimension. Thus we blow up subvarieties along which Y is not equimultiple. Usually this leads to a morass, but our equations separate the variables into distinct groups which makes these blow-ups easy to compute.

One can think of this as mixing the main step of the Hironaka method with the order reduction for monomial ideals (see, for instance, [Kol07b] Step 3 of 3.111).

After some preliminary remarks about blow-ups of simple normal crossing varieties the proof of (12) is carried out in a series of steps (111 110).

We start with the locus where $\text{deg}_y(p)$ is maximal and by a sequence of blow-ups we eventually achieve that $\text{deg}_y(p) \leq 1$ for every singular point p. This, however, increases deg_z. Then in 3 similar steps we lower the maximum of deg_z until we achieve that $\text{deg}_z(p) \leq 1$ for every singular point p. Finally we take care of the singular points where $\text{deg}_y(p) + \text{deg}_z(p) \geq 1$. \hfill \Box

13 (Blowing up simple normal crossing varieties). Let Z be a simple normal crossing variety and $W \subset Z$ a subvariety. We say that W has simple normal crossing with Z
if for each point \(p \in Z \) there is an open neighborhood \(Z_p \), an embedding \(Z_p \hookrightarrow \mathbb{C}^{n+1} \) and subsets \(I_p, J_p \subset \{0, \ldots, n\} \) such that

\[
Z_p = (\prod_{i \in I_p} x_i = 0) \quad \text{and} \quad W \cap Z_p = (x_j = 0 : j \in J_p).
\]

This implies that for every stratum \(Z_f \subset Z \) the intersection \(W \cap Z_f \) is smooth (even scheme theoretically).

If \(W \) has simple normal crossing with \(Z \) then the blow-up \(B_W Z \) is again a simple normal crossing variety. If \(W \) is one of the strata of \(Z \), then \(\mathcal{D}(B_W Z) \) is obtained from \(\mathcal{D}(Z) \) by removing the cell corresponding to \(W \) and every other cell whose closure contains it. Otherwise \(\mathcal{D}(B_W Z) = \mathcal{D}(Z) \). (In the terminology of [Kol12 Sec.2.4], \(B_W Z \rightarrow Z \) is a thrifty modification.)

As an example, let \(Z = (x_1 x_2 x_3 = 0) \subset \mathbb{C}^3 \). There are 7 strata and \(\mathcal{D}(Z) \) is the 2-simplex whose vertices correspond to the planes \((x_i = 0) \).

Let us blow up a point \(W = \{ p \} \subset Z \) to get \(B_p Z \subset B_p \mathbb{C}^3 \). Note that the exceptional divisor \(E \subset B_p \mathbb{C}^3 \) is not a part of \(B_p Z \) and \(B_p Z \) still has 3 irreducible components.

If \(p \) is the origin, then the triple intersection is removed and \(\mathcal{D}(B_p Z) \) is the boundary of the 2-simplex.

If \(p \) is not the origin, then \(B_p Z \) still has 7 strata naturally corresponding to the strata of \(Z \) and \(\mathcal{D}(B_p Z) \) is the 2-simplex.

We will be interested in situations where \(Y \) is a hypersurface in \(\mathbb{C}^{n+2} \) and \(Z \subset Y \) is a Cartier divisor that is a simple normal crossing variety. Let \(W \subset Y \) be a smooth, irreducible subvariety, not contained in \(Z \) such that

1. the scheme theoretic intersection \(W \cap Z \) has simple normal crossing with \(Z \)
2. \(\text{mult}_{Z \cap W} Z = \text{mult}_W Y \). (Note that this holds if \(W \subset \text{Sing} Y \) and \(\text{mult}_{Z \cap W} Z = 2 \).

Choose local coordinates \((x_0, \ldots, x_n, t)\) such that \(W = (x_0 = \cdots x_i = 0) \) and \(Z = (t = 0) \subset Y \). Let \(f(x_0, \ldots, x_n, t) = 0 \) be the local equation of \(Y \).

Blow up \(W \) to get \(\pi : B_W Y \to Y \). Up to permuting the indices \(0, \ldots, i \), the blow-up \(B_W Y \) is covered by coordinate charts described by the coordinate change

\[
(x_0, x_1, \ldots, x_i, x_{i+1}, \ldots, x_n, t) = (x_0', x_1', x_0', \ldots, x_i', x_0', x_{i+1}, \ldots, x_n, t).
\]

If \(\text{mult}_W Y = d \) then the local equation of \(B_W Y \) in the above chart becomes

\[
(x_0')^{-d} f(x_0', x_1', x_0', \ldots, x_i', x_0', x_{i+1}, \ldots, x_n, t) = 0.
\]

By assumption (2), \((x_0')^d \) is also the largest power that divides

\[
f(x_0', x_1', x_0', \ldots, x_i', x_0', x_{i+1}, \ldots, x_n, 0),
\]

hence \(\pi^{-1}(Z) = B_W \cap Z \).

Observe finally that the conditions (1–2) can not be fulfilled in any interesting way if \(Y \) is smooth. Since we want \(Z \cap W \) to be scheme theoretically smooth, if \(Y \) is smooth then condition (1) implies that \(Z \cap W \) is disjoint from \(\text{Sing} Z \).

(As an example, let \(Y = \mathbb{C}^3 \) and \(Z = (xyz = 0) \). Take \(W := (x = y = z) \). Note that \(W \) is transversal to every irreducible component of \(Z \) but \(W \cap Z \) is a non-reduced point. The preimage of \(Z \) in \(B_W Y \) does not have simple normal crossings.)

There are, however, plenty of examples where \(Y \) is singular along \(Z \cap W \) and these are exactly the singular points that we want to resolve.
The resolution usually cannot be chosen equivariant.

14 (Resolving the determinantal part). Let m be the largest size of a determinant occurring at a non-resolved point. Assume that $m \geq 2$ and let $p \in Y$ be a non-resolved point with $m_p = m$.

Away from $E \cup F$ the local equation of Y is

$$\prod_{i \in I_p} x_i = \det(y_{rs} : 1 \leq r, s \leq m).$$

Thus, the singular set of $Y_p \setminus (E \cup F)$ is

$$\bigcup_{(i, i')} (\text{rank}(y_{rs}) \leq m - 2) \cap (x_i = x_{i'} = 0)$$

where the union runs through all 2-element subsets $\{i, i'\} \subset I_p$. Thus the irreducible components of $\text{Sing} Y \setminus (E \cup F)$ are in natural one-to-one correspondence with the irreducible components of $\text{Sing} E$ and the value of $m = \deg_p(p)$ is determined by the multiplicity of any of these irreducible components at p.

Pick $i_1, i_2 \in I$ and we work locally with a subvariety

$$W_p'(i_1, i_2) := (\text{rank}(y_{rs}) \leq m - 2) \cap (x_{i_1} = x_{i_2} = 0).$$

Note that $W_p'(i_1, i_2)$ is singular if $m > 2$ and the subset of its highest multiplicity points is given by $\text{rank}(y_{rs}) = 0$. Therefore the locally defined subvarieties

$$W_p(i_1, i_2) := (y_{rs} = 0 : 1 \leq r, s \leq m) \cap (x_{i_1} = x_{i_2} = 0),$$

glue together to a well defined global smooth subvariety $W := W(i_1, i_2)$.

E is defined by $(t = 0)$ thus $E \cap W$ has the same local equations as $W_p(i_1, i_2)$. In particular, $E \cap W$ has simple normal crossings with E and $E \cap W$ is not a stratum of E; its codimension in the stratum $(x_{i_1} = x_{i_2} = 0)$ is m^2.

Furthermore, E has multiplicity 2 along $E \cap W$, hence (13.2) also holds and so

$$\mathcal{D}(B_{E \cap W}) = \mathcal{D}(E).$$

We blow up $W \subset Y$. We will check that the new triple is again of the form (11). The local degree $\deg(p)$ is unchanged over $Y \setminus W$. The key assertion is that, over W, the maximum value of $\deg(p)$ (with respect to the lexicographic ordering) decreases. By repeating this procedure for every irreducible components of $\text{Sing} E$, we decrease the maximum value of $\deg(p)$. We can repeat this until we reach $\deg_p(p) \leq 1$ for every non-resolved point $p \in Y$.

(Note that this procedure requires an actual ordering of the irreducible components of $\text{Sing} E$, which is a very non-canonical choice. If a finite groups acts on Y, the resolution usually cannot be chosen equivariant.)

Now to the local computation of the blow-up. Fix a point $p \in W$ and set $I_p^* := I_p \setminus \{i_1, i_2\}$. We write the local equation of Y as

$$x_{i_1, i_2} \cdot L = t \cdot \det(y_{rs}) \cdot R \quad \text{where} \quad L := \prod_{i \in I_p^*} x_i \quad \text{and} \quad R := \prod_{j \in I_p^*} z_j^{a_j}.$$

There are two types of local charts on the blow-up.

1. There are two charts of the first type. Up to interchanging the subscripts 1, 2, these are given by the coordinate change

$$(x_{i_1}, x_{i_2}, y_{rs} : 1 \leq r, s \leq m) = (x'_{i_1}, x'_{i_2}, x'_{i_1}, y'_{rs} x'_{i_1} : 1 \leq r, s \leq m).$$

After setting $z_w := x'_{i_1}$ the new local equation is

$$x'_{i_2} \cdot L = t \cdot \det(y'_{rs}) \cdot (z_w^{m^2 - 2} \cdot R).$$

The exceptional divisor is added to the F-divisors with coefficient $m^2 - 2$ and the new degree is $(\deg_x(p) - 1, \deg_y(p), \deg_z(p) + m^2 - 2)$.

(2) There are \(m^2 \) charts of the second type. Up to re-indexing the \(m^2 \) pairs \((r, s)\) these are given by the coordinate change
\[
(x_{i_1}, x_{i_2}, y_{rs} : 1 \leq r, s \leq m) = (x'_{i_1}, y''_{mm}, x'_{i_2}y''_{mm}, y'_{rs}y''_{mm} : 1 \leq r, s \leq m)
\]
except when \(r = s = m \) where we set \(y_{mm} = y''_{mm} \). It is convenient to set \(y''_{mm} = 1 \) and \(z_w := y''_{mm} \). Then the new local equation is
\[
x'_{i_1}x'_{i_2} \cdot L = t \cdot \det(y'_{rs} : 1 \leq r, s \leq m) \cdot (z_w^{m^2-2} \cdot R).
\]
Note that the \((m, m)\) entry of \((y'_{rs})\) is 1. By row and column operations we see that
\[
det(y'_{rs} : 1 \leq r, s \leq m) = det(y'_{rs} - y'_{rm}y'_{ms} : 1 \leq r, s \leq m - 1).
\]
By setting \(y''_{rs} := y'_{rs} - y'_{rm}y'_{ms} \) we have new local equations
\[
x'_{i_1}x'_{i_2} \cdot L = t \cdot \det(y''_{rs} : 1 \leq r, s \leq m - 1) \cdot (z_w^{m^2-2} \cdot R)
\]
and the new degree is \((\deg_x(p), \deg_y(p) - 1, \deg_z(p) + m^2 - 2)\).

Outcome. After these blow ups we have a triple \((Y, E, F)\) such that at non-resolved points the local equations are
\[
\prod_{i \in I_p} x_i = t \cdot y \cdot \prod_{j \in J_p} z_{c_j}^{a_j} \quad \text{or} \quad \prod_{i \in I_p} x_i = t \cdot \prod_{j \in J_p} z_{c_j}^{a_j}.
\]
(Note that we can not just declare that \(y \) is also a \(z \)-variable. The \(z_j \) are local equations of the divisors \(F_j \) while \((y = 0)\) has no global meaning.)

15 (Resolving the monomial part). Following \((14.3)\), the local equations are
\[
\prod_{i \in I_p} x_i = t \cdot y^c \cdot \prod_{j \in J_p} z_{c_j}^{a_j} \quad \text{where} \quad c \in \{0, 1\}.
\]
We lower the degree of the \(z \)-monomial in 3 steps.

Step 1. Assume that there is a non-resolved point with \(a_{j_1} \geq 2 \).
The singular set of \(F_{j_1} \) is then
\[
\bigcup_{\{i, i'\}}(z_{j_1} = x_i = x_{i'} = 0)
\]
where the union runs through all 2-element subsets \(\{i, i'\} \subset I \). Pick an irreducible component of it, call it \(W(i_1, i_2, j_1) := (z_{j_1} = x_{i_1} = x_{i_2} = 0) \).
Set \(I^*_p := I_p \setminus \{i_1, i_2\} \) and write the local equations as
\[
x_{i_1}x_{i_2} \cdot L = t z_{c_j}^{a_j} \cdot R \quad \text{where} \quad L := \prod_{i \in I^*_p} x_i \quad \text{and} \quad R := y^c \cdot \prod_{j \in J_p} z_{c_j}^{a_j}.
\]
There are 3 local charts on the blow-up:

1. \((x_{i_1}, x_{i_2}, z_{j_1}) = (x'_{i_1}, x'_{i_2} x_{i_1}, z'_{j_1} x_{i_1})\) and, after setting \(z_w := x'_{i_1} \) the new local equation is
\[
x'_{i_2} \cdot L = t \cdot z_{w}^{a_j-2} z_{j_1}^{a_j} \cdot R.
\]
The new degree is \((\deg_x(p) - 1, \deg_y(p), \deg_z(p) + a_j - 2)\).

2. Same as above with the subscripts 1, 2 interchanged.

3. \((x_{i_1}, x_{i_2}, z_{j_1}) = (x'_{i_1}, x'_{i_2}, z'_{j_1}, z'_{j_1})\) with new local equation
\[
x'_{i_1}x'_{i_2} \cdot L = t \cdot z_{j_1}^{a_j-2} \cdot R.
\]
The new degree is \((\deg_x(p), \deg_y(p), \deg_z(p) - 2)\).
As before, the blow-up computation is the same as in Step 2. Assume that there is a non-resolved point with $a_{j_1} = a_{j_2} = 1$. The singular set of $F_{j_1} \cap F_{j_2}$ is then
$$
\bigcup_{(i, i')} \{ z_{j_1} = z_{j_2} = x_i = x_i' = 0 \}.
$$

where the union runs through all 2-element subsets $\{i, i'\} \subseteq I$. Pick an irreducible component of it, call it $W = \{ z_{j_1} = z_{j_2} = x_i = x_i = 0 \}$. Pick an irreducible component of it, call it W. Set $I_p' := I_p \setminus \{ i_1, i_2 \}$, $J' := J_p \setminus \{ j_1, j_2 \}$ and we write the local equations as
$$
x_i x_\iota : = 1.
$$

There are two types of local charts on the blow-up.

1. In the chart $(x_1, x_2, z_1, z_2) = (x_1', x_1', x_1', x_1', x_2', x_2', x_2', x_1')$ the new local equation is
$$
x_i' x_\iota : = 1.
$$

and the new degree is $(\deg_y(p) - 1, \deg_y(p), \deg_z(p))$. A similar chart is obtained by interchanging the subscripts i_1, i_2.

2. In the chart $(x_1, x_2, z_1, z_2) = (x_1', x_1', x_1', x_1', x_2', x_2', x_2', x_1')$ the new local equation is
$$
x_i' x_\iota : = 1.
$$

The new degree is $(\deg_y(p), \deg_y(p), \deg_z(p) - 1)$.

A similar chart is obtained by interchanging the subscripts j_1, j_2.

By repeated application of these two steps we are reduced to the case where $\deg_y(p) \leq 1$ at all non-resolved points.

Step 3. Assume that there is a non-resolved point with $\deg_y(p) = \deg_z(p) = 1$. The singular set of Y is
$$
\bigcup_{(i, i')} \{ y = z = x_i = x_i' = 0 \}.
$$

Pick an irreducible component of it, call it $W(I_1, i_2) := \{ y = z = x_i = x_i = 0 \}$. The blow up computation is the same as in Step 2.

As before we see that at each step the conditions (12.1–2) hold, hence $D(E)$ is unchanged.

Outcome. After these blow-ups we have a triple (Y, E, F) such that at non-resolved points the local equations are

$$
\prod_{i \in I_p} x_i = t \cdot y, \quad \prod_{i \in I_p} x_i = t \cdot z_1 \quad \text{or} \quad \prod_{i \in I_p} x_i = t. \quad (12.4)
$$

As before, the y and z variables have different meaning, but we can rename z_1 as y. Thus we have only one non-resolved local form left: $\prod x_i = ty$.

16 (Resolving the multiplicity 2 part). Here we have a local equation $x_i \cdots x_i = ty$ where $d \geq 2$. We would like to blow up $(x_i = y = 0)$, but, as we noted, this subvariety is not globally defined. However, a rare occurrence helps us out. Usually the blow-up of a smooth subvariety determines its center uniquely. However, this is not the case for codimension 1 centers. Thus we could get a globally well defined blow-up even from centers that are not globally well defined.

Note that the inverse of $(x_i = y = 0)$ in the local Picard group of Y is $E_{i_1} = (x_i = t = 0)$, which is globally defined. Thus

$$
\text{Proj}_Y \sum_{m \geq 0} \mathcal{O}_Y(mE_{i_1})
$$

where the union runs through all 2-element subsets $\{i, i'\} \subseteq I$. Pick an irreducible component of it, call it $W = \{ z_{j_1} = z_{j_2} = x_i = x_i = 0 \}$. Pick an irreducible component of it, call it W. Set $I_p' := I_p \setminus \{ i_1, i_2 \}$, $J' := J_p \setminus \{ j_1, j_2 \}$ and we write the local equations as
$$
x_i x_\iota : = 1.
$$

There are two types of local charts on the blow-up.

1. In the chart $(x_1, x_2, z_1, z_2) = (x_1', x_1', x_1', x_1', x_2', x_2', x_2', x_1')$ the new local equation is
$$
x_i' x_\iota : = 1.
$$

and the new degree is $(\deg_y(p) - 1, \deg_y(p), \deg_z(p))$. A similar chart is obtained by interchanging the subscripts i_1, i_2.

2. In the chart $(x_1, x_2, z_1, z_2) = (x_1', x_1', x_1', x_1', x_2', x_2', x_2', x_1')$ the new local equation is
$$
x_i' x_\iota : = 1.
$$

The new degree is $(\deg_y(p), \deg_y(p), \deg_z(p) - 1)$.

A similar chart is obtained by interchanging the subscripts j_1, j_2.

By repeated application of these two steps we are reduced to the case where $\deg_y(p) \leq 1$ at all non-resolved points.

Step 3. Assume that there is a non-resolved point with $\deg_y(p) = \deg_z(p) = 1$. The singular set of Y is
$$
\bigcup_{(i, i')} \{ y = z = x_i = x_i' = 0 \}.
$$

Pick an irreducible component of it, call it $W(I_1, i_2) := \{ y = z = x_i = x_i = 0 \}$. The blow up computation is the same as in Step 2.

As before we see that at each step the conditions (12.1–2) hold, hence $D(E)$ is unchanged.

Outcome. After these blow-ups we have a triple (Y, E, F) such that at non-resolved points the local equations are

$$
\prod_{i \in I_p} x_i = t \cdot y, \quad \prod_{i \in I_p} x_i = t \cdot z_1 \quad \text{or} \quad \prod_{i \in I_p} x_i = t. \quad (12.4)
$$

As before, the y and z variables have different meaning, but we can rename z_1 as y. Thus we have only one non-resolved local form left: $\prod x_i = ty$.

16 (Resolving the multiplicity 2 part). Here we have a local equation $x_i \cdots x_i = ty$ where $d \geq 2$. We would like to blow up $(x_i = y = 0)$, but, as we noted, this subvariety is not globally defined. However, a rare occurrence helps us out. Usually the blow-up of a smooth subvariety determines its center uniquely. However, this is not the case for codimension 1 centers. Thus we could get a globally well defined blow-up even from centers that are not globally well defined.

Note that the inverse of $(x_i = y = 0)$ in the local Picard group of Y is $E_{i_1} = (x_i = t = 0)$, which is globally defined. Thus

$$
\text{Proj}_Y \sum_{m \geq 0} \mathcal{O}_Y(mE_{i_1})
$$
is well defined, and locally it is isomorphic to the blow-up $B_{(x_i = y = 0)} Y$. (A priori, we would need to take the normalization of $B_{(x_i = y = 0)} Y$, but it is actually normal.) Thus we have 2 local charts.

(1) \((x_i, y) = (x'_i, y'x'_i)\) and the new local equation is \((x_{i_2} \cdots x_{i_d} = ty')\). The new local degree is \((d-1,1,0)\).

(2) \((x_i, y) = (x'_i, y', y)\) and the new local equation is \((x'_i \cdot x_{i_2} \cdots x_{i_d} = t)\). The new local degree is \((d,0,0)\).

Outcome. After all these blow-ups we have a triple \((Y, \sum_{i \in I} E_i, \sum_{j \in J} a_j F_j)\) where \(\sum_{i \in I} E_i\) is a simple normal crossing divisor and \(Y\) is smooth along \(\sum_{i \in I} E_i\).

This completes the proof of Proposition 12. \(\Box\)

17 (Proof of Theorem 2). Assume that \(T\) is \(\mathbb{Q}\)-acyclic. Then, by 7 there is a simple normal crossing variety \(Z_T\) such that \(H^i(Z_T, \mathcal{O}_{Z_T}) = 0\) for \(i > 0\). Then [Kol11, Prop.9] shows that, for \(L\) sufficiently ample, the singularity \((0 \in X_T)\) constructed in 8 and 9 is rational. By 12 we conclude that \(DR(0 \in X_T) \cong D(Z_T)\) is homotopy equivalent to \(T\).

Acknowledgments. I thank M. Kapovich, P. Ozsváth and S. Payne for comments and corrections. Partial financial support was provided by the NSF under grant number DMS-07-58275.

References

[ABW11] D. Arapura, P. Bakhtary, and J. Włodarczyk, *Weights on cohomology, invariants of singularities, and dual complexes*, ArXiv e-prints (2011).

[FM83] Robert Friedman and David R. Morrison (eds.), *The birational geometry of degenerations*, Progr. Math., vol. 29, Birkhäuser Boston, Mass., 1983. MR 690262 (84g:14032)

[GM88] Mark Goresky and Robert MacPherson, *Stratified Morse theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 14, Springer-Verlag, Berlin, 1988. MR 932724 (90d:57039)

[Gor80] Gerald Leonard Gordon, *On a simplicial complex associated to the monodromy*, Trans. Amer. Math. Soc. 261 (1980), no. 1, 93–101. MR 576865 (81j:32017)

[Har95] Joe Harris, *Algebraic geometry*, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995, A first course, Corrected reprint of the 1992 original. MR MR1416564 (97e:14001)

[Hat02] Allen Hatcher, *Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR 1867354 (2002k:55001)

[HX09] Amit Hogadi and Chenyang Xu, *Degenerations of rationally connected varieties*, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906 (2010i:14091)

[KK11] Michael Kapovich and János Kollár, *Fundamental groups of links of isolated singularities*, ArXiv e-prints (2011).

[KM08] János Kollár and Shigefumi Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)

[Kol93] János Kollár, *Shafarevich maps and plurigenera of algebraic varieties*, Invent. Math. 113 (1993), no. 1, 177–215. MR 1223229 (94m:14018)

[Kol07a] , *A conjecture of Ax and degenerations of Fano varieties*, Israel J. Math. 162 (2007), 235–251. MR 2365862 (2008j:14017)

[Kol07b] , *Lectures on resolution of singularities*, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR 2289519

[Kol11] , *New examples of terminal and log canonical singularities*, arXiv:1107.2864, 2011.

[Kol12] , *Singularities of the minimal model program*, Cambridge University Press, Cambridge, 2012, With the collaboration of S. Kovács (to appear).
[KS11] M. Kerz and S. Saito, Cohomological Hasse principle and McKay principle for weight homology, ArXiv e-prints (2011).

[Kul77] Vik. S. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008–1042, 1199. MR 0506296 (58 #22087b)

[Mum61] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), no. 9, 5–22. MR 0153682 (27 #3643)

[Pay09] Sam Payne, Lecture at MSRI, http://www.msri.org/web/msri/online-videos/-/video/showVideo/3674, 2009.

[Pay11] Sam Payne, Boundary complexes and weight filtrations, ArXiv e-prints (2011).

[Per77] Ulf Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc. 11 (1977), no. 189, xv+144. MR 0466149 (57 #6030)

[Ste08] D. A. Stepanov, A note on resolution of rational and hypersurface singularities, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2647–2654. MR 2399025 (2009g:32060)

[Tak03] Shigeharu Takayama, Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003), no. 8, 825–836. MR 2013147 (2004m:14023)

[Thu07] Amaury Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381–451. MR 2320738 (2008g:14038)

Princeton University, Princeton NJ 08544-1000
kollar@math.princeton.edu