A duality between pairs of split decompositions for a Q-polynomial distance-regular graph

Joohyung Kim

Abstract

Let Γ denote a Q-polynomial distance-regular graph with diameter $D \geq 3$ and standard module V. Recently Ito and Terwilliger introduced four direct sum decompositions of V; we call these the (μ, ν)–split decompositions of V, where $\mu, \nu \in \{\downarrow, \uparrow\}$. In this paper we show that the (\downarrow, \downarrow)–split decomposition and the (\uparrow, \uparrow)–split decomposition are dual with respect to the standard Hermitian form on V. We also show that the (\downarrow, \uparrow)–split decomposition and the (\uparrow, \downarrow)–split decomposition are dual with respect to the standard Hermitian form on V.

Keywords. Distance-regular graph, tridiagonal pair, subconstituent algebra, split decomposition.

2000 Mathematics Subject Classification. Primary 05E30; Secondary 05E35, 05C50

1 Introduction

We consider a distance-regular graph Γ with vertex set X and diameter $D \geq 3$ (see Section 4 for formal definitions). We assume that Γ is Q-polynomial with respect to the ordering E_0, E_1, \ldots, E_D of the primitive idempotents. Let V denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We call V the standard module. We endow V with the Hermitian form $\langle \cdot, \cdot \rangle$ that satisfies $\langle u, v \rangle = u^t \overline{v}$ for $u, v \in V$. We call this form the standard Hermitian form on V. Recently Ito and Terwilliger introduced four direct sum decompositions of V [16]; we call these the (μ, ν)–split decompositions of V, where $\mu, \nu \in \{\downarrow, \uparrow\}$. These are defined as follows. Fix a vertex $x \in X$. For $0 \leq i \leq D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ that represents the projection onto the ith subconstituent of Γ with respect to x. For $-1 \leq i, j \leq D$ we define

\begin{align*}
V_{i,j}^{\downarrow\downarrow} &= (E_0^* V + \cdots + E_i^* V) \cap (E_0 V + \cdots + E_j V), \\
V_{i,j}^{\downarrow\uparrow} &= (E_0^* V + \cdots + E_D^* V) \cap (E_0 V + \cdots + E_j V), \\
V_{i,j}^{\uparrow\downarrow} &= (E_0 V + \cdots + E_i^* V) \cap (E_D V + \cdots + E_D^* V), \\
V_{i,j}^{\uparrow\uparrow} &= (E_D^* V + \cdots + E_D^* V) \cap (E_D V + \cdots + E_D^* V).
\end{align*}
For $\mu, \nu \in \{\downarrow, \uparrow\}$ and $0 \leq i, j \leq D$ we have $V_{i-1,j}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$ and $V_{i,j-1}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$; therefore $V_{i-1,j}^{\mu\nu} + V_{i,j-1}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$. Let $\tilde{V}_{i,j}^{\mu\nu}$ denote the orthogonal complement of $V_{i-1,j}^{\mu\nu} + V_{i,j-1}^{\mu\nu}$ in $V_{i,j}^{\mu\nu}$ with respect to the standard Hermitian form. By [16, Lemma 10.3],

$$V = \sum_{i=0}^{D} \sum_{j=0}^{D} \tilde{V}_{i,j}^{\mu\nu} \quad \text{(direct sum).}$$

We call the above sum the (μ, ν)–split decomposition of V with respect to x. We show that with respect to the standard Hermitian form the (\downarrow, \downarrow)–split decomposition (resp. (\downarrow, \uparrow)–split decomposition) and the (\uparrow, \uparrow)–split decomposition (resp. (\uparrow, \downarrow)–split decomposition) are dual in the following sense.

Theorem 1.1 With the above notation, the following (i), (ii) hold for $0 \leq i, j, r, s \leq D$.

(i) $\tilde{V}_{i,j}^{\downarrow\downarrow}$ and $\tilde{V}_{r,s}^{\downarrow\downarrow}$ are orthogonal unless $i + r = D$ and $j + s = D$.

(ii) $\tilde{V}_{i,j}^{\downarrow\uparrow}$ and $\tilde{V}_{r,s}^{\downarrow\uparrow}$ are orthogonal unless $i + r = D$ and $j + s = D$.

To prove Theorem 1.1 we use a result about tridiagonal pairs (Theorem 3.6) which may be of independent interest. We also use some results about the subconstituent algebra of Γ.

2 Tridiagonal pairs

We recall the notion of a tridiagonal pair \cite{13}. We will use the following terms. Let V denote a vector space over \mathbb{C} with finite positive dimension. By a *linear transformation* on V we mean a \mathbb{C}-linear map from V to V. Let A denote a linear transformation on V. By an *eigenspace* of A we mean a nonzero subspace of V of the form

$$\{v \in V \mid Av = \theta v\},$$

where $\theta \in \mathbb{C}$. We say that A is diagonalizable whenever V is spanned by the eigenspaces of A. In this case V is the direct sum of the eigenspaces of A.

Definition 2.1 \cite{13} Definition 1.1] Let V denote a vector space over \mathbb{C} with finite positive dimension. By a *tridiagonal pair* (or *TD pair*) on V we mean an ordered pair A, A^* of linear transformations on V that satisfy the following four conditions.

(i) A and A^* are both diagonalizable on V.

(ii) There exists an ordering V_0, V_1, \ldots, V_d of the eigenspaces of A such that

$$A^* V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \leq i \leq d),$$

where $V_{-1} = 0$, $V_{d+1} = 0$.

2
(iii) There exists an ordering $V_0^*, V_1^*, \ldots, V_\delta^*$ of the eigenspaces of A^* such that
\[AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \leq i \leq \delta), \]
where $V_{-1}^* = 0$, $V_{\delta+1}^* = 0$.

(iv) There is no subspace W of V such that both $AW \subseteq W$, $A^*W \subseteq W$, other than $W = 0$ and $W = V$.

Note 2.2 According to a common notational convention A^* denotes the conjugate-transpose of A. We are not using this convention. In a tridiagonal pair A, A^* the linear transformations A and A^* are arbitrary subject to (i)–(iv) above.

With reference to Definition 2.1 we have $d = \delta$ [13, Lemma 4.5]; we call this common value the diameter of A, A^*. See [13, 14, 15] for more information on tridiagonal pairs.

With reference to Definition 2.1 by the construction we have the direct sum decompositions $V = \sum_{i=0}^d V_i$ and $V = \sum_{i=0}^d V_i^*$. We now recall four more direct sum decompositions of V called the split decompositions.

Lemma 2.3 [15, Lemma 4.2] With reference to Definition 2.1 for $\mu, \nu \in \{\downarrow, \uparrow\}$ we have
\[V = \sum_{i=0}^d U_{i}^{\mu\nu} \] (direct sum),
where
\[
\begin{align*}
U_{i}^{\downarrow\downarrow} & = (V_0^* + \cdots + V_i^*) \cap (V_0 + \cdots + V_{d-i}), \\
U_{i}^{\uparrow\downarrow} & = (V_{d-i}^* + \cdots + V_d^*) \cap (V_0 + \cdots + V_{d-i}), \\
U_{i}^{\downarrow\uparrow} & = (V_0^* + \cdots + V_i^*) \cap (V_i + \cdots + V_d), \\
U_{i}^{\uparrow\uparrow} & = (V_{d-i}^* + \cdots + V_d^*) \cap (V_i + \cdots + V_{d-i}).
\end{align*}
\]

3 Hermitian forms

In this section we consider a tridiagonal pair for which the underlying vector space supports a certain Hermitian form. We start with the definition of a Hermitian form. Throughout this section V denotes a vector space over \mathbb{C} with finite positive dimension. For $\alpha \in \mathbb{C}$ let $\overline{\alpha}$ denote the complex conjugate of α.

Definition 3.1 By a Hermitian form on V we mean a function $(\cdot, \cdot) : V \times V \to \mathbb{C}$ such that for all u, v, w in V and all $\alpha \in \mathbb{C}$,
\[
\begin{align*}
(i) \quad (u + v, w) & = (u, w) + (v, w), \\
(ii) \quad (\alpha u, v) & = \alpha (u, v), \\
(iii) \quad (v, u) & = (u, v).
\end{align*}
\]
Definition 3.2 Let \((,)\) denote a Hermitian form on \(V\). By Definition 3.1(iii) we have \((v, v) \in \mathbb{R}\) for \(v \in V\). We say that \((,)\) is positive definite whenever \((v, v) > 0\) for all nonzero \(v \in V\).

Lemma 3.3 Let \((,)\) denote a positive definite Hermitian form on \(V\). Suppose that we are given a linear transformation \(A : V \rightarrow V\) satisfying

\[
(Au, v) = (u, Av), \quad u, v \in V.
\]

Then all the eigenvalues of \(A\) are in \(\mathbb{R}\).

Proof: Let \(\lambda\) denote an eigenvalue of \(A\). We show that \(\lambda \in \mathbb{R}\). Since \(\mathbb{C}\) is algebraically closed there exists a nonzero \(v \in V\) such that \(Av = \lambda v\). By (1) \((Av, v) = (v, Av)\). Evaluating this using Definition 3.1(ii),(iii) we have \((\lambda - \overline{\lambda})(v, v) = 0\). But \((v, v) \neq 0\) since \((,)\) is positive definite so \(\lambda = \overline{\lambda}\). Therefore \(\lambda \in \mathbb{R}\).

\(\square\)

Assumption 3.4 Let \(A, A^*\) denote a tridiagonal pair on \(V\) as in Definition 2.1. For \(0 \leq i \leq d\) let \(\theta_i\) (resp. \(\theta_i^*\)) denote the eigenvalue of \(A\) (resp. \(A^*\)) associated with \(V_i\) (resp. \(V_i^*\)). We remark that \(\theta_0, \theta_1, \ldots, \theta_d\) are mutually distinct and \(\theta_0^*, \theta_1^*, \ldots, \theta_d^*\) are mutually distinct. We assume that there exists a positive definite Hermitian form \((,)\) on \(V\) satisfying

\[
(Au, v) = (u, Av), \quad u, v \in V, \quad (A^*u, v) = (u, A^*v), \quad u, v \in V.
\]

Lemma 3.5 With reference to Assumption 3.4 the following (i), (ii) hold.

(i) The eigenspaces \(V_0, V_1, \ldots, V_d\) are mutually orthogonal with respect to \((,)\).

(ii) The eigenspaces \(V_0^*, V_1^*, \ldots, V_d^*\) are mutually orthogonal with respect to \((,)\).

Proof: (i) For distinct \(i, j\) \((0 \leq i, j \leq d)\) and for \(u \in V_i, v \in V_j\) we show that \((u, v) = 0\). By (2) \((Au, v) = (u, Av)\). Evaluating this using Definition 3.1(ii),(iii) we find \((\theta_i - \theta_j)(u, v) = 0\). But \(\theta_j = \theta_j\) by Lemma 3.3 and \(\theta_i \neq \theta_j\) so \((u, v) = 0\).

(ii) Similar to the proof of (i).

\(\square\)

Theorem 3.6 With reference to Lemma 2.3 and Assumption 3.4 the following (i), (ii) hold for \(0 \leq i, j \leq d\) such that \(i + j \neq d\).

(i) The subspaces \(U_i^\perp\) and \(U_j^\perp\) are orthogonal with respect to \((,)\).

(ii) The subspaces \(U_i^\perp\) and \(U_j^\perp\) are orthogonal with respect to \((,)\).

Proof: (i) We consider two cases: \(i + j < d\) and \(i + j > d\). First suppose that \(i + j < d\). By Lemma 2.3 \(U_i^\perp \subseteq V_0^* + \cdots + V_i^*\) and \(U_j^\perp \subseteq V_{d-j}^* + \cdots + V_d^*\). Observe that \(V_0^* + \cdots + V_i^*\) is orthogonal to \(V_{d-j}^* + \cdots + V_d^*\) by Lemma 3.5(ii) and since \(i < d - j\). Therefore \(U_i^\perp\) is orthogonal to \(U_j^\perp\). Next suppose that \(i + j > d\). By Lemma 2.3 \(U_i^\perp \subseteq V_0 + \cdots + V_{d-i}\) and \(U_j^\perp \subseteq V_j + \cdots + V_d\). Observe that \(V_0 + \cdots + V_{d-i}\) is orthogonal to \(V_j + \cdots + V_d\) by Lemma 3.5(i) and since \(d - i < j\). Therefore \(U_i^\perp\) is orthogonal to \(U_j^\perp\).

(ii) Similar to the proof of (i).

\(\square\)
4 Distance-regular graphs

In this section we review some definitions and basic concepts concerning distance-regular graphs. For more background information we refer the reader to [1], [3], [11] and [20].

Let X denote a nonempty finite set. Let $\text{Mat}_X(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We observe that $\text{Mat}_X(\mathbb{C})$ acts on V by left multiplication. We call V the standard module. We endow V with the Hermitian form $\langle \cdot , \cdot \rangle$ that satisfies $\langle u, v \rangle = u^\top \overline{\tau} v$ for $u, v \in V$, where t denotes transpose. Observe that $\langle \cdot , \cdot \rangle$ is positive definite. We call this form the standard Hermitian form on V. Observe that for $B \in \text{Mat}_X(\mathbb{C})$,

$$\langle Bu, v \rangle = \langle u, \overline{B} v \rangle \quad \quad u, v \in V. \quad (4)$$

For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. Observe that $\{ \hat{y} \mid y \in X \}$ is an orthonormal basis for V.

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function for Γ, and set $D := \max \{ \partial(x, y) \mid x, y \in X \}$. We call D the diameter of Γ. We say that Γ is distance-regular whenever for all integers $h, i, j \ (0 \leq h, i, j \leq D)$ and for all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = | \{ z \in X \mid \partial(x, z) = i, \partial(z, y) = j \} |$$

is independent of x and y. The p_{ij}^h are called the intersection numbers of Γ.

For the rest of this paper we assume that Γ is distance-regular with diameter $D \geq 3$.

We recall the Bose-Mesner algebra of Γ. For $0 \leq i \leq D$ let A_i denote the matrix in $\text{Mat}_X(\mathbb{C})$ with xy entry

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } \partial(x, y) = i \\ 0, & \text{if } \partial(x, y) \neq i \end{cases} \quad (x, y \in X).$$

We call A_i the ith distance matrix of Γ. We abbreviate $A := A_1$ and call this the adjacency matrix of Γ. We observe that (i) $A_0 = \mathbf{I}$; (ii) $\sum_{i=0}^D A_i = \mathbf{J}$; (iii) $\overline{A_i} = A_i$ $(0 \leq i \leq D)$; (iv) $A_i^t = A_i$ $(0 \leq i \leq D)$; (v) $A_i A_j = \sum_{h=0}^D p_{ij}^h A_h$ $(0 \leq i, j \leq D)$, where I (resp. J) denotes the identity matrix (resp. all 1’s matrix) in $\text{Mat}_X(\mathbb{C})$. Using these facts we find A_0, A_1, \ldots, A_D is a basis for a commutative subalgebra M of $\text{Mat}_X(\mathbb{C})$. We call M the Bose-Mesner algebra of Γ. It turns out that A generates M [11, p. 190]. By [4] and since A is real symmetric,

$$\langle Au, v \rangle = \langle u, Av \rangle \quad \quad u, v \in V. \quad (5)$$

By [31, p. 45], M has a second basis E_0, E_1, \ldots, E_D such that (i) $E_0 = |X|^{-1} J$; (ii) $\sum_{i=0}^D E_i = I$; (iii) $E_i^t = E_i$ $(0 \leq i \leq D)$; (iv) $E_i^t = E_i$ $(0 \leq i \leq D)$; (v) $E_i E_j = \delta_{ij} E_i$ $(0 \leq i, j \leq D)$. We call E_0, E_1, \ldots, E_D the primitive idempotents of Γ.

We recall the eigenvalues of Γ. Since E_0, E_1, \ldots, E_D form a basis for M there exist complex scalars $\theta_0, \theta_1, \ldots, \theta_D$ such that $A = \sum_{i=0}^D \theta_i E_i$. Observe that $AE_i = E_i A = \theta_i E_i$ for $0 \leq i \leq D$.

We call \(\theta_i \) the \textit{eigenvalue} of \(\Gamma \) associated with \(E_i \) (\(0 \leq i \leq D \)). By Lemma 3.3 and (5) the eigenvalues \(\theta_0, \theta_1, \ldots, \theta_D \) are in \(\mathbb{R} \). Observe that \(\theta_0, \theta_1, \ldots, \theta_D \) are mutually distinct since \(A \) generates \(M \). Observe that

\[
V = E_0V + E_1V + \cdots + E_DV
\]

(orthogonal direct sum).

For \(0 \leq i \leq D \) the space \(E_iV \) is the eigenspace of \(A \) associated with \(\theta_i \).

We now recall the Krein parameters. Let \(\circ \) denote the entrywise product in \(\text{Mat}_X(\mathbb{C}) \). Observe that \(A_i \circ A_j = \delta_{ij}A_i \) for \(0 \leq i, j \leq D \), so \(M \) is closed under \(\circ \). Thus there exist complex scalars \(q_{ij}^h \) \((0 \leq h, i, j \leq D)\) such that

\[
E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \quad (0 \leq i, j \leq D).
\]

By [2, p. 170], \(q_{ij}^h \) is real and nonnegative for \(0 \leq h, i, j \leq D \). The \(q_{ij}^h \) are called the \textit{Krein parameters}. The graph \(\Gamma \) is said to be \textit{Q-polynomial} (with respect to the given ordering \(E_0, E_1, \ldots, E_D \) of the primitive idempotents) whenever for \(0 \leq h, i, j \leq D \), \(q_{ij}^h = 0 \) (resp. \(q_{ij}^h \neq 0 \)) whenever one of \(h, i, j \) is greater than (resp. equal to) the sum of the other two [3, p. 59]. See [1, 4, 5, 7, 13] for more information on the \(Q \)-polynomial property. From now on we assume that \(\Gamma \) is \(Q \)-polynomial with respect to \(E_0, E_1, \ldots, E_D \).

We recall the dual Bose-Mesner algebra of \(\Gamma \). Fix a vertex \(x \in X \). We view \(x \) as a “base vertex.” For \(0 \leq i \leq D \) let \(E_i^* = E_i^*(x) \) denote the diagonal matrix in \(\text{Mat}_X(\mathbb{C}) \) with \(yy \) entry

\[
(E_i^*)_{yy} = \begin{cases}
1, & \text{if } \partial(x, y) = i \\
0, & \text{if } \partial(x, y) \neq i
\end{cases} \quad (y \in X).
\]

(6)

We call \(E_i^* \) the \(i \)th \textit{dual idempotent} of \(\Gamma \) with respect to \(x \) [20, p. 378]. We observe that (i) \(\sum_{i=0}^{D} E_i^* = I \); (ii) \(\overline{E_i^*} = E_i^* \) \((0 \leq i \leq D)\); (iii) \(E_i^{*t} = E_i^* \) \((0 \leq i \leq D)\); (iv) \(E_i^* E_j^* = \delta_{ij} E_i^* \) \((0 \leq i, j \leq D)\). By these facts \(E_0^*, E_1^*, \ldots, E_D^* \) form a basis for a commutative subalgebra \(M^* = M^*(x) \) of \(\text{Mat}_X(\mathbb{C}) \). We call \(M^* \) the \textit{dual Bose-Mesner algebra} of \(\Gamma \) with respect to \(x \) [20, p. 378]. For \(0 \leq i \leq D \) let \(A_i^* = A_i^*(x) \) denote the diagonal matrix in \(\text{Mat}_X(\mathbb{C}) \) with \(yy \) entry \((A_i^*)_{yy} = |X|(E_i)_{yy} \) for \(y \in X \). Then \(A_0^*, A_1^*, \ldots, A_D^* \) is a basis for \(M^* \) [20, p. 379]. Moreover (i) \(A_0^* = I \); (ii) \(\overline{A_i^*} = A_i^* \) \((0 \leq i \leq D)\); (iii) \(A_i^{*t} = A_i^* \) \((0 \leq i \leq D)\); (iv) \(A_i^* A_j^* = \sum_{h=0}^{D} q_{ij}^h A_h^* \) \((0 \leq i, j \leq D)\) [20, p. 379]. We call \(A_0^*, A_1^*, \ldots, A_D^* \) the \textit{dual distance matrices} of \(\Gamma \) with respect to \(x \). The matrix \(A^* \) generates \(M^* \) [20, Lemma 3.11]. By (4) and since \(A^* \) is real symmetric,

\[
\langle A^* u, v \rangle = \langle u, A^* v \rangle \quad u, v \in V.
\]

(7)

We recall the dual eigenvalues of \(\Gamma \). Since \(E_0^*, E_1^*, \ldots, E_D^* \) form a basis for \(M^* \) and since \(A^* \) is real, there exist real scalars \(\theta_0^*, \theta_1^*, \ldots, \theta_D^* \) such that \(A^* = \sum_{i=0}^{D} \theta_i^* E_i^* \). Observe that \(A^* E_i^* = E_i^* A^* = \theta_i^* E_i^* \) for \(0 \leq i \leq D \). We call \(\theta_i^* \) the \textit{dual eigenvalue} of \(\Gamma \) associated with \(E_i^* \) \((0 \leq i \leq D)\). Observe that \(\theta_0^*, \theta_1^*, \ldots, \theta_D^* \) are mutually distinct since \(A^* \) generates \(M^* \).
We recall the subconstituents of \(\Gamma \). From (6) we find
\[
E^*_i V = \operatorname{span}\{ \hat{y} \mid y \in X, \quad \partial(x, y) = i \} \quad (0 \leq i \leq D).
\] (8)
By (8) and since \(\{ \hat{y} \mid y \in X \} \) is an orthonormal basis for \(V \) we find
\[
V = E^*_0 V + E^*_1 V + \cdots + E^*_D V \quad \text{(orthogonal direct sum)}.
\]
For \(0 \leq i \leq D \) the space \(E^*_i V \) is the eigenspace of \(A^* \) associated with \(\theta^*_i \). We call \(E^*_i V \) the \(i \)th subconstituent of \(\Gamma \) with respect to \(x \).

We recall the subconstituent algebra of \(\Gamma \). Let \(T = T(x) \) denote the subalgebra of \(\text{Mat}_X(\mathbb{C}) \) generated by \(M \) and \(M^* \). We call \(T \) the subconstituent algebra (or Terwilliger algebra) of \(\Gamma \) with respect to \(x \) \cite{20, Definition 3.3}. We observe that \(T \) is generated by \(A, A^* \). We observe that \(T \) has finite dimension. Moreover \(T \) is semi-simple since it is closed under the conjugate transpose map \cite{8, p. 157}. See \cite{6, 7, 9, 10, 12, 19, 20, 21, 22} for more information on the subconstituent algebra.

For the rest of this paper we adopt the following notational convention.

Notation 4.1 We assume that \(\Gamma = (X, R) \) is a distance-regular graph with diameter \(D \geq 3 \). We assume that \(\Gamma \) is \(Q \)-polynomial with respect to the ordering \(E_0, E_1, \ldots, E_D \) of the primitive idempotents. We fix \(x \in X \) and write \(A^* = A^*(x), \ E^*_i = E^*_i(x) \ (0 \leq i \leq D), \ T = T(x) \). We abbreviate \(V = \mathbb{C}^X \). For notational convenience we define \(E_{-1} = 0, \ E_{D+1} = 0 \) and \(E^*_{-1} = 0, \ E^*_{D+1} = 0 \).

We finish this section with a comment.

Lemma 4.2 \cite{20, Lemma 3.2} With reference to Notation 4.1 the following (i), (ii) hold for \(0 \leq i \leq D \).

(i) \(A E^*_i V \subseteq E^*_{i-1} V + E^*_i V + E^*_{i+1} V \).

(ii) \(A^* E_i V \subseteq E_{i-1} V + E_i V + E_{i+1} V \).

5 The irreducible \(T \)-modules

In this section we recall some useful results on \(T \)-modules.

With reference to Notation 4.1 by a \(T \)-module we mean a subspace \(W \subseteq V \) such that \(BW \subseteq W \) for all \(B \in T \). Let \(W \) denote a \(T \)-module. Then \(W \) is said to be irreducible whenever \(W \) is nonzero and \(W \) contains no \(T \)-modules other than 0 and \(W \).

Let \(W \) denote a \(T \)-module and let \(W' \) denote a \(T \)-module contained in \(W \). Then the orthogonal complement of \(W' \) in \(W \) is a \(T \)-module \cite{10, p. 802}. It follows that each \(T \)-module is an orthogonal direct sum of irreducible \(T \)-modules. In particular \(V \) is an orthogonal direct sum of irreducible \(T \)-modules.

Let \(W \) denote an irreducible \(T \)-module. By the endpoint of \(W \) we mean \(\min\{i | 0 \leq i \leq D, \ E_i^* W \neq 0 \} \). By the diameter of \(W \) we mean \(|\{i | 0 \leq i \leq D, \ E_i^* W \neq 0 \}| - 1 \). By the dual
endpoint of W we mean $\min\{i|0 \leq i \leq D, \ E_iW \neq 0\}$. By the dual diameter of W we mean $|\{i|0 \leq i \leq D, \ E_iW \neq 0\}| - 1$. The diameter of W is equal to the dual diameter of W [17, Corollary 3.3].

Lemma 5.1 [20, Lemma 3.4, Lemma 3.9, Lemma 3.12] With reference to Notation [4.1], let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. Then ρ, τ, d are nonnegative integers such that $\rho + d \leq D$ and $\tau + d \leq D$. Moreover the following (i)–(iv) hold.

(i) $E_{\rho}^*W \neq 0$ if and only if $\rho \leq i \leq \rho + d$ \hspace{0.5cm} (0 \leq i \leq D).

(ii) $W = \sum_{h=0}^{d} E_{\rho+h}^* W$ \hspace{0.5cm} (orthogonal direct sum).

(iii) $E_{\tau}^*W \neq 0$ if and only if $\tau \leq i \leq \tau + d$ \hspace{0.5cm} (0 \leq i \leq D).

(iv) $W = \sum_{h=0}^{d} E_{\tau+h}^* W$ \hspace{0.5cm} (orthogonal direct sum).

Lemma 5.2 [23, Lemma 3.2] With reference to Notation [4.1], let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. Then the following (i), (ii) hold for $0 \leq i \leq d$.

(i) $AE_{\rho+i}^* W \subseteq E_{\rho+i-1}^* W + E_{\rho+i}^* W + E_{\rho+i+1}^* W$.

(ii) $A^* E_{\tau+i} W \subseteq E_{\tau+i-1} W + E_{\tau+i} W + E_{\tau+i+1} W$.

Remark 5.3 With reference to Notation [4.1] let W denote an irreducible T-module. Then A and A^* act on W as a tridiagonal pair in the sense of Definition [2.1]. This follows from Lemma 5.1, Lemma 5.2, and since A, A^* together generate T.

Lemma 5.4 With reference to Notation [4.1], let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. Then for $\mu, \nu \in \{\downarrow, \uparrow\}$ we have

$$W = \sum_{h=0}^{d} W_{h}^{\mu\nu} \hspace{0.5cm} \text{(direct sum),}$$

where for $0 \leq h \leq d$,

\begin{align*}
W_{h}^{\downarrow\downarrow} &= (E_{\rho}^*W + \cdots + E_{\rho+h}^* W) \cap (E_{\tau}W + \cdots + E_{\tau+d-h}W), \\
W_{h}^{\downarrow\uparrow} &= (E_{\rho+d-h}^*W + \cdots + E_{\rho+d}^* W) \cap (E_{\tau}W + \cdots + E_{\tau+d-h}W), \\
W_{h}^{\uparrow\downarrow} &= (E_{\rho}^*W + \cdots + E_{\rho+h}^* W) \cap (E_{\tau+h}W + \cdots + E_{\tau+d}W), \\
W_{h}^{\uparrow\uparrow} &= (E_{\rho+d-h}^*W + \cdots + E_{\rho+d}^* W) \cap (E_{\tau+h}W + \cdots + E_{\tau+d}W).
\end{align*}

Proof: Immediate from Lemma [2.3] and Remark [5.3] \qqed

We remark that the sum (9) is not orthogonal in general. However we do have the following result.
Lemma 5.5 With reference to Notation 4.1, let W denote an irreducible T-module with diameter d. Then the following (i), (ii) hold for $0 \leq h, \ell \leq d$ such that $h + \ell \neq d$.

(i) The subspaces $W_{h \downarrow \downarrow}$ and $W_{\ell \uparrow \uparrow}$ are orthogonal with respect to the standard Hermitian form.

(ii) The subspaces $W_{h \downarrow \uparrow}$ and $W_{\ell \uparrow \downarrow}$ are orthogonal with respect to the standard Hermitian form.

Proof: Combine Theorem 3.6, (5), (7), Remark 5.3, and Lemma 5.4.

6 The split decompositions of the standard module

In this section we recall the four split decompositions for the standard module and discuss their basic properties.

Definition 6.1 [16, Definition 10.1] With reference to Notation 4.1, for $-1 \leq i, j \leq D$ we define

$$
V_{i,j}^{\downarrow \downarrow} = (E_0^* V + \cdots + E_i^* V) \cap (E_0 V + \cdots + E_j V), \\
V_{i,j}^{\downarrow \uparrow} = (E_D^* V + \cdots + E_{D-i}^* V) \cap (E_0 V + \cdots + E_j V), \\
V_{i,j}^{\uparrow \downarrow} = (E_0^* V + \cdots + E_i^* V) \cap (E_D V + \cdots + E_{D-j} V), \\
V_{i,j}^{\uparrow \uparrow} = (E_D^* V + \cdots + E_{D-i}^* V) \cap (E_D V + \cdots + E_{D-j} V).
$$

In each of the above four equations we interpret the right-hand side to be 0 if $i = -1$ or $j = -1$.

Definition 6.2 [16, Definition 10.2] With reference to Notation 4.1 and Definition 6.1, for $\mu, \nu \in \{\downarrow, \uparrow\}$ and $0 \leq i, j \leq D$ we have $V_{i-1,j}^{\mu \nu} \subseteq V_{i,j}^{\mu \nu}$ and $V_{i,j-1}^{\mu \nu} \subseteq V_{i,j}^{\mu \nu}$. Therefore

$$
V_{i-1,j}^{\mu \nu} + V_{i,j-1}^{\mu \nu} \subseteq V_{i,j}^{\mu \nu}.
$$

Referring to the above inclusion, we define $\tilde{V}_{i,j}^{\mu \nu}$ to be the orthogonal complement of the left-hand side in the right-hand side; that is

$$
\tilde{V}_{i,j}^{\mu \nu} = (V_{i-1,j}^{\mu \nu} + V_{i,j-1}^{\mu \nu})^\perp \cap V_{i,j}^{\mu \nu}.
$$

Lemma 6.3 [16, Lemma 10.3] With reference to Notation 4.1 and Definition 6.2, the following holds for $\mu, \nu \in \{\downarrow, \uparrow\}$:

$$
V = \sum_{i=0}^D \sum_{j=0}^D \tilde{V}_{i,j}^{\mu \nu} \quad \text{(direct sum).} \quad (10)
$$

Definition 6.4 We call the sum (10) the (μ, ν)–split decomposition of V with respect to x.

Remark 6.5 The decomposition (10) is not orthogonal in general.
Lemma 6.6 With reference to Notation 4.1, let \(W \) denote an irreducible \(T \)-module with endpoint \(\rho \), dual endpoint \(\tau \), and diameter \(d \). Then for \(0 \leq h \leq d \) and \(0 \leq i, j \leq D \) the following (i)--(iv) hold.

(i) \(W_{i,j}^{11} \subseteq \tilde{V}_{i,j}^{11} \) if and only if \(i = \rho + h \) and \(j = \tau + d - h \).

(ii) \(W_{i,j}^{11} \subseteq \tilde{V}_{i,j}^{11} \) if and only if \(i = D - \rho - d + h \) and \(j = \tau + d - h \).

(iii) \(W_{i,j}^{11} \subseteq \tilde{V}_{i,j}^{11} \) if and only if \(i = \rho + h \) and \(j = D - \tau - h \).

(iv) \(W_{i,j}^{11} \subseteq \tilde{V}_{i,j}^{11} \) if and only if \(i = D - \rho - d + h \) and \(j = D - \tau - h \).

Proof: Immediate from [16, Lemma 11.4] and (10).

\[\Box \]

Lemma 6.7 With reference to Notation 4.1, fix an orthogonal direct sum decomposition of the standard module \(V \) of \(\Gamma \) into irreducible \(T \)-modules:

\[V = \sum_{w} W. \tag{11} \]

Then the following (i)--(iv) hold for \(0 \leq i, j \leq D \).

(i) \(\tilde{V}_{i,j}^{11} = \sum W_{i,j}^{11} \), where the sum is over all ordered pairs \((W, h) \) such that \(W \) is assumed in (11) with endpoint \(\rho \leq i \), dual endpoint \(\tau = i + j - \rho - d \), diameter \(d \geq i - \rho \), and \(h = i - \rho \).

(ii) \(\tilde{V}_{i,j}^{11} = \sum W_{i,j}^{11} \), where the sum is over all ordered pairs \((W, h) \) such that \(W \) is assumed in (11) with endpoint \(\rho \leq D - i \), dual endpoint \(\tau = i + j + \rho - D \), diameter \(d \geq D - \rho - i \), and \(h = \rho + d - D + i \).

(iii) \(\tilde{V}_{i,j}^{11} = \sum W_{i,j}^{11} \), where the sum is over all ordered pairs \((W, h) \) such that \(W \) is assumed in (11) with endpoint \(\rho \leq i \), dual endpoint \(\tau = \rho + D - i - j \), diameter \(d \geq i - \rho \), and \(h = i - \rho \).

(iv) \(\tilde{V}_{i,j}^{11} = \sum W_{i,j}^{11} \), where the sum is over all ordered pairs \((W, h) \) such that \(W \) is assumed in (11) with endpoint \(\rho \leq D - i \), dual endpoint \(\tau = 2D - \rho - d - i - j \), diameter \(d \geq D - \rho - i \), and \(h = \rho + d - D + i \).

Proof: (i) For \(0 \leq i, j \leq D \) define

\[v_{i,j} = \sum W_{i,j}^{11}, \tag{12} \]

where the sum is over all ordered pairs \((W, h) \) such that \(W \) is assumed in (11) with endpoint \(\rho \leq i \), dual endpoint \(\tau = i + j - \rho - d \), diameter \(d \geq i - \rho \), and \(h = i - \rho \). We show that \(\tilde{V}_{i,j}^{11} = v_{i,j} \). We first show that \(V_{i,j}^{11} \geq v_{i,j} \). Let \(W_{i,j}^{11} \) denote one of the terms in the sum on the right in (12). We show that \(W_{i,j}^{11} \) is contained in \(V_{i,j}^{11} \). Let \(\rho, \tau, d \) denote the endpoint, dual endpoint, and diameter of \(W \), respectively. By construction \(\tau = i + j - \rho - d \) and \(h = i - \rho \).
Subtracting the second equation from the first equation we find $j = \tau + d - h$. Now $W_{h}^{\downarrow\downarrow}$ is contained in $V_{i,j}^{\downarrow\downarrow}$ by Lemma 6.1(i). We have now shown that $V_{i,j}^{\downarrow\downarrow} \supseteq v_{i,j}$. We can now easily show that $V_{i,j}^{\downarrow\downarrow} = v_{i,j}$. Expanding the sum (11) using Lemma 5.4 we get

$$V = \sum_{W} W \quad \text{(direct sum)}$$

$$= \sum_{W} \sum_{h} W_{h}^{\downarrow\downarrow} \quad \text{(direct sum)},$$

where the second sum is over the integer h from 0 to the diameter of W. In the above sum we change the order of summation to get

$$V = \sum_{i=0}^{D} \sum_{j=0}^{D} v_{i,j} \quad \text{(direct sum)},$$

where the third sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint $\rho \leq i$, dual endpoint $\tau = i + j - \rho - d$, diameter $d \geq i - \rho$, and $h = i - \rho$. In other words,

$$V = \sum_{i=0}^{D} \sum_{j=0}^{D} v_{i,j} \quad \text{(direct sum).}$$

By this, (10), and since $V_{i,j}^{\downarrow\downarrow} \supseteq v_{i,j}$ for $0 \leq i, j \leq D$, we find $V_{i,j}^{\downarrow\downarrow} = v_{i,j}$ for $0 \leq i, j \leq D$. (ii), (iii), (iv) Similar to the proof of (i). \hfill \Box

Now we have the main result.

Theorem 6.8 With reference to Notation 4.1 and Definition 6.2, the following (i), (ii) hold for $0 \leq i, j, r, s \leq D$.

(i) $V_{i,j}^{\downarrow\downarrow}$ and $V_{r,s}^{\uparrow\uparrow}$ are orthogonal unless $i + r = D$ and $j + s = D$.

(ii) $V_{i,j}^{\downarrow\downarrow}$ and $V_{r,s}^{\uparrow\downarrow}$ are orthogonal unless $i + r = D$ and $j + s = D$.

Proof: (i) Assume that $i + r \neq D$ or $j + s \neq D$. We show that $V_{i,j}^{\downarrow\downarrow}$ and $V_{r,s}^{\uparrow\uparrow}$ are orthogonal. To do this we will use Lemma 6.7(i),(iv). Let $W_{h}^{\downarrow\downarrow}$ (resp. $W_{h'}^{\uparrow\uparrow}$) denote one of the terms in the sum in Lemma 6.7(i) (resp. Lemma 6.7(iv)). We show that $W_{h}^{\downarrow\downarrow}$ and $W_{h'}^{\uparrow\uparrow}$ are orthogonal. There are two cases to consider. First assume that $W \neq W'$. Then W and W' are orthogonal so $W_{h}^{\downarrow\downarrow}$ and $W_{h'}^{\uparrow\uparrow}$ are orthogonal. Next assume that $W = W'$. Let ρ, τ, d denote the corresponding endpoint, dual endpoint, and diameter. By Lemma 6.7(i),

$$\tau = i + j - \rho - d, \quad h = i - \rho. \quad (13)$$

By Lemma 6.7(iv),

$$\tau = 2D - \rho - d - r - s, \quad h' = \rho + d - D + r. \quad (14)$$
Adding the equations on the right in (13), (14) we get
\[i + r - D = h + h' - d. \] (15)
Subtracting the equation on the left in (13) from the equation on the left in (14) and evaluating the result using (15) we get
\[j + s - D = d - h - h'. \] (16)
By (15), (16) and since \(i + r \not= D \) or \(j + s \not= D \) we find \(h + h' \not= d \). Now \(W_{h}^{\uparrow \uparrow} \) and \(W_{h'}^{\downarrow \downarrow} \) are orthogonal by Lemma 5.5(i).
(ii) Similar to the proof of (i).

Corollary 6.9 With reference to Notation 4.4 and Definition 6.2, the following (i), (ii) hold for \(0 \leq i, j \leq D \).

\[(i) \quad \dim \tilde{V}_{i,j}^{\downarrow \downarrow} = \dim \tilde{V}_{D-i,D-j}^{\uparrow \uparrow} \]
\[(ii) \quad \dim \tilde{V}_{i,j}^{\uparrow \uparrow} = \dim \tilde{V}_{D-i,D-j}^{\downarrow \downarrow} \]

Proof: Immediate from Theorem 6.8 and elementary linear algebra. \(\square \)

Acknowledgements
The author would like to thank Professor Paul M. Terwilliger for his valuable ideas and comments.

References
[1] E. Bannai and T. Ito. *Algebraic Combinatorics I: Association Schemes*. Benjamin/Cummings, London, 1984.
[2] N. Biggs *Algebraic Graph Theory. Second edition*. Cambridge University Press, Cambridge, 1993.
[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-Regular Graphs*. Springer-Verlag, Berlin, 1989.
[4] J. S. Caughman IV. Spectra of bipartite \(P \)- and \(Q \)-polynomial association schemes. *Graphs Combin.* 14 (1998), 321–343.
[5] J. S. Caughman IV. The Terwilliger algebras of bipartite \(P \)- and \(Q \)-polynomial association schemes. *Discrete Math.* 196 (1999), 65–95.
[6] B. Curtin. Bipartite distance-regular graphs I. *Graphs Combin.* 15 (1999), 143–158.
[7] B. Curtin. Bipartite distance-regular graphs II. *Graphs Combin.* 15 (1999), 377–391.
[8] C. Curtis and I. Reiner. *Representation Theory of Finite Groups and Associative Algebras*. Interscience, New York, 1962.

[9] J. T. Go. The Terwilliger algebra of the hypercube. *European J. Combin.* **23** (2002), 399–429.

[10] J. T. Go and P. Terwilliger. Tight distance-regular graphs and the subconstituent algebra. *European J. Combin.* **23** (2002), 793–816.

[11] C. D. Godsil. *Algebraic Combinatorics*. Chapman and Hall, Inc., New York, 1993.

[12] S. A. Hobart and T. Ito. The structure of nonthin irreducible T-modules: ladder bases and classical parameters. *J. Algebraic Combin.* **7** (1998), 53–75.

[13] T. Ito, K. Tanabe, P. Terwilliger. Some algebra related to P- and Q-polynomial association schemes. *Codes and Association Schemes (Piscataway NJ, 1999)*, 167–192, *DIMACS Ser. Discrete Math. Theoret. Comput. Sci.* **56**, Amer. Math. Soc., Providence RI 2001.

[14] T. Ito and P. Terwilliger. The shape of a tridiagonal pair. *J. Pure Appl. Algebra*. **188** (2004), 145–160.

[15] T. Ito and P. Terwilliger. Tridiagonal pairs and the quantum affine algebra $U_q(\widehat{sl}_2)$. *Ramanujan J.* **13** (2007), 39–62. arXiv:math.QA/0310042

[16] T. Ito and P. Terwilliger. Distance-regular graphs and the q-tetrahedron algebra. *European J. Combin.*, Submitted. arXiv:math.CO/0608694.

[17] A. A. Pascasio. On the multiplicities of the primitive idempotents of a Q-polynomial distance-regular graph. *European J. Combin.* **23** (2002), 1073–1078.

[18] A. A. Pascasio. Tight distance-regular graphs and the Q-polynomial property. *Graphs Combin.* **17** (2001), 149–169.

[19] K. Tanabe. The irreducible modules of the Terwilliger algebras of Doob schemes. *J. Algebraic Combin.* **6** (1997), 173–195.

[20] P. Terwilliger. The subconstituent algebra of an association scheme I. *J. Algebraic Combin.* **1** (1992), 363–388.

[21] P. Terwilliger. The subconstituent algebra of an association scheme II. *J. Algebraic Combin.* **2** (1993), 73–103.

[22] P. Terwilliger. The subconstituent algebra of an association scheme III. *J. Algebraic Combin.* **2** (1993), 177–210.

[23] P. Terwilliger. The displacement and split decompositions for a Q-polynomial distance-regular graph. *Graphs Combin.* **21** (2005), 263–276. arXiv:math.CO/0306142
Joohyung Kim
Department of Mathematics
University of Wisconsin
480 Lincoln Drive
Madison Wisconsin
53706-1388 USA
Email: jkim@math.wisc.edu