Urinary albumin/creatinine ratio tertiles predict risk of diabetic retinopathy progression: a natural history study from the Adolescent Cardio-Renal Intervention Trial (AdDIT) observational cohort

Paul Z. Benitez-Aguirre 1,2 • M. Loredana Marcovecchio 3 • Scott T. Chiesa 4 • Maria E. Craig 1,2,5 • Tien Y. Wong 6,7,8 • Elizabeth A. Davis 9,10 • Andrew Cotterill 11 • Jenny J. Couper 12 • Fergus J. Cameron 13,14,15 • Farid H. Mahmud 16 • H. Andrew W. Neil 17 • Timothy W. Jones 9,10 • John Deanfield 4 • David B. Dunger 3,20 • Kim C. Donaghue 1,2 • on behalf of the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT)

Received: 10 August 2021 / Accepted: 1 December 2021 / Published online: 19 February 2022
© The Author(s) 2022

Abstract
Aims/hypothesis We hypothesised that adolescents with type 1 diabetes with a urinary albumin/creatinine ratio (ACR) in the upper tertile of the normal range (high ACR) are at greater risk of three-step diabetic retinopathy progression (3DR) independent of glycaemic control.

Methods This was a prospective observational study in 710 normoalbuminuric adolescents with type 1 diabetes from the non-intervention cohorts of the Adolescent Cardio-Renal Intervention Trial (AdDIT). Participants were classified as ‘high ACR’ or ‘low ACR’ (lowest and middle ACR tertiles) using baseline standardised log10 ACR. The primary outcome, 3DR, was determined from centrally graded, standardised two-field retinal photographs. 3DR risk was determined using multivariable Cox regression for the effect of high ACR, with HbA1c, BP, LDL-cholesterol and BMI as covariates; diabetes duration was the time-dependent variable.

Results At baseline mean ± SD age was 14.3 ± 1.6 years and mean ± SD diabetes duration was 7.2 ± 3.3 years. After a median of 3.2 years, 83/710 (12%) had developed 3DR. In multivariable analysis, high ACR (HR 2.1 [1.3, 3.3], \(p = 0.001 \)), higher mean IFCC HbA1c (HR 1.03 [1.01, 1.04], \(p = 0.001 \)) and higher baseline diastolic BP SD score (HR 1.43 [1.08, 1.89], \(p = 0.01 \)) were independently associated with 3DR risk.

Conclusions/interpretation High ACR is associated with greater risk of 3DR in adolescents, providing a target for future intervention studies.

Trial registration isrctn.org ISRCTN91419926.

Keywords AdDIT • Adolescents • Diabetic nephropathy • Diabetic retinopathy progression • Kidney function • Microvascular complications • Type 1 diabetes

Abbreviations

3DR	Three-or-more-step diabetic retinopathy progression
ACR	Albumin/creatinine ratio
AdDIT	Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial
DBP	Diastolic BP
SBP	Systolic BP
SDS	SD score

Introduction

Prevention of sight-threatening diabetic retinopathy through early intervention requires timely screening and identification
Research in context

What is already known about this subject?
- Diabetic retinopathy is associated with diabetes duration, higher HbA1c, and increased BP
- In adolescents with type 1 diabetes, albumin/creatinine ratio (ACR) at the higher end of the normal range is associated with an increased risk of progression to albuminuria and future cardiovascular risk independent of glycaemic control

What is the key question?
- Can ACR in the upper tertile of the normal range (high ACR) identify adolescents at greater risk of three-step diabetic retinopathy progression?

What are the new findings?
- Upper-tertile ACR within the normoalbuminuric range independently predicted the risk of three-step diabetic retinopathy progression

How might this impact on clinical practice in the foreseeable future?
- Early screening for abnormal ACR may provide a valuable tool to identify adolescents at high risk for diabetic retinopathy in clinical practice and may allow for early intervention in, and prevention of, sight-threatening retinopathy

Methods

Study population Overall, 4407 adolescents with type 1 diabetes were screened for participation in AdDIT, each providing three consecutive early morning urine samples at two separate visits. Centralised assessment of all urine samples was performed at the WellChild Laboratory, Evelina Children’s Hospital, London. The average residual was calculated using age, sex and duration and the coefficients from the previous models [6]. ACR tertile assignment was as follows: upper-tertile (high ACR group) ACR >1.2 middle-tertile ACR 0.8–1.2 and lower-tertile ACR <0.8. The lower two tertiles were combined for analysis as the ‘low ACR’ group [7].

In addition to active intervention, the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT) included a parallel observational (non-intervention) natural history cohort of participants with high ACR and low ACR in whom the outcome of diabetic retinopathy was examined. Utilising this observational cohort, we hypothesised that high ACR is associated with greater risk of diabetic retinopathy progression independent of glycaemic control.

We assessed 710 natural history participants (510 low ACR and 200 high ACR) who attended repeat annual standardised visits and had gradable retinal photography across three countries (UK, Canada and Australia) using protocols previously described [5]. Anonymised digital retinal photographs were centralised to the Centre for Eye Research Australia, Melbourne, VIC, Australia for diabetic retinopathy grading according to the Early Treatment Diabetic Retinopathy Study [8] by expert graders masked to ACR tertile and clinical characteristics. Three-or-more-step diabetic retinopathy progression (3DR) in the worse eye was the primary outcome measure, as used in the DCCT [9]; the minimum grade of those with 3DR was grade 31.

HbA1c was analysed at each centre, using DCCT-aligned methods [7]. HbA1c results were retrieved from clinical databases to calculate mean HbA1c values through the study period. Upper HbA1c tertile was assigned to mean HbA1c values ≥74 mmol/mol (8.9%) and compared with the lower two HbA1c tertiles combined into a single category (HbA1c ≥74 mmol/mol [8.9%] vs HbA1c <74 mmol/mol [8.9%]). Lipid profile (cholesterol, HDL-cholesterol, LDL-cholesterol, triacylglycerols) was measured using routine laboratory methods [7].
Height, weight and BMI SD scores (SDSs) were calculated according to the least mean squares method [10]. BP was measured (mean of two measures) using an Omron M6 BP (all centres) with an appropriately sized cuff with SDS calculated [11]. The study was approved by the Cambridge University Hospitals Research Ethics Committee and local ethics committees internationally. Parents and participants provided written informed consent and assent.

Statistics Descriptive baseline statistics comparing high vs low ACR and 3DR progressors vs 3DR non-progressors are presented as mean ± SD for normally distributed data, median (IQR) for skewed distributions and as n (%) for proportions. Differences between continuous independent samples were evaluated using independent t tests for normally distributed data, or Kruskal–Wallis test for skewed data. χ² test was used to determine differences between proportions.

The primary outcome measure was 3DR, which was examined using Cox proportional hazard regression. Diabetes duration was used as the time-dependent variable. HRs and 95% CIs are reported per one unit change in the risk factor. Explanatory variables included the following: high ACR and low ACR; mean HbA1c and HbA1c ≥74 mmol/mol (8.9%); BP SDS; BMI SDS; and LDL-cholesterol and diabetic retinopathy status at baseline. All statistical analyses were conducted using SPSS version 25 (https://www.ibm.com/au/en/products/spss-statistics).

Results

At baseline, mean ± SD age was 14.3 ± 1.6 years and mean ± SD diabetes duration was 7.2 ± 3.3 years. There were no significant differences between the high ACR and low ACR groups with respect to age, sex distribution, systolic BP (SBP) SDS, diastolic BP (DBP) SDS, BMI SDS, HbA1c or LDL-cholesterol. The high ACR group had shorter diabetes duration (electronic supplementary material [ESM] Table 1). Participants had a median (IQR) of 4 (2–5) assessments after a median 3.2 years of follow-up; 3DR developed in 83/712 (11.7%). Cumulative incidence of 3DR in the high vs low ACR group was 15.5% vs 10.2%, p=0.048 (ESM Table 1).

In univariable Cox regression analysis, high ACR, higher HbA1c and higher DBP SDS were associated with greater risk of 3DR (Table 1).

In multivariable Cox regression analyses, greater 3DR risk was associated with high ACR (HR 2.1 [1.3, 3.3], p=0.001), IFCC HbA1c (HR 1.03 [1.01, 1.04], p=0.001) and DBP SDS (HR 1.43 [1.08, 1.89], p=0.01) (Fig. 1). 3DR risk was not associated with diabetic retinopathy at baseline, nor lipid levels nor BMI (Table 1).

In the low ACR group, HbA1c ≥74 mmol/mol (8.9%) significantly increased 3DR risk to that comparable with the high ACR groups. In the high ACR groups, HbA1c ≥74 mmol/mol was not associated with greater 3DR risk (Fig. 1).

Discussion

Previously reported data from the AdDIT cohorts highlighted the systemic nature of the pre-clinical diabetic endotheliopathy by describing that high ACR was associated with changes in retinal vascular geometry [5], greater risk of albuminuria and greater thickening of carotid intima–media thickness [12]. In this multinational AdDIT natural history cohort, we demonstrate that upper tertile ACR (high ACR group) within the normalalbuminuric range was associated with greater risk of 3DR after adjusting for HbA1c.

Furthermore, we demonstrate that early rise in DBP and HbA1c ≥74 mmol/mol (8.9%) significantly increased risk of 3DR particularly in the low ACR group.

Interestingly, in the high ACR group, higher mean HbA1c (≥74 mmol/mol [8.9%]) did not significantly modify risk of 3DR, suggesting that the inherent biological risk for progression of microvascular complications may be largely independent of appropriate glycaemic control. This is important in clinical care settings, as individuals identified as ‘high risk’ through ACR screening should continue to be closely monitored for complications despite optimal glycaemic control and highlights a need for interventions other than glycaemic control to ameliorate risk and progression diabetic retinopathy.

Our findings of greater risk in the high ACR group complement the diabetic retinopathy screening advice for adolescents arising from the DCCT/EDIC [13] study group, primarily based on HbA1c levels. At the same time, our findings are in keeping with the greatest risk factors for proliferative diabetic retinopathy in the DCCT, including an elevated urinary albumin excretion rate and higher mean DBP [14]. Importantly, in our study, the presence or absence of diabetic retinopathy at baseline did not influence risk of 3DR, thus further demonstrating the robust nature of stratification by ACR groups in youth with shorter diabetes duration. Notably, the high ACR group had a lower proportion of diabetic retinopathy at baseline, likely related to shorter diabetes duration. In keeping with our hypothesis, a higher proportion of high ACR participants developed 3DR with ongoing diabetes exposure despite shorter diabetes duration. Those with high ACR appear to have an underlying predisposition for a systemic endotheliopathy that progresses more rapidly as evidenced by 3DR. The evidence supports both genetic and metabolic mechanisms that protect and predispose from diabetes complications [15], although clinically measurable and reproducible biomarkers associated with such risk have been elusive. Our data suggest that broader screening through ACR may assist to identify a ‘high risk’ group in the population who are predisposed to earlier onset of complications and likely to benefit from earlier intervention.
In the low ACR group, those with HbA1c ≥ 74 mmol/mol (8.9%) had significantly increased risk of 3DR similar to the high ACR group, thus confirming that HbA1c significantly influences and modifies diabetic retinopathy and in keeping with findings from the DCCT/EDIC studies [16]. Hence, screening for microvascular complications is influenced by an inherent biological predisposition, which is significantly modified by glycaemic exposure.

In addition, an early elevation of DBP even within the normotensive range significantly increased risk of 3DR, consistent with our previous findings that DBP and SBP increases within the normotensive range associate with incident diabetic retinopathy in adolescents with type 1 diabetes [17].

The strengths of our study include a large multinational population from a study collaboration with standardised

Table 1 Risk of 3DR

Characteristic	Univariable model			Multivariable model		
	HR (95% CI)	p value		HR (95% CI)	p value	
High ACR	2.3 (1.4, 3.5)	0.001	2.1 (1.3, 3.3)	0.001		
Female sex	1.2 (0.8, 1.8)	0.5		–	–	
Mean HbA1c (mmol/mol)	1.03 (1.02, 1.05)	<0.0001	1.03 (1.01, 1.04)	0.001		
Mean HbA1c (%)	1.40 (1.19, 1.65)	<0.0001				
Baseline HbA1c (mmol/mol)	1.03 (1.01, 1.04)	<0.0001				
Baseline HbA1c (%)	1.31 (1.12, 1.54)	0.001				
Baseline SBP (mmHg)	1.01 (1.00, 1.03)	0.1		–	–	
Baseline DBP (mmHg)	1.04 (1.01, 1.06)	0.006		–	–	
Baseline SBP SDS	1.21 (0.97, 1.50)	0.1				
Baseline DBP SDS	1.48 (1.12, 1.95)	0.006	1.43 (1.08, 1.89)	0.01		
Baseline BMI SDS	1.25 (0.96, 1.62)	0.1		–	–	
Baseline LDL-cholesterol (mmol/l)	1.13 (0.87, 1.46)	0.4		–	–	
Baseline LDL ≥ 2.6 mmol/l	1.24 (0.79, 1.96)	0.4		–	–	
Retinopathy at baseline	0.92 (0.53, 1.76)	0.9		–	–	

Cox regression analysis with diabetes duration as time-dependent variable

Fig. 1 Cox regression analysis of high vs low ACR for risk of 3DR. (a) Risk of 3DR by ACR group and model adjusted for mean HbA1c and DBP SDS. High ACR vs low ACR (HR 2.1 [1.3, 3.3]). (b) Risk by ACR and HbA1c ≥ 74 mmol/mol (8.9%) model adjusted for DBP SDS. Upper-tertile ACR (high ACR) is associated with risk of 3DR. Glycaemic control modifies risk of 3DR particularly in the low ACR group. HR (95% CI): Low ACR & HbA1c <74 mmol/mol, 1.0 (reference); Low ACR & HbA1c ≥74 mmol/mol, 3.0 (1.7, 5.1); High ACR & HbA1c <74 mmol/mol, 3.7 (1.9, 7.1); High ACR & HbA1c ≥74 mmol/mol, 3.7 (1.9, 7.2) The orange line (High ACR & HbA1c <74mmol/mol) is not visible because it is obscured by the red line (High ACR & HbA1c ≥74 mmol/mol), due to similar HR.
methods. Limitations include a low number of photographs, relatively short time in study period and the post hoc examination of these cohorts. However, we analysed a non-intervention population and used total diabetes duration as our time-dependent variable since the predominant effect of duration is more pronounced for diabetic retinopathy. Furthermore, the low ACR group had longer diabetes duration, thereby making an underestimate of 3DR unlikely in this group compared with the high ACR group.

In conclusion, we demonstrate that urinary ‘high ACR’, albeit in the normoalbuminuria range, identifies adolescents at greater risk of diabetic retinopathy progression. This was despite shorter diabetes duration and after adjusting for glycaemic exposure. We also observed that early DBP elevation significantly modifies 3DR risk. Higher glycaemic burden increases risk of 3DR particularly in the low ACR group and remains a crucial target for intervention. Further research to translate the ACR screening threshold into real-world application is required. The longitudinal follow-up from AdDIT cohorts will provide invaluable insight into the mechanisms underlying diabetes complications and the potential benefits of early ‘pre-complications’ interventions in paediatric cohorts.

Appendix

AdDIT investigators
Australia: Tim Jones (Perth); Kim Donaghyue (Sydney); Maria Craig (Sydney); Fergus Cameron (Melbourne); Jennifer Couper (Adelaide); Elizabeth Davis (Perth); Andrew Cotterill (Brisbane); Bruce King (Newcastle); Charles Verge (Sydney); Phil Bergman (Victoria); Christine Rodda (Victoria); and Paul Benitez-Aguirre (Sydney).

UK: Carlo Acerini (Cambridge); Fran Ackland (Northampton); Rodda (Victoria); and Paul Benitez-Aguirre (Sydney). Canada: Farid Mahmud (Toronto); Cheril Clinson (London, Ontario); Jacqueline Curtis (Toronto); and Y. Elia (Toronto). We thank all the participating centres and research nurses as well as the English National Diabetic Retinopathy Screening Programme (in particular P. Scanlon [Nuffield Department of Clinical Neurosciences, University of Oxford, and Gloucestershire Retinal Research Group, Cheltenham General Hospital, Cheltenham, UK] and H. Lipinski [Oxfordshire Diabetic Eye Screening Programme, John Radcliffe Hospitals NHS Foundation Trust, Oxford, UK]) for their advice and support. The authors thank the following people: A. Pryke, J. Cusumano and T. Jopling for data compilation (The Children’s Hospital at Westmead, Sydney); Study coordinators and research nurses B. Sheil and J. Dart (Princess Alexandra Hospital, Perth); N. D’Silva, J. Nesbit and J. Wilson, (Mater Children’s Hospital, Department of Paediatric Endocrinology, Brisbane); M. Krieg and T. Kelly (Women’s and Children’s Hospital, Adelaide); and N. Jackson and C. Bingley (Royal Melbourne Children’s Hospital). We also thank our research collaborators and research nurses in the UK and Canada: A. Murray (Middlesex); A. Kempa (Northampton); C. Cleaver (Aylesbury); C. Fish (Bolton); C. Megson (Oxford); C. O’Brien (Cambridge); E. Thomson (Newcastle); F. Riley (Ipswich); H. Roper (Norwich); L. Newham (Birmingham); J. Bowen-Morris (Oxford); J. Exall (Leeds); J. Spimpolo (Northampton); J. Exall and J. Hassler-Hurst (Ipswich); L. Swart (Manchester); L. Bunton (Oxford); L. Fear (Norwich); L. Dudgeon (Northampton); J. Exall and J. Hassler-Hurst (Ipswich); L. Swart (Manchester); L. Bunton (Oxford); L. Fear (Norwich); L. Dudgeon (Northampton); N. Pemberton (Wigan); P. Woodsford (Newcastle); S. Dymond (Bristol); S. Bennett (Stepping Hill); S. Chapman (Cambridge); and Y. Elia (Toronto). We thank all the participants and their families for their involvement in this study. We also acknowledge the full list of participating AdDIT investigators (see Appendix).

Funding
The National Health and Medical Research Council of Australia (NHMRC) 632521 provided funding for this study in particular and the Juvenile Diabetes Foundation International, British Heart Foundation, Diabetes UK, Canadian Clinical Trial Network provided funding for AdDIT as a whole.

Acknowledgements
This article is submitted with thanks to, and in honour of, Professor David B. Dunger who initiated and led the AdDIT studies. David was a leader, mentor, advocate and humble worker in the diabetes world. This work is part of his legacy. Rest well our friend.

Authors’ relationships and activities
The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement
PBA collected and analysed the data, and wrote the manuscript. MLM and STC collected data, contributed to manuscript writing and provided advice on data analysis. KCD, ME, TYW, EAD, AC, JJC, FJC, FHM, AN, TWJ, LABH, RND, SM, JD and DBD contributed to data collection and reviewed and edited the manuscript. DBD, JD, TWJ, FHM and KCD obtained funding for the study. KCD is the guarantor of this work and takes full responsibility for the contents of the article.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Wong TY, Sun J, Kawasaki R et al (2018) Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 125(10):1608–1622. https://doi.org/10.1016/j.ophtha.2018.04.007
2. Amin R, Widmer B, Prevost AT et al (2008) Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ 336(7640):697–701. https://doi.org/10.1136/bmj.39478.378241.BE
3. Mafei O, Pena AS, Sullivan T et al (2014) Early atherosclerosis relates to urinary albumin excretion and cardiovascular risk factors in adolescents with type 1 diabetes: adolescent type 1 Diabetes cardio-renal intervention trial (AdDIT). Diabetes Care 37(11):3069–3075. https://doi.org/10.2337/dc14-0700
4. Cho YH, Craig ME, Davis EA et al (2015) Cardiac autonomic dysfunction is associated with high-risk albumin-to-creatinine ratio in young adolescents with type 1 diabetes in AdDIT (adolescent type 1 diabetes cardio-renal intervention trial). Diabetes Care 38(4):676–681. https://doi.org/10.2337/dc14-1848
5. Benitez-Aguirre PZ, Wong TY, Craig ME et al (2018) The adolescent cardio-renal intervention trial (AdDIT): retinal vascular geometry and renal function in adolescents with type 1 diabetes. Diabetologia 61(4):968–976. https://doi.org/10.1007/s00125-017-4558-2
6. Dunger DB, Schwarze CP, Cooper JD et al (2007) Can we identify adolescents at high risk for nephropathy before the development of microalbuminuria? Diabet Med 24(2):131–136. https://doi.org/10.1111/j.1464-5491.2006.02047.x
7. Marcovecchio ML, Woodside J, Jones T et al (2014) Adolescent type 1 Diabetes cardio-renal intervention trial (AdDIT): urinary screening and baseline biochemical and cardiovascular assessments. Diabetes Care 37(3):805–813. https://doi.org/10.2337/dc13-1634
8. Diabetic Retinopathy Study (1981) Report number 6. Design, methods, and baseline results. Report number 7. A modification of the Airlie house classification of diabetic retinopathy. Prepared by the diabetic retinopathy study. Invest Ophthalmol Vis Sci 21(1 Pt 2):1–226
9. The DCCT Research Group (1998) Early worsening of diabetic retinopathy in the Diabetes control and complications trial. Arch Ophthalmol 116(7):874–886. https://doi.org/10.1001/archophth.116.7.874
10. Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11(10):1305–1319. https://doi.org/10.1002/sim.478011005
11. Task Force on Blood Pressure Control in Children (1987) Report of the second task force on blood pressure control in children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics 79(1):1–25
12. Marcovecchio ML, Chiesa ST, Armitage J et al (2018) Renal and cardiovascular risk according to tertiles of urinary albumin-to-creatinine ratio: the adolescent type 1 Diabetes cardio-renal intervention trial (AdDIT). Diabetes Care 41(9):1963–1969. https://doi.org/10.2337/dc18-1125
13. The DCCT/EDIC Research Group (2017) Frequency of evidence-based screening for retinopathy in type 1 Diabetes. N Engl J Med 376(16):1507–1516. https://doi.org/10.1056/NEJMoa1612836
14. Hainsworth DP, Bebu I, Aiello LP et al (2019) Risk factors for retinopathy in type 1 Diabetes: the DCCT/EDIC study. Diabetes Care 42(5):875–882. https://doi.org/10.2337/dc18-2308
15. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH et al (2005) Genetic variation at the ACE gene is associated with persistent microalbuminuria and severe nephropathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 54(4):1238–1244. https://doi.org/10.2337/diabetes.54.4.1238
16. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH et al (2015) Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes 64(2):631–642. https://doi.org/10.2337/db14-0930
17. Gallego PH, Craig ME, Hing S, Donaghue KC (2008) Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: prospective cohort study. BMJ 337:a918. https://doi.org/10.1136/bmj.a918

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations
Paul Z. Benitez-Aguirre1,2, M. Loredana Marcovecchio3, Scott T. Chiesa4, Maria E. Craig1,2, Tien Y. Wong6,7,8, Elizabeth A. Davis9,10, Andrew Cotterill11, Jenny J. Couper12, Fergus J. Cameron13,14,15, Farid H. Mahmud16, H. Andrew W. Neil17, Timothy W. Jones9,10, Lauren A. B. Hodgson6, R. Neil Dalton18, Sally M. Marshall19, John Deanfield4, David B. Dunger3,20, Kim C. Donaghue1,2, on behalf of the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT)

1 Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Sydney, Australia
Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia

Department of Paediatrics, University of Cambridge, Cambridge, UK

Institute of Cardiovascular Science, University College London, London, UK

School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia

Centre for Eye Research Australia, Melbourne, VIC, Australia

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore

Duke-NUS Medical School, National University of Singapore, Singapore, Singapore

Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia

Telethon Kids Institute, University of Western Australia, Perth, WA, Australia

University of Queensland, Brisbane, QLD, Australia

Endocrinology and Diabetes Centre, Women’s and Children’s Hospital, and Robinson Institute, University of Adelaide, Adelaide, SA, Australia

Department of Endocrinology and Diabetes, Royal Children’s Hospital, Melbourne, VIC, Australia

Murdoch Children’s Research Institute, Melbourne, VIC, Australia

The University of Melbourne, Melbourne, VIC, Australia

Division of Endocrinology, Hospital for Sick Children, Toronto, ON, Canada

Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK

St Thomas’ Hospital, Well Child Laboratory, Evelina London Children’s Hospital, London, UK

Translational and Clinical Research Institute, Newcastle University, Newcastle, UK

Institute of Metabolic Science, University of Cambridge, Cambridge, UK