Original Research Paper

Circular polarized patch antenna with wide 3-dB axial ratio beamwidth and suppressed backward cross-polarized radiation for high-precision marine navigation applications

Hongmei Liu | Yan Zhang | Yao Wang | Shaojun Fang | Zhongbao Wang

School of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China

Correspondence
Hongmei Liu, School of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning 116026, China.
Email: liuhm326@dlmu.edu.cn

Funding information
Fundamental Research Funds for the Central Universities, Grant/Award Numbers: 3132020206, 3132020207; National Natural Science Foundation of China, Grant/Award Numbers: 51809030, 61871417; Natural Science Foundation of Liaoning Province, Grant/Award Numbers: 2019-MS-024, 2020-MS-127

1 | INTRODUCTION

In global navigation satellite systems (GNSSs), circularly polarized (CP) antennas are very popular due to their advantages of suppressing multipath interference and reducing polarization mismatch. Thus, some CP antenna structures, such as cross-dipole [1], quadrifilar helix [2], and microstrip antennas [3], are widely investigated. Among them, the microstrip antenna has always been the research hotspot due to the advantages of low profile, light weight and low cost. For high-precision positioning, CP microstrip antennas are required to have high polarization purity, wide-angle circular polarization, symmetrical radiation pattern and superior multipath suppression [4]. Especially in marine navigation, CP microstrip antennas with a wider 3-dB axial ratio beamwidth (ARBW) are preferred for better reception of signals since ships often sway during voyage. Besides, anti-multipath performance is more critical for suppressing the interference from the sea-level reflection [5].

In recent years, numerous methods have been proposed to improve the 3-dB ARBW of CP microstrip antennas. Three-dimensional (3D) ground planes [6–8] and additional radiation elements [9, 10] have been regarded as effective methods. However, high profile and fabrication difficulty are inevitable. In [11], a suspended structure is proposed for determining the radiating area, but the antenna performance is very sensitive to the installation error of suspended height. In [12], the pin-loaded technique is utilized for a wide 3-dB ARBW. But the structure is not suitable for electrically small antennas and the 3-dB ARBWs become narrow when using finite ground. In [13], two pairs of narrow slots are inserted along the diagonal lines of a square patch for a wide 3-dB ARBW. In [14], the CP microstrip antenna with six metal columns is presented for wide-angle circular polarization. However, they all show narrow CP bandwidth (0.4% in [13] and 3.7% in [14]) which limits their applications.

Technologies for multipath suppression can be mainly classified into two categories, the high-impedance surface [15–19] and the reduced surface wave [20–22]. Among the high-impedance surfaces, the choke-rings [15–17] have been extensively used as successful commercial candidates. However, such antennas usually suffer from bulky volume and
heavy weight. Alternatively, the electromagnetic band gap (EBG) can also be used as a high-impedance surface [18, 19]. Although the profile and weight of the antenna are reduced, the need of extreme multi periodicity results in large size. The reduced surface wave technique is first proposed in [20] and has been successfully applied to GPS antennas with low multipath [21, 22]. However, since anti-multipath is the only concern, the 3-dB ARBWs of these antennas are narrow.

The anti-multipath performance and 3-dB ARBWs of CP antennas are often researched separately in reported studies and they are rarely carried out in the joint design. In [5], pin-loaded CP microstrip antenna with a sharp gain roll-off and wide 3-dB ARBW is presented for reducing the undesired multipath interference. The measured gain-off is 20 dB and the 3-dB ARBW reaches 140°. However, for high-precision marine positioning, the 3-dB ARBW of more than 200° is preferred since the ship sways during voyage. Besides, since multipath interference is mainly induced from the primary reflection of the sea surface and is often received from the backward of the antenna, CP antennas with suppressed backward cross-polarization are critical. In [4], the dual-ground structure is proposed for suppressing the back radiation and simultaneously an increase in the 3-dB ARBW. The optimized front-back ratio (FBR) and 3-dB ARBW are 21 dB and 220°, respectively. However, a narrow CP bandwidth (0.25%) limits its application.

Here, a CP patch antenna with a wide 3-dB ARBW and suppressed backward cross-polarized radiation is proposed for high-precision marine positioning. It comprises a circular radiation patch, an annular metal strip, a circular row of L-shaped bent metal branches, a slot-loaded ground, shorting pins, and the quadrature feed network. By using the L-shaped bent metal branches and the slot-loaded ground, a wide 3-dB ARBW with reduced backward cross-polarized radiation is realized. The measured results show that the 3-dB ARBW and the FBR are more than 230° and 26 dB, respectively. Besides, a peak gain of 4.36 dBi is obtained in the operating band. The study is organized as follows: Section 2 describes the structure of the proposed antenna. Section 3 presents the design procedure and parameter effects of the proposed antenna. The measured results are presented in Section 4, followed by a conclusion in Section 5.

2 | ANTENNA DESIGN

Figure 1 shows the structure of the proposed antenna in terms of the exploded view, the top view and the side view. It
comprises a circular radiation patch, an annular metal strip, a circular row of L-shaped bent metal branch, a slot-loaded ground, the shorting pins, and the quadrature feeding network. The circular radiation patch and the annular metal strip are etched on the upper surface of the substrate I (F4B, \(\varepsilon_{r1} = 3 \), \(\tan \delta_1 = 0.003, b_1 = 1.5 \) mm) with a radius of \(r_{\text{adv}} \).

The circular radiation patch has a radius of \(R_1 \), the annular metal strip has an outer radius of \(R_2 \), as shown in Figure 1(b). The gap between the radiation patch and the inner radius of the annular metal strip is termed \(s_1 \). The circular patch is directly fed by two orthogonal coaxial probes for producing CP waves.

To enhance the 3-dB ARBW of the CP antenna, a slot with a width of \(s_2 \) is loaded on the ground of the antenna, which is etched on the bottom surface of substrate I. It is observed from Figure 1(c) that the ground has an outer radius of \(R_3 \), and the distance between the slot and the centre of the ground is \(R_4 \). To suppress the cross-polarization at low elevations for a wider 3-dB ARBW, a circular row of shorting pins with a radius of \(2 \) mm is inserted in the annular metal strip as depicted in Figure 1(a). The gap between the shorting pins is 30°.

To suppress the cross-polarization at the backward, a circular row of L-shaped bent metal branch is loaded on the annular metal strip. The L-shaped bent metal branch is composed of a bent cylinder branch and a horizontal cylinder branch. The diameter of the cylinder is \(d_1 \). The bent cylinder branch has an elevation angle of \(\alpha_1 \), a height of \(h_1 \) and a bent radius of \(l_2 \). The horizontal cylinder branch has a length of \(l_1 \). To provide signals with equal amplitude and orthogonal phase, the trans-directional (TRD) coupler [23] is etched on the bottom surface of substrate II, as shown in Figure 1(d). The parameters of substrate II are same as that of substrate I except that the radius of substrate II is \(R_3 \). To reduce the influence of the feeding network on antenna performance, a ground plane with a radius of \(R_3 \) is etched on the upper surface of substrate II.

FIGURE 2 Design evolutions of the proposed antenna: (a) Structure I, (b) Structure II, (c) Structure III, and (d) Structure IV
3 | DESIGN PROCEDURES AND PARAMETRIC STUDY

3.1 | Design procedures of the proposed CP antenna

In this section, the contributions of the slot-loaded ground, the shorting pins and the L-shaped bent metal branches to the CP antenna's performance are studied by the simulator HFSS. Figure 2 shows the design evolution of the proposed CP antenna. Figure 3 shows the simulated ARBWs and normalized radiation patterns of different structures. Simulations are done using the circular patch combined with the different structures. The feature of the feeding network is not considered. The evolution starts from Structure I (see Figure 2(a)), in which a ground plane is located below the radiator. The initial size of the ground plane is simulated in consideration of the widest 3-dB ARBW. After optimization, the size is assigned as 65 mm.

To enhance the 3-dB ARBW, a slot is loaded on the ground (named as Structure II) as shown in Figure 2(b). Due to the insertion of the slot, the ground plane in Structure I is divided into two parts, the smaller ground plane and the annular metal strip. The annular metal strip serves as a parasitic radiator on the ground, which will affect the ARBW of the main radiator. It is observed from Figure 3(a) that the 3-dB ARBW for Structure I is 145°, and it is increased to 160° by using Structure II. However, Structure II has less influence on the cross-polarization suppression at the back. It is shown in Figure 3(b) that the FBR for Structures I and II are 17.5 and 16.3 dB, respectively. To suppress the cross-polarization at a low elevation for a wider 3-dB ARBW, an annular metal strip is first etched on to the upper surface of Substrate I and a circular row of shorting pins is inserted to connect the metal strips on both sides of the substrate as Structure III depicted in Figure 2(c). It is shown in Figure 3(a) that the cross-polarization at low elevation angles is reduced and the 3-dB ARBW for Structure III is increased to 235°. However, the FBR is reduced to 14.1 dB. To suppress the backward cross-polarization, a circular row of L-shaped bent metal branch is loaded on the annular metal strip (named as Structure IV, see Figure 2(d)). As shown in Figure 3, the FBR is obviously increased to 25.3 dB and the 3-dB ARBW reaches 275°.

Since the antenna is fed by two orthogonal probes, two sets of orthogonal TM_{11} modes can be generated and contribute to circular polarization. Since the AR can be expressed as

\[\text{AR}(\theta, \phi) = 20 \log_{10} \left[\frac{E_{\theta}(\theta, \phi)}{E_{\phi}(\theta, \phi)} \right] \]

a wide 3-dB ARBW can be required when \(E_{\theta} \) and \(E_{\phi} \) have close intensity over a wide angular range. To further clarify the internal mechanism, the electric-fields in terms of amplitude and phase differences of \(E_{\theta} \) and \(E_{\phi} \) are shown in Figure 4. It is observed that compared to Structures I–III, the Structure IV produces a wider angular coverage of 90° phase difference with a similar magnitude difference, so that a wider ARBW is obtained. Moreover, since an

Figure 3 The simulated results of different structures at 1.575 GHz: (a) ARBWs and (b) normalized radiation patterns. ARBW, axial ratio beamwidth

Figure 4 The simulated magnitude- and phase-differences of \(E_{\theta} \) and \(E_{\phi} \) for different structures at 1.575 GHz.
obvious jump of magnitude difference and a more unbalanced phase difference is revealed at the back of Structure IV, a more reduced backward cross-polarized radiation is realized.

3.2 | Parametric study of the proposed CP antenna

Based on the above evolution, the radiations of the CP antenna are mainly affected by two structures, the slot on the ground and the L-shaped bent metal branch. In this section, the parameters of the two structures are analysed in detail. When one parameter is studied, the others remain unchanged.

1. **Effect of the slot width s_2 and slot location R_4**: The effect of the slot width s_2 and slot location R_4 is investigated in this subsection. Figure 5 shows the 3-dB ARBW and the FBR of the antenna at the resonate frequency under various slot widths. As s_2 increases from 0 to 3 mm, the 3-dB ARBW rises from 221° to 265° with some ripple. As s_2 increases from 3 to 6 mm, the 3-dB ARBW decreases from 265° to 248°. Larger FBR can be observed when s_2 is in the range of 0.5–1.5 mm and 3.5–6 mm. After the trade-off in the 3-dB ARBW and the FBR, the optimized value of s_2 is selected as 3 mm. Figure 6 shows the 3-dB ARBW and the FBR under various slot location. It is observed that the 3-dB ARBW trends to increase when R_4 varies from 45 to 50 mm, and it decreases when R_4 varies from 50 to 55 mm.

Figure 5 Effects of the slot width s_2.

Figure 6 Effects of the slot location R_4.

Figure 7 Effects of the branch length l_1.

Figure 8 Effects of the branch length l_2.

Figure 9 Effects of the branch height h_1.

LIU ET AL. – 5
While the FBR is distributed and stable in the range of 24–26 dB. In consideration of wider 3-dB ARBW, the value of R_4 is chosen as 50 mm.

2. Effect of the bent branch length l_1 and l_2: In addition to the slot, the dimensions of the L-shaped bent metal branch significantly affect the electromagnetic wave diffraction, which results in a different radiation performance. In this subsection, the effects of the bent branch length, l_1 and l_2, on the 3-dB ARBW and backward cross-polarized radiation are further investigated. As shown in Figure 7, when the length l_1 increases from 6 to 20 mm, the 3-dB ARBW's fluctuate in the range of 260–270° and the FBRs are in the range of 24.4–26.3 dB. After the trade-off in the 3-dB ARBW, the FBR and the dimension, the value of l_1 is selected as 10 mm. Figure 8 shows the influence of the length l_2. It is obvious that the effect of l_2 on antenna radiation performance are more than that of l_1. When l_2 rises from 18 to 39 mm, the 3-dB ARBW increases from 247° to 280°. While in the same range, a bidirectional curve is found in the FBR. Since a larger FBR is preferred, the value of l_2 chosen as 29 mm.

3. Effect of the bent branch height b_1, diameter d_1, and elevation angle of α_1: Besides the length of the bent branch, the effects of the height b_1, diameter d_1 and elevation angle of α_1 are also investigated. As shown in Figure 9, the height of the bent branch has less influence on the 3-dB ARBW of the antenna, but smaller height results in larger FBR. Thus, the height b_1 is chosen as 14 mm. Figure 10 shows the effects of the branch diameter. As d_1 rises from 2 to 18 mm, the 3-dB ARBW increases from 250° to 268° with some ripple. A bidirectional curve is exhibited for the FBR. For larger FBR, the value of d_1 is selected as 10 mm. Figure 11 shows the effects of the elevation angle α_1. When α_1 is smaller than

Table 1	Dimensions of the proposed antenna							
Parameter	r_{cab}	R_1	R_2	R_3	R_4	R_5	s_1	s_2
Value (mm)	65	31.8	61	50	50	61	21.2	3
Parameter	l_1	l_2	l_3	l_4	l_5	l_6	ω_1	ω_2
Value (mm)	10	29	31	8	7.5	9.3	1	1.1
Parameter	ω_{50}	b_1	d_1	C_1	R_1	α_1		
Value (mm)	2.8	1	10	2.2 pF	50 Ω	45°		

![Figure 10](image1.png) Effects of the branch diameter d_1.

![Figure 11](image2.png) Effects of the branch elevation angle α_1.

![Figure 12](image3.png) The photograph of the fabricated antenna: (a) top view and (b) bottom view.
75°, the FBRs are larger than 25.1 dB. The 3-dB ARBW\text{s} are in the range of 257–268° when α_1 changes from 45° to 75°. Thus, under the criterion of the 3-dB ARBW\text{s} >250° and FBR >25 dB, the range of α_1 is 45–75°.

Figure 14 Simulated and measured the results of the antenna: (a) $|S_{11}|$ and (b) gain and AR. AR, axial ratio

Figure 13 Simulated results of the designed TRD coupler. TRD, trans-directional

Figure 15 Simulated and measured normalized radiation patterns at 1.575 GHz: (a) xoz plane and (b) yoz plane

Figure 16 Simulated and measured ARBW at 1.575 GHz. ARBW, axial ratio beamwidth
Considering a wider 3-dB ARBW, the value of α_1 is selected as 45°. According to the above analysis, the dimensions of the antenna are determined and the values of all the parameters are shown in Table 1.

4 | IMPLEMENTATION AND MEASUREMENTS

For validation, a prototype has been fabricated, as shown in Figure 12. The L-shaped bent metal branches are composed of inner branches fabricated using a 3D printer and outer copper foils wrapped around the branches. The photopolymer resin ($\varepsilon_r = 3$, $\tan \delta = 0.019$) is used as the 3D-printed material. The TRD coupler is etched on the backside of the feeding circuit board. To reduce the effects of the coupler on the slotted ground of the antenna, an extra ground plane is etched on the front of the feeding circuit board. The radius R_3 of the added ground is assigned as 30 mm. According to the analysis in [23], the theory circuit parameters of the TRD coupler can be calculated, including the even-mode characteristic impedance (Z_{eo}) of 120.9 Ω, the odd-mode characteristic impedance (Z_{eo}) of 77.2 Ω, the electrical length (θ) of 90°, and the capacitor (C_l) of 2.27 pF. After optimizing using the simulator HFSS, the final dimensions of the TRD coupler are obtained, as shown in Table 1 (corresponding to Figure 1(d)). Figure 13 shows the simulated results of the designed TRD coupler. It is seen that from 1.22 to 1.71 GHz (33.4%), the return loss of the designed TRD coupler is larger than 15 dB. For amplitude imbalance <1 dB, the simulated bandwidth is in the range of 1.38–1.69 GHz. At 1.575 GHz, the coupling and insertion loss of the TRD coupler are 3.19 and 3.09 dB, respectively. From 1.24 to 1.79 GHz, the output port phase difference is 90 \pm 5°.

The feeding circuit board is tightly placed below the ground of the antenna. The measurements were taken using an Agilent N5230, vector network analyzer and an anechoic chamber. As depicted in Figure 14, good agreements are observed between the simulated and measured results of $|S_{11}|$, gain and AR. Under the criterion of $|S_{11}| < -10$ dB, the measured bandwidth is from 1.34 to 1.73 GHz (25.4%). The measured bandwidth for AR < 3 dB is from 1.52 to 1.60 GHz (5.1%). At 1.58 GHz, the measured gain is 4.36 dBi. Figure 15 shows the simulated and measured normalized radiation patterns of the fabricated antenna. It is observed that the patterns in the xoz and yoz planes are similar to each other, and the radiation patterns of RHCP is symmetric for the maximum radiation direction. In addition, the measured FBRs are more than 26 dB at xoz and yoz planes. Figure 16 shows the simulated and measured ARBW’s at 1.575 GHz. At the xoz plane, the measured 3-dB ARBW is 259°, and the value is 238° at the yoz plane. Table 2 shows the comparison of the proposed antenna with several representative antennas in the literature. Compared with the exhibited CP antennas, the proposed design shows better performance in terms of bandwidth, the 3-dB ARBW, and backward cross-polarized radiation, which can be used as a candidate for high-precision marine positioning applications.

5 | CONCLUSION

Here, a novel technique to achieve CP radiation with a wide 3-dB ARBW and suppressed backward cross-polarization has been presented. By inserting the slot on the ground of the antenna as well as loading the L-shaped bent metal branches, the 3-dB ARBW can be increased by more than 110° and the FBR can be enhanced by nearly 8 dB. To validate the simulation design, a prototype of the proposed CP antenna has been fabricated and measured. Experimental results show that the proposed antenna can achieve a bandwidth of 1.34–1.73 GHz for $|S_{11}| < -10$ dB, a bandwidth of 1.52–1.60 GHz for AR < 3 dB and a gain of 4.36 dBi. In particular, the measured 3-dB AR of the fabricated antenna at 1.575 GHz can cover a wide angular range of 259° and 238° at the xoz and yoz planes, respectively, with FBRs more than 26 dB. Therefore, the proposed CP antenna can be a desirable candidate for high-precision marine positioning applications.

ACKNOWLEDGEMENTS

This study was supported in part by the National Natural Science Foundation of China under Grants 51809030 and 61871417, in

Table 2 Comparison with several representative CP antennas

Refs.	IBW (%)	CPBW (%)	FBR (dB)	3-dB ARBW (°)	Dimension (L x H)
[4]	1.1	0.25	22.0	220	$0.48 \lambda_0 \times 0.03 \lambda_0$
[5]	2.4	0.6	18.0	138/136	$0.92 \lambda_0 \times 0.013 \lambda_0$
[10]	1.7	0.63	17.4	>188	$0.21 \lambda_0 \times 0.016 \lambda_0$
[13]	3.4	0.96	18.8	226/198	$0.29 \lambda_0 \times 0.013 \lambda_0$
[14]	10.3	3.78	11.0	222/239	$0.96 \lambda_0 \times 0.14 \lambda_0$
[17]	20.8	8.5	13.8	190/193	$0.45 \lambda_0 \times 0.064 \lambda_0$
This work	25.8	5.1	26.0	259/238	$0.79 \lambda_0 \times 0.14 \lambda_0$

Note: λ_0 is the wavelength in air at the centre frequency. Abbreviations: ARBW, axial ratio beamwidth; FBR, front-back ratio.
part by the Natural Science Foundation of Liaoning Province under Grants 2020-MS-127 and 2019-MS-024, and in part by the Fundamental Research Funds for the Central Universities under Grants 3132020207 and 3132020206.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

ORCID
Hongmei Liu https://orcid.org/0000-0002-3834-4533

REFERENCES
1. Yang, W., et al.: A low-profile wideband circularly polarized crossed-dipole antenna. Antennas Wirel. Propag. Lett. 16, 2126–2129 (2017)
2. Bai, X.D., et al.: Compact design of triple-band circularly polarized quadrifilar helix antennas. IEEE Antennas Wirel. Propag. Lett. 13, 380–383 (2014)
3. Yuan, J., et al.: A compact meandered ring antenna loaded with parasitic patches and a slotted ground for global navigation satellite systems. IEEE Trans. Antennas Propag. 66(12), 6835–6843 (2018)
4. Park, B.-C., Lee, J.-H.: Compact circularly polarized antenna with wide 3-dB axial-ratio beamwidth. Antennas Wirel. Propag. Lett. 15, 410–413 (2016)
5. Zhang, X., et al.: Pin-loaded circularly-polarised patch antenna with sharpened gain roll-off rate and widened 3-dB axial ratio beamwidth. IET Microw. Antennas Propag. 12(8), 1247–1254 (2018)
6. Zeng, D.Z., Chu, Q.X.: Cavity-backed self-phased circularly polarized multipole antenna with wide axial-ratio beamwidth. IEEE Antennas Wirel. Propag. Lett. 16, 1998–2001 (2017)
7. Tang, C.-L., et al.: Beamwidth enhancement of a circularly polarized microstrip antenna mounted on a three-dimensional ground structure. Microw. Opt. Technol. Lett. 32(2), 149–153 (2002)
8. Bao, X.L., Ammann, M.J.: A cavity-backed spiral slot antenna with wide axial ratio beamwidth for GPS system. Microw. Opt. Technol. Lett. 56(5), 1050–1054 (2014)
9. Son, H-W., et al.: UHF RFID reader antenna with a wide beamwidth and high return loss. IEEE Trans. Antennas Propag. 60(10), 4928–4932 (2012)
10. Wang, M.-S., et al.: Compact circularly polarized patch antenna with wide axial-ratio beamwidth. Antennas Wirel. Propag. Lett. 17, 714–718 (2018)
11. Liu, N.W., et al.: Low-profile wide-beamwidth circularly-polarised patch antenna on a suspended substrate. IET Microw. Antennas Propag. 10(8), 885–890 (2016)
12. Zhang, X., et al.: Pin-loaded circularly-polarized patch antennas with wide 3-dB axial ratio beamwidth. IEEE Trans. Antennas Propag. 65(2), 521–528 (2017)
13. Ray, M.K., et al.: Low-profile circularly polarized patch antenna with wide 3-dB beamwidth. Antennas Wirel. Propag. Lett. 18(12), 2473–2477 (2019)
14. Zhao, C., et al.: Single-feed microstrip antenna for wide angle circular polarisation with six metal columns. IET Microw. Antennas Propag. 13(14), 2569–2574 (2019)
15. Tranquilla, J.M., et al.: Analysis of a choke ring groundplane for multipath control in global positioning system (GPS) applications. IEEE Trans. Antennas Propag. 42(7), 905–911 (1994)
16. Scire-Seappuzzo, F., Makarov, S.N.: A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane. IEEE Trans. Antennas Propag. 57(1), 33–46 (2009)
17. Chen, X., et al.: Compact circularly polarized microstrip antenna with cross-polarization suppression at low-elevation angle. Antennas Wirel. Propag. Lett. 16, 258–261 (2017)
18. Baggen, R., et al.: Low profile GALILEO antenna using EBG technology. IEEE Trans. Antennas Propag. 56(3), 667–674 (2008)
19. Zhang, Y., et al.: Anti-multipath dual-band GNSS antenna design with Peano fractal EBG structure, In: Proceedings of the 2016 Asia-Pacific international symposium on electromagnetic compatibility (APEMC), Shenzhen, vol. 1, pp. 523–525, (2016)
20. Jackson, D.R., et al.: Microstrip patch designs that do not excite surface waves. IEEE Trans. Antennas Propag. 41(8), 1026–1037 (1993)
21. Liu, H., et al.: A novel multimode reduced-surface-wave antenna for GNSS applications. Antennas Wirel. Propag. Lett. 12, 1618–1621 (2013)
22. Busilio, L.I., et al.: A comparative study of a new GPS reduced-surface-wave antenna. Antennas Wirel. Propag. Lett. 4, 233–236 (2005)
23. Shie, C.I., et al.: Trans-directional coupled-line couplers implemented by periodical shunt capacitors. IEEE Trans. Microw. Theory Tech. 57(12), 2981–2988 (2009)

How to cite this article: Liu H, Zhang Y, Wang Y, Fang S, Wang Z. Circular polarized patch antenna with wide 3-dB axial ratio beamwidth and suppressed backward cross-polarized radiation for high-precision marine navigation applications. IET Microw. Antennas Propag. 2021,1–9. https://doi.org/10.1049/mia2.12121