EFFECT OF CELL POPULATION DENSITY ON G₂ ARREST IN TETRAHYMENA

IVAN L. CAMERON and NIELS C. BOLS

From the Department of Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284, and the Department of Anatomy, University of Toronto, Toronto, Ontario MSS 1A1

ABSTRACT

The ciliated protozoan, Tetrahymena pyriformis strain GL-C, has been used to study the effect of cell population density during starvation on the synchrony obtained after refeeding and on the number of cells arrested in the G₂ phase of the cell cycle. At high cell densities two peaks of division indices were observed after refeeding while only one was observed at low cell densities. Cell division began earlier in cultures starved at high cell densities. Most importantly, the proportion of cells in G₂ was considerably higher in populations starved at high cell densities. When tritiated thymidine was present during the refeeding period, radioautographs of cell samples at different times showed that the first cells to exhibit division furrows contained unlabeled nuclei. The first peak in the division index after refeeding was observed only at higher cell densities and is attributed to the cells arrested in G₂. These results suggest that Tetrahymena is an excellent organism to study the concept of resting stages in the cell cycle and their control.

Various strains of the ciliated protozoan, Tetrahymena pyriformis, may be synchronized by starvation for 24 h followed by refeeding (1). Upon refeeding, the cells synthesize DNA and then divide with some degree of synchrony. However, a small portion of the cells divide without synthesizing DNA (9, 11). Thus, the usefulness of this synchronization technique for analyzing the events leading to DNA synthesis could be improved if this population of cells, which is in the G₂ stage of the cell cycle, could be reduced or eliminated. This led us to study the effect of cell population density during the starvation period on the synchrony obtained and on the size of the G₂ population. The results indicate that the cell population density (hereafter simply referred to as cell density) during the starvation period is important in controlling the percentage of cells arrested in G₂.

MATERIALS AND METHODS

T. pyriformis (strain GL-C) populations were synchronized by the starvation-refeed technique as outlined by Cameron and Jeter (1), except that the cells were starved at a number of different cell densities. Before refeeding, the cell samples were adjusted to approximately 20,000 cells per ml by centrifugation and resuspension in starvation buffer. Thus all populations were refed at similar cell densities.

Drop cultures were followed to determine the increase in cell number (10). Cell densities were determined with a Coulter counter, model B (Coulter Electronics Inc., Hialeah, Flor.). Where indicated, solid hydroxyurea was added to give a concentration of 50 mM. Radioautogra-
phy was done as described elsewhere (1, 2, 11), using 10 μCi/ml (spec act 6.0 Ci/mmol) of tritiated thymidine (\(^{3}H\)T).

RESULTS

Fig. 1 shows the results of an experiment in which cells were starved for 24 h at a cell density of 100,000 cells per ml and then refed. Samples of the refed culture show no increase in cell number until after 240 min. There appears to be a two-step increase in cell number, separated by a plateau between 360-380 min. This plateau corresponds to a dramatic decrease or dip in the percentage of dividing cells (the "division index") which occurs between 350 and 370 min and is followed by a second peak of division activity at 390 min after refeding. Thus, in cultures starved at high cell density, refeeding reveals that there are two distinct peaks of division activity as is evident from this figure and from other data shown below. A portion of this same culture was exposed to \(^{3}H\)T immediately after refeeding, and samples were taken periodically for radioautography. The percentage of dividing cells containing a radioactive nucleus is shown at the bottom of Fig. 1. Clearly, the first cells to exhibit division furrows contain unlabeled nuclei, and most of the cells which divide during the first peak of division activity have an unlabeled nucleus, while most of the cells dividing during the second peak of division activity have a labeled nucleus. Clearly this shows two populations of cells—one which does not synthesize nuclear DNA before division and a second which does. Samples of this same 24-h-starved culture were exposed to \(^{3}H\)T for 4-6 h and then samples prepared for radioautography. Of the several thou-

![Graph showing results of experiment](image-url)
sand cells examined in the radioautographs none showed indications of nuclear DNA synthesis.

At high and intermediate cell densities a plot of percentage of dividing cells vs. time after refeeding reveals two distinct peaks, while at the lowest cell concentration only one peak is present (Figs. 2 A, and 3 A). These data also show that in cultures starved at high cell densities an "early-dividing" and a "late-dividing" population are present. At low cell densities the early-dividing population is absent or very small.

A significant increase in cell numbers begins first in the culture starved at the highest cell density, followed by that starved at the intermediate cell density, and finally by the culture starved at the lowest cell density. The plots of percentage increase in cell numbers vs. time after refeeding again show the presence of an early-dividing and a late-dividing population in cultures starved at high and intermediate cell densities, showing that the early-dividing population is absent or very small in cultures starved at low cell concentrations. The increase in cell numbers occurs in two steps and the size of the first step is dependent on the cell concentration during the starvation period.

Previous studies indicated that a G2 population was present in starved-refed cells (9, 11). Perhaps the size of the early-dividing cell population depends upon the cell density during the starvation period. This was tested by refeeding cells in the presence of 50 mM hydroxyurea, which inhibits DNA synthesis in Tetrahymena (11). Cells dividing in the presence of hydroxyurea must have synthesized DNA before the addition of the drug and therefore must have been in G2. Radioautographs of cells exposed to hydroxyurea in the presence of [3H]T at the time of refeeding showed that no cells synthesize DNA, not even those cells that divide.

The number of cells dividing in the presence of 50 mM hydroxyurea is dependent on the cell density during the starvation period (Fig. 4). The highest G2 numbers are observed in cultures starved at the highest cell densities, while the intermediate and lowest G2 numbers are observed in cultures starved at intermediate and low cell
densities. However, the difference in the number of G2 cells between the high and intermediate concentrations is not always as great as in Fig. 4. This suggests that there might be a saturation phenomenon such that increasing the cell density beyond a certain point will not bring about a corresponding increase in the number of G2 cells. Indeed, when the results of a number of experiments are plotted, this is the case (Fig. 5).

A link between the early-dividing population and the G2 population can be constructed. Since both populations are dependent in the same manner on the concentration of cells during the starvation period, this suggests that they are the same. Similarly, there appears to be a correlation between the height of the plateaus in graphs of percentage increase in cell numbers and in the numbers of cells dividing in the presence of hydroxyurea. Thus, the plateaus in Fig. 3 B occur at approximately 40, 18, and 6% while the corresponding G2 numbers are 30, 26, and 6% as determined from the hydroxyurea data (Fig. 4). And finally, the absence of nuclear label in the first cells to divide also supports the contention that the early-dividing cell population and the G2 population are the same.

DISCUSSION

The concept of two resting stages in the cell cycle has a relatively short history starting with and developed by the work on mouse ear epidermis by Gelfant (6–8). In a recent review (4) the cell cycle has been illustrated with a resting stage (R1) in G1 and another (R2) in G2. This scheme implies that cells have the ability to arrest in both G1 and G2. Van’t Hof (12) believes that three populations exist in the root meristem of Pisum. One population arrests in G1 and another in G2. A third population arrests in either G1 or G2, depending on the presence or absence of a G2 factor (5).

The present study indicates that different percentages of Tetrahymena are arrested in either G1 or G2, depending on the cell density at which the cells are starved. The observation that Tetrahymena stall in G2 is supported by the work of B. B. McDonald (personal communication and footnote 1) on three different strains of T. pyriformis including the amicronucleate H and two of mating type II (variety 1, family B), II (Y), and II (O). The criterion for G2 cells was the absence of labeled 3H-T in nuclei of dividing cells after refeeding. Unpublished observations by M. Salamone and R. Pearlman (York University, Downsview, Ontario) of Feulgen cytophotometry measurements on starved T. pyriformis GL-C confirm that a percentage of 24-h-starved cells

Figure 4 Effect of cell density during the 24-h starvation period upon the percentage of cells dividing in the presence of 50 mM hydroxyurea after refeeding. Cell densities are the same as in Fig. 2: (x-x), 200,000 cells/ml; (□-□), 60,000 cells/ml; (●-●), 3,500 cells/ml.

Figure 5 Effect of cell density during the starvation period upon the percentage of cells dividing in the presence of 50 mM hydroxyurea after refeeding (a measurement of the percentage of cells stalled in G2).

1 McDonald, B. B., Dickinson College, Carlisle, Pa. Manuscript in preparation.
have a G2 content of DNA. We find no incorporation of \([^{3}H]T\) into the nucleus of 24-h-starved cells, which indicates that no 24-h-starved cells are in S phase and that no cells are passing from G1 phase into S phase at this time. Because of these observations and because no dividing cells were seen before 240 min after refeeding, we conclude that the 24-h-starved cells must be arrested in the G1 and the G2 phases of the cell cycle.

Starved cells enter DNA synthesis and division after a lag (1), as opposed to immediately upon refeeding, which also supports the finding that starved cells are actually noncycling in G1 and G2 and not just passing through these stages slowly during the starvation period. If the cells were passing through these phases slowly, the number of cells entering S and division might be expected to increase immediately after the time of refeeding.

Three general types of hypotheses may be distinguished to explain how cell density, during the starvation period, alters the number of cells in G2. The high G2 number may be due to (a) some modification of the media brought about by the high cell density; (b) the release of a G2-arresting factor by cells at high densities; or (c) the greater physical interaction between cells at high cell densities.

Hydroxyurea is an effective inhibitor of DNA synthesis in Tetrahymena as shown by the lack of \([^{3}H]T\) incorporation into the nuclei of starved and refeud cells (also see 2). However, the 50 mM dosage of hydroxyurea does delay somewhat cell division of the unlabeled G2 cell population, which is probably due to the drug affecting protein synthesis (3).

The present study has practical ramifications in that the starvation-refeed technique of synchronization will yield the most homogenous population if the cells are starved at low cell densities; even then, a small G2 population will be present.

In summary, Tetrahymena appears to be a promising organism for studying the concept of resting stages in the cell cycle. The present study reveals one of the few systems in which the proportion of cells resting in G1 and G2 may be manipulated.

Received for publication 1 November 1974, and in revised form 21 July 1975.

REFERENCES

1. **CAMERON, I. L., and J. R. JETER.** 1970. Synchronization of the cell cycle of Tetrahymena by starvation and refeeding. *J. Protozool.* 17:429.

2. **CAMERON, I. L., and J. R. JETER.** 1973. Action of hydroxyurea and N-carbamoyl-oxo-urea on the cell cycle of Tetrahymena. *Cell Tissue Kinet.* 6:289.

3. **CRAIG, N.** 1973. The effects of inhibitors of RNA and DNA synthesis on protein synthesis and polypeptide levels in mouse L-cells. *J. Cell Physiol.* 82:133.

4. **MARINOV, O. I., and V. V. TERSKIKH.** 1969. On the resting periods in the cell life cycle. *Cell Tissue Kinet.* 2:75.

5. **EVANS, L. S., and J. VAN'T HOF.** 1973. Cell arrest in G2 in root meristems: a control factor from the cotyledons. *Exp. Cell Res.* 82:471.

6. **GELFANT, S.** 1962. Initiation of mitosis in relation to the cell division cycle. *Exp. Cell Res.* 26:395.

7. **GELFANT, S.** 1963. Patterns of epidermal cell division. I. Genetic behavior of the G2-cell population. *Exp. Cell Res.* 32:521.

8. **GELFANT, S., and J. G. SMITH, JR.** 1972. Aging: noncycling cells an explanation. *Science (Wash. D.C.)*. 178:337.

9. **JETER, J. R.** 1973. Nuclear acidic protein changes associated with the cell cycle of *Tetrahymena*. Ph.D. Thesis, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.

10. **NACHTWEY, D. S., and W. J. DICKINSON.** 1967. Actinomycin D: blockage of cell division of synchronized *Tetrahymena pyriformis*. *Exp. Cell Res.* 47:581.

11. **RUDICK, M. J., and I. L. CAMERON.** 1972. Regulation of DNA synthesis and cell division in starved-refed synchronized *Tetrahymena pyriformis*. *Exp. Cell Res.* 70:411.

12. **VAN'T HOF, J.** 1974. Control of the cell cycle in higher plants. In Cell Cycle Controls. G. M. Padilla, I. L. Cameron, and A. M. Zimmerman, editors. Academic Press, Inc., New York. 77–85.