Metamagnetic Transition in Heavy Fermion Compounds YbT$_2$Zn$_{20}$ (T : Co, Rh, Ir)

Yusuke Hirose1, Masatoshi Toda1, Shingo Yoshiuchi1, Shinichi Yasui1, Kiyohiro Sugiyama1, Fuminori Honda1, Masayuki Hagiwara2, Koichi Kindo3, Rikio Settai1 and Yoshichika Ōnuki1

1Graduate School of Science, Osaka University, Toyonaka Osaka 560-0043, Japan
2KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531, Japan
3ISSP, University of Tokyo, Kashiwanoha, 5-1-5, Kashiwa, Chiba 277-8581, Japan

E-mail: yhirose@crystal.phys.sci.osaka-u.ac.jp

Abstract. We measured the magnetization in high magnetic fields up to 500kOe, together with the magnetic susceptibility, ac-susceptibility and magnetoresistance for heavy fermion compounds YbT$_2$Zn$_{20}$ (T : Co, Rh, Ir). The metamagnetic behaviour or an abrupt nonlinear increase of magnetization was observed at the magnetic field H_m at temperatures lower than a characteristic temperature T_{max} below which the magnetic susceptibility becomes almost constant: T_{max} = 7.4K and H_m = 97kOe in YbIr$_2$Zn$_{20}$, T_{max} = 5.3K and H_m = 64kOe in YbRh$_2$Zn$_{20}$, and T_{max} = 0.32K and H_m = 6kOe in YbCo$_2$Zn$_{20}$. From the present data and the data in several Ce and U heavy fermion compounds, a simple relation between T_{max} and H_m was obtained: H_m(kOe) = 15T_{max}(K).

1. Introduction

Most of Ce and U compounds order antiferromagnetically. Some compounds such as CeCu$_6$, CeRu$_2$Si$_2$ and UPt$_3$ exhibit no long-range magnetic ordering[1]. The magnetic susceptibility of these compounds shows a maximum at a characteristic temperature $T_{X_{max}}$. Below $T_{X_{max}}$, the susceptibility becomes almost temperature-independent, and an f-electron nature is changed into a new electronic state, called the heavy fermion state. Here, $T_{X_{max}}$ approximately corresponds to the Kondo temperature T_K. One of the characteristic properties in the heavy fermion compounds is the metamagnetic behaviour or an abrupt nonlinear increase of magnetization at the magnetic field H_m at temperatures lower than $T_{X_{max}}$. The metamagnetic behaviour appears at $H_m = 77$kOe in CeRu$_2$Si$_2$ and $H_m = 200$kOe in UPt$_3$, for example[2],[3].

Very recently, we found the metamagnetic behaviour at $H_m = 97$kOe for $H // (100)$ in a new heavy fermion compound YbIr$_2$Zn$_{20}$ with the cubic cage-structure[4]. Here we report the metamagnetic behaviour in YbIr$_2$Zn$_{20}$ and the similar compounds YbRh$_2$Zn$_{20}$ and YbCo$_2$Zn$_{20}$ by measuring the magnetization, magnetic susceptibility, ac-susceptibility and magnetoresistance, and propose a relation between $T_{X_{max}}$ and H_m in the heavy fermion compounds.
Figure 1. (a) Single crystal ingot, (b) temperature dependence of the magnetic susceptibility, (c) magnetization and (d) transverse magnetoresistance in YbIr$_2$Zn$_{20}$.

2. Experimental results

Single crystal ingots, grown by the the Zn-flux method, are pyramidal in shape, as shown in Figures 1(a) and 3(a) for YbIr$_2$Zn$_{20}$ and YbCo$_2$Zn$_{20}$, respectively, where flat planes correspond to the \{111\} planes, reflecting the diamond structure of Yb atoms. Yb and T atoms are surrounded by Zn atoms, forming a cubic cage-structure.

Figure 1(b) shows the temperature dependence of the magnetic susceptibility for $H // \langle 100 \rangle$. The susceptibility follows the Curie-Weiss law of $\chi = C/(T + \theta_P) + \chi_0$: the Curie term with an effective magnetic moment $\mu_{\text{eff}} = 4.54\mu_B/Yb$, close to $\mu_{\text{eff}} = 4.57\mu_B/Yb$ of Yb$^{3+}$, a paramagnetic Curie temperature $\theta_P = -27K$ and $\chi_0 = -1.05 \times 10^{-3} \text{emu/mol}$. The susceptibility possesses a broad peak at $T_{\chi_{\text{max}}} = 7.4K$, which is characteristic in the heavy fermion compounds. The present result is the same as the previous one[5].

The high-field magnetization for $H // \langle 100 \rangle$ is shown in Figure 1(c), revealing a metamagnetic behaviour at $H_m = 97kOe$. The corresponding magnetoresistance is also shown in Figure 1(d). A change of the magnetoresistance was observed at $H_m = 97kOe$, as shown by an arrow, together with small change at $H'_m = 60kOe$ and $H''_m = 120kOe$. The metamagnetic transition field is slightly anisotropic : $H_m = 120kOe$ for $H // \langle 110 \rangle$.

The similar measurements were carried out for YbRh$_2$Zn$_{20}$, as shown in Figure 2. The magnetic susceptibility has a maximum at $T_{\chi_{\text{max}}} = 5.3K$, as shown in Figure 2(b). The metamagnetic behaviour was observed at $H_m = 64kOe$ in the magnetization, as shown in Figure 2(b) and another anomaly was furthermore observed at $H_m' = 84kOe$ in the magnetoresistance, as shown in Figure 2(c).

In YbCo$_2$Zn$_{20}$, the metamagnetic behaviour was observed at a very small magnetic field $H_m = 6kOe$ at temperatures lower than 0.3K. The susceptibility increases with decreasing temperature down to 1.8K, following the Curie-Weiss law, as shown in Figure 3(b). We therefore measured the ac-susceptibility below 1K, and obtained a peak at $T_{\chi_{\text{max}}} = 0.32K$, as shown in inset of Figure 3(b). The magnetization at 1.3K didn’t reveal the metamagnetic behaviour, as shown in Figure 3(c). The metamagnetic behaviour at $H_m = 6kOe$ is reflected in the ac-susceptibility at 60mK, as shown in inset of Figure 3(c), and in the magnetoresistance at 100mK, as shown.
in Figure 3(d). YbCo$_2$Zn$_{20}$ is therefore located in the vicinity of the quantum critical point. In fact, the electronic specific heat coefficient γ is very large, 8000mJ/K2-mol[5].

From the present results of the metamagnetic behaviour, together with those of Ce and U compounds, we constructed the relation between $T_{\chi_{max}}$ and H_m, as shown in Figure 4. A solid line in Figure 4 indicates a simple relation of H_m(kOe) = 15$T_{\chi_{max}}$(K).

Figure 2. (a) Temperature dependence of the magnetic susceptibility, (b) magnetization and (c) transverse magnetoresistance in YbRh$_2$Zn$_{20}$.

Figure 3. (a) Single crystal ingot, (b) temperature dependence of the magnetic susceptibility, (c) magnetization and (d) transverse magnetoresistance in YbCo$_2$Zn$_{20}$.
3. Conclusion
A simple relation between the characteristic temperature $T_{\chi_{\text{max}}}$ and the metamagnetic field H_m was obtained experimentally for heavy fermion compounds YbT$_2$Zn$_{20}$ (T: Ir, Rh, and Co): $H_m = 15 T_{\chi_{\text{max}}}$ (K). In YbCo$_2$Zn$_{20}$, an electronic state with a very small Kondo temperature $T_{\chi_{\text{max}}} = 0.32$K is realized, which corresponds to a very large γ value of $8000 \text{mJ/K}^2 \cdot \text{mol}$. This might be mainly due to a long distance between Yb atoms, 6Å, together with the cage structure.

Acknowledgments
We are very grateful to Profs. K. Miyake and S. Watanabe for fruitful discussions. This work was supported by Grant-in-Aid for Scientific Research on Specially Promoted Research (No. 20001004), Osaka University: Global COE Program “Core Research and Engineering of Advanced Materials-Interdisciplinary Education Center for Materials Science” (No. G10), Grant-in-Aid for Scientific Research on Innovative Areas “Heavy Electrons” (20102002, 21102511), Priority Areas of New Materials Science Using Regulated Nano Spaces (20045008, 22013009), Scientific Research (B)(21340102, 21740256) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References
[1] Y. Onuki, R. Settai, K. Sugiyama, T. Takeuchi, T.C. Kobayashi, Y. Haga and E. Yamamoto: J. Phys. Soc. Jpn. 73 (2004) 769.
[2] P. Haen, J. Flouquet, F. Lapierre, and P. Lejay: J. Low Temp. Phys. 67 (1987) 391.
[3] K. Sugiyama, M. Nakashima, D. Aoki, K. Kindo, N. Kimura, H. Aoki, T. Komatsubara, S. Uji, Y. Haga, E. Yamamoto, H. Harima and Y. Onuki Phys. Rev. B 60 (1999) 9248.
[4] T. Takeuchi, S. Yasui, M. Toda, M. Matsushita, S. Yoshiuchi, M. Ohya, K. Katayama, Y. Hirose, N. Yoshitani, F. Honda, K. Sugiyama, M. Hagiwara, K. Kindo, E. Yamamoto, Y. Haga, T. Tanaka, Y. Kubo, R. Settai, and Y. Onuki J. Phys. Soc. Jpn. 79 (2010) 064609.
[5] M. S. Torikachvili, S. Jia, E. D. Mun, S. T. Hannahs, R. C. Black, W. K. Neils, D. Martien, S. L. Bud’ko, and P. C. Canfield: Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 9960.