ABSTRACT

Background: Reproductive history has been addressed as a risk factor for cardiovascular disease (CVD). We examined the relationship between reproductive history and CVD mortality in Japanese women.

Methods: We followed 53,836 women without previous CVD or cancer history from 1988–1990 to 2009 in a prospective cohort study. Hazard ratios (HRs) and 95% confidence intervals (CIs) of CVD mortality were estimated according to the number of deliveries and maternal age at first delivery.

Results: During the follow-up, 2,982 CVD-related deaths were identified. There was U-shaped association between the number of deliveries and risk of CVD mortality with reference to three deliveries, although the excess risk of CVD mortality associated with ≥5 deliveries was of borderline statistical significance. The corresponding multivariable HRs were 1.33 (95% CI, 1.12–1.58) and 1.11 (95% CI, 0.99–1.24). In addition, higher CVD mortality was associated with maternal age ≥28 years at first delivery than maternal age of 24–27 years at first delivery. The multivariable HRs were 1.22 (95% CI, 1.10–1.36) for 28–31 years at first delivery and 1.26 (95% CI, 1.04–1.52) for ≥32 years at first delivery. Moreover, among women with ≥3 deliveries, maternal age ≥28 years at first delivery was associated with 1.2- to 1.5-fold increased CVD mortality.

Conclusion: The number of deliveries showed a U-shaped association with risk of CVD mortality. Higher maternal age at first delivery was associated with an increased risk of CVD mortality, and excessive risk in women aged ≥28 years at first delivery was noted in those with ≥3 deliveries.

Key words: maternal age; parity; cardiovascular diseases; mortality; prospective studies

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death and disability in the world, and 17.9 million deaths due to CVD occurred worldwide in 2016.1 The latest guidelines on CVD prevention in women from the American Heart Association have indicated that reproductive history related to pregnancy should be taken account to identify high-risk women for CVD.2 The reproductive history related to pregnancy, such as the number of deliveries and maternal age at first delivery, is related to lifetime experiences of large hormonal changes during pregnancy, which may affect metabolic profiles during and after pregnancy and subsequent risk of CVD. However, the association between reproductive history and risk of CVD remains controversial. Some prospective cohort studies have shown a U-shaped relationship between the number of deliveries and risks of CVD incidence3 and CVD mortality.4,4 However, other studies have found positive association with risks of CVD incidence5,10 and CVD mortality,11 inverse association with risk of CVD mortality,12 and no association with risk of CVD mortality.13,14 In addition to the association with the number of deliveries, a number of prospective cohort studies have shown that early maternal age at first delivery was a risk factor for risk of CVD mortality,4,14-16 but other studies showed no inverse association between maternal age at first delivery and risk of CVD mortality.15,17 The higher maternal age at first delivery was associated with risk of mortality from subarachnoid hemorrhage18 and incidence of coronary heart disease (CHD).19 Between 1945 and 2017, total fertility rate (TFR) has rapidly decreased and maternal age at first delivery has increased in Japan. Now, Japan is one of the countries with the lowest TFR (1.43 in 2017) and the highest maternal age at first delivery (30.7
years in 201729 among Organisation for Economic Cooperation and Development countries. Previous reports in the Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC) study showed a brief summary of the association between reproductive history and age-adjusted risk of CVD mortality during 13-year follow-up,21 but they did not conduct multivariable-adjusted analysis.

In the present study, we examined the association of the number of deliveries and maternal age at first delivery with mortality from CVD, stroke, and CHD among Japanese women in a nationwide prospective cohort study.

MATERIAL AND METHODS

Study population

The JACC Study was designed to evaluate the relationship of lifestyle and mortality from all causes, CVD, and major cancers, and to provide prevention strategies for chronic diseases. In 45 communities across Japan, we enrolled 110,585 individuals aged 40–79 years (46,395 men and 64,190 women) who completed a baseline questionnaire during 1988–1990 and were followed until the end of 2009. The details of the study are described elsewhere.22 Our entire study design was approved by the Ethics Committees of Hokkaido University Graduate School of Medicine and Osaka University, Japan.

Among 64,190 women, 3,276 women with previous history of cancer or CVD at the baseline were excluded, yielding a final sample of 60,914 women. Within this population, we analyzed the number of deliveries ($N = 53,836$) and maternal age at first delivery ($N = 50,504$) and their association with risk of CVD mortality, after excluding missing data on individual reproductive history (Figure 1).

Baseline survey

At the baseline, a self-administered questionnaire was conducted to collect information (from all individuals) about demographic characteristics, individual health condition, lifestyle, and medical history of hypertension and diabetes, and information (from women only) about reproductive history, including the number of deliveries and maternal age at first delivery.

Reproductive history was assessed using two self-reported questions: “How many times did you experience delivery?” and “How old were you when you experienced the first delivery?” The answers were written by the participants and were divided into six categories for the number of deliveries (0, 1, 2, 3, 4, and ≥5 deliveries), and into five categories for maternal age at first delivery (<20, 20–23, 24–27, 28–31, and ≥32 years).

Mortality surveillance

For mortality surveillance, investigators systematically reviewed death certificates, which had been received in each municipality and collected by the Ministry of Health, Labour and Welfare through public health centers and prefectural governments. The follow-up was conducted to identify the vital status of the participants until the end of 2009, including 10 communities that ended their follow-up before 2009 (four in 1999, four in 2003, and two in 2008). We assigned the International Classification of Diseases, 10th version (ICD-10) codes I01–I99, I60–I69, and I20–I25 to mortality from CVD, stroke, and coronary heart disease (CHD), respectively.

Statistical analysis

The person-years of follow-up were calculated as the period from the date at which the baseline questionnaire was answered through the earliest date of death, moving out, or end of follow-up, whichever came first. We calculated age-adjusted means and prevalence of cardiovascular risk factors according to the number

![Flowchart of study exclusion and inclusion](image.png)
of deliveries (0, 1, 2, 3, 4, and ≥5 deliveries) and maternal age at first delivery (<20, 20–23, 24–27, 28–31, and ≥32 years). Test for trends, which were adjusted for age at baseline, were performed according to categorized value for the number of deliveries and the median value in each category for maternal age at first delivery.

Cox proportional hazard regression models were used to calculate the age-adjusted and multivariable-adjusted hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for each category concerning the number of deliveries and maternal age at first delivery. For both variables of reproductive history, the median categorical value was used as the reference value (three deliveries for number of deliveries, and 24–27 years for maternal age at first delivery). Adjustment variables were chosen primarily based on findings from previous studies as potential confounding variables.8,16 They were age (continuous), body mass index (BMI; quintiles), sleep duration (<5, 6, 7, 8, and ≥9 hours/day), walking habit (almost never, 0.5, 0.5–0.9, and ≥1 hours/day), exercise (almost never, 1–2, 3–4, and ≥5 hours/week), smoking status (never, past, and current smoker), alcohol intake (never, past, and current drinker), education (primary school, junior high school, high school, and college), occupation (full-time job, part-time job, self-employed, housewife, no job, and other), marital status (married, widowed, divorced, and never married), perceived mental stress (low, moderate, and high), history of hypertension (yes and no) and history of diabetes (yes and no). Furthermore, the number of delivery was also adjusted in the analysis for association between maternal age at first delivery and CVD mortality.

Additionally, the analysis for maternal age at first delivery was stratified by the number of deliveries. In this stratified analysis, maternal age at first delivery was classified into three categories: <24, 24–27 (reference), and ≥28 years, and the number of deliveries was classified into five categories: 1, 2, 3, 4, and ≥5 deliveries.

All statistical tests were two-sided, and a \(P < 0.05 \) was considered statistically significant. All analyses were conducted using SAS software version 9.4 (SAS Institute, Inc., Cary, NC, USA).

RESULTS

Table 1 shows mean age, age-adjusted mean values, and prevalence of risk factors according to the number of deliveries and maternal age at first delivery. Compared to nulliparous women, those with higher number of deliveries had higher BMI, lower educational level, and higher prevalence of hypertension. On the other hand, women who were older maternal age at first delivery had lower BMI than those who were younger maternal age at first delivery. Moreover, women who were older maternal age at first delivery had higher education level and were less likely to drink alcohol, walk regularly, and exercise. Compared to women who answered the number of delivery or maternal age at first delivery, women who did not answer had the higher prevalence of current smoking and were less likely to have spouse. Other risk factors were not different from women who answered (not shown it table).

During the median 19.4-year follow-up of 53,836 women aged 40–79 years, 2,982 women died from CVD, 1,312 from stroke, and 561 from CHD. The association between number of deliveries and risk of CVD mortality seemed to be U-shaped (\(P < 0.01 \) (Table 2). Compared to women who experienced three deliveries, nulliparity was associated with increased risks of mortality from stroke and CVD. The multivariable HRs were 1.40 (95% CI, 1.08–1.82) for stroke and 1.33 (95% CI, 1.12–1.58) for CVD. Furthermore, extremely high number of deliveries (≥5 deliveries) was of borderline statistical significance with risks of CVD mortality when compared to three deliveries. Multivariable HRs were 1.12 (95% CI, 0.95–1.32) for stroke and 1.11 (955 CI, 0.99–1.24) for CVD.

When compared to the age group of 24–27 years, younger maternal ages at first delivery (<20 years) were associated with increased risks of CVD mortality in the age-adjusted analysis.

Table 1. Age and age-adjusted baseline characteristics of participants according to the number of deliveries and maternal age at first delivery

Number of deliveries (n = 53,836)	Maternal age at first delivery, years (n = 50,504)
Number	P for trend
0	0–20
1	20–23
2	24–27
3	28–31
≥5	≥32
Number	<20
Age, year	20–23
Age at first delivery, year*	24–27
BMI, kg/m²	28–31
Sleep, h/day	≥32
Current smoker, %	Crude mean value were shown.
Current drinker, %	
Walking ≥1.0h/day, %	
Exercising ≥5.0h/week, %	
College or higher education, %	
High mental stress, %	
Having job, %	
Having spouse, %	
History of hypertension, %	
History of diabetes, %	
Number of deliveries, times	

*Crude mean value were shown.

Tangawa K, et al.

J Epidemiol 2020;30(11):509-515 | 511
Reproductive History and Mortality From Cardiovascular Disease

Table 3. Hazard ratios and 95% confidence intervals of mortality from cardiovascular disease according to the number of deliveries among women aged 40–79 years

Number of deliveries	0	1	2	3	4	≥5
Person-years	30,963	64,787	349,279	288,680	98,781	65,229
Stroke						
Number of cases (deaths)	80	72	259	334	246	321
Age-adjusted HR (95% CI)	1.50 (1.17–1.92)	0.95 (0.73–1.22)	0.97 (0.82–1.14)	1.00	1.09 (0.92–1.29)	1.20 (1.02–1.41)
Multivariable-adjusted HR (95% CI)	1.40 (1.08–1.82)	0.92 (0.71–1.19)	0.96 (0.81–1.13)	1.00	1.05 (0.89–1.25)	1.12 (0.95–1.32)
Coronary heart disease						
Number of cases (deaths)	31	43	103	141	98	145
Age-adjusted HR (95% CI)	1.35 (0.91–2.00)	1.34 (0.95–1.88)	0.94 (0.73–1.22)	1.00	0.98 (0.76–1.28)	1.18 (0.92–1.52)
Multivariable-adjusted HR (95% CI)	1.19 (0.79–1.79)	1.28 (0.91–1.81)	0.93 (0.72–1.20)	1.00	0.97 (0.74–1.26)	1.12 (0.87–1.44)

*Adjusted for age, BMI, sleep duration, walking, exercising, smoking habit, drinking habit, education levels, occupation, perceived mental stress, marital status, and previous history of diabetes and hypertension.

Table 3. Hazard ratios and 95% confidence intervals of mortality from cardiovascular disease according to maternal age at first delivery among women aged 40–79 years

Maternal age at first delivery	<20	20–23	24–27	28–31	≥32
Person-years	14,225	263,184	419,219	113,694	30,178
Stroke					
Number of cases (deaths)	36	398	481	186	67
Age-adjusted HR (95% CI)	1.35 (0.96–1.90)	1.16 (1.01–1.32)	1.00	1.14 (0.96–1.35)	1.49 (1.16–1.93)
Multivariable-adjusted HR (95% CI)	1.13 (0.80–1.59)	1.09 (0.95–1.25)	1.00	1.16 (0.98–1.38)	1.65 (1.26–2.16)
Coronary heart disease					
Number of cases (deaths)	17	170	211	94	19
Age-adjusted HR (95% CI)	1.43 (0.87–2.34)	1.12 (0.91–1.37)	1.00	1.29 (1.01–1.65)	0.95 (0.59–1.52)
Multivariable-adjusted HR (95% CI)	1.15 (0.69–1.90)	1.04 (0.85–1.28)	1.00	1.29 (1.00–1.65)	0.91 (0.56–1.49)
Cardiovascular disease					
Number of cases (deaths)	88	884	1,126	476	133
Age-adjusted HR (95% CI)	1.39 (1.12–1.73)	1.10 (1.01–1.20)	1.00	1.23 (1.10–1.36)	1.25 (1.04–1.49)
Multivariable-adjusted HR (95% CI)	1.19 (0.95–1.48)	1.05 (0.96–1.15)	1.00	1.22 (1.10–1.36)	1.26 (1.04–1.52)

*Adjusted for age, BMI, sleep duration, walking, exercising, smoking habit, drinking habit, education levels, occupation, perceived mental stress, marital status, previous history of diabetes and hypertension, and number of deliveries.

(Table 3). However, the risk of CVD mortality in women aged <20 years at first delivery was attenuated and became statistically non-significant after adjustment for cardiovascular risk factors. Maternal age 28–31 years at first delivery were associated with increased risks of CHD and CVD mortality, while those ≥32 years were associated with increased risk of stroke and CVD mortality. The multivariable HRs of maternal age 28–31 years at first delivery after adjustment for cardiovascular risk factors and the number of delivery were 1.29 (95% CI, 1.00–1.65) for CHD and 1.22 (95% CI, 1.10–1.36) for CVD. The multivariable HRs associated with ≥32 years at first delivery were 1.65 (95% CI, 1.26–2.16) for stroke and 1.26 (95% CI, 1.04–1.52) for CVD.

After being stratified by the number of deliveries, older maternal age at first delivery implied a 1.2- to 1.5-fold increased risks of CVD mortality in women who experienced ≥3 deliveries, compared to 24–27 years at first delivery (Table 4). The multivariable HRs of CVD for ≥28 years at first delivery were 1.42 (95% CI, 1.17–1.73) for three deliveries, 1.20 (95% CI, 0.94–1.53) for four deliveries, and 1.48 (95% CI, 1.12–1.96) for ≥5 deliveries; when the categories of ≥3 deliveries were combined the multivariable HR was 1.33 (95% CI, 1.17–1.52).

DISCUSSION

In this prospective cohort study of Japanese women aged 40–79 years, we found a U-shaped association between the number of deliveries and risk of CVD mortality with reference to three deliveries, although the excess risk of CVD mortality associated with ≥5 deliveries was of borderline statistical significance. We also found that older maternal ages at first delivery were associated with increased risk of CVD mortality, but the young age at first delivery was not statistically significant after adjustment for cardiovascular risk factors and the number of deliveries. Furthermore, among women who experienced ≥3 deliveries, maternal age at first delivery ≥28 years was associated with increased risk of CVD mortality.

Our results were consistent with previous findings of U-shaped association between the number of deliveries and risk of CVD...
Table 4. Hazard ratios and 95% confidence intervals of mortality from cardiovascular disease according to maternal age at first delivery among women aged 40–79 years

Maternal age at first delivery (years)	Number of deliveries	Number of cases (deaths)	Hazard ratio (95% CI)
24	26.2	1.00	1.00 (0.57–2.00)
25	26.2	1.00	1.00 (0.57–2.00)
26	26.2	1.00	1.00 (0.57–2.00)
27	26.2	1.00	1.00 (0.57–2.00)
28	26.2	1.00	1.00 (0.57–2.00)
29	26.2	1.00	1.00 (0.57–2.00)
30	26.2	1.00	1.00 (0.57–2.00)
31	26.2	1.00	1.00 (0.57–2.00)
32	26.2	1.00	1.00 (0.57–2.00)
33	26.2	1.00	1.00 (0.57–2.00)
34	26.2	1.00	1.00 (0.57–2.00)
35	26.2	1.00	1.00 (0.57–2.00)
36	26.2	1.00	1.00 (0.57–2.00)
37	26.2	1.00	1.00 (0.57–2.00)
38	26.2	1.00	1.00 (0.57–2.00)
39	26.2	1.00	1.00 (0.57–2.00)
40	26.2	1.00	1.00 (0.57–2.00)

Adj. HR: Adjusted hazard ratio. BMI: Body mass index.

The strengths of our study are its prospective design and its large sample size, which enabled us to examine the associations.
between reproductive history and risk of CVD mortality with multivariable-adjustment and stratified analyses. Some limitations need to be mentioned. First, we used a self-reported questionnaire addressing the reproductive history, for which reliability was not assessed. However, previous studies indicated an excellent agreement between the responses of two interviews about reproductive history. As for maternal age at first delivery, in which the interval between two interviews was more than two years for 28% of the participants, the kappa coefficient value was 0.94.32 As for the number of deliveries, the median time between the two interviews was 5 years, and the kappa coefficient value was 0.93.33 Second, there was no information about pregnancy complications, such as hypertensive disorders of pregnancy and diabetes, which may be associated with risk of CVD in later life. A Swedish study, with 1.4 million women, reported that a U-shaped association found between the number of deliveries and risk of CVD became weaker, but remained statistically significant after further adjustment for history of pregnancy complications, including hypertension and diabetes.3 Third, the outcomes of the present study were mortality from stroke, CHD, and CVD, which may be biased to more advanced cases leading to deaths. However, the occurrence of premature deaths did not seem to affect our result due to the small number of CVD deaths under 60 years old (N = 89).

In conclusion, the number of deliveries showed a U-shaped association with the risk of total CVD mortality. Higher maternal age at first delivery was associated with increased risk of CVD, and the excessive risk found in women aged ≥28 years at first delivery was noted in women with ≥3 deliveries.

ACKNOWLEDGEMENTS

The authors thank all staff members who involved in this study for their valuable help in conducting the baseline survey and follow-up.

The members of the JACC Study Group are as described below: Dr Akiko Tamakoshi (present captain of the study group), Hokkaido University Graduate School of Medicine; Drs Mitsuru Mori and Fumio Sakauuchi, Sapporo Medical University School of Medicine; Dr Yutaka Motohashi, Akita University School of Medicine; Dr Ichiro Tsuji, Tohoku University Graduate School of Medicine; Dr Yoshikazu Nakamura, Jichi Medical School; Dr Hiroe Ito, Osaka University School of Medicine; Dr Haruo Mikami, Chiba Cancer Center; Dr Michiko Kurosawa, Juntendo University School of Medicine; Dr Yosiharu Hoshiyama, Yokohama Soei University; Dr Naohito Tanabe, University of Niigata Prefecture; Dr Koji Tamakoshi, Nagoya University Graduate School of Health Science; Dr Kenji Wakai, Nagoya University Graduate School of Medicine; Dr Shinkan Tokudome, National Institute of Health and Nutrition; Dr Koji Suzuki, Fujita Health University School of Health Sciences; Dr Shuji Hashimoto, Fujita Health University School of Medicine; Dr Shogo Kikuchi, Aichi Medical University School of Medicine; Dr Yasuhiro Wada, Faculty of Nutrition, University of Kochi; Dr Takashi Kawamura, Kyoto University Center for Student Health; Dr Yoshiyuki Watanabe, Kyoto Prefectural University of Medicine Graduate School of Medical Science; Dr Kotoro Ozasa, Radiation Effects Research Foundation; Dr Tsuneharu Miki, Kyoto Prefectural University of Medicine Graduate School of Medical Science; Dr Chiwuike Dike, School of Human Science and Environment, University of Hyogo; Dr Kiyomi Sakata, Iwate Medical University; Dr Yoichi Kurozawa, Tottori University Faculty of Medicine; Drs Takesumi Yoshimura and Yoshitaka Fujino, University of Occupational and Environmental Health; Dr Akira Shibata, Kurume University; Dr Naoyuki Okamoto, Kanagawa Cancer Center; and Dr Hideo Shio, Moriyama Municipal Hospital.

Funding sources: This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (Monbu Kagaku-syo); Grants-in-Aid for Scientific Research on Priority Areas of Cancer; and Grants-in-Aid for Scientific Research on Priority Areas of Cancer Epidemiology from MEXT (Nos. 61010076, 62010074, 63010074, 1010068, 2151065, 3151064, 4151063, 5151069, 6279102, 11181101, 17015022, 18014011, 20014026, 20390156, 26293138), and JSPS KAKENHI No. 16H06277. It was also supported by Grant-in-Aid from the Ministry of Health, Labour and Welfare, Health and Labor Sciences research grants, Japan (Comprehensive Research on Cardiovascular Disease and Life-Style Related Diseases: H20-Junkankitou [Seishuu]-Ippan-013; H23-Junkankitou [Seishuu]-Ippan-005); an Intramural Research Fund (22–4–5) for Cardiovascular Diseases of National Cerebral and Cardiovascular Center; Comprehensive Research on Cardiovascular Disease and Life-Style Related Diseases (H26-Junkankitou [Seisaku]-Ippan-001 and H29-Junkankitou [Seishuu]-Ippan-003). Authors’ contribution: KT, HIs designed the research. SI, IM, HIs and AT collected data. KT and TK conducted data analysis. KT drafted the initial manuscript. HIs and SI made critical revision. AT provided technical supports. All authors reviewed and commented to the manuscript, and approved the final manuscript.

Conflicts of interest: None declared.

REFERENCES

1. WHO. Global Health Estimates 2016: Deaths by Cause, Age, Sex and cause, 2000–2016. http://www.who.int/healthinfo/global_burden_disease/estimates/en/. Published 2018. Accessed September 17, 2018.

2. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women —2011 update: a guideline from the american heart association. Circulation. 2011;123:1243–1262.

3. Parikh NI, Cnattingius S, Dickman PW, Mittleman MA, Ladvigsson JF, Ingelsson E. Parity and risk of later-life maternal cardiovascular disease. Am Heart J. 2010;159:215–221.e6.

4. Grundy E, Kravdal O. Fertility history and cause-specific mortality: a register-based analysis of complete cohorts of Norwegian women and men. Soc Sci Med. 2010;70:1847–1857.

5. Jaffe DH, Eisenbach Z, Manor O. The effect of parity on cause-specific mortality among married men and women. Matem Child Health J. 2011;15:376–385.

6. Gallagher LG, Davis LB, Ray RM, et al. Reproductive history and mortality from cardiovascular disease among women textile workers in Shanghai, China. Int J Epidemiol. 2011;40:1450–1518.

7. Dier UP, Hochner H, Friedlander Y, et al. Association between number of children and mortality of mothers: results of a 37-year follow-up study. Ann Epidemiol. 2013;23:13–18.

8. Lv H, Wu H, Yin J, Qian J, Ge J. Parity and cardiovascular disease mortality: a dose-response meta-analysis of cohort studies. Sci Rep. 2015;5:13411.

9. Ness RB, Harris T, Cobb J, et al. Number of pregnancies and the subsequent risk of cardiovascular disease. N Engl J Med. 1993; 328:1528–1533.

10. Catov JM, Newman AB, Sutton-Tyrrell K, et al. Parity and...
cardiovascular disease risk among older women: how do pregnancy complications mediate the association? Ann Epidemiol. 2008;18:873–879.
11. Steenland K, Lally C, Thun M. Parity and coronary heart disease among women in the American Cancer Society CPS II population. Epidemiology. 1996;7:641–643.
12. Jacobs MB, Kritz-Silverstein D, Wingard DL, Barrett-Connor E. The association of reproductive history with all-cause and cardiovascular mortality in older women: the Rancho Bernardo Study. Fertil Steril. 2012;97:118–124.
13. Green A, Beral V, Moser K. Mortality in women in relation to their childbearing history. BMJ. 1988;297:391–395.
14. Chang HS, Odongua N, Ohrr H, Sull JW, Nam CM. Reproductive risk factors for cardiovascular disease mortality among postmenopausal women in Korea: the Kangwha Cohort Study. 1985–2005. Menopause. 2011;18:1205–1212.
15. Otterblad Olausson P, Haglund B, Ringbäck Weitoft G, Cnattingius S. Premature death among teenage mothers. BJOG. 2004;111:793–799.
16. Rosendaal NTA, Pickle CM. Age at first birth and risk of later-life cardiovascular disease: a systematic review of the literature, its limitation, and recommendations for future research. BMC Public Health. 2017;17:627.
17. Barclay K, Keenan K, Grundy E, Kolk M, Myrskylä M. Reproductive history and post-reproductive mortality: A sibling comparison analysis using Swedish register data. Soc Sci Med. 2016;155:82–92.
18. Yang CY, Chang CC, Kuo HW, Chiu HF. Parity and risk of death from subarachnoid hemorrhage in women: evidence from a cohort in Taiwan. Neurology. 2006;67:514–515.
19. Cooper GS, Ephross SA, Weinberg CR, Baird DD, Whelan EA, Sandler DP. Menstrual and reproductive risk factors for ischemic heart disease. Epidemiology. 1999;10:255–259.
20. Vital Statistics. Ministry of Health, Labor and Welfare. https://www.mhlw.go.jp/toukei/list/81-1.html. Published 2017. Accessed May 26, 2019.
21. Sakauchi F; Japan Collaborative Cohort Study for Evaluation of Cancer. Reproductive history and health screening for women and mortality in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev. 2007;8(Suppl):129–134.
22. Tamakoshi A, Ozasa K, Fujino Y, et al. Cohort profile of the Japan Collaborative Cohort Study at final follow-up. J Epidemiol. 2013;23:227–232.
23. Desoye G, Schwedtitsch MO, Pfeiffer KP, Zechner R, Kostner GM. Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum. J Clin Endocrinol Metab. 1987;64:704–712.
24. Nicholson WK, Asao K, Brancati F, Coresh J, Pankow JS, Powe NR. Parity and risk of type 2 diabetes: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2006;29:2349–2354.
25. Homan GF, Davies M, Norman R. The impact of lifestyle factors on reproductive performance in the general population and those undergoing infertility treatment: a review. Hum Reprod Update. 2007;13:209–223.
26. Chang SC, Glymour M, Cornelis M, et al. Social integration and reduced risk of coronary heart disease in women: the role of lifestyle behaviors. Circ Res. 2017;120:1927–1937.
27. Luke B, Brown MB. Elevated risks of pregnancy complications and adverse outcomes with increasing maternal age. Hum Reprod. 2007;22:1264–1272.
28. Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the Child Health and Development Studies pregnancy cohort. Circulation. 2015;132:1234–1242.
29. Lin LT, Tsui KH, Cheng JT, et al. Increased risk of intracranial hemorrhage in patients with pregnancy-induced hypertension: a nationwide population-based retrospective cohort study. Medicine (Baltimore). 2016;95:e3732.
30. Scholl TO, Hediger ML, Schall JJ, Khoo CS, Fischer RL. Maternal growth during pregnancy and the competition for nutrients. Am J Clin Nutr. 1994;60:183–188.
31. Stephansson O, Dickman PW, Johansson A, Cnattingius S. Maternal weight, pregnancy weight gain, and the risk of antepartum stillbirth. Am J Obstet Gynecol. 2001;184:463–469.
32. Bosetti C, Tavani A, Negri E, Trichopoulos D, La Vecchia C. Reliability of data on medical conditions, menstrual and reproductive history provided by hospital controls. J Clin Epidemiol. 2001;54:902–906.
33. Lucas R, Azevedo A, Barros H. Self-reported data on reproductive variables were reliable among postmenopausal women. J Clin Epidemiol. 2008;61:945–950.