Next Priority Concept: A new and generic algorithm computing concepts from complex and heterogeneous data

Christophe Demkoa,*, Karell Berteta, Cyril Fauchera, Jean-François Viauda, Sergeï Kuznetsovb

aL3i, La Rochelle University, France
bFaculty of Computer Sciences, Moscow, Russia

Abstract

In this article, we present a new data type agnostic algorithm calculating a concept lattice from heterogeneous and complex data. Our NextPriorityConcept algorithm is first introduced and proved in the binary case as an extension of Bordat’s algorithm with the notion of strategies to select only some predecessors of each concept, avoiding the generation of unreasonably large lattices. The algorithm is then extended to any type of data in a generic way. It is inspired from pattern structure theory, where data are locally described by predicates independent of their types, allowing the management of heterogeneous data.

Keywords: Formal Concept Analysis, Lattice, Pattern Structure, Strategies, Heterogeneous data

1. Introduction

Formal Concept Analysis (FCA) is a branch of applied lattice theory, which originated from the study of relationship between Galois connections, closure operators, and orders of closed sets [1, 2].

Starting from a binary relation between a set of objects and a set of attributes, formal concepts are built as maximal sets of objects in relation with maximal sets of attributes, by means of derivation operators forming a Galois connection whose composition is a closure operator [3]. Concepts form a partially ordered set that represents the initial data called the concept lattice. This lattice has proved to be useful in many fields, e.g. artificial intelligence, knowledge management, data-mining, machine learning, etc.

*Corresponding author

\textit{Email addresses:} christophe.demko@univ-lr.fr (Christophe Demko), karell.bertet@univ-lr.fr (Karell Bertet), cyril.faucher@univ-lr.fr (Cyril Faucher), jean-francois.viaud@univ-lr.fr (Jean-François Viaud), skuznetsov@yandex.ru (Sergeï Kuznetsov)

Preprint submitted to Elsevier
Many extensions from the original formalism, which was based on binary data, have been studied in order to work with non-binary data, such as numbers, intervals, sequences, trees, and graphs. The formalism of pattern structures [4, 5, 6] extends FCA to deal with non-binary data provided by space description organised as a semi-lattice in order to maintain a Galois connection between objects and their descriptions. Therefore a pattern lattice represents the data where concepts are composed of objects together with their shared descriptions.

This space description must be organised and defined as a semi-lattice in a preliminary step, independently of the data, often with a large number of generated concepts and unreasonably large lattices that are uneasy to interpret. Otherwise, pattern structures do not allow an easy management of heterogeneous datasets where several kinds of characteristics describe data.

In this paper, we present the NextPriorityConcept algorithm that computes a concept lattice from heterogeneous data, where:

- Patterns are locally selected and discovered:
 Indeed, patterns of each concept are locally discovered, and predecessors of a concept can be filtered according to a specific strategy. So patterns computed by our algorithm are more adapted to the data, and lattices are smaller.
- Pattern mining for heterogeneous and complex data: These patterns are formalized by predicates whatever the description of data, then we can merge patterns issued from distinct space descriptions, and manage heterogeneous data in a generic and agnostic way.

2. Preliminaries

2.1. Formal Concept Analysis

Let \((G, M, I)\) a formal context where \(G\) is a non-empty set of objects, \(M\) is a non-empty set of attributes and \(I \subseteq G \times M\) is a binary relation between the set of objects and the set of attributes. Let \((2^G, \subseteq) \xrightarrow{\beta} (2^M, \subseteq) \xleftarrow{\alpha}\) be the corresponding Galois connection where:

- \(\alpha : 2^G \rightarrow 2^M\) is an application which associates a subset \(B \subseteq M\) to every subset \(A \subseteq G\) such that \(\alpha(A) = \{b : b \in M \land \forall a \in A, aIb\}\);
- \(\beta : 2^M \rightarrow 2^G\) is an application which associates a subset \(A \subseteq G\) to every subset \(B \subseteq M\) such that \(\beta(B) = \{a : a \in G \land \forall b \in B, aIb\}\).

A concept is a pair \((A, B)\) such that \(A \subseteq G, B \subseteq M, B = \alpha(A)\) and \(A = \beta(B)\). The set \(A\) is called the extent, whereas \(B\) is called the intent of the concept \((A, B)\). There is a natural hierarchical ordering relation between the concepts of a given context that is called the subconcept-superconcept relation:

\[(A_1, B_1) \leq (A_2, B_2) \iff A_1 \subseteq A_2 (\leftrightarrow B_2 \subseteq B_1)\]

The ordered set of all concepts makes a complete lattice called the concept lattice of the context, that is, every subset of concepts has an infimum (meet) and a supremum (join).
2.2. A basic algorithm

Bordat’s theorem [7] states that there is a bijection between the immediate successors of a concept \((A, B)\) and the inclusion maximal subsets of the following family defined on the objects \(G\):

\[
\mathcal{F}\mathcal{S}_{(A, B)} = \{\alpha(a) \cap B : a \in G \setminus A\} \tag{1}
\]

Bordat’s algorithm [7], that we also find in Linding’s work [8], is a direct implementation of Bordat’s theorem. This algorithm recursively computes the Hasse diagram of the concept lattice of a context \(\langle G, M, (\alpha, \beta) \rangle\) starting from the bottom concept \((\beta(M), M)\) and by computing at each recursive call the immediate successors of a concept \((A, B)\): the family \(\mathcal{F}\mathcal{S}_{(A, B)}\) is first computed, then the inclusion maximal sets are selected.

\(\mathcal{F}\mathcal{S}_{(A, B)}\) is composed of the intent part of the immediate potential successors of \((A, B)\). Each intent \(B'\) is obtained by \(\alpha(a) \cap B\), where \(a \in G \setminus A\) is a new potential object for a successor concept of \((A, B)\). Indeed, as defined by the order relation between concepts, immediate successors of \((A, B)\) are obtained by an increase of \(A\) by at least one new potential object \(a\), and thus a reduction of \(B\) to \(B' = \alpha(a) \cap B\), and clearly \(B' \subset B\). Moreover, \(B'\) must be maximal by inclusion in \(\mathcal{F}\mathcal{S}_{(A, B)}\), otherwise there exists \(B'' \in \mathcal{F}\mathcal{S}_{(A, B)}\) such that \(B' \subset B'' \subset B\), then \(B'\) is not the intent of an immediate successor of \((A, B)\). If \(B'\) is inclusion maximal in \(\mathcal{F}\mathcal{S}_{(A, B)}\), then \((\beta(B'), B')\) is an immediate successor of \((A, B)\).

Our next priority algorithm focuses on the objects and the dual version of Bordat’s theorem. It considers the whole set \(G\) of objects at the beginning. Then, for each concept \((A, B)\), it does not test a new potential object, but a new potential attribute \(b \in M \setminus B\) describing a subset of \(A\). In this way, \(A\) decreases while \(B\) increases, that corresponds to the predecessor relation. This process corresponds to the dual version of Bordat’s theorem stating that the immediate predecessors of \((A, B)\) are the maximal inclusion subsets of the following family on the attributes \(M\):

\[
\mathcal{F}\mathcal{P}_{(A, B)} = \{\beta(b) \cap A : b \in M \setminus B\} \tag{2}
\]

The NextPriorityConcept-Basic algorithm is a new version of Bordat’s algorithm where recursion is replaced by a priority queue using the support of concepts. And, at each iteration, the concept \((A, B)\) of maximal support is produced, then its immediate predecessors are computed by Predecessors-Basic \(((A, B))\) that returns the inclusion maximal sets of \(\mathcal{F}\mathcal{P}_{(A, B)}\), and then are stored in the priority queue. Therefore concepts are generated level by level, starting from the top concept \((G, \alpha(G))\), and each concept is
generated before its predecessors.

Data:
- \((G, M, (\alpha, \beta))\) be a formal context

Output:
- concepts \((A, B)\) of the formal context

begin
 /* Priority queue for the concepts */
 \(Q \leftarrow []\); /* Q is a priority queue using the support of concepts */
 \(Q.push(|G|, G)\); /* Add the top concept into the priority queue */

 while \(Q\) not empty do
 /* Compute concept */
 \(A \leftarrow Q.pop()\); /* Get the concept with highest support */
 \(B \leftarrow \alpha(A)\); /* Compute the intent of this concept */
 produce \((A, B)\);

 /* Update queue */
 \(L \leftarrow \text{Predecessor-Basic}((A, B), M, (\alpha, \beta))\);
 forall \(A' \in L\) do
 \(Q.push(|A'|, A')\); /* Add concept into the priority queue */
 end
 end
end

Algorithm 1: NextPriorityConcept-Basic

Data:
- \((A, B)\) a concept
- \(M\) the set of attributes
- \((\alpha, \beta)\) the Galois connection

Result:
- \(L\) a set of predecessors of \((A, B)\) represented by their extent

begin
 \(L \leftarrow \emptyset\);
 forall \(b \in M \setminus B\) do
 \(A' \leftarrow \beta(b) \cap A\); /* Extent of a new potential predecessor */
 \(L \leftarrow \text{Inclusion-Max}(L, A')\); /* Add \(A'\) if maximal in \(L\) */
 end
 return \(L\)
end

Algorithm 2: Predecessor-Basic
Data:
- \(L \) a set of potential predecessors represented by their extent
- \(A \) a new potential predecessor

Result:
- inclusion maximal subsets of \(L + A \)

begin
\(\text{add} \leftarrow \text{true}; \)
forall \(A' \in L \) do
if \(A \subset A' \) then
\(\text{add} \leftarrow \text{false} ; \)
break
else if \(A' \subset A \) then
\(L \text{.remove}(A') ; \)
/* Remove \(A' \) as a possible predecessor */
end
if \(\text{add} \) then
\(L \text{.add}(A); \)
/* Add \(A \) as a predecessor */
end
return \(L \)
end

Algorithm 3: Inclusion-Max

This non-recursive version of Bordat’s algorithm preserves its complexity. Therefore we can state the following result:

Property. Algorithm NextPriorityConcept-Basic computes the concept lattice of \(<G,M,(\alpha,\beta)>\) in \(O(|G||M|^2) \).

We will introduce our NextPriorityConcept algorithm in two steps:

In Section 3, NextPriorityConcept-Basic algorithm is first modified in order to introduce the possibility to filter the new attributes considered during the immediate predecessor process according to a strategy \(\sigma \) of exploration.

In Section 4, the final version of NextPriorityConcept, inspired from pattern structures, extends the computation of concepts to heterogeneous dataset, where attributes \(P \) are predicates deduced from each characteristics of data according to a specific description.

3. Next Priority Concept: filtering of concepts according to a strategy

3.1. Extension of the algorithm with strategies

Lattices are often unreasonably too large, which hinders their ability to provide readability and explanation of the data. In this section, we extend the basic NextPriorityConcept-Basic algorithm to select only some predecessors at each iteration. Rather than considering all the attributes of \(M \setminus B \) to calculate the potential predecessor of a concept \((A,B)\), we apply a filter on these candidate attributes. For example, we can select attributes of maximal support, or according to class information as explained later.
More formally, a strategy is an input application $\sigma : 2^G \rightarrow 2^M$ which associates a subset $S \subseteq M$ of selected attributes to every subset $A \subseteq G$. Many strategies are possible. Let us introduce as examples the maximal support strategy σ_{max} and the entropy strategy σ_{entropy}:

- The maximal support strategy relies on the support of attributes:

$$\sigma_{\text{max}}(A) = \{ b \in M \setminus \alpha(A) : |\beta(\alpha(A) + b)| \text{ maximal} \}$$

- The entropy strategy is a supervised strategy where objects have a class attribute:

$$\sigma_{\text{entropy}}(A) = \{ b \in M \setminus \alpha(A) : H_{\text{class}}(\beta(\alpha(A) + b)) \text{ minimal} \}$$

We introduce a new set P of selected attributes according to the strategy, and to avoid confusion, we will denote (A, D) a concept defined on $G \times P$, and I_P the corresponding relation between G and P.

To ensure that meets are correctly generated, we introduce a constraints propagation mechanism C that associates a set of attributes $C[A]$ to process with each concept (A, D).

The NextPriorityConcept-Strategy algorithm considers a formal context $\langle G, M, (\alpha, \beta) \rangle$ and a strategy σ as input, and computes the concept lattice of $\langle G, P, I_P \rangle$ according to the input strategy in the same way of the NextPriorityConcept-Basic algorithm, with in addition the management of the constraint propagation.

The Predecessors-Strategy algorithm is a modified version of Predecessors-Basic to compute predecessors of a concept (A, D), where we only consider the attributes $\sigma(A)$ given by the strategy, and the attributes $C[A]$ given by the constraint propagation mechanism, instead of the whole set $M \setminus D$ of attributes.

Inclusion-Max is similar, with a minimal test on the subset of objects A', but the list L is composed of pairs (A', d) instead of subsets A'.

3.2. Proof and complexity analysis

3.2.1. Proof of the algorithm

Theorem 1. The NextPriorityConcept-Strategy algorithm computes all the concepts of $(G, P, (\alpha_P, \beta_P))$, with a strategy σ as input.

Consider (A_i, D_i) the concept generated at each iteration i of the main loop. To prove the theorem, we have to prove the two following lemmas:

Lemma 1. Let (A_i, D_i) be a concept generated at iteration i, then (A_i, D_i) is a concept of $(G, P, (\alpha_P, \beta_P))$

Proof. The priority queue Q is initialized with $([G], (G, \alpha \circ \beta(\emptyset)))$, and $(G, \alpha \circ \beta(\emptyset)) = (A_0, D_0)$ corresponds to the top concept on P, i.e. the concept of greatest support.
Let us introduce \(P_i \) the set of selected attributes \(P \) at each iteration \(i \). Since \(P \) is updated with new selected attributes at each iteration \(i \), we have \(P_0 \subseteq P_1 \subseteq \ldots \subseteq P_i \subseteq \subseteq \subseteq P \) with \(P_0 \) being initialized with \(D_0 = \alpha \circ \beta(\emptyset) \).

Let \((A_i, D_i)\) be the concept generated at iteration \(i \). Let us prove that \((A_i, D_i)\) is a concept of the generated context \((G, P, I_P)\).

Clearly \(D_i \subseteq P_i \) and, since \((A_i \times D_i)\) is added in \(I_P \) at iteration \(i \), then \((A_i, D_i)\) is a concept of the context \((G, P, I_P)\). Therefore we have to prove that \((A_i, D_i)\) is also a concept of \((G, P, I_P)\).

If \((A_i, D_i)\) is not a concept of \((G, P, I_P)\), then there exists a selector \(p \in P \) such that \(p \in \alpha(A_i) \) and \(p \not\in D_i \), thus \(p \not\in P_i \). From \(p \in \alpha(A_i) \) we have \(A_i \subseteq \beta(p) \). Let the iteration \(j \) that adds \(p \) in \(P \), and let \((A_j, D_j)\) the concept generated at iteration \(j \). Then \(p \in D_j \subseteq P_j \) and \((A_j \times D_j)\) is added in \(I_P \), thus \(A_j = \beta(p) \). From \(p \not\in P_i \) and \(p \in P_j \), we deduce \(j > i \). From \(A_i \subseteq \beta(p) \) and \(A_j = \beta(p) \), we deduce \(A_i \subset A_j \) and \(j < i \), since concept are generated according to the priority queue using the support. Thus a contradiction and \((A_i, D_i)\) is a concept of \((G, P, I_P)\).

Lemma 2. Let \((A, D)\) be a concept of \((G, P, (\alpha_P, \beta_P))\), then there exists an iteration \(i \) such that \((A, D) = (A_i, D_i)\).

Proof. Let \((A, D)\) be a concept of \((G, P, I_P)\). Then \((A, D)\) is the meet of \(\{(\beta(p), \alpha \circ \beta(p)) \mid p \in D\} \). Let us prove that this meet is generated by the algorithm.

In the case where \(|D| = 0\), then \((A, D)\) is the top concept generated at the beginning of the algorithm. In the case where \(|D| = 1\), then \((A, D) = (\beta(p), \alpha \circ \beta(p))\) generated by the iteration \(i \) that adds \(p \) in \(P \).

In the case where \(|D| > 1\), let \(p \not\in p' \in D \) such that \(i < j \), where \(i \) is the iteration that adds \(p \) in \(P \), and \(j \) is the iteration that adds \(p' \) in \(P \).

Let \((A_i, D_i)\) be the concept generated at iteration \(i \) and \((A_j, D_j)\) be the concept generated at iteration \(j \). Then \((A_i, D_i) = (\beta(p), \alpha \circ \beta(p))\) and \((A_j, D_j) = (\beta(p'), \alpha \circ \beta(p'))\).

Let us prove that the meet \((A_i, D_i) \land (A_j, D_j)\) is generated. We have two cases:

- If \(D_i \subseteq D_j \) then \((A_i, D_i) \leq (A_j, D_j)\) and \((A_j, D_j)\) is equal to \((A_i, D_i) \land (A_j, D_j)\).
- If \(D_i \not\subseteq D_j \) then the iteration \(i \) adds \(p \) as constraint to all other concepts, thus \(p \) belongs to the set of constraints of \(A_j \), and is considered is the first loop of the **PREDECESSORS-STRATEGY** algorithm to generate a potential immediate predecessor \(S = (\beta(D_j + p), \alpha \circ \beta(D_j + p))\) of \((A_j, D_j)\). We have two cases again.
 - In the case where \(S \) is minimal per inclusion between all the potential immediate predecessors of \((A_j, D_j)\), then \(S \) is generated as immediate predecessor and corresponds to the meet \((A_i, D_i) \land (A_j, D_j)\).
 - In the case where \(S \) is not minimal per inclusion, then \(p \) belongs to the set of constraints of the generated immediate predecessors of \((A_j, D_j)\), and the meet \((A_i, D_i) \land (A_j, D_j)\) will be generated as a predecessor of an immediate predecessor of \((A_j, D_j)\).
Therefore the meet \((A_i, D_i) \land (A_j, D_j)\) is generated thanks to the constraints propagation mechanism. This achieves the proof.

Therefore we can state the following result considering the selectors \(p \in \sigma(A) \cup C[A]\):

Lemma 3. There is a bijection between the immediate predecessors of a concept \((A, D)\) and the inclusion maximal subsets of the following family defined on the objects \(G\):

\[
\mathcal{FD}(A, D) = \{ \{a \in A : p(a)\} : p \in (\sigma(A) \cup C[A])\}
\]

(3)

3.2.2. Run-time analysis

Denote by \(B\) the collection of all formal concepts of \(\langle G, M, (\alpha, \beta)\rangle\) generated by the strategy \(\sigma\), i.e. the concepts of \(\langle G, P, (\alpha_P, \beta_P)\rangle\); and by \(c_\sigma\) the cost of the strategy for a concept.

- the *Predecessors-Strategy* algorithm computes the predecessors of a concept.
 Its run-time complexity is in \(O(|G| |P|^2 c_\sigma)\) where \(O(|G| |P|^2)\) is the cost of Bordat’s algorithm [7]. And the descendant constraints are updated in \(O(|P|^2)\).
- the *NextPriorityConcept-Strategy* algorithm updates the priority queue in \(O(|G| |P|)\).

Therefore we can deduce the run-time complexity of the *NextPriorityConcept-Strategy* algorithm: \(O(|B| |G| |P|^2 c_\sigma)\).

3.2.3. Memory analysis

At each step of the main loop in the *NextPriorityConcept-Strategy* algorithm, a set of predecessors is generated. The cardinality of these predecessors cannot exceed \(|P|\). These predecessors will not be explored until all their predecessors have been examined (principle of the priority queue using the support of concepts). For each concept in the priority queue, a set of constraints is maintained whose cardinality cannot exceed \(|P|\). So the memory complexity of the *NextPriorityConcept-Strategy* algorithm is in \(O(w |P|^2)\) where \(w\) is the width of the concept lattice.

3.3. Example

Table 1: Digit context where \(c\) stands for composed, \(e\) for even, \(o\) for odd, \(p\) for prime and \(s\) for square

	c	e	o	p	s
0	✓	✓	✓		✓
1	✓	✓			
2	✓	✓			
3	✓	✓	✓		
4	✓	✓	✓		
5	✓	✓	✓		
8					
We consider the formal context \texttt{digit} in Table 1 as first example. The maximal support strategy σ_{max} leads to the lattice whose Hasse diagram is displayed in Figure 1, where attributes and objects are indicated in respectively the first and the last concept where they appear. We also indicate the number (using $\$\$) and the support (using $\#\$) of each concept. The trace execution is in Table 2. The result context (G, P, I_P) displayed in Table 3 is clearly a sub-context of the initial one.
We can observe that this second concept lattice contains only 9 concepts instead of 14. The concepts for attributes p and s are not generated as immediate predecessors of the top concept since their support is not maximal. However, p appears in concept 5, generated as a predecessor of concept 3 equal to $\{(1,3,5,7,9),o\}$, thus introduced only for the odd digits $\{1,3,5,7,9\}$. Therefore, p means prime property only for the odd digits, denoted $p|o$. In the same way, s appears in concept 6 as a predecessor of concept 4 equal to $\{(0,4,6,8),ec\}$, meaning square property for the even and composite digits, denoted $p|ec$.

The classical concept lattice produced without strategy is displayed in Figure 2.

![Figure 1: Digit sample with greatest support strategy](image)

As second example, we consider the Lenses dataset from the UCI Machine Learning Repository\(^1\). This dataset is composed of 24 objects/patients described by 4 categorical attributes:

- **age of the patient**: young, pre-presbyopic, presbyopic
- **spectacle prescription**: myope, hypermetrope

\(^{1}\text{https://archive.ics.uci.edu} \)
Figure 2: Digit sample without strategy
- **astigmatic**: no, yes
- **tear production rate**: reduced, normal

and classified in 3 classes

- the patient should be fitted with **hard contact lenses**,
- the patient should be fitted with **soft contact lenses**,
- the patient should not be fitted with contact lenses.

We consider the formal context composed of 9 binary attributes, i.e. the modalities of the 4 categorical attributes.

The classical concept lattice contains 109 concepts. With the entropy strategy σ_{entropy} using the class information and by keeping only the two best entropy measures for the predecessors, we obtain a more compact lattice of 28 concepts displayed in Figure 3.

As long as a concept contains only one class, no new predecessors are generated by the strategy. Therefore these concepts and their ascendants can be interpreted as a clustering of the data, each concept (A, D) among these clusters corresponding to a class c, and meaning that objects having attributes D belong to the class c.

![Figure 3: Lenses dataset with the entropy strategy](image)

4. **Next Priority Concept: heterogeneous data as input**

4.1. **Next Priority Concept algorithm: the final version**

In the previous section, the new set P of attributes is introduced to store the selected attributes from which predecessors of a concept (A, D) are generated. It is easily observed that it is also possible to introduce new attributes at each iteration without changes. For
example, we can consider $\sigma_{\text{neg}}(A) = \{b, \bar{b} : b \in M - \alpha(A)\}$, a strategy adding negative attributes as selector.

Our final NextPriorityConcept algorithm exploits this possibility to manage heterogeneous data as input. We use predicates describing objects independent of their types. In order to avoid confusion with classical binary attributes, we will use characteristic instead of attribute.

More formally, we consider a heterogeneous dataset (G, S) as input where each characteristic $s \in S$ can be seen as a mapping $s : G \to R_s$ where R_s is called the domain of s. Let p_s be a predicate for a characteristic s and $a \in G$, we note $p_s(a)$ when $s(a)$ verifies p_s.

For example, a numerical characteristic can be described by predicates on the form is smaller/greater than c where c a numerical value; a characteristic representing a (temporal) sequence can be described by predicates of the form contains s as (maximal) subsequence where s is a sequence; and a classical boolean characteristic b corresponds to the predicate possesses b.

We introduce the notion of description δ to provide predicates describing a set of objects, and we extend the notion of strategy σ to provide predicates (called selectors) to generate (select) the predecessors of a concept.

Characteristics of different domains must be processed separately since predicates are calculated differently according to the domain. However, characteristics on the same domain can be processed together or separately, and some characteristics may not be considered, or considered several times.

Therefore, characteristics are given by a family $S = (S^i)_{i \leq d}$, where each S^i contains characteristics on the same domain.

For example, for the well-known Iris database^2 composed of class information and four numerical characteristics $S = \{\text{sepal-length, sepal-width, petal-length, petal-width}\}$, we can consider the petal characteristics together, and the sepal characteristics together ($S^1 = \{\text{petal-length, petal-width}\}$ and $S^2 = \{\text{sepal-length, sepal-width}\}$). We can also only consider the petal characteristics, and separately ($S^1 = \{\text{petal-length}\}$ and $S^2 = \{\text{petal-width}\}$).

Predicates are provided according to a given S^i, both to describe a set of objects, but also to compute the predecessors of a concept:

A description δ^i is an application $\delta^i : 2^G \to 2^P$ which defines a set of predicates $\delta^i(A)$ describing the characteristics of S^i for any subset A of G.

A strategy σ^i is an application $\sigma^i : 2^G \to 2^P$ which defines a set of predicates $\sigma^i(A)$ (called selectors) for characteristics of S^i from which the predecessors of a concept (A, D) are generated.

Therefore, the strategy $\sigma(A)$ and the description $\delta(A)$ of a subset A of objects are defined

^2https://archive.ics.uci.edu
from 2^G to 2^P by:

$$\delta(A) = \bigcup_{S^i} \delta^i(A)$$
$$\sigma(A) = \bigcup_{S^i} \sigma^i(A)$$

Let us give some examples of strategies and descriptions for a set $A \subseteq G$ of objects:

- For a numerical attribute $S^i = \{s\}$:
 - $\delta^i(A) = \{\text{is greater than } \min_{a \in A} s(a), \text{is smaller than } \max_{a \in A} s(a)\}$
 - $\sigma^i(A) = \{\text{is greater than } q_1, \text{is smaller than } q_3\}$ where q_1 and q_3 are respectively the first and the third quantile of the values $(s(a))_{a \in A}$.
- For a sequential attribute $S^i = \{s\}$:
 - $\delta^i(A) = \{\text{contains } X \text{ as subsequences}\}$ where X is the set of longest most common subsequences of $(s(a))_{a \in A}$.
 - $\sigma^i(A) = \{\text{contains } X' \text{ as subsequences}\}$ where sequences of X' are obtained by a reduction process of the longest most common subsequences of $\delta^i(A)$.

NextPriorityConcept and **Predecessors-Description** algorithms are very similar to the previous versions. **NextPriorityConcept** algorithm considers as input:

- a heterogeneous dataset (G, S)
- $(S^i)_{i \leq d}$ a family of S
- δ a description
- σ a strategy

This algorithm computes the formal context $\langle G, P, I_P \rangle$ and its concepts, where P is the set of predicates describing the characteristics, $I_P = \{(a, p) : p(a)\}$ is the relation between objects and predicates, and (α_P, β_P) is the associated Galois connection.

Predecessors-Description is a modified version of **Predecessors-Strategy** to compute predecessors of a concept (A, D), where we consider $\sigma(A)$ and $\delta(A)$ given as input.

4.2. Discussions

4.2.1. Comparison with pattern structures

The predicates in the final set P are those issued from the descriptions since the predicates generated by the strategy are only used to generate predecessors. Our **NextPriorityConcept** algorithm can be interpreted as a pattern structure on each domain of characteristics S^i.

Formally, a pattern structure [4] is a triple $(G, (D, \sqcap), \delta)$ where G is a set of objects, (D, \sqcap) is a meet semi-lattice of potential objects descriptions, and $\delta : G \rightarrow D$ associates to each object its description. Elements of D are ordered with the subsumption relation \sqsubseteq.

Let $(2^G, \sqsubseteq) \xrightarrow{\beta_D} (\mathcal{D}, \sqcap)$ be the corresponding Galois connection where:
When some characteristics are defined on the same domain, the family \((S^i)_{1 \leq i \leq d}\) offers the possibility to process them separately or together. An immediate way to process several characteristics together would be to merge the predicates obtained in the individual case, both for the descriptions and for the strategies. But it is possible to obtain more relevant predicates by a specific process of a group of characteristics.

4.2.2. Processing of group of characteristics

When some characteristics are defined on the same domain, the family \((S^i)_{1 \leq i \leq d}\) offers the possibility to process them separately or together. An immediate way to process several characteristics together would be to merge the predicates obtained in the individual case, both for the descriptions and for the strategies. But it is possible to obtain more relevant predicates by a specific process of a group of characteristics.

For example, for a group of \(k\) numerical characteristics \(s_1, \ldots, s_k\), we can consider the \(k\)-dimensional points \(\{(s_j(a))_{j \leq k} : a \in A\}\) for a set \(A\) of objects, and their convex hull
The description \(\delta^i(A) \) is then composed of predicates describing the borders of the convex hull, and the strategy \(\sigma^i(A) \) is a way to cut the hull. For points in two dimensions, the convex hull is a polygon, and borders and cuts are lines. Clearly, for two sets \(A \) and \(A' \) of objects such that \(A' \subseteq A \), the convex hull of \(A' \) is included into the convex hull of \(A \), and the intersection of two convex hulls is a convex hull. Therefore \(\delta^i(A) \subseteq \delta^i(A') \).

For points in two and three dimensions, output-sensitive algorithms are known to compute the convex hull in time \(O(n \log n) \), where \(n \) is the number of points. For dimensions \(d \) higher than 3, the time for computing the convex hull is \(O(n \lfloor d/2 \rfloor) \) [10]. This process therefore impacts on the costs \(c_\sigma \) and \(c_\delta \).

Now consider a group of \(k \) boolean characteristics \(S^i = \{x_1, \ldots, x_k\} \). The classical FCA approach describes a set of objects \(A \) by the set of attributes \(B = \{x_j : a \in A \text{ and } x_j(a) = 1\} \) and the strategy of generation of immediate predecessors considers the set of all other attributes \(\{x \in S^i \setminus B\} \) as selectors. These two sets described by predicates of the form "possesses attribute x" would respectively correspond to \(\delta^i(A) \) and \(\sigma^i(A) \).

The use of predicates, and especially the possibility of introducing negative attributes, allows us to consider other descriptions of \(A \). For example, we can consider a description \(\delta^i(A) \) by predicates for the disjunction of clauses:

\[\bigvee_{a \in A} \bigwedge_{j \leq k} \begin{cases} x_j & \text{if } x_j(a) = 1 \\ \overline{x_j} & \text{if } x_j(a) = 0 \end{cases} \]

For a finer and minimal description, we can also consider the minimization of this boolean formulae using the well-known Quine-McCluskey algorithm (or the method of prime implicants), with a time complexity in \(O(3^n \log n) \) [11] where \(n \) is the number of attributes.

4.2.3. About strategies

A strategy proposes a way to cut the description \(\delta^i(A) \) by selectors from which predecessors of a concept \((A, P) \) are generated. These selected predicates are only used in this way at each step of the algorithm, but are not kept in the final set \(P \) of predicates, and several strategies are possible to generate predecessors of a concept \((A, P) \).

Therefore, our algorithm can be extended to improve the strategy management:

Meta-strategy: The strategy \(\sigma \) is defined as the union of the strategies \((\sigma^i)_{i \leq d} \) for each part \(S^i \) of attributes. It is possible to introduce a filter (or meta-strategy) on these selectors, as those introduced in the section 3:

- The maximal support meta-strategy relies on the support:

 \[\sigma_{\text{max}}(A) = \{p \in \bigcup_{S^i} \delta^i(A) : |\pi(p)| \text{ maximal} \} \]

- The entropy meta-strategy is a supervised strategy where objects have a class attribute:
\[\sigma_{\text{entropy}}(A) = \{ p \in \bigcup_{S} \delta^i(A) : H_{\text{class}}(\pi(p)) \text{ minimal} \} \]

Interactivity: Several strategies are possible to generate predecessors of a concept, going from the naive strategy \(\sigma^i_{\text{naive}} \) that generates all the possible predecessors, to the silly strategy \(\sigma^i_{\text{silly}} = \emptyset \) that generates no predecessors. Therefore we can extend our algorithm in an interactive way, where the user could choose or test several strategies for each concept in an user driven pattern discovery approach.

In classical FCA approach, the naive strategy considers all the possible attributes of \(M \setminus B \) for a concept \((A, B)\), and the corresponding lattice is often too large. The silly strategy allows to introduce some attributes in concepts, but without considering them in the predecessor generation. This approach is interesting for example for class attributes. Every possible strategy is between \(\sigma^i_{\text{naive}} \) and \(\sigma^i_{\text{silly}} \) when considering the set of generated predecessors, and it would be interesting to investigate the whole set of possible strategies.

A strategy close to \(\sigma^i_{\text{naive}} \) increases the number of concepts, while a strategy close to \(\sigma^i_{\text{silly}} \) decreases the number of concepts.

4.2.4. Examples

4.2.4.1. Iris dataset with heterogeneous descriptions. Consider the well-known Iris dataset from the UCI Machine Learning Repository\(^3\), and composed of 150 objects described by 4 numerical characteristics `sepal-length`, `sepal-width`, `petal-length`, `petal-width` and classified in 3 classes `Setosa`, `Versicolor`, `Virginica`.

In this first example, we consider the two petal characteristics separately, and the class characteristic, thus a combination of two numerical characteristic with a categorical one. For each petal characteristics, we use a classical description by the two predicates *the values are greater than the min* and *the values are smaller than the max*. For the class characteristic, we use the predicate *belongs to class*.

The strategy generates the two selectors *is the value greater than the mean minus the standard deviation?* and *is the value smaller than the mean plus the standard deviation?*, and is combined with a meta-strategy limiting new predecessors to those whose support is greater than 100. combined to the class characteristic.

We obtain the concept lattice displayed in Figure 4 composed of 30 concepts: * concept \$19 corresponds to objects whose class is `Setosa` * concept \$20 corresponds to objects whose class is `Virginica` * concept \$21 corresponds to objects whose class is `Versicolor`.

4.2.4.2. Iris dataset with the entropy strategy. In the second example, we consider the Iris dataset and the four petal and sepal characteristics separately. We use the following

\(^3\)https://archive.ics.uci.edu
Figure 4: Iris dataset with a minimum support (100) strategy using petal length, petal width and class.
Figure 5: Iris dataset with the entropy strategy
entropy strategy which allows to consider the entropy of a predecessor \(A' \) of \(A \), but also the entropy of the remaining set \(A \setminus A' \):

\[
H = \theta(H_{A'}) + (1 - \theta)H_{A \setminus A'}
\]

The more the value of \(\theta \) increases, the more the number of predecessors of \(A \) decreases.

![Iris Data (red=setosa, green=versicolor, blue=virginica)](https://commons.wikimedia.org/wiki/File:Iris_dataset_scatterplot.svg)

Figure 6: Iris dataset

We obtain the concept lattice displayed in Figure 5 (with \(\theta = 1/2 \)) composed of 13 concepts. The Setosa iris are quickly separated according to their two petal characteristics (concept 3). Indeed, we can observe on the scatterplot in Figure 6 that this class is clearly separated from the two others. We obtain 4 concepts for classes virginica and versicolor:

- concept 10 and 11 correspond to objects whose class is Virginica, with only the two petal characteristics used in concept 10, while the sepal-length characteristic is introduced in concept 11.

- concept 5 and 9 correspond to objects whose class is Versicolor.

[^4]: https://commons.wikimedia.org/wiki/File:Iris_dataset_scatterplot.svg
4.2.4.3. **Numbers** dataset with *GCD and LCM as descriptions*. In this example, we consider the numbers [36, 48, 56, 64, 84] and the *greatest common divisor (GCD)* and *least common multiple (LCM)* as descriptions. The strategy consists in adding a new *is divisor of* or *is multiple of* predicate using a combination of the prime numbers of the set of objects present in the concept.

The concept lattice, displayed in Figure 7, is composed of 21 concepts. The last concept which is the absurd one (the extent is an empty set) is described by 2 predicates whose conjunction is always false.

Digit dataset with *minimal logical formula as descriptions*. As last example, we consider the digit described by their properties composed, even, odd, prime and square given in Table 1.
These 5 characteristics are considered together, and we compute their minimal boolean formulae as description using the Quine-McCluskey algorithm [11]. The strategy consists in trying to add an attribute or its negation at each step.

The concept lattice is displayed in Figure 8. We can observe that the maximum number of predecessors cannot exceed 5 since the predecessors are maximum per inclusion.

5. Conclusion

We have described our NextPriorityConcept algorithm for complex and heterogenous mining using a pattern discovery approach.

More precisely, our algorithm generates formal concept using the dual version of Bordat’s theorem for the generation of immediate predecessors (instead of immediate successors), and where recursion is replaced by a priority queue using the support of concepts to make sure that concepts are generated level by level, each concept being generated before its predecessors. Moreover, a constraint propagation mechanism ensures that meets are correctly generated.

Heterogeneous data are provided at input with a description mechanism and a predecessor generation strategy adapted to each kind of data, and generically described by predicates.

Our algorithm is generic and agnostic since we use predicates whatever the characteristics. It is implemented with a system of plugins for an easy integration of new characteristics, new description, new strategies and new meta-strategies. We are currently working on a code diffusion via a development platform, called Galactic (GAlois LAttices, Concept Theory, Implicational systems and Closures)\(^5\).

We have already implemented some descriptions and strategies plugins for boolean, numeric, categorical attributes, strings and sequences. We are currently working on descriptions and strategies for graphs and triadic data.

Acknowledgements: Thanks are owed to Rokia Missaoui and Gaël Lejeune for their constructive and helpful comments.

References

[1] M. Barbut, B. Monjardet, Ordres et classifications : Algèbre et combinatoire, Hachette, Paris, 1970, 2 tomes.
[2] B. Ganter, R. Wille, Formal Concept Analysis, Mathematical foundations, Springer Verlag, Berlin, 1999.
[3] K. Bertet, Ch. Demko, J.-F. Viaud, C. Guérin, Lattices, closures systems and implication bases: A survey of structural aspects and algorithms, Theoretical Computer Science 743 (2018) 93–109.
[4] B. Ganter, S. O. Kuznetsov, Pattern structures and their projections, in: LNCS of International Conference on Conceptual Structures (ICCS’01), 2001, pp. 129–142.
[5] M. Kaytoue, V. Codocedo, A. Buzmakov, J. Baixeries, S. O. Kuznetsov, A. Napoli, Pattern structures and concept lattices for data mining and knowledge processing, in: In Proceedings of ECML-PKDD1, 2015.

\(^5\)https://galactic.univ-lr.fr
Figure 8: Digit dataset with minimal logical formula as description
[6] M. Kaytoue, Contributions to pattern discovery, Habilitation, University of Lyon, France (February 2020).

[7] J.-P. Bordat, Calcul pratique du treillis de Galois d’une correspondance, Mathématiques et Sciences humaines 96 (1986) 31–47.

[8] C. Linding, Fast concept analysis, in: Working with Conceptual Structures-Contributions to ICC, 2002, pp. 235–248.

[9] A. Belfodil, S. O. Kuznetsov, C. Robardet, M. Kaytoue, Mining Convex Polygon Patterns with Formal Concept Analysis, in: C. Sierra (Ed.), The Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence Main track, Melbourne, Australia, 2017, pp. 1425 – 1432. doi:10.24963/ijcai.2017/197. URL https://hal.archives-ouvertes.fr/hal-01573841

[10] B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete and Computational Geometry 10 (1) (1993) 377–409.

[11] W. V. O. Quine, The problem of simplifying truth functions, The American Mathematical 59 (8) (1952) 521–531.
Data:
• \((G, M, (\alpha, \beta))\) a formal context
• \(\sigma\) a strategy

Output:
• the formal context \((G, P, I_P)\)
• its concepts \((A, D)\)

begin
/* Priority queue for the concepts */
\(Q \leftarrow \emptyset\); /* \(Q\) is a priority queue using the support of concepts */
\(Q\).push((|G|, (G, \alpha(G)))\); /* Add the top concept into \(Q\) */

/* Data structure for constraints */
\(C \leftarrow \emptyset\); /* \(C\) is the descendant constraints map being \(\emptyset\) by default */

/* Data structures for new attributes */
\(P \leftarrow \emptyset\); /* \(P\) is the set of selected attributes */
\(I_P \leftarrow \emptyset\); /* \(I_P\) is the new binary relation between \(G\) and \(P\) */

/* Immediate predecessors generation */
while \(Q\) not empty do
 /* Compute concept */
 \((A, D) \leftarrow Q\).pop(); /* Get the concept with highest support */
 produce \((A, D)\);

 \(LP \leftarrow \text{Predecessors-Strategy}((A, D), P, I_P, C, \sigma)\);

 /* Update queue */
 forall \((A', D') \in LP\) do
 if \((A', D') \notin Q\) then
 \(Q\).push((|A'|, (A', D'))\); /* Add new concept into \(Q\) */
 end
 end

 delete \(C[A]\); /* Remove useless data */
end
return \((G, P, I_P)\)
end

Algorithm 4: NextPriorityConcept-Strategy
Data:
- \((A, D)\) a concept
- \(P\) the set of selected attributes
- \(I_P\) the new relation
- \(C\) the constraints
- \(\sigma\) a strategy

Result:
- \(LP\) a set of predecessors

begin
\[
L \leftarrow \emptyset;
\]
for all \(b \in (\sigma(A) \cup C[A]) \setminus D\) do
/* \(b\) is a new "potential" attribute for a predecessor */
\[
A' \leftarrow \beta(b) \cap A; \quad /\!*\text{Compute the objects of } D + b \text{ }*/\!
\]
/* Add \((A', b)\) if \(A'\) maximum in \(L\) and included in \(A\) */
if \(A' \subseteq A\) then
\[
L \leftarrow \text{Inclusion-Max}(L, (A', b));
\]
end
\[
N \leftarrow \{b : (A', b) \in L\}; \quad /\!*\text{\(N\) is the set of new constraints }*/\!
LP \leftarrow \emptyset;
\]
for all \((A', b') \in L\) do
/* Update the selected attributes \(P\) and the relation \(I_P\) */
if \(b' \in \sigma(A)\) then
\[
P \leftarrow P \cup \{b'\}; \quad /\!*\text{Update the set of selected attributes }*/\!
end
\[
D' \leftarrow \alpha(A') \cap P; \quad /\!*\text{Compute the extent of } A' \text{ }*/\!
LP.add((A', D')); \quad /\!*\text{\((A', D')\) is a new concept }*/\!
I_P \leftarrow I_P \cup (A' \times D'); \quad /\!*\text{Update the new relation }*/\!
/* Compute residual and cross constraints */
\[
C[A'] \leftarrow C[A'] \cup C[A] \cup N \setminus D'
\]
end
return \(LP\)
end

\textbf{Algorithm 5: Predecessors-Strategy}
Data:

- \((G, S) \) a dataset
- \((S^i)_{i < d} \) a family of \(S \)
- \(\delta \) a description
- \(\sigma \) a strategy

Output:

- the formal context \((G, P, I_P) \)
- its concepts \((A, D)\)

begin

// Priority queue for the concepts */
\(Q \leftarrow [] \); /* \(Q \) is a priority queue using the support of concepts */
\(Q.push(|G|, (G, \delta(G))) \); /* Add the top concept into \(Q \) */

// Data structure for constraints */
\(C \leftarrow [] \); /* \(C \) is the descendant constraints map being \(\emptyset \) by default */

// Data structures for predicates */
\(P \leftarrow \emptyset \); /* \(P \) is the set of all predicates */
\(I_P \leftarrow \emptyset \); /* \(I_P \) is the binary relation between \(G \) and \(P \) */

// Immediate predecessors generation */
while \(Q \) not empty do

\((A, D) \leftarrow Q.pop() \); /* Get the concept with highest support */
\(\text{produce}(A, D) \);
\(LP \leftarrow \text{Predecessors-Desc}((A, D), P, I_P, C, \sigma, \delta) \); /* Update queue */
forall \((A', D') \in LP \) do

if \((A', D') \notin Q \) then

\(Q.push(|A'|, (A', D')) \); /* Add concept into \(Q \) */
end
end
\(\text{delete} \ C[A] \); /* Remove useless data */
end

return \((G, P, I_P)\)
end

Algorithm 6: \texttt{NextPriorityConcept}
Data:
- \((A, D)\) a concept
- \(P\) the set of predicates
- \(I_P\) the binary relation between \(G\) and \(P\)
- \(C\) the constraints
- \(\sigma\) a strategy (issued from the \(\sigma^i\))
- \(\delta\) a description (issued from the \(\delta^i\))

Result:
- \(LP\) a set of predecessors

begin
\[L ← ∅;\]
forall \(p ∈ (σ(A) ∪ C[A]) \setminus D\) do
/* \(p\) is a new "potential" selector to generate a predecessor */
\[A' ← \{a ∈ A : p(a)\};\] /* \(A'\) are the objects verifying \(D + p\) */
/* Add \((A', p)\) if \(A'\) maximum in \(L\) and included in \(A\) */
if \(A' ⊂ A\) then \(L ← \text{INCLUSION-MAX}(L, (A', p))\);
end
\[N ← \{p : (A', p) ∈ L\};\] /* \(N\) is the set of new constraints */
\[LP ← ∅;\]
forall \((A', p') ∈ L\) do
/* Update the selected attributes \(P\) and the relation \(I_P\) */
if \(p' ∈ σ(A)\) then
\[P ← P ∪ \{p'\};\] /* Update the set of selected predicates */
end
\[D' ← δ(A');\] /* \(D'\) are the new predicates describing \(A'\) */
\[LP . add((A', D'));\] /* \((A', D')\) is a new concept */
\[I_P ← I_P ∪ (A' × D');\] /* Update the new relation */
/* Compute cross constraints \((X)\) and propagate constraints */
\[X ← \{p'' ∈ N : p''(a) ∀a ∈ A'\};\]
\[C[A'] ← C[A'] ∪ C[A] ∪ N \setminus X;\]
end
return \(LP\)
end

Algorithm 7: \textsc{Predecessors-Desc}