Incidence and preliminary characterization of Lactic acid bacteria as potential probiotic strains from an artisanal milk product, Chilika curd of Odisha

Sonalina Sahoo, Usha Jyoti Maji and Sriprakash Mohanty

Received: 22 November 2019 / Accepted: 20 February 2020 / Published online: 18 May 2020
© Indian Dairy Association (India) 2020

Abstract: A traditional fermented milk product prepared from buffalo milk in Chilika, situated in the eastern coast of India, is known for its unique organoleptic properties, an exceptionally extended shelf-life and a special method of preparation by the ethnic community of that region. In order to study the potential probiotic lactic acid bacteria associated with this indigenous curd, a total of five isolates were identified and characterized for their probiotic properties. The isolates were identified as Lactobacillus plantarum SSU1, Lactobacillus delbreuckii subsp. bulgaricus SSU2, Lactobacillus rhamnosus SSU3, Lactobacillus casei SSU4 and Lactobacillus rhamnosus SSU5 by 16S rDNA gene sequencing. All the isolates showed good acid and bile tolerance ability, antibacterial activity against wide range of pathogens and presence of bacteriocin producing genes. Such strains with the probiotic attributes could be potential novel starter cultures for producing natural probiotic and various fermented functional food.

Keywords: Chilika curd, fermented buffalo milk, Lactic acid bacteria, probiotic, Plantaricin

Introduction

Milk and milk products are considered to be wholesome food due to the presence of whole array of nutrients such as proteins, fats, carbohydrates, vitamins and minerals. Milk being a good substrate provides a perfect atmosphere for many microorganisms of which Lactic acid bacteria (LAB) are the predominant. LAB are a group of Gram positive, rod shaped, non-spore forming bacteria, mostly associated with various fermented food such as dairy products, beverages, meat and vegetables (Grosu-Tudor and Zamfir, 2012). They are known for the rapid acidification of substrate and production of acetic acid, ethanol, aromatic compounds, exo-polysaccharides and enzymes (Vuyst and Leroy, 2007). LAB and their food products are thought to confer a variety of important nutritional and therapeutic benefits and have many documented health promoting or probiotic effects in human (Parvez et al. 2006). Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host (Joint FAO/WHO Expert Consultation 2002). LAB for use as probiotic cultures must be tolerant to acid and bile as these are the primary factors affecting strain selection (Hyronimus et al. 2000). LAB also exhibits vast antimicrobial property due to production of various organic acids, hydrogen peroxide and certain proteinaceous compounds called bacteriocins (Jamuna and Jeevaratnam, 2004). Bacteriocins produced by LAB have high thermal stress, wide pH range with no reported development of resistant bacteria (Perez et al. 2014) thus, making it highly useful for probiotic purpose.

Curd is one of the most popular milk products in India and forms a part of the regular diet of the common population. It is produced using the fermentation process in which LAB plays a key role. As curd is prepared in nearly every household, each region of the country has its own unique combinations of LAB flora used as starter culture in making of the indigenous curd of that region. Chilika curd is one such dairy food traditionally prepared with milk produced from buffaloes of Chilika lake area of Odisha state by the ethnic community of this region. Situated in the eastern coast of India and being the largest brackish water lagoon, the sea weeds of high salinity content serves as a special diet for the buffaloes of this region (Nanda et al. 2013). This makes the curd produced from the milk of these buffaloes very unique in its organoleptic properties. It is also known to have an exceptionally extended shelf life (Nanda et al. 2013). Thus, it is essential to study the consortium of LAB flora present in the Chilika curd responsible for its uniqueness and to recognize the probiotic properties of these LAB.
Materials and Methods

Preparation of Chilika curd

The farmers of Chilika Buffalo Society follow a unique traditional technique for preparation of Chilika curd which is made in baskets of bamboo mats. The inner surface of these baskets is layered with inoculum of previously made curd and is sun dried. This process is repeated with multiple curd layers and intermittent sun treatment. Finally, boiled concentrated buffalo milk cooled to room temperature is added to these baskets covered with leaves and left undisturbed for the fermentation process to be completed.

Sampling and isolation of LAB

Random curd samples (n = 3) were collected aseptically from the local sellers covering regions in and around Chilika, Odisha. The samples were then transported to the laboratory in aseptic refrigerated condition. Each of these samples was homogenized. 1 ml of each sample was added to 9 ml of MRS (de Man, Rogosa and Sharpe) broth (Himedia) and incubated at 37°C for 48 h. Subsequently, dilution series of each enriched culture was prepared by using sterile normal saline solution (1:10; wt:vol) and from appropriate dilution, 0.1 ml was spread plated evenly on MRS plates. The plates were incubated anaerobically at 37°C for 48 h. Individual colonies were selected on the basis of morphology, Gram staining and catalase activity. The Gram positive and catalase negative isolates were transferred into MRS broth and incubated at 37°C for 48 h. The isolates were kept in MRS broth containing 20% (v/v) glycerol at - 80°C. Further analysis was carried out from the stored cultures.

Phenotypic characterization

The isolates were initially characterized based on Gram reaction, catalase activity, motility, carbohydrate fermentation and arginine hydrolysis (Marroki et al. 2011; Yu et al. 2012). The results are shown in Table 1.

Genotypic identification using 16S rDNA

Isolates showing varying phenotypic properties were selected for genotypic identification. Genomic DNA was extracted using overnight cultures of the selected isolates as described previously by Abed (2013). Amplification of the 16S rDNA was carried out using universal bacterial 16S DNA primers; forward primer (5’-AAGAGTGTGACTCTGGTCAG-3’) and reverse primer (5’-GGTTACCTGTTACGACTT-3’) amplifying 1500 bp amplicons as per Stanley et al. (1995). The PCR reaction mixture consisted of 100 ng of DNA template, 20 pmol of both forward and reverse primer, 2.5 mM of dNTPS, 1xPCR buffer, 0.75 units of Taq DNA polymerase and PCR water. The PCR was carried out under following conditions: initial denaturation at 94°C for 5 min, followed by 35 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min, extension at 72°C for 1 min and a final extension at 72°C for 7 min. Partial sequencing of the purified PCR products was done. The sequences of the isolates were deposited in GenBank database. Sequence similarity searches were performed using the Basic Local Alignment Search Tool (BLAST) program. The partial 16S rDNA sequences determined in the present study and those available in GenBank database were analyzed. Isolates were identified with ≥ 97% identity.

Screening for probiotic properties

Acid and bile tolerance activity

The acid and bile tolerance of each isolate was tested according to the method described by Hyronimus et al. (2000) with some modifications. Active cultures of LAB isolates (1% v/v) with initial concentration of 10⁶ cfu ml⁻¹ were used for both the tests. For acid tolerance test, the isolates were inoculated in 10 ml MRS broth with the pH adjusted to 2, 3 and 4 by using 1N HCL. Similarly, for bile tolerance tests, isolates were inoculated in MRS broth with 0.1%, 0.2% and 0.3% Ox bile (Himedia). All the test broths were incubated at 37°C for 24 h. The viable number of LAB at different pH and bile concentrations were enumerated by pour plate count on MRS agar plate incubated at 37°C for 48 h, compared to initial bacterial concentration and the percentage of survivability was calculated.

Antibacterial activity

The antibacterial activities of the strains were confirmed using agar well diffusion assay as described by Yang et al. (2012) with slight modifications. The isolates were tested against five food spoilage and pathogenic bacteria, Vibrio parahaemolyticus JF966211, Bacillus cereus ATCC 11778 (Himedia), Aeromonas hydrophila CAHH14, Salmonella enteric 35640 (Himedia) and Staphylococcus aureus ATCC 6538 (Himedia). Strains Vibrio parahaemolyticus JF966211 and Aeromonas hydrophila CAHH14 were obtained from Fish Health Management Division, ICAR- Central Institute of Fresh water Aquaculture, Bhubaneswar, India. Overnight cultures of the indicator strains were grown in nutrient broth (Himedia) and were lawn cultured in sterile Tryptic Soya Agar (TSA) (Himedia) plates with 6 mm diameter wells. 50 µl of cell free supernatant of the isolates (10⁶ cfu ml⁻¹) was placed in the wells in TSA plates. After 24 h of incubation at 37°C, the diameter of the zone of inhibition surrounding each agar well was measured.

To further test the proteinaceous nature of the substance responsible for inhibition, 10 µl of the trypsin enzyme (Sigma, Madrid) solution (10 mg ml⁻¹ in distilled water) was added to the cell free supernatant of the isolates which was then subjected to well diffusion assay (Ben Omar et al. 2008). Absence of zone of
inhibition indicated the proteinaceous nature of inhibitory substances.

Screening for known plantaricin gene

All the isolates were tested for the presence of plantaricin genes (plnA, plnB, plnC, plnD, plnEF, plnI, plnJ, plnK, plnG and plnN) as described by Ben Omar et al. (2008). PCR amplification was carried out under following conditions: initial denaturation at 94°C for 3 min, 30 cycles of 94°C for 1 min, annealing at appropriate temperatures (Table 2) for 1 min, extension at 72°C for 30 s and final extension at 72°C for 5 min. The PCR products were electrophoresed in 2% agarose gel and 1× TBE buffer (Sambrook et al. 1989).

Statistical analysis

Statistical analysis was conducted using the computerized software Statistical Package for Social Sciences (SPSS) version 18.0. Data are reported as means ± SE. Statistical significant difference was determined using Tukey’s Method with One-Way ANOVA. Differences were considered significant at $P < 0.05$.

Results and Discussion

Phenotypic characterization and genotypic identification

In the present study, the isolates were phenotypically characterized using 21 biochemical tests including Gram’s reaction,

Characteristics	L. plantarum SSU1	L. delbreuckii bulgaricus SSU2	L. rhamnosus SSU3	L. casei SSU4	L. rhamnosus SSU5
Gram’s Reaction	+	+	+	+	+
Shape	R	R	R	R	R
Catalase	-	-	-	-	-
Motility	-	-	-	-	-
Arginine hydrolysis	-	-	-	-	-
L-arabinose	-	-	-	-	-
D-glucose	+	+	+	+	+
Esculin	+	+	+	+	+
Galactose	+	-	+	+	+
Inositol	-	-	-	-	-
Inulin	+	+	+	-	+
Lactose	+	-	+	+	+
Maltose	+	-	-	+	+
Mannitol	+	-	-	-	-
Melezitose	+	-	-	+	-
Melibiose	-	-	-	-	-
Raffinose	-	-	-	-	-
Ribose	+	-	+	+	-
Salicin	+	+	+	+	-
Sorbitol	-	-	-	-	-
Sucrose	+	-	+	+	+
Trehalose	-	-	-	-	-

R: rod; - : negative; + : positive
almost all the strains isolated from curd in MRS agar were considered to be LAB based on their positive Grams reaction, absence of motility, absence of spore formation and absence of catalase activity. The fermentation profile revealed that the isolates assimilated variously a panel of carbohydrates that reflected their enzymatic and genetic potentials along with their phenotypic heterogeneity and diversity. The LAB genomes are predicted to carry a large number of carbohydrate transport and utilization genes that display substantial variations among strains (Ceapa et al. 2015; Maji et al. 2016).

Of the phenotypically characterised strains, 5 rod shaped isolates showing varying phenotypic characters were presumptively determined as derivatives of the genus *Lactobacillus* and subjected to genotypic identification. The partial sequencing of 16S rDNA gene identified the isolates as *Lactobacillus plantarum* SSU1, *Lactobacillus delbreuckii* subsp. *bulgaricus* SSU2, *Lactobacillus rhamnosus* SSU3, *Lactobacillus casei* SSU4 and *Lactobacillus rhamnosus* SSU5 with accession numbers as KF971888, KF971889, KF971890, KF971891 and KF971892 respectively. Nanda et al. (2013) have also reported the isolation of *Lactobacillus, Lactococcus, Streptococcus* and *Leuconostoc* from this indigenous curd. Every region has its typical sets of lactoflora in the indigenous fermented product of that region and *Lactobacillus* is considered to be the predominant genus in almost all dairy products. A study on naturally fermented yak milk found *L. delbreukii* subsp. *bulgaricus* and *S. thermophilus* as the predominant microflora in the product (Sun et al. 2010). Bettache et al. (2012) also reported the dominance of *Lactobacillus* in the microflora of Dhan, a traditional butter. Angmo et al. (2016) identified and characterized *Lactobacillus brevis, Lactobacillus plantarum* and *Lactobacillus fermentum* as probiotic lactic acid bacteria from chhurpe, a dried cottage cheese and chhang, a barley based beer of Ladakh. Also, *Lactobacillus* was found to be the dominant lactic acid bacteria isolated from various traditional fermented dairy products of Turkey (Erginkaya et al. 2018).

Acid and bile tolerance activity

LAB are known for their probiotic characteristics and their use in probiotic products. Acid and bile tolerance are important traits in characterizing the probiotic property of a strain. In order to reach the hindgut in an active and functional form and exert their beneficial properties, the strains should tolerate and survive in extremely stressed conditions like low pH and high bile concentration in the upper parts of gastrointestinal tract (Maji et al. 2016; Zhang et al. 2016). In the present study, most of the isolates showed good survivability even after 24 h of exposure to pH 3 and pH 4 (Table 3) which is in consistent with earlier findings (Grosu-Tudor and Zamfir, 2012). However, not all strains showed similar tolerance capability as survivability at low pH is strain specific (Tokatl et al. 2015) and is an adaptation to environmental conditions (Grosu-Tudor and Zamfir, 2012). *L. casei* SSU4 showed maximum significant (*P* < 0.05) viability at pH 3 and pH 4 compared to other isolates. Also, none of the isolates survived at pH 2 for such a long time whereas *L. delbreuckii* subsp. *bulgaricus* SSU2 did not survive at pH 3 but showed

Target Genes	Primers	Annealing Temperature(°C)	Size(bp)
plnA	F: GTA CAG TAC TAA TGG GAG		
R: CTT ACG CCA ATC TAT ACG			
53	450		
plnB	F: TTC AGA GCA AGC CTA AAT GAC		
R: GCC ACT GTA ACA CCA TGA C			
51.5	165		
plnC	F: AGC AGA TGA AAT TCG GCA G		
R: ATA ATC CAA CCG TGC AAT CC			
49.5	108		
plnD	F: TGAGG AAACA GAC TGG AC		
R: GCA TCG GAAA AAT TGG CCG ATA C			
53	414		
plnEF	F: GGC ATA GTT AAA ATT CCC CCC		
R: CAG GTT GCC GCA AAA AAG G			
53.2	428		
plnI	F: CTC GAC GGT GAA ATT TAGG TGT AAG		
R: CGT TTA TCC TAT CCT CTAA GC ATT GG			
52.5	450		
plnG	F: TGC GGT TAT CAG TAT GTC AAA G		
R: CCT CGA AAC AAT TTC CCC C			
52.8	453		
plnN	F: ATT GCC GGG TTA AGT ATC G		
R: CCT AAA CCA TGC CAT GCA C			
51.9	146		
plnJ	F: TAA CAG CAG ATT GCT CTG		
R: AAT CAA GGA ATT ATC ACA TTA GTC			
51	475		
plnK	F: CTG TAA GCA TTG CTA ACC AAT C		
R: ACT GCT GAC GCT GAA AAG			
52.9	246		

PCR primers used for detection of Plantaricin genes	Annealing Temperature(°C)	Size(bp)
plnA F: GTA CAG TAC TAA TGG GAG		
R: CTT ACG CCA ATC TAT ACG	53	450
plnB F: TTC AGA GCA AGC CTA AAT GAC		
R: GCC ACT GTA ACA CCA TGA C	51.5	165
plnC F: AGC AGA TGA AAT TCG GCA G		
R: ATA ATC CAA CCG TGC AAT CC	49.5	108
plnD F: TGAGG AAACA GAC TGG AC		
R: GCA TCG GAAA AAT TGG CCG ATA C	53	414
plnEF F: GGC ATA GTT AAA ATT CCC CCC		
R: CAG GTT GCC GCA AAA AAG G	53.2	428
plnI F: CTC GAC GGT GAA ATT TAGG TGT AAG		
R: CGT TTA TCC TAT CCT CTAA GC ATT GG	52.5	450
plnG F: TGC GGT TAT CAG TAT GTC AAA G		
R: CCT CGA AAC AAT TTC CCC C	52.8	453
plnN F: ATT GCC GGG TTA AGT ATC G		
R: CCT AAA CCA TGC CAT GCA C	51.9	146
plnJ F: TAA CAG CAG ATT GCT CTG		
R: AAT CAA GGA ATT ATC ACA TTA GTC	51	475
plnK F: CTG TAA GCA TTG CTA ACC AAT C		
R: ACT GCT GAC GCT GAA AAG | 52.9 | 246 |
100% survivability at pH 4. Similarly, in bile tolerance test, all the isolates showed 100% survival at 0.1%, 0.2% and 0.3% bile after 24h of exposure except *L. delbreuckii* subsp. *bulgaricus* SSU2 which showed no survival rate at 0.2% and 0.3% bile concentration (Table 3). Earlier studies have reported high survivability rate of *L. plantarum* and *L. brevis* in 0.3% and 0.5% bile concentrations (Grosu-Tudor and Zamfir, 2012; Tokatl et al. 2015).

Table 3 Acid and bile tolerance capability of the isolates

Isolates	Initial viable count	Viable count at pH 2 after 24h (CFU mL⁻¹)	Viable count at pH 3 after 24h (CFU mL⁻¹)	Viable count at pH 4 after 24h (CFU mL⁻¹)	Viable count at 0.1% bile after 24h (CFU mL⁻¹)	Viable count at 0.2% bile after 24h (CFU mL⁻¹)	Viable count at 0.3% bile after 24h (CFU mL⁻¹)
L. plantarum SSU1	7.87 ± 0.01	Nil	4.43 ± 0.23a	5.38 ± 0.1a	6.26 ± 0.13a	7.31 ± 0.16a	7.14 ± 0.18a
L. delbreuckii subsp. *bulgaricus* SSU2	7.81 ± 0.05	Nil	6.06 ± 0.17a	7.68 ± 0.04b	Nil	Nil	Nil
L. rhamnosus SSU3	7.86 ± 0.02	Nil	4.9 ± 0.15a	5.66 ± 0.08a	7.61 ± 0.06b	7.45 ± 0.08a	7.41 ± 0.06a
L. casei SSU4	7.9 ± 0.05	Nil	5.71 ± 0.05b	7.6 ± 0.11b	7.78 ± 0.04b	7.71 ± 0.05b	7.56 ± 0.08a
L. rhamnosus SSU5	7.76 ± 0.08	Nil	4.59 ± 0.1b	6.48 ± 0.1b	7.5 ± 0.1b	7.47 ± 0.09a	7.4 ± 0.1a

Values are mean of triplicate and presented as means ± S.E; In columns, parameters of isolates with different letters (a, b) are significantly different (*P* < 0.05)

Table 4 Antibacterial activity of the isolates

Isolates	Zone of inhibition (in mm) ± SEM against *V. parahaemolyticus*	Zone of inhibition (in mm) ± SEM against *B. cereus*	Zone of inhibition (in mm) ± SEM against *A. hydrophila*	Zone of inhibition (in mm) ± SEM against *S. enterica*	Zone of inhibition (in mm) ± SEM against *S. aureus*
L. plantarum SSU1	12.2 ± 0.12	12.8 ± 0.30	10.3 ± 0.27	9.6 ± 0.27	11 ± 0.19
L. delbreuckii subsp. *bulgaricus* SSU2	14 ± 0.11	11.1 ± 0.16	15 ± 0.23	13.1 ± 0.13	10.3 ± 0.27
L. rhamnosus SSU3	15.3 ± 0.13	13.1 ± 0.22	11.6 ± 0.36	10.5 ± 0.23	11.1 ± 0.36
L. casei SSU4	16 ± 0.09	15 ± 0.19	10.6 ± 0.27	11.8 ± 0.36	13.7 ± 0.32
L. rhamnosus SSU5	17 ± 0.23	13 ± 0.09	12.8 ± 0.13	12.4 ± 0.28	9.5 ± 0.23

SEM : standard error of mean
agreement with earlier studies where similar in vitro antagonisms against several food spoilage pathogens have been reported by using *Lactobacillus* spp (Jamuna and Jeevaratnam, 2004; Yang et al. 2012; Zhang et al. 2016). The antimicrobial activity of the LAB isolates is thought to be multi factorial and is due to the synergistic effect of production of organic acids (acetic acid or lactic acid) and strain specific metabolites or non-lactic acid molecules, bacteriocins, etc (Maji et al. 2016).

During preliminary screening for bacteriocin production, all the strains showed no zone of inhibition after addition of trypsin indicating the proteinaceous nature of the inhibitor. Bacteriocin, the proteinaceous compound produced by LAB usually inhibits closely related species (Ben Omar et al. 2006). In the present study, however, the isolates showed inhibitory activity against a wide range of Gram positive as well as Gram negative bacteria, which is a very desirable probiotic property. A few earlier reports

Fig. 1 Agarose gel electrophoresis of PCR amplification products of bacteriocin, Plantaricin genes; (a) plnA, 450 bp, Lane 1 to 5 & plnB, 165 bp, Lane 6 to 10 (b) plnC, 108 bp, Lane 1 to Lane 5 & plnD, 414 bp, Lane 6 to 10 (c) plnEF, 428 bp, Lane 1 to 5 & plnI, 450 bp, Lane 6 to 10 (d) plnG, 453 bp, Lane 1 to 5 & plnN, 146 bp, Lane 6 to 10 (e) plnJ, 475 bp Lane 1 to 5 & plnK, 246 bp, Lane 6 to 10 in isolates; *L. plantarum* SSU1 (Lanes 1 & 6); *L. delbrueckii subsp. bulgaricus* SSU2 (Lanes 2 & 7); *L. rhamnosus* SSU3 (Lanes 3 & 8); *L. casei* SSU4 (Lanes 4 & 9); *L. rhamnosus* SSU5 (Lanes 5 & 10); M: Marker
have also shown antagonistic activity of Lactobacillus against Gram negative bacteria such as V. parahaemolyticus, E. coli, S. typhi, S. enterica, P. fluorescens, and P. putida (Gong et al. 2010; Chowdhury et al. 2012; Zhang et al. 2016).

Detection of known plantaricin gene

The entire plantaricin gene cluster consisting of plnA, plnB, plnC, plnD, plnEF, plnI, plnJ, plnK, plnG and plnN genes as described in L. plantarum C11 (Diep et al. 1996) was detected in L. plantarum SSU1. Also the isolates L. delbreuckii subsp. bulgaricus SSU2, L. rhamnosus SSU3, L. casei SSU4 and L. rhamnosus SSU5 showed the presence of all plantaricin genes (Fig. 1). Ben Omar et al. (2008) reported plantaricin genes in L. fermentum isolated from the same source as L. plantarum. Hurtado et al. (2011) also reported the presence of plantaricin in closely related species L. plantarum and L. pentosus. Bacteriocin production is frequently associated with mobile genetic elements such as plasmids which are common in LAB that may facilitate the transfer of genes between species and strain sharing the same niche. Also, some closely related species may have similar characteristic for survival in the same environmental conditions (Hurtado et al. 2011). Further confirmatory test are needed to be able to select the above mentioned strains of Lactobacillus as probiotic organisms.

Conclusions

The present study demonstrates the presence of diverse Lactobacillus species with promising probiotic potential in the indigenous curd unique to the Chilika lake area of the state of Odisha, India. It is to mention that, the Chilika Lake happens to be the largest brackish water lake of Asia. Further elucidated study of this artisanal product shall fully explore it as a potential source for such probiotic bacteriocinogenic strains which can contribute towards formulation of functional foods with health beneficial properties.

Acknowledgements

The authors are thankful to the Director, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar for providing resources and facilities.

References

Abed T (2013) Evaluation of methods for the extraction and purification of DNA of cultured Lactobacillus colony isolated from dairy products. Int J Appl Microbiol Biotechnol Res1: 20 – 25

Angmo K, Kumari A, Savitri, Bhalia TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT – Food Sci Technol 66: 428 - 435

Ben Omar N, Abriouel H, Keleke S, Sanchez Valenzuela A, Martinez-Canamero M, Lucas Lopez R, Ortega E, Galvez A (2008) Bacteriocin-producing Lactobacillus strains isolated from pototopo, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. Int J Food Microbiol 127: 18 – 25

Ben Omar N, Abriouel H, Lucas R, Martinez-Canamero M, Guyot JP, Galvez A (2006) Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso. Int J Food Microbiol 112: 44 – 50

Bettache G, Fatma A, Miloud H, Mebrouk K (2012) Isolation and identification of Lactic Acid Bacteria from Dhan, a traditional butter and their major technological traits. World Appl Sci J 17: 480 – 488

Ceapa C, Lambert J, van Limpt K, Wels M, Smokvina T, Knol J, Kleerebezem M (2015) Correlation of Lactobacillus rhamnosus genotypes and carbohydrate utilization signatures determined by phenotype profiling. Appl Environ Microbiol 81: 5485 – 5470

Chowdhury A, Hossain Md N, Mostazir NJ, Fakruddin Md, Md Billah M, Morshed Almeh M (2012) Screening of Lactobacillus spp. from buffalo yoghurt for probiotic and antibacterial activity. J Bacteriol Parasitol 3:156

Diep DB, Havarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178: 4472 – 4483

Erginayya Z, Turhan EU, Tatyl D (2018) Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iran J Vet Res 19: 53 – 56

Gong HS, Meng XC, Wang H (2010) Plantaricin MG active against Gram negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control 21: 89 – 96

Grossu-Tudor S, Zamfir M (2012) Probiotic potential of some lactic acid bacteria isolated from romanian fermented vegetables. Annals of RSCB17: 1/2012

Hurtado A, Ben Othman N, Chammem N, Hamdi M, Ferrer S, Reguant C, Bordons A, Rozen N (2011) Characterization of Lactobacillus isolates from fermented olives and their bacteriocin gene profiles. Food Microbiol 28: 1514 – 1518

Hyronimus B, Le Marrec C, Hadj Sassi A, Deschamps A (2000) Acid and bile tolerance of Lactic Acid Bacteria isolated from fermented dairy products. Report no. RSCB17: 1/2012

Kleerebezem M (2015) Correlation of Lactobacillus isolates from traditional Turkisch fermented foods and evaluation of the bacteriocin. Int J Microbiol 61: 193 – 197

Jamuna M, Jeevaratnam K (2004) Isolation and characterization of lactobacilli from traditional fermented foods and evaluation of the bacteriocin. J Appl Microbiol 50: 79 – 90

Food and Agriculture Organization of the United Nations and the World Health Organization Joint (FAO/WHO) (2002) Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report no. 10-1/2001

Maji U, Mohanty S, Mahapatra A, Maiti N (2016) Diversity and probiotic potentials of putative Lactic Acid Bacteria for application in freshwater aquaculture. Turk J Fish Aquat Sci 16: 805 – 818

Marroki A, Zitiga M, Kihal M, Pérez-Martínez G (2011) Characterization of Lactobacillus from Algerian goat’s milk based on phenotypic, 16S rRNA sequencing and their technological properties. Braz J Microbiol 42: 158 – 171

Nanda DK, Singh R, Tomar SK, Dash SK, Jayakumar S, Arora DK, Chaudhary R, Kumar D (2013) Indian Chilika curd – a potential dairy product for geographical indication registration. Indian J of Traditional Knowledge 12: 707 – 713

Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their potentials of putative Lactic Acid Bacteria for application in fresh water aquaculture. Turk J Fish Aquat Sci 16: 805 – 818

Parve G, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100: 1171 – 1185

Perez R, Zendo T, Sononoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13:S3
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd edition, Cold Spring Harbor Laboratory Press, New York
Stanley J, Baquar N, Burnens A (1995) Molecular subtyping scheme for Salmonella panama. J Clin Microbiol 33: 1206–1211
Sun Z, Liu W, Gao W, Yang M, Zhang J, Wu L, Wang J, Menghe B, Sun T, Zhang H (2010) Identification and characterization of the dominant lactic acid bacteria from kurut: The naturally fermented yak milk in Qinghai, China. J Gen Appl Microbiol 56: 1–10
Tokatl M, Gülör G, Elmac S, EGleyen N, Özçelik F (2015) In Vitro properties of potential probiotic indigenous Lactic Acid Bacteria originating from traditional pickles. BioMed Res Int Vol. 2015
Vuyst LD, Leroy F (2007) Bacteriocins from Lactic Acid Bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199
Yang E, Fan L, Jiang Y, Doucette C, Fillmore S (2012) Antimicrobial activity of bacteriocin producing lactic acid bacteria isolated from cheeses and yogurts. AMB Expr 2:48
Yu J, Gao W, Qing M, Sun Z, Wang W, Liu W, Pan L, Sun T, Wang H, Bai N, Zhang H (2012) Identification and characterization of lactic acid bacteria isolated from traditional pickles in Sichuan, China. J Gen Appl Microbiol 58:163 –172
Zhang B, Wang Y, Tan Z, Li Z, Jiao Z, Huang Q (2016) Screening of probiotic activities of Lactobacilli strain isolated from traditional Tibetan Qula, a raw yak milk cheese. Asian Australas J Anim Sci 29: 1490–1499