Research Article

Approximation Properties of Generalized λ-Bernstein–Stancu-Type Operators

Qing-Bo Cai, Gülen Torun, and Ülkü Dinlemez Kantar

1Fujian Provincial Key Laboratory of Data-Intensive Computing, Key Laboratory of Intelligent Computing and Information Processing, School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, China
2Kastamonu University, Faculty of Education, Mathematics and Science Education, Kastamonu, Turkey
3Gazi University, Faculty of Science, Department of Mathematics, Ankara, Turkey

Correspondence should be addressed to Qing-Bo Cai; qbcai@126.com

Received 1 March 2021; Revised 15 April 2021; Accepted 20 April 2021; Published 8 May 2021

Copyright © 2021 Qing-Bo Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present study introduces generalized λ-Bernstein–Stancu-type operators with shifted knots. A Korovkin-type approximation theorem is given, and the rate of convergence of these types of operators is obtained for Lipschitz-type functions. Then, a Voronovskaja-type theorem was given for the asymptotic behavior for these operators. Finally, numerical examples and their graphs were given to demonstrate the convergence of $G_{m,\lambda}^\alpha(f, x)$ to $f(x)$ with respect to m values.

1. Introduction

The Bernstein operators, which are positive linear operators, are of great importance for the theory of approximation. In [1], Bernstein operators were introduced by Bernstein to prove the Weierstrass approximation theorem. For $g \in C[0,1]$, the classical Bernstein operators are given as

$$B_m(g, x) = \sum_{j=0}^{m} g\left(\frac{j}{m}\right) q_{m,j}(x), \quad x \in [0,1],$$

(1)

where the Bernstein basis functions $q_{m,j}(x)$ are defined as

$$q_{m,j}(x) = \binom{m}{j} x^j(1-x)^{m-j}; \quad j = 0, 1, \ldots, m.$$

(2)

There are many generalizations of the $B_m(g, x)$ operators. In [2], Gadjiev and Ghorbanalizadeh gave Bernstein–Stancu operators with shifted knots:

$$S_{m,\alpha,\beta}(g, x) = \left(\frac{m+\beta_2}{m}\right)^{m} \sum_{j=0}^{m} g\left(\frac{j+\alpha_1}{m+\beta_1}\right) p_{m,j}(x),$$

(3)

where $x \in A_m = [\alpha_2/(m+\beta_2), (m+\alpha_2)/(m+\beta_2)]$ and $p_{m,j}(x) = \binom{m}{j} x^j((m+\alpha_2)/(m+\beta_2) - x)^{m-j}$ for $j = 0, 1, \ldots, m$, and α_1 and α_2 are positive real numbers, and $0 \leq \alpha_1 \leq \beta_2$ for $i = 1, 2$. In the case of $\alpha_2 = \beta_2 = 0$ for $i = 1, 2$, operator (3) reduces to the classical Bernstein operator (1). In addition, the case of $\alpha_2 = \beta_2 = 0$ was handled and examined by Stancu in [3] and these operators were called the classical Bernstein–Stancu operators. A Dunker variant of the Bernstein–Stancu operators in (3) was studied by Dinlemez Kantar and Ergelen in [4], and a Voronovskaja-type approximation theorem for these operators was given. Several studies were conducted on some approximation properties, and asymptotic-type results were given for these operators in [5–14].

In [5], Cai et al. introduced the Bernstein operators with shape parameter $\lambda \in [-1,1]$ as follows:

$$B_m^\lambda(g, x) = \sum_{j=0}^{m} g\left(\frac{j}{m}\right) q_{m,j}(\lambda, x), \quad m \in \mathbb{N},$$

(4)
where \(x \in [0, 1] \) and \(\overline{q}_{m,j}(\lambda, x) \) are Bézier basis functions with shape parameter \(\lambda \in [-1, 1] \) defined by

\[
\overline{q}_{m,0}(\lambda, x) := q_{m,0}(x) - \left(\frac{\lambda}{m + 1} \right) q_{m+1,1}(x),
\]
\[
\overline{q}_{m,j}(\lambda, x) := q_{m,j}(x) + \lambda \left[\frac{m - 2j + 1}{m^2 - 1} q_{m+1,j}(x) - \frac{m - 2j - 1}{m^2 - 1} q_{m+1,j+1}(x) \right]; \quad j = 1, 2, \ldots, m - 1,
\]
\[
\overline{q}_{m,m}(\lambda, x) := q_{m,m}(x) - \frac{\lambda}{m+1} q_{m+1,m}(x).
\]

Later in [6], Cai proposed Kantorovich-type \(\lambda \)-Bernstein operators, as well as their Bézier variant, and examined the approximation results. Kantorovich-type \(\lambda \)-Bernstein operators were also studied by Acu et al. in [7], and they considered the approximation properties and asymptotic-type results.

Recently, in [8], Srivastava et al. constructed \(\lambda \)-Bernstein–Stancu operators defined by

\[
B_{m,a,b}^\lambda(g, x) = \sum_{j=0}^{m} g \left(\frac{j + \alpha}{m + \beta} \right) \overline{q}_{m,j}(\lambda, x), \quad m \in \mathbb{N},
\]

where \(\overline{p}_{m,j}(\lambda, x) \) is given by

\[
\overline{p}_{m,0}(\lambda, x) := p_{m,0}(x) - \frac{\lambda}{m + 1} p_{m+1,1}(x),
\]
\[
\overline{p}_{m,j}(\lambda, x) := p_{m,j}(x) + \lambda \left[\frac{m - 2j + 1}{m^2 - 1} p_{m+1,j}(x) - \frac{m - 2j - 1}{m^2 - 1} p_{m+1,j+1}(x) \right]; \quad j = 1, 2, \ldots, m - 1,
\]
\[
\overline{p}_{m,m}(\lambda, x) := p_{m,m}(x) - \frac{\lambda}{m+1} p_{m+1,m}(x),
\]

where \(p_{m,j}(x) := \binom{m}{j} (x - \alpha_i / (m + \beta_j))^{m-j} ((m + \alpha_j) / (m + \beta_j) - x)^{m-j} \) for \(j = 0, 1, \ldots, m \). \(\alpha_i \) and \(\beta_i \) are positive real numbers, \(0 \leq \alpha_i \leq \beta_i \) for \(i = 1, 2 \), and \(x \in A_m := [\alpha_2 / (m + \beta_1), (m + \alpha_2) / (m + \beta_2)] \). We give approximation properties and Voronovskaja-type approximation theorem for asymptotic behavior of operator (7). When \(\alpha_i = \beta_i = 0 \) for \(i = 1, 2 \) and \(\lambda = 0 \), operator (7) reduces to the classical Bernstein operator (1). When \(\lambda = 0 \), it reduces to the Bernstein–Stancu operator (3). When \(\alpha_i = \beta_i = 0 \) for \(i = 1, 2 \), it reduces to the Bernstein operator with shape parameter \(\lambda \in [-1, 1] \) (4).

In the present study, we introduce the following generalized \(\lambda \)-Bernstein–Stancu operators with shifted knots for \(g \in C[0, 1] \):

\[
G_{m,\lambda}^{a,b}(g, x) = \left(\frac{m + \beta_2}{m} \right) \sum_{j=0}^{m} g \left(\frac{j + \alpha}{m + \beta} \right) \overline{p}_{m,j}(\lambda, x),
\]

where \(\alpha_i \) and \(\beta_i \) are positive real numbers satisfying \(0 \leq \alpha_i \leq \beta_i \) for \(i = 1, 2 \) and Bézier basis functions \(\overline{p}_{m,j}(\lambda, x) \) with shape parameter \(\lambda \in [-1, 1] \) are defined by

2. Some Preliminary Results

Lemma 1. For generalized \(\lambda \)-Bernstein–Stancu operators with shifted knots, we have the following equalities:
(i) \(G_{m, \lambda}^\alpha (1, x) = 1, \)

\[
\begin{align*}
(ii) \quad G_{m, \lambda}^{\alpha, \beta} (s, x) &= \frac{m + \beta_1}{m + \beta_1} \left(x - \frac{\alpha_2}{m + \beta_2} \right) + \frac{\alpha_1}{m + \beta_1}, \\
&+ \lambda \left\{ \frac{1}{(m + \beta_1)(m - 1)} \left[\frac{m}{m + \beta_2} - 2 \left(x - \frac{\alpha_2}{m + \beta_2} \right) + \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right], \\
&+ (\alpha_1 - 1) \left(\frac{m + \alpha_3}{m + \beta_2 - x} \right)^{m+1} \right\} \right\} + \frac{\alpha_1}{m + \beta_1} \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \left(m + \alpha_3 \right) \left(m + \beta_2 - x \right)^m \right\}.
\end{align*}
\]

(iii) \(G_{m, \lambda}^{\alpha, \beta} (s^2, x) = \frac{m + \beta_2}{(m + \beta_1)^2} \left[\left(m - 1 \right) \left(m + \beta_2 \right) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 + \left(1 + 2\alpha_1 \right) \left(x - \frac{\alpha_2}{m + \beta_2} \right) \right] + \frac{\alpha_2}{(m + \beta_1)^2} + \lambda \left\{ \frac{1}{\left(m + \beta_1 \right)^2 (m - 1)} \left[\frac{m}{m + \beta_2} + 2m \left(x - \frac{\alpha_2}{m + \beta_2} \right) - 4m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 \right] + \left(m + \beta_2 \right)^m \left(2m + 1 \right) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right\},
\]

(iv) \(G_{m, \lambda}^{\alpha, \beta} (s^3, x) = \frac{m + \beta_2}{(m + \beta_1)^2} \left[\left(m - 1 \right) \left(m - 2 \right) \left(m + \beta_2 \right)^2 \left(x - \frac{\alpha_2}{m + \beta_2} \right)^3 \right] + \frac{3(m - 1)(1 + \alpha_1)(m + \beta_2)}{m} \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 + \left(1 + 3\alpha_1 \right) \left(1 + \alpha_1 \right) \left(x - \frac{\alpha_2}{m + \beta_2} \right) \right\} \left[\frac{m}{m + \beta_2} + 2m \left(x - \frac{\alpha_2}{m + \beta_2} \right) + \left(m + \beta_2 \right)^m \left(2 \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right) \right] + \frac{\alpha_2}{m + \beta_1} \left(m + \beta_2 \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^m \right\}.
\]

\[
\begin{align*}
&= \frac{m + \beta_2}{m + \beta_1} \left[\frac{3(m - 1)(1 + \alpha_1)(m + \beta_2)}{m} \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 \right] \left(1 + 3\alpha_1 \right) \left(1 + \alpha_1 \right) \left(x - \frac{\alpha_2}{m + \beta_2} \right), \\
&+ \frac{\alpha_2}{(m + \beta_1)^3} + \lambda \left\{ \frac{3m}{(m + \beta_1)^3} \left[\left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 - 2 \left(x - \frac{\alpha_2}{m + \beta_2} \right)^3 \right] + \frac{1}{(m + \beta_1)^3} \left[\frac{m}{m + \beta_2} - 2 \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 \right] + \frac{\alpha_2}{m + \beta_1} \left(m + \beta_2 \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right\} + \frac{\alpha_2}{(m + \beta_1)^3} \left(m + \beta_2 \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^m \right\} + \frac{\alpha_1}{m + \beta_1} \left(\frac{m + \beta_2}{m} \right)^m \left(3 \alpha_1 \right) \left(m + \beta_2 \right)^{m+1} \left(m + \beta_2 \right), \\
&+ \frac{\alpha_1}{m + \beta_1} \left(m + \beta_2 \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^m \right\} \left(\frac{3(m - 1)}{m + \beta_2} + 6m \left(x - \frac{\alpha_2}{m + \beta_2} \right) \right) + \frac{\alpha_1}{m + \beta_1} \left(\frac{m + \beta_2}{m} \right)^m \left(\alpha_1^2 - 3(\alpha_1 - 1) \right) \left(m + \alpha_3 \right) \left(m + \beta_2 \right)^{m+1} \\
&+ (12m - 6\alpha_1) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 + \frac{\alpha_1}{m + \beta_1} \left(\frac{m + \beta_2}{m} \right)^m \left(\alpha_1^2 - 3(\alpha_1 - 1) \right) \left(m + \alpha_3 \right) \left(m + \beta_2 \right)^{m+1} \\
&+ 6(m + 1) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{(m + 1)} \right\} + \frac{3\alpha_1}{(m + \beta_1)^3} \left(m + 1 \right) \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1}.
\end{align*}
\]
\[G_{n,\alpha}^{\beta}(s^4, x) = \frac{m + \beta_2}{(m + \beta_1)^4} \left[\frac{(m-1)(m-3)(m+\beta_2)^3}{m^3} \left(x - \frac{\alpha_2}{m + \beta_2} \right)^4 \right. \\
+ \frac{2(m-1)(m-2)(2\alpha_1+3)(m+\beta_2)^2}{m^2} \left(x - \frac{\alpha_2}{m + \beta_2} \right)^3 + \frac{(m-1)(6\alpha_1\alpha_2 + 7)(m+\beta_2)}{m} \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 \\
+ \frac{2(2\alpha_1^3 + 3\alpha_1^2 + 2\alpha_1)}{(m + \beta_1)^4} \left(x - \frac{\alpha_2}{m + \beta_2} \right) \left. \right] \\
+ \frac{\lambda}{(m + \beta_1)^4 (m-1)} \left[\frac{-m}{m + \beta_2} + 2 \left(x - \frac{\alpha_2}{m + \beta_2} \right) + 44 \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 \\
+ \left(\frac{m + \beta_2}{m} \right)^m \left(45 \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} - \left(\frac{m + \alpha_2}{m + \beta_2} \right)^{m+1} \right) \right] \\
+ \frac{\alpha_1}{(m + \beta_1)^4 (m-1)} \left[12\alpha_1 \left(x - \frac{\alpha_2}{m + \beta_2} \right) + 12m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 - 24m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^3 \right. \\
+ \left(\frac{m + \beta_2}{m} \right)^m \left(12(m + 2 + \alpha_1) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} + \alpha_1 \left(x - \frac{\alpha_2}{m + \beta_2} \right) \left(\frac{m + \alpha_2}{m + \beta_2} - x \right)^m \right) \right. \\
+ \frac{\alpha_1}{(m + \beta_1)^4 (m-1)} \left. \left[2(2\alpha_1^3 - 3\alpha_1 + 2) \left(\frac{m}{m + \beta_2} - 2 \left(x - \frac{\alpha_2}{m + \beta_2} \right) \right) \right. \\
- 24m(\alpha_1 + 1) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 + \left(\frac{m + \beta_2}{m} \right)^m \left(2(2\alpha_1^2 + 9\alpha_1 + 14) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right. \\
+ \left(\alpha_1^3 - 4\alpha_1^2 + 6\alpha_1 - 4 \right) \left(\frac{m + \alpha_2}{m + \beta_2} - x \right)^{m+1} \right] \].
Proof. If we use Bézier basis functions (8) in \(\lambda \)-Bernstein–Stancu operators (7), we obtain

\[
G_{m,\lambda}^{\alpha,\beta}(1, x) = \left(\frac{m + \beta_2}{m} \right) \sum_{j=0}^{m} \left(\frac{m + \beta_2}{m + \beta_1} \right)^{m-j} \left(\frac{j + \alpha_1}{m + \beta_1} \right) \bar{p}_{m,j} (x) = \left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=0}^{m} \bar{p}_{m,j} (x)
\]

\[
= \left(\frac{m + \beta_2}{m} \right)^{m} \left(\frac{m}{m + \beta_2} \right)^{m} = 1,
\]

\[
G_{m,\lambda}^{\alpha,\beta}(s, x) = \left(\frac{m + \beta_2}{m} \right) \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1} \right) \bar{p}_{m,j} (\lambda, x)
\]

\[
= \left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1} \right) \bar{p}_{m,j} (\lambda, x)
\]

\[
= \left(\frac{m + \beta_2}{m} \right)^{m} \left[\frac{\alpha_1}{m + \beta_1} \left(p_{m,0} (x) - \frac{\lambda}{m+1} p_{m+1,0} (x) \right) \right.
\]

\[
+ \sum_{j=1}^{m-1} \frac{j + \alpha_1}{m + \beta_1} \left(p_{m,j} (x) + \lambda \left(\frac{m - 2j + 1}{m^2 - 1} p_{m+1,j} (x) - \frac{m - 2j - 1}{m^2 - 1} p_{m+1,j+1} (x) \right) \right) \left. \right]\]

\[
+ \frac{m + \alpha_1}{m + \beta_1} \left(p_{m,m} (x) - \frac{\lambda}{m+1} p_{m+1,m} (x) \right) \right]\]

\[
= \left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1} \right) \bar{p}_{m,j} (x) + \lambda \left\{ Y_{1,m}^{\alpha,\beta} (x) - Y_{2,m}^{\alpha,\beta} \right\},
\]

where

\[
Y_{1,m}^{\alpha,\beta} (x) = \left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1} \right) m - 2j + 1 m^2 - 1 p_{m+1,j} (x),
\]

\[
Y_{2,m}^{\alpha,\beta} (x) = \left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=1}^{m-1} \left(\frac{j + \alpha_1}{m + \beta_1} \right) m - 2j - 1 m^2 - 1 p_{m+1,j+1} (x).
\]

Thanks to the linearity of Bernstein–Stancu operators (3), we obtain

\[
\left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=0}^{m} \frac{j + \alpha_1}{m + \beta_1} \bar{p}_{m,j} (x) = \left(\frac{m + \beta_2}{m + \beta_1} \right)^{m} p_{m+1,0} (x) + \frac{\alpha_1}{m + \beta_1}. \]

Now, we will compute \(Y_{1,m}^{\alpha,\beta} (x) \) and \(Y_{2,m}^{\alpha,\beta} (x) \)

\[
Y_{1,m}^{\alpha,\beta} (x) = \left(\frac{m + \beta_2}{m} \right)^{m} \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1} \right) m - 2j + 1 m^2 - 1 p_{m+1,j} (x)
\]

\[
= \left(\frac{m + \beta_2}{m} \right)^{m} \frac{1}{(m + \beta_1) (m-1)} \left[(m + 1) \left(\frac{x - \alpha_2}{m + \beta_2} \right) \sum_{j=0}^{m-1} p_{m,j} + \frac{\alpha_1 m}{m + \beta_1} \sum_{j=0}^{m-1} p_{m+1,j} (x) \right]
\]

\[
- \left(\frac{m + \beta_2}{m} \right)^{m} \frac{2 (m+1)}{(m + \beta_1) (m^2 - 1)} \left[m \left(\frac{x - \alpha_2}{m + \beta_2} \right) \sum_{j=0}^{m-2} p_{m-1,j} (x) \right]
\]

\[
+ (1 + \alpha_1) \left(\frac{x - \alpha_2}{m + \beta_2} \right) \sum_{j=0}^{m-1} p_{m,j} (x)
\]
\[
\begin{align*}
\chi_{2,m}^{\alpha \beta}(x) &= \frac{1}{m + \beta_1} \left[\left(x - \frac{\alpha_2}{m + \beta_2} \right) - \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right] \\
&\quad + \frac{2m}{(m + \beta_1)(m - 1)} \left[- \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 + \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right] \\
&\quad + \frac{\alpha_1}{(m + \beta_1)(m - 1)} \left[-2 \left(x - \frac{\alpha_2}{m + \beta_2} \right) - \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} + \frac{m}{m + \beta_2} \right],
\end{align*}
\]

(13)
Using (12), \(Y_{1,m}^{\alpha\beta}(x) \), and \(Y_{2,m}^{\alpha\beta}(x) \) in \(G_{m,\lambda}^{\alpha\beta}(s, x) \), we obtain the following equation:

\[
G_{m,\lambda}^{\alpha\beta}(s, x) = \frac{m + \beta_2}{m + \beta_1} \left(x - \frac{\alpha_2}{m + \beta_2} \right) + \frac{\alpha_1}{m + \beta_1} \\
\quad + \lambda \left\{ \frac{1}{(m + \beta_1)(m - 1)} \left[\frac{m + \beta_2}{m + \beta_1} - 2 \left(x - \frac{\alpha_2}{m + \beta_2} \right) + \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \right] \right. \\
\quad \left. + (\alpha_1 - 1) \left(\frac{m + \beta_2}{m + \beta_1} - x \right)^{m+1} \right\} + \frac{\alpha_1}{m + \beta_1} \left(\frac{m + \beta_2}{m} \right)^m \left(x - \frac{\alpha_2}{m + \beta_2} \right) \left(\frac{m + \alpha_2}{m + \beta_2} - x \right)^m. \tag{14} \]

Then, we have the following equality for the third moment by using the linearity of \(G_{m,\lambda}^{\alpha\beta}(g(s), x) \):

\[
G_{m,\lambda}^{\alpha\beta}(s^2, x) = \left(\frac{m + \beta_2}{m} \right)^m \sum_{j=0}^m \left(\frac{j + \alpha_1}{m + \beta_1} \right)^2 \tilde{p}_{m,j}(\lambda, x) \\
= \left(\frac{m + \beta_2}{m} \right)^m \left[\frac{\alpha_1}{m + \beta_1} \right]^2 \left(\frac{m + \beta_2}{m + \beta_1} - 2 \left(\frac{m + \beta_2}{m} \right)^m \left(\frac{m + \alpha_2}{m + \beta_2} - x \right)^{m+1} \right] \\
\quad + \left(\frac{m + \alpha_1}{m + \beta_1} \right)^2 \left(\frac{m + \beta_2}{m + \beta_1} - \frac{\alpha_2}{m + \beta_2} \right)^{m+1} \left(\frac{m + \alpha_2}{m + \beta_2} - x \right)^m. \tag{15} \]

where

\[
Y_{3,m}^{\alpha\beta}(x) = \left(\frac{m + \beta_2}{m} \right)^m \sum_{j=0}^m \left(\frac{j + \alpha_1}{m + \beta_1} \right)^2 \frac{m - 2j + 1}{m^2 - 1} \tilde{p}_{m+1,j}(x), \\
Y_{4,m}^{\alpha\beta}(x) = \left(\frac{m + \beta_2}{m} \right)^m \sum_{j=1}^{m+1} \left(\frac{j + \alpha_1}{m + \beta_1} \right)^2 \frac{m - 2j - 1}{m^2 - 1} \tilde{p}_{m+1,j+1}(x). \tag{16} \]

From the linearity of the Bernstein–Stancu operators (3) and Bernstein basis functions, we obtain

\[
\left(\frac{m + \beta_2}{m} \right)^m \sum_{j=0}^m \left(\frac{j + \alpha_1}{m + \beta_1} \right)^2 \tilde{p}_{m,j}(x) \\
= \frac{m + \beta_2}{(m + \beta_1)^2} \left[\frac{(m - 1)(m + \beta_2)(x - \alpha_2/(m + \beta_2))^2}{m} + (1 + 2\alpha_1) \left(x - \frac{\alpha_2}{m + \beta_2} \right)^2 \right] + \frac{\alpha_1^2}{(m + \beta_1)^2}. \tag{17} \]
Next, we compute $\gamma_{3,m}^{\alpha \beta}(x)$ and $\gamma_{4,m}^{\alpha \beta}(x)$

$$\gamma_{3,m}^{\alpha \beta}(x) = \left(\frac{m + \beta_2}{m}\right)^m \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1}\right)^2 \frac{m - 2j + 1}{m^2 - 1} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} p_{m-1,j}(x)$$

$$+ (m + 1)(1 + 2\alpha_1) \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m,j}(x) + \alpha_1 \sum_{j=0}^{m} p_{m+1,j}(x)$$

$$- \left(\frac{m + \beta_2}{m}\right)^m \frac{1}{(m + \beta_1)^4(m - 1)} \left[m(m + 1) \left(\frac{\alpha_2}{m + \beta_2}\right)^3 \sum_{j=0}^{m-2} p_{m-1,j}(x) \right]$$

$$+ (m + 1)(1 + 2\alpha_1) \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m,j}(x)$$

$$- 2(m + 1) m \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m-1,j}(x)$$

$$+ 2\beta_1 \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m-1,j}(x)$$

$$= \left(\frac{m + \beta_2}{m}\right)^m \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1}\right)^2 \frac{m - 2j + 1}{m^2 - 1} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} p_{m-1,j}(x)$$

$$+ (m + 1)(1 + 2\alpha_1) \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m,j}(x) + \alpha_1 \sum_{j=0}^{m} p_{m+1,j}(x)$$

$$- \left(\frac{m + \beta_2}{m}\right)^m \frac{1}{(m + \beta_1)^4(m - 1)} \left[m(m + 1) \left(\frac{\alpha_2}{m + \beta_2}\right)^3 \sum_{j=0}^{m-2} p_{m-1,j}(x) \right]$$

$$+ (m + 1)(1 + 2\alpha_1) \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m,j}(x)$$

$$- 2(m + 1) m \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m-1,j}(x)$$

$$+ 2\beta_1 \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m-1,j}(x)$$

$$\gamma_{4,m}^{\alpha \beta}(x) = \left(\frac{m + \beta_2}{m}\right)^m \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1}\right)^2 \frac{m - 2j + 1}{m^2 - 1} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} p_{m+1,j+1}(x)$$

$$= \left(\frac{m + \beta_2}{m}\right)^m \sum_{j=0}^{m} \left(\frac{j + \alpha_1}{m + \beta_1}\right)^2 \frac{m - 2j + 1}{m^2 - 1} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} \cdot \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} p_{m+1,j}(x)$$

$$- (m + 1)(1 - 2\alpha_1) \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-1} p_{m,j}(x) + (1 - 2\alpha_1 + \alpha_1^2) \sum_{j=0}^{m-1} p_{m+1,j+1}(x)$$

$$- \left(\frac{m + \beta_2}{m}\right)^m \frac{2}{(m + \beta_1)^4(m^2 - 1)} \left[m(m - 1) \left(\frac{\alpha_2}{m + \beta_2}\right)^3 \sum_{j=0}^{m-3} p_{m-1,j}(x) \right]$$

$$+ 2\alpha_1 \left(\frac{\alpha_2}{m + \beta_2}\right)^2 \sum_{j=0}^{m-2} p_{m-1,j}(x) + (1 - 2\alpha_1 + \alpha_1^2) \sum_{j=0}^{m-1} p_{m,j}(x)$$
Combining (17), $Y^{a,\beta}_{3,m}(x)$, and $Y^{a,\beta}_{4,m}(x)$, we obtain the result for $G^{a,\beta}_{m,\lambda}(s^2, x)$. Using the same technique in the above moments, we obtain $G^{a,\beta}_{m,\lambda}(s^2, x)$ and $G^{a,\beta}_{m,\lambda}(s^4, x)$.

Corollary 1. Using Lemma 1, we obtain the following inequalities of central moments $G^{a,\beta}_{m,\lambda}((s-x)^n, x)$ for $n=1, 2$ and for fixed $x \in [0,1]$ and $\lambda \in [-1,1]$:

\[
G^{a,\beta}_{m,\lambda}(s-x, x) = \frac{\beta_2 - \beta_1}{m + \beta_1} x + \frac{\alpha_1 - \alpha_2}{m + \beta_1} \\
+ \lambda \left[-2 + \frac{(m + \beta_2)m}{m + \beta_1} (x - (\alpha_2/(m + \beta_2)))m + (\alpha_1 m - 2 \alpha_1 + 1)((m + \beta_2)/m)((m + \alpha_2)/(m + \beta_2)) - x \right] \\
+ \frac{m + 2 \alpha_2}{(m + \beta_1)(m - 1)(m + \beta_2)} \frac{\alpha_2(m + \beta_2/m)(x - (\alpha_2/(m + \beta_2)))m}{(m + \beta_1)(m - 1)(m + \beta_2)} \\
+ \frac{(\alpha_1 - \alpha_2 - 1)m + 2 \alpha_1 \alpha_2 - \alpha_2}{(m + \beta_1)(m - 1)(m + \beta_2)} \frac{((m + \alpha_2)/(m + \beta_2) - x)m}{(m + \beta_1)(m - 1)(m + \beta_2)} \\
+ \frac{(m + 2 \alpha_2)(\alpha_2 - 1) + (\alpha_1 m - 2 \alpha_1 + 1)((m + \beta_2)/m)((m + \alpha_2)/(m + \beta_2)) - x}{(m + \beta_1)(m - 1)(m + \beta_2)} \right].
\]
\[C_{m,\lambda}^{\alpha, \beta}(x) = \frac{-m^2 + (\beta_2^2 - 2\beta_2 \beta_1 - 2\beta_2^2) m - \beta_2^2 x^2}{m(m + \beta_1)^2} \]

\[+ \frac{m^2 + (\beta_2 - 2\beta_2 \alpha_2 + 2\alpha_2 + 2\beta_2 \alpha_1 + 2\alpha_2 \beta_1 - 2\beta_1 \alpha_1) m + 2\beta_2 \alpha_2}{m(m + \beta_1)^2} x \]

\[+ \frac{\alpha_2^2 + \alpha_1^2 - \alpha_2 - 2\alpha_1 \alpha_2 m - \alpha_2^2}{m(m + \beta_1)^2} \]

\[+ \lambda \left[\frac{4\beta_1}{(m + \beta_1)^2 (m - 1)} \right] \]

\[- \frac{2((m + \beta_2)/m)^{m} (x - \alpha_2/(m + \beta_2))^{m} - (2\alpha_i m - 4\alpha_i + 2) ((m + \beta_2)/m)^{m} ((m + \alpha_2)/(m + \beta_2) - x)^{m}}{(m + \beta_1)(m - 1)} \]

\[+ \frac{(2\beta_2 - 2\beta_1 + 4\alpha_2 - 4\alpha_1) m - 4\alpha_1 \beta_2 - 4\alpha_2 \beta_1}{(m + \beta_1)^2 (m - 1)(m + \beta_2)} \]

\[+ \frac{(2\beta_2 - 2\alpha_2 + 2\alpha_2 \beta_2 + 2\alpha_2 \beta_1)}{(m + \beta_1)^2 (m - 1)(m + \beta_2)} \]

\[+ \frac{(\alpha_2^2 \beta_2 - 2\alpha_2^2 + 2\alpha_2 \alpha_2 \beta_1 - 4\alpha_2 \alpha_2 - 2\alpha_2 \beta_1 + 2\beta_1 + 2\alpha_1 + 2\alpha_2 - 1) m - 2\alpha_2 \beta_2 + 2\alpha_1 \beta_2 - \beta_2 + 2\alpha_2 \beta_1}{(m + \beta_1)^2 (m - 1)(m + \beta_2)} \]

\[+ \frac{(2\alpha_1 \beta_2 - 2\alpha_2 \beta_2 + 4\alpha_2 \alpha_2 - 4\alpha_2^2 - \beta_2 \beta_1 + \beta_2 + 4\alpha_2 \alpha_2 \beta_1)}{(m + \beta_1)^2 (m + \beta_2)(m - 1)} \]

\[+ \frac{(2\alpha_1 \beta_2 - 2\alpha_2 \beta_2 + 4\alpha_2 \alpha_2 - 4\alpha_2^2 - \beta_2 \beta_1 + \beta_2 + 4\alpha_2 \alpha_2 \beta_1)}{(m + \beta_1)^2 (m + \beta_2)(m - 1)} \]

\[- \frac{(2\alpha_2 m + 2\alpha_2 \alpha_2 + \alpha_2)((m + \beta_2)/m)^{m} (x - \alpha_2/(m + \beta_2))^{m}}{(m + \beta_1)^2 (m + \beta_2)(m - 1)} \]
Using Lemma 1 and the linearity of $G_{m,\lambda}^{\alpha,\beta}(g(s),x)$, we have the following Corollary 2.

Corollary 2. We obtain the following equalities:

\(i) \lim_{m \to \infty} G_{m,\lambda}^{\alpha,\beta}(s-x,x) = (\beta_2 - \beta_1)x + \alpha_1x\)

\(ii) \lim_{m \to \infty} G_{m,\lambda}^{\alpha,\beta}((s-x)^2, x) = x - x^2 \)

\(iii) \lim_{m \to \infty} G_{m,\lambda}^{\alpha,\beta}((s-x)^4, x) = 3x^4 - 6x^3 + (24\lambda_2^2 - 24\alpha_2\lambda_1 - 6\lambda_1 + 3)x^2 \)

3. **Convergence Properties of $G_{m,\lambda}^{\alpha,\beta}$**

For the asymptotic behavior of $G_{m,\lambda}^{\alpha,\beta}(g(x),x)$ operators, we give the following Korovkin-type approximation theorem.

Theorem 1. If $g \in C[0,1]$ and $\lambda \in [-1,1]$, then $G_{m,\lambda}^{\alpha,\beta}(g, x)$ operators converge uniformly to g on $[0,1]$, where $C[0,1]$ is a Banach space of all continuous functions on $[0,1]$ with norm $\|g\| = \sup_{x \in [0,1]} |g(x)|$.

Proof. Using the equalities (i), (ii), and (iii) of Lemma 1, we obtain

\[
\lim_{m \to \infty} \left\| G_{m,\lambda}^{\alpha,\beta}(s^i, x) - x^i \right\| = 0, \quad i = 0, 1, 2.
\]

Therefore, the proof is completed using Korovkin theorem.

For $\epsilon > 0$, the Peetre K-functional is defined as

\[
K_2(g, \epsilon) = \inf_{h \in C^1([0,1])} \left\{ \|g - h\| + \epsilon\|h''\| \right\},
\]
where $C^2[0, 1] = \left\{ h \in C[0, 1] : h, h'' \in C[0, 1] \right\}$. For $g \in C[0, 1]$, the second-order modulus of continuity is defined as

$$\varphi_2(g, \sqrt{\varepsilon}) = \sup_{0 \leq l \leq \sqrt{\varepsilon}} \sup_{h, x \in [l, x+2l] \cap [0, 1]} |g(x+2l) - 2g(x+l) + g(x)|.$$ \hspace{1cm} (22)

By [9, Theorem 2.4], there exists an absolute constant $C > 0$ such that

$$K_2(g, \varepsilon) \leq C \varphi_2(g, \sqrt{\varepsilon}).$$ \hspace{1cm} (23)

Also, the usual modulus of continuity of $g \in C[0, 1]$ is defined as $\varphi(g, \varepsilon) = \sup_{0 \leq l \leq \varepsilon} \sup_{x \in [0, 1]} |g(x+l) - g(x)|$. \hfill \square

Theorem 2. We obtain the following inequality for $g \in C[0, 1]$ and $\lambda \in [-1, 1]$:

$$\left| G_{\alpha, \beta, m, \lambda}(g, x) - g(x) \right| \leq 4C\varphi_2\left(g, \sqrt{\left(\frac{\Psi_{\alpha, \beta, m, \lambda}^n(x)}{2} + \Phi_{\alpha, \beta, m, \lambda}^n(x) \right)^2} \right) + \varphi(g, \Psi_{\alpha, \beta, m, \lambda}^n(x)), \hspace{1cm} (24)$$

where $\Psi_{\alpha, \beta, m, \lambda}^n(x)$ and $\Phi_{\alpha, \beta, m, \lambda}^n(x)$ are defined in Corollary 1.

Proof. Let us define the following operators:

$$\overline{G}_{\alpha, \beta, m, \lambda}(g, x) = G_{\alpha, \beta, m, \lambda}(g, x) - g \left(\frac{m + \beta_2}{m + \beta_1} x + \frac{\alpha_1 - \alpha_2}{m + \beta_1} \right) + \lambda \left(\frac{1}{m + \beta_1} \right) \left(\frac{m}{m + \beta_2} \right) \left(x - \frac{\alpha_2}{m + \beta_2} \right) \hspace{1cm} (25)$$

From the linearity of $\overline{G}_{\alpha, \beta, m, \lambda}(g, x)$ and the equalities (i) and (ii) of Lemma 1, we obtain

$$\overline{G}_{\alpha, \beta, m, \lambda}(s-x, x) = 0. \hspace{1cm} (26)$$

Using Taylor’s expansion for $h \in C^2[0, 1]$, we write

$$\overline{G}_{\alpha, \beta, m, \lambda}(h, x) = h(x) + \overline{G}_{\alpha, \beta, m, \lambda}\left(\int_x^s (s-u)h''(u)du, x \right)$$

Applying generalized λ-Bernstein–Stancu operators to both sides of (27) and using (26), we yield

$$h(s) = h(x) + h'(x)(s-x) + \int_x^s (s-u)h''(u)du. \hspace{1cm} (27)$$

Using Taylor’s expansion for $h \in C^2[0, 1]$, we write

$$\left| \overline{G}_{\alpha, \beta, m, \lambda}(h, x) - h(x) \right| \leq \int_x^s \left| \left(\frac{G_{\alpha, \beta, m, \lambda}^n(s, u) - G_{\alpha, \beta, m, \lambda}^n(s, x)}{2} \right)^2 + \frac{h''}{2} \left(G_{\alpha, \beta, m, \lambda}^n(s - x)^2 \right) \right| du, x \hspace{1cm} (28)$$

$$\leq \frac{h''}{2} \left(G_{\alpha, \beta, m, \lambda}^n(s - x)^2 \right)^2 + \frac{h''}{2} \left(G_{\alpha, \beta, m, \lambda}^n(s - x)^2 \right)^2, x \hspace{1cm} (29)$$

$$\leq \frac{h''}{2} \left(\left(\Psi_{\alpha, \beta, m, \lambda}^n(x) \right)^2 + \Phi_{\alpha, \beta, m, \lambda}^n(x) \right)^2. \hspace{1cm} (30)$$
And, we find

\[
|G_{m,\lambda}^{\alpha,\beta}(g, x) - g(x)| \leq |G_{m,\lambda}^{\alpha,\beta}(g - h, x) - (g - h)(x)| + |G_{m,\lambda}^{\alpha,\beta}(g, x) - g(x)| \\
+ |g(G_{m,\lambda}(s, x)) - g(x)|
\]

(29)

Therefore, if we take infimum on the right side of (29), overall \(h \in C^2[0, 1] \), we obtain

\[
|G_{m,\lambda}^{\alpha,\beta}(g, x) - g(x)| \leq 4K_2 \left(g, \frac{\left(\Psi_{m,\lambda}^{\alpha,\beta}(x) \right)^2 + \Phi_{m,\lambda}^{\alpha,\beta}(x)}{8} \right) + \phi(g, \Psi_{m,\lambda}^{\alpha,\beta}(x)).
\]

(30)

Using inequality (23), we have

\[
|G_{m,\lambda}^{\alpha,\beta}(g, x) - g(x)| \leq 4C_2 \left(g, \frac{\left(\Psi_{m,\lambda}^{\alpha,\beta}(x) \right)^2 + \Phi_{m,\lambda}^{\alpha,\beta}(x)}{8} \right) + \phi(g, \Psi_{m,\lambda}^{\alpha,\beta}(x)).
\]

(31)

Thus, Theorem 2 is proved.

Remark 1. Since \(\lim_{m \to 0} \Psi_{m,\lambda}^{\alpha,\beta}(x) = 0 \) and \(\lim_{m \to 0} \Phi_{m,\lambda}^{\alpha,\beta}(x) = 0 \) for \(\forall x \in [0, 1] \), these limits give us a rate of pointwise convergence of the operators \(G_{m,\lambda}^{\alpha,\beta}(g, x) \) to \(g(x) \).

The space of the Lipschitz-type functions is defined as

\[
\operatorname{Lip}_x(\xi) = \{ g \in C[0, 1]: |g(y) - g(x)| \leq \kappa |y - x|^\xi; \}
\]

\[
x, y \in \mathbb{R},
\]

where \(\kappa > 0 \) and \(0 < \xi \leq 1 \) [10].

In the following theorem, we obtain the rate of convergence of generalized \(\lambda \)-Bernstein–Stancu operators \(G_{m,\lambda}^{\alpha,\beta}(g, x) \) for functions in \(\operatorname{Lip}_x(\xi) \).

Theorem 3. If \(g \in \operatorname{Lip}_x(\xi), x \in [0, 1], \) and \(\lambda \in [-1, 1], \) then we have

\[
|G_{m,\lambda}^{\alpha,\beta}(g, x) - g(x)| \leq \kappa \left[\Phi_{m,\lambda}^{\alpha,\beta}(x) \right]^{\xi/2},
\]

(33)

where \(\Phi_{m,\lambda}^{\alpha,\beta}(x) \) is defined in Corollary 1.

Proof. Because \(g \in \operatorname{Lip}_x(\xi) \) and \(G_{m,\lambda}^{\alpha,\beta}(g, x) \) are linear positive operators, we obtain the inequality by using Hölder’s inequality:

\[
|G_{m,\lambda}^{\alpha,\beta}(g, x) - g(x)| \leq G_{m,\lambda}^{\alpha,\beta}(|g(s) - g(x)|, x) = \left(\frac{m + \beta_2}{m} \right)^m \sum_{j=0}^{m} \tilde{p}_{m,j}(\lambda, x) \left| \frac{j + \alpha_1}{m} \right|^{\xi/2} - g(x)
\]

(34)

Hence, we proved Theorem 3.
Finally, we give the main result of the article in Theorem 4.

Theorem 4. If \(g \in C[0, 1] \), then for every \(x \in (0, 1) \) and \(\lambda \in [-1, 1] \), we obtain

\[
\lim_{m \to \infty} m \left[G_{m, \lambda}^\alpha (g, x) - g(x) \right] = g'(x) \left[(\beta_2 - \beta_1) x + \alpha_1 - \alpha_2 \right] + \frac{g''(x)}{2} (x - x^2)
\]

where \(g''(x) \) exists.

Proof. Using Taylor’s formula, we can write the following equation for a fixed \(x \in [0, 1] \):

\[
g(s) = g(x) + g'(x)(s - x) + \frac{g''(x)}{2} (s - x)^2 + r(s, x) (s - x)^2,
\]

where \(r(s, x) \) is Peano form of the remainder, \(r(s, x) \in C[0, 1] \), and \(\lim_{x \to x} r(s, x) = 0 \). If we apply \(G_{m, \lambda}^\alpha (g, x) \) to (36), then we have

\[
\lambda = -1,
\quad \alpha_1 = \alpha_2 = 1,
\quad \beta_1 = \beta_2 = 2
\]

\[
\lambda = 1,
\quad \alpha_1 = \alpha_2 = 1,
\quad \beta_1 = \beta_2 = 2
\]

Figure 1: Convergence of \(G_{m, -1}^{1, 2} (f, x) \) to \(f(x) \) with respect to \(m \) values.

Figure 2: Convergence of \(G_{m, 1}^{1, 2} (f, x) \) to \(f(x) \) with respect to \(m \) values.
\[
G_{m,1}^{\alpha, \beta} (g, x) - g (x) = g' (x) G_{m,1}^{\alpha, \beta} ((s - x), x) + \frac{g'' (x)}{2} G_{m,1}^{\alpha, \beta} ((s - x)^2, x),
\]
\[
+ G_{m,1}^{\alpha, \beta} (r (s, x) (s - x)^2, x),
\]
\[
\lambda = -1,
\alpha_1 = \alpha_2 = 10,
\beta_1 = \beta_2 = 11
\]

Figure 3: Convergence of \(G_{m,1}^{10,11} (f, x) \) to \(f (x) \) with respect to \(m \) values.

\[
\lambda = 1,
\alpha_1 = \alpha_2 = 10,
\beta_1 = \beta_2 = 11
\]

Figure 4: Convergence of \(G_{m,1}^{10,11} (f, x) \) to \(f (x) \) with respect to \(m \) values.
and we obtain

\[\lim_{m \to \infty} \left[G_{m,\lambda}^r(g, x) - g(x) \right] = g'(x) \lim_{m \to \infty} m G_{m,\lambda}^r((s-x), x) \]

\[+ \frac{g''(x)}{2} \lim_{m \to \infty} m G_{m,\lambda}^r((s-x)^2, x) + \lim_{m \to \infty} m G_{m,\lambda}^r(r(s-x)(s-x)^2, x). \]

(38)

Using Cauchy–Schwarz inequality, we obtain

\[C_m^r \left((s-x)^2, x \right) \leq \left(C_m^r \left((s-x)^4, x \right) \right)^{1/2} \]

\[\cdot \left(G_m^r \left(r(s-x)(s-x)^2, x \right) \right)^{1/2}. \]

(39)

Because \(\lim_{s \to x} r(s-x) = 0 \) and \(G_m^r((s-x)^4, x) \) are finite operators, we have

\[\lim_{m \to \infty} G_m^r \left(r(s-x)(s-x)^2, x \right) = 0. \]

(40)

In the end, by using the equalities (i) and (ii) of Corollary 2 and (40) in (38), we yield

\[\lim_{m \to \infty} \left[G_{m,\lambda}^r(g, x) - g(x) \right] = g'(x) \left[(\beta_2 - \beta_1)x + \alpha_1 - \alpha_2 \right] \]

\[+ \frac{g''(x)}{2} (x-x^2). \]

(41)

Thus, we proved Theorem 4.

4. Numerical Examples

In this section, we show the theoretical results demonstrated in the previous sections by the following example.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Convergences of \(G_{m,\lambda}^{10,11}(f, x) \), \(B_{m,\lambda}^{20,10,11}(f, x) \), and \(B_{m,\lambda}^{20}(f, x) \) to \(f(x) \).}
\end{figure}

Example 1. Let the trigonometric function \(f(x) = 1 - \cos(4e^x) \) for \(x \in A_m = [\alpha_2/m + \beta_2, \ (m \pm \alpha_2/m + \beta_2)] \), \(0 \leq \alpha_i \leq \beta_i \ (i = 1, 2) \), and \(m = 10, 20, 50, 100 \). First, let us choose \(\alpha_1 = \alpha_2 = 10 \) and \(\beta_1 = \beta_2 = 2 \).

For \(\lambda = -1 \), the graphs of \(G_{m,\lambda}^{10,11}(f, x) \) and \(f(x) \) are shown in Figure 1.

For \(\lambda = 1 \), the graphs of \(G_{m,\lambda}^{10,11}(f, x) \) and \(f(x) \) are shown in Figure 2.

Now, let us choose \(\alpha_1 = \alpha_2 = 10 \) and \(\beta_1 = \beta_2 = 11 \). The graph of \(f(x) \) and the graph of \(G_{m,\lambda}^{10,11}(f, x) \) with \(\lambda = -1 \) and \(\lambda = 1 \) are shown in Figures 3 and 4, respectively.

As a result, Figure 5 reveals that the curve of \(G_{m,\lambda}^{10,11}(f, x) \) with \(\alpha_1 = \alpha_2 = 10 \) and \(\beta_1 = \beta_2 = 11 \) studied in the article approaches the curve of the function \(f(x) \) much better than the curves of the operators \(B_{m,\lambda}^{20}(f, x) \) and \(B_{m,\lambda}^{20,10,11}(f, x) \) defined in [5, 8], respectively.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
Acknowledgments

The authors would like to thank the Fujian Provincial Key Laboratory of Data-Intensive Computing, Fujian University Laboratory of Intelligent Computing and Information Processing, and Fujian Provincial Big Data Research Institute of Intelligent Manufacturing of China. This work was supported by the Natural Science Foundation of Fujian Province of China (Grant no. 2020J01783), the Project for High-Level Talent Innovation and Entrepreneurship of Quanzhou (Grant no. 2018C087 R), and the Program for New Century Excellent Talents in Fujian Province University.

References

[1] S. N. Bernstein, “Démonstration du théorème de Weierstrass fondée e sur la calcul de probabilités,” Communications in Mathematical Sciences, vol. 13, no. 2, pp. 1-2, 1912.
[2] A. D. Gadjiev and A. M. Ghorbanalizadeh, “Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables,” Applied Mathematics and Computation, vol. 216, no. 3, pp. 890–901, 2010.
[3] D. D. Stancu, “Approximation of functions by a new class of linear polynomial operators,” Revue Roumaine des Mathématiques Pures et Appliquées, vol. 13, pp. 1173–1194, 1968.
[4] U. Dinlemez Kantar and G. Ergelen, “A voronovskaja-type theorem for a kind of durrmeyer-bernstein-stancu operators,” Gazi University Journal of Science, vol. 32, no. 4, pp. 1228–1236, 2019.
[5] Q. B. Cai, B. Y. Lian, and G. Zhou, “Approximation properties of λ-Bernstein operators,” Journal of Inequalities and Applications, vol. 2018, p. 61, 2018.
[6] Q. B. Cai, “The Bézier variant of Kantorovich type λ-Bernstein operators,” Journal of Inequalities and Applications, vol. 2018, p. 90, 2018.
[7] A. M. Acu, N. Manav, and D. F. Sofonea, “Approximation properties of λ-Kantorovich operators,” Journal of Inequalities and Applications, vol. 2018, p. 202, 2018.
[8] H. M. Srivastava, F. Özger, and S. A. Mohiuddine, “Construction of stancu-type bernstein operators based on bézier bases with shape parameter,” Symmetry, vol. 11, p. 316, 2019.
[9] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, Germany, 1993.
[10] B. Lenze, “Bernstein–Baskakov–Kantorovich operators and Lipschitz type maximal functions,” Colloquia Mathematica Societatis János Bolyai, vol. 58, pp. 469–496, 1990.
[11] V. Gupta, D. K. Verma, and P. N. Agrawal, “Simultaneous approximation by certain Baskakov-Durrmeyer-Stancu operators,” Journal of the Egyptian Mathematical Society, vol. 20, no. 3, pp. 183–187, 2012.
[12] V. Gupta and R. P. Agarwal, Convergence Estimates In Approximation Theory, Vol. 13, Springer, Berlin, Germany, 2014.
[13] V. Gupta and G. Tachev, Approximation with Positive Linear Operators and Linear Combinations, Springer, Berlin, Germany, 2017.
[14] L. X. Dong and D. S. Yu, “Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators,” Journal of Inequalities and Applications, vol. 2017, p. 28, 2017.