Complement-mediated neutralization of dengue virus requires mannose-binding lectin

Panisadee Avirutnan
Washington University School of Medicine in St. Louis

Richard E. Hauhart
Washington University School of Medicine in St. Louis

Mary A. Marovich
Walter Reed Army Institute of Research

Peter Garred
University of Copenhagen

John P. Atkinson
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Avirutnan, Panisadee; Hauhart, Richard E.; Marovich, Mary A.; Garred, Peter; Atkinson, John P.; and Diamond, Michael S., "Complement-mediated neutralization of dengue virus requires mannose-binding lectin." *mBio*. 2,6. e00276-11. (2011).
https://digitalcommons.wustl.edu/open_access_pubs/1749

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Panisadee Avirutnan, Richard E. Hauhart, Mary A. Marovich, Peter Garred, John P. Atkinson, and Michael S. Diamond
Complement-Mediated Neutralization of Dengue Virus Requires Mannose-Binding Lectin

Panisadee Avirutnan, Richard E. Hauhart, Mary A. Marovich, et al. 2011. Complement-Mediated Neutralization of Dengue Virus Requires Mannose-Binding Lectin. mBio 2(6):. doi:10.1128/mBio.00276-11.

Updated information and services can be found at:
http://mbio.asm.org/content/2/6/e00276-11.full.html

SUPPLEMENTAL MATERIAL
http://mbio.asm.org/content/2/6/e00276-11.full.html#SUPPLEMENTAL

REFERENCES
This article cites 56 articles, 23 of which can be accessed free at:
http://mbio.asm.org/content/2/6/e00276-11.full.html#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more>>

Information about commercial reprint orders: http://mbio.asm.org/misc/reprints.xhtml
Information about Print on Demand and other content delivery options:
http://mbio.asm.org/misc/contentdelivery.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/subscriptions/
Complement-Mediated Neutralization of Dengue Virus Requires Mannose-Binding Lectin

Panisadee Avirutnan, Richard E. Hauhart, Mary A. Marovich, Peter Garred, John P. Atkinson, and Michael S. Diamond

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, Thailand; Laboratory of Molecular Medicine, Division of Retrovirology, Walter Reed Army Institute of Research and Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland, USA; Department of Clinical Immunology, Righshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Departments of Pathology and Immunology, Molecular Microbiology, and the Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA

ABSTRACT Mannose-binding lectin (MBL) is a key soluble pathogen recognition protein of the innate immune system that binds specific mannose-containing glycans on the surfaces of microbial agents and initiates complement activation via the lectin pathway. Prior studies showed that MBL-dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains deficient in different complement components, we showed that inhibition of infection by insect cell- and mammalian cell-derived DENV was primarily dependent on the lectin pathway. Human MBL also bound to DENV and neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Experiments with human serum from naïve individuals with inherent variation in the levels of MBL in blood showed a direct correlation between the concentration of MBL and neutralization of DENV; samples with high levels of MBL in blood neutralized DENV more efficiently than those with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis.

IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation, neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Moreover, we observed a direct correlation with the concentration of MBL in human serum and neutralization of DENV infection. Our studies suggest that common genetic polymorphisms that result in disparate levels and function of MBL in humans may impact DENV infection, pathogenesis, and disease severity.
Activation of the complement system occurs via three convergent pathways referred to as the classical, lectin, and alternative pathways. The classical pathway activity is triggered by C1q binding to antigen-antibody complexes on the surfaces of pathogens. The lectin pathway is initiated by mannose-binding lectin (MBL) or ficolin recognition of carbohydrate structures on the surfaces of microbes or apoptotic cells. Binding of MBL (or ficolins) activates MBL-associated serine proteases (MASPs). While three MASP proteins have been identified (i.e., MASP-1, -2, and -3), MASP-2 is responsible for cleavage of C4 and C2 to form the C3 convertase C4b2a (10). MBL has also been shown to induce C3 activation independently of C4 and C2 (the C4 and C2 bypass pathway) (11–13). The alternative pathway is constitutively active at low levels through the spontaneous hydrolysis of C3 and also serves to amplify activation of the classical and lectin pathways. The binding of C3b to the C3 convertases of the classical and alternative pathways generates the C5 convertases. These enzymes cleave C5 to generate the anaphylatoxin C5a and C5b, which promotes assembly of C5b-9 membrane attack (lytic) complex.

MBL is a calcium-dependent (C-type) lectin that recognizes adjacent equatorial mono-saccharide hydroxyl groups that are present on mannose, N-acetylglucosamine (GlcNAc), and fucose and displayed on a range of microorganisms (14). Human MBL is encoded by the MBL2 gene, and polymorphisms result in highly variable MBL activity in human plasma (15). Three single-nucleotide polymorphisms (SNPs) (alleles B [codon 54], C [codon 57], and D [codon 52]) are located in exon 1 and affect the structural and functional integrity of the protein (15). Additional SNPs in the promoter (H/L variants at position −550 and X/Y variants at position −221) and 5′ untranslated (P/Q variants at position +4) regions of the MBL2 gene influence the basal level of MBL in serum (15). Low MBL serum levels and variant MBL alleles have been associated with enhanced susceptibility to infection in young children and immunocompromised patients (reviewed in references 16 and 17). In adults, low serum MBL concentrations have been suggested to influence disease progression associated with HIV, hepatitis B, hepatitis C, and herpes simplex virus infections (18–21).

Although the complement system has been suggested to play a role in DENV pathogenesis, in particular, during the secondary infection (22–24), its roles in protection against DENV remain uncertain. Here, we show that human MBL bound to insect cell- and mammalian cell-derived DENV and neutralized infection of all DENV serotypes through complement activation-dependent and -independent pathways. Moreover, we observed a direct correlation with the concentration of MBL in human serum and neutralization of DENV. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV infection.

RESULTS

Neutralization of insect cell- and mammalian cell-derived DENV-2 is mediated by the lectin pathway of complement activation. A previous study showed that serum from wild-type C57BL/6 mice neutralized DENV-2 generated in both C6/36 insect cells and BHK21-15 mammalian cells (25). In that study, ~80% of the neutralizing activity was lost when serum from MBL-A−/− × MBL-C−/− (MBL-A/C−/−) mice was used, suggesting that the lectin pathway contributed to complement-mediated neutralization of DENV serotype 2 (DENV-2) (25). However, that study did not address whether neutralization of DENV-2 required activation of other complement activation pathways or downstream components. To evaluate this, we pretreated insect cell (C6/36)-derived and mammalian cell (Vero)-derived DENV-2 with naïve sera from the wild type and several congenic mouse strains deficient in different complement components. Analogous to results with insect cell-derived WNV (25), neutralization of both insect cell- and mammalian cell-derived DENV-2 was dependent on MBL and MBL-associated serine protease 2 (MASP-2), but not C1q or C5 (Fig. 1A and C). Thus, the classical complement activation pathway and the formation of membrane attack complex were not necessary for neutralization of DENV-2 by serum. Because an absence of both C3 and C4 (C3−/− × C4−/− double knockout [DKO]) almost abrogated the inhibitory effect of serum, MBL-dependent neutralization of DENV-2 required activation of the complement system; however, deficiencies in either C3 or C4 resulted in only partial loss of neutralization phenotypes. This suggests that DENV-2 neutralization by MBL occurs through both the canonical lectin (C4-dependent) pathway and the C4 and C2 bypass pathways (11–13) of complement activation (Fig. 1E).

In the absence of factor B (fB) or factor D (fD), DENV-2 neutralization was also partially inhibited, suggesting a contribution from the alternative pathway, probably via the amplification loop that results in greater deposition of C3 on the virion surface (Fig. 1E). Serum from RAG1−/− mice neutralized DENV infection to a level similar to that from wild-type mice; as RAG1−/− mice lack B and T cells, this establishes that natural antibody does not contribute significantly to the serum-dependent neutralization of DENV-2. Notably, antibody-independent serum neutralization of DENV-2 was efficient, as even highly diluted (1.25% of neat) serum neutralized 60 to 70% of infection by DENV-2 (Fig. 1B and D). MBL-dependent neutralization of both insect cell- and mammalian cell-derived DENV-2 by mouse serum was confirmed by a complete loss of neutralization in the presence of excess soluble mannan, a competitor for MBL binding (Fig. 1B and D).

MBL directly binds and neutralizes insect cell-derived DENV-2 independent of complement activation. Whereas neutralization of WNV by MBL occurred with insect cell-derived virus, but not mammalian cell-derived virus (25), both forms of DENV-2 were susceptible to MBL-dependent complement-mediated inhibition. However, neutralization of insect cell-derived DENV-2 by naïve wild-type C57BL/6 mouse serum was more efficient than mammalian cell-derived DENV-2 (100% versus 60 to 80% neutralization at 10% serum concentration, respectively; P < 0.0001) (Fig. 1A to D). This phenotype is likely due to modifications of high-mannose carbohydrate moieties on the structural proteins on the surfaces of DENV-2 virions produced in mammalian cells (26) resulting in less efficient recognition by MBL. To test for direct binding of MBL to DENV-2, we developed a capture enzyme-linked immunosorbent assay (ELISA) in which infectious virus was bound to wells of a microtiter plate coated with anti-DENV prM mutant monoclonal antibody (MAb). Purified recombinant MBL bound efficiently to immobilized insect
cell-derived DENV-2 in a dose-dependent manner, and as expected, binding was Ca$^{2+}$ dependent and blocked by soluble mannan (Fig. 2A). The specificity of the interaction was confirmed by an absence of signal when an isotype control (anti-hepatitis C virus E2 protein) MAb was used as the capture antibody. We next compared the relative binding of MBL to insect cell- and mammalian cell-derived DENV-2. Equivalent amounts of both viruses, as judged by a DENV E-protein-specific MAb that bound captured virions (Fig. 2C), were interrogated for binding to MBL by ELISA. Notably, purified MBL preferentially bound to insect cell-derived DENV-2 at all concentrations tested ($P < 0.05$ [Fig. 2B]).

The dose-dependent binding of purified MBL to mammalian cell-derived DENV-2 was also Ca$^{2+}$ dependent and inhibited by soluble mannan.

MBL exists as an oligomer of homotrimers (14). Binding of higher-order oligomeric MBL to viruses could cause steric interference between the structural proteins on the virion surface and their cognate ligands, and thus, restrict infection of target cells. To test this, we pretreated insect cell-derived DENV-2 with purified MBL, which forms oligomers similar to native human MBL (27), before addition to a monolayer of BHK21-15 cells. Binding of physiological concentrations of MBL to insect cell-derived
DENV-2 in the absence of any other complement components neutralized infection up to 65% (Fig. 2D). Nonetheless, the efficiency of neutralization increased significantly (2- to 6-fold \([P < 0.001] \)) in the presence of other complement components in serum from MBL-A/C \(/-\) mice, especially at low concentrations of purified MBL (e.g., 0.03 \(\mu \)g/ml) (Fig. 2E). As expected, soluble mannan competed with binding of purified MBL to DENV and inhibited both complement-independent (Fig. 2D) and complement-dependent (Fig. 2E) neutralization of insect cell-derived DENV-2. In contrast, purified MBL failed to directly neutralize DENV-2 propagated in several mammalian cell types, including Vero cells, primary human monocyte-derived dendritic cells (DC), and primary human peripheral blood monocytes, or WNV that was produced in insect and mammalian cells, even with concentrations of MBL as high as 30 \(\mu \)g/ml (~10-fold above the physiological level) (Fig. 2F; see Fig. S1 in the supplemental material). In contrast to human MBL, purified mouse MBL inhibited insect cell-derived DENV-2 poorly without complement activation, although neutralizing activity was greatly enhanced in the presence of other complement components (Fig. S2). In combination with the 2-fold-lower blood levels of MBL in MASP-2 \(^-/-\) mice (data not shown), these results begin to explain the lack of neutralizing activity in serum from MASP-2 \(^-/-\) mice (Fig. 1A).

Flavivirus virions are dynamic structures, and their "breathing" at higher temperatures impacts antibody neutralization of WNV and DENV by modulating epitope accessibility (28, 29), a phenomenon that could be important for antiviral immunity in the context of the febrile response. Consistent with this, binding of purified MBL to DENV at 37°C and 40°C increased neutralization of insect cell-derived DENV-2 (room temperature versus 37°C, \(P = 0.02\); room temperature versus 40°C, \(P = 0.0009\); 37°C versus 40°C, \(P < 0.0001\)), but not mammalian cell-derived DENV-2 in the absence of additional complement components (Fig. 3A and B); this temperature effect was specific to MBL, as it was abolished by the addition of soluble mannan and did not occur with an irrelevant protein, bovine serum albumin (BSA), or another collectin, C1q.

Neuralization of insect cell-derived DENV-2 by human serum depends on the concentration of MBL. We next assessed the relevance of our findings with human serum. Initially, sera from two healthy adult DENV-naïve volunteers were assayed for neutralization of DENV-2. Consistent with results with wild-type...
The addition of even high concentrations of DENV-2 to a degree similar to that of serum from donor 1 resulted in neutralization of mammalian cell-derived DENV-2. This result was abolished by soluble mannose, establishing that neutralization of mammalian cell-derived DENV-2 by donor 2 required MBL from the serum from donor 1 in particular (Fig. 4E and F).

To further investigate how the concentration of MBL impacts the ability of human serum to neutralize DENV-2, we obtained sera from fifteen additional healthy adult volunteers, including five donors with known polymorphisms (associated with changes in the level, structure, and function of the protein) in the MBL2 gene (15) (Table 1). We first measured the concentrations of MBL in these sera (Fig. 5A). MBL levels varied widely, ranging from <2 ng/ml to 8 µg/ml. We next tested whether native forms of MBL in human serum bound DENV-2. Similar to results with purified human MBL (Fig. 2A and B), MBL in serum bound to immobilized insect cell-derived DENV-2 virions (Fig. 5D). Notably, the degree of binding to DENV-2 reflected the concentrations of MBL in different serum samples (Fig. 5A and D), as a positive correlation was observed ($R^2 = 0.868$ and $P < 0.0001$ [Fig. 5G]). As expected, MBL concentrations also modulated the efficiency of serum-dependent neutralization of DENV-2; sera from individuals with higher blood MBL levels neutralized virus more effectively than those with lower MBL levels (Fig. 5E). However, weakly neutralizing activity observed in some serum samples also could be due to deficiencies of other complement components, especially C4 whose functional level is influenced by several factors, including the number of copies of the C4A and C4B genes (32). To evaluate this, functional C4 and total complement hemolytic activity (CH50 levels [dose of complement that lyases 50% of a red blood cell suspension]) in sera were measured. In contrast to serum MBL concentrations (Fig. 5A), no significant difference ($P > 0.05$) in functional C4 (Fig. 5B) and CH50 (Fig. 5C) levels was observed among donors. Importantly, neutralization of DENV-2 by sera from all donors except donors 8 and 11 was antibody independent and MBL specific, as the addition of excess soluble mannose abrogated the neutralizing activities (Fig. 5F). The neutralization of DENV-2 by sera from donors 8 and 11, which later were determined to contain DENV-2 specific IgG (data not shown), was MBL independent, and likely occurred through activation of the classical complement pathway. Additionally, a high level of anti-DENV-2 specific IgG in serum from donor 8 may have interfered with the serum MBL binding to DENV-2 virions, resulting in a relatively low signal in the capture ELISA (Fig. 5D). Overall, a positive correlation was observed between neutralization and serum MBL levels ($R^2 = 0.662$ and $P = 0.0002$ [Fig. 5H]). Notably, the sera from three individuals (donors 14, 15, and 16) carrying the structural variant MBL alleles (B, C, or D, and thus markedly reduced MBL levels) also had very low neutralizing activities (Table 1). Because mammalian cell-derived DENV-2 was less efficiently inhibited by human serum (Fig. 4A and C), a higher percentage of serum (35%) was used in neutralization assays in the absence (see Fig. S3A in the supplemental material) or presence (Fig. S3B) of mannose. Despite a lower level of inhibition, a positive correlation was also present between serum MBL levels and neutralization of mammalian cell-derived DENV-2 ($R^2 = 0.623$ and $P = 0.0005$ [Fig. S3C]).

MBL neutralizes other DENV serotypes through complement-dependent and -independent mechanisms. The DENV complex comprises four antigenically related serotypes.
with significant diversity at the amino acid level (between 25 and 40%) (33). We therefore extended our studies with MBL to the other serotypes of DENV. Consistent with results with DENV-2, MBL neutralized insect cell-derived DENV-1, -3, and -4 via complement-dependent (Fig. 6A) and complement-independent (Fig. 6B) mechanisms. Naïve human sera from donor 1, which contained a higher level of MBL neutralized insect cell-derived DENV-1 and -3 more efficiently than sera from donor 2 (P < 0.001 for DENV-1 and P < 0.01 for DENV-3) (Fig. 6C). However, sera from donor 1 (despite having a high concentration of MBL [~8 μg/ml]) and donor 2 failed to neutralize insect cell-derived DENV-4 (Fig. 6C). Nonetheless, reconstitution of serum from donor 2 with purified human MBL (1.36 μg/ml) neutralized up to 90% of infection by DENV-1, -3, and -4 (Fig. 6C), confirming that the complement-mediated neutralization of insect cell-derived DENV by human serum depended on MBL.

DISCUSSION

MBL, a key pattern recognition plasma protein of the complement system, restricts pathogen infection by several mechanisms, including direct opsonization, activation of the lectin complement pathway, regulation of cytokine production, and amplification of...
Mannose-Binding Lectin Neutralizes DENV Infection

adaptive immunity (14). Prior studies established that MBL controls WNV infection in mice by binding N-linked glycans on viral structural proteins and activating the lectin pathway of complement (25, 34). The results of our studies here show that MBL also restricts infection by DENV, a related flavivirus. Human MBL inhibited infection of all DENV serotypes by both complement-dependent and complement-independent mechanisms. MBL-mediated neutralization of DENV, however, was more efficient with virus generated in insect cells compared to virus generated in mammalian cells. Finally, the concentration of MBL in human serum, which varies among individuals due to common genetic polymorphisms in the human MBL2 gene (15), directly impacted neutralization of DENV.

Table 1: MBL-dependent neutralizing activity in sera with known polymorphisms in the MBL2 gene

Donor no.	Polymorphisms in the MBL2 gene	Serum MBL level (ng/ml)	Serum MBL binding to DENV (OD at 450 nm)	% Neutralization of DENV
12	HYPA/LXPA, H/L	3.552	0.209 ± 0.043	73.6 ± 11.1
13	HYPA/LXPA, X/Y	2.121	0.164 ± 0.049	52.3 ± 14.1
14	LYQA/LYQC, H/L	2.19	0.037 ± 0.014	21.4 ± 13.7
15	LYPA/LXPA, H/L	<2	0.005 ± 0.003	16.9 ± 11.0
16	HYPD/HYPD, Y/P	<2	0.019 ± 0.018	11.9 ± 1.5

a Single-nucleotide polymorphisms (SNPs) in the MBL2 gene include the following: G-to-C nucleotide substitutions at positions −550 (alleles H/L) and −221 (alleles X/Y) in the promoter region; C-to-T nucleotide substitution at position +4 (alleles P/Q in the 5′ noncoding region; single-nucleotide substitutions at codons 52 (C to T [allele D]), 54 (G to A [allele B]), and 57 (G to A [allele C]) in exon 1. The normal allele is referred to as A.

b Serum MBL levels were measured by a quantitative capture ELISA as described in Materials and Methods.

c Serum MBL binding to insect cell-derived DENV-2 virions was determined using a capture ELISA as described in the legend to Fig. 5D. Data are the means ± standard deviations (SD) for four independent experiments.

d MBL-dependent serum neutralization of insect cell-derived DENV-2 was performed as described in the legend to Fig. 5E. Neutralization was calculated based on reduction of the number of plaques compared to the value for heat-inactivated serum. Data are the means ± SD for three independent experiments.

DENV directly in the absence of further complement activation; this did not occur with mammalian cell-derived DENV.

While MBL has been reported to inhibit infection of several types of viruses, including filoviruses, influenza virus, hepatitis C virus (HCV), herpes simplex virus, human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus, and WNV, in most studies, neutralization required complement activation (25, 35–41). However, in our experiments, efficient recognition of insect cell-derived DENV by purified human MBL was sufficient to neutralize the virus of all four serotypes independent of complement activation. As MBL is a multimeric molecule that comprises two to six subunits of a triple helix of three identical 32-kDa polypeptide chains (14), binding of MBL to DENV may impair host cell attachment and/or entry. For example, binding of MBL to the surface glycoproteins of influenza A virus, HCV, and HIV in a complement-free system blocked virus attachment to target cells (36, 42, 43). Lack of direct neutralization of mammalian cell-derived DENV and insect cell- and mammalian cell-derived WNV by MBL (despite saturating concentrations [30 μg/ml]) in the absence of complement suggests that a higher number of MBL-binding sites are available on insect cell-derived DENV, which is sufficient to reach the threshold required for neutralization. In comparison, binding of fewer molecules of MBL (even as low as 30 ng/ml [1,000-fold lower]) could trigger lectin and alternative pathway activation, which deposits C4 and C3 on the virion surface (25), and promotes neutralization. Deposition of C4b and C3b on virions by MBL-dependent lectin pathway activation inhibited WNV infection, in part, by blocking viral fusion (25), possibly by interfering with the requisite pH-dependent structural rearrangements.

In humans, the concentration of MBL in plasma varies greatly, ranging from a few nanograms per milliliter to 10,000 ng/ml due to polymorphisms in the promoter and exon 1 of the MBL2 gene (15). Genetic variation in the MBL2 gene results in up to 30% of the human population having low blood MBL levels (<500 ng/ml), which has been linked with an increased risk and severity of several infectious diseases (reviewed in references 17 and 44). Our in vitro results with DENV are consistent with this observation and provide a mechanism for why this occurs. The concept that levels of complement proteins could impact DENV severity is not new, as it was raised in seminal studies showing lower levels of C4 and C3 in patients with DHF/DSS (23). Complement genetics (including MBL variation) and the susceptibility of DENV infection have also been examined. While one study observed an in-
creased risk of DENV-induced thrombocytopenia with wild-type but not low-producer MBL genotypes (45), another found no effect of MBL variation on the risk of severe dengue infection (46). However, the vast majority of patients from these studies were experiencing secondary dengue infection, when cross-reactive complement-fixing antibodies are present. MBL opsonization could protect against primary DENV infection (when anti-DENV antibodies are absent or at low levels) yet be overshadowed during secondary DENV infection when antibody-mediated classical pathway-dependent complement activation occurs. At present, it is poorly understood why the majority (up to almost 90% in some studies) of primary DENV infections are asymptomatic (47–49).

Prospective cohort studies in children with preillness and acute plasma samples will be required to assess how a relative MBL deficiency impacts the severity of a primary DENV infection. Somewhat surprisingly, MBL in serum from donor 1 variably neutralized four serotypes of insect-cell derived DENV. Differential binding and neutralization of diverse HCV genotypes by MBL have also been observed (36). Among the DENV serotypes, DENV-4 is the most antigenically distinct (50). As the recognition of targets by MBL relies on surface-exposed carbohydrates, the extent of N-linked glycosylation and the spatial arrangement of glycans could influence susceptibility to MBL recognition and neutralization. Alternatively, differential maturation among
DENV serotypes could affect retention and display of the prM glycoprotein on the virion and impact MBL binding and neutralization. Studies with different DENV serotypes produced in cells that overexpress furin are planned to address how mutation impacts MBL-dependent neutralization.

Not all of our DENV neutralization studies with human serum containing different levels of MBL were readily explained. Whereas reconstitution of serum from donor 2 with purified MBL restored neutralization of insect cell-derived DENV-2, addition of even higher concentrations of purified MBL to serum from donor 2 failed to inhibit mammalian cell-derived DENV-2, yet complementation with low concentrations of serum from donor 1 did. Although additional studies are warranted, purified human MBL may interact with downstream complement proteins (e.g., MASP-2) in the serum from donor 2, albeit with lower affinity compared to the native MBL from donor 1. As another example, we also observed differential neutralizing capacity of sera from individuals (donors 3, 7, and 12 or donors 6, 10, and 13) with similar plasma MBL levels and no difference in C4 levels and CH50 activity. In contrast to wild-type MBL, which comprises a mixture of higher-order 200- to 700-kDa oligomers, some MBL point mutation variants preferentially form low-molecular-mass (120- to 130-kDa) complexes in circulation; these complexes do not bind well to mannan and activate the lectin pathway less efficiently (15). Variability in the oligomeric state of circulating MBL among individuals independently could contribute to differences in relative neutralization in the setting of similar MBL levels. Ficolin is another pattern recognition molecule of the lectin pathway whose blood levels vary among individuals due to genetic polymorphisms (51). As serum MASPs also associate with ficolins (10), variation in ficolin levels could differentially sequester MASPs and explain some of the discordant results.

Overall, our studies support the hypothesis that MBL contributes to protection against DENV infection. The interplay between allelic variations of MBL, the specific viral serotypes, and the type of infection (primary versus secondary) could impact the severity of DENV infection. Further prospective clinical studies are warranted to investigate the precise role of MBL deficiency and its effects on DENV infection in humans.

MATERIALS AND METHODS

Cell lines, sera, and reagents. BHK21-15 and Vero T144 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma) supplemented with 10% fetal bovine serum (FBS) (Omega Scientific), 100 IU/ml penicillin, 100 μg/ml streptomycin, 10 mM HEPES (pH 7.3), and 10 mM nonessential amino acids (Cellgro) at 37°C. C6/36 Aedes albopictus mosquito cells were grown in Leibovitz-15 (Sigma) medium supplemented with 10% FBS and 10 mM HEPES at 25°C. Fresh human blood samples were collected in glass tubes and allowed to clot at room temperature for 30 minutes. After centrifugation (830 g) for 10 minutes at 4°C, sera were aliquoted and frozen at −80°C. Serum samples were thawed on the day of analysis. Sera from wild-type C57BL/6 mice and congenic complement-deficient (MBL-A/C−/−, MASP-2−/−, C1q−/−, C4−−, C3−−, C4−− × C4−− [C3/C4 DKO], C5−−, B−−, and B−−) and antibody-deficient (RAG1−/−) mice were obtained as previously described (25). Enzon Pharmaceuticals provided the purified recombinant human MBL (27) as a generous gift.

Blood samples from subjects in the United States were obtained with informed consent and approval by the Washington University institutional review board. Some human samples were obtained in Denmark from anonymous blood donors with informed consent according to the Danish law of blood donation.

FIG 6 MBL neutralizes insect cell-derived DENV serotypes 1, 3, and 4. (A) C6/36 cell-derived DENV-1, -3, and -4 were preincubated with 2% (vol/vol) wild-type mouse serum in the presence or absence of mannan (100 μg/ml). The virus was added to Vero cells, and infectivity was determined 48 hours (for DENV-1 and -4) or 60 hours (for DENV-3) later by a focus-forming assay. Neutralization was calculated based on reduction of the number of foci compared to the value in heat-inactivated (HI) serum. Error bars indicate SEM for 5 independent experiments performed in duplicate. (B) C6/36 cell-derived DENV-1, -3, and -4 were incubated with purified human MBL (3 μg/ml) in the presence or absence of mannan (100 μg/ml) prior to addition to a monolayer of Vero cells. Data are presented as percent neutralization (percent reduction of the number of foci compared to the value in buffer alone) in a given condition. Error bars indicate SEM for 5 or 6 independent experiments performed in duplicate. (C) C6/36 cell-derived DENV-1, -3, and -4 were preincubated with 10% (vol/vol) naive human serum (donor 1 or donor 2) in the absence or presence of 1 M mannan or 1.36 μg/ml purified human MBL. Neutralization was calculated based on reduction of the number of foci compared to the value in heat-inactivated (HI) serum. Error bars indicate SEM for 5 independent experiments performed in duplicate. Values that are significantly different are indicated by brackets and asterisks as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
MBL genotyping. The single-nucleotide polymorphisms in the promotor region at positions −550 (H/L variants) and −221 (X/Y variants), in the 5′ noncoding region at position +4 (P/Q variants) and in codons 54 (allele B), 57 (allele C), and 52 (allele D) in exon 1 of the MBL2 gene were identified as previously described (52).

Virus stocks. DENV serotype 1 (DENV-1) (16007), serotype 2 (DENV-2) (16681), serotype 3 (DENV-3) (UNC 3043), serotype 4 (DENV-4) (1036), and WNV (New York 1999) were propagated in C6/36 or Vero cells to generate insect cell- or mammalian cell-derived virus stock, respectively. In some experiments, DENV-2 was cultured in freshly isolated human peripheral blood monocytes or monocyte-derived dendritic cells as previously described (33).

Virus neutralization. DENV-2 or WNV (10^2 PFU of DENV-2; 10^3 PFU of WNV) was incubated with naïve mouse or human serum (fresh or heat inactivated at 56°C for 30 min) or purified recombinant human MBL diluted in gelatin veronal buffer with Mg^2+ and Ca^2+ (GVB +++; Complement Technology) for 1 h at 37°C. Samples were added to a monolayer of BHK21-15 cells and incubated for 1 h at 37°C. Cells were washed, overlaid with 1% low-melting-point agarose (SeaPlaque; Lonza) in minimal essential medium (MEM) containing 4% fetal bovine serum (FBS), and cultured for 3 (WNV) or 4 (DENV-2) days at 37°C. Following formaldenhyde (10%) fixation and crystal violet staining, plaques were scored visually. For studies with DENV-1, -3, and -4, 10^3 focus-forming units (FFU) of virus were incubated with serum or purified recombinant human MBL for 1 h at 37°C as described above. Samples were added to a monolayer of Vero cells and incubated for 1 h at 37°C. Cells were washed and overlaid with 1% methylcellulose mixed with DMEM containing 5% FBS and incubated for 48 (DENV-1 and -4) or 60 (DENV-3) hours. Monolayers were washed thrice with PBS to remove methylcellulose, fixed with 1% paraformaldehyde in PBS for 10 minutes at room temperature, rinsed, and permeabilized in Perm Wash (phosphate-buffered saline [PBS], 0.1% saponin, and 0.1% BSA). Infected-cell foci were stained by incubating cells with the fluorivirus cross-reactive MAb WNV-E18 (54) (1 μg/ml) and quantitated as described previously (34). In some experiments, viruses were incubated with serum or MBL in the presence or absence of 100 μg/ml mannan or 1 M mannose prior to the addition to cells.

MBL-DENV capture ELISA. MBL binding to DENV was evaluated using a virus capture ELISA with Mab-coated wells on microtiter plates as described previously (25) with the following modifications: the wells on microtiter plates were adsorbed with an anti-DENV prM protein-specific MAb H77.16 (56) (10 microtiter plates were adsorbed with an anti-DENV prM protein-specific MAb H77.16 (56) (1)

Hemolysis assay for serum C4. Serial dilutions of serum and purified C4 (Complement Technology) were prepared in DGBV ++ (2.5 mM Bar-bital sodium, 139 mM dextrose, 71 mM NaCl, 0.1% [wt/vol] gelatin, 0.15 mM CaCl2, and 1 mM MgCl2). Ten microliters of diluted serum or a C4 standard was added to a tube containing 476 μl DGBV ++, 11 μl of antibody-coated sheep erythrocytes (EA) (5 × 10^8 cells/ml) (Complement Technology), and 3 μl of C4-deficient guinea pig serum (Complement Technology). The tubes were incubated for 30 minutes at 37°C and then centrifuged for 5 minutes at 830 × g. The OD of the supernatant was measured at 414 nm. C4 concentrations were calculated from a standard curve.

CH50 assay. The amount of hemolytic complement in serum was measured by the method of Giclas (57) to obtain the CH50 values.

Statistical analysis. Data sets were compared using a two-tailed, unpaired t test. Multiple comparisons were performed using an analysis of variance (ANOVA) test. Correlation coefficients were estimated based on the Pearson product-moment correlation using Prism software (GraphPad Software). Statistical significance was achieved when P values were <0.05.

ACKNOWLEDGMENTS

This work was supported by the Midwest Regional Centers for Excellence for Biodefense and Emerging Infectious Disease Research (U54-AI057160) and a cooperative agreement (W81XWH-07-2-0067) between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense (DoD). P. Avirutnan was supported by an NIH postdoctoral training grant from the Division of Rheumatology in the Department of Medicine, Washington University School of Medicine and a grant from Mahidol University.

We are grateful to all of the healthy volunteers for providing sera used in this study, J. Brien and B. Shrestha for providing DENV-1, -3, and -4 stocks, and T. Pierson and A. Fuchs for experimental advice and constructive criticisms. We thank Omeros, Inc., for shipment of the MASP-2−/− mice, X. Wu and E. Moulton for the C3−/− × C4−/− DKO mice, and Lee Greenberger (Enzon, Inc.) for providing the purified human MBL protein.

The views expressed are those of the authors and should not be construed as representing the positions of the U.S. Army or DoD.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00276-11/-/DCSupplemental.

Figure S1, TIF file, 0.3 MB.
Figure S2, TIF file, 0.4 MB.
Figure S3, TIF file, 0.6 MB.

REFERENCES

1. Thomas SJ, Endy TP. 2011. Critical issues in dengue vaccine development. Curr. Opin. Infect. Dis. 24:442–450.
2. Nimmannitya S. 1987. Clinical spectrum and management of dengue haemorrhagic fever. Southeast Asian J. Trop. Med. Public Health 18:392–397.
3. Martina BE, Koraka P, Osterhaus AD. 2009. Dengue virus pathogenesis: an integrated view. Clin. Microbiol. Rev. 22:564–581.
4. Heinz FX, Allison SL. 2003. Flavivirus structure and membrane fusion. Adv. Virus Res. 59:63–97.
5. Pokladova E, et al. 2008. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493.
6. Tassaneeritirip B, et al. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197:823–829.
7. van der Schaar HM, et al. 2008. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog. 4:e1000244.
8. Mackenzie JM, Westaway EG. 2001. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75:10787–10799.
9. Kuhn RJ, et al. 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725.
10. Sorensen R, Thiel S, Jensenius JC. 2005. Mannan-binding-lectin-associated serine proteases, characteristics and disease associations. Springer Semin. Immunopathol. 27:299–319.

11. Dumesbre-Pérard C, et al. 2008. Aspergillus conidia activate the complement by the mannann-binding lectin C2 bypass mechanism. J. Immunol. 181:7100–7105.

12. Matsushita M, Fujita T. 1995. Cleavage of the third component of complement (C3) by mannann-binding protein-associated serine protease (MASP) with subsequent complement activation. Immunobiology 194:443–448.

13. Selander B, et al. 2006. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J. Clin. Invest. 116:1423–1434.

14. Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. 2009. Mannan-binding lectin and innate immunity. Immunol. Rev. 230:9–21.

15. Garred P, Larsen F, Madsen HO, Koch C. 2003. Mannan-binding lectin deficiency—revisited. Mol. Immunol. 40:73–84.

16. Degen SE, Jensenius JC, Thiel S. 2011. Disease-causing mutations in genes of the complement system. Am. J. Hum. Genet. 88:695–705.

17. Eisen DP, Minchinton RM. 2003. Impact of mannann-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37:1496–1505.

18. Chong WP, et al. 2005. Mannan-binding lectin in chronic hepatitis B virus infection. Hepatology 42:1037–1045.

19. Koutsounaki E, et al. 2008. Mannan-binding lectin MBL2 gene polymorphisms and outcome of hepatitis C virus-infected patients. J. Clin. Immunol. 28:495–500.

20. Seppänen M, et al. 2009. Mannan-binding lectin 2 gene polymorphism in recurrent herpes simplex virus 2 infection. Hum. Immunol. 70:218–221.

21. Tan Y, et al. 2009. Association between mannann-binding lectin and HIV infection and progression in a Chinese population. Mol. Immunol. 47:632–638.

22. Avirutnan P, et al. 2006. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J. Infect. Dis. 193:1078–1088.

23. Bokisch VA, Top FH, Jr, Russell PK, Dixon FJ, Müller-Eberhard HJ. 1997. The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N. Engl. J. Med. 289:996–1000.

24. Malasi P. 1987. Complement and dengue haemorrhagic fever/shock syndrome. Southeast Asian J. Trop. Med. Public Health 18:316–320.

25. Fuchs A, et al. 2010. Direct complement restriction of flavivirus infection requires glycan recognition by mannann-binding lectin. Cell Host Microbe 8:186–195.

26. Hacker K, White L, de Silva AM. 2009. N-linked glycans on dengue viruses grown in mammalian and insect cells. J. Gen. Virol. 90:2097–2106.

27. Vorup-Jensen T, et al. 2001. Recombinant expression of human mannann-binding lectin. Int. Immunopharmacol. 1:677–687.

28. Dowd KA, Jost CA, Durbin AP, Whitehead SS, Pierson TC. 2011. A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. 7:e1002111.

29. Lok SM, et al. 2008. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol. 15:312–317.

30. Zhang MX, Kozel TR. 1998. Mannan-specific immunoglobulin G antibodies in normal human serum accelerate binding of C3 to Candida albicans via the alternative complement pathway. Infect. Immun. 66:4845–4850.

31. Zhang MX, Lupan DM, Kozel TR. 1997. Mannan-specific immunoglobulin G antibodies in normal human serum mediate classical pathway initiation of C3 binding to Candida albicans. Infect. Immun. 65:3822–3827.

32. Blanchong CA, et al. 2001. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int. Immunopharmacol. 1:365–392.

33. Gubler DJ, Kuno G, Markoff L. 2007. Flaviviruses, p 1133–1252. In Knipe DM and Howley PM (ed), Fields virology, 5th ed, vol 1. Lippincott Williams and Wilkins, Philadelphia, PA.

34. Fuchs A, Pinto AK, Schwaeble WJ, Diamond MS. 2011. The lectin pathway of complement activation contributes to protection from West Nile virus infection. Virology 412:101–109.

35. Anders EM, Hartley CA, Reading PC, Ezekowitz RA. 1994. Complement-dependent neutralization of influenza virus by a serum mannann-binding lectin. J. Gen. Virol. 75(Part 3):615–622.

36. Brown KS, et al. 2010. Specific interaction of hepatitis C virus glycoproteins with mannann binding lectin inhibits virus entry. Protein Cell 1:664–674.

37. Gadjova M, et al. 2004. Mannan-binding lectin modulates the response to HSV-2 infection. Clin. Exp. Immunol. 138:304–311.

38. Haurum JS, et al. 2003. Complement activation upon binding of mannann-binding protein to HIV envelope glycoproteins. AIDS 7:1307–1313.

39. Ip WK, et al. 2005. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 191:1697–1704.

40. Ji X, et al. 2005. Mannanne-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J. Gen. Virol. 86:2335–2342.

41. Wakimoto H, et al. 2002. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 5:275–282.

42. Ezekowitz RA, Kuhlman M, Groopman JE, Byrn RA. 1989. A human serum mannann-binding protein inhibits in vitro infection by the human immunodeficiency virus. J. Exp. Med. 169:185–196.

43. Kase T, et al. 1999. Human mannann-binding lectin inhibits the infection of influenza A virus without complement. Immunology 97:385–392.

44. Stoermer KA, Morrison TE. 2011. Complement and viral pathogenesis. Virology 411:362–373.

45. Acili-Santos B, et al. 2008. MBL2 gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype. Hum. Immunol. 69:122–128.

46. Loke H, et al. 2002. Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and Fc gamma receptor IIa genes. Am. J. Trop. Med. Hyg. 67:102–106.

47. Balmaseda A, et al. 2010. Trends in patterns of dengue transmission over 4 years in a pediatric cohort study in Nicaragua. J. Infect. Dis. 201:5–14.

48. Burke DS, Nisalak A, Johnson DE,Scott RM. 1988. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 38:172–180.

49. Endy TP, et al. 2002. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am. J. Epidemiol. 156:40–51.

50. Gaunt MW, et al. 2001. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 82:1867–1876.

51. Thiel S. 2007. Complement activating soluble pattern recognition molecules with collagen-like regions, mannann-binding lectin, ficolins and associated proteins. Mol. Immunol. 44:3875–3888.

52. Madsen HO, et al. 1995. Interplay between promoter and structural gene variants control basal serum level of mannann-binding protein. J. Immunol. 155:3013–3020.

53. Boonnak K, et al. 2008. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J. Virol. 82:3939–3951.

54. Oliphant T, et al. 2006. Antibody recognition and neutralization determinants on domains I and II of West Nile virus envelope protein, J. Virol. 80:12149–12159.

55. Gentry MK, Henchal EA, McCown JM, Brandt WE, Dalrymple JM. 1982. Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am. J. Trop. Med. Hyg. 31:548–555.

56. Sabo MC, Luna CW, Prentoe J, et al. 2011. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step. J. Virol. 85:7005–7019.

57. Gidcans PC. 1994. Classical pathway evaluation, p 13.1.1–13.1.26. In Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (ed), Current protocols in immunology, vol 3. John Wiley & Sons, Hoboken, NJ.