Modification of Carbon Nanotubes with Electronegativity Molecules to Control the Adhesion of Low Density Lipoprotein

Juan Esteban Berrio Sierra1,2, Jesús Antonio Carlos Cornelio2, Alejandro García García1, John Bustamante Osorno1 and Lina Marcela Hoyos Palacio1

1Universidad Pontificia Bolivariana, Facultad de Ingenierías, Escuela de Ciencias de la Salud, Grupo de Investigación de Dinámica Cardiovascular, Medellín, Colombia
2Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
3Centro de Investigación en Materiales Avanzados, CIMAV. Alianza Norte 202, Parque de Investigación e Innovación Tecnológica. Apodaca, Nuevo León, México CP 66600

Abstract
Atherosclerosis is a cardiovascular disease that causes accumulation of lipoproteins, which leads to vascular injury and may even cause Acute Myocardial Infarction (AMI). The interaction of vascular endothelium with low - density lipoproteins (LDL) was modified by using two distinct groups of carbon nanotubes (CNTs). The first group was doped with aluminum sulfate ($\text{Al}_2\left(\text{SO}_4\right)_3$) and boric acid (H$_3BO_3$), and the second group was functionalized by chemical route with carboxylic acid (COOH) and glucosamine (C$_6$H$_13$NO$_5$). The catalysts used to grow the CNTs were Nickel (Ni) 50%, Cobalt (Co) 50% and Cobalt Iron (Fe - Co) 10% - 40%, by sol - gel route. Scanning electron microscopy (SEM), Raman, and contact angle were used to characterize CNTs. The Raman spectra of multi - wall carbon nanotubes showed three bands, which are called D (disorder), G (graphitization) and G’ (second harmonic order) which caused by the D band. It is observed that the intensity ratio I$_D$/I$_G$ increases for functionalized CNTs. CNTs grown from nickel and functionalized by chemical route with glucosamine showed low wettability contact angle for the 2h and 18h oxidized LDL samples. CNTs grown from nickel and doped with aluminum sulfate showed an angle of contact with low wettability for the 18h oxidized LDL sample. An association of the sulphate groups in the density of the load and the cooperativity of the load with arginine and lysine rich peptides of the LDL sample were observed. The CNT catalyzed with (Fe - Co) and doped with boric acid evidenced a low strength of adhesion and greater surface tension for the 2h oxidized LDL sample. An association of the sulphate groups in the density of the load and the cooperativity of the load with arginine and lysine rich peptides of the LDL sample were observed. The obtained CNT structures are presented as a possible devise coating with therapeutic potential to avoid the progression of atherosclerosis.

Keywords: Carbon nanotube; Low - density lipoproteins (LDL); Functionalization; Electronegativity molecules

Introduction
Cardiovascular diseases are the main cause of death in Western societies, among which atherosclerosis stands out [1,2]. This is a chronic inflammatory process that is characterized by morphological and functional changes in the vascular wall. Resulting in the reduction of the blood flow, associated with a phenomenon of platelet aggregation and thrombosis [3-6], where low density lipoproteins (LDL) are special markers that can be recognized and accepted by endothelium which leads to arterial hardening and occlusion.

Nanotechnology offers new alternatives to find a solution to this disease [7-9]. New biocompatible materials possess nano - metric scales that prevent vascular restenosis, reducing the atheroma [10-12]. CNTs have received enormous attention in biomedical applications such as drug delivery agents, biosensors, bone material scaffolds and even as neuronal growth substrate [13-15]. CNTs can be modified by adding functional groups to enhance their hydrophobicity and improve their compatibility with any target tissue [16-18].

A well - established and efficient method to functionalize the nanotubes is to subject them to prolonged sonication at room temperature, in a mixture of concentrated sulfuric acid and nitric acid. The reaction starts at end caps of the CNTs, due to strong pressure from the hexagon - heptagon pairs, the end caps are quickly removed, leaving open end tubes functionalized with carboxylic acid groups (COOH) [19].

Modification of CNTs doped with molecules of aluminum sulfate ($\text{Al}_2\left(\text{SO}_4\right)_3$), boric acid (H$_3BO_3$), and functionalized by chemical route with carboxylic acid (COOH) and glucosamine (C$_6$H$_13$NO$_5$) are described in this article. Characterization of the obtained CNT structures was achieved by SEM, Raman, and contact angle analysis.

Methodology
Carbon nanotube synthesis
CNTs were synthesized by chemical vapor deposition (CVD). A quartz tube was used to growth CNTs and a furnace equipped with a high precision automated computer temperature controller, which allowed to achieve the desired reaction temperature (700°C). Acetylene was used as the carbon source. The catalysts were nickel (50%), cobalt (50%) and Iron - Cobalt (10% - 40%) for the production of CNTs and the gas mixture was composed of 80 cc/ min nitrogen, 20 cc/ min acetylene and 15 cc/ min hydrogen. The processing sequence included reduction time of 20min, acetylene time of 30min and cooling time of 60 min [20-28].

CNTs functionalization
Functionalization by doping: Doping of the CNTs (Figure 1) was
Subsequently, the sample was placed in a desiccator with controlled atmosphere of nitrogen per 24 h, then the sample was washed 3 times with distilled water and ethanol. After the final wash 134.2 mg of glucosamine was added per each 75 mg of CNT. The sample was washed once again in a desiccator with controlled atmosphere of nitrogen during 72 hrs to avoid product contamination with any grafted polymer or leftover reactive. Once again the sample was washed 3 times with deionized water and left to dry under vacuum [30,31].

LDL oxidation

Based on the research by Evangelia Chnari [32], three different LDL was tested: unmodified LDL (natural state) and mildly and highly oxidized LDL. LDLs were obtained from porcine plasma with a concentration of 10 µg/mL.

The mildly oxidized LDLs were achieved by incubating 50 µg/mL of LDL with 10 µg of copper sulfate (CuSO4) at 37°C for 2 hours. Similarly, the highly oxidized LDL was obtained by exposing it to air and increasing the incubation time to 18 hours. In all cases the oxidation was completed with an aqueous solution of 0.01% w/v ethylenediamine tetra-acetic acid (EDTA).

Characterization

Characterization of the samples was performed in order to know the internal structure, verify the effectiveness of the functionalization and confirm if the functional groups were properly adhered. Methods such as scanning electron microscopy (SEM), Raman spectroscopy, and measurements of contact angle were used.

A scanning electron Microscope JEOL JSM 5300, the beam of electrons was worked with a power of 3 to 5 keV, the electron mode was secondary and retro dispersed a stream of issuance of 75-85 μA and a working distance of 6 mm. The CNT sample was adhered to a microscope sample holder with a carbon double-sided tape. The micro-Raman spectrometer was used with a He - Ne laser (red line) having an approximately energy of 1.92 eV (632.8 nm). Samples were focused and measurements of contact angle were used.

Functionalized CNTs were molded into pills to perform analysis of wettability with the natural state and oxidized LDL to establish the contact angle. The measurements were taken at an ambient temperature of 25°C, and results were shown after one second (24 squares). The contact angle was measured using a Dataphysics OCA 15 Number series device, using a syringe with 1ml capacity to apply a drop on the surface of the CNT sample pill.

Results

CNT doping with (Al2(SO4)3) and (H3BO3)

SEM characterization: The CNTs grown from the nickel (Ni) catalyst and doped with aluminum sulfate (Figure 2a) showed a greater productivity, with tangled growth of structures, and less presence of the catalyzer on the silica deposition base. CNTs grown from the Iron - Cobalt (Fe - Co) catalyst and doped with boric acid (Figure 2c), showed a higher productivity, growth tangled structures, a smaller diameter and less catalyzer presence.

Raman characterization: The Raman spectrum of CNTs grown from the nickel catalyst, and doped with aluminum sulfate (Figure 2b), and CNTs grown from the Iron - Cobalt catalyst and doped with
boric acid (Figure 2d), showed the D band approximately at 1350 cm⁻¹, indicating defects in the nanotube network and disorder of graphite. The G band can be observed at 1560 cm⁻¹ and is attributable to graphitic materials; therefore the I_D / I_G index is 0.83, greater than the I_D / I_G for CNTs doped with boric acid which was equivalent 0.77. Such values indicate deposition of aluminum sulfate on CNTs, and the presence of boric acid in smaller quantities. The result obtained by Hoyos shows widening of the bands caused by the amount of material defects, with shifts toward higher frequencies [23].

Contact angle measurement: The contact angle measurements performed on the CNT pills doped with Al₂(SO₄)₃ (Table 1) and H₃BO₃ (Table 2) shows the results of the measurement taken at 9 seconds of exposure to the 0, 2 and 18 hour oxidized LDLs.

Less strength of adhesion and greater surface tension was observed for CNTs - Al₂(SO₄)₃, with a contact angle of 179.8° for the two hour oxidized LDL. Material coating properties can be attributed to the CNTs - Al₂(SO₄)₃ since it modifies the interaction with the mildly oxidized LDL; avoiding the LDL to reach a complete adherence. Lower bond strength and higher surface tension was observed for CNTs - H₃BO₃ when tested with the highly oxidized (18 hours) LDL with a contact angle of 134.6°. CNTs - H₃BO₃ it is a material that as a coating modifies the surface of the CNT, retaining the highly oxidized LDL, therefore this material should be considered as a therapeutic option by conducting previous studies of biocompatibility.

Carboxylic acid (COOH) and Glucosamine (C₆H₁₃NO₅) functionalization

Characterization (SEM): The CNTs grown from cobalt (Co) catalyst and functionalized by chemical route with carboxylic acid (COOH) (Figure 3a), and CNTs grown on nickel (Ni) and functionalized by chemical route with glucosamine (C₆H₁₃NO₅) (Figure 3c) presented a lower productivity, a smaller diameter, silica accumulations, and an increased of nonlinear tangled structures.

Raman characterization: Raman spectroscopy of CNTs grown from nickel catalyst and functionalized by chemical route with glucosamine (C₆H₁₃NO₅) (Figure 3d), it can be observe that the first D band is at approximately 1350 cm⁻¹, indicating graphite defects. The G band, located at approximately 1650 cm⁻¹ corresponds to graphitable material. The high ratio I_D / I_G is 1.16 greater than the ratio I_D / I_G 1.07 of carboxylic acid functionalized.
Contact Angle Measurements

Time(s)	Angle(°)	Time(s)	Angle(°)	Time(s)	Angle(°)
1	30.7	1	117.1	1	87.9
3	46.3	3	179.9	3	82.6
6	50.3	6	46.5	6	64.9
9	46.7	9	179.8	9	53.7

Table 1: CNTs doped with Al(SO₄)₃ pills to measure contact angle at different times: a) 0 hours, b) 2 hours, c) 18 hours.

Contact Angle Measurements

Time(s)	Angle(°)	Time(s)	Angle(°)	Time(s)	Angle(°)
1	35.8	1	85.2	1	25.6
3	117.2	3	84.6	3	141.7
6	113.6	6	0	6	135.5
9	113.2	9	0	9	134.6

Table 2: CNTs doped with H₃BO₃ to measure contact angle at different times: a) 0 hours, b) 2 hours, c) 18 hours.

Contact angle measurement: Contact angle measurements done with CNTs grown from nickel and functionalized with glucosamine are shown in Table 3. CNTs catalyzed with cobalt and functionalized with carboxylic acid Table 4. The results show the measurements taken at 9 seconds of exposure to the LDL at 0.2 and 18 hours of oxidation.

Ni - CNTs - C₆H₁₃NO₅ (Table 3) show a low wettability observed with a contact angle after of 115.6° for the 2 hour oxidized LDL, which showed surface modification of functionalized CNTs by high degree of sulfation, increasing the charge density and augmenting LDL binding.

Co - CNTs - COOH (Table 4) presented lower bond strength and higher surface tension at 0 hours with a contact angle of 121.3°. The functionalized CNT with carboxylic acid acts on the native LDL without any structural modification.

The aim of this research for future work will be to perform cytotoxic and biocompatibility analysis as well as *in vivo* experimentation in order to assess the dynamic behavior of the functionalized CNT with the lipoproteins LDL.

Conclusions

The presence of aluminum sulfate and boric acid on the CNTs was confirmed by Raman spectroscopy. Evidence of higher productivity of doped CNTs with tangled structure growth and less presence of catalyzer was observed by SEM micrography. Also, for CNT functionalized by chemical route, lower productivity and presence of silica accumulation were observed.

Electronegativity molecules of the CNTs nickel - aluminum, nickel
Contact Angle Measurements

Table 3: Contact angle measurement pills for CNTs functionalized by chemical route with Ni-CNT-C₆H₄NO₅ at a) 0 hours, b) 2 hours, c) 18 hours.

Time (s)	Angle (°)	Time (s)	Angle (°)	Time (s)	Angle (°)	
a) Ni-CNT-C₆H₄NO₅	b) Ni-CNT-C₆H₄NO₅	c) Ni-CNT-C₆H₄NO₅				
1	65.3	150	1	57.5	1	
3	69.3	3	111	3	101.3	1
6	63.1	6	118.8	6	88.5	1
9	65.5	9	115.6	9	96.7	1

Table 4: Contact angle measurement pills for CNTs functionalized by chemical route with Co-CNT-COOH at a) 0 hours, b) 2 hours, c) 18 hours.

Time (s)	Angle (°)	Time (s)	Angle (°)	Time (s)	Angle (°)	
a) Co-CNT-COOH	b) Co-CNT-COOH	c) Co-CNT-COOH				
1	91.1	1	97.5	1	85.6	1
3	124.8	3	92	3	81.1	1
6	121.5	6	98.4	6	85	1
9	121.3	9	101.9	9	85.1	1

- glucosamine, cobalt - carboxylic showed a contact angle with a low wettability to the 2h oxidized LDL. Sulfate and carboxylic groups exhibit an increase in load density and load cooperativity at the union of the rich lysine - arginine peptides of LDL.

The iron - cobalt - H₂BO₃ and nickel - glucosamine CNTs are electronegative molecules that showed less strength of adhesion and greater surface tension at 18h oxidized LDL. Interaction of lysine - arginine residues with the altered structure ApoB 100 of LDL was also observed. These electronegative molecules possess therapeutic potential for atherosclerosis treatment in the retention of LDL.

Acknowledgments

The authors are grateful to Universidad Pontificia Bolivariana for technical and financial support to carry out this investigation.

References

1. Cassiani CA, Cabrera AG (2009) Síndromes coronarios agudos: epidemiología y diagnóstico. Salud Uninorte 25.

2. Mendis S, Thygesen K, Kuulasmaa K, Giampaoli S, Mährinen M, et al. (2011) World Health Organization definition of myocardial infarction: 2008-09 revision. Int J Epidemiol 40: 139-148.

3. Mendoza Beltrán FC, Isaza Restrepo D, Beltrán Pineda R, Jaramillo Villegas C, Beltrán Bohórquez JR, et al. (2008) Guías Colombianas de Cardiología. Síndrome coronario agudo sin elevación del ST (Angina inestable e infarto agudo del miocardio sin elevación del ST). Rev Colomb Cardiol, 15: 141-232.

4. Carmena R, Duriez P, Fruchart JC (2004) Atherogenic lipoprotein particles in atherosclerosis. Circulation, 109: III - 2.

5. Nakajima K, Nakano T, Tanaka A (2006) The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma. Clínica Chimica Acta, 367: 36-47.

6. Stocker R, Kearney JJ Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84: 1381-1478.

7. Albin A, Mussi V, Parodi A, Ventura A, Principe E, et al. (2010) Interactions of single-wall carbon nanotubes with endothelial cells. Nanomedicine 6: 277-288.

8. Psaros C, Lee R, Margaritis M, Antoniades C (2012) Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Maturitas 73: 52-60.

9. Rouhanizadeh M, Tang T, Li G, Hwang J, Zhou C, et al. (2006) Differentiation of oxidized low density lipoproteins by nanosensors. Sensors and Actuators B: Chemical 114: 788 - 798.

10. Ruenrarangsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: Facing up to complex realities. J Control Release 141: 265-276.

11. Balaguer-Maffagón JR, Pomar-Domingo F, Vilar-Herrero JV, Planas-del Viejo AM, Pérez-Fernández E (2006) Trombosis del stent en la era moderna: incidencia, consecuencias y factores predictores. Revista española de cardiología, 59: 842 - 845.

12. Nebecker JR, Virmani R, Bennett CL, Hoffman JM, Samore MH, et al. (2006) Hypersensitivity cases associated with drug - eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. Journal of the American College of Cardiology 47: 175-181.

13. Ganguporu VK, Capaldi FM (2011) Interactions of carbon nanotube with lipid bilayer membranes. Journal of Nanomaterials.