Direct and inverse approximation theorems in the Besicovitch-Museilak-Orlicz spaces of almost periodic functions

Stanislav Chaichenko, Andrii Shidlich, Tetiana Shulyk

Abstract. In terms of the best approximations of functions and generalized moduli of smoothness, direct and inverse approximation theorems are proved for Besicovitch almost periodic functions whose Fourier exponent sequences have a single limit point in infinity and their Orlicz norms are finite. Special attention is paid to the study of cases when the constants in these theorems are unimprovable.

Keywords: direct approximation theorem, inverse approximation theorem, Jackson type inequality, generalized module of smoothness.

Mathematics Subject Classification (2010): 42A75 42A32 41A17 41A25 26A15

1 Introduction

The establishment of connections between the difference and differential properties of the function being approximated and the value of the error of its approximation by some methods was originated in the well-known works of Jackson (1911) and Bernstein (1912), in which the first direct and inverse approximation theorems were obtained. Subsequently, similar studies were carried out by many authors for various functional classes and for various approximating aggregates, and their results constitute the classics of modern approximation theory. Moreover, the exact results (in particular, in the sense of unimprovable constants) deserve special attention. A fairly complete description of the results on obtaining direct and inverse approximation theorems is contained in the monographs [14, 28, 30, 31], etc.

In spaces of almost periodic functions, direct approximation theorems were established in the papers [8,12,23,24,26], etc. In particular, Prytula [23] obtained direct approximation theorem for Besicovitch almost periodic functions of the order 2 (B_2-a.p. functions) in terms of the best approximations of functions and their moduli of continuity. In [24] and [8], such theorems were obtained, respectively, with moduli of smoothness of B_2-a.p. functions of arbitrary positive integer order and with generalized moduli of smoothness. In [26], direct and inverse approximation theorems were obtained in the Besicovitch-Stepanets spaces BSp.

The main goal of this article is to obtain such theorems in the Besicovitch-Museilak-Orlicz spaces BS_M. These spaces are natural generalizations of the all spaces mentioned above, and the results obtained can be viewed as an extension of these results to the spaces BS_M.

2 Preliminaries

2.1 Definition of the spaces BS_M

Let B^s, $1 \leq s < \infty$, be the space of all functions Lebesgue summable with the sth degrees in each finite interval of the real axis, in which the distance is defined by the equality

$$D_{B^s}(f, g) = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(x) - g(x)|^s \, dx \right)^{1/s}.$$

Further, let T be the set of all trigonometric sums of the form $\tau_N(x) = \sum_{k=1}^{N} a_k e^{i\lambda_k x}$, $N \in \mathbb{N}$, where λ_k and a_k are arbitrary real and complex numbers ($\lambda_k \in \mathbb{R}$, $a_k \in \mathbb{C}$).

An arbitrary function f is called a Besicovitch almost periodic function of order s (or B^s-a.p. function) and is denoted by $f \in B^s$-a.p. $[20, \text{Ch. 5, §10}]$, $[10, \text{Ch. 2, §7}]$, if there exists a sequence of trigonometric sums τ_1, τ_2, \ldots from the set T such that

$$\lim_{N \to \infty} D_{B^s}(f, \tau_N) = 0.$$

If $s_1 \geq s_2 \geq 1$, then (see, for example, [12, 13]) B^{s_1}-a.p.$\subset B^{s_2}$-a.p.$\subset B$-a.p., where B-a.p. := B^1-a.p. For any B-a.p. function f, there exists the average value

$$A\{f\} := \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} f(x) \, dx.$$

The value of the function $A\{f(\cdot)e^{-i\lambda}\}$, $\lambda \in \mathbb{R}$, can be nonzero at most on a countable set. As a result of numbering the values of this set in an arbitrary order, we obtain a set $S(f) = \{\lambda_k\}_{k \in \mathbb{N}}$ of Fourier exponents, which is called the spectrum of the function f. The numbers $A_{\lambda_k} = A_{\lambda_k}(f) = A\{f(\cdot)e^{-i\lambda_k}\}$ are called the Fourier coefficients of the function f. To each function $f \in B$-a.p. with spectrum $S(f)$ there corresponds a Fourier series of the form $\sum_{k} A_{\lambda_k} e^{i\lambda_k x}$. If, in addition, $f \in B^2$-a.p., then the Parseval equality holds (see, for example, [10, Ch. 2, §9])

$$A\{|f|^2\} = \sum_{k \in \mathbb{N}} |A_{\lambda_k}|^2.$$

Further, we will consider only those almost periodic functions from the spaces BS^p, the sequences of Fourier exponents of which have a single limit point at infinity. For such functions f, the Fourier series are written in the symmetric form:

$$S[f](x) = \sum_{k \in \mathbb{Z}} A_k e^{i\lambda_k x}, \quad \text{where} \quad A_k = A_k(f) = A\{f(\cdot)e^{-i\lambda_k}\}, \quad (2.1)$$

$\lambda_0 := 0, \lambda_{-k} = -\lambda_k, |A_k| + |A_{-k}| > 0, \lambda_{k+1} > \lambda_k > 0$ for $k > 0$.

Let $M = \{M_k(t)\}_{k \in \mathbb{Z}}, t \geq 0$, be a sequence of Orlicz functions. In other words, for every $k \in \mathbb{Z}$, the function $M_k(t)$ is a nondecreasing convex function for which $M_k(0) = 0$ and $M_k(t) \to \infty$ as $t \to \infty$. Let $M^* = \{M^*_k(v)\}_{k \in \mathbb{Z}}$ be the sequence of functions defined by the relations

$$M^*_k(v) := \sup\{uv - M_k(u) : u \geq 0\}, \quad k \in \mathbb{Z}.$$
Consider the set $\Gamma = \Gamma(M^*)$ of sequences of positive numbers $\gamma = \{\gamma_k\}_{k \in \mathbb{Z}}$ such that $\sum_{k \in \mathbb{Z}} M_k^\gamma(\gamma_k) \leq 1$. The modular space (or Musilak-Orlicz space) BS_M is the space of all functions $f (f \in B\text{-a.p.})$ such that the following quantity (which is also called the Orlicz norm of f) is finite:

$$\|f\|_M := \|\{A_k\}_{k \in \mathbb{Z}}\|_{l_M(\mathbb{Z})} := \sup \left\{ \sum_{k \in \mathbb{Z}} \gamma_k |A_k(f)| : \gamma \in \Gamma(M^*) \right\}. \hspace{1cm} (2.2)$$

By definition, B-a.p. functions are considered identical in BS_M if they have the same Fourier series.

The spaces BS_M defined in this way are Banach spaces. Functional spaces of this type have been studied by mathematicians since the 1940s (see, for example, the monographs [21], [22], [25]). In particular, the subspaces S_M of all 2π-periodic functions from BS_M were considered in [3, 5]. If all the functions M_k are identical (namely, $M_k(t) \equiv M(t), k \in \mathbb{Z}$), the spaces S_M coincide with the ordinary Orlicz type spaces S_M [15]. If $M_k(t) = \mu_k t^{p_k}, p_k \geq 1, \mu_k \geq 0$, then S_M coincide with the weighted spaces $S_{p, \mu}$ with variable exponents [2].

If all functions $M_k(u) = u^p \left(p^{-1/p} q^{-1/p'} \right)^{p'}, p > 1, 1/p + 1/p' = 1$, then BS_M are the Besicovitch-Stepanets spaces BS^p [26] of functions $f \in B\text{-a.p.}$ with the norm

$$\|f\|_M = \|f\|_{BS^p} = \|\{A_k(f)\}_{k \in \mathbb{N}}\|_{l_p(\mathbb{N})} = \left(\sum_{k \in \mathbb{N}} |A_k(f)|^p \right)^{1/p}. \hspace{1cm} (2.3)$$

The subspaces of all 2π-periodic Lebesgue summable functions from BS^p coincide with the well-known spaces S^p (see, for example, [28, Ch. XI]). For $p = 2$, the sets $BS^p = BS^2$ coincide with the sets of B_2-a.p. functions and the spaces S^p with the ordinary Lebesgue spaces of 2π-periodic square-summable functions, i.e., $S^2 = L^2$.

By G_{λ_n} we denote the set of all B-a.p. functions whose Fourier exponents belong to the interval $(-\lambda_n, \lambda_n)$ and define the value of the best approximation of $f \in BS_M$ by the equality

$$E_{\lambda_n}(f)_p = E_{\lambda_n}(f)_{BS^p} = \inf_{g \in G_{\lambda_n}} \|f - g\|_p. \hspace{1cm} (2.4)$$

2.2 Generalized moduli of smoothness

Let Φ be the set of all continuous bounded nonnegative pair functions $\varphi(t)$ such that $\varphi(0) = 0$ and the Lebesgue measure of the set $\{t \in \mathbb{R} : \varphi(t) = 0\}$ is equal to zero. For an arbitrary fixed $\varphi \in \Phi$, consider the generalized modulus of smoothness of a function $f \in BS_M$

$$\omega_\varphi(f, \delta)_M := \sup_{|h| \leq \delta} \sup \left\{ \sum_{k \in \mathbb{Z}} \gamma_k \varphi(\lambda_k h)|A_k(f)| : \gamma \in \Gamma \right\}, \hspace{1cm} \delta \geq 0. \hspace{1cm} (2.5)$$

Consider the connection between the modulus (2.5) and some well-known moduli of smoothness. Let $\Theta = \{\theta_j\}_{j = 0}^m$ be a nonzero collection of complex numbers such that $\sum_{j=0}^m \theta_j = 0$. We associate the collection Θ with the difference operator $\Delta^\Theta_h(f) = \Delta^\Theta_h(f, t) = \sum_{j=0}^m \theta_j f(t - jh)$ and the modulus of smoothness

$$\omega_\Theta(f, \delta)_M := \sup_{|h| \leq \delta} \|\Delta^\Theta_h(f)\|_{M^*}. $$
Note that the collection \(\Theta(m) = \{\theta_j = (-1)^j \binom{m}{j}, \ j = 0, 1, \ldots, m\} \), \(m \in \mathbb{N} \), corresponds to the classical modulus of smoothness of order \(m \), i.e.,

\[
\omega_{\Theta(m)}(f, \delta)_M = \omega_m(f, \delta)_M.
\]

For any \(k \in \mathbb{Z} \), the Fourier coefficients of the function \(\Delta_h^\theta(f) \) satisfy the equality

\[
|A_k(\Delta_h^\theta(f))| = |A_k(f)| \left| \sum_{j=0}^{m} \theta_j e^{-i\lambda_j h} \right|.
\]

Therefore, taking into account (2.2), we see that for \(\phi \in \Theta(\phi) \), therefore, taking into account (2.2), we see that for \(\omega \phi_m(t) = \sum_{j=0}^{m} \theta_j e^{-i\lambda_j t} \), \(\omega_{\phi_m}(f, \delta)_M = \omega_{\phi_m}(f, \delta)_M \). In particular, for \(\phi_m(t) = 2^m |\sin(t/2)|^m = 2^m \left(1 - \cos(t)\right)^m \), \(m \in \mathbb{N} \), we have \(\omega_{\phi_m}(f, \delta)_M = \omega_m(f, \delta)_M \).

Further, let

\[
F_h(f, t) = f_h(x) := \frac{1}{2h} \int_{t-h}^{t+h} f(u) du
\]

be the Steklov function of a function \(f \in BS_M \). Define the differences as follows

\[
\tilde{\Delta}_h^1(f) := \Delta_h^1(f, t) = F_h(f, t) - f(t) = (F_h - I)(f, t),
\]

\[
\tilde{\Delta}_h^m(f) := \Delta_h^1(\Delta_h^{m-1}(f), t) = (F_h - I)^m(f, t) = \sum_{k=0}^{m} k^{m-k} \binom{m}{k} F_{h,k}(f, t),
\]

where \(m = 2, 3, \ldots \), \(F_{h,0}(f) := f \), \(F_{h,k}(f) := F_h(F_{h,k}(f)) \) and \(I \) is the identity operator in \(BS_M \). Consider the following smoothness characteristics

\[
\tilde{\omega}_m(f, \delta) := \sup_{0 \leq h \leq \delta} \|\tilde{\Delta}_h^m(f)\|_M, \quad \delta > 0. \tag{2.6}
\]

It can be shown [6] that \(\omega_{\tilde{\phi}_m}(f, \delta)_M = \tilde{\omega}_m(f, \delta)_M \) for for \(\phi_m(t) = (1 - \sin(t))^m \), \(m \in \mathbb{N} \), where \(\sin t = \{ \sin(t/2), \text{ when } t \neq 0, 1, \text{ when } t = 0 \} \).

In the general case, moduli similar to (2.5) were studied in [3–5, 8, 11, 19, 26, 32, 34] etc.

3 Main results

3.1 Jackson type inequalities

In this subsection, direct theorems are established for functions \(f \in BS_M \) in terms of the best approximations and generalized moduli of smoothness. In particular, for functions \(f \in BS_M \) with the Fourier series of the form (2.1), we prove Jackson type inequalities of the kind as

\[
E_{\lambda_n}(f)_M \leq K(\tau)\phi(f, \frac{\tau}{\lambda_n})_M, \quad \tau > 0, \quad n \in \mathbb{N}.
\]

Let \(V(\tau), \tau > 0 \), be a set of bounded nondecreasing functions \(\nu \) that differ from a constant on \([0, \tau] \).
Theorem 3.1. Assume that the function \(f \in BS_M^p \) has the Fourier series of the form (2.1). Then for any \(\tau > 0, n \in \mathbb{N} \) and \(\varphi \in \Phi \) the following inequality holds:

\[
E_{\lambda_n}(f)_M \leq K_{n,\varphi}(\tau) \omega_{\varphi}(f, \frac{\tau}{\lambda_n})_M, \tag{3.1}
\]

where

\[
K_{n,\varphi}(\tau) := \inf_{v \in V(\tau)} \frac{v(\tau) - v(0)}{I_{n,\varphi}(\tau, v)}, \tag{3.2}
\]

and

\[
I_{n,\varphi}(\tau, v) := \inf_{k \in \mathbb{N}, k \geq n} \int_0^\tau \varphi\left(\frac{\lambda_k t}{\lambda_n}\right) dv(t). \tag{3.3}
\]

Furthermore, there exists a function \(v_* \in V(\tau) \) that realizes the greatest lower bound in (3.2).

In the spaces \(L_2 \) of \(2\pi \)-periodic square-summable functions, for moduli of continuity \(\omega_m(f; \delta) \) and \(\tilde{\omega}_m(f; \delta) \), such result was obtained by Babenko [7], and Abilov and Abilova [6], respectively. In the spaces \(S^p \) of functions of one and several variables, this result for classical moduli of smoothness was obtained in [27] and [1], respectively. In the Musielak-Orlicz spaces \(S_M \), similar result was obtained for generalized moduli of smoothness in [3].

In the Besicovitch-Stepanets spaces \(BS^p \), a similar theorem was proved in [26]. It was noted above that in the case when all functions \(M_k(u) = u^p\left(p^{-1/p} q^{-1/p'}\right)^p, p > 1, 1/p + 1/p' = 1 \), we have \(BS_M = BS^p \) and \(\|f\|_M = \|f\|_{BS^p} \). In the case \(p = 1 \), the similar equalities \(BS_M = BS^1 \) and \(\|f\|_M = \|f\|_{BS^1} \) obviously can be obtained if all \(M_k(u) = u, k \in \mathbb{Z} \), and the set \(\Gamma \) is a set of all sequences of positive numbers \(\gamma = \{\gamma_k\}_{k \in \mathbb{Z}} \) such that \(\|\gamma\|_{l_{\infty}(\mathbb{Z})} = \sup_{k \in \mathbb{Z}} \gamma_k \leq 1 \). Comparing estimate (3.1) with the corresponding result of Theorem 1 from [26], we see that in the case when \(BS_M = BS^1 \), the inequality (3.1) is unimprovable on the set of all functions \(f \in BS^1 \), \(f \neq \text{const} \). Furthermore, Theorem 1 [26] implies the existence of the function \(v_* \in V(\tau) \) that realizes the greatest lower bound in (3.2).

Proof. In the proof of Theorem 3.1, we mainly use the ideas outlined in [7, 16, 17, 26, 27], taking into account the peculiarities of the spaces \(BS_M \). From (2.2) and (2.4), it follows that for any \(f \in BS_M \) with the Fourier series of the form (2.1), we have

\[
E_{\lambda_n}(f)_M = \|f - S_n(f)\|_M = \sup \left\{ \sum_{|k| \geq n} \gamma_k |A_k(f)| : \gamma \in \Gamma \right\}, \tag{3.4}
\]

where \(S_n(f) := \sum_{|k| < n} A_k(f)e^{i\lambda_k x} \).

By the definition of supremum, for arbitrary \(\varepsilon > 0 \) there exists a sequence \(\bar{\gamma} \in \Gamma, \bar{\gamma} = \bar{\gamma}(\varepsilon) \), such that the following relations holds:

\[
\sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)| + \varepsilon \geq \sup \left\{ \sum_{|k| \geq n} \gamma_k |A_k(f)| : \gamma \in \Gamma \right\}.
\]

For arbitrary \(\varphi \in \Phi \) and \(h \in \mathbb{R} \), consider the sequence of numbers \(\{\varphi(\lambda_k h)A_k(f)\}_{k \in \mathbb{Z}} \). If there exists a function \(\Delta^p_k(f) \in B\text{-a.p.} \) such that for all \(k \in \mathbb{Z} \)

\[
A_k(\Delta^p_k(f)) = \varphi(\lambda_k h)A_k(f), \tag{3.5}
\]
then here and below we denote by \(\|\Delta_h^\phi(f)\|_M \) the Orlicz norm (2.2) of the function \(\Delta_h^\phi(f) \). If such a B-a.p function \(\Delta_h^\phi(f) \) does not exist, then to simplify notation we also use the notation \(\|\Delta_h^\phi(f)\|_M \), meaning by it the \(l_M \)-norm of the sequence \(\{\varphi(\lambda_k h) A_k(f)\}_{k \in \mathbb{Z}} \). In view of (2.2) and (3.5), we have

\[
\|\Delta_h^\phi f\|_M \geq \sup \left\{ \sum_{|k| \geq n} \gamma_k \varphi(\lambda_k h) |A_k(f)| : \gamma \in \Gamma \right\} = \sum_{|k| \geq n} \bar{\gamma}_k \varphi(\lambda_k h) |A_k(f)|
\]

\[
= \frac{I_{n, \varphi}(\tau, v)}{v(\tau) - v(0)} \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)| + \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)| \left(\varphi(\lambda_k h) - \frac{I_{n, \varphi}(\tau, v)}{v(\tau) - v(0)} \right).
\]

For any \(u \in [0, \tau] \), we get

\[
\|\Delta_h^\phi f\|_M \geq \frac{I_{n, \varphi}(\tau, v)}{v(\tau) - v(0)} \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)|
\]

\[
+ \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)| \left(\varphi\left(\frac{\lambda_k u}{\lambda_n}\right) - \frac{I_{n, \varphi}(\tau, v)}{v(\tau) - v(0)} \right). \tag{3.6}
\]

The both sides of inequality (3.1) are nonnegative and, in view of the boundedness of the function \(\varphi \), the series on its right-hand side is majorized on the entire real axis by the absolutely convergent series \(K(\varphi) \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)| \), where \(K(\varphi) := \max_{u \in \mathbb{R}} \varphi(u) \). Then integrating this inequality with respect to \(dv(u) \) from 0 to \(\tau \), we get

\[
\int_0^\tau \|\Delta_h^\phi f\|_M dv(u) \geq I_{n, \varphi}(\tau, v) \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)|
\]

\[
+ \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)| \left(\int_0^\tau \varphi\left(\frac{\lambda_k u}{\lambda_n}\right) dv(u) - I_{n, \varphi}(\tau, v) \right).
\]

By virtue of the definition of \(I_{n, \varphi}(\tau, v) \), we see that the second term on the right-hand side of the last relation is nonnegative. Therefore, for any function \(v \in V(\tau) \), we have

\[
\int_0^\tau \|\Delta_h^\phi f\|_M dv(u) \geq I_{n, \varphi}(\tau, v) \sum_{|k| \geq n} \bar{\gamma}_k |A_k(f)|
\]

\[
\geq I_{n, \varphi}(\tau, v) \left(\sup \left\{ \sum_{|k| \geq n} \gamma_k |A_k(f)| : \gamma \in \Gamma \right\} - \varepsilon \right),
\]

wherefrom due to an arbitrariness of choice of the number \(\varepsilon \), we conclude that

\[
\int_0^\tau \|\Delta_h^\phi f\|_M dv(u) \geq I_{n, \varphi}(\tau, v) E_{\lambda_n}(f) M,
\]
Hence,

$$E_{\lambda_n}(f)_{M} \leq \frac{1}{I_{n,\varphi}(\tau,v)} \int_{0}^{\tau} \| \Delta_{\lambda_n}^{\varphi} f \|_{M} dv(u) \leq \frac{1}{I_{n,\varphi}(\tau,v)} \int_{0}^{\tau} \omega_{\varphi} \left(f, \frac{u}{\lambda_n} \right)_{M} dv(u), \quad (3.7)$$

whence taking into account nondecreasing of the function ω_{φ}, we immediately obtain relation (3.1).

Now we consider some realisations of Theorem 3.1. Setting $\varphi_{\alpha}(t) = 2^{\alpha}(1 - \cos t)\frac{\alpha}{2}$, $\alpha > 0$, $\omega_{\varphi_{\alpha}}(f,\delta)_{M} =: \omega_{\alpha}(f,\delta)_{M}$, $\tau = \pi$, and $v(u) = 1 - \cos u$, $u \in [0, \pi]$, we get the following assertion.

Corollary 3.1. For arbitrary numbers $n \in \mathbb{N}$ and $\alpha > 0$, and for any function $f \in BS_{M}$ with the Fourier series of the form (2.1), the following inequalities holds:

$$E_{\lambda_n}(f)_{M} \leq \frac{1}{2^\alpha I_{n,\alpha}(\frac{\alpha}{2})} \int_{0}^{\pi} \omega_{\alpha} \left(f, \frac{u}{\lambda_n} \right)_{M} \sin u \, du, \quad (3.8)$$

where

$$I_{n,\alpha}(\frac{\alpha}{2}) = \inf_{k \in \mathbb{N}, k \geq n} \int_{0}^{\pi} \left(1 - \cos \frac{\lambda_k u}{\lambda_n} \right)^{\frac{\alpha}{2}} \sin u \, du. \quad (3.9)$$

If, in addition $\alpha \frac{\alpha}{2} \in \mathbb{N}$, then

$$I_{n,\alpha}(\frac{\alpha}{2}) = \frac{2^{\alpha+1}}{\alpha + 1}, \quad (3.10)$$

and the inequality (3.8) cannot be improved for any $n \in \mathbb{N}$.

Proof. Estimate (3.8) follows from (3.7). In [27, relation (52)], it was shown that for any $\theta \geq 1$ and $s \in \mathbb{N}$ the following inequality holds:

$$\int_{0}^{\pi} (1 - \cos \theta t)^{s} \sin t \, dt \geq \frac{2^{s+1}}{s+1},$$

which turns into equality for $\theta = 1$. Therefore, setting $s = \alpha \frac{\alpha}{2}$ and $\theta = \frac{\lambda_n}{\nu}$, $\nu = n, n+1, \ldots$, and the monotonicity of the sequence of Fourier exponents $\{\lambda_k\}_{k \in \mathbb{Z}}$, we see that for $\frac{\alpha}{2} \in \mathbb{N}$, indeed, the equality (3.10) holds.

Let us prove that in this case, the constant $\frac{2^{s+1}}{2^{s+1}}$ in inequality (3.8) is unimprovable for $\frac{\alpha}{2} \in \mathbb{N}$. It suffices to verify that the function

$$f^{*}(x) = \gamma + \beta e^{-\lambda_n x} + \delta e^{\lambda_n x}, \quad (3.11)$$

where γ, β and δ are arbitrary complex numbers, satisfies the equality

$$E_{\lambda_n}(f^{*})_{M} = \frac{\alpha + 1}{2^{\alpha+1}} \int_{0}^{\pi} \omega_{\alpha} \left(f^{*}, \frac{t}{\lambda_n} \right)_{M} \sin t \, dt, \quad \alpha > 0. \quad (3.12)$$
We have $E_{\lambda_n}(f^*)_M = |\beta| + |\delta|$, the function $\|\Delta_{\lambda_n}^\alpha f^*\|_M = 2^\frac{\alpha}{2}(|\beta| + |\delta|)(1 - \cos u)^\frac{\alpha}{2}$ does not decrease with respect to u on $[0, \pi]$. Therefore, $\omega_\alpha(f^*, \frac{u}{\lambda_n})_M = \|\Delta_{\lambda_n}^\alpha f^*\|_M$, and

$$\frac{2^{\alpha+1}}{2^\alpha + 1} E_{\lambda_n}(f^*)_M = \int_0^\pi \omega_\alpha(f^*, \frac{t}{\lambda_n})_M \sin t \, dt$$

$$= (|\beta| + |\delta|)(\frac{2^{\alpha+1}}{2^\alpha + 1} - 2^\frac{\alpha}{2} \int_0^\pi (1 - \cos t)^\frac{\alpha}{2} \sin t \, dt) = 0$$

It was shown in [27] that $I_n(s) \geq 2$ when $s \geq 1$ and $I_n(s) \geq 1 + 2^{s-1}$ when $s \in (0, 1)$. Combining these two estimates and (3.8), we obtain the following statement, which establishes a Jackson-type inequality with a constant uniformly bounded in the parameter $n \in \mathbb{N}$.

Corollary 3.2. Assume that the function $f \in BS_M$ has the Fourier series of the form (2.1) and $\|f - A_0(f)\|_M \neq 0$. Then for any $n \in \mathbb{N}$ and $\alpha > 0$,

$$E_{\lambda_n}(f)_M < \frac{4}{3 \cdot 2^{\alpha/2}} \omega_\alpha(f, \frac{\pi}{\lambda_n})_M.$$ (3.13)

Furthermore, in the case where $\alpha = m \in \mathbb{N}$, the following more accurate estimate holds:

$$E_{\lambda_n}(f)_M < \frac{4 - 2\sqrt{2}}{2m^2} \omega_m(f, \frac{\pi}{\lambda_n})_M.$$ (3.14)

Proof. Relation (3.14) follows from the estimate $I_n(\frac{\alpha}{2}) \geq 1 + 1/\sqrt{2}$, which is a consequence of the above estimates for the value of $I_n(s)$ in the case $\alpha = m \in \mathbb{N}$ [27].

If the weight function $v_2(t) = t$, then we obtain the following assertion:

Corollary 3.3. Assume that the function $f \in BS_M$ has the Fourier series of the form (2.1) and $\alpha \geq 1$. Then for any $0 < \tau \leq \frac{3\pi}{4}$ and $n \in \mathbb{N}$,

$$E_{\lambda_n}(f)_M \leq \frac{1}{2^\alpha} \int_0^\tau \omega_\alpha(f, \frac{t}{\lambda_n})_M \, dt.$$ (3.15)

Relation (3.15) becomes equality for the function f^* of the form (3.11).

Inequalities (3.8) and (3.15) can be considered as an extension of the corresponding results of Serdyuk and Shidlich [26] to the Besicovitch-Musielak spaces BS_M, and they coincide with them in the case $BS_M = BS^1$. In the spaces S^p of functions of one and several variables, analogues of Theorem 3.1 and Corollaries 3.1 and 3.3 were proved in [27] and [1], respectively. The inequalities of this type were also investigated in [8, 17, 27, 32, 34], etc.
Proof. From inequality (3.7), it follows that

$$E_{\lambda_n}(f)_{M} \leq \frac{1}{2^{\alpha}} I_n^*(\frac{\alpha}{2}) \int_0^\tau \omega_\alpha(f, \frac{t}{\lambda_n}) \, dt,$$

where

$$I_n^*(\frac{\alpha}{2}) := \inf_{k \in \mathbb{N}, k \geq n} \int_0^\tau \left(1 - \cos \frac{\lambda_k t}{\lambda_n}\right)^{\frac{\alpha}{2}} \, dt, \quad \alpha > 0, \quad n \in \mathbb{N}.$$

In [35], it is shown that for the function $F_\alpha(x) := \frac{1}{x} \int_0^x |\sin t|^\alpha \, dt$, any $h \in (0, \frac{3\pi}{4})$ and $\alpha \geq 1$, the following relation is true:

$$\inf_{x \geq h/2} F_\alpha(x) = F_\alpha(h/2). \quad (3.16)$$

Since for $h = \frac{\lambda_k}{\lambda_n} \geq 1$ ($k \geq n$)

$$\int_0^\tau \left(1 - \cos \frac{\lambda_k t}{\lambda_n}\right)^{\frac{\alpha}{2}} \, dt = 2^\alpha \int_0^\tau \left|\sin \frac{\lambda_k t}{2\lambda_n}\right|^\alpha \, dt = 2^\alpha \tau F_\alpha\left(\frac{\lambda_k \tau}{2\lambda_n}\right),$$

from (3.16) (with $\tau \in (0, \frac{3\pi}{4})$ and $\alpha \geq 1$) we obtain

$$I_n^*(\frac{\alpha}{2}) = \inf_{k \in \mathbb{N}, k \geq n} \int_0^\tau \left(1 - \cos \frac{\lambda_k t}{\lambda_n}\right)^{\frac{\alpha}{2}} \, dt = \inf_{k \in \mathbb{N}, k \geq n} 2^\alpha \int_0^\tau \left|\sin \frac{\lambda_k t}{2\lambda_n}\right|^\alpha \, dt = 2^\alpha \int_0^\tau \sin^\alpha \frac{t}{2} \, dt.$$

For the functions f^* of the form (3.11), the equality

$$E_{\lambda_n}(f^*)_{M} = \frac{1}{2^{\alpha}} \int_0^\tau \omega_\alpha\left(f^*, \frac{t}{\lambda_n}\right)_{M} \, dt.$$

is verified similarly to the proof of equality (3.12). \hfill \Box

In the case $\varphi(t) = \varphi_m(t) = (1 - \text{sinc} t)^m$, $m \in \mathbb{N}$, where, by definition, $\text{sinc} t = \{\sin t/t, \text{ if } t \neq 0; \quad 1, \text{ if } t = 0\}$, for $\tau = \pi$ and $v(u) = 1 - \cos u$, $u \in [0; \pi]$, from relation (3.7) we get

$$E_{\lambda_n}(f)_{M} \leq \frac{1}{I_n^*(m)} \int_0^\pi \tilde{\omega}_m\left(f, \frac{u}{\lambda_n}\right)_{M} \sin u \, du,$$

where

$$I_n^*(m) = \inf_{k \in \mathbb{N}, k \geq n} \int_0^\pi \left(1 - \text{sinc} \frac{\lambda_k u}{\lambda_n}\right)^m \sin u \, du.$$

Taking into account the estimation [33]

$$1 - \text{sinc} \left(\frac{\lambda_k u}{\lambda_n}\right) \geq 1 - \frac{\sin u}{u} \geq \left(\frac{u}{\pi}\right)^2, \quad k \geq n, \quad u \in [0; \pi],$$

9
we have
\[
I_n(m) \geq \int_0^\pi \left(1 - \text{sinc} \, u\right)^m \sin u \, du \geq \frac{1}{\pi^{2m}} \int_0^\pi u^{2m} \sin u \, du
\]
\[
= \frac{2m!}{\pi^{2m}} \left(\sum_{j=0}^{m} (-1)^j \frac{\pi^{2m-2j}}{(2m-2j)!} + \frac{\pi^{2m}}{2m!} (-1)^m \right) := \frac{2m!}{\pi^{2m}} K(m).
\]

Thereby, the following corollary follows from Theorem 3.1.

Corollary 3.4. For arbitrary numbers \(n \in \mathbb{N} \) and \(m > 0 \), and for any function \(f \in B_{\mathcal{S}_M} \), with the Fourier series of the form (2.1) the following inequalities holds:

\[
E_{\lambda_n}(f) \leq \frac{2^{m-1} \pi^{2m} \lambda_n}{2m! K(m)} \int_0^\pi \tilde{\omega}_m \left(f, \frac{u}{\lambda_n}\right) \sin u \, du,
\]

where
\[
K(m) = \sum_{j=0}^{m} (-1)^j \frac{\pi^{2m-2j}}{(2m-2j)!} + \frac{\pi^{2m}}{2m!} (-1)^m.
\]

In the case \(m = 1 \), we have \(2K(1) = \pi^2 - 4 \) and

\[
E_{\lambda_n}(f) \leq \frac{2}{\pi^2 - 4} \int_0^\pi \tilde{\omega}_1 \left(f, \frac{u}{\lambda_n}\right) \sin u \, du \leq \frac{2 \lambda_n}{\pi^2 - 4} \int_0^\pi \tilde{\omega}_1 \left(f, \frac{u}{\lambda_n}\right) \sin \lambda_n u \, du.
\]

If the weight function \(v_2(t) = u^{m+1} \), then we obtain the following assertion:

Corollary 3.5. Assume that the function \(f \in B_{\mathcal{S}_M} \) has the Fourier series of the form (2.1) and \(m \geq 1 \). Then for any \(0 < \tau \leq \pi \) and \(n \in \mathbb{N} \),

\[
E_{\lambda_n}(f) \leq \pi^{m-1} \left(\frac{2 \lambda_n}{\pi^2 - 4}\right)^m \lambda_n^{\tau/\lambda_n} \int_0^\tau \tilde{\omega}_m \left(f, t\right) t^m \, dt.
\]

Ideed, applying Holder’s inequality, we find

\[
\int_0^\pi \left(1 - \text{sinc} \, \frac{\lambda_k u}{\lambda_n}\right)^m \sin u \, du \geq (m+1) \int_0^\pi \left(1 - \frac{\sin u}{u}\right)^m u^m \, du
\]

\[
= (m+1) \int_0^\pi (u - \sin u)^m \, du \geq \frac{m+1}{\pi^{m-1}} \left(\int_0^\pi (u - \sin u) \, du \right)^m = \frac{m+1}{\pi^{m-1}} \left(\frac{\pi^2 - 4}{2}\right)^m.
\]

In the spaces \(L_2 \) of \(2\pi \)-periodic square-summable functions, for moduli of smoothness \(\tilde{\omega}_m(f; \delta) \), the results of this kind were obtained by Abilov and Abilova [6], and Vakarchuk [32]. Note that in the case \(f \in B_{\mathcal{S}_M} = L_2 \) the inequality (3.18) follows from the result of [6] (see Theorem 1). For \(m = 1 \) and \(f \in L_2 \), the statements of Corollary 3.5 and Theorem 1 from [6] are identical, and the constant in the right side of (3.18) cannot be reduced for every fixed \(n \).
4 Inverse approximation theorem.

Theorem 4.1. Assume that \(f \in BS_M \) has the Fourier series of the form (2.1), the function \(\varphi \in \Phi \) is nondecreasing on an interval \([0, \tau]\) and \(\varphi(\tau) = \max\{\varphi(t) : t \in \mathbb{R}\} \). Then for any \(n \in \mathbb{N} \), the following inequality holds:

\[
\omega_\varphi \left(f, \frac{\tau}{\lambda_n} \right)_M \leq \sum_{\nu=1}^{n} \left(\varphi \left(\frac{\tau \lambda_\nu}{\lambda_n} \right) - \varphi \left(\frac{\tau \lambda_{\nu-1}}{\lambda_n} \right) \right) E_\nu(f)_M. \tag{4.1}
\]

Proof. Let us use the proof scheme from [27] and [3], modifying it taking into account the peculiarities of the spaces \(BS_M \) and the definition of the modulus \(\omega_\varphi \).

Let \(f \in BS_M \). For any \(\varepsilon > 0 \) there exist a number \(N_0 = N_0(\varepsilon) \in \mathbb{N} \), \(N_0 > n \), such that for any \(N > N_0 \), we have

\[
E_{\lambda N}(f)_M = \| f - S_{N-1}(f) \|_M < \varepsilon / \varphi(\tau).
\]

Let us set \(f_0 := S_{N_0}(f) \). Then in view of (3.5), we see that

\[
\| \Delta^\varphi_n(f) \|_M \leq \| \Delta^\varphi_n(f_0) \|_M + \| \Delta^\varphi_n(f - f_0) \|_M
\]

\[
\leq \| \Delta^\varphi_n(f_0) \|_M + \varphi(\tau)E_{\lambda N_0+1}(f)_M < \| \Delta^\varphi_n(f_0) \|_M + \varepsilon. \tag{4.2}
\]

Further, let \(S_{n-1} := S_{n-1}(f_0) \) be the Fourier sum of \(f_0 \). Then by virtue of (3.5), for \(|h| \leq \tau/\lambda_n \), we have

\[
\| \Delta^\varphi_n(f_0) \|_M = \| \Delta^\varphi_n(f_0 - S_{n-1}) + \Delta^\varphi_nS_{n-1} \|_M \leq \| \varphi(\tau)(f_0 - S_{n-1}) \|
\]

\[
+ \sum_{|k| \leq n-1} \varphi(\lambda_k h) |A_k(f)| \|_M \leq \| \varphi(\tau) \sum_{\nu=n}^{N_0} H_\nu + \sum_{\nu=1}^{n-1} \varphi \left(\frac{\tau \lambda_\nu}{\lambda_n} \right) H_\nu \|_M, \tag{4.3}
\]

where \(H_\nu(x) := |A_\nu(f)| + |A_{-\nu}(f)|, \nu = 1, 2, \ldots \).

Now we use the following assertion from [27].

Lemma 4.1 ([27]). Let \(\{c_\nu\}_{\nu=1}^\infty \) and \(\{a_\nu\}_{\nu=1}^\infty \) be arbitrary numerical sequences. Then the following equality holds for all natural \(N_1, N_2 \) and \(N N_1 \leq N_2 < N \):

\[
\sum_{\nu=N_1}^{N_2} a_\nu c_\nu = a_{N_1} \sum_{\nu=N_1}^{N} c_\nu + \sum_{\nu=N_1+1}^{N_2} (a_\nu - a_{\nu-1}) \sum_{i=\nu}^{N} c_i - a_{N_2} \sum_{\nu=N_2+1}^{N} c_\nu. \tag{4.4}
\]

Setting \(a_\nu = \varphi \left(\frac{\tau \lambda_\nu}{\lambda_n} \right) \), \(c_\nu = H_\nu(x) \), \(N_1 = 1 \), \(N_2 = n - 1 \) and \(N = N_0 \) in (4.4), we get

\[
\sum_{\nu=1}^{n-1} \varphi \left(\frac{\tau \lambda_\nu}{\lambda_n} \right) H_\nu(x) = \varphi \left(\frac{\tau \lambda_1}{\lambda_n} \right) \sum_{\nu=1}^{N_0} H_\nu(x)
\]

\[
+ \sum_{\nu=2}^{n-1} \left(\varphi \left(\frac{\tau \lambda_\nu}{\lambda_n} \right) - \varphi \left(\frac{\tau \lambda_{\nu-1}}{\lambda_n} \right) \right) \sum_{i=\nu}^{N_0} H_i(x) - \varphi \left(\frac{\tau \lambda_{\nu-1}}{\lambda_n} \right) \sum_{\nu=n}^{N_0} H_\nu(x).
\]
Therefore,
\[
\left\| \varphi(\tau) \sum_{\nu=n}^{N_0} H_{\nu} + \sum_{\nu=1}^{n-1} \varphi\left(\frac{\tau \lambda_{\nu}}{\lambda_n}\right) H_{\nu} \right\|_M \\
\leq \left\| \varphi(\tau) \sum_{\nu=n}^{N_0} H_{\nu} + \sum_{\nu=1}^{n-1} \left(\varphi\left(\frac{\tau \lambda_{\nu}}{\lambda_n}\right) - \varphi\left(\frac{\tau \lambda_{\nu-1}}{\lambda_n}\right) \right) \sum_{i=\nu}^{N_0} H_i - \varphi\left(\frac{\tau \lambda_{\nu-1}}{\lambda_n}\right) \sum_{\nu=1}^{n} H_{\nu} \right\|_M \\
\leq \sum_{\nu=1}^{n} \left(\varphi\left(\frac{\tau \lambda_{\nu}}{\lambda_n}\right) - \varphi\left(\frac{\tau \lambda_{\nu-1}}{\lambda_n}\right) \right) E_{\lambda_{\nu}}(f_0)_M \quad \text{(4.5)}
\]

Combining relations (4), (4.3) and (4.5) and taking into account the definition of the function f_0, we see that for $|h| \leq \tau/\lambda_n$, the following inequality holds:
\[
\|\Delta^\varphi_k(f)\|_M \leq \sum_{\nu=1}^{n} \left(\varphi\left(\frac{\tau \lambda_{\nu}}{\lambda_n}\right) - \varphi\left(\frac{\tau \lambda_{\nu-1}}{\lambda_n}\right) \right) E_{\lambda_{\nu}}(f)_M + \varepsilon
\]
which, in view of arbitrariness of ε, gives us (4.1).

Consider an important special case when $\varphi(t) = \varphi_\alpha(t) = 2^\alpha \left(1 - \cos t\right)^\alpha = 2^\alpha |\sin(t/2)|^\alpha$, $\alpha > 0$. In this case, the function φ satisfies the conditions of Theorem 4.1 with $\tau = \pi$. Then for $\alpha \geq 1$ using the inequality $x^\alpha - y^\alpha \leq \alpha x^{\alpha-1}(x - y)$, $x > 0, y > 0$ (see, for example, [18, Ch. 1]), and the usual trigonometric formulas, for $\nu = 1, 2, \ldots, n$, we get
\[
\varphi\left(\frac{\tau \lambda_{\nu}}{\lambda_n}\right) - \varphi\left(\frac{\tau \lambda_{\nu-1}}{\lambda_n}\right) = 2^\alpha \left(\sin \frac{\pi \lambda_{\nu}}{\lambda_n} \right)^\alpha - \left(\sin \frac{\pi \lambda_{\nu-1}}{\lambda_n} \right)^\alpha \leq 2^\alpha \left| \sin \frac{\pi \lambda_{\nu}}{\lambda_n} \right|^{\alpha-1} \left| \sin \frac{\pi \lambda_{\nu}}{\lambda_n} - \sin \frac{\pi \lambda_{\nu-1}}{\lambda_n} \right| \leq \alpha \left(\frac{2\pi}{\lambda_n} \right)^\alpha \lambda_{\nu}^{\alpha-1} (\lambda_{\nu} - \lambda_{\nu-1})
\]
If $0 < \alpha < 1$, then the similar estimate can be obtained using the inequality $x^\alpha - y^\alpha \leq \alpha y^{\alpha-1}(x - y)$, which holds for any $x > 0, y > 0$, [18, Ch. 1]. Hence, for any $f \in B\mathcal{S}_M$, we get the following estimate:
\[
\omega_\alpha\left(f, \frac{\pi}{\lambda_n} \right)_M \leq \alpha \left(\frac{2\pi}{\lambda_n} \right)^\alpha \sum_{\nu=1}^{n} \lambda_{\nu}^{\alpha-1} (\lambda_{\nu} - \lambda_{\nu-1}) E_{\lambda_{\nu}}(f)_M \quad \alpha > 0.
\] (4.6)

It should be noted that the constant in this estimate can be improved as follows.

Theorem 4.2. Assume that $f \in B\mathcal{S}_M$ has the Fourier series of the form (2.1). Then for any $n \in \mathbb{N}$ and $\alpha > 0$,
\[
\omega_\alpha \left(f, \frac{\tau}{\lambda_n} \right)_M \leq \left(\frac{\pi}{\lambda_n} \right)^\alpha \sum_{\nu=1}^{n} (\lambda_{\nu}^{\alpha} - \lambda_{\nu-1}^{\alpha}) E_{\lambda_{\nu}}(f)_M.
\] (4.7)

Proof. We prove this theorem similarly to the proof of Theorem 4.1. For any $\varepsilon > 0$, denote by $N_0 = N_0(\varepsilon) \in \mathbb{N}$, $N_0 > n$, a number such that for any $N > N_0$
\[
E_{\lambda_N}(f)_M = \|f - S_{N-1}(f)\|_M < \varepsilon.
\]
Let us set $f_0 := S_{N_0}(f)$, $S_{n-1} := S_{n-1}(f_0)$ and $\|\Delta^\alpha_h(f)\|_M := \|\Delta^\alpha_h(f_0)\|_M$, and use relations (4) and (4.3). We obtain

$$\|\Delta^\alpha_h(f)\|_M < \|\Delta^\alpha_h(f_0)\|_M + \varepsilon. \quad (4.8)$$

and

$$\|\Delta^\alpha_h(f_0)\|_M \leq \left\| \frac{\pi}{\lambda_n} \alpha \sum_{\nu=0}^{N_0} H_\nu + 2\alpha \sum_{\nu=1}^{n-1} \sin \frac{\pi \lambda_\nu}{2\lambda_n} H_\nu \right\|_M$$

$$\leq \left(\frac{\pi}{\lambda_n} \right)^H \left\| \lambda_n^\alpha \sum_{\nu=0}^{N_0} H_\nu + \sum_{\nu=1}^{n-1} \lambda_\nu^\alpha H_\nu \right\|_M,$$

where $|h| \leq \pi/\lambda_n$ and $H_\nu(x) = |A_\nu(f)| + |A_{-\nu}(f)|$, $\nu = 1, 2, \ldots$

By virtue of (4.4), for $a_\nu = \lambda_\nu^\alpha$, $c_\nu = H_\nu(x)$, $N_1 = 1$, $N_2 = n - 1$ and $N = N_0$,

$$\sum_{\nu=1}^{n-1} \lambda_\nu^\alpha H_\nu(x) = \lambda_1^\alpha \sum_{\nu=1}^{N_0} H_\nu(x) + \sum_{\nu=2}^{n-1} \left(\lambda_\nu^\alpha - \lambda_{\nu-1}^\alpha \right) \sum_{i=\nu}^{N_0} H_i(x) - \lambda_{\nu-1}^\alpha \sum_{\nu=1}^{n-1} H_\nu(x).$$

Therefore,

$$\left\| \lambda_n^\alpha \sum_{\nu=0}^{N_0} H_\nu + \sum_{\nu=1}^{n-1} \lambda_\nu^\alpha H_\nu \right\|_M = \sum_{\nu=1}^{n} \left(\lambda_\nu^\alpha - \lambda_{\nu-1}^\alpha \right) \sum_{i=\nu}^{N_0} H_i(x).$$

$$\leq \sum_{\nu=1}^{n} \left(\lambda_\nu^\alpha - \lambda_{\nu-1}^\alpha \right) E_{\lambda_\nu}(f_0)_M. \quad (4.10)$$

Combining relations (4.8), (4) and (4) and taking into account the definition of the function f_0, we see that for $|h| \leq \tau/\lambda_n$, the following inequality holds:

$$\|\Delta^\alpha_h(f)\|_M \leq \left(\frac{\pi}{\lambda_n} \right)^H \sum_{\nu=1}^{n} \left(\lambda_\nu^\alpha - \lambda_{\nu-1}^\alpha \right) E_{\lambda_\nu}(f)_M + \varepsilon$$

which, in view of arbitrariness of ε, gives us (4.7).

\[\square\]

In (4.1), the constant π^α is exact in the sense that for any $\varepsilon > 0$, there exists a function $f^* \in BS_M$ such that for all n greater that a certain number n_0, we have

$$\omega_\alpha \left(f^*, \frac{\pi}{\lambda_n} \right)_M > \frac{\pi^\alpha - \varepsilon}{\lambda_n^\alpha} \sum_{\nu=1}^{n} \left(\lambda_\nu^\alpha - \lambda_{\nu-1}^\alpha \right) E_{\lambda_\nu}(f^*)_M. \quad (4.11)$$

Consider the function $f^*(x) = e^{i\lambda_0 x}$, where k_0 is an arbitrary positive integer. Then $E_{\lambda_\nu}(f^*)_M = 1$ for $\nu = 1, 2, \ldots, k_0$, $E_{\lambda_\nu}(f^*)_M = 0$ for $\nu > k_0$ and

$$\omega_\alpha \left(f^*, \frac{\pi}{\lambda_n} \right)_M \geq \|\Delta^\alpha_{\lambda_n} f^*\|_M \geq 2\alpha \sin \frac{\lambda_{k_0} \pi}{2\lambda_n^\alpha}. \quad (4.11)$$

Since $\sin t/t$ tends to 1 as $t \to 0$, then for all n greater that a certain number n_0, the inequality $2\alpha |\sin \lambda_{k_0} \pi/(2\lambda_n)|^\alpha > (\pi^\alpha - \varepsilon)\lambda_{k_0}^\alpha/\lambda_n^\alpha$ holds, which yields (4.11).
Corollary 4.1. Suppose that \(f \in BS_M \) has the Fourier series of the form (2.1). Then for any \(n \in \mathbb{N} \) and \(\alpha > 0 \),

\[
\omega_\alpha \left(f, \frac{\pi}{\lambda_n} \right)_M \leq \alpha \left(\frac{\pi}{\lambda_n} \right)^\alpha \sum_{\nu=1}^{n} \lambda_{\nu}^{\alpha-1} (\lambda_{\nu} - \lambda_{\nu-1}) E_{\lambda_{\nu}}(f)_M. \tag{4.12}
\]

If, in addition, the Fourier exponents \(\lambda_{\nu}, \nu \in \mathbb{N} \), satisfy the condition

\[
\lambda_{\nu+1} - \lambda_{\nu} \leq C, \quad \nu = 1, 2, \ldots, \tag{4.13}
\]

with an absolute constant \(C > 0 \), then

\[
\omega_\alpha \left(f, \frac{\pi}{\lambda_n} \right)_M \leq C \alpha \left(\frac{\pi}{\lambda_n} \right)^\alpha \sum_{\nu=1}^{n} \lambda_{\nu}^{\alpha-1} E_{\lambda_{\nu}}(f)_M. \tag{4.14}
\]

5 Constructive characteristics of the classes of functions defined by the generalized moduli of smoothness

Let \(\omega \) be the function (majorant) given on \([0, 1]\). For a fixed \(\alpha > 0 \), we set

\[
BS_M H_\omega^{\alpha} = \left\{ f \in BS_M : \omega_\alpha(f, \delta)_M = \mathcal{O}(\omega(\delta)), \quad \delta \to 0^+ \right\}. \tag{5.1}
\]

Further, we consider the majorants \(\omega(\delta), \delta \in [0, 1] \), which satisfy the following conditions 1)–4): 1) \(\omega(\delta) \) is continuous on \([0, 1]\); 2) \(\omega(\delta) \uparrow \); 3) \(\omega(\delta) \neq 0 \) for \(\delta \in (0, 1] \); 4) \(\omega(\delta) \to 0 \) for \(\delta \to 0 \); as well as the condition

\[
\sum_{\nu=1}^{n} \lambda_{\nu}^{s-1} \omega \left(\frac{1}{\lambda_{\nu}} \right) = \mathcal{O} \left[\lambda_{s}^{\alpha} \omega \left(\frac{1}{\lambda_{n}} \right) \right]. \tag{5.2}
\]

where \(s > 0 \), and \(\lambda_{\nu}, \nu \in \mathbb{N} \), is a increasing sequence of positive numbers. In the case where \(\lambda_{\nu} = \nu \), the condition (5.2) is the known Bari condition \((B_s)\) (see, e.g. [9]).

Theorem 5.1. Assume that the function \(f \in BS_M \) has the Fourier series of the form (2.1), \(\alpha > 0 \) and the majorant \(\omega \) satisfies the conditions 1)–4).

i) If \(f \in BS_M H_\omega^{\alpha} \), then the following relation is true:

\[
E_{\lambda_{\nu}}(f)_M = \mathcal{O} \left[\omega \left(\frac{1}{\lambda_{\nu}} \right) \right]. \tag{5.3}
\]

ii) If the numbers \(\lambda_{\nu}, \nu \in \mathbb{N} \) satisfy condition (4.13) and the function \(\omega \) satisfies condition (5.2) with \(s = \alpha \), then relation (5.3) yields the inclusion \(f \in BS_M H_\omega^{\alpha} \).

Proof. Let \(f \in BS_M H_\omega^{\alpha} \). Then relation (5.3) follows from (5.1) and (3.13).

On the other hand, if \(f \in BS_M \), the numbers \(\lambda_{\nu}, \nu \in \mathbb{N} \) satisfy condition (4.13) and the function \(\omega \) satisfies condition (5.2) with \(s = m \), and relation (5.3) holds, then by (4.14), we get

\[
\omega_\alpha \left(f, \frac{1}{\lambda_n} \right)_M \leq C_1 \lambda_n^m \sum_{\nu=1}^{n} \lambda_{\nu}^{m-1} E_{\lambda_{\nu}}(f)_M \leq C_1 \lambda_n^m \sum_{\nu=1}^{n} \lambda_{\nu}^{m-1} \omega \left(\frac{1}{\lambda_{\nu}} \right) = \mathcal{O} \left[\omega \left(\frac{1}{\lambda_n} \right) \right],
\]

where \(C_1 = m(2\pi)^mp \cdot C \). Hence, the function \(f \) belongs to the set \(BS_M H_\omega^{\alpha} \). \(\square \)
The function \(t^r, 0 < r \leq \alpha \), satisfies condition (5.2) with \(s = \alpha \). Hence, denoting by \(BS_M H_\alpha^r \) the class \(BS_M H_\alpha^s \) for \(\omega(t) = t^r \) we establish the following statement:

Corollary 5.1. Let \(f \in BS_M \) has the Fourier series of the form (2.1), \(\alpha > 0, 0 < r \leq \alpha \) and condition (4.13) holds. The function \(f \) belongs to the set \(BS_M H_\alpha^r \), iff the following relation is true:

\[
E_\lambda(f)_M = O(\lambda^{-r}).
\]

In the spaces \(S^p \), for classical moduli of smoothness \(\omega_m \), Theorems 4.1 and 5.1 were proved in [27] and [1]. In the spaces \(S^p \), inequalities of the form (4.14) were also obtained in [29]. In spaces \(L_p \) of \(2\pi \)-periodic Lebesgue summable with the \(p \)th degree functions, inequalities of the kind as (4.14) were obtained by M. Timan (see, for example, [30, Ch. 6], [31, Ch. 2]). In the Musielak-Orlicz type spaces, inequalities of the kind as (4.1) were proved in [3].

References

[1] ABDULLAYEV F. G., ÖZKARTEPE P., SAVCHUK V. V., SHIDLICH A. L. *Exact constants in direct and inverse approximation theorems for functions of several variables in the spaces \(S^p \).* Filomat, 2019, **33** (5), 1471–1484.

[2] ABDULLAYEV F., CHAIKENKO S., IMASH KYZ M., SHIDLICH A. *Direct and inverse approximation theorems in the weighted Orlicz-type spaces with a variable exponent*, Turk. J. Math., 2020, **44**, 284-299.

[3] ABDULLAYEV F., CHAIKENKO S., SHIDLICH A. *Direct and inverse approximation theorems of functions in the Musielak-Orlicz type spaces*, Math. Inequal. Appl., 2021, **24** (2), 323–336.

[4] ABDULLAYEV F., SERDYUK A., SHIDLICH A. *Widths of functional classes defined by majorants of generalized moduli of smoothness in the spaces \(S^p \)*, Ukrainian Math. J., 2021, **73** (6), 841–858. (translation of Ukr. Mat. Zh., 2021, 73 (6), 723–737 (in Ukrainian)).

[5] ABDULLAYEV F., CHAIKENKO S., IMASHKYZY M., SHIDLICH A. *Jackson-type inequalities and widths of functional classes in the Musielak-Orlicz type spaces*, Rocky Mountain J. Math., 2021, **51** (4), 1143–1155.

[6] ABILOV V. A., ABILOVA F. V. *Problems in the approximation of \(2\pi \)-periodic functions by Fourier sums in the space \(L_2(2\pi) \).* Math. Notes, 2004, **76** (6), 749-757 (translation of Mat. Zametki, 2004, 76 (6), 803-811 (in Russian)).

[7] BABENKO A. G. *On exact constant in the Jackson inequality in \(L_2 \).* Math. Notes, 1986, **39** (5), 355–363. (translation of Mat. Zametki, 1986, 39 (5), 651–664 (in Russian)).

[8] BABENKO V. F., SAVELA S. V. *Jackson-Stechkin-type inequalities for almost periodic functions*. Visn. Dnipropetrovsk univ., 2012, **20** (6/1), 60–66.

[9] BARI N. K., STECHKIN S. B. *Best approximations and differential properties of two conjugate functions*. Trudy Moskov. Mat. Obshch., 1956, **5**, 483–522 (in Russian).

[10] BESICOVITCH A. S. *Almost periodic functions*. Dover Publications, Inc., New York, 1955.

[11] BOMAN J. *Equivalence of generalized moduli of continuity*. Ark. Mat., 1980, **18**, 73-100.

[12] BREDIKHINA E. A. *Absolute convergence of Fourier series of almost periodic functions*. Dokl. Akad. Nauk SSSR, 1968, **179** (5), 1023–1026 (in Russian).

[13] BREDIKHINA E. A. *Almost periodic functions*. In: Vinogradov I.,M. (Ed.) Encyclopedia of Mathematics, Moscow, 1984, **4**, 543–545 (in Russian).

[14] BUTZER P., NESSEL R. *Fourier Analysis and Approximation*. One-Dimensional Theory, Birkhäuser, Basel, 1971.
[15] Chaichenko S., Shidlich A., Abdullayev F. Direct and inverse approximation theorems of functions in the Orlicz type spaces S_M, Math. Slovaca, 2019, 69 (6), 1367–1380.

[16] Chernykh N. I. On the Jackson inequality in L_2. Proc. Steklov Inst. Math., 1967, 88, 75-78. (translation of Tr. Mat. Inst. Steklova, 1962, 88, 71–74 (in Russian)).

[17] Chernykh N. I. On the best approximation of periodic functions by trigonometric polynomials in L_2. Mat. Zametki, 1967, 20 (3), 513–522 (in Russian).

[18] Hardy G. H., Littlewood J. E., Pólya G. Inequalities, Cambridge University Press, 1934.

[19] Kozko A. I., Rozhdestvenskii A. V. On Jackson’s inequality for a generalized modulus of continuity in L_2. Sb. Math., 2004, 195 (8), 1073–1115. (translation of Mat. Sb., 2004, 195 (8), 3–46 (in Russian)).

[20] Levitan B. M. Almost periodic functions. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (in Russian).

[21] Lindenstrauss J., Tzafriri L. Classical Banach spaces I: Sequence Spaces, Berlin, 1977.

[22] Musielak J. Orlicz Spaces and Modular Spaces, Springer, Berlin, 1983.

[23] Pritula Ya. G. Jackson’s inequality for B^2-almost periodic functions. Izv. Vyssh. Uchebn. Zaved. Mat., 1972, 8, 90–93 (in Russian).

[24] Pritula Ya. G., Yatsymirskyi M. M. Estimates of approximations of B^2-almost periodic functions. Visnyk L’viv. univ. Ser. mekh.-mat., 1983, 21, 3–7 (in Ukrainian).

[25] Rao M. M., Ren Z. D. Applications of Orlicz spaces, Marcel Dekker Inc., New York, Basel, 2002.

[26] Serdyuk A. S., Shidlich A. L. Direct and inverse theorems on the approximation of almost periodic functions in Besicovitch-Stepanets spaces, Carpath. Math. Public., 2021, 13 (3), 687–700 (see also arXiv preprint, arXiv: 2105.06796).

[27] Stepanets A. I., Serdyuk A. S. Direct and inverse theorems in the theory of the approximation of functions in the space S^p. Ukrainian Math. J., 2002, 54 (1), 126–148. (translation of Ukr. Mat. Zh., 2002, 54 (1), 106–124 (in Russian)).

[28] Stepanets A. I. Methods of approximation theory. VSP, Leiden-Boston, 2005.

[29] Sterling M. D. Exact constants in inverse theorems of approximation theory. Sov. Math., Dokl., 1972, 13, 160–163. (translation of Dokl. Akad. Nauk SSSR, 1972, 202, 545–547 (in Russian)).

[30] Timan A. F. Theory of approximation of functions of a real variable. Fizmatgiz, Moscow, 1960 (in Russian); English translation by J. Berry. In: International Series of Monographs on Pure and Applied Mathematics. 34, Pergamon Press and MacMillan, Oxford, 1963.

[31] Timan M. F. Approximation and properties of periodic functions, Nauk. dumka, Kiev, 2009 (in Russian).

[32] Vakarchuk S. B. Jackson-type inequalities with generalized modulus of continuity and exact values of the n-widths for the classes of (ψ, β)-differentiable functions in L_2. I. Ukrainian Math. J., 2016, 68 (6), 823–848. (translation of Ukr. Mat. Zh., 2016, 68 (6), 723–745 (in Russian)).

[33] Vakarchuk S. B., Zabutnaya V. I. Inequalities between best polynomial approximations and some smoothness characteristics in the space L_2 and widths of classes of functions. Math. Notes, 2016, 99 (2), 222-242 (translation of Mat. Zametki, 2016, 99 (2), 215-238 (in Russian)).

[34] Vasil’ev S. N., The Jackson–Stechkin inequality in $L_2[-\pi, \pi]$. Proc. Steklov Inst. Math., Suppl., 2001, 1, S243-S253 (translation of Trudy Inst. Mat. i Mekh. UrO RAN, 2001, 7 (1), 75–84 (in Russian)).

[35] Voitsekhivs’kyj V. R. Jackson type inequalities in approximation of functions from the space S^p. In: Stepanets A. I. (ed.) Approximation theory and related topics: Proc. Inst. Math. NAS Ukr., 2002, 35, 33–46 (in Ukrainian).