У світі тенденцію до ожиріння (індекс маси тіла (ІМТ) – 25–30 кг/м²) має більше половини жінок репродуктивного віку, яке негативно впливає на функцію організму людини, зокрема викликає безпідставний [7]. Жирова тканина відіграє важливу роль у регуляції багатьох фізіологічних процесів. Рівень адипокінів, які продукуються клітинами жирової тканини, має велике значення для підтримки цілісності гіпоталамо-гіпофізарно-гонадної вісі, яка, в свою чергу, регулює репродуктивну функцію [6]. J.S. Rhee та співавт. [4] припускають, що декідуювання дефекту у жінок з надмірною масою тіла може змінити сприйнятливість ендометрія і, відповідно, знизити частоту імплантації ембріонів, але M. Ozekinci та співавт. [3] дотримуються протилежної точки зору. У вітчизняній літературі існують відомості щодо ефективності циклів лікування безпіддя з використанням кріоконсервованих репродуктивних клітин та ембріонів [1, 2], проте питання стосовно впливу надмірної маси тіла на частоту настання вагітності в кріоциклах залишається відкритим.

У зв'язку з цим метою нашого дослідження було вивчення частоти виживання та імплантації кріоконсервованих ембріонів у жінок з підвищеним індексом маси тіла.

Нами було проведено ретроспективний аналіз результатів частоти настання вагітності у пацієнток із різним ІМТ після трансферу кріоконсервованих ембріонів (ЕТ).

Для проведення дослідження була використана база даних Центру переносу кріоконсервованих ембріонів НКЦ «Міська клінічна лікарня №27 Харківської міської ради», Муніципальне некомерційне підприємство «Міська клінічна лікарня» №27 Харківської міської ради.

Усі етапи допоміжних репродуктивних технологій (ДРТ) виконували за загальнодержавними актами.

Worldwide more than a half of women of reproductive age have a tendency to obesity (body mass index (BMI) – 25–30 kg/m²), which negatively affects the functions of the human body in particular causes infertility [7]. Adipose tissue plays an important role in regulating many physiological processes. The level of adipokines, which are produced by adipose tissue cells, is of great importance for maintaining the integrity of the hypothalamic-pituitary-gonadal axis, which in turn regulates reproductive function [6]. J.S. Rhee et al. [4] suggest that decidualization defects in overweight women may alter the susceptibility of the endometrium and, consequently, reduce the rate of embryo implantation, but M. Ozekinci et al. [3] have the opposite view. There are national reports on the effectiveness of infertility treatment cycles using cryopreserved reproductive cells and embryos [1, 3], but the question of overweight effect on the pregnancy rate in cryocycles remains open.

Therefore, the aim of our study was to investigate the survival and implantation rates of cryopreserved embryos in the women with elevated body mass index.

We performed a retrospective analysis of the results on the pregnancy onset in patients with different BMI after cryopreserved embryos transfer (ET).

All the stages of assisted reproductive technologies (ART) were performed according to the generally accepted protocol [9]. Embryos were cryopreserved by vitrification using 15% dimethyl sulfoxide and 15% ethylene glycol. BMI was determined according to the WHO recommendations [8].
381

проблеми кріобіології і кріомедицини
problems of cryobiology and cryomedicine
том/volume 30, №/issue 4, 2020

томології і кріомедицини (M ± m)
Clinical-anamnestic and embryological characteristics of patients with different BMI (M ± m)

| Показники | Групи дослідження (n = 430)
|---|---|---|
| | 1 (n = 144) | 2 (n = 164) | 3 (n = 430) |
| Середній вік пацієнток, роки | 34,36 ± 3,73 | 30,3 ± 2,23 | 32,7 ± 4,1 |
| Термін безпліддя, роки | 5,4 ± 1,4 | 4,7 ± 1,4 | 7,8 ± 0,9* |
| Середня кількість ооцитів, абс. од | 9,3 ± 1,1 | 7,1 ± 1,2 | 5,2 ± 0,5* |
| Середня кількість бластоцист, абс. од | 6,2 ± 0,9 | 5,5 ± 1,2 | 2,4 ± 0,5* |
| Частота виживання бластоцист, % | 98,7 ± 8,7 | 94,8 ± 8,9 | 77,5 ± 8,6 |
| Товщина ендометрія в день ЕТ, мм | 11,8 ± 1,2 | 10,8 ± 1,2 | 7,8 ± 1,1* |
| Рівень естродіолу в день ЕТ, пг/мл | 251,8 ± 74,6 | 239,9 ± 77,6 | 214,5 ± 79,6 |
| Середня кількість бластоцист на ембріотрансфер, абс. од | 1,2 ± 0,5 | 1,3 ± 0,5 | 1,8 ± 0,6* |
| Частота настання вагітності, % | 52,1 | 57,9 | 32,7* |

Примітка: * – відмінності значущі порівняно з групою 1, р < 0,05.
Note: * – differences are significant if compared with group 1, p < 0.05.

токології [9]. Ембріони криоконсервували методом вітріфікації з використанням 15% диметилсульфоксиду та 15% етиленгліколю. Визначення IMT проводили за рекомендаціями ВООЗ [8]. Для статистичної обробки результатів використовували програму «Statistica 6.0» («StatSoft», США). Для порівняння двох вибірок застосовували U-критерій Манна-Уїтні при \(p = 0,05 \). У роботі було проведено ретроспективний аналіз результатів циклів лікування безпліддя 430 пацієнток, яких розподілили на три групи: 1 – нормальна маса тіла (IMT – 18,5–24,99); 2 – зайва маса тіла (IMT – 25,00–29,99); 3 – ожиріння (IMT ≥ 30). У пацієнток усіх груп оцінювали товщину ендометрія за допомогою ультразвукового дослідження на 8, 12, 14-й день менструального циклу і в день ЕТ. Рівень естродіолу в плазмі крові визначали на 12–14-й день менструального циклу та в день ЕТ. Жінки з нормальною масою тіла були старшими за пацієнток груп 2 та 3, проте вікова різниця була значно меншою. Показники IMT в групах 2 та 3 були схожими. Середня кількість ооцитів у групах 1 та 2 була схожою, але більш низькою у групі 3. Середня кількість бластоцист на 8, 12, 14-й день менструального циклу і в день ЕТ збільшувалася в групах 1 та 2, але у групі 3 було значно менше. Частота виживання бластоцист у групах 1 та 2 була схожою, але у групі 3 була значно нижчою. Товщина ендометрія в день ЕТ збільшувалася в групах 1 та 2, але у групі 3 була значно меншою. Рівень естродіолу в плазмі крові в групах 1 та 2 був схожим, але у групі 3 був значно нижчим. Частота настання вагітності в групах 1 та 2 була схожою, але у групі 3 була значно нижчою. Відмінності відносно частоти настання вагітності значущі порівняно з групою 1, р < 0,05. The software ‘Statistica 6.0’ (StatSoft, USA) was used for statistical processing of results. For comparing two samples the Mann-Whitney U-test at \(p = 0,05 \) was applied. A retrospective analysis of the results of infertility treatment cycles for 430 patients, which were divided into three groups: 1 – normal body weight (BMI – 18,5–24,99); 2 – overweight (BMI – 25,00–29,99); 3 – obesity (BMI ≥ 30), was performed. In the patients of all the groups the thickness of endometrium was assessed by ultrasound on days 8, 12, 14 of the menstrual cycle and on the day of ET. Plasma estradiol levels were determined on day 12–14 of the menstrual cycle as well as on the ET day. Women with normal body weight were older than the patients in groups 2 and 3, but the age difference was insignificant (Table). The duration of infertility in the women of group 3 was significantly longer than in groups 1 and 2. In group 3 patients, the number of aspirated oocytes and embryos that developed in vitro up to
незначучча (таблиця). Тривалість безпліддя у жінок групи 3 була значуче більша, ніж у групах 1 та 2.

У пацієнтів групи 3 кількість аспірованих ооцитів та ембріонів, які розвинулися in vitro до стадії бластоцисти, була меншою. Одержані результати мають значущі відмінності порівняно з такими в групах 1 і 2. Зменшення частоти настання вагітності до 32,7%, скоріше за все, пов’язане із значуче меншим показником товщини ендометрія – (7,8 ± 1,1) мм порівняно з цим показником у жінок груп 1 і 2. Відомо, що на частоту імплантації ембріонів впливає рівень естрадіолу в день ET, який регулює апоптотичний обмін та знижує рівень ліпідів і холестерину в крові [5]. Проте в нашому дослідженні рівень даного гормону був співвідношенням у жінок усіх груп.

Отримані результати дозволяють припустити, що надмірна маса тіла пацієнток впливає на кількість отриманих ооцитів. Слід зазначити, що цей факт важливо враховувати на ембріологічному етапі ДРТ. У пацієнтів із підвищеним IMT відмічається зниження частота імплантації кріоконсервованих ембріонів, тому перед проведенням циклу лікування важливо враховувати на ембріологічному етапі ДРТ.

Таким чином, результати аналізу циклів лікування безпліддя ДРТ із перенесенням кріоконсервованих ембріонів необхідна нормалізація IMT.

Література
1. Петрушко МП, Павлович ОВ, Піняєв ВІ, та ін. Апоптоз і процеси фрагментації ДНК у нативних і кріоконсервованих сперматозоїдах людини при нормо- та патоспермії. Цитологія та генетика. 2017. 51(4): 278–81.
2. Buderatska N, Gontar J, Ilyin I, et al. Does human oocyte cryopreservation affect equally on embryo chromosome aneuploidy? Cryobiology. 2020: 93: 33–6.
3. Ozekinci M, Seven A, Olgan S, et al. Does obesity have detrimental effects on IVF treatment outcomes? BMC Womens Health [Internet]. 2015 Aug 19 [cited 2019 Sep 24]; 15:61. Available from: https://bmcrumshealth.biomedcentral.com/articles/10.1186/s12905-015-0223-0.
4. Rhee JS, Saben JL, Mayer AL, et al. Diet induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod. 2016; 31(6): 1315–26.
5. Sarais V, Pagliardini L, Rebonato G, et al. A comprehensive analysis of body mass index effect on in vitro fertilization outcomes. Nutrients [Internet]. 2016 Feb 23 [cited 2019 Sep 24]; 8 (3): 109. Available from: https://www.mdpi.com/2072-6643/8/3/109.
6. Silestris E, de Pergola G, Rosania R, et al. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol [Internet]. 2018 Mar 9 [cited 2019 Sep 19]; 16(1): 22. Available from: https://rbj.biomedcentral.com/articles/10.1186/s12958-018-0336-z.

References
1. Buderatska N, Gontar J, Ilyin I, et al. Does human oocyte cryopreservation affect equally on embryo chromosome aneuploidy? Cryobiology. 2020; 93: 33–6.
2. Ozekinci M, Seven A, Olgan S, et al. Does obesity have detrimental effects on IVF treatment outcomes? BMC Womens Health [Internet]. 2015 Aug 19 [cited 2019 Sep 24]; 15:61. Available from: https://bmcrumshealth.biomedcentral.com/articles/10.1186/s12905-015-0223-0.
3. Petrushko MP, Pavlovich EV, Pinyaev VI, et al. Apoptosis and the processes of DNA fragmentation in native and cryopreserved human sperm cells with normo- and pathosperma. Cytol Genet. 2017; 51: 278–81.
4. Rhee JS, Saben JL, Mayer AL, et al. Diet induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod. 2016; 31(6): 1315–26.
5. Sarais V, Pagliardini L, Rebonato G, et al. A comprehensive analysis of body mass index effect on in vitro fertilization outcomes. Nutrients [Internet]. 2016 Feb 23 [cited 2019 Sep 24]; 8 (3): 109. Available from: https://www.mdpi.com/2072-6643/8/3/109.
6. Silestris E, de Pergola G, Rosania R, et al. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol [Internet]. 2018 Mar 9 [cited 2019 Sep 19]; 16(1): 22. Available from: https://rbj.biomedcentral.com/articles/10.1186/s12958-018-0336-z.

Thus, the results of the analysis of ART infertility treatment cycles by means of the transfer of cryopreserved embryos into uterine cavity demonstrated that obese women had a lower pregnancy rate if compared to the patients with normal body weight.
7. Talmor A, Dunphy B. Female obesity and infertility. Best Pract Res Clin Obstet Gynaecol. 2015; 29(4): 498–506.
8. WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004; 10;363 (9403): 157–63.
9. Yurchuk T, Petrushko M, Fuller B. Science of cryopreservation in reproductive medicine – Embryos and oocytes as exemplars. Early Hum Dev. 2018; 126: 6–9.

8. WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004; 10; 363 (9403): 157–63.
9. Yurchuk T, Petrushko M, Fuller B. Science of cryopreservation in reproductive medicine – Embryos and oocytes as exemplars. Early Hum Dev. 2018; 126: 6–9.