Abstract

We describe families of potentials which act as approximate cloaks for matter waves, i.e., for solutions of the time-independent Schrödinger equation at energy E, with applications to the design of ion traps. These are derived from perfect cloaks for the conductivity and Helmholtz equations, by a procedure we refer to as isotropic transformation optics. If W is a potential which is surrounded by a sequence $\{V_n^E\}_{n=1}^{\infty}$ of approximate cloaks, then for generic E, asymptotically in n (i) W is both undetectable and unaltered by matter waves originating externally to the cloak; and (ii) the combined potential $W + V_n^E$ does not perturb waves outside the cloak. On the other hand, for E near a discrete set of energies, cloaking per se fails and the approximate cloaks support wave functions concentrated, or almost trapped, inside the cloaked region and negligible outside. Applications include ion traps, almost invisible to matter waves or customizable to support almost trapped states of arbitrary multiplicity. Possible uses include simulation of abstract quantum systems, magnetically tunable quantum beam switches, and illusions of singular magnetic fields.

PACS numbers: 41.20.Jb, 03.75.-b, 37.10.Ty, 78.67.De, 43.20.Bi
Introduction. A fundamental problem is to describe the scattering of waves at energy E by a potential $V(x)$, as governed by the time-independent Schrödinger equation; the related inverse problem consists of unique determination of V from scattering data or from boundary measurements. In this Letter, for a generic energy E, we construct families $\{V_n^E\}_{n=1}^{\infty}$ of bounded potentials which act as an *approximate quantum cloaks*: for any potential W whose support is surrounded by the support of V_n^E, the scattering amplitude of $W + V_n^E$ goes to zero as $n \to \infty$, so that W is, asymptotically in n, undetectable by waves at energy E. The central potentials V_n^E are supported in a spherical annulus $\{r_1 \leq r \leq r_2\}$ in \mathbb{R}^3 and have spatial oscillations of increasing amplitude as $r \searrow r_1$ and decreasing quasiperiod as $n \to \infty$, so that their local (resp., long range) effect on wave propagation becomes stronger (resp., weaker) as $n \to \infty$. For generic E, the potential $W + V_n^E$ has a negligible effect on matter waves originating outside of its support. Alternatively, for E close to special values, V_n^E allows the core $\{r \leq r_1\}$ to support *almost trapped states* and be used to form traps for ions (here denoting any charged particles), almost invisible to external matter waves. An approximate version of the dichotomy regarding ideal cloaks for the Helmholtz equation [4, Thm. 1] holds: If E is sufficiently separated from all eigenvalues, then with high probability the approximate cloak keeps particles of energy E from entering the cloaked region, see Figs. 1(r,red) and 2(l); on the other hand, for E close to an eigenvalue, the cloaked region supports almost trapped states, accepting and binding such particles, leading to a new type of ion trap, cf. Figs. 1(r,blue) and 2(r) and formula (4).

Recently, Zhang, et al., [1], using ideas from transformation optics [2, 3], described an ideal quantum mechanical cloak at any fixed energy E and proposed a physical implementation. The construction starts with a homogeneous, isotropic mass tensor \hat{m}_0 and potential $V_0 \equiv 0$, and subjects this pair to the singular transformation (1) below. The resulting \hat{m}, V yield a Schrödinger equation that is in fact the Helmholtz equation for the corresponding singular Riemannian metric and thus covered by the analysis of cloaking for the Helmholtz equation in [4]. The treatment there shows that the potential within the cloaked region is undetectable by exterior measurements, and that the perfectly reflective Neumann boundary condition automatically holds for finite energy distributional solutions at the inside of the cloaking surface (the inner surface of the cloak), Σ. The cloaking mass tensor \hat{m} and potential are both singular, and \hat{m} infinitely anisotropic, at Σ. These combine to make such a quantum cloak challenging to construct, with ultracold atoms in an optical lattice.
proposed in [1] as a possible realization.

The approach in this Letter is to forgo the perfect functioning of the ideal quantum cloak, and to describe bounded potentials which function as approximate cloaks with respect to the isotropic \hat{m}_0, with the failure to cloak perfectly in fact a controllable feature that can be taken advantage of for applications described below. The V_n^E are found by means of isotropic transformation optics, a technique we introduce for avoiding the singular and anisotropic behavior, difficult to physically realize, of material parameters that commonly occur in transformation optics-based designs [3, 5, 6]; more details and proofs can be found in [7].

Inverse scattering and conductivity cloaks. There is an enormous literature on unique determination of a potential V from scattering of plane waves at energy E by the Schrödinger equation $(-\nabla^2 + V)\psi = E\psi$, as encoded in the scattering amplitude $a_V(E,\theta,\omega)$. Equivalently, for compactly supported V one may consider the near-field measurements of wave functions at the boundary of a large region Ω, as encoded in the Dirichlet-to-Neumann (DN) operator, $\Lambda_V(E)(\psi|_{\partial\Omega}) = \partial_\nu\psi|_{\partial\Omega}$ where ν is the normal of $\partial\Omega$ [8]. Ideal quantum cloaking can be considered as giving highly singular examples of nonuniqueness, but in order to construct approximately cloaking potentials V_n^E, we first need to recall the ideal cloaking conductivity σ_1 of [9]. For simplicity, we describe the cloak on $B_3 - B_1$, with B_R denoting the central ball of radius R in \mathbb{R}^3, so that the cloaking surface, the interface between the cloaked and uncloaked regions, is $\Sigma = \{r = 1\}$. Subjecting a homogeneous, isotropic conductivity σ_0 to a singular transformation ("blowing up a point"), we constructed [9] certain singular, anisotropic conductivity tensor fields on $B_3 - B_1$ which, when augmented by any nonsingular (bounded above and below) conductivity on B_1, result in conductivities on B_3 giving the same electrostatic boundary measurements as σ_0. (For related results in dimension two, see [10, 11].) The same construction, applied to the electric permittivity and magnetic permeability rather than the conductivity tensor, was used [3] to propose an electromagnetic (EM) cloak at nonzero frequency, and a microwave experimental realization of a variant of this design reported in [13]. Ray-based cloaking for dimension two was proposed in [5], while potentials transparent for rays are in [12].

To be precise, let $F = (F^1, F^2, F^3) : B_3 - \{0\} \rightarrow B_3 - B_1$ be the singular transformation, for $\mathbf{r} \in \mathbb{R}^3$,

$$\mathbf{r} = F(\mathbf{r}) = \mathbf{r}, r > 2; F(r) = \left(1 + \frac{r}{2}\right) \frac{\mathbf{r}}{r}, 0 < r \leq 2,$$ \hspace{1cm} (1)

which results in the transformed version of σ_0 on $B_3 - B_1$, augmented for simplicity by $2\sigma_0$.
on B_1,

$$\sigma_1 = F_\ast \sigma_0, \mathbf{r} \in B_3 - B_1; \quad \sigma_1 = 2 \sigma_0, \mathbf{r} \in B_1. \quad (2)$$

Here, F_\ast denotes the change-of-variables action of F on tensors $\sigma = (\sigma^{jk})$, writing $\mathbf{r} = (x^1, x^2, x^3)$,

$$(F_\ast \sigma)^{jk}(\mathbf{r}) = \frac{1}{\det[\partial F^j/\partial x^k]} \sum_{p,q=1}^3 \frac{\partial F^j}{\partial x^p} \frac{\partial F^k}{\partial x^q} \sigma^{pq} \bigg|_{\mathbf{r} = F^{-1}(\mathbf{r})}.$$

This σ_1 has a singularity at Σ, both in that one of the eigenvalues (corresponding to the radial direction) tends to 0 as $r \searrow 1$, and that there is a jump discontinuity across Σ, within which σ_1 is non-singular. Aside from the radius of the outer ball and the factor 2 in the second formula of (2), σ_1 is the conductivity introduced in [9] and shown to be indistinguishable from σ_0, vis-a-vis boundary measurements at ∂B_3 of electrostatic fields.

Consider also the corresponding acoustic equation,

$$\partial_t (\sigma_1^{ij} \partial_j u) + E a_1 u = 0, \quad a_1 = (\det[\sigma_1^{ij}])^{-1}. \quad (3)$$

Then, using boundary measurements at ∂B_3 of the acoustic waves of frequency \sqrt{E}, the pair σ_1, a_1 is indistinguishable, from $\sigma_0, a_0 \equiv 1$ [4, 14, 15, 16].

In the case of ideal cloaking, the waves u within the cloaked region have a simple description [4 Thm.1]: (I) if E is not a Neumann eigenvalue of $-\nabla^2 + W$ in the cloaked region, then u must vanish there; or (II) if E is an eigenvalue, then u can be an associated eigenfunction there, while possibly vanishing outside of the cloaking surface. The Dirichlet eigenvalues and eigenfunctions of (3) on B_3 can be separated into $(E_j^{+,R}, u_j^+)$ and $(E_j^{-,R}, u_j^-)$ with u_j^+ and u_j^- supported in $B_3 - B_1$ and B_1, resp.

Approximate cloaks and failure of cloaking. For $1 < R \leq 2$, let σ_R be given by the same formulae as in (2), but applied on $B_3 - B_R$ and B_R, resp., and similarly for a_R in (3). Observe that for each $R > 1$, σ_R and a_R are nonsingular; however, their lower (resp., upper) bounds go to 0 (resp., ∞) as $R \searrow 1$. (Similar truncations of EM cloaks have been studied in [11, 17, 18].)

When σ_1, a_1 are replaced by σ_R, a_R there is a decomposition similar to the one above for (3), with eigenvalues and eigenfunctions $(E_j^{+,R}, u_j^+)$ and $(E_j^{-,R}, u_j^-)$ concentrating in $B_3 - B_1$ and B_1, resp., and $E_j^{\pm, R}$ converges to $E_j^{\pm, 1}$ as $R \to 1$. The solution of the boundary value
problem \(\partial_t (\sigma_R^{ij} \partial_j v) + E_a R v = 0 \) on \(B_3 \), \(v|_{\partial B_3} = f \), has an eigenfunction expansion

\[
v(x) = \sum_{\pm} \sum_{j=1}^{\infty} \left(\int_{\partial B_3} f \frac{\partial v_j^\pm}{\partial \nu} \, dS \right) \frac{v_j^\pm(x)}{E - E_j^\pm, R}.
\]

(4)

An approximate version of dichotomy (I)-(II) holds for approximate cloaks: When \(E \) is not equal to any \(E_j^{\pm,1} \), one can show the DN operators for the \(\sigma, a \) converge to that for \(\sigma_1, a_1 \) as \(R \to 1 \); physically, this means that the boundary measurements of pressure and the normal component of the particle velocity for the approximate cloaks tend to those for the ideal cloak, which are themselves the same as for \(\sigma_0, a_0 \). However, if \(E \) is close to some \(E_j^{\pm, R} \), the corresponding term in (4) may dominate the others, in which case the solution \(v \), having a large coefficient of \(v_j^- \), concentrates in \(B_1 \). Since \(v_j^- \) cannot vanish identically in \(B_3 - B_1 \), both the near-field measurements on the boundary \(\partial B_3 \) and far-field patterns differ from those corresponding to \(\sigma_0, a_0 \). This interior resonance corresponds to a sound wave almost trapped within the cloak.

Isotropic transformation optics. A well known phenomenon in effective medium theory is that homogenization of isotropic material parameters may lead, in the small-scale limit, to anisotropic ones [19]. We exploit this, using ideas from [20, 21], to approximate the anisotropic, almost cloaking \(\sigma, a \) by isotropic conductivities \(\sigma, \epsilon \) so that for \(\epsilon > 0 \) the \(\sigma, a \) also function as approximate acoustic cloaks [7]. The \(\sigma, \epsilon \)(\(r \)) are spatially highly oscillating, with values varying roughly between the extreme eigenvalues of \(\sigma \) near \(r \). (In the context of EM cloaking, thin concentric layers of homogeneous, isotropic media were considered in [22, 23].)

Approximate Schrödinger cloaks. The gauge transformation \(\psi = \sqrt{\sigma} u \) reduces the acoustic equation (3), with nonsingular isotropic conductivity \(\sigma = \sigma_{R, \epsilon} \) in place of the anisotropic \(\sigma_1 \) and \(a_R \) in place of \(a_1 \), to the Schrödinger equation at the same energy \(E \),

\[
\left(-\nabla^2 + V^E_{R, \epsilon} \right) \psi = E \psi,
\]

where \(V^E_{R, \epsilon} = \nabla^2 (\sqrt{\sigma_{R, \epsilon}})/\sqrt{\sigma_{R, \epsilon}} + E \left(1 - \sigma_R^{1/2} \sigma_{R, \epsilon}^{-1} \right) \). As \(\sigma_{R, \epsilon} \) is highly oscillatory, \(V^E_{R, \epsilon} \) consists of a quasiperiodic pattern of concentric radial potential barriers and wells of increasing amplitudes and decreasing widths as \(\epsilon \downarrow 0 \). The radial profile of the potential over one quasiperiod (i.e. in one spherical layer) is in Fig. 1(left). Since \(\sigma_{R, \epsilon} = 1 \) near \(\partial B_3 \), the boundary measurements of solutions of these Schrödinger equations at \(\partial B_3 \) coincide with those for the corresponding acoustic equations. By the convergence for the acoustic equations, we can choose \(R \downarrow 1, \epsilon \downarrow 0 \), so that the boundary measurements for
these Schrödinger equations converge to those for the acoustic equation \((3)\) at energy \(E\), which are the same as for the Schrödinger equation in free space. Our main result is:

Approximate Quantum Cloaking. Let \(W\) be a bounded potential on \(B_1\), and \(E \in \mathbb{R}\) be neither a Dirichlet eigenvalue of the free Hamiltonian \(-\nabla^2\) on \(B_3\) nor a Neumann eigenvalue of \(-\nabla^2 + W\) on \(B_1\). Then there exists a sequence of cloaking potentials \(V_n^E\) on \(B_3\) such that the DN operators \(\Lambda_{W + V_n^E}(E) \to \Lambda_0(E)\) as \(n \to \infty\). I.e., as \(n \to \infty\) the potential \(W + V_n^E\) is indistinguishable at energy \(E\) from the zero potential by near-field measurements; a similar result holds for far-field patterns. \(W\) is thus approximately cloaked when surrounded by \(V_n^E\).

As any specific measurement device has a limited precision, this means that it is possible to design a potential to cloak an object within from any single-particle measurements made using that device at energy \(E\).

Numerics: We use analytic expressions to compute the wave function \(\psi\) for an incident plane wave with \(\psi_{\text{inc}}(x) = ae^{i k r d}\). The computations are made without reference to physical units, using \(a = 1, E = 0.5, k = \sqrt{E}\). The cloak is based on \(R = 1.005\), corresponding to an anisotropy ratio of \(\sigma_R\) at \(\Sigma_R = \{r = R\}\) of \(4 \times 10^4\). In the simulations we use a cloak consisting of 20 homogenized layers inside and 30 homogenized layers outside of the cloaking surface \(\Sigma_R\). Inside the cloak we have located a centrally symmetric step potential, \(W(x) = c_{\text{inn}} \chi[0,0.9](r)\). In the simulations, the cloaking potential \(V_n^E\) and the energy \(E\) are the same in all figures, but we vary the constant \(c_{\text{inn}}\). In Fig. 1(r, red) and Fig. 2(l) we have \(c_{\text{inn}} = -98.5\), and \(\psi\) is the wave in \(\mathbb{R}^3\) produced by an incoming plane wave. In Fig. 1(r, blue), with \(c_{\text{inn}} = +1.858\), and in Fig. 2(r), with \(c_{\text{inn}} = -71.45\), there is no incoming wave, but an almost trapped state corresponding to an excited state in the cloaked region.

Applications: *Almost trapped states and ion traps.* A version of the dichotomy for approximate acoustic cloaks described above also holds for approximate quantum cloaks, since the solutions differ only by a gauge transformation. As a consequence, given an energy \(E\), the approximate cloak may be such that \(E\) either is or is not an eigenvalue for the ideal model. This results in \(B_1\) becoming either \((\tilde{I})\) an almost cloaked region that with a high probability does not accept energy \(E\) particles from outside \(\Sigma\); or \((\tilde{II})\) a trap that supports almost trapped states, which correspond to a particle at energy \(E\) trapped in \(B_1\) with high probability. A design of either type could possibly be implemented by an array of ac and dc electrodes with total effective potential approximating \(V_n^E\) for large \(n\) [24]. This leads to
FIG. 1: **Left:** The radial profile of the potential V_n^E over a typical quasi-period $1.5 < r < 1.51$. The potential V_n^E in $R = 1.005 < r < 2$ is obtained by repeating similar profiles, with increasing amplitudes as $r \searrow R$. **Right:** Re ψ on a segment $\{(x,0,0) : 0 \leq x \leq 3\}$ for the same cloaking potential V_n^E and two different cloaked W’s. For the red curve, E is not close to an interior eigenvalue and ψ is produced by an incoming plane wave. For the blue curve, E is a Dirichlet eigenvalue on B_3 and ψ is an almost trapped state.

a new type of trap for ions, differing from, e.g., the Paul [25], Penning [26] or Zajfman [27] traps, and justified on the level of quantum mechanics. Furthermore, the trap may be made tunable by including a dc electrode in the trapped region, corresponding to a Coulomb W; varying the charge changes whether or not E is as eigenvalue of $-\nabla^2 + W$ and thus which of \tilde{I} or (\tilde{II}) holds.
FIG. 2: **Left:** $\text{Re} \psi$ in B_3 for ψ resulting from an incident plane wave. E is not near an interior Neumann eigenvalue; the matter wave passes unaltered. **Right:** An excited almost trapped state. $E = E_j^{-R}$ is an energy close to a Neumann eigenvalue of B_1, for which the ideal cloak supports an trapped state.

Topological ion traps. The basic construction outlined above can be modified to make the wave function on B_1 behave as though it were confined to a compact, boundaryless three-dimensional manifold, topologically but not metrically the three-dimensional sphere, S^3. By suitable choice of metric, the energy level E can have arbitrary multiplicity for the interior of the resulting trap, allowing one to implement physical systems mimicking matter waves on abstract spaces. As the starting point one uses not the original cloaking conductivity σ_1 (the *single coating* construction), but rather a *double coating* \[4\, \text{Sec.} 2\], which we denote here by $\sigma^{(2)}$. This is singular from both sides of Σ, and in the EM cloak setting corresponds to coating both sides of Σ with metamaterials. See \[7\, \text{Fig.} 7\]. By \[4\, \text{Sec.} 3.3\], the finite
energy solutions of the resulting Helmholtz equation on B_3 split into direct sums of waves on $B_3 - B_1$, as for σ_1, and waves on B_1 which are identifiable with eigenfunctions of the Laplace-Beltrami operator $-\nabla^2_g$ on (S^3, g) with eigenvalue \sqrt{E}. If one takes g to be the standard metric on S^3, then nonground states are degenerate and of high multiplicity, while a generic choice of g yields simple energy levels $[28]$. By suitable choice of g, any finite number of energy levels and multiplicities can be specified $[29]$, allowing traps supporting almost trapped states at energy E of arbitrary degeneracy.

Magnetically tunable quantum beam switch. Consider a beam of ions of energy E, leaving an oven and traveling through a tube $T = \{0 \leq \rho \leq \rho_0, 0 \leq \theta \leq 2\pi, 0 \leq z \leq L\}$ (in cylindrical coordinates). Treating the ions as matter waves, place in T several almost trapping traps of the type described above, centered at points on the z-axis, forming a potential $V = \sum_{j=1}^{N} V^E_n(z-z_j)$. The techniques above may be applied to magnetic Schrödinger equations and DN operators on a region Ω,

$$\left(- (\nabla + iA)^2 + V \right) \psi = E\psi \quad \text{on } \Omega,$$

$$\Lambda_{V,A}(E)(f) = \partial_\nu \psi|_{\partial \Omega} + i(A \cdot \nu)f \quad \text{on } \partial \Omega.$$

We design the traps so that, in the absence of a magnetic field, or for small field strengths, the traps act as cloaks and thus the ions pass through T unhindered. However, if a homogeneous magnetic field is then applied to the tube, chosen so that the magnetic Schrödinger operator has E as a Neumann eigenvalue inside each trap, then there is a large probability that an ion passing the jth trap will bind to that trap. If N is large enough, then the probability that any ion traveling the length of T will become bound is ~ 1, and T thus functions as a magnetically controlled switch for the beam of ions.

Magnified magnetic fields. For a homogeneous magnetic field with linear magnetic potential A, one can obtain a sequence of electrostatic potentials V^E_n for which $\lim_{n \to \infty} \Lambda_{V^E_n,A}(E) = \Lambda_{0,A}(E)$, with \tilde{A} singular at a point. I.e., in the presence of a homogeneous magnetic field, the V^E_n produce scattering or boundary measurements that tend, as $n \to \infty$, to those of the zero electrostatic potential in the presence of a magnetic field blowing up at a point, $|\tilde{A}(\mathbf{r})| \sim r^{-1}$, $|\tilde{B}(\mathbf{r})| \sim r^{-2}$, giving the illusion of a locally singular magnetic field $[7]$.

Acknowledgements: AG and GU are supported by NSF, GU by a Walker Family Professorship, ML by Academy of Finland and YK by EPSRC. We are grateful for discussions with A. Cherkaev and V. Smyshlyaev on homogenization and S. Siltanen on numerics.
[1] S. Zhang, D. Genov, C. Sun and X. Zhang, Phys. Rev. Lett. 100, 123002 (2008).
[2] A. Ward and J. Pendry, J. Mod. Phys. 43, 773 (1996).
[3] J. Pendry, D. Schurig, D. Smith, Science 312, 1780 (2006).
[4] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Comm. Math. Phys. 275, 749 (2007).
[5] U. Leonhardt, Science 312, 1777 (2006).
[6] U. Leonhardt, T. Philbin, New J. Phys. 8, 247 (2006).
[7] A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, arXiv:0806.0085 (2008), to appear in New J. of Physics; and in preparation.
[8] Y. Berezanskii, Trudy Moskov. Mat. Obsch. 7, 1 (1958).
[9] A. Greenleaf, M. Lassas, G. Uhlmann, Physiol. Meas., 24, 413 (2003); Math. Res. Lett. 10, 685 (2003).
[10] M. Lassas, M. Taylor and G. Uhlmann, Comm. Geom. Anal. 11, 207 (2003).
[11] R. Kohn, et al., Inverse Prob. 24, 015016 (2008).
[12] A. Hendi, J. Henn, U. Leonhardt, Phys. Rev. Lett. 97, 073902 (2006).
[13] D. Schurig, et al., Science 314, 977 (2006).
[14] H. Chen, C.T. Chan, Appl. Phys. Lett. 91, 183518 (2007).
[15] S. Cummer, et al., Phys. Rev. Lett. 100, 024301 (2008).
[16] A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, arXiv:0801.3279 (2008).
[17] Z. Ruan, M. Yan, C. Neff and M. Qiu, Phys. Rev. Lett. 99, 113903 (2007).
[18] A. Greenleaf, et al., Opt. Expr. 15, 12717 (2007).
[19] G. Milton, The Theory of Composites (Camb. U. Pr., 2001).
[20] G. Allaire, SIAM J. Math. Anal. 23, 1482 (1992).
[21] A. Cherkaev, Variational methods for structural optimization, (Springer-Verlag, New York, 2000).
[22] Y. Huang, Y. Feng, T. Jiang, Opt. Expr. 15, 11133 (2007).
[23] H. Chen, C.T. Chan, arXiv:0805.1328 (2008).
[24] F. Major, V. Gheorghe, G. Werth, Charged Particle Traps, (Springer-Verlag, Berlin, 2004).
[25] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
[26] F. Penning, Physica 3, 873 (1936).
[27] D. Zajfman, et al., Phys. Rev. A 55, R1577 (1997).

[28] K. Uhlenbeck, Amer. J. Math. 98, 1059 (1976).

[29] Y. Colin de Verdière, Ann. Sci. École Norm. Sup. 20, 599 (1987).