Microbial source tracking through antibiotic resistance indexing of *Escherichia coli* to identify source of fecal contamination in drinking water

Tambekar DH, Dhote SV and Lamkhade KA

1,2 PG Dept. of Microbiology SGB Amravati University, Amravati 444602 (M.S.) India

Abstract

Fecal pollution of water leads to introduce variety of intestinal pathogens that causes water borne diseases. Microbial source tracking (MST) methods are increasingly being used to identify fecal contamination sources in drinking water. A total of 400 drinking water samples were collected from the houses (200), schools (100), hostels (50) and commercially available water cans (50), out of which 160 water samples were found nonpotable. A total of 154 E.coli were isolated and identified from these 160 nonpotable drinking water samples. The 123(79%) from human fecal origin and 31(21%) animal fecal origin E. coli were found after the microbial source tracking by multiple antibiotic resistances (MAR) analysis. In hostels and School’s water identified a total of 19 and 18 human fecal originated E.coli. Out of 12 E.coli isolated from 15 Can’s nonpotable water; 10(83%) were human and 2(17%) animal fecal origin. The 105 E.coli were isolated from the household drinking water out of these 76(72%) was human and 29(28%) was animal fecal origin. The study concluded that the water in urban area was mainly polluted due human fecal origin as compare to animal fecal origin.

Key words: Urban area, fecal pollution, Nonpotable drinking water, MST, MAR

I. INTRODUCTION

Microbial source tracking (MST) is a method to determine the sources of fecal contamination in and establish whether fecal bacteria are being introduced into water bodies through human, wildlife, agricultural or pet wastes [1]. There are different categories of methods currently being developed and used in MST such as biochemical (phenotype), molecular (genotype), chemical and immunological to identify the source of pollution [2]. The human beings, domestic animals and wildlife are exposed to various antibiotics and develop and express resistance to these different antibiotics. This distinctive resistance present in each contaminant makes the fecal bacteria reasonably unique to its source.

Water is a major way of dissemination of microorganism in nature and has been recognized as a significant reservoir of antibiotic resistance [3,4]. Poor infection control, inadequate sanitary conditions and inappropriate food-handling encourage the spread of antimicrobial resistance. Prevention of such diseases is highly essential, since they spread fast, affecting entire community [5]. Fecal contamination from animal and human sources is one of the major causes of water quality deterioration [6]. Fecal indicators may not be from one particular source, but rather variety of sources. *Escherichia coli* has long been used as an indicator of fecal pollution having good characteristics of a fecal indicator, such as not normally being pathogenic to humans and is present at much higher concentrations than the pathogens it predicts [7]. Antibiotic resistance profiling for the identification of sources of fecal contamination in water is promising and emerging procedure [8]. The multiple antibiotic resistance (MAR) indices of E. coli from wild animals was generally low, while human and poultry isolates had higher MAR indices [9]. There were larger multiple antibiotic resistance of E. coli isolated in urban areas than from rural areas [10]. Therefore antibiotic resistance
profiling and MAR indexing of *E.coli* was performed for microbial source tracking for source of fecal pollution in drinking water in Amravati city.

II. MATERIALS AND METHODS

A total of 400 drinking water samples were collected from houses, schools, hostels and commercially available water cans in Amravati city. The collected water samples were tested for its potability by rapid field Manja’s test (H₂S test). The non potable (160) drinking water samples (H₂S positive) were further processed for presence of *E.coli* by inoculating on MacConky agar. *E.coli* produces pink coloured colonies at 37ºC for 24h on MacConkey agar medium. These *E.coli* (154) isolates were subjected to antibiotic resistant pattern to track the source of fecal contamination by using disc diffusion technique with 8 different antibiotics supplied by Hi-media Pvt Ltd, Mumbai. The multiple antibiotic resistance indices (MARI) were calculated for these *E.coli* isolates.

MAR Index:

The MAR Index for a isolate = \[
\text{Number of antibiotics to which the isolates resistance} / \text{No. of antibiotics tested}
\]

Multiple antibiotic resistance values for each isolate were calculated by summing the number of antibiotics to which the isolate was resistant and dividing by the total number of antibiotics assayed [10].

III. RESULTS AND DISCUSSION

The total 400 drinking water samples were collected from the house (200), school (100), hostel (50) and commercially available water cans (50), out of which 160 water samples were found nonpotable. A total of 154 *E.coli* were isolated and identified from these 160 nonpotable drinking water samples. The 123(79%) from human fecal origin and 31(21%) animal fecal origin *E. coli* were found after the microbial source tracking by multiple antibiotic resistances (MAR) analysis as shown in table 1. The data of the study also revealed that total 19 and 18 *E.coli* were isolated from the nonpotable drinking water samples of hostels and Schools respectively, all the isolates were found human fecal origin. Out of 15 nonpotable water samples from commercial water cans, 12 *E.coli* were isolated and identified from these 160 nonpotable drinking water samples. The 105(72%) was human fecal origin and 29(28%) was animal fecal origin (Fig.2).

Table 1: Non potability of D.W. water samples and source of contamination

Site of collection	Total sample	Results of H₂S 24h	48h	72h	Non potability 24h	48h	72h	No. of *E.coli* Isolated	Source of contamination	Human Fecal Origin	Animal Fecal Origin
Hostels	50	10	16	20	20	19	19	154	Human Fecal Origin	19	00
Schools	100	05	18	19	19	18	18	19	Animal Fecal Origin	10	02
Cans	50	04	09	15	15	12	10	12	Human Fecal Origin	00	02
Houses	200	34	92	106	106	105	76	123	Animal Fecal Origin	31	29
Total	400	53	135	160	160	154	123	31			
The *E. coli* isolates showed variable antibiotic resistant patterns. The isolates were highly resistant to Ceftriaxone 86% followed by 81% resistant to Vancomycin and ciftazidime, 65% were resistant to Cefotaxime, 53% were resistant to Lincomycin, 18% were found resistant to Amikacin, 16% to Netilmicin and 11% to Ofloxacin. This results correlates with the Tambekar et al.,[11] where *E. coli* isolates were highly susceptible to Ofloxacin followed by Netilmicin, reported 58% resistant to ceftriaxone i.e., the antibiotic was moderately effective against the isolates (Fig.1).

The data of the study showed that the isolates having MAR Indices 0.25, 0.125 were animal fecal origin and that of 0.375, 0.5, 0.625, 0.75, 0.875 and 1.0 were human fecal origin. 3% of the isolates have the MAR Index 0.125, 17% isolates have MAR index 0.25. The 15% *E.coli* isolates have MAR index 0.375, 20% have 0.5, 30% have 0.625, 10% have 0.75 MAR index. The 4% isolates have MAR index 0.875 and only 1% isolates have the MAR index 1.0 (Table.2).

From the study it is cleared that in the urban area maximum fecal contamination occurs from the human fecal origin as compare to animal fecal origin. The contamination occurs in the urban area due to unhygienic water storage and handling practices, Microbial contamination of collected and stored household water is caused not only by the way of collection and use but unsanitary and inadequately protected (open, uncovered or poorly covered) water collection and storage containers. Unsanitary methods to dispense water from household storage vessels, including contaminated hands and dippers, and inadequate cleaning of vessels, which lead to accumulation of sediments and pathogens [12,13,14]. The easily available medical facilities and uncontrolled use of antibiotic in the urban area leading to cause increased in antibiotic resistance in bacteria which is alarming situation because the number of antibiotic are limited.
Similarly, Tambekar et al., [15] reported that the thermotolerant *E.coli* isolated from the drinking water from salinity affected villages of Purna River basin of Vidarbha were 75% human fecal origin and 25% were non human fecal origin. The study done by Chitanand *et al.*, [16] showed that multiple antibiotic resistances was prominently seen in coliforms at downstream sites while it was low in coliforms at up streams sites along the bank of river and the differences in MAR indices provide a method for distinguishing high risk contamination sites in aquatic environment. The antibiotic resistance index for detected thermotolerant *E.coli* in ODNF (Open defecation not free) villages were found higher than in ODF (open defecation free) villages [17].

IV. CONCLUSION

From the above study it is cleared that, Microbial source tracking can be a useful tool for the detection of source of fecal contamination in drinking water. The study revealed that in urban area the pollution of drinking water was mainly human fecal origin as compare to animal fecal origin. The reason for contamination of drinking water was unhygienic water storage and handling practices. Thus study concluded that the water in urban area was mainly polluted due human fecal origin as compare to animal fecal origin.

REFERENCES

[1] Hagedorn C, Benham BL, Sara C, (2005). Microbial Source Tracking and TMDL (Total Maximum Daily Loads) Process. Pub. Num. 442-554., Post. June 2005.
[2] WHO (April 2014). Antimicrobial resistance: global report on surveillance. WHO.
[3] Baquero F, Martinez JL & Canton R (2008). Antibiotics and antibiotic resistance in water environments. Curr Opin Biotecnol 19: 260–265.
[4] Zhang XX, Zhang T & Fang HH (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotecnol 82:397–414.
[5] Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I & Fatta-Kassinos D (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447: 345–360.
[6] Yolanda O and Faulker BR (2007). Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ Monit Asses, 139: 15-25.
[7] Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J, 2002. Microbial source tracking: Current methodology and future directions. App and Environ Microbio 68(12): 5792-5803.
[8] Tambekar DH and AB Charan (2004). Antibiotic sensitivity indexing of *Escherichia coli* to identify source of faecal contamination in drinking water in Purna valley Vidarbha, Nat. Environ. Poll. Tech., 3(3): 413-418.
[9] Krumperman PH (1983). Multiple antibiotic resistances indexing of *Escherichia coli* to identify high-risk source of fecal contamination of food. Appl. Environ Microbio, 46:165-170.
[10] Kaspar CW and Burgess JL (1990). Antibiotic resistance indexing of *Escherichia coli* to identify sources of fecal contamination in water. Canadian J. Microbiol, 36: 891-894.
[11] Tambekar DH, Hirulkar NB, Kalikar MV, Patil YS, Gulhane SR (2010). Prevalence of thermotolerant *Escherichia coli* in drinking water and its multidrug resistance. Res J Microbiol, 5(11): 1180-1184.
[12] Tambekar DH, Shirsat SD and Bhadange DG (2011). Drinking Water Quality Deterioration in Households of Students with High Illness absenteeism. Online J Health Allied Sci, 10(2):4.
[13] Tambekar DH, Dhole SV and Shinde GM (2016). Household drinking water: Assessment of microbiological contamination between source and point of use. *Bioscience Discovery*, 7(2):152 157
[14] Gundry SJ, Wright and Conroy R (2004). A systematic review of the health outcomes related to household quality in developing countries. J Water and Health 02(1): 1-13.

[15] Tambekar DH, Anisingkar VM, Tamberkar SD and Banginwar YS (2008). Microbial source tracking through antibiotics resistance profile for detection of fecal pollution in water. J App Sci R 4(11): 1496-1501.

[16] Chitanand MP, Kadam TA, Gyananath G, Totewad ND, Balhal DK, (2008). Multiple antibiotic resistances indexing of coliforms to identify high risk contamination sited in aquatic environment. Indian J Microbiol 50: 216-220.

[17] Tambekar DH and More SA (2012). Antibiotic resistance analysis: a tool to identify the source of fecal contamination in rural drinking water of Amravati district. Asiatic J Biotechnol Res, 3(10): 1435-1440.