CLINICAL STUDY

General Anesthesia or Conscious Sedation for Transfemoral Aortic Valve Replacement with the SAPIEN 3 Transcatheter Heart Valve

Franz-Josef Neumann, MD, Simon Redwood, MD, Mohamed Abdel-Wahab, MD, Thierry Lefèvre, MD, Derk Frank, MD, Hélène Eltchaninoff, MD, Christophe Caussin, MD, Pieter R. Stella, MD, Tomas Hovorka, MSc, Helmut Baumgartner, MD, Giuseppe Tarantini, MD, Olaf Wendler, MD and Hendrik Treede, MD on behalf of SOURCE 3 Investigators

Summary

Differences in the benefits of conscious sedation (CS) and general anesthesia (GA) during transfemoral aortic valve implantation (TAVI) are unclear.

We aimed to assess differences in procedural and clinical outcomes based on the type of anesthesia received during TAVI.

We analyzed SOURCE 3 Registry data for patients who received the SAPIEN 3 valve by type of anesthesia used during TAVI.

Of the 1694 TAVI patients, 1027 received CS and 667 received GA. Patients were similar at baseline (81.5 years; Society of Thoracic Surgeons risk score 7.0). Compared with the GA group, the CS group had fewer intra-procedural transesophageal echocardiography (TEE) and post implantation dilatations performed, and less contrast medium was used. The CS group had significantly less kidney injury at 7 days post-procedure than the GA group (0.4% versus 1.5%, \(P = 0.014 \)). Moderate paravalvular leaks (PVL) occurred more frequently in the CS group versus the GA group (2.2% versus 0.8%; \(P = 0.041 \)). No severe PVL were reported. Median total hospital length of stay (LOS) after TAVI was 10 days in the CS group and 11 days in the GS group. At 30 days, all-cause death was 2.1% in CS and 1.7% in GS (\(P = 0.47 \)), and myocardial infarction was 0.2% in CS and 0.1% in GS (\(P = 0.83 \)).

Our analyses found no significant major outcome differences between CS and GA during TAVI.

Key words: Aortic stenosis, Balloon-expandable transcatheter heart valve, SOURCE 3 Registry

Since the introduction of transcatheter aortic valve implantation (TAVI), the majority of cases have been performed with general anesthesia (GA); however, increasing operator experience and technological device innovations have expanded anesthesia choices. Some TAVI centers now use conscious sedation (CS) almost exclusively or a combination of CS and GA. CS appears to offer benefits, such as shorter procedural times and less use of inotropic and vasopressor agents. Additionally, CS may offer faster recovery time than GA, but GA facilitates intra-procedural use of transesophageal echocardiography (TEE) that assists with optimal valve apposition and may be more convenient for operators and more comfortable for patients. Nonetheless, delayed recovery with GA is a growing concern is, which necessitates further examination.

While no randomized studies have compared resource utilization and patient outcomes of TAVI performed under CS and GA, several nonrandomized studies1-11 and meta-analyses12,13 have addressed this issue. A systematic review and meta-analysis by Maas, et al.13 suggested that CS reduced procedural times and hospital length of stay (LOS). However, these positive outcomes were at the expense of a higher rate of new pacemaker insertion and moderate-to-severe paravalvular leaks (PVL).13

The authors found no significant differences in hard endpoints, such as 30-day mortality or incidence of stroke,13 but noted that their results might have been confounded.

From the 1University Heart Centre Freiburg/Bad Krozingen, University of Freiburg, Bad Krozingen, Germany, 2King’s Health Partners, London, UK, 3Leipzig Heart Center, Leipzig, Germany, 4Institut Cardiovasculaire Paris Sud, Hopital privé Jacques Cartier, Massy, France, 5University Hospital, Schleswig-Holstein, Kiel and DZHK (German Center for Cardiovascular Research, Kiel/Lübeck/Hamburg), Germany, 6Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, F76000, Rouen, France, 7Institut Mutualiste Montsouris, Paris, France, 8University Medical Center, Utrecht, The Netherlands, 9Statistics Department, Edwards Lifesciences, Prague, Czech Republic, 10Department of Cardiology III, University Hospital, Adult Congenital & Valvular Heart Disease, Münster, Germany, 11Padova Hospital, Italy, 12King’s College Hospital, London, United Kingdom and 13University Heart Center, Hamburg, Germany.

This study was funded by Edwards Lifesciences.

Address for correspondence: Franz-Josef Neumann, MD, Klinik für Kardiologie und Angiologie II, Universitäts-Herzzentrum Freiburg/Bad Krozingen, Südring 15, 79189 Bad Krozingen, Germany. E-mail: franz-josef.neumann@universitaets-herzzentrum.de

Received for publication October 23, 2019. Revised and accepted March 16, 2020.

Released in advance online on J-STAGE July 18, 2020.

doi: 10.1536/ihj.19-567

All rights reserved by the International Heart Journal Association.
by selection bias (e.g., CS tends to be used with self-expandable valves), performance bias (operators tend to switch from GA to CS with increasing experience), and publication bias. SOURCE 3 is a large European registry of contemporary TAVI practice in experienced centers using a single transcatheter heart valve (THV), SAPIEN 3 (Edwards Lifesciences, Inc.; Irvine, CA). Thus, the SOURCE 3 Registry provided an opportunity to investigate anesthesia management for TAVI without the potential confounders of differing valve technologies and noncontemporary practice patterns. Therefore, this study investigated the role of these anesthesia techniques during TAVI in SOURCE 3 with respect to key clinical outcomes and resource utilization.

Methods

Patient selection and TAVI procedure: We analyzed patient data from the SOURCE 3 Registry, the largest European, post-market approval registry of TAVI performed with the SAPIEN 3 THV, which enabled us to evaluate a large number of patients who were treated by experienced TAVI operators using a single type of valve, i.e., the balloon expandable SAPIEN 3, as has been previously described in detail. The detailed parameters of the SOURCE 3 trial, such as the protocol, Institutional Review Board processes, TAVI technical aspects, and the components for overall and 30-day outcomes, have also been previously published. The SOURCE 3 Registry was approved by the Institutional Review Board of all participating centers, and all patients gave written informed consent to be included. The indications for TAVI with the SAPIEN 3 THV and the choice of anesthetic technique were made by the local heart teams and were based on individual preference.

The SOURCE 3 Registry includes 1947 patients who underwent TAVI with the SAPIEN 3 valve in 80 centers in 10 European countries. Patients who received transapical and transaortic valve replacements were excluded from this analysis due to the more invasive nature of these access sites, which necessitates the use of GA.

Study protocol and data management: SOURCE 3 patients were assessed at discharge, 30 days, and 1 year and will be followed annually for up to 5 years post TAVI. The major outcome measures were all-cause death, cardiac mortality, major vascular complications, life-threatening bleeding, stroke, acute kidney injury (AKI), permanent pacemaker insertion, procedural complications, LOS, New York Heart Association (NYHA) functional class, and echocardiographic assessment of valve function. All study endpoints were defined by the Valve Academic Research Consortium 2 criteria. The clinical events were reviewed and adjudicated by an independent clinical events committee. All echocardiographic data shown in this manuscript were site reported.

Statistical analysis: The analyzed population was based on the intention-to-treat principle; therefore, patients who converted to GA from CS were analyzed in the CS group.

We reported continuous variables as mean ± standard deviation or median. For baseline and procedural characteristics, categorical variables were compared using Fisher’s exact test and described as frequencies and percentages. For comparisons of country differences between the two groups, we used the Wilcoxon rank-sum test. Hemodynamic parameters were tested using the Fisher’s exact and Wilcoxon rank-sum tests for categorical and continuous variables, respectively. Kaplan-Meier estimates were used to describe 30-day outcomes.

For all statistical analyses, we used SAS version 9.4 (SAS Institute Inc.; Cary, NC).

Results

Baseline patient characteristics: We analyzed 1694 patients from the SOURCE 3 Registry who underwent TAVI: 1,027 patients who were planned to receive CS and 667 patients who received GA. Due to procedural complications, 12 patients (2.9%) who had been planned to receive CS were converted to GA (Table I). All of these complications resolved without sequelae. The treatment groups were similar in mean age (about 81.5 years old) and STS risk scores (about 7.0; Table I). Compared with the GA group, the CS group had a significantly lower prevalence of coronary artery disease (44.5% versus 55.5%; P < 0.001; Table I), congestive heart failure (32.2% versus 38.7%; P = 0.007), carotid disease (11.7% versus 17.2%; P = 0.002), and moderate-to-severe mitral regurgitation (11.5% versus 14.8%; P = 0.043). Conversely, the CS group had significantly more patients aged ≥80 years (70.4% versus 66.0%; P = 0.041) than did the GA group (Table I).

Procedural characteristics and outcomes: Of the valve sizes used in the procedures, the 29-mm valve was implanted significantly more often in the CS group than in the GA group (24.4% versus 18.7%; P = 0.007; Table II). Notably, TEE was used to guide TAVI in significantly fewer CS patients (5%) compared with GA patients (82%; P < 0.001). The valve was placed correctly in 99% of all patients.

The rate of post-dilatation was significantly less in the CS group compared with the GA group (7.1% versus 15.4%; P < 0.001). The rate of surgical closures of the femoral access was also significantly less in the CS group (1.2%) than in the GA group (12.7%; P < 0.001). In terms of resource utilization outcomes, the CS group experienced significantly shorter procedure times (64 minutes versus 79.2 minutes; P < 0.001) and received significantly lower volumes of contrast (121.6 mL versus 132.2 mL; P = 0.040) than the GA group.

Overall, procedural events did not differ significantly between the two study groups (Table II).

Echocardiographic data: At discharge, echocardiographic data were available for 907 patients in the CS group and in 604 patients of the GA group. Echocardiograms at 30 days were available for 512 patients in the CS group and 393 in the GA group. As shown in Table III, effective orifice area and mean transvalvular gradients did not differ between the two subsets at any time point. No statistically significant difference in the overall distribution of PVL grades (P = 0.118) was found between the two groups (Figure). Yet, the proportion of patients with
Table I. Demographics and Baseline Characteristics in Patients with Conscious Sedation or General Anesthesia

Patient characteristic, Mean ± SD (n) or n (%)	Conscious sedation n = 1027	General anesthesia n = 667	P-value*
Age (years)	81.9 ± 6.72 (1027)	81.3 ± 6.60 (667)	0.057
Age ≥ 80 years	723 (70.4)	440 (66.0)	0.041
Female	511 (49.8)	323 (48.4)	0.061
Mean Logistic EuroSCORE	17.9 ± 12.96 (960)	17.7 ± 12.79 (593)	0.947
EuroSCORE < 10	296 (28.8)	179 (26.8)	0.821
EuroSCORE > 30	144 (14.0)	81 (12.1)	0.505
STS score	7.4 ± 8.01 (503)	7.0 ± 7.53 (400)	0.406
Hypertension	830 (80.8)	551 (82.6)	0.370
Dyslipidemia	539 (52.5)	367 (55.0)	0.319
History of smoking	253 (24.6)	157 (23.5)	0.642
Diabetes	281 (27.4)	206 (30.9)	0.124
Insulin-dependent diabetes	96 (9.3)	76 (11.4)	0.188
Coronary artery disease	457 (44.5)	370 (55.5)	< 0.001
Myocardial infarction	105 (10.2)	75 (11.2)	0.519
Percutaneous coronary intervention	312 (30.4)	241 (36.1)	0.015
Coronary bypass grafting	84 (8.2)	75 (11.2)	0.041
Congestive heart failure	331 (32.2)	258 (38.7)	0.007
Left ventricular ejection fraction < 30%	59 (5.7)	32 (4.8)	0.579
New York Heart Association Class IV	97 (9.4)	55 (8.2)	0.433
Mitral regurgitation (moderate to severe)	118 (11.5)	99 (14.8)	0.043
Tricuspid regurgitation (moderate to severe)	91 (8.9)	62 (9.3)	0.480
Atrial fibrillation	232 (22.6)	133 (19.9)	0.330
Pacemaker	117 (11.4)	78 (11.7)	0.876
Chronic obstructive pulmonary disease	149 (14.5)	107 (16.0)	0.405
Renal insufficiency	260 (25.3)	195 (29.2)	0.082
Severe liver disease/cirrhosis	18 (1.8)	15 (2.2)	0.477
Porcelain aorta	43 (4.2)	16 (2.4)	0.057
Peripheral vascular disease	129 (12.6)	73 (10.9)	0.357
Peripheral stent (femoral, iliac)	20 (1.9)	5 (0.7)	0.062
Stroke	83 (8.1)	49 (7.3)	0.643
Transient ischemic attack	37 (3.6)	28 (4.2)	0.605
Carotid disease	120 (11.7)	115 (17.2)	0.002
Carotid endarterectomy/stent	27 (2.6)	26 (3.9)	0.155
Coagulopathy	15 (1.5)	5 (0.7)	0.251

*P-values compare conscious sedation versus general anesthesia using Fisher’s exact and t tests for categorical and continuous measures, respectively.

Table II. Procedural Characteristics and Outcomes between Patients Receiving TAVI with Conscious Sedation or General Anesthesia

Characteristic	Conscious sedation n = 1027	General anesthesia n = 667	P-value*
Valve size 23 mm, n (%)	377 (36.7)	256 (38.4)	0.504
Valve size 26 mm, n (%)	399 (38.9)	286 (42.9)	0.105
Valve size 29 mm, n (%)	250 (24.4)	125 (18.7)	0.007
Valve-in-bioprosthesis, n/N (%)	15/1024 (1.5)	12/645 (1.9)	0.554
Transesophageal echocardiography, n/N (%)	14/272 (5.1)	352/428 (82.2)	< 0.001
Pre-balloon valvuloplasty, n/N (%)	543/1024 (53.0)	369/666 (55.4)	0.343
Correct site placement, n/N (%)	1011/1023 (98.8)	659/665 (99.1)	0.809
Post-dilation, n/N (%)	73/1023 (7.1)	102/664 (15.4)	< 0.001
Procedure time, minutes, mean ± SD (n)	64.5 ± 27.75 (870)	79.2 ± 40.53 (513)	< 0.001
Fluoroscopy time, minutes, mean ± SD (n)	14.7 ± 6.75 (872)	15.0 ± 7.56 (609)	0.855
Contrast volume, mL, mean ± SD (n)	121.6 ± 51.49 (982)	132.2 ± 69.15 (626)	0.040
Surgical closure of access site, n/N (%)	12/1014 (1.2)	83/854 (12.7)	< 0.001
Valve-in-valve bailout, n (%)	6 (0.6)	5 (0.7)	0.761
Conversion to open heart surgery	4 (0.4)	6 (0.9)	0.205
Cardiopulmonary bypass, n (%)	1 (0.1)	0 (0.0)	> 0.999
Coronary obstruction, n (%)	4 (0.4)	3 (0.4)	> 0.999
Annular rupture, n (%)	1 (0.1)	2 (0.3)	0.566

TAVI indicates transfemoral aortic valve implantation. *P-values compare conscious sedation versus general anesthesia using Fisher’s exact and t tests for categorical measures and continuous measures, respectively. † n = 1026. ‡ n = 666.
and 1.9% of the GA group. Improvement of at least 1 NYHA class. Worsening of symptoms (Table VII), consistent results were obtained (data not shown).

Regardless of anesthesia used, the median ICU LOS was 1 day in most countries, except France (2 days; Table V). Median total LOS also tended to vary by country, with the shortest total LOS (5.0 days) reported in both Denmark and the United Kingdom. Total LOS also did not differ significantly between the two anesthesia regimens (Table V).

At 7 days post-procedure, AKI was significantly less prevalent in the CS group than in the GA group (0.4% versus 1.5%; P = 0.014; Table VI). However, the rate of unplanned hemodialysis after TAVI did not differ significantly between the two anesthesia regimens (Table V).

At 30 days post-procedure, no significant differences were found between treatment groups in all-cause mortality, cardiovascular mortality, major vascular complications, life-threatening bleeding, myocardial infarction, new pacemaker implantation, stroke, and disabling stroke (Table VI). After adjusting for differences in baseline characteristics (Table VII), consistent results were obtained (data not shown).

At the 30-day follow-up, 79.5% of patients in the CS group and 80.0% in the GA group had symptomatic improvement of at least 1 NYHA class. Worsening of symptoms by 1 NYHA class occurred in 2.3% of the CS group and 1.9% of the GA group.

Discussion

This analysis of the SOURCE 3 Registry comparing patients who underwent TAVI with CS or GA found little evidence to demonstrate the superiority of either anesthesia technique. Specifically, procedural success and freedom from death or myocardial infarction at 30 days were similar, irrespective of the type of anesthesia used. With either CS or GA, patients derived essentially the same symptomatic benefit, as demonstrated by a decrease in NYHA class at 30 days post-procedure.

Procedural parameters: Our study revealed specific differences in TAVI procedural management based on the use of CS or GA. As expected, GA facilitates the more liberal use of TEE for procedure monitoring, which, in turn, may lead to more meticulous optimization of valve deployment, as evidenced in our study by more post-dilatation procedures in the GA than CS group. This ability to optimize valve deployment with GA was associated with a lower rate of moderate PVL in the GA group versus the CS group. Conversely, CS had the advantage of reduction in procedural time by 15 minutes and the amount of contrast media by 10 cc, which correlates with significantly less AKI in the CS group compared with the GA group. This finding is, however, dependent on interventional practice. When angiographic assessment of PVL is replaced by TEE, the combination of GA and TEE may be used to reduce contrast administration and decrease kidney injury.

The conversion rate to GA of 1.3% in our study was substantially lower than the conversion rate of 5%-11% in earlier studies. This may be attributed to increasing operator experience and advanced valve design facilitating deployment.

Country differences: The similarity in patient characteristics, overall and between countries, is a potential strength of this study, as it reduces the degree of confounding factors associated with differences in patient profiles. Conversely, the choice of anesthesia technique differed sub-

Table III. Mean Aortic Gradient and Effective Orifice Area

Visit	Mean aortic gradient, mmHg	Effective orifice area, cm²		
	GA	CS	GA	CS
Baseline	44.2 ± 14.9 (601)	44.2 ± 16.3 (924)	0.7 ± 0.2 (513)	0.7 ± 0.2 (805)
Discharge	11.7 ± 5.1 (604)	11.7 ± 4.7 (907)	1.7 ± 0.5 (217)	1.7 ± 0.5 (489)
30 days	11.9 ± 5.1 (354)	12.2 ± 5.4 (505)	1.6 ± 0.5 (171)	1.6 ± 0.5 (337)

Mean ± SD (n). CS indicates conscious sedation; and GA, general anesthesia.

Table IV. Proportion of Patients Who Underwent TAVI with Conscious Sedation or General Anesthesia between Countries

Country	Overall	Conscious sedation, %	General anesthesia, %
Denmark	1027	60.6	39.4
Finland	18	90.0	10.0
France	429	67.9	32.1
Germany	419	54.8	45.2
Italy	11	47.8	52.2
The Netherlands	17	89.5	10.5
Spain	1	100.0	0
Switzerland	56	84.9	15.2
United Kingdom	40	30.3	69.7

TAVI indicates transcatheter aortic valve implantation.
Table V. Length of Stay by Country

Country	Conscion sedation Median (min, max)	General anesthesia Median (min, max)	Tests comparing groups*					
	n=1027	n=667						
Length of stay	Total LOS	ICU LOS	Total LOS	ICU LOS	P-value	P-value		
All countries	10.0 (2.0, 73.0)	1.0 (0.0, 62.0)	11.0 (2.0, 116.0)	1.0 (0.0, 43.0)	0.060	0.702		
Denmark	5.0 (4.0, 37.0)	0.0 (0.0, 1.0)	0.0 (0.0, 1.0)	0.0 (0.0, 1.0)	-	-		
Finland	7.0 (4.0, 11.0)	1.0 (0.0, 5.0)	2.0 (0.0, 39.0)	203	9.0 (3.0, 58.0)	2.0 (0.0, 21.0)	0.795	0.478
France	9.0 (2.0, 70.0)	2.0 (0.0, 39.0)	346	13.0 (4.0, 75.0)	1.0 (0.0, 43.0)	0.247	0.001	
Germany	12.0 (2.0, 73.0)	1.0 (0.0, 62.0)	12.0 (7.0, 35.0)	1.0 (1.0, 13.0)	0.621	0.516		
Italy	10.0 (5.0, 32.0)	1.0 (0.0, 17.0)	17.0	7.5 (7.0, 8.0)	0.0 (0.0, 0.0)	1.000	0.864	
The Netherlands	7.0 (7.0, 14.0)	0.0 (0.0, 1.0)	1.0 (1.0, 1.0)	0.0 (0.0, 1.0)	-	-		
Spain	7.0 (7.0, 7.0)	1.0 (1.0, 1.0)	1.0	7.5 (7.0, 8.0)	0.0 (0.0, 0.0)	-	-	
Switzerland	9.0 (4.0, 47.0)	1.0 (0.0, 8.0)	10.0	8.0 (5.0, 13.0)	0.0 (0.0, 2.0)	0.786	< 0.001	
United Kingdom	5.0 (2.0, 65.0)	0.0 (0.0, 15.0)	92.0	5.5 (2.0, 116.0)	0.0 (0.0, 24.0)	0.536	0.036	

ICU indicates intensive care unit; and LOS, length of stay. *P-values are based on Wilcoxon rank-sum test.

Paravalvular leaks: In the unadjusted analysis of the FRANCE-2 registry on early generation valves reported by Oguri, et al., there was a statistically significant surplus in greater than mild PVL with CS compared with GA. This difference disappeared after adjusting for the use of TEE, which supports our hypothesis that more liberal use of TEE contributes to a lower incidence of PVL with GA. Similar to the FRANCE-2 registry, our SOURCE 3 analysis found a significant difference in moderate-to-severe PVL between groups.

Permanent pacemaker implantation: We did not find significant differences in the need for new pacemaker/defibrillator implantation between CS and GA, which is consistent with a study in patients undergoing elective percutaneous transfemoral TAVI between April 2014 and June 2015, in which post hoc falsification endpoint analyses were performed to evaluate for residual confounding factors. In this study, vascular complications, bleeding, and new pacemaker/defibrillator implantation demonstrated no significant differences between the types of anesthesia management after adjustment, in alignment with our findings.

Length of stay: The LOS post TAVI have been reportedly shorter with CS compared with GA in a study and a meta-analysis. This meta-analysis identified articles...
Table VI. Clinical Outcomes at 30 Days Post Implantation

Clinical outcomes	Conscious sedation (n = 1027)	General anesthesia (n = 667)	P-value*
All-cause mortality, %	2.1	1.7	0.473
Cardiovascular mortality, %	1.5	0.9	0.309
Stroke, %	1.7	0.6	0.055
Disabling stroke, %	0.6	0.3	0.404
Myocardial infarction, %	0.2	0.1	0.830
Major vascular complication, %	4.2	4.4	0.872
Life-threatening bleeding, %	4.1	4.7	0.582
New permanent pacemaker, %	12.1	12.6	0.754
Acute kidney injury (II–III) to 7 days, %	0.4	1.5	0.014
Unplanned hemodialysis to 7 days, n/N (%)	2/29 (6.9)	4/25 (16.0)	0.399
New onset atrial fibrillation, %	4.7	6.8	0.070
ICU median length of stay, median (IQR)	1.0 (0.62)	1.0 (0.43)	0.702
Length of stay, median (IQR)	10.0 (2.73)	11.0 (2.116)	0.060
Moderate-to-severe paravalvular leak, n/N (%)	32/512 (6.3)	28/393 (7.1)	0.686
Effective orifice area, cm², mean ± SD	1.6 ± 0.46, n = 337	1.6 ± 0.45, n = 171	0.449
Mean gradient (mmHg), mean ± SD	12.2 ± 5.40, n = 505	11.9 ± 5.05, n = 354	0.727

*P-values compare conscious sedation versus general anesthesia using Fisher’s exact and Wilcoxon rank-sum tests for categorical and continuous measures, respectively.

Table VII. Reasons for Conversion

Patient	Reason for conversion from CS to GA	Outcome of the conversion
1	Pericardial effusion and need of valve verification by TEE	Resolved without sequelae
2	Ventricular tachycardia and asystole resolved with shock, cardiac massage, medication, intubation, and pacing.	Resolved without sequelae
3	Valve was placed too ventricular; therefore, it was decided to implant a second valve. The first valve embolized into the ventricle, and open heart surgery was required to remove it through the apical access.	Resolved without sequelae
4	Left ventricle perforation requiring re-thoracotomy.	Resolved without sequelae
5	Low output	Resolved without sequelae
6	Hemodynamic instability and agitation	Resolved without sequelae
7	Respiratory insufficiency with known paralysis of the recurrent nerve, COPD, and pulmonary emphysema that required ventilation to be prolonged.	Resolved without sequelae
8	Severe pain during the sheath insertion. Dissection with occlusion of the right external iliac artery in the puncture area occurred. Surgical revision and implantation of a vascular prosthesis (Hemashield 8 mm) was necessary.	Resolved with sequelae
9	Cardiac arrest because valve was implanted upside down. Valve-in-valve was required.	Resolved without sequelae
10	After procedure for surgical repair of access site due to failure of Proglide vessel closure	Resolved without sequelae
11	Intubation and general anesthesia for treating acute tamponade and perforation of the left ventricle	Resolved without sequelae
12	Patient was restless.	Resolved without sequelae
13	Failure of Prostar (closure device)	Resolved without sequelae

COPD indicates chronic obstructive pulmonary disease; and TEE, transesophageal echocardiography.

published between January 2006 and June 2016 that compared CS with GA in a study population undergoing TAVI. CS presented shorter hospital and ICU stays but did not impact 30-day mortality. In contrast to these studies, we found no differences in total LOS based on anesthesia technique employed. This finding was also consistent for ICU LOS.

Limitations: Our findings may be subject to selection bias and confounders, because of the non-randomized nature of our study population. There were, however, differences in baseline characteristics between the two study groups. Therefore, we cannot exclude unknown confounders that may have affected our study results.

Although our analysis is based on 1694 patients, the number of major events was low. This limits the power of our analysis, particularly with respect to stroke and death rates.
Conclusions

In addition to the large patient population, another strength of this study is that a single THV, SAPIEN 3, was used. Moreover, this research addressed contemporary practice patterns across a European spectrum in a fairly homogeneous cohort of patients irrespective of the chosen anesthesia management. Our study expands the existing evidence that the choice of anesthesia does not affect major outcome measures. The large patient population allowed us to address specific additional issues. Thus, our results suggest that for patients who underwent contemporary TAVI with the optimized, balloon-expandable SAPIEN 3 THV, neither CS nor GA technique appeared to offer any major advantages with respect to LOS measures. Specifically, we found no indication that modern GA regimens delivered by dedicated cardiac anesthesiologists was associated with increased harm to the patient or that GA delayed recovery. However, as shown in our study, TAVI operators should be aware that GA may invite procedural complexity and increased volumes of contrast medium, which may increase risk of kidney injury. On the other hand, the use of TEE under GA facilitates valve deployment and helps optimize apposition.

While CS simplifies the procedure, the potential for a slightly higher risk of residual PVL needs to be considered. However, either technique appears to have little effect on recovery times or clinical outcomes. Our findings show that TAVI outcomes appear to be similar irrespective of anesthesia type; therefore, the choice of anesthesia may be left to the preference of the patient and the heart team.

Acknowledgments

Jason Hokama, Frédérique Maneval, and Tracey Fine of Edwards Lifesciences provided medical writing services.

Disclosure

Conflicts of interest: F.J. Neumann reports grants and fees to the institution from Daiichi Sankyo, Astra Zeneca, Sanofi-Aventis, Bayer, The Medicines Company, Bristol, Novartis, Roche, Boston Scientific, Biotronik, Medtronic, and Edwards Lifesciences, and Ferrer. S. Redwood reports grants and personal fees from Edwards Lifesciences; T. Lefèvre is proctor for Abbott Vascular, Boston Scientific, and Edwards Lifesciences; D. Frank reports grants and personal fees from Edwards Lifesciences; Pieter R. Stella is a member of the Keystone Heart advisory board; T. Ho-vorka is an Edwards Lifesciences employee; G. Tarantini reports personal fees from Edwards Lifesciences; O. Wendler and H. Baumgartner are proctors for Edwards Lifesciences. G. Tarantini reports personal fees from Edwards Lifesciences. Other authors have no conflict of interest to declare.

References

1. Babaliaros V, Devireddy C, Lerakis S, et al. Comparison of transfemoral transcatheter aortic valve replacement performed in the catheterization laboratory (minimalist approach) versus hybrid operating room (standard approach): outcomes and cost analysis. JACC Cardiovasc Interv 2014; 7: 898-904.
2. Behan M, Haworth P, Hutchinson N, Trivedi U, Laborde JC, Hillick-Smith D. Percutaneous aortic valve implants under sedation: our initial experience. Catheter Cardiovasc Interv 2008; 72: 1012-5.
3. Ben-Dor I, Looser PM, Muluenda G, et al. Transcatheter aortic valve replacement under monitored anesthesia care versus general anesthesia with intubation. Cardiovasc Revasc Med 2012; 13: 207-10.
4. Brecker SJ, Bleiziffer S, Bosmans J, et al. Impact of Anesthesia Type on Outcomes of transcatheter Aortic Valve Implantation (from the Multicenter ADVANCE Study). Am J Cardiol 2016; 117: 1332-8.
5. Covello RD, Ruggeri L, Landoni G, et al. Transcatheter implantation of an aortic valve: anaesthesiological management. Minerva Anestesiol 2010; 76: 100-8.
6. Dall’Ara G, Elchaninoff H, Moat N, et al. Local and general anesthesia do not influence outcome of transfemoral aortic valve implantation. Int J Cardiol 2014; 177: 448-54.
7. Dehédin B, Guinit PG, Ibrahim H, et al. Anesthesia and perioperative management of patients who undergo transfemoral transcatheter aortic valve implantation: an observational study of general versus local/regional anesthesia in 125 consecutive patients. J Cardiothorac Vasc Anesth 2011; 25: 1036-43.
8. D’Errigo P, Ranucci M, Covello RD, et al. Outcome after general anesthesia versus monitored anesthesia care in transfemoral transcatheter aortic valve replacement. J Cardiothorac Vasc Anesth 2016; 30: 1238-43.
9. Motloch LJ, Rottlaender D, Reda S, et al. Local versus general anesthesia for transfemoral aortic valve implantation. Clin Res Cardiol 2012; 101: 45-53.
10. Oguri A, Yamamoto M, Mouillet G, et al. Clinical outcomes and safety of transfemoral aortic valve implantation under general versus local anesthesia: subanalysis of the French Aortic National CoreValve and Edwards 2 registry. Circ Cardiovasc Interv 2014; 7: 602-10.
11. Yamamoto M, Meguro K, Mouillet G, et al. Effect of local anesthetic management with conscious sedation in patients undergoing transcatheter aortic valve implantation. Am J Cardiol 2013; 111: 94-9.
12. O’Sullivan KE, Bracken-Clarke D, Segurado R, et al. Is local anesthesia the optimum strategy in retrograde transcatheter aortic valve implantation? A systematic review and meta-analysis. Thorac Cardiovasc Surg 2014; 62: 489-97.
13. Maas EH, Pieters BM, Van de Velde M, Rex S. General or local Anesthesia for TAVI? A systematic review of the literature and meta-analysis. Curr Pharm Des 2016; 22: 1868-78.
14. Wendler O, Schymik G, Treede H, et al. SOURCE 3 Registry: design and 30-day results of the European post approval registry of the latest generation of the SAPIEN 3 transcatheter heart valve. Circulation 2017; 135: 1123-32.
15. Kappestein AP, Head SJ, Généreux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Eur Heart J 2012; 33: 2403-18.
16. Hyman MC, Vemulapalli S, Szeto WY, et al. Conscious sedation versus general anesthesia for transcatheter aortic valve replacement: insights from the National Cardiovascular Data Registry Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Circulation 2017; 136: 2132-40.
17. Ehret C, Rossaint R, Foldenauer AC, et al. Is local anesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anesthesia. BMJ Open 2017; 7: e016321.