An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions

F O Goncharov and R G Novikov

1 CMAP, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
2 IEPT RAS, 117997 Moscow, Russia

E-mail: fedor.goncharov.ol@gmail.com and roman.novikov@polytechnique.edu

Received 8 September 2017, revised 18 February 2018
Accepted for publication 26 February 2018
Published 19 March 2018

Abstract

We consider the weighted Radon transforms R_W along hyperplanes in \mathbb{R}^d, $d \geq 3$, with strictly positive weights $W = W(x, \theta)$, $x \in \mathbb{R}^d$, $\theta \in S^{d-1}$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions. In addition, the related weight W is infinitely smooth almost everywhere and is bounded. Our construction is based on the famous example of non-uniqueness of Boman (1993 J. d’Anal. Math. 61 395–401) for the weighted Radon transforms in \mathbb{R}^2 and on a recent result of Goncharov and Novikov (2016 Eurasian J. Math. Comput. Appl. 4 23–32).

Keywords: weighted Radon transforms, injectivity, non-injectivity

1. Introduction

We consider the weighted Radon transforms R_W, defined by the formulas:

$$R_W f(x, \theta) = \int_{s \theta = x} W(x, \theta) f(x) \sigma(dx), \quad (s, \theta) \in \mathbb{R} \times S^{d-1}, \quad x \in \mathbb{R}^d, \quad d \geq 2,$$

(1.1)

where $W = W(x, \theta)$ is the weight, $f = f(x)$ is a test function on \mathbb{R}^d, and σ denotes the measure on the hyperplane $\{x \in \mathbb{R}^d : x \theta = s\}$ induced from Lebesgue measure on \mathbb{R}^d.

We assume that W is real valued, bounded and strictly positive, i.e.:

$$W = \overline{W} \geq c > 0, \quad W \in L^\infty(\mathbb{R}^d \times S^{d-1}),$$

(1.2)

where \overline{W} denotes the complex conjugate of W, c is a constant.
At present, the transforms R_W arise in different domains of pure and applied mathematics; see, e.g. [Bey84, Bom93], [BQ87, GN16], [Gon17, Kun92], [LB73, MQ85], [Natt01, Nov14], [Qui83, Rad17] and references therein.

If $W \equiv 1$, then R_W is reduced to the classical Radon transform R along hyperplanes in \mathbb{R}^d. This transform is invertible by the classical Radon inversion formulas; see [Rad17]. Note that, initially, in the Radon’s work [Rad17] the transform R was introduced and studied from a pure mathematical point of view.

If W is strictly positive, $W \in C^\infty(\mathbb{R}^d \times \mathbb{S}^{d-1})$, and $f \in C_0^\infty(\mathbb{R}^d)$, then in [Bey84] the inversion of R_W is reduced to solving a Fredholm type linear integral equation. Besides, in [BQ87] it was proved that R_W is injective (for example, in $L_2^0(\mathbb{R}^d)$) if W is real-analytic and strictly positive. In addition, an example of R_W in \mathbb{R}^2 with infinitely smooth strictly positive W and with non-trivial kernel $\text{Ker} R_W$ in $C_0^\infty(\mathbb{R}^2)$ was constructed in [Bom93]. Here C_0^∞, L_2^0 denote the spaces of functions from C^∞, L_2 with compact support, respectively.

In connection with the most recent progress in inversion methods for weighted Radon transforms R_W, see [GN16].

We recall also that inversion methods for R_W in \mathbb{R}^3 admit applications in the framework of emission tomographies (see [GN16]).

In the present work we construct an example of R_W in \mathbb{R}^d, $d \geq 3$, with non-trivial kernel $\text{Ker} R_W$ in $C_0^\infty(\mathbb{R}^d)$. The related W satisfies (1.2). In addition, our weight W is infinitely smooth almost everywhere on $\mathbb{R}^d \times \mathbb{S}^{d-1}$. To our knowledge, this result is the first example of non-uniqueness for the transforms R_W under the assumptions (1.2) for $d \geq 3$ (for example, in $L_2^0(\mathbb{R}^d)$). In particular, this example shows limitations for inversion methods for R_W in dimension $d \geq 3$ developed in the literature; see, e.g. [Bey84, GN16], [Gon17].

In our construction we proceed from results of [Bom93] and [GN16]. In particular, this construction is motivated by relations between R_W and weighted ray transforms arising in emission tomographies for $d = 3$; see [GN16].

In section 2, in particular, we recall the result of [GN16].

In section 3 we recall the result of [Bom93].

In section 4 we obtain the main result of the present work.

2. Relations between the Radon and the ray transforms

We consider also the weighted ray transforms P_w in \mathbb{R}^d, defined by the formulas:

$$P_wf(x, \theta) = \int_\mathbb{R} w(x + t\theta, \theta) f(x + t\theta) \, dt, \quad (x, \theta) \in TS^{d-1},$$

$$TS^{d-1} = \{(x, \theta) \in \mathbb{R}^d \times \mathbb{S}^{d-1} : x\theta = 0\}, \quad d \geq 2,$$

where $w = w(x, \theta)$ is the weight and $f = f(x)$ is a test-function on \mathbb{R}^d.

We assume that w is real valued, bounded and strictly positive, i.e.:

$$w = w \geq c > 0, \quad w \in L^\infty(\mathbb{R}^d \times \mathbb{S}^{d-1}).$$

We recall that TS^{d-1} can be interpreted as the set of all oriented rays in \mathbb{R}^d. In particular, if $\gamma = (x, \theta) \in TS^{d-1}$, then

$$\gamma = \{y \in \mathbb{R}^d : y = x + t\theta, \quad t \in \mathbb{R}\},$$

where θ gives the orientation of γ.
We recall that for \(d = 2 \), transforms \(P_w \) and \(R_w \) are equivalent up to the following change of variables:

\[
R_w f(s, \theta) = P_w f(s \theta, \theta^\perp), \ s \in \mathbb{R}, \ \theta \in \mathbb{S}^1, \tag{2.5}
\]

\[
W(x, \theta) = w(x, \theta^\perp), \ x \in \mathbb{R}^2, \ \theta \in \mathbb{S}^1, \tag{2.6}
\]

where \(f \) is a test-function on \(\mathbb{R}^2 \).

For \(d = 3 \), the transforms \(R_w \) and \(P_w \) are related by the following formulas (see [GN16]):

\[
R_w f(s, \theta) = \int_\mathbb{R} P_w f(s \theta + \tau [\theta, \alpha(\theta)], \alpha(\theta)) \, d\tau, \ (s, \theta) \in \mathbb{R} \times \mathbb{S}^2, \tag{2.7}
\]

\[
W(x, \theta) = w(x, \alpha(\theta)), \ x \in \mathbb{R}^3, \ \theta \in \mathbb{S}^2, \tag{2.8}
\]

\[
\alpha(\theta) = \begin{cases}
\lvert \eta, \theta \rvert, & \text{if } \theta \neq \pm \eta, \\
\text{any vector } e \in \mathbb{S}^2, \text{ such that } e \perp \theta, & \text{if } \theta = \pm \eta,
\end{cases} \tag{2.9}
\]

where \(\eta \) is some fixed vector from \(\mathbb{S}^2 \), \([\cdot, \cdot]\) denotes the standard vector product in \(\mathbb{R}^3 \) and \(\perp \) denotes the orthogonality of vectors. Actually, formula (2.7) gives an expression for \(R_w \) on \(\mathbb{R} \times \mathbb{S}^2 \) in terms of \(P_w f \) restricted to the rays \(\gamma = \gamma(x, \theta) \), such that \(\theta \perp \eta \), where \(W \) and \(w \) are related by (2.8).

Below we present analogs of (2.7) and (2.8) for \(d > 3 \).

Let

\[
\Sigma(s, \theta) = \{ x \in \mathbb{R}^d : s \theta = s \}, \ s \in \mathbb{R}, \ \theta \in \mathbb{S}^{d-1}, \tag{2.10}
\]

\[
\Xi(v_1, \ldots, v_k) = \text{Span}\{v_1, \ldots, v_k\}, v_i \in \mathbb{R}^d, i = 1, \ldots, k, 1 \leq k \leq d, \tag{2.11}
\]

\[
\Theta(v_1, v_2) = \{ \theta \in \mathbb{S}^{d-1} : \theta \perp v_1, \theta \perp v_2 \} \cong \mathbb{S}^{d-3}, v_1, v_2 \in \mathbb{R}^d, v_1 \perp v_2, \tag{2.12}
\]

\((e_1, e_2, e_3, \ldots, e_d)\)-be some fixed orthonormal, positively oriented basis in \(\mathbb{R}^d \). \(\tag{2.13} \)

If \((e_1, \ldots, e_d)\) is not specified otherwise, it is assumed that \((e_1, \ldots, e_d)\) is the standard basis in \(\mathbb{R}^d \).

For \(d \geq 3 \), the transforms \(R_w \) and \(P_w \) are related by the following formulas:

\[
R_w f(s, \theta) = \int_{\mathbb{R}^{d-2}} P_w f(s \theta + \sum_{i=1}^{d-2} \tau_i \beta_i(\theta), \alpha(\theta)) \, d\tau_1 \ldots d\tau_{d-2}, \ (s, \theta) \in \mathbb{R} \times \mathbb{S}^{d-1}, \tag{2.14}
\]

\[
W(x, \theta) = w(x, \alpha(\theta)), \ x \in \mathbb{R}^d, \ \theta \in \mathbb{S}^{d-1}, \tag{2.15}
\]

where \(\alpha(\theta), \beta_i(\theta), i = 1, \ldots, d-2, \) are defined as follows:

\[
\alpha(\theta) = \begin{cases}
\text{direction of one-dimensional intersection } \Sigma(s, \theta) \cap \Xi(e_1, e_2), \text{ where} \\
\text{the orientation of } \alpha(\theta) \text{ is chosen such that } \det(\alpha(\theta), \theta, e_3, \ldots, e_d) > 0 \text{ if } \theta \notin \Theta(e_1, e_2), \\
\text{any vector } e \in \mathbb{S}^{d-1} \cap \Xi(e_1, e_2) \text{ if } \theta \in \Theta(e_1, e_2),
\end{cases} \tag{2.16}
\]
\[(\alpha(\theta), \beta_1(\theta), \ldots, \beta_{d-2}(\theta))\] is an orthonormal basis on \(\Sigma(s, \theta)\) (or, more precisely, on \(\Sigma(0, \theta)\) considered as a linear space),

\[(2.17)\]

and \(\Sigma(s, \theta), \Theta(e_1, e_2)\) are given by \((2.10)\) and \((2.12)\), respectively. Here, in particular:

\[
\dim(\Sigma(s, \theta) \cap \Xi(e_1, e_2)) = 1 \text{ if } \theta \not\in \Theta(e_1, e_2); \\
\alpha(\theta) \in \mathbb{S}^{d-1} \cap \Xi(e_1, e_2) \simeq \mathbb{S}^1. \\
\]

Formula \((2.18)\) follows from the formulas:

\[
\dim \Sigma(s, \theta) = d - 1, \dim \Xi(e_1, e_2) = 2, \dim \Sigma(s, \theta) + \dim \Xi(e_1, e_2) = d + 1 > d, \\
\Xi(e_1, e_2) \not\subset \Sigma(s, \theta), \Sigma(s, \theta) \cap \Xi(e_1, e_2) \neq \emptyset. \\
\]

Formula \((2.19)\) follows from the definition.

Note that formulas \((2.14)-(2.18)\) are also valid for \(d = 3\). In this case these formulas are reduced to \((2.7)-(2.9)\), where \(e_3 = -\eta\).

Note that, formula \((2.14)\) gives an expression for \(R_{uf}\) on \(\mathbb{R} \times \mathbb{S}^{d-1}\) in terms of \(P_{uf}\) restricted to the rays \(\gamma = (x, \alpha)\), such that \(\alpha \in \mathbb{S}^{d-1} \cap \Xi(e_1, e_2)\).

Remark 1. In \((2.16)\) one can also write:

\[
\alpha(\theta) = (-1)^{d-1} * (\theta \wedge e_3 \wedge \cdots \wedge e_d) \text{ if } \theta \not\in \Theta(e_1, e_2), \\
\]

where * denotes the Hodge star and \(\wedge\) is the exterior product in \(\Lambda^*\mathbb{R}^d\) (exterior algebra on \(\mathbb{R}^d\)); see, for example, Chapters 2.1.c, 4.1.c of \cite{Mor01}.

Note that the value of the integral in the right hand-side of \((2.14)\) does not depend on the particular choice of \((\beta_1(\theta), \ldots, \beta_{d-2}(\theta))\) of \((2.17)\).

Note also that, due to \((2.8), (2.9), (2.15)\) and \((2.16)\), the weight \(W\) is defined everywhere on \(\mathbb{R}^d \times \mathbb{S}^{d-1}, d \geq 3\). In addition, this \(W\) has the same smoothness as \(w\) on \(\mathbb{R}^d\) and in \(\theta\) on \(\mathbb{S}^{d-1} \setminus \Theta(e_1, e_2)\), where \(\Theta(e_1, e_2)\) is defined in \((2.12)\) and has zero Lebesgue measure on \(\mathbb{S}^{d-1}\).

3. Boman’s example

For \(d = 2\), in \cite{Bom93} there were constructed a weight \(W\) and a function \(f\), such that:

\[
R_{uf} \equiv 0 \text{ on } \mathbb{R} \times \mathbb{S}^1, \\
\text{(3.1)}
\]

\[
W \equiv W \geq c > 0, \quad W \in C^\infty(\mathbb{R}^2 \times \mathbb{S}^1), \\
\text{(3.2)}
\]

\[
f \in C^\infty_0(\mathbb{R}^2), \quad f \neq 0, \quad \text{supp } f \subset \overline{B^1} = \{x \in \mathbb{R}^2 : |x| \leq 1\}, \\
\text{(3.3)}
\]

where \(c\) is some positive constant. In addition, as a corollary of \((2.5), (2.6), (3.1)-(3.3)\), we have that:

\[
P_{w_0f_0} \equiv 0 \text{ on } T\mathbb{S}^1, \\
\text{(3.4)}
\]

\[
w_0 = w_0 \geq c > 0, \quad w_0 \in C^\infty(\mathbb{R}^2 \times \mathbb{S}^1), \\
\text{(3.5)}
\]

\[
f_0 \in C^\infty_0(\mathbb{R}^2), \quad f_0 \neq 0, \quad \text{supp } f \subset \overline{B^2} = \{x \in \mathbb{R}^2 : |x| \leq 1\}, \\
\text{(3.6)}
\]

where
(3.7) \[w_0(x, \theta) = W(x, -\theta^\perp), \ x \in \mathbb{R}^2, \ \theta \in S^1, \]

(3.8) \[f_0 \equiv f. \]

The construction of [Bom93] is very non-trivial. But for the present work only formulas (3.1)–(3.3) are important.

4. Main results

Let

\[B^d = \{ x \in \mathbb{R}^d : |x| < 1 \}, \]

(4.1)

\[\overline{B}^d = \{ x \in \mathbb{R}^d : |x| \leq 1 \}, \]

(4.2)

\[(e_1, \ldots, e_d) \] be the canonical basis in \(\mathbb{R}^d \).

(4.3)

Theorem 1. There are \(W \) and \(f \), such that

\[RWf \equiv 0 \] on \(\mathbb{R} \times S^{d-1} \),

(4.4)

\(W \) satisfies (1.2), \(\psi \in C_0^\infty(\mathbb{R}^d), f \neq 0, \)

(4.5)

where \(RW \) is defined by (1.1), \(d \geq 3 \). In addition,

\(W \) is \(C^\infty \)–smooth on \(\mathbb{R}^d \times (S^{d-1} \setminus \Theta(e_1, e_2)) \).

(4.6)

where \(\Theta(e_1, e_2) \) is defined by (2.12). Moreover, weight \(W \) and function \(f \) are given by formulas (2.15), (2.16), (4.7) (taking into account (2.19)) and (4.8), (4.9) in terms of the Boman’s weight \(w_0 \) and function \(f_0 \) of (3.7) and (3.8).

Proof of theorem 1. We define

\[w(x, \alpha) = w(x_1, \ldots, x_d, \alpha) \overset{\text{def}}{=} w_0(x_1, x_2, \alpha_1, \alpha_2), \]

(4.7)

\[f(x) = f(x_1, \ldots, x_d) \overset{\text{def}}{=} \psi(x_3, \ldots, x_d)f_0(x_1, x_2), \]

for \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d, \ \alpha = (\alpha_1, \alpha_2, 0, \ldots, 0) \in S^{d-1} \cap \Xi(e_1, e_2) \simeq S^1, \)

(4.8)

where

\[\psi \in C_0^\infty(\mathbb{R}^{d-2}), \ \text{supp} \ \psi = \overline{B}^{d-2} \text{ and } \psi \not\equiv 0. \]

(4.9)

From (2.1), (3.4), (4.7)–(4.9) it follows that:

\[P_wf(x, \alpha) = \int_{\mathbb{R}} w(x_1 + t\alpha_1, x_2 + t\alpha_2, x_3, \ldots, x_d, \alpha) f(x_1 + t\alpha_1, x_2 + t\alpha_2, x_3, \ldots, x_d) \ dt \]

\[= \psi(x_3, \ldots, x_d) \int_{\mathbb{R}} w_0(x_1 + t\alpha_1, x_2 + t\alpha_2, \alpha_1, \alpha_2) f_0(x_1 + t\alpha_1, x_2 + t\alpha_2) \ dt \]

\[= \psi(x_3, \ldots, x_d) P_wf_0(x_1, x_2, \alpha_1, \alpha_2) = 0, \]

\[x \in \mathbb{R}^d, \ \alpha = (\alpha_1, \alpha_2, 0, \ldots, 0) \in S^{d-1} \cap \Xi(e_1, e_2) \simeq S^1. \]

(4.10)
Properties (4.4)–(4.6) for W defined by (2.15), (2.16), (4.7) and f defined by (4.8) and (4.9) follow from (2.14)–(2.17), (2.19), (2.22), (3.2), (3.3) and (4.10). In particular, property (4.4) follows from (2.14), (2.19) and (4.10).

Theorem 1 is proved. □

Note also that, according to (2.15) and (2.16), weight $W(x, \theta)$ for $\theta \in \Theta(e_1, e_2)$ can be specified as follows:

$$W(x, \theta) = W(x_1, \ldots, x_d, \theta) \overset{\text{def}}{=} w_0(x_1, x_2, e_1) \text{ for } \theta \in \Theta(e_1, e_2), x \in \mathbb{R}^d. \quad (4.11)$$

Acknowledgments

The authors are grateful to the referees for remarks that have helped to improve the presentation. This work is partially supported by the PRC n° 1545 CNRS/RFBR: équations quasi-linéaires, problèmes inverses et leurs applications.

ORCID iDs

F O Goncharov https://orcid.org/0000-0002-7165-5181

References

[Bey84] Beylkin G 1984 The inversion problem and applications of the generalized Radon transform Commun. Pure Appl. Math. 37 579–99
[BQ87] Boman J and Quinto E 1987 Support theorems for real-analytic Radon transforms Duke Math. J. 55 943–8
[Bom93] Boman J 1993 An example of non-uniqueness for a generalized Radon transform J. d’Anal. Math. 61 395–401
[GN16] Goncharov F O and Novikov R G 2016 An analog of Chang inversion formula for weighted Radon transforms in multidimensions Eurasian J. Math. Comput. Appl. 4 23–32
[Gon17] Goncharov F O 2017 An iterative inversion of weighted Radon transforms along hyperplanes Inverse Problems 33 124005
[Kun92] Kunyansky L 1992 Generalized and attenuated Radon transforms: restorative approach to the numerical inversion Inverse Problems 8 809
[LB73] Lavrent’ev M M and Bukhgeim A L 1973 A class of operator equations of the first kind Funkt. Anal. Appl. 7 290–8
[MQ85] Markoe A and Quinto E 1985 An elementary proof of local invertibility for generalized and attenuated Radon transforms SIAM J. Math. Anal. 16 1114–9
[Mor01] Morita S 2001 Geometry of differential forms Am. Math. Soc.
[Natt01] Natterer F 2001 The Mathematics of Computerized Tomography (Philadelphia: SIAM)
[Nov14] Novikov R G 2014 Weighted Radon transforms and first order differential systems on the plane Mosc. Math. J. 14 807–23
[Qui83] Quinto E T 1983 The invertibility of rotation invariant Radon transforms J. Math. Anal. Appl. 91 510–22
[Rad17] Radon J 1917 Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten Ber. Saechs Akad. Wiss. Leipzig, Math-Phys 69 262–7