Toric Degenerations of Fano Varieties and Constructing Mirror Manifolds

VICTOR V. BATYREV
Mathematisches Institut, Universität Tübingen
Auf der Morgenstelle 10, 72076 Tübingen, Germany
e-mail: batyrev@bastau.mathematik.uni-tuebingen.de

Abstract

For an arbitrary smooth n-dimensional Fano variety X we introduce the notion of a small toric degeneration. Using small toric degenerations of Fano n-folds X, we propose a general method for constructing mirrors of Calabi-Yau complete intersections in X. Our mirror construction is based on a generalized monomial-divisor mirror correspondence which can be used for computing Gromov-Witten invariants of rational curves via specializations of GKZ-hypergeometric series.

1 Introduction

Recent progress in understanding the mirror symmetry phenomenon using explicit mirror constructions for Calabi-Yau hypersurfaces and complete intersections in toric varieties [2, 4, 5, 9] leads to the following natural question:

Is it possible to extend the mirror constructions for Calabi-Yau complete intersections in toric Fano varieties to the case of Calabi-Yau complete intersections in nontoric Fano varieties?

The first progress in this direction has been obtained for Grassmannians [4] and, more generally, for partial flag manifolds [8]. The key idea in both examples is based on a degeneration of Grassmannians (resp. partial flag manifolds) to some singular Gorenstein toric Fano varieties. These degenerations have been introduced and investigated by Sturmfels, Gonciulea and Lakshmibai in [16, 17, 21, 29, 30].

The present paper is aimed to give a short systematic overview of our method for constructing mirror manifolds and to formulate some naturally arising questions and open problems.

In Section 2 we start with a review of a method for constructing degenerations of unirational varieties X to toric varieties Y using canonical subalgebra bases.
This method has been discovered by Kapur & Madlener [19] and independently by Robbiano & Sweedler [28]. Further results on this topic have been obtained in [27, 23, 29] (see also [30] for more details).

In Section 3 we introduce the notion of a small toric degeneration of a Fano manifold and discuss some examples. Finally, in Section 4 we explain our generalized mirror construction which uses small toric degenerations.

2 Canonical subalgebra bases

Let A be a finitely generated subalgebra of the polynomial ring

$$K[u] := K[u_1, \ldots, u_n],$$

i.e., $X = \text{Spec } A$ is an unirational affine algebraic variety together with a dominant morphism $\mathbb{A}^n \to X$. We choose a weight vector $\omega = (\omega_1, \ldots, \omega_d) \in \mathbb{R}^n$ and set

$$\text{wt}(u^a) = \text{wt}(u_1^{a_1} \cdots u_n^{a_n}) := \sum_{i=1}^{n} a_i \omega_i.$$

The number $\text{wt}(u^a)$ will be called the weight of the monomial u^a. We define a partial order on the set of all monomials in $K[u]$ as follows:

$$u^a \prec u^a' \iff \text{wt}(u^a) \leq \text{wt}(u^a').$$

If $f \in K[u]$ is a polynomial, then $\text{in}_<(f)$ denotes the initial part of f, i.e., the sum of those monomials in f whose weight is maximal. By definition, one has $\text{in}_<(fg) = \text{in}_<(f)\text{in}_<(g)$. For sufficiently general choice of the weight vector $\omega \in \mathbb{R}^n$ the initial part of a polynomial $f \in K[u]$ is a single monomial.

Definition 2.1 The K-vector space spanned by initial terms of elements $f \in A$ is called the initial algebra and is denoted by

$$\text{in}_<(A) := \{\text{in}_<(f) : f \in A\}.$$

Definition 2.2 A subset $\mathcal{F} \subset A$ is called a canonical basis of the subalgebra $A \subset K[u]$, if the initial subalgebra $\text{in}_<(A)$ is generated by the elements

$$\{\text{in}_<(f) : f \in \mathcal{F}\}.$$

Fix a set of polynomials $\mathcal{F} = \{f_1, \ldots, f_m\} \subset A$. We set $K[v] := K[v_1, \ldots, v_m]$. Let I be the kernel of the canonical epimorphism

$$\varphi : K[v] \to A$$

$$v_i \mapsto f_i$$

and $I_<$ the kernel of the canonical epimorphism

$$\varphi_0 : K[v] \to \text{in}_<(A)$$

$$v_i \mapsto \text{in}_<(f_i)$$

2
Remark 2.3 It is easy to show that the ideal I_{\prec} is generated by binomials (see [12] for general theory of binomial ideals). Hence, the spectrum of $in_{\prec}(A)$ is an affine toric variety (possibly not normal).

Now we assume that $\omega = (\omega_1, \ldots, \omega_d) \in \mathbb{Z}^n$ an integral weight vector. If the set of polynomials $F = \{f_1, \ldots, f_m\} \subset A$ form a canonical basis of the subalgebra $A \subset K[u]$ with respect to the partial order defined by ω, then we can define a 1-parameter family of subalgebras

$$A_t := \{f(t^{-\omega_1}u_1, \ldots, t^{-\omega_n}u_n) \mid f(u_1, \ldots, u_n) \in A\}, \quad t \in K \setminus \{0\}.$$

Setting $A_0 := in_{\prec}(A)$, we obtain a flat family of subalgebras $A_t \subset K[u]$ such that $A_t \cong A$ for $t \neq 0$ and $A_0 \cong K[v]/I_{\prec}$. This allows us to consider the affine toric variety $Spec A_0$ as a flat degeneration of $Spec A$.

Remark 2.4 It is important to remark that the above method for constructing toric degenerations strongly depends on the choice of the coordinates u_1, \ldots, u_n on A^n and on the choice of a weight vector ω.

Example 2.5 Let $A(r, s) \subset K[X] := K[X_{ij}] (1 \leq i \leq r, 1 \leq j \leq s)$ be the subalgebra of the polynomial algebra $K[X]$ generated by all $r \times r$ minors of a generic $r \times s$ matrix ($r \leq s$), i.e., $A(r, s)$ is the homogeneous coordinate ring of the Plücker embedded Grassmannian $G(r, s) \subset \mathbb{P}^{(s)}$. Define the weights of monomials as follows

$$wt(X_{ij}) := (j - 1)s^{i-1}, \quad i, j \geq 1.$$

In particular, one has

$$wt(X_{1,i_1} \cdots X_{r,i_r}) = (i_1 - 1) + (i_2 - 1)s + \cdots + (i_r - 1)s^{r-1}$$

and therefore the initial term of each (i_1, \ldots, i_r)-minor ($1 \leq i_1 < \cdots < i_r \leq s$) is exactly the product of terms on the main diagonal:

$$X_{1,i_1} \cdots X_{r,i_r}.$$

The following result is due to Sturmfels [29, 30]:

Theorem 2.6 The set of all $s \times s$-minors form a canonical base of the subalgebra $A(r, s) \subset K[X]$ with respect to the partial order defined by the above weight vector. In particular, one obtains a natural toric degeneration of the Grassmannian $G(r, s)$.

3
3 Small toric degenerations of Fano varieties

Definition 3.1 Let $X \subset \mathbb{P}^m$ be a smooth Fano variety of dimension n. A normal Gorenstein toric Fano variety $Y \subset \mathbb{P}^m$ is called a small toric degeneration of X, if there exists a Zariski open neighbourhood U of $0 \in \mathbb{A}^1$ and an irreducible subvariety $\mathcal{X} \subset \mathbb{P}^m \times U$ such that the morphism $\pi : \mathcal{X} \to U$ is flat and the following conditions hold:

(i) the fiber $X_t := \pi^{-1}(t) \subset \mathbb{P}^m$ is smooth for all $t \in U \setminus \{0\}$;
(ii) the special fiber $X_0 := \pi^{-1}(0) \subset \mathbb{P}^m$ has at worst Gorenstein terminal singularities (see [20]) and X_0 is isomorphic to $Y \subset \mathbb{P}^m$;
(iii) the canonical homomorphism
$$\text{Pic}(\mathcal{X}/U) \to \text{Pic}(X_t)$$
is an isomorphism for all $t \in U$.

Remark 3.2 It is well-known that if Y has at worst terminal singularities, then the codimension of the singular locus of Y is at least 3. On the other hand, it is easy to show that the only possible toric Gorenstein terminal singularities in dimension 3 are ordinary double points (or nodes): $x_1x_2 - x_3x_4 = 0$. So, if Y is a small toric degeneration of X, then the singular locus of Y in codimension 3 must consist of nodes.

Example 3.3 Let $Y := P(r, s) \subset \mathbb{P}^{(r,s) - 1}$ be the toric degeneration of the Grassmannian $X := Gr(r, s) \subset \mathbb{P}^{(r,s) - 1}$ (see Example 2.5). Then Y is a small toric degeneration of X [7].

Example 3.4 Let $X := F(n_1, \ldots, n_k, n) \subset \mathbb{P}^m$ be the partial flag manifold it is Plücker embedding. It is proved in [8] that the toric degenerations introduced and investigated by Gonciulea and Lakshmibai in [16, 17, 21] are small toric degenerations of X.

Example 3.5 Let $V_{d,n} \subset \mathbb{P}^{n + 1}$ be a Gorenstein toric Fano hypersurface of degree d $(d \geq 2)$ in projective space of dimension $n \geq 2d - 2$ defined by the homogeneous equation
$$z_1 \cdots z_d = z_{d+1} \cdots z_{2d}.$$
It is easy to check that irreducible components of the singular locus of $V_{d,n}$ are
d\frac{d^2(d - 1)^2}{4}
codimension-3 linear subspaces
$$z_i = z_j = z_k = z_l = 0,$$
$$\{i, j\} \subset \{1, \ldots, d\}, \{k, l\} \subset \{d + 1, \ldots, 2d\}, i \neq j, k \neq l.$$
consisting of nodes.
Theorem 3.6 \(V_{d,n} \subset \mathbb{P}^{n+1} \) is a small toric degeneration of a smooth Fano hypersurface \(X_{d,n} \subset \mathbb{P}^n \) of degree \(d \).

Proof. Let us first consider the case \(n = 2d - 2 \). In this case the \(2(d-1) \)-dimensional fan \(\Sigma_d \) defining the toric variety \(V_{d,2(d-1)} \) can be constructed as follows:

Let \(e_1, \ldots, e_{d-1}, f_1, \ldots, f_{d-1} \) be a \(\mathbb{Z} \)-basis of the lattice \(\mathbb{Z}^{2(d-1)} \). We set \(e_d := -e_1 - \cdots - e_{d-1} \) and \(f_d := -e_1 - \cdots - f_{d-1} \). We denote by \(h_{i,j} \) the sum \(e_i + f_j \) \((i, j \in \{1, \ldots, n\}) \). If \(\Delta^*_d \) denotes the convex hull of \(d \)-points \(h_{i,j} \), then the fan \(\Sigma_d \subset N_{\mathbb{R}} \) consists of cones over faces of the reflexive polyhedron \(\Delta^*_d \), where the integral lattice \(N \subset \mathbb{Z}^{2(d-1)} \) is generated by all \(d \)-lattice vectors \(h_{i,j} \) (the sublattice \(N \subset \mathbb{Z}^{2(d-1)} \) coincides with \(\mathbb{Z}^{2(d-1)} \) unless \(d = 2 \)).

Using the combinatorial characterisations of terminal toric singularities [20], one immediately obtains that all singularities of \(V_{d,2(d-1)} \) are terminal, since the only \(N \)-lattice points on the faces of \(\Delta^*_d \) are their vertices. If \(d \geq 3 \), then the Picard group of \(V_{d,2(d-1)} \) is generated by the class of the hyperplane section, i.e., \(\text{Pic}(V_{d,2(d-1)}) \cong \mathbb{Z} \) and the anticanonical class of \(V_{d,2(d-1)} \) is \(d \)-th multiple of the generator of \(\text{Pic}(V_{d,2(d-1)}) \). The latter can be show as follows:

Consider a \((2d-3) \)-dimensional face of \(\Delta^*_d \) having vertices

\[h_{i,j}, \ i \in \{1, \ldots, d-1\}, \ j \in \{1, \ldots, d\}. \]

Then every \(\Sigma_d \)-piecewise linear function \(\varphi : N_{\mathbb{R}} \rightarrow \mathbb{R} \), up to summing a linear function, can be normalized by the condition

\[\varphi(h_{i,j}) = 0, \ \forall i \in \{1, \ldots, d-1\}, \forall j \in \{1, \ldots, d\}. \]

On the other hand, for any \(j \neq j', j, j' \in \{1, \ldots, d\} \) four lattice points

\[h_{d,j}, h_{1,j}, h_{d,j'}, h_{1,j'} \]

generate a 3-dimensional cone in \(\Sigma_d \). Hence

\[\varphi(h_{d,j}) = \varphi(h_{d,j'}) \ \forall j, j' \in \{1, \ldots, d\}. \]

This means that the space of all \(\Sigma_d \)-piecewise linear functions modulo linear functions is 1-dimensional. The anticanonical class is represented by the \(\Sigma_d \)-piecewise linear function \(\varphi_1 \) taking values 1 on each vector \(h_{i,j} \) \(i, j \in \{1, \ldots, d\} \). Considering the difference

\[\varphi'_1 := \varphi_1 - \lambda, \]

where \(\lambda \) is a linear function on \(N_{\mathbb{R}} \) satisfying the conditions

\[\lambda(e_1) = \cdots = \lambda(e_{d-1}) = 1, \ \lambda(e_d) = -(d-1), \ \lambda(f_1) = \cdots = \lambda(f_d) = 0, \]

we obtain a \(\Sigma_d \)-piecewise linear function having the properties

\[\varphi'_1(h_{i,j}) = 0, \ \forall i \in \{1, \ldots, d-1\}, \forall j \in \{1, \ldots, d\}. \]
and

\[\varphi(h_{d,j}) = d \quad \forall j \in \{1, \ldots, d\}. \]

So the class of \(\varphi_1 \) modulo linear functions is a \(d \)-th multiple of a generator of \(\text{Pic}(V_{d,2(d-1)}) \).

The general case \(n > 2(d - 1) \) can be obtained by similar arguments using the fact that \(V_{d,n} \) is a projective cone over \(V_{d,2(d-1)} \). In order to construct the required flat 1-parameter family \(X \) (cf. 3.1), it suffices to consider a pencil of hypersurfaces of degree \(d \) in \(\mathbb{P}^{n+1} \) joining \(X_{d,n} \) and \(V_{d,n} \).

\[\Box \]

Theorem 3.7 Let \(X_d \subset \mathbb{P}^{n+1} \) be a smooth Fano hypersurface of degree \(d \). Then \(X_d \) admits a small toric degeneration if and only if \(n \geq 2d - 2 \).

Proof. By 3.6, it suffices to show that \(X_d \) does not admit a small toric degeneration if \(n < 2d - 2 \). Assume that \(X_d \) admits a small toric degeneration \(Y_d \). Then \(Y_d \) is a toric hypersurface defined by a binomial equation \(M_1 = M_2 \) where \(M_1 \) and \(M_2 \) are monomials in \(z_0, \ldots, z_{n+1} \) of degree \(d \) (\(z_0, \ldots, z_{n+1} \) are homogeneous coordinates on \(\mathbb{P}^{n+1} \)). If \(n < 2d - 2 \), then at least one of the monomials \(M_1 \) and \(M_2 \) must be divisible by \(z_i^2 \) for some \(i \in \{0, \ldots, n + 1\} \). We can assume that for instance \(z_0^2 \) divides \(M_1 \). If \(z_k \) and \(z_l \) are two variables appearing in \(M_2 \), then \(n - 2 \)-dimensional linear subspace

\[z_0 = z_k = z_l = 0 \]

is contained in \(\text{Sing}(Y_d) \). This contradicts the fact that terminal singularities on \(Y_d \) could appear only in codimension \(\geq 3 \) (see 3.2). \[\Box \]

Using 3.2, one immediately obtains:

Proposition 3.8 If \(X \) is a smooth Del Pezzo surface, then \(X \) admits a small toric degeneration if and only if \(X \) is itself a toric variety (i.e. \(K_X^2 \geq 6 \)).

As we have seen from 3.6, a smooth quadric 3-fold in \(\mathbb{P}^4 \) is an example of nontoric smooth Fano variety which admits a small toric degeneration. By 3.7, cubic and quartic 3-folds do not admit small toric degenerations. The complete classification of smooth Fano 3-folds has been obtained in [10, 18, 24, 25, 26]. It is natural to ask the following:

Question 3.9 Which 3-dimensional nontoric smooth Fano varieties do admit small toric degenerations?

4 The mirror construction

For our convenience, we assume \(K = \mathbb{C} \).

Let \(X \) be a smooth Fano \(n \)-fold over \(\mathbb{C} \) and \(Y \) is its small toric degeneration. The toric variety \(Y \) is defined by some complete rational polyhedral fan \(\Sigma \subset N_\mathbb{R} \), where
$N_R = N \otimes \mathbb{R}$ is the real scalar extension of a $N \cong \mathbb{Z}^n$. We denote by $Cl(Y)$ (resp. by $Pic(Y)$) the group of Weil (resp. Cartier) divisors on Y modulo the rational equivalence. One has a canonical embedding

$$\alpha : Pic(Y) \hookrightarrow Cl(Y).$$

If $\{e_1, \ldots, e_k\} \subset N$ is the set of integral generators of 1-dimensional cones in Σ, then $Cl(Y)$ is a finitely generated abelian group of rank $k - n$ and the convex hull of e_1, \ldots, e_k is a reflexive polyhedron Δ^* (for definition of reflexive polyhedra see [2]). Assume that there exists a partition of the set $I = \{e_1, \ldots, e_k\}$ into r disjoint subsets J_1, \ldots, J_r such that the union D_i of toric strata in Y corresponding to elements of J_i is a semiample Cartier divisor on Y for each $i \in \{1, \ldots, r\}$. Denote by $Z \subset Y$ a Calabi-Yau complete intersection of r hypersurfaces $Z_i \subset Y$ defined by vanishing of generic global sections of $O_Y(D_i)$. By [4] (see also [9]), the mirrors Z^* of Calabi-Yau complete intersections $Z \subset Y$ are birationally isomorphic to affine complete intersections in $(\mathbb{C}^*)^n = Spec \mathbb{C}[t_{i1}^{\pm 1}, \ldots, t_{in}^{\pm 1}]$ defined by r equations

$$1 = \sum_{e_j \in J_i} a_j t^{e_j}, \quad i \in \{1, \ldots, r\},$$

where $(a_1, \ldots, a_k) \in \mathbb{C}^k$ is a general complex vector and t^{e_1}, \ldots, t^{e_k} are Laurent monomials in variables t_1, \ldots, t_n with the exponents e_1, \ldots, e_k.

Definition 4.1 A complex vector $(a_1, \ldots, a_k) \in \mathbb{C}^k$ is called Σ-admissible, if there exists a Σ-piecewise linear function

$$\varphi : N_R \rightarrow \mathbb{R},$$

(i.e., a continuous function such that $\varphi|_{\sigma}$ is linear for every $\sigma \in \Sigma$) having the property

$$\varphi(e_i) = \log |a_i|, \quad \forall i \in \{1, \ldots, k\}.$$

The set of all Σ-admissible vectors will be denoted by $A(\Sigma)$.

Remark 4.2 It is easy to show that $A(\Sigma) \subset \mathbb{C}^k$ is an irreducible closed subvariety which is isomorphic to an affine toric variety of dimension $rk \Pic(Y) + n \leq k$.

Now our generalization of the mirror construction from [4] to the case of Calabi-Yau complete intersections in a nontoric Fano variety X can be formulated as follows:

Generalized mirror construction: Mirrors W^* of generic Calabi-Yau hypersurfaces $W \subset X$ are birationally isomorphic to the affine complete intersections

$$1 = \sum_{i=1}^{k} a_i t^{e_i},$$
where \(a := (a_1, \ldots, a_k) \) is a general point of \(A(\Sigma) \).

Monomial-divisor correspondence: Let us explain the monomial-divisor mirror correspondence for this mirror construction (cf. [1]). By 3.1(iii), the group \(Pic(Y) \) can be canonically identified with \(Pic(X) \). The image of the restriction homomorphism \(Pic(X) \to Pic(W) \) defines a subgroup \(G \subset Pic(W) \), whose elements correspond to monomial deformations of the complex structure on mirrors:

if \(\psi \) is an integral \(\Sigma \)-piecewise linear function representing an element \(\gamma \in G \), then the 1-parameter family of hypersurfaces

\[
1 = \sum_{i=1}^{k} t_i^{\varphi(e_i)} e_i, \quad t_0 \in \mathbb{C}
\]

defines the corresponding 1-parameter deformation of the complex structure on \(W^* \) via the deformation of the coefficients \(a_i = t_i^{\varphi(e_i)} \).

The main period: Let \(R(\Sigma) \) the group of all vectors \((l_1, \ldots, l_k) \in \mathbb{Z}^k\) satisfying the condition \(\sum_{i=1}^{k} l_i e_i = 0 \) and \(L(\Sigma) \subset R(\Sigma) \) be the semigroup consisting of vectors \((l_1, \ldots, l_k) \in R(\Sigma)\) with nonnegative coordinates \(l_i \) \((i = 1, \ldots, k)\). There exists a canonical pairing \(\langle \ast, \ast \rangle : R(\Sigma) \times Pic(Y) \to \mathbb{Z} \) which is the intersection pairing between 1-dimensional cycles and Cartier divisors on \(Y \). According to [4], we can compute the main period in the family of mirrors \(W^* \) in our generalized mirror construction as follows

\[
\Phi_0(a) = \sum_{1=(l_1,\ldots, l_k) \in L(\Sigma)} \frac{\langle l, D_1 + \cdots + D_r \rangle!}{\langle l, D_1 \rangle! \cdots \langle l, D_r \rangle!} \prod_{i=1}^{k} a_i^{l_i}, \quad a \in A(\Sigma).
\]

The condition \(a \in A(\Sigma) \) can be interpreted as a specialization of GKZ-hypergeometric series from [4].

Some evidences in favor of our generalized mirror construction were presented in [7, 8]. For our next examples confirming the proposed generalized mirror construction we use the following simple combinatorial statement:

Proposition 4.3 Let \(S_d(m) \) be the set of all \(d \times d \)-matrices \(K = (k_{ij}) \) with nonnegative integral coefficients \(k_{ij} \) satisfying the equations

\[
\begin{pmatrix}
k_{11} & \cdots & k_{1d} \\
. & \cdots & . \\
. & \cdots & . \\
k_{d1} & \cdots & k_{dd}
\end{pmatrix}
(1 \quad \cdots \quad 1)
= (m \quad \cdots \quad m)
\]

and

\[
\begin{pmatrix}
k_{11} & \cdots & k_{1d} \\
. & \cdots & . \\
. & \cdots & . \\
k_{d1} & \cdots & k_{dd}
\end{pmatrix}
(1)
= (m)
\]

and

\[
\begin{pmatrix}
m \\
. \\
. \\
m
\end{pmatrix}
\]
Then
\[
\sum_{K \in S_d(m)} \frac{(m!)^d}{\prod_{i,j=1}^{d} (k_{ij})!} = \frac{(dm)!}{(m!)^d}.
\]

Proof. Let \(A \) be the set \(\{1, 2, \ldots, dm\} \) of first \(dm \) natural numbers. We fix a splitting \(A \) into the disjoint union of \(d \) subsets
\[
A_i := \{(i-1)m+1, (i-1)m+2, \ldots, im\}, \quad i = 1, \ldots, d
\]
consisting of \(m \) elements. Let \(\beta : A = B_1 \cup \cdots \cup B_d \) be an arbitrary representation of \(A \) as a disjoint union of the subsets \(B_1, \ldots, B_d \) with the property \(|B_1| = \cdots = |B_d| = m \). Then every such a representation defines a matrix \(K(\beta) = (k_{ij}(\beta)) \in S_d(m) \) as follows:
\[
k_{ij}(\beta) := |A_i \cap B_j|, \quad i, j \in \{1, \ldots, d\}.
\]
For a fixed matrix \(K \in S_d(m) \) there exist exactly
\[
\prod_{j=1}^{d} \frac{(m!)^{d}}{\prod_{i=1}^{d} (k_{ij})!}
\]
ways to construct a representation \(\beta \) of \(A \) as a disjoint union of \(m \)-element subsets \(B_1, \ldots, B_d \) such that \(K = K(\beta) \). Therefore,
\[
\sum_{K \in S_d(m)} \frac{(m!)^d}{\prod_{i,j=1}^{d} (k_{ij})!}
\]
is the total number of ways to split \(A \) into a disjoint union of \(m \)-element subsets \(B_1, \ldots, B_d \). On the other hand, this number is equal to the multinomial
\[
\frac{(dm)!}{(m!)^d}.
\]
\(\Box \)

Example 4.4 Let \(W \) be a generic Calabi-Yau complete intersection of two hypersurfaces \(V_d, V'_d \) in \(\mathbb{P}^{2d-1} \). By 3.6, we can construct a small toric degeneration of one smooth hypersurface \(V'_d \) to the \(2(d-1) \)-dimensional toric variety \(Y_d \subset \mathbb{P}^{2d-1} \)
\[
z_0 z_1 \cdots z_{d-1} = z_d z_{d+1} \cdots z_{2d-1}.
\]
Using an explicit description of the Picard group \(Pic(Y_d) \) from the proof of 3.6, our generalized mirror construction suggests that mirrors \(W^* \) for \(W \) are birationally isomorphic to the affine hypersurfaces \(Z_F \) in the algebraic torus
\[
Spec \mathbb{C}[t_1^{\pm 1}, \ldots, t_{d-1}^{\pm 1}, u_1^{\pm 1}, \ldots, u_{d-1}^{\pm 1}]
\]
9
defined by the 1-parameter family of the equations

\[1 = F(t_1, \ldots, t_{d-1}, u_1, \ldots, u_{d-1}, z) = \sum_{i=1}^{d-1} \sum_{j=1}^{d-1} t_i u_j + (u_1 \cdots u_{d-1})^{-1} \left(\sum_{i=1}^{d-1} t_i \right) + z(t_1 \cdots t_{d-1})^{-1} \left(u_1 \cdots u_{d-1}^{-1} + \sum_{i=1}^{d-1} u_i \right), \quad z \in \mathbb{C} \]

On the other hand, it is known via a toric mirror construction for Calabi-Yau complete intersection \(W = V_d \cap V_d' \) (see [4]) that the power series

\[\Phi_0(z) = \sum_{m \geq 0} \frac{(dm)!^2}{(m!)^{2d}} z^m \]

generates the Picard-Fuchs \(D \)-module describing the quantum differential system. Now we compare our generalized mirror construction with the known one from [4] computing the main period of the family \(Z_F \) by the Cauchy residue formula:

\[\Psi_F(z) := \frac{1}{(2\pi \sqrt{-1})^{2(d-1)}} \int_{\Gamma} \frac{1}{1 - F(t, u, z)} \frac{dt}{t} \wedge \frac{du}{u} = 1 + a_1 z + a_2 z^2 + \cdots, \]

where the coefficients \(a_m \) of the power series \(\Psi_F(z) \) can be computed by the formula

\[a_m = \sum_{K \in S_d(m)} \frac{(dm)!}{\prod_{i,j=1}^{d} (k_{ij})!}. \]

Using [4] we obtain that

\[a_m = \frac{(dm)!^2}{(m!)^{2d}}, \]

i.e., the power series \(\Psi_F(z) \) coincides with \(\Phi_0(z) \) and therefore our generalized mirror construction agrees with the already known one from [4].

For the special case \(d = 3 \), we obtain a description for mirrors \(W^* \) of complete intersections \(W \) of two cubics in \(\mathbb{P}^5 \) as smooth compactifications of hypersurfaces in the 4-dimensional algebraic torus

\[Spec \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, u_1^{\pm 1}, u_2^{\pm 1}] \]

defined by the 1-parameter family of the equations

\[1 = F(t_1, t_2, u_1, u_2, \lambda) = t_1 u_1 + t_1 u_2 + t_1 (u_1 u_2)^{-1} + t_2 u_1 + t_2 u_2 + t_2 (u_1 u_2)^{-1} + z(t_1 t_2)^{-1} (u_1 + u_2 + (u_1 u_2)^{-1}), \quad z \in \mathbb{C}. \]

This description of mirrors is different from the one proposed by Libgober and Teitelbaum in [22], but it seems that both constructions are equivalent to each other.
Now we want to suggest some problem which naturally arise from the proposed generalized mirror construction.

Problem 4.5 Check the topological mirror duality test

\[E_{st}(W^*; u, v) = (-u)^n E_{st}(W; u^{-1}, v) \]

for the above generalized mirror construction. Here \(E_{st} \) is the stringy \(E \)-function introduced in [3].

Remark 4.6 The main difficulty of this checking arises from the fact that the affine complete intersections in the above mirror construction are not generic. For \(\Delta^* \)-regular affine hypersurfaces there exists explicit combinatorial formula for their \(E \)-polynomials (see [4]). However, the affine hypersurfaces in our mirror construction are not \(\Delta^* \)-regular and no explicit formula for their \(E \)-polynomials (or Hodge-Deligne numbers) is known so far.

Problem 4.7 Generalize the method of Givental [13, 14, 15] for computing Gromov-Witten invariants of complete intersections in smooth Fano varieties \(X \) admitting small toric degenerations.

Remark 4.8 If \(X \) is a smooth Fano \(n \)-fold admitting a small toric degeneration \(Y \), then one can not expect that there exists a \(\mathbb{C}^* \)-action on \(X \). So the equivariant arguments from [13] can not be applied directly to \(X \). However, one could try to use equivariant Gromov-Witten theory for the ambient projective space \(\mathbb{P}^m \) containing both \(X \) and \(Y \) and to show that the virtual fundamental classes corresponding to \(Y \) and \(X \) are the same. It seems that small quantum cohomology of \(Y \) carry complete information about the subring in the small quantum cohomology ring \(QH^*(X) \) generated by the classes of divisors. This would give an explicit description of such a subring (see [14]) as well as of its gravitational version via Lax operators (see [11]).

References

[1] P.S. Aspinwall, B.R. Greene, and D.R. Morrison, . The monomial-divisor mirror map, Int. Math. Res. Not., No.12, (1993), 319-337.

[2] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3 (1994), 493-535.

[3] V.V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Preprint 1997, [alg-geom/9711018](http://arxiv.org/abs/alg-geom/9711018)

[4] V.V. Batyrev and D. van Straten, Generalized Hypergeometric Functions and Rational Curves on Calabi-Yau complete intersections in Toric Varieties, Commun. Math. Phys. 168 (1995), 493-533.
[5] V.V. Batyrev, L.A. Borisov, *Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds*, in Mirror Symmetry II, (eds. S.-T. Yau), pp.65-80 (1995).

[6] V.V. Batyrev, L.A. Borisov, *Mirror duality and string-theoretic Hodge numbers*, Invent. Math., 126 (1996), p. 183-203.

[7] V.V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, *Conifolds Transitions and Mirror Symmetry for Calabi-Yau Complete Intersections in Grassmannians*, alg-geom/9710022

[8] V.V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, *Mirror Symmetry and Toric Degenerations of Partial Flag Manifolds*, Preprint 1997.

[9] L.A. Borisov, *Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Toric Varieties*. University of Michigan, Preprint 1993, alg-geom/9310001.

[10] S.-D. Cutkosky, *On Fano 3-folds*, Manuscripta Math. 64 (1989), no. 2, 189–204.

[11] T. Eguchi, K. Hori and Ch.-Sh. Xiong, *Gravitational Quantum Cohomology*, Int.J.Mod.Phys. A12 (1997) 1743-1782.

[12] D. Eisenbud, B. Sturmfels, *Binomial ideals*. Duke Math.J. 84 (1996), no. 1, 1–45.

[13] A. Givental, *Equivariant Gromov-Witten Invariants*, IMRN, No. 13 (1996), 613-663. (alg-geom/9603021)

[14] A. Givental, *Stationary Phase Integrals, Quantum Toda Lattices, Flag Manifolds and the Mirror Conjecture*, alg-geom/9612001.

[15] A. Givental, *A Mirror Theorem for Toric Complete Intersections*, alg-geom/9701019.

[16] N. Gonciulea and V. Lakshmibai, *Degenerations of flag and Schubert varieties to toric varieties*, Transform. Groups 1 (1996), no. 3, 215–248.

[17] N. Gonciulea and V. Lakshmibai, *Schubert varieties, toric varieties and ladder determinantal varieties*, Preprint 1996. http://www.math.neu.edu/~lakshmibai/publ.html

[18] V. A. Iskovskikh, *Fano 3-folds. I,II*, Math. USSR-Izv. 11, 485-527 (1977), 42, 506-549 (1978).

[19] D. Kapur and K. Madlener, *A completion procedure for computing a canonical basis for a k-subalgebra*. Collection: Computers and mathematics (Cambridge, MA, 1989) Eds. Kaltofen and S.M. Watt), 1–11.
[20] Y. Kawamata, K. Matsuda, and K. Matsuki, *Introduction to the Minimal Model Program*, Adv. Studies in Pure Math. **10** (1987), 283-360.

[21] V. Lakshmibai, *Degenerations of flag varieties to toric varieties*, C. R. Acad. Sci. Paris Ser.I Math. **321** (1995), no. 9, 1229–1234.

[22] A. Libgober, J. Teiltelbaum, *Lines on Calabi-Yau complete intersections, mirror symmetry, and Picard-Fuchs equations*, Int. Math. Res. Not., No.1, (1993), 29-39.

[23] J.L. Miller, *Analog of Gröbner bases in polynomial rings over a ring*, J. Symbolic Comput. **21** (1996), no. 2, 139–153.

[24] S. Mori and S. Mukai, *Classification of Fano 3-folds with $B_2 \geq 2$*, Manuscr. Math. **36** (1981), 147-162.

[25] S. Mori and S. Mukai, *On Fano 3-folds with $B_2 \geq 2$*, in *Algebraic varieties and analytic varieties*, Proc. Symp., Tokyo 1981, Adv. Stud. Pure Math. **1** (1983), 101-129.

[26] S. Mukai and H. Umemura, in *Algebraic geometry*, Lecture Notes in Math., **1016**, Springer, Tokyo/Kyoto (1982), 490–518.

[27] F. Ollivier, *Canonical bases: relations with standard bases, finiteness conditions and application to tame automorphisms* In *Effective methods in algebraic geometry* (Castiglioncello, 1990), 379–400, Progr. Math., 94, Birkhauser Boston, Boston, MA, 1991.

[28] L. Robbiano and M. Sweedler, *Computing a canonical basis of a k-subalgebra*, Workshop on Grobner bases, Cornell Univ., Ithaca, NY, 1988; Lect Notes in Math., Springer, Berlin, 1990 **1430**, pp.61-87.

[29] B. Sturmfels, *Algorithms in Invariant Theory*, Texts and Monographs in Symbolic Computation, Wien, Springer-Verlag, 1993.

[30] B. Sturmfels, *Gröbner Bases and Convex Polyhedra*, American Mathematical Society, University Lecture Series, Vol. 8, Providence, RI, 1995.

[31] B. Siebert and G. Tian, *On Quantum Cohomology Rings of Fano Manifolds and a Formula of Vafa and Intriligator*, alg-geom/940301.