ADIABATIC LIMITS ON RIEmannian SOl-MANIFOLDS

ANDREY A. YAKOVLEV

Abstract. We obtain an asymptotic formula for the spectrum distribution function of the Laplace operator on a compact Riemannian Sol-manifold in the adiabatic limit determined by a one-dimensional foliation defined by the orbits of a left-invariant flow.

The paper is devoted to investigation of adiabatic limits on Riemannian Sol-manifolds. We understand adiabatic limits in the sense, which was introduced by Witten in [1]. More precisely, let \((M, \mathcal{F})\) be a closed foliated manifold equipped with a Riemannian metric \(g\). Thus, the tangent bundle \(TM\) of \(M\) is represented as a direct sum

\[TM = F \oplus H, \]

where \(F = T\mathcal{F}\) is the tangent bundle of \(\mathcal{F}\) and \(H = F^\perp\) the orthogonal complement of \(F\). Let \(g_F\) and \(g_H\) denote the restriction of the metric \(g\) to \(F\) and \(H\), respectively. Therefore, \(g = g_F + g_H\). Define a one-parameter family of Riemannian metrics on \(M\) by the formula

\[g_\varepsilon = g_F + \varepsilon^{-2}g_H, \quad \varepsilon > 0. \]

Investigation of various properties of the family of Riemannian manifolds \((M, g_\varepsilon)\) as \(\varepsilon \to 0\) will be called by passage to adiabatic limit.

Recall [2] that the group \(\text{Sol}\) is the solvable Lie subgroup of the Lie group \(\text{GL}(3, \mathbb{R})\), which consists of all matrices of the form:

\[
\gamma(u, v, w) = \begin{pmatrix}
e^w & 0 & u \\
0 & e^{-w} & v \\
0 & 0 & 1
\end{pmatrix}, \quad (u, v, w) \in \mathbb{R}^3.
\]

The Lie algebra \(\mathfrak{sol}\) of \(\text{Sol}\) is the Lie subalgebra of the Lie algebra \(\text{gl}(3, \mathbb{R})\), which consists of all matrices of the form

\[
X(u, v, w) = \begin{pmatrix}
w & 0 & u \\
0 & -w & v \\
0 & 0 & 0
\end{pmatrix}, \quad (u, v, w) \in \mathbb{R}^3.
\]

Let \(A \in \text{SL}(2, \mathbb{Z})\) and \(|\text{tr} A| > 2\). Denote by \(\lambda\) and \(\lambda^{-1}\) the eigenvalues of \(A\) and assume that \(\lambda > 1\). Define a vectors \((c_1^1, c_1^2), (c_2^1, c_2^2)\) by the equation

\[
A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} c_1^1 & c_2^1 \\ c_1^2 & c_2^2 \end{pmatrix}^{-1} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \begin{pmatrix} c_1^1 & c_2^1 \\ c_1^2 & c_2^2 \end{pmatrix}.
\]

Supported by the Russian Foundation of Basic Research (grant no. 06-01-00208).
Definition 1. A Riemannian Sol-manifold is a compact manifold $M^3_A = G_A \backslash \text{Sol}$ equipped with a Riemannian metric g, where:

- G_A is the uniform discrete subgroup of the Lie group Sol, which consists of all $\gamma(u, v, w) \in \text{Sol}$ such that
 $$(u, v) \in \Gamma := \{k(c_1^1, c_1^2) + l(c_2^1, c_2^2), \quad k, l \in \mathbb{Z}\},$$
 $w = m \ln \lambda, \quad m \in \mathbb{Z},$

- g is a Riemannian metric on M^3_A whose lift on Sol is invariant under left translations by elements of Sol (such metrics will be called locally left-invariant).

A locally left-invariant metric g is uniquely determined by its value at the identity $\gamma(0, 0, 0)$ of Sol, and, therefore, is given by a symmetric positive definite 3×3-matrix.

Let $\alpha \in \mathbb{R}$. Consider the left-invariant vector field on Sol associated with $X(1, \alpha, 0) \in \mathfrak{sol}$. The orbits of the corresponding vector field on M^3_A define a one-dimensional foliation \mathcal{F}. The leaf of \mathcal{F} through $G_A \gamma(u, v, w) \in M^3_A$ is given by

$$L_{GA\gamma(u,v,w)} = \{G_A \gamma(u + e^w t, v + \alpha e^{-w} t, w) \in M^3_A : t \in \mathbb{R}\}.$$

Suppose that a locally left-invariant metric g correspond to the identity matrix. Consider the adiabatic limit associated with the Riemannian Sol-manifold (M^3_A, g) and the foliation \mathcal{F}. Denote by Δ_ε the Laplace-Beltrami operator on M^3_A associated with the metric g_ε given by (1). For any $\varepsilon > 0$ the spectrum of Δ_ε consists of eigenvalues of finite multiplicity:

$$0 = \lambda_0(\varepsilon) < \lambda_1(\varepsilon) \leq \ldots, \lambda_j(\varepsilon) \to +\infty \quad j \to \infty.$$

The main result of the paper is a computation of the asymptotics of the spectrum distribution function

$$N_\varepsilon(t) = \#\{i : \lambda_i(\varepsilon) \leq t\}$$

of the operator Δ_ε in the adiabatic limit, that is, when $t \in \mathbb{R}$ is fixed and $\varepsilon \to 0$.

Theorem 2. For any $t > 0$, the following asymptotic formulae hold:

1. For $\alpha \neq 0$

 $$N_\varepsilon(t) = \frac{1}{4\pi^2} t^2 \varepsilon^{-2} + o(\varepsilon^{-2}), \quad \varepsilon \to 0.$$

2. For $\alpha = 0$

 $$N_\varepsilon(t) = \frac{1}{6\pi^2} t^2 \varepsilon^{-2} + o(\varepsilon^{-2}), \quad \varepsilon \to 0.$$
The asymptotic behavior of the spectrum distribution function for the Laplace operator in the adiabatic limit was studied earlier in [3] for Riemannian foliations and in [4] for one-dimensional foliations on Riemannian Heisenberg manifolds (see also [5]). In all cases, the function $N_\varepsilon(t)$ has order ε^{-q}, where q is the codimension of the foliation (in our case $q = 2$), but the coefficients of ε^{-q} are different in each case. Observe also that, in each case, the asymptotic formula for $N_\varepsilon(t)$ in the adiabatic limit is different from the classical Weyl formula, which describes asymptotic behavior of $N_\varepsilon(t)$ as $t \to \infty$ (cf. [6]).

For $\alpha \neq 0$, the proof of the theorem uses the calculation of the spectrum of the Laplace operator on a Riemannian Sol-manifold given in [6], which continues the investigation of the geodesic flow on a Riemannian Sol-manifold started in [7] and [8], and semiclassical spectral asymptotics [9] for the modified Mathieu operator

$$H_\varepsilon = -\varepsilon^2 \frac{d^2}{dx^2} + a \cosh(2\mu x), \quad x \in \mathbb{R}.$$

In the case $\alpha = 0$, the foliation is Riemannian, and the metric is bundle-like, and, therefore, we can use the asymptotic formula obtained in [3].

The author is grateful to Yu.A. Kordyukov for posing this problem and attention to his work and to I.A. Taimanov for useful remarks.

References

[1] E. Witten, Global gravitational anomalies, Comm. Math. Phys. 100 (1985), 197–229.
[2] W. Thurston, Hyperbolic geometry and 3-manifolds, Low-dimensional topology (Bangor, 1979), Cambridge Univ. Press, Cambridge-New York, 1982, 9–25.
[3] Yu. A. Kordyukov, Adiabatic limits and spectral geometry of foliations, Math. Ann. 313 (1999), 763–783.
[4] A.A. Yakovlev, Adiabatic limits on Riemannian Heisenberg manifolds, Mat. sb. 199, no.2 (2008), 149–160.
[5] Yu.A. Kordyukov, A.A. Yakovlev, Adiabatic limits and the spectrum of the Laplacian on foliated manifolds, C*-algebras and elliptic theory. II. Trends in Mathematics, 123 – 144, Birkhäuser, Basel, 2008; preprint math.DG/0703785
[6] A.V. Bolsinov, H.R. Dullin, A.P. Veselov, Spectra of Sol-manifolds: arithmetic and quantum monodromy, Comm. Math. Phys. 264 (2006), 583–611.
[7] A.V. Bolsinov, I.A. Taimanov, Integrable geodesic flows with positive topological entropy, Invent. Math. 140 (2000), 639–650.
[8] A.V. Bolsinov, I.A. Taimanov, Integrable geodesic flows on suspensions of automorphisms of tori. (Russian) Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 46–63; translation in Proc. Steklov Inst. Math. 2000, no. 4 (231), 42–58
[9] B. Helffer, A. Martinez, D. Robert, Ergodicite et limite semi-classique, Comm. Math. Phys. 109 (1987), 313–326.

Department of Mathematics, Ufa State Aviation Technical University, 12 K. Marx str., 450000 Ufa, Russia
E-mail address: yakovlevandrey@yandex.ru