Extremal regular graphs of given chromatic number

Christian Rubio-Montiel∗

December 25, 2023

Abstract

We define an extremal \((r|\chi)\)-graph as an \(r\)-regular graph with chromatic number \(\chi\) of minimum order. We show that the Turán graphs \(T_{ak,k}\), the antihole graphs and the graphs \(K_k \times K_2\) are extremal in this sense. We also study extremal Cayley \((r|\chi)\)-graphs and we exhibit several \((r|\chi)\)-graph constructions arising from Turán graphs.

Keywords: Extremal graphs; Turán graphs; Reed’s conjecture.

Mathematics Subject Classifications: 05C35, 05C15.

1 Introduction

An \(r\)-regular graph is a simple finite graph such that each of its vertices has degree \(r\). Regular graphs are one of the most studied classes of graphs; especially those with symmetries such as Cayley graphs. Let \(\Gamma\) be a finite group and let \(X = \{x_1, x_2, \ldots, x_t\}\) a generating set for \(\Gamma\) such that \(X = X^{-1}\) with \(1_\Gamma \notin X\); a Cayley graph \(\text{Cay}(\Gamma, X)\) has vertex set consisting of the elements of \(\Gamma\) and two vertices \(g\) and \(h\) are adjacent if \(gx_i = h\) for some \(1 \leq i \leq t\). Cayley graphs are regular but there exist non-Cayley vertex-transitive graphs. The Petersen graph is a classic example of this fact.

The girth of a graph is the size of its shortest cycle. An \((r, g)\)-graph is an \(r\)-regular graph of girth \(g\). An \((r, g)\)-cage is an \((r, g)\)-graph of smallest possible order. The diameter of a graph is the largest length between shortest paths of any two vertices. An \((r, D)\)-graph is an \(r\)-regular graph of diameter \(D\).

While the cage problem asks for the constructions of cages, the degree-diameter problem asks for the construction of \((r; D)\)-graphs of maximum order. Both of them are open and active problems (see [3, 6]) in which, frequently, it is considered the restriction to Cayley graphs, see [4, 5].

In this paper, we study a similar problem using a well-known parameter of coloration instead of girth or diameter. A \(k\)-coloring of a graph \(G\) is a partition

∗División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico, christian.rubio@apolo.acatlan.unam.mx.
of its vertices into \(k \) independent sets. The \textit{chromatic number} \(\chi(G) \) of \(G \) is the smallest number \(k \) for which there exists a \(k \)-coloring of \(G \).

We define an \((r|\chi) \)-\textit{graph} as an \(r \)-regular graph of chromatic number \(\chi \). In this work, we investigate the \((r|\chi) \)-graphs of minimum order. We also consider the case of Cayley \((r|\chi) \)-graphs.

The remainder of this paper is organized as follows: In Section 2 we show the existence of \((r|\chi) \)-graphs, we define \(n(r|\chi) \) as the order of the smallest \((r|\chi) \)-graph, and similarly, we define \(c(r|\chi) \) as the order of the smallest Cayley \((r|\chi) \)-graph. We also exhibit lower and upper bounds on the orders of the extremal graphs. We show that the Turán graphs \(T_{ak,k} \), antihole graphs (the complements of cycles) and \(K_k \times K_2 \) are Cayley \((r|\chi) \)-graphs of order \(n(r|\chi) \) for some \(r \) and \(\chi \). To prove that \(K_k \times K_2 \) are extremal we use instances of the Reed’s Conjecture for which it is true. In Section 3 we only consider non-Cayley graphs. We give another upper bound for \(n(r|\chi) \) and we exhibit two families of \((r|\chi) \)-graphs with a few number of vertices which are extremal for some values of \(r \) and \(\chi \). Finally, in Section 4 we study the small values \(2 \leq r \leq 10 \) and \(2 \leq \chi \leq 6 \). We obtain a full table of extremal \((r|\chi) \)-graphs except for the pair \((6|6)\).

2 Cayley \((r|\chi) \)-graphs

It is known that for any graph \(G \), \(1 \leq \chi(G) \leq \Delta + 1 \) where \(\Delta \) is the maximum degree of \(G \). Therefore, for any \((r|\chi) \)-graph we have that

\[
1 \leq \chi \leq r + 1.
\]

Suppose that \(G \) is a \((r|1)\)-graph. Hence \(G \) is the empty graph, then \(r = 0 \). Therefore, the extremal graph is the trivial graph. We can assume that \(2 \leq \chi \leq r + 1 \).

Next, we prove that for any \(r \) and \(\chi \) such that \(2 \leq \chi \leq r + 1 \), there exists a Cayley \((r|\chi)\)-graph \(G \).

We recall that the \((n,k)\)-Turán graph \(T_{n,k} \) is the complete \(k \)-partite graph on \(n \) vertices whose partite sets are as nearly equal in cardinality as possible, i.e., it is formed by partitioning a set of \(n = ak + b \) vertices (with \(0 \leq b < k \)) into the partition of independent sets \(\{V_1, V_2, \ldots, V_b, V_{b+1}, \ldots, V_k\} \) with order \(|V_i| = a + 1 \) if \(1 \leq i \leq b \) and \(|V_i| = a \) if \(b + 1 \leq i \leq k \). Every vertex in \(V_i \) has degree \(a(k-1) + b - 1 \) for \(1 \leq i \leq b \) and every vertex in \(V_i \) has degree \(a(k-1) + b \) for \(b + 1 \leq i \leq k \). The \((n,k)\)-Turán graph has chromatic number \(k \), and size (see [1])

\[
\left\lfloor \frac{(k-1)n^2}{2k} \right\rfloor.
\]

Lemma 2.1. The \((ak,k)\)-Turán graph \(T_{ak,k} \) is a Cayley graph.

Proof. Let \(\Gamma \) be the group \(\mathbb{Z}_a \times \mathbb{Z}_k \) and \(X = \{(i,j): 0 \leq i < a, 0 < j < k\} \). Then, the graph \(\text{Cay}(\Gamma, X) \) is isomorphic to \(T_{ak,k} \). \(\square \)
Before to continue, we recall some definitions. Given two graphs H_1 and H_2, the cartesian product $H_1 \Box H_2$ is defined as the graph with vertex set $V(H_1) \times V(H_2)$ and two vertices (u, u') and (v, v') are adjacent if either $u = v$ and u' is adjacent with v' in H_2, or $u' = v'$ and u is adjacent with v in H_1. The following proposition appears in [10].

Proposition 2.2. The cartesian product of two Cayley graphs is a Cayley graph.

On the other hand, the chromatic number of $H_1 \Box H_2$ is the maximum between $\chi(H_1)$ and $\chi(H_2)$, see [2]. Now we can prove the following theorem.

Theorem 2.3. For any r and χ such that $2 \leq \chi \leq r + 1$, there exists a Cayley $(r|\chi)$-graph.

Proof. Let $r = a(\chi - 1) + b$ where $a \geq 1$ and $0 \leq b < \chi - 1$. Consider the Cayley graph $H_1 = T_{a\chi, \chi}$. The graph H_1 has chromatic number χ and it is an $a(\chi - 1)$-regular graph of order $a\chi$.

Additionally, consider the graph $H_2 = T_{b+1, b+1} = K_{b+1}$. The graph H_2 has chromatic number $b + 1 < \chi$ and it is a b-regular graph of order $b + 1$.

Therefore, the graph $G = H_1 \Box H_2$ is a Cayley graph by Proposition 2.2 such that it has chromatic number

$$\max\{\chi(H_1), \chi(H_2)\} = \chi,$$

regularity r and order $a\chi(b + 1)$.

Now, we define $n(r|\chi)$ as the order of the smallest $(r|\chi)$-graph and $c(r|\chi)$ as the order of the smallest Cayley $(r|\chi)$-graph. Hence,

$$r + 1 \leq n(r|\chi) \leq c(r|\chi) \leq a\chi(b + 1)$$

where $r = a(\chi - 1) + b$ with $a \geq 1$ and $0 \leq b < \chi - 1$.

To improve the lower bound we consider the (n, χ)-Turán graph $T_{n, \chi}$. Suppose G is an $(r|\chi)$-graph. Let ς be a χ-coloring of G resulting in the partition $(V_1, V_2, \ldots, V_\chi)$ with $|V_i| = a_i$ for $1 \leq i \leq \chi$. Then the largest possible size of G occurs when G is a complete χ-partite graph with partite sets $(V_1, V_2, \ldots, V_\chi)$ and the cardinalities of these partite sets are as equal as possible. This implies that

$$\frac{nr}{2} \leq \left\lfloor \frac{(\chi - 1)n^2}{2\chi} \right\rfloor \leq \frac{(\chi - 1)n^2}{2\chi},$$

since G has size $rn/2$. After some calculations we get that

$$\frac{r\chi}{\chi - 1} \leq n.$$

Theorem 2.4. For any $2 \leq \chi \leq r + 1$,

$$\left\lfloor \frac{r\chi}{\chi - 1} \right\rfloor \leq n(r|\chi) \leq c(r|\chi) \leq \frac{r - b}{\chi - 1}\chi(b + 1)$$

where $\chi - 1|r - b$ with $0 \leq b < \chi - 1$.

3
An $(r|\chi)$-graph G of $n(r|\chi)$ vertices is called extremal $(r|\chi)$-graph. Similarly, a Cayley $(r|\chi)$-graph G of $2(r|\chi)$ vertices is called extremal Cayley $(r|\chi)$-graph. When $\chi - 1 | r$ the lower bound and the upper bound of Theorem 2.4 are equal. We have the following corollary.

Corollary 2.5. The Cayley graph $T_{a\chi,\chi}$ is an extremal $(a(\chi - 1)|\chi)$-graph.

In the remainder of this paper we exclusively work with $b \neq 0$, that is, when $\chi - 1$ is not a divisor of r.

2.1 Antihole graphs

A **hole graph** is a cycle of length at least four. An **antihole graph** is the complement G^c of a hole graph G. Note that a hole graph and its antihole graph are both connected if and only if their orders are at least five. In this subsection we prove that antihole graphs of order n are extremal $(r|\chi)$-graphs for any n at least six. There are two cases depending on the number of vertices.

1. $G = C_n^c$ for $n = 2k$ and $k \geq 3$.
 The graph G has regularity $r = 2k - 3$ and chromatic number $\chi = k$. Any $(2k - 3|k)$-graph has an even number of vertices and at least $\frac{r\chi}{\chi - 1} = \frac{(2k - 3)k}{k - 1} = 2k - \frac{k - 1}{k - 1}$ vertices.
 If $k > 2$, then $\frac{k - 1}{k - 1} < 2$. Therefore we have the following result:

 $n(2k - 3, k) = c(2k - 3, k) = 2k$

 for all $k \geq 3$.

2. $G = C_n^c$ for $n = 2k - 1$ and $k \geq 4$.
 The graph G has regularity $r = 2k - 4$ and chromatic number $\chi = k$. Any $(2k - 4|k)$-graph has at least $\frac{r\chi}{\chi - 1} = \frac{(2k - 4)k}{k - 1} = 2k - 2 - \frac{2}{k - 1}$ vertices.
 If $k - 1 > 2$, we have that $\frac{2}{k - 1} < 1$. Therefore

 $2k - 2 \leq n(2k - 4, k) \leq c(2k - 4, k) \leq 2k - 1$

 for all $k \geq 4$.

Suppose that G is a $(2k - 4|k)$-graph of $2k - 2$ vertices. Then $G = ((k - 1)K_2)^c$, i.e., G is the complement of a matching of $k - 1$ edges. Then $\chi(G) = k - 1$, a contradiction. Therefore

$n(2k - 4, k) = c(2k - 4, k) = 2k - 1$

for all $k \geq 4$.

Therefore, we have the following theorem.
Theorem 2.6. The antihole graphs of order $n \geq 6$ are extremal $(n-3|\lceil \frac{n}{2} \rceil)$-graphs.

A hole graph is also considered a 2-factor since it is a spanning 2-regular graph. For short, we denote the disjoint union of j cycles of length i as jC_i.

Let G be an union of cycles

$$a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t}$$

for $a_i \geq 0$ with $i \in \{3, 4, \ldots, 2t\}$. Note that the complement G^c of G is the join of the complement of cycles.

Theorem 2.7. The graph $(a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$ is extremal if $a_5 + a_7 + \cdots + a_{2t-1} + 1 < a_3$.

Proof. Let $G^c = (a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$. The graph G^c has order $n = 3a_3 + 4a_4 + \cdots + 2ta_{2t}$, regularity $r = n - 3$ and chromatic number $\chi = a_3 + 2a_4 + 3a_5 + 3a_6 + \cdots + ta_{2t-1} + ta_{2t}$ since the chromatic numbers of C_3^c, C_4^c, C_5^c, ..., C_{i-1}^c are 1, 2, 3, ..., $\lceil i/2 \rceil$ respectively.

Any $(r|\chi)$-graph has at least $\frac{r\chi}{\chi - 1} = r + \frac{r}{\chi - 1} = n - \frac{3\chi - n}{\chi - 1}$ vertices for $r = n - 3$.

If $\frac{3\chi - n}{\chi - 1} < 1$ then G^c is extremal, that is, when

$$2\chi + 1 < n,$$

i.e. when

$$a_5 + a_7 + \cdots + a_{2t-1} + 1 < a_3.$$

Moreover, we have the following results.

Theorem 2.8. Since C_n^c is extremal then

1. When n is even, if $G = (a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$ is a graph of order n such that $a_5 + a_7 + \cdots + a_{2t-1} = a_3$, then G is extremal.

2. When n is odd, if $G = (a_3C_3 \cup a_4C_4 \cup \ldots \cup a_{2t}C_{2t})^c$ is a graph of order n such that $a_5 + a_7 + \cdots + a_{2t-1} = a_3 + 1$, then G is extremal.

Corollary 2.9. Since the antihole graphs of order $n \geq 8$ are $(r|\chi)$-graphs, then there exist many non-isomorphic extremal $(r|\chi)$-graphs (not necessarily Cayley).

For instance, there are three extremal $(5, 4)$-graphs, namely, C_8^c, $(2C_4)^c$ and $(C_3 \cup C_5)^c$. See also Table 1.
2.2 The case of $r = \chi$

In this subsection, we discuss the case of $r = \chi = k$, i.e., the \((k|k)\)-graphs of minimum order. We have the following bounds so far:

\[
\left\lceil \frac{k^2}{k-1} \right\rceil = k + 1 \leq n(k|k) \leq 2k.
\]

We prove that the upper bound is correct except for $k = 4$ and maybe for $k = 6, 8, 10, 12$. To achieve it, we assume that there exist \((k|k)\)-graphs of order $n \leq 2k - 2$, that is

\[
\left\lceil \frac{n}{2} \right\rceil < k = \chi. \tag{1}
\]

Now, we use a bound for the chromatic number arising from the Reed’s Conjecture, see [9]. We recall the clique number $\omega(G)$ of a graph G is the largest k for which G has a complete subgraph of order k.

Conjecture 2.10. For every graph G,

\[
\chi(G) \leq \left\lceil \frac{\omega(G) + 1 + \Delta(G)}{2} \right\rceil.
\]

It is known that the conjecture is true for graphs satisfying Equation (1) see [7]. It follows that $k \leq \omega(G) + 1$ for any \((k|k)\)-graph G of order $n \leq 2k - 2$, that is, $\omega(G) = k$ or $\omega(G) = k - 1$.

Case 1: $\omega(G) = k$.

Let H_1 be a clique of G and $H_2 = G \setminus V(H_1)$. There is a set of k edges from $V(H_1)$ and $V(H_2)$. Therefore, if $t = n - k \leq k - 2$ is the order of H_2 and $m = (kt - k)/2$ is the number of edges in H_2, then

\[
m \leq \binom{t}{2}.
\]

We obtain that $k \leq t$, a contradiction.

Case 2: $\omega(G) = k - 1$.

Let H_1 be a clique of G and $H_2 = G \setminus V(H_1)$. There is a set of $2(k - 1)$ edges from $V(H_1)$ to $V(H_2)$. Therefore, if $t = n - (k - 1) \leq k - 1$ is the order of H_2 and $m = (kt - 2(k - 1))/2$ is the number of edges in H_2, then

\[
m \leq \binom{t}{2}.
\]

We obtain that $k \leq t + 1$, hence, $k = t + 1$ and n has to be $2k - 2$. Since every vertex v in $V(H_2)$ has degree k in G, v has at least two neighbours in H_1. By symmetry, G is the union of two complete graphs K_{k-1} with the addition of two perfect matchings between them. Its complement is a \((k - 3)\)-regular bipartite graph. Any perfect matching of G^c induce a \((k - 1)\)-coloring in G, a contradiction.
We have the following results.

Lemma 2.11. For any \(k \geq 3 \),
\[
2k - 1 \leq n(k|k) \leq c(k|k) \leq 2k.
\]

If \(k \) is odd then the order of any \(k \)-regular graph is even, therefore:

Corollary 2.12. For any \(k \geq 3 \) an odd number, \(n(k|k) = c(k|k) = 2k \).

We have that \(C_7^k \) is the extremal \((4|4) \)-graph. Next, assume that \(k \geq 6 \) is an even number and there exists a \((k|k) \)-graph \(G \) of \(n = 2k - 1 \) vertices. Owing to the fact that \(\chi(G) \leq n - \alpha(G) + 1 \) where \(\alpha(G) \) is the independence number of \(G \), we get that \(\alpha(G) \leq k \).

In [7] was proved that the Reed’s conjecture holds for graphs of order \(n \) satisfying \(\chi > \frac{n + 3 - \alpha(G)}{2} \). In the case of the graph \(G \), we have that
\[
\frac{n + 3 - \alpha(G)}{2} \leq \frac{k}{2} + 1 < k.
\]

It follows that \(\omega(G) \leq k \leq \omega(G) + 1 \). Newly, we have two cases:

Case 1: \(\omega(G) = k \).

As we saw before, let \(H_1 \) be a clique of \(G \) and \(H_2 = G \setminus V(H_1) \). There is a set of \(k \) edges from \(V(H_1) \) and \(V(H_2) \). Therefore, if \(t = k - 1 \) is the order of \(H_2 \) and \(m = (kt - k)/2 \) is the number of edges in \(H_2 \), then
\[
m \leq \left(\frac{t}{2} \right).
\]

We obtain that \(k \leq t \), a contradiction.

Case 2: \(\omega(G) = k - 1 \).

In [8] was proved that every graph satisfies
\[
\chi \leq \left\{ \omega, \Delta - 1, \left[\frac{15 + \sqrt{96k + 25}}{4} \right] \right\}.
\]

Hence, for the graph \(G \) we have that \(k \leq \left[\frac{15 + \sqrt{96k + 25}}{4} \right] \). After some calculations we get that \(k = 6, 8, 10, 12 \), otherwise, \(k > \left[\frac{15 + \sqrt{96k + 25}}{4} \right] \).

Finally, we have the following theorem.

Theorem 2.13. For any \(k \geq 3 \) such that \(k \notin \{4, 6, 8, 10, 12\} \),
\[
n(k|k) = c(k|k) = 2k.
\]

Moreover, if \(k = 4 \) then \(n(k|k) = c(k|k) = 2k - 1 \) and if \(k \in \{6, 8, 10, 12\} \) then
\[
2k - 1 \leq n(k|k) \leq c(k|k) \leq 2k.
\]

We point out that if there exists an extremal \((k|k) \)-graph \(G \) of \(2k - 1 \) vertices for \(k \in \{6, 8, 10, 12\} \), then \(G \) has clique number \(\omega = k - 1 \), a clique \(H_1 \) of order \(\omega \) for which \(G \setminus V(H_1) \) has \(\frac{k}{2} - 1 \) edges, \(G \) is Hamiltonian-connected and it has independence number \(\alpha(G) \) such that \(\alpha(G) \in \{k/4, \ldots, k/2 + 1\} \), see [8].
3 Non-Cayley constructions

In this section we improve the upper bound of $n(r|\chi)$ given on Theorem 2.3 by exhibiting a construction of graphs not necessarily Cayley. We assume that r is not a multiple of $\chi - 1$, therefore $2 \leq \chi \leq r$. Additionally, we show two more constructions which are tight for some values.

3.1 Upper bound

To begin with, take the Turán graph $T_{n,\chi}$, for $n = a\chi + b$, $0 < b < \chi$ with $r = a(\chi - 1) + b$ and the partition $(V_1, V_2, \ldots, V_{b+1}, \ldots, V_{\chi})$ such that $|V_i| = a + 1$ if $1 \leq i \leq b$ and $|V_i| = a$ if $b + 1 \leq i \leq \chi$. Every vertex in V_i for $1 \leq i \leq b$ has degree $r - 1$ and every vertex in V_i for $b + 1 \leq i \leq \chi$ has degree r.

Next, we define the graph $G_{n,\chi}$ as the graph formed by two copies G_1 and G_2 of $T_{n,\chi}$ with the addition of a matching between the vertices of degree $r - 1$ of G_1 and the vertices of degree $r - 1$ of G_2 in the natural way. In consequence, the graph $G_{n,\chi}$ is an r-regular graph of order $2n$ and chromatic number χ. To obtain its chromatic number, suppose that $T_{n,\chi}$ has the vertex partition V_i, then the vertices of V_i have the color i in G_1 and the vertices of V_i are colored $i + 1$ mod χ in G_2. Hence $\chi = \chi(G_1) \leq \chi(G_{n,\chi}) \leq \chi$ and then $\chi(G_{n,\chi}) = \chi$.

Theorem 3.1. For $2 \leq \chi \leq r + 1$, then

\[
\left\lceil \frac{r\chi}{\chi - 1} \right\rceil \leq n(r|\chi) \leq \min \left\{ 2 \left\lceil \frac{r\chi}{\chi - 1} \right\rceil, \frac{r - b}{\chi - 1} \chi(b + 1) \right\},
\]

where $\chi - 1 | r - b$ with $0 \leq b < \chi$.

3.2 The graph $T_{n,\chi}^*$

In this subsection we give a better construction for some values of r and χ. Consider the $(a\chi + b, \chi)$-Turán graph $T_{a\chi + b, \chi}$ such that $\chi > b \geq 0$ and partition $(V_1, \ldots, V_{\chi - b}, \ldots, V_{\chi})$ for $\chi \geq 3$, $|V_i| = a_i = a \geq 2$ with $i \in \{1, \ldots, \chi - b\}$ and $|V_i| = a_i = a + 1 \geq 3$ with $i \in \{\chi - b + 1, \ldots, \chi\}$.

We claim that a is even or $\chi - b$ is even. To prove it, assume that a and $\chi - b$ are odd. Hence, if b is even, then χ is odd, $n = a\chi + b$ is odd and r is odd, a contradiction. If b is odd, then χ is even, $n = a\chi + b$ is odd and r is odd, newly, a contradiction.

Now, we define the graph $T_{n,\chi}^*$ of regularity $r = a(\chi - 1) + b + 1$ as follows: If $\chi - b$ is even, the removal of a perfect matching between X_i and X_{i+1} for all $i \in \{1, 3, \ldots, \chi - b - 1\}$ of $T_{n,\chi}$ produces $T_{n,\chi}^*$. If $\chi - b \geq 3$ is odd then a is even, therefore, the removal of a perfect matching between X_i and X_{i+1} for all $i \in \{4, 6, \ldots, \chi - b - 1\}$ and a perfect matching between V_i' and V_i'', V_i' and V_i''', and V_i'' and V_i''' where $V_i \setminus V_i' = V_i''$ is a set of $a/2$ vertices for $i \in \{1, 2, 3\}$, of $T_{n,\chi}$ produces $T_{n,\chi}^*$.
The graphs $T_{n,\chi}^{*}$ improve the upper bound given in Theorem 3.1 for some numbers n and χ:

$$r \chi - 1 = a \chi + b - \frac{\chi - b}{\chi - 1} \leq a \chi + b.$$

Hence, if $\frac{\chi - b}{\chi - 1} < 1$, the construction gives extremal graphs, that is, when

$$1 < b.$$

Theorem 3.2. Let $\chi \geq 3$, $\chi \geq b > 1$ and $a \geq 2$. Then the graph $T_{a \chi + b, \chi}$ defined above is an extremal $(a(\chi - 1) + b - 1|\chi)$-graph when $\chi - b$ is even or $a > 2$ is even.

3.3 The graph $G_{a,c,t}$

Consider the (at, t)-Turán graph $T_{at,t}$ with partition (V_1, \ldots, V_t). Now, we define the graph $G_{a,c,t}$ with $1 \leq c < a$ as follows: consider two parts of (V_1, \ldots, V_t), e.g. V_1 and V_2, and c vertices of these two parts $\{u_1, \ldots, u_c\} \subseteq V_1$ and $\{v_1, \ldots, v_c\} \subseteq V_2$.

The removal of the edges $u_i v_j$ for $i, j \in \{1, \ldots, c\}$ when $i \neq j$ (all the edges between $\{u_1, \ldots, u_c\}$ and $\{v_1, \ldots, v_c\}$ except for a matching) and the addition of the edges $u_i v_j$ for $i, j \in \{1, \ldots, c\}$ when $i \neq j$ (all the edges between the vertices u_i and all the edges between the vertices v_i) results in the graph $G_{a,c,t}$.

The graph $G_{a,c,t}$ is a $a(t-1)$-regular graph of order at. Its chromatic number is $t + c - 1$ because the partition

$$(V_1 \setminus \{u_2, \ldots, u_c\}, V_2 \setminus \{v_1, \ldots, v_{c-1}\}, V_2, \ldots, V_t, \{u_2, v_1\}, \ldots, \{u_c, v_{c-1}\})$$

is a proper coloring with $t + c - 1$ colors. Moreover, the graph $G_{a,c,t}$ has a clique of $t + c - 1$ vertices, namely, the vertices $\{u_1, \ldots, u_c, x_2, \ldots, x_t\}$ where $x_i \in V_i$ for $i \in \{3, \ldots, t\}$ and $x_2 \in V_2 \setminus \{v_1, \ldots, v_c\}$.

The graphs $G_{a,c,t}$ improve the upper bound given in Theorem 2.4

$$\frac{t + c - 1}{t + c - 2} a(t - 1) = at - a \frac{c - 1}{t + c - 2} \leq at.$$

Hence, if $a \frac{c - 1}{t + c - 2} < 1$, the construction gives extremal graphs, that is, when

$$(a - 1)(c - 1) < t - 1.$$

Theorem 3.3. Let $a, t \geq 2$ and $a > c \geq 1$. The graph $G_{a,c,t}$ defined above is an extremal $(a(t - 1)|at)$-graph when $(a - 1)(c - 1) < t - 1$.

4 Small values

In this section we exhibit extremal $(r|\chi)$-graphs of small orders. These exclude the extremal graphs given before. Table [I] shows the extremal $(r|\chi)$-graphs for $2 \leq r \leq 10$ and $2 \leq \chi \leq 6$.

9
4.1 Extremal \((5|3)\)-graph

Suppose that \(G\) is an extremal \((5|3)\)-graph of order 8, i.e., its order equals the lower bound given in Theorem 2.4. Then its complement is 2 regular. That is, \(G^c\) is \(C_8\) or \(C_5 \cup C_3\) or \(C_4 \cup C_4\). By Theorem 2.8, the complement of \(C_8\) or \(C_5 \cup C_3\) or \(C_4 \cup C_4\) has chromatic number 4. Since \(G\) is 5-regular, a \((5|3)\)-graph of order 9 does not exist and therefore 10 is the best possible. The graph \(G_{5,2,2}\) is an extremal \((5|3)\)-graph with 10 vertices.

4.2 Extremal \((7|\chi)\)-graphs for \(\chi = 3, 6\)

Let \(G\) be an extremal \((7|3)\)-graph. Its order is at least 11. Since its degree is odd, its order is at least 12. The graph \(T_{12,3}\) is an extremal \((7|3)\)-graph.

Now, suppose that \(G\) is an extremal \((7|6)\)-graph. \(G\) has at least 9 vertices. Newly, because it has an odd regularity, \(G\) has at least 10 vertices. If this is the case, its complement is a 2 regular graph. The graph \((2C_5)^c\) has chromatic number 6. It is unique and it is Cayley.

4.3 Extremal \((9|3)\)-graph

Any \((9|3)\)-graph has 14 vertices, i.e., its order equals the lower bound given in Theorem 2.4. Suppose that there exist at least one of degree 14. Let \((V_1, V_2, V_3)\) a partition by independent sets. Some of the parts, \(V_1\), has at least five vertices. Since the graph is 9-regular, \(V_1\) has exactly 5 vertices. The induced graph of \(V_2\) and \(V_3\) is a bipartite regular graph of an odd number of vertices, a contradiction. Then, any \((9|3)\)-graph has at least 16 vertices.

\(r \setminus \chi\)	2	3	4	5	6
2	\(T_{4,2}\)	\(T_{3,3}\)	-	-	-
3	\(T_{6,2}\)	\(C_6^c\)	\(T_{4,4}\)	-	-
4	\(T_{8,2}\)	\(T_{6,3}\)	\(C_5^c\)	\(T_{5,5}\)	-
5	\(T_{10,2}\)	\(G_{5,2,2}\)	\(C_8^c, (2C_4)^c, (C_3 \cup C_5)^c\)	\(K_5 \times K_2\)	\(T_{6,6}\)
6	\(T_{12,2}\)	\(T_{9,3}\)	\(T_{8,4}\)	\(C_6^c, (C_4 \cup C_5)^c\)	-
7	\(T_{14,2}\)	\(T_{12,3}^*\)	\(T_{10,4}^*\)	\(C_{10}^c, (C_4 \cup C_6)^c, (C_3 \cup C_7)^c\)	\((2C_5)^c\)
8	\(T_{16,2}\)	\(T_{12,3}\)	\(G_{4,2,3}\)	\(T_{10,5}\)	\(C_{11}^c, (C_4 \cup C_7)^c, (C_5 \cup C_6)^c\)
9	\(T_{18,2}\)	\(T_{16,3}^*\)	\(T_{12,4}\)	\(T_{12,5}^*\)	\(C_{12}^c, (2C_6)^c, (3C_4)^c, (C_3 \cup C_4 \cup C_5)^c, (C_5 \cup C_6)^c\)
10	\(T_{20,2}\)	\(T_{15,3}\)	\(T_{14,4}\)	\(T_{13,5}^{*}\)	\(T_{12,6}^*\)

Table 1: Extremal \((r|\chi)\)-graphs.
Consider the graph $T_{16,3}$ with partition (U,V,W) and the sets partition are $U = \{u_1, u_2, u_3, u_4, u_5\}$, $V = \{v_1, v_2, v_3, v_4, v_5\}$, $W = \{w_1, w_2, w_3, w_4, w_5, w_6\}$. The removal of the edges

\[
\{ w_1v_1, v_1u_1, u_1w_4, w_2v_2, v_2u_2, u_2w_5, w_3v_3, v_3u_3, u_3w_6, u_4v_4, v_4u_5, w_5v_5, v_5w_5 \}
\]

is the graph $T_{16,3}^{**}$ which is the extremal $(9|3)$-graph.

Acknowledgment

We thank Robert Jajcay for useful discussions.

C. Rubio-Montiel was partially supported by PAIDI grant 007/19.

The authors wish to thank the anonymous referees of this paper for their suggestions and remarks.

References

[1] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, American Elsevier Publishing Co., Inc., New York, 1976.

[2] G. Chartrand and P. Zhang, *Chromatic graph theory*, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2009.

[3] G. Exoo and R. Jajcay, *Dynamic cage survey*, Electron. J. Combin #DS16 (2013), 55pg.

[4] G. Exoo, R. Jajcay, and J. Širáň, *Cayley cages*, J. Algebraic Combin. **38** (2013), no. 1, 209–224.

[5] H. Macbeth, J. Šiagiová, and J. Širáň, *Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups*, Discrete Math. **312** (2012), no. 1, 94–99.

[6] M. Miller and J. Širán, *Moore graphs and beyond: A survey of the degree/diameter problem*, Electron. J. Combin. #DS14 (2013), 92pg.

[7] L. Rabern, *A note on B. Reed’s conjecture*, SIAM J. Discrete Math. **22** (2008), no. 2, 820–827.

[8] ______, *Coloring graphs with dense neighborhoods*, J. Graph Theory **76** (2014), no. 4, 323–340.

[9] B. Reed, ω, Δ, and χ, J. Graph Theory **27** (1998), no. 4, 177–212.

[10] J. Xu, *Theory and application of graphs*, Network Theory and Applications, vol. 10, Kluwer Academic Publishers, Dordrecht, 2003.