Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol–disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).

Keywords: thiol switch, disulfide bond, redox signaling, extracellular, inflammation, infection, S-glutathionylation, S-nitrosylation

INTRODUCTION

Following transcription and translation, synthesized proteins can undergo posttranslational modifications (PTMs). These constitute regulatory mechanisms to control molecular and cellular functions in response to signals and changes in the microenvironment. Astonishingly, 300–400 different modifications have been described, including catalytic cleavage, phosphorylation, glucosylation, ubiquitinylation, methylation, and oxidation (1, 2). The spatiotemporal and the interconnectivity analysis of different PTMs is demanding, even though biochemical methods based, e.g., on specific antibodies, large-scale experimental tools such as mass spectrometry (3–5), and
computational methods including the analysis of putative modifications are available (1, 2). Particularly, the analysis of PTMs in the extracellular space is challenging. However, it is clear that PTMs, e.g., i) of the extracellular matrix (ECM) play an essential role in signal transduction (6) and ii) are involved in extracellular vesicle (EV) biogenesis, cargo sorting, and vesicular uptake (7, 8).

Posttranslational Thiol Modifications

The highly reactive thiol group of cysteines (Cys) is special because it can undergo many different reversible and irreversible modifications that control protein activity, interaction, and/or distribution (9). Single Cys modifications include S-glutathionylation [addition of glutathione (GSH)] and S-nitrosylation [incorporation of nitric oxide (NO)]. Moreover, two Cys residues can be oxidized and form a disulfide bond that has additionally been linked to protein structure and conformation. As such, they depend on the presence of enzymatically produced second messengers like hydrogen peroxide (H_2O_2) and NO and the catalysis by Thioredoxin (Trx) family proteins such as Trx, Glutaredoxins (Grx), Peroxiredoxins (Prx), and Protein disulfide isomerases (PDI) (10). All these modifications are important not only for intracellular but also for extracellular signal transduction (i.e., oxidative eustress), also for regulating membrane, soluble, and vesicular proteins (11, 12).

THIOL MODIFICATION OF EXTRACELLULAR PROTEINS IN INFLAMMATORY SIGNALING

Thiol modifications are essential in the innate and adaptive immune response, controlling various pathways and functions, by distinct catalytical mechanisms in different cellular and extracellular compartments and specialized cell types (13). Here, we focus on extracellular dithiol–disulfide exchange, S-glutathionylation, and S-nitrosylation of key proteins in inflammation and infection, as well as the redox proteins involved in the regulation of these PTMs (Table 1).

Dithiol–Disulfide Exchange

Disulfide formation occurs between two thiols of one (intramolecular) or two (intermolecular) proteins. Conformational disulfides are important for the structure and function of specific

Table 1 Posttranslational thiol modifications of proteins involved in inflammation and infection.

Protein	Function	Modification	Regulation	Reference
Alpha 1 antitrypsin	Glycoprotein; mainly produced by hepatocytes	S-Nitrosylation: Increases bacteriostatic function and activation of immune cells	Unknown	(14)
Beta-1 defensin	Interaction with microbial targets; antimicrobial peptide	Disulde: Facilitates stability of a compact, highly ordered fold	Catalysis by Trx1	(15, 16)
Cathepsin B	Protease; involved in various physiological processes	S-Glutathionylation leads to stability without affecting enzyme activity	Unknown	(17–19)
Cluster of differentiation 4	Transmembrane glycoprotein; acts as a coligand and coreceptor of MHC II molecule	Disulde: Increases affinity toward the T-cell receptor; HIV-1 entry	Catalysis by Trx1	(20, 21)
Cyclooxygenase-2	Key enzyme required for the conversion of arachidonic acid into prostaglandins	Disulde: Reduces the affinity for cell entry (HIV-1)	Catalysis by Gnx1	(22, 23)
Diphtheria toxin	Toxin synthesized by Corynebacterium diphtheriae	Reduced disulfides generate two fragments; induce translocation	Catalysis by Trx1	(24–26)
Glycoprotein 120	Interaction with viral coreceptors present on the lymphocyte surface	Disulde: Reduces the affinity for viral attachment to the host lymphocyte cell surface and invasion	Tlx1: Indirectly regulates Gp120 binding to CD4	(27, 28)
Heat shock protein 60	Nuclear DNA-binding protein; functions as a pro-inflammatory cytokine	Disulde bridges and S-Glutathionylation essential for binding of TLRs and RAGEs	Oxidation by Prx1/Prx2	(29, 30)
High-mobility group box 1	Chaperone	S-Nitrosylation: Regulates mitochondrial DNA stability and protein binding	Catalysis by Trx1	(31, 32)
IgG	Immunoglobin; antibody; recognition and binding of antigens	Reduced: Increases the antigen affinity	Catalysis by Trx1	(33, 34)
Integrin	Regulation of cellular growth, proliferation, migration, signaling, and cytokine activation and release	S-Glutathionylation of α4 enhances affinity for neutrophil Vascular cell adhesion protein (VCAM) and mobilization of cells out of the bone marrow Disulde of α7/β1 affects integrin-mediated cell adhesion	Catalysis by Gnx1	(35)
Interleukin-1β	Cytokine	S-Glutathionylation: Increases activity and induces CXCR9 in macrophages	Catalysis by Gnx1	(36)
Signal transducer and activator of transcription 1	Transcription factor; regulation of inflammatory responses and cellular death	S-Glutathionylation: Regulates activity	Catalysis by Gnx1	(37)

proteins and their regulation. Several intracellular thiol switches were identified that involve the regulated formation or reduction of disulfide bonds, e.g., Collapsin Response Mediator Protein 2 (Cys504-Cys504) (40, 41), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (42), Heat shock protein (HSP) 33 (Cys232–Cys234) (43, 44), H2O2-inducible gene activator (Cys199-Cys208) (45, 46), and yes-associated protein 1 (Cys303-Cys598) (47). Interestingly, the extracellular space was considered to be rather oxidizing and disulfides inert, not engaging in redox regulation. However, it is an exciting time when this view is challenged. Redox regulation of proteins not only occurs extracellularly but also is in fact an important part of various signaling cascades. Even though the function of many proteins was shown to be sensitive toward oxidation by H2O2, not many extracellular thiol switches have been identified and thoroughly characterized so far. Known examples were described in recent review articles (12, 48). A well-characterized soluble protein is High-mobility group box 1 (HMGB1). In its disulfide form (Cys23–Cys45), HMGB1 binds to Toll-like receptors (TLRs) and the receptor for advanced glycation end products (RAGE), inducing the signal cascade that leads to Nuclear factor kappa B (NFκB) activation and cytokine expression and release (49, 50). The interaction of HMGB1 with TLRs also depends on the redox state of the third Cys residue (51). Dithiol–disulfide exchange in membrane proteins such as A disintegrin and metalloprotease 17 (ADAM17) (Cys600-Cys635; Cys630-Cys641) (52, 53), cluster of differentiation 4 (CD4) (intermolecular, Cys130-Cys159) (20), beta-1 defensin (15), various integrins (36, 54–56), tumor necrosis factor receptor superfAMILY member 8 (CD30) (57), and transient receptor potential canonical channels (58, 59) affects ligand binding, protein function, and cell signaling. Beta-1 defensin increases its antimicrobial activity when reduced. Inhibition and knockout of Trx decreased the rate of Beta-1 defensin degradation, directly affecting its antimicrobial function. CD4, CD30, and α7β1 integrin are also substrates for extracellular Trx (36, 60). ADAM17 is regulated by PDIs (52).

Conformational disulfides are particularly important in the adaptive immunity, as they are essential for the structure and function of antibodies and antigen presentation. PDIs have been associated with increased production of immunoglobulin heavy chains (61), including most of the IgG isoforms. In vitro, PDIs are able to replicate disulfide bonds in antibody formation as it occurs in vivo, and this is even more upon oxidizing conditions (62). PDIs are involved in the modification of immunoglobulins, including IgG (63) and IgM (64). The IgM pentameric structure is the first antibody produced by B-cells before undergoing class switching. PDIs regulate the biogenesis of this multimeric immunoglobulin by catalyzing the formation of disulfide bonds, structures that are later modified before secretion (64). IgG is vital for immunological memory. Several isoforms have been described with differences in their constant regions (63). Disulfide bonds vary across the chains in different IgG isoforms, changing the conformation and subsequently antibody stability and antigen affinity (33). Remarkably, all IgG isoforms can also present non-classical disulfide conformations, such as trisulfides (65). One of the IgG isoforms most studied for its non-classical conformation is IgG4. A change in amino acid in the hinge region makes it different from IgG1 and more prone to form intrachain bonds, rather than interchain bonds. This change in IgG4 has been hypothesized to be key in its role as a monovalent antibody (66) and has been associated with protective effects after prolonged immunizations (67). Interestingly, its production does not seem to be affected by PDI expression (68). Oxidation of immunoglobulins is a problem that has been studied particularly in vitro, especially concerning protein storage for medical treatments or experimental purposes. Environmental oxidizing conditions lead to changes in amino acid charges and specificity of the antibody for its antigen (69). Researchers have been actively working on solving this problem in the production and distribution of immunoglobulins by using Trx1 (70), Trx-like proteins (71), and a combination of GSH and Trx1 (72). Not many in vivo experiments have shown the impact of redox reactions on antibody function. However, it has been shown that the redox environment could affect the functionality of antibodies and potentially disease diagnosis (73). In vivo, modifications to the heavy-chain disulfide bonds of, e.g., IgG1 subclass proteins alter the binding site of the C1 complement protein (74). This interaction is key for the complement classical pathway activation. We can hypothesize that these changes are constantly occurring in vivo, but how this is affecting and modulating the immune response remains to be elucidated.

Oxidation of the immunoglobulins might not be the only factor affecting the adaptive immune response. Peptides presented to T-cell receptors via major histocompatibility complex (MHC) class II can be modified if they contain Cys residues (75, 76). Changes in antigen recognition can change when these residues form disulfide structures with peptides in the vicinity (75), or are S-glutathionylated, which modulates the immune response against viruses and T cell-mediated tumor cell recognition (76). Future research is needed to determine if these changes are active mechanisms for the immune escape of infected or neoplastic cells.

S-Glutathionylation

S-glutathionylation is the formation of a disulfide bond between the thiol group of GSH and a protein (77), catalyzed by Grxs (78). Intracellular proteins that can be glutathionylated include actin (Cys374) (79), Fatty Acid Binding Protein 5 (80), Major vault protein (81), NFκB (82, 83), sarco/endoplasmic reticulum Ca2+-ATPase (Cys674) (84), Signal transducer and activator of transcription 1 (STAT1) (Cys324 and Cys492) (39, 85), STAT3 (Cys328 and Cys542) (85), and members of the Trx family (17, 86, 87). Glutathionylation is crucial for signaling pathways and cellular processes like proliferation, differentiation, apoptosis, cytokine production (76), and metabolic changes in response to inflammatory signals (88). Also, the release of glutathionylated proteins upon inflammation and infection has been described (17). The functional characterization of extracellular proteins that undergo glutathionylation, however, is considerably rare. Examples include several soluble proteins and receptors that function in signal transduction and inflammation such as Intercellular Adhesion Molecule 1 (89), αβ1 integrin (90),...
HMGB1 (29), interleukin 1β (IL-1β) (37), and Paraoxonase-1 (91). Glutathionylation of IL-1β (Cys188) does not directly control the bioactivity under physiopathological conditions, but it protects IL-1β from H₂O₂-induced irreversible deactivation, which is regulated by Grxl (37). Trxl (Cys73) is also glutathionylated, which prevents dimerization or limited proteolysis. The latter gives rise to the truncated form Trx80. This form is released into the extracellular space and has cytokine-like activity (86, 92). Prxl and Prx2 are glutathionylated (17, 87) and are known to act as danger signals by binding to TLR4 (93, 94) (Figure 1). Other ligands of TLR2 and 4 like HSPs 60 and 70 (Cys574 and Cys603) (95) can be glutathionylated in T-lymphocytes in response to inflammatory stimuli and H₂O₂ (96–98). Extracellular HMGB1 also binds to TLRs and RAGE, triggering the production of pro-inflammatory cytokines (Figure 1). Downstream signal transduction also involves glutathionylated mediators, such as IKKβ, which reduces nuclear translocation of ReIA (p65), inhibiting DNA binding. ReIA (p65) and the p50 subunit of NFkB also undergo glutathionylation, resulting in decreased ability to bind DNA (83) (Figure 1). Of note, the pro-inflammatory response triggered by IL-17a is also associated with glutathionylation of ReIA (p65) and IKKα (99).

S-Nitrosylation

S-nitrosylation is the covalent binding of NO to a thiol group and regulates >3,000 proteins (100), affecting protein structure, function, and the interconnectivity with other PTMs like phosphorylation, acetylation, and disulfide formation (101–104). Identified intracellular S-nitrosylated proteins include Cořólin-1 (Cys80, Cys139) (105, 106), GAPDH (Cys150, Cys247) (107–109), HSP60 (Cys237) (31, 105), HSP90 (Cys521) (110, 111), MyD88 (Cys113, Cys216) (112, 113), NFkB (114, 115), Nitric oxide synthase (NOS) (116, 117), and

![Figure 1](https://example.com/figure1.png)

FIGURE 1 | Selected thiol modifications in the regulation of the inflammatory response. Posttranslational modifications such as S-glutathionylation and S-nitrosylation occur on intracellular and extracellular proteins. Many ligands for membrane-bound receptors such as receptors for advanced glycation end products (RAGE), Toll-like receptor (TLR), and receptor tyrosine kinase (RTK) undergo redox regulation. Nitrosylated, oligomeric Surfactant protein D (SP-D) binds and inhibits TLR. Heat shock proteins (HSPs) 60 and 70, High-mobility group box 1 (HMGB1), and Peroxiredoxin (Prx) are glutathionylated. They bind to RAGE or TLR, inducing similar downstream-signaling components Tumor necrosis factor receptor–associated factor (TRAF), Nuclear Factor-kappa-B (NFkB) and eventually a pro-inflammatory response. The RAGE receptor can also activate the NEMO complex via RAS. Also, the TLR pathway can be activated through the Phosphoinositide 3-kinases (PI3K) pathway. PI3K binds to the receptor, which inhibits TRAF6 and activates the serine/threonine-protein kinases (Akt) pathway by activating NFkB. Different components of this pathway can be glutathionylated or nitrosylated. Nitrosylated myeloid differentiation primary response 88 (MyD88) leads to the detaching of the receptor whereby the signal is inhibited. Nitrosylated or glutathionylated IKKβ, p50, and ReIA/p65 lead to their inactivation, eventually inhibiting gene expression.
calcium- and zinc-binding proteins S100A8 (Cys42) (117) and S100A9 (108). Interestingly, Trx1 and PDIs can be nitrosylated and act as transnitrosylases (32, 118). Furthermore, Trx1 catalyzes the denitrosylation of substrate proteins like HSP60 and coflin-1 (105). S-nitrosylation is involved in various physiological and pathophysiological processes, including apoptosis, DNA damage repair, inflammation, mitochondrial energy metabolism, proliferation, and regulation of transcription (119, 120). Extracellular proteins and receptors include Aquaporin-1 (AQP-1) (121), CD40 (122), Epidermal Growth Factor Receptor (123), insulin-like growth factor type 1 receptor (124), and Surfactant Protein D (SP-D) (Cys15, Cys20) (125–127). S-nitrosylation of SP-D leads to oligomerization of the protein (125) and TLR4 binding and inhibition (126, 127) (Figure 1). Additional nitrosylation of SP-D (Cys15/20) separates the oligomeric form into trimers, exposing the N-terminal domain and leading to chemotaxis of macrophages (125). S-nitrosylation of MyD88 within the TLR pathway disrupts its binding to upstream Toll/IL-1R adaptor protein (TIRAP) but not to downstream Interleukin-1 receptor-associated kinase 1 (IRAK-1). This could influence the delayed development of the acute immune response (112). The subunits p65 and p50 of NFkB can become nitrosylated, which has a similar inhibitory effect on DNA binding as glutathionylation. Nitrosylation of both subunits leads to inactivation of the complex (114, 115) (Figure 1). In addition, IKKβ is nitrosylated at Cys179, and this PTM is reversed upon Tumor necrosis factor α activation (128). Among membrane proteins, channels can be nitrosylated such as AQP-1 at Cys189, located within the functional pore, allowing potential negative feedback regulation by inhibiting the function of AQP-1 (reviewed in 121). Nitrosylation of CD40 prohibits binding and activation by CD40L. This modification occurs in the extracellular domain in resting macrophages and monocytes. Denitrosylation occurs after activation by CD40L, resulting in the activation of the NFκB pathway (122).

THIOL SWITCHES IN BACTERIAL AND VIRAL INFECTIONS

PTMs of thiols, i.e., mainly regulatory disulfides, mediate viral entry into host cells. Specific thiol switches occur in major viral infections including hepatitis, human immunodeficiency virus (HIV), and influenza. Recent studies also imply the presence of a relevant thiol switch that facilitates the entry of SARS-CoV-2. Even though there is more evidence on viral infections, critical thiol modifications also occur in bacterial infections.

Bacterial Infections

The Gram-positive *Corynebacterium diphtheriae* is the cause of diphtheria that affects the respiratory tract and skin. Diphtheria toxin (DT) is released as a virulence factor and enters cells via receptor-mediated endocytosis. It contains an intermolecular disulfide bridge (Cys186, Cys201) and depends on host cell-mediated reduction (24), which occurs on the cell surface (25), and is catalyzed by PDIs (25). In vitro, Trx1 reduces DT at pH 5 and GSH or Cys at neutral pH (26). Following reduction, the N-terminal part containing the ADP-ribose transferase activity enters the cytoplasm—a process that among others depends on Trx reductase—and catalyzes the ADP-riboseylation of elongation factor (EF) 2 and thereby inhibits protein synthesis, which eventually induces apoptosis (24). A comparable mechanism was found for the Gram-negative *Pseudomonas aeruginosa*. Released Exotoxin A contains a disulfide (Cys265, Cys287) that is cleaved by PDIs and eventually leads to inhibition of protein synthesis. Interestingly, the reduction does not occur on the cell surface, but intracellularly (129, 130). For the Gram-negative *Vibrio cholera*, a disulfide bond (Cys-187, Cys-199) in cholera toxin was identified that is also a substrate for intracellular PDIs (131–133).

Besides activating bacterial toxins, some bacterial strains were shown to rely on disulfide reductases on the cell surface for invasion and infection. The Gram-negative *Anaplasma phagocytophilum*, the cause of anaplasmosis, expresses the adhesin Asp14 required for host invasion. Asp14 binds and brings PDI proximal to the bacterial surface. The substrate disulfide bond on the bacterial surface have not been identified; however, a reduction is needed. Interestingly, extracellularly, membrane-associated Trx1 mediates bacterial entry (134). Similarly, the Gram-negative *Ehrlichia chaffeensis*, the cause of human monocytic ehrlichiosis, expresses an adhesin EpIa that binds PDIs and mediates bacterial entry into host cells. Inhibition of Trx1 prohibits infection (135).

Viral Infections

The enveloped HIV is the cause of acquired immunodeficiency syndrome (AIDS). The viral envelope glycoprotein 120 (gp120) is rich in disulfide bonds and is essential for viral attachment to the host lymphocyte cell surface. Following binding to receptor CD4 and coreceptor CXCR4, conformational changes, i.e., the reduction of two intramolecular disulfides, allows fusion, viral entry, and infection. The reduction is catalyzed by PDIs (27, 28), Grx1 (136), and Trx1 (137). Interestingly, PDI is mainly involved in infection of T-lymphocytes and Trx1 in infection of macrophages. Trx1 is particularly elevated in chronic phases of HIV infection. The authors concluded that Trx1 may enable sustained viremia, when T-lymphocytes are declining (138). Another mechanistic thiol switch was identified for the enveloped hepatitis C virus that causes hepatitis C. The envelope glycoproteins E1 and E2 contain several conserved Cys residues. Cellular attachment is enabled by free thiol groups in E1 and E2 and not by disulfide formation (139). Mutagenesis screenings of E1 (140) and E2 (141) revealed the contributions of Cys residues on structure and function. All 18 Cys residues of E2 are needed for viral entry, even though the contribution to structure and function is different (141). Thiol switches in other viral strains have been identified and analyzed (142), including the Hepatitis A Virus-2B (HAV-2B) peptide (142), vaccinia virus proteins (143), and adenoviral capsid protein VI (144). PDIs play an important role in viral infection via diverse mechanisms. PDIs were shown to be involved in viral entry of dengue virus by interaction with nonstructural protein 1 (145) and...
regulating integrin activity (146). PDIs bind capsid spike proteins of human astroviruses, the cause of gastroenteritis, thereby inhibiting viral entry, more precisely uncoating of the viral genome (147). PDIs regulate the redox state of hemagglutinin and neuraminidase and thereby virus attachment and influenza infection (148, 149). Also, in coronavirus disease 2019 (COVID-19), the spike glycoprotein of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) that binds to its receptor angiotensin-converting enzyme 2 contains two disulfide bonds (Cys379-Cys432 and Cys391-Cys525). To our knowledge, an interaction involving PDI or Trx1 has so far not been determined; however, reducing agents showed antiviral properties, inhibiting viral entry (150).

CONCLUSIONS

- The impact of extracellular thiol switches has long been underestimated.
- Extracellular thiol modifications of key proteins and receptors mediate i) signal transduction; ii) bacterial toxicity, adhesion, and invasion; and iii) viral invasion and infection.
- Extracellular thiol modifications regulate the adaptive immune response by modulating immunoglobulin antigen affinity and T-cell receptor epitope recognition. Whether this is an active mechanism of immune tampering or immune escape or even explains individual responses to pathogens remains to be elucidated.
- Members of the Trx family are involved in the modulation of thiol PTMs.
- Thiol modifications are novel targets for diagnosis and/or prognosis of inflammatory and infectious diseases and constitute potential therapeutic targets.

REFERENCES

1. Khoury GA, Baliban RC, Floudas CA. Proteome-Wide Post-Translational Modification Statistics: Frequency Analysis and Curation of the Swiss-Prot Database. Sci Rep (2011) 1:1–5. doi: 10.1038/srep00090
2. Ramazi S, Zahiri J. Post-Translational Modifications in Proteins: Resources, Tools and Prediction Methods. Database (2021) 2021(7):1–20. doi: 10.1093/database/baab012
3. Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of Posttranslational Modifications of Proteins by Tandem Mass Spectrometry. Biotechniques (2006) 40(6):790–8. doi: 10.2144/000112201
4. Yakubu RR, Nieves E, Weiss LM. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). Adv Exp Med Biol (2019) 1140 (5):169–98. doi: 10.1007/978-3-030-15950-4_10
5. Leutert M, Entwisle SW, Villen J. Decoding Post-Translational Modification Crosstalk With Proteomics. Mol Cell Proteomics (2021) 20:9–11. doi: 10.1016/j.mcp.2021.100129
6. Leeming DJ, Bay-Jensen AC, Vassiliadis E, Larsen MR, Henriksen K, Kardsal MA. Post-Translational Modifications of the Extracellular Matrix are Key Events in Cancer Progression: Opportunities for Biochemical Marker Development. Biomarkers (2011) 16(3):193–205. doi: 10.3109/1354750X.2011.557440
7. Szabó-Taylor K, Ryan B, Osteikoetxea X, Szabo TG, Södär B, Holub M, et al. Oxidative and Other Posttranslational Modifications in Extracellular Vesicle Biology. Semin Cell Dev Biol (2015) 40:8–16. doi: 10.1016/j.semcdb.2015.02.012
8. Atukorala I, Mathivannan S. The Role of Post-Translational Modifications in Targeting Protein Cargo to Extracellular Vesicles. Subcellular Biochem (2021) 57:45–60. doi: 10.1007/978-3-030-67211-6_3
9. Cless K. Redox Proteomics: From Bench to Bedside. Adv Exp Med Biol (2014) 806:301–17. doi: 10.1007/978-3-319-06068-2_13
10. Hanschmann E-M, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: From Cofactors to Antioxidants to Redox Signaling. Antioxid Redox Signal (2013) 19(13):1539–605. doi: 10.1089/ars.2012.4599

AUTHOR CONTRIBUTIONS

Conceptualization: KAB and E-MH. Writing, review, and editing: KAB, PLP, E-MH. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the German Research Council (DFG: SPP1710) to E-MH (HA 8334/2-2). We acknowledge support by the Heinrich Heine University Düsseldorf.
HIV Glycoprotein 120 (Gp120), Which Impairs Thioredoxin-Driven CD4 Dimerization. J Biol Chem (2014) 289(15):10455–65. doi: 10.1074/jbc.M113.539353.

22. Kim SF, Hurri DA, Snyder SH. Medicine: Inducible Nitric Oxide Synthase Binds, S-Nitrosylates, and Activates Cytochrome c. Science (2000) 289(5479):2032. doi: 10.1038/science.2000518.

23. Ryser HJP, Mandel R, Ghani F. Cell Surface Sulfhydryls are Required for the Redox Control of Nuclear Transport of the Structural Chromatin Protein Hmgb1. J Biol Chem (1991) 266(28):18439–42. doi: 10.1002/jbc.18558008.

24. Moskaug JO, Sandvig K, Olsnes S. Cell-Mediated Reduction of the Thioredoxin System: Differential Cleavage Pattern of Interchain Disulfide Bonds of HIV Envelope Glycoprotein 120 Occurs Post-CXCR4 Binding and is Required for Fusion. J Biol Chem (2003) 278(5):3131–6. doi: 10.1074/jbc.M205467200.

25. Barbouche E, Barbouche R, Courgeot J, Miquelis R. The Catalytic Activity of Glutaredoxin 1 Regulates Deglutathionylation of 4 Integrin and Thereby Restricts Mediated Cell Migration is Signaled by Protein-Disulfide Isomerase-Mediated Reduction as the Mechanism That Activates a Molecular Chaperone. J Biol Chem (2020) 294(12):24373–85. doi: 10.1074/jbc.K120.003404.

26. Shin MJ, Kim DW, Choi YJ, Cha HJ, Lee SH, Lee S, et al. PEP-1-GLRX1 for the Redox Control of Nuclear Transport of the Structural Chromatin Protein Hmgb1. J Biol Chem (2019) 294(18):5508–9. doi: 10.1074/jbc.ZC119.107162.

27. You Y, Chen J, Zhu F, Xu Q, Han L, Gao X, et al. Glutaredoxin 1 Up-Regulates Deglutathionylation of 4 Integrin and Thereby Restricts Mediated Cell Migration is Signaled by Protein-Disulfide Isomerase-Mediated Reduction of Two Disulfide Bonds of HIV Envelope Glycoprotein 120 Occurs Post-CXCR4 Binding and is Required for Fusion. J Biol Chem (2003) 278(5):3131–6. doi: 10.1074/jbc.M205467200.

28. Fenouillet E, Barbouche R, Courgeot J, Miquelis R. The Catalytic Activity of Glutaredoxin 1 Regulates Deglutathionylation of 4 Integrin and Thereby Restricts Mediated Cell Migration is Signaled by Protein-Disulfide Isomerase-Mediated Reduction as the Mechanism That Activates a Molecular Chaperone. J Biol Chem (2020) 294(12):24373–85. doi: 10.1074/jbc.K120.003404.

29. Buttermi E, Boriero D, Caceres de Prati A, Mariotti S. STAT1 Drives M1 Microglia Activation and Neuroinflammation Under Hypoxia. Arch Biochem Biophys (2019) 669:23–30. doi: 10.1016/j.abb.2019.05.011.

30. Brüttigam L, Schütte LD, Godoy JR, Prozorovski T, Gellert M, Hauptmann G, et al. Vertebrate-Specific Glutaredoxin is Essential for Brain Development. Proc Natl Acad Sci U S A (2011) 108(5):20532–7. doi: 10.1073/pnas.1100851108.

31. Gellert M, Venz S, Milthöfer J, Cott C, Hanschmann EM, Lüllig CH. Identification of a Dithiol-Disulfide Switch in Collapsin Response Mediator Protein 2 (CRMP2) That is Toggled in a Model of Neuronal Differentiation. J Biol Chem (2013) 288(49):53517–25. doi: 10.1074/jbc.M113.523144.

32. Cummings RC, Schubert D. Amyloid-β Induces Disulfide Bonding and Aggregation of GAPDH in Alzheimer’s Disease. FASEB J (2005) 19:14206–2. doi: 10.1096/f05.041950f.

33. Leichert LJ, Gehrke F, Gudisova HV, Blackwell TW, Ilbert M, Walker AK, et al. Quantifying Changes in the Thiol Redox Proteome Upon Oxidative Stress In Vivo. Proc Natl Acad Sci U S A (2008) 105(24):8197–202. doi: 10.1073/pnas.0707723105.

34. Barbouche E, Barbouche R, Courgeot J, Miquelis R. The Catalytic Activity of Glutaredoxin 1 Regulates Deglutathionylation of 4 Integrin and Thereby Restricts Mediated Cell Migration is Signaled by Protein-Disulfide Isomerase-Mediated Reduction as the Mechanism That Activates a Molecular Chaperone. J Biol Chem (2020) 294(12):24373–85. doi: 10.1074/jbc.K120.003404.

35. Zheng M, Åslund F, Storz G. Activation of the OxR Transcription Factor by Reversible Disulfide Bond Formation. Science (80-) (1998) 279(5357):1718–21. doi: 10.1126/science.279.5357.1718.

36. Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, et al. Redox Regulation of OxR Requires Specific Disulfide Bond Formation Involving a Rapid Kinetic Reaction Path. Nat Struct Mol Biol (2004) 11(12):1179–85. doi: 10.1038/nsmb856.

37. Brandes N, Schmitt S, Jakob U. Thiol-Based Redox Switches in Eukaryotic Proteins. Antioxidants Redox Signal (2009) 11(5):997–1014. doi: 10.1089/ars.2008.2285.

38. Tsermpini EE, Zhang Y, Niola P, Chillotti C, Ardau R, Bocchetta A, et al. Pharmacogenomics of Lithium Effects on Glomerular Function in Bipolar Disorder Patients Under Chronic Lithium Treatment: A Pilot Study. Neurosci Lett (2017) 638:1–4. doi: 10.1016/j.neulet.2016.12.001.

39. Kokkola R, Andersson Å, Mullins G, Ostberg T, Treutger CJ, Arnold B, et al. RAGE is the Major Receptor for the Proinflammatory Activity of HMGB1 in Rodent Macrophages. Scand J Immunol (2005) 61(1):1–9. doi: 10.1111/j.0300-9475.2005.01534.x.

40. Perk JS, Svetlakova K, Adcock IM, He Q, Kim YJ, Strassheim D, Iishiaka A, et al. Involvement of Toll-Like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein. J Biol Chem (2004) 279(9):7350–7. doi: 10.1074/jbc.M306793200.

41. Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venerau E, Bianchi ME, et al. Redox Modifications of Cystine Residues Regulate the Cytokine Activity of HMGB1. Mol Med (2021) 27(1):58. doi: 10.1016/j.molmed.2020.12.019.

42. Disterhoft S, Jung S, Hung CW, Tholey A, Sönntuch FD, Grötzinger J, et al. Membrane-Proximal Domain of a Disintegrin and Metalloprotease-17 Represents the Putative Molecular Switch of its Shedding Activity Operated by Protein-Disulfide Isomerase. J Am Chem Soc (2013) 135(15):5776–81. doi: 10.1021/ja304034u.

43. Krossa S, Scheidig AJ, Grötzinger J, Lorenzen I. Redundancy of Protein Disulfide Isomerases in the Catalysis of the Inactivating Disulfide Switch in A Disintegrin and Metalloprotease. Sci Rep (2018) 8(1):2–10. doi: 10.1038/s41598-018-19429-4.

44. Zhang K, Pan YD, Qi JP, Yue L, Zhang MB, Xu CQ, et al. Disruption of Disulfide Restriction at Integrin Knees Induces Activation and Ligand-Independent Signaling of αvβ7. J Cell Sci (2013) 126(21):4030–41. doi: 10.1242/jcs.134528.

45. Passon F, Chiu J, Ju L, Pijning A, Jahan Z, Mor-Cohen R, et al. Mechanolo-Redox Control of Integrin De-Adhesion. Elife (2018) 7:2–11. doi: 10.7554/ elife.34843.

46. Larigione T, Bonetto V, Casoni F, Massignan T, Bianchi G, Gianazza E, et al. Redox Regulation of Surface Protein Thios: Identification of Integrin α4 as
a Molecular Target by Using Redox Proteomics. Proc Natl Acad Sci U S A (2003) 100(25):14737–41. doi: 10.1073/pnas.2435416100

57. Schwartseuk U, Balmer Y, Gutschler H, Weingartner I, Preus M, Englhard J, et al. Selective Redox Regulation of Cytokine Receptor Signaling by Extracellular Thioroedin-1. EMBO J (2007) 26(13):3086–97. doi: 10.1038/sj.emboj.6701746

58. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric Oxide Activates TRP Channels by Cysteine S-Nitrosylation. Nat Chem Biol (2006) 2(11):596–607. doi: 10.1038/nchembio821

59. Xu SZ, Sukumar P, Zeng F, Li J, Jairajman A, English A, et al. TRPC Channel Activation by Extracellular Thioroedin. Nature (2008) 451(7174):69–72. doi: 10.1038/nature06414

60. Moolaa N, Killick M, Papathanasopoulou M, Capovilla A. Thioroedin (Trx1) Regulates CD4 Membrane Domain Localization and is Required for Efficient CD4-Dependent HIV-1 Entry. Biochim Biophys Acta - Gen Subj (2016) 1860(9):1853–64. doi: 10.1016/j.bjgene.2016.05.030

61. Borth N, Mattanovich D, Kunert R, Katinger H. Effect of Increased Expression of Protein Disulfide Isomerase and Heavy Chain Binding Protein on Antibody Secretion in a Recombinant CHO Cell Line. Biotechnol Prog (2005) 21(1):106–11. doi: 10.1021/bp049824u

62. Lilie H, McLaughlin S, Freedman R, Buchner J. Influence of Protein Disulfide Isomerase (PDI) on Antibody Folding In Vitro. J Biol Chem (1994) 269(19):14290–6. doi: 10.1074/jbc.269.19.14290

63. Vidarsson G, Dekkers G, Rispens T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Immunol Rev (2012) 105(1):9–17. doi: 10.1038/nature06414

64. Giannone C, Chelazzi MR, Orsi A, Anelli T, Nguyen T, Buchner J, et al. Biogenesis of Secretory Immunoglobulin M Requires Intermediate non-Native Disulfide Bonds and Engagement of the Protein Disulfide Isomerase Erp44. EMBO J (2022) 41(3):e108518. doi: 10.15252/embj.2021108518

65. Liu H, May K. Disulfi...
93. Lu Y, Zhang XS, Zhang ZH, Zhou XM, Gao YY, Liu GJ, et al. Peroxiredoxin 2 Activates Microglia by Interacting With Toll-Like Receptor 4 After Subarachnoid Hemorrhage. *J Neuroinflamm* (2018) 15(1):1–10. doi: 10.1186/s12974-018-1188-4

94. Ridell JR, Bubara W, Moser MT, Spynkaj JA, Foster BA, Gollnick SO. Peroxiredoxin 1 Controls Prostate Cancer Growth Through Toll-Like Receptor 4-Dependent Regulation of Tumor Vasculature. *Cancer Res* (2011) 71(5):1637–46. doi: 10.1158/0008-5472.CAN-10-3674

95. Yang J, Zhang H, Gong W, Liu Z, Wu H, Hu W, et al. S-Glutathionylation of Human Inducible Hsp70 Reveals a Regulatory Mechanism Involving the C-Terminal α-Helical Lid. *J Biol Chem* (2020) 295(24):37474–80. doi: 10.1074/jbc.RA119.012372

96. Fratelli M, Demol H, Purpe M, Casagrande S, Eberini I, Salmona M, et al. Identification by Redox Proteomics of Glutathionylated Proteins in Oxidatively Stressed Human T Lymphocytes. *Proc Natl Acad Sci U S A* (2002) 99(6):3505–10. doi: 10.1073/pnas.052592699

97. Asea A, Rehli M, Kablingu E, Boch JA, Baré O, Auron PE, et al. Novel Signal Transduction Pathway Utilized by Extracellular HSP70. Role of Toll-Like Receptor (TLR) 2 and TLR4. *J Biol Chem* (2002) 277(17):15028–34. doi: 10.1074/jbc.M200497200

98. Vabulas RM, Ahmad-Nejad P, Da Costa C, Kirschning CJ, Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JVK, Snowman AM, et al. Oxidative Stressed Human T Lymphocytes. *Proc Natl Acad Sci U S A* (2004) 101(24):8525–30. doi: 10.1073/pnas.0407294102

99. Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JVK, Snowman AM, et al. GAPDH Mediates Nitrosylation of Nuclear Proteins. *Nat Cell Biol* (2012) 14(10):1094–100. doi: 10.1038/ncl.2011.2214

100. Martinez-Ruiz A, Villanueva L, González de Ordúña C, López-Ferrer D, Higuera MA, Tarín C, et al. S-Nitrosylation of Hsp90 Promotes the Inhibition of its ATPase and Endothelial Nitric Oxide Synthase Regulatory Activities. *Proc Natl Acad Sci U S A* (2005) 102(24):8525–30. doi: 10.1073/pnas.0407294102

101. Zhou S, Tang X, Miao Z, Chen Y, Cao J, Song T, et al. Hsp90 S-Nitrosylation at Cys532, as a Conformational Switch, Modulates Cycling of Hsp90–AHAI-1 CDC37 Chaperone Machine to Aggravate Atherosclerosis. *Redox Biol* (2022) 52:102290. doi: 10.1016/j.redox.2022.102290

102. Into T, Inomata M, Nakashima M, Shibata K, Håkki M, Matsushita K. Regulation of MyD88-Dependent Signaling Events by S Nitrosylation Retards Toll-Like Receptor Signaling Transduction and Initiation of Acute-Phase Immune Responses. *Mol Cell Biol* (2008) 28(4):1338–47. doi: 10.1128/MCB.01412-07

103. Li BQ, Hu LL, Niu S, Cai YD, Chou KC. Predict and Analyze S-Nitrosylation Modification Sites With the mrMR and IFS Approaches. *J Proteomics* (2012) 75(5):1654–65. doi: 10.1016/j.jprot.2011.12.003

104. Marshall HE, Stamler JS. Inhibition of NF-Kappa B by S-Nitrosylation. *Biochemistry* (2001) 40(6):1688–93. doi: 10.1021/bi002239y

105. Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE. NOS2 Regulation of NF-kb by S-Nitrosylation of P65. *J Biol Chem* (2007) 282(42):30667–72. doi: 10.1074/jbc.M705929200

106. Ravi K, Brennan LA, Levic S, Ross PA, Black SM. S-Nitrosylation of Endothelial Nitric Oxide Synthase Is Associated With Monomerization and Decreased Enzyme Activity. *Proc Natl Acad Sci U S A* (2004) 101(8):2619–24. doi: 10.1073/pnas.030046101

107. Xu LY, Raftery M, Cai H, Hsi K, Yan WX, Hseih H-L, et al. S-Nitrosylated S100A8: Novel Anti-Inflammatory Properties. *J Immunol* (2008) 181(8):5627–36. doi: 10.4049/jimmunol.181.8.5627

108. Bekendam RH, Ilyu D, Passam F, Stopa JD, De Ceunynck K, Muse O, et al. Protein Disulphide Isomerase Regulation by Nitric Oxide Maintains Vascular Quiescence and Controls Thrombus Formation. *J Thromb Haemost* (2018) 16(11):2322–35. doi: 10.1111/jth.14291

109. Chao ML, Luo S, Zhang C, Zhou X, Zhou M, Wang J, et al. S-Nitrosylation-Mediated Coupling of G-Protein Alpha-2 With CXCR5 Induces Hippo/ YAP-Dependent Diabetes-Accelerated Atherosclerosis. *Nat Commun* (2021) 12(1):1–17. doi: 10.1038/s41467-021-24736-y

110. Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. Nitric Oxide Modulates the Expression of Cell Cycle Regulatory Genes During Lateral Root Formation in Tomato. *J Exp Bot* (2006) 57(3):581–8. doi: 10.1093/jxb/erj045

111. Fernando V, Zhang X, Wael Y, Sharma V, Letson J, Furuta S. S-Nitrosylation: An Emerging Paradigm of Redox Signaling. *Antioxidants* (2019) 8(9):404. doi: 10.3390/antiox8090404

112. Godoy IG, Moretti AI, Jurado MC, Oxer D, Janiszewski M, Ckless K, et al. Loss of CD40 Endogenous S-Nitrosylation During Inflammation Modulates the Expression of Cell Cycle Regulatory Genes in Human Basal-Like Breast Cancer. *Mol Cancer Res* (2012) 10(9):1203–15. doi: 10.1158/1541-7786.MCR-12-0124

113. Okada K, Zhu B-T. S-Nitrosylation of the IGF-1 Receptor Disrupts the Cell Proliferative Action of IGF-I. *Biochem Biophys Res Commun* (2017) 491(4):870–5. doi: 10.1016/j.bbrc.2016.11.177

114. Guo CJ, Atoschina-Vasserman EN, Abramova E, Foley JP, Zaman A, Crouch E, et al. S-Nitrosylation of Surfactant Protein D Controls Inflammatory Function. *PLoS Biol* (2008) 6(11):e266. doi: 10.1371/journal.pbio.0060266

115. Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T, et al. Human Pulmonary Surfactant Protein D Binds the Extracellular Domains of Toll-Like Receptors 2 and 4 Through the Carbohydrate Recognition Domain by a Mechanism Different From its Binding to Phosphatidylinositol and Lipopolysaccharide. *Biochemistry* (2006) 45(28):8565–64. doi: 10.1021/bi601076z

116. Yamazoe M, Nishitani C, Takahashi M, Kato T, Ariki S, Shimizu T, et al. Pulmonary Surfactant Protein D Inhibits Lipopolysaccharide (LPS)-Induced Innate Inflammatory Responses by Altering LPS Binding to its Receptors. *J Biol Chem* (2008) 283(51):35874–88. doi: 10.1074/jbc.M802628200

117. Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EFM, et al. Nitric Oxide Represses Inhibitory kx Kinase Through S-Nitrosylation. *Proc Natl Acad Sci U S A* (2004) 101(24):8945–50. doi: 10.1073/pnas.0405881101
