AN ELEMENTARY PROOF OF LELLI CHIESA’S
THEOREM ON CONSTANCY OF SECOND COORDINATE
OF GONALITY SEQUENCE

SARBESWAR PAL

Abstract. Let X be a K3 surface and L be an ample line bundle on it. In
this article we will give an alternative and elementary proof of Lelli
Chiesa’s Theorem in the case of $r = 2$. More precisely we will prove that
under certain condition the second co-ordinate of the gonality sequence
is constant along the smooth curves in the linear system $|L|$. Using Lelli
Chiesa’s theorem for $r \geq 3$ we also extend Lelli Chiesa’s Theorem in the
case of $r = 2$ in weaker condition.

1. Introduction

Given a smooth irreducible projective curve C and an integer r one can
associate an integer d_r as the minimal degree of a line bundle with $r + 1$
sections. Thus to each curve one can associate a sequence $(d_1, d_2, ...)$ called
gonality sequence. The first co-ordinate of the gonality sequence is known as
the gonality of C. Let X be a smooth projective K3 surface over the field of
complex numbers and L be a line bundle on X. Then the natural question
one can ask whether the gonality sequence remains constant as C varies in
$|L|_s$, where $|L|_s = \{ C \in |L| : C$ is smooth $\}$. The answer of the question
is negative. In fact, Donagi and Morrison pointed out the following easy
counter example showing that even the first co-ordinate is not constant.

Example ([3], 2.2). Let $\pi : X \to \mathbb{P}^2$ be a K3 surface obtained as a double
cover of \mathbb{P}^2 ramified at a smooth sextic curve. Let $L = \pi^*(\mathbb{O}_{\mathbb{P}^2}(3))$. The
general curve of $|L|$ is a plane sextic and hence they have gonality 5. On the
other hand, $|L|$ contains a subspace of co-dimension 1 consisting of bielliptic
curves which has gonality 4.

However, Ciliberto and Pareschi proved that if L is an ample line bundle
on a K3 surface X, such that X and L are not simultaneously as in the
Donagi-Morrison’s example, then gonality remains constant along $|L|_s$ [2].

Naturally one could ask about the behavior of the second co-ordinate.
Note that in the Donagi-Morrison’s example, the second co-ordinate (which
we will call planarity of C and denote by $P(C)$) is constant.

Recently Lelli Chiesa [7] proved that if C is an ample curve in X with
some extra hypothesis and admits a complete g^r_d computing the Clifford

2010 Mathematics Subject Classification. 14J60, 14H51.
Key words and phrases. K3 surface, gonality sequence.
index of C then every curve in the linear system $|\mathcal{O}_X(C)|$ admits a complete g^r_d. However if the Clifford index is bigger than 2, then the extra hypothesis satisfied automatically. Thus if the Clifford index of C is bigger than 2 and C admits a complete g^2_d computing the Clifford index of C, then $\mathcal{P}(C)$ is constant as C varies in the linear system $|\mathcal{O}_X(C)|$. The question of constancy of $\mathcal{P}(C)$ still remains open if C does not admit a complete g^2_d computing the Clifford index. For example see section 3.

In this article we will give an independent proof for constancy of $\mathcal{P}(C)$ when C admits a complete g^2_d computing the Clifford index and also few cases when it does not admit a complete g^2_d computing the Clifford index. We prove the following Theorem:

Theorem 1.1. Let X be a smooth projective $K3$ surface over the field of complex numbers. Let L be an ample line bundle on X such that there is no bi-elliptic curve in $|L|$. Then every smooth curve in the linear system $|L|$ carry a g^2_d, if one of the following holds:

(i) there exist an irreducible smooth curve C in the linear system $|L|$ with a complete g^r_d, for some r, $2 \leq r \leq 3$ which computes the Clifford index of C.

(ii) $L^2 \geq 8$ and there exists a smooth curve $C \in |L|$ with a complete g^4_d, which computes the Clifford index of C.

In other words, the second co-ordinate of the gonality sequence of smooth curves is constant along the linear system $|L|$.

Notation: We work throughout over the field \mathbb{C} of complex numbers. If X is a smooth, projective variety, we denote by K_X the canonical bundle on X. For a coherent sheaf \mathcal{F} on X, we denote by $H^i(\mathcal{F})$ the i-th cohomology group of \mathcal{F} and by $h^i(\mathcal{F})$ its (complex) dimension. If V is a vector bundle on X, we denote by V^* the dual of V. For a sub-scheme $Z \subset X$, we denote by \mathcal{I}_Z the ideal sheaf of Z. A line bundle of degree d is called a complete g^r_d on a smooth projective curve C if it has exactly $r+1$ sections. We denote by $W^r_d(C)$, the subvariety of Pic$^d(C)$ whose support is the set:

$$\text{Supp}(W^r_d(C)) = \{L \in \text{Pic}^d(C) : h^0(C, L) \geq r + 1\}.$$

If $r = 0$ we denote $W^0_d(C)$ simply by $W_d(C)$.

2. **Preliminaries**

In this section we recall the basic properties of the bundle $E_{C,A}$ of Lazarsfeld [5] and Tyurin [9], associated to an irreducible smooth curve C in X and a globally generated line bundle A and the basic definitions of Clifford index and Clifford dimension.

Let X be a smooth projective $K3$ surface over the field of complex numbers. Let C be an irreducible smooth curve in X and A be a globally generated line bundle on C. Viewing A as a sheaf on X, consider the evaluation map

$$H^0(C, A) \otimes \mathcal{O}_X \rightarrow A.$$
Let $F_{C,A}$ be its kernel and $E_{C,A} := F_{C,A}^*$. Then $F_{C,A}$ fits in the following exact sequence on X.

$$0 \rightarrow F_{C,A} \rightarrow H^0(C, A) \otimes \mathcal{O}_X \rightarrow A \rightarrow 0.$$

It is easy to check that $F_{C,A}$ is locally free. Dualizing the above exact sequence one gets

$$0 \rightarrow H^0(C, A)^* \otimes \mathcal{O}_X \rightarrow E_{C,A} \rightarrow \mathcal{O}_C(C) \otimes A^* \rightarrow 0.$$

Then it is easy to check the following properties:

Lemma 2.1.
1. Rank of $E_{C,A} = h^0(C, A)$.
2. $\det(E_{C,A}) = \mathcal{O}_X(C)$.
3. $c_2(E_{C,A}) = \text{deg}(A)$.
4. $h^0(X, E_{C,A}^*) = h^1(X, E_{C,A}^*) = 0$.
5. $E_{C,A}$ is generated by its global sections off a finite set.

2.2. Clifford index. Let C be a smooth irreducible complex projective curve of genus $g \geq 2$. Recall that the Clifford index of a line bundle A on C is the integer

$$\text{Cliff}(A) = \text{deg}(A) - 2r(A),$$

where $r(A) = h^0(A) - 1$. The Clifford index of C itself is defined to be

$$\text{Cliff}(C) = \min\{\text{Cliff}(A) | h^0(A) \geq 2, h^1(A) \geq 2\}.$$

We say that a line bundle A on C contributes to the Clifford index of C if A satisfies the inequalities in the definition of Cliff(C); it computes the Clifford index of C if in addition Cliff(C) = Cliff(A).

Theorem 2.3. (M. Green, R. Lazarsfeld [4]) Let X be a complex projective $K3$ surface, and let $C \subset X$ be a smooth irreducible curve of genus $g \geq 2$. Then

$$\text{Cliff}(C') = \text{Cliff}(C)$$

for every smooth curve $C' \in |C|$. Furthermore, if Cliff(C) is strictly less than the generic value $\left\lfloor \frac{(g-1)}{2} \right\rfloor$, then there is a line bundle L on X whose restriction to any smooth $C' \in |C|$ computes the Clifford index of C'.

Given a curve C, we define its Clifford dimension as

$$r = \min\{h^0(A) - 1 | A \text{ computes the Clifford index of } C\}.$$

Proposition 2.4. (Ciliberto, Pareschi [2]) Let C be a smooth and irreducible curve of genus g sitting on a $K3$ surface X as an ample divisor. Then either C is isomorphic to a smooth plane sextic and $X, \mathcal{O}_X(C)$ are as in Donagi-Morrison’s example or the Clifford dimension of C is 1.
3. An example

In this section we will give an example of a curve C in a K3 surface X such that the Clifford index of C is not computed by a g_2^d but a g_3^d. Therefore we can not use Lelli Chiesa’s Theorem to conclude the constancy of the second co-ordinate of the gonality sequence. However we will see that the second co-ordinate remains constant along $\mathcal{O}_X(C)$, which gives an example in support of our Theorem 1.1.

Example: Let X be the K3 surface given by a smooth quartic hypersurface in \mathbb{P}^3. Let C be a quadric hypersurface section. In other words, C is a complete intersection of two hypersurfaces of degree 4 and 2 respectively. Clearly C is an ample curve in X. Then we have following facts [1, p.199, F-2]:

- $W_1^3(C) = \emptyset$
- $W_4^1(C) \neq \emptyset$
- $W_8^3(C) \neq \emptyset$
- $W_8^3(C) - W_2(C) \subset W_6^1(C)$
- $W_7^2(C) = W_8^3(C) - W_1(C)$.

Thus the Clifford index of C is 2. Since $W_7^2(C) = W_8^3(C) - W_1(C)$ and $W_8^3(C) - W_2(C) \subset W_6^1(C)$, we have $W_7^2 = \emptyset$. Therefore the Clifford index of C can not be computed by a g_2^d. On the other hand, since $W_8^3(C)$ is non-empty, the Clifford index is computed by a g_3^d. It is clear that $\mathcal{P}(C) = 7$ for all smooth curve $C \in |\mathcal{O}_X(C)|$.

4. Structure of $E_{C,A}$

Let C be a smooth irreducible curve in a K3 surface X and A be a line bundle of minimal degree d with 3 sections. Clearly such a line bundle is globally generated. Let $E_{C,A}$ be the vector bundle constructed as in Section 2. Then by Lemma 2.1 we have,

$$\text{rk}(E_{C,A}) = 3, \det(E_{C,A}) = \mathcal{O}_X(C), c_2(E_{C,A})$$

$$= d, h^0(X, E_{C,A}^*) = h^1(X, E_{C,A}^*) = 0$$

and $E_{C,A}$ is globally generated off a finite set.

The following Proposition is a slight modification of a result of Donagi-Morrison.

Proposition 4.1. $E_{C,A}$ is not a simple vector bundle, then we have the following possibilities:

1. There exist a base point free line bundle N and a rank 2 vector bundle F, globally generated off a finite set such that $E_{C,A} = F \oplus N$.
2. There exist a base point free line bundle N, a rank 2 vector bundle F and a finite set $Z \subset X$ such that $E_{C,A}$ sits in the following exact sequence,

$$0 \to F \to E_{C,A} \to N \otimes \mathcal{I}_Z \to 0$$

and we have $h^0(F) \geq h^0(N) \geq 2$.
Proof. If $E_{C,A}$ is not simple, then there is an endomorphism $\varphi : E_{C,A} \to E_{C,A}$ which is not of the form $c.Id$ for some scalar c, where Id denotes the identity morphism. Let $x \in X$ be a point. Consider an eigen value c of the linear map $\varphi_x : (E_{C,A})_x \to (E_{C,A})_x$. Then the morphism $\psi := \varphi - c(Id)$ is a nonzero morphism, which drops rank everywhere.

Let $F := \ker(\psi), N' = im(\psi)$. If $E_{C,A}$ is decomposable then we are in situation (1). Let us assume $E_{C,A}$ is indecomposable. If the rank of the endomorphism ψ is 2, then one can easily see that the rank of ψ^2 is 1. Thus with out loss of generality we can assume that $rk(F) = 2$ and we have a short exact sequence of the form,

$$0 \rightarrow F \rightarrow E_{C,A} \rightarrow N' \rightarrow 0.$$

Since X is a surface, any reflexive sheaf over X is locally free. Thus F is locally free.

Note that $N := N''$ is a line bundle and $N' = N \otimes \mathcal{I}_Z$, for some finite set $Z \subset X$. Thus we have a sequence

$$0 \rightarrow F \rightarrow E_{C,A} \rightarrow N \otimes \mathcal{I}_Z \rightarrow 0.$$

Since $E_{C,A}$ is globally generated off a finite set, N is also globally generated off a finite set. Since a line bundle on a K3 surface has no base points outside its fixed component [Corollary 3.2, [8]], it is globally generated. Moreover, since $h^0(X, (E_{C,A})^*) = 0$, N is non-trivial. Thus $h^0(N) \geq 2$. If $\psi^2 \neq 0$ then the sequence splits and again we are in the situation (1). If $\psi^2 = 0$, then $h^0(F \otimes N^*) > 0$. Therefore, we have $h^0(F) \geq h^0(N) \geq 2$. □

Remark 4.2. Note that if we are in the second case, then $h^0(N^* \otimes F) \neq 0$. Thus F and hence $E_{C,A}$ contains a line subbundle M which admits at least 2 sections. Thus $E_{C,A}$ fit in the following exact sequence,

$$0 \rightarrow M \rightarrow E_{C,A} \rightarrow F \rightarrow 0,$$

where F is a torsion free sheaf of rank two generated by its global sections off a finite set and we have the following exact sequence

$$0 \rightarrow F \rightarrow F^{**} \rightarrow S \rightarrow 0,$$

where F^{**} is the double dual of F, S is a coherent sheaf of finite length, in particular supported on a zero-dimensional subscheme Z. Also note that $c_2(F) = c_2(F^{**}) + |Z|$, where $|Z|$ denotes the length of Z.

Lemma 4.3. If E is a globally generated vector bundle off a finite set and $c_1(E)^2 > 0$, then $c_2(E) \geq 0$.

Proof. If E is a globally generated vector bundle off a finite set then for a general subspace $V \subset H^0(E)$ of dimension $rk(E)$, we have the following exact sequence [2, See P.18]

$$0 \rightarrow V \otimes \mathcal{O}_X \rightarrow E \rightarrow B \rightarrow 0$$
where B is a line bundle on a smooth curve $C \subset X$. Dualizing the exact sequence we have,

$$0 \to E^* \to V^* \otimes O_X \to A \to 0$$

where $A = K_C \otimes B^*$. If $\deg(A) < 0$, then degree of $B \geq 2g' - 1$, where g' is the genus of C and hence $h^0(B) \geq g'$. Thus $h^0(E) \geq g' + 2$. On the other hand since $c_1(E)^2 > 0$, we have $h^0(E) \leq h^0(c_1(E)) = g' + 1$ [Proposition 1.5, [4]]. Thus $c_2(E) = \deg(A) \geq 0$. □

5. Trigonal curve in K3 surface

In this section we will prove an interesting property of a trigonal curve in a K3 surface.

Theorem 5.1. Let C be a trigonal curve of genus $g \geq 5$ in a K3 surface X. Then the following holds: There exists an irreducible curve Δ such that $p_a(\Delta) = 1$ and $\Delta.C = 3$.

Proof. Since C is a trigonal curve, its Clifford index is 1. Note that if a g^r_d computes the Clifford index of C, then $d = 2r + 1$. On the other hand, for a trigonal curve if d_r is the minimal degree of a line bundle with at least $r + 1$ sections, then we have (see [6, Remark 4.5(b)])

$$d_r = 3r, 1 \leq r \leq \left\lfloor \frac{g - 1}{3} \right\rfloor,$$

$$= r + g - 1 - \frac{g - r - 1}{2}, \frac{g - 1}{3} \leq r \leq g - 1$$

$$= r + g, r \geq g$$

Therefore, if a line bundle of degree $2r + 1$ has at least $r + 1$ sections, then $2r + 1 = d_r$. Now from the expression of d_r in 1, one can conclude that the possibilities are $r = 1$ and $r = g - 2$. In other words, the Clifford index of a trigonal curve can be computed only by a pencil L and $K \otimes L^*$.

On the other hand, there exist a line bundle M on X such that $M|_C$ computes the Clifford index [4]. Therefore, $h^0(C, M|_C) = 2$ or $h^0(O_X(C) \otimes M^*)|_C) = 2$. Without loss of generality we assume $h^0(C, M|_C) = 2$. Since $K_C \otimes (M|_C)^*$ also computes the Clifford index, once can see that $h^0(M \otimes O(-C)) = 0$ and hence $h^0(X, M) = 2$ and $\deg(M|_C) = M.C = 3$. Therefore a general curve Δ in $|M|$ is irreducible and has arithmetic genus 1. Also we have $\Delta.C = 3$, which conclude the Theorem. □

6. Main theorem

In this section we prove the main theorem. If X and L are as in the Donagi-Morrison’s example, then we have seen that the planarity remains constant along the smooth curves in $|L|$. Let assume X and L are not as in the Donagi-Morrison’s example. Let C be an irreducible smooth curve C in the linear system $|L|$ with a complete g^r_d, where $2 \leq r \leq 4$, which computes the Clifford index of C. It is known that
the gonality is constant along the smooth curves in the linear system $|L|$ \cite{2}. Let d be the gonality. Also we have the Clifford dimension of every curve in the linear system $|L|$ is 1 \cite{2}. Thus the Clifford index of every curve is $d - 2$.

Proof. of main Theorem:

Case I: $r=2$

Let $C \in |L|$ be a smooth curve. If C is hyperelliptic then the Theorem holds trivially. We assume C is not hyperelliptic. Let A be a complete g^2_2, on C, computing the Clifford index. Therefore, the degree d' of A is $d + 2$ and such a line bundle is necessarily globally generated.

Note that $d + 2$ is the minimal degree of a line bundle with at least 3 sections.

If the vector bundle $E_{C,A}$ is simple, then we have

$$h^0(E_{C,A} \otimes E_{C,A}^*) = 1.$$

Thus

$$\chi(E_{C,A} \otimes E_{C,A}^*) = 2 - h^1(E_{C,A} \otimes E_{C,A}^*).$$

On the other hand, by Riemann-Roch, we have

$$\chi(E_{C,A} \otimes E_{C,A}^*) = \frac{c_1(E_{C,A} \otimes E_{C,A}^*)^2}{2} - c_2(E_{C,A} \otimes E_{C,A}^*) + \text{rk}(E_{C,A} \otimes E_{C,A}^*) \chi(\mathcal{O}_X).$$

Now $c_2(E_{C,A} \otimes E_{C,A}^*) = 6c_2(E_{C,A}) - 2c_1(E_{C,A})^2$. Thus we have,

$$\chi(E_{C,A} \otimes E_{C,A}^*) = 18 - 6c_2(E_{C,A}) + 2c_1(E_{C,A})^2 = 18 - 6(d + 2) + 2(2g - 2) = 2 - 2\rho(g, 2, d + 2).$$

Comparing (2) and (3) we have, $\rho(g, 2, d + 2) \geq 0$. Thus $W^2_{d+2}(C)$ is non-empty for every smooth curve C in $|L|$. Hence the second co-ordinate of the gonality sequence is constant.

Let assume $E_{C,A}$ is not simple. Then by Remark 4.2, we have an exact sequence of the form

$$0 \to M \to E_{C,A} \to F \to 0,$$

where F is a rank 2 torsion free sheaf, generated by its global sections off a finite set and M is line bundle, with at least two sections and F fits in the following exact sequence,

$$0 \to F \to F^{**} \to \mathcal{O}_Z \to S \to 0,$$

where S is a coherent sheaf of finite length, in particular supported on a zero-dimensional subscheme Z.

Let $N := c_1(F)$. Note that

$$c_2(E_{C,A}) = d + 2 = MN + |Z| + c_2(F^{**}).$$

Since F is globally generated by its section of a finite set, F^{**} is also globally generated off a finite set. Also note that as F^{**} is globally generated by it’s sections off a finite set, N is globally generated off a finite set and since on a K3-surface a line bundle can have no fixed point outside fixed components,
N is globally generated.
Also by Lemma 4.3, $c_2(F^{**}) \geq 0$.
Claim: $h^1(N) \leq 1$.
Since N is base point free, $h^1(N) \neq 0$ implies that $N = O(k\Gamma)$ [Proposition 2.6 [8]], where Γ is an elliptic curve and k is an integer ≥ 2. Also we have $h^1(N) = k - 1$ and $h^0(N) = k + 1$. Thus if $h^1(N) > 1$, then $k \geq 3$. Since $c_2(F) \geq 0$, we have $C.2\Gamma < M.N \leq d + 2$. But $O_C(2\Gamma)$ has 3 sections, which is a contradiction to the minimality of $d + 2$.

In the case when $h^1(N) = 1$ we have, $N = O(2\Gamma)$. If $|Z| + c_2(F^{**}) > 0$, then $\deg(N|_C) < d + 2$ and $h^0(N|_C) = 3$. Thus we get a contradiction.
If $|Z| + c_2(F) = 0$, then $N|_C$ has 3 sections and degree of $N|_C = d + 2$ for all $C \in |L|$, which proves our theorem.

Let us assume $h^1(N) = 0$.
If $h^0(N) = 2$, then $N = O_X(E)$, where E is a smooth elliptic curve.
On the other hand, since F^{**} is globally generated off a finite set, by [4, Proposition 1.5], $F^{**} = O_X(\Delta) \oplus O_X(\Delta)$, where Δ is a smooth irreducible curve on X which moves in a base-point free pencil. Thus $N = O_X(2\Delta)$, a contradiction.

Let $h^0(N) \geq 3$.

Since $h^0(M) \geq 2$ and $h^0(M) \leq h^0(M|_C), M|_C$ contributes in the Clifford index. Since $K_C = O_C(C)$, we have $K_C \otimes M|_C = N|_C$. From the exact sequence,
\[
0 \to O(N - C) \to N \to N|_C \to 0
\]
we have $h^0(N|_C) = h^0(N) + h^1(M)$. Also by Riemann-Roch, we have $h^0(N) = \frac{N^2}{2} + 2$. Thus
\begin{equation}
(6)
\text{Cliff}(M|_C) = \text{Cliff}(K_C \otimes M|_C) = \text{Cliff}(N|_C) = N.C - 2(h^0(N) + h^1(M)) + 2
\end{equation}
\[
= N.C - N^2 - 4 - 2h^1(M) + 2
\]
\[
= M.N - 2h^1(M) - 2
\]
\[
= d + 2 - |Z| - c_2(F^{**}) - 2h^1(M) - 2.
\]
But $d - 2 = \text{Cliff}(C) \leq \text{Cliff}(M|_C)$, thus we have
\[
d - 2 \leq d - |Z| - c_2(F^{**}) - 2h^1(M)
\]
or
\[
|Z| + c_2(F^{**}) + 2h^1(M) \leq 2.
\]
In particular $c_2(F^{**}) \leq 2$. Since F^{**} is globally generated off a finite set, for a general two dimensional subspace V of $H^0(F^{**})$, we have
\begin{equation}
(7)
0 \to V \otimes O_X \to F^{**} \to B \to 0
\end{equation}
where B is a line bundle on a smooth curve $D \in |N|$.
Dualizing the above exact sequence we get,
\[
0 \to F^{***} \to V^* \otimes O_X \to B' \to 0
\]
where $B^* = \mathcal{O}_D(D) \otimes B^*$. Now from the long exact sequence of (4), we have $h^0(F^*) = h^2(F) = 0$. Thus we have $h^0(B^*) \geq 2$. Also we have $c_2(F^{**}) = \deg(B^*)$. But $c_2(F^{**}) = \deg(B^*)$ and B^* has at least 2 sections. Therefore the curve D is hyperelliptic. If D has genus 2 then deg$(\mathcal{O}(D)|_C) = D.C = D^2 + M.N = 2 + M.N$. Since $c_2(F^{**}) = 2, |Z| = 0$, then from 5 it follows that $M.N = 2$, which implies $D.C = d + 2$. Therefore $\mathcal{O}(D)|_C$ will give a complete g_{d+2}^2 for all $C \in |L|$. If D has genus bigger than 2, then the following two cases can occur [[8, Theorem 5.2] :
(i) There exists an irreducible elliptic curve Δ such that $\Delta.D = 2$.
(ii) There exists an irreducible hyperelliptic curve B of genus 2 such that $D \sim 2B$.

In case (i), we can further assume genus of D is bigger than 3, thus we can decompose D as $\Delta + D'$, with $D'.\Delta = 2$. Now $(D - 2\Delta)^2 = D^2 - 8$. Thus if $D - 2\Delta$ is not effective, then $D' = 6$ and hence $D'' = 2$. Therefore the restriction of $\mathcal{O}(D')$ on each curve in $|L|$ will give a complete g_{d+2}^2. If $D - 2\Delta$ is effective then we can decompose D as $D'' + 2\Delta$ and $L = \mathcal{O}(2\Delta + D'') \otimes M$. It is easy to see that $(D'' + c_1(M))^2 > 0$. Thus $D''.c_1(M) > 2$, [[8, Lemma 3].

On the other hand,

\begin{equation}
\text{deg}(\mathcal{O}(2\Delta)|_C) = 4 + 2\Delta.c_1(M) \leq M.N + c_2(F^{**}) + |Z| = d + 2
\end{equation}

Therefore, $\mathcal{O}(2\Delta)|_C$ will give a g_{d+2}^2 for all $C \in |L|$ or deg$(\mathcal{O}(2\Delta)|_C < d + 2$, a contradiction.

In case (ii), Considering the line bundle $\mathcal{O}(B)$. Note that since, C is neither hyper-elliptic nor bi-elliptic, by Mumford’s Theorem for g_d^2 [1], $W_{d+2}(C)$ is non-empty, if and only if, $d + 2 - 6 \geq 0$ that is $d + 2 \geq 6$, i.e., $d \geq 4$.

Note that $M.N = d$ and $B.C = B.(M + N) = B(2B + M) = 2B^2 + \frac{M.N}{2} \leq d + 2$. Thus either $\mathcal{O}_X(B)|_C$ is a complete g_d^2 for all $C \in |L|$ or we will get a contradiction.

Case II: r = 3

Let A be a line bundle of degree d' computing the Clifford index of C with $h^0(A) = 4$. We can assume there is no curve in $|L|$ with a line bundle with 3 sections, computing the Clifford index. Since d' computes the Clifford index of C and the Clifford index of C is $d - 2$, one has $d' = d + 4$. In this case every curve in the linear system $|L|$ admits a complete g_{d+4}^3 [7, Theorem 4.1]. For a general point $x \in C$, $A \otimes \mathcal{O}_C(-x)$ admits 3 sections. Thus W_{d+3}^2 is non-empty. If $W_{d+2}^2 \neq \emptyset$, then one can get a line bundle computing the Clifford index of C with 3 sections, a contradiction. Thus $W_{d+2}^2 = \emptyset$. This is true for every smooth irreducible curve in $|L|$. Thus the planarity of every curve in the linear system $|L|$ is $d + 3$.

Case III: r = 4

Again let A be a line bundle of degree d' computing the Clifford index of C with $h^0(A) = 5$. In this case $d' = d + 6$ and as previous case by [7, Theorem 4.1], every curve in the linear system $|L|$ admits a complete g_{d+6}^4.

Now for general two points \(x, y \in C \), \(A \otimes \mathcal{O}_C(-x - y) \) admits 3 sections. Thus \(W^2_{d+4}(C) \) is non-empty for every smooth irreducible curve \(C \in |L| \). If \(W^2_{d+3}(C) = \emptyset \) for all \(C \in |L| \), then planarity of every curve is \(d + 4 \) and we are done.

Let \(C \in |L| \) such that \(W^2_{d+3}(C) \neq \emptyset \) and let \(A \in W^2_{d+3}(C) \).

Let \(E_{C,A}, F^{**}, M, N, Z, D \) are as in Case I. Then from 6, we have

\[
\begin{align*}
\d - 2 \leq M.N - 2h^1(M) - 2 &= d + 3 - |Z| - c_2(F^{**}) - 2h^1(M) - 2 \\
\text{Or} \quad c_2(F^{**}) + |Z| + 2h^1(M) &\leq 3
\end{align*}
\]

If \(c_2(F^{**}) \leq 2 \) then we can conclude the Theorem as Case I. Let \(c_2(F^{**}) = 3 \). Then the degree of the line bundle \(B \) on \(D \) in 7 is 3 and admits 2 sections. Hence \(D \) is a trigonal curve. Therefore by Theorem 5.1, there exist an elliptic curve \(\Delta \) such that \(\Delta.D = 3 \) and \(D \) can be decomposed as \(D' + \Delta \). If \(D' \) contains any \(-2\)-curve \(\Gamma \), then \(\Gamma \) will be a fixed component of \(N \), a contradiction, since \(N \) is base point free. Thus we can assume \(D'^2 \geq 0 \).

If \(0 \leq D'^2 \leq 2 \), then by similar analysis as in Case \(r = 2 \), we can conclude the Theorem. Thus we can assume that \(D'^2 \geq 4 \), that is, \(D'^2 \geq 10 \). If \(D^2 \geq 12 \), then \(D \) can be decomposed as \(2\Delta + D' \) and we are done as earlier.

Let \(D^2 = 10 \). Then \(D'^2 = 4 \). Therefore, \(D' \) is either hyperelliptic or trigonal. Thus we have a decomposition of \(D \) as \(2\Delta + D' \), which conclude the Theorem.

\[\square \]

Acknowledgement: We would like to thank to Prof. A. J. Parameswaran for many useful discussion. We also would like to thank Prof. Ciliberto, Prof. P. Newstead for valueable comments and pointing out the work done in this direction. We also would like to thank Krishanu Dan for careful reading of the article.

References

[1] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J.: Geometry of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985.
[2] Ciliberto, Ciro; Pareschi, Giuseppe Pencils of minimal degree on curves on a K3 surface. J. Reine Angew. Math. 460 (1995), 15-36.
[3] Donagi, Ron; Morrison, David R. Linear systems on K3-sections. J. Differential Geom. 29 (1989), no. 1, 49-64.
[4] Green, Mark; Lazarsfeld, Robert Special divisors on curves on a K3 surface. Invent. Math. 89 (1987), no. 2, 357-370.
[5] Lazarsfeld, Robert Brill-Noether-Petri without degenerations. J. Differential Geom. 23 (1986), no. 3, 299-307.
[6] H. Lange and P. E. Newstead: Clifford indices for vector bundles on curves. In: A. Schmitt (Ed.) Affine Flag Manifolds and Principal Bundles. Trends in Mathematics, 165-202. Birkhäuser (2010).
[7] Lelli-Chiesa, Margherita Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and Morrison. Adv. Math. 268 (2015), 529-563.
[8] Saint-Donat, B. Projective models of K3 surfaces. Amer. J. Math. 96 (1974), 602-639.
[9] Tyurin, A. N. Cycles, curves and vector bundles on an algebraic surface. Duke Math. J. 54 (1987), no. 1, 1-26.
[10] Eisenbud, David; Lange, Herbert; Martens, Gerriet; Schreyer, Frank-Olaf The Clifford dimension of a projective curve. Compositio Math. 72 (1989), no. 2, 173-204.

IISER - Thiruvananthapuram, Computer Science Building, College of Engineering Trivandrum Campus, Trivandrum - 695016, Kerala, India

Email address: spal@iisertvm.ac.in