The caspase 3 sensor Phiphilux G2D2 is activated non-specifically in S1 renal proximal tubules

Takashi Hato, Ruben Sandoval, and Pierre C Dagher*
Department of Medicine; Indiana University; Indianapolis, IN USA

Keywords: acute kidney injury, apoptosis, intravital microscopy, ischemia, proximal tubules

Tubular cell apoptosis is a major phenotype of cell death in various forms of acute kidney injury. Quantifying apoptosis in fixed tissues is problematic because apoptosis evolves over time and dead cells are rapidly cleared by the phagocytic system. Phiphilux is a fluorescent probe that is activated specifically by caspase 3 and does not inhibit the subsequent activity of this effector caspase. It has been used successfully to quantify apoptosis in cell culture. Here we examined the feasibility of using Phiphilux to measure renal tubular apoptosis progression over time in live animals using intravital 2-photon microscopy. Our results show that Phiphilux can detect apoptosis in S2 tubules but is activated non-specifically in S1 tubules.

Introduction

Apoptosis is the most common form of programmed cell death and its role in organ and tissue development and differentiation is well documented. However, apoptosis is also commonly encountered during pathophysiological processes. In the kidney, tubular apoptosis is frequently observed after ischemic, nephrotoxic and septic injury. In fact, we have previously shown that tubular cell apoptosis contributes to kidney injury independently of inflammation.1

Pathological apoptosis is a stochastic process that occurs randomly in space and time following injury. Therefore, the quantitation of apoptosis in fixed tissue has always underestimated the magnitude of this form of cell death. This is further confounded by the short life of apoptotic tubular cells as they are shed into the lumen or cleared by phagocytic cells.

We have previously measured apoptosis in the kidney with intravital microscopy.2,3 This was done with the combined use of Hoechst and propidium iodide. Hoechst easily detected condensed or fragmented nuclei and the vital probe propidium iodide excluded necrotic cells with damaged cell membranes. While this approach was successful in quantifying tubular apoptosis in kidney volumes of live animals, the inherent toxicity of Hoechst and propidium iodide precluded imaging over prolonged periods of time.

Phiphilux is a new generation cell permeable probe which emits fluorescence in the red (G2D2) or green (G1D2) when cleaved by active caspase 3. Its specificity to caspase 3 has been well documented in cell culture studies.4-7 Its appeal for imaging apoptosis stems from the important fact that it does not inhibit the subsequent activity of caspase 3 once cleaved. Therefore, it offers a unique opportunity to follow the progress of apoptosis over time. We are aware of only one paper that describes the use of Phiphilux with intravital 2-photon microscopy to image apoptosis in the gut villi.8 In that paper, authors report non-specific background Phiphilux signal in the lumen. To our knowledge, Phiphilux has not been imaged before in the kidney of live animals. We therefore report on the use of Phiphilux to image caspase 3 activity and apoptosis in renal tubules in live mice with 2-photon intravital microscopy.

Brief Methods

All studies were approved by our institutional IACUC. Eight week old C57BL/6J and B6129S1-Casp3tm1F1v/J (caspase 3 knockouts) mice, weighing on average 20 g, were obtained from Jackson labs. We have previously extensively described the techniques of renal intravital imaging. Briefly, live animal imaging was performed using a Bio-Rad MRC-1024MP Laser Scanning Confocal/Multiphoton scanner attached to a Nikon Diaphot inverted microscope with a Nikon 20X or 60X NA 1.2 water-immersion objective. Fluorescence excitation was provided by a Titanium-Sapphire laser (Spectraphysics, Mountain View, CA) 800 nm excitation. In some studies we used an Olympus FV1000-MPE
confocal/multiphoton microscope equipped with a Spectra Physics MaiTai Deep See laser and gallium arsenide 12-bit detectors. The system is mounted on an Olympus IX81 inverted microscope stand with a Nikon 20x and 60x NA 1.2 water-immersion objective. The laser was tuned to 800 nm excitation. The two setups showed similar results.9,10 We estimate that the power at the surface of the kidney was between 2 and 28 mw. Animals were placed on the stage with the exposed intact kidney placed in a coverslip-bottomed cell culture dish (Warner Inst., Hamden, CT) bathed in isotonic saline as we have described.3 In some animals, unilateral renal ischemia was induced with a 60 min clamp of the renal pedicle. Hoechst was injected ip (80 \(\mu\)g per mouse) 2 hours before imaging. Phiphilux G2D2 (Calbiochem) 570 \(\mu\)l per mouse was injected iv through an external jugular line and the kidney was imaged for periods up to 2 hours.

Results and Discussion

Intravital 2-photon imaging of sham mouse kidneys reveals 2 populations of proximal tubules easily distinguished by their green autofluorescence (Fig. 1A). Using freely filtered fluorescently labeled inulin, we have previously determined that the tubules with bright green autofluorescence are the downstream S2. Tubules with dim autofluorescence (occasionally with a brown yellow hue) are S1 (Fig. 1A).9 Collecting ducts show minimal, if any, autofluorescence and have a bright nuclear Hoechst signal. Within 1 min after Phiphilux injection, the probe exhibited significant red fluorescence exclusively in S1 tubules near the brush border (Fig. 1B). Phiphilux fluorescence continued to increase in S1 tubules over a 30 min time period (Fig. 1C and 1D). At these later time points, Phiphilux signal could be seen in a small punctate subapical pattern that partially co-localized with the green autofluorescence signal (inset in Fig. 1D). Because the latter is thought to emanate from endosomes, this possibly indicates early endocytosis of the probe.

To determine whether this activation of phiphilux was related to the presence of constitutionally active caspase 3 in S1, we imaged the kidney of a sham caspase 3 KO mouse. As shown in Figure 2, Phiphilux was also activated in S1 tubules. Like in wild-type mice, S2 tubules exhibited no Phiphilux signal.

The caspase 3-independent signal of Phiphilux in S1 tubules was indicative of non-specific activation by protease activity in S1 during probe uptake in this highly endocytic tubular segment. In Figure 3, we followed the Phiphilux signal in a sham wild-type kidney volume over a 2 hour time period, imaging intermittently every 30 minutes. We noted a decrease in the Phiphilux signal in S1 and an increase in Hoechst fluorescence in various tubules indicative of photodamage. S2 segments did not exhibit any Phiphilux signal over that time period but also showed some photodamage as evidenced by a change in their typical autofluorescence pattern. At later time points, Phiphilux signal could be easily detected in the lumen of collecting ducts. At no time did S1 nuclei show condensation or fragmentation suggestive of apoptosis.

Ischemia reperfusion is known to induce caspase 3 activation and apoptosis in S2 and S3 renal tubules.11 To determine whether this can be detected by Phiphilux, we imaged the kidney of a wild-type mouse after 40 minutes of ischemia. Immediately following reperfusion, Phiphilux fluorescence was again seen in S1 tubules.
tubules but not S2 (Fig. 4A). However, within 30 minutes after reperfusion, some Phphilux signal could be detected in S2 tubular cells (Fig. 4B). Sixty minutes following reperfusion, Phphilux positive S2 cells with condensed nuclei suggestive of apoptosis could be easily detected in random fields (Fig. 4C1, 4C2 and 4C3 represent various planes from a single z stack). Figure 4D shows the persistence of non-apoptosis-related Phphilux signal in S1 next to a clearly apoptotic Phphilux positive S2 cell. Occasionally, Phphilux signal was detected in damaged S2 cells shed into the S2 lumen (Fig. 4E). Interestingly, Phphilux signal (presumably indicating caspase 3 activity) preceded nuclear condensation in these early shed apoptotic cells. At no time did we observe apoptotic nuclei or diffuse cytoplasmic Phphilux signal in S1. Indeed, most ischemia-induced apoptosis in the kidney is confined to S2 and S3 segments.

The data presented above show that Phphilux should be used with caution when imaging renal apoptosis with intravital 2-photon microscopy. The non-specific activation of this probe in S1 segments was clearly not related to caspase 3 and can be confounding in the overall...
estimation of apoptosis. The mechanism of non-caspase 3-related activation of Phiphilux in S1 is unclear. Non-caspase proteases such as calpains could be involved in this process.12,13 However, their distribution and activity in various tubular sub segments are unknown. In contrast, we believe that Phiphilux detected true apoptosis in S2 cells following ischemia. That this Phiphilux signal in apoptotic S2 cells is indeed a read-out of caspase 3 activity could theoretically be confirmed by performing the ischemia reperfusion experiment in caspase 3 KO mice. However, many groups have shown that with inhibition or absence of caspase 3, apoptosis at these early time points is greatly reduced if present at all.14,15

We have previously described the profound biological differences between S1 and S2 tubules.9,10 The non-caspase 3-related activation of Phiphilux in S1 tubules underscores this important segmental difference in the kidney. The utility of Phiphilux in reporting caspase 3 activation with intravital microscopy in other organs and tissues remains to be determined.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by National Institutes of Health (NIH) Grant R01 DK080067 (NIH), O’Brien Center grant P30DK079312 (NIH) and Dialysis Clinics Inc. to PCD.
References

1. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 2003; 14:128-38; PMID:12506145; http://dx.doi.org/10.1097/01.ASN.0000040596.23073.01

2. Kelly KJ, Sandoval RM, Dunn KW, Molitoris BA, Dagher PC. A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am J Physiol Cell Physiol 2003; 284: C1309-18; PMID:12676658; http://dx.doi.org/10.1152/ajpcell.00353.2002

3. Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ, Bacallao RL, Molitoris BA. Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 2002; 283:C905-16; PMID:12176747; http://dx.doi.org/10.1152/ajpcell.00159.2002

4. Liu L, Chalhoudi A, Silveri C, Werner ME, Kaiser WJ, Safrin JT, Komoriya A, Altman JD, Packard BZ, Feinberg MB. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat Med 2002; 8:185-9; PMID:11821904; http://dx.doi.org/10.1038/nm0202-185

5. Komoriya A, Packard BZ, Brown MJ, Wu ML, Henrik P. Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J Exp Med 2000; 191:1819-28; PMID:10839799; http://dx.doi.org/10.1084/jem.191.11.1819

6. Telford WG, Komoriya A, Packard BZ. Multiparametric analysis of apoptosis by flow and image cytometry. Methods Mol Biol 2004; 263:141-60; PMID:14976365

7. Packard BZ, Komoriya A. Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res 2008; 18:238-47; PMID:18227859; http://dx.doi.org/10.1038/cr.2008.17

8. Watson AJ, Chu S, Stock L, Gerasimenko O, Bullen T, Campbell F, McKenna M, Rose T, Montrose MH. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 2005; 129:902-12; PMID:16143130; http://dx.doi.org/10.1053/j.gastro.2005.06.015

9. Kalakeche R, Hato T, Bhonde R, Dunn KW, El-Achkar TM, Plotkin Z, Sandoval RM, Dagher PC. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment. J Am Soc Nephrol 2011; 22:1505-16; PMID:21784899; http://dx.doi.org/10.1681/ASN.2011020203

10. Hato T, Winfree S, Kalakeche R, Dube S, Kumar R, Yoshimoto M, Plotkin Z, Dagher PC. The macrophage mediates the renoprotective effects of endotoxin preconditioning. J Am Soc Nephrol 2015; 26:1547-62; PMID:25938784; http://dx.doi.org/10.1681/ASN.2014060561

11. Yang B, Jain S, Pawluczyn IZ, Imtiaz S, Bowley I, Ashra SY, Nicholson ML. Inflammation and caspase activation in long-term renal ischemia-reperfusion injury and immunosuppression in rats. Kidney Int 2005; 68:2050-67; PMID:16221205; http://dx.doi.org/10.1111/j.1523-1755.2005.00662.x

12. Dursun B, He Z, Somerser H, Ob DJ, Faubel S, Edelstein CL. Caspases and calpain are independent mediators of captoxin-induced endothelial cell necrosis. Am J Physiol Renal Physiol 2006; 291:F578-87; PMID:16622172; http://dx.doi.org/10.1152/ajprenal.00455.2005

13. Edelstein CL. Rat renal proximal tubules, hypoxia, ionomycin, and calpain. Methods Mol Biol 2000; 144:225-32; PMID:10818767

14. Jani A, Ljubanovic D, Faubel S, Kim J, Mischak R, Edelstein CL. Caspase inhibition prevents the increase in caspase-3, -2, -8 and -9 activity and apoptosis in the cold ischemic mouse kidney. Am J Transplant 2004; 4:1246-54; PMID:15268725; http://dx.doi.org/10.1111/j.1600-6143.2004.00498.x

15. Daemen MA, van ’t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Baarman WA. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 1999; 104:541-9; PMID:10487768; http://dx.doi.org/10.1172/JCI974