IN Variant Generalized Functions ON $\mathfrak{sl}(2, \mathbb{R})$ WITH VALUES IN A $\mathfrak{sl}(2, \mathbb{R})$-MODULE

P. Lavaud

Abstract. Let \mathfrak{g} be a finite dimensional real Lie algebra. Let $\rho : \mathfrak{g} \to \text{End}(V)$ be a representation of \mathfrak{g} in a finite dimensional real vector space. Let $C_V = (\text{End}(V) \otimes S(\mathfrak{g}))^g$ be the algebra of End(V)-valued invariant differential operators with constant coefficients on \mathfrak{g}. Let U be an open subset of \mathfrak{g}. We consider the problem of determining the space of generalized functions ϕ on U with values in V which are locally invariant and such that $C_V \phi$ is finite dimensional.

In this article we consider the case $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{N} be the nilpotent cone of $\mathfrak{sl}(2, \mathbb{R})$. We prove that when U is $SL(2, \mathbb{R})$-invariant, then ϕ is determined by its restriction to $U \setminus \mathcal{N}$ where ϕ is analytic (cf. Theorem 6.1). In general this is false when U is not $SL(2, \mathbb{R})$-invariant and V is not trivial. Moreover, when V is not trivial, ϕ is not always locally L^1. Thus, this case is different and more complicated than the situation considered by Harish-Chandra (cf. [HC64, HC65]) where \mathfrak{g} is reductive and V is trivial.

To solve this problem we find all the locally invariant generalized functions supported in the nilpotent cone \mathcal{N}. We do this locally in a neighborhood of a nilpotent element Z of \mathfrak{g} (cf. Theorem 4.1) and on an $SL(2, \mathbb{R})$-invariant open subset $U \subset \mathfrak{sl}(2, \mathbb{R})$ (cf. Theorem 4.2). Finally, we also give an application of our main theorem to the Superpfaffian (cf. [Lav04]).

1. Introduction

Let \mathfrak{g} be a finite dimensional real Lie algebra. Let $\rho : \mathfrak{g} \to \text{End}(V)$ be a representation of \mathfrak{g} in a finite dimensional real vector space. Let $C_V = (\text{End}(V) \otimes S(\mathfrak{g}))^g$ be the algebra of End(V)-valued invariant differential operators with constant coefficients on \mathfrak{g}. It is the classical family algebra in the terminology of Kirillov (cf. [Kir00]). Let U be an open subset of \mathfrak{g}. We consider the problem of determining the space of generalized functions ϕ on U with values in V which are locally invariant and such that $C_V \phi$ is finite dimensional.

When $V = \mathbb{R}$ is the trivial module and \mathfrak{g} is reductive, the problem was solved by Harish-Chandra (cf. in particular [HC64, HC65]). Let ϕ be a locally invariant generalized function such that $S(\mathfrak{g})^0 \phi$ is finite dimensional. He proved that ϕ is locally L^1, ϕ is determined by its restriction $\phi|_{\mathfrak{g}'}$ to the open subset \mathfrak{g}' of semi-simple regular elements of \mathfrak{g} and $\phi|_{\mathfrak{g}'}$ is analytic.

In this article we consider the case $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{N} be the nilpotent cone of $\mathfrak{sl}(2, \mathbb{R})$. In this case $\mathfrak{g}' = \mathfrak{sl}(2, \mathbb{R}) \setminus \mathcal{N}$. Let ϕ be a locally invariant generalized function on U with values in V such that $C_V \phi$ is finite dimensional. We prove that when U is $SL(2, \mathbb{R})$-invariant, then ϕ is determined by its restriction to $U \setminus \mathcal{N}$ where ϕ is analytic (cf. Theorem 6.1). In general this is false when U is not $SL(2, \mathbb{R})$-invariant and V is not trivial. Moreover, when V is not trivial, ϕ is not always locally L^1. Finally, we also give an application of our main theorem to the Superpfaffian (cf. [Lav04]).

Date: November 18, 2018.
To solve the problem we find all the locally invariant generalized functions supported in the nilpotent cone \mathcal{N}. Let V_n be the $n + 1$-dimensional irreducible representation of $\mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{U} be an open subset of $\mathfrak{sl}(2, \mathbb{R})$. We denote by $C^{-\infty}(\mathcal{U}, V_n)^{\mathfrak{sl}(2, \mathbb{R})}$ the set of locally invariant generalized functions on \mathcal{U} with values in V_n. Let \Box be the Casimir operator on \mathfrak{g}.

We denote by \mathcal{N}^+ (resp. \mathcal{N}^-) the “upper” (resp. “lower”) half nilpotent cone (cf. 4.1). We put:

1. $S^0_n(\mathcal{U}) = \{ \phi \in C^{-\infty}(\mathcal{U}, V_n)^{\mathfrak{sl}(2, \mathbb{R})} / \phi|_{\mathcal{U}\setminus\{0\}} = 0 \};$
2. $S^\pm_n(\mathcal{U}) = \{ \phi \in C^{-\infty}(\mathcal{U}, V_n)^{\mathfrak{sl}(2, \mathbb{R})} / \phi|_{\mathcal{U}\setminus(\mathcal{N}^\pm\cup\{0\})} = 0 \};$
3. $S_n(\mathcal{U}) = \{ \phi \in C^{-\infty}(\mathcal{U}, V_n)^{\mathfrak{sl}(2, \mathbb{R})} / \phi|_{\mathcal{U}\setminus\mathcal{N}} = 0 \}.$

Let $Z \in \mathcal{N}^+$. We assume that \mathcal{U} is a suitable open neighborhood of Z (cf. section 4.6). Let $\delta_{\mathcal{N}^\pm}$ be an invariant generalized function with support $\mathcal{N}^\pm \cup \{0\}$ (cf. section 4.4). We construct an invariant function s_n on $\mathcal{N} \cap \mathcal{U}$ with values in V_n. We prove (cf. Theorem 4.1):

(i) When n is even, $S_n(\mathcal{U})$ is an infinite dimensional vector space with basis:

(ii) When n is odd, $\dim(S_n(\mathcal{U})) = \frac{n+1}{2}$ and a basis is given by:

We assume that \mathcal{U} is an $SL(2, \mathbb{R})$-invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. If $\mathcal{U} \cap \mathcal{N} \neq \emptyset$, we have $\mathcal{N}^+ \subset \mathcal{U}$ or $\mathcal{N}^- \subset \mathcal{U}$. We prove (cf. Theorem 4.2):

(i) $S^0_n(\mathcal{U}) = \{0\}$ if $0 \notin \mathcal{U}$; $S^0_n(\mathcal{U}) \simeq (V_n \otimes S(\mathfrak{sl}(2, \mathbb{R})))^{\mathfrak{sl}(2, \mathbb{R})}$ if $0 \in \mathcal{U}$.

(ii) When n is even, we have:

(iii) When n is odd:

Finally, let \mathcal{U} be an open subset of $\mathfrak{sl}(2, \mathbb{R})$. Let V be the space of a real finite dimensional representation of \mathfrak{g}. Let ϕ be an invariant function defined on \mathcal{U} such that $C_V \phi$ is finite dimensional. This last condition is equivalent to the existence of $r \in \mathbb{N}$ and $(a_0, \ldots, a_{r-1}) \in \mathbb{R}^r$ such that:

$\left(\Box^r + \sum_{k=0}^{r-1} a_k \Box^k\right) \phi = 0.$

Moreover, we assume that $\phi|_{\mathcal{U}\setminus\mathcal{N}} = 0$. We prove (cf. Theorem 5.3) that if \mathcal{U} is $SL(2, \mathbb{R})$-invariant, then we have $\phi = 0.$
In general, when \(U \) is not \(SL(2, \mathbb{R}) \)-invariant, there exist non trivial solutions of the equation \(\Box^k \phi = 0 \) which are supported in the nilpotent cone (cf. Theorem 5.2).

Acknowledgment: I wish to thank Michel Duflo for many fruitful discussions on the subject and many useful comments on preliminary versions of this article.

Contents

1. Introduction 1
2. Notations 3
3. Support \(\{0\} \) distributions 4
4. Support in the nilpotent cone 4
 4.1. Notations 5
 4.2. Restriction to \(X + \mathbb{R}Y \) 5
 4.3. Radial part of \(\Box \) 8
 4.4. The Dirac function \(\delta_{N^+} \) (resp. \(\delta_{N^-} \)) 8
 4.5. Irreducible representations 9
 4.6. A basic function on \(N^+ \) 9
 4.7. Basic theorem 9
 4.8. Global version 11
5. Invariant solutions of differential equations 12
 5.1. Introduction 12
 5.2. Generalized functions with support \(\{0\} \) 13
 5.3. Support in the nilpotent cone: local version 14
 5.4. Support in the nilpotent cone: global version 14
6. General invariant generalized functions 14
 6.1. Main theorem 14
6.2. Application to the Superpfaffian 15
References 15

2. Notations

Let \(\mathfrak{g} \) be a finite dimensional real Lie algebra. Let \(\rho : \mathfrak{g} \to \text{End}(V) \) be a representation of \(\mathfrak{g} \) in a finite dimensional real vector space \(V \). Let \(U \) be an open subset of \(\mathfrak{g} \). We denote by \(D^\infty_c(U) \) the space of compactly supported smooth densities on \(U \). We put:

\[
\mathcal{C}^{-\infty}(U, V) = \mathcal{L}(D^\infty_c(U), V),
\]

where \(\mathcal{L} \) stands for continuous homomorphisms. It is the space of generalized functions on \(U \) with values in \(V \). We put \(\mathcal{C}^{-\infty}(U) = \mathcal{C}^{-\infty}(U, \mathbb{R}) \). For \(\phi \in \mathcal{C}^{-\infty}(U, V) \) and \(\mu \in D^\infty_c(U) \), we denote by:

\[
\int_U \phi(Z) d\mu(Z)
\]

the image of \(\mu \) by \(\phi \). We have:

\[
\mathcal{C}^{-\infty}(U, V) = \mathcal{C}^{-\infty}(U) \otimes V
\]

(we will also write \(\phi v \) for \(\phi \otimes v \)).
Let $Z \in \mathfrak{g}$. We denote by ∂_Z the derivative in the direction Z. It acts on $C^{-\infty}(\mathcal{U})$ and on $C^{-\infty}(\mathcal{U}, V)$. We extend ∂ to a morphism of algebras from $S(\mathfrak{g})$ to the algebra of differential operators with constant coefficients on \mathfrak{g}. We denote by L_Z the differential operator defined by:

\begin{equation}
(\mathcal{L}_Z \phi)(X) = \left. \frac{d}{dt} \phi(X - t[Z,X]) \right|_{t=0}.
\end{equation}

The map $Z \mapsto L_Z$ is a Lie algebra homomorphism from \mathfrak{g} into the algebra of differential operators on \mathfrak{g}. Let $Z \in \mathfrak{g}$ and $\phi \otimes v \in C^{-\infty}(\mathcal{U}) \otimes V$, we put:

\begin{equation}
Z.(\phi \otimes v) = \phi \otimes \rho(Z)v + (L_Z \phi) \otimes v.
\end{equation}

In other words, if we extend L_Z (resp. $\rho(Z)$) linearly to a representation of \mathfrak{g} in $C^{-\infty}(\mathcal{U}, V)$, we have for $\phi \in C^{-\infty}(\mathcal{U}, V)$:

\begin{equation}
Z.\phi = (\rho(Z) + L_Z)\phi.
\end{equation}

We say that $\phi \in C^{-\infty}(\mathcal{U}, V)$ is locally invariant if for any $Z \in \mathfrak{g}$ we have $Z.\phi = 0$. We put:

\begin{equation}
C^{-\infty}(\mathcal{U}, V)^{\mathfrak{g}} = \{ \phi \in C^{-\infty}(\mathcal{U}, V) / \forall Z \in \mathfrak{g}, Z.\phi = 0 \}.
\end{equation}

3. Support $\{0\}$ distributions

In this section we assume that \mathfrak{g} is unimodular. We choose an invariant measure dZ on \mathfrak{g}. We define the Dirac function δ_0 on \mathfrak{g} with support $\{0\}$ (which depends on the choice of dZ) by the following. Let $C^\infty_c(\mathfrak{g})$ be the set of smooth compactly supported functions on \mathfrak{g}. Then:

\begin{equation}
\forall f \in C^\infty_c(\mathfrak{g}), \int_{\mathfrak{g}} \delta_0(Z)f(Z)dZ = f(0).
\end{equation}

We have the following well known theorem:

Theorem 3.1. Let \mathfrak{g} be a finite dimensional unimodular real Lie algebra and V be a finite dimensional \mathfrak{g}-module. Then:

\begin{equation}
\{ \phi \in C^{-\infty}(\mathfrak{g}, V)^{\mathfrak{g}} / \phi|_{\mathfrak{g}\{0\}} = 0 \} \simeq (V \otimes S(\mathfrak{g}))^{\mathfrak{g}}.
\end{equation}

The isomorphism (which depends on the choice of dZ) sends $\sum_i v_i \otimes D_i \in (V \otimes S(\mathfrak{g}))^{\mathfrak{g}}$ to $\sum_i (\partial_{D_i} \delta_0) v_i$.

4. Support in the nilpotent cone

From now on, we assume that $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$.

Note: The content is a segment of a longer text discussing Lie algebras and differential operators. The provided text is a fragment, and the full document or context is not available. The above transcription is intended to capture the essence of the passage as accurately as possible from the given snippet.
4.1. Notations. We put:

\[
H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.
\]

We denote by \((h, x, y) \in (\mathfrak{sl}(2, \mathbb{R})^*)^3\) the dual basis of \((H, X, Y)\). Thus:

\[
\left(\begin{array}{cc} h & x \\ y & -h \end{array} \right) \in \mathfrak{sl}(2, \mathbb{R})^* \otimes \mathfrak{sl}(2, \mathbb{R})
\]

is the generic point of \(\mathfrak{sl}(2, \mathbb{R})\). Let \(N\) be the nilpotent cone of \(\mathfrak{sl}(2, \mathbb{R})\). It is the union of three orbits:

(i) \(\{0\}\).

(ii) the half cone \(N^+\) with equations \(h^2 + xy = 0; x - y > 0\).

(iii) the half cone \(N^-\) with equations \(h^2 + xy = 0; x - y < 0\).

We denote by \(\Box\) the Casimir operator of \(\mathfrak{sl}(2, \mathbb{R})\):

\[
\Box = \frac{1}{2}(\partial_H)^2 + 2\partial_Y \partial_X.
\]

It is an invariant differential operator with constant coefficients on \(\mathfrak{sl}(2, \mathbb{R})\).

Let \(V_1 = \mathbb{R}^2\) be the standard representation of \(\mathfrak{sl}(2, \mathbb{R})\). We denote by \((e = (1, 0), f = (0, 1))\) the standard basis of \(\mathbb{R}^2\). The symplectic form \(B\) such that \(B(e, f) = 1\) is \(\mathfrak{sl}(2, \mathbb{R})\)-invariant. For \(v \in V_1\), we define \(\mu_1(v) \in \mathfrak{sl}(2, \mathbb{R})\) as the unique element such that:

\[
\forall Z \in \mathfrak{sl}(2, \mathbb{R}), \tr(\mu_1(v)Z) = \frac{1}{2}B(v, Zv).
\]

It defines a (moment) map:

\[
\mu_1 : V_1 \to \mathfrak{sl}(2, \mathbb{R}).
\]

We have \(\mu_1(e) = \frac{1}{2}X\) and \(\mu_1(f) = -\frac{1}{2}Y\). The function \(\mu_1\) is a two-fold covering of \(N^+\) by \(V_1 \setminus \{0\}\).

Let \(Z_0 \in N \setminus \{0\}\). Let \(U\) be a “small” neighborhood of \(Z_0\). In this section we determine:

\[
\{ \phi \in C^{-\infty}(U, V)^{\mathfrak{sl}(2, \mathbb{R})} / \phi|_{U \setminus N} = 0 \}.
\]

We can assume that \(Z_0 = X \in N^+\).

4.2. Restriction to \(X + \mathbb{R}Y\). We define a map:

\[
\pi : SL(2, \mathbb{R}) \times (X + \mathbb{R}Y) \to \mathfrak{sl}(2, \mathbb{R})
\]

\[
(g, Z) \mapsto Ad(g)(Z).
\]

This map is submersive. Let \(I_2\) be the identity matrix in \(SL(2, \mathbb{R})\). Let \(\Delta_X \subset X + \mathbb{R}Y\) be an open interval containing \(X\). We choose a connected open subset \(V \subset SL(2, \mathbb{R})\) such that \(I_2 \in V\). We put:

\[
U = \pi(V \times \Delta_X).
\]

It is an open neighborhood of \(X\) in \(\mathfrak{g}\).
Lemma 4.1. There is an injective (restriction) map:
\[
\mathcal{I}_X : C^{-\infty}(U, V)_{\mathfrak{sl}(2, \mathbb{R})} \to C^{-\infty}(\Delta_X, V) \\
\phi \mapsto \phi_X.
\]

Proof. The map
\[
\pi_U = \pi|_{V \times \Delta_X} : V \times \Delta_X \to U
\]
is a submersion. Thus if \(\phi \in C^{-\infty}(U, V) \), then \(\pi_U^*(\phi) \) is a well defined generalized function on \(V \times \Delta_X \) with values in \(V \). Moreover,
\[
\phi = 0 \iff \pi_U^*(\phi) = 0.
\]

Now, we assume that \(\phi \) is locally invariant. Then, \(\pi_U^*(\phi) \) is also locally invariant and
\[
\pi_U^*(\phi) \in C^\infty(V) \otimes C^{-\infty}(\Delta_X).
\]
(Where \(\otimes \) is a completed tensor product.) Thus \(\pi_U^*(\phi) \) can be restricted to \(\{I_2\} \times \Delta_X \subset V \times \Delta_X \) (cf. [HC64]). We identify \(\Delta_X \) and \(\{I_2\} \times \Delta_X \). We put:
\[
\phi_X \overset{\text{def}}{=} \pi_U^*(\phi)|_{\Delta_X}.
\]
Since \(V \) is connected and \(\phi \) is locally invariant, we have:
\[
\pi_U^*(\phi)(g, Z) = \rho(g)\phi_X(Z).
\]
Thus
\[
\phi_X = 0 \iff \pi_U^*(\phi) = 0.
\]

We have for \(Z \in \mathfrak{sl}(2, \mathbb{R}) \):
\[
\mathcal{L}_Z = -h\partial_{[Z, H]} - x\partial_{[Z, X]} - y\partial_{[Z, Y]}.
\]
In particular:
\[
\mathcal{L}_H = -2x\partial_X + 2y\partial_Y;
\]
\[
\mathcal{L}_X = 2h\partial_X - y\partial_H;
\]
\[
\mathcal{L}_Y = x\partial_H - 2h\partial_Y.
\]
If \(V \) is sufficiently small, we have \(x \neq 0 \) on \(U \). We assume that this condition is realized. It follows that on \(U \) we have:
\[
\partial_X = -\frac{1}{2x}\mathcal{L}_H + \frac{y}{x}\partial_Y;
\]
\[
\partial_H = \frac{1}{x}\mathcal{L}_Y + \frac{2h}{x}\partial_Y.
\]

We have \(\Delta_X \subset \{X + yY / y \in \mathbb{R}\} \). We use the coordinate \(y|_{\Delta_X} \), still denoted by \(y \), on \(\Delta_X \). Let \(\psi \in C^{-\infty}(\Delta_X, V_n) \). We put \(\psi(y) = \psi(X + yY) \).
Lemma 4.2. We have:

\[\mathfrak{I}_X \left(C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})} \right) = \{ \psi \in C^{-\infty}(\Delta_X, V) / (\rho(X) + y\rho(Y)) \psi(y) = 0 \}. \]

Thus:

\[\mathfrak{I}_X : C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})} \to \{ \psi \in C^{-\infty}(\Delta_X, V) / (\rho(X) + y\rho(Y)) \psi(y) = 0 \} \]

is an isomorphism.

Proof. Since \(x|_{\Delta_X} = 1 \) and \(h|_{\Delta_X} = 0 \) we have for \(\phi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})} \):

\[
(\mathcal{L}_X \phi)(Y)(y) = -y(\partial_H \phi)_X(y);
\]

and

\[
(\mathcal{L}_Y \phi)(X)(y) = (\partial_H \phi)_X(y).
\]

It follows that we have:

\[(\mathcal{L}_X \phi)_X(y) + y(\mathcal{L}_Y \phi)_X(y) = 0. \]

Let \(\psi \in \mathfrak{I}_X \left(C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})} \right) \). Then, there is \(\phi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})} \) such that \(\psi = \phi_X \).

We have:

\[
(\rho(X) + y\rho(Y))\psi(y) = (\rho(X) + y\rho(Y))\phi_X(y) = (\rho(X)\phi)_X(y) + y(\rho(Y)\phi)_X(y) + (\mathcal{L}_X \phi)_X(y) + y(\mathcal{L}_Y \phi)_X(y) = (\rho(X) + \mathcal{L}_X \phi)_X(y) + y(\rho(Y) + \mathcal{L}_Y \phi)_X(y) = 0.
\]

Let \(\psi \in C^{-\infty}(\Delta_X, V) \) such that \((\rho(X) + y\rho(Y))\psi(y) = 0 \). We define \(\tilde{\psi} \in C^{-\infty}(\mathcal{V} \times \Delta_X) \) by the formula:

\[\tilde{\psi}(g, y) = \rho(g)\psi(y). \]

Since \(\rho \) is a smooth function on \(SL(2, \mathbb{R}) \) with values in \(GL(V) \), this is a well defined generalized function on \(\mathcal{V} \times \Delta_X \) with values in \(V \).

Let \((g, Z) \in \mathcal{V} \times \Delta_X \). Let \((g', Z') \in \mathcal{V} \times \Delta_X \) such that \(\text{Ad}(g)(Z) = \text{Ad}(g')(Z') \). Then, \(\text{Ad}((g')^{-1}g)Z = Z' \). We put \(G^Z = \{ g'' \in SL(2, \mathbb{R}) / \text{Ad}(g'')(Z) = Z \} \). For \(g'' \in SL(2, \mathbb{R}) \), we have \(\text{Ad}(g'')(Z) \in \Delta_X \iff g'' \in G^Z \). Then, the fiber of \(\pi_{\mathcal{U}} \) at \((g, Z) \) is included in \(\{ (g', Z) / g^{-1}g' \in G^Z \} \). Moreover, for \(Z' \in \mathfrak{sl}(2, \mathbb{R}) \), \([Z, Z'] = 0 \iff Z' \in \mathbb{R}Z \).

Thus, since \(\mathcal{V} \) is connected, the condition \((\rho(X) + y\rho(Y))\psi(y) = 0 \) on \(\Delta_X \) ensures that \(\tilde{\psi} \) is constant along the fibers of \(\pi_{\mathcal{U}} \). Thus there is a well defined generalized function \(\tilde{\psi} \) on \(\mathcal{U} \) such that:

\[\pi_{\mathcal{U}}^*(\tilde{\psi}) = \tilde{\psi}. \]

It follows from the construction that \(\left(\tilde{\psi} \right)_X = \psi \).

The hypothesis \(\phi|_{\mathcal{U}\setminus \mathcal{N}} = 0 \) means that \(\phi_X \) is supported in \(\{ X \} \subset \Delta_X \).
4.3. **Radial part of** \(\Box \). In the neighborhood \(\mathcal{U} \) of \(X \) defined in section 4.2:

\[
\Box = \frac{1}{2} (\partial_H)^2 + 2\partial_Y \partial_X
\]

(46)

\[
= \frac{1}{2} \left(\frac{1}{x} \mathcal{L}_Y + \frac{2h}{x} \partial_Y \right)^2 + 2\partial_Y \left(-\frac{1}{2x} \mathcal{L}_H + \frac{y}{x} \partial_Y \right).
\]

We define the radial part of \(\Box \) as the differential operator \(\Box_X \) on \(C^{-\infty}(\Delta_X, V) \):

\[
\Box_X = \left(3 + \rho(H) + 2y \frac{\partial}{\partial y} \right) \frac{\partial}{\partial y} + \frac{1}{2} \rho(Y)^2.
\]

(47)

This definition is justified by the following lemma:

Lemma 4.3. Let \(\phi \in C^{-\infty}(\mathcal{U}, V)^{sl(2,\mathbb{R})} \), then we have:

\[
(\Box \phi)_X = \Box_X \phi_X.
\]

(48)

Proof. Since \(x|_{\Delta_X} = 1 \) and \(h|_{\Delta_X} = 0 \), we have:

\[
(\Box \phi)_X = \frac{1}{2} \left((\mathcal{L}_Y^2 + 2\mathcal{L}_Y \frac{h}{x} \frac{\partial}{\partial y}) \phi \right)_X + 2 \left(-\frac{1}{2} \left(\frac{\partial}{\partial y} \mathcal{L}_H \phi \right)_X + \left(\frac{\partial}{\partial y} \frac{\partial}{\partial y} \phi \right)_X \right)
\]

\[
= \frac{1}{2} \left((\rho(Y)^2 + 2(x\partial_H - 2h\partial_Y) \frac{h}{x} \frac{\partial}{\partial y}) \phi \right)_X
\]

\[
+ 2 \left(-\frac{1}{2} \left(-\rho(H) \frac{\partial}{\partial y} \phi_X \right) + \frac{\partial}{\partial y} \phi_X + y \left(\frac{\partial}{\partial y} \right)^2 \phi_X \right)
\]

\[
= \frac{1}{2} \left(\rho(Y)^2 + 2 \frac{\partial}{\partial y} \right) \phi_X + \left(\rho(H) + 2 + 2y \frac{\partial}{\partial y} \right) \frac{\partial}{\partial y} \phi_X
\]

\[
= \left(3 + \rho(H) + 2y \frac{\partial}{\partial y} \right) \frac{\partial}{\partial y} \phi_X + \frac{1}{2} \rho(Y)^2 \phi_X = \Box_X \phi_X.
\]

\(\Box \)

4.4. **The Dirac function** \(\delta_{\mathcal{N}^+} \) (resp. \(\delta_{\mathcal{N}^-} \)). Let \(dZ = dx\,dy\,dh \) be the Lebesgue measure on \(sl(2,\mathbb{R}) \). Let \((e^*, f^*) \in (V_1^*)^2 \) be the dual basis of \((e, f) \). The Lebesgue measure \(dv = -2de^*\,df^* \) on \(V_1 \) is \(sl(2,\mathbb{R}) \)-invariant. We define an invariant generalized function \(\delta_{\mathcal{N}^+} \) (resp. \(\delta_{\mathcal{N}^-} \)) on \(sl(2,\mathbb{R}) \) and supported in \(\mathcal{N}^+ \cup \{0\} \) (resp. \(\mathcal{N}^- \cup \{0\} \)) by:

\[
\forall g \in C_c^{\infty}(sl(2,\mathbb{R})), \quad \int_{sl(2,\mathbb{R})} \delta_{\mathcal{N}^+}(Z) g(Z)dZ \overset{\text{def}}{=} \int_{V_1} g \circ \mu_1(v)dv
\]

(50)

\[
\left(\text{resp.} \forall g \in C_c^{\infty}(sl(2,\mathbb{R})), \int_{sl(2,\mathbb{R})} \delta_{\mathcal{N}^-}(Z) g(Z)dZ \overset{\text{def}}{=} \int_{V_1} g \circ (-\mu_1)(v)dv \right).
\]

We put:

\[
\delta_X = (\delta_{\mathcal{N}^+})_X \in C^{-\infty}(\Delta_X).
\]

(51)

We still denote by \(dy \) the Lebesgue measure on \(\Delta_X \). It is invariant. Let \(g \in C_c^{\infty}(\Delta_X) \). Then we have:

\[
\int_{\Delta_X} \delta_X(y) g(y)dy = g(0).
\]

(52)
4.5. Irreducible representations. If $V = V^1 \oplus \cdots \oplus V^n$ where V^i is an irreducible representation of $\mathfrak{sl}(2, \mathbb{R})$, then we have:

\begin{equation}
C^{-\infty}(\mathcal{U}, V) = \bigoplus_{i=1}^{n} C^{-\infty}(\mathcal{U}, V^i),
\end{equation}

every subspace being stable for $\mathfrak{sl}(2, \mathbb{R})$. Thus we can assume from now on that the representation of $\mathfrak{sl}(2, \mathbb{R})$ in V is irreducible.

We fix the Cartan subalgebra $\mathfrak{h} = \mathbb{R}H$ and the positive root $2h$ (we still denote by h its restriction to \mathfrak{h}). Let $n \in \mathbb{N}$. We denote by V_n the irreducible representation of $\mathfrak{sl}(2, \mathbb{R})$ with highest weight nh. We have $\dim(V_n) = n + 1$. We decompose V_n under the action of $\mathbb{R}H$. We fix $v_0 \in V_n \setminus \{0\}$ a vector of weight $-nh$:

\begin{equation}
\rho(H)v_0 = -nv_0.
\end{equation}

We put for $0 \leq i \leq n$: $v_i = \rho(X)^i v_0$. We have $\rho(X)v_n = 0$ and $\rho(H)v_i = (-n + 2i)v_i$. On the other hand, $\rho(Y)v_0 = 0$ and for $1 \leq i \leq n$: $\rho(Y)v_i = (n - i + 1)iv_{i-1}$.

4.6. A basic function on \mathcal{N}^+. We construct a function $s_n : \mathcal{U} \cap \mathcal{N}^+ \rightarrow V_n$ which is the basic tool to generate all the generalized functions we are looking for.

4.6.1. Case n even. In this case V_n is isomorphic to the irreducible component of $S^{n \frac{h}{2}}(\mathfrak{sl}(2, \mathbb{R}))$ (under adjoint action of $\mathfrak{sl}(2, \mathbb{R})$) generated by $X^{n \frac{h}{2}}$. From now on we will identify V_n with this component. We denote by $s_n : \mathcal{N} \rightarrow V_n$ the invariant map defined by:

\begin{equation}
s_n(Z) = Z^{n \frac{h}{2}}.
\end{equation}

4.6.2. Case $n = 1$. We recall that $\mu_1 : V_1 \setminus \{0\} \rightarrow \mathcal{N}^+$ is a two-fold covering with $\mu_1(e) = \frac{1}{2}X$. If \mathcal{U} is a sufficiently small connected neighborhood of X, there exists a unique continuous section s_1 of μ_1 in $\mathcal{U} \cap \mathcal{N}^+$ such that $s_1(\frac{1}{2}X) = e$. We have $s_1 : \mathcal{U} \cap \mathcal{N}^+ \rightarrow V_1$. It satisfies:

\begin{equation}
\forall Z \in \mathcal{U} \cap \mathcal{N}^+, \quad \mu_1(s_1(Z)) = Z.
\end{equation}

4.6.3. Case n odd. More generally, when n is odd, V_n is isomorphic to the irreducible component of $V_1 \otimes S^{n \frac{h}{2} - 1}(\mathfrak{sl}(2, \mathbb{R}))$ generated by $e \otimes X^{n \frac{h}{2} - 1}$. From now on we will identify V_n with this component. Let \mathcal{U} be the above neighborhood of X. We define a function $s_n : \mathcal{U} \cap \mathcal{N}^+ \rightarrow V_n$ by:

\begin{equation}
\forall Z \in \mathcal{U} \cap \mathcal{N}^+, \quad s_n(Z) = s_1(Z) \otimes Z^{n \frac{h}{2} - 1} \in V_n.
\end{equation}

4.7. Basic theorem. Let \mathcal{U} be an open subset of $\mathfrak{sl}(2, \mathbb{R})$. We put:

\begin{equation}
S_n(\mathcal{U}) = \{ \phi \in C^{-\infty}(\mathcal{U}, V_n)^{\mathfrak{sl}(2, \mathbb{R})}/ \phi|_{\mathcal{U} \cap \mathcal{N}} = 0 \}.
\end{equation}

Theorem 4.1. Let $n \in \mathbb{N}$. Let \mathcal{U} be an open connected neighborhood of X such that the function s_n is well defined on $\mathcal{U} \cap \mathcal{N}$ (cf. section 4.6) and \mathcal{J}_X is bijective (cf. section 4.2). Then:

(i) When n is even, $S_n(\mathcal{U})$ is an infinite dimensional vector space with basis:

\begin{equation}
(\square^k(s_n^\delta_{\mathcal{N}^+}))_{k \in \mathbb{N}}.
\end{equation}

(ii) When n is odd, $\dim(S_n(\mathcal{U})) = \frac{n+1}{2}$ and a basis is given by:

\begin{equation}
(\square^k(s_n^\delta_{\mathcal{N}^+}))_{0 \leq k \leq \frac{n-1}{2}}.
\end{equation}
Remark: Since $\delta_{\mathcal{N}^+}(Z)dZ$ is a measure on $\mathfrak{s}(2,\mathbb{R})$ with support $\mathcal{N}^+ \cup \{0\}$ and s_n is a smooth function on $\mathcal{U} \cap \mathcal{N}$ with values in V_n, $s_n\delta_{\mathcal{N}^+}$ is a well defined generalized function on \mathcal{U} with values in V_n.

Proof. Thanks to the isomorphism \mathcal{J}_X we have to determine the space:

$$\{\psi \in C^{-\infty}(\Delta_X, V_n) / \psi|_{\Delta_X \setminus \{0\}} = 0 \text{ and } (\rho(X) + y\rho(Y))\psi(y) = 0\}.$$

Let $\psi \in C^{-\infty}(\Delta_X, V_n)$. We write:

$$\psi(y) = \sum_{i=0}^{n} \psi_i(y)v_i,$$

where $\psi_i \in C^{-\infty}(\Delta_X)$ and $(v_i)_{0 \leq i \leq n}$ is the basis defined in section 4.5. We put:

$$\delta^k(y) = \left(\frac{\partial}{\partial y}\right)^k \delta_X(y).$$

Since ψ is supported in \mathcal{N} and $\Delta_X \cap \mathcal{N} = \{X\}$, there exists $a_{i,k} \in \mathbb{R}$, all equal to zero but for finite number, such that:

$$\psi_i(y) = \sum_{k \in \mathbb{N}} a_{i,k}\delta^k(y).$$

For $n = 0$, we have $\rho = 0$ and the condition $(\rho(X) + y\rho(Y))\psi(y) = 0$ is automatically satisfied.

For $n \geq 1$, we put $\alpha_i = (n - i + 1)i$. We have $y\delta^0(y) = 0$ and for $k \geq 1$, $y\delta^k(y) = -k\delta^{k-1}(y)$. Thus:

$$\sum_{0 \leq i \leq n-1, k \in \mathbb{N}} a_{i,k}\delta^k(y)v_{i+1} - \sum_{1 \leq i \leq n, k \geq 1} \alpha_i a_{i,k}k\delta^{k-1}(y)v_{i-1} = 0.$$

It follows:

$$\begin{cases} a_{n-1,k} = 0 & \text{for } k \geq 0; \\ a_{1,k} = 0 & \text{for } k \geq 1; \\ a_{n-1,k} = (k+1)(i+1)(n-i)a_{i+1,k+1} & \text{for } n \geq 2, 1 \leq i \leq n-1 \text{ and } k \geq 0. \end{cases}$$

It follows in particular

(i) from the first and the last relations that $\forall i, k \geq 0$ with $2i+1 \leq n$: $a_{n-(2i+1),k} = 0$;

(ii) from the last relation that $\forall i \geq 0$ with $2i \leq n$: $(a_{n-2i,k})_{k \geq 0}$ is completely determined by $(a_{n,k})_{k \geq 0}$.

We distinguish between the two cases according to the parity of n.

n even: In this case, for $n \geq 2$, the second relation follows from (i). Hence the map:

$$\{\psi \in C^{-\infty}(\Delta_X, V_n) / \psi|_{\Delta_X \setminus \{0\}} = 0 \text{ and } (\rho(X) + y\rho(Y))\psi(y) = 0\} \rightarrow \mathbb{R}^N$$

$$\psi(y) = \sum_{0 \leq i \leq n, k \in \mathbb{N}} a_{i,k}\delta^k(y)v_i \mapsto (a_{n,k})_{k \in \mathbb{N}}$$

is bijective. This is also true for $n = 0$.

\[n \text{ odd}: \text{ It follows from the two last relations that for } k \geq i \geq 1 a_{2i-1,k} = 0. \text{ In particular, the map:} \]

\[
\psi \in C^{-\infty}(\Delta_X, V_n) / \psi|_{\Delta_X \setminus \{0\}} = 0 \text{ and } (\rho(X) + y\rho(Y))\psi(y) = 0 \rightarrow \mathbb{R}^{n+1/2} \\
\psi(y) = \sum_{0 \leq i \leq n, k \in \mathbb{N}} a_{i,k}\delta^k(y)v_i \mapsto (a_{n,0}, \ldots, a_{n, n+1})
\]

is bijective.

This proves the first part of the theorem on the dimension of \(S_n(U) \). It remains to prove that the functions \(\square^k(s_n\delta_N) \) form a basis of \(S_n(U) \). We have for \(\psi(y) = \sum_{i=0}^n \sum_{k \in \mathbb{N}} a_{i,k}\delta^k(y)v_i \in C^{-\infty}(\Delta_X, V_n) \) such that \(\rho(X + yY)\psi(y) = 0: \)

\[
\square_X \psi(y) = (3 + \rho(H) + 2y\partial_Y)\sum_{k \in \mathbb{N}} a_{n,k}\delta^{k+1}(y)v_n + \sum_{i=0}^{n-1} \ldots v_i \\
= \sum_{k \in \mathbb{N}} (n - 2k - 1)a_{n,k}\delta^{k+1}(y)v_n + \sum_{i=0}^{n-1} \ldots v_i
\]

where \(\ldots \) are elements of \(C^{-\infty}(\Delta_X) \).

\[n \text{ even}: \text{ Since } v_n \in X^2, \text{ we have } (s_n\delta_N)_X(y) = \delta_X(y)X^2. \text{ By induction on } k, \text{ it follows:} \]

\[
(\square^k(s_n\delta_N))_X(y) = (n - 2k + 1) \ldots (n - 1)\delta^k(y)X^2 + \text{ terms with } X^{2-i} \text{ for } i \geq 1.
\]

Since \(n \) is even \(n - 2k + 1 \neq 0 \). The result follows.

\[n \text{ odd}: \text{ Since } v_n = e \otimes X^{n-1}, \text{ we have } (s_n\delta_N)_X(y) = \delta_X(y)(e \otimes X^{n-1}). \text{ By induction on } k, \text{ it follows:} \]

\[
(\square^k(s_n\delta_N))_X(y) = (n - 2k + 1) \ldots (n - 1)\delta^k(y)(e \otimes X^{n-1}) + \text{ terms with } e \otimes X^{n-1-i} \text{ for } i \geq 1.
\]

In this case for \(k = \frac{n+1}{2}, n - 2k + 1 = 0 \). Thus, since \(\square^k(s_n\delta_N) \) is invariant, it follows from the isomorphism (68) that for \(k \geq \frac{n+1}{2} \): \(\square^k(s_n\delta_N) = 0 \). The result follows.

\[\square \]

4.8. **Global version.** Let \(U \) be an open subset of \(\mathfrak{sl}(2, \mathbb{R}) \). We put:

\[
S_n^0(U) = \{ \phi \in C^{-\infty}(\mathbb{U}, V_n)_{\mathfrak{sl}(2, \mathbb{R})} / \phi|_{U \setminus \{0\}} = 0 \}; \\
S_n^\pm(U) = \{ \phi \in C^{-\infty}(\mathbb{U}, V_n)_{\mathfrak{sl}(2, \mathbb{R})} / \phi|_{U \setminus (\mathcal{N}^\pm \cup \{0\})} = 0 \}.
\]

Theorem 4.2. Let \(U \) be an \(SL(2, \mathbb{R}) \)-invariant open subset of \(\mathfrak{sl}(2, \mathbb{R}) \). Then we have:

(i)

\[
\begin{cases}
S_n^0(U) = \{0\} & \text{if } 0 \notin U; \\
S_n^0(U) \simeq (V_n \otimes S(\mathfrak{sl}(2, \mathbb{R})))_{\mathfrak{sl}(2, \mathbb{R})} & \text{if } 0 \in U.
\end{cases}
\]
(ii) When \(n \) is even, we have:
\[
S_n(U) = S_n^+(U) = S_n^-(U) = S_n^0(U)
\]

Proof. (i) It follows from Theorem 3.1.

(ii) When \(n \) is even, the function \(\delta^+_n \) is defined on \(\mathfrak{sl}(2, \mathbb{R}) \), the function \(s_n \) is defined on \(\mathcal{N} \) and the product \(s_n \delta^+_n \) is well defined (cf. Remark of Theorem 4.1). Then the result follows from Theorem 4.1.

(iii) Let \(n \) be odd. We assume that \(\mathcal{U} \cap \mathcal{N} \neq \emptyset \). Since \(\mathcal{U} \) is \(SL(2, \mathbb{R}) \)-invariant, we have \(\mathcal{N}^+ \subset \mathcal{U} \) or \(\mathcal{N}^- \subset \mathcal{U} \). We assume that \(\mathcal{N}^+ \subset \mathcal{U} \) (the case \(\mathcal{U} \subset \mathcal{N}^- \) is similar).

Let \(\phi \in C^{-\infty}(\mathcal{U}, \mathcal{V})^{\mathfrak{sl}(2, \mathbb{R})} \). Let \(\mathcal{U}_0 \subset \mathcal{U} \) be a suitable neighborhood of \(X \) where \(s_1 \) (and thus \(s_n \)) is defined (cf. section 4.6). There exists \((a_0, \ldots, a_{\frac{n-1}{2}}) \in \mathbb{R}^{\frac{n+1}{2}} \) such that on \(\mathcal{U}_0 \) (cf. Theorem 4.1):
\[
\phi(Z) = \sum_{k=0}^{\frac{n+1}{2}} a_k \Box^k (s_n(Z)\delta_{N^+}(Z)) = \sum_{k=0}^{\frac{n+1}{2}} a_k \Box^k ((s_1(Z) \otimes Z^\frac{n-1}{2})\delta_{N^+}(Z)).
\]

Since \(\mu_1 : V_1 \setminus \{0\} \to \mathcal{N}^+ \) is a non trivial two-fold covering, there is not any continuous section. In other words there is not any continuous \(SL(2, \mathbb{R}) \)-invariant map \(s : \mathcal{N}^+ \to V_1 \) such that for any \(Z \in V_0 \), \(s(Z) = s_1(Z) \). Thus \(a_0 = \cdots = a_{\frac{n-1}{2}} = 0 \). The result follows. \(\square \)

5. Invariant solutions of differential equations

5.1. Introduction. Let \(C_V = (\text{End}(V) \otimes S(\mathfrak{sl}(2, \mathbb{R})))^{\mathfrak{sl}(2, \mathbb{R})} \) be the algebra of \(\text{End}(V) \)-valued invariant differential operators with constant coefficients on \(\mathfrak{g} \). It is the classical family algebra in the terminology of Kirillov (cf. [Kir00]). When \(V = V_n \) is the \((n+1)\)-dimensional irreducible representation of \(\mathfrak{sl}(2, \mathbb{R}) \), we put \(C_n = C_{V_n} \).

Let \(\mathcal{U} \subset \mathfrak{sl}(2, \mathbb{R}) \) be an open subset. It is a natural and interesting problem to determine the generalized functions \(\phi \in C^{-\infty}(\mathcal{U}, \mathcal{V})^{\mathfrak{sl}(2, \mathbb{R})} \) such that \(C_V \phi \) is finite dimensional.

We recall that \(S(\mathfrak{sl}(2, \mathbb{R}))^{\mathfrak{sl}(2, \mathbb{R})} = \mathbb{R}[\Box] \). It is a subalgebra of \(C_V \). An other subalgebra of \(C_V \) is \(\text{End}(V)^{\mathfrak{sl}(2, \mathbb{R})} \). When \(V = V_n \), we put:
\[
M_n = \rho_n(X)Y + \rho_n(Y)X + \frac{1}{2} \rho_n(H)H \in C_n
\]
According N. Rozhkovskaya (cf. [Roz03]), \(C_n \) is a free \(S(\mathfrak{sl}(2, \mathbb{R}))^{\mathfrak{sl}(2, \mathbb{R})} \)-module with basis
\[
B_n = (1, M_n, \ldots, (M_n)^n).
\]

Lemma 5.1. Let \(\phi \in C^{-\infty}(\mathcal{U}, \mathcal{V})^{\mathfrak{sl}(2, \mathbb{R})} \). Then we have:
\[
\dim_{\mathbb{R}} (C_V \phi) < \infty \iff \dim_{\mathbb{R}} (\mathbb{R}[\Box] \phi) < \infty
\]
Proof. We argue as in [Roz03]. Let \(H \) be the set of harmonic polynomials in \(S(\mathfrak{sl}(2, \mathbb{R})) \). Then, \(S(\mathfrak{sl}(2, \mathbb{R})) = \mathbb{R}[\Box] \otimes H \) (cf. [Kos63]), and:
\[
C_V = \mathbb{R}[\Box] \otimes (H \otimes \text{End}(V))^{\mathfrak{sl}(2, \mathbb{R})}.
\]
Since \(\dim_{\mathbb{R}} (H \otimes \text{End}(V))^{\mathfrak{sl}(2, \mathbb{R})} < \infty \), the result follows.
Remark: Since \(\mathbb{R}[^{\square}] \subset \mathbb{R}[^{\square}] \otimes \text{End}(V)^{\mathfrak{sl}(2,\mathbb{R})} \subset \mathcal{C}_V \), the condition \(\dim(\mathcal{C}_V \varphi) < \infty \) is also equivalent to the existence of \(r \in \mathbb{N} \) and \((A_0, \ldots, A_{r-1}) \in (\text{End}(V)^{\mathfrak{sl}(2,\mathbb{R})})^r \) such that:

\[
(82) \quad (\square^r + A_{r-1} \square^{r-1} + \ldots + A_1 \square + A_0) \varphi = 0.
\]

Useful examples of (82) are \((\square - \lambda)^k \varphi = 0\) for \(\lambda \in \mathbb{C} \) and generalized functions with values in a complex representation. We give such an example below.

Definition 5.1. Let \(\varphi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2,\mathbb{R})} \). We say that \(\varphi \) is \(\square \)-finite if \(\dim_{\mathbb{R}}(\mathbb{R}[^{\square}] \varphi) < \infty \).

In other words, \(\varphi \) is \(\square \)-finite if there exists \(r \in \mathbb{N} \) and \((a_0, \ldots, a_{r-1}) \in \mathbb{R}^r \) such that

\[
(83) \quad (\square^r + a_{r-1} \square^{r-1} + \ldots + a_1 \square + a_0) \varphi = 0.
\]

Example: (This was our original motivation to study this problem.) Let \(\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \) be a Lie superalgebra. We define the generalized functions on \(\mathfrak{g} \) as the generalized functions on \(\mathfrak{g}_0 \) with values in the exterior algebra \(\Lambda(\mathfrak{g}_1^*) \) of \(\mathfrak{g}_1^* \):

\[
(84) \quad C^{-\infty}(\mathfrak{g}) \overset{\text{def}}{=} C^{-\infty}(\mathfrak{g}_0) \otimes \Lambda(\mathfrak{g}_1^*) = C^{-\infty}(\mathfrak{g}_0, \Lambda(\mathfrak{g}_1^*)).
\]

We assume that \(\mathfrak{g} \) has a non degenerate invariant symmetric even bilinear form \(B \). Let \(\Omega \in S^2(\mathfrak{g}) \) be the Casimir operator associated with \(B \). We have \(\Omega = \Omega_0 + \Omega_1 \) with \(\Omega_0 \in S^2(\mathfrak{g}_0) \) and \(\Omega_1 \in \Lambda^2(\mathfrak{g}_1) \). We consider \(\Omega_1 \) as an element of \(\text{End}(\Lambda(\mathfrak{g}_1^*)) \) acting by interior product. When they can be evaluated (cf. for example [Lav98, Chapitre III.5]), the Fourier transforms of the coadjoint orbits in \(\mathfrak{g}^* \) are invariant generalized functions \(\varphi \) on \(\mathfrak{g} \) subject to equations of the form \((\Omega - \lambda) \varphi = 0\) with \(\lambda \in \mathbb{C} \). It can be written \((\Omega_0 + (\Omega_1 - \lambda)) \varphi = 0\) (for \(\mathfrak{g}_0 = \mathfrak{sl}(2,\mathbb{R}) \)) it is of the form (82) with \(\Omega_0 = \square \) and \(A_0 = \Omega_1 - \lambda \). We have:

\[
(85) \quad (\Omega_0 - \lambda)^k = \sum_{i=0}^{k} \binom{k}{i} (\Omega - \lambda)^i (-\Omega_1)^{k-i}.
\]

For \(k > \frac{\dim(\mathfrak{g}_1)}{2} \), we have \(\Omega_1^k = 0 \). It follows that for \(k > 1 + \frac{\dim(\mathfrak{g}_1)}{2} \) we have:

\[
(86) \quad (\Omega_0 - \lambda)^k \varphi = 0.
\]

this equation is of the form of (82).

5.2. Generalized functions with support \(\{0\} \). We immediately obtain from Theorem 3.1

Theorem 5.1. Let \(V \) be a representation of \(\mathfrak{sl}(2,\mathbb{R}) \). Let \(\varphi \in C^{-\infty}(\mathfrak{sl}(2,\mathbb{R}), V)^{\mathfrak{sl}(2,\mathbb{R})} \) such that \(\varphi|_{\mathfrak{sl}(2,\mathbb{R}) \setminus \{0\}} = 0 \) and \(\varphi \) is \(\square \)-finite. Then, we have \(\varphi = 0 \).
5.3. Support in the nilpotent cone: local version.

Theorem 5.2. Let $n \in \mathbb{N}$. Let V_n be the irreducible $n + 1$-dimensional representation of $\mathfrak{sl}(2, \mathbb{R})$. Let W be a finite dimensional vector space with trivial action of $\mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{U} be an open connected neighborhood of X such that the function s_n is well defined on $\mathcal{U} \cap \mathcal{N}$ (cf. section 4.6) and \mathcal{J}_X is bijective (cf. section 4.2). Let $\phi \in C^{-\infty}(\mathcal{U}, W \otimes V_n)^{\mathfrak{sl}(2, \mathbb{R})}$ such that $\phi|_{\mathcal{U} \cap \mathcal{N}} = 0$. Let $r \in \mathbb{N}$ and $(a_0, \ldots, a_r) \in \mathbb{R}^r$ such that: \(\left(\Box^r + \sum_{k=0}^{r-1} a_k \Box^k \right) \phi = 0. \)

Then, we have $\phi = 0$ when at least one of the following conditions is satisfied:

(i) n is even;

(ii) n is odd and $a_0 \neq 0$.

Proof. Let $\phi \in C^{-\infty}(\mathcal{U}, W \otimes V_n)^{\mathfrak{sl}(2, \mathbb{R})}$ such that $\phi|_{\mathcal{U} \cap \mathcal{N}} = 0$. From Theorem 4.1 we obtain that there exist $p \in \mathbb{N}$, with $p = \frac{n-1}{2}$ if n is odd and $(w_0, \ldots, w_p) \in W^{p+1}$, such that:

\[
(87) \quad \phi = \sum_{i=0}^{p} w_i \otimes \Box^i(s_n \delta_{\mathcal{N}^+}).
\]

Then:

(i) When n is even, for $0 \leq j \leq p + r$, we have $\sum_{k+i=j} a_k w_i = 0$.

(ii) When n is odd, for $0 \leq j \leq \frac{n-1}{2}$, we have $\sum_{k+i=j} a_k w_i = 0$.

The result follows. \(\square \)

Remark: When n is odd, in contrast with the classical case ($V = V_0$ is the trivial representation) there exist (in a neighborhood of X) non trivial locally invariant solutions of the equation $\Box^k \phi = 0$ supported in the nilpotent cone! For example, if $k \geq \frac{n+1}{2}$ the functions $\phi = \Box^i(s_n \delta_{\mathcal{N}^+})$ for $0 \leq i \leq \frac{n-1}{2}$ are not trivial, supported in the nilpotent cone and satisfy the equation $\Box^k \phi = 0$.

When we consider the equation $(\Box - \lambda)^k \phi = 0$ for $\lambda \in \mathbb{C} \setminus \{0\}$, then the trivial solution is again the only one supported in the nilpotent cone.

5.4. Support in the nilpotent cone: global version.

Theorem 5.3. Let V be a real finite dimensional representation of $\mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{U} be an $SL(2, \mathbb{R})$-invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. Let $\phi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})}$ such that $\phi|_{\mathcal{U} \cap \mathcal{N}} = 0$ and ϕ is \Box-finite. Then we have $\phi = 0$.

Proof. It is enough to prove the theorem for V irreducible. Then, the result follows from Theorem 4.2, Theorem 5.2 and Theorem 5.1. \(\square \)

6. **General invariant generalized functions**

6.1. **Main theorem.**

Theorem 6.1. Let V be a real finite dimensional representation of $\mathfrak{sl}(2, \mathbb{R})$. Let \mathcal{U} be an $SL(2, \mathbb{R})$-invariant open subset of $\mathfrak{sl}(2, \mathbb{R})$. Let $\phi \in C^{-\infty}(\mathcal{U}, V)^{\mathfrak{sl}(2, \mathbb{R})}$ such that ϕ is \Box-finite. Then ϕ is determined by $\phi|_{\mathcal{U} \cap \mathcal{N}}$ and $\phi|_{\mathcal{U} \cap \mathcal{N}}$ is an analytic function.
Proof. The fact that \(\phi \) is determined by \(\phi|_{U\setminus \mathcal{N}} \) follows from Theorem 5.3. The fact that \(\phi|_{U\setminus \mathcal{N}} \) is analytic can be proved exactly as in [HC65].

\(\square \)

Remark: In general \(\phi \) will not be locally \(L^1 \). Indeed, let \(\phi_0 \in C^{-\infty}(sl(2, \mathbb{R}))^{sl(2, \mathbb{R})} \) a non zero \(\Box \)-finite generalized function. Then \(\phi_0 \) is locally \(L^1 \), but for \(k \in \mathbb{N}^* \):

\[
M^k_n \phi_0 \in C^{-\infty}(sl(2, \mathbb{R}), \text{End}(V_n))^{sl(2, \mathbb{R})}
\]

is usually not locally \(L^1 \).

6.2. Application to the Superpfaffian. Let us consider the Lie superalgebra \(g = spo(2, 2n) \). Its even part is \(g_0 = sl(2, \mathbb{R}) \oplus so(2n, \mathbb{R}) \). Its odd part is \(g_1 = V_1 \otimes W \) where \(W \) is the standard \(2n \)-dimensional representation of \(so(2n, \mathbb{R}) \).

In [Lav04] we constructed a particular invariant generalized function \(Spf \) on \(spo(2, 2n) \) called Superpfaffian. It generalizes the Pfaffian on \(so(2n, \mathbb{R}) \) and the inverse square root of the determinant on \(sl(2, \mathbb{R}) \). As it is a polynomial of degree \(n \) on \(so(2n, \mathbb{R}) \), we may consider that we have:

\[
\text{Spf} \in C^{-\infty}(sl(2, \mathbb{R}), \bigoplus_{k=0}^n S^k(so(2n, \mathbb{R})^*) \otimes \Lambda(g_1^*))^{sl(2, \mathbb{R})}.
\]

Let \(\Omega \) (resp. \(\Box \), \(\Omega_0 \), \(\Omega_1 \)) be the Casimir operator on \(spo(2, 2n) \) (resp. on \(sl(2, \mathbb{R}) \), \(so(2n, \mathbb{R}) \), \(g_1 \)). Then \(\Omega = \Box + \Omega_0 + \Omega_1 \) and

\[
\Omega_0' + \Omega_1 \in \text{End} \left(\bigoplus_{k=0}^n S^k(so(2n, \mathbb{R})^*) \otimes \Lambda(g_1^*) \right)^{sl(2, \mathbb{R})}
\]

is a nilpotent endomorphism. The superpfaffian satisfies:

\[
\left(\Box + (\Omega_0' + \Omega_1) \right) \text{Spf} = \Omega \text{Spf} = 0.
\]

The function \(\text{Spf} \) is analytic on \(sl(2, \mathbb{R}) \setminus \mathcal{N} \) and in [Lav04] an explicit formula is given for \(\text{Spf}(X) \in \bigoplus_{k=0}^n S^k(so(2n, \mathbb{R})^*) \otimes \Lambda(g_1^*) \) with \(X \in sl(2, \mathbb{R}) \setminus \mathcal{N} \). However, since \(\text{Spf} \) is not locally \(L^1 \) (cf. [Lav04]), it is not clear whether \(\text{Spf} \) is determined by its restriction to \(sl(2, \mathbb{R}) \setminus \mathcal{N} \) or not. In [Lav04] we proved that \(\text{Spf} \) is characterized, as an invariant generalized function on \(sl(2, \mathbb{R}) \), by its restriction to \(sl(2, \mathbb{R}) \setminus \mathcal{N} \) and its wave front set.

From the preceding results we obtain this new characterization of \(\text{Spf} \):

Theorem 6.2. Let \(\phi \in C^{-\infty}(sl(2, \mathbb{R}), \bigoplus_{k=0}^n S^k(so(2n, \mathbb{R})^*) \otimes \Lambda(g_1^*))^{sl(2, \mathbb{R})} \) such that:

(i) for \(X \in sl(2, \mathbb{R}) \setminus \mathcal{N} \), \(\phi(X) = \text{Spf}(X) \in \bigoplus_{k=0}^n S^k(so(2n, \mathbb{R})^*) \otimes \Lambda(g_1^*) \);

(ii) \(\Omega \phi = 0 \).

Then we have \(\phi = \text{Spf} \).

References

[HC64] Harish-Chandra. Invariant differential operators and distributions on a semisimple lie algebra. *American Journal of Mathematics*, 86:534–564, 1964.

[HC65] Harish-Chandra. Invariant eigendistributions on a semisimple lie algebra. *Publications Mathématiques de l’IHES*, 27:5–54, 1965.

[Kir00] A. A. Kirillov. Family algebras. *Electron. Res. Announc. Amer. Math. Soc.*, 6:7–20, 2000.

[Kos63] B. Kostant. Lie groups representations on polynomial rings. *American Journal of Mathematics*, (85):327–404, 1963.
[Lav98] P. Lavaud. Formule de localisation en supergéométrie. Thèse de doctorat de l'Université de Paris VII, 1998.

[Lav04] P. Lavaud. Superpfaffian. prepublication, e-print math.GR/0402067, 2004.

[Roz03] N. Rozhkovskaya. Commutativity of quantum family algebras. *Letters in Mathematical Physics*, 63(2):87–103, February 2003.