Calculation of $\bar{\alpha}_{\text{Q.E.D.}}$ on the $Z(\ast)$

J. F. de Trocóniz and F. J. Ynduráin
Departamento de Física Teórica, C-XI,
Universidad Autónoma de Madrid,
Canto Blanco,
E-28049, Madrid, Spain.

Abstract

We perform a new, detailed calculation of the hadronic contributions to the running electromagnetic coupling, $\bar{\alpha}$, defined on the Z particle (91 GeV). We find for the hadronic contribution, including radiative corrections,

$$10^5 \times \Delta_{\text{had}}\alpha(M_Z^2) = 2740 \pm 12,$$

or, excluding the top quark contribution,

$$10^5 \times \Delta_{\text{had}}\alpha^{(5)}(M_Z^2) = 2747 \pm 12.$$

Adding the pure QED corrections we get a value for the running electromagnetic coupling of

$$\bar{\alpha}_{\text{Q.E.D.}}(M_Z^2) = \frac{1}{128.965 \pm 0.017}$$

(*) Work supported in part by CICYT, Spain
1. Introduction

In a recent paper,[1] hereafter to be referred to as TY-I, we have evaluated the hadronic contributions to the anomalous magnetic moment of the muon: specifically, a very precise determination of the piece involving the photon vacuum polarization function was given there. With a simple change of integration kernel (see below) this analysis can be extended to evaluate the hadronic contribution to the QED running coupling, \(\hat{\alpha}_{\text{Q.E.D.}}(t) \), in particular for \(t = M_Z^2 \); an important quantity that enters into precision evaluations of electroweak observables. We will find that we can produce a substantial improvement over previous determinations due to our use of complete and correct analyticity and unitarity\(^2\) properties (at low energy), and the high quality of recent Novosibirsk, LEP, and Beijing data.

The running coupling constant may be written as

\[
\hat{\alpha}_{\text{Q.E.D.}}(t) = \frac{\epsilon^2/4\pi}{1 + \Pi(t)} = \epsilon^2 \Pi_{\text{ren}}(t)
\]

where \(\epsilon \) is the electron charge and \(\Pi(t)_{\text{ren}} \) is the 1PI (one particle irreducible) vacuum polarization function, renormalized at \(t = 0 \). To lowest order we can write the shift in \(\alpha \) as

\[
\Delta \alpha \equiv - \hat{\Pi}_h = - e^2 \Pi_{\text{ren}}^\text{had}
\]

or, distinguishing between lowest order (index 0) and next order (index 1),

\[
\Delta^{(0)} \alpha \equiv - \hat{\Pi}^{(0)}_h = - e^2 \Pi_{\text{ren}}^{\text{had};(0)}, \quad \Delta^{(1)} \alpha \equiv - \hat{\Pi}^{(1)}_h = - e^2 \Pi_{\text{ren}}^{\text{had};(1)}.
\]

By using a dispersion relation one can write this hadronic contribution at energy squared \(t \), \(\hat{\Pi}_h(t) \), as

\[
- \hat{\Pi}_h(t) \equiv - e^2 \Pi_{\text{ren}}^\text{had}(t) = - \frac{t \alpha}{3\pi} \int_{4m_e^2}^{\infty} ds \frac{R(s)}{s(s-t)}, \tag{1.2a}
\]

with

\[
R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons}; s)}{\sigma^{(0)}(e^+e^- \rightarrow \mu^+\mu^-; s)} = \frac{4\pi\alpha^2}{3s},
\]

and the integral in (1.2a) has to be understood as a principal part integral. This is similar to the Brodsky–de Rafael expression for the hadronic contribution to the muon magnetic moment anomaly,

\[
a(\text{h.v.p.}) = \int_{4m_e^2}^{\infty} ds K(s) R(s),
\]

\[
K(s) = \frac{\alpha^2}{3\pi^2 s} \dot{K}(s); \quad \dot{K}(s) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + (1-x)s/m^2_{\mu}}.
\]

Therefore, we can carry over all the work from TY-I with the simple replacement

\[
K(s) \rightarrow - \frac{t \alpha}{3\pi} \frac{1}{s(s-t)}.
\]

For the coupling at the \(Z \) we will take \(t = M_Z^2 \). Because of this similarity with the \(g-2 \) calculation, we will dispense with many discussions or details; they may be found in TY-I. Indeed, the present paper should be considered as a sequel to the former one.

After the corresponding evaluations we find, to next to leading order in \(\alpha \),

\[
10^5 \times \Delta_{\text{had}} \alpha(M_Z^2) = - 10^5 \times \left[\hat{\Pi}^{(0)}_h(M_Z^2) + \hat{\Pi}^{(1)}_h(M_Z^2) \right] = 2740 \pm 12, \tag{1.3}
\]

or, excluding the top quark contribution,

\[
10^5 \times \Delta_{\text{had}} \alpha^{(5)}(M_Z^2) = 2747 \pm 12. \tag{1.4}
\]
Adding the known pure QED corrections, the running QED coupling, in the momentum scheme is

\[
\tilde{\alpha}_{\text{Q.E.D.}}(M_Z^2) = \frac{1}{128.965 \pm 0.017}.
\] (1.5)

2. Contributions to the lowest order \(-\hat{\Pi}_h^{(0)} \) in the energy range from threshold to 2 GeV²

2.1. The region \(s \leq 1.2 \) GeV²

To zero order in the e.m. interactions we can write \(-\hat{\Pi}_h^{(0)}\) as a sum of contributions of different intermediate states in various energy slices. We start with the 2π region where data are inexistent or very poor, we also fit \(F_J \) here

\[R \]

We can express \(F \) into two pieces: from threshold, \(4m_\pi^2 \), to 0.8 GeV², and the higher energy piece.

2.1.1. The region below 0.8 GeV²

We can express \(R^{(0)} \) in terms of the pion form factor, \(F_\pi \):

\[
R^{(0)}(s) = \frac{1}{4} \left(1 - \frac{4m_\pi^2}{s} \right)^{3/2} |F_\pi(s)|^2,
\] (2.1)

where by \(m_\pi \) we understand the charged pion mass. We can also relate \(F_\pi \) to the decay \(\tau^+ \to \nu_\tau \pi^+ \pi^0 \).

Consider the correlator

\[
\Pi_{\mu\nu}^{V} = i \int d^4 x \, e^{i p \cdot x} \langle 0 | T V_\mu^V(x) V_\nu(0) | 0 \rangle = (-p^2 g_{\mu\nu} + p_\mu p_\nu) \Pi^{V}(s) + p_\mu p_\nu \Pi^{S}(s), \quad s = p^2;
\] (2.2a)

with \(V_\mu \) the weak vector current. Then neglecting isospin breaking (except for the phase space factor) we have at low \(s \),

\[
v_1(s) \equiv 2\pi \text{Im} \Pi^V = \frac{1}{12} \left\{ \left[1 - \frac{(m_{\pi^+} - m_{\pi^0})^2}{s} \right] \left[1 - \frac{(m_{\pi^+} + m_{\pi^0})^2}{s} \right] \right\}^{3/2} |F_\pi(s)|^2,
\] (2.2b)

and, on the other hand, \(v_1 \) may be obtained from the experimental measurements of the decay \(\tau^+ \to \bar{\nu}_\tau \pi^+ \pi^0 \).

To obtain \(F_\pi(s) \) we will fit the recent Novosibirsk data[3] on \(e^+e^- \to \pi^+\pi^- \) and the tau decay data of Aleph and Opal[3]. We will take into account, at least partially, isospin breaking effects by allowing different masses and widths for the \(\rho^0, \rho^+ \) resonances. Moreover, and to get a good grip in the low energy region where data are inexistent or very poor, we also fit \(F_\pi(s) \) at spacelike \(s \).[3] This is possible in our approach because we use an expression for \(F_\pi \) that takes fully into account its analyticity properties.[2] To be precise, we use that the phase of \(F_\pi(s) \) is equal to that of \(\pi\pi \) scattering, in the elastic region, and then the Omnès-Muskhalishvili method. We write

\[
F_\pi(s) = G(s) J(s).
\] (2.3a)

Here \(J \) is expressed in terms of the P-wave \(\pi\pi \) phase shift, \(\delta^1_1 \), as

\[
J(s) = e^{-\delta^1_1(s_0)/\pi} \left(1 - \frac{s}{s_0} \right)^{1 - \delta^1_1(s_0)/\pi} |s_0/s|^{-1} \exp \left\{ \frac{s}{\pi} \int_{4m_\pi^2}^{s_0} ds' \, \frac{\delta^1_1(s')}{s'(s' - s)} \right\}. \] (2.3b)

\(s_0 \) is the energy at which inelasticity starts becoming important (in practice, above the percent level); we will take \(s_0 = 1.1 \text{ GeV}^2 \) in actual calculations.

The exponential factor

\[
\exp \left\{ \frac{s}{\pi} \int_{4m_\pi^2}^{s_0} ds' \, \frac{\delta^1_1(s')}{s'(s' - s)} \right\}
\]

in Eq. (2.3b) guarantees that the phase of \(J(s) \) is equal to \(\delta^1_1(s) \) for \(s \leq s_0 \), hence equal also to the phase of \(F_\pi \). The rest is included so that \(J \) is smooth at \(s = s_0 \), and has the behaviour \(|J(s)| \sim 1/s \) at large energies.
Because of this equality of the phase of \(J(s) \) and the phase of \(F_\pi(s) \) below \(s = s_0 \), it follows that \(G(s) \) will be an analytic function also for \(4m^2 \leq s \leq s_0 \), so in the whole \(s \) plane except in a cut from \(s = s_0 \) to \(+\infty\). If we now make the conformal transformation
\[
z = \frac{1}{2} \frac{\sqrt{s_0 - s} - \sqrt{\sqrt{s_0} - s}}{\sqrt{s_0} + \sqrt{\sqrt{s_0} - s}} \quad (2.4a)
\]
then, as a function of \(z \), \(G \) will be analytic in the unit disk and we can thus write a convergent Taylor series for it. Incorporating the condition \(G(0) = 1 \), that follows from \(F_\pi(0) = 1 \), and undoing the transformation, we have
\[
G(s) = 1 + c_1 \left[\frac{1}{2} \frac{\sqrt{s_0 - s} - \sqrt{\sqrt{s_0} - s}}{\sqrt{s_0} + \sqrt{\sqrt{s_0} - s}} + \frac{1}{2} \right] + c_2 \left[\left(\frac{1}{2} \frac{\sqrt{s_0 - s} - \sqrt{\sqrt{s_0} - s}}{\sqrt{s_0} + \sqrt{\sqrt{s_0} - s}} \right)^2 - \frac{1}{2} \right] + \cdots, \quad (2.4b)
\]
c_1, c_2, \ldots \) free parameters. Actually, only two terms will be necessary to fit the data.

Next, to obtain \(J \), and hence \(F_\pi \), we need a parameterization of \(\delta_1^1(s) \). We can use the well-known effective range theory to write
\[
\cot \delta_1^1(s) = \frac{s^{1/2}}{2k^3}(m^2_\rho - s)\hat{\psi}(s), \quad k = \sqrt{s - 4m^2_\rho} \quad (2.5)
\]
where we have extracted the zero corresponding to the rho resonance. Now the effective range function \(\hat{\psi}(s) \) is analytic in the full \(s \) plane except for a cut for \([-\infty, 0] \) and the inelastic cut \([s_0, +\infty] \). We can profit from this analyticity by making again a conformal transformation into the unit circle, which is now given by
\[
w = \frac{\sqrt{s} - \sqrt{s_0} - s}{\sqrt{s} + \sqrt{s_0} - s} \quad (2.6)
\]
We can therefore expand \(\hat{\psi} \) in a convergent series\(^1\) of powers of \(w \). Undoing the transformation we then have
\[
\delta_1^1(s) = \text{Arc cot} \left\{ \frac{s^{1/2}}{2k^3}(m^2_\rho - s) \left[b_0 + b_1 \frac{\sqrt{s} - \sqrt{s_0} - s}{\sqrt{s} + \sqrt{s_0} - s} + \cdots \right] \right\} \quad (2.7)
\]
We note that \(b_0 = \text{Const.}, b_{2,3} = 0 \) would correspond to a pure Breit–Wigner shape for the rho. By allowing for more terms in the expansion we are taking into account the known distortions of the Breit–Wigner shape due to the influence of the left and the inelastic cuts of \(\hat{\psi} \). For the actual fits, only \(b_0, b_1 \), and \(m_\rho \) are needed as parameters.

The values of the parameters are obtained by fitting experimental data on \(e^+e^- \rightarrow \pi^+\pi^- \), data on \(\tau^+ \rightarrow \nu_\tau \pi^+\pi^0 \) decay, and data on \(F_\pi(s) \) at spacelike \(s \) (ref. 3). We also include in the fit the value of the \(\pi\pi \) P-wave scattering length, that we constrain at
\[
a^1_1 = (38 \pm 3) \times 10^{-3} m^{-3}_\pi \quad (2.8)
\]
consistent with \(\pi\pi \) scattering results as well as with current algebra calculations. For the free parameters of our fit we find
\[
c_1 = 0.23 \pm 0.02, \quad c_2 = -0.15 \pm 0.03; \quad b_0 = 1.062 \pm 0.005, \quad b_1 = 0.25 \pm 0.04; \quad m_\rho = 772.6 \pm 0.5 \text{ MeV} \quad (2.9)
\]
We also find, as byproduct of our fit, the \(\rho^0 \) width as well as the mass and the width of the \(\rho^+ \), the P-wave scattering length, and the mean square radius and second coefficient associated with the form factor of the pion:
\[
\Gamma_\rho^\rho = 147.4 \pm 0.8, \quad a^1_1 = (41 \pm 2) \times 10^{-3} m^{-3}_\pi, \quad \langle r^2_\rho \rangle = 0.435 \pm 0.002 \text{ fm}, \quad c_\pi = 3.60 \pm 0.03 \text{ GeV}^{-4} \quad (2.10a)
\]
and
\[
m_\rho^+ = 773.8 \pm 0.6 \text{ MeV}, \quad \Gamma_\rho^\pi = 147.3 \pm 0.9 \text{ MeV} \quad (2.10b)
\]
The \(\chi^2/\text{d.o.f.} \) of the fit is 246/204 with only statistical errors, but improves to 214/204 when experimental systematic errors are included.

\(^1\) It is to be noted that this series, as well as that in terms of \(z \) above, are quickly convergent in the region of interest for us here, which is mapped in segments contained in \([-0.57, 0.24]\) inside the unit circles; see TY-I for details.
We have not included in this fit the experimental $\pi\pi$ phase shifts (except for the scattering length), as they are known to suffer from uncertainties associated with the method of extraction: $\pi\pi$ scattering cannot be measured directly. However, we have checked that adding them would not alter substantially our fit or parameters. Details of this, and other aspects of the calculation, may be found in TY-I, where also the results of separate fits to e^+e^- and tau decay data are presented.

With the above parameterization of F_π we can evaluate immediately the corresponding contribution to \hat{H}. We find, with self-explanatory notation,

$$-10^5 \times \hat{H}_h^{(0)}(M_2^2; 2\pi; s \leq 0.8 \text{ GeV}^2) = 307.6 \pm 2.2 \pm 2.9. \quad (2.11a)$$

The first error is statistical, the second a combination of systematic (taking into account the correlations among the various sets of experimental data), and theoretical ones. 2 (2.11a) includes the (small) effect of $\omega - \rho$ mixing, evaluated with the standard Gounaris–Sakurai method as in TY-I.

Errors included in this work are divided into statistical and systematic. Evaluation of the statistical errors is standard: the fit procedure (using the program MINUIT) provides the full error (correlation) matrix at the χ^2 minimum. This matrix is used when calculating the corresponding integral for \hat{H}, therefore incorporating automatically all the correlations among the various fit parameters.

In addition, for every energy region, we have considered the errors that stem from experimental systematics, as well as those originating from deficiencies of the theoretical analysis. The experimental systematics covers the errors given by the individual experiments included in the fits. Also, when conflicting sets of data exist, the calculation has been repeated, and the given systematic error bar enlarged to encompass all the possibilities. In general, errors (considered as uncorrelated) have been added in quadrature. The exceptions are explicitly discussed along the text.

2.1.2. The $\pi\pi$ contribution in the region $0.8 \leq s \leq 1.2$ GeV2

For the contribution in the region $0.8 \leq s \leq 1.2$ GeV2 we integrate numerically the experimental data,[4] and get

$$-10^5 \times \hat{H}_h^{(0)}(M_2^2; 2\pi; 0.8 \leq s \leq 1.2 \text{ GeV}^2) = 27.3 \pm 0.3 \pm 0.5. \quad (2.11b)$$

With the result above,

$$-10^5 \times \hat{H}_h^{(0)}(M_2^2; 2\pi; 4m_n^2 \leq s \leq 1.2 \text{ GeV}^2) = 334.9 \pm 4.1 \quad (2.12)$$

where both systematic errors (related to the same normalization uncertainty) have been added coherently.

2.1.2. The 3π, 2K, and other contributions in the region $s \leq 1.2$ GeV2

For the 3π contribution we fit experimental data,[4] with Breit–Wigner formulas (including the correct threshold behaviour) for the ω, ϕ resonances, plus a constant. We have two sets of experimental data; the difference between the evaluations with each of them is included into the systematic error. The χ^2/d.o.f. is 63/60. The contribution to $\hat{H}_h^{(0)}$ is,

$$-10^5 \times \hat{H}_h^{(0)}(M_2^2; 3\pi; 9m_n^2 \leq s \leq 1.2 \text{ GeV}^2) = 39.5 \pm 0.3 \pm 1.5. \quad (2.13)$$

The 2K states are treated in the same manner, fitting simultaneously $e^+e^- \rightarrow K_LK_S$ and $e^+e^- \rightarrow K^+K^-$ data,[4] with the same Breit–Wigner parameters for the ϕ; the χ^2/d.o.f. is 84/82. For details we refer again to TY-I. We get

$$-10^5 \times \hat{H}_h^{(0)}(M_2^2; 2K; s \leq 1.2 \text{ GeV}^2) = 41.6 \pm 0.2 \pm 1.3. \quad (2.14)$$

The contribution of 4π states is evaluated by numerical integration, with the trapezoid rule, of experimental data.[5] The systematic error includes the (estimated) difference between evaluations based on different sets of experimental data. This gives the result,

$$-10^5 \times \hat{H}_h^{(0)}(M_2^2; 4\pi; s \leq 1.2 \text{ GeV}^2) = 2.6 \pm 0.7 \quad (2.15)$$

2 If we had used data on e^+e^-, but not on τ decay, we would have obtained a slightly smaller number and a larger error: $-10^5 \times \hat{H}_h^{(0)}(M_2^2; 2\pi; s \leq 0.8 \text{ GeV}^2) = 306.5 \pm 4.0 \pm 4.3$. We will take (2.11a) to be our best result here.
Finally, 5π, 6π, $\eta\pi$, ... states contribute $(0.3 \pm 0.2) \times 10^{-5}$ in this region. If we add all the contributions with $s \leq 1.2 \text{ GeV}^2$ we find,

$$-10^5 \times \hat{R}_h(0)(M_Z^2; s \leq 1.2 \text{ GeV}^2) = 418.9 \pm 4.6$$ \hspace{2cm} (2.16)

2.2. The energy range $1.2 \text{ GeV}^2 \leq s \leq 2 \text{ GeV}^2$

We have now a numerical evaluation obtained from a fit to inclusive $e^+e^- \rightarrow \text{hadrons}$ experimental data:[6]

$$-10^5 \times \hat{R}_h(0)(M_Z^2; 1.2 \text{ GeV}^2 \leq s \leq 2 \text{ GeV}^2) = 53.1 \pm 5.3.$$ \hspace{2cm} (2.17)

3. The lowest order $-\hat{R}_h(0)$ in the energy range above 2 GeV^2. The full $\hat{R}_h(0)(M_Z^2)$

3.1. QCD calculations

For the QCD calculations we take the following approximation: away from quark thresholds, and for n_f massless quark flavours with charges Q_f, we write

$$R^{(0)}(t) = 3 \sum_f \frac{Q_f^2}{4} \left\{ 1 + \frac{\alpha_s}{\pi} + \left(1.986 - 0.115n_f\right) \left(\frac{\alpha_s}{\pi}\right)^2 \right\} + \left[-6.64 - 1.20n_f - 0.005n_f^2 - 1.240\left(\sum_f Q_f^2\right)^2 \right] \left(\frac{\alpha_s}{\pi}\right)^3 \right\}.$$ \hspace{2cm} (3.1a)

To this one adds mass and nonperturbative corrections. We take into account the quark mass effect for quarks with running mass $\tilde{m}_f(s)$ which correct $R^{(0)}$ by the amount, for each quark,

$$-3Q_t^2\tilde{m}_t^2(s) \left\{ 6 + 28\frac{\alpha_s}{\pi} + \left(294.8 - 12.3n_f\right) \left(\frac{\alpha_s}{\pi}\right)^2 \right\} s^{-1}$$

$$+3Q_t^2\frac{8\tilde{m}_t^2(t)}{7} \left\{ -6\frac{\alpha_s}{\pi} + \frac{23}{4} + \left(\frac{2063}{24} - 10\zeta(3)\right) \frac{\alpha_s}{\pi} \right\} s^{-2}.$$ \hspace{2cm} (3.1b)

Finally, for the condensates we add

$$\frac{2\pi}{3s^2} \left(1 - \frac{11\alpha_s}{18\pi}\right) \frac{\alpha_s G^2}{\pi} \sum_f Q_f^2$$ \hspace{2cm} (3.1c)

and

$$\frac{24\pi^2}{s^2} \left[1 - \frac{23\alpha_s}{72\pi}\right] m_i \langle \bar{\psi}_i \psi_i \rangle.$$ \hspace{2cm} (3.1d)

We neglect the condensates corresponding to heavy quarks (c, b) and express those for u, d, s in terms of $f_u^2m_u^2$, $f_d^2m_d^2$, using the well-known PCAC relations. The condensate contributions are negligible above $s = 3 \text{ GeV}^2$.

Eq. (3.1b) will be used when $\tilde{m}_t^2 \ll s$. In practice this will mean that the contribution of the correction of order \tilde{m}_t^4/s^2 is less than 10^{-5}. Near the threshold for heavy quarks c, b, t, i.e., when $v_i^2(s) \ll 1$ (with $v_i(s) = (1 - 4m_i^2/s)^{1/2}$ the velocity of the quark) we use a nonrelativistic QCD calculation (see refs. 7 for details) in which the contribution of quark i is

$$R^{NR}_i = 3Q_i^2 \left[1 + 2c_0(s)\right] \frac{3 - v_i^2(s)}{2} \frac{\pi C_F \tilde{\alpha}_s}{1 - e^{-\pi C_F \tilde{\alpha}_s/v_i}}.$$ \hspace{2cm} (3.2a)

[6] See ref. 6 for the calculations of the various pieces.
\[\tilde{\alpha}_s(s) = \left[1 + \frac{(93 - 10n_f)/36 + \gamma_E\beta_0/2}{\pi} \right] \alpha_s(s), \]
\[c_0(s) \approx \frac{\beta_0 \alpha_s}{4\pi} \left\{ \log \frac{s^{1/2} - 1 - 2\gamma_E}{m_t C_F \alpha_s} \right\} \]
\[\text{To this we add the leading nonperturbative correction} \]
\[\frac{2\pi \langle \alpha_s G^2 \rangle}{192 m_t^2 v_i^2} \]

and consider the effective threshold to occur when this overcomes the contribution (3.2a).

In the intermediate region between \(v_i^2 \ll 1 \) and \(m_i^2 \ll s \), we use the interpolation given by Schwinger\[8\]
\[R_i^{\text{Schw.}} = 3Q_i^2 v_i(s) \frac{3 - v_i^2(s)}{2} \left[1 + C_F \left(\frac{\pi}{3v_i} + \frac{3 + v_i}{4} \left(\frac{\pi}{2} - \frac{3}{4\pi} \right) \right) \alpha_s \right] \]
\[\text{(3.3)} \]

Note, however, that Schwinger’s interpolation cannot be used for \(v_i \to 0 \) as it underestimates \(R_i \) by a factor of 2.

In the QCD calculations, the error labeled “Cond.” is found by inserting the variation obtained setting quark and gluon condensates to zero, and that labeled \(A \) by varying the QCD parameter. Likewise, we label \(m_i \) to the error obtained varying the mass \(m_i \). If an error is not given it will mean that it falls below the \(10^{-5} \) level.

For the parameter \(A \) we take the recent determinations\[9\] that correspond to the value
\[\alpha_s(M_Z^2) = 0.117 \pm 0.003; \]

to be precise, we have taken (in MeV, and to four loops),
\[A(s \leq m_c^2) = 373 \pm 80; \quad A(m_c^2 \leq s \leq m_b^2) = 283 \pm 50; \quad A(m_b^2 \leq s \leq m_t^2) = 199 \pm 30; \quad A(s \geq m_t) = 126 \pm 20. \]

For the gluon condensate we take \(\langle \alpha_s G^2 \rangle = 0.07 \text{ GeV}^4 \). Finally, for the running quark masses we take
\[\bar{m}_s(1 \text{ GeV}) = 0.188 \text{ GeV}; \quad \bar{m}_c(\bar{m}_c) = 1.44 \text{ GeV}; \quad \bar{m}_b(\bar{m}_b) = 4.3 \text{ GeV}; \quad \bar{m}_t(\bar{m}_t) = 174 \text{ GeV}, \]

and, for the pole masses,
\[m_c = 1.867 \pm 0.20 \text{ GeV}; \quad m_b = 5.022 \pm 0.060 \text{ GeV}; \quad m_t = 174 \pm 5 \text{ GeV}. \]

For the \(c, b \) masses, see refs. 10,11; for the \(t \) quark, ref. 12.

3.2. The regions away from quark thresholds

At the lowest energy region we find
\[-10^5 \times \tilde{H}_h^{(0)}(M_Z^2); 2 \text{ GeV}^2 \leq s \leq 3 \text{ GeV}^2 = 71.1 \pm 0.5 (A) \pm 0.4 (\text{Cond.}); \]
\[\text{(3.4)} \]
the justification of the applicability of QCD in this range is the agreement, within errors, of the QCD calculation with the \(e^+ e^- \to \text{hadrons} \) data, and with the more precise data coming from \(\tau \to \nu_{\tau} + \text{hadrons} \); this may be seen depicted in e.g. the plots of Aleph and Opal data in ref. 3 (more details may be found in TY-I).

Apart from this region \(2 \text{ GeV}^2 \leq s \leq 3 \text{ GeV}^2 \), we can use the perturbative QCD formulas (3.1), (3.3) for the energy regions \(s \geq 3 \text{ GeV}^2 \) provided we stay away from heavy quark thresholds. We will thus get, excluding the \(J/\psi, \psi' \) resonances contributions (to be discussed below):
\[-10^5 \times \tilde{H}_h^{(0)}(M_Z^2); 3 \text{ GeV}^2 \leq s \leq 3.7^2 \text{ GeV}^2 = 259.1 \pm 1.5 (A) \]
\[\text{(3.5a)} \]

(here the contribution of the error induced by the condensates is already negligible). Then,
\[-10^5 \times \tilde{H}_h^{(0)}(M_Z^2); 4.6^2 \text{ GeV}^2 \leq s \leq 10.08^2 \text{ GeV}^2 = 421.3 \pm 0.8 (A). \]
\[\text{(3.5b)} \]
We will separate a region around \(M_Z^2 \), because we take the principal vale of the integral. We have thus,

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; 11.2^2 \text{ GeV}^2 \leq s \leq 20^2 \text{ GeV}^2) = 352.2 \pm 0.9;
\]

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; 20^2 \text{ GeV}^2 \leq s \leq (M_Z - 3 \text{ GeV})^2) = 1668.9 \pm 0.9;
\]

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; (M_Z - 3 \text{ GeV})^2 \leq s \leq (M_Z + 3 \text{ GeV})^2) = 29.2 \pm 0.5;
\]

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; (M_Z + 3 \text{ GeV})^2 \leq s \leq 348^2 \text{ GeV}^2) = -794.5 \pm 0.7.
\]

All the errors are due to the variation of the parameter \(\Lambda \). Finally,

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; 360^2 \text{ GeV}^2 \leq s \leq 400^2 \text{ GeV}^2) = -4.7 \pm 0.3
\]

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; 400^2 \text{ GeV}^2 \leq s \rightarrow \infty) = -20.8 \pm 0.1.
\]

In particular, the total top quark contribution above threshold \((360^2 \text{ GeV}^2 \leq s \rightarrow \infty)\) is -6.5.

We note that part of the ranges contain some of the narrow resonances (\(\psi, \Upsilon \) and \(T \) families). We will add their contributions individually later on. For the whole perturbative QCD contributions we have, adding Eq. (3.4) to Eq. (3.5),

\[
-10^5 \times \tilde{h}_h^{(0)}(M_Z^2; 2 \text{ GeV}^2 \leq s; \text{ pQCD}) = 1982 \pm 7.
\]

Note that we have added the errors linearly as they stem from the same variation in the QCD parameter \(\Lambda \).

3.3. The thresholds regions

We will make two types of calculations. In the first, we take experimental data (when possible, i.e., at the \(c \bar{c} \) and \(b \bar{b} \) thresholds); in the second, we take the contribution of the resonances lying below threshold from experiment, plus a background given by the contribution of the light quarks (evaluated with perturbative QCD, as above) and use nonrelativistic QCD to evaluate the contribution of the quarks whose threshold we are crossing. Of course, for the \(t \bar{t} \) threshold this is all we have.

3.3.1. \(c \bar{c} \): \(J/\psi, \psi' \) and the continuum \(3.7^2 \text{ GeV}^2 \leq s \leq 4.6^2 \text{ GeV}^2 \)

We split this into the contribution of the \(J/\psi, \psi' \), that we calculate in the n.w.a. (narrow width approximation), and the rest. For the first we have,

\[
10^{-5} \times (69.9 \pm 4.5) \quad [J/\psi]
\]

\[
10^{-5} \times (23.6 \pm 2.1) \quad [\psi']
\]

For the remainder we have two possibilities: use a NRQCD calculation (see below) for the heavy quark, which gives

\[
10^{-5} \times (73.2 \pm 0.3 \text{ (A)}) \quad [uds]; \quad \text{(QCD; } 3.7^2 \text{ GeV}^2 \leq s \leq 4.6^2 \text{ GeV}^2)
\]

\[
10^{-5} \times (66 \pm 13 \text{ (m_c)}) \quad [c \bar{c}]. \quad \text{(NRQCD)}
\]

Sum: \(10^{-5} \times (139 \pm 13) \)

Total: \(10^{-5} \times (233 \pm 14) \) (QCD+NRQCD).

Otherwise, we use experimental data above \(3.7^2 \text{ GeV}^2 \):

\[
10^{-5} \times (111.8 \pm 0.6 \pm 5.5) \quad \text{(Exp., BES; } 3.7^2 \text{ GeV}^2 \leq s \leq 4.6^2 \text{ GeV}^2)
\]

Total: \(10^{-5} \times (205.3 \pm 7.4) \) (Exp., BES)

(NRQCD) refers to the nonrelativistic QCD calculation with Eq. (3.2); see TY-I and refs. 7 for details of this type of calculations. BES are the experimental data from ref. 13. The first error for them is the statistical, the second the systematical one.

We give a few more details on the calculation with NRQCD, as it is the model for the other threshold regions. The method (QCD+NRQCD) consists in separating the \(u, d, s \) contribution; the \(c \bar{c} \) one is then
treated as follows. If a resonance is below the channel for open charm production, which is set at \(s = 4m_c^2 \) (with \(c \) the pole mass of the \(c \) quark), then it is considered as a bound state, and treated in the nonrelativistic QCD. Above \(cc \) threshold, one uses nonrelativistic QCD. For our choice of \(c \) quark mass, both \(J/\psi \) and \(\psi' \) should be considered to be below threshold.

The reasonable agreement, within errors, between the \((\text{QCD+NRQCD})\) result for the \(cc \) contributions in the region \(3.7^2 \text{ GeV}^2 \leq s \leq 4.6^2 \text{ GeV}^2 \), \(10^{-5} \times (139 \pm 13) \), and the result obtained using experimental data only, \(10^{-5} \times (112 \pm 6) \), gives one confidence to use the same theoretical method of calculation for the other thresholds where the quality of the experimental data is poorer, or these data are lacking. However, for the \(cc \) region we consider that the results based on experimental data are the best and thus write

\[
-10^5 \times \tilde{H}_h^{(0)}(M_Z^2; 3.7^2 \text{ GeV}^2 \leq s \leq 4.6^2 \text{ GeV}^2) = 205 \pm 7. \tag{3.7}
\]

3.3.2. \(bb \): \(T, T' \) and the continuum \(10.086^2 \text{ GeV}^2 \leq s \leq 11.2^2 \text{ GeV}^2 \)

For the region around \(bb \) threshold we can repeat the calculations as above. First, we add the contribution of the resonances below \(bb \) threshold, that we calculate in the n.w.a.: \[10^{-5} \times (5.8 \pm 0.2) \] \(\big[T \big] \)
\[10^{-5} \times (2.1 \pm 0.1) \] \(\big[T' \big] \)

For the continuum we find, for a \(b \) quark pole mass of \(m_b = 5.022 \pm 0.060 \text{ GeV} \), \[10^{-5} \times (57.9 \pm 0.1 (\text{A})) \] \(\big[udsc \big]; \; \big(\text{QCD; } 10.086^2 \text{ GeV}^2 \leq s \leq 11.2^2 \text{ GeV}^2 \big) \)
\[10^{-5} \times (8.7 \pm 0.6 (m_b)) \] \(\big[bb \big]. \; \big(\text{NRQCD} \big) \)

Sum : \(10^{-5} \times (66.6 \pm 0.6) \)

If we had estimated the \(bb \) contribution saturating with the resonances \(T''', \ldots T^V \), with electronic widths as given in ref. 14 we would have got \(5.2 \pm 1.2 \) instead of the value \(8.7 \pm 0.6 \) that we found with the NRQCD calculation. We choose this last as our preferred value and write thus

\[
-10^5 \times \tilde{H}_h^{(0)}(M_Z^2; 10.086^2 \text{ GeV}^2 \leq s \leq 11.2^2 \text{ GeV}^2) = 75 \pm 1. \tag{3.8}
\]

3.3.3. \(tt \) threshold: \(T \) bound states and the continuum \(348^2 \text{ GeV}^2 \leq s \leq 360^2 \text{ GeV}^2 \)

The bound states produce a negligible contribution; for the ground state, a second order QCD calculation\[11\] gives \(\Gamma(T \rightarrow e^+e^-) = 12.5 \pm 1.5 \text{ keV} \) and thus the contribution to \(-10^5 \times \tilde{H}_h^{(0)} \) is of \(-0.11\). For the threshold region, a NRQCD calculation gives, for the \(t \) quark contribution, \(-0.47\), while the \(udscb \) one is \(-1.41\). (Note that in this calculation we are neglecting electroweak interactions, so we treat the \(t \) quark as if it was stable).

All together, we find

\[
-10^5 \times \tilde{H}_h^{(0)}(M_Z^2; t \text{ thresh.}) = -2. \tag{3.9}
\]

The error is negligible.

The total contribution of the threshold regions is thus

\[
-10^5 \times \tilde{H}_h^{(0)}(M_Z^2; c, b, t \text{ thresh's.}) = 278 \pm 7. \tag{3.10}
\]

3.4. The lowest order \(\tilde{H}_h^{(0)}(M_Z^2) \)

Adding all the contributions to \(\tilde{H}_h^{(0)}(M_Z^2) \) we get

\[
10^5 \times \Delta_{\text{had}}^{(0)}(M_Z^2) = -10^5 \times \tilde{H}_h^{(0)}(M_Z^2) = 2732 \pm 12, \tag{3.11}
\]

or, excluding the top quark contribution,

\[
10^5 \times \Delta_{\text{had}}^{(0)}(M_Z^2) = 2739 \pm 12. \tag{3.12}
\]
4. The radiative corrections, $-\hat{\Pi}_h^{(1)}$; the full $-\hat{\Pi}_h^{(0+1)}$; $\alpha\text{Q.E.D.}(M_Z^2)$

4.1. $-\hat{\Pi}_h^{(1)}$

We have next the contribution of intermediate states containing a photon. At low energy ($s \leq 1.2 \text{ GeV}^2$) we evaluate them individually, and at high energy ($s \geq 1.2 \text{ GeV}^2$) with the parton model. For the second we have a contribution equal to the zero order one (for which we take the result of the previous section) multiplied by the factor

$$\frac{\sum_f Q_f^4}{\sum_f Q_f^2} \frac{3\alpha}{4\pi}.$$

This gives

$$-10^5 \times \hat{\Pi}_h^{(1)}(M_Z; s \geq 1.2 \text{ GeV}^2) = 1.4 \pm 0.1,$$

the error depending on what one does in the quark thresholds, especially around the narrow resonances (J/π, ψ', Υ, Υ'). For the low energy region we repeat, with obvious changes, the analysis of TY-I. Only the processes $\pi^+\pi^-\gamma$, $\pi^0\gamma$ and $\eta\gamma$ produce effects at the 10^{-5} level (respectively, 3.4 ± 0.8, 2.9 ± 0.2 and 0.8 ± 0.1, in units of 10^{-5}). The first is evaluated in the narrow width approximation, or with a detailed calculation using theoretical formulas that relate $\pi\pi\gamma$ to $\pi\pi$, and taking into account experimental cuts; the details may be found in TY-I. Both methods give essentially the same result. The other two are evaluated in the narrow width approximation, dominated by the $\rho \rightarrow \pi^0\gamma$, $\omega \rightarrow \pi^0\gamma$ and $\phi \rightarrow \eta\gamma$ contributions. In addition, the low energy ($s < 0.7^2 \text{ GeV}^2$) $\pi^0\gamma$ is calculated with a phenomenological coupling $\pi^0\gamma\gamma$, adjusted to reproduce the decay $\pi^0 \rightarrow \gamma\gamma$. Again, the details are given in TY-I.

Adding all of this to (4.1) we find

$$-10^5 \times \hat{\Pi}_h^{(1)}(M_Z^2) = 8.5 \pm 0.9.$$

We summarize our results in Table 1:
Summary of contributions to $\Delta_{\text{had}}\alpha = -\tilde{\alpha}_h$. “B.–W. + const.” means a Breit–Wigner fit, including the correct phase space factors, plus a constant; note that only for the four narrow resonances $J/\psi, \psi'; \Upsilon, \Upsilon'$ we use the n.w.a. The errors are uncorrelated except those for QCD calculations (that have to be added linearly) and those for the 2π states (see text). For the details of the final states $\gamma^* +$ hadrons we refer to TY-I.

4.2. The full $\Delta_{\text{had}}\alpha$; the QED coupling on the Z; discussion

Adding then (4.2) to the lowest order expression we get the final result

$$10^5 \times \Delta_{\text{had}}\alpha(M_Z^2) = -10^5 \times \left[\tilde{\alpha}_h^{(0)}(M_Z^2) + \tilde{\alpha}_h^{(1)}(M_Z^2) \right] = 2740 \pm 12,$$ \hspace{1cm} (4.3)

or, excluding the top quark contribution,

$$10^5 \times \Delta_{\text{had}}\alpha^{(5)}(M_Z^2) = 2747 \pm 12.$$ \hspace{1cm} (4.4)

The pure QED corrections amount to (see, e.g., ref. 15)

$$-10^5 \times \tilde{\alpha}_{\text{QED}}(M_Z^2) = 3149.7687.$$ \hspace{1cm} (4.6)

Adding this to (4.3) and using (1.1) we get the value for the running electromagnetic coupling

$$\tilde{\alpha}_{\text{Q.E.D.}}(M_Z^2) = \frac{1}{128965 \pm 0.017}.$$ \hspace{1cm} (4.7)
When comparing with other determinations we will restrict ourselves to those performed after the data from Novosibirsk\cite{3,4} and Beijing\cite{13} have become available; these experiments increase the set of data by almost one order of magnitude, and have much better precision than the older ones. Thus, one may consider older determinations as superseded. So we compare our results with the determinations of refs. 15,16. We have,

$$10^{5} \times \Delta_{\text{had}} \alpha^{(5)}(M_{Z}^{2}) = \begin{cases} 2743 \pm 19 / 2765 \pm 21 , & \text{(MOR)} \\ 2761 \pm 36 , & \text{(BP)} \\ 2790 \pm 40 , & \text{(J)} \end{cases} \quad (4.5)$$

In the MOR determination, the two values depend on the method of calculation used. As a general rule, comparing any two of the results quoted above, the largest reason for a reduced error bar is related to a wider use of perturbative QCD. For instance, the analysis of MOR uses perturbative QCD in the regions $2.8 \text{ GeV}^{2} \leq s \leq 3.7^{2} \text{ GeV}^{2}$, and $s \geq 5^{2} \text{ GeV}^{2}$. We have used perturbative QCD in the region $2 \text{ GeV}^{2} \leq s \leq 3.7^{2} \text{ GeV}^{2}$, justified in view of its agreement with the precise new experimental data (as discussed in the text), and the regions above the $\bar{c}c$ and $\bar{b}b$ thresholds. Here, the use of the calculations incorporating the exact effect of the quark masses has allowed to get a precise determination for $4.6^{2} \text{ GeV}^{2} \leq s \leq 5^{2} \text{ GeV}^{2}$, where the experimental data are not very precise, but (again) perfectly consistent with QCD.

In conclusion, we have performed a detailed evaluation of the hadronic contributions to the running electromagnetic coupling, obtaining a substantially reduced error bar. The ingredients are the following: First, we use Novosibirsk ($e^{+}e^{-}$) and LEP (τ) data to fit the 2π contribution. Invoking the analyticity and unitarity properties of the pion form factor allows to include spacelike data also, improving the compatibility of the $e^{+}e^{-}$ data with the results from τ decay, and reducing the corresponding error. Second, the low energy 3π and $2K$ states have been considered individually, after the latest Novosibirsk data on the ω and ϕ resonances. We perform a full-fledged fit, including the exact threshold factors. Third, we have used perturbative QCD in the region $s \geq 2 \text{ GeV}^{2}$ (away from quark thresholds). In particular, the recent LEP $\tau \rightarrow \nu_{\tau} + \text{hadrons}$, and BES $e^{+}e^{-} \rightarrow \text{hadrons}$ data justify the QCD result for $2 \text{ GeV}^{2} \leq s \leq 3^{2} \text{ GeV}^{2}$, implying the largest part of the error reduction. We also use the Beijing\cite{13} data, thus gaining precision, for the contribution in the energy range 3.7^{2} GeV^{2} to 4.6^{2} GeV^{2}. Last but not least, the next order radiative corrections have been taken into account. This is essential for our calculation as the radiative contribution is indeed of the same order of the final error bar.
We thank M. Grünewald for valuable discussions. The financial support of CICYT is gratefully acknowledged.

References

1.- J. F. DE TROCÓNIZ and F. J. YNDURÁIN, FTUAM 01-08 (hep-ph/0106023).
2.- For analyticity properties, and for ππ scattering, see B. R. MARTIN, D. MORGAN and G. SHAW, Pion-Pion Interactions in particle Physics, Academic Press, New York 1976. This text also gives information on the Omnès-Muskhelishvili method for which more details may be found in N. I. MUSKHELISHVILI, Singular Integral Equations, Nordhoof, 1958. The effective range theory can be seen very clearly explained in H. PILKÜHN, The interaction of hadrons, North-Holland, Amsterdam, 1967.

3.- e⁺e⁻ data, p region: L. M. BARKOV et al., Nucl. Phys., B256, 365 (1985); R. R. AKHMETSHIN et al., Budker INP 99-10 (hep-ex/9904025). π decay data, Aleph: R. BARATE et al., Z.Phys., C76, 15 (1997), Eur.Phys.J. C4 (1998) 409; Opal: K. ACKERSTAFF et al., Eur.Phys.J., C7, 571 (1999). Data on Fν(t) at spacelike t: (NA4) S. R. AMENDOLIA et al., Nucl. Phys., B277, 168 (1986).

4.- e⁺e⁻ data, ω and φ region, KK and 3r: R. R. AKHMETSHIN et al., Phys. Letters, B466, 385 and 392 (1999); ibid., B434 (1998) 426 and ibid., B476 (2000) 33. M. N. ACHASOV et al., Phys. Rev., D63, 072002 (2001); Phys. Letters B462 (1999) 365 and Preprint Budker INP 98-65, 1998 (hep-ex/9809016), φ → 2ν: M. N. ACHASOV et al., Phys. Letters, B474, 188 (2000).

5.- KK: P. M. IVANOV et al., Phys. Letters, 107B, 297 (1981); 3π: A. CORDIER et al., Nucl. Phys., B172, 13 (1980); 4π and more: G. COSME et al., Nucl. Phys., B152, 215 (1979). For a review, see S. DOLINSKY et al., Phys. Reports, C202, 99 (1991), and work quoted there. All these references give results for energies below $t = 2 \text{ GeV}^2$.

6.- K. G. CHERYKIN, A. L. KATAEV and F. V. TKACHOV, Phys. Letters, B85, 277 (1979); M. DINE and J. SAPIRSTEIN, Phys. Rev. Letters, 43, 277 (1979); W. CELMATER and R. GONSALVES, Phys. Rev. Letters, 44, 560 (1979) $(O(\alpha^2))$. S. G. GORISHNY, A. L. KATAEV and S. A. LARIN, Phys. Letters, B259, 144 (1991) $(O(\alpha^2))$. For the $O(m^2)$, $O(m^3)$ corrections, see K. G. CHERYKIN and J. H. KÜHN, Phys. Letters, B248, 359 (1990); E. BRAATEN, S. NARISON and A. PICH, Nucl. Phys., B373, 581 (1992) and work quoted there.

7.- K. ADEL and F. J. YNDURÁIN, Phys. Rev., 92, 113 (1998); ADEL and F. J. YNDURÁIN, Rev. Acad. Ciencias (Esp.), 92, 113 (1998) (hep-ph/9509378). For a clear exposition of NRQCD calculations see N. BRAMBILLA, A. PINEDA, J. SOTO and A. VAIRO, Nucl. Phys., B566, 275 (2000).

8.- J. SCHWINGER, Particles, Sources and Fields, Vol. 2. Addison-Wesley, 1973.

9.- S. BETHKE, J. Phys., G26, R27 (2000); J. SANTIAGO and F. J. YNDURÁIN, FTUAM 01-01, 2001 (hep-ph/0102247). D. STROM, “Electroweak measurements on the Z resonance”, Talk presented at the 5th Int. Symposium on Radiative Corrections, RadCor2000, Carmel, Ca., September 2000.

10.- S. TITTARD and F. J. YNDURÁIN, Phys. Rev., D49, 6007 (1994), to one loop; A. PINEDA and F. J. YNDURÁIN, Phys. Rev., D58, 094022 (1998) and ibid., D61, 077505 (2000), to two loops.

11.- F. J. YNDURÁIN, hep-ph/0007332, to be published in the Proc. E. Schrödinger Institute Meeting on Confinement. Vienna, 2000.

12.- B. ABBOTT et al., Phys. Rev., D58, 052001 (1998); T. AFFOLDER et al., Phys. Rev., D64, 032003 (2001).

13.- BES: J. Z. BAI et al. hep-ex/0102003.

14.- D. BESSON et al. (CLEO), Phys. Rev. Letters, 54, 381 (1985); Particle Data Group: D. E. GROOM et al., Eur. Phys. J., C15, 1 (2000).

15.- (EJ): S. EIDELMAN and F. JGERLEHNER, Z. Phys., C67, 585 (1995); updated in (J): F. JGERLEHNER, DESY 01-028 (hep-ph/0104304), Symposium in honor of A. Sirlin, New York University, 2000.

16.- (MOR): A. D. MARTIN, J. OUTHWAITE and M. G. RYSKIN, Phys. Letters, B492, 69 (2000), Eur. Phys. J. C19 (2001) 681; (BP): H. BURKHARDT and B. PIETZKY, LAPP-EXP 2001-03 (2001).