A multi-marker approach for improved glycemic management in diabetes mellitus

Abstract

Tight glycemic management is recognized as the guiding principle when treating diabetes mellitus, but decisions about medical intervention based on glucose measurements alone suffice but are inadequate in all circumstances. Continuous and multi-marker monitoring of other metabolic biomarkers such as insulin and glucagon are vital to providing the physician with a more comprehensive view of the condition. While there are many preexisting continuous glucose monitoring systems and ongoing developments toward an artificial pancreas, there is a lack of molecular recognition elements capable of continuous detection of insulin and glucagon. As researchers are developing appropriate molecular recognition elements for such, a parallel approach on developing disposable, discrete multi-marker sensors can occur concurrently. Using multi-sensor arrays and electrochemical impedance spectroscopy, a glucose-insulin-glucagon test strip can be developed to provide a more accurate and complete picture of glycemic states, successfully achieving tighter glycemic management.

Keywords: diabetes mellitus, multi-marker, continuous monitoring, glycemic control, electrochemical impedance spectroscopy

Abbreviations: SMBG, self-monitoring of blood glucose; CGMS, continuous glucose monitoring systems; APS, artificial pancreas systems; MREs, molecular recognition elements; EIS, electrochemical impedance spectroscopy

Introduction

Tight glycemic control has been the goal of care for people with diabetes’ as achieving near-normal glucose levels has been shown to reduce the risk of microvascular disease.4,5 Traditionally, people with diabetes are instructed to check their glucose consistently using self-monitoring of blood glucose (SMBG) technologies and make appropriate modifications to their medical intervention according to experience, empirically derived algorithms, and lifestyle. However, there are many challenges throughout the process including an increased risk of hypoglycemia when attempting to reach tighter glucose control. In addition, there is also a lack of ability to effectively account for multiple simultaneous life-style choices (e.g., exercise, alcohol ingestion, accurate carbohydrate counting) when deciding insulin boluses. These challenges all contribute to variability and unpredictability of daily glucose control. Unfortunately, sporadic measurement of glucose alone is insufficient to reach the goal of tight glycemic control, as it is merely a biomarker that reflects a series of complicated metabolism process. Given the discussed limitations there is a continued effort to improve glycemic management. Continuous monitoring and multi-marker detection are instrumental in achieving better management of the condition.

Continuous monitoring, specifically, continuous glucose monitoring systems (CGMS) have been commercially available for years, and are commonly used in conjunction with subcutaneous insulin infusion devices (aka “insulin pumps”) for improved disease management. Some systems also have the capability for automatic threshold suspend features to pause insulin delivery to avoid hypoglycemia. Although these technologies have provided assistance to people with diabetes in making medical dosage decisions, they are still “open loop” devices, which require the user to make their own decisions about glycemic management. Fortunately, “closed-loop” insulin delivery devices - so called artificial pancreas systems (APS)- are currently being introduced to further automate the glycemic management process (e.g. Medtronic’s Guardian 3). However, the fundamental problem of insulin delivery based solely on glucose levels remains unsolved. Levels of other markers such as glucagon, endogenous insulin and beta hydroxybuterate are not being consulted prior to insulin delivery, yet are vital physiological factors that affect the glucose metabolism. To achieve a truly closed-loop system capable of tight glycemic control, a continuous multi-marker approach is inevitable.

Normal glucose homeostasis is determined by interactions between glucose, insulin and glucagon. However, current technologies only rely on glucose data to make therapeutic decisions. Insulin bolus calculators do not account for the total amount of insulin in the body, but only how much insulin has been delivered. Insulin infusion has been recognized as a frequent source of hyperglycemia, accounting for 61.9% of the reported incidents. Moreover, the complex algorithms that drive APS insulin delivery depend only on glucose as well, having a 40% chance of both insulin overdosing and underdosing.13 On average, the insulin infusion set fails after 5.3 days with a false positive rate of 0.3/day. The CGM sensors themselves, also contribute to mismanagement. The most common source of error for CGM is pressure-induced sensor attenuation (PISA). While PISA can be detected at a 88.34% accuracy by the included algorithm, it still presents a significant source of error for the glucose sensor.14 CGM’s accuracy can also be disturbed by meals and exercising.15 Besides mechanical or electrochemical failures of the AP, all of these potential errors are the result of relying solely on glucose detection. The ability to measure insulin, glucagon and glucose simultaneously would enhance current insulin delivery devices by providing a direct measurement of existing hormone levels on board, while diverting the risk of an algorithm built solely on glucose. Individual insulin-glucagon-glucose dose-response relationships could be determined, permitting the inclusion of algorithms to measure all three parameters for optimal glucose control. In addition, combining all three sensor capabilities into a single platform with eventual continuous monitoring
A multi-marker approach for improved glycemic management in diabetes mellitus

The multi-marker approach described in this document uses a combination of glucose, insulin, and glucagon detection to provide a more comprehensive understanding of metabolic processes in diabetes. This approach allows for a more accurate assessment of glycemic control, as it captures the interplay between these three major biomarkers. By employing electrochemical sensors, the authors highlight the potential for this method to offer improved glycemic management compared to traditional single-marker approaches. The technical advancements discussed within the document provide promise toward a multi-sensor array approach or single electrode EIS approach. The current limitations include the genetic modification of MREs to enable their functionality on a continuous platform, and the development of proper MREs capable of irreversible binding to the respective analyte. Nevertheless, the multi-marker approach has shown promise in achieving improved glycemic management.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

1. Standards of Medical Care in diabetes-2010. American Diabetes Association. Diabetes Care. 2010;33(Suppl 1):S11–S61.
2. Aiello LP, DCCT/EDIC research group. Diabetic Retinopathy and Other Ocular Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care. 2014;37(1):17–23.
3. De Boer IH, DCCT/EDIC Research Group. Kidney Disease and Related Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care. 2014;37(1):24–30.
4. Martin CL, Albers JW, Pop-Busui R, et al. Neuropathy and Related Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care. 2014;37(1):31–38.
5. Colmegna P, Peña RS. Analysis of Three T1DM Simulation Models for Evaluating Robust Closed-Loop Controllers. Comput Methods Programs Biomed. 2014;113(1):371–382.
6. Dalla Man C, Micheletto F, Lv D, et al. The Uva/Padova Type 1 Diabetes Simulator New Features. J Diabetes Sci Technol. 2014;8(1):26–34.
7. Percival M, Wang Y, Grosman B, et al. Development of a Multi-Parametric Model Predictive Control Algorithm for Insulin Delivery in Type 1 Diabetes Mellitus Using Clinical Parameters. J Process Control. 2011;21(3):391–404.
8. Schiavon M, Dalla Man C, Kudva YC, et al. The Artificial Pancreas on the Threshold of Ambulatory Use: Setting the Stage for a Critical Transition: In Silico Optimization of Basal Insulin Infusion Rate during Exercise: Implication for Artificial Pancreas. J Diabetes Sci Technol. 2013;7(6):1461–1469.
9. Van Heusden K, Dassau E, Zisser HC, et al. Control- Relevant Models for Glucose Control Using a Priori Patient Characteristics. IEEE Trans Biomed Eng. 2012;59(7):1839–1849.
10. Turksoy K, Samadi S, Feng J, et al. Meal Detection in Patients With Type 1 Diabetes: A New Module for the Multivariable Adaptive Artificial Pancreas Control System. IEEE J Biomed Health Inform. 2016;20(1):47–54.
11. Cope JU, Morrison AE, Samuels-Reid J. Adolescent Use of Insulin and Patient-Controlled Analgesia Pump Technology: A 10-Year Food and Drug Administration Retrospective Study of Adverse Events. Pediatrics. 2008;121(5):e1133–e1138.
12. Hovorka R, Canonico V, Chassin LJ, et al. Nonlinear Model Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes. Physiol Meas. 2004;25(4):905–920.

Citation: Lin C-E, Honikel MM, Labelle JT. A multi-marker approach for improved glycemic management in diabetes mellitus. J Diabetes Metab Disord Control. 2017;4(5):141–143. DOI: 10.15406/jdmcd.2017.04.00124
13. Cameron F, Bequette B, Wilson D, et al. Detecting Insulin Infusion Set Failure. *Adv Technol Treat Diabetes*. 2012.

14. Baysal N, Cameron F, Buckingham BA, et al. Detecting Sensor and Insulin Infusion Set Anomalies in an Artificial Pancreas. *In IEEE*. 2013:2929–2933.

15. Del Favero S, Monaro M, Facchinetti A, et al. Real-Time Detection of Glucose Sensor and Insulin Pump Faults in an Artificial Pancreas. *IFAC Proc*. 2014;47(3):1941–1946.

16. Gerasimov JY, Schaefer CS, Yang W, et al. Development of an Electrochemical Insulin Sensor Based on the Insulin-Linked Polymorphic region. *Biosens Bioelectrochem*. 2013;42:62–68.

17. Xu M, Luo X, Davis JJ. The Label Free Picomolar Detection of Insulin in Blood Serum. *Biosens Bioelectrochem*. 2013;59(1):21–25.

18. Luo X, Xu M, Freeman C, et al. Ultrasensitive Label Free Electrical Detection of Insulin in Neat Blood Serum. *Anal Chem*. 2013;85(8):4129–4134.

19. Malkoc A, Probst D, Lin C, et al. Enhancing Glycemic Control via Detection of Insulin Using Electrochemical Impedance Spectroscopy. *J Diabetes Sci Technol*. 2017;1932296817699639.

20. Wang J, Zhang X. Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin. *Anal Chem*. 2001;73(4):844–847.

21. Karra S, Griffith WP, Kennedy RT, et al. Hormone Glucagon: Electrooxidation and Determination at Carbon Nanotubes. *Analyst*. 2016;141(8):2405–2411.

22. Yoshida W, Mochizuki E, Takase M, et al. Selection of DNA Aptamers against Insulin and Construction of an Aptameric Enzyme Subunit for Insulin Sensing. *Biosens Bioelectrochem*. 2009;24(5):1116–1120.

23. Yi L, Wang X, Bethge L, et al. Noncompetitive Affinity Assays of Glucagon and Amylin Using Mirror-Image Aptamers as Affinity Probes. *Analyst*. 2016;141(6):1939–1946.

24. Bisker G, Iverson NM, Ahn J, et al. A Pharmacokinetic Model of a Tissue Implantable Insulin Sensor. *Adv Health Mater*. 2015;4(1):87–97.

25. Adamson TL, Eusebio FA, Cook CB, et al. The Promise of Electrochemical Impedance Spectroscopy as Novel Technology for the Management of Patients with Diabetes Mellitus. *Analyst*. 2012;137(18):4179–4187.

26. Lin C, Ryder L, Probst D, et al. Feasibility in the Development of a Multi-Marker Detection Platform. *Biosens Bioelectrochem*. 2016.