Cutting Edge: Interactions Through the IL-10 Receptor Regulate Autoimmune Diabetes

Jenny M. Phillips, Nicole M. Parish, Martin Drage and Anne Cooke

J Immunol 2001; 167:6087-6091; doi: 10.4049/jimmunol.167.11.6087

http://www.jimmunol.org/content/167/11/6087

References

This article cites 35 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/167/11/6087.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

Cutting Edge: Interactions Through the IL-10 Receptor Regulate Autoimmune Diabetes

Jenny M. Phillips, Nicole M. Parish, Martin Drage, and Anne Cooke

BDC2.5/nonobese diabetic (NOD) transgenic mice express a TCR from a diabetogenic T cell clone yet do not spontaneously develop diabetes at high incidence. Evidence exists showing that in the absence of endogenous TCR α-chain rearrangements this transgenic mouse spontaneously develops diabetes and that CTLA-4 negatively regulates diabetes onset. This strongly suggests that onset of diabetes in BDC2.5/NOD mice is governed by T cell regulation. We addressed the mechanism of immune regulation in BDC2.5/NOD mice. We find that activated spleen cells from young, but not old, BDC2.5/NOD mice are able to transfer diabetes to NOD-scid recipients. We have used anti-IL-10R to show that the failure of splenocytes from older mice to transfer diabetes is due to dominant regulation. We furthermore found that diabetes developed following anti-IL-10R treatment of 6-wk old BDC2.5/NOD mice indicating that endogenous IL-10 plays a key role in the regulation of diabetes onset in this transgenic mouse. The Journal of Immunology, 2001, 167: 6087–6091.

For many years it has been suggested that autoimmune disease may result in part from a deficit in regulatory T cells (1). Considerable evidence has been amassed recently to support that hypothesis. Several groups have shown that autoimmunity may develop following induction of lymphopenia (2–4) and the resultant pathology can be prevented by restoration of a subpopulation of CD4+ T cells (5–8). The identification of this subpopulation, which is able to modulate the development of autoimmune pathology, has led to the proposal that autoimmune disease may result from some deficit in these regulatory cells. A variety of markers have been used to define these CD4+ T cells which, in the mouse, include CTLA-4 and CD25 (9).

The nonobese diabetic (NOD)3 mouse provides an excellent model of human insulin-dependent diabetes mellitus (IDDM) (10). In this mouse model, insulin develops from around 12 wk of age. The BDC2.5 TCR-transgenic mouse (11) expresses the rearranged TCR α- and β-chain genes (Vα1/Vβ4) of a diabetogenic CD4+ T cell clone, BDC2.5 (12). When the BDC2.5 NOD TCR-transgenic line is made homozygous for scid, Caβ−, or RAG−, the mice spontaneously develop IDDM at around 3–5 wk of age, whereas on a RAG− background the incidence is very low (13, 14). This has led to the suggestion that T cells expressing endogenously rearranged TCR α genes might be playing a role in the prevention of diabetes in the BDC2.5 TCR-transgenic mouse as has been proposed for experimental autoimmune encephalomyelitis in myelin basic protein-specific TCR-transgenic mice (15). We have conducted experiments to determine whether there is any evidence in the BDC2.5 TCR-transgenic mouse for active suppression of diabetogenic T cells. It had previously been shown that although this transgenic mouse does not itself develop diabetes at high incidence (and then mostly at an advanced age), it was possible to transfer disease reproducibly into NOD-scid recipients using Con A-activated spleen cells from the BDC2.5 transgenic mouse (14). This shows that potentially diabetogenic effector cells must be present in the nondiabetic BDC2.5 transgenic mouse spleen. The possibility that such potentially diabetogenic T cells are held in check by regulatory cells has been inferred from studies showing that anti-CTLA-4 Abs can induce IDDM in very young BDC2.5 TCR-transgenic mice (16). We have used the Con A activation and transfer system to identify mechanisms contributing to regulation of these diabetogenic T cells. We found that disease transfer reproducibly occurred only when donor cells were taken from young mice and that the ability to transfer disease diminished with the age of the mouse. Our studies show diabetogenic cells remain in the spleen cell pool derived from older mice, as treatment of NOD-scid recipients with Ab to the IL-10R permitted disease transfer by these cells. A key role for the IL-10R in modulating IDDM was further shown by the ability of IL-10R-specific Ab to bypass the requirement for Con A activation of donor splenocytes for disease transfer and furthermore directly promote the onset of IDDM in BDC2.5 TCR-transgenic mice.

Materials and Methods

Mice

NOD, NOD-scid, BDC2.5/NOD, and BDC2.5/NOD-scid transgenic mice were maintained in the Biological Services facility of the Department of Pathology (University of Cambridge, Cambridge, U.K.). NOD-scid mice or transgenic mice crossed on to the NOD-scid background were maintained in microisolation cages with filtered air.

Abs and reagents

The hybridomas 1B1.3a (anti-IL-10R) and GL113 (isotype control) (rat IgG1) were obtained from Dr. K. Moore (DNAX, Palo Alto, CA). Ab was harvested from culture supernatants by ammonium sulfate precipitation.
followed by dialysis against PBS. Total protein was estimated from the OD_280. Endotoxin levels were <1 EU/mg protein.

Other Abs were obtained from BD PharMingen (Oxford, U.K.) and reagents were obtained from Sigma-Aldrich (Poole, Dorset, U.K.).

In vitro culture of splenocytes

Single cell suspensions of BDC2.5/NOD mouse spleens were cultured under standard conditions for varying times up to 72 h in the presence of Con A (5 μg/ml) or islets. For cytokine ELISAs and FACS staining anti-IL-10R or isotype control Ab preparations were added (30 μg/ml). For transfer into recipient mice, residual Con A was removed by addition of methyl-α-Dmannopyranoside (10 mg/ml), and the cells were washed three times.

CD25⁺ cell depletion

Splenocytes were depleted of CD25⁺ cells by incubating with biotinylated anti-CD25 Ab (BD PharMingen) followed by streptavidin Dynabeads (Dynal Biotech, Wirral, U.K.) and passage over a magnet (×2).

Islet isolation

Male NOD mice were sacrificed and the common bile duct was infused in situ with collagenase. The pancreas was then removed and digested at 37°C. The islets were enriched on a Eurocollins-Ficoll gradient and washed in HBSS containing BSA, and islets were handpicked using a siliconized micropipette.

ELISA for IL-10, IL-12 and IFN-γ

Sera or supernatants were assessed for the presence of cytokines using a capture ELISA (Optia anti-mouse cytokine kits; BD PharMingen). The concentration of cytokine was calculated from graphs for IL-10, IL-12 and IFN-γ standard preparations.

Flow cytometric analysis

Cells were stained by standard methods using rat anti-mouse reagents CD4-FITC, CD25-PE, and CD69-PE (BD PharMingen) and analyzed on a BD Biosciences FACScan instrument (BD Biosciences, Oxford, U.K.).

In vivo Ab treatment

In the transfer experiments recipients were treated with 0.5 mg of the Ab preparation (or isotype control) i.p. on days 0, 1, 4, and 7. BDC2.5/NOD mice were given the same dose i.p. on days 0, 5, and 14.

Assessment of diabetes

Recipient mice were tested for the presence of urinary glucose using Diastix (Bayer, Newbury, U.K.). Blood glucose was measured using an Esprit glucometer and glucose test strips (Bayer). Mice were considered diabetic if they had urinary glucose and blood glucose concentrations of 12 mM or above on two occasions.

Histological examination

Pancreases were processed for wax histology. Five-micrometer sections were taken at eight levels (200 μm apart) and stained with H&E. Total islets per section were counted and the degree of cellular infiltration; light gray bar, up to 10% in infiltration; middle gray bar, 10–25% infiltration; dark gray bar, 25–50% infiltration; gray bar, 50–75% infiltration; dark gray bar, >75% infiltration.

Results and Discussion

The transfer of type 1 diabetes by activated spleen cells from BDC2.5 TCR-transgenic NOD mice diminishes with age

Female NOD mice usually develop IDDM from 12 wk of age, achieving an incidence of around 80% at 30 wk of age. However, diabetes does not develop in BDC2.5 TCR-transgenic mice at such high incidence (13). This is not due to an absence of potentially diabetogenic effector cells, because Con A-activated splenocytes from 6-wk old BDC2.5 TCR-transgenic mice are able to transfer diabetes to NOD-scid recipients (Ref. 14 and Fig. 1A). We find that this ability to transfer IIDDM decreases with the age of the donor mouse. Diabetes is transferred within 14 days by splenocytes from donor mice of less than 10 wk of age, whereas disease transfer is less reliable when activated splenocytes from older donors are used and the time to disease onset is extended (Fig. 1A). The impaired ability of splenocytes from older mice to transfer disease is not due to their failure to traffic to the islets, as splenocytes from older BDC2.5/NOD mice caused a significant degree of insulitis in NOD-scid recipients (Fig. 1, B and C).

CD25⁺ cells are not responsible for the lack of disease transfer by splenocytes from older BDC2.5/NOD mice

As it was possible that there was an increased ratio of regulatory to effector cells in the spleens of older mice, we looked for evidence for regulatory cell-mediated inhibition of disease transfer. It has been shown that CD4⁺CD25⁺ T cells are able to down-regulate autoreactive or inflammatory responses (17–21). CD4⁺CD25⁺ T cells are present only in very low numbers (0.9%) in spleens of BDC2.5 NOD-scid mice, whereas they are clearly present in the spleens of NOD and BDC2.5 TCR-transgenic mice (10.2% and 5.6% respectively). All BDC2.5 NOD-scid mice develop disease when 3–5 wk old, whereas BDC2.5 TCR NOD transgenic mice do not develop diabetes at a high incidence. To determine whether the presence of CD4⁺CD25⁺ T cells contributed to this low incidence of diabetes we depleted CD25⁺ cells from the splenocyte pools of older transgenic mice before Con A activation and examined their ability to transfer disease. Depletion of CD25⁺ cells failed to enable diabetes transfer by activated splenocytes from older mice (zero of four mice in each of the depleted and control groups). Comparable levels of insulitis developed in NOD-scid recipients of both depleted and nondepleted spleen cells (Fig. 2A). Therefore, there is no evidence for CD25⁺ T cell-mediated prevention of diabetes transfer in this experimental system. This result parallels the observation in the rat where peripheral CD4⁺ T cells, which prevent diabetes, are found in both CD25⁺ and CD25⁻ populations (22).
Ab specific for IL-10R promotes onset of diabetes

Because IL-10 has been implicated in regulation of inflammation and autoimmunity (23), we examined whether Ab which is specific for, and blocks, the IL-10R (24) influenced the ability of activated splenocytes from older mice to transfer diabetes. Fig. 2B shows that these are able to cause diabetes in anti-IL-10R-treated NOD-scid recipients. These data suggest that interactions through the IL-10R play a key role in the regulation of type 1 diabetes in BDC2.5/NOD mice.

It was not possible to transfer IDDM with nonactivated splenocytes from young BDC2.5 TCR-transgenic mice (14). To determine whether this failure to transfer disease also involved interactions through the IL-10R we transferred splenocytes from young BDC2.5/NOD mice (6 wk) were given three injections of either anti-IL-10R or control Ab and monitored for disease onset. The anti-IL-10R Ab-treated mice started to develop diabetes at 11 wk of age, and by 23 wk 100% were diabetic. None of the control mice developed diabetes and remained disease free for >30 wk (Fig. 3A). These data strongly suggest that in vivo an IL-10-like cytokine plays a regulatory role in preventing diabetes development in BDC 2.5 TCR-transgenic mice.

Does anti-IL-10R Ab influence cytokine production?

As early as 24 h following one injection of anti-IL-10R, serum levels of IL-12 were elevated. This increased IL-12 was sustained over the assessment period of 13 days (Fig. 3B). The presence of elevated serum IL-12 suggested that IL-10R Ab treatment was favoring a proinflammatory response. Therefore, we assessed whether anti-IL-10R could influence the production of proinflammatory cytokines in vitro. BDC2.5/NOD splenocytes were cultured for 48 h with Con A in the presence of anti-IL-10R or control

genic mice. BDC2.5/NOD mice (6 wk) were given three injections of either anti-IL-10R or control Ab and monitored for disease onset. The anti-IL-10R Ab-treated mice started to develop diabetes at 11 wk of age, and by 23 wk 100% were diabetic. None of the control mice developed diabetes and remained disease free for >30 wk (Fig. 3A). These data strongly suggest that in vivo an IL-10-like cytokine plays a regulatory role in preventing diabetes development in BDC 2.5 TCR-transgenic mice.

Does anti-IL-10R Ab influence cytokine production?

As early as 24 h following one injection of anti-IL-10R, serum levels of IL-12 were elevated. This increased IL-12 was sustained over the assessment period of 13 days (Fig. 3B). The presence of elevated serum IL-12 suggested that IL-10R Ab treatment was favoring a proinflammatory response. Therefore, we assessed whether anti-IL-10R could influence the production of proinflammatory cytokines in vitro. BDC2.5/NOD splenocytes were cultured for 48 h with Con A in the presence of anti-IL-10R or control

genic mice. BDC2.5/NOD mice (6 wk) were given three injections of either anti-IL-10R or control Ab and monitored for disease onset. The anti-IL-10R Ab-treated mice started to develop diabetes at 11 wk of age, and by 23 wk 100% were diabetic. None of the control mice developed diabetes and remained disease free for >30 wk (Fig. 3A). These data strongly suggest that in vivo an IL-10-like cytokine plays a regulatory role in preventing diabetes development in BDC 2.5 TCR-transgenic mice.
The production of both IL-12 and IFN-γ was increased when the TCR-transgenic splenocytes were cultured in the presence of Con A and anti-IL-10R in vitro (Fig. 3C). Comparable experiments were conducted using isolated NOD islets to stimulate T cell responses. As shown in Fig. 3D, there was an increased production of IL-12 and IFN-γ when BDC2.5/NOD spleen cells were cultured in the presence of an anti-IL-10R compared with an isotype control Ab. These data strongly suggest that anti-IL-10R facilitates the onset of diabetes by permitting the expression of a Th1 response against islets and that the development of diabetes in BDC2.5/NOD mice is endogenously regulated by interactions through this receptor.

A regulatory population of T cells which both produces and responds to IL-10 has been identified in both humans and mice (8, 25). T cells are clearly involved in the regulatory process that responds to IL-10 has been identified in both humans and mice (8, 25). T cells are clearly involved in the regulatory process that mediates the development of diabetes in NOD mice is endogenously regulated by interactions through this receptor.

References
1. Cooke, A., P. R. Hutchings, and J. H. Playfair. 1978. Suppressor T cells in experimental autoimmune haemolytic anaemia. Nature 273:154.
2. Penhale, W. J., A. Farmer, R. P. McKenna, and W. J. Irvine. 1973. Spontaneous thyroiditis in thyroidectomized and irradiated Wistar rats. Clin. Exp. Immunol. 15:225.
3. Nishizuka, Y., T. Tanaka, T. Sakakura, and A. Kojima. 1973. Murine thyroiditis induced by neonatal thyroxine. Experientia 29:1396.
4. Sakaguchi, S., K. Fukazawa, K. Nakamura, and T. Masuda. 1985. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. J. Immunol. 129:222.
5. Allison, A. C. 1971. Mechanisms of autoimmunity. Clin. Exp. Immunol. 8:343.
6. Saoudi, A., B. Seddon, D. Howell, and D. Mason. 1979. The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabetic recipients. J. Exp. Med. 158:2593.
7. Powrie, F., J. Carlino, M. W. Leach, S. Maue, and R. L. Coffman. 1996. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB^{hi}CD4⁺ T cells. J. Exp. Med. 183:2669.
8. Groux, H., A. Otgarra, M. Bigler, M. Rouleau, S. Antonenkov, J. E. de Vries, and M. G. Roncarolo. 1997. A CD4⁺ T cell subset inhibits antigen-specific T cell responses and permits colitis. Nature 389:737.
9. Takahashi, T., T. Tagami, S. Yamasaki, T. Uede, J. Shimizu, N. Sakaguchi, T. W. Mak, and S. Sakaguchi. 2000. Immunologic self-tolerance maintained by CD25⁺ CD4⁺ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192:1032.
10. Makino, S., K. Kuniomoto, Y. Murooka, T. Mizushima, K. Katagiri, and Y. Toshino. 1980. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 29:1.
11. Katz, J. D., B. Wang, K. Haskins, C. Benoist, and D. Mathis. 1993. Following a critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB^{hi}CD4⁺ T cells. J. Exp. Med. 183:2669.
12. Haskins, K., and M. McDuffie. 1990. Acceleration of diabetes in young NOD mice by a CD4⁺ islet cell clone. Science 249:1433.
13. Gonzalez, A. J., J. D. Katz, M. G. Mattei, H. Kikutani, C. Benoist, and D. Mathis. 1997. Genetic control of diabetes progression. Immunol. 8:783.
14. Mueller, R. L., M. Bradley, T. Krahl, and N. Sarvetnick. 1997. Mechanism underlying counterregulation of autoimmune diabetes by IL-10. J. Exp. Med. 184:1477.
15. Lafaille, J. J., K. Nagashima, M. Katsu, and S. Togemaka. 1994. High incidence of spontaneous autoimmune encephalomyelitis in immunodeﬁcient anti-melanin basic protein T cell receptor transgenic mice. Cell 78:399.
16. Luhder, P., P. Hoglund, P. J. Allison, C. Benoist, and D. Mathis. 1998. Cytotoxic T lymphocyte-associated antigen 4 (CD25) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187:427.
17. Sakaguchi, S., N. Sakaguchi, M. Asano, M. Isho, and M. Toda. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chain (CD25): breaks of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155:1151.
18. Suri-Payer, E., A. Z. Amar, A. M. Thornton, and E. M. Shevach. 1998. CD4⁺CD25⁺ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160:1212.
19. Asano, M., M. Toda, N. Sakaguchi, and S. Sakaguchi. 1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184:587.
20. Takahashi, T., Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Ich, M. Iwata, J. Shimizu, and S. Sakaguchi. 1998. Immunologic self-tolerance maintained by CD25⁺CD4⁺ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10:1969.
21. Read, S., V. Malimostrov, and J. G. Pearlstein. 2000. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25⁺ CD4⁺ regulatory cells that control intestinal inflammation. J. Exp. Med. 192:295.
22. Stephens, L. A., and D. Mason. 2000. CD25 is a marker for CD4⁺ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25⁺ and CD25⁻ subpopulations. J. Immunol. 165:3105.
23. Assemann, C., S. Maue, M. W. Leach, R. L. Coffman, and F. Powrie. 1999. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190:993.
24. O’Farrell, A. M., Y. Liu, K. W. Moore, and A. L. Mui. 1998. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J. 17:1006.
25. Levings, M. K., R. Sangregorio, F. Galbiati, S. Squadrone, R. de Waal Malefyt, and M. G. Roncarolo. 2001. IFN-α and IL-10 induce the differentiation of human type 1 regulatory cells. J. Immunol. 166:5530.
26. Parish, N. M., P. R. Hutchings, L. O’Reilly, R. Quarto-Papado, D. Healey, P. O’Regan, and A. Cooke. 1995. Tolerance induction as a therapeutic strategy for the control of autoimmune endocrine disease in mouse models. Immunol. Rev. 144:269.
27. de Waal Malefyt, R., J. Abrams, B. Bennett, C. G. Figdor, and J. E. de Vries. 1991. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174:1209.

28. Fiorentino, D. F., A. Zlotnik, T. R. Mosmann, M. Howard, and A. O’Garra. 1991. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147:3815.

29. Ablamunits, V., F. Baranova, T. Mandrup-Poulsen, and J. Nerup. 1994. In vitro inhibition of insulin release by blood mononuclear cells from insulin-dependent diabetic and healthy subjects: synergistic action of IL-1 and TNF. Cell Transplant. 3:55.

30. Pennline, K. J., E. Roque-Gaffney, and M. Monahan. 1994. Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin. Immunol. Immunopathol. 71:169.

31. Zheng, X. X., A. W. Steele, W. W. Hancock, A. C. Stevens, P. W. Nickerson, P. Roy-Chaudhury, Y. Tian, and T. B. Strom. 1997. A noncytolytic IL-10/Fc fusion protein prevents diabetes, blocks autoimmunity, and promotes suppressor phenomena in NOD mice. J. Immunol. 158:4507.

32. Kawamoto, S., Y. Nitta, F. Tashiro, A. Nakano, E. Yamato, H. Tahara, K. Tabayashi, and J. Miyazaki Ji. 2001. Suppression of T(h)1 cell activation and prevention of autoimmune diabetes in NOD mice by local expression of viral IL-10. Int. Immunol. 13:685.

33. Moritani, M., K. Yoshimoto, S. Ii, M. Kondo, H. Iwahana, T. Yamaoka, T. Sano, N. Nakano, H. Kikutani, and M. Itakura. 1996. Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes: a gene therapy model for autoimmune diabetes. J. Clin. Invest. 98:1831.

34. Wogensen, L., M. S. Lee, and N. Sarvetnick. 1994. Production of interleukin 10 by islet cells accelerates immune-mediated destruction of β cells in nonobese diabetic mice. J. Exp. Med. 179:1379.

35. Luhder, F., C. Chambers, J. P. Allison, C. Benoist, and D. Mathis. 2000. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc. Natl. Acad. Sci. USA 97:12204.