Comprehensive map and functional annotation of the Mouse White Adipose Tissue Proteome

Xiao-yue Tang equal first author, 1, Juan Li equal first author, 2, Wei-gang Zhao 2, Hai-dan Sun 3, Zheng-guang Guo 3, Jing Li 3, Zhufang Shen 4, Tao Yuan 2, Shuai-nan Liu 4, Quan Liu 4, Yong Fu 2, Wei Sun Corresp. 1

1 Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Beijing, China
2 Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
3 Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
4 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China

Corresponding Author: Wei Sun
Email address: sunwei@ibms.pumc.edu.cn

White adipose tissue (WAT) plays a significant role in energy metabolism and the obesity epidemic. In this study, we sought to (1) profile the mouse WAT proteome with advanced 2DLC/MS/MS approach, (2) provide insight into WAT function based on protein functional annotation and (3) predict potential secreted proteins. A label-free 2DLC/MS/MS proteomic approach was used to identify the WAT proteome from female mouse WAT. A total of 6039 proteins in WAT were identified, among which 5160 were quantified (spanning a magnitude of 10^6) using an intensity-based absolute quantification algorithm, and 3117 proteins were reported by proteomics technology for the first time in WAT. To comprehensively analyze the function of WAT, the proteins were divided into three quantiles based on abundance and we found that proteins of different abundance performed different functions. High-abundance proteins (the top 90%, 1219 proteins) were involved in energy metabolism; middle-abundance proteins (90%-99%, 2273 proteins) were involved in the regulation of protein synthesis; and low-abundance proteins (99%-100%, 1668 proteins) were associated with lipid metabolism and WAT beiging. Furthermore, 800 proteins were predicted by SignalP4.0 to have signal peptides, 265 proteins had never been reported, and 5 have been reported as adipokines. The above results provide a large dataset of the normal mouse WAT proteome, which might be useful for WAT function research.
Comprehensive Map and Functional Annotation of the Mouse White Adipose Tissue Proteome

Xiao-Yue Tang, Juan Li, Wei-Gang Zhao, Hai-Dan Sun, Zheng-Guang Guo, Jing Li, Zhu-Fang Shen,
Tao Yuan, Shuai-Nan Liu, Quan Liu, Yong Fu, Wei Sun

1 Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
2 Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
3 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China

Contributed equally to this work
* Corresponding authors
* xiehezhaoweigang@163.com (WGZ); sunwei@ibms.pumc.edu.cn (WS)
Abstract

White adipose tissue (WAT) plays a significant role in energy metabolism and the obesity epidemic. In this study, we sought to (1) profile the mouse WAT proteome with advanced 2DLC/MS/MS approach, (2) provide insight into WAT function based on protein functional annotation and (3) predict potential secreted proteins. A label-free 2DLC/MS/MS proteomic approach was used to identify the WAT proteome from female mouse WAT. A total of 6039 proteins in WAT were identified, among which 5160 were quantified (spanning a magnitude of 10^6) using an intensity-based absolute quantification algorithm, and 3117 proteins were reported by proteomics technology for the first time in WAT. To comprehensively analyze the function of WAT, the proteins were divided into three quantiles based on abundance and we found that proteins of different abundance performed different functions. High-abundance proteins (the top 90%, 1219 proteins) were involved in energy metabolism; middle-abundance proteins (90%-99%, 2273 proteins) were involved in the regulation of protein synthesis; and low-abundance proteins (99%-100%, 1668 proteins) were associated with lipid metabolism and WAT browning. Furthermore, 800 proteins were predicted by SignalP4.0 to have signal peptides, 265 proteins had never been reported, and 5 have been reported as adipokines. The above results provide a large dataset of the normal mouse WAT proteome, which might be useful for WAT function research.

KEYWORDS: White adipose tissue; Proteome; Mouse; Label-free
Introduction

Mammals have two types of adipose tissue, brown adipose tissue (BAT) and white adipose tissue (WAT). BAT dissipates energy and increases fatty acid oxidation and heat production by uncoupled respiration, which is mediated by uncoupling protein-1 (UCP1) [1, 2]. The primary function of WAT is to store energy in lipid droplets in the form of triacylglycerols (TAGs) [3]. WAT also secrete hormones and cytokines to regulate energy intake, energy expenditure, and carbohydrate and lipid metabolism, e.g., adiponectin, leptin, and plasminogen activator inhibitor-1 [4]. Furthermore, many studies have found that these hormones and cytokines are associated with diseases. For example, adiponectin (ADI), one of the most abundant adipokines produced by adipocytes, plays a fundamental role in maintaining vascular homeostasis, protecting from vascular injury and atherogenesis [5, 6]. These proteins are considered a valuable resource in disease research. Therefore, a comprehensive profile of the WAT proteome will provide a basic understanding of WAT function and benefit disease studies.

The earliest study of the normal WAT proteome was from Sanchez et al. in 2001 [7]. In this study, 61 protein entries from mouse WAT were identified from one hundred and nine spots in a 2D-PAGE gel. Later, to optimize the resolution of WAT proteins, Lanne et al. used thiourea to obtain distinct spots in a 2D gel and finally identified 108 proteins from 140 spots in a 2D gel taken from the WAT of the epididymal fat pads of obese, diabetic ob/ob mice [8]. In 2013, Cheng-Hsien et al. analyzed proteins differentially expressed in the WAT of mice fed diets with or without bitter melon seed oil for 11 weeks using two dimensional gel electrophoresis and finally identified 23 proteins from 30 spots[9]. With the development of mass spectrometry technology, more proteins can be identified in WAT. In 2007, Adachi et al. [10] investigated the adipocyte proteome by combining one-dimensional gel electrophoresis and on-line electrospray tandem mass spectrometry with biochemical procedures for the subfractionation of the 3T3-L1 adipocyte cellular proteome (nuclei, mitochondria, membrane, and cytosol). Finally, they reported 3287 SwissProt annotated proteins in 3T3-L1 adipocytes. In 2009, Forner et al. [11] analyzed the mouse fat mitochondria proteome response to cold-induced thermogenesis. By combining HPLC and
high-resolution quantitative linear ion trap (LTQ)-Orbitrap mass spectrometry with the SILAC method, they identified 2434 proteins from the mitochondria of mouse adipose tissue. In 2010, Xie et al. [12] identified 1493 adipocyte proteins isolated from abdominal adipose tissue using a one-dimensional SDS-PAGE and HPLC-ESI-MS/MS approach. In 2018, Peter et al. [13] analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with SDS-PAGE gel combination with LC-MS/MS method. They finally identified 2308 protein groups and quantified 2167 groups. There were also some studies to investigate differently expressed proteins in adipose tissue to unveil the mechanisms underlying adipose tissue dysfunction and understand the functional mechanism of WAT[14-17].

Presently, due to its high-throughput and high-sensitivity capacities, proteomics technology has garnered a lot of attention recently in biological research. The number of identified gene products in two proteome studies of human tissues and body fluids even approached the number of protein-coding genes in the complete human genome [18-20].

Therefore, in this study, we sought to (1) profile the mouse WAT proteome with advanced 2DLC/MS/MS approach, (2) provide insight into WAT function based on protein functional annotation and (3) predict potential secreted proteins. In previous reports of WAT proteome, SDS-PAGE was the most commonly used method for protein separation, but its peak capacity was limit. 2DLC approach could greatly improve the peak capacity by the orthogonality of the two-dimensional separations, therefore, it could identify more proteins [21-23]. Thus, 2DLC approach was used in our study. For mass spectrometer, Triple TOF 5600 with higher sensitivity and resolution was used in the present study. To this end, we performed an in-depth WAT proteomic analysis using normal mouse WAT samples. Qualitative and quantitative analysis were applied to comprehensively profile the mouse WAT proteome. The function of WAT and the potentially secreted protein prediction was annotated with bioinformatic analysis. Our data provides a comprehensive mouse WAT proteome dataset, which might be useful for WAT function research.
Experimental procedures

1. Animals

Six- to eight-week-old female C57BL/6J mice were purchased from HFK Bioscience Laboratories (Beijing, China). All mice were maintained with free access to water and food and maintained under SPF conditions and a 12 h light/dark cycle at 23 ± 2°C. The mice were fed with a standard chow (SC; 10% lipids) diet for 22 weeks. All animals were handled according to the Standards for Laboratory Animals (GB14925-2001) and the Guideline on the Humane Treatment of Laboratory Animals (MOST 2006a) established by the People’s Republic of China. The two guidelines were conducted in adherence to the regulations of Institutional Animal Care and Use Committee (IACUC) and all animal procedures were approved by IACUC (approval number: SCXKBeijing- 2009-0004). All efforts were made to minimize suffering.

2. Preparation of WAT samples

A total of 6 C57BL/6J mice was applied to collect 300 mg gonadal WAT. Phosphate buffer solution (PBS) was used to wash the tissue. The tissues were gently agitated by vortexing, and centrifuged at 1000 g for five minutes. After the solution was removed, 1 mL lysis buffer (protein extraction kit, P1250-50, Applygen, Beijing) and 1 μL protease inhibitor cocktail (50x, P1265-0.5, Applygen, Beijing) (1:1000) were added to the tissue. And the tissue was homogenized using a spinning blade tissue homogenizer (IKA R104, Janke & Kunkel KG.IKA-werk, Germany) on ice for complete lysis. 2mL protein extraction regent were added to the tissue and kept in 4 °C for 40 minutes to separate lipid completely. After centrifugation at 4°C for 10 minutes, the solution is divided into two phases and the middle of the two phases is protein membrane. The upper and lower two layers of liquid are removed and the protein membrane is attached to the centrifugal tube wall. Protein dissolution was performed by adding a buffer solution containing 7 M urea, 2 M thiourea, 65 mM DTE, and 83 mM Tris (Sigma-Aldrich, St. Louis, MO, USA). After 10 min of 20,000 × g centrifugation at 4°C, the supernatants were collected and stored at -80°C. The Bradford assay with Bradford reagents (Thermo Fischer Scientific, USA) was supplied to measure the protein concentration of the WAT samples. The six WAT protein samples were pooled into one
mixed sample with the same protein amount. The WAT proteins were prepared using filter-aided sample preparation methods [24]. The sample (100 μg in total) was deoxidized with 20 mM DTT and alkylated with 50 mM IAA. Then, the WAT proteins were loaded onto a 10 kDa filter device (micro Biospin, Nanosep 10K Omega; PALL, USA) and centrifuged at 14,000 g at 4°C. After washing twice with UA (8 mol/L urea in 0.1 mol/L Tris-HCl, pH 8.5) and four times with 25 mmol/L NH₄HCO₃, the samples were digested with trypsin (Trypsin Gold, mass spec grade, Promega, WI, USA, enzyme to protein ratio of 1:50) and incubated at 37 °C overnight. After digestion, HLB 3 cc extraction cartridges (Oasis, Waters, Ireland) were applied to desalt the peptides. 500 μl 0.1% formic acid cleaned the peptide three times and peptide was finally eluded with 500 μL 100% ACN. The pooled peptide elution was vacuum dried and stored at -80°C.

3. LC-MS/MS

The pooled peptide mixture was first fractioned using a high-pH RPLC column from Waters (4.6 mm×250 mm, C₁₈, 3 μm). The sample was loaded onto the column in buffer A1 (pH = 10). Peptides were separated and eluted from 5% B1 to 90% B1 (90% ACN; pH = 10, flow rate, 1 mL/min) in 60 min. The eluted peptides were collected at a rate of one fraction per minute and we concatenated the 60 collected fractions into 20 fractions (concatenation scheme: 1 + 21 + 41, 2 + 22 + 42, etc.). Each pooled sample was analyzed on a RP-C₁₈ self-packing LC column (75 μm×100 mm, 3 μm). The eluted gradient was 5–30% buffer B2 (0.1% formic acid, 99.9% ACN; flow rate, 0.5 μL/min) for 60 min.

The eluted peptide was measured using LC-MS instrumentation consisting of a nano source to TripleTOF 5600 mass spectrometer. High sensitivity mode and the following parameters were used when acquiring the MS/MS data. MS data were acquired with 30 data-dependent MS/MS scans per every full scan and full scans were acquired at a resolution of 40,000 and MS/MS scans at 20,000. 35% normalized collision energy and charge state screening (including precursors with +2 to +4 charge state) was applied. MS/MS scans were performed at the scan range of m/z 100–1800 with the scan time of 100 ms. Dynamic exclusion was set to 15 s to avoid repeated sequencing of identical peptides.
4. Data processing

The MS/MS spectra were processed using Mascot software (version 2.3.02, Matrix Science, London, UK) and searched against the SwissProt mouse database from the UniProt website (http://www.UniProt.org). The specificity of trypsin digestion was set for cleavage after K or R and two missed cleavage sites in the trypsin digestion were allowed. The fixed modification was carbamidomethylation of cysteine in Mascot. Deamidation of asparagine and glutamine and the oxidation of methionine were specified as variable modifications. The parent ion tolerance was set to 10 ppm and the fragment ion mass tolerance was set to 0.05 Da. Mascot search results were further validated using Scaffold (version 4.3.2, Proteome Software Inc., Portland, OR). Peptide identifications were accepted at an FDR less than 1.0% by the Scaffold Local FDR algorithm and were determined by searching a reverse database. Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing significant peptide evidence were grouped into clusters. Protein identifications were accepted if they could achieve a false discovery rate (FDR) of less than 1.0% and contain at least 2 uniquely identified peptides.

To rank the relative abundance of proteins, an intensity-based absolute quantification (iBAQ) algorithm was used [25]. The detailed protocol was provided below:

(1) The protein intensities were first computed by Progenesis LC–MS (v2.6, Nonlinear Dynamics, UK) as the sum of all identified peptide intensities (maximum peak intensities of the peptide elution profile, including all peaks in the isotope cluster).

(2) The protein intensities were then divided by the number of theoretically observable peptides (calculated by in silico protein digestion; all fully tryptic peptides between 6 and 30 amino acids were counted). The resulting intensities were iBAQ values, which are shown as “Absolute iBAQ intensities”.

(3) The relative iBAQ intensities were computed by dividing the absolute iBAQ intensities by the sum of all absolute iBAQ intensities.

(4) The relative iBAQ intensities were applied to estimate the estimated protein abundances.
(the proportions of protein amounts to total WAT protein amount). The estimated protein
abundances in WAT were finally calculated by multiplying the relative iBAQ intensities by
theoretically relative molecular mass.

(5) The percentage was computed by dividing the estimated protein abundances by the sum of
all estimated protein abundances.

5. Functional annotation

Gene Ontology (GO) was performed using the PANTHER database (Protein Analysis through
Evolutionary Relationships, http://www.pantherdb.org/). Proteins were divided into cellular
components, biological processes, and molecular functions based on their functional annotations.
When more than one assignment was available, all the functional annotations were considered in
the results.

The Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Mountain View, CA) database was
used to analyze canonical pathways. The SwissProt accession numbers of the identified proteins
were uploaded into the IPA using default settings. This analysis was focused on the pathways and
functions in which the proteins are expected to be involved. All identified WAT proteins, high,
middle and low-abundance proteins were analyzed respectively.

All proteins were used for potential secreted protein prediction. For this purpose, the SwissProt
accession numbers were input into SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/) [17].
This software was used to predict the N-terminal signal peptides for classically secreted proteins.
Results

1. Workflow of proteome analysis

In this study, samples of WAT from six C57BL/6J female mice were used to generate a comprehensive profile of the normal mouse WAT proteome. The extracted proteins were digested using the filter-aided sample preparation (FASP) method [24]. The digested peptides were first separated by high-pH RPLC and mixed into 20 fractions and analyzed by nanoRPLC–MS/MS in three replicates. The peak intensity-based semiquantification method iBAQ was used to estimate the abundance of the quantified proteins. The PANTHER classification system and IPA were applied to annotate the function of WAT. The SignalP 4.1 Server was applied to predict secreted proteins (Supplemental Fig. S1).

2. A comprehensive profile of the WAT proteome

In this study, pooled WAT samples were used to establish a large database for the WAT proteome. All of 516,703 spectra, 60,215 unique peptides and 6,039 proteins were identified (FDR<1% at the protein and peptide level with at least two unique peptides for each protein) (Detailed data provided in Tables S1 - S3). Among the 6039 identified proteins, 77% had molecular weight between 10kD-90kD (Supplemental Fig. S2). 5057 proteins (84%) of the 6039 proteins were identified in the three replicates (Fig. 1A).

In order to improve our understanding of the WAT proteome and facilitate the development of WAT functional annotation, quantitation of WAT proteins was performed. Among the 6039 identified proteins, 5270 proteins could be quantified by the peak intensity-based semiquantification method iBAQ [25] (Fig. 1B). As for the correlation of protein quantification, the correlation of two replicates was approximately 0.98 (Supplemental Fig. S3), indicating good LC/MS/MS reproducibility. The proteins with technical CVs greater than 0.3 were excluded from further analysis in order to reduce the interference of technical variation, and a total of 5160 WAT proteins (Fig. 1C, Table S4) were kept. The relative protein abundance spans 6 orders of magnitude. We divided the quantified proteins into three quantiles based on protein abundance: high- (the top 90%, 1219 proteins), middle- (90%-99%, 2273 proteins) and low-abundance proteins (99%-100%, 1668 proteins). Additionally, Table 1 listed top ten abundant proteins.
quantified with the iBAQ algorithm in our research. The ten proteins account for 20% of the total WAT protein abundance. Carbonic anhydrase 3, vimentin and polymerase I and transcript release factors are associated with fatty acid metabolism, adipogenesis and lipolysis, respectively [26-28]. Galectin-1 (GAL1) has been proposed as an early marker of adipocyte differentiation and to be actively involved in adipose tissue development [29, 30]. The expression of transgelin was associated with the development of white adipocyte, and thought to begin with progenitor cells from the perivascular compartment (pericytes) in WAT [31]. Other three proteins, tropomyosin (beta chain), desmin and myosin light polypeptide 6, were cytoskeletal proteins.

When comparing with previous studies (Table 2, Fig.2A), approximately 58% of the fat mitochondria proteome, 60% of the mesenteric, omental, and uterine adipose tissue proteome, 63% of the 3T3-L1 adipocyte proteome and 92% of the adipocyte proteome (isolated from abdominal adipose tissue) was overlapped with our study, respectively. When all data from these four studies were combined, 352 proteins were detected in all of the studies and 3117 proteins from our results were reported for the first time by proteomics technology in WAT. Among common proteins (Fig.2B), high- and middle-abundance proteins contributed about 84%. And among specific proteins, less (7%) high-abundance proteins were found in our study. When comparing previous study with our high-abundance proteins (Supplemental Fig.S4), 177 proteins were firstly reported in our study and 85% (1042 proteins) of our high-abundance proteins could be identified previously. The above data showed that most high abundance proteins (85%) and middle abundance proteins (52%) were identified by previous reports, and less proteins low abundant proteins (26%). The possible reasons might come from the proteome approach. Due to the limitations of separation method and mass spectrometer in previous studies, most identified proteins in previous reports were high or medium ones, therefore, these proteins had more chances to be identified in our study.

3. The functional annotation of the WAT proteome
To explore the function of WAT more comprehensively, PANTHER classification system (http://www.pantherdb.org/genes/batchIdSearch.jsp) and IPA tool (http://www.ingenuity.com/) were applied to the functional classification and pathway analysis.

The identified proteins were functionally categorized using Gene Ontology annotation terms. As shown in Fig. 3A, nearly 85% of the proteins were present in cells, including cell part (40.6%, including intracellular part and endomembrane system), organelles (26.3%, including intracellular organelle and non-membrane bounded organelle) and macromolecular complex (17.4%, including membrane protein complex, catalytic complex and ribonucleoprotein complex). The major molecular functions of WAT proteins were catalytic activity (44%, including hydrolase activity and transferase activity) and binding (37.5%, including protein binding and heterocyclic compound binding). High-abundance proteins were enriched with antioxidant activity (5.9%) and structural molecular activity (10.1%) when compared with the middle and low-abundance proteins (Fig. 3B). Using iBAQ analysis, the high-abundance proteins with antioxidant and catalytic activity accounted for 35% of all the high-abundance proteins, and the abundance of proteins with structural molecular activity accounted for 8%. For biological processes (Fig. 3C), approximately half of the WAT proteins were associated with metabolic processes (25.1%) and cellular processes (31%). High-abundance proteins were enriched with cellular component organization or biogenesis (11.3%), multicellular organismal process (4.5%) and biological adhesion functions (1.7%). The above results show that energy metabolism is an important function of WAT.

To identify the major biological pathways involved with the identified proteins, IPA was used for canonical pathway enrichment analysis (Fig. 3D, Supplemental Fig. S5 and Table S5). The functions of WAT include protein synthesis (such as the protein ubiquitination pathway, EIF2 signaling, mTOR signaling, and the regulation of eIF4 and p70S6K signaling), energy metabolism (such as mitochondrial dysfunction, sirtuin signaling, PI3K/AKT signaling, and oxidative phosphorylation), adipogenesis (such as PI3K/AKT signaling) and the regulation of insulin action (such as integrin signaling). The function of the high-abundance proteins was mainly related to energy metabolism (mitochondrial dysfunction, oxidative phosphorylation, and sirtuin signaling).
The primary function of the middle-abundance proteins was protein synthesis (mTOR signaling, regulation of eIF4 and p70S6K signaling, EIF2 signaling and tRNA charging). The functions of low-abundance proteins were WAT beiging (NGF and IL-4 signaling) and lipid metabolism (super pathway of inositol phosphate compounds, 3-phosphoinositide degradation and 3-phosphoinositide biosynthesis).

4. The analysis of WAT secreted proteins

Endocrine function is one of the key roles of adipocytes, and adipose tissue can synthesize several hormones, called adipokines or adipocytokines. We applied the SignalP 4.1 Server to predict potential secreted proteins. In all, 800 proteins were found to have signal peptides (Table S6), of which 200 proteins belong to the high-abundance proteins, 312 belong to the middle-abundance proteins and 183 belong to the low-abundance proteins. The abundance of all the proteins with signal peptides was 15.6% in the WAT proteome. In 2018, Ali et al. identified 453 proteins from adipocytes that had previously been reported to be secreted proteins [32], of which 265 proteins were found in our results. Moreover, 5 WAT proteins were confirmed as adipokines: resistan, adiponectin, apolipoprotein E, haptoglobin and angiotensinogen [33-35].

In addition, the peak intensity-based semiquantification method iBAQ was applied to estimate the abundance of the identified 800 proteins, of which 694 proteins could be quantified [36]. The relative protein amounts span 5 orders of magnitude, from Semaphorin-4A (9.74E-01) to alpha-2-HS-glycoprotein (3.81E+04) (Fig. 2C).
Discussion

White adipose tissue (WAT) stores energy in lipid droplets in the form of TAGs [3] and secretes hormones and adipokines to regulate energy intake, energy expenditure, and carbohydrate and lipid metabolism [4]. A comprehensive profile of the WAT proteome will provide a basic understanding of WAT function and benefit disease studies. In the present study, we established a large database for the WAT proteome by advanced 2D LC-MS/MS. Total 6,039 proteins were identified, of which 5270 proteins could be quantified by the peak intensity-based semi-quantification method iBAQ. Functional annotation was further explored and we found that proteins of different abundance performed different functions.

Canonical pathway enrichment analysis revealed that one of the primary functions of WAT was protein synthesis, and related significant pathways was EIF2 signaling. Global translation and apoptosis can be started by phosphorylation of EIF2-a [37] and eIF4E was released by phosphorylation of eIF4E-BP binds to 5’ capped mRNAs to enhance their translation [38]. Another significant WAT pathway is the PI3K/AKT signaling pathway, which plays a significant role in phytol-enhanced adipogenesis and glucose uptake of adipocytes and lipolysis inhibition [39, 40]. These results show the synthetic metabolism function of WAT, which is consistent with the traditional energy storage role of WAT [33]. Furthermore, a previous study has suggested that adipose tissue plays an important role in insulin resistance [41]. In our result, integrin signaling performed this function. A total of 103 proteins were found to be involved in this pathway, such as Akt and ILK. ILK can interact with the integrin cytoplasmic domains, and integrins rely on ILK for signal transduction. The pseudokinase domain of ILK is an important domain for the recruitment of adaptor proteins and/or signaling molecules, such as Akt and PDK1. Integrins are important regulators of insulin action and represent novel therapeutic targets to treat the underlying insulin resistance associated with T2D [40].

The WAT proteome was divided into high, middle and low abundance proteins by iBAQ quantitative method. According to IPA functional annotation high-abundance proteins was mainly related to energy metabolism (mitochondrial dysfunction, oxidative phosphorylation, and siruin...
Sixty-five proteins were involved in sirtuin signaling, such as sirt2. During energy deficiency (caloric restriction or fasting) the expression of sirt2 increases [42, 43]. In this situation, adipogenesis was suppressed and adipocyte lipolysis was increased to promote fuel availability by sirt2 [42]. In another significant pathway, oxidative phosphorylation occurs in mitochondria and comprises an electron-transfer chain, which is driven by substrate oxidation and is coupled to the synthesis of ATP through an electrochemical transmembrane gradient. When energy needs increase, fatty acid oxidation supplies an important source of energy for ATP production [44]. In oxidative phosphorylation, 60% ubiquinone oxidoreductase (including NDUFS4, NDUFA3, NDUFA4), 46% ubiquinol cytochrome c oxidoreductase (including UQCRFS, UQCRC2) and ATP synthase (including ATP5A1, ATP5D) were high-abundance proteins (Supplemental Fig.S6A). The other function of mitochondria is adipogenesis, which is accompanied by mitochondrial biogenesis [45]. The mitochondria provides key intermediates for the synthesis of triacylglycerol might and further plays a critical role in lipogenesis [46]. For mitochondrial dysfunction, many significant proteins were high-abundance proteins, including aconitase2 and cytochrome c oxidase. Aconitase2 was an enzyme to catalyze the interconversion of citrate via cis-aconitase in the second step of the TCA cycle. Cytochrome c oxidase was the terminal enzyme of the mitochondrial respiratory chain and a multi-submit enzyme complex to transfer electrons in mitochondrial (Supplemental Fig.S6B). These results showed that besides basic physiological functions (structural molecular functions), high-abundance proteins also have important energy metabolism functions in WAT.

IPA analysis showed that the primary function of the middle-abundance proteins was protein synthesis (mTOR signaling, regulation of eIF4 and p70S6K signaling, EIF2 signaling and tRNA charging). According to a previous study, protein synthesis is associated with adipogenesis [47]. The concentration of numerous mitochondrial proteins such as cytochrome c had a 20- to 30-fold increase during differentiation of 3T3-L1 cells (a preadipocyte cell line). The expression of many nucleus-encoded mitochondrial genes during adipogenesis was also found to have statistically significant increases by mRNA profiles. The increase in mitochondrial proteins is not completely
achieved by enhanced transcription but is also involved in posttranscriptional regulation. Adipose conversion (preadipocytes to adipocytes) would be accompanied by mitochondrial proliferation, which underscores the essential role of mitochondria in the key aspects of lipid metabolism [47].

The functions of low-abundance proteins were WAT beiging (NGF and IL-4 signaling) and lipid metabolism (super pathway of inositol phosphate compounds, 3-phosphoinositide degradation and 3-phosphoinositide biosynthesis). NGF signaling plays a key role in the beiging of WAT by regulating the plasticity of intra-adipose sympathetic arborizations in mouse inguinal WAT in response to a cold challenge. Intra-adipose sympathetic plasticity was suppressed by the blockage of NGF signaling, and moreover, the cold-induced beiging process of WAT was suppressed[48]. IL-4 signaling is involved in the cold-induced biogenesis of beige fat. All of 22 proteins were found to be involved in this pathway, including STAT6. STAT6 is thought to be necessary for the cold-induced remodeling of WAT into beige fat. Qiu et al. [49] found that cold-induced expression of the protein UCP1 in subcutaneous WAT decreased by ~12-fold in Stat6-/- mice, accompanied by an increase in oxygen consumption. Accordingly, Stat6-/- mice maintained thermal homeostasis at a lower body temperature. Because beiging of WAT results in enhanced energy expenditure, it has increasingly gained attention for its potential application in the prevention and treatment of obesity and type 2 diabetes[50, 51].

In addition, 800 proteins were found to be secreted proteins in our result, of which 694 proteins could be quantified by iBAQ. The top 5 newly identified (most abundant) secreted proteins were carboxylesterase 1D, serine protease inhibitor A3K, apolipoprotein A-I, carboxylesterase 1C and fibrillin-1. Carboxylesterase 1D, a major lipase in WAT, may mediate some or all hormone-sensitive lipase -independent lipolysis in adipocytes[52]. Apolipoprotein A-I was associated with cholesterol transport in high-density lipoprotein [53]. Fibrillin-1 was related with tissue homeostasis [54]. It was reported to be up-regulated in the WAT of diet-induced obese mice [55], which was affected by the structural changes when adipose tissue enlargement. The other two proteins were serine protease inhibitor A3K and carboxylesterase 1C. Serine protease inhibitor A3K was a contrapsin to inhibit trypsin-like proteases[56, 57]. Carboxylesterase 1C was involved
in the detoxification of xenobiotics and in the activation of ester and amide prodrugs and in the extracellular metabolism of lung surfactant. No studies were reported to explore the correlation between them and white adipose tissue. Their functions in WAT need more work.
Conclusion

In conclusion, using high-pH reverse-phase liquid chromatography (hp-RPLC) integrated with a TripleTOF 5600 mass spectrometer, we provided the largest dataset from the normal mouse WAT proteome up to now. Our WAT proteome included many proteins that had not been previously reported by proteomic approach. We further provided insight into WAT function based on protein functional annotation and found that proteins of different abundance performed different functions. Finally, potential secreted proteins prediction was performed. Our data set provided a comprehensive mouse WAT proteome, which might be useful for WAT function research.

In the future, the following issues should be addressed: With the emergence of new instruments (e.g., Orbitrap Fusion Lumos Tribrid mass spectrometer), labeling reagents (e.g., Ten-plex TMT labeling) and new techniques (e.g., the Data Independent Acquisition technique), high-throughput proteome analysis has come to fruition and might provide a more precise quantification and functional analysis. Besides, multiple sample preparation methods and adipose tissue samples from multiple regions will be needed to truly obtain a comprehensive WAT proteome. Furthermore, with the development of genomics, transcriptomes, proteomics and metabolomics, the combination of multiple omic analysis would lead to a better platform for routine clinical research.
Acknowledgments

This work was supported by National Key Research and Development Program of China (No. 2016 YFC 1306300, 2018YFC0910202,), National Natural Science Foundation of China (No. 30970650, 31200614, 31400669, 81371515, 81170665, 81560121), Beijing Natural Science Foundation (No. 7173264, 7172076), Beijing cooperative construction project (No.110651103), Beijing Science Program for the Top Young (No.2015000021223TD04), Beijing Normal University (No.11100704), Peking Union Medical College Hospital (No.2016-2.27), CAMS Innovation Fund for Medical Sciences (2017-I2M-1-009) and Biologic Medicine Information Center of China, National Scientific Data Sharing Platform for Population and Health.

Conflict of interest

The authors declare no conflicts of interest.
References

1. Klingenberg, M., Uncoupling protein--a useful energy dissipator. J Bioenerg Biomembr, 1999. 31(5): p. 419-30.
2. Cannon, B. and J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol Rev, 2004. 84(1): p. 277-359.
3. Kuhnlein, R.P., Thematic review series: Lipid droplet synthesis and metabolism: from yeast to man. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res, 2012. 53(8): p. 1430-6.
4. McGown, C., A. Bierdinc, and Z.M. Younossi, Adipose tissue as an endocrine organ. Clin Liver Dis, 2014. 18(1): p. 41-58.
5. Vaiopoulos, A.G., et al., The role of adiponectin in human vascular physiology. Int J Cardiol, 2012. 155(2): p. 188-93.
6. Nishimura, M., et al., Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation, 2008. 117(2): p. 216-23.
7. Sanchez, J.C., et al., The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics, 2001. 1(1): p. 136-63.
8. Lanne, B., et al., Thiourea enhances mapping of the proteome from murine white adipose tissue. Proteomics, 2001. 1(7): p. 819-28.
9. Hsieh, C.H., et al., Altered white adipose tissue protein profile in C57BL/6J mice displaying delipidative, inflammatory, and browning characteristics after bitter melon seed oil treatment. PLoS One, 2013. 8(9): p. e72917.
10. Adachi, J., et al., In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics, 2007. 6(7): p. 1257-73.
11. Forner, F., et al., Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab, 2009. 10(4): p. 324-35.
12. Xie, X., et al., Characterization of the Human Adipocyte Proteome and Reproducibility of Protein Abundance by One-Dimensional Gel Electrophoresis and HPLC-ESI-MS/MS. J Proteome Res, 2010. 9(9): p. 4521-34.
13. Feist, P.E., et al., Quantitative proteomic analysis of murine white adipose tissue for peritoneal cancer metastasis. Anal Bioanal Chem, 2018. 410(5): p. 1583-1594.
14. Peinado, J.R., et al., Proteomic profiling of adipose tissue from Zmpste24-/- mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics, 2011. 10(11): p. M111.008094.
15. Andrade, J.M., et al., Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1-7). Peptides, 2014. 60: p. 56-62.
16. Kim, S.W., et al., Differential protein expression in white adipose tissue from obesity-prone and obesity-resistant mice in response to high fat diet and anti-obesity herbal medicines. Cell Physiol Biochem, 2015. 35(4): p. 1482-98.
17. Ke, M., et al., Differential proteomic analysis of white adipose tissues from T2D KKAy mice by LC-ESI-QTOF. Proteomics, 2017. 17(5).
18. Kim, M.S., et al., A draft map of the human proteome. Nature, 2014. 509(7502): p. 575-81.
19. Wilhelm, M., et al., Mass-spectrometry-based draft of the human proteome. Nature, 2014. 509(7502): p. 582-7.

20. Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature, 2012.

21. Gilar, M., et al., Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem, 2005. 77(19): p. 6426-34.

22. Wang, Y., et al., Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics, 2011. 11(10): p. 2019-26.

23. Song, C., et al., Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. Anal Chem, 2010. 82(1): p. 53-6.

24. Wisniewski, J.R., et al., Universal sample preparation method for proteome analysis. Nat Methods, 2009. 6(5): p. 359-62.

25. Schwanhausser, B., et al., Global quantification of mammalian gene expression control. Nature, 2011.

26. Lyons, G.E., et al., Carbonic anhydrase III, an early mesodermal marker, is expressed in embryonic mouse skeletal muscle and notochord. Development, 1991. 111(1): p. 233-44.

27. Joo, J.I., et al., Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J Proteome Res, 2010. 9(6): p. 2977-87.

28. Aboulaich, N., et al., Polymerase I and transcript release factor regulates lipolysis via a phosphorylation-dependent mechanism. Diabetes, 2011. 60(3): p. 757-65.

29. Ahmed, M., et al., Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring), 2010. 18(1): p. 27-34.

30. Wang, P., et al., Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell Mol Life Sci, 2004. 61(18): p. 2405-17.

31. Todorcevic, M., et al., Gene expression profiles in Atlantic salmon adipose-derived strom-vascular fraction during differentiation into adipocytes. BMC Genomics, 2010. 11: p. 39.

32. Ali Khan, A., et al., Comparative secretome analyses of primary murine white and brown adipocytes reveal novel adipokines. Molecular & Cellular Proteomics, 2018.

33. Trayhurn, P. and J.H. Beattie, Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc, 2001. 60(3): p. 329-39.

34. Trayhurn, P. and I.S. Wood, Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr, 2004. 92(3): p. 347-55.

35. Yue, L., et al., Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression. J Biol Chem, 2004. 279(46): p. 47626-32.

36. Geiger, T., et al., Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics, 2012. 11(3): p. M111 014050.

37. Kimball, S.R., Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol, 1999. 31(1): p. 25-9.

38. Swetha, M. and K.V.A. Ramaiah, Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation. Arch Biochem Biophys, 2015. 585: p. 98-108.

39. Langin, D., Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res, 2006. 53(6): p. 482-91.
40. Williams, A.S., L. Kang, and D.H. Wasserman, *The extracellular matrix and insulin resistance*. Trends Endocrinol Metab, 2015. **26**(7): p. 357-66.

41. Chen, X. and S. Hess, *Adipose proteome analysis: focus on mediators of insulin resistance*. Expert Rev Proteomics, 2008. **5**(6): p. 827-39.

42. Wang, F. and Q. Tong, *SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma*. Mol Biol Cell, 2009. **20**(3): p. 801-8.

43. Wang, F., et al., *SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction*. Aging Cell, 2007. **6**(4): p. 505-514.

44. Boudina, S. and T.E. Graham, *Mitochondrial function/dysfunction in white adipose tissue*. Experimental Physiology, 2014. **99**(9): p. 1168-1178.

45. Choo, H.J., et al., *Mitochondria are impaired in the adipocytes of type 2 diabetic mice*. Diabetologia, 2006. **49**(4): p. 784-91.

46. De Pauw, A., et al., *Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations*. Am J Pathol, 2009. **175**(3): p. 927-39.

47. Wilson-Fritch, L., et al., *Mitochondrial Biogenesis and Remodeling during Adipogenesis and in Response to the Insulin Sensitizer Rosiglitazone*. Molecular and Cellular Biology, 2003. **23**(3): p. 1085-1094.

48. Cao, Y., H. Wang, and W. Zeng, *Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging*. Protein Cell, 2018. **9**(6): p. 527-539.

49. Qiu, Y., et al., *Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat*. Cell, 2014. **157**(6): p. 1292-308.

50. Giordano, A., A. Frontini, and S. Cinti, *Convertible visceral fat as a therapeutic target to curb obesity*. Nat Rev Drug Discov, 2016. **15**(6): p. 405-24.

51. Harms, M. and P. Seale, *Brown and beige fat: development, function and therapeutic potential*. Nat Med, 2013. **19**(10): p. 1252-63.

52. Soni, K.G., et al., *Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase*. J Biol Chem, 2004. **279**(39): p. 40683-9.

53. Sackmann-Sala, L., et al., *Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice*. J Gerontol A Biol Sci Med Sci, 2014. **69**(1): p. 34-43.

54. Pereira, L., et al., *Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-I*. Proc Natl Acad Sci U S A, 1999. **96**(7): p. 3819-23.

55. Lopez, I.P., et al., *Gene expression changes in rat white adipose tissue after a high-fat diet determined by differential display*. Biochem Biophys Res Commun, 2004. **318**(1): p. 234-9.

56. Takahara, H. and H. Sinohara, *Mouse plasma trypsin inhibitors: inhibitory spectrum of trypsin and alpha-1-antitrypsin*. Thromb Res, 1982. **27**(1): p. 45-50.

57. Takahara, H. and H. Sinohara, *Inhibitory spectrum of mouse trypsin and alpha-1-antitrypsin against mouse serine proteases*. J Biochem, 1983. **93**(5): p. 1411-9.
Figure legends

Fig. 1 Proteome profile analysis of the normal WAT proteome.

(A) Venn diagram of protein identification in three technical replicates. (B) Technical variation of the three replicates. (C) Quantitative protein abundance range in WAT samples with the iBAQ algorithm.

Fig. 2 Venn diagram analysis of mouse WAT proteome. (A) Venn diagram analysis of present mouse WAT proteome studies. (B) Protein distribution based on abundance of WAT proteome in this study.

Fig. 3 Functional analysis of WAT proteome according to protein abundance. (A) cellular components. (B) molecular function. (C) biological processes. (D) Canonical pathway of WAT proteome.
Supporting Information

Table S1 The qualitative results from the WAT proteome from three technical replicates.

Table S2 The list of peptides in the WAT proteome.

Table S3 The list of proteins in the WAT proteome.

Table S4 iBAQ intensity of quantified WAT proteins.

Table S5 IPA annotation of the WAT proteome.

Table S6 The list of proteins with signal peptides.

Supplemental Fig. S1 The mouse gonadal white adipose tissue proteome profile workflow.

Supplemental Fig. S2 Correlation plot of protein abundance between two runs.

Supplemental Fig. S3 Venn diagram analysis of mouse WAT proteome with high-abundance proteins in this study.

Supplemental Fig. S4 Top canonical pathways in WAT.

Supplemental Fig. S5 Mitochondrial dysfunction (A) and oxidative phosphorylation (B) signaling pathway. The red-filled graph represents high-abundance protein; the gray one is middle-abundance protein; and the green one is low-abundance protein.)
Table 1 (on next page)

The top ten most abundant proteins in the mouse WAT proteome.
Table 1. The top ten abundant proteins in the mouse WAT proteome.

Accession number	Name	iBAQ value	Percentage
P07724	Serum albumin	2.87E+05	9.33%
P16015	Carbonic anhydrase 3	1.21E+05	1.68%
P58774	Polymerase I and transcript release factor	8.01E+04	1.67%
P20152	Tropomyosin beta chain	8.72E+04	1.36%
P31001	Vimentin	4.93E+04	1.25%
P31001	Desmin	4.23E+04	1.07%
Q60605	Myosin light polypeptide 6	1.30E+05	1.04%
P37804	Transgelin	8.74E+04	0.93%
P16045	Galectin-1	1.20E+05	0.85%
Q08091	Calponin-1	5.05E+04	0.80%
Table 2 (on next page)

Proteomic studies on the mouse WAT proteome.
NO.	Year	Protein identification	Fraction methods	MS	FDR	Reference
1	2001	61	2D-PAGE	MALDI-TOF-MS		Sanchez et al.⁷
2	2001	108	2D-SDS-PAGE	MALDI-TOF-MS, Q-TOF		Lanne et al.⁸
3	2007	3287	SDS-PAGE followed by LC	LTQ-FTICR		Adachi et al.¹⁰
4	2009	2434	SDS-PAGE followed by HPLC	LTQ-Orbitrap Protein level	Protein level=1%	Former et al.¹¹
5	2010	1493	SDS-PAGE followed by HPLC	LTQ-FTICR Protein probability	Protein probability=99%	Xie et al.¹²
6	2018	2308	low-fraction SDSPAGE gel followed by LC	Q-Exactive Protein level FDR=1%	Protein level FDR=1%	Peter et al.¹³
7	2018	6036	RPLC	Triple TOF	Protein level FDR=1%	This study
Figure 1

The mouse white adipose tissue proteome profile workflow.
Figure 2

Proteome profile analysis of the normal WAT proteome.

(A) Venn diagram of protein identification in three technical replicates. (B) Technical variation of the three replicates. (C) Quantitative protein abundance range in WAT samples with the iBAQ algorithm. (D) Venn diagram comparing previous proteomic studies with this study.
Figure 3

Functional annotation (GO and IPA analysis) of WAT proteome.

(A) cellular components, (B) molecular function, (C) biological processes, (D) top canonical pathway.
