Casimir effect in problems with spherical symmetry: new perspectives

Giampiero Esposito1, Alexander Yu. Kamenshchik2 and Klaus Kirsten3

March 28, 2022

1Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Mostra d’Oltremare Padiglione 20, 80125 Napoli, Italy
2L. D. Landau Institute for Theoretical Physics of Russian Academy of Sciences, Kosygina Str. 2, Moscow 117334, Russia
3Universität Leipzig, Institut für Theoretische Physik, Augustusplatz 10, 0-4109 Leipzig, Germany

Abstract. Since the Maxwell theory of electromagnetic phenomena is a gauge theory, it is quite important to evaluate the zero-point energy of the quantized electromagnetic field by a careful assignment of boundary conditions on the potential and on the ghost fields. Recent work by the authors has shown that, for a perfectly conducting spherical shell, it is precisely the contribution of longitudinal and normal modes of the potential which enables one to reproduce the result first due to Boyer. This is obtained provided that one works with the Lorenz gauge-averaging functional, and with the help of the Feynman choice for a dimensionless gauge parameter. For arbitrary values of the gauge parameter, however, covariant and non-covariant gauges lead to an entangled system of three eigenvalue equations. Such a problem is crucial both for the foundations and for the applications of quantum field theory.
Since Casimir produced his remarkable calculation of zero-point energy of the electromagnetic field for the case of two perfectly conducting plates of area A and separation d: $\Delta E = -\frac{\pi^2 \hbar c}{720} \frac{A^4}{d^3}$, there has been an increasing series of efforts in the literature to evaluate suitable differences in zero-point energies for various sorts of geometries and in a variety of media. Since this is a research field where the theoretical predictions have been tested against observations \[\text{[1, 2]},\] it is clear why the investigation of Casimir energies has attracted efforts over half a century, with even better perspectives for the years to come. Theoretical physicists, however, who are also interested in the general structures, may approach the Casimir energy calculation with the aim of re-deriving a non-trivial prediction in a way which is viewed as more fundamental from the point of view of general principles. In particular, we refer here to the path-integral quantization of gauge theories. As is well known, on using the Faddeev-Popov formalism, one performs Gaussian averages over gauge functionals χ^μ, by adding to the original Lagrangian a gauge-averaging term $\chi^\mu \beta_{\mu\nu} \chi^\nu$, where $\beta_{\mu\nu}$ is any constant invertible matrix. This turns the original operator on field perturbations into a new operator which has the advantage of being non-degenerate. The result of a one-loop calculation is expected to be χ- and β-independent, although no rigorous proof exists on manifolds with boundary. In particular, for Maxwell theory, $\beta_{\mu\nu}$ reduces to a 1×1 matrix, i.e. a real-valued parameter, and χ^μ reduces to the familiar covariant or non-covariant gauges for Maxwell theory, e.g. Lorenz, Coulomb, axial.
Our paper describes recent work by the authors [3] on the application of the Lorenz and axial gauges to the evaluation of the zero-point energy of a perfectly conducting spherical shell. The gauge-invariant boundary conditions applied by Boyer in his seminal paper [4] require that tangential components of the electric field should vanish on a two-sphere of radius R. More precisely, on denoting by r, θ, φ the spherical coordinates, which are appropriate for the analysis of a conducting spherical shell, one writes

$$[E_\theta]_{\partial M} = 0, \quad (1)$$

$$[E_\varphi]_{\partial M} = 0. \quad (2)$$

The modes of the electromagnetic field are then split into transverse electric (TE) or magnetic multipole: $\vec{r} \cdot \vec{E} = E_r = 0$, and transverse magnetic (TM) or electric multipole: $\vec{r} \cdot \vec{B} = B_r = 0$. On using the standard notation for spherical Bessel functions, one finds that, in the TE case, Eqs. (1) and (2) lead to

$$[A_l j_l(kr) + B_l n_l(kr)]_{\partial M} = 0, \quad (3)$$

while in the TM case the vanishing of E_θ and E_φ at the boundary implies that

$$\left[\frac{d}{dr} (r(C_l j_l(kr) + D_l n_l(kr))) \right]_{\partial M} = 0. \quad (4)$$

Of course, if the background includes the point $r = 0$, the coefficients B_l and D_l should be set to zero for all values of l to obtain a regular solution. Such a singularity is instead avoided if one studies the annular region in between two concentric spheres.
On the other hand, if one follows a path-integral approach to the quantization of Maxwell theory, it is well known that the second-order operator acting on A^μ perturbations when the Lorenz gauge-averaging functional is chosen turns out to be, in a flat background,

$$P_{\mu\nu} = -g_{\mu\nu} \Box + \left(1 - \frac{1}{\alpha}\right) \nabla_\mu \nabla_\nu. \tag{5}$$

With a standard notation, g is the background metric, α is a dimensionless parameter, \Box is the D’Alembert operator

$$\Box \equiv -\frac{\partial^2}{\partial t^2} + \Delta,$$

where Δ is the Laplace operator (in our problem, Δ is considered on a disk). This split of the \Box operator leads eventually to the eigenvalue equations for the Laplace operator acting on the temporal, normal and tangential components of the potential (see below). At this stage, the potential, with its gauge transformations

$$\varepsilon A_\mu \equiv A_\mu + \nabla_\mu \varepsilon, \tag{6}$$

is viewed as a more fundamental object. Some care, however, is then necessary to ensure gauge invariance of the whole set of boundary conditions. For example, if one imposes the boundary conditions

$$[A_t]_{\partial M} = 0, \tag{7}$$

$$[A_\theta]_{\partial M} = 0, \tag{8}$$

$$[A_\phi]_{\partial M} = 0, \tag{9}$$
this is enough to ensure that the boundary conditions (1) and (2) hold. However, within this framework, one has to impose yet another condition. By virtue of Eq. (5), the desired boundary condition involves the gauge function:

\[[\varepsilon]_{\partial M} = 0. \quad (10) \]

Equation (10) ensures that the boundary conditions (7)–(9) are preserved under the gauge transformations (6). What happens is that \(\varepsilon \) is expanded in harmonics on the two-sphere according to the relation

\[\varepsilon(t, r, \theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \varepsilon_l(r)Y_{lm}(\theta, \varphi)e^{i\omega t}. \quad (11) \]

After a gauge transformation, one finds from (6)

\[[\varepsilon A_t]_{\partial M} - [A_t]_{\partial M} = [\nabla_t \varepsilon]_{\partial M}, \quad (12) \]

\[[\varepsilon A_\theta]_{\partial M} - [A_\theta]_{\partial M} = [\nabla_\theta \varepsilon]_{\partial M}, \quad (13) \]

\[[\varepsilon A_\varphi]_{\partial M} - [A_\varphi]_{\partial M} = [\nabla_\varphi \varepsilon]_{\partial M}, \quad (14) \]

and by virtue of (11) one has

\[[\nabla_t \varepsilon]_{\partial M} = i\omega [\varepsilon]_{\partial M}, \quad (15) \]

\[[\nabla_\theta \varepsilon]_{\partial M} = \left[\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \varepsilon_l(r)Y_{lm,\theta}(\theta, \varphi)e^{i\omega t} \right]_{\partial M}, \quad (16) \]

\[[\nabla_\varphi \varepsilon]_{\partial M} = \left[\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \varepsilon_l(r)Y_{lm,\varphi}(\theta, \varphi)e^{i\omega t} \right]_{\partial M}. \quad (17) \]

Thus, if \(\varepsilon_l(r) \) is set to zero at the boundary \(\forall l \), the right-hand sides of (15)–(17) vanish at \(\partial M \). But

\[[\varepsilon_l(r)]_{\partial M} = 0 \quad \forall l \]
is precisely the condition which ensures the vanishing of ε at ∂M, and the proof of our statement is completed.

At this stage, the only boundary condition on A_r whose preservation under the transformation (13) is again guaranteed by Eq. (10) is the vanishing of the gauge-averaging functional $\Phi(A)$ at the boundary:

$$[\Phi(A)]_{\partial M} = 0.$$ \hspace{1cm} (18)

On choosing the Lorenz term $\Phi_L(A) \equiv \nabla^b A_b$, Eq. (18) leads to

$$\left[\frac{\partial A_r}{\partial r} + \frac{2}{r} A_r \right]_{\partial M} = 0.$$ \hspace{1cm} (19)

It is only upon considering the joint effect of Eqs. (7)–(10), (18) and (19) that the whole set of boundary conditions becomes gauge-invariant. This scheme is also BRST-invariant. In the following calculations, it will be enough to consider a \textit{real-valued gauge function} obeying Eq. (10) at the boundary, and then multiply the resulting contribution to the zero-point energy by -2, bearing in mind the fermionic nature of ghost fields for the electromagnetic field.

In our problem, the electromagnetic potential has a temporal component A_t, a normal component A_r, and tangential components A_k (hereafter, k refers to θ and φ). They can all be expanded in harmonics on the two-sphere, according to the standard formulae

$$A_t(t, r, \theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_l(r) Y_{lm}(\theta, \varphi) e^{i\omega t},$$ \hspace{1cm} (20)

$$A_r(t, r, \theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} b_l(r) Y_{lm}(\theta, \varphi) e^{i\omega t}. \hspace{1cm} (21)$$
\[A_k(t, r, \theta, \varphi) = \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[c_l(r) \partial_k Y_{lm}(\theta, \varphi) + T_l(r) \varepsilon_{kp} \partial^p Y_{lm}(\theta, \varphi) \right] e^{i\omega t}. \]

This means that we are performing a Fourier analysis of the components of the electromagnetic potential. The two terms in square brackets of Eq. (22) refer to longitudinal and transverse modes, respectively. On setting \(\alpha = 1 \) in Eq. (3), the evaluation of basis functions for electromagnetic perturbations can be performed after studying the action of the operator \(-g_{\mu\nu} \Box\) on the components (20)–(22). For this purpose, we perform the analytic continuation \(\omega \to iM \), which makes it possible to express the basis functions in terms of modified Bessel functions (of course, one could work equally well with \(\omega \), which leads instead to ordinary Bessel functions). For the temporal component, one deals with the Laplacian acting on a scalar field on the three-dimensional disk:

\[
(\triangle A)_t = \frac{\partial^2 A_t}{\partial r^2} + \frac{2}{r} \frac{\partial A_t}{\partial r} + \frac{1}{r^2} (\triangle A)_t, \tag{23}
\]

which leads to the eigenvalue equation

\[
\left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2} \right] a_l = M^2 a_l. \tag{24}
\]

Hereafter, we omit for simplicity any subscript for \(M^2 \), and the notation for the modes will make it sufficiently clear which spectrum is studied. The solution of Eq. (24) which is regular at \(r = 0 \) is thus found to be

\[
a_l(r) = \frac{1}{\sqrt{r}} I_{l+1/2}(Mr), \tag{25}
\]

up to an unessential multiplicative constant.
The action of \(^{(3)}\triangle\) on the component \(A_r\) normal to the two-sphere is

\[
^{(3)}(\triangle A)_r = \frac{\partial^2 A_r}{\partial r^2} + \frac{2}{r} \frac{\partial A_r}{\partial r} + \frac{1}{r^2} \left(^{(2)}\triangle A \right)_r - \frac{2}{r^2} A_r - \frac{2}{r^3} A_p |^p,
\]

where the stroke \(|\) denotes two-dimensional covariant differentiation on a two-sphere of unit radius. Last, the Laplacian on tangential components takes the form

\[
^{(3)}(\triangle A)_k = \frac{\partial^2 A_k}{\partial r^2} + \frac{1}{r^2} \left(^{(2)}\triangle A \right)_k - \frac{1}{r^2} A_k + \frac{2}{r} \frac{\partial A_r}{\partial r}.
\]

By virtue of the expansions (21) and (22), jointly with the standard properties of spherical harmonics, Eqs. (26) and (27) lead to the eigenvalue equation

\[
\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} \right] T_l = M^2 T_l
\]

for transverse modes, jointly with entangled eigenvalue equations for normal and longitudinal modes (here \(l \geq 1\):

\[
\left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{(l(l+1)+2)}{r^2} \right] b_l + \frac{2l(l+1)}{r^3} c_l = M^2 b_l,
\]

\[
\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} \right] c_l + \frac{2}{r^3} b_l = M^2 c_l.
\]

The mode \(b_0(r)\) is instead decoupled, and is proportional to \(I_{\nu/2}(Mr)/\sqrt{r}\) in the interior problem. It is indeed well known that gauge modes of the Maxwell field obey a coupled set of eigenvalue equations. In arbitrary gauges, one cannot decouple these modes. This can be proved by trying to put in diagonal form the \(2 \times 2\) operator matrix acting on the modes \(b_l\) and \(c_l\). In our problem, however, with our choice of gauge-averaging functional and gauge parameter,
gauge modes can be disentangled, and a simpler method to achieve this exists. For this purpose, we point out that, since the background is flat, if gauge modes can be decoupled, they can only reduce to linear combinations of Bessel functions, i.e.,

\[b_l(r) = \frac{B_\nu(Mr)}{\sqrt{r}}, \quad (31) \]

and

\[c_l(r) = C(\nu)B_\nu(Mr)\sqrt{r}. \quad (32) \]

With our notation, \(C(\nu) \) is some constant depending on \(\nu \), which is obtained in turn from \(l \). To find \(\nu \) and \(C(\nu) \), we insert the ansatz (31) and (32) into the system of equations (29) and (30), and we require that the resulting equations should be of Bessel type for \(B_\nu(Mr) \), i.e.,

\[
\left[\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - M^2 \left(1 + \frac{\nu^2}{M^2 r^2} \right) \right] B_\nu(Mr) = 0. \quad (33)
\]

This leads to two algebraic equations for \(\nu^2 \). By comparison, one thus finds an algebraic equation of second degree for \(C \):

\[l(l + 1)C^2 - C - 1 = 0, \quad (34) \]

whose roots are \(C_+ = \frac{1}{l} \), and \(C_- = -\frac{1}{(l+1)} \). The corresponding values of \(\nu \) are \(\nu_+ = l - \frac{1}{2} \), and \(\nu_- = l + \frac{3}{2} \). Hence one finds the basis functions for normal and longitudinal perturbations in the interior problem in the form

\[b_l(r) = \alpha_{1,l} \frac{I_{l+3/2}(Mr)}{\sqrt{r}} + \alpha_{2,l} \frac{I_{l-1/2}(Mr)}{\sqrt{r}}, \quad (35) \]

\[c_l(r) = -\frac{\alpha_{1,l}}{l+1} I_{l+3/2}(Mr)\sqrt{r} + \frac{\alpha_{2,l}}{l} I_{l-1/2}(Mr)\sqrt{r}, \quad (36) \]
whereas, from Eq. (28), transverse modes read

\[T_\ell(r) = I_{\ell+1/2}(Mr)\sqrt{r}. \] (37)

Last, but not least, ghost modes obey an eigenvalue equation analogous to (24), i.e.

\[\left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2} \right] \varepsilon_\ell = M^2 \varepsilon_\ell, \] (38)

and hence they read

\[\varepsilon_\ell(r) = \frac{1}{\sqrt{r}} I_{\ell+1/2}(Mr). \] (39)

In the exterior problem, i.e., for \(r \) greater than the two-sphere radius \(R \), one has simply to replace the modified Bessel functions of first kind in Eqs. (25), (35)–(37) and (39) by modified Bessel functions of second kind, to ensure regularity at infinity.

In our problem, ghost modes are of course decoupled from the modes for the electromagnetic potential which occur in the expansions (20)–(22). Nevertheless, this does not mean that they do not play a role in the Casimir energy calculation. By contrast, we already know (see comments after (10)) that boundary conditions on the ghost are strictly necessary to ensure gauge invariance of the boundary conditions on the potential. It is then clear that such boundary conditions, combined with the differential equation (38), lead to a ghost spectrum whose contribution to the Casimir energy can only be obtained after a detailed calculation (e.g. Green-function approach, or \(\zeta \)-function regularization). It should not be surprising that ghost terms are important, since one has already included effects of other degrees of freedom.
which should be compensated for [3]. This issue is further clarified by the analysis of the original Casimir problem: two perfectly conducting parallel plates. In a covariant formalism, one has to consider the energy-momentum tensor for ghosts, which is found to give a non-vanishing contribution to the average energy density in vacuum. After taking into account boundary conditions for the potential entirely analogous to our Eqs. (7)–(9) and (18), one then finds a renormalized value of the zero-point energy in complete agreement with the result first found by Casimir.

By virtue of Eq. (7), the modes $a_l(r)$ obey homogeneous Dirichlet conditions:

$$[a_l(r)]_{\partial M} = 0, \forall l \geq 0.$$ (40)

Moreover, Eq. (19) implies that the modes b_l obey the boundary conditions

$$\left[\frac{\partial}{\partial r} r^2 b_l(r) \right]_{\partial M} = 0, \forall l \geq 0.$$ (41)

Last, the modes c_l and T_l, being the tangential modes, obey Dirichlet boundary conditions (cf. Eqs. (8) and (11))

$$[c_l(r)]_{\partial M} = [T_l(r)]_{\partial M} = 0, \forall l \geq 1.$$ (42)

On taking into account how the modes are expressed in terms of Bessel functions (see Eqs. (27), (35)–(37)), one thus finds five sets of eigenvalue conditions for the interior and exterior problems, respectively:

(i) Temporal modes:

$$I_{l+1/2}(MR) = 0, \forall l \geq 0.$$ (43)
\[K_{l+1/2}(MR) = 0, \forall l \geq 0. \] (44)

(ii) Decoupled normal mode:
\[\left[\frac{\partial}{\partial r} r^{3/2} I_{3/2}(Mr) \right]_{r=R} = 0, \] (45)
\[\left[\frac{\partial}{\partial r} r^{3/2} K_{3/2}(Mr) \right]_{r=R} = 0. \] (46)

(iii) Coupled longitudinal and normal modes (here \(\nu \equiv l + 3/2 \)):
\[(\nu - 1/2) I_\nu'(MR) I_{\nu-2}(MR) + 3(\nu - 1) \frac{I_\nu(MR)}{MR} I_{\nu-2}(MR) \]
\[+ (\nu - 3/2) I'_\nu(MR) I_\nu(MR) = 0, \] (47)
\[(\nu - 1/2) K_\nu'(MR) K_{\nu-2}(MR) + 3(\nu - 1) \frac{K_\nu(MR)}{MR} K_{\nu-2}(MR) \]
\[+ (\nu - 3/2) K'_\nu(MR) K_\nu(MR) = 0. \] (48)

(iv) Transverse modes:
\[I_{l+1/2}(MR) = 0, \forall l \geq 1, \] (49)
\[K_{l+1/2}(MR) = 0, \forall l \geq 1. \] (50)

(v) Ghost modes (multiplying their \(\zeta \)-function by -2):
\[I_{l+1/2}(MR) = 0, \forall l \geq 0, \] (51)
\[K_{l+1/2}(MR) = 0, \forall l \geq 0. \] (52)
The eigenvalue conditions (45) and (46) can be re-expressed in the form

\[I_{1/2}(MR) = 0, \quad (53) \]

\[K_{1/2}(MR) = 0. \quad (54) \]

It is thus clear that, by construction, the contribution of Eqs. (53) and (54) to the Casimir energy of a conducting spherical shell cancels exactly the joint effect of Eqs. (43), (44), (49), (50), (51) and (52), bearing in mind the fermionic nature of ghost fields. In general, each set of boundary conditions involving a set of positive eigenvalues \(\{ \lambda_k \} \) contributes to the Casimir energy in a way which is clarified by the \(\zeta \)-function method, because the regularized ground-state energy is defined by the equation (for \(\text{Re}(s) > s_0 = 2 \))

\[E_0(s) \equiv -\frac{1}{2} \sum_k (\lambda_k) \frac{1}{s} \mu^{2s} = -\frac{1}{2} \zeta \left(s - \frac{1}{2} \right) \mu^{2s}, \quad (55) \]

which is later analytically continued to the value \(s = 0 \) in the complex-\(s \) plane. Here \(\mu \) is the usual mass parameter and \(\zeta \) is the \(\zeta \)-function of the positive-definite elliptic operator \(B \) with discrete spectrum \(\{ \lambda_k \} \):

\[\zeta_B(s) \equiv \text{Tr}_{L^2}(B^{-s}) = \sum_k (\lambda_k)^{-s}. \quad (56) \]

In other words, the regularized ground-state energy is equal to \(-\frac{1}{2} \zeta_B(-1/2) \), at least for the cases where \(\zeta_B(s) \) has no pole at \(s = -1/2 \), as is the case for the problem considered here. In general, however, this will not be true but instead one has \(\text{Res} \ \zeta_B(-1/2) \sim b_2 \), and as a result an ambiguity for the ground-state energy proportional to the heat-kernel coefficient \(b_2 \) of the
operator B remains. In these cases a renormalization procedure has to be performed to eliminate this ambiguity.

Although the eigenvalues are known only implicitly, the form of the function occurring in the mode-by-mode expression of the boundary conditions leads eventually to $E_0(0)$. The non-trivial part of the analysis is represented by Eqs. (47) and (48). These are obtained by imposing the Robin boundary conditions for normal modes, and Dirichlet conditions for longitudinal modes. To find non-trivial solutions of the resulting linear systems of two equations in the unknowns $\alpha_{1,l}$ and $\alpha_{2,l}$, the determinants of the matrices of coefficients should vanish. This leads to Eqs. (47) and (48). At this stage, it is more convenient to re-express such equations in terms of Bessel functions of order $l + 1/2$. On using the standard recurrence relations among Bessel functions and their first derivatives, one thus finds the following equivalent forms of eigenvalue conditions:

$$I_{l+1/2}(MR) \left[I'_{l+1/2}(MR) + \frac{1}{2MR} I_{l+1/2}(MR) \right] = 0, \forall l \geq 1,$$

$$K_{l+1/2}(MR) \left[K'_{l+1/2}(MR) + \frac{1}{2MR} K_{l+1/2}(MR) \right] = 0, \forall l \geq 1. \tag{58}$$

Thus, the contribution of the coupled normal and longitudinal modes splits into the sum of contributions of two scalar fields obeying Dirichlet and Robin boundary conditions, respectively, with the $l = 0$ mode omitted. This corresponds exactly to the contributions of TE and TM modes (Eqs. (3) and (4)), and gives the same contribution as the one found by Boyer [4].

Following our initial remarks, it is now quite important to understand the key features of the Casimir-energy calculations in other gauges. For this
purpose, we consider a gauge-averaging functional of the axial type, i.e.

$$\Phi(A) \equiv n^\mu A_\mu,$$ \hspace{1cm} (59)

where \(n^\mu \) is the unit normal vector field \(n^\mu = (0, 1, 0, 0) \). The resulting gauge-field operator is found to be, in our flat background,

$$P^{\mu\nu} = -g^{\mu\nu} \Box + \nabla^\mu \nabla^\nu + \frac{1}{\alpha} n^\mu n^\nu.$$ \hspace{1cm} (60)

Note that, unlike the case of Lorenz gauge, the \(\alpha \) parameter is dimensionful and has dimension [length]^2. Now we impose again the boundary condition according to which the gauge-averaging functional should vanish at \(\partial M \):

$$[\Phi(A)]_{\partial M} = [n^\mu A_\mu]_{\partial M} = [A_r]_{\partial M} = 0,$$ \hspace{1cm} (61)

which implies that all \(b_t \) modes vanish at the boundary (cf. Eq. (41)).

A further consequence of the axial gauge may be derived by acting on the field equations

$$P^{\mu\nu} A_\nu = 0$$ \hspace{1cm} (62)

with the operations of covariant differentiation and contraction with the unit normal, i.e.

$$\nabla_\mu P^{\mu\nu} A_\nu = 0,$$ \hspace{1cm} (63)

$$n_\mu P^{\mu\nu} A_\nu = 0.$$ \hspace{1cm} (64)

Equation (63) leads, in flat space, to the differential equation

$$\frac{\partial A_r}{\partial r} + \frac{2}{r} A_r = 0.$$ \hspace{1cm} (65)
This first-order equation leads to b_l modes having the form

$$b_l = \frac{b_{0,l}}{r^2}. \tag{66}$$

Thus, by virtue of the boundary condition (31), the modes b_l vanish everywhere, and hence A_r vanishes identically if the axial gauge-averaging functional is chosen with such boundary conditions.

Moreover, Eq. (64) leads to the equation

$$-i\omega \frac{\partial A_t}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial r} A^k_k = 0, \tag{67}$$

which implies, upon making the analytic continuation $\omega \to iM$,

$$M \frac{da_l}{dr} - \frac{l(l+1)}{r^2} \frac{dc_l}{dr} = 0. \tag{68}$$

At this stage, the transverse modes T_l obey again the eigenvalue equation (28), whereas the remaining set of modes obey differential equations which, from Eq. (62), are found to be

$$\left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2} \right] a_l - M \frac{l(l+1)}{r^2} c_l = 0, \tag{69}$$

$$\frac{d^2 c_l}{dr^2} - Ma_l - M^2 c_l = 0, \tag{70}$$

$$a_0 = 0. \tag{71}$$

In particular, Eq. (71) is obtained from Eq. (70) (when $l = 0$), which is a reduced form of the Eq. $P_{k\nu} A^{\nu} = 0$ upon bearing in mind that b_l modes vanish everywhere.
Last, but not least, one should consider the ghost operator, which, in the axial gauge, is found to be

\[Q = -\frac{\partial}{\partial r}. \]

(72)

This leads to ghost modes having the form

\[\varepsilon_l = \varepsilon_{0,l} e^{-Mr}. \]

(73)

On the other hand, following the method described after Eq. (10), one can prove that, also in the axial gauge, the ghost field should vanish at the boundary, to ensure gauge invariance of the whole set of boundary conditions on the potential. It is then clear, from Eq. (73), that ghost modes vanish everywhere in the axial gauge.

On studying the system (68)–(70) one has first to prove that these three equations are compatible. This is indeed the case, because differentiation with respect to \(r \) of Eq. (68) leads to a second-order equation which, upon expressing \(\frac{dc_l}{dr} \) from Eq. (68) and \(\frac{d^2c_l}{dr^2} \) from Eq. (70), is found to coincide with Eq. (69). Thus, we have a system of two second-order differential equations for two functions \(a_l \) and \(c_l \). However, these functions are not independent, in that they are connected by Eq. (68). Hence for every value of \(l \) one has one degree of freedom instead of two. Finally, we have for every \(l \) two degrees of freedom, one resulting from Eqs. (68)–(70), and another, i.e. the transverse mode \(T_l \). Thus, an estimate of the number of degrees of freedom which contribute to the Casimir energy coincides with that in other gauges.

Moreover, the parameter \(\alpha \) does not affect the Casimir energy, since \(\alpha \) does not occur in any of the eigenvalue equations.
Unfortunately, we cannot obtain the exact form of the solutions of Eqs. (69) and (70) in terms of special functions (e.g. Bessel or hypergeometric). This crucial point can be made precise by remarking that, if it were possible to disentangle the system (69) and (70), one could find some functions $\alpha_l, \beta_l, V_l, W_l$ such that the 2×2 matrix

$$\begin{pmatrix} 1 & V_l \\ W_l & 1 \end{pmatrix} \begin{pmatrix} \hat{A}_l & \hat{B}_l \\ \hat{C}_l & \hat{D}_l \end{pmatrix} \begin{pmatrix} 1 & \alpha_l \\ \beta_l & 1 \end{pmatrix}$$

has no non-vanishing off-diagonal elements, where the operators $\hat{A}_l, \hat{B}_l, \hat{C}_l, \hat{D}_l$ are the ones occurring in Eqs. (69) and (70). For example, the first off-diagonal element of such matrix is the operator $\hat{A}_l \alpha_l + \hat{B}_l + V_l (\hat{C}_l \alpha_l + \hat{D}_l)$. On setting to zero the coefficients of $\frac{d^2}{dr^2}$ and $\frac{d}{dr}$ one finds that $\alpha_l = -V_l = \frac{\alpha_{0,l}}{r}$, where $\alpha_{0,l}$ is a constant. But it is then impossible to set to zero the "potential" term of this operator, i.e. its purely multiplicative part.

Nevertheless, there is some evidence that the axial gauge may be consistently used to evaluate the Casimir energy. For this purpose we find it helpful to consider a simpler problem, i.e. the Casimir energy in the axial gauge for the case of flat boundary. In this case the basis functions are plane waves

$$A_\mu = A_{0,\mu} e^{i(k_xx + k_yy + k_zz - \omega t)}, \quad (74)$$

where the admissible values of k_x, k_y, k_z are determined by the boundary conditions, which are here taken to be analogous to the case of a curved boundary. Let us choose the conducting boundaries parallel to the x- and y-axes, while the vector n^μ is directed along the z-axis. Then the condition
of compatibility of field equations in the axial gauge is reduced to

$$D \equiv \det \begin{pmatrix} -k^2 & \omega k_x & \omega k_y & \omega k_z \\ \omega k_x & k_y^2 + k_z^2 - \omega^2 & -k_x k_y & -k_x k_z \\ \omega k_y & -k_x k_y & k_x^2 + k_z^2 - \omega^2 & -k_y k_z \\ \omega k_z & -k_x k_z & -k_y k_z & k_x^2 + k_y^2 - \omega^2 + \frac{1}{\alpha} \end{pmatrix} = 0.$$

(75)

Direct calculation shows that this determinant is equal to

$$D = -\frac{1}{\alpha} k_z^2 \left(\omega^2 - k^2 \right)^2.$$

(76)

Hence we have reproduced the correct dispersion relation between energy ω and wave number k (to every admissible value of k there correspond two contributions to the Casimir energy of the form $\omega = |\vec{k}|$). Of course, no non-vanishing ghost modes exist, once that the axial type gauge-averaging functional is set to zero at the boundary (cf. (61), (72) and (73)). Interestingly, on imposing the boundary conditions, one can set to zero the A_z component of the electromagnetic potential as was done with A_r in the spherical case. In this case the compatibility condition of field equations is reduced to the vanishing of the determinant of a 3×3 matrix, obtained by omitting the fourth row and the fourth column in Eq. (75). One can easily see that the determinant of this 3×3 matrix coincides with that of the 4×4 matrix up to a multiplicative factor $\frac{1}{\alpha}$, which does not affect the dispersion relation.

To sum up, a complete correspondence can be established between the key features of the axial gauge in the cases of flat and curved boundary: the α parameter does not affect the Casimir energy, the component of the potential orthogonal to the boundary vanishes, ghost modes vanish, and only two independent degrees of freedom contribute. On going from the
flat to the curved case, however, the analysis of the dispersion relation is replaced by the problem of finding explicit solutions of Eqs. (68)–(70), with the corresponding eigenvalue conditions. This last technical problem goes beyond the present capabilities of the authors, but the exact results and complete correspondences established so far seem to add evidence in favour of a complete solution being in sight in the near future.

We have studied an approach to the evaluation of the zero-point energy of a conducting spherical shell which relies on a careful investigation of the potential and of ghost fields, with the corresponding set of boundary conditions on A_μ perturbations and ghost modes. When Boyer first developed his calculation, the formalism of ghost fields for the quantization of gauge fields and gravitation had just been developed, and hence it is quite natural that, in the first series of papers on Casimir energies, the ghost contribution was not considered, since the emphasis was always put on TE and TM modes for the electromagnetic field. On the other hand, the Casimir energy is a peculiar property of the quantum theory, and an approach via path-integral quantization regards the potential and the ghost as more fundamental. This is indeed necessary to take into account that Maxwell theory is a gauge theory. Some of these issues had been studied in the literature [5, 6], including calculations with ghosts in covariant gauges, but, to our knowledge, an explicit mode-by-mode analysis of the A_μ and ghost contributions in problems with spherical symmetry was still lacking in the literature. The contributions of our investigation are as follows [3].
First, the basis functions for the electromagnetic potential have been found explicitly when the Lorenz gauge-averaging functional is used. The temporal, normal, longitudinal and transverse modes have been shown to be linear combinations of spherical Bessel functions. Second, it has been proved that transverse modes of the potential are, by themselves, unable to reproduce the correct value for the Casimir energy of a conducting spherical shell. Third, it is exactly the effect of coupled longitudinal and normal modes of A_μ which is responsible for the value of $\Delta E = 0.09\hbar c/2R$ found by Boyer. This adds evidence in favour of physical degrees of freedom for gauge theories being a concept crucially depending on the particular problem under consideration and on the boundary conditions. Fourth, ghost modes play a non-trivial role as well, in that they cancel the contribution resulting from transverse, decoupled and temporal modes of the potential. Fifth, the axial gauge-averaging functional has been used to study the Casimir energy for Boyer’s problem. Unlike the case of the Lorenz gauge, ghost modes and normal modes are found to vanish, and one easily proves that the result is independent of the α parameter. A complete comparison with the case of flat boundary has also been performed, getting insight into the problems of independent degrees of freedom and non-vanishing contributions to the Casimir energy.

Indeed, recent investigations of Euclidean Maxwell theory in quantum cosmological backgrounds had already shown that longitudinal, normal and ghost modes are all essential to obtain the value of the conformal anomaly
and of the one-loop effective action \[7\]. Further evidence of the non-trivial role played by ghost modes in curved backgrounds had been obtained, much earlier, in Ref. \[8\]. Hence, we find it non-trivial that the ghost formalism gives results in complete agreement with Boyer’s investigation. Note also that, in the case of perfectly conducting parallel plates, the ghost contribution cancels the one due to tangential components of the potential (see Sec. 4.5 of Ref. \[8\]). This differs from the cancellations found in our paper in the presence of spherical symmetry.

The main open problem is now the explicit proof that the Casimir energy is independent of the choice of gauge-averaging functional. This task is as difficult as crucial to obtain a thorough understanding of the quantized electromagnetic field in the presence of bounding surfaces. In general, one has then to study entangled eigenvalue equations for temporal, normal and longitudinal modes. The general solution is not (obviously) expressed in terms of well known special functions. A satisfactory understanding of this problem is still lacking, while its solution would be of great relevance both for the foundations and for the applications of quantum field theory. In covariant gauges, coupled eigenvalue equations with arbitrary gauge parameter also lead to severe technical problems, which are described in Ref. \[8\]. A further set of non-trivial applications lies in the consideration of more involved geometries, where spherical symmetry no longer holds, in the investigation of media which are not perfect conductors, and in the analysis of radiative corrections \[9, 10\]. Thus, there exists increasing evidence that the study of
Casimir energies will continue to play an important role in quantum field theory in the years to come, and that a formalism relying on potentials and ghost fields is, indeed, crucial on the way towards a better understanding of quantized fields.

References

[1] S. K. Lamoreaux, Demonstration of the Casimir force in the 0.6 to 6 µm range, *Phys. Rev. Lett.* **78**, 5–8 (1997).

[2] U. Mohideen and A. Roy, A precision measurement of the Casimir force from 0.1 to 0.9 µm, [physics 9805038](https://arxiv.org/abs/physics/9805038).

[3] G. Esposito, A. Yu. Kamenshchik, and K. Kirsten, Zero-Point Energy of a Conducting Spherical Shell, [hep-th 9707168](https://arxiv.org/abs/hep-th/9707168) (to appear in Int. J. Mod. Phys. A).

[4] T. H. Boyer, Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle, *Phys. Rev.* **174**, 1764–1776 (1968).

[5] J. Ambjorn and R. J. Hughes, Gauge fields, BRS symmetry and the Casimir effect, *Nucl. Phys. B* **217**, 336–348 (1983).

[6] M. Bordag, D. Robaschik, and E. Wieczorek, Quantum field theoretic treatment of the Casimir effect, *Ann. Phys. (N.Y.)* **165**, 192–213 (1985).
[7] G. Esposito, A. Yu. Kamenshchik, and G. Pollifrone, *Euclidean Quantum Gravity on Manifolds with Boundary*, Kluwer, Dordrecht (1997).

[8] G. M. Shore, Dimensional regularization of gauge theories in spherical spacetime: free field trace anomalies, *Ann. Phys. (N.Y.)* **117**, 121–146 (1979).

[9] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, *Vacuum Quantum Effects in Strong Fields*, Friedmann Laboratory Publishing, St. Petersburg (1994).

[10] M. Bordag and J. Lindig, Radiative correction to the Casimir force on a sphere, *Phys. Rev. D* **58**, 045003 (1998).