Polarized Structure Function g_2 in the CM bag model

X. Song

Institute of Nuclear and Particle Physics,
Department of Physics, University of Virginia,
Charlottesville, VA 22901, USA.

Abstract

The spin-dependent structure functions $g_1(x)$, $g_2(x)$, $g_2^{WW}(x)$ and $\bar{g}_2(x)$ and their moments are studied in the CM bag model. The results show that

(i) $\int_0^1 g_2(x)dx = 0$, i.e. the Burkhardt-Cottingham sum rule holds, hence $g_2(x)$ must have at least one non-trivial zero besides $x = 0$ and $x = 1$.

(ii) $\int_0^1 x^2g_2(x)dx$ is negative for the proton, neutron and deuteron.

(iii) $\int_0^1 x^2g_2(x)dx$ is about one order of magnitude smaller than $\int_0^1 x^2g_1(x)dx$, hence the twist-3 matrix element is approximately equal to the twist-2 matrix element. The results are compared with most recent data and predictions from the MIT bag model, lattice QCD and QCD sum rules.

13.60.Hb; 14.39.Ba

* E-mail address: xs3e@virginia.edu
I. INTRODUCTION

In recent years, the investigation of the spin structure of the nucleon by using deep inelastic lepton-hadron scattering (DIS) experiments has been an exciting and controversial field in hadron physics. The experiments performed by EMC, SMC at CERN [1,2], and E142, E143 at SLAC [3–5] provide direct information on the matrix elements of spin-dependent operators in the nucleon. The spin-dependent DIS cross section is determined by the antisymmetric part of the hadronic tensor

\[W^A_{\mu\nu} = i\epsilon_{\mu\nu\rho\sigma} \frac{q^\rho}{Q^2} \left\{ S^\sigma g_1(x, Q^2) + [S^\sigma - P^\sigma \frac{S \cdot q}{P \cdot q}] g_2(x, Q^2) \right\} \]

(1)

where \(P \) and \(q \) are the four vectors of the nucleon and virtual photon momentums. \(g_1(x, Q^2) \) and \(g_2(x, Q^2) \) are two spin-dependent structure functions for the Bjorken variable \(x = Q^2 / 2P \cdot q \equiv Q^2 / 2M^2 \) with \(Q^2 = -q^2 \) is the transferred four momentum squared and \(S^\sigma = \bar{U}(P,S)\gamma^\sigma\gamma_5U(P,S) \) is the covariant spin vector of the nucleon.

According to Operator Product Expansion (OPE) analysis, to order \(M^2 / Q^2 \), the lowest two moments of \(g_1(x, Q^2) \) and \(g_2(x, Q^2) \) can be written (QCD radiative corrections are not included) [8–10]

\[\int_0^1 g_1(x, Q^2)dx = \frac{1}{2} a^{(0)}(Q^2) + \frac{M^2}{9Q^2} [a^{(2)}(Q^2) + 4d^{(2)}(Q^2) + 4f^{(2)}(Q^2)] \]

(2a)

\[\int_0^1 g_2(x, Q^2)dx = 0 \]

(2b)

\[\int_0^1 x^2 g_1(x, Q^2)dx = \frac{1}{2} a^{(2)}(Q^2) + O\left(\frac{M^2}{Q^2}\right) \]

(2c)

\[\int_0^1 x^2 g_2(x, Q^2)dx = -\frac{1}{3} a^{(2)}(Q^2) + \frac{1}{3} d^{(2)}(Q^2) + O\left(\frac{M^2}{Q^2}\right) \]

(2d)

where \(a^{(0)}(Q^2) \), \(a^{(2)}(Q^2) \) and \(f^{(2)}(Q^2) \) depend on the nucleon forward matrix elements of twist-2, twist-3 and twist-4 operators respectively. For example

\[a^{(0)} = \sum_{q_f = u,d,s,..} e_f^2\Delta q_f, \quad \langle P,S|\bar{\psi}_f\gamma_\mu\gamma_5\psi_f|P,S\rangle = \equiv 2\Delta q_f S_\mu \]

(3)

\(\Delta q_f \) (\(q_f = u,d,s,.. \)) are axial charges defined by the above axial-vectorial matrix elements. The singlet axial charge is proportional to the total quark helicity \(\Delta \Sigma = \Delta u + \Delta d + \Delta s \) in
the nucleon. Using the semileptonic weak decay data, which are related to nonsinglet axial charges, the 1988 EMC result seemed to indicate that $\Delta \Sigma$ is surprisingly small and led to so-called “spin crisis”. Since then, an intensive study of g_1 has been conducted. The efforts both from experimental and theoretical works led to a deeper understanding of internal spin structure of the nucleon, although many questions remain. The most recent reviews on this subject can be found in [11–13]. Neglecting the terms of order M^2/Q^2 in eqs.(2a-d), the longitudinal polarized structure function $g_1(x,Q^2)$ receives only twist-2 contributions. On the other hand, the structure function $g_2(x,Q^2)$ contains not only twist-2 but also twist-3 contributions corresponding to the matrix element $d^2(Q^2)$. The twist-3 contributions coming from spin-dependent quark gluon correlations do not vanish even in the large Q^2 limit [14–16].

To separate the twist-2 and twist-3 contributions of $g_2(x,Q^2)$, one can write (Wandzura-Wilczek [17])

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$

(4)

where the twist-2 piece (see, however, discussion in section III) is

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{dy}{y} g_1(y,Q^2)$$

(5a)

and the twist-3 piece is

$$\bar{g}_2(x,Q^2) = g_1(x,Q^2) + g_2(x,Q^2) - \int_x^1 \frac{dy}{y} g_1(y,Q^2)$$

(5b)

It is easy to check that, to order $O(M^2/Q^2)$, we have

$$\int_0^1 g_2^{WW}(x,Q^2) dx = 0, \quad \int_0^1 x^2 g_2^{WW}(x,Q^2) dx = -\frac{1}{3} a^{(2)}$$

(6a)

$$\int_0^1 \bar{g}_2(x,Q^2) dx = 0, \quad \int_0^1 x^2 \bar{g}_2(x,Q^2) dx = \frac{1}{3} d^{(2)}$$

(6b)

hence the twist-2 and twist-3 contributions of $g_2(x,Q^2)$ are separated. Measuring $g_1(x,Q^2)$ and $g_2(x,Q^2)$ as functions of x and Q^2, one can obtain $g_2^{WW}(x,Q^2)$, $\bar{g}_2(x,Q^2)$ and their third and even higher moments. Up to order M^2/Q^2, $g_2(x,Q^2)$ uniquely measures the twist-3 contributions without involving any model-dependent analysis. Hence g_2 provides more
detailed information about nucleon structure than does \(g_1 \). Very recently, a preliminary experimental result of \(g_2 \) has been published \[18\] and more precise data obtained by E143 experiment \[19\] at SLAC should be published soon. Since \(g_2 \) was discussed only briefly in a previous paper \[20\], it is appropriate to give a detailed analysis in the modified Center-of-Mass (CM) bag model, using newly obtained data on \(g_2 \). In section II, the CM bag model is briefly reviewed and the results for \(g_2(x) \), \(g_{2\mu}^{WW}(x) \) and \(\bar{g}_2(x) \), and their moments \(a^{(0,2)}(Q^2) \), \(d^{(0,2)}(Q^2) \) are presented. Discussion and comparison with most recent data and other model results are given in section III. A brief summary is given in section IV.

II. CM BAG MODEL

As mentioned in a previous paper \[20\], the bag model does not contain gluon fields explicitly, but the boundary of the bag-confined quarks simulates the binding effect coming from quark-gluon and gluon-gluon interactions (the gluon contribution to the proton spin in the bag model has been discussed by Jaffe \[21\] recently). Hence, the structure function \(g_2 \) calculated in the bag model does include higher twist effects. We have reported the CM bag model results \[20\] for the unpolarized and polarized structure functions \(F_1, F_2, \) and \(g_1 \), and briefly for \(g_2 \). In this paper, we will focus our attention on \(g_2 \). For reader’s convenience, we give a brief review for CM bag model calculation of the structure functions. One needs to calculate the hadron tensor

\[
W_{\mu\nu}(P, q, S) = \frac{1}{4\pi} \int d^4 y e^{i q y} < P, S | [J_\mu(y), J_\nu(0)] | P, S >
\]

and separate the antisymmetric part to obtain \(W_A^{\mu\nu} \), which can be expressed in general as

\[
W_A^{\mu\nu} = i\epsilon_{\mu\nu\rho\sigma} (q^\rho / \nu) I^\sigma(x, Q^2)
\]

in the Bjorken limit, where \(I^\sigma(x, Q^2) \) depends on the model of the nucleon and the approximations used in the calculation.

The basic assumptions and approximations of the CM bag model are: (i) the nucleon electromagnetic current \(J_\mu \) (or \(\gamma NN \) vertex, see (2.7) in \[20\]), can be approximately expressed by incoherent sum of single quark electromagnetic currents. It implies that the virtual
photon interacts with only one quark at a time and the other two quarks are spectators; this is an impulse approximation. The current includes not only the contribution of the struck quark but also those of the spectator quarks. Since the current satisfies translational invariance, four momentum is conserved. (ii) the nucleon consists of three valence quarks in their S-wave state; higher excited states and higher Fock states which include gluons and sea quark pairs in addition to three valence quarks are neglected. (iii) SU(3)$_{\text{flavor}}$ \otimes SU(2)$_{\text{spin}}$ wave functions for the proton and neutron are used. Symmetry-breaking effect is described in terms of a parameter $\xi \equiv R_d^p/R_d^\rho < 1$, which simulates the smaller spatial size for the scalar $u-d$ quark pair than that for the vector $u-u$ and $d-d$ quark pairs in the nucleon [22]. (iv) The effect of quark confinement due to nonperturbative quark-gluon and gluon-gluon interactions is described in terms of bound-state quark spatial wave functions, for instance the quark bag wave function in the cavity approximation in the MIT bag model or Gaussian-type quark wave function used in some other models. All necessary formulae for the CM bag model calculation can be found in [20]. A formal and general discussion on the theoretical basis of the CM bag model has been given in [23]. We note that in addition to the CM bag model calculation, the transverse spin structure functions g_2 has also been computed in the original MIT bag model by Jaffe and Ji [8], and other modified versions of the MIT bag model by Schreiber, Signal and Thomas (SST bag model [24]), and by Stratmann (MOD model [25]).

Experimentally, $g_1(x, Q^2)$ and $g_2(x, Q^2)$ are measured by combining two different cases of deep inelastic scattering of polarized leptons on polarized nucleons: (i) the beam and target spin orientations are parallel, and (ii) the beam and target spin orientations are perpendicular. Experimentally, $W^4_{\mu\nu} = i\epsilon_{\mu\nu\rho\sigma} (q^\rho / \nu) I^\sigma(x, Q^2)$ can be calculated from various models of the nucleon. In this case it is convenient to choose suitable projection operators to extract g_1 and g_2 from model results of $I^\sigma(x, Q^2)$. One of possible projections is to extract $g_1 \equiv g_L$ and $g_1 + g_2 \equiv g_T$ by choosing the nucleon spin parallel (‘L’) or perpendicular (‘T’) to the virtual photon momentum as we did in [21]. It should be noted that it is not necessary to choose the same projection as those used in the experimental analysis.
Several parameters have been used in the CM bag model calculation. They are: (a) ‘bag’ radius $R = 5$ GeV$^{-1}$, (b) SU(3) symmetry breaking parameter $\xi = 0.85$ and (c) maximum momentum of quarks inside the nucleon $|p_{max}| = 0.6$ GeV/c. R and ξ were determined from the fit of the rms radius of the neutron and proton, and the ratio μ_n/μ_p. The model with these two parameters gives a fairly good result for the electromagnetic form factors of the nucleon and the magnetic moments of octet baryons. In particular, the neutron charge form factor is well reproduced. For the DIS parton distributions, the third parameter $|p_{max}| = 0.6$ GeV/c has been introduced. It constrains the unpolarized valence quark distributions to satisfy the sum rules

$$\int_0^1 u_v(x)dx = 2, \quad \int_0^1 d_v(x)dx = 1 \quad (7)$$

As mentioned in [20], to compare the model results with data, the QCD evolution technique has to be used to evolve the parton distributions from the renormalization scale Q_0^2 to higher Q^2 where the experiments are performed. We choose $Q_0^2 = 0.81$ (GeV/c)2 and QCD scale parameter $\Lambda = 0.3$ (GeV/c). The CM bag model with these parameters gives a good description for both unpolarized and polarized structure functions at $0.3 < x < 1$, where the valence quark contributions dominate. For small-x region, $0 < x < 0.3$, the sea quark contributions are necessary. Using some QCD inspired phenomenological sea distributions (see (4.19) in [20]), we found that the first moment of $g_1^p(x, Q^2)$ is consistent with the experimental value and the first moment of $g_1^p(x, Q^2) - g_1^n(x, Q^2)$ satisfies the Bjorken sum rule. For the higher moments $n \geq 2$, the sea contributions coming mainly from the small x region are highly suppressed by the factor x^n and are thus less important. Hence we neglect possible sea contributions for the higher moments of g_2, g_2^{WW} and \bar{g}_2.

For QCD evolution of the structure function g_1 and twist-2 piece g_2^{WW} from Q_0^2 to $Q^2 > Q_0^2$, the ordinary Altarelli-Parisi equations [20] can be used. For twist-3 part of g_2, however, it has been shown [27] that due to mixing of twist-3 quark operators and quark-gluon operators with same twist and quantum numbers, the number of independent operators contributing to \bar{g}_2 increases with n, where n refers to the n-th moment. It implies
that one cannot write down an Altarelli-Parisi type evolution equation for g_2. This feature has been confirmed by several later calculations in [28, 32] and most recently in [33]. Hence there is no simple evolution equation for g_2 in the general case. One has to look for some approximate solutions. Two approximate evolution approaches under the limits $N_c \to \infty$ or power $n \to \infty$ were suggested by Ali, Braun and Hiller [32]. We use the approach in the large N_c limit rather than the approximation in the large n limit, which only provides the asymptotic behavior of $g_2(x, Q^2)$ in the region $x \to 1$. We also note that as far as the third moments $\int_0^1 x^2 g_2(x, Q^2) \, dx$ are concerned, the Q^2 evolution is straightforward, i.e. a single power behavior of $\ln Q^2$ (for instance see [33]).

In Fig.1–5, we present the results of $g_1^p(x, Q^2)$, $g_2^p(x, Q^2)$, $x^2 g_2^p(x, Q^2)$, $g_2^{pW}(x, Q^2)$ (which is determined by $g_1^p(x, Q^2)$), and $x^2 g_2^d(x, Q^2)$ respectively. For the deuteron target, $g_1^d(x, Q^2)$, $x^2 g_2^d(x, Q^2)$ and $x^2 \bar{g}_2^d(x, Q^2)$ are shown in Fig. 6-8. All theoretical curves are calculated in the CM bag model at $Q_0^2=0.81$ (GeV/c)2 and evolved to $Q^2=5.0$ (GeV/c)2 except for Fig. 4 and Fig. 6, where $Q^2=4.0$ (GeV/c)2 and $Q^2=3.0$ (GeV/c)2 respectively. Comparisons of our results for the third moments of g_1 and g_2 with recent data and other model predictions are listed in Tables I, II and III. The data for g_1 are taken from [1, 2, 4, 34] and those for g_2 are taken from [19].

III. RESULTS AND DISCUSSION

1. For the leading term of first moments of $g_1(x)$, we obtain

$$a_{\text{proton}}^{(0)} = 0.252, \quad a_{\text{neutron}}^{(0)} = -0.112, \quad a_{\text{deuteron}}^{(0)} = 0.064$$

which can be compared with SMC data [4] at $<Q^2> = 5$ (GeV/c)2: $a_{\text{proton}}^{(0)} = 0.252 \pm 0.036$, $a_{\text{neutron}}^{(0)} = -0.056 \pm 0.024$, $a_{\text{deuteron}}^{(0)} = 0.046 \pm 0.050$ and E143 data [4, 5] at $<Q^2> = 3$ (GeV/c)2: $a_{\text{proton}}^{(0)} = 0.254 \pm 0.022$, $a_{\text{neutron}}^{(0)} = -0.074 \pm 0.027$, $a_{\text{deuteron}}^{(0)} = 0.084 \pm 0.010$.

2. For the leading term of third moments of $g_1(x)$, we get

$$a_{\text{proton}}^{(2)} = 2.10 \cdot 10^{-2}, \quad a_{\text{neutron}}^{(2)} = -1.86 \cdot 10^{-3}, \quad a_{\text{deuteron}}^{(2)} = 8.74 \cdot 10^{-3}$$

(9)
while preliminary data at $<Q^2> = 5$ (GeV/c)2 show: $a_{\text{proton}}^{(2)} = (2.42 \pm 0.20) \cdot 10^{-2}$ and $a_{\text{deuteron}}^{(2)} = (8.0 \pm 1.6) \cdot 10^{-3}$. Comparisons with other models are listed in Tables I and III.

We note that no g_2^n data are available yet.

3. Since $g_1^n(x, Q^2)$ is always positive in the range $0 < x < 1$, hence $\int_0^1 x^2 g_1^n(x) dx$ must be positive. From eq.(2c), the leading term of $\int_0^1 x^2 g_1^n(x) dx$, i.e. $a_{\text{proton}}^{(2)}$ must also be positive as shown in eq.(9). However, the $g_1^n(x)$ as function of x is mostly negative except for large x region, where $g_1^n(x)$ is positive but very small. Hence its third moment, or $a_{\text{neutron}}^{(2)}$, is negative. For the deuteron, since the positive contribution from the proton is larger than the negative contribution from the neutron in the $\int_0^1 x^2 g_1^n(x) dx$, hence our model predicts a positive $a_{\text{deuteron}}^{(2)}$ as shown in eq.(9) and Table III.

4. As mentioned in section I, in the OPE approach including twist-2 and twist-3 operators in the presence of QCD corrections, the Burkhardt-Cottingham sum rule $\int_0^1 g_n(x) dx = 0$ is known to hold. The CM bag model predicts

$$\int_0^1 g_p^n(x) dx = -0.0016, \quad \int_0^1 g_n^n(x) dx = -0.0047$$

(10a)

comparing to the numerical values for $\int_0^1 g_1^{(p,n)} dx$ in eq.(8), they are numerically consistent with zero. Hence in our model, the Burkhardt-Cottingham sum rule is satisfied within numerical errors. Most recent data give

$$\int_{0.03}^1 g_p^n(x) dx = -0.013 \pm 0.028, \quad \int_{0.03}^1 g_n^n(x) dx = -0.033 \pm 0.082$$

(10b)

which are consistent with zero. It should be noted that in the MIT bag model with SU(6) symmetry, $g_2^n(x)$ is identically zero by itself. However, the CM bag model with SU(6) symmetry breaking effects ($\xi \simeq 0.85 < 1$) predicts a nonzero $g_2^n(x)$.

5. Since $g_2(x)$ is not identically zero in the model, the Burkhardt-Cottingham sum rule implies that $g_2(x)$ must change its sign at some $x = x_0$, where $0 < x_0 < 1$, i.e. $g_2(x)$ must have at least one non-trivial zero. The question is whether the x-behavior of g_2 satisfies

$$\text{case 1 : } \begin{align*}
g_2(x) < 0, & \quad \text{for } x < x_0; \\
g_2(x) > 0, & \quad \text{for } x > x_0.
\end{align*}$$
or just opposite

case 2 : \(g_2(x) > 0, \) for \(x < x_0; \quad g_2(x) < 0, \) for \(x > x_0 \)

For case 1, one has \(\int_0^1 x^2 g_2(x) dx > 0, \) while for case 2, \(\int_0^1 x^2 g_2(x) dx < 0. \) The CM bag model predictions for \(\int_0^1 x^2 g_2^{(p,n,d)}(x,Q^2) dx \) are all negative (see Table I, II and III or Fig.3 and Fig.7). This implies the \(x \)-behavior of \(g_2(x) \) fits case 2. The preliminary data [19] seem to favor our predictions (see, for instance, Fig.2 for the proton).

6. For both the proton and deuteron, we now have \(a^{(2)} > 0 \) and \(d^{(2)} - a^{(2)} < 0. \) In the CM bag model, the moment \(\int_0^1 x^2 g_2(x) dx \) (\(\simeq [d^{(2)} - a^{(2)}]/3 \)) is about one order of magnitude smaller than \(\int_0^1 x^2 g_1(x) dx \) (\(\simeq a^{(2)}/2 \)). It implies \(|d^{(2)} - a^{(2)}| < < a^{(2)} \) (recall \(|g_2| < < g_1 \)), or \(d^{(2)} \simeq a^{(2)} \). Hence the twist-3 matrix element \(d^{(2)} \) approximately equals to the twist-2 matrix element \(a^{(2)} \) and the sign of \(d^{(2)} \) should also be positive for the proton and deuteron targets. This agrees with data [19] but disagree with the negative sign predicted by the QCD sum rules [37,38] and quenched lattice QCD [33].

For the neutron, since \(\int_0^1 x^2 g_1^n(x) dx \) is negative and much larger than \(\int_0^1 x^2 g_2^n(x) dx \) in magnitude, hence \(d^{(2)}_{neutron} \) is negative. This negative sign is consistent with the results given by other approaches [37-39]. In magnitude, our result agrees with that given by the quenched lattice QCD, but much less than those given by the QCD sum rules.

7. Our results show \(d^{(2)} \simeq a^{(2)} \), i.e. the twist-3 contribution is almost the same magnitude as twist-2 contribution. From (6a) and (6b), it implies that the \(g_{2W}^W(x) \) and \(\bar{g}_2(x) \) have opposite sign and approximately same magnitude. They almost cancel each other and lead to a very small \(g_2(x) \) (see also Fig. 12a,b in [20]). For the same reason the original Wandzura-Wilczek relation

\[
g_2(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{dy}{y} g_1(y,Q^2)
\]

is not a good approximation and the higher twist contributions may not be neglected. As pointed by Cortes, Pire and Ralston [40] that the original Wandzura-Wilczek relation was derived by using the Dirac equation for free and massless quarks. Including quark mass
effect and gluon dependent term, an extended Wandzura-Wilczek relation was given (similar formula without quark mass term has been given by Jaffe [7]):

\[g_2(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{dy}{y} g_1(y, Q^2) - \frac{m_q}{M} \int_x^1 \frac{dy}{y} \frac{\partial h_T}{\partial y} - \int_x^1 \frac{dy}{y} \frac{\partial \xi}{\partial y} \]

where the mass dependent term is another twist-2 piece which is related to ‘transversity’ \(h_T \).

The last term is the ‘true’ twist-3 piece arising from quark-gluon correlation. As emphasized in [40] that when the quark mass term is included the twist-3 term cannot be isolated in a model independent way with a measurement of \(g_1 \) and \(g_2 \). However, neglecting the strange quark contribution, the quark mass term \(\sim m_q/M \) should be negligible for up and down quarks. Hence the separation of twist-2 and twist-3 pieces in eq.(4) seems to be a reasonable approximation.

8. According to the OPE analysis, neglecting the \(M^2/Q^2 \) corrections, the general formulae for the moments of the structure functions are

\[\int_0^1 x^n g_1(x, Q^2) = \frac{1}{2} d^{(n)}(Q^2), \quad (n = 0, 2, 4, ...) \] (11a)

\[\int_0^1 x^n g_2(x, Q^2) = -\frac{n}{2(n + 1)}[d^{(n)}(Q^2) - d^{(n)}(Q^2)] \quad (n = 2, 4, 6, ...) \] (11b)

for \(n = 2 \), they reduced to (2c) and (2d). From (11a) and (11b), one obtains

\[\int_0^1 x^n [g_1(x, Q^2) + \frac{n + 1}{n} g_2(x, Q^2)] dx = \frac{1}{2} d^{(n)}(Q^2) \quad (n = 2, 4, 6, ...) \] (12)

hence one has for \(n = 2 \)

\[d^{(2)} = 2 \int_0^1 x^2 [g_1(x, Q^2) + \frac{3}{2} g_2(x, Q^2)] dx \] (13)

The CM bag model prediction for the function \(x^2 [g_1(x, Q^2) + \frac{3}{2} g_2(x, Q^2)] \) for the proton is shown in Fig. 9 and that for the deuteron is shown in Fig. 10. One can see that in both cases, the model predictions for \(d^{(2)} \) are nonzero and positive. This seems to be consistent with recent data [19].

9. If one assumes that (12) holds also for \(n = 1 \) one obtains

\[\int_0^1 x [g_1(x, Q^2) + 2 g_2(x, Q^2)] dx = \frac{1}{2} d^{(1)}(Q^2) \] (14a)
To lowest order in α_s, it was shown [12] by using the Field Theoretical Parton Model that $d^{(1)}(Q^2)$ vanishes in the chiral limit, one has the Efremov-Leader-Teryaev (ELT) sum rule

$$\int_0^1 x[g_1(x,Q^2) + 2g_2(x,Q^2)]dx = 0 \quad (14b)$$

However, our results of g_1 and g_2 do not satisfy this sum rule. To demonstrate this, we plot $g_1^{(p,d)}(x,Q^2) + 2g_2^{(p,d)}(x,Q^2)$ as functions of x in Fig.11 and Fig. 12 and compare them with recent proton and deuteron data [19] respectively. One can see that our model predictions are consistent with the SLAC E143 data. However, the ELT sum rule seems not to be supported by the data (at least for the proton data).

IV. SUMMARY

The study of transverse spin structure function $g_2(x,Q^2)$ has both theoretical and experimental interest. In the most naive parton model, the quark is asymptotic free and has no transverse momentum, $g_2(x)$ is identically zero. However, quarks inside the nucleon are not free, the binding effect, which arising from quark-gluon interactions, causes a nonzero transverse momentum for quarks and leads to $g_2 \neq 0$. Measurements of g_2 or $g_T = g_1 + g_2$ allow us to get more information about binding effects, which are mainly formulated as ‘higher twist effects’. On the other hand, since Q^2 is large in the deep inelastic scattering, quark binding effects should not be significant and g_2 should be small, especially compared to g_1. This seems to agree with most recent experimental result [19]. Our model calculation is consistent with this conclusion. It should be noted, however, that the theoretical predictions given by different models or approaches seem not to fully agree with each other because of different approximations. In addition, as mentioned in section III that another twist-2 piece which is related to the quark mass and ‘transversity’ h_T has been neglected in our discussion. On the experimental side, the errors of data are still quite large. We hope that several new experiments [41–43] to be performed in the next few years will provide more precise data and tell us more about the quark spin (including longitudinal and transverse) distributions in the nucleon.
ACKNOWLEDGMENTS

I wish to thank X. Ji for useful comments and suggestions, and thank P. K. Kabir, J. S. McCarthy and H. J. Weber for helpful discussions. I also thank O. Rondon-Aramayo for providing the updated E143 data and suggestions. This work has been supported by the U.S. Department of Energy and the Institute of Nuclear and Particle Physics, University of Virginia, USA.
REFERENCES

[1] J. Ashman et al. Phys.Lett. B206, 346 (1988); Nucl. Phys. B328, 1 (1989)
V. W. Hughes et al. Phys.Lett. B212, 511 (1988).

[2] B. et al. Phys.Lett. B302, 553 (1993); B320, 400 (1994)
D. Adams et al., Phys.Lett. B329, 399 (1994).

[3] P. L. Anthony et al. Phys.Rev.Lett. 71, 959 (1993).

[4] K. Abe et al. Phys.Rev.Lett. 74, 346 (1995).

[5] K. Abe et al. Phys.Rev.Lett. 75, 25 (1995).

[6] E. V. Shuryak and A. I. Vainshtein, Nucl. Phys. B201, 141 (1982)

[7] R. L. Jaffe, Comments Nucl.Part.Phys. 19, 239 (1990)

[8] R. L. Jaffe and X. Ji, Phys. Rev. D43, 724 (1991);

[9] X. Ji and P. Unrau, Phys. Lett. B333, 228 (1994)

[10] E. Ehrnsberger, L. Mankiewicz and A. Schafer, Phys.Lett. B323, 439 (1994).

[11] R. L. Jaffe, Physics Today September, 24 (1995).

[12] M. Anselmino, A. Efremov and E. Leader, Phys. Rep. 261, 1 (1995)

[13] F. E. Close, hep-ph/9509251, September 8 (1995)

[14] A. J. G. Hey and J. E. Mandula, Phys.Rev. D5, 2610 (1972).

[15] X. Ji, Nucl. Phys. B402, 217 (1993)

[16] J. Kodaira, S. Matsuda, K. Sasaki and T. Uematsu, Nucl.Phys. B159, 99 (1979).

[17] S. Wandzura and F. Wilczek, Phys.Lett. B72, 195 (1977).

[18] D. Adams et al., Phys.Lett. B336, 125 (1994).

[19] K. Abe et al. SLAC-PUB-6982, Sep. 1, 1995.

[20] X. Song and J. M. McCarthy, Phys.Rev. D49, 3169 (1994).

[21] R. L. Jaffe, hep-ph/9509279 (1995)

[22] X. Song and J. M. McCarthy, Phys.Rev. C46, 1077 (1992).

[23] X. M. Wang and X. Song, Phys.Rev. C51, 2750 (1995).

[24] A. W. Schreiber, A. I. Signal and A. W. Thomas Phys. Rev. D44, 2653 (1991)

[25] M. Stratmann, Z. Phys. C60, 763 (1993)
[26] G. Altarelli and G. Parisi, *Nucl. Phys.* **B126**, 298 (1977); X. Song and J. Du, *Phys. Rev.* **D40**, 2177 (1989)

[27] E. V. Shuryak and A. I. Vainshtein, *Nucl. Phys.* **B199**, 451 (1982)

[28] A. P. Bukhvostov, E. A. Kureav and L. N. Lipatov, *JETP Lett.* **37**, 482 (1983); *Sov. Phys. JETP* **60**, 22 (1984).

[29] P. G. Ratcliffe, *Nucl. Phys.* **B264**, 493 (1986).

[30] I. I. Balitsky and V. M. Braun, *Nucl. Phys.* **B311**, 541, (1988/89).

[31] X. Ji and C. Chou, *Phys.Rev.* **D42**, 3637 (1994).

[32] A. Ali, V. M. Braun and G. Hiller, *Phys.Lett.* **B266**, 117 (1991).

[33] A. Kodaira, Y. Yasui and T. Uematsu, *Phys.Lett.* **B344**, 348 (1995).

[34] T. J. Liu, PhD Thesis, Univ. of Virginia, September, 1995

[35] F. M. Steffens, H. Holtmann and A. W. Thomas, [hep-ph/9508398](http://arxiv.org/abs/hep-ph/9508398)

[36] H. Burkhardt and W. N. Cottingham, *Ann. Phys.* **56** 453 (1970)

[37] E. Stein *et al.*, *Phys. Lett.* **B334**, 369 (1995)

[38] I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko, *Phys. Lett.* **B242**, 245 (1990); **B318**, 648 (1993) (Erratum)

[39] M. Gockeler *et al.*, *Phys.Rev.* **D53**, 2317 (1996).

[40] J. L. Cortes, B. Pire, and J. P. Ralston, *Z. Phys.* **C55**,409 (1992)

[41] R. Arnold *et al.* *SLAC-PROPOSAL-E-154*, (1993); *SLAC-PROPOSAL-E-155*, (1993).

[42] SMC Collaboration, *Measurements of the Spin-dependent Structure Functions of the Neutron and the Proton*, Addendum to the NA47 Proposal, CERN/SPSLC 94-13 (1994).

[43] M. Dueren and K. Rith, *Proceedings, Physics at HERA*, Vol.1, 427 (1991).
Table I. Comparison of model results with proton data

Model Type	\(f_0^1 x^2 g_1^p(x, Q^2)dx = \frac{1}{2} a_p^{(2)} \)	\(f_0^1 x^2 g_2^p(x, Q^2)dx = \frac{1}{3} (d_p^{(2)} - a_p^{(2)}) \)	\(d_p^{(2)} \)
This paper	1.05 \cdot 10^{-2}	-0.12 \cdot 10^{-2}	1.74 \cdot 10^{-2}
MIT bag model [8,35]	-	-	-
QCD sum rule [37]	-	-	-(0.6 \pm 0.3) \cdot 10^{-2}
QCD sum rule [38]	-	-	-(0.3 \pm 0.3) \cdot 10^{-2}
Lattice QCD [39]	(1.50 \pm 0.32) \cdot 10^{-2}	-(2.61 \pm 0.38) \cdot 10^{-2}	-(4.8 \pm 0.5) \cdot 10^{-2}
data [19]	(1.21 \pm 0.10) \cdot 10^{-2}	-(0.63 \pm 0.18) \cdot 10^{-2}	(0.54 \pm 0.50) \cdot 10^{-2}
Table II. Comparison of model results for the neutron

neutron	$\int_{0}^{1} x^2 g_1^n(x, Q^2) dx = \frac{1}{2} a_n^{(2)}$	$\int_{0}^{1} x^2 g_2^n(x, Q^2) dx = \frac{1}{3} (d_n^{(2)} - a_n^{(2)})$	$d_n^{(2)}$
This paper	$-0.93 \cdot 10^{-3}$	$-0.23 \cdot 10^{-3}$	$-2.53 \cdot 10^{-3}$
MIT bag model	$-$	$-$	0
QCD sum rule	$-$	$-$	$-(30 \pm 10) \cdot 10^{-3}$
QCD sum rule	$-$	$-$	$-(25 \pm 10) \cdot 10^{-3}$
Lattice QCD	$-(1.2 \pm 2.0) \cdot 10^{-3}$	$-(0.4 \pm 2.2) \cdot 10^{-3}$	$-(3.9 \pm 2.7) \cdot 10^{-3}$
data	$-$	$-$	$-$
Table III. Comparison of model results with deuteron data

	$\int_0^1 x^2 g_1^d(x, Q^2) dx = \frac{1}{2} a_d^{(2)}$	$\int_0^1 x^2 g_2^d(x, Q^2) dx = \frac{1}{3}(d_d^{(2)} - a_d^{(2)})$	$d_d^{(2)}$
This paper	4.37·10^{-3}	-0.65·10^{-3}	6.79·10^{-3}
MIT bag model	-	-	5.0·10^{-3}
QCD sum rule	-	-	-(17 ± 5)·10^{-3}
QCD sum rule	-	-	-(13 ± 5)·10^{-3}
Lattice QCD	(6.9 ± 2.6)·10^{-3}	-(13.3 ± 3.0)·10^{-3}	-(22 ± 6)·10^{-3}
data	(4.0±0.8)·10^{-3}	-(1.4 ± 3.0)·10^{-3}	(3.9±9.2)·10^{-3}
FIG. 1. CM bag model result [20] for $g_1^p(x, Q^2)$ at $Q^2=5.0$ (GeV/c)2, data from [1,2,4,34].
FIG. 2. CM bag model prediction for $g_2^p(x, Q^2)$ at $Q^2 = 5.0 \text{ (GeV/c)}^2$, data from [19].
FIG. 3. Same as Fig.2, but for \(x^2 g_2^p(x, Q^2) \) at \(Q^2 = 5.0 \) (GeV/c)^2, data from [19].
FIG. 4. Evolution of twist-2 piece $g_2^{WW}(x, Q^2)$ in the CM bag model at $Q^2=0.81$ and 4.0 (GeV/c)2, data from [19].
FIG. 5. The twist-3 contribution $x^2 \bar{g}_2(x, Q^2)$ calculated in the CM bag model and evolved to $Q^2=5.0 \text{ (GeV/c)}^2$, data from [19].
FIG. 6. The deuteron structure function $g_1^d(x, Q^2)$ calculated in the CM bag model and evolved to $Q^2=3.0 \text{ (GeV/c)}^2$, data from [34].
FIG. 7. The deuteron transverse structure function $x^2 g_2^d(x, Q^2)$ calculated in the CM bag model and evolved to $Q^2=5.0$ (GeV/c)2, data from [19].
FIG. 8. Same as Fig.7 but for deuteron twist-3 piece $x^2 g_2^d(x, Q^2)$, data from [19].
FIG. 9. CM bag model prediction for $x^2[\frac{\rho_1^p(x, Q^2)}{2} + 3\frac{\rho_2^p(x, Q^2)}{2}]$ at $Q^2=5.0$ (GeV/c)2, data from [19].
FIG. 10. Same as Fig.9 but for $x^2 [f_1(x, Q^2) + \frac{3}{2} g_2(x, Q^2)]$ at $Q^2=5.0 \ (GeV/c)^2$.
FIG. 11. CM bag model prediction for $x[g_1^p(x, Q^2) + 2g_2^p(x, Q^2)]$ at $Q^2 = 5.0$ (GeV/c)2, data from [19].
FIG. 12. Same as Fig.11 but for the deuteron target, data from [19].