Prevalence of Hepatitis B Virus (HBV) Among Blood Donors in Eastern Saudi Arabia: Results From a Five-Year Retrospective Study of HBV Seromarkers

Faisal Mousa Alzahrani, Ph.D., Muzaaheed, Ph.D., Saeed Sattar Shaikh, M.D., Amer Ibrahim Alomar, Ph.D., Sadananda Acharya, Ph.D., and Nasreldin Elhadi, Ph.D.

1Department of Clinical Laboratory Science, College of Applied Medical Sciences and 2Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia

Background: Transfusion-transmissible hepatitis B virus (HBV) infection is a major problem worldwide. Recently, confirmatory nucleic acid tests (NATs) for HBV DNA have been employed in several countries. We assessed the prevalence and yearly trends of HBV infection in blood donors in the Eastern Province of Saudi Arabia, screening for HBV surface antigen (HBsAg), antibody against HBV core antigen (anti-HBc), and HBV DNA.

Methods: Between 2011 and 2015, a total of 22,842 donors were screened for HBsAg, anti-HBc, and HBV DNA using the HBsAg Qualitative II kit (Abbott, Ireland Diagnostics Division, Sligo, Ireland), ARCHITECT Anti-hepatitis B core antigen antibody (HBc) II Assay kit (Abbott GmbH & Co. KG, Wiesbaden, Germany), and NAT Procleix Ultrio Elite Assay kit (Grifols Diagnostic Solutions Inc., Los Angeles, CA, USA), respectively.

Results: A total of 739 (3.24%) donors were HBsAg(+), anti-HBc(+), or HBV DNA(+); 63 (0.28%) were HBsAg(+), anti-HBc(+), and HBV DNA(+). Twelve (0.05%) were anti-HBc(+) and HBV DNA(+) but HBsAg(-); they were considered to have occult infection. Further, 664 (2.91%) were HBsAg(-) but anti-HBc(+), indicating chronic or resolving infection. HBV prevalence increased significantly from 2011 to 2012, increased marginally till 2013, and showed a decreasing trend from 2013 (P>0.05).

Conclusions: The five-year prevalence of HBV infection among blood donors in the Eastern Province of Saudi Arabia (3.24%) is lower than that reported for other regions in the country. The occult HBV infection rate of 0.05% emphasizes the importance of NATs in isolating potential infectious blood units.

Key Words: Hepatitis B virus, Hepatitis B virus surface antigen, Antibody against hepatitis B virus core antigen, Nucleic acid test, Prevalence, Blood donors, Saudi Arabia

INTRODUCTION

Hepatitis B virus (HBV) infection caused nearly a million (~887,000) deaths worldwide in 2015 [1]. Globally, more than 257 million people live with HBV infection [2]. HBV infection could lead to acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma, posing a tremendous public health burden [3]. According to the US Centers for Disease Control and Prevention [3], approximately 3,000 people in the US alone and more than 600,000 people worldwide die from hepatitis B-related liver disease each year. Blood transfusion-related HBV infection remains a major concern in transfusion practice. The high rate of the residual risk of transfusion-transmissible HBV reflects the global epidemiology of the virus. Considering the importance of the
prevention of HBV transmission through blood transfusion, comprehensive HBV screening programs of blood donors have been implemented worldwide since the early 1970s [4].

A common and essential screening protocol for blood donor samples is serological detection of the marker HBV surface antigen (HBsAg), which is abundantly produced during active infection. However, there still exists a possibility of HBV transmission during transfusion from HBsAg(-) donors, since the absence of the antigen does not completely exclude the presence of the virus. During the window period of the infection (early acute phase or late chronic phase) or in the case of occult infections where viral antigens are not detectable, the HBsAg serological test may give a “non-reactive” result. Accordingly, an additional seromarker, antibody against HBV core antigen (anti-HBc), is tested [5]. Serological reactivity to anti-HBc can indicate active HBV exposure, chronic infection, or resolving infection.

Some advanced laboratories test for HBV DNA in addition to the above seromarkers, using more sensitive, robust, and specific nucleic acid tests (NATs) [6]. Specific amplification and probe hybridization-based NATs are capable of detecting viral DNA even in the state of occult infection, thereby increasing screening efficiency and safety of the blood supply.

In Saudi Arabia, studies employing HBsAg tests for screening have found different prevalence rates of HBV infection among blood donors from various regions, including central, northwestern, and eastern provinces: 2.7–9.8% [7-11]. However, no study has examined the prevalence of HBV among blood donors in the Eastern Province of Saudi Arabia using NATs. Accordingly, the present study analyzed the prevalence of and yearly trends in HBV seromarkers among volunteer and replacement blood donors of Saudi ethnicity in this province, screening for HBsAg, anti-HBc, and HBV DNA.

METHODS

Study population

In this retrospective study, data from January 2011 through December 2015 for 22,842 blood donors (N=4,494 in 2011, N=4,396 in 2012, N=4,792 in 2013, N=4,432 in 2014, and N=4,728 in 2015) were retrieved from blood bank records of King Fahd Hospital of the University of Dammam, Dammam, Saudi Arabia, which is a regional tertiary-care multi-speciality hospital. Only donors of Saudi ethnicity residing in the Eastern Province, of all age groups and both genders, were included. Expatriates and donors from other regions of Saudi Arabia were excluded. The present study was conducted as a part of routine screening as required by the blood bank associated with the hospital. As retrospective data from blood bank records were used, Institutional Review Board approval and informed consent from donors were not obtained.

Assays

HBsAg

HBsAg was tested using the HBsAg Qualitative II kit (Abbott, Ireland Diagnostics Division, Sligo, Ireland), which identifies the presence of IgM and IgG based on a chemiluminescent microparticle immunoassay (CMIA) run on the ARCHITECT i1000SR Immunoassay system platform (Abbott Diagnostics, Abbott Park, IL, USA), following the manufacturer’s instructions. The chemiluminescent reaction was measured in relative light units (RLU) by system optics and factored in relation to cut-off (CO) values of luminescence (determined from an active calibration) to determine positivity. The ratio between the sample RLU to that of the CO was calculated (S/CO). S/CO<1.00 was considered non-reactive (NR), while S/CO≥1.00 was considered reactive (R). “NR” samples were recorded as HbsAg(-), while “R” samples were further confirmed once again using the same system. Samples were confirmed to be positive when either or both reactions were deemed to be R.

Anti-Hepatitis B Core Antigen Antibody (HBc)

For the qualitative detection of anti-HBc, the ARCHITECT Anti-HBc II assay kit (Abbott GmbH & Co. KG, Wiesbaden, Germany) was used and run on the same system described above, according to the manufacturer’s instructions. This kit identifies IgM and IgG simultaneously. The results were interpreted in the same way as described above for HBsAg. “R” samples were run an additional two times before final confirmation. A sample in which any two out of three runs showed S/CO<1.00 was flagged as “NR” and recorded as negative. A sample with S/CO ≥ 1.00 was flagged as “R” and recorded as positive.

NAT

The NAT was performed using the Procleix Ultra Elite assay kit (Grifols Diagnostic Solutions Inc., Los Angeles, CA, USA), as per the manufacturer’s instructions. This kit is an in vitro qualitative, highly specific, robust, and sensitive system that detects the RNA of HIV-1 and hepatitis C virus (HCV) and HBV DNA. Using this kit, we performed an individual donor-NAT based on the principles of target nucleic acid capture and transcription-mediated amplification followed by the detection of amplicons by a hybridization protection assay (HPA). The chemiluminescence
signals obtained during the hybridization of labeled probes on the specific amplicons were detected on a fully automated luminometer (Procleix Panther System, Grifols Diagnostic Solutions Inc.). The results were expressed as S/CO as described above. Dual kinetic assay methods [12] were used to differentiate between the signals of the internal control (provided by the kit manufacturer) and combined HIV-1/HCV/HBV signal. This kit does not discriminate between HIV-1, HCV, and HBV positivity. Thus, a result of “R” indicated that the blood sample was positive for any one of the three viruses, and the sample was further run on the HBV discriminatory assay (P/N 301109; Grifols Diagnostic Solutions Inc.) using the same kit (reagents specific for HIV-1 and HCV were excluded during the HPA stage), following the manufacturer’s instructions, to determine HBV positivity.

Statistical analysis
Overall prevalence of HBV seromarkers was expressed as the percentage of seropositive samples. Categorical variables were compared using the χ² test, and continuous variables were compared using Student’s t-test. SPSS version 21.0 for Windows (IBM Corp., New York, NY, USA) was used for analyses. P<0.05 was considered statistically significant.

RESULTS
Yearly and cumulative data are presented in Table 1. Overall, 739 (3.24%) donors were HBV(+) as they had positive results for at least one of the markers. Of these, 676 were HBsAg(-), and 664 were only anti-HBc(+), indicating chronic or resolving infection. Further, 63 (0.28%) were positive for all three markers (Table 1). Twelve (0.05%) donors were confirmed as HBV(+) through both the anti-HBc test and NAT despite being HBsAg(-), indicating occult infection (Table 1). Prevalence as assessed by a positive result for any marker (HBsAg, anti-HBc, or HBV DNA) increased drastically (P<0.0001) from 2011 to 2012, increased

![Fig. 1. Yearly prevalence of HBV among blood donors from the Eastern Province of Saudi Arabia. Prevalence increased from 2011 through 2012 drastically (P<0.0001; χ² test), increased marginally thereafter, and showed a decreasing trend from 2013 (P>0.05). Similar trends were noted for anti-HBc levels among donors. *P<0.0001. Abbreviations: HBV, hepatitis B virus; HBsAg, hepatitis B virus surface antigen; anti-HBc, antibody against hepatitis B virus core antigen; NAT, nucleic acid test.](https://doi.org/10.3343/alm.2019.39.1.81)
marginally till 2013, and showed a decreasing trend from 2013
(P > 0.05) (Fig. 1).

DISCUSSION
Screening of blood donors for HBsAg can reduce the risk of
transfusion-transmitted HBV infection [13]. Post-transfusion
hepatitis B occurrence has been reported earlier [14]. Isolation
of anti-HBc(+) blood units has significantly contributed to re-
ducing opportunities for post-transfusion HBV infection [15].

Our findings on the prevalence of HBsAg are similar to those
reported for other regions of Saudi Arabia: 3.0% in the Saudi re-

donors in Iran were anti-HBc(+), 12.2% of whom also were
HBV DNA(+). Ten years later, Gharib et al. [21] found that 6.55% of healthy

doors who were anti-HBc(-) rather than by the number of HB

infection [15].

Our findings on the prevalence of HBsAg are similar to those
reported for other regions of Saudi Arabia: 3.0% in the Saudi re-

doors who were anti-HBc(-) rather than by the number of HB

infection [15].

However, it was higher than that of neighboring Arab countries such as Lebanon (0.9%), Egypt (1.18%), and Oman (2.8%) [13,

Behzad-Bebahani et al. [22] found that 6.55% of healthy donors in Iran were anti-HBc(+), 12.2% of whom also were

HBV DNA(+). Ten years later, Gharib et al. [23] showed that the

donor examination with a detailed ques-
in the general population as well. Anti-HBc screening continues

to be the key approach to identify prior HBV exposure in donors.

Blood donations during the window period of infection and
occult infections could compromise the safety of the blood sup-
y. We found that 2.91% of the donors were HBsAg(-) but anti-

HBc (+), showing chronic or resolving infection. The prevalence of
HBV infection in our study was inflated by a high number of donors who were anti-HBc(-) rather than by the number of HB-
sAg(+) donors (63/22,842).

In our study, the cases of occult HBV infections (0.05% preval-
ence) were identified by the NAT in donors who were anti-HBc(+), but HBsAg(-). This result emphasizes the importance of NATs in conjunction with anti-HBc tests for eliminating any residual risk of transfusion-transmitted HBV infection. Though anti-HBc re-
activity alone is sufficient to determine blood units with HBV in-
fection, it only shows a previous or resolving infection. However,
NATs can identify an early infection, much before HBsAg and
anti-HBc reach circulation. The present data highlights the im-
portance of NATs for detecting early infections with non-reactive
HBsAg.

The frequency of HBV positivity among blood donors, deter-

vaccinations of newborns, screening of pregnant women, screen-

ing of blood donors with advanced technologies such as NATs,

and pre-employment screening of immigrants have drastically
reduced the transfusion-transmitted infection rates in Saudi Ara-

bia [34]. Our study provides valuable data to serve as a founda-
tion for similar future studies.

A limitation of our study is that we sampled only blood donors.
Our results thus may not reveal the overall prevalence of HBV in
the general population of this region. Further studies should be
conducted to assess the prevalence of HBV infection nationwide
in the general population as well. Anti-HBc screening continues
to be the key approach to identify prior HBV exposure in donors.
However, only a proper donor examination with a detailed ques-
tionnaire and history followed by screening and testing will help
ensure complete blood safety.

Authors’ Disclosures of Potential Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgment

The authors greatly acknowledge the assistance received from
the Blood Bank staff of King Fahad Hospital of the Imam Abdul-
rahman Bin Faisal University through various stages of this study.
The authors are also grateful to the Deanship of Scientific Re-
search, Imam Abdulrahman Bin Faisal University for funding

this study.
REFERENCES

1. World Health Organization (WHO). Fact sheets, hepatitis B Key Facts. http://www.who.int/news-room/fact-sheets/detail/hepatitis-b (Updated on July 2018).
2. Centres for Disease Control and Prevention. World Hepatitis Day report. http://www.cdc.gov/features/worldhepatitisday/index.html (Updated on July 2018).
3. Lok AS, McMahon BJ, Practice Guidelines Committee, American Association for the Study of Liver Diseases. Chronic hepatitis B. Hepatology 2001;34:1225-41.
4. Song Y, Bian Y, Petzold M, Ueng CO. Prevalence and trend of major transfusion-transmissible infections among blood donors in Western China, 2005 through 2010. Plos One 2014;9:e94528.
5. Japhet MO, Adesina OA, Donbraye E, Adewumi MO. Hepatitis B core IgM antibody (anti-HBcIgM) among hepatitis B surface antigen (HBsAg) negative blood donors in Nigeria. Virol J 2011;8:513.
6. Schmidt M, Nöbling CM, Scheiblauer H, Chudy M, Walch LA, Seifried E, et al. Prevalence of hepatitis B seromarkers and hepatitis C antibodies in blood donors in Basra, Iraq. BMJ Open Gastroenterol 2016;3:e000067.
7. Shobokshi OA, Serebour FE, Skakni L. Hepatitis B surface gene mutants and their emerging role in the efficacy of HBV vaccination programs. Ann Saudi Med 1999;19:87-92.
8. Bashawri LA, Fawaz NA, Ahmad MS, Qadi AA, Almawi WY. Prevalence of seromarkers of HBV and HCV among blood donors in Eastern Saudi Arabia, 1998-2001. Clin Lab Haematol 2004;26:225-8.
9. El-Hazmi MM. Prevalence of HBV, HCV, HIV-1, 2 and HTLV-I/II infection in blood and blood products. Clin Lab Haematol 2004;26:225-8.
10. El Beltagy KE, Al Balawi IA, Almuneef M, Memish ZA. Prevalence of hepatitis B and C in donated blood from the Jazan region of Saudi Arabia. Malays J Med Sci 2013;20:41-6.
11. Mahaba HM, El-Tayeb Ael K, El-Seuki DK, El Gofaeei AF, El-Baz HS, Ismail NA. Pattern of HBsAg positivity in selected groups at King Khalid General Hospital-Hail region, Kingdom of Saudi Arabia. J Fam Commun Med 1997;4:30-6.
12. Badrawy H and Bakry R. Anti-HBc and HBV-DNA detection in blood donors positive for hepatitis B virus surface antigen in reducing risk of transfusion associated HBV infection. Indian J Med Res 2006;123:37-42.
13. Zekri AR, Awtia AA, El Mahalawi H, Ismail EF, Mabrouk GM. Evaluation of blood units with isolated anti HBC for the presence of HBV DNA. Dis Markers 2002;18:107-10.
14. Bodhiphala P, Chaturachumroenchai S, Chiewsrip P, Pruksananond P. Detection of HBV genome by gene amplification method in HBsAg negative blood donors. J Med Assoc Thai 1999:82:491-5.
15. Findik D, Arslan U, Baykan M. Determination of hepatitis B virus DNA incidence, viral load, and mutations in blood donors with HBsAg and anti-HBs-negative serology and antibodies to hepatitis B core antigen. Eur J Intern Med 2007;18:571-5.
16. Arabaci F and Oldacay M. Investigation of mutant hepatitis B virus in core antibody seropositive cases of blood donor population. J Med Sci 2008:8:316-20.
17. Zervou EK, Dalekos GN, Boumba DS, Tsinanos EV. Value of anti-HBc screening of blood donors: a comparison of nine anti-HBc tests. Vox Sang 2006;91:237-43.
18. Schmidt M, Nöbling CM, Scheiblauer H, Chudy M, Walch LA, Seifried E, et al. Anti-HBc screening of blood donors: a comparison of nine anti-HBc tests. Vox Sang 2006;91:237-43.
19. El-Zayadi AR, Ibrahim EH, Badran HM, Saeed M, Almawi WY. Prevalence of occult hepatitis B virus infection among Omani blood donors: a preliminary study. Med Princ Pract 2006;15:368-72.
20. Behzad-Fehrbahani A, Mafi-Nejad A, Tabeiz S, Lankarani KB, Torab A, Moaddbe A. Anti-HBc and HBV-DNA detection in blood donors negative for hepatitis B virus surface antigen in reducing risk of transfusion associated HBV infection. Indian J Med Res 2006;123:37-42.
21. Kaminski G, Alnaaqd A, Al-Belushi I, Nagrales J, Al-Dhahry SH. Evidence of occult hepatitis B virus infection among Omani blood donors: a preliminary study. Med Princ Pract 2006;15:368-72.