RANK-ONE PERTURBATION
OF TOEPLITZ OPERATORS AND REFLEXIVITY

Kamila Kliś-Garlicka

Abstract. It was shown that rank-one perturbation of the space of Toeplitz operators preserves 2-hyperreflexivity.

Keywords: Toeplitz operators, reflexivity, hyperreflexivity.

Mathematics Subject Classification: 47A15, 47L99.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the algebra of all bounded linear operators on \mathcal{H}.

It is well known that the space of trace class operators τc is a predual to $\mathcal{B}(\mathcal{H})$ with the dual action $\langle A, f \rangle = tr(Af)$, for $A \in \mathcal{B}(\mathcal{H})$ and $f \in \tau c$. The trace norm in τc will be denoted by $\| \cdot \|_1$. Denote by F_k the set of operators of rank at most k. Every rank-one operator may be written as $x \otimes y$, for $x, y \in \mathcal{H}$, and $(x \otimes y)z = \langle z, y \rangle x$ for $z \in \mathcal{H}$. Moreover, $tr(T(x \otimes y)) = \langle Tx, y \rangle$.

Let $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be a subspace (when we write subspace we mean a norm closed linear manifold). By $d(T, \mathcal{M})$ we will denote the standard distance from an operator T to a subspace \mathcal{M}, i.e., $d(T, \mathcal{M}) = \inf\{\|T - M\| : M \in \mathcal{M}\}$. It is known that when \mathcal{M} is weak* closed $d(T, \mathcal{M}) = sup\{|tr(Tf)| : f \in \mathcal{M}_\perp, \|f\|_1 \leq 1\}$, where \mathcal{M}_\perp denotes the preannihilator of \mathcal{M}.

Recall that the reflexive closure of a subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is given by

$$\text{ref } \mathcal{M} = \{ T \in \mathcal{B}(\mathcal{H}) : Tx \in [\mathcal{M}x] \text{ for all } x \in \mathcal{H} \},$$

where $[\cdot]$ denotes the norm-closure. A subspace \mathcal{M} is called reflexive if $\mathcal{M} = \text{ref } \mathcal{M}$. Due to Longstaff [14] we know that when \mathcal{M} is a weak* closed subspace of $\mathcal{B}(\mathcal{H})$, then \mathcal{M} is reflexive if and only if \mathcal{M}_\perp is a closed linear span of the set of all operators of rank one contained in \mathcal{M} (i.e., $\mathcal{M}_\perp = [\mathcal{M}_\perp \cap F_1]$). A subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called k-reflexive if $\mathcal{M}^{(k)} = \{ M^{(k)} : M \in \mathcal{M} \}$ is reflexive in $\mathcal{B}(\mathcal{H}^{(k)})$, where
proved that a weak* closed subspace \(M \subset H \) is \(k \)-reflexive if and only if \(M \) is a closed linear span of rank-\(k \) operators contained in \(M \) (i.e., \(M = [M \cap F_h] \)).

In [2] Arveson defines an algebra \(A \) as hyperreflexive if there is a constant \(a \) such that \(d(T,A) \leq a \sup\{||P^{-1}TP|| : P \in \text{Lat} A \} \) for all \(T \in B(H) \). In [11] this definition was generalized to subspaces of operators. A subspace \(M \subset B(H) \) is called hyperreflexive if there is a constant \(a \) such that

\[
d(T,M) \leq a \sup\{||Q^{-1}TP|| : P, Q \text{ are projections and } Q^{1/2}MP = 0\}
\]

for all \(T \in B(H) \). As it was shown in [12] the supremum on the right hand side is equal to \(\sup\{||T,g \otimes h|| : g \otimes h \in M \cap F_k, ||g \otimes h||_1 \leq 1\} \).

Recall after [10] the definition of \(k \)-hyperreflexivity. Let \(M \subset B(H) \) be a subspace. For any \(T \in B(H) \) denote

\[
\alpha_k(T,M) = \sup\{|\text{tr}(Tf)| : f \in M \cap F_k, ||f||_1 \leq 1\}.
\]

A subspace \(M \) is called \(k \)-hyperreflexive if there is a \(a > 0 \) such that for any \(T \in B(H) \) the following inequality holds:

\[
d(T,M) \leq a \alpha_k(T,M).
\]

Let \(\kappa_k(M) \) be the infimum of the collection of all constants \(a \) such that inequality (1.1) holds, then \(\kappa_k(M) \) is a constant of \(k \)-hyperreflexivity. Operator \(T \) is \(k \)-hyperreflexive if the WOT closed algebra generated by \(T \) and identity is \(k \)-hyperreflexive.

When \(k = 1 \) the definition above coincides with the definition of hyperreflexivity and the letter \(k \) will be omitted.

2. Reflexivity of Perturbated Toeplitz operators

Let \(T \) be the unit circle on the complex plane \(\mathbb{C} \). Denote \(L^2 = L^2(\mathbb{T}, m) \) and \(L^\infty = L^\infty(\mathbb{T}, m) \), where \(m \) is the normalized Lebesgue measure on \(\mathbb{T} \). Let \(H^2 \) be the Hardy space corresponding to \(L^2 \) and \(P_{H^2} \) be a projection from \(L^2 \) onto \(H^2 \). For each \(\phi \in L^\infty \) we define \(T_\phi : H^2 \rightarrow H^2 \) by \(T_\phi f = P_{H^2}(\phi f) \) for \(f \in H^2 \). Operator \(T_\phi \) is called a Toeplitz operator and \(T \) will denote the space of all Toeplitz operators.

The unilateral shift \(S \) can be realized as the multiplication operator by independent variable \(T_z \). Moreover, \(T = \{T_\phi : \phi \in L^\infty\} = \{A : T^*_z AT_z = A\} \) ([9, Corollary 1 to Problem 194]). Hence \(T \) is weak* closed.

Let \(\{e_j\} \in \mathbb{N} \) be the usual basis in \(H^2 \). Denote by \(M_{lm} \) the subspace \(T + \mathbb{C}(e_l \otimes e_m) \). In [4, Theorem 3.1] the authors proved that the space of all Toeplitz operators is not reflexive but it is 2-reflexive. We will show that the subspace \(M_{lm} \) has the same properties.

Proposition 2.1. The subspace \(M_{lm} \) is not reflexive but it is 2-reflexive.

Proof. Notice that \((M_{lm})_\perp = T_\perp \cap (e_l \otimes e_m)_\perp \). Since \(T_\perp \) contains no nonzero rank-one operators, then \(M_{lm} \) is not reflexive.
Proposition 2.5. Subspace we have that by Arveson in [1, Proposition 5.2], which has the property that for any \(T \) operators is hyperreflexive. Moreover, the space of all Toeplitz operators

\[
\mathcal{T}_\perp = \text{span}\{e_i \otimes e_j - Se_i \otimes Se_j : i, j = 1, 2, \ldots \},
\]

where \(S \) is the unilateral shift. Therefore,

\[
(\mathcal{M}_tm)_\perp = \text{span}\{e_i \otimes e_j - Se_i \otimes Se_j : i, j = 1, 2, \ldots, (i, j) \neq (l, m) \text{ and } (i + 1, j + 1) \neq (l, m)\}.
\]

Hence \(\mathcal{M}_tm \) is 2-reflexive. \(\square \)

Recall after [5] the following definition.

Definition 2.2. Subspace \(\mathcal{M} \subset B(\mathcal{H}) \) has property \(\mathcal{A}_{1/k} \) if \(\mathcal{M} \) is weak* closed and for any weak* continuous functional \(\phi \) on \(\mathcal{M} \) there is \(g \in F_k \) such that \(\phi(M) = tr(Mg) \) for \(M \in \mathcal{M} \).

Proposition 2.3. The subspace \(\mathcal{M}_tm = \mathcal{T} + \mathbb{C}(e_l \otimes e_m) \) has property \(\mathcal{A}_{1/4} \).

Proof. Let \(t \in \tau \). Since \(\mathcal{T} \) has property \(\mathcal{A}_{1/2} \) ([10, Proposition 4.1]), there is \(f \in F_2 \) such that \((t - f) \in \mathcal{T}_\perp \). If \((t - f) \in (\mathbb{C}e_l \otimes e_m)_\perp \), then \((t - f) \in (\mathcal{M}_tm)_\perp \). If

\[
(t - f) \notin (\mathbb{C}e_l \otimes e_m)_\perp, \text{ then } (t - f - \lambda e_l \otimes e_m + \lambda e_{l+1} \otimes e_{m+1}) \in (\mathcal{M}_tm)_\perp,
\]

where \(\lambda = P_{\mathbb{C}e_l}(t - f)P_{\mathbb{C}e_m} \) and \(P_{\mathbb{C}e} \) denotes the orthogonal projection on \(\mathbb{C}e \). So \(\mathcal{M}_tm \) has property \(\mathcal{A}_{1/4} \). \(\square \)

In [13] Larson proved that if \(\mathcal{M} \) is \(k \)-reflexive, then any weak* closed subspace \(\mathcal{L} \subset \mathcal{M} \) is \(k \)-reflexive if and only if \(\mathcal{M} \) has property \(\mathcal{A}_{1/k} \). It follows immediately from Proposition 2.1 and Proposition 2.3 that:

Corollary 2.4. Every weak*-closed subspace of \(\mathcal{M}_tm = \mathcal{T} + \mathbb{C}(e_l \otimes e_m) \) is 4-reflexive.

On the other hand, due to [8] we know that the algebra of analytic Toeplitz operators is hyperreflexive. Moreover, the space of all Toeplitz operators \(\mathcal{T} \) is \(2 \)-hyperreflexive and \(\kappa_2(\mathcal{T}) \leq 2 \) (see [10,15]). We will show that the subspace \(\mathcal{M}_tm \) is \(2 \)-hyperreflexive. In the proof we will use the projection \(\pi : B(H^2) \to \mathcal{T} \) constructed by Arveson in [1, Proposition 5.2], which has the property that for any \(A \in B(H^2) \) the operator \(\pi(A) \) belongs to the weak* closed convex hull of the set \(\{ T_n^* A T_m : n \in \mathbb{N} \} \).

Proposition 2.5. Subspace \(\mathcal{M}_tm = \mathcal{T} + \mathbb{C}(e_l \otimes e_m) \) is 2-hyperreflexive with constant \(\kappa_2(\mathcal{M}_tm) \leq 2 \).

Proof. Let \(A \in B(H^2) \). For \(\lambda \in \mathbb{C} \) define \(A_\lambda = A - \lambda e_l \otimes e_m \). Notice that for any \(\lambda \in \mathbb{C} \)

\[
d(A, \mathcal{M}_tm) \leq \| A - \pi(A) - \lambda e_l \otimes e_m \| = \| A_\lambda - \pi(A_\lambda) \|.
\]

Since the space of Toeplitz operators \(\mathcal{T} \) is 2-hyperreflexive with constant at most 2, we have that

\[
d(A_\lambda, \mathcal{T}) \leq \| A_\lambda - \pi(A_\lambda) \| \leq 2\kappa_2(A_\lambda, \mathcal{T}) \quad \text{for details see [10]}.\]
To complete the proof it is enough to show that for any \(A \in \mathcal{B}(H^2) \) there is \(\lambda \in \mathbb{C} \) such that
\[
\alpha_2(A_\lambda, T) = \alpha_2(A, \mathcal{M}_{lm}).
\] (2.1)

Note that
\[
\alpha_2(A_\lambda, T) = \sup \{|tr(A_\lambda t)| : 2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}, k \geq 1, i, j = 0, 1, 2, \ldots \}.
\]
If this supremum is realized by \(2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k} \) for \((i, j) \neq (l, m) \) and \((i+k, j+k) \neq (l, m) \), then equality (2.1) holds. So, it is enough to consider the case when
\[
\alpha_2(A_\lambda, T) = \sup \{|tr(A_\lambda t)| : 2t = e_l \otimes e_m - e_{l+k} \otimes e_{m+k}, k \geq \min\{-l, -m\}\} = \sup \{|a_{lm} - a_{l+k,m+k}| : k \geq \min\{-l, -m\}\}.
\]
Suppose that \(\alpha_2(A, \mathcal{M}_{lm}) = \beta > 0 \). Note that for any \(\lambda \) we have \(\beta \leq \alpha_2(A_\lambda, T) \).
If we choose \(\lambda = a_{lm} - a_{l+1,m+1} \), then
\[
\alpha_2(A_\lambda, T) = \sup \{|a_{l+1,m+1} - a_{l+k,m+k}| : k \geq \min\{-l, -m\}\} \leq \beta.
\]
Hence \(\alpha_2(A_\lambda, T) = \alpha_2(A, \mathcal{M}_{lm}) \), which completes the proof. \(\square \)

Acknowledgements

The author was supported by grant founded by the Rector of the University of Agriculture in Krakow.

REFERENCES

[1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233.
[2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series 55, Amer. Math. Soc., Providence, 1984.
[3] E.A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 64 (1986).
[4] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411–428.
[5] H. Bercovici, C. Foias, C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Reg. Conf. Ser. Math. 56, Amer. Math. Soc., Providence, 1985.
[6] J. Bourgain, A problem of Douglas and Rudin on factorization, Pacific J. Math. 121 (1986), 47–50.
[7] J.B. Conway, A course in operator theory, Amer. Math. Soc., Providence, 2000.
[8] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math 31 (1987) 2, 265–273.
[9] P.R. Halmos, *A Hilbert space problem book*, Van Nostrand, Princeton, NJ, 1967.

[10] K. Kliś, M. Ptak, *k*-hyperreflexive subspaces, Houston J. Math. **32** (2006), 299–313.

[11] J. Kraus, D. Larson, *Some applications of a technique for constructing reflexive operator algebras*. J. Operator Theory **13** (1985), 227–236.

[12] J. Kraus, D. Larson, *Reflexivity and distance formulae*, Proc. Lond. Math. Soc. **53** (1986), 340–356.

[13] D. Larson, *Annihilators of operator algebras*, Operator Theory **6** (1982), 119–130.

[14] W.E. Longstaff, *On the operation Alg Lat in finite dimensions*, Linear Algebra Appl. **27** (1979), 27–29.

[15] H. Mustafayev, *On hyper-reflexivity of some operator spaces*, Int. J. Math. Math. Sci. **19** (1996), 603–606.

Kamila Kliś-Garlicka
rmklis@cyf-kr.edu.pl

University of Agriculture
Institute of Mathematics
Balicka 253c, 30-198 Kraków, Poland

Received: July 19, 2011.
Revised: August 11, 2011.
Accepted: August 16, 2011.