Title
Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens.

Permalink
https://escholarship.org/uc/item/0282c9dw

Journal
Frontiers in plant science, 6(OCTOBER)

ISSN
1664-462X

Authors
Wang, Congli
Ulloa, Mauricio
Shi, Xinyi
et al.

Publication Date
2015

DOI
10.3389/fpls.2015.00791

Peer reviewed
Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens

Congli Wang¹,², Mauricio Ulloa³*, Xinyi Shi⁴, Xiaohui Yuan⁴, Christopher Saski⁵, John Z. Yu⁶ and Philip A. Roberts¹

¹ Department of Nematology, University of California, Riverside, Riverside, CA, USA, ² Key Laboratory of Mollicule Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China, ³ Plant Stress and Germplasm Development Research Unit, USDA - Agricultural Research Service, Lubbock, TX, USA, ⁴ Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China, ⁵ Clemson University, Genomics Institute, Clemson, SC, USA, ⁶ USA - Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX, USA

Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) are foci for discovery of resistance (R) or pathogen-induced R (PR) genes underlying QTLs involved in response to root-knot nematode (Meloidogyne incognita), reniform nematode (Rotylenchulus reniformis), Fusarium wilt (Fusarium oxysporum f.sp. vasinfectum), Verticillium wilt (Verticillium dahliae), and black root rot (Thielaviopsis basicola). Simple sequence repeat (SSR) markers and bacterial artificial chromosome (BAC) clones from a BAC library developed from the Upland cotton Acala Maxxa were mapped on Chr 11 and Chr 21. DNA sequence through Gene Ontology (GO) of 99 of 256 Chr 11 and 109 of 239 Chr 21 previously mapped SSRs revealed response elements to internal and external stimulus, stress, signaling process, and cell death. The reconciliation between genetic and physical mapping of gene annotations from new DNA sequences of 20 BAC clones revealed 467 (Chr 11) and 285 (Chr 21) G. hirsutum putative coding sequences, plus 146 (Chr 11) and 98 (Chr 21) predicted genes. GO functional profiling of Unigenes uncovered genes involved in different metabolic functions and stress response elements (SRE). Our results revealed that Chr 11 and 21 harbor resistance gene rich genomic regions. Sequence comparisons with the ancestral diploid D5 (G. raimondii), A2 (G. arboreum) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genomes revealed abundance of transposable elements and confirmed the richness of resistance gene motifs in these chromosomes. The sequence information of SSR markers and BAC clones and the genetic mapping of BAC clones provide enhanced genetic and physical frameworks of resistance gene-rich regions of the cotton genome, thereby aiding discovery of R and PR genes and breeding for resistance to cotton diseases.

Keywords: Gossypium hirsutum, genetic and physical mapping, resistance-rich cluster, resistance stress element, root-knot nematode, Fusarium wilt, soil-borne disease
Introduction

Cultivated plant species are under continuous attack by pathogens, which imposes a major challenge for growers by causing significant crop yield loss (Blasingame and Patel, 2004; Roberts et al., 2007). The future of crop improvement depends on understanding of the distribution, structure, and organization of disease resistance (R) and pathogen-induced (PR) genes (Ulloa et al., 2011). Plants have a great capacity to recognize pathogen effectors and inducers through different strategies (Dodds and Rathjen, 2010); however, our understanding of these strategies and interactions is still limited. New DNA sequence information coupled with the physical alignment of genomic regions into chromosomal maps and the anchoring of genetic maps are steps that will improve the accuracy of detecting R or PR genes (van Loon et al., 2006; Bent and Mackey, 2007; Kou and Wang, 2010; Ulloa et al., 2011) and gene functions of important biological processes in crops (Rong et al., 2004; Ulloa et al., 2007; Chaudhary et al., 2009). In addition, these new discoveries will have important implications for breeding effective pest and disease resistance into elite cultivars by marker-assisted selection (MAS) (Ulloa et al., 2011, 2013).

Plants express multiple R genes with specificities for different strains of viruses, bacteria, fungi and nematodes, and individual plant genomes include hundreds of R gene-like sequences (Bent and Mackey, 2007; Adams-Phillips et al., 2008; Ulloa et al., 2011). The most studied R genes encode putative intra-cellular proteins with nucleotide binding sites (NBS) and leucine-rich repeat motifs (LRR), which represent the largest R gene family. NBS-LRR proteins can be subdivided in two types based on structural features of the N terminus: TIR-NBS-LRR proteins which resemble the intracellular domains of Drosophila Toll and mammalian IL-1 receptors and CC-NBS-LRR proteins which contain a coiled-coil domain (Jones and Dangl, 2006; Guo et al., 2011; Qi and Innes, 2013). Based on phylogenetic relationships, most R genes reside in clusters either as tandem duplicates on a tree or mixed clusters that contain genes from different branches of a species-wide tree (Meyers et al., 2005). Different R gene-mediated signal transduction pathways may utilize some distinct signaling components and induce a set of plant responses (Sato et al., 2007; Adams-Phillips et al., 2008). In contrast, PR genes have been classified into 17 families of pathogenesis-related proteins. These proteins are induced through the action of the signaling compounds of salicylic acid, jasmonic acid or ethylene (Fonseca et al., 2009; Panstruga et al., 2009; Stepanova and Alonso, 2009). They possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, these proteins serve essential plant functions (senescence, wounding, cold stress, and present in floral tissue) whether they are used in defense or not (van Loon et al., 2006).

In cotton (Gossypium spp.), root-knot nematode [RKN (Meloidogyne incognita)], reniform nematode [REN (Rotylenchulus reniformis)], Fusarium wilt [FOV (Fusarium oxysporum f.sp. vasinfectum)], Verticillium wilt [VW (Verticillium dahliae)], and black root rot [BRR (Thielaviopsis basicola)] represent expanding threats to crop production (Wang et al., 2006; Niu et al., 2008; Dighe et al., 2009; Ulloa et al., 2011, 2013; Fang et al., 2014; Zhao et al., 2014). Cotton is one of the most economically important crops, providing the world’s leading natural fiber, and it is a polyploid model for cytogenetic, genomic, and evolutionary biology research (Kim and Triplett, 2001; Wendel and Cronn, 2003; Ulloa et al., 2007; Chaudhary et al., 2009). The estimated cotton yield loss due to diseases was 10.93% in the United States in 2004 (Blasingame and Patel, 2004). Increased knowledge of resistance to cotton pathogens such as RKN, REN, FOV, VW, BRR, and of genomic segments housing R or PR genes will help to elucidate the mechanisms of qualitative and quantitative disease resistance.

Knowledge of R and PR genes has increased with the availability of genome data and the increasing number of genes reported to be involved in resistance (Ulloa et al., 2007). New DNA sequences can be examined to discover genes involved in disease resistance by sequence comparisons with existing databases of expressed sequence tags (ESTs) such as GenBank (http://www.ncbi.nlm.nih.gov/). Additional studies using genomic and proteomic technologies have facilitated global comparisons of R and PR expression profiles (Ulloa et al., 2011; Yin et al., 2012; Wang et al., 2013; Wei et al., 2013) and pathway components of genes involved in disease defense and/or response (Chisholm et al., 2006).

Integrating disease resistance phenotypes into high-yielding, high-fiber quality cultivars is one of the most important objectives in cotton breeding programs (Ulloa et al., 2011). To further elucidate and expedite the discovery of R and/or PR genes; herein, we provide new DNA sequence information of large genomic segments (e.g., BAC clones) from cv. Acala Maxxa (G. hirsutum L.) for which MUSB-derived single sequence repeat (SSR) markers were previously mapped to chromosomes (Chr) 11 and 21 (Frelighowski et al., 2006; Ulloa et al., 2008; Yu et al., 2012). These markers reportedly underlie QTLs involved in disease resistance; therefore, capturing and sequencing BAC-sized genomic segments tightly linked to these SSRs will help to resolve local content and genome structure of RKN (Shen et al., 2006; Wang et al., 2006; Ynturi et al., 2006; Ulloa et al., 2010), REN (Dighe et al., 2009; Gutiérrez et al., 2011), FOV (Ulloa et al., 2011, 2013), VW (Bolek et al., 2005; Fang et al., 2014; Zhao et al., 2014), and BRR (Niu et al., 2008) resistance. The Maxxa BAC clone and marker sequence data were also compared to the whole genome sequence assemblies of the G. raimondii D3 and G. arboreum A2 ancestral diploid genomes (Paterson et al., 2012; Wang et al., 2012b; Li et al., 2014) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genome which are now publicly available (Li et al., 2015; Zhang et al., 2015).

Materials and Methods

Selection and Sequencing of BAC Clones of Upland Cotton Chromosomes 11 and 21

Two strategies were deployed to recruit BAC clones that mapped to Upland cotton Chr 11 and Chr 21 from the cv. Acala Maxxa genomic library (Tomkins et al., 2001). The first strategy used MUSB SSR markers previously mapped to Chr 11 (Frelighowski
et al., 2006). Some of these marker-loci were later placed on Chr 21 (Ulloa et al., 2008; Yu et al., 2012). We selected BAC clones which contained 12 MUSB SSRs (Table 1) from these two chromosomes. Some of these selected MUSB markers were identified as being associated with FOV resistance, using genetic and QTL mapping methods, and bulked segregant analysis (BSA) on resistant and susceptible progeny with different genetic backgrounds (Ulloa et al., 2011, 2013; Ulloa M and Roberts P unpublished information). Other MUSB markers were selected because they were mapped in the vicinity of an underlying QTL involved in pathogen resistance (Table 2).

The second strategy was to use SSR marker-sequences previously mapped on Chr 11 and Chr 21 (CMD: http://www.cottonmarker.org/) to select BAC clones previously sequenced from the Acala Maxxa library by sequence-comparison. These BAC clones were originally sequenced erroneously as part of the maize sequencing project by the Genome Sequencing Center, Washington University School of Medicine. The DNA sequence information of these BACs was deposited into GenBank under the accession numbers: AC193383, AC187848, AC187214, AC187470, AC202821, AC190836, AC208380, and AC187810. Sequences of each BAC clone (Table 1) were compared to SSR marker-sequences from Chr 11 and Chr 21. The selection criteria of tagging a BAC clone with mapped SSR markers from these chromosomes were as follows: only the sequence of each SSR marker spanning forward primer to the reverse primer (including the SSR motif) was used for the comparison. DNA sequences were blasted using all six frames (forward +1 to +3 and reverse −1 to −3) base positions. Potential BAC clones were tagged with an SSR marker when both (BAC and SSR) DNA sequences had a similarity >96%.

Sequencing and Assembly of Upland Cotton BAC Clones

A small-insert (3–5 kb) library was constructed from each of the 12 BAC clones, which harbored the selected SSR markers on Chr 11 and Chr 21 (Table 1). Small-insert DNA fragments were generated by isolating BAC DNA as a maxi-prep from the BAC clone and subjecting the DNA to random fragmentation (Digilab®, Digilab Inc., Holliston, MA). Fragments between 3 and 5 kb were size-selected by gel electrophoresis, were end-repaired and cloned into the high-copy plasmid-based cloning vector pBluescript KSII+ (Agilent Technologies) and then electroporated into *E. coli* DH10B host cells. Transformants were selected on Lysogeny broth (LB) plates containing carbenicillan, X-Gal and IPTG. White recombinant colonies were picked robotically using the Genetix Technologies and then subjected to a similar analysis using BLASTX through the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) nr protein database with a value of e<1e-5 to identify previously established protein motifs. Stress response elements (SRE) were identified based on the description of bioprocess of GO annotation. Genes involved in stress response elements were identified according to the association of protein molecular function (MF), bioprocess (BP), and cell component (CC).

Alignment to Gossypium raimondii (D₃), G. arboreum (A₂), G. hirsutum TM-1 (AD₁), and Other Genomes

BAC sequences were aligned to the *G. raimondii* diploid D₃ whole genome (phytozone.net) (Paterson et al., 2012) through NCBI-nucleotide BLAST, *G. arboreum* diploid A₂ whole genome (http://cgp.genomics.org.cn) (Li et al., 2014) and TM-1 AD₁ genome (http://cottongen.org) from two independent groups (CGP-BGI group, Li et al., 2015; NAU-NBI group, Zhang et al., 2015) with an e ≤1e-10 and identity ≥90%. The comparisons of the BAC sequences on Chr 11 and Chr 21 with corresponding chromosomes in A₂, D₃, AD₁ genome backgrounds were conducted. The average identity and the percentage of mapped BAC sequences were calculated based on consecutive matched sequence with compared genomes. The TM-1 sequence from the...
Chr 11	ID of BAC Marker	Seq length bp	Contigs #	Total Uni-Genes	Genes matching with NR protein Blast	Unigenes associated with SRE	Transpo-sable elements	dna/rna polymerase proteins	Total Genes	Genes matching with NR protein Blast	Unigenes associated with SRE	Transpo-sable elements	dna/rna polymerase proteins
28E08	MUSB1000	117,929	5	97	72	13	14	28	20	13	8	3	3
28G10	MUSB1015	135,685	10	98	19	1	1	15	12	10	3	3	3
26K03	MUSB0963	136,740	4	42	27	1	10	15	13	10	4	5	1
24E04	MUSB0641	107,318	1	27	16	0	7	0	18	15	0	7	1
40I16	MUSB1278	89,982	5	32	15	1	1	12	7	6	3	3	0
37K01	MUSB1163	136,264	13	74	57	3	3	36	17	13	5	6	2
29G06	MUSB1035	111,818	5	10	4	0	1	0	16	15	2	11	1
33K23	MUSB0827	105,004	5	61	39	3	1	36	10	9	3	3	4
39O18	MUSB0404	75,523	10	8	2	2	0	0	14	14	7	7	0
31K15	MUSB1076	113,182	9	26	18	18	0	0	19	19	8	8	0
		1,129,445	67	467	238	41	44	120	146	124	43	56	15

Chr 21	ID of BAC Marker	Seq length bp	Contigs #	Total Uni-Genes	Genes matching with NR protein Blast	Unigenes associated with SRE	Transpo-sable elements	dna/rna polymerase proteins	Total Genes	Genes matching with NR protein Blast	Unigenes associated with SRE	Transpo-sable elements	dna/rna polymerase proteins
AC193383	NAU6334	107,036	3	9	8	8	0	0	16	14	13	0	0
AC187848	NAU6266	88,499	2	26	17	17	0	0	13	10	9	2	0
30E04	MUSB0810	112,602	10	71	67	58	9	0	8	8	5	1	0
AC187214	NAU6210	99,687	2	10	6	6	0	0	8	5	1	3	0
32H19	MUSB0823	87,789	2	19	6	6	0	0	3	2	1	0	0
AC187470	NAU6222	110,475	1	62	57	57	0	0	6	5	2	1	0
AC202821	NAU6146	88,339	7	14	8	8	0	0	6	4	3	1	0
AC190836	TMB1871	85,559	6	1	1	1	0	0	9	8	5	3	0

(Continued)
CGP-BGI group was used as a genome background to determine that resistance genes from these BACs are more frequently located in the regions of Chr 11 and Chr 21 with Fisher's exact test ($P < 0.05$). Comparisons were also made between these BACs and other plant taxa: *Arabidopsis thaliana*, *Vitis vinifera*, *Populus trichocarpa*, and *Theobroma cacao*.

Selection of SSR Markers and Construction of Linkage Groups

We targeted all SSR markers previously mapped on Upland cotton Chr 11 and Chr 21 (CMD: http://www.cottonmarker.org/), especially those underlying QTLs determining resistance to RKN (Shen et al., 2006; Wang et al., 2006, 2012a; Ynturi et al., 2006; Gutiérrez et al., 2010; Ulloa et al., 2010), REN (Dighe et al., 2009; Romano et al., 2009; Gutiérrez et al., 2011), FOV (Ulloa et al., 2011, 2013), VW (Bolek et al., 2005; Fang et al., 2014), and BRR (Niu et al., 2008). QTL analyses of marker-resistance associations for RKN, REN, FOV, VW, and BRR on these chromosomes were reported from previous publications (Table 2).

Initially, 1100 SSR markers (BNL, CIR, GH, MUSB, MUCS, MUSS, NAU, DPL, DOW, and TMB) were used with wide coverage to construct the linkage groups of Chr 11 and Chr 21 on the recombinant inbred line (RIL) population of Upland TM 1 × Pima 3-79 (Frelichowski et al., 2006; Ulloa et al., 2008, 2011, 2013; Wang et al., 2012a; Yu et al., 2012). Additional SSR markers identified to be tagged to a BAC clone or clones were mapped using JoinMapR version 4.0 (Van Ooijen, 2006). Likelihood ratio (LOD) scores of 8–12 were examined for each linkage group/chromosome using the Kosambi mapping function and a maximum distance of 40 cM on this population. Moreover, using the anchored SSR markers (MUSB) of these linkage groups and their recombination frequencies or cM distances, SSR markers were placed on Chr 11 and Chr 21 linkage groups (Figure 1) on the most recent published linkage maps of the TM 1 x 3-79 RIL population (Yu et al., 2012). Only the name of SSR markers was included in Figure 1, keeping their original cM distance between the SSR markers.

Marker Analysis and Data Mining

SSR markers previously mapped on Chr 11 and Chr 21 reported in the Cotton Marker Database (CMD: www.cottonmarker.org) were used to investigate DNA sequence composition. Sequences were then BLASTed through the NCBI (http://www.ncbi.nlm.nih.gov/). Sequences were compared against three databases: (a) Nucleotide collection (nr/nt); (b) Expressed Sequence Tags (EST); and (c) Non-Redundant protein sequences (nr). The top sequence hits found for each sequence in all three databases were then BLASTed through GO (http://www.geneontology.org/). The top functional hits given by GO were collected along with their categorized gene products [biological process (BP), cellular component (CC), and molecular function (MF)]. SSR markers involved in defense response or stress response were categorized according to top blasted protein function (receptor, disease protein, transcription factor, and oxygen-reduction and so on) and GO annotation.
Table 2 | SSR markers underlying QTL associations with nematode and pathogen resistance genes on Upland cotton chromosomes 11 and 21.

Resistance gene	Nematode or pathogen	Closest marker identified	References
RKN	Root-knot nematode	CIR316	Wang et al., 2006, 2012a; Ynturi et al., 2006; Gutiérrez et al., 2010; Ulloa et al., 2010
		MUCS088	Wang et al., 2008
		BNL1231	Bezawada et al., 2003; Wang et al., 2012a
Ren	Reniform nematode	BNL3279	Robinson et al., 2007; Dighe et al., 2009; Romano et al., 2009; Gutiérrez et al., 2011
FOV	Fusarium Wilt	MUSB0827	Ulloa et al., 2011
		MUCS399	
		MUSB1015	
		MUSB0823	Ulloa et al., 2011, 2013 (Unpublished data)
VW	Verticillium Wilt	DPL0500a-DPL0522	Boiek et al., 2005
		TMB1637-DPL0500b	Fang et al., 2014 (no marker on Figure 1)
		NAU5428	Zhao et al., 2014
BRR	Black root rot	BNL3442-BNL1034	Niu et al., 2008

Results

BAC Sequence and Annotation for Stress Response Elements

Twenty selected BAC clones were analyzed for potential coding elements involved in response to biotic/abiotic stress mechanisms (Table 1). Twelve BAC clones tagged with BAC-end MUSB [selected from Frelichowski et al. (2006) and Ulloa et al. (2008, 2011)] markers were sequenced: BAC-derived MUSB0404, MUSB0641, MUSB0827, MUSB0953, MUSB1000, MUSB1015, MUSB1035, MUSB1076, MUSB1163, and MUSB1278 from Chr 11, and MUSB0810 and MUSB0823 from Chr 21 (Table 1). The estimated BAC clone size according to assembled sequence data ranged from 68 to 140 kb with an average of 106 kb per BAC. The BAC clones were sequenced to an approximate 8X coverage, which resulted in 3–8 ordered contigs spanning up to 140,000 bp. In addition, seven BAC clones tagged to previously mapped SSR markers (25 NAUs and one TMB) on Chr 21 from the Upland cotton cultivar Acala Maxxa genomic library previously sequenced by the Genome Sequencing Center, Washington University School of Medicine were also investigated for potential coding elements: AC193383, AC187848, AC187214, AC187470, AC202821, AC190836, AC202830, and AC187810 (Table 1). These Maxxa BACs, erroneously sequenced by the maize group, were used in a different cotton characterization study by Guo et al. (2008). In this study, the 10 BAC clones from Chr 11 yielded a total of 1,129,445 bp while the 10 BAC clones from Chr 21 yielded 974,552 bp, for a total of 2,103,997 bp sequence data.

BAC sequence annotation by BLASTN alignment to the publicly available G. hirsutum Unigene set (GenBank release 165) revealed 467 (Chr 11) and 285 (Chr 21) putative Unigenes (e ≤ 1e-5). Functional signature annotations of BAC-mapped Unigenes sequences were aligned to the non-redundant protein database and assigned GO terms. A total of 238 out of 467 of Chr 11 and 233 out of 285 of Chr 21 putative Unigenes were found to be similar to known protein sequences with e ≤ 1e-5 (Table 1), while 229 putative Unigenes on Chr 11 and 52 on Chr 21 had no match to known protein sequences with e ≤ 1e-5 (Table 1 and Tables S1, S2). There were 41 Unigenes on Chr 11 and 224 on Chr 21 involved in disease defense response or stress response elements (SRE) (Table 1) based on sequence description from the BLASTed protein database and GO annotations [P (bioprocess), F (molecular function) and C (cell component)] (additional information highlighted in yellow in Tables S1, S2). Stress response elements involved in internal and external stimulus, stress, signaling process and cell death from these Unigenes are shown in Table S3 for Chr 11 and Table S4 for Chr 21. In addition, 44 transposable elements (TEs) and 120 DNA/RNA polymerase family proteins were identified on Chr 11, and nine TEs but no DNA/RNA polymerase protein on Chr 21 (Table 1).

Augustus gene prediction software revealed 146 genes on Chr 11 and 98 genes on Chr 21. The results indicated abundance of genes with considerable homology to disease response elements for these BAC clones (Table 1 and Tables S5–S8), with function in cellular growth and development processes, transport, translation, plus metabolic functions and...
stress response elements. Forty-three genes on Chr 11 BACs and 59 genes on Chr 21 BACs were involved in defense response (Table 1 and Tables S5, S6 highlighted in yellow), including receptor kinase proteins, early-responsive to dehydration stress proteins, subtilisin-like serine endopeptidase family proteins, strictosidine synthase-like, universal stress proteins, auxin-responsive proteins, and disease resistance proteins involved in stress response. GO annotation showed a range of defense associated proteins for MF, and SRE included responses to biotic/abiotic stimulus, signaling, and cell death (Tables S7, S8).

The Augustus gene prediction software also indicated 56 TE on Chr 11 BACs and 16 on Chr 21 BACs (Table 1). TE included retrotransposon ty1-copia subclass, retrotransposon ty3-gypsy subclass, gag-pol polyprotein, mutant gag-pol polyprotein, mutator sub-class protein and copia-like retrotransposable elements (Table 3, Tables S5, S6). The longest TE hit length extended 6759 bp. A GO analysis further characterized these TE into a range of defense-related activities (Table 3 and Tables S5, S6). In addition to the TEs, 15 DNA/RNA polymerase family proteins were identified on Chr 11 but none were identified on Chr 21 (Table 1).

Twenty-three disease resistance proteins were identified in four BACs (31K15 on Chr 11, and AC190836, AC202830 and AC187810 on Chr 21). The BAC 31K15 associated with marker MUSB1076 linked to R gene \(rkn1\) (Wang et al., 2006) and cluster regions containing leucine-rich repeat protein, NBS-LRR resistance protein \(rgh2\) or \(rgh1\), and CC-NBS-LRR resistance protein. Three BAC clones (AC190836, AC202830, and AC187810) on Chr 21 contained R genes harboring NBS-LRR proteins, including CC-NBS-LRR class disease resistance, tmv resistance protein and other disease resistance proteins (Table 3). Based on structural features of the N terminus, NBS-LRR proteins were surrounded by additional receptor proteins such as serine-threonine and kinase-like proteins, and TEs (Table 3). Moreover, NBS-LRR genes were identified within clusters and in the vicinity of the RKN, REN, FOV, VW, and BRR resistance of marker-genes previously reported (Bolek et al., 2005; Wang et al., 2006; Niu et al., 2008; Dighe et al., 2009; Ulloa et al., 2011).

More specifically, a percent identity plot of duplication harboring NBS-LRR resistance motifs for BAC clones AC187810 vs. AC202830 on Chr 21 is given in Figure 2, in which a set of seven regions were found harboring NBS-LRR motifs with a minimum of 70% identity spanning the clone length of \(\sim 90\) kb.

Alignment to \textit{Gossypium raimondii} (D5), \textit{G. arboreum} (A2), \textit{G. hirsutum} TM-1 (AD1) and Other Genomes

A syntenic block comparison was made of alignment of full length sequences of Chr 11 and 21 BAC clones to the two...
Sequence name	Sequence description	Sequence length	Hit ACC	Mean similarity	#GOs	GOs
31K15:g127.11	Gag-pro-like protein	555	EOY21122	78.15%	0	–
31K15:g128.11	Uncharacterized protein tcm_003795	1368	EOX64247	49.45%	0	–
31K15:g129.11	Gag-pol polyprotein	2775	ABC36622	55.70%	6	F:nucleic acid binding; P:DNA integration; F:Zinc ion binding; F:Exonuclease activity; C:Intracellular; F:Metal ion binding
31K15:g130.11	nbs-containing resistance-like protein	411	CAN83754	54.20%	4	P:Defense response; F:ADP binding; F:Hydrolase activity; F:Phosphoprotein phosphatase activity
31K15:g131.11	Retrotransposon unclassified	3288	CAN59755	60.80%	3	F:nucleic acid binding; P:DNA integration; F:Zinc ion binding
31K15:g132.11	cc-nbs-lr resistance protein	594	XP_002526758	55.75%	1	F:Hydrolase activity
31K15:g133.11	Leucine-rich repeat containing protein	1338	AAO37645	48.25%	4	P:Defense response; F:ADP binding; F:Hydrolase activity; F:Phosphoprotein phosphatase activity
31K15:g134.11	Retrotransposon unclassified	4848	EOY11267	63.10%	2	F:Heterocyclic compound binding; F:Hydroxylic compound binding; P:Cellular process
31K15:g135.11	Copia-type polyprotein	4968	EOY11267	64.50%	3	F:Heterocyclic compound binding; F:Hydroxylic compound binding; P:Cellular process
31K15:g136.11	Vamp protein sec22	633	EOY08448	76.70%	3	P:Defense response to virus; C:Plasmodesma; C:Plasma membrane
31K15:g137.11	Polyprotein	3426	CAN81099	63.45%	7	P:Electron transport chain; P:DNA recombination; C:Plastid; F:Electron carrier activity; F:DNA binding; F:Ion binding; P:Electron transport
31K15:g137.12	Polyprotein	3411	CAN81099	63.45%	7	P:Electron transport chain; P:DNA recombination; C:Plastid; F:Electron carrier activity; F:DNA binding; F:Ion binding; P:Electron transport
31K15:g138.11	Uncharacterized protein partial(retropepsin-like protein)	2544	AFN88198	47.95%	6	F:RNA binding; F:Nucleic acid binding; P:DNA integration; P:RNA-dependent DNA replication; F:RNA-directed DNA polymerase activity
31K15:g139.11	Disease resistance protein	1797	CAN74029	73.55%	10	P:Response to stimulus; F:Purine ribonucleoside binding; P:Single-organism cellular process; F:Fanion binding; F:Zinc ion binding; F:Nucleic acid binding; P:Ammonium transport; P:DNA integration; C:Membrane; F:Adenyl ribonucleotide binding
31K15:g140.11	Copia-like retrotransposable	1356	EOY19734	49.20%	3	F:Nucleic acid binding; P:DNA integration; F:Zinc ion binding
31K15:g141.11	Mitogen-activated protein kinase kinase	522	EOY25694	59.40%	1	F:Transferase activity, transferring phosphorus-containing groups
31K15:g142.11	nbs-containing resistance-like protein	906	XP_003598563	65.80%	4	P:Defense response; F:ADP binding; F:Hydrolase activity; F:Phosphoprotein phosphatase activity
31K15:g143.11	Copia-like retrotransposable	3780	EOY11267	62.20%	3	F:Heterocyclic compound binding; F:Hydroxylic compound binding; P:Cellular process
31K15:g144.11	nbs-lr resistance protein rgh2	1470	AAO37645	59.40%	1	F:Hydrolase activity
AC190836:g35.11	cc-nbs-lr class disease resistance	1308	EOY13112	65.15%	2	P:Defense response; F:ADP binding
AC190836:g36.11	cc-nbs-lr class disease resistance protein	1737	EOY13110	62.35%	7	P:Defense response; F:ADP binding; F:Hydrolase activity; F:Phosphoprotein phosphatase activity; F:ATP binding; F:Nucleotide binding; F:Adenyl ribonucleotide binding
AC190836:g37.11	Gag-pol polyprotein	1758	CAN64972	71.80%	1	F:Binding
AC190836:g38.11	cc-nbs-lr class disease resistance	543	EOY13112	70.63%	0	–
AC190836:g39.11	Retrotransposon unclassified	1848	AAO50698	66.95%	1	F:Binding
AC190836:g40.11	Retrotransposon ty1-copia subclass	3408	AAM91886	61.90%	2	P:DNA recombination; F:DNA binding

(Continued)
Sequence name	Sequence description	Sequence length	Hit ACC	Mean similarity	#GOs	GOs
AC190836:g42.t1	Leucine-rich repeat protein kinase family	906	EOY13449	63.30%	0	
AC190836:g43.t1	cc-nbs-lrr class disease resistance	852	EOY13112	64.20%	2	P: defense response; F: ADP binding
AC202830:g44.t1	tmv resistance protein	2512	EOY25754	68.00%	1	
AC202830:g45.t1	Disease resistance	768	EOY25754	52.85%	6	
AC202830:g46.t1	Serine threonine-protein phosphatase 7 long form homolog	333	XP_004490229	69.40%	2	
AC202830:g48.t1	Probable adp-ribosylation factor gtpase-activating protein agd14-like	2676	EOY10412	67.30%	2	
AC202830:g48.t2	gtpase activating isoform 4	2553	EOY10413	72.00%	4	
AC202830:g49.t1	tmv resistance protein	2553	EOY25754	69.85%	1	
AC202830:g49.t2	tmv resistance protein	2991	EOY25754	69.40%	1	
AC202830:g49.t3	tmv resistance protein	5583	EOY25754	69.25%	1	
AC202830:g50.t1	Strong similarity to gi	2205	CAN81099	58.65%	5	
AC202830:g51.t1	Retrotransposon ty1-copia sub-class	1368	CAN83392	70.05%	3	
AC202830:g52.t1	Cysteine-rich rlk (receptor-like protein kinase) 8	594	CAN75536	76.00%	7	
AC202830:g53.t1	chromo domain-containing protein lhp1-like	581	EOY10373	62.35%	5	
AC187810:g54.t1	t-complex protein 1 subunit theta-like	564	EOY11214	84.05%	16	
AC187810:g54.t2	t-complex protein 1 subunit theta-like	663	EOY11214	85.10%	16	
AC187810:g55.t1	Disease resistance	2697	EOY25762	64.05%	1	
AC187810:g56.t1	Uncharacterized protein tcm_026511	2757	CAN74029	70.20%	2	
AC187810:g57.t1	Retrotransposon ty1-copia subclass	303	CAN71828	76.50%	5	
AC187810:g58.t1	Disease resistance	2370	EOY25754	64.35%	3	
AC187810:g58.t2	Disease resistance protein	1695	ERP57954	56.50%	3	
Sequence name	Sequence description	Sequence length	Hit ACC	Mean similarity	#GOs	GOs
----------------------	--	----------------	---------	----------------	------	--
AC187810:g59.t1	Retrotransposon unclassified	2748	EOY32548	57.45%	1	F:binding
AC187810:g59.t2	Retrotransposon unclassified	2226	CAN59755	58.70%	3	F:nucleic acid binding; P:DNA integration; F:zinc ion binding
AC187810:g60.t1	tmv resistance protein	2316	EOY25760	65.15%	6	P:defense response; F:ADP binding; P:signal transduction; F:ATP binding; F:nucleotide binding; F:nucleoside-triphosphatase activity
AC187810:g60.t2	tmv resistance protein	2439	EOY25760	65.10%	6	P:defense response; F:ADP binding; P:signal transduction; F:ATP binding; F:nucleotide binding; F:nucleoside-triphosphatase activity
AC187810:g61.t1	tmv resistance protein	1827	EOY25760	66.90%	1	F:nucleotide binding
AC187810:g61.t2	Disease resistance	2334	EOY25754	62.00%	3	P:defense response; F:ADP binding; P:signal transduction
AC187810:g62.t1	Uncharacterized protein tcm_026511	3936	EOY11267	63.30%	2	F:organic cyclic compound binding; F:heterocyclic compound binding
AC187810:g63.t1	Retrotransposon unclassified	2271	CAN64779	66.05%	4	F:transition metal ion binding; F:heterocyclic compound binding; F:nucleotide binding; F:nucleoside-triphosphatase activity
AC187810:g64.t1	arm repeat protein interacting with at2g2412				3	

Available assembled whole diploid genome sequences of *G. arboreum* (*A₂*) and *G. raimondii* (*D₅*) (Tables S9–S13). The comparisons among the matched sequences showed 84.23% identity with Chr 11 BACs and 98.54% identity with BACs of Chr 21 of the tetraploid (AD) genome, corresponding to D₅ Chr 7 genome sequence (Tables S9, S12, S13). Eight percent and 80% consecutive sequences from chromosomes 11 and 21, respectively were mapped to D₅ Chr 7. Seven Chr 11 BACs with no consecutive mapping sequence were also mapped to D₅ Chr 7 in several regions. Most matched sequences of these seven BACs were TEs (Tables S9, S12, S13) which showed multiple copies through the whole genome, including D₅ Chr 7. More BLAST hits of Chr 11 BACs than Chr 21 BACs with Chr 7 A₂ genome sequence were found (Tables S9–S11). However, only one Chr 11 BAC (29O06) showed consecutive sequence length with Chr 7 A₂ genome (Tables S9–S11). The BAC sequences matched with the A₂ genome were mostly transposable elements which are distributed across the whole genome.

Alignment of Chr 11 and Chr 21 BAC sequences from *G. hirsutum* Maxxa to *G. hirsutum* TM-1 genome showed slight differences between the two sequencing groups BGI and NBI, possibly due to different assembly methods (Tables S14, S15). In total, 42 and 52% consecutive sequences of Maxxa BACs on chromosomes 11 and 21, respectively, were mapped to TM-1 At-Chr1 (equals Chr 11) and Dt-Chr7 (equals Chr 21) from BGI sequencing data (Tables S14, S15). From NBI sequencing data, 41 and 62% consecutive sequences of Maxxa BACs on chromosomes 11 and 21 were mapped to A11 (equals Chr 11) and D11 (equals Chr 21) of the TM-1 genome, respectively. The identities of matched sequences between Maxxa BACs and TM-1 genome reached 98% for Chr11 comparison and 97% for Chr 21 comparison with both BGI and NBI sequencing data. Some BAC sequences were aligned to unmapped scaffolds and mapped chromosomes, such as 34K01, indicating the unmapped scaffolds might be connected to the mapped chromosome. Partial consecutive sequences of the Maxxa BAC 32H19 on Chr 21 linked to the marker MUSB0823 was mapped to TM-1 genome Chr 11 (Tables S14, S15). Part of Maxxa BAC 40I16 sequence linked to MUSB1278 was mapped to Chr 7 in the TM-1 genome (Tables S14, 15). Most unmapped Maxxa BAC sequences matched with Chr 11 or Chr 21 were transposable elements across the whole genome. The enrichment analysis with Fisher’s exact test indicated that 115 out of 168 GOs compared with TM-1 genome sequence from CGP-BGI group were over-represented in Chr 11 and Chr 21 regions with \(p < 0.05 \) (range from 8.12E-33 to 0.041). The 115 GOs included stress response elements, such as oxidoreductase activity, cell-cell signaling, defense response to virus, syncytium formation, response to abiotic stimulus, MAP kinase kinase kinase activity, and transmembrane receptor protein tyrosine kinase signaling pathway.

Comparison of Chr 11 and Chr 21 BAC sequences with four other plant taxa—*Arabidopsis thaliana*, *Vitis vinifera*, *Populus trichocarpa*, and *Theobroma cacao*, revealed conserved regions of short sequences with each plant species. Alignments with *T. cacao* and *V. vinifera* were especially strong for certain cotton BAC clones, but less so with *A. thaliana* and *P. trichocarpa*. Results
from these comparisons and subsequent GO analyses did not provide additional information.

Genetic Mapping and SSR Marker Sequence Composition

Initially, 1100 SSR markers that provided genome-wide coverage (Park et al., 2005; Frelichowski et al., 2006; Wang et al., 2006; Ulloa et al., 2008, 2011, 2013; CMD, www.cottonmarker.org) were used to develop Upland cotton Chr 11 and Chr 21 linkage groups. Matrix genotypic data of these SSR markers were used to develop the most recent genetic linkage map of the TM-1 x 3-79 RIL population (Yu et al., 2012). In addition, QTL analyses were previously conducted on Fusarium wilt phenotypic data (Ulloa et al., 2011, 2013) and root-knot nematode root-galling and egg production phenotypic data (Wang et al., 2006, 2008, 2012a; Ulloa et al., 2010) using the SSRs and related RIL populations. SSR markers associated with FOV and RKN resistance on the TM-1 x 3-79 genetic map are presented in Figure 1 (Ulloa et al., 2011, 2013; Wang et al., 2012a). SSR marker associations with resistance to RKN (Bezawada et al., 2003; Shen et al., 2006; Ynturi et al., 2006) and to other pathogens [REN (Robinson et al., 2007; Dighé et al., 2009; Romano et al., 2009; Gutiérrez et al., 2011); VW (Bolek et al., 2005; Fang et al., 2014; Zhao et al., 2014), and BRR (Niu et al., 2008)] reported by other research groups are also presented in Figure 1. The locations of the MUSB markers derived from the Acala Maxxa BAC clones (Table 1) are shown in Figure 1.

SSR Marker Sequence Annotation for Stress Response Elements

Comparison of available sequence information from 256 SSRs on Chr 11 and 239 on Chr 21 to sequences in NCBI EST databases indicated considerable sequence similarity to known genes in plants, with 145 and 142 gene-homologies, respectively, of which 99 on Chr 11 and 109 on Chr 21 were indicated to play a role in plant defense. SSR sequences were similar to transcription factors R2R3-myb transcription factor, heat shock transcription factor, receptor kinase protein, light-regulated protein, zinc finger protein, leucine-rich repeat family protein, nucleic binding protein, WRKY DNA-binding protein, and Verticillium wilt resistance-like protein (Tables S16, S17). Because of duplicated loci from a single marker mapped on Chr 11 and its homoeolog Chr 21, similar genes, pseudogenes, or gene-forms may be present on both chromosomes (Figure 1; www.cottonmarker.org). Categorization of the gene function revealed that markers of Chr 11 and 21 mapped to genes associated with all three GO: BP, CC, and MF (Tables S16, S17). GO also revealed similarities to SRE genes involved in internal and external stimulus, stress, signaling process and cell death (Table 4, Tables S18, S19). The table S20 provides data on the distance between the mapped chromosome-wide and BAC-specific markers and the defense gene sequences found on Chr 11 and 21 listed in Table 3.

Discussion

The approach in this study was to develop a genetic and physical framework for the genomic regions of Upland cotton homoeologous Chr 11 and Chr 21 that contain important nematode and fungal disease resistance associations with molecular markers such as SSRs. While various QTL and other genetic mapping approaches have revealed the importance of this pair of cotton chromosomes in defense to biotic stresses, there has hitherto been little physical structure development and use of sequence annotation to advance our understanding of its genetic organization. The current and previous marker work provided numerous mapped marker sequences for these two chromosomes, some of which are important for use in cotton breeding programs. Furthermore, this resource allowed us to identify existing BAC clones in the G. hirsutum Acala Maxxa BAC library that are from Chr 11 and Chr 21 based on genetic mapping with SSR markers derived from the BAC-end sequences. Targeted full clone sequence of these mapped BAC clones provided a second resource of genomic DNA sequence to investigate defense response motif content of this cotton genome.
GO ID	Term	Chr 11 markers	Chr 21 markers
GO:0050896	Response to stimulus	NAU1063, NAU3409, NAU3493, HAU1756, NAU1148, NAU3811, NAU2677, DPL0715, NAU2809, MUSS281, NAU2257, NAU3008, NAU980, NAU3234, HAU3249, NAU5064, NAU3748, NAU5192, HAU2624, MUSS390, MUSB850, NAU2661, MON_CGR6766	HAU1794, MUCS347, NAU13493, HAU1805, Gh434, TMB2038, HAU0720, BNL2681, NAU2877, NAU3342, NAU3748, NAU1366, HAU2026, HAU3303, MON_DPL0582, HAU1311, MUSB850, NAU2361, NAU2758, NAU3091, NAU3895
GO:006950	Response to stress	NAU1063, DPL0715, NAU2809, MUSS281, NAU2257, NAU3008, NAU980, NAU3234, HAU3249, NAU5064, MUSS850, NAU2661, NAU3409, NAU3811, MON_CGR6766	HAU1794, MUCS347, HAU3342, HAU1805, Gh434, TMB2038, HAU3303, MON_DPL0582, HAU1311, MUSB850
GO:0042221	Response to chemical stimulus	NAU3409, NAU3493, HAU1756, NAU1148, NAU3877, MUSS281, NAU2257, NAU3008, NAU980, NAU5192, NAU3234, MUSS390	NAU3493, HAU1805, Gh434, TMB2038, BNL2681, NAU2877, HAU1311
GO:009628	Response to abiotic stimulus	NAU1063, MUSS281, NAU2257, NAU3008, NAU3234, NAU980, HAU3249, NAU5064, HAU2624, MUSS390, NAU3811, MON_CGR6766	HAU1794, MUCS347, HAU0720, HAU3342, NAU1366, HAU2026, HAU1311
GO:0010033	Response to organic substance	NAU3409, NAU3493, HAU1756, NAU1148, NAU3811, NAU2877, NAU980, NAU3234, MUSS390	NAU3493, HAU1805, Gh434, TMB2038, BNL2681, NAU2877
GO:0009699	Serine family amino acid metabolic process	MUSS281, NAU2257, NAU3008, NAU980, MUSS92, MUSS404, NAU3748, NAU354, NAU967	BNL2681, HAU2044, HAU0684, BNL137, NAU3748, HAU342
GO:0051716	Cellular response to stimulus	DPL0715, MUSS281, NAU2257, NAU3008, NAU980, NAU3748, MUSB850, MUSS390	HAU1805, Gh434, TMB2038, NAU3748, HAU3303, MON_DPL0582, HAU1311, MUSB850, NAU2361, NAU2758, NAU3091, NAU3895
GO:1901700	Response to oxygen-containing compound	NAU3409, NAU3493, HAU1756, MUSS281, NAU2257, NAU3008, NAU980, MUSS390	HAU1805, Gh434, TMB2038, BNL2681, HAU1311
GO:0069700	Response to osmotic stress	MUSS281, NAU2257, NAU3008, NAU3234, NAU980, HAU3249, NAU5064	NAU3493, HAU1805, Gh434, TMB2038, BNL2681, HAU1311
GO:009651	Response to salt stress	MUSS281, NAU2257, NAU3008, NAU3234, NAU980, HAU3249, NAU5064	HAU1805, Gh434, TMB2038, HAU1311
GO:0033554	Cellular response to stress	DPL0715, MUSS281, NAU2257, NAU3008, NAU980, MUSB850	HAU1805, Gh434, TMB2038, MON_DPL0582, HAU1311, MUSB850
GO:0070887	Cellular response to stress	MUSS281, NAU2257, NAU3008, NAU980, MUSS390	HAU1805, Gh434, TMB2038, HAU1311
GO:0010035	Response to inorganic substance	MUSS281, NAU2257, NAU3008, NAU980, HAU1756	HAU1805, Gh434, TMB2038, HAU1311
GO:0046886	Response to cadmium ion	HAU1756, MUSS281, NAU2257, NAU3008, NAU980	HAU1805, Gh434, TMB2038, BNL2681
GO:0010038	Response to metal ion	HAU1756, MUSS281, NAU2257, NAU3008, NAU980	HAU1805, Gh434, TMB2038, BNL2681
GO:009719	Response to endogenous stimulus	NAU3493, HAU1756, NAU1148, NAU3811	HAU1805, Gh434, TMB2038, BNL2681
GO:1901701	Cellular response to oxygen-containing compound	MUSS281, NAU2257, NAU3008, NAU980	HAU1805, Gh434, TMB2038, HAU1311
GO:009725	Response to hormone stimulus	NAU3493, HAU1756, NAU1148, NAU3811	HAU1805, Gh434, TMB2038, HAU1311
GO:0042542	Response to hydrogen peroxide	MUSS281, NAU2257, NAU3008, NAU980	HAU1805, Gh434, TMB2038

(Continued)
GO ID	Term	Chr 11 markers	Chr 21 markers
GO:0014070	Response to organic cyclic compound	4 NAU3493, NAU5192, MUCS530, HAU1756	3 HAU1805, Gh434, TMB2038
GO:0009416	Response to light stimulus	3 HAU2624, MUCS530, NAU3811	4 HAU0720, HAU3342, NAU1366, HAU2026
GO:0009314	Response to radiation	3 HAU2624, MUCS530, NAU3811	4 HAU0720, HAU3342, NAU1366, HAU2026
GO:0009611	Response to wounding	3 NAU2661, NAU3409, NAU3811	0
GO:0009607	Response to biotic stimulus	2 NAU2877, NAU2809	6 BNL2681, NAU2877, HAU1805, Gh434, TMB2038, HAU3303
GO:0051707	Response to other organism	2 NAU2877, NAU2809	6 BNL2681, NAU2877, HAU1805, Gh434, TMB2038, HAU3303
GO:0009617	Response to bacterium	2 NAU2877, NAU2809	5 HAU1805, Gh434, TMB2038, NAU3653, NAU3373
GO:0033993	Response to lipid	2 NAU3493, HAU1756	4 NAU3493, HAU1805, Gh434, TMB2038
GO:0009266	Response to temperature stimulus	2 NAU1063, MON_CGR6766	3 HAU1794, MUCS347, HAU3342
GO:0009408	Response to heat	2 NAU1063, MON_CGR6766	2 HAU1794, MUCS347
GO:0009639	Response to red or far red light	2 HAU2624, MUCS530	2 HAU0720, NAU1366
GO:0016998	Response to nitrogen compound	2 HAU1756, MUCS530	1 BNL2681
GO:0071310	Cellular response to organic substance	1 MUCS530	3 HAU1805, Gh434, TMB2038
GO:0042594	Response to starvation	1 MUSB850	3 MON_DPL0582, HAU1311, MUSB850
GO:0009414	Response to water deprivation	0	1 HAU1311
GO:0009605	Response to external stimulus	1 MUSB850	4 BNL2681, MON_DPL0582, HAU1311, MUSB850
GO:0043594	Regulation of kinase activity	1 NAU3621	3 HAU1805, Gh434, TMB2038
GO:0009991	Response to extracellular stimulus	1 MUSB850	3 MON_DPL0582, HAU1311, MUSB850
GO:0006974	Response to DNA damage stimulus	1 DPL0715	0
GO:0016458	Gene silencing	4 MUSB850, Gh074, DPL0715, MUCS530	2 MUSB850, HAU1592
GO:0006342	Chromatin silencing	2 MUSB850, DPL0715	1 MUSB850
GO:0007154	Cell communication	2 NAU3748, MUSB850	11 HAU1805, Gh434, TMB2038, NAU3748, MON_DPL0582, HAU1311, MUSB850, NAU3653, NAU2758, NAU3091, NAU3895
GO:0031047	Gene silencing by RNA	2 MUCS530, DPL0715	0
GO:0007165	Signal transduction	1 NAU3748	8 HAU1805, Gh434, TMB2038, NAU3748, NAU261, NAU2758, NAU3091, NAU3895
GO:0006952	Defense response	1 NAU2809	4 HAU1805, Gh434, TMB2038, HAU3303
GO:0010941	Regulation of cell death	0	4 HAU1805, Gh434, TMB2038, HAU3303
GO:0019932	Second-messenger-mediated signaling	0	3 NAU2361, NAU2758, NAU3091
region. The Maxxa BAC clone and marker sequence data were also compared to the whole genome sequence assemblies of the *G. raimondii* D5 and *G. arboreum* A2 ancestral diploid genomes (Paterson et al., 2012; Li et al., 2014), and two *G. hirsutum* TM-1 AD1 whole genome assemblies which are now publicly available (Li et al., 2015; Zhang et al., 2015).

Of particular interest is the very high defense response element content of sequences from both the SSR markers and the BAC clones on both Chr 11 and Chr 21. This result is in line with the currently recognized importance of this pair of cotton chromosomes in resistance to a wide range of parasitic nematodes and disease-causing pathogens of cotton revealed through genetic mapping of resistance trait determinants. The gene ontology annotations clearly demonstrate the richness of this region in the evolution of defense genes. Typically resistance loci evolve by tandem duplication followed by mutation and divergence of functional specificity, for example nematode resistance in soybean (Cook et al., 2012), often in response to or as a hedge against similar mutation and evolutionary changes in virulence factors in the nematode or pathogen. The large number of NBS-LRR type motifs with tandem repeats, for example as summarized for one of the two BAC clones in Figure 2 and sequence duplication of the BAC clones on Chr 21 (Figure 2), exemplifies this evolutionary hot-spot of defense gene-rich arrangement.

Comparison of DNA sequence between Chr 11 and Chr 21 for certain BAC clones also indicates the high homology between the sequences of the homoeologous chromosome pair. Thus, herein we not only report apparent large-scale duplication events within an Upland cotton chromosome, but also considerable duplication and an evolving separation of sequence homology between a pair of homoeologous chromosomes. This provides cotton with an enormous reservoir of defense response genes, some of which may be defeated related to prior pathogen forms, while others provide a resource for defense against future pathogen forms.

More TEs were identified on Chr 11 (At subgenome) than on Chr 21 (Dt subgenome) according to both *G. hirsutum* Unigene (A/D: 44/9) and predicted gene databases (A/D: 56/16) (Table 1), which might account for the physical difference in size of the A-subgenome in reference to the D-subgenome. Li et al. (2014) reported that there were a total of 4098 TEs on Chr 7 (equivalent to Chr 11 in *G. hirsutum*) in the diploid *G. arboreum* A genome and only 1542 TEs on Chr 7 (equivalent to Chr 21 in *G. hirsutum*) in the diploid *G. raimondii* D5 genome even though there were similar numbers of loci identified on Chr 7 in both diploid genomes. At least 64.8% TEs were identified in the TM-1 genome by Zhang et al. (2015) and 66% TEs by Li et al. (2015). More TEs in the A sub-genome (at least 843.5 Mb, genome size 1477 Mb) than in the D sub-genome (at least 433 Mb, genome size 831 Mb) were determined in the TM-1 genome (Zhang et al., 2015). TEs are known to play a dominant role contributing to angiosperm evolution and diversity (Oliver et al., 2013). In cotton, allotetraploid *G. hirsutum* was derived from reuniting of diploid A and D genomes about 1–2 million years ago (mya) through independent and differential accumulation of TEs 5 mya (Hu et al., 2010; Li et al., 2014). We found that resistance genes in BACs were always surrounded with retrotransposable elements (Table 3). Retrotransposons based on “cut and paste” mode are more abundant in cotton, including Ty1-copia and Ty3-gypsy elements (Hawkins et al., 2006; Hu et al., 2010). More than 50% retrotransposon frequencies were reported in the TM-1 genome (Li et al., 2015; Zhang et al., 2015). TEs involved in abiotic and biotic stress responses have gained more attention recently (Grandbastien, 1998; Grandbastien et al., 2005; Cowley and Oakey, 2013; McDowell and Meyers, 2013; Oliver et al., 2013; Tsuchiya and Eulgem, 2013; Wheeler, 2013). More TEs on the At subgenome might suggest more adaptation to biotic stress response on Chr11 than on Chr 21. In addition, we found 120 DNA-RNA polymerase family protein genes contributing to regulation of transcription on Chr 11 BACs with the *G. hirsutum* Unigene database but none of these on Chr 21. It is not clear to what extent DNA-RNA polymerase family proteins function in stress response but these results suggest divergent evolution between the A and D genomes.

Comparison of *G. hirsutum* AD1 whole genome with A2 and D5 were thoroughly conducted by Li et al. (2015) and Zhang et al. (2015) and with other genomes (*A. thaliana*, *T. cacao*, *Glycine max*, and *V. vinifera*) (Li et al., 2015). However, the 20 Maxxa BACs could not be fully mapped to the TM-1 genome, indicating that differences occur between the two tetraploid *G. hirsutum* AD1 cotton varieties. Abundant transposable elements might cause the difference between the two *G. hirsutum* cotton varieties. In addition, homologous exchanges were also observed between At subgenomes Chr 11 and Dt subgenome Chr 21 (Tables S14, S15). For example, Maxxa BAC 32H19 linked to MUSB0823 on Chr 21 (Figure 1, Yu et al., 2012) was mapped to both Chr11 and Chr 21 on TM-1 genome (Tables S14, S15).

Comparisons between Maxxa BACs from the tetraploid AD1 cotton and the A2 and D5 ancestral genomes were made to better understand the evolution of the AD genome, particularly in regard to relationships that may shed light on resistance evolution. Comparison of sequence alignments showed less similarity between tetraploid AD Chr 11 and D5 genome than between AD Chr 21 and D5 genome, further supporting independent evolution of the A and D genomes. Likewise, sequence alignments showed less similarity between tetraploid AD Chr 21 and A2 genome than between AD Chr 11 and A2 genome. The divergence of the A and D genomes is also reflected in the origins of resistance traits. For example, in a previous study *G. hirsutum* (AD1) and *G. barbadense* (AD2) were found to share the same SSR marker MUCS088 alleles as *G. arboreum* (A2), suggesting nematode resistance introduction was from the diploid cotton (A2) genome (Roberts and Ulooa, 2010).

The comparison of aligned sequences with four other sequenced plant taxa indicated a conservation of genic sequence among these plants. The highest similarities of cotton BAC sequence to the other plant taxa indicated the closest relationship with *T. cacao*. Both *G. raimondii* and *G. arboreum* genomes showed close collinear relationships with *T. cacao* and both of them might share a common ancestor having diverged from *T. cacao* 18–58 mya (Paterson et al., 2012; Wang et al., 2012b; Li et al., 2014).

Genome-wide association studies (GWAS) have been utilized successfully to identify genetic variation in plants (Brachi et al,
alignment of sequence information in cotton will help to expedite the discovery of R and PR genes and the assembly of a whole Upland cotton tetraploid genome, eventually supporting breeding for disease resistance in cotton production.

Acknowledgments
Partial support for this work was provided by grants from Cotton Incorporated to PR and MU and from University of California Discovery Grant Program to PR. This research was also partially supported by USDA-ARS (6208-21000-019-00). Partial support for bioinformatic analyses was provided by the One Hundred Talent Grant Program, Chinese Academy of Sciences and Chinese National Scientific Funding (31471749). Mention of trade names or commercial products in this manuscript is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The U.S. Department of Agriculture is an equal opportunity provider and employer.

Supplementary Material
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.00791

References
Adams-Phillips, L., Wan, J., Tan, X., Dunning, F. M., Meyers, B. C., Michelmore, R. W., et al. (2008). Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions. Mol. Plant Microbe. Interact. 21, 646–657. doi: 10.1094/MPMI-21-5-0646

Bent, A. F., and Mackey, D. (2007). Elicitors, effectors, and R genes, the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45, 399–436. doi: 10.1146/annurev.phyto.45.062806.094427

Bezawada, C., Saha, S., Jenkins, J. N., Creech, R. G., and McCarty, J. C. (2003). SSR marker(s) associated with root-knot nematode resistance gene(s) in cotton. J. Cotton Sci. 7, 179–184.

Blasingame, D., and Patel, M. V. (2004). Cotton disease loss estimate committee report. Proc. Beltwide Cotton Conf. 1, 459–460.

Bolek, Y., El-Zik, K. M., Pepper, A. E., Bell, A. A., Magill, C. M., Thaxton, P. M., et al. (2005). Mapping of verticillium wilt resistance genes in cotton. Plant Sci. 168, 1581–1590. doi: 10.1016/j.plantsci.2005.02.008

Brachi, R., Morris, G. P., and Borevitz, J. O. (2011). Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 12:232. doi: 10.1186/gb-2011-12-10-232

Chaudhary, B., Flagel, L., Stupar, R. M., Udall, J. A., Verma, N., Springer, N. M., et al. (2009). Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182, 503–517. doi: 10.1534/genetics.109.102608

Chen, Y., Huang, J., Li, N., Ma, X., Wang, J., Liu, C., et al. (2015). Genome-wide analysis of the gene families of resistance gene analogs in cotton and their response to Verticillium wilt. BMC Plant Biol. 15:148. doi: 10.1186/s12870-015-0508-3

Chisholm, S. T., Cooker, G., Day, B., and Staskawicz, B. J. (2006). Host-microbe interactions, shaping the evolution of the plant immune response. Cell 124, 803–814. doi: 10.1016/j.cell.2006.02.008

Conesa, A., and Gotz, S. (2008). Blast2GO, A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. doi: 10.1155/2008/619832

Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., et al. (2012). Copy number variation of multiple genes at RhgL mediates nematode resistance in soybean. Science 338, 1206–1209. doi: 10.1126/science.1228746

Cowley, M., and Oakley, R. J. (2013). Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet. 9:e1003234. doi: 10.1371/journal.pgen.1003234

Dighe, N., Robinson, A. F., Bell, A., Menz, M., Cantrell, R., and Stelly, D. (2009). Linkage mapping of resistance to reniform nematode in cotton (Gossypium hirsutum L.) following introgression from G. longicalyx (Hutch & Lee). Crop Sci. 49, 1151–1164. doi: 10.2135/cropsci2008.03.0129

Dodds, P. N., and Rathjen, J. P. (2010). Plant immunity, towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548. doi: 10.1038/nrg2812

Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185. doi: 10.1101/gr.8.3.175

Fang, H., Zhou, H., Sanogo, S., Lipka, A. E., Fang, D. D., Percy, R. G., et al. (2014). Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton. Mol. Breeding 33, 709–720. doi: 10.1007/s11032-013-9987-9

Fonseca, S., Chico, J. M., and Solano, R. (2009). The jasmonate pathway, the ligand, the receptor and the core signaling module. Curr. Opin. Plant Biol. 12, 539–547. doi: 10.1016/j.pbi.2009.07.013

Frelighowski, J. E., Palmer, M. B., Main, D., Tomkins, J. P., Cantrell, R. G., Stelly, D. M., et al. (2006). Cotton genome mapping with new microsatellites from Acaca ‘Maxxa’ BAC-ends. Mol. Genet. Genomics 275, 479–491. doi: 10.1007/s00438-006-0106-z

Gene Ontology Consortium. (2006). The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 34, D322–D326. doi: 10.1093/nar/gkj021

Gordon, D., Abajian, C., and Green, P. (1998). Consed, a graphical tool for sequence finishing. Genome Res. 8, 195–202. doi: 10.1101/gr.8.3.195

Wang et al. Cotton sequence and pathogen defense 2011), and the availability of diploid and tetraploid whole genome sequences makes possible GWAS for identifying genetic variation in cotton. A whole genome marker map in cotton was constructed by Wang et al. (2013) based on the G. raimondii D5 genome (Paterson et al., 2012). Wei et al. (2013) conducted systematic analysis and comparison of nucleotide-binding site disease resistance genes in the G. raimondii D5 genome (Wang et al., 2012b) and genome-wide analysis of the gene families of resistance gene analogs and their response to Verticillium wilt was made in both the G. raimondii D5 (Chen et al., 2015) and G. arboreum A2 genomes (Li et al., 2014). A comprehensive meta QTL analysis was made for fiber quality, yield, drought tolerance and disease resistance with different cotton populations (Said et al., 2013). GWAS in the tetraploid (AD) TM-1 cotton revealed positively selected genes for fiber improvement in the A genome and for stress tolerance in the D genome (Zhang et al., 2015). GWAS in the allotetraploid cotton to identify resistance-rich regions will provide more insights about the evolution of the homoeologous chromosomes 11 and 21 and benefit disease management.

In conclusion, the sequence information and physical mapping of BAC clones provide an additional genomic resource of these resistance gene-rich regions of the Upland cotton genome on Chr 11 and Chr 21. BAC clone sequences are deposited in GenBank (NCBI: http://www.ncbi.nlm.nih.gov). Continuing genetic and physical framework
Grandbastien, M. A. (1998). Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3, 181–187. doi: 10.1016/S1360-1385(98)01232-2

Grandbastien, M. A., Audeon, C., Bonnivard, E., Casacuberta, J. M., Chalhoub, B., Costa, A. P., et al. (2005). Stress activation and genomic impact of 11 retrotransposons in Solanaceae. Cytogeten. Genome Res. 110, 229–241. doi: 10.1159/000084957

Guo, W., Cai, C., Wang, C., Zhao, L., Wang, L., and Zhang, T. (2008). A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9:314. doi: 10.1186/1471-2164-9-314

Guo, Y., Fitz, J., Schneekeeber, K., Ossowskik, S., Cao, J., and Weigel, D. (2011). Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol. 157, 757–769. doi: 10.1104/pp.111.181990

Gutiérrez, O. A., Jenkins, J. N., Wubben, M. J., Hayes, R. W., and Callahan, F. E. (2010). SSR markers closely associated with genes for resistance to root-knot nematode on chromosomes 11 and 14 of Upland cotton. Theor. Appl. Genet. 121, 1323–1337. doi: 10.1007/s00122-010-1391-9

Gutiérrez, O. A., Robinson, A. F., Jenkins, J. N., McCarty, J. C., and Wubben, M. J. (2011). Identification of QTL regions and SSR markers associated with resistance to reniform nematode in Gossypium barbadense L. accession GB713. Theor. Appl. Genet. 122, 271–280. doi: 10.1007/s00122-010-1442-2

Hawkins, J. S., Kim, H., Nason, J. D., Wing, R. A., and Wendel, J. F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16, 1252–1261. doi: 10.1101/gr.252906

Hu, G., Hawkins, S., Grover, C. E., and Wendel, J. F. (2010). The history and disposition of transposable elements in polyplody Gossypium. Genome 53, 599–607. doi: 10.1139/G10-038

Jones, J. D., and Dangl, J. (2006). The plant immune system. Nat. Rev. 44, 323–329. doi: 10.1038/nature05286

Kim, H. J., and Tripplett, B. A. (2001). Cotton fiber growth in plants and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 1361–1366. doi: 10.1104/pp.010724

Kou, Y., and Wang, S. (2010). Broad-spectrum and durability, understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 13, 181–185. doi: 10.1016/j.pbi.2010.02.010

Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R. J., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 33, 524–530. doi: 10.1038/nbt.3208

Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., et al. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46, 567–572. doi: 10.1038/ng.2987

McDowell, J. M., and Meyers, B. C. (2013). A transposable element is domesticated for service in the plant immune system. Proc. Natl. Acad. Sci. U.S.A. 110, 14121–14122. doi: 10.1073/pnas.1314089110

Meyers, B. C., Kaushik, S., and Nandety, R. S. (2005). Evolving disease resistance genes. Curr. Opin. Plant Biol. 8, 129–134. doi: 10.1016/j.pbi.2005.01.002

Niu, C., Lister, H. E., Nguyen, B., Wheeler, T. A., and Wright, R. J. (2008). MetaQTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776. doi: 10.1186/1471-2164-14-776

Sato, M., Mitra, R. M., Coller, J., Wang, D., Spivey, N. W., and Dewdney, J. E. (2007). A high-performance, small-scale microarray for expression profiling of many samples in Arabidopsis-pathogen studies. Plant J. 49, 565–577. doi: 10.1111/j.1365-313X.2006.02972.x

Shen, X., Van Belloerae, G., Kumar, P., Davis, R. F., May, L. O., and Chee, P. (2006). QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor. Appl. Genet. 113, 1539–1549. doi: 10.1007/s00122-006-0401-4

Stanke, M., and Morgenstern, B. (2005). AUGUSTUS, a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, 465–467. doi: 10.1093/nar/gki458

Stepanova, A. N., and Alonso, J. M. (2009). Ethylene signaling and response, where different regulatory modules meet. Curr. Opin. Plant Biol. 12, 548–555. doi: 10.1016/j.pbi.2009.07.009

Tomkins, J. P., Peterson, D. G., Yang, T. I., Main, D., Wilkins, T. A., Paterson, A. H., et al. (2001). Development of genomic resources for cotton (Gossypium hirsutum L.), BAC library construction, preliminary STC analysis, and identification of clones associated with fiber development. Mol. Breeding 8, 255–261. doi: 10.1023/A:1013798716098

Tsuchiya, T., and Eulgem, T. (2013). An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc. Natl. Acad. Sci. U.S.A. 110, e5355–e5354. doi: 10.1073/pnas.1312545110

Ulloa, M., Brubaker, C., and Chee, P. (2007). “Cotton,” in Genome Mapping and Molecular Breeding, Vol. 6, ed. C. Kole (Heidelberg: Berlin; New York: Tokyo: Technical Crops, Springer), 1–49.

Ulloa, M., Hutmacher, R. B., Roberts, P. A., Wright, S. D., Nichols, R. L., and Michael, D. R. (2013). Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor. Appl. Genet. 126, 1405–1418. doi: 10.1007/s00122-013-2061-5

Ulloa, M., Saha, S., Yu, J. Z., Jenkins, J. N., Meredith, W. R. Jr., and Kohel, R. J. (2008). “Lessons learned and challenges ahead of the cotton genome mapping,” in Proceedings of the Fourth World Cotton Research Conference, 1798 (Lubbock, TX). Available online at: www.icac.org/meetings/wcrc/wwc4/presentations/start.htm

Ulloa, M., Wang, C., Hutmacher, R. B., Wright, S. D., Davis, R. M., Saksi, C. A., et al. (2011). Mapping Fusarium wilt race 1 genes in cotton by inheritance, QTL and sequencing composition. Mol. Genet. Genomics 286, 21–36. doi: 10.1007/s00438-011-0616-1

Van Loon, L. C., Rep, M., and Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162. doi: 10.1146/annurev.phyto.44.070505.143425

Wang, J. W. (2006). JoinMap® 4.0 Software for the Calculations of Genetic Linkage Maps in Experimental Populations. Wageningen: Kyazma B.V.
Wang, C., Ulloa, M., Mullens, T. R., Yu, J. Z., and Roberts, P. A. (2012a). QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents. PLoS ONE 7:e34874. doi: 10.1371/journal.pone.0034874

Wang, C., Ulloa, M., and Roberts, P. A. (2006). Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 112, 770–777. doi:10.1007/s00122-005-0183-0

Wang, C., Ulloa, M., and Roberts, P. A. (2008). A transgressive segregation factor (RKN2) in Gossypium barbadense for nematode resistance clusters with gene rkn1 in G. hirsutum. Mol. Gen. Genomics 279, 41–52. doi:10.1007/s00438-007-0292-3

Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., Song, G., et al. (2012b). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44, 1098–1104. doi:10.1038/ng.2371

Wang, Z., Zhang, D., Wang, X., Tan, X., Guo, H., and Paterson, A. H. (2013). A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 3, 1759–1767. doi: 10.1534/g3.113.006890

Wei, H., Li, W., Sun, X., Zhu, S., and Zhu, J. (2013). Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii. PLoS ONE 8:e68435. doi: 10.1371/journal.pone.0068435

Wendel, J. F., and Cronn, R. C. (2003). Polyploidy and the evolutionary history of cotton. Adv. Agron. 78, 139–186. doi: 10.1016/S0065-2113(02)78004-8

Wheeler, B. S. (2013). Small RNAs, a big impact, small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res. 21, 587–600. doi: 10.1007/s10577-013-9394-4

Yin, Z., Li, Y., Han, X., and Shen, F. (2012). Genome-wide profiling of miRNAs and other small non coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS ONE 7:e35765. doi: 10.1371/journal.pone.0035765

Ynturi, P., Jenkins, J. N., McCarty, J. C. Jr., Gutiérrez, O. A., and Saha, S. (2006). Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton. Crop Sci. 46, 2670–2674. doi: 10.2135/cropsciresearch2006.05.0319

Yu, J. Z., Kohel, R. J., Fang, D. D., Cho, J., Van Deynze, A., Ulloa, M., et al. (2012). A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3 2, 43–58. doi: 10.1534/g3.111.001552

Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 33, 531–537. doi: 10.1038/nbt.3207

Zhao, Y., Wang, H., Chen, W., and Li, Y. (2014). Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS ONE 9:e86308. doi: 10.1371/journal.pone.0086308

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Wang, Ulloa, Shi, Yuan, Saski, Yu and Roberts. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.