Mixed cellularity classical Hodgkin lymphoma (MCcHL)

Antonino Carbone, Annunziata Gloghini

Department of Pathology Centro di Riferimento Oncologico Aviano (CRO), Istituto Nazionale Tumori, IRCCS, Aviano, Italy; acarbone@cro.it (AC); Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy; annunziata.gloghini@istitutotumori.mi.it (AG)

Published in Atlas Database: June 2016
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/MixedCellulClassicHodgkinID1566.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/68174/06-2016-MixedCellulClassicHodgkinID1566.pdf
DOI: 10.4267/2042/68174

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Over the past 50 years, a relevant progress has been made toward our understanding of classical Hodgkin lymphoma pathology and cell biology. Histologic classification evolved through different systems to the 2008 World Health Organization classification, upgraded in 2016.

Mixed cellularity is a subtype of classical Hodgkin lymphoma characterized by diagnostic Hodgkin-Reed Sternberg cells in a mixed inflammatory background without sclerosis. Mononuclear Hodgkin cells can be present. The mixed cellular background is considered the hallmark of the Mixed cellularity classical Hodgkin lymphoma subtype. In particular, heterogeneous constituents including admixed eosinophils, plasma cells, histiocytes and small lymphocytes are usually found. The composition of this background varies greatly.

Keywords
Mixed cellularity subtype of Hodgkin Lymphoma; Hodgkin Lymphoma; classical Hodgkin lymphoma; microenvironment; clinics, pathology; genetics

Clinics and pathology

Note
Most patients affected by mixed cellularity (MC) classical Hodgkin lymphoma (cHL) present with B symptoms and in intermediate stages (II and III), compared with frequent stage II presentation in nodular sclerosis (NS) cHL. Peripheral lymph nodes are commonly involved. Splenic and liver involvement are frequent, whereas bone marrow and other organs involvement are less frequent.

Disease

Based on the characteristics of the Hodgkin and Reed-Sternberg (HRS) tumour cells (lacunar cells, multinucleated giant cells, pseudosarcomatous cells) and of the reactive infiltrate, four histologic subtypes of cHL have been distinguished: lymphocyte-rich cHL (LRcHL), nodular sclerosis (NS) cHL, mixed cellularity (MC) cHL, and lymphocyte depletion (LD) cHL. Most cHL can be classified as NS or MC subtypes.

MC is a subtype of cHL characterized by diagnostic HRS cells in a mixed inflammatory background without sclerosis. Mononuclear Hodgkin cells can be present. The mixed cellular background is considered the hallmark of the MCcHL subtype. In particular, heterogeneous constituents including admixed eosinophils, plasma cells, histiocytes and small lymphocytes are usually found. The composition of this background varies greatly.
Phenotype/cell stem origin

Cell origin
Like HRS cells of other cHL subtypes, the tumour cells of MCcHL derive from preapoptotic crippled Germinal Center (GC) B cells. They are derived from GC B cells that have acquired disadvantageous immunoglobulin variable chain gene mutations (Kuppers et al., 2012), have lost the expression of most B-cell genes and acquired expression of genes that are typical for other types of hematopoietic and lymphoid cells (Greaves and Gribben 2012; Steidl et al. 2012; Tiacci et al., 2012).

Phenotype
Phenotypically, tumour cells of MCcHL are CD30 and CD15 positive (Stein et al., 2008) and exhibit additional expression of the following markers:
- Plasma cell markers (MUM1/IRF4) usually positive.
- Molecules involved in Ag presentation (MHC class II, CD40, CD80, CD86) consistently positive.
Cellular components of the cHL microenvironment express molecules involved in cancer cell growth and survival (such as CD30L or CD40L), and in immune escape (programmed death 1 (PD-1)). A fraction of infiltrating CD4+ T cells are regulatory T (Treg) cells. Treg cells and PD-1+ T cells also interact with HRS cells (Aldinucci et al., 2010; Liu et al., 2014; Carbone et al., 2015).

Epidemiology
Classical Hodgkin lymphoma is a distinct neoplastic entity with heterogeneous epidemiological features. It accounts for approximately 10% of all malignant lymphomas (Stein et al., 2008). Classical HL is the most common cancer in patients under 20 years (adolescents and younger adults). The first peak of incidence can be observed in patients under 35 years of age, whereas a second incidence peak can be observed in the elderly (Hjalgrim et al, 2008; Stein et al., 2008). MCcHL accounts for approximately 20-25% of cHL. MCcHL is more frequent in patients with HIV infection and in resource poor areas. The incidence of MCcHL is more frequent in males than in females and peaks at age 35-40 years.

Cytology
The recognition of MCcHL is based on the presence of diagnostic HRS cells in a specific inflammatory background, the composition of which varies greatly and includes eosinophils, neutrophils, histiocytes and plasma cells. Binucleated and multinucleated HRS cells with bi- or multinucleation and huge nucleoli are pathognomonic for MCcHL identification.

Pathology
HRS cells reside in an inflammatory cell microenvironment. In MCcHL, like in other cHL subtypes, microenvironmental cell types include T- and B-reactive lymphocytes, eosinophils, granulocytes, histiocytes/macrophages, plasma cells, mast cells.

Figure 1. A typical multinucleated Hodgkin Reed-Sternberg cell is seen at the center.
Mixed cellularity classical Hodgkin lymphoma (MCcHL)

Carbone A, Gloghini A

Atlas Genet Cytogenet Oncol Haematol. 2017; 21(3)

Figure 2. The CD30 immunostaining highlights the presence of Hodgkin Reed-Sternberg cells and some mononucleated Hodgkin cells

Figure 3. EBER and EBV-encoded LMP1 (inset) are expressed by multinucleated Reed-Sternberg cells as nuclear and cytoplasmic staining, respectively

Other features

Virology

EBV is found in HRS cells preferentially in cases of MC and LD cHL, and less frequently in NS and LRCHL. Notably, EBV is found in HRS cells in nearly all cases of cHL occurring in patients infected with HIV (IARC 2012; Younes et al., 2014; Dolcetti et al., 2016).
Table 1. Heterogeneity of classical Hodgkin lymphoma according to the morphologic and virologic characteristics. Abbreviations. cHL, classical Hodgkin lymphoma; PTLD, post-transplant lymphoproliferative disorder. *Association with EBV is less frequent in ns (10-40%) than in mc cHL (approximately 75% of cases).

Hodgkin lymphoma subtype	EBV infection
HL of the general population	
Nodular lymphocyte predominance	Absent
cHL, nodular sclerosis	Usually absent *
cHL, mixed cellularity	Usually present *
Rare types	
cHL, lymphocyte rich	Variably present
cHL, lymphocyte depleted	Variably present
HIV-associated HL	
cHL, lymphocyte depleted	Present
cHL, mixed cellularity	Present
Less frequent	
cHL, lymphohistiocytoid	Present
cHL, nodular sclerosis	Present
Post-transplant (cHL type PTLD)	
Similar to other cHL	Present
Iatrogenic (methotrexate)	
cHL, mixed cellularity	Variably present (usually present)

Treatment
Like in other cHL subtypes, cure rates approaching 80% have been achieved in patients undergoing chemo-radiotherapy, qualifying cHL as a chemosensitive disease (Santoro et al., 1987, Canellos et al., 2014).

Prognosis
MCcHL exhibit a better prognosis than that of NScHL.

Genetics
Recent genetic alterations have been identified in HRS cells of cHL (including MCcHL). These lesions affecting members of the NF-kappaB or JAK/STAT signalling pathways (Küppers and Re, 2007; Hartmann et al., 2008; Steidl et al., 2010; Küppers 2011; Küppers et al., 2012; Pasqualucci and Dalla Favera, 2014).

See also the pertinent section within the CARDS describing the general features of cHL (Küppers, 2011; Carbone and Gloghini, 2016).

Cytogenetics

Cytogenetics morphological
See the pertinent sections within the CARDS describing the general features of cHL (Küppers, 2011; Carbone and Gloghini, 2016).

References
Carbone A, Gloghini A.. Classical Hodgkin lymphoma Atlas Genet Cytogenet Oncol Haematol. in press
Pasqualucci L, Dalla Favera R.. Molecular Biology of Lymphomas. De Vita, Hellman, and Rosenberg's Cancer: Principles Practice of Oncology. 10th ed. De Vita VTJ, Lawrence TS, Rosemberg SA, (eds). Wolters Kluwer Health/Lippincott Williams & Wilkins, 2014; 1511-1525.
Younes A, Carbone A, Johnson P, Dabaj A, Ansell S, Kuruvilla L.. Hodgkin's lymphoma. De Vita VTJ, Lawrence TS, Rosemberg SA (eds). De Vita, Hellman, and Rosenberg's Cancer: Principles Practice of Oncology: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.
Mixed cellularity classical Hodgkin lymphoma (MCcHL)
Carbone A, Gloghini A

A Review of Human Carcinogens. Part B: Biological Agents IARC Monograph on the Evaluation of Carcinogenic Risk to Humans. Vol. 100. IARC, Lyon, France, 2012.

Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A. The classical Hodgkin's lymphoma microenvironment and its role in promoting tumour growth and immune escape J Pathol 2010 Jul;221(3):248-63

Canellios GP, Rosenberg SA, Friedberg JW, Lister TA, Devita VT. Treatment of Hodgkin lymphoma: a 50-year perspective J Clin Oncol 2014 Jan 20;32(3):163-8

Carbone A, Gloghini A, Castagna L, Santoro A, Carlo-Stella C. Primary refractory and early-relapsed Hodgkin's lymphoma: strategies for therapeutic targeting based on the tumour microenvironment J Pathol 2015 Sep;237(1):4-13

Dolcetti R, Gloghini A, Caruso A, Carbone A. A lymphomagenic role for HIV beyond immune suppression? Blood 2016 Mar 17;127(11):1403-9 doi: 10

Greaves P, Gribben JG. Lymphoid neoplasia. Laser-capturing the essence of Hodgkin lymphoma. Blood

Hartmann S, Martin-Subero JI, Gesk S, Hüskens J, Giefing M, Nagel I, Riemke J, Chott A, Klapper W, Parrrens M, Merlio JP, Küppers R, Bräuninger A, Siebert R, Hansmann ML. Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization Haematologica 2008 Sep;93(9):1318-26

Hjalgrim H, Engels EA. Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence J Intern Med 2008 Dec;264(6):537-48

Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma J Clin Invest 2012 Oct;122(10):3439-47

Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component Semin Cancer Biol 2014 Feb;24:15-22

Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtlerheimer G, Klapper W, Vater I, Giefing M, Gesk S, Stanelle J, Siebert R, Küppers R. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma J Exp Med 2009 May 11;206(5):981-9

Steidl C, Connors JM, Gascoyne RD. Molecular pathogenesis of Hodgkin's lymphoma: increasing evidence of the importance of the microenvironment J Clin Oncol 2011 May 10;29(14):1812-26

Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K, Telenius A, Barclay L, Shah SP, Connors JM, van den Berg A, Gascoyne RD. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma Blood 2012 Oct 25;120(17):3530-40

Steidl C, Telenius A, Shah SP, Farinha P, Barclay L, Boyle M, Connors JM, Horsman DE, Gascoyne RD. Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome Blood 2010 Jul 22;116(3):418-27

Stein H, Delsol G, Pileri SA, Weis LM, Popper S, Jaffe ES. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele H, Vardiman JW (eds.) World Health Organization. Classical Hodgkin lymphoma, introduction. Classification of Tumours, Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, Lyon: IARC Press, 2008: 326-329

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms Blood 2016 May 19;127(20):2375-90

Ticci E, Döring C, Brune V, van Noesel CJ, Klapper W, Mechtlerheimer G, Falini B, Küppers R, Hansmann ML. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma Blood 2012 Nov 29;120(23):4609-20

This article should be referenced as such:

Carbone A, Gloghini A. Mixed cellularity classical Hodgkin lymphoma (MCcHL). Atlas Genet Cytogenet Oncol Haematol. 2017;21(3):98-102.