WEYL FAMILIES OF ESSENTIALLY UNITARY PAIRS

RYTIS JURŠĖNAS

Abstract. It is known that the Weyl families corresponding to unitary boundary pairs \((\mathcal{H}, \Gamma)\) belong to the class \(\tilde{\mathcal{R}}(\mathcal{H})\) of Nevanlinna families. Here we extend the theorem to the case of essentially unitary pairs by showing that the closures of members of the Weyl families belong to the class \(\tilde{\mathcal{R}}(\mathcal{H})\). Thus bounded Weyl functions of essentially unitary pairs are of class \(\mathcal{R}(\mathcal{H})\).

1. Introduction

Throughout \(\mathcal{H}\) and \(\mathcal{H}\) denote Hilbert spaces. Let \(\Gamma \subseteq \mathcal{H}_2 \times \mathcal{H}_2\) be a linear relation from a \(J_{\mathcal{H}}\)-space to a \(J_{\mathcal{H}}\)-space \([AI89, Section 1]\), where the canonical symmetry \(J_{\mathcal{H}}\) acts on \(\mathcal{H}_2\) as the multiplication operator by the second Pauli matrix \((0 \ -i \ i \ 0)\).

Let \(\Gamma^*[\ast]\) denote the Krein space adjoint of \(\Gamma\) \([DHM17, Equation (2.6)]\), \([DHMdS12, Section 7.2]\). Then \(\Gamma\) is said to be \((J_{\mathcal{H}}, J_{\mathcal{H}}^\ast)\)-isometric if \(\Gamma^{-1} \subseteq \Gamma^*[\ast]\) and \((J_{\mathcal{H}}, J_{\mathcal{H}}^\ast)\)-unitary if \(\Gamma^{-1} = \Gamma^*[\ast]\) \([DHM17, Definition 2.2]\), and essentially \((J_{\mathcal{H}}, J_{\mathcal{H}}^\ast)\)-unitary if \(\overline{\Gamma}^{-1} = \Gamma^*[\ast]\) \([DHMdS06]\), where the overbar denotes the closure. For notational convenience, \(\Gamma\) is simply referred to as either isometric or (essentially) unitary.

Let \(A\) be a closed symmetric linear relation in \(\mathfrak{H}\) and let \(\Gamma\) be an isometric linear relation. We assume that \(A^* := \text{dom} \Gamma\) is dense in \(A^\ast\) with respect to the topology on \(\mathfrak{H}_2\). We put \(A := A^* = \text{mul} \Gamma^*[\ast]\), so that the above assumptions are always satisfied by default. Likewise, putting \(A_* := \text{dom} \overline{\Gamma}\) and \(A := A_* \equiv (A_*)^\ast\), and using that \(\overline{\Gamma}\) is isometric, one finds that the linear relation \(A\) is closed and symmetric in \(\mathfrak{H}\), and \(A^*\) is dense in \(A^\ast\). Note that \(A = \overline{A}\); if in addition \(\Gamma\) is unitary, then \(A = \overline{A} = S\), where \(S := \ker \Gamma\).

By the above assumptions, the pair \((H, \Gamma)\) is an isometric/unitary boundary pair (for \(A^\ast\)) if \(\Gamma\) is isometric/unitary \([DHM17, Definition 3.1]\). In the terminology of \([DHMdS06, Definition 3.1]\) \(\Gamma\) is a boundary relation (for \(S^\ast\)) iff it is unitary; see also \([DHMdS06, Proposition 3.2]\). If \(\Gamma\) is essentially unitary, we also say that the pair \((H, \Gamma)\) is an essentially unitary pair (for \(A^\ast\)).

Date: January 18, 2019.

2010 Mathematics Subject Classification. Primary 47A06, 47A56, 47B25; Secondary 47B50, 35P05.

Key words and phrases. Krein space, isometric relation, unitary relation, essentially unitary relation, boundary pair, Weyl family, Nevanlinna family.
The first part of [DHMdS06, Theorem 3.9] states that the Weyl family \(M_\Gamma(z), z \in \mathbb{C}_* := \mathbb{C} \setminus \mathbb{R} \), corresponding to a boundary relation \(\Gamma \) is a Nevanlinna family, that is, it belongs to the class \(\mathcal{N}(\mathcal{H}) \) (Definition 4.1). Here we prove an analogue of this statement for an essentially unitary \(\Gamma \).

Theorem 1.1. Let \(M_\Gamma(z), z \in \mathbb{C}_* \), be the Weyl family corresponding to an essentially unitary pair \((\mathcal{H}, \Gamma)\). Then the closure \(\overline{M_\Gamma(z)} = M_\overline{\Gamma}(z) \) belongs to a Nevanlinna family.

Here \(\{M_\Gamma(z)\} \) is the Weyl family corresponding to the unitary boundary pair \((\mathcal{H}, \overline{\Gamma})\). For \(\Gamma \) unitary (hence closed), the theorem clearly reduces to the first part of [DHMdS06, Theorem 3.9]. By assuming additionally that the Weyl function \(M_\Gamma(z) \) is bounded (hence closed), one deduces another corollary.

Corollary 1.2. Let \((\mathcal{H}, \Gamma)\) be an essentially unitary pair and \(M_\Gamma(z) \in B(\mathcal{H}) \) \(\forall z \in \mathbb{C}_* \). Then the Weyl function \(M_\Gamma(z) = M_\overline{\Gamma}(z) \) belongs to the subclass \(\mathcal{N}[\mathcal{H}] \) of Nevanlinna functions. \(\square \)

According to [DHMdS06, Proposition 5.9] a Nevanlinna function of class \(\mathcal{N}[\mathcal{H}] \) can be realized as the Weyl function of a \(B \)-generalized boundary pair \((\mathcal{H}, \Gamma)\) [DHM17, Definition 3.5]. Let us recall that ordinary, \(B \)-generalized, \(S \)-generalized, \(ES \)-generalized boundary pairs are all unitary boundary pairs; see [DHM17] for more details. Yet Corollary 1.2 shows that one can find a non-unitary boundary pair with the same Weyl function.

Assuming the hypotheses in Corollary 1.2 and \(\text{ran} \overline{\Gamma} = \mathcal{H}^2 \), one concludes that the Weyl function \(M_\Gamma(z) = M_\overline{\Gamma}(z) \) belongs to the subclass \(\mathcal{N}^u[\mathcal{H}] \) of uniformly strict Nevanlinna functions. The single-valued linear relation \(\Gamma \) with such properties arises, for example, in the study of triplet extensions associated to the scales of Hilbert spaces of self-adjoint operators [Jur18, Section 7.5]; see also Section 5.

The proof of the main theorem is organized as follows: In Section 2 we list some preparatory results. In Section 3 we compute the adjoint \(M_\Gamma(z)^* \) for an isometric pair \((\mathcal{H}, \Gamma)\); it follows that \(M_\Gamma(z)^* = M_{\overline{\Gamma}(z)} \) for \(\Gamma \) essentially unitary. Since \(\{M_{\overline{\Gamma}(z)}\} \) is a Nevanlinna family for \(\overline{\Gamma} \) unitary—the fact that we actually show without referring to [DHMdS06, Theorem 3.9]—this implies Theorem 1.1; see Section 4.

Throughout we use the standard symbols \(\text{dom}, \text{ran}, \text{mul}, \text{ker} \) to denote the domain, the range, the multivalued part, and the kernel of a linear relation. For more details related to the theory of linear relations and Nevanlinna families the reader may consult the papers in [BBM+18, DM17, BMN15, BHdS+13, dSWW11, DHMdS09, HdSS09, BHdS08, HSdSS07, HdS96, DM91] and also an extensive list of references therein.
2. Preliminaries

Here and elsewhere below a linear relation $\Gamma \subseteq \mathcal{H}^2 \times \mathcal{H}^2$ from a $J_{\mathcal{B}}$-space to a $J_{\mathcal{H}}$-space is assumed to be isometric, unless explicitly stated otherwise. Then the Green identity holds:

$$[\hat{f}, \hat{g}]_{\mathcal{B}} = [\hat{h}, \hat{k}]_{\mathcal{H}}$$

for $(\hat{f}, \hat{h}) \in \Gamma$, $(\hat{g}, \hat{k}) \in \Gamma$. The $J_{\mathcal{B}}$-metric $[\cdot, \cdot]_{\mathcal{B}}$ is written in terms of the \mathcal{H}^2-scalar product $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ according to

$$[\hat{f}, \hat{g}]_{\mathcal{B}} := \langle \hat{f}, J_{\mathcal{B}}\hat{g} \rangle_{\mathcal{B}}^2 = -i(\langle \hat{f}, \hat{g} \rangle_{\mathcal{B}} - \langle \hat{f}', \hat{g} \rangle_{\mathcal{B}})$$

for $\hat{f} = (f, f') \in \mathcal{H}^2$, $\hat{g} = (g, g') \in \mathcal{H}^2$, provided that the \mathcal{B}-scalar product $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ is conjugate-linear in the first argument. The same applies to the $J_{\mathcal{H}}$-metric $[\cdot, \cdot]_{\mathcal{H}}$.

The Krein space adjoint $\Gamma^* = \{ (\hat{k}, \hat{g}) \in \mathcal{H}^2 \times \mathcal{H}^2 \mid (\forall (\hat{f}, \hat{h}) \in \Gamma) [\hat{f}, \hat{g}]_{\mathcal{B}} = [\hat{h}, \hat{k}]_{\mathcal{H}} \}$.

Thus $\Gamma^{-1} \subseteq \Gamma^*$, and the equality holds iff Γ is unitary.

As usual, the eigenspaces of A^* are denoted by

$$\mathcal{N}_z(A^*) := \ker(A^* - z), \quad \hat{\mathcal{N}}_z(A^*) := \{ \hat{f}_z = (f_z, zf_z) \mid f_z \in \mathcal{N}_z(A^*) \}$$

for $z \in \mathbb{C}$, and similarly for other linear relations. Since A^* is closed in \mathcal{B}, its eigenspace is also closed, and one attains the orthogonal decomposition $\mathcal{B} = \mathcal{N}_{\mathcal{B}}(A^*) \oplus \mathcal{N}_{\mathcal{B}}(A^*)^\perp$, where $\mathcal{N}_{\mathcal{B}}(A^*)^\perp = \text{ran}(A - z)$. Then the $J_{\mathcal{B}}$-orthogonal complement [AI89, Definition 1.11] $\hat{\mathcal{N}}_z(A_s)(\perp)$ of $\hat{\mathcal{N}}_z(A_s)$ can be written as

$$\hat{\mathcal{N}}_z(A_s)(\perp) = \hat{\mathcal{N}}_{\mathcal{H}}(A^*) \perp \mathcal{D}_z, \quad \mathcal{D}_z := \cap \{ \mathcal{N}_z(A_s)(\perp) \times \mathcal{N}_z(A_s)(\perp) \}$$

where \perp denotes the componentwise sum [HdSS09, Section 2.4] and $I_{\mathcal{B}\mathcal{H}}(A^*)$ denotes (the graph of) the identity operator restricted to $\mathcal{N}_{\mathcal{B}}(A^*)^\perp$.

Remark 2.4. Let $\mathcal{D} := \cap \{ \mathcal{D}_z \mid z \in \mathbb{C}_+ \}$; then $\mathcal{D} = \{ 0 \} \times \mathcal{M}$ where

$$\mathcal{M} := \bigcap \{ \mathcal{N}_z(A_s)(\perp) \mid z \in \mathbb{C}_+ \}.$$

Clearly $\mathcal{D} \subseteq S$ iff $\mathcal{M} \subseteq \text{mul } S$. Since $A_s \subseteq A^*$ densely, $\mathcal{M} = \{ 0 \}$ iff A is simple [LT77], in which case a closed symmetric linear relation A (and hence $S \subseteq A$) is an operator. The equality $\mathcal{M} = \{ 0 \}$ also shows that the closed linear span

$$\mathcal{H}_s := \bigvee \{ \mathcal{N}_z(A_s) \mid z \in \mathbb{C}_+ \}$$

coincides with \mathcal{H}. When $A = S$ is simple, a unitary Γ is minimal [DHMdS06, Definition 3.4], and vice versa.
3. Weyl families

The Weyl family of A corresponding to an isometric pair (\mathcal{H}, Γ) is defined by [DHM17, Definition 3.2] $M_{\Gamma}(z) := \Gamma \hat{\mathcal{N}}_z(A_\ast)$ for $z \in \mathbb{C}_\ast$. Put

$$\Gamma_z := \Gamma |_{\hat{\mathcal{N}}_z(A_\ast)} := \Gamma \cap (\hat{\mathcal{N}}_z(A_\ast) \times \mathcal{H}^2)$$

then the linear relation $M_{\Gamma}(z)$ and its adjoint can be described by

$$M_{\Gamma}(z) = \text{ran} \Gamma_z, \quad M_{\Gamma}(z)^* = \ker \Gamma_z$$

where $\Gamma_z^{[s]}$ denotes the Krein space adjoint of Γ_z. Since Γ is isometric and $\Gamma_z \subseteq \Gamma$ for $z \in \mathbb{C}$, it is evident that

$$\Gamma_z^{-1} \subseteq \Gamma^{-1} \subseteq \Gamma^{[s]} \subseteq \Gamma_z^{[s]},$$

that is, Γ_z is also isometric. Moreover, $\Gamma_w^{-1} \subseteq \Gamma_z^{[s]}$ for all $z, w \in \mathbb{C}$.

Lemma 3.2. $\mathcal{O}_z \subseteq \text{mul} \Gamma_z^{[s]}$ for $z \in \mathbb{C}$.

Proof. Let $\hat{g} \in \mathcal{O}_z$; then by (2.3) $\hat{g} = (g, zg + f)$, $g \in \mathcal{N}_z(A^\ast)^\perp$, $f \in \mathcal{N}_z(A_\ast)^\perp$. Then by (2.2) $(\forall (\hat{f}, \hat{h}) \in \Gamma_z)$

$$[\hat{f}, \hat{g}]_\mathcal{H} = -i \langle \hat{f}, f \rangle_\mathcal{H} = 0 = [\hat{h}, (0, 0)]_\mathcal{H}$$

hence $((0, 0), \hat{g}) \in \Gamma_z^{[s]}$. \hfill \square

Theorem 3.3. The adjoint is given by

$$M_{\Gamma}(z)^* = (\Gamma_z^{[s]})^{-1} \hat{\mathcal{N}}_z(A^\ast)$$

for $z \in \mathbb{C}_\ast$.

Proof. We split the proof into three steps.

Step 1. We show that $M_{\Gamma}(z)^* = (\Gamma_z^{[s]})^{-1} \hat{\mathcal{N}}_z(A_\ast)^{[\perp]}$. Consider $\hat{k} \in M_{\Gamma}(z)^* = M_{\Gamma}(z)^{[\perp]}$; then $(\forall (\hat{f}, \hat{h}) \in \Gamma_z \Leftrightarrow \forall \hat{h} \in M_{\Gamma}(z))$ $(\forall \hat{g} \in \hat{\mathcal{N}}_z(A_\ast)^{[\perp]})$

$$[\hat{f}, \hat{g}]_\mathcal{H} = 0 = [\hat{h}, \hat{k}]_\mathcal{H}$$

and so $\hat{k} \in (\Gamma_z^{[s]})^{-1} \hat{\mathcal{N}}_z(A_\ast)^{[\perp]}$. Conversely, consider $\hat{k} \in (\Gamma_z^{[s]})^{-1} \hat{\mathcal{N}}_z(A_\ast)^{[\perp]}$; then $(\exists \hat{g} \in \hat{\mathcal{N}}_z(A_\ast)^{[\perp]}) (\hat{k}, \hat{g}) \in \Gamma_z^{[s]}$, and so $(\forall (\hat{f}, \hat{h}) \in \Gamma_z)$ equation (3.4) holds; hence $\hat{k} \in M_{\Gamma}(z)^{[\perp]}$.

Step 2. We show that $M_{\Gamma}(z)^* = (\Gamma_z^{[s]})^{-1} \hat{\mathcal{N}}_z(A^\ast)$. By using (2.3) and $M_{\Gamma}(z)^*$ obtained in the first step, $M_{\Gamma}(z)^*$ contains $\hat{h} \in \mathcal{H}^2$ such that $(\exists \hat{f} \in \hat{\mathcal{N}}_z(A^\ast)) (\exists \hat{g} \in \mathcal{O}_z) (\hat{h}, \hat{f} + \hat{g}) \in \Gamma_z^{[s]}$. By Lemma 3.2, on the other hand, $((0, 0), \hat{g}) \in \Gamma_z^{[s]}$, which shows that $(\hat{h}, \hat{f}) \in \Gamma_z^{[s]}$ by linearity of a subspace $\Gamma_z^{[s]}$.

Step 3. Here we derive the final formula of $M_{\Gamma}(z)^*$. Let

$$X_z := (\Gamma_z^{[s]})^{-1} |_{\hat{\mathcal{N}}_z(A^\ast)}, \quad Y_z := (\Gamma_z^{[s]})^{-1} |_{\hat{\mathcal{N}}_z(A^\ast)}$$
and consider \(\hat{k} \in \mathcal{H}^2 \) and \(\hat{g}_{\pi} = (g_{\pi}, \bar{z}g_{\pi}) \in \hat{\mathfrak{M}}_{\pi}(A^*) \) such that \((\hat{g}_{\pi}, \hat{k}) \in X_\pi \setminus Y_\pi\). Then it follows that \((\hat{k}, \hat{g}_{\pi}) \in \Gamma_\pi \setminus \Gamma_\pi^r\), and hence \((\hat{g}_{\pi}, \hat{k}) \notin \Gamma (\subseteq (\Gamma_\pi^r)^{-1})\). Since \(A_\star \subseteq A^*\) densely, there exists a sequence \((g_{\pi,n}) \subseteq \mathfrak{M}_{\pi}(A_\star)\) such that \(\delta_{\pi,n} := g_{\pi} - g_{\pi,n} \to 0\) in \(\mathfrak{S}\) as \(n \to \infty\). Putting \(\hat{g}_{\pi,n} = (g_{\pi,n}, \bar{z}g_{\pi,n})\) one has that \(\hat{g}_{\pi} = \hat{g}_{\pi,n} + \delta_{\pi,n, \bar{z}}\), where the sequence \((\hat{g}_{\pi,n}) \subseteq \hat{\mathfrak{M}}_{\pi}(A_\star)\). By the above it thus follows that \((\hat{g}_{\pi,n}, \hat{k}) \notin \Gamma\) for \(n\) sufficiently large. This shows that \((\hat{g}_{\pi,n}, \hat{k}) \notin \Gamma\) for \(n\) large, or equivalently \(\hat{k} \notin M_\Gamma(z) \subseteq M_\Gamma(z)^*\). On the other hand, since \((\hat{k}, \hat{g}_{\pi}) \in \Gamma_\pi\), it follows from the second step that \(\hat{k} \in M_\Gamma(z)^*\). Thus, using the decomposition \(X_\pi = Y_\pi \cup (X_\pi \setminus Y_\pi)\) one deduces that

\[
M_\Gamma(z)^* = M_\Gamma^*(z) \cup \Delta_\Gamma(z)
\]

where

\[
M_\Gamma^*(z) := (\Gamma_\pi^r)^{-1}\hat{\mathfrak{M}}_{\pi}(A^*), \quad \Delta_\Gamma(z) := M_\Gamma(z)^* \setminus M_\Gamma(z).
\]

It remains to point out that \(\Delta_\Gamma(z) \subseteq M_\Gamma^*(z)\).

By definition \(\Delta_\Gamma(z)\) contains \(\hat{k} \in \mathcal{H}^2\) such that \(\hat{k}[\perp]M_\Gamma(z)\) and \(\hat{k} \notin M_\Gamma(z)\). On the other hand, \(M_\Gamma^*(z)\) is the set of \(\hat{k} \in \mathcal{H}^2\) such that \((\hat{k}, \hat{g}_{\pi}) \in \Gamma_\pi \subseteq \Gamma_\pi^r\) for some \(\hat{g}_{\pi} \in \hat{\mathfrak{M}}_{\pi}(A^*)\); hence \(\hat{k}[\perp]M_\Gamma(z)\). Since also \(M_\Gamma^*(z) \supseteq M_\Gamma(z)\), one has \(\Delta_\Gamma(z) \subseteq M_\Gamma^*(z)\).

Remark 3.5. It follows from (3.1) that the intersection \(M_\Gamma(z) \cap M_\Gamma(z)^*\) is a subset of the set of neutral vectors [AI89, Definition 1.3] of a \(J_{\mathcal{H}}\)-space. Thus, by applying the Green identity (2.1) for \((\hat{f}_\pi, \hat{h}) \in \Gamma_\pi\) such that \([\hat{h}, \hat{h}]_{\mathcal{H}} = 0\), one concludes that \(M_\Gamma(z) \cap M_\Gamma(z)^* = \text{mul } \Gamma_\pi \cap \text{mul } \Gamma\). This result also follows from Theorem 3.3 by noting that

\[
\Gamma\hat{\mathfrak{M}}_\pi(A_\star) \cap (\Gamma_\pi^r)^{-1}\hat{\mathfrak{M}}_{\pi}(A^*) = \Gamma(\hat{\mathfrak{M}}_\pi(A_\star) \cap \hat{\mathfrak{M}}_{\pi}(A^*)),
\]

that \(\hat{\mathfrak{M}}_\pi(A_\star)\) is non-degenerate [AI89, Definition 1.14] for \(\exists z \neq 0\), and that \(\Gamma\{0,0\} = \text{mul } \Gamma\). One therefore has yet another proof of the relation \(M_\Gamma(z) \cap M_\Gamma(z)^* = \text{mul } \Gamma\) \((z \in \mathbb{C}_\star)\), which is stated without the proof in [DHM17, Lemma 3.6(i)], [DHMds12, Lemma 7.52(i)], and which is shown in [DHMds06, Lemma 4.1(i)] for a unitary pair \((\mathcal{H}, \Gamma)\). By using Theorem 3.3 one finds other invariance results for \(M_\Gamma(\cdot)\).

Corollary 3.6. Let \((\mathcal{H}, \Gamma)\) be an essentially unitary pair. Then \(M_\Gamma(z)^* = M_\Gamma(z)\) for \(z \in \mathbb{C}_\star\).

Proof. Since \(\Gamma^{-1} = \Gamma_\pi^r\), one has by Theorem 3.3 \(M_\Gamma(z)^* = \Gamma\hat{\mathfrak{M}}_\pi(A^*)\), that is, \(M_\Gamma(z)^*\) is the set of \(\hat{h} \in \mathcal{H}^2\) such that \((\exists \hat{f}_\pi \in \hat{\mathfrak{M}}_{\pi}(A^*)) (\hat{f}_\pi, \hat{h}) \in \Gamma\). But also, it must hold \(\hat{f}_\pi \in \text{dom } \Gamma =: \tilde{A}_\star\). Using that \(A^* \supseteq \tilde{A}_\star\) one concludes that \(\Gamma\hat{\mathfrak{M}}_{\pi}(A^*) = \Gamma\hat{\mathfrak{M}}_{\pi}(\tilde{A}_\star)\). □

If in addition \(\Gamma\) is unitary, Corollary 3.6 shows that \(M_\Gamma(z)^* = M_\Gamma(z)\) for \(z \in \mathbb{C}_\star\).
4. Nevanlinna families

The following definition of a Nevanlinna family is due to [DHMdS12, Definition 9.12], [BHdS08, Definition 2.1], [DHMdS06, Section 2.6].

Definition 4.1. A family $M(z), z \in \mathbb{C}_s$, of linear relations in \mathcal{H} belongs to the class $\tilde{\mathcal{R}}(\mathcal{H})$ of Nevanlinna families, or is said to be a Nevanlinna family, if:

(a) For $\Im z > 0/\Im z < 0$, the relation $M(z)$ is maximal dissipative/accumulative, and the operator family $(M(z) + w)^{-1} \in \mathcal{B}(\mathcal{H}), w \in \mathbb{C}_+ / \mathbb{C}_-$, is analytic;

(b) $M(z)^* = M(\overline{z})$.

Here $\mathbb{C}_+ / \mathbb{C}_-$ is the set of $z \in \mathbb{C}$ such that $\Im z > 0/\Im z < 0$; hence $\mathbb{C}_* = \mathbb{C}_+ \cup \mathbb{C}_-$. A linear relation $M(z)$ is dissipative (resp. accumulative) if $(\forall (h, h') \in M(z)) \Im \langle h, h' \rangle \geq 0$ (resp. ≤ 0). We emphasize that the \mathcal{H}-scalar product is conjugate-linear in the first argument. A dissipative (resp. accumulative) $M(z)$ is maximal dissipative (resp. maximal accumulative) if $M(z)$ has no proper dissipative (resp. accumulative) extensions.

The Weyl family $M_\Gamma(z), z \in \mathbb{C}_s$, corresponding to an isometric pair (\mathcal{H}, Γ) is dissipative/accumulative for $\Im z > 0/\Im z < 0$. Indeed, in view of (3.1), $\tilde{h} = (h, h') \in M_\Gamma(z)$ implies that $(\tilde{f}_z, \tilde{h}) \in \Gamma_z$ for some $\tilde{f}_z \in \tilde{\mathcal{N}}_z(A_s)$. Then, by the Green identity (2.1), $\Im \langle h, h' \rangle \mathcal{H} = (3z)\|f_z\|^2$, hence the claim. But then $(M_\Gamma(z) + w)^{-1}, w \in \mathbb{C}_+ / \mathbb{C}_-$, is an operator family by [DdS74, Theorem 3.1(i)].

If in addition $M_\Gamma(z)^* = M_\Gamma(\overline{z})$, then $M_\Gamma(\overline{z})^* = M_\Gamma(z)$, and therefore each member of the Weyl family is closed in this case: $M_\Gamma(z)^{**} = M_\Gamma(\overline{z})^* = M_\Gamma(z)$. But then the operator $(M_\Gamma(z) + w)^{-1}$ is bounded by [DdS74, Theorem 3.1(vi)], and the relation $M_\Gamma(z)$ is maximal dissipative/accumulative by [DdS74, Theorem 3.4(ii)].

It follows from the above that:

Lemma 4.2. The Weyl family $M_\Gamma(z), z \in \mathbb{C}_s$, is a Nevanlinna family iff $M_\Gamma(z)^* = M_\Gamma(\overline{z})$. \hfill \Box

By applying Corollary 3.6 and Lemma 4.2 one accomplishes the proof of Theorem 1.1.

Remark 4.3. Let us recall that the Weyl family of A and its simple part coincide. Indeed, let A_s be the simple part [LT77, Proposition 1.1] of A and let Γ_s be the restriction of Γ to \mathcal{H}_s. Put $A_{ss} := \text{dom } \Gamma_s = A_s \cap \mathcal{H}_s$. Then $\tilde{\mathcal{N}}_z(A_{ss}) = \tilde{\mathcal{N}}_z(A_s) \cap \mathcal{H}_s = \tilde{\mathcal{N}}_z(A_s)$. Thus, since Γ is isometric, $\Gamma_s \subseteq \Gamma$ is also isometric, and the corresponding Weyl family of A_s is given by $M_{\Gamma_s}(z) = M_\Gamma(z), z \in \mathbb{C}_s$, by noting that $\Gamma_s \cap \Gamma_z = \Gamma_z$. In addition, given an isometric Γ, assume that Γ_s is essentially unitary. Then Γ is also essentially unitary, whose closure $\overline{\Gamma} = \overline{\Gamma_s}$.
5. Example

Let A be a densely defined, closed, symmetric operator in a Hilbert space H with defect numbers (d, d), for some $d \in \mathbb{N}$. Let L be a self-adjoint extension of A in H. Then by the von Neumann formula the adjoint $A^* \supseteq L$ is described by $\text{dom } A^* = \text{dom } L + \mathcal{N}_z(A^*)$, where the eigenspace $\mathcal{N}_z(A^*)$ is spanned by the deficiency elements $g_\sigma(z)$, $z \in \mathbb{C}_*$, with σ ranging over an index set S of cardinality d. That is, $\mathcal{N}_z(A^*) = g_z(\mathbb{C}^d)$, where one puts $g_z(c) := \sum_{\sigma \in S} c_\sigma g_\sigma(z)$ for $c = (c_\sigma) \in \mathbb{C}^d$.

Let $(\mathcal{H}_n)_{n \in \mathbb{Z}}$ be the scale of Hilbert spaces associated with L; hence $\mathcal{H}_2 = \text{dom } L$ and $\mathcal{H}_0 = \mathcal{H}$. Then a deficiency element $g_\sigma(z)$ can be defined in the generalized sense as $g_\sigma(z) = (L - z)^{-1} \varphi_\sigma$, for some functional $\varphi_\sigma \in \mathcal{H}_{-2} \setminus \mathcal{H}_{-1}$. Thus, A is the symmetric restriction of L to the domain of $u \in \mathcal{H}_2$ such that $\langle \varphi, u \rangle = 0$. Here one uses the vector notation $\langle \varphi, \cdot \rangle = (\langle \varphi_\sigma, \cdot \rangle)_{\mathcal{H}_0}$.

Finite rank perturbation K. Consider the set

$$\mathfrak{K} := \text{span}\{g_\alpha := g_\sigma(z_j) \mid \alpha = (\sigma, j) \in S \times J\}$$

where an index set $J := \{1, 2, \ldots, m\}$, $m \in \mathbb{N}$, and the points $z_j \in \mathbb{C}_*$ are such that $z_j \neq z_j'$ for $j \neq j'$. The system $\{g_\alpha\}$ is linearly independent, and so the Gram matrix

$$\mathcal{G} := (\langle g_\alpha, g_\alpha' \rangle_{\mathcal{H}}) \in B(\mathbb{C}^{md})$$

is Hermitian and positive definite.

Consider another set

$$\mathfrak{K}' := \mathcal{H}_{2m+2} + \mathcal{M}_z, \quad z \in \mathbb{C}_* \cap (\mathbb{C} \setminus \{z_j \mid j \in J\})$$

where the subset $\mathcal{M}_z \subseteq \mathcal{H}_{2m} \subseteq \mathcal{H}_2$ $(m \geq 1)$ is defined by

$$\mathcal{M}_z := \text{span}\{ \sum_{j \in J} b_j(z_j)(L - z_j)^{-1} g_\sigma(z) \mid \sigma \in S\}$$

where the multiplier

$$b_j(z_j) := \prod_{j' \in J \setminus \{j\}} (z_j - z_{j'})$$

for $m > 1$, and $b_1(z) := 1$ for $m = 1$ and $z \in \mathbb{C}$.

The rank-md perturbation K of L is defined by

$$\text{dom } K := \mathfrak{K}' + \mathfrak{R}, \quad K(u + k) := Lu + \sum_{\alpha, \alpha' \in S \times J} C_{\alpha \alpha'} \langle g_\alpha', k \rangle_{\mathcal{H}} g_\alpha$$

for $u + k \in \mathfrak{K}' + \mathfrak{R}$, where $C_{\sigma j, \sigma' j'} := z_j [G^{-1}]_{\sigma j, \sigma' j'}$.
Linear relation Γ. Let $\mathcal{H} := \mathbb{C}^d$ and define the single-valued linear relation $\Gamma \subseteq \mathfrak{H}^2 \times \mathcal{H}^2$ by

$$\Gamma := \{((u + k, K(u + k)), (c(k), \langle \varphi, u \rangle + \mathcal{M}d(k))) \mid u + k \in \mathfrak{H} + \mathfrak{H}\}.$$

Here the column-vectors

$$c(k) = (c_\sigma(k)) \in \mathbb{C}^d, \quad c_\sigma(k) := \sum_{j \in J} d_{\sigma j}(k),$$

$$d(k) = (d_\alpha(k)) \in \mathbb{C}^{md}, \quad d_\alpha(k) := \sum_{\alpha' \in S \times J} [G^{-1}]_{\alpha \alpha'} \langle g_{\alpha'}, k \rangle_{\mathfrak{H}}$$

for $k \in \mathfrak{H}$, and the matrix

$$\mathcal{M} = (\mathcal{M}_{\sigma \sigma'}) \in \mathcal{B}(\mathbb{C}^{md}, \mathbb{C}^{d}), \quad \mathcal{M}_{\sigma \sigma', j} := R_{\sigma \sigma'}(z_j')$$

for some matrix-valued Nevanlinna family $R(\cdot) = (R_{\sigma \sigma'}(\cdot))$ of class $\mathcal{R}^+ [\mathcal{H}]$. In fact, if the functional $\langle \varphi^{ex}, \cdot \rangle = (\langle \varphi^{ex}_{\sigma}, \cdot \rangle)$ extends $\langle \varphi, \cdot \rangle : \mathfrak{H} \to \mathbb{C}^d$ to dom A^* according to (see also [AK00, Section 3.1.3], [HK09])

$$\langle \varphi^{ex}, u \rangle = \langle \varphi, u^\# \rangle + R(z)c, \quad u = u^\# + g_z(c), \quad u^\# \in \mathfrak{H}, \quad c \in \mathbb{C}^d$$

then the matrix $R(z) \in \mathcal{B}(\mathbb{C}^d)$ is defined by

$$R_{\sigma \sigma'}(z) := \langle \varphi^{ex}_{\sigma'}(g_{\sigma'}(z))$$

for $z \in \mathbb{C}_+$. From here one verifies that $\ker \Re R(z) = \{0\}$ indeed: The imaginary part $\Re R(z)$ is the matrix with entries $(\Re z) \langle g_\sigma(z), g_{\sigma'}(z)\rangle_{\mathfrak{H}}$. Then $\ker \Re R(z)$ is the set of $c \in \mathbb{C}^d$ such that $g_z(c) \in g_z(\mathbb{C}^d)^\perp$; hence $c = 0$.

The relation Γ defines the boundary space of operator K. Indeed, associate with Γ the following two single-valued linear relations

$$\Gamma_0 := \{ (\tilde{f}, h) \mid (\exists h' \in \mathcal{H}) (\tilde{f}, h') \in \Gamma; \tilde{h} = (h, h') \},$$

$$\Gamma_1 := \{ (\tilde{f}, h') \mid (\exists h \in \mathcal{H}) (\tilde{f}, h) \in \Gamma; \tilde{h} = (h, h') \}.$$

Then the boundary form of the operator K is given by

$$\langle u, Kv \rangle_{\mathfrak{H}} - \langle Ku, v \rangle_{\mathfrak{H}} = (\Gamma_0 u, \Gamma_1 v)_{\mathbb{C}^d} - (\Gamma_1 u, \Gamma_0 v)_{\mathbb{C}^d}$$

for $u, v \in \text{dom} K$, provided that Γ_0 (resp. Γ_1) is regarded as the mapping dom $K \to \mathbb{C}^d$.

Linear relation Γ_z and its Krein space adjoint. Let $A_\pi := \text{dom} \Gamma = K$. It is shown in [Jur18] that the adjoint $K^* = A$. One also verifies that the eigenspace $\mathcal{N}_z(A_\pi) = \mathcal{N}_z(A^*)$ for $z \in \mathbb{C}_+$. Then, the single-valued linear relation Γ_z and its Krein space adjoint $\Gamma_z^{[*]}$ are given by

$$\Gamma_z = \{ (g_z(c), zg_z(c)), (c, R(z)c) \mid c \in \mathbb{C}^d \},$$

$$\Gamma_z^{[*]} = \{ ((c, \langle \varphi, u \rangle + R(z)c), (g, zg + (L - z)u)) \mid c \in \mathbb{C}^d; u \in \mathfrak{H}_2; g \in \mathfrak{H} \}.$$

It follows that $\Gamma_z \subseteq \Gamma$ and $\Gamma_w^{-1} \subseteq \Gamma_z^{[*]}$ for all $z, w \in \mathbb{C}_+$.

Closure Γ. By [Jur18], the Krein space adjoint of Γ is given by $\Gamma^\dagger = \Gamma^{-1}$, where the closure $\Gamma = \{(u + g_z(c), A^*(u + g_z(c))), (c, \langle \varphi, u \rangle + R(z)c) \mid c \in \mathbb{C}^d; u \in \mathfrak{H}_2\}$ with $z \in \mathbb{C}_*$. It follows that $\Gamma^{-1} \subseteq \Gamma^\dagger \subseteq \Gamma_{w}^\dagger$ for all $w \in \mathbb{C}_*$.

Since Γ is essentially unitary and $A^* = A^*$, the pair (\mathcal{H}, Γ) is an essentially unitary pair for A^*; the pair (\mathcal{H}, Γ) is a unitary pair for A^*, with the associated Weyl family $M_{\Gamma}(z) = R(z)$, $z \in \mathbb{C}_*$. Note that $A = \tilde{A} = \ker \Gamma$. Note also that, since Γ and Γ are single-valued, the pair (\mathcal{H}, Γ) is actually an isometric boundary triple $(\mathcal{H}, \Gamma_0, \Gamma_1)$ for A^* [DHM17, Definition 1.8], and the pair (\mathcal{H}, Γ) is an ordinary boundary triple $(\mathcal{H}, (\Gamma)_0, (\Gamma)_1)$ for A^*; here $(\Gamma)_0$ (resp. $(\Gamma)_1$) is defined similar to Γ_0 (resp. Γ_1).

The domain
$$\text{dom } M_{\Gamma}(z) = \Gamma_0 \hat{\mathfrak{N}}_z(A_*) = \mathbb{C}^d$$
and so it follows from Corollary 1.2 that
$$M_{\Gamma}(z) = M_{\Gamma}(z) = R(z), \quad z \in \mathbb{C}_*$$
is a Nevanlinna family of class $\mathcal{R}[\mathcal{H}]$; the equality $M_{\Gamma}(z) = R(z)$ can be checked by computing $\Gamma \hat{\mathfrak{N}}_z(A_*)$ directly. Moreover, since $\text{ran } \Gamma = \mathcal{H}^2$, one concludes that actually $R(\cdot) \in \mathcal{R}[\mathcal{H}]$. Finally, the matrix-valued analytic function $R(\cdot)$ on \mathbb{C}_* extends to the domain of analyticity of $(g_{\sigma}(\cdot))$, namely, the resolvent set of L.

References

[AI89] T. Azizov and I. Iokhvidov. Linear Operators in Spaces with an Indefinite Metric. John Wiley & Sons, Inc., 1989.

[AK00] S. Albeverio and P. Kurasov. Singular Perturbations of Differential Operators. London Mathematical Society Lecture Note Series 271. Cambridge University Press, UK, 2000.

[BBM+18] A. A. Boitsev, J. F. Brasche, M. M. Malamud, H. Neidhardt, and I. Yu. Popov. Boundary Triplets, Tensor Products and Point Contacts to Reservoirs. Annales Henri Poincaré, 19(9):2783–2837, 2018.

[BHdS08] J. Behrndt, S. Hassi, and H. de Snoo. Functional models for Nevanlinna families. Opuscula Math., 28(3):233–245, 2008.

[BHdS+13] J. Behrndt, S. Hassi, H. de Snoo, R. Wietsma, and H. Winkler. Linear fractional transformations of Nevanlinna functions associated with a nonnegative operator. Compl. Anal. Oper. Theory, 7(2):331–362, 2013.

[BMN15] J. Behrndt, M. Malamud, and H. Neidhardt. Scattering matrices and Dirichlet-to-Neumann maps. Proc. London Math. Soc., 97(3):568–598, 2015.

[DdS74] A. Dijksma and H. de Snoo. Self-adjoint extensions of symmetric subspaces. Pacific J. Math., 54(1):71–100, 1974.

[DHM17] Vladimir Derkach, Seppo Hassi, and Mark Malamud. Generalized boundary triples, Weyl functions and inverse problems. arXiv:1706.07948v1, 2017.

[DHMdS06] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo. Boundary relations and their Weyl families. Trans. Amer. Math. Soc., 358(12):5351–5400, 2006.
[DHMdS09] V. Derkach, S. Hassi, M. Malamud, and H. de Snoo. Boundary relations and generalized resolvents of symmetric operators. Russ. J. Math. Phys., 16(1):17–60, 2009.

[DHMdS12] Vladimir Derkach, Seppo Hassi, Mark Malamud, and Henk de Snoo. Boundary triplets and Weyl functions. Recent developments. In Seppo Hassi, Hendrik S. V. de Snoo, and Franciszek Hugon Szafraniec, editors, Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Series, volume 404, chapter 7, pages 161–220. Cambridge University Press, UK, 2012.

[DM91] V. A. Derkach and M. M. Malamud. Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps. J. Func. Anal., 95(1):1–95, 1991.

[DM17] V. A. Derkach and M. M. Malamud. Extension theory of symmetric operators and boundary value problems, volume 104. Institute of Mathematics of NAS of Ukraine, Kiev, 2017.

[dSWW11] H. de Snoo, H. Winkler, and M. Wojtylak. Zeros of nonpositive type of generalized Nevanlinna functions with one negative square. J. Math. Anal. Appl., 382(1):399–417, 2011.

[HdS96] S. Hassi and H. de Snoo. On some subclasses of Nevanlinna functions. Zeitschrift f"ur Analysis und ihre Anwendungen, 15(1):45–55, 1996.

[HdSS09] S. Hassi, H. S. V. de Snoo, and F. H. Szafraniec. Componentwise and Cartesian decompositions of linear relations. Dissertationes Mathematicae, 465:1–59, 2009.

[HK09] Seppo Hassi and Sergii Kuzhel. On symmetries in the theory of finite rank singular perturbations. J. Func. Anal., 256:777–809, 2009.

[HSdSS07] S. Hassi, Z. Sebestyén, H. S. V. de Snoo, and F. H. Szafraniec. A canonical decomposition for linear operators and linear relations. Acta Math. Hungar., 115(4):281–307, 2007.

[Jur18] R. Juršėnas. The peak model for the triplet extensions and their transformations to the reference Hilbert space in the case of finite defect numbers. arXiv:1810.07416, 2018.

[LT77] H. Langer and B. Textorius. On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pacific. J. Math., 72(1):135–165, 1977.

Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio 3, LT-10257, Vilnius, Lithuania

E-mail address: rytis.jurssenas@tfai.vu.lt