Supporting information for the Atmos. Phys. Chem manuscript:

Atmospheric Measurements at the Foot and the Summit of Mt. Tai - Part I: HONO Formation and Its Role in the Oxidizing Capacity of the Upper Boundary Layer

Chaoyang Xue1, 2*, Can Ye1, 9, Jörg Kleffmann3, Chenglong Zhang1, 4, Valéry Catoire2, Fengxia Bao5, Abdelwahid Mellouki6, 7, Likun Xue7, Jianmin Chen8, Keding Lu9, Yong Zhao10, Hengde Liu10, Zhaoxin Guo10, Yujing Mu1, 4*

1 Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2 Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E), CNRS–Université Orléans–CNES, Cedex 2, Orléans 45071, France
3 Physical and Theoretical Chemistry, University of Wuppertal, Gaußstrasse 20, Wuppertal 42119, Germany
4 Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
5 Multiphasic Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
6 Institut de Combustion Aérothermique, Réactivité et Environnement, Centre National de la Recherche Scientifique (ICARE-CNRS), Cedex 2, Orléans 45071, France
7 Environmental Research Institute, Shandong University, Qingdao, Shandong 266237, China
8 Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
9 State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
10 Taishan National Reference Climatological Station, Tai’an, Shandong, 271000, China

Correspondence to:

Chaoyang Xue (chaoyang.xue@cnrs-orleans.fr; 86chaoyang.xue@gmail.com)

Yujing Mu (yjmu@rcees.ac.cn)
Contents

Figure S1: Photos taken around the summit station (Photo copyright: Chaoyang Xue) ... S3
Figure S2: Diurnal profiles of the relative atmospheric humidity (RH), pressure (P), and temperature (T) observed at the summit of Mt. Tai. ... S3
Figure S3: Diurnal variations of HONO, PM$_{2.5}$, and NO$_2$ observed at the summit station in winter, spring, and summer. S4
Figure S4: Comparison of night-time (18:00 – 5:00) average PM$_{2.5}$, CO, O$_3$, and SO$_2$ observed at the foot station (Left axis in blue) and summit station (Right axis in orange) during the same period from 9th to 31st July... S4
Figure S5: Windrose plots of the measurement in winter, spring, and summer.. S5
Figure S6: The measured 2-hourly pNO$_3$ (with unit converted from µg m$^{-3}$ to ppbv) by the filter method and the measured NO$_x$ (ppbv), and their correlations from 12th June to 12th July... S5
Figure S1: Photos taken around the summit station (Photo copyright: Chaoyang Xue). The polluted layer is visible in photos (A), (B), and (C). (D): The Jade Emperor Peak at sunset; (E): A overlooking view of Tai’an city (south of the summit station) at night. F: Clouds at the summit level (southeast of the summit station).

Figure S2: Diurnal profiles of (A): temperature (T), (B): pressure (P), and (C): the atmospheric relative humidity (RH) observed at the summit of Mt. Tai.
Figure S3: Diurnal variations of (A): HONO, (B): PM$_{2.5}$, and (C): NO$_2$ observed at the summit station in winter, spring, and summer.

Figure S4: Comparison of night-time (18:00 – 5:00) average (A): SO$_2$, (B): O$_3$, (C): CO, and (D): PM$_{2.5}$ observed at the foot station (Left axis in blue) and summit station (Right axis in orange) during the same period from 9th to 31st July.
Figure S5: Windrose plots of the measurement in (A): winter, (B): spring, and (C): summer.

Figure S6: (A): The measured particulate nitrate, pNO₃ (with unit converted from µg m⁻³ to ppbv) by the filter method and the measured NO₂ (ppbv), and (B): their correlations from 12th June to 12th July. Caused by variable molar masses, NO₂ species can be only specified in mixing ratios (ppbv).