EXISTENCE AND EQUILIBRATION OF GLOBAL WEAK SOLUTIONS TO FINITELY EXTENSIBLE NONLINEAR BEAD-SPRING CHAIN MODELS FOR DILUTE POLYMERS

JOHN W. BARRETT AND ENDRE SÜLI

Abstract. We show the existence of global-in-time weak solutions to a general class of coupled FENE-type bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain in \(\mathbb{R}^d \), \(d = 2 \) or \(3 \), for the velocity and the pressure of the fluid, with an elastic extra-stress tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined by the Kramers expression through the associated probability density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. We require no structural assumptions on the drag term in the Fokker–Planck equation; in particular, the drag term need not be corotational. With a square-integrable and divergence-free initial velocity datum \(u_0 \) for the Navier–Stokes equation and a nonnegative initial probability density function \(\psi_0 \) for the Fokker–Planck equation, which has finite relative entropy with respect to the Maxwellian \(M \), we prove, via a limiting procedure on certain regularization parameters, the existence of a global-in-time weak solution \(t \mapsto (u(t), \psi(t)) \) to the coupled Navier–Stokes–Fokker–Planck system, satisfying the initial condition \((u(0), \psi(0)) = (u_0, \psi_0) \), such that \(t \mapsto u(t) \) belongs to the classical Leray space and \(t \mapsto \psi(t) \) has bounded relative entropy with respect to \(M \) and \(t \mapsto \psi(t)/M \) has integrable Fisher information (w.r.t. the measure \(d\mu := M(q) \, dq \, dx \)) over any time interval \([0, T] \), \(T > 0 \). If the density of body forces \(f \) on the right-hand side of the Navier–Stokes momentum equation vanishes, then a weak solution constructed as above is such that \(t \mapsto (u(t), \psi(t)) \) decays exponentially in time to \((0, M)\) in the \(L^2 \times L^1 \) norm, at a rate that is independent of \((u_0, \psi_0)\) and of the centre-of-mass diffusion coefficient.

Keywords: Kinetic polymer models, FENE chain, Navier–Stokes–Fokker–Planck system.

1. Introduction

This paper establishes the existence of global-in-time weak solutions to a large class of bead-spring chain models with finitely extensible nonlinear elastic (FENE) type spring potentials, — a system of nonlinear partial differential equations that arises from the kinetic theory of dilute polymer solutions. The solvent is an incompressible, viscous, isothermal Newtonian fluid confined to a bounded open Lipschitz domain \(\Omega \subset \mathbb{R}^d \), \(d = 2 \) or \(3 \), with boundary \(\partial \Omega \). For the sake of simplicity of presentation, we shall suppose that \(\Omega \) has a ‘solid boundary’ \(\partial \Omega \); the velocity field \(u \) will then satisfy the no-slip boundary condition \(u = 0 \) on \(\partial \Omega \). The polymer chains, which are suspended in the solvent, are assumed not to interact with each other. The conservation of momentum and mass equations for the solvent then have the form of the incompressible Navier–Stokes equations in which the elastic extra-stress tensor \(\tau \) (i.e. the polymeric part of the Cauchy stress tensor) appears as a source term:
Given $T \in \mathbb{R}_{>0}$, find $y : (x, t) \in \Omega \times [0, T] \mapsto y(x, t) \in \mathbb{R}^d$ and $p : (x, t) \in \Omega \times (0, T] \mapsto p(x, t) \in \mathbb{R}$ such that

\begin{align}
(1.1a) & \quad \frac{\partial u}{\partial t} + (u \cdot \nabla u) u - \nu \Delta_x u + \nabla_x p = f + \nabla_x \tau \quad \text{in } \Omega \times (0, T], \\
(1.1b) & \quad \nabla_x \cdot u = 0 \quad \text{in } \Omega \times (0, T], \\
(1.1c) & \quad u = 0 \quad \text{on } \partial \Omega \times (0, T], \\
(1.1d) & \quad u(x, 0) = u_0(x) \quad \forall x \in \Omega.
\end{align}

It is assumed that each of the equations above has been written in its nondimensional form; y denotes a nondimensional velocity, defined as the velocity field scaled by the characteristic flow speed U_0; $\nu \in \mathbb{R}_{>0}$ is the reciprocal of the Reynolds number, i.e. the ratio of the kinematic viscosity coefficient of the solvent and L_0U_0, where L_0 is a characteristic length-scale of the flow; p is the nondimensional pressure and f is the nondimensional force.

In a bead-spring chain model, consisting of $K + 1$ beads coupled with K elastic springs to represent a polymer chain, the extra-stress tensor τ is defined by the *Kramers expression* as a weighted average of ψ, the probability density function of the (random) conformation vector $q := (q_1^T, \ldots, q_K^T)^T \in \mathbb{R}^{Kd}$ of the chain (cf. \cite{17} below), with q_i representing the d-component conformation/orientation vector of the ith spring. The Kolmogorov equation satisfied by ψ is a second-order parabolic equation, the Fokker–Planck equation, whose transport coefficients depend on the velocity field y.

The domain D of admissible conformation vectors $D \subset \mathbb{R}^{Kd}$ is a K-fold Cartesian product $D_1 \times \cdots \times D_K$ of balanced convex open sets $D_i, i = 1, \ldots, K$; the term *balanced* means that $q_i \in D_i$ if, and only if, $-q_i \in D_i$. Hence, in particular, $0 \in D_i, i = 1, \ldots, K$. Typically D_i is the whole of \mathbb{R}^d or a bounded open d-dimensional ball centred at the origin $0 \in \mathbb{R}^d$ for each $i = 1, \ldots, K$. When $K = 1$, the model is referred to as the *dumbbell model*.

Let $\mathcal{O}_i \subset [0, \infty)$ denote the image of D_i under the mapping $q_i \in D_i \mapsto \frac{1}{2}|q_i|^2$, and consider the *spring potential* $U_i \in C^2(\mathcal{O}_i; \mathbb{R}_{\geq 0}), i = 1, \ldots, K$. Clearly, $0 \in \mathcal{O}_i$. We shall suppose that $U_i(0) = 0$ and that U_i is monotone increasing and unbounded on \mathcal{O}_i for each $i = 1, \ldots, K$. The elastic spring-force $F_i : D_i \subset \mathbb{R}^d \rightarrow \mathbb{R}^d$ of the ith spring in the chain is defined by

\begin{align}
(1.2) & \quad F_i(q) = U_i'(\frac{1}{2}|q|^2) q, \quad i = 1, \ldots, K.
\end{align}

Example 1.1. In the Hookean dumbbell model $K = 1$, and the spring force is defined by $F(q) = q_i$, with $q \in D = \mathbb{R}^d$, corresponding to $U(s) = s, s \in \mathcal{O} = [0, \infty)$. This model is physically unrealistic as it admits an arbitrarily large extension.

We shall therefore assume in what follows that D is a Cartesian product of K bounded open balls $D_i \subset \mathbb{R}^d$, centred at the origin $0 \in \mathbb{R}^d, i = 1, \ldots, K$, with $K \geq 1$.

We shall further suppose that for $i = 1, \ldots, K$ there exist constants $c_{ij} > 0, j = 1, 2, 3, 4$, and $\gamma_i > 1$ such that the (normalized) Maxwellian M_i, defined by

\begin{align}
(1.3a) & \quad c_{i1}[\text{dist}(q_i, \partial D_i)]^{\gamma_i} \leq M_i(q_i) \leq c_{i2}[\text{dist}(q_i, \partial D_i)]^{\gamma_i} \quad \forall q_i \in D_i, \\
(1.3b) & \quad c_{i3} \leq [\text{dist}(q_i, \partial D_i)] U_i'(\frac{1}{2}|q_i|^2) \leq c_{i4} \quad \forall q_i \in D_i.
\end{align}

The Maxwellian in the model is then defined by

\begin{align}
(1.4) & \quad \tilde{M}(q) := \prod_{i=1}^K M_i(q_i) \quad \forall q := (q_1^T, \ldots, q_K^T)^T \in \mathcal{D} := \bigtimes_{i=1}^K D_i.
\end{align}

Observe that, for $i = 1, \ldots, K$,

\begin{align}
(1.5) & \quad M(q) \nabla_{q_i} [M(q)]^{-1} = -[M(q)]^{-1} \nabla_q M(q) = \nabla_{q_i} U_i'(\frac{1}{2}|q_i|^2) = U_i'(\frac{1}{2}|q_i|^2) q_i.
\end{align}
The probability density function $\psi_{\tau \eta} \sim x$ with the density of polymer chains located at $k > \gamma := \frac{b}{2}$ for details). Thus, in the general class of FENE-type bead-spring chain models considered here, the assumption $\gamma_i > 1$, $i = 1, \ldots, K$, is the weakest reasonable requirement on the decay-rate of M_i in (1.3a) as $\text{dist}(q_i, \partial \mathcal{D}_i) \to 0$.

The governing equations of the general FENE-type bead-spring chain model with centre-of-mass diffusion are (1.4a–d), where the extra-stress tensor $\underline{\tau}$ is defined by the Kramer’s expression:

$$\tau(x, t) = k \sum_{i=1}^{K} \int_D \psi(x, q, t) \quad U_i \left(\frac{1}{2} |q_i|^2 \right) \quad dq - \rho(x, t) I,$$

with the density of polymer chains located at x at time t given by

$$\rho(x, t) = \int_D \psi(x, q, t) \quad dq.$$

The probability density function ψ is a solution of the Fokker–Planck equation

$$\frac{\partial \psi}{\partial t} + (u \cdot \nabla_x) \psi + \sum_{i=1}^{K} \nabla_{q_i} \cdot \left(\sigma(u, q_i, \psi) \right)$$

$$= \varepsilon \Delta_x \psi + \frac{1}{2 \lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla_{q_i} \cdot \left(M \nabla_{q_j} \left(\frac{\psi}{M} \right) \right)$$

in $\Omega \times D \times (0, T]$.

The dimensionless constant $k > 0$ featuring in (1.7) is a constant multiple of the product of the Boltzmann constant k_B and the absolute temperature T. In (1.9), $\varepsilon > 0$ is the centre-of-mass diffusion coefficient defined as $\varepsilon := (\zeta_0/L_0)^2/(4(K + 1) \lambda)$ with $\zeta_0 := \sqrt{k_B T / \eta}$ signifying the characteristic microscopic length-scale and $\lambda := (\zeta / 4 \eta)(U_0/L_0)$, where $\zeta > 0$ is a friction coefficient and $\eta > 0$ is a spring-constant. The dimensionless parameter $\lambda \in \mathbb{R}_{>0}$, called the Weissennberg number (and usually denoted by W_i), characterizes the elastic relaxation property of the fluid, and $A = (A_{ij})_{i,j=1}^{K}$ is the symmetric positive definite Rouse matrix, or connectivity matrix; for example, $A = \text{tridiag}[-1, 2, -1]$ in the case of a linear chain; see, Nitta [10].

Definition 1.1. The collection of equations and structural hypotheses (1.4a–d)–(1.9) will be referred to throughout the paper as model (P$_\varepsilon$), or as the general FENE-type bead-spring chain model with centre-of-mass diffusion.

A noteworthy feature of equation (1.9) in the model (P$_\varepsilon$) compared to classical Fokker–Planck equations for bead-spring models in the literature is the presence of the dissipative centre-of-mass diffusion term $\varepsilon \Delta_x \psi$ on the right-hand side of the Fokker–Planck equation (1.9). We refer to Barrett & Suli [9] for the derivation of (1.9) in the case of $K = 1$; see also the article by Schieber [43] concerning generalized dumbbell models with centre-of-mass diffusion, and the recent paper
of Degond & Liu \[17\] for a careful justification of the presence of the centre-of-mass diffusion term through asymptotic analysis. In standard derivations of bead-spring models the centre-of-mass diffusion term is routinely omitted on the grounds that it is several orders of magnitude smaller than the other terms in the equation. Indeed, when the characteristic macroscopic length-scale \(L_0 \approx 1 \), (for example, \(L_0 = \text{diam}(\Omega) \)), Bhave, Armstrong & Brown \[14\] estimate the ratio \(\ell_0^2/L_0^2 \) to be in the range of about \(10^{-9} \) to \(10^{-7} \). However, the omission of the term \(\varepsilon \Delta_x \psi \) from \[19\] in the case of a heterogeneous solvent velocity \(y(x,t) \) is a mathematically counterproductive model reduction. When \(\varepsilon \Delta_x \psi \) is absent, \[19\] becomes a degenerate parabolic equation exhibiting hyperbolic behaviour with respect to \((x,t)\). Since the study of weak solutions to the coupled problem requires one to work with velocity fields \(y \) that have very limited Sobolev regularity (typically \(y \in L^\infty(0,T;L^2(\Omega)) \cap L^2(0,T;H^1_0(\Omega)) \)), one is then forced into the technically unpleasant framework of hyperbolically degenerate parabolic equations with rough transport coefficients (cf. Ambrosio \[2\] and DiPerna & Lions \[19\]). The resulting difficulties are further exacerbated by the fact that, when \(D \) is bounded, a typical spring force \(F(q) \) for a finitely extensible model (such as FENE) explodes as \(q \) approaches \(\partial D \); see Example \[12\] above. For these reasons, here we shall retain the centre-of-mass diffusion term in \[19\]. In order to emphasize that the positive centre-of-mass diffusion coefficient \(\varepsilon \) is not a mathematical artifact but the outcome of the physical derivation of the model, in Section \[2\] and thereafter the variables \(u \) and \(\psi \) have been labelled with the subscript \(\varepsilon \).

We continue with a brief literature survey. Unless otherwise stated, the centre-of-mass diffusion term is absent from the model considered in the cited reference (i.e. \(\varepsilon \) is set to 0); also, in all references cited \(K = 1 \), i.e. a simple dumbbell model is considered rather than a bead-spring chain model.

An early contribution to the existence and uniqueness of local-in-time solutions to a family of dumbbell type polymeric flow models is due to Renardy \[14\]. While the class of potentials \(F(q) \) considered by Renardy \[14\] (cf. hypotheses (F) and (F’) on pp. 314–315) does include the case of Hookean dumbbells, it excludes the practically relevant case of the FENE dumbbell model (see Example \[12\] above). More recently, E, Li & Zhang \[23\] and Li, Zhang & Zhang \[32\] have revisited the question of local existence of solutions for dumbbell models. A further development in this direction is the work of Zhang & Zhang \[52\], where the local existence of regular solutions to FENE-type dumbbell models has been shown. All of these papers require high regularity of the initial data. Constantin \[15\] considered the Navier–Stokes equations coupled to nonlinear Fokker–Planck equations describing the evolution of the probability distribution of the particles interacting with the fluid. Otto & Tzavaras \[42\] investigated the Doi model (which is similar to a Hookean model (cf. Example \[14\] above), except that \(D = S^2 \)) for suspensions of rod-like molecules in the dilute regime. Jourdain, Lelièvre & Le Bris \[28\] studied the existence of solutions to the FENE dumbbell model in the case of a simple Couette flow. By using tools from the theory of stochastic differential equations, they showed the existence of a unique local-in-time solution to the FENE dumbbell model for \(d = 2 \) when the velocity field \(y \) is unidirectional and of the particular form \(y(x_1, x_2) = (u_1(x_2), 0)^T \).

In the case of Hookean dumbbells \((K = 1) \), and assuming \(\varepsilon = 0 \), the coupled microscopic-macroscopic model described above yields, formally, taking the second moment of \(q \mapsto \psi(q,x,t) \), the fully macroscopic, Oldroyd-B model of viscoelastic flow. Lions & Masmoudi \[36\] have shown the existence of global-in-time weak solutions to the Oldroyd-B model in a simplified corotational setting (i.e. with \(\sigma(y) = \nabla_x y \) replaced by \(\frac{1}{2}((\nabla_x u - (\nabla_x u)^T)) \) by exploiting the propagation in time of the compactness of the solution (i.e. the property that if one takes a sequence of weak solutions that converges weakly and such that the corresponding sequence of initial data converges strongly, then the weak limit is also a solution) and the DiPerna–Lions \[19\] theory of renormalized solutions to linear hyperbolic equations with nonsmooth transport coefficients. It is not known if an identical global existence result for the Oldroyd-B model also holds in the absence of the crucial assumption that the drag term is corotational. With \(\varepsilon > 0 \), the coupled microscopic-macroscopic model above yields, taking the appropriate moments in the case of Hookean dumbbells, a dissipative version of the Oldroyd-B model. In this sense, the Hookean dumbbell model has a macroscopic closure:
it is the Oldroyd-B model when $\varepsilon = 0$, and a dissipative version of Oldroyd-B when $\varepsilon > 0$ (cf. Barrett & Suli [9]). Barrett & Boyaval [7] have proved a global existence result for this dissipative Oldroyd-B model in two space dimensions. In contrast, the FENE model is not known to have an exact closure at the macroscopic level, though Du, Yu & Liu [20] and Yu, Du & Liu [51] have recently considered the analysis of approximate closures of the FENE dumbbell model. Lions & Masmoudi [36] proved the global existence of weak solutions for the corotational FENE dumbbell model, once again corresponding to the case of $\varepsilon = 0$ and $K = 1$, and the Doi model, also called the rod model; see also the work of Masmoudi [37]. Recently, Masmoudi [38] has extended this analysis to the noncorotational case.

Previously, El-Kareh & Leal [24] had proposed a steady macroscopic model, with added dissipation in the equation satisfied by the conformation tensor, defined as

$$\mathcal{A}(x) := \int_D q q^T U'(\frac{1}{2}|q|^2) \psi(x, q) dq,$$

in order to account for Brownian motion across streamlines; the model can be thought of as an approximate macroscopic closure of a FENE-type micro-macro model with centre-of-mass diffusion.

Barrett, Schwab & Suli [8] showed the existence of global weak solutions to the coupled microscopic-macroscopic model (1.1a–d), (1.9) with $\varepsilon = 0$, $K = 1$, an x-mollified velocity gradient in the Fokker–Planck equation and an x-mollified probability density function ψ in the Kramers expression, admitting a large class of potentials U (including the Hookean dumbbell model and general FENE-type dumbbell models); in addition to these mollifications, u in the x-convective term $(u \cdot \nabla_x) \psi$ in the Fokker–Planck equation was also mollified. Unlike Lions & Masmoudi [35], the arguments in Barrett, Schwab & Suli [8] did not require that the drag term $\nabla q \cdot (q(\psi) q \psi)$ in the Fokker–Planck equation was corotational in the FENE case.

In Barrett & Suli [9], we derived the coupled Navier–Stokes–Fokker–Planck model with centre-of-mass diffusion stated above, in the case of $K = 1$. We established the existence of global-in-time weak solutions to a mollification of the model for a general class of spring-force-potentials including in particular the FENE potential. We justified also, through a rigorous limiting process, certain classical reductions of this model appearing in the literature that exclude the centre-of-mass diffusion term from the Fokker–Planck equation on the grounds that the diffusion coefficient is small relative to other coefficients featuring in the equation. In the case of a corotational drag term we performed a rigorous passage to the limit as the mollifiers in the Kramers expression and an approximate macroscopic closure of a FENE-type micro-macro model with centre-of-mass diffusion (1.11) below) in the drag term

$$(1.10) \hspace{1cm} \nabla q \cdot (q(\psi) q \psi) = \nabla q \cdot \left[\sigma(u) q M \left(\frac{\psi}{M} \right) \right].$$

In this paper we prove the existence of global-in-time weak solutions to the model without cut-off or mollification, in the general case of $K \geq 1$. Since the argument is long and technical, we give a brief overview of the main steps of the proof here.

Step 1. Following the approach in Barrett & Suli [10] and motivated by recent papers of Jourdain, Lelièvre, Le Bris & Otto [29] and Lin, Liu & Zhang [33] (see also Arnold, Markowich, Toscani & Unterreiter [6], and Desvillettes & Villani [18]) concerning the convergence of the probability density function ψ to its equilibrium value $\psi_\infty(x, q) := M(q)$ (corresponding to the equilibrium value $u_\infty(x) := 0$ of the velocity field) in the absence of body forces f, we observe that if ψ/M is bounded above then, for $L \in \mathbb{R}_{>0}$ sufficiently large, the drag term (1.10) is equal to

$$(1.11) \hspace{1cm} \nabla q \cdot \left[\sigma(u) q M \beta L \left(\frac{\psi}{M} \right) \right],$$
where $\beta^L \in C(\mathbb{R})$ is a cut-off function defined as

$$
\beta^L(s) := \min(s, L).
$$

More generally, in the case of $K \geq 1$, in analogy with (1.10), the drag term with cut-off is defined by $\sum_{i=1}^K \nabla q_i \cdot \left(g(u) q_i M \beta^L \left(\frac{\psi}{M} \right) \right)$. It then follows that, for $L \gg 1$, any solution ψ of (1.9), such that ψ/M is bounded above, also satisfies

$$
\frac{\partial \psi}{\partial t} + (u \cdot \nabla) \psi + \sum_{i=1}^K \nabla q_i \cdot \left(g(u) q_i M \beta^L \left(\frac{\psi}{M} \right) \right) = \varepsilon \Delta_x \psi + L^2 \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla q_i \cdot \left(M \nabla q_j \left(\frac{\psi}{M} \right) \right) \quad \text{in } \Omega \times D \times (0, T],
$$

(1.13)

We impose the following boundary and initial conditions:

$$
\begin{align*}
M \left[\frac{1}{2} \lambda \sum_{j=1}^K A_{ij} \nabla q_j \left(\frac{\psi}{M} \right) - \sigma(u) q_i \beta^L \left(\frac{\psi}{M} \right) \right] \cdot \hat{q}_i &= 0, \\
\varepsilon \nabla \psi \cdot n &= 0, \\
\psi(\cdot, 0) = M(\cdot) \beta^L \left(\frac{\psi_0(\cdot)}{M(\cdot)} \right) &\geq 0 \quad \text{on } \partial D \times (0, T),
\end{align*}
$$

(1.14a) (1.14b) (1.14c)

where q_i is normal to ∂D_i, as D_i is a bounded ball centred at the origin, and n is normal to ∂D. ψ_0 is nonnegative, defined on $\Omega \times D$, with $\int_D \psi_0(x, q) dq = 1$ for a.e. $x \in \Omega$, and assumed to have finite relative entropy with respect to the Maxwellian M; i.e. $\int_{\Omega \times D} \psi_0(x, q) \log(\psi_0(x, q)/M(q)) dq \, dx < \infty$. Clearly, if there exists $L > 0$ such that $0 \leq \psi_0 \leq \lambda M$, then $M \beta^L(\psi_0/M) = \psi_0$. Henceforth $L > 1$ is assumed.

Definition 1.2. The coupled problem (1.10), (1.7), (1.8), (1.13), (1.14a–c) will be referred to as model $(P_{\varepsilon,L})$, or as the general FENE-type bead-spring chain model with centre-of-mass diffusion and microscopic cut-off, with cut-off parameter $L > 1$.

In order to highlight the dependence on ε and L, in subsequent sections the solution to (1.13), (1.14a–c) will be labelled $\psi_{\varepsilon,L}$. Due to the coupling of (1.10) to (1.1a) through (1.7), the velocity and the pressure will also depend on ε and L and we shall therefore denote them in subsequent sections by $u_{\varepsilon,L}$ and $p_{\varepsilon,L}$.

The cut-off β^L has a convenient property: the couple (u_∞, ψ_∞), defined by $u_\infty(x) := 0$ and $\psi_\infty(x) := M(q)$, is still an equilibrium solution of (1.1a) with $f = 0$, (1.7), (1.8), (1.13), (1.14a–c) for all $L > 0$. Thus, unlike the truncation of the (unbounded) potential proposed in El-Kareh & Leal [24], the introduction of the cut-off function β^L into the Fokker–Planck equation (1.9) does not alter the equilibrium solution (u_∞, ψ_∞) of the original Navier–Stokes–Fokker–Planck system. In addition, the boundary conditions for ψ on $\partial D \times (0, T)$ and $\Omega \times \partial D \times (0, T)$ ensure that $\int_D \psi(x, q, t) dq = \int_D \psi(x, q, 0) dq$ for a.e. $x \in \Omega$ and a.e. $t \in \mathbb{R} \geq 0$.

Step 2. Ideally, one would like to pass to the limit $L \to \infty$ in problem $(P_{\varepsilon,L})$ to deduce the existence of solutions to $(P_{\varepsilon,L})$. Unfortunately, such a direct attack at the problem is (except in the special case of $d = 2$, or in the absence of convection terms from the model,) fraught with technical difficulties. Instead, we shall first (semi)discretize problem $(P_{\varepsilon,L})$ by an implicit Euler scheme with respect to t, with step size Δt; this then results in a time-discrete version $(P_{\varepsilon,L}^{\Delta t})$ of $(P_{\varepsilon,L})$. By using Schauder’s fixed point theorem, we will show in Section 3 the existence of solutions to $(P_{\varepsilon,L}^{\Delta t})$. In the course of the proof, for technical reasons, a further cut-off, now from below, is required, with a cut-off parameter $\delta \in (0, 1)$, which we shall let pass to 0 to complete the proof of existence of solutions to $(P_{\varepsilon,L}^{\Delta t})$ in the limit of $\delta \to 0_+$ (cf. Section 3). Ultimately,
of course, our aim is to show existence of weak solutions to the general FENE-type bead-spring chain model with centre-of-mass diffusion, \((P_\varepsilon)\), and that demands passing to the limits \(\Delta t \to 0_+\) and \(L \to \infty\); this then brings us to the next step in our argument.

Step 3. We shall link the time step \(\Delta t\) to the cut-off parameter \(L > 1\) by demanding that \(\Delta t = o(L^{-1})\), as \(L \to \infty\), so that the only parameter in the problem \((P^L_\varepsilon)\) is the cut-off parameter (the centre-of-mass diffusion parameter \(\varepsilon\) being fixed). By using special energy estimates, based on testing the Fokker–Planck equation in \((P^L_\varepsilon)\) with the derivative of the relative entropy with respect to the Maxwellian of the general FENE-type bead-spring chain model, we show that \(u^L_\varepsilon\) can be bounded, independent of \(L\). Specifically \(u^L_\varepsilon\) is bounded in the norm of the classical Leray space, independent of \(L\); also, the \(L^\infty\) norm in time of the relative entropy of \(\psi^L_\varepsilon\) and the \(L^2\) norm in time of the Fisher information of \(\hat{\psi}^L_\varepsilon := \psi^L_\varepsilon/M\) are bounded, independent of \(L\). We then use these \(L\)-independent bounds on the relative entropy and the Fisher information to derive \(L\)-independent bounds on the time-derivatives of \(u^L_\varepsilon\) and \(\hat{\psi}^L_\varepsilon\) in very weak, negative-order Sobolev norms.

Step 4. The collection of \(L\)-independent bounds from Step 3 then enables us to extract a weakly convergent subsequence of solutions to problem \((P^L_\varepsilon)\) as \(L \to \infty\). We then apply a general compactness result in seminormed sets due to Dubinskii [21] (see also [13]), which furnishes strong convergence of a subsequence of solutions \((u^{L_k}_\varepsilon, \psi^{L_k}_\varepsilon)\) to \((P^L_\varepsilon)\) with \(\Delta t = o(L^{-1})\) as \(L \to \infty\), in \(L^2(0,T; L^2(\Omega)) \times L^p(0,T; L^1(\Omega \times D))\) for any \(p > 1\). A crucial observation is that the set of functions with finite Fisher information is not a linear space; therefore, typical Aubin–Lions–Simon type compactness results (see, for example, Simon [47]) do not work in our context; however, Dubinskii’s compactness theorem, which applies to seminormed sets in the sense of Dubinskii, does, enabling us to pass to the limit with the microscopic cut-off parameter \(L\) in the model \((P^L_\varepsilon)\), with \(\Delta t = o(L^{-1})\), as \(L \to \infty\), to finally deduce the existence of a weak solution to the general FENE-type bead-spring chain model with centre-of-mass diffusion, \((P_\varepsilon)\).

The paper is structured as follows. We begin, in Section 2, by stating \((P_\varepsilon)\), the coupled Navier–Stokes–Fokker–Planck system with centre-of-mass diffusion and microscopic cut-off for a general class of FENE-type spring potentials. In Section 3 we establish the existence of solutions to the time-discrete problem \((P^L_\varepsilon)\). In Section 4 we derive a set of \(L\)-independent bounds on \(u^L_\varepsilon\) in the classical Leray space, together with \(L\)-independent bounds on the relative entropy of \(\psi^L_\varepsilon\) and Fisher information of \(\hat{\psi}^L_\varepsilon\). We then use these \(L\)-independent bounds on spatial norms to obtain \(L\)-independent bounds on very weak norms of time-derivatives of \(u^L_\varepsilon\) and \(\hat{\psi}^L_\varepsilon\). Section 5 is concerned with the application of Dubinskii’s theorem to our problem; and the extraction of a strongly convergent subsequence, which we shall then use in Section 6 to pass to the limit with the cut-off parameter \(L\) in problem \((P^L_\varepsilon)\), with \(\Delta t = o(L^{-1})\), as \(L \to \infty\), to deduce the existence of a weak solution \((u_\varepsilon, \psi_\varepsilon := M \hat{\psi}_\varepsilon)\) to problem \((P_\varepsilon)\), the general FENE-type bead-spring chain model with centre-of-mass diffusion. Finally, in Section 7 we show using a logarithmic Sobolev inequality and the Csiszár–Kullback inequality that, when \(\int \equiv 0\), global weak solutions \(t \mapsto (u_\varepsilon(t), \psi_\varepsilon(t))\) thus constructed decay exponentially in time to \((0, M)\), at a rate that is independent of the initial data for the Navier–Stokes and Fokker–Planck equations and of the centre-of-mass diffusion coefficient \(\varepsilon\). We shall operate within Maxwellian-weighted Sobolev spaces, which provide the natural functional-analytic framework for the problem. Our proofs require special density and embedding results in these spaces, which are proved in Appendix C and Appendix D, respectively.

For an analogous set of existence and equilibration results for weak solutions of Hookean-type bead-spring chain models for dilute polymers, we refer to Part II of the present paper [11].

2. The Polymer Model \((P_\varepsilon)\)

Let \(\Omega \subset \mathbb{R}^d\) be a bounded open set with a Lipschitz-continuous boundary \(\partial \Omega\), and suppose that the set \(D := D_1 \times \cdots \times D_K\) of admissible conformation vectors \(q := (q^T_1, \ldots, q^T_K)^T\) in (1.9) is such that \(D_i, i = 1, \ldots, K\), is an open ball in \(\mathbb{R}^d\), \(d = 2\) or 3, centred at the origin with boundary \(\partial D_i\).
and radius \(\sqrt{b_i} \), \(b_i > 2 \); let

\[
\partial D := \bigcup_{i=1}^K \left[\partial D_i \times \left(\times_{j=1, j \neq i}^K D_j \right) \right].
\]

Collecting (1.1a–d), (1.7), and (1.9), we then consider the following initial-boundary-value problem, dependent on the parameter \(L > 1 \). As has been already emphasized in the Introduction, the centre-of-mass diffusion coefficient \(\varepsilon > 0 \) is a physical parameter and is regarded as being fixed, although we systematically highlight its presence in the model through our subscript notation.

\[
\left(F_{\varepsilon,L} \right) \text{ Find } u_{\varepsilon,L} : (x, t) \in \overline{\Omega} \times [0, T] \mapsto u_{\varepsilon,L}(x, t) \in \mathbb{R}^d \text{ and } \rho_{\varepsilon,L} : (x, t) \in \Omega \times (0, T] \mapsto \rho_{\varepsilon,L}(x, t) \in \mathbb{R} \text{ such that }
\]

\[
\frac{\partial u_{\varepsilon,L}}{\partial t} + (u_{\varepsilon,L} \cdot \nabla) u_{\varepsilon,L} - \nu \Delta u_{\varepsilon,L} + \nabla \rho_{\varepsilon,L} = f + \nabla \cdot \tau(\psi_{\varepsilon,L})
\]

\[
\tau(\psi_{\varepsilon,L}) := k \left(\sum_{i=1}^K C_i(\psi_{\varepsilon,L}) \right) - k \rho(\psi_{\varepsilon,L}) I, \]

where \(\psi_{\varepsilon,L} : (x, q, t) \in \overline{\Omega} \times \overline{\mathbb{D}} \times [0, T] \mapsto \psi_{\varepsilon,L}(x, q, t) \in \mathbb{R} \), and \(\tau(\psi_{\varepsilon,L}) : (x, t) \in \Omega \times (0, T] \mapsto \tau(\psi_{\varepsilon,L})(x, t) \in \mathbb{R}^{d \times d} \) is the symmetric extra-stress tensor defined as

\[
\tau(\psi_{\varepsilon,L}) := k \left(\sum_{i=1}^K C_i(\psi_{\varepsilon,L}) \right) - k \rho(\psi_{\varepsilon,L}) I.
\]

The Fokker–Planck equation with microscopic cut-off satisfied by \(\psi_{\varepsilon,L} \) is:

\[
\frac{\partial \psi_{\varepsilon,L}}{\partial t} + (u_{\varepsilon,L} \cdot \nabla) \psi_{\varepsilon,L} + \sum_{i=1}^K q_i \sigma(u_{\varepsilon,L}) q_i M \beta L \left(\frac{\psi_{\varepsilon,L}}{M} \right)
\]

\[
= \varepsilon \Delta \psi_{\varepsilon,L} + \frac{1}{2\lambda} \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla q_i \cdot \left(M \nabla q_i \left(\frac{\psi_{\varepsilon,L}}{M} \right) \right) \quad \text{in } \Omega \times D \times (0, T].
\]

Here, for a given \(L > 1 \), \(\beta L \in C(\mathbb{R}) \) is defined by (1.12), \(\sigma(q) \equiv \nabla_x q \), and

\[
A \in \mathbb{R}^{K \times K} \text{ is symmetric positive definite with smallest eigenvalue } a_0 \in \mathbb{R}_{>0}.
\]

We impose the following boundary and initial conditions:

\[
M \left[\frac{1}{2\lambda} \sum_{j=1}^K A_{ij} \nabla q_i \left(\frac{\psi_{\varepsilon,L}}{M} \right) - \sigma(u_{\varepsilon,L}) q_i M \beta L \left(\frac{\psi_{\varepsilon,L}}{M} \right) \right] \cdot \frac{q_i}{|q_i|} = 0
\]

\[
\text{on } \Omega \times \partial D_i \times \left(\bigtimes_{j=1, j \neq i}^K D_j \right) \times (0, T], \quad i = 1, \ldots, K,
\]

\[
\varepsilon \frac{\partial \psi_{\varepsilon,L}}{\partial n} = 0 \quad \text{on } \partial \Omega \times D \times (0, T],
\]

\[
\psi_{\varepsilon,L}(\cdot, 0) = M(\cdot) \beta L(\psi_{0}(\cdot)) / M(\cdot) \geq 0 \quad \text{on } \Omega \times D,
\]

where \(n \) is the unit outward normal to \(\partial \Omega \). The boundary conditions for \(\psi_{\varepsilon,L} \) on \(\partial \Omega \times D \times (0, T] \) and \(\Omega \times \partial D \times (0, T] \) have been chosen so as to ensure that

\[
\int_D \psi_{\varepsilon,L}(x, q, t) dq = \int_D \psi_{\varepsilon,L}(x, q, 0) dq \quad \forall (x, t) \in D \times [0, T],
\]
Henceforth, we shall write \(\hat{\psi}_{0, L} := \psi_{0, L}/M \), \(\hat{\psi}_0 := \psi_0/M \). Thus, for example, \(2 \pi \text{rad} \) in terms of this compact notation becomes: \(\hat{\psi}_{0, L}(\cdot, \cdot) = \beta^L(\hat{\psi}_0(\cdot, \cdot)) \) on \(\Omega \times D \).

The notation \(| \cdot | \) will be used to signify one of the following. When applied to a real number \(x \), \(|x| \) will denote the absolute value of the number \(x \); when applied to a vector \(\mathbf{v} \), \(|\mathbf{v}| \) will stand for the Euclidean norm of the vector \(\mathbf{v} \); and, when applied to a square matrix \(A \), \(|A| \) will signify the Frobenius norm, \(|\text{tr}(A^T A)|^{1/2} \), of the matrix \(A \), where, for a square matrix \(B \), \(\text{tr}(B) \) denotes the trace of \(B \).

3. Existence of a Solution to the Discrete-in-Time Problem

Let
\[
H := \{ v \in L^2(\Omega) : \nabla_x \cdot v = 0 \} \quad \text{and} \quad V := \{ v \in H^1_0(\Omega) : \nabla_x \cdot v = 0 \},
\]
where the divergence operator \(\nabla_x \cdot \) is to be understood in the sense of distributions on \(\Omega \). Let \(V' \) be the dual of \(V \). Let \(S : V' \to V \) be such that \(S v \) is the unique solution to the Helmholtz-Stokes problem
\[
\int_{\Omega} S v \cdot w \, dx + \int_{\Omega} \nabla_x (S v) : \nabla_x w \, dx = (v, w)_V \quad \forall w \in V,
\]
where \((\cdot, \cdot)_V \) denotes the duality pairing between \(V' \) and \(V \). We note that
\[
\langle v, S v \rangle_V = \| S v \|^2_{H^1(\Omega)} \quad \forall v \in V',
\]
and \(\| S \cdot \|_{H^1(\Omega)} \) is a norm on \(V' \). More generally, let \(V_\sigma \) denote the closure of the set of all divergence-free \(C^\infty_0(\Omega) \) functions in the norm of \(H^1_0(\Omega) \cap H^\sigma(\Omega) \), \(\sigma \geq 1 \), equipped with the Hilbert space norm, denoted by \(\| \cdot \|_{V_\sigma} \), inherited from \(H^\sigma(\Omega) \), and let \(V'_\sigma \) signify the dual space of \(V_\sigma \), with duality pairing \(\langle \cdot, \cdot \rangle_{V_\sigma} \). As \(\Omega \) is a bounded Lipschitz domain, we have that \(V_1 = V \) (cf. Temam [39], Ch. 1, Thm. 1.6). Similarly, \(\langle \cdot, \cdot \rangle_{V_\sigma}(\Omega) \) will denote the duality pairing between \((H^1_0(\Omega))^* \) and \(H^\sigma_0(\Omega) \). The norm on \((H^1_0(\Omega))^* \) will be that induced from taking \(\| \nabla_x \cdot \|_{L^2(\Omega)} \) to be the norm on \(H^1_0(\Omega) \).

For later purposes, we recall the following well-known Gagliardo–Nirenberg inequality. Let \(r \in [2, \infty) \) if \(d = 2 \), and \(r \in [2, 6] \) if \(d = 3 \) and \(\theta = d (\frac{1}{2} - \frac{1}{r}) \). Then, there is a constant \(C = C(\Omega, r, d) \), such that, for all \(\eta \in H^1(\Omega) \):
\[
\| \eta \|_{L^r(\Omega)} \leq C \| \eta \|^ {1 - \frac{d}{2}}_{L^2(\Omega)} \| \eta \|_{H^1(\Omega)}^ \theta.
\]

Let \(F \in C(\mathbb{R}^+ \cup 0) \) be defined by \(F(s) := s (\log s - 1) + 1, \ s > 0 \). As \(\lim_{s \to 0^+} F(s) = 1 \), the function \(F \) can be considered to be defined and continuous on \([0, \infty)\), where it is a nonnegative, strictly convex function with \(F(1) = 0 \). We assume the following:
\[
\partial \Omega \in C^{0,1}; \quad u_0 \in H; \quad \hat{\psi}_0 := \frac{\psi_0}{M} \geq 0 \text{ a.e. on } \Omega \times D \quad \text{with} \quad F(\hat{\psi}_0) \in L^1_M(\Omega \times D)\quad \text{and} \quad \int_D M(q) \hat{\psi}_0(x, q) \, dq = 1 \text{ for a.e. } x \in \Omega;
\]
\[
\gamma_i > 1, \quad i = 1, \ldots, K \quad \text{in } (1.3a,b); \quad \text{and} \quad f \in L^2(0, T; (H^1_0(\Omega))^*).
\]

Here, \(L^p_M(\Omega \times D) \), for \(p \in [1, \infty) \), denotes the Maxwellian-weighted \(L^p \) space over \(\Omega \times D \) with norm
\[
\| \varphi \|_{L^p_M(\Omega \times D)} := \left\{ \int_{\Omega \times D} M \| \varphi \|^p \, dq \, dx \right\}^{1/p}.
\]
Similarly, we introduce \(L^p_M(D) \), the Maxwellian-weighted \(L^p \) space over \(D \). Letting
\[
\| \varphi \|_{H^1_M(\Omega \times D)} := \left\{ \int_{\Omega \times D} M \left[\| \varphi \|^2 + |\nabla_x \varphi|^2 + |\nabla_q \varphi|^2 \right] \, dq \, dx \right\}^{1/2},
\]
we then set
\[
\bar{X} \equiv H^1_M(\Omega \times D) := \left\{ \varphi \in L^2_{loc}(\Omega \times D) : \| \varphi \|_{H^1_M(\Omega \times D)} < \infty \right\}.
\]
It is shown in Appendix C that
\begin{equation}
(3.8) \quad C^\infty(\overline{\Omega \times D}) \text{ is dense in } \tilde{X}.
\end{equation}

We have from Sobolev embedding that
\begin{equation}
(3.9) \quad H^1(\Omega; L^2_M(D)) \hookrightarrow L^4(\Omega; L^2_M(D)),
\end{equation}
where $s \in [1, \infty)$ if $d = 2$ or $s \in [1, 6]$ if $d = 3$. Similarly to (3.4), we have, with r and θ as there, that there is a constant C, depending only on Ω, r and d, such that
\begin{equation}
(3.10) \quad \|\hat{\varphi}\|_{L^r(\Omega; L^2_M(D))} \leq C \|\hat{\varphi}\|_{L^\theta(\Omega; L^2_M(D))}^{1-\theta} \|\hat{\varphi}\|_{H^1(\Omega; L^2_M(D))}^\theta \quad \forall \hat{\varphi} \in H^1(\Omega; L^2_M(D)).
\end{equation}

In addition, we note that the embeddings
\begin{equation}
(3.11a) \quad H^1_M(D) \hookrightarrow L^2_M(D),
\end{equation}
\begin{equation}
(3.11b) \quad H^3_M(\Omega \times D) = \{ H^3_M(D) \cap H^1(\Omega; L^2_M(D)) \hookrightarrow L^2_M(\Omega \times D) \equiv L^2(\Omega; L^2_M(D)) \}
\end{equation}
are compact if $\gamma_i \geq 1$, $i = 1, \ldots, K$, in (1.5a,b); see Appendix D.

Let \tilde{X}' be the dual space of \tilde{X} with $L^2_M(\Omega \times D)$ being the pivot space. Then, similarly to (3.2), let $\mathcal{G} : \tilde{X}' \to \tilde{X}$ be such that $\mathcal{G} \tilde{\eta}$ is the unique solution of
\begin{equation}
(3.12) \quad \int_{\Omega \times D} M \left[(\mathcal{G} \tilde{\eta}) \hat{\varphi} + \nabla_q (\mathcal{G} \tilde{\eta}) \cdot \nabla_q \hat{\varphi} + \nabla_x (\mathcal{G} \tilde{\eta}) \cdot \nabla_x \hat{\varphi} \right] \, dq \, dx = \langle M \hat{\eta}, \hat{\varphi} \rangle_{\tilde{X}} \quad \forall \hat{\varphi} \in \tilde{X},
\end{equation}
where $\langle \cdot, \cdot \rangle_{\tilde{X}}$ is the duality pairing between \tilde{X}' and \tilde{X}. Then, as in (3.3),
\begin{equation}
(3.13) \quad \langle M \hat{\eta}, \mathcal{G} \tilde{\eta} \rangle_{\tilde{X}} = \| \mathcal{G} \tilde{\eta} \|^2_{\tilde{X}} \quad \forall \tilde{\eta} \in \tilde{X}',
\end{equation}
and $\| \mathcal{G} \cdot \tilde{\eta} \|$ is a norm on \tilde{X}'.

We recall the Aubin–Lions–Simon compactness theorem, see, e.g., Temam [49] and Simon [47]. Let \mathcal{B}_0, \mathcal{B} and \mathcal{B}_1 be Banach spaces, \mathcal{B}_i, $i = 0, 1$, reflexive, with a compact embedding $\mathcal{B}_0 \hookrightarrow \mathcal{B}$ and a continuous embedding $\mathcal{B} \hookrightarrow \mathcal{B}_1$. Then, for $\alpha_1 > 1$, $i = 0, 1$, the embedding
\begin{equation}
(3.14) \quad \{ \eta \in L^{\alpha_0}(0, T; \mathcal{B}_0) : \frac{\partial \eta}{\partial t} \in L^{\alpha_1}(0, T; \mathcal{B}_1) \} \hookrightarrow L^{\alpha_0}(0, T; \mathcal{B})
\end{equation}
is compact.

Throughout we will assume that (3.5) hold, so that (1.6) and (3.11a,b) hold. We note for future reference that (2.4a) and (1.6) yield that, for $\hat{\varphi} \in L^2_M(\Omega \times D)$,
\begin{align}
\int_{\Omega} \int_D |C_i(M \hat{\varphi})|^2 \, dx \, dq & = \int_{\Omega} \int_D M \hat{\varphi} U_i q_i q_i^\top \, dq \, dx \\
& \quad \leq \left(\int_D M \left(U_i^q \right)^2 \, dq \right) \left(\int_{\Omega \times D} M |\hat{\varphi}|^2 \, dq \, dx \right) \\
& \quad \leq C \left(\int_{\Omega \times D} M |\hat{\varphi}|^2 \, dq \, dx \right), \quad i = 1, \ldots, K,
\end{align}
where C is a positive constant.

We establish a simple integration-by-parts formula.

Lemma 3.1. Let $\hat{\varphi} \in H^1_M(D)$ and suppose that $B \in \mathbb{R}^{d \times d}$ is a square matrix such that $\text{tr}(B) = 0$; then,
\begin{equation}
(3.16) \quad \int_D M \sum_{i=1}^K (B q_i) \cdot \nabla_q \hat{\varphi} \, dq = \int_D M \hat{\varphi} \sum_{i=1}^K q_i q_i^\top U_i \left(\frac{1}{2} |q_i|^2 \right) : B \, dq.
\end{equation}

Proof. By Theorem C.1 in Appendix C, the set $C^\infty(\overline{D})$ is dense in $H^1_M(D)$; hence, for any $\hat{\varphi} \in H^1_M(D)$ there exists a sequence $\{ \hat{\varphi}_n \}_{n \geq 0} \subset C^\infty(\overline{D})$ converging to $\hat{\varphi}$ in $H^1_M(D)$. As $M \in C^2(\overline{D})$ and vanishes on ∂D, the same is true of each of the functions $M \hat{\varphi}_n$, $n \geq 1$. On replacing $\hat{\varphi}$ by $\hat{\varphi}_n$ on both sides of (3.10), the resulting identity is easily verified by using the classical divergence theorem for smooth functions, noting (1.5), that $M \hat{\varphi}_n$ vanishes on ∂D and that $\text{tr}(B) = 0$. Then,
itself follows by letting $n \to \infty$, recalling the definition of the norm in $H^1_\delta(D)$ and hypothesis 160.

We now formulate our discrete-in-time approximation of problem $(P_{\varepsilon,L})$ for fixed parameters $\varepsilon \in (0,1]$ and $L > 1$. For any $T > 0$ and $N \geq 1$, let $N \Delta t = T$ and $t_n = n \Delta t$, $n = 0, \ldots, N$. To prove existence of a solution under minimal smoothness requirements on the initial datum y_0 (recall (3.15)), we introduce $u^0 = y^0(\Delta t) \in V$ such that

\begin{equation}
\int_\Omega [u^0 \cdot v + \Delta t \nabla_x u^0 : \nabla_x v] \, dx = \int_\Omega u_0 \cdot v \, dx \quad \forall v \in V;\end{equation}

and so

\begin{equation}
\int_\Omega |u^0|^2 + \Delta t |\nabla_x u^0|^2 \, dx \leq \int_\Omega |u_0|^2 \, dx \leq C.
\end{equation}

In addition, we have that u^0 converges to u_0 weakly in H in the limit of $\Delta t \to 0_+$. For $p \in [1, \infty)$, let

\[\tilde{Z}_p := \{ \hat{\varphi} \in L^p_\delta(\Omega \times D) : \hat{\varphi} \geq 0 \text{ a.e. on } \Omega \times D \} \quad \text{and} \quad \int_D M(q) \hat{\varphi}(x,q) \, dq \leq 1 \text{ for a.e. } x \in \Omega. \]

Analogously to defining u^0 for a given initial velocity field y_0, we shall assign a certain ‘smoothed’ initial datum, $\tilde{\psi}^0 = \tilde{\psi}^0(\Delta t)$, to the initial datum $\tilde{\psi}_0$. The definition of $\tilde{\psi}^0$ is delicate; it will be given in Section 6. All we need to know for now is that there exists a $\tilde{\psi}^0$, independent of the cut-off parameter L, such that:

\begin{equation}
\tilde{\psi}^0 \in \tilde{Z}_1; \quad \{ \frac{\mathcal{F}(\tilde{\psi}^0)}{\sqrt{\tilde{\psi}^0}} \in L^1_\delta(\Omega \times D); \quad \int_{\Omega \times D} M(\tilde{\psi}^0) \, dq \, dx \leq \int_{\Omega \times D} M(\tilde{\psi}_0) \, dq \, dx. \end{equation}

The proofs of these properties will be given in Lemma 6.2 in Section 6. It follows from (3.20) and (3.12) that $\beta^L(\tilde{\psi}^0) \in \tilde{Z}_2$; in fact, $\beta^L(\tilde{\psi}^0) \in L^\infty(\Omega \times D) \cap H^1_\delta(\Omega \times D)$.

Our discrete-in-time approximation of $(P_{\varepsilon,L})$ is then defined as follows.

($P_{\varepsilon,L}^\Delta t$) Let $y^0_{\varepsilon,L} := u^0 \in V$ and $\tilde{\psi}^0_{\varepsilon,L} := \beta^L(\tilde{\psi}^0) \in \tilde{Z}_2$. Then, for $n = 1, \ldots, N$, given $(y_{\varepsilon,L}^{n-1}, \psi_{\varepsilon,L}^{n-1}) \in V \times \tilde{Z}_2$, find $(y_{\varepsilon,L}^n, \psi_{\varepsilon,L}^n) \in V \times (\tilde{X} \cap \tilde{Z}_2)$ such that

\begin{align}
\int_\Omega \left[& u_{\varepsilon,L}^n - u_{\varepsilon,L}^{n-1} \right. \\
& + \frac{(u_{\varepsilon,L}^{n-1} \cdot \nabla_x u_{\varepsilon,L}^n)}{\Delta t} \left. \right] \cdot w \, dx + \nu \int_\Omega \nabla_x u_{\varepsilon,L}^n : \nabla_x w \, dx \\
& = (f, w)_{H^\varepsilon_\delta(\Omega)} - k \sum_{i=1}^K C_i(M(\tilde{\psi}_{\varepsilon,L}^n)) : \nabla_x w \, dx \quad \forall w \in V,
\end{align}

\begin{align}
\int_{\Omega \times D} M \tilde{\psi}_{\varepsilon,L}^n - \tilde{\psi}_{\varepsilon,L}^{n-1} \frac{\Delta t}{\Delta t} \hat{\varphi} \, dq \, dx & \\
& + \int_{\Omega \times D} M \sum_{i=1}^K \left[\frac{1}{2} \sum_{j=1}^K A_{ij} \nabla_{ij} \tilde{\psi}_{\varepsilon,L}^n - \beta^L(\tilde{\psi}_{\varepsilon,L}^n) \right] \cdot \nabla_{ij} \hat{\varphi} \, dq \, dx = 0 \quad \forall \hat{\varphi} \in \tilde{X},
\end{align}

where, for $t \in [t_{n-1}, t_n)$, and $n = 1, \ldots, N$,

\begin{equation}
f^\Delta t(\cdot, t) = f_n(\cdot) := \frac{1}{\Delta t} \int_{t_{n-1}}^{t_n} f(\cdot, t) \, dt \in (H^\varepsilon_\delta(\Omega))' \subset V'.
\end{equation}
It follows from (3.22) and (3.25) that

\begin{equation}
\int_{\tilde{t}}^{\tilde{t}+\Delta t} \rightarrow \int_{\tilde{t}} \quad \text{strongly in } L^2(0, T; (H^1_0(\Omega))') \text{ as } \Delta t \to 0_+.
\end{equation}

Note that as the test function \(w \) in (3.21) is chosen to be divergence-free, the term containing the density \(\rho \) in the definition of \(\overline{\tau} \) (cf. 2.3) is eliminated from (3.21).

In order to prove the existence of a solution to (P\(w \)), we require the following convex regularization \(F^L_\delta \) of \(F \) defined, for any \(\delta \in (0, 1) \) and \(L > 1 \), by

\begin{equation}
F^L_\delta(s) := \begin{cases}
\frac{s^2}{2} + s \log \delta - 1 + 1 & \text{for } s \leq \delta, \\
\frac{s^2}{2} + s \log L - 1 + 1 & \text{for } \delta \leq s \leq L, \\
\frac{s^2}{2} + s \log (L - 1) + 1 & \text{for } L \leq s.
\end{cases}
\end{equation}

Hence,

\begin{align}
[F^L_\delta]'(s) &= \begin{cases}
\delta + \log \delta - 1 & \text{for } s \leq \delta, \\
\log s & \text{for } \delta \leq s \leq L, \\
L - 1 & \text{for } L \leq s,
\end{cases} \\
[F^L_\delta]''(s) &= \begin{cases}
1 & \text{for } s \leq \delta, \\
1 & \text{for } \delta \leq s \leq L, \\
1 & \text{for } L \leq s.
\end{cases}
\end{align}

We note that

\begin{equation}
F^L_\delta(s) \geq \begin{cases}
\frac{s^2}{2} + s \log \delta - 1 - C(L) & \text{for } s \leq 0, \\
\frac{s^2}{2} + s \log L - 1 - C(L) & \text{for } s \geq 0,
\end{cases}
\end{equation}

and that \([F^L_\delta]''(s)\) is bounded below by \(1/L\) for all \(s \in \mathbb{R}\). Finally, we set

\begin{equation}
\beta^L_\delta(s) := ([F^L_\delta]''(s))^{-1}(s) = \max\{\beta^L(s), \delta\},
\end{equation}

and observe that \(\beta^L_\delta(s) \) is bounded above by \(L \) and bounded below by \(\delta \) for all \(s \in \mathbb{R} \). Note also that both \(\beta^L \) and \(\beta^L_\delta \) are Lipschitz continuous on \(\mathbb{R} \), with Lipschitz constants equal to 1.

3.1. Existence of a solution to (P\(w \)). It is convenient to rewrite (3.21) as

\begin{equation}
b(u_{\epsilon,L}, w) = \ell_b(\overline{\psi}_{\epsilon,L})(w) \quad \forall w \in V;
\end{equation}

where, for all \(w_i \in H^1_0(\Omega), \ i = 1, 2, \)

\begin{equation}
b(w_1, w_2) := \int_{\Omega} [w_1 + \Delta t (u_{\epsilon,L}^{-1} \cdot \nabla x) w_1] \cdot w_2 \ dx + \Delta t \nu \int_{\Omega} \nabla_x w_1 : \nabla x w_2 \ dx,
\end{equation}

and, for all \(w \in H^1_0(\Omega) \) and \(\overline{\varphi} \in L^2(\Omega \times D), \)

\begin{equation}
\ell_b(\overline{\varphi})(w) := \Delta t (f^{\overline{\varphi}}(w)_{H^1_0(\Omega)}) + \int_{\Omega} \left[u_{\epsilon,L}^{-1} \cdot w - \Delta t k \sum_{i=1}^{K} C_i(M \overline{\varphi}) : \nabla x w \right] \ dx.
\end{equation}

We note that, for all \(v \in V \) and all \(w_1, w_2 \in H^1(\Omega) \), we have that

\begin{equation}
\int_{\Omega} [(v \cdot \nabla x) w_1] \cdot w_2 \ dx = -\int_{\Omega} [(v \cdot \nabla x) w_2] \cdot w_1 \ dx
\end{equation}

and hence \(b(\cdot, \cdot) \) is a continuous nonsymmetric coercive bilinear functional on \(H^1_0(\Omega) \times H^1_0(\Omega) \). In addition, thanks to (3.15), \(\ell_b(\overline{\varphi})(\cdot) \) is a continuous linear functional on \(H^1_0(\Omega) \) for any \(\overline{\varphi} \in L^2(\Omega \times D) \).

For \(r > d \), let

\begin{equation}
Y^r := \left\{ v \in L^r(\Omega) : \int_{\Omega} v \cdot \nabla x w \ dx = 0 \quad \forall w \in W^{1, \infty}(\Omega) \right\}.
\end{equation}
It is also convenient to rewrite (3.31b) as
\[a_n^\varepsilon(u_{\sim,\delta,\varepsilon}^n, \varphi) = \ell_a(u_{\sim,\delta,\varepsilon}^n, \beta^L(\tilde{\psi}_{\wedge,\delta,\varepsilon}^n))(\varphi) \quad \forall \varphi \in \tilde{X}, \]
where, for all \(\varphi_1, \varphi_2 \in \tilde{X}, \)
\[a(\varphi_1, \varphi_2) := \int_{\Omega \times \mathcal{D}} M \left(\varphi_1 \varphi_2 + \Delta t \left[\varepsilon \nabla_x \varphi_1 - u_{\sim,\delta,\varepsilon}^{n-1} \varphi_1 \right] \cdot \nabla_x \varphi_2 + \frac{\Delta t}{\lambda} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla q_i \varphi_1 \cdot \nabla q_j \varphi_2 \right) \, dq \, dx, \]
and, for all \(v \in H^1(\Omega), \tilde{\eta} \in L^\infty(\Omega \times \mathcal{D}) \) and \(\tilde{\varphi} \in \tilde{X}, \)
\[\ell_v(\varphi)(\tilde{\varphi}) := \int_{\Omega \times \mathcal{D}} M \left[\tilde{\psi}_{\wedge,\delta,\varepsilon}^{n-1} \varphi + \Delta t \sum_{i=1}^{K} [\sigma(q_i \tilde{q}_{\sim})] \tilde{\eta} \cdot \nabla q_i \tilde{\varphi} \right] \, dq \, dx. \]
It follows from (3.31) and (3.9) that, for \(r > d, \)
\[\int_{\Omega \times \mathcal{D}} M v \cdot \nabla_x \varphi \, dq \, dx = 0 \quad \forall v \in V^r, \forall \varphi \in \tilde{X}. \]
Hence \(a(\cdot, \cdot) \) is a continuous coercive bilinear functional on \(\tilde{X} \times \tilde{X} \). In addition, we have that, for all \(v \in H^1(\Omega), \tilde{\eta} \in L^\infty(\Omega \times \mathcal{D}) \) and \(\tilde{\varphi} \in \tilde{X}, \)
\[|\ell_v(\tilde{\varphi})(\varphi)| \leq ||\tilde{\psi}_{\wedge,\delta,\varepsilon}^{n-1}||_{L^2(\Omega \times \mathcal{D})} ||\tilde{\varphi}||_{L^2(\Omega \times \mathcal{D})}, \]
\[+ \Delta t \left(\int_{\Omega \times \mathcal{D}} M |q|^2 \, dq \right)^{\frac{1}{2}} ||\tilde{\eta}||_{L^\infty(\Omega \times \mathcal{D})} ||\nabla_x v||_{L^2(\Omega)} ||\nabla q \tilde{\varphi}||_{L^2(\Omega \times \mathcal{D})}. \]
Therefore, by noting that \(\tilde{\psi}_{\wedge,\delta,\varepsilon}^{n-1} \in \tilde{Z}_2 \) and recalling (1.4), it follows that \(\ell_v(\varphi, \tilde{\eta})(\cdot) \) is a continuous linear functional on \(\tilde{X} \) for all \(v \in H^1(\Omega) \) and \(\tilde{\eta} \in L^\infty(\Omega \times \mathcal{D}) \).

In order to prove existence of a solution to (3.31b), i.e. (3.32) and (3.33), we consider a regularized system for a given \(\delta \in (0, 1): \)
Find \((u_{\sim,\delta,\varepsilon}^n, \tilde{\psi}_{\wedge,\delta,\varepsilon}^n) \in V \times \tilde{X} \) such that
\[b(u_{\sim,\delta,\varepsilon}^n, \tilde{\psi}_{\wedge,\delta,\varepsilon}^n, \tilde{\eta}) = \ell_b(\tilde{\psi}_{\wedge,\delta,\varepsilon}^n)(\tilde{\eta}) \quad \forall \tilde{\eta} \in V, \]
\[a(\tilde{\psi}_{\wedge,\delta,\varepsilon}^n, \varphi) = \ell_a(u_{\sim,\delta,\varepsilon}^n, \beta^L_n(\tilde{\psi}_{\wedge,\delta,\varepsilon}^n))(\varphi) \quad \forall \varphi \in \tilde{X}. \]
The existence of a solution to (3.36a) will be proved by using a fixed-point argument. Given \(\tilde{\psi} \in L^2_M(\Omega \times \mathcal{D}), \) let \((\tilde{\psi}^*, \tilde{\psi}) \in V \times \tilde{X} \) be such that
\[b(\tilde{\psi}^*, \tilde{\psi}) = \ell_b(\tilde{\psi})(\tilde{\psi}) \quad \forall \tilde{\psi} \in \tilde{X}, \]
\[a(\tilde{\psi}^*, \tilde{\varphi}) = \ell_a(u_{\sim}, \beta^L_n(\tilde{\psi}))(\tilde{\varphi}) \quad \forall \varphi \in \tilde{X}. \]
The Lax–Milgram theorem yields the existence of a unique solution to (3.37a), and so the overall procedure (3.36a) is well defined.

Lemma 3.2. Let \(G : L^2_M(\Omega \times \mathcal{D}) \to \tilde{X} \subset L^2_M(\Omega \times \mathcal{D}) \) denote the nonlinear map that takes the function \(\tilde{\psi} \) to \(\tilde{\psi}^* = G(\tilde{\psi}) \) via the procedure (3.37a). Then \(G \) has a fixed point. Hence there exists a solution \((u_{\sim,\delta,\varepsilon}^n, \tilde{\psi}_{\wedge,\delta,\varepsilon}^n) \in V \times \tilde{X} \) to (3.36a).

Proof. Clearly, a fixed point of \(G \) yields a solution of (3.36a). In order to show that \(G \) has a fixed point, we apply Schauder’s fixed-point theorem; that is, we need to show that: (i) \(G : L^2_M(\Omega \times \mathcal{D}) \to L^2_M(\Omega \times \mathcal{D}) \) is continuous; (ii) \(G \) is compact; and (iii) there exists a \(C_\star \in \mathbb{R}_{>0} \) such that
\[||\tilde{\psi}||_{L^2_M(\Omega \times \mathcal{D})} \leq C_\star \]
for every \(\tilde{\psi} \in L^2_M(\Omega \times \mathcal{D}) \) and \(\kappa \in (0, 1) \) satisfying \(\tilde{\psi} = \kappa G(\tilde{\psi}). \)
Let \(\{ \tilde{\psi}^{(p)} \}_{p \geq 0} \) be such that
\[
(3.39) \quad \tilde{\psi}^{(p)} \to \tilde{\psi} \quad \text{strongly in } L^2_M(\Omega \times D) \quad \text{as } p \to \infty.
\]
It follows immediately from (3.27) and (3.15) that
\[
(3.40a) \quad M^\frac{1}{2} \beta^L_k(\tilde{\psi}^{(p)}) \to M^\frac{1}{2} \beta^L_k(\tilde{\psi}) \quad \text{strongly in } L^r(\Omega \times D) \quad \text{as } p \to \infty,
\]
for all \(r \in [1, \infty) \) and, for \(i = 1, \ldots, K \),
\[
(3.40b) \quad C_i(M \tilde{\psi}^{(p)}) \to C_i(M \tilde{\psi}) \quad \text{strongly in } L^2(\Omega) \quad \text{as } p \to \infty.
\]
In order to prove (i) above, we need to show that
\[
(3.41) \quad \tilde{\eta}^{(p)} := G(\tilde{\psi}^{(p)}) \to G(\tilde{\psi}) \quad \text{strongly in } L^2_M(\Omega \times D) \quad \text{as } p \to \infty.
\]
We have from the definition of \(G \) (see (3.37a,b)) that, for all \(p \geq 0 \),
\[
(3.42a) \quad a(\tilde{\eta}^{(p)}, \tilde{\varphi}, \tilde{\psi}) = \ell_a(\tilde{\psi}^{(p)}, \beta^L_k(\tilde{\psi}^{(p)}))(\tilde{\varphi}) \quad \forall \tilde{\varphi} \in \hat{X},
\]
where \(\tilde{\psi}^{(p)} \in \hat{V} \) satisfies
\[
(3.42b) \quad b(\tilde{\psi}^{(p)}, \tilde{w}) = \ell_b(\tilde{\psi}^{(p)})(\tilde{w}) \quad \forall \tilde{w} \in \hat{V}.
\]
Choosing \(\tilde{\varphi} = \tilde{\eta}^{(p)} \) in (3.42a) yields, noting the simple identity
\[
(3.43) \quad 2(s_1 - s_2) s_1 = s_1^2 + (s_1 - s_2)^2 - s_2^2 \quad \forall s_1, s_2 \in \mathbb{R},
\]
(2.6), (3.34) and (3.27) that, for all \(p \geq 0 \),
\[
(3.44) \quad \int_{\Omega \times D} M \left[|\tilde{\eta}^{(p)}|^2 + |\tilde{\psi} - \tilde{\psi}^{n-1}_L|^2 + \frac{a_0 \Delta t}{2 \lambda} |\nabla_q \tilde{\eta}^{(p)}|^2 + 2 \varepsilon \Delta t |\nabla_x \tilde{\psi}^{(p)}|^2 \right] \mathrm{d}q \mathrm{d}x \leq \int_{\Omega \times D} C(L, \lambda, a_0^{-1}) \Delta t \int_{\Omega} |\nabla_x \tilde{v}^{(p)}|^2 \mathrm{d}x.
\]
Choosing \(\tilde{w} = \tilde{v}^{(p)} \) in (3.42b), and noting (3.43), (3.30), (5.15) and (3.39) yields, for all \(p \geq 0 \), that
\[
(3.45) \quad \int_{\Omega} \left[|\tilde{v}^{(p)}|^2 + |\tilde{w}^{(p)} - \tilde{v}^{n-1}_L|^2 \right] \mathrm{d}x + \Delta t \nu \int_{\Omega} |\nabla_x \tilde{v}^{(p)}|^2 \mathrm{d}x \leq \int_{\Omega} \left[|\tilde{w}^{n-1}_L|^2 \mathrm{d}x + C \Delta t \| \tilde{v}^{(p)} \|^2_{H^1(\Omega)} \right] + C \Delta t \int_{\Omega \times D} M \| \tilde{\psi}^{(p)} \|^2 \mathrm{d}q \mathrm{d}x \leq C.
\]
Combining (3.44) and (3.45), we have for all \(p \geq 0 \) that
\[
(3.46) \quad \| \tilde{\eta}^{(p)} \|_{\hat{X}} + \| \tilde{v}^{(p)} \|_{H^1(\Omega)} \leq C(L, (\Delta t)^{-1}).
\]
It follows from (3.46), (3.4) and the compactness of the embedding (3.11b) that there exists a subsequence \(\{ (\tilde{\eta}^{(p_k)}, \tilde{v}^{(p_k)}) \}_{k \geq 0} \) and functions \(\tilde{\eta} \in \hat{X} \) and \(\tilde{v} \in \hat{V} \) such that, as \(p_k \to \infty \),
\[
(3.47a) \quad \tilde{\eta}^{(p_k)} \to \tilde{\eta} \quad \text{weakly in } L^s(\Omega; L^2_M(D)),
\]
\[
(3.47b) \quad M^\frac{1}{2} \nabla_x \tilde{\eta}^{(p_k)} \to M^\frac{1}{2} \nabla_x \tilde{\eta} \quad \text{weakly in } L^2(\Omega \times D),
\]
\[
(3.47c) \quad M^\frac{1}{2} \nabla_q \tilde{\eta}^{(p_k)} \to M^\frac{1}{2} \nabla_q \tilde{\eta} \quad \text{weakly in } L^2(\Omega \times D),
\]
\[
(3.47d) \quad \tilde{\eta}^{(p_k)} \to \tilde{\eta} \quad \text{strongly in } L^2_M(\Omega \times D),
\]
\[
(3.47e) \quad \tilde{v}^{(p_k)} \to \tilde{v} \quad \text{weakly in } H^1(\Omega);
\]
where \(s \in [1, \infty) \) if \(d = 2 \) or \(s \in [1, 6] \) if \(d = 3 \). We deduce from (3.42b), (3.29a,b), (3.47c) and (3.40b) that the functions \(\tilde{v} \in \hat{V} \) and \(\tilde{\psi} \in \hat{X} \) satisfy
\[
(3.48) \quad b(\tilde{v}, \tilde{w}) = \ell_b(\tilde{\psi})(\tilde{w}) \quad \forall \tilde{w} \in \hat{V}.
\]
It follows from \((3.42a)\), \((3.33a)\), \((3.47a)\), and \((3.40a)\) that \(\hat{\eta}, \hat{v} \in \hat{X}\) and \(v \in V\) satisfy
\[
(3.49) \quad a(\hat{\eta}, \hat{v}) = \ell_a(v, \beta^k_L(\hat{v}))(\hat{\varphi}) \quad \forall \hat{\varphi} \in C^\infty(\Omega \times D).
\]
Then, noting that \(a(\cdot, \cdot)\) is a bounded bilinear functional on \(\hat{X} \times \hat{X}\), that \(\ell_a(v, \beta^k_L(\hat{v}))(\cdot)\) is a bounded linear functional on \(\hat{X}\), and recalling \((3.8)\), we deduce that \((3.49)\) holds for all \(\hat{\varphi} \in \hat{X}\).

Combining this \(\hat{X}\) version of \((3.49)\) and \((3.43)\), we have that \(\hat{\eta} = G(\hat{v}) \in \hat{X}\). Therefore the whole sequence
\[
\hat{\eta}^{(p)} = G(\hat{v}^{(p)}) \to G(\hat{v}) \quad \text{strongly in } L^2_M(\Omega \times D),
\]
as \(p \to \infty\), and so (i) holds.

Since the embedding \(\hat{X} \hookrightarrow L^2_M(\Omega \times D)\) is compact, it follows that (ii) holds. It therefore remains to show that (iii) holds.

As regards (iii), \(\hat{\psi} = \kappa G(\hat{v})\) implies that \(\{v, \hat{\psi}\} \in V \times \hat{X}\) satisfies
\[
(3.50a) \quad b(v, w) = \ell_b(\hat{\psi})(w) \quad \forall w \in V,
\]
\[
(3.50b) \quad a(\hat{\psi}, \hat{\varphi}) = \kappa \ell_a(v, \beta^k_L(\hat{\psi}))(\hat{\varphi}) \quad \forall \hat{\varphi} \in \hat{X}.
\]

Choosing \(w \equiv v\) in \((3.50a)\) yields, similarly to \((3.35)\), that
\[
\frac{1}{2} \int_{\Omega} \left[|v|^2 + |v - u_n^{-1}|^2 - |u_n^{-1}|^2 \right] \, dx + \Delta t \nu \int_{\Omega} |\nabla_x v|^2 \, dx
\]
\[
= \Delta t \left[\langle f^n, v \rangle_{H^1(\Omega)} - k \sum_{i=1}^K \int_{\Omega} \mathcal{C}_i(M \hat{\psi}) : \nabla_x v \, dx \right].
\]

Choosing \(\hat{\varphi} = \{F^L(\eta)\}^N(\hat{\psi})\) in \((3.50b)\) and noting the convexity of \(F^L, (3.27)\) and that \(v\) is divergence-free, yield
\[
\int_{\Omega \times D} M \left[\mathcal{F}_{\hat{\psi}} - \mathcal{F}_{\hat{v}}(\kappa \mathcal{F}_{\hat{\psi}}) \right] + \Delta t \left[\nabla_x \hat{\psi} - u_n^{-1} \hat{\psi} \cdot \nabla_x (\mathcal{F}_L^L(\hat{\psi})) \right] \, dq \, dx
\]
\[
+ \frac{\Delta t}{2} \sum_{i=1}^K \sum_{j=1}^K A_{ij} \int_{\Omega \times D} \nabla q_i \hat{\psi} \cdot \nabla q_j (\mathcal{F}_L^L(\hat{\psi})) \, dq \, dx
\]
\[
\leq \kappa \Delta t \sum_{i=1}^K \int_{\Omega \times D} M \sigma(v) q_i \cdot \nabla q_i \hat{\psi} \, dq \, dx
\]
\[
= \kappa \Delta t \sum_{i=1}^K \int_{\Omega \times D} \mathcal{C}_i(M \hat{\psi}) : \sigma(v) \, dx,
\]
where in the transition to the final inequality we applied \((3.10)\) with \(B := \mathcal{C}(v)\) (on account of it being independent of the variable \(q\)), together with the fact that \(\text{tr}(\mathcal{C}(v)) = \nabla_x \cdot v = 0\), and recalled \((2.4a)\). Next, on noting \((3.27)\) and that \(u_n^{-1} \in V\), it follows that
\[
\int_{\Omega \times D} M u_n^{-1} \hat{\psi} \cdot \nabla_x (\mathcal{F}_L^L(\hat{\psi})) \, dq \, dx = \int_{\Omega \times D} M u_n^{-1} \frac{\hat{v}}{\beta^k_L(\hat{v})} \cdot \nabla_x \hat{\psi} \, dq \, dx
\]
\[
= \int_{\Omega \times D} M u_n^{-1} \cdot \nabla_x (G^L_\delta(\hat{\psi})) \, dq \, dx = 0,
\]
where \(G^L_\delta \in C^{0,1}(\mathbb{R})\) is defined by
\[
(3.54) \quad G^L_\delta(s) := \begin{cases} \frac{1}{2\delta} s^2 + \frac{\delta - L}{2} & \text{if } s \leq \delta, \\ s - \frac{L}{2} & \text{if } s \in [\delta, L], \\ \frac{1}{2k} s^2 & \text{if } s \geq L; \end{cases}
\]
and so \([G^n_L](s) = s/\beta^n_L(s)\). Combining (3.51) and (3.52), and noting (3.53), (3.26b) and (2.6) yields that

\[
\begin{align*}
\frac{\kappa}{2} \int_{\Omega} \left[|v|^2 + |v - u^n_{\varepsilon,L}|^2 \right] dx + \kappa \Delta t \int_{\Omega} |\nabla v|^2 dx + k \int_{\Omega \times D} M \mathcal{F}\lambda^L_x(\hat{\psi}) dq dx \\
+k L^{-1} \Delta t \int_{\Omega \times D} M \left[\varepsilon |\nabla_x \hat{\psi}|^2 + \frac{a_0}{2\lambda} \frac{|\nabla_q \hat{\psi}|^2}{\varepsilon} \right] dq dx \\
\leq \kappa \Delta t \int_{\Omega} |u_{\varepsilon,L}^{n-1}|^2 dx + k \int_{\Omega \times D} M \mathcal{F}_\delta^L(\kappa \hat{\psi}_{\varepsilon,L}^{n-1}) dq dx \\
\leq \frac{\Delta t}{2} \int_{\Omega} |u_{\varepsilon,L}^{n-1}|^2 dx + k \int_{\Omega \times D} M \mathcal{F}_\delta^L(\kappa \hat{\psi}_{\varepsilon,L}^{n-1}) dq dx.
\end{align*}
\]

(3.55)

It is easy to show that \(\mathcal{F}_\delta^L(s)\) is nonnegative for all \(s \in \mathbb{R}\), with \(\mathcal{F}_\delta^L(1) = 0\). Furthermore, for any \(\kappa \in [0, 1]\), \(\mathcal{F}_\delta^L(\kappa s) \leq \mathcal{F}_\delta^L(s)\) if \(s < 0\) or \(1 \leq \kappa s \leq 1\), and also \(\mathcal{F}_\delta^L(\kappa s) \leq \mathcal{F}_\delta^L(0) \leq 1\) if \(0 \leq \kappa s \leq 1\). Thus we deduce that

\[
\mathcal{F}_\delta^L(\kappa s) \leq \mathcal{F}_\delta^L(s) + 1 \forall s \in \mathbb{R}, \forall \kappa \in (0, 1].
\]

(3.56)

Hence, the bounds (3.55) and (3.56), on noting (3.20), give rise to the desired bound (3.38) with \(C_s\) dependent only on \(\delta, L, k, a_0, \nu, f\) and \(\hat{\psi}_{\varepsilon,L}^{-1}\). Therefore (iii) holds, and so \(G\) has a fixed point, proving existence of a solution to (3.36b). \(\square\)

Choosing \(\bar{w} = u^n_{\varepsilon,L,\delta}\) in (3.36a) and \(\bar{\psi} = [\mathcal{F}_\delta^L]^{-1}(\hat{\psi}_{\varepsilon,L,\delta}^{n})\) in (3.36b), and combining, then yields, as in (3.55), with \(C(L)\) a positive constant, independent of \(\delta\) and \(\Delta t\),

\[
\begin{align*}
\frac{1}{2} \int_{\Omega} \left[|u_{\varepsilon,L,\delta}^{n}|^2 + |u_{\varepsilon,L,\delta}^{n-1}|^2 \right] dx + k \int_{\Omega \times D} M \mathcal{F}_\delta^L(\hat{\psi}_{\varepsilon,L,\delta}^{n}) dq dx \\
+ \Delta t \int_{\Omega} \left[\frac{\nu}{2} |\nabla u_{\varepsilon,L,\delta}^{n}|^2 dx + k L^{-1} \varepsilon \int_{\Omega \times D} M |\nabla_x \hat{\psi}_{\varepsilon,L,\delta}^{n}|^2 dx \\
+ k L^{-1} \frac{a_0}{2\lambda} \int_{\Omega \times D} M |\nabla_q \hat{\psi}_{\varepsilon,L,\delta}^{n}|^2 dq dx \right] \\
\leq \frac{\Delta t}{2\nu} \int_{\Omega \times D} \|f^{n}\|^2_{(H^1(\Omega))'} + \frac{1}{2} \int_{\Omega \times D} |u_{\varepsilon,L}^{n-1}|^2 dx + k \int_{\Omega \times D} M \mathcal{F}_\delta^L(\hat{\psi}_{\varepsilon,L}^{n-1}) dq dx \\
\leq C(L).
\end{align*}
\]

(3.57)

We are now ready to pass to the limit \(\delta \to 0_+\), to deduce the existence of a solution \(\{(u^n_{\varepsilon,L,\delta}, \hat{\psi}_{\varepsilon,L,\delta})\}_{n=1}^{N}\) to (P^L_{\varepsilon,L}), with \(u^n_{\varepsilon,L} \in V\) and \(\hat{\psi}_{\varepsilon,L} \in F_{\varepsilon,L} \cap \hat{Z}_2\), \(n = 1, \ldots, N\).

Lemma 3.3. There exists a subsequence (not indicated) of \(\{(u^n_{\varepsilon,L,\delta}, \hat{\psi}_{\varepsilon,L,\delta})\}_{\delta > 0}\), and functions \(u^n_{\varepsilon,L} \in V\) and \(\hat{\psi}_{\varepsilon,L} \in \hat{X} \cap \hat{Z}_2\), \(n \in \{1, \ldots, N\}\), such that, as \(\delta \to 0_+\),

\[
\begin{align*}
(3.58a) \quad u^n_{\varepsilon,L,\delta} & \to u^n_{\varepsilon,L} \quad \text{weakly in } V, \\
(3.58b) \quad u^n_{\varepsilon,L,\delta} & \to u^n_{\varepsilon,L} \quad \text{strongly in } L^r(\Omega),
\end{align*}
\]
where \(r \in [1, \infty) \) if \(d = 2 \) and \(r \in [1, 6) \) if \(d = 3 \); and

\[
(3.59a) \quad M^\frac{1}{2} \hat{\psi}_{\varepsilon,L,\delta}^n \to M^\frac{1}{2} \hat{\psi}_{\varepsilon,L}^n \quad \text{weakly in } L^2(\Omega \times D),
\]

\[
(3.59b) \quad M^\frac{1}{2} \Delta q \hat{\psi}_{\varepsilon,L,\delta}^n \to M^\frac{1}{2} \Delta q \hat{\psi}_{\varepsilon,L}^n \quad \text{weakly in } L^2(\Omega \times D),
\]

\[
(3.59c) \quad M^\frac{1}{2} \Delta x \hat{\psi}_{\varepsilon,L,\delta}^n \to M^\frac{1}{2} \Delta x \hat{\psi}_{\varepsilon,L}^n \quad \text{weakly in } L^2(\Omega \times D),
\]

\[
(3.59d) \quad M^\frac{1}{2} \hat{\psi}_{\varepsilon,L,\delta}^n \to M^\frac{1}{2} \hat{\psi}_{\varepsilon,L}^n \quad \text{strongly in } L^2(\Omega \times D),
\]

\[
(3.59e) \quad M^\frac{1}{2} \beta_L(\hat{\psi}_{\varepsilon,L,\delta}^n) \to M^\frac{1}{2} \beta_L(\hat{\psi}_{\varepsilon,L}^n) \quad \text{strongly in } L^2(\Omega \times D),
\]

for all \(s \in [2, \infty) \) and, for \(i = 1, \ldots, K \);

\[
(3.59f) \quad C_i(\Sigma^L \hat{\psi}_{\varepsilon,L}^n \to C_i(\Sigma^L \hat{\psi}_{\varepsilon,L}^n) \quad \text{strongly in } L^2(\Omega).
\]

Further, \((u^n_{\varepsilon,L}, \hat{\psi}_{\varepsilon,L}^n)\) solves \((3.21n, b)\) for \(n = 1, \ldots, N \). Hence there exists a solution \(\{(u^n_{\varepsilon,L}, \hat{\psi}_{\varepsilon,L}^n)\}_{n=1}^N \) to \((\varGamma^L)\), with \(u^n_{\varepsilon,L} \in \mathbb{V} \) and \(\hat{\psi}_{\varepsilon,L}^n \in \mathbb{X} \cap \mathbb{Z}_2 \) for all \(n = 1, \ldots, N \).

Proof. The weak convergence results \((3.58a), (3.58a)\) and that \(\hat{\psi}_{\varepsilon,L}^n \geq 0 \) a.e. on \(\Omega \times D \) follow immediately from the first two bounds on the left-hand side of \((3.37)\), on noting \((3.20)\). The strong convergence \((3.58f)\) for \(\hat{\psi}_{\varepsilon,L,\delta}^n \) follows from \((3.58a)\), on noting that \(\mathbb{V} \subset H^1_0(\Omega) \) is compactly embedded in \(L^2(\Omega) \) for the stated values of \(r \).

It follows immediately from the bound on the fifth term on the left-hand side of \((3.37)\) that \((3.59a)\) holds for some limit \(q \in L^2(\Omega \times D) \), which we need to identify. However, for any \(\eta \in C_0^1(\Omega \times D) \), it follows from \((1.3)\) and the compact support of \(\eta \) on \(D \) that \([\nabla q \cdot (M^\frac{1}{2} \eta)]/M^\frac{1}{2} \in L^2(\Omega \times D) \), and hence the above convergence implies, noting \((3.58a)\), that

\[
\int_{\Omega \times D} g \cdot \eta \, dx \, dq = -\int_{\Omega \times D} \frac{\nabla q \cdot (M^\frac{1}{2} \eta)}{M^\frac{1}{2}} \, dq \, dx
\]

\[
(3.60) \quad \rightarrow -\int_{\Omega \times D} M^\frac{1}{2} \hat{\psi}_{\varepsilon,L,\delta}^n \frac{\nabla q \cdot (M^\frac{1}{2} \eta)}{M^\frac{1}{2}} \, dq \, dx = -\int_{\Omega \times D} \hat{\psi}_{\varepsilon,L}^n \nabla q \cdot (M^\frac{1}{2} \eta) \, dq \, dx
\]

as \(\delta \to 0^+ \). Equivalently, on dividing and multiplying by \(M^\frac{1}{2} \) under the integral sign in the left-most term of \((3.60)\), we have that

\[
\int_{\Omega \times D} M^\frac{1}{2} \hat{\psi}_{\varepsilon,L}^n \Delta q \, dx \, dq = -\int_{\Omega \times D} \hat{\psi}_{\varepsilon,L}^n \nabla q \cdot (M^\frac{1}{2} \eta) \, dq \, dx \quad \forall \eta \in C_0^1(\Omega \times D).
\]

Observe that \(\eta \in C_0^1(\Omega \times D) \mapsto M^\frac{1}{2} \eta \in C_0^1(\Omega \times D) \) is a bijection of \(C_0^1(\Omega \times D) \) onto itself; thus, the equality above is equivalent to

\[
\int_{\Omega \times D} M^\frac{1}{2} g \cdot \chi \, dx \, dq = -\int_{\Omega \times D} \hat{\psi}_{\varepsilon,L}^n (\nabla q \cdot \chi) \, dq \, dx \quad \forall \chi \in C_0^1(\Omega \times D).
\]

Since \(C_0^\infty(\Omega \times D) \subset C_0^1(\Omega \times D) \), the last identity also holds for all \(\eta \in C_0^\infty(\Omega \times D) \). As \(M^\frac{1}{2} \in L^\infty(\Omega \times D) \) and \(M^{-\frac{1}{2}} \in L^2_{\text{loc}}(\Omega \times D) \), it follows that \(M^{-\frac{1}{2}} q \in L^2_{\text{loc}}(\Omega \times D) \) and \(\hat{\psi}_{\varepsilon,L}^n \in L^2_{\text{loc}}(\Omega \times D) \). By identification of a locally integrable function with a distribution we deduce that \(M^{-\frac{1}{2}} q \) is the distributional gradient of \(\hat{\psi}_{\varepsilon,L}^n \) w.r.t. \(q \):

\[
M^{-\frac{1}{2}} q = \nabla q \hat{\psi}_{\varepsilon,L}^n \quad \text{in } \mathcal{D}'(\Omega \times D).
\]

As \(M^{-\frac{1}{2}} q \in L^2_{\text{loc}}(\Omega \times D) \), whereby also \(\nabla q \hat{\psi}_{\varepsilon,L}^n \in L^2_{\text{loc}}(\Omega \times D) \), it follows that

\[
g = M^\frac{1}{2} \nabla q \hat{\psi}_{\varepsilon,L}^n \in L^2_{\text{loc}}(\Omega \times D).
\]
However, the left-hand side belongs to $L^2(\Omega \times D)$, which then implies that the right-hand side also belongs to $L^2(\Omega \times D)$. Thus we have shown that

\begin{equation}
(3.61)
q = M\hat{\nabla}_q \hat{\psi}_{\varepsilon,L}^n \in L^2(\Omega \times D),
\end{equation}

and hence the desired result (3.59a), as required. A similar argument proves (3.59b) on noting (3.60a), and the fourth bound in (3.57).

The strong convergence result (3.59d) for $\hat{\psi}_{\varepsilon,L,\delta}$ follows directly from (3.59a–c) and (3.11b). Finally, (3.59c) follow from (3.59a), (3.59e), (3.59f), (2.41), and (3.15).

It follows from (3.58a, b), (3.59a–f), (3.59e, f), and (3.58) that we may pass to the limit $\delta \to 0_+$ in (3.59e, f) to obtain that $(u_{\varepsilon,L}, \hat{\psi}_{\varepsilon,L}) \in V \times \hat{X}$ with $\hat{\psi}_{\varepsilon,L} \geq 0$ a.e. on $\Omega \times D$ solves (3.29), (3.32); i.e. it solves (3.21a, b).

Next we prove the integral constraint on $\hat{\psi}_{\varepsilon,L}$. First, for $m = n - 1, n$, let

\begin{equation}
(3.62)
\rho_{\varepsilon,L}^m(x) := \int_D M(q) \hat{\psi}_{\varepsilon,L}^m(x, q) dq, \quad x \in \Omega.
\end{equation}

For $m = n - 1, n$, as $\hat{\psi}_{\varepsilon,L}^m \in \hat{X}$, we deduce from the Cauchy–Schwarz inequality and Fubini’s theorem that $\rho_{\varepsilon,L}^m \in H^1(\Omega)$ and $\rho_{\varepsilon,L}^{n-1} \in L^2(\Omega)$. We introduce also the following closed linear subspace of $\hat{X} = H^1_0(\Omega)$:

\begin{equation}
(3.63)\quad H^1(\Omega) \cap 1(\Omega) := \left\{ \hat{\varphi} \in H^1_0(\Omega \times D) : \hat{\varphi}(\cdot, q^*) = \hat{\varphi}(\cdot, q^{**}) \quad \forall q^*, q^{**} \in D \right\}.
\end{equation}

Then, on choosing $\hat{\varphi} = \varphi \in H^1(\Omega) \cap 1(\Omega)$ in (3.21b), we deduce from (3.32) and Fubini’s theorem that, for all $\varphi \in H^1(\Omega)$,

\begin{equation}
(3.64)\quad \int_\Omega \frac{\rho_{\varepsilon,L}^m - \rho_{\varepsilon,L}^{n-1}}{\Delta t} \varphi dx + \int_\Omega \left[\varepsilon \nabla_x \rho_{\varepsilon,L}^m - u_{\varepsilon,L}^{n-1} \rho_{\varepsilon,L}^m \right] \cdot \nabla_x \varphi dx = 0,
\end{equation}

with

\begin{equation}
(3.65)\quad 0 \leq \rho_{\varepsilon,L}^0 := \int_D M \hat{\psi}_{\varepsilon,L}^0 dq, \quad \int_D M \beta_x(\hat{\psi}_{\varepsilon,L}^0) dq \leq \int_D M \hat{\psi}_{\varepsilon,L}^0 dq \leq 1, \quad \text{a.e. on } \Omega.
\end{equation}

By introducing the function $z_{\varepsilon,L}^m := 1 - \rho_{\varepsilon,L}^m$, $m = n - 1, n$, and noting that $z_{\varepsilon,L}^m \in H^1(\Omega)$ and $z_{\varepsilon,L}^{n-1} \in L^2(\Omega)$, we deduce from (3.64), and as $u_{\varepsilon,L}^{n-1}$ is divergence-free on Ω with zero trace on $\partial \Omega$, that

\begin{equation}
(3.66)\quad \int_\Omega \frac{z_{\varepsilon,L}^m - z_{\varepsilon,L}^{n-1}}{\Delta t} \varphi dx + \int_\Omega \left[\varepsilon \nabla_x z_{\varepsilon,L}^m - u_{\varepsilon,L}^{n-1} z_{\varepsilon,L}^m \right] \cdot \nabla_x \varphi dx = 0,
\end{equation}

for all $\varphi \in H^1(\Omega)$. Let us now define by $[x]_\pm := \frac{1}{2}(x \pm |x|)$ the positive and negative parts, $[x]_+$ and $[x]_-$, of a real number x, respectively. As $\hat{\psi}_{\varepsilon,L}^{-1} \in \hat{Z}_2$, we then have that $[z_{\varepsilon,L}^{-1}]_- = 0$ a.e. on Ω. Taking $\varphi = [z_{\varepsilon,L}^m]_-$ as a test function in (3.66), noting that this is a legitimate choice since $[z_{\varepsilon,L}^m]_- \in H^1(\Omega)$, decomposing $z_{\varepsilon,L}^m$, $m = n - 1, n$, into their positive and negative parts, and noting that $u_{\varepsilon,L}^{n-1}$ is divergence-free on Ω and has zero trace on $\partial \Omega$, we deduce that

\[\|z_{\varepsilon,L}^m\|_2^2 + \Delta t \varepsilon \|\nabla_x [z_{\varepsilon,L}^m]_-\|^2 = 0, \]

where $\| \cdot \|$ denotes the $L^2(\Omega)$ norm. Hence, $[z_{\varepsilon,L}^m]_- = 0$ a.e. on Ω. In other words, $z_{\varepsilon,L}^m \geq 0$ a.e. on Ω, which then gives that $\rho_{\varepsilon,L}^m \leq 1$ a.e. on Ω, i.e. $\hat{\psi}_{\varepsilon,L}^m \in \hat{Z}_2$ as required. As $(u_{\varepsilon,L}^m, \hat{\psi}_{\varepsilon,L}^m) \in V \times \hat{X}$, performing the above existence proof at each time level $t_n, n = 1, \ldots, N$, yields a solution $(u_{\varepsilon,L}^n, \hat{\psi}_{\varepsilon,L}^n)_{n=1}^N$ to (P). □
4. Entropy estimates

Next, we derive bounds on the solution of (P_{\varepsilon,L}^\Delta), independent of L. Our starting point is Lemma 3.3 concerning the existence of a solution to the problem (P_{\varepsilon,L}^\Delta). The model (P_{\varepsilon,L}^\Delta) includes ‘microscopic cut-off’ in the drag term of the Fokker–Planck equation, where L \geq 1 is a (fixed, but otherwise arbitrary) cut-off parameter. Our ultimate objective is to pass to the limits L \to \infty and \Delta t \to 0_+ in the model (P_{\varepsilon,L}^\Delta), with L and \Delta t linked by the condition \Delta t = o(L^{-1}), as L \to \infty. To that end, we need to develop various bounds on sequences of weak solutions of (P_{\varepsilon,L}^\Delta) that are uniform in the cut-off parameter L and thus permit the extraction of weakly convergent subsequences, as L \to \infty, through the use of a weak compactness argument. The derivation of such bounds, based on the use of the relative entropy associated with the Maxwellian M, is our main task in this section.

Let us introduce the following definitions, in line with (3.22):

\begin{align*}
(4.1a) & \quad u_{\varepsilon,L}^{\Delta t}(:t) := \frac{t-t_n-1}{\Delta t} u_{\varepsilon,L}^n(\cdot) + \frac{t-t_n}{\Delta t} u_{\varepsilon,L}^{n-1}(\cdot), \quad t \in [t_n-1, t_n], \ n = 1, \ldots, N, \\
(4.1b) & \quad u_{\varepsilon,L}^{\Delta t^+, t} := u_{\varepsilon,L}^n(\cdot), \quad u_{\varepsilon,L}^{\Delta t^-, t} := u_{\varepsilon,L}^{n-1}(\cdot), \quad t \in (t_n-1, t_n], \ n = 1, \ldots, N.
\end{align*}

We shall adopt \(u_{\varepsilon,L}^{\Delta t, \pm} \) as a collective symbol for \(u_{\varepsilon,L}^{\Delta t^+, t}, u_{\varepsilon,L}^{\Delta t^-, t} \). The corresponding notations \(\hat{\psi}_{\varepsilon,L}^{\Delta t, \pm} \) and \(\hat{\psi}_{\varepsilon,L}^{\Delta t^+} \) are defined analogously; recall (4.18) and (3.20).

We note for future reference that

\begin{equation}
(4.2) \quad u_{\varepsilon,L}^{\Delta t^+, t} - u_{\varepsilon,L}^{\Delta t^-, t} = (t-t_n) \frac{\partial u_{\varepsilon,L}^{\Delta t}}{\partial t}, \quad t \in (t_n-1, t_n], \ n = 1, \ldots, N,
\end{equation}

where \(t_n := t_n \) and \(t_n := t_n-1 \), with an analogous relationship in the case of \(\hat{\psi}_{\varepsilon,L}^{\Delta t} \).

Using the above notation, (3.21a) summed for \(n = 1, \ldots, N \) can be restated in a form that is reminiscent of a weak formulation of (1.1a–d): find \(u_{\varepsilon,L}^{\Delta t, \pm} \in V, \ t \in (0, T), \) such that

\begin{align}
\int_0^T \int_{\Omega} \frac{\partial u_{\varepsilon,L}^{\Delta t}}{\partial t} \cdot w \, dx \, dt + \int_0^T \int_{\Omega} \left[(u_{\varepsilon,L}^{\Delta t^+, t} \cdot \nabla) u_{\varepsilon,L}^{\Delta t^+, t} \right] \cdot w + \nu \nabla u_{\varepsilon,L}^{\Delta t^+, t} \times \nabla \times w \, dx \, dt \\
= \int_0^T \int_{\Omega} \left[(f_{\varepsilon,L}^{\Delta t^+, t})^0 H_{\Omega}(\alpha) - K \sum_{i=1}^K \int_{\Omega} C_i (M \hat{\psi}_{\varepsilon,L}^{\Delta t^+, t}) : \nabla \times w \, dx \right] \, dt,
\end{align}

for all \(w \in L^1(0, T; \mathbb{V}) \), subject to the initial condition \(u_{\varepsilon,L}^{\Delta t, \pm}(\cdot, 0) = u^0 \in V \).

Analogously, (after a minor re-ordering of terms on the left-hand side for presentational reasons,) (3.21b) summed through \(n = 1, \ldots, N \) can be restated as follows: find \(\hat{\psi}_{\varepsilon,L}^{\Delta t, \pm} \in \hat{\mathbb{Z}}_2, \ t \in (0, T), \) such that

\begin{align}
& \int_0^T \int_{\Omega \times D} M \frac{\partial \hat{\psi}_{\varepsilon,L}^{\Delta t}}{\partial t} \, d\hat{\varphi} \, dx \, dt \\
& \quad + \int_0^T \int_{\Omega \times D} M \left[\nabla \hat{\psi}_{\varepsilon,L}^{\Delta t^+, t} \cdot \nabla \hat{\psi}_{\varepsilon,L}^{\Delta t^+, t} \right] \cdot \nabla \times \hat{\varphi} \, dx \, dt \\
& \quad + \frac{1}{2 \lambda} \int_0^T \int_{\Omega \times D} \left(M \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla q_i \hat{\psi}_{\varepsilon,L}^{\Delta t^+, t} \cdot \nabla q_j \hat{\varphi} \right) \, dx \, dt \\
& \quad - \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \left[\sigma (u_{\varepsilon,L}^{\Delta t^+, t}) q_i \right] \beta_L (\hat{\psi}_{\varepsilon,L}^{\Delta t^+, t}) \cdot \nabla q_i \hat{\varphi} \, dx \, dt \, dt = 0,
\end{align}

for all \(\hat{\varphi} \in L^1(0, T; \hat{\mathbb{X}}) \), subject to the initial condition \(\hat{\psi}_{\varepsilon,L}^{\Delta t, \pm}(\cdot, 0) = \beta_L (\hat{\psi}_{\varepsilon,L}^0(\cdot, \cdot)) \in \hat{\mathbb{Z}}_2 \). We emphasize that (4.3) and (4.4) are an equivalent restatement of problem (P_{\varepsilon,L}^\Delta), for which existence of a solution has been established (cf. Lemma 3.3).

Similarly, with analogous notation for \(\{ u_{\varepsilon,L}^{\Delta t, \pm}(n) \}_{n=0}^N \), (3.6) summed for \(n = 1, \ldots, N \) can be restated as follows: Given \(u_{\varepsilon,L}^{\Delta t, \pm}(t) \in \mathbb{V}, \ t \in (0, T), \) solving (4.3), find \(\rho_{\varepsilon,L}^{\Delta t, \pm}(t) \in \mathcal{K} := \{ \eta \in \mathbb{K} \} \).
subject to the initial condition $\rho_{t,x,L}^0(\cdot,0) = \int_D M(q)\beta^L(\bar{\psi}^0(\cdot,q))\,dq \in K$; cf. (3.62) and recall that $\bar{\psi}^0_{t,x,L} = \beta^L(\bar{\psi}^0)$. Once again, on noting (4.6) and (4.8), we have established the existence of a solution to (4.2) and that

$$\rho_{t,x,L}^0(x,t) = \int_D M(q)\bar{\psi}_{t,x,L}^0(x,q,t)\,dq$$

for a.e. $(x,t) \in \Omega \times (0,T)$.

In conjunction with β^L, defined by (1.12), we consider the following cut-off version \mathcal{F}^L of the entropy function $\mathcal{F} : s \in \mathbb{R}_{\geq 0} \mapsto \mathcal{F}(s) = s(\log s - 1) + 1 \in \mathbb{R}_{\geq 0}$:

$$\mathcal{F}^L(s) := \begin{cases} s(\log s - 1) + 1, & 0 \leq s \leq L, \\ s^2 \frac{x^2}{\Delta^2} + s(\log L - 1) + 1, & L \leq s. \end{cases}$$

Note that

$$\mathcal{F}^L(s) = (\mathcal{F}^L)'(s) = \begin{cases} \log s, & 0 < s \leq L, \\ \frac{s}{L} + \log L - 1, & L \leq s. \end{cases}$$

and

$$\mathcal{F}^L''(s) = \begin{cases} \frac{1}{s}, & 0 < s \leq L, \\ \frac{1}{L}, & L \leq s. \end{cases}$$

Hence,

$$\beta^L(s) = \min(s,L) = [\mathcal{F}^L''(s)]^{-1},$$

with the convention $1/\infty := 0$ when $s = 0$, and

$$\mathcal{F}^L''(s) \geq \mathcal{F}''(s) = s^{-1},$$

$s \in \mathbb{R}_{\geq 0}$.

We shall also require the following inequality, relating \mathcal{F}^L to \mathcal{F}:

$$\mathcal{F}^L(s) \geq \mathcal{F}(s), \quad s \in \mathbb{R}_{\geq 0}.$$
by combining the bounds on $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$ and $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$ this pair of, otherwise dangerous, terms will be removed. This fortuitous cancellation reflects the balance of total energy in the system.

Having dealt with $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$, we now embark on the less straightforward task of deriving bounds on norms of $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$ that are uniform in the cut-off parameter L. The appropriate choice of test function in (4.4) for this purpose is $\tilde{\varphi} = \chi_{[0,\varepsilon]}(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+})$ with $t = t_n$, $n \in \{1, \ldots, N\}$; this can be seen by noting that with such a $\tilde{\varphi}$, at least formally, the final term on the left-hand side of (4.13) can be manipulated to become identical to the final term in (4.13), but with the opposite sign. While Lemma 3.3 guarantees that $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(\cdot, t)$ belongs to \tilde{Z}_2 for all $t \in [0, T]$, and is therefore nonnegative a.e. on $\Omega \times D \times [0, T]$, there is unfortunately no reason why $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$ should be strictly positive on $\Omega \times D \times [0, T]$, and therefore the expression $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+})$ may in general be undefined; the same is true of $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+})$, which also appears in the algebraic manipulations. We shall circumvent this problem by working with $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)$ instead of $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+})$, where $\alpha > 0$; since $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$ is known to be nonnegative from Lemma 3.3 $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)$ and $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)$ are well-defined. After deriving the relevant bounds, which will involve $\mathcal{F}^L(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)$ only, we shall pass to the limit $\alpha \to 0+$, noting that, unlike $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+})$ and $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+})$, the function $(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)$ is well-defined for any nonnegative $\hat{\psi}_{\varepsilon,L}^{\Delta t,+}$. Thus, we take any $\alpha \in (0, 1)$, whereby $0 < \alpha < 1 < L$, and we choose $\tilde{\varphi} = \chi_{[0,\varepsilon]}(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)$, with $t = t_n$, $n \in \{1, \ldots, N\}$, as test function in (4.53). As the calculations are quite involved, for the sake of clarity of exposition we shall manipulate the terms in (4.13) one at a time and will then merge the resulting bounds on the individual terms with (4.13) to obtain a single energy inequality for the pair $(\hat{u}_{\varepsilon,L}^{\Delta t,+}, \hat{\psi}_{\varepsilon,L}^{\Delta t,+})$.

We start by considering the first term in (4.13). Clearly $\mathcal{F}^L(\cdot + \alpha)$ is twice continuously differentiable on the interval $(-\alpha, \infty)$ for any $\alpha > 0$. Thus, by Taylor series expansion with remainder of the function

$$
\begin{align*}
s \in [0, \infty) & \mapsto \mathcal{F}^L(s + \alpha) \in [0, \infty), \\
\alpha \in [0, \infty),
\end{align*}
$$

we have, for any $c \in [0, \infty)$, that

$$
(s - c)(\mathcal{F}^L)'(s + \alpha) = \mathcal{F}^L(s + \alpha) - \mathcal{F}^L(c + \alpha) + \frac{1}{2}(s - c)^2(\mathcal{F}^L)''(\theta s + (1 - \theta) c + \alpha),
$$

with $\theta \in (0, 1)$. Hence, on noting that $t \in [0, T] \mapsto \hat{\psi}_{\varepsilon,L}^{\Delta t}(\cdot, t) \in \tilde{X}$ is piecewise linear relative to the partition $\{0 = t_0, t_1, \ldots, t_N = T\}$ of the interval $[0, T]$,

$$
\begin{align*}
T_1 & := \int_0^T \int_{\Omega \times D} M \frac{\partial}{\partial s} \chi_{[0,\varepsilon]}(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha) \, dq \, dx \, ds \\
& = \int_0^t \int_{\Omega \times D} M \frac{\partial}{\partial s}(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha)(\mathcal{F}^L)'(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + \alpha) \, dq \, dx \\
& = \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t) + \alpha) \, dq \, dx - \int_{\Omega \times D} M \mathcal{F}^L(\beta L(\hat{\psi}_0) + \alpha) \, dq \, dx \\
& \quad + \frac{1}{2\Delta t} \int_0^t \int_{\Omega \times D} M (\mathcal{F}^L)''(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} + (1 - \theta) \hat{\psi}_{\varepsilon,L}^{\Delta t,-} + \alpha)(\hat{\psi}_{\varepsilon,L}^{\Delta t,+} - \hat{\psi}_{\varepsilon,L}^{\Delta t,-})^2 \, dq \, dx \, ds.
\end{align*}
$$

Noting from (4.9) that $(\mathcal{F}^L)'(s + \alpha) \geq 1/L$ for all $s \in [0, \infty)$ and all $\alpha > 0$, this then implies, with $t = t_n$, $n \in \{1, \ldots, N\}$, that

$$
\begin{align*}
T_1 & \geq \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t) + \alpha) \, dq \, dx - \int_{\Omega \times D} M \mathcal{F}^L(\beta L(\hat{\psi}_0) + \alpha) \, dq \, dx \\
& \quad + \frac{1}{2\Delta t} \int_0^t \int_{\Omega \times D} M (\hat{\psi}_{\varepsilon,L}^{\Delta t,+} - \hat{\psi}_{\varepsilon,L}^{\Delta t,-})^2 \, dq \, dx \, ds.
\end{align*}
$$

The denominator in the prefactor of the last integral motivates us to link Δt to L so that $\Delta t L = o(1)$ as $\Delta t \to 0+$ (or, equivalently, $\Delta t = o(L^{-1})$ as $L \to \infty$), in order to drive the integral multiplied
by the prefactor to 0 in the limit of $L \to \infty$, once the product of the two has been bounded above by a constant, independent of L.

Next we consider the second term in (4.14), using repeatedly that $\nabla x \cdot \psi_{\varepsilon,L}^{\Delta t} = 0$ and that $\psi_{\varepsilon,L}^{\Delta t}$ has zero trace on $\partial \Omega$:

$$T_2 := \int_0^T \int_{\Omega \times D} M \left[\varepsilon \nabla x \psi_{\varepsilon,L}^{\Delta t} + (\psi_{\varepsilon,L}^{\Delta t})' \right] \cdot \nabla x \left[\int_0^t (F_L)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \, dq \, dx \, ds \right]$$

$$- \int_0^T \int_{\Omega \times D} M \psi_{\varepsilon,L}^{\Delta t} (\psi_{\varepsilon,L}^{\Delta t} + \alpha) \cdot \nabla x (F_L)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \, dq \, dx \, ds,$$

where in the last line we subtracted 0 in the form of

$$\alpha \int_0^T \int_{\Omega \times D} M \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla x (F_L)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \, dq \, dx \, ds = 0.$$

Hence, similarly to (3.53),

$$T_2 := \varepsilon \int_0^T \int_{\Omega \times D} M (F_L)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) |\nabla x (\psi_{\varepsilon,L}^{\Delta t} + \alpha)|^2 \, dq \, dx \, ds$$

$$- \int_0^T \int_{\Omega \times D} M \psi_{\varepsilon,L}^{\Delta t} (\psi_{\varepsilon,L}^{\Delta t} + \alpha) \cdot [(F_L)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \nabla x (\psi_{\varepsilon,L}^{\Delta t} + \alpha)] \, dq \, dx \, ds$$

$$= \varepsilon \int_0^T \int_{\Omega \times D} M (F_L)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) |\nabla x \psi_{\varepsilon,L}^{\Delta t} + \alpha|^2 \, dq \, dx \, ds$$

$$- \int_0^T \int_{\Omega \times D} M \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla x (G^L(\psi_{\varepsilon,L}^{\Delta t} + \alpha)) \, dq \, dx \, ds,$$

where G^L denotes the (locally Lipschitz continuous) function defined on \mathbb{R} by $s - \frac{s^2}{2}$ if $s \leq L$ and $\frac{1}{2L}$ otherwise. On noting that the integral involving G^L vanishes, (4.14) yields the lower bound

$$T_2 \geq \varepsilon \int_0^T \int_{\Omega \times D} M (\psi_{\varepsilon,L}^{\Delta t} + \alpha)^{-1} |\nabla x (\psi_{\varepsilon,L}^{\Delta t} + \alpha)|^2 \, dq \, dx \, ds.$$

Next, we consider the third term in (4.14). Thanks to (2.6) we have, again with $t = t_n$ and $n \in \{1, \ldots, N\}$:

$$T_3 := \frac{1}{2} \lambda \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla q_i \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla q_j \chi_{[0,t]}(F_L)'(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \, dq \, dx \, ds$$

$$= \frac{1}{2} \lambda \int_0^T \int_{\Omega \times D} M (F)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla q_i \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla q_j \psi_{\varepsilon,L}^{\Delta t} \, dq \, dx \, ds$$

$$\geq \frac{\alpha_0}{2} \lambda \int_0^T \int_{\Omega \times D} M (F)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) \sum_{i=1}^K |\nabla q_i \psi_{\varepsilon,L}^{\Delta t}|^2 \, dq \, dx \, ds$$

$$= \frac{\alpha_0}{2} \lambda \int_0^T \int_{\Omega \times D} M (F)''(\psi_{\varepsilon,L}^{\Delta t} + \alpha) |\nabla q \psi_{\varepsilon,L}^{\Delta t}|^2 \, dq \, dx \, ds.$$(4.16)
We are now ready to consider the final term in (4.13), with \(t = t_n, \ n \in \{1, \ldots, N\} \):

\[
T_4 := - \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \left[q_i (\psi_{\epsilon,L}^{\Delta t,n} q_i) \beta^L(\psi_{\epsilon,L}^{\Delta t,n}) \right] \cdot \nabla q_i \chi_{[0,t]} (\mathcal{F}^L)'(\psi_{\epsilon,L}^{\Delta t,n} + \alpha) \ dq \ dx \ ds
\]

\[
= - \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} q_i) \beta^L(\psi_{\epsilon,L}^{\Delta t,n}) \right] \cdot (\mathcal{F}^L)'(\psi_{\epsilon,L}^{\Delta t,n} + \alpha) \ n q_i \psi_{\epsilon,L}^{\Delta t,n} \ dq \ dx \ ds
\]

\[
= - \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} q_i) \cdot \nabla q_i \psi_{\epsilon,L}^{\Delta t,n} \ dq \ dx \ ds \right] + \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} q_i) \left[1 - \frac{\beta^L(\psi_{\epsilon,L}^{\Delta t,n})}{\beta^L(\psi_{\epsilon,L}^{\Delta t,n}) + \alpha} \right] \cdot \nabla q_i \psi_{\epsilon,L}^{\Delta t,n} \ dq \ dx \ ds \right]
\]

\[= - \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} q_i) \cdot \nabla q_i \psi_{\epsilon,L}^{\Delta t,n} \ dq \ dx \ ds \right] + \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} q_i) \left[1 - \frac{\beta^L(\psi_{\epsilon,L}^{\Delta t,n})}{\beta^L(\psi_{\epsilon,L}^{\Delta t,n}) + \alpha} \right] \cdot \nabla q_i \psi_{\epsilon,L}^{\Delta t,n} \dq dx ds \right]
\]

(4.17)

where in the transition to the final equality we applied (4.16) with \(B := \nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} \) (on account of it being independent of the variable \(q \)), together with the fact that \(tr(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n}) = \nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} = 0 \). Summing (4.13)–(4.16) and (4.17) yields, with \(t = t_n \) and \(n \in \{1, \ldots, N\} \), the following inequality:

\[
\int_{\Omega \times D} M \mathcal{F}^L(\psi_{\epsilon,L}^{\Delta t,n}(t) + \alpha) \ dq \ dx + \frac{1}{2\Delta t L} \int_0^t \int_{\Omega \times D} M (\psi_{\epsilon,L}^{\Delta t,n} - \psi_{\epsilon,L}^{\Delta t,n-1})^2 \ dq \ dx \ ds
\]

\[+ \epsilon \int_0^t \int_{\Omega \times D} M \frac{\nabla x \psi_{\epsilon,L}^{\Delta t,n}^2}{\psi_{\epsilon,L}^{\Delta t,n} + \alpha} \ dq \ dx \ ds
\]

\[+ \frac{\alpha}{2} \left(\frac{\epsilon}{\lambda} \right) \int_0^t \int_{\Omega \times D} M (\mathcal{F}^L)'(\psi_{\epsilon,L}^{\Delta t,n} + \alpha) |\nabla q \psi_{\epsilon,L}^{\Delta t,n}|^2 \ dq \ dx \ ds
\]

\[\leq \int_{\Omega \times D} M \mathcal{F}^L(\beta^L(\psi_0) + \alpha) \ dq \ dx
\]

\[+ \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K q_i q_i^T U_i(\frac{1}{2}q_i^2 \psi_{\epsilon,L}^{\Delta t,n}) \cdot \nabla x \psi_{\epsilon,L}^{\Delta t,n} \ dq \ dx \ ds
\]

\[- \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla x \cdot \psi_{\epsilon,L}^{\Delta t,n} q_i) \left[1 - \frac{\beta^L(\psi_{\epsilon,L}^{\Delta t,n})}{\beta^L(\psi_{\epsilon,L}^{\Delta t,n}) + \alpha} \right] \cdot \nabla q_i \psi_{\epsilon,L}^{\Delta t,n} \ dq \ dx \ ds \right].
\]

(4.18)

Comparing (4.18) with (4.13) we see that after multiplying (4.18) by \(2k \) and adding the resulting inequality to (4.13) the final term in (4.13) is cancelled by \(2k \) times the second term on the
right-hand side of (4.18). Hence, for any \(t = t_n \), with \(n \in \{1, \ldots, N\} \), we deduce that

\[
\begin{align*}
&\|u_{\epsilon,L}^{\Delta t,+}(t)\|^2 + \frac{1}{\Delta t} \int_0^t \|u_{\epsilon,L}^{\Delta t,+} - u_{\epsilon,L}^{\Delta t,-}\|^2 \, ds + \nu \int_0^t \|\nabla_x u_{\epsilon,L}^{\Delta t,+}(s)\|^2 \, ds \\
&+ 2k \int_{\Omega \times D} M F^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+}(t) + \alpha) \, dq \, dx + \frac{k}{\Delta t L} \int_0^t \int_{\Omega \times D} M (\widehat{\psi}_{\epsilon,L}^{\Delta t,+} - \widehat{\psi}_{\epsilon,L}^{\Delta t,-})^2 \, dq \, dx \, ds \\
&+ 2k \varepsilon \int_0^t \int_{\Omega \times D} M \frac{\|\nabla_x \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\|^2}{\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha} \, dq \, dx \, ds \\
&+ \frac{\alpha_0k}{\lambda} \int_0^t \int_{\Omega \times D} M (F^L)'(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha) \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\|^2 \, dq \, dx \, ds \\
\leq \|y_0\|^2 + \frac{1}{\nu} \int_0^t \|\widehat{\psi}_{\epsilon,L}^{\Delta t,+}(s)\|_{H^1_0(\Omega)}^2 \, ds + 2k \int_{\Omega \times D} M F^L(\beta^L(\widehat{\psi}_{\epsilon,L} + \alpha)) \, dq \, dx \\
&- 2k \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla_x u_{\epsilon,L}^{\Delta t,+}) q_i\right] \left[1 - \frac{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+})}{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha)}\right] \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\| \, dq \, dx \, ds.
\end{align*}
\]

(4.19)

It remains to bound the last term on the right-hand side of (4.19). Noting that \(\beta^L \) is Lipschitz continuous, with Lipschitz constant equal to 1, and \(\beta^L(s + \alpha) \geq \alpha \) for \(s \geq 0 \), we have that

\[
0 \leq \left(1 - \frac{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+})}{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha)}\right) \frac{1}{(F^L)''(\psi_{\epsilon,L}^{\Delta t,+} + \alpha)} = \frac{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha) - \beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+})}{\sqrt{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha)}} \leq \frac{\sqrt{\alpha}}{\sqrt{\alpha}} = \begin{cases} \sqrt{\alpha} & \text{when } \widehat{\psi}_{\epsilon,L}^{\Delta t,+} \leq L, \\
0 & \text{when } \widehat{\psi}_{\epsilon,L}^{\Delta t,+} \geq L. \end{cases}
\]

With this bound we now focus our attention on the last term in the inequality (4.19). Let \(b := (b_1, \ldots, b_K) \) and \(b := |b| := b_1 + \cdots + b_K \); as \(|q_i| \leq \sqrt{b}, i = 1, \ldots, K \), we have that \(|q| \leq \sqrt{b} \) for all \(q \in D \). For \(t = t_n, n \in \{1, \ldots, N\} \), we then have that

\[
\begin{align*}
&\left| -2k \int_0^t \int_{\Omega \times D} M \sum_{i=1}^K \left[(\nabla_x u_{\epsilon,L}^{\Delta t,+}) q_i\right] \left[1 - \frac{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+})}{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha)}\right] \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\| \, dq \, dx \, ds \right| \\
&\leq 2k \int_0^t \int_{\Omega \times D} M \|\nabla_x u_{\epsilon,L}^{\Delta t,+}\| |q| \left[1 - \frac{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+})}{\beta^L(\widehat{\psi}_{\epsilon,L}^{\Delta t,+} + \alpha)}\right] \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\| \, dq \, dx \, ds \\
&\leq 2k \int_0^t \int_{\Omega \times D} M \|\nabla_x u_{\epsilon,L}^{\Delta t,+}\| |q| \left\{ \begin{array}{ll} \sqrt{\alpha} & \text{when } \widehat{\psi}_{\epsilon,L}^{\Delta t,+} \leq L, \\
0 & \text{when } \widehat{\psi}_{\epsilon,L}^{\Delta t,+} \geq L \end{array} \right. \\
&\times \sqrt{(F^L)''(\psi_{\epsilon,L}^{\Delta t,+} + \alpha)} \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\| \, dq \, dx \, ds \\
&\leq 2k\sqrt{\alpha} \int_0^t \int_{\Omega \times D} M \|\nabla_x u_{\epsilon,L}^{\Delta t,+}\| \sqrt{(F^L)''(\psi_{\epsilon,L}^{\Delta t,+} + \alpha)} \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\| \, dq \, dx \, ds \\
&= 2k\sqrt{\alpha} \int_0^t \int_{\Omega} \|\nabla_x u_{\epsilon,L}^{\Delta t,+}\| \left(\int_D M \sqrt{(F^L)''(\psi_{\epsilon,L}^{\Delta t,+} + \alpha)} \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\| \, dq \right) \, dx \, ds \\
&\leq 2k\sqrt{\alpha} \int_0^t \int_{\Omega} \|\nabla_x u_{\epsilon,L}^{\Delta t,+}\| \left(\int_D M (F^L)''(\psi_{\epsilon,L}^{\Delta t,+} + \alpha) \|\nabla_q \widehat{\psi}_{\epsilon,L}^{\Delta t,+}\|^2 \, dq \right)^{\frac{1}{2}} \, dx \, ds
\end{align*}
\]
\[\begin{align*}
&\leq 2k\sqrt{\alpha}b \left(\int_0^t \int_\Omega \|\nabla_x u_{\varepsilon,L}^+\|^2 \, dx \, ds \right)^{\frac{1}{2}} \\
&\quad \times \left(\int_0^t \int_{\Omega \times D} M(F_\varepsilon^L)' \left(\hat{\psi}_{\varepsilon,L}^+ + \alpha \right) \|\nabla_q \hat{\psi}_{\varepsilon,L}^+\|^2 \, dq \, dx \, ds \right)^{\frac{1}{2}} \\
&\leq \frac{a_0 k}{2\lambda} \left(\int_0^t \int_{\Omega \times D} M(F_\varepsilon^L)' \left(\hat{\psi}_{\varepsilon,L}^+ + \alpha \right) \|\nabla_q \hat{\psi}_{\varepsilon,L}^+\|^2 \, dq \, dx \, ds \right) \\
&\quad + \alpha \frac{2\lambda b k}{a_0} \left(\int_0^t \int_{\Omega \times D} \|\nabla_x u_{\varepsilon,L}^+\|^2 \, dx \, ds \right).
\end{align*} \]

(4.20)

Substitution of (4.20) into (4.19) and use of (4.11) to bound \((F_\varepsilon^L)'(\hat{\psi}_{\varepsilon,L}^+ + \alpha)\) from below by \(F'(\hat{\psi}_{\varepsilon,L}^+ + \alpha) = (\hat{\psi}_{\varepsilon,L}^+ + \alpha)^{-1}\) and (4.12) to bound \(F^L(\hat{\psi}_{\varepsilon,L}^+ + \alpha)\) by \(F(\hat{\psi}_{\varepsilon,L}^+ + \alpha)\) from below finally yields, for all \(t = t_n, n \in \{1, \ldots, N\}\), that

\[\begin{align*}
&\|u_{\varepsilon,L}^+(t)\|^2 + \frac{1}{\Delta t} \int_0^t \|u_{\varepsilon,L}^+ - u_{\varepsilon,L}^-\|^2 \, ds + \nu \int_0^t \|\nabla_x u_{\varepsilon,L}^+(s)\|^2 \, ds \\
&\quad + 2k \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}_{\varepsilon,L}^+(t) + \alpha) \, dq \, dx + \frac{k}{\Delta t L} \int_0^t \int_{\Omega \times D} M \left(\hat{\psi}_{\varepsilon,L}^+ - \hat{\psi}_{\varepsilon,L}^- \right)^2 \, dq \, dx \, ds \\
&\quad + 2k \varepsilon \int_0^t \int_{\Omega \times D} M \|\nabla_x \hat{\psi}_{\varepsilon,L}^+\|^2 \, dq \, dx \, ds + \frac{a_0 k}{2\lambda} \int_0^t \int_{\Omega \times D} M \|\nabla_q \hat{\psi}_{\varepsilon,L}^+\|^2 \, dq \, dx \, ds \\
&\quad \leq \|u_0\|^2 + \frac{1}{\nu} \int_0^t \|u_{\varepsilon,L}^+(s)\|^2 \, ds + 2k \int_{\Omega \times D} M \mathcal{F}^L(\beta^L(\hat{\psi})^0 + \alpha) \, dq \, dx \\
&\quad + \alpha \frac{2\lambda b k}{a_0} \int_0^t \|\nabla_x u_{\varepsilon,L}^+\|^2 \, ds.
\end{align*} \]

(4.21)

The only restriction we have imposed on \(\alpha\) so far is that it belongs to the open interval \((0, 1)\); let us now restrict the range of \(\alpha\) further by demanding that, in fact,

\[0 < \alpha < \min \left(1, \frac{a_0 \nu}{2\lambda b k}\right). \]

(4.22)

Then, the last term on the right-hand side of (4.21) can be absorbed into the third term on the left-hand side, giving, for \(t = t_n\) and \(n \in \{1, \ldots, N\}\),

\[\begin{align*}
&\|u_{\varepsilon,L}^+(t)\|^2 + \frac{1}{\Delta t} \int_0^t \|u_{\varepsilon,L}^+ - u_{\varepsilon,L}^-\|^2 \, ds + \left(\nu - \alpha \frac{2\lambda b k}{a_0} \right) \int_0^t \|\nabla_x u_{\varepsilon,L}^+(s)\|^2 \, ds \\
&\quad + 2k \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}_{\varepsilon,L}^+(t) + \alpha) \, dq \, dx + \frac{k}{\Delta t L} \int_0^t \int_{\Omega \times D} M \left(\hat{\psi}_{\varepsilon,L}^+ - \hat{\psi}_{\varepsilon,L}^- \right)^2 \, dq \, dx \, ds \\
&\quad + 2k \varepsilon \int_0^t \int_{\Omega \times D} M \|\nabla_x \hat{\psi}_{\varepsilon,L}^+\|^2 \, dq \, dx \, ds + \frac{a_0 k}{2\lambda} \int_0^t \int_{\Omega \times D} M \|\nabla_q \hat{\psi}_{\varepsilon,L}^+\|^2 \, dq \, dx \, ds \\
&\quad \leq \|u_0\|^2 + \frac{1}{\nu} \int_0^t \|u_{\varepsilon,L}^+(s)\|^2 \, ds + 2k \int_{\Omega \times D} M \mathcal{F}^L(\beta^L(\hat{\psi})^0 + \alpha) \, dq \, dx \\
&\quad + \alpha \frac{2\lambda b k}{a_0} \int_0^t \|\nabla_x u_{\varepsilon,L}^+\|^2 \, ds.
\end{align*} \]

(4.23)

We now focus our attention on the final integral on the right-hand side of (4.23):

\[T_5(\alpha) := \int_{\Omega \times D} M \mathcal{F}^L(\beta^L(\hat{\psi})^0 + \alpha) \, dq \, dx = \int_{\mathcal{A}_{L,\alpha} \cup \mathcal{B}_{L,\alpha}} M \mathcal{F}^L(\beta^L(\hat{\psi})^0 + \alpha) \, dq \, dx, \]

where

\[\begin{align*}
\mathcal{A}_{L,\alpha} &:= \{(x, q) \in \Omega \times D : 0 \leq \beta^L(\hat{\psi})^0(x, q) \leq L - \alpha\}, \\
\mathcal{B}_{L,\alpha} &:= \{(x, q) \in \Omega \times D : L - \alpha < \beta^L(\hat{\psi})^0(x, q) \leq L\}.
\end{align*} \]
We begin by noting that
\[
\int_{\mathcal{B}_{L,\alpha}} M \mathcal{F}^L(\beta^L(\overline{\psi}) + \alpha) \, dq \, dx = \int_{\mathcal{B}_{L,\alpha}} M \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) \, dq \, dx.
\]
For the integral over \(\mathcal{B}_{L,\alpha} \) we have
\[
\int_{\mathcal{B}_{L,\alpha}} M \mathcal{F}^L(\beta^L(\overline{\psi}) + \alpha) \, dq \, dx
\]
\[
= \int_{\mathcal{B}_{L,\alpha}} M \left[\frac{(\beta^L(\overline{\psi}) + \alpha)^2 - L^2}{2L} + (\beta^L(\overline{\psi}) + \alpha)(\log L - 1) + 1 \right] \, dq \, dx
\]
\[
\leq \int_{\mathcal{B}_{L,\alpha}} M \left[\frac{(L + \alpha)^2 - L^2}{2L} + (\beta^L(\overline{\psi}) + \alpha)(\log(\beta^L(\overline{\psi}) + \alpha) - 1) + 1 \right] \, dq \, dx
\]
\[
= \alpha \left(1 + \frac{\alpha}{2L} \right) \int_{\mathcal{B}_{L,\alpha}} M \, dq \, dx + \int_{\mathcal{B}_{L,\alpha}} M \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) \, dq \, dx
\]
\[
\leq \frac{3}{2} \alpha |\Omega| + \int_{\mathcal{B}_{L,\alpha}} M \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) \, dq \, dx.
\]
Thus we have shown that
\[
(4.24) \quad T_5(\alpha) \leq \frac{3}{2} \alpha |\Omega| + \int_{\Omega \times D} M \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) \, dq \, dx.
\]
Now, there are two possibilities:

Case 1. If \(\beta^L(\overline{\psi}) + \alpha \leq 1 \), then \(0 \leq \beta^L(\overline{\psi}) \leq 1 - \alpha \). Since \(L > 1 \) it follows that \(0 \leq \beta^L(s) \leq 1 \) if, and only if, \(\beta^L(s) = s \). Thus we deduce that in this case \(\beta^L(\overline{\psi}) = \overline{\psi} \), and therefore \(0 \leq \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) = \mathcal{F}(\overline{\psi} + \alpha) \).

Case 2. Alternatively, if \(1 < \beta^L(\overline{\psi}) + \alpha \), then, on noting that \(\beta^L(s) \leq s \) for all \(s \in [0, \infty) \), it follows that \(1 < \beta^L(\overline{\psi}) + \alpha \leq \overline{\psi} + \alpha \). However the function \(\mathcal{F} \) is strictly monotonically increasing on the interval \([1, \infty)\), which then implies that \(0 = \mathcal{F}(1) < \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) \leq \mathcal{F}(\overline{\psi} + \alpha) \).

The conclusion we draw is that, either way, \(0 \leq \mathcal{F}(\beta^L(\overline{\psi}) + \alpha) \leq \mathcal{F}(\overline{\psi} + \alpha) \). Hence,
\[
(4.25) \quad T_5(\alpha) \leq \frac{3}{2} \alpha |\Omega| + \int_{\Omega \times D} M \mathcal{F}(\overline{\psi} + \alpha) \, dq \, dx.
\]
Substituting (4.25) into (4.23) thus yields, for \(t = t_n \) and \(n \in \{1, \ldots, N\} \),
\[
\begin{align*}
&\|u_{\varepsilon, L}^{\Delta t_n^+}(t)\|^2 + \frac{1}{\Delta t} \int_0^t \|u_{\varepsilon, L}^{\Delta t_n^+} - u_{\varepsilon, L}^{\Delta t_n^-}\|^2 \, ds + \left(\nu - \frac{2\lambda b k}{a_0} \right) \int_0^t \|\nabla_x u_{\varepsilon, L}^{\Delta t_n^+}(s)\|^2 \, ds \\
&\quad + 2k \int_{\Omega \times D} M \mathcal{F}(\overline{\psi}_{\varepsilon, L}^{\Delta t_n^+}(t) + \alpha) \, dq \, dx + k \frac{1}{\Delta t L} \int_0^t \int_{\Omega \times D} M \left(\overline{\psi}_{\varepsilon, L}^{\Delta t_n^+} - \overline{\psi}_{\varepsilon, L}^{\Delta t_n^-} \right)^2 \, dq \, dx \, ds \\
&\quad + 2k \varepsilon \int_0^t \int_{\Omega \times D} M \frac{\|\nabla_x \overline{\psi}_{\varepsilon, L}^{\Delta t_n^+} + \alpha\|}{\overline{\psi}_{\varepsilon, L}^{\Delta t_n^+}} \, dq \, dx \, ds \\
&\quad + \frac{a_0 k}{2\lambda} \int_0^t \int_{\Omega \times D} M \frac{\|\nabla_x \overline{\psi}_{\varepsilon, L}^{\Delta t_n^+} + \alpha\|}{\overline{\psi}_{\varepsilon, L}^{\Delta t_n^+}} \, dq \, dx \, ds \\
&\leq \|y_0\|^2 + \frac{1}{\nu} \int_0^t \|f^{\Delta t_n^+}(s)\|_{L^2(H^1_0(\Omega))}^2 \, ds \\
&\quad + 3\alpha |\Omega| + 2k \int_{\Omega \times D} M \mathcal{F}(\overline{\psi} + \alpha) \, dq \, dx.
\end{align*}
\]
(4.26)

The key observation at this point is that the right-hand side of (4.26) is completely independent of the cut-off parameter \(L \).
We shall tidy up the bound (4.26) by passing to the limit $\alpha \to 0_+$. The first α-dependent term on the right-hand side of (4.26) trivially converges to 0 as $\alpha \to 0_+$; concerning the second α-dependent term, Lebesgue’s dominated convergence theorem implies that

$$\lim_{\alpha \to 0_+} \int_{\Omega \times D} M F(\hat{\psi}_0 + \alpha) \, dq \, dx = \int_{\Omega \times D} M F(\hat{\psi}_0) \, dq \, dx.$$

Similarly, we can easily pass to the limit on the left-hand side of (4.26). By applying Fatou’s lemma to the fourth, sixth and seventh term on the left-hand side of (4.26) we get, for $t = t_n$, $n \in \{1, \ldots, N\}$, that

$$\liminf_{\alpha \to 0_+} \int_{\Omega \times D} M F(\hat{\psi}_{\varepsilon, L}^{\Delta t, +}(t)) \, dq \, dx \geq \int_{\Omega \times D} M F(\hat{\psi}_{\varepsilon, L}^{\Delta t, +}(t)) \, dq \, dx,$$

and

$$\liminf_{\alpha \to 0_+} \int_0^t \int_{\Omega \times D} M \left| \frac{\nabla x \hat{\psi}_{\varepsilon, L}^{\Delta t, +}}{\hat{\psi}_{\varepsilon, L}} \right|^2 \, dq \, dx \, ds \geq \int_0^t \int_{\Omega \times D} M \left| \frac{\nabla x \hat{\psi}_{\varepsilon, L}^{\Delta t, +}}{\hat{\psi}_{\varepsilon, L}} \right|^2 \, dq \, dx \, ds \geq 4 \int_0^t \int_{\Omega \times D} M \left| \nabla x \hat{\psi}_{\varepsilon, L}^{\Delta t, +} \right|^2 \, dq \, dx \, ds,$$

Thus, after passage to the limit $\alpha \to 0_+$, on recalling (4.20), we have, for all $t = t_n$, $n \in \{1, \ldots, N\}$, that

$$\|u_{\varepsilon, L}^{\Delta t, +}(t)\|^2 + \frac{1}{\Delta t} \int_0^t \|u_{\varepsilon, L}^{\Delta t, +} - u_{\varepsilon, L}^{\Delta t, -}\|^2 \, ds + \nu \int_0^t \|\nabla x u_{\varepsilon, L}^{\Delta t, +}(s)\|^2 \, ds$$

$$+ 2k \int_{\Omega \times D} M F(\hat{\psi}_{\varepsilon, L}^{\Delta t, +}(t)) \, dq \, dx + \frac{k}{\Delta t L} \int_0^t \int_{\Omega \times D} M (\hat{\psi}_{\varepsilon, L}^{\Delta t, +} - \hat{\psi}_{\varepsilon, L}^{\Delta t, -})^2 \, dq \, dx \, ds$$

$$+ 8k \varepsilon \int_0^t \int_{\Omega \times D} M \left| \nabla x \hat{\psi}_{\varepsilon, L}^{\Delta t, +} \right|^2 \, dq \, dx \, ds$$

$$+ \frac{2a_0 k}{\lambda} \int_0^t \int_{\Omega \times D} M \left| \nabla q \hat{\psi}_{\varepsilon, L}^{\Delta t, +} \right|^2 \, dq \, dx \, ds$$

(4.27) \leq \|y_0\|^2 + \frac{1}{\nu} \int_0^T \|f^{\Delta t, +}(s)\|_{H_0^1(\Omega)^\prime}^2 \, ds + 2k \int_{\Omega \times D} M F(\hat{\psi}_0) \, dq \, dx \leq \|y_0\|^2 + \frac{1}{\nu} \int_0^T \|f(s)\|_{H_0^1(\Omega)^\prime}^2 \, ds + 2k \int_{\Omega \times D} M F(\hat{\psi}_0) \, dq \, dx =: \|B(y_0, f, \hat{\psi}_0)\|^2,$$

(4.28)

where, in the last line, we used (3.20) to bound the third term in (4.27), and that $t \in [0, T]$ together with the definition (4.22) of $\hat{\psi}_{\varepsilon, L}^{\Delta t, +}$ to bound the second term.

We select $\varphi = \chi_{[0,t]} \rho_{\varepsilon, L}^{\Delta t, +}$ as test function in (4.15) with t chosen as t_n and $n \in \{1, \ldots, N\}$. Then, similarly to (4.13), we deduce, with $t = t_n$, that

$$\|\rho_{\varepsilon, L}^{\Delta t, +}(t)\|^2 + \frac{1}{\Delta t} \int_0^t \|\rho_{\varepsilon, L}^{\Delta t, +}(s) - \rho_{\varepsilon, L}^{\Delta t, -}(s)\|^2 \, ds + 2 \varepsilon \int_0^t \|\nabla x \rho_{\varepsilon, L}^{\Delta t, +}(s)\|^2 \, ds$$

(4.29) \leq \left\| \int_D \beta^L(\hat{\psi}_0) \, dq \right\|^2 \leq |\Omega|,$$

where we have noted (3.13), (3.30) and that $\beta^L(\hat{\psi}_0) \in \bar{Z}_2$.
4.2. L-independent bounds on the time-derivatives. Next, we derive L-independent bounds on the time-derivatives of the functions $u_{\varepsilon,L}^{\Delta t}$, $\psi_{\varepsilon,L}^{\Delta t}$ and $\rho_{\varepsilon,L}^{\Delta t}$. We begin by bounding the time-derivative of $\psi_{\varepsilon,L}^{\Delta t}$ using (4.28); we shall then bound the time-derivatives of $\rho_{\varepsilon,L}^{\Delta t}$ and $u_{\varepsilon,L}^{\Delta t}$ in a similar manner.

4.2.1. L-independent bound on the time-derivative of $\psi_{\varepsilon,L}^{\Delta t}$. It follows from (4.14) that

\[
\left| \int_0^T \int_{\Omega \times D} M \frac{\partial \psi_{\varepsilon,L}^{\Delta t}}{\partial t} \right| \lesssim \| \nabla \psi_{\varepsilon,L}^{\Delta t} \|_{L^\infty(D)} \| \nabla \varphi \|_{L^\infty(D)} \lesssim \varepsilon \int_0^T \int_{\Omega \times D} M \nabla \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla \varphi \, dq \, dx \, dt
\]

\[
+ \left| \int_0^T \int_{\Omega \times D} M u_{\varepsilon,L}^{\Delta t} \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla \varphi \, dq \, dx \, dt \right| \lesssim \varepsilon \int_0^T \int_{\Omega \times D} M \nabla \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla \varphi \, dq \, dx \, dt
\]

\[
+ \left| \frac{1}{2\lambda} \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla q_i \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla q_j \varphi \, dq \, dx \, dt \right| \lesssim \varepsilon \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \left(\sigma(x, q_i, t) \right) \beta^L \psi_{\varepsilon,L}^{\Delta t} \cdot \nabla q_i \varphi \, dq \, dx \, dt
\]

(4.30)\quad =: S_1 + S_2 + S_3 + S_4 \quad \forall \varphi \in L^1(0,T;\mathbf{X}).

We proceed to bound each of the terms S_1, \ldots, S_4, bearing in mind (cf. the last sentence in the statement of Lemma 3.3) that

\[
(4.31a) \quad \psi_{\varepsilon,L}^{\Delta t} \geq 0 \quad \text{a.e. on } \Omega \times D \times [0,T], \quad \int_0^T M(q) \, dq = 1,
\]

\[
(4.31b) \quad 0 \leq \int_0^T M(q) \psi_{\varepsilon,L}^{\Delta t} (x,q,t) \, dq \leq 1 \quad \text{for a.e. } (x,t) \in \Omega \times D.
\]

We shall use throughout the rest of this section test functions φ such that

\[
(4.32) \quad \varphi \in L^2(0,T;H^1(\Omega;L^\infty(D)) \cap L^2(\Omega;W^{1,\infty}(D))).
\]

We begin by considering S_1; noting (4.31a) and (4.28), we have that

\[
S_1 = 2\varepsilon \left| \int_0^T \int_{\Omega \times D} M \sqrt{\psi_{\varepsilon,L}^{\Delta t}} \nabla_x \sqrt{\psi_{\varepsilon,L}^{\Delta t}} \cdot \nabla \varphi \, dq \, dx \, dt \right| \lesssim 2\varepsilon \int_0^T \int_{\Omega \times D} M \left(\int_D \psi_{\varepsilon,L}^{\Delta t} \, dq \right)^{1/2} \left(\int_D \left(\nabla \psi_{\varepsilon,L}^{\Delta t} \right)^2 \, dq \right)^{1/2} \| \nabla \varphi \|_{L^\infty(D)} \, dx \, dt
\]

\[
\lesssim \sqrt{\frac{\varepsilon}{2k}} \left(8k \varepsilon \int_0^T \int_{\Omega \times D} M \left(\nabla_x \psi_{\varepsilon,L}^{\Delta t} \right)^2 \, dq \, dx \, dt \right)^{1/2} \left(\int_0^T \| \nabla \varphi \|_{L^\infty(D)}^2 \, dx \, dt \right)^{1/2}.
\]

Hence, by (4.28) with $t = t_N = T$,

\[
(4.33) \quad S_1 \leq \sqrt{\frac{\varepsilon}{2k}} \mathbb{B}(\hat{u}_0, \hat{f}, \hat{p}_0) \left(\int_0^T \int_{\Omega} \| \nabla \varphi \|_{L^\infty(D)}^2 \, dx \, dt \right)^{1/2}.
\]
Next, we consider the term S_2:

$$S_2 \leq \int_0^T \int_\Omega |u_{\varepsilon,L}^{t-\Delta t}| \left(\int_D M \tilde{\psi}_{\varepsilon,L}^{\Delta t} \, dq \right) \|\nabla_x \tilde{\varphi}\|_{L^\infty(D)} \, dx \, dt$$

$$\leq \left(\int_0^T \int_\Omega |u_{\varepsilon,L}^{t-\Delta t}|^2 \, dx \, dt \right)^{\frac{1}{2}} \left(\int_0^T \int_\Omega \|\nabla_x \tilde{\varphi}\|_{L^\infty(D)}^2 \, dx \, dt \right)^{\frac{1}{2}}$$

$$\leq C_p(\Omega) \left(\int_0^T \int_\Omega |u_{\varepsilon,L}^{t-\Delta t}|^2 \, dx \, dt \right)^{\frac{1}{2}} \left(\int_0^T \int_\Omega \|\nabla_x \tilde{\varphi}\|_{L^\infty(D)}^2 \, dx \, dt \right)^{\frac{1}{2}},$$

where $C_p(\Omega)$ denotes the (positive) constant appearing in the Poincaré inequality $\|u_{\varepsilon,L}^{\Delta t\nu}\| \leq C_p(\Omega) \|\nabla_x u_{\varepsilon,L}^{\Delta t\nu}\|$ on Ω, with $u_{\varepsilon,L}^{\Delta t\nu} \in V \subset H^1(\Omega)$. On recalling (4.28), the definitions of $u_{\varepsilon,L}^{\Delta t\nu}$ and $u_{\varepsilon,L}^{\Delta t\mu}$ from (4.1b), and noting (3.18), we have that

$$\int_0^T \int_\Omega \|\nabla_x u_{\varepsilon,L}^{t-\Delta t}\|^2 \, dx \, dt = \int_0^T \|\nabla_x u_{\varepsilon,L}^{\Delta t\nu}\|^2 \, dt$$

$$= \Delta t \|\nabla_x u_0\|^2 + \int_0^{T+\Delta t} \|\nabla_x u_{\varepsilon,L}^{\Delta t\mu}\|^2 \, dt$$

$$\leq \|u_0\|^2 + \int_0^T \|\nabla_x u_{\varepsilon,L}^{\Delta t\mu}\|^2 \, dt$$

$$\leq (1 + \frac{1}{\nu}) \|B(u_0, f, \hat{\psi}_0)\|^2.$$

Therefore,

$$S_2 \leq C_p(\Omega) \left(1 + \frac{1}{\nu} \right)^{\frac{1}{2}} \|B(u_0, f, \hat{\psi}_0)\| \left(\int_0^T \int_\Omega \|\nabla_x \tilde{\varphi}\|_{L^\infty(D)}^2 \, dx \, dt \right)^{\frac{1}{2}}.$$

Alternatively, directly from the second line of (4.34), we have that

$$S_2 \leq \sqrt{T} \left(\esssup_{t \in [0,T]} \int_\Omega |u_{\varepsilon,L}^{t-\Delta t}|^2 \, dx \right)^{\frac{1}{2}} \left(\int_0^T \int_\Omega \|\nabla_x \tilde{\varphi}\|_{L^\infty(D)}^2 \, dx \, dt \right)^{\frac{1}{2}}.$$

Similarly as above,

$$\esssup_{t \in [0,T]} \int_\Omega |u_{\varepsilon,L}^{t-\Delta t}|^2 \, dx = \esssup_{t \in [0,T]} \|u_{\varepsilon,L}^{\Delta t\nu}(t)\|^2$$

$$= \max \left(\|u_0\|^2, \esssup_{t \in [0,T]} \|u_{\varepsilon,L}^{\Delta t\mu}(t)\|^2 \right)$$

$$\leq \max \left(\|u_0\|^2, \esssup_{t \in [0,T]} \|u_{\varepsilon,L}^{\Delta t\mu}(t)\|^2 \right)$$

$$\leq \|B(u_0, f, \hat{\psi}_0)\|^2.$$

Combining (4.36), (4.37) and (4.38), we have that

$$S_2 \leq \min \left(C_p(\Omega) \left(1 + \frac{1}{\nu} \right)^{\frac{1}{2}}, \sqrt{T} \right) \|B(u_0, f, \hat{\psi}_0)\| \left(\int_0^T \int_\Omega \|\nabla_x \tilde{\varphi}\|_{L^\infty(D)}^2 \, dx \, dt \right)^{\frac{1}{2}}.$$
We are ready to consider S_3; we have that

$$S_3 = \frac{1}{2\lambda} \left| \int_0^T \int_{\Omega \times D} M 2 \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \sum_{i,j=1}^K A_{ij} \nabla q_i \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \cdot \nabla q_j \hat{\varphi} \, dq \, dx \, dt \right|$$

$$\leq \frac{1}{\lambda} \left(\sum_{i,j=1}^K A_{ij}^2 \right)^{\frac{1}{2}} \int_0^T \int_{\Omega \times D} M \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \left(\sum_{i,j=1}^K \left| \nabla q_i \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \right| \right) \left(\sum_{i=1}^K |\nabla q_i \hat{\varphi}|^2 \right)^{\frac{1}{2}} \, dq \, dx \, dt$$

$$= \frac{1}{\lambda} |A| \int_0^T \int_{\Omega \times D} M \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \left| \nabla q \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \right| |\nabla q \hat{\varphi}| \, dq \, dx \, dt$$

$$\leq \frac{1}{\lambda} |A| \int_0^T \int_{\Omega \times D} \left(\int_{\Omega} M \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \, dq \right)^{\frac{1}{2}} \left(\int_{\Omega} M \left| \nabla q \sqrt{\psi_{\epsilon, L}^{\Delta t +}} \right|^2 \, dq \right)^{\frac{1}{2}} \left| \nabla q \hat{\varphi} \right|_{L^\infty(D)} \, dq \, dx \, dt$$

Thus, by (4.28),

$$S_3 \leq \frac{|A|}{\sqrt{2a_0 k \lambda}} \left(\int_0^T \int_{\Omega} |\nabla q \hat{\varphi}|^2_{L^\infty(D)} \, dx \, dt \right)^{\frac{1}{2}} .$$

Finally, for term S_4, recalling the notation $b := |\phi|_1$ (cf. the paragraph before (4.20)) together with the inequality $\beta^k(s) \leq s$ for $s \in \mathbb{R}^2$, we have that

$$S_4 \leq \int_0^T \int_{\Omega \times D} M |g(u_{\epsilon, L}^{\Delta t +})| \beta^L(u_{\epsilon, L}^{\Delta t +}) \sum_{i=1}^K |q_i| |\nabla q_i \hat{\varphi}| \, dq \, dx \, dt$$

$$\leq \sqrt{b} \int_0^T \int_{\Omega \times D} M |g(u_{\epsilon, L}^{\Delta t +})| \beta^L(u_{\epsilon, L}^{\Delta t +}) |\nabla q \hat{\varphi}| \, dq \, dx \, dt$$

$$\leq \sqrt{b} \int_0^T \int_{\Omega} |g(u_{\epsilon, L}^{\Delta t +})| \left(\int_{\Omega} M \beta^L(u_{\epsilon, L}^{\Delta t +}) \, dq \right) \left| \nabla q \hat{\varphi} \right|_{L^\infty(D)} \, dx \, dt$$

$$\leq \sqrt{b} \int_0^T \int_{\Omega} |g(u_{\epsilon, L}^{\Delta t +})| \left(\int_{\Omega} M \psi_{\epsilon, L}^{\Delta t +} \, dq \right) \left| \nabla q \hat{\varphi} \right|_{L^\infty(D)} \, dx \, dt$$

Hence, by (4.28),

$$S_4 \leq \sqrt{\frac{b}{\nu}} B(g_0, f, \hat{\varphi}_0) \left(\int_0^T \int_{\Omega} |\nabla q \hat{\varphi}|^2_{L^\infty(D)} \, dx \, dt \right)^{\frac{1}{2}} .$$

Upon substituting the bounds on the terms S_1 to S_4 into (4.30), with $\hat{\varphi} \in L^2(0, T; H^1(\Omega; L^\infty(D))) \cap L^2(\Omega; W^{1,\infty}(D))$, and noting that the latter space is contained in $L^1(0, T; \tilde{X})$ we deduce from
that
\[\left| \int_0^T \int_{\Omega \times D} M \frac{\partial \tilde{\psi}_{\varepsilon,L}^+}{\partial t} \varphi \, dq \, dx \, dt \right| \]
\[\leq C_s B(\bar{u}_0, f, \tilde{\psi}_0) \left(\int_0^T \int_{\Omega} \left[\|\nabla_x \tilde{\varphi}\|_{L^\infty(D)}^2 + \|\nabla_x \varphi\|_{L^\infty(D)}^2 \right] \, dx \, dt \right)^{\frac{1}{2}}, \]
(4.42)
for any \(\tilde{\varphi} \in L^2(0; T; H^1(\Omega; L^\infty(D))) \cap L^2(\Omega; W^{1,\infty}(D)), \) where \(C_s \) denotes a positive constant (that can be computed by tracking the constants in (4.33 - 4.34), which depends solely on \(\varepsilon, \nu, \quad C_P(\Omega), T, |A|, a_0, k, K, \lambda, K \) and \(b. \)

We now consider the time-derivative of \(\rho_{\varepsilon,L}^{\Delta t}. \) It follows from (4.30), (4.29), (4.31) and (4.38) that
\[\left| \int_0^T \int_{\Omega} \frac{\partial \rho_{\varepsilon,L}^{\Delta t}}{\partial t} \varphi \, dx \, dt \right| \leq \int_0^T \int_{\Omega} \left[\varepsilon \nabla_x \rho_{\varepsilon,L}^{\Delta t} - u_{\varepsilon,L}^{\Delta t} - \rho_{\varepsilon,L}^{\Delta t} \right] \cdot \nabla_x \varphi \, dx \, dt \]
\[\leq \left[\varepsilon \left(\int_0^T \|\nabla_x \rho_{\varepsilon,L}^{\Delta t}\|^2 \right)^{\frac{1}{2}} + \text{ess.sup}_{t \in [0,T]} \|\rho_{\varepsilon,L}^{\Delta t}\|_{L^\infty(\Omega)} \left(\int_0^T \|u_{\varepsilon,L}^{\Delta t}\|^2 \, dt \right)^{\frac{1}{2}} \right] \]
\[\times \left(\int_0^T \|\nabla_x \varphi\|^2 \, dt \right)^{\frac{1}{2}} \]
\[\leq \left[\varepsilon \left(\frac{|\Omega|}{2} \right)^{\frac{1}{2}} + B(\bar{u}_0, f, \tilde{\psi}_0) \right] \left(\int_0^T \|\nabla_x \varphi\|^2 \, dt \right)^{\frac{1}{2}} \quad \forall \varphi \in L^2(0; T; H^1(\Omega)). \]
(4.43)

4.2.2. \(L \)-independent bound on the time-derivative of \(u_{\varepsilon,L}^{\Delta t}. \) In this section we shall derive an \(L \)-independent bound on the time-derivative of \(u_{\varepsilon,L}^{\Delta t}. \) Our starting point is (4.30), from which we deduce that
\[\left| \int_0^T \int_{\Omega} \frac{\partial u_{\varepsilon,L}^{\Delta t}}{\partial t} \cdot w \, dx \, dt \right| \]
\[\leq \int_0^T \int_{\Omega} \left[(u_{\varepsilon,L}^{\Delta t} \cdot \nabla_x) u_{\varepsilon,L}^{\Delta t} \right] \cdot w \, dx \, dt \quad + \quad \nu \int_0^T \int_{\Omega} (u_{\varepsilon,L}^{\Delta t} : \nabla_x w) \, dx \, dt \]
\[+ \quad \int_0^T \int_{\Omega} \left(f^{\Delta t,+, \infty} \right)_H(\Omega, \partial \Omega) \, dt \quad + \quad k \sum_{i=1}^K \int_0^T \int_{\Omega} C_i(M \tilde{\psi}_{\varepsilon,L}^{\Delta t}) : \nabla_x w \, dx \, dt \]
\[\quad =: U_1 + U_2 + U_3 + U_4 \quad \forall w \in L^1(0, T; \tilde{V}_\sigma). \]
(4.44)

On recalling from the discussion following (4.33) the definition of \(V_\sigma, \) we shall assume henceforth that
\[w \in L^2(0, T; V_\sigma), \quad \sigma \geq \frac{1}{\nu} d, \quad \sigma > 1. \]
Clearly, \(L^2(0; T; \tilde{V}_\sigma) \subset L^1(0; T; \tilde{V}). \) By Lemma 4.1 in Ch. 3 of Temam [49] and using (4.38) and (4.28), we have, with \(\sigma \geq \frac{1}{\nu} d, \quad \sigma > 1, \) and \(c(\Omega, d) \) a constant that only depends on \(\Omega \) and \(d, \) that
\[U_1 \leq c(\Omega, d) \text{ess.sup}_{t \in [0,T]} \|u_{\varepsilon,L}^{\Delta t}\|_{L^\infty(\Omega)} \left(\int_0^T \|\nabla_x u_{\varepsilon,L}^{\Delta t}\|^2 \, dt \right)^{\frac{1}{2}} \leq \left(\int_0^T \|\nabla u_{\varepsilon,L}^{\Delta t}\|^2 \, dt \right)^{\frac{1}{2}} \]
\[\leq c(\Omega, d) \left(\int_0^T \|\nabla\varphi\|^2 \, dt \right)^{\frac{1}{2}}. \]
(4.45)
For term U_2 we have,

\[
U_2 \leq \sqrt{\nu} \left(\nu \int_0^T \| \nabla_x u_{\epsilon,L}^{\Delta t,+} \|^2 dt \right)^{\frac{1}{2}} \left(\int_0^T \| \nabla_x w \|^2 dt \right)^{\frac{1}{2}}
\]

(4.46)

\[
\leq \sqrt{\nu} B(u_0, f, \hat{\psi}_0) \left(\int_0^T \| \nabla_x w \|^2 dt \right)^{\frac{1}{2}}.
\]

Concerning the term U_3, on noting the definition of the norm $\| \cdot \|_{(H_0^1(\Omega))'}$ and that thanks to (4.28) we have $\| f^{\Delta t,+} \|_{L^2(0,T;(H_0^1(\Omega)))'} \leq \| f \|_{L^2(0,T;L^2(\Omega))}$, it follows that

(4.47)

\[
U_3 \leq \sqrt{\nu} B(u_0, f, \hat{\psi}_0) \left(\int_0^T \| \nabla_x w \|^2 dt \right)^{\frac{1}{2}}.
\]

Before we embark on the estimation of the term U_4 we observe that

\[
U_4 = k \left| \int_0^T \int_\Omega \int_D M \nabla \hat{\psi}_\epsilon^{\Delta t,+} \cdot \sum_{i=1}^K q_i q_i^T \nabla_x w \cdot U_i \left(\frac{1}{2} |q_i|^2 \right) \ n \ n \ x \ d\xi \ dt \right|
\]

(4.48)

\[
= k \left| \int_0^T \int_\Omega \int_D M \sum_{i=1}^K (\nabla_x w)(q_i \cdot \nabla_q \hat{\psi}_\epsilon^{\Delta t,+} \ d\xi \ dt \right|
\]

where we used the integration-by-parts formula (3.10) to transform the expression in the square brackets in the first line into the expression in the square brackets in the second line. Thus we have that

\[
U_4 \leq k \int_0^T \int_\Omega \int_D M |\nabla_x w| \left(\sum_{i=1}^K |q_i| |\nabla_q \hat{\psi}_\epsilon^{\Delta t,+}| \right) \ dq \ d\xi \ dt
\]

(4.49)

\[
\leq k \int_0^T \int_\Omega \int_D M |\nabla_x w| |q| |\nabla_q \hat{\psi}_\epsilon^{\Delta t,+}| \ dq \ d\xi \ dt
\]

\[
\leq k \sqrt{\nu} \int_0^T \int_\Omega |\nabla_x w| \left(\int_D M |\nabla_q \hat{\psi}_\epsilon^{\Delta t,+}| \ dq \right) \ d\xi \ dt
\]

\[
= k \sqrt{\nu} \int_0^T \int_\Omega |\nabla_x w| \left(\int_D M \sqrt{\psi^{\Delta t,+}_\epsilon} \sqrt{\psi^{\Delta t,+}_\epsilon} \ dq \right) \ d\xi \ dt
\]

\[
\leq 2k \sqrt{\nu} \int_0^T \int_\Omega |\nabla_x w| \left(\int_D M \sqrt{\psi^{\Delta t,+}_\epsilon} \sqrt{\psi^{\Delta t,+}_\epsilon} \dq \ d\xi \ dt \right)^{\frac{1}{2}}
\]

where in the transition to the last line we used the Cauchy–Schwarz inequality and (4.31b). Hence, by (4.28),

(4.50)

\[
U_4 \leq 2k \sqrt{\nu} \left(\int_0^\infty \int_\Omega \int_D M |\nabla_q \sqrt{\psi^{\Delta t,+}_\epsilon}|^2 \ dq \ d\xi \ dt \right)^{\frac{1}{2}} \left(\int_0^T \int_\Omega |\nabla_x w|^2 \ d\xi \ dt \right)^{\frac{1}{2}}
\]

\[
= \sqrt{\frac{2\lambda \beta k}{a_0}} \left(\frac{2a_0 k}{\lambda} \right) \left(\int_0^T \int_D M |\nabla_q \sqrt{\psi^{\Delta t,+}_\epsilon}|^2 \ dq \ d\xi \ dt \right)^{\frac{1}{2}} \left(\int_0^T \| \nabla_x w \|^2 dt \right)^{\frac{1}{2}}
\]

\[
\leq \sqrt{\frac{2\lambda \beta k}{a_0}} B(u_0, f, \hat{\psi}_0) \left(\int_0^T \| \nabla_x w \|^2 dt \right)^{\frac{1}{2}}.
\]
Dubinskiĭ’s compactness theorem in seminormed sets.

theoretical tool that will be used to set up a weak compactness argument using these bounds:

computed by tracking the constants in (4.45)–(4.50), which depends solely on \(\Omega \),

\[
(A) \hookrightarrow \mathcal{L}
\]

We denote by \(\tilde{\phi} \) number, denoted \([\tilde{\phi}]_{A} \),

embedded in \(\mathbf{L}^{\infty} \).

Thus, a bounded subset of a seminormed set is also a bounded subset of the ambient

space will be referred to as the ambient space for \(\mathcal{M} \).

Suppose further that each element \(\varphi \) of a set \(\mathcal{M} \) with property (5.1) is assigned a certain real number, denoted \([\varphi]_{\mathcal{M}} \), such that:

\[
(\forall \varphi \in \mathcal{M}) \quad (\forall c \in \mathbb{R}_{\geq 0}) \quad c \varphi \in \mathcal{M}.
\]

\(\mathcal{B} \) of a seminormed set \(\mathcal{M} \) is said to be bounded if there exists a positive constant \(K_{0} \) such that \([\varphi]_{\mathcal{M}} \leq K_{0} \) for all \(\varphi \in \mathcal{B} \).

A seminormed set \(\mathcal{M} \) contained in a normed linear space \(\mathcal{A} \) with norm \(\|\cdot\|_{\mathcal{A}} \) is said to be embedded in \(\mathcal{A} \), and we write \(\mathcal{M} \hookrightarrow \mathcal{A} \), if the inclusion map \(i: \mathcal{M} \hookrightarrow \mathcal{A} \) (which is, by definition, injective and positively 1-homogeneous, i.e. \(i(c \varphi) = c \varphi \) for all \(c \in \mathbb{R}_{\geq 0} \) and all \(\varphi \in \mathcal{M} \)) is a bounded operator, i.e.

\[
(\exists K_{0} \in \mathbb{R}_{>0}) \quad (\forall \varphi \in \mathcal{M}) \quad \|i(\varphi)\|_{\mathcal{A}} \leq K_{0} [\varphi]_{\mathcal{M}}.
\]

The symbol \(i(\) \) is usually omitted from the notation \(i(\varphi) \), and \(\varphi \in \mathcal{M} \) is simply identified with \(\varphi \in \mathcal{A} \). Thus, a bounded subset of a seminormed set is also a bounded subset of the ambient normed linear space the seminormed set is embedded in.

The embedding of a seminormed set \(\mathcal{M} \) into a normed linear space \(\mathcal{A} \) is said to be compact if from any infinite, bounded set of elements of \(\mathcal{M} \) one can extract a subsequence that converges in \(\mathcal{A} \); we shall write \(\mathcal{M} \hookrightarrow \mathcal{A} \) to denote that \(\mathcal{M} \) is compactly embedded in \(\mathcal{A} \).

Suppose that \(T \) is a positive real number, \(\varphi \) maps the nonempty closed interval \([0, T]\) into a seminormed set \(\mathcal{M} \), and \(p \in \mathbb{R}, \ p \geq 1 \). We denote by \(L^{p}(0, T; \mathcal{M}) \) the set of all functions \(\varphi : t \in [0, T] \mapsto \varphi(t) \in \mathcal{M} \) such that

\[
\left(\int_{0}^{T} |\varphi(t)|^{p}_{\mathcal{M}} dt \right)^{1/p} < \infty;
\]

\(L^{p}(0, T; \mathcal{M}) \) is then a seminormed set in the ambient linear space \(L^{p}(0, T; \mathcal{A}) \), with

\[
[\varphi]_{L^{p}(0, T; \mathcal{M})} := \left(\int_{0}^{T} |\varphi(t)|^{p}_{\mathcal{M}} dt \right)^{1/p}.
\]

We denote by \(L^{\infty}(0, T; \mathcal{M}) \) and \([\varphi]_{L^{\infty}(0, T; \mathcal{M})} \) the usual modifications of these definitions when \(p = \infty \).

For two normed linear spaces, \(\mathcal{A}_{0} \) and \(\mathcal{A}_{1} \), we shall continue to denote by \(\mathcal{A}_{0} \hookrightarrow \mathcal{A}_{1} \) that \(\mathcal{A}_{0} \) is (continuously) embedded in \(\mathcal{A}_{1} \). The following theorem is due to Dubinskii [21]; see also [13].
Theorem 5.1 (Dubinskii [21]). Suppose that A_0 and A_1 are Banach spaces, $A_0 \hookrightarrow A_1$, and M is a seminormed subset of A_0 such that $M \hookrightarrow A_0$. Consider the set

$$\mathcal{Y} := \left\{ \varphi : [0, T] \to M : [\varphi]_{L^p(0,T;M)} + \left\| \frac{d\varphi}{dt} \right\|_{L^p(0,T;A_1)} < \infty \right\},$$

where $1 \leq p \leq \infty$, $1 < p_1 \leq \infty$, $\| \cdot \|_{A_1}$ is the norm of A_1, and $d\varphi/dt$ is understood in the sense of A_1-valued distributions on the open interval $(0, T)$. Then, \mathcal{Y}, with

$$[\varphi]_\mathcal{Y} := [\varphi]_{L^p(0,T;M)} + \left\| \frac{d\varphi}{dt} \right\|_{L^p(0,T;A_1)},$$

is a seminormed set in $L^p(0, T; A_0) \cap W^{1,p_1}(0, T; A_1)$, and $\mathcal{Y} \hookrightarrow L^p(0, T; A_0)$.

We note that in Dubinskii [21] the author writes \mathbb{R} instead of our $\mathbb{R}_{\geq 0}$ in (5.1) and property (ii). The proof of Thm. 1 in Dubinskii’s work, stated as Theorem 5.1 above, reveals however that the result remains valid with our weaker notion of seminormed set, as (5.1) and property (ii) are only ever used in the proof with $c \geq 0$; we refer to our paper [13] for details. In the next section, we shall apply Dubinskii’s theorem by selecting

$$A_0 = L^1_M(\Omega \times D) \quad \text{with norm} \quad \| \hat{\varphi} \|_{A_0} := \int_{\Omega \times D} M(q) |\hat{\varphi}(x, q)| \, dx \, dq$$

and

$$M = \left\{ \hat{\varphi} \in A_0 : \hat{\varphi} \geq 0 \quad \text{with} \quad \int_{\Omega \times D} M(q) \left(|\nabla_x \sqrt{\hat{\varphi}(x, q)}|^2 + |\nabla_q \sqrt{\hat{\varphi}(x, q)}|^2 \right) \, dx \, dq < \infty \right\},$$

and, for $\hat{\varphi} \in M$, we define

$$[\hat{\varphi}]_M := \| \hat{\varphi} \|_{A_0} + \int_{\Omega \times D} M(q) \left(|\nabla_x \sqrt{\hat{\varphi}(x, q)}|^2 + |\nabla_q \sqrt{\hat{\varphi}(x, q)}|^2 \right) \, dx \, dq.$$

Note that M is a seminormed subset of the ambient space A_0. Finally, we put

$$A_1 := M^{-1}(H^s(\Omega \times D))' := \{ \hat{\varphi} : M \hat{\varphi} \in (H^s(\Omega \times D))' \},$$

equipped with the norm $\| \hat{\varphi} \|_{A_1} := M_0 \| \hat{\varphi} \|_{H^s(\Omega \times D)}$, and take $s > 1 + \frac{1}{2}(K + 1)d$. Our choice of A_1 is motivated by the fact that, thanks to the Sobolev embedding theorem on $\Omega \times D \subset \mathbb{R}^{d \times Kd} \cong \mathbb{R}^{(K+1)d}$, the final factor on the right-hand side of (4.42) can be further bounded from above by a constant multiple of $\| \hat{\varphi} \|_{L^s(0,T;H^s(\Omega \times D))}$, with $s > 1 + \frac{1}{2}(K + 1)d$. For such s it then follows, again from the Sobolev embedding theorem that, for any $\hat{\varphi} \in A_0$,

$$\| \hat{\varphi} \|_{A_1} = \sup_{\chi \in H^s(\Omega \times D)} \frac{|(M \hat{\varphi}, \chi)|}{\| \chi \|_{H^s(\Omega \times D)}} \leq \sup_{\chi \in H^s(\Omega \times D)} \frac{\| M \hat{\varphi} \|_{\mathcal{Y}}} \| \chi \|_{H^s(\Omega \times D)} \leq K_0 \| \hat{\varphi} \|_{A_0},$$

where K_0 is any positive constant that is greater than or equal to the constant K_s, the norm of the continuous linear operator corresponding to the Sobolev embedding $(H^s(\Omega \times D) \hookrightarrow H^{s+1}(\Omega \times D)) \hookrightarrow L^{\infty}(\Omega \times D)$, $s > 1 + \frac{1}{2}(K + 1)d$. Hence, $A_0 \hookrightarrow A_1$.

Trivially, $M \hookrightarrow A_0$. We shall show that in fact $M \hookrightarrow A_0$. Suppose, to this end, that B is an infinite, bounded subset of M. We can assume without loss of generality that B is the infinite sequence $\{ \hat{\varphi}_n \}_{n \geq 1} \subset M$ with $[\hat{\varphi}_n]_M \leq K_0$ for all $n \geq 1$, where K_0 is a fixed positive constant. We define $\hat{\rho}_n := \sqrt{\hat{\varphi}_n}$ and note that $\hat{\rho}_n \geq 0$ and $\hat{\rho}_n \in H^1_M(\Omega \times D)$ for all $n \geq 1$, with

$$\| \hat{\rho}_n \|^2_{H^1_M(\Omega \times D)} = [\hat{\rho}_n]_M \leq K_0 \quad \forall n \geq 1.$$

Since $H^1_M(\Omega \times D)$ is compactly embedded in $L^2_M(\Omega \times D)$ (see Appendix D for a proof of this), we deduce that the sequence $\{ \hat{\rho}_n \}_{n \geq 1}$ has a subsequence $\{ \hat{\rho}_{n_k} \}_{k \geq 1}$ that is convergent in $L^2_M(\Omega \times D)$; denote the limit of this subsequence by $\hat{\rho}$; $\hat{\rho} \in L^2_M(\Omega \times D)$. Then, since a subsequence of the
sequence \(\{\hat{\rho}_{nk}\}_{k \geq 1}\) also converges to \(\hat{\rho}\) a.e. on \(\Omega \times D\) and each \(\hat{\rho}_{nk}\) is nonnegative on \(\Omega \times D\), the same is true of \(\hat{\rho}\). Now, define \(\hat{\varphi} := \hat{\rho}^2\), and note that \(\hat{\varphi} \in L^1_M(\Omega \times D)\). Clearly,

\[
\|\hat{\varphi}_{nk} - \hat{\varphi}\|_{L^1_M(\Omega \times D)} = \int_{\Omega \times D} M(\hat{\rho}_{nk} + \hat{\rho}) |\hat{\rho}_{nk} - \hat{\rho}| \, dx \, dq \\
\leq \|\hat{\rho}_{nk} + \hat{\rho}\|_{L^2_M(\Omega \times D)} \|\hat{\rho}_{nk} - \hat{\rho}\|_{L^2_M(\Omega \times D)} \\
\leq \left(\|\hat{\rho}_{nk}\|_{L^2_M(\Omega \times D)}^2 + \|\hat{\rho}\|_{L^2_M(\Omega \times D)}^2\right) \|\hat{\rho}_{nk} - \hat{\rho}\|_{L^2_M(\Omega \times D)}.
\]

As \(\{\hat{\rho}_{nk}\}_{k \geq 1}\) converges to \(\hat{\rho}\) in \(L^2_M(\Omega \times D)\), and is therefore also a bounded sequence in \(L^2_M(\Omega \times D)\), it follows from the last inequality that \(\{\hat{\varphi}_{nk}\}_{k \geq 1}\) converges to \(\hat{\varphi}\) in \(L^1_M(\Omega \times D) = A_0\). This implies that \(M\) is compactly embedded in \(A_0\); hence the triple \(M \hookrightarrow A_0 \hookrightarrow A_1\) satisfies the conditions of Theorem 5.1.

Remark 5.1. In fact, there is a deep connection between \(M\) and the set of functions with finite relative entropy on \(D\); this can be seen by noting the logarithmic Sobolev inequality:

\[
\int_D M(q) |\hat{\rho}(q)|^2 \log \left(\frac{\hat{\rho}(q)}{\|\hat{\rho}\|_{L^2(D)}^2}\right) dq \leq \frac{\kappa}{\kappa} \int_D M(q) \left|\nabla \hat{\rho}(q)\right|^2 dq \quad \forall \hat{\rho} \in H^1_M(D),
\]

with a constant \(\kappa > 0\); the inequality (5.2) is known to hold whenever \(M\) satisfies the Bakry–Émery condition:

\[
\text{Hess}(-\log M(q)) \geq \kappa I_D \text{ on } D, \quad \text{asserting the logarithmic concavity of the Maxwellian on } D, \quad \text{with the last inequality understood in the sense of symmetric } K_d \times K_d \text{ matrices.}
\]

The validity of the Bakry–Émery condition for the FENE Maxwellian, for example, is an easy consequence of the fact that

\[
\text{Hess}(-\log M(q)) = \text{Hess} \left(\sum_{i=1}^K U_i \left(\frac{1}{2} |q_i|^2\right)\right) \quad \text{for all } q := (q_1^T, \ldots, q_K^T)^T \in D_1 \times \cdots \times D_K = D,
\]

and the following lower bounds (cf. [Knezevic & Suli 10], Sec. 2.1) on the \(d \times d\) Hessian matrices that are the diagonal blocks of the \(K_d \times K_d\) Hessian matrix \(\text{Hess}(-\log M(q))\):

\[
\xi_i^T \text{Hess} \left(\sum_{i=1}^K U_i \left(\frac{1}{2} |q_i|^2\right)\right) \xi_i \geq \left(1 - |q_i|^2/b\right)^{-1} |\xi_i|^2 \geq |\xi_i|^2,
\]

for all \(q_i \in D_i\) and all \(\xi_i \in \mathbb{R}^d\), \(i = 1, \ldots, K\). Hence,

\[
\xi^T \text{Hess}(-\log M(q)) \xi \geq |\xi|^2
\]

for all \(q \in D\) and all \(\xi \in \mathbb{R}^{K_d}\), yielding

\[
\text{Hess}(-\log M(q)) \geq I_D \quad \forall q \in D;
\]

i.e. \(\kappa = 1\).

More generally, we see from (5.2) that if \(q_i \in D_i \mapsto U_i \left(\frac{1}{2} |q_i|^2\right)\) is strongly convex on \(D_i\), for each \(i = 1, \ldots, K\), then \(M\) satisfies the Bakry–Émery condition on \(D\).

On writing \(\bar{\varphi}(q) := |\hat{\rho}(q)|^2 \geq 0\) in (5.2), we then have that

\[
\int_D M(q) \bar{\varphi}(q) \log \frac{\bar{\varphi}(q)}{\|\bar{\varphi}\|_{L^1(D)}} dq \leq \frac{\kappa}{\kappa} \int_D M(q) \left|\nabla \sqrt{\bar{\varphi}(q)}\right|^2 dq,
\]

for all \(\bar{\varphi}\) such that \(\bar{\varphi} \geq 0\) on \(D\) and \(\sqrt{\bar{\varphi}} \in H^1_M(D)\). Taking \(\bar{\varphi} = \varphi/M\) where \(\varphi\) is a probability density function on \(D\), we have that \(\|\bar{\varphi}\|_{L^1(D)} = \|\varphi\|_{L^1(D)} = 1\); thus, on denoting by \(\mu\) the Gibbs
measure defined by \(d\mu = M(q) \, dq \), the left-hand side of (5.4) becomes

\[
S(\varphi|M) := \int_D \frac{\varphi}{M} \left(\log \frac{\varphi}{M} \right) \, d\mu,
\]

referred to as the relative entropy of \(\varphi \) with respect to \(M \). The expression appearing on the right-hand side of (5.4) is \(1/(2\kappa) \) times the Fisher information, \(I(\hat{\varphi}) \), of \(\hat{\varphi} \):

\[
I(\hat{\varphi}) := \mathbb{E} \left[\left| \nabla_q \log \hat{\varphi}(q) \right|^2 \right] = \int_D \left| \nabla_q \log \hat{\varphi}(q) \right|^2 \hat{\varphi}(q) \, d\mu = 4 \int_D \left| \nabla_q \hat{\varphi}(q) \right|^2 \, d\mu,
\]

where, \(\mathbb{E} \) is the expectation with respect to the Gibbs measure \(\mu \) defined above. \(\diamond \)

Lemma 5.1. Suppose that a sequence \(\{\hat{\varphi}_n\}_{n=1}^\infty \) converges in \(L^1(0,T;L^1_M(\Omega \times D)) \) to a function \(\hat{\varphi} \in L^1(0,T;L^1_M(\Omega \times D)) \), and is bounded in \(L^\infty(0,T;L^1_M(\Omega \times D)) \), i.e. there exists \(K_0 > 0 \) such that \(\|\varphi_n\|_{L^\infty(0,T;L^1_M(\Omega \times D))} \leq K_0 \) for all \(n \geq 1 \). Then, \(\hat{\varphi} \in L^p(0,T;L^1_M(\Omega \times D)) \) for all \(p \in [1, \infty) \), and the sequence \(\{\hat{\varphi}_n\}_{n \geq 1} \) converges to \(\hat{\varphi} \) in \(L^p(0,T;L^1_M(\Omega \times D)) \) for all \(p \in [1, \infty) \).

Proof. Since \(\{\hat{\varphi}_n\}_{n \geq 1} \) converges in \(L^1(0,T;L^1_M(\Omega \times D)) \), it follows that it is a Cauchy sequence in \(L^1(0,T;L^1_M(\Omega \times D)) \); thus, for any \(p \in [1, \infty) \), there exists \(n_0 = n_0(\varepsilon, p) \in \mathbb{N} \) such that for all \(m,n \geq n_0(\varepsilon, p) \) we have

\[
\int_0^T \|\hat{\varphi}_n - \hat{\varphi}_m\|_{L^1_M(\Omega \times D)} \, dt < \frac{\varepsilon^p}{(2K_0)^{p-1}}.
\]

Hence, for all \(m,n \geq n_0(\varepsilon, p) \),

\[
\left(\int_0^T \|\hat{\varphi}_n - \hat{\varphi}_m\|^p_{L^1_M(\Omega \times D)} \, dt \right)^{1/p} \leq \text{ess.sup}_{t \in [0,T]} \|\hat{\varphi}_n - \hat{\varphi}_m\|^{1-(1/p)}_{L^1_M(\Omega \times D)} \left(\int_0^T \|\hat{\varphi}_n - \hat{\varphi}_m\|^{(1/p)}_{L^1_M(\Omega \times D)} \right)^{1/p} < \varepsilon.
\]

This in turn implies that \(\{\hat{\varphi}_n\}_{n \geq 1} \) is a Cauchy sequence in the function space \(L^p(0,T;L^1_M(\Omega \times D)) \), for each \(p \in [1, \infty) \).

Since \(L^p(0,T;L^1_M(\Omega \times D)) \) is complete, \(\{\hat{\varphi}_n\}_{n \geq 1} \) converges in \(L^p(0,T;L^1_M(\Omega \times D)) \) to a limit, which we denote by \(\hat{\varphi}(p) \), say. As, by assumption, \(\{\hat{\varphi}_n\}_{n \geq 1} \) converges in \(L^1(0,T;L^1_M(\Omega \times D)) \), and

\[
L^p(0,T;L^1_M(\Omega \times D)) \subset L^1(0,T;L^1_M(\Omega \times D))
\]

for each \(p \in [1, \infty) \), it follows by uniqueness of the limit that \(\hat{\varphi}(p) = \hat{\varphi} \) for all \(p \in [1, \infty) \). Hence, also, \(\hat{\varphi} \in L^p(0,T;L^1_M(\Omega \times D)) \) for all \(p \in [1, \infty) \). That completes the proof. \(\square \)

6. Passage to the limit \(L \to \infty \): existence of weak solutions to the FENE chain model with centre-of-mass diffusion

The bounds (4.28), (4.42) and (4.51) imply the existence of a constant \(C_* > 0 \), depending only on \(\mathcal{B}(\xi_0, \xi^*, \psi_0) \) and the constants \(C_\ast \) and \(C_{\ast\ast} \), which in turn depend only on \(\varepsilon, \nu, C_\rho(\Omega), T, |A|, \)
\(a_0, k, K, \lambda, \Omega, d, \) and \(b,\) but not on \(L\) or \(\Delta t,\) such that:

\[
\text{ess.sup}_{t \in [0, T]} \| u_{\epsilon,L}^{\Delta t,+} (t) \|^2 + \frac{1}{\Delta t} \int_0^T \| u_{\epsilon,L}^{\Delta t,+} - u_{\epsilon,L}^{\Delta t,-} \|^2 \, ds + \int_0^T \| \nabla_x u_{\epsilon,L}^{\Delta t,+} (s) \|^2 \, ds
\]

\[+ \text{ess.sup}_{t \in [0, T]} M \mathcal{F}(\hat{\psi}_{\epsilon,L}^{\Delta t,+} (t)) \, dq \, dx
\]

\[+ \frac{1}{\Delta t L} \int_0^T \int_{\Omega \times D} M (\hat{\psi}_{\epsilon,L}^{\Delta t,+} - \hat{\psi}_{\epsilon,L}^{\Delta t,-})^2 \, dq \, dx \, ds
\]

\[+ \int_0^T \int_{\Omega \times D} M \| \nabla_x \sqrt{\hat{\psi}_{\epsilon,L}^{\Delta t,+}} \|^2 \, dq \, dx \, ds
\]

\[+ \int_0^T \int_{\Omega \times D} \| \nabla_x \sqrt{\hat{\psi}_{\epsilon,L}^{\Delta t,-}} \|^2 \, dq \, dx \, ds
\]

\[+ \int_0^T \left\| \frac{\partial u_{\epsilon,L}^{\Delta t,+}}{\partial t} \right\|_{V_2}^2 \, dt + \int_0^T \left\| \frac{\partial \hat{\psi}_{\epsilon,L}^{\Delta t,+}}{\partial t} \right\|_{(H' (\Omega \times D))'}^2 \, dt \leq C_*,
\] (6.1)

where \(\| \cdot \|_{V_2}\) denotes the norm of the dual space \(V_2^*\) of \(V_2\) with \(\sigma \geq \frac{1}{2}d, \sigma > 1\) (cf. the paragraph following (4.44)); and \(\| \cdot \|_{(H' (\Omega \times D))'}\) is the norm of the dual space \((H' (\Omega \times D))'\) of \(H' (\Omega \times D),\)

with \(s \geq 1 + \frac{1}{2} (K + 1)d.\) The bounds in (6.1) on the time-derivatives follow from (4.51), and from (4.42) using the Sobolev embedding theorem.

By virtue of (4.35), (4.35), the definitions (4.1a), and with an argument completely analogous to (4.35) on noting (3.5) in the case of the fourth term in (6.1), and using (4.10), (3.20) and recalling (4.42) using the Sobolev embedding theorem.

On noting (4.31ab), (4.1ab), (3.20), and (3.5), we also have that

\[\hat{\psi}_{\epsilon,L}^{\Delta t,(\pm)} \geq 0 \quad \text{a.e. on } \Omega \times D \times [0, T]\]

and

\[\int_D M (\hat{\psi}_{\epsilon,L}^{\Delta t,(\pm)} (x, q, t) \, dq \leq 1 \quad \text{for a.e. } (x, t) \in \Omega \times [0, T].\]

Henceforth, we shall assume that

\[\Delta t = o (L^{-1}) \quad \text{as } L \to \infty.\]

Requiring, for example, that \(0 < \Delta t \leq C_0 (L \log L), L > 1,\) with an arbitrary (but fixed) constant \(C_0\) will suffice to ensure that (6.5) holds. The sequences \(\{u_{\epsilon,L}^{\Delta t,(\pm)}\}_{L>1}\) and \(\{\hat{\psi}_{\epsilon,L}^{\Delta t,(\pm)}\}_{L>1}\) as well as all sequences of spatial and temporal derivatives of the entries of these two sequences will thus be, indirectly, indexed by \(L\) alone, although for reasons of consistency with our previous notation we shall not introduce new, compressed, notation with \(\Delta t\) omitted from the superscripts. Instead, whenever \(L \to \infty\) in the rest of this section, it will be understood that \(\Delta t\) tends to 0 according to (6.5). We are now almost ready to pass to the limit with \(L \to \infty.\) Before doing so, however,
we first need to state the definition of the function \(\hat{\psi}^0 \) that obeys (3.20), for a given \(\hat{\psi}_0 \) satisfying (3.35). We emphasize that up to this point we simply accepted without proof the existence of a function \(\hat{\psi}^0 \) obeying (3.20) for a given \(\hat{\psi}_0 \). The reason we have been evading to state the precise choice of \(\hat{\psi}^0 \) was for the sake of clarity of exposition. The definition of \(\hat{\psi}^0 \) and the verification of the properties listed under (3.20) rely on mathematical tools that were not in place at the start of Section 3 where the notation \(\psi^0 \) was introduced, but were developed later, in the last two sections. The details of ‘lifting’ \(\psi_0 \) into a ‘smoother’ function \(\hat{\psi}^0 \) are technical; they are discussed in the next subsection.

A second remark is in order. One might wonder whether one could simply choose \(\hat{\psi}^0 \) as \(\hat{\psi}_0 \); indeed, with such a choice all of the properties listed in (3.35) would be automatically satisfied, bar one: there is no guarantee that \([\hat{\psi}_0]^{1/2} \in H^1_M(\Omega \times D) \). Although the property \([\hat{\psi}^0]^{1/2} \in H^1_M(\Omega \times D) \) has not yet been used, it will play a crucial role in our passage to the limit with \(L \to \infty \) in Section 6.2. In fact, in the light of the logarithmic Sobolev inequality (5.1), on comparing the requirements on \(\hat{\psi}_0 \) in (3.35) with those on \(\hat{\psi}^0 \) in (3.20), one can clearly see that the role of the condition \([\hat{\psi}^0]^{1/2} \in H^1_M(\Omega \times D) \) in (3.21) is to ‘lift’ the initial datum \(\hat{\psi}_0 \) with finite relative entropy into a ‘smoother’ initial datum \(\hat{\psi}^0 \) that also has finite Fisher information, in analogy with the process of ‘lifting’ the initial velocity \(u_0 \) from \(H \) into \(u^0 \) in \(Y \). That the choice of \(\hat{\psi}_0 \) as \(\hat{\psi}^0 \) is not a good one can be seen by noting the mismatch between the third term in (6.2) arising from the Navier–Stokes equation on the one hand, and the sixth and seventh term in (6.2) that stem from the Fokker–Planck equation. The absence of bounds at this stage on \(\hat{\psi}^{\Delta t,-} \) and \(\hat{\psi}^{\Delta t} \) in those terms is entirely due to the fact that, to derive (6.2), we did not use that \([\hat{\psi}^0]^{1/2} \in H^1_M(\Omega \times D) \). This shortcoming of (6.2) will be rectified as soon as we have defined \(\hat{\psi}^0 \) and shown that it possesses all of the properties listed in (3.20).

6.1. The definition of \(\hat{\psi}^0 \)

Given \(\hat{\psi}_0 \) satisfying the conditions in (3.35) and \(\Lambda > 1 \), we consider the following discrete-in-time problem in weak form: find \(\hat{\zeta}^{\Lambda,1} \in H^1_M(\Omega \times D) \) such that

\[
(6.6) \quad \int_{\Omega \times D} M \frac{\hat{\zeta}^{\Lambda,1} - \hat{\zeta}^{\Lambda,0}}{\Delta t} \hat{\phi} \, dq \, dx + \int_{\Omega \times D} M \left[\nabla_x \hat{\zeta}^{\Lambda,1} \cdot \nabla_x \hat{\phi} + \nabla_q \hat{\zeta}^{\Lambda,1} \cdot \nabla_q \hat{\phi} \right] \, dq \, dx = 0
\]

for all \(\hat{\phi} \in H^1_M(\Omega \times D) \), with \(\hat{\zeta}^{\Lambda,0} := \beta^\Lambda(\hat{\psi}_0) \in L^2_M(\Omega \times D) \). Here \(\beta^\Lambda \) is defined by (1.12), with \(L \) replaced by \(\Lambda \). The function \(F^\Lambda \), which we shall encounter below, is defined by (4.7), with \(L \) replaced by \(\Lambda \).

The existence of a unique solution \(\hat{\zeta}^{\Lambda,1} \in H^1_M(\Omega \times D) \) to (6.6), for each \(\Delta t > 0 \) and \(\Lambda > 1 \), follows immediately by applying the Lax–Milgram theorem. The parameter \(\Lambda \) plays an analogous role to the cut-off parameter \(L \); however since we shall let \(\Lambda \to \infty \) in this subsection while, for the moment at least, the parameter \(L \) is kept fixed, we had to use a symbol other than \(L \) in (6.6) in order to avoid confusion; we chose the letter \(\Lambda \) for this purpose in order to emphasize the connection with \(L \).

Lemma 6.1. Let \(\hat{\zeta}^{\Lambda,1} \) be defined by (6.6), and consider \(\gamma^{\Lambda,n} \) defined by

\[
(6.7) \quad \gamma^{\Lambda,n}(x) := \int_D M(q) \hat{\zeta}^{\Lambda,n}(x, q) \, dq, \quad n = 0, 1.
\]

Then, \(\hat{\zeta}^{\Lambda,1} \) is nonnegative a.e. on \(\Omega \times D \), and \(0 \leq \gamma^{\Lambda,1} \leq 1 \) a.e. on \(\Omega \).

Proof. The proof of nonnegativity of \(\hat{\zeta}^{\Lambda,1} \) is straightforward (cf. the discussion following (3.66)). Indeed, we have that \(\hat{\zeta}^{\Lambda,0} = 0 \) a.e. on \(\Omega \times D \), thanks to (3.35) and the definition of \(\beta^\Lambda \); we then take \(\phi = \hat{\zeta}^{\Lambda,1} \) as a test function in (6.6), noting that this is a legitimate choice since \(\hat{\zeta}^{\Lambda,1} \in H^1_M(\Omega \times D) \) and therefore \(\hat{\zeta}^{\Lambda,1} \) is a test function in (6.6) also (cf. Lemma 3.3 in Barrett, Schwab & Süli (8)). On decomposing \(\hat{\zeta}^{\Lambda,1} = \hat{\zeta}^{\Lambda,1}_+ + \hat{\zeta}^{\Lambda,1}_- \), and using that \(\hat{\zeta}^{\Lambda,1}_+ + \hat{\zeta}^{\Lambda,1}_- = 0 \),
\[\nabla_x [\hat{\zeta}^{A,1}]_+ \cdot \nabla_x [\hat{\zeta}^{A,1}]_+ = 0 \text{ and } \nabla_x [\hat{\zeta}^{A,1}]_- \cdot \nabla_x [\hat{\zeta}^{A,1}]_- = 0 \text{ a.e. on } \Omega \times D, \]

we deduce that
\[
\frac{1}{\Delta t} \| M^{A,0}_x [\hat{\zeta}^{A,1}]- \|^2 + \| M^{A,0}_x \nabla_x [\hat{\zeta}^{A,1}]- \|^2 + \| M^{A,0}_x [\hat{\xi}^{A,1}]- \|^2
\]
\[= \frac{1}{\Delta t} \int_{\Omega \times D} M \hat{\zeta}^{A,0} [\hat{\xi}^{A,1}]-dq \, dx = \frac{1}{\Delta t} \int_{\Omega \times D} M \hat{\zeta}^{A,0} [\hat{\xi}^{A,1}]+dq \, dx \leq 0, \]

where \(\| \cdot \| \) denotes the \(L^2(\Omega \times D) \) norm. This then implies that \(\| M^{A,0}_x [\hat{\zeta}^{A,1}]- \|^2 \leq 0 \). Hence, \([\hat{\zeta}^{A,1}]- = 0 \) a.e. on \(\Omega \times D \). In other words, \(\hat{\zeta}^{A,1} \geq 0 \) a.e. on \(\Omega \times D \), as claimed.

In order to prove the upper bound in the statement of the lemma, we proceed as follows. With \(\gamma^{A,n} \) as defined in (6.7), we deduce from the definition of \(\hat{\gamma}^{A,1} \) and Fubini's theorem that \(\gamma^{A,1} \in H^1(\Omega) \). Furthermore, on selecting \(\hat{\varphi} = \varphi \in H^1(\Omega) \otimes \mathbb{1}(D) \) in (6.8), recall (3.6), we have that
\[
\int_{\Omega} \frac{\gamma^{A,1} - \gamma^{A,0}}{\Delta t} \varphi \, dx \sim \int_{\Omega} \nabla_x \gamma^{A,1} \cdot \nabla_x \varphi \, dx = 0 \quad \forall \varphi \in H^1(\Omega). \tag{6.8}
\]

As \(\hat{\gamma}^{A,0} = \beta^{A} (\hat{\psi}^0) \), and \(0 \leq \beta^{A} (s) \leq s \) for all \(s \in \mathbb{R}_{\geq 0} \), we also have by (6.5) that
\[
0 \leq \gamma^{A,0} = \int_{D} M \beta^{A} (\hat{\psi}^0) \, dq \leq \int_{D} M \hat{\psi}^0 \, dq = 1 \quad \text{on } \Omega. \tag{6.9}
\]

Consider \(z^{A,n} := 1 - \gamma^{A,n} \), \(n = 0, 1 \). On substituting \(\gamma^{A,n} = 1 - z^{A,n} \), \(n = 0, 1 \), into (6.8), we have that
\[
\int_{\Omega} \frac{z^{A,1} - z^{A,0}}{\Delta t} \varphi \, dx \sim \int_{\Omega} \nabla_x z^{A,1} \cdot \nabla_x \varphi \, dx = 0 \quad \forall \varphi \in H^1(\Omega). \tag{6.10}
\]

Also, by (6.9), we have that \(0 \leq z^{A,0} \leq 1 \). By using an identical procedure to the one in the first part of the proof, we then deduce that \([z^{A,1}]- = 0 \) a.e. on \(\Omega \). Thus, \(z^{A,1} \geq 0 \) a.e. on \(\Omega \), which then implies that \(\gamma^{A,1} \leq 1 \) a.e. on \(\Omega \), as claimed. \(\square \)

Next, we shall pass to the limit \(\Lambda \to \infty \); as we shall see in the final part of Lemma 6.2 below, this will require the use of smoother test functions in problem (6.6), as otherwise the term involving \(\hat{\zeta}^{A,0} = \beta^{A} (\hat{\psi}^0) \) is not defined in the limit. In any case, our objective is to use the limit of the sequence \(\{ \hat{\zeta}^{A,1} \}_{A \geq 1} \), once it has been shown to exist, as our definition of the function \(\hat{\psi}^0 \). We shall then show that \(\hat{\psi}^0 \) thus defined has all the properties listed in (3.20).

To this end, we now need to derive \(\Lambda \)-independent bounds on norms of \(\hat{\zeta}^{A,1} \), very similar to the \(L \)-independent bounds discussed in Section 4. Since the argument is almost identical to (but simpler than) the one there (viz. (4.21B)), \(f^n, u^n_{\psi,L} \) and \(u^n_{\psi,L} \) taken to be identically zero, \(\lambda = \frac{1}{2}, \varepsilon = 1, N = 1, \) and \(A \) chosen as the \(K \times K \) identity matrix, we shall not include the details here. It suffices to say that, on testing (6.6) with \(\mathcal{F}'(\hat{\zeta}^{A,1} + \alpha) \) and passing to the limit \(\alpha \to 0_+ \), analogously as in the proof of (4.27) in Section 4, we obtain that
\[
\int_{\Omega \times D} M \mathcal{F}(\hat{\zeta}^{A,1}) \, dq \, dx + 4 \Delta t \int_{\Omega \times D} M [\nabla_x \sqrt{\hat{\zeta}^{A,1}}]^2 \, dq \, dx
\]
\[+ 4 \Delta t \int_{\Omega \times D} M [\nabla_x \sqrt{\hat{\zeta}^{A,1}}]^2 \, dq \, dx \leq \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}^0) \, dq \, dx. \tag{6.11}
\]

Our passage to the limit \(\Lambda \to \infty \) in (6.6) is based on a weak compactness argument, using (6.11), and is discussed below.

We have from Lemma 6.1 that \(\{ [\hat{\zeta}^{A,1}]+ \}_{A \geq 1} \) is a bounded sequence in \(L^2_M(\Omega \times D) \). Using this in conjunction with the second and third bound in (6.11) we deduce that, for \(\Delta t > 0 \) fixed, \(\{ [\hat{\zeta}^{A,1}]+ \}_{A \geq 1} \) is a bounded sequence in \(H^1_M(\Omega \times D) \). Thanks to the compact embedding of \(H^1_M(\Omega \times D) \) into \(L^2_M(\Omega \times D) \) (cf. Appendix D), we deduce that \(\{ [\hat{\zeta}^{A,1}]+ \}_{A \geq 1} \) has a strongly convergent subsequence in \(L^2_M(\Omega \times D) \), whose limit we label by \(\mathcal{Z} \), and we let \(\hat{\zeta}^1 := \mathcal{Z}^2 \). For future reference we note that, upon extraction of a subsequence (not indicated), \(\hat{\zeta}^{A,1} \) then converges to \(\hat{\zeta}^1 \) a.e. on \(\Omega \times D \); and \(\hat{\zeta}^{A,1}(\cdot, \cdot) \) converges to \(\hat{\zeta}^1(\cdot, \cdot) \) a.e. on \(D \), for a.e. \(x \in \Omega \).
By definition, we have that \(\hat{\zeta}^1 \geq 0 \); furthermore, thanks to the upper bound on \(\gamma^{A,1} \) stated in Lemma 6.1, the remark in the last sentence of the previous paragraph, and Fatou’s lemma, we also have that
\[
\int_D M(q) \hat{\zeta}^1(x, q) \, dq \leq 1 \quad \text{for a.e. } x \in \Omega.
\]
Further, again as a direct consequence of the definition of \(\hat{\zeta}^1 \), we have that
\[
\sqrt{\zeta^{A,1}} \to \sqrt{\zeta^1} \quad \text{strongly in } L_M^2(\Omega \times D).
\]
Application of the factorization \(c_1 - c_2 = (\sqrt{c_1} - \sqrt{c_2}) (\sqrt{c_1} + \sqrt{c_2}) \) with \(c_1, c_2 \in \mathbb{R}_{\geq 0} \), the Cauchy–Schwarz inequality and \(6.13 \) then yields that
\[
\hat{\zeta}^{A,1} \to \hat{\zeta}^1 \quad \text{strongly in } L_M^1(\Omega \times D).
\]
Finally, we define
\[
\hat{\psi}^0 := \hat{\zeta}^1.
\]
It follows from the nonnegativity of \(\hat{\zeta}^1 \) and \(6.12 \) that
\[
\hat{\psi}^0 \geq 0 \quad \text{a.e. on } \Omega \times D \quad \text{and} \quad 0 \leq \int_D M(q) \hat{\psi}^0(x, q) \, dq \leq 1 \quad \text{for a.e. } x \in \Omega.
\]
Further, from the bound on the first term in \(6.11 \) and Fatou’s lemma, together with the fact that, thanks to the continuity of \(F \), (a subsequence, not indicated, of) \(\{F(\hat{\zeta}^{A,1})\}_{A > 0} \) converges to \(F(\hat{\zeta}^1) = F(\hat{\psi}^0) \) a.e. on \(\Omega \times D \), we also have that
\[
\int_{\Omega \times D} M F(\hat{\psi}^0) \, dx \, dq \leq \int_{\Omega \times D} M F(\hat{\psi}^0) \, dq \, dx.
\]
Next, we note that from \(6.13 \) we have that, as \(\Lambda \to \infty \),
\[
M^{\frac{1}{2}} \sqrt{\hat{\zeta}^{A,1}} \to M^{\frac{1}{2}} \sqrt{\hat{\zeta}^1} \quad \text{strongly in } L^2(\Omega \times D).
\]
We shall use \(6.18 \) to deduce weak convergence of the sequences of \(x \) and \(q \) gradients of \(\hat{\zeta}^{A,1} \). We proceed as in the proof of Lemma 3.3. The bound on the third term on the left-hand side of \(6.11 \) implies the existence of a subsequence (not indicated) and an element \(\hat{\eta} \in L^2(\Omega \times D) \), such that
\[
M^{\frac{1}{2}} \nabla_q \sqrt{\hat{\zeta}^{A,1}} \to \hat{\eta} \quad \text{weakly in } L^2(\Omega \times D).
\]
Proceeding as in \(3.60 \)–\(3.61 \) in the proof of Lemma 3.3 with \(\hat{\psi}^n_{\varepsilon, L, \delta}, \hat{\psi}^n_{\varepsilon, \Delta \Omega} \) and \(\delta \to 0_+ \), replaced by \(\sqrt{\hat{\zeta}^{A,1}}, \sqrt{\hat{\zeta}^1} \) and \(\Lambda \to \infty \), respectively, we obtain the weak convergence result:
\[
M^{\frac{1}{2}} \nabla_q \sqrt{\hat{\zeta}^{A,1}} \to M^{\frac{1}{2}} \nabla_q \sqrt{\hat{\zeta}^1} \quad \text{weakly in } L^2(\Omega \times D),
\]
and similarly for the \(x \) gradient
\[
M^{\frac{1}{2}} \nabla_x \sqrt{\hat{\zeta}^{A,1}} \to M^{\frac{1}{2}} \nabla_x \sqrt{\hat{\zeta}^1} \quad \text{weakly in } L^2(\Omega \times D),
\]
as \(\Lambda \to \infty \). Then, inequality \(6.11 \), \(6.20a \) and the weak lower-semicontinuity of the \(L^2(\Omega \times D) \) norm imply that
\[
4 \Delta t \int_{\Omega \times D} M \left[\nabla_x \sqrt{\hat{\zeta}^1} \right]^2 + \left| \nabla_q \sqrt{\hat{\zeta}^1} \right|^2 \right] \, dq \, dx \leq \int_{\Omega \times D} M F(\hat{\psi}^0) \, dq \, dx.
\]
After these preparations, we are now ready to state the central result of this subsection. Before we do so, a comment is in order. Strictly speaking, we should have written \(\hat{\psi}^0_{\Delta t} \) instead of \(\hat{\psi}^0 \) in our definition \(6.13 \), as \(\hat{\psi}^0 \) depends on the choice of \(\Delta t \). For notational simplicity, we prefer the more compact notation, \(\hat{\psi}^0 \), with the dependence of \(\hat{\psi}^0 \) on \(\Delta t \) implicitly understood; we shall only
write \(\tilde{\psi}_0^{\Delta t} \), when it is necessary to emphasize the dependence of \(\Delta t \). Of course, \(\tilde{\psi}_0 \) is independent of \(\Delta t \).

We shall show that, with our definition of \(\tilde{\psi}_0 \), the properties under (6.20) hold, together with some additional properties that we extract from (6.15).

Lemma 6.2. The function \(\tilde{\psi}_0 = \tilde{\psi}_0^{\Delta t} \) defined by (6.15) has the following properties:

1. \(\tilde{\psi}_0 \in \tilde{Z}_1 \);
2. \(\int_{\Omega \times D} M \mathcal{F}(\tilde{\psi}_0) \, dq \, dx \leq \int_{\Omega \times D} M \mathcal{F}(\tilde{\psi}_0) \, dq \, dx \);
3. \(4 \Delta t \int_{\Omega \times D} M \left[\|\nabla_x \tilde{\psi}_0\|_2^2 + \|\nabla_\xi \tilde{\psi}_0\|_2^2 \right] \, dq \, dx \leq \int_{\Omega \times D} M \mathcal{F}(\tilde{\psi}_0) \, dq \, dx \);
4. \(\lim_{\Delta t \to 0} \tilde{\psi}_0 = \tilde{\psi}_0 \), weakly in \(L^1_M(\Omega \times D) \);
5. \(\lim_{\Delta t \to 0} \beta^L(\tilde{\psi}_0) = \tilde{\psi}_0 \), weakly in \(L^1_M(\Omega \times D) \).

Proof.

1. This is an immediate consequence of (6.16) and the definition (5.19) of \(\tilde{Z}_1 \).
2. This property was established in (6.17) above.
3. The inequality follows by using (6.15) in the left-hand side of (6.21).
4. We begin by noting that an argument, completely analogous to (but simpler than) the one in Section 4.2.1 that resulted in (4.42), applied to (6.6) now, yields

\[
\left| \int_{\Omega \times D} \frac{\tilde{\psi}_0^{\Delta - \tilde{\psi}_0^{\Delta 0}}}{\Delta t} \, dq \, dx \right| \leq 2 \left(\int_{\Omega \times D} M \left[\|\nabla_x \tilde{\psi}_0\|_2^2 + \|\nabla_\xi \tilde{\psi}_0\|_2^2 \right] \, dq \, dx \right)^{\frac{1}{2}}
\]

for all \(\tilde{\varphi} \in H^1(\Omega; L^\infty(D)) \cap L^2(\Omega; W^{1,\infty}(D)) \). By noting (6.11) we deduce that

\[
\left| \int_{\Omega \times D} M \left(\tilde{\psi}_0^{\Delta - \tilde{\psi}_0^{\Delta 0}} \right) \tilde{\varphi} \, dq \, dx \right| \leq (\Delta t)^{\frac{1}{2}} \left(\int_{\Omega \times D} M \mathcal{F}(\tilde{\psi}_0) \, dq \, dx \right)^{\frac{1}{2}}
\]

(6.22)

for all \(\tilde{\varphi} \in H^1(\Omega; L^\infty(D)) \cap L^2(\Omega; W^{1,\infty}(D)) \) as the right-hand side of (6.22) is independent of \(\Lambda \), we can pass to the limit \(\Lambda \to \infty \) on both sides of (6.22), using the strong convergence of \(\tilde{\psi}_0^{\Delta} \) to \(\tilde{\psi}_0 \) in \(L^1_M(\Omega \times D) \) as \(\Lambda \to \infty \) (see (6.14) and the definition of (6.15)) together with the strong convergence of \(\tilde{\psi}_0^{\Delta 0} = \beta^L(\tilde{\psi}_0) \) to \(\tilde{\psi}_0 \) in \(L^1_M(\Omega \times D) \) as \(\Lambda \to \infty \), with \(\Delta t \) kept fixed. We deduce that

\[
\left| \int_{\Omega \times D} M \left(\tilde{\psi}_0 - \tilde{\psi}_0 \right) \tilde{\varphi} \, dq \, dx \right| \leq (\Delta t)^{\frac{1}{2}} \left(\int_{\Omega \times D} M \mathcal{F}(\tilde{\psi}_0) \, dq \, dx \right)^{\frac{1}{2}}
\]

(6.23)

for all \(\tilde{\varphi} \in H^1(\Omega; L^\infty(D)) \cap L^2(\Omega; W^{1,\infty}(D)) \) and therefore in particular for all \(\tilde{\varphi} \in H^s(\Omega \times D) \) with \(s > 1 + \frac{1}{2}(K + 1)d \).

As the last two factors on the right-hand side of (6.23) are independent of \(\Delta t \), we can pass to the limit \(\Delta t \to 0^+ \) on both sides of (6.23) to deduce that \(\tilde{\psi}_0 \) converges to \(\tilde{\psi}_0 \) weakly in \(M^{-1}(H^s(\Omega \times D)) \), \(s > 1 + \frac{1}{2}(K + 1)d \), as \(\Delta t \to 0^+ \).

Noting (6.17) and the fact that \(\mathcal{F}(r \to \infty \to \infty) \) as \(r \to \infty \), we deduce from de la Vallée-Poussin's theorem that the family \(\{\tilde{\psi}_0^{\Delta t}\}_{\Delta t \geq 0} \) is uniformly integrable in \(L^1_M(\Omega \times D) \). Hence, by the Dunford–Pettis theorem, the family \(\{\tilde{\psi}_0^{\Delta t}\}_{\Delta t \geq 0} \) is weakly relatively compact in \(L^1_M(\Omega \times D) \). Consequently, one can extract a subsequence \(\{\tilde{\psi}_0^{\Delta t_k}\}_{k=1}^\infty \) that converges weakly in \(L^1_M(\Omega \times D) \); however the uniqueness of the weak limit together with the weak
convergence of the (entire) sequence $\tilde{\psi}^0 = \tilde{\psi}^0_M$ to $\tilde{\psi}_0$ in $M^{-1}(H^s(\Omega \times D))'$, $s > 1 + \frac{1}{2}(K + 1)d$, as $\Delta t \to 0_+$, established in the previous paragraph, then implies that the (entire) sequence $\tilde{\psi}^0 = \tilde{\psi}^0_\Delta t$ converges to $\tilde{\psi}_0$ weakly in $L^1_M(\Omega \times D)$, as $\Delta t \to 0_+$, on noting that $L^1_M(\Omega \times D)$ is (continuously) embedded in $M^{-1}(H^s(\Omega \times D))'$ for $s > 1 + \frac{1}{2}(K + 1)d$ (cf. the discussion following Theorem 5.1).

It follows from $\tilde{\psi}^0 \in \hat{Z}_1$ and (1.12) that

$$
0 \leq \int_{\tilde{\psi}^0 \geq L} M L \, dq \, dx \leq \int_{\Omega \times D} M \beta^L(\tilde{\psi}^0) \, dq \, dx \leq \int_{\Omega \times D} M \tilde{\psi}^0 \, dq \, dx \leq |\Omega|.
$$

On noting that F is nonnegative and monotonically increasing on $[1, \infty)$, and that $F(s) \in [0, 1]$ for $s \in [0, 1]$, we deduce that

$$
\int_{\Omega \times D} M F(\tilde{\psi}^0 - L) \, dq \, dx
= \int_{\tilde{\psi}^0 \in [0, L+1)} M F(\tilde{\psi}^0 - L) \, dq \, dx + \int_{\tilde{\psi}^0 \geq L+1} M F(\tilde{\psi}^0 - L) \, dq \, dx
\leq \int_{\Omega \times D} M \, dq \, dx + \int_{\Omega \times D} M F(\tilde{\psi}^0) \, dq \, dx \leq C.
$$

Let us recall the logarithmic Young’s inequality

$$
rs \leq r \log r - r + e^s \quad \text{for all } r, s \in \mathbb{R}_{\geq 0}.
$$

This follows from the Fenchel–Young inequality:

$$
rs \leq g^*(r) + g(s) \quad \text{for all } r, s \in \mathbb{R},
$$

involving the convex function $g : s \in \mathbb{R} \mapsto g(s) \in (-\infty, +\infty]$ and its convex conjugate g^*, with $g(s) = e^s$ and

$$
g^*(r) = \begin{cases} +\infty & \text{if } r < 0, \\ 0 & \text{if } r = 0, \\ r (\log r - 1) & \text{if } r > 0; \end{cases}
$$

with the resulting inequality then restricted to $\mathbb{R}_{\geq 0}$. It immediately follows from (6.24) that $r s \leq F(r) + e^s$ for all $r, s \in \mathbb{R}_{\geq 0}$.

Applying the last inequality with $r = [\tilde{\psi}^0 - L]_+$ and $s = \log L$, we have that

$$
[\tilde{\psi}^0 - L]_+ (\log L) \leq F([\tilde{\psi}^0 - L]_+) + L.
$$

The bounds (6.24), (6.25) (noting that the integrand of the left-most integral in (6.25) is nonnegative) and (6.27) then imply

$$
\int_{\Omega \times D} M [\tilde{\psi}^0 - L]_+ \, dq \, dx = \int_{\tilde{\psi}^0 < L} M [\tilde{\psi}^0 - L]_+ \, dq \, dx
\leq \frac{1}{\log L} \left[\int_{\tilde{\psi}^0 \geq L} M F([\tilde{\psi}^0 - L]_+) \, dq \, dx + \int_{\tilde{\psi}^0 \geq L} M L \, dq \, dx \right] \leq \frac{C}{\log L}.
$$

Hence, for any $\tilde{\varphi} \in L^\infty(\Omega \times D)$ we have from (6.28) on recalling the relationship $\Delta t = o(L^{-1})$ that $\tilde{\psi}^0 = \tilde{\psi}^0_\Delta t$ satisfies

$$
\lim_{\Delta t \to 0_+} \left| \int_{\Omega \times D} M (\tilde{\psi}^0 - \beta^L(\tilde{\psi}^0)) \tilde{\varphi} \, dq \, dx \right| = \lim_{\Delta t \to 0_+} \left| \int_{\Omega \times D} M [\tilde{\psi}^0 - L]_+ \tilde{\varphi} \, dq \, dx \right|
\leq \left(\lim_{\Delta t \to 0_+} \int_{\Omega \times D} M [\tilde{\psi}^0 - L]_+ \, dq \, dx \right) \|\tilde{\varphi}\|_{L^\infty(\Omega \times D)} = 0.
$$

Therefore, similarly to (6.23), we have that the sequence $\{\tilde{\psi}^0_\Delta t - \beta^L(\tilde{\psi}^0_\Delta t)\}_{\Delta t > 0}$ converges to zero weakly in $M^{-1}(H^s(\Omega \times D))'$ for $s > \frac{1}{2}(K + 1)d$, as $\Delta t \to 0_+$.
Noting \((6.25)\) and the fact that \(F(r)/r \to \infty\) as \(r \to \infty\), we deduce from de le Vallée Poussin’s theorem that the family
\[
\{\psi_{0\Delta t}^0 - \beta^L(\psi_{0\Delta t}^0)\}_{\Delta t > 0} \equiv \{[\psi_{0\Delta t}^0 - L]_+\}_{\Delta t > 0}
\]
is uniformly integrable in \(L^1_M(\Omega \times D)\). Hence, we can proceed as for the sequence \(\{\psi_{0\Delta t}^0\}_{\Delta t > 0}\) in the proof of \(\mathfrak{B}\) to show that the (entire) sequence
\[
\psi^0 - \beta^L(\psi^0) = \psi_{0\Delta t}^0 - \beta^L(\psi_{0\Delta t}^0) \to 0 \text{ weakly in } L^1_M(\Omega \times D), \text{ as } \Delta t \to 0_+,
\]
on noting that \(L^1_M(\Omega \times D)\) is (continuously) embedded in \(M^{-1}(H^s(\Omega \times D))’\) for \(s > \frac{1}{2}(K+1)d\) (cf. the discussion following Theorem 5.1). Hence, we have proved the desired result.
\[\square\]

Noting item 3 in Lemma \(6.2\), we can now return to the inequality \((6.2)\), and supplement it with additional bounds, in the sixth and seventh term on the left-hand side. The first additional bound can be seen as the analogue of \((4.35)\):

\[
4 \int_0^T \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\psi_{\varepsilon,L}^{\Delta t,-}}|^2 + |\nabla_q \sqrt{\psi_{\varepsilon,L}^{\Delta t,-}}|^2 \right] dq \, dx \, dt = 4 \Delta t \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\beta^L(\psi^0)}|^2 + |\nabla_q \sqrt{\beta^L(\psi^0)}|^2 \right] dq \, dx
\]

\[
+ 4 \int_0^{T-\Delta t} \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\psi_{\varepsilon,L}^{\Delta t,+}}|^2 + |\nabla_q \sqrt{\psi_{\varepsilon,L}^{\Delta t,+}}|^2 \right] dq \, dx \, dt
\]

\[
\leq 4 \Delta t \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\psi^0}|^2 + |\nabla_q \sqrt{\psi^0}|^2 \right] dq \, dx
\]

\[
+ 4 \int_0^{T-\Delta t} \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\psi_{\varepsilon,L}^{\Delta t,+}}|^2 + |\nabla_q \sqrt{\psi_{\varepsilon,L}^{\Delta t,+}}|^2 \right] dq \, dx \, dt
\]

\[
\leq \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}_0) dq \, dx
\]

\[
+ 4 \int_0^T \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\psi_{\varepsilon,L}^{\Delta t,-}}|^2 + |\nabla_q \sqrt{\psi_{\varepsilon,L}^{\Delta t,-}}|^2 \right] dq \, dx \, dt \leq C_*
\]

(6.30)

where in the last inequality we used \((3.20)\) and the bounds on the sixth and seventh term in \((6.2)\); here and henceforth \(C_*\) signifies a generic positive constant, independent of \(L\) and \(\Delta t\). On combining \((6.30)\) with our previous bounds on the sixth and seventh term in \((6.2)\), we deduce that

\[
4 \int_0^T \int_{\Omega \times D} M \left[|\nabla_x \sqrt{\psi_{\varepsilon,L}^{\Delta t,\pm}}|^2 + |\nabla_q \sqrt{\psi_{\varepsilon,L}^{\Delta t,\pm}}|^2 \right] dq \, dx \, dt \leq C_*
\]

(6.31)

It remains to derive an analogous bound on \(\hat{\psi}_{\varepsilon,L}^{\Delta t}\). To this end, let \(n \in \{1, \ldots, N\}\) and consider \(t \in (t_{n-1}, t_n)\); we recall that

\[
\hat{\psi}_{\varepsilon,L}(\cdot, \cdot, t) = \frac{t-t_{n-1}}{\Delta t} \hat{\psi}_{\varepsilon,L}^{\Delta t,+}(\cdot, \cdot, t) + \frac{t_n-t}{\Delta t} \hat{\psi}_{\varepsilon,L}^{\Delta t,-}(\cdot, \cdot, t).
\]

(6.32)

For ease of exposition we shall write

\[
\gamma_+ := \frac{t-t_{n-1}}{\Delta t} \quad \text{and} \quad \gamma_- := \frac{t_n-t}{\Delta t}
\]
in the argument that follows, noting that \(\gamma_+ + \gamma_- = 1\) and both \(\gamma_+\) and \(\gamma_-\) are positive. The functions \(t \in (t_{n-1}, t_n) \mapsto \hat{\psi}_{\varepsilon,L}^{\Delta t,\pm}(\cdot, \cdot, t)\) are constant in time and \(\hat{\psi}_{\varepsilon,L}^{\Delta t,\pm}(x, q, t) \geq 0\) over the set
\[\Omega \times D \times (t_{n-1}, t_n), \ n \in \{1, \ldots, N\}. \] For any \(\alpha \in (0, 1) \) we have that
\[\frac{|\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2}{\hat{\psi}_{\varepsilon,L}^{\Delta t} + \alpha} = \frac{|\gamma + \nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t} + \gamma - \nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2}{\gamma_+ (\hat{\psi}_{\varepsilon,L}^{\Delta t} + \alpha) + \gamma_- (\hat{\psi}_{\varepsilon,L}^{\Delta t} - \alpha)} \leq 2 \frac{\gamma_+^2 |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2 + \gamma_-^2 |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2}{\gamma_+ (\hat{\psi}_{\varepsilon,L}^{\Delta t} + \alpha) + \gamma_- (\hat{\psi}_{\varepsilon,L}^{\Delta t} - \alpha)} \leq \frac{\gamma_+ + |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2}{\hat{\psi}_{\varepsilon,L}^{\Delta t} + \alpha} + 2 \frac{\gamma_- |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2}{\hat{\psi}_{\varepsilon,L}^{\Delta t} - \alpha}, \]

Hence, on bounding \(\gamma \pm \) by 1, we deduce that
\[(6.33) \quad \int_0^T \int_{\Omega \times D} M |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2 \, dq \, dx \, dt \leq 2 \left[\int_0^T \int_{\Omega \times D} M |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t} - \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2 \, dq \, dx \, dt \right] \]

for all \((\xi, q, t) \in \Omega \times D \times (t_{n-1}, t_n), \ n = 1, \ldots, N, \) and all \(\alpha \in (0, 1) \). On multiplying (6.33) by \(M \), integrating over \(\Omega \times D \times (t_{n-1}, t_n) \), summing over \(n = 1, \ldots, N \), and passing to the limit \(\alpha \to 0^+ \) using the monotone convergence theorem, we deduce that
\[\int_0^T \int_{\Omega \times D} M |\nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t}|^2 \, dq \, dx \, dt \leq C_* \]

where, again, \(C_* \) denotes a generic positive constant independent of \(L \) and \(\Delta t \).

Finally, on combining (6.31) and (6.34) with (6.2) we arrive at the following bound, which represents the starting point for the convergence analysis that will be developed in the next subsection.

With \(\sigma \geq \frac{1}{2} d, \sigma > 1 \) and \(s > 1 + \frac{1}{2} (K + 1) d \), we have that:
\[\text{ess.sup}_{t \in [0,T]} \left[\| \hat{u}_{\varepsilon,L}^{\Delta t(\pm)}(t) \|^2 + \frac{1}{\Delta t} \int_0^T \| \hat{u}_{\varepsilon,L}^{\Delta t(\pm)}(t) - \hat{u}_{\varepsilon,L}^{\Delta t(\pm)}(t) \|^2 \, dt \right] \]
\[+ \int_0^T \left[\| \nabla_x \hat{u}_{\varepsilon,L}^{\Delta t(\pm)}(t) \|^2 \, dt \right] \]
\[+ \text{ess.sup}_{t \in [0,T]} \int_{\Omega \times D} M \hat{F}(\hat{\psi}_{\varepsilon,L}^{\Delta t(\pm)}(t)) \, dq \, dx \]
\[+ \frac{1}{\Delta t L} \int_0^T \int_{\Omega \times D} M \left(\hat{\psi}_{\varepsilon,L}^{\Delta t(\pm)} - \hat{\psi}_{\varepsilon,L}^{\Delta t(\pm)} \right)^2 \, dq \, dx \, dt \]
\[+ \int_0^T \int_{\Omega \times D} M \| \nabla_x \hat{\psi}_{\varepsilon,L}^{\Delta t(\pm)} \|^2 \, dq \, dx \, dt \]
\[+ \int_0^T \int_{\Omega \times D} M \left| \nabla_q \hat{\psi}_{\varepsilon,L}^{\Delta t(\pm)} \right|^2 \, dq \, dx \, dt \]
\[+ \int_0^T \left[\| \hat{u}_{\varepsilon,L}^{\Delta t(\pm)}(t) \|^2 \, dt \right] \]
\[+ \int_0^T \left[\| \hat{u}_{\varepsilon,L}^{\Delta t(\pm)}(t) \|^2 \, dt \right] \]
\[\leq C_* \]

where \((\mathcal{H}(\Omega \times D))' \).
Similarly,

\[
\text{ess.sup}_{t \in [0,T]} \left\| \rho_{\varepsilon,L}^{\Delta t, (\pm)} (t) \right\|_{L^\infty(\Omega)} + \frac{1}{\Delta t} \int_0^T \left\| \rho_{\varepsilon,L}^{\Delta t, +} (t) - \rho_{\varepsilon,L}^{\Delta t, -} (t) \right\|^2 \, dt \nn + \int_0^T \left\| \nabla_x \rho_{\varepsilon,L}^{\Delta t} (t) \right\|^2 \, dt + \int_0^T \left\| \frac{\partial \rho_{\varepsilon,L}^{\Delta t}}{\partial t} (t) \right\|_{(H^1(\Omega))'}^2 \, dt \leq C_\varepsilon.
\]

Here, the bound on the first term on the left-hand side follows from (4.6), (6.3) and (6.4); the bound on the second term comes from (6.29), and the bound on the third term in (6.36) and the bound on the last term in (6.35). The bound on the third term on the left-hand side of (6.36) is obtained by applying \(\nabla \) to both sides of (6.39) with the integrand

\[M(q) \hat{\psi}_{\varepsilon,L}^{\Delta t, (\pm)} \]

rewritten as

\[M(q) \left[\sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t, (\pm)}} \right]^2, \]

then exchanging the order of \(\nabla \) and the integral over \(D \) on the right-hand side of the resulting identity, applying \(\nabla \) to the integrand using the chain rule, followed by taking the modulus on both sides and applying the Cauchy–Schwarz inequality to the integral over \(D \) on the right, integrating the square of the resulting inequality over \([0,T] \times \Omega \) and, finally, recalling again the definition (4.6) and using the bound on the first term in (6.36) and the bound on the sixth term in (6.35).

In fact, in the case of \(\rho_{\varepsilon,L}^{\Delta t, +} \), the stated bound on the third term on the left-hand side of (6.36) follows directly from (6.29).

6.2. Passage to the limit \(L \to \infty \). We are now ready to prove the central result of the paper.

Theorem 6.1. Suppose that the assumptions (4.5) and the condition (6.39), relating \(\Delta t \) to \(L \), hold. Then, there exists a subsequence of \(\{(u_{\varepsilon,L}^{\Delta t}, \psi_{\varepsilon,L}^{\Delta t})\}_{L>1} \) (not indicated) with \(\Delta t = o(L^{-1}) \), and a pair of functions \((u_\varepsilon, \hat{\psi}_\varepsilon)\) such that

\[u_\varepsilon \in L^\infty(0,T; l^2(\Omega)) \cap L^2(0,T; V) \cap H^1(0,T; V'), \quad \sigma \geq \frac{1}{2} d, \quad \sigma > 1, \]

and

\[\hat{\psi}_\varepsilon \in L^1(0,T; L^1_M(\Omega \times D)) \cap H^1(0,T; M^{-1}(H^s(\Omega \times D)), \quad s > 1 + \frac{1}{2} (K + 1)d, \]

with \(\hat{\psi}_\varepsilon \geq 0 \) a.e. on \(\Omega \times D \times [0,T] \),

\[
u \quad \rho_\varepsilon(x,t) := \int_D M(q) \hat{\psi}_\varepsilon(x,q,t) \, dq = 1 \quad \text{for a.e. } (x,t) \in \Omega \times [0,T],
\]

whereby \(\hat{\psi}_\varepsilon \in L^\infty(0,T; L^1_M(\Omega \times D)) \); and finite relative entropy and Fisher information, with

\[F(\hat{\psi}_\varepsilon) \in L^\infty(0,T; L^1_M(\Omega \times D)) \quad \text{and} \quad \sqrt{\hat{\psi}_\varepsilon} \in L^2(0,T; H^1_M(\Omega \times D)), \]

such that, as \(L \to \infty \) (and thereby \(\Delta t \to 0_+ \)),

\[
u \quad u_{\varepsilon,L}^{\Delta t, (\pm)} \rightharpoonup u_\varepsilon \quad \text{weak* in } L^\infty(0,T; l^2(\Omega)),
\]

\[
u \quad u_{\varepsilon,L}^{\Delta t, (\pm)} \rightharpoonup u_\varepsilon \quad \text{weakly in } L^2(0,T; V),
\]

\[
u \quad u_{\varepsilon,L}^{\Delta t, (\pm)} \rightharpoonup u_\varepsilon \quad \text{strongly in } L^2(0,T; L^r(\Omega)),
\]

\[
u \quad \frac{\partial u_{\varepsilon,L}^{\Delta t}}{\partial t} \rightharpoonup \frac{\partial u_\varepsilon}{\partial t} \quad \text{weakly in } L^2(0,T; V_\sigma'),
\]

and

\[
u \quad \sigma_\varepsilon \psi_{\varepsilon,L}^{\Delta t, (\pm)} \rightharpoonup \sigma_\varepsilon \psi_{\varepsilon} \quad \text{weakly in } H^1(\Omega). \]
where \(r \in \{1, \infty\} \) if \(d = 2 \) and \(r \in \{1, 2\} \) if \(d = 3 \); and

(6.40a) \[M \frac{1}{\sqrt{2}} \nabla_x \sqrt{\psi_{\varepsilon,L}} \rightarrow M \frac{1}{\sqrt{2}} \nabla_x \sqrt{\psi} \quad \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \]

(6.40b) \[M \frac{1}{\sqrt{2}} \nabla_q \sqrt{\psi_{\varepsilon,L}} \rightarrow M \frac{1}{\sqrt{2}} \nabla_q \sqrt{\psi} \quad \text{weakly in } L^2(0, T; L^2(\Omega \times D)), \]

(6.40c) \[M \frac{\partial \psi_{\varepsilon,L}}{\partial t} \rightarrow M \frac{\partial \psi}{\partial t} \quad \text{weakly in } L^2(0, T; (H^s(\Omega \times D))^\prime), \]

(6.40d) \[\psi_{\varepsilon,L} \rightarrow \psi \quad \text{strongly in } L^p(0, T; L^1_M(\Omega \times D)), \]

for all \(p \in [1, \infty) \); and,

(6.40e) \[\nabla_x \cdot \sum_{i=1}^K C_i(M \tilde{\psi}_{\varepsilon,L}^{\Delta t(i)} + M \tilde{\psi}_{\varepsilon,L}^{\Delta t(i)}) \rightarrow \nabla_x \cdot \sum_{i=1}^K C_i(M \tilde{\psi}) \quad \text{weakly in } L^2(0, T; V'_\sigma). \]

The pair \((u_\varepsilon, \tilde{\psi}_\varepsilon)\) is a global weak solution to problem \((P_\varepsilon)\), in the sense that

\[
- \int_0^T \int_{\Omega \times D} M \frac{\partial u_\varepsilon}{\partial t} \, dq \, dx \, dt + \int_0^T \int_{\Omega \times D} [(\nabla_x \cdot \nabla_x) u_\varepsilon] \cdot w + \nu \nabla_x u_\varepsilon : \nabla_x w \, dx \, dt
\]

\[
= \int_{\Omega \times D} u_0(x) \cdot w(x, 0) \, dx + \int_0^T \int_{\Omega \times D} (f, w)_{H^1_0(\Omega)} - k \sum_{i=1}^K \int_{\Omega \times D} C_i(M \tilde{\psi}) : \nabla_x w \, dx \, dt
\]

(6.41) \[\forall w \in W^{1,1}(0, T; V'_\sigma) \text{ s.t. } w(\cdot, T) = 0, \]

and

\[
- \int_0^T \int_{\Omega \times D} M \tilde{\psi}_\varepsilon \frac{\partial \tilde{\psi}}{\partial t} \, dq \, dx \, dt + \int_0^T \int_{\Omega \times D} M \bigl[\varepsilon \nabla_x \tilde{\psi}_\varepsilon - u_\varepsilon \tilde{\psi}_\varepsilon \bigr] \cdot \nabla_x \tilde{\psi} \, dq \, dx \, dt
\]

\[
+ \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{j=1}^K A_{ij} \nabla_{ij} \tilde{\psi}_\varepsilon \cdot \nabla_{ij} \tilde{\psi} \, dq \, dx \, dt
\]

\[
- \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sigma(u_\varepsilon) g_i \tilde{\psi}_\varepsilon \cdot \nabla_{ij} \tilde{\psi} \, dq \, dx \, dt
\]

(6.42) \[\forall \tilde{\varphi} \in W^{1,1}(0, T; H^s(\Omega \times D)) \text{ s.t. } \tilde{\varphi}(\cdot, T) = 0. \]

In addition, the function \(u_\varepsilon \) is weakly continuous as a mapping from \([0, T]\) to \(H \), and \(\tilde{\psi}_\varepsilon \) is weakly continuous as a mapping from \([0, T]\) to \(L^1_M(\Omega \times D) \). The weak solution \((u_\varepsilon, \tilde{\psi}_\varepsilon)\) satisfies the following energy inequality for a.e. \(t \in [0, T] \):

\[
|||u_\varepsilon(t)|||^2 + \nu \int_0^t ||| \nabla_x u_\varepsilon(s)|||^2 \, ds + k \int_{\Omega \times D} M F(\tilde{\psi}_\varepsilon(t)) \, dq \, dx
\]

\[
+ 4k \varepsilon \int_0^t \int_{\Omega \times D} M |\nabla_x \sqrt{\psi}|^2 \, dq \, dx \, ds + \frac{a_0k}{\lambda} \int_0^t \int_{\Omega \times D} M |\nabla_q \sqrt{\psi}|^2 \, dq \, dx \, ds
\]

(6.43) \[\leq |||u_0|||^2 + \frac{1}{k} \int_0^t |||f(s)|||_{L^1_0(\Omega)}^2 \, ds + k \int_{\Omega \times D} M F(\tilde{\psi}_0) \, dq \, dx \leq [B(u_0, f, \tilde{\psi}_0)]^2, \]

with \(F(s) = s(\log s - 1) + 1, s \geq 0 \), and \([B(u_0, f, \tilde{\psi}_0)]^2\) as defined in (4.28).

Proof. Since the proof is long, we have broken it up into a number of steps.

Step 1. On recalling the weak* compactness of bounded balls in the Banach space \(L^\infty(0, T; L^2(\Omega)) \) and noting the bound on the first term on the left-hand side of (6.35), upon three successive extractions of subsequences we deduce the existence of an unbounded index set \(\mathcal{L} \subset (1, \infty) \) such that each of the three sequences \(\{u_{\varepsilon,L}^{\Delta t(i)}\}_{L \in \mathcal{L}} \) converges to its respective weak* limit in \(L^\infty(0, T; L^2(\Omega)) \).

as $L \to \infty$ with $L \in \mathcal{L}$. Thanks to (6.1a b),
\begin{equation}
\int_0^T \| \langle \Delta \tau \rangle_L(s) - \langle \Delta \tau \rangle_L^+(s) \|_2^2 \, ds = \frac{1}{2} \int_0^T \| \langle \Delta \tau \rangle_L^+(s) - \langle \Delta \tau \rangle_L^- \|_2^2 \, ds \leq \frac{1}{2} C_s \Delta t,
\end{equation}
where the last inequality is a consequence of the second bound in (6.39). On passing to the limit $L \to \infty$ with $L \in \mathcal{L}$ and using (6.5) we thus deduce that the weak* limits of the sequences $\{ \langle \Delta \tau \rangle_L \} \subseteq \mathcal{L}$ coincide. We label this common limit by u_ε, by construction then, $u_\varepsilon \in L^\infty(0, T; L^2(\Omega))$. Thus we have shown (6.39a).

Upon further successive extraction of subsequences from $\{ \langle \Delta \tau \rangle_L \} \subseteq \mathcal{L}$ and noting the bounds on the third and eighth terms on the left-hand side of (6.39), the limits (6.39b) and (6.39d) follow directly from the weak compactness of bounded balls in the Hilbert spaces $L^2(0, T; V')$ and $L^2(0, T; V)$, respectively. Thanks to the uniqueness of limits of sequences in the weak topology of $L^2(0, T; V')$ and $L^2(0, T; V)$, we deduce from (6.39b) that (6.39c) holds, with the values of r as in the statement of the theorem. Thus we have proved (6.39).

Step 2. Dubinskii’s theorem, with \mathcal{A}_0, \mathcal{A}_1 and \mathcal{M} as in the discussion following the statement of Theorem 6.1 and selecting $p = 1$ and $p_1 = 2$, implies that
\begin{equation*}
\left\{ \begin{array}{l}
\varphi : [0, T] \to \mathcal{M} : [\varphi]_{L^1(0, T; \mathcal{M})} + \left\| \frac{d\varphi}{dt} \right\|_{L^2(0, T; \mathcal{A}_1)} < \infty \\
\end{array} \right.
\end{equation*}
\end{equation*}
\begin{equation*}
\implies L^1(0, T; \mathcal{A}_0) = L^1(0, T; L^1_M(\Omega \times D)).
\end{equation*}

Using this compact embedding, together with the bounds on the sixth, the seventh and the last term on the left-hand side of (6.35), in conjunction with (6.3) and (6.4), we deduce (upon extraction of a subsequence) strong convergence of $\{ \langle \hat{\Delta} \rangle_L \} \subseteq L^1(0, T; L^1_M(\Omega \times D))$ to an element $\hat{v}_\varepsilon \in L^1(0, T; L^1_M(\Omega \times D))$, as $L \to \infty$.

Thanks to the bound on the fifth term in (6.35), by the Cauchy–Schwarz inequality and an argument identical to the one in (6.44), we have that
\begin{equation}
\left(\int_0^T \int_{\Omega \times D} M ||\hat{\Delta} \rangle_L - ||\hat{\Delta} \rangle_L^+ ||_{2} \, dx \, dt \right)^2 \leq \frac{T |\Omega|}{3} \int_0^T \int_{\Omega \times D} M \left(||\hat{\Delta} \rangle_L^+ - ||\hat{\Delta} \rangle_L^- \right)^2 dx \, dt \\
\leq \frac{1}{3} C_s T |\Omega| \Delta t L.
\end{equation}

On recalling (6.5) and using the triangle inequality in the $L^1(0, T; L^1_M(\Omega \times D))$ norm, together with (6.45) and the strong convergence of $\{ \hat{\Delta} \rangle_L \} \subseteq L^1(0, T; L^1_M(\Omega \times D))$, we deduce, as $L \to \infty$, strong convergence of $\{ \hat{\Delta} \rangle_L^+ \} \subseteq L^1(0, T; L^1_M(\Omega \times D))$ to the same element $\hat{v}_\varepsilon \in L^1(0, T; L^1_M(\Omega \times D))$. The inequality (6.45) then implies strong convergence of $\{ \hat{\Delta} \rangle_L^- \} \subseteq L^1(0, T; L^1_M(\Omega \times D))$, also. This completes the proof of (6.40d) for $p = 1$.

From (6.3) and (6.4) we have that
\begin{equation}
\left\| \langle \hat{\Delta} \rangle_L^+(t) \right\|_{L^1_M(\Omega \times D)} \leq |\Omega|
\end{equation}
for a.e. t in $[0, T]$ and all $L > 1$. In other words, the sequences \(\{ \hat{\psi}_{\varepsilon,L}^{\Delta(\pm)} \}_{L>1} \) are bounded in $L^\infty(0, T; L^1_M(\Omega \times D))$. By Lemma [6.41], the strong convergence of these to \(\hat{\psi}_\varepsilon \) in $L^1(0, T; L^1_M(\Omega \times D))$, shown above, then implies strong convergence in $L^p(0, T; L^1_M(\Omega \times D))$ to the same limit for all values of $p \in [1, \infty)$. That now completes the proof of (6.40a).

Since strong convergence in $L^p(0, T; L^1_M(\Omega \times D))$, $p \geq 1$, implies convergence almost everywhere on $\Omega \times D \times [0, T]$ of a subsequence, it follows from (6.3) that \(\psi_\varepsilon \geq 0 \) on $\Omega \times D \times [0, T]$. Furthermore, by Fubini’s theorem, strong convergence of \(\{ \hat{\psi}_{\varepsilon,L}^{\Delta(\pm)} \}_{L>1} \) to \(\hat{\psi}_\varepsilon \) in $L^1(0, T; L^1_M(\Omega \times D))$ implies that

\[
\int_\Omega M(q) |\hat{\psi}_{\varepsilon,L}^{\Delta(\pm)}(x, q, t) - \hat{\psi}_\varepsilon(x, q, t)| \, dq \to 0 \quad \text{as } L \to \infty
\]

for a.e. \((x, t) \in \Omega \times [0, T]\).

Hence we have that \(\int_\Omega M(q) |\hat{\psi}_{\varepsilon,L}^{\Delta(\pm)}(x, q, t) - \hat{\psi}_\varepsilon(x, q, t)| \, dq \) converges to \(\int_\Omega M(q) |\hat{\psi}_\varepsilon(x, q, t)| \, dq \), as $L \to \infty$, for a.e. \((x, t) \in \Omega \times [0, T]\), and then (6.40a) implies that

\[
\int_\Omega M(q) \, |\hat{\psi}_\varepsilon(x, q, t)| \, dq \leq 1 \quad \text{for a.e. } (x, t) \in \Omega \times [0, T].
\]

We will show later that the inequality here can in fact be sharpened to an equality.

As the sequences \(\{ \hat{\psi}_{\varepsilon,L}^{\Delta(\pm)} \}_{L>1} \) converge to \(\hat{\psi}_\varepsilon \) strongly in $L^1(0, T; L^1_M(\Omega \times D))$, it follows (upon extraction of suitable subsequences) that they converge to \(\hat{\psi}_\varepsilon \) a.e. on $\Omega \times D \times [0, T]$. This then, in turn, implies that the sequences \(\{ F(\hat{\psi}_{\varepsilon,L}^{\Delta(\pm)}) \}_{L>1} \) converge to $F(\hat{\psi}_\varepsilon)$ a.e. on $\Omega \times D \times [0, T]$; in particular, for a.e. \(t \in [0, T] \), the sequences \(\{ F(\hat{\psi}_{\varepsilon,L}^{\Delta(\pm)}(\cdot, t)) \}_{L>1} \) converge to $F(\hat{\psi}_\varepsilon(\cdot, t))$ a.e. on $\Omega \times D$. Since F is nonnegative, Fatou’s lemma then implies that, for a.e. \(t \in [0, T] \),

\[
\int_{\Omega \times D} M(q) \, F(\hat{\psi}_\varepsilon(x, q, t)) \, dx \, dq
\]

\[
\leq \lim \inf_{L \to \infty} \int_{\Omega \times D} M(q) \, F(\hat{\psi}_{\varepsilon,L}^{\Delta(\pm)}(x, q, t)) \, dx \, dq \leq C_*,
\]

where the second inequality in (6.48) stems from the bound on the fourth term on the left-hand side of (6.35). As the integrand in the expression on the left-hand side of (6.48) is nonnegative, we deduce that \(F(\hat{\psi}_\varepsilon) \) belongs to $L^\infty(0, T; L^1_M(\Omega \times D))$, as asserted in the statement of the theorem.

We observe in passing that since \(\sqrt{c_1} - \sqrt{c_2} \leq \sqrt{|c_1 - c_2|} \) for any two nonnegative real numbers c_1 and c_2, the strong convergence (6.40a) directly implies that, as $L \to \infty$ (and thereby $\Delta t \to 0_+$),

\[
\sqrt{\psi_{\varepsilon,L}^{\Delta(\pm)}} \to \sqrt{\hat{\psi}_\varepsilon} \quad \text{strongly in } L^p(0, T; L^2_M(\Omega \times D)) \quad \forall p \in [1, \infty),
\]

and therefore, as $L \to \infty$ (and $\Delta t \to 0_+$),

\[
M^{\frac{1}{2}} \, \sqrt{\psi_{\varepsilon,L}^{\Delta(\pm)}} \to M^{\frac{1}{2}} \, \sqrt{\hat{\psi}_\varepsilon} \quad \text{strongly in } L^p(0, T; L^2(\Omega \times D)) \quad \forall p \in [1, \infty).
\]

By proceeding in exactly the same way as in the previous subsection, between equations (6.18) and (6.20), with $\hat{\zeta}^{\Delta,1}$ and $\hat{\zeta}^0$ replaced by $\hat{\psi}_{\varepsilon,L}^{\Delta(\pm)}$ and $\hat{\psi}_\varepsilon$, respectively, but now using the sixth and the seventh bound in (6.35), and (6.4), we deduce that (6.40a,b) hold.

The convergence result (6.40a) follows from the bound on the last term on the left-hand side of (6.35) and the weak compactness of bounded balls in the Hilbert space $L^2(0, T; (H^s(\Omega \times D)))$, $s > 1 + \frac{1}{2}(K + 1)d$.

The proof of (6.30e) is considerably more complicated, and will be given below.

After all these technical preparations we are now ready to return to (4.3) and (4.4) and pass to the limit $L \to \infty$ (and thereby also $\Delta t \to 0_+$); we shall also prove (6.40a). Since there are quite a few terms to deal with, we shall discuss them one at a time, starting with equation (4.4), and followed by equation (4.3).

Step 3. We begin by passing to the limit $L \to \infty$ (and $\Delta t \to 0_+$) on equation (4.4). In what follows, we shall take test functions $\hat{\varphi} \in C^1([0, T]; C^{\infty}(\Omega \times D))$ such that $\hat{\varphi}((\cdot, t), T) = 0$. Note that, for any $s \geq 0$, the set of all such test functions $\hat{\varphi}$ is a dense linear subspace of the linear
space of functions in $W^{1,1}(0, T; H^s(\Omega \times D))$ vanishing at $t = T$. As each of the terms in (4.4) has been shown to be a continuous linear functional with respect to $\hat{\varphi}$ on $L^2(0, T; H^s(\Omega \times D))$ for $s > 1 + \frac{1}{2}(K + 1)d$, and therefore also on $W^{1,1}(0, T; H^s(\Omega \times D))$ for $s > 1 + \frac{1}{2}(K + 1)d$, which is (continuously) embedded in $L^2(0, T; H^s(\Omega \times D))$ for $s > 1 + \frac{1}{2}(K + 1)d$, the use of such test functions for the purposes of the argument below is fully justified.

Step 3.1. Integration by parts with respect to t in the first term in (4.4) gives

$$
\int_0^T \int_{\Omega \times D} M \frac{\partial \hat{\varphi}^\Delta t_s^L}{\partial t} \hat{\varphi} \, dq \, dx \, dt = -\int_0^T \int_{\Omega \times D} M \hat{\varphi}^\Delta t_s^L \frac{\partial \hat{\varphi}}{\partial t} \, dq \, dx \, dt
$$

(6.51)

for all $\hat{\varphi} \in C^1([0, T]; C^{\infty}(\Omega \times D))$ such that $\hat{\varphi}(\cdot, \cdot, T) = 0$. Using (6.40d) and noting point 5 of Lemma 6.2, we immediately have that, as $L \to \infty$ (and $\Delta t \to 0_+$), the first term on the right-hand side of (6.51) converges to the first term on the left-hand side of (6.42) and the second term on the right-hand side of (6.51) converges to $-\int_{\Omega \times D} \hat{\psi}_0(x, q) \hat{\varphi}(x, q, 0) \, dq \, dx$, resulting in the first term on the right-hand side of (6.42). That completes Step 3.1.

Step 3.2. The second term in (4.4) will be dealt with by decomposing it into two further terms, the first of which tends to 0, while the second converges to the expected limiting value. We proceed as follows:

$$
\varepsilon \int_0^T \int_{\Omega \times D} M \nabla_x \hat{\varphi} \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt
$$

$$
= 2\varepsilon \int_0^T \int_{\Omega \times D} M \left(\sqrt{\hat{\varphi}^\Delta t_s^L} - \sqrt{\hat{\psi}_e}\right) \nabla_x \sqrt{\hat{\varphi}^\Delta t_s^L} \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt
$$

$$
+ 2\varepsilon \int_0^T \int_{\Omega \times D} M \sqrt{\hat{\psi}_e} \nabla_x \sqrt{\hat{\varphi}^\Delta t_s^L} \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt
$$

$$
=: V_1 + V_2.
$$

We shall show that V_1 converges to 0 and that V_2 converges to the expected limit. First, note that

$$
|V_1| \leq 2\varepsilon \int_0^T \int_\Omega \left(\int_D M \left|\sqrt{\hat{\varphi}^\Delta t_s^L} - \sqrt{\hat{\psi}_e}\right|^2 dq \right)^{\frac{1}{2}} \nabla_x \hat{\varphi} \|_{L^\infty(D)} \, dx \, dt
$$

$$
\times \left(\int_{\Omega \times D} \int_D M \left|\nabla_x \sqrt{\hat{\varphi}^\Delta t_s^L}\right|^2 \, dq \right)^{\frac{1}{2}} \|\nabla_x \hat{\varphi}\|_{L^\infty(\Omega \times D)} \, dx \, dt
$$

$$
\leq 2\varepsilon \int_0^T \int_{\Omega \times D} \left(\int_D M \left|\nabla_x \sqrt{\hat{\varphi}^\Delta t_s^L}\right|^2 \, dq \right)^{\frac{1}{2}} \|\nabla_x \hat{\varphi}\|_{L^\infty(\Omega \times D)} \, dx \, dt
$$

$$
\times \left(\int_{\Omega \times D} \int_D M \left|\sqrt{\hat{\varphi}^\Delta t_s^L} - \sqrt{\hat{\psi}_e}\right|^2 \, dq \right)^{\frac{1}{2}} \|\nabla_x \hat{\varphi}\|_{L^\infty(\Omega \times D)} \, dx \, dt
$$

$$
= 2\varepsilon \left(\int_0^T \left\|\sqrt{M \hat{\varphi}^\Delta t_s^L} - \sqrt{M \hat{\psi}_e}\right\|_{L^2(\Omega \times D)} \, dt\right)^{\frac{1}{2}}
$$

$$
\times \left(\int_0^T \left\|\nabla_x \sqrt{\hat{\varphi}^\Delta t_s^L}\right\|_{L^2(\Omega \times D)} \, dt\right)^{\frac{1}{2}}
$$

$$
\times \left(\int_0^T \int_D \left|\sqrt{\hat{\varphi}^\Delta t_s^L} - \sqrt{\hat{\psi}_e}\right|^2 \, dq \right)^{\frac{1}{2}} \right) \left(\int_0^T \left\|\nabla_x \hat{\varphi}\right\|_{L^\infty(\Omega \times D)} \, dx \, dt\right)^{\frac{1}{2}}.
$$
were \(r \in (2, \infty) \). Using the bound on the sixth term in (6.2), together with the Sobolev embedding theorem, we then have (with \(C_* \) now denoting a possibly different constant than in (6.2), but one that is still independent of \(L \) and \(\Delta t \)) that

\[
|V_1| \leq 2C_* \varepsilon \left\| \sqrt{M} \hat{\psi}_{\varepsilon,L} \right\|_{L^r(0,T;L^2(\Omega \times D))} \left\| \nabla_x \hat{\varphi} \right\|_{L^\infty(0,T;L^\infty(\Omega \times D))} \leq 2C_* \varepsilon \left\| \hat{\psi}_{\varepsilon,L} \right\|_{L^r(0,T;L^2(\Omega \times D))} + \left\| \nabla_x \hat{\varphi} \right\|_{L^\infty(0,T;L^\infty(\Omega \times D))},
\]

where we also used the elementary inequality \(|\sqrt{c_1} - \sqrt{c_2}| \leq \sqrt{|c_1 - c_2|} \) with \(c_1, c_2 \in \mathbb{R}_{>0} \). The norm of the difference in the last displayed line is known to converge to 0 as \(L \to \infty \) (and \(\Delta t \to 0_+ \)) by (6.40d). This then implies that the term \(V_1 \) converges to 0 as \(L \to \infty \) (and \(\Delta t \to 0_+ \)).

Concerning the term \(V_2 \), we have that

\[
V_2 = 2\varepsilon \int_0^T \int_{\Omega \times D} M \hat{\psi}_{\varepsilon,L} \nabla_x \sqrt{\hat{\psi}_{\varepsilon,L}} \cdot \sqrt{M} \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\varphi} \, dq \, dx \, dt.
\]

Once we have verified that \(\sqrt{M} \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\varphi} \) belongs to \(L^2(0,T;L^2(\Omega \times D)) \), the weak convergence result (6.40a) will imply that

\[
V_2 \to 2\varepsilon \int_0^T \int_{\Omega \times D} M \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\psi}_{\varepsilon,L} \cdot \sqrt{M} \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\varphi} \, dq \, dx \, dt = \varepsilon \int_0^T \int_{\Omega \times D} M \nabla_x \hat{\psi}_{\varepsilon,L} \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt
\]

as \(L \to \infty \) (and \(\Delta t \to 0_+ \)), and we will have completed Step 3.2. Let us therefore show that \(\sqrt{M} \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\varphi} \) belongs to \(L^2(0,T;L^2(\Omega \times D)) \); the justification is quite straightforward: using (6.47) we have that

\[
\int_0^T \int_{\Omega \times D} \left\| \sqrt{M} \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\varphi} \right\|^2 \, dq \, dx \, dt = \int_0^T \int_{\Omega \times D} M \hat{\psi}_{\varepsilon,L} \left\| \nabla_x \hat{\varphi} \right\|^2 \, dq \, dx \, dt \leq \int_0^T \int_{\Omega} \left\| \nabla_x \hat{\varphi} \right\|^2_{L^2(\Omega \times D)} \left(\int_{\Omega} M \hat{\psi}_{\varepsilon,L} \, dq \right) \, dx \, dt \leq \int_0^T \int_{\Omega} \left\| \nabla_x \hat{\varphi} \right\|^2_{L^2(\Omega \times D)} \, dx \, dt = \left\| \nabla_x \hat{\varphi} \right\|^2_{L^2(0,T;L^2(\Omega \times D))} < \infty.
\]

That now completes Step 3.2.

Step 3.3. The third term in (4.3) is dealt with as follows:

\[
- \int_0^T \int_{\Omega \times D} M u_{\varepsilon,L} \hat{\psi}_{\varepsilon,L} \nabla_x \hat{\varphi} \, dq \, dx \, dt = - \int_0^T \int_{\Omega \times D} M u_{\varepsilon,L} \hat{\psi}_{\varepsilon,L} \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt + \int_0^T \int_{\Omega \times D} M (u_{\varepsilon} - u_{\varepsilon,L}) \hat{\psi}_{\varepsilon,L} \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt + \int_0^T \int_{\Omega \times D} M u_{\varepsilon} (\hat{\psi}_{\varepsilon} - \hat{\psi}_{\varepsilon,L}) \cdot \nabla_x \hat{\varphi} \, dq \, dx \, dt.
\]

We label the last two terms by \(V_3 \) and \(V_4 \) and we show that each of them converges to 0 as \(L \to 0 \) (and \(\Delta t \to 0_+ \)). We start with term \(V_3 \); below, we apply Hölder’s inequality with \(r \in (1, \infty) \) in
the case of \(d = 2 \) and with \(r \in (1, 2) \) when \(d = 3 \):

\[
|V_3| = \left| \int_0^T \int_\Omega (u_e - u_{\varepsilon,L}) \cdot \left[\int_D M \hat{\psi}_{\varepsilon,L}^{\Delta t,+} \left(\nabla \hat{\varphi} \right) \right] \, dq \, dx \, dt \right|
\]

\[
\leq \int_0^T \int_\Omega |u_e - u_{\varepsilon,L}| \left[\int_D M \hat{\psi}_{\varepsilon,L}^{\Delta t,+} \, dq \right] \| \nabla \hat{\varphi} \|_{L^\infty(D)} \, dx \, dt
\]

\[
\leq \int_0^T \int_\Omega |u_e - u_{\varepsilon,L}| \| \nabla \hat{\varphi} \|_{L^\infty(D)} \, dx \, dt
\]

\[
\leq \int_0^T \left(\int_\Omega |u_e - u_{\varepsilon,L}| \, dx \right)^{\frac{1}{r}} \left(\int_\Omega \| \nabla \hat{\varphi} \|_{L^\infty(D)} \, dx \right)^{\frac{r-1}{r}} \, dt
\]

\[
\leq \left\| u_e - u_{\varepsilon,L} \right\|_{L^r(\Omega)} \left\| \nabla \hat{\varphi} \right\|_{L^{\frac{r}{r-1}}(\Omega; L^\infty(D))}.
\]

where in the transition from the second line to the third line we made use of \((6.40b)\). Thanks to \((6.39a)\) the first factor in the last line converges to 0, and hence \(V_3\) converges to 0 also, as \(L \to \infty\) (and \(\Delta t \to 0_+\)).

For \(V_4\), we have, by using Fubini’s theorem, the factorization

\[
(6.52) \quad M \left(\sqrt{\hat{\varphi}} - \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}} \right) = M^\frac{1}{2} \left(\sqrt{\hat{\varphi}} - \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}} \right) M^\frac{1}{2} \left(\sqrt{\hat{\varphi}} + \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}} \right),
\]

together with the Cauchy–Schwarz inequality, \((6.31b), (6.41)\) and the inequality \(|\sqrt{c_1} - \sqrt{c_2}| \leq \sqrt{|c_1 - c_2|} \) with \(c_1, c_2 \in \mathbb{R}_{>0}\), that

\[
|V_4| \leq \int_0^T \int_{\Omega \times D} M |u_e| |\hat{\psi}_e - \hat{\psi}_{\varepsilon,L}^{\Delta t,+}| |\nabla \hat{\varphi}| \, dq \, dx \, dt
\]

\[
\leq \int_0^T \int_{\Omega} |u_e| \left(\int_D M |\hat{\psi}_e - \hat{\psi}_{\varepsilon,L}^{\Delta t,+}| \, dq \right) \| \nabla \hat{\varphi} \|_{L^\infty(D)} \, dx \, dt
\]

\[
\leq 2 \int_0^T \int_{\Omega} |u_e| \left(\int_D M |\sqrt{\hat{\psi}_e} - \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}}|^2 \, dq \right)^\frac{1}{2} \| \nabla \hat{\varphi} \|_{L^\infty(D)} \, dx \, dt
\]

\[
\leq 2 \int_0^T \left(\int_{\Omega} |u_e|^2 \, dx \right)^\frac{1}{2} \left(\int_{\Omega \times D} M |\sqrt{\hat{\psi}_e} - \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}}|^2 \, dq \, dx \right)^\frac{1}{2}
\]

\[
\times \| \nabla \hat{\varphi} \|_{L^\infty(\Omega \times D)} \, dt
\]

\[
\leq 2 \int_0^T \left(\int_{\Omega} |u_e|^2 \, dx \right)^\frac{1}{2} \left(\int_{\Omega \times D} M |\sqrt{\hat{\psi}_e} - \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}}|^2 \, dq \, dx \right)^\frac{1}{2}
\]

\[
\times \| \nabla \hat{\varphi} \|_{L^\infty(\Omega \times D)} \, dt
\]

\[
\leq 2 \|u_e\|_{L^\infty(0,T; L^2(\Omega))} \|\hat{\psi}_e - \hat{\psi}_{\varepsilon,L}^{\Delta t,+}\|_{L^1(0,T; L^1(\Omega \times D))} \|\nabla \hat{\varphi}\|_{L^2(0,T; L^\infty(\Omega \times D))}.
\]

By \((6.39b)\) the first factor in the last line is finite while, according to \((6.40a)\) (with \(p = 1\)), the middle factor converges to 0 as \(L \to \infty\) (and \(\Delta t \to 0_+\)). This proves that \(V_4\) converges to 0 as \(L \to \infty\) (and \(\Delta t \to 0_+\)), also. That completes Step 3.3.

Step 3.4. Thanks to \((6.40b)\), as \(L \to \infty\) (and \(\Delta t \to 0_+\)),

\[
M^\frac{1}{2} \nabla q_L \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}} \to M^\frac{1}{2} \nabla q \sqrt{\hat{\psi}_e} \quad \text{weakly in } L^2(0,T; L^2(\Omega \times D)).
\]

This, in turn, implies that, componentwise, as \(L \to \infty\) (and \(\Delta t \to 0_+\)),

\[
M^\frac{1}{2} \nabla q_L \sqrt{\hat{\psi}_{\varepsilon,L}^{\Delta t,+}} \to M^\frac{1}{2} \nabla q \sqrt{\hat{\psi}_e} \quad \text{weakly in } L^2(0,T; L^2(\Omega \times D))
\]
for each \(j = 1, \ldots, K \), whereby also,

\[
M^\frac{1}{2} \sum_{j=1}^{K} A_{ij} \nabla q_i \sqrt{\psi_{c,L}^{\Delta t, \pm}} \to M^\frac{1}{2} \sum_{j=1}^{K} A_{ij} \nabla q_i \sqrt{\psi} \quad \text{weakly in } L^2(0,T; L^2(\Omega \times D)),
\]

for each \(i = 1, \ldots, K \). That places us in a very similar position as in the case of Step 3.2, and we can argue in an identical manner as there to show that

\[
\frac{1}{2} \lambda \int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla q_i \sqrt{\psi_{c,L}^{\Delta t, \pm}} \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt \to \frac{1}{2} \lambda \int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla q_i \sqrt{\psi} \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt
\]

as \(L \to \infty \) and \(\Delta t \to 0_+ \), for all \(\hat{\varphi} \in L^{\frac{2}{r-2}}(0,T; W^{1,\infty}(\Omega \times D)) \), \(r \in (2, \infty) \), and in particular for all \(\hat{\varphi} \in C^1([0,T]; C^\infty(\Omega \times D)) \). That completes Step 3.4.

Step 3.5. The final term in (4.4), the drag term, is the one in the equation that is the most difficult to deal with. We shall break it up into four subterms, three of which will be shown to converge to 0 in the limit of \(L \to \infty \) (and \(\Delta t \to 0_+ \)), leaving the fourth term as the (expected) limiting value:

\[
- \int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \left[\sigma(u_{c,L}^{\Delta t, +}) q_i \right] \beta_L(\psi_{c,L}^{\Delta t, +}) \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt
\]

\[
= - \int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \left[\left(\nabla_x u_{c,L}^{\Delta t, +} \right) q_i \right] \beta_L(\psi_{c,L}^{\Delta t, +}) \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt
\]

\[
= - \int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \left[\left(\nabla_x u_{c,L}^{\Delta t, +} \right) q_i \right] \left(\beta_L(\psi_{c,L}^{\Delta t, +}) - \beta_L(\psi) \right) \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt
\]

\[
- \int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \left[\left(\nabla_x u_{c,L}^{\Delta t, +} - \nabla_x u_x \right) q_i \right] \hat{\psi} \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt
\]

(6.53)

\[
\int_0^T \int_{\Omega \times D} M \sum_{i=1}^{K} \left[\left(\nabla_x u_x \right) q_i \right] \hat{\psi} \cdot \nabla q_i \hat{\varphi} dq \, dx \, dt.
\]
and (6.37), and then proceeding as in the case of term V_4 in Step 3.3:

$$|V_5| \leq \sqrt{b} \int_0^T \int_{\Omega \times D} M \left| \nabla_x \tilde{u}_{\varepsilon,L}^{\Delta t,+} \right| \tilde{\psi}_{\varepsilon,L} \cdot \tilde{\varphi} \ dx \ dt$$

$$\leq \sqrt{b} \int_0^T \left[\int_{\Omega} \left| \nabla_x u_{\varepsilon,L}^{\Delta t,+} \right| \left(\int_{D} M \left| \tilde{\psi}_{\varepsilon,L} \right| \ dx \right) \ dx \right] \left\| \nabla_{\tilde{\varphi}} \right\|_{L^\infty(\Omega \times D)}$$

$$\leq 2\sqrt{b} \left\| \nabla_x u_{\varepsilon,L}^{\Delta t,+} \right\|_{L^2(0,T;L^2(\Omega))} \left\| \tilde{\psi}_{\varepsilon,L} \right\|_{L^1(0,T;L^1(\Omega \times D))}$$

$$\times \left\| \nabla_{\tilde{\varphi}} \right\|_{L^\infty((0,T) \times D)}.$$

On noting the bound on the third term on the left-hand side of (6.35) and the convergence result (6.40d) that was proved in Step 2, we deduce that term V_5 converges to 0 as $L \to \infty$ (and $\Delta t \to 0_+)$.

We move on to term V_6, using an identical argument as in the case of term V_5:

$$|V_6| \leq \sqrt{b} \int_0^T \int_{\Omega \times D} M \left| \nabla_x \tilde{u}_{\varepsilon,L}^{\Delta t,+} \right| \left| \beta^L(\tilde{\psi}_{\varepsilon,L}) - \tilde{\psi}_{\varepsilon,L} \right| \tilde{\varphi} \ dx \ dt$$

$$\leq \sqrt{b} \int_0^T \left[\int_{\Omega} \left| \nabla_x u_{\varepsilon,L}^{\Delta t,+} \right| \left(\int_{D} \left| \beta^L(\tilde{\psi}_{\varepsilon,L}) - \tilde{\psi}_{\varepsilon,L} \right| \ dx \right) \ dx \right] \left\| \nabla_{\tilde{\varphi}} \right\|_{L^\infty(\Omega \times D)}$$

$$\leq 2\sqrt{b} \left\| \nabla_x u_{\varepsilon,L}^{\Delta t,+} \right\|_{L^2(0,T;L^2(\Omega))} \left\| \beta^L(\tilde{\psi}_{\varepsilon,L}) - \tilde{\psi}_{\varepsilon,L} \right\|_{L^1(0,T;L^1(\Omega \times D))}$$

$$\times \left\| \nabla_{\tilde{\varphi}} \right\|_{L^\infty((0,T) \times D)}.$$

Observe that $0 \leq \tilde{\psi}_{\varepsilon,L} - \beta^L(\tilde{\psi}_{\varepsilon,L}) \leq \tilde{\psi}_{\varepsilon,L}$ and that $\tilde{\psi}_{\varepsilon,L} - \beta^L(\tilde{\psi}_{\varepsilon,L})$ converges to 0 almost everywhere on $\Omega \times D \times (0,T)$ as $L \to \infty$. Note further that, thanks to (6.40d) with $p = 1$, $\tilde{\psi}_{\varepsilon,L} \in L^1(0,T;L^1(\Omega \times D))$. Thus, Lebesgue’s dominated convergence theorem implies that, as $L \to \infty$, the middle factor in the displayed line converges to 0. Hence, recalling the bound on the third term on the left-hand side of (6.35), we thus deduce that V_6 converges to 0 as $L \to \infty$ (and $\Delta t \to 0_+)$.

Finally, we consider the term V_7:

$$V_7 := - \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \left(\nabla_x \tilde{u}_{\varepsilon,L}^{\Delta t,+} - \nabla_x \tilde{u}_{\varepsilon} \right) \left[\tilde{\psi}_{\varepsilon,L} \tilde{\varphi} \right] \ dx \ dt.$$

We observe that, before starting to bound V_7, we should perform an integration by parts in order to transfer the x-gradients from the difference $\nabla_x \tilde{u}_{\varepsilon,L}^{\Delta t,+} - \nabla_x \tilde{u}_{\varepsilon}$ onto the other factors under the integral sign, as we only have weak, but not strong, convergence of $\nabla_x \tilde{u}_{\varepsilon,L}^{\Delta t,+} - \nabla_x \tilde{u}_{\varepsilon}$ to 0, (cf. (6.39a)), whereas the difference $\tilde{u}_{\varepsilon,L}^{\Delta t,+} - \tilde{u}_{\varepsilon}$ converges to 0 strongly by virtue of (6.39a).

We note this respect is that the function $x \in \Omega \mapsto \tilde{\psi}_{\varepsilon,L}(x,q,t) \in \mathbb{R}_{\geq 0}$ has a well-defined trace on $\partial\Omega$ for a.e. $(q,t) \in D \times (0,T)$, since, thanks to (6.40a),

$$\sqrt{\tilde{\psi}_{\varepsilon,L}(\cdot,q,t)} \in H^{1,2}$$

and therefore

$$\sqrt{\tilde{\psi}_{\varepsilon,L}(\cdot,q,t)} |_{\partial\Omega} \in H^{1/2}(\partial\Omega),$$

for a.e. $(q,t) \in D \times (0,T)$, implying that $\sqrt{\tilde{\psi}_{\varepsilon,L}(\cdot,q,t)} |_{\partial\Omega} \in L^2(\partial\Omega)$ for a.e. $(q,t) \in D \times (0,T)$, with $2p \in (1,\infty)$ when $d = 2$ and $2p \in [1,4]$ when $d = 3$, whereby $\tilde{\psi}_{\varepsilon,L} |_{\partial\Omega} \in L^p(\partial\Omega)$ for a.e. $(q,t) \in D \times (0,T)$, with $p \in [1,2]$ when $d = 2$ and $p \in [1,2]$ when $d = 3$. As the functions \tilde{u}_{ε} and $\tilde{u}_{\varepsilon,L}^{\Delta t,+}$ have zero trace on $\partial\Omega$, the boundary integral that arises in the course of integration by parts is correctly defined and, in fact, vanishes. With these preliminary remarks in mind, we first write

$$V_7 = - \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{m=1}^d \frac{\partial}{\partial x_m} \left[\left(\tilde{u}_{\varepsilon,L}^{\Delta t,+} n \right) - \left(\tilde{u}_{\varepsilon} n \right) \right] \tilde{\psi}_{\varepsilon,L} \left(\nabla_{\tilde{\varphi}} \right) \ dx \ dt.$$

Here, $(\tilde{u}_{\varepsilon,L}^{\Delta t,+})_n$ and $(\tilde{u}_{\varepsilon})_n$ denote the nth among the d components of the vectors $\tilde{u}_{\varepsilon,L}^{\Delta t,+}$ and \tilde{u}_{ε}, $1 \leq n \leq d$, respectively, and $(\nabla_{\tilde{\varphi}} \tilde{\varphi})_n$ denotes the nth among the d components of the vector $\nabla_{\tilde{\varphi}} \tilde{\varphi}$.
$1 \leq n \leq d$, for each $i \in \{1, \ldots, K\}$. Similarly, $(q_i)_m$ denotes the mth component, $1 \leq m \leq d$, of the d-component vector q_i for $i \in \{1, \ldots, K\}$. Now, on integrating by parts w.r.t. x_m and cancelling the boundary integral terms, with the justification given above, we have that

\[V_7 = \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{m,n=1}^d \left[\left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right] \frac{\partial}{\partial x_m} \left(\int \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) \frac{\partial}{\partial x_m} \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) \right) dq dx dt

\]

\[= \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{m,n=1}^d \left[\left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right] \frac{\partial}{\partial x_m} \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) dq dx dt

\]

\[+ \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{m,n=1}^d \left[\left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right] \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) \frac{\partial}{\partial x_m} \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) dq dx dt

\]

\[=: V_{7,1} + V_{7,2}. \]

For the term $V_{7,1}$, we have that

\[|V_{7,1}| \leq \int_0^T \int_{\Omega \times D} M \sum_{i=1}^K \sum_{m,n=1}^d \left| \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right| \left| \frac{\partial}{\partial x_m} \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) \right| dq dx dt

\]

\[\leq \int_0^T \int_{\Omega \times D} M \left(\sum_{i=1}^K \sum_{m,n=1}^d \left| \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right|^2 \right)^{\frac{1}{2}} \times \left(\sum_{i=1}^K \sum_{m,n=1}^d \left| \frac{\partial}{\partial x_m} \left(\sum_{i=1}^K \sum_{m,n=1}^d \left((u_{\varepsilon,L}^{t_+})_n - (u_x)_n \right) (q_i)_m \right) \right|^2 \right)^{\frac{1}{2}} dq dx dt

\]

\[= \int_0^T \int_{\Omega \times D} M \left| u_{\varepsilon,L}^{t_+} - u_x \right| \left| \nabla \phi \right| \left| \nabla q \phi \right| dq dx dt

\]

\[\leq \sqrt{b} \int_0^T \left(\int_{\Omega \times D} M \left| u_{\varepsilon,L}^{t_+} - u_x \right| \left| \nabla \phi \right| dq dx \right) \left| \nabla q \phi \right| L^\infty(\Omega \times D) dt

\]

\[= 2\sqrt{b} \int_0^T \left[\int_\Omega \left| u_{\varepsilon,L}^{t_+} - u_x \right| \left(\int_D M \left| \nabla \phi \right| \left| \nabla \phi \right| dq dx \right) \right] \left| \nabla q \phi \right| L^\infty(\Omega \times D) dt

\]

\[\leq 2\sqrt{b} \int_0^T \left[\int_\Omega \left| u_{\varepsilon,L}^{t_+} - u_x \right| \left(\int_D M \left| \nabla \phi \right| \left| \nabla \phi \right| dq dx \right) \right]^2 \left| \nabla q \phi \right| L^\infty(\Omega \times D) dt, \]

where in the transition to the last line we used the Cauchy–Schwarz inequality in conjunction with the upper bound (6.47). Hence,

\[|V_{7,1}| \leq 2\sqrt{b} \left| u_{\varepsilon,L}^{t_+} - u_x \right| L^2(0,T;L^2(\Omega)) \left| \nabla \phi \right| L^2(0,T;L^2(\Omega \times D)) \times \left| \nabla q \phi \right| L^\infty(0,T;L^\infty(\Omega \times D)) \cdot \]

Thanks to (6.39C) with $r = 2$ and (6.40D), $V_{7,1}$ tends to 0 as $L \to 0$ (and $\Delta t \to 0^+$).

Let us now consider the term $V_{7,2}$. Proceeding similarly as in the case of the term $V_{7,1}$, using (6.47), yields

\[|V_{7,2}| \leq \sqrt{b} \left| u_{\varepsilon,L}^{t_+} - u_x \right| L^2(0,T;L^2(\Omega)) \left| \nabla \phi \right| L^2(0,T;L^2(\Omega \times D)) \cdot \]

Noting (6.39C) with $r = 2$, we deduce that $V_{7,2}$ converges to 0 as $L \to 0$ (and $\Delta t \to 0^+$). Having shown that both $V_{7,1}$ and $V_{7,2}$ converge to 0 as $L \to 0$ (and $\Delta t \to 0^+$), it follows that the same is true of $V_7 = V_{7,1} + V_{7,2}$. We have already shown that V_5 and V_6 converge to 0 as $L \to 0$ (and $\Delta t \to 0^+$). Since the sum of the first three terms on the left-hand side of (6.53) converges to 0, it follows that the left-most expression in the chain (6.53) converges to the right-most term, in the limit of $L \to \infty$ (and $\Delta t \to 0^+$). That completes Step 3.5.
Having dealt with (4.4), we now turn to (4.3), with the aim to pass to the limit with L (and Δt). In Steps 3.6 and 3.7 below we shall choose as our test function

$$w \in C^1([0, T]; C_0^\infty(\Omega)) \quad \text{with} \quad w(\cdot, T) = 0, \quad \text{and} \quad \nabla_x \cdot w = 0 \quad \text{on} \quad \Omega \quad \text{for all} \quad t \in [0, T].$$

Clearly, any such w belongs to $L^1(0, T; V)$ and is therefore a legitimate choice of test function in (4.3). Furthermore, for any $\sigma \geq 1$, the set of such smooth test functions w is dense in the space of all functions in $W^{1, 1}(0, T; V_\sigma)$ that vanish at $t = T$. As each term in (4.3) has been shown before to be a continuous linear functional on $L^2(0, T; V_\sigma)$, $\sigma \geq \frac{1}{2}d$, $\sigma > 1$ and $W^{1, 1}(0, T; V_\sigma)$ is (continuously) embedded in $L^2(0, T; V_\sigma)$, $\sigma \geq \frac{1}{2}d$, $\sigma > 1$, the use of such smooth test functions for the purposes of the argument below is fully justified.

Step 3.6. The terms on the left-hand side of (4.3) are handled routinely, using (6.39) and, respectively, integration by parts in time in conjunction with (6.39c) with $r = 2$, (6.39d) and recalling that $y^\prime \rightarrow y_0$ weakly in H. In particular, the second (nonlinear) term on the left-hand side of (4.3) is quite simple to deal with on rewriting it as $-\int_0^T (u_{\varepsilon, L}^{\Delta t_1} \otimes u_{\varepsilon, L}^{\Delta t_2} - \Delta \psi_{\varepsilon, L}) \cdot \nabla_x w \, dt$, and then considering the difference $\int_0^T (u_{\varepsilon} \otimes u_{\varepsilon} - u_{\varepsilon, L}^{\Delta t_1} \otimes u_{\varepsilon, L}^{\Delta t_2} - \Delta \psi_{\varepsilon, L}) \cdot \nabla_x w \, dt$, which is bounded by

$$\left(\int_0^T \| u_{\varepsilon} \otimes u_{\varepsilon} - u_{\varepsilon, L}^{\Delta t_1} \otimes u_{\varepsilon, L}^{\Delta t_2} \nabla \psi_{\varepsilon, L} \|_{L^1(0, T; L^\infty(\Omega))} \right) \| \nabla_x w \|_{L^\infty(0, T; L^\infty(\Omega))}.$$

By adding and subtracting $u_{\varepsilon} \otimes u_{\varepsilon, L}^{\Delta t_2}$ inside the first norm sign, using the triangle inequality, followed by the Cauchy–Schwarz inequality in each of the resulting terms, and then applying the first bound in (6.35) and (6.39c) with $r = 2$, we deduce that the above expression converges to 0 as $L \rightarrow \infty$ (and $\Delta t \rightarrow 0_+$). The convergence of the first term on the right-hand side of (4.3) to the correct limit, as $L \rightarrow \infty$ (and $\Delta t \rightarrow 0_+$), is an immediate consequence of (3.29). We refer the reader for a similar argument to Ch. 3, Sec. 4 of Temam [19]. That completes Step 3.6.

Step 3.7. The extra-stress tensor appearing on the right-hand side of (4.3) is dealt with as follows. First, by using (3.14) and noting that σ is, by assumption, divergence-free, and proceeding in exactly the same manner as in (1.48), but with $\psi_{\varepsilon, L}^{\Delta t_1}$ now replaced by $\psi_{\varepsilon, L}^{\Delta t_1} - \psi_\varepsilon$, we have that

$$V_s := k \int_0^T \int_\Omega \mathcal{C}_i(M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}) : \nabla_x w \, dx \, dt - k \int_0^T \int_\Omega \mathcal{C}_i(M \mathcal{\tilde{\psi}}_{\varepsilon}) : \nabla_x w \, dx \, dt \quad \text{for} \quad k \geq 1.$$

We rewrite the second factor in the integrand of the last integral as follows:

$$M \left(\nabla_q \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L} - \nabla_q \mathcal{\tilde{\psi}}_{\varepsilon} \right) = 2 \left(\sqrt{M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}} - \sqrt{M \mathcal{\tilde{\psi}}_{\varepsilon}} \right) \left(M^{\frac{1}{2}} \nabla_q \sqrt{M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}} \right) + 2 \sqrt{M \mathcal{\tilde{\psi}}_{\varepsilon}} \left(M^{\frac{1}{2}} \nabla_q \sqrt{M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}} - M^{\frac{1}{2}} \nabla_q \sqrt{M \mathcal{\tilde{\psi}}_{\varepsilon}} \right).$$

Hence we obtain the following inequality:

$$V_s \leq 2k \sqrt{b} \int_0^T \int_\Omega |\nabla_x w| \left(\int_D \sqrt{M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}} - \sqrt{M \mathcal{\tilde{\psi}}_{\varepsilon}} \right) \left(M^{\frac{1}{2}} \nabla_q \sqrt{M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}} \right) \, dq \, dx \, dt$$

$$+ 2k \int_0^T \int_\Omega \left(\int_D \sum_{i=1}^K (\nabla_x w) q_i \right) \sqrt{M \mathcal{\tilde{\psi}}_{\varepsilon}} \left(M^{\frac{1}{2}} \nabla_q \sqrt{M \mathcal{\tilde{\psi}}^{\Delta t_1}_{\varepsilon, L}} - M^{\frac{1}{2}} \nabla_q \sqrt{M \mathcal{\tilde{\psi}}_{\varepsilon}} \right) \, dq \, dx \, dt$$

$$=: V_{s,1} + V_{s,2}.$$
For $V_{8.1}$, we have, by using that $|\sqrt{c_1} - \sqrt{c_2}| \leq \sqrt{|c_1 - c_2|}$ for any $c_1, c_2 \in \mathbb{R}_{\geq 0}$:

$$V_{8.1} \leq 2k \sqrt{b} \int_0^T \left| \nabla_x w \right|_{L^\infty(0,T; L^2(\Omega))} \left(\nabla_x \left(\psi_{\epsilon,L}^{\Delta t^+} \right) - \nabla_x \left(\psi_{\epsilon,L}^+ \right) \right) \left(\nabla_x \left(\psi_{\epsilon,L}^{\Delta t^+} \right) - \nabla_x \left(\psi_{\epsilon,L}^+ \right) \right) dt$$

$$\leq 2k \sqrt{b} \left\| \nabla_x w \right\|_{L^\infty(0,T; L^2(\Omega))} \left(\nabla_x \left(\psi_{\epsilon,L}^{\Delta t^+} \right) - \nabla_x \left(\psi_{\epsilon,L}^+ \right) \right) \left(\nabla_x \left(\psi_{\epsilon,L}^{\Delta t^+} \right) - \nabla_x \left(\psi_{\epsilon,L}^+ \right) \right) dt$$

By noting (6.40a) with $p = 1$ and the bound on the seventh term in (6.2), we deduce that the term $V_{8.1}$ converges to 0 in the limit of $L \to \infty$ (and $\Delta t \to 0_+$).

Finally, for $V_{8.2}$, we first define the (Kd)-component column-vector function $\Xi := \left[\Xi_1, \ldots, \Xi_K \right]^T$, where $\Xi_i := \sqrt{M \hat{\psi}_x} \left(\nabla_x w \right) \hat{q}_i$, $i = 1, \ldots, K$, and note that

$$V_{8.2} = 2k \int_0^T \left(\frac{1}{2} \nabla_x \left(\psi_{\epsilon,L}^{\Delta t^+} \right) - \nabla_x \left(\psi_{\epsilon,L}^+ \right) \right) \left(\nabla_x \left(\psi_{\epsilon,L}^{\Delta t^+} \right) - \nabla_x \left(\psi_{\epsilon,L}^+ \right) \right) dt$$

The convergence of $V_{8.2}$ to 0 will directly follow from (6.40b) once we have shown that $\Xi \in L^2(0,T; L^2(\Omega \times D))$. The latter is straightforward to verify, using (6.47):

$$\int_0^T \int_{\Omega \times D} |\Xi|^2 dq dx dt = \sum_{i=1}^K \int_0^T \int_{\Omega \times D} |\Xi_i|^2 dq dx dt$$

$$= \sum_{i=1}^K \int_0^T \int_{\Omega \times D} \left(\sqrt{M \hat{\psi}_x} \left(\nabla_x w \right) \hat{q}_i \right)^2 dq dx dt$$

$$\leq \int_0^T \int_{\Omega \times D} |\nabla_x w|^2 |q_i|^2 M \hat{\psi}_x dq dx dt$$

$$= b \int_0^T \int_{\Omega} \frac{1}{2} |\nabla_x w|^2 \left(\int_D M \hat{\psi}_x dq \right) dx dt$$

$$\leq b \left\| \nabla_x w \right\|_{L^2(0,T; L^2(\Omega))}^2 < \infty,$$

where in the transition to the last line we used (6.47).

Thus we deduce from (6.40b) that $V_{8.2}$ converges to 0 as $L \to \infty$ (and $\Delta t \to 0_+$). As both $V_{8.1}$ and $V_{8.2}$ converge to 0, the same is true of V_5, which then implies (6.40c), thanks to the denseness of the set of divergence-free functions contained in $C^1([0,T]; C^\infty_0(\Omega))$ and vanishing at $t = T$ in the function space $L^2(0,T; \mathbb{V}_\sigma)$, $\sigma \geq \frac{1}{2}d$, $\sigma > 1$. That completes Step 3.7, and the proof of (6.40a).

Step 3.8. Steps 3.1–3.7 enable us to pass to the limits $L \to \infty$, $\Delta t \to 0_+$, with $\Delta t = o(L^{-1})$ as $L \to \infty$, to deduce the existence of a pair (ψ_0, ψ_ϵ) satisfying (6.41), (6.42) for smooth test functions φ and w, as above. The denseness of the set of divergence-free functions contained in $C^1([0,T]; C^\infty_0(\Omega))$ and vanishing at $t = T$ in the set of all functions in $W^{1,1}(0,T; \mathbb{V}_\sigma)$ and vanishing at $t = T$, $\sigma \geq \frac{1}{2}d$, $\sigma > 1$, and the denseness of the set of functions contained in $C^1([0,T]; C^\infty(\nabla \times D))$ and vanishing at $t = T$ in the set of all functions in $W^{1,1}(0,T; H^1(\nabla \times D))$ and vanishing at $t = T$, $s \geq 1 + \frac{1}{2}(K + 1)d$, yield (6.41) and (6.42). That completes Step 3.8.

Step 3.9. Let X be a Banach space. We shall denote by $C_w([0,T]; X)$ the set of all functions $x \in L^\infty(0,T; X)$ such that $t \in [0,T] \mapsto (x,t)_X \in \mathbb{R}$ is continuous on $[0,T]$ for all $x' \in X'$, the dual space of X. Whenever X has a predual, E, say, (viz. $E' = X$), we shall denote by $C_w([0,T]; X)$ the set of all functions $x \in L^\infty(0,T; X)$ such that $t \in [0,T] \mapsto (x(t),e)_E \in \mathbb{R}$ is continuous on $[0,T]$ for all $e \in E$.

The next result will play an important role in what follows.
Lemma 6.3. Let X and Y be Banach spaces.

(a) If the space X is reflexive and is continuously embedded in the space Y, then $L^\infty(0, T; X) \cap C_w([0, T]; Y) = C_w([0, T]; X)$.

(b) If X has separable predual E and Y has predual F such that F is continuously embedded in E, then $L^\infty(0, T; X) \cap C_w([0, T]; Y) = C_w([0, T]; X)$.

Part (a) is due to Strauss [48] (cf. Lions & Magenes [34], Lemma 8.1, Ch. 3, Sec. 8.4); part (b) is proved analogously, via the sequential Banach–Alaoglu theorem. That $u_\varepsilon \in C_w([0, T]; H)$ then follows from $u_\varepsilon \in L^\infty(0, T; H) \cap H^1(0, T; V')$ by Lemma 6.3(a), with $X := H, Y := V'$, $\sigma \geq \frac{1}{2}d, \sigma > 1$. That $\tilde{\psi}_\varepsilon \in C_w([0, T]; L^1_M(\Omega \times D))$ follows from $F(\tilde{\psi}_\varepsilon) \in L^\infty(0, T; L^1_M(\Omega \times D))$ and $\hat{\psi}_\varepsilon \in H^1(0, T; M^{-1}(H^s(\Omega \times D))')$ by Lemma 6.3(b) on taking $X := \Gamma^\psi_M(\Omega \times D)$, the Maxwell weighted Orlicz space with Young’s function $\Psi(r) = F(1 + |r|)$ (cf. Kufner, John & Fučík [31], Sec. 3.18.2) whose separable predual $E := E^\psi_M(\Omega \times D)$ has Young’s function $\Psi(r) = \exp |r| - |r| - 1$, and $Y := M^{-1}(H^s(\Omega \times D))'$ whose predual w.r.t. the duality pairing $(M^\cdot, \cdot)_{H^s(\Omega \times D)} = F := H^s(\Omega \times D)$, $s > 1 + \frac{1}{2}(K + 1)d$, and noting that $C_w([0, T]; L^1_M(\Omega \times D)) \hookrightarrow C_w([0, T]; L^1_M(\Omega \times D))$. The last embedding and that $F \hookrightarrow E$ are proved by adapting Def. 3.6.1. and Thm. 3.2.3 in Kufner, John & Fučík [31] to the measure $M(q) dq dx$ to show that $L^\infty(\Omega \times D) \hookrightarrow E^\psi_M(\Omega \times D)$ for any Young’s function Ξ, and then adapting Theorem 3.17. ibid. to deduce that $F \hookrightarrow L^\infty(\Omega \times D) \hookrightarrow E^\psi_M(\Omega \times D) = E$. [The abstract framework in Temam [49], Ch. 3, Sec. 4 then implies that u_ε and $\tilde{\psi}_\varepsilon$ satisfy $u_\varepsilon(0, \cdot) = u_0(\cdot)$ and $\tilde{\psi}_\varepsilon(\cdot, 0) = \tilde{\psi}(\cdot, \cdot)$ in the sense of $C_w([0, T]; H)$ and $C_w([0, T]; L^1_M(\Omega \times D))$, respectively.]

Step 3.10. The energy inequality (6.42) is a direct consequence of (6.39a,c) and (6.40a,b,d), on noting the (weak) lower-semicontinuity of the terms on the left-hand side of (6.29) and (6.34), that completes Step 3.10.

Step 3.11. It remains to prove (6.37). The bounds on the first and third term on the left-hand side of (6.30) imply that the sequences $\{\rho^\Delta_{\varepsilon,L}(\cdot, \pm)\}_{L>1}$ are bounded in $L^\infty(0, T; L^\infty(\Omega)) \cap L^2(0, T; H^1(\Omega))$; the bound on the fourth term in (6.36) yields that $\{\rho^\Delta_{\varepsilon,L}(\cdot, \pm)\}_{L>1}$ is bounded in $H^1((0, T); (H^1(\Omega))')$. In fact, by noting (6.3) and (6.4), we have that $\{\rho^\Delta_{\varepsilon,L}(\cdot, \pm)\}_{L>1}$ is a bounded sequence in $L^2(0, T; H^1(\Omega))$. Thus, there exist subsequences of $\{\rho^\Delta_{\varepsilon,L}(\cdot, \pm)\}_{L>1}$ (not indicated with $\Delta t = o(L^{-1})$ and, thanks to the uniform bound on the second term on the left-hand side of (6.36), a common limiting function $\rho_\varepsilon \in L^\infty(0, T; L^\infty(\Omega)) \cap L^2(0, T; H^1(\Omega)) \cap H^1((0, T); (H^1(\Omega))')$ such that

\begin{align}
(6.54a) & \quad \rho^\Delta_{\varepsilon,L}(\cdot, \pm) \to \rho_\varepsilon \quad \text{weak* in } L^\infty(0, T; L^\infty(\Omega)), \\
(6.54b) & \quad \rho^\Delta_{\varepsilon,L}(\cdot, \pm) \to \rho_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\Omega)), \\
(6.54c) & \quad \frac{\partial \rho^\Delta_{\varepsilon,L}}{\partial t} \to \frac{\partial \rho_\varepsilon}{\partial t} \quad \text{weakly in } L^2(0, T; (H^1(\Omega))'),
\end{align}

as $L \to \infty$ (and thereby $\Delta t \to 0_+$). It follows from (6.54c) and Lemma 1.2 in Ch. 3 of Temam [49] that ρ_ε belongs to $C([0, T]; L^2(\Omega))$, in fact. Using (6.54a,c) and (6.39c), we can pass to the limit as $L \to \infty$ (and $\Delta t = o(L)$) in (6.55) to obtain that, for all $\varphi \in L^2(0, T; H^1(\Omega))$,\n
\begin{equation}
\int_0^T \left(\frac{\partial \rho_\varepsilon}{\partial t} \varphi \right)_{H^1(\Omega)} \ dt + \int_0^T \int_\Omega \left[\varepsilon \Delta \rho_\varepsilon - u_\varepsilon \rho_\varepsilon \right] \cdot \nabla \varphi \ dx \ dt = 0.
\end{equation}

We note also that Fubini’s theorem, (4.6) and (6.40d) yield that

\begin{equation}
\int_0^T \int_\Omega \left[\rho^\Delta_{\varepsilon,L} - \hat{\rho}_\varepsilon \right] \ dx \ dt = \int_0^T \int_\Omega \left[\rho^\Delta_{\varepsilon,L} - \hat{\rho}_\varepsilon \right] \ dx \ dt \to 0 \quad \text{as } L \to \infty \quad \text{(and } \Delta t \to 0_+).\n\end{equation}
Thus, $\rho^{\Delta t}_\varepsilon \to \int_D M \hat{\psi}_\varepsilon \, dq$ strongly in $L^1(0,T;L^1(\Omega))$ as $L \to \infty$ (and $\Delta t \to 0_+ \,$). Comparing this with (6.53) implies that

$$\rho_\varepsilon(x,t) = \int_D M(q) \hat{\psi}_\varepsilon(x,q,t) \, dq$$

for a.e. $(x,t) \in \Omega \times (0,T)$.

It follows from Step 3.9 that, for $s > 1 + \frac{1}{2}(K + 1)d$, we have

$$\lim_{t \to 0_+} \int_{\Omega \times D} M(q) \hat{\psi}_\varepsilon(x,q,t) - \hat{\psi}_\varepsilon(x,q) \hat{\varphi}(x,q) \, dq \, dx = 0 \quad \forall \hat{\varphi} \in H^s(\Omega \times D).$$

Consequently, using (6.57) and (3.5) we then deduce by selecting any $\hat{\varphi} = \varphi \in C^\infty(\Omega \times D)$ that

$$\lim_{t \to 0_+} \int_\Omega \rho_\varepsilon(x,t) \varphi(x) \, dx = \lim_{t \to 0_+} \int_\Omega \left(\int_D M(q) \hat{\psi}_\varepsilon(x,q,t) \, dq \right) \varphi(x) \, dx = \lim_{t \to 0_+} \int_{\Omega \times D} M(q) \hat{\psi}_\varepsilon(x,q) \varphi(x) \, dq \, dx$$

$$= \int_\Omega \left(\int_D M(q) \hat{\psi}_\varepsilon(x,q) \, dq \right) \varphi(x) \, dx = \int_\Omega \varphi(x) \, dx.$$

As $\rho_\varepsilon \in C([0,T];L^2(\Omega))$, it follows from (6.58) that $\rho_\varepsilon(x,0) = 1$ for a.e. $x \in \Omega$.

Clearly, the linear parabolic problem (6.55) with initial datum $\rho_\varepsilon(x,0) = 1$ for a.e. $x \in \Omega$ has the unique solution $\rho_\varepsilon \equiv 1$ on $\Omega \times [0,T]$. Using this in (6.57) implies (6.37), and completes Step 3.11 and the proof. □

7. Exponential Decay to the Equilibrium Solution

We shall show that, in the absence of a body force (i.e. with $f \equiv 0$), weak solutions $(u_\varepsilon, \hat{\psi}_\varepsilon)$ to (P_\varepsilon), whose existence we have proved via our limiting procedure in the previous section, decay exponentially in time to the trivial solution of the steady counterpart of problem (P_\varepsilon) at a rate that is independent of the specific choice of the initial data for the Navier–Stokes and Fokker–Planck equations. Our result is similar to the one derived by Jourdain, Lelièvre, Le Bris & Otto [29], except that the arguments there were partially formal in the sense that the existence of a unique global-in-time solution, which was required to be regular enough, was assumed; in fact, the probability density function was supposed there to be a classical solution to the Fokker–Planck equation; $\hat{\psi}_\varepsilon$ was required to belong to $L^\infty(\Omega \times D)$ and to be strictly positive, and u was assumed to be in $L^\infty((0,\infty;W^{1,\infty}(\Omega)))$ (cf. p.105, (B.128), (B.129) therein; as well as the recent paper of Arnold, Carrillo and Manzini [5] for refinements and extensions). In contrast, we require no additional regularity hypotheses here.

Theorem 7.1. Suppose the assumptions of Theorem 6.4 hold and M satisfies the Bakry–Émery condition (cf. Remark 5.7) with $\kappa > 0$; then, for all $T > 0$,

$$\|u_\varepsilon(T)\|^2 + \frac{k}{|\Omega|} \|\hat{\psi}_\varepsilon(T) - 1\|^2_{L^2(\Omega \times D)}$$

$$\leq e^{-\gamma_0 T} \left[\|u_0\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}_0) \, dq \, dx \right] + \frac{1}{\nu} \int_0^T \|f\|^2_{H^1(\Omega))'} \, ds,$$

where $\gamma_0 := \min\left(\frac{\kappa}{{\kappa}_f}, \frac{\kappa}{{\kappa}_u} \right)$. In particular if $f \equiv 0$, the following inequality holds:

$$\|u_\varepsilon(T)\|^2 + \frac{k}{|\Omega|} \|\hat{\psi}_\varepsilon(T) - 1\|^2_{L^2(\Omega \times D)} \leq e^{-\gamma_0 T} \left[\|u_0\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\hat{\psi}_0) \, dq \, dx \right].$$

Proof. We take $t = t_1 = \Delta t$ and write $0 = t_0$ in (4.28), and we replace the function \mathcal{F} on the left-hand side of (4.23) by \mathcal{F}^L, noting that, prior to (4.23), in (4.19) we in fact had \mathcal{F}^L on the left-hand side of the inequality, and \mathcal{F}^L was subsequently bounded below by \mathcal{F}; thus we reinstate the \mathcal{F}^L we previously had. We recall that $\gamma_0 = \gamma_0^{\Delta t_1}(t_1)$ and $\beta^L(\hat{\psi}_0) = \hat{\psi}^{\Delta t_1}(t_1)$ and adopt the
notational convention $t_{-1} := -\infty$ (say), which allows us to write $u_{\varepsilon, L}^{t_{+}}(t_0)$ instead of $u_{\varepsilon, L}^{t_{+}}(t_1)$ and $\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_0)$ instead of $\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_1)$. Hence we have that

$$
\|u_{\varepsilon, L}^{t_{+}}(t_1)\|^2 + \frac{1}{\Delta t} \int_{t_0}^{t_1} \|u_{\varepsilon, L}^{t_{+}} - u_{\varepsilon, L}^{t_{-}}\|^2 \, ds + \left(\nu - \frac{2\lambda b k}{a_0}\right) \int_{t_0}^{t_1} \|\nabla_x u_{\varepsilon, L}^{t_{+}}(s)\|^2 \, ds
$$

$$
+ 2k \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_1) + \alpha) \, dq \, dx + \frac{k}{\Delta t L} \int_{t_0}^{t_1} \int_{\Omega \times D} M(\hat{\psi}_{\varepsilon, L}^{t_{+}} - \hat{\psi}_{\varepsilon, L}^{t_{-}})^2 \, dq \, dx \, ds
$$

$$
+ 2k \varepsilon \int_{t_0}^{t_1} \int_{\Omega \times D} M \frac{\|\nabla_x \hat{\psi}_{\varepsilon, L}^{t_{+}}\|^2}{\hat{\psi}_{\varepsilon, L}^{t_{+}} + \alpha} \, dq \, dx \, ds + \frac{a_0 k}{2 \lambda} \int_{t_0}^{t_1} \int_{\Omega \times D} M \frac{\|\nabla_x \hat{\psi}_{\varepsilon, L}^{t_{+}}\|^2}{\hat{\psi}_{\varepsilon, L}^{t_{+}} + \alpha} \, dq \, dx \, ds
$$

$$
\leq \|u_{\varepsilon, L}^{t_{+}}(t_0)\|^2 + \frac{1}{\nu} \int_{t_0}^{t_1} \|f^{t_{+}}(s)\|^2 \|H_{L}^0(\Omega)\|^2 \, ds
$$

$$
+ 2k \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_0) + \alpha) \, dq \, dx.
$$

(7.3)

Closer inspection of the procedure that resulted in inequality (1.23) reveals that (1.23) could have been equivalently arrived at by repeating the argument that gave us (7.3) on each time interval $[t_{n-1}, t_n]$, $n = 1, \ldots, N$; viz.,

$$
\|u_{\varepsilon, L}^{t_{+}}(t_n)\|^2 + \frac{1}{\Delta t} \int_{t_{n-1}}^{t_n} \|u_{\varepsilon, L}^{t_{+}} - u_{\varepsilon, L}^{t_{-}}\|^2 \, ds
$$

$$
+ \left(\nu - \frac{2\lambda b k}{a_0}\right) \int_{t_{n-1}}^{t_n} \|\nabla_x u_{\varepsilon, L}^{t_{+}}(s)\|^2 \, ds + 2k \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_n) + \alpha) \, dq \, dx
$$

$$
+ \frac{k}{\Delta t L} \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M(\hat{\psi}_{\varepsilon, L}^{t_{+}} - \hat{\psi}_{\varepsilon, L}^{t_{-}})^2 \, dq \, dx \, ds
$$

$$
+ 2k \varepsilon \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M \frac{\|\nabla_x \hat{\psi}_{\varepsilon, L}^{t_{+}}\|^2}{\hat{\psi}_{\varepsilon, L}^{t_{+}} + \alpha} \, dq \, dx \, ds + \frac{a_0 k}{2 \lambda} \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M \frac{\|\nabla_x \hat{\psi}_{\varepsilon, L}^{t_{+}}\|^2}{\hat{\psi}_{\varepsilon, L}^{t_{+}} + \alpha} \, dq \, dx \, ds
$$

$$
\leq \|u_{\varepsilon, L}^{t_{+}}(t_{n-1})\|^2 + \frac{1}{\nu} \int_{t_{n-1}}^{t_n} \|f^{t_{+}}(s)\|^2 \|H_{L}^0(\Omega)\|^2 \, ds
$$

$$
+ 2k \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_{n-1}) + \alpha) \, dq \, dx, \quad n = 1, \ldots, N,
$$

(7.4)

summing these through n and then bounding \mathcal{F}^L on the left-hand side below by \mathcal{F}.

Here we proceed differently: we shall retain \mathcal{F}^L on both sides of (7.4), and omit the second, fifth and sixth term from the left-hand side of (7.4). Thus we have that

$$
\|u_{\varepsilon, L}^{t_{+}}(t_n)\|^2 + \left(\nu - \frac{2\lambda b k}{a_0}\right) \int_{t_{n-1}}^{t_n} \|\nabla_x u_{\varepsilon, L}^{t_{+}}(s)\|^2 \, ds
$$

$$
+ 2k \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_n) + \alpha) \, dq \, dx
$$

$$
+ \frac{2a_0 k}{\lambda} \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M |\nabla_q \sqrt{\hat{\psi}_{\varepsilon, L}^{t_{+}}} + \alpha|^2 \, dq \, dx \, ds
$$

$$
\leq \|u_{\varepsilon, L}^{t_{+}}(t_{n-1})\|^2 + \frac{1}{\nu} \int_{t_{n-1}}^{t_n} \|f^{t_{+}}(s)\|^2 \|H_{L}^0(\Omega)\|^2 \, ds
$$

$$
+ 2k \int_{\Omega \times D} M \mathcal{F}^L(\hat{\psi}_{\varepsilon, L}^{t_{+}}(t_{n-1}) + \alpha) \, dq \, dx, \quad n = 1, \ldots, N.
$$

(7.5)

Thanks to Poincaré’s inequality, recall (1.34), there exists a positive constant $C_{P} = C_{P}(\Omega)$, such that

$$
\|u_{\varepsilon, L}^{t_{+}}(\cdot, s)\| \leq C_{P}(\Omega) \|\nabla_x u_{\varepsilon, L}^{t_{+}}(\cdot, s)\|
$$

(7.6)
for \(s \in (t_{n-1}, t_n) \); \(n = 1, \ldots, N \). Also, by the logarithmic Sobolev inequality (4.34), we have for a.e. \(\tilde{x} \in \Omega \) that

\[
\int_D M(q) \left[\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (x, q, s) + \alpha \right] \log \left(\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (x, q, s) + \alpha \right) \frac{dq}{d\tilde{x}} \leq \frac{2}{\kappa} \int_D M(q) \left[\nabla_q \sqrt{\partial \Delta t^+ / \partial \tilde{x}_L} (x, q, s) + \alpha \right]^2 \frac{dq}{d\tilde{x}},
\]

for \(s \in (t_{n-1}, t_n) \); \(n = 1, \ldots, N \). Hence, for a.e. \(\tilde{x} \in \Omega \),

\[
\int_D M(q) \left[\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (x, q, s) + \alpha \right] \log \left(\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (x, q, s) + \alpha \right) dq \leq \frac{2}{\kappa} \int_D M(q) \left[\nabla_q \sqrt{\partial \Delta t^+ / \partial \tilde{x}_L} (x, q, s) + \alpha \right]^2 dq \leq \frac{2}{\kappa} \int_D M(q) \left(\nabla_q \sqrt{\partial \Delta t^+ / \partial \tilde{x}_L} (x, q, s) + \alpha \right)^2 dq + |\Omega| (1 + \alpha) \log(1 + \alpha),
\]

for \(s \in (t_{n-1}, t_n) \), \(n = 1, \ldots, N \). Equivalently, on noting that \(s \log s = \mathcal{F}(s) - (1 - s) \), we can rewrite the last inequality in the following form:

\[
\int_{\Omega \times D} M(q) \mathcal{F}(\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (x, q, s) + \alpha) dq dx \leq \frac{2}{\kappa} \int_{\Omega \times D} M(q) \left[\nabla_q \sqrt{\partial \Delta t^+ / \partial \tilde{x}_L} (x, q, s) + \alpha \right]^2 dx + |\Omega| (1 + \alpha) \log(1 + \alpha),
\]

for \(s \in (t_{n-1}, t_n) \), \(n = 1, \ldots, N \). This then in turn implies, thanks to the fact that \(\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (\tilde{x}, q, \cdot) \) is constant on the interval \((t_{n-1}, t_n) \) for all \((\tilde{x}, q) \in \Omega \times D \), that

\[
\frac{\kappa a_0 k}{\lambda} \Delta t \int_{\Omega \times D} M(q) \mathcal{F}(\frac{\partial \Delta t^+}{\partial \tilde{x}_L} (t_n) + \alpha) dq dx \leq \frac{2a_0 k}{\lambda} \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M \left[\nabla_q \sqrt{\partial \Delta t^+ / \partial \tilde{x}_L} + \alpha \right]^2 dq dx ds + \frac{\kappa a_0 k}{\lambda} \left[\int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M (1 - \frac{\partial \Delta t^+}{\partial \tilde{x}_L} - \alpha) dq dx ds + \Delta t |\Omega| (1 + \alpha) \log(1 + \alpha) \right].
\]
for \(n = 1, \ldots, N \). Using this and \((7.6)\) in \((7.5)\) then yields

\[
\begin{align*}
&\left(1 + \frac{\Delta t}{C_p} \left(\nu - \alpha \frac{2\lambda b k}{a_0}\right)\right) \| u_{\varepsilon,L}^{\Delta t,+}(t_n) \|^2 \\
&+ \left(1 + \frac{\kappa a_0}{2\lambda} \Delta t\right) 2k \int_{\Omega \times D} F\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_n) + \alpha\right) \, dq \, dx \\
&+ 2k \int_{\Omega \times D} M \left[\mathcal{F}^L\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_n) + \alpha\right) - \mathcal{F}\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_n) + \alpha\right) \right] \, dq \, dx \\
&\leq \| u_{\varepsilon,L}^{\Delta t,+}(t_{n-1}) \|^2 + 2k \int_{\Omega \times D} M \left[\mathcal{F}^L\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_{n-1}) + \alpha\right) - \mathcal{F}\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_{n-1}) + \alpha\right) \right] \, dq \, dx \\
&+ \kappa a_0 k \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M \left(1 - \hat{\psi}_{\varepsilon,L}^{\Delta t,+} - \alpha\right) \, dq \, dx \, dt \\
&+ \frac{\kappa a_0}{\lambda} \Delta t |\Omega| \left(1 + \alpha\right) \log(1 + \alpha) + \frac{1}{\nu} \int_{t_{n-1}}^{t_n} \| f^{\Delta t,+} \|^2_{H^1_0(\Omega)} \, ds.
\end{align*}
\]

(7.9)

for \(n = 1, \ldots, N \). We now introduce, for \(n = 1, \ldots, N \), the following notation:

\[
\begin{align*}
\gamma(\alpha) := & \min \left(\frac{1}{C_p} \left(\nu - \alpha \frac{2\lambda b k}{a_0}\right), \frac{\kappa a_0}{2\lambda}\right), \\
A_n(\alpha) := & \| u_{\varepsilon,L}^{\Delta t,+}(t_n) \|^2 + 2k \int_{\Omega \times D} M \left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_n) + \alpha\right) \, dq \, dx, \\
B_n(\alpha) := & 2k \int_{\Omega \times D} M \left[\mathcal{F}^L\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_n) + \alpha\right) - \mathcal{F}\left(\hat{\psi}_{\varepsilon,L}^{\Delta t,+}(t_n) + \alpha\right) \right] \, dq \, dx, \\
C_n(\alpha) := & \frac{\kappa a_0 k}{\lambda} \int_{t_{n-1}}^{t_n} \int_{\Omega \times D} M \left(1 - \hat{\psi}_{\varepsilon,L}^{\Delta t,+}(x, q, s)\right) \, dq \, dx \, ds \\
&+ \frac{\kappa a_0}{\lambda} \Delta t |\Omega| \left(1 + \alpha\right) \log(1 + \alpha) - \frac{1}{\nu} \int_{t_{n-1}}^{t_n} \| f^{\Delta t,+} \|^2_{H^1_0(\Omega)} \, ds.
\end{align*}
\]

We shall assume henceforth that \(\alpha \) is sufficiently small in the sense that \((7.22)\) holds. For all such \(\alpha \), \(\gamma(\alpha) > 0 \); further, trivially, \(A_n(\alpha) \) is nonnegative; by \((7.12)\), we have that \(B_n(\alpha) \) is nonnegative, and by \((6.4)\) and since \(\mathcal{F}(1 + \alpha) \geq 0 \) for all \(\alpha \geq 0 \), \(C_n(\alpha) \) is also nonnegative. In terms of this notation \((7.30)\) can be rewritten as follows:

\[
(1 + \gamma(\alpha) \Delta t) A_n(\alpha) + B_n(\alpha) \leq A_{n-1}(\alpha) + B_{n-1}(\alpha) + C_n(\alpha), \quad n = 1, \ldots, N.
\]

It then follows by induction that

\[
A_n(\alpha) \leq (1 + \gamma(\alpha) \Delta t)^{-n} A_0(\alpha) + \sum_{j=1}^{n} D_j(\alpha), \quad n = 1, \ldots, N.
\]

That is,

\[
A_n(\alpha) + B_n(\alpha) \leq (1 + \gamma(\alpha) \Delta t)^{-n} A_0(\alpha) + \left\{ B_0(\alpha) + \sum_{j=1}^{n} C_j(\alpha) \right\}, \quad n = 1, \ldots, N.
\]
In particular, with \(n = N \), by omitting the nonnegative term \(B_N(\alpha) \) from the left-hand side of the resulting inequality, and recalling that \(T = t_N = N\Delta t \), we get

\[
\|u_{\varepsilon,L}(T)\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\bar{\psi}_{\varepsilon,L}(T) + \alpha) \, dq \, dx \\
\leq \left(1 + \frac{\gamma(\alpha)}{N} T \right)^{-N} \left[\|u_0\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\beta \bar{\psi}(0) + \alpha) \, dq \, dx \right] \\
+ \frac{\kappa a_0 k}{\lambda} \int_0^T \int_{\Omega \times D} M (1 - \bar{\psi}_{\varepsilon,L}(x, q, s)) \, dq \, dx \, ds.
\]

Using that \(u_{\varepsilon,L}(0) = u^0 \) and \(\bar{\psi}_{\varepsilon,L} = \beta L(\bar{\psi}^0) \), we then obtain from (7.10) that

\[
\|u_{\varepsilon,L}(T)\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\bar{\psi}_{\varepsilon,L}(T) + \alpha) \, dq \, dx \\
\leq \left(1 + \frac{\gamma(\alpha)}{N} T \right)^{-N} \left[\|u_0\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\beta \bar{\psi}(0) + \alpha) \, dq \, dx \right] \\
+ \frac{\kappa a_0 k}{\lambda} \int_0^T \int_{\Omega \times D} M (1 - \bar{\psi}_{\varepsilon,L}(x, q, s)) \, dq \, dx \, ds.
\]

Applying (4.12) and (4.25) in the second factor in the first term on the right-hand side of (7.11) and using (4.21) in the square brackets in the second term on the right-hand side, we have that

\[
\|u_{\varepsilon,L}(T)\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\bar{\psi}_{\varepsilon,L}(T) + \alpha) \, dq \, dx \\
\leq \left(1 + \frac{\gamma(\alpha)}{N} T \right)^{-N} \left[\|u_0\|^2 + 3\alpha k |\Omega| + 2k \int_{\Omega \times D} M \mathcal{F}(\bar{\psi}(0) + \alpha) \, dq \, dx \right] \\
+ 3\alpha k |\Omega| + \frac{\kappa a_0 k}{\lambda} \int_0^T \int_{\Omega \times D} M (1 - \bar{\psi}_{\varepsilon,L}(x, q, s)) \, dq \, dx \, ds.
\]

We now pass to the limit \(\alpha \to 0^+ \), with \(L \) and \(\Delta t \) fixed, in much the same way as in Section 4.1. Noting that \(\lim_{\alpha \to 0^+} \gamma(\alpha) = \gamma_0 \), we thus obtain from (7.12), (3.18) and (3.20), that

\[
\|u_{\varepsilon,L}(T)\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\bar{\psi}_{\varepsilon,L}(T)) \, dq \, dx \\
\leq \left(1 + \frac{\gamma_0 T}{N} \right)^{-N} \left[\|u_0\|^2 + 2k \int_{\Omega \times D} M \mathcal{F}(\bar{\psi}_0) \, dq \, dx \right] \\
+ \frac{\kappa a_0 k}{\lambda} \int_0^T \int_{\Omega \times D} M (1 - \bar{\psi}_{\varepsilon,L}) \, dq \, dx \, ds + \frac{1}{\nu} \int_0^T \|f_{\Delta t,+}\|^2_{(H^1_0(\Omega))'} \, ds.
\]

In order to pass to the limits \(L \to \infty \) and \(\Delta t \to 0^+ \) (with \(\Delta t = o(L^{-1}) \)) in the first two terms on the left-hand side of (7.13) we require additional considerations.
Noting (6.39c) for the sequence \(\{u_{e,L}^{\Delta t}\}_{L \geq 1} \) of Theorem 6.1 and passing to a subsequence (not indicated), as \(L \to \infty \) and \(\Delta t \to 0_+ \) (with \(\Delta t = o(L^{-1}) \)) we have that \(\|u_{e,L}^{\Delta t}(t) - u_{\infty}(t)\| \) converges to 0 for a.e. \(t \in (0,T) \); let \(t_* \) be one such \(t \) in \((0,T) \). It then follows from (6.39d) that, for any \(\psi \in V_\sigma \subset H \),

\[
|\langle u_{\infty}(T) - u_{e,L}^{\Delta t}(T), \psi \rangle_{V_\sigma}| \leq \int_t^T \left| \frac{\partial (u_{\infty} - u_{e,L}^{\Delta t})}{\partial t} (t, \psi) \right| \, \text{d}t + \|u_{e,L}^{\Delta t}(t_*) - u_{\infty}(t_*)\| \|\psi\| \to 0 \quad \text{as } L \to \infty \quad \text{and} \quad \Delta t \to 0_+ \quad \text{with} \quad \Delta t = o(L^{-1}).
\]

(7.14)

Since \(u_e : [0,T] \to H \) is weakly continuous, we have that \(u_e(T) \in H \). It follows from the bound on the first term in (6.35), as \(t \in [0,T] \to \|u_{e,L}^{\Delta t}(t)\| \in \mathbb{R}_{\geq 0} \) is a continuous (piecewise linear) function, that, for any \(v_0 \in H \) and any \(\psi \in V_\sigma \),

\[
|\langle u_{e}(T) - u_{e,L}^{\Delta t}(T), v_0 \rangle| \leq |\langle u_{\infty}(T) - u_{e,L}^{\Delta t}(T), \psi \rangle_{V_\sigma}| + \|u_{\infty}(T)\| + C_L^\frac{1}{2} \|v_0 - \psi\|.
\]

Recalling (7.14), it follows from the last inequality that

\[
\limsup_{L \to \infty} |\langle u_{e}(T) - u_{e,L}^{\Delta t}(T), v_0 \rangle| \leq C \|v_0 - \psi\| \quad \forall v_0 \in H, \quad \forall \psi \in V_\sigma.
\]

As \(V_\sigma \) is dense in \(H \), we thus deduce that \(\{u_{e,L}^{\Delta t}(T)\}_{L \geq 1} \) converges to \(u_e(T) \) weakly in \(H \) as \(L \to \infty \) and \(\Delta t \to 0_+ \), with \(\Delta t = o(L^{-1}) \). Hence, by the weak lower-semicontinuity of the \(L^2(\Omega) \) norm and noting that \(u_{e,L}^{\Delta t}(T) = u_{e,L}^{\Delta t,+}(T) \), we have

\[
\|u_{e}(T)\| \leq \liminf_{L \to \infty} \|u_{e,L}^{\Delta t,+}(T)\|.
\]

(7.15)

Analogously to (7.14), noting (6.40d) for the sequence \(\{\psi_{e,L}^{\Delta t}\}_{L \geq 1} \) of Theorem 6.1 we have (passing to a subsequence, not indicated,) that \(\psi_{e,L}^{\Delta t}(T) \) converges weakly to \(\psi_e(T) \) in \(M^{-1}(H^s(\Omega \times D))' \) as \(L \to \infty \) and \(\Delta t \to 0_+ \), with \(\Delta t = o(L^{-1}) \). Thanks to Theorem 6.1 \(\psi_e : [0,T] \to L_{M}^1(\Omega \times D) \) is weakly continuous; hence we have that \(\psi_e(T) \in L_{M}^1(\Omega \times D) \). Similarly to the argument in the proof of 3 of Lemma 6.2 it follows from the bound on the fourth term in (6.35), on noting that \(F(r)/r \to \infty \) as \(r \to \infty \), together with the de la Vallée-Poussin and Dunford–Pettis theorems, that, upon extraction of a further subsequence (not indicated), \(\psi_{e,L}^{\Delta t}(T) \) converges weakly in \(L_{M}^1(\Omega \times D) \) to some limit \(A \), as \(L \to \infty \) and \(\Delta t \to 0_+ \), with \(\Delta t = o(L^{-1}) \). The fact that \(A = \psi_e(T) \) follows from the weak convergence of \(\psi_{e,L}^{\Delta t}(T) \) to \(\psi_e(T) \) in \(M^{-1}(H^s(\Omega \times D))' \) (\(\hookrightarrow L_{M}^1(\Omega \times D) \)). Finally, since \(r \in [0,\infty) \mapsto F(r) \in \mathbb{R}_{\geq 0} \) is continuous and convex, on applying Tonelli's weak lower semicontinuity theorem in \(L_{M}^1(\Omega \times D) \) (cf. Theorem 3.20 in Dacorogna [10]),

\[
\int_{\Omega \times D} M F(\psi_e(T)) \, dq \, dx \leq \liminf_{L \to \infty} \int_{\Omega \times D} M F(\psi_{e,L}^{\Delta t,+}(T)) \, dq \, dx,
\]

(7.16)

where we have noted that \(\psi_{e,L}^{\Delta t}(T) = \psi_{e,L}^{\Delta t,+}(T) \).

We are now ready to pass to the limit in (7.13). Using (7.15) and (7.16), (6.40d) and (6.37) and (3.23), and letting \(L \to \infty \) (whereby \(\Delta t \to 0_+ \) according to \(\Delta t = o(L^{-1}) \) and therefore \(N = T/\Delta t \to \infty \)), we deduce from (7.13) that

\[
\|u_e(T)\|^2 + 2k \int_{\Omega \times D} M F(\psi_e(T)) \, dq \, dx \leq e^{-\gamma_0 T} \left(\|u_0\|^2 + 2k \int_{\Omega \times D} M F(\psi_0) \, dq \, dx \right) + \frac{1}{\nu} \int_0^T \|f(s)\|_2^2 \, ds.
\]

(7.17)

The Csiszár–Kullback inequality (cf., for example, (1.1) and (1.2) in the work of Unterreiter et al. [50]) with respect to the Gibbs measure \(\mu \) defined by \(d\mu = M(q) \, dq \) yields, on noting (6.37), for a.e. \(\bar{x} \in \Omega \), that

\[
\|\psi_e(\bar{x},\cdot,T) - 1\|_{L_{M}^1(D)} \leq \left(\int_D M F(\psi_e(\bar{x},q,T)) \, dq \right)^\frac{1}{2},
\]

where \(L_{M}^1(D) \) is the space of integrable functions on \(D \) with respect to the measure \(M(q) \, dq \).
which, after integration over Ω implies, by the Cauchy–Schwarz inequality, that
\[\|\psi_e(T) - 1\|^2_{L^1(\Omega \times D)} \leq 2|\Omega| \int_{\Omega \times D} M F(\psi_e(T)) \, dq \, dx. \]
Combining this with (7.17) yields (7.1). Taking $\tilde{f} \equiv 0$, the stated exponential decay in time of (u_e, ψ_e) to $(0, 1)$ in the $L^2(\Omega) \times L^1_M(\Omega \times D)$ norm follows from (7.1). \hfill \square

Remark 7.1. By introducing the free energy as the sum of the kinetic energy and the relative entropy:
\[\mathcal{E}(t) := \frac{1}{2} \|u_e(t)\|^2 + k \int_{\Omega \times D} M F(\psi_e(t)) \, dq \, dx, \]
we deduce from (7.1) that, for any $T > 0$,
\[\mathcal{E}(T) \leq e^{-\gamma_0 T} \mathcal{E}(0) + \frac{1}{2T} \int_0^T \|f(s)\|^2_{(H^1_0(\Omega))'} \, ds. \]
Thus in particular when $f = 0$, the free energy decays to 0 as a function of time from any initial datum (u_0, ψ_0) with initial velocity $u_0 \in H$ and initial probability density function ψ_0 that has finite relative entropy with respect to the log-concave Maxwellian M.

It is interesting to note the dependence of $\gamma_0 = \min \left(\frac{\lambda F}{\xi}, \frac{\lambda a}{4 \pi} \right)$, the rate at which the fluid relaxes to equilibrium, on the dimensionless viscosity coefficient ν of the solvent, the minimum eigenvalue a_0 of the Rouse matrix A, the geometry of the flow domain encoded in the Poincaré constant $c_P(\Omega)$, the Weissenberg number λ, and the Bakry–Emery constant κ for the Maxwellian M of the model. We also observe that the right-hand side of the energy inequality (6.33) and γ_0 are independent of the centre-of-mass diffusion coefficient ε appearing in the equation (1.9).

Acknowledgement ES was supported by the EPSRC Science and Innovation award to the Oxford Centre for Nonlinear PDE (EP/E035027/1).

References

[1] R. A. Adams and J. Fournier, *Sobolev Spaces*, Pure and Applied Mathematics, 140, Academic Press, Amsterdam, 2nd ed., 2003.
[2] L. Ambrosio, *Transport equation and Cauchy problem for BV vector fields*, Invent. Math., 158 (2004), pp. 227–260.
[3] F. Antoci, *Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces*, Ricerche Mat., 52 (2003), pp. 55–71.
[4] A. Arnold, J.-P. Baranger, and J. Dolbeault, *Interpolation between logarithmic Sobolev and Poincaré inequalities*, Commun. Math. Sci., 5 (2007), pp. 971–979.
[5] A. Arnold, J. A. Carrillo, and C. Manzini, *Refined long-time asymptotics for some polymeric fluid flow models*, Comm. Math. Sc., 8 (2010), pp. 763–782.
[6] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, *On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations*, Commun. Partial Differential Equations, 26 (2001), pp. 43–100.
[7] J. W. Barrett and S. Boyaval, *Existence and approximation of a (regularized) Oldroyd-B model*, Math. Models Methods Appl. Sci. Accepted for publication. Available from: http://fr.arxiv.org/abs/0907.4066, (2009).
[8] J. W. Barrett, C. Schwab, and E. Süli, *Existence of global weak solutions for some polymeric flow models*, Math. Models Methods Appl. Sci., 15 (2005), pp. 939–983.
[9] J. W. Barrett and E. Süli, *Existence of global weak solutions to some regularized kinetic models of dilute polymers*, Multiscale Model. Simul., 6 (2007), pp. 506–546.
[10] ———, *Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off*, Math. Models Methods Appl. Sci., 18 (2008), pp. 935–971.
[11] ———, *Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type bead-spring chains*, (Submitted for publication). The extended version of the paper is available from: http://arxiv.org/abs/1008.3052, under the title Existence and equilibration of global weak solutions to Hookean-type bead-spring chain models for dilute polymers, (2010).
[12] ———, *Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains*, Math. Models Methods Appl. Sci., 21 (2011), pp. 1211–1289.
[13] ———, *Reflections on Dubinski's nonlinear compact embedding theorems*, (Submitted for publication). Available from: arXiv: http://arxiv.org/abs/1101.1990, (2011).
[14] A. V. Bhave, R. C. Armstrong, and R. A. Brown, *Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions*, J. Chem. Phys., 95 (1991), pp. 2988–3000.
Existence and equilibration of global weak solutions for dilute polymers

[15] P. Constantin, Nonlinear Fokker–Planck Navier–Stokes systems, Commun. Math. Sci., 3 (2005), pp. 531–544.

[16] B. Dacorogna, Direct Methods in the Calculus of Variations, vol. 78 of Applied Mathematical Sciences, Springer, New York, second ed., 2008.

[17] P. Degond and H. Liu, Kinetic models for polymers with inertial effects, Networks and Heterogeneous Media, 4 (2009), pp. 625–647.

[18] L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), pp. 245–316.

[19] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511–547.

[20] Q. Du, C. Liu, and P. Yu, FENE dumbbell models and its several linear and nonlinear closure approximations, Multiscale Model. Simul., 4 (2005), pp. 709–731.

[21] J. A. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations, Mat. Sb. (N.S.), 67 (109) (1965), pp. 699–702.

[22] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York, 1958.

[23] W. E, T. J. Li, and P.-W. Zhang, Well-posedness for the dumbbell model of polymeric fluids, Comm. Math. Phys., 248 (2004), pp. 409–427.

[24] A. W. El-Kareh and L. G. Leal, Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion, J. Non-Newtonian Fluid Mech., 33 (1989), pp. 257–287.

[25] P. Grisvard, Elliptic problems in nonsmooth domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[26] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001. Abridged version of Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and II [ibid.; MR1295240 (95m:90002)].

[27] R. Hilsch, Randwertproblem einer nicht hypoelliptischen linearen partiel len Differentialgleichung, PhD thesis, Freie Universität Berlin, Berlin, 1989.

[28] B. Jourdain, T. Lelièvre, and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model, J. Funct. Anal., 209 (2004), pp. 162–193.

[29] B. Jourdain, T. Lelièvre, C. Le Bris, and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows, Arch. Rat. Mech. Anal., 181 (2006), pp. 97–148.

[30] D. Knezevic and E. Süli, Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 445–485.

[31] A. Kufner, O. John, and S. Fučík, Function spaces, Noordhoff International Publishing, Leyden, 1977. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis.

[32] T. Li, H. Zhang, and P.-W. Zhang, Local existence for the dumbbell model of polymeric fluids, Comm. Partial Differential Equations, 29 (2004), pp. 903–923.

[33] F.-H. Lin, C. Liu, and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math., 60 (2007), pp. 838–866.

[34] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

[35] P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math. Ser. B, 21 (2000), pp. 131–146.

[36] N. Masmoudi, Well posedness of the FENE dumbbell model of polymeric flows., Comm. Pure Appl. Math. 61 (2008), pp. 1685–1714.

[37] J. Necas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa (3), 16 (1962), pp. 305–326.

[38] K.-h. Nitta, A graph-theoretical approach to statistics and dynamics of tree-like molecules, Journal of Mathematical Chemistry, 25 (1999).

[39] B. Opic, Necessary and sufficient conditions for imbeddings in weighted Sobolev spaces, Časopis Pěst. Mat., 114 (1989), pp. 343–355.

[40] F. Otto and A. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Comm. Math. Phys., 277 (2008), pp. 729–758.

[41] A. Pinkus, Density in approximation theory, Surv. Approx. Theory, 1 (2005), pp. 1–45 (electronic).

[42] M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions, SIAM J. Math. Anal., 22 (1991), pp. 313–327.

[43] J. D. Schieber, Generalized Brownian configuration field for Fokker–Planck equations including center-of-mass diffusion, J. Non-Newtonian Fluid Mech., 135 (2006), pp. 179–181.

[44] V. B. Shakhshur’ov, Embedding and maximal regular differential operators in Sobolev-Lions spaces, Acta Math. Sin. (Engl. Ser.), 22 (2006), pp. 1493–1508.
Appendix A. Cartesian Products of Lipschitz Domains

Let us suppose that \(D := D_1 \times \cdots \times D_K \), where \(D_i, i = 1, \ldots, K \), are bounded open balls in \(\mathbb{R}^d \) centred at \(0 \in \mathbb{R}^d \). Then, \(D \) is a bounded open Lipschitz domain (cf. Appendix C below for a precise definition of a Lipschitz domain). We present two different proofs of this statement.

The first argument is based on the observation that the Cartesian product of \(K \) bounded open Lipschitz domains \(D_i \subset \mathbb{R}^{n_i}, \; i = 1, \ldots, K \), with \(n_i \geq 1 \), is a bounded open Lipschitz domain in \(\mathbb{R}^{n_1+\cdots+n_K} \). First, note that as a Cartesian product of a finite collection of open sets, \(D \) itself is open. That \(D \) is a Lipschitz domain follows by combining Theorem 3.1 in the Ph.D. Thesis of Hochmuth [27], which implies that the Cartesian product of a finite number of bounded domains \(D_i \subset \mathbb{R}^{n_i}, \; i = 1, \ldots, K \), with \(n_i \geq 1 \), each satisfying the uniform cone property, is a bounded domain in \(\mathbb{R}^{n_1+\cdots+n_K} \) satisfying the uniform cone property; and Theorem 1.2.2.2 in the book of Grisvard [25], which states that a bounded open set in \(\mathbb{R}^n \) has the uniform cone property if, and only if, its boundary is Lipschitz.

In the special case of our domain \(D \) an alternative proof proceeds by noting that, as a Cartesian product of \(K \) bounded open convex sets, \(D_i \subset \mathbb{R}^d, \; i = 1, \ldots, K, \; D \) is a bounded open convex set in \(\mathbb{R}^K \) (cf. Hiriart-Urruty & Lemaréchal [26], p.23), and then applying Corollary 1.2.2.3 in Grisvard [25], which states that a bounded open convex set in \(\mathbb{R}^K \) has a Lipschitz boundary.

Appendix B. Completeness and separability of \(L_M^2(D) \) and \(H_M^1(D) \)

The completeness of the spaces \(H_M^1(D) \) and \(L_M^2(D) \) follows from Theorem 8.10.2 on p.418 in the monograph of Kufner, John & Fučik [31].

By Theorem 19 in Section IV.8.19 of Dunford & Schwartz [22], \(C(\overline{D}) \) is dense in \(L_M^2(D) = L^2(D; \mu) \), where the Radon measure \(\mu \) is defined on the \(\sigma \)-algebra of Borel subsets of \(D \) by \(\mu(B) := \int_B M(q) \, dq \); \(\mu \) is absolutely continuous with respect to the Lebesgue measure on \(\mathbb{R}^K \) and \(dq = M(q) \, dq \). Thus, given \(v \in L_M^2(D) \) and any \(\varepsilon > 0 \), there exists \(\varphi \in C(\overline{D}) \) such that

\[
\|v - \varphi\|_{L_M^2(D)} < \frac{1}{2}\varepsilon.
\]

By the Stone–Weierstrass theorem (cf., for example, Pinkus [33]), \(C(\overline{D}) \) is separable: there exists a countable dense set \(\mathcal{P} \subset C(\overline{D}) \), where \(\mathcal{P} \) is the set of restrictions from \(\mathbb{R}^K \) to \(\overline{D} \) of all polynomials with rational coefficients (cf. Theorem 1.4.5 on p.30 of Kufner, John & Fučik [31]); hence, given \(\varepsilon > 0 \) there exists \(p \in \mathcal{P} \) such that

\[
\|\varphi - p\|_{C(\overline{D})} < \frac{1}{2}\varepsilon.
\]

Clearly, \(C(\overline{D}) \subset L_M^2(D) \) and therefore \(\mathcal{P} \subset L_M^2(D) \); hence, and since \(\mu(D) = 1 \),

\[
\|v - p\|_{L_M^2(D)} \leq \|v - \varphi\|_{L_M^2(D)} + \|\varphi - p\|_{L_M^2(D)} < \frac{1}{2}\varepsilon + \|\varphi - p\|_{C(\overline{D})} \left(\int_D M(q) \, dq \right)^{1/2} < \varepsilon.
\]

This shows that the countable set \(\mathcal{P} \subset L_M^2(D) \) is dense in \(L_M^2(D) \). Therefore \(L_M^2(D) \) is separable. By an argument analogous to the one in Section 3.5 on p.61 of Adams & Fournier [1], \(H_M^1(D) \) is separable.
Appendix C. Density of \(C^∞(\overline{D}) \) in \(L^2_M(D) \) and \(H^1_M(D) \), and of \(C^∞(\Omega \times \overline{D}) \) in \(L^2_M(\Omega \times D) \) and \(H^1_M(\Omega \times D) \)

Since the set \(\mathcal{P} \) defined in the previous subsection is dense in \(L^2_M(D) \) and \(\mathcal{P} \subset C^∞(\overline{D}) \subset L^2_M(D) \), we deduce that \(C^∞(\overline{D}) \) is dense in \(L^2_M(D) \). By an identical argument, \(C^∞(\Omega \times \overline{D}) \) is dense in \(L^2_M(\Omega \times D) \).

Next we consider the density of \(C^∞(\overline{D}) \) in \(H^1_M(D) \), and of \(C^∞(\Omega \times \overline{D}) \) in \(H^1_M(\Omega \times D) \). The argument below closely follows the proof of Theorem 1.1 on p.307 in the paper of Nečas [39].

We suppose that a fixed Cartesian co-ordinate system, referred to henceforth as the canonical co-ordinate system, is introduced in \(\mathbb{R}^n \), so that a vector \(q \in \mathbb{R}^n \) is represented in terms its co-ordinates as

\[
q = (q_1, \ldots, q_n).
\]

Suppose that \(\hat{A} \) is an \(n \times n \) orthogonal matrix with determinant equal to +1 and \(\hat{C} \) is an \(n \)-component column vector. The affine transformation \(q^T \mapsto \tilde{q}^T := \hat{A}q^T + \hat{C} \) defines a new co-ordinate system, which we shall say is equivalent to the canonical co-ordinate system, and we shall express \(\tilde{q} \) in terms of its co-ordinates in this second, equivalent, co-ordinate system as

\[
\tilde{q} = (\tilde{q}_1, \ldots, \tilde{q}_n).
\]

We recall the following definition from Kufner, John & Fučík [31].

Definition Appendix C.1. We say that a bounded open domain \(D \subset \mathbb{R}^n \) is a Lipschitz domain if, and only if, there exist:

(i) a positive integer \(m \) and \(m \) (different) Cartesian co-ordinate systems, referred to as local co-ordinate systems, each of which is equivalent to a fixed canonical co-ordinate system in \(\mathbb{R}^n \). When an \(n \)-component vector is expressed in terms of its co-ordinates in the \(r \)th local co-ordinate system, we shall write

\[
Q_r = (q_{r1}, \ldots, q_{rn}) = (q^r_1, q^r_n),
\]

where \(q^r_1 := (q_{r1}, \ldots, q_{rn-1}) \) and \(q^r_n := q_{rn} \).

(ii) a number \(\alpha > 0 \) and \(m \) functions

\[
a_r \in C^{0,1}(\Sigma_r), \quad r = 1, \ldots, m,
\]

where

\[
\Delta_r = \left\{ q^r_1 : |q^r_1| := \left(\sum_{i=1}^{n-1} |q^r_i|^2 \right)^{\frac{1}{2}} < \alpha \right\}.
\]

(iii) a number \(\beta > 0 \) such that

(iii.1) the sets

\[
\Lambda_r := A_r^{-1}(\{Q^r_T = (q^r_1, q^r_n)^T : q^r_1 \in \Delta_r \text{ and } q^r_n = a_r(q^r_1)\})
\]

are subsets of \(\partial D \) for \(r = 1, \ldots, m \),

\[
\partial D = \bigcup_{r=1}^m \Lambda_r
\]

and

\[
a_r : Q^r_T \rightarrow Q^r_T \text{ is the affine transformation of co-ordinates } Q^r_T := A_r(Q^r_T) = \hat{A}_r Q^r_T + C_r, \text{ with } \hat{A}_r \in \mathbb{R}^{n \times n} \text{ orthogonal and determinant equal to } +1 \text{ and } C_r \text{ an } n\text{-component column vector, that maps the canonical co-ordinate system in } \mathbb{R}^n \text{ to the, equivalent, } r\text{th local co-ordinate system.}
\]

(iii.2) for every \(r = 1, \ldots, m \), the sets \(U^-_r \) and \(U^+_r \), defined by

\[
U^-_r := A_r^{-1}(\{Q^r_T = (q^r_1, q^r_n)^T : q^r_1 \in \Delta_r, a_r(q^r_1) - \beta < q^r_n < a_r(q^r_1)\})
\]

\[
U^+_r := A_r^{-1}(\{Q^r_T = (q^r_1, q^r_n)^T : q^r_1 \in \Delta_r, a_r(q^r_1) < q^r_n < a_r(q^r_1) + \beta\})
\]

are such that \(U^-_r \subset D \) and \(U^+_r \subset \overline{D}^c \] (the complement of \(\overline{D} \) w.r.t. \(\mathbb{R}^n \)).
We shall write
\[U_r := A_{r}^{-1}(q_r^T = (q_r, q_r^n)^T : q_r \in \Delta_r \text{ and } a_r(q_r) - \beta < q_r^n < a_r(q_r) + \beta) \].

Theorem Appendix C.1. $C^\infty(\overline{D})$ is dense in $H^1_M(D)$.

Proof. Let $q = (q_1, \ldots, q_K) \in D = D_1 \times \cdots \times D_K$, where $D_i \subset \mathbb{R}^d$ is a bounded open ball in \mathbb{R}^d centred at the origin, and let $n := Kd$; thus, after relabelling the co-ordinates of q, $q = (q_1, \ldots, q_n) \in D$, and D is a bounded Lipschitz domain in \mathbb{R}^n by [Appendix A]. In particular, by using the notation introduced in the previous definition, there exist m local co-ordinate systems in \mathbb{R}^n and real-valued functions a_r, $r = 1, \ldots, m$, such that for each $q \in \partial D$ there is an $r \in \{1, \ldots, m\}$ for which
\[q^T = A_{r}^{-1}((q_r, a_r(q_r)))^T, \]
where $q_r \in \Delta_r$, $a_r \in C^{0,1}(\overline{\Delta})$, and A_r is as in the definition above. Since the Jacobian of each mapping A_r is equal to $+1$, the specific choice of the matrix A_r and the vector C_r in the definition of the local co-ordinate transformation A_r does not affect the argument below. We shall therefore assume for ease of exposition that $A_r = I$ and $C_r = 0$, so that A_r is the identity mapping. Thus, for example, we shall write $u(q_r, q_r^n)$ instead of $u((A_r^{-1}((q_r, q_r^n))^T)^T).

There exist functions $\varphi_r \in C^\infty_0(U_r)$, with $0 \leq \varphi_r \leq 1$, $r = 1, \ldots, m$, and a function $\varphi_{m+1} \in C^\infty_0(D)$, with $0 \leq \varphi_{m+1} \leq 1$, such that we have the partition of unity
\[\sum_{i=1}^{m+1} \varphi_r \equiv 1 \quad \text{on } \partial D. \tag{C.1} \]

Now, given $u \in H^1_M(D)$, let $u_r := u\varphi_r$ for $r = 1, \ldots, m+1$; clearly, $u_r \in H^1_M(D)$ and $u_{m+1} \in H^1(D) \subset H^1_M(D)$. Having thus decomposed $u \in H^1_M(D)$ as
\[u = \sum_{r=1}^{m+1} u_r \quad \text{on } D, \tag{C.2} \]
we give a brief overview of the rest of the proof. Let us first note that on any compact subdomain B of D the Maxwellian M is bounded above and below by positive constants; on such subdomains B we have that $H^1_M(B) = H^1(B)$. On D itself the situation is quite different: of course, $H^1(D) \subset H^1_M(D)$; however the converse inclusion is false as there exist elements in $H^1_M(D)$, which, due to the decay of the weight function M to 0 on ∂D, tend to infinity at a faster rate than can be accommodated within $H^1(D)$. The idea of the proof is therefore to translate each of the functions u_r, $r = 1, \ldots, m$, in the direction of the boundary in order to shift the locations of potential ‘bad’ behaviour in $u_r \in H^1_M(D)$ from ∂D to $\partial \overline{D}$; this then ensures that, for any (sufficiently small) positive value of the shift parameter λ, the shifted function, $u_r\lambda$, belongs to $H^1(D)$, and can be therefore well approximated in $H^1(D)$ by functions (denoted $u_{r,\lambda}$ below) that lie in $C^\infty(\overline{D})$, thanks to the density of $C^\infty(\overline{D})$ in $H^1(D)$. As $\varphi_{m+1} \in C^\infty_0(D)$, the function $u_{m+1} = u\varphi_{m+1}$ has compact support in D, and can be therefore well approximated in $H^1(D)$ (and thereby also in $H^1_M(D)$) by smooth functions, without the need to form its shifted counterpart $u_{m+1,\lambda}$ beforehand and approximate that instead; however, u_{m+1} will be shifted in any case, by the same amount λ as the functions u_r, $r = 1, \ldots, m$, simply to ensure that a shifted counterpart of the partition \[C.1 \] holds.

With this motivation in mind, we define shifted counterparts, $u_{r,\lambda}$, of the u_r by
\[u_{r,\lambda}(q_r, q_r^n) := u_r(q_r, q_r^n - \lambda), \quad \text{for } r = 1, \ldots, m+1. \tag{C.2} \]

Step 1. The first step in the argument amounts to showing that
\[\lim_{\lambda \to 0} u_{r,\lambda} = u_r \quad \text{in } H^1_M(D), \quad r = 1, \ldots, m+1. \tag{C.2} \]
This clearly holds for $r = m+1$. Let us therefore assume that $r \in \{1, \ldots, m\}$, let g_r signify the function u_r or any of its first partial derivatives, and define $V_r := U^-_r$. Clearly, $V_r \subset U_r$, and
By the triangle inequality, with \(q = (q'_r, q^n_r),\)

\[
\left[\int_{V_r} |g_r(q'_r, q^n_r) - g_r(q'_r, q^n_r - \lambda)|^2 \, M(q) \, dq \right]^{\frac{1}{2}}
\]

\[
= \left[\int_{V_r} |g_r(q'_r, q^n_r)| [M(q)]^{\frac{1}{2}} - g_r(q'_r, q^n_r - \lambda) [M(q)]^{\frac{1}{2}} |^2 \, dq \right]^{\frac{1}{2}}
\]

\[
\leq \left[\int_{V_r} |g_r(q'_r, q^n_r)| [M(q'_r, q^n_r)]^{\frac{1}{2}} - g_r(q'_r, q^n_r - \lambda) [M(q'_r, q^n_r - \lambda)]^{\frac{1}{2}} |^2 \, dq \right]^{\frac{1}{2}}
\]

\[
+ \left[\int_{V_r} |g_r(q'_r, q^n_r - \lambda)|^2 |[M(q'_r, q^n_r) - \lambda]|^{\frac{1}{2}} - [M(q'_r, q^n_r)]^{\frac{1}{2}} |^2 \, dq \right]^{\frac{1}{2}}
\]

(C.3)

\(=: T_1 + T_2.\)

We begin by considering \(T_2.\) Let \(\lambda \in (0, \beta/2);\) then, for \(\beta > 0\) sufficiently small, there exists \(c_0 \in (0, \beta]\) sufficiently small such that

\([[M(q'_r, q^n_r) - \lambda]]^{\frac{1}{2}} - [M(q'_r, q^n_r)]^{\frac{1}{2}} |\leq M(q'_r, q^n_r) - \lambda,\)

for \(q'_r \in D_r\) and \(q^n_r \in (a_r(q'_r) - c_0, a_r(q'_r)).\) This follows on noting that for all \(\lambda \in (0, \beta/2]\) and \(c_0\) sufficiently small,

\(M(q'_r, q^n_r - \lambda) > M(q'_r, q^n_r)\) for

\[
\begin{cases}
q'_r \in D_r, \\
q^n_r \in (a_r(q'_r) - c_0, a_r(q'_r)).
\end{cases}
\]

Hence, and by the absolute continuity of the Lebesgue integral, for any \(\varepsilon > 0\) there exists \(c_1 \in (0, c_0]\) small (independent of \(\lambda \in (0, \beta/2]\)) such that

\[
\int_{D_r} dq'_r \int_{a_r(q'_r) - c_1}^{a_r(q'_r)} |g_r(q'_r, q^n_r - \lambda)|^2 \, M(q'_r, q^n_r - \lambda) \, dq^n_r < \frac{1}{2} \varepsilon^2.
\]

(C.4)

Now for \(c_1 > 0\) fixed, there exists \(\lambda > 0\) sufficiently small such that

\[
\left[\int_{D_r} dq'_r \int_{a_r(q'_r) - c_1}^{a_r(q'_r)} |g_r(q'_r, q^n_r - \lambda)|^2 \, M(q'_r, q^n_r - \lambda) \, dq^n_r \right]^{\frac{1}{2}}
\leq \max_{q'_r \in D_r, a_r(q'_r) - \beta \leq q'^r \leq a_r(q'_r) - c_1} \left[1 - \frac{[M(q'_r, q^n_r - \lambda)]^{\frac{1}{2}}}{[M(q'_r, q^n_r)]^{\frac{1}{2}}} \right]^2 \times
\left(\frac{\max_{q'_r \in D_r, a_r(q'_r) - \beta \leq q'^r \leq a_r(q'_r) - c_1} \left[1 - \frac{[M(q'_r, q^n_r - \lambda)]^{\frac{1}{2}}}{[M(q'_r, q^n_r)]^{\frac{1}{2}}} \right]^2 \right)^{\frac{1}{2}} \times \int_{D_r} dq'_r \int_{a_r(q'_r) - \beta}^{a_r(q'_r) - c_1} |g_r(q'_r, q^n_r) - \lambda|^2 \, M(q'_r, q^n_r - \lambda) \, dq^n_r < \frac{1}{2} \varepsilon^2.
\]

(C.5)

Summing (C.4) and (C.5) and taking the square root of both sides of the resulting inequality, we deduce that for any \(\varepsilon > 0\) there exists \(\lambda > 0\) such that

\[
\left[\int_{V_r} |g_r(q'_r, q^n_r - \lambda)|^2 \, M(q'_r, q^n_r - \lambda) \, dq^n_r \right]^{\frac{1}{2}} < \varepsilon.
\]

Hence,

(C.6)

\[
\left[\int_{V_r} |g_r(q'_r, q^n_r - \lambda)|^2 \, M(q'_r, q^n_r - \lambda) \, dq^n_r \right]^{\frac{1}{2}} < \varepsilon.
\]

converges to 0 as \(\lambda \to 0^+.\) That concludes the analysis of term \(T_2.\)
Concerning T_1, continuity in the L^2-norm of the translation operator implies that

$$ \| \int_{V_r} \frac{|q_r(q_r', q_r^n)|}{q_r(q_r', q_r^n)} \left[M(q_r', q_r^n) - \frac{1}{r} \frac{|q_r(q_r', q_r^n)|}{q_r(q_r', q_r^n)} \right] \frac{d q_r}{r} \right]^{\frac{1}{2}} \quad (C.7) $$

converges to 0 as $\lambda \to 0$. That concludes the analysis of term T_1.

Finally, $(C.6)$ and $(C.7)$ imply $(C.2)$.

Step 2. Having shown $(C.2)$, it now suffices to prove that each of the functions $u_{r\lambda}$, $r = 1, \ldots, m + 1$, is a limit in $H^1_M(D)$ of $C^\infty(D)$ functions. To that end, for $r = 1, \ldots, m + 1$ we define the functions

$$ u_{r\lambda h}(q) := \frac{1}{C_0 h^n} \int_{|q - p| < h} \exp \left(\frac{|q - p|^2}{q - p| - h^2} \right) u_{r\lambda}(p) \, dp, $$

(for h sufficiently small, e.g., $0 < h \leq \frac{1}{2} \lambda$, to ensure that the integral is correctly defined), with C_0 chosen so that

$$ \frac{1}{C_0 h^n} \int_{|q - p| < h} \exp \left(\frac{|q - p|^2}{q - p| - h^2} \right) \, dp = 1. $$

Clearly, $u_{r\lambda h} \in C^\infty(D)$, $r = 1, \ldots, m$, and for $\lambda \in (0, \beta/2]$ fixed, we have that

$$ \lim_{h \to 0^+} u_{r\lambda h} = u_{r\lambda} \quad \text{in} \quad H^1(D). $$

Thus, a fortiori (noting that $M \in L^\infty(D)$), for $\lambda \in (0, \beta/2]$ fixed,

$$ \lim_{h \to 0^+} u_{r\lambda h} = u_{r\lambda} \quad \text{in} \quad H^1_M(D), \quad r = 1, \ldots, m. $$

Hence, given $\varepsilon > 0$ and $\lambda \in (0, \beta/2]$ fixed, there exists $h > 0$ such that

$$ \|u_{r\lambda h} - u_{r\lambda}\|_{H^1_M(D)} < \frac{\varepsilon}{m + 1}, \quad r = 1, \ldots, m. \quad (C.8) $$

Further, using that $M \in L^\infty(D)$ and the closeness of $u_{m+1\lambda h}$ and $u_{m+1}\lambda$ in $H^1(D)$, and thereby in $H^1_M(D)$, we also have

$$ \|u_{m+1\lambda h} - u_{m+1}\lambda\|_{H^1_M(D)} < \frac{\varepsilon}{m + 1} \quad (C.9) $$

for $h > 0$ sufficiently small.

We define

$$ u_{\lambda h} := \sum_{r=1}^{m+1} u_{r\lambda h} \quad \text{and} \quad u_{\lambda} := \sum_{r=1}^{m+1} u_{r\lambda}. $$

The inequalities $(C.8)$ and $(C.9)$ then imply that

$$ \|u_{\lambda h} - u_{\lambda}\|_{H^1_M(D)} \leq \sum_{r=1}^{m+1} \|u_{r\lambda h} - u_{r\lambda}\|_{H^1_M(D)} \leq \varepsilon. \quad (C.10) $$

Since the functions $u_{r\lambda h}$, $r = 1, \ldots, m + 1$, all belong to $C^\infty(D)$, the same is true of $u_{\lambda h}$. Finally,

$$ \|u - u_{\lambda h}\|_{H^1_M(D)} \leq \|u - u_{\lambda}\|_{H^1_M(D)} + \|u_{\lambda} - u_{\lambda h}\|_{H^1_M(D)}, $$

and therefore the stated density result immediately follows, on recalling $(C.1)$, $(C.2)$, the definition of u_{λ}, $(C.10)$, and that $u_{\lambda h} \in C^\infty(D)$. \qed

By an identical argument, $C^\infty(\Omega \times D)$ is dense in $H^1_M(\Omega \times D)$.

Appendix D. Compact embeddings in Maxwellian weighted spaces

D.1. Step 1: Compact embedding of $H^1_M(D)$ into $L^2_M(D)$. We are grateful to Leonardo Figueroa (University of Oxford) for suggesting the proof presented in Section D.7.

Let $D := D_1 \times \cdots \times D_K$, where $D_i = B(0, \sqrt{b_i})$, $b_i > 0$, $i = 1, \ldots, K$, and suppose that $M(q) := M_1(q_1) \cdots M_K(q_K)$. We shall prove that

$$H^1_M(D) \hookrightarrow L^2_M(D). \tag{D.1}$$

We begin by recalling from the Appendix of Barrett & Süli [10] that

$$H^1_M(D_i) \hookrightarrow L^2_M(D_i) \tag{D.2}$$

for $i = 1, \ldots, K$, which was proved there using a compactness result due to Antoci [3]. We shall prove (D.1) for the case of $K = 2$, with $D = D_1 \times D_2$ and $M(q) = M_1(q_1)M_2(q_2)$. For $K > 2$ the proof is completely analogous.

Let $u \in H^1_M(D)$. As $M = M_1 \times M_2$, it follows from Fubini’s theorem that, for almost all $q_1 \in D_1$,

$$u(q_1, \cdot) \in L^1_{loc}(D_2) \quad \text{and} \quad \partial^{\alpha}u(q_1, \cdot) \in L^2_{M_2}(D_2),$$

where α is any d-component multi-index with $0 \leq |\alpha| \leq 1$. Fubini’s theorem also implies that, given $\varphi_2 \in C_0^\infty(D_2)$ and a d-component multi-index α_2, with $0 \leq |\alpha_2| \leq 1$, we have

$$\int_{D_1} \left[(-1)^{\alpha_2} \partial^{\alpha_2} \varphi_2 \right] \varphi_1 dq_1 = \int_{D_1} \left[\int_{D_2} \partial^{(0,\alpha_2)}u(q_1, \cdot) \varphi_2 dq_2 \right] \varphi_1 dq_1,$$

for all $\varphi_1 \in C_0^\infty(D_1)$. Therefore, $\partial^{\alpha_2}u(q_1, \cdot) = \partial^{(0,\alpha_2)}u(q_1, \cdot)$ in the sense of weak derivatives on D_2 for almost all $q_1 \in D_1$. As $\partial^{(0,\alpha_2)}u(q_1, \cdot)$ belongs to $L^2_{M_2}(D_2)$ for almost all $q_1 \in D_1$ we have that

$$u(q_1, \cdot) \in H^1_{M_2}(D_2) \quad \text{for almost all } q_1 \in D_1. \tag{D.3}$$

Analogously,

$$u(\cdot, q_2) \in H^1_{M_1}(D_1) \quad \text{for almost all } q_2 \in D_2.$$

As each of the partial Maxwellians, M_1 and M_2, is bounded from above and below by positive constants on compact subsets of their respective domains, there exists a sequence $(D_{i,(n)} : n \in \mathbb{N})$ of open proper Lipschitz subsets of D_i, $i = 1, 2$, such that

$$D_{i,(n)} \subset D_{i,(n+1)}, \quad n \in \mathbb{N}, \quad \bigcup_{n=1}^\infty D_{i,(n)} = D_i \quad \text{and} \quad H^1_M(D_{i,(n)}) \hookrightarrow L^2_M(D_{i,(n)});$$

e.g., $D_{i,(n)} = B(0, \sqrt{n/n_1})$; the compact embeddings stated here follow by the Rellich–Kondrachov theorem (cf. Adams & Fournier [11], p.168, Theorem 6.3, Part I, eq. (3)) applied on $D_{i,(n)}$, $i = 1, 2$, $n \in \mathbb{N}$. Letting, for $n \in \mathbb{N}$, $D_{(n)} := \bigcap_{i=1}^2 D_{i,(n)} \subseteq D$, and noting that, by Appendix A, $D_{(n)}$ is a Lipschitz domain, the above properties get inherited by $D_{(n)}$ from $D_{i,(n)}$:

$$D_{(n)} \subset D_{(n+1)}, \quad n \in \mathbb{N}, \quad \bigcup_{n=1}^\infty D_{(n)} = D \quad \text{and} \quad H^1_M(D_{(n)}) \hookrightarrow L^2_M(D_{(n)}).$$

Let $D_i^{(n)} := D_i \setminus D_{i,(n)}$ and $D^{(n)} := D \setminus D_{(n)}$. It follows from Opic [41], Theorem 2.4, that the above compact embeddings on members of a nested covering imply the following characterizations (the first, for $i \in \{1, 2\}$):

$$H^1_M(D_i) \hookrightarrow L^2_M(D_i) \iff \lim_{n \to \infty} \sup_{u \in H^1_M(D_i) \setminus \{0\}} \int_{D_i^{(n)}} u^2 \, dM_i/\|u\|_{H^1_M(D_i)}^2 = 0, \tag{D.4}$$

$$H^1_M(D) \hookrightarrow L^2_M(D) \iff \lim_{n \to \infty} \sup_{u \in H^1_M(D) \setminus \{0\}} \int_{D^{(n)}} u^2 \, dM/\|u\|_{H^1_M(D)}^2 = 0, \tag{D.5}$$
By the Cauchy–Schwarz inequality, the left-hand side of (D.3) holds; hence, its right-hand side also holds. Using (D.3) and (D.4) with \(i = 2\), we deduce that for any \(\varepsilon > 0\) there exists \(n = n(\varepsilon) \in \mathbb{N}\) such that

\[
\int_{D_1 \times D_2} u^2 \, dM = \int_{D_1} \left[\int_{D_2} u^2(q_1, \cdot) \, dM_2 \right] \, dM_1 \leq \varepsilon \int_{D_1} \|u(q_1, \cdot)\|_{H^{1/2}_2(D_2)}^2 \, dM_1
\]

and similarly for \(\int_{D_1^{(n)} \times D_2} u^2 \, dM\). Then, as \(D^{(n)} = (D_1 \times D_2^{(n)}) \cup (D_1^{(n)} \times D_2)\), the right-hand side of (D.3) holds; therefore, so does its left-hand side; hence (D.1).

D.2. Step 2: Isometric isomorphisms. Let \(\Omega\) be a bounded open Lipschitz domain in \(\mathbb{R}^d\). We now show the isometric isomorphism of the following pairs of spaces, respectively: \(L^2_M(\Omega \times D)\) and \(L^2(\Omega; L^2_M(D))\); \(H^{1/2}_M(\Omega \times D)\) and \(L^2(\Omega; H^{1/2}_{1/2}(D))\); \(H^{1/2}_M(\Omega \times D)\) and \(H^1(\Omega; L^2_M(D))\). The definitions of \(H^{1/2}_M(\Omega \times D)\) and \(H^1(\Omega; L^2_M(D))\) are given below.

D.2.1. Isometric isomorphism of \(L^2_M(\Omega \times D)\) and \(L^2(\Omega; L^2_M(D))\). Let

\[
L^2(\Omega; L^2_M(D)) := \{v \in \mathcal{M}_w(\Omega, L^2_M(D)) : \int_{\Omega} \|v(x)\|^2_{L^2_M(D)} \, dx < \infty\},
\]

where

\[
\mathcal{M}_w(\Omega, L^2_M(D)) := \{v : \Omega \to L^2_M(D) : v \text{ is weakly measurable on } \Omega\}.
\]

Let \(\{\varphi_j\}_{j=1}^{\infty}\) be a complete orthonormal system in the (separable) Hilbert space \(L^2_M(D)\) with respect to the inner product \((\cdot, \cdot)\) of \(L^2_M(D)\). For \(v \in L^2(\Omega; L^2_M(D))\), we define the function

\[
V_N(x, q) := \sum_{j=1}^{N} (v(x), \varphi_j) \varphi_j(q).
\]

As \(v\) is weakly measurable on \(\Omega\), each of the functions \(x \mapsto (v(x), \varphi_j)\), \(j = 1, 2, \ldots\), is measurable on \(\Omega\); therefore \((x, q) \mapsto (v(x), \varphi_j)\) is measurable on \(\Omega \times D\) for all \(j = 1, 2, \ldots\). Similarly, \(q \mapsto \varphi_j(q)\) is measurable on \(D\) for each \(j = 1, 2, \ldots\), and therefore \((x, q) \mapsto \varphi_j(q)\) is measurable on \(\Omega \times D\). Hence, also \(V_N\) is a measurable function on \(\Omega \times D\). Now,

\[
|V_N(x, q)|^2 = \sum_{j=1}^{N} \sum_{m=1}^{N} (v(x), \varphi_j)(v(x), \varphi_k) \varphi_j(q) \varphi_k(q).
\]

By the Cauchy–Schwarz inequality \(M \varphi_j \varphi_k = M^\sharp \varphi_j \cdot M^\sharp \varphi_k \in L^1(D)\) for all \(j, k \geq 1\); hence also \(M(\cdot)|V_N(x, \cdot)|^2 \in L^1(D)\) for a.e. \(x \in \Omega\). Thus, by the orthonormality of the \(\varphi_j\), \(j = 1, 2, \ldots\), in \(L^2_M(D)\),

\[
\int_D M(q) |V_N(x, q)|^2 \, dq = \sum_{j=1}^{N} \int_D |(v(x), \varphi_j)|^2 \, dq, \quad \text{a.e. } x \in \Omega.
\]

By Bessel's inequality in \(L^2_M(D)\), the right-hand side of this last equality is bounded by \(\|v(x)\|^2_{L^2_M(D)}\) for a.e. \(x \in \Omega\), and, by hypothesis, \(x \mapsto v(x) \in L^2(\Omega)\); therefore, by Fubini's theorem, \(M \|V_N\|^2 \in L^1(\Omega \times D)\). Upon integrating both sides over \(\Omega\), and using Fubini's theorem on the left-hand side to write the multiple integral over \(\Omega\) and \(D\) as an integral over \(\Omega \times D\), we have

\[
\|V_N\|^2_{L^2_M(\Omega \times D)} := \int_{\Omega \times D} M(q) |V_N(x, q)|^2 \, dq \, dx = \sum_{j=1}^{N} \int_{\Omega} |(v(x), \varphi_j)|^2 \, dx.
\]
Now, let
\[y_N(x) := \sum_{j=1}^{N} |(v(x), \varphi_j)|^2, \quad x \in \Omega. \]
The sequence \(\{y_N(x)\}_{N=1}^{\infty} \) is monotonic increasing for almost all \(x \in \Omega \); also, according to Bessel’s inequality in \(L^2_M(D) \) we have that
\[0 \leq y_N(x) \leq \|v(x)\|_{L^2_M(D)}^2 \quad \forall N \geq 1, \quad \text{a.e. } x \in \Omega. \]
Thus \(\{y_N(x)\}_{N=1}^{\infty} \) is a bounded sequence of real numbers, for a.e. \(x \in \Omega \). Therefore, the sequence \(\{y_N(x)\}_{N=1}^{\infty} \) converges in \(\mathbb{R} \) for a.e. \(x \in \mathbb{R} \), with
\[y(x) = \lim_{N \to \infty} y_N(x) = \sum_{j=1}^{\infty} |(v(x), \varphi_j)|^2, \quad \text{a.e. } x \in \Omega. \]

By the monotone convergence theorem,
\[
\lim_{N \to \infty} \sum_{j=1}^{N} \int_{\Omega} |(v(x), \varphi_j)|^2 \, dx = \lim_{N \to \infty} \int_{\Omega} y_N(x) \, dx = \int_{\Omega} y(x) \, dx = \int_{\Omega} \sum_{j=1}^{\infty} |(v(x), \varphi_j)|^2 \, dx.
\]
This implies that
\[
\left\{ \sum_{j=1}^{N} \int_{\Omega} |(v(x), \varphi_j)|^2 \, dx \right\}_{N=1}^{\infty}
\]
is a convergent sequence of real numbers. Hence, it is also a Cauchy sequence in \(\mathbb{R} \).

Since, for any \(N > L \geq 1 \),
\[
\int_{\Omega \times D} |V_N(x, q) - V_L(x, q)|^2 \, dq \, dx = \sum_{j=L+1}^{N} \int_{D} |(v(x), \varphi_j)|^2 \, dx,
\]
it follows that \(\{V_N\}_{N=1}^{\infty} \) is a Cauchy sequence in \(L^2_M(\Omega \times D) \). Since \(L^2_M(\Omega \times D) \) is a Hilbert space, there exists a unique \(V \in L^2_M(\Omega \times D) \) such that
\[V = \lim_{N \to \infty} V_N \quad \text{in } L^2_M(\Omega \times D). \]

Thus we have shown that the mapping
\[I : v \in L^2(\Omega, L^2_M(D)) \mapsto V := \sum_{j=1}^{\infty} (v(\cdot), \varphi_j) \varphi_j(\cdot) \in L^2_M(\Omega \times D) \]
is correctly defined. Next, we prove that \(I \) is a bijective isometry, and this will imply that the spaces \(L^2(\Omega; L^2_M(D)) \) and \(L^2_M(\Omega \times D) \) are isometrically isomorphic.

We begin by showing that \(I \) is injective. As \(I \) is linear it suffices to prove that if \(I(v) = 0 \) then \(v = 0 \). Indeed, if \(I(v) = 0 \), then
\[
\sum_{j=1}^{\infty} (v(x), \varphi_j) \varphi_j(q) = 0 \quad \text{for a.e. } (x, q) \in \Omega \times D.
\]

Since \(\{\varphi_j\}_{j=1}^{\infty} \) is an orthonormal system in \(L^2_M(D) \), it follows that \((v(x), \varphi_j) = 0 \) for a.e. \(x \in \Omega \) and all \(j = 1, 2, \ldots \). The completeness of the orthonormal system \(\{\varphi_j\}_{j=1}^{\infty} \) in \(L^2_M(D) \) now implies that \(v(x) = 0 \) in \(L^2_M(D) \) for a.e. \(x \in \Omega \), i.e. \(v = 0 \) in \(L^2(\Omega; L^2_M(D)) \).

Next we show that \(I \) is surjective. Suppose that \(V \in L^2_M(\Omega \times D) \). Then, by Fubini’s theorem, \(V(x, \cdot) \in L^2_M(D) \) for a.e. \(x \in \Omega \). Since \(\{\varphi_j\}_{j=1}^{\infty} \) is a complete orthonormal system in \(L^2_M(D) \), it follows that
\[V(x, \cdot) = \sum_{j=1}^{\infty} (V(x, \cdot), \varphi_j) \varphi_j(\cdot). \]
On defining $v(x) := V(x, \cdot) \in L^2_M(D)$, we have that $I(v) = V$. Hence I is surjective.

Finally, we show that I is an isometry. Clearly

$$
\|V\|_{L^2_M(\Omega \times D)}^2 = \lim_{N \to \infty} \|V_N\|_{L^2_M(\Omega \times D)}^2
$$

$$
= \lim_{N \to \infty} \sum_{j=1}^{N} \int_{\Omega} |(v(x), \varphi_j)|^2 \, dx
$$

$$
\int_{\Omega} \sum_{j=1}^{\infty} |(v(x), \varphi_j)|^2 \, dx.
$$

Applying Parseval’s identity in $L^2_M(D)$ to the infinite series under the last integral sign, we deduce that

$$
\|V\|_{L^2_M(\Omega \times D)}^2 = \int_{\Omega} \|v(x)\|_{L^2_M(D)}^2 \, dx = \|v\|_{L^2(\Omega; L^2_M(D))}^2.
$$

Thus we have shown that $\|I(v)\|_{L^2_M(\Omega \times D)} = \|v\|_{L^2(\Omega; L^2_M(D))}$, whereby I is an isometry.

D.2.2. Isometric isomorphism of $H^{0,1}_M(\Omega \times D)$ and $L^2(\Omega; H^1_M(D))$. Let us begin by observing that $L^2_M(\Omega \times D) \subset L^2_{\text{loc}}(\Omega \times D)$, and therefore any V in $L^2_M(\Omega \times D)$ can be considered to be an element of $D'(\Omega \times D)$, the space of \mathbb{R}-valued distributions on $\Omega \times D$. Let ∇_q denote the distributional gradient with respect to q, defined on $D'(\Omega \times D)$. We define

$$
H^{0,1}_M(\Omega \times D) := \{V \in L^2_M(\Omega \times D) : \nabla_q V \in L^2_M(\Omega \times D)\}.
$$

A completely identical argument to the one above shows that $H^{0,1}_M(\Omega \times D)$ is isometrically isomorphic to $L^2(\Omega; H^1_M(D))$; the only change that is required is to replace $L^2_M(D)$ by $H^1_M(D)$ throughout and to take \{\varphi_j\}_{j=1}^{\infty} to be a complete orthonormal system in the inner product (\cdot, \cdot) of the (separable) Hilbert space $H^1_M(D)$, instead of $L^2_M(D)$.

D.2.3. Isometric isomorphism of $H^{1,0}_M(\Omega \times D)$ and $H^1(\Omega; L^2_M(D))$. Let

$$
H^{1,0}_M(\Omega \times D) := \{V \in L^2_M(\Omega \times D) : \nabla_x V \in L^2_M(\Omega \times D)\}.
$$

Concerning the isometric isomorphism of $H^{1,0}_M(\Omega \times D)$ and $H^1(\Omega; L^2_M(D))$ we proceed as follows. Given $v \in H^1(\Omega; L^2_M(D)) \subset L^2(\Omega; L^2_M(D))$, we define, as in the proof of the isometric isomorphism of $L^2(\Omega; L^2_M(D))$ and $L^2_M(\Omega \times D)$ above, the function

$$
V : (x,q) \in \Omega \times D \mapsto V(x,q) := \sum_{j=1}^{\infty} (v(x), \varphi_j) \varphi_j(q) \in \mathbb{R},
$$

where \{\varphi_j\}_{j=1}^{\infty} is a complete orthonormal system in $L^2_M(D)$. We showed above that $V \in L^2_M(\Omega \times D)$, and $\|V\|_{L^2_M(\Omega \times D)} = \|v\|_{L^2(\Omega; L^2_M(D))}$.

Now, let ∇_x denote the distributional gradient with respect to x, defined on $D'(\Omega \times D)$, and let D_x denote the distributional gradient, defined on $D'(\Omega; L^2_M(D))$, the space of $L^2_M(D)$-valued distributions on Ω. Applying ∇_x to

$$
V = \sum_{j=1}^{\infty} (v, \varphi_j) \varphi_j \quad \text{in} \ D'(\Omega \times D) \quad \text{and noting that} \quad \nabla_x V = \sum_{j=1}^{\infty} (D_x v, \varphi_j) \varphi_j,
$$

it follows from the isometric isomorphism of $L^2_M(\Omega \times D)$ and $L^2(\Omega; L^2_M(D))$ that

$$
\|V\|_{H^{1,0}_M(\Omega \times D)}^2 = \|V\|_{L^2_M(\Omega \times D)}^2 + \|\nabla_x V\|_{L^2_M(\Omega \times D)}^2
$$

$$
= \|v\|_{L^2_M(\Omega; L^2_M(D))}^2 + \|D_x v\|_{L^2(\Omega; L^2_M(D))}^2 = \|v\|_{H^1(\Omega; L^2_M(D))}^2,
$$

which shows that $H^{1,0}_M(\Omega \times D)$ and $H^1(\Omega; L^2_M(D))$ are isometrically isomorphic.
D.3. **Step 3: Compact embedding of $H^1_M(\Omega \times D)$ into $L^2_M(\Omega \times D)$**. We use the results of Step 2 to identify the space $L^2_M(\Omega \times D)$ with $L^2(\Omega; L^2_M(D))$ and the space $H^1_M(\Omega \times D) = H^{1,0}_M(\Omega \times D) \cap H^{0,1}_M(\Omega \times D)$ with $H^1(\Omega; L^2_M(D)) \cap L^2(\Omega; H^1_M(D))$. Upon doing so, the compact embedding of $H^1_M(\Omega \times D)$ into $L^2_M(\Omega \times D)$ directly follows from the compact embedding of $H^1(\Omega; L^2_M(D)) \cap L^2(\Omega; H^1_M(D))$ into $L^2(\Omega; L^2_M(D))$, implied by Theorem 2 on p.1499 in the paper of Shakhmurov [46], thanks to the compact embedding from Step 1.

Note: The results contained in this preprint have been published, in an abbreviated form, in our paper [12].

Department of Mathematics, Imperial College London, London SW7 2AZ, UK, j.barrett@imperial.ac.uk

Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK, endre.suli@maths.ox.ac.uk