Supplementary data for
“Improvement of thermoelectric performance of single-wall carbon nanotubes by heavy doping: Effect of one-dimensional band multiplicity” by D. Hayashi¹, Y. Nakai¹, H. Kyakuno², T. Yamamoto⁴, Y. Miyata¹³, K. Yanagi¹, and Y. Maniwa¹

¹Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan. ²Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan. ³JST, PRESTO, Kawaguchi 332-0012, Japan. ⁴Department of Liberal Arts (Physics), Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan

Figure S1 Energy dependence of electrical conductance $G(\mu)$ for $(n,0)$ SWCNTs with $n = 18, 24, 25,$ and 38. The slope, $\frac{d\ln G(\mu)}{d\mu}$, is reflected in the magnitude of S. The $(24,0)$-SWCNT shows the steepest slope and the largest $S = 90 \ \mu$V/K, while the $(25,0)$-SWCNT has the mildest slope and the smallest $S = 40 \ \mu$V/K. Lower panel: Transmission function $\zeta(\varepsilon)$ of a carrier with energy ε in $(24,0)$ and $(25,0)$ SWCNTs.
Figure S2 S and P for parallel junctions (see Fig. S3) of (19,0) s-SWCNT and (11,11) m-SWCNT for various m-SWCNT content. (a) S and P as a function of the chemical potential, μ. (b) Magnitude of S and P peaks defined in (a) as a function of the m-SWCNT content.
Figure S3 Schematic illustration of the parallel junction model. The equivalent total Seebeck coefficient S, and conductance G, are given by:

$$S = \frac{S_s(1-\beta)G_s + S_mG_m\beta}{G_s(1-\beta) + G_m\beta} \quad \text{and} \quad G = \frac{1}{N} \sum_{j=1}^{N} G_j = G_s(1 - \beta) + G_m\beta,$$

where N is the number of parallel passes, β is the m-SWCNT content, S_j (or G_j) is the Seebeck coefficient (or electrical conductance) of the j-th parallel pass. S_j (G_j) is S_s (G_s) for s-SWCNTs, and S_j (G_j) is S_m (G_m) for m-SWCNTs. Note that the voltage generated at the j-th parallel pass is given by $V_j = -S_j\Delta T$, and the total voltage is given by $V = -S\Delta TV = -S\Delta T$, where ΔT is the temperature difference.