First Detection of Canine Parvovirus Type 2c in Pups with Haemorrhagic Enteritis in Spain

N. Decaro1,3, V. Martella1, C. Desario1, A. L. Bellacicco1, M. Camero1, L. Manna2, D. D’Aloia1 and C. Buonavoglia1

Addresses of authors: 1Department of Animal Health and Well-being, Faculty of Veterinary Medicine of Bari, Bari, Italy; 2Dipartimento di Scienze Cliniche Veterinarie, Università di Napoli Federico II, Napoli, Italy; 3Corresponding author: Tel.: +39 080 467 9832; fax: +39 080 467 9843; E-mail: n.decaro@veterinaria.uniba.it

With 1 table

Received for publication May 8, 2006

Summary

Canine parvovirus type 2 (CPV-2), the aetiological agent of haemorrhagic enteritis in dogs, includes three antigenic variants, types 2a, 2b and 2c. CPV-2c has been detected initially in Italy and subsequently in Vietnam. We report the first identification of this novel antigenic variant in Spain, where it caused an outbreak of fatal enteritis in basset hound pups in association with canine coronavirus type I and type II. We suggest that this new antigenic variant of CPV-2 could spread throughout Europe and that there is a subsequent need to update current CPV vaccines.

Introduction

Canine parvovirus type 2 (CPV-2) is responsible for haemorrhagic enteritis in dogs (Carmichael and Binn, 1981). CPV-2 emerged in the late 1970s but in a few years it was replaced completely by two antigenic variants, named types 2a and 2b, that are characterized by amino acid substitutions occurring in the capsid protein (VP1/VP2) gene (Parrish et al., 1988). While the original type 2 is no longer circulating in the dog population and is present only in vaccine formulations (Parrish et al., 1991), its antigenic variants are distributed worldwide (Mochizuki et al., 1993; De Ybanez et al., 1995; Greenwood et al., 1996; Truyen et al., 1996, 2000; Sagazio et al., 1998; Steinel et al., 1998; Buonavoglia et al., 2000; Pereira et al., 2000; Buonavoglia et al., 2001; Martella et al., 2004, 2005b; Decaro et al., 2005a,c, 2006b; Desario et al., 2005). Real-time polymerase chain reaction (PCR) assays based on minor groove binder (MGB) probe technology have been developed for rapid characterization of the antigenic variants, taking advantage of single nucleotide polymorphisms occurring in the VP1/VP2 gene (Decaro et al., 2006b). An additional MGB probe assay has also been established for discrimination between vaccine and field strains of CPV (Decaro et al., 2006a).

In 2000, a mutant with the change Asp426Glu (Table 1) occurring in a strategic residue for the antigenicity of CPV-2 was detected in Italy (Buonavoglia et al., 2001). Such a mutant is currently spreading in dog population in Italy and progressively replacing types 2a and 2b (Martella et al., 2004, 2005b; Decaro et al., 2005a,c, 2006b; Desario et al., 2005). Recently, CPV-2c has been detected in Vietnam (Nakamura et al., 2004), whereas to date there are no reports in other European countries.

The pathogenicity of the new mutant has been investigated in dogs infected naturally (Decaro et al., 2005b) and a monoclonal antibody has been developed that is able to distinguish between type 2b and Glu-426 mutant (Nakamura et al., 2004), so that we proposed to designate such mutant as type 2c (Decaro et al., 2005a, 2006b). Previously, another CPV mutant had been reported in leopard cats that was referred to as CPV-2c (Ikeda et al., 2000). Such a mutant was found to display the substitution Gly300Asp in an epitope antigenically less strategic with respect to the Glu-426 mutant, allowing for the designation of the latter virus as true CPV-2c.

The present study reports a severe outbreak of CPV-2c infection occurring in a breeding kennel in Spain.

Materials and Methods

Clinical case

In January 2006, a severe outbreak of haemorrhagic enteritis occurred in a breeding kennel of basset hounds located in Tarragona, Catalonia, Spain. The kennel housed 80 adult dogs and 25 pups. All the adult dogs had been immunized regularly using multivalent vaccines containing the original type CPV-2. The outbreak involved a litter of seven 40-day-old pups, all of which displayed haemorrhagic diarrhoea and vomiting and underwent a fatal outcome within 3–5 days after the onset of the clinical signs. At that age, the pups had not been yet vaccinated against CPV-2.

Necropsy showed haemorrhagic enteritis in all seven pups, in the absence of remarkable lesions in other organs. A faecal sample was collected from one of the dead pups and subjected to virological examinations.

Sample preparation

The faecal sample was homogenized (10% w/v) in phosphate buffered saline (PBS, pH 7.2) and subsequently clarified by centrifuging at 1500 g for 15 min. The supernatant was then used for the diagnostic tests.
Table 1. Amino acid variations in the VP2 protein of different CPV types

Nucleotide position	Codon observed	CPV-2	CPV-2a	CPV-2b	New CPV-2b	New CPV-2a	Asp-300 (CPV-2a/CPV-2b)	CPV-2c
87	ATG (Met)	Met	Leu	Leu	Leu	Leu	Leu	Leu
101	ATT (Ile)	ile	Thr	Thr	Thr	Thr	Thr	Thr
297	TCT (Ser)	Ser	Ala	Ala	Ala	Ala	Ala	Ala
297	TCT (Ser)	Ser	Ala	Ala	Ala	Ala	Ala	Ala
300	GCT (Glu)	Glu	Asp	Asp	Asp	Asp	Asp	Asp
305	GAT (Asp)	Asp	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr
305	GAT (Asp)	Asp	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr
305	GAT (Asp)	Asp	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr
305	TAT (Tyr)	Tyr	Asp	Asp	Asp	Asp	Asp	Asp
305	TAT (Tyr)	Tyr	Asp	Asp	Asp	Asp	Asp	Asp
305	TAT (Tyr)	Tyr	Asp	Asp	Asp	Asp	Asp	Asp
305	GAA (Glu)	Glu	Asp	Asp	Asp	Asp	Asp	Asp
305	GAA (Glu)	Glu	Asp	Asp	Asp	Asp	Asp	Asp
305	GAA (Glu)	Glu	Asp	Asp	Asp	Asp	Asp	Asp
305	CTA (Val)	Val	Val	Val	Val	Val	Val	Val
305	CTA (Val)	Val	Val	Val	Val	Val	Val	Val
305	CTA (Val)	Val	Val	Val	Val	Val	Val	Val
305	CTA (Val)	Val	Val	Val	Val	Val	Val	Val
305	CTA (Val)	Val	Val	Val	Val	Val	Val	Val
305	CTA (Val)	Val	Val	Val	Val	Val	Val	Val

*Positions are referred to the amino acid and nucleotide sequences of strain CPV-b (GenBank accession no. M38245).
Sequence analysis
For sequence analysis, the CPV-2 positive sample was amplified by a PCR assay with primer pair 555for/555rev (Buonavoglia et al., 2001), amplifying a fragment of the VP2 gene that contains informative residues for CPV-2 typing. The PCR products were purified on Ultrafree-DA columns (Amicon, Millipore Corporation, Billerica, MA, USA) and subjected to direct sequencing (Genome Express, Meylan, France). For sequence comparison, the nucleotide sequences of type 2, 2a, 2b and 2c CPVs were retrieved from the GenBank database. The strains and accession numbers used for sequence analysis were the following: CPV-2: CPV-b, M38245 and CPV-Norden, M19296; CPV-2a: CPV-15, M24003 and CPV-31, M24000; CPV-2b: CPV-39, M74849 and CPV-133, M74852; CPV-2c (Glu-426 mutant): 56/00, AY380577. Alignments and sequence analysis were performed using the BioEdit software package, version 7.0.1 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

Screening for pathogens of dogs associated to infectious enteritis
The sample collected from the died dog was also tested by (RT-)PCR or real-time (RT-)PCR for detection of other common viral pathogens that are responsible for enteritis in dogs, such as reoviruses (Leary et al., 2002; Decaro et al., 2005d), rotaviruses (Gouvea et al., 1994), caliciviruses (Hashimoto et al., 1999; Marsilio et al., 2005), canine adenoviruses (Hu et al., 2001), canine distemper virus (Elia et al., 2006), canid herpesvirus type 1 (Schulze and Baumgartner, 1998) and canine coronavirus (CCoV; Decaro et al., 2004a). Bacteriological investigations were also carried out using standardized methods.

Results
CPV-2 detection
The faecal sample tested positive by the HA test, giving a HA titre of 1 : 1024. The CPV-2 strain was isolated successfully on A-72 cells at the first passage, as shown by the nuclear fluorescence observed in the inoculated cells by the IF test specific for CPV-2 antigen. The TaqMan assay detected the CPV-2 DNA in the specimen at high titre (2.28 × 10^10 copies/mg of faeces).

CPV-2 characterization
On the basis of the reactivity to the panel of MAbs, the isolated strain was characterized as type 2c. By real-time PCR with MGB probes, no signal was registered in the type 2a/2b assay, whereas VIC fluorescence was generated in the type 2b/2c assay, which recognized the parvovirus strain as type 2c, confirming the results of MAb analysis.

Sequence analysis of the fragment amplified with primers 555for and 555rev showed a 100% nucleotide identity to strain 56/00 (Buonavoglia et al., 2001), assigning definitively the isolated strain to CPV-2c.

Simultaneous detection of other pathogens of dogs
By means of real-time RT-PCR assays specific for CCoV types I and II (Decaro et al., 2005f), both genotypes were detected in the faecal sample. The molecular assays gave negative results for the other viral pathogens. Bacteriological investigations failed to detect other important pathogens of the dog.

Discussion
The present study represents the first report on the detection of CPV-2c in Spain. Whether the virus is widespread in this country or its presence is sporadic could be assessed only by extensive collection and analysis of faecal samples from dogs with diarrhoea housed in Spanish shelters, breeding kennels and pet shops.

An intriguing finding is represented by the simultaneous detection in the faeces of CCoV type I and type II, as mixed infections are associated to a more severe clinical course of the disease and frequent fatal outcome of the infected dogs. In previous studies, both genotypes were detected simultaneously in the faecal samples of most dogs infected with CCoV (Pratelli et al., 2004; Decaro et al., 2005f). Moreover, it has been shown that CCoV can exacerbate the clinical course of concurrent infections caused by CPV-2, by damaging the intestinal villi and enhancing the mitotic activity of the crypt cells where CPV replicates (Evermann et al., 1980; Yasoshima et al., 1983; Pratelli et al., 1999).

The occurrence of canine parvovirus in 40-day-old pups born to vaccinated bitches may indicate a failure of the maternally derived antibodies (MDA) in protection against CPV-2. The involvement of the entire litter in terms of morbidity and mortality could be related to a poor protection against the CPV variants by MDA for the original type 2, rather than to a failure in the transfer of MDA from the bitch to its offspring (Decaro et al., 2004b). Because of the physico-chemical properties of CPV-2 (high resistance in the environment with long persistence in kennels and shelters), a good vaccine should prevent the disease as well as the viral shedding by dogs eventually infected. Dogs with HI MDA titres ≥ 1 : 80 are considered protected against disease and viral shedding after challenge with virulent CPV-2 (Pollock and Carmichael, 1982). However, more recently it has been observed that pups with HI MDA titres up to 1 : 160, conventionally considered protective from CPV infection (Pollock and Carmichael, 1982), were infected by CPV-2b and shed virus in their faeces (Decaro et al., 2005e; Elia et al., 2005). Consequently, the minimal MDA level required for protection from CPV infection has to be reconsidered (Decaro et al., 2005e). The present report stresses the need to update the CPV vaccines, by replacing the original type 2 (‘ghost’ virus) with the CPV variants currently circulating (Martella et al., 2005a; Truyen, 2006).

Acknowledgements
This work was supported by grants from University of Bari (Ricerca di Ateneo 2005: ‘Messa a punto di un sistema real-time PCR per la identificazione e la quantificazione del parvovirus del cane tipo 2 nelle feci di cuccioli con diarrea’).

References
Buonavoglia, D., A. Cavalli, A. Pratelli, V. Martella, G. Greco, M. Tempesta, and C. Buonavoglia, 2000: Antigenic analysis of canine parvovirus strains isolated in Italy. New Microbiol. 23, 93–96.
Carmichael, L. E., and L. N. Binn, 1981: New enteric viruses in the
Buonavoglia, C., V. Martella, A. Pratelli, M. Tempesta, A. Cavalli, D.
Buonavoglia, G. Bozzo, G. Elia, N. Decaro, and L. Carmichael,
2001: Evidence for evolution of canine parvovirus type-2 in Italy.
J. Gen. Virol. 82, 1555–1560.

Carmichael, L. E., and L. N. Binn, 1981: New enteric viruses in the
dog. Adv Vet. Sci. Comp. Med. 25, 1–37.

De Ybanez, R. R., C. Vela, E. Cortes, I. Simarro, and J. I. Casal, 1995:
Identification of types of canine parvovirus circulating in Spain.
Vet. Rec. 136, 174–175.

Decaro, N., A. Tinelli, A. Pratelli, V. Martella, M. Tempesta, and
C. Buonavoglia, 2003: First two confirmed cases of malignant
catarrhal fever in Italy. New Microbiol. 26, 339–344.

Decaro, N., A. Pratelli, M. Campolo, G. Elia, V. Martella, M.
Tempesta, and C. Buonavoglia, 2004a: Quantitation of canine
coronavirus RNA in the faeces of dogs by TaqMan RT-PCR. J.
Virol. Methods 119, 145–150.

Decaro, N., C. Desario, M. Campolo, A. Cavalli, D. Ricci, V. Mar-
tella, M. Tempesta, and C. Buonavoglia, 2004b: Lactogenic
immunity to canine parvovirus in pups. New Microbiol. 27, 375–
379.

Decaro, N., G. Elia, M. Campolo, C. Desario, M. S. Lucente, A. L.
Bellacchio, and C. Buonavoglia, 2005a: New approaches for the
molecular characterization of canine parvovirus type 2 strains.
J. Vet. Med. B Infect. Dis. Vet. Public Health 52, 316–319.

Decaro, N., C. Desario, M. Campolo, G. Elia, V. Martella, D. Ricci, E.
Lorusso, and C. Buonavoglia, 2005b: Clinical and virological
findings in pups naturally infected by canine parvovirus type 2 Glu-
426 mutant. J. Vet. Diagn. Invest. 17, 133–138.

Decaro, N., G. Elia, V. Martella, C. Desario, M. Campolo, L. Di
Trani, E. Tarasitano, M. Tempesta, and C. Buonavoglia, 2005c: A real-time
PCR assay for rapid detection and quantitation of canine parvovi-
rus type 2 DNA in the feces of dogs. Vet. Microbiol. 105, 19–28.

Decaro, N., M. Campolo, C. Desario, D. Ricci, M. Camero, E. Loru-
usso, G. Elia, A. Lavazza, V. Martella, and C. Buonavoglia, 2005d:
Virological and molecular characterization of a mammalian orthoreovirus
type 3 strain isolated from a dog in Italy. Vet. Microbiol. 109, 19–27.

Decaro, N., M. Campolo, C. Desario, G. Elia, V. Martella, E. Lor-
usso, and C. Buonavoglia, 2005e: Maternally-derived antibodies in
pups and protection from canine parvovirus infection. Biologicals
33, 261–267.

Decaro, N., V. Martella, D. Ricci, G. Elia, C. Desario, M. Campolo,
N. Cavaliere, L. Di Trani, M. Tempesta, and C. Buonavoglia,
2005f: Genotype-specific fluorogenic RT-PCR assays for the
detection and quantitation of canine coronavirus type I and type II
RNA in faecal samples of dogs J Virol Methods 130, 72–78.

Decaro, N., G. Elia, C. Desario, S. Roperto, V. Martella, M. Campo-
lo, A. Lorusso, A. Cavalli, and C. Buonavoglia, 2006a: A minor
groove binder probe real-time PCR assay for discrimination between
type 2-based vaccines and field strains of canine parvo-
viruses. J. Virol. Methods 136, 65–70.

Decaro, N., G. Elia, V. Martella, M. Campolo, C. Desario,
M. Camero, F. Cironne, E. Lorusso, M. S. Lucente, D. Narisci, P.
Scalia, and C. Buonavoglia, 2006b: Characterisation of the canine
parovirus type 2 variants using minor groove binder probe
technology. J. Virol. Methods 130, 92–99.

Decaro, N., C. Decaro, M. Campolo, M. Cavalli, F. Cironne, G. Elia,
V. Martella, E. Lorusso, M. Camero, and C. Buonavoglia, 2005:
Canine parovirus infection: which diagnostic test for virus?
J. Virol. Methods 121, 179–185.

Elia, G., A. Cavalli, F. Cironne, E. Lorusso, M. Camero, D. Buonavo-
glia, and M. Tempesta, 2005: Antibody levels and protection to
canine parovirus type 2. J. Vet. Med. B Infect. Dis. Vet. Public
Health 52, 320–322.

Elia, G., N. Decaro, V. Martella, F. Cironne, M. S. Lucente, E. Lor-
usso, L. Di Trani, and C. Buonavoglia, 2006: Detection of canine
distemper virus in dogs by real-time RT-PCR. J. Virol. Methods
136, 171–176.
Pratelli, A., N. Decaro, A. Tinelli, V. Martella, G. Elia, M. Tempesta, F. Cirone, and C. Buonavoglia, 2004: Two genotypes of canine coronavirus simultaneously detected in fecal samples of dogs with diarrhea. J. Clin. Microbiol. 42, 1797–1799.

Sagazio, P., M. Tempesta, D. Buonavoglia, F. Cirone, and C. Buonavoglia, 1998: Antigenic characterization of canine parvovirus strains isolated in Italy. J. Virol. Methods 73, 197–200.

Schulze, C., and W. Baumgartner, 1998: Nested polymerase chain reaction and in situ hybridization for diagnosis of canine herpesvirus infection in puppies. Vet. Pathol. 35, 209–217.

Schunck, B., W. Kraft, and U. Truyen, 1995: A simple touch-down polymerase chain reaction for the detection of canine parvovirus and feline panleukopenia virus in feces. J. Virol. Methods 55, 427–433.

Steinel, A., E. H. Venter, M. van Vuuren, and U. Truyen, 1998: Antigenic and genetic analysis of canine parvoviruses in southern Africa. Onderstepoort J. Vet. Res. 65, 239–242.

Truyen, U., 2006: Evolution of canine parvovirus-A need for new vaccines? Vet Microbiol. 2006 Apr 18; [Epub ahead of print DOI: 10.1016/J.vetmic.2006.04.03].

Truyen, U., G. Platzer, and C. R. Parrish, 1996: Antigenic type distribution among canine parvoviruses in dogs and cats in Germany. Vet. Rec. 138, 365–366.

Truyen, U., A. Steinel, L. Bruckner, H. Lutz, and K. Mostl, 2000: Distribution of antigenic types of canine parvovirus in Switzerland, Austria and Germany. Schweiz. Arch. Tierheilkd. 142, 115–119.

Uwatoko, K., M. Sunairi, M. Nakajima, and K. Yamaura, 1995: Rapid method utilizing the polymerase chain reaction for detection of canine parvovirus in feces of diarrheic dogs. Vet. Microbiol. 43, 315–323.

Yasoshima, A., F. Fujinami, K. Doi, A. Kojima, H. Takada, and A. Okaniwa, 1983: Case report on mixed infection of canine parvovirus and canine coronavirus. Electron microscopy and recovery of canine coronavirus. Nippon Juigaku Zasshi 45, 217–225.