REMOVAL OF NORFLOXACIN BY TiO$_2$-SBA-15 PHOTOCATALYST

Nguyen Thi Thu Trang 1,*, Tran Quang Vinh 2, Ha Van Giang 1, Nguyen Sao Mai 1, Nguyen Thanh Dong 1, Pham Tuan Linh 1, Nguyen Viet Hoang 1, Nguyen Minh Tan 3

1Institute of Environmental Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
2Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
3School of Chemical Engineering, HUST, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam

*Email: thutrangnguyen1210@gmail.com

Received: 16 August 2019; Accepted for publication: 17 December 2019

Abstract. Ordered SBA-15 mesoporous silica support was synthesized by a sol-gel method using triblock copolymer Pluronic P123 and immobilized with different amounts of photocatalyst TiO$_2$. The synthesized composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N$_2$ adsorption-desorption isotherms. The synthesized materials possessed specific surface areas S$_{BET}$ of 768 m2/g, 544 m2/g, 421 m2/g and 333 m2/g at the TiO$_2$:SiO$_2$ ratio of 0, 0.25, 1.0 and 5.0, respectively. The adsorption capacities and photocatalytic activities under UV light irradiation of these materials were evaluated for Norfloxacin degradation. Experimental results indicate that the highest activity was observed on the sample with TiO$_2$:SiO$_2$ ratio of 1.

Keywords: Norfloxacin, SBA-15, titanium dioxide, photocatalysis, mesoporous materials.

Classification numbers: 2.4.2, 2.6.1, 3.4.2.

1. INTRODUCTION

Norfloxacin (NFX) is an antibiotic that belongs to the class of fluoroquinolone antibiotics. It is used to treat urinary tract infections, gynaecological infections, inflammation of the prostate gland, gonorrhoea and bladder infection. Besides, NFX was detected not only in wastewater from wastewater treatment plants but also in surface water and other water environments with concentrations of up to 3.54 µg/L (in Hong Kong) [1]. The study of Duong Hong Anh et al. [2] detected antibiotic ciprofloxacin and NFX in wastewater from 6 hospitals in Hanoi with the concentration of 900 - 17,000 ng/L. NFX is used in many shrimp farms. Nearly 70% of NFX remains in the sludge of biological treatment plants. Thus, pathogens are increasingly resistant to drugs, causing a significant threat to aquatic and terrestrial organisms as well as humans. NFX in the water environment can lead to adverse environmental impacts [3], including the development of antibiotic-resistant bacteria in fisheries [4], directly poisoning microorganisms and risks possible for human health through drinking water or food chain [4]. Over the past decade, a lot of research has been done to remove NFX. Photocatalytic decomposition by ultraviolet
irradiation, zero-valent iron nanoparticles with H$_2$O$_2$, electrochemical Fenton, thermally activated sulfur and gamma irradiation have been developed to remove NFX. However, these methods still have disadvantages such as high energy consumption, low efficiency treatment and environmental friendliness. While, the use of adsorbents was found to be an effective method, since NFX can be adsorbed by activated sludge [5], activated carbon [6], carbon nanotubes [6] and silica/alumina [7]. However, the removal of NFX is only physical, NFX is retained on the absorbent and presents a risk of release to the aquatic environment if the adsorbent is improperly used. The development of active catalytic materials for NFX removal remains a critical problem and challenge.

Although there are essential properties such as simple synthesis, non-toxicity, high activity, the specific surface area of TiO$_2$ photocatalyst is low. Therefore, this limits the number of centres that adsorb pollutant molecules on the TiO$_2$ surface. In order to increase TiO$_2$ surface area, many studies of fabrication of mesoporous TiO$_2$ or fixed TiO$_2$ on mesoporous silica materials such as SBA-15, MCM-41, etc. have been carried out. The results showed that the specific surface area of the mesoporous TiO$_2$ material was up to 430 m2/g, 4-5 times larger than the conventional TiO$_2$ nanomaterials [8]. Also, as a catalyst substrate, mesoporous silica oxide materials such as SBA-15 receive much attention due to its high surface area, adjustable pore size, and thick pore walls and ordered porous framework. Mesoporous material SBA-15 possesses a uniform pore size of 2 - 30 nm with a narrow pore size distribution indicating the high order structure. SBA-15 has a large specific surface area of about 600 - 1000 m2/g.

The fixation of TiO$_2$ on these substrate increases the dispersion of TiO$_2$ on the substrate, improve the adsorption capacity of pollutants, besides the presence of Ti-O-Si bond is favourable for activation of organic pollutants [9]. Thus, TiO$_2$ catalytic fixation on mesoporous silica oxide material will create an adsorption catalyst system with the advantages of photocatalyst materials and mesoporous materials, enhance the efficiency of the treatment of durable organic compounds.

2. METHODS

2.1. Preparation of TiO$_2$/SBA-15

The following procedures synthesized TiO$_2$/SBA-15: P123 was added to 2M HCl solution and stirred until mixed evenly. Under constant stirring, a certain amount of TiO$_2$ powder was added and stirred for a further 4 hours. TEOS was added to the above suspension and stirred for 24 hours at 40 °C. After that, the obtained mixture was transferred into a Teflon-covered stainless steel autoclave.

The autoclave was placed in a furnace without stirring for the thermal treatment (temperature: 80 °C; time: 24 h). After the reaction, the precipitates were collected by centrifugation and washed with deionized water. The washed precipitates were dried in an oven at 80 °C for 10 h and calcinated at 500 °C for 5 h. The TiO$_2$/SiO$_2$ atomic ratios changed from 0; 0.25; 1.0 to 5.0 corresponding to the samples denoted by SBA-15, 0.25TiO$_2$/SBA-15, 1.0TiO$_2$/SBA-15, 5.0TiO$_2$/SBA-15.

2.2. Characterization of materials

The characterization methods include small-angle X-ray diffraction (SXRD) and wide-angle X-ray diffraction (WXRD, Siemen D5000 diffractometer, CuKα radiation, λ = 1.5406 Å).
The specific surface area of powder photocatalyst was measured using the Brunauer-Emmett-Teller method (BET) with a MicroActive TriStar II Plus 2.03 for N_2 BET at 77.3 K with a 10 s equilibration interval. The texture of the catalysts was observed by transmission electron microscopy (TEM, JEM-2100).

2.3. Removal of Norfloxacin

The activities of TiO$_2$/SBA-15 samples were evaluated for the photocatalytic oxidation of NFX. The photoreaction was conducted in a 250 ml glass beaker. UV irradiation was provided by a 4 × 8W Ultraviolet lamp ($\lambda = 365$ nm). The amount of catalysts was chosen as 0.5 g/l. The initial NFX concentration was 10 mg/l, the volume of NFX solution was 200 ml, and the temperature of the reaction solution was maintained at 30 ± 0.5 °C. Some aqueous samples were withdrawn at regular intervals, and the residual concentration of NFX was measured at 273 nm with a spectrophotometer.

The stability of photocatalyst was assessed through repeated use of 1.0TiO$_2$/SBA-15. Experiments were carried out with 10 mg/l NFX concentration, 0.5 g/l photocatalyst, and 150 min irradiation for cycling run. After the first photocatalytic reaction, the remaining solution was replaced with new NFX solution of 10 mg/L. The used 1.0TiO$_2$/SBA-15 was dried at 105°C in 24 h before repeating the above procedure.

The degradation efficiency (%) of NFX was calculated as follows:

$$D\% = \left(\frac{C_0 - C_t}{C_0}\right) \times 100,$$

where C_0 and C_t are the initial NFX and the remaining concentration of NFX at a certain time, respectively.

3. RESULTS AND DISCUSSION

3.1. Characteristics of materials

The physicochemical structure of synthesized samples was characterized by SXRD, WXRD, TEM, and BET. As shown in Figure 1, the SXRD patterns exhibit a very intense peak at $2\theta = 0.9^\circ$, together with two other weak peaks between 1.7° and 1.9°, which correspond to the (100), (110), and (200) reflections of the hexagonal mesoporous structure. The results also show that after loading TiO$_2$, the intensity of the low angle XRD peaks corresponding to the hexagonal symmetry decrease and shift slightly to higher angle with increasing TiO$_2$ loading and the distortion of the mesoporous framework is increased by the intercalated TiO$_2$.

The WXRD patterns of TiO$_2$/SBA-15 samples synthesized with different TiO$_2$:SiO$_2$ molar ratios are shown in Figure 2. The distinctive peaks at $2\theta = 25.3^\circ$, 37.8°; 47.7°; 54°, and 62.4° correspond to the anatase [10]. Peak intensity of the anatase phase increases with increasing titania content.

The morphology of synthesized TiO$_2$/SBA-15 composite photocatalysts is observed further by TEM images. Figure 3 represents the TEM imagines of SBA-15 and TiO$_2$/SBA-15 samples. The images of the samples show highly ordered hexagonal arrays of the mesoporous with a uniform pore size corresponding to the results from SXRD. The TEM images of TiO$_2$/SBA-15 samples reveal that the spherical TiO$_2$ nanoparticles are highly dispersed in the interior of the SBA-15 channels and lead to a disordered mesoporous texture. The average TiO$_2$ nanoparticle sizes are determined from 20 to 50 nm.
Figure 1. SXRD patterns of samples.

Figure 2. WXRD patterns of samples.

Figure 3. TEM images of TiO$_2$/SBA-15 samples
(a) SBA-15; (b) 0.25TiO$_2$/SBA-15; 1.0TiO$_2$/SBA-15; (d) 5.0TiO$_2$/SBA-15.

Figure 4. Nitrogen adsorption and desorption isotherms of the samples.

Figure 4 shows that the TiO$_2$ immobilization changed the hysteresis loops of the samples due to the penetration of TiO$_2$ into the mesoporous system of SBA-15 support. The data in Table 1 indicate that the TiO$_2$ content increases, the surface area and the pore volume of the nanomaterials decreases. Specifically, the BET surface area of SBA-15 of 768 m2/g is 2.3 times...
higher than that of 5.0TiO₂/SBA-15, total pore volume decreases from 0.94 to 0.74, and the pore diameter increases 1.7 times. This is due to the presence of TiO₂, causing pore blocking effect. Besides, the pore diameter increases due to increased TiO₂ agglomeration on the surface lead to create large secondary porosity channels. The TiO₂ content increases, the agglomeration increases, appearing more secondary porosity channels system with large pore size, resulting in an average value of pore size of the material increases.

Table 1. Morphology and pore structure of samples.

Sample	S BET (m² g⁻¹)	V tot (cm³ g⁻¹)	D (nm)
SBA-15	768	0.94	4.90
0.25TiO₂/SBA-15	544	0.87	6.41
1.0TiO₂/SBA-15	421	0.76	7.26
5.0TiO₂/SBA-15	333	0.74	8.56

3.3. Photocatalytic activity

The adsorption of NFX on TiO₂, SBA-15, 0.25TiO₂/SBA-15, 1.0TiO₂/SBA-15 and 5.0TiO₂/SBA-15 samples were carried out in dark condition for 30 minutes to reach the adsorption equilibrium, and the results are shown in Fig. 5. After adsorption for 30 minutes, NFX removal efficiency of 37 % is the highest on SBA-15 material. In the absence of irradiation, the TiO₂/SBA-15 materials present a higher adsorption capability of the NFX than pure titania. The superior activity of the hybrid materials is due to their much higher specific area and pore volume. This result indicates that the photocatalytic activity of hybrid TiO₂/SBA-15 samples depends insignificantly on their adsorption ability. The photocatalytic activity of TiO₂ is the main factor affecting the catalyst performance. When increasing TiO₂ content, NFX absorption efficiency decreases. After 30 minutes adsorption by TiO₂, the removal of NFX is lowest with 19.6 %.

![Figure 5. NFX concentration change of the photocatalytic degradation by use of SBA-15, 0.25TiO₂/SBA-15, 1.0TiO₂/SBA-15, 5.0 TiO₂/SBA-15 under UV irradiation.](image)

![Figure 6. Removal of NFX during photocatalytic degradation by repeated use of TiO₂/SBA-15 under UV irradiation ([NFX]₀ = 10 mg/l, catalyst dosage = 0.5 g/l, pH = 7, irradiation time = 150 min).](image)
Figure 5 shows NFX degradation under UV irradiation by SBA-15, 0.25TiO2/SBA-15, 1.0TiO2/SBA-15 and 5.0TiO2/SBA-15 catalysts. It can be seen that the photocatalytic activity obeys the following order: 1.0TiO2/SBA-15 > TiO2 > 5.0TiO2/SBA-15 > 0.25TiO2/SBA-15 > SBA-15. NFX removal efficiencies during adsorption and photocatalytic degradation for 150 min UV irradiation by SBA-15, 0.25TiO2/SBA-15, 1.0TiO2/SBA-15, 5.0TiO2/SBA-15 and TiO2 catalysts are 38.1 %; 89.9 %, 99.3 %; 96.6 % and 99.2 %, respectively. At 150 minutes, the photocatalytic efficiency of 1.0TiO2/SBA-15 and TiO2 was approximately the same. However, during the entire process, the NFX removal efficiency of 1.0TiO2/SBA15 is always higher than pure TiO2. Thus, immobilizing TiO2 on SBA-15 improves the photocatalytic activity of these photocatalysts. According to Yang et al., the photocatalytic activity of TiO2 was improved because fixing TiO2 on SBA-15 mesoporous material increases the thermal stability of TiO2 anatase phase on SBA-15 and prevents the development of large crystals [11]. Besides, the porous structure of the SBA-15 substrate promotes adsorption of reactants into the porous system of SBA-15 material, enhances the phase contact between the reactants and the catalyst phase. Also, TiO2 is inside the porous system and thus increases the efficiency of the reaction.

However, when increasing TiO2 content to TiO2: SBA-15 = 5: 1 ratio, photocatalytic activity did not increase compared to TiO2. The reason may be that increasing TiO2 content may increase the possibility of the blocking carrier material, decreasing the adsorption effect of the porous system as well as the catalytic effect of TiO2 nanoparticles inside the porous system. Besides, the increase in TiO2 content also increases the agglomeration of TiO2 nanoparticles, reducing the dispersion of these semiconductor particles on the SBA-15 substrate and the photocatalytic efficiency. Otherwise, reducing TiO2 content to TiO2: SBA-15 = 0.25: 1 ratio leads to decrease photocatalytic activity due to insufficient catalyst/reactant ratio. From this order, it is possible to see the role of SBA-15 in dispersing TiO2 catalysts as well as promoting diffusion and adsorption of reactants.

The stability of 1.0TiO2/SBA-15 catalyst under UV irradiation was investigated by repeating the photocatalytic reaction of NFX, as shown in Figure 6. Under UV irradiation condition, the removal of NFX is insignificantly reduced after 5 times reuse, from 99.3 % to 98.4 %. It is clear that the photocatalytic activity of 1.0TiO2/SBA-15 catalyst is high and stable due to the complete mineralization of the pollutants over TiO2. Thus the adhesion of the by-products on the catalytic surface is negligible, resulting in quick regeneration of the catalyst.

4. CONCLUSION

The mesoporous TiO2/SBA-15 nanomaterials were synthesized successfully by sol-gel method with varying titanium loadings, and the photocatalytic activities of synthesized TiO2/SBA-15 materials are tested by the degradation of NFX. The structure of synthesized materials includes spherical anatase TiO2 nanoparticles distributed over-ordered hexagonal mesoporous SBA-15 support with a pore diameter of 6.41-8.56 nm. The specific surface areas BET are 768, 544, 421 and 333 m²/g at the TiO2/SBA-15 molar ratios of 0, 0.25, 1 and 5, respectively. In all cases, the decomposition of NFX increase with increasing the TiO2 content. The results of the activity test indicate that 1.0TiO2/SBA-15 hybrid material has better photocatalytic activity performance than pure TiO2.

Acknowledgements. We greatly thank Vietnam Ministry of Science and Technology (MOST) and German Federal Ministry for Economic Affairs and Energy (BMIWi) for financing this work within the framework of the Vietnam-Germany Cooperation Project DeGrey – NDT.59.GER/19.
REFERENCES

1. Leung H. W., Minh T. B., Murphy M. B., Lam J. C. W., So M. K., Martin M., Lam P. K. S., Richardson B. J. - Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China, Environ. Int. 42 (2012) 1–9.

2. Hong Anh Duong, Ngoc Ha Pham, Hoang Tung Nguyen, Thi Thuong Hoang, Hung Viet Pham, Van Ca Pham, Michael Berg, Walter Giger, Alfredo C. Alder - Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Ha Noi, Viet Nam, Chemosphere 72 (2008) 968–973.

3. Lee Y. J., Lee S. E., Lee D. S., Kim Y. H. - Risk assessment of human antibiotics in Korean aquatic environment, Environ. Toxicol. Pharmacol. 26 (2008) 216–221.

4. Phan T. P. H., Managaki S., Nakada N., Takada H., Shimizu A., Anh D. H., Viet P. H., Suzuki S. - Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Viet Nam, Sci. Total Environ. 409 (2011) 2894–2901.

5. Li B., Zhang T. - Biodegradation and adsorption of antibiotics in the activated sludge process, Environ. Sci. Technol. 44 (2010) 3468–3473.

6. Wang Z. Y., Yu X. D., Pan B., Xing B. S. - Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes, Environ. Sci. Technol. 44 (2010) 978–984.

7. Lorphensri O., Intravijit J., Sabatini D. A., Kibbey T. C. G., Osathaphan K., Saiwan C. - Sorption of acetaminophen, 17 alpha-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium, Water Res. 40 (2006) 1481–1491.

8. Tianyou Peng, De Zhao, Ke Dai, Wei Shi, Kazuyuki Hirao - Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity, J. Phys. Chem. B 109 (2005) 4947-4952.

9. Carl Anderson and Allen J. Bard - An Improved Photocatalyst of TiO₂/SiO₂ Prepared by a Sol-Gel Synthesis, J. Phys. Chem. 99 (1995) 9882-9885.

10. Asiltürk M., Sayılıkan F., and Arpaç E. - Effect of Fe³⁺ ion doping to TiO₂ on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, J. Photochem. Photobiol. A 203 (1) (2009) 64-71.

11. Yang J., Zhang J., Zhu L., Chen S., Zhang Y., Tang Y., Zhu Y., Li Y. - Synthesis of nano titania particles embedded in mesoporous SBA-15: Characterization and photocatalytic activity, Journal of Hazardous Materials B 137 (2006) 952–958.