Hidden Markov Model and Forward-Backward Algorithm in Crude Oil Price Forecasting

Abdul Talib Bon¹, Nuhu Isah²
Faculty of Technology Management, Business and Entrepreneurship
University Tun Hussein Onn Malaysia,
Parit Raja, Batu Pahat, 86400,
Johor, Malaysia.
talib@uthm.edu.my¹, nuhuisah33g@gmail.com²

Abstract. In light of the importance of crude oil to the world’s economy, it is not surprising that economists have devoted great efforts towards developing methods to forecast price and volatility levels. Crude oil is an important energy commodity to mankind. Several causes have made crude oil prices to be volatile such as economic, political and social. Hence, forecasting the crude oil prices is essential to avoid unforeseen circumstances towards economic activity. In this study, daily crude oil prices data was obtained from WTI dated 2nd January to 29th May 2015. We used Hidden Markov Model (HMM) and Forward-Backward Algorithm to forecasting the crude oil prices. In this study, the analyses were done using Maple software. Based on the study, we concluded that model (0 3 0) is able to produce accurate forecast based on a description of history patterns in crude oil prices.

1. Introduction

Crude oil is a complex mixture consisting of more than 200 organic compounds, especially hydrocarbons¹ mostly alkenes and smaller fraction aromatics. Crude oil varies in colour from nearly colourless to tar black, and in viscosity from close to that of water to almost solid. In fact, there are more than 300 different crude types produced around the world ¹. Two of the most important characteristics are density and sulfur content. High-quality cruds are characterized by low density (light) and low sulfur content (sweet) and are typically more expensive than their heavy and sour counterparts: light crudes produce more high-value products, while sweet crude oils require less processing than sour².

The oil and gas bearing structure is typically of porous rock such as sandstone or washed out limestone. The sand might have been laid down as desert sand dunes or seafloor. Oil and gas are formed from organic material (tiny plants and animals) deposited in early geological periods (100-200 million years ago) together with sand or silt and later transformed by high temperatures and pressure into hydrocarbons³. Formation of oil reservoirs requires meeting of various climatic, geophysical and historical conditions and enormous amount of time.

However, the most oil reach region is Middle East, possessing 51% of total oil reserves, then Central and South America with 16%. Europe (excluding Eastern Europe and Russia) owns only 1% of world oil reserves. On the country level the biggest oil reserves belong to Saudi Arabia and Venezuela (262.6 and 211.17 bb in 2011 respectively) together owning around one third of world oil. Among ten countries with biggest reserves are also Canada, Gulf states (Iraq, Iran, Kuwait, UAE), Russia, Libya and Nigeria⁴⁵⁶.

In the last 14 months, the average price of oil has dropped by about 60%. Oil prices swing as a result of many factors. Growth in global economic activity can increase demand and drive prices higher, while increasing production rates can lead to decline in prices⁷⁸. Though simple demand and supply theories are useful in describing oil price movements, the factors driving such changes are often difficult to identify. As a result, large fluctuation in oil prices can come as a surprise, as was the case with the recent decline starting in mid-2014⁹.

The current period of price instability is not unique, oil prices also declined by over 50% during global recession of 2007 to 2009⁹. However, the decline in crude oil price during the recession was due to a noticeable slowdown in global economic activity. Soft global demand also caused prices for goods and services in addition to crude oil to fall suddenly¹⁰. These movements propose that only a portion of the decline in 2014 is likely due to fragile global economic activity. Increase in supply was
another justification for the oil price decline that started in 2014. Total global oil production increased 3.7% year over year as of December 2014. This increase is on the higher side, though not remarkable by the standards of the past five years.

However, prices are affected not because of the changes in production, but by changes in production relative to what the market projected. Higher production levels in the United States due to new technologies were to some extent expected. But some developments on the supply side were unexpected, such as the comeback of Libyan production, the refusal of the OPEC to reduce supply, and the probable future return of Iran on the global oil market, which likely caused shifts in expectations of future oil supply relative to demand.

However, forecasting crude oil price has been one of the biggest challenges to the artificial intelligent (AI) community. The objective of forecasting research has been largely beyond the capability of traditional AI research which has mainly focused on developing intelligent systems that are supposed to emulate human intelligence. By its nature crude oil price is mostly complex, non-linear and volatile. The rate of price swings in such series depends on many factors such as economic, political and social etc. Therefore, developing AI systems for this kind of forecasting requires an iterative process of knowledge discovery and system improvement through data mining, knowledge engineering, theoretical and data-driven modelling, as well as trial and error experimentation. Crude oil has become an integral part of the global economy. Any fluctuation in crude oil prices affects our personal and corporate financial lives, and the economic health of a country. A bright prediction model for crude oil price forecasting would be highly desirable and would be of wider interest. A substantial amount of research has been published in recent times and is continuing to find an optimal prediction model for crude oil price. Most of the forecasting research has employed the statistical time series analysis techniques like ARMA model, GARCH model as well as the multiple regression models. In recent years, numerous crude oil price forecasting techniques based on AI, including artificial neural networks (ANN), fuzzy logic, hybridization of ANN and fuzzy system, support vector machines have been proposed. However, most of them have their own shortcomings. For example, ANN is very much problem oriented because of its chosen structural design. Some researchers have used fuzzy systems to develop a model to forecast crude oil price behaviour. To build a fuzzy system one requires some background expert knowledge. In this paper, we make use of the well-established Hidden Markov Model (HMM) and Forward-Backward Algorithm technique to forecast crude oil price. The HMMs have been extensively used in the area like speech recognition, DNA sequencing, electrical signal prediction and image processing, etc. In here, HMM is used in a new way to develop forecasts. First we locate pattern(s) from the past datasets that match with today’s crude oil price behaviour, then interpolate these two datasets with appropriate neighboring price elements and forecast tomorrow’s crude oil price.

2. **Methodology**

Suppose we have random variables as (probabilistic model)

\[Z_1, Z_2, \ldots, Z_n \]

\[X_1, X_2, \ldots, X_n \]

This random variables respect the following ‘trellis’ diagram

![Graphical Model for HMM](image)
The graphical model entails the following joint distribution

\[P(X_1, \ldots, X_n, Z_1, \ldots, Z_n) = P(Z_1) \prod_{k=2}^{n} P(Z_k | \mathbf{Z}_{k-1}) P(X_k | \mathbf{Z}_{k}) \]

A visualization of the forward and backward messages

- A transition distribution, \(P(Z_{k+1} | IZ_k) = W(Z_{k+1} | IZ_k) \), which describes the distribution for the next state given the current state. This is often represented as a matrix that we call \(\mathbf{A} \). Rows of \(\mathbf{A} \) correspond to the current state, columns correspond to the next state, and each entry corresponds to the transition probability. So, the entry at row \(i \) and column \(j \), \(A_{ij} \), is \(P(Z_{k+1} = j | IZ_k = i) \), or equivalently \(W_{ij} \).

- An observation distribution (also called an emission distribution) \(P(X_k | IZ_k) = \mathbf{P}_{XIZ}(X_k | IZ_k) \), which describes the distribution for the output given the current state. We represent this with matrix \(\mathbf{B} \). Here, rows correspond to the current state, and columns correspond to the observation. So, \(B_{ij} = \mathbf{P}_{XIZ}(j | IZ_k = i) \): the probability of observing output \(j \) from state \(i \) is \(B_{ij} \). Since the number of possible observations is not necessarily the same as the number of possible states, \(\mathbf{B} \) won't necessarily be square.

- An initial state distribution \(P(Z_1) \), which describes the starting distribution over states. We represent this with a vector called \(\pi_0 \), where item \(i \) in the vector represents \(P(Z_1 = i) \).

The forward-backward algorithm computes forward and backward messages as follows:

\[
\begin{align*}
M_{(k-1) \rightarrow k}(Z_k) &= \sum_{Z_{k-1}} M_{(k-2) \rightarrow (k-1)}(Z_{k-1}) \cdot \mathbf{P}_{XIZ}(X_{k-1} | IZ_{k-1}) \cdot W(Z_{k-1} | IZ_k) \\
M_{(k+1) \rightarrow k}(Z_k) &= \sum_{Z_{k+1}} M_{(k+2) \rightarrow (k+1)}(Z_{k+1}) \cdot \mathbf{P}_{XIZ}(X_{k+1} | IZ_{k+1})
\end{align*}
\]

3. Result

We chose the true values of the closing index from the WTI dating from the 2nd January, 2015 to 29th May, 2015 yielding 103 trading days. The closing index is chosen to model the process.

In this model, there are three states, on the assumption that the state space is \(S = (S_1, S_2, S_3) \), \(S_1 = \text{up} \), \(S_2 = \text{same} \) and \(S_3 = \text{down} \). The definition of up is \(u_n - u_{n-1} > 1 \), where the \(u_n \) is the current closing index and the \(u_{n-1} \) is the previous closing index. The definition of same is \(/u_n - u_{n-1}/ \leq 1 \). The definition of down is \(u_n - u_{n-1} < 1 \). We train the true values of the closing index and use the definition of the states to get the figure below.
We chose the true values of the closing index of crude oil from WTI dated 2nd January to 29th May, 2015 yielding 103 trading days. We define the given transition matrices as Up, Same and Down. In this model, the three states transition matrices are assumed to be $S = (S_1, S_2, S_3)$.

To find the trend of the stock index movement, we need to find the state transition probability by calculating the number of days that both first day and second day are the up, we could find the probability from up to up. Then we to get the number of days that first day is up and second day is down.
Where $S_1 = \text{up}, S_2 = \text{same} \text{ and } S_3 = \text{down}$. Then we get the transition matrix as follows

$$A = \begin{bmatrix}
0.47 & 0 & 0.53 \\
0 & 0 & 0 \\
0.51 & 0 & 0.49
\end{bmatrix} \quad B = \begin{bmatrix}
23 & 0 & 26 \\
0 & 0 & 0 \\
27 & 0 & 26
\end{bmatrix} \quad \pi_0 = \begin{bmatrix}
0.33 & 0.33 & 0.33 \\
0.33 & 0.33 & 0.33 \\
0.33 & 0.33 & 0.33
\end{bmatrix}$$

Therefore,

$$m_{1\rightarrow2} = 0.33 \times 23 \times \begin{bmatrix}
0.47 \\
0.53
\end{bmatrix} \quad m_{2\rightarrow3} = 1 \times 0 \times \begin{bmatrix}
0.47 \\
0.53
\end{bmatrix} \quad m_{3\rightarrow2} = 23 \times \begin{bmatrix}
0.47 \\
0.51
\end{bmatrix}$$

The second backward message and computation of the marginal distribution for Z_2 given the data are:

$$m_{2\rightarrow1} = 1 \times 0 \times \begin{bmatrix}
0.47 \\
0.51
\end{bmatrix} \quad \alpha = \begin{bmatrix} \frac{1}{3} \\
\frac{1}{4} \end{bmatrix}$$

In the above model, we got information about three states which are up, same and down. According to the above result, the transition matrix is stable and the most likely trend of index is down, since the probability of down is biggest. The previous price dated May 29th 2015 was 60.25 and the price of predicted day dated 1st June 2015 was 60.24 respectively. This shows that the forecasting is tune to be true and reliable.
4. Conclusion

This paper explained the application of Hidden Markov Model in crude oil price forecasting, crude oil is important natural resources to mankind. The swinging of crude oil prices has affected many economic sectors and stock market indices. In this study, daily crude oil prices data were used, the analyses were done using Maple software. Based on the study, we concluded that Model (0 3 0) is able to produce a forecast based on a description of history patterns in crude oil prices.

5. References

[1] Xiu. S. and Shahbazi. A. Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406-4414. 2012.

[2] Xie. W, Yu. L, Xu. S. and Wang. S. A new method for crude oil price forecasting based on support vector machines. In International Conference on Computational Science (pp. 444-451). Springer Berlin Heidelberg. 2006.

[3] Tang. L, and Hammoudeh. S. An empirical exploration of the world oil price under the target zone model. Energy Economics, 24(6), 577-596. 2002.

[4] Radchenko. S. Oil price volatility and the asymmetric response of gasoline prices to oil price increases and decreases. Energy economics,27(5), 708-730. 2005.

[5] Pereboichuk. B. Modeling of Crude Oil Prices With a Special Emphasis on Macroeconomic Factors. Journal of Chemical Information and Modeling, 53(9), 1689–1699. 2013.

[6] Kilian. L. and Murphy. D. P. The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics,29(3), 454-478. 2014.

[7] Kaufmann. R. K, Bradford. A, Belanger. L. H, Mclaughlin. J. P. and Miki. Y. Determinants of OPEC production: Implications for OPEC behavior. Energy Economics, 30(2), 333-351. 2008.

[8] Kaufmann. R. K. The role of market fundamentals and speculation in recent price changes for crude oil. Energy Policy, 39(1), 105-115. 2011.

[9] Davig. B. T, Nie. J. and Smith. A. L. Evaluating a Year of Oil Price Volatility. American Journal of Applied Science, 6(8), 1509–1514. 2014.

[10] Bopp. A. E. and Lady. G. M. A comparison of petroleum futures versus spot prices as predictors of prices in the future. Energy Economics, 13(4), 274-282. 1991.