Supplementary Fig. 1: Performance of predictors trained on randomly-selected sets of genes plotted as a function of the set size. Performance was evaluated through leave-pair-out cross-validation and displayed as area under the ROC curve (AUC). The three panels correspond to binary classification tasks comparing early (A), intermediate (B) and late (C) disease stages. The color scheme, as introduced in Fig. 1b, denotes the dataset and brain region (specified as Brodmann Area) of samples used in each analysis.

Supplementary Fig. 2: Concordance of treatment replicates across the two 3-DGE experiments. Shown are log-fold change values for all genes that were significantly (FDR ≤ 0.05) perturbed in both 3-DGE experiments. Spearman correlation between the two experiments is displayed in the bottom right corner of each panel.
Supplementary Fig. 3: Assessment of compound toxicity. Nuclei counts estimated from microscopy images (x-axis) are plotted against mRNA abundance (y-axis). The mRNA abundance was computed as the total number of transcripts in the post-perturbational gene expression profile of the corresponding compound. Marginal distributions presented on the top and the right-hand side exhibit bi-modality, suggesting natural thresholds for determining compound neurotoxicity. A vertical dashed line is used to classify compounds into Toxic (red) and Non-Toxic (black) categories for Fig. 3.
Supplementary Fig. 4: Raw expression values of selected interferon-stimulated genes. Each panel shows normalized transcript counts for a single interferon-stimulated gene (ISG). Individual points correspond to compounds that have a strong (TAS=1) or weak (TAS=2,3) binding to TYK2. Unadjusted p-values from two-sided Wilcoxon Rank Sum tests comparing the expression distributions between strong and weak binders are displayed in the top left corner of each panel.
Supplementary Fig. 5: Pairwise Tanimoto similarity of compounds profiled by 3 DGE. Rows and columns of the heatmap are ordered according to hierarchical clustering. The boxplot in the legend shows the distribution of all non-diagonal values (i.e., non-self similarities).
Supplementary Fig. 6: Comparison of machine learning methods implemented in DRIAD. Each method was used to train a model to distinguish early (A) vs. late (C) disease stages from AMP-AD gene expression data, where only genes associated with a given drug perturbation were considered by each predictor. Model performance was evaluated through leave-pair-out cross-validation and reported as Area under the ROC curve (AUC). The boxplots show how performance varies across 68 drug-associated gene lists that had at least 10 genes that were significantly (FDR ≤ 0.05) perturbed by the corresponding drug perturbations. The lower, middle and upper hinges of the boxplot correspond to the 25%, 50% (i.e., median) and 75% quantiles, respectively. The whiskers cover observations that are within 1.5 of the interquantile range (IQR) on each side. Outliers beyond 1.5*IQR are shown as individual points.
Name	Sequence		
E5V6NEXT	5'-IGCAGACACTTTTTCCCTACACGACGCG-GrG-3'		
E3V6NEXT*	/5Biosg/ACACACTTTTTCCCTACACGACGCTTCCGATCT	BC6	NNNNNNNNNNTTT-3'
SINGV6	5'-/5Biosg/ACACTCTTTCCCTACACGACGACTTTCCGATCT	BC6	NNNNNNNNNNTTT-3'
P5NEXTPT5	5'-AATGATACGGCGACCACCGAGATCTACACTTTCCCTACACGACGCTTC TCCG*A*T*C*T-3'		
P5_PCRC	AATGATACGGCGACCACCGAG		
P7_PCRC	CAAGCAGAAGAGCGCATACGAG		
N701	5'CAAGCAGAAGAGCGCATACGAGTTTCTTAGTCTCGTGGGCTCGG		
N703	5'CAACGAGAAGACCGCATACGAGATTTCTTGCTGTCTGGGCTCGG		
Name	Sequence		
------------	---		
BC6-A01	AAAACT		
BC6-A02	AAAATC		
BC6-A03	AAAGTT		
BC6-A04	AAAACG		
BC6-A05	AAAATG		
BC6-A06	AACATG		
BC6-A07	AAGAAT		
BC6-A08	AGATAT		
BC6-A09	AATACA		
BC6-A10	AATAGT		
BC6-A11	AATCTT		
BC6-A12	AATGAT		
BC6-A13	AATTC		
BC6-A14	AATTTC		
BC6-A15	ACAATA		
BC6-A16	ACAIAA		
BC6-A17	ACTTAT		
BC6-A18	ACTTAT		
BC6-A19	AGATTA		
BC6-A20	AGTAAT		
BC6-A21	ATAAAC		
BC6-A22	ATAAAC		
BC6-A23	ATACCA		
BC6-A24	ATACCT		
BC6-A25	AATGTA		
BC6-A26	AATATC		
BC6-A27	AAACAT		
BC6-A28	AAACAT		
BC6-A29	AAATCA		
BC6-A30	AAATCA		
BC6-A31	AAATTC		
BC6-A32	AAATGT		
BC6-A33	AACTA		
BC6-A34	AACTA		
BC6-A35	AACTT		
BC6-A36	AAGTTA		
BC6-A37	AAGTTA		
BC6-A38	AAGTTA		
BC6-A39	AAGTTA		
BC6-A40	AAGTTA		
BC6-B01	AAAACAT		
BC6-B02	AAAACT		
BC6-B03	AAAATC		
BC6-B04	AAAATG		
BC6-B05	AACTA		
BC6-B06	AACTT		
BC6-B07	AAGTTA		
BC6-B08	AATAC		
BC6-B09	AATATG		
BC6-B10	AATCCT		
BC6-B11	AATAGT		
BC6-B12	AATTAG		
BC6-B13	AATTTC		
BC6-B14	ACTCAA		
BC6-B15	ACTAA		
BC6-B16	ACTTT		
BC6-B17	AGAATT		
BC6-B18	AGATAT		
BC6-B19	AGTATA		
BC6-B20	AGTTAA		
BC6-B21	ATAAAT		
BC6-B22	ATAAAT		
Supplementary Table 1: The complete list of primers used for 3' Digital Gene Expression.

BC6-B23	ATAGAT	BC6-F23	TGTATT	BC6-J23	CCACGC	BC6-N23	GCGTGG
BC6-B24	ATAGTA	BC6-F24	TGTATT	BC6-J24	CCAGGG	BC6-N24	GCTCCG
BC6-C01	ATATAG	BC6-G01	TGTTAT	BC6-K01	CCGAGC	BC6-O01	GCTCGC
BC6-C02	ATATCT	BC6-G02	TGTTAT	BC6-K02	CCGAGC	BC6-O02	GCTGC
BC6-C03	ATCTAT	BC6-G03	TTAAGA	BC6-K03	CCGTCG	BC6-O03	GCGAGG
BC6-C04	ATTAGA	BC6-G04	TTAATG	BC6-K04	CCGTCG	BC6-O04	GCGAGG
BC6-C05	ATAGTA	BC6-G05	TTAATG	BC6-K05	CCGTCG	BC6-O05	GCGAGG
BC6-C06	ATATCT	BC6-G06	TTAATG	BC6-K06	CCGTCG	BC6-O06	GCGAGG
BC6-C07	ATATTG	BC6-G07	TTAATG	BC6-K07	CCGTCG	BC6-O07	GCGAGG
BC6-C08	ATGATA	BC6-G08	TTAATG	BC6-K08	CCGTCG	BC6-O08	GCGAGG
BC6-C09	ATGATA	BC6-G09	TTAATG	BC6-K09	CCGTCG	BC6-O09	GCGAGG
BC6-C10	ATTGTA	BC6-G10	TTATAC	BC6-K10	CCGTCG	BC6-O10	GCGAGG
BC6-C11	ATTGTA	BC6-G11	TTATAC	BC6-K11	CCGTCG	BC6-O11	GCGAGG
BC6-C12	ATTGTA	BC6-G12	TTATAC	BC6-K12	CCGTCG	BC6-O12	GCGAGG
BC6-C13	CAATAA	BC6-G13	TTATGC	BC6-K13	CCGTCG	BC6-O13	GCGAGG
BC6-C14	CAATAA	BC6-G14	TTATGC	BC6-K14	CCGTCG	BC6-O14	GCGAGG
BC6-C15	CAATAA	BC6-G15	TTATGC	BC6-K15	CCGTCG	BC6-O15	GCGAGG
BC6-C16	CATTTA	BC6-G16	TTATGC	BC6-K16	CCGTCG	BC6-O16	GCGAGG
BC6-C17	CATTAT	BC6-G17	TTATGC	BC6-K17	CCGTCG	BC6-O17	GCGAGG
BC6-C18	CATTAT	BC6-G18	TTATGC	BC6-K18	CCGTCG	BC6-O18	GCGAGG
BC6-C19	CTTATA	BC6-G19	TTATGC	BC6-K19	CCGTCG	BC6-O19	GCGAGG
BC6-C20	GAATTA	BC6-G20	TTATGC	BC6-K20	CCGTCG	BC6-O20	GCGAGG
BC6-C21	GATATA	BC6-G21	TTATGC	BC6-K21	CCGTCG	BC6-O21	GCGAGG
BC6-C22	GATATA	BC6-G22	TTATGC	BC6-K22	CCGTCG	BC6-O22	GCGAGG
BC6-C23	GATATA	BC6-G23	TTATGC	BC6-K23	CCGTCG	BC6-O23	GCGAGG
BC6-C24	GATATA	BC6-G24	TTATGC	BC6-K24	CCGTCG	BC6-O24	GCGAGG
BC6-D01	ATATGA	BC6-H01	TTACAT	BC6-L01	CCCCAC	BC6-P01	GCTGGG
BC6-D02	ATATTC	BC6-H02	TTACAT	BC6-L02	CCCCAC	BC6-P02	GCGACG
BC6-D03	ATCTAT	BC6-H03	TTACAT	BC6-L03	CCCCAG	BC6-P03	GCGACG
BC6-D04	ATCTAT	BC6-H04	TTACAT	BC6-L04	CCCCAG	BC6-P04	GCGACG
BC6-D05	ATCTAT	BC6-H05	TTACAT	BC6-L05	CCCCAG	BC6-P05	GCGACG
BC6-D06	ATCTAT	BC6-H06	TTACAT	BC6-L06	CCCCAG	BC6-P06	GCGACG
BC6-D07	ATCTAT	BC6-H07	TTACAT	BC6-L07	CCCCAG	BC6-P07	GCGACG
BC6-D08	ATCTAT	BC6-H08	TTACAT	BC6-L08	CCCCAG	BC6-P08	GCGACG
BC6-D09	ATCTAT	BC6-H09	TTACAT	BC6-L09	CCCCAG	BC6-P09	GCGACG
BC6-D10	ATCTAT	BC6-H10	TTACAT	BC6-L10	CCCCAG	BC6-P10	GCGACG
BC6-D11	ATCTAT	BC6-H11	TTACAT	BC6-L11	CCCCAG	BC6-P11	ATGTTT
BC6-D12	ATCTAT	BC6-H12	TTACAT	BC6-L12	CCCCAG	BC6-P12	GGGTG
BC6-D13	ATCTAT	BC6-H13	TTACAT	BC6-L13	CCCCAG	BC6-P13	GGGTG
BC6-D14	ATCTAT	BC6-H14	TTACAT	BC6-L14	CCCCAG	BC6-P14	GGGTG
BC6-D15	ATCTAT	BC6-H15	TTACAT	BC6-L15	CCCCAG	BC6-P15	GGGTG
BC6-D16	ATCTAT	BC6-H16	TTACAT	BC6-L16	CCCCAG	BC6-P16	GGGTG
BC6-D17	ATCTAT	BC6-H17	TTACAT	BC6-L17	CCCCAG	BC6-P17	GGGTG
BC6-D18	ATCTAT	BC6-H18	TTACAT	BC6-L18	CCCCAG	BC6-P18	GGGTG
BC6-D19	ATCTAT	BC6-H19	TTACAT	BC6-L19	CCCCAG	BC6-P19	GGGTG
BC6-D20	ATCTAT	BC6-H20	TTACAT	BC6-L20	CCCCAG	BC6-P20	GGGTG
BC6-D21	ATCTAT	BC6-H21	TTACAT	BC6-L21	CCCCAG	BC6-P21	GGGTG
BC6-D22	ATCTAT	BC6-H22	TTACAT	BC6-L22	CCCCAG	BC6-P22	GGGTG
BC6-D23	ATCTAT	BC6-H23	TTACAT	BC6-L23	CCCCAG	BC6-P23	GGGTG
BC6-D24	ATCTAT	BC6-H24	TTACAT	BC6-L24	CCCCAG	BC6-P24	GGGTG