Inhibitory effect of all-trans retinoic acid on human hepatocellular carcinoma cell proliferation

Yun-Feng Piao, Yang Shi, Pu-Jun Gao

Yun-Feng Piao, Yang Shi, Pu-Jun Gao, Department of Gastroenterology, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
Correspondence to: Dr. Yang Shi, Department of Gastroenterology, the First Hospital of Jilin University, No.1 Xinmin Road, Changchun, 130021, Jilin Province, China. shiyangwhy@163.com
Telephone: +86-431-5612242 Fax: +86-431-5612542
Received: 2002-11-14 Accepted: 2002-12-20

Abstract
AIM: To study the inhibitory effect of all-trans retinoic acid on human hepatocellular carcinoma cell line SMMC-7721 and to explore the mechanism of its effect.

METHODS: SMMC-7721 cells were divided into two groups, one treated with all-trans retinoic acid (ATRA) for 5 days and the other as a control group. Light microscope and electron microscope were used to observe the morphological changes. Telomerase activity was analyzed with silver-stained telomere repeated assay protocol (TRAP). Expression of Caspase-3 was demonstrated with western blot.

RESULTS: ATRA-treated cells showed differentiation features including small and pyknotic nuclei, densely stained chromatin and fewer microvilli. Besides, ATRA could inhibit the activity of telomerase, promote the expression of Caspase-3 and its activation.

CONCLUSION: Telomerase activity and Caspase-3 expression are changed in human hepatocellular carcinoma cell line SMMC-7721 treated with all-trans retinoic acid. The inhibition of telomerase activity and the activation of Caspase-3 may be the key steps through which ATRA inhibits the proliferation of SMMC-7721 cell line.

Piao YF, Shi Y, Gao PJ. Inhibitory effect of all-trans retinoic acid on human hepatocellular carcinoma cell proliferation. World J Gastroenterol 2003; 9(9): 2117-2120
http://www.wjgnet.com/1007-9327/9/2117.asp

INTRODUCTION
Several isomers have been found for retinoic acid (RA), an oxidative product of vitamin A, including all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9C-RA). ATRA has been used successfully in treatment of acute promyelocytic leukemia and other hematologic diseases[1-3]. It can induce cellular differentiation of many malignant tumors and inhibit their growth[4-11]. Morphological and biological changes were also observed in the human hepatocellular carcinoma (HCC) cell line SMMC-7721, treated with ATRA[12,13], but the mechanism remains obscure. For this reason, the changes in telomerase activity and Caspase-3 expression induced by ATRA were analyzed in SMMC-7721 in this study.

MATERIALS AND METHODS
Cell culture
The hepatocellular carcinoma cell line SMMC-7721, was kindly provided by the Hematology Institute of the First Hospital of Norman Bethune University of Medical Sciences, and cultivated in Iscove’s modified Dulbecco’s medium (IMDM, Gibco) containing 10 % fetal bovine serum at 37 °C in an incubator with 5 % CO₂. During the exponential stage, ATRA was added to the medium (10⁻⁵ mmol/L). Cells growing in the ATRA-free medium were used as the control group.

Morphological observation
The ATRA-treated cells and the control cells were observed everyday. After 5 days, the cells were collected, stained and observed under the light microscope. About 10⁶ cells were collected, washed with cold saline, and fixed with 4 % glutaral and 1 % osmium acid. After dehydration, embedding, sectioning and staining, the cells were observed under transmission electron microscope.

Activity of telomerase assayed by TRAP silver staining
About 2.5×10⁶ cells were collected, washed and homogenized. The telomerase activity was detected using a TRAP kit following instructions of manufactuer (Beijing Tiangekangning biotech institute). The reaction system, containing 25 μl TRAP agent, 0.2 μl Taq enzyme and 1 μl cell extract, was incubated for 30 min at 25 °C. Then 0.5 μl of primer was added and PCR was conducted for 30 cycles with denaturing at 94 °C for 30 s, annealing at 60 °C for 30 s, extending at 72 °C for 30 s. 15 μl PCR products was loaded onto a 9 % non-degenerative SDS gel, resolved through the SDS-PAGE, demonstrated by a reaction in 0.2 % silver nitrate for 15 min, and visualized by incubation in 30 g/L anhydrous sodium carbonate containing formaldehyde (1 ml/L). The activity of telomerase was indicated by the presence of a 6 hp-DNA ladder. The cell extracts inactivated by incubation at 75 °C for 10 min were used as the negative control.

Expression of Caspase-3 assayed by western blot
About 10⁶ SMMC-7721 cells were harvested, washed, and lyzed in the 5 volumes extract buffer (5 mM Tris-Cl (pH8.0), 150 mM NaCl, 5 mM EDTA, 1 mM DTT, 100 μg/ml PMSF, 2 μg/ml aprotinin, 1 % NP-40) in the iced bath for 20 min. The supernatant was stored at -70 °C. After protein quantification, 80 μg of the extraction was subjected to SDS-PAGE. Proteins resolved on the gel were transferred to a nitrocellulose filter (Amersham) in the buffer containing 48 mmol/L Tris, 39 mmol/L glycerocol, 0.037 % SDS and 20 % methanol. After being blocked in phosphate buffer saline containing 5 % defatted milk, the blots were incubated with goat antibody against Caspase-3 (Santa Cruz). After being washed three times, the filter was incubated with HRP-labeled rabbit anti-goat immunoglobulin, and the reaction was visualized by incubation with a buffer containing DAB and H₂O₂.

• BRIEF REPORTS •
RESULTS

Morphological changes

ATRA-treated cells appeared spindle-shaped, rather than polygon-shaped as under normal conditions. Their nuclei became smaller and pyknotic. The cytoplasm was also stained densely. Cell shrinkage, loss of microvilli, chromatin clumps and reduction of the nuclear/cytoplasmic ratio were noted under the electron microscope. The mitochondria proliferation, enlargement of Golgi complex, cytoplasmic vacuolation and glycogen accumulation, as well as lipofuscin and tonofilaments were also observed (Figure 1).

Figure 1 Morphology of SMMC-7721 observed under transmission electron microscope. Untreated cells have many microvilli, and their nuclei have a great deal of incisure (A). ATRA-treated cells have smaller volume, fewer microvilli on the surface, denser chromatin and increased heterochromatin. With the plasma increased, the nuclear/cytoplasmic ratio decreased. The mitochondria also increased. The Golgi complex became bigger. More vacuole and glycogen were seen. There were also many lipofuscin and tonofilaments (B).

Activity of telomerase

The untreated cells showed a 6 bp ladder pattern, suggesting the active telomerase. So it served as the positive control (Lane 2). The negative control did not show the DNA ladder because the sample was inactivated at 75 °C (Lane 3). The ATRA-treated cells showed no ladder as the negative control (Lane 1).

Figure 2 Telomerase activity of SMMC-7721. The untreated cells showed 6bp ladder pattern, suggesting the active telomerase. So it served as the positive control (Lane 2). The negative control did not show the DNA ladder because the sample was inactivated at 75 °C (Lane 3). The ATRA-treated cells showed no ladder as the negative control (Lane 1).

Expression of Caspase-3

All the control groups showed weak signals at the position of 32 kD, suggesting the presence of Caspase-3 (Lane 2). For the ATRA-treated cells, the 32 kD signal was shown to be stronger. In addition, another signal at the position of 20 kD was detected. The latter represented the p20 subunit of Caspase-3, an active form of the molecule (Lane 1).

Figure 3 The expression of Caspase-3. All the control groups showed weak signals at the position of 32 kD, suggesting the presence of Caspase-3 (Lane 2). For the ATRA-treated cells, the 32 kD signal was shown to be stronger. In addition, another signal at the position of 20 kD was detected. The latter represented the p20 subunit of Caspase-3, an active form of the molecule (Lane 1).

DISCUSSION

It is estimated that about 437,000 people die of HCC every year worldwide, and that their 5-year survival rate is below 3%. It is believed that development of HCC is associated with many factors[14-18]. Several gene mutations have been proven to play some roles during this process[19]. Eukaryotic chromosomes are capped with repetitive telomere sequences that appear important for maintaining chromosomal integrity. In all normal somatic cells, each cycle of cell division and DNA replication results in the loss of 50-200 terminal nucleotides from each chromosome. This gradually results in instability of the chromosomes and cell death[20,21]. Telomerase is a type of reverse transcriptase being essential in many cases for telomere stability and cell proliferation, immortalization and transformation[22-35].

Recently, more than ten types of proteases with homology to ICE/CED-3 that is specific to aspartic acid have been found. The Caspase family plays key biological roles in inflammatory responses and in regulation of apoptosis of mammalian cells. Among them, Caspase-3 is known as a key protease whose activation can induce apoptosis of mammalian cells[36-42]. It lies in the upper stream of a series of cascade reactions. Therefore, it may be of some help to delineate Caspase-3 expression during the ATRA-associated cell differentiation and death for further understanding of its mechanism.

In the present study, a reduction of telomerase activity, upregulation of Caspase-3 expression and the activation of this molecule were linked to the ATRA-induced differentiation of...
SMCC-7721 cells. A few mechanisms have been proposed for the growth inhibition of HCC cells by ATRA. For example, ATRA can inhibit telomerase activity and shorten telomere length of cancer cells and disrupt the stability of the chromosomes. Alternatively, Caspase may also be involved in this process. ATRA activates Caspase-3, simulating a series of apoptotic signals and resulting in cell death. It is presumed that ATRA may directly or indirectly affect the function of Caspase-3 at the following three levels: 1) up-regulating the expression of Caspase-3; 2) indirectly acting on the upper stream regulator of Caspase-3; and 3) directly acting on Caspase-3 itself and promoting its activity. In conclusion, inactivation of telomerase and activation of Caspase-3 may be important pathways for the inhibition of HCC cell proliferation by ATRA.

REFERENCES

1 Mologni L, Marchesi E, Nielsen PE, Gambacorti-Passerini C. Inhibition of promyelocytic leukemia (PML)/ retinoic acid receptor-α and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid. Cancer Res 2001; 61: 5468-5473
2 Ferrara FF, Fazi F, Bianchini A, Padula F, Gelmetti V, Minuc S, Mancini M, Pelicci PG, Lo Coco F, Nervi C. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001; 61: 2-7
3 Manfredini R, Trevisan F, Grande A, Tagliafico E, Montanari Lemoli R, Visani G, Tura S, Ferrari S. Induction of a functional vitamin D receptor in all-trans-retinoic acid-induced monocytic leukemia cell lines. Cancer Res 1999; 59: 3803-3811
4 Chunj H, Liu C, Smith DE, Setz HK, Russell RM, Wang XD. Restoration of retinoic acid concentration suppresses ethanol-enhanced c-Jun expression and hepatocyte proliferation in rat liver. Carcinogenesis 2001; 22: 1213-1219
5 Rexer BN, Zheng WL, Ong DE. Retinoid acid biosynthesis by normal human breast epithelium is via aldehyde dehydrogenase 6, absent in MCF-7 cells. Cancer Res 2001; 61: 7065-7070
6 Sapi E, Flick MB, Tartaro K, Kim S, Rakhlin Y, Rodov S, Kacinski BM. Effect of all-trans-retinoic acid on c-fms proto-oncogene [colony-stimulating factor 1 (CSF-1) receptor] expression and CSF-1-induced invasion and anchorage-independent growth of human breast carcinoma cells. Cancer Res 1999; 59: 5578-5585
7 Zhu WY, Jones CS, Amin S, Matsukuma K, Haque M, Vuligonda V, Chandraaratha RA, De Luca LM. Retinoid acid increases tyrosine phosphorylation of focal adhesion kinase and paxillin in MCF-7 human breast cancer cells. Cancer Res 1999; 59: 85-90
8 Miller WH Jr. The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer. Cancer 1998; 83: 1471-1482
9 Kalmedieran GP, Jiroutek M, Ettinger DS, Dorighi JA, Johnson DH, Mabry M. A phase I study of all-trans-retinoic acid plus cisplatin and etoposide in patients with extensive stage small cell lung carcinoma: an Eastern Cooperative Oncology Group Study. Cancer 1996; 83: 1102-1108
10 Hatoum A, El-Sabbab ME, Khoury J, Yuspa SH, Darwiche N. Overexpression of retinoid acid receptors alpha and gamma into neoplastic epidermal cells causes retinoid acid-induced growth arrest and apoptosis. Carcinogenesis 2001; 22: 1955-1963
11 Schneider SM, Offertinger M, Huber H, Grunt TW. Activation of retinoic acid receptor is sufficient for full induction of retinoid responses in SK-BR-3 and T47D human breast cancer cells. Cancer Res 2000; 60: 5479-5487
12 Ai ZW, Cha XL, Ye JN, Chen HL. Reverse effect of retinoid acid on some cell membrane phenotype of human hepatocellular carcinoma cells. Sheng Wu Xue Ye 1990; 20: 147-150
13 Ai ZW, Cha XL, Liu Y, Chen HL. Reverse effect of retinoid acid on some cell plasma phenotype of human hepatocellular carcinoma cells. Sheng Wu Xue Ye 1990; 22: 135-139
14 Hao MW, Liang YR, Liu YF, Wu MY, YangHX. Transcription factor EGR-1 inhibits growth of hepatocellular carcinoma and esophageal carcinoma cell lines. World J Gastroenterol 2002; 8: 203-207
15 Ogami M, Ikura Y, Nishiguchi S, Kuroki T, Ueda M, Sakurai M. Quantitative analysis and in situ localization of human telomerase RNA in chronic liver disease and hepatocellular carcinoma. Hepatology 1999; 29: 15-25
16 Kojima H, Yokosuka O, Imazeki F, Saisho H, Omata M. Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroenterology 1997; 112: 493-500
17 Zhang G, Long M, Wu ZZ, Yu WQ. Mechanical properties of hepatocellular carcinoma cells. World J Gastroenterol 2002; 8: 243-246
18 Wang X, Liu FK, Li JS, Xu GX. Inhibitory effect of endostatin expressed by human liver carcinoma SMMC7721 on endothelial cell proliferation in vitro. World J Gastroenterol 2002; 8: 253-257
19 Ohno J, Horio Y, Sekido Y, Hasegawa Y, Takahashi M, Nishizawa J, Saito H, Ishikawa F, Shimokata K. Telomerase activation and p53 mutations in urethane-induced A/J mouse lung tumor development. Carcinogenesis 2001; 22: 751-756
20 Blackburn EH. Structure and function of telomeres. Nature 1993; 360: 656-657
21 Figueroa R, Lindenmaier H, Hergenhahn M, Nishizawa K, Bocskai M. Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors. Cancer Res 2000; 60: 2770-2774
22 Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 1989; 59: 521-529
23 Dahse RH, Fiedler W, Ernst G, Telomeres and telomerase. Biological and clinical importance. Clin Chim Acta 1997; 42: 708-714
24 Feng J, Funk WD, Wang SS, Weinrich SL, Avillon AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider C, Villepontou B. The RNA component of human telomerase. Science 1995; 269: 1236-1241
25 Kim NW, Plateyfsz MA, Prowse KR, Harley CB, West MD, Ho PL, Covello GM, Wright WE, Weiner LC, Shav JX. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011-2015
26 Toomey D, Smyth G, Condron C, Kay E, Conroy R, Foley D, Hong C, Hogan B, Toner S, McCormick P, Broe P, Kelly C, Boucher-Hayes D. Immune function, telomerase, and angiogenesis in patients with primary, operable nonsmall cell lung carcinoma: tumor size and lymph node status remain the most important prognostic features. Cancer 2001; 92: 2648-2657
27 Hytirolou P, Kotoulava V, Thung SN, Tsokos M, Fiel ML, Papadimitriou C. Telomerase activity in precancerous hepatic nodules. Cancer 1998; 82: 1831-1838
29 Kitamoto M, Ide T. Telomerase activity in precancerous hepatic nodules. Cancer 1999; 85: 245-248
30 Nakashio K, Kitamoto M, Tahara H, Nakanishi T, Ide T, Kajiyama G. Significance of telomerase activity in the diagnosis of small differentiated hepatocellular carcinoma. Int J Cancer 1997; 74: 141-147
31 Yan P, Coindre JM, Benhattachar J, Bosman FT, Guillaou L. Telomerase activity and human telomerase reverse transcriptase mRNA expression in soft tissue tumors; correlation with grade, histology, and proliferative activity. Cancer Res 1999; 59: 3166-3170
32 Engelhardt M, Mackenzie K, Drulinsky PS, Silver RT, Moore M. Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture Cancer Res 2000; 60: 610-617
33 Yan P, Saraga EP, Bouzourene H, Bosman FT, Benhattachar J. Expression of telomerase genes correlates with telomerase activity in human colorectal carcinogenesis. J Pathol 2001; 193: 21-26
34 Youssef N, Paradis F, Ferlicot S, Bedossa P. In situ detection of telomerase enzymatic activity in human hepatocellular carcinogenesis. J Pathol 2001; 194: 459-465
35 Sato N, Masaha N, Mizumo K, Nagai E, Yasoshima T, Hirata K, Tanaka M. Telomerase activity of cultured human pancreatic carcinoma cell lines correlates with their potential for migration and invasion. Cancer 2001; 91: 496-504
36 Matthews P, Jones C, Skinner J, Aughton M, de Misco C, Wynford-Thomas D. Telomerase activity and telomere length in...
thyroid neoplasia: biological and clinical implications. J Pathol 2001; 194: 183-193

36 Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37-43

37 Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Bio Chem 1999; 274: 20049-20052

38 Marshman E, Ottewell PD, Potten CS, Watson AJ. Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol 2001; 195: 285-292

39 Sane AT, Bertrand R. Caspase inhibition in camptothecin-treated U-937 cells is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death. Cancer Res 1999; 59: 3565-3569

40 Mori M, Terui Y, Tanaka M, Tomizuka H, Mishima Y, Ikeda M, Kasahara T, Uwai M, Ueda M, Inoue R, Itoh T, Yamada M, Hayasawa H, Furukawa Y, Ishizaka Y, Ozawa K, Hatake K. Antitumor effect of β2-microglobulin in leukemic cell-bearing mice via apoptosis-inducing activity: activation of caspase-3 and nuclear factor-kappaB. Cancer Res 2001; 61: 4414-4417

41 Jiang C, Wang Z, Ganther H, Lu J. Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells. Cancer Res 2001; 61: 3062-3070

42 Shariat SF, Desai S, Song W, Khan T, Zhao J, Nguyen C, Foster BA, Greenberg N, Spencer DM, Slawin KM. Adenovirus-mediated transfer of inducible caspases: a novel “death switch” gene therapeutic approach to prostate cancer. Cancer Res 2001; 61: 2562-2571