The role of silicon in plant tissue culture

Iyyakkannu Sivanesan and Se Won Park*

Department of Molecular Biotechnology, Konkuk University, Seoul, South Korea

INTRODUCTION

Plant tissue culture is a collection of experimental procedures for aseptic culture of isolated plant cells, tissues or organs on nutrient media under controlled environmental conditions. Growth and morphogenesis of in vitro cultures of plant cells, tissues and organs are greatly influenced by the composition of the culture medium. The composition of a culture medium has often been modified to stimulate the growth of particular plant material. In general, plant tissue culture medium composed of inorganic nutrients, organic supplements, carbon source, plant growth regulators and a solidifying agent. Mineral nutrients are necessary for growth and development of plants. The optimization of inorganic nutrients in the culture medium improves growth and morphogenesis of plant cells, tissues and organs in vitro. Several physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the culture medium.

Silicon (Si) is the most abundant mineral element in the soil (Epstein, 1999). Numerous studies have shown that Si treatment improves the growth and yield of various plants, particularly when they are subjected to both abiotic and biotic stresses (Ma, 2004). Several researchers have reviewed the role Si on plant tolerance to abiotic (Balakhnina and Borkowska, 2013; Zhu and Gong, 2014) and biotic stresses (Van Bockhaven et al., 2013). Si enhancing tolerance of plants to various stresses by altering activity of antioxidant enzymes, cation binding capacity of the cell walls, endogenous plant hormone level, increasing production of chitinase, glucans, lignin, phenolics, and phytoalexins, nutrient uptake, improving strength of cell and plant, maintaining the structure of stomata, relative water content, and reducing uptake of heavy metals. This review concentrates the potential roles of Si in plant tissue culture.

ROLE OF SI IN PLANT TISSUE CULTURE

ORGANOGENESIS AND SOMATIC EMBRYOGENESIS

Islam et al. (2005) investigated the effect of calcium silicate (CaSiO₃) on callus induction and plant regeneration from mature seed explants of rice ‘Kalizira’, ‘Lucky’, and ‘Pajam’. The highest frequency of callus induction is achieved on Murashige and Skoog (MS) medium containing CaSiO₃. However, plant or root regeneration potential of rice calli is cultivar depended. Similarly, effects of Si on plant or root development depend on reed (Phragmites australis) genotype used for callus induction (Mathe et al., 2012). Addition of Si as sodium silicate (Na₂SiO₃) to the modified MS medium promotes the growth of calli obtained from stem nodal apex. Furthermore, Si has not been included in any commercial tissue culture media formulation. The inclusion of Si to the culture medium improved the morphogenetic potential of plant cells, tissues and organs. Several studies have shown that the inclusion of Si to the tissue culture medium enhances callosity and root regeneration. The inclusion of Si to the tissue culture medium also enhances tolerance to low temperature, metal toxicity and salinity. Si enhancing tolerance of plants to various stresses by altering activity of antioxidant enzymes, cation binding capacity of the cell walls, endogenous plant hormone level, increasing production of chitinase, glucans, lignin, phenolics, and phytoalexins, nutrient uptake, improving strength of cell and plant, maintaining the structure of stomata, relative water content, and reducing uptake of heavy metals. This review concentrates the potential roles of Si in plant tissue culture.

Keywords: acclimatization, epicuticular wax deposition, hyperhydricity, organogenesis, silicon, stress tolerance
and root explants of *P. australis* while its effect on somatic embryogenesis is explants dependent: it stimulates embryogenesis of root calli, but it does not influence this process in stem nodal calli. Soares et al. (2011) evaluated the effect of Si source (potassium silicate \((K_2SiO_3)\) and \(Na_2SiO_3\) on shoot multiplication of *Cattleya loddigesii*. The highest number of shoots is observed on the modified Knudson C medium containing 5.0 mg L\(^{-1}\) \(K_2SiO_3\). In *Ajuga multiflora*, addition of Si to MS medium containing 2iP and IAA, enhanced adventitious shoot regeneration (about threefold) by increasing the activity of antioxidant enzymes such as SOD, POD, APX, and CAT (Sivanesan and Jeong, 2014). In addition, the authors observed the Si accumulation in leaves of plants developed in the culture medium with Si, but not in plants developed in the medium without Si by wavelength dispersive X-ray analysis. These studies indicate that the effect of Si on morphogenetic potential of *in vitro* plant cultures depends on plant species, genotype and concentration of Si in the culture medium. Still further studies are required to better understand the biochemical and molecular mechanism of Si on organogenesis and somatic embryogenesis.

GROWTH AND DEVELOPMENT

The application of Si has been reported to enhance the growth and development of various plants. Zhou (1995) observed silica bodies in leaf tissues of *Phalaenopsis* hybrid plantlets grown in Vacin and Went medium supplemented with CaSiO\(_3\). Addition of CaSiO\(_3\) also increased the leaf length. Soares et al. (2011) reported that the addition of 5.0 mg L\(^{-1}\) \(K_2SiO_3\) and 20.0 mg L\(^{-1}\) \(Na_2SiO_3\) to the modified Knudson C medium increased the number of roots and length of aerial part and root in seedlings of *C. loddigesii*. Subsequently the same group investigated the effect of Ga3 and \(Na_2SiO_3\) on growth and development of *C. loddigesii* (Soares et al., 2013). It was reported that the combination of Ga3 and \(Na_2SiO_3\) increased the number of leaves and roots than GA3 alone. The optimal concentration of Si varies within the same plant species and or genotype. The inclusion of CaSiO\(_3\) at 0.5 and 2.0 mg L\(^{-1}\) to the MS medium stimulates the growth of native (*Brassavola verrucosa*) and hybrid (*Laelia cattleya ‘Culminant Tuilerie’ × L. cattleya ‘Sons Atout Rotunda’) × *Brassolaelia cattleya* ‘Startfire Moon Beach’ orchid plants, respectively (Soares et al., 2012). Lim et al. (2012) also reported that the effect of Si (\(K_2SiO_3\)) on the growth traits of begonia ‘Super Olympia Red’ and ‘Super Olympia Rose’ and pansy ‘Matrix White Blotch’ and ‘Matrix Yellow Blotch’ are mainly dependent on the cultivars. Braga et al. (2009) investigated the effect of different Si sources such as CaSiO\(_3\), \(K_2SiO_3\), and \(Na_2SiO_3\) on the growth and anatomical characteristics of strawberry ‘Oso Grande’ seedlings. The fresh and dry weight of seedlings increased in MS medium containing 1.0 g L\(^{-1}\) \(Na_2SiO_3\). Seedlings of banana ‘Maca’ cultured in the medium supplemented with CaSiO\(_3\) increased the chlorophyll content, whereas those cultured in the medium containing \(Na_2SiO_3\) increased length, fresh and dry weight of shoots (Asmar et al., 2011).

The morphological and anatomical characteristics of *in vitro* grown plantlets are different from the field-grown seedlings. Si inclusion to the rooting medium increased leaf tissue thickness and epicuticular wax deposition in banana (Asmar et al., 2013a) and strawberry (Braga et al., 2009) plantlets. Luz et al. (2012) reported that supplementation of CaSiO\(_3\), \(K_2SiO_3\), or \(Na_2SiO_3\) to the rooting medium improved leaf anatomy of banana ‘Maca’ plantlets. The inclusion of CaSiO\(_3\) to the culture medium also increased photosynthetic rate and chlorophyll content of banana plantlets (Asmar et al., 2013b). In strawberry, light and electron microscopic analysis showed deformation in chlorenchyma and the epidermis of leaves from plantlets grown in the culture medium devoid of Si (Soares et al., 2012). Recently, He et al. (2013) confirmed the deposition of Si within the cell walls of *in vitro*-cultured rice cells. Si improves the structural stability of cell walls during cell elongation and division and thereby maintained cell shape, which may be important for the function and survival of cells (Table 1).

Ziv (2010) investigated the effect of silicon on hyperhydricity in *Ornithogalum dubium*. Addition of \(Na_2SiO_3\) to MS liquid medium containing BA, NAA and 6% sucrose in bioreactors, significantly reduced induction of hyperhydric shoots, and increased plant firmness and mechanical strength. Si treatment significantly reduced the content of hydrogen peroxide and activity of oxidative reductive enzymes such as APX, ascorbate oxidase and GPX in leaves of the regenerated shoots of *O. dubium* when compared with the control (Table 1). Additionally, Si as \(K_2SiO_3\) to MS medium reduced the hyperhydricity in *Cotoneaster Wilsonii* by decreasing the content of MDA in the regenerated shoots when compared with the control (Sivanesan et al., 2011). The authors observed the presence of Si in the in non-hyperhydric plants, but not in the hyperhydric leaf samples of *C. Wilsonii* by energy dispersive X-ray analysis. Thus, the problem of hyperhydricity can be reduced by the inclusion of Si to both liquid and solid culture medium. Phenolic oxidative tissue browning is one of the bottlenecks in woody plant tissue culture. In guava, tissue browning was completely prevented by sealing the nodal explants cut ends with Si (Youssef et al., 2010) and there was no detrimental effect of Si on the subsequent steps of *in vitro* propagation. The authors suggested that Si could be used during explants preparation to control phenolic tissue browning in various plants. The morphological, anatomical and physiological characteristics of plantlets can improve *in vitro* by incorporating Si in the culture medium. However, further studies required to evaluate the effect of different source and concentration of silicon on the growth and development of various plants.

ABIOTIC STRESS TOLERANCE

Duan et al. (2013) reported that Si enhance cold resistance of *Dentrobium moniliforme* by increasing the content of free proline, soluble sugar and soluble protein and decreasing MDA content. Si treatment improved the survival rate of grape ‘Kyoho’ and ‘koshu-sanjaku’ calli under low temperature by preventing browning (Moriguchi et al., 1988). *In vitro* storage of *Coleus hybridus* ‘jupiter’ and *Solanum tuberosum var. Gersa* under silicone oil significantly reduced the growth and maintained their regenerative potential (Radovet et al., 2008; Radovet-Salinschi and Cachita-Cosma, 2012). These results reveal that Si can be used as cryoprotectant and included in the cryoprotective mixture for minimizing the toxicity of cryoprotectants. The ameliorating effect of Si on...
Table 1 | Role of Si in plant tissue culture.

Plant species	Role of Si	Reference
Ajuga multiflora	Increased frequency of shoot regeneration, Increased resistance to NaCl	Sivanesan and Jeong (2014)
Begonia semperflorens	Increased growth, biomass and chlorophyll content	Lim et al. (2012)
Brassavola perrinii Hybrid orchid	Increased seedlings growth, favorable characteristics in the leaf anatomy of the orchid seedlings	Soares et al. (2012)
Cattleya loddigesii	Increased the number of shoots, Increased growth traits of seedlings	Soares et al. (2011)
Coleus hybridus	Maintained regenerative potential of vitroplantlets	Radovet et al. (2008)
Cotonaster wilsonii	Reduced hyperhydricity	Sivanesan et al. (2011)
Dendrobium moniliforme	Increased resistance to low temperature	Duan et al. (2013)
Fragaria x ananassa	Increased biomass, thickness of leaf tissues and epicuticular wax deposition	Braga et al. (2009)
Musa sp. ‘Grande Naine’	Well-developed stomata, Increased epicuticular wax layer in leaves	Asmar et al. (2013a)
Musa sp. ‘Maca’ banana	Increased chlorophyll content, biomass and seedlings growth	Asmar et al. (2011)
Ornithogalum dubium	Reduced hyperhydricity and improving leaf structure and ex vitro survival during acclimatization	Ziv (2010)
Oryza sativa	Improved callus induction, and plant regeneration	Islam et al. (2005)
Perilla frutescens	Increased the growth rate and content of anthocyanins	Zhou et al. (1992)
Phalaenopsis hybrid	Improved structural stability of cell walls	He et al. (2013)
Phragmites australis	Stimulated callus growth, somatic embryogenesis and root formation	Mathe et al. (2012)
Picea abies	Ameliorated the effect of Al	Prabagar et al. (2011)
Psidium guajava	Inhibiting phenol-based browning	Youssef et al. (2010)
Salvia splendens	Increased resistance to NaCl	Soundararajan et al. (2013)
Solanum tuberosum var. Gersa	Maintained regenerative potential of vitroplantlets	Radovet-Salinschi and Cachita-Cosma (2012)
S. tuberosum	Increased growth, biomass and tolerance to NaCl	Qing et al. (2005)
Viola × wittrockiana	Increased growth, biomass and chlorophyll content	Lim et al. (2012)
Vitis vinifera × V. labrusca	Increased the survival rate of callus under low temperature	Moriguchi et al. (1988)

Salt stress in vitro has been reported in A. multiflora (Sivanesan and Jeong, 2014), Salvia splendens ‘Hot Jazz’ (Soundararajan et al., 2013) and S. tuberosum (Qing et al., 2005). Si alleviates salt stress in plants by limiting NaCl uptake, maintenance of ultrastructure of stomata, improving photosynthetic activity, reducing free proline content and altering the production of antioxidant enzymes (Qing et al., 2005; Soundararajan et al., 2013; Sivanesan and Jeong, 2014). Prabagar et al. (2011) investigated the effect of Si on aluminium (Al) tolerance in Picea abies suspension cultures. Al toxicity was reduced when the liquid medium was supplemented with Si and the effect was increased at pH 5.0 than pH 4.2. Si supplementation protected P. abies cells and against Al toxicity by reducing the concentration of free Al in the cell wall. Si is also reported to enhance drought tolerance, alleviate lead toxicity and increase resistance to radiation and temperature stresses (Balakhnina and Borkowska, 2013; Zhu and Gong, 2014). The molecular mechanisms of Si on stress tolerance are poorly understood. Thus, more studies are needed to find out the role of Si in abiotic tolerance on various plants.

FUTURE PROSPECTS

Recent studies have shown the beneficial effects of Si in plant tissue culture (Table 1). However, further studies on a wide variety of plant species are needed to confirm the role of Si in plant tissue culture. In vitro culture is a useful system for studying physiological and biochemical functions of Si in plants at molecular level. Further, in vitro cell suspension culture systems provide an opportunity to study roles of Si at the single cell level. The inclusion of silicone A to Linsmaier and Skoog liquid medium also enhances cell growth and anthocyanins content in cell suspension culture of Perilla frutescens (Zhong et al., 1992). Thus, Si can also be used for the stimulation of secondary metabolites in the plant cell, tissue.
and organ cultures. We strongly recommend the inclusion of Si as a beneficial nutrient in the tissue culture medium to solve various micropropagation problems, and to increase tissue culture success.

ACKNOWLEDGMENT

This article was supported by the KU Research Professor Program of Konkuk University.

REFERENCES

Asmar, S. A., Pasqual, M., de Araujo, A. G., Silva, R. A. L., Rodrigues, F. A., and Pio, L. A. S. (2011a). Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of *Aplegia multiflora* Bunge by altering activity of antioxidant enzyme. *Sci. World J.* 2014, 10.1055/s12401-010-9481-2.

Soares, J. D. R., Pasqual, M., de Araujo, A. G., De Castro, E. M., Pereira, F. J., and Braga, F. T. (2012). Leaf anatomy of orchids micropropagated with different silicon concentrations. *Acta Sci. Agron.* 34, 413–421. doi: 10.4025/actasciagron.v34i4.15062.

Soares, J. D. R., Pasqual, M., Rodrigues, F. A., Villa, F., and de Araujo, A. G. (2011). Silicon sources in the micropropagation of the Cattleya group orchid. *Acta Sci. Agron.* 33, 503–507.

Soares, J. D. R., Villa, F., Rodrigues, F. A., and Pasqual, M. (2013). Concentrations of silicon and GA3 in vitro propagation of orchids under natural light. *Sci. Agrar. Paraná.* 12, 286–292.

Soundararajan, P., Sivanesan, I., Jo, E. H., and Jeong, B. R. (2013). Silicon promotes shoot proliferation and shoot growth of *Salvia splendens* under salt stress in vitro. *Hort. Environ. Biotechnol.* 54, 311–318. doi: 10.1007/s13580-013-0118-7.

Van Boekhoven, J., De Vleeschauwer, D., and Høfte, M. (2013). Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. *J. Exp. Bot.* 64, 1281–1293. doi: 10.1093/jxb/ers329.

Voogt, W., and Sonneveld, C. (2001). “Silicon in horticultural crops grown in soilless culture,” in *Silicon in Agriculture*, eds L. E. Datnoff, G. H. Snyder, and G. H. Korndorfer (Amsterdam: Elsevier Science), 115–131.

Youssef, M. A., El-Helw, M. R., Taghian, A. S., and El-Aref, H. M. (2010). Improvement of *Psidium guajava* L. using micropropagation. *Acta Hort.* 849, 223–230.

Zhang, J. J., Seki, T., Kinoshita, S. I., and Yoshida, T. (1992). Effects of surfactants on cell growth and pigment production in suspension cultures of *Perilla frutescens*. *World J. Microbiol. Biotechnol.* 8, 106–108. doi: 10.1007/BF01195826.

Zhou, T. S. (1993). The detection of the accumulation of silicon in *Phalaenopsis* (Orchidaceae). *Ann. Bot.* 75, 605–607. doi: 10.1006/anbo.1995.1065.

Zhu, Y., and Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. *Agron. Sustain. Dev.* 34, 455–472. doi: 10.1007/s13583-013-0194-1.

Ziv, M. (2010). Silicon effects on growth acclimatization and stress tolerance of bioreactor cultured *Ornithogalum dubium* plants. *Acta Hort.* 865, 29–36.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 August 2014; accepted: 04 October 2014; published online: 21 October 2014.

Citation: Sivanesan I and Park SW (2014) The role of silicon in plant tissue culture. *Front. Plant Sci.* 5:371. doi: 10.3389/fpls.2014.00371

This article was submitted to Plant Nutrition, a section of the journal of Frontiers in Plant Science.

Copyright © 2014 Sivanesan and Park. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.