A Review on Energy Efficient Clustering Protocols of Heterogeneous Wireless Sensor Network

Santosh Vishnu Purkar (Research Scholar) \(^1\), Dr. R.S.Deshpande (Research Guide)\(^2\)
\(^1\)\(^2\) Department of Electronics and Telecommunication, Affiliated to Savitribai Phule Pune University
M.C.O.E.R.C Nashik, Eklahare (M.S), India
\(^1\) santosh.purkar@rediffmail.com
S.C.S.C.O.E.Ahmednagar, Nepti (M.S) India
\(^2\) raj.deshpande@yahoo.co.in

Abstract— Today is the era of information technology, collect the information and use it for required application with technology support. Sensor nodes operating remotely are the popular approach for today’s researcher for collecting real time information. But, facing difficulty due to constraints of energy resource for long life monitoring. So there is high need to have energy efficient communication scheme for the betterment of sensor network communication. Clustering protocol is the best option in designing routing protocol for Wireless Sensor Network (WSN). Though we have option of heterogeneity, Clustering approach enhances the energy efficiency of WSN by systematically sharing the load and hence prolongs the lifetime of the network. Most of the researchers achieve energy efficient approach in WSN, by adding different level high energy nodes and use clustering approach to prolong the lifetime of WSN. There are lots of efforts put in reality by researchers for the development of energy efficient schemes with WSN. This paper explored the contribution of different clustering scheme reported in published literature in the three sections as Clustering algorithm basic and its different attributes, suggested Cluster head selection criteria, literature survey and the identified gaps found in published material. The main aim of this paper is to present basic considered in designing clustering algorithm and metrics available for validation.

Keyword- Clustering basics, Node degree, Performance measures, Query

I. INTRODUCTION

The main aim of WSN is to be a witness and become the reporter for the events of the physical world [44]. Over the last two decade WSNs Popularity has been increased tremendously in several applications like scientific, industrial and social domain to explore events [4, 45]. All these applications use static placement of sensor nodes. For example in Scientific domain by putting nodes at appropriate places at top of mountain, at Glaciers field, at suitable point in city and at water dam bottom side[8,45], it is possible to predict the accurate forecast [43]. In industrial domain we can use sensor nodes in electrical machine for monitoring the status of armature, and other parts of electrical motor [38, 43]. Sensor nodes can be used, in power plant monitoring. In approximately all cases, sensor nodes have to be dependent on their limited powered battery and processing power resource, and after deployment are usually unattended from sensing regions [52]. In social domain WSN can be used for environmental monitoring, some of the times in wildfires monitoring [40,50]. In Military applications sensor network is used as in target tracking, battlefield surveillance, and container monitoring are some of the dynamic node applications from WSN [8, 15, 20, 36, 60]. Sensing the events and routing the recorded valuable data for longer life is found to be extremely important and challenging.

The above said applications demands energy efficient schemes for WSN [23], so that available energy of WSN is use systematically and network can serve for longer life. Solution for above point is, data traffic at run time must be evenly distributed over available sensor node. Network reliability must be maintain during event monitoring. For the entire above requirement, clustering is the best solution [3, 5, 44]. In clustering heterogeneous WSN (HWSN) sensing work is almost handle by small energy capable node and data from all sensor is collected and forwarded towards sink is done by high energy nodes, other than their regular work (named as cluster head in clustered scenario) [49,52]. With clustering approach in real time scenario different parameters are explored like stability period, throughput, propagation delay and reliable data delivery. Hence
lifetime of the network get prolong. Currently about 50 % of the researcher are interested in energy efficient method to prolong the life time of wireless sensor network and 50 % of those are working on different schemes like aggregation, security and different sink arrangement etc. [47]. In latest reported public material shows that clustering is an efficient scheme for hierarchical network routing, balancing the load of traffic, enhancing the stability period and hence prolonging the network lifetime [1,16,60,47]. Clustering is a scheme through which sensor network is divided into groups with central controller for each usually called as Cluster head (CH) with responsibility as to be update and live all the time and maintain intra-connectivity as well as inter connectivity with sink or base station [42,46]. Clustering reduces the overall energy consumption between networks with the expense of small communication effort.

There are basically two approach of clustering as probabilistic, non-probabilistic. Non probabilistic approach further support for bio-inspired schemes of clustering. Clustering schemes can also be grouped as centralized and distributed approach [28, 45, 62]. This paper is an attempt from our side to highlight the recent development in clustering HWSN based on different criteria as algorithmic strategy, metrics considered, software used other than merits, demerits and number of energy level of nodes. The rest of the paper is organized as basics of HWSN and objectives of HWSN, clustering basics and objectives of clustering, cluster head selection criteria, performance measures of clustering WSN, Data transfer approach in clustered WSN, observations from our side in the form of findings from reviewed literature and summary followed by literature survey and finally there is conclusion.

II. CLUSTERING HETEROGENEOUS WIRELESS SENSOR NETWORK

We are presented some basics for clustering Heterogenous WSN, brief about heterogeneous WSN and then clustering are explained with this section.

A. Heterogeneous WSN (HWSN)

WSN’s are of two kinds homogeneous and heterogeneous [22]. In homogeneous WSN, all nodes have same capabilities as processing, energy level (in the form of battery) battery source and link bandwidth etc. But, in reality once sensor network start for event monitoring and updating it no longer being a homogeneous network. As energy level available with sensor nodes is not same. Hence it becomes heterogeneous WSN. Hence, Heterogeneous WSN is the suitable sensor network for real time event monitoring [46]. As the WSN which consist different capabilities like processing, energy level and link bandwidth etc. But, node with different energy level is the best option for heterogeneous WSN. As different capabilities like processing and link bandwidth demand energy backup [1, 23, 29, 42, 48, 53]. Objectives of adding heterogeneous nodes in WSN are listed as follows.

1) Increase the data transmission speed: Due to high capability of processing, energy level and link bandwidth improves data manipulation speed and with high energy level, data can be transmitted at long distance than simple sensor node or normal node. With high link bandwidth no waiting period or data with high rate transfer is achieved [1, 23].

2) Enhance the lifetime and network throughput: As high energy node available which compensate for high processing power and high link bandwidth reduce the burden of packet transfer. With high energy node stability of the network get enhance, on the cost of high initial energy in the network [1, 23].

3) Enhance the reliability of data communication: As with high energy level, high link bandwidth and with high processing capability makes manipulation more precise and with less effort data can be transferred to base station or sink [1, 23].

4) Enhance coverage within network: With high energy node, connectivity in the network get elongated. It also support for high scalability in the network [1].

B. Clustering basics

“To group the same capability or same functionality related physical elements”, and assign or arrange for the specific task, for the required outcome is termed as cluster [2, 28]. Some of the main objectives of clustering scheme are listed as follows.

1) Systematic Load sharing among the nodes is possible: As there is CH selection or election, then TDMA frame from the CH towards sensor nodes. Every node send collected information in allotted time slot [1, 2, 45].
2) **Node failure can be identified:** With acknowledgment received from cluster member CM to CH after advertisement. TDMA frame is formed only with replied nodes not with all the available. At the start of every cluster cycle this process is repeated [1, 2].

3) **Reduce the intra message in the network:** Without clustering every node have to participate in completion of data transfer to sink. On the contrary with single hop or multi-hop communication need to adapt for data transfer. Also chain based approach is possible for without clustered environment for data transmission but, if any intermediate node of chain failure results in loss of valuable data [1, 2].

C. **Clustering process**

WSN can be reactive or proactive, but the clustering process having some stages [12, 13, 18]. These stages are common in all kind of clustering scheme, as selection of cluster head, cluster setup phase and steady state phase. First there is the cluster head (CH), which is one of the node from the available network nodes. Which can be fixed or selected based on some strategy, which is totally controlled by algorithm working over the network. Selected cluster head intimated by sink or by the sensor nodes working in the network. Once CH is selected or elected then it intimates to all other nodes can be called as cluster members, which is in coverage of communication radius. Intimation is all the way through advertising its identifiers like its id, energy level available, its closeness with base station or all other cluster member and cluster member reply to CH by updating appropriate information in routing table such as receiving signal strength, hop count, relative distance with CH etc. This is cluster setup phase. With the reception of reply, CH design time schedule as TDMA frame (Time division multiple access frame) as per the number of cluster member and send it over coverage span. CSMA/CA is the collision avoidance scheme most probably used. Here after all the members send their respective collected data to CH only in pre-decided time slot. The time span after issuing TDMA frame to all node reply (all member reply) on their respective time slot, is called cluster cycle. This completes the steady state phase of cluster process [1, 2].

There are some of the cluster head selection criteria’s, which are explored as follows.

D. **CH selection criteria**

Clustered network mainly have three entities as cluster head (CH), sensor node (SN) and base station (BS). Main control entity is CH, for selecting CH we listed different attributes from the reviewed literature is as follows.

1) **Initial energy:** In this scheme the nodes which have higher energy (battery source) is selected as CH. For example advance nodes or super nodes can be CH [1, 20, 23].

2) **Residual energy:** Nodes with higher remaining energy compared with all other nodes from the coverage zone is selected as CH [1, 11, 16, 23, 25, 31, 34].

3) **Random or probabilistic:** Any node can be CH in this criteria without considering its capability, position and its relative distance etc. Such as random number generated by sensor nodes and whose number is less as compared to other is selected as CH [6, 18, 38, 49, 50].

4) **Distance from sink:** The node whose distance from the all other cluster member is small with respect to sink node can be selected as CH. Some of the time other criteria is also added for CH selection as node having greater connectivity with all others and distance is also less compared with others is selected as CH [10, 14, 15, 20].

5) **Energy consumption rate:** The node whose energy depletion rate is lower compared with other nodes from the coverage zone is selected as CH. Some of the time other parameter is also added with energy required for current round by the selected CH [16, 21, 22, 41].

6) **Ratio of parameters:** Ratio of residual energy to average energy of the network, ratio of initial energy to residual energy and distance to CM with respect distance sink are the different options for selecting CH in current round [1, 8, 10, 11, 14-16, 20, 23-25, 31, 35, 39, 42, 44].

7) **Node degree:** Node with strongest connectivity with all the cluster member is selected as CH. Node who receive maximum level Receive Signal Strength Indicator (RSSI) , so that packet can be received from cluster member is CH for the round [11].

8) **Hybrid approach:** Cluster head selection criteria in which more than one parameter considered for CH selection. Means node with higher energy available and small distance with sink, initial energy and remaining node energy with average energy of the network. There can be criteria as epoch period with remaining energy, Node with low hop count towards sink and better connectivity selected as CH [19, 27, 29, 30-33, 36, 37, 43, 44, 46-48, 52].
Clustering performance can be evaluated with reference to some of the listed performance measures of clustered WSN

E. Performance measures of Clustering WSN

Mostly considered performance parameter by the researchers is as follows.

1) Stability period: The time interval between start of network (very first message triggered in the network) to very first node death is termed as stability period. Because it is the interval over which all the nodes from the network are working against energy exertion without sacrifice [1,6,7,15,18,19,22,24,25,27,29,32,34,47,56,64].

2) Lifetime period: It is the second important matric parameter found in almost all the published literature for energy efficient sensor network, other than stability period. The time span after the start of network to death of last available node from the network, is termed as lifetime of WSN [1,6,7,10,15,16,19,22-24,27-29,32,33,38,39,43,47].

3) Throughput of the network: Number of messages transacted over the network towards base station per cluster cycle or cluster round is termed as throughput [1,11,13,17,21-24,26,27,29,30-35,37,41,42,45,46-48,57,58,61,64].

4) Number of cluster heads per round: Number of clusters formed over a cluster cycle is recorded in the form of number of CH per round. This value must be optimum [10, 14, 15-17, 23, 36, 39, 41, 59, 61, 64].

5) Energy consumption per round: Energy spent by the cluster and hence WSN per round is termed as energy consumption per round. This factor gives us an information of available energy over the network and tentative lifetime of the network possible. If energy required for one round is known then approximate lifetime of network can be calculated [6,7,11-15,22,25,26,30-36,38,39,42,45,46,48,52,59,63].

6) Number of alive or dead node: Number of nodes alive or dead per cluster cycle is one of the important parameter of performance measures. This parameter gives us idea of tentative death of all nodes and hence lifetime can be predicted [1,6,10-14,17,18,21-23,24,26,29-38,39,42,46,47,50,56,58,59,61,63,64].

F. Data transfer approach in clustered WSN

Data collection from WSN is possible through three different ways, with reference to base station. In heterogeneous network there can be possibility of mix types of nodes instead of same sensing parameter. By the help of query, time and threshold base approach it is possible to collect the information for required sensing event.

1) Query based: In query based approach the query of administrator is placed from BS over the network towards CH. CH in response forwards the said query for searching information over a network. The sensor node send the collected information to CH as a response. Only matched data will be send by all respective CH to BS. But, while collected data is being send by sensor nodes at the same time there energy level information is also conveyed to respective CH [12, 13, 57].

2) Time threshold: In this time frame sent by selected cluster head to member and collect the data from those entire member. Transfer the aggregated data after collection followed by CH selection. In this scheme all CH are tightly synchronized with each other [13, 16, 34].

3) Threshold based: In case of threshold value based scheme information collected by sensor nodes is monitored an update till the threshold is reached. Once threshold is achieved then the collected data will be sent to CH. Same platform followed by CH, it collect the data from all the cluster member till the threshold of its own is reached from aggregated value before sending towards BS [12, 18].

III. LITERATURE SURVEY

According to research effort taken by researcher for the development of best possible routing protocol through clustering scheme based on probability strategy. But, they have their target application or network architecture. On the other side there can be different options possible, one of the option other than probability strategy is combining different parameter for clustering or through non-probabilistic approach reducing energy consumption in the WSN. Which indirectly enhance the lifetime of network.

A. Clustering schemes of Homogeneous WSN

Towards this work many researcher contribute and propose energy efficient scheme for homogeneous and for heterogeneous WSN [23]. Low Energy Adaptive Clustering Hierarchy protocol (LEACH) proposed in [6, 7, 8] is the protocol more suitable in the environment over which role of CH is rotated after each cluster cycle. So, that load balancing and hence energy efficiency in WSN can be achieved. CH selection is based
on random number, in this every sensor node generates random number and if the generated number is less than the threshold given in [6] is elected as CH for current round. CH send advertise message to sensor nodes of his coverage. Cluster member reply to advertised message by sending acknowledgement. After receiving acknowledgement CH prepare a schedule of TDMA frame and publish over the network (Cluster section of his control) every node send the collected data within their allotted time slot. Time span between transfer of TDMA frame from CH to again data collected frame to CH and aggregated data to base station is termed as Cluster cycle or cluster round. LEACH protocol is suitable for homogeneous WSN not for heterogeneous WSN. As LEACH select the CH based on random number without considering the available energy or relative distance etc. hence selected CH is less faithful than expected. To resolve the issue of LEACH, A hybrid energy efficient distributed (HEED) clustering approach for ad hoc sensor networks (HEED) protocol from [10] which undertake residual energy of the node for the selection of CH and relative distance with respect to BS. This protocol us slight faithful CH than LEACH, but having less emphasis on node connectivity and available energy within the network or energy consumption rate of selected node. PEGASIS protocol proposed in [9] is one of the different direction for energy efficient WSN, in the form of chain based data communication to BS. With this study many of the researchers are trying to encompass different parameter for the best choice of CH selection and with multihop scheme [51].

B. Clustering Schemes of Heterogeneous WSN

As in real time WSN, no network found to be homogeneous for long time. Heterogeneous WSN (HWSN) is the popular network architecture for real time sensing environment. Researchers of Heterogeneous WSN protocol are motivated from the basics of homogeneous WSN protocol like [6, 7, 9, 10], so that energy consumption per cluster cycle is to be reduced as much possible. To enhance the energy efficiency and indirectly enhance the stability period of WSN, hence prolong the lifetime of WSN. By rotating the role of cluster head and threshold will be set for the selection of CH, on the same base as LEACH. Very first heterogeneous WSN protocol proposed in [17] is with two type nodes as normal and advanced node. A CH selection criterion for this protocol is based on remaining energy with nodes and not on the network energy. It means selection of CH not taken into account global information of the network. This protocol introduces high energy node, hence stability of the network get enhanced and it prolong the lifetime of WSN. Demerits of this scheme is identified as there is always high energy node get selected as CH, hence there is always punishment to advance node. Researchers contribute towards this approach for better stability and better remaining energy and hence to prolong the lifetime of the network in the form of [18, 24, 25]. Enhanced Distributed Energy Efficient Clustering (EDEEC) protocol mentioned in [26] is three level node heterogeneous WSN, in this added node termed as super node. Main aim of this scheme is to increase the heterogeneity and improve stability period, hence lifetime of the network by using the base of [24] or indirectly with the base of [6]. CH selection follows the base of probability with the ratio of remaining energy to average energy of the network. Controlling the epoch period also contribute for enhancing stability period and lifetime of the network in [29]. Some of the other detailed contribution from the researchers for different schemes is organized as follows in Table I. Presents comparison details of contribution for different algorithms proposed by the researchers. Table I mainly focused on Methodology used for algorithm in the form of summary, Design approach of clustering (DA), Importance of protocol (IP), Design matrices used for protocol (DM), merits (M) and demerits (dm) followed by heterogeneity level of nodes (LN) and the tools (TL) mentioned if any used by researchers.
TABLE I

Sr. no.	Ref. no.	IP	DA	DM	M	Dm	LN	TL
1	[55]	Cluster head selection based on routing path to prolong the network life	Bio-inspired, Hybrid approach (A-star Algorithm)	Network life time, residual energy	Suitable cluster head selection, enhanced life time	Intra-cluster and Inter-cluster message are increased. Hence latency, routing table also increased.	1	-

Summary: This is a novel approach of cluster head selection to enhance life time and longevity of cluster with the consideration of week node count and total distance value for cluster head selection. Routing table include residual energy, is consider for synthesized path to transfer data packet.

| 2 | [56] | Optimal no.of cluster head for round and enhance stability and lifetime | Random approach (Semi-Centralized) | Stability period, sensing period | High stability, each round balance energy utilization | Intra-cluster message, more Processing load | 2 | - |

Summary: It follows the architecture of Mechanism of LEACH, But with slight change for selection of cluster head this algorithm considers the death toll and the residual energy of all the member and intimate it to BS. Then decision is taken on minimum value from t or k. Hence improve the stability period of network.

| 3 | [57] | Energy efficient routing | Hybrid random approach | Better packet delivery ratio, energy consumption, E to E delay/round | Average energy utilization is less, improving reliability of data forwarding, improve packet delivery ratio. | Other node may have valuable data, latency improved, scalability in Heterogeneous WSN not consider | 1 | - |

Summary: This algorithm works on the principle of LEACH with slight addition as by using residual energy available for routing path. CH selection based on spatial density so that energy consumption is minimum. Concentration degree of SN’s and their residual energy for optimal cluster head election can work for election Weight.

| 4 | [58] | Better clustering and reduce Energy consumption | Probabilistic approach and centralized scheme | No.of alive nodes/round, dead nodes/round, packet delivery ration, no.of cluster/round | Transmission load of other nodes is reduced. No initial energy drainage in scheme. | Control overhead effect is nullify, initial energy drainage for ON/OFF switching | 2 | MATLAB |

Summary: In order acquire better clustering, we partition the network in four quadrants to achieve better coverage, optimum position of CH also defined. More over transmission load of other sending nodes is also reduced. In conventional leach cluster are arbitrary in size and some of the cluster member are away from the head. Selection of cluster is based on RSSI received of advertisement. And CH inform schedule to sensor node.

| 5 | [28] | EDDEEC: (Three node model) Cluster head selection probability and hence Enhance life time | Non-probabilistic approach | Stability, lifetime, packet delivery ratio | Dynamic selection of CH | Non-balanced clustering, re-election increased overhead | 3 | MATLAB |

Summary: It is a three level node energy approach and Cluster head selection is based on probability, also on residual energy available, and average energy of the network. This scheme uses the concept of Tabs for cluster head selection. Hence give more optimal number of clusters to be formed to provide enhanced stability and life time.

| 6 | [59] | To reduce the intra-cluster energy and better coverage from CH | Non-probabilistic approach | Stability, residual energy/round (life time) | Balance Energy consumption and prolong the survival time of the network. | Less importance is given to Intra-cluster, inter-cluster messages. This impose more processing load , scalability increase energy consumption | 1 | OMNET++ |
Page	Reference	Summary	Approach	Metrics	Technology			
7	[60]	To reduce communication traffic on BS	Probabilistic approach	Packet delivery and life time	Avoids data collision and fast message delivery, hence prolong the life time	Transmission of power value and link correlation (factor) coefficient increase the power dissipation	2	MATLAB
8	[29]	To enhance stability and improve the life time of the network	Non-probabilistic approach	Residual energy, packet delivery ratio and Lifetime	More energy efficient, hence extend the stability period and lifetime	Intra-cluster messages impose more Processing load	4	MATLAB
9	[52]	To reduce communication energy in the network	Random probabilistic	Residual energy and life time	High stability and balance energy utilization	Intra and inter-cluster messages are higher	2	NETBEANS IDE 7.0
10	[17]	To prolong the stability and prolong lifetime	Probabilistic approach	Stability and life time	Reduce energy consumption, more chance to generate optimum CH, more stabilize protocol	Advance nodes get punished all the way	2	MATLAB
11	[24]	To reduce energy consumption and prolong the lifetime of network	Probabilistic Approach	Stability and life time, no. of alive nodes/ round and throughput	Avoid the global knowledge of energy from the network at every election round. Performs better in multi-level HWSN	In this protocol penalty is always for advanced nodes, in the condition when their energy deplete and in the range of the normal nodes.	2	MATLAB
12	[25]	To balance the energy consumption inside the network by selecting CH over all the network	Probabilistic Approach	Stability, residual energy/round, no.of alive nodes/round	DDEEC is advantageous than DEEC in terms of stability period. It is due to hybridization of DEEC and the DDEEC is disadvantage than DEEC in terms of stability period. It is due to hybridization of DEEC and the	Still there is penalty for advanced nodes, cluster heads consume more energy	2	MATLAB
Table 1: Developed Distributed Energy-Efficient Clustering (DDEEC) algorithm select the CH based on residual energy. DDEEC adopts the base of DEEC, to select the cluster heads. After CH selection procedure and round completion, when advanced node become normal node at one point selection of advance and normal node is of equal possibility and hence life time and stability is enhance.								

| Table 2: Summary: This threshold distributed energy efficient clustering (TDEEC) algorithm modifies the scheme of cluster head selection as with normal procedure of LEACH. TDEEC also use the basis as DEEC, ratio of residual energy to average energy and with the value of optimum no.of cluster heads required and compromise between this is selected for further work. Hence prolong the lifetime of network.

| Table 3: Summary: In this algorithm BS is responsible for CH selection (based on residual energy, average energy and relative distance between nodes and BS). In this nodes contributed for their respective region information communication, This protocol is validate only with selected protocol.

| Table 4: Summary: This scheme select best possible CH such that energy consumption get reduced. CH to BS communication is direct. In case of multiple cluster there is formation of shortest path towards sink and joined to form chain, with the help of single cluster head in the center of cluster algorithm. This scheme consider the boundary condition and density of nodes available in the cluster zone.

| Table 5: Summary: Proposed protocol minimize the possibility first dead nodes and the energy consumption, hence extend the network lifetime. In this, each node in order to calculate the node weight sends a message to BS. For CH selection the proposed protocol uses a hybrid scheme of residual energy, distance between nodes and BS, Weight node. It means cluster head selected must dissipate minimum energy with mechanism of cluster radius, which reduce network load. The node which has high Pch value than neighbour’s get elected as CH. CH send only meaningful information from the collected information.

| Table 6: Summary: This is balanced and energy-efficient clustering an improved version of DEEC. It control the threshold for selecting CH with coverage radius to achieve balanced clustering. CH selection is again on the basis of residual energy. Cluster formation is based on DEEC strategy and the distance parameter between CH and cluster member.
Page	Reference	Topic	Details	Tools
18	[65]	Reducing the energy consumption and prolong the lifetime of the network	Non-probabilistic Lifetime, energy consumption, data packet delivery Avoid energy consumption of hierarchical cluster by collecting information in advance Level-2 CH Node may have burden, and deplete energy at fast rate, Extra control messages or overhead	MATLAB
19	[77]	Energy efficient scheme, distribute load and heavy data traffic and energy consumption evenly	Non-probabilistic Lifetime, average delay, maximum transmission distance and data redundancy, energy consumption Balanced clustering, avoid redundant data, reduce the communication energy Greater number of internal control heads consume more energy	NCTUNs 6.0
20	[66]	To enhance the lifetime of heterogeneous network	Non-probabilistic Lifetime, energy consumption, data packet delivery Effective cluster head selection and epoch is modified for balance energy efficient clustering, hence results in increase lifetime This scheme have large no.of control overheads	MATLAB
21	[76]	To design and develop energy efficient protocol to create distributed clusters	Non-probabilistic Average residual energy, stability and Lifetime over network Distribution of cluster head is uniform Need update at the end of each round	event-driven simulator written in Java
22	[68]	To reduce energy consumption of SN to communicate with CH	Non-probabilistic Lifetime, energy consumption, data packet delivery and energy consumed Vs data packet received at BS Avoid CH at boundary side, reduce the energy consumption in the network Less chance that every time CH is found at the central position other than first round	MATLAB
23	[48]	Reduce the intra-cluster communication	Probabilistic Node death rate Forcefully CH is at the center of the cluster position-Best scenario, hence enhance the stability It may results in unbalanced clustering and after stability there is faster death rate	MATLAB

Summary: Double Cluster Based -LEACH propose a CH selection based on residual energy of node, distance from node to base station and neighbour nodes, Node energy parameter is main factor, Node density for CH selection, Level one for fusion and send it to level two for forwarding to sink.

Summary: ANCF (Active node cluster formation), Active node sensing algorithm, Active node routing algorithm: is responsible for appointing CH near Sink and event, Hello packet and distance calculation, Active node selection for CH following parameter up-keeping energy, distance to the neighbour’s, Density, Maximum distance, Angle. And also CH selection follow probability rule, Multihop routing spanning tree algorithm.

Summary: It use the basis of DEEC, Node with high energy becomes CH more times than normal nodes. CH is selected based on residual energy. Epoch is modified by the (Energy for round divide by Average energy of the network). This enhance the lifetime than DEEC.

Summary: CH are selected based on residual energy, their distance to other SN and residual energy of other SN and CH close to each other. CH are Distributed over the network properly such that minimum distance between each other is maintained, so reduce the inter cluster messages. Reduce the communication distance between sensor nodes and BS through CH. This MDBECHAN assure that CHs are not concentrated at particular zone.

Summary: CH are selected based on residual energy and it is to be at the central position of cluster. The node with minimum value of energy will be TCH for next round and the node with highest RE is CH for next round, also have the provisioning of sleep period. BS is at the outside the network.
Position is at the center of cluster or at the network. Center position of CH gives better performance measures than other two positions.

Summary:
In this approach, network use the minimum transmission energy algorithm to form a cluster with shortest path between nodes down to CH. Multihop communication between CM to CH is possible. This scheme selects CH based on LEACH strategy.

24	[70]	This approach ameliorates the network lifespan and minimizes the energy consumption of sensor node	Non-probabilistic	Lifetime and total system energy Vs Round	Multihop communication in clustered routing to prolong the lifetime	CH selection is based on random number	1	MATLAB

Summary:
This approach, network use the minimum transmission energy algorithm to form a cluster with shortest path between nodes down to CH. Multihop communication between CM to CH is possible. This scheme selects CH based on LEACH strategy.

25	[73]	Shortest path finding with energy management	Probabilistic (Dynamic source routing)	Lifetime, Remaining energy and throughput	Multihop communication to prolong the usage of available energy	Calculation and energy consumption and traffic overload increase on node death	1	NS2

Summary:
Source nodes send packet like flooding and with the acceptance of reply from target. Find shortest path towards BS. Check energy level continuously. The route which have higher energy level, is selected as best routing path for communication.

26	[72]	Forming a cluster based on connectivity and energy level such that maximum node degree is achieved and prolong the lifetime	Non-probabilistic	Lifetime, total remaining energy, total number of CH Vs maximum hops and lifetime Vs hop count, lifetime Vs number of nodes	Due to unequal clustering there is enhanced lifetime of network	This scheme consumes more energy. If any node dead then there must be provision of every time connectivity and energy level calculations	1	MATLAB

Summary:
Forming a cluster based on connectivity and energy level such that maximum node degree is achieved and prolong the lifetime. This scheme carry power level information other than connectivity index.

27	[74]	Selecting best possible cluster head by the addition of heterogeneity nodes. Hence it enhances the lifetime and throughput	Non-probabilistic (Fuzzy logic)	Lifetime, energy total energy consumption and throughput, throughput Vs no.of sensors, traffic load Vs sensor nodes and aggregate delay Vs no.of nodes	High energy nodes with density and distance is the best strategy for CH selection.	Calculations from crisp number to values are higher due to three attribute	3	-

Summary:
Selecting best possible cluster head by the addition of heterogeneity nodes. Hence it enhances the lifetime and throughput. This scheme carry power level information other than connectivity index.

28	[67]	Identify the congested node path	Probabilistic (Avoid Congestion in path)	Lifetime	Lifetime of the network is prolonged with the strategy of best energy path	In this no assurance of CH is at the center of cluster	1	NS2

Summary:
Identify the congested node path. This protocol is designed for multihop network. Selection of CH is based on energy associated to transfer information towards BS, available residual energy and node location of node. This scheme use minimum energy path for transferring data packet to BS.
IV. FINDINGS FROM REVIEWED LITERATURE

As selecting the CH at center offers best connectivity in the network, but this scheme have less assurance that CH is always at the center of cluster. Sending routing schedule over a network with available residual energy and decision based on the same is taken for CH selection. But, this is time consuming and energy consuming process. Such messaging also increases internal messages over a network. A euclidean distance criterion is less faithful than, selecting CH based on energy available. Every time for new round initiation messages transacted over the network are proportional to number of parameter and number of calculations with number of nodes available in the network. Most of the literature assumes that internal messages processing energy is negligible. Assuming CH statically and centrally controlled approach of clustering offers less reliable cluster scheme. Most of the researcher used random deployment for sensor node placement; this is one of the causes for less stable network than uniformly deployed network.

V. SUMMARY OF REVIEWED LITERATURE

It is identified that, precise the selection of CH better the clustering connectivity or node degree and hence better the performance measures of clustered WSN. Hence at the end of this study, we found that SEP and its variants consider the residual energy as main parameter for probability ratio calculation. Which contribute all the way for better stability, hence enhances the throughput of the SEP and its variants. On the other side DEEC and its variants are totally targeting for heterogeneity and average energy available within the network, results in life time enhancement. There are some variants of LEACH and HEED offers better result compared to the original LEACH and HEED protocol in terms of adding node distance and heterogeneity of nodes. Other important parameter from the present literature is node degree, available energy on routing path, spanning tree basis and some of the Bio-inspired base like Bee colony and mechanical base of firefly-simulated annealing also add weightage to select best possible routing mechanism with clustering. PEGASIS basis of chain based data transaction is also used in intra-cluster communication and single hop or multihop communication can be used for CH to BS communication. According to some of the authors selected CH must be at center gives best node Connectivity, and better coverage results in best clustering. Hence results in more stability and prolonged lifetime of WSN. Researcher also target for distance between different CH positions, which also contribute in lifetime enhancement of the network. So, there is high need to design a clustering scheme which having the provision of identifying best possible cluster by keeping internal messages as low as possible other than valuable data message. If there is any death of node then there must be provision to trigger the cluster head and base station. Other option for the energy efficient clustering scheme is to check node available in cluster must have minimum energy for communication.

VI. CONCLUSION

With the complete survey of reported literature here it is identified that most of the researchers still follow a random deployment strategy with modified probability weight function and with the threshold comparison decision is taken for cluster head. So there is high need to have intelligent scheme based on automata or neural network such that nodes clustering and head selection is executed based on real time or run time value.

Hence there is high need to design and develop clustering algorithm of Non-probabilistic approach type for balancing the clusters, and must result optimal number of cluster in the network such that network survival time get improved. Hence, indirectly stability of the network get enhances. If life of the network is extending, then it indirectly contributes for packet delivery ratio to BS and hence throughput enhances.

ACKNOWLEDGMENT

The author would like to thanks Prof. Dr. G.K.Kharate and Dr. V.H. Patil from Matoshri College of Engineering and Research Centre, for their continuous support for our research work and valuable and constructive comments to improve the quality of research work.

REFERENCES

[1] R. Sheikhpour, S. Jabehdari and A. Khadem-Zadeh, “Comparison of energy efficient clustering protocols in Heterogeneous wireless sensor networks,” International Journal of Advanced Science and Technology, November, 2011, pp. 27-40

[2] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless sensor networks,” Science Direct Computer Communications, 2007, pp. 2826–2841

[3] S. Dehghani, M. Pourzaferani and B. Barekatain, “Comparison on energy-efficient cluster based routing algorithms in Wireless Sensor Network,” The Third Information Systems International Conference, Science Direct, Procedia Computer science, Vol.72,2015,pp.535-542

[4] A.K.Tripathi and S.Chinara, “Comparison of Residual Energy-Based Clustering Algorithms for Wireless Sensor Network,” International Scholarly Research Network Sensor Network, Vol.2012,pp.1-10,Doi:10.5402/2012/375026

[5] C.K.Sendhilkumar,R.Sukumar and M.Nageswari, “ Sensors lifetime enhancement techniques in wireless sensor network,” IRACST-International Journal of Computer Science and Information Technology and Security, April 2013, Vol.3 ,No.2,pp.159-164

DOI: 10.21817/ijet/2017/v9i3/170903342 Vol 9 No 3 Jun-Jul 2017 2524
D. Mantri, N.R. Prasad and R. Prasad, “M HBCDA: Mobility and Heterogeneity aware Bandwidth Efficient Cluster based Data heterogeneous wireless sensor networks,” Infocom Journal of Computer Science, 2009, Vol.8, No.3, pp.11-20

B.Elbhiri, R.Saadane, D.Aboutajdine, “Stochastic Distributed Energy Efficient Clustering (SDEEC) for heterogeneous wireless sensor networks,” International Journal of Parallel, Distributed and Grid Computing (PDGC-2010), pp. 205-210

M.Y.Khan, N.Javaid, M.A.Khan, A.Javaid, Z.A.Khan and U.Qasi m, “HYBRID DEEC: Towards Efficient Energy Utilization in Wireless Sensor Networks,” World Applied Sciences Journal, 2013, pp.126-132

T.N.Qureshi, N.Javaid, A.H.Khan, A.Iqbal, E.Akhtar, M.Ishfaq, “BEEN ISH: Balanced Energy Efficient Network Integrated Super Heterogeneous wireless sensor networks,” International Journal of Computer Applications (0975-8887), July 2010, vol.4, No.6, pp.1-10

O. Rehman, N.Jaivaid, B.Manzoor, A.Hafeez, A.Iqbal and M.Ishfaq, “Energy Consumption Rate Based Stable Election Protocol,” International Workshop on Body Sensor Networks (BASNNet-2013), SciVerse Science Direct, Procedia Computer science, Vol.19,2013,pp.932-937

F. Farouk, R. Rizk, F. W. Zaki, “Multi-level stable and energy-efficient Clustering protocol in heterogeneous wireless sensor networks,” IET Wireless Sens.Syst., 2014, pp. 159–169

B. Elbini, S.Rachid, S.E.Fkihi, S. and D. Aboutajdine, “Developed Distributed Energy Efficient Clustering (DDEEC) for heterogeneous wireless sensor networks,” 5th International Symposium on UV Communications and Mobile Network (ISVCM), 2010, pp.1-4

P. Saini and A. K. Sharma, “ E-DDEEC: Enhanced Distributed Energy Efficient Clustering Scheme for heterogeneous WSN,” 1st International Conference on parallel, Distributed and Grid Computing (PDGC-2010), pp. 205-210

N. Javeda, T.N.Qureshi, A.H.Khan A.Iqbal, E.Akhtar and M.Ishfaq, “EDDEEC: Enhanced Distributed Energy Efficient Clustering for Heterogeneous Wireless Sensor Networks,” International workshop on body area sensor networks (BASNNet-2013), 2013, pp.914-919

N. Javaid, M. Babar Muhammad, Imran, M.Guizani, Z. Ali Khan, T.A. Alghamadi and M.Llahi, “An energy-efficient distributed clustering algorithm for the heterogeneous WSNs,” EURASIP Journal on Wireless Communications and Networking, Springer 2015, pp.3-11

M.Y.Khan, N.Javaid, M.A.Khan, A.Javaid, Z.A.Khan and U.Qasim, “HYBRID DDEEC: Towards Efficient Energy Utilization in Wireless Sensor Networks,” World Applied Sciences Journal, 2013, pp.126-132

B. Elbini, R. Saadane, D. Aboutajdine, “Stochastic Distributed Energy Efficient Clustering (SDEEC) for heterogeneous wireless sensor networks,” IGST-CNIR Journal, December 2009, Vol.9, Issue 2, pp.11-17

B. Elbini, R. Saadane, A. Zamora, D. Aboutajine “Stochastic Distributed and Balanced Energy Efficient Clustering (SBDEEC) for heterogeneous and wireless sensor networks,” Infocom Journal of Computer Science, 2009, Vol.8, No.3, pp.11-20

D. Mantri, N.R. Prasad and R. Prasad, “MHBCDA: Mobility and Heterogeneity aware Bandwidth Efficient Cluster based Data aggregation for Wireless Sensor Network,” IEEE Conference 2013, pp.1-5

M. Li, Ch. Guan Wu, L. “ECCS: An Energy Efficient Clustering Scheme in Wireless Sensor Networks,” In Proceedings of the 24th IEEE International Performance, Computing, and Communications Conference (IPCCC), Phoenix, AZ, USA, 7–9, April 2005, pp.535–540

P. Saini and A.K.Sharma,”Energy Efficient Scheme for Clustering Protocol Prolonging the Lifetime of Heterogeneous Wireless Sensor Networks,” International Journal of Computer Applications (0975–8887), September 2010, Vol.6, No.2,pp.30-36

M. Divakar and S. Kumar, “An Energy Efficient Level Based Clustering Routing Protocol for Wireless Sensor Networks,” International Journal of Advanced Smart Sensor Network System (IJASSN),April 2012, pp.55-65
F. Boutekkouk, F. Taibi and K. Meziani, "A hybrid approach to extend the lifetime of heterogeneous wireless sensor networks," The Wireless Sensor Systems, 2011, Vol.1, Issue.2, pp.85-95, Doi:10.1049/iet-wss.2010.0086

A.S. Poornima and B.B. Amberker, "Secured Data Collection Using Mobile Data Collector Clustered Wireless Sensor Networks," IET Science, Vol.19, 2013, pp.240-247

H. Tan, X. Hao, Y. Wang, F.C.M. Lau and Y. Lv, "An Approximate Approach for Area Coverage in Wireless Sensor Networks," The 4th International Conference on Ambient Systems, Networks and Technologies (ANT-2013), SciVerse ScienceDirect, Procedia Computer Science, Vol.19, 2013, pp.240-247

A.S. Poornima and B.B. Amberker, "Secured Data Collection Using Mobile Data Collector Clustered Wireless Sensor Networks," IET Wireless Sensor Systems, 2011, Vol.1, Issue.2, pp.85-95, Doi:10.1049/iet-wss.2010.0086

F. Boutekkouk, F. Taihi and K. Meziani, "A hybrid approach to extend the lifetime of heterogeneous wireless sensor networks," The 6th International Conference on Emerging Ubiquitous System and Pervasive Networks (EUSPN 2015), Procedia Computer Science (2015), Vol.63, pp.136-141

S. Hu, J. Han and X. Wei and Z. Chen, "A multi-hop heterogeneous cluster-based optimization algorithm for wireless sensor networks," Wireless Netw (2015), Vol.21, pp.57-65, Doi:10.1007/s11227-014-05769-z

N. Dimokas, D. Katsaros and Y. Manolopoulos, "Energy-efficient distributed clustering in wireless sensor networks," Journal of Parallel and Distributed Computing, Vol.70, 2010, pp.371-383, Doi: 10.1016/j.jpdc.2009.08.007

K. Rana and M. Zaveri, "Synthesized cluster head selection and routing for two tier wireless sensor network," Hindawi Publishing Corporation: Journal of computer network and communications, Vol.2013, Article ID 578241, 11 Pages

M. Yi Wang, J. Ding, W. Chen and W. Guan, "SEARCHA: A Stochastic Election Approach for Heterogeneous Wireless Sensor Networks," IEEE Communications letters, March 2015, Vol.19, No.3, pp.443-446

G. S. Arumugam and T. Ponnuchamy, "EE-LEACH: development of energy-efficient LEACH Protocol for data gathering in WSN, EURASIP Journal on Wireless Communications and Networking (Springer), Springer-2015, pp.1-9

B. Manzoor, N. Javid, O. Rehman, M. Akbar, Q. Nadeem, A. Lhql, and M. Ishfaq, "Q-LEACH: A New Routing Protocol for WSNs," International Workshop on Body Area Sensor Networks (BASNet-2013), SciVerse ScienceDirect, Vol.19, pp. 926-931

D. Zhang, X. Wang, X.T. Zhang and Y. Zhu, "A new clustering routing method based on PECE for WSN," EURASIP Journal on Wireless Communications and Networking, Springer-2015, pp.1-13

N. G. Praveena and H. Prabha, "An efficient multi-level clustering approach for a heterogeneous wireless sensor network using link correlation," EURASIP Journal on Wireless Communications and Networking, Springer-2014, pp.1-10

N. Javid, M. Aslam, A. Ahmad, Z.A. Khan, T.A. Alghamdi, "MCHEC: Multi-hop Centralized Energy Efficient Clustering Routing Protocol for WSNs," IEEE ICC 2014-Communications Software, Services and Multimedia Applications Symposium, pp.1784-89

Y. Li, G. Xiao, G. Singh and R. Gupta, "Algorithms for finding best location of cluster heads for minimizing energy consumption in wireless sensor network," Wireless Netw (2015), Vol.21, pp.1755-1768, Doi:10.1007/s11227-015-0566-0

C. Gherbi, Z. Allouat and M. Benmohmmed, "A Load-Balancing and self-adaptation clustering for lifetime prolonging in large scale wireless sensor networks," The International Conference on Advanced Wireless, Information, and Communication Technologies (AWICT 2015), Science Direct (2015), Vol.73, pp.66-75

J. Liu and Y. Hu, "A Balanced and Energy Efficient Clustering Algorithm, for Heterogeneous Wireless Sensor Networks," Sixth International Conference on Wireless Communication and Signal Processing (WCSP), 2014, pp.1-6

H. Li, J. Liu, "Double Cluster Based Energy Efficient Routing Protocol for Wireless Sensor Network," Springer, Int. J. Wireless Inf. Networks, 2016, Vol. 23, pp.40-48

S. Singh, A. Malik and R. Kumar, "Energy efficient heterogeneous DEEC protocol for enhancing lifetime in WSNs," Engineering Science and Technology an International Journal xxx (2016), pp.1-9

N.R. Wanikhede, D.N. Choudhari, "Novel Energy Efficient Election Based Routing Algorithm for Wireless Sensor Network," IEEE International Conference on Communication, Computing and Networking 2016, Procedia Computer Science (2016), Vol.79, pp.772-780

H.S. Jangwan and A. Negi, "Enhanced Energy-Efficient Balanced Clustering Protocol for WSN," International Journal of Applied Engineering Research (2016), Vol.11, No.5, pp.3619-3623

S. Zairi, B. Zouari, E. Niel and E. Dumitrescu, "Nodes Self-Scheduling approach for maximizing wireless sensor network lifetime based on remaining energy," IET Wireless Sensor Systems, Vol.2, issue.1, 2012, pp.52-62
M. Arioua, Y. el Assari, I. Ezzazi and A. el Qualkadi, “Multi-hop cluster based routing approach for wireless sensor network,” The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016), Procedia Computer Science (2016), Vol. 83, pp. 584-591

A. Sarkar and T. S. Murugan, “Routing Protocols for wireless sensor networks: What the literature says?,” Alexandria Engineering Journal, 2016, pp. 1-11

I. Butun, I. Ra and R. Sankar, “PCAC: Power- and Connectivity-Aware Clustering for Wireless Sensor Networks,” Springer: EURASIP Journal on Wireless Communication and Networking, 2015, Vol. 83, pp. 1-15

A. Azimi, S. Kashani, A. Mohamad and M. Noori, “EEULA: An Energy-Aware Event-Driven Unicast Algorithm for Wireless Sensor Network by Learning Automata,” Research Journal: Advances in Science and Technology (June 2016), Vol. 10, pp. 9-18

S. Chand, S. Singh and B. Kumar, “Heterogeneous HEED Protocol for Wireless Sensor Networks,” Springer: Wireless Pers. Commun, 2014, Vol. 27, pp. 2117-2139

J. Singh, R. N. Gupta, N. Sharma, “Energy Efficient Data Communication Approach In Wireless Sensor Network,” International Journal of Advanced Smart Network Systems (IJASSN), July 2014, Vol. 4, No. 3, PP. 1-12

M. Bsoul, A. Al-Khasawneh, A. E. Abdallah, E. E. Abdallah and I. Obeidat, “An Energy-Efficient Threshold-Based Clustering Protocol for Wireless Sensor Networks,” Wireless Pers. Commun., 2013, Vol. 70, pp. 99–112, DOI 10.1007/s11277-012-0681-8

M. Faheem, M. Z. Abbas, G. Tuna, V. C. Gungor, “EDHRP: Energy efficient event driven hybrid routing protocol for densely deployed wireless sensor networks,” Journal of Network and Computer Applications, 2015, Vol. 58, pp. 309–326

AUTHOR PROFILE

Santosh Vishnu Purkar received the B.E (Electronics engineering) from S.S.V.P.S.College of engineering Dhule (North Maharashtra University) and M.Tech. (Electronics and Telecommunication) from V.J.T.I, Mumbai in Maharashtra (India) in 1998 and 2009, respectively. He is currently pursuing Ph.D. under the guidance of Dr. R.S. Deshpande at M.C.O.E.R C., Nashik Eklaahare, Odha. His research interest includes Wireless Sensor Network, Wireless Communication and Computer Networks.

R.S. Deshpande is currently working as Principal at Shri. Chhatrapati Shivaji Maharaj College of Engineering Nepti, Ahmednagar (M.S). His areas of research are ATM System, Wireless and adhoc networks and signal processing. He contributes for different national and international journals. He received his Ph.D. from Rajiv Gandhi Technological University on the topic “ATM Congestion Control Mechanisms” in the year 2009. He is renowned academician and having an experience of more than 25 years.