A Family of Runge-Kutta Methods with Zero Phase-Lag and Derivatives for the Numerical Solution of the Schrödinger Equation and Related Problems

Z.A. Anastassi*, D.S. Vlachos† and T.E. Simos‡
Laboratory of Computer Sciences, Department of Computer Science and Technology, Faculty of Sciences and Technology, University of Peloponnese, GR-22 100 Tripolis, GREECE

Abstract. We construct a family of two new optimized explicit Runge-Kutta methods with zero phase-lag and derivatives for the numerical solution of the time-independent radial Schrödinger equation and related ordinary differential equations with oscillating solutions. The numerical results show the superiority of the new technique of nullifying both the phase-lag and its derivatives.

Keywords: Phase-Fitting, Derivative, Schrödinger Equation, Runge-Kutta, Explicit methods

PACS: 0.260, 95.10.E

1. Introduction

Much research has been done on the numerical integration of the radial Schrödinger equation:

\[y''(x) = \left(\frac{l(l+1)}{x^2} + V(x) - E \right) y(x) \]

where \(\frac{l(l+1)}{x^2} \) is the centrifugal potential, \(V(x) \) is the potential, \(E \) is the energy and \(W(x) = \frac{l(l+1)}{x^2} + V(x) \) is the effective potential. It is valid that \(\lim_{x \to \infty} V(x) = 0 \) and therefore \(\lim_{x \to \infty} W(x) = 0 \).

Many problems in chemistry, physics, physical chemistry, chemical physics, electronics etc., are expressed by equation (1).

In this paper we will study the case of \(E > 0 \). We divide \([0, \infty]\) into subintervals \([a_i, b_i]\) so that \(W(x) \) is a constant with value \(W_i \). After this the problem (1) can be expressed by the approximation

* e-mail: zackanas@uop.gr
† e-mail: dvlachos@uop.gr
‡ Highly Cited Researcher, Active Member of the European Academy of Sciences and Arts, Address: Dr. T.E. Simos, 26 Menelaou Street, Amfithea - Paleon Faliron, GR-175 64 Athens, GREECE, Tel: 0030 210 94 20 091, e-mail: tsimos.conf@gmail.com, tsimos@mail.ariadne-t.gr

© 2008 Kluwer Academic Publishers. Printed in the Netherlands.
\[y''_i = (\tilde{W} - E) y_i, \] whose solution is
\[y_i(x) = A_i \exp \left(\sqrt{\tilde{W} - E} x \right) + B_i \exp \left(-\sqrt{\tilde{W} - E} x \right), \tag{2} \]
\[A_i, B_i \in \mathbb{R}. \]

There has been an extended bibliography on the development and analysis of numerical methods for the efficient solution of the Schrödinger equation: see for example [1]-[129].

2. Basic theory

2.1. Explicit Runge-Kutta methods

An \(s \)-stage explicit Runge-Kutta method used for the computation of the approximation of \(y_{n+1}(x) \), when \(y_n(x) \) is known, can be expressed by the following relations:

\[
y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i
\]
\[
k_i = h f \left(x_n + c_i h, y_n + h \sum_{j=1}^{i-1} a_{ij} k_j \right), \quad i = 1, \ldots, s
\tag{3}
\]

where in this case \(f (x, y(x)) = (W(x) - E) y(x). \)

Actually to solve the second order ODE (1) using first order numerical method (3), (1) becomes:

\[
z'(x) = (W(x) - E) y(x)
\]
\[
y'(x) = z(x)
\tag{4}
\]

while we use two sets of equations (3): one for \(y_{n+1} \) and one for \(z_{n+1} \). The method shown above can also be presented using the Butcher table below:

\[
\begin{array}{c|ccc}
0 \\
c_2 & a_{21} \\
c_3 & a_{31} & a_{32} \\
\vdots & \vdots & \vdots \\
c_s & a_{s1} & a_{s2} & \ldots & a_{s,s-1} \\
\hline
b_1 & b_2 & \ldots & b_{s-1} & b_s
\end{array}
\tag{5}
\]

Coefficients \(c_2, \ldots, c_s \) must satisfy the equations:
\[c_i = \sum_{j=1}^{i-1} a_{ij}, \quad i = 2, \ldots, s \]
\hspace{20mm} (6)

DEFINITION 1. [3] A Runge-Kutta method has algebraic order \(p \) when the method’s series expansion agrees with the Taylor series expansion in the \(p \) first terms: \(y^{(n)}(x) = y^{(n)}_{\text{app}}(x), \quad n = 1, 2, \ldots, p. \)

A convenient way to obtain a certain algebraic order is to satisfy a number of equations derived from Tree Theory. These equations will be shown during the construction of the new methods.

2.2. Phase-Lag Analysis of Runge-Kutta Methods

The phase-lag analysis of Runge-Kutta methods is based on the test equation

\[y' = I\omega y, \quad \omega \in \mathbb{R} \]
\hspace{20mm} (7)

Application of the Runge-Kutta method described in (3) to the scalar test equation (7) produces the numerical solution:

\[y_{n+1} = a^*_n y_n, \quad a_* = A_s(v^2) + ivB_s(v^2), \]
\hspace{20mm} (8)

where \(v = \omega h \) and \(A_s, B_s \) are polynomials in \(v^2 \) completely defined by Runge-Kutta parameters \(a_{i,j}, b_i \) and \(c_i \), as shown in (5).

DEFINITION 2. [1] In the explicit \(s \)-stage Runge-Kutta method, presented in (5), the quantities

\[t(v) = v - \arg[a_*(v)], \quad a(v) = 1 - |a_*(v)| \]

are respectively called the phase-lag or dispersion error and the dissipative error. If \(t(v) = O(v^{q+1}) \) and \(a(v) = O(v^{r+1}) \) then the method is said to be of dispersive order \(q \) and dissipative order \(r \).

3. Construction of the new trigonometrically fitted Runge-Kutta methods

We consider the explicit Runge-Kutta method with 3 stages and 3rd algebraic order given in table (9).
We will construct two new optimized methods.

3.1. First optimized method with zero phase-lag

In order to develop the new optimized method, we set free \(b_3 \), while all other coefficients are borrowed from the classical method. We want the phase-lag of the method to be null, so we satisfy the equation \(PL = 0 \), while solving for \(b_3 \), where

\[
PL = \frac{1}{6} \left(6 + (-2 - 6 b_3) v^2\right) \tan(v) + v^3 b_3 + \frac{1}{6} (-5 - 6 b_3) v
\]

So \(b_3 \) becomes

\[
b_3 = -\frac{6 \tan(v) + 2 \tan(v) v^2 + 5 v}{6v (v \tan(v) - v^2 + 1)}
\]

and its Taylor series expansion is

\[
b_3 = \frac{1}{6} - \frac{1}{30} v^4 - \frac{4}{315} v^6 + \frac{17}{2835} v^8 + \frac{206}{31185} v^{10} + \frac{7951}{12162150} v^{12} - \ldots
\]

where \(v = \omega h \), \(\omega \) is a real number and indicates the dominant frequency of the problem and \(h \) is the step-length of integration.

3.2. Second optimized method with zero phase-lag and derivative

As for the development of the second optimized method, we set free \(b_2 \) and \(b_3 \), while all other coefficients are borrowed from the classical method. We want the phase-lag and its first derivative of the method to be null, so we satisfy the equations \(\{PL = 0, PL' = 0\} \), while solving for \(b_2 \) and \(b_3 \), where

\[
PL = \frac{1}{6} \left(6 + (-3 b_2 - 6 b_3) v^2\right) \tan(v) + v (-1/6 - b_2 - b_3 + b_3 v^2)
\]

\[
PL' = -v \tan(v) b_2 - 2 v \tan(v) b_3 + 5/6 + (\tan(v))^2 - 1/2 v^2 b_2 -1/2 v^2 b_2 (\tan(v))^2 + 2 b_3 v^2 - b_3 v^2 (\tan(v))^2 - b_2 - b_3
\]

Then we have

\[
\begin{array}{c|c|c|c}
1 & 1/2 & 1/2 \\
1 & -1 & 2 \\
1/6 & 2/3 & 1/6
\end{array}
\]
Runge-Kutta Methods with Zero Phase-Lag and First Derivative

\[b_2 = \frac{1}{6} \frac{12v + v^3 + \tan(v)e^2 - 12 \tan(v) + v^3(\tan(v))^2}{v^2(-3v + \tan(v) + v(\tan(v))^2 - \tan(v)e^2 + v(\tan(v))^2)} \]
\[b_3 = \frac{1}{3} \frac{5v^3(\tan(v))^2 + 7v^3 - 10 \tan(v)e^2 + 6v(\tan(v))^2 - 6v + 6 \tan(v)}{v^2(-3v + \tan(v) + v(\tan(v))^2 - \tan(v)e^2 + v(\tan(v))^2)} \]
(11)

The Taylor series expansion of the coefficients are given below:

\[b_2 = \frac{2}{3} - \frac{2}{15} v^2 - \frac{52}{315} v^4 - \frac{3726}{14175} v^6 - \frac{173788}{467775} v^8 - \frac{354768808}{638512875} v^{10} - \ldots \]
\[b_3 = \frac{1}{6} + \frac{2}{15} v^2 + \frac{25}{126} v^4 + \frac{4201}{14175} v^6 + \frac{207349}{467775} v^8 + \frac{423287713}{638512875} v^{10} + \ldots \]
(12)

where \(v = \omega h \), \(\omega \) is a real number and indicates the dominant frequency of the problem and \(h \) is the step-length of integration.

4. Algebraic order of the new methods

The following 4 equations must be satisfied so that the new methods maintain the third algebraic order of the corresponding classical method (9). The number of stages is symbolized by \(s \), where \(s = 4 \). Then we are presenting the Taylor series expansions of the remainders of these equations, that is the difference of the right part minus the left part.

1st Alg. Order (1 equation)
\[\sum_{i=1}^{s} b_i = 1 \]

3rd Alg. Order (4 equations)
\[\sum_{i=1}^{s} b_ic_i^2 = \frac{1}{3} \]

2nd Alg. Order (2 equations)
\[\sum_{i,j=1}^{s} b_ia_{ij}c_j = \frac{1}{6} \]

\[\sum_{i=1}^{s} b_ic_i = \frac{1}{2} \]
(13)

4.1. Equations remainders for the first method

We are presenting \(Rem \) which is the remainder for all four equations for the first method:

\[Rem = -\frac{1}{30} v^4 - \frac{4}{315} v^6 + \frac{17}{2835} v^8 + \frac{206}{31185} v^{10} + \ldots \]
(14)

4.2. Equations remainders for the second method

The four remainders of the equations for the second method are:
\[Rem_1 = \frac{1}{30} v^4 + \frac{1}{21} v^6 + \frac{113}{1575} v^8 + \frac{7171}{66825} v^{10} + \ldots \]
\[Rem_2 = \frac{1}{15} v^2 + \frac{73}{630} v^4 + \frac{2438}{14175} v^6 + \frac{24091}{93555} v^8 + \frac{2459033}{638512875} v^{10} + \ldots \]
\[Rem_3 = \frac{1}{10} v^2 + \frac{11}{70} v^4 + \frac{2213}{9450} v^6 + \frac{54634}{155925} v^8 + \frac{371772}{638512875} v^{10} + \ldots \]
\[Rem_4 = \frac{2}{15} v^2 + \frac{25}{126} v^4 + \frac{4201}{14175} v^6 + \frac{207349}{65832875} v^8 + \frac{423287713}{638512875} v^{10} + \ldots \]

(15)

We see that the two optimized methods retain the third algebraic order, since the constant term of all the remainders is zero.

5. Numerical results

5.1. The inverse resonance problem

The efficiency of the two new constructed methods will be measured through the integration of problem (1) with \(l = 0 \) at the interval \([0, 15]\) using the well known Woods-Saxon potential

\[V(x) = \frac{u_0}{1 + q} + \frac{u_1 q}{(1 + q)^2}, \quad q = \exp \left(\frac{x - x_0}{a} \right), \quad \text{where} \]
\[u_0 = -50, \quad a = 0.6, \quad x_0 = 7 \quad \text{and} \quad u_1 = -\frac{u_0}{a} \]

and with boundary condition \(y(0) = 0 \).

The potential \(V(x) \) decays more quickly than \(\frac{l(l+1)}{x^2} \), so for large \(x \) (asymptotic region) the Schrödinger equation (1) becomes

\[y''(x) = \left(\frac{l(l+1)}{x^2} - E \right) y(x) \]

(17)

The last equation has two linearly independent solutions \(k x j_l(k x) \) and \(k x n_l(k x) \), where \(j_l \) and \(n_l \) are the spherical Bessel and Neumann functions. When \(x \to \infty \) the solution takes the asymptotic form

\[y(x) \approx A k x j_l(k x) - B k x n_l(k x) \]
\[\approx D [\sin(k x - \pi l/2) + \tan(\delta_l) \cos(k x - \pi l/2)], \]

(18)

where \(\delta_l \) is called scattering phase shift and it is given by the following expression:

\[\tan(\delta_l) = \frac{y(x_i) S(x_{i+1}) - y(x_{i+1}) S(x_i)}{y(x_{i+1}) C(x_i) - y(x_i) C(x_{i+1})}, \]

(19)
where $S(x) = k x j_l(k x)$, $C(x) = k x n_l(k x)$ and $x_i < x_{i+1}$ and both belong to the asymptotic region. Given the energy we approximate the phase shift, the accurate value of which is $\pi/2$ for the above problem.

We will use three different values for the energy: i) 989.701916, ii) 341.495874 and iii) 163.215341. As for the frequency ω we will use the suggestion of Ixaru and Rizea [2]:

$$\omega = \begin{cases} \sqrt{E - 50} & x \in [0, 6.5] \\ \sqrt{E} & x \in [6.5, 15] \end{cases} \quad (20)$$

5.2. **Nonlinear Problem**

\[y'' = -100y + \sin(y), \quad \text{with} \quad y(0) = 0, \quad y'(0) = 1, \quad t \in [0, 20 \pi], \quad y(20\pi) = 3.92823991 \cdot 10^{-4} \quad \text{and} \quad \omega = 10 \quad \text{as frequency of this problem.} \]

5.3. **Comparison**

We present the accuracy of the tested methods expressed by the $-\log_{10}(\text{error at the end point})$ when comparing the phase shift to the actual value $\pi/2$ versus the $\log_{10}(\text{total function evaluations})$. The function evaluations per step are equal to the number of stages of the method multiplied by two that is the dimension of the vector of the functions integrated for the Schrödinger ($y(x)$ and $z(x)$). In Figure 1 we use $E = 989.701916$, in Figure 2 $E = 341.495874$ and in Figure 3 $E = 163.215341$.

6. **Conclusions**

We compare the two optimized methods and the corresponding classical explicit Runge-Kutta method for the integration of the Schrödinger equation and the Nonlinear problem. We see that the second method with the phase-lag and its first derivative nullified is the most efficient in all cases, followed in terms of efficiency by the optimized method with zero phase-lag and then by the corresponding classical method.

References

1. Simos T.E., Chemical Modelling - Applications and Theory Vol.1, Specialist Periodical Reports, 2000, The Royal Society of Chemistry, Cambridge, 32-140
2. Ixaru L. Gr., Rizea M., A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies, Comp. Phys. Comm. 19, 23-27 (1980)
Figure 1. Efficiency for the Schrödinger equation using E = 989.701916

3. J.C. Butcher, Numerical methods for ordinary differential equations, Wiley (2003)
4. L.Gr. Ixaru and M. Micu, Topics in Theoretical Physics. Central Institute of Physics, Bucharest, 1978.
5. L.D. Landau and F.M. Lifshitz: Quantum Mechanics. Pergamon, New York, 1965.
6. I. Prigogine, Stuart Rice (Eds): Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics, John Wiley & Sons, 1997.
7. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, Toronto, 1950.
8. T.E. Simos, Atomic Structure Computations in Chemical Modelling: Applications and Theory (Editor: A. Hinchliffe, UMIST), The Royal Society of Chemistry 38-142(2000).
9. T.E. Simos, Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, Chemical Modelling: Application and Theory, The Royal Society of Chemistry, 2(2002),170-270.
10. T.E. Simos and P.S. Williams, On finite difference methods for the solution of the Schrödinger equation, Computers & Chemistry 23 513-554(1999).
11. T.E. Simos: Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek).
12. A. Konguetsof and T.E. Simos, On the Construction of exponentially-fitted methods for the numerical solution of the Schrödinger Equation, Journal of Computational Methods in Sciences and Engineering 1 143-165(2001).
13. A.D. Raptis and A.C. Allison: Exponential - fitting methods for the numerical solution of the Schrödinger equation, Computer Physics Communications, 14 1-5(1978).
14. A.D. Raptis, Exponential multistep methods for ordinary differential equations, Bull. Greek Math. Soc. 25 113-126(1984).
Runge-Kutta Methods with Zero Phase-Lag and First Derivative

Figure 2. Efficiency for the Schrödinger equation using $E = 341.495874$

15. L.Gr. Ixaru, Numerical Methods for Differential Equations and Applications, Reidel, Dordrecht - Boston - Lancaster, 1984.
16. T. E. Simos, P. S. Williams: A New Runge-Kutta-Nystrom Method with Phase-Lag of Order Infinity for the Numerical Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem. 45 123-137(2002).
17. T. E. Simos, Multiderivative Methods for the Numerical Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem. 45 7-26(2004).
18. A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control, Computer Physics Communications, 28 427-431(1983)
19. A.D. Raptis, On the numerical solution of the Schrodinger equation, Computer Physics Communications, 24 1-4(1981)
20. Zacharoula Kalogiratou and T.E. Simos, A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation, Applied Mathematics and Computation, 112 99-112(2000).
21. J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial values problems, J. Inst. Math. Appl. 18 189-202(1976).
22. A.D. Raptis and T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem, BIT, 31 160-168(1991).
23. Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, 1962.
24. M.M. Chawla, Uncoditionally stable Noumerov-type methods for second order differential equations, BIT, 23 541-542(1983).
25. M. M. Chawla and P. S. Rao, A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, Journal of Computational and Applied Mathematics 11(3) 277-281(1984)
Figure 3. Efficiency for the Schrödinger equation using $E = 163.215341$

26. Liviu Gr. Ixaru and Guido Vanden Berghe, Exponential Fitting, Series on Mathematics and its Applications, Vol. 568, Kluwer Academic Publisher, The Netherlands, 2004.

27. L. Gr. Ixaru and M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation, *Computer Physics Communications*, **38**(3) 329-337 (1985)

28. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation, *J. Math. Chem* **41**(1) 79-100 (2007)

29. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation, *J. Math. Chem* **40**(3) 257-267 (2006)

30. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods, *J. Math. Chem* **40**(3) 269-293 (2006)

31. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger equation, *J. Math. Chem* **40**(3) 305-318 (2006)

32. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation *J. Math. Chem* **37**(3) 263-270 (2005)

33. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods *J. Math. Chem* **37**(3) 271-279 (2005)

34. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation *J. Math. Chem* **37**(3) 281-293 (2005)
Runge-Kutta Methods with Zero Phase-Lag and First Derivative

35. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation, *J. Math. Chem* **37** (3) 295-316 (2005)
36. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation, *J. Math. Chem* **37** (3) 317-331 (2005)
37. T.E. Simos, Exponentially fitted multiderivative methods for the numerical solution of the Schrödinger equation, *J. Math. Chem* **36** (1) 13-27 (2004)
38. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation, *J. Math. Chem* **35** (1) 55-63 (2004)
39. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems *J. Math. Chem* **34** (1-2) 39-58 JUL 2003
40. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation, *J. Math. Chem* **34** (1-2) 83-94 (2003)
41. J. Vigo-Aguiar J, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation, *J. Math. Chem* **32** (3) 257-270 (2002)
42. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation, *J. Math. Chem* **31** (4) 371-404 (2002)
43. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation *J. Math. Chem* **31** (2) 135-144 (2002)
44. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nystrom methods for the numerical solution of the
Schrödinger equation and related problems a method of 8th algebraic order, J. Math. Chem 31 (2) 211-232

45. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation, J. Math. Chem 30 (1) 121-131 (2001)

46. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method, J. Math. Chem 29 (4) 281-291 (2001)

47. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results, J. Math. Chem 29 (4) 293-305 (2001)

48. J. Vigo-Aguiar, T.E. Simos, A family of P-stable eighth algebraic order methods with exponential fitting facilities, J. Math. Chem 29 (3) 177-189 (2001)

49. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation J. Math. Chem 27 (4) 343-356 (2000)

50. G. Avdelas, T.E. Simos, Embedded eighth order methods for the numerical solution of the Schrödinger equation, J. Math. Chem 26 (4) 327-341 1999.

51. T.E. Simos, A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation, J. Math. Chem 25 (1) 65-84 (1999)

52. T.E. Simos, Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations, J. Math. Chem 24 (1-3) 23-37 (1998)
53. T.E. Simos, Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem, *J. Math. Chem* 21 (4) 359-372 (1997)

54. P. Amodio, I. Gladwell and G. Romanazzi, Numerical Solution of General Bordered ABD Linear Systems by Cyclic Reduction, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 5-12 (2006)

55. S. D. Capper, J. R. Cash and D. R. Moore, Lobatto-Obrechko ff Formulae for 2nd Order Two-Point Boundary Value Problems, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 13-25 (2006)

56. S. D. Capper and D. R. Moore, On High Order MIRK Schemes and Hermite-Birkhoff Interpolants, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 27-47 (2006)

57. J. R. Cash, N. Sumarti, T. J. Abdulla and I. Vieira, The Derivation of Interpolants for Nonlinear Two-Point Boundary Value Problems, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 49-58 (2006)

58. J. R. Cash and S. Girdlestone, Variable Step Runge-Kutta-Nystrom Methods for the Numerical Solution of Reversible Systems, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 59-80 (2006)

59. Jeff R. Cash and Francesca Mazzia, Hybrid Mesh Selection Algorithms Based on Conditioning for Two-Point Boundary Value Problems, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 81-90 (2006)

60. Felice Iavernaro, Francesca Mazzia and Donato Trigiante, Stability and Conditioning in Numerical Analysis, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 91-112 (2006)

61. Felice Iavernaro and Donato Trigiante, Discrete Conservative Vector Fields Induced by the Trapezoidal Method, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 113-130 (2006)

62. Francesca Mazzia, Alessandra Sestini and Donato Trigiante, BS Linear Multistep Methods on Non-uniform Meshes, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(1) 131-144 (2006)

63. L.F. Shampine, P.H. Muir, H. Xu, A User-Friendly Fortran BVP Solver, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(2) 201-217 (2006)

64. G. Vanden Berghe and M. Van Daele, Exponentially- fitted Strmver/Verlet methods, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 1(3) 241-255 (2006)

65. L. Aceto, R. Pandolfi, D. Trigiante, Stability Analysis of Linear Multistep Methods via Polynomial Type Variation, *JNAIAM J. Numer. Anal. Indust. Appl. Math* 2(1-2) 1-9 (2007)

66. G. Psihoyios, A Block Implicit Advanced Step-point (BIAS) Algorithm for Stiff Differential Systems, *Computing Letters* 2(1-2) 51-58(2006)

67. W.H. Enright, On the use of 'arc length' and 'defect' for mesh selection for differential equations, *Computing Letters* 1(2) 47-52(2005)

68. T.E. Simos, P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schrödinger Equation, *Computing Letter* 1(1) 37-45(2005).

69. T.E. Simos, Stabilization of a Four-Step Exponentially-Fitted Method and its Application to the Schrödinger Equation, *International Journal of Modern Physics C* 18(3) 315-328(2007).

70. Zhongcheng Wang, P-stable linear symmetric multistep methods for periodic initial-value problems, *Computer Physics Communications* 171 162174(2005)
71. T.E. Simos, A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution, *Computers and Mathematics with Applications* **25** 95-101(1993).
72. T.E. Simos, Runge-Kutta interpolants with minimal phase-lag, *Computers and Mathematics with Applications* **26** 43-49(1993).
73. T.E. Simos, Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems, *Computers and Mathematics with Applications* **26** 7-15(1993).
74. T.E. Simos and G.V. Mitsou, A family of four-step exponential fitted methods for the numerical integration of the radial Schrödinger equation, *Computers and Mathematics with Applications* **28** 41-50(1994).
75. T.E. Simos and G. Mousadis, A two-step method for the numerical solution of the radial Schrödinger equation, *Computers and Mathematics with Applications* **29** 31-37(1995).
76. G. Avdelas and T.E. Simos, Block Runge-Kutta methods for periodic initial-value problems, *Computers and Mathematics with Applications* **31** 69-83(1996).
77. G. Avdelas and T.E. Simos, Embedded methods for the numerical solution of the Schrödinger equation, *Computers and Mathematics with Applications* **31** 85-102(1996).
78. G. Papakaliatakis and T.E. Simos, A new method for the numerical solution of fourth order BVPs with oscillating solutions, *Computers and Mathematics with Applications* **32** 1-6(1996).
79. T.E. Simos, An extended Numerov-type method for the numerical solution of the Schrödinger equation, *Computers and Mathematics with Applications* **33** 67-78(1997).
80. T.E. Simos, A new hybrid imbedded variable-step procedure for the numerical integration of the Schrödinger equation, *Computers and Mathematics with Applications* **36** 51-63(1998).
81. T.E. Simos, Bessel and Neumann Fitted Methods for the Numerical Solution of the Schrödinger equation, *Computers & Mathematics with Applications* **42** 833-847(2001).
82. A. Konguetsof and T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems, *Computers and Mathematics with Applications* **45** 547-554(2003).
83. Z.A. Anastassi and T.E. Simos, An optimized Runge-Kutta method for the solution of orbital problems, *Journal of Computational and Applied Mathematics* **175**(1) 1-9(2005)
84. G. Psihoyios and T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions, *Journal of Computational and Applied Mathematics* **175**(1) 137-147(2005)
85. D.P. Sakas and T.E. Simos, Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation, Journal of Computational and Applied Mathematics **175**(1) 161-172(2005)
86. K. Tselios and T.E. Simos, Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics, *Journal of Computational and Applied Mathematics* **175**(1) 173-181(2005)
87. Z. Kalogiratou and T.E. Simos, Newton-Cotes formulae for long-time integration, *Journal of Computational and Applied Mathematics* **158**(1) 75-82(2003)
88. Z. Kalogiratou, T. Monovasilis and T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation, *Journal of Computational and Applied Mathematics* **158**(1) 83-92(2003)

89. A. Konguetsof and T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation, *Journal of Computational and Applied Mathematics* **158**(1) 93-106(2003)

90. G. Psihoyios and T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions, *Journal of Computational and Applied Mathematics* **158**(1) 135-144(2003)

91. Ch. Tsitouras and T.E. Simos, Optimized Runge-Kutta pairs for problems with oscillating solutions, *Journal of Computational and Applied Mathematics* **147**(2) 397-409(2002)

92. T.E. Simos, An exponentially fitted eighth-order method for the numerical solution of the Schrödinger equation, *Journal of Computational and Applied Mathematics* **108**(1-2) 177-194(1999)

93. T.E. Simos, An accurate finite difference method for the numerical solution of the Schrödinger equation, *Journal of Computational and Applied Mathematics* **91**(1) 47-61(1998)

94. R.M. Thomas and T.E. Simos, A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation, *Journal of Computational and Applied Mathematics* **87**(2) 215-226(1997)

95. Z.A. Anastassi and T.E. Simos: Special Optimized Runge-Kutta methods for IVPs with Oscillating Solutions, International Journal of Modern Physics C, 15, 1-15 (2004)

96. Z.A. Anastassi and T.E. Simos: A Dispersive-Fitted and Dissipative-Fitted Explicit Runge-Kutta method for the Numerical Solution of Orbital Problems, New Astronomy, 10, 31-37 (2004)

97. Z.A. Anastassi and T.E. Simos: A Trigonometrically-Fitted Runge-Kutta Method for the Numerical Solution of Orbital Problems, New Astronomy, 10, 301-309 (2005)

98. T.V. Triantafyllidis, Z.A. Anastassi and T.E. Simos: Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3 (2008)

99. Z.A. Anastassi and T.E. Simos, Trigonometrically Fitted Fifth Order Runge-Kutta Methods for the Numerical Solution of the Schrödinger Equation, Mathematical and Computer Modelling, 42 (7-8), 877-886 (2005)

100. Z.A. Anastassi and T.E. Simos: New Trigonometrically Fitted Six-Step Symmetric Methods for the Efficient Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3 (2008)

101. G.A. Panopoulos, Z.A. Anastassi and T.E. Simos: Two New Optimized Eight-Step Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems, MATCH Commun. Math. Comput. Chem., 60, 3 (2008)

102. Z.A. Anastassi and T.E. Simos: A Six-Step P-stable Trigonometrically-Fitted Method for the Numerical Integration of the Radial Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3 (2008)

103. Z.A. Anastassi and T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution, *Journal of Mathematical Chemistry*, Article in Press, Corrected Proof
104. T.E. Simos and P.S. Williams, A finite-difference method for the numerical solution of the Schrödinger equation, *Journal of Computational and Applied Mathematics* **79**(2) 189-205(1997)

105. G. Avdelas and T.E. Simos, A generator of high-order embedded P-stable methods for the numerical solution of the Schrödinger equation, *Journal of Computational and Applied Mathematics* **72**(2) 345-358(1996)

106. R.M. Thomas, T.E. Simos and G.V. Mitsou, A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation, *Journal of Computational and Applied Mathematics* **67**(2) 255-270(1996)

107. T.E. Simos, A Family of 4-Step Exponentially Fitted Predictor-Corrector Methods for the Numerical-Integration of The Schrödinger-Equation, *Journal of Computational and Applied Mathematics* **58**(3) 337-344(1995)

108. T.E. Simos, An Explicit 4-Step Phase-Fitted Method for the Numerical-Integration of 2nd-order Initial-Value Problems, *Journal of Computational and Applied Mathematics* **55**(2) 125-133(1994)

109. T.E. Simos, E. Dimas and A.B. Sideridis, A Runge-Kutta-Nyström Method for the Numerical-Integration of Special 2nd-order Periodic Initial-Value Problems, *Journal of Computational and Applied Mathematics* **51**(3) 317-326(1994)

110. A.B. Sideridis and T.E. Simos, A Low-Order Embedded Runge-Kutta Method for Periodic Initial-Value Problems, *Journal of Computational and Applied Mathematics* **44**(2) 235-244(1992)

111. T.E. Simos and A.D. Raptis, A 4th-order Bessel Fitting Method for the Numerical-Solution of the Schrödinger-Equation, *Journal of Computational and Applied Mathematics* **43**(3) 313-322(1992)

112. T.E. Simos, Explicit 2-Step Methods with Minimal Phase-Lag for the Numerical-Integration of Special 2nd-order Initial-Value Problems and their Application to the One-Dimensional Schrödinger-Equation, *Journal of Computational and Applied Mathematics* **39**(1) 89-94(1992)

113. T.E. Simos, A 4-Step Method for the Numerical-Solution of the Schrödinger-Equation, *Journal of Computational and Applied Mathematics* **30**(3) 251-255(1990)

114. C.D. Papageorgiou, A.D. Raptis and T.E. Simos, A Method for Computing Phase-Shifts for Scattering, *Journal of Computational and Applied Mathematics* **29**(1) 61-64(1990)

115. A.D. Raptis, Two-Step Methods for the Numerical Solution of the Schrödinger Equation, *Computing* **28** 373-378(1982).

116. T.E. Simos. A new Numerov-type method for computing eigenvalues and resonances of the radial Schrödinger equation, *International Journal of Modern Physics C-Physics and Computers*, **7**(1) 33-41(1996)

117. T.E. Simos, Predictor Corrector Phase-Fitted Methods for $Y''=F(X,Y)$ and an Application to the Schrödinger-Equation, *International Journal of Quantum Chemistry*, **53**(5) 473-483(1995)

118. T.E. Simos, Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems, *Intern. J. Comput. Math.* **46** 77-85(1992).

119. R. M. Corless, A. Shakoori, D.A. Aruliah, L. Gonzalez-Vega, Barycentric Hermite Interpolants for Event Location in Initial-Value Problems, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 1-16 (2008)
120. M. Dewar, Embedding a General-Purpose Numerical Library in an Interactive Environment, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 17-26 (2008)
121. J. Kierzenka and L.F. Shampine, A BVP Solver that Controls Residual and Error, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 27-41 (2008)
122. R. Knapp, A Method of Lines Framework in Mathematica, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 43-59 (2008)
123. N. S. Nedialkov and J. D. Pryce, Solving Differential Algebraic Equations by Taylor Series (III): the DAETS Code, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 61-80 (2008)
124. R. L. Lipsman, J. E. Osborn, and J. M. Rosenberg, The SCHOL Project at the University of Maryland: Using Mathematical Software in the Teaching of Sophomore Differential Equations, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 81-103 (2008)
125. M. Sofroniou and G. Spaletta, Extrapolation Methods in Mathematica, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 105-121 (2008)
126. R. J. Spiteri and Thian-Peng Ter, pythNon: A PSE for the Numerical Solution of Nonlinear Algebraic Equations, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 123-137 (2008)
127. S.P. Corwin, S. Thompson and S.M. White, Solving ODEs and DDEs with Impulses, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 139-149 (2008)
128. W. Weckesser, VFGEN: A Code Generation Tool, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 151-165 (2008)
129. A. Wittkopf, Automatic Code Generation and Optimization in Maple, *JNAIAM J. Numer. Anal. Indust. Appl. Math*, 3, 167-180 (2008)
