SIMPLE RESTRICTED MODULES FOR NEVEU-SCHWARZ ALGEBRA

DONG LIU, YUFENG PEI, AND LIMENG XIA

Abstract. In this paper, we give a construction of simple modules generalizing and including both highest weight and Whittaker modules for the Neveu-Schwarz algebra, in the spirit of the work of Mazorchuk and Zhao on simple Virasoro modules. We establish a 1-1 correspondence between simple restricted Neveu-Schwarz modules and simple modules of a family of finite dimensional solvable Lie superalgebras associated to the Neveu-Schwarz algebra. Moreover, for two of these superalgebras all simple modules are classified.

1. Introduction

It is well known that the Virasoro algebra plays significant roles in diverse areas of mathematics and physics. An important class of modules over the Virasoro algebra is the class of weight modules have been the main focus (cf. [17] and references therein). All simple weight modules with finite dimensional weight spaces were classified by Mathieu in [27]. Whittaker modules are non-weight modules defined over finite dimensional simple Lie algebras, first appeared in [3, 21]. These modules have been studied subsequently in a variety of different settings (cf. [4, 5, 6, 11, 25]). Whittaker modules for the Virasoro algebra were studied in [13, 14, 32, 36]. Recently, Mazorchuk and Zhao [30] proposed a uniform construction of simple Virasoro modules generalizing and including both highest weight and various versions of Whittaker modules. They also characterize simple Virasoro modules that are locally finite over a positive part. Motivated by [30], new simple modules for the Virasoro algebra and its extensions have been studied [8, 9, 15, 26, 28, 37].

Superconformal algebras have a long history in mathematical physics. The simplest examples, after the Virasoro algebra itself (corresponding
to $N = 0$) are the $N = 1$ superconformal algebras: the Neveu-Schwarz algebra and the Ramond algebra. These infinite-dimensional Lie superalgebras are also called the super-Virasoro algebras as they can be regarded as natural super generalizations of the Virasoro algebra. Weight modules for the super-Virasoro algebras have been extensively investigated (cf. [12, 15, 16, 19, 31, 34]). The authors [24] introduced Whittaker type modules over the super-Virasoro algebras and obtain necessary and sufficient conditions for irreducibility of these modules. The aforementioned results demonstrate that the Whittaker modules satisfy some properties that their non-super analogues do. However, there are several differences and some features that are new in the super case [4, 33]. This leads to an additional challenge for generalizing Lie algebra results in the Lie superalgebra setting.

It is known that both simple highest weight modules and simple Whittaker modules for the Neveu-Schwarz algebra are restricted Neveu-Schwarz modules. In view of this, naturally one would want to find a unified characterization for these simple modules. This is part of our motivation for this paper. Whittaker modules have been studied in the framework of vertex operator algebra theory in [1, 2, 18, 35]. Irreducibility of certain weak modules for cyclic orbifold vertex algebras have been established. It is well known (cf. [20, 22]) that there is an isomorphism between the category of restricted Neveu-Schwarz modules and the category of weak modules for the Neveu-Schwarz vertex operator superalgebras.

In the present paper, we focus on classification problem for simple restricted Neveu-Schwarz modules. We give a construction of simple modules generalizing and including both highest weight and Whittaker modules for the Neveu-Schwarz algebra, in the spirit of the work of Mazorchuk and Zhao on simple Virasoro modules. We establish a 1-1 correspondence between simple restricted Neveu-Schwarz modules and simple modules of a family of finite dimensional solvable Lie superalgebras associated to the Neveu-Schwarz algebra. Furthermore we a classify all simple modules for the first and the second members in this family. The classification problem for simple modules of the other non-trivial members is still open as far as we know. Note that any restricted Ramond module is a weak σ-twisted module for the Neveu-Schwarz vertex operator superalgebras, where σ is the canonical automorphism (cf.
Classification problem for simple restricted Ramond modules can be studied similarly.

This paper is organized as follows: In Section 2, we recall some notations, and collect the known facts about the Neveu-Schwarz algebra. In Section 3, we construct simple Neveu-Schwarz modules for generalizing and including both highest weight and Whittaker modules. In Section 4, we provide a characterization of simple restricted modules for Neveu-Schwarz algebra, which reduces the problem of classification of simple restricted Neveu-Schwarz modules to classification of simple modules over a family of finite dimensional solvable Lie superalgebras. In Section 5, we discuss classification of simple modules over a family of finite dimensional solvable Lie superalgebras. We recover the Whittaker modules for the Neveu-Schwarz algebra and produce new simple Neveu-Schwarz modules.

Throughout the paper, we shall use \(\mathbb{C}, \mathbb{N}, \mathbb{Z}_+ \) and \(\mathbb{Z} \) to denote the sets of complex numbers, non-negative integers, positive integers and integers respectively.

2. Preliminaries

In this section, we recall some definitions and results for later use.

2.1. Let \(V = V_0 \oplus V_1 \) be any \(\mathbb{Z}_2 \)-graded vector space. Then any element \(u \in V_0 \) (resp. \(u \in V_1 \)) is said to be even (resp. odd). We define \(|u| = 0 \) if \(u \) is even and \(|u| = 1 \) if \(u \) is odd. Elements in \(V_0 \) or \(V_1 \) are called homogeneous. Whenever \(|u| \) is written, it is understood that \(u \) is homogeneous.

Let \(L = L_0 \oplus L_1 \) be a Lie superalgebra, an \(L \)-module is a \(\mathbb{Z}_2 \)-graded vector space \(V = V_0 \oplus V_1 \) together with a bilinear map, \(L \times V \rightarrow V \), denoted \((x, v) \mapsto xv \) such that

\[
x(yv) - (-1)^{|x||y|} y(xv) = [x, y]v
\]

for all \(x, y \in L, v \in V \), and \(L_i V_j \subseteq V_{i+j} \) for all \(i, j \in \mathbb{Z}_2 \). It is clear that there is a parity change functor \(\Pi \) on the category of \(L \)-modules, which interchanges the \(\mathbb{Z}_2 \)-grading of a module. We use \(U(L) \) to denote the universal enveloping algebra.
Definition 2.1. Let L be a Lie superalgebra and V be an L-module and $x \in L$. If for any $v \in V$ there exists $n \in \mathbb{Z}_+$ such that $x^n v = 0$, then we call that the action of x on V is locally nilpotent. Similarly, the action of L on V is locally nilpotent if for any $v \in V$ there exists $n \in \mathbb{Z}_+$ such that $L^n x = 0$.

Definition 2.2. Let L be a Lie superalgebra and V be an L-module and $x \in L$. If for any $v \in V$ we have $\dim(\sum_{n \in \mathbb{Z}_+} C x^n v) < +\infty$, then we call that the action of x on V is locally finite. Similarly, the action of L on V is locally finite if for any $v \in V$ we have $\dim(\sum_{n \in \mathbb{Z}_+} L^n v) < +\infty$.

Remark 2.3. The action of x on V is locally nilpotent implies that the action of x on V is locally finite. If L is a finitely generated Lie superalgebra, then the action of L on V is locally nilpotent implies that the action of L on V is locally finite.

2.2. Neveu-Schwarz algebra.

Definition 2.4. The Neveu-Schwarz algebra is the Lie superalgebra $g = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_n \oplus \bigoplus_{r \in \mathbb{Z}} \mathbb{C} G_r \oplus \mathbb{C} c$ which satisfies the following commutation relations:

$$[L_m, L_n] = (m-n)L_{m+n} + \delta_{m-n} \frac{m^3 - m}{12} c,$$

$$[L_m, G_r] = \left(\frac{m}{2} - r\right) G_{m+r},$$

$$[G_r, G_s] = 2L_{r+s} + \frac{1}{3} \delta_{r+s,0} \left(r^2 - \frac{1}{4}\right) c,$$

$$[g, c] = 0,$$

for all $m, n \in \mathbb{Z}$, $r, s \in \mathbb{Z} + \frac{1}{2}$, where

$|L_n| = \bar{0}$, $|G_r| = \bar{1}$, $|c| = \bar{0}$.

By definition, we have the following decompositions:

$g = g_{\bar{0}} \oplus g_{\bar{1}},$

where

$$g_{\bar{0}} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_n \oplus \mathbb{C} c,$$

$$g_{\bar{1}} = \bigoplus_{r \in \mathbb{Z} + \frac{1}{2}} \mathbb{C} G_r.$$

It is clear that the even part $g_{\bar{0}}$ is isomorphic to the well-known Virasoro algebra Vir. The Neveu-Schwarz algebra g has a $\frac{1}{2}\mathbb{Z}$-grading by the
eigenvalues of the adjoint action of L_0. Then g possesses the following triangular decomposition:

$$g = g_+ \oplus g_0 \oplus g_-,$$

where

$$g_\pm = \bigoplus_{n \in \mathbb{Z}_+} \mathbb{C}L_{\pm n} \oplus \bigoplus_{r \in \mathbb{N} + \frac{1}{2}} \mathbb{C}G_{\pm r}, \quad g_0 = \mathbb{C}L_0 \oplus \mathbb{C}c.$$

Definition 2.5. If W is a g-module on which c acts as a complex scalar ℓ, we say that W is of central charge ℓ.

Definition 2.6. A g-module W is called restricted in the sense that for every $w \in W$,

$$L_i w = G_{i-\frac{1}{2}} w = 0$$

for i sufficiently large.

Let

$$b = \bigoplus_{i \geq 0} \mathbb{C}L_i \oplus \bigoplus_{i \geq 1} \mathbb{C}G_{i-\frac{1}{2}}.$$

It is clear that b is a subalgebra of g.

Given a b-module V and $\ell \in \mathbb{C}$, consider the corresponding induced module

$$\text{Ind}(V) := U(g) \otimes_{U(b)} V$$

and denote

$$\text{Ind}_\ell(V) = \text{Ind}(V)/(c - \ell)\text{Ind}(V).$$

Denote by \mathbb{M} the set of all infinite vectors of the form $i := (\ldots, i_2, i_1)$ with entries in \mathbb{N}, satisfying the condition that the number of nonzero entries is finite, and $\mathbb{M}_1 := \{i \in \mathbb{M} \mid i_k = 0, 1, \forall k \in \mathbb{Z}_+\}$.

Let 0 denote the element $(\ldots, 0, 0) \in \mathbb{M}$ and for $i \in \mathbb{Z}_+$ let ϵ_i denote the element $(\ldots, 0, 1, 0, \ldots, 0) \in \mathbb{M}$, where 1 is in the i'th position from right. For any $i \in \mathbb{M}$, we write

$$w(i) = \sum_{k \in \mathbb{Z}_+} k \cdot i_k,$$

which is a nonnegative integer. For any nonzero $i \in \mathbb{M}$, let p be the smallest integer such that $i_p \neq 0$ and define $i' = i - \epsilon_p$.
Definition 2.7. Denote by \prec the reverse lexicographical total order on \mathbb{M}, defined as follows: for any $i, k \in \mathbb{M}$, set

$$i \prec j \iff \text{there exists } r \in \mathbb{Z}^+ \text{ such that } i_r < j_r \text{ and } i_s = j_s, \forall 1 \leq s < r.$$

Now we can induce a principal total order on $\mathbb{M} \times \mathbb{M}_1$, still denoted by \prec: $(i, k) \prec (j, m)$ if and only if one of the following conditions is satisfied:

1. $w(i) + w(k) < w(j) + w(m)$;
2. $w(i) + w(k) = w(j) + w(m)$ and $(k, w(k)) \prec (m, w(m))$;
3. $k = m$ and $(i, w(i)) \prec (j, w(j)), \forall i, j \in \mathbb{M}, k, m \in \mathbb{M}_1$.

Let V be a simple \mathfrak{b}-module. For $k \in \mathbb{M}_1, i \in \mathbb{M}$, we denote

$$G^kL^i = \ldots G^{k_2}_{-2+\frac{1}{2}} G^{k_1}_{-1+\frac{1}{2}} \ldots L^k_{-2} L^1_{-1} \in U(\mathfrak{g}_-).$$

According to the PBW Theorem, every element of $\text{Ind}_\ell(V)$ can be uniquely written in the following form

$$\sum_{k \in \mathbb{M}_1, i \in \mathbb{M}} G^kL^i_{v_{k,i}},$$

where all $v_{k,i} \in V$ and only finitely many of them are nonzero. For any $v \in \text{Ind}_\ell(V)$ as in (2.1), we denote by $\text{supp}(v)$ the set of all $(i, k) \in \mathbb{M} \times \mathbb{M}_1$ such that $v_{k,i} \neq 0$. For a nonzero $v \in \text{Ind}_\ell(V)$, we write $\text{deg}(v)$ the maximal (with respect to the principal total order on $\mathbb{M} \times \mathbb{M}_1$) element in $\text{supp}(v)$, called the degree of v. Note that here and later we make the convention that $\text{deg}(v)$ only for $v \neq 0$.

3. Construction of simple restricted \mathfrak{g}-modules

In this section, we give a construction of simple restricted \mathfrak{g}-modules.

Theorem 3.1. Let V be a simple \mathfrak{b}-module and assume that there exists $t \in \mathbb{Z}_+$ satisfying the following two conditions:

(a) the action of L_t on V is injective;
(b) $L_i V = 0$ for all $i > t$.

Then

(i) $G_{j-\frac{1}{2}} V = 0$ for all $j > t$.
(ii) For $\ell \in \mathbb{C}$, the induced module $\text{Ind}_\ell(V)$ is a simple \mathfrak{g}-module.
Proof. (i) Assume $L_t V = 0$ for all $i > t$. For $j \geq t$, by $G^2_{j+\frac{1}{2}} V = L_{2j+1} V = 0$, we have $W = G_{j+\frac{1}{2}} V$ is a proper subspace of V. For $r \in \mathbb{Z}_+$, we have

$$G_{r-\frac{1}{2}} W = G_{r-\frac{1}{2}} G_{j+\frac{1}{2}} V = L_{r+j} V - G_{j+\frac{1}{2}} G_{r-\frac{1}{2}} V \subset G_{j+\frac{1}{2}} V = W,$$

$$2L_{t} W = [G_{r-\frac{1}{2}}] G_{j+\frac{1}{2}} V = G_{r-\frac{1}{2}} G_{j+\frac{1}{2}} V + G_{r-\frac{1}{2}} G_{j+\frac{1}{2}} V \subset W.$$

It follows that W is a proper submodule of V. Then $W = G_{j+\frac{1}{2}} V = 0$ for $j \geq t$ since V is simple.

In order to prove (ii), we need the following claim.

Claim. For any $v \in \text{Ind}_c(V) \setminus V$, let $\text{deg}(v) = (i, k)$, $\hat{k} = \min\{s : k_s \neq 0\}$ if $k \neq 0$ and $i = \min\{s : i_s \neq 0\}$ if $i \neq 0$. Then

1. If $k \neq 0$, then $\hat{k} > 0$ and $\text{deg}(G_{k+t-\frac{1}{2}} v) = (i, \hat{k})$;
2. If $k = 0, i \neq 0$, then $\hat{i} > 0$ and $\text{deg}(L_{i+t} v) = (i', 0)$.

To prove this, we assume that

$$v = \sum_{m \in M_1, j \in M} G^m L^j v_{m,j},$$

(3.1)

where all $v_{m,j} \in V$ and only finitely many of them are nonzero.

1. It suffices to consider those $v_{j,m}$ with

$$G^m L^j v_{j,m} \neq 0.$$

Note that $G_{k+t-\frac{1}{2}} v_{j,m} = 0$ for any $(j, m) \in \text{supp}(v)$. One can easily check that

$$G_{k+t-\frac{1}{2}} G^m L^j v_{j,m} = [G_{k+t-\frac{1}{2}}, G^m] L^j v_{j,m} + G^m [G_{k+t-\frac{1}{2}}, L^j] v_{j,m}.$$

Clearly $L_t v_{j,m} \neq 0$ by (a).

If

$$w(j) + w(m) < w(i) + w(k),$$

then

$$\text{deg} G_{k+t-\frac{1}{2}} G^m L^j v_{j,m} < (i, k').$$

Now we suppose that $w(i) + w(k) = w(j) + w(m)$ and $m < k$ and denote

$$\text{deg}(G_{k+t-\frac{1}{2}} G^m L^j v_{j,m}) = (j_1, m_1) \in M \times M_1.$$

Let $\hat{m} := \min\{s : m_s \neq 0\} > 0$. If $\hat{m} > \hat{k}$, it is easy to see that $w(m') < w(m) - \hat{k} = w(k')$. If $\hat{m} = \hat{k}$, we can similarly deduce
\((j_1, m_1) = (i, m')\). Since \(m' < k'\), we have \(\deg(G_{k+t-\frac{1}{2}}G^mL^jv_{j,m}) = (j_1, m_1) \prec (i, k')\).

If \(m = k\), it is easy to see that
\[
\deg([G_{k+t}, G^m]L^jv_{j,m}) = (j, k') \prec (i, k'),
\]
\[
\deg(G^m[G_{k+t}, L^j]v_{j,m}) = (j_1, m_1) \prec (i, k'),
\]
where the equality holds if and only if \(j = i\).

Combining all the arguments above we conclude that \(\deg(G_{k+t-\frac{1}{2}}v) = (i, k')\), as desired.

(2) We consider \(v_{j,0}\) with
\[
L_{i+t}L^jv_{j,0} \neq 0.
\]
Since \(L_{i+t}v_{j,0} = 0\) for any \((j, 0) \in \text{supp}(v)\), then we have
\[
L_{i+t}L^jv_{j,0} = [L_{i+t}, L^j]v_{j,0}.
\]

If \(j = i\), it is easy to get that
\[
\deg(L_{i+t}L^jv_{j,0}) = (j', 0) = (i', 0).
\]
Now suppose \((j, w(j)) \prec (i, w(i))\), then we write
\[
\deg(L_{i+t}L^jv_{j,0}) = (j_1, 0). \quad (3.2)
\]
If \(w(j) < w(i)\), then \(w(j_1) \leq w(j) - \hat{i} < w(i) - \hat{i} = w(i')\), which shows that \((j_1, 0) \prec (i, 0)\).

Then we suppose \(w(j) = w(i)\) and \(j \subset i\). Let \(\hat{j} := \min\{s : j_s \neq 0\} > 0\). If \(\hat{j} > \hat{i}\), we obtain \(w(j') < w(i) - \hat{i} = w(i')\). If \(\hat{j} = \hat{i}\), we can similarly check that \((j_1, 0) = (j', 0)\). By \(j' \prec i'\), we have \(\deg(L_{j+t}L^jv_{j,0}) = (j_1, 0) \prec (i', 0)\).

Consequently, we conclude that \(\deg(L_{j+t}v) = (i', 0)\). This proves the claim.

Using the claim repeatedly, from any nonzero element \(v \in \text{Ind}_\ell(V)\) we can reach a nonzero element in \(U(g)v \cap V \neq 0\), which implies that the simplicity of \(\text{Ind}_\ell(V)\).

\[\square\]

Remark 3.2. In Theorem 3.1 note that the actions of \(L_i, G_{k+t-\frac{1}{2}}\) on \(\text{Ind}_\ell(V)\) for all \(i > t\) are locally nilpotent. It follows that \(\text{Ind}_\ell(V)\) is a simple restricted \(g\)-module of central charge \(\ell\).
4. Characterization of simple restricted g-modules

In this section, we give a characterization of simple restricted g-modules of central charge ℓ.

For $t \in \mathbb{N}$, let

$$m^{(t)} = \bigoplus_{m > t} \mathbb{C}L_m \oplus \bigoplus_{m > t} \mathbb{C}G_{m - \frac{1}{2}},$$

Note that $m^{(0)} = g_+$.

Proposition 4.1. Let S be a simple g-module. Then the following conditions are equivalent:

1. There exists $t \in \mathbb{Z}_+$ such that the actions of $L_i, G_{i - \frac{1}{2}}$ for all $i \geq t$ on S are locally finite.
2. There exists $t \in \mathbb{Z}_+$ such that the actions of $G_{i - \frac{1}{2}}, L_i$ for all $i \geq t$ on S are locally nilpotent.
3. There exist $t \in \mathbb{Z}_+$ such that S is a locally finite $m^{(t)}$-module.
4. There exist $t \in \mathbb{Z}_+$ such that S is a locally nilpotent $m^{(t)}$-module.
5. S is a highest weight module, or there exists $\ell \in \mathbb{C}, t \in \mathbb{Z}_+$ and a simple b-module V such that both conditions (a) and (b) in Theorem 3.1 are satisfied and $S \cong \text{Ind}_\ell(V)$.

Proof. First we prove $(1) \Rightarrow (5)$. Suppose that S is a simple g-module and there exists $t \in \mathbb{Z}_+$ such that the actions of $G_{i - \frac{1}{2}}, L_i, i \geq t$ are locally finite.

Choose a simple Vir-submodule S' of S. Clearly $L_i, i > t$ are locally finite on S'. By Proposition 4 in [30], there exist $t' \in \mathbb{Z}_+$ and a simple Vir$_+-$module W such that $S' = \text{Ind}(W)$ as Virasoro module and $L_nW = 0$ for all $n > t'$, where Vir$_+ := \bigoplus_{m > 0} \mathbb{C}L_m$.

Then we can choose a nonzero $w \in W$ such that $L_nw = 0$ for all $n > t'$.

Take any $j \in \mathbb{Z}$ with $j > t'$ and we denote

$$V_G = \sum_{m \in \mathbb{N}} \mathbb{C}L_m^{[m]}G_{j - \frac{1}{2}}w = U(\mathbb{C}L_{t'})G_{j - \frac{1}{2}}w,$$

which are all finite-dimensional. By Definition 2.4 it is clear that $G_{j+(m+1)t'-\frac{1}{2}}w \in V_G$ if $G_{j+mt'-\frac{1}{2}}w \in V_G$. Therefore, by induction on m, we obtain $G_{j+mt'-\frac{1}{2}}w \in V_G$ for all $m \in \mathbb{N}$. Then, it follows from
the facts that \(\sum_{m \in \mathbb{N}} \mathbb{C} G_{j + m't' - \frac{1}{2}} w \) are finite-dimensional for any \(j > t' \). Hence,

\[
\sum_{i \in \mathbb{Z}_+} \mathbb{C} G_{t' + i - \frac{1}{2}} w = \sum_{j = t' + 1}^{2t} \left(\sum_{m \in \mathbb{Z}_+} \mathbb{C} G_{j + m't' - \frac{1}{2}} w \right)
\]

is finite-dimensional. In fact, we can take \(p \in \mathbb{Z}_+ \) such that

\[
\sum_{i \in \mathbb{Z}_+} \mathbb{C} G_{t' + i - \frac{1}{2}} w = p \sum_{i = 0}^{p} \mathbb{C} G_{t' + i + \frac{1}{2}} w.
\] (4.1)

Now we write

\[
V' := \sum_{\tilde{i}_0, \ldots, \tilde{i}_p \in \{0, 1\}} \mathbb{C} G_{\tilde{i}_0 t' + \frac{1}{2}} \cdots G_{\tilde{i}_k t' + \frac{1}{2}} w, \text{ which is finite-dimensional by (1). Moreover } \text{ } V' \text{ is a finite-dimensional } m(t')-\text{module}.
\]

It follows that we can choose a minimal \(n \in \mathbb{N} \) such that

\[
(G_m - \frac{1}{2} + a_1 G_{m+1} - \frac{1}{2} + \cdots + a_n G_{m+n} - \frac{1}{2}) V' = 0 \quad (4.2)
\]

for some \(m > t' \) and \(a_i \in \mathbb{C} \). Applying \(L_{2m-1} \) to (4.2), one has

\[
(a_1 [L_{2m-1}, G_m - \frac{1}{2}] + \cdots + a_n [L_{2m-1}, G_{m+n} - \frac{1}{2}]) V' = 0,
\]

which implies \(n = 0 \), that is,

\[
G_m - \frac{1}{2} V' = 0. \quad (4.3)
\]

By action of \(L_i \) on (4.3)

\[
G_{m+i} - \frac{1}{2} V' = 0, \quad \forall i > t'. \quad (4.4)
\]

For any \(\tilde{k} \in \mathbb{N} \), we consider the vector space

\[
N_{\tilde{k}} = \{ v \in S \mid G_{-\frac{1}{2}} v = L_{\tilde{k}} v = 0 \quad \text{for all } \tilde{k} > \tilde{k} \}.
\]

Clearly, \(N_{\tilde{k}} \neq 0 \) for sufficiently large \(\tilde{k} \in \mathbb{N} \). Thus we can find a smallest nonnegative integer, saying \(s \), with \(V := N_s \neq 0 \). Using \(k > s \) and \(p \geq 1 \), it follows from \(k + p - \frac{1}{2} > s \) and \(k + p - 1 > s \) that we can easily check that

\[
L_k (G_{p-\frac{1}{2}} v) = (p - \frac{k + 1}{2}) G_{k+p-\frac{1}{2}} v = 0
\]

and

\[
G_{-\frac{1}{2}} (G_{p-\frac{1}{2}} v) = 2L_{k+p-1} v = 0,
\]

respectively. Clearly, \(G_{p-\frac{1}{2}} v \in V \) for all \(p \geq 1 \). Similarly, we can also obtain \(L_i v \in V \) for all \(i \in \mathbb{N} \). Therefore, \(V \) is a \(\mathfrak{b} \)-module.

If \(s = 0 \), then by Theorem 1(c) in [29], \(S \) is a highest weight module.
If \(s \geq 1 \), by the definition of \(V \), we can obtain that the action of \(L_s \) on \(V \) is injective by Theorem 3.1. Since \(S \) is simple and generated by \(V \), then there exists a canonical surjective map
\[\pi : \text{Ind}(V) \to S, \quad \pi(1 \otimes v) = v, \quad \forall v \in V. \]

Next we only need to show that \(\pi \) is also injective, that is to say, \(\pi \) as the canonical map is bijective. Let \(K = \ker(\pi) \). Obviously, \(K \cap V = 0 \). If \(K \neq 0 \), we can choose a nonzero vector \(v \in K \setminus V \) such that \(\text{deg}(v) = (i, k) \) is minimal possible. Note that \(K \) is a \(\mathfrak{g} \)-submodule of \(\text{Ind}_\ell(V) \). By the claim in proof of Theorem 3.1 we can create a new vector \(u \in K \) with \(\text{deg}(u) \prec (i, k) \), which is a contradiction. This forces \(K = 0 \), that is, \(S \cong \text{Ind}_\ell(V) \). According to the property of induced modules, we see that \(V \) is simple as a \(\mathfrak{b} \)-module.

Moreover, (5) \(\Rightarrow \) (3) \(\Rightarrow \) (1), (5) \(\Rightarrow \) (4) \(\Rightarrow \) (2) and (2) \(\Rightarrow \) (1) are clear. This completes the proof. \(\square \)

Lemma 4.2. Let \(V \) be a simple restricted \(\mathfrak{g} \)-module. Then there exists \(t \in \mathbb{Z}_+ \) such that the actions of \(L_i, G_{i-\frac{1}{2}} \) for all \(i \geq t \) on \(V \) are locally nilpotent.

Proof. Let \(0 \neq v \in V \), there exists \(s \in \mathbb{Z}_+ \) such that \(L_i v = G_{i-\frac{1}{2}} v = 0 \) for all \(i \geq s \). For \(V = U(\mathfrak{g})v \), every element \(w \) of \(V \) can be uniquely written in the following form
\[w = \sum_{k \in M, i \in \mathbb{M}} G^k L^i v. \]

Then, for \(i \geq s \), there exists \(N \) sufficiently large such that
\[L^N_i w = G^N_{i-\frac{1}{2}} w = 0. \]
\(\square \)

From Theorem 4.1 and Lemma 4.2 we are in a position to state our main result.

Theorem 4.3. Let \(\ell \in \mathbb{C} \), every simple restricted \(\mathfrak{g} \)-module of central charge \(\ell \) is isomorphic to a simple highest weight module, or a simple module of the form \(\text{Ind}_\ell(V) \), where \(V \) is a simple \(\mathfrak{b}^{(t)} \)-module for some \(t \in \mathbb{Z}_+ \), where \(\mathfrak{b}^{(t)} = \mathfrak{b}/\mathfrak{m}^{(t)} \) is the quotient algebra of \(\mathfrak{b} \) by \(\mathfrak{m}^{(t)} \).
5. Simple $b^{(t)}$-modules and examples

5.1. Classifications. For $t = 0$, the algebra $b^{(0)}$ is commutative and its simple modules are one dimensional. Next we shall classify all simple $b^{(t)}$-module for $t = 1, 2$.

For $t = 1$, $b^{(1)} = b^{(1)}_0 \oplus b^{(1)}_1$ is a 3-dimensional solvable Lie superalgebra with $b^{(1)}_0 = CL_0 \oplus CL_1$ and $b^{(1)}_1 = CG_{1/2}$. All simple $b^{(1)}_0$-modules are constructed by R. Block in [7].

Proposition 5.1. Any simple $b^{(1)}$-module V is isomorphic to $U \oplus G_{1/2}U$ or an one-dimensional module, where U is a simple $b^{(1)}_0$-module, up to parity-change.

Proof. Let V be a simple $b^{(1)}$-module. Choose an simple $b^{(1)}_0$-submodule U of V, then $V = U + G_{1/2}U$ and $V_0 = U$.

Case 1. V is $G_{1/2}$-torsion free.

In this case, $V_1 = G_{1/2}U$ and U is L_1-torsion free since $G_{1/2}^2 = L_1$ in $U(b^{(1)})$. Moreover $V_0 = G_{1/2}V_1$, so V is simple $b^{(1)}$-module if and only if U is simple $a^{(1)}$-module.

Case 2. V is $G_{1/2}$-torsion. In this case, U is L_1-torsion. It follows that there exists $w \in U$ such that $L_1w = cw$ for some $c \in \mathbb{C}$. If $c = 0$, then $U = \mathbb{C}w$. Replaced w by $G_{1/2}w$ if $G_{1/2}w \neq 0$, we have $V = \mathbb{C}G_{1/2}w$. If $c \neq 0$, then $U = \mathbb{C}[L_0]w$ and $V = U + G_{1/2}U$ and $G_{1/2}(G_{1/2}U) = U$.

\[\square\]

For $t = 2$, $b^{(2)} = b^{(2)}_0 \oplus b^{(2)}_1$ is a 5-dimensional solvable Lie superalgebra with $b^{(2)}_0 = CL_0 \oplus CL_1 \oplus CL_2$ and $b^{(2)}_1 = CG_{1/2} \oplus CG_{3/2}$. All simple $b^{(2)}_0$-modules are constructed by Mazorchuk and Zhao in [30].

Proposition 5.2. Any simple module over $b^{(2)}$ is isomorphic to $U \oplus G_{3/2}U$, where U is a simple $b^{(2)}_0$-module, up to parity-change.

Proof. Let $V = V_0 \oplus V_1$ be a simple $b^{(2)}$-module. For any $w \in V_0$, replaced w by $G_{3/2}w$ if $G_{3/2}w \neq 0$, we have $G_{3/2}w = 0$. In this case $V_0 = U(b^{(2)}_0)w$ and $G_{3/2}V_0 = 0$, then $V_1 = G_{3/2}V_0$. \[\square\]

5.2. Examples.
5.2.1. *Highest weight modules.* For $h, \ell \in \mathbb{C}$, let Cv be one-dimensional g_0-module defined by $L_0v = hv, cv = \ell v$. Let g_+ act trivially on v, making v a $(g_0 \oplus g_+)$-module. The Verma module for Neveu-Schwarz algebra (cf. [20]) can be defined by

$$M(h, \ell) = U(g) \otimes_{U(g_0 \oplus g_+)} Cv,$$

The module $M(h, \ell)$ has the unique simple quotient $L(h, \ell)$, the unique (up to isomorphism) simple highest weight module with highest weight (h, ℓ). These simple modules correspond to $t = 0$ case in Theorem 4.3.

5.2.2. *Whittaker modules.* Let

$$p(t) = \bigoplus_{m > t} \mathbb{C}L_m \oplus \bigoplus_{m > t} \mathbb{C}G_{m + \frac{1}{2}}.$$

and ψ a Lie superalgebra homomorphism $\psi : p \to \mathbb{C}$. It follows that $\psi(L_i) = 0$ for $i \geq 3$ and $\psi(G_{j - \frac{1}{2}}) = 0$ for all $j \geq 2$. For $\ell \in \mathbb{C}$, let cw be one dimensional $(p \oplus \mathbb{C}c)$-module with $xw = \psi(x)w$ for all $x \in p$ and $cw = \ell w$, then the Whittaker module for Neveu-Schwarz algebra is defined by

$$W(\psi, \ell) = U(g) \otimes_{U(p \oplus \mathbb{C}c)} Cw.$$

By [24], the Whittaker module $W(\psi, \ell)$ is simple if ψ is non-trivial, i.e., $\psi(L_1) \neq 0$ or $\psi(L_2) \neq 0$.

Let $\psi : p \to \mathbb{C}$ be a nontrivial Lie superalgebra homomorphism and $A_\psi = Cw \oplus Cu$ with be a two-dimensional vector space with

$$xw = \psi(x)w, \; G_{\frac{3}{2}}w = u, \; \forall x \in p.$$

Then A_ψ is a simple g_+-module. Consider induced module

$$V_\psi = U(b) \otimes_{U(p)} A_\psi \cong \mathbb{C}[L_0]A_\psi.$$

It is straightforward to check that V_ψ is a simple b-module. Hence, by Theorem 3.1, we obtain the corresponding simple induced g-module $\text{Ind}_c(V_\psi)$. These are exactly the Whittaker modules $W(\psi, \ell)$.

5.2.3. *High order Whittaker modules.* For $t \in \mathbb{N}$, let

$$p^{(t)} = \bigoplus_{m > t} \mathbb{C}L_m \oplus \bigoplus_{m > t} \mathbb{C}G_{m + \frac{1}{2}}.$$

It is clear that $p^{(0)} = p$. All finite dimensional simple modules over $p^{(0)}$ have been classified in [24]. Now we shall classify all finite-dimensional simple modules over $p^{(t)}$ for $t \in \mathbb{Z}_+$.
We have the following lemma which can be proved in a way similar to Proposition 3.3 in \[24\], we have

Lemma 5.3. Let V be a finite dimensional simple $\mathfrak{p}^{(t)}$-module for $t \in \mathbb{Z}_+$. Then there exists $k \in \mathbb{Z}_+$ such that $\mathfrak{p}^{(k)}V = 0$.

Proposition 5.4. Let S be a simple finite dimensional $\mathfrak{p}^{(t)}$-module for $t \in \mathbb{Z}_+$. Then

(i) $\dim S = 1$;

(ii) $[\mathfrak{p}^{(t)}, \mathfrak{p}^{(t)}]S = 0$.

Proof. By Proposition 5.3, we have $\mathfrak{p}^{(i)}S = 0$ for some $i \geq t$. Hence S is a simple finite dimensional module over the nilpotent Lie superalgebra $\mathfrak{p}^{(t)}/\mathfrak{p}^{(i)}$. Moreover $[\mathfrak{p}^{(t)}, \mathfrak{p}^{(t)}] \subseteq [\mathfrak{p}^{(0)}, \mathfrak{p}^{(0)}]$, then (i) follows from Lemma 1.37 in \[10\]). As $\dim S = 1$, we also have that the Lie superalgebra $\text{End}_\mathbb{C}(S)$ is commutative, which implies (ii). This completes the proof. \[\Box\]

Let ψ_k be a Lie superalgebra homomorphism $\psi_k : \mathfrak{p}^{(k)} \to \mathbb{C}$ for some $k \in \mathbb{Z}_+$. Then $\psi_k(L_i) = 0$ for $i \geq 2k + 3$ and $\psi_k(G_{j+\frac{1}{2}}) = 0$ for all $j \geq k + 1$. Let $\mathbb{C}w$ be one-dimensional $\mathfrak{p}^{(k)}$-module with $xw = \psi_k(x)w$ for all $x \in \mathfrak{p}^{(k)}$ and $cw = \ell w$ for some $\ell \in \mathbb{C}$. The higher order Whittaker module $W(\psi_k, \ell)$ is given by

$$W(\psi_k, \ell) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}^{(k)})} \mathbb{C}w.$$

Proposition 5.5. For $k \in \mathbb{Z}_+$, the higher order Whittaker module $W(\psi_k, \ell)$ is simple if and only if $\psi_k(L_{2k+1}) \neq 0$ or $\psi_k(L_{2k+2}) \neq 0$.

Proof. For $k \in \mathbb{Z}_+$, let $\psi_k : \mathfrak{p}^{(k)} \to \mathbb{C}$ be a Lie superalgebra homomorphism and $A_{\psi_k} = \mathbb{C}w \oplus \mathbb{C}u$ with be a two-dimensional vector space with

$$xw = \psi_k(x)w, \ G_{k+\frac{1}{2}}w = u, \ \forall x \in \mathfrak{p}^{(k)}.$$

Then A_{ψ_k} is a simple $\mathfrak{m}^{(k)}$-module if and only if $\psi_k(L_{2k+1}) \neq 0$ or $\psi_k(L_{2k+2}) \neq 0$. Moreover, if $\psi_k(L_{2k+1}) = \psi_k(L_{2k+2}) = 0$, then A_{ψ_k} has a trivial submodule $\mathbb{C}G_{k+\frac{1}{2}}w$.

Let

$$V_{\psi_k} = U(\mathfrak{b}) \otimes_{U(\mathfrak{m}^{(k)})} A_{\psi_k}.$$
It is straightforward to check that V_{ψ_k} is a simple \mathfrak{b}-module if and only if $\psi_k(L_{2k+1}) \neq 0$ or $\psi_k(L_{2k+2}) \neq 0$. From Theorem 3.1 we obtain the corresponding induced \mathfrak{g}-module $\text{Ind}_\ell(V_{\psi_k})$ is simple if and only if $\psi_k(L_{2k+1}) \neq 0$ or $\psi_k(L_{2k+2}) \neq 0$. These modules are exactly the higher order Whittaker modules $W(\psi_k, \ell)$. □

ACKNOWLEDGMENTS

We gratefully acknowledge the partial financial support from the NNSF (No.11871249, No.11771142), the ZJNSF (No.LZ14A010001), the Shanghai Natural Science Foundation (No.16ZR1425000) and the Jiangsu Natural Science Foundation (No.BK20171294). We would like to thank Yanan Cai and Rencai Lu for useful discussions.

REFERENCES

[1] D. Adamovic, C. Lam, V. Pedic, N. Yu, On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebra, arXiv:1811.04649, 2018.
[2] D. Adamović, R. Lu, K. Zhao, Whittaker modules for the affine algebra $A^{(1)}_l$, Adv. Math., 289 (2016), 438-479.
[3] D. Arnal, G. Pinczon, On algebraically irreducible representations of the Lie algebra $sl(2)$, J. Math. Phys., 15 (1974), 350-359.
[4] I. Bagci, K. Christodoulopoulou, E. Wiesner, Whittaker categories and Whittaker modules for Lie superalgebras, Comm. Algebra 42 (2014), no. 11, 4932-4947.
[5] P. Batra, V. Mazorchuk, Blocks and modules for Whittaker pairs, J. Pure Appl. Algebra, 215 (2011), 1552-1568.
[6] G. Benkart, M. Ondrus, Whittaker modules for generalized Weyl algebras, Represent. Theory, 13 (2009), 141-164.
[7] R. Block, The irreducible representations of the Lie algebra $sl(2)$ and of the Weyl algebra. Adv. Math., 139 (1991), 69-110.
[8] H. Chen, X. Guo, New simple modules for the Heisenberg-Virasoro algebra, J. Algebra, 390 (2013), 77-86.
[9] H. Chen, Y. Hong, and Y. Su, A family of new simple modules over the Schrödinger-Virasoro algebra, J. Pure Appl. Algebra, 222 (2018), 900-913.
[10] S. Cheng, Weiqiang Wang, Dualities and Representations of Lie superalgebras, Graduate Studies in Mathematics, 144. American Mathematical Society, Providence, RI, 2012.
[11] K. Christodoulopoulou, Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras, J. Algebra, 320 (2008), 2871-2890.
[12] P. Desrosiers, L. Lapointe, P. Mathieu, Superconformal field theory and Jack superpolynomials, JHEP, 09 (2012), 037.
[13] E. Felinska, Z. Jaskolski, M. Kosztolowicz, Whittaker pairs for the Virasoro algebra and the Gaiotto-BMT states. J. Math. Phys., 53 (2012), 033504.
[14] X. Guo, R. Lu, K. Zhao, Irreducible modules over the Virasoro algebras, Document Math., 16 (2011), 709-721.
[15] K. Iohara, Y. Koga, Representation theory of Neveu-Schwarz and Remond algebras I: Verma modules. Adv. Math. 177(2003), 61-69.
[16] K. Iohara, Y. Koga, Representation theory of Neveu-Schwarz and Remond algebras II: Fock modules. Ann. Inst. Fourier 53 (2003), 1755-1818.
[17] K. Iohara, Y. Koga, Representation theory of the Virasoro algebra. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2011.
[18] J. T. Hartwig, N. Yu, Simple Whittaker modules over free bosonic orbifold vertex operator algebras, arXiv:1806.06133, 2018.
[19] V. Kac, M. Wakimoto, Unitarizable highest weight representation of the Virasoro, Neveu-Schwarz and Ramond algebras, Lecture Notes in Physics, Vol. 261, Springer, Berlin, 1986.
[20] V. Kac, W. Wang, Vertex operator superalgebras and representations, in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemporary Math., 175 Amer. Math. Soc., Providence, 1994, 161-191.
[21] B. Kostant, On Whittaker vectors and representation theory, Invent. Math., 48 (1978), 101–184.
[22] H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra, 109 (1996), 143-195.
[23] H. Li, Local systems of twisted vertex operators, vertex superalgebras and twisted modules, in: Moonshine, the Monster and Related Topics, Proc. Joint Summer Research Conference, Mount Holyoke, 1994, ed., by C. Dong and G. Mason, Contemporary Math. 193, Amer, Math. Soc., Providence, 1996, 203-236.
[24] D. Liu, Y. Pei, L. Xia, Whittaker modules for the super-Virasoro algebras, J. Algebra, Appl. (to appear), arXiv:1810.12577.
[25] D. Liu, Y. Wu, L. Zhu, Whittaker modules for the twisted Heisenberg-Virasoro algebra, J. Math. Phys., 51 (2010), 023524.
[26] R. Lu, K. Zhao, A family of simple weight modules over the Virasoro algebra, J. Algebra, 479 (2017), 437-460.
[27] O. Mathieu, Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent. Math., 107 (1992), 225-234.
[28] V. Mazorchuk, E. Weisner, Simple Virasoro modules induced from codimension one subalgebras of the positive part, Proc. Amer. Math. Soc., 142 (2014), 3695-3703.
[29] V. Mazorchuk, K. Zhao, Characterization of simple highest weight modules, Canad. Math. Bull., 56 (2013), 606-614.
[30] V. Mazorchuk, K. Zhao, Simple Virasoro modules which are locally finite over a positive part, Selecta Math. (N.S.), 20 (2014), 839-854.
[31] A. Meurman, A. Rocha-Caridi, Highest weight representations of the Neveu-Schwarz and Ramond algebras, Comm. Math. Phys., 107 (1986), 263-294.
[32] M. Ondrus, E. Wiesner, Whittaker modules for the Virasoro algebra, J. Algebra Appl., 8 (2009), 363-377.
[33] A. Sergeev, Irreducible representations of solvable Lie superalgebras, Represent. Theory, 3 (1999), 435-443.
[34] Y. Su, Classification of Harish-Chandra modules over the super-Virasoro algebras, Comm. Algebra, 23 (1995), 3653-3675.
[35] K. Tanabe, Simple weak modules for the fixed point subalgebra of the Heisenberg vertex operator algebra of rank 1 by an automorphism of order 2 and Whittaker vectors, Proc. Amer. Math. Soc., 145 (2017), 4127-4140.
[36] S. Yanagida, Whittaker vectors of the Virasoro algebra in terms of Jack symmetric polynomial. J. Algebra 333 (2011), 273-294.
[37] X. Zhang, Y. Cheng, Simple Schrödinger modules which are locally finite over the positive part, J. Pure Appl. Algebra, 219 (2015), 2799-2815.

DEPARTMENT OF MATHEMATICS, HUZHOU UNIVERSITY, ZHEJIANG HUZHOU, 313000, CHINA

E-mail address: liudong@zjhu.edu.cn

DEPARTMENT OF MATHEMATICS, SHANGHAI NORMAL UNIVERSITY, SHANGHAI, 200234, CHINA

E-mail address: pei@shnu.edu.cn

INSTITUTE OF APPLIED SYSTEM ANALYSIS, JIANGSU UNIVERSITY, JIANGSU ZHENJIANG, 212013, CHINA

E-mail address: xialimeng@ujs.edu.cn