Cell division in *Chlamydomonas reinhardtii* was described by Johnson and Porter (1968). In their paper, they state (p. 409): "...they (referring to basal bodies) are not found at the poles of the mitotic apparatus as are the centrioles of animal cells and certain plant cells" (present author's
Granick (1953) supplemented with 3% CO₂ on a 12 h light/dark cycle. Basal bodies are found at one pole, at least, of the mitotic apparatus of Tetraspora (Pickett-Heaps, 1973), and basal bodies are found near the spindle poles in vegetative cells (Pickett-Heaps, unpublished observations) and developing sperm packets of Volvox (Deason and Darden, 1971). All green algae (except Chlamydomonas) so far found to have persistent centrioles or basal bodies separate these organelles to daughter cells via mitosis; the centrioles/basal bodies become associated with the polar organizers of the spindle and are evenly distributed to daughter cells as a consequence of this association (Dietz, 1966; Nakao et al. 1968; Pickett-Heaps, 1969, 1971; Friedländer and Wahlman, 1970). Pickett-Heaps (1973) points out that the absence of basal bodies at the poles of the spindle apparatus of C. reinhardtii is, therefore, somewhat of an anomaly, which, if true, has considerable significance. He suggested that the basal bodies might be closer to the poles than Johnson and Porter (1968) reported. The relationship of the basal bodies to the poles of the mitotic apparatus could easily have been misinterpreted after examination of insufficient numbers of thin sections. Consequently, mitosis in C. reinhardtii was investigated using 0.25 and 0.5 μm thick sections and the High Voltage Electron Microscope (HVEM) at the University of Colorado to determine the location of basal bodies with respect to the spindle apparatus in this alga.

MATERIALS AND METHODS

Wild type 137c of C. reinhardtii was used in this investigation. This alga was grown and prepared for electron microscopy by the laboratory of Dr. D. J. L. Luck at The Rockefeller University, New York.

The cultures were grown on the medium of Sager and Granick (1953) supplemented with 3% CO₂ on a 12 h light/dark cycle.

Cells were fixed 3 h into the dark cycle. 1 ml of 12% glutaraldehyde in 0.02 M sodium cacodylate buffer (pH 7.5) was added to 4 ml of cells in suspension. After 10 min at room temperature the cells were pelleted and resuspended in 2 ml of 5% glutaraldehyde (0.01 M sodium cacodylate, pH 7.5) in the cold. 2 ml of 1% OsO₄ (0.01 M sodium cacodylate, pH 7.5) were then added to the cells and the mixture was left in the cold for 1 h. The cells were then pelleted and rinsed three times in 0.01 M sodium cacodylate buffer. The final pellet was dehydrated in ethanol and embedded in Epon. 0.25 and 0.5 μm thick sections were cut with either a glass or diamond knife, picked up on Formvar-coated slot grids, and stained for 30 min in 2% methanolic uranyl acetate and for 20 min in lead citrate. The sections were viewed in a JEM 1000 electron microscope operating at 1,000 kV.

RESULTS AND DISCUSSION

When mitotic nuclei were examined in the HVEM, basal bodies were commonly found at least at one of the polar fenestrae of the spindle (Figs. 1-3). Two basal bodies were found near each pole of the metaphase spindle when thick serial sections were examined. The mitotic nucleus is bent and the nuclear envelope is extended and hooked at the poles at metaphase, and a thick section that included both sets of polar basal bodies was not encountered. However, during anaphase the poles are not as hooked as during metaphase, and a thick section through an anaphase spindle which included both sets of polar basal bodies was encountered (Fig. 4 B). During anaphase, the basal bodies are not located directly at the foci of the spindle microtubules, but slightly to one side. Consecutive serial sections through this spindle show its bent nature (Fig. 4 A-C).

If the colonial members of the Volvocales, the Chlorococcales, and some of the Ulothrichales evolved from a Chlamydomonas-like progenitor that utilized a phycoplast (and not a phragmoplast) (Pickett-Heaps and Marchant, 1973), and if some mitotic features are conservative (Pickett-Heaps, 1974), then the mitotic apparatus of all these organisms would be expected to be reasonably similar to each other. Thus, Chlamydomonas should possess basal bodies at the poles of its mitotic apparatus. The results of this study indicate that the spindle of C. reinhardtii is similar to those of the other volvocalean genera. This finding is further supported by the work of Triemer and Brown (1974). They have described mitosis in Chlamydomonas moewussii, a closely related species that also possesses basal bodies near the poles of its spindle. Possession of basal bodies at the spindle poles by both C. reinhardtii and C. moewussii removes Chlamydomonas from the anomalous position it would otherwise occupy in the phylogeny of volvocalean organisms, on the
FIGURE 1 High voltage electron micrograph of a 0.5 µm thick section through a metaphase nucleus. The arrow points to a basal body at one of the poles of the spindle. × 30,000.

FIGURE 2 High voltage electron micrograph of a 0.25 µm thick section through a nucleus in early anaphase. The paired arrows show the two basal bodies near one of the poles. × 24,000.

FIGURE 3 High voltage electron micrograph of a 0.25 µm thick section through a metaphase nucleus. The paired arrows point out the two basal bodies near one of the poles. × 21,000.
FIGURES 4 A-C High voltage electron micrographs of three consecutive 0.25 μm thick sections through a nucleus in late anaphase showing the bent nature of the spindle. C, chromosomes. The spindle is bent slightly down and toward the reader. Fig. 4 A: No basal bodies are present in this micrograph although the chromosomes and spindle microtubules are well defined. x 23,000. Fig. 4 B: Both pairs of polar basal bodies are present (paired arrows) in this micrograph. x 23,000. Fig. 4 C: The four basal bodies are still recognizable (paired arrows) in this micrograph, although little of the nucleus is present. x 23,000.
basis of Johnson and Porter's report (1968). These results further show that *Chlamydomonas* evenly distributes its basal bodies to daughter cells by the same mechanism utilized by all other green algae with persistent centrioles or basal bodies.

The author would like to thank Dr. D. J. L. Luck for stimulating his interest in this problem and for providing the material used in this investigation. The author also thanks Dr. J. D. Pickett-Heaps for discussing and reading this manuscript and Drs. R. E. Triemer and R. M. Brown for providing a preprint of their article.

This work was supported by the National Institute of Health Research Grant no. 5 P07 RR00592 from the Division of Research Facilities and Resources.

Received for publication 18 March 1974, and in revised form 8 May 1974.

REFERENCES

Deason, T. R., and W. H. Darden. 1971. The male initial and mitosis in Volvox. In Contributions in Phycology. B. C. Parker and R. M. Brown, editors. Allen Press, Kansas.

Dietz, R. 1966. The dispensability of the centrioles in the spermatocyte division of *Pales ferrugenea* (Nemato-cera). In Chromosomes Today. C. D. Darlington and K. R. Lewis, editors. Oliver and Boyd Ltd., Edinburgh.

Friedländer, M., and J. Wahrman. 1970. The spindle as a basal body distributor; a study in the meiosis of the male silkworm moth, *Bombyx mori*. J. Cell Sci. 7:65–89.

Johnson, U. G., and K. R. Porter. 1968. Fine structure of cell division in *Chlamydomonas*. Basal bodies and microtubules. *J. Cell Biol.* 38:403–425.

Nakao, Y., Y. H. Nakanishi, and B. Wada. 1968. Karyokinetic spindles and the behavior of centrioles in the spermatocyte meiosis of silkworms and grasshoppers. *Cytologia (Tokyo).* 33:125–136.

Pickett-Heaps, J. D. 1969. The evolution of the mitotic apparatus: an attempt at comparative ultrastructural plant cytology in dividing plant cells. *Cytobios.* 3(1):257–280.

Pickett-Heaps, J. D. 1971. The autonomy of the centriole: fact or fallacy? *Cytobios.* 3(12):205–214.

Pickett-Heaps, J. D. 1973. Cell division in *Tetraspora*. *Ann. Bot. (Lond.)* 37:1017–1025.

Pickett-Heaps, J. D. 1974. The evolution of mitosis and the eukaryotic condition. *Biosystems.* In press.

Pickett-Heaps, J. D., and H. J. Marchant. 1973. The phylogeny of the green algae: a new proposal. *Cytobios.* 6:255–264.

Sager, R., and S. Granick. 1953. Nutritional studies with *Chlamydomonas reinhardi*. *Ann. N. Y. Acad. Sci.* 56:831–838.

Triemer, R. E., and R. M. Brown. 1974. Cell division in *Chlamydomonas moewusii*. *J. Phycol.* In press.