Urban Heat Signature Impact on University Campus

Adi Wibowo1,2, Mariney Md Yussof 2, Tengku Adeline A B Hamzah2, K O Salleh2
1Department of Geography, Faculty of Mathematics and Natural Sciences, University of Indonesia, 16424 Depok, Indonesia
2Department of Geography, Faculty of Arts and Social Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

adi.w@sci.ui.ac.id, adi.w@siswa.um.edu.my

Abstract. Global environmental change, as IPPC reported, its indication with air temperature getting a rise every year within 0.74 ºC since the beginning of the 20th century. The consequence of that condition, every human will live with global environmental change. Urban Heat Signature is temperature behavior of land cover types as a representation of an urban environment. University Campus, as part of an urban environment, had an Urban Heat Signature. The research objective assessments of Urban Heat Signature impact on urban universities campus. Study area located in urban at University of Malaya (UM) and the University of Indonesia (UI). This research used spatial-temporal analysis to analysis Urban Heat Signature effect on a university campus with employed image satellite generated land surface temperature, ground trough collected air surface temperature and an online survey of human perception. This result saw that both UM and UI campuses found maximum Urban Heat Signature between 30–33.0 ºC and the UHS effect on air temperature with max >33.0 ºC then impact on human perception is very hot with uncomfortable sensation will getting a headache and lethargic then decreasing capacity and achievement of work or study at two urban universities. This result concluded that UHS impact on the university campus with air temperature more than 33.0 ºC and heat intensity would impact on human health and work activity, especially on study achievement. This result is significant to an understanding of UHS impact on human well-being in university campus as urban an environment.

1. Introduction

The IPCC 2007 report on the “Science of Climate Change” showed a small increase in temperature and rainfall for the Southeast Asia Region in the last 50 years [1]. Asian cities are the most rapidly growing regions of the world nowadays and will be located in Asia by the year 2015 [2]. The rapid growth of a city has concluded that the urbanized areas had significantly higher day-time surface temp as compared to those of the surrounding rural with vegetated areas [2, 3]. In Singapore, the primary root of heat island in cities is due to the absorption of solar radiation by mass building structures, roads, and other hard surfaces during daytime [4]. In Singapore, some factors contribute to the occurrence and intensity of heat island, and city functions [5]. In February 2002, the mean rural temperatures in Bangkok, Manila and Ho Chi Minh City were 29.5 ºC, 26.5 ºC, and 30.0 ºC [2].

The studies of urban heat relate to rapid development in the urban area has been done in many places. Those are Seoul [6], Singapore [4], Tokyo [7], and Hong Kong [8]. Urban heat studies also took place in several cities in Indonesian like Bandung, Surabaya, Semarang, and Jakarta, where remote sensing data such as Landsat imagery was employed. The result showed that area with high surface temperature
The temperature is representing the heat from the land which generate Landsat imageries. Image processing use/land is chosen as signature. This research is focusing on 2. (UM) a Heat Signature impact on urban universities campus. Study area located in urban at University of Malaya of an urban environment, had an Urban Heat Signature. The research objective assessments of Urban sustainability has become a global concern for univers they carefully monitored the impact of university activities on the natural environment. Saga University, Japan conduct urban heat studies in Guangzhou, which is a typical subtropical city in China, suffered heat stroke during the intense training period for a college student. Based on that fact of the university campus, people are considering to conduct urban heat studies in the university complex. The urban heat study has conducted at the National University of Singapore. Another university is National Formosa University in Taiwan, The South China University of Technology in Guangzhou, China, Shenyang University, China and Saga University, Japan.

The recent major issue of climate change mitigation is also considered by university leaders as they carefully monitored the impact of university activities on the natural environment. Campus sustainability has become a global concern for university management. University Campus, as part of an urban environment, had an Urban Heat Signature. The research objective assessments of Urban Heat Signature impact on urban universities campus. Study area located in urban at University of Malaya (UM) and the University of Indonesia (UI).

2. Material and method
This research is focusing on the analysis of land surface temperature (LST), determine urban heat signature (UHS) and its distribution and observation on the impact of urban quality. University campus is chosen as a study area, where the rate of urbanization is very rapid, hence the dynamic change of land-use/land-cover were seen. The method saw in Figure 1.

Image processing
This paper used indirect data collecting by employing satellite Landsat OLI-TIRS. The list of Landsat imageries showed in Table 1. The pixel size is determined at 100 x 100 meters, accordance with [4,6,7] who measured UHI in Japan. The grid size is also determined based on land-cover. Land surface temperature is representing the heat from the land which generated by radiated sun energy [4,7,10].

Path/row	2013	2014	2015	2016
127/058	22 April	4 February	7 & 23 February	9 & 25 January
(UM)	27 July	8 & 24 March	11 & 27 March	26 February
	12 August	25 April	12 April	13 & 29 March
	31 October	11 & 27 May	30 May	14 April
	16 November	12 & 28 June	17 July	3 & 19 July
	3 November	15 & 31 August	3 & 19 September	29 September
122/064	22 June	22 April	14 & 30 July	23 January
(UI)	8 & 24 July	9 & 25 June	15 & 31 August	23 February
	25 August	28 August	2 & 18 October	11 & 27 April
	10 & 26 September	13 & 29 September	3 November	13 May
	12 October	15 & 31 October	5 December	30 June
				16 July
LST generate through several steps. The thermal band of Landsat imagery is the main “ingredient” of LST. First, the digital number (DN) of the thermal than converted to spectral radiance. The formula represented in equation 1 and 2 (Eq. 1 applied for Landsat TM and ETM+, eq.2 applied for Landsat OLI-TIRS)\[4,7].

\[L\lambda = \frac{(LM\lambda_{MAX} - LM\lambda_{MIN})}{(QCAL_{MAX} - QCAL_{MIN})} \times (QCAL - QCAL_{MIN}) + LM\lambda_{MIN} \]
\[L\lambda = (M \times DN) + A \]

Where \(L\lambda \) is spectral radiance (\(\text{Wm}^{-2}\text{sr}^{-1}\text{\mu m}^{-1} \)), \(M \) is Multiplicative digital number value at the thermal band, \(DN \) is a digital number of Landsat’s thermal band, and \(A \) is the additive value of spectral radiance at the thermal band. Second, the spectral radiance resulted from equation one is being converted to estimate land surface temperature. The formula is represented in equation 2 \[7,10,12,13\].

\[T = K2/\ln((K1/L\lambda) + 1) \]

Where \(T \) is the temperature at the satellite sensor (Kelvin), \(K1 \) is the calibration constant 1 for Landsat, \(K2 \) is the calibration constant 2 for Landsat, and \(L\lambda \) is the spectral radiance of band. The utilization of remote sensing imagery to collect urban heat signature have performed in several studies \[4,10,11,12,13\]. Finally, the estimate of LST is being transformed from Kelvin to Celsius by the following formula \[10,14\].

\[LST \text{ (celcius)} = T - 272.15 \]

Based on the equation the low value of LST will be seen in maximum vegetation cover, while minimum vegetation cover overlay with high-temperature value \[8,15,16,17\]. Urban Heat Signature is LST value within temporal data acquisition based on land cover types in the urban area.

Air Surface Temperature

The direct collect of air surface temperature used survey by the rapid 10-15 minute in daylight in March, June 2013, October 2014, and March 2015. The air temperatures measured each value saved on a picture (smartphone or camera) then stored manually in database acquired used mobile temperature and humidity tool \[4,7,20\]. Field visits were conducted 2013-2015 in the two universities, with data collecting during 10-12 hour, do June 2013, October 2014 and March 2015. Sampling data for air surface temp based on land use cover, e.g., building covered, paved open space, water bodies, open vegetated covered and densely vegetated covered. This method already used at the National University of Singapore campus, conducted on a typical day \[14, 21\] and related studied at Saga University in Japan \[15\]. The sample location used grid size \[7, 23\] and mobile tools Hioki 3641 with specification two
channel, range temperature measurement about -20.0°C to 70.0°C when using the internal temperature sensor and humidity range measurement about 0.0% - 100% RH when using internal humidity sensor, and temperature accuracy is ± 0.50°C (at 0.0 to 35.0°C) and humidity accuracy is ± 5 RH (at 25°C).

Intensity Perception Study Index

The perception among these respondents was investigated to identify the level and type of impact [23] of natural hazard. The respondent is students from both universities with 120 respondents at each university campus. The study using an online survey, and they answer the questions about perception of heat, landscape feature and potential impact on human activity. This survey collects on human quality impact with landscape feature with category thermal sensation on warm and comfort sensation on uncomfortable sensation; this condition will impact on psychology with increasing stress caused by sweating and blood flow and health condition with increasing danger of heat stroke [24]. Those all data used the index called Universal Thermal Climate Index (UTCI) for assessment UHS behavior on 2013-2016. The UTCI used to detect the UHS on UI Campus. Then detect the UHS as Urban Heat Hazard in University Campus used the ETI with a level sensation of temperature and comfort within the sensation of temperature level had a very Hot until Neutral and the level sensation of comfort had very uncomfortable until comfortable [24].

3. Result and discussion.

3.1. Land Cover at UM and UI Campus

Land cover as the localized urban environment at UM Campus and UI Campus saw in Table 2. The comparative land cover on UM and UI founded two urban campuses had a similar land cover but with differentiation of total percentage area. Land covered in UM campus is building covered is 20.9% bigger than UI campus with build-covered only 10.9%. The UM campus covered by a dense vegetated is 59.1% and the other hand it was smallest than UI campus covered by 65.3%. The spatial distribution of land cover in UM and UI campuses saw in Figure 2.

No	Land cover	UM Campus	Percentage (%)	UI Campus	Percentage (%)
1	Building Covered (Faculties,	67.3	20.9	33.0	10.9
	Colleges, Administrative Buildings)				
2	Paved Open Space Covered	52.9	16.4	35.8	12.6
3	Water bodies Covered	3.0	0.9	22.9	7.5
4	Open Vegetated Covered	23.3	7.2	19.3	6.4
5	Dense Vegetated Covered	189.0	59.1	197.4	65.3

![Figure 2. Spatial Pattern of Land Cover at UM and UI Campuses](image)
3.2. Temporal analysis
Comparative Temporal Trend UM and UI Campus based on 2013-2016 average temp on UM trend is positive from 23°C become 26°C, and the other hand UI Campus with trend negative average temp from 28°C become 27°C. In general temp of UHS comparative between UM Campus and UI Campus found UHS on UM Campus lowest than UHS on UI Campus (Figure 3). This result saw trend temporal UHS Behavior on UM and UI Campus since 2013-2016 had fluctuated on solar radiation and land use cover with positive trend temporal.

![Figure 3. Temporal Trend of UHS Behavior at UM and UI Campus 2013-2016](image)

Land cover as a representation of UHS within difference month of high and low temp. The similar relation between land cover types and UHS Profile and Spatial Pattern on UM Campus and UI Campus found that both campuses had similar relationship saw in Table 3. The spatial patterns of UHS had similar to the spatial pattern of land cover on both campuses. The spatial pattern of UHS related to the spatial pattern of land cover, each land cover types related to a high and low temp of UHS. Both UM Campus and UI Campus found UHS related to vegetation covered and building covered. The vegetation-covered had UHS with the lowest temperature, and the other hand building covered had UHS with high temp.

Table 3. UHS on UM and UI Campuses 2013-2016

Land Cover Type	UHS UM Campus (°C)	UHS UI Campus (°C)						
	2013	2014	2015	2016	2013	2014	2015	2016
Paved Open Space	31	39	33	36	35	34	33	34
Building Surface	31	39	33	36	33	33	31	33
Open Vegetated Surface	31	37	32	35	35	35	33	35
Water Bodies	30	36	31	35	32	31	30	31
Dense Vegetated Surface	31	39	33	34	34	33	32	23

3.3. Air Surface Temperature
The UHS effect on environmental at UM and UI campus show in Table 4. Those land cover had a temperature impact on UHS with maximum air temp >30.0°C. This UHS effected the Air temp both UM and UI campus shown in Table 5. The UM Campus had air temp. >30.0°C started from 10 am until 3 pm, max air temp 33.9°C (3 pm) and min air temp is 27.3°C (07 am). Comparative with UI campus the result air temp >30.0°C started from 10 am until time 3 pm, max air temp is 33.5°C (01 pm) and min temp is 27.1°C (06 am). This result gave the new understanding about different land use cover were a representation of differentiated of air behavior on a comparative spatial-temporal analysis between UM Campus and UI Campus. The result also found UHS Behavior related with UM Campus had building covered more than UI Campus, in general, air temp had min temp (27.3°C) on 07 am show in Figure 4.
Table 4. UHS on UM and UI Campuses 2013-2016

Land Cover Types	UHS UM Campus (°C)	UHS UI Campus (°C)				
	Min	Max	Av.	Min	Max	Av.
Paved Open Space	25	39	32	25	35	30
Building Surface	25	38	32	26	33	30
Open Vegetated Surface	25	37	31	22	35	29
Water Bodies	27	36	31	25	32	29
Dense Vegetated Surface	26	34	30	22	34	28

Figure 4. Temporal Trend of AST Behavior at UM and UI Campus 2013-2015

Table 5. Air Surface Temperature on UM and UI Campuses 2013-2015

Land Cover Types	AST UM Campus(°C)	AST UI Campus(°C)				
	2013	2015	Avg.	2014	2015	Avg.
Paved Open Space	34.4	34.3	34.4	35.7	33.9	35.0
Building Covered	34.5	34.8	34.6	36.7	34.1	35.4
Open Vegetated Covered	34.4	33.2	34.0	38.4	33.3	35.8
Water Bodies Covered	33.9	35.2	34.6	38.0	33.3	35.6
Dense Vegetated Covered	34.1	34.1	34.1	36.7	33.1	34.9

3.4. Human Perception of UHS Impact on University

3.4.1. Human Perception of Temperature and Comfort
Based on respondent on perception intensity study in UM and UI Campus answering that Paved Open Space as an area with hot perception, Water bodies with dominant warm perception and dense vegetation as a neutral perception on hot levels. Perception intensity study in UM and UI Campus the comfort with a land cover that answering that Paved Open Space as an area with uncomforted perception, and dense vegetation as a comfort perception.

Table 6. Perception of Heat and Comfort for Temp. 32-34°C in UM and UI Campuses

Hot Level	UM (%)	UI (%)	Comfort Level	UM (%)	UI (%)
Neutral	1.4	0.6	Very Comfort	4.2	2.8
Slightly Warm	8.3	4.2	Comfort	34.7	22.2
Warm	33.3	20.8	Slightly Comfort	37.5	43.1
Hot	33.3	22.2	Uncomfortable	13.9	9.7
Very Hot	23.7	52.8	Very Uncomfortable	9.7	22.2
	100.0	100.0		100.0	100.0

Table 6 mention of the level of perception of heat intensity impact perception of hot and comfort level between UM and UI. The perception both campuses had answering when temperature more than >30°C,
especially $>34^\circ$C, this conclusion very hot and very comfortable. Its mean both university had the same perception of heat intensity impact on human well-being.

3.4.2. Human Perception of Hot and Comfort and Health and Work

Based on data perception intensity study related to ETI, the heat intensity impact on human health and working activity. UM, the community had perception within a level in hot is neutral and very comfort did not ask the respondent to allow respondent to answer the perception oh heat intensity. The result of perception heat intensity will impact on their health especially getting tired and lethargic when temperature intensity very hot and very comfort condition. The condition also impacts work activity on condition very hot and very comfort will decreasing working or study achievement. The rest all respondent perception saw in Table 7. The conclusion on UM community heat intensity will impact on human well-being as a risk on UM community. Table 7 mention of the level of perception of heat intensity impact perception of health and working/study activity between UM and UI. The perception both campuses had answering when temperature more than >30 °C, especially >34 °C, this conclusion very hot and very comfort will impact on Getting Tired and Lethargic then decreasing of working/study achievement as perception within heat intensity impact on human well-being.

Table 7. Perception of Health and Work on Temp. 32-34°C in UM and UI Campuses

Health	UM (%)	UI (%)	Work/Study	UM (%)	UI (%)
Skin Moisture Problem	12.9	13.7	Decreasing Health	4.2	2.8
Getting Headaches	33.9	19.0	Decreasing Work/Study Capacity	34.7	22.2
Throat Discomforts	17.7	20.7	Decreasing Work/Study Achievement	37.5	43.1
Eye Function	6.5	13.8			
Tiredness and Lethargic	29.0	32.8			
	100.0	100.0		100.0	100.0

4. Conclusion

This result concluded that UHS impact on the university campus with air temperature more than 32°C and heat intensity would impact on human health and work activity, especially on study achievement. This result is significant to an understanding of UHS impact on human well-being in university campus as urban an environment.

References

[1] Khairulmaini O S and Ghaffar F A 2008 Vulnerability and adaptation to climate change threat: Issues and challenges for Malaysia. In Proceedings of the 3rd Regional Symposium on Environment and Natural Resources: Conservation for a green future, Kuala Lumpur 1-22

[2] Tran H, Uchihama D, Ochi S and Yasuoka Y 2006 Assessment with satellite data of the urban heat island effects in Asian megacities. International Journal of Applied Earth Observation and Geoinformation 8 34–48.

[3] Makaremi N, Salleh E, Jaafar M Z and GhaffarianHoseini A 2012 Thermal comfort conditions of shaded outdoor spaces in a hot and humid climate of Malaysia. Building and environment 48 7-14.

[4] Wong N H and Yu C 2005 Study of green areas and urban heat island in a tropical city. Habitat International 29 547-558.

[5] Ishak A, Hassan Z N C, Edros N H, Zamberi M H and Rahman M N A 2011 The Effect of Local Climate on Urban Heat Island Trend; A Case Study in Urban Areas of Ipoh and
Kuantan, Malaysian Meteorological Department (MMD). (The Ministry of Science, Technology and Innovation: Kuala Lumpur, Malaysia)

[6] Kim Y H and Baik J J 2005 Spatial and temporal structure of the urban heat island in Seoul. Journal American Meteorological Society **44** 591-605

[7] Suzuki C 2008 The improvement is heated island monitoring network in Tokyo. Geographical Reports of Tokyo Metropolitan University **43** 115-122

[8] Memon R A, Dennis Y, Leung C and Chun-Ho Liu 2008 A Review of the generation, determination, and mitigation of Urban heat Island. Journal Environmental Sciences **20** 120-128.

[9] Tursilowati L, Tetuko Sri Sumantyo J, Kuze H and Adiningsih, E S 2012 The relationship, between urban heat island phenomenon and land use/land cover changes in Jakarta-Indonesia. Journal of Emerging Trends in Engineering and Applied Sciences **3** 645-653.

[10] Wibowo A, Andry R, Iqbal P A 2013 Spatial-Temporal Analysis of Urban Heat Island in Tangerang City Indonesian Journal of Geography **45** 101-112

[11] Ichinose T, Matsumoto F and Kataoka K 2008 Urban thermal environment and its mitigation through the urban planning process Geographical Reports of Tokyo Metropolitan University **43** 33-40.

[12] Roth M, Winston T L, Chow 2012 A historical review and assessment of urban heat island research in Singapore. Singapore Journal of Tropical Geography (Department of Geography, National University of Singapore and Blackwell Publishing Asia Pty Ltd)

[13] Saadatian O, Kamaruzzaman S and Elias S 2013 The Adaptation of sustainable community indicators for Malaysian campuses as small cities Journal Sustainable Cities and Society **6** 40-50.

[14] Wong N H, Jusuf S K, La Win A A, Thu H K, Negara T S and Xuchao W 2007 An environmental study of the impact of greenery in an institutional campus in the tropics Building and environment **42** 2949-2970

[15] Srivanit M and Hokao K 2013 Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer Building and Environment **66** 158-172

[16] Lin T P, Matzarakis A and Hwang R L 2010 Shading effect on long-term outdoor thermal comfort. Building and Environment **45** 213-221.

[17] Xi T, Li Q, Mochida A and Meng Q 2012 Study on the outdoor thermal environment and thermal comfort around campus cluster in subtropical urban areas Building and Environment **52** 162-170

[18] Geng Y, Liu K, Xue B and Fujita T 2016 Creating a "green university" in China: a case of Shenyang University. Journal of Cleaner Production **61** 13-19. http://dx.doi.org/10.1016/j.jclepro.2012.07.013

[19] Suwarta N and Sari R F 2013 Evaluating UI Green Metric as a tool to support green universities development: assessment of the year 2011 ranking Journal of Cleaner Production **61** 46-53.

[20] Prihodko L and Goward S N 1997 Estimation of Air Temperature Sensed Surface Observations. Remote Sensing Environment **60** 335-346

[21] Wong N H and Jusuf S K 2008 GIS-based greener evaluation on campus master plan. Landscape and urban planning **84** 166-182.

[22] Stewart I D and Oke T R 2012 Local Climate Zones for Urban Temp Studies. Bull. Amer. Meteor. Soc., **93** 1879–1900

[23] Thanapackiam P, Salleh K O, Gaffar F A 2012 Vulnerability and adaptive capacities to slope failure: a study of the Klang Valley Region. Natural Hazard **62** 805-826

[24] Park S, Tuller S E and Jo M 2014 Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning **125** 146-155