Classical and quantum N=1 super W_∞-algebras

L. O. Buffon1, D. Dalmazi2 and A. Zadra1

1Instituto de Física, Universidade de São Paulo
CP 66318, 05389-970, São Paulo, Brazil
lobuffon@uspif.if.usp.br, azadra@uspif.if.usp.br

2UNESP, Campus de Guaratinguetá
CP 205, Guaratinguetá, São Paulo, Brazil
dalmazi@grt000.uesp.ansp.br

Abstract

We construct higher-spin N=1 super algebras as extensions of the super Virasoro algebra containing generators for all spins $s \geq 3/2$. We find two distinct classical (Poisson) algebras on the phase super space. Our results indicate that only one of them can be consistently quantized.

1 Introduction

The infinite-dimensional Virasoro algebra and its extensions play a fundamental rôle in the study of two-dimensional conformal field theories. In particular, the W_N-algebras [1] are non-linear algebras which contain additional generators, corresponding to fields with conformal spins s in the interval $2 \leq s \leq N$. In contradistinction, the W_∞-type algebras [2] [3], generated by an infinite set of higher-spin operators with $s \geq 1$ or 2, are linear algebras. They appear in the continuum formulation of two-dimensional quantum gravity coupled to $c = 1$ matter and also in some discrete multi-matrix models which are related to the $c = 1$ theory [4]–[8]. Our interest in super W_∞ algebras was raised in a recent paper [9], where we studied the Schwinger-Dyson (S-D) equations of the N=1 supersymmetric eigenvalue model [10], which is a supersymmetric version of the hermitian one-matrix model written in terms of eigenvalues. We found a correspondence between those S-D equations and the bosonic sector of an N=1 super W_∞-algebra. In this work, we aim to characterize the full N=1 super algebra, including bosonic and fermionic operators. In fact, we have noticed a lack of explicit formulae in the N=1 case, since the literature mostly concerns N=2 and some of its reductions [11]–[13].

We shall start from a classical realization, that is a Poisson algebra on a phase super space, with a pair of commuting and anti-commuting partners (x, θ) and their conjugate momenta,
(p, Π) respectively. The “quantum” algebras, announced in the title, will be constructed by replacing momenta by differential operators, \(p \rightarrow -i\hbar \partial/\partial x \) and \(\Pi \rightarrow -i\hbar \partial/\partial \theta \), and Poisson brackets by commutators. The Planck’s constant \(\hbar \) will be used to control the classical limit \((\hbar \rightarrow 0) \) in the usual way, \(\frac{1}{\hbar} [\cdot, \cdot] \rightarrow \{\cdot, \cdot\} \). The spin \(s \) of the generators will be classified \(^{[14]}\) according to their maximal power in momenta (or derivatives): for the bosonic operators, the maximal power is \(p^{s-1} \); for the fermionic ones, we have \(p^{s-1/2} \). The phase space (or differential) realization is specially suitable for higher-spin extensions, because the Jacobi identity (which is rather cumbersome to check for \(W_\infty \)-algebras) is already built in and it can be effectively used to derive several brackets, so that the calculations become altogether simpler.

In section 2 we describe the classical \(w_\infty \)-algebra, two supersymmetric extensions and a geometric interpretation. The quantization is presented in section 3 and the corresponding classical limit is discussed. Section 4 is dedicated to final comments and conclusions.

2 Classical N=1 super \(w_\infty \)-algebras

In the bosonic case, the \(w_\infty \)-algebra is equivalent to the Poisson algebra of smooth area-preserving diffeomorphisms on a two-dimensional phase space \((x, p) \). Following refs.\(^{[2]} \) \(^{[3]} \), we introduce the Poisson brackets:

\[
\{f(x, p), g(x, p)\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x} .
\]

(1)

The area-preserving transformations, which preserve the 2-form \(\omega = dx \wedge dp \), correspond to canonical transformations generated by smooth functions \(\rho(x, p) \) via Poisson brackets, \(f \rightarrow f + \epsilon \{f, \rho(x, p)\} \). The smooth functions \(\rho \) can be expanded as \(\rho = \sum_{s,n} \rho_{sn} w_n^{(s)} \), where we take the basis

\[
w_n^{(s)} = x^{n+1} p^{s-1} .
\]

(2)

This set of functions generate the classical \(w_\infty \)-algebra \(^{[2]} \)

\[
\{w_m^{(r)} , w_n^{(s)}\} = [(s-1)(m+1) - (r-1)(n+1)] w_{m+n}^{(r+s-2)} ,
\]

(3)

which can be seen as a higher-spin extension \((s \geq 2) \) of the \(s = 2 \) Virasoro algebra generated by \(w_n^{(2)} = x^{n+1} p \). Introducing a Grassmann-odd spin-3/2 generator \(g_n^{(3/2)} \), the Virasoro algebra can be extended to a superconformal algebra\(^{[4]} \)

\begin{align*}
\{g_m^{(3/2)} , g_n^{(3/2)}\} &= 2w_{m+n+1}^{(2)} , \\
\{g_m^{(3/2)} , w_n^{(2)}\} &= \left[(m+1) - \frac{1}{2}(n+1)\right] g_{m+n}^{(3/2)} , \\
\{w_m^{(2)} , w_n^{(2)}\} &= (m-n)w_{m+n}^{(2)} .
\end{align*}

(4)

Assuming the canonical graded Poisson brackets, \(\{x, p\} = 1 \), \(\{\theta, \Pi\}_+ = -1 \), the most general realization for \(g_n^{(3/2)} \) and \(w_n^{(2)} \), which is compatible with the infinitesimal conformal transformations

\[^{1}\text{Throughout this paper, we shall consider the Neveu-Schwarz sector of the superconformal algebra.}\]
\[\delta x = \{ x, \epsilon w_n^{(2)} + \alpha g_n^{(3/2)} \} = \epsilon x^{n+1} + \alpha \theta x^{n+1} , \quad (5) \]
\[\delta \theta = \{ \theta, \epsilon w_n^{(2)} + \alpha g_n^{(3/2)} \} = \epsilon \left(\frac{n+1}{2} \right) x^n \theta + \alpha x^{n+1} , \quad (6) \]

and with the algebra (4), is given by \[g_n^{(3/2)}(\lambda) = x^{n+1}(\theta p - \Pi) + 2\lambda(n+1)x^n \theta , \quad (7) \]
\[w_n^{(2)}(\lambda) = x^{n+1}p + (n+1)x^n \left(\lambda + \frac{\theta \Pi}{2} \right) , \quad (8) \]

where \(\lambda \) is an arbitrary real constant.

To include higher-spin generators and extend the super Virasoro algebra (4), we make the following assumptions:

i) The lowest spin is \(s = 3/2 \).

ii) There exists a fermionic generator with spin \(s = 5/2 \).

iii) The Poisson algebra of fermionic generators must obey the rule:

\[\{ g^{(r)}, g^{(s)} \} \propto w^{(r+s-1)} + \text{lower spins} . \]

iv) Each generator \(g_n^{(s)} \) is characterized by two indices: \(s \) corresponds to its spin, and \(n \) to its conformal dimension (the eigenvalue of \(L_0 = w_0^{(2)} \)).

We try the most general Ansatz for the next-spin generator, \(g_n^{(5/2)} \), in agreement with the assumptions i)-iv), such that the algebra with \(g_n^{(3/2)} \) gets closed:

\[g_n^{(5/2)} = x^m \theta p^2 + c_m x^m p \Pi + d_m x^{m-1} \Pi + e_m x^{m-2} \theta . \quad (9) \]

In order to calculate the arbitrary constants \(c_m, d_m, e_m \) we verify that:

\[\{ g_n^{(3/2)}, g_m^{(5/2)} \} = (d_m + 2\lambda n c_m) w_n^{(2)} + (c_m - 1) x^{n+m} p^2 + R_{nm} x^{n+m-1} p \Pi \theta + S_{nm} x^{n+m-2} (\theta \Pi - 2\lambda) + T_{nm} x^{n+m-2} , \quad (10) \]

where \(R_{nm}, S_{nm}, T_{nm} \) are given functions of \(n, m, c_m, d_m, e_m \). The next step is to determine the most general linear combinations of the terms on the r.h.s. of (10) (except, of course, \(w_n^{(2)} \) which is already in the algebra), so that they close the algebra with \(g_n^{(3/2)} \). We define such combinations as:

\[V_n^{(3)} = a_m x^m p^2 + f_m x^{m-1} p \Pi \theta + g_m x^{m-2} (\theta \Pi - 2\lambda) + h_m x^{m-2} . \quad (11) \]

It is easy to see that \(\{ g_n^{(3/2)}, V_n^{(3)} \} \) will produce the term \(x^{n+m-1} \theta p^2 \), among others with lower spins. This term must be part of \(g_n^{(5/2)} \) due to the uniqueness of the spin-5/2 generator.

\[^2 \text{Actually, the most general form would be } g_n^{(3/2)} = x^{n+1}(\theta p - \Pi) + (2\lambda n + \gamma)x^n \theta , \text{ but the parameter } \gamma \text{ can be shifted by a canonical automorphism generated by } \gamma \ln |x| . \text{ Therefore, we may take e.g. } \gamma = 2\lambda \text{ with no loss of generality.} \]
Indeed, if there were more than one solution for c_m, d_m, e_m for a given algebra, either the assumption i) or iii) would fail. Therefore, the closure of $\{g_{n-1}^{(3/2)}, V_m^{(3)}\}$ imposes the following conditions:

\[
\begin{align*}
((m - 2n)a_m + f_m)c_{m+n-1} &= 2na_m + f_m, \\
((m - 2n)a_m + f_m)d_{m+n-1} &= 2(\lambda n(f_m - 2(n - 1)a_m) - g_m), \\
((m - 2n)a_m + f_m)e_{m+n-1} &= (m - 2)h_m + 4n\lambda^2(n + m - 2)(2(n - 1)a_m - f_m).
\end{align*}
\]

These equations require that $\lambda = 0$ and we find two possible Ansätze for $g_n^{(5/2)}$, corresponding to two different algebras. All higher spins generators, $w_n^{(s)} (s \geq 2)$ and $g_n^{(s)} (s > 5/2)$, are obtained from $s \leq 5/2$ generators. We end up with $\lambda = 0$ and two possible N=1 supersymmetric w-algebras:

Type 1: This type is generated by

\[
g_n^{(k+3/2)} = x^{n+1}p^k(\theta p - \Pi),
\]

\[
w_n^{(s)} = x^{n+1}p^{s-1} + \frac{1}{2}(n + 1)x^n p^{s-2}\theta\Pi,
\]

with the following algebra:

\[
\begin{align*}
\{g_m^{(r)}, g_n^{(r')}\} &= 2w_{m+n+1}^{(r+r'-1)}, \\
\{g_m^{(r)}, w_n^{(s)}\} &= [(s - 1)(m + 1) - (r - 1)(n + 1)] g_{m+n}^{(r+s-2)}, \\
\{w_m^{(s)}, w_{n}^{(s')}\} &= [(s' - 1)(m + 1) - (s - 1)(n + 1)] w_{m+n}^{(s+s'-2)},
\end{align*}
\]

where $r, r' = 3/2, 5/2, \cdots$ and $s, s' = 2, 3, 4, \cdots$. In fact, this algebra appeared in [12], in a more complicated realization.

Type 2: In this case, the generators split in four families with only even spins in the bosonic sector. The generators are given by:

\[
g_n^{(2a+3/2)} = x^{n+1}p^{2a}(\theta p - \Pi),
\]

\[
\overline{g}_n^{(2a+1)+3/2} = x^{n+1}p^{2a+1}(\theta p + \Pi),
\]

\[
w_n^{(2a+2)} = x^{n+1}p^{2a+1} + \frac{1}{2}(n + 1)x^n p^{2a}\theta\Pi,
\]

\[
k_n^{(2a+2)} = x^{n+1}p^{2a+1}\theta\Pi,
\]

with the corresponding classical algebra,

\[
\begin{align*}
\{g_m^{(r)}, g_n^{(r')}\} &= 2w_{m+n+1}^{(r+r'-1)}, \\
\{g_m^{(r)}, w_n^{(s)}\} &= [(s - 1)(m + 1) - (r - 1)(n + 1)] g_{m+n}^{(r+s-2)}, \\
\{w_m^{(s)}, w_{n}^{(s')}\} &= [(s' - 1)(m + 1) - (s - 1)(n + 1)] w_{m+n}^{(s+s'-2)},
\end{align*}
\]

\[
\{\overline{g}_m^{(r)}, \overline{g}_n^{(r')}\} = -2w_{m+n+1}^{(r+r'-1)},
\]

\[
\{\overline{g}_m^{(r)}, w_n^{(s)}\} = [(s - 1)(m + 1) - (r - 1)(n + 1)] \overline{g}_{m+n}^{(r+s-2)},
\]

4

\{g_m^{(r)} , g_n^{(s)} \} = 2 ((r' - 1)(m + 1) - (r - 1)(n + 1)) k_{m+n}^{(r+s-2)} ,
\{g_m^{(r)} , k^{(s)} \} = \tilde{g}_{m+n+1}^{(r+s-1)} ,
\{\tilde{g}_m^{(r)} , k^{(s)} \} = g_{m+n+1}^{(r+s-1)} ,
\{k^{(s)} , k^{(s')} \} = 0 ,
\{k^{(s)} , w_n^{(s')} \} = \left[(s' - 1)(m + 1) - (s - 1)(n + 1)\right] k_{m+n}^{(s+s'-2)} . \quad (22)

As far as we know, this algebra has not appeared yet in the literature and we shall call it super even \(w_{\infty} \)-algebra. We note, in passing, that the two algebras (17) and (22) have a sub-algebra in common, generated by \(g_n^{(2a+3/2)} \) and \(w_m^{(2a)} \). This algebra is called super \(w_{\infty}' \), since its bosonic sector corresponds to the \(w_{\infty} \) truncated to even spins, i.e. \(w_{\infty}' \).

Both Poisson algebras are related to area-preserving diffeomorphisms: they preserve the 2-form \(w = dx \wedge dp - d\Pi \wedge d\theta \) [11]. The super \(w_{\infty} \)-algebra corresponds to transformations generated by the following kind of functions:
\[\rho_A = \phi(x + \frac{\theta \Pi}{2p}, p) + (\theta p - \Pi) \psi(x, p) , \quad (23) \]
while the super even algebra is related to generating functions of the form:
\[\rho_B = p \phi(x + \frac{\theta \Pi}{2p}, p^2) + \theta \Pi p \varphi(x, p^2) + (\theta p - \Pi) \psi(x, p^2) + (\theta p + \Pi) \eta(x, p^2) . \quad (24) \]

Above, \(\phi, \varphi, \psi \) and \(\eta \) are smooth functions of two variables. These generators correspond to two different invariant sub-groups of (super)area-preserving diffeomorphisms. In fact, if \(\rho_1 \) and \(\rho_2 \) have the form (23), so will have \(\rho_3 = \{ \rho_1, \rho_2 \} \). An analogous result holds for functions of the type (24). We recall that, in a general basis, for arbitrary smooth functions \(\rho(x, p, \theta, \Pi) \), one finds an N=2 super \(w_{\infty} \)-algebra (see [12] [15]).

3 Quantum N=1 super \(W_{\infty} \)-algebra

By “quantum” algebra we mean algebra of commutators, as a quantized version of the Poisson algebras analyzed in section 2. In the bosonic case, the Virasoro algebra is generated by the differential operators
\[L_n \equiv W_n^{(2)} = -i \hbar x^{n+1} \partial \quad , \quad (25) \]
obtained from its classical counterpart \(w_n^{(2)} \) in (2) after the replacement \(p \rightarrow -i \hbar \partial \). The set of higher spin operators
\[W_n^{(s)} = (-i \hbar)^{s-1} x^{n+1} \partial^{s-1} , \quad s \geq 1 \quad , \quad (26) \]
generate the so called \(W_{1+\infty} \)-algebra, given by:
\[[W_m^{(r)} , W_n^{(s)}] = -i \hbar \sum_{k \geq 0} (-i \hbar)^k C_{mn}^{rs}(k) W_{m+n-k}^{(r+s-2-k)} \quad , \quad (27) \]
\[C_{mn}^{rs}(k) = \frac{1}{(k+1)!} \left(\frac{\Gamma(r) \Gamma(n+k+1)}{\Gamma(r-k-1) \Gamma(n-k+1)} - \frac{\Gamma(s) \Gamma(m+k+1)}{\Gamma(s-k-1) \Gamma(m-k+1)} \right) . \quad (28) \]
The generator (25) can be generalized into the form (see [13])

\[W_n^{(2)}(\lambda) = -i\hbar \left(x^{n+1} \partial + \lambda(n+1)x^n \right) \] . (29)

We are interested in a basis of operators which satisfy the following condition (originally used to discover the \(W_\infty \)-algebra [3]):

\[[W_m^{(r)}, W_n^{(s)}] = -i\hbar \left(c_0 W_{m+n}^{(r+s-2)} + c_1 W_{m+n-2}^{(r+s-4)} + \cdots \right) \] . (30)

This sort of basis is convenient because the algebra can be truncated in only even-spin sub-algebras. Moreover, it admits a central extension [3].

The condition (30) restricts the possible values of the parameter \(\lambda \). In analogy to the last section, we take an Ansatz for \(W_m^{(3)} \) and we find two solutions (in agreement with [15]):

i) If \(s \geq 1 \), we have \(\lambda = 1/2 \) and the \(W_{1+\infty} \)-algebra. The first few generators are given below:

\[W_n^{(1)} = x^{n+1}, \]
\[W_n^{(2)} = (-i\hbar) \left(x^{n+1} \partial + \frac{1}{2}(n+1)x^n \right), \]
\[W_n^{(3)} = (-i\hbar)^2 \left(x^{n+1} \partial^2 + (n+1)x^n \partial \right), \]
\[W_n^{(4)} = (-i\hbar)^3 \left(x^{n+1} \partial^3 + \frac{3}{2}(n+1)x^n \partial^2 + \frac{1}{2}n(n+1)x^{n-1} \partial \right) \] . (31)

Higher spin operators can be obtained via commutators.

ii) If \(s \geq 2 \), one has two equivalent cases, \(\lambda = 0 \) or 1. When \(\lambda = 0 \) one finds a \(W_\infty \)-algebra, generated by:

\[W_n^{(2)} = (-i\hbar) x^{n+1} \partial, \]
\[W_n^{(3)} = (-i\hbar)^2 \left(x^{n+1} \partial^2 + \frac{1}{2}(n+1)x^n \partial \right), \]
\[W_n^{(4)} = (-i\hbar)^3 \left(x^{n+1} \partial^3 + (n+1)x^n \partial^2 \right) \], etc. (32)

The solution \(\lambda = 1 \) corresponds to an automorphism of the above generators, leading to an isomorphic \(W_\infty \)-algebra.

Now we present the \(N=1 \) supersymmetric extension of the \(W_\infty \)-algebra. First, we introduce an anti-commuting variable \(\theta \) and proceed in analogy to the classical study, by making the following assumptions:

i) The lowest spin (\(s = 3/2 \)) generator [13] is

\[G_n^{(3/2)} = (-i\hbar) \left(x^{n+1}(\theta \partial - \partial \theta) + 2\lambda(n+1)x^n \theta \right) \] . (33)

The operators \(L_n(\lambda) = -i\hbar(x^{n+1}\partial + (a + \lambda n)x^n) \) also generate the Virasoro algebra. However, the parameter \(a \) can be arbitrarily shifted by the homeomorphism \(L_n \rightarrow x^{ikc} L_n x^{-ikc} \Rightarrow a \rightarrow a + c \). Thus, we may take \(a = \lambda \).
Together with the spin-2 operator,
\[W_n^{(2)} = (-i\hbar) \left(x^{n+1} \partial + \frac{1}{2} (n+1)x^n (\theta \partial_\theta + 2\lambda) \right) , \] (34)
they generate the super Virasoro algebra:
\[[G_m^{(3/2)}, G_n^{(3/2)}] = 2i\hbar W_{m+n+1}^{(2)} , \]
\[[G_m^{(3/2)}, W_n^{(2)}] = i\hbar \left((m+1) - \frac{1}{2} (n+1) \right) G_{m+n}^{(3/2)} , \]
\[[W_m^{(2)}, W_n^{(2)}] = i\hbar (m-n) W_{m+n}^{(2)} , \] (35)
whose classical limit coincides with the algebra \[\mathfrak{g} \].

ii) We assume the existence of a spin-$5/2$ generator, whose most general expression is:
\[G_n^{(5/2)} = (-i\hbar)^2 \left(x^{n+1} \partial (\theta \partial + c_n \partial_\theta) + d_n x^n \partial_\theta + e_n x^{n-1} \theta \right) , \] (36)
where the constants c_n, d_n, e_n must be determined.

iii) The anti-commutation algebra should obey the rule:
\[[G_m^{(r)}, G_n^{(s)}] \propto W_{m+n+1}^{(r+s-1)} + \text{lower spins} \]. (37)

iv) Each operator $G_n^{(s)}$ is characterized by its spin (s) and its conformal dimension (n).

Under these assumptions, we find two solutions, $\lambda = 0$ or $1/2$, which are related to each other by an automorphism. Therefore, we may simply take $\lambda = 0$ and the resulting $N=1$ super W_{∞}-algebra can be generated by the following basis of operators (we present the lowest spins, since higher spins can be produced by commutators):

\[G_n^{(3/2)} = (-i\hbar)x^{n+1} (\theta \partial - \partial_\theta) , \]
\[G_n^{(5/2)} = (-i\hbar)^2 \left(x^{n+1} \partial (\theta \partial + \partial_\theta) + (n+1)x^n \partial_\theta \right) , \]
\[G_n^{(7/2)} = (-i\hbar)^3 \left(x^{n+1} \partial^2 (\theta \partial - \partial_\theta) - 2(n+1)x^n \partial \partial_\theta - n(n+1)x^{n-1} \partial_\theta \right) , \]
\[G_n^{(9/2)} = (-i\hbar)^4 \left(x^{n+1} \partial^3 (\theta \partial + \partial_\theta) + 3(n+1)x^n \theta \partial^2 + 3n(n+1)x^{n-1} \theta \partial^2
+ (n-1)n(n+1)x^{n-2} \partial_\theta \right) , \]
\[W_n^{(2)} = (-i\hbar) \left(x^{n+1} \partial + \frac{1}{2} (n+1)x^n \theta \partial_\theta \right) , \]
\[K_n^{(2)} = (-i\hbar)^2 x^{n+1} \partial \partial_\theta \partial \theta , \]
\[W_n^{(4)} = (-i\hbar)^3 \left(x^{n+1} \partial^3 + \frac{3}{2} (n+1)x^n \partial^2 + \frac{1}{2} n(n+1)x^{n-1} \partial
- \frac{1}{2} (n+1)x^n \partial \partial_\theta \partial \theta \right) , \]
\[K_n^{(4)} = (-i\hbar)^4 \left(x^{n+1} \partial^3 + (n+1)x^n \partial^2 \right) \partial_\theta \theta \]
We calculated various commutators (up to spin $s=6$; further commutators can be obtained by means of the Jacobi identity), but we were unable to find a closed form for all structure coefficients. The lowest-spin algebra is listed below:

\[
W_n^{(6)} = (-i\hbar)^5 \left(x^{n+1} \partial^5 + \frac{5}{2} (n+1) x^n \partial^4 + 2n(n+1)x^{n-1} \partial^3 \\
+ \frac{1}{2} (n-1)n(n+1)x^{n-2} \partial^2 (1 + \partial_\theta) - \frac{1}{2} (n+1)x^n \partial^4 \partial_\theta \right), \\
K_n^{(6)} = (-i\hbar)^6 \left(x^{n+1} \partial^5 + 2(n+1)x^n \partial^4 + n(n+1)x^{n-1} \partial^3 \right) \partial_\theta.
\]

(38)

We have also verified that the operators in (38) become the generators (18-21) in the classical limit (given by the associations $-i\hbar \partial \rightarrow p$, $-i\hbar \partial_\theta \rightarrow \Pi$, when $\hbar \rightarrow 0$). Therefore, we may say that the generators (38) realize a (quantum) N=1 super W_∞-algebra.

Concerning the bosonic sector, composed by $W_n^{(2s)}$ and $K_n^{(2r)}$, it is possible to take linear combinations and find a basis with two decoupled sub-algebras \mathfrak{l}. For instance, if we define

\[
\tilde{W}_n^{(2)} = K_n^{(2)} + i\hbar W_n^{(2)},
\]

the resulting lowest-spin algebra becomes

\[
[\tilde{W}_m^{(2)}, \tilde{W}_n^{(2)}] = (-i\hbar)^2 (n-m) \tilde{W}_{m+n}^{(2)}, \\
[\tilde{W}_m^{(2)}, K_n^{(2)}] = 0, \\
[K_m^{(2)}, K_n^{(2)}] = (-i\hbar)^2 (n-m) K_{m+n}^{(2)}.
\]

(41)
This decoupling was also verified for higher spins. The redefined \tilde{W}-operators turn out to generate an algebra isomorphic to the even-spin sector of the bosonic $W_{1+\infty}$-algebra. On the other hand, the algebra of the operators $K_n^{(2r)}$ is isomorphic to the even-spin subalgebra of the W_∞-algebra. Therefore, the bosonic sector of the super algebra generated by (38) realizes a $(W_\infty + W_{1+\infty})$-algebra [9] [13] [14].

It is tempting to call “N=1 super $(W_\infty + W_{1+\infty})$-algebra” the one generated by the whole set of operators in (38). We believe this is acceptable at the quantum level, i.e. as long as $\bar{\hbar} \neq 0$. However, in the classical limit ($\hbar \to 0$) the transformation (40) does not give independent generators and the bosonic sector does not split in two decoupled sub-algebras. This implies that the Poisson algebra generated by (18-21) should not be called a “classical super $(w_\infty + w_{1+\infty})$” – we had better keep the name N=1 super even w_∞-algebra.

4 Final remarks, conclusion and open questions

We have constructed the N=1 supersymmetric extensions of the W_∞-algebras. At the classical level, we found two Poisson algebras, the super w_∞ and the super even w_∞. In the quantum case, we found only one consistent algebra, denominated super $(W_\infty + W_{1+\infty})$. Its classical limit coincides with the super even w_∞. The algebra $(W_\infty + W_{1+\infty})$ was first observed in [12] as a truncation of a N=2 super W_∞-algebra. We stress that we obtained it in a constructive way, without any embedding in higher algebras.

Although we did not find a general expression for all the quantum operators, we noticed that the available generators can be rewritten in reduced forms. For instance, the bosonic K-operators in (38) can be expressed as

$$K_n^{(2r)} = (-i\hbar)^{2r} \partial^{r-1} x^{n+1} \partial^r \partial_\theta = p^{r-1} x^{n+1} p^r \Pi \theta .$$ (42)

The fermionic operators in (38) can be written as linear combinations of

$$\tilde{G}_n^{(s+1/2)} = (-i\hbar)^s \left(\partial^{s-1} x^{n+1} \partial \theta + (-)^s x^{n+1} \partial^{-1} \partial_\theta \right) = p^{s-1} x^{n+1} \theta p + (-)^s x^{n+1} p^{s-1} \Pi .$$ (43)

Therefore, we expect the quantum operators to correspond to some special ordering of the classical generators. If we could understand this ordering we might eventually find a closed form for the complete algebra.

We have shown how the super even w_∞-algebra can be obtained from the quantum super $(W_\infty + W_{1+\infty})$ by means of a suitable limit ($\hbar \to 0$). It is natural to ask whether there is any quantum super W_∞-algebra whose classical limit is the super w_∞ given by eqs.(43-47). We do not have an answer to that question yet. It would also be interesting to study the possible central extensions [3] of these quantum algebras.

\footnote{In the quantum case, we may choose a unit system where $\hbar = 1$.}
Acknowledgements

The work of L.O.B. and A.Z. and part of the work of D.D. were supported by CNPq and Fapesp.

References

[1] A.B. Zamolodchikov, Teor. Matt. Fiz. 65 (1985) 347.
[2] I. Bakas, Phys. Lett. B228 (1989) 57.
[3] C.N. Pope, L.J. Romans and X. Shen, Phys. Lett. B236 (1990) 173.
[4] M. Fukuma, H. Kawai and R. Nakayama, Int. J. of Mod. Phys. A6 (1991) 1385.
 R. Dijkgraaf, H. Verlinde and E. Verlinde, Nucl. Phys. B348 (1991) 435.
[5] A. Mironov and B. Morozov, Phys. Lett. B252 (1990) 47.
 L. Alvarez-Gaumé, C. Gomez and J. Lacki, Phys. Lett. B253 (1991) 56.
[6] H. Itoyama and Y. Matsuo, Phys. Lett. B255 (1991) 202.
[7] H. Itoyama and Y. Matsuo, Phys. Lett. B262 (1991) 233.
[8] L. Bonora and C.S. Xiong, Phys. Lett. B347 (1995) 41; Nucl. Phys. B434 (1995) 408.
[9] L.O. Buffon, D. Dalmazi and A. Zadra, hep-th/9604184.
[10] L. Alvarez-Gaumé, H. Itoyama, J.L. Mañés and A. Zadra, Int. J. Mod. Phys. A7 (1992) 5337.
[11] E. Sezgin and R. Sokatchev, Phys. Lett. B227 (1989) 103.
[12] C.N. Pop and X. Shen, Phys. Lett. B236 (1990) 21.
[13] E. Bergshoeff, C.N. Pope, L.J. Romans, E. Sezgin and X. Shen, Phys. Lett. B245 (1990) 447.
[14] E. Bergshoeff, M. Vasiliev and B. de Wit, Phys. Lett. B256 (1991) 199.
[15] E. Bergshoeff, B. de Wit and M. Vasiliev, Nucl. Phys. B366 (1991) 315.