Regular Exercise Shapes Healthy Gut Microbiome

Abstract

The gut microbiota is the collective microbial community colonized within the lumen of the intestinal tract of the host. A growing body of evidence has demonstrated that the microbiome is capable of responding to environmental, dietary, pathological and genetic factors. Particularly of interest is novel research into the response of the gut microbiota to exercise stimulus as a potential therapeutic mechanism for exercise on metabolic diseases. Although experimental studies investigating the mechanisms governing the exercise-induced changes in the microbiota have been limited, preliminary data from animal and human studies implicate the microbiota in a wide range of host metabolic pathways that are modulated by exercise. This review outlines some of these findings and frames the microbiota within the context of energy metabolism, exercise and disease.

Keywords: Exercise; Dysbiosis, Microbiota; Obesity; Metabolic diseases; Tenericutes phylum

Introduction

A recent dietary, cultural and behavioural shift, accompanied with the increased availability of calorie-rich foods has led to the development of an obesogenic lifestyle. Obesity is currently ranked as the most prevalent preventable health related disorder the world over. Estimates suggest that there are approximately 2.1 billion people in the world who are either categorized as overweight or obese, a statistic that has risen substantially in the last few decades [1]. Classically, obesity was viewed in a paradigm of energetics, where it was the product of caloric intake against energy expenditure. However, obesity is now recognized as a multifactorial phenomenon resulting from complex and interconnected factors including environmental, social, physiological, genetic and neural [2]. The gastrointestinal tract represents the first interface between ingested nutrients and the host metabolism. Recent research has implicated the gut microbiota, the entirety of the microbial community residing with the intestinal lumen, in the development of metabolic diseases [3-7]. Currently under-examined by the literature is the relationship between exercise and metabolic diseases understood through the lens of changes in gut microbiota. This narrative review seeks to outline key concepts and developments in the role gut microbiota in metabolism, immunity and pathogenesis, the effects of exercise on the intestinal composition and the therapeutic benefits of exercise in changing the characteristics and properties of the gut microbiota.

Exercise-Induced Changes in Gut Microbiota

Exercise has long been recognized as a useful therapy for a wide host of pathologies and diseases including diverse cancers, cardiovascular disease, diabetes, anxiety, depression and systemic inflammation. The mechanisms through which exercise mediates its therapeutic effects on these disease states are both numerous and interconnected. One such, albeit largely unexplored, mechanism might be exercise-mediated manipulation of the gut microbiome. Following the seminal work by Bäckhed et al. [8], the researchers later established a potential role for the gut microbiota in the regulation of metabolism in skeletal muscle [9]. This putative muscle-microbiota axis has undergone limited further investigation, albeit initial findings in animal models and a study in humans have revealed promising results. In a study examining the effects of exercise on the diversity of the microbiota, researchers observed a change in over two thousand bacterial taxa between mice undergoing exercise and their sedentary counterparts [10]. In particular, exercise has been demonstrated to increase the prevalence of the Lactobacillales order and reduce bacteria from the Tenericutes phylum within the microbiota [10,11]. This finding was corroborated by a reported increase in the Lactobacillus genus in obese rats having undergone exercise [12]. Studies in both humans and animals have also elucidated that exercise induces an increase in microbial diversity within the gut [13-16]. In the only available study carried out on humans to date, athletic rugby players were compared against healthy controls to determine microbiota composition. Athletes demonstrated approximately twice as many phyla, families and genera of bacteria than their non-athletic counterparts, suggesting a role for exercise in increasing microbiota diversity. It is worth noting that the role of exercise could not be conclusively established given the inability to control for diet, a factor with known consequences on the gut microbiome. Following the seminal work by Bäckhed et al. [8], the researchers later established a potential role for the gut microbiota in the regulation of metabolism in skeletal muscle [9]. This putative muscle-microbiota axis has undergone limited further investigation, albeit initial findings in animal models and a study in humans have revealed promising results. In a study examining the effects of exercise on the diversity of the microbiota, researchers observed a change in over two thousand bacterial taxa between mice undergoing exercise and their sedentary counterparts [10]. In particular, exercise has been demonstrated to increase the prevalence of the Lactobacillales order and reduce bacteria from the Tenericutes phylum within the microbiota [10,11]. This finding was corroborated by a reported increase in the Lactobacillus genus in obese rats having undergone exercise [12]. Studies in both humans and animals have also elucidated that exercise induces an increase in microbial diversity within the gut [13-16]. In the only available study carried out on humans to date, athletic rugby players were compared against healthy controls to determine microbiota composition. Athletes demonstrated approximately twice as many phyla, families and genera of bacteria than their non-athletic counterparts, suggesting a role for exercise in increasing microbiota diversity. It is worth noting that the role of exercise could not be conclusively established given the inability to control for diet, a factor with known consequences on the microbiome [16-18]. Evans et al. [13] established that exercise not only counteracted the changes in the microbiota caused by a high-fat diet, but also induced significant shifts in the major phyla in the same direction and order of magnitude as changes caused by the high-fat diet [13,19]. In another study, exercise increased the percentage of Bacteroidetes and decreased Firmicutes phyla,
irrespective of the diet involved. The researchers also found an inverse correlation with the amount of exercise performed and the ratio of Bacteroidetes to Firmicutes [13], although results by Kang et al. [19] seem to contradict this finding. It has also been reported that the metabolic state of the individual may be an important factor in determining exercise-induced changes in the microbiota, given that diabetic 9 mice reported different microbiota shifts than non-diabetic mice [20]. The interaction between the gut and the microbiome appears to be bidirectional as findings by Hsu et al. [21] implicate the composition of the gut with exercise performance. Mice mono-colonized with Bacteroides fragilis had different performance on a regime of strenuous exercise [21]. Mechanisms explaining the interactions between the gut microbiota and exercise have been the subject of limited research. Nevertheless, potential mechanisms for the microbiota-muscle axis are discussed below.

Exercise-Induced Changes in Ampk and Fiaf

In the work by Bäckhed et al. [8] the researchers noted two mechanisms by which the microbiota interacts with skeletal muscle. First, AMPK, an enzyme previously discussed for its role in energy homeostasis, fatty acid oxidation and glucose uptake in muscles, was found in elevated concentrations in the muscular tissue of GF mice compared to their conventional littermates. In other words, the presence of the microbiome reduced fatty acid oxidation and glucose uptake in skeletal muscle tissue [9,22,23]. Secondly, the presence of the microbiota suppressed the expression of FIAF, an inhibitor of lipoprotein lipase peroxisomal proliferator which is implicated in fatty acid oxidation in muscle, in an AMPK independent mechanism. Bäckhed et al. [8] also previously reported increased locomotion in GF animals, though the cause of this activity is unclear [8]. Further research is necessary to elucidate the mechanisms that govern this interaction.

Modification of Bile Acids Profile

Numerous studies have demonstrated that an increase in physical activity is inversely correlated with the amount of bile acids within the feces [24-26]. Bile acids are generally antimicrobial in nature. However, this antimicrobial effect differentially applies pressure to the microbiota species depending on the acid profile. For example, in rats taking dietary cholic acid supplementation, the microbiota demonstrated changes in diversity and composition, with a decrease in the Bacteroidetes/Firmicutes ratio [27]. Other researchers have highlighted unique bile acid pathways that influence energy metabolism such as farnesoid X receptor [28-30], and cyclic-AMP-dependent thyroid hormone-activating enzyme type 2 iodothyronine deiodinase [31]. The exact role of these mediators is unknown to date, requiring further research to identify whether or not they contribute to the exercise-induced changes in the microbiome.

Short-Chain Fatty Acids (SCFAs)

The existence of a microbiota-muscle axis has further been supported by research demonstrating that exercise has a profound effect on the SCFA profile. SCFAs have already been discussed for their vital role in governing energy homeostasis by means of the microbiota. For example, Matsumoto et al. [32] found that running exercises increased fecal levels of butyrate, a change associated with an uptick in butyrate-producing bacteria within the gut [32]. Interestingly, butyrate has been linked with gene regulation, oxidative stress, intestinal barrier function and intestinal motility [33]. Ultimately, SCFAs play a vital role in regulating satiety and energy homeostasis, as previously described, which may present a mechanism by which exercise may induce changes in the microbiome.

The Influence of Exercise on Mucosal Immunity and Inflammation

Another potential mechanism of gut microbiota mediated effects on skeletal muscle is via TLR activation by bacterial components. Muscles express both TLR-4 and TLR-5, which may be activated by LPS and flagellin, respectively, translocated from the gut lumen into circulation [34]. These molecules may then initiate the production of pro-inflammatory cytokines from muscle cells. In fact, the activation of TLR-4 by LPS injections led to muscle atrophy [35]. Moreover, a study by Oliveira et al. found that physical exercise, whether acute or chronic, induced a significant suppression in the TLR4 signaling pathway in the liver, muscle, and adipose tissue, reduced LPS serum levels, and improved insulin signaling and sensitivity [36]. Other immunological effects of exercise include the upregulation of IL-6, IL-4, IL-10, TGF-β, TNF-α and IL-12 expression while the gene expression of IL-2 was downregulated in the duodenum of exercised mice [37,38]. Other putative mechanisms that have been investigated in the literature include the role of myokines, such as interleukin-6 [39-42], gut transit time [43-45] and the hypothalamic-pituitary-adrenal axis [46].

Conclusion

The overwhelming consensus within the literature confirms a therapeutic role for exercise in promoting good health. However, if this beneficial effect is mediated, even partially, by the gut microbiota, there is limited research to substantiate it. The mechanisms by which the gut microbiota exerts control over the host’s energy metabolism and satiety are being continually elucidated in animal and human models of obesity. A number of mediators identified in these pathways are also modified by exercise-induced changes, including inflammatory mediators, cytokines, short chain fatty acids, and other regulators of energy homeostasis. It remains unresolved as to whether or not the therapeutic effect of exercise can be explained via the microbiota. Until further studies with germ free or gene knockout models can be performed, putative mechanisms remain largely theoretical. Moreover, study findings have reported discrepancies that may arise from variations in exercise type and duration, diet, metabolic state and genetics of the animal strains. Nevertheless, manipulation of the gut microbiota may present a powerful tool to prevent or treat a number of metabolic diseases and pathologies in the future.

References

1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9945): 766-781.
2. Karatsoreos IN, Thaler JP, Borgland SL, Champagne FA, Hurd YL, et al. (2013) Food for thought: hormonal, experiential, and neural influences on feeding and obesity. J Neurosci 33(45):17610-17616.

3. Musso G, Gambino R, Cassader M (2011) Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Ann Rev Med 62(1):361-380.

4. Conterno L, Fava F, Viola R, Tuohy KM (2011) Obesity and the gut microbiota does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes & Nutrition 6(3):241-260.

5. Shen J, Obin MS, Zhao L (2013) The gut microbiota, obesity and insulin resistance. Mol Aspects Med 34(1):39-58.

6. Villanueva Millán MJ, Pérez Matute P, Otoe JA (2015) Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 71(3):509-525.

7. Graham C, Mullen A, Whelan K (2015) Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews 73(6):376-385.

8. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718-15723.

9. Bäckhed F, Manchester JK, Semenovitch CF, Gordon JI (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979-984.

10. Choi J, Eum S, Rampersaud E, Daunert S, Abreu M, et al. (2013) Exercise attenuates PCB induced changes in the mouse gut microbiome. Environ Health Perspect 121(6):725-730.

11. Queipo Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez Zumaquero JM, et al. (2013) Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. Plos ONE 8(5):e65465.

12. Petriz B, Castro A, Almeida J, Gomes C, Fernandes G, et al. (2014) Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 15(1):511.

13. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, et al. (2012) Butyrate. Current Opinion in Biotechnol Biochem 72(2):572-576.

14. Ray K (2014) Gut microbiota: Tackling the effects of diet and exercise on the gut microbiota. Nat Rev Gastroenterol Hepatol 11(8):456-456.

15. Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, et al. (2015). Voluntary and forced exercise differentially alters the gut microbiota in C57BL/6J mice. J Appl Physiol 118(8):1059-1066.

16. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, et al. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 63(12):1913-1920.

17. Flint HJ, Duncan SH, Scott KP, Louis P (2014) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74(01):13-22.

18. O’Sullivan O, Cronin O, Clarke SE, Murphy EF, Molloy MG, et al. (2015) Exercise and the microbiota. Gut Microbes 6(2):131-136.

19. Kang SS, Jerald PR, Kurti A, Miller ME, Cook MD, et al. (2014) Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 9(1):36.

20. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, et al. (2015) Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab 40(7):749-752.

21. Huu YJ, Chiu CC, Li YP, Huang WC, Huang YT, et al. (2015) Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res 29(2):552-558.

22. Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, et al. (2013) The role of short-chain fatty acids in the interplay between gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325-2340.

23. Kasaschki M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2869-2894.

24. Hagio M, Matsumoto M, Yajima T, Hara H, Ishizuka S (2010) Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J Appl Physiol 109(3):663-668.

25. Sutherland WH, Nye ER, Macfarlane DJ, Robertson MC, Williamson SA (1991) Fecal bile acid concentration in distance runners. Int J Sports Med 12(6):533-536.

26. Wertheim BC, Martinez ME, Ashbeck EL, Roe DJ, Jacobs ET, et al. (2009) Physical activity as a determinant of fecal bile acid levels. Cancer Epidemiol Biomarkers Prev 18(5):1591-1598.

27. Islam KB, Fujiko S, Hagio M, Fujii N, Ishizuka S, et al. (2011) Bile acid is a host factor that regulates the composition of theecal microbiota in rats. Gastroenterology 141(5):1773-1781.

28. Wang H, Chen J, Holllister K, Sovers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/RXR. Mol Cell 3(5):543-553.

29. Claudel T (2005) The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25(10):2020-2030.

30. Cipriani S, Mencarelli A, Palladino G, Fiorucci S (2009) FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res 51(4):771-784.

31. Watanebe M, Houten SM, Matakui C, Christoffolete MA, Kim BW, et al. (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484-489.

32. Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiiji H, et al. (2006) Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 72(2):572-576.

33. Leonel A, Alvarez Leite J (2012) Butyrate. Current Opinion in Clinical Nutrition and Metabolic Care 15(5):474-479.

34. Bindels LB, Delzenne NM (2013) Muscle wasting: The gut microbiota as a new therapeutic target? Int J Biochem Cell Biol 45(10):2186-2190.

35. Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP (2011) Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J 25(1):99-110.
36. Oliveira AG, Carvalho BM, Tobar N, Ropelle ER, Pauli JR, et al. (2011) Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DiO rats. Diabetes 60(3): 784-796.

37. Viloria M, Lara Padilla E, Campos Rodríguez R, Jarillo Luna A, Reyna Garfías H, et al. (2011) Effect of Moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol Invest 40(6): 640-656.

38. Macpherson AJ, Köllner Y, McCoy KD (2015) The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 36(8): 460-470.

39. Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance. Exerc Immunol Rev 12: 6-33.

40. Van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, et al. (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88(7): 3005-3010.

41. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98(4): 1154-1162.

42. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3): 859-904.

43. Oettle GJ (1991) Effect of moderate exercise on bowel habit. Gut 32(8): 941-944.

44. Zhu L, Liu W, Alkhouri R, Baker RD, Bard E, et al. (2014) Structural changes in the gut microbiome of constipated patients. Physiol Genomics 46(18): 679-686.

45. Martin D (2011) Physical activity benefits and risks on the gastrointestinal system. South Med J 104(12): 831-837.

46. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10): 701-712.