关于成人骨肉瘤与特立帕肽的美国上市后监测研究：研究设计与首个7年的研究发现

The US Postmarketing Surveillance Study of Adult Osteosarcoma and Teriparatide: Study Design and Findings From the First 7 Years

Elizabeth B Andrews,1 Alicia W Gilsenan,1 Kirk Midkiff,1 Beth Sherrill,1 Yun Wu,1 Beth H Mann,2 and Daniel Masica2

1RTI Health Solutions, Research Triangle Park, NC, USA
2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA

摘要

于2003年启动的长达15年的骨肉瘤监测研究，是对美国食品和药物管理局的上市后承诺措施，以评估特立帕肽，rhPTH(1–34)，一种重组人甲状旁腺素类似物（治疗骨质疏松症的自我注射药物），与骨肉瘤患病的潜在相关性，该相关性源于临床前（动物）实验的发现。2003年1月1日及之后诊断出的成人（年龄≥40岁）原发性骨肉瘤病例，都通过美国基于人群设立的州立、地区性及综合癌症中心登记确诊。是否使用过特立帕肽、患者资料、危险因素等信息均在取得患者知情同意后通过电话采访患者或其代理人的方式获得。2004年6月至2011年9月30日，2003-2009年间诊断出的1,448例病例通过参加癌症登记确诊（约占美国此段时期成人病例的62%）；549例患者或其代理人接受了采访。在平均年龄、性别、种族、地理分布、肿瘤类型与肿瘤生长部位方面，受访患者与未受访患者之间无显著差别。受访患者的平均年龄为61岁，其中46%为女性，86%是白人，77%的病例受访时仍在世。研究收集的数据提供了大量成人骨肉瘤（一种罕见的骨恶性肿瘤）的描述性信息。经过7年研究，没有发现既往使用特立帕肽治疗的骨肉瘤患者。因此，这项长达15年的研究，在大约进行到一半时，尚未发现任何模式，表明使用特立帕肽和人骨肉瘤之间存在因果联系。

引言

2003年启动的骨肉瘤监测研究，是特立帕肽上市后对美国食品和药物管理局（FDA）的承诺措施，此药物是一种重组人甲状旁腺素（PTH）类似物，本研究试图评估特立帕肽与人体骨肉瘤的潜在相关性，该相关性源于临床前（动物）实验的发现。2002年11月特立帕肽在美国批准上市。特立帕肽激发成骨细胞的活性大于破骨细胞，从而促进骨小梁和骨皮质（外和/或内）表面的新骨形成。此药物被推荐用于治疗有骨折高发风险的患有骨质疏松症的绝经后女性，患有原发性或继发性骨质疏松症的男性，以及患有持续全身性激素治疗相关的骨质疏松症的女性和男性。

最初给人注射特立帕肽的临床前实验发现具有剂量依赖性的骨肉瘤发生风险的提高[1]。尽管后续研究解释了对大鼠无影响（安全）的剂量，而且食蟹猴[3]的长期研究也没有发现骨肿瘤产生，但美国药品标签上对医师和患者标明了药物有可能导致骨肉瘤的警告，需在排除了其他骨肉瘤危险因素的情况下使用（例如Paget骨病、既往接受过放射治疗、骨骺尚未闭合的儿童和青年），并且限定使用时间最长为2年。

人体骨肉瘤是一种原发性恶性骨肿瘤（瘤细胞可产生骨基质的一种肉瘤），有两个高发年龄段，分别为青少年和老年人，男性发病率稍高于女性[4]。美国的成人发病率随年龄而不同：25-29岁发病率为1.7/106；在60岁以上发病率为4.2/106[5]。成人骨肉瘤的病因尚不清楚，但现有研究发现其与Paget骨病和骨放疗有关[6,7]。此外，罕见的遗传性疾病，包括Li-Fraumeni综合征（p53基因突变）和视网膜母细胞瘤（pRb缺失），会增加骨肉瘤的发病风险[8]。还有一些其他潜在的危险因素，包括肿瘤生长部位的外伤[7]。一项研究评估了职业暴露的潜在影响，包括杀虫剂接触史[9]。饮用水中的氟化物作为儿童和年轻人骨肉瘤发病的可能危险因素，得到了广泛的研究，但研究数据大都不支持二者有因果联系[10,11]。目前，大部分确诊的骨肉瘤患者没有明确的危险因素[8]。
由于特立帕肽的使用有限，而且骨肉瘤病例数量少，上市药物安全性的流行病学评估常用的队列和病例对照研究，在初始研究设计时被认为不适解决该研究问题。因此，采用了监测研究，研究对象为通过基于人群的癌症登记和医学癌症中心登记而确诊的成人骨肉瘤病例。特立帕肽的使用通过采访确定，并与患病人口的预期使用比率相比较，以确定是否存在骨肉瘤发病率增加的潜在信号。本文报告了此项历时15年的研究的方法和首个7年的中期结果。之前已经发表了在五个北欧国家进行的相关骨肉瘤监测研究的中期结果[12]。

病例和方法

研究设计

此流行病学研究是通过美国癌症登记确定成人骨肉瘤病例。骨肉瘤的诊断日期、肿瘤形态和局部解剖、患者联系信息通过癌症登记获得；药物使用情况、环境因素、人口资料、简要病史通过对患者（或代理人）的电话采访获得。对于每年的患者样本，患者报告的使用骨质疏松症药物的情况通过图表提取而核实。在长期持续性信号检测的基础上进行数据监测。本研究结束后总结报告将面世。

本研究的调查者为美国北卡三角洲国际研究院(RTI)的流行病学家，RTI是一所独立的非赢利研究机构。研究由美国礼来公司（一家制药公司）赞助，由骨肉瘤监测研究顾问委员会对中期结果提出建议和评价，委员会成员非RTI或礼来公司职员。研究进度定期向美国食品药品监督管理局、欧洲药品管理局等世界性监管机构报告。

病例确认

病例目前经由15所登记中心—12所州立癌症登记中心、2所医药癌症登记中心和1所地区性癌症登记中心——确认，所有这些机构登记的病例数大约占美国每年成人骨肉瘤病例的62%。美国境内的癌症登记都是强制性的。登记中心大约能够收集到美国96%人口的癌症确诊信息[13]。登记中心是从医生、放射与治疗机构、医院、病理学实验室获得报告。在该项研究中，我们定义的骨肉瘤病例为组织学证实为肉瘤，能够产生骨基质且属于下列类别之一[国际疾病肿瘤学分类，第三版 ([ICD-O-3])：

- 9180, 骨肉瘤NOS
- 9181, 软骨母细胞性骨肉瘤
- 9182, 纤维母细胞性骨肉瘤
- 9183, 毛细血管扩张型骨肉瘤
- 9184, Paget 骨病骨肉瘤
- 9185, 小细胞骨肉瘤
- 9186, 中心骨肉瘤
- 9187, 骨内高分化骨肉瘤
- 9192, 骨膜外骨肉瘤
- 9193, 骨膜骨肉瘤
- 9194, 高等级表面骨肉瘤
- 9195, 皮质内骨肉瘤

对可能的骨肿瘤或骨肉瘤病例进行一次全面评估，源自以下五个ICD-O-3结构代码的数据也被收集，其原始癌的部位为骨 (8800 骨癌，NOS；8801 棱形细胞骨癌；8810 纤维骨癌，NOS；8830 恶性纤维组织细胞癌；9243 去分化软骨肉癌)。鉴于对罕见肉瘤进行精确诊断诊断分类的复杂性，符合这五种代码的数据像骨肉瘤病例一样被收集，并进行额外的筛查。其结果不与12种骨肉瘤代码一起研究。这五种ICD-O代码的简要中期结果详见讨论部分。

数据库供研究使用之前，癌症登记中心将同一患者的不同来源的信息合并整理包括治疗最初6个月的信息。研究病例通过以下方式被确诊：骨肉瘤登记中心在数据库完成后的常规审查或者是一些登记中心在刚刚诊断的病例中进行“快速病例确认”。骨肉瘤患者的信息通常会在备案诊断9-18个月之后提供给研究人员。

数据收集

骨肉瘤的潜在危险因素、药物使用和环境暴露、人口统计数据及其他信息通过对患者电话采访收集。如果患者死亡或者无法接受电话采访，将采访了解患者病史的代理人。联系患者的程序和调查问卷已由中央机构审查委员会(IRB)、当地机构审查委员会以及癌症登记中心相关机构批准。联系患者的程序按照每个登记中心的要求制定。一般来说，确定符合条件的病例后，登记中心会向研究人员提供病人联系方式和癌症诊断信息，研究人员联系登记中心信息记录的医疗中心（如果能找到），获得联系患者或患者代理人的许可。在某些情况下，当地的癌症登记中心需要首先联系医师和/或患者，获得采访许可，再将病例信息透露给研究人员。一旦获得联系患者的许可，一位接受过培训的电话采访员将联系患者或代理人：提供该研究的简介介绍，邀请患者或代理人参与采访；获得口头知情同意后，进行25-30分钟的电话采访。此外，患者和代理人需要签署知情同意书，许可研究人员采访完成后查看其医疗记录。从2008年9月开始，完成电话采访的患者或都可以得到25美元作为时间补偿。

采访 (的问题) 包括一些细节问题以收集特立帕肽的使用信息，包括探寻是否使用过任何性质类似
药物：该产品在冰箱储存，每日一次自我注射。此外，采访确定以下描述患者信息：人口统计数据，包括种族、年龄、居住州；简要的病史，包括癌症、骨质疏松症、使用药物和治疗方法，例如使用其他治疗骨质疏松症的药物。采访要求提供已知骨肉瘤危险因素的数据：Paget骨病、放疗和放疗的解剖部位。采访同时要求提供在2003年，即研究开始时，被认为是探索骨肉瘤可能病因的相关信息：肿瘤部位的骨折或感染史；化疗；家族骨肉瘤史和其他特定癌症病史；生活习惯如吸烟和饮酒；职业和环境暴露。其中不包含任何关于氟化物摄入量的问题。

2004年7月开始数据收集，来源于2003年1月1日及以后诊断的患者，研究结束时，将包括2017年12月31日诊断的病例。

分析

描述性分析对主要结果进行总结，包括人口构成状况、肿瘤结构和形态分布、潜在危险因素的比率（生活方式暴露、治疗、受伤、感染史、环境暴露、个人和家族史）。此外，既往放疗的部位将与肿瘤部位相比较。

研究人员从采访数据中抽取既往的特立帕肽使用信息。将这些信息结合相关背景，如果药物使用和疾病之间没有关联，我们计算出可能使用了特立帕肽的骨肉瘤患者的预计数量。此预计是基于年龄和性别调整的骨肉瘤发病率（3.3/10^6年）和监测区域里使用特立帕肽的高风险患者的预计累积人数-年。该预计经进一步完善后用来解释本研究中确诊和采访的骨肉瘤患者数目。使用公共卫生监测常用的分析方法，我们计算出一个发病率，来比较观察到的和预期的暴露。长达15年的研究被设计用于检测骨肉瘤背景率的倍增，如果会发生的，这将导致每313,000例治疗患者中多出1例病例。分析计划的细节包含在此项研究的统计学分析计划中。

研究顾问委员会每年至少2次审查研究的累积结果以及赞助方积累的其他信息，来评估目前的证据是否能够提示特立帕肽和骨肉瘤的潜在关联。该委员会还会建议根据需要对研究进行修改。

机构审查委员会

骨肉瘤监测研究已经由北卡三角洲国际研究院机构审查委员会(IRB)批准；4所癌症登记中心遵从北卡三角洲国际研究院机构审查委员会，11所当地癌症登记中心的机构审查委员会批准了此研究。

结果

截至2011年9月30日，15所参与研究的登记中心已确定2003-2009年间诊断的共1,448例骨肉瘤病例。其中，1,126例报告给调查人员的病例包括联系信息并满足所有的采访要求。1,126例符合条件的骨肉瘤患者中，549例（49%）接受了采访。其中，213例（39%）由代理人而不是患者完成采访。577例没有受访的患者中，341例（59%）无法找到患者或患者无法完成采访（例如由于疾病、听力障碍）并且没有代理人，215例拒绝参与这项研究。代理人拒绝率（33%）比患者（24%）更高。

图2显示了疾病诊断时的确诊病例居住州的分布，以及参与研究的登记中心的地理位置。正如预
期的那样，数量最多的确诊病例来自人口最密集的州（即加利福尼亚、德克萨斯、佛罗里达、宾夕法尼亚州和纽约）。

患者特点
大多数受访的患者 (86%) 是白人。54% 是男性。如表 1 所示，前三个 10 年范围的年龄组的患者（40-49 岁，50-59 岁，60-69 岁），大约各占研究患者总量的四分之一。70 岁及以上的患者占受访者的 27%。受访者平均年龄是 61 岁。在癌症登记中心向 RTI-HS 报告患者信息时，23% 的患者已经死亡。

549 例受访的患者中，388 例 (71%) 被诊断患有骨肉瘤 NOS，65 例 (12%) 患有软骨母细胞性骨肉瘤，38 例 (7%) 患有纤维母细胞性骨肉瘤。其余患者患有其他 8 种形态类型骨肉瘤。原发性肿瘤常见部位在下肢，有 31% 在腿部发病。另外 16% 在骨盆发病，还有 15% 在颅面骨发病 (表 1)。图 3 显示了所有确诊的骨肉瘤病例的肿瘤分布部位，不考虑其受访时的状况。

表 1 同样显示出受访的患者 (回复者) 和经过登记中心确认却未受访的患者 (未回复者) 两者的特征。回复者和未回复者的患者特征分布是相似的，例外是在登记中心确认病例并向 RTI 报告时，未回复者 (48%) 比回复者 (77%) 的在世比率更低。

药物使用
鉴于美国使用特立帕肽的患者数量、骨肉瘤的背景发病率、研究包含的骨肉瘤数量和采样率，在药物和疾病无关联的条件下，我们期望目前电话采访过的患者中存在 1 或 2 例使用了特立帕肽的病例。至今为止，我们还没有找到在骨肉瘤确诊前使用特立帕肽的有效报告。然而，我们确认了一例先
Table 1: Respondents and Non-Respondents’ Demographic and Tumor Characteristics

Feature	Respondents (n=549)	Non-Respondents (n=899)
Age (years)		
40–49	134 (24%)	198 (22%)
50–59	143 (26%)	208 (23%)
60–69	129 (23%)	164 (18%)
70–79	91 (17%)	177 (20%)
80–89	48 (9%)	133 (15%)
≥90	4 (1%)	19 (2%)
Average (SD)	60.5 (12.8)	63.3 (14.4)
Range	40-93	40-97
Gender		
Female	251 (46%)	463 (52%)
Male	298 (54%)	435 (48%)
Unknown	0 (0%)	1 (<1%)
Race		
Non-white	48 (9%)	121 (13%)
White	471 (86%)	715 (80%)
Other	16 (3%)	34 (4%)
Unknown	14 (3%)	29 (3%)
Survival		
Died	124 (23%)	457 (51%)
Alive	422 (77%)	436 (48%)
Unknown	3 (1%)	6 (1%)
ICD-O-3 Code		
9180 osteosarcoma	388 (71%)	599 (67%)
9181 osteosarcoma	65 (12%)	104 (12%)
9182 osteosarcoma	38 (7%)	81 (9%)
9183 osteosarcoma	11 (2%)	20 (2%)
9184 Paget osteosarcoma	11 (2%)	42 (5%)
9185 osteosarcoma	5 (1%)	6 (1%)
9186 osteosarcoma	7 (1%)	10 (1%)
9187 osteosarcoma	2 (1%)	3 (<1%)
9188 osteosarcoma	19 (3%)	26 (3%)
9189 osteosarcoma	2 (1%)	6 (1%)
9190 osteosarcoma	1 (1%)	2 (<1%)
Tumor Site		
Lower limb	170 (31%)	253 (28%)
Bone/cortical corticosts	87 (16%)	153 (17%)
Head/face	80 (15%)	139 (15%)
Spine/rib/shoulder	50 (9%)	91 (10%)
Pelvis/colon/pelvis	58 (11%)	69 (8%)
Spine/rib/shoulder	42 (8%)	45 (5%)
Head/face	22 (4%)	53 (6%)
Rib/rib/shoulder	13 (2%)	35 (4%)
Breast/rib	8 (1%)	26 (3%)
Other	17 (3%)	32 (4%)
Unknown	2 (<1%)	3 (<1%)

Source: Cancer Registry Data

Table 2: Osteosarcoma Cases Related to Bone (n=549)

Exposure	n (%)
Paget bone disease	32 (6%)
Prior radiation	107 (19%)
Radiation treatment/relapse	107 (19%)
Bone density may increase the risk of osteosarcoma in the affected area.	78/107 (73%)
Other risk factors	30 (6%)
Breast cancer	142 (26%)
Bone sarcoma	123 (23%)
Bone sarcoma family history	49 (9%)
Bone sarcoma family history	351 (64%)
Unknown	281 (51%)

Source: Phone interview

549 patients were interviewed, and 32 cases (6%) were Paget bone disease, 107 cases (19%) were radiation treatment/relapse, and 78 cases (19%) were radiation treatment/relapse. In the cases where radiation treatment was given, 73% of the cases were affected in the area that had been radiated.

We also found that in patients with Paget bone disease, 61% (11%) had received chemotherapy, 102 cases (19%) had received prior radiation treatment/relapse, and 33 cases (6%) had a history of bone sarcoma. In the cases where radiation treatment was given, 54% of the cases were affected in the area that had been radiated.

In the cases where chemotherapy was given, 35% of the cases were affected in the area that had been radiated.

The cases with Paget bone disease were 281 cases (51%) in this study.

Source: Cancer Registry Data

ADULT OSTEOSARCOMA AND TERIPARATIDE

Journal of Bone and Mineral Research. 2012; 27(12): 2429–2437.
受放疗,这与超过40岁的骨肉瘤患者中有8%可能与放疗有关的结果相一致[6]。本研究中,我们频繁观察到在肿瘤确诊前肿瘤发生部位有骨折、关节置换、感染或创伤的病史。在无对照组的情况下,我们不能确定是否这些因素或其他潜在危险因素,例如职业暴露,比未患有骨肉瘤的相似组比例更高。

评估本研究前7年的结果时,我们考虑了潜在的偏倚。正如其他涉及个人采访的研究,研究人员很难得到高回复率。因此,调研人员的关注点就从将绝对回复率最大化转移到对回复的潜在偏倚最小化[18]。有联系方式并向RTI报告,且符合RTI电话采访条件的被确认患者中,我们采访的近半数患者显示出采访时间在癌症诊断时间的严重滞后性(2004年至2009年进行的电话采访,平均滞后时间是10-27个月)、缺失或不完整的患者联系方式、患者或代理人对采访的拒绝。本研究因癌症登记中心开始实施健康保险流通与责任法案[19]而延迟,因本研究启动时正值法案开始实施。在最顺利的情况下,癌症登记中心在提供资料之前最少有9-18个月滞后。本研究中,有时滞后时间更长,因为我们在2010年开始逐个将登记中心纳入研究中,但是在所有登记中心确认的患者中,我们想采访的患者的确诊时间最早为2003年。

如果未回复者与回复者在特立帕肽的使用上有区别,那么49%的采访率可能就更有问题了。然而,我们没有理由怀疑,既往的药物使用会让受访患者的确认和招募存在偏倚。在实施采访研究时,接受采访的个体与拒绝采访或无法联系的个体有很大区别,这是非常可能的。我们比较了回复者与未回复者的特征,没有发现任何证据提示特立帕肽的使用导致了偏倚。使用特立帕肽的情况可能在采访时未精确报告。然而,我们增强了诱发准确暴露信息的可能性,包括询问任何可能表明使用特立帕肽问题,例如探究患病迹象(骨质疏松症)、药物存储需求(制冷)、使用方法(自我注射)和用药时间(每日)。此外还要询问具体的药物名称(复泰奥)。如果这些问题的回答中有肯定的,我们认为病人可能已经使用特立帕肽,除非我们能够通过进一步的电话采访和/或图表回顾排除这种可能。我们认为回忆起使用过这种药物的可能性相比其他特征不明显的药物(例如,口服药)要高的多。我们发现了一例骨肉瘤诊断后使用特立帕肽的病例(见“药物使用”部分),同时引出了其他老年人常用的骨质疏松症药物的事实,证明了本研究设计能够有效识别相关药物暴露。

有很大一部分电话采访由患者代理人完成,因为患者本人已经去世。部分代理人可能并不完全了解患者的暴露情况,这也解释了为什么代理人比患者更易拒绝受访。我们要求代理人年龄至少18周岁,

讨论

本研究中,我们从大量成人骨肉瘤患者中收集患者特征、医疗特征和暴露史。长达15年的研究被设计用来检测骨肉瘤背景率的倍增,如果发生,这将导致每313,000例治疗患者中多出1例病例。研究进行到一半时,我们已经采访了549例成人骨肉瘤患者,其中没有既往使用过特立帕肽的病例。若不考虑药物和疾病的关系,此观察结果与背景率相一致。目前,在不考虑潜伏期的前提下,我们拥有足够的能力去探究每78,000例接受治疗的患者中有一例新发病率的风险(相当于风险增加了5倍),如果这一风险确实存在。在癌症监测研究中,研究人员必须考虑到,暴露和临床观察到的癌症患者数量增加之间存在潜在延迟。在已知的和癌症相关的治疗因素中(荷尔蒙、免疫抑制剂、放射暴露),观察到的潜伏期是从不足1年到10年或更久。因为缺乏可信的药物致癌的潜伏期模型,我们假设如果存在任何相关的致病风险,风险的增加将会在这些15年的研究期间表现出来。过去15年,超过16,000例患者在临床对照试验和观察性研究里使用了特立帕肽,人数最多的一组试验包含约4,000例患者,患者使用特立帕肽长达2年,随访时间也长达2年,无骨肉瘤发生的报告。此外,美国礼来公司还针对使用特立帕肽的患者实施了一项全球安全性监测项目,骨肉瘤监测一直是研究重点。截至2012年6月,全球超过一万名患者使用上市的特立帕肽进行治疗,从最初的特立帕肽治疗算起,大约累计使用特立帕肽四百万患者年。现在已经有18篇关于使用上市特立帕肽治疗的患者患有骨肉瘤的病例报告发表[14-18]。除了这3篇已发表的报告外,接受特立帕肽治疗的患者中还有少量自发的骨肉瘤报告。经病理学确诊的骨肉瘤报告的累积数目,未超过基于背景发病率预测的数目。此外,尽管其骨肉瘤病例的数量小于美国研究的规模,在北欧国家进行的骨肉瘤相关研究中,未发现使用过特立帕肽的病例[12]。将我们的研究结果与其他文献相比,该组病例的平均年龄与其他文献的结论一致。研究的种族分布数据与美国SEER数据库超过40岁人口的所有癌症(84%为白人)和骨肉瘤(82%为白人)的研究数据相似[17]。大部分病例在长骨发病,但有8例(16%)在骨盆,80例(15%)在颅面骨。在五个北欧国家进行的骨肉瘤病例相关研究中[12],我们发现其研究结果与Unni和Dahlin[7]、Grimer和同事[6]的研究结果相符合,即放射部位和肿瘤位置相关。在我们的研究病例中,14%的骨肉瘤病例报告曾经在肿瘤部位接受放疗,这与超过40岁的骨肉瘤患者中有8%可能与放疗有关的结果相一致[18]。本研究中,我们频繁观察到在肿瘤确诊前肿瘤发生部位有骨折、关节置换、感染或创伤的病史。在无对照组的情况下,我们不能确定是否这些因素或其他潜在危险因素,例如职业暴露,比未患有骨肉瘤的相似组比例更高。
了解患者病史，并且在采访开始之前报出患者的姓名和出生日期。大部分代理人是患者的配偶或成年子女。

通过州立癌症登记中心确认病例，使研究人员能够确认以人群为基础的区域内发生的大部分成人骨肉瘤病例。我们估计12所州立登记中心、2所医疗登记中心、1所区域癌症登记中心能够确认美国约60%的成人骨肉瘤病例。这些数据经过多方资料证实，包括病理报告，因此我们认为这些是符合骨肉瘤定义的合适病例。

对可能的骨肿瘤/骨肉瘤病例(见“材料和方法”)进行一次全面评估，我们同时从五个ICD-O-3形态学代码中收集数据，这些代码的原发肿瘤部位均为骨骼。在这些患者中，我们没有观察到使用特立帕肽的病例。

因为报告癌症病例是强制性的，以及所有上报的病例的信息来源于多个渠道，所以向癌症登记中心报告骨肉瘤病例不太可能受既往使用特立帕肽的影响。因此，我们推测来自癌症登记中心的不精确或不完整报告不太可能会对本研究造成偏倚。

这项正在进行研究的首要目标，是确认既往使用特立帕肽的骨肉瘤患者。基于此长达15年研究的首个7年的结果，我们未观察到用药患者，因此本研究不支持特立帕肽治疗与骨肉瘤有因果联系的观点。此骨肉瘤监测研究正进一步阐明特立帕肽治疗和疾病(骨肉瘤)之间的潜在关系，如果这种关系存在。

在药物可能增加潜在的罕见风险方面，监测研究能帮助减少其不确定性，极具研究价值。理想情况下，这种研究可以使用已经存在的单一数据来源，例如医疗索赔申请或国家级别的癌症登记中心数据里的电子医疗档案。然而，骨肉瘤这一罕见病尚无足够多的已知数据供研究。此外，现有的索赔申请数据没有足够的临床细节(数据)来区分原发性骨肉瘤和位于骨的其他肿瘤，而且病例通常只有几年的随访期，其数据也未被国家级别的癌症登记中心确认。因此，我们的研究结合了单独的癌症登记中心现有的信息和从患者及代理人收集的第一手资料，以便降低推断特立帕肽和骨肉瘤关系的不确定性。这些监测数据有助于临床医生和患者权衡使用特立帕肽的潜在风险与治疗高骨折风险的骨质疏松患者的潜在益处。

声明
EBA、AWG、KM、BS和YW均为RTI健康评估(RTI-HS)的雇员。后者为非赢利的研究机构，与礼来公司签署协议开展本研究。RTI-HS负责本研究的设计和实施，并分析和报告结果。The contract between RTI-HS与礼来公司间的协议确保RTI-HS的独立发布权。DM和BHM是礼来公司的雇员和股东。作者们无其他财务声明。

参考文献
1. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, Westmore MS, Linda Y, Nold JB. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002 May-Jun;30(3):312-21.
2. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004 Jul-Aug;32(4):426-38.
3. Vahle JL, Zhuahike U, Schmidt A, Westmore M, Chen P, Sato M. Lack of bone neoplasms and persistence of bone efficacy in cynomolgus macaques after long-term treatment with teriparatide [rhPTH(1-34)]. J Bone Miner Res. 2008 Dec;23(12):2033-9.
4. Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents. m iddle ages and elderly persons. Int J Cancer. 2009 Jul 1;125(1):229-34.
5. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009 Apr 1;115(7):1531-43.
6. Grimer RJ, Cannon SR, Tamininni AM, Bielack S, Kempf-Bielack B, Windhager R, Dominikus M, Sueter G, Bauer H, Meiller T, Smeets M, Folleras G, San-Julian M, van der Eijk J. Osteosarcoma over the age of forty. Eur J Cancer. 2003 Jan;39(2):157-63.
7. Umini KK, Dahlin DC. Dahlin’s bone tumor: general aspects and data on 11,087 cases. 5th ed. Philadelphia: Lippincott-Raven; 1996. p. 67-69, 143-4.
8. Savage SA, Mirabello L. Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma. 2011:2011:548151.
9. Merletti F, Richardson L, Bertonio F, Ahrens W, Buemi A, Costa-Santos C, Eriksson M, Guinep L, Kauerfev L, Jokell KH, Llopos-Gonzalez A, Meiller T, Miranda A, Moraes-Suarez MM, Olsson H, Fletcher T, Olsen J. Occupational factors and risk of adult bone sarcomas: a multicentric case-control study in Europe. Int J Cancer. 2006 Feb 1;118(3):721-7.
10. Kim FM, Hayes C, Williams PL, Whitford GM, Joshipura KJ, Hoover RN, Douglass CW. National Osteosarcoma Etiology Group. An assessment of bone fluoride and osteosarcoma. J Dent Res. 2011 Oct;90(10):1171-6.
11. National Cancer Institute (US). Fluoridated water fact sheet [Internet]. Bethesda, MD: National Cancer Institute [reviewed 21 Feb 2012; cited 2011 Dec 2]. Available from: http://www.cancer.gov/cancertopics/factsheet/Risk/Fluoridated-water.
12. von Schiele B, Martin RD, Gilsenan AW, Ceberg J, Andrews EB, Masica D, Alvegard T. The European postmarketing adult osteosarcoma surveillance study: characteristics of patients. Acta Orthopaeidica. 2009;80(Suppl 334):67-74.
13. Centers for Disease Control and Prevention (US). National Programof Cancer Registries (NPCR) [Internet]. Atlanta, GA: Centers for Disease Control and Prevention [updated 2011 Oct 11; cited 2011 Nov 5]. Available from: http://www.cdc.gov/cancer/npcr/about.htm.
14. Harper KD, Krege BH, Marcus R, Mitlak BH. Osteosarcoma and teriparatide?: J Bone Miner Res. 2007 Feb;22(2):334.
15. Lubitz R, Prasad S. Case report: osteosarcoma and teriparatide (abstract). Poster presented at the ASBMR 31st Annual Meeting. J Bone Miner Res. 2009;24(Suppl 1):SU0354.
16. Sabbiah, V, Mason VS, Raymond AK, Benjamine RS, Ludwig JA. Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int. 2010 Jun;21(6):1041-5.
17. Software: Surveillance Research Program, National Cancer Institute SEER*Stat software (www.seer.cancer.gov/seerstat) version 7.1.0. Data: Surveillance,
Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs Research Data Hurricane Katrina Impacted Louisiana Cases, Nov 2011 Sub (1973–2009 varying) - Linked to County Attributes — Total U.S., 1969–2010 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released April 2012, based on the November 2011 submission.

18. Groves RM, Fowler FJ Jr, Couper MP, Lepkowski JM. Nonresponse in sample surveys. In: Survey methodology. 2nd ed. Hoboken, NJ: John Wiley and Sons; p. 183–211. 2009.

19. Department of Health and Human Services (US). Standards for privacy of individually identifiable health information. Final rule. Fed Regist. 2002 Aug 14;67(157):53181–273.