The European ME/CFS Biomarker Landscape project: an initiative of the European network EUROMENE

Carmen Scheibenbogen1*, Helma Freitag1, Julià Blanco3,4, Enrica Capelli5,6, Eliana Lacerda7, Jerome Authier8, Mira Meeus9,10,11, Jesus Castro Marrero12, Zaiga Nora-Krūkle2, Elisa Oltra13,14, Elin Bolle Strand15,16, Evelina Shikova17, Slobodan Sekulic18 and Modra Murovska2

Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a common and severe disease with a considerable social and economic impact. So far, the etiology is not known, and neither a diagnostic marker nor licensed treatments are available yet. The EUROMENE network of European researchers and clinicians aims to promote cooperation and advance research on ME/CFS. To improve diagnosis and facilitate the analysis of clinical trials surrogate markers are urgently needed. As a first step for developing such biomarkers for clinical use a database of active biomarker research in Europe was established called the ME/CFS EUROMENE Biomarker Landscape project and the results are presented in this review. Further we suggest strategies to improve biomarker development and encourage researchers to take these into consideration for designing and reporting biomarker studies.

Keywords: Biomarker, ME/CFS, European network, Landscape project, Diagnostic, Autoantibodies, Autoimmunity, B cell, Cytokines, Viral

Biomarker in ME/CFS
Although the exact pathogenesis of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is still unknown, the most plausible hypothesis is that it is a complex multifactorial syndrome in which immunological and environmental factors play a crucial role. In addition, the severe fatigue, post-exertional malaise, cognitive impairment, and autonomic dysfunction that delineate the disease point to the involvement of both the nervous system as well as metabolic disturbances [1]. Infection by various pathogens, including herpes viruses and enteroviruses, but also intracellular bacteria, are known as triggers of disease. The complex clinical picture and the disagreement on potential pathomechanisms make ME/CFS a controversial entity and compel the research for disease biomarkers that could aid in the diagnostic and clinical management. Biomarker per definition may include both markers with a certain sensitivity and specificity for diagnosing ME/CFS as well as those which may allow to classify subtypes of the disease, be of value as indicators of prognosis, and to be predictive for response to treatment [2].

The EUROMENE ME/CFS Biomarker Landscape project
EUROMENE is a network of researchers and clinicians from 17 European countries and one COST (Cooperation in Science and Technology) near neighbor country on ME/CFS supported by the European COST program within Horizon 2020 (http://www.cost.eu/COST_Actions/ca/CA15111). The aims of EUROMENE are to foster strategies for collaboration and harmonization of diagnosis and research, and to compile an inventory of clinical and scientific data in ME/CFS. The Biomarker working group will also try to
develop guidelines for the usage of biomarkers and synchronization of biomarker research.

As a first step, a database for active biomarker research in Europe was established called the EUROMENE ME/CFS Biomarker Landscape project. To achieve this, EUROMENE members performed a search for publications on biomarkers within their countries. The search strategy used the medical subject headings (MeSH) term “chronic fatigue syndrome”, which includes myalgic encephalomyelitis, and the respective country, and selected all publications from the last 5 years (2012–2016). The searches were reviewed by members of the
biomarker working group. Studies not involving patients with ME/CFS, non-biomarker, and sole treatment studies were excluded, only one review article was included.

A total number of 39 studies were identified. Studies were categorized as being immunological, infection-related, metabolic or neurological. We summarize the findings in Fig. 1, which shows the number and type of studies identified in each country, represented by pie charts—their sizes being proportional to the number of identified studies, and their pieces representing the distinct categories of the studies. The number of research groups working on ME/CFS biomarkers in the EU countries is also illustrated in Fig. 1. Countries from which no publications on ME/CFS biomarker could be retrieved are shown in light green/grey, and European countries not participating in the EUROMENE are shown in white. The references listed per country are shown in Table 1.

Studies on immune markers (n = 15) in ME/CFS explored immunoglobulins, autoantibodies, cytokines, and immune cell phenotype and function (summarized in Table 2) [3–17]. Four of 5 of the studies on ME/CFS-associated infection markers were focused on XMRV and confirmed the absence of this virus in European ME/CFS cohorts [18–22]. Neurological biomarker studies (n = 4) focused on neurotransmitter regulation, but excluded imaging and functional studies [23–26]. The papers which could be retrieved for potential metabolic markers (n = 15) studied mitochondrial dysfunction, oxidative stress, cortisol regulation, and more comprehensive metabolic pathways [27–41].

Discussion

So far there is no single biomarker available for diagnostic use in ME/CFS. Most studies identified here were exploratory in design and lack sex and age-matched control groups or validation cohorts thus having a low evidence level as summarized for the immune marker studies in Table 2 [42]. Some studies report inconsistent data, too. For example an expansion of transitional and naïve B cells and reduced plasma blast levels was reported in one study [14], but could not be confirmed in two other studies [4, 12]. Immune cell phenotype and function analyses are, of course, hampered by variations in sampling and methodological differences between laboratories as most flow cytometric assays are not standardized. Further, immunological biomarkers reported mostly show alterations in subgroups only or with wide overlap to healthy control groups. Such heterogeneous results may be related to the fact that subgroups of ME/CFS patients exist with different immunological pathomechanisms. This concept is supported by the existence of clinical subgroups with heterogeneity in disease onset (infection- versus non-infection triggered), the variability of immune-associated symptoms, and the divergent response to B cell depletion therapy [43]. Research activity in infection markers on ME/CFS across Europe is sparse; however, there is currently no evidence from the available literature that there is a specific serological signature aiding in diagnosis of ME/CFS.

Similar to immunological markers, there is no single neurological or metabolic marker with sufficient specificity and sensitivity as a tool in ME/CFS diagnosis yet. However, recent studies analyzing multiple metabolites could show specific alterations in the majority of ME/CFS patients [37, 44–46] pointing to a probably common and specific metabolic profile. Further, metabolic studies consistently revealed different gender-related patterns [37, 44, 46]. Thus, instead of searching single markers fitting for diagnosing all patients, multiplexed determinations of biomarkers analyzing pathways together with patient stratification, may be necessary to develop diagnostic assays with sufficient sensitivity and specificity [47].

Conclusions

Heterogeneity of biomarker studies with different case definitions, low number of patients, lack of matched control groups, missing validation studies and potentially subgroup heterogeneity are possible reasons why no

Table 1 ME/CFS biomarker studies in Europe 2012–2016
Country

Belgium
France
Germany
Ireland
Italy
Latvia
Netherlands
Norway
Poland*
Serbia
Spain
Sweden
UK

* Non-EUROMENE country
diagnostic biomarkers are available yet. Further, as result of the low amount of funding in CFS/ME research few and often small studies were performed so far. Therefore, strategies to improve the quality and to facilitate the comparability of biomarker studies are needed (summarized in Table 3). This starts with well-defined patient cohorts

Table 2 Immune marker studies
Marker (Ref)

Immunoglobulins (Ig), MBL [4]
B cells [4]
IgG3 IgE COMT [5]
EBV-specific IgG EBV-B and T cells [7]
HSP60 auto-antibodies [13]
Neurotransmitter-receptor auto-antibodies [6]
Cytokines [10]
Cytokines [8]
Cytokines [15]
Cytokines [3]
BAFF, APRIL [9]
T cells [11]
NK, T and B cells [12]
B cells [16]
B cells [14]
miRNA in immune cell subsets [17]

Diagnostic criteria: CDC the Centers of Disease Control or Fukuda Criteria (49), CCC Canadian Consensus Criteria
Table 3 Strategies for development of diagnostic biomarkers in ME/CFS

1. Standardization of sample collection and assay procedures
2. Use of an uniform clinical case definition
3. Use of questionnaires to assess symptoms and severity to define subgroups
4. Stratification of patients according to sex, disease onset, and disease duration
5. Include sex- and age-matched control groups
6. Sufficient sample size and predefined hypotheses (statistical power)
7. Confirmation of results in validation and multi-center cohort studies
8. Study combinations of biomarkers, perform pathway analysis or functional studies

using strict case definitions [47], standardized and quantitative symptom assessment for subgroup analyses, well-defined age- and sex-matched controls, and large enough cohort size and a predefined hypothesis to power the statistical analysis. Detailed description of cohorts, assays performed and results achieved are important to facilitate confirmation studies. Reproducing results in cohorts from different countries, developing Standard Operating Procedures (SOPs) for assays, and multi-center studies are important steps for evaluating the suitability of biomarkers of interest as diagnostic markers. The building of translational networks of clinical and basic research groups like promoted in EUROMENE is an important first step to achieve such goals. Finally, to promote research it is crucial to increase funding for ME/CFS which is currently still far below the budget funds for most other serious diseases in both the EU and the US funding agencies, such as the National Institutes of Health (NIH) [48].

Abbreviations
AB: antibody; APRIL: a proliferation-inducing ligand; BAFF: B-lymphocyte activating factor; CCC: Canadian Consensus Criteria; CD: cluster of differentiation; CDC: Fukuda Criteria (Centers for Disease Control and Prevention); CFS: chronic fatigue syndrome; COMT: catechol-O-methyltransferase; COST: Coop-chronic fatigue syndrome; COMT: catechol- O-methyltransferase, COST: Cooperation in Science and Technology; CRP: C-reactive protein; EBNA: EBV nuclear antigen; EBV: Epstein–Barr virus; EU: European Union; EUROMENE: European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; HSP: heat shock protein; Ig: immune globuline; IL: interleukine; MBL: mannose binding lectin; ME: myalgic encephalomyelitis; MeSH: medical subject headings; NIH: National Institutes of Health; NK: natural killer cells; RNA: ribonucleic acid; SOP: standard operating procedure; TGF: transforming growth factor; TNF: tumor necrosis factor; US: United States of America; VCA: viral capsid antigen; XMRV: xenotropic murine leukemia virus-related virus.

Authors’ contributions
CS designed the study and research guidelines, reviewed data received from the different partner countries. CS and JB were major contributors in writing the manuscript. HF reviewed and analyzed the data, did research for the non-EUROMENE countries and prepared figures and tables. All other authors collected and reviewed data for their own country. MM is head of the EUROMENE cooperation group within COST network. All authors read and approved the final manuscript.

Author details
1 Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 2/Südstrase 2, 13353 Berlin, Germany. 2 August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Riga 1007, Latvia. 3 Institut de Recerca de la Sida Iris/Caixa-HIVACAT, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, IGBT, UAB, Carretera del Canyet, s/n, 08916 Badalona, Spain. 4 Universitat de Vic-UCC, Carrer de la Sagrada Familia, 7, 08500 Vic Barcelona, Spain. 5 Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 7, 27100 Pavia, Italy. 6 Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy. 7 Clinical Research Department, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK. 8 Faculty of Medicine, Paris Est-Creteil University, 8 rue du General Serail, 94000 Creteil, France. 9 Pain in Motion International Research Group, Brussels, Belgium. 10 Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St. Pietersnieuwstraat 33, 9000 Ghent, Belgium. 11 Department of Rehabilitation Sciences and Physiotherapy (MOVANT), Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium. 12 Vall d’Hebron University Hospital, CFS/ME Unit, Universitat Autònoma de Barcelona, 119-129, Passeig de la Vila d’Hebron, 08035 Barcelona, Spain. 13 Facultad de Medicina, Universidad Católica de Valencia, San Vicente Mártir, Carrer de Quenvedo, 2, 46001 Valencia, Spain. 14 Instituto Valenciano de Patología (IVP) of the Universidad Católica de Valencia San Vicente Mártir, Centro de Investigación Príncipe Felipe (CIPF), Carrer d’Edurno Primo Yúfera, 3, 46012 Valencia, Spain. 15 Division of Medicine, CFS/ME Center, Oslo University Hospital, Aker, Trondheimsveien 235, 0586 Oslo, Norway. 16 Department of Paediatrics, Norwegian National Advisory Unit on CFS/ME, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway. 17 Department of Virology, National Centre of Infectious and Parasitic Diseases, 44A General Stolevet blvd., 1233 Sofia, Bulgaria. 18 Department of Neurology, Medical Faculty Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.

Acknowledgements
This article is based upon work from COST Action CA 15111: European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (EUROMENE).

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
COST Action CA 15111: European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (EUROMENE).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 June 2017 Accepted: 14 July 2017

Published online: 26 July 2017

References
1. Carruthers BM, van de Sande MI, De Meirler KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, et al. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270:327-38.
2. Biomarkers and surrogate endpoints. Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

3. Neu D, Mairese O, Montana X, Giltson M, Corazza F, Lefevre N, Linkowski P, Le Bon O, Verbant P. Dimensions of pure chronic fatigue: psychophysiologic, cognitive and biological correlates in the chronic fatigue syndrome. Eur J Appl Physiol. 2014;114:1841–51.

4. Guenther S, Loebel M, Mooslechner AA, Knops M, Hanitsch LG, Grabowski P, Wittke K, Mesiel C, Unterwalder N, Voß HD, Scheibenbogen C. Frequent IgG subclass and mannose binding lectin deficiency in patients with chronic fatigue syndrome. Hum Immunol. 2015;76:729–35.

5. Loebel M, Mooslechner AA, Bauer S, Gunther P, Heidecke H, Bauer S, Hanitsch LG, Wittke K, Mesiel C, Reinke P, Voß HD, Fluge O, et al. Antibodies to beta adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav Immun. 2016;52:32–9.

6. Loebel M, Strohschein K, Heidecke H, Bauer S, Hanitsch LG, Wittke K, Mesiel C, Reinke P, Voß HD, Fluge O, et al. Antibodies to beta adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav Immun. 2016;52:32–9.

7. Neu D, Mairesse O, Montana X, Gilson M, Corazza F, Lefevre N, Linkowski P, Le Bon O, Verbant P. Dimensions of pure chronic fatigue: psychophysiologic, cognitive and biological correlates in the chronic fatigue syndrome. Eur J Appl Physiol. 2014;114:1841–51.
pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI insight. 2016;1:e89376.
38. Tomic S, Brkic S, Maric D, Milic AN. Lipid and protein oxidation in female patients with chronic fatigue syndrome. Arch Med Sci. 2012;8:886–91.
39. Castro-Marrero J, Cordero MD, Saiez-Francas N, Jimenez-Gutierrez C, Aguilar-Montilla FJ, Aliste L, Alege-Martin J. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal. 2013;19:1855–60.
40. Boles RG, Zaki EA, Kerr JR, Das K, Biswas S, Gardner A. Increased prevalence of two mitochondrial DNA polymorphisms in functional disease: are we describing different parts of an energy-depleted elephant? Mitochondrion. 2015;23:1–6.
41. Brown AE, Jones DE, Walker M, Newton JL. Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome. PLoS ONE. 2015;10:e0122982.
42. Ghosh D, Poisson LM. "Omics" data and levels of evidence for biomarker discovery. Genomics. 2009;93:13–6.
43. Fluge O, Risa K, Lunde S, Alme K, Rekeland IG, Sapkota D, Kristoffersen EK, Sørland K, Bruland O, Dahl O, Mella O. B-lymphocyte depletion in myalgic encephalopathy/chronic fatigue syndrome. An open-label phase II study with rituximab maintenance treatment. PLoS ONE. 2015;10:e0129898.
44. Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, Baxter A, Nathan N, Anderson W, Gordon E. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA. 2016;113:E3472–80.
45. Yamano E, Sujimoto M, Hirayama A, Kume S, Yamato M, Jin G, Tajima S, Goda N, Iwai K, Fukuda S, et al. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Sci Rep. 2016;6:34990.
46. Germain A, Ruppert D, Levine SM, Hanson MR. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism. Mol BioSyst. 2017;13:371–9.
47. Nacul L, Lacerda EM, Kingdon CC, Cursan H, Bowman EW. How have selection bias and disease misclassification undermined the validity of myalgic encephalomyelitis/chronic fatigue syndrome studies? J Health Psychol. 2017. doi:10.1177/1359105317695803.
48. US Institute or Health. Estimates of funding for various research condition and disease categories. 2014. https://report.nih.gov/categorical_spend­ing.aspx. Accessed 20 Apr 2017.
49. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JS, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Ann Intern Med. 1994;121:953–9.