Trio sequencing in pediatric cancer and clinical implications

Michaela Kuhlen & Arndt Borkhardt

In pediatric cancer, we advocate for trio sequencing of the child and its parents. This method can have substantial implications for cancer prevention in parents and siblings and even in more distant family members. It does not only help to identify a putative classical cancer predisposition syndrome in the index patient, but also detects the combinatorial effect of two independent risk variants in the same signaling pathway. This type of inheritance pattern could contribute to explaining the early occurrence of cancer in children and young adults and thereby inform early diagnosis, screening and preventive measures.

EMBO Mol Med (2018) 10: e8641

There are more than 100 known cancer predisposition syndromes (CPSs), including DNA damage repair defects, genetic instability syndromes, bone marrow failure syndromes, cell cycle and differentiation defects, transcription factors and pure familial leukemia syndromes, immunodeficiencies, and congenital/developmental syndromes (Table 1; Kuhlen & Borkhardt, 2015). Most of these CPSs are inherited in an autosomal dominant or compound heterozygous pattern; only a few are autosomal recessively or X-linked transmitted. The most significant familial CPS is Li-Fraumeni syndrome (LFS), which predisposes carriers to a 50% lifetime risk of developing cancer before the age of 30 and 90% risk before the age of 60. Affected patients are not only at high risk of developing secondary, treatment-related cancers after irradiation or the use of alkylating agents, but also additional cancers unrelated to treatment. Early detection of these CPS—not just in patients but also in their close relatives—can therefore help to diagnose and treat tumors in the early stages. Villani et al. (2016) demonstrated improved long-term survival of carriers of a pathogenic TP53 variant using a comprehensive surveillance protocol for early tumor detection. However, this assumes that every TP53 carrier is identified early on, and not only after cancer diagnosis.

In the largest pediatric study to date, Zhang et al. (2015) found an underlying CPS in 8.5% of childhood cancers, with TP53 being the most commonly mutated gene. They used a tumor versus germline approach to analyze mutations in the affected children, which did not allow them to elucidate the ratio of CPSs caused by inherited versus de novo germline mutations in cancer predisposition genes (CPGs). Indeed, to determine the inheritance pattern and thus the risk of recurrence in other family members, a parent-child (trio) approach is needed (Fig 1A–E) as parents might be clinically unaffected owing to phenotypic variability, incomplete penetrance, gender-specific cancer risk, and environmental exposure. The child’s cancer diagnosis alone may already indicate a familial cancer predisposition and thus help to identify any cancer risk in siblings. In addition, identifying a familial predisposition offers the opportunity for early cancer surveillance in at-risk family members. For instance, in children diagnosed with constitutional mismatch repair deficiency (CMMRD), an autosomal recessive CPS, transmitting parents are at risk of tumors on the Lynch syndrome spectrum including colorectal and endometrial cancer, which typically develop in the third decade of life (Taeubner et al., 2018b).

In our pediatric oncology department, we initiated a prospective study termed “Germline mutations in children with cancer”. Families whose child was newly diagnosed with cancer were offered a comprehensive whole-exome sequencing (WES) of parent-child trios in combination with systematically collecting demographic, medical, and family history data. The study aimed to determine the interest in and acceptance of this approach in affected families, to analyze whether anamnestic data indicate a familial cancer predisposition, and to investigate an underlying CPS and its inheritance pattern. Notably, knowledge of a potentially underlying CPS, and particularly the risk of recurrence in other children, is of great interest to families who have a child diagnosed with cancer. Thus, the great majority of families (88.3%) opted for participation when we offered diagnostic trio WES sequencing (Brozou et al., 2018).

In addition to the most well-known CPS such as LFS, neurofibromatosis, and Gorlin syndrome, we also identified a frequent genetic phenomenon characterized by the presence of at least two independent, monoallelic germline mutations in different genes involved in the same signaling pathway (Fig 1F). In these analyses, we set the threshold for single nucleotide variants (SNVs) to a minor allele frequency (MAF) of < 1% and a combined annotation-dependent depletion (CADD) score of higher than 10. We only considered combined inherited
SNVs to be potentially pathogenic if at least one in silico prediction tool classified the variant as likely to be damaging or deleterious. In addition, we defined that the mutations must either be inherited from the parents—one each from the mother and father—who were as yet clinically unaffected, or, alternatively, one SNV was transmitted from the mother or father, while the second SNV occurred de novo in the affected child. Such combined monoallelic double hits likely cause the clinical cancer phenotype by interrupting the affected signaling pathway. For example, one might speculate that combined germline mutations in ATM and CHK1, both playing a critical role in DNA damage repair, may alter TP53 function and thus lead to a Li-Fraumeni like-phenotype that cannot be explained by TP53 mutations alone. Significantly, such a phenomenon caused by inherited combined digenic low-penetrance variants might present with clinically unaffected parents and an unremarkable family history.

Likewise, several observations in breast cancer patients led to the hypothesis that low-penetrance cancer susceptibility polymorphisms act as modifier genes in BRCA1/BRCA2 mutation carriers and non-carriers to increase cancer risk. One could speculate that this involves genes that act as modifiers in the same CPG pathway, or low-penetrance polymorphisms in BRCA1/BRCA2 mutation non-carriers (Smith et al., 2007; Polak et al., 2017). In fact, combined monoallelic mutations in Fanconi anemia/breast cancer (FA/BRCA) pathway genes have been identified in patients with a more severe disease phenotype. The FA/BRCA pathway plays an important role in the maintenance of genome integrity and is involved in the DNA damage response (DDR) and DNA repair pathways.

By trio WES, we identified two concomitant monoallelic germline mutations in BRIP1 and HIPK2 in an 11-year-old girl diagnosed with metastatic osteosarcoma (Fig 2). Mutations in BRIP1/FANCI are associated with breast cancer, but, so far, not with osteosarcoma. Further in silico analysis predicted that the novel missense variant in BRIP1, which is located in the nuclear localization signal, is damaging and deleterious. Eventually, the mother, who transmitted the BRIP1 variant, was diagnosed with breast cancer at the age of 46. HIPK2, which was transmitted by the father, is a crucial

Cancer predisposition syndrome (CPS)	Associated gene(s) (CPG)
DNA repair disorders	
Ataxia telangiectasia	ATM
Bloom syndrome	BLM
Fanconi anemia	FANCA, FANCB, FANCC, FANCD1/BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, FANJ/BRIP1/BACH1, FANCL, FANCM, FANCN/PALB2, FANCO/RAD51C, FANCP/SLX4, FANCP/XPF/ERCC4, FANCR/RAD51, FANCES/BRCA1, FANCT/UBE2T, FANCU/XRCC2, REV7/MAD2L2
Nijmegen breakage syndrome	NBN
Rothmund–Thomson syndrome	RECQL4
Xeroderma pigmentosum	DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, POLH, XPA, XPC
Li-Fraumeni syndrome	TP53
Constitutional mismatch repair deficit	MLH1, MSH2, MSH6, PMS2, EPCAM
Bone marrow failure/cancer predisposing syndromes	
Severe congenital neutropenia (Kostmann syndrome)	ELANE, HAX1
Constitutional thrombocytopenia	ANKRD26
MIRAGE syndrome	SAMD9
Ataxia-pancytopenia syndrome	SAMD9L
Familial AML with mutated DDX41	DDX41
Congenital thrombocytopenia	MECOM
Bone marrow failure syndrome	ERCC6L2
Thrombocytopenia and absent radi syndrome	–
Congenital amegakaryocytic thrombocytopenia type I/II	MPL
Transcription factor	
Familial platelet disorder with propensity to myeloid malignancy	RUNX1
Familial AML	CEBPA
GATA2-spectrum disorders	GATA2
Susceptibility to ALL	PAX5
Thrombocytopenia	ETV6
Ribosomal anomalies	
Diamond blackfan anemia	RPS7, RPS10, RPS17, RPS19, RPS24, RPS26, RPL5, RPL11, RPL19, RPL35A
Shwachman–Diamond syndrome	SBDS
Telomere maintenance	
Dyskeratosis congenita	DXC1, TERC, TERT, TINF2, NHP2, NOP10, WRAP53
RASopathies	
Neurofibromatosis type 1	NF1
Noonan syndrome with multiple lentigines	PTPN11, SOS1, RAF1, RIT1, KRAS, N Ras, SHOC2
Noonan syndrome	PTPN11, RAF1
Capillary malformation–arteriovenous malformation syndrome	RASA1
Table 1 (continued)

Cancer predisposition syndrome (CPS)	Associated gene(s) (CPG)
Costello syndrome	HRAS
Cardio-facio-cutaneous syndrome	BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2)
Legius syndrome	SPRED1
CBL syndrome	CBL

Immunodeficiencies (by way of example)

- Wiskott–Aldrich syndrome
- PMS2 deficiency
- X-linked lymphoproliferative syndrome
- IL2-inducible T-cell kinase deficiency
- Ligase IV syndrome
- DOCK8 deficiency
- Cartilage hair hypoplasia

Familial cancer syndromes
Familial adenomatous polyposis syndrome
Juvenile polyposis syndrome
Peutz–jeghers syndrome
MYTH-associated polyposis
Lynch syndrome type
Multiple endocrine neoplasia type I
Multiple endocrine neoplasia type IIA
Multiple endocrine neoplasia type IIB
Multiple endocrine neoplasia type IV
Von Hippel–Lindau
Hereditary paragangioma/ pheochromocytoma syndrome
Familial thyroid cancer
Hyperparathyroidism-jaw tumor syndrome
PTEN hamartoma tumor syndrome
Pleuropulmonary blastoma syndrome
GLOW syndrome
Nevoid basal cell carcinoma syndrome (NBCCS)/Gorlin syndrome
Hereditary breast/ovarian cancer
Rubinstein–Taybi syndrome
Schinzel–Giedion syndrome
NIK2-1 syndrome
Hereditary leiomyomatosis and renal cancer syndrome
Tuberous sclerosis complex (TSC)
Hereditary multiple exostoses
Kabuki syndrome
Birt–Hogg–Dubé syndrome
Neurofibromatosis type II
Schwannomatosis

The data from our ongoing study suggest that such double hits are particularly frequent in the TP53 and FA/BRCA pathway. It is not clear yet to what extent such functional perturbations of key cancer pathways by at least two co-inherited heterozygous digenic mutations from each parent appear in the germline of children with cancer. By way of example, we detected two concomitant heterozygous low-penetration germline variants in PATCHED1 (PTCH1) and PATCHED2 (PTCH2), two key sonic hedgehog (SHH) signaling pathway genes in a newborn with congenital embryonal rhabdomyosarcoma. Only the combination of these two mutations activated the SHH pathway, which may help to explain the very early onset of rhabdomyosarcoma in newborns. The parents, who transmitted one risk variant each, are clinically unaffected and did not show activation of the SHH pathway (Taeubner et al., 2018a).

We think that monoallelic, independent germline mutations in more than one CPG in the same cancer pathway should be considered pathogenic. Such double-hit mutations, which are reminiscent of compound heterozygosity that causes many devastating Mendelian disorders—severe primary immunodeficiencies and metabolic disorders—are likely overlooked in the clinic if each is inherited by one clinically unaffected parent. Taking this inheritance pattern into account, we aimed to put it in a broader perspective, namely at the cancer pathway level (Fig. 1F). However, it remains unclear to which extent this phenomenon may trigger or at least modify malignant transformation particularly in children, in whom, other than in adults, long-term lifestyle factors are mostly negligible. Obviously, the likelihood of this phenomenon to occur purely by chance critically depends on the mutation load in the respective population and may vary across populations and genes.

In addition, whereas the pathogenicity of protein-truncating mutations seems plausible, frequent missense variants may functionally be unimportant and found by chance if a given cancer pathway includes a sufficiently large number of genes. For instance, the Exome Aggregation Consortium (ExAC) database contains 567 regulator of the DDR pathway and plays an important role in DNA double-strand break repair.
Table 1 (continued)

Cancer predisposition syndrome (CPS)	Associated gene(s) (CPG)
Meningeoma predisposition	SMARCE1
Non-syndromic hereditary Wilms tumor	WT1, CTR9
Hereditary retinoblastoma	RB1
Hereditary neuroblastoma	ALK, PHOX2B
Malignant rhabdoid tumor syndrome	SMARCB1, SMARCA4

Chromosomal abnormalities

- Down syndrome/Trisomy 21
- Ullrich–Turner syndrome
- Trisomy 18
- rob[15;21](q10;q10)c, ring chromosome 21

Monosomy 7

Congenital/developmental disorders and overgrowth syndromes

- Coffin–Siris syndrome
- Nicolaides-Baraitser syndrome
- Bohring–Opitz syndrome
- Mullibrey nanism
- Beckwith–Wiedemann syndrome
- Hemihypertrophy
- Perlman syndrome
- Simpson-Golabi–Behmel syndrome
- WAGR syndrome
- Denys–Drash syndrome
- Frasier syndrome
- Weaver syndrome
- Sotos syndrome

Metabolic disorders

- Citrullinemia
- Ornithine transcarbamylase deficiency
- Argininosuccinate lyase deficiency
- Arginase deficiency
- Familial pheochromocytoma and paraganglioma syndrome
- Cowden syndrome 2
- Leigh syndrome
- L-2-hydroxyglutaric aciduria
- Tyrosinemia

Figure 1. Inheritance patterns in children with cancer.

(A–C) Autosomal dominant inheritance—transmitted by the affected (or as yet clinically unaffected) father (A), transmitted by parental (in this case paternal) mosaicism (B), and originated de novo (C). (D, E) Autosomal recessive inheritance—transmitted by both unaffected parents (D) and one variant transmitted by an unaffected parent (in this case the father) and one originated de novo (E). (F) Concomitant digenic inheritance of two heterozygous variants exemplified by two germline variants in *PTCH1* and *PTCH2* in a newborn with congenital rhabdomyosarcoma, leading to activation of the sonic hedgehog signaling pathway. The *PTCH1* variant is inherited by the mother, while the *PTCH2* variant is inherited by the father. Both parents are clinically unaffected so far.
Figure 1.
development in children, and provides a powerful tool to identify family members at risk. This method holds the promise of real precision cancer medicine including targeted prevention.

Acknowledgements
The authors thank the families for participating in the study, the study team in Düsseldorf for their valuable contribution, Kolja Kunstreich for drafting Fig. 1, and Stewart Boden for English editing.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Brozou T, Taeubner J, Velleuer E, Dugas M, Wieczorek D, Borkhardt A, Kuhlen M (2018) Genetic predisposition in children with cancer - affected families’ acceptance of Trio-WES. *Eur J Pediatr* 177: 53–60

Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olischwang S, Eccles D, Evans DC, Maher ER, Bertano L et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. *Lancet* 378: 2081–2087

Kensler TW, Spira A, Garber JE, Szabo E, Lee JJ, Dong Z, Dannenberg AJ, Hait WN, Blackburn E, Davidson NE et al (2016) Transforming cancer prevention through precision medicine and immune-oncology. *Cancer Prev Res* 9: 2–10

Kuhlen M, Borkhardt A (2015) Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. *Eur J Pediatr* 174: 987–997

di Masi A (2008) May a missense mutation be more deleterious than a truncating mutation? *IUBMB Life* 60: 79–81

Polak P, Kim J, Braunstein LZ, Karlic R, Haradheva NJ, Tiao G, Rosebrock D, Livitz D, Kubler K, Mouw KW et al (2017) A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. *Nat Genet* 49: 1476–1486

Smith A, Moran A, Boyd MC, Bulman M, Shenton A, Smith L, Iddenden R, Woodward ER, Polak P, Kim J, Braunstein LZ, Karlic R, Haradheva NJ, Tiao G, Rosebrock D, Livitz D, Kubler K, Mouw KW et al (2017) A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. *Nat Genet* 49: 1476–1486

Smith A, Moran A, Boyd MC, Bulman M, Shenton A, Smith L, Iddenden R, Woodward ER, Polak P, Kim J, Braunstein LZ, Karlic R, Haradheva NJ, Tiao G, Rosebrock D, Livitz D, Kubler K, Mouw KW et al (2017) A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. *Nat Genet* 49: 1476–1486

Taeubner J, Brozou T, Qin N, Bartl J, Ginzel S, Schaper J, Felsberg J, Fulda S, Vokuhl C, Borkhardt A et al (2018a) Congenital embryonal rhabdomyosarcoma caused by
heterozygous concomitant PTCH1 and PTCH2 germline mutations. *Eur J Hum Genet* 26: 137 – 142

Taeubner J, Wimmer K, Muleris M, Lascols O, Colas C, Fauth C, Brozou T, Felsberg J, Riemer J, Gombert M et al (2018b) Diagnostic challenges in a child with early onset desmoplastic medulloblastoma and homozygous variants in MSH2 and MSH6. *Eur J Hum Genet* 26: 440 – 444

Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, Gallinger B, Naumer A, Kohlmann W, Novokmet A et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. *Lancet Oncol* 17: 1295 – 1305

Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA et al (2015) Germline mutations in predisposition genes in pediatric cancer. *N Engl J Med* 373: 2336 – 2346

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.