HspB1 Overexpression Improves Lifespan and Stress Resistance in an Invertebrate Model

Courtney Carroll Alexander1,2*, Erin Munkáscy1,2*, Haven Tillmon1, Tamara Fraker1,2, Jessica Scheirer1,2, Deborah Holstein2, Damian Lozano2, Maruf Khan2, Tali Gidalevitz4, James D. Lechleiter2, Alfred L. Fisher5, Habil Zare2,6, Karl A. Rodriguez1,2#

1Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX; 2Department of Cell Systems and Anatomy, UTHSCSA; 4Department of Biology, Drexel University, Philadelphia, PA; 5Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 6Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, UTHSCSA, San Antonio, TX

*Indicates co-First Author

Corresponding Author:

*Karl A. Rodriguez

Mailing Barshop 2.2021, 4939 Charles Katz Drive, San Antonio, TX 78229

Phone Number: 210.567.7221

Fax Number: 210.562.6150

Email rodriguezk@uthscsa.edu

Key Words: hspb1, skn-1, collagen, Caenorhabditis elegans, naked mole-rat

© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract:

To explore the role of the small heat shock protein beta 1 (HspB1, also known as Hsp25 in rodents and Hsp27 in humans) in longevity, we created a Caenorhabditis elegans model with a high level of ubiquitous expression of the naked mole-rat HspB1 protein. The worms showed increased lifespan under multiple conditions and also increased resistance to heat stress. RNAi experiments suggest that HspB1-induced life extension is dependent on the transcription factors skn-1 (Nrf2) and hsf-1 (Hsf1). RNAseq from HspB1 worms showed an enrichment in several skn-1 target genes, including collagen proteins and lysosomal genes. Expression of HspB1 also improved functional outcomes regulated by SKN-1, specifically oxidative stress resistance and pharyngeal integrity. This work is the first to link a small heat shock protein with collagen function, suggesting a novel role for HspB1 as a hub between canonical heat response signaling and SKN-1 transcription.
Introduction

Protein homeostasis involves multiple processes regulating protein synthesis, folding, and degradation. As an organism ages, there is a decrease in expression of multiple components as well as the overall function of this protein homeostasis network [1]. This includes a decrease in molecular chaperones, which aid in protein-folding and preventing formation of deleterious protein aggregates [1]. Failure of the protein homeostasis network occurs during aging and many neurodegenerative diseases. A key component of this network, small heat shock proteins (sHSP’s) are molecular chaperones that function not only in protein folding, but also to improve the degradation activity of the proteasome and autolysosome, thereby decreasing disease-associated aggregation.

Comparative biology of aging uses the longest lifespan reported for an individual of a species (maximum lifespan, or MLS) as a marker of a species’ lifespan potential. The order Rodentia is useful for such studies as it contains a number of well-studied species with a range of MLS across nearly an order of magnitude: The common house mouse (Mus musculus) has an MLS of 4 years [2] while the naked mole-rat (Heterocephalus glaber) has an MLS of 31 years [3]. To better understand the role of molecular chaperones in the age-related decline of protein homeostasis, our lab, in collaboration with the Buffenstein group, previously measured the protein levels of key molecular chaperones in the muscle and liver of various rodent species [4]. Heat shock protein beta-1 (HspB1, also known as Hsp25 in rodents and Hsp27 in humans) had the best-fit linear regression between maximum lifespan and protein expression levels in both tissues. Additionally, HspB1 expression was 2- to 10-fold higher in naked mole-rats compared to mice in other tissues examined, including the brain, lung, and kidney [4, 5].

Independent work also examined mechanisms of proteostasis by measuring both the basal and heat-shock-induced expression of HSPs (including HspB1, in cultured fibroblasts from long- versus short-lived species in different mammalian orders. In rodents and marsupials, both basal and heat-shock-induced HSP expression were found to be higher in the longer-lived species, specifically, naked
mole-rats versus mice and sugar gliders (*Petaurus breviceps*, MLS 18 years) versus opossums (*Monodelphis domestica*, MLS 4.75 years) [6].

Heat shock proteins (HSPs) are molecular chaperones that were first characterized by their dramatic upregulation in response to heat stress [7], but they have since been found to be integral in responding to multiple forms of cellular stress. The suite of HSPs induced depends on both the type of stress (heat, oxidative, UV, etc.) as well as the cellular location wherein the stress occurs [8, 9]. Small HSPs (12-40 kDa) are characterized by an alpha crystallin domain and an N-terminal RLFDQxFG sequence that enhances oligomerization and generally form large assemblies with other small HSPs [10, 11]. In mammalian cells, HspB1 protects against oxidative stress [12, 13], dependent in part on its ability to form aggregates [14, 15].

HspB1 is well-conserved among chordates [16] but there are potentially significant differences in invertebrate orthologs, including the absence of the serine phosphorylation domain in *C. elegans* HSP-25 (Supplemental Data 1). Although HspB1 is expressed at high levels in longer-lived animals [4], no studies have fully examined the effect of high constitutive levels of HspB1. Thus, we created a transgenic strain *C. elegans* which would have high ubiquitous expression of the naked mole-rat (NMR) HspB1 protein in order to study the effects of HspB1 expression on lifespan. This was similar to the engineering approach taken by Sagi and Kim in their study, where they expressed longevity-associated human and zebrafish genes in *C. elegans* to extend lifespan [17]. We found that NMR HspB1 expression increased lifespan as well as resistance to heat and oxidative stresses. RNA sequencing and subsequent epistasis studies suggested that these effects were dependent on SKN-1.

Results

Transgenic expression of HspB1 increases lifespan and heat resistance
To examine the interactions of NMR HspB1 independent of its endogenous environment and its role in health and longevity, we created transgenic *C. elegans* that express the naked mole-rat *HspB1* (NMR HspB1) gene fused to GFP under the control of the ubiquitously expressed *C. elegans* *sur-5* promoter. The fusion protein could be seen in multiple tissues, including the hypodermis (Figure 1A), and exhibited diffuse expression along with puncta of varying size. We further confirmed expression of NMR HspB1 protein with western blotting and observed an enrichment in HspB1::GFP in the transgenic animals compared to vector controls (Figure 1B). Initial assays had suggested that HspB1 tended to form more puncta in naked mole-rat cells than it did in mouse, but we observed relatively diffuse HspB1 distribution in both NMR and mouse fibroblasts (Figure 1C and D and Supplemental Figures 1-3).

NMR HspB1 expression increased lifespan at both 20°C (p <0.05) and 25°C (p <0.01) (Figure 1E and F). Median lifespan was reproducibly increased by at least 25% at 25°C (from an average of 11 days to 15). In addition, NMR HspB1 expression improved heat stress resistance: HspB1 animals placed at 35°C on day one of adulthood showed prolonged survival (25% increase in median, from 9.3 hours to 11.7) compared to control animals (p <0.001) (Figure 1G). Life tables of independent replicates and full statistics are shown in Supplemental Data 2.

HspB1 alters expression of collagen and lysosomal genes

To examine the mechanisms of life extension and increased heat resistance, we sequenced the whole transcriptome of our NMR HspB1 and vector control animals at day one of adulthood. We identified 588 differentially expressed genes, with an adjusted p-value <0.05 (Figure 2, Supplemental Figure 4, and Supplemental Data 3). Using the DAVID software, we categorized the differentially expressed genes into several enriched pathways with a false discovery rate of <0.01, a fold enrichment >1.5, and a p-value <0.01. Gene Ontology analysis revealed that genes involved in collagen proteins, the cuticle, and lysosomal function were all differentially expressed (Figure 2A and B).
In general, collagen genes showed increased expression in the NMR HspB1 animals compared to controls (Figure 2C). We confirmed upregulation of col-147, col-176, and col-71 using NanoString nCounter technology (Figure 2D). In addition, lysosomal gene expression was altered (Figure 2E), although the direction was more varied in this group of genes. Two of the lysosomal genes that were enriched in our RNAseq data set (lys-1 and lys-2) were also validated with NanoString nCounter analysis (Figure 2F).

We noted that many of the upregulated genes are targets of the transcription factor SKN-1 (Nrf2 in mammals). Specifically, SKN-1 has been shown to regulate expression of collagen, immunity, and lysosomal function genes [18-20].

HspB1 lifespan extension may be partly dependent on skn-1, hsf-1, and daf-16

Based on our RNAseq results that suggested SKN-1 pathways were altered in the NMR HspB1 worms, we wanted to test the dependency of life extension on SKN-1. We started gene knockdown via feeding RNAi only when the animals had reached the L4 larval stage to minimize effects on development. Under these conditions, skn-1 RNAi had no effect on control lifespan while HspB1 induced life extension was completely abolished (p <0.0001) (Figure 3A).

Heat shock factor 1 (HSF-1) is the well-conserved canonical regulator of heat shock proteins and contributes to lifespan determination [21]. On hsf-1 RNAi, both HspB1 and control animals showed dramatically shortened lifespan (p < 0.0001) (Figure 3B).

DAF-16 (FOXO) is another transcription factor shown to be critical life extension in numerous models, often in conjunction with SKN-1 or HSF-1 [22, 23]. While daf-16 RNAi attenuated most of the life extension induced by HspB1 (p < 0.0001), the HspB1 animals still lived significantly longer than control on daf-16 RNAi (p < 0.01) (Figure 3C).

In order to test whether knocking down any of these three transcription factors – skn-1, hsf-1 and daf-16 – by RNAi affected sur-5p::NMR.HspB1::GFP expression, we imaged day-1-adult worms
that had, like those in our lifespan assays, been transferred to each RNAi treatment at L4. Surprisingly, *skn-1* RNAi reduced HspB1::GFP abundance by a third while neither *hsf-1* nor *daf-16* RNAi had any significant effect (Supplemental Data 5).

We moved on to testing the requirements for genes downstream in the life extension induced by HspB1. Our RNAseq analysis showed that collagen genes were upregulated in the HspB1 animals compared to controls. We confirmed the importance of the top collagen genes by testing the lifespan of the HspB1 versus control animals on RNAi for three upregulated collagen genes: *col-79*, *rol-6*, and *sqt-2*. All three collagen RNAi’s shortened the lifespan of HspB1 worms significantly more than control (p < 0.01) (Figure 3D-F). (See Supplementary Data 2 for full statistics.)

HspB1 expression improves the function of SKN-1 associated phenotypes

Since the collagen genes upregulated by NMR.HspB1 and required for resultant life extension are reported to be regulated by SKN-1[18-20], we next tested whether HspB1 overexpression also increases SKN-1 related functions. In addition to the pathways enriched in our RNAseq analysis, SKN-1 is responsible for activating responses to oxidative stress [20]. To test whether our HspB1 worms were also resistant to oxidative stress, we assayed survival on paraquat and found that HspB1 animals survived marginally longer than control animals (p < 0.05) (Figure 4A).

Based on the increase in collagen genes seen in our RNAseq and the effect of collagen RNAi’s on the HspB1 animals’ lifespan, we next tested collagen function by assaying structural integrity of the pharynx over time. We used *E. coli* that express red fluorescent protein to visualize the leakage of bacteria into the pharynx [24]. Animals were aged to day 10 of adulthood, and then imaged and categorized. A leakage score of one represents no pharyngeal leakage (Figure 4B, top); a leakage score of two shows animals with fluorescent inclusions building in the pharynx (Figure 4B, middle); a leakage score of three shows complete pharyngeal leakage (Figure 4B, bottom). HspB1 animals had significantly less pharyngeal leakage than control animals (p < 0.001) (Figure 4C).
Discussion

Previously, the Buffenstein group showed that HspB1 is correlated with maximum lifespan in rodents and is highly expressed in the long-lived naked mole-rat, although the mechanism by which it relates to lifespan is not well understood [4]. We show here that even though HspB1 frequently acts in concert with other small heat shock proteins, overexpression of the naked mole-rat HspB1 alone is enough to improve lifespan and both heat and oxidative stress response in an invertebrate model.

The NMR HspB1 transgenic animal has ubiquitous expression of HspB1::GFP, which could be seen both diffusely and in discrete puncta. Further research is needed to determine whether puncta formation is a feature of NMR HspB1 or an artefact of ubiquitous high expression. Whether endogenous HspB1 behaves differently in naked mole-rats compared to mice, dependent perhaps on cell-type or stressor, is an area of ongoing investigation. In the C. elegans hypodermis, HspB1::GFP appeared to localize to the fibrous organelles (Figure 1A), which anchor fibrils that extend from the basal lamina of the cuticle to muscles via the M-line and dense bodies of the sarcomere [25, 26]. Stabilization of the hypodermis may contribute to the improved longevity and stress resistance we observed. The HspB1 animals live longer at both 20°C and 25°C, with greater life extension at 25°C, a condition of low-grade chronic heat stress. Additionally, the HspB1 worms lived longer in extreme heat stress of 35°C, highlighting the importance of HspB1 in the heat stress response.

Further studies are needed to determine whether benefit is derived from increased expression of HspB1 or specifically from expression of naked mole-rat HspB1. C. elegans does have a small heat shock protein orthologous to HspB1; however, there are significant differences in the sequence, including the absence of the serine phosphorylation site that is conserved among chordates (Supplemental Data 1). Uniquely, the naked mole-rat HspB1 has an alanine repeat in the region just before the conserved αβ crystallin domain (Supplemental Data 1). It is possible that this repeat enhances NMR HspB1’s ability to form oligomers, resulting in the puncta seen in both the NMR primary cells and transgenic worm line. Enhanced oligomeric activity could play a role in forming the
protective aggresomes that have been observed to protect the cells of long-lived species from toxic aggregation-prone proteins [27]. Whether NMR HspB1 confers special protection beyond other species’ and, if so, what features contribute to this, is an area of ongoing research in our lab.

HspB1 and altered gene expression

NMR HspB1 expression altered multiple gene pathways, including collagen and lysosomal genes. RNAi lifespan assays provided further evidence for the involvement collagen genes in NMR HspB1-induced life extension. Significantly, we also observed improved oxidative stress resistance to paraquat and enhanced cuticle stability with reduced pharyngeal leakage at middle age (day ten of adulthood).

The results of our tests for the requirement of specific transcription factors in NMR HspB1-induced life extension were inconclusive. RNAi knockdown of *skn-1* reduced the lifespan of both HspB1 and control worms, with far greater effect in HspB1. However, this may be largely or even completely due to *skn-1* RNAi reducing the abundance of sur-5p::NMR.HspB1::GFP. This effect was unexpected since *skn-1* RNAi has been reported to have no effect on sur-5::GFP even when the worms are treated from an L1 stage [28]; we did not expect the abundance of *skn-1* to alter transcription from the *sur-5* promoter.

In contrast to *skn-1*, *hsf-1* RNAi dramatically shortened lifespan in both lines and had no effect on HspB1::GFP abundance. This reduced lifespan was expected as *hsf-1* RNAi causes a rapid-aging phenotype, including degradation of the pharynx and early mortality [29]. However, while *hsf-1* RNAi always reduces lifespan, it does not always completely abrogate life extension as we observe here with our HspB1 worms: the long-lived mutants *eat-2(ad1116)* (a dietary restriction model) and *isp-1(qm150)* (inhibited mitochondrial respiration) still survive longer than wild-type worms on *hsf-1* RNAi, while the otherwise long-lived *daf-2(e1370)* (inhibited insulin signaling) mutant, like our HspB1 line, is reduced to a lifespan indistinguishable from wild-type [22].
On daf-16 RNAi, the lifespan reduction in HspB1 was greater than in control worms and Cox Hazard analysis confirmed a significant strain:treatment interaction (p = 0.022). This could suggest that HspB1 induced life extension is only partially dependent on DAF-16. However, the RNAseq data has not be revelatory of any such role. Most genes that have been reported upregulated dependent on DAF-16 [30], including the canonical targets mtl-1 and sod-3 [31, 32], were not upregulated in HspB1 worms compared with controls (Supplemental Data 4). Note that while we did not observe a significant effect of daf-16 RNAi on sur-5p::NMR.HspB1::GFP when gene knockdown was started at L4 stage, it has been reported that daf-16 RNAi from L1 stage reduces sur-5::GFP expression by 10% [28].

Collagens and cuticle in lifespan

Other groups have shown that collagen genes are SKN-1-dependent and that collagen remodeling contributes to longevity [19]. Several longevity-promoting interventions, such as daf-2 mutations or RNAi, increase collagen gene expression in a SKN-1-dependent manner, and that collagen overexpression increases lifespan [19]. Cuticle leakage is a major contributor to C. elegans mortality [24]. Therefore, interventions that strengthen the cuticle should increase lifespan by preventing or delaying the onset of cuticle dysfunction. Our data support this model.

Dodd et al. showed that RNAi disruption of specific bands of collagen co-activated the detoxification, hyperosmotic, and antimicrobial response genes. Both detoxification and the hyperosmotic stress response required skn-1 [18]. Furthermore, HspB1-induced life extension is dependent on SKN-1’s collagen gene transcriptional targets. Our work lends support to a SKN-1-dependent role of collagens and the cuticle in life extension, with HspB1 expression serving as a catalyst for this pathway.

HspB1 and human disorders
Aging and many age-related neurodegenerative disorders are characterized by protein aggregation and general dysfunction in the protein homeostasis network [1]. Overexpression of the human HspB1 helps decrease protein aggregation in mouse models of Huntington’s disease, although the mechanism is not well understood [33]. It is unclear if HspB1 acts directly by interacting with aggregates that form or if HspB1 acts indirectly through other genes such as SKN-1 to ameliorate the negative effects of protein aggregation in neurodegeneration. Recent in vitro analysis by two groups has shown that mouse HspB1 (HSP25) can bind to different species of tau and regulate its aggregation [34, 35], but not to deleterious tau proteins already in aggregates. Further work is needed to explore the role of HspB1 in age-associated disease states in vivo and the composition of the HspB1 aggresome.

Experimental Procedures

Cell culture and imaging

One-day old naked mole-rat and mouse pups were rinsed with Wescodyne solution and with 70% ethanol prior to decapitation. A 1-2 mm piece of dorsal skin was removed with dissecting scissors and then rinsed with 1X tissue culture grade PBS containing 1X primocin (Invitrogen). The skin biopsy was then rinsed in 70% ethanol, followed twice more in 1X tissue culture grade PBS with 1X primocin. The tissue was then finely minced with a sterile razor in 0.25 mL 0.25% trypsin/EDTA. Another 0.25 mL 0.25% trypsin was added to the dish before incubating for 15 minutes in 5% CO₂ at 35°C (naked mole-rat) or 37°C (mouse).

After incubation, trypsin was neutralized with 10% FBS DMEM + 1X primocin. The media was then carefully aspirated out of the dish without disturbing the larger tissue pieces. One to two drops of 10% FBS DMEM + 1X primocin was then added to the explant and returned to the respective tissue culture incubator for seven to ten days to allow fibroblasts to grow out of the explant. At this point, the cells were rinsed with 1X HBSS, trypsinized, rinsed from the dish with 10% FBS DMEM + 1X primocin, and then centrifuged to obtain a pellet. The cells were then resuspended in
fresh 4 mL of 10% FBS DMEM + 1X primocin and plated into a T25 flask which is labeled as passage 1.

Cells were incubated with primary antibodies overnight at 4°C prior to imaging with 25X objective. The Fibroblast marker employed was ER-TR7 (Santa Cruz sc73355 lot#J3019 at 1:100 in 5% normal goat serum PBS; 561 laser: 300; PMT 700. To measure HSP25 we used Enzo AD1-SPA-801-F lot#07031822 at 1:50 in 5% normal goat serum PBS; 488 laser: 200; PMT 700. DAPI at 1uM final for 5 minutes post stain; 405 laser: 300; PMT 700. Secondary antibodies used were Alexa mouse 488, Alexa rat 568 and Alexa rabbit 488 all used at 1:200 final dilution.

Worm maintenance conditions

Worms were maintained using standard techniques [36] and experiments were performed at 20°C unless otherwise indicated. The following strains were used in this study: wild-type (N2); HT1593 (unc-119(ed3)), which were used to create transgenic lines; KAR1 (satIs1[sur-5p::HspB1::GFP]), which express naked mole rat HspB1 fused to GFP under the ubiquitous sur-5 promoter; and KAR2 (satIs2[sur-5p]), which serve as the vector controls.

Generation of transgenic animals

A synthetic cDNA encoding the HspB1 protein from the Naked Mole Rat (NMR) was designed with C. elegans optimized codon usage. This cDNA was then purchased from IDT (Coralville, IA) as a synthetic gene cloned into the pIDTSmart-amp vector. The cDNA was removed from the pIDT vector using Acc65I and subcloned into the pPD158.87 vector (Addgene Inc., Cambridge, MA), which contains the C. elegans ubiquitous sur-5 promoter, to generate a sur-5p::HspB1::GFP transgene. The unc-119 gene from C. briggsae was then substituted for the ampicillin resistance gene on the vector backbone via homologous
recombination using punc-119cbr vector as previously described to provide a selectable marker [37]. The resulting plasmid was then used to bombard HT1593 (unc-119(ed3)) as described [38]. Transgenic strains were identified by rescue of the unc-119 mutant phenotype, and led to the establishment of the strain KAR1 (satIs1[sur-5p::HspB1::GFP] that is used in this study. We also generated a negative control transgene which contained the HspB1 cDNA in reverse orientation in the same vector. This vector was then used to generate the negative control strain KAR2 (satIs2[sur-5p]), by bombardment as described above. Both strains were outcrossed with N2 at least four times prior to use.

Lifespan assay

Animals were synchronized with hypochloride treatment and placed onto NGM plates seeded with OP50. For RNAi experiments, plates were instead seeded with HT115 and at the L4 stages, worms were transferred to plates which additionally contained 50μM of 5-fluorodeoxyuridine (FUDR) to prevent reproduction.) Worms were transferred to new plates every other day for the first six days of adulthood. Missing animals and those with internally hatched larvae were removed from the analysis. Animal survival was scored every day by response to touch and were marked as dead if they did not respond. There were at least twenty-five animals per group, with at least three biological replicates per experiment. We used R to generate all graphs and perform log-rank testing for comparing survival curves Cox Hazard analysis to test for significant strain:treatment interaction when comparing HspB1 transgenic worms to controls on RNAi.

Heat resistance assay

Heat resistance assays were performed on OP50 seeded NGM plates placed at 35°C. Animal survival was scored every hour by the response to touch and were marked as dead if they did not
respond. We used Prism6 (Graphpad Software, La Jolla, CA) to generate all graphs and perform log-rank testing for comparing survival curves.

Fluorescence microscopy

Animals were mounted on 2% agar pads, immobilized with sodium azide, and imaged with Zeiss LSM700 microscope, using 1.4NA 63x oil objective. 12-bit confocal z-stacks were reconstructed in ImageJ as 3D projections.

C. elegans lysis

Approximately 800 synchronized worms were used for each condition. Eggs were hatched on NGM plates and animals were aged to Day 0 of adulthood at 20°C. Worms were then washed from the plate with S-BASAL, gently pelleted with centrifugation at 3000rpm for 1 minute, and washed again in S-BASAL to ensure removal of any bacteria. Worms were then resuspended in 250uL of resuspension buffer (10mM HEPES, 10mM NaCl, 1.5mM MgCl2, 2mM ATP, 0.5M DTT, pH 6.2), with 5% glycerol.

After resuspension, animals were lysed with a Tissue Lyser. For the Tissue Lyser, 3 or 5mm beads were used at a speed of 50 Hz for 1 minute. Following the initial homogenization, worms were placed at 4°C for 30 minutes on a vigorous shake. Then, the mechanical homogenization was repeated. The insoluble fraction was then pelleted by centrifugation at 5000rpm for 5 minutes, and the supernatant was collected. Protein concentration was determined using the standard BCA assay (Pierce).

Protein extraction and western blotting
Standard western blotting methods were used. Twenty micrograms of total worm lysate from disruption of 800-1000 whole worms described above were boiled in Laemmli buffer and loaded onto a gradient SDS-PAGE gel, separated, and transferred onto PVDF membrane. Membranes were stained with LI-COR Total Protein Stain and imaged using the LI-COR Odyssey. Then, membranes were probed with anti-HspB1 antibody (ADI-SPA-801, ENZO Life Sciences; 1:1000 overnight at 4°C), followed by a fluorescent secondary antibody and imaging on the LI-COR Odyssey and analysis on LI-COR Imaging software.

RNA extraction and whole transcriptome RNA sequencing

Five biologically independent populations of KAR1 and KAR2 worms were used. Worms were synchronized with hypochloride treatment and grown on standard NGM plates at 20°C. At day 1 of adulthood, worms were washed from plates with S-BASAL and resuspended in Trizol. Total RNA was extracted using Direct-zol RNA Mini Prep Plus kit and quantified. RNA was sent to Genewiz for sequencing.

Using Galaxy, sequence files were aligned to the *C. elegans* genome with HISAT and the overlap of the reads with specific genes were counted with HTSEQ-COUNT. With DESeq2, differential expression based on a model using the negative binomial distribution was calculated, and we calculated the normalized counts for each sample. Genes with an adjusted p-value of <0.05 were considered significantly differentially expressed. Pathway analysis was performed with DAVID to identify enriched gene clusters and biological pathways (Keith et al., 2016).

NanoString assay

Gene expression was measured as previously described [39]. NanoString Technologies (Seattle, WA) synthesized code sets that recognize target genes. The nCounter system was used to assess the amount of transcript for each gene in the panel present in 100ng of total RNA. The analysis
was done with the NanoString nSolver system, with normalization to the geometric mean of housekeeping genes (act-1, ama-1, nhr-23, and pmp-3), and significance was tested with one-way ANOVA analysis with the nSolver software. RNA was isolated from total worms at day 1 of adulthood as described above. Five biological replicates with approximately 1,000 animals per group were used.

RNAi treatment

The effect of RNAi on lifespan was measured as previously described [39]. All RNAi clones were retrieved from the Ahringer RNAi library and confirmed with sequencing. RNAi bacterial cultures grown overnight were spotted onto NGM plates with 50μg/mL carbenicillin, 1mM IPTG and +/- 50μM of 5-fluorodeoxyuridine (FUDR) as indicated. Approximately forty L4 animals were placed onto the spotted plates and placed at 20°C. We then assayed lifespan as described above. Prism6 (Graphpad Software, La Jolla, CA) was used to generate all graphs and perform log-rank testing for comparing survival curves.

Oxidative stress assay

Oxidative stress was assessed as previously described [40]. Age synchronized day 1 adult worms were washed off NGM plates with S-BASAL. Four groups of approximately twenty animals each were suspended in 500μL of 100mM paraquat in S-BASAL, placed at room temperature, and then monitored each hour. Survival was determined as the ability to thrash in liquid culture. We used Prism6 (Graphpad Software, La Jolla CA) to generate graphs and perform log-rank testing to compare survival curves.

Pharyngeal leakage assay
E. coli OP50 expressing red fluorescent protein (OP50-RFP) was kindly provided by Dr. Yuan Zhao and the pharyngeal leakage assay run as previously reported [24]. In summary, we cultured OP50-RFP was in the presence of 25 μg/mL tetracycline and then resuspended the bacteria in LB broth without antibiotics before seeding NGM plates. Worms were raised from eggs on this OP50-RFP and transferred to fresh plates every 2-3 days. At day ten of adulthood, worms were mounted on 2% agar pads with 10 mM sodium azide and imaged, as described above. The amount of pharyngeal leakage was scored, with a score of 1 for worms with no RFP leakage, a score of 2 for RFP positive inclusions, and a score of 3 for full RFP leakage into the pharynx. We used Prism6 (Graphpad Software, La Jolla CA) to compare the two groups with a student’s t-test.

Funding

This work was supported by funds from National Institutes of Health (U.S. Public Health Service Grant K12 GM111726) [CMC] and the National Institute on Aging (R00 AG049940) [KAR]. Some C. elegans strains were provided by the Caenorhabditis Genetics Center, which is funded by National Institutes of Health Office of Research Infrastructure Programs (P40 OD010440).

Acknowledgements

We would like to thank Rochelle Buffenstein (Calico) for her guidance, and Ron Walter and his group (Texas State) for their assistance in running the NanoString nCounter experiments. Confocal microscopy was performed at the Cell Imaging Center, Drexel University.
References

[1] R.I. Morimoto, A.M. Cuervo, Proteostasis and the aging proteome in health and disease, J Gerontol A Biol Sci Med Sci 69 Suppl 1 (2014) S33-8. DOI: 10.1093/gerona/glu049

[2] R.A. Miller, J.M. Harper, R.C. Dysko, S.J. Durkee, S.N. Austad, Longer life spans and delayed maturation in wild-derived mice, Experimental biology and medicine 227(7) (2002) 500-8. DOI: 10.1177/153537020222700715

[3] R. Buffenstein, The naked mole-rat: a new long-living model for human aging research, J Gerontol A Biol Sci Med Sci 60(11) (2005) 1369-77. DOI: 10.1093/gerona/60.11.1369

[4] K.A. Rodriguez, J.M. Valentine, D.A. Kramer, J.A. Gelfond, D.M. Kristan, E. Nevo, R. Buffenstein, Determinants of rodent longevity in the chaperone-protein degradation network, Cell Stress Chaperones 21(3) (2016) 453-66. DOI: 10.1007/s12192-016-0672-x

[5] K.A. Rodriguez, P.A. Osmulski, A. Pierce, S.T. Weintraub, M. Gaczynska, R. Buffenstein, A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition, Biochim Biophys Acta 1842(11) (2014) 2060-72. DOI: 10.1016/j.bbadis.2014.07.005

[6] H. Pride, Z. Yu, B. Sunchu, J. Mochnick, A. Coles, Y. Zhang, R. Buffenstein, P.J. Hornsby, S.N. Austad, V.I. Perez, Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species, Biochemical and biophysical research communications 457(4) (2015) 669-75. DOI: 10.1016/j.bbrc.2015.01.046

[7] F. Ritossa, A new puffing pattern induced by temperature shock and DNP in drosophila, Experientia 18(12) (1962) 571–573. DOI: 10.1007/BF02172188

[8] Y. Cao, N. Ohwatari, T. Matsumoto, M. Kosaka, A. Ohtsuru, S. Yamashita, TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts, Pflugers Arch 438(3) (1999) 239-44. DOI: 10.1007/s004240050905

Downloaded from https://academic.oup.com/biomedgerontology/advance-article/doi/10.1093/gerona/glab296/6381679 by guest on 08 October 2021
(9) J.M. Matz, M.J. Blake, H.M. Tatelman, K.P. Lavoi, N.J. Holbrook, Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue, Am J Physiol 269(1 Pt 2) (1995) R38-47. DOI: 10.1152/ajpregu.1995.269.1.R38

(10) L. Ding, E.P. Candido, HSP25, a small heat shock protein associated with dense bodies and M-lines of body wall muscle in Caenorhabditis elegans, J Biol Chem 275(13) (2000) 9510-7. DOI: 10.1074/jbc.275.13.9510

(11) V.M. Shatov, S.D. Weeks, S.V. Strelkov, N.B. Gusev, The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8, Int J Mol Sci 19(7) (2018). DOI: 10.3390/ijms19072112

(12) A.P. Arrigo, W.J. Firdaus, G. Mellier, M. Moulin, C. Paul, C. Diaz-latoud, C. Kretz-remy, Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression, Methods 35(2) (2005) 126-38. DOI: 10.1016/j.ymeth.2004.08.003

(13) A.P. Arrigo, S. Virot, S. Chaufour, W. Firdaus, C. Kretz-Remy, C. Diaz-Latoud, Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels, Antioxid Redox Signal 7(3-4) (2005) 414-22. DOI: 10.1089/ars.2005.7.414

(14) P. Mehlen, E. Hickey, L.A. Weber, A.P. Arrigo, Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFalpha in NIH-3T3-ras cells, Biochem Biophys Res Commun 241(1) (1997) 187-92. DOI: 10.1006/bbrc.1997.7635

(15) A.P. Arrigo, Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell, Cell Stress Chaperones 22(4) (2017) 517-529. DOI: 10.1007/s12192-017-0765-1
[16] F. Madeira, Y.M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan, P. Basutkar, A.R.N. Tivey, S.C. Potter, R.D. Finn, R. Lopez, The EMBL-EBI search and sequence analysis tools APIs in 2019, Nucleic acids research 47(W1) (2019) W636-W641. DOI: 10.1093/nar/gkz268

[17] D. Sagi, S.K. Kim, An engineering approach to extending lifespan in C. elegans, PLoS genetics 8(6) (2012) e1002780. DOI: 10.1371/journal.pgen.1002780

[18] W. Dodd, L. Tang, J.C. Lone, K. Wimberly, C.W. Wu, C. Consalvo, J.E. Wright, N. Pujol, K.P. Choe, A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans, Genetics 208(4) (2018) 1467-1482. DOI: 10.1534/genetics.118.300827

[19] C.Y. Ewald, J.N. Landis, J. Porter Abate, C.T. Murphy, T.K. Blackwell, Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity, Nature 519(7541) (2015) 97-101. DOI: 10.1038/nature14021

[20] R.P. Oliveira, J. Porter Abate, K. Dilks, J. Landis, J. Ashraf, C.T. Murphy, T.K. Blackwell, Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf, Aging cell 8(5) (2009) 524-41. DOI: 10.1111/j.1474-9726.2009.00501.x

[21] J.F. Morley, R.I. Morimoto, Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones, Molecular biology of the cell 15(2) (2004) 657-64. DOI: 10.1091/mbc.e03-07-0532

[22] A.L. Hsu, C.T. Murphy, C. Kenyon, Regulation of aging and age-related disease by DAF-16 and heat-shock factor, Science 300(5622) (2003) 1142-5. DOI: 10.1126/science.1083701

[23] J.M. Tullet, M. Hertweck, J.H. An, J. Baker, J.Y. Hwang, S. Liu, R.P. Oliveira, R. Baumeister, T.K. Blackwell, Direct inhibition of the longevity-promoting factor SKN-1 by
insulin-like signaling in C. elegans, Cell 132(6) (2008) 1025-38. DOI:
10.1016/j.cell.2008.01.030

[24] Y. Zhao, A.F. Gilliat, M. Ziehm, M. Turmaine, H. Wang, M. Ezcurra, C. Yang, G.
Phillips, D. McBay, W.B. Zhang, L. Partridge, Z. Pincus, D. Gems, Two forms of death in
ageing Caenorhabditis elegans, Nat Commun 8 (2017) 15458. DOI: 10.1038/ncomms15458

[25] R. Francis, R.H. Waterston, Muscle cell attachment in Caenorhabditis elegans, J Cell
Biol 114(3) (1991) 465-79. DOI: 10.1083/jcb.114.3.465

[26] M.C. Hresko, B.D. Williams, R.H. Waterston, Assembly of body wall muscle and
muscle cell attachment structures in Caenorhabditis elegans, J Cell Biol 124(4) (1994) 491-
506. DOI: 10.1083/jcb.124.4.491

[27] B. Sunchu, R.T. Riordan, Z. Yu, I. Almog, J. Dimas-Muñoz, A.C. Drake, V.I. Perez,
Aggresome-Like Formation Promotes Resistance to Proteotoxicity in Cells from Long-Lived
Species, The journals of gerontology. Series A, Biological sciences and medical sciences
75(8) (2020) 1439-1447. DOI: 10.1093/gerona/glaa069

[28] D.E. Shore, C.E. Carr, G. Ruvkun, Induction of cytoprotective pathways is central to the
extension of lifespan conferred by multiple longevity pathways, PLoS genetics 8(7) (2012)
e1002792. DOI: 10.1371/journal.pgen.1002792

[29] D. Garigan, A.L. Hsu, A.G. Fraser, R.S. Kamath, J. Ahringer, C. Kenyon, Genetic
analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial
proliferation, Genetics 161(3) (2002) 1101-12. DOI: 10.1093/genetics/161.3.1101

[30] R.G. Tepper, J. Ashraf, R. Kaletsky, G. Kleemann, C.T. Murphy, H.J. Bussemaker,
PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated
development and longevity, Cell 154(3) (2013) 676-690. DOI: 10.1016/j.cell.2013.07.006
[31] C.T. Murphy, S.A. McCarroll, C.I. Bargmann, A. Fraser, R.S. Kamath, J. Ahringer, H. Li, C. Kenyon, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans, Nature 424(6946) (2003) 277-83. DOI: 10.1038/nature01789

[32] C.J. Kenyon, The genetics of ageing, Nature 464(7288) (2010) 504-12. DOI: 10.1038/nature08980

[33] A. Wyttenbach, O. Sauvageot, J. Carmichael, C. Diaz-Latoud, A.P. Arrigo, D.C. Rubinsztein, Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin, Hum Mol Genet 11(9) (2002) 1137-51. DOI: 10.1093/hmg/11.9.1137

[34] H.E.R. Baughman, A.F. Clouser, R.E. Klevit, A. Nath, HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation, J Biol Chem 293(8) (2018) 2687-2700. DOI: 10.1074/jbc.M117.803411

[35] R. Freilich, M. Betegon, E. Tse, S.A. Mok, O. Julien, D.A. Agard, D.R. Southworth, K. Takeuchi, J.E. Gestwicki, Competing protein-protein interactions regulate binding of Hsp27 to its client protein tau, Nat Commun 9(1) (2018) 4563. DOI: 10.1038/s41467-018-07012-4

[36] S. Brenner, The genetics of Caenorhabditis elegans, Genetics 77(1) (1974) 71-94. DOI: 10.1093/genetics/77.1.71

[37] A.A. Ferguson, L. Cai, L. Kashyap, A.L. Fisher, Improved vectors for selection of transgenic Caenorhabditis elegans, Methods Mol Biol 940 (2013) 87-102. DOI: 10.1007/978-1-62703-110-3_8

[38] D. Hochbaum, A.A. Ferguson, A.L. Fisher, Generation of transgenic C. elegans by biolistic transformation, J Vis Exp (42) (2010). DOI: 10.3791/2090

[39] S.A. Keith, S.K. Maddux, Y. Zhong, M.N. Chinchankar, A.A. Ferguson, A. Ghazi, A.L. Fisher, Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the
[40] W. Qi, G.E. Gutierrez, X. Gao, H. Dixon, J.A. McDonough, A.M. Marini, A.L. Fisher, The omega-3 fatty acid alpha-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARalpha and oxidation to oxylipins, Aging Cell 16(5) (2017) 1125-1135. DOI: 10.1111/acel.12651
Figure Legends

Figure. Expression of naked mole-rat HspB1 in *C. elegans* improves lifespan and health-span. (A) HspB1-GFP expression is driven by the ubiquitous promoter, *sur-5*, and drives expression that is both diffuse and punctate. (B) HspB1 expression increases protein levels. (C) Endogenous HspB1 expression in naked mole-rat fibroblasts. (D) Endogenous HspB1 expression in mouse fibroblasts. (E) HspB1 expressing animals live longer than control animals when grown at 20°C (p<0.05) and (F) 25°C (p<0.001). (G) HspB1 animals survive longer at 35°C in a heat resistance assay (p<0.001). Number of animals used in the analyses is shown in parentheses.

Figure. Whole transcriptome sequencing of the HspB1 expressing animals compared to controls. (A) Go Ontology enrichment analysis from DAVID shows several altered pathways with an enrichment fold change of >1.5. Shown in green are pathways associated with collagen genes. (B) Significantly altered pathways are listed with the count of genes in the given pathway, the p-value, the fold enrichment, and the false discovery rate (FDR). (C) The heat map shows the differentially expressed collagen genes that were statistically significant (p adjusted <0.05). Genes that increased in the HspB1 expressing animals are in red and decreased in blue. The intensity shows the ratio of the expression change, with the control expression set to 100%. A similar heat map is shown for (E) lysosomal genes as well. (D) RNAseq collagen hits and (F) lysosomal hits were validated with NanoString nCounter technology. The red bars show the average normalized counts for five biological replicates of HspB1-GFP populations while the black bars show the controls. (*= p<0.05, **= p<0.01, ***p<0.001).
Figure. HspB1 lifespan extension is dependent on *skn-1* and collagen genes. (A) HspB1 life extension is abolished on *skn-1* RNAi (A) and *hsf-1* RNAi (B) but only attenuated on *daf-16* RNAi (C). Collagen gene *col-79* (D), *rol-6* (E) and *sqt-2* (F) RNAi also prevents HspB1 life extension. All p-values shown are Cox Hazard test for strain:treatment interaction. Additional replicates and statistics are included in Supplemental Data 2.

Figure. HspB1 expressing worms have improved SKN-1 associated functions. (A) HspB1 expressing animals have increased survival on 10mM paraquat (p < 0.01). (B) HspB1 worms also have a decrease in pharyngeal leakage. Leakage scores were assigned with a one given to no visible infiltration (top, HspB1 animal, day 10 of adulthood), a two if there were RFP positive pharyngeal inclusions (middle, control animal, day 10 of adulthood) and a score of three if there was full leakage (bottom, control animal, day 10 of adulthood). (C) The average leakage score for day 10 of adulthood was lower in HspB1 animals compared to controls (p < 0.001), with an n of 10 per group, three biological replicates plotted. Number of animals used in the analyses is shown in parentheses.
Figure 1

A

B

C

D

E

F

G

Downloaded from https://academic.oup.com/biomedgerontology/advance-article/doi/10.1093/gerona/glab296/6381679 by guest on 08 October 2021
Figure 2

A

GO Ontology

Pathway Enrichment Fold Change

Cytoskeleton

Structural Constituent of Cuticle

Multi-Organism Reproductive Process

Neurotransmitter Transporter Activity

Extracellular Matrix

Lipid Metabolism

Multicellular Organism Growth

Lytic Vacuole

Innate Immune Response

Collagen

Regulation of Cell Shape

Pathway	Count	P-value	Fold Enrichment	FDR
Protein-tyrosine phosphatase | 26 | 2.29E-18 | 10.1 | 3.23E-15
Multi-organism reproductive process | 18 | 1.18E-08 | 5.8 | 1.67E-05
Structural constituent of cuticle | 21 | 2.42E-07 | 4.0 | 3.09E-04
Regulation of cell shape | 15 | 2.75E-07 | 5.8 | 3.67E-04
Innate immune response | 27 | 3.11E-07 | 3.2 | 4.15E-04
Collagen | 18 | 1.88E-05 | 3.5 | 2.26E-02
Lysosome | 10 | 1.07E-04 | 5.3 | 1.09E-01
Lipid metabolism | 6 | 6.80E-04 | 4.1 | 8.60E-01

B

C

D

E

F

Control | HspB1

Macrotextures

Y40H7A.10

cpr-5

cpr-4

Control | HspB1

NanoString- Lysosomal Genes

NanoString- Collagen Genes
Figure 3

A. skn-1 RNAi, p < 0.001

B. hsf-1 RNAi, p < 0.001

C. daf-16 RNAi, p = 0.022

D. col-79 RNAi, p < 0.01

E. rol-6 RNAi, p < 0.01

F. sqt-2 RNAi, p < 0.001
Figure 4

A
Paraquat Survival Assay

- Control
- HspB1
p < 0.01

Survival (%)

0 2 4 6 8 10 12
Time (Hours)

B
Leakage Score = 1

Leakage Score = 2

Leakage Score = 3

C
Pharyngeal Leakage Score

Control

HspB1

Leakage Score

0.5 1.0 1.5 2.0 2.5
