We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of \(|a_p| < 0.32\) for \(M_W = 50 \text{ GeV}/c^2\) on the spin-dependent sector of weakly interacting massive particle-nucleus interactions with a 50\% reduction in the previously allowed region of the phase space formerly defined by XENON, KIMS and PICASSO. In the spin-independent sector, a limit of \(2.3 \times 10^{-8} \text{ pb}\) at \(M_W = 45 \text{ GeV}/c^2\) is obtained.

The direct search for weakly interacting massive particle (WIMP) dark matter continues to be among the forefront endeavors of modern physics activity. Search experiments are generally based on the detection of nuclear recoil events resulting from WIMP-nucleus interactions, and are traditionally classified as spin-independent (SI) or spin-dependent (SD) according to which interaction channel the experiment is most sensitive, of which the first has generally attracted the most attention. The current status of the SI search for WIMPs is defined by a number of projects, including XENON \([6, 7]\), CDMS \([2]\) and ZEPLIN \([3]\), which as a result of their target nuclei spins also define the WIMP-neutron sector of the SD phase space. The WIMP-proton sector is currently constrained by PICASSO \([4]\) and KIMS \([5]\).

The SIMPLE (Superheated Instrument for Massive Particle Experiments) \([5]\) project, located in a 61 m

diameter double distilled. The water, when exaggerated.

The SDDs were fabricated according to previously-described procedures \([6]\), in an underground (210 mwe) clean room in close proximity to the measurement site. The SIMPLE gel ingredients, all biologically-clean food products, are purified using actinide-specific ion-exchanging resins. The freon is single distilled; the water, double distilled. The presence of U/Th contaminations in the gel, measured at \(\sim 0.1 \text{ ppb}\) by low-level \(\alpha\) and \(\gamma\) spectroscopy of the production gel, yields an overall \(\alpha\)-background level of \(< 0.5 \text{ evt/kg freon/d}\). A similar level is measured for the detector containment materials.

The detectors are capped using a mechanical construction which virtually eliminates pressure microleaks \([6]\). Each cap contains feedthroughs for pressure monitoring, and for a 20-16kHz electret microphone encased in a latex sheath, which is immersed in a 4 cm thick glycerin layer covering the gel at the top of the detector containment. Each microphone response is amplified and recorded in a MatLab platform in sequential files of 8 min duration \([6]\), with resolutions of 0.3 mV in amplitude and \(1.6 \times 10^{-2}\) ms in time; the pressure reading is similarly recorded separately. The use of shielded telecommunications-grade cabling eliminates signal resulting from cable motion and parasitics, even when exaggerated.

The SDDs are immersed to a depth of 20 cm in a 700 liter water pool maintained at a bath temperature of \(9.0 \pm 0.1\, ^\circ\text{C}\) within the cavern, and pressurized to 2 bar to
reduce background sensitivity. The water pool rests on a dual vibration absorber placed atop a 20 cm thick wood platform resting on a 50 cm thick concrete floor. The pool is surrounded by three layers of sound and thermal insulation. An additional 50-75 cm thick water shielding surrounds the insulated pool and pedestal, with a 75 cm water thickness overhead; 50 cm of water separates the pool bottom from the SDD bases.

At 1500 mwe, the ambient neutron flux is primarily due to the surrounding calcite rock, estimated at well-below 4×10^{-5} n/cm2/s11. The cavern is shielded from the rock environment by a 30-100 cm thickness of concrete, internally sheathed by a 1 cm thickness of iron. Radio-assays of the concrete yielded 1.90±0.05 ppm 232Th and 0.850±0.081 ppm 238U; of the steel, 3.20±0.25 ppb 232Th and 2.9±0.2 ppb 238U. The results are at the same level as those recorded in other underground locations such as Canfranc, Modane and Gran Sasso $^{12-14}$. Monte-Carlo simulations of the on-detector neutron field, which include all shielding materials and account for spontaneous fission plus decay-induced (α, n) reactions, show negligible variations for concrete thicknesses ≥ 20 cm, and yield an expected neutron background of 1.09 ± 0.02 (stat) ± 0.07 (syst) evt/kgd.

The ambient radon level varies seasonally between 28 - 1000 Bq/m3 as a result of water circulation in the mountain. The cavern air is purged ∼ 10 times per day, reducing the ambient radon levels to ∼ 60 Bq/m3. Diffusion of the environmental radon into a detector is limited by the surrounding water, which covered the detectors to just above their glycerin layers, and is circulated at 25 liter/min (equivalent to replacing the top 1 cm water layer each minute). The radon contribution is also low because of the short radon diffusion lengths of the SDD construction materials (glass, plastic, metal), the N$_2$ overpressuring which inhibits the advective influx of Rn (via stiffening of the gel), and the glycerin layer covering the gel. The reduction in the overall radon contribution to the measurement, including its progeny, is estimated at ∼ 10^5 with the overall α contribution to the measurement (including the detector contribution) estimated at 3.26 ± 0.08 (stat) ± 0.76 (syst) evt/kgd.

Data obtained from 15 SDDs, containing between 8-21 g of C$_2$ClF$_5$ for a total active mass of 0.208 kg, between 27 October 2009 and 05 February 2010 were analyzed for this report. An additional, similarly installed, freon-less device, served as an acoustic veto.

This report. An additional, similarly installed, freon-less device, served as an acoustic veto. The initial data set (4056 events) was then formed by passing the data files through a pulse validation routine 8 which tagged signal events if their amplitude exceeded the noise level of the detector by 2 mV. Tagged signals in coincidence with the freon-less device were next rejected, as also all candidate signals with less than five pulse spikes above threshold; the remaining set was then cross-correlated in time between all SDDs, and coincidences rejected as local noise events and that a WIMP interacts with no more than one of the in-bath detectors.

The signal waveform, decay time constant and spectral density structure of the remaining 1828 single events were next inspected individually. A particle-induced nucleation event possesses a characteristic frequency response, with a time span of a few milliseconds, a decay constant of 5-50 ms, and a primary harmonic between 0.45-0.75 kHz 5. This response differs significantly from those of gel-associated acoustic backgrounds such as trapped N$_2$ gas (3.4% of the total), gas escape (0.008%), and gel fractures (4.4%) which appear at lower frequencies 8, as well as local acoustic backgrounds (88%) such as water bubbles which differ in power spectra. This event-by-event analysis permits isolation of the true nucleation events with an efficiency of better than 97% at 95% C.L. Fig. 1 displays the signal amplitudes (A) with frequency for each of the identified 60 particle-induced signal events, in which a gap corresponding to A = 100-130 mV is discernible.

At 9°C, the reduced superheat of the devices is 0.3, and the probability of events from electrons, γ’s and n/p’s negligible 6 over the exposure. Calibrations of the α response have been made by doping the devices with U308 during fabrication. The event signals, identified in the same fashion as described above, are shown in Fig. 1. The SRIM-calculated dE/dx for α’s in C$_2$ClF$_5$ has a Bragg peak which sets a lower energy threshold at 200 keV for the operating temperature and pressure; below

![Figure 1: Scatter plot of the squared amplitude and frequency of the primary harmonic of each true nucleation event (solid), together with the same for neutron and α calibration events (open), with the dashed horizontal line corresponding to a signal amplitude of 100 mV.](image)
this threshold, α’s are detected only through α-induced nuclear recoils.

Calibration of the high concentration SDD response to neutrons, using sources of Am/Be, yielded a minimum threshold recoil energy (E_{thr}) of 8.0\pm0.1 keV, with an acoustic detection efficiency of 0.98\pm0.03 at 9°C and 2 bar. The events are also displayed in Fig. 1, all of which occur with amplitudes \leq 100 mV. The difference in the two distributions, particularly at lower amplitudes, results from performing the calibrations with a 15 cm water shield to enhance the tails on the moderated neutron spectrum.

Fig. 2 displays a typical histogram of both calibration signal amplitudes. As seen, the neutron-induced events are of lower amplitude than the α-induced, and empirically well fit by a Gaussian plus constant background from which a discrimination cut for $A \leq 100$ mV is placed with an acceptance of $> 97\%$. The small droplet size provides a natural lower cutoff to the deposited α energy and is together with the dE/dx responsible both for the amplitude gap between the α and neutron populations, and the spectral asymmetry in the α distribution.

The 14 low amplitude events of the run are consistent with the neutron calibrations, yielding 0.99 \pm 0.27 (stat) evt/kgd. Corrected for detection and identification efficiencies, the difference between measurement and neutron background estimate is better than 0.3σ.

An upper limit on the number of WIMP events in the presence of the uncertain neutron background is estimated by applying the Feldman-Cousins method [16], based on observing 14 events with a background one standard deviation below the central value of the expected neutron background. This yields 4.3 events, and a resulting WIMP rate of 0.57 evt/kgd at 90% C.L.

The impact of the result in the SD phase space at $M_W = 50$ GeV/c2 is shown in Fig. 3. The contour is calculated within a model-independent formulation [10], in which the region excluded by an experiment lies outside the indicated band, and the allowed region is defined by the intersection of the various bands. The calculations use a standard isothermal halo, bubble nucleation efficiency of (1-E_{thr}/E) [6], and WIMP scattering rate [17] with zero momentum transfer spin-dependent cross section σ_{SD} for elastic scattering:

$$\sigma_{SD} \sim G_F [a_p < S_p > + a_n < S_n >]^2 \frac{J+1}{J},$$

where $a_{p,n}$ are the WIMP-proton,neutron coupling strengths, $< S_{p,n} >$ are the expectation values of the proton (neutron) group’s spin, G_F is the Fermi coupling constant, and J is the total nuclear spin. The form factors of Ref. [17] have been used for all odd-A nuclei. The spin values of Strottman have been used for 19F [18], for 35Cl and 37Cl, $< S_{p,n} >$ are from Ref. [16], while for 13C the $< S_{p,n} >$ were estimated by using the odd group approximation. Use of the Divari et. al. spin values [19] for 19F would rotate the ellipse about the origin to a more horizontal position. We include only the 121 kgd result of CDMS [2] since the more recent [20] model-independent result hasn’t yet been published. The shaded area represents the allowed DAMA/LIBRA region [21], which is already excluded by other experiments.
As indicated, the present result combined with XENON10 yields limits of $|\alpha_p| \leq 0.32$, $|\alpha_n| \leq 0.16$ on the SD sector of WIMP-nucleus interactions for $M_W = 50$ GeV/c2, with $\sim 50\%$ reduction in the allowed region of the phase space. M_W above or below this choice yield less restrictive limits [10].

![Spin-independent contour for SIMPLE](image)

FIG. 4: Spin-independent contour for SIMPLE; the dashed contour represents a "0evt" SIMPLE result for the same measurement exposure. Also shown are several [22] of the leading search results; the shaded area represents the recent result of CoGeNT [23].

For completeness, the impact of the result in the SI sector, calculated following the standard isothermal halo and WIMP elastic scattering rate of Ref. [17] using a Helm form factor, is shown in Fig. 4 in comparison with results from other leading search efforts [22]. The figure indicates a contour minimum of 2.3×10^{-9} pb at 45 GeV/c2, slightly less restrictive than that of the 52 kgd COUPP exposure. The near-equivalence of the two, despite the $\sim 48\times$ difference in sensitivity from coherence enhancement, most likely derives from the high radiopurity and α-discrimination of the SIMPLE detectors.

In summary, a conservative analysis of 14.1 kgd of data from the first phase run of SIMPLE yields new restrictions on the WIMP-proton parameter space of SD WIMP interactions which improves on those from both PICASSO and COUPP. These results represent the first stage of the ongoing 30 kgd Phase II exposure permitted by current funding, and further demonstrates the competitiveness of the superheated liquid technique in the search for astroparticle dark matter in both spin-dependent and -independent sectors. To further approach the dashed contours of SIMPLE in Figs. 3 and 4 requires further reduction and/or elimination of the neutron background: improvements in the second stage of this measurement include a 10 cm increase in the wood pedestal beneath the waterpool, and installation of an additional 10 cm polyethylene beneath the detectors, which together are projected to reduce the overall neutron contribution by \sim factor 5. This is accompanied by additional α and neutron calibrations, and a refined α-neutron discrimination analysis [25] towards understanding the differences between these results and those of PICASSO [20].

We thank Dr. F. Giuliani for numerous suggestions and advices, Dr. P. Loaiza for the radioassays of the site concrete and steel, Eng J. Albuquerque of CRIOLAB, Lda for numerous technical assistances during the measurement staging, and the Casoli’s for their hospitality during our various residences near the LSBB. This work was supported in part by grant PDTC/FIS/83424/2006 of the Portuguese Foundation for Science and Technology (FCT), and by the Nuclear Physics Center of the University of Lisbon.

[1] J. Angle et al., Phys. Rev. Lett. 100, 021303 (2008).
[2] Z. Ahmed et al., Phys. Rev. Lett. 102, 011301 (2009).
[3] V.N. Lebedenko et al., Phys. Rev. D80, 052010 (2009).
[4] S. Archambault et al., Phys. Lett. B682, 185 (2009).
[5] H.S. Lee et al., Phys. Rev. Lett. 99, 091301 (2007).
[6] T. Morlat et al., Astrop. Phys. 30, 159 (2008).
[7] TA Girard et al., Phys. Lett. B621, 233 (2005).
[8] M. Felizardo et al., Nucl. Instrum. Meth. A589, 72 (2008).
[9] F. Seitz, Phys. Fluids 1, 1 (1958).
[10] F. Giuliani and TA Girard, Phys. Rev. D71, 123503 (2005).
[11] G. Waysand et al., Nucl. Instrum. Meth. A444, 336 (2000).
[12] J. Amaré et al., Journ. Phys.: Conf. Series 39, 151 (2006).
[13] V. Chazal et al., Astrop. Phys. 9, 163 (1998).
[14] H. Wulandari et al., Astrop. Phys. 22, 313 (2004).
[15] NCPR Report 97, Bethesda MD (1988).
[16] G.J. Feldman and R.D. Cousins, Phys. Rev. D57, 3873(1998).
[17] J.D. Lewin and P.F. Smith, Astrop. Phys. 6, 87(1996).
[18] A.F. Pacheco and D. Strottman, Phys. Rev. D40, 2131 (1989).
[19] M.T. Divari et al., Phys. Rev. C61, 054612 (2000).
[20] Z. Ahmed et al., Science 327, 1619 (2010).
[21] C. Savage et al., JCAP 09, 036 (2009).
[22] The PICASSO impact is not indicated since their contour hasn't yet been presented.
[23] C.E. Aalseth, arXiv:1002.4703v2 [astro-ph.CO].
[24] E. Behnke et al., Science 319, 933 (2008).
[25] Yu.N. Martynyuk and N.S. Smirnova, Sov. Phys. Acoust. 374, 376 (1991).
[26] F. Aubin et al., New Journ. Phys. 10, 103017 (2008).