RESEARCH ARTICLE

A novel single nucleotide polymorphism in exon 3 of MYOC enhances the risk of glaucoma

Sabeen Nazir1*, Maryam Mukhtar1*, Maryam Shahnawaz1‡, Shaima Farooqi2‡, Naz Fatima1‡, Rabia Mehmood1‡, Nadeem Sheikh1‡

1 Department of Zoology, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan, 2 Department of Biomedical Engineering Center, Kala Shah Kaku Campus, University of Engineering and Technology, Lahore, Pakistan

* These authors contributed equally to this work.
‡ These authors also contributed equally to this work.
¤ Current address: Centre of Applied Molecular Biology, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan

Abstract

Genetic polymorphisms of MYOC alter the myocilin protein, which leads to disruption of the normal regulation of intraocular pressure (IOP) that ultimately causes glaucoma. The aim of the present study was to identify the polymorphism in exon 3 of the MYOC gene of the glaucoma patients in Lahore, Pakistan. We conducted a case-control study with 100 patients and 100 controls subjects. We extracted DNA from blood samples, amplified the target DNA fragment by PCR, and identified polymorphisms through sequencing. We observed that the allelic and genotypic frequencies of rs74315341 and rs879255525 were associated with glaucoma in our patient population. The polymorphism at rs74315341 led to the substitution of serine for arginine, whereas the polymorphism at rs879255525 led to the substitution of asparagine for lysine. The haplotype TGAAGCCATTTC was associated with disease onset, whereas the haplotype GGAAGCCA TTTC was protective against disease development. In conclusion, we identified MYOC gene polymorphisms in susceptible regions that were associated with glaucoma onset among the Lahore patient population. This is the first report to identify a novel mutation in rs879255525 in exon 3 of the MYOC gene that is associated with glaucoma.

Introduction

Glaucoma is a progressive optic neuropathy that leads to visual field impairment[1]. Optic neuropathy is caused by rimming up or regression of the optic nerve, which prompts the loss of fringe vision; if not cured, it can lead to irreversible visual impairment[2]. Primary open angle glaucoma (POAG) is a complex disorder with a major heritable component. The candidate genes associated with POAG onset are myocilin (MYOC); WD repeat domain 36; optineurin; cytochrome P450 family 1, subtype B, polypeptide 1; ankyrin repeat and SOCS-box containing 10 and neurotrophin 4[3,4]. The first locus associated with POAG was
positioned in chromosome 1; the GLC1A, now known as MYOC, locus encodes the protein myocilin. Disease-related myocilin mutations are commonly found in juvenile or early adult patients with very high levels of IOP [5].

MYOC has 3 exons; most mutations have been found in the third exon, which encodes the olfactomedin-like domain [5]. Myocilin forms part of the main structure of the eye, the trabecular meshwork, which regulates IOP [6–8]. Mutations that change the structure of myocilin disrupts the normal regulation of IOP. Disease-related forms of myocilin undergo altered protein trafficking, leading to intracellular aggregation of the misfolded protein. The inability to properly release the protein enhances the IOP [9].

Genetic diseases are increasingly prevalent in Pakistan due to its relatively genetically heterogeneous population. Common consanguineous marriages result in frequent transmission of mutations through the generations. The glaucoma incidence rate in Pakistan is 3.9% [10], but the exact genetic cause of this disease remains a mystery because of the unavailability of baseline data. Therefore, we designed a case-control study with the aim to determine the polymorphism in exon 3 of MYOC in Lahore glaucoma patients.

Materials and methods

Sampling

The study was ethically approved by the Board of Studies of the University of the Punjab, Lahore. Sampling was carried out at Layton Rahmatullah Benevolent Trust, Lahore. After we obtained written, informed consent from the patients or their guardians on the prescribed forms, we collected blood samples (3 ml) from 100 glaucoma patients and 100 healthy individuals in EDTA-coated tubes; we recorded the clinical characteristics of the subjects on performa. The inclusion and exclusion criteria for patient selection include IOP (tonometry), optic nerve damage (ophthalmoscopy), complete field of vision (perimetry), angle where the iris meets the cornea (gonioscopy), and thickness of the cornea (pachymetry).

Genotyping

We extracted genomic DNA from each blood sample using the modified organic method [11]; we quantified the DNA using a NanoDrop™ spectrophotometer. We amplified the target sequence using previously reported primers [12].

We optimized the primers by gradient PCR and amplified the targeted sequence of 960 bp in 25-μl PCR mixtures containing 3 μl DNA template, 4 μl MgCl₂(25 mM), 4 μl 10× PCR buffer, 3 μl dNTP mix (2.0 mM), 1.5 μl forward and reverse primers (10 pM), 0.5 μl Taq Polymerase (500 U; Thermo Fisher Scientific), and 7.5 μl DEPC water. The PCR cycle included an initial denaturation at 95°C for 5 min, followed by 30 cycles of 30s of denaturation at 95°C, 45s of annealing at 67.5°C, and 45s of extension at 72°C. This was followed by final extension at 72°C for 10 min. We sent the PCR products to Advance Biosciences International for sequencing.

Sequence and statistical analysis

We visualized the sequences with BioEdit software and analyzed them using the Basic Local Alignment Search Tool from the National Center for Biotechnology (NCBI) and the University of California, Santa Cruz Genome Browser to identify single nucleotide polymorphisms (SNPs). All SNPs were assessed for Hardy–Weinberg Equilibrium (HWE). We calculated the allelic and genetic frequencies and determined the association of the MYOC gene polymorphisms with disease onset with the chi-squared test and Fisher’s test. We determined the linkage disequilibrium (LD) and performed haplotype analysis online with SHEsis software (http://...
shesisplus.bio-x.cn/SHEsis.html). We evaluated changes in amino acid sequence using MEGA 6 software.

Results

Among the 100 patients, 40 males and 55 females had positive family histories of glaucoma, whereas none of the control subjects had a positive family history. The mean age at the time of glaucoma diagnosis was 47.3 years for males and 52.5 years for females. The mean age of inclusion of disease for male and female patients was 51.6 years and 54.5 years, respectively. We identified rs74315341 by genotyping. rs74315341 comprises the replacement of guanine with thymidine. We also identified a novel SNP that comprises the replacement of guanine with thymidine. We submitted the sequence to the ClinVar NCBI database and the SNP was assigned the novel number rs879255525. Both SNPs were in HWE (p > 0.05). The allelic and genotypic frequencies of the SNPs are presented in Tables 1 and 2, respectively. The allelic and genotypic frequencies of rs74315341 and the novel SNP rs879255525 varied significantly between the patients and controls, and were significantly (p < 0.01) associated with glaucoma onset. The change in the nucleotide sequence of rs74315341 resulted in the substitution of serine for arginine and the change in rs879255525 resulted in the substitution of asparagine for lysine. The SNPs rs74315335, rs121909193, rs74315334, rs74315329, rs74315330, rs74315336, rs74315338, rs74315328, rs74315331, and rs74315332 were associated with glaucoma onset in our population, but the associations did not reach statistical significance.

Haplotype analysis indicated that the sequences GTAAGCCTTTC and TGAAGCATTTC appeared at higher frequencies in patients than in controls, and that TGAAGCATTTC was strongly associated with the onset of glaucoma (p = 0.005). On the other hand, GGAAGCCA TTTC appeared at higher frequency in the controls than in the patients, indicating that it exerted a protective role against glaucoma onset.

The LD value for rs74315341 and rs879255525 was 0.703, suggesting that they are significant risk factors for glaucoma development. We did not observe significant LD between the SNPs, with the exception of rs879255525 (Fig 1A and 1B).

Discussion

More than 60 million people have been diagnosed with glaucoma, a complex group of optic neuropathies [13]. Mutations of the MYOC gene are associated with POAG onset in Chinese,
French, Spanish, American, Australian, Indian, Swiss, and Japanese populations [14–16].

We demonstrated that mutations in exon 3 of myocilin at the rs74315341 and rs879255525 polymorphic sites were associated with glaucoma onset in a Lahore patient group, which was consistent with the role of rs74315341 in POAG development in an Australasian population [17]. Studies in Caucasian and Brazilian populations also found a significant association of this SNP with glaucoma [18,19].

We found that rs74315335, rs121909193, rs74315334, rs74315330, rs74315336, rs74315338, rs74315331, and 74315332 were not significantly associated with glaucoma onset in our patient population. However, a previous study reported that rs74315335 was significantly associated with POAG [20]. Similarly, rs74315334, rs74315329, and rs74315330 are significantly associated with glaucoma onset in an Australasian population [17]. rs74315329 is a risk factor for disease onset in a Tasmanian population [21]. Furthermore, rs74315336 is significantly associated with hereditary glaucoma onset in the United States [22] and rs74315328 and rs74315331 have also been associated with glaucoma onset [23].

In the present study, we observed that the SNPs changed the amino acid sequences and would, ultimately, alter the myocilin protein structure. Consistent with our results, previous studies have reported that the mutated myocilin protein becomes entangled in the cell in its altered forms [24,25]. Heterodimers and heteromultimers with wild-type myocilin form with altered myocilin proteins [26]. Large proteins aggregate in the endoplasmic reticulum as a consequence of misfolded, disease-causing myocilin mutants. Altered myocilin secretion is also sensitive to temperature, in support of the hypothesis that myocilin-induced glaucoma is a protein conformational disease [27,28].

Conclusions

Thus, polymorphisms in exon 3 of MYOC at the rs74315341 and rs879255525 polymorphic sites are significantly associated with POAG onset in a Pakistani population. A large-scale survey should be conducted to evaluate the genetic factors associated with POAG to facilitate the identification and treatment of susceptible communities.

Acknowledgments

We thank our patients and the Layton Rahmatullah Benevolent Trust for participating in this study. We are also thankful to Vice Chancellor, University of the Punjab, Lahore Pakistan for providing full support to conduct this study.
Author Contributions

Conceptualization: Sabeen Nazir, Maryam Mukhtar.

Data curation: Sabeen Nazir, Maryam Shahnawaz, Shaima Farooqi.

Methodology: Sabeen Nazir, Maryam Mukhtar, Naz Fatima.

Project administration: Nadeem Sheikh.

Resources: Shaima Farooqi.

Supervision: Nadeem Sheikh.

Writing – original draft: Sabeen Nazir.

Writing – review & editing: Sabeen Nazir, Maryam Mukhtar, Naz Fatima, Rabia Mehmood.

References

1. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol 1984 Jun; 97(6):730–7. PMID: 6731537
2. Ikezoe T, Takeuchit S, Komatsu N, Okada M, Fukushima A, Ueno H, et al. Identification of a new GLC1A mutation in a sporadic, primary open-angle glaucoma in Japan. Int J Mol Med 2003 Aug; 12(2):259–61. PMID: 12851728
3. Janssen SF, Gorgels TG, Ramdas WD, Klaver CC, van Duijn CM, Jansonius NM, et al. The vast complexity of primary open angle glaucoma: disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res 2013 Nov; 37:31–67. https://doi.org/10.1016/j.preteyeres.2013.09.001 PMID: 24055863
4. Takamoto M, Araie M. Genetics of primary open angle glaucoma. Jpn J Ophthalmol 2014 Jan; 58(1):1–15. https://doi.org/10.1007/s10384-013-0286-0 PMID: 24257975
5. Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med 2009 Mar; 360(11):1113–24.
6. Lütjen-Drecoll E, May CA, Polansky JR, Johnson DH, Bloemendal H, Nguyen TD. Localization of the stress proteins alpha B-crystallin and trabecular meshwork inducible glucocorticoid response protein in normal and glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci 1998 Mar; 39(3):517–25. PMID: 9501861
7. Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998 Mar; 273(11):6341–50. PMID: 9497363
8. Polansky JR, Fauss DJ, Chen P, Chen H, Lütjen-Drecoll E, Johnson D, et al. Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 1997; 211(3):126–39. https://doi.org/10.1159/000310780 PMID: 9176893
9. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014 May; 311(18):1901–11. https://doi.org/10.1001/jama.2014.3192 PMID: 24825645
10. Khan MD, Qureshi MB, Khan MA. Facts about the status of blindness in Pakistan. Pak J Ophthalmol 1999; 5:15–9.
11. Sambrook JRDW, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 1989. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
12. Zhou XM, Yin Y, Fan N, Cheng HB, Li XH, Wang Y, et al. Single nucleotide polymorphism of MYOC affected the severity of primary open angle glaucoma. Int J Ophthalmol 2013; 6(3):264–8. https://doi.org/10.3989/ij.issn.2222-3999.2013.03.02 PMID: 23926516
13. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996 May; 80(5):389–93. PMID: 8695555
14. Adam MF, Belmouden A, Binisti P, Brézin AP, Valtot F, Béchetoille A, et al. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet 1997 Nov; 6(12):2081–7. PMID: 9328473
15. Jia LY, Gong B, Pang CP, Huang Y, Lam DS, Wang N, et al. Correction of the disease phenotype of myocilin-causing glaucoma by a natural osmolyte. Invest Ophthalmol Vis Sci 2009 Aug; 50(8):3743–9. https://doi.org/10.1167/iovs.08-3151 PMID: 19234343
16. Taniguchi F, Suzuki Y, Shirato S, Araie M. The Gly367Arg mutation in the myocilin gene causes adult-onset primary open-angle glaucoma. Jpn J Ophthalmol 2000 Jul; 44(4):445–8. PMID: 10974305

17. Souzeau E, Burdon KP, Dubowsky A, Grist S, Usher B, Fitzgerald JT, et al. Higher prevalence of myocilin mutations in advanced glaucoma in comparison with less advanced disease in an Australian disease registry. Ophthalmology 2013 Jun; 120(6):1135–43. https://doi.org/10.1016/j.ophtha.2012.11.029 PMID: 23453510

18. Povoa CA, Malta RF, Rezende MM, de Melo KF, Giannella-Neto D. Correlation between genotype and phenotype in primary open angle glaucoma of Brazilian families with mutations in exon 3 of the TIGR/MYOC gene. Arq Bras Oftalmol 2006 May; 69(3):289–97. PMID: 16936947

19. Hewitt AW, Bennett SL, Richards JE, Dimasi DP, Booth AP, Inglehearn C, et al. Myocilin Gly252Arg mutation and glaucoma of intermediate severity in Caucasian individuals. Arch Ophthalmol 2007 Jan; 125(1):98–104. https://doi.org/10.1001/archopht.125.1.98 PMID: 17210859

20. Stoilova D, Child A, Brice G, Desai T, Barsoum-Homsy M, Ozdemir N, et al. Novel TIGR/MYOC mutations in families with juvenile onset primary open angle glaucoma. J Med Genet 1998 Dec; 35(12):989–92.

21. Craig JE, Baird PN, Healey DL, McNaught AI, McCartney PJ, Rait JL, et al. Evidence for genetic heterogeneity within eight glaucoma families, with the GLC1A Gln368STOP mutation being an important phenotypic modifier. Ophthalmology 2001 Sep; 108(9):1607–20. PMID: 11535458

22. Wirtz MK, Samples JR, Choi D, Gaudette ND. Clinical features associated with an Asp380His myocilin mutation in a USA family with Primary Open Angle Glaucoma. Am J Ophthalmol 2007 Jul; 144(1):75–80. https://doi.org/10.1016/j.ajo.2007.03.037 PMID: 17499207

23. Fingert JH, Ying L, Swiderski RE, Nystuen AM, Arbour NC, Alward WL, et al. Characterization and comparison of the human and mouse GLC1A glaucoma genes. Genome Res 1998 Apr; 8(4):377–84. PMID: 9548973

24. Liu Y, Vollrath D. Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma. Hum Mol Genet 2004 Jun; 13(11):1193–204. https://doi.org/10.1093/hmg/ddh128 PMID: 15069026

25. Zhou Z, Vollrath D. A cellular assay distinguishes normal and mutant TIGR/myocilin protein. Hum Mol Genet 1999 Nov; 8(12):2221–8. PMID: 10545602

26. Gobeil S, Rodrigue MA, Moisan S, Nguyen TD, Polansky JR, Morissette J, et al. Intracellular sequestration of hetero-oligomers formed by wild-type and glaucoma-causing myocilin mutants. Invest Ophthalmol Vis Sci 2004 Oct; 45(10):3560–7. https://doi.org/10.1167/iovs.04-0300 PMID: 15452063

27. Gobeil S, Letartre L, Raymond V. Functional analysis of the glaucoma-causing TIGR/myocilin protein: integrity of amino-terminal coiled-coil regions and olfactomedin homology domain is essential for extracellular adhesion and secretion. Exp Eye Res 2006 Jun; 82(6):1017–29. https://doi.org/10.1016/j.exer.2005.11.002 PMID: 16466712

28. Vollrath D, Liu Y. Temperature sensitive secretion of mutant myocilins. Exp Eye Res 2006 Jun; 82(6):1030–6. https://doi.org/10.1016/j.exer.2005.10.007 PMID: 16297911

29. PLOS ONE | https://doi.org/10.1371/journal.pone.0195157 April 9, 2018