Gastric neuroendocrine neoplasms type 1: A systematic review and meta-analysis

Apostolos V Tsolakis, Athanasia Ragkousi, Miroslav Vujasinovic, Gregory Kaltsas, Kosmas Daskalakis

ORCID number: Apostolos V Tsolakis (0000-0002-6784-5572); Athanasia Ragkousi (0000-0003-0965-8119); Miroslav Vujasinovic (0000-0002-6496-2985); Gregory Kaltsas (0000-0002-5876-7883); Kosmas Daskalakis (0000-0003-4224-8912).

Author contributions: Tsolakis AV contributed to conception and design of the study, selection and assessment of the quality of the eligible studies, analysis and interpretation of data, drafting of the manuscript and final approval of the manuscript; Ragkousi A contributed to statistical consultation, analysis and interpretation of data and final approval of the manuscript; Vujasinovic M contributed to drafting of the manuscript, final approval of the manuscript; Kaltsas G contributed to analysis and interpretation of the data, drafting of the manuscript, final approval of the manuscript; Daskalakis K contributed to conception and design of the study, acquisition of studies, selection and assessment of the quality of the eligible studies, analysis and interpretation of data, writing and drafting the manuscript, study supervision and final approval of manuscript.

Supported by Swedish Society of Medicine Post Doctoral Scholarship, No. SLS-785911; the Lennander Scholarship.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009

Abstract

BACKGROUND
To date, the histopathological parameters predicting the risk of lymph node (LN) metastases and local recurrence, associated mortality and appropriateness of endoscopic or surgical resection in patients with gastric neuroendocrine neoplasms type 1 (GNENs1) have not been fully elucidated.

AIM
To determine the rate of LN metastases and its impact in survival in patients with GNEN1 in relation to certain clinico-pathological parameters.

METHODS
The PubMed, EMBASE, Cochrane Library, Web of Science and Scopus databases were searched through January 2019. The quality of the included studies and risk of bias were assessed using the Newcastle-Ottawa Scale (NOS) in accordance with the Cochrane guidelines. A random effects model and pooled odds ratios (OR) with 95%CI were applied for the quantitative meta-analysis.

RESULTS
We screened 2933 articles. Thirteen studies with 769 unique patients with GNEN1 were included. Overall, the rate of metastasis to locoregional LNs was...
Gastric neuroendocrine neoplasms (GNENs) are rare and account for approximately 3% of all gastrointestinal neuroendocrine tumors and 0.3% of all gastric malignancies[1]. GNENs are divided into well-differentiated (WD) GNENs and neuroendocrine carcinomas (NECs). WD GNENs are mainly of enterochromaffin-like (ECL) cell origin, and three types are recognized[2-6]. Types 1 and 2 (GNEN1 and 2) are associated with hypergastrinaemia, the former because of autoimmune chronic atrophic gastritis and the latter due to Zollinger-Ellison syndrome in the context of multiple endocrine neoplasia type 1. Patients with type 3 GNENs have normal gastrin concentrations and a more aggressive clinical behavior mimicking that of gastric adenocarcinoma[7]. Finally, NECs are poorly-differentiated tumors that show a certain degree of neuroendocrine differentiation and the affected patients have normal circulating gastrin concentrations and a poor prognosis.

GNEN1s commonly exhibit a generally benign clinical course with a minority developing locoregional lymph node (LN) metastases and only a few cases of distant metastases have been reported[8]. In terms of the long-term disease-specific mortality, metastases have been reported[9]. In terms of the long-term disease-specific mortality, developing locoregional lymph node (LN) metastases and only a few cases of distant circulating gastrin concentrations and a poor prognosis. Finally, NECs are poorly-differentiated tumors that show a certain degree of neuroendocrine differentiation and the affected patients have normal circulating gastrin concentrations and a poor prognosis.

CONCLUSION
This meta-analysis confirms that tumor size ≥ 10 mm and the presence of the muscularis propria are linked to a higher risk of LN metastases in patients with GNEN1. Overall, the metastatic propensity of GNEN1 is low with favorable 5-year disease-specific survival rates reported; hence, no clear evidence of the prognostic value of LN positivity is available. Additionally, there is a lack of evidence supporting the prediction of local recurrence in GNEN1, even if surgery was more often a definitive treatment.

Key words: Gastric neuroendocrine neoplasms type 1; Meta-analysis; Lymph node metastasis; Tumor size; Invasion; Endoscopy; Surgery

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hitherto, risk parameters predicting metastatic disease and the appropriateness of endoscopic vs surgical management of patients with gastric neuroendocrine neoplasms type 1 (GNEN1s) have not been thoroughly investigated. The present systematic review and meta-analysis prove that locoregional lymph node (LN) metastases in GNEN1s are relatively rare (3.3%). Furthermore, tumour size ≥ 10 mm and the presence of the muscularis propria invasion are associated with an increased risk for LN metastasis. The latter finding suggests that endoscopic ultrasound investigation is very valuable in the work up of these lesions. Finally, surgical resection is linked to a lower risk for recurrence.

Citation: Tsolakis AV, Ragkousi A, Vujasinovic M, Kaltsas G, Daskalakis K. Gastric neuroendocrine neoplasms type 1: A systematic review and meta-analysis. World J Gastroenterol 2019; 25(35): 5376-5387
URL: https://www.wjgnet.com/1007-9327/full/v25/i35/5376.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i35.5376

INTRODUCTION
Gastric neuroendocrine neoplasms (GNENs) are rare and account for approximately 3% of all gastrointestinal neuroendocrine tumors and 0.3% of all gastric malignancies[1]. GNENs are divided into well-differentiated (WD) GNENs and neuroendocrine carcinomas (NECs). WD GNENs are mainly of enterochromaffin-like (ECL) cell origin, and three types are recognized[2-6]. Types 1 and 2 (GNEN1 and 2) are associated with hypergastrinaemia, the former because of autoimmune chronic atrophic gastritis and the latter due to Zollinger-Ellison syndrome in the context of multiple endocrine neoplasia type 1. Patients with type 3 GNENs have normal gastrin concentrations and a more aggressive clinical behavior mimicking that of gastric adenocarcinoma[7]. Finally, NECs are poorly-differentiated tumors that show a certain degree of neuroendocrine differentiation and the affected patients have normal circulating gastrin concentrations and a poor prognosis.

GNEN1s commonly exhibit a generally benign clinical course with a minority developing locoregional lymph node (LN) metastases and only a few cases of distant metastases have been reported[8]. In terms of the long-term disease-specific mortality,
reports differ regarding its association with the presence of metastases in locoregional LNs and the selection of the type and the extent of intervention undertaken. This is mainly because in the majority of published GNEN series and existing NEN registries, GNEN1s are reported together with other types of GNENs. Importantly, compared with other types of GNENs, GNEN1s have distinct differences in tumour biology and patient outcomes. However, informative clinico-pathological features (size, grade, depth of invasion) are currently used indistinguishably for most GNEN types, even if GNEN are a heterogeneous group and the prognostic impact of such parameters may differ considerably among the types.

Due to the indolent course of GNEN1, endoscopic resection is considered the mainstay of treatment for these tumours ranging from simple polypectomy and endoscopic mucosal resection (EMR) to endoscopic submucosal resection (ESMR) and endoscopic submucosal dissection (ESD). Surgery has been considered for tumours not amenable to endoscopic treatment, i.e., locally advanced lesions > 10 mm invading deeper layers of the gastric wall. This approach in GNEN1 management is also in accordance with the current European Neuroendocrine Tumour Society guidelines\[9\]. However, risk stratification based on patient-related parameters to determine the risk of LN metastases and disease-specific mortality in patients with larger and more locally advanced GNEN1 remains to be defined. Therefore, there is a great need of a summary of the evidence regarding the risk of LN metastases and local recurrence in GNEN1s, as well as the appropriateness and safety of endoscopic versus surgical resection of larger lesions.

The aim of this systematic review and meta-analysis was to compare the rate of LN metastases and associated mortality, and recurrence in patients with GNEN1s undergoing endoscopic or surgical resection with respect to their clinico-pathological parameters, such as the size, grade and depth of invasion and to assess the rate of complications associated with the aforementioned interventions. Our hypothesis was that patients with particular clinico-pathological characteristics, i.e., larger lesions, grade 2 tumours and deeper invasion of the gastric wall, may be at a higher risk for locoregional LN metastases and/or local recurrence; thus, necessitating the implementation of a more patient-tailored management of GNEN1.

MATERIALS AND METHODS

Study selection

Retrospective cohort studies with GNEN and GNEN1 patients undergoing endoscopic or surgical resection were included in this systematic review and meta-analysis. The outcomes that were required for study selection included two or more of the following terms: tumour size, grade, depth of invasion, vascular invasion, LN metastases, local recurrence, disease-specific and overall survival and complications. For potentially eligible studies a sample size of at least ten patients with GNEN1 was required; hence case reports and small case series were excluded. Studies reporting data on GNEN type 2, type 3 and GNEC altogether with GNEN1 were also excluded. In particular, GNEN1 diagnosis was based on histopathological and biochemical criteria reported in the methods section of the included studies. Registry and institutional studies reporting data without specifying the diagnostic criteria of GNEN1 (histopathologic confirmation and hypergastrinaemia) were excluded from the present study. Among multiple reports from the same institution, only the latest eligible study was included. A study protocol for this meta-analysis was not registered before the study initiation. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed\[10\].

Search strategy

We conducted a systematic search to identify all potentially eligible studies in the PubMed, EMBASE, Cochrane Library, Web of Science and SCOPUS databases. Search terms included “Gastric Carcinoid”, “ECL cell carcinoid”, “Gastric Neuroendocrine Tumor”, “Gastric Neuroendocrine Neoplasm”, “Neuroendocrine Tumor of the Stomach”, “Endoscopy”, “endoscopic resection”, “endoscopic mucosal resection”, “endoscopic submucosal dissection”, “polypectomy”, “polyp resection”, “mucosectomy”, “gastric resection”, “antrectomy”, “surgery”, “surgical resection”, “partial resection”, “partial gastrectomy” and “gastrectomy”, and all the terms were used in combination with the Boolean operators AND OR. The search terms were input as free text. Two of the authors independently examined all potentially eligible titles and abstracts. Full articles were obtained for preliminary selected studies to finalize eligibility (Supplementary Table 1).
Data extraction
The hypothesis of the study was formulated prior to the data collection and extraction. Two reviewers independently extracted all available data. We defined the primary outcome as the rate of LN metastases after using different clinico-pathological data to stratify the patients. The secondary outcomes were recurrence rate, disease-specific mortality rate associated with LN metastases and type of intervention, and the complication rate in GNEN1 patients undergoing endoscopic and surgical resection. Potentially eligible studies with double zero cells in all strata and the investigated outcomes were excluded at the final stage of data extraction. Disagreements between the two reviewers were resolved by consensus.

Patients with distant stage disease were not included in the present meta-analysis. The staging methods applied in the included studies and according to the TNM classification varied greatly and was primarily based on available histopathology in all patients subjected to resective surgery. However, in patients subjected to endoscopic resection staging criteria were applied to data extracted from endoscopy and corresponding histopathology regarding T stage and endoscopic ultrasonography, as well as cross-sectional imaging regarding the presence of locoregional LN metastases (N stage).

Quality/risk for bias assessment
The classification of observational studies described by Mathes et al[11] was applied in this meta-analysis. The quality of the included studies was measured by the Newcastle-Ottawa Scale (NOS) and independently assessed in accordance with the Cochrane guidelines by two reviewers. The total NOS scores ranged from 0 to 9 for cohort studies; a score of 6 or higher indicated high quality[12].

Statistical analysis
Statistical analyses were conducted with STATA 14.0 software (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP). A random-effects model was adopted for summary statistics. Pooled odds ratios (OR) were reported for all investigated outcomes. Automatic correction set at 0.5 by default in the “metan” application of STATA in eligible data with single zero cells was applied as appropriate. Statistical heterogeneity was evaluated by the I^2 method and the χ^2 test was employed to provide P-values; I^2 values > 50% indicated a high degree of heterogeneity. Small study effects and the presence of publication bias were evaluated by Galbraith and funnel plots, respectively. The results were reported as OR with 95%CI and P-values. The level of statistical significance was set at 5% ($P < 0.05$).

RESULTS

Characteristics of the Included Studies
We screened 2933 potentially eligible articles. The 13 included studies had 769 unique patients with GNEN1. The results of the systematic literature search and the study selection process are shown in the PRISMA flow diagram (Figure 1). Table 1 summarizes the characteristics of the included studies.

Quality/risk of bias assessment
The quality assessment of all the included studies is presented in Table 2 (NOS template). All studies were retrospective cohort studies based on the analysis of institutional multi- or single-centre data. We did not identify any controlled randomized trials or national registry studies eligible for inclusion in the meta-analysis. General factors accounting for poor quality were the lack of clarity regarding the diagnostic criteria of GNEN1, short duration of follow-up, ambiguity regarding the criteria for endoscopic or surgical intervention and failure to report the rate of complications for patients who underwent endoscopic or surgical treatment.

Reporting bias was visually assessed in funnel plots for each of the investigated parameters (Supplementary Figures 1A-4A). Complementary tests did not reveal small size effects (Supplementary Figures 1B-4B). The observed funnel plot asymmetry could be due to the few studies included in the analysis (< 10 studies in all meta-analyses performed) and also publication bias. Between-studies heterogeneity was less than 50%, i.e., acceptable for all the meta-analyses in this study.

Pooled results for clinico-pathological parameters with respect to LN metastases
Overall, the rate of metastases to locoregional LNs was 3.3% (25/769). We identified four studies reporting LN status for primary tumours with a size cut-off of 10 mm[13-16]. The rate of LN metastases for a cut-off size of 10 mm were 15.3% vs 0.8% for lesions ≥
Table 1 Characteristics of the included studies

Included studies	Study design	No. of patients	Outcomes	Funding and conflict of interest statement
Ahlman et al[13], 1994	Single-center retrospective cohort study	11	2/11 (data not available at the individual level) 5-yr DSS	Funding: Swedish Mekong River Commission, Swedish Cancer Society, Jubileumsklinikens Cancer Research Fund, Sahlgrenska Hospital Research Foundation, Göteborg Medical Society, Assar Gabrielsson Research Foundation, Östergötland County Council and AB Hässel.
Borch et al[10], 2005	Multi-center prospective cohort study	51	4/51 (data not available at the individual level) 5-yr DSS reported for LN status and type of intervention strata. R also reported for different strata.	No funding or conflict of interest reported.
Chen et al[10], 2013	Single-center retrospective cohort study	56	2/56 (data not available at the individual level) 100% 5- and 10 yr DSS reported.	Funding: National Center for Advancing Translational Studies. The authors report no conflicts of interest.
Kim et al[7], 2010	Single-center retrospective cohort study	22	1/22 (data not available at the individual level) Mean follow-up 68 months for GC cohort; 5-yr DSS 100%. R: 15/22	No funding or conflict of interest reported.
Louthan et al[24], 2014	Single-center retrospective cohort study	18	0/18 (data not available at the individual level) Mean follow-up 47 months for GC cohort; 100% 5-yr DSS for type of intervention strata.	Funding: RVO VFN64165 and PRVOUK-P25/LF1/2.
Rappel et al[28], 1995	Single-center retrospective cohort study	88	0/88 (data not available at the individual level) Median follow-up 72.2 mo; 100% 5-yr DSS; R: 26/54	No funding or conflict of interest information mentioned in the article.
Rindi et al[11], 1996	Multi-center retrospective cohort study	152	2/152 (data not available at the individual level) Mean follow-up 58 months; 5-yr DSS 100%. R: 77/119	No funding or conflict of interest information mentioned in the article.
Safatle-Ribeiro et al[5], 2006	Single-center retrospective cohort study	13	1/13 (data available at the individual level) Median follow-up 72.2 mo	No funding or conflict of interest information mentioned in the article.
Sagatun et al[17], 2016	Single-center retrospective cohort study	26	5/26 (data not available at the individual level) Median follow-up not reported; 5-yr DSS not properly reported	No funding or conflict of interest reported.
Sato et al[5], 2014	Multi-center retrospective cohort study	82	0/82 (data not available at the individual level) Median follow-up reported for different strata. 5-yr DSS not reported; R: 2/82.	No funding or conflict of interest reported.
Schindl et al[27], 2001	Single-center retrospective cohort study	16	0/16 (data not available at the individual level) Median follow-up 70.3 mo; 5-yr DSS 100%.	No funding or conflict of interest information mentioned in article.
Thomas et al[25], 2013	Multi-center retrospective cohort study	111	2/111 (data not available at the individual level for all cases) Mean follow-up 76 mo; DSS not reported. R: 8/111	Funding: Selander foundation. No conflict of interest reported.
Vanoli et al[16], 2018	Multi-center retrospective cohort study	123	6/123 (data not available at the individual level) Median follow-up 87 mo; 5-yr DSS reported for different strata.	Funding: Internal university grants and the Associazione Italiana Ricerca sul Cancro; Fellowship from San Matteo Hospital Foundation. Conflict of interest; Novartis Pharma and Ipsen Pharma.

DSS: Disease-specific survival; LN: Lymph node; R: Recurrence.
Figure 1 PRISMA flow diagram of the quantitative meta-analysis.

10 mm and < 10 mm, respectively with a random-effects OR of 10.5 (95%CI: 1.4-80.8; heterogeneity: \(P = 0.126; I^2 = 47.5\% \), Figure 2).

Four studies reporting LN status in connection to GNEN1 grade [Grade 1 (G1) vs Grade 2 (G1)] were included in this analysis\[15-18\]. The rates of LN metastases in G1 GNEN1 were 6.7% vs 10% for G2 lesions with a random-effects OR of 2(95%CI: 0.3 -11.6; heterogeneity, \(P = 0.304; I^2 = 17.4\% \), Figure 3).

Three studies reported LN status in connection to muscularis propria invasion of the primary tumour and were included in the analysis\[14,16,19\]. The rates of LN metastases in patients demonstrating muscularis propria invasion were 29.4% vs 3.1% in patients without invasion with a random-effects OR of 17.2(95%CI: 1.8 -161.1; heterogeneity, \(P = 0.165; I^2 = 44.5\% \), Figure 4).

Pooled results for local recurrence

Eight studies reporting local recurrence (\(n = 75/422 \)) in connection to the type of intervention were included\[16,19-25\]. The rates of local recurrence in patients undergoing endoscopic resection were 22% (\(n = 72/328 \)) vs 3.2% (\(n = 3/94 \)) in patients subjected to surgical resection with a random-effects OR of 0.32 (95%CI: 0.1-1.1; heterogeneity, \(P = 0.173; I^2 = 31.9\% \), Figure 5).

Pooled results for disease-specific survival and complications

In seven studies, the reported 5-year disease-specific survival (DSS) rate was 100% in patients with (\(n = 17 \)) and without locoregional LN metastases (\(n = 479 \))\[13,14,18,23,26-28\]. Only two studies reported 5-year DSS less than 100% stratified by LN status [5-year DSS: 80% (\(n = 8/10 \)) vs 100% (\(n = 164/164 \))]; random-effects OR: 0.02; 95%CI: 0.1-1.1; heterogeneity, \(P = 0.850; I^2 = 0\% \), Figure 6).

In thirteen studies reporting 5-year DSS rates following endoscopic vs surgical resection, 100% 5-year DSS was evident in both arms [\(n = 456 \) (endoscopic intervention)and \(n=162 \) (surgical intervention)], irrespective of the type of intervention that was undertaken\[13,16,20-27,29\]. Two additional studies reported 5-year DSS rates less than 100% stratified by the type of intervention (5-year DSS: 99% for endoscopic vs 98% for surgical intervention; random-effects OR of 0.64; 95%CI: 0.1-8.5; heterogeneity: \(P = 0.270, F = 17.7\% \)),\[16,19\].

The complication rates attributed to endoscopic and surgical intervention were reported in six studies and were as low as 0.6% for the former and 3.8% for the latter\[4,14,30,32\]. The severity of complications ranged from mild to severe and even death in one operative case. However, the data were not sufficient to provide a more comprehensive classification of patients who underwent surgery (i.e., according to the Clavien-Dindo classification system).

Finally, scarce data were available or appropriately reported with respect to recurrence rates in relation to tumour size, grade and depth of invasion. In particular, one study only reported tumour size as a predictor of recurrence (OR: 1.7, 95%CI:
Table 2 Newcastle-Ottawa scale cohort star template

Included studies	Selection	Comparability	Outcome
Ahlman et al[13], 1994	***	*	**
Borch et al[19], 2005	****	**	**
Chen et al[18], 2015	***	*	**
Kiim et al[25], 2010	***	*	**
Louthan et al[24], 2014	***	*	**
Rappel et al[22], 1995	***	*	**
Rindi et al[14], 1996	***	*	**
Safatle-Ribeiro et al[15], 2006	***	*	**
Sagatun et al[17], 2016	***	*	*
Sato et al[20], 2014	***	*	*
Schindl et al[21], 2001	***	*	**
Thomas et al[16], 2013	***	*	**
Vaneli et al[17], 2018	***	*	**

The total Newcastle-Ottawa scale scores ranged from 0 (worst) to 9 (best) for the included cohort studies, with a score of at least 6 indicating high quality.

DISCUSSION

Our systematic review and meta-analysis demonstrate that although the metastatic propensity of GNEN1 is low (3.3%), tumour size ≥ 10 mm and invasion of the muscularis propria in the gastric wall may be potential predictors of LN metastases in these patients. Foremost, the negative predictive value of tumour size for lesions < 10 mm and that of the absence of muscularis propria invasion with respect to the presence of locoregional LN metastases were as high as 99.2% and 96.9% respectively. Primary tumour grade was not clearly associated with the risk of LN metastases in GNEN1. Additionally, the disease course is indolent, and the overall prognosis is excellent, with a 5-year DSS of 100% in most studies, with only two patients reported with locoregional LN metastases who died within 5-years of diagnosis. Therefore, the presence of LN metastases does not seem to clearly affect survival in GNEN1 patients. Moreover, most studies reported 98%-100% 5-year DSS, irrespective of the type of intervention that was undertaken. However, studies reporting adequate follow-up i.e., of 10 years are lacking; hence, we were not able to provide evidence that prophylactic surgical resection exerts a survival benefit in the long-term. The complication rates of endoscopic vs surgical resection in the few studies reporting this information were 0.6 and 3.8%, respectively. Finally, scarce data were available with regard to GNEN1 local recurrence after endoscopic or surgical intervention; although the latter was associated with a lower recurrence rate [OR: 0.32 (95%CI: 0.1-1.1)]. Recurrence prediction stratified by patient-related parameters was not feasible in our study.

Larger sizes and the cut-off of 20 mm may be of particular interest in predicting metastatic disease to locoregional LN. Therefore, we scrutinized all available studies for this information, but a lack of data on larger sizes with double zero cells in the tables of the extracted data was evident in most studies; hence, meta-analysis at 20 mm size cut-off was not feasible. Regarding the presence of distant metastases in contemporary literature, GNEN1 is indeed a generally benign disease with very few metastatic cases reported, thus there was no sufficient material for a meta-analysis.

NOS-based quality assessment was undertaken and the included studies were generally assessed as being of moderate to high quality. Significant heterogeneity was not observed in the meta-analyses of clinico-pathological parameters investigated here, nor were small study effects. To avoid reporting bias, we also assessed and included non-English language studies, as well as unpublished data from conference papers. Various observational studies on GNEN1 have exhibited contradictory results regarding the association of certain clinico-pathological parameters with the risk of LN metastases, e.g., that of the Ki67 labeling index. This observation may be due to the inclusion of other GNEN types and GNECs, which are known for a more aggressive biological behavior compared to that of WD GNEN1[14,16]. Therefore, to control biases...
attributed to tumour heterogeneity, registry and institutional studies reporting data on all types of GNEN and GNECs together with GNEN1 were excluded from our study.

In the modern management of GNEN1, endoscopic ultrasonography is an important complementary diagnostic tool that can be utilized in the assessment of lesions that are potentially invading deeper layers of the gastric wall. Endoscopic ultrasonography helps to determine the feasibility of endoscopic resection and the possible presence of locoregional LN metastases. The majority of GNEN1 lesions are small and have traditionally been treated endoscopically; thus, the presence of locoregional LN metastases may have been underestimated. This was evident in our meta-analysis as lesions < 10 mm accounted for the majority in studies reporting size in connection to patient outcomes [237/296 (80%) lesions < 10 mm; Figure 2]. Nevertheless, cross-sectional and functional imaging were not performed or reported in all patients in the included studies, as the sensitivity of these modalities for detecting LN metastases is low and their overall impact on GNEN1 management and clinical decision-making is rather limited [23]. This should of course be taken into consideration when interpreting the findings of this meta-analysis. Additionally, a few studies only reported patient data at the individual level and in most series, ambiguity regarding the criteria for surgical resection was noted. Thus, the rates and ORs of LN metastases in GNEN1s < 10 mm and ≥ 10 mm, has to be interpreted in light of this knowledge. Finally, patients subjected to endoscopic surveillance alone without any intervention, with or without somatostatin analogues treatment, were not included in the scope of the present systematic review and meta-analysis.

The prognostic significance of tumour grade was not confirmed in our meta-analysis, as no clear association with the presence of LN metastases was evident. This is indeed an important finding that contrasts with the existing evidence in GNEN3 and GNEC, in which Ki67 is of paramount importance in disease prognostication and patient management; thus, the implication is that the GNEN type may be the most significant factor affecting patient outcomes and that this factor should be separately addressed in future studies and national registry data. Another possible explanation is that the span of Ki67 in G2 tumours is wide (3-20) and cases with a higher level of Ki67 within G2 tumours may have a substantially different course. In particular, there are studies postulating that a higher Ki67 cut-off should be considered in the clinical praxis of NEN when G2 is determined [34-36]. Additionally, we cannot exclude the possibility that additive effects of other clinico-pathological parameters combined with the concomitant G2 status may trigger metastasis. Importantly, the GNEN1 clinical course seems to be mainly benign as most studies report a 5-year DSS of 100% in patients who had undergone resection, whether endoscopic or surgical. Thus, the tumour biology, the insufficient length of follow-up and the scarcity of LN metastases in these indolent neoplasms may be the reasons the present meta-analysis could not confirm a survival difference associated with the presence of LN metastases or the type of intervention in GNEN1 patients.

Our study has some limitations. Importantly, it represents an analysis of clinico-pathological parameters extracted from multiple retrospective studies on GNEN, particularly GNEN1; hence, the included studies lacked sufficient power and were

Study ID	OR (95%CI)	LN positivity rate	Weight (%)
Ahlman et al., 1994	15.00 (0.52-430.37)	2/4 0/7	21.82
Rindi et al., 1996	17.92 (0.84-382.70)	2/34 0/116	24.22
Safatle-Ribeiro et al., 2006	0.39 (0.01-11.76)	0/5 1/7	21.52
Vanoli et al., 2018	48.18 (5.16-450.33)	5/16 1/107	32.44
Overall (I² = 47.5%, P = 0.176)	10.45 (1.35-80.76)	9/59 2/237	100.00

Figure 2 Forest plot comparing the rate of lymph node metastases at a 10 mm size cut-off, i.e., in tumour size ≥ 10 mm vs tumour size < 10 mm. Meta-analysis of all studies carried out using a random-effects model; Odds ratios are shown with 95%CI.
Figure 3 Forest plot comparing the rate of lymph node metastases in patients with grade 1 vs grade 2 gastric neuroendocrine neoplasms type 1. Meta-analysis of all studies carried out using a random-effects model; Odds ratios are shown with 95%CI.

In conclusion, our results have important implications for clinicians and researchers. The present study provides a systematic review and meta-analysis of GNEN1 confirming the indolent course of this neoplasm and providing patient-tailored parameters for disease prognostication and suggestions for future research. We demonstrated that locoregional LN metastases in GNEN1 are relatively rare (3.3%) and that tumour size and depth of invasion may be important predictive factors that can be used to assess the disease metastatic propensity. Generally, GNEN1 seems to have an overall excellent prognosis with very low disease-specific mortality rates reported. Additionally, survival does not seem to be negatively affected by either endoscopic or surgical resection. However, studies with long-term follow-up are scarce, and the true prognostic impacts of LN status and the type of intervention remain to be determined. Based on the findings of this meta-analysis, paying special attention to GNEN1 size and the depth of invasion and making use of diagnostic modalities such as endoscopic ultrasonography seem reasonable in clinical practice, and in future studies in the field of GNEN.
Figure 4 Forest plot comparing the rate of lymph node metastases in tumours with mucosal/submucosal invasion vs tumours with invasion of the muscularis propria. Meta-analysis of all studies carried out using a random-effects model; Odds ratios are shown with 95%CI.

Study ID	LN positivity rate
	OR (95%CI)
	MP invasion
	SM/M invasion
	Weight (%)
Rindi et al., 1996	1.83 (0.88-4.40)
Vanoli et al., 2018	130.56 (5.43-3136.21)
Borch et al., 2005	20.50 (1.82-230.52)
Overall (I² = 44.5%, P = 0.165)	17.15 (1.83-161.13)

Figure 5 Forest plot comparing the rate of local recurrence in patients with gastric neuroendocrine neoplasms type 1 undergoing endoscopic resection vs surgical resection. Meta-analysis of all studies carried out using a random-effects model; Odds ratios are shown with 95%CI.

Study ID	Recurrence rate
	OR (95%CI)
	Surgical resec
	Endoscopic resec
	Weight (%)
Rappel et al., 1995	0.02 (0.00-0.28)
Sato et al., 2014	0.78 (0.04-17.08)
Schindl et al., 2001	0.36 (0.01-10.74)
Vanoli et al., 2018	0.39 (0.02-8.17)
Borch et al., 2005	0.12 (0.01-1.05)
Kim et al., 2010	6.00 (0.26-140.04)
Louthan et al., 2014	1.24 (0.04-34.20)
Thomas et al., 2013	0.26 (0.03-2.08)
Overall (I² = 31.9%, P = 0.173)	0.32 (0.10-1.07)

ARTICLE HIGHLIGHTS

Research background
Gastric neuroendocrine neoplasms type 1 (GNENs1) exhibit a generally benign clinical course and have distinct differences in tumour biology and patient outcomes, as compared to other types of GNENs.

Research motivation
Informative clinico-pathological features (size, grade, depth of invasion) are currently used indistinguishably for most GNEN types and remain to be elucidated for GNEN1s in particular in order to determine the risk of lymph node (LN) metastases, disease-specific survival and local recurrence; and guide a more patient-tailored management.

Research objectives
The aim of our study was to compare the rate of LN metastases, disease-specific mortality, and recurrence rates post intervention in patients with GNEN1s undergoing endoscopic or surgical resection with respect to the aforementioned clinico-pathological parameters (size, grade and depth of invasion). Additionally, we aimed to evaluate the rate of procedural complications associated with endoscopic and surgical interventions.

Research methods
The PubMed, EMBASE, Cochrane Library, Web of Science and SCOPUS databases were searched through January 2019. The quality of the included studies and risk of bias were assessed using the Newcastle-Ottawa Scale and in accordance with the Cochrane guidelines. A
random effects model and pooled odds ratios with 95% CI were applied for the quantitative meta-analysis.

Research results

Although the metastatic propensity of GNEN1 is low (3.3%), tumour size ≥ 10 mm and invasion of the muscularis propria in the gastric wall may be utilized to predict the presence LN. The negative predictive value of tumour size for lesions < 10 mm and that of the absence of muscularis propria invasion with respect to the presence of locoregional LN metastases were as high as 99.2% and 96.9% respectively. Contrary to other GNEN types, tumour grade was not clearly associated with the risk of LN metastases in GNEN1. The disease prognosis is excellent, with a 5-year DSS of 100% in most studies; thus, the presence of LN metastases does not seem to clearly affect survival in GNEN1 patients. Moreover, most studies reported 98-100% 5-year DSS, irrespective of the type of intervention that was undertaken during long-term follow-up (i.e., >10 years post-treatment surveillance) are lacking; hence, we were not able to provide evidence that prophylactic surgical resection exerts a survival benefit. The complication rates of endoscopic vs surgical resection in the few studies reporting this information were 0.6 and 3.8%, respectively. Finally, scarce data were available with regard to GNEN1 local recurrence after endoscopic or surgical intervention. Although surgery was associated with a lower recurrence rate, recurrence prediction stratified by patient-related parameters was not feasible in our study.

Research conclusions

Herein, we have thoroughly investigated patient-related clinico-pathological risk parameters potentially predicting metastatic disease, recurrence following endoscopic or surgical management and disease-specific mortality rates. We confirmed that LN metastases in GNEN1s are relatively rare and that tumour size ≥ 10 mm, as well as the presence of the muscularis propria invasion are associated with an increased risk for LN metastasis. The latter finding suggests that endoscopic ultrasound investigation is very valuable in the work up of these lesions. Finally, surgical resection is linked to a lower risk for local recurrence.

Research perspectives

The present study provides a systematic review and meta-analysis of GNEN1 confirming the indolent course of this neoplasm and providing suggestions for future research towards a stratified approach based on patient-tailored parameters in the era of personalized medicine. Foremost, based on our findings, special attention to GNEN1 size and the depth of invasion and stratified approach based on patient-tailored parameters in the era of personalized medicine.

REFERENCES

1. Grozinsky-Glasberg S, Alexandraki KI, Angeloussi A, Chatzellis E, Sougioultzis S, Kaltas G. Gastric Carcinoids. Endocrinol Metab Clin North Am 2018; 47: 645-660 [PMID: 3098721 DOI: 10.1016/j.ecl.2018.04.013]
2. Tsolakis AV, Portela-Gomes GM, Stridsberg M, Grimeslus L, Sundin A, Eriksson IK, Oberg KE, Janson ET. Malignant gastric ghrelinoma with hyperghrelinemia. J Clin Endocrinol Metab 2004; 89: 3739-3744 [PMID: 15292259 DOI: 10.1210/jc.2003-032118]
3. Tsolakis AV, Stridsberg M, Grimeslus L, Portela-Gomes GM, Falkmer SE, Waldum HL, Janson ET. Ghrelin immunoreactive cells in gastric endocrine tumors and their relation to plasma ghrelin concentration. J Clin Gastroenterol 2008; 42: 381-388 [PMID: 1827901 DOI: 10.1097/MCG.0b013e318032338c]
4. Tsolakis AV, Grimeslus L, Stridsberg M, Falkmer SE, Waldum HL, Saras J, Janson ET. Obestatin/ghrelin cells in normal mucosa and endocrine tumours of the stomach. Eur J Endocrinol 2010; 160: 941-949 [PMID: 19289536 DOI: 10.1530/EJE-09-0001]
5. Tsolakis AV, Grimeslus L, Granerus G, Stridsberg M, Falkmer SE, Janson ET. Histidine decarboxylase and urinary methylimidazoleacetic acid in gastric neuroendocrine cells and tumours. World J Gastroenterol 2015; 21: 13240-13249 [PMID: 26715066 DOI: 10.3748/wjg.v21.i47.13240]
6. Solcia E, Arnold R, Capella C, Klimstra DS, Klöppel G, Kummeth P, Rindi G. Neuroendocrine neoplasms of the stomach. In: Bosman FT, Carneiro F, Huban RH, Theise ND, editors. WHO Classification of Tumours of the Digestive System. 4th ed. Lyon World Health Organization 2010; 64-68
7. Modlin IM, Lye KD, Kidd M. A 50-year analysis of 562 gastric carcinoids: small tumor or larger problem? Am J Gastroenterol 2004; 99: 23-32 [PMID: 14687136]
8. Spampatti MP, Massironi S, Rossi RE, Conte D, Sciola V, Ciardarini C, Ferrero S, Lodi L, Peracchi M. Unusually aggressive type 1 gastric carcinoid: a case report with a review of the literature. Eur J Gastroenterol Hepatol 2012; 24: 589-593 [PMID: 22465973 DOI: 10.1097/MEG.0b013e328350a4e8]
9. Delle Fave G, O’Toole D, Sundin A, Taal B, Ferolla P, Ramage JK, Ferone D, Ito T, Weber W, Zheng-Pei Z, De Herder WW, Pascher A, Ruszniewski P; Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 2016; 103: 119-124 [PMID: 26784901 DOI: 10.1159/0004433168]
10. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-269, W64 [PMID: 19802511 DOI: 10.7326/0003-4819-151-4-200908180-00135]
11. Mathes T, Pieper D. Study design classification of registry-based studies in systematic reviews. J Clin Epidemiol 2018; 93: 84-87 [PMID: 28951107 DOI: 10.1016/j.jclinepi.2017.09.016]
12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-z]
13 Ahlman H, Köhly L, Lundell L, Olbe L, Wängberg B, Granérus G, Grimelius L, Nilsson O. Clinical management of gastric carcinoid tumors. Digestion 1994; 55 Suppl 3: 77-85 [PMID: 7698542 DOI: 10.1159/000201206]

14 Rindi G, Bordi C, Rappelli S, LaRosa S, Stolte M, Solcia E. Gastric carcinoids and neuroendocrine carcinomas: Pathogenesis, pathology, and behavior. 11996; 20: 168-172. [PMID: 8668183]

15 Safatle-Ribeiro AV, Ribeiro U, Corbett CE, Iriya K, Kobata CH, Sakai P, Yagi OK, Pinto PE, Zilberstein B, Gama-Rodrigues J. Prognostic value of immunohistochemistry in gastric carcinoid (carcinoid) tumors. Eur J Gastroenterol Hepatol 2007; 19: 21-28 [PMID: 17260073 DOI: 10.1097/MEG.0b013e32803f737b]

16 Vanoli A, La Rosa S, Miceli E, Klersy C, Maragliano R, Capuano F, Persichella A, Martinò M, Inzani F, Luinetti O, Di Sabatino A, Sessa F, Paulli M, Corazza GR, Rindi G, Bordi C, Capella C, Solcia E. Prognostic Evaluations Tailored to Specific Gastric Neuroendocrine Neoplasms: Analysis Of 200 Cases with Extended Follow-Up. Neuroendocrinology 2018; 107: 114-126 [PMID: 29895024 DOI: 10.1159/000489902]

17 Sagatun L, Fossmark R, Jianu CS, Qvigstad G, Nordrum IS, Mjones P, Waldum HL. Follow-up of patients with ECL cell-derived tumours. Scand J Gastroenterol 2016; 51: 1398-1405 [PMID: 27309188 DOI: 10.3109/00365521.2016.119598]

18 Chen WC, Warner RRP, Harpaz N, Zhu H, Rouayie S, Kim MK. Gastric Neuroendocrine Tumor and Duodenal Gastrinoma With Chronic Autoimmune Atrophic Gastritis. Pancreas 2019; 48: 131-134 [PMID: 30531243 DOI: 10.1097/MPA.0000000000001204]

19 Borch K, Ahrén B, Ahlman H, Falkmer S, Granérus G, Grimelius L. Gastric carcinoids: biologic behavior and prognosis after differentiated treatment in relation to type. Ann Surg 2005; 242: 64-73 [PMID: 15973101 DOI: 10.1097/01.asa.0000160762.52309.72]

20 Sato Y, Imamura H, Kaziaki Y, Koizumi W, Ishido K, Kurahara K, Suzuki H, Fujisaki J, Hirakawa K, Hosokawa O, Ho M, Kamimishi M, Furuta T, Chiba T, Haruma K. Management and clinical outcomes of type I gastric carcinoid patients: retrospective, multicenter study in Japan. Dig Endosc 2014; 26: 377-384 [PMID: 24188531 DOI: 10.1111/den.12197]

21 Schindl M, Kaserer K, Niederle B. Treatment of gastric neuroendocrine tumors - The necessity of a type-adapted treatment. Arch Surg 2001; 136: 49-54 [PMID: 11146777 DOI: 10.1016/archsurg.136.1.49]

22 Rappel S, Altenedorf-Hofmann A, Stolte M. Prognosis of gastric carcinoid tumors. Digestion 1995; 56: 455-462 [PMID: 8536814 DOI: 10.1159/00012176]

23 Thomas D, Tsolakis AV, Grozinsky-Glasberg S, Fraenkel M, Alexandraki K, Sougioulizis S, Gross DJ, Kalsbas G. Long-term follow-up of a large series of patients with type I gastric carcinoid tumors: data from a multicenter study. Eur J Endocrinol 2013; 168: 185-193 [PMID: 23131690 DOI: 10.1530/EJE-12-0836]

24 Louthan O. Neuroendocrine neoplasms of the stomach. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158: 455-460 [PMID: 23817129 DOI: 10.5507/bp.2013.045]

25 Kim BS, Oh ST, Yook JH, Kim KC, Kim MG, Jeong JW, Kim BS. Typical carcinoids and neuroendocrine carcinomas of the stomach: differing clinical courses and prognoses. Am J Surg 2010; 200: 328-333 [PMID: 20835690 DOI: 10.1016/j.amjsurg.2009.10.028]

26 Manfredi S, Walter T, Baudin E, Cortiat R, Ruzsniewski P, Lecomte T, Laurenty AP, Goichot B, Rohmer V, Roqum G, Cojocarcasu OZ, Lombardi-Bohacs L, Cepage C, Morcet J, Cadot G. Management of gastric neuro-endocrine tumours in a large French national cohort (GTE). Endocrine 2017; 57: 504-511 [PMID: 28664309 DOI: 10.1007/s12022-017-1359-9]

27 Gladdy RA, Strong VE, Coit D, Allen PJ, Gerdes H, Shia J, Klimstra DS, Brennan MF, Tang LH. Defining surgical indications for type I gastric carcinoid tumor. Ann Surg Oncol 2009; 16: 3154-3160 [PMID: 19727959 DOI: 10.1245/s10434-009-0687-y]

28 Lee HE, Mouajjad T, Erickson LA, Wu TT. Sporadic Gastric Well-Differentiated Neuroendocrine Tumors Have a Higher Ki-67 Proliferative Index. Endocr Pathol 2016; 27: 259-267 [PMID: 27306997 DOI: 10.1007/s12022-016-9443-6]

29 Grozinsky-Glasberg S, Thomas D, Stroossen JR, Pape UF, Felder S, Tsolakis AV, Alexandraki KI, Fraenkel M, Saeigh L, Reissman P, Kalsbas G, Gross DJ. Metastatic type I gastric carcinoid: a real threat or just a myth? World J Gastroenterol 2013; 19: 8687-8695 [PMID: 24378587 DOI: 10.3748/wjg.v19.i46.8687]

30 Li QL, Zhang YQ, Chen WF, Xu MD, Zhong YS, Ma LL, Qin WZ, Hu JW, Cai MY, Yao LQ, Zhou PH. Gastric NEN type 1: Meta-analysis of 200 cases. World J Gastroenterol 2016; 22: 5779-5786 [PMID: 23155323 DOI: 10.3748/wjg.v18.i40.5779]

31 Merola E, Sbrozzi-Vanni A, Panzuto F, D’Ambra G, Di Giulio E, Pilozzi E, Capurso G, Lahner E, Bordi C, Ammini B, Delle Fave G. Type I Gastric Carcinoids: A Prospective Study on Endoscopic Management and Recurrence Rate. Neuroendocrinology 2012; 92: 205-213 [PMID: 21811050 DOI: 10.1159/000329043]

32 Postlewait LM, Baptiste GG, Ethun CG, Le, N, Cardona K, Russell MC, Willingham FF, Kooby DA, Staley CA, Matthel SK. A 15-year experience with gastric neuroendocrine tumors: Does type make a difference? J Surg Oncol 2016; 114: 576-580 [PMID: 27393718 DOI: 10.1002/jso.24369]

33 Uygur A, Kadayifci A, Polat Z, Yilmaz K, Gunal A, Demir H, Bagci S. Long-term results of endoscopic resection for type I gastric neuroendocrine tumors. J Surg Oncol 2014; 109: 71-74 [PMID: 24165913 DOI: 10.1002/jso.23477]

34 Campana D, Ravizza D, Ferrora P, Faggiano A, Grimaldi F, Albertelli M, Ricci S, Santini D, Brighi N, Fazio N, Colao A, Ferone D, Tommasetti P. Risk factors of type I gastric neuroendocrine neoplasia in patients with chronic atrophic gastritis. A retrospective, multicentre study. Endocrine 2017; 56: 633-638 [PMID: 27592118 DOI: 10.1007/s12020-016-1899-y DOI: 10.3748/wjg.v18.i10.633]

35 Klöppel G, La Rosa S. Ki67 labeling index: assessment and prognostic role in gastroenteropancreatic neuroendocrine neoplasms. Virchows Arch 2018; 472: 341-349 [PMID: 29134440 DOI: 10.1007/s00428-017-2258-0]

36 Hauck I, Bitzer M, Malek N, Plentz RR. Subgroup analysis of patients with G2 gastroenteropancreatic neuroendocrine tumors. Scand J Gastroenterol 2016; 51: 55-59 [PMID: 26137871 DOI: 10.3109/00365521.2015.1064994]
