Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation

Joel Dokmegang1*, Moi Hoon Yap1, Liangxiu Han1, Matteo Cavaliere1, René Doursat2*

1Centre for Advanced Computational Science (CfACS), Manchester Metropolitan University, Manchester, United Kingdom
2Complex Systems Institute, Paris Ile-de-France (ISC-PIF), National Centre for Scientific Research (CNRS), Paris, France

*jdokmegang@gmail.com, rene.doursat@iscpif.fr

Abstract

Understanding the processes by which the mammalian embryo implants in the maternal uterus is a long-standing challenge in embryology. New insights into this morphogenetic event could be of great importance in helping, for example, to reduce human infertility. During implantation the blastocyst, composed of epiblast and trophectoderm, undergoes significant remodelling from an oval ball to an egg cylinder. A main feature of this transformation is symmetry breaking and reshaping of the epiblast into a “cup”. Based on previous studies, we hypothesise that this event is the result of mechanical constraints originating from the trophectoderm, which is also significantly transformed during this process. In order to investigate this hypothesis we propose MG\#, an original computational model of biomechanics able to reproduce key cell shape changes and tissue level behaviours \textit{in silico}. With this model, we simulate epiblast and trophectoderm morphogenesis during implantation. First, our results uphold experimental findings that repulsion at the apical surface of the epiblast is sufficient to drive lumenogenesis. Then, we provide new theoretical evidence that trophectoderm morphogenesis indeed dictates the cup shape of the epiblast and fosters its movement towards the uterine tissue. Together, these results offer mechanical insights into mouse implantation and highlight the usefulness of agent-based modelling methods in the study of embryogenesis.

Author summary

Computational modelling is increasingly used in the context of biological development. Here we propose a novel agent-based model of biological cell and tissue mechanics to investigate important morphological changes during mouse embryo implantation. Our model is able to replicate key biological cell shape changes and tissue-level behaviour. Simulating mouse implantation with this model, we bring theoretical support to previous experimental observations that lumenogenesis in the epiblast is driven by repulsion, and provide theoretical evidence that changes in epiblast shape during implantation are regulated by trophectoderm development.
Introduction

A critical milestone of mammalian development is reached when the embryo implants in the maternal uterine tissue [1,2]. Prior to implantation, a series of cell fate decisions concomitant with multiple rounds of divisions gradually transform the initial zygote into a blastocyst featuring three different cell lineages: a spherical embryonic epiblast (EPI) wrapped into two extraembryonic tissues, the trophectoderm (TE) and primitive or visceral endoderm (PE/VE) [3,4]. Upon implantation, the embryo moves towards maternal sites, and undergoes significant remodelling, culminating in the case of the mouse in an egg cylinder, a body structure essential to post-implantation phases such as gastrulation [4–6]. A key feature of this blastocyst-to-egg-cylinder transition, still poorly understood, is the appearance of symmetry breaking within the epiblast and its reshaping into a cup [4,7], which occurs roughly between stages E4.5 and E4.75 of embryonic development.

Many of the important structural changes that occur during implantation have been explained in terms of chemical signals within and between embryonic and extraembryonic compartments [1,8]. For instance, it has been shown that at the onset of implantation epiblast cells exit their naive pluripotency state, self-organise into a highly polarised rosette, and initiate lumenogenesis under the influence of β1-integrin signalling [7,9]. Shortly after implantation, β1-integrin enables pro-amniotic cavity formation along the entire egg cylinder via the resolution of multiple rosettes both in extraembryonic cell populations and at their interface with the embryonic tissue [6]. Moreover, differentiation of the primitive trophectoderm into polar and mural trophectoderm leading to the formation of a boundary between the two tissues has been traced back to fibroblast growth factors (FGFs) signalling [10].

As D’Arcy Thompson already noted about genetics, however, development cannot be construed solely in terms of biochemical signals either: the mechanical interactions between cells and tissues equally and reciprocally contribute to embryogenesis [11,12]. On the subject of the epiblast remodelling into a cup, a series of biological works have paved the way and triggered further investigation into the mechanics involved. Because it was observed that the EPI did not initiate specific tissue-level symmetry-breaking behaviours, one study stated that after the basement membrane disintegrated between the EPI and TE, the membrane between the EPI and the PE acted like a basket that moulded the epiblast into its cup shape [4] (Fig. 1A). Although this hypothesis put the spotlight on the basement membrane, it also suggested that the TE in direct contact with the EPI could play a role in this shape change. Evidence supporting this hypothesis grew when “ETS-embryoids” (ETS: embryonic and trophoblast stem-cell) assembled in vitro from EPI and TE stem cells, surrounded by the extracellular matrix (ECM) acting as the basement membrane, replicated embryonic transition from blastocyst to egg cylinder [13] (Fig. 1B). Furthermore, a recent study highlighted more clearly the role of the trophectoderm [14]. In this study, ExE-embryoids (ExE: extra-embryonic ectoderm), cultured from EPI and PE stem cells separated by an ECM basement membrane, did not break the symmetry of their initial spherical shape (Fig. 1C). In contrast, both ETS- and ETX-embryoids (ETX: embryonic, trophoblast and extra-embryonic endoderm) made from all three blastocyst lineages did reproduce the symmetry breaking observed in real embryos. Together, these studies established the necessity of the trophectoderm for the remodelling of the epiblast [13,14].

On the other hand, how exactly trophectoderm morphogenesis influences shape change in the epiblast has not been elucidated yet because very little was known on trophectoderm morphogenesis during implantation. In the light of recent detailed descriptions of extra-embryonic tissues morphogenesis during implantation [10], it appears increasingly plausible that trophectoderm morphogenesis regulated epiblast remodelling via mechanical interactions at their common boundary. This study showed
that polar trophectodermal cells exhibited drastic morphological changes throughout the implantation period. Whereas early implanting blastocysts featured squamous cells in the polar trophectoderm, these cells, driven by a high mitotic and space restrictions due to the formation of a boundary with the mural trophectoderm, later transited to cuboidal and then elongated to acquire columnar shapes. These changes were followed by apical constriction resulting in the folding of the whole tissue, and invagination of the epiblast (Fig. 1D). Moreover, this study provided experimental evidence that other structural changes, most notably the stretching of PE cells, resulted from TE morphogenesis [10]. Hence, we want to investigate the hypothesis that trophectoderm morphogenesis drives the remodelling of the epiblast into a cup via mechanical interactions at their common boundary.

Building on the increasing power of computational modelling in developmental biology [15–18], we examine the influence of trophectoderm morphogenesis on the epiblast. The requirement of dramatic cell shape changes in trophectodermal cells, notably apical constriction [10], orients modelling options toward the family of deformable cell models (DCM) [19]. In this category, two classes of models have been predominant in recent research: vertex models (VM) and sub-cellular element models (SEM). Although vertex models have been used extensively to study epithelial dynamics [20–21], accounting for various mechanical behaviours of individual cells remains challenging in a global energy-based approach. Hence, we set our choice on SEM, where cells are represented by an agglomeration of computational particles interacting with one another via short-range potentials emulating the viscoelastic properties of their cytoskeleton [22–24]. However, in order to exhibit realistic cell shapes, SEM generally involve an important number of particles, many of which reside within the cell, thus do not have a direct influence on cell shape. This leads to increased computational complexity, limiting the size of cell populations that can be simulated.

Here, we present a novel computational SEM called MG#, which focuses on 3D cell shapes while reducing computational complexity by distinguishing between membrane particles and a single intracellular particle. Using this model, we first uphold the experimental observation that repulsion at the apical surface is sufficient for lumenogenesis in the epiblast. Then, we reproduce trophectoderm morphogenesis during implantation and we provide theoretical support that epiblast remodelling into a cup shape and its movement towards the maternal uterine tissue can be explained by trophectoderm morphogenesis.

Computational Method

Based on the fundamental principles of DCM, our abstraction of the biological cell features particles in interaction under the influence of potential-derived forces. Emphasis is put on particles at the surface of the cell membrane, bringing our model close to VM [25], while at the same time we also include a single intracellular particle reminiscent of the cell’s microtubule organising centre (Fig. 2A,B).

On the cell membrane, we define a topological neighbourhood based on a triangulation of vertices. Two same cell particles are deemed internal neighbours if they both belong to one of the mesh triangles (Fig. 2A). We also define an external neighbourhood based on distances between particles of different cells (Fig. 2D). To minimise the computation time required, we introduce cell-cell neighbourhood relationships where particles of different cells are tested for external neighbour links only when the cells to which they belong have already been approved as neighbours. Here, a Moore neighbourhood, well suited for the lattice-like layout of our cells, is favoured.

In order to induce intrinsic mechanical behaviours within cells, we assimilate internal particle neighbourhood links to non-linear springs, which have been shown to faithfully
Fig 1. Review of epiblast cup-shape acquisition theories.

A. The basement membrane separating the epiblast and the primitive endoderm moulds the epiblast into a cup while it disintegrates between the epiblast and the trophectoderm in mouse embryos [4].

B. Embryoid structures featuring epiblast and trophectoderm stem cells surrounded by an ECM acting as a basement membrane (ETS-embryoids) replicate mouse embryogenesis by forming body structures similar to those observed in normal embryonic development [13]. Here the presence of the trophectoderm shows that this tissue might be required for symmetry breaking in the epiblast and cup shape acquisition.

C. Embryoid structures featuring epiblast and primitive endoderm stem cells surrounded by an ECM acting as a basement membrane (EXE-embryoids) do not break symmetry in the epiblast, but initiate lumenogenesis [14]. This evidences the requirement of the trophectoderm for the remodelling of the epiblast.

D. Trophectoderm morphogenesis during mouse implantation. Trophectodermal cells elongate and then undergo apical constriction, resulting in the tissue folding and invaginating the epiblast [10]. This suggests that epiblast remodelling into a cup might be a mechanical response to trophectoderm dynamics.
emulate living matter26. These springs mimic the activity of actomyosin and microtubule networks in the cytoskeleton, and forces are derived from their elastic potential (Fig. 2C-E). In the cell’s resting state, the equilibrium distance of each spring coincides with the length of the segment formed by its nodes. Cell dynamics arise from alterations to these equilibrium distances. In apical constriction for instance, new equilibrium lengths are computed as in Fig. 2F,G.

Equation of Motion

Acting on a given membrane particle i, we distinguish four main types of forces: internal forces $\mathbf{F}_{\text{int}}^i$, cytoskeleton forces \mathbf{F}_χ^i, external forces $\mathbf{F}_{\text{ext}}^i$, and specific forces $\mathbf{F}_{\text{spec}}^i$. Biological media are often characterised by a low Reynolds number, due to their high viscosity, which minimises the effects of inertia19. We therefore subject particles to an over-damped, first-order equation of motion:

$$\left(\sum_{j \in N_{\text{int}}(i)} \mathbf{F}_{\text{int}}^j \right) + \mathbf{F}_\chi^i + \left(\sum_{j \in N_{\text{ext}}(i)} \mathbf{F}_{\text{ext}}^j \right) + \mathbf{F}_{\text{spec}}^i = \lambda \mathbf{v}_i (1)$$

where $N_{\text{int}}(i)$ and $N_{\text{ext}}(i)$ respectively represent the set of internal and external neighbours of particle i, and λ is the coefficient of friction exerted on all particles.

Internal and Cytoskeleton forces

The internal force created by a particle j on a neighbouring particle i derives from a Morse potential (Fig. 2E). Previous studies have used Morse potentials to represent forces in a biological context22,24. The expression of this force is given by:

$$\mathbf{F}_{\text{int}}^j = 2J_\sigma \rho(e^{2\rho(r-r_{eq})} - e^{\rho(r-r_{eq})}) \mathbf{u}_{ij} (2)$$

where J_σ represents the interaction strength between particles i and j, both of cell type σ, r_{eq} is the equilibrium of the spring force between i and j, and \mathbf{u}_{ij} is the unit vector along the direction formed by i and j. Similar forces dictate interactions between the intracellular particle and the membrane particles.

External forces

Given the tight packing in epithelial tissues, a cell membrane is always in contact with neighbouring cell membranes. Thus local action on a membrane produces an equivalent deformation on the surrounding cells. In other words, a particle always transmits the force received to its external neighbours. To account for this behaviour, we submit particles and their external neighbours to equal forces. This is done by setting the external force acting on a particle to be equal to the sum over all its external neighbours of their internal and nucleus forces:

$$\mathbf{F}_{\text{ext}}^i = \sum_{j \in N_{\text{ext}}(i)} \mathbf{F}_{\text{ext}}^j (3)$$

$$\mathbf{F}_{\text{ext}}^j = \left(\sum_{k \in N_{\text{int}}(j)} \mathbf{F}_{\text{int}}^k \right) + \mathbf{F}_\chi^j (4)$$
Specific forces

Generally speaking, it is possible to include specific forces in DCM to account for desired behaviours. A few studies have taken advantage of this possibility to enable for example cell surface bending resistance [26] or cell surface area and volume conservation [27]. In our context of mouse implantation morphogenesis, we create specific forces to simulate repulsion at the apical surface of epiblast cells during lumenogenesis [4,9,14]. Here, these forces also derive from a Morse potential.

Fig 2. Computational model. A. 3D representation of a cell: The cell is abstracted by an agglomeration of particles (small white spheres) whose triangulation (white edges) forms the membrane, and an intracellular particle (big white sphere). Interactions between the intracellular and membrane particles (blue lines) mimic the cytoskeleton. B. 3D rendering of a cell without its sub-cellular elements. C. Forces acting within a cell: \(\vec{F}_{\text{int}}^{j,k} \) are the forces that membrane particles \(j,k \) exert on another membrane particle \(i \). \(\vec{F}_{\chi}^{j,k} \) is the force that the intracellular particle \(\chi \) exerts on \(i \). D. External forces acting on a cell via its particles. Here, \(\vec{F}_{\text{ext}}^{i_2} = \vec{F}_{j_2}^{\text{ext}} = (\vec{F}_{j_1,j_2}^{\text{int}} + \vec{F}_{j_3,j_2}^{\chi}) + (\vec{F}_{j_3,j_2}^{\text{int}} + \vec{F}_{j_3,j_2}^{\chi}) \). E. Plots of the magnitude of Morse forces under different values of \(J \), with \(\rho = 1 \) and \(r_{\text{eq}} = 0.5 \). F. Apical constriction of an epithelial cell with original radius \(R \) shrinking by \(d \). G. Formulas of the new equilibrium lengths in an apically constricted cell.
Results and Discussion

In this section, we apply our model to the study of mouse embryo morphogenesis during implantation. Here, we focus on epiblast and trophectoderm tissues. First, we test the hypothesis of whether repulsion at the apical surface of the epiblast is sufficient to account for lumenogenesis. Then, we simulate both tissues’ morphogenesis and show that the epiblast remodelling into a cup shape and its movement towards the maternal uterine tissue can be explained by trophectoderm morphogenesis.

Simulations are run using a C# implementation of the model described above. The source code can be found at https://github.com/guijoe/MGSharpCore.

Repulsion at the apical surface of the epiblast is sufficient for lumenogenesis

The study of how lumens arise in epithelial tissues has revealed two predominant mechanisms: cavitation mediated by apoptosis, and hollowing, in which the lumen is formed by exocytosis and membrane separation [28, 29]. In the case of highly polarised epithelia, it has been shown that cavitation was not necessary for lumenogenesis [30]. Hence, the hollowing mechanism was privileged in epiblast lumenogenesis, which features highly polarised cells spatially organised in the shape of a rosette. It was hypothesised that charge repulsion mediated by anti-adhesive molecules such as podocalyxin (PCX) drove lumen formation in the epiblast [4, 7]. Furthermore, evidence for hollowing was observed in a recent study [14], where apoptosis was found not to regulate lumenogenesis, but PCX was discovered to be predominant at the apical surface of cells facing the lumen.

Using our model, we sought to determine theoretically whether hollowing via repulsion at the apical surface of the epiblast rosette was a viable mechanism for lumenogenesis in this tissue. First, we built a 3D rosette-shaped epiblast by submitting polarised epithelial cells to apical constriction [7] (Fig. 3A,B, Supplementary Fig. 6A). Then, inspired by the anti-adhesive role of PCX, we broke adhesive links between appropriate cell membranes in contact at the apical surface of the rosette, and created repulsive forces (Eq. 2). This prompted neighbouring apical particles to break apart from each other, initiate and gradually expand a lumen at the centre of the rosette (Fig. 3C-E). This result therefore suggests that hollowing, via repulsion is sufficient as a mechanism for lumenogenesis in the mouse epiblast.

Mechanical constraints imposed by TE morphogenesis on the epiblast drive cup shape acquisition

A key feature of the blastocyst-to-egg-cylinder transition is the symmetry breaking within the epiblast and its shaping into a cup [4, 7]. During this transformation, the epiblast remodels from an oval ball to a tissue with a flat surface at its boundary with the trophectoderm. Previous studies have established the requirement of the trophectoderm in this shape change [13, 14]. Using the presented model, we sought to determine how trophectoderm morphogenesis influenced the cup shape acquisition by the epiblast. Our simulation protocol consisted of reproducing the sequence of morphological events observed in the trophectoderm as described in [10] (elongation followed folding via apical constriction), and keeping track of the consequent changes in the epiblast. For simplicity and for keeping the model computationally efficient, we assume that there are no cell divisions in the tissue.

We built a virtual embryo consisting of a TE sheet with initial cuboidal cells laying on top of an oval rosette-shaped epiblast (Supplementary Fig. 6B). At the initial stage (Fig. 4A,E), new equilibrium lengths are computed for all TE cells, with the goal of
triggering a transition from cuboidal cells to more elongated columnar shapes. These cells lose their resting state and regain it by gradually aligning their actual springs lengths to the calculated equilibrium lengths (Fig. 3B,F). After that, we initiated invagination in the TE. The distribution over the entire sheet of the length \(d\) by which the apical radius of cells is shrunk depends on the position of the cell in relation to the centre of the sheet. In our simulations, this distribution is given by a step function: cells in the middle of the sheet are set to constrict completely \((d = \text{radius})\), while cells on the boundary do not constrict (Supplementary Fig. 7). The coordinated movement of cells induced by these positional laws causes the tissue to fold and invaginate the epiblast. Short after TE invagination begins, we initiate lumenogenesis in the epiblast (Fig. 4G). In order to highlight the requirement of the TE, following TE folding (Fig. 4C,G), we break the contacts between the TE and the epiblast for the remaining time of the simulation, inhibiting any mechanical interactions between the two tissues, but maintaining both tissues own mechanics (Fig. 4D,H). We note that throughout the experiment, with the exception of lumenogenesis, epiblast cells do not initiate any behaviours, the epiblast as a whole simply reacts to the mechanics induced by either the presence or the absence of the TE.

To appreciate the impact of the TE on the epiblast, we define the elastic energy (E) of a cell as the sum over all cell springs of the squared difference between equilibrium and actual lengths. We extend this notion by defining the elastic energy of a tissue or...
Fig 4. **TE Morphogenesis Regulates EPI Shape.**

A,B,C,D. 3D Snapshots of the simulation of trophectoderm and epiblast morphogenesis during mouse implantation, and the regulation of epiblast shape.

E,F,G,H. 2D slices of the cell population at the stages corresponding respectively to A,B,C,D. Snapshots for (A,E), (B,F), (C,G) taken respectively at $t=0$, $t=3000$, $t=6000$.

A,E. Initial stage featuring a single layered trophectoderm with cuboidal cells resting upon the rosette-shaped epiblast.

(B,F). Trophectoderm cells have transited to a columnar shape.

(C,G). Trophectoderm folded by apical constriction of single cells. Concomitantly, lumenogenesis has been initiated in the epiblast (the process starts at $t=4000$).

(D,H). After adhesive links have been broken between the trophectoderm and the epiblast, the epiblast bounces back to its near spherical shape. Snapshots taken at $t = 9000$.

I. Definition of the metrics used to evaluate our model, the curvature (θ), the TE/EPI interface diameter (D), and the TE/EPI interface length (L), from both of which is derived the interface ratio (L/D).

J. Plot of the elastic energy. Discontinuities mark the start of new morphological events ($t=0$, $t=3000$, $t=4000$, $t=6000$). After removal of the trophectoderm, the population’s elastic energy falls closer to zero than ever before, meaning that cells are closer to they resting stage, hence less externally constrained.

K. Plot of the interface curvature. During trophectoderm morphogenesis, the interface curvature rises towards a flat angle, and then sharply drops when the trophectoderm is removed.

L. Plot of the interface ratio. During trophectoderm morphogenesis, the interface curvature decreases towards a value of 1, and then sharply increases when the trophectoderm is removed. Values of the equation parameters: $J_{\text{EPI}} = 2.5$, $J_{\text{TE}} = 2.5$, $\lambda = 2$, $\rho = 1$.

an entire population of cells as the sum of the elastic energies of single cells in the population. Cells always tend to minimise this energy, which can also be viewed as the...
degree of relaxation of cell: the closer it is to zero, the closer the cell is in its resting state, the more relaxed it is, hence the less constrained. In addition, we monitor the curvature (θ) of the epiblast, that is, the inclination angle of the epiblast surface covered by the trophectoderm (Fig. 4). An increasing curvature, trending towards the flat angle i.e. a flat surface, is characteristic of the epiblast’s transition from an oval rosette to a cup. Moreover, we measured the length (L) and length (D) of the interface between the EPI and the TE, and considered their ratio, which we designated the interface ratio (L/D), as our third evaluation metric (Fig. 4I). It is expected that this ratio decreases towards 1 as the epiblast flattens. We plotted the profiles of the curvature, the interface ratio and the elastic energy throughout our simulation. Our model matches biological expectations by replicating, on the one hand, an increasing curvature and a decreasing interface ratio, with ultimately a flat TE/EPI interface just before we remove the TE (Fig. 4C,G,K,L). On the other hand, as soon as the TE is removed, the epiblast bounces back to its original shape (Fig. 4D,H,K,L). This result aligns with the experimental observation that without the TE, the epiblast does break symmetry [14]. The elastic energy profiles tie these behaviours to the mechanical influence of the TE over the epiblast. Actually, breaking mechanical interactions between the TE and the EPI not only results in a sharp drop in elastic energy, but this energy also plateaus at a value significantly lower than in other stages (Fig. 4J), demonstrating that cells are more mechanically constrained when both tissues are in contact.

These observations suggest that the presence of the TE imposes mechanical stress on epiblast cells, hinting to the necessity of this tissue’s morphogenesis in the remodelling of the epiblast.

Trophectoderm morphogenesis fosters epiblast movement towards the uterine tissue

An important requirement of implantation is close contact between the embryo and the uterine tissue. As soon as the three pre-implantation lineages are specified, the blastocyst hatches out of zona pellucida and initiates the process of implantation [4]. However, there exists a gap between the hatched blastocyst and attachment sites in the uterus. In order to close this gap, the embryo needs to move towards the uterus. It has recently been established that this movement of the embryo towards maternal sites occur concomitantly to the drastic morphological changes observed in the TE [10]. Furthermore, it was observed in that same study that primitive endoderm expansion over the whole embryo is driven by TE morphogenesis. Given that the trophectoderm keeps close contact with the epiblast during these events, we hypothesised that epiblast positioning could also be affected by TE morphogenesis. We employed computational modelling to examine whether TE morphological changes could influence the trajectory of the epiblast.

Here, as previously, we reproduced the sequence of TE morphogenesis (elongation followed folding via apical constriction), and observed how it affected the position of the epiblast. To highlight how the TE influences the trajectory of the epiblast, we defined what we designated as the pushing distance. We compute this distance at any given time point of the simulation by calculating the difference in height between the lowest point of the epiblast at that time point and the lowest point at the initial stage (Fig. 5A). We plotted the profiles of this metric and observed an increasing pushing distance as the TE transited from cuboidal to columnar, and then as the TE folded (Fig. 5B). The sudden soar observed at $t = 4000$ reflects the slight elongation of the tissue due to hollowing driven lumenogenesis in the epiblast.

These results suggest that TE morphogenesis, while reshaping the epiblast, also fosters the embryo’s movement towards maternal sites.
Fig 5. **TE Fosters Epiblast Movement towards maternal sites.** A. Snapshots of the simulation of trophoderm and epiblast morphogenesis during mouse implantation, and their influence on epiblast positioning. Snapshots (from left to right) were taken respectively at $t=0$, $t=6000$. B. Plot of the pushing distance. The pushing distance increases with time. C. Plot of the elastic energy. Discontinuities mark the start of new morphological events ($t=0$, $t=3000$). The sudden soar observed at $t=4000$ reflects the slight elongation of the tissue due to hollowing driven lumenogenesis in the epiblast. Values of the equation parameters: $J_{EPI} = 2.5$, $J_{TE} = 2.5$, $\lambda = 2$, $\rho = 1$.

Conclusion

Understanding the processes by which the mammalian embryo implants in the maternal uterus is key for many breakthroughs in embryology [1]. New insights into these morphogenesis event could be of tremendous importance in helping for example to reduce human infertility [31]. Although great advances have been made by studying biochemical cues involved in these events, here we focused on the mechanical basis at cellular level of epiblast morphogenesis. In order to study the physical basis of mouse implantation, we have developed a novel, computationally efficient model of biological cells and tissue mechanics able to reproduce key episodes of vertebrate morphogenesis.

With this model, we have been able to replicate lumenogenesis in the epiblast, reproduce trophoderm morphogenesis driven by single cells elongation and apical constriction, as well as provide theoretical evidence that this morphogenesis regulates the remodelling and positioning of the epiblast during implantation. Efficiency in our simulations has been achieved by stripping the model of noticeable features of biological development. One important approximation is that we ignore the hypothetical impact of proliferation in our simulations. Proliferation is indeed a preponderant mechanism in both tissues, and though it may be argued that it plays a non-trivial role in the elongation of trophodermal cells, it is difficult to imagine how it alone would contribute to the reshaping of the epiblast. Moreover, our approach allows isolating and thus highlighting the effects of pure mechanical interactions within and between the trophoderm and the epiblast. Future studies could combine the effects of mechanical interactions and proliferation to further investigate tissue shape changes during mouse implantation.
Acknowledgments

We acknowledge interesting and stimulating discussions with Antonia Weberling. We also appreciate the discussions we have had with Ewa Paluch and Magdalena Zernicka-Goetz.

Funding

This work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme ImageInLife under the Marie Sklodowska-Curie grant agreement No. 721537.

References

1. Wang H, Dey SK. Roadmap to embryo implantation: Clues from mouse models. Nature Reviews Genetics. 2006;7(3):185–199.

2. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organization of the human embryo in the absence of maternal tissues. Nature cell biology. 2016;18(6):700–708.

3. Arnold SJ, Robertson EJ. Making a commitment: Cell lineage allocation and axis patterning in the early mouse embryo. Nature reviews Molecular cell biology. 2009;10(2):91–103.

4. Bedzhov I, Graham SJ, Leung CY, Zernicka-Goetz M. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1657):20130538.

5. Kojima Y, Tam OH, Tam PP. Timing of developmental events in the early mouse embryo. In: Seminars in cell & developmental biology. vol. 34. Elsevier; 2014. p. 65–75.

6. Christodoulou N, Kyprianou C, Weberling A, Wang R, Cui G, Peng G, et al. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation. Nature cell biology. 2018;20(11):1278–1289.

7. Bedzhov I, Zernicka-Goetz M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell. 2014;156(5):1032–1044.

8. Parfitt DE, Shen MM. From blastocyst to gastrula: Gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1657):20130542.

9. Shahbazi MN, Scildlone A, Skorupska N, Weberling A, Recher G, Zhu M, et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature. 2017;552(7684):239–243.

10. Christodoulou N, Weberling A, Strathdee D, Anderson KI, Timpson P, Zernicka-Goetz M. Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nature communications. 2019;10(1):1–12.

11. Thompson DW, et al. On growth and form. On growth and form. 1942;.
12. Heisenberg CP. D'Arcy Thompson's ‘on Growth and form’: From soap bubbles to tissue self-organization. Mechanisms of Development. 2017;145:32–37.

13. Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science. 2017;356(6334):eaal1810.

14. Zhang S, Chen T, Chen N, Gao D, Shi B, Kong S, et al. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nature communications. 2019;10(1):1–17.

15. Brodland GW. How computational models can help unlock biological systems; 2015.

16. Villoutreix P, Delile J, Rizzi B, Duloquin L, Savy T, Bourgine P, et al. An integrated modelling framework from cells to organism based on a cohort of digital embryos. Scientific reports. 2016;6:37438.

17. Delile J, Herrmann M, Peyriéras N, Doursat R. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nature communications. 2017;8(1):1–10.

18. Sharpe J. Computer modeling in developmental biology: Growing today, essential tomorrow. Development. 2017;144(23):4214–4225.

19. Van Liedekerke P, Palm M, Jagiella N, Drasdo D. Simulating tissue mechanics with agent-based models: Concepts, perspectives and some novel results. Computational particle mechanics. 2015;2(4):401–444.

20. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. Vertex models of epithelial morphogenesis. Biophysical Journal. 2014;106(11):2291–2304.

21. Alt S, Ganguly P, Salbreux G. Vertex models: From cell mechanics to tissue morphogenesis. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2017;372(1720):20150520.

22. Newman TJ. Modeling multi-cellular systems using sub-cellular elements. arXiv preprint q-bio/0504028. 2005;.

23. Sandersius SA, Newman TJ. Modeling cell rheology with the subcellular element model. Physical biology. 2008;5(1):015002.

24. Milde F, Tauriello G, Haberkern H, Koumoutsakos P. SEM++: A particle model of cellular growth, signaling and migration. Computational Particle Mechanics. 2014;1(2):211–227.

25. Honda H, Tanemura M, Nagai T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. Journal of theoretical biology. 2004;226(4):439–453.

26. Odenthal T, Smeets B, Van Liedekerke P, Tijskens E, Van Oosterwyck H, Ramon H. Analysis of initial cell spreading using mechanistic contact formulations for a deformable cell model. PLoS computational biology. 2013;9(10).

27. Fedosov DA, Caswell B, Kariadiakis GE. Systematic coarse-graining of spectrin-level red blood cell models. Computer Methods in Applied Mechanics and Engineering. 2010;199(29-32):1937–1948.
28. Coucouvanis E, Martin GR. Signals for death and survival: A two-step mechanism for cavitation in the vertebrate embryo. Cell. 1995;83(2):279–287.

29. Wolpert L, Tickle C, Arias AM. Principles of development. Oxford university press; 2015.

30. Martín-Belmonte F, Yu W, Rodriguez-Fraticelli AE, Ewald A, Werb Z, Alonso MA, et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Current Biology. 2008;18(7):507–513.

31. Fukui Y, Hirota Y, Matsuo M, Gebril M, Akaeda S, Hiraoka T, et al. Uterine receptivity, embryo attachment, and embryo invasion: Multistep processes in embryo implantation. Reproductive medicine and biology. 2019;18(3):234–240.

Supporting information

S1 Fig. Epiblast and trophectoderm construction. A. The rosette-shaped epiblast tissue is constructed by submitting polarised cells in a double epithelial layer to apical constriction. Green arrows indicate the apical surface of the cells, where the constriction occurs. B. The initial cell population (trophectoderm and epiblast) is constructed by adding an epithelial layer to the forming the epiblast.

![Epiblast and trophectoderm construction](image1)

Fig 6. Cell population reconstruction. A. The rosette-shaped epiblast tissue is constructed by submitting polarised cells in a double epithelial layer to apical constriction. Green arrows indicate the apical surface of the cells, where the constriction occurs. B. The initial cell population (trophectoderm and epiblast) is constructed by adding an epithelial layer to the forming the epiblast.

S2 Fig. Top view of trophectoderm morphogenesis. A. Initial stage with cuboidal cells. B. Columnar trophectoderm initiating apical constriction. Red arrows highlight cells which undergo apical constriction. In this case only cells in the middle (light blue) constrict apically to enable folding. C. Folded trophectoderm. D. Folded trophectoderm after separation from the epiblast.
Fig 7. Top view of trophectoderm morphogenesis. A. Initial stage with cuboidal cells. B. Columnar trophectoderm initiating apical constriction. Red arrows highlight cells which undergo apical constriction. In this case only cells in the middle constrict (light blue) apically to enable folding. C. Folded trophectoderm. D. Folded trophectoderm after separation from the epiblast.