This paper presents the Spanish RoBERTa-base and RoBERTa-large models, as well as the corresponding performance evaluations. Both models were pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the National Library of Spain from 2009 to 2019.

1 Introduction and Previous Work

In recent years, the language-specific modeling literature has been quite prolific [1]. In the case of Spanish, BETO [2], a Spanish BERT [3], outperformed a strong multilingual baseline, mBERT. BETO was trained with a collection of existing corpora, such as the Spanish Wikipedia. Nevertheless, there aren’t many high-quality Spanish-specific models available.

In this work, we:

1. process the largest clean Spanish corpus based on the web crawlings performed by the National Library of Spain from 2009 to 2019,
2. train RoBERTa-base [4] and RoBERTa-large (the largest Spanish-specific model to date) models with these data[1]
3. conduct a complete evaluation on a diverse set of tasks.

*Equal contribution.

Publicly available at https://huggingface.co/BSC-TeMU/roberta-base-bne and https://huggingface.co/BSC-TeMU/roberta-large-bne.
In Section 2, we describe the new dataset and how we generated it. In Section 3, we compute word embeddings as a simple baseline for future experiments. Then in Section 4, we describe the new RoBERTa models. In Section 5, we evaluate the new models and compare their results with strong monolingual (BETO) and multilingual (mBERT) models. In addition, we compare it to the BERTIN model produced in the Flax/Jax Community Week. Finally, we present our conclusions and suggest future work, in Section 6.

2 Data

The National Library of Spain (Biblioteca Nacional de España) crawls all .es domains once a year. Besides this massive crawl, the library performs selective crawls that can be classified into three categories: themed based (this includes 15 different thematic collections, from fine arts to universities, feminism and politics), relevant events (that is, events of special relevance for the Spanish society, and of special significance for future research on Spanish history, society and culture) and domains at risk of disappearing. The data used for training the language models derive from these selective crawls, carried out from 2009 to 2019.

Due to the size of the data, the Library ran the first data extraction from WARC formatted files using the Selectolax Python library in its own premises. This process generated 59TB of JSON files containing some metadata along with the text extracted from the WARC files, namely: paragraphs, headers, keywords and links’ texts.

To ensure the quality of the data, we developed a cleaning pipeline which splits data into sentences, detects the language, removes noisy and ill formed sentences (based on some heuristics), deduplicates and eventually outputs the data with their original document boundaries. The pipeline is inspired by the heuristics proposed in Virtanen et al. For this cleaning process, we used 100 nodes with 48 CPU cores of MareNostrum 4 during 96h. At the end of the process we were left with 2TB of clean data at the document level. Finally, to remove repetitive content, we concatenated the entire corpus and deduplicated again, obtaining a total of 570GB of high quality data.

3 Embeddings

We computed both CBOW and Skip-gram word embeddings with 300 dimensions using FastText and are available on Zenodo:

- CBOW
- Skip-gram

With the clean data at document level mentioned on the Corpora section, the processing took around 20 days on a HPC node equipped with an AMD EPYC 7742 (@ 2.250GHz) processor using the 128 threads.

4 Models

The architecture and training procedure (masked language modeling without next sentence prediction) selected for our models was RoBERTA, in base and large sizes (following the standard BERT nomenclature). Both models were pre-trained for a single epoch as proposed in Komatsuzaki, following recent trends. Following the mentioned literature, we do not use dropout to increase convergence speed taking into account that the model will not overfit to a large dataset in a single pass, but keep weight decay to 0.01 because it has been proven to still be beneficial in single-epoch regimes. As vocabulary, we use Byte-Level BPE as in the original RoBERTa, trained with our train corpus. For training, we use the Fairseq library, and for fine-tuning, Huggingface Transformers.

5 Evaluation

We compare our RoBERTa base and RoBERTa large models with the mBERT, BETO and BERTIN models.
The BERT multilingual base model cased (mBERT) is a BERT language model with 12 self-attention layers, 12 attention heads each, a hidden size of 768, and a total of 110M parameters. It was pretrained on 104 languages with the Wikipedia dataset.

The Spanish-BERT model (BETO) has 12 self-attention layers, 16 attention heads each, a hidden layer of 1024 as hidden size, and a total of 110M parameters. It was pretrained with text from different sources: all the Spanish data from Wikipedia and the Spanish portion of the OPUS Project[^10].

The BERTIN model is a RoBERTa-large model with 24 layers, 16 attention heads each, hidden size of 1024, and a total 355M parameters. It was trained from scratch on the Spanish portion of mC4.

We fine-tuned each model in the following tasks:

- The Cross-lingual Adversarial Dataset for Paraphrase Identification (PAWS-X) [13].
- The Multilingual Document Classification Corpus (MLDoc) [14, 15].
- Named Entity Recognition from the Capitel Corpus (Capitel-NER) [11].
- Part of Speech from the Capitel Corpus (Capitel-POS) [12].
- Semantic Textual Similarity (STS) from 2014 [16] and 2015 [17].
- Part of Speech from Universal Dependencies (UD-POS).
- The Cross-Lingual NLI Corpus (XNLI) [18].
- Named Entity Recognition from Conll2002 (Conll-NER) [19].

For all models and tasks, we conduct a small grid search and pick the best value for each model:

- Batch size: 16, 32.
- Weight decay: 0.01, 0.1.
- Learning rate: 1e-5, 3e-5, 5e-5.
- Epochs: The best (as per the validation set) out of 5 epochs.

Table 1 summarizes the results with the best configurations for all models and tasks. Then, tables 8, 7, 5, 4, 6, 2, 9, and 3 report the best hyperparameters for each model for PAWS, MLDoc, Capitel-NER, Capitel-POS, STS, UD-POS, XNLI, and Conll-NER, respectively.

We note that these are preliminary results and that the final evaluation is subject to change, especially in terms of the RoBERTa-large fine-tuning, for which we have encountered some numerical instability due to the difficulty of training large models.

Dataset	Metric	RoBERTa-b F1	RoBERTa-l F1	BETO F1	mBERT F1	BERTIN F1
UD-POS	F1	**0.9907**	0.9901	0.9900	0.9886	0.9904
Conll-NER	F1	**0.8851**	0.8772	0.8759	0.8691	0.8627
Capitel-POS	F1	0.9846	**0.9851**	0.9836	0.9839	0.9826
Capitel-NER	F1	0.8959	**0.8998**	0.8771	0.8810	0.8741
STS	Combined	**0.8423**	0.8420	0.8216	0.8249	0.7822
MLDoc	Accuracy	0.9595	0.9600	0.9650	0.9560	**0.9673**
PAWS-X	F1	**0.9035**	0.9000	0.8915	0.9020	0.8820
XNLI	Accuracy	0.8016	0.8130	0.7876	0.8130	WiP

Table 1: Evaluation table of models.

[^10]: https://opus.nlpl.eu/
[^11]: https://sites.google.com/view/capitel2020#p_CbqX2kG3XE1p
[^12]: https://sites.google.com/view/capitel2020#p_eFfF6UC3XFMc
[^13]: https://universaldependencies.org/
Model	Batch Size	Weight decay	Learning rate	Eval F1	Test F1
RoBERTa-b	16	0.10	5e-5	0.9907	**0.9907**
RoBERTa-l	32	0.10	3e-5	0.9910	0.9901
BETO	16	0.01	3e-5	0.9907	0.9900
mBERT	32	0.10	5e-5	0.9892	0.9886
BERTIN	8	0.10	5e-5	0.9898	0.9904

Table 2: Best configurations for the eval UD-POS dataset with F1 score for eval and test.

Model	Batch Size	Weight decay	Learning rate	Eval F1	Test F1
RoBERTa-b	32	0.01	5e-5	0.8870	**0.8851**
RoBERTa-l	32	0.01	1e-5	0.8882	0.8772
BETO	16	0.10	3e-5	0.8710	0.8759
mBERT	16	0.10	3e-5	0.8727	0.8691
BERTIN	16	0.01	5e-5	0.8690	0.8627

Table 3: Best configurations for the eval CoNLL-NER dataset with F1 score for eval and test.

Model	Batch Size	Weight decay	Learning rate	Eval F1	Test F1
RoBERTa-b	32	0.10	5e-5	0.9848	0.9846
RoBERTa-l	16	0.01	1e-5	0.9854	**0.9851**
BETO	32	0.10	5e-5	0.9839	0.9836
mBERT	16	0.10	5e-5	0.9835	0.9839
BERTIN	16	0.10	5e-5	0.9835	0.9826

Table 4: Best configurations for the eval Capitel-POS dataset with F1 for eval and test.

Model	Batch Size	Weight decay	Learning rate	Eval Combined Score	Test Combined Score
RoBERTa-b	32	0.01	5e-5	0.9134	**0.8423**
RoBERTa-l	32	0.01	3e-5	0.9117	0.8420
BETO	16	0.01	3e-5	0.9017	0.8216
mBERT	16	0.01	3e-5	0.9122	0.8249
BERTIN	32	0.01	5e-5	0.8612	0.7822

Table 6: Best configurations for the eval STS dataset with Combined Score for eval and test.

Model	Batch Size	Weight decay	Learning rate	Eval Accuracy	Test Accuracy
RoBERTa-b	32	0.10	3e-5	0.9750	0.9595
RoBERTa-l	16	0.01	1e-5	0.9710	0.9600
BETO	32	0.01	5e-5	0.9720	0.9650
mBERT	16	0.01	1e-5	0.9670	0.9560
BERTIN	32	0.10	3e-5	0.974	**0.9673**

Table 7: Best configurations for the eval MLDoc dataset with accuracy for eval and test.
Table 8: Best configurations for the eval PAWS-X dataset with F1 for eval and test.

Model	Batch Size	Weight decay	Learning rate	Eval F1	Test F1
RoBERTa-b	32	0.01	3e-5	0.9030	0.9035
RoBERTa-l	32	0.10	1e-5	0.9015	0.9000
BETO	16	0.01	3e-5	0.9035	0.8915
mBERT	16	0.10	3e-5	0.9020	0.9020
BERTIN	16	0.01	3e-5	0.8765	0.8820

Table 9: Best configurations for the eval XNLI dataset with accuracy score for eval and test.

Model	Batch Size	Weight decay	Learning rate	Eval accuracy	Test accuracy
RoBERTa-b	16	0.01	3e-5	0.8124	0.8016
RoBERTa-l	WiP	WiP	WiP	WiP	WiP
BETO	16	0.01	1e-5	0.8269	0.8130
mBERT	32	0.10	1e-5	0.8032	0.7876
BERTIN	WiP	WiP	WiP	WiP	WiP

6 Conclusions & Future Work

In this work, we have processed the largest clean Spanish corpus to date. Furthermore, the textual richness provided by our dataset should be additive to the ones in the previously used Spanish datasets, because we have not used them (e.g., our models have not seen Wikipedia).

The RoBERTa-base model outperforms the strong BETO, mBERT and BERTIN baselines in most tasks (UD-POS, Conll-NER, Capitel-POS, Capitel-NER, STS and PAWS-X). The RoBERTa-large, despite obtaining better results than BETO and mBERT, struggles to outperform its base counterpart in all but two tasks, which we attribute to the difficulty of the process of optimization of larger models.

As future work, we are planning to 1. combine the new dataset with other sources (such as the Spanish Wikipedia), 2. further investigate the training procedure of RoBERTa-large to get its results to its full potential.

Acknowledgements

We want to thank the National Library of Spain for such a large effort on the data gathering.

This work was partially funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL, and the Future of Computing Center, a Barcelona Supercomputing Center and IBM initiative (2020).
Appendix I

This Appendix contains a sample of Masked Language Modelling prediction assessments for understanding the models’ predictions.

Agreement

Sentence: "Juana se dejó el libro en el coche porque es muy {mask} con sus cosas."
RoBERTa-base-BNE: ['lista', 'buena', 'cuidadosa', 'estrecha', 'generosa']
RoBERTa-large-BNE: ['cuidadosa', 'pesada', 'tranquila', 'lista', 'ocupada']
BETO: ['cuidadoso', 'sensible', 'buena', 'buena', 'fácil']
mBERT: ['buena', 'feliz', 'bien', 'triste', 'fuerte']
Sentence: "La chica que encontraron en el parque estaba leyendo un libro {mask} en el banco."
RoBERTa-base-BNE: ['sentada', 'sentado', 'tumbado', 'viejo', 'esperando']
RoBERTa-large-BNE: ['sentada', 'sentada', 'tumbado', 'y']
BETO: ['sienta', 'sentado', 'tumbado', 'preparado', 'preparada']
mBERT: ['sé', 'escrito', 'estaba', 'suyo', 'y']
Sentence: "De entre todas, eligieron en el concurso de baile a quién estaba mejor {mask}."
RoBERTa-base-BNE: ['vestida', 'preparada', 'dotado', 'vestido', 'preparado']
RoBERTa-large-BNE: ['vestida', 'vestido', 'preparada', 'formada']
BETO: ['vestida', 'vestido', 'vestidos']
mBERT: ['visto', 'el', 'colocado', 'ubican']
Sentence: "A la chica los pantalones le quedaban cortos porque eran muy {mask} para su edad."
RoBERTa-base-BNE: ['cortos', 'grandes', 'grandes', 'altos', 'pequeños']
RoBERTa-large-BNE: ['cortos', 'altos', 'grandes', 'altos']
BETO: ['cortos', 'pequeños', 'grandes', 'altos']
mBERT: ['grandes', 'populares', 'importantes', 'jóvenes', 'buenas']
Sentence: "Le gustaban mucho, pero no {mask} podía comprárlas porque eran demasiado caras."
RoBERTa-base-BNE: ['las', 'se', 'le', 'la', 'lo']
RoBERTa-large-BNE: ['siempre', 'se', 'tú', 'tú', 'me', 'todos']
BETO: ['se', 'siempre', 'le', 'les', 'las']
mBERT: ['se', 'le', 'leyo', 'sólo', 'lo']

Polarity agreement

Sentence: "Llegamos muy pronto y no pude hablar con {mask}."
RoBERTa-base-BNE: ['nosotros', 'vosotros', 'yo', 'ella']
RoBERTa-large-BNE: ['el', 'ella', 'ellos', 'yo', 'nadie']
BETO: ['él', 'ella', 'ellos', 'yo', 'nadie']
mBERT: ['ellos', 'el', 'ella', 'nada', 'ellas']
Sentence: "No lo había visto {mask}."
RoBERTa-base-BNE:['nunca', 'antes', 'yo', 'jamas', 'nadie']
RoBERTa-large-BNE: ['nunca', 'antes', 'yo', 'previamente']
BETO: ['antes', 'nunca', 'jamás', 'yo', 'anteriormente']
Lexical selection
Sentence: "Quita las manzanas verdes del cesto y deja solo las {mask}.
RoBERTa-base-BNE: [‘rojas’, ‘naranjas’, ‘verdes’, ‘amarillas’, ‘nueces’]
RoBERTa-large-BNE: [‘manzanas’, ‘de’, ‘naranjas’, ‘hojas’, ‘’]
BETO: [‘semillas’, ‘verdes’, ‘manzanas’, ‘rojas’, ‘malas’]
mBERT: [‘verdes’, ‘flores’, ‘manos’, ‘otras’, ‘mismas’]
Sentence: "Este es un problema para el cual la solución es {mask}.
RoBERTa-base-BNE: [‘sencilla’, ‘simple’, ‘inmediata’, ‘fácil’, ‘clara’]
RoBERTa-large-BNE: [‘sencilla’, ‘!’ ‘fácil’, ‘la’, ‘simple’]
BETO: [‘simple’, ‘sencilla’, ‘fácil’, ‘desconocida’, ‘complicada’]
mBERT: [‘simple’, ‘solución’, ‘problema’, ‘tiempo’, ‘necesaria’]
Sentence: "Tenemos un problema para el cual hay que tomar una decisión y hay que {mask}.
RoBERTa-base-BNE: [‘solucionarla’, ‘hacerlo’, ‘actuar’, ‘hablar’, ‘esperar’]
RoBERTa-large-BNE: [‘actuar’, ‘solucionarla’, ‘hacerlo’, ‘resolver’, ‘…’]
BETO: [‘actuar’, ‘hacerla’, ‘hacerlo’, ‘votar’, ‘tomar’]
mBERT: [‘decidir’, ‘hacerlo’, ‘hacer’, ‘tomar’, ‘pensar’]
Sentence: "Felipe {mask} que Juan conoce a Marta."
RoBERTa-base-BNE: [‘dice’, ‘cree’, ‘asegura’, ‘descubre’, ‘confiesa’]
RoBERTa-large-BNE: [‘dice’, ‘cree’, ‘confiesa’, a firmar’, ‘asegura’]
BETO: [‘descubre’, ‘dice’, ‘sabe’, ‘explica’, ‘revela’]
mBERT: [‘dice’, ‘ordenar’, ‘indica’, ‘de’, ‘a firmar’]
Sentence: "Mi amigo es bastante {mask}.
RoBERTa-base-BNE: [‘bueno’, ‘mayor’, ‘guapo’, ‘listo’, ‘grande’]
RoBERTa-large-BNE: [‘bueno’, ‘guapo’, ‘grande’, ‘interesante’, ‘divertido’]
BETO: [‘bueno’, ‘guapo’, ‘fuerte’, ‘listo’, ‘inteligente’]
mBERT: [‘bien’, ‘fuerte’, ‘popular’, ‘importante’, ‘buen’]
Sentence: "Mi amiga es bastante {mask}.
RoBERTa-base-BNE: [‘buena’, ‘mayor’, ‘mala’, ‘guapa’, ‘lista’]
RoBERTa-large-BNE: [‘buena’, ‘linda’, ‘guapa’, ‘interesante’, ‘grande’]
BETO: [‘buena’, ‘guapa’, ‘bonita’, ‘agradable’, ‘hermosa’]
mBERT: [‘fuerte’, ‘buena’, ‘bien’, ‘regular’, ‘cercana’]
Sentence: "Salió a cazar y mató un {mask}.
RoBERTa-base-BNE: [‘leon’, ‘perro’, ‘toro’, ‘conejo’, ‘gato’]
RoBERTa-large-BNE: [‘leon’, ‘perro’, ‘lobo’, ‘hombre’, ‘oso’]
BETO: [‘oso’, ‘conejo’, ‘zorro’, ‘león’, ‘perro’]
mBERT: [‘hombre’, ‘soldado’, ‘piloto’, ‘caza’, ‘home’]
Sentence: "Una {mask} situada en la región de Alta Normandía."
RoBERTa-base-BNE: [‘villa’, ‘ciudad’, ‘localidad’, ‘isla’, ‘aldea’]
Te voy a contar una {mask} sobre mi prima.

Martin se {mask} para ir a pescar al río.

Llamó a su {mask} porque se encontraba mal.

Llamó a su {mask} porque el coche hacía un ruido ra ro.

Lleva a su {mask} para ir a pescar al río.
Sentence: "Los {mask} también pueden llevar falda."
RoBERTa-base-BNE: ["hombres", "nios", "chicos", "futbolistas", "bebs"]
RoBERTa-large-BNE: ["hombres", "nios", "chicos", "bebs", "perros"]
BETO: ["hombres", "nios", "varones", [UNK]", "perros"]
mBERT: ["caballos", "animales", "hombres", "romanos", "colores"]
Sentence: "El papel de la mujer en la ciencia es {mask}."
RoBERTa-base-BNE: ["fundamental", "imprecindible", "incuestionable", "clave", "crucial"]
RoBERTa-large-BNE: ["fundamental", "el", "esencial", "clave", "crucial"]
BETO: ["fundamental", "relevant", "crucial", "importante"]
mBERT: ["social", "fundamental", "diferente", "importante", "universal"]
Sentence: "El papel de la {mask} en la ciencia es relevante."
RoBERTa-base-BNE: ["ciencia", "empresa", "sociedad", "educacin", "Universidad"]
RoBERTa-large-BNE: ["ciencia", "empresa", "msica", "sociedad", "historia"]
BETO: ["sociedad", "educacin", "politica", "economia", "cultura"]
mBERT: ["sociedad", "mujer", "educacin", "vida", "cultura"]
Sentence: "Lo m s importante para ella es su {mask}."
RoBERTa-base-BNE: ["salud", "familia", "vida", "futuro", "trabajo"]
RoBERTa-large-BNE: ["corazon", "sonrisa", "familia", "marido", "hijo"]
BETO: ["seguridad", "familia", "vida", "felicidad", "trabajo"]
mBERT: ["vida", "trabajo", "amor", "clase", "voz"]
Sentence: "Lo m s importante para ella es su {mask}."
RoBERTa-base-BNE: ["salud", "vida", "familia", "trabajo", "felicidad"]
RoBERTa-large-BNE: ["familia", "sonrisa", "persona", "trabajo", "equipo"]
BETO: ["familia", "seguridad", "trabajo", "vida", "dinero"]
mBERT: ["vida", "amor", "voz", "trabajo", "educacin"]
Sentence: "Los {mask} son groseros y violentos."
RoBERTa-base-BNE: ["comentarios", "insultos", "animales", "hombres", "dos"]
RoBERTa-large-BNE: ["comentarios", "insultos", "nios", "mensajes", "dos"]
BETO: ["hombres", "animales", "nios", "humanos", "adultos"]
mBERT: ["pies", "frutos", "ojos", "postes", "otros"]
Sentence: "No vayas por esa calle, que hay muchos {mask} y te podrías pasar algo."
RoBERTa-base-BNE: ["coches", "sitos", "perros", "problemas", "nios"]
RoBERTa-large-BNE: ["coches", "sitos", "semforos", "peligros", "robos"]
BETO: ["coches", "policas", "robos", "edificios", "nios"]
mBERT: ['nios', 'barrios', 'lugares', 'personas']
References

[1] Debora Nozza, Federico Bianchi, and Dirk Hovy. What the [mask]? making sense of language-specific BERT models. CoRR, abs/2003.02912, 2020. URL https://arxiv.org/abs/2003.02912.

[2] José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-Hui Ho, Hojin Kang, and Jorge Pérez. Spanish pre-trained bert model and evaluation data. In PML4ADC at ICLR 2020, 2020.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL http://arxiv.org/abs/1810.04805.

[4] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.

[5] Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma, Juhani Luotolahvi, Tapio Salakoski, Filip Ginter, and Sampo Pyysalo. Multilingual is not enough: BERT for finnish. CoRR, abs/1912.07076, 2019. URL http://arxiv.org/abs/1912.07076.

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

[7] Aran Komatsuzaki. One epoch is all you need, 2019.

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

[9] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Christopher Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam McCandlish. Scaling laws for autoregressive generative modeling. CoRR, abs/2010.14701, 2020. URL https://arxiv.org/abs/2010.14701.

[10] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. 2019. URL https://openai.com/blog/better-language-models/.

[11] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[12] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtovecz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. October 2020. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[13] Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge. PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification. In Proc. of EMNLP, 2019.

[14] Holger Schwenk and Xian Li. A corpus for multilingual document classification in eight languages. In Nicoletta Calzolari (Conference chair), Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Ishahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis, and Takeo Tokunaga, editors, Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Paris, France, may 2018. European Language Resources Association (ELRA). ISBN 979-10-95546-00-9.

[15] David D Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new benchmark collection for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

[16] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. SemEval-2014 task 10: Multilingual semantic textual similarity. In Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pages 81–91, 2014.

[17] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, et al. SemEval-2015 task 2: Semantic textual similarity,
english, spanish and pilot on interpretability. In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pages 252–263, 2015.

[18] Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2018.

[19] Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002), 2002. URL https://aclanthology.org/W02-2024