Dialog Simulation with Realistic Variations for Training Goal-Oriented Conversational Systems

Chien-Wei Lin, Vincent Auvray, Daniel Elkind, Arijit Biswas, Maryam Fazel-Zarandi
Nehal Belgamwar, Shubhra Chandra, Matt Zhao, Angeliki Metallinou, Tagyoung Chung
Charlie Shucheng Zhu, Suranjit Adhikari, Dilek Hakkani-Tur
Alexa Conversations, Amazon
{chienwel, vauvray, delkind, barijit, fazelzar, belgneha, shubhrc
zhaomatt, ametalli, tagyoung, cszhu, suranjit, hakkani}@amazon.com

Abstract

Goal-oriented dialog systems enable users to complete specific goals like requesting information about a movie or booking a ticket. Typically the dialog system pipeline contains multiple ML models, including natural language understanding, state tracking and action prediction (policy learning). These models are trained through a combination of supervised or reinforcement learning methods and therefore require collection of labeled domain specific datasets. However, collecting annotated datasets with language and dialog-flow variations is expensive, time-consuming and scales poorly due to human involvement. In this paper, we propose an approach for automatically creating a large corpus of annotated dialogs from a few thoroughly annotated sample dialogs and the dialog schema. Our approach includes a novel goal-sampling technique for sampling plausible user goals and a dialog simulation technique that uses heuristic interplay between the user and the system (Alexa), where the user tries to achieve the sampled goal. We validate our approach by generating data and training three different downstream conversational ML models. We achieve $18 - 50\%$ relative accuracy improvements on a held-out test set compared to a baseline dialog generation approach that only samples natural language and entity value variations from existing catalogs but does not generate any novel dialog flow variations. We also qualitatively establish that the proposed approach is better than the baseline. Moreover, several different conversational experiences have been built using this method, which enables customers to have a wide variety of conversations with Alexa.

1 Introduction

Goal-oriented dialog systems enable users to complete specific goals such as making restaurant reservations and buying flight tickets. User goals may often be complex and span multiple inter-dependent subgoals. This presents challenges for building accurate machine learning models that can understand user requirements provided over multiple turns, leverage knowledge sources, and learn to predict optimal actions for completing user goals with minimal friction. Building such models require thoroughly annotated dialog datasets with large dialog-flow and language variations. Unfortunately, only a few publicly available datasets meet such a standard and they cover only a limited number of domains. Wizard-of-Oz (WoZ) is a popular framework that can be used to collect additional human interactions that reflect the target user-dialog system interactions. While this setup does not require a working dialog system, a detailed knowledge of the domain, the desired system behavior and the annotation conventions are still necessary. These constraints impede building goal-oriented dialog chatbots across hundreds of domains in a relatively short time.

In this paper, we propose a dialog simulator that can generate thousands of dialogs given only a few annotated dialogs ("seed dialogs") and a dialog schema. In our experience, a novel domain will typically have at most 50 seed dialogs available. The schema is expected to include the list of
Application Programming Interfaces ("APIs"), the catalogs of the entities, a few example utterances that users could use to interact with the system ("user-utterance templates") and the set of system response templates ("response-templates"). The generated dialogs include various natural dialog phenomena such as anaphora, entity sharing across multiple turns, users changing their mind during conversations and proactive recommendations. This approach is example-driven as it learns from a small number of provided dialog examples and doesn’t require encoding dialog flows as rigid rules.

The generated dialogs contain rich annotation using the domain-specific schema (APIs, response-templates, and entities) provided as part of the input. Hence they are suitable for training downstream supervised and reinforcement learning models for goal-oriented dialog applications. There are two main steps in the simulator: (1) Sampling a goal that user wants to achieve. We propose two different techniques to sample the goals: the Golden Goal Sampler and the Markov Goal sampler (Section 4.1) (2) A user-system interplay where the user gradually reveals the goal to the system so that the system can fulfill the goal. Both user and system policy are heuristic based, where the user policy is motivated by the agenda-based user policy of [12] (Section 5). The proposed approach uses the user-system interplay to increase dialog flow variations, where Amazon MTurk is used to increase the language variations in the user utterances.

We evaluate the simulator in two different ways compared to a baseline. The baseline approach generates data with only language and entity variations sampled from existing catalogs, but no dialog-flow variations. First, we evaluate the quality of the simulated data via various novel qualitative metrics to establish that the simulated data using the proposed approach contains more variations than the baseline. Furthermore, we apply the simulated data to three different ML models in the context of goal-oriented dialog chatbots, i.e., Named Entity Recognition (NER), Action Prediction (i.e., predicting the API and system response templates) and Argument Filling (i.e., determining the arguments for an API or a response template). We demonstrate that using the generated data with the proposed approach can improve the F1-score of NER by 18% and the accuracy of Action Prediction and Action Signature by 21% and 52% relative respectively, over the baseline dialog generation approach. This validates the usefulness of our dialog simulation approach in generating diverse training data for training accurate downstream models.

2 Related Work

Data requirements have been a primary bottleneck in training highly effective goal-oriented chatbots. There have been several prior efforts in collection of the annotated datasets. To address the time and cost requirements of WoZ setups, the authors in [12] proposed a Machines-Talking-To-Machines (M2M) framework, where a user and a system simulator interact to generate dialog outlines that are later transformed into natural language and expanded using crowd sourcing to create training data. There is also extensive prior work on user simulators that are used to interact with a dialog system to collect additional training data prior to deploying the system to real users [6, 3, 7], including the use of entropy and other measures of dialog variation to evaluate conversational models [8].

Our work extends the M2M framework in several directions. Instead of generating user goals randomly, we propose two different goal sampling techniques biased towards the goals observed in the seed dialogs in order to support variations of those dialogs robustly. In M2M, the system agent is geared towards database querying applications where the user browses a catalog, selects an item and completes a transaction. In contrast, our formulation does not require any knowledge of the purpose of each API but focuses instead on supporting a richer set of dialog patterns including complex goals, proactive recommendations and users correcting earlier provided entities. Furthermore, we propose a few intrinsic dialog metrics to evaluate the quality of the simulated data.

3 System Overview

Our proposed approach enables automatic generation of tens of thousands of dialogs that contain flow and language variations, and can be used for training conversational models for any goal-oriented dialog application. The application developer only needs to provide an order of ten annotated seed dialogs and the dialog schema (explained below). To support domain-specific and cross domain dialog experiences, we follow the data-driven approach where we can provide seed dialogs covering the main uses cases we want to support. The dialog simulator learns dialog flows from the seed dialogs and generates novel synthetic goal-oriented dialogs.

The simulator is structured in two distinct agents that interact turn-by-turn: the user and the system. Figure 1 shows the overview of how each simulator component communicates to each other. User agent samples a fixed user goal at the beginning of the conversation. Agents communicate at the
To reconcile the behavior of the users of a task domain with the desired system actions, we assume that the APIs of a task domain have been designed to support a set of user intents. By definition, a user intent can be communicated by the user in a single utterance but it can be fulfilled by the system by calling one fixed API or a fixed group of APIs. For example, consider a user that wants to browse available movies in Sunnyvale after 2 PM and communicates that intent in user utterance U-1 of seed dialog in Table 1. The system agent gradually constructs the estimated user goal and makes proactive offers based on the estimated goal. The interplay loop is described in Section 5. The dialog acts generated through interplay is also used to interface between agents and their template-based Natural Language Generation (NLG) model. After sampling the dialog acts from their policy, each agent samples the surface-form from available templates corresponding to the dialog acts. In addition to enriching the dialog flows, we use crowd-sourcing though Amazon Mechanical Turk (MTurk) to enrich the natural language variations of the user utterance templates. Goal sampling and the interplay loop provides dialog flow variations while crowd-sourcing enriches natural language variations, both of which are required for training robust conversational models.

The inputs to simulator include the domain-specific APIs, entity types with catalogs, system response templates, user-utterance templates, and seed dialogs. Each API is defined with some arguments annotated with entity types and a response NLG template. API arguments can be required or optional. System response templates also have input arguments and contain different language templates annotated with different dialog acts. To enrich the language variations, the application developer can provide catalogs for the entity types. E.g., fantasy, drama, and action can be the catalog values for the entity Genre. Although our system auto-generates user-side utterance templates from the language of the annotated seed dialogs, the developer can additionally provide user utterance templates. Finally, the seed dialogs serve as training examples, and are annotated in a markup language, as shown in Table 1. The dialog simulator generates output dialogs annotated in the same markup format.

4 User Goal

In order to train a robust task-oriented neural dialog system, it is important to simulate diverse but consistent dialogs. This section first introduces a concept of user goal, which will serve as backbone for a dialog and ensure consistency. Then, we discuss how to obtain diversity of dialog flows by generating diverse user goals.

4.1 User Goal Representation

To reconcile the behavior of the users of a task domain with the desired system actions, we assume that the APIs of a task domain have been designed to support a set of user intents. By definition, a user intent can be communicated by the user in a single utterance but it can be fulfilled by the system by calling one fixed API or a fixed group of APIs. For example, consider a user that wants to browse available movies in Sunnyvale after 2 PM and communicates that intent in user utterance U-1 of seed dialog in Table 1.

The input to the simulator includes the domain-specific APIs, entity types, system response templates, user-utterance templates, and seed dialogs. Each API is defined with some arguments annotated with entity types and a response NLG template. API arguments can be required or optional. System response templates also have input arguments and contain different language templates annotated with different dialog acts. To enrich the language variations, the application developer can provide catalogs for the entity types. E.g., fantasy, drama, and action can be the catalog values for the entity Genre. Although our system auto-generates user-side utterance templates from the language of the annotated seed dialogs, the developer can additionally provide user utterance templates. Finally, the seed dialogs serve as training examples, and are annotated in a markup language, as shown in Table 1. The dialog simulator generates output dialogs annotated in the same markup format.
specific showtime or book some previously selected tickets (in U-4 and U-7 of Table 1 respectively),
which can be fulfilled by executing the actions:

```
SelectShow(time="4 PM", name="Tenet", movies=$movies0) -> show0
...
BookTickets(show=$show0, count="2", type="adult") -> booking0
```

As this example dialog illustrated, some API arguments values are filled by user-provided values
while others are filled by API return values (from the same compound intent or from previous
ones). At the start of a dialog, we assume that a user has in mind a sequence of intents to fulfill, a
set of entity values (e.g. "Sunnyvale", "2 PM") and knows how to connect these values (e.g. fill
location="Sunnyvale") and those that will be returned by intents (e.g. show=$show0). A user
goal is defined as such a sequence of interconnected intents together with user-provided entity values.
This fixed goal ensures that the user behaves in a consistent goal-oriented manner and may also serve
as a basis to define a goal completion reward signal at the end of the dialog.

4.2 Generating User Goals

A small set of representative user goals is extracted from the provided seed dialogs by converting
each annotated API call graphs into a corresponding user goal. The Golden Goal Sampler randomly
samples goals from this set with replacement, providing a strong bias towards the observed seed
dialogs so that they are well supported by the conversational models. The user-provided entity values
will be resampled in each golden goal sampling.

To provide additional diversity, we also introduce the Markov Goal Sampler which samples user
goals from a generative sequence model

\[
P(goal) = \prod_i P(intent_i | (intent_j)_{j<i})
\]

This goal model is estimated from the provided seed dialogs, biasing towards the intent transitions
and entity sharing patterns present in those dialogs. However, we also generate novel goals that
were not observed in the seed dialogs, which enable our conversational models to generalize. We
ensure that all generated goals are valid, meaning they are consistent with the developer schema. For
example, we ensure APIs have all of their required arguments filled in, entity sharing only happens
across API arguments of the same entity type. Note that for simplicity, our generative goal model
makes the assumption that the \(i^{th} \) intent is only dependent on the \((i-1)^{th} \) intent (i.e. a linear Markov
chain assumption) in the current implementation.

This formulation naturally extends to many domains, by generating goals and corresponding dialogs
that contain APIs spanning multiple domains. For the multi-domain use case, we assume that entities
can be shared across domains if and only if they follow a built-in common schema (e.g., Time, Date,
Address) and thus can be understood by all domains. As a result, the simulation process can construct
goals where built-in entities that are mentioned by the user or returned by an API in one task domain
can be shared with the APIs of other domains that take such entities as input arguments.

5 Dialog generation through User-System Interplay

The simulator consists of two agents: user and system. As discussed in Section 4.1 at the start
of each simulated conversation, the user agent samples a fixed goal. The agents then interact in a
interplay loop where the user gradually reveals their goal for the system to cater.

The agents communicate at the semantic level through sequences of dialog acts as presented in
Section 5.1. Building this dialog-act-level meaning representation of the dialog state at each turn
allows us to impose heuristic (deterministic) or neural policies for the user and the system that act on
this dialog act meaning representation. Using heuristics similar to the agenda-based policy of [11],
the user selects a sequence of dialog acts at each turn. Those acts are then passed to the system agent
together with a consistent turn utterance obtained from the user NLG subsystem. Depending on the
dialog context and associated past and current dialog acts, the policy of the system agent may select
appropriate APIs, argument values, and format of the response utterance.

In the case of a complex goal with multiple inter-dependent intents, the user agent will iteratively
serve each successive intent and, for each, enter a sub-dialog like Table 1. Since API return values
are not known in advance and may be non-deterministic, it is possible that the system is unable to
fulfill an intent. In those cases, the simulated user may abandon the intent, remove from their goal any dependent intent and, if possible, carry on with the conversation.

In the remainder of this section, we highlight several example heuristics implemented in the simulated user and system policies to inject dialog flow variation into the generated dialogs. Those flows allow our agents and the neural system policy to support general dialog phenomena beyond the strict patterns that appear in the input schema described in Section 3.

5.1 Self-play Communication with Dialog Acts

During the course of a dialog simulated through the interplay mechanism described in Section 5 the user and system communicate to achieve the user’s goal. They do so by exchanging dialog acts: a delexicalized grammar encoding information about the structure of a general task-oriented dialog. Using dialog acts to encode task-related dialog information reduces the dimensionality of the action space for heuristic or learned policies to operate, while preserving information about intents and the structure of dialog that generalizes across users and task domains.

Table 2 provides the definitions of the primary dialog acts used in simulation, as well as example natural language invocations of those dialog acts. Several other types of dialog acts exist (e.g. failure(intent), bye(), and repeat(), etc.) and encode other conditioning information useful for dialog policy decision making. Given this dialog grammar in terms of dialog acts, it is also useful to think about sequences of dialog acts - paired with dialog act arguments - as representing dialog “super structures” such as offers, confirmations, and corrections.

User Dialog Acts	System Dialog Acts
inform(intent)	inform(entity) S informs U the value of an intent argument
affirm(intent)	confirm(intent) S confirms that an intent is understood
deny(intent)	confirm(entity) S confirms that an intent argument is understood
affirm(entity)	offer(intent) S proposes an intent to U
deny(entity)	offer(entity) S proposes an intent argument to U

S: {"would you like to book Tenet at 4 PM"}
-> "offer(BookTickets),offer(movieTitle),offer(showTime)"

U: {"no thank you, I would like to book it at 17:00"}
-> affirm(BookTickets),affirm(movieTitle),deny(showTime),inform(showTime)"

The distribution over these dialog act sequences represents a measure of the diversity of a set of dialogs in terms of the degree of variation in the semantic content of the dialog act-argument pairs found in those dialogs. For the full sequence containing all dialog acts appearing in a particular dialog, measures of sequence variation correlate with the diversity of the underlying synthetic dialog dataset, properties studied in Section 6.1.

5.2 Additional Dialog Variations

User Correction: In goal-oriented conversations, users often change their mind during the course of the conversation. For example, while booking a movie ticket user may decide to purchase three adult tickets but could eventually change their mind to book only two tickets; while booking a rideshare ride, users may decide to change the pick-up address in the middle of the interaction. This behavior (correcting a previously mentioned api argument) is general in the sense that it can appear in many different task domains, but may be difficult to extrapolate from a small number of input dialogs. Unless we generate these behavior in the training data, the conversational models will not respond flexibly in these situations. Hence, we propose a heuristic approach to simulate "correction" behavior, where users change their mind and the system responds accordingly, in a general, non-task-specific context.
1. Given the goal representation (Section 4.1) of the user’s intent, alternative goals are sampled that contain the same API call structure, but alternative argument values that the user might provide.

2. If user corrects the API argument before the corresponding API is called, we update the user and system states with the new value.

3. If user corrects an API argument after the corresponding API is called, the system recalls that API with the updated value and returns the updated information to the user.

4. During simulation, the user may randomly change their mind in any turn about an earlier informed entity.

Proactive System Offers: Another important non-task-specific conversational behavior is the system’s ability to suggest an appropriate next action based on the conversation history, without requiring invocation by a specific user utterance. Enabling proactive offers in the system policy facilitates exploration of the available API functionality in a manner consistent with human conversation. In a multi-domain system setting, the ability to easily explore the set of valid system interactions is especially important. To implement system policies with proactive offer capabilities, we estimate at each turn a distribution over the next user actions/sub-intents and sample the next API to offer based on this distribution. The algorithm is calibrated to ensure relevance and variety for proactive API offers in practice.

6 Evaluation

In this section, we measure the utility of the proposed dialog simulator in two ways. First we measure the amount of variation under the dialog act grammar defined in Section 5.1 that the simulator introduces through goal sampling and interplay. Then, performance is shown to improve by introducing this synthetic dialog variation to the training data for the downstream conversational models.

6.1 Variation in Synthetic Dialogs

To measure the amount of dialog variation present in a sample of dialogs represented in the format of Table 1, we construct three estimators for moments of the distribution of dialogs, where dialogs are represented as deserialized sequences of dialog act-argument pairs.

- Number of "turns" per dialog, i.e. the number of utterances (by both user and system) present in the dialog
- Number of unique, complete-dialog dialog act sequences that are present in the dataset
- Entropy $\hat{I}(\hat{p}) = -\sum_{i=1}^{n} \hat{p}(x_i) \log(\hat{p}(x_i))$ with \hat{p}: empirical distribution of dialog act sequences

We estimated these quantities in distribution by generating $10,000$ dialogs for five different task domains, each represented by a collection of dialogs written in the input format of Table 1 (i.e. seed dialogs). Each set of seed dialogs contains different numbers of intents (APIs), entities (API arguments) and different complexity of system & user response interfaces. This design allows us to measure the amount of dialog variation introduced by the simulator to the raw seed dialogs for different structures of conversational system designed for different tasks as presented in Table 3.

The baseline, Base sampler, approach simply resamples dialogs that are identical in logical structure to the seed dialogs. It adds no dialog act level variation to the generated dialogs, only language variation in via catalog and template sampling. Base sampler dialogs therefore exhibit very little variation entropy. The Golden Goal Sampler introduces a structured representation of user intent resulting in longer dialogs on average due a thicker tail of longer and more complex dialog samples. The Markov Goal Sampler introduces more nuanced variation by sampling different configurations of intents & arguments resulting in significant increase in the diversity of dialog act sequences represented in the sample, and in the entropy of the distribution of dialog act sequences.

Entropy increases successively (from base to golden to markov) with increase in conditioning information available to sampler, as resulting dialogs become more varied and finer with respect to amount of semantic information encoded in the dialog act grammar.

1 Entropy of dialog variation to evaluate generative dialog models has also been used in [9]
2 Dialog act sequences are defined as comma-separated strings of (dialog act name, dialog act argument) pairs and are equivalent if and only if their string representations match exactly
3 Entropy is defined as the in-sample estimator of p’s informational content $-E[\log(p(seq))]$, where $p()$ is the empirical distribution over dialog act sequences
Table 3: Measures of Dialog Variation for Dialogs of Different Task Domains

Task	# of Intent	# of Entities	Sampler Type	Turn per Dialog	Dialog Act Sequence				
				Mean	P-75	P-95	# of Unique Seq.	Fraction of Unique Seq.	Entropy
task1	11	25	Base	10.3	12	14	24	1.3%	3.16
			Golden	9.4	12	16	428	11.9%	5.03
			Markov	8.3	10	16	2013	55.9%	6.95
task2	4	8	Base	6.1	6	10	11	0.6%	2.40
			Golden	10.0	12	14	654	18.2%	4.89
			Markov	8.1	10	14	1167	32.4%	5.66
task3	4	12	Base	7.5	8	10	9	0.5%	2.16
			Golden	10.4	12	16	1929	53.6%	6.86
			Markov	11.1	14	18	2216	61.6%	7.13
task4	2	4	Base	5.0	6	6	2	10.0%	0.69
			Golden	9.2	10	14	24	60.0%	2.90
			Markov	10.6	11	17	30	75.0%	3.22
			Base	12.3	16	24	24	1.3%	3.05
task5	6	6	Golden	15.6	18	32	1395	38.8%	6.19
			Markov	13.1	16	30	1972	54.8%	6.53

6.2 Conversational System Performance with Synthetic Dialog Generation

We use data generated with the proposed dialog simulator to train three models: a Named Entity Recognition (NER) model that tags entities in the user utterance, an Action Prediction (AP) model that predicts which API or system response should be called next, and an Argument Filling (AF) model that fills the (possibly optional) action arguments with entities available in context. The latter two models represent the “policy” of the next system action.

For the NER task, we use a bi-LSTM model extending [5]. To incorporate information from dialog history we extract turn- and dialog-level token sequences from the context, pass them through context encoders, and concatenate the feature representations to obtain the final dialog representation. Additionally, we incorporate domain-specific catalog-based features for entity values similar to [13].

For the AP task, we pass the dialog context features enhanced with output from the NER model through a feedforward layer to output a distribution over all actions within the domain. We utilize n-best action hypotheses to improve error robustness of the AP step. For the AF task, we model the problem as a variation of neural reading comprehension [2] and adapt the model architecture proposed in [4]. We impose constraints on the decoder to only fill arguments with entities of the correct type according to the action schema (e.g. the set of prespecified application-specific API signatures).

To assess the quality of the policies learned by the AP & AF models, we evaluate the composite model output against held-out test sets collected and professionally annotated with ground truth NER tags and API/system response signatures through a Wizard-of-Oz paradigm for a ticket booking domain. The test set consists of 50 dialogs with an average length of 7.7 turns. We measure the F1 scores for spans [10] of entities to evaluate NER performance, as well as AP and “action signature prediction” (ASP) accuracy to quantify the performance of the system policy. An ASP is counted as correct when both the action and all the corresponding arguments are predicted correctly; this measure proxies for the turn-level accuracy experienced by a user interacting with the system agent.

Our experimental design is as follows. For three configurations of the dialog generation methods described in Section 6.1, we generate 10,000 dialogs, train NER, AP, & AF models, and evaluation those models on the test set. We repeat this procedure 5 times for each configuration and the average performance over the trials is reported in Table 4. The results reflect the impact on the downstream tasks of training with dialog data synthesized via our proposed generation method. Noted that both AP and ASP accuracy are evaluated given the ground truth of the NER results.

In the first configuration (C1), we use the Base sampler to resample dialogs. In the second configuration (C2), we generate dialogs using the Golden Goal Sampler through user-system interplay, which introduces logical variation in the dialog act sequence. In the third configuration (C3), we generate dialogs using both the Golden (40% of dialogs) and Markov (60% of dialogs) Goal Samplers through user-system interplay, which introduces logical variation in both entities and intents.

We observe that models trained on data generated with C2 and C3 significantly outperform the models trained on data generated with C1. In case of NER, we see a 17 – 19% improvement over the baseline;
7 Conclusion

In this paper, we propose a novel approach to generate annotated dialogs for training goal-oriented dialog systems. Given an input schema and a few seed dialogs, the proposed approach can efficiently generate thousands of annotated dialogs with much larger dialog variation than what is present in the seed dialogs. The generated data can be used to train downstream conversational models required for goal-oriented dialog systems. As a result, application developers can build well performing downstream dialog applications without having to collect and annotate extensive training dialogs. To validate the usefulness of the proposed approach, we compare it with a baseline dialog generation strategy that randomly samples language variations and entity values from available catalogs. We evaluate both the generated dialog diversity and the downstream system performance and show that the proposed approach leads to greater dialog diversity and significantly higher downstream conversational model accuracy compared to the simpler baseline.
References

[1] Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris, Emery Fine, Rahul Mehrotra, and Kaheer Suleman. Frames: A corpus for adding memory to goal-oriented dialogue systems. *arXiv preprint arXiv:1704.00057*, 2017.

[2] D. Chen. *Neural Reading Comprehension and Beyond*. Ph.D. Dissertation, Stanford University, 2018.

[3] Heriberto Cuayahuitl, Steve Renals, Oliver Lemon, and Hiroshi Shimodaira. Human-computer dialogue simulation using hidden markov models. In *IEEE Workshop on Automatic Speech Recognition and Understanding*, 2005., pages 290–295. IEEE, 2005.

[4] Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagyoung Chung, and Dilek Hakkani-Tür. Dialog state tracking: A neural reading comprehension approach. *Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue (SIGDIAL)*, abs/1908.01946, 2019.

[5] Xuezhe Ma and Eduard H. Hovy. End-to-end sequence labeling via bi-directional lstm-cnns-crf. *ArXiv*, abs/1603.01354, 2016.

[6] Olivier Pietquin. *A framework for unsupervised learning of dialogue strategies*. Presses univ. de Louvain, 2005.

[7] Olivier Pietquin and Thierry Dutoit. A probabilistic framework for dialog simulation and optimal strategy learning. *IEEE Transactions on Audio, Speech, and Language Processing*, 14(2):589–599, 2006.

[8] Olivier Pietquin and Helen Hastie. A survey metrics for the evaluation of user simulations. *The Knowledge Engineering Review*, 2012.

[9] Patrik Purgai and Gabor Recski. Improving neural conversational models with entropy-based data filtering. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2019.

[10] Erik F Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-independent named entity recognition. *arXiv preprint cs/0306050*, 2003.

[11] Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young. Agenda-based user simulation for bootstrapping a pomdp dialogue system. In *Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers*, pages 149–152. Association for Computational Linguistics, 2007.

[12] Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck. Building a conversational agent overnight with dialogue self-play. *arXiv preprint arXiv:1801.04871*, 2018.

[13] Kyle Williams. Neural lexicons for slot tagging in spoken language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)*, pages 83–89, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.