ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy

Ryosuke Okamura, Shumei Kato, Suzanna Lee, Rebecca E Jimenez, Jason K Sicklick, Razelle Kurzrock

ABSTRACT

Background Several cancer types harbor alterations in the gene encoding AT-Rich Interactive Domain-containing protein 1A (ARID1A), but there are no approved therapies to address these alterations. Recent studies have shown that ARID1A deficiency compromises mismatch repair proteins. Herein, we analyzed 3403 patients who had tumor tissue next-generation sequencing.

Findings Among nine cancer subtypes with >5% prevalence of ARID1A alterations, microsatellite instability-high as well as high tumor mutational burden was significantly more frequent in ARID1A-altered versus ARID1A wild-type tumors (20% vs 0.9%, p<0.001; and 26% vs 8.4%, p<0.001, respectively). Median progression-free survival (PFS) after checkpoint blockade immunotherapy was significantly longer in the patients with ARID1A-altered tumors (n=46) than in those with ARID1A wild-type tumors (n=329) (11 months vs 4 months, p=0.006). Also, multivariate analysis showed that ARID1A alterations predicted longer PFS after checkpoint blockade (HR (95% CI), 0.61 (0.39 to 0.94), p=0.02) and this result was independent of microsatellite instability or mutational burden; median overall survival time was also longer in ARID1A-altered versus wild-type tumors (31 months vs 20 months), but did not reach statistical significance (p=0.13).

Conclusions Our findings suggest that ARID1A alterations merit further exploration as a novel biomarker correlating with better outcomes after checkpoint blockade immunotherapy.

INTRODUCTION

The ARID1A gene encoding AT-Rich Interactive Domain-containing protein 1A is known as a member of the switching/sucrose non-fermentable (SWI/SNF) complex involved in chromatin remodeling.1 Mutations in and loss of the ARID1A gene mostly lead to its inactivation and ARID1A protein loss.2 Certain types of cancer, including clear cell ovarian carcinoma (46%–50%), gastric adenocarcinoma (10%–35%), and cholangiocarcinoma (15%–27%), frequently harbor ARID1A alterations.2–4 To date, clinical and preclinical data indicate that ARID1A alterations may sensitize tumors to drugs targeting the ataxia telangiectasia and Rad3-related (ATR) protein, the enhancer of zeste 2 (EZH2), or the phosphatidylinositol-3-kinase (PI3K) pathway,5–10 but no therapies targeting ARID1A alterations have been approved. Importantly, Shen et al demonstrated that ARID1A alterations interact with the mismatch repair (MMR) protein MSH2 and, hence, compromise MMR.3 Tumors formed by an ARID1A-deficient ovarian cancer cell line in syngeneic mice exhibited higher mutation load, as well as increased numbers of tumor-infiltrating lymphocytes and elevated programmed cell death-ligand 1 (PD-L1) expression. Furthermore, administration of anti-PD-L1 antibody decreased cancer burden and extended survival of mice bearing ARID1A-defective but not ARID1A wild-type ovarian tumors.3 Interestingly, alterations in the polybromo-1 (PBRM1) gene, which is another member of the SWI/SNF complex, have been reported to correlate with salutary effects in cancer patients receiving checkpoint blockade inhibitors, though the clinical evidence remains controversial.11 12 In gastric cancers, ARID1A alterations are associated with Epstein-Barr virus infection, which is in turn associated with checkpoint blockade response.13 Herein, for the first time to our knowledge, we investigated the clinical correlation between ARID1A alterations and treatment benefit after anti-programmed cell death-1 (PD-1)/PD-L1 immunotherapy in the human pan-cancer setting.

MATERIALS AND METHODS

Study population and next-generation sequence

In a cohort of 3403 eligible patients at the Center for Personalized Cancer Therapy...
Okamura R, et al. J Immunother Cancer 2020;8:e000438. doi:10.1136/jitc-2019-000438

Open access

(University of California San Diego Moores Cancer Center), whose tissue DNA was analyzed by next-generation sequencing (NGS) by Foundation Medicine, Inc. (CLIA-licensed and CAP-accredited laboratory, Cambridge, Massachusetts, USA), we reviewed the clinicopathological and genomic information of patients whose tumors were pathologically diagnosed as one of nine types of cancer that frequently harbored ARID1A alterations (>5% of prevalence in this cohort): non-small cell lung cancer, colorectal adenocarcinoma, breast cancer, melanoma, pancreatic ductal adenocarcinoma, cholangiocarcinoma/hepatocellular carcinoma, gastric/esophageal adenocarcinoma, uterine/ovary endometrial (endometrioid) carcinoma; gastroesophageal, gastric/esophageal adenocarcinoma; MSI, microsatellite instability; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; pancreatic, pancreatic ductal adenocarcinoma; TMB, tumor mutational burden.

Figure 1 (A) Prevalence of characterized ARID1A alterations in tissue DNA NGS according to cancer types (n=1540). (B) Frequency of MSI-high according to ARID1A status (microsatellite status was available in 1093 patients (71.0%)). (C) Frequency of TMB-high according to ARID1A status (TMB-status was available in 1411 patients (91.6%); p values are for TMB-high rates): TMB-high (≥20 mutations/mb); TMB-intermediate (6–19 mutations/mb); TMB-low (<6 mutations/mb). ARID1A, AT-Rich Interactive Domain-containing protein 1A; bladder, urothelial bladder carcinoma; breast, breast cancer; cholangio/HCC, cholangiocarcinoma and hepatocellular carcinoma; colorectal, colorectal adenocarcinoma; endometrial, uterine/ovary endometrial (endometrioid) carcinoma; gastroesophageal, gastric/esophageal adenocarcinoma; MSI, microsatellite instability; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; pancreatic, pancreatic ductal adenocarcinoma; TMB, tumor mutational burden.

Statistics

Using the Mann-Whitney U test and Fisher’s exact test, respectively, we compared categorical and continuous data. Progression-free survival (PFS) and overall survival (OS) data were measured from date of the initiation of

unambiguous drivers of oncogenesis based on available knowledge. Although the gene panel expanded with time (236–324 genes), the interrogation of the ARID1A gene was considered consistent. Only characterized ARID1A alterations were considered in this study (variants of unknown significant were excluded). In terms of microsatellite instability (MSI) status, 114 intron homopolymer repeat loci with adequate coverage are analyzed for length variability and compiled into an overall score via principal components analysis. Measuring genes interrogated on the tissue DNA NGS and extrapolating to the genome as a whole as previously validated determined tumor mutational burden (TMB). TMB was classified to three categories: high (≥20 mutations/mb), intermediate (6–19 mutations/mb), and low (<6 mutations/mb).
anti-PD-1/PD-L1 immunotherapy and plotted by the Kaplan-Meier method. Data were censored if patient was progression free or alive (for PFS and OS, respectively) at last follow-up. The curves were compared by using the log-rank test. In multivariate analysis to investigate independent predictive factors for the PFS after anti-PD-1/PD-L1 immunotherapy, we used Cox’s proportional hazard model for estimating HR and its 95% CI (variables with \(p \leq 0.1 \) in the univariate analyses were entered into the multivariate analysis). RO performed and verified with \(p < 0.05 \) in the univariate analyses were entered into the multivariate analysis. RO performed and verified with \(p < 0.05 \) in the univariate analyses were entered into the multivariate analysis.

RESULTS AND DISCUSSION

Starting with 3403 eligible patients who underwent tissue DNA NGS, we found 1540 patients with nine types of cancer diagnoses that had \(>5\% \) prevalence of characterized \textit{ARID1A} alterations in tissue DNA NGS (figure 1A and online supplementary figure 1). Of 161 patients with \(\geq 1 \) characterized \textit{ARID1A} alteration in diverse types of cancer, 142 had \textit{ARID1A} substitution or frameshift alterations, while the remaining 19 had insertions, deletions, allelic loss, rearrangement, or truncation. Endometrial and gastroesophageal cancers were the tumor types in which \textit{ARID1A} alterations were most frequent—49% and 20% of cases, respectively (figure 1A). The median number of genomic coalterations among tumors with \textit{ARID1A} alterations was 6 (range, 1–72) (not including \textit{ARID1A} alterations), which was significantly higher than the median of 4 alterations (range, 0–61) among those cancers with wild-type \textit{ARID1A} \((\leq 0.001) \). The rate of MSI-high was significantly higher in tumors with \textit{ARID1A} alterations than in those with wild-type \textit{ARID1A} (20% vs 0.9%; \(p < 0.001 \)) and in multiple individual tumor types as well (eg, MSI-high in \textit{ARID1A}-altered vs wild-type endometrial cancer, 41% vs 0%, \(p < 0.001 \)) (figure 1B). Similarly, TMB-high (\(\geq 20 \) mutations/mb) was more often observed in tumors with \textit{ARID1A} alterations than in those with wild-type \textit{ARID1A} (26% vs 8.4%; \(p < 0.001 \)) and in individual tumor types (eg, endometrial cancer, 35% vs 0%, \(p < 0.001 \)) (figure 1C).

Overall, 375 patients (24%) among the 1540 patients with the nine types of cancer with \(>5\% \textit{ARID1A} \) alterations received anti-PD-1/PD-L1 immunotherapy in the advanced/metastatic disease setting (see online supplementary figure 1). MSI-high and TMB-high were seen in 4.3% (\(n = 16 \)) and 17% (\(n = 65 \)) of these 375 patients, respectively. As shown in figure 2A, patients with \textit{ARID1A}-altered tumors showed a significantly longer PFS than those with the wild-type tumors (10.9 months vs 3.9 months, \(p = 0.006 \)) from the start of anti-PD-1/PD-L1 immunotherapy. When PFS was analyzed according to cancer diagnosis (only tumor types with \(\geq 5 \) patients with \textit{ARID1A} alterations), similar sensitivity was observed in individual tumor types (eg, colorectal cancer (5.2 months vs 2.1 months, \(p = 0.005 \)); endometrial cancer (4.6 months vs 3.0 months, \(p = 0.02 \)); endometrial cancer (4.6 months vs 3.0 months, \(p = 0.02 \)); see online supplementary figure 2). Importantly, even when only patients without MSI-high were included to the analysis, \textit{ARID1A}-altered tumors showed a significantly longer PFS than those with wild-type tumors: HR (95% CI), 0.69 (0.43 to 1.08) although not statistically significant (\(p = 0.10 \)) (see online supplementary figure 3) (small numbers of patients precluded analysis of patients with MSI-high or TMB-high who had \textit{ARID1A} alterations vs not). When examining OS in \textit{ARID1A}-altered versus the wild-type patients, median OS time was longer in the \textit{ARID1A}-altered group (30.8 months vs 20 months), but this did not reach statistical significance (\(p = 0.13 \)) (see online supplementary figure 3).
Table 1 Characteristics of patients who underwent anti-PD-1/PD-L1 immunotherapy (n=375)

Variables	ARID1A-altered (n=46)	ARID1A-wild type (n=329)	P value	
Basic characteristics and tissue DNA next-generation sequencing				
Age at tissue DNA analysis, years	Median (range)	65.1 (34.0–89.4)	63.0 (22.3–93.7)	0.49
Gender				
Female	25 (54.3%)	142 (43.2%)	0.16	
Male	21 (45.7%)	187 (56.8%)	–	
Diagnosis				
Lung cancer, non-small cell	7 (15.2%)	104 (31.6%)	0.02	
Colorectal adenocarcinoma	12 (26.1%)	37 (11.2%)	0.009	
Breast cancer	1 (2.2%)	24 (7.3%)	0.34	
Melanoma	6 (13.0%)	91 (27.7%)	0.046	
Pancreatic ductal adenocarcinoma	1 (2.2%)	7 (2.1%)	>0.99	
Cholangiocarcinoma/hepatocellular carcinoma	2 (4.3%)	13 (4.0%)	0.71	
Gastric/esophageal adenocarcinoma	5 (10.9%)	16 (4.9%)	0.16	
Endometrial carcinoma	10 (21.7%)	13 (4.0%)	<0.001	
Urothelial bladder carcinoma	2 (4.3%)	24 (7.3%)	0.76	
Characterized alterations				
Median (range)	8 (2–57)*	5 (1–24)	<0.001	
Microsatellite status				
MSI-high	13 (28.3%)	3 (0.9%)	<0.001	
Stable	31 (67.4%)	268 (81.5%)	0.03	
Unknown	2 (4.3%)	58 (17.6%)	0.02	
Tumor mutational burden, mutations/mb				
Median (range)†	16.0 (1.0–321.0)	6.1 (0.0–222.0)	<0.001	
≥20 (high)	18 (39.1%)	47 (14.3%)	<0.001	
6–19 (intermediate)	16 (34.8%)	129 (39.2%)	0.63	
<6 (low)	8 (17.4%)	133 (40.4%)	0.002	
Unknown	4 (8.7%)	20 (6.1%)	0.52	
Anti-PD-1/PD-L1 immunotherapy				
Administered as				
1st line	8 (17.4%)	113 (34.3%)	0.03	
≥2nd line	38 (82.6%)	216 (65.7%)	–	
Regimen of anti-PD-1/PD-L1 immunotherapy				
Anti-PD-1/PD-L1 monotherapy	25 (54.3%)	170 (51.7%)	0.76	
With molecular targeting drug	7 (15.2%)	36 (10.9%)	0.46	
With CTLA4 inhibitor	6 (13.0%)	56 (17.0%)	0.67	
With cytotoxic chemotherapy	4 (8.7%)	33 (10.0%)	>0.99	
With molecular targeting and cytotoxic drugs	2 (4.3%)	2 (0.6%)	0.08	
Others‡	2 (4.3%)	32 (9.7%)	0.41	

All p-values <0.05 are listed in bold.

*Excluded ARID1A alterations.
†Among 1411 patients whose TMB data were available.
‡With NKG2A inhibitor (n=9); with CD73 inhibitor (n=8); with IDO1 inhibitor (n=6); with CD122-preferential IL-2 pathway agonist (n=5); with CTLA4 inhibitor and molecular targeting drug (n=2); with OX40 agonist (n=2); with CEA/BITE inhibitor (n=1); with 4-1BB inhibitor (n=1).

ARID1A, AT-Rich Interactive Domain-containing protein 1A gene; bladder, urothelial bladder carcinoma; breast, breast cancer; cholangio/HCC, cholangiocarcinoma and hepatocellular carcinoma; colorectal, colorectal adenocarcinoma; CTLA4, cytotoxic T lymphocyte antigen 4; endometrial, uterine/ovary endometrial (endometrioid) carcinoma; gastroesophageal, gastric/esophageal adenocarcinoma; MSI, microsatellite instability; NSCLC, non-small cell lung cancer; pancreatic, pancreatic ductal adenocarcinoma; PD-1/PD-L1, programmed cell death-1 and its ligand.
This study has several limitations. In order to better determine if the correlation between ARID1A alterations and longer PFS was independent of specific confounding variables, we performed a multivariate analysis (patient characteristics of ARID1A-altered vs wild-type patients are shown in table 1). Our Cox-regression model demonstrated that ARID1A alterations were selected as an independent predictor of better outcome (PFS) after anti-PD-1/PD-L1 immunotherapy (HR (95% CI), 0.61 (0.40 to 0.94); p=0.03) (table 2).

In conclusion, 28% of ARID1A-altered tumors (n=32 of 114 patients whose microsatellite and TMB status were both available) had either MSI-high or TMB-high (or both), and the rate of MSI-high and TMB-high was significantly higher in ARID1A-altered versus wild-type tumors. These findings are consistent with previous reports that ARID1A deficiency is correlated with MMR deficiency.

ARID1A alterations were independently and significantly associated with longer PFS after anti-PD-1/PD-L1 immunotherapy (regardless of microsatellite and TMB status). This study has several limitations such as the small number of patients with each cancer type, which restricted our ability to analyze individual tumor histologies. Nevertheless, the results suggest generalizability across tumor types. Another limitation was that improvement in OS in ARID1A-altered patients (vs wild-type) did not reach statistical significance; larger numbers of patients are needed to validate this endpoint. Therefore, ARID1A alterations may be a genomic marker of checkpoint blockade sensitivity, in addition to other putative markers such as MSI-high and TMB-high.

We hope that our study will encourage further research in this area and lead to the development of new and more effective therapeutic strategies.
Funding This work was funded in part by the Joan and Irwin Jacobs Fund and NIH P30 CA023100 (RK). We appreciate funding support from Hope for a Cure Foundation, Jon Strong, NIH R01 CA226803, and FDA R01 FD006334 (JKS).

Competing interests SK serves as a consultant fee (Foundation Medicine) and speaker’s fee (Roche). JKS has the following disclosure information: Research funding (Novartis Pharmaceuticals, Amgen Pharmaceuticals, and Foundation Medicine); Consultant fee (Grand Rounds – 2015 – 2019, Loxo Oncology – 2017 – 2018, Deciphera (2019), and Roche (2019)). RK has the following disclosure information: Stock and Other Equity Interests (IdbyDNA, CureMatch, and Soluventis); Consulting or Advisory role (Gaido, LIXO, X-Biotech, Actuate Therapeutics, Roche, NeoMed, Soluventis, and Pfizer); Speaker’s fee (Roche); Research Funding (Incyte, Genentech, Merck Serono, Pfizer, Sequenom, Foundation Medicine, Guardant Health, Girfols, Konica Minolta, DeBiopharm, Boehringer Ingelheim, and OmniSeq (All institutional)); Board Member (CureMatch).

Patient consent for publication Not required.

Ethics approval This study was approved by the Internal Review Board at UC San Diego Moores Cancer Center. All investigations followed the guidelines of the Profile-Related Evidence Determining Individualized Cancer Therapy study (UCSDPREDICT study: NCT02478931) for data collection and any investigational therapies for which the patient gave consent.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The data that support the findings of our study are available upon request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use and license their derivative works on different terms, provided the original work is

Open access

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ORCID iDs
Ryosuke Okamura http://orcid.org/0000-0001-7352-8621
Jason K Sicklick http://orcid.org/0000-0003-4403-0271
Razelle Kurzrock http://orcid.org/0000-0003-4110-1214

REFERENCES

1. Lu C, Allis CD. SWI/SNF complex in cancer. Nat Genet 2017;49:178–9.
2. Wu JN, Roberts CWM. ARID1A mutations in cancer; another epigenetic tumor suppressor? Cancer Discov 2013;3:35–43.
3. Shen J, Ju Z, Zhao W, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 2018;24:556–62.
4. Jones S, Li M, Parsons DW, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 2012;33:100–3.
5. Williamson CT, Miller R, Pemberton HN, et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun 2016;7:13837.
6. Kim KH, Kim W, Howard TP, et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med 2015;21:1491–6.
7. Biller BG, Aird KM, Ganpav P, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med 2015;21:231–8.
8. Thomas A, Redon CE, Sciuto L, et al. Phase I Study of ATR inhibitor M6620 in combination with topectane in patients with advanced solid tumors. J Clin Oncol 2018;36:1594–602.
9. Szmantarsz EP, Gao Y, Deftes KJ, et al. Mutation of ARID1A sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget 2014;5:5295–303.
10. Wiegand KC, Hennessy BT, Leung S, et al. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation. BMC Cancer 2014;14:120.
11. Miao D, Margolis CA, Gao W, et al. Genomic correlates of response to immune checkpoint therapy in clear cell renal cell carcinoma. Science 2018;359:301–6.
12. Pan D, Kobayashi A, Jiang P, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 2018;359:770–5.
13. Panda A, Mehrt JM, Hishfield KM, et al. Immune activation and benefit from Avelumab in EBV-positive gastric cancer. J Natl Cancer Inst 2018;110:316–20.
14. Frampston GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013;31:1023–31.
15. Thomas RK, Nickerson E, Simons JF, et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 2006;12:852–5.
16. Hall MJ, Goven K, Che K, Defes KJ, et al. Evaluation of microsatellite instability (MSI) status in 11,573 diverse solid tumors using comprehensive genomic profiling (CGP). In: American Society of Clinical Oncology. 2016;34:1523.
17. Cortez-Ciriano I, Lee S, Park W-Y, et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 2017;8:15180.
18. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017;9:34.
19. Bosse T, ter Haar NT, Seber LM, et al. Loss of ARID1A expression and its reprogramming with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer. Mod Pathol 2013;26:1525–35.
20. Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 2017;16:2598–608.
21. Goodman AM, Sokol ES, Frampston GM, et al. Microsatellite-Stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res 2019;7:1570–3.
22. Kato S, Goodman A, Walsavlk V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res 2017;23:4242–50.
23. Sicklick JK, Kato S, Okamura R, et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat Med 2019;25:744–50.
24. Rodon J, Soria J-C, Berger R, et al. Genomic and transcriptional profiling expands precision cancer medicine: the WINThER trial. Nat Med 2019;25:751–8.