Current Topics of Relevance to the Xenotransplantation of Free Pig Islets

Lisha Mou1,2*, Guanghan Shi1,3†, David K.C. Cooper4‡, Ying Lu2, Jiao Chen2, Shufang Zhu2, Jing Deng2, Yuanjuan Huang5, Yong Ni1, Yongqiang Zhan1, Zhiming Cai2 and Zuhui Pu6*

1 Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China, 2 Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China, 3 Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada, 4 Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States, 5 Department of Life Science, Bellevue College, Bellevue, WA, United States, 6 Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China

Pig islet xenotransplantation is a potential treatment for patients with type 1 diabetes. Current efforts are focused on identifying the optimal pig islet source and overcoming the immunological barrier. The optimal age of the pig donors remains controversial since both adult and neonatal pig islets have advantages. Isolation of adult islets using GMP grade collagenase has significantly improved the quantity and quality of adult islets, but neonatal islets can be isolated at a much lower cost. Certain culture media and coculture with mesenchymal stromal cells facilitate neonatal islet maturation and function. Genetic modification in pigs affords a promising strategy to prevent rejection. Deletion of expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) will certainly be beneficial in pig organ transplantation in humans, but this is not yet proven in islet transplantation, though the challenge of the ‘4th xenoantigen’ may prove problematic in nonhuman primate models. Blockade of the CD40/CD154 costimulation pathway leads to long-term islet graft survival (of up to 965 days). Anti-CD40mAbs have already been applied in phase II clinical trials of islet allograft transplantation. Fc region-modified anti-CD154mAbs successfully prevent the thrombotic complications reported previously. In this review, we discuss (i) the optimal age of the islet-source pig, (ii) progress in genetic modification of pigs, (iii) the immunosuppressive regimen for pig islet xenotransplantation, and (iv) the reduction in the instant blood-mediated inflammatory reaction.

Keywords: immunosuppression, islets, nonhuman primate, pig, genetically-engineered, type 1 diabetes, islet transplantation, xenotransplantation

Abbreviations: CMAH, cytidine monophospho-N-acetylneuraminic acid hydroxylase; Gal, galactose-α1,3-galactose; GTKO, 1,3-galactosyltransferase gene-knockout; IBMIR, instant blood-mediated inflammatory reaction; mAbs, monoclonal antibodies; Neu5Gc, N-glycolylneuraminic acid; NHP, nonhuman primate; NICC, neonatal islet cell clusters; PD-L1, programmed cell death ligand 1.
INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet cell destruction by CD4⁺ and CD8⁺ T cells and autoantibodies, resulting in insulin deficiency and hyperglycemia (1). Conventional treatment of T1D includes exogenous insulin therapy, which reduces, but may not prevent, the development of the long-term complications of hyperglycemia. In late-stage T1D patients, especially those with ‘brittle’ diabetes, it is difficult to prevent complications such as cardiovascular disease, retinopathy, nephropathy, and life-threatening hypoglycemic episodes (1).

Islet allotransplantation has been identified as an efficient therapy for T1D, but, faced with the shortage of pancreases from deceased human donors, pig-to-human islet xenotransplantation has emerged as a potential alternative (2). Although pig-to-nonhuman primate (NHP) islet xenotransplantation has resulted in insulin independence, several problems remain.

The age of the islet-source pig may be important to islet quality. Adult pigs have a mature islet structure, lower galactose-α1,3-galactose (Gal) expression on islets, and a higher islet yield (3). Neonatal pig islets are easier to isolate and at a lower cost (3). To overcome immunological rejection of pig-to-NHP islet transplants, genetic modification of the source pig plays an important role by deleting xenoantigen expression and introducing human ‘protective’ proteins (4). New alternative modifications, e.g., expression of programmed cell death ligand 1 (PD-L1), are being explored. A consensus has been reached that, in regard to the transplantation of pig organs into humans, the expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) should be deleted (resulting in triple-Gal knockout [TKO] pigs) (4, 5), but this remains uncertain after pig islet transplantation. However, there is a limitation in the TKO pig-to-NHP model because of the problem of the ‘4th xenoantigen’.

The selection of the immunosuppressive regimen plays a critical role in preventing the adaptive immune response (6). Although conventional immunosuppressive regimens are inefficient in preventing the adaptive response to pig cells, blockade of the CD40/CD154 costimulation pathway is successful, and has resulted in insulin-independence for a maximum of 965 days (7). Emerging Fc region-modified anti-CD154mAbs successfully prevent the thrombotic complications seen previously (8, 9). Although anti-CD154 agents may be preferable, anti-CD40mAbs have already been applied in phase II clinical trials of human kidney allotransplantation (10).

In this review, we consider (i) the optimal age of the islet-source pig, (ii) the potential of genetic modification of the pig, (iii) the selection of the immunosuppressive regimen for pig-to-primate islet xenotransplantation, and (iv) potential steps to reduce the instant blood-mediated inflammatory reaction (IBMIR). We also briefly discuss the possible directions for future research.

DONOR AGE

Based on previous studies of pig-to-NHP islet xenotransplantation, pigs can be divided into three age groups: adult (>12 weeks), neonatal (~first 14 days after birth), and fetal. Their characteristics are summarized in Table 1. As fetal pig islets are not currently considered ideal sources for xenotransplantation due to defects in β-cell yield and immunogenicity, we will focus on adult and neonatal pigs.

Adult Pig Islets

To date, adult pig islets transplanted into NHPs have displayed the longest survival time (965 days) and have always been considered the primary source for islet xenotransplantation due to their superior islet yield, immediate insulin response, lower Gal expression, and higher β-cell percentage compared with neonatal pigs (Table 1). Female adult pigs that have produced >2 litters (retired breeders, usually >2 years old and > 200 kg) are preferred over young adult pigs because they consistently provide a higher yield of high-quality islets (3, 11). We add the ref: Bottino R, 2007 Our previous review summarized the above advantages (3). Using GMP-grade collagenase (collagenase AF-1 and liberase MTF C/T), one adult pig can yield up to 720,000IEQ (12), which is enough for islet

TABLE 1 | Characteristics of islets in pigs of different ages.

Characteristic	Fetal	Neonatal	Adult
Isolation procedure	Very simple (No purification)	Simple (No purification)	Difficult
Culture procedure	Resistance to hypoxia and inflammation	Resistance to hypoxia and inflammation	Difficult (Fragile), but not necessary
Early islet loss from IBMIR	Low (Inflammation resistance)	Low (Inflammation resistance)	Moderate (Susceptible to inflammation)
Proliferation in vivo	Good	Good	Little
In vivo insulin production	Delay >2 months	Delay >1 month	No delay
In vitro GSIS	Poor	Good	Low
Gal expression	High	High	Low
Islet yield (IEQ/pancreas)	~8,000	25,000-64,000	200,000-720,000
Islet yield (IEQ/g)	5,000-12,500		1,000-16,000
β-Cells % (after culture)	~10%	~25%	~70%
Risk of pathogen transmission	Extremely low	Low	Low
Islet isolation cost	NA	$0.02/IEQ	$0.09/IEQ
Cost	Low	Low	High

Gal, galactose-α1,3-galactose; GSIS, Glucose-stimulated insulin secretion; IBMIR, the instant blood-mediated inflammatory reaction; NA, not available.
Carbohydrate Xenoantigen Genes

A consensus has been reached that the three known carbohydrate xenoantigen genes (Gal, Neu5Gc, Sda) should be knocked-out for pig-to-human organ transplantation (Table 4), but this is not ideal for pig-to-NHP organ transplantation because of the problems associated with the ‘4th xenoantigen’ (discussed in 42–46). It is well-known that pig organ grafts from CMAHKO pigs are associated with increased NHP IgM and IgG binding and serum complement-mediated cytotoxicity, resulting in acute xenograft rejection (42–46).

To our knowledge, the transplantation of TKO pig islets into NHPs has not been reported, and it remains unknown whether the ‘4th xenoantigen’ is exposed in TKO pig islets as it is in vascular endothelial cells. Whether TKO islets would provide an advantage in this regard remains uncertain.

Of relevance to this point, there were no statistically significant differences in human IgM and IgG binding to isolated islet cells from GTKO/hCD46 and GTKO/hCD46/NeuGcKO pigs (47). Knockout of CMAH may therefore possibly have a different effect in islets than in solid organs. In one report, GTKO/CMAHKO pigs developed pathological features that are similar to those seen in anemia, possibly associated with variations in glycosylation on the red blood cell membranes of these pigs (48). Obukhova et al. have reviewed CMAH comprehensively (49).

If neonatal pigs are the source of islets (i.e., NICCs), in which expression of Gal is considerable, the deletion of expression of Gal (and possibly of Neu5Gc and Sda) will be advantageous.

Differences in N- and O-glycan profiles between human and porcine islets might prove to be the next gene modification sites. Novel xenoantigens include complex-type N-glycans with terminal neuraminic acid residues and high-mannose-type N-glycans with core fucosylation (50). Carbohydrate antigen microarrays in pigs and cynomolgus monkeys have revealed natural non-αGal antigens (e.g., Tn antigen, T antigen, GM2 glycolipid) and novel carbohydrate structures (e.g., Galβ1-4GlcNAcβ1-3Galβ1 and N-linked glycans with Manα1-6 (GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ) that are responsible for the IgM and IgG anti-carbohydrate antibody responses (51, 52). These findings suggest future gene modification sites to eliminate anti-carbohydrate antibody responses in pig-to-primate islet xenotransplantation.

For future studies of the 4th xenoantigen(s), several sources might be helpful, e.g., the database of Glycomics (http://www.

GENE MODIFICATION

The development of CRISPR/Cas9, an efficient genome editing technique, provides the capacity to produce pigs with multiple genetic modifications for xenotransplantation (Table 3) (24–41). We will here mainly focus on gene modification targets for carbohydrate xenoantigens and cellular immune response-related genes.

Table 2

Reference	Neonatal	Adult	Digestion Enzyme
Vanderschelden et al. (17)	4.7 ± 0.58	1.75 ± 0.60	Sigma Type V Collagenase
Smith et al. (22)	1.8 ± 0.3	8.5 ± 1.2	Liberase H1
Emamanteaee et al. (23)	1.78 ± 0.14	NA	Collagenase
Hassouna et al. (21)	1.7 ± 0.2	NA	Collagenase
Kwak et al. (12)	NA	2.07 ± 0.02	Collagenase P
Kwak et al. (12)	NA	4.73 ± 0.23	Collagenase AF-1*
Kwak et al. (12)	NA	3.87 ± 0.12	Liberase MTF C/T*

*GMP grade; NA, not available.
functionalglycosomics.org/). The National Center for Functional Glycomics (NCFG) (https://ncfg.hms.harvard.edu/) offers a CFG mammalian-type glycan microarray, with 600 glycan present, that might be helpful in studying xenoantigens in the future.

Cellular Immune Response-Related Genes

Progress in gene modification aimed at protecting xenografts from the adaptive immune response has been made recently. For example, knock-in of CTLA4-Ig or the high-affinity variant LEA29Y (36, 53), knockout or knockdown swine leukocyte antigen (SLA) class I and class II (37, 54), and in vitro tests on SLA class I and class II-silenced cells have reported significantly reduced xenogenic T cell and natural killer cell responses, and antibody-mediated cell-dependent responses to islet cell clusters (55). However, CTLA4-Ig or LEA29Y transgenic pigs face the problems of hypoimmunity (36, 56).

Immune checkpoint blockade is a promising approach to control pathogenic immune responses. Immunomodulation with PD-L1 improves islet allotransplantation outcomes (57–63), and may facilitate successful xenotransplantation. PD-L1 is a ligand that reduces the proliferation and activation of T cells, B cells, and monocytes through interaction with PD-L1 receptors on these cells, and prevents cell-mediated lysis from CD8+ T cells by reducing their proliferation and cytokine secretion (40). Programmed cell death protein 1 blockade has successfully achieved clinical objectives in the treatment of cancer (64–66). In xenotransplantation, pigs transgenic for PD-L1 have been successfully generated, and cells from these pigs prevent human T cell cytotoxicity and B cell activation in vitro (57, 58), with similar results in a pig-to-rat xenotransplantation model (67). In contrast, islet PD-L1 deficiency has been associated with increased allograft rejection and increased inflammatory cell infiltration (68). Testing of the transplantation of pig islets expressing PD-L1 in NHPs should be a future research direction.

In summary, whether the 4th xenoantigen is exposed in islets after CMAHKO remains uncertain, and more research on the cellular response (that will be the next obstacle to explore) is required (69).

IMMUNOSUPPRESSIVE REGIMEN

The main objective of the immunosuppressive regimen is to inhibit T cell activation and prevent subsequent T cell-dependent dendritic cell activation and activation of B cells and macrophages. Immunosuppressive regimens based on conventional (FDA-approved) therapy have proved inadequate, although islet graft survival of 222 days has been reported (70). In contrast, blockade of the CD40/CD154 costimulation pathway has resulted in maximal islet graft survival of 965 days (Table 5) (7, 13, 70–76). The major mechanistic effects, advantages, and side-effects of the key immunosuppressive agents of relevance to xenotransplantation have been reviewed by Bikhet and his colleagues (77). Samy et al. have reviewed the role of costimulation pathway blockade in xenotransplantation (78). Here we will focus on novel immunosuppressive regimens based on blockade of the CD40/CD154 costimulation pathway.

Purpose	Modified genes
Deletion of carbohydrate xeno-antigens	α1,3-galactosyltransferase gene knockout (GTKO)
	Cytidine monophospho-N-acetylneuraminic acid hydroxylase gene knockout (CMAHKO)
	β-1,4-N-acetylgalactosaminyltransferase-2 gene knockout (β4GalNT2)
Prevention of inflammation	Human hemagglutinin-tagged-human hemoglobinase-1 gene knock-in (HO-1)
	Soluble human tumor necrosis factor receptor I IgG1-Fc gene knock-in (shTNFR-Fc)
Prevention of complement-mediated injury	CD46 gene knock-in
	CD65 gene knock-in
	CD59 gene knock-in
Prevention of coagulation dysfunction	Human thrombomodulin gene knock-in (hTBM)
	Human endothelial protein C receptor gene knock-in (EPCR)
	Human tissue factor pathway inhibitor-2 knock-in (hTFPI)
	CD99 gene knock-in
Protection against cellular immune response	Cytotoxic T-lymphocyte antigen-4 immunoglobulin (CTLA4-Ig) or LEA29Y transgene (CTLA4-Ig mutation)
	MHC class II transactivator knockdown (CIITA-DN)
	β2-microglobulin knock-out (B2MKO)
	CD47 gene knock-in
	Programmed cell death ligand 1 gene knock-in (PD-L1)

TABLE 3 | Selected gene modifications in pigs of relevance to pig-to-NHP islet xenotransplantation.

Carbohydrate (Abbreviation)	Responsible enzyme	Gene-knockout pig
1, Galactose-α1,3-galactose (Gal)	α1,3-galactosyltransferase	GTKO
2-N-glycolyneuraminic acid (Neu5Gc)	CMAH	CMAH-KO
3,SoGlc	β-1,4N-acetylgalactosaminyltransferase.	β4GalNT2-KO

CMAH, Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH).

TABLE 4 | Known carbohydrate xenoantigens expressed on pig cells.
TABLE 5 | Immunosuppressive protocols associated with prolonged periods of insulin-independence and islet graft survival.

Major agent	Islet-source pig	Immunomodulatory regimen	Maximum Insulin independence	Maximum graft survival	Ref
Anti-CD154	WT (adult)	Anti-ICAM-1 mAbs (MD-3), anti-CD154 mAbs (5C8), Sirolimus, TNF-a-neutralizing mAb (adalimumab), Anakinra, Ganciclovir, Clopidogrel, Heparin	520d	520d	(71)
	WT (adult)	ATG, anti-CD154 mAbs (5C8), Sirolimus, CVF, TNF-a-neutralizing mAb (adalimumab)	603d	603d	(72)
	hCD46 (adult)	ATG, Anti-CD154 mAbs (ABI7953), MMF, Dextran sulfate, Prostacyclin, Methylprednisolone, Aspirin, Ganciclovir, Famotidine, Heparin	365d	365d	(73)
	G TKO, hCD46, hCD39, hTFPI (adult)	ATG, Anti-CD154 mAbs (5C8), MMF, Dextran sulfate, Prostacyclin, Methylprednisolone, Aspirin, Ganciclovir, Famotidine, Heparin	365d	365d	(73)
Anti-CD154	hCD46 (adult)	ATG, Anti-CD154 mAbs (ABI7953), Dextran sulfate, Methylprednisolone, Aspirin, Prostacyclin	396d	396d	(74)
Anti-CD40	WT (neonatal)	Anti-CD40 mAbs (Chi220), all-2R (Basiliximab), Belatacept, Sirolimus	203d	>203d	(13)
	WT (adult)	Anti-CD40 mAbs (2C10R4), Sirolimus, ATG, CVF, Tacrolimus, Adalimumab, Methylprednisolone	266d	320d	(75)
	Anti-CD154 plus Anti-CD40 Conventional	ATG, CFV, anti-CD154 mAbs (5C8), Anti-CD40 mAbs (2C10R4), Sirolimus, TNF-a-neutralizing mAb (adalimumab), Tre	965d	965d	(7)
	WT (adult)	ATG, Rituximab, Belumumab, Sirolimus, Tacrolimus, Tofacitinib, Adalimumab, Anakinra, CVF, IVIG	130d	201d	(76)
	WT (adult)	ATG, Belumumab, Sirolimus, Tacrolimus, Abatacept, Tofacitinib, Adalimumab, Anakinra, Tocilizumab, IVIG, Aspirin	90d	222d	(70)

Immunosuppressive Regimens Based on Anti-CD40mAbs

Anti-CD40mAbs are a chimeric form of Fab combined with IgG Fc fragments to prevent the stimulation of B and T cells through blockade of the CD40/CD154 pathway, which also participates in regulating thrombosis, tissue inflammation, and hematopoiesis (79). Unlike anti-CD154mAbs, no significant thrombogenic complications have been observed in anti-CD40mAb studies (10). Islet graft survivals are summarized in Table 5.

To date, some anti-CD40mAbs have completed phase II clinical trials of allotransplantation (but not in islet transplantation). These included bleselumab (ASKP1240), icleimab (CFZ533), and BI 655064 (72, 75). Among them, ASKP1240 demonstrated good results with a favorable benefit-risk ratio and no thromboembolic events in a phase II clinical kidney transplantation trial (10). Treatment with 2C10R4 was associated with the longest pig islet graft survival in NHPs to date (maximum insulin-independence 950 days, maximum graft survival 965 days) (7). However, anti-CD40mAbs may be associated with adverse effects, e.g., a temporary increase in liver enzymes (ASKP1240) (82, 83), significant depletion of peripheral blood B cells (Chi220) (13), and inhibition of T regulatory cell (Treg) expansion (2C10R4) (84).

Immunosuppressive Regimens Based on Anti-CD154 Agents

Anti-CD154 agents also provide efficient CD40/CD154 pathway blockade (85), but were originally associated with thromboembolic complications (BG9588, hu5c8, IDEC-131, ABI793) (86–88), although the situation with IDEC-131 remains controversial (89). They were demonstrated to be preferable to anti-C40mAbs in pig islet transplantation in NHPs (Table 5) (72, 75). Modifications to the Fc region on CD154 agents, the binding site for the Fc receptor (FcRIIA) on platelets (88), appear to have eliminated thromboembolic events (e.g., CDP7657 and BMS-986004 in rhesus macaques, and MEDI4920 in cynomolgus monkeys) (77). To date, CDP7657, BMS-986004, and MEDI4920 have completed phase I or II clinical trials (not in islet transplantation) without obvious complications (8, 9, 90–92).

Overall, although anti-CD40mAbs have proved successful in pig-to-NHP islet xenotransplantation, the new anti-CD154 agents may prove preferable for clinical trials (Table 6) (9, 10, 75, 80–83, 90, 92–102). Of importance, ongoing studies at the Massachusetts General Hospital indicate that monotherapy with an anti-CD154mAb (with no additional immunosuppressive therapy) prevents rejection of heterotopic heart and life-supporting kidney allografts in monkeys (Robin Pierson and Tatsuo Kawai, personal communications). This regimen, or a modification of it, has not yet been tested in xenograft models.

Bikhet et al. published an immunosuppressive regimen that has proved moderately successful in pig solid organ transplantation in NHPs (77), but such a regimen may be too intensive to warrant use in patients with islet xenografts.

THE INSTANT BLOOD-MEDIATED INFLAMMATORY REACTION (IBMIR)

After infusion of islets into the portal vein (the preferred site at present), a substantial percentage of islets are lost in the immediate post-transplant period through an inflammatory response termed IBMIR. The loss is significantly greater if the islets are xen-islets, e.g., pig islets into NHPs and pig islets to human blood in vitro...
Coagulation, platelet aggregation, complement activation, and neutrophil and monocyte infiltration play roles in this reaction (108). Several approaches to reduce the loss of islets have been explored, e.g., anticoagulation, complement depletion (109), and modified islet culture medium (110), but none has been entirely successful yet. The transplantation of islets from pigs with one or multiple genetic modifications may help protect the islets from early injury and loss (14, 74, 111–115). Moreover, alternative transplantation sites in intrapleural space greatly reduced IBMIR (116).

TABLE 6

Agents that block the CD40/CD154 costimulation pathway that are currently in clinical trials and preclinical studies, an update of Bikhet 2021 (58).

Drug and company	Clinical trials	Results
Anti-CD40		
Bleselumab (ASKP124/4D11)	Phase Ia/Ib: NCT01279638 (60, 72)	Well-tolerated in healthy humans and in kidney transplant recipients
	Phase II: NCT01780844 (9)	well tolerated in kidney transplant recipients
	NCT01586239 (78)	well tolerated in moderate-to-severe plaque psoriasis patients
	NCT02921789	Kidney transplantation (without results)
Astellas		
Iscalimab (CFZ533)	Phase I: NCT02089087 (73)	well tolerated in Rheumatoid Arthritis
Novartis	Phase II: NCT02177410 (74, 75)	well tolerated in kidney transplant recipients
	NCT02291029 (76)	Has therapeutic potential in primary Sjogren’s syndrome patients
	NCT02713256 (98)	Has therapeutic potential in Graves’ disease patients
	NCT03566576	Has therapeutic potential in Severe Myasthenia Gravis
	NCT03690335	Kidney transplantation (without results)
	NCT03781144	Liver transplantation (without results)
	NCT03610516	Lupus nephritis (without results)
	NCT03900052	Sjogren’s syndrome (without results)
	NCT04129628	Type 1 Diabetes (without results)
	NCT03655662	SLE (without results)
Novartis	Phase II: NCT0291789	Kidney transplantation (without results)
	NCT03655662	SLE (without results)
BI 655064		
Boehringer Ingelheim	Phase I: NCT01751776 (77)	Well-tolerated in healthy humans
	Phase II: NCT01751776 (59)	Safety in rheumatoid arthritis patients with inadequate response to methotrexate
	NCT03385564	Lupus nephritis (without results)
	NCT02770170 (78)	Lupus nephritis (did not meet its primary CRR endpoint)
KPL-404		
Kiniksa 2C10R4	Phase I: NCT04497662 (79)	Well-tolerated in healthy humans
NIH NHP Resource Center	Preclinical study (65, 80, 81)	Prolonged graft survival in pig-to-NHP cardiac and islet xenotransplantation, NHP islet allotransplantation
Anti-CD154		
Dapirolizumab (CDP7657)	Phase I: NCT01063191 (69)	Well tolerated in healthy humans and in patients with SLE
UCB AND BIOGEN	Phase II: NCT01764904 (9)	Safety and efficacy in SLE patients
	NCT04571424	Healthy human (without results)
	NCT02804763 (71)	Well tolerated in healthy human and SLE. Has therapeutic potential in SLE
	Phase III: NCT04294667	SLE (without results)
	NCT04976322	SLE (without results)
Letolizumab (BMS-986004)	Phase I: NCT02273960	Safety in Immune thrombocytopenic purpura (ITP)
BMS	Phase II: NCT03059527	Graft-versus-host disease (GVHD) (without results)
VIB4920	Phase I: NCT02780388	Well tolerated in patients with rheumatoid arthritis
VelaBio	Phase II: NCT0151110	Well tolerated in healthy adults
	NCT04046549	Kidney transplantation (without results)
	NCT04129164	Sjogren’s syndrome (without results)
	NCT04163991	Rheumatoid arthritis (without results)
	NCT04174677	Kidney Transplantation (without results)

GVHD, graft-vs-host disease; ITP, immune thrombocytopenic purpura; mAb, monoclobal antibody; PEG, polyethylene glycol; SLE, systemic lupus erythematosus; TCP, thrombocytopenic purpura; NA, not available.
modulating properties that reduce islet loss from IBMIR (109, 117–120). Low molecular dextran sulfate at low doses demonstrated good results in the prevention of IBMIR in phase II clinical islet allotransplantation study (NCT00789308) (119). Nanoparticle-based techniques improve the therapeutic efficacy of heparin. For example, polymeric nanocasting islets with heparin-polyethylene glycol (PEG) or chondroitin sulfate-PEG in an NHP islet allotransplant model was associated with significantly longer islet survival with reduced loss to IBMIR compared with PEG and naked islets (121, 122). Conjugated nanoparticles (heparin-immobilized superparamagnetic iron oxide) conjugated onto the surface of the islets attenuated phase II clinical islet xenotransplantation model (123). Islet-surface modifications with streptavidin-CD47 protein, a chimeric construct expressing CD47 on the extracellular domain, efficiently prevent islet loss from IBMIR (124).

Cibinetide (Aram Pharmaceuticals Inc., Tarrytown, NY, USA) (a non-hematopoietic erythropoetin analogue) also showed islet-protective effects by reducing IBMIR-induced platelet consumption (125). Based on these studies, agents that reduce IBMIR, combined with the transplantation of islets from genetically-engineered pigs (e.g., pigs not expressing the known carbohydrate xenoantigens, but expressing human complement-regulatory proteins), and an optimal immunosuppressive regimen may increase graft survival and the therapeutic efficacy of islet xenotransplantation.

COMMENT

Key factors in successfully developing pig islet xenotransplantation include determination of the optimal age of the islet-source pig (adult or neonatal), the optimal genetic modifications that should be made to the pig, and the optimal immunosuppressive regimen that should be administered to the recipient. Whether the ‘4th’ xenoregion is problematic in the pig-to-NHP islet transplantation model needs to be clarified. More attention needs to be directed to genetic modifications that might reduce the instant blood-mediated inflammatory reaction and/or the adaptive immune response to pig islets. The advantages and disadvantages of immunosuppressive regimens based on anti-CD40 and anti-CD154 agents require clarification. Since the first case of successful pig-to-human kidney and heart transplantation had been reported recently (126, 127), we anticipate that pig islet xenotransplantation will become clinically successful when these remaining questions have been resolved.

AUTHOR CONTRIBUTIONS

LM, DC, and ZP initiated the review. LM and GS wrote the manuscript. DC, YL, JC, SZ, JD, YH, YN, YZ, and ZC revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the Shenzhen Foundation of Science and Technology (grant numbers GJHZ20200731095207021), the National Key R&D Program of China (2017YFC1103704) and from the Special Funds for the Construction of High Level Hospitals in Guangdong Province (2019).

REFERENCES

1. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 Diabetes. Lancet (2018) 391:2449–62. doi: 10.1016/S0140-6736(18)31320-5
2. Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, et al. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant (2017) 26:925–47. doi: 10.3727/096368917X694859
3. Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DKC. Islet Xenotransplantation: What is the Optimal Age of the Islet-Source Pig? Xenotransplantation (2015) 22:7–19. doi: 10.1111/xen.12130
4. Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezellrab M, et al. Justification of Specific Genetic Modifications in Pigs for Clinical Organ Xenotransplantation. Xenotransplantation (2019) 26:e12516. doi: 10.1111/xen.12516
5. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, et al. Evaluation of Human and Non-Human Primate Antibody Binding to Pig Cells Lacking GGT1A1/CMAH/H4galnt2 Genes. Xenotransplantation (2015) 22:194–202. doi: 10.1111/xen.12161
6. Hong S-H, Kim H-J, Kang S-J, Park C-G. Novel Immunomodulatory Approaches for Porcine Islet Xenotransplantation. Curr Diabetes Rep (2021) 21:3. doi: 10.1007/s11892-020-01368-y
7. Shin J-S, Min B-H, Kim J-M, Kim J-S, Yoon IH, Kim HJ, et al. Failure of Transplantation Tolerance Induction by Autologous Regulatory T Cells in the Pig-to-Non-Human Primate Islet Xenotransplantation Model. Xenotransplantation (2016) 23:300–9. doi: 10.1111/xen.12246
8. Karmell JL, Albul'escu M, Drabic S, Wang L, Moate R, Baca M, et al. A CD40L-Targeting Protein Reduces Autoantibodies and Improves Disease Activity in Patients With Autoimmunity. Sci Transl Med (2019) 11:eax6584. doi: 10.1126/scitranslmed.aax6584
9. Chamberlain C, Colman PJ, Ranger AM, Burky LC, Johnston GL, Otoul C, et al. Repeated Administration of Dapirolizumab Pegol in a Randomised Phase I Study Is Well Tolerated and Accompanied by Improvements in Several Composite Measures of Systemic Lupus Erythematosus Disease Activity and Changes in Whole Blood Transcriptomic Profiles. Ann Rheum Dis (2017) 76:1837–44. doi: 10.1136/annrheumdis-2017-211388
10. Harland RC, Klintmalm G, Jensik S, Yang H, Bromberg J, Holman J, et al. Efficacy and Safety of Bleselumab in Kidney Transplant Recipients: A Phase 2, Randomized, Open-Label, Noninferiority Study. Am J Transplant (2020) 20:159–71. doi: 10.1111/ajt.15591
11. Bottino R, Balamurugan AN, Smetanka C, Bertera S, He J, Rood PPM, et al. Isolation Outcome and Functional Characteristics of Young and Adult Pig Pancreatic Islets for Transplantation Studies. Xenotransplantation (2007) 14:74–82. doi: 10.1111/j.1399-3089.2006.00374.x
12. Kwak K, Park J-K, Shin J, Ko N, Kim H-J, Lee Y, et al. Comparison of Islet Isolation Result and Clinical Applicability According to GMP-Grade Collagenase Enzyme Blend in Adult Porcine Islet Isolation and Culture. Xenotransplantation (2021) 28:e12703. doi: 10.1111/xen.12703
13. Thompson P, Cardona K, Russell M, Badell IR, Shaffer V, Korbut G, et al. CD40-Related Costimulation Blockade Enhances Neonatal Porcine Islet Survival in Nonhuman Primates. Am J Transplant (2011) 11:947–57. doi: 10.1111/j.1600-6143.2011.03509.x
14. Thompson P, Badell IR, Lowe M, Cano J, Song M, Leopold F, et al. Islet Xenotransplantation Using Gal-Deficient Neonatal Donors Improves
Mou et al. Progress of Pig Islets Xenotransplantation

Engraftment and Function. Am J Transplant (2011) 11:2593–602. doi: 10.1111/j.1600-6143.2011.03720.x

15. Thompson P, Badell JR, Lowe M, Turner A, Cano J, Avila J, et al. Alternative Immunomodulatory Strategies for Xenotransplantation: CD40/154 Pathway-Sparing Regimens Promote Xenograft Survival. Am J Transplant (2012) 12:1765–75. doi: 10.1111/j.1600-6143.2012.04031.x

16. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, et al. Long-Term Survival of Neonatal Porcine Islets in Nonhuman Primates by Targeting Costimulatory Pathways. Nat Med (2006) 12:304–6. doi: 10.1038/nm1375

19. He S, Wang C, Du X, Chen Y, Zhao J, Tian B, et al. MSCs Promote the Engraftment and Function. Islets (2020) 12:41–58. doi: 10.1080/19382014.2020.1750933

28. Kim GA, Lee EM, Cho B, Alam Z, Kim SJ, Lee S, et al. Generation by Somatic Cell Nuclear Transfer of GGTA1 Knockout Pigs Expressing Soluble Human HO-1. Transplantation (2019) 102:e413. doi: 10.1097/TP.0000238677.00750.32

29. Montanari E, Szabo L, Balaphas A, Meyer J, Perriraz-Mayer N, Pimenta J, et al. Multipotent Mesenchymal Stromal Cells Derived From Porcine Endothelial Progenitor Cells for the Treatment of Non-Human Primates. Xenotransplantation (2021) 28:e12666. doi: 10.1111/1365-205x.12666

32. Petersen B, Ramackers W, Taweechaipaisankul A, Hwang JI, et al. Production of Alpha 1,3-Galactosyltransferase-Deficient Pigs. PLoS One (2021) 16: e0255900. doi: 10.1371/journal.pone.0255900

35. Choi J, Kim G, Qamar AY, Fang X, Roy PK, Tanga BM, et al. Improved Efficiencies in the Generation of Multigene-Modified Pigs by Recloning and Using Sows as the Recipient. Zygote (2021) 30:1–8. doi: 10.1017/S0967199421000423

36. Ahrens H, Petersen B, Cunha A, Queisser A-I, Herrmann D, Kues W, et al. Production and Characterization of TF Knock-Down Pigs and hTFPI Transgenic Pigs. Xenotransplantation (2011) 18:296–6. doi: 10.1111/j.1399-3089.2011.00661.x

38. Ahrén H, Petersen B, Cunha A, Queisser A-I, Herrmann D, Kues W, et al. Production and Characterization of TF Knock-Down Pigs and hTFPI Transgenic Pigs. Xenotransplantation (2011) 18:296–6. doi: 10.1111/j.1399-3089.2011.00661.x

40. Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, et al. Extensive Germline Disruption of the Alpha1,3-Galactosyltransferase Gene in Cloned Pigs. Nat Genet (2006) 38:945–9. doi: 10.1038/ng1841

43. Lee W, Hara H, Ezzelarab MB, Iwase H, Bottino R, Long C, et al. Initial Production of Activated Protein C. Xenotransplantation (2009) 16:486–9. doi: 10.11139/00537.e0155676. doi: 10.1371/journal.pone.0155676

50. Ahren H, Petersen B, Cunha A, Queisser A-I, Herrmann D, Kues W, et al. Production and Characterization of TF Knock-Down Pigs and hTFPI Transgenic Pigs. Xenotransplantation (2011) 18:296–6. doi: 10.1111/j.1399-3089.2011.00661.x

56. Bahr A, Käser T, Kemerer G, Gerner W, Kurome M, Baars W, et al. Ubiquitous Lea29y Expression Blocks T Cell Co-Stimulation But Permits Sexual Reproduction in Genetically Modified Pigs. PloS One (2016) 11: e0155676. doi: 10.1371/journal.pone.0155676

57. Han H, Witt W, Crosley T, Long C, Isse K, Fan L, et al. Human Dominant-Negative Class II Transactivator Transgenic Pigs - Effect on the Human Anti-Pig T-Cell Immune Response and Immune Status. Immunology (2013) 143:39–46. doi: 10.1111/imn.12107

59. Perez B, Ouyang Y, Wang Y, Wang L, Li J, Wang F, et al. Efficient Generation of B2m-Null Pigs via In vitro Gnototopic Pig Zygote with TALENS. Sci Rep (2016) 6:38854. doi: 10.1038/srep38854

68. Ten A, Germana S, Turcotte N, Leto Barone AA, Arn S, Terlouw SL, et al. Miniature Swine Expressing Human Cd47 to Enhance Bone Marrow Engraftment in Non-Human Primates: 1651. Transplantation (2012) 94:776. doi: 10.1097/01.TP.0000238677.00750.32

70. Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, et al. Pigs Expressing the Human Inhibitory Ligand PD-L1 (CD 274) Provide a New Source of Xenogenic Cells and Tissues With Low Immunogenic Properties. Xenotransplantation (2018) 25:e12387. doi: 10.1111/xen.12387

72. Yu X, Wu X, Kan Y, Zhao H-Y, Zhou Y, Song X, et al. Extensive Germline Genome Engineering in Pigs. Nat BioMed Eng (2021) 5:134–43. doi: 10.1038/s41551-020-00613-9

74. Foote JB, Jagdale A, Yamamoto T, Hara H, Bikhet MH, Schuurman H-J, et al. Histopathology of Pig Kidney Grafts With/Without Expression of the Carbohydrate Neu5Gc in Immunosuppressed Baboons. Xenotransplantation (2021) 28:e12715. doi: 10.1111/xen.12715

75. Ariyoshi Y, Takeuchi K, Pomposelli T, Ekanayake-Alper DK, Shimizu A, Boyd L, et al. Antibody Reactivity With New Antigens Revealed in Multi-Transgenic Triple Knockout Pigs May Cause Early Loss of Pig Kidneys in B2m-Null Pigs. Xenotransplantation (2021) 28:e12642. doi: 10.1111/xen.12642

77. Yamamoto T, Hara H, Iwase H, Jagdale A, Bikhet MH, Morsi MA, et al. The Final Obstacle to Successful Pre-Clinical Xenotransplantation? Xenotransplantation (2020) 27:e12596. doi: 10.1111/xen.12596

79. Yamamoto T, Iwase H, Patel D, Jagdale A, Ayares D, Anderson D, et al. Old World Monkeys Are Less Than Ideal Transplantation Models for Testing Pig Organs Lacking Three Carbohydrate Antigens (Triple-Knockout). Sci Rep (2020) 10:99771. doi: 10.1038/s41598-020-66311-3

80. Yamamoto T, Hara H, Ayares D, Cooper DKC. The Problem of the "4th Xenonantigen" After Pig Organ Transplantation in Non-Human Primates may be Overcome by Expression of Human “Protective” Proteins. Xenotransplantation (2021) 28:e12658. doi: 10.1111/xen.12658

85. Lee W, Hara H, Ezuzelah MR, Iwase H, Bottino R, Long C, et al. Initial In vitro Studies on Tissues and Cells From GTKO/CD46/NeuGKO Pigs. Xenotransplantation (2016) 23:137–50. doi: 10.1111/xen.12229

88. Choe HM, Luo Z-B, Kang J-D, Oh MJ, An HJ, Yin X-J. Pathological Features in “Humanized” Neonatal Pig. Anim Biotechnol (2021), 1–9. doi: 10.1080/10495398.2021.1962896

89. Obukhova P, Trygankova S, Chinarev A, Shilova N, Nokel A, Kosma P, et al. Are There Specific Antibodies Against Neu5Gc Epitopes in the Blood of Healthy Individuals? Glycobiology (2020) 30:395–406. doi: 10.1093/glycob/doi.120107

90. Nannya Y, Shahjahan A, Sonon RN, Azadi P, Hering BJ, Burlak C. High-Mannose Type N-Glycans With Core Fucosylation and Complex-Type N-
Glycans With Terminal Neuraminic Acid Residues Are Unique to Porcine Islets. PloS One (2020) 15:e0241249. doi: 10.1371/journal.pone.0241249

51. Nanno Y, Sterner E, Gildersleeve JC, Hering BJ, Burlak C. Carbohydrate Antigen Microarray Analysis of Serum IgG and IgM Antibodies Before and After Adult Porcine Islet Xenotransplantation in Cynomolgus Macaques. PloS One (2021) 16:e0253029. doi: 10.1371/journal.pone.0253029

52. Nanno Y, Sterner E, Gildersleeve JC, Hering BJ, Burlak C. Profiling Natural Serum Antibodies of Non-Human Primates With a Carbohydrate Antigen Microarray. Xenotransplantation (2020) 27:e12567. doi: 10.1111/xen.12560

53. Buermann A, Römermann D, Baars W, Hundrieser J, Klempnauer J, et al. Viable Pigs After Simultaneous Inactivation of Porcine MHC Class I and Three Xenoreactive Antigen Genes GGTa1, CMAH and B4GALT2. Xenotransplantation (2016) 23:347. doi: 10.1111/xen.12261

54. Fischer K, Rieblinger B, Hein R, Sfriso R, Zuber J, Fischer A, et al. Generating Low Immunogenic Pig Pancreatic Islet Cell Transplantation From Rejection. Chin Med J (Engl) (2014) 127:2686. doi: 10.4103/0376-8910.138256

55. Carvalho Oliveira M, Valdivia E, Verboom M, Yuzefovych Y, Sake HJ, et al. LEA29Y Expression in Transgenic Neonatal Porcine Islet-Like Cluster Tumors. Am J Transplant (2019) 19:37. doi: 10.1111/ajt.16704

56. Shin J-S, Kim J-M, Min B-H, Yoon IH, Kim HJ, Kim J-S, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Monoclonal Antibody, in Kidney Transplantation. Am J Transplant (2020) 20:172. doi: 10.1111/ajt.16709

57. Tan AC, Bagley SJ, Wen PY, Lim M, Platten M, Colman H, et al. Systematic Review of Combinations of Targeted or Immunotherapy in Advanced Solid Tumors. J Immunother Cancer (2021) 9:e002459. doi: 10.1136/jitc-2021-002459

58. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

59. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

60. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

61. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

62. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

63. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

64. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

65. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

66. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

67. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729

68. Visvanathan S, Danilkul S, Praszynski R, Müller-Ladner U, Ramanujam M, Rosenstock B, et al. Effects of BI 655064, an Antagonistic Anti-CD40 Antibody, on Clinical and Biomarker Variables in Patients With Active Rheumatoid Arthritis: A Randomised, Double-Blind, Placebo-Controlled, Phase IIa Study. Ann Rheum Dis (2019) 78:754–60. doi: 10.1136/annrheumdis-2018-214729
Fisher BA, Kerby H, Soranson J, Zamacona M, Walley R, et al. A Phase 2, Randomized, Placebo-Controlled Trial of Daprilizumab Pegol in Patients With Moderate-to-Severe Active Systemic Lupus Erythematosus. *Rheumatol (Oxford)* (2020) 62:e381. doi: 10.1093/rheumatology/keab381

Goldwater R, Keirns J, Blahunka P, First R, Sawamoto T, Zhang W, et al. A Short-Term Tolerability of Iscalimab, an Anti-CD40 Monoclonal Antibody. *Am J Transplant* (2015) 15:1241–52. doi: 10.1111/ajt.13098

Goldman L, Kwan I, Campbell J, Rhee J, Chu S, Seal L, et al. A Phase 1, Randomized Ascending Single-Dose Study of Antithrombin III Human-CD40A ASKP1240 in Healthy Subjects. *Am J Transplant* (2013) 13:1040–6. doi: 10.1111/ajt.12082

Esteve E, He Y, Koo P, Sickert D, Dupuy C, Chokote E, et al. First-In-Human Clinical Trial to Assess Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Iscalimab, an Anti-CD40 Monoclonal Antibody. *Am J Transplant* (2017) 17:1182–92. doi: 10.1111/ajt.14197

Fujita Y, Iwakiri Y, Park H-J, Jung KC, Park SH, RD-05, a Novel Anti-CD154 Antibody, Efficiently Inhibits Generation of Anti-Drug Antibody Without the Risk of Thrombus Formation in Non-Human Primates. *Biochem Biophys Res Commun* (2018) 498:996–1001. doi: 10.1016/j.bbrc.2018.03.099

Fouquier A, Kopp S, Sickert D, Dupuy C, Chokote E, et al. First-In-Human Clinical Trial of the Safety, Pharmacokinetics and Immunogenicity of a PEGLysated Anti-CD40L Antibody Fragment (CDP7657) in Healthy Individuals and Patients With Systemic Lupus Erythematosus. *Lupus* (2015) 24:1045–56. doi: 10.1177/0961233X15574558

Kim SC, Wakwe W, Higginbotham LB, Mathews DV, Breeden CP, Stephenson AC, et al. Fc-Silent Anti-CD154 Domain Antibody Effectively Prevents Nonhuman Primate Renal Allograft Rejection. *Am J Transplant* (2017) 17:1182–92. doi: 10.1111/ajt.14197

Furie BA, Bruce IN, Dorner T, Leon MG, Leszcynski P, Urowitz M, et al. Phase 2, Randomized, Placebo-Controlled Trial of Daprilizumab Pegol in Patients With Moderate-to-Severe Active Systemic Lupus Erythematosus. *Rheumatol (Oxford)* (2020) 62:e381. doi: 10.1093/rheumatology/keab381

Goldwater R, Keirns J, Blahunka P, First R, Sawamoto T, Zhang W, et al. A Phase 1, Randomized Ascending Single-Dose Study of Antithrombin III Human-CD40A ASKP1240 in Healthy Subjects. *Am J Transplant* (2013) 13:1040–6. doi: 10.1111/ajt.12082

Esteve E, He Y, Koo P, Sickert D, Dupuy C, Chokote E, et al. First-In-Human Clinical Trial to Assess Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Iscalimab, an Anti-CD40 Monoclonal Antibody. *Am J Transplant* (2017) 17:1182–92. doi: 10.1111/ajt.14197

Furie BA, Bruce IN, Dorner T, Leon MG, Leszcynski P, Urowitz M, et al. Phase 2, Randomized, Placebo-Controlled Trial of Daprilizumab Pegol in Patients With Moderate-to-Severe Active Systemic Lupus Erythematosus. *Rheumatol (Oxford)* (2020) 62:e381. doi: 10.1093/rheumatology/keab381

Goldwater R, Keirns J, Blahunka P, First R, Sawamoto T, Zhang W, et al. A Phase 1, Randomized Ascending Single-Dose Study of Antithrombin III Human-CD40A ASKP1240 in Healthy Subjects. *Am J Transplant* (2013) 13:1040–6. doi: 10.1111/ajt.12082

Esteve E, He Y, Koo P, Sickert D, Dupuy C, Chokote E, et al. First-In-Human Clinical Trial to Assess Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Iscalimab, an Anti-CD40 Monoclonal Antibody. *Am J Transplant* (2017) 17:1182–92. doi: 10.1111/ajt.14197

Furie BA, Bruce IN, Dorner T, Leon MG, Leszcynski P, Urowitz M, et al. Phase 2, Randomized, Placebo-Controlled Trial of Daprilizumab Pegol in Patients With Moderate-to-Severe Active Systemic Lupus Erythematosus. *Rheumatol (Oxford)* (2020) 62:e381. doi: 10.1093/rheumatology/keab381
Molecular Weight Dextran Sulfate Versus Heparin. *Cell Transplant* (2017) 26:71–81. doi: 10.3727/096368916X692609

118. Johansson H, Goto M, Dufrane D, Siegbahn A, Elgue G, Gianello P, et al. Low Molecular Weight Dextran Sulfate: A Strong Candidate Drug to Block IBMIR in Clinical Islet Transplantation. *Am J Transplant* (2006) 6:305–12. doi: 10.1111/j.1600-6143.2005.01186.x

119. von Zur-Mühlen B, Lundgren T, Bayman L, Berne C, Bridges N, Eggeman T, et al. Open Randomized Multicenter Study to Evaluate Safety and Efficacy of Low Molecular Weight Sulfated Dextran in Islet Transplantation. *Transplantation* (2019) 103:630–7. doi: 10.1097/TP.0000000000002425

120. Cabric S, Sanchez J, Lundgren T, Foss A, Feldin M, Kallen R, et al. Islet Surface Heparinization Prevents the Instant Blood-Mediated Inflammatory Reaction in Islet Transplantation. *Diabetes* (2007) 56:2008–15. doi: 10.2337/db07-0358

121. Park H, Haque MR, Park JB, Lee KW, Lee S, Kwon Y, et al. Polymeric Nano-Sheilded Islets With Heparin-Polyethylene Glycol in a Non-Human Primate Model. *Biomaterials* (2018) 171:164–77. doi: 10.1016/j.biomaterials.2018.04.028

122. Yang J, Jiang S, Guan Y, Deng J, Lou S, Feng D, et al. Pancreatic Islet Surface Engineering With a starPEG-Chondroitin Sulfate Nanocoating. *Biomater Sci* (2019) 7:2308–16. doi: 10.1039/c9bm00061e

123. Hwang YH, Kim MJ, Lee DY. MRI-Sensitive Contrast Agent With Anticoagulant Activity for Surface Camouglage of Transplanted Pancreatic Islets. *Biomaterials* (2017) 138:121–30. doi: 10.1016/j.biomaterials.2017.05.038

124. Shrestha P, Batra L, Tarig Malik M, Tan M, Yolcu ES, Shirwan H. Immune Checkpoint CD47 Molecule Engineered Islets Mitigate Instant Blood-Mediated Inflammatory Reaction and Show Improved Engraftment Following Intraportal Transplantation. *Am J Transplant* (2020) 20:2703–14. doi: 10.1111/ajt.15958

125. Yao M, Domogatskaya A, Ågren N, Watanabe M, Tokodai K, Brines M, et al. Cibinetide Protects Isolated Human Islets in a Stressful Environment and Improves Engraftment in the Perspective of Intra Portal Islet Transplantation. *Cell Transplant* (2021) 30:9636897211039740. doi: 10.1177/09636897211039739

126. Cooper DKC. Genetically Engineered Pig Kidney Transplantation in a Brain-Dead Human Subject. *Xenotransplantation* (2021) 28:e12718. doi: 10.1111/xen.12718

127. Man Gets Genetically-Modified Pig Heart in World-First Transplant, in: *BBC News* (2022). Available at: https://www.bbc.com/news/world-us-canada-59944889 (Accessed January 11, 2022).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Mou, Shi, Cooper, Lu, Chen, Zhu, Huang, Ni, Zhan, Cai and Pu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.