The variety of immune responses to adoptogenetic balneotherapy is strictly deterministic

O.I. MELNYK1, Z.D. STRUK2

1Danylo Halytskyi National Medical University, L’viv, Ukraine
E-mail: omelnyk7@gmail.com

2Ukrainian Scientific Research Institute of Medicine for Transport, Odessa, Ukraine

Introduction. Four variants of the immune responses to adaptogenic balneotherapy had been identified earlier. In 40.9% of patients (N/N cluster), initially the normal immune status (evaluated by 4 parameters of humoral immunity, 5 parameters of cellular immunity as well as 2 parameters of phagocytosis) did not change significantly (Fig. 1). In 31.8% of patients (N/-N cluster), the lower boundary level of immunity (due to the inhibition of Bactericidity of Neutrophils against Staph. aureus and E. coli) was completely normalized. In 22.7% of patients (S/S cluster) the moderate suppression of Phagocytosis was reduced but not up to normal. However, in 4.5% of people (N/S cluster), initially a very increased level of Phagocytosis was transformed into a very decreased level in combination with a slight suppression of cellular immunity and a slight activation of humoral immunity [1,2]. Therefore, the immunotropic effect of balneotherapy on certain individuals is not effective enough and in some cases even unfavorable.

Fig. 1. Individual immune status indexes (ISI) before (axis X) and after (axis Y) balneotherapy in members of different clusters of immune responses

© Melnyk O.I., Struk Z.D., 2020
All four variants of immune responses are virtually unmistakably predicted (with an accuracy of 97.7%) by a set of 20 predictors including 12 immune blood parameters and one saliva parameter, 4 information parameters, 2 fecal microbiota parameters as well as erythrocyturia [3]. Each type of the immune response is characterized by a specific vegetative, endocrine and metabolic support [4] along with the lines of neuroendocrine-immune modulation [5–9] and functional-metabolic continuum [10,11].

In the next study the discriminant analysis revealed that the constellation of 8 HRV (heart rate variability) and 5 Endocrine parameters as well as gender of a patient predicted the nature of the immune response with an accuracy of 90.9% [12].

We found out 16 metabolic parameters as the predictors, 3 of them reflected the level of plasma electrolytes, 5 – the level of urine electrolytes, 2 – the levels of plasma and urine urea. Other predictors were the following: very low density lipoprotein cholesterol plasma level, body mass index, fasting gallbladder volume and 30 minutes after cholekinetics, electrokinetic index and a patient’s age. These predictors, taken together, determined the nature of the immune response with an accuracy of 95.5% [13].

Standing on the positions of determinism, we assumed that taking into account all the recorded initial neuro-endocrine and metabolic parameters of the body would allow predicting the immune response of each patient unmistakably. Testing of this hypothesis was the purpose of this study.

Materials and methods. The objects of the observation were 34 men and 10 women aged 24-70, who came to the Truskavets’ spa for the treatment of chronic pyelonephritis combined with cholecystitis in the state of remission.

The state of the autonomic nervous system was estimated by parameters of heart rate variability (HRV). We recorded electrocardiogram in II lead (software and hardware complex “CardioLab+HRV” produced by “KhAI-MEDICA”, Kharkiv). For the further analysis the following parameters of HRV were selected [14-16]. Temporal parameters (Time Domain Methods): the standard deviation of all NN intervals (SDNN), the square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD), the percent of interval differences of successive NN intervals greater than 50 ms (pNN50); heart rate (HR), the Mode (Mo), the Amplitude of Mode (AMo), variational sweep (MxDMn) as well as Triangularity Index (TINN). Spectral parameters (Frequency Domain Methods): spectral power (SP), bands of HRV: high-frequency (HF, range 0.4÷0.15 Hz), low-frequency (LF, range 0.15÷0.04 Hz), very low-frequency (VLF, range 0.04÷0.015 Hz) and ultra low-frequency (ULF, range 0.015÷0.003 Hz). On the basis of these parameters the proportion of SP bands (% of Total Power) and classical indexes: LF/HF, LFnu=100%•LF/(LF+HF), Centralization Index=(VLF+LF)/HF; Baevsky Stress Index (BSI=AMo/2•Mo•MxDMn) and Baevsky Activity Regulatory Systems Index (BARI) were calculated as well as the Entropy (h) of HRV [17].

To assess the endocrine status we determined plasma levels of principal adaptation Hormones in the morning on an empty stomach: Cortisol, Testosterone and Triiodothyronine (by ELISA with the use of the analyzer “RT-2100C” and the corresponding sets of reagents from ‘Alkor Bio’, Xema Co. Ltd and DRG International Inc.).

Then we estimated plasma Lipoprotein spectrum: total cholesterol (by using the direct method after the classic reaction by Zlatkis-Zak) and its content in the composition of α-lipoproteins (the enzyme method by Hiller G. [18] after the precipitation of notα-lipoproteins); pre-β-lipoproteins (by the level of triacylglycerides, by a certain meta-periodate method); β-lipoproteins (by a difference between a total cholesterol and cholesterol in composition of α-and pre-β-lipoproteins).

We determined also the plasma and daily urine levels of the Electrolytes: calcium (by reaction with arsenase III), magnesium (by reaction with colgamite),
phosphates (phosphate-molybdate method), chloride (mercury-rhodanidine method), sodium and potassium (flame photometry); Nitrous metabolites: creatinine (Jaffe’s color reaction by Popper’s method), urea (urease method by reaction with phenolhypochlorite), uric acid (uricase method).

The analyses were carried out according to the instructions described in the manual [19]. The analyzers “Pointe-180” («Scientific», USA) and “Reflotron” (Boehringer Mannheim, BRD) were used with appropriate sets and a flame spectrophotometer “CF-47”.

According to the parameters of electrolyte exchange, the hormonal activity was evaluated: parathyroid by coefficients (Cap/Pp)$^{0.5}$ and (Pu/Cau)$^{0.5}$, calcitonin by coefficients (Cap\cdotPp)$^{-0.5}$ and (Cau\cdotPu)$^{0.5}$ as well as mineralocorticoid by coefficients (Nap/Kp)$^{0.5}$ and (Ku/Nau)$^{0.5}$, based on their classical effects and recommendations by I.L. Popovych [9].

The tone and motility of gall-bladder can be estimated by its volume on an empty stomach in the morning and after 5, 15 and 30 min after the ingestion of cholekinetic (50 ml of 40% solution of xylitol). The method echoscopy (echo-camera “Radmir”) was applied.

Norms were borrowed from the database of the Truskavets Scientific School of Balneology.

Results were processed by means of the method of discriminant analysis [20], using the software package «Statistica 5.5».

Results and discussion. Following the accepted algorithm, the forward stepwise method revealed 31 parameters as the predictors (Tables 1 and 2).

Variables currently in the model	Wilks' Λ	Partial Λ	F-removal (3,5)	p-level	Tolerance
(Cap\cdotPp)$^{-0.5}$ as Calcitonin Activity	,00005	,027	60	.00024	,000
(Ku/Nau)$^{0.5}$ as Mineralocorticoid activity	,00007	,022	75	.00014	,003
Magnesium Plasma, mM/L	,00000	,315	4	.09972	,069
Baevsky Stress Index normalized by age, Z	,00006	,022	73	.00015	,000
VLD LP Cholesterol, mM/L	,00026	,006	300	.00000	,001
Triangular Index HRV, units	,00002	,060	26	.00176	,001
Body Mass Index, kg/m2	,00002	,089	17	.00471	,021
AMo/MxDMn, units	,00006	,022	74	.00014	,000
Gallbladder Volume basal, mL	,00006	,024	69	.00017	,005
Calcium Excretion, mM/24h	,00021	,007	244	.00001	,001
Chloride Urine, mM/L	,00007	,021	77	.00013	,003
Cortisol Plasma, nM/L	,00002	,062	25	.00192	,002
Creatinine Excretion, mM/24h	,00001	,225	6	.04472	,031
(VLF+LF)/HF HRV	,00003	,049	32	.00106	,009
RMSSD HRV, msec	,00000	,296	4	.08633	,001
Urea Excretion, mM/24h	,00003	,053	30	.00130	,001
Sodium Urine, mM/L	,00001	,150	9	.01670	,018
VLF HRV, %	,00006	,024	69	.00017	,001
LF HRV, msec2	,00003	,051	31	.00120	,001
Baevsky Stress Index, ln units	,00001	,135	11	.01303	,001
Age, years	,00001	,180	8	.02611	,008
SDNN HRV, msec	,00003	,045	35	.00088	,000
Gallbladder Volume after 30 min, mL	,00001	,134	11	.01270	,019
$p_{NN_{50}}$ HRV, %	,00001	,218	6	.04157	,002
Table 2.

Summary of stepwise analysis for vegetative, endocrine and metabolic variables predicting various immune responses.

The variables are ranked by Lambda criterion.

Variables currently in the model	Wilks’ Λ	Partial Λ	F-removal (3,5)	p-level	Tolerance
Testosterone normalized by sex&age, Z	0.00001	0.226	6	0.04534	0.12
Calcium Plasma, mM/L	0.00004	0.036	45	0.00048	0.02
Urea Plasma, mM/L	0.00002	0.081	19	0.00372	0.016
Baevsky Activity Regulatory Systems Index	0.00003	0.050	31	0.00114	0.02
Total Power HRV, msec^2	0.00001	0.102	15	0.00656	0.00
Phosphate Plasma, mM/L	0.00001	0.126	12	0.01089	0.003
LFnu HRV, %	0.00001	0.273	4	0.07143	0.025

Then, the 31-dimensional space of discriminant variables is transformed into 3-dimensional space of canonical roots. The canonical correlation coefficient is for Root 1 0.999 (Wilks’ Λ=0.000001; χ^2_{(108)}=310; p<10^{-6}), for Root 2 0.992 (Wilks’ Λ=0.000923; χ^2_{(70)}=161; p<10^{-6}) and for Root 3 0.972 (Wilks’ Λ=0.0546;
χ²(34) = 67; p = 0.0006). The major root contains 90% of discriminative properties, the second – 8% and the minor – only 2%.

Table 3 presents standardized and raw coefficients for discriminant variables and constants which are necessary for the calculation of the discriminant root values for each person that enables their visualization in the information space of the roots.

Table 3.

Standardized and raw coefficients and constants for predicting variables

Variables currently in the model	Coefficients	Standardized	Raw			
	Root 1	Root 2	Root 3	Root 1	Root 2	Root 3
(Cap•Pp) as Calcitonin Activity	-55,92	-5,07	13,67	-832,2	-75,48	203,4
(Ku/Nau) as Mineralocorticoid activity	19,18	.13	-1,56	216,3	1,413	-17,59
Magnesium Plasma, mM/L	2,84	.62	-1,128	70,64	15,33	-31,92
Baevskiy’s Stress Index normalized by age, Z	77,27	11,61	-5,30	24,84	3,732	-1,705
VLD LP Cholesterol, mM/L	-32,42	.30	2,02	-149,5	-1,395	9,300
Triangular Index HRV, units	31,72	-6,41	-7,54	7,952	-1,608	-1,889
Body Mass Index, kg/m²	-3,76	-4,77	-2,51	-1,121	-1,423	-7,50
AMo/MxDMn, units	-75,05	-4,51	-1,49	.271	-1,16	.005
Gallbladder Volume basal, mL	13,75	-1,90	-1,75	.903	-1,125	-1,195
Calcium Excretion, mM/24h	-32,44	.66	2,17	-13,72	-1,728	.919
Chloride Urine, mM/L	18,99	-1,82	-1,26	1,046	-1,100	.069
Cortisol Plasma, nM/L	-18,67	-1,80	6,84	.073	-1,007	.027
Creatinine Excretion, mM/24h	2,70	-2,19	3,73	.860	-1,699	1,191
(VLF+LF)/HF HRV	-10,35	.11	-1,94	-1,802	.008	-1,150
RMSSD HRV, msec	6,08	7,14	-21,16	.351	.412	-1,221
Urea Excretion, mM/24h	25,32	4,91	-7,14	.115	.022	.032
Sodium Urine, mM/L	6,66	-7,4	1,71	.264	-.029	.068
VLF HRV, %	29,49	.34	-5,74	1,797	.021	-1,350
LF HRV, msec²	27,81	10,73	2,85	.029	.011	.003
Baevsky Stress Index, ln units	13,17	-20,23	-8,41	16,66	-25,58	-10,64
Age, years	5,05	8,59	.69	.388	.659	.053
SDNN HRV, msec	-87,55	-28,24	-3,20	-4,693	-1,514	-1,71
Gallbladder Volume after 30 min, mL	5,14	4,47	-.32	.701	.609	-.044
pNN₁₀ HRV, %	.77	-10,25	19,24	.062	-.817	1,534
Testosterone normalized by sex&age, Z	3,21	-5,89	4,38	1,951	-3,577	2,659
Calcium Plasma, mM/L	-20,50	-3,30	3,41	-111,0	-17,86	18,46
Urea Plasma, mM/L	-7,01	.60	-2,77	-5,717	.489	-2,257
Baevsky Activity Regulatory Systems Index	-22,84	-6,50	4,41	-8,709	-2,478	1,681
Total Power HRV, msec²	45,69	15,99	-3,72	.023	.008	-.002
Phosphate Plasma, mM/L	-15,59	-7,32	7,30	-82,68	-38,81	38,74
LFnu HRV, %	-4,77	-1,26	2,35	-.302	.079	.149

Constants	659,1	366,1	23,19
Eigenvalues	652,7	58,13	17,32
Cumulative Properties	.90	.98	1,00
Table 4 shows the correlation coefficients of discriminant variables-predictors with canonical discriminant roots, the cluster centroids of roots as well as the values of the discriminant variables-predictors.

Table 4.

Variables currently in the model	Correlations Variables-Roots	S/S (10)	N/S (2)	N-/N (14)	N/N (18)	Norm (30)	Cv		
Root 1 (90%)									
LFnu HRV, %	,012	-42,4	-18,0	+8,4	+19,0				
VLF HRV, %	,008	-0,32	-0,23	61,0	67,9	80,2	72,3	66	0,210
(VLF+LF)/HF HRV	,008	-0,039	-0,57	6,1	17,5	22,0	12,0	8,2	0,506
Magnesium Plasma, mM/L	,011	0,045	0,056	0,82	0,82	0,82	0,86	0,90	0,056
Gallbladder Volume basal, mL	,008	0,021	0,006	43	33	52	55	46	0,230
Creatinine Excretion, mM/24h	,007	0,025	0,055	6,85	5,23	6,52	8,58	11,0	0,300
Testosterone normalized, Z	- ,017	0,007	0,025	+2,80	+1,49	+1,07	+1,09	0	
VLD LP Cholesterol, mM/L	- ,011	-0,036	0,028	0,77	0,49	0,70	0,58	0,53	0,335
Urea Plasma, mM/L	- ,009	-0,021	-0,003	6,61	6,09	6,34	5,79	5,00	0,330
Calcium Excretion, mM/24h	- ,009	0,002	-0,023	4,90	5,50	4,03	3,71	4,38	0,214
Root 2 (8%)									
LFnu HRV, %	,007	0,025	0,055	6,85	5,23	6,52	8,58	11,0	0,300
Testosterone normalized, Z	- ,012	0,073	0,074	0,67	0,70	0,61	0,70	0,60	0,167
Urea Excretion, mM/24h	- ,012	0,020	0,047	614	799	481	483	458	0,186
SDNN HRV, msec	,001	0,037	0,037	45,5	45,5	38,4	53,5	55	0,201
Triangularity Index HRV, units	,001	0,019	0,036	11,1	10,0	9,8	11,7	11,2	0,217
Phosphate Plasma, mM/L	,003	-0,060	0,040	0,99	0,99	1,17	0,97	1,20	0,167
Body Mass Index, kg/m²	- ,002	-0,054	-0,040	26,0	25,5	28,9	25,6	24,2	
Calcium Plasma, mM/L	,006	-0,053	-0,079	2,11	2,28	2,33	2,13	2,30	0,065
Baevsky Stress Index, Z	,002	-0,041	-0,019	+0,54	-0,18	+3,24	+0,10	0	
Baevsky Activity Reg Syst Ind	- ,000	-0,035	0,016	3,50	1,50	4,31	2,94	1,50	0,624
Baevsky Stress Index, ln units	- ,001	-0,039	-0,028	4,82	4,82	5,15	4,63	4,91	
(Ku/Nau)⁰⁵ as Mineralocorticoid	,008	-0,036	0,065	0,54	0,41	0,59	0,57	0,54	0,269
Gallbladder Vol after 30 min, %	- ,004	-0,033	-0,012	65,8	60,9	68,1	67,5	62,0	0,081
AMo/MxDMn, units	- ,000	-0,030	-0,007	279	209	382	238	142	0,307
Age, years	- ,003	-0,018	0,010	51,4	45,0	51,4	48,0	49,7	0,256
Root 3 (2%)									
Chloride Urine, mM/L	,016	-0,013	0,085	97,5	73	106	114	120	0,172
Variables currently in the model

Variables	Correlations	S/S (10)	N/S (2)	N-/N (14)	N/N (18)	Norm (30)	Cv		
Sodium Urine, mM/L	.003	.012	**.049**	121	95	122	123	161	0.211
RMSSD HRV, msec	-.004	.020	**.046**	34.6	21.5	22.4	30.6	**28**	0.392
pNN_{50} HRV, %	-.003	.016	**.044**	13.6	**4.0**	6.0	11.0	**9.2**	1.518
Total Power HRV, msec^2	.003	.033	**.043**	2644	**1695**	3310	2029	**2477**	0.399
LF HRV, msec^2	.003	.019	**.040**	929	518	685	1169	**627**	0.529
Cortisol Plasma, nM/L	.001	-.032	**-0.067**	542	**762**	718	528	**405**	0.315

In general, all four clusters on the planes of the discriminant roots are very clearly delineated, which is documented by calculating the Mahalanobis distances (Table 4).

Table 4. Squared Mahalanobis distances between clusters, F-values (df=36,5) and p-levels

Clusters	N/N	S/S	N/S	N-/N		
N/N	0	4172	1941	402		
S/S	85.3	0	1229	2984		
N/S	6.4	3.8	0.024	0.068	1619	
N-/N	10.3	55.1	10.4	5.2	0.036	0

Fig. 2. Scatterplot of individual values of the first and second roots in which condensed information about initial values of vegetative, endocrine and metabolic parameters as predictors for the members of the four clusters.

The predictors of the S/S type immune response are the minimum for sample values of parameters that are positively related to the first root and the maximum values for inversely correlating parameters. Conversely, the N/N type immune response is preceded by the maximum/minimum values of other predictors (Fig. 2).

The N-/N type immune response occurs in individuals with a minimum of initial values parameters that are directly related to the second root and maximum values of the parameters that are inversely correlated with the root. In members of the N/S immune response cluster, localized in the opposite zone of the axis of the second root, these parameters are usually maximum/minimum.
Additional predictors of this type of immune response are the minimum values of parameters that correlate positively with the third root as well as the maximum level of plasma cortisol.

The ultimate goal of the discriminant analysis is realized with the help of classifying functions (Table 5).

Table 5.

Coefficients and constants for the classification of the functions of clusters

Variables	Clusters	N/N	S/S	N/S	N-/N
(Cap·Pp) as Calcitonin Activity	p=.409	p=.227	p=.045	p=.318	
(Ku/Nau) as Mineralocorticoid activity	571174	622740	597658	580376	
Magnesium Plasma, mM/L	-43049	-47478	-44958	-43915	
Baevsky Stress Index normalized by age, Z	-17669	-19214	-18527	-17983	
VLD LP Cholesterol, mM/L	96783	105972	102135	98347	
Triangular Index HRV, units	-4453	-4934	-4726	-4505	
Body Mass Index, kg/m²	1283	1359	1327	1320	
AMo/MxDMn, units	184.6	201.4	194.6	187.8	
Gallbladder Volume basal, mL	-522.4	-577.2	-554.7	-529.5	
Calcium Excretion, mM/24h	8707	9548	9200	8844	
Chloride Urine, mM/L	-640.5	-704.2	-678.7	-649.7	
Cortisol Plasma, nM/L	48.8	53.3	50.9	49.5	
Creatinine Excretion, mM/24h	-284.8	-333.4	-343.9	-287.3	
RMSSD HRV, msec	-313.7	-377.9	-301.2	-319.3	
Urea Excretion, mM/24h	-82.8	-90.0	-86.3	-84.3	
Sodium Urine, mM/L	-171.8	-187.8	-183.0	-174.4	
(VLF+LF)/HF HRV	-1128	-1239	-1188	-1146	
LF HRV, msec	-23.1	-24.9	-24.1	-23.5	
Baevsky Stress Index, ln units	-585.7	-1485	-1219	-325.5	
Age, years	-528.8	-555.9	-538.7	-543.3	
SDNN HRV, msec	3659	3955	3824	3733	
Gallbladder Volume after 30 min, mL	-676.1	-722.2	-696.2	-692.7	
pNN50, HRV, %	203.6	204.7	166.8	210.1	
Testosterone normalized by sex&age, Z	65.2	-35.2	-84.5	90.4	
Calcium Plasma, mM/L	79359	86271	82984	80738	
Urea Plasma, mM/L	3543	3890	3799	3603	
Baevsky Activity Regulatory Systems Index	6560	7107	6831	6684	
Total Power HRV, msec²	-17.9	-19.3	-18.7	-18.3	
Phosphate Plasma, mM/L	70974	76264	73013	72307	
LFnu HRV, %	222.0	241.0	229.8	225.9	
Constant	-289637	-332624	-311642	-302238	

As we can see (Table 6), all types of immune response to adaptogenic balneotherapy are predicted unmistakably.

Table 6.

Classification of Matrix

Rows: Observed classifications; Columns: Predicted classifications

	Percent correct	N/N	S/S	N/S	N-/N
N/N	100	18	0	0	0
S/S	100	0	10	0	0
Percent correct

	N/N	S/S	N/S	N-/N
p=,409	0	0	2	0
p=,227	100	0	14	
p=,045	100	0	0	
p=,318	100	18	2	
Total	100	18	2	14

Conclusion. The previously revealed variety of immune responses to adaptogenic balneotherapy is quite strictly conditioned by the initial state of the neuroendocrine-immune complex, microbiota, metabolism as well as the sex and age of patients.

Acknowledgement

We’d like to express sincere gratitude to the administration of JSC “Truskavets’ kurort” and “Truskavets’ SPA” as well as the clinical sanatorium “Moldova” for help in conducting this investigation.

Accordance to ethics standards

Tests on patients are conducted in accordance with positions of Helsinki Declaration 1975, revised and complemented in 2002 and the directive of National Committee on ethics of scientific researches. During the realization of tests from all participants the informed consent has been received and all measures for providing the anonymity of participants have been used. There is not any conflict of interests among the authors.

REFERENCES

1. **Struk ZD, Mel’nyk OI, Mysakovets’ OG.** Individual immune responses to adaptogens and their predictors. In: Rehabilitation Medicine and Health-Resort Institutions Development. Proceedings of the 19th International Applied Research Conference (Kyiv, 11-12 December 2019). Edited by O. Gozhenko, W. Zakow. Kyiv: Toruń. 2019: 83–4.

2. **Struk ZD, Mel’nyk OI, Zakow W, Popovych IL.** The diversity of immune reactions to balneotherapy and their accompaniments. Journal of Education, Health and Sport. 2019; 9(11): 349–73.

3. **Mel’nyk OI, Struk ZD.** Predictors of individual immune responses to adaptogens. Experimental and Clinical Physiology and Biochemistry. 2019; 88(4): 5–15.

4. **Mel’nyk OI, Struk ZD, Zakow W, Popovych IL.** Vegetative, endocrine and metabolic accompaniments of individual immune responses to adaptogenic balneotherapy. Journal of Education, Health and Sport. 2019; 9(12): 207–29.

5. **Sternberg EM.** Neural regulation of innate immunity: a coordinated nonspecific response to pathogens. Nature Reviews Immunology. 2006; 6(4): 318–8.

6. **Uchakin PN, Uchakina ON, Tobin BV, Yershov FI.** Neuroendocrine Immunomodulation. Vestnik Ross AMN. 2007; 9: 26–32. [in Russian]

7. **Thayer JF, Sternberg EM.** Neural aspects of immunomodulation: Focus on the vagus nerve. Brain Behav Immun. 2010; 24(8): 1225–8.

8. **Pavlou VA, Chavan SS, Tracey KJ.** Molecular and functional neuroscience in immunity. Annual Review of Immunology. 2018; 36: 783–812.

9. **Gozhenko AI, Zakow W, Polonynko IS, Zajats LM, Yanchij RI, Portnichenko VI et al.** Individual Immune Responses to Chronic Stress and their Neuro-Endocrine Accompaniment. RSW. UMK. Radom. Torun. 2019: 200 p.

10. **Gozhenko AI.** Functional-metabolic continuum. Journal of NAMS of Ukraine. 2016; 22(1): 3–8. [in Russian]

11. **Barylyak LG, Tsymbryla VV, Zakow W, Popovych IL.** Relationships between parameters of plasma lipoproteines profile and heart rate variability. Journal of Education, Health and Sport. 2019; 9(12): 238–53.

12. **Struk ZD, Mel’nyk OI, Zakow W, Popovych IL.** Vegetative and endocrine predictors of individual immune responses to adaptogenic balneotherapy. Journal of Education, Health and Sport. 2020; 10(1): 218–25.

13. **Struk ZD, Mel’nyk OI, Zakow W, Popovych IL.** Metabolic predictors of individual immune responses to adaptogenic balneotherapy. Journal of Education, Health and Sport. 2020; 10(2): 223–30.

14. **Baevskiy RM, Ivanov GG.** Heart Rate Variability: theoretical aspects and possibilities of clinical application. Ultrasound in fuktionalnaya diagnostika, 2001; 3: 106–27. [in Russian]

15. **Heart Rate Variability.** Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of ESC and NASPE. Circulation. 1996; 93(5): 1043–65.

16. **Bernston GG, Bigger JTJr, Eckberg DL, Grossman P, Kaufman PG, Malik Met al.** Heart Rate Variability: Origins, methods and interpretive caveats. Psychophysiology. 1997; 34: 623–48.
The variety of immune responses to adoptogenetic balneotherapy is strictly deterministic

O.I. MEL’NYK¹, Z.D. STRUK²
¹Danylo Halyts’kyi National Medical University, L’viv, Ukraine
E-mail: omelnyk7@gmail.com
²Ukrainian Scientific Research Institute of Medicine for Transport, Odesa, Ukraine

Four variants of the immune responses to adaptogenic balneotherapy have been identified. It is shown that the immunotropic effect of balneotherapy on certain individuals is not effective enough and in some cases even unfavorable. All four variants of immune responses are virtually unmistakably predicted by a set of 20 immune and microbiota predictors. Each type of immune response is characterized by a specific vegetative, endocrine and metabolic support. In the next study the discriminant analysis revealed that the constellation 8 HRV and 5 endocrine parameters as well as gender of the patient predicts the nature of the immune response with an accuracy of 90.9%. As soon as we found out 16 metabolic parameters as the predictors which, taken together, determine the nature of the immune response with an accuracy of 95.5%. Standing on the positions of determinism, we assumed that taking into account all the recorded initial neuro-endocrine and metabolic parameters of the body would allow to predict the immune response of each patient unmistakably. Testing this hypothesis was the purpose of this study.

The object of observation was 34 men and 10 women aged 24-70, who came to the Truskavets’ spa for the treatment of chronic pyelonephritis combined with cholecystitis in remission. The state of the autonomic nervous system is estimated by parameters of HRV (“CardioLab+HRV”). To assess the endocrine status we determined plasma levels of principal adaptation hormones: Cortisol, Testosterone and Triiodothyronine (ELISA with the use of analyzer “RT-2100C”). The metabolic panel amounted to: plasma lipoproteines; the plasma and daily urine levels of the electrolytes (calcium, magnesium, phosphates, chloride, sodium and potassium; nitrous metabolites (creatinine, urea, uric acid). According to the parameters of electrolyte exchange, hormonal activity was evaluated: parathyroid, calcitonin and mineralocorticoid.

Following the accepted algorithm, the forward stepwise method revealed 31 parameters as the predictors, among them: 13 HRVs, 4 endocrine, 11 metabolic as well as 2 parameters of cholekinetics and age. All types of immune response to adaptogenic balneotherapy are predicted unmistakably.

The previously revealed variety of immune responses to adaptogenic balneotherapy is quite strictly conditioned by the initial state of the neuroendocrine-immune complex, microbiota, metabolism as well as the sex and age of patients.

Key words: chronic inflammation, adaptogenic balneotherapy, immune responses, HRV, hormones, metabolism.