SPA70 is a potent antagonist of human pregnane X receptor

Wenwei Lin1, Yue-Ming Wang1, Sergio C. Chai1, Lili Lv2, Jie Zheng3, Jing Wu1, Qijun Zhang2, Yong-Dong Wang4, Patrick R. Griffin3 & Taosheng Chen1

Many drugs bind to and activate human pregnane X receptor (hPXR) to upregulate drug-metabolizing enzymes, resulting in decreased drug efficacy and increased resistance. This suggests that hPXR antagonists have therapeutic value. Here we report that SPA70 is a potent and selective hPXR antagonist. SPA70 inhibits hPXR in human hepatocytes and humanized mouse models and enhances the chemosensitivity of cancer cells, consistent with the role of hPXR in drug resistance. Unexpectedly, SJ7, a close analog of SPA70, is an hPXR agonist. X-ray crystallography reveals that SJ7 resides in the ligand-binding domain (LBD) of hPXR, interacting with the AF-2 helix to stabilize the LBD for coactivator binding. Differential hydrogen/deuterium exchange analysis demonstrates that SPA70 and SJ7 interact with the hPXR LBD. Docking studies suggest that the lack of the para-methoxy group in SPA70 compromises its interaction with the AF-2, thus explaining its antagonism. SPA70 is an hPXR antagonist and promising therapeutic tool.
The xenobiotic receptor pregnane X receptor (PXR) is an orphan member of the nuclear receptor superfAMILY.1–3

The activity of human PXR (hPXR) can be induced by many structurally diverse chemicals, leading to the transcriptional upregulation of drug-metabolizing enzymes (e.g., cytochrome P450 3A4 [CYP3A4]) and transporters (e.g., multigene resistance protein 1 [MDR1]) to enhance the metabolism and excretion of xenobiotics, such as steroid hormones, bile acids and glucose.4,5 Such upregulation of hPXR has broad implications not only for the therapeutic and toxic effects of drugs but also for the development of diseases such as diabetes and cancers.6–11

PXR forms heterodimers with retinoid X receptor (RXR) to bind to the promoters of its target genes. The transcriptional activity of PXR is enhanced by co-activators, such as steroid receptor coactivator 1 (SRC-1) and transcriptional mediator/intermediary factor 2 (TIF2), and repressed by co-repressors, such as nuclear receptor corepressor (NCoR) and silencing mediator for retinoid or thyroid hormone receptors (SMRT).12

The activation function 2 (AF2) domain at the C-terminus of PXR mediates interaction with these cofactors.13 Because of the species-specificity of PXR ligands, a mouse model in which mouse PXR (mPXR) is replaced with hPXR (a humanized mouse model) enables us to examine the in vivo function of hPXR.13,14

Having been first characterized as a xenobiotic-activated receptor that regulates drug metabolism and excretion, PXR is now known to be a signaling molecule (that can also serve as a scaffold) that interacts with other signaling molecules.15 Because of the possible nongenomic scaffolding function of PXR, the phenotypes of PXR knockout mice (i.e., mice in which there is a permanent loss of PXR protein function) may differ from those of pharmacologically modulated mice (i.e., mice in which there is only a temporary change in protein function). Therefore, a PXR antagonist is a critical pharmacological tool for understanding the regulation and function of PXR. In addition, there is growing evidence that PXR mediates adverse metabolic phenotypes of both xenobiotics (e.g., acetaminophen and rifampicin/isoniazid toxicity) and endobiotics (e.g., hepatic steatosis).16–18 Further, PXR activation induces resistance to chemotherapeutic agents for cancers.18–19 Therefore, PXR antagonists might have significant therapeutic value. However, although many PXR antagonists have been characterized, with multiple co-crystal structures having been reported,20–23 only a few structurally unrelated hPXR antagonists have been described, and they are known to target other biologic processes and are not appropriate pharmacological tools for investigating the specific regulation of hPXR.18

Sulforaphane and ketoconazole are the two most comprehensively studied of these reported hPXR antagonists, but they are not effective in vivo.24,25 Although the mode of action of sulforaphane remains unclear, toxicity might contribute to the lack of in vivo efficacy of ketoconazole as an effective PXR antagonist.26 There is, therefore, an urgent need to systematically develop a series of potent, more specific, less toxic and structurally related hPXR antagonists that are active in vivo and can be used for...
spa70 antagonizes hPXR target genes induced by various hPXR agonists. a CYP3A4 protein levels in primary human hepatocytes treated with vehicle control (0.1% DMSO), 1 μM rifampicin (RIF), 0.1 μM SR12813 (SR) or 0.03 μM T090137 (TO) in the presence or absence of 2.5 μM SPA70 for 48 h. Primary human hepatocytes from at least three donors were used; representative data from donor #HH1811-1 are shown. b MDR1 protein levels in LS180 and LS174T cells treated for 72 h with 1.6 μM RIF and 10 μM SPA70 alone or in combination (RIF + SPA70: simultaneous co-treatment; RIF + SPA70 pretreatment: cells treated with SPA70 24 h before RIF treatment). Final DMSO concentration was 0.2% in both samples. c DNA microarray analysis (with representative results displayed as a heatmap), showing the expression of hPXR transcriptional target genes in human hepatocytes in response to hPXR agonists (RIF, SR or T0) with or without SPA70 co-treatment. Final DMSO concentration was 0.2% in both a, b. The levels of β-actin were used as loading controls. The numbers between the blots indicate the relative intensity of the protein bands (CYP3A4 or MDR1) in the respective lanes, with the DMSO-treated sample being set as 1.0.

Fig. 2 SPA70 antagonizes hPXR target genes induced by various hPXR agonists.

Results

Characterization of SPA70 as an hPXR antagonist. The unique ligand-binding pocket of hPXR enables it to bind to structurally diverse molecules of different sizes, making it a challenging task to design antagonists of hPXR by using a structure-based approach. Therefore, we sought a cell-based, unbiased, high-throughput chemical biology approach by which to identify antagonists of hPXR. By using the HepG2 human liver carcinoma cell line stably expressing hPXR and a luciferase reporter under the control of the promoter of CYP3A4, a transcriptional target of hPXR, we screened a library of 160,000 chemically diverse compounds in the presence of rifampicin, an hPXR agonist and
identified a number of hPXR antagonists, including SJ000076745-1, the most potent hPXR antagonist identified from the screen (Lin et al., in submission), which we call SPA70 (specific PXR antagonist #70, also known as LC-1) (Supplementary Table 1). SPA70 has a 1-substituted-phenyl-4-substituted-phenylsulfonyl-5-methyl-1H-1,2,3-triazole scaffold (Fig. 1a) with an IC$_{50}$ of 510 nM in the cell-based hPXR antagonist assay (Fig. 1b and Supplementary Table 1). In a cell-free competitive hPXR TR-FRET-binding assay, SPA70 demonstrated an IC$_{50}$ of 540 nM (K$_{d}$ = 390 nM) (Fig. 1b and Supplementary Table 1). SPA70 was highly selective for hPXR, as compared to 10 other nuclear receptors that we tested (constitutive androstane receptor [CAR], farnesoid X receptor (FXR), glucocorticoid receptor [GR], liver X receptor α [LXRα] and LXRβ, peroxisome proliferator-activated receptor γ [PPARγ], RXRα and RXRβ, vitamin D receptor [VDR], and mPXR). SPA70 was very weakly inhibiting the basal activity of mPXR and CAR (Fig. 1b); it functioned as a weak agonist of mPXR and marginally increased the agonistic activity of T0901317 on LXRβ (only at concentrations higher than 5 μM) (Fig. 1c). SPA70 showed marginal cytotoxicity in the cell models used, i.e., HepG2, HEK293 and Hepa 1-6 cells (Fig. 1d). To obtain additional information on the selectivity of SPA70 for hPXR, we performed a kinase inhibition profiling assay (Supplementary Data 1). Among the 384 kinases tested, only three were inhibited by more than 50% by 10 μM SPA70, and only KIT and colony-stimulating factor 1 receptor (CSF1R) were confirmed to be moderately inhibited by SPA70, with K$_{d}$ values of 2.5 and 4 μM, respectively. Cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 5 (CDK5), protein kinase A (PKA or PKAC), glycogen synthase kinase 3 (GSK3) and dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) have been reported to possibly affect the function of PXR, but they are not inhibited by SPA70 (Supplementary Data 1).

SPA70 antagonized the agonistic effect of rifampicin in a dose-dependent manner (Fig. 1e). In the absence of SPA70, the EC$_{50}$ of rifampicin was 1.2 μM. Increasing the concentrations of SPA70 decreased the activity of rifampicin, and an SPA70 concentration of 10 μM completely blocked the activity of rifampicin at all concentrations of that drug tested (Fig. 1e). We designed and evaluated 15 analogs of SPA70 (Supplementary Table 1). Among the SPA70 analogs, SJC2 also exhibited strong hPXR antagonistic activity. However, SJC2 also moderately antagonized PPARγ and reduced its basal activity (Supplementary Fig. 1). Therefore, we focused on SPA70 in our subsequent analysis.

To confirm the effect of SPA70 on the transcriptional activity of endogenous hPXR, we used primary human hepatocytes. As shown in Fig. 2a, the induction of CYP3A4 in primary human
hepatocytes by rifampicin was substantially blocked by SPA70. Interestingly and importantly, SPA70 was able to block the CYP3A4-inducing effect of two other structurally different hPXR agonists, SR12813 and T090137, thereby demonstrating the potential of SPA70 to antagonize a broad range of structurally diverse hPXR agonists (Fig. 2a). We further confirmed the activity of SPA70 in blocking the agonist-induced transcriptional activity of hPXR, and we demonstrated that SPA70 was able to block rifampicin induction of MDR1, another hPXR transcriptional target, in the human colorectal adenocarcinoma cell lines LS180 and LS174T (Fig. 2b and Supplementary Fig. 2).

To determine whether SPA70 blocked the expression of all genes induced by hPXR agonists, we used human primary hepatocytes in DNA microarray analysis. As shown in Fig. 2c, a broad range of hPXR transcriptional target genes were induced by the structurally different hPXR agonists rifampicin, SR12813 and T090137, but SPA70 blocked their induction. Taken together, these data indicate that SPA70 is a low toxic, specific antagonist of hPXR that blocks the induction of expression of a broad range of hPXR transcriptional target genes by several hPXR agonists.

SPA70 blocks hPXR-mediated drug metabolism in vivo. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism, we first examined the effect of SPA70 on hPXR agonist-induced metabolism of midazolam, a CYP3A4 substrate, in primary human hepatocytes. As shown in Fig. 3a, the hPXR agonists rifampicin and paclitaxel both robustly induced the metabolism of midazolam to 1′-OH-midazolam. Both rifampicin- and paclitaxel-induced metabolism of midazolam were substantially blocked by SPA70 (Fig. 3a). Paclitaxel was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 blocked CYP3A4 activity more potently than rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.

SPA70 antagonizes hPXR-mediated drug metabolism in humanized PXR mouse models. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism in vivo, we next examined the effect of SPA70 on hPXR-CYP3A4-luc reporter mice after each treatment are shown. The rainbow scale represents relative light units (photon flux per second per square centimeter), positively reflecting the luciferase activity. Fig. 4 illustrates the blocking effect of SPA70 on hPXR-mediated drug metabolism in humanized PXR mouse models. SPA70 was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.

SPA70 blocks hPXR-mediated drug metabolism in vivo. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism, we first examined the effect of SPA70 on hPXR agonist-induced metabolism of midazolam, a CYP3A4 substrate, in primary human hepatocytes. As shown in Fig. 3a, the hPXR agonists rifampicin and paclitaxel both robustly induced the metabolism of midazolam to 1′-OH-midazolam. Both rifampicin- and paclitaxel-induced metabolism of midazolam were substantially blocked by SPA70 (Fig. 3a). Paclitaxel was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.

SPA70 blocks hPXR-mediated drug metabolism in vivo. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism, we first examined the effect of SPA70 on hPXR agonist-induced metabolism of midazolam, a CYP3A4 substrate, in primary human hepatocytes. As shown in Fig. 3a, the hPXR agonists rifampicin and paclitaxel both robustly induced the metabolism of midazolam to 1′-OH-midazolam. Both rifampicin- and paclitaxel-induced metabolism of midazolam were substantially blocked by SPA70 (Fig. 3a). Paclitaxel was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.

SPA70 blocks hPXR-mediated drug metabolism in vivo. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism, we first examined the effect of SPA70 on hPXR agonist-induced metabolism of midazolam, a CYP3A4 substrate, in primary human hepatocytes. As shown in Fig. 3a, the hPXR agonists rifampicin and paclitaxel both robustly induced the metabolism of midazolam to 1′-OH-midazolam. Both rifampicin- and paclitaxel-induced metabolism of midazolam were substantially blocked by SPA70 (Fig. 3a). Paclitaxel was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.

SPA70 blocks hPXR-mediated drug metabolism in vivo. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism, we first examined the effect of SPA70 on hPXR agonist-induced metabolism of midazolam, a CYP3A4 substrate, in primary human hepatocytes. As shown in Fig. 3a, the hPXR agonists rifampicin and paclitaxel both robustly induced the metabolism of midazolam to 1′-OH-midazolam. Both rifampicin- and paclitaxel-induced metabolism of midazolam were substantially blocked by SPA70 (Fig. 3a). Paclitaxel was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.

SPA70 blocks hPXR-mediated drug metabolism in vivo. To determine the blocking effect of SPA70 on hPXR-mediated drug metabolism, we first examined the effect of SPA70 on hPXR agonist-induced metabolism of midazolam, a CYP3A4 substrate, in primary human hepatocytes. As shown in Fig. 3a, the hPXR agonists rifampicin and paclitaxel both robustly induced the metabolism of midazolam to 1′-OH-midazolam. Both rifampicin- and paclitaxel-induced metabolism of midazolam were substantially blocked by SPA70 (Fig. 3a). Paclitaxel was able to block the agonist-induced transcriptional activity of hPXR (Fig. 2b) and showed more potent inhibition of CYP3A4 activity compared to rifampicin (Fig. 2b). SPA70 reduced the induction of midazolam metabolism induced by rifampicin and paclitaxel (Fig. 3a). The reduction in midazolam metabolism induced by SPA70 was significant for both rifampicin- and paclitaxel-induced metabolism (Fig. 3a). These results indicate that SPA70 is a potent and selective inhibitor of hPXR-mediated drug metabolism in vivo.
itself is a substrate of CYP3A4\(^{30}\) and, as expected, the metabolism of paclitaxel to \(3′,3′\)-diketo-\(α,β\)-unsaturatedaketals or \(6\alpha\)-hydroxy-paclitaxel was substantially blocked by SPA70 (Fig. 3b).

It was previously reported that knocking down hPXR in cancer cells enhanced the efficacy of chemotherapeutic agents that are substrates of CYP3A4\(^{19}\). The blocking effect of SPA70 on the metabolism of paclitaxel led us to investigate whether SPA70 enhanced the efficacy of chemotherapeutic agents that were also CYP3A4 substrates. As shown in Fig. 3c, the human colorectal adenocarcinoma cell line LS180 is sensitive to paclitaxel (\(IC_{50} = 11.3\,\text{nM}\)). Exogenously expressed hPXR decreased this sensitivity (\(IC_{50} = 61.2\,\text{nM}\)), which is consistent with the known role of hPXR in regulating drug sensitivity. As expected, SPA70 alone was marginally toxic (the \(IC_{50}\) value of paclitaxel is 11.3 nM in the absence of SPA70 and 14.2 nM in its presence); however, it abolished the effect of exogenous hPXR and re-sensitized the cells to paclitaxel, further confirming its hPXR antagonistic effect. The cytotoxic effect of vincristine and vinblastine on LS180 cells exogenously expressing hPXR was also enhanced by SPA70; SPA70 decreased the \(IC_{50}\) value of vinblastine from 16.9 nM to 5.0 nM (\(n = 4, P < 0.01\)), and decreased the \(IC_{50}\) value of vincristine from 52.2 to 11.8 nM (\(n = 4, P < 0.001\); Supplementary Fig. 3a). Analysis using the Cancer Cell Line Encyclopedia database identified the colon adenocarcinoma cell line LS1034 as expressing high levels of hPXR\(^{31}\). Knocking down hPXR in SNU-C4 cells by using siRNA sensitized the cells to paclitaxel and vincristine, as expected, SPA70 mimicked the genetic downregulation of hPXR in sensitizing the cells to paclitaxel and vincristine (Fig. 3d and Supplementary Fig. 3b). Similarly, SPA70 sensitized LS1034 cells to both paclitaxel and vincristine (Supplementary Fig. 3c). Supplementary Fig. 4 shows the hPXR levels in the cell models used, with and without genetic modulation.

The blocking effect of SPA70 on hPXR-mediated effects in cancer cell lines and primary hepatocytes prompted us to examine the hPXR antagonistic effect of SPA70 in vivo by using mouse models. We first determined the maximum tolerated dose of SPA70. No detrimental health effects were observed at 500 mg kg\(^{-1}\), which was the highest dose tested (Supplementary Fig. 5). Oral administration of SPA70 at 500 mg kg\(^{-1}\) led to an increase in mouse body weight at days 13 and 15 (\(P < 0.05\)). At a dose of 200 mg kg\(^{-1}\), SPA70 effectively blocked the rifampicin-induced expression of Cyp3a11, a mouse homolog of human CYP3A4, at both the mRNA (Fig. 4a) and protein (Fig. 4b and Supplementary Fig. 2) levels in an hPXR humanized transgenic mouse model\(^{14}\). We noticed that hPXR protein levels elevated in SNU-C4 cells (\(IC_{50} = 6.7\,\text{nM}\)), which is consistent with the known role of hPXR in regulating drug sensitivity. As expected, SPA70 enhanced the efficacy of chemotherapeutic agents that are substrates of CYP3A4. Results from the hPXR humanized transgenic mouse model, the rifampicin-induced metabolism of 2,2,2-tribromoethanol by Cyp3a11\(^{35}\). In the hPXR humanized mouse model, the rifampicin-induced metabolism of 2,2,2-tribromoethanol by Cyp3a11 was effectively blocked by SPA70 (Fig. 4d). Together, these data demonstrate that SPA70 antagonizes hPXR in primary human hepatocytes, cancer cell lines, and animal models.

Unexpected agonistic activity of close analogs of SPA70. Sulforaphane and ketoconazole are the most comprehensively studied of the reported hPXR antagonists, but they are not effective in vivo\(^{24}-26\). The blocking activity of SPA70 on hPXR-mediated drug metabolism in vivo led us to further investigate its SAR by designing and evaluating analogs of SPA70 (Supplementary Table 1). Surprisingly, subtle structural modifications dramatically affected the activity of the analogs. Whereas some SPA70 analogs (such as SJ2) maintained the hPXR antagonistic activity, others (such as SJ1A) exhibited decreased hPXR antagonistic activity (Supplementary Table 1). Unexpectedly, we found that some SPA70 analogs acted as hPXR agonists (Supplementary Table 1). For example, although SJ7 (also known as LC-24) and SPA70 have comparable activities in a cell-free competitive hPXR binding assay (with \(IC_{50}\) values of 750 nM and 540 nM, respectively), SJ7 is an agonist of hPXR in cell-based assays (\(EC_{50} = 880\,\text{nM}\)). SPA70 differs structurally from SJ7 only by lacking the para-methoxy group and by having a meta-methoxy group instead of a meta-methyl group (Supplementary Table 1). Although hPXR was previously known for its ligand promiscuity, resulting in its SAR being considered difficult to study, our observation that SPA70 and its close analogs display differing hPXR antagonistic and even agonistic activities demonstrates the feasibility of studying the SARs of hPXR-ligand interactions.

SPA70 and SJ7B affect cofactor association with hPXR. The transcriptional activity of hPXR is enhanced by co-activators such as SRC-1 and TIF2, but it is inhibited by co-repressors such as NCoR and SMRT. Therefore, we examined the effect of SPA70 on the association of hPXR with NCoR and SMRT, along with the effect of SJ7B on the association of hPXR with SRC-1 and TIF2.

As shown in Supplementary Fig. 6a, in a mammalian two-hybrid assay, SPA70 increased the association of hPXR with SMRT 1.8-fold (\(P = 0.0003\)) and the association of hPXR with mNCoR 2.1-fold (\(P = 0.0002\)), whereas SJ7B increased the association of hPXR with SRC-1 1.8-fold (\(P = 0.0001\)) and increased the association with TIF2 1.6-fold (\(P = 0.0001\)). SJ7B did not affect the association of SMRT or mNCoR with hPXR, and SPA70 did not affect the association of SRC-1 or TIF2 with hPXR. Similarly, in a TR-FRET biochemical cofactor recruitment assay, SPA70 enhanced the hPXR–NCoR interactions (NCoR interaction domain 2 [NCoR2D2]; DPASNLGEDLIRKALMGSPDDK), whereas SJ7B enhanced the hPXR–SRC-1 interactions (SRC-1: CPSSHSSLTERHKILHRLLQEGSPS) (Supplementary Fig. 6b).

Consistent with the agonistic activity of SJ7B and the antagonistic activity of SPA70, Supplementary Fig. 6c shows that SPA70 could effectively block the activation of hPXR by its agonistic analog SJ7B. Taken together, these data indicate that SPA70 enhances the association of hPXR with co-activators, thereby contributing to its antagonistic effect, whereas SJ7B enhances the association of hPXR with co-activators, thereby contributing to its agonistic effect.

SJ7B co-crystallizes with hPXR. Multiple co-crystal structures of the hPXR ligand-binding domain (LBD) in complex with its agonist have been reported, with an SRC-1 peptide typically being used to increase the stability and solubility of hPXR\(^{26,37}\). Similarly, we determined the crystal structure of the hPXR LBD in complex with the agonist SJ7B and the co-activator peptide SRC-1 (CPSSHSSLTERHKILHRLLQEGSPS) at a resolution of 2.66 Å (Fig. 5 and Table 1). The hPXR LBD displays the canonical α-helical sandwich common to nuclear receptors, along with the characteristic five-stranded antiparallel β-sheet unique to hPXR. The complex exhibits a homodimer in the asymmetric unit, as observed in a number of previously reported hPXR LBD structures\(^{38}\), with the dimer interface being formed by the β1′-strands from each monomer. Protein chains A and B are similar in structure, sharing a root mean square deviation of 0.727 Å over all
atoms. The hPXR LBD adopts an active conformation with the AF-2 helix (helix 12) positioned to favor co-activator binding, in which the SRC-1 peptide is seen packed against the AF-2 groove of each LBD.

SJB7 resides in the highly hydrophobic ligand-binding site, with no hydrogen bond having been clearly observed (Fig. 5a). The t-butyl group makes hydrophobic contacts with W299, which interacts with most, if not all, of the ligands co-crystallized to date (Supplementary Fig. 7)\(^39, 40\). The ring of the t-butylphenyl group interacts with M425 and M323, with L209, V211, Y306 and L308 providing additional contacts to enclose the t-butylphenyl moiety. The triazole group is fastened in place by a narrow channel that is ~8–9 Å wide and is formed by S247, Q285, H407 and L411 (Fig. 5b), which reflects the plasticity of the hPXR LBD in molding to the shape of the ligand and may contribute to the favorable positioning of key protein–ligand interactions. Even though the residue H407 has been previously reported to participate in hydrogen bonding with several ligands, it resides at some distance (3.7 Å) from the sulfonyl group of SJB7. However, we cannot discount the possibility that interactions between the sulfonyl moiety and H407 are dependent on the histidine protonation states and the potential rotation of the residue to shorten the intervening distance (the H407 residues in the two chains are seen in different rotations).

It is significant that SJB7 appears to interact with the residues M425, L428 and F429 from the AF-2 helix (Fig. 5c), thereby stabilizing the LBD in the active conformation for coactivator binding. The dimethoxy-methylphenyl moiety forms π-π interactions with F429, in addition to F281, whereas L428 and F429 form contacts with the para-methoxy group, which is also engaged with A280. In addition, the residue M425 appears to interact with the methyl group in the triazole moiety. The 5-methyl group in the phenyl ring appears to reside loosely in a small cavity whose mouth is formed mainly by residues S247, F251, M425 and L428. The co-crystal structure of SJB7-hPXR presented here, combined with data from hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS), as discussed below, provides insights into the molecular basis of antagonism by SPA70 (Fig. 5d).

A model for SJB7 agonism and SPA70 antagonism

No co-crystal structure of hPXR with an hPXR antagonist has been reported. Because we were unable to obtain crystals of the hPXR LBD in complex with SPA70 by using the conditions for co-crystallization with an agonist (e.g., by using SRC-1 peptide to improve protein solubility), we employed HDX coupled with MS, a technique successfully used to analyze protein–ligand
interactions\(^\text{41}\). Importantly, HDX can probe the effect of protein structural dynamics and stability upon ligand binding to the hPXR LBD, providing information that is complementary to crystallographic data regarding protein–ligand interactions. The HDX experiments were conducted in the presence or absence of ligand and with or without the subsequent addition of SRC-1 peptide (CPSSHSSLTERHKLHRLIQEGGPS) for SJB7 or NCoR1-3 peptide (ASNLGLEDIIKALMGFSD) for SPA70. HDX analysis indicates that adding SJB7 or SPA70 leads to an increase in protein rigidity and the loss of structural flexibility (Fig. 6a, b and Supplementary Fig. 8). In the presence of SJB7, protection from solvent exchange has been observed in three regions in the hPXR LBD, encompassing residues 150–276 and 293–307, which suggests that SJB7 binds directly to the hPXR LBD (Fig. 6a).

Differential HDX profiles in the presence of SPA70 (Fig. 6b) reveal increased rigidity in areas (residues 144–161, 238–257 and 293–307) similar to those affected by SJB7, with additional protected sections being observed in the peptides corresponding to residues 276–281, 319–335 and 349–368. The increase in structural compactness due to the presence of SPA70 indicates that direct binding of SPA70 occurs in a region in the ligand-binding pocket similar to that where SJB7 resides. The subsequent addition of SRC-1 to the hPXR LBD–SJB7 mixture resulted in a few more areas of protection from solvent exchange, including residues 210–215, 276–281 and 401–411 (Fig. 6c); however, no further protection was observed in the vicinity of the AF-2 groove. In contrast, adding NCoR to the hPXR LBD–SPA70 complex (Fig. 6d) decreased the fluidity of the AF-2 helix (residues 412–428). On the basis of our biochemical and cellular data, the binding of SRC-1 or NCoR to the hPXR LBD was enhanced by the presence of an agonist or antagonist, respectively, and the perturbations observed in the HDX experiments due to SRC-1 and NCoR further confirm that SPA70 interacts directly with the hPXR LBD.

The analogs SJB7 and SPA70 are structurally very similar, yet SJB7 is an agonist and SPA70 an antagonist of hPXR. Whereas SJB7 contains a 2,4-dimethoxy-5-methylphenyl component, SPA70 contains a 2,5-dimethoxy phenyl component with the 5-methoxy (meta-methoxy) group replacing the 5-methyl group in SJB7. With these few exceptions, the rest of the chemical scaffold of both molecules remains structurally the same. We hypothesize that because SPA70 lacks the 4-methoxy (para-methoxy) group that is directed towards the AF-2 helix, SPA70 fails to stabilize the AF-2 helix for co-activator binding because there are no interactions with the L428 and F429 pair that forms a hydrophobic ‘spot’. Without these interactions, the AF-2 helix can move freely, leading to disorder in the region allocated for co-activator binding. Figure 5d illustrates SPA70 docked in the hPXR LBD, lacking the concerted interactions with the ‘spot’ formed by L428 and F429. The residue M425 is part of the AF-2 helix and also forms a hydrophobic contact with SPA70 through the methyl group on the triazole moiety, as with SJB7. However, unlike L428 and F429, M425 resides at the beginning of the AF-2 helix and may not be sufficient to stabilize the helix in its active form. The small cavity into which the 5-methyl group in the phenyl ring of SJB7 projects is spacious enough to accommodate larger groups such as the 5-methoxy group of SPA70. Although the accommodation of such larger groups in the small cavity might not contribute significantly to stabilizing AF-2 for co-activator binding, it may provide opportunities to improve the compound binding affinity. This concept of converting an agonist into an antagonist by weakening or abolishing interactions between the ligand and the terminal helix 12 (AF-2) is reminiscent of VDR antagonists, which unlike their agonist counterparts, have insufficient interactions with residues in the AF-2 helix\(^\text{42, 43}\).

Discussion

Our biochemical, cellular, and in vivo characterization identified SPA70 as the most potent and selective hPXR antagonist and one of the least toxic characterized to date. Supplementary Table 2 summarizes the reported hPXR antagonists. SPA70 is a sub-micromolar antagonist of hPXR in both biochemical and cell-based assays, exhibiting no detectable agonistic or antagonistic activity against a panel of seven other human nuclear receptors and having only marginal cytotoxicity in the cell models used. SPA70 is a very weak CAR inverse agonist (Fig. 1b) and a very weak mPXR agonist only at concentrations higher than 5 µM (Fig. 1c). Interestingly, SPA70 weakly promoted the agonistic effect of T0901317 on LXRβ (Fig. 1c). Our TR-FRET competitive binding data (Fig. 1b and Supplementary Table 1) suggest that SPA70 is a competitive antagonist. The decline in the basal activity of hPXR in the cell-based assay with SPA70 (Fig. 1b) might indicate that SPA70 has an agonistic effect on the basal agonistic activity in that assay system. It is also possible that SPA70 enhances the recruitment of co-repressors to reduce the
basal hPXR activity, and thus function as an inverse agonist. Most importantly, the hPXR antagonistic activity and low cellular toxicity were reproducible in a humanized hPXR mouse model: when we tested SPA70 at a dose of 500 mg kg\(^{-1}\), which was the highest dose tested, we observed no detrimental health effects in mice, and SPA70 effectively blocked the rifampicin-induced activation of hPXR in hPXR transgenic mouse models at doses of 150 and 200 mg kg\(^{-1}\). Furthermore, our design and characterization of analogs of SPA70 led us to SJB7, a close analog of SPA70 that is an agonist of hPXR. By crystal structural studies, we demonstrated that SJB7 resides in the ligand-binding site. Among other interactions revealed by the co-crystallized structure, SJB7 interacts with residues M425 (via the methyl group on the triazole moiety) and L428 and F429 (via the para-methoxy group on the dimethoxy-methylphenyl moiety) of the AF-2 helix to stabilize the LBD in the active conformation for co-activator interaction. Analogs with a relatively bulky hydrophobic substituent in place of the para-methoxy group, SPA70 fails to do so because it lacks the antagonist character possess a substituent, such as fluorine (F), chlorine (Cl) or a methyl group (Me), that is too small to increase any significant stabilization of the hPXR AF-2 helix. We used HDX-MS to obtain complementary information on SJB7-hPXR interaction, which was consistent with information derived from the crystal structure. HDX analysis revealed regions of hPXR that are similarly protected by SPA70 and SJB7, indicating that SPA70 and SJB7 bind to common regions of the hPXR ligand-binding pocket.

On the basis of the subtle differences in the chemical structures of the agonist and antagonist, on the results of hPXR LBD crystallography, and on HDX analysis, we have proposed a model to explain the antagonist activity of SPA70 (Fig. 5d). Briefly, both SJB7 and SPA70 interact with the M425 residue through the methyl group on the triazole moiety, but such interaction is insufficient to stabilize the AF-2 helix for coactivator recruitment and render agonistic activity. Whereas SJB7 further interacts with a hydrophobic ‘spot’ comprised of residues L428 and F429 to stabilize the AF-2 helix for co-activator recruitment through the para-methoxy group, SPA70 fails to do so because it lacks the para-methoxy group. Our data also show that SPA70 facilitates the recruitment of co-repressor to suppress hPXR activity. Supported to a large extent by our HDX results, we conclude that the hPXR LBD is structurally more fluid and less rigid in the absence of any ligand, which would limit the binding of co-regulatory peptides. It is, therefore, conceivable that SPA70 stabilizes the hPXR LBD, to the extent that NCOR binding is enhanced, by establishing an extensive network of internal interactions that are bridged by the ligand and acting as a ‘glue’ for added structural stability. The argument that interaction with M425 is insufficient for SPA70 to stabilize the AF-2 helix for co-activator interaction but enables SPA70 to competitively prevent agonist binding and thereby carry out its antagonistic function is supported by data presented in Supplementary Fig. 6c, which shows that SPA70 could effectively block hPXR activation by its agonistic analog SJB7. Because of the loss of function when M425 or F429 was mutated (as revealed by the activity of hPXR M425A or hPXR F429A in Supplementary Fig. 6a, c), we were unable to functionally investigate the effect of mutating M425 or F429 on the interaction of hPXR with SPA70 or SJB7. Together taken, our findings have characterized a potent, specific hPXR antagonist that is active in cell and animal models. SAR analysis suggests that subtle structural modification of SPA70 (to become SJB7) can dramatically change the cellular activity of the analogs. Therefore, the cellular outcome of ligand binding is probably determined by the conformational change induced by the ligand. Structural analysis provides evidence that SJB7 interacts directly with key residues of the hPXR ligand-binding pocket and predicts that SPA70 interacts directly with hPXR, but the effect of SPA70 on AF-2 and cellular activity differs from that of SJB7. Our discovery of structurally similar analogs that modulate hPXR in opposing ways as a result of subtle chemical structure modifications represents a considerable advance in the development of chemical probes for hPXR and reveals the possibility of studying the SARs of the promiscuous PXR.

Methods

Representative chemical synthesis

Details on the general chemical synthesis procedures employed\(^44\) can be found in the Supplementary Information. The chemical SPA70 was prepared by following a published protocol\(^39\) or purchased from ChemDiv (San Diego, CA). The chemical SJB7 was prepared by following a similar protocol to that used to prepare SPA70 (Supplementary Fig. 9) but with modifications. Briefly, the compound 4-bromo-2-methoxy-5-methylaniline (89d) was first converted to 1-azido-4-bromo-2-methoxy-5-methylbenzene (90d) via diazonium salts. The resulting bromo-azole compound 90d was then converted to the bromo-triazole compound 93d by coupling with 1-(4-(4-tert-butyl)phenyl) sulfonyl)propan-2-one. The resulting bromo-triazole compound 93d was then further converted to the product via a copper-catalyzed reaction. 1. 4-(bromo-2-methoxy-5-methylphenyl)-4-(4-(4-(4-tert-butyl)phenyl)sulfonyl)-5-methyl-1H-1,2,3-triazole (SDB3): NaNO2 (20 g, 0.29 mol) in water (100 ml) was added to a solution of 89d (4-bromo-2-methoxy-5-methyl-azidine, 48 g, 0.22 mol) in concentrated HCl (200 ml) at 0 °C, and the reaction mixture was then stirred for 15 min at 0 °C. A solution of NaN₃ (62 g, 0.95 mol) in water (150 ml) was then added dropwise. The solution was then stirred for 2 h at ambient temperature. The resulting precipitate was collected by filtration and washed with ice water. The solid was dried to give product 90d (78 g, 71% yield). 1H NMR (400 MHz, CDCl₃) \(\delta\) (ppm) 7.01 (s, 1H), 6.83 (s, 1H), 3.82 (s, 3H), 2.28 (s, 3H).

MeONa (15 g, 0.28 mol) and 1-(4-(4-tert-butyl)phenyl)sulfonyl)propan-2-one (20 g, 79 mmol) were added to a solution of compound 90d (16.5 g, 86 mmol) in MeOH. The mixture was stirred at 60 °C overnight and then poured into water. The precipitate was collected by filtration. The crude product was washed with water then with MeOH to give product 93d (4.6 g, 45% yield, 96.0% purity). 1H NMR (CDCl₃, 400 MHz): \(\delta\) (ppm) 8.02 (dd, 2H, \(J = 8.8, 2.2\) Hz), 8.55 (dd, 2H, \(J = 8.8, 2.2\) Hz), 7.24 (s, 1H), 7.1 (s, 1H), 3.76 (s, 3H), 2.42 (s, 3H), 2.34 (s, 3H), 1.32 (s, 9H). 13C NMR (126 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 157.86, 152.50, 143.59, 139.25, 138.23, 130.60, 130.52, 127.95, 127.64, 127.13, 122.38, 117.24, 57.16, 57.15, 53.30, 51.26, 21.66, 8.97. ESI-TOF HRMS: m/z 478.0790 (C₂₁H₂₄BrN₃O₃S⁺, \(H^+\) requires 478.0800).

4-(4-(tert-butyl)phenyl)sulfonyl)-1-(2,4-dimethoxy-5-methylphenyl)-5-methyl-1H-1,2,3-triazole (SJB3): NaNO₂ (130 mg, 2.4 mmol) and CuCl₂ (119 mg, 1.2 mmol) were added to a solution of compound 93d (300 mg, 0.6 mmol) in DME (10 ml). The reaction mixture was stirred overnight at 130 °C. It was then poured into water and extracted with EtOAc. The EtOAc layer was washed with water, dried with anhydrous Na₂SO₄, and concentrated with a rotary evaporator. The residue was purified by preparative HPLC to give product SJB3 (30 mg, 11.7% yield, 97.5% purity). 1H NMR (CDCl₃, 400 MHz): \(\delta\) (ppm) 7.97 (d, 2H, \(J = 8.4\) Hz), 7.49 (d, 2H, \(J = 8.4\) Hz), 6.97 (s, 1H), 6.44 (s, 1H), 3.84 (s, 3H, 3.71 (s, 3H), 2.81 (s, 3H), 2.78 (s, 3H), 2.11 (s, 3H). 13C NMR (126 MHz, CDCl₃) \(\delta\) (ppm) 159.38, 156.46, 152.08, 142.85, 137.53, 131.17, 128.8, 125.44, 125.24, 118.46, 114.46, 94.310, 55.028, 54.753, 34.241, 30.048, 14.140, 7.942. ESI-TOF HRMS: m/z 430.1790 (C₂₁H₂₄BrN₃O₃S⁺, \(H^+\) requires 430.1800).

Supplementary
Methods for the synthesis of other compounds. 1H and 13C NMR spectra are shown in Supplementary Fig. 1.

Materials and statistics. GST-PXR-LBD, Tb-anti-GST, Tris-HCl, pH 7.5 (1 M), DTT (1 M), bovine serum albumin (BSA), fluorescein–N-G02 D120 coreceptor peptide (F-NCoR02), phenol red-free DMEM (Dulbecco’s modified eagle medium), Lipofectamine 3000 and charcoal/dextran-treated fetal bovine serum (FBS) were purchased from Thermo Fisher Scientific (Waltham, MA). The 384-well low-volume black-plate tissue culture-treated black dextran-coated plates and tissue culture-treated poly-D-lysine-coated 384-well black clear-bottom plates were purchased from Corning Life Sciences (Tewksbury MA). DMSO, MgCl2, rifamycin, 10,25-dihydroxyvitamin D3, 9-cis-retinoid acid, GW4604, dexmethasone, T0901317, rosiglitazone, vircistine, vinblastine, paclitaxel, 3-,4-hydroxyxypaclitaxel, pregnenolone16a-carboxylic acid (PCN) and SR12813 were purchased from Sigma (St. Louis, MO). Tissue culture-treated 384-well white solid-bottom plates and steady-state HTS reagent were purchased from PerkinElmer Life Sciences (Hopkinton, MA). FuGENE 6 was purchased from Roche (Indianapolis, IN). Dual-Glo lucerase assay reagent and CellTiter-Glo luminescence cell viability assay reagent were purchased from Promega (Madison, WI). Staurosporine was purchased from LC Laboratories (Woburn, MA). 6-doxo-hydrxyxypaclitaxel was purchased from Cayman Chemical (Ann Arbor, MI). Midazolam and 1-OH midazolam were obtained from BD Gentest (Woburn, MA). Midazolam-D4 maleate was obtained from Cerilliant (Round Rock, TX).

HepG2 (ATCC CRL-10741), HEK293 (ATCC CRL-1573), LS180 (ATCC CL-187), LS 174T (ATCC CL-138), Hepa 1-6 (ATCC CRL-1830) and LS134T (ATCC CRL-2138) cells were obtained from ATCC (Manassas, VA). SNU-C4 (KCLB No. 0000C4) was obtained from Korean Cell Line Bank (Seoul, Korea). All cell lines have been authenticated by short tandem repeat DNA profiling, and they tested negative for Mycoplasma contamination.

The HepG2 stable cell line (agonistic and antagonistic modes) were performed in 384-well white tissue culture-treated black dextran-coated plates and tissue culture-treated poly-D-lysine-coated 384-well black clear-bottom plates purchased from Corning Life Sciences (Tewksbury MA). DMSO, MgCl2, rifamycin, 10,25-dihydroxyvitamin D3, 9-cis-retinoid acid, GW4604, dex methasone, T0901317, rosiglitazone and vircistine, vinblastine, paclitaxel, 3-,4-hydroxyxypaclitaxel, pregnenolone16a-carboxylic acid (PCN) and SR12813 were purchased from Sigma (St. Louis, MO). Tissue culture-treated 384-well white solid-bottom plates and steady-state HTS reagent were purchased from PerkinElmer Life Sciences (Hopkinton, MA). FuGENE 6 was purchased from Roche (Indianapolis, IN). Dual-Glo lucerase assay reagent and CellTiter-Glo luminescence cell viability assay reagent were purchased from Promega (Madison, WI). Staurosporine was purchased from LC Laboratories (Woburn, MA). 6-doxo-hydrxyxypaclitaxel was purchased from Cayman Chemical (Ann Arbor, MI). Midazolam and 1-OH midazolam were obtained from BD Gentest (Woburn, MA). Midazolam-D4 maleate was obtained from Cerilliant (Round Rock, TX).

For the mPXR transactivation assay, Hepa 1-6 cells were co-transfected with pCMV6-mPXR (Cat. No. MR226044, OriGene Technologies, Rockville, MD); pGL3-CYP3A4-luc and pRL-TK by using Lipofectamine 3000. Twenty-four hours after the transfection, 5000 cells per well were treated with SPAP70 with or without 5 μM PCN in 384-well white culture plates (PerkinElmer) for 24 h in phenol red-free DMEM supplemented with 5% charcoal/dextran-treated FBS before performing the Dual-Glo lucerase assay (Promega). The relative luciferase activity was determined by normalizing the firefly lucerase signal to the Renilla lucerase signal. The final DMSO concentration was 0.3% in all assays. In the agonistic assays, 10 μM PCN and DMSO were used as the positive (100% activation) and negative controls, respectively. In the antagonistic assay, 0% activation (100% inhibition) and negative (0% inhibition) controls, respectively. Compound activity was normalized to the controls.

For the hCAR transactivation assays were performed as described previously. Briefly, 5 million HepG2 cells were seeded into a 3,25 flask, allowed to grow for 24 h, then transiently transplanted with a plasma+FuGENE 6 mixture (0.75 μg of pDNA-FLAG-hCAR, 2.25 μg of CYP2B6-2.2 kb, and 0.5 μg of pRL-TK). Twenty-four hours after transfection, 5000 cells in 25 μl of phenol red-free DMEM supplemented with 5% charcoal/dextran-treated FBS were seeded into each well of 384-well tissue culture plates and incubated with compounds for a further 24 h before performing the Dual-Glo lucerase assay (Promega). The relative luciferase activity was determined by normalizing the firefly lucerase signal to the Renilla lucerase signal and was used to represent the activity of CAR. The final DMSO concentration was 0.4% in all assays. The activities of individual chemicals tested at various concentrations were normalized to that of the positive (1 μM CITCO for 100% activation in agonistic assays and 10 μM PK11195 for 100% inhibition in inverse agonistic assays) and negative (0.4% DMSO for both the agonistic and inverse agonistic assays) controls to generate the % activation in agonistic assays and the % inhibition in inverse agonistic assays.

For the GeneBLazer NR-USB-HEK 293 T assays for VDR, RXRa, RXRβ, FXR, GR, LXRα, LXRβ and PPARγ, GeneBLazer panel nuclear receptor cells, the LiveBLazer FRET/B-G Loading Kit with CCG4-AM, and all tissue culture reagents were purchased from Thermo Fisher Scientific. The assays were performed in accordance with the manufacturer’s instructions, with minor modifications as described previously. Briefly, GeneBLazer panel nuclear receptor cells were seeded into 384-well white culture plates and treated with compounds for a further 24 h before performing the Dual-Glo lucerase assay (Promega). The relative luciferase activity was determined by normalizing the firefly lucerase signal to the Renilla lucerase signal and was used to represent the activity of CAR. The final DMSO concentration was 0.4% in all assays. The activities of individual chemicals tested at various concentrations were normalized to that of the positive (1 μM CITCO for 100% activation in agonistic assays and 10 μM PK11195 for 100% inhibition in inverse agonistic assays) and negative (0.4% DMSO for both the agonistic and inverse agonistic assays) controls to generate the % activation in agonistic assays and the % inhibition in inverse agonistic assays.
using a CellTiter-Glo luminescent cell viability assay (Promega). The luminescence signal was detected using an EnVision plate reader. The final DMSO concentration was 0%. The vehicle control (DMSO 0.5%) was used as the positive control (100% cytotoxicity). The activities of SPAP70 tested at various concentrations were normalized to the positive and negative controls to generate the % cytotoxicity.

For the LS180, SNU-C4 and LS1043 cytotoxicity assays, cells were seeded in a 96-well plate (Corning) at 4000 cells per well. They were then treated with paclitaxel, vincristine, or vinblastine in quadruplicate at serially diluted concentrations in the presence or absence of 10 μM SPAP70 for 72 h at 37 °C. Cell viability was assessed using the CellTiter-Glo assay. Each experiment was repeated at least three times. siRNAs targeting PXR (SMARTpool, M-003415-02; or nontargeting control siRNA (D-001210-03) (GE Healthcare Dharmacon, Lafayette, CO) were reverse transfected into 2,500 cells in each well of a 96-well plate by using Lipofectamine RNAiMAX (Life Technologies, Carlsbad, CA) at a concentration of 100 nmol l−1.

Western blot analysis. Cells were rinsed once with cold PBS then lysed in RIPA lysis buffer (Thermo Fisher Scientific) containing protease inhibitor (Roche). Mouse liver samples were homogenized in 500 μl of cold RIPA lysis buffer in a Bullet Blender Blue homogenizer (Next Advance, Averill Park, NY). Then, 25 μg of total protein lysates were loaded onto NuPAGE 4–12% Bis-Tris gels (Invitrogen) with nonreducing buffer. After running buffer (Invitrogen), the proteins were transferred from the gel to a nitrocellulose membrane by using the iBlot gel-transfer system (Invitrogen). The membrane was then blocked for 1 h with Odyssey Blocking Buffer (LI-COR Biosciences, Lincoln, NE) and probed with mouse monoclonal antibodies against CYP3A4 (K03; stock concentration: 2.5 mg ml−1, diluted 1:5000)51, MDR1 (D-11; Cat. No. sc-55510, Santa Cruz Biotechnology, Santa Cruz, CA; stock concentration: 0.2 mg ml−1, diluted 1:5000)51, hPXR (H-11; Cat. No. sc-48340, Santa Cruz Biotechnology; stock concentration: 2.0 mg ml−1, diluted 1:400), mouse Cyp3a (Cat. No. MAB0041, Millipore, Temecula, CA; Lot No. 19579980, diluted 1:1000), or β-actin (Cat. No. A5491, Sigma); the membranes were then incubated with secondary goat anti-mouse antibody labeled with infrared dye (IRDye® 800CW Goat anti-Mouse IgG (H + L), Cat. No. 926-32210, stock concentration: 1 mg ml−1, diluted 1:15,000; or IRDye® 680LT Goat anti-Mouse IgG (H + L), Cat. No. 926-68020, stock concentration: 1 mg ml−1, diluted 1:20,000) (LI-COR Biosciences). An Odyssey infrared imager (LI-COR Biosciences) was used to visualize the protein bands. The relative intensity of each protein band was then determined by normalizing the intensity of each protein band to that of actin. The relative intensity of the sample treated with vehicle control (DMSO) was set as 1.0. At least two independent experiments were performed, and a representative gel is shown.

Microarray analysis. Primary human hepatocytes (4H181181) grown in Williams’ Medium E containing Hepatocyte Maintenance Supplement Pack (Thermo Fisher Scientific) were seeded on 37 °C. Medium E containing 0.5% DMSO, were treated with vehicle control (5 μl of acetonitrile) or rifampicin, 100 nM SR12813 or 30 nM T901937, with or without co-treatment with 2.5 μM SPAP70, for 48 h in six-well plates. In each case, total RNA was extracted using a Qiagen RNeasy Mini Kit and amplification using a Qiagen RNeasy Mini Kit and amplification software (v10.5.1.1). Quantile normalization of log-transformed, unpaired, normalized data were performed as a linear regression, and data were analyzed with Partek software (St. Louis, MO)52. The GEO accession number for the microarray analysis is GSE90122.

RNA extraction and RT-PCR. The method used for RNA extraction and polymerase chain reaction with reverse transcription (RT-PCR) has been described previously. Briefly, total RNA was isolated from cells or mouse liver tissue by using the Maxwell 16 LEV simplyRNA purification kit (Promega). Quantitative RT-PCR was performed in accordance with the manufacturer’s protocol by using TaqMan gene expression assays (Thermo Fisher Scientific) specific for the hPXR and Cyp3a11 genes, with GAPDH or 18s rRNA as the reference gene, in an ABI Prism 7900 Sequence Detection System (Thermo Fisher Scientific). Primers used are listed in Supplementary Table 3. The comparative threshold (Ct) method was used for the relative quantification of gene expression by the following formula: ΔCt = Ct (test gene) − Ct (GAPDH); ΔΔCt (gene test in treatment group) = ΔCt (test gene in vehicle control group). The fold change of the mRNA in 2−ΔΔCt, which indicates the mRNA level of the corresponding transcript in relation to that in the control samples.

In vivo toxicity and drug efficacy studies. We performed all animal experiments in accordance with a protocol approved by the St. Jude Children’s Research Hospital Institutional Animal Care and Use Committee. Male C57BL/6 mice (8–15 weeks old) (Charles River Laboratories, Wilmington, MA) and humanized PXR (hPXR/txg) mice53 were housed with free access to food and water in a room at 22–23 °C with a 12 h light/dark cycle in the St. Jude Animal Resources Center, which is certified by the American Association for Accreditation of Laboratory Animal Care. All animals used in a given experiment were matched for age and body weight. The investigator was not blinded to the group allocation during the experiment or when assessing the outcome.

For the animal acute toxicity studies, C57BL/6 mice were randomly apportioned among six groups, with five mice per group. Each mouse received saline containing 7.5% polyethylene glycol 400 (PEG) (as vehicle control) or 250 or 500 mg kg−1 of SPAP70, in each case administered as a single dose by intraperitoneal (i.p.) injection or orally. After dosing, mice were monitored daily for 15 days for morbidity and mortality. Any signs of ruffled fur, hunched posture, ataxia, tremor, anesthesia, tremor, delayed response, diarrhea, and in addition to a reduction in weight gain. The body weight of each mouse was recorded before and after treatment. At day 15, all mice were killed and a terminal blood sample was collected for examination of clinical chemistry (e.g., renal, liver and hematopoietic function). Histopathological examination of the major organs was performed with hematoxylin and eosin staining.

For the hydrodynamic injections, treatment, and in vivo imaging, in vivo delivery of the CYP3A4-luc reporter gene and the hPXR gene into mouse liver was performed using the hydrodynamic injection method described previously54,55. Briefly, a rapid (5–10 s) tail-vein injection, each mouse received 25 μg of linearized CYP3A4-luc plasmid DNA with linearized hPXR plasmid DNA in sterile saline in a volume equal to 10% of its body weight. Imaging for luciferase activity was performed 2–8 weeks after somatic gene transfer (the bioluminescence was stable in the mice during the 2–8 weeks period). Fifteen mice were i.p. injected with either VivoGlo luciferase (150 μg/kg), anesthetized with 2.5% isoflurane, or 10 mg kg−1 rifampicin, or 10 mg kg−1 rifampicin plus 150 mg kg−1 SFA70 every 24 h for 2 days, with a washout period of 72 h between rounds of treatment. The mice were imaged 10 h after the last treatment in each round. The Imaging live 3.2 software (Xenogen) was used to analyze the total photon flux of uniform regions of interest drawn around the liver. The CYP3A4-luc reporter activity (expressed as induction factor) was determined by using the total photon flux from the same mouse before and after treatment induction factor was calculated as follows: 1 for 1 μg of luciferase activity. In the experiment or when assessing the outcome.

The CYP3A4-luc reporter activity was expressed as induction factor. The CYP3A4-luc reporter activity was assayed using the same mouse before and after treatment. The CYP3A4-luc reporter activity was assayed using the same mouse before and after treatment.
was instantly frozen in liquid nitrogen and stored at −80 °C for subsequent total protein extraction.

The LORR assay method has been described previously35, by using 2,2,2-trichloroethanol, a substrate of mouse Cyp3a11 which is induced by hPXR. Mice were first injected intraperitoneally with 250 mg kg⁻¹ of 2,2,2-
trichloroethanol, then had their backsEUR and were kept warm with a heat lamp as soon as they lost their righting reflex. The LORR duration was defined as the time period from the start of LORR to when mice could right themselves twice within 1 min, after being placed on their backs. For each mouse, a baseline LORR duration was first established before oral administration of vehicle or compounds. After a 1-week washout period, each mouse underwent oral administration of vehicle, 10 mg kg⁻¹ rifampicin (a 10 mg kg⁻¹ rifampicin plus 200 mg kg⁻¹ SPAP10 (administered by i.p. injection) every 24 h for 3 days, and the righting reflex experiment was repeated at least 8 h after the last treatment. A paired Student’s t-test was used to compare the LORR duration at baseline and after treatment. A P-value of less than 0.05 was considered to indicate a significant difference between the compared groups.

Mammalian two-hybrid assay. The mammalian two-hybrid assay method has been described previously35. Briefly, the CheckMate mammalian two-hybrid system (Promega) was used to evaluate the association between hPXR and its co-regulators. LIS180 cells were co-transfected with an hPXR plasmid (pACT-hPXR, pACT-hPXR429A, or pACT-hPXR429F), a coregulator plasmid (pBIND-SRC-1, pBIND-TIF2, pBIND-SMRT), pBIND–NcoR (amino acids 1958–2413), and a GAL4 firefly luciferase reporter plasmid (pGS-luc). The Renilla luciferase is constitutively expressed from the pBIND vector, and served as an internal transfection control. The activity of the firefly luciferase Renilla luciferase was measured by using the Dual-Glo Luciferase Assay (Promega), and the relative luciferase activity of pGS-luc was determined by normalizing the activity of firefly luciferase to that of Renilla luciferase.

X-ray crystallography. For crystallization, compound SJB7 was mixed with purified hPXR LBD/SRC-1 at a 5:1 molar ratio and incubated for at least 4 h at 4 °C. Co-crystallization of hPXR LBD/SRC-1 with compound SJB7 was set up by using the hanging-drop vapor diffusion method at 20 °C.3 C. The SJB7–hPXR LBD/SRC-1 complex was crystallized against 50 mM imidazole (pH 7.8) and 10% 2-propanol (v/v). Crystals were cryoprotected by sequentially dipping them in 15, 25 and 35% ethylene glycol and then flash-frozen in liquid nitrogen.

For crystallization data collection, structure determination and refinement, and refinement and refinement, data were collected (wavelength: 0.9792 Å; temperature: 100 K) over 180° increments at the Shanghai Synchrotron Radiation Facility (SSRF, 17 U beamline). Diffraction data were indexed, integrated, and scaled using HKL2000 software.55. The hPXR LBD/ SRC-1 co-crystal with compound SJB7 was collected at a resolution of 2.66 Å. The crystal belongs to space group P2₁2₁2₁, with cell parameters of a = 84.3 Å, b = 89.30 Å, c = 106.76 Å, β = 90°. The data quality is summarized in Table 1. The structure of the hPXR LBD/ SRC-1–SJB7 complex was determined by molecular replacement with the MolRep module of the CCP4 suite, using the structure of 1NRL (Protein Data Bank ID) as the searching model.55,56. Two protein molecules (each in complex with the SRC-1 peptide) were observed in the asymmetric unit. The structure was refined with the Refmac5 program.55,56. The final model was good according to the R free (residuals in the preferred region, 96%; allowed region, 3.8%; outliers 0.4%).

Docking of SPA70 to the hPXR LBD. Docking of SPA70 to the hPXR LBD was conducted in a similar manner to that described elsewhere55 and was performed using AutoDock Vina version 1.1.1.59. All water and ligand molecules were removed from the crystal structure before the molecular docking was performed (http://www.pymol.org) before the protein and ligand PDBQT files needed for docking were generated using AutoDockTools (ADT) version 1.5.6 (http://mgltools.scripps.edu/).

Mice were detected by MS. Differential HDX-MS experiments were conducted as previously described with a few modifications50,51. All samples were analyzed on a Bruker SolariX Fourier Transform ion cyclotron resonance mass spectrometer (Q Exactive, Thermo Fisher Scientific). Product ion spectra were acquired in a data-dependent mode with the top five most abundant ions selected for the product ion analysis per scan event. The MS/MS data files were submitted to Mascot (Matrix Science) for peptide identification. Peptides included in the HDX analysis peptide set had an Mascot score greater than 20 and the MS/MS spectra were verified by manual inspection. The Mascot search was repeated against a decoy (reverse) sequence and ambiguous identifications were ruled out and not included in the HDX peptide set.

For the HDX-MS analysis, hPXR LBD (0.1 mg ml⁻¹ in 20 mM Tris–HCl, pH 7.8, 250 mM NaCl, 5 mM DTT) was incubated with the respective ligands at a 1:10 molar ratio (protein:ligand) for 1 h or further incubated with the coactivator peptide at a 1:10 molar ratio (protein:coactivator peptide) for 1 h before the HDX reactions. Either SRC-1 (pCPPSHSSTLHER-KILHLRILQGESP–S-NH₂) or NCoR1-3 (ASNLGLEDIIRKALMGSFD) cofactor peptide was used as indicated. A 5 μl sample of protein or protein complex with ligand/peptide was diluted in 20 μl D₂O on-exchange buffer (20 mM Tris–HCl, pH 7.8, 250 mM NaCl, 5 mM DTT), incubated for various HDX time points (e.g., 0, 10, 60, 300 and 900 s) at room temperature, then quenched by mixing with 25 μl of ice-cold 3 M urea, 1% trifluoroacetic acid. The sample tubes were immediately placed on dry ice after the quenching reactions until the samples were injected into the HDX platform. The protein was then passed through an immobilized pepstatin column (2 mm × 2 cm) at 200 μl min⁻¹, and the digested peptides were captured on a 2 mm × 1 cm C₁₈ trap column (Agilent) and desalted. Peptides were separated across a 2.1 mm × 5 cm C₁₈ column (1.9 μl Hypersil Gold, Thermo Fisher Scientific) with a linear gradient of 4–40% CH₃CN, 0.3% formic acid, over 5 min. Protein digestion and peptide separation were conducted at 4 °C. Mass spectrometric data were acquired using an Orbitrap mass spectrometer (Q Exactive, Thermo Fisher Scientific) with a measured resolving power of 65,000 at m/z 400. HDX analyses were performed in triplicate, with single preparations of each protein–ligand complex. The intensity-weighted mean centroid m/z value of each of the peptide envelopes was calculated and subsequently converted into a percentage of deuterium incorporation.

Statistical significance for the differential HDX data was determined by an unpaired t-test for each time point, a procedure that is integrated into the HDX Workbench software59. The deuterium level was calculated, and corrections for back-exchange were made on the basis of an estimated 70% deuterium recovery, accounting for the known 80% deuterium content of the deuterium exchange buffer. For data rendering, the HDX data from all overlapping peptides were consolidated to individual amino acid values using a residue averaging approach, in a similar manner as previously described55. Briefly, for each residue, the deuterium incorporation values and peptide lengths from all overlapping peptides were averaged, and a weighting function was applied in which shorter peptides were weighted more heavily and longer peptides were weighted less. Each of the weighted deuterium incorporation values was then averaged to produce a single value for each amino acid. The initial two residues of each peptide, as well as proline residues, were omitted from the calculations.

Data availability. The authors declare that all data supporting the findings of this study are available within the article and its Supplementary Information or from

www.nature.com/naturecommunications

| DOI: 10.1038/s41467-017-00780-5 | www.nature.com/naturecommunications |
the corresponding author upon reasonable request. The accession codes are as follows: 5X0R for hPXR LBD with SBJ/bound (Protein Data Bank); G590122 for the microarray analysis (GEO accession number).

Received: 28 February 2017 Accepted: 27 July 2017
Published online: 29 September 2017

References

1. Bertilsson, G. et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA 95, 12208–12213 (1998).

2. Kliever, S. A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82 (1998).

3. Lehmann, I. M. et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102, 1016–1023 (1998).

4. Wang, Y. M., Ong, S. S., Chai, S. C. & Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 8, 803–817 (2012).

5. Chai, S. C., Cherian, M. T., Wang, Y. M. & Chen, T. Small-molecule modulators of PXR and CAR. Biochim. Biophys. Acta 1859, 1141–1154 (2016).

6. Kortagere, S., Krasowski, M. D. & Ekins, S. Ligand- and structure-based pregnane X receptor models. Methods Mol. Biol. 929, 359–375 (2012).

7. Banerjee, M., Robbins, D. & Chen, T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov. Today 20, 618–628 (2015).

8. Xie, X., Zeng, S. & Xie, W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin. Drug Metab. Toxicol. 9, 253–266 (2013).

9. Gotob, S. & Negishi, M. Statin-activated nuclear receptor PXR promotes Sgk2 dephosphorylation by scaffolding Pp2c2 to induce hepatic glycogenolysis. Sci. Rep. 5, 14676 (2015).

10. Sinz, M. W. Evaluation of pregnane X receptor (PXR)-mediated CYP3A4 drug-drug interactions in drug development. Drug Metab. Rev. 45, 3–14 (2013).

11. Wang, Y. M., Chai, S. C., Brewer, C. T. & Chen, T. Pregnane X receptor and drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 10, 1521–1532 (2014).

12. Oldmeijer, P., Cui, H., Zhang, C. & Chen, T. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk. Expert Opin. Drug Metab. Toxicol. 12, 997–1010 (2016).

13. Ma, X. et al. The PREgnane X receptor gene-humanized mouse: a model for investigating drug-drug interactions mediated by cytochromes P450 3A4. Drug Metab. Dispos. 35, 194–201 (2007).

14. Xie, W. et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406, 435–439 (2000).

15. Kodama, S. & Negishi, M. PXR cross-talks with internal and external signals in xenobiotic sensing and metabolism. J. Biol. Chem. 280, 10165–10171 (2005).

16. Guo, G. L. et al. Enhanced acetaminophen toxicity by activation of the pregnane X receptor. Toxicol. Sci. 82, 374–380 (2004).

17. Li, F. et al. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. Drug Metab. Rev. 45, 60–72 (2013).

18. Chen, T. Overcoming drug resistance by regulating nuclear receptors. Adv. Drug Deliv. Rev. 62, 1257–1264 (2010).

19. Carnahan, V. E. & Redinbo, M. R. Structure and function of the human nuclear xenobiotic receptor PXR. Curr. Drug Metab. 6, 357–367 (2005).

20. Delves, V. et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat. Commun. 6, 8089 (2015).

21. Ekins, S. et al. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR. PLoS Comput. Biol. 5, e1000594 (2009).

22. Watkins, R. E. et al. The human nuclear xenobiotic receptor PXR: Structural determinants of directed promiscuity. Science 292, 2329–2333 (2001).

23. Noble, S. M. et al. Human PXR forms a tetrarpphan zipper-mediated homodimer. Biochemistry 45, 8579–8589 (2006).

24. Banerjee, M., Chai, S. C., Wu, J., Robbins, D. & Chen, T. Tryptophan 299 is a conserved residue of human pregnane X receptor critical for its functional consequence of ligand binding. Biochem. Pharmacol. 104, 131–138 (2016).

25. Ngan, C. H. et al. The structural basis of pregnane X receptor binding promiscuity. Biochemistry 48, 11572–11581 (2009).

26. Chalmers, M. J. et al. Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 78, 1005–1014 (2006).

27. Sakamaki, Y., Inaba, Y., Yoshimoto, N. & Yamamoto, K. Potent antagonist for the vitamin D receptor: vitamin D analogues with simple side chain structure. J. Med. Chem. 53, 5813–5826 (2010).

28. Yoshimoto, N. et al. Butyl pocket formation in the vitamin D receptor strongly affects the agonistic or antagonistic behavior of ligands. J. Med. Chem. 55, 4373–4381 (2012).

29. Lin, W., Yang, L., Chai, S. C., Lu, Y. & Chen, T. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor. J. Med. Chem. 55, 5565–5579 (2012).

30. Pohkaryalo, N. T., Matiychuk, V. S. & Obushak, M. (Arylsulfonyl)acetones and -acetonitriles: new activated methylidyne building blocks for synthesis of 1,2,3-Triaazoles. Synthesis (Mass) 14, 2321–2323 (2009).

31. Aalten, H. L. et al. The copper catalysed reaction of sodium methoxide with aryl bromides. A mechanistic study leading to a facile synthesis of arylsulfonyl acetones. Tetrahedron 45, 5565–5579 (1989).

32. Lin, W. et al. Development of BODIFY FL in vodinele as a novel and high-affinity pregnane X receptor fluorescent probe. Bioconjug. Chem. 25, 1664–1677 (2014).

33. Li, G. et al. A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol. Appl. Pharmacol. 238, 268–274 (2012).

34. Yu, D. D., Lin, W., Forman, B. M. & Chen, T. Identification of trisubstituted- pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor. Bioorg. Med. Chem. 22, 2919–2938 (2014).

35. Chai, S. C., Wang, Y. M., Cui, H., Jin, C. & Chen, T. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor. Med. Pharmacol. 87, 879–891 (2015).

36. Schuetz, E. G., Schinkel, A. H., Relling, M. V. & Schuetz, J. D. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc. Natl Acad. Sci. USA 93, 4001–4005 (1996).

37. Liu, L., Wang, Y. D., Wu, J., Cui, J. & Chen, T. Carnitine palmitoyltransferase 1A (CPT1A): a transcriptional target of PA63-FKHR and mediates PA63- FKHR-dependent motility in alveolar rhabdomyosarcoma cells. BMC Cancer 12, 154 (2012).

38. Schuetz, E. et al. Development of a real-time in vivo transcription assay: application reveals pregnane X receptor-mediated induction of CYP3A4 by cancer chemotherapeutic agents. Mol. Pharmacol. 62, 439–445 (2002).

39. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene. Ther. 6, 1258–1266 (1999).

40. Ootwnowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
56. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

57. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

58. Cherian, M. T., Yang, L., Chai, S. C., Lin, W. & Chen, T. Identification and characterization of GNP1A1 metabolites facilitates structure-activity studies of the constitutive androstane receptor. Drug Metab. Dispos. 44, 1759–1770 (2016).

59. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

60. Cummins, D. J. et al. Two-site evaluation of the repeatability and precision of an automated dual-column hydrogen/deuterium exchange mass spectrometry platform. Anal. Chem. 88, 6607–6614 (2016).

61. Pascal, B. D. et al. HDX workbench: software for the analysis of H/D exchange MS data. J. Am. Soc. Mass Spectrom. 23, 1512–1521 (2012).

62. Keppel, T. R. & Weis, D. D. Mapping residual structure in intrinsically disordered proteins at residue resolution using millisecond hydrogen/deuterium exchange and residue averaging. J. Am. Soc. Mass Spectrom. 26, 547–554 (2015).

Acknowledgements
We thank Dr Keith A. Laycock (St. Jude Department of Scientific Editing) for editing the manuscript and other members of the Chen research laboratory for valuable discussions of the paper; Dr Changhui Liu and the St Jude Hartwell Center for technical assistance with the LC-MS/MS analysis; Dr Peter Vogel of the St Jude Veterinary Pathology Core Laboratory for veterinary pathology consultation; the St Jude Animal Resource Center for animal-related technical services; the St Jude Small Animal Imaging Center for animal imaging; the St Jude Hartwell Center for peptide synthesis; WuXi AppTec for technical assistance with chemical synthesis; Dr Wen Xie of the University of Pittsburgh for providing the hPXR humanized transgenic mouse model; and Granger Ridout of the St Jude Hartwell Center for assistance with the microarray analysis. This work was supported in part by ALSAC and by the National Institutes of Health (grants R01-GM086415, R01-GM110034, R35-GM118041, and P30-CA21765). Human primary hepatocytes were obtained through the Liver Tissue and Cell Distribution System (Pittsburgh, PA), which is funded by NIH contract no. N01-DK-7-9442.

Competing interests: The authors declare no competing financial interests.

Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00780-5.

© The Author(s) 2017

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's creative commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.