Increasing External Effects Negate Local Efforts to Control Ozone Air Pollution: A Case Study of Hong Kong and Implications for Other Chinese Cities

Likun Xue,*†§ Tao Wang,*†⊥ Peter K. K. Louie,* Connie W. Y. Luk,‡ Donald R. Blake,§ and Zheng Xu†

1Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, China
2Environmental Protection Department, the Government of Hong Kong Special Administrative Region, Hong Kong, China
3Department of Chemistry, University of California at Irvine, Irvine, California, United States

ABSTRACT: It is challenging to reduce ground-level ozone (O₃) pollution at a given locale, due in part to the contributions of both local and distant sources. We present direct evidence that the increasing regional effects have negated local control efforts for O₃ pollution in Hong Kong over the past decade, by analyzing the daily maximum 8 h average O₃ and O₃+NO₂ concentrations observed during the high O₃ season (September–November) at Air Quality Monitoring Stations. The locally produced O₃ showed a statistically significant decreasing trend over 2002–2013 in Hong Kong. Analysis by an observation-based model confirms this decline in situ O₃ production, which is attributable to a reduction in aromatic hydrocarbons. However, the regional background O₃ transported into Hong Kong has increased more significantly during the same period, reflecting contributions from southern/eastern China. The combined result is a rise in O₃ and a nondecrease in O₃. This study highlights the urgent need for close cross-boundary cooperation to mitigate the O₃ problem in Hong Kong. China’s air pollution control policy applies primarily to its large cities, with little attention to developing areas elsewhere. The experience of Hong Kong suggests that this control policy does not effectively address secondary pollution, and that a coordinated multiregional program is required.

1. INTRODUCTION

Ozone (O₃) is a principal component of photochemical smog, a form of air pollution that is rife within urban-industrialized regions. High concentrations of O₃ can adversely affect the health of humans, crops, and vegetation, and may alter the climate.1–3 The ambient O₃ at a given location is produced by a variety of precursors, namely nitrogen oxides (NOₓ=NO+NO₂), carbon monoxide (CO) and volatile organic compounds (VOCs), which may be emitted either locally or from distances even hundreds of kilometres away.4,5 Therefore, a major challenge of O₃ pollution regulation is to deal with processes and contributions on different scales.

Ozone pollution has posed an ongoing challenge to researchers and policy makers since it was first discovered in Los Angeles in the 1950s.6 Recent compilations of long-term monitoring data indicate success in the implementation of pollution-control measures in some metropolitan areas in North America, for example, Los Angeles (California’s South Coast Air Basin),7 New York (the Northeastern U.S. urban corridor)8 and Houston.8,9 NOₓ and VOCs have been significantly reduced in both these cities and the surrounding areas.8,10,11 In contrast, the air quality in China has deteriorated over the last three decades, due to the nation’s rapid urban-industrialization. This deterioration includes emergence of widespread ground-level O₃ pollution.12–14 Hong Kong is situated on the South China coast, adjacent to the rapidly developing Pearl River Delta (PRD) region (Supporting Information (SI) Figure S1). As Hong Kong has far outstripped mainland China in terms of economic development and environmental regulation (note that Hong Kong and mainland China constitute one country with two administrative systems) and is downwind of mainland China in autumn/winter monsoon seasons, it provides a unique opportunity to evaluate the effectiveness of local efforts to control O₃ pollution against the backdrop of an ongoing increase in O₃-precursor emissions in the surrounding regions.

Like virtually all other metropolitan areas, Hong Kong has for many years suffered from serious air-pollution problems, including early reports of photochemical smog in the mid-1990s.15 To improve the territory’s air quality, the Hong Kong government has since implemented long-term and step-by-step measures to reduce the emissions of NOₓ, CO and VOCs from vehicles, power plants, industrial, commercial and residential activities (see http://www.epd.gov.hk/epd/english/environmentinhk/air/prob_solutions/strategies_apc.html for...
details of the air pollution control program). As a result, the anthropogenic emissions of O₃ precursors have significantly decreased since the 1990s (see SI Figure S2 for the estimated emission inventory data). However, this reduction in local emissions does not appear to have alleviated the O₃ pollution problem in Hong Kong. Previous studies have shown that the O₃ concentration in both the background and urban atmospheres increased at an average rate of 0.58 ppbv/year during 1994–2007, and suggested considerable contributions from regional transport in the PRD and super-regional transport from eastern China. Thus, it is crucial to quantify the contributions of local and external sources to O₃ trends in Hong Kong and to assess the effectiveness of local pollution-reduction measures.

In this study, we used data obtained from the Air Quality Monitoring Network by the Hong Kong Environmental Protection Department (HKEPD) to analyze the O₃ trends over 2002–2013 as well as the local and regional contributions. An observation-based box model (OBM) was then used with the most comprehensive data at a polluted site (Tung Chung) to verify trends in local O₃ production and to evaluate the effects of reducing individual O₃ precursors. The results of the analysis provide solid evidence that the government’s control efforts have reduced local ozone production in Hong Kong. However, due to increasing contributions from southern/eastern China, the overall O₃ concentration has risen. We discuss the implications of Hong Kong’s experience for other Chinese cities.

2. MATERIALS AND METHODS

2.1. Data Source. We analyzed the air-quality data (i.e., O₃, CO and NOₓ) collected at 11 Air Quality Monitoring Stations (AQMS; see SI Figure S1) in Hong Kong during the autumn season (September–November) of 2002–2013. The autumn data was chosen because it is the period when Hong Kong suffers from severe photochemical O₃ pollution and is generally located downwind of mainland China under Asian monsoons. The instrumentation, quality assurance and control protocols implemented by the Hong Kong AQMS are similar to those used in the US’s air-quality monitoring program. Continuous measurements were available at most AQMS over 2002–2013, with occasional data gaps at 1 or 2 sites in several years (see Table S1 for an overview of the data availability at each AQMS). The daily maximum 8-h average (DMA8) O₃ concentrations, upon which the ambient air quality standards in Hong Kong (75 ppbv) are based, were subject to the analysis. To take into consideration the titration of O₃ by fresh NO emissions, O₃ was used instead of O₃ to determine the regional and local contributions.

The data obtained at Tung Chung (see also SI Figure S1) were subject to a more-detailed OBM analysis, for the following reasons: (1) this site is located in the area of Hong Kong that experiences the most serious O₃ pollution, and (2) the measurements taken at this site comprised the most comprehensive source of data, including long-term observations of hydrocarbons and short-term intensive measurements of oxygenated VOCs (OVOCs) and nitrous acid (HONO). We have two sets of hydrocarbon measurements. One was made by using canister sampling coupled with laboratory detection by gas chromatography (GC) with flame-ionization detection (FID), electron-capture detection and mass-spectrometry detection, which is an internationally recognized system for VOC measurements and has been utilized in dozens of previous studies (the chemical analysis of samples was carried out at the University of California at Irvine). The other set comprised the real-time measurements obtained by a combination of GC separation, photoionization detection and FID detection (Syntech Spectras, model GC955 Series 600/800 POC/P; it consists of two systems for detection of C₂−C₅ and C₆−C₁₀ hydrocarbons respectively). The canister data covered a wide range of nonmethane hydrocarbon (NMHC) species (C₂−C₁₆; >50 species) at a relatively low time resolution (normally one 24 h sample per week). In comparison, the real-time data had a high time resolution (30 min) but only covered ~30 major C₂−C₉ NMHC species. Canister measurements were available for 2002, 2006, 2007, and 2011, and the validated real-time data covered the period of 2008–2012. Overall, both measurements showed good agreement for alkanes and aromatics but large discrepancy for alkenes (see SI Figure S3 for an intercomparison). It is still not clear about the reason for the discrepancy in ambient alkenes measurements (note that our periodical intercomparison by sampling the same standards showed good agreement between both methods). Considering that the real-time instrument sometimes may not work well for alkenes (especially the low-carbon species) and that the canister measurements are usually believed to be more reliable, we corrected the real-time data according to the canister data in the base analysis. Besides, we conducted another set of analysis with canister data corrected by real-time data, and found that our major conclusions remained unchanged (see SI for a detailed evaluation).

2.2. Determination of Regional Background and Locally Produced Ozone. We utilized the method proposed by the Texas Commission on Environmental Quality (TCEQ) to determine the “regional background O₃” transported into the Hong Kong area. Ten AQMS (except for Sham Shui Po site; see SI Figure S1) were selected based on their locations near the urban perimeter and distances from local emission sources. These sites are believed to be capable of measuring regional background O₃ when any of them is upwind of the Hong Kong urban area. The regional background O₃ can be estimated as the lowest DMA8 O₃ concentration recorded by these sites. We also computed the area-wide peak O₃ as the highest DMA8 O₃ value observed at all of the AQMS (including Sham Shui Po). The locally produced O₃ can be determined as the difference between the peak O₃ and regional background O₃. The regional background and locally produced O₃ were estimated every day for the autumn seasons of 2002–2013.

Berlin et al. recently evaluated the uncertainties of the TCEQ determination of regional background ozone, which may be overestimated with recirculation of aged local plumes with O₃ produced in the preceding days, and be underestimated if there was a large spatial gradient in background O₃. Such uncertainties are inevitable for all the observation-based studies. Here it should be recognized that our derived “local O₃” refers to the O₃ produced photochemically in Hong Kong within 1 day. Another uncertainty relates to the weak sea breeze penetrating partially and affecting only a few coastal sites, which may also lead to underestimation of background O₃. This problem should be small in the present study given the dominance of continental outflow from mainland China in autumn. A somewhat subjective but stringent method was adopted here to reduce this problem. We examined the time series obtained at all AQMS, and chose the days on which the DMA8 O₃ at the coastal site (i.e., Tap Mun) was distinctly lower than the regional background O₃.
lower than those at all the other sites and DMA8 O₃ at Hok Tsui. For such days, the lowest DMA8 O₃ at the noncoastal sites was regarded as the regional background O₃. Only 23 days (2.1%) out of 1092 were revised, and the regional background O₃ was increased on average by 17.8 ppbv on these days. Despite the high data capture rates (normally >97%) at AQMS, some data gaps remain (e.g., at KT in 2002; see SI Table S1), which may also raise uncertainty in the regional background O₃ determination. It is difficult to accurately quantify such uncertainty, but it should be small in view of the facts that the TCEQ method uses the data at ten AQMS (using only the maximum and minimum O₃) and that the KT data were generally moderate among all AQMS.

We compared the regional background O₃ determined by the TCEQ method with the DMA8 O₃ observed at Hok Tsui, a remote background station of Hong Kong (see the results in SI Figure S4). NO₂ was not routinely measured at Hok Tsui, but its concentrations are generally very low at midday compared to O₃ according to our previous observations. Overall, the TCEQ background O₃ exhibited a good agreement with the O₃ at Hok Tsui, with a slope of 1.01 ± 0.03 (95% confidence intervals) and r² of 0.74. This suggests that the TCEQ method provides a reasonable measure of the regional background O₃ entered Hong Kong.

2.3. Observation-Based Model. An observation-based chemical box model was used to estimate in situ O₃ production and its sensitivity to changes in O₃ precursors. In brief, the model was based on the Master Chemical Mechanism (MCM v3.2), an explicit mechanism describing the degradation of 143 primary VOCs together with the latest IUPAC inorganic nomenclature. In addition to chemistry, we considered physical processes such as dry deposition and atmospheric dilution with evolution of the planetary boundary layer. The photolysis frequencies appropriate for Hong Kong were parametrized using a two-stream isotropic-scattering model under clear-sky conditions (we did not consider the impact on O₃ production of the variation in solar radiations, and the rationale of this study is just to evaluate the effect of O₃ precursor changes), and were calculated within the model as a function of the solar zenith angle. A detailed description of this model, which we have used in previous studies, is given in the SI.

We performed model calculations for the years of 2002 and 2006–2012, during which the VOC measurements were available. The model was constrained by the autumn-average diurnal profiles of O₃, CO, SO₂, NO, NO₂, CH₄, C₃–C₁₀ NMHCs, H₂O, temperature and pressure measured at Tung Chung. To facilitate a more reasonable modeling analysis, we also prescribed the model with the measurements of OVOCs (17 species; see SI), HONO and aerosol surface density collected at Tung Chung during an intensive campaign in the autumn of 2011 (assuming constant levels for all years). We also conducted sensitivity analysis without constraints of the measured HONO. The results indicated that our major conclusions were unchanged (see SI for a full discussion).

The model read the measurement data every hour to calculate in situ O₃ production, destruction and net rates. The model was run with 00:00 local time (LT) as the initial time. For each simulation, the model preran for 9 days to ensure that it approached a steady state necessary to stabilize the concentrations of unconstrained species. The output of the 10th day was then subject to further analyses. We also estimated the sensitivity of O₃ production to changes in various O₃ precursors by conducting sensitivity model runs.

3. RESULTS

3.1. O₃/O₂ Trends. Figure 1a shows the trends of the autumn-average DMA8 O₃ and O₂ observed in Hong Kong between 2002 and 2013. A slightly increasing trend was found for O₃ with a change rate of 0.36 ± 0.59 (±95% confidence intervals) ppbv/year, but this increase was of little statistical significance (p = 0.21). The poor statistics were mainly driven by the outlying measurements in 2004. If the 2004 data was excluded from the regression, a clear and statistically significant upward trend (p = 0.037) with a larger amplitude (0.54 ± 0.49 ppbv/year) would be obtained. 2004 was an unusual year during which Hong Kong and the PRD region suffered from an extremely unfavorable weather condition. More intense sunlight and the dry weather facilitated stronger production of O₃ in the region. Hence in the subsequent discussion the O₃/O₂ trends only refer to those derived from analysis of data without the 2004 outlier. In comparison with O₃, O₂ showed a smaller rise (0.27 ± 0.63 ppbv/year) but the trend was not statistically significant. Overall, these long-term observations indicate a rise in ambient O₃ and a nondecrease in O₂ in Hong Kong over the past decade.

Figure 1b documents the average regional background O₃ and locally produced O₂ determined by the TCEQ method in the autumn of 2002–2013. The regional background O₃ transported into Hong Kong composed on average approximately 70% of the DMA8 O₃ concentrations, and explained 75% of the measured variability in DMA8 O₃ (see SI Figure S5). In general, the locally produced O₂ only contributed about...
30% to the observed DMA8 O₃. To make these results in perspective, the average concentrations of both regional and local O₃ on all days were estimated at 54 and 23 ppbv respectively, contributing to a total mean DMA8 O₃ of 77 ppbv. For the O₃ nonattainment days (i.e., days with DMA8 O₃ exceeding 75 ppbv), in comparison, the mean regional and local O₃ increased to 77 and 38 ppbv, sustaining a total average DMA8 O₃ of 115 ppbv. These results indicate the dominant contribution of regional transport to the ambient O₃ in Hong Kong.

Figure 1b also shows opposite trends in the regional background O₃ and local O₃ in Hong Kong. The regional background O₃ have increased at 0.52 ± 0.55 ppbv/year in the past decade, though the trend was only of marginal statistical significance (p = 0.06). A single-tailed Student’s t test suggests that the probability that the trend is positive is about 0.97. The increasing amplitude also agrees well with that determined for surface O₃ at Hok Tsui (a background site in Hong Kong; 0.58 ppbv/year) during the 1994–2007 period.16 On the contrary, the locally produced O₃ showed a clear and statistically significant downward trend (p = 0.05) but with a smaller rate (−0.25 ± 0.25 ppbv/year). The above analyses reveal clearly that the local O₃ has been reduced but the transported regional O₃ has increased more significantly, and their combined effect resulted in a rise in O₃ and a nondecrease in O₃ in Hong Kong.

3.2. Trends in O₃ Precursors

It is of interest to find the cause of reduction in the locally produced O₃ in Hong Kong. For this purpose, we examined the trends of major O₃ precursors obtained at AQMS. Figure 2a clearly displays the statistically significant decreasing trends in the mean concentrations of CO, NO₂, and NOₓ observed at all available AQMS (i.e., 9 for NOₓ, 11 for NO₂ and 4 for CO) in the autumn months between 2002 and 2013: CO showed a mean rate of decline in the locally produced O₃ by the OBM analysis.

Figure 2. (a) Trends in autumn mean (September–November) NOₓ, NO₂, and CO observed at all available AQMS in Hong Kong. (b) Trends for major anthropogenic hydrocarbons measured at Tung Chung (the most polluted AQMS). The fit lines indicate linear regressions with slopes (±95% confidence intervals) and R squares annotated.

In Hong Kong, photochemical O₃ production is generally more sensitive to VOCs.20 Figure 2b presents the average concentrations of major NMHCs measured at Tung Chung (the only AQMS with long-term VOC observations) in the autumn months of 2002–2012. To facilitate analysis and interpretation, the anthropogenic NMHC species were categorized into four groups, namely, reactive aromatics (R-AROM; including all aromatics except for benzene), reactive olefins (R-OLF, including all alkenes other than ethene; note that the ethene data obtained from the real-time GC measurements were not reliable and that ethene only presents a minor contributor to O₃ production in Hong Kong.20 Thus, ethene was not considered in this analysis), alkanes with ≥4 carbons (C₄HC) and hydrocarbons with low reactivity (LRHC; including ethane, propane and benzene). The ambient levels of reactive aromatics clearly declined over the period of study (p = 0.012), with a mean change rate of −0.20 ± 0.14 ppbv/year. This is an expected result of the strict VOC-control measures undertaken by the Hong Kong government. In April 2007, for instance, Hong Kong implemented the VOC Regulation, which was designed to control the VOC content (mainly aromatics) of architectural paints/coatings, printing inks, and six broad categories of consumer products. This Regulation was amended in October 2009 to extend control to additional products with high aromatic-VOC content. In comparison, despite the various control measures implemented by the government, we observed no significant trends in the concentrations of other NMHC groups (i.e., R-OLF, C₄HC, and LRHC). The use of liquefied petroleum gas, which was not under effective control in Hong Kong until 2013, may be responsible for the sustained levels of certain VOC species (e.g., alkenes and butanes). Overall, these observations confirm that the ambient levels of CO, NOₓ, and aromatic VOCs in Hong Kong have decreased in response to local control efforts. In the next section, we further evaluate their contributions to the reduced local O₃ production by the OBM analysis.

3.3. Changes in Local Ozone Production

Figure 3 presents the trends in the OBM-calculated daytime-average (09:00–18:00 LT) net O₃ production rates at Tung Chung for the years of 2002 and 2006–2012, during which the VOC measurements were available. Consistent with the observed decline in the locally produced O₃ concentrations, the in situ net O₃ production rate showed a clear and statistically significant downward trend (−0.26 ± 0.25 ppbv/h/year, p = 0.04; see the red solid circles). This finding confirms the reduction in local ozone production in Hong Kong.

To evaluate the impact of the O₃ precursor changes on local O₃ production, a number of sensitivity model runs were conducted for the 2006–2012 period, with 2002 as a baseline. The base models for 2006–2012 were rerun with most of their parameters unchanged but with constraints to target O₃ precursors based on the 2002 data (i.e., assuming no change

dx.doi.org/10.1021/es503278g | Environ. Sci. Technol. 2014, 48, 10769−10775

10772
in each target precursor since 2002). The differences in the net O₃ production rates between the sensitivity and base runs can thus be ascribed to the changes in target precursors. The results are also presented in Figure 3. It is clear that if the levels of reactive aromatics had remained the same from 2002 onward, the net O₃ production rates between 2006 and 2012 would have been significantly higher than those determined from the base runs (see gray squares), and the trend of decreasing in situ aromatics, and NOₓ, found to be VOC-limited, particularly sensitive to reactive aromatics, and NOₓ, generally had a negative influence on O₃ production.

4. DISCUSSION AND IMPLICATIONS

As evidenced by the present study, although the control measures implemented by the Hong Kong government have effectively mitigated local O₃ formation, these efforts have been negated by the increase of regional influences. The rise in regional background O₃ levels is believed to be due to the increase in O₃ levels in the PRD region, along with the contributions of “super-regional” transport from the upstream regions beyond the PRD, that is, eastern China. Over the last few decades, the anthropogenic emissions of NOₓ and VOCs have sharply increased across eastern China due to economic expansion and increasing energy use.33–35 Indeed, it has been confirmed that the atmospheric O₃ levels in several of the most urbanised regions of eastern China, namely the North China Plain, the Yangtze River Delta and the PRD, have shown an upward trend in the past decade.13,16,36–38 This increase in “background” O₃, due mainly to regional (PRD-originating) and super-regional (eastern China based) contributions, has offset the reduction of local ozone production in Hong Kong, leading to an overall increase in ambient O₃ levels. However, without local control efforts would have definitely resulted in a more significant increase in ambient O₃ levels in Hong Kong. To successfully control its ozone problem in the future, therefore, Hong Kong must collaborate closely with mainland China, not only the PRD but also the entirety of eastern China. This study also has important implications for efforts to reduce secondary pollution in other Chinese cities. The findings of recent studies have indicated that ozone pollution is becoming more extensive and more severe in the major urban-industrialized regions of China,12,14,39 and the ozone problem will be undoubtedly among China’s key environmental management targets in the near future. In the past, China’s air-pollution control has been limited to a few megacities (Beijing, Shanghai, and Guangzhou), partly due to more imminent needs to clean its air for hosting the 29th Summer Olympics, the 40th
World Expo, and the 16th Asian Games, respectively. Although these measures have helped to lessen primary pollution, they do not seem to have been sufficient in reducing ozone and other secondary pollutants.40,41 Even the unprecedentedly stringent pollution-control measures implemented in the Beijing Municipality before the Olympics in summer of 2008 did not significantly reduce ozone and sulfate aerosol pollution, due to the strong influence of regional pollution sources south of Beijing.41 The long-term data analyzed in the present study in Hong Kong vividly illustrate the importance of dealing with pollution sources over a large geographical area. As many other cities in central and eastern China are closer to regional sources of pollution, it is vital to develop and implement coordinated multiregional policies to mitigate ozone pollution and other secondary problems in these cities.

ASSOCIATED CONTENT

Supporting Information
Table S1; Figures S1—S7; description of the measured hydrocarbon and OVOC species; description of the observation-based box model; results of sensitivity modeling analysis with real-time alkenes measurements; impact of the HONO mechanism (v3.2). We thank the referee who assessed our manuscript.

AUTHOR INFORMATION

Corresponding Authors

(T.W.) Phone: (852) 2766-6059; fax: (852) 2334-6389; e-mail: cetwang@polyu.edu.hk.

(L.X.) Phone: (852) 2766-6059; fax: (852) 2334-6389; e-mail: xuelikun@gmail.com.

Present Address

1Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the HKEPD for providing the air-quality data, and the University of Leeds for providing the Master Chemical Mechanism (v3.2). We thank the referee who assessed our previous manuscript and gave very helpful suggestions for improving our study. This study was funded by the Hong Kong Environment and Conservation Fund (project no. 7/2009), the HKEPD (tender ref 06911-01136) and the Hong Kong Polytechnic University (1-ZV9N). The opinions expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the Government of the Hong Kong Special Administrative Region, nor does mention of trade names or commercial products constitute an endorsement or recommendation of their use.

REFERENCES

1. Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Research Council: Washington, D.C., 1991.

2. Chameides, W. L.; Li, X. S.; Tang, X. Y.; Zhou, X. J.; Luo, C.; Kiang, C. S.; St John, J.; Saylor, R. D.; Liu, S. C.; Lam, K. S.; Wang, T.; Giorgi, F. Is ozone pollution affecting crop yields in China? Geophys. Res. Lett. 1999, 26 (7), 867–870.

3. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK, 2007.

4. Hidy, G. M. Ozone process insights from field experiments Part I. Overview. Atmos. Environ. 2000, 34 (12–14), 2001–2022.

5. Stillman, S. The relation between ozone, NOx, and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33 (12), 1821–1845.

6. Haagen-Smit, A. J. Chemistry and physiology of Los Angeles Smog. Ind. Eng. Chem. 1952, 44 (6), 1342–1346.

7. Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Neuman, J. A.; Roberts, J. M.; Parrish, D. D. Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. J. Geophys. Res. Atmos. 2011, 118 (11), S893–S911.

8. Parrish, D. D.; Singh, H. B.; Molina, L.; Madronich, S. Air quality progress in North American megacities: A review. Atmos. Environ. 2011, 45 (39), 7015–7025.

9. Berlin, S. R.; Langford, A. O.; Estes, M.; Dong, M.; Parrish, D. D. Magnitude, decadal changes, and impact of regional background ozone transported into the greater Houston, Texas, Area. Environ. Sci. Technol. 2013, 47, 13985–13992.

10. McDonald, B. C.; Dallmann, T. R.; Martin, E. W.; Harley, R. A., Long-term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. J. Geophys. Res. Atmos. 2012, 117.

11. Warneke, C.; de Gouw, J. A.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Atlas, E.; Blake, D.; Trainer, M.; Parrish, D. D., Multyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. J. Geophys. Res. Atmos. 2012, 117.

12. Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X. Ozone production in four major cities of China: Sensitivity to ozone precursors and heterogeneous processes. Atmos. Chem. Phys. Discuss. 2013, 13, 27243–27285.

13. Shao, M.; Tang, X. Y.; Zhang, Y. H.; Li, W. J. City clusters in China: Air and surface water pollution. Front. Ecol. Environ. 2006, 4 (7), 353–361.

14. Wang, T.; Ding, A. J.; Gao, J.; Wu, W. S., Strong ozone production in urban plumes from Beijing, China. Geophys. Res. Lett. 2006, 33, (21).

15. Wang, T.; Lam, K. S.; Lee, A. S. Y.; Pang, S. W.; Tsui, W. S. Meteorological and chemical characteristics of the photochemical ozone episodes observed at Cape D’Agular in Hong Kong. J. Appl. Meteorol. 1998, 37 (10), 1167–1178.

16. Wang, T.; Wei, X. L.; Ding, A. J.; Poon, C. N.; Lam, K. S.; Li, Y. S.; Chan, L. Y.; Anson, M. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmos. Chem. Phys. 2009, 9 (16), 6217–6227.

17. Li, Y.; Lau, A. K. H.; Fung, J. C. H.; Ma, H.; Tse, Y. Y. Systematic evaluation of ozone control policies using an Ozone Source Apportionment method. Atmos. Environ. 2013, 76, 136–146.

18. Li, Y.; Lau, A. K. H.; Fung, J. C. H.; Zheng, J. Y.; Zhong, L. J.; Louie, P. K. K., Ozone source apportionment (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region, China. J. Geophys. Res. Atmos. 2012, 117.

19. Lam, K. S.; Wang, T. J.; Chan, L. Y.; Wang, T.; Harris, J. Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong. Atmos. Environ. 2001, 35 (18), 3121–3135.

20. Zhang, J.; Wang, T.; Chameides, W. L.; Cardelino, C.; Kwok, J.; Blake, D. R.; Ding, A.; So, K. L. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China. Atmos. Chem. Phys. 2007, 7, 557–573.

21. Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO,
NO$_2$, NO$_x$, O$_3$, and SO$_2$. Atmos. Chem. Phys. 2010, 10 (23), 11931−11954.

(22) Xue, L. K.; Wang, T.; Simpson, I. J.; Ding, A. J.; Gao, J.; Blake, D. R.; Wang, X. Z.; Wang, W. X.; Lei, H. C.; Jing, D. Z. Vertical distributions of non-methane hydrocarbons and halocarbons in the lower troposphere over northeast China. Atmos. Environ. 2011, 45 (36), 6501−6509.

(23) Langford, A. O.; Senff, C. J.; Banta, R. M.; Hardesty, R. M.; Alvarez, R. J.; Sandberg, S. P.; Darby, L. S., Regional and local background ozone in Houston during Texas Air Quality Study 2006. J. Geophys. Res., Atmos. 2009, 114.

(24) Nielsen-Gammon, J., Tobin, J., McNeel, A., Li, G. A conceptual model for eight-hour exceedences in Houston, Texas Part I: background ozone levels in Eastern Texas; Houston, TX, 2005.

(25) Wang, T.; Lam, K. S.; Chan, L. Y.; Lee, A. S. Y.; Carroll, M. A. Trace gas measurements in coastal Hong Kong during the PEM-West B. J. Geophys. Res., Atmos. 1997, 102 (D23), 28575−28588.

(26) Jenkin, M. E.; Saunders, S. M.; Derwent, R. G.; Pilling, M. J. Construction and application of a master chemical mechanism (MCM) for modelling tropospheric chemistry. Abstr. Pap. Am. Chem. Soc. 1997, 214, 116−COLL.

(27) Jenkin, M. E.; Saunders, S. M.; Wagner, V.; Pilling, M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181−193.

(28) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161−180.

(29) Hayman, G. D. Effects of Pollution Control on UV Exposure, AEA Technology Final Report prepared for the Department of Health and Contract 121/6377; AEA Technology: Oxfordshire, UK, 1997.

(30) Xue, L. K.; Wang, T.; Guo, H.; Blake, D. R.; Tang, J.; Zhang, X. C.; Saunders, S. M.; Wang, W. X. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: Results from the Mt. Waliguan Observatory. Atmos Chem. Phys. 2013, 13 (17), 8551−8567.

(31) Hong Kong Environmental Protection Department. Air Quality in Hong Kong 2004: A Report on the Results from the Air Quality Monitoring Network; Hong Kong, China, 2005.

(32) Cardelino, C. A.; Chameides, W. L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J. Air Waste Manage. 1995, 45 (3), 161−180.

(33) Lu, Q.; Zhang, Q. Z.; Wang, W. X.; Yuan, Z. B.; Yin, S. S. Emission trends and source characteristics of SO$_2$, NO$_x$, PM$_{10}$, and VOCs in the Pearl River Delta region from 2000 to 2009. Atmos. Environ. 2013, 76, 11−20.

(34) Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 1980−2020. Atmos. Chem. Phys. 2007, 7 (16), 4419−4444.

(35) Zhang, Q.; Streets, D. G.; Carmichael, G. R.; He, K. B.; Hao, H.; Kannari, A.; Klimont, Z.; Park, I. S.; Reddy, S.; Fu, J. S.; Chen, D.; Duan, L.; Lei, Y.; Wang, L. T.; Yao, Z. L. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9 (14), 5131−5153.

(36) Ding, A. J.; Wang, T.; Thouret, V.; Cammas, J. P.; Nedelec, P. Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. 2008, 8 (1), 1−13.

(37) Xu, X.; Lin, W.; Wang, T.; Yan, P.; Tang, J.; Meng, Z.; Wang, Y. Long-term trend of surface ozone at a regional background station in eastern China 1991−2006: Enhanced variability. Atmos. Chem. Phys. 2008, 8 (10), 2595−2607.

(38) Zhang, Q.; Yuan, B.; Shao, M.; Wang, X.; Lu, S.; Lu, K.; Wang, M.; Chen, L.; Chang, C.; Liu, S. C. Variations of ground-level O$_3$ and its precursors in Beijing in summertime between 2005 and 2011. Atmos. Chem. Phys. 2014, 14, 6089−6101.

(39) Zhao, C.; Wang, Y. H.; Zeng, T. East China Plains: A “basin” of ozone pollution. Environ. Sci. Technol. 2009, 43 (6), 1911−1915.