Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Antibody titers and neutralizing activity in cases of COVID-19 after a single dose of vaccination

Nobumasa Okumura a, Sho Saito a,∗, Yuki Takamatsu b, Junko S. Takeuchi c, Yusuke Asai d, Mio Sanada e, Noriko Iwamoto f, Kenji Maeda b, Hiroaki Mitsuya b, Norio Ohmagari a,d

a Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
b Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
c Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
d AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan

ARTICLE INFO

Keywords: SARS-CoV-2 Antibody titers Neutralizing titer Vaccination

ABSTRACT

Vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy in preventing the onset of disease. However, the immune response to infection immediately after the first vaccination remains largely unknown. In this study, we retrospectively examined the serum anti-SARS-CoV-2-binding-antibody titers and neutralizing activity against the viruses in patients who developed the disease after the first vaccination.

A retrospective observational study of nine patients who developed COVID-19 (COVID-19) after the first dose of SARS-CoV-2 vaccination was conducted between May 2021 and August 2021 at the National Center for Global Health and Medicine (NCGM), Tokyo, Japan. This center has approximately 780 hospital beds. The data for the following parameters were collected from patient medical records: demographics (age and sex), background and comorbid conditions, vaccine type and timing, time of specimen collection, strains, and outcomes. The neutralizing activity of sera against the clinically isolated SARS-CoV-2 strains SARS-CoV-2 (PANGO lineage B), SARS-CoV-2 (PANGO lineage B, SARS-CoV-2 (PANGO lineage B.1.1.7, GISAID Accession ID; EPI_ISL_804008), and SARS-CoV-2 (PANGO lineage B.1.617.2, GISAID Accession ID; EPI_ISL_2080609) was determined as previously described by employing TMPRSS2-overexpressing VeroE6 (VeroE6) cells (RRID: CVCL_0520). The amounts of anti-SARS-CoV-2-Spike-binding IgG (S-IgG), anti-SARS-CoV-2-Spike-binding IgM (S-IgM), and anti-SARS-CoV-2-Nucleocapsid-binding IgG (N-IgG) antibodies were determined by using the HISCL anti-SARS-CoV-2 immunoassay (Sysmex, Kobe, Japan) as described previously [4]. Viral RNA was extracted from nine patients’ nasopharyngeal swab samples. The Illumina COVIDseq test (Illumina, Inc. USA) was used for cDNA synthesis, target amplification, and library preparation according to the manufacturer’s instructions. Libraries were pooled, normalized, and sequenced on the Illumina iSeq 100 System. Raw reads were analyzed through the Illumina BaseSpace DRAGEN COVID Lineage v3.5.9, and the SARS-CoV-2 genome sequences were determined. This study was approved by the ethics committee of the NCGM (approval no. NCGM-S-004302-00).

Two (22.2%) patients received the BNT162b2 (Pfizer/BioNTech) vaccine, 6 (66.7%) received the mRNA-1273 (Moderna) vaccine, while the vaccine was uncertain in one (11.1%). The median (interquartile range; IQR) time from the first vaccine dose to onset was 8 (6.75–9.75) days (Table 1). Among the nine patients, 7 (77.8%) were infected with the delta (AY.29) variant and 1 (11.1%) with the alpha (B.1.1.7) variant. Eight (88.9%) patients required supplemental oxygen while no patient required mechanical ventilation or died. All patients developed COVID-19 within 13 days after the first dose of vaccination. On admission, the geometric mean (range) values of S-IgG, YQ49) as the target cells [3].

Note

ABSTRACT

Vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy in preventing the onset of disease. However, the immune response to infection immediately after the first vaccination remains largely unknown. We examined the anti-SARS-CoV-2-binding-antibody titers and neutralizing activity in patients who developed coronavirus disease 2019 after the first vaccination. The amount of anti-SARS-CoV-2-binding antibodies and neutralizing activity drastically increased from the first to the second collection. Our results may provide important data on the course of immune response following vaccination.
N-IgG, and S-IgM were 32.8 (2.4, 486), 0.9 (0.1, 357.4), and 64.2 (4.7, 741.2) SU/mL, respectively, which drastically increased to 168.4 (20.9, 1463), 30.7 (0.1, 509.9), and 231.7 (23.8, 2074.9) SU/mL, respectively at the second collection. For S-IgG, 32.8 SU/mL and 168.4 SU/mL

In patients with SARS-CoV-2 infection alone, the amount of S-IgG and neutralizing titer do not increase until the second to third week after infection [15]. In fact, N-IgG, an indicator of infection, was not elevated at the first and second sampling, presumably because the patient had a mild disease [5].

The first specimen was collected at a median of 13.5 days after the first dose of vaccination, which was 7 days after COVID-19 onset in our study. Since the incubation period of COVID-19 was approximately 5 days [6] before the spread of the omicron variant, we estimate that our patients became infected approximately 2 days after vaccination. Several studies have shown that the amount of S-IgG or neutralizing titer of serum against SARS-CoV-2 is under the detection limit for the first month was excluded from the analysis.

Notably, the geometric mean of S-IgG and NT of against the wild-type, alpha, and delta strains on administration was 125.5 (<40, 625.3), 239.1 (<40, 656.7), and 140.0 (<40, 1034.1)-fold, respectively, which drastically increased to 474.1 (63.7, 2348.8), 1148.6 (264.3, 4080.6), and 908.3 (85.9, 4249.5) (geometric mean, range)-fold, respectively, at the second collection (Fig. 1). In one case, N-IgG was not elevated at the first and second sampling, presumably because the patient had a mild disease [5].

Abbreviations	Description
BIPAP	Biphasic positive airway pressure
COVID-19 Coronavirus disease 2019	
CPAP	Continuous positive airway pressure
NGGM National Center for Global Health and Medicine	
N-IgG Anti-SARS-CoV-2-Nucleocapsid-binding IgG	
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2	
S-IgG Anti-SARS-CoV-2-Spike-binding IgG	
S-IgM Anti-SARS-CoV-2-Spike-binding IgM	

NOKumura, SS, HM, and NOhmagari designed the study. NOkumura, SS, YA, and MS implemented the study and collected data. YT, NI and KM determined the antibody titers and neutralizing activity. JT were responsible for the mutational analysis. NOKumura, SS, and YA wrote the first draft of the manuscript. HM and NOhmagari supervised this study. All authors revised the manuscript and approved the final version.

Table 1

| Patient characteristics, vaccination details, strains, and outcomes of COVID-19 infections after the first vaccination (n = 9). |
Demographics	No. (%)
Male	8 (88.9)
Age [median, IQR]	49 [46, 60]
Smokers	4 (44.4)
Vaccine type	
Pfizer-BioNTech	2 (22.2)
Moderna	6 (66.7)
Unknown	1 (11.1)
Strains	
Alpha variant	1 (11.1)
Delta variant	7 (77.8)
Unknown	1 (11.1)
Comorbidity	
Any comorbidity	8 (88.9)
Liver disease	3 (33.3)
Diabetes	3 (33.3)
Obesity	3 (33.3)
Dyslipidemia	3 (33.3)
Hyperuricemia	3 (33.3)
Hypertension	1 (11.1)
HIV	1 (11.1)
Pituitary adenoma	1 (11.1)
Cerebral infarction	1 (11.1)
Outcome	
Death	0 (0)
Length of hospital stay [median, IQR]	8 [6, 10]
Days [median, IQR]	
From vaccination to onset	8 [6.75, 9.75]
From vaccination to onset	6 [5, 7]
From vaccination to first sampling	13.5 [13, 15.5]
From vaccination to second sampling	20 [19.75, 41.5]
From onset to first sampling	7 [5, 8]
From onset to second sampling	13 [11, 28]

IQR; interquartile range.

a Noninvasive mechanical ventilation includes biphasic positive airway pressure (BIPAP) or continuous positive airway pressure (CPAP).

b One patient who could not remember the vaccination date and only recalled the month was excluded from the analysis.

reported previously, humoral immunity was considered to have been already established at this point, and S-IgG and neutralizing titer increased more quickly due to infection with SARS-CoV-2. Although it is difficult to evaluate the effectiveness of a single vaccination in preventing infection in this study, our results may provide important data on the course of immune response following vaccination.

Authors’ contributions

NOKumura, SS, HM, and NOhmagari designed the study. NOKumura, SS, YA, and MS implemented the study and collected data. YT, NI and KM determined the antibody titers and neutralizing activity. JT were responsible for the mutational analysis. NOKumura, SS, and YA wrote the first draft of the manuscript. HM and NOhmagari supervised this study. All authors revised the manuscript and approved the final version.
Funding

This research received no external funding.

Declaration of competing interest

All the authors have nothing to declare.

Acknowledgments

We thank Ms. Yumiko Kito and Ms. Azusa Kamikawa for their experimental assistance, and Dr. Wataru Sugiura and Dr. Moto Kimura for their support and advice.

References

[1] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 2020;383:2603–15. https://doi.org/10.1056/NEJMoa2024577.

[2] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403–16. https://doi.org/10.1056/NEJMoa2035389.

[3] Maeda K, Higashi-Kuwata N, Kinoshita N, Kutsuna S, Tsuchiya K, Hattori SI, et al. Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma. Sci Rep 2021;11:5563. https://doi.org/10.1038/s41598-021-84733-5.

[4] Noda K, Matsuda K, Yagishita S, Maeda K, Akiyama Y, Terada-Hirashima J, et al. A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Sci Rep 2021;11:5198. https://doi.org/10.1038/s41598-021-84387-3.

[5] Hashem AM, Algaiass A, Almahboub SA, Albaleh MA, Abouamel TS, Alamri SS, et al. Early humoral response correlates with disease severity and outcomes in COVID-19 patients. Viruses 2020;12:1390. https://doi.org/10.3390/v12121390.

[6] Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782–93. https://doi.org/10.1001/jama.2020.12839.

[7] Walsh EE, Frenck RW, Fahey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med 2020;383:2439–50. https://doi.org/10.1056/NEJMoa2027906.

[8] Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020;586:594–9. https://doi.org/10.1038/s41586-020-2814-7.

[9] Lustig Y, Sapir E, Regev-Yochay G, Cohen C, Fluss R, Olmer L, et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir Med 2021;9:1099–1009. https://doi.org/10.1016/S2213-2600(21)00220-4.

[10] Maeda K, Amano M, Uemura Y, Tsuchiya K, Matsushima T, Noda K, et al. Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals. Sci Rep 2021;11:22848. https://doi.org/10.1038/s41598-021-01930-y.

[11] Neumann F, Rose R, Rompe J, Grobe O, Lorentz T, Fickenscher H, et al. Development of SARS-CoV-2 specific IgG and virus-neutralizing antibodies after infection with variants of concern or vaccination. Vaccines 2021;9:700. https://doi.org/10.3390/vaccines9070700.

[12] Tretyn A, Szczepanek J, Skorupa M, Jarzkievich-Tretyn J, Sandomierz D, Dziejewska J, et al. Differences in the concentration of anti-SARS-CoV-2 IgG antibodies post-COVID-19 recovery or post-vaccination. Cells 2021;10. https://doi.org/10.3390/cells10081952.

[13] Cavalcanti E, Igrò MA, Rea D, Di Capua L, Trillo G, Russo L, et al. Vaccination strategy and anti - SARS-CoV-2 IgG antibodies post-COVID-19 recovery or post-vaccination. Cells 2021;10. https://doi.org/10.3390/cells100818152.

[14] Ali H, Alahmad B, Al-Shammari AA, Altereki A, Hammad M, Cherian P, et al. Previous COVID-19 infection and antibody levels after vaccination. Front Public Health 2021;9:778243. https://doi.org/10.3389/fpubh.2021.778243.

[15] Post N, Eddy D, Hunley G, van Schaikwijk MCI, Shrotri M, Leeman D, et al. Antibody response to SARS-CoV-2 infection in humans: a systematic review. PLoS One 2020;15:e0244126. https://doi.org/10.1371/journal.pone.0244126.