Effect of planting date and spraying of humic acid in the growth traits and active compounds of Fenugreek (Trigonella foenum – graecum L)

H A Majid1, H A Salim2 * and A H Fahmi1

1College of Agriculture, University of Diyala, Iraq
2Directorate of Diyala Agriculture, Ministry of Agriculture, Iraq
E-mail: h_salim11111@yahoo.com

Abstract. The study was conducted at the Crops Research Station, College of Agriculture, University of Diyala during the years 2017-2018 to evaluate the effect of planting dates and spraying of humic acid in the growth characteristics and active compounds of Fenugreek (Trigonella foenum – graecum L). The experiment was carried out according to factorial arrangement in a complete randomized blocks design (RCBD) with three replicates and two factors, the first include planting dates (15/10, 1/11, 15/11) and the second is spraying of the humic acid at a concentration of 2 and 4 ml /L. Results revealed that the planting dates had a significant effect in the studied traits, the first date (15/10) recorded the highest rate of plant height (84.89 cm), seeds yield (7.805 g /plant−1), seeds yield /hectare (770.2 kg / h−1), number of branches (9.67 branches / Plant−1), number of leaves (146.6 leaves / plant−1), dry plant weight (20.11 g/plant−1), number of pods (47.33 pods / plant−1), number of seeds (14.44 seeds /pod−1), weight of 100 seeds (1.502 g) and the active compounds such as Choline (170.99 mg/ml−1), Trigonelline (305.73 mg/ml−1), Carpine (95.89 mg/ml−1) and Gentianine (191.11 mg/ml−1). The spraying of humic acid at a concentration of 4 ml / L was superior significantly in all traits such as plant height (74.67 cm), seeds yield (7.220 g / plant−1), seeds yield /hectare (710.0 kg / h−1), number of branches (8.11 branches / plant−1), number of leaves (61.00 leaves / plant−1), dry plant weight (20.44 g/plant−1), number of pods (38.22 pods / plant−1), number of seeds (14.00 seeds / pod−1), Choline (163.61 mg/ml−1), Trigonelline (283.86 mg/ml−1), Carpine (83.92 mg/ml−1) and Gentianine (183.03 mg/ml−1).

1. Introduction

Fenugreek (Trigonella foenum-graecum) is a leguminous herb belongs to the Fabaceae family and it has many nomenclatures in different languages, viz.Hulba (Arabian), Bockshorklee (German), Fenugrec (French), Methi (Hindi), Pazhitnik (Russian), Fieno greco (Italian), Alholva (Spanish), K’u-Tou (China), Koroha (Japanese), and Halba (Malaya). Fenugreek seeds have a bitter taste and have been used before 2500 years for different purposes, as spices in addition to their known medicinal characteristics, while the leaves of Fenugreek are used as vegetables in the diet [1]. Historically, the peoples of Mesopotamia have known many medicinal plants and used them successfully in the treatment of different diseases, such as the fenugreek [2,3], that is using for gout treatment, rheumatism, constipation, cough, asthma, back pain,
sciatica, hemorrhoids, diabetes, anaemia and lose weight. The fenugreek seeds also contain many medical and pharmaceutical compounds such as coumarin, Cholene, Trigonelline and Carpine [4], these compounds are natural chemical substances belong to the glycosides and flavonoids that give the plant pigments. These compounds have water solubility properties in addition to its nutritional value. They are important compounds for treating diabetes, liver disease, eye pressure protection and anemia treatment [5] also contains vitamins such as (A, B1, B2) which is rich in some nutrients, including K, P, Ca, Mg, Fe and Mn [6]. The crop of the fenugreek is cultivated as a green fodder crop or straw in India and the Mediterranean region and palatable by animals [7]. Recently, the organic fertilizers such as humic acids were used in low-concentrations to improve soil properties and plant nutrition, hence accelerating growth and increasing production [8]. The humic acids have a positive effect on nutrient uptake by the plant as it help actively in the absorption of the macro and micro- elements and their transport, especially the micronutrients [9]. Also, the acids of humic inhibit the activity of IAA oxidase enzyme, which increases the activity of IAA auxin in stimulating the plant growth and roots, thus the humic acids improve the capacity of elements in the soil by the correlation with sodium, which helps plant to tolerate toxicity and osmosis negative effects [10]. Jawad [11] revealed that the use of humec in a concentration of 1.5 ml/l increased the rate of plant height, leaf area, number of leaves, yields and number of pods compared to the concentration of 0.5 ml/l liter. As AL-Taei [12] sprayed fenugreek plants with different concentrations of ethephon in different stages of plant growth found that the date of the first spray at the highest concentration has the superior effect in the ratio of oil and protein compared to the date of the third spray. Generally, the planting date is crucial management practice due to the different climatic conditions and adaptation of varieties to cope with these conditions, where the production of the fenugreek is affected by the dates of cultivation. Al-Taei [13] reported that when they used three planting dates for chickpea crop, the earlier date was superior in the growth characteristics pods / plant, weight of pods / plant, plant yield / gm and weight of 100 seed. Al-Bayati [14] observed that the planting date at the beginning of November was superior in the growth traits of broad bean such as the plant height while the planting date in mid-November was superior in seed weight and plant yield. Al-Bayati [15] showed that when they used three dates of cultivation of chickpea, the results indicated that the planting date of 1/11 was significantly superior in the traits of 100 seeds weight and dry plant weight and seed yield. The date of planting 5- November gave the highest rate of cumin height and the number of seeds /pod and the number of pods / plant and the seeds yield and biological yield kg / h [16]. Jevdjovic [17] reported that the early dates of fenugreek plant cultivation gave the highest rate of total germination ratio, the total yield of seeds and active substances. The study aimed to evaluate the effect of planting dates and spraying of humic acid in the growth characteristics and active compounds of Fenugreek (Trigonella foenum – graecum L).

2. Materials and methods
The experiment was carried out in the Field Crops Department, college of Agriculture, University of Diyala during 2017-2018 to study the effect of planting dates and spraying of the humic acid in the growth characteristics and active compounds of Fenugreek crop. A factorial experiment was used with the randomized complete block design (RCBD) in three replicates. Means were compared by using the least significant difference L.S.D at the level of probability of 5% [18].

The experiment included two factors, the first was planting dates (15/10, 1/11, 15/11) meanwhile the second was the spraying of different concentrations of the humic acid (0, 2, 4 ml / L). Soil samples were taken before planting to analyze some of the physical and chemical properties, five random samples were collected at a depth of 0-30 cm, the samples were mixed and exposed to sunlight for 8 hours then grinded and sieving. Physical and chemical analysis (Table 1) was conducted in the soil department laboratories, college of Agriculture, University of Diyala.
Table 1. Some physical and chemical characteristics of the soil before planting.

Measurements	Unit of measurement	Field soil
PH		8.4
Ec	dS siemens /m	2.74
N	Mg/Kg	34.8
P	Mg/Kg	13.7
K	Mg/Kg	509
So₄	Mg/Kg	1.4
Organic matter	g/Kg	18.26
porosity		52%
Gypsum	g/Kg	1.34
sand	g/Kg	24%
Clay	g/Kg	22%
Texture		Mixed clay

The soil was irrigated until the immersion before tillage, then it was plowed by using Plow, the field was divided into three blocks, each containing 9 treatments, length of treatment 2 m, the distance between the lines 0.25 m, the distance between the treatments 0.5 m and the distance between plants 20 cm, the area of experimental unit 4 m and the number of plants in the experimental unit according to the distance required in the study. Nitrogen fertilization was added in the form of urea before planting at a rate of 90 kg/h. The seeds (Possum variety) were obtained from the local market, seeds germination were tested by placing 100 seeds to each Petri dish with three replicates, adding a little water and recording the number of germinated seeds per day, the germination rate was 90% after 6 days. The seeds were planted according to the dates required in the study, 4-6 seeds were placed in the hole at a depth of 3-4 cm covered with soft soil and irrigated, then matured plants were harvested. The spraying of humic acid was started after one month of planting and for three times during the growing season [19], one spray every two weeks with 2 and 4 ml/L. The experimental measurements were carried out on five plants randomly taken from each experimental unit, which included plant height (cm), number of leaves/plant, number of branches/plant, number of pods/plant, dry plant weight (g), number of seeds/pod, weight of 100 seed (g), seeds yield g/plant, seeds yield kg/h and four active compounds (Choline, Trigonelline, Carpine, Gentianine).

2.1. Active compounds (Choline, Trigonelline, Carpine, Gentianine)

The method of water extraction was applied to obtain the active compounds (Choline, Trigonelline, Carpine, Gentianine) from the dry fenugreek seeds [20,21]. One gram of dry fenugreek seed from each experimental units was grinded and placed in 50 ml of hot water (100 c) for three hours and filtered with filter papers (no1). Filtrated substance containing active compounds was collected and placed in glass tubes measure by high performance liquid chromatography (HPLC), at the Ministry of Science and Technology / Department of Chemistry.

The method is summarized as follows:
1. Takes 1 gram of fenugreek seeds powder.
2. Melt the powder in 10 ml of methanol (40%) in glass tube.
3. Places the tube in the ultrasound device (KARAL KOLB) for 10 minutes in order to obtain a pure extract.
4. Passes the extract on microfilter disk 0.4 nm to isolate the fibers to obtain a pure extract.
5. Injected 20 micro-liters of samples into (HPLC)
6. Stabilizes the extract in column C-18, which is a small nylon column filled with silica of 5 cm in length.
7- diagnosis and identify quantity and quality of active compounds compared to standard materials separated from column C-18 under the same conditions and imported from Japan Sigma Company.
8- measurement concentration of active compounds was accomplished on the column by using the model concentration equation.

Concentration of sample $\mu g/ml = \frac{\text{area of sample}}{\text{area of standard}} \times \text{conc. of standard} \times \text{dilution factor}$

The applied HPLC conditions for separating active compounds were detailed in table 2 and 3.

Table 2. HPLC conditions used for the separation of active compounds of Fenugreek

Mobile phase	Tetrahydrofuran : deionized water acidified : 0.1% acetic acid (80:20 v/v)
Flow speed of mobile phase	1.0 ml / min
Type of detector	Ultra violet (uv) 254 nm
Separate Column	Bonda – Pak c 18
Separate temperature	35 $^\circ$C

Table 3. The retention time for standard models of the separated active compounds

Compound	Compound retention time / min
Choline	2.64
Trigonelline	3.85
Carpine	4.92
Gentianine	6.63

3. Results

The effect of planting dates on all studied traits including plant height (cm), number of leaves/ plant, number of branches/plant, number of pods/plant, dry plant weight, number of seeds/pod, weight of 100 seed, seeds yield g/plant, seeds yield kg/h and active compounds (Choline, Trigonelline, Carpine and Gentianine) was significant (Table 4 and 5). The first date (15/10) was superior and achieved the highest mean of the following characteristics viz. plant height (84.89 cm), number of leaves/ plant (146.6), number of branches/plant (9.67), number of pods/plant (47.33), dry plant weight (20.11 g), number of seeds/pod (14.44), weight of 100 grains (1.50 g), seeds yield g/plant (7.80 g), seeds yield kg/h (770.2 kg/h), and active compounds viz. Trigonelline (305.73 mg/ml), Carpine (95.89 mg/ml) and Gentianine (191.11 mg/ml) as compared with other planting dates.

Whereas the effect of the spraying with humic acid on previously mentioned traits was significant too, thus the concentration of 4 ml / L expressed the highest rate of plant height (74.67 cm), number of leaves/plant (113.1), number of branches/plant (8.11), number of pods/plant (38.22), plant dry weight (20.44 g), number of seeds/pod (14.00), weight of 100 seed (1.71 g), seeds yield g/plant (7.22 g), seeds yield kg/h (710.0 kg/h), and active compounds viz. Choline (163.61 mg/ml), Trigonelline (283.36 mg/ml), Carpine (83.92 mg/ml) and Gentianine (138.03 mg/ml) as compared with the other concentrations of humic acid.

While the interaction-interaction between the cultivation dates and the humic concentrations was significant. The first date (15/10) with the concentration of 4 ml / L recorded the highest mean for the following traits; plant height (96.00 cm), number of leaves/plant (184.7), number of branches/plant (11.33), number of pods/plant (58.67), plant dry weight (27.00 g), number of seeds/pod (18.00), weight of 100 seed (1.81 g), seeds yield g/plant (9.23 g), seeds yield kg/h (906.7 kg/h).
and active compounds viz. Choline (184.20 mg/ml), Trigonelline (341.45 mg/ml), Carpine (113.13 mg/ml) and Gentianine (274.92 mg/ml) as compared with the other interaction-interaction values.

4. Discussion

The first planting date was the best in all previous studied traits due to the suitable temperature for germination and growth in the first date, as well as the relatively long period of vegetative growth spent by these plants (180 days), whereas less plant height was achieved by the last planting date that shortening the life time of plant [22,13]. The first date was superior in number of branches due to the rapid plant growth during the first stages synchronized with ideal temperatures, humidity and light intensity which stimulated the growth of lateral buds and gave long duration of light (180 days) which in turn increasing rate of metabolic processes such as photosynthesis. The increase leaves number was due to appropriate climatic conditions of these dates which led to an increase in the efficiency of photosynthesis and enhancing the roots and formation finally increasing the production of cytokines which have a vital role in increasing the division of cells [15,23,24]. There was a significant effect of planting dates on the active compounds (Choline, Trigonelline, Carpine, Gentianine) due to impact of the cultivation date on the growth and yield traits through the effect on the amount of active ingredients in the plant, also the active substance for any medicinal plant is a secondary product in photosynthesis processes [17,25]. Humic acid has a positive role in the functional processes improving plant growth via a higher rate of cell division and elongation [26]. Furthermore the availability of sufficient nutrients is necessary to synthesize chlorophyll, protein, nucleic acids and increase the plants ability to perform photosynthesis and supplying metabolites necessary for cell division and elongation [27,28]. The organic fertilizer (humic acid) can participate effectively in producing more carbohydrate combined with a higher enzymatic activity at all will positively reflect on plant productivity and quality [29,30]. Spraying organic fertilizer 4 ml/liter caused a significant increase in all studied traits which in turn led to an increase in seed yield per unit area [19]. The proper concentration of humic acid has increased the efficiency of photosynthesis process which led to the accumulation of nutrients in the plant and stimulates the plant to increase the number of branches also has a role in increasing the Cytokinins in promoting the growth of side buds [31,32,33]. The element of humic is a necessary for plant growth and developmental stages, although it does not enter into any cellular components and acts as a co-factor in many biological processes including the synthesis of proteins, nucleic acids and photosynthesis [34,35,36,37]. Dry weight has a key role representing an indicator for photosynthesis efficiency because 90% of the dry weight comes from this process [38]. Humic acid participate effectively in the synthesis and the activity of several enzymes [39]. It has a hormonal effect similar to auxin serving in the production of more flowers nodes [40]. In the same context humic acid has a significant effect in the active compounds especially in response to increased alkaloids that represents the metabolites of amino acids, increasing of the produced alkaloids amount in the fenugreek seeds due to the role of gibberellin in increasing the biological processes for the formation of alkaloids [41,42].

Acknowledgements

Authors wish to express their sincere gratitude and appreciation to the college of Agriculture, University of Diyala and Ministry of Agriculture, Directorate of Diyala Agriculture for awarding the opportunity to accomplish this work.

Table 4. Effect of planting dates and spraying of humic acid in Plant height (cm), Number of leaves/plant1, Number of branches/plant1, Number of pods/plant1, Number of seeds/plant1, Number of seeds/pod1, Weight of 100 seed (g) of Fenugreek plants

Plant height (cm)	Number of leaves/plant1	Number of branches/plant1	Number of pods/plant1	Number of seeds/plant1	Number of seeds/pod1	Weight of 100 seed (g)
Table 5. Effect of planting dates and spraying of humic acid on Seeds yield / plant (g), Seeds yield kg/h and active compounds (Choline, Trigonelline, Carpine, Gentianine) of Fenugreek.

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	6.35	7.83	9.23	7.80
Second date (1/11)	5.27	6.14	7.15	6.18

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	73.67	85.00	96.00	84.89
Second date (1/11)	51.33	62.00	72.67	62.00
Third date (15/11)	39.00	46.00	55.33	46.78
Mean	54.67	64.33	74.67	

L.S.D 0.05 Planting dates = 2.64, Spraying = 2.64, interaction = 4.57

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	116.0	139.0	184.7	146.6
Second date (1/11)	75.7	85.7	93.7	85.0
Third date (15/11)	32.7	48.7	61.0	47.4
Mean	74.8	91.1	113.1	

L.S.D 0.05 Planting dates = 6.72, Spraying = 6.72, interaction = 11.65

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	46.00	58.67	78.22	67.33
Second date (1/11)	35.67	46.67	58.22	47.33
Third date (15/11)	23.33	35.67	46.67	35.67
Mean	21.33	27.67	38.22	

L.S.D 0.05 Planting dates = 2.88, Spraying = 2.88, interaction = 5.00

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	12.00	21.33	27.00	20.11
Second date (1/11)	9.67	17.33	20.33	15.78
Third date (15/11)	6.33	10.33	14.00	10.22
Mean	9.33	16.33	20.44	

L.S.D 0.05 Planting dates = 1.27, Spraying = 1.27, interaction = 2.21

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	11.67	13.67	18.00	14.44
Second date (1/11)	9.67	12.00	13.33	11.67
Third date (15/11)	7.67	9.33	10.67	9.22
Mean	9.67	11.67	14.00	

L.S.D 0.05 Planting dates = 1.20, Spraying = 1.20, interaction = 2.08

Treatments	Control	Spraying 2 ml	Spraying 4 ml	Mean
First date (15/10)	1.15	1.54	1.81	1.50
Second date (1/11)	1.08	1.42	1.70	1.40
Third date (15/11)	0.74	1.25	1.63	1.20
Mean	0.99	1.40	1.71	

L.S.D 0.05 Planting dates = 0.03, Spraying = 0.03, interaction = 0.06
Seeds yield kg/h⁻¹

	First date (15/10)	Second date (1/11)	Third date (15/11)	Mean	L.S.D 0.05
	624.0	511.0	410.0	511.7	Planting dates = 114.0, Spraying = 114.0, interaction = 198.0
Mean	780.0	611.7	470.0	620.6	
	906.7	711.7	511.7	710.0	
	770.2	611.4	463.9	700.0	

Choline mg/ml⁻¹

	First date (15/10)	Second date (1/11)	Third date (15/11)	Mean	L.S.D 0.05
	156.48	142.88	77.43	125.59	Planting dates = 20.77, Spraying = 20.77, interaction = 35.97
Measn	172.30	155.24	96.24	141.26	
	184.20	161.26	145.37	163.61	
	170.99	153.12	106.34	198.00	

Trigonelline mg/ml⁻¹

	First date (15/10)	Second date (1/11)	Third date (15/11)	Mean	L.S.D 0.05
	266.86	201.10	187.15	218.37	Planting dates = 21.84, Spraying = 21.84, interaction = 37.83
Mean	308.90	241.48	228.79	279.72	
	341.45	266.86	241.79	283.36	
	305.73	236.48	219.24	237.80	

Carpine mg/ml⁻¹

	First date (15/10)	Second date (1/11)	Third date (15/11)	Mean	L.S.D 0.05
	78.30	58.88	33.03	56.73	Planting dates = 10.57, Spraying = 10.57, interaction = 18.31
Mean	96.24	62.70	48.20	69.04	
	113.13	88.45	50.19	83.92	
	95.89	70.01	43.80	70.41	

Gentianine mg/ml⁻¹

	First date (15/10)	Second date (1/11)	Third date (15/11)	Mean	L.S.D 0.05
	120.19	62.44	19.08	67.23	Planting dates = 13.77, Spraying = 13.77, interaction = 23.84
Mean	178.24	65.30	33.03	92.19	
	274.92	73.78	65.39	138.03	
	191.11	67.17	39.16	118.72	

References

[1] Chopra, R.N., Nayar, S.L., Chopra, I.C., Eds 1986 Glossary of Indian Medicinal Plants. Council of Scientific and Industrial Research: New Delhi.

[2] Karakji, A. A. and Younis, A. A. 1977 The cultivation of medicinal plants in Iraq, University of Baghdad, Ministry of Higher Education and Scientific Research, Iraq.

[3] Abu Zeid, A. N. 1986 Plants and medicinal herbs. First Edition. National Research Center, Cairo. P. 496.

[4] Newall, C.A., Anderson, L.A. and Phillipson, J.D 1998 Herbal Medicines: A guide for health-care professionals. 2nd ed. London, The pharmaceutical press:pp117-118.

[5] Shammar, M. Z. F. and Al Saadi, A. J. H. 2013 Concentration of alkaloids in the ring plant *Trigonella foenum-graecum* by the effect of the class and concentrations of gibberelin and spray period, Department of Life Sciences, College of Education for Pure Sciences / Ibn al-Haytham, University of Baghdad.
[6] Mansour, E.H. and El-Dawy, T.A 1994 Nutritional potential and functional properties of heat-treated and germinated fenugreek seeds. Lebensmittel-Wissenschaft and Technologie, 27(6) 568-572.

[7] Muhammed, S.R 2017 Response of Two Fenugreek Trigonella foenum-graecum Varieties to Different Cutting Dates and Nitrogen Fertilizer for Growth and Forage Yield Traits under Rainfed Condition, Journal Tikrit Univ. for Agri. Sci., vol.(17) 322-332.

[8] Zidane, R. and Samir, D. 2005 Effect of some humic substances and amino acids in the growth and production of regular potatoes Salanum tuberosum L. Journal published for studies and scientific research. Biological Sciences Series, vol. 27, no. 2.

[9] Lutzow, M. V., Koegel I., Eckschmitt E.and Matzne E. 2006 Stabilization of organic matter in temperate soils mechanism and their relevance under different soil condition—areview, Eur. Soil. Sci., 57: 426-445.

[10] Stevenson, F. J. 1994 Humus chemistry, Genesis, Composition, Reaction, John wily and Sons, New York.

[11] Jawad, L. J. 2017 Effect of humex-10 manure on vegetative and syphilis growth of the ring plant, Department of Life Sciences, Faculty of Science, Qadisiyah University.

[12] Al-Taei, G. Q. H. and Al – Hafouzi, S. M. 2008 Effect of Ethephon on Growth Characteristics and Components of Fenugreek Plant (Trigonella foenum-graecum L.), Jordanian Journal of Agricultural Sciences 2(3) 275-288.

[13] Al-Taei, A. H. M. and Al-Nouri, M. A. 2013 Effect of planting dates and plant intensities on yield characteristics and some specific characteristics of local chickpea crop. Faculty of Agriculture and Forestry / University of Mosul.

[14] Al-Bayati, A. J. A. and Al-Daoudi, A. H. R. 2009 Effect of planting dates and different depths in the traits of growth and yield and its components of broad bean crop (Vicia faba.L). University of Kirkuk - I(1) 72-80.

[15] Al-Bayati, A. J. A. and Al-Daoudi, A. H. R. 2010 Effect of planting dates and concentrations of the growth regulator in the traits of growth, yield and components of chickpea crop (Cicer arietinum). University of Kirkuk 4 (2).

[16] Moghaddam, P.R, Rooholla, M, Hamed, M 2014 Influence of planting date, Intercropping and plant growth promoting rhizobacteria on cumin (cuminum cyminum .L) with particular respect to disease infestation in Iran . journal of Applied research medicinal 134-143.

[17] Jevdvovic,R and Radojka,M 2007 Sowing date – the factor of yield and quality of fenugreek seed (Trigonella foenum graecum L). Journal of Agricultural Sciences. 52 (1) ,pp:1-8.

[18] Al-Rawi, K. M. and Khalaf Allah, A. M. 1980 Design and analysis of agricultural experiments. Dar Al Kutub Printing & Publishing Est. Faculty of Agriculture and Forestry. University of Al Mosul . Higher Education Press in Mosul. Iraq.

[19] Al-Sahaf, F. H. 1996 Effect of addition of nitrogen on the formation of root nodes and growth and outcome in the rest. Journal of Iraqi Agricultural Sciences. 27 (1) 71-76.

[20] Ranganna,S 1977 Manual of analysis of fruit and vegetable products, Tata, Mc Graw-Hill publishing . New delhi.

[21] Weerachai, P. and Duang B. 1998 Simple isolation and purification of glycyrrhizic acid ,J, Sci ,Fac,Cmu 25 (2) 87-91.

[22] Issa, T. A. 1990 The physiology of crop plants. Baghdad University . Ministry of Higher Education and Scientific Research. Iraq.

[23] Richards, D. 1981 Root –soot interaction in fruting tomato plants, Correlative growth in vegetables .In the physiology, Vegetable crops , pp:181-206.
[24] Al-Dujawi, A. 1996 Encyclopedia of Medicinal and Aromatic Plants Production, Medbouli Library, Cairo, Egypt.
[25] Hussein, F.T. Q. 1981 Medical plants cultivated by their components. Dar Al Marikh Publishing. Riyadh. Saudi Arabia.
[26] Nardi, S., Pizzeghello D., Muscolo A. and Vianello A. 2002 Physiological effects of humic substances on higher plants. Soil Biol. Biochem, 34(11) 1527-1536.
[27] Abdul, K.S. 1978 An investigation of the interaction between mineral nutrition, light and temperature on growth and development of tomato plants. Zanco. 4: 83-96.
[28] Gomaa, M.A., H.A. Zied and F.L. El-Araby 1986 The effect of spraying with some micronutrients on growth and yield of broad bean (Vicia fabae L.). Annuals Agric. Sci. Moshtohor. 24(2) 657-666.
[29] Canellas, L.P and F.L. Olivares 2014 Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1(3) 1-11.
[30] Al - Jaber, H. S.C. 2010 Effect of number of plants per unit and sprinkle with ascorbic acid in the growth and yield of ring seeds Trignea foenum - graecum L. and some of its constituents. Basrah Research Series No. 36 Part 5.
[31] Hamada, A.M. and E. M. Khulaef 2000 Stimulative Effects of Ascorbic Acid, Thiamin or Pyridoxine on Vicia faba Growth and Some Related Metabolic Activities. Pakistan Journal of Biological Sciences, 3(8): 1330-1332.
[32] Youssef, A.A. and I. M. Talaat 2003 Physiological response of rosemary plant to some vitamins. Egypt, pharm. J., 1:81-93.
[33] Moore, T. S. 1982 Plant Hormones, Its Method and Quantities Translated by Abdul Muttalib Syed Mohammed, Faculty of Agriculture, University of Mosul, Iraq.
[34] Bidwell, R.G.S 1979 Plant physiology. 2nd edition. Collier McMillan. Canada.
[35] Abdul Hadi, S., Jamal A. A. and Kazem M. A. 2010 Effect of Nutrient Spraying and Potassium Fertilization on the Growth and Distribution of the Domestic Varietal Plant of the Green Basalia Pisum satium. vol. 2 (1): 13-24.
[36] Ghania, M., Safa N. and Badia S. 2015 Effect of Feeding on Different Ways and Concentrations of Organic Fertilizer Humax in Pulse Growth (Phaseolus vulgaris L.), Damascus University of Agricultural Sciences. vol. 31 (2): 39-50.
[37] Danesh-Talab, Mehrfarin A., Labbafi2 M., Qavami N., Qaderi A., Naghdi Badi H. 2014 Responses of fenugreek (Trigonella foenum-graeecum L.) To exogenous application of plant growth regulators. 1Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj, Iran. Trakia Journal of Sciences, No 2: 142-148.
[38] Adejumo TO, Ikonun T, 2003 Effect of planting date on incidence and severity of leaf smut of cowpea in northern Nigeria. Moor Journal of Agricultural Research 4, 106–110.
[39] Mikkelsen, R. L 2005 Humic Materials for Agriculture. Better Crops, 89 (3): 6-10.
[40] Zhang, X. and Ervin, E.H 2004 Cytokinin-Containing Seaweed and Humic Acid Extracts Associated with Creeping Bentgrass Leaf Cytokinins and Drought Resistance. Crop Science, 44, 1737-1745.
[41] Ayoub, M. T. and Ibrahim, M. N. 1986 Secondary metabolism. Translated book by Man J. University of Mosul - Ministry of Higher Education and Scientific Research - Iraq.
[42] AL-Hadhwani, A. K. 2004 Effect of Fertilization and Spraying of Some Nutrients on Quantitative and Qualitative traits of some active Medical compounds in two variety of Trigonella foenum-graeecum Seed Thesis, Faculty of Agriculture, University of Baghdad.