ON PRODUCTS OF \mathfrak{sl}_n CHARACTERS AND SUPPORT CONTAINMENT

GALYNA DOBROVOLSKA, PAVLO PYLYAVSKYY

Abstract. Let λ, μ, ν, and ρ be dominant weights of \mathfrak{sl}_n satisfying $\lambda + \mu = \nu + \rho$. Let V_λ denote the highest weight module corresponding to λ. Lam, Postnikov, Pylyavskyy conjectured a sufficient condition for $V_\lambda \otimes V_\mu$ to be contained in $V_\nu \otimes V_\rho$ as \mathfrak{sl}_n-modules. In this note we prove a weaker version of the conjecture. Namely we prove that under the conjectured conditions every irreducible \mathfrak{sl}_n-module which appears in the decomposition of $V_\lambda \otimes V_\mu$ does appear in the decomposition of $V_\nu \otimes V_\rho$.

1. Introduction

Let λ, μ be two dominant weights of \mathfrak{sl}_n. Recall that the weight lattice in this case is $\mathbb{Z}^n/(1, \ldots, 1)$. Thus dominant weights can be viewed as partitions with n-th part equal to zero. Equivalently, dominant weights can be associated with Young diagrams with $n - 1$ rows. Let V_λ denote the highest weight module corresponding to λ. Recall that as λ runs through all dominant weights, the V_λ-s constitute the set of irreducible \mathfrak{sl}_n-modules. Since \mathfrak{sl}_n is semisimple, the tensor product $V_\lambda \otimes V_\mu = \bigoplus \nu c^{\nu}_{\lambda, \mu} V_\nu$ decomposes into a direct sum of V_ν-s. The coefficients $c^{\nu}_{\lambda, \mu}$ which appear in this decomposition are the celebrated Littlewood-Richardson coefficients. Let χ_λ denote the polynomial character of irreducible representation V_λ. Then $\chi_\lambda = s_\lambda(x_1, \ldots, x_n, 0, \ldots)$ is the evaluation of Schur function s_λ modulo the relation $x_1 \cdots x_n = 1$. For the background on representation theory of \mathfrak{sl}_n and Schur functions see [Hum], [Sta]. Schur functions form a basis for the ring Λ of symmetric functions with $c^{\nu}_{\lambda, \mu}$ as structure constants. Note that under the substitution $x_{n+1} = \cdots = 0$ the Schur functions s_λ with λ having more than n parts vanish. This causes a subtle difference between multiplication of χ_λ-s and multiplication of Schur functions: some terms appearing in the latter vanish in the former.

One can ask when $V_\lambda \otimes V_\mu$ is contained in $V_\nu \otimes V_\rho$ as an \mathfrak{sl}_n-module. Of course one way to answer this question is just to say that for all κ one should have $c^{\kappa}_{\lambda, \mu} \leq c^{\kappa}_{\nu, \rho}$. However, one might hope to find simple sufficient and/or necessary conditions for the containment to hold. An obviously related question is when the differences of the form $s_\nu s_\rho - s_\lambda s_\mu$ are Schur-nonnegative. Some conjectures and results of this form have appeared in the literature, see [BM, FFLP, LLT, LP, LPP, Oko, RS].

The first thing to note is that the highest weight appearing in $V_\lambda \otimes V_\mu$ is $\lambda + \mu$. Thus, in order for $V_\lambda \otimes V_\mu$ to be a submodule of $V_\nu \otimes V_\rho$ we need to have $\lambda + \mu \leq \nu + \rho$ in dominance order. It is natural to investigate what happens if we restrict our
attention to the case when equality holds, i.e. $\lambda + \mu = \nu + \rho$. For this situation, Lam, Postnikov and Pylyavskyy made a conjecture concerning a sufficient condition for $V_\lambda \otimes V_\mu$ to be a submodule of $V_\nu \otimes V_\rho$, or equivalently for $\chi_\nu \chi_\rho - \chi_\lambda \chi_\mu$ to be χ-nonnegative.

Let $\alpha_{ij} = e_i - e_j$ be the roots of the type A root system. Call a polytope *alcoved* if its faces belong to hyperplanes given by the equations $\langle \alpha_{ij}, \tau \rangle = m$, where \langle , \rangle is the standard inner product and $m \in \mathbb{Z}$. Alcoved polytopes are studied in [LPo]. Given two weights λ, μ one can consider the minimal alcoved polytope $P_{\lambda,\mu}$ containing λ and μ. $P_{\lambda,\mu}$ is always a parallelepiped in which λ and μ are a pair of opposite vertices. An example for sl_3 is shown in Figure 1. The weights τ inside $P_{\lambda,\mu}$ can be characterized by the following condition: for all $1 \leq i, j \leq n$, the number $\tau_i - \tau_j$ lies weakly between $\lambda_i - \lambda_j$ and $\mu_i - \mu_j$. Let ν and ρ be another pair of weights.

Conjecture 1. [LPP2] If $\lambda + \mu = \nu + \rho$ and $\nu, \rho \in P_{\lambda,\mu}$, then $\chi_\nu \chi_\rho - \chi_\lambda \chi_\mu$ is χ-nonnegative.

Example 2. It is easy to see in Figure 1 that points $\rho = (11,7,0)$, $\nu = (5,2,0)$ lie inside marked $P_{\lambda,\mu}$ with $\lambda = (12,7,0)$, $\mu = (4,2,0)$. In this case

$$
\chi_\nu \chi_\rho - \chi_\lambda \chi_\mu = \chi_{(13,12,0)} + \chi_{(6,4,0)} + \chi_{(7,6,0)} + \chi_{(8,8,0)} + \chi_{(7,3,0)} + \chi_{(8,5,0)} + \chi_{(9,7,0)}
$$

$$
+ \chi_{(10,9,0)} + \chi_{(11,11,0)} + \chi_{(8,2,0)} + \chi_{(9,4,0)} + \chi_{(10,6,0)} + \chi_{(11,8,0)} + \chi_{(12,10,0)}.
$$

We prove the following weaker statement.

Theorem 3. If $\lambda + \mu = \nu + \rho$ and $\nu, \rho \in P_{\lambda,\mu}$, then every χ_κ occurring in $\chi_\lambda \chi_\mu$ with a non-zero coefficient does also occur in $\chi_\nu \chi_\rho$ with a non-zero coefficient.

The paper goes as follows. In Section 2 we review the theory of Horn-Klyachko inequalities. We prove Lemma 6 which plays a key role later. In Section 3 we review Rhoades-Skandera theory of Temperley-Lieb immanants. In Section 4 we apply the theory of Temperley-Lieb immanants to prove Lemma 11. Finally we combine Lemma 6 and Lemma 11 to obtain proof of Theorem 3.

The authors would like to express their gratitude to Thomas Lam and Alex Postnikov, whose work with the second author led to Conjecture 1. The authors are also grateful to Denis Chebikin for his superb help with editing the paper.
2. Horn-Klyachko inequalities

For a finite set $I = \{i_1 > \cdots > i_r\}$ of positive integers, define the corresponding partition $\lambda(I)$ by

$$\lambda(I) = (i_1 - r, i_2 - (r - 1), \ldots, i_r - 1).$$

Definition 4. Define T_r^n to be the set of triples (I, J, K) of subsets of $\{1, \ldots, n\}$ of the same cardinality r such that the Littlewood-Richardson coefficient $c_{\lambda(I), \lambda(J)}^{\lambda(K)}$ is positive. A **Horn-Klyachko inequality** for a triple of partitions α, β, γ has the form

$$\sum_{k \in K} \gamma_k \leq \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j$$

for a triple (I, J, K) in T_r^n and some $r < n$.

The following fact was proved in [K] [KT], see also [HM] for a survey:

Theorem 5. For a triple of partitions α, β, γ of length n, the Littlewood-Richardson coefficient $c_{\alpha, \beta}^{\gamma}$ is positive if and only if $\sum_{i=1}^n \gamma_i = \sum_{i=1}^n \alpha_i + \sum_{i=1}^n \beta_i$ and Horn-Klyachko inequalities for α, β, γ are valid for all $(I, J, K) \in T_r^n$ and all $r < n$.

Let partitions λ, μ, ν, ρ with at most n parts satisfy the conditions of Conjecture [K] and γ be a partition such that $c_{\lambda\mu} > 0$. Consider a triple

$$(I = (i_1, \ldots, i_r), J = (j_1, \ldots, j_r), K = (k_1, \ldots, k_r))$$

in T_r^n. Given permutations $\{l_1, \ldots, l_r\}$ of I and $\{m_1, \ldots, m_r\}$ of J, switch l_p and m_p in some of the pairs (l_p, m_p). This operation yields 2^r possible pairs (I', J').

Lemma 6. Assume there exist permutations $\{l_1, \ldots, l_r\}$ of I and $\{m_1, \ldots, m_r\}$ of J such that all possible triples (I', J', K) are in T_r^n. Then the Horn-Klyachko inequality corresponding to the triple (I, J, K) holds for ν, ρ, γ.

Proof. Since $\nu, \rho \in P_{\lambda, \mu}$, for $i, j \geq 1$ both $\nu_i - \nu_j$ and $\rho_i - \rho_j$ are between $\lambda_i - \lambda_j$ and $\mu_i - \mu_j$, which implies

$$|(\nu_i - \nu_j) - (\rho_i - \rho_j)| \leq |(\lambda_i - \lambda_j) - (\mu_i - \mu_j)|.$$

Rearranging terms, we obtain

$$|(\nu_i + \rho_j) - (\nu_j + \rho_i)| \leq |(\lambda_i + \mu_j) - (\lambda_j + \mu_i)|.$$

This inequality combined with the equality $(\nu_i + \rho_j) + (\nu_j + \rho_i) = (\lambda_i + \mu_j) + (\lambda_j + \mu_i)$ following from $\lambda + \mu = \nu + \rho$, shows that $\nu_i + \rho_j$ and $\nu_j + \rho_i$ are between $\lambda_i + \mu_j$ and $\lambda_j + \mu_i$. We use the fact that for all $i, j \geq 1$ we have

$$\nu_i + \rho_j \geq \min\{\lambda_i + \mu_j, \lambda_j + \mu_i\}.$$

For every $p \in \{1, \ldots, r\}$, choose (l'_p, m'_p) to be a permutation of (l_p, m_p) such that $\lambda_{l'_p} + \mu_{m'_p} = \min\{\lambda_p + \mu_{m_p}, \lambda_{m_p} + \mu_p\}$, and let $I' = \{l'_1, \ldots, l'_r\}$, $J' = \{m'_1, \ldots, m'_r\}$ be the corresponding subsets of $\{1, \ldots, n\}$. By the assumption of the lemma, $c_{\lambda\mu} > 0$ and (I', J', K) is in T_r^n. Therefore, by Theorem 5, the Horn-Klyachko inequality for λ, μ, γ and the triple (I', J', K) holds:

$$\sum_{p=1}^r \lambda_{l'_p} + \sum_{p=1}^r \mu_{m'_p} \geq \sum_{k \in K} \gamma_k.$$
Observe that
\[
\sum_{i \in I} \nu_i + \sum_{j \in J} \rho_j = \sum_{p=1}^{r} \nu_{p} + \sum_{p=1}^{r} \rho_{m_{p}} = \sum_{p=1}^{r} (\nu_{p} + \rho_{m_{p}}) \geq \\
\sum_{p=1}^{r} \min \{\lambda_{l_{p}} + \mu_{m_{p}}, \lambda_{m_{p}} + \mu_{l_{p}}\} = \sum_{p=1}^{r} (\lambda_{l_{p}} + \mu_{m_{p}}) \geq \sum_{k \in K} \gamma_{k}.
\]
Therefore, the Horn-Klyachko inequality for \(\nu, \rho, \gamma\) and the triple \((I, J, K)\) holds. \(\square\)

3. Temperley-Lieb immanants

In this section we review the theory of Temperley-Lieb immanants developed by Rhoades and Skandera. We limit ourselves to discussing Theorem 9 and Theorem 7 of which we make use in this paper. For detailed exposition of the beautiful results of Rhoades and Skandera we refer reader to the original papers [RS], [RS2]. One can also find a (more detailed than here) review in [LPP].

The symmetric functions \(h_k = \sum_{i_1 \leq \cdots \leq i_k} x_{i_1} \cdots x_{i_k}\) are called the homogeneous symmetric functions. For background on them, see [Sta]. Given two sets \(V = (v_1 \geq v_2 \cdots \geq v_n \geq 0)\) and \(U = (u_1 \geq u_2 \cdots \geq u_n \geq 0)\) one can construct the generalized Jacobi-Trudi matrix \(X_{V,U} = (h_{v_i-u_j})_{i,j=1}^{n}\). For example, for \(V = (4,3,3,2)\) and \(U = (3,2,1,0)\) we get

\[
X_{V,U} = \begin{bmatrix}
h_1 & h_2 & h_3 & h_4 \\
1 & h_1 & h_2 & h_3 \\
0 & 1 & h_1 & h_2
\end{bmatrix}
\]

Note that for the operation \(\lambda = \lambda(I) = (i_1 - r, \ldots, i_r - 1)\) defined in Section 2 we have the Jacobi-Trudi identity \(s_{\lambda(I)} = \det X_{I,\{r,\ldots,2,1\}}\). (See [Sta]).

The Temperley-Lieb algebra \(TL_n(\xi)\) is the \(\mathbb{C}[\xi]\)-algebra generated by \(t_1, \ldots, t_{n-1}\) subject to the relations \(t_i^2 = \xi t_i, t_it_jt_i = t_j\) if \(|i - j| = 1\), and \(t_it_j = t_jt_i\) if \(|i - j| \geq 2\). The dimension of \(TL_n(\xi)\) equals the \(n\)-th Catalan number \(C_n = \frac{1}{n+1}\binom{2n}{n}\). A 321-avoiding permutation is a permutation \(w \in S_n\) that has no reduced decomposition of the form \(w = \cdots s_is Js_i\cdots\) with \(|i - j| = 1\). (These permutations are also called fully-commutative.) A natural basis of the Temperley-Lieb algebra is \(\{t_w \mid w\text{ is a 321-avoiding permutation in } S_n\}\), where \(t_w := t_{i_1} \cdots t_{i_r}\), for a reduced decomposition \(w = s_{i_1} \cdots s_{i_r}\).

For any permutation \(v \in S_n\) and a 321-avoiding permutation \(w \in S_n\), let \(f_w(v)\) be the coefficient of the basis element \(t_w \in TL_n(2)\) in the basis expansion of \((t_{i_1} - 1) \cdots (t_{i_r} - 1) \in TL_n(2)\), where \(v = s_{i_1} \cdots s_{i_r}\) is a reduced decomposition. Rhoades and Skandera [RS2] defined the Temperley-Lieb immanant \(\text{Imm}^{TL}_w(x)\) of an \(n \times n\) matrix \(X = (x_{ij})\) by

\[
\text{Imm}^{TL}_w(X) := \sum_{v \in S_n} f_w(v) x_{1,v(1)} \cdots x_{n,v(n)}.
\]

Theorem 7. Rhoades-Skandera [RS2] Proposition 2.3, Proposition 3.2 Temperley-Lieb immanants of generalized Jacobi-Trudi matrices are Schur-nonnegative.

Remark 8. In [RS2] two stronger statements (Proposition 2.3 and Proposition 3.2) are proved, from which Theorem 7 follows in a straightforward way.
A product of generators (decomposition) \(t_i \cdots t_i \) in the Temperley-Lieb algebra \(TL_n \) can be graphically presented by a Temperley-Lieb diagram with \(n \) non-crossing strands connecting the vertices 1, \ldots, 2n, possibly with some internal loops. The left endpoints are assumed to be labeled 1, \ldots, \(n \) from top to bottom and the right endpoints are assumed to be labeled 2n, \ldots, \(n+1 \) from top to bottom.

\[
\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
1 & t_1 & t_2 & t_{n-1}
\end{array}
\]

The map that sends \(t_w \) to the non-crossing matching given by its Temperley-Lieb diagram is a bijection between basis elements \(t_w \) of \(TL_n \), where \(w \) is 321-avoiding, and non-crossing matchings on the vertex set \([2n]\).

Following [RS2], for a subset \(S \subseteq [2n] \), let us say that a Temperley-Lieb diagram (or the associated element in \(TL_n \)) is \(S \)-compatible if each strand of the diagram has one endpoint in \(S \) and the other endpoint in its complement \([2n] \setminus S\). Coloring vertices in \(S \) black and the remaining vertices white, a basis element \(t_w \) is \(S \)-compatible if and only if each edge in the associated matching has two vertices of different color. Let \(\Theta(S) \) denote the set of all 321-avoiding permutations \(w \in S_n \) such that \(t_w \) is \(S \)-compatible. An example for \(n = 5 \), \(S = \{3, 6, 7, 8, 10\} \) is shown in the figure below, where all possible compatible non-crossing matchings are presented.

For two subsets \(I, J \subseteq [n] \) of the same cardinality, let \(\Delta_{I,J}(X) \) denote the minor of an \(n \times n \) matrix \(X \) in the row set \(I \) and the column set \(J \). Let \(I^\wedge := \{2n+1-i \mid i \in I\} \).

Theorem 9. Rhoades-Skandera [RS2 Proposition 4.4], cf. Skandera [Sk2] For two subsets \(I, J \subseteq [n] \) of the same cardinality and \(S = J \cup (I^\wedge) \), we have

\[
\Delta_{I,J}(X) \cdot \Delta_{I^\wedge,J^\wedge}(X) = \sum_{w \in \Theta(S)} \text{Imm}^T_w(X).
\]

Example 10. Take \(I = \{1, 2\} \), \(J = \{1, 3\} \), and

\[
X = \begin{bmatrix}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{bmatrix}
\]

Then \(S = \{1, 3, 5, 6\} \), and the elements of \(\Theta(S) \) are shown in the figure below. In this case Theorem 9 yields the decomposition

\[
t_1 t_2 t_1 t_3 = \xi t_1 t_3
\]
Let T_n.

Lemma 11. In the setup of Lemma 6, there exist permutations $\{l_1, \ldots, l_r\}$ and $\{m_1, \ldots, m_r\}$ of I and J respectively such that all possible triples (I', J', K) are in T_n.

Proof. Let $X_{V,U}$ be the generalized Jacobi-Trudi matrix for column set $U = (r, r, \ldots, 1, r - 1, \ldots, 1)$, and row set $V = I \cup J$ in some chosen non-increasing arrangement. Let $\#I$ and $\#J$ denote the sets of numbers of the rows of I and J in the chosen non-increasing arrangement of $I \cup J$. Since $(I, J, K) \in T_n$, we have $\lambda(I) \lambda(J) > 0$. Hence $s_{\lambda(I) \lambda(J)}$ is present in the decomposition of $s_{\lambda(I)} s_{\lambda(J)}$, which by Jacobi-Trudi identity equals to the product $\Delta_{\#I, \{2r,2r-2,\ldots,2\}} \Delta_{\#J,\{2r-1,2r-3,\ldots,1\}}$ of complementary minors of $X_{V,U}$. This product, in turns, by Theorem 9 equals to $\sum_{w \in \Theta(S)} \Imm^TL_w(X_{V,U})$, where $S = \#J \cup \{4r, 4r - 2, \ldots, 2r + 2\}$ is the subset of the vertices $1, \ldots, 4r$ of the Temperley-Lieb diagram which are colored black.

Since $s_{\lambda(K)}$ is in the Schur function decomposition of $\sum_{w \in \Theta(S)} \Imm^TL_w(X_{V,U})$, it is present in the Schur function decomposition of one of the immanants $\Imm^TL_w(X_{V,U})$ for some 321-avoiding permutation $w \in \Theta(S)$. For this 321-avoiding permutation w, the basis element t_w and the corresponding non-crossing matching M_w of the Temperley-Lieb diagram with columns V and U are S-compatible. Therefore, all edges of M_w have endpoints of different color in the Temperley-Lieb diagram on vertices $\{1, 2, \ldots, 4r\}$ where S is colored black and $\{4r\}/S$ colored white.

We proceed now to construct the needed permutations $\{l_1, \ldots, l_r\}$ of I and $\{m_1, \ldots, m_r\}$ of J based on S and M_w. We go along V from top to bottom (see Figure 2(i)) and label vertices in I that are connected to vertices in J by edges in M_w (suppose that there are k such vertices in I) with variables l_1, \ldots, l_k as we meet them. We also label the vertex in J connected to l_i ($i \leq k$) by m_i.

Next, we remove the vertices $l_1, \ldots, l_k, m_1, \ldots, m_k$ from V and call the remaining set V'. We also go along U and discard every pair of vertices in U connected by an edge in M_w, and call the remaining set U'. We go along V' from top to bottom and label the white vertices that we meet by l_{k+1}, \ldots, l_r, and the black vertices we meet by m_{k+1}, \ldots, m_r from top to bottom. For $f \geq 1$, we also label the vertices in U' connected by edges in M_w to l_{k+f} by p_{k+f}, and those connected to m_{k+f} by q_{k+f}. (See Figure 2(ii)). Note that every vertex in V between adjacent vertices of V' is connected by an edge in M_w to another vertex between the same vertices.

4. PROOF OF THE MAIN THEOREM
of V^- because M_w is a non-crossing, and the same is true about U. Therefore, in building V^- and U^- we discarded segments of even lengths from V and U.

Claim. For $f \geq 1$, vertices l_{k+f} and q_{k+f} are white and odd-numbered in the Temperley-Lieb diagram for S and M_w; vertices p_{k+f} and m_{k+f} are black and even-numbered. Also, $l_{k+f+1} > m_{k+f} > l_{k+f}$ and $p_{k+f+1} < q_{k+f} < p_{k+f}$. (See Figure 2(ii))

Proof. Since we discarded segments of even lengths from U to obtain U^- and the colors in U were alternating from top to bottom beginning with the black even vertex $4r$, the colors in U^- are also alternating from top to bottom beginning with a black even vertex. Therefore, vertices in U^- from top to bottom are $p_{k+1} > q_{k+1} > p_{k+2} > \ldots > p_r > q_r$, where p_{k+f} is black and q_{k+f} is white for $f \geq 1$. Because the restriction of the matching M_w to $U^- \cup V^-$ is non-crossing, the inequalities $p_{k+1} > q_{k+1} > p_{k+2} > \ldots > p_r > q_r$ for U^- imply that $l_{k+1} < m_{k+1} < l_{k+2} < \ldots < l_r < m_r$ for V^-. The colors in V^- alternate and have a white odd vertex at the top because the colors in U^- alternate with a black even vertex at the top. Therefore, l_{k+f} is white and m_{k+f} is black for $f \geq 0$. The statements about being odd/even now follow from the fact that we discarded segments of even lengths from U and V to obtain U^- and V^-. We now build a new coloring S' of $U \cup V$ based on the transpositions (l_p, m_p) that may have occurred in going from I, J to I', J'. We only allow ourselves to recolor both elements in a pair $\{2m, 2m-1\} \in \{2r+1, \ldots, 4r\}$ of vertices in the second column of Temperley-Lieb diagram for $S'_0 = \#J' \cup \{4r, 4r-2, \ldots, 2r+2\}$, because the columns $4r+1-2m$ and $4r+2-2m$ of $X_{U,V}$ are identical and hence such a recoloring produces the same pair of complementary minors $\Delta_{\#J',4r-1,2r+1}$, $\Delta_{\#J',4r-3,2r+3}$ of $X_{V,U}$ as S'_0 does, and therefore by Jacobi-Trudi identity the product of these complementary minors is $s_{\lambda(I')} s_{\lambda(J')}$. Rule of recoloring. For every pair l_{k+f} and m_{k+f} ($f \geq 1$) that exchanged colors in transition from I, J to I', J', recolor the pairs $(p_{k+f}, p_{k+f} - 1), (p_{k+f} - 2, p_{k+f} - 3), \ldots, (q_{k+f} + 1, q_{k+f})$. The recoloring is permissible because the vertex p_{k+f} is even by the Claim. (See Figure 2(iii))

![Figure 2](image-url)

Figure 2.

Why the rule produces a coloring compatible with M_w. The vertices between p_{k+f} and q_{k+f} either all changed color or all stayed the same, so an edge in M_w that connected two vertices in U between p_{k+f} and q_{k+f} now has its endpoints
changed or not changed simultaneously, so they are of different color in the new coloring.

A pair \((l_{k+f}, m_{k+f})\) changes color simultaneously with the pair \((p_{k+f}, q_{k+f})\), so \(l_{k+f}\) and \(p_{k+f}\), and \(m_{k+f}\) and \(q_{k+f}\) change or do not change their color simultaneously, so the endpoints of the edges between \(U^-\) and \(V^-\) remain colored differently in the new coloring.

A pair of vertices \((l_p, m_p)\) in \(V\) connected by an edge in \(M_w\) changes color simultaneously when the corresponding transposition occurs, so the endpoints of such an edge remain colored differently. Finally, a pair of vertices in \(U\) between \(q_{k+f}\) and \(p_{k+f+1}\) connected by an edge in \(M_w\) never changes color, so such an edge has its endpoints colored differently in the new coloring. We considered all possibilities for an edge in \(M_w\) relative to \(U^-\) and \(V^-\) in a non-crossing matching, so \(M_w\) is compatible with the new coloring.

We already noticed that the new coloring produces the product of complementary minors of \(X_{V,U}\) equal to \(s_{\lambda(I')}s_{\lambda(J')}\). The fact that the new coloring is compatible with \(M_w\) implies that the immanant \(\text{Imm}^TL_w(X_{V,U})\) is present in the decomposition \(s_{\lambda(I')}s_{\lambda(J')} = \sum_{w \in T(S)} \text{Imm}^TL_w(X_{V,U})\). Since \(s_{\lambda(K)}\) is in the decomposition of \(\text{Imm}^TL_w(X_{V,U})\) which is Schur-nonnegative by Theorem \(\Box\) \(s_{\lambda(K)}\) is present in the Schur function decomposition of \(s_{\lambda(I')}s_{\lambda(J')}\). Therefore \(c_{\lambda(\lambda(I'))\lambda(J')} > 0\) and \((I', J', K) \in T^n\) for all \(I', J'\) that can be obtained by transposing pairs \((l_p, m_p)\) in \(I_J\).

We are ready to prove Theorem \(\Box\)

Proof. From Lemma \(\Box\) and Lemma \(\Box\) it follows that whenever the Horn-Klyachko inequality for triple \((I, J, K)\) holds for \(\lambda, \mu, \gamma\), it also holds for \(\nu, \rho, \gamma\). Thus all possible \(\gamma\)'s for which all needed Horn-Klyachko inequalities hold or, equivalently, \(c_{\lambda,\mu} > 0\), also have the property that \(c_{\gamma,\rho} > 0\). \(\Box\)

References

[BM] F. Bergeron and P. McNamara: Some positive differences of products of Schur functions, arXiv: math.CO/0412289

[FFLP] S. Fomin, W. Fulton, C.-K. Li and Y.-T. Poon: Eigenvalues, singular values, and Littlewood-Richardson coefficients, American Journal of Mathematics, 127 (2005), 101-127.

[Ful] W. Fulton: Eigenvalues, invariant factors, highest weights, and Schubert calculus Bull. Amer. Math. Soc., 37 (2000), 209-249.

[Hum] J. Humphreys: Introduction to Lie algebras and Representation Theory, GTM 9, Springer, 1997.

[Kl] A.A. Klyachko: Random walks on symmetric spaces and inequalities for matrix spectra Linear Algebra Appl., 319 (2000), 37-59.

[KT] A. Knutson, T. Tao: The honeycomb model of \(GL_n(\mathbb{C})\) tensor products I: proof of the saturation conjecture, Journal of American Mathematical Society, 12 (1999), 1055-1090.

[LLe] A. Lascoux, B. Leclerc and J.-Y. Thibon: Ribbon tableaux, Hall-Littlewood symmetric functions, quantum affine algebras, and unipotent varieties, Journal of Mathematical Physics, 38(3) (1997), 1041-1068.

[LP] T. Lam and P. Pylyavskyy: Cell transfer and monomial positivity, arXiv: math.CO/0505273

[LPo] T. Lam and A. Postnikov: Alcoved polytopes I, arXiv: math.CO/0501246

[LPP] T. Lam, A. Postnikov, P. Pylyavskyy: Schur positivity and Schur log-concavity, arXiv: math.CO/0502446

[LPP2] T. Lam, A. Postnikov, P. Pylyavskyy: Some positivity conjectures, in progress.
A. Okounkov: Log-concavity of multiplicities with applications to characters of $U(\infty)$, Advances in Mathematics, 127 no. 2 (1997), 258-282.

B. Rhoades and M. Skandera: Kazhdan-Lusztig immanants and products of matrix minors, to appear in Journal of Algebra; preprint dated November 19, 2004, available at http://www.math.dartmouth.edu/~skan/papers.htm.

B. Rhoades and M. Skandera: Temperley-Lieb immanants, Annals of Combinatorics 9 (2005), no. 4, 451-494.

M. Skandera: Inequalities in products of minors of totally nonnegative matrices, Journal of Algebraic Combinatorics 20 (2004), no. 2, 195–211.

R. Stanley: Enumerative Combinatorics, Vol 2, Cambridge, 1999.

Department of Mathematics, M.I.T., Cambridge, MA 02139

E-mail address: galyna (at) mit (dot) edu

E-mail address: pasha (at) math (dot) mit (dot) edu