MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighborhood Search

Jiaoyang Li, 1 Zhe Chen, 2 Daniel Harabor, 2 Peter J. Stuckey, 2 Sven Koenig 1
1 University of Southern California, USA
2 Monash University, Australia
jiaoyanl@usc.edu, {zhe.chen, daniel.harabor, peter.stuckey}@monash.edu, skoenig@usc.edu

Abstract
Multi-Agent Path Finding (MAPF) is the problem of planning collision-free paths for multiple agents in a shared environment. In this paper, we propose a novel algorithm MAPF-LNS2 based on large neighborhood search for solving MAPF efficiently. Starting from a set of paths that contain collisions, MAPF-LNS2 repeatedly selects a subset of colliding agents and replans their paths to reduce the number of collisions until the paths become collision-free. We compare MAPF-LNS2 against a variety of state-of-the-art MAPF algorithms, including Prioritized Planning with random restarts, EECBS, and PPS, and show that MAPF-LNS2 runs significantly faster than them while still providing near-optimal solutions in most cases. MAPF-LNS2 solves 80% of the random-scenario instances with the largest number of agents from the MAPF benchmark suite with a runtime limit of just 5 minutes, which, to our knowledge, has not been achieved by any existing algorithms.

1 Introduction
MAPF (Stern et al. 2019) is the problem of planning collision-free paths for multiple agents in a shared environment while minimizing their travel times. It is NP-hard to solve optimally and the core problem of many applications, such as in warehouse automation, traffic management, and robotics. Existing MAPF algorithms include systematic search algorithms (that are exponential-time but guaranteed to find optimal or bounded-suboptimal solutions), rule-based algorithms (that are usually polynomial-time and complete), and prioritized algorithms (that run fast empirically but are neither complete nor optimal). When facing challenging MAPF instances, however, the first two types of algorithms suffer from either memory-outs or time-outs while the last type suffers from incompleteness. One successful technique that can improve the chance of finding solutions is to restart the search with a new random seed (Bennewitz, Burgard, and Thrun 2001; Cohen et al. 2018).

In this work, we propose a different way to improve the chance of finding solutions. Instead of giving up on the previous search effort and restarting from scratch, we make use of the infeasible set of paths produced by a MAPF algorithm and try to repair it via Large Neighborhood Search (Shaw 1998). We call the new algorithm MAPF-LNS2. MAPF-LNS2 starts from a set of paths that have collisions and repeatedly replans subsets of paths to reduce the overall number of collisions until the paths become collision-free. By using Prioritized Planning (PP) (Silver 2005) with an efficient single-agent pathfinding algorithm to plan and replan paths and a variety of heuristics to select subsets of paths, MAPF-LNS2 can solve easy instances as fast as PP and hard instances significantly faster than PP and other MAPF algorithms. Even when MAPF-LNS2 fails to find collision-free paths within the runtime limit, it usually returns paths with only a few collisions, which is acceptable in many applications (Belov et al. 2020). The main contributions of this work are twofold:

1. We propose an efficient single-agent pathfinding algorithm SIPP based on SIPP (Phillips and Likhachev 2011) for finding a short path that avoids collisions with a given set of paths and minimizes the number of collisions with another given set of paths. We show that SIPP runs 5 times (or more) faster than Space-Time A*, an A*-based algorithm widely used by many MAPF algorithms. Thus, we demonstrate that SIPP can speed up not only MAPF-LNS2 but also many other MAPF algorithms, such as EECBS (Li, Ruml, and Koenig 2021).

2. We propose a suboptimal MAPF algorithm MAPF-LNS2 that is fast, scalable, and memory-efficient. Although it lacks theoretical guarantees, it empirically significantly outperforms a variety of state-of-the-art MAPF algorithms, including Prioritized Planning with random restarts, EECBS, and PPS (Sajid, Luna, and Bekris 2012), in terms of both success rates and runtimes. MAPF-LNS2 solves 80% of the random-scenario instances with the largest number of agents from the MAPF benchmark suite with a runtime limit of just 5 minutes, which, to our knowledge, has not been achieved by any existing algorithms. Moreover, when given a longer runtime limit of one hour, MAPF-LNS2 can scale to 8,000 agents on a congested warehouse map.

2 Background

Definition 1 (Multi-Agent Path Finding). We are given a connected graph \(G = (V, E) \), a set of \(m \) agents \(A = \{a_1, \ldots, a_m\} \), and a start vertex \(s_i \in V \) and a target vertex
$g_i \in V$ for each agent $a_i \in A$. At each discrete timestep, an agent either moves to an adjacent vertex or waits at its current vertex. A collision happens when two agents occupy the same vertex or traverse the same edge in opposite directions at the same timestep. A plan is a set of paths $\{p_1, \cdots, p_m\}$ that move the agents from their start vertices to their target vertices. Each agent remains at its target vertex after it completes its path. A plan is feasible if it contains no collisions and infeasible otherwise. Our task is to find a feasible plan (also called a solution) with a small sum of costs $\sum_{i=1}^{m} |p_i|$, i.e., the sum of the travel times of the agents.

Due to the many applications of MAPF, numerous MAPF algorithms have been proposed in recent years. State-of-the-art optimal and bounded-suboptimal algorithms, such as CBSH2-RTC (Li et al. 2021c), Lazy CBS (Gange, Harbor, and Stuckey 2019), BCP (Lam and Le Bodic 2020), and EECBS (Li, Ruml, and Koenig 2021), usually deploy a strategy called CBS (Sharon et al. 2015), that uses a single-agent pathfinding algorithm to plan a path for each agent first and resolves collisions afterwards. They provide quality guarantees for their solutions but do not scale to large instances as their runtimes are exponential in the number of agents. State-of-the-art unbounded-suboptimal algorithms include prioritized algorithms, such as prioritized planning (Erdmann and Lozano-Perez 1986) and PBS (Ma et al. 2019), and rule-based algorithms, such as PPS (Sajid, Luna, and Bekris 2012), PIBT (Okumura et al. 2019), and WSCaS (Wang and Rubenstein 2020). Prioritized algorithms plan paths based on a priority ordering of the agents where lower-priority agents need to avoid collisions with higher-priority agents. They are simple and run extremely fast but can fail to find any solutions for challenging instances due to their incompleteness. Rule-based algorithms move agents toward their target vertices via simple movement rules. Many of them are polynomial-time and complete in theory but can still fail to find solutions within a reasonable time for large instances.

The idea of MAPF-LNS2 is that, when a MAPF algorithm fails, we obtain an infeasible plan from the algorithm and repair it. For instance, for a CBS-style algorithm, each high-level search node contains a plan, so we pick the plan with the minimum number of collisions. For a prioritized algorithm, it fails when there is no path for an agent that avoids collisions with the paths of higher-priority agents. We retain the already-planned paths and plan paths for the remaining agents that minimize the number of collisions (instead of avoiding collisions) with the already-planned paths.

3 MAPF-LNS2

Large Neighborhood Search (LNS) (Shaw 1998) is a popular local search technique to improve the solution quality for combinatorial optimization problems. Starting from a given solution, it destroys part of the solution, called a neighborhood, and treats the remaining part of the solution as fixed. It then repairs the solution and replaces the old solution if the repaired solution is better. This procedure is repeated until some stopping criterion is met. MAPF-LNS (Li et al. 2021a) is an anytime MAPF framework that uses LNS to improve the quality of a solution obtained from a MAPF algorithm over time. It repeatedly selects a subset of agents and replans their paths. Motivated by this work, we propose MAPF-LNS2 that can efficiently find a solution (instead of improving a given solution) for a MAPF instance.

To begin with, MAPF-LNS2 calls a MAPF algorithm to solve the instance and obtains a (partial or complete) plan from the MAPF algorithm. For each agent that does not yet have a path, MAPF-LNS2 plans a path for it that minimizes the number of collisions with the existing paths. Details of finding such paths are introduced in Section 4. MAPF-LNS2 then repeats a repairing procedure until the plan P becomes feasible. At each iteration, MAPF-LNS2 selects a subset of agents $A_s \subseteq A$ by a neighborhood selection method (see Section 5). We denote the paths of the agents in A_s as P^-. It then calls a modified MAPF algorithm to replan the paths of the agents in A_s to minimize the number of collisions with each other and with the paths in $P \setminus P^-$. Specifically, MAPF-LNS2 uses a modification of Prioritized Planning (PP) as the modified MAPF algorithm. To make MAPF-LNS2 efficient, we need an efficient single-agent pathfinding algorithm that can find a shortest path for an agent that minimizes the number of collisions with the existing paths, namely Greedy CBS (Barer et al. 2014) and PBS (Ma et al. 2019). But both of them perform worse than PP empirically.

4 Pathfinding with Dynamic Obstacles

To make MAPF-LNS2 efficient, we need an efficient single-agent pathfinding algorithm that can find a shortest path for an agent that minimizes the number of collisions with a given set of paths. Here, we formulate a more general problem called Pathfinding with Mixed Dynamic Obstacles (PMDO). We use half-open interval notation $[a, b)$ to represent the contiguous set of integers $\{x | a \leq x < b\}$.

Definition 2 (Pathfinding with Mixed Dynamic Obstacles). We call $(v, t), (e, t),$ and $(v, [t, \infty))$ a vertex, edge, and target obstacle indicating that vertex $v \in V$, edge $e \in E$, and vertex $v \in V$ are occupied at timestep t, from timestep $t - 1$ to timestep t, and at and after timestep t, respectively. Given a graph $G = (V, E)$, a start vertex $s \in V$, a target vertex $g \in V$, and two finite sets of obstacles O^h (called hard obstacles) and O^s (called soft obstacles), our task is to find a path p from s to g that does not collide with any hard obstacles. We assume that s at timestep 0 is not occupied by any hard obstacles, and g at time ∞ is not occupied by any hard obstacles either, i.e., there is finite time from which no more hard obstacles occupy g. The objective is to minimize the number of soft collisions, i.e., collisions with the soft obstacles, and break ties by the travel time $|p|$.

\footnote{We have tried to adapt two other MAPF algorithms to replan the paths, namely Greedy CBS (Barer et al. 2014) and PBS (Ma et al. 2019). But both of them perform worse than PP empirically.}
4.1 Space-Time A*

A straightforward algorithm for PMDO is space-time A*, which is used by many MAPF algorithms such as ID (Standler and Korf 2011) and ECBS (Barer et al. 2014). Space-time A* performs an A* search on a time-expanded graph where each state in the graph is defined by a vertex \(v \) and a timestep \(t \), representing the agent being at vertex \(v \) at timestep \(t \). The agent can move from state \((v, t)\) to state \((v', t')\) iff \((v, v') \in E \lor v = v'\) \& \(t' = t + 1 \) holds and the move action does not collide with any obstacles in \(O^h \). In addition to the regular \(g-, h-, f\)-values, each node in the search tree of space-time A* maintains a \(c\)-value, that represents the number of collisions of the partial path from the root node to the current node with obstacles in \(O^s \). To find the optimal solution of a PMDO instance, we sort the nodes in the open list in ascending order of their \(c\)-values, breaking ties by their \(f\)-values.

While space-time A* can solve PMDO correctly, unfortunately it cannot do so efficiently. Consider the instance shown in Figure 1(left). If agent \(a_2 \) needs to plan a path that minimizes the number of collisions with the path of agent \(a_1 \), space-time A* needs to expand all nodes whose \(c\)-values are zero before finding the optimal path, that has one collision with \(a_1 \) at C2 at timestep 2 (because \(a_1 \) reaches C2 at timestep 1 and remains there forever). However, there is a potentially infinite number of nodes that have zero collisions as the time dimension is unbounded. So space-time A* may not return a solution in finite time. Although one can fix this issue by restricting space-time A* to generating states only with timesteps no greater than the maximum of the timesteps of the obstacles \(\max\{t \in \mathbb{N} : (v, t) \in O^h \lor O^s \lor (v, t) \in O^h \lor O^s \} \) and switching to standard A* (without the time dimension) afterward (Ma et al. 2019), the number of nodes it has to expand can still be large.

4.2 SIPPS

Safe Interval Path Planning (SIPP) (Phillips and Likhachev 2011) is a fast variant of space-time A* that uses time intervals instead of timesteps to represent the time dimension of the problem. It performs an A* search on a time-interval graph where each state in the graph is defined by a vertex and a safe (time) interval, representing that a particular vertex is free of hard obstacles during the time interval. For each state with vertex \(v \) and safe interval \([a, b]\), SIPP always prefers the (partial) path that arrives at \(v \) as early as possible within \([a, b]\) and then waits at \(v \) if necessary, since this allows SIPP to prune paths that arrive at \(v \) at a later timestep within \([a, b]\) without losing optimality. SIPP runs significantly faster than space-time A* empirically (Phillips and Likhachev 2011; Li et al. 2021b), yet it cannot handle soft obstacles. We thus generalize SIPP to Safe Interval Path Planning with Soft constraints (SIPPS) for solving PMDO.

Safety Intervals A *safe interval* for a vertex is a contiguous period of time during which (1) there are no hard vertex obstacles and no hard target obstacles, and (2) there is either (a) a soft vertex or target obstacle at every timestep or (b) no soft vertex obstacles and no soft target obstacles at any timestep. We build a safe interval table \(T \), that maps each vertex \(v \in V \) to a sequence of safe intervals \(T[v] \). To build \(T[v] \), we look at all hard and soft vertex and target obstacles at \(v \) and divide interval \([0, \infty)\) into a minimum set of disjoint safe intervals in \(T[v] \) in chronological order. We do not consider edge obstacles here as they are handled elsewhere.

SIPPS Nodes A node \(n \) in the search tree of SIPPS node \(n \) consists of four elements, namely a vertex \(n.v \), a safe interval \([n.low, n.high]\) where \(n.low \) is also called the earliest arrival time, an index \(n.id \) indicating that the safe interval is (a subset of) the \(id\)-th safe interval in \(T[n.v] \) (i.e., interval \([n.v][n.id] \)), and a Boolean flag \(n.is_goal \) indicating whether the node is a goal node (set to false by default). The \(f\)-value of node \(n \) is the sum of its \(g\)-value and \(h\)-value, where the \(g\)-value is set to \(n.low \) and the \(h\)-value is a lower bound on the minimum travel time from vertex \(n.v \) to vertex \(g \). Each node \(n \) also maintains a \(c\)-value, which is the (underestimated) number of the soft collisions of the partial path from the root node to node \(n \), i.e., \(c(n) = c(n') + c_v + c_e \), where \(n' \) is the parent node of \(n \), \(c_v \) is 1 if the safe interval of \(n \) contains soft vertex/target obstacles and 0 otherwise, and \(c_e \) is 1 if \((n'.v, n.v), n.low) \in O^s \) and 0 otherwise. If \(n \) is the root node (i.e., \(n' \) does not exist), \(c(n) = c_v \). In principle, an agent may encounter more than one soft collision if it waits within a safe interval that contains soft vertex obstacles. We ignore such cases for efficiency. More discussions can be found in the Theoretical Analysis paragraph.

Main Algorithm Algorithm 1 shows the pseudo-code of SIPPS. To begin with, we build \(T \) and generate the root node with start vertex \(s \) and the first safe interval \(T[s][1] \) from \(T[s] \) and index 1 [Lines 1 and 2]. \(T \) is a lower bound on the travel time [Line 3]. If we have hard vertex obstacles at target vertex \(g \), then \(T \) is set to one plus the maximum timestep of all hard vertex obstacles at \(g \) [Line 4] since the agent cannot complete its path before all hard vertex obstacles at \(g \) have disappeared. \(Q \) and \(P \) are regular open and closed lists, respectively [Line 6]. In order for SIPPS to find the path with the minimum number of soft collisions (and break ties with the minimum travel time), \(Q \) sorts its nodes in ascending order of their \(c\)-values, breaking ties in ascending order of their \(f\)-values. At every iteration, we pop a node \(n \) from \(Q \) [Line 8] and return its corresponding path if it is a goal node [Line 9]. Function \(extractPath(n) \) constructs a path by repeatedly moving to the parent node until the root node is found. The reversed sequence of vertices of the visited nodes is the sequence of vertices visited by the path.
with their timesteps being the earliest arrival time of each node. If the difference between the earliest arrival times of two adjacent nodes is larger than one, we add wait actions in between accordingly so that the agent reaches the vertex of the former node at the earliest arrival time of the former node, waits there, and then move to the vertex of the latter node at the earliest arrival time of the latter node. If \(n \) is at target vertex \(q \) with \(n, \text{low} \geq T \) [Lines 10 to 15], it can be a goal node, but its \(c \)-value does not consider the number of additional soft collisions \(c_{\text{future}} \) that the agent encounters after timestep \(n, \text{low} \) during staying at \(g \) forever. We thus terminate only if \(c_{\text{future}} \) is 0 and generate a goal node that considers \(c_{\text{future}} \), otherwise. Finally, we expand \(n \) [Line 16] and insert it into the closed list \(P \) [Line 17].

Expanding Nodes When expanding a node \(n \) (see Algorithm 2), we first store all reachable vertex-index pairs from vertex \(n,v \) at a timestep within interval \([n,\text{low}; n,\text{high}]\) in \(I \) [Lines 1 to 5]. A vertex-index pair \((v, id)\) is reachable if the agent can move to \(v \) at a timestep within \(T[v][id] \) (i.e., \(T[v][id] \) overlaps with \([n,\text{low} + 1; n,\text{high} + 1] \)) or wait at \(v \) [interval \([n,\text{low}, n,\text{high}]) \) to interval \(T[v][id] \) (i.e., \(n,\text{high} = T[v][id],\text{low} \)). For each vertex-index pair \((v, id)\) in \(I \) [Line 6], we use \([\text{low}, \text{high}]\) to represent the corresponding interval [Line 7]. We update \(\text{low} \) to the earliest arrival time at \(v \) within \([\text{low}, \text{high}]\) without colliding with any hard edge obstacles. We jump to the next iteration if \(\text{low} \) does not exist [Line 9]. We then find the earliest arrival time \(\text{low}^* \) at \(v \) within \([\text{low}, \text{high}]\) without colliding with any hard or soft edge obstacles. If \(\text{low}^* \) exists and \(\text{low}^* > \text{low} \) [Lines 11 to 15], then the agent will collide with a soft edge obstacle if it arrives at \(v \) during \([\text{low}, \text{low}^*] \) and will not if it arrives at \(\text{low}^* \) (and waits at \(v \) if necessary). Thus, we generate two child nodes, one with safe interval \([\text{low}, \text{low}^*] \) and one with safe interval \([\text{low}^*, \text{high}] \). The former child node has one more collision than the latter one. If \(\text{low}^* \) does not exist or \(\text{low}^* = \text{low} \) [Lines 16 to 18], then we generate one child node as usual (note that the case when \(\text{low}^* \) does not exist results in one more collision in the child node than the case when \(\text{low}^* = \text{low} \)).

Inserting Nodes We say that two nodes \(n_1 \) and \(n_2 \) have the same identity, denoted as \(n_1 \sim n_2 \), if \(n_1.v = n_2.v, n_1.id = n_2.id, \) and \(n_1.is_goal = n_2.is_goal \). We say that \(n_1 \) (weakly) dominates \(n_2 \), denoted as \(n_1 \geq n_2 \), if \(n_1 \sim n_2, [n_1.\text{low}, n_1.\text{high}] \supseteq [n_2.\text{low}, n_2.\text{high}] \), and \(c(n_1) \leq c(n_2) \). We are interested in dominance because,
if node n_1 dominates node n_2 (e.g., Figure 2(c)), we can prune n_2 without loss of completeness. Moreover, we know from Lines 6 to 18 in Algorithm 2 that a node n satisfies $n.\text{high} < T[n.\text{v},n.\text{id},\text{high}]$ iff it is generated on Line 12, i.e., there is a twin node n' with $n' \sim n, [n'.\text{low}, n'.\text{high}] = [n.\text{high}, T[n.\text{v},n.\text{id},\text{high}])$, and $c(n') = c(n) - 1$. That is to say, if the situations in Figures 2(e) and (f) occur, although n_1 does not dominate n_2, there exists a twin node n_3 of n_1 such that $n_1 \sim n_2 \sim n_3, [n_3,\text{low}, n_3,\text{high}] \cup \{n_3,\text{low}, n_3,\text{high}\} \supseteq \{n_2,\text{low}, n_2,\text{high}\}$, and $c(n_3) < c(n_1) \leq c(n_2)$. We can thus prune n_2. Therefore, we generalize the definition of dominance as follow. We say that node n_1 (weakly) dominates node n_2, denoted as $n_1 \trianglerighteq n_2$, iff $n_1 \sim n_2$, $n_1,\text{low} \leq n_2,\text{low}$, and $c(n_1) \leq c(n_2)$. We can prune a node if it is dominated by another node. For situations when two nodes with the same identity have overlapping intervals but no dominance relationship (as in Figures 2(b) and (d)), the intersection of the two intervals would be explored twice if we expanded both nodes. We know that the node with the smaller lower bound always has the larger c-value (since, otherwise, the two nodes would have a dominance relationship), so we can shrink the interval of the node with the smaller lower bound by updating its upper bound to the lower bound of the the interval of the other node. This avoids the duplicate search effort without loss of completeness. The only considered situation is the one shown in Figure 2(a), in which case we have to keep both nodes. In order to make SIPPS efficient, we use this analysis in SIPPS. As shown in Algorithm 3, we first compute the values of node n [Line 1] and collect all nodes in Q and P that have the same identity as n [Line 2]. We need to compare with each such node so as to avoid duplicate search effort. Consider a node q [Line 3]. If it dominates n [Line 4], then we do not need to generate n and thus terminate [Line 5]. If it is dominated by n [Line 6], then we do not need q and thus remove it from Q and P [Line 7]. Otherwise, if the safe intervals of the two nodes overlap [Line 8], then we reset the upper bound of the interval with the smaller lower bound to the lower bound of the other interval [Lines 9 and 10].

Heuristics

To achieve high efficiency, most MAPF algorithms use the distance $d(n.v, g)$ (i.e., the length of the shortest path) from $n.v$ to g as the h-value of node n when they plan paths for single agents, where the distance table d is computed during preprocessing. Such a heuristic is informed as long as the travel time of the optimal path p^* is not too much larger than $d(s,g)$. Unfortunately, this is not always the case for PMDO for two reasons: (1) T (which is a lower bound on $|p^*|$) can be substantially larger than $d(s,g)$ due to hard obstacles at target vertices; and (2) $T^* = \max\{t | (g,t) \in \mathcal{O} \cup \mathcal{P} \}$ (which is a lower bound on $|p^*|$ when p^* has zero soft collisions) can be substantially larger than $d(s,g)$. Therefore, we compute the h-value of a non-goal node n as

$$h(n) = \begin{cases} \max\{d(n.v, g), T^* - g(n)\}, & c(n) = 0 \\ \max\{d(n.v, g), T - g(n)\}, & c(n) \geq 1, \end{cases}$$

where T is computed on Lines 3 and 4. The h-value of a goal node is, of course, 0.

Theoretical Analysis

Below are two theorems for SIPPS. The proofs are omitted as they follow the proofs for SIPP.

Theorem 1. SIPPS guarantees to return a path if one exists and “No Solution” otherwise.

Theorem 2. SIPPS guarantees to return a shortest path with zero soft collisions if one exists.

One limitation of SIPPS is that, if no zero-soft-collision path exists, SIPPS may return a path whose number of soft collisions is larger than minimum because the c-value ignores the soft collisions that occur when the agent waits within a safe interval that contains soft vertex obstacles. This approximation is acceptable since the minimization of the number of collisions itself is an approximation of the CP minimization (i.e., minimization of the number of collision pairs) used by MAPF-LNS2.3 We have considered to minimize CP in SIPPS directly, but it is extremely inefficient as we have to keep track of the set of agents that the partial path from the root node to each node collides with, which substantially increases the search space.

Applications

Although SIPPS is designed for MAPF-LNS2, it can be used by a broad family of MAPF algorithms as PMDO is a common problem that needs to be solved by many MAPF algorithms. Examples include the optimal algorithms ID (Standley and Korf 2011) and CBS (Sharon et al. 2015), the bounded-suboptimal algorithm ECBS (Barer et al. 2014), and the prioritized algorithm PBS (Ma et al. 2019) as well as their variants. With small changes to the priority function used by the open list of SIPPS (e.g., in CBS, prioritizing nodes with smaller f-values and breaking ties towards smaller c-values), SIPPS can speed up these MAPF algorithms while preserving their solution quality guarantees. Moreover, unlike space-time

3Empirically, We ran MAPF-LNS2 on the random map with 400 agents using the setup described in Section 6 and collected the results of 84,739 SIPPS runs. Among them, more than 95% of runs find the minimum-collision paths, and 4% of runs find paths that contain only one more collision than the minimum (where the minimum-collision paths are found by space-time A*). In fact, although space-time A* guarantees to find minimum-collision paths, their CPs are occasionally larger than those by SIPPS.
A*, SIPPS can be applied to continuous-time settings, so it can also speed up Continuous-Time CBS (CCBS) (Andreychuk et al. 2019) and allows one to generalize CCBS to its suboptimal variants, e.g., continuous-time ECBS.

5 Neighborhood Selection
The selection of good neighborhoods is critical to the success of LNS. Here, we present three neighborhood selection methods and introduce adaptive LNS that intelligently combines these methods. Each method derives from a different motivation. Although there might be multiple implementations for each motivation, we present the one that works well for us and leave the exploration of other implementations for future work. We denote the current plan as P, the neighborhood as A_s, and the size of A_s as a predefined parameter N. $G_c = (V_c, E_c)$ is the collision graph where $V_c = \{i \mid a_i \in A\}$ and $E_c = \{(i, j) \mid p_i \in P \text{ collides with } p_j \in P\}$. We denote the degree of v in G_c as $\deg(v)$.

Collision-Based Neighborhoods A straightforward idea for generating neighborhoods that can potentially reduce CP is to select a subset of agents whose current paths collide with each other. To implement this idea, we first select a random vertex v from V_c with $\deg(v) > 0$ and find the largest connected component $G'_c = (V'_c, E'_c)$ of G_c that contains v. There are two cases:

1. If $|V'_c| \leq N$, we put all agents a_v with $v \in V'_c$ into A_s and repeatedly add additional agents that might collide with some agents in A_s to A_s until $|A_s| = N$. At each iteration, we select a random agent from A_s and let it perform a random walk starting from a random position on its path and stop when it collides with another agent, which is then added to A_s.

2. Otherwise, we select N vertices from V'_c via a random walk on G'_c starting from v and put the corresponding agents into A_s.

Failure-Based Neighborhoods The second idea is to reason about why we failed to find collision-free paths for some agents in the previous LNS iterations. Finding a path for an agent a_i that does not collide with a given set of paths is an essential problem that is repeatedly solved in PP. Thus, previous work on PP has already studied this problem thoroughly (Cáp et al. 2015). Briefly speaking, there are two scenarios that result in failures, namely, (A) a_i is blocked by the agents from the given set of paths “sitting” at their target vertices surrounding a_i (see a_2 in Figure 1(left)), i.e., all possible paths for a_i to reach g_i are blocked by some target obstacles, and (B) a_i is “run over” by the given set of paths at (or around) s_i during early timesteps (see Figure 1(right)), i.e., the agent has no way to go. Therefore, the failure-based neighborhood focuses on an agent a_i that has collisions and a set of agents whose paths visit s_i or whose target vertices are on some path from s_i to g_i. Formally, we first select an agent $a_i \in A$ with a probability proportional to $\deg(i)$ (i.e., proportional to the number of agents that agent a_i collides with) and add a_i to A_s. We then collect two sets of agents $A^s = \{a_j \in A \mid p_j \in P \text{ visits } s_i\}$ and $A^p = \{a_j \in A \mid p$ visits $g_j\}$, where p is the path from s_i to g_i that minimizes $|A^p|$. There are three cases:

1. If $|A^s \cup A^p| = 0$, then we terminate and return A_s, because we are guaranteed to find a path for a_i that does not collide with any other agents as a_i can sit at s_i until all other agents reach their target vertices and then move to g_i via path p.

2. Otherwise, if $|A^s \cup A^p| < N - 1$, then we add the agents in $A^s \cup A^p$ to A_s and then repeatedly add additional agents to A_s whose target vertices are visited by the paths of some agents in A_s until $|A_s| = N$. At each iteration, we select a random agent a_j from A_s and collect the agents whose target vertices are visited by $p_j \in P$. We select a random agent from the collected agents and add it to A_s.

3. Otherwise, we add $N - 1$ agents to A_s using the following rule:

 (a) If $|A^s| = 0$, we add $N - 1$ random agents in A^p to A_s.

 (b) Otherwise, if $|A^p| \geq N - 1$, we add the agent in A^s that visits s_i the earliest and $N - 2$ random agents in A^p to A_s.

 (c) Otherwise, we add all agents in A^p and the first $N - 1 - |A^p|$ agents in A^s (from the sequence of agents in ascending order of the timesteps when their paths visit s_j) to A_s.

This rule prefers agents in A^p slightly over agents in A^s because we find empirically that Scenario (A) occurs more frequently than Scenario (B).

Random Neighborhoods Generating neighborhoods randomly may sound naïve but has been shown to be extremely effective for many problems (Demir, Bektas, and Laporte 2012; Song et al. 2020; Li et al. 2021a). Our third idea therefore is to select N agents randomly, namely each a_i with a probability proportional to $\deg(i) + 1$. We add one here in order to give the agents who do not collide with others a chance to be selected.

Adaptive LNS (ALNS) ALNS (Ropke and Pisinger 2006) is a strong variant of LNS. It makes use of multiple neighborhood selection methods by recording their relative success in improving solutions and generating the next neighborhood with the most promising method. Formally, we maintain a weight w_i for each neighborhood selection method i that represents its relative success in reducing the CP. Initially, we set all w_i to 1. At each iteration, we select a method i with probability $w_i / \sum w_j$ to generate a neighborhood and replan the paths. After replanning, we set w_i to $\gamma \cdot \max\{0, c^- - c^+\} + (1 - \gamma) \cdot w_i$, where c^- and c^+ are the CPs of the plans before and after replanning, respectively, and $\gamma \in [0, 1]$ is a user-specified reaction factor that controls how quickly the weights react to the changes in the relative success in reducing the CP. We use $\gamma = 0.1$ empirically. The weights for the other methods remain the same.

6 Experiments
We compare MAPF-LNS2 against a representative set of scalable state-of-the-art MAPF algorithms, namely the
bounded-suboptimal algorithm EECBS, the prioritized algorithms PP and PP with restarts (PP^R) (where we repeatedly rerun PP with a random priority ordering until it finds a solution), and the rule-based algorithm PPS. In addition, in order to show the effectiveness of SIPPS for speeding up MAPF algorithms other than MAPF-LNS2, we implement a variant of EECBS (denoted as EECBS*) that uses SIPPS instead of space-time A*. Both PP and PP^R use SIPPS to plan paths for single agents (they do not use SIPPS as their underlying single-agent problem does not have soft obstacles). If not specified otherwise, MAPF-LNS2 uses PP to find the initial plans, ALNS to generate neighborhoods of size N = 8, and SIPPS to plan paths for single agents. All implementations were written in C++ and share the same code base. We use the random-scenario instances on all 33 maps from the MAPF benchmark suite, yielding 25 instances per map and number of agents. We conduct experiments on Amazon EC2 “m4.xlarge” instances with 16 GB of memory. If not specified, the runtime limit is 5 minutes. Due to the space limit, we report results only on the random map random-32-32-20 in Experiments 1-3 and the warehouse map warehouse-20-40-10-2-2 in Experiment 5.

Experiment 1 compares two PMDO algorithms. Table 1 compares MAPF-LNS2 with SIPPS against MAPF-LNS2 with space-time A* (or A* for short) in terms of their success rates (i.e., percentages of instances solved within the runtime limit), average runtimes (with 5 minutes used for unsolved instances), and average runtimes per SIPPS/A* call with their standard deviations. SIPPS clearly dominates A* with a speedup of more than 5 times. It is also more stable, e.g., the largest runtime per call for SIPPS is 51 ms while that of A* is 524 ms (not shown in the table). This difference is even larger on larger maps.

Table 1: Comparing SIPPS against A* on the random map. *Runtime per call* is the average runtime of a single A*/SIPPS search.

m	Success rate	Runtime (s)	Runtime per call (ms)			
	A* SIPPS	A* SIPPS	A* SIPPS			
250	1.00	1.00	3.37	0.64	5.49 ± 17.19	1.11 ± 1.79
300	1.00	1.00	15.99	2.67	10.9 ± 28.72	1.94 ± 2.79
350	0.88	1.00	>68	9.25	15.83 ± 43.52	2.75 ± 3.72
400	0.68	0.88	>162	>78	15.28 ± 40.95	3.04 ± 4.23

Experiment 2 compares four neighborhood selection methods. Table 2 compares MAPF-LNS2 with ALNS against MAPF-LNS2 with the three individual neighborhood selection methods. As expected, ALNS performs the best as it combines the strengths of the other methods and is able to use a larger variety of neighborhoods. We also experimented with different neighborhood sizes N = 4, 8, 16, 32 but omit the results since they are similar to those of the previous work (Li et al. 2021a): there is no global winner, and larger neighborhoods have larger chances to find better solutions but require more time to replan, resulting in fewer iterations within the runtime limit.

Table 2: Comparing ALNS (denoted as A) against random (denoted as R), failure-based (denoted as F), and collision-based (denoted as C) neighborhoods on the random map.

m	Success rate	Runtime (s)	#runs	Init CP				
	R	F	C	A	R	F	C	A
250	1.00	1.00	1.00	1.00	0.80	0.59	0.79	0.64
300	1.00	1.00	1.00	1.00	13.13	3.41	3.09	2.67
350	1.00	0.96	1.00	1.00	32.57	>22	9.11	9.25
400	0.48	0.60	0.76	0.88	>192	>155	>128	>78

Experiment 3 compares MAPF-LNS2 against other PP-based algorithms, namely PP and PP^R. MAPF-LNS2 can be viewed as a PP-based algorithm as it uses PP to both find initial plans and replan. As shown in Table 3, MAPF-LNS2 performs the best. It rapidly reduces the CP of the initial plan generated by PP and, as a result, substantially improves the success rate of PP. Its LNS framework is a more efficient approach than random restarts since MAPF-LNS2 requires significantly fewer runs of single-agent pathfinding than PP^R, which in turn results in significantly higher success rates and lower runtimes. Although MAPF-LNS2 failed to solve 3 instances with 400 agents, its final plans in these cases have only 1, 1, and 2 CPs (not shown in the table).

Table 3: Comparing MAPF-LNS2 (denoted as LNS) against PP and PP^R on the random map. We omit the runtime of PP as it is equal to the runtime of PP^R and MAPF-LNS2 for any instance it was able to solve. #runs is the average number of times for which we run SIPP(S). *Init CP* is the average CP of the initial plan.

m	Success rate	Runtime (s)	#runs	Init CP				
	PP	PP^R	LNS	PP^R	LNS	PP^R	LNS	
100	0.56	1.00	1.00	0.02	0.01	179	105	0.6
200	0.08	1.00	1.00	6.69	0.14	47,114	262	5
300	0.00	0.00	1.00	>300	2.67	-	1,285	61
400	0.00	0.00	0.88	>300	>78	-	-	316

6We picked 5 as the suboptimality guarantee because we intended to choose a large enough suboptimality guarantee such that, if EECBS fails to solve an instance that MAPF-LNS2 has solved, it is due to the scalability limit of EECBS rather than it using a too-small suboptimality guarantee.
Figure 3: Runtime and solution quality on all maps. Suboptimality is overestimated by $\sum_{i=1}^{m} |p_i| / \sum_{i=1}^{m} d(s_i, g_i)$.

Figure 4: Success rates on all maps.

Figure 5: Runtime on the warehouse map. Each dot represents the runtime on one instance, with each line and filled area representing the mean and 0.1-quantile values over the 25 randomly generated instances for each number of agents.

Experiment 5 examines the effects of a longer runtime limit of an hour. Figure 5 shows that MAPF-LNS2 still performs the best. It plans collision-free paths for 3,000 agents within a minute, 5,000 agents within 5 minutes, and 8,000 agents within an hour.

7 Summary

We proposed a suboptimal algorithm MAPF-LNS2 that solves MAPF by repeatedly repairing the colliding paths in a given set of paths. MAPF-LNS2 solves 80% of the most challenging MAPF-benchmark instances within a runtime limit of just 5 minutes, which significantly outperforms a variety of state-of-the-art MAPF algorithms. In addition, the single-agent path planner SIPPS used by MAPF-LNS2 runs 5 times (or more) faster than space-time A* and can be used to speed up a variety of MAPF algorithms. For example, it almost doubles the success rate of EECBS within 5 minutes in our experiments.
Acknowledgments

The research at the University of Southern California was supported by the National Science Foundation under grant numbers 1409987, 1724392, 1817189, 1837779, and 1935712 as well as a gift from Amazon. The research at Monash University was partially supported by the Australian Research Council under Discovery Grants DP190100013 and DP200100025 as well as a gift from Amazon. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, or the U.S. government.

References

Andreychuk, A.; Yakovlev, K. S.; Atzmon, D.; and Stern, R. 2019. Multi-Agent Pathfinding with Continuous Time. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 39–45.

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-optimal Variants of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem. In Proceedings of the Annual Symposium on Combinatorial Search (SoCS), 19–27.

Belov, G.; Du, W.; de la Banda, M. G.; Harabor, D.; Koenig, S.; and Wei, X. 2020. From Multi-Agent Pathfinding to 3D Pipe Routing. In Proceedings of the Thirteenth International Symposium on Combinatorial Search (SoCS), 11–19.

Bennewitz, M.; Burgard, W.; and Thrun, S. 2001. Optimizing Schedules for Prioritized Path Planning of Multi-Robot Systems. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 271–276.

Cáp, M.; Novák, P.; Kleiner, A.; and Selecký, M. 2015. Prioritized Planning Algorithms for Trajectory Coordination of Multiple Mobile Robots. IEEE Transactions on Automation Science and Engineering, 12(3): 835–849.

Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S. 2019. Optimal and Bounded-Suboptimal Multi-Agent Motion Planning. In Proceedings of the International Symposium on Combinatorial Search (SoCS), 44–51.

Cohen, L.; Wagner, G.; Chan, D. M.; Choset, H.; Sturtevant, N. R.; Koenig, S.; and Kumar, T. K. S. 2018. Rapid Randomized Restarts for Multi-Agent Path Finding Solvers. In Proceedings of the International Symposium on Combinatorial Search (SoCS), 148–152.

Demir, E.; Bektas, T.; and Laporte, G. 2012. An Adaptive Large Neighborhood Search Heuristic for the Pollution-Routing Problem. European Journal of Operational Research, 223(2): 346–359.

Erdmann, M.; and Lozano-Perez, T. 1986. On Multiple Moving Objects. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 3, 1419–1424.

Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS: Implicit Conflict-Based Search Using Lazy Clause Generation. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 155–162.

Lam, E.; and Le Bodic, P. 2020. New Valid Inequalities in Branch-and-Cut-and-Price for Multi-Agent Path Finding. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 184–192.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S. 2021a. Anytime Multi-Agent Path Finding via Large Neighborhood Search. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 4127–4135.

Li, J.; Chen, Z.; Zheng, Y.; Chan, S.-H.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S. 2021b. Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 477–485.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.; and Koenig, S. 2021c. Pairwise Symmetry Reasoning for Multi-Agent Path Finding Search. Artificial Intelligence, 301: 103574.

Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: Bounded-Suboptimal Search for Multi-Agent Path Finding. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 12353–12362.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S. 2019. Searching with Consistent Prioritization for Multi-Agent Path Finding. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 7643–7650.

Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y. 2019. Priority Inheritance with Backtracking for Iterative Multi-Agent Path Finding. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 535–542.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval Path Planning for Dynamic Environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 5628–5635.

Ropke, S.; and Pisinger, D. 2006. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4): 455–472.

Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-Agent Pathfinding with Simultaneous Execution of Single-Agent Primitives. In Proceedings of the Annual Symposium on Combinatorial Search (SoCS).

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015. Conflict-Based Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence, 219: 40–66.

Shaw, P. 1998. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP), volume 1520, 417–431.

Silver, D. 2005. Cooperative Pathfinding. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE), 117–122.

Song, J.; lanka, r.; Yue, Y.; and Dilkina, B. 2020. A General Large Neighborhood Search Framework for Solving Integer
Programs. In *Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS)*, volume 33, 20012–20023.

Standley, T. S.; and Korf, R. E. 2011. Complete Algorithms for Cooperative Pathfinding Problems. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, 668–673.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.; Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks. In *Proceedings of the International Symposium on Combinatorial Search (SoCS)*, 151–159.

Wang, H.; and Rubenstein, M. 2020. Walk, Stop, Count, and Swap: Decentralized Multi-Agent Path Finding With Theoretical Guarantees. *IEEE Robotics and Automation Letters*, 5(2): 1119–1126.