Inflationary perturbations from a potential with a step

Jennifer Adams1, Bevan Cresswell1 and Richard Easther2

1 University of Canterbury, Private Bag 4800, Christchurch, New Zealand
2 Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, NY 10027.

(March 19, 2022)

We use a numerical code to compute the density perturbations generated during an inflationary epoch which includes a spontaneous symmetry breaking phase transition. A sharp step in the inflaton potential generates k dependent oscillations in the spectrum of primordial density perturbations. The amplitude and extent in wavenumber of these oscillations depends on both the magnitude and gradient of the step in the inflaton potential. We show that observations of the cosmic microwave background anisotropy place strong constraints on the step parameters.

I. INTRODUCTION

A period of inflation in the primordial universe provides a causal explanation for the existence of the large scale structure observed during the present epoch (reviewed in \cite{3}). The simplest and most natural form of the scalar density perturbation spectrum is the scale invariant case, or $P_R \propto k^{-1}$ with $n = 1$, where R is the curvature perturbation.

In principle, inflationary models driven by a continuously evolving scalar field have a scale dependent spectral index, which can be calculated using the “slow roll” approximation \cite{4}. This expresses n as a function of the inflaton potential and its derivatives at the instant a mode leaves the horizon during inflation. The inflaton evolves slowly, so only a small piece of the potential is “sampled” by the large scale structure in the present universe, ensuring that, if the underlying potential is smooth, n is not strongly scale dependent.

Potentials with a “feature” at the value of the inflaton when perturbations corresponding to astrophysical scales in the present universe left the horizon can produce a primordial perturbation spectrum with significant. However, the inflaton moves slowly and fine tuning is needed to put the feature in exactly the right part of the potential. Thus, while it is possible to construct inflationary models with a scale dependent spectrum, these models are often somewhat contrived.

However, arguing that using a feature in the inflaton potential to generate a complicated spectrum requires fine tuning assumes that the potential has just one feature, but is otherwise smooth. Adding a large number of features to the potential makes it far more likely that a randomly chosen piece of the perturbation spectrum will exhibit considerable scale dependence. In particular, Adams et al. \cite{5} showed that a class of models derived from supergravity theories naturally gives rise to inflaton potentials having a large number of sudden (downward) steps. Each step corresponds to a symmetry breaking phase transition in a field coupled to the inflaton, since the mass changes suddenly when each transition occurs.

In the scenario studied by Adams et al., a spectral feature is expected every 10-15 e-folds, so if this model had driven inflation it is likely that one of these features would be visible in the spectrum extracted from observations of large scale structure (LSS) and the cosmic microwave background (CMB).

Motivated by the existence of models which naturally and generically lead to scale dependent spectra, this paper carefully examines the consequences of introducing a step in the inflaton potential. We focus on spectral features which may be observable in the large-scale structure or cosmic microwave background anisotropy, and therefore had their origin around 50 e-folds before the end of inflation.

We model the step by assuming the potential

$$V(\phi) = \frac{1}{2} m^2 \phi^2 \left[1 + c \tanh \left(\frac{\phi - \phi_{\text{step}}}{d} \right) \right], \quad \text{ (1)}$$

for the inflaton field ϕ. This potential has a step at $\phi = \phi_{\text{step}}$ with size and gradient governed by c and d respectively. For physically realistic models, inflation is not interrupted but the effect on the density perturbations is still significant. If inflation is actually interrupted the effect on the perturbation spectrum is severe enough to rule out models where this happens during the interval of inflation corresponding to observable scales. In order to accurately evaluate the spectrum, we find that we must evolve the evolution equations numerically, rather than relying on the slow roll approximation.

Inflationary models with scale dependent spectral indices have been examined in several previous investigations \cite{5, 6}. In particular, two recent papers, the first by Leach and Liddle \cite{8} and the second by Leach et al. \cite{9}, rely, as we do, on numerical evaluations of the mode equation to compute the density perturbation spectrum. Our analysis focuses on small features in the potential. Conversely, \cite{8} and \cite{9} examine potentials which produce very abrupt changes in the inflationary dynamics, including the temporary cessation of inflationary expansion, so the spectra discussed in \cite{8} and \cite{9} are changed for all
values of \(k \) larger than some critical value. In contrast, the spectra we consider here are essentially unchanged from their form at small \(k \) once the oscillations have died away. Moreover, most of the models discussed in \[8\] would need to be carefully tuned in order to produce observable effects in the spectrum, whereas the mechanism described by Adams et al. can alter the observable spectrum without fine tuning.

II. FORMALISM

In this section we reproduce the important equations governing the evolution of scalar curvature perturbations and gravitational waves during inflation. We use the formalism developed by Stewart and Lyth \[10\] where the quantities of interest are the curvature perturbation \(\mathcal{R} \) and tensor perturbation \(\psi \).

In the scalar case it is advantageous to define a gauge invariant potential

\[
\mathcal{R} = -z \mathcal{R}
\]

where \(z \equiv a \dot{\phi}/H \). We use the standard notation, where \(a \) denotes the scale factor, \(H \) the Hubble parameter, \(\phi \) the inflaton field, and a dot the derivative with respect to time \(t \).

The equation of motion for the Fourier components, \(u_k \), is

\[
u''_k + \left(k^2 - \frac{z''}{z}\right) u_k = 0,
\]

where the prime denotes differentiation with respect to conformal time and \(k \) is the modulus of the wave number. The form of the solution depends on the relative sizes of \(k^2z' \) and \(z''/z \). In the limit \(k^2z' \gg z''/z \), \(u_k \) tends to the free field solution

\[
u_k \rightarrow \frac{1}{\sqrt{2k}} e^{-ik\tau},
\]

where the normalization is determined by the quantum origin of the perturbations (see \[14\] for a more detailed discussion). Conversely, in the limit \(k^2 \ll z''/z \) the growing mode is

\[
u_k \propto z
\]

which means that the curvature perturbation,

\[|\mathcal{R}_k| = |u_k/z|, \]

is constant in this regime. The \(z''/z \) term can be written as \(2a^2H^2 \) plus terms that are small during slow roll inflation, so that the first regime applies to a mode well inside the horizon with \(k \gg aH \), and the second to super-horizon scales when \(k \ll aH \).

The spectrum \(P_R(k) \) is defined in the usual way as

\[
\langle \mathcal{R}_k \mathcal{R}_k^* \rangle = \frac{2\pi^2}{k^3} P_R \delta^3(k_1 - k_2),
\]

and is given by

\[
P_R^{1/2}(k) = \sqrt{\frac{k^3}{2\pi^2}} \left| \frac{u_k}{z} \right|.
\]

The mode equation for gravitational waves is

\[
u''_k + \left(k^2 - \frac{a''}{a}\right) u_k = 0,
\]

where \(v_k = a\psi_k \). In slow roll inflation \(a''/a \simeq 2a^2H^2 \) and the behavior of \(v_k \) is again characterized by whether the mode is inside or outside the horizon:

\[
v_k \rightarrow \frac{1}{\sqrt{2k}} e^{-ik\tau} \quad \text{as } aH/k \rightarrow 0, \quad (10)
\]

\[
v_k \propto a \quad \text{for } aH/k \gg 1. \quad (11)
\]

The power spectrum of gravitational waves \(P_g(k) \) analogous to Eq. \[8\] is

\[
P_g^{1/2}(k) = \sqrt{\frac{k^3}{2\pi^2}} \left| \frac{v_k}{a} \right|. \quad (12)
\]

III. NUMERICAL SOLUTION

Normally, the perturbation spectra of inflationary models driven by a continuously evolving, minimally coupled scalar field can be calculated using the slow roll approximation. However, when the potential has a sharp feature, its derivatives with respect to \(\phi \) and the time derivatives of the field need not be small. Consequently, we evolve the full mode equation numerically, without any approximations other than those already implicit in the use of perturbation theory.

In Eq. \[8\], the mode function is expressed in terms of conformal time. The intrinsic time-scale of the dynamics is not constant in conformal time, so we shift the independent variable to \(\alpha = \log a \), facilitating the numerical integration. With this replacement, the system of equations we are to solve is

\[
H_\alpha = -4\pi G H \phi_\alpha^2 \quad (13)
\]

\[
\phi_{\alpha\alpha} + \left(\frac{H_\alpha}{H} + 3 \right) \phi_\alpha + \frac{1}{H^2} \frac{dV}{d\phi} = 0 \quad (14)
\]

\[
u_{\alpha\alpha} + \frac{H_\alpha}{H} + 1 \right) u_\alpha + \left\{ \frac{k^2}{\epsilon^2 H^2} - \frac{2 - 4H_\alpha \phi_{\alpha\alpha}}{\phi_\alpha} \right\} = 0 \quad (15)
\]

\[-2 \left(\frac{H_\alpha}{H} \right)^2 - \frac{H_\alpha}{H} - \frac{1}{H^2} \frac{d^2V}{d\phi^2} \]
where the subscript \(\alpha \) denotes differentiation. To compute the spectrum, we repeat the integration for many values of \(k \).

In general, \(u \) has two distinct solutions since it is a second order linear differential equation, and we must choose the combination which guarantees that the mode equation has the limiting form, Eq. (4). We impose the initial conditions when the mode is far inside the horizon assuming that the conformal time \(\tau \) is zero, which amounts to an irrelevant choice of phase. Consequently, we choose the combination which guarantees that the mode is still well inside the horizon. We impose the equations until any initial transient solution has died away but the mode is still well inside the horizon. We choose the combination which guarantees that the mode is far outside the horizon.

\[
\begin{align*}
|u|_{\tau=0} &= \frac{1}{\sqrt{2k}} \\
|\frac{du}{d\alpha}|_{\tau=0} &= -i \sqrt{k} \frac{1}{2 e^{\alpha H}}
\end{align*}
\]

(16)

(17)

Rather than work with complex co-efficients in the numerical code, we define two orthogonal solutions, \(u_k^1 \) and \(u_k^2 \), such that

\[
\begin{align*}
|u_k^1|_{\tau=0} &= 1, \\
|\frac{du_k^1}{d\alpha}|_{\tau=0} &= 0, \\
|u_k^2|_{\tau=0} &= 0, \\
|\frac{du_k^2}{d\alpha}|_{\tau=0} &= 1.
\end{align*}
\]

(18)

(19)

(20)

(21)

At any subsequent time \(u_k \) is thus

\[
u_k = \frac{1}{\sqrt{2k}} u_k^1 - i \sqrt{k} \frac{1}{2 e^{\alpha H}} u_k^2.
\]

(22)

We start the evolution by evolving the two background equations until any initial transient solution has died away but the mode is still well inside the horizon. We then identify the two orthogonal solutions that contribute to \(u_k \) and extract the coefficients in (24). This ensures that an initial transient contribution to the background dynamics cannot contaminate the initial values of \(u \) and \(u_\alpha \). Finally, to compute the spectrum, we need the asymptotic value of \(|u/z|\), and we find this by continuing the integration until the mode is far outside the horizon and this value is effectively constant.

The numerical integrations are carried out using the Bulirsch-Stoer algorithm [14], and we check our calculations by ensuring that the results are independent of the distance inside the horizon where we apply the normalization, and the distance beyond the horizon where we evaluate the asymptotic value of \(|u/z|\).

IV. INFLATIONARY POTENTIAL WITH A STEP

Figure 1 shows the power spectrum for the potential of Eq. (4) with \(c = 0.002 \), or a 0.4\% change in the amplitude of the potential. The most striking aspect of the scalar spectrum is the scale dependent oscillations. Even with this small change in the amplitude of the inflaton potential the oscillations last for two decades of \(k \) and, at their peak, change the amplitude of the spectrum by a factor of 3. We have set the position of the step so that the scale where the oscillations begin, \(k_{\text{low}} \), is probed by observations of the galaxy correlation function and the anisotropy in the cosmic microwave background.

Before we look at the the origin of the oscillations in the scalar spectrum it will be helpful to have a picture of how inflation proceeds when there is a step in the potential. A general, qualitative analysis of the spectrum produced by a “feature” in the potential is given by Starobinsky [15]. For the specific model we are considering here, we can understand the numerical results as follows. Energy conservation requires that the change in the inflaton kinetic energy term cannot exceed the change in the potential energy so, if we are originally well inside the vacuum-dominated regime, a small change in the amplitude of the inflaton potential cannot suspend inflation. The evolution of \(\dot{a} \) in Figure 2 clearly shows that the expansion is always accelerating. However the \(z''/z \) term, also shown in Figure 2, determines the growth of the scalar perturbations and is very different from \(2a^2 H^2 \). It first grows in magnitude as the inflaton field accelerates and then drops to a large negative amplitude as the field slows. However, the tensor power spectrum is unaffected since \(a''/a \) remains constant throughout the step.

To understand the scalar power spectrum we begin by considering the evolution of a particular scalar mode. The evolution is governed by the competition between the \(k^2 \) and \(z''/z \) terms. A step in the potential of the magnitude we are interested in only has a lasting effect on \(k \) modes within the horizon, and not on modes which are already well outside the horizon. That is the lowest wavenumber affected is approximately given by \(k_{\text{low}} \). Moreover, from the form of the \(k^2 - z''/z \) term in the mode equation, we can see that the range of
FIG. 2. Evolution of z''/z and a for $c = 0.02$ and $d = 0.01$ with the number of e-folds of inflation, N. We have set $N = 0$ at the step in the potential.

FIG. 3. Evolution of the independent modes u_k^1 and u_k^2 (with initial conditions for u_k^1 and u_k^2 given in Eq. (18-21)) and the linear combination of their amplitude, Eq. (22) for $k = 0.3$.

As in the case of a featureless inflaton potential u_k obtains a growing mode solution once it is outside the horizon. However the asymptotic limit reached by the curvature perturbation $|R_k|$ depends on both the parameters c and d, and in a well motivated model these will be determined by from particle physics. Alternatively, given accurate observations of the CMB and LSS, it may be possible to constrain the values of these parameters, and the next section we examine the observable consequences of a scale dependent primordial spectrum.

V. OBSERVABLE SPECTRA

Adams et al. [3] attempted to recover the primordial perturbation spectrum from the APM survey power spectrum using the relationship between the spectrum of mass fluctuations today and the primordial spectrum

$$P_{\delta} = P_T T^2(k) \left(\frac{k}{\bar{H}_0} \right)^{3+n},$$

where $T(k)$ is the matter transfer function that tracks the scale dependent rate of growth of linear perturba-
tions and depends on the dark matter content of the Universe. Assuming a CDM dominated Universe the primordial \(n(k) \) could be extracted from the three dimensional \(P_{APM}(k) \) inferred from the angular correlation function of galaxies in the APM survey [14]. A departure from scale invariance was found in the range \(k \sim (0.05 - 0.6)h\text{Mpc}^{-1} \). This feature has been noted by [14] and in the power spectrum of IRAS galaxies [17]. Adams et al used the \(n(k) \) they had extracted to predict the photon power spectrum and found that the height of the secondary acoustic peaks was suppressed by a factor of \(\sim 2 \).

Recently, a number of groups have revisited this analysis motivated by the recent Maxima and BOOMERanG observations which show an anomalously low second peak. Barriga et al performed a \(\chi^2 \) analysis of the COBE and BOOMERanG CMB data considering a simple step in the primordial perturbation spectrum (no oscillations). Griffiths et al added a Gaussian bump to the primordial spectrum and performed a similar exercise. Both groups found support for a spectral feature.

We leave a \(\chi^2 \) analysis for a forthcoming paper and include here for orientation the cosmic microwave background power spectrum and matter power spectrum predicted for the range of primordial spectra shown in Figure 4. We use the Boltzmann code CMBFAST [20] to calculate the CMB angular power spectrum. We use the less fashionable sCDM as our background cosmology (\(\Omega_{CDM} = 0.95, \Omega_B = 0.05, h = 0.5 \)) as our motivation is to show the effect of the primordial density perturbation oscillations rather than find the best fit. The CMB angular power spectrum is shown in Figure 5 along with observations from COBE (the uncorrelated COBE DMR points from [21]), BOOMERanG [22] and MAXIMA [23]. It is clear that a good fit to the data can be found, but that the amplitude of the step and its gradient are constrained to be small by the observations.

The matter power spectrum is shown in Figure 6 along with the linear power spectrum generated from the PSCz catalogue [24]. The theoretical spectra suffer from the sCDM problem of too much power on small scales however these spectra are given for indicative purposes and are by no mean best-fit spectra.

VI. CONCLUSIONS

We use a numerical routine to accurately calculate the primordial density spectrum predicted by a \textit{physically motivated} inflaton potential with steps in it due to symmetry breaking during inflation. The step in the potential induces oscillations in the density perturbation spectrum whose magnitude and extent is dependent on the amplitude and gradient of the step.

We have restricted our attention to a generic step, demonstrating that even a small feature in the potential can cause significant changes to the spectrum of large scale perturbations. Moreover, we have presented a detailed account of how a feature in the potential modifies the observable spectrum. In the light of our calculations, we believe that tight cosmological constraints can be placed on the size of any feature in the potential, and thus on the particle physics model which produced it, and intend to return to this problem in future work. Conversely, if the density perturbation spectrum extracted from future measurements of large scale structure and the cosmic microwave background turns out to be incompatible with a smooth initial spectrum, the mechanism proposed by Adams et al. provides a natural mechanism for injecting significant scale dependence within the context of inflation. [3]
ACKNOWLEDGMENTS

RE is supported by the Columbia University Academic Quality Fund, and thanks the University of Canterbury for its hospitality while this work was begun.

[1] Liddle, A. R. and Lyth, D. H., 2000, Cosmological Inflation and Large-Scale Structure, Cambridge University Press, Cambridge

[2] Lyth, D. Riotto, A., 1999, Phys. rep., 314, 1

[3] Adams J. A., Ross G. G., Sarkar S., 1997 Nucl. Phys., B503, 405

[4] Kofman, L. A., Linde A. D., 1987, Nucl. Phys., B282, 555

[5] Salopek D. S., Bond J. R., Bardenn J. M. 1989, Phys. Rev. D40, 1753

[6] Hodges H., Blumenthal G. R., Kofman L. A., Primack J. R., 1990, Nucl. Phys. B335, 197

[7] Hodges H., Blumenthal G. R., Phys. Rev. D42, 3329

[8] Leach S. M. and Liddle A. R. astro-ph/0010082

[9] Leach S. M, Sasaki, M. Wands D., Liddle A. R. astro-ph/0101406

[10] Stewart E. D. and Lyth D. H., 1993 Phys. Lett. B 302, 171

[11] Mukhanov V. F., 1985 Pis' ma Zh. Eksp. Teor. Fiz. 41, 402 (JETP Lett 41, 493 (1985)); Zh. Eksp. Teor. Fiz. 84, 1 (1988) (JETP Lett 67, 1297 (1988))

[12] Mukhanov V. F., Feldman H. A. and Brandenberger R. H., 1992 Phys. Rep. 215, 203

[13] Lidsey J. E., Liddle A. R., Kolb E. W., Copeland E. J., Barreiro T. and Abney M, 1997, Rev. Mod. Phys. 69, 373.

[14] Press W. H, Teukolsky S. A., Vetterling W. T., and Flannery B. P., Numerical Recipes in FORTRAN, 2 ed. (Cambridge University Press, Cambridge, 1992).

[15] Starobinsky, A. A. 1992 JETP Lett., 55 489.

[16] Baugh C. M., Efstathiou G. p., 1993, MNRAS, 265, 145

[17] Peacock J. A., 1997, MNRAS, 284, 885

[18] Barriga J. Gaztanaga, Santos M. G., Sarkar, S. astro-ph/0011398

[19] Griffiths L. M., Silk, J. and Zaroubi, S. astro-ph/0010571

[20] Seljak, U. and Zaldarriaga, M. 1996, ApJ, 469, 437.

[21] Tegmark, M. and Hamilton, A., 1997 astro-ph/9702019

[22] de Bernadis P. et al, 2000, nature, 404, 955

[23] Hanany S. et al, 2000, astro-ph/0005123

[24] Hamilton, A. and Tegmark, M., 2000, astro-ph/0008392