PRODUCTS OF COMPOSITION AND DIFFERENTIATION OPERATORS

MAHBUBE MORADI AND MAHSA FATEHI*

Abstract. We consider products of composition and differentiation operators on the Hardy space. We provide a complete characterization of boundedness and compactness of these operators. Furthermore, we obtain the explicit condition for these operators to be Hilbert-Schmidt operators.

1. PRELIMINARIES

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C}. The Hardy space H^2 is the Hilbert space of all analytic functions f on \mathbb{D} such that

$$\|f\|^2 = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.$$

It is well known that the Hardy space H^2 is a reproducing kernel Hilbert space, with the inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\theta,$$

and with kernel functions $K_w^n(z) = \frac{n! z^n}{(1-wz)^{n+1}}$, where n is a non-negative integer and $z, w \in \mathbb{D}$. These kernel functions satisfy $\langle f, K_w^n \rangle = f^n(w)$ for each $f \in H^2$. To simplify notation we write K_w in case $n = 0$. In particular note that $\|K_w\|^2 = K_w(w) = \frac{1}{1-|w|^2}$. Let $\hat{f}(n)$ be the nth coefficient of f in its Maclaurin series. Moreover, we have another representation for the norm of f on H^2 as follows

$$\|f\|^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty.$$

The space H^∞ is the Banach space of bounded analytic functions f on \mathbb{D} with $\|f\|_\infty = \sup\{|f(z)| : z \in \mathbb{D}\}$.

For φ an analytic self-map of \mathbb{D}, the composition operator C_φ is defined for analytic functions f on \mathbb{D} by $C_\varphi(f) = f \circ \varphi$. It is well known that every composition operator C_φ is bounded on H^2 (see [2, Corollary 3.7]). For each positive integer k, the operator $D^{(k)}$ for any $f \in H^2$ is defined by the rule $D^{(k)}(f) = f^{(k)}$. This operator is called the differentiation operator of order k. For convenience, we use the notation D when $k = 1$. The differentiation operators $D^{(k)}$ are unbounded on H^2, whereas Ohno [4] found a characterization for $C_\varphi D$ and $D C_\varphi$ to be bounded and compact on H^2. The study of operators $C_\varphi D$ and $D C_\varphi$ was initially addressed

2010 Mathematics Subject Classification. 47B38 (Primary), 30H10, 47E99.

Key words and phrases. Composition operator, differentiation operators, boundedness, compactness.

*Corresponding author.
by Hibschweiler, Portnoy, and Ohno (see [5] and [6]) and has been noticed by many researchers ([3], [4], and [8]). In this paper, we will be considering a slightly broader class of these operators. For each positive integer \(n \), we write \(D_{\varphi,n} \) to denote the operator on \(H^2 \) given by the rule
\[
D_{\varphi,n}(f) = C_{\varphi} D^{(n)}(f) = f^{(n)} \circ \varphi.
\]

Our main results provide complete characterizations of the boundedness and compactness of operators \(D_{\varphi,n} \) on \(H^2 \) (Theorems 2.1 and 2.2). In addition, we characterize the Hilbert-Schmidt operators \(D_{\varphi,n} \) on \(H^2 \) (Theorem 3.3). In this paper, we use some ideas which are found in [6].

Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \). The Nevanlinna counting function \(N_{\varphi} \) of \(\varphi \) is defined by
\[
N_{\varphi}(w) = \sum_{\varphi(z) = w} \log \left(1/|z| \right) \quad w \in \mathbb{D} \setminus \{\varphi(0)\}
\]
and \(N_{\varphi}(\varphi(0)) = \infty \). Note that \(N_{\varphi}(w) = 0 \) when \(w \) is not in \(\varphi(\mathbb{D}) \). For each \(f \in H^2 \), by using change of variables formula and Littlewood-Paley Identity, the norm of \(C_{\varphi} f \) is determined as follows:

\[
\|f \circ \varphi\|^2 = |f(\varphi(0))|^2 + 2 \int_{\mathbb{D}} |f'(w)|^2 N_{\varphi}(w) dA(w),
\]
where \(dA \) is the normalized area measure on \(\mathbb{D} \) (see [2, Theorem 2.31]). Moreover, to obtain the lower bound estimate on \(\|D_{\varphi,n}\| \) we need the following well known lemma as follows (see [2, p. 137]):

Suppose that \(\varphi \) is an analytic self-map of \(\mathbb{D} \) and \(f \) is analytic in \(\mathbb{D} \). Assume that \(\Delta \) is any disk not containing \(\{f^{-1}(\varphi(0))\} \) and centered at \(a \). Then

\[
N_{\varphi}(f(a)) \leq \frac{1}{|\Delta|} \int_{\Delta} N_{\varphi}(f(w)) dA(w),
\]
where \(|\Delta| \) is the normalized area measure of \(\Delta \).

2. Boundedness and compactness of \(D_{\varphi,n} \)

The goal of this section is to determine which of these operators \(D_{\varphi,n} \) are bounded and compact.

Theorem 2.1. Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(n \) be a positive integer. The operator \(D_{\varphi,n} \) is bounded on \(H^2 \) if and only if

\[
N_{\varphi}(w) = O\left(\left[\log \left(1/|w| \right) \right]^{2n+1} \right) \quad (|w| \to 1).
\]
Proof. Suppose that \(D_{\varphi, n} \) is bounded on \(H^2 \). Let \(f(z) = \frac{K_\lambda(z)}{\|K_\lambda\|} = \frac{\sqrt{1-|\lambda|^2}}{1-\lambda \bar{z}} \) for \(\lambda \in \mathbb{D} \). By (2.1), we see that

\[
\|D_{\varphi, n}\|^2 \geq \|D_{\varphi, n}f\|^2 = \|C_{\varphi}\left(n\bar{\lambda}^{n+1} \frac{\sqrt{1-|\lambda|^2}}{1-\lambda \bar{z}} \right) \|^2 = \left\| \frac{n\bar{\lambda}^{n+1} \sqrt{1-|\lambda|^2}}{(1-\lambda \bar{z})^{n+1}} + 2 \right\| \int_{\mathbb{D}} \left((n+1) \frac{\sqrt{1-|\lambda|^2}}{(1-\lambda \bar{z})^{n+1}} \right)^2 N_\varphi(w) dA(w)
\]

(2.1)

Substitute \(w = \alpha_\lambda(u) = \frac{\lambda \bar{u}}{1-\lambda \bar{u}} \) back into (2.1) and using [7] Theorem 7.26 to obtain

\[
\|D_{\varphi, n}\|^2 \geq \int_{\mathbb{D}} \frac{2((n+1)!)^2 |\lambda|^{2n+2} (1-|\lambda|^2)}{1-\lambda \alpha_\lambda(u)} N_\varphi(\alpha_\lambda(u)) |\alpha'_\lambda(u)|^2 dA(u).
\]

(2.2)

Since \(1-\lambda \alpha_\lambda(u) = \frac{1-|\lambda|^2}{1-\lambda u} \) and \(\alpha'_\lambda(u) = \frac{|\lambda|^2 - 1}{(1-\lambda u)^2} \), by substituting \(\alpha'_\lambda \) and \(1-\lambda \alpha_\lambda \) back into (2.2), we see that

\[
\|D_{\varphi, n}\|^2 \geq \int_{\mathbb{D}} \frac{2((n+1)!)^2 |\lambda|^2 2n (1-\lambda u)^2n}{(1-|\lambda|^2)^{2n+1}} N_\varphi(\alpha_\lambda(u)) dA(u).
\]

(2.3)

Because \(|1-\lambda u| \geq \frac{1}{2} \) for any \(u \in \mathbb{D}/2 \), we get from (2.3) that

\[
\|D_{\varphi, n}\|^2 \geq \int_{\mathbb{D}/2} \frac{2((n+1)!)^2 |\lambda|^{2n+2}}{2^{2n} (1-|\lambda|^2)^{2n+1}} N_\varphi(\alpha_\lambda(u)) dA(u).
\]

(2.4)

There exists \(r < 1 \) such that for each \(\lambda \) with \(r < |\lambda| < 1 \), \(\alpha_\lambda^{-1}(\varphi(0)) \notin \mathbb{D}/2 \) because \(|\alpha_\lambda^{-1}(\varphi(0))| = |\alpha_{\varphi(0)}(\lambda)| \) and \(\alpha_{\varphi(0)} \) is an automorphism of \(\mathbb{D} \). By (2.2) and (2.4), we have

\[
\|D_{\varphi, n}\|^2 \geq \frac{2((n+1)!)^2 |\lambda|^{2n+2}}{2^{2n} (1-|\lambda|^2)^{2n+1}} \int_{\mathbb{D}/2} N_\varphi(\alpha_\lambda(u)) dA(u)
\]

\[
\geq \frac{2((n+1)!)^2 |\lambda|^{2n+2}}{2^{2n} (1-|\lambda|^2)^{2n+1}} \cdot \frac{N_\varphi(\alpha_\lambda(0))}{4}
\]

\[
\|D_{\varphi, n}\|^2 \geq \frac{((n+1)!)^2 |\lambda|^{2n+2} N_\varphi(\lambda)}{2^{2n+1} (1-|\lambda|^2)^{2n+1}}
\]

(2.5)

for each \(\lambda \) with \(r < |\lambda| < 1 \). Since \(D_{\varphi, n} \) is bounded, there exists a constant number \(M \) so that

\[
\lim_{|\lambda| \to 1} \frac{((n+1)!)^2 |\lambda|^{2n+2} N_\varphi(\lambda)}{2^{2n+1} (1-|\lambda|^2)^{2n+1}} N_\varphi(\lambda) \leq M.
\]

(2.6)
We know that $\log (1/|\lambda|)$ is comparable to $1 - |\lambda|$ as $|\lambda| \to 1^-$. Note that

$$\lim_{|\lambda| \to 1} \frac{(n + 1)!}{2^{n+1}(1 - |\lambda|^2)^{2n+1}} N_\varphi(\lambda) \lambda^{2n+2} = \lim_{|\lambda| \to 1} \frac{(n + 1)!}{2^{n+1}(1 + |\lambda|)^{2n+1}} \left(\frac{\log (1/|\lambda|)}{1 - |\lambda|} \right)^{2n+1} \frac{N_\varphi(\lambda)}{(\log (1/|\lambda|))^{2n+1}}.$$

(2.7)

By (2.6) and (2.7), we can see that

$$\sup_{R < |\lambda| < 1} N_\varphi(\lambda) \left[\log (1/|\lambda|) \right]^{2n+1} \leq M.$$

Let f be an arbitrary function in H^2. It follows from (1.1) that

$$\|D_{\varphi, n} f\|^2 = \|f^{(n)}(\varphi(0))\|^2 + 2 \int_D |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w) = |f^{(n)}(\varphi(0))|^2 \left(\int_{R_0} |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w) + \int_D |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w) \right).$$

(2.8)

First we estimate the first and the second terms in the right-hand of (2.8). Observe that

$$f^{(n)}(z) = \langle f, K_z^{(n)} \rangle = \int_0^{2\pi} \frac{n! e^{-in\theta} f(e^{i\theta})}{(1 - e^{-i\theta} z)^{n+1}} \frac{d\theta}{2\pi}$$

and hence

$$(2.9) \quad |f^{(n)}(z)| \leq \frac{n!}{(1 - |z|)^{n+1}} \int_0^{2\pi} \frac{|f(e^{i\theta})|}{|1 - e^{-i\theta} z|^{n+1}} \frac{d\theta}{2\pi} \leq \frac{n!}{(1 - |z|)^{n+1}} \|f\|$$

for any $z \in \mathbb{D}$. It follows from (2.9) that

$$|f^{(n)}(\varphi(0))| \leq \frac{n! \|f\|}{(1 - |\varphi(0)|)^{n+1}}.$$

(2.10)

Moreover, we can see that

$$|f^{(n+1)}(z)| = |\langle f, K_z^{(n+1)} \rangle| \leq \frac{(n + 1)!}{(1 - |z|)^{n+2}} \|f\|$$

(2.11)

for any $z \in \mathbb{D}$. Therefore by (2.11), we see that

$$\int_{R_0} |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w) \leq \left(\frac{(n + 1)!}{(1 - R)^{n+2}} \|f\|^2 \int_{R_0} N_\varphi(w) dA(w) \right).$$
Since \(\| \varphi \| = |\varphi(0)|^2 + 2 \int_D N_\varphi(w) dA(w) \) by (1.1), we obtain
\[
(2.12) \quad \int_D N_\varphi(w) dA(w) = \frac{1}{2}(\| \varphi \|^2 - |\varphi(0)|^2) < 1.
\]
From (2.11) and (2.12), we see that
\[
(2.13) \quad \int_{D_{\leq R}} |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w) \leq \left(\frac{(n+1)!}{(1-R)^{n+2}} \right)^2 \| f \|^2.
\]
Now we estimate the third term in the right-hand of (2.13). We have
\[
\int_{D_{\leq R}} |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w)
= \int_{D_{\leq R}} |f^{(n+1)}(w)|^2 \left(\log(1/|w|) \right)^{2n+1} \frac{N_\varphi(w)}{(\log(1/|w|))^{2n+1}} dA(w)
\leq \sup_{R < |w| < 1} N_\varphi(w) \left(\log(1/|w|) \right)^{2n+1} \int_{D_{\leq R}} |f^{(n+1)}(w)|^2 \left(\log(1/|w|) \right)^{2n+1} dA(w)
\leq M \int_{D_{\leq R}} |f^{(n+1)}(w)|^2 \left(\log(1/|w|) \right)^{2n+1} dA(w).
\]
Let \(f(z) = \sum_{m=0}^{\infty} a_m z^m \). We get
\[
\int_{D_{\leq R}} |f^{(n+1)}(w)|^2 \left(\log(1/|w|) \right)^{2n+1} dA(w)
\leq \sum_{m=n+1}^{\infty} m(m-1)...(m-n)a_m (w)^{m-(n+1)} \left(\log(1/|w|) \right)^{2n+1} dA(w)
\leq \sum_{m=n+1}^{\infty} m^2(m-1)^2...|a_m|^2 \left(\int_{D_{\leq R}} |w|^{m-(n+1)} \left(\log(1/|w|) \right)^{2n+1} dA(w) \right)
\leq \sum_{m=n+1}^{\infty} m^2(m-1)^2...|a_m|^2 \left(\int_{D_{\leq R}} (w)^{m-(n+1)} \left(\log(1/|w|) \right)^{2n+1} dA(w) \right)
= \sum_{m=n+1}^{\infty} m^2(m-1)^2...|a_m|^2 \int_0^{2\pi} \int_0^1 |r e^{i\theta}|^{2(m-(n+1))} (\log(1/r))^{2n+1} r dr \frac{d\theta}{\pi}
\leq \sum_{m=n+1}^{\infty} m^2(m-1)^2...|a_m|^2 \int_0^1 (r)^{2(m-(n+1))} (\log(1/r))^{2n+1} 2r dr.
\]
Now substitute \(t = r^2 \) and \(u = \log(1/t) \) to obtain
\[
(2.16) \quad \int_0^1 (r)^{2(m-(n+1))} (\log(1/r))^{2n+1} 2r dr = \int_0^1 t^{(m-(n+1))} \left(\frac{1}{2} \log(1/t) \right)^{2n+1} dt
= (1/2)^{2n+1} \int_0^\infty e^{-u(u-n)} u^{2n+1} du.
\]
By substituting \(x = (m - n)u \) back into (2.16), we have
\[
(1/2)^{2n+1} \int_0^\infty e^{-u(m-n)}u^{2n+1} du = \frac{1}{2^{2n+1}(m-n)^{2n+2}} \int_0^\infty e^{-x^2}x^{2n+1} dx
\]
(2.17)

By (2.14), (2.15), (2.16) and (2.17), we can see that

\[
\int_{D \setminus RD} |f^{(n+1)}(w)|^2 N_\varphi(w) dA(w) \leq M \sum_{m=n+1}^{\infty} m^2(m-1)^2...(m-n)^2|a_m|^2 \frac{\Gamma(2n+2)}{2^{2n+1}(m-n)^{2n+2}}
\]

\[= M \lambda \frac{(2n+1)!}{2^{2n+1}} \sum_{m=n+1}^{\infty} |a_m|^2 \]

(2.18)

where \(\lambda \) is a constant so that \(m^2(m-1)^2...(m-n+1)^2 \leq \lambda \) for each \(m \geq n+1 \) (note that the function \(f(x) = \frac{x^2(x-1)^2...(x-n+1)^2}{(x-n)^2} \) is bounded on \([n+1, +\infty)\)). Then (2.8), (2.10), (2.13) and (2.18) show that \(D_{\varphi,n} \) is bounded.

Theorem 2.2. Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(n \) be a positive integer. The operator \(D_{\varphi,n} \) is compact on \(H^2 \) if and only if

\[
N_{\varphi}(w) = o \left(\left[\log \left(\frac{1}{|w|} \right) \right]^{2n+1} \right) \quad (|w| \to 1).
\]

(2.19)

Proof. Let \(h_m(z) = \frac{1-|\lambda_m|^2}{1-\lambda_m z} \) for a sequence \(\{\lambda_m\} \) in \(\mathbb{D} \) so that \(|\lambda_m| \to 1 \) as \(m \to \infty \). Then \(h_m \to 0 \) weakly as \(m \to \infty \) by [2] Theorem 2.17. First suppose that \(D_{\varphi,n} \) is compact. Hence \(\|D_{\varphi,n}h_m\| \to 0 \) as \(m \to \infty \). Therefore (2.5) shows that

\[
limit_{m \to \infty \frac{((n+1)!)^2 |\lambda_m|^{2n+2}}{2^{2n+1}(1-|\lambda_m|^2)^{2n+1}} N_{\varphi}(\lambda_m) = 0.
\]

Since \(\log(1/|\lambda_m|) \) is comparable to \(1 - |\lambda_m| \) as \(m \to \infty \), the result follows.

Conversely, suppose that (2.19) holds. Let \(\epsilon > 0 \). Then there exists \(R, 0 < R < 1 \), such that

\[
\sup_{R < |w| < 1} N_{\varphi}(w) / \left[\log(1/|w|) \right]^{2n+1} < \epsilon.
\]

(2.20)

Let \(\{f_m\} \) be any bounded sequence in \(H^2 \). By using the idea which was stated in the proof of [2] Proposition 3.11, we can see that \(\{f_m\} \) is a normal family and there exists a subsequence \(\{f_{m_k}\} \) which converges to some function \(f \in H^2 \) uniformly on all compact subsets of \(\mathbb{D} \). Let \(g_{m_k} = f_{m_k} - f \) for each positive integer \(k \). Note that \(\{g_{m_k}\} \) is a bounded sequence in \(H^2 \) which converges to 0 uniformly on all compact
subsets of \mathbb{D}. By (2.8), we obtain

$$
\|D_{\varphi,n}g_{m_k}\|^2 = |g_{m_k}^{(n)}(\varphi(0))|^2 + 2 \int_{\mathbb{D}\setminus\mathbb{R}} |g_{m_k}^{(n+1)}(w)|^2 N_\varphi(w) dA(w)
$$

(2.21)

$$
+ 2 \int_{\mathbb{D}\setminus\mathbb{R}} |g_{m_k}^{(n+1)}(w)|^2 N_\varphi(w) dA(w).
$$

By [1, Theorem 2.1, p. 151], we can choose k_ε so that

$$
|g_{m_k}^{(n)}(\varphi(0))| < \sqrt{\varepsilon}
$$

(2.22)

and $|g_{m_k}^{(n+1)}| < \sqrt{\varepsilon}$ on $\mathbb{R} \mathbb{D}$ whenever $k > k_\varepsilon$. Substituting $f(z) = z$ into (1.1), we see that

$$
\int_{\mathbb{R} \mathbb{D}} |g_{m_k}^{(n+1)}(w)|^2 N_\varphi(w) dA(w) \leq \varepsilon \int_{\mathbb{R} \mathbb{D}} N_\varphi(w) dA(w)
$$

(2.23)

$$
\leq \frac{\varepsilon}{2} (||\varphi||^2 - |\varphi(0)|^2)
$$

for $k > k_\varepsilon$. On the other hand by (2.20) and the same idea as stated in the proof of (2.13) and (2.18), we see that

$$
\int_{\mathbb{D}\setminus\mathbb{R}} |g_{m_k}^{(n+1)}(w)|^2 N_\varphi(w) dA(w)
$$

$$
\leq \sup_{R < |w| < 1} \frac{N_\varphi(w)}{[\log(1/|w|)]^{2n+1}} \int_{\mathbb{D}\setminus\mathbb{R}} |g_{m_k}^{(n+1)}(w)|^2 [\log(1/|w|)]^{2n+1} dA(w)
$$

(2.24)

$$
\leq C\varepsilon \|g_{m_k}\|,
$$

where C is a constant. Hence we conclude that $\|D_{\varphi,n}g_{m_k}\|$ converges to zero as $k \to \infty$ by (2.21), (2.22), (2.23) and (2.24) and so $D_{\varphi,n}$ is compact.

The preceding theorems lead to characterizations of all bounded and compact operators $D_{\varphi,n}$ when φ is a univalent self-map.

Corollary 2.3. Let φ be a univalent self-map of \mathbb{D} and n be a positive integer. Then the following hold.

(i) $D_{\varphi,n}$ is bounded on H^2 if and only if

$$
\sup_{w \in \mathbb{D}} \frac{1 - |w|}{(1 - |\varphi(w)|)^{2n+1}} < \infty
$$

(ii) $D_{\varphi,n}$ is compact on H^2 if and only if

$$
\lim_{|w| \to 1} \frac{1 - |w|}{(1 - |\varphi(w)|)^{2n+1}} = 0.
$$

Proof. Since φ is univalent, we can see that $N_\varphi(w) = \log (1/|z|)$, where $\varphi(z) = w$. We observe that

$$
N_\varphi(w) = \frac{-\log (|z|)}{[\log(1/|w|)]^{2n+1}} = \frac{-\log (|z|)}{(-\log (|\varphi(w)|))^{2n+1}}.
$$

Moreover, we know that $\log (1/|z|)$ is comparable to $1 - |z|$ as $|z| \to 1^-$. Furthermore $|z| \to 1$ as $|\varphi(z)| \to 1$. Therefore the results follow immediately from Theorems 2.1 and 2.2. \qed
3. Hilbert-Schmidt operator $D_{\varphi,n}$

We begin with a few easy observations that help us in the proof of Theorem 3.3. In the proof of the following lemma, we assume that $0^0 = 1$.

Lemma 3.1. Let n be a positive integer and $\alpha_k > 0$ for each $0 \leq k \leq n$. Then for $0 \leq x < 1$, the following statements hold.

(a) $\sum_{k=0}^{n} \frac{\alpha_k x^k}{(1-x)^{n+k+1}} \leq \sum_{k=0}^{n} \frac{\alpha_k}{(1-x)^{2n+k+1}}$.

(b) There exists a positive number β such that $\sum_{k=0}^{n} \frac{\alpha_k x^k}{(1-x)^{n+k+1}} \geq \beta \frac{1}{(1-x)^{2n+k+1}}$.

Proof. (a) We can see that

$$\sum_{k=0}^{n} \frac{\alpha_k x^k}{(1-x)^{n+k+1}} = \sum_{k=0}^{n} \frac{\alpha_k x^k (1-x)^{n-k}}{(1-x)^{2n+1}}.$$

Since $0 \leq x < 1$ and $\alpha_k > 0$, we conclude that $\sum_{k=0}^{n} \alpha_k x^k (1-x)^{n-k} \leq \sum_{k=0}^{n} \alpha_k$. Hence the conclusion follows.

(b) We have

$$(1-x)^{2n+1} \sum_{k=0}^{n} \frac{\alpha_k x^k}{(1-x)^{n+k+1}} = \sum_{k=0}^{n} \alpha_k x^k (1-x)^{n-k} > 0.$$

Since $\sum_{k=0}^{n} \alpha_k x^k (1-x)^{n-k}$ is a continuous function on $[0, 1]$, there exists a positive number β such that $\sum_{k=0}^{n} \alpha_k x^k (1-x)^{n-k} \geq \beta$. Hence the result follows. \hfill \Box

Lemma 3.2. Let n be a positive integer. Then

$$\sum_{m=n}^{\infty} \frac{(m(m-1)...(m-n+1))^2}{x^m} = (n!)^2 \sum_{k=0}^{n} \frac{(n+k)!}{(k!)^2 (n-k)!} \frac{x^k}{(1-x)^{n+k+1}}$$

for $0 \leq x < 1$.

Proof. See [8, Lemma 1] and the general Leibniz rule. \hfill \Box

A Hilbert-Schmidt operator on a separable Hilbert space H is a bounded operator A with finite Hilbert-Schmidt norm $\|A\|_{HS} = (\sum_{n=1}^{\infty} \|Ae_n\|^2)^{1/2}$, where $\{e_n\}$ is an orthonormal basis of H. These definitions are independent of the choice of the basis (see [2, Theorem 3.23]).

Theorem 3.3. Let $D_{\varphi,n}$ be a bounded operator on H^2. Then $D_{\varphi,n}$ is a Hilbert-Schmidt operator on H^2 if and only if

$$\lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{(1 - |\varphi(re^{i\theta})|^2)^{2n+1}} < \infty.$$

(3.1)
Proof. Suppose that (3.1) holds. Lemmas 3.1, 3.2 and [7, Theorem 1.27] imply that
\[\sum_{m=0}^{\infty} \left\| D_{\varphi, n} z^m \right\| = \sum_{m=n}^{\infty} \left\| m(m-1)\ldots(m-n+1)\varphi^{m-n} \right\| \]
\[= \sum_{m=n}^{\infty} \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \left| m(m-1)\ldots(m-n+1)\varphi^{m-n}(re^{i\theta}) \right|^2 d\theta \]
\[= \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{m=n}^{\infty} \left| m(m-1)\ldots(m-n+1)\varphi^{m-n}(re^{i\theta}) \right|^2 d\theta \]
\[= \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{k=0}^{n} \frac{(n!)^2 (n+k)!}{(k!)^2 (n-k)!} \frac{\varphi^{2k}(re^{i\theta})}{(1 - |\varphi(re^{i\theta})|^2)^{n+k+1}} \]
\[\leq \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\alpha}{(1 - |\varphi(re^{i\theta})|^2)^{2n+1}}, \tag{3.2} \]
where \(\alpha = \sum_{k=0}^{n} \frac{(n!)^2 (n+k)!}{(k!)^2 (n-k)!} \) (note that the interchange of limit and summation is justified by [2, Corollary 2.23] and using Lebesgue’s Monotone Convergence Theorem with counting measure). It follows that \(\sum_{m=0}^{\infty} \left\| D_{\varphi, n} z^m \right\| < \infty \) and so \(D_{\varphi, n} \) is a Hilbert-Schmidt operator on \(H^2 \) by [2, Theorem 3.23].

Conversely, suppose that \(D_{\varphi, n} \) is a Hilbert-Schmidt operator on \(H^2 \). We infer from [2, Theorem 3.23] that
\[\sum_{m=0}^{\infty} \left\| D_{\varphi, n} z^m \right\|^2 < \infty. \tag{3.3} \]
On the other hand, by the proof of (3.2) and Lemma 3.1 there exists a positive number \(\beta \) such that
\[\sum_{m=0}^{\infty} \left\| D_{\varphi, n} z^m \right\|^2 = \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{k=0}^{n} \frac{(n!)^2 (n+k)!}{(k!)^2 (n-k)!} \frac{\varphi^{2k}(re^{i\theta})}{(1 - |\varphi(re^{i\theta})|^2)^{n+k+1}} \]
\[\geq \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\beta}{(1 - |\varphi(re^{i\theta})|^2)^{2n+1}}, \tag{3.4} \]
Hence the result follows from (3.3) and (3.4). \(\square \)

REFERENCES
[1] J. B. Conway, Functions of One Complex Variable, Second Edition, Springer-Verlag, New York, 1978.
[2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
[3] M. Fatehi and C. N. B. Hammond, Composition–differentiation operators on the Hardy space, Proc. Amer. Math. Soc., 148 (2020), 2893–2900.
[4] M. Fatehi and C. N. B. Hammond, Normality and self-adjointness of weighted composition–differentiation operators, Complex Anal. Oper. Theory, 15 (2021), 1–13.
[5] R. A. Hibschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math, 35 (2005), 843–855.
[6] S. Ohno, Products of composition and differentiation between Hardy spaces, *Bull. Austral. Math. Soc.* **73** (2006), 235–243.

[7] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, New York, 1987.

[8] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, *Bull. Belg. Math. Soc. Simon Stevin*. **16** (2009), 623–635.

Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Email address: mathcall2021@yahoo.com

Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Email address: fatehimahsa@yahoo.com