Members of Thin Π^0_1 Classes and Generic Degrees *

Frank Stephan
Department of Mathematics
Department of Computer Science
National University of Singapore
10 Lower Kent Ridge, Singapore 119076
email: fstephan@comp.nus.edu.sg

Guohua Wu Bowen Yuan
Division of Mathematical Sciences
School of Physical & Mathematical Sciences
Nanyang Technological University
Singapore 637371
email: guohua@ntu.edu.sg; yuan0058@e.ntu.edu.sg

August 12, 2020

Abstract
A Π^0_1 class P is thin if every Π^0_1 subclass Q of P is the intersection of P with some clopen set. In 1993, Cenzer, Downey, Jockusch and Shore initiated the study of Turing degrees of members of thin Π^0_1 classes, and proved that degrees containing no members of thin Π^0_1 classes can be recursively enumerable, and can be minimal degree below $0'$. In this paper, we work on this topic in terms of genericity, and prove that all 2-generic degrees contain no members of thin Π^0_1 classes. In contrast to this, we show that all 1-generic degrees below $0'$ contain members of thin Π^0_1 classes.

*Stephan is supported by Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019 / R146-000-234-112. Wu is supported by Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-083 (M4020333); NTU Tier 1 grants RG32/16 (M4011672) and RG111/19 (M4012245).
1 Introduction

In this paper, we will continue the study of Turing degrees of members of thin Π^0_1 classes. Here a Π^0_1 class P is thin if every Π^0_1 subclass Q of P is the intersection of P with some clopen set. Historically, thin classes were first constructed by Martin and Pour-El in their paper [12], when they constructed an axiomatizable essentially undecidable theory such that any axiomatizable extension of it is a finite extension. The concept of thin Π^0_1 class was first raised explicitly by Downey in his PhD thesis [5]. In a thin Π^0_1 class, computable elements are all isolated, and hence, perfect thin Π^0_1 classes contain no computable element.

In [2], Cenzer, Downey, Jockusch and Shore considered the Cantor-Bendixson ranks of members of countable thin Π^0_1 classes, and then constructed an r.e. degree, and also a minimal degree below $0'$, whose elements are not members of any thin Π^0_1 class. We call such degrees thin-free degrees. Downey, Wu and Yang recently proved in [6] that the r.e. thin-free degrees are both dense and co-dense in r.e. degrees, providing another class of r.e. degrees which are both dense and co-dense in r.e. degrees. Recall that the first such a class is the set of of branching r.e. degrees, proved by Fejer [7] and Slaman [14]. Consequently, we call a Turing degree thin if it is not thin-free.

The construction of thin-free minimal degrees below $0'$ uses the e-splitting trees, which provides a framework for us to include and exclude infinitely paths of a given Π^0_1 class P, to show that P is not a thin class. In the construction of a thin-free r.e. degree, they used an effective version of this idea, and constructed various intervals to capture the wanted infinitely paths. The construction of thin-free minimal degrees below $0''$ turns out to be much easier as it is based on Spector’s construction, instead of Sacks’ construction. Based on this observation, in his PhD thesis [16], Yuan proved the existence of a hyperimmune-free minimal thin-free degree below $0''$. We will use the same idea to show that nonrecursive sets below a 2-generic degree are thin-free. In particular, all 2-generic sets are of thin-free degree. In contrast to this, we show that all 1-generic degrees below $0'$ are not thin-free.

Our notation are standard. Most of the concepts and notation we use in paper can be found in books [4, 13, 15].
2 2-generic sets are thin-free

Recall that a set A is 2-generic if it meets or avoids every Σ^0_2 subset of $2^{<\omega}$.

Jockusch observed [9] that for any 2-generic set A, for any partial recursive functional Φ with Φ^A total and nonrecursive, A has an initial segment σ such that the set $T = \{ \rho : \rho \subseteq \Phi^\tau, \text{ where } \tau \supseteq \sigma \}$ is a recursive extendible tree without isolated infinite paths.

Lemma 2.1 (Jockusch) If A is 2-generic and Φ^A is total and nonrecursive, then there is a $\sigma \subset A$ such that for all $\tau \supseteq \sigma$,

- for any x, τ has an extension $\rho \supseteq \tau$ with $\Phi^\rho(x) \downarrow$,
- there is a Φ-splitting extension above τ.

This is a property we need to show that a given Π^0_1 class is not thin.

Theorem 2.2 Any nonrecursive set Turing below a 2-generic set is thin-free. Thus, 2-generic sets are of thin-free degree.

Proof: Let A be a 2-generic set, and assume that Φ^A is total and nonrecursive. Suppose that Φ^A lies on a primitive recursive tree P, where Φ is a \{0,1\}-valued partial recursive functional. We will show that $[P]$ is not thin.

Let V be the set of strings τ such that:

- $\exists x \forall \rho \supseteq \tau[\Phi^\rho(x) \uparrow]$, or
- $\forall \rho, \pi \supseteq \tau \forall x[\Phi^\rho(x) \downarrow \text{ & } \Phi^\pi(x) \downarrow \Rightarrow \Phi^\rho(x) = \Phi^\pi(x)]$, or
- $\Phi^\tau \notin P$.

V is Σ^0_2, and hence, A either meets or avoids V, as A is 2-generic. Note that A cannot meet V, because Φ^A is assumed to be total, nonrecursive, and lies on P. So A avoids V. This implies the existence of a string $\sigma \subset A$ such that for any $\tau \supseteq \sigma$,

1. for any x, τ has an extension $\rho \supseteq \tau$ with $\Phi^\rho(x) \downarrow$, and
2. τ has two extensions ρ, π such that for some x, $\Phi^\rho(x) \downarrow$, $\Phi^\pi(x) \downarrow$, and $\Phi^\rho(x) \neq \Phi^\pi(x)$, and
3. $\Phi^\tau \in P$.

3
For σ above, consider the tree $T = \{ \rho \subseteq \Phi^\tau : \tau \supseteq \sigma \}$. We show that T is extendible as follows. Suppose that for $\tau \supseteq \sigma$, Φ^τ is a finite string on T. Then for any $x \geq |\Phi^\tau|$ (meaning that $\Phi^\tau(x) \uparrow$), by (1), there is some $\pi \supseteq \tau$ such that $\Phi^{\pi}(x) \downarrow$, which means that Φ^{π} extends Φ^τ. As Φ^{π} is on T, Φ^{π} is extendible on T.

Moreover, T is recursive. Fix l. If $l \leq |\Phi^\sigma|$, then only one string of length l, i.e., $\Phi^\sigma \downarrow l$, is on T. If $l > |\Phi^\sigma|$, let τ be the first string extending σ such that $|\Phi^\tau| \geq l$. Such a τ exists by (1) and can be found recursively by enumerating strings extending σ. Let $u(l) = \max\{ \varphi(x) : x < l \}$, where $\varphi(x)$ is the use of $\Phi^{\tau}(x)$. $u(l)$ is recursive. By enumerating all strings of length $u(l)$ extending σ, we get all strings on T of length smaller than l.

Now consider the leftmost path C though T. Since T is a recursive, extendible tree, C is recursive. C lies on T, so $C \supseteq \Phi^\sigma$. Let $\rho_0 = \sigma$, and for a given ρ_i, let ρ_{i+1}, τ_{i+1} and x_{i+1} be the first triple (ρ, τ, x) such that $\rho, \tau \supseteq \rho_i$, $\Phi^\rho(x) \downarrow$, $\Phi^\tau(x) \downarrow$, $\Phi^\rho(x) \neq \Phi^\tau(x)$, and $\Phi^\rho \uparrow x \subset C \uparrow x$. Such a triple exists because of (2) and the choice of C. Furthermore, as C is recursive, the list of τ_i for $i \geq 1$ is recursive. By (3), T is a subtree of P, so for any $i \geq 1$, there is an infinite path through P extending Φ^{τ_i}. Let S be the collection of all initial segments of C and Φ^{τ_i} for all $i \geq 1$, and the strings on P extending Φ^{τ_i} for i even. Then S is a recursive subtree of P, which is not the intersection of $[P]$ with any clopen set.

![Figure 1: The construction of S.](image)

So for any 2-generic set A, for all partial recursive functionals Φ, if Φ^A is total, not recursive and $\Phi^A \in [P]$, then $[P]$ is not thin, completing the proof.

\[\blacksquare\]
3 1-generic sets below 0' are not thin-free

In this section, we show that all 1-generic degrees below 0’ are thin. Let A be a 1-generic set reducible to 0’. To show a set A is not thin-free, it suffices to construct a recursive thin tree T containing a path C which is Turing equivalent to A.

By Shoenfield’s limit lemma, A admits a \(\Delta^0_2 \) approximation. As A is also 1-generic, A admits a \(\Delta^0_2 \) approximations with an extra property, the so-called \(\Sigma_1 \)-correctness. Here a recursive approximation \(\{\sigma_s : s \in \omega \} \) of A is \(\Sigma_1 \)-correct if for any infinite r.e. set S of natural numbers, there exists some \(s \in S \) such that \(\sigma_s \subset A \). Haught pointed out in [8] that this property is due to Shore, and used it to show that 1-generic degrees below 0’ are downwards closed. For completeness of the paper, we present a proof of Shore’s Lemma.

Lemma 3.1 (Shore) Any recursive approximation of a 1-generic set \(A < T 0' \) has a \(\Sigma_1 \)-correct approximation.

Proof: As \(A < T 0' \), by Shoenfield’s limit lemma, we can have a recursive approximation of A, \(\{\sigma_s \} \) say. For an infinite r.e. set \(S \subseteq \omega \), we define a set \(V = \{\sigma_s : s \in S \} \), which is r.e.. By 1-genericity, A either meets or avoids \(V \). A cannot avoid \(V \) because for any initial segment \(\sigma \) of A, as \(\{\sigma_s \} \) approximates A, there exists some \(s \in S \) such that for all \(t > s \), \(\sigma_t \supset \sigma_s \). Thus, A meets \(V \), i.e., there is a \(\sigma \subset A \) such that \(\sigma \in V \), which implies the existence of \(s \in S \) with \(\sigma_s \subset A \).

In addition, Haught also pointed out that A can actually have a \(\Sigma_1 \)-correct approximation \(\{\sigma_s \} \) satisfying that \(|\sigma_{s+1}| > |\sigma_s| \) for each \(s \in \omega \). To see this, for any \(\Sigma_1 \)-correct approximation \(\{\alpha_s \} \) of A, we define a function \(f : \omega \to \omega \) inductively by taking \(f(0) = 0 \) and \(f(s+1) = \mu t > f(s) (|\alpha_t| > |\alpha_{f(s)}|) \). Such a \(t \) exists because \(\alpha_s \) is a recursive approximation. Note that \(f \) is recursive and increasing. Let \(\sigma_s = \alpha_{f(s)} \), then \(\{\sigma_s \} \) is also a recursive approximation of A. For any infinite r.e. set \(S \), \(V = \{f(s) : s \in S \} \) is r.e. and infinite. Since \(\{\alpha_s \} \) is \(\Sigma_1 \)-correct, there is some \(f(s) \in V \) such that \(\alpha_{f(s)} \subset A \), which implies that \(\sigma_s = \alpha_{f(s)} \subset A \). Thus \(\{\sigma_s \} \) is also \(\Sigma_1 \)-correct.

Theorem 3.2 A 1-generic degree \(a < 0' \) is not thin-free.

Proof: Let \(\{\sigma_s : s \in \omega \} \) be a \(\Sigma_1 \)-correct approximation of A such that \(|\sigma_{s+1}| > |\sigma_s| \) for each s. We will construct a recursive tree T, such that \([T] \) is thin and there is a path C in \([T] \) with \(C \equiv_T A \).

Before we provide the construction of T, we first consider the set \(S \) of all initial segments of \(\sigma_s \), \(s \in \omega \). S is a tree since it is closed under initial
segment, and \(A \) is an infinite path through \(S \). It is clear that \(A \) is the only path on \(S \). On the other hand, \(S \) is r.e., as a string \(\tau \in S \) if and only if \(\sigma_s \supseteq \tau \) for some \(s \). As \(\{ \sigma_s : s \in \omega \} \) is a \(\Delta^0_2 \) approximation of \(A \), some strings on \(S \) may not be extendible.

We want the tree \(T \) we are constructing to be recursive and extendible, and the construction of \(T \) “follows” the enumeration of \(S \). With this in mind, we need an extra symbol \(B \), standing for “blank”, such that \(T \) is a subtree of \(\{0, 1, B\}^{<\omega} \) and all strings up to some length, \(l(s) \) say, are defined on \(T \) at each stage \(s \). Here \(l \) is a recursive function. It is clear that \(T \) defined in this way can be coded into a binary tree recursively.

For a finite string \(\tau \in \{0, 1, B\}^{<\omega} \) (or an infinite sequence \(C \in \{0, 1, B\}^{\omega} \), respectively), we let \(\tau^d \) (or \(C^d \)) denote the string (or a finite string or an infinite subsequence, respectively) obtained by deleting all \(B \) from \(\tau \) (or \(C \)) while keeping the appearance of 0’s and 1’s the same order. For example, \((0010BB10B01)^d = 00101001 \).

Construction of \(T \):

Stage 0 Let \(\emptyset \) be the root of \(T \), and \(l(0) = 0 \).

Stage \(s + 1 \) \(l(s) \), and all strings \(\tau \) on \(T \) of length \(l(s) \) are already defined by the end of stage \(s \). For \(\rho \), a string on \(T \) of length \(l \) with \(\rho^d \subseteq \sigma_s \), let \(l(s + 1) = l(s) + m + 1 \), where \(m = |\sigma_s| - |\rho^d| \). Now there are \(m + 1 \) steps for \(i = 0, 1, \ldots, m \), and at step \(i \), for strings \(\tau \) on \(T \) of length \(l(s) + i \), if \(\tau^d \subseteq \sigma_s \), put \(\tau \upharpoonright 0 \) and \(\tau \upharpoonright 1 \) into \(T \), else put \(\tau \upharpoonright B \) into \(T \).

Note that for all \(\tau \)'s above, \(\tau^d \upharpoonright \lceil |\tau^d| \rceil - 1 \) are already on \(S \) by stage \(s \), while none of \(\tau^d \) is on \(S \) yet, and at stage \(s + 1 \), with \(\sigma_s \) just being put on \(S \), for the string \(\rho \) of length \(l(s) \) on \(T \) and \(\rho^d \subseteq \sigma_s \), let \(\pi \) be the string such that \(\sigma_s = \rho^d \pi \) and \(m = |\pi| \). Then (1) we put, if \(m \geq 1 \), \(\rho \upharpoonright (\pi \upharpoonright i)^\upharpoonright 0 \) and \(\rho \upharpoonright (\pi \upharpoonright i)^\upharpoonright 1 \) for \(0 \leq i \leq m - 1 \), and \(\rho \upharpoonright \pi^\upharpoonright 0 \) and \(\rho \upharpoonright \pi^\upharpoonright 1 \) into \(T \) in order. In this manner, all strings ending with 0 or 1 on \(T \) longer than \(l(s) \) are defined. (2) we extend all other strings on \(T \) by \(B \) up to length \(l(s) + m + 1 \). This completes the construction of \(T \) up to length \(l(s) + m + 1 \).

What does \(T \) look like? Consider all the strings on \(T \) of length \(s + 1 \), i.e., those strings on the \((s + 1)\)-st level of \(T \). There are exactly \(s + 2 \) strings on the \((s + 1)\)-st level, and among them, two strings end with 0 and 1 and share the common initial segment of length \(s \), and the other strings end with \(B \). Let \(\tau_i \) for \(0 \leq i \leq s + 1 \) be the strings on the \((s + 1)\)-st level of \(T \), then \(\tau^d_i \) are incompatible with each other, and only one of them, say \(\tau^d_j \), is extendible on \(S \) (equivalently, \(\tau^d_j \subset A \)). So above the \((s + 1)\)-st level of \(T \), there are only finitely many paths above \(\tau_i \) on \(T \) for each \(i \neq j \), and infinitely many paths
on T extending τ_j. Since A is the unique path on S, we know that there is only one path C on T which contains infinitely many 0 and 1, with $(C)^d = A$. For other paths D, there is some n such that for all $x > n$, $D(x) = B$, and $(D)^d$ is a string not in S.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.png}
\caption{A diagram showing the relation between T and C.}
\end{figure}

$A \leq_T C$ by $(C)^d = A$. $C \leq_T A$ because for any x, there is some s_x such that $l(s_x) \leq x \leq l(s_x + 1)$. Then find the least $s > s_x$ such that $\sigma_s \subset A$. Such an s exists since $\{\sigma_s\}$ is Σ_1-correct. For this s, find τ on T of length $l(s)$ with $\tau^d \subset A$. Then τ is an initial segment of C, and $\tau(x) = C(x)$.

We now show that T has a neat "splitting" property.

Lemma 3.3 For any n, there is some $m > n$, such that for strings on the n-th level of T, all but one string do not split above level m on T.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{An illustration of construction of T.}
\end{figure}
Proof: For any \(n \), let \(\tau_i \) for \(0 \leq i \leq n \) be the strings on the \(n \)-th level of \(T \), and \(k = \max_i \{|\tau_i^d|\} \). For this \(k \), by \(\Sigma_1 \)-correctness, there is a stage \(t \geq k \) such that \(\sigma_t \subset A \). Then there is some stage \(s \) such that for all stages \(s' > s \), \(\sigma_{s'} \supset \sigma_t \).

Let \(m = l(s + 1) - 1 \) and \(\rho \) be the string on the \(m \)-th level of \(T \) such that \(\rho^d = \sigma_s \). Then \(\rho^d \supset \sigma_t \), and after stage \(s \), all strings on the \(m \)-th level of \(T \) except \(\rho \) can only be extended by \(B \), and thus if \(\tau_i \not\subset \rho \), \(\tau_i \) does not split above level \(m \) on \(T \).

Thus, all strings on \(T \) are extendible, and \([T]\) contains infinitely many paths.

The \(\Sigma_1 \)-correctness of \(\{\sigma_s\} \) guarantees that \(T \) is thin. Let \(U \) be a recursive subtree of \(T \). There are two cases.

(1) \(C \not\in [U] \). If so, then there is some \(n \) such that \(C \upharpoonright n \not\in U \). As \(C^d = A \), \((C \upharpoonright n)^d \subset A \), and thus there are only finitely many paths on \(U \). Suppose that up to length \(m \), strings on \(U \) do not split, let \(N \) be the union of cones above the strings on \(U \) of length \(m \), then \(N \) is clopen and \([U]\) is the intersection of \([T]\) with \(N \).

(2) \(C \in [U] \). Consider \(V = \{s : \tau \in T \setminus U, \tau^d \in S \text{ for some stage } s\} \). Then by the \(\Sigma_1 \)-correctness, \(V \) is finite. Otherwise, there is some \(s \in V \) such that \(\sigma_s \subset A \), which means that there is some \(\tau \) in \(T \setminus U \) such that \(\tau^d = \sigma_s \) is enumerated into \(S \) at stage \(s \). By the construction, \(\tau^d \subset A \), so \(\tau \subset C \). However, \(C \in [U] \) implies that for all \(n \geq 0 \), \(C \upharpoonright n \in U \), a contradiction.

Since \(V \) is finite, there are finitely many paths on \(T \) but not on \(U \). Thus, there is a clopen set \(N \) such that \([T] \setminus [U] = [T] \cap N \), and hence \([U] = [T] \setminus N = [T] \cap \overline{N} \). The complement of \(N \) is what we need.

This shows that among these infinitely paths, exact one path is Turing equivalent to \(A \). Thus, we obtain a path \(C \) in a thin class \([T]\) with \(C \equiv_T A \), and \(A \) is not of thin-free degree. \(\square \)

References

[1] D. Cenzer, \(\Pi_1^0 \) classes in computability theory, in Handbook of Computability Theory, Elsevier, Amsterdam, 1999, 37-85.

[2] D. Cenzer, R. Downey, C. G. Jockusch, Jr., and R. A. Shore, Countable thin \(\Pi_1^0 \) classes, Ann. Pure Appl. Logic 59 (1993), 79-139.
[3] C. T. Chong and R. Downey, *Minimal degrees recursive in 1-generic degrees*, Ann. Pure Appl. Logic **48** (1990), 215-225.

[4] S. B. Cooper, *Computability theory*, Chapman and Hall/CRC, 2017.

[5] R. Downey, *Abstract Dependence, Recursion Theory and the Lattice of Recursively Enumerable Filters*, PhD Thesis, Monash University, Clayton, Victoria, Australia, 1982.

[6] R. Downey, G. Wu, and Y. Yang, *Degrees containing members of thin Π^0_1 classes are dense and co-dense*, J. Math. Log. **18** (2018), 1-47.

[7] P. Fejer, *The density of the nonbranching degrees*, Ann. Pure Appl. Logic **24** (1983), 113-130.

[8] C. A. Haught, *The degrees below a 1-generic degree $<\mathcal{O}'$*, J. Symb. Log. **51** (1986), 770-777.

[9] C. G. Jockusch, Jr., *Degrees of generic sets*, in *Recursion Theory: its generalizations and applications* (F. R. Drake and S. S. Wainer, eds.), London Mathematical Society Lecture Notes Series, vol. 45, Cambridge University Press, Cambridge, 1980, 110-139.

[10] C. G. Jockusch, Jr. and R. I. Soare, *Degrees of members of Π^0_1 classes*, Pacific J. Math. **40** (1972), 605-616.

[11] C. G. Jockusch, Jr. and R. I. Soare, *Π^0_1 classes and degrees of theories*, Trans. Amer. Math. Soc. **173** (1972), 33-56.

[12] D. A. Martin and M. B. Pour-El, *Axiomatizable theories with few axiomatizable extensions*, J. Symb. Log. **35** (1970), 205-209.

[13] P. G. Odifreddi, *Classical Recursion Theory*, vol II, North-Holland, Amsterdam, 1999.

[14] T. A. Slaman, *The density of infima in the recursively enumerable degrees*, Ann. Pure Appl. Logic **52** (1991), 155-179.

[15] R. I. Soare, *Recursively Enumerable Sets and Degrees*, Springer-Verlag, Berlin, Heidelberg, 1987.

[16] B. Yuan, *Computability Theory and Degree Structures*, PhD Thesis, Nanyang Technological University, 2020.