RELATIVISTICALLY SMEARED X-RAY REPROCESSED COMPONENTS IN THE GINGA SPECTRA OF GS 2023+338

PIOTR T. ŻYCKI AND CHRIS DONE

Department of Physics, University of Durham, South Road, Durham DH1 3LE, England; piotr.zycki@durham.ac.uk, chris.done@durham.ac.uk

AND

DAVID A. SMITH

Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, England; das@star.le.ac.uk

Received 1997 June 12; accepted 1997 August 11; published 1997 September 18

ABSTRACT

We present results of spectral analysis of GINGA data obtained during the decline phase after the 1989 outburst of GS 2023+338 (V404 Cyg). Our analysis includes detailed modeling of the effects of X-ray reprocessing. We have found that (1) the contribution of the reprocessed component (both continuum and line) corresponds to the solid angle of the reprocessor as seen from the X-ray source of Ω ≈ (0.4–0.5) × 2π, and (2) the reprocessed component (both line and continuum) is broadened (“smeared”) by kinematic and relativistic effects, as expected from the accretion disk reflection. We discuss the constraints these results give on various possible system geometries.

Subject headings: accretion, accretion disks — black hole physics — binaries: close — stars: individual (V404 Cygni) — X-rays: stars

1. INTRODUCTION

Some of the strongest evidence for the existence of accretion disks around black holes has come from X-ray observations of the relativistically smeared iron Kα line profile in active galactic nuclei (AGNs) (Tanaka et al. 1995; Iwasawa et al. 1996; Nandra et al. 1997). This fluorescent line is produced by hard X-ray illumination of the accreting material, and the combination of high orbital velocities and strong gravity in the vicinity of a black hole gives the line a characteristically skewed, broad profile (Fabian et al. 1989; Laor 1991). A reflected continuum should also accompany this line (e.g., Lightman & White 1988; George & Fabian 1991; Matt, Perola, & Piro 1991), and the amplitude of both reprocessed components gives constraints on the solid angle subtended by the accreting material, its inclination, elemental abundance, and ionization state. Both the amount of reflection/fluorescence and the intensity of the relativistic effects on the observed line profile strongly support the idea that the accretion disk extends down to the last stable orbit in AGNs. The black hole candidates (BHCs) show many X-ray spectral similarities to AGNs, plausibly because both involve the same physical processes of disk accretion onto a black hole (Inoue 1993; Ueda, Ebisawa, & Done 1994; Gierliński et al. 1997).

Many soft X-ray transients (SXTs) are known to be BHCs. Their mass accretion rate varies over at least 2 orders of magnitude from outburst (where it is at about Eddington) through the decline on timescales of months (see Tanaka & Shibazaki 1996 for a recent review). A number of these systems were observed by GINGA, and the spectra obtained are among the best in which to investigate the overall effects of X-ray reprocessing. Moderate spectral resolution (18% at 6 keV) is more than compensated by very high signal-to-noise ratio, broad bandpass (from 1 keV up to 20–30 keV), and our relatively good understanding of the instrument.

In this Letter we present results of spectral analysis of data obtained during the 1989 outburst of GS 2023+338 (V404 Cyg; Kitamoto et al. 1989). The outburst was well covered by GINGA from its initial detection by the All-Sky Monitor on 1989 May 22 until November (Tanaka & Lewin 1995). We have selected two data sets where there is little short-timescale spectral variability, obtained June 20 and July 19–20, respectively. We analyze these using models of X-ray reprocessing that consistently connect the properties of the iron Kα line with the properties of the reflected continuum. We show that the reflected component is present in the spectra, that it is smeared by kinematic and relativistic effects as expected from an accretion disk, and that both its normalization and amount of smearing imply that the disk does not extend down to the last stable orbit.

A full analysis of the data covering the outburst and entire decline phase will be presented in a future paper (Życki et al. 1997, hereafter Paper II).

2. DATA SELECTION AND REDUCTION

The data were extracted from the original First Reduction Files (FRFs) using the GINGA reduction software at Leicester University. Paradoxically, background subtraction poses a problem for a source as bright as GS 2023+338, as the background monitors are strongly contaminated by source counts. However, the background can be estimated from nearby observations at similar points in the satellite orbit, and its fractional contribution is low (≤3% below 10 keV). Full details of our method of background subtraction will be given in Paper II. We allow for 0.5% systematic error in the data.

3. MODEL

The model components are the following: multitemperature accretion disk spectrum (“disk blackbody”; Mitsuda et al. 1984) and a power law with its Compton reflection from a possibly ionized medium including the iron Kα line emission. The Compton reflected component is computed using the XSPEC version 9.01 model “pexriv” (Magdziarz & Zdziarski 1995), with the ionization parameterized by the ionization parameter, $\xi \equiv L_{\text{solar}}/n r^2$ as in Done et al. (1992). We assume elemental abundances of Morrison & McCammon (1983), with the exception of the iron abundance, [Fe], which is a free parameter. The iron Kα line is computed using the modified Monte Carlo simulation code of Życki & Czerny (1994). We updated the
Fe Kα line energies, fluorescent yields, and Fe K-shell edge energies after Kaast & Mewe (1993).

The reprocessed component can then be “smeared” to simulate the relativistic and kinematic effects of disk emission (see, e.g., Fabian et al. 1989; Ross, Fabian, & Brandt 1996). We assume a nonrotating black hole, so the model is parameterized by the inner and outer radius of the disk, R_{in} and R_{out}, respectively, and the radial distribution of irradiation emissivity. We assume that the inclination of the system is $i = 56^\circ$ (Pavlenko et al. 1996).

4. RESULTS OF MODEL FITTING

We begin with the simplest possibility, that is, a power-law spectrum with a narrow line at 6.4 keV. We then add the reflected continuum assuming first that it is un-ionized, it is non-smeared, and the iron abundance is 1 relative to cosmic value. In the next step we fit ξ and [Fe], and finally we introduce the effect of smearing. This multistep procedure is important (1) in order to demonstrate the significance of reprocessing and (2) since the moderate spectral resolution of Ginga means that the broadening of iron spectral features due to ionization can mimic the relativistic smearing.

For the June 20 data set, the simplest model (model 0 in Table 1) gives $\chi^2 = 1.9$, and it is thus not acceptable. Adding the reprocessed component is highly significant even in the simplest version (model A), $\chi^2 = 19.9/25$ dof ($\chi^2 = 0.80$). We note that the normalization of the reprocessed component is significantly smaller than 1, $f = 0.46 \pm 0.04$.

The fit can be improved by allowing for ionized reflection (model B). Assuming that the reprocessor temperature $T = 10^6$ K (for the purpose of computing ionization balance only), the best fit has $\chi^2 = 15.2/24$ dof for $\xi = 0.1^{+4}_{-1}$. If, instead, we let iron abundance be free while fixing $\xi = 0$ (model C), we obtain $\chi^2 = 19.1/24$ dof for [Fe] $= 1.20 \pm 0.35$, i.e., [Fe] is not a significant parameter. The best fit with both ξ and [Fe] free (model D) has $\chi^2 = 14.9/23$ dof for $\xi = 0.1$, but again [Fe] is consistent with the cosmic value.

We now introduce the effect of smearing (model E; both ξ and [Fe] are left free as well). This results in a decrease of χ^2 by $\Delta \chi^2 = 8.9$, which is significant at more than 99.9% confidence level (the F-test for one additional parameter). The best-fit inner radius is $R_{in} = 25^{+16}_{-5}R_g$. Figure 1 shows the spectrum and residuals of the best-fit models D and E.

A similar progression in quality of the fit is given by the July spectrum (Table 2; Fig. 1), where again the relativistic smearing effects are significantly present in the data.

We have also tried a model with ξ changing as a function of radius, $\xi(r) \propto r^{-n}$, but with no relativistic smearing. The best fit of the model for the June data has $\chi^2 = 14.6/22$ dof, while for the July data $\chi^2 = 20.1/22$ dof.

5. DISCUSSION

5.1. Primary Continuum

From fits we have $\Gamma \sim 1.7$, while contemporaneous high-energy data show a cutoff at about 100 keV (Sunyaev et al. 1991). The source must then be marginally optically thin if the primary X-rays are produced by thermal Comptonization, with $\tau_r \sim 0.5$ and 1.5, in a disk and sphere geometry, respectively (Titarchuk 1994).

5.2. Geometry

The results of spectral modeling clearly show that the reprocessed component is present in these data. The required smearing cannot be explained by a radial distribution of ionization, since the data strongly favor a low and uniform ionization. Thus, the relativistic effects in an accretion disk/black hole system are the most plausible explanation. The reflected fraction for both continuum and line is roughly 0.5 times that expected from an isotropically illuminated flat disk. Thus, the line is not depleted by Auger ionization masked by relativistic smearing (Ross et al. 1996). The line is weak because the covering fraction of the reflecting material is small, and Auger ionization is ruled out by the low-ionization state of the disk. The low covering fraction does not seem to be an artifact of supersolar abundances: fixing $f = 1$ and allowing the abundance to be free results in a poorer fit, with $\chi^2 = 19/23$ dof and 16/23 dof for the June and July data, respectively, and the overall abundances, $A \sim 8$. It is also commonly seen in the persistent BHs, Cyg X-1 and GX 339–4 (Done et al. 1992; Gierliński et al. 1997; Ueda et al. 1994), so it is not some time-dependent effect of disk evolution in transient systems; rather, it represents a significant geometrical constraint. Another constraint comes from the fact that the observed relativistic smearing is less than that expected from a central point source illuminating a flat disk that extends down to $6R_g$.

One possible geometry is a spherical or flattened X-ray source centered on the black hole, as originally proposed by Thorne & Price (1975) for Cyg X-1. A spherical source with $\tau_r > 1$ gives $f = 0.5$ naturally (Done et al. 1992), as the X-ray emission only escapes into a hemisphere tangential to the source surface. However, here the source is probably marginally optically thin, with $\tau_r \sim 0.5$–2 (see § 5.1). This can still give
a reduction in f, since there is a hole in the inner disk at $r \leq R_{in}$. Some of the photons escape without illuminating the disk, and the remaining reflection fraction is diluted by hard X-ray photons produced on the other side of the disk. The relativistic smearing constraints then imply that the source emissivity is less steep than $\propto r^{-3}$, and/or that the inner disk truncates at $R_{in} > 6R_g$, and/or that the outer disk flares. There are few real physical constraints on the source emissivity. Local release of gravitational energy in a Keplerian disk gives an emissivity $\propto r^{-3}$, but nonlocal mechanisms could also operate, perhaps even producing a constant source $\propto r^0$. This can reduce the most strongly smeared components to the observed level, though truncation of the inner disk radius may also be required. The geometry might then be in accord with the recently proposed scenario of SXT evolution after outbursts (Esin, McClintock, & Narayan 1997 and references therein), although the overall behavior of the source does not seem to follow the proposed scenario.

Small active regions on the disk (a “patchy” corona), perhaps powered by magnetic reconnection give another possible geometry (Haardt, Maraschi, & Ghisellini 1994; Stern et al. 1995). Physical support for such a picture may come from recent models of accretion disk viscosity as an MHD disk dynamo (Hawley, Gammie, & Balbus 1996). However, these models give $f \sim 1$ unless the height of the reconnecting regions, h_{rec}, is large compared to the size of the disk. This would require that the reconnecting regions be concentrated along the inner disk radius R_{in} and that $h_{rec} \sim R_{in}$, since the outer disk is expected to be very large. This would also go some way toward satisfying the smearing constraints, as the irradiation would then be constant from $\sim R_{in}$ to $\sim R_{in} + h_{rec}$ rather than $\propto r^{-3}$.

Another geometry that has been proposed, although with rather less physical motivation, is a continuous corona overlying the accretion disk (Haardt & Maraschi 1993). A fraction $\sim 1 - \exp(-r / \cos i) \sim 0.5$ of the reflected spectrum is itself Compton scattered by the X-ray emitting corona and loses its characteristic spectral shape (Haardt et al. 1993). The energy generation would be expected to be $\propto r^{-3}$, so the smearing constraints are a problem unless the inner disk truncates, or the outer disk flares. However, this simple scenario can be ruled out from detailed spectral fitting of Cyg X-1 (Gierliński et al. 1997; Dove et al. 1997; Poutanen, Krolik, & Ryde 1997), although perhaps this merely points to added complexity, such as temperature/optical depth structure in the corona.

Additional independent constraints on the geometry are provided by low normalization of the soft component and weak ionization of the reflecting medium. They both support the idea of the disk being truncated at $\sim 30R_g$, as then both the expected

TABLE 2

JULY DATA

Model	kT (keV)	Γ	ξ	[Fe]a	f	R_{in} (R_g)	EW (eV)	χ^2/dof
0	1.4 ± 0.1	1.45 ± 0.25	93 ± 14	57/25
A	0.36 ± 0.03	1.72 ± 0.015	0 (f)	1 (f)	0.40 ± 0.05	34.6 /25
B	0.44 ± 0.04	1.68 ± 0.04	0.15 ± 0.13	1.00 ± 0.05	0.32 ± 0.08	22.9 /24
C	0.42 ± 0.06	1.68 ± 0.03	0 (f)	1.7 ± 0.6	0.35 ± 0.05	26.9 /24
D	0.42 ± 0.05	1.68 ± 0.06	0.11 ± 0.05	1.5 ± 0.6	0.35 ± 0.05	21.5 /23
E	0.47 ± 0.07	1.67 ± 0.05	0.01 ± 0.05	2 ± 0.1	0.37 ± 0.04	35 ± 0.3	15.4 /22	

a Upper limit on [Fe] is 3.
temperature of the Shakura & Sunyaev (1973) disk emission component (for $m = 0.01 M_\odot$ and $M = 10 M_\odot$, $T \approx 0.15$ keV, and the ionization parameter, $\xi \sim 1$), would be in agreement with our results. However, low ξ may also mean that the disk is much denser than the Shakura & Sunyaev (1973) solution because of, e.g., coronal dissipation of energy (e.g., Svensson & Zdziarski 1994).

6. CONCLUSIONS

We have performed spectral analysis of *Ginga* data of soft X-ray transient GS 2023+338 (V 404 Cyg) obtained 1 and 2 months after its 1989 outburst. We have found the following:

1. The Compton reflected continuum and iron fluorescent Kα line are present in the spectrum.
2. The properties of both reprocessed components (normalizations, ionization parameters) are in agreement.
3. The data require both reprocessed components to be broadened and smeared.
4. The smearing is consistent with being due to reflection from a Keplerian disk.
5. Both the normalization of the reflected continuum and the amount of smearing constrain the geometry.

This research made use of data obtained from the Leicester Database and Archive Service at the Department of Physics and Astronomy, Leicester University. C. D. acknowledges support from a PPARC Advanced Fellowship. The work of P. T. Z. was partly supported by grant 2P03D00410 of the Polish State Committee for Scientific Research.

REFERENCES

Done, C., Mulchaey, J. S., Mushotzky, R. F., & Arnaud, K. A. 1992, ApJ, 395, 275
Dove, J. B., Wilms, J., Maysack, M., Bewgelman, M. C. 1997, ApJ, 487, 759
Esin, A. A., McClintock, J. E., & Narayan, R. 1997, ApJ, in press
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729
George, I. M., & Fabian, A. C. 1991, MNRAS, 249, 352
Gierlitzki, M., Zdziarski, A. A., Done, C., Johnon, W. N., Ebisawa, K., Ueda, Y., & Philips, F. 1997, MNRAS, 288, 958
Haardt, F., Done, C., Matt, G., & Fabian, A. C. 1993, ApJ, 411, L95
Haardt, F., & Maraschi, L. 1993, ApJ, 413, 507
Haardt, F., Maraschi, L., & Ghisellini, G. 1994, ApJ, 432, L95
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, ApJ, 464, 690
Inoue, H. 1993, in Accretion Disks in Compact Stellar Systems, ed. J. C. Wheeler (Singapore: World Scientific), 303
Iwasawa, K., et al. 1996, MNRAS, 282, 1038
Kaastra, J. S., & Mewe, R. 1993, A&AS, 97, 443
Kitamoto, S., Tsunemi, H., Miyamoto, S., Yamashita, K., & Mizobuchi, S. 1989, Nature, 342, 518
Laor, A. 1991, ApJ, 376, 90
Lightman, A. P., & White, T. R. 1988, ApJ, 335, 57
Magdziarz, P., & Zdziarski, A. A. 1995, MNRAS, 273, 837
Matt, G., Perola, G. C., & Piro, L. 1991, A&A, 247, 25
Mitsuda, K., et al. 1984, PASJ, 36, 741
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119
Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yaqoob, T. 1997, ApJ, 477, 602
Pavlenko, E. P., Martin, A. C., Casares, J., Charles, P. A., & Ketsaris, N. A. 1996, MNRAS, 281, 109
Poutanen, J., Krolik, J. H., & Ryde, F. 1997, in Proc. 4th Compton Symp., ed. C. D. Dermer & J. D. Kurfess (New York: AIP), in press
Ross, R. R., Fabian, A. C., & Brandt, W. N. 1996, MNRAS, 278, 1082
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Stern, B. E., Poutanen, J., Svensson, R., Sikora, M., & Begelman, M. C. 1995, ApJ, 449, L13
Sunyaev, R. A., et al. 1991, Soviet Astron. Lett., 17, 123
Svenssson, R., & Zdziarski, A. A. 1994, ApJ, 436, 599
Tanaka, Y., & Lewin, W. H. G. 1995, in X-Ray Binaries, ed. W. H. G. Lewin, J. van Paradijs, & E. van den Heuvel (Cambridge: Cambridge Univ. Press), 126
Tanaka, Y., & Shibazaki, N. 1996, ARA&A, 34, 607
Tanaka, Y., et al. 1995, Nature, 375, 659
Thorne, K. S., & Price, R. H. 1975, ApJ, 195, L101
Titarchuk, L. 1994, ApJ, 434, 570
Ueda, Y., Ebisawa, K., & Done, C. 1994, PASJ, 46, 107
Zycki, P. T., & Czerny, B. 1994, MNRAS, 266, 653
Zycki, P. T., et al. 1997, in preparation (Paper II)