Enhanced Thermoelectric Properties of Cu3SbSe4 Compounds by Isovalent Bismuth Doping

Lijun Zhao
Jiangsu University

Mingyuan Wang
Southeast University

Jian Yang (✉️ jyyangj@ujs.edu.cn)
Jiangsu University https://orcid.org/0000-0002-5816-3799

Jiabin Hu
Xi’an Jiaotong University

Yuan Zhu
Jiangsu University

Guiwu Liu
Jiangsu University

Shahid Hussain
Jiangsu University

Haicheng Shao
Jiangsu University

Shuangying Lei
Southeast University

Neng Wan
Southeast University

Zhongqi Shi
Xi’an Jiaotong University

Shuangying Lei
Southeast University

Research Article

Keywords: Cu3SbSe4-based materials, Thermoelectric properties, Isovalent dopant, heavy-element, Multiscale defects

DOI: https://doi.org/10.21203/rs.3.rs-288135/v1
Abstract

Cu$_3$SbSe$_4$, featuring its earth-abundant, cheap, nontoxic and environmentally-friendly constituent elements, can be considered as a promising intermediate temperature thermoelectric (TE) material. Herein, a series of p-type Bi-doped Cu$_3$Sb$_{1-x}$Bi$_x$Se$_4$ ($x = 0$-0.04) samples were fabricated through melting and hot pressing (HP) process, and the effects of isovalent Bi-doping on their TE properties were comparatively investigated by experimental and computational methods. TEM analysis indicates that Bi-doped samples consist of Cu$_3$SbSe$_4$ and Cu$_{2-x}$Se impurity phases, which is in good agreement with the results of XRD, SEM and XPS. For Bi-doped samples, the reduced electrical resistivity (ρ) caused by the optimized carrier concentrations and enhanced Seebeck coefficient derived from the densities of states near the Fermi level give rise to a high power factor of $\sim 1000 \ \mu\text{Wcm}^{-1}\text{K}^{-2}$ at 673 K for the Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample. Additionally, the multiscale defects of Cu$_3$SbSe$_4$-based materials involving point defects, nanoprecipitates, amorphous phases and grain boundaries can strongly scatter phonons to depress lattice thermal conductivity (κ_{lat}), resulting in a low κ_{lat} of $\sim 0.53 \ \text{Wm}^{-1}\text{K}^{-1}$ and thermal conductivity (κ_{tot}) of $\sim 0.62 \ \text{Wm}^{-1}\text{K}^{-1}$ at 673 K for the Cu$_3$Sb$_{0.98}$Bi$_{0.02}$Se$_4$ sample. As a consequence, a maximum ZT value ~ 0.95 at 673 K is obtained for the Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample, which is ~ 1.9 times more than that of pristine Cu$_3$SbSe$_4$. This work shows that isovalent heavy-element doping is an effective strategy to optimize thermoelectric properties of copper-based chalcogenides.

1. Introduction

Thermoelectric (TE) materials, dealing with environmental protection and economic development, have gained great interest of research for waste energy recovery, temperature control and heat management in last two decades owing to the direct interconversion between heat and electricity power [1–5]. TE materials like chalcogenides, skutterudites, clathrates and half-Heuslers, etc., are intensively studied for power generation and thermoelectric cooling [6–11]. The efficiency of a TE material is determined by the dimensionless thermoelectric figure of merit, $ZT = S^2 T / \rho \kappa$, where S, ρ, T and κ presents the Seebeck coefficient, electrical resistivity, absolute temperature, total thermal conductivity (including lattice thermal conductivity κ_{lat} and electronic thermal conductivity κ_{ele}), respectively [12, 13]. Generally speaking, an important goal of TE research is to achieve as large ZT value as possible because the efficiency increases nonlinearly with ZT, which approaches the Carnot efficiency as ZT approaches infinity [6]. As known, increasing power factor (PF $= S^2 / \rho$) or/and depressing κ_{lat} can enhance the ZT values. On one hand, one can use those methods to decouple the internal relationships between S and ρ in order to guarantee a high PF value, such as modulation doping [14], band engineering [15–17], carrier concentration optimization [18–20], carrier blocking [21] and energy filtering effect[22]; On the other hand, to obtain a low κ_{lat}, one can select materials with intrinsically low κ_{lat} [23–25], or strengthen phonon scattering to suppress phonon transports by nanostructure engineering [26–28], alloying [29], and all-scale hierarchical microstructure construction at atomic-, nano- and meso-scale, including point defects [30], dislocations [31], precipitates and boundaries [32, 33]. However, PF is usually along with high κ on
account of the interrelated relationship among the S, ρ and κ_{ele}, which makes the optimization of TE properties and development of high-performance TE materials quite challenging [13]. Furthermore, the exploitation of earth-abundant, cheap, nontoxic TE materials (more economical) is urgently in large-scale practical application of TE devices [7, 34].

On this point, copper based chalcogenides have sprung up as potential TE materials because of their low thermal transport and relatively good electrical transport properties [5, 35, 36]. In particular, Cu$_3$SbSe$_4$, featuring its earth-abundant, cheap, nontoxic and environmentally-friendly elements, has been actively studied as a promising intermediate temperature TE material. Meantime, it shows a narrow band gap (\sim 0.29 eV), p-type conductivity with large carrier effective mass ($m^* \sim 1.1 m_e$), and a zinc-blende-derived stannite structure (tetragonal, $I-42m$ space group) [37]. However, the low carrier concentration limits high ZT values in pristine Cu$_3$SbSe$_4$, for which how to improve ZT is a research focus. To the best of our knowledge, the Cu-Se bonds can act as the carrier conduction framework while Sb orbitals make less contribution to the valence-band maximum (VBM) in Cu$_3$SbSe$_4$ [38]. Consequently, partial substitutions for Sb lattice sites is an effective approach to optimize carrier concentration, such as Ag [13], In [38], Ti [39], Sn [40], Ge [41], Al [42] and other element substitutions [43]. Recently, Dou et al. reported a new strategy to enhance TE properties of Cu$_3$SbSe$_4$ via alkali-ion (Na and K) doping, and the peak ZT values reached 0.52 and 0.71 at 673 K for Cu$_3$Sb$_{1-x}$Na$_x$Se$_4$ ($x = 0.02$ and 0.03) and Cu$_3$Sb$_{0.99}$K$_{0.01}$Se$_4$, respectively [44]. In contrast to light elements doping, heavy elements doping (Bi, Te, etc.) have more virtues in lowering κ_{lat} because of stronger mass and strain field fluxes, which can block the propagation of phonons [45, 46].

In this article, we report a high-performance Cu$_3$SbSe$_4$-based material via Bi-doping. Isovalent element dopant Bi can reduce ρ by the enhanced carrier concentration and the changed Fermi level, and the κ_{lat} is depressed through the strengthened phonon scattering caused by multiscale defects including point defects, nanoprecipitates, amorphous phases and grain boundaries, respectively. Consequently, a maximum ZT (ZT$_{\text{max}}$) of ~ 0.95 at 673 K is achieved for the Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ compound due to the decoupled internal relationships between electrical and thermal transport properties.

2. Experimental Procedures

Synthesis

The Cu$_3$Sb$_{1-x}$Bi$_x$Se$_4$ ($x = 0, 0.005, 0.01, 0.015, 0.02, 0.03$ and 0.04) polycrystalline samples were fabricated through vacuum melting and hot pressing (HP) process. Nominal composition of high purity elements (Cu: 99.99%; Sb: 99.99%; Se: 99.999%, Bi: 99.999%) were weighted and placed in quartz tubes, which sealed under high vacuum and then putted into a digitally controlled furnace. The samples were heated at a rate of 20 °C/h to 1173 K with a holding time of 12 h, then cooled to 773 K in 40 h. Finally, the quartz tubes were quenched in water for cooling from 773 K down to room temperature. After quenching, to promote Cu$_3$SbSe$_4$-based compounds homogeneity, the samples were annealed at 573 K
for two days. After that, the obtained ingots were milled into powders by handing in an agate mortar for 30 min and sintering in graphite dies with an inner diameter of 10 mm by HP at 673 K for 2 h under 50 MPa.

Characterizations

The phase structure of bulk samples was checked by using X-ray diffractometer (XRD, Bruker D8 Advance) in the θ-2θ scan mode with Cu Kα (λ = 1.5418Å) radiation as an X-ray source. The surface morphologies and chemical elemental composition of the samples were characterized by field emission scanning electron microscopy (FESEM; Nova NanoSEM450) combined with energy-dispersive X-ray spectroscopy (EDS). The valence state of the elements and chemical composition of the Bi-doped Cu$_3$SbSe$_4$ sample was identified by using X-ray photoelectron spectroscopy (XPS) (Escalab 250Xi, Thermo VG Scientific). Transmission electron microscopy (TEM) was performed on a Talos-F200X operated with an acceleration voltage of 200 kV. The Seebeck coefficient (S) and electrical resistivity (ρ) were simultaneously measured by the commercial measuring system (LSR-3) under a helium atmosphere from room temperature to 673 K. The thermal diffusivity (D) was measured by using the laser flash method (Netzsch, LFA-457). The thermal conductivity was calculated from the relationship of \(\kappa = DC_\rho d \), where \(D \), \(C_\rho \) and \(d \) are the measured thermal diffusivity, specific heat and density, respectively. The concentration of carrier and transportation in the samples were measured using a Hall apparatus (LAKE SHARE, 7707 A, USA) by the Vander Pauw method under constant magnetic fields of 0.68 T. Densities of sintered samples were conducted by Archimedes’ method, which reached over 95% of the theoretical density of Cu$_3$SbSe$_4$ (5.86g cm$^{-3}$) (Tab. S1).

Computational methods

Theoretical calculations based on DFT were performed using Vienna Ab-initio Simulation Package (VASP) [47, 48]. Generalized gradient approximation (GGA) method with Perdew–Burke–Ernzerhof (PBE) function was used to describe electronic exchange and correlation effects [49]. A supercell consisting of 2 × 2 × 2 pristine cell of Cu$_3$SbSe$_4$ (128 atoms, Cu$_{48}$Sb$_{16}$Se$_{64}$) were built for randomly replacing Sb atoms with Bi atoms. The kinetic energy cutoff for the plane wave basis was set as 500 eV and the a monkhorst–Pack 3×3×2 k-point mesh is adopted. All structures were relaxed until the forces exerted on each atom were less than 0.01eV/Å, and the energy convergence criteria for electronic iterations were assumed to be 10$^{-5}$ eV. The HSE06 model are adopted to calculate the density of states (DOS) [50, 51].

3. Results And Discussion

As seen in Fig. 1a, the crystal structure of the pristine Cu$_3$SbSe$_4$ is the tetragonal structure (I-42m space group) [38]. The X-ray diffraction (XRD) patterns of the synthesized Cu$_3$Sb$_1-x$Bi$_x$Se$_4$ (x = 0–0.04) compounds are shown in Fig. 1b. The major diffraction peaks match well with the standard peaks of Cu$_3$SbSe$_4$ (JCPDS No.85 – 0003) phase, which belongs to the zinc blende structure with tetragonal system. As the concentration of Bi element increases to 0.03, some weak diffraction peaks at the 2θ
angle of $\sim 24^\circ, 31^\circ$ and 65° are observed, indicating the Bi and Cu$_{2-x}$Se phases [52]. Previous work also demonstrated that Bi phase was precipitated from the matrix as Bi concentration exceeds 0.02 in Cu$_3$SbSe$_4$ [45]. It can be deduced that the addition of Bi is propitious to the precipitation of Cu$_{2-x}$Se phase, which is beneficial to decrease in lattice thermal conductivity.

The morphologies and compositions of Cu$_3$SbSe$_4$-based samples were examined by SEM and EDS analyses. As depicted in Fig. 2, SEM images of the fracture surfaces (Fig. 2a-d) indicate that Cu$_3$SbSe$_4$ materials are isotropic and some impurity phases are embedded into the Cu$_3$SbSe$_4$ matrix. EDS result demonstrates that the impurity phase contains of Cu and Se elements (Fig. 2e) and the atomic ratio (%) of copper to selenium is 61.31: 32.56, implying that the impurity phase is copper selenide of Cu$_{2-x}$Se, which is consistent with XRD results. The back-scattered electron (BSE) image of Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample clearly present the micro or even nanoscale impurity phases (Fig. S1), which are useful to reduce κ_{lat} by scattering long-wave phonons [46]. The Cu$_{2-x}$Se with extremely low κ_{lat} can decrease the κ_{tot} of Cu$_3$SbSe$_4$ to some degree [52, 53].

XPS is used to check the valence state of elements and chemical composition of the Cu$_3$SbSe$_4$-based samples [54]. The experimental data of XPS spectra peaks of Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ samples are presented in Fig. 3. XPS spectra confirm the presence of Cu, Sb, Se and Bi elements in the Cu$_3$SbSe$_4$-based compounds. As shown in Fig. 3a, Cu 2p core electron peak of specimen is split into two peaks, and the XPS spectra of Cu 2p3/2 (931.2 eV) and the Cu 2p1/2 (952.5 eV) peaks can confirming indicate the existence of Cu$^{1+}$ in the sample [55]. The Sb 3d spectra can be deconvoluted into two peaks of Sb 3d 5/2 (528.4 eV) and Sb 3d 3/2 (537.7 eV) (Fig. 2b), which can be indexed to Sb$^{5+}$ [56]. The Se 3d spectra can be also split into two peaks at 53.1 eV (3d5/2) and 54.0 eV (3d3/2) (Fig. 2c), which are matched with Se$^{2-}$ of oxidation state [57]. The Bi 4f spectra do not display distinguished changes. Consequently, the components of as-sintered Bi-doped samples are speculated to be consisted of Cu$_3$SbSe$_4$, Cu$_{2-x}$Se, which is in agreement with XRD and SEM results.

The presence of secondary phase is clearly visualized by employing a high-resolution TEM. The low-magnification images presented in Fig. 4a demonstrate that some impurity phases are distributed in the matrix. As shown in Fig. 4b, a crossed fringe, with interplanar spacing values of 0.5164 nm, which can be indexed to (101) planes of Cu$_3$SbSe$_4$ [40]. The 0.2986 nm, 0.1041 nm and 0.1157 nm of spacing are in response to (200), (511) and (422) plane of Cu$_2$Se, respectively [53]. It can be seen that some amorphous phases exist in the matrix (yellow A presents amorphous phase and C presents crystallized phase). In addition, the interfaces (blue dot lines) among Cu$_3$SbSe$_4$, Cu$_2$Se and amorphous phases can be clearly observed. All of which are good for reducing lattice thermal conductivity. The SAED pattern, corresponding to (105), (220) planes of Cu$_3$SbSe$_4$, and (111), (220) planes of Cu$_2$Se, which may be further supposed the as-prepared sample is consisted of Cu$_3$SbSe$_4$ and Cu$_{2-x}$Se [52–54].
To validate our experimental design and investigate the change of electronic properties, the density functional theory (DFT) calculations were performed [13]. To ensure the optimal doping model is consistent with the experiment and guarantee the rationality for theory calculation, the Cu$_{48}$Sb$_{16}$Se$_{64}$ and Cu$_{48}$Sb$_{15}$Bi$_1$Se$_{64}$ structures were constructed. The crystal structure of Bi-doped Cu$_{48}$Sb$_{16}$Se$_{64}$ (including the top and side views) is shown in Fig. S2. Bi-doped Cu$_{48}$Sb$_{16}$Se$_{64}$. Bi can form four 2.74Å Bi-Se bonds with the surrounding Se atoms, which is 0.2 Å longer than the original Sb-Se bond, mainly caused by the larger atomic radius of the Bi atom. The DOS of pristine and Bi doped Cu$_{48}$Sb$_{16}$Se$_{64}$ is presented in Fig. 5a. After Bi doping, the Fermi level changes from 3.99 eV to 3.77 eV, thus improving electrical transport characteristics. The band gap (E_g) of Cu$_{48}$Sb$_{16}$Se$_{64}$ is 0.25 eV, which is basically consistent with previous report [58], and increase to 0.27 eV for Cu$_{48}$Sb$_{15}$Bi$_1$Se$_{64}$. More importantly, the DOS near the Fermi level (0 eV) are increased, which is composed of the hybridized Cu 3d, Sb 5s, Se 4p and Bi 6s orbitals (Fig. 5b), leading to large Seebeck coefficients.

The temperature-dependent electrical transport properties of Cu$_3$SbSe$_4$-based samples are depicted in Fig. 6. As seen in Fig. 6a, the ρ of pristine Cu$_3$SbSe$_4$ sample decreases with elevating temperature, indicating that it is non-degenerate semiconductor. However, Bi-doped samples become partially degenerate semiconductors, especially the samples with low Bi content ($x<0.015$). Clearly, the ρ of all Bi-doped Cu$_3$SbSe$_4$ compounds is lower than that of pristine Cu$_3$SbSe$_4$ due to the increased carrier concentration (Tab. S1). In comparison with Sb$^{5+}$ (0.62 Å), the bigger radius of Bi$^{5+}$ (0.74 Å) can generate Cu and/or Sb vacancies [45]. Meanwhile, the ρ of the samples increases with increasing Bi content ($x<0.3$), however, the ρ sharply decreases as $x=0.03$ and 0.04 because of the relatively high carrier mobility and carrier concentration. In addition, the ρ shows the temperature-independent behavior at high temperature because the intrinsic excitation gradually becomes dominant at 573–673 K, which is similar to the transport behavior of non-degenerate semiconductor.

Figure 6b demonstrates the temperature-dependent S of Cu$_3$SbSe$_4$-based samples. It can be seen that they are p-type conductivity derived from the positive values of S, and the charge carriers in these compounds are holes. After Bi doping, the S first decreases and then rises with increasing temperature, achieving a minimum S, which should be attributed to the α-\β phase transition of Cu$_2-x$Se phase [52, 53]. Although the increased hole concentration (Tab. S1) deteriorates S, Bi doping can enhance DOS near Fermi level (E_f) and enlarge E_g according to the DFT calculations, resulting in the relatively large S[45].

Figure 6c presents the temperature-dependent PF of Cu$_3$SbSe$_4$-based samples. It can be seen that the PF values of pristine Cu$_3$SbSe$_4$ sample increase with elevating temperature. Besides, PF values of Bi-doped compounds decrease slightly and then increases with rising temperature, and are higher than that of pristine Cu$_3$SbSe$_4$ at high temperature, which is attributed to the enhancement of electrical conductivity after Bi-doping. However, the excessive Bi content ($x \geq 0.02$) does not further enhance PF values due to the deteriorated Seebeck coefficient. The maximum PF value of $\sim 1000 \mu$Wcm$^{-1}$K$^{-2}$ is achieved at 673 K for Cu$_{3.985}$Sb$_{0.015}$Bi$_{0.015}$Se$_4$ compound.
power factor of Cu$_3$SbSe$_4$-based samples.

The temperature-dependent thermal transport properties of the Cu$_3$SbSe$_4$-based samples are displayed in Fig. 7. The D decreases with the increase of temperature and the room-temperature D drops from ~ 1.7 mm2s$^{-1}$ for pristine Cu$_3$SbSe$_4$ to ~ 1.45 mm2s$^{-1}$ for Cu$_3$Sb$_{0.97}$Bi$_{0.03}$Se$_4$ sample after Bi doping (Fig. 7a). As presented in Fig. 7b, the κ_{tot} reduces with rising temperature within the range of measurement due to the enhanced lattice vibration scattering at high temperature [11, 59]. Besides, the κ_{tot} of all the Cu$_3$SbSe$_4$-based samples decreases after Bi doping, drops from ~ 3.11 Wm$^{-1}$K$^{-1}$ at 300 K and ~ 1.03 Wm$^{-1}$K$^{-1}$ at 673 K for pristine Cu$_3$SbSe$_4$ to ~ 2.81 Wm$^{-1}$K$^{-1}$ at 300 K and ~ 0.69 Wm$^{-1}$K$^{-1}$ at 673 K for Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample. Generally, the κ_{lat} can be calculated by subtracting the electronic part κ_{ele} from the κ_{tot}. According to the Wideman–Franz law Eq. (1):

$$
\kappa_{\text{ele}} = L \sigma T
$$

(1)

where, L is the Lorenz number and can be calculated from Eq. (2) [60, 61]:

$$
L = 1.5 + \exp \left[-\frac{|S|}{116} \right]
$$

(2)

The calculated L values of the Cu$_3$SbSe$_4$-based samples are presented in Fig. S3 and L ranges from 1.51 to 2.13 $W \Omega K^{-2}$. The increased κ_{ele} of Bi-doped compounds is shown in Fig. 7c, which can be closely related to electrical conductivity derived from the rising carrier concentration and high carrier mobility. As seen in Fig. 7d, the prominent scattering mechanism of Cu$_3$SbSe$_4$-based samples is the phonon-phonon Umklapp scattering, which can be inferred from the relationship of $\kappa_{\text{lat}} \propto T^{-1}$. As expected, the Bi-doping can decrease κ_{lat} in the measured temperature region. On one hand, the isovalent substitutions on Sb can reduce κ_{lat} because of stronger mass and strain field fluctuations, which is similar to the case that In$_{\text{Sb}}$ point defects in Cu$_3$SbSe$_4$ can scatter high frequency phonons [39]. On the other hand, the heavy element Bi has much larger ionic radius in comparison with Sb, leading to the reduced κ_{lat}. The heat-carrying acoustic phonons can be blocked by softening the chemical bonding interaction in crystal due to the expansion of unit cell [46]. Furthermore, the impurity phase Cu$_2$Se and amorphous phase with extremely low κ_{lat} can also decrease κ_{lat} of Bi-doped Cu$_3$SbSe$_4$ [52, 53]. Consequently, the reduction of κ_{tot} should be attributed to the depressed κ_{lat} caused by the strengthened phonon scattering of multiscale defects involving point defects, nanoprecipitates, amorphous phases and grain boundaries [62, 63]. The lowest $\kappa_{\text{lat}} \sim 0.53$ Wm$^{-1}$K$^{-1}$ and $\kappa_{\text{tot}} \sim 0.62$ Wm$^{-1}$K$^{-1}$ is achieved at 673 K for the Cu$_3$Sb$_{0.98}$Bi$_{0.02}$Se$_4$ sample.
The temperature-dependent ZT of Cu$_3$SbSe$_4$-based samples with various Bi concentration is presented in Fig. 8a. Benefiting from the synergistically optimized electrical and thermal transport properties, the ZT values obtains an enhancement at high temperature for Bi-doped compounds, which can reach the maximum ZT value of ~ 0.95 at 673 K for the Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample. To further analyze our experimental results, the previous ZT$_{\text{max}}$ values of other single-doped Cu$_3$SbSe$_4$ samples are listed in Fig. 8b [13, 38–45]. Accordingly, isovalent heavy element Bi doping in Cu$_3$SbSe$_4$ compounds can simultaneous optimize electrical and thermal parameters, which is highly effective in improving TE properties.

4. Conclusions

In summary, the improvement of the overall TE properties in p-type Cu$_3$SbSe$_4$ was realized by Bi-doping. The results of XRD, XPS, SEM and TEM analysis indicate that Bi-doped samples consist of Cu$_3$SbSe$_4$ with Cu$_{2-x}$Se impurity phases. The ρ of all the isovalent Bi-doped samples is lower than that of pristine Cu$_3$SbSe$_4$ because the enhanced carrier concentration, and a high power factor of ~ 1000 μWcm$^{-1}$K$^{-2}$ is achieved at 673 K for the Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample. In addition, the multiscale defects of Cu$_3$SbSe$_4$-based materials involving point defects, nanoprecipitates, amorphous phases and grain boundaries caused by Bi-doping can strongly scatter phonons to depress κ_{lat}. Consequently, the thermoelectric properties improve significantly and the maximum ZT value of ~ 0.95 is achieved at 673 K for the Cu$_3$Sb$_{0.985}$Bi$_{0.015}$Se$_4$ sample, which is ~ 1.9 times higher than that of pristine Cu$_3$SbSe$_4$. The present work presents a selectable route to enhance the comprehensive TE properties by isovalent heavy-element doping for other TE materials, which is also important to TE device application.

Declarations

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572111), the Key R&D Plan (BE2019094), the China Postdoctoral Science Foundation (2019M661739), the Six Talent Peaks Project of Jiangsu Province (TD-XCL-004), and the Qing Lan Project of Jiangsu Province ([2016]15). The calculation was supported by the Advanced Computing East China Sub-center.

References

1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)
2. X. Zhang, L.D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics 1, 92–105 (2015)

3. G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)

4. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 473, 66–69 (2011)

5. P.F. Qiu, X. Shi, L.D. Chen, Cu-based thermoelectric materials. Energy Storage Mater. 3, 85–97 (2016)

6. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285, 703–706 (1999)

7. W.K. He, D.Y. Wang, H.J. Wu, Y. Xiao, Y. Zhang, D.S. He, Y. Feng, Y.J. Hao, J.F. Dong, R.J. Chetty, L.J. Hao, D.F. Chen, J.F. Qin, Q. Yang, X. Li, J.M. Song, Y.C. Zhu, W. Xu, C.L. Niu, X. Li, G.T. Wang, C. Liu, M. Ohta, S.J. Pennycook, J.Q. He, J.F. Li, L.D. Zhao, High thermoelectric performance in low-cost SnS$_{0.91}$Se$_{0.09}$ crystals. Science 365, 1418–1424 (2019)

8. J.A. Dolyniuk, B. Owens-Baird, J. Wang, J.V. Zaikina, K. Kovnir, Clathrate thermoelectrics. Mater. Sci. Eng. R 108, 1–46 (2016)

9. Y.L. Tang, Z.M. Gibbs, L.A. Agapito, G.D. Li, H.S. Kim, M.B. Nardelli, S. Curtarolo, G.J. Snyder, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb$_3$ skutterudites. Nat. Mater. 14, 1223–1228 (2015)

10. R. Thomas, A. Rao, Z.Z. Jiang, Y.K. Kuo, Synergistic effect of In doping on electrical and thermal properties of Cu$_2$SnSe$_3$ thermoelectric system. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05402-x

11. C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, T.J. Zhu, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015)

12. C.J. Zhou, Y. Yu, X.Z. Zhang, Y.D. Cheng, J.T. Xu, Y.K. Lee, B. Yoo, O.C. Mirédin, G.W. Liu, S.P. Cho, M. Wuttig, T. Hyeon, I. Chung, Cu intercalation and Br doping to thermoelectric SnSe$_2$ lead to ultrahigh electron mobility and temperature-independent power factor. Adv. Funct. Mater. 30, 1908405 (2020)

13. D. Zhang, J.Y. Yang, H.C. Bai, Y.B. Luo, B. Wang, S.H. Hou, Z.L. Li, S.F. Wang, Significant average ZT enhancement in Cu$_3$SbSe$_4$-based thermoelectric material via softening p-d hybridization. J. Mater. Chem. A. 7, 17655–17656 (2019)

14. Y.L. Pei, H.J. Wu, D. Wu, F.S. Zheng, J.Q. He, High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. Am. Chem. Soc. 136, 13902–13908 (2014)

15. Y. Xiao, D.Y. Wang, Y. Zhang, C.R. Chen, S.X. Zhang, K.D. Wang, G.T. Wang, S.J. Pennycook, G.J. Snyder, H.J. Wu, L.D. Zhao, Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J. Am. Chem. Soc. 142, 4051–4060 (2020)

16. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)

17. C.J. Zhou, Y. Yu, Y.K. Lee, O.C. Mireedin, B. Yoo, S.P. Cho, M. JinoIm, T. Wuttig, I. Hyeon, Chung, High-performance n-type PbSe-Cu$_2$Se thermoelectrics through conduction band engineering and phonon...
softening. J. Am. Chem. Soc. 140, 15535–15545 (2018)

18. J. Yang, X.Z. Zhang, J.N. Yan, G.W. Liu, Z.Q. Shi, G.J. Qiao, Effect of Zn migration on the thermoelectric properties of Zn4Sb3 material. Ceram. Int. 43, 15275–15280 (2017)

19. Q. Zhang, Q.C. Song, X.Y. Wang, J.Y. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J.W. Zhou, S. Chen, G. Chen, J. Mao, Z.F. Ren, Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ. Sci. 11, 933–940 (2018)

20. C.J. Zhou, Y. Yu, Y.L. Lee, B.Z. Ge, W.Q. Lu, O.C. Miredin, J. Im, S.P. Cho, M. Wuttig, Z.Q. Shi, I. Chung, Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J. Am. Chem. Soc. 142, 15172–15186 (2020)

21. H.R. Yang, J.H. Bahk, T.W. Day, A. Mohammed, G.J. Snyder, A. Shakouri, Y. Wu, Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 15, 1349–1355 (2015)

22. A. Pakdel, Q.S. Guo, V. Nicolasib, T. Mori, Enhanced thermoelectric performance of Bi–Sb–Te/Sb2O3 nanocomposites by energy filtering effect. J. Mater. Chem. A. 6, 21341–21349 (2018)

23. C. Chen, W.H. Xue, S. Li, Z.W. Zhang, X.F. Li, X.Y. Wang, Y.J. Liu, J.H. Sui, X.J. Liu, F. Cao, Z.F. Ren, C.W. Chu, Y.M. Wang, Q. Zhang, Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity. Proc. Natl. Acad. Sci. U. S. A. 116, 2831–2836 (2019)

24. C. Cheng, L.D. Zhao, Anharmonicity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 4, 50–57 (2018)

25. D.Y. Wang, Z.W. Huang, Y. Zhang, L.J. Hao, G.T. Wang, S.H. Deng, H.L. Wang, J. Chen, L.H. He, B. Xiao, Y.D. Xu, S.J. Pennycook, H.J. Wu, L.D. Zhao, Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Sci. China Mater. 63, 1759–1768 (2020)

26. C.J. Zhou, I. Chung, Nanoscale defect structures advancing high performance n-type PbSe thermoelectrics. Coordin. Chem. Rev. 421, 213437 (2020)

27. J. Yang, X.Z. Zhang, G.W. Liu, L.J. Zhao, J.L. Liu, Z.Q. Shi, J.N. Ding, G.J. Qiao, Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 74, 104826 (2020)

28. X.F. Lu, Q. Zheng, S.J. Gu, R. Guo, L. Su, J.C. Wang, Z.X. Zhou, Y.C. Fan, W. Jiang, L.J. Wang, Enhanced TE properties of Cu@Ag/Bi2Te3 nanocomposites by decoupling electrical and thermal properties. Chin. Chem. Lett. 31, 880–884 (2020)

29. X. Yan, W.S. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H.Z. Wang, D.Z. Wang, G. Chen, Z.F. Ren, Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1–xTixCoSb0.8Sn0.2. Energy Environ. Sci. 5, 7543–7548 (2012)

30. Y.B. Luo, J.Y. Yang, Q.H. Jiang, W.X. Li, Y. Xiao, L.W. Fu, D. Zhang, Z.W. Zhou, Y.D. Cheng, Large enhancement of thermoelectric performance of CuInTe2 via a synergistic strategy of point defects and microstructure engineering. Nano Energy 18, 37–46 (2015)
31. S. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015)

32. J. Yang, J.N. Yan, G.W. Liu, Z.Q. Shi, G.J. Qiao, Improved thermoelectric properties of n-type Bi2S3 via grain boundary engineering and in-situ nanoprecipitates. J. Eur. Ceram. Soc. 34, 1214–1221 (2019)

33. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

34. L.J. Zhao, J. Yang, B.B. Lu, X.Z. Zhang, J.B. Hu, W.Q. Xie, H.C. Shao, G.W. Liu, S.H. Hussain, Z.Q. Shi, G.J. Qiao, Enhanced thermoelectric properties of n-type Cl doped PbS-based materials via Bi alloying. J. Alloys Compd. 859, 157788 (2020)

35. H.L. Liu, X. Shi, F.F. Xu, L.L. Zhang, W.Q. Zhang, L.D. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012)

36. W.D. Liu, L. Yang, Z.G. Chen, J. Zou, Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications. Adv. Mater. 32, 1905703 (2020)

37. C.Y. Yang, F.Q. Huang, L.M. Wu, K. Xu, New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D Appl. Phys. 44, 295404 (2011)

38. D. Zhang, J.Y. Yang, Q.H. Jiang, L.W. Fu, Y. Xiao, Y.B. Luo, Z.W. Zhou, Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping. Mater. Des. 98, 150–154 (2016)

39. T. Zhou, L.J. Wang, S.Q. Zheng, M. Hong, T. Fang, P.P. Bai, S.Y. Chang, W.L. Cui, X.L. Shi, H.Z. Zhao, Z.G. Chen, Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT. Nano Energy 49, 221–229 (2018)

40. T.R. Wei, W.H. Wang, Z.M. Gibbs, C.F. Wu, G.J. Snyder, J.F. Li, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. J. Mater. Chem. A. 2, 13527–13533 (2014)

41. C.H. Chang, C.L. Chen, W.T. Chiu, Y.Y. Chen, Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping. Mater. Lett. 186, 227–230 (2017)

42. Y.Y. Li, X.Y. Qin, D. Li, X.Y. Li, Y.F. Liu, J. Zhang, C.J. Song, H.X. Xin, Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4. RSC Advances 5, 31399–31403 (2018)

43. D.T. Do, S.D. Mahanti, Theoretical study of defects Cu3SbSe4: search for optimum dopants for enhancing thermoelectric properties. J. Alloy. Compd. 625, 346–354 (2015)

44. Y.C. Dou, Q.Q. Zhu, Y. Du, J.Y. Xu, D. Li, Enhanced thermoelectric performance of Cu3SbSe4 doped with Alkali–Ion (Na and K). Electron. Mater. Lett. 16, 99–105 (2020)

45. X.Y. Li, D. Li, H.X. Xin, J. Zhang, C.J. Song, X.Y. Qin, Effects of bismuth doping the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J. Alloys Compd. 561, 105–108 (2013)
46. D. Zhang, J.Y. Yang, Q.H. Jiang, Z.W. Zhou, X. Li, Y.Y. Ren, J.W. Xin, A. Basit, X. He, W.J. Chu, J.D. Hou, Simultaneous optimization of the overall thermoelectric properties of Cu$_3$SbSe$_4$ by band engineering and phonon blocking. J. Alloys Compd. **724**, 597–602 (2017)

47. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B **59**, 1758 (1999)

48. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. **6**, 15–50 (1996)

49. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. **77**, 3865 (1996)

50. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. **118**, 8207 (2003)

51. J. Heyd, G.E. Scuseria, Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. **121**, 1187 (2004)

52. R. Nunna, P.F. Qiu, M.J. Yin, H.Y. Chen, R. Hanus, Q.F. Song, T.S. Zhang, M.Y. Chou, M.T. Agne, J.Q. He, G.J. Snyder, X. Shi, L.D. Chen, Ultrahigh thermoelectric performance in Cu$_2$Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci. **10**, 1928–1935 (2017)

53. V.B. Ghanwat, S.S. Mali, C.S. Bagade, K.V. Khot, N.D. Desai, C.K. Hong, PN. Bhosale, Enhancement in thermoelectric performance of Cu$_3$SbSe$_4$ thin films by In (III) doping; synthesized by arrested precipitation technique. J. Mater. Sci.: Mater. Electron. **29**, 8793–8800 (2018)

54. J.M. Li, H.W. Ming, C.J. Song, L. Wang, H.X. Xin, Y.J. Gu, J. Zhang, X.Y. Qin, D. Li, Synergetic modulation of power factor and thermal conductivity for Cu$_3$SbSe$_4$-based system. Mater. Today Energy **18**, 100491 (2020)

55. H.I. Hsiang, C.T. Yang, J.H. Tu, Characterization of CuSbSe$_2$ crystallites synthesized using a hot injection method. RSC Adv. **6**, 99297–99305 (2016)

56. X.Q. Chen, Z. Li, S.X. Dou, Ambient facile synthesis of gram-scale copper selenide nanostructures from commercial copper and selenium powder. ACS Appl. Mater. Interfaces **7**, 13295–13302 (2015)

57. G. García, P. Palacios, A. Cabot, P. Wahnón, Thermoelectric properties of doped-Cu$_3$SbSe$_4$ compounds: A first-principles insight. Inorg. Chem. **57**, 7321–7333 (2018)

58. J. Li, X.Y. Zhang, S.Q. Lin, Z.W. Chen, Y.Z. Pei, Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. **29**, 605–611 (2016)

59. B.Y. Wang, S.Q. Zheng, Q. Wang, Z.L. Li, J. Li, Z.P. Zhang, Y. Wu, B.S. Zhu, S.Y. Wang, Y.X. Chen, L.Q. Chen, Z.G. Chen, Synergistic modulation of power factor and thermal conductivity in Cu$_3$SbSe$_4$ towards high thermoelectric performance. Nano Energy **71**, 104658 (2020)

60. H.S. Kim, Z.M. Gibbs, Y.G. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. **3**, 041506 (2015)

61. D.D. Xie, B. Zhang, A.J. Zhang, Y.J. Chen, Y.C. Yan, H.Q. Yang, G.W. Wang, G.Y. Wang, X.D. Han, G. Han, X. Lu, X.Y. Zhou, High thermoelectric performance of Cu$_3$SbSe$_4$ nanocrystals with Cu$_2$–xSe in-
situ inclusions synthesized by microwave-assisted solvothermal method. Nanoscale 10, 14546 (2018)

62. C.J. Zhou, Y.K. Lee, J. Cha, B. Yoo, S.P. Cho, T. Hyeon, I. Chung, Defect engineering for high-performance n-type PbSe thermoelectrics. J. Am. Chem. Soc. 140, 9282–9290 (2018)

63. J.P. Lin, X.D. Li, G.J. Qiao, Z. Wang, J. Carrete, L.Z. Ma, Y.J. Fei, B.F. Yang, L. Lei, J. Li, Unexpected high-temperature stability of β-Zn₄Sb₃ opens the door to enhanced thermoelectric performance. J. Am. Chem. Soc. 136, 1497–1504 (2014)

Figures

(a) The crystal structure of Cu₃SbSe₄; (b) XRD patterns of Cu₃SbSe₄-based samples.
Figure 2

The fracture morphology images of (a) pristine Cu3SbSe and (b) Cu3Sb0.985Bi0.015Se4 samples; (c,d) high magnification images of (a,b); (e) the corresponding EDS spectrum of B zone in (d)
Figure 3

XPS spectra of Cu3Sb0.985Bi0.015Se4 samples: (a) Cu; (b) Sb; (c) Se and (d) Bi.
Figure 4

(a) Low-magnification image and (b) HRTEM image (the inset is SAED pattern) of Cu3Sb0.985Bi0.015Se4 sample.
Figure 5

(a) Density of state (DOS) of Cu48Sb16Se64 and Cu48Sb15Bi1Se64; (b) the corresponding partial density of states (PDOS) of Cu48Sb15Bi1Se64. The Fermi level was set to zero with red imaginary line marked.

Figure 6

Temperature-dependent (a) electrical resistivity; (b) Seebeck coefficient; (c) power factor of Cu3SbSe4-based samples.
Figure 7

Temperature-dependent (a) specific heat capacity C_p, (b) total thermal conductivity κ_{tot}, (c) electronic thermal conductivity κ_{ele}, (d) lattice thermal conductivity κ_{lat} of Cu$_3$Sb$_{1-x}$Bi$_x$Se$_4$-based samples.
Figure 8

(a) Temperature-dependent figure of merit (ZT) of Cu3SbSe4-based samples; (b) comparison of ZTmax of this work and other Cu3SbSe4 systems.