ESTIMATES OF CETACEAN ABUNDANCE IN THE NORTH ATLANTIC
OF RELEVANCE TO NAMMCO

North Atlantic Marine Mammal Commission¹

¹ Corresponding author: Geneviève Desportes. Email: genevieve@nammco.org

INTRODUCTION

The purpose of this table is to present the best available abundance estimates for cetacean species in areas of relevance to the work of NAMMCO. It is intended to be used as a starting point for researchers, and the original sources are provided if additional information is required.

The Scientific Committee of NAMMCO maintains a Working Group on Abundance Estimates, composed of invited experts in the field as well as some Committee members. This Working Group meets periodically to review new abundance estimates from recent surveys or, in some cases, re-analyses of older data. The reports of the Working Group are brought to the Scientific Committee at their annual meetings, and used to formulate advice on stock status, allowable removals or other matters. In most cases, the Scientific Committee will formally endorse estimates approved by the Working Group, and if so this is indicated on the Table. Some estimates have been endorsed by the Scientific Committee of the International Whaling Commission (IWC).

In some cases, estimates have been revised subsequent to their endorsement by the Scientific Committee. Publication of estimates generally occurs after their presentation to the Committee, and estimates may be revised due to reviewer suggestions, advances in analytical techniques or errors detected in the original analysis. In these cases, the published estimate is considered the most reliable and is presented even if it differs from the originally endorsed estimate. In most cases these differences are small. It is anticipated that these revised estimates will be endorsed by the Scientific Committee at some point.

A more complete version of the Table, published and regularly updated on the NAMMCO web site, includes all estimates which have been endorsed and used at some points by NAMMCO working groups. Some estimates have been superseded by newer estimates, as the analytical procedures have evolved and improved. This Table includes older estimates that have been superseded, newer analyses and published estimates. Reasons for the differences between estimates for the same species, year and area are explained under Comments. This "live" table, "North Atlantic - Abundance Estimates of relevance to NAMMCO // All cetacean species - All surveys", can be found here https://nammco.no/marinemammals/.

In most cases, the survey areas vary between surveys, and estimate cannot be directly compared between survey years. Informed comparisons can usually be found in the published articles. Survey areas can be found here under the different survey headings.

When no abundance estimate for a species has ever been generated for an area because of paucity of sightings, this area is not included in this table for that species, even when a few sightings may have been made. For example, the NASS/TNASS series does not survey properly the geographical distribution of bowhead whales, i.e., does not cover an area large enough of their distribution range so they can be used to generate any abundance. Therefore, they are not indicated in this table for that species, although some bowhead whale sightings have been made during the surveys. These are indicated on the web Table though. A lack of sightings for a species in an area is only indicated when other abundance estimates exist for that species in that area, for example for blue whales in 2007 in the Iceland + Faroes area.

Narwhals are at present not included in the tables. The way abundance estimates for narwhal have been corrected for perception and availability biases have varied between surveys and raised concerns. The Joint NAMMCO/JCNB Working Group on Narwhal and Beluga, which is the scientific body providing advice to NAMMCO and the Canada-Greenland Joint Commission on Narwhal and Beluga (JCNB), decided at its last meeting in October 2020 (the report will become available here), that it needed to review these corrections and to agree on corrected estimates. Abundance estimates for narwhal, past and recent, will then become available on the updated web table, associated with informed comments and, if necessary, recalculated estimates.

Column definitions

Some columns require no explanation (e.g., species) and are not included below.

Regions

Species-specific Regions, management areas and sub-areas of relevance to NAMMCO were defined by the 26th Scientific Committee in 2019 (NAMMCO 2019). Note that a survey may cover all or part of a region, management area or sub-area, so comparisons between surveys must take this into consideration.

A, Atlantic; N, North; E, East; and a combination of those abbreviations.
Management area/sub-area See above.
CA, Canada; FR, Faroe Islands; GL, Greenland; IS, Iceland; NO, Norway.

Survey
Area
Usually the stratum name from the survey
See above
CIC, Iceland Coastal Area, as delimited for aerial surveys. Note that IS+FR area for ship survey also includes the CIC aerial survey area
ECA, Eastern Canada; W, west
NO mosaic: the area covered changes every year, as Norway covers its huge area by conducted partial surveys every year on a six-year cycle.

Name
Survey series: NASS, North Atlantic Sightings Surveys, TNASS Trans-North Atlantic sightings surveys (in 2007), NILS, Norwegian Independent Line-Transect Surveys
Or name of the country organising the survey for national surveys

Platform
A - aerial, S - ship.

Mode
SP - single platform; IO - double platform, independent observers; B-T - double platform, Buckland-Turnock mode (Buckland & Turnock 1992).

Uncorrected Abundance Estimate (UAE)

UAE
Uncorrected Abundance estimate. Does not include corrections for perception or availability biases unless otherwise noted with a (p)

CV
Coefficient of variation.

95% CI
95% confidence interval.

TfS
Too few sightings for generating an abundance estimate

Corrected Abundance Estimate (CAE)
Includes corrections for perception bias (Per), availability bias (Avail) or both as indicated.

Endorsed by
Organizational endorsement, usually NAMMCO or the International Whaling Commission (IWC). Committee meeting number and working group acronym are provided, the latest in ‘(…).’
Square brackets around the organizational endorsement mean that an initial estimate has been previously endorsed by an organisation and was subsequently revised and represented and/or published.
In most cases the published is presented even if an earlier accepted estimate exists, as earlier estimates in working papers have been improved and adjustments made post review in the published versions. These changes are consistent with the advice provided.
On the NAMMCO live web version of the table, the comments include the explanation of the revisions made.

Publications
Citation to peer-reviewed publication if available. Citations to non-peer reviewed publications, generally meeting documents, are given in square brackets.

ACKNOWLEDGEMENTS
Genevieve Desportes assembled the table, with the assistance of Daniel Pike, Deanna Leonard and Nils Øien, and Rikke Guldberg Hansen. Thanks also to Mana Tugend for helping with the formatting.
Species	Regions	Management areas/sub-areas	Survey	Area	Name	Year	Platform	Mode	UAE	CV	95% CI	CAE	CV	95% CI	Per	Avail	Bias correction	Endorsed by	Comments
Bowhead whales	Arctic	ECA - WGL	CA	2013	A	IO	6,446	0.26	3,838-10,827	1	1	1	Canadian Science Advisory Secretariat	High Arctic Cetacean Survey					
		West GL	GL	2012	A	IO	744	0.34	357-1,461	1	1	1		West Greenland only					
		West GL	GL	2006	A	IO	1,229	0.47	495-2,939	1	1	1	Heide-Jørgensen et al. 2007a						
			GL	1998	A	IO	246	0.62	62-978	0	1	1	Heide-Jørgensen & Acquarone 2002						
Bowhead whales	Spitsbergen	NEGL	GL	2017	A	IO	318	0.60	110-956	1	1	1	Spring survey	Hansen et al. 2018b					
		NE/Water polynya	GL	2017	A	IO	301	0.54	127-769	1	1	1	Strategic Environmental Study Program for NEGL, Summer survey	Boertmann et al. 2020					
		Svalbard	NO	2015	A	SP	69	0.45	29-160	1	1	1		Vacquie-Garcia et al. 2017					
Blue whales	Eastern NA	IS + FR	NASS	2015	S	IO	2,480	0.36	1,234-5,022	1	0	1	NAMMCO SC/26 (AEWG 2019)		Pike et al. 2019a				
			NASS	2007	S	BT	tfs	1	1	1	1	1	1			Pike et al. 2020a			
			NASS	2001	S	BT	855	0.35	358-1,419	1	0	1		[NAMMCO SC/11 (AEWG 2003)]	Pike et al. 2009a				
			NASS	1995	S	SP/BT	979	0.64	137-2,542	1	0	1							
			NASS	1989	S	SP	531	0.24	288-759	1	0	1							
			NASS	1987	S	SP	222	0.35	115-440	1	0	1							
Sei whales	NA	IS + FR	NASS	2015	S	IO	3,127	0.51	964-10,142	1	0	1	NAMMCO SC/26 (AEWG 2019)		Pike et al. 2019a				
			T-NASS	2007	S	BT	9,737	0.38	4,189-19,665	1	0	1			Pike et al. 2020b				
					S	BT	5,159	0.47	1,983-13,423	1	0	1							
					S	BT	1,494	0.24	843-2,245	1	0	1	NAMMCO SC/18 (AEWG 2011)	[Pike et al. 2011]					
					S	SP/BT	4,249	0.49	3,700-23,116	1	0	1	NAMMCO SC/05 (AEWG 1997)	[Borchers and Burt 1997]					
					S	SP/BT	1,293	0.6	434-3,853	1	0	1	IWC SC/44	Cattanach et al. 1993					
			IS	1989	S	SP	10,300	0.27	6,150-17,260	1	0	1	Good survey timing and coverage for sei whale	Cattanach et al. 1993					
			IS	1987	S	SP	1,293	0.6	434-3,853	1	0	1	Partial estimate, as the species entire summer range and peak season are not covered. Superseeds below estimate	Gudlaugsson & Sigurjónsson 1990, Cattanach et al. 1993					

North Atlantic Marine Mammal Commission (2020)
Western NA	West GL	West GL	NASS 2015	A	ID	465 (p)	0.35	233-929	2,215	0.41	1,017-4,823	1	1	IWC SC/66a, [NAMMCO SC 23 (AEWG 2016)]	Hansen et al. 2018a
TNASS 2007	A	ID	4,359	0.45	1,879-10,114	15,957	0.72	4,531-56,202	1	1	IWC SC/59				
GL 2005	A	ID	1,660	0.38	799-3,450	9,800	0.62	3,228-29,753	1	1					
GL 1993	A	ID	178	26-382	0	1	Partial survey coverage, high area of abundance not covered	Larsen 1995							
NASS 1987/88	A	ID	1,096	0.35	520-2,106	0	1	IWC SC/43	IWC 1992						
NASS 1987	A	ID	1,985	0.46	0	1	IWC SC/40	Hilby et al. 1989							

| East GL | East GL | NASS 2015 | A | ID | 1,932 (p) | 0.24 | 1,204-3,100 | 6,440 | 0.26 | 3,901-10,632 | 1 | 1 | IWC SC/66a, [NAMMCO SC 23 (AEWG 2016)] | Hansen et al. 2018a |
| GL 2005 | S | SP | 3,214 | 0.48 | 980-10,547 | | | | | | | | Heide-Jørgensen et al. 2007b |

Central NA	IS + FR	NASS 2015	S	IO	31,953	0.17	22,536-45,306	36,773	0.17	25,811-52,392	1	0	NAMMCO SC/25 [AEWG 2018]	Pike et al. 2019a
TNASS 2007	S	BT	24,824	0.15	18,347-33,589	30,777	0.19	21,153-44,779	1	0	NAMMCO SC/17 [AEWG 2009]	Pike et al. 2020a		
NASS 2001	S	BT	24,887	0.13	18,186-30,214								Vik langs et al. 2009	
NASS 1995	S	SP/BT	19,136	0.21	12,235-27,497								IWC SC/58 (joint NAFW WS)	
NASS 1989	S	SP	10,378	0.16	7,600-14,200									
NASS 1987	S	SP	5,479	0.10	3,380-7,830								Buckland et al. 1992	

Eastern NA	Norwegian mosaic	CM1a, 3a + EW1,2,3	NILS-NA	2015	S	IO	3,147	0.44	1,290-7,673	3,729	0.44	1,531-9,081	1	0	NAMMCO SC/26 [AEWG 2019]	Leonard & Øien 2020a
NLS 2014-2018	S	IO	9,494	0.17	6,800-13,256	11,387	0.17	8,072-16,063	1	0	NAMMCO SC/26 [AEWG 2019]	Leonard & Øien 2020b				
NLS 2008-2013	S	IO	8,047	0.23	5,043-12,824	10,861	0.26	6,433-18,339	1	0	NAMMCO SC/24 & IWC SC/58 (joint NAFW WS 2006)	Øien 2009				
NLS 2002-2007	S	IO	7,094	0.15	5,219-9,1614	10,004	0.18	6,937-14,426	1	0	NAMMCO SC/24 & IWC SC/58 (joint NAFW WS 2006)	Øien 2009				
NLS 1996-2001	S	IO	10,369	0.24	6,277-17,128								Christensen et al. 1992			
NLS 1995	S	IO	5,034	0.21	3,314-7,647											
NASS 1989	S	SP	2,245	0.33	1											
NO 1988	S	SP	2,309	0.31	1											
NASS 1987	S	SP	5,806	0.50	1											
Humpback whales																
	West GL															
NASS	2015	A	IO	427	0.35	219-831	993	0.44	434-2,272	1	1	NASS	2018a			
	2007	A	IO	1,020	0.35	4,090	0.5	1	1	[NAMMCO SC/17	AEWG 2009					
										Heide-Jørgensen & Laidre 2015						
	GL	2005	S	SP	1,306	0.42	570-2,989									
	2005	A	IO	1,158	0.35	595-2,255				Abundance based on small groups and large groups estimated separately	Heide-Jørgensen & L554 2008					
										Line transect analysis of all group sizes						
	GL	1993	A	IO	599	0.57	423-3,508						Kingsley & Witting 2001			
	NASS	1989	A	IO	272	0.75										
	GL	1988	A	IO	200	0.74										
	NASS	1987	A	IO	220	0.62							Heide-Jørgensen et al. 2012			
	East GL															
NASS	2015	A	IO	1,816	0.35	933-3,536	4,223	0.44	1,845-9,666	1	1	NASS	2018b			
	2005	S	SP	347	0.85	48-2,515				Incomplete survey coverage	Heide-Jørgensen et al. 2007b					
	IS	2016	A	IO	tfs						Block 5 (area NW and NE corners), with large numbers expected, not covered	Pike et al. 2020b				
	IS	2009	A	IO	2,002	0.30	1,096-3,655	2,261	0.35	1,142-4,477	1	0	NASS	2018a		
	TNASS	2007	A	IO	1,138	0.65	565-2,039	1,242	0.44	632-2,445	1	0	TNASS	2009a		
	2001	A	IO	6,242	2,273	11,580			1	Line transect analysis and density surface fit	Paxton et al. 2009					
	NASS	1995	A	IO	1,674	0.45	656-4,269				Line transect analysis	Pike et al. 2009c				
	NASS	1987	A	SP	219	0.85										
	IS + FR															
NASS	2015	S	IO	6,643	0.32	3,543-12,456	9,867	0.37	4,854-20,058	1	0	IS + FR	2018b			
	TNASS	2007	S	BT	12,078	0.37	5,879-24,814	18,105	0.43	7,226-45,360	1	0	IS + FR	2020a		
	2001	AvS	SP	14,662	0.44	9,441-29,879				Density surface fitting, using generalised additive models (GAMs)	Paxton et al. 2009					
	NASS	1995	AvS	SP	10,521	0.46	3,716-24,636									
	NASS	1989	S	SP	tfs											
	NASS	1987	S	SP	1,722	0.25	1,061-2,795					[Pike et al. 2005				
	NO															
NASS	2015	S	IO	1,164	0.39	395-1,994	1,711	0.41	604-3,631	1	0	Area CM1a,3a + EW1,2,3	Leonard & Øien 2020a			
	NASS	2014-2018	S	IO	8,150	0.38	3,765-17,646	10,708	0.38	4,906-23,370	1	0	NASS	2018b		
	NASS	2008-2013	S	IO	9,631	0.30	5,284-17,521	12,411	0.30	6,847-22,497	1	0	NASS	2020b		
	NASS	2002-2007	S	IO	7,388	0.30	3,909-13,963	9,749	0.38	3,947-19,210	1	0	NASS	2020b		
	NASS	1996-2001	S	IO	4,695	0.39	2,124-10,378						NASS	2009		
	NASS	1995	S	IO	1,059	0.25	645-1,738				[NAMMCO SC/11	MFWG 2003]				
	NASS	1989	S	SP	698	0.59							Christensen et al. 1992			
	NO	1998	S	SP	1,126	0.31							Øien 1990			
	NASS	1987	S	SP	tfs	(4)							Østfjeld et al. 1989			
Whales	NASS 2015	A	IO	963	0.37	5,095	0.46	2,171-11,961	1	1	IWC SC/66a	Strip census. Availability correction based on 5 minke whales tagged in 2013-17 off GL	Hansen et al. 2018			
-----------------------------	-----------	---	----	-----	------	-------	------	--------------	---	---	-----------	---	---------------------			
Western Atlantic	NASS 2007	A	IO	9,066	0.39	4,333-18,973	1	1	IWC SC/66a	Incomplete survey coverage	Heide-Jørgensen et al. 2007b					
GL	2005	A	IO	4,856 (a)	0.49	1,910-12,348	10,792	0.59	3,594-32,407	1	1	IWC SC/46	Larsen 1995			
S	SP	4,479	0.46	1,760-11,394												
GL	1993	A	IO	8,371	0.43	0	1	IWC SC/46		Heide-Jørgensen et al. 2007b						
GL	1987-88	A	IO	3,266	0.31	1,702-5,718	0	1	IWC SC/4		IWC 1990a					
NASS 1987	A	IO	1,930	0.44	0	1	IWC SC/4									
East GL coastal	NASS 2015	A	IO	523	0.38	238-1,145	2,762	0.47	1,160-6,574	1	1	[NAMMCO SC 23 (AEWG 2016)]	Availability correction based on 5 minke whales tagged in 2013-17 off GL	Hansen et al 2018		
GL	2005	S	SP	1,848	1.24	197-17,348										
Iceland Coastal (CIC)	IS	2016	A	IO	12,966	0.47	3,384-49,688	13,497	0.50	3,312-55,007	1	1	NAMMCO SC/26 (AEWG 2019)		Pike et al. 2020b	
NASS 2015	S	IO	12,710	0.52	4,498-35,912	1	0	NAMMCO SC/23 (AEWG 2016)	Shipboard estimate for the CIC area	Pike et al. 2020b						
IS	2009	A	IO	5,284	0.24	2,915-7,822	9,588	0.24	5,274-14,420	1	1	NAMMCO SC/17 (AEWG 2010)	Corrected using data from both platforms	Pike et al. 2020b		
TNASS 2007	A	IO	15,055	0.36	6,357-27,278	20,834	0.35	(9,808-37,042)	1	1	NAMMCO SC/18 (AEWG 2011)	Using only the most effective primary observer (much higher sighting rate)	Pike et al. 2020b			
NASS 2001	A	IO	38,071 (a)	25,908-55,945	43,633	0.19	30,148-61,149	1	1	NAMMCO SC/11 (AEWG 2003)	Estimate corrected for measurement error	Borchers et al. 2009				
NASS 1995	S	SP	5,977	0.39	2,671-13,376											
NASS 1989	S	SP	13,487	0.44	4,779-38,060											
NASS 1987	A	SP	24,532	0.32	13,399-44,916	0	1	NAMMCO SC/11 (AEWG 2003)		Borchers et al. 2009						
Western Norwegian Sea - Jan Mayer	NASS 2015	S	IO	28,407	0.28	13,035-42,032	48,016	0.23	30,709-75,078	1	0	NAMMCO SC/25 (AEWG 2018)	IWC Central Medium Area, but stock boundaries putative (not true stock division) and distribution dynamic; not biologically meaningful unit	PIke 2018		
IS + FR	NASS 2015	S	IO	23,407	0.28	13,035-42,032	42,515	0.31	22,896-78,942	1	0	NAMMCO SC/25 (AEWG 2018)		Pike et al. 2019a		
TNASS 2007	S	BT	12,427	0.27	7,205-21,443											
NASS 2001	S	BT	25,929	0.29	14,747-45,590											
NASS 1995	S	SP/BT	19,042	0.20	12,801-28,325											
NASS 1989	S	SP	27,184	0.26	14,956-49,410											
NASS 1987	S	SP	21,984	0.15	16,310-29,632											

NEA	NILS 2008-13	S	IO	100,615	0.11	81,154-124,743	1	1	IWC SC/66a		Solvang et al. 2015		
Svalbard-Bear Island	NILS 2002-07	S	IO	108,140	0.23	69,299-168,752	1	1	IWC SC/61		Bathon et al. 2009		
Eastern Barents Sea	NILS 1996-2001	S	IO	107,205	0.13	83,180-138,169	1	1	IWC SC/55		Skag et al. 2004		
Eastern Norwegian Sea	NILS 1995	S	IO	118,299	0.10	91,000-137,000	1	1	IWC SC/48		Schweder et al. 1997		
North Sea/Sea+West UK	NILS 1988-89	S	SP	34,600	0.16	67,380	0.19	44,000-94,000	1	0	IWC SC/4		Olsen 1990
NO	1988	S	SP	25,599	0.14								
NASS 1987	S	SP	17,918	0.23									

NAMMCO Scientific Publications, Volume 11

North Atlantic Marine. Mammal Commission (2020)
Sperm whales	NA	NA								
IS + FR										
NASS 2015	S	IO	7,257	0.35	3,461-15,215	23,166	0.59	7,699-69,709	Revisited estimate after correction asked for by the WG, see WG report for detail	Pike et al. 2019a
TNASS 2007	S	BT	6,429	0.28	3,412-10,007	12,268	0.33	6,386-23,568	A left truncation is used in the primary platform detection function because of a paucity of sightings near the trackline	Pike et al. 2020a
NASS 2001	S	BT	6,726	0.40		11,185	0.34		Best estimate so far, but tagging in NA waters needed to provide more reliable correction. The present correction is based on cue counting	Gunnlaugsson et al. 2009
NASS 1995	S	SP/BT	na							
NASS 1989	S	SP	na							
IS										
NASS 1987	S	SP	1,234	0.17						
FR										
NASS 1987	S	SP	308	0.38						
CM extra										
NILS-NASS 2015	S	IO	2,692	0.25	3,828	0.33	1,994-7,595			
NO mosaic										
NILS 2014-2018	S	IO	3,822	0.21	2,479-5,891	5,704	0.26	3,374-9,643		
NILS 2008-2013	S	IO	3,649	0.28	2,051-6,490	3,962	0.29	2,218-7,079		
NILS 2002-2007	S	IO	6,697	0.17	4,712-9,234	8,134	0.18	5,695-11,617		
NILS 1996-2001	S	IO	6,375	0.22	4,163-9,762					
NO										
NILS 1995	S	IO	4,319	0.20	2,903-6,424					
NILS 1989	S	SP	5,231	0.31						
NILS 1988	S	SP	2,548	0.27						
NILS 1987	S	SP	tfs (29)							
Christensen et al. 1992										
Øien 2009										
Øien 1990										
Ørsted et al. 1989										
NAMMCO SC/11 (AEWG 2003)	Pike et al. 2003									
--------------------------	-------------------									
NAMMCO SC/03 (NBKWG/MPWG 2003)	Pike et al. 2019a									
NAMMCO SC/26 (AEWG 2019)	Pike et al. 2020a									
NAMMCO SC/27	Leonard & Øien 2020a									
NAMMCO SC/02 (NBKWG 1993)	Gunnlaugsson & Sigurjónsson 1990									
NAMMCO SC/11 (AEWG 2003)	IWC SC/41, NAMMCO SC/02 (NBKWG 1993)									

NA = Northern Bottlenose Whales

IS + FR

Year	Dataset	Area	Method	Parallel	Distance	Effective Strip Half-Width (esw)
2015	NASS	S	IO	18,375	0.59	5,128-65,834
2007	TNASS	S	BT	tfs		
2001	NASS	S	BT	24,561	0.23	15,261-39,528
1995	NASS	S	SP/BT	27,879	0.67	12,396-62,700
1987	NASS	S	SP	8,827	0.32	
1989	NASS	S	SP	tfs		

IS

Year	Dataset	Area	Method	Distance
1987	NASS	S	SP	4,925

FR

Year	Dataset	Area	Method	Distance
1987	NASS	S	SP	902

ND mosaic

Year	Dataset	Area	Method	Distance
2014	NASS	S	IO	7,800

NILS

Year	Dataset	Area	Method	Distance
2014	NILS	S	IO	7,800

NO

Year	Dataset	Area	Method	Distance										
1987	NASS/NILS/NO	S	IO	7,800										
Central Atlantic	IS + FR + NO	NASS+NI LS	2015	S	IO	14,611	0.55	4,055-52,773	30,540	0.63	8,316-112,120	1	0	
Killer whales		IS + FR	NASS	2015	S	IO	15,142	0.47	6,003-38,190	20,345	0.64	6,317 – 65,523	1	0
NO mosaic	IS + FR	NASS	2007	S	BT	57,460	0.50	22,385-147,494	30,540	0.63	8,316-112,120	1	0	
NEA (NO)	IS + FR	NASS	2001	S	BT	15,142	0.47	6,003-38,190	20,345	0.64	6,317 – 65,523	1	0	
		NASS	1995	S	SP/BT	4,736	0.48	1,842-12,176	30,540	0.63	8,317 – 65,523	1	0	
		NASS	1989	S	SP	10,316	0.37	4,960-21,456	30,540	0.63	8,317 – 65,523	1	0	
		NASS	1987	S	SP	8,899	0.46	3,621-21,870	30,540	0.63	8,317 – 65,523	1	0	
	IS + FR	NILS	2014-2018	S	IO	12,714	0.29	7,162-22,568	15,056	0.29	8,423-26,914	1	0	
		NILS	2008-2013	S	IO	7,628	0.28	4,397-13,023	9,563	0.36	4,719-19,403	1	0	
		NILS	2002-2007	S	IO	16,462	0.2	13,234-27,798	18,821	0.24	11,525-30,735	1	0	
		NILS	1996-2001	S	IO	na								
	IS + FR	NILS	1995	S	IO	na								
		NASS	1989	S	SP	7,057	0.38	3,400-14,400						
		NO	1988	S	SP	3,957	0.63							
		NASS	1987	S	SP	7,057	0.38	3,400-14,400						

North Atlantic Marine. Mammal Commission (2020)
Year	Survey	Platform	Abundance	CV	Confidence Interval	Notes			
2015	AIO	4797 (p)	0.50	9,180	3,635-23,234	Minimum estimate, as incomplete coverage of the 'WGL stock' and availability correction considered conservative, also based on 3 pw tagged off the Faroes.	Hansen et al. 2018		
2007	AIO	3,253 (p)	0.38	8,133	3,765-17,565	First abundance estimate for WGL.	Hansen & Heide-Jørgensen 2013		
1987	SP	15 (16)					Larsen et al. 1989		
2015	AIO	135 (p)	1.02	258	50-1,354	Availability correction considered conservative.	Hansen et al. 2018		
2015	SIO	278,153	0.35	128,948-600,003	344,148	0.35	162,795-727,527	NAMMCO SC 25 (AEWG 2018)	Pike et al. 2019a
2007	SBT	92,980	0.24	57,226-150,747	87,417	0.38	41,783-182,891	Combined platforms.	Pike et al. 2020a
2001	IS + FR	65,315	0.39	30,122-141,620				[Pike et al. 2003]	
1995	IS + FR	214,840	0.26	130,054-354,899				[Burt and Borchers 1997]	
1989	S	660,387	0.33	351,099-1,242,131				Buckland et al. 1993	
1987	S	122,643	0.29	65,591-220,253					

Long-finned pilot whales

NA: North Atlantic Marine. Mammal Commission (2020)

Notes:
- **IS + FR:** Iceland and Faroe Islands survey conducted as a single platform.
- **SP/BT:** Survey implemented for the first time a double platform (BT) mode.
Common dolphins are usually not observed in NASS surveys, as no sightings have been made north of 57° (Canadas et al. 2009). The Faorese blocks of the 1995 NASS survey went south of this limit and had many sightings.

Short beaked common dolphins

NEA	IS + FR	NASS	Year	ID	Species	No.	Lower Ext.	Upper Ext.	SD	Error
IS + FR	NASS	2015	S	ID	69%	350,696	210,958-539,926	1	0	

Corrected both for animals missed on the trackline and responsive movements.

Pike et al. 2020b

Lagenorhynchus spp

IS	IS	NASS	Year	ID	Species	No.	Lower Ext.	Upper Ext.	SD	Error
CIC	NASS	1995	A	ID	29,444	12,714-32,874				

NAMMCO SC/10 (AEWG 2002)

[Pike et al 2002a]

Sigurjonsso & Vikingsson 1997

| IS | NASS | 1987 | S | SP | C. 5,200 | | |

[Øien 1996]

Leonard & Øien 2020b

Lagenorhynchus spp. mosaic

IS	IS Fr	NASS	Year	ID	Species	No.	Lower Ext.	Upper Ext.	SD	Error
NO	NO	NASS	1996-2001	S	IO	NA				

Likely over 90% are white beaked dolphins. Identified as "springers" only, i.e., delphinids species. Could also include few sightings of common dolphins and bottlenose dolphins, considering the distribution of the species.

[Øien 1996]

White sided dolphins

IS - FR	IS + FR	NASS	Year	ID	Species	No.	Lower Ext.	Upper Ext.	SD	Error
NASS	2015	S	IO	40,173	15,334-105,248	131,022	35,251-486,981	1	0	

NAMMCO SC/25 (AEWG 2018)

Pike et al. 2019a

| TNASS | 2007 | S | BT | 32,296 | 14,609-71,838 | 81,008 | 27,993-234,429 | 1 | 0 |

NAMMCO SC/26 (AEWG 2019)

Pike et al. 2020a

See comments above. Tentative & minimum estimate.

Øien 1990

21 sightings of white beaked dolphins

Øristland et al. 1989

NASS 1987 | S | SP | Tfs | | | | | | |
Location	Event	Year	Season	ID	Name	Vessel	Start	End	Abundance	Abundance	Notes			
West GL	NASS	2015	A	IO	15,831 (p)	0.34	8,514-31,202	106,822	0.35	55,149-206,909	1	NAMMCO SC/26 (HPWG 2019)	Abundance also corrected for hp outside the survey strata during the survey period. Availability bias corrected with data collected from 9 hp satellite tagged in Greenlandic waters, using a 19% availability factor.	
	TNASS	2007	A	IO	10,314 (p)	0.35	5,193-20,484	69,595	0.37	34,889-139,624	1	NAMMCO SC/26 (HPWG 2019)		
	NASS	1987	A	SP	tfs (3)						1	NAMMCO SC/26 (AEWG 2016)		
East GL	NASS	2015	A	IO	312	1.00	1,642-3,806	318,846	1	1	NAMMCO SC 23 (AEWG 2016)			
NEA	IS	NASS	2016	A	IO	10,506	0.26	6,120-18,036	22,806	0.48	9,166-56,746	1	NAMMCO SC/26 (AEWG 2019)	Potential for substantial negative bias, as no availability correction and incomplete coverage.
	NASS	2009	A	IO	na						0	NAMMCO SC/26 (AEWG 2019)		
	TNASS	2007	A	IO	43,179	0.45	31,755-161,899	1	1	NAMMCO SC/18 (AEWG 2011)	SCANS-II esw and g(0) applied for bias correction.			
	NASS	2001	A	IO	tfs (13)						1	NAMMCO SC/18 (AEWG 2011)		
	NASS	1995	A	IO	5,156	0.42	3,027-8,783				1	NAMMCO SC/26 (AEWG 2019)		
	NASS	1987	A	SP	na						1	NAMMCO SC/26 (AEWG 2019)		
	IS	1986	A	SP	4,239	0.35	2,724-6,599				1	NAMMCO SC/26 (AEWG 2019)		
FR coastal	FR	2010	A	IO	5,175	0.44	3,457-17,637	1	1	NAMMCO SC/18 (AEWG 2011)	SCANS-II esw and g(0) applied for bias correction.			
NO mosaic	NILS	2014-18	S	IO	129,723	0.18	89,018-189,038	255,929	0.20	172,742-379,175	1	NAMMCO SC/26 (AEWG 2019)		
	NILS	2008-13	S	IO	14,500	0.31	7,868-26,721	38,351	0.58	10,502-88,907	1	NAMMCO SC/26 (AEWG 2019)	Comparatively anomalously low and inconsistent abundance estimate. On WG advice, distance was removed from the conditional detection function.	
	NILS	2002-07	S	IO	98,205	0.13	75,801-128,450	189,604	0.19	129,437-277,738	1	NAMMCO SC/26 (AEWG 2019)		
	NILS	1996-01	S	IO	na						1	NAMMCO SC/26 (AEWG 2019)		
NO	NILS	1995	S	IO	na						1	NAMMCO SC/26 (AEWG 2019)		
	NASS	1989	S	SP	93,612	0.22				Only partial coverage of the area. Bjørge & Øien 1995				
	NASS	1987	S	SP	tfs (9)						1	NAMMCO SC/26 (AEWG 2019)		

Notes:
- NASS = North Atlantic Survey
- TNASS = Trawl North Atlantic Survey
- NILS = Norwegian Institute for Nature Research
- NASS = Norwegian Marine Research Institute
- SCANS-II esw and g(0) applied for bias correction.
- Potential for substantial negative bias, as no availability correction and incomplete coverage.
- Data quality, incl. realised coverage not appropriate.
- 3D sightings but no perpendicular distance recorded.
- Comparatively anomalously low and inconsistent abundance estimate. On WG advice, distance was removed from the conditional detection function.
- Only partial coverage of the area.
| Region | Year | Code | Type | Survey Details | Reference | |
|---|---|---|---|---|---|---|
| North Atlantic | 2018 | A | IO | 2,063, 0.81, 513-8,289 | NAMMCO SC/27 (JWG 2020) |
| | 2014 | A | IO | 2,324, 0.27, 988-5,575 | NAMMCO SC/22 (JWG 2015) |
| | 2010 | A | IO | 1,067 (♂), 0.27, 636-1,792 | Spring (April) surveys. Partial coverage of potential habitat | Heide-Jørgensen et al. 2016b |
| | 2009 | A | IO | 863 (♂), 0.33, 460-1,620 | NAMMCO SC/21 (JWG 2012) |
| | 2012 | A | IO | 9,072, 0.32, 4,895-16,815 | Spring (May) surveys | Heide-Jørgensen et al. 2016a |
| | 2006 | A | IO | 10,595, 0.43, 4,895-16,815 | MRDS estimate | Heide-Jørgensen et al. 2016b |
| | 1998-99 | A | IO | 7,941, 0.41, 3,650-17,278 | Abundance for 2009-10 is 2,245 (CV=0.11, 95% CI 1.811-2,783) | Heide-Jørgensen et al. 2013 |
| | 1998 | A | IO | 6,722, 0.28, 3,562-12,688 | NAMMCO SC/7 (PSBNWG 1999) |
| | 1993-94 | A | IO | 11,563, 0.34, 8,560-15,621 | NAMMCO SC/22 (JWG 2015) |
| | 2018 | A | SP | 549, 436-723 | NAMMCO SC/27 (JWG 2020) |
| | 2014 | A | IO | 2,324, 0.27, 988-5,575 | NAMMCO SC/22 (JWG 2015) |
| | 2010 | A | IO | 1,067 (♂), 0.27, 636-1,792 | Spring (April) surveys. Partial coverage of potential habitat | Heide-Jørgensen et al. 2016b |
| | 2009 | A | IO | 863 (♂), 0.33, 460-1,620 | NAMMCO SC/21 (JWG 2012) |
| | 2012 | A | IO | 9,072, 0.32, 4,895-16,815 | Spring (May) surveys | Heide-Jørgensen et al. 2016a |
| | 2006 | A | IO | 10,595, 0.43, 4,895-16,815 | MRDS estimate | Heide-Jørgensen et al. 2016b |
| | 1998-99 | A | IO | 7,941, 0.41, 3,650-17,278 | NAMMCO SC/8 (PSBNWG 2000) |
| | 1998 | A | IO | 6,722, 0.28, 3,562-12,688 | NAMMCO SC/7 (PSBNWG 1999) |
| | 1993-94 | A | IO | 11,563, 0.34, 8,560-15,621 | NAMMCO SC/22 (JWG 2015) |
| | 2018 | A | SP | 549, 436-723 | NAMMCO SC/27 (JWG 2020) |
| | 2014 | A | IO | 2,324, 0.27, 988-5,575 | NAMMCO SC/22 (JWG 2015) |
| | 2010 | A | IO | 1,067 (♂), 0.27, 636-1,792 | Spring (April) surveys. Partial coverage of potential habitat | Heide-Jørgensen et al. 2016b |
| | 2009 | A | IO | 863 (♂), 0.33, 460-1,620 | NAMMCO SC/21 (JWG 2012) |
| | 2012 | A | IO | 9,072, 0.32, 4,895-16,815 | Spring (May) surveys | Heide-Jørgensen et al. 2016a |
| | 2006 | A | IO | 10,595, 0.43, 4,895-16,815 | MRDS estimate | Heide-Jørgensen et al. 2016b |
| | 1998-99 | A | IO | 7,941, 0.41, 3,650-17,278 | NAMMCO SC/8 (PSBNWG 2000) |
| | 1998 | A | IO | 6,722, 0.28, 3,562-12,688 | NAMMCO SC/7 (PSBNWG 1999) |
| | 1993-94 | A | IO | 11,563, 0.34, 8,560-15,621 | NAMMCO SC/22 (JWG 2015) |
| | 2018 | A | SP | 549, 436-723 | NAMMCO SC/27 (JWG 2020) |
| | 2014 | A | IO | 2,324, 0.27, 988-5,575 | NAMMCO SC/22 (JWG 2015) |
| | 2010 | A | IO | 1,067 (♂), 0.27, 636-1,792 | Spring (April) surveys. Partial coverage of potential habitat | Heide-Jørgensen et al. 2016b |
| | 2009 | A | IO | 863 (♂), 0.33, 460-1,620 | NAMMCO SC/21 (JWG 2012) |
| | 2012 | A | IO | 9,072, 0.32, 4,895-16,815 | Spring (May) surveys | Heide-Jørgensen et al. 2016a |
| | 2006 | A | IO | 10,595, 0.43, 4,895-16,815 | MRDS estimate | Heide-Jørgensen et al. 2016b |
| | 1998-99 | A | IO | 7,941, 0.41, 3,650-17,278 | NAMMCO SC/8 (PSBNWG 2000) |
| | 1998 | A | IO | 6,722, 0.28, 3,562-12,688 | NAMMCO SC/7 (PSBNWG 1999) |
| | 1993-94 | A | IO | 11,563, 0.34, 8,560-15,621 | NAMMCO SC/22 (JWG 2015) |
| | 2018 | A | SP | 549, 436-723 | NAMMCO SC/27 (JWG 2020) |

North Atlantic Marine. Mammal Commission (2020)
REFERENCES

Bjørge, A., & Øien, N. 1995. Distribution and abundance of harbor porpoise, Phocoena phocoena, in Norwegian waters. Report of the International Whaling Commission (Special issue 16), 89–98.

Boettnmann, D., Blockley, D., & Mosbech, A. 2020. Greenland Sea - an updated strategic environmental impact assessment of petroleum activities. Scientific Report from DCE - Danish Centre for Environment and Energy No. 375, 380.

Borchers, D., & Burt, M. 1997. Sei and fin whale abundance in the North Atlantic, estimated from NASS-95 shipboard survey data. SC/5/AE/1 for the NAMMCO Scientific Committee Working Group on Abundance Estimate. (unpublished).

Borchers, D.L., Pike, D.G., Gunnlaugsson, Th., & Vikingsson, G.A. 2009. Minke whale abundance estimation from the NASS 1987 and 2001 aerial cue-counting surveys taking appropriate account of distance estimation errors. NAMMCO Scientific Publications 7, 95–110. https://doi.org/10.7557/3.2708

Buckland, S.T., Cattanach, K.L., & Gunnlaugsson, Th. 1992. Seasonal distribution, Th. 1992. Fin whale (Delphinus delphis) in the central and eastern North Atlantic, estimated from NASS-89 and NASS-89 data. Report of the International Whaling Commission 42, 645–651.

Buckland, S.T., Bloch, D., Cattanach, K.L., Gunnlaugsson, Th., Hoydal, K., Lens, S., & Sigurjónsson, J. 1993. Distribution and abundance of long-finned pilot whales in the North Atlantic, estimated from NASS-1987 and NASS-89 data. Report of the International Whaling Commission 41, 33–50.

Burt, M.L., & Borchers, D.L. 1997. Pilot whale abundance estimate in the North Atlantic, estimated from NASS-95. SC/5/AE3 for the NAMMCO Scientific Committee Working Group on Abundance Estimate. (unpublished).

Bæthun, G., Skau, H.J., & Øien, N.I. 2009. Abundance of minke whales in the Northeast Atlantic based on survey data collected over the period 2002-2007. Paper SC/61/RM22 for the IWC Scientific Committee. (unpublished).

Cañadas, A., Donovan, G.P., Desportes, G., & Borchers, D.L. 2009. A short review of the distribution of short-beaked common dolphins (Delphinus delphis) in the central and eastern North Atlantic with an abundance estimate for part of this area. NAMMCO Scientific Publications 7, 201–220. https://doi.org/10.7557/3.2711

Cattanach, K.L., Sigurjónsson, J., Buckland, J., & Gunnlaugsson, Th. 1993. Sei whale abundance in the North Atlantic, estimated from NASS-87 and NASS-89 data. Reports of the International Whaling Commission 43, 315–324.

Christensen, I., Haug, T., & Øien, N. 1992. Seasonal distribution, exploitation and present abundance of stocks of large baleen whales (Mysticeti) and sperm whales (Physeter macrocephalus) in Norwegian and adjacent waters. ICES Journal of Marine Science 49, 341–355. https://doi.org/10.1093/icesjm/49.3.341

Doniöl-Valcroze, T., Gosselin, J.-F., Pike, D.G., Lawson, J.W., Asselin, N.C., Hedges, K.J., & Ferguson, S.H. 2020. Distribution and Abundance of the Eastern Canada – West Greenland Bowhead Whale Population Based on the 2013 High Arctic Cetacean Survey. NAMMCO Scientific Publications 11. https://doi.org/10.7557/3.5315

Donovan, G., & Gunnlaugsson, Th. 1989. North Atlantic Sightings Surveys 1987: Report of the Aerial Survey off Iceland. Report of the International Whaling Commission 39, 437–441. https://doi.org/10.1017/S0033224700007555

Gilles, A., Gunnlaugsson, Th., Mikkelson, B., Pike, D.G., & Vikingsson, G. 2020. Summer Abundance of Harbour Porpoises (Phocoena phocoena) in the Coastal Waters of Iceland and the Faroe Islands. NAMMCO Scientific Publications 11. https://doi.org/10.7557/3.4939

Gunnlaugsson, Th., & Sigurjónsson, J. 1990. NASS-87: Estimation of whale abundance based on observations made onboard Icelandic and Faroese survey vessels. Report of the International Whaling Commission 40, 571–580.

Gunnlaugsson, Th., Vikingsson, G. & Pike D.G. 2009. Combined line-transect and cue counting estimate of sperm whale abundance in the North Atlantic, from Icelandic NASS-2001 shipboard survey. NAMMCO Scientific Publications 7, 73-80. https://doi.org/10.7557/3.2708

Hansen, R.G., & Heide-Jørgensen, M.P. 2013. Spatial trends in abundance of long-finned pilot whales, white-beaked dolphins and harbour porpoises in West Greenland. Marine Biology 160, 2929–2941. https://doi.org/10.1007/s00227-013-2283-8

Hansen, R.G., Boye, T.K., Larsen, R.S., Nielsen, N.H., Tervo, O., Nielsen, R.D., Rasmussen, M.H., Sinding, M.H.S., & Heide-Jørgensen, M.-P. 2018a. Abundance of Whales in West and East Greenland in Summer 2015. NAMMCO Scientific Publications 11. https://doi.org/10.7557/3.4689

Hansen, R., Borchers, D., & Heide-Jørgensen, M.P. 2018b. Summer surveys of marine mammals in the Greenland Sea and the Northeast Water and winter survey of marine mammals in the Northeast Water. Greenland Institute of Natural Resources. (unpublished).

Heide-Jørgensen, M.P., & Acquarone, M. 2002. Size and trends of the bowhead, beluga and narwhal stocks wintering off West Greenland. NAMMCO Scientific Publications 4, 191–210. https://doi.org/10.7557/3.2844

Heide-Jørgensen, M.P., Laide, K., Borchers, D., Samarra, F., & Stern, H. 2007a. Increasing abundance of bowhead whales in West Greenland. Biology Letters 3, 577–580. https://doi.org/10.1098/rsbl.2007.0710

Heide-Jørgensen, M.P., Simon, M.I., & Laide, K.L. 2007b. Estimates of large whale abundance in Greenlandic waters from a ship-based survey in 2005. Journal of Cetacean Research and Management 9(2), 95–104.

Heide-Jørgensen, M. P., Borchers, D. L., Witting, L., Laide, K. L., Simon, M. J., Rosing-Asvid, A., & Pike, D. G. 2008. Estimates of large whale abundance in West Greenland waters from an aerial survey in 2005. Journal of Cetacean Research and Management 10(2), 119–129.

Heide-Jørgensen, M.P., Laide, K.L., Borchers, D., Stern, H., & Simon, M. 2010c. The effect of sea ice loss on beluga whales (Delphinapterus leucas) in West Greenland. Polar Research 29, 198–208. https://doi.org/10.1130/1751-8369.2009.00142.x

Heide-Jørgensen, M.P., Laide, K.L., Hansen, R.G., Burt, M.L., Simon, M., Borchers, D.L., Hansen, J., Harding, K., Rasmussen, M., Dietz, R. & Teilmann, J. 2012. Rate of increase and current abundance of humpback whales in West Greenland. Journal of Cetacean Research and Management 12(1), 1–14.

Heide-Jørgensen, M.P., & Laide, K.L. 2015. Surfacing time, availability bias and abundance of humpback whales in West Greenland. Journal of Cetacean Research and Management 15, 1–8.

Heide-Jørgensen, M.P., Hansen, R.G., Fossette, S., Nielsen, N.H., Borchers, D.L., Stern, H., & Witting, L. 2016a. Rebuilding beluga stocks in West Greenland. Animal Conservation 20, 282–293. https://doi.org/10.1111/acv.12315

Heide-Jørgensen, M.P., Sinding, M.-H.S., Nielsen, N.H., Rosing-Asvid, A., & Hansen, R.G. 2016b. Large numbers of marine mammals winter in the North Water polynya. Polar Biology 39(9), 1605–1614. https://doi.org/10.1007/s00300-015-1865-7

Heide-Jørgensen, M.P., & Hansen, R.G. 2020. Abundance of narwhals and belugas in the eastern part of the North Water in April 2018. SC/2021/IWC/15 for the NAMMCO-ICNB Joint Working Group on narwhals and belugas. (unpublished).

Hiby, L., Ward, A., & Lovell, P. 1989: Analysis of the North Atlantic Sightings Survey 1987: Aerial Survey Results. Report of the International Whaling Commission 39, 447-455.

[IWC] International Whaling Commission. 1990a. Report of the Scientific Committee [p. 43, 6.4.2]. Report of the International Whaling Commission 40, 39–86.

[IWC] International Whaling Commission. 1990b. Annex G - Report of the Sub-Committee on Stock estimation [p. 132, 4.4]. Report of the International Whaling Commission 40, 131–143.

[IWC] International Whaling Commission. 1992. Report of the Comprehensive Assessment Special Meeting on North Atlantic Fin
Globicephala melas, & Víkingsson, G.A. 2009c.

Pike, D.G., Gunnlaugsson, T., Mikkelsen, B., Halldórsson, S.D., Vikingsson, G.A., Acquarone, M., & Desportes, G. 2020a. Estimates of the Abundance of Cetaceans in the Central North Atlantic from the T-NASS Icelandic and Faroese Ship Surveys Conducted in 2007. NAMMCO Scientific Publications 11. https://doi.org/10.7557/3.5697

Pike, D.G., Gunnlaugsson, T., Sigurjónsson, J., & Vikingsson, G.A. 2020b. Distribution and Abundance of Cetaceans in Icelandic Waters over 30 Years of Aerial Surveys. NAMMCO Scientific Publications 11. https://doi.org/10.7557/3.4805

Pike, D.G., Gunnlaugsson, T., Mikkelsen, B., Vikingsson, G.A., & Desportes, G. 2020c. Distribution and Abundance of Killer Whales in the Central North Atlantic, 1987-2015. NAMMCO Scientific Publications 11. https://doi.org/10.7557/3.5579

Rekdal, S.L., Hansen, R.G., Borchers, D., Bachmann, L., Laibre, K.L., Wiig, Ø., Nielsen, N.H., Fossette, S., Tervo, Ø., & Heide-Jørgensen, M.P. 2015. Trends in bowhead whales in West Greenland: Aerial surveys vs. genetic capture-recapture analyses. Marine Mammal Science 31, 133–154. https://doi.org/10.1111/mms.12192

Schwarzer, T., Skaug, H.J., Hansen, R.G., & Øien, N. 1997. Abundance of North-east Atlantic minke whales, estimates for 1989 and 1995. Report of the International Whaling Commission 47, 453–483. https://doi.org/10.1139/f04-020

Solvag, H.K., Skaug, H.J., & Øien, N. 2015. Abundance estimates of common minke whales in the Northeast Atlantic based on survey data collected over the period 2008-2013. SC/66a/RMP/8 for the IWC Scientific Committee 66a. (unpublished).

Vacqué-García, J., Lydersen, C., Marques, T.A., Aars, J., Ahonen, H., Skern-Mauritz, M., Øien, N., & Kovacs, K.M. 2017. Late summer distribution and abundance of ice-associated whales in the Norwegian High Arctic. Endangered Species Research 32, 59–70. https://doi.org/10.3354/esr01016

Vacqué-García, J., Lydersen, C., Marques, T.A., Andersen, M., & Kovacs, K.M. 2020. First abundance estimate for white whales Delphinapterus leucas in Svalbard, Norway. Endangered Species Research 41, 253–263. https://doi.org/10.3354/esr01016

Vikingsson, G.A., Pike, D.G., Desportes, G., Øien, N., Gunnlaugsson, T., & Bloch, D. 2009b. Estimates of the abundance of minke whales (Balaenoptera acutorostrata) from Faeroese and Icelandic NASS ship surveys. NAMMCO Scientific Publications 7, 81–93. https://doi.org/10.7557/3.2707

Vikingsson, G.A., Pike, D.G., Desportes, G., Øien, N., Gunnlaugsson, T., & Bloch, D. 2009c. Trends in the distribution and abundance of cetaceans from aerial surveys in Icelandic coastal waters, 1986-2001. NAMMCO Scientific Publications 7, 117-142. https://doi.org/10.7557/3.2703

Vikingsson, G.A., Pike, D.G., Desportes, G., Øien, N., Gunnlaugsson, T., & Bloch, D. 2010. A preliminary survey of the abundance of minke whales (Balaenoptera acutorostrata) in the Northeast Atlantic: variability in time and space. Canadian Journal of Fisheries and Aquatic Sciences 61, 870–886. https://doi.org/10.1139/f04-020

Øien, N. 1989. Sightings surveys of Northeast Atlantic minke whale abundance from the Norwegian shipboard surveys in July 1987. Report of the International Whaling Commission 39, 417–421.

Øien, N. 1990. Sightings surveys in the Northeast Atlantic in July 1988: Distribution and abundance of cetaceans. Report of the International Whaling Commission 40, 499–511.

Øien, N. 1991. Abundance of the Northeastern Atlantic stock of minke whales based on shipboard surveys conducted in July 1989. Report of the International Whaling Commission 41, 433-437.

Øien, N. 1993. Abundance of killer whales (Orcinus Orca) in waters off Norway. SC/2/NB/4/4 for the NAMMCO Scientific Committee Working Group on northern bottlenose whales and killer whales. (unpublished).

Øien, N. 1996. Lagenorhynchus species in Norwegian waters as revealed from incidental observations and recent sighting surveys. SC/48/SM 15 for the IWC Scientific Committee. (unpublished).
Øien, N. 2009. Distribution and abundance of large whales in the Norwegian and adjacent waters based on ship surveys 1995-2001. NAMMCO Scientific Publications 7, 31-47. https://doi.org/10.7557/3.2704

Øien, N., & Hartvedt, S. 2011. Northern bottlenose whales Hyperoodon ampullatus in Norwegian and adjacent waters. SC/63/SM 1 for the IWC Scientific Committee. (unpublished).

Ørstsland, T., Øien, N., Calambokidis, J., Christensen, I., Cubbage, J.C., Hartvedt, S., Jensen, P.M., Joyce, G.G., Tellnes, K., & Troutman, B.L. 1989. Norwegian whale sightings surveys in the North Atlantic, 1987. Report of the International Whaling Commission 39, 411–415.