Development Of Android Physics Applications (APA) As Learning Media On Dynamic Fluid Concepts

C Fathurohman, F C Wibowo, and B H Iswanto
1Physics Education Master Program, Universitas Negeri Jakarta
Jl. Rawamangun Muka, Jakarta 13220, Indonesia
Email: cecepfathurohman_1310819005@mhs.unj.ac.id, fcwibowo@unj.ac.id, bhi@unj.ac.id

Abstract. Android is one of the learning media based on 21st-century learning styles. Android is open source and provides opportunities for users to develop other application features as needed. This study aims to create Android-based physics learning media using the Smart App Creator on Dynamic Fluid material. Media is developed using the methods of research and development R&D (Research and Development) Model FODEM (Formative Development Method) consisting of Need Analysis (NE), Implementation (I), and Formative Evaluation (FE). The results of the validity of the Android Physics Applications (APA) media obtained an average score of 83% in the very feasible category, while the results of the limited trial of students obtained an average score of 82.1% with the very good category. Based on these results, it can be concluded that the Android Physics Applications (APA) media can be used as a learning medium in the classroom. The development of Android-based Physics Applications is expected to be an alternative for educational institutions or educators to develop learning media that use multimedia.

1. Introduction

Learners in the 21st century should have the opportunity to reflect on their ideas, hone skills analysis to them, strengthen the capacity to think critically and creatively and show initiative in solving problems [1,2]. In solving problems it is necessary to have a learning media. The selection of technology-based learning media has a very important role [3,4]. The Android operating system is one of the 21st-century learning media [5], android media is an open-source media and provides an opportunity for users to develop other application features as needed [6,7], and can be accessed easily anywhere, anytime and anywhere [4,6,8].

Physics is one of the basic sciences that plays an important role in the development of science and technology [9,10]. One of the topics in physics is Fluid Dynamics [11,12]. Abstract fluid dynamics concepts such as Bernoulli’s principle and ideal fluid concepts need to be visualized so that students have a complete concept [13,14]. The next step is that teachers need to change their role from content deliverers to content creators, creating content and applications to turn technology into a tool for learning [1,15].

Android media is a complex mixture of OS, middleware, and applications that can increase the interest and attractiveness of students with a multi-representative presentation [16,17]. Mobility is one of the main factors that attract distance learners to use mobile learning [18]. Learning media using the android system is more attractive and flexible [19-21] the device may smartphone also minimalist so that students can bring the material easily [21].

Technology-based learning innovation is assessed as a medium that has strong potential in improving the quality of education [22]. The selection of technology-based learning media has a very important role [14,24,24], therefore, physics learning innovation is needed as a solution
to problems that arise in every school [8,25]. Researchers late this developing learning media in the form of Android Physics Application (APA) on material Dynamic fluid in high school.

2. Method
In this study, the method used is R & D [26], using the FODEM (Formative Development Method) model [27] which consists of three components, as follows:

![FODEM circuit](image)

Figure 1. FODEM circuit [27]

In the first stage of Needs Analysis (NA), at this stage, the needs and shortcomings of android media design and development are analyzed. In the early stages of development. The definition of pedagogical objectives can be based on both theory and practice. Design context requirements can be based on previous development experience in similar situations. A needs analysis can also include the effects of other sets.

In the second stage of implementation (I), at this stage, a trial and evaluation of learning are carried out so that the android media that has been made can be used optimally. The emphasis in the implementation component is on rapid prototyping of the design ideas specified in the requirements analysis. Its main purpose is to test design ideas for information about feasible and failed solutions.

The last stage is Formative Evaluation (FE), at this stage as a revision between stages starting from the Need Analysis stage to Implementation and this stage also measures the extent to which the android application can function.

3. Results and Discussion
The product produced in this research is a learning application, hereinafter referred to as APA (Android Physics Application). This application was developed based on the FODEM development model, with the Needs Analysis (NA) stage carried out by analyzing problems, needs, media materials, development specifications, and media creation tools.

The Implementation (I) phase begins by integrating the APA (Android Physics Application) concept into the dynamic fluid concept. by making learning media according to the needs of students with specific media development specifications. This development is carried out by utilizing the Smart App Creator application as software for developing this learning media. Then carried out by conducting a small-scale test. The Formative Evaluation (FE) stage was carried out by analyzing the validation of material data and media expertise, as well as the results of the implementation of small-scale media tests.

3.1. APA Development
The display will be visible after clicking the application tab on the mobile screen. The screen contains sub-menus, guides, materials, videos, simulations, practice questions. APA development flowchart on dynamic fluid materials can be seen in Figure 2.
3.2. Final Product Review
Android Physics Application (APA) is a medium of learning physics on the concept of dynamic fluid. This application contains guides, materials, videos, simulations, and practice questions. This application is developed, analyzed, and improved based on comments and suggestions at the validation and implementation stages. Overall the media developed is feasible to use.
Based on Figure 3. there are several main menus in APA development including 1) guide icon, 2) material icon, 3) video icon, 4) simulation icon and 5) practice questions icon. Students can select each menu by clicking each icon. Based on Figure 4. there is a description of each icon in the main menu of the developed APA application. There is a next button to change the explanation of the icon on the main menu, and there is a back button. Based on Figure 5. contains material about dynamic fluid equations and concepts in full, and there is a simulation icon to go to the simulation menu to make it easier for students to understand the material with the simulation. Based on Figure 6. contains learning videos about dynamic fluid concepts. Figure 7 contains practice questions as student evaluations in learning.

3.3. Discussion
The results of the research conducted by the researchers were then compared with the results of previous studies. Based on research conducted by Aji, et al [25] Astra, et al [6] Saputra & Kuswanto [5] and Rosyid, et al [7].
The results obtained that the three studies are categorized as suitable for use in the learning process. The results of the study are not much different from the results obtained by the researchers, the results of the validity of the Android Physics Applications (APA) media obtained an average score of 83% with a very feasible category, while the results of the trial were limited to students obtaining an average score of 82.1%, with very good category. Android Physics Applications (APA) is an innovative learning media that can adapt to technological developments. This application can be used offline on all Android smartphone resolutions.

4. Conclusion
The results obtained that the three studies are categorized as suitable for use in the learning process. The results of the study are not much different from the results obtained by the researchers, the results of the validity of the Android Physics Applications (APA) media obtained an average score of 83% with a very feasible category, while the results of the trial were limited to students obtaining an average score of 82.1% with very good category. Physics Education Game Application is an innovative learning media that can adapt to technological developments. This application can be used offline on all Android smartphone resolutions.

References
[1] C. L. Scott. THE FUTURES OF LEARNING 3: WHAT KIND OF PEDAGOGIES FOR THE 21st CENTURY?, EDUCATION RESEARCH AND FORESIGHT WORKING PAPERS. 2015.
[2] K. Ananiaidou dan M. Claro. 21st Century Skills and Competences for New Millennium Learners in OECD Countries, OECD Education Working, pp. No. 41. 2009.
[3] N. Mardiana dan H. Kuswanto. Android-Assisted Physics Mobile Learning to Improve Senior High School Students’ Divergent Thinking Skills and Physics HOTS, AIP Conference Proceedings. 2017.
[4] N. Liliarti dan H. Kuswanto. Improving the Competence of Diagrammatic and Argumentative Representation in Physics through Android-based Mobile Learning Application, International Journal of Instruction. 2018.
[5] M. R. D. Saputra dan H. Kuswanto. Development of Physics Mobile (Android) Learning Themed Indonesian Culture Hombo Batu on the Topic of Newton’s Law and Parabolic Motion for Class X SMA/MA, Journal of Physics: Conference Series. 2018.
[6] I. M. Astra, D. Susanti dan A. Novriansyah. Development of e-Handout materials physics-based android for improvement learning outcomes senior high school student, IOP Publishing. 2020.
[7] F. A. Rosvid, S. Arjo, N. Suminten dan D. P. Sandjaj. The Development of Android-Based Physical Learning Media Brain Quiz Game Assisted on Momentum and Impulse Materials, Journal of Physics: Conference Series. 2020.
[8] F. P. Sari, R. L dan I. Wiluje. Development of Android Comics media on Thermodynamic Experiment to Map the Science Process Skill for Senior High School, Journal of Physics: Conference Series. 2019.
[9] F. Rofiqoh. Pengaruh Model Pembelajaran Kooperatif Tipe Numbered Heads Together (NHT) Disertai Media Monopoli Games Terintegrasi Pendekatan Pendekatan Problem Solving Pada Pembelajaran Fisika di SMA, Jurnal Pembelajaran Fisika, Vol.4 No.3: 198-203. 2015.
[10] J. Docktor dan J. Mestre. Physical Review Special Topics, Physics Education Research. 2014.
[11] P. A. Tipler dan G. Mosca 2008 Physics for Scientists and Engineers with Modern Physics, 6 penyunt. (New York: W. H. Freeman and Company)
[12] D. C. Giancoli. Physics for Scientists & Engineers with Modern Physics, 4 penyunt., Pearson. 2014.
[13] G. D. Putra, A. Samsudin dan D. Saepuzaman. Computer simulation-assisted conceptual change text (CS-CCT): a FODEM study on fluid dynamics,” Journal of Physics: Conference Series. 2019.
[14] C. Fathurohman, Y. Ruhiyat dan R. F. Septianto. Penerapan Media Simulasi PhET Untuk Meningkatkan Pemahaman Konsep Siswa SMA Pada Materi Fluida, *Gravity Journal Research and Learning Physics*. 2018.

[15] C. Yung-Ting. SSCLS: A Smartphone-Supported Collaborative Learning System, *Telematics and Informatics*. 2014.

[16] N. Safaat 2012 *Android: Pemrograman Aplikasi Mobile Smartphone dan Tablet PC Berbasis Android* (Bandung: Penerbit Informatika)

[17] T. M. Miangah dan N. Amin. Mobile-Assisted Language Learning, *International Journal of Distributed and Parallel Systems*, vol. 3, pp. 1-11. 2012.

[18] K. Yin Yin. Pocket learning: a new mobile learning approach for distance learners, *J. Mobile Learning and Organisation*. 2015.

[19] W. Setya dan R. Zakwandi. Development of Android-base media on the point of glass and lens, *Journal of Physics: Conference Series*. 2019.

[20] B. E. Dasilva dan S. Development of The Android-Based Interactive Physics Mobile Learning Media (IPMLM) to Improve Higher Order Thinking Skills (HOTS) of Senior High School Students, *IOP Publishing*. 2019.

[21] L. Jianye dan Y. Jiankun. Research on Development of Android Applications, *Fourth International Conference on Intelligent Networks and Intelligent Systems*. 2011.

[22] Y. J. Joo, K. Y. Lim dan E. Lim. Investigating the structural relationship among perceived innovation attributes, intention to use and actual use of mobile learning in an online university in South Korea, *Australasian Journal of Educational Technology*, Australasian Journal of Educational Technology, vol. 30, pp. 427-439. 2014.

[23] F. C. Wibowo dan B. H. Iswanto. Designing MOOCS with Virtual Microscopic Simulation (VMS) for increasing of student’s levels of understanding, *Journal of Physics: Conference Series* 1402 066094. 2019.

[24] F. C. Wibowo, D. R. Darman, H. Abizar, S. S. M. Leksono, S. R. N. Hodijah, L. Nulhakim dan A. Istiandaru. Virtual simulation instructional training for students’ drop out of mathematical science digital entrepreneurs, *Journal of Physics: Conference Series*. 2019.

[25] S. H. Aji, Jumadi, A. T. Saputra dan R. N. Tuada. Development of physics mobile learning media in optical instruments for senior high school student using android studio, *Journal of Physics: Conference Series*. 2020.

[26] Sugiyono 2012 *Metode Penelitian Pendekatan Kuantitatif, Kualitatif, dan R&D* (Bandung: Alfabeta)

[27] J. Suhonen, M. R. de Villiers dan E. Sutinen. FODEM: a multi-threaded research and development method for educational technology, *Education Tech Research Dev*. 2012.