ON TOPOLOGICAL BRAUER CLASSES OVER 8-COMPLEXES
WITH PERIODS DIVISIBLE BY 4

XING GU

ABSTRACT. We determine the index of the topological Brauer class \(\beta_n \), the canonical generator of \(H^3(X; \mathbb{Z}) \), where \(X \) is the 8th skeleton of the Eilenberg-Mac Lane space \(K(\mathbb{Z}/n, 2) \), and \(4|n \). This makes an important complement to a theorem on the topological period-index problem over 8-complexes, due to the author.

1. INTRODUCTION

We continue the study of topological period-index problem over 8-complexes started in [6], where we considered \(\text{sk}_8(K(\mathbb{Z}/n, 2)) \), the 8th skeleton of the Eilenberg-Mac Lane space \(K(\mathbb{Z}/n, 2) \). In this paper we study the topological period-index problem on this finite CW-complex, for \(n \) such that \(4|n \).

A topological Brauer class over a topological space \(X \) is an element \(\alpha \in H^3(X; \mathbb{Z})_{\text{tor}} \), the torsion subgroup of \(H^3(X; \mathbb{Z}) \), or the topological Brauer group. This group is also defined as the group of Brauer equivalence classes of \(\mathbb{C} \)-Azumaya algebras over \(X \), with the group operation defined by tensor products.

The period of \(\alpha \), \(\text{per} (\alpha) \), is simply the order of \(\alpha \) in the group \(H^3(X; \mathbb{Z}) \), whereas its index \(\text{ind} (\alpha) \) is the greatest common divisor of degrees of the \(\mathbb{C} \)-Azumaya algebras contained in \(\alpha \).

The preceding definitions are motivated by their algebraic analogs. We refer to the introduction of [1] for the algebraic version of the definitions as well as the period-index conjecture, of which the topological counterpart was first considered by Antieau and Williams in [1]:

For a given Brauer class \(\alpha \) of a finite CW complexes \(X \), find the sharp lower bound of \(e \) such that

\[
\text{ind} (\alpha) | \text{per} (\alpha)^e
\]

holds for all finite CW complex \(X \) in \(C \) and all elements \(\alpha \in \text{Br}(X) \).

It is known, in both the algebraic and topological versions, that \(\text{per} (\alpha) | \text{ind} (\alpha) \), and the two integers have the same prime divisors. Therefore such an \(e \) always exists.

For further explanations of the preceding definitions and backgrounds on the topological period-index problem, see [1], [2] and [3]. All definitions and notations in this paper are consistent with those in [3]. In particular, let \(\beta_n \) be the canonical generator of \(H^3(K(\mathbb{Z}/n, \mathbb{Z})) \), i.e., the image of the identity class in \(H^2(K(\mathbb{Z}/n, \mathbb{Z})) \) under the Bockstein homomorphism. Without risk of ambiguity, we use \(\beta_n \) to denote the restriction of itself on \(H^3(\text{sk}_8(K(\mathbb{Z}/n, 2)), \mathbb{Z}) \). The bulk of this paper is devoted to proving the following.

2010 Mathematics Subject Classification. Primary 55S45; Secondary 55R20.

Key words and phrases. Brauer groups, twisted K-theory, period-index problems.
Proposition 1.1. When $4|n$, we have

$$\text{ind}(\beta_n) = \epsilon_3(n)n^3.$$

The expression $\epsilon_p(n)$ denotes the greatest common divisor of a prime p and a positive integer n.

In [6], we obtained the following

Theorem 1.2 (Theorem 1.6, [6]). Let X be a topological space of homotopy type of an 8-dimensional CW-complex, and let $\alpha \in H^3(X; \mathbb{Z})_{\text{tor}}$ be a topological Brauer class of period n. Then

$$\text{ind}(\alpha) = \epsilon_2(n)\epsilon_3(n)n^3.$$

In addition, if X is the 8-th skeleton of $K(\mathbb{Z}/n, 2)$, and α is the restriction of the fundamental class $\beta_n \in H^3(K(\mathbb{Z}/n, 2), \mathbb{Z})$, then

$$\begin{cases} \text{ind}(\alpha) = \epsilon_2(n)\epsilon_3(n)n^3, & 4 \nmid n, \\ \epsilon_3(n)n^3|\text{ind}(\alpha), & 4|n. \end{cases}$$

In particular, the sharp lower bound of ϵ such that $\text{ind}(\alpha)|n^\epsilon$ for all X and α is 4.

Proposition 1.1 extends Theorem 1.2 and gives the following

Theorem 1.3. Let X be a topological space of homotopy type of an 8-dimensional CW-complex, and let $\alpha \in H^3(X; \mathbb{Z})_{\text{tor}}$ be a topological Brauer class of period n. Then

$$\text{ind}(\alpha) = \epsilon_2(n)\epsilon_3(n)n^3.$$

In addition, if X is the 8-th skeleton of $K(\mathbb{Z}/n, 2)$ then

$$\begin{cases} \text{ind}(\beta_n) = \epsilon_3(n)n^3, & 4 \nmid n, \\ \text{ind}(\beta_n) = \epsilon_2(n)\epsilon_3(n)n^3, & 4|n. \end{cases}$$

In particular, the sharp lower bound of ϵ such that $\text{ind}(\alpha)|n^\epsilon$ for all X and α is 4.

In [1, 2, 3] and [6] we considered the twisted Atiyah-Hirzebruch spectral sequence (1.1) of a CW-complex X and a topological Brauer class α, which we denote by $(\hat{E}_s^*, \hat{d}_s^*)$. The spectral sequence converges to the twisted K-theory $K_\alpha(X)$, and satisfies

$$\hat{E}_2^{s,t} \cong H^s(X; K^t(\text{pt})).$$

In other words, we have

$$\hat{E}_2^{s,t} \cong \begin{cases} H^s(X; \mathbb{Z}), & t \text{ even,} \\ 0, & t \text{ odd.} \end{cases}$$

The following result can be derived immediately from (1.1).

Theorem 1.4. Let X be a finite CW-complex and let $\alpha \in \text{Br}(X)$. Consider $\hat{E}_s^{*,*}$, the twisted Atiyah-Hirzebruch spectral sequence with respect to α with differentials $\hat{d}_r^{*,t}$ with bi-degree $(r, -r + 1)$. In particular, $\hat{E}_2^{0,0} \cong H^0$, and any $\hat{E}_r^{0,0}$ with $r > 2$ is a subgroup of \mathbb{Z} and therefore generated by a positive integer. The subgroup $\hat{E}_3^{0,0}$ (resp. $\hat{E}_\infty^{0,0}$) is generated by $\text{per}(\alpha)$ (resp. $\text{ind}(\alpha)$).
Following Theorem 1.4 it can be easily deduced from Theorem B of [1] and Theorem 1.2 that when $X = K(\mathbb{Z}/n, 2)$ and α is β_n, the differentials $\hat{d}_r^{0,0}$ is surjective for $r < 7$, and when $4 \nmid n$, also for $r = 7$. Theorem 1.3 however, provides the first known example of a $\hat{d}_r^{0,0}$ that is NOT surjective.

Proposition 1.5. Suppose $4|n$. In the twisted Atiyah-Hirzebruch spectral sequence $(\hat{E}_r^{*,*}, \hat{d}_r^{*,*})$ of the space $K(\mathbb{Z}/n, 2)$ and the class β_n, $\hat{d}_7^{0,0}$ has cokernal of order 2.

This is easily deduced from the preceeding paragraph and Theorem 1.3 once we recall the cohomology of $K(\mathbb{Z}/n, 2)$, as in Section 2. See Figure 1.

We recall some more notations from [6]. Let m, n be integers. Then \mathbb{Z}/n is a closed normal subgroup of SU_{mn} in the sense of the following monomorphism of Lie groups:

$$\mathbb{Z}/n \hookrightarrow SU_{mn} : t \mapsto e^{2\pi\sqrt{-1}t/n}\mathbf{I}_{mn},$$

where \mathbf{I}_r is the identity matrix of degree r. We denote the quotient group by $P(n,mn)$, and consider its classifying space $BP(n,mn)$. It follows immediately from Bott’s periodicity theorem that we have

$$(1.4) \quad \pi_i(BP(n,mn)) \cong \begin{cases} \mathbb{Z}/n, & \text{if } i = 2, \\ \mathbb{Z}, & \text{if } 2 < i < 2mn + 1, \text{ and } i \text{ is even}, \\ 0, & \text{if } 0 < i < 2mn, \text{ and } i \text{ is odd}. \end{cases}$$

The space $BP(n,mn)$ plays an important role in the topological period-index problem. For a finite CW-complex X and a topological Brauer class α of period n, there is an element α' in $H^2(X; \mathbb{Z}/n)$, which is sent to α by the Bockstein homomorphism.
Consider the following lifting diagram

\[
\begin{array}{ccc}
\mathcal{B} P(n, mn) & \rightarrow & K(\mathbb{Z}/2, n) \\
X & \xrightarrow{\alpha} & K(\mathbb{Z}/2, n)
\end{array}
\]

where the vertical arrow is the projection from \(\mathcal{B} P(n, mn) \) to the bottom stage of its Postnikov tower. We have the following

Proposition 1.6. [Proposition 4.3, [6]] Let \(X, \alpha \) be as above. Furthermore, suppose that \(H^2(X; \mathbb{Z}) = 0 \). Then \(\alpha \) is classified by an Azumaya algebra of degree \(mn \) if and only if the lifting in diagram (1.5) exists.

In Section 2 we recollect some facts on Eilenberg-Mac Lane spaces. Section 3 is a collection of technical lemmas on the cohomology of \(\mathcal{B} P(n, mn) \). In Section 4 we consider a \(k \)-invariant in the Postnikov decomposition of \(\mathcal{B} P(n, mn) \), for \(4 \nmid n \) and suitable \(m \), and prove Proposition 1.1.

2. Recollection of Facts on Eilenberg-Mac Lane Spaces

All the facts recollected here are either well-known or easily deduced from [5].

The integral cohomology of \(K(\mathbb{Z}/n, 2) \) in degree \(\leq 8 \) is isomorphic to the following graded commutative ring:

\[
\mathbb{Z}[\beta_n, Q_n, R_n, \rho_n]/(n\beta_n, \epsilon_2(n)\beta_n^2, \epsilon_2(n)nQ_n, \epsilon_3(n)nR_n, \epsilon_3(n)\rho_n),
\]

where \(\deg(\beta_n) = 3, \deg(Q_n) = 5, \deg(R_n) = 7, \) and \(\deg(\rho_n) = 8 \). In other words, there is exactly one generator in each of the degrees 3, 5, 6, 7, which are, respectively, \(\beta_n, Q_n, \beta_n^2, R_n \), of order \(n, \epsilon_2(n)n, \epsilon_2(n), \epsilon_3(n)n \), and 2 generators in degree 8, \(\beta_n Q_n \) and \(\rho_n \), of order \(\epsilon_2(n) \) and \(\epsilon_3(n) \), respectively. (See (2.5) of [6].)

For \(n \geq 3 \), the ring \(H^*(K(\mathbb{Z}, n); \mathbb{Z}) \) in degree \(\leq n + 3 \) is isomorphic to the following graded rings:

\[
\begin{cases}
\mathbb{Z}[\iota_n, \Gamma_n]/(2\Gamma_n), n > 3, \\
\mathbb{Z}[\iota_3, \Gamma_3]/(2\Gamma_3, \Gamma_3 - \iota_3^2), n = 3,
\end{cases}
\]

where \(\iota_n \), of degree \(n \), is the so-called fundamental class, and \(\Gamma_n \), of degree \(n + 3 \), is a class of order 2. (See (2.1) of [6].)

Proposition 2.1. The \(\Gamma_n \in H^{n+3}(K(\mathbb{Z}, n); \mathbb{Z}) \) as above for all \(n \geq 3 \), stabilize to the same stable cohomology operation \(\text{Sq}_3^1 \in H^3(K(\mathbb{Z}); \mathbb{Z}) \) of order 2, where \(K(R) \) denotes the Eilenberg-Mac Lane spectrum associated to a unit ring \(R \). Moreover, the mod 2 reduction of \(\text{Sq}_3^1 \) is the well-understood Steenrod square \(\text{Sq}_3^1 \). This is to say that the following diagram in the homotopy category of spectra commutes:

\[
\begin{array}{ccc}
K(\mathbb{Z}) & \xrightarrow{\text{Sq}_3^1} & \Sigma^3 K(\mathbb{Z}) \\
\downarrow & & \downarrow \\
K(\mathbb{Z}/2) & \xrightarrow{\text{Sq}_3^1} & \Sigma^3 K(\mathbb{Z}/2)
\end{array}
\]

where the vertical arrows are the obvious ones.
For a proof see Lemma 2.1 of [6].

3. THE GROUP $H^7(\mathcal{B}P(n, mn); \mathbb{Z})$

In this section we collect some technical lemmas on the cohomology group $H^7(\mathcal{B}P(n, mn); \mathbb{Z})$.

Consider the Postnikov tower of $\mathcal{B}P(n, mn)$ where $\epsilon_2(n) | m$, $n > 1$:

\[
\begin{array}{ccc}
K(\mathbb{Z}, 4) & \longrightarrow & \mathcal{B}P(n, mn)[5] \cong K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4) \xrightarrow{\kappa_5} K(\mathbb{Z}, 7) \\
\downarrow & & \downarrow \\
K(\mathbb{Z}/n, 2) & \longrightarrow & K(\mathbb{Z}, 5)
\end{array}
\]

where κ_3 and κ_5 are the k-invariant of the space $\mathcal{B}P(n, m)$. The equation $\kappa_3 = 0$ follows from Proposition 4.11 of [6].

Consider the projection

\[
\mathcal{B}P(n, mn) \rightarrow \mathcal{B}P(n, mn)[6] \cong K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4),
\]

where $\epsilon_2(n) | m$. For future reference we take notes of the induced homomorphism between integral cohomology rings as follows:

\[
\beta_n \times 1 \mapsto x'_1, \quad R_n \times 1 \mapsto R_n(x'_1), \quad 1 \times \iota_4 \mapsto e'_2, \quad 1 \times \Gamma_4 \mapsto \text{Sq}^3_2(e'_2),
\]

where x'_1 and e'_2 are the additive generators of $H^3(\mathcal{B}P(n, mn); \mathbb{Z}) \cong \mathbb{Z}/n$ and $H^4(\mathcal{B}P(n, mn); \mathbb{Z}) \cong \mathbb{Z}$, respectively. Here R_n is regarded as a cohomology operation. Recall Proposition 2.1 to make sense of the last expression.

The diagram (3.1) and (3.2) imply the following

Lemma 3.1. Suppose $\epsilon_2(n) | m$. Then we have

\[
H^7(\mathcal{B}P(n, mn); \mathbb{Z}) \cong H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4)) / (\kappa_5).
\]

In particular, the group $H^7(\mathcal{B}P(n, mn); \mathbb{Z})$ is generated by $R_n(x'_1)$, $x'_1 e'_2$, and $\text{Sq}^3_2(e'_2)$.

Consider the short exact sequence of Lie groups

\[
1 \rightarrow \mathbb{Z}/n \rightarrow SU_{mn} \rightarrow P(n, mn) \rightarrow 1,
\]

from which arises a fiber sequence

\[
\mathcal{B}SU_{mn} \rightarrow \mathcal{B}P(n, mn) \rightarrow K(\mathbb{Z}/n, 2)
\]

considered at the beginning of Section 6 of [6]. We denote the associated Serre spectral sequence by $(\hat{\mathcal{E}}^s_*, \hat{s} d_*)$.

For $k > 2$, it is well-known that

\[
H^*(\mathcal{B}U_2) = \mathbb{Z}[c_2, \cdots, c_k],
\]

where c_i is the ith universal Chern class of degree $2i$.

Lemma 3.2. Suppose $\epsilon_2(n) | m$. The differential $\hat{s} d_5^{0, 4} = 0$. In particular, $c_2 \in sE_2^{0, 4}$ is a permanent cocycle.
Figure 2. Low dimensional differentials of the spectral sequence $S_{*}^{*,*}$, when $\epsilon_3(n)n|m$, $n > 1$. The dashed arrows represent trivial differentials.

Proof. Diagram 3.1 implies

$$H^5(BP(n, mn); \mathbb{Z}) \cong H^5(K(\mathbb{Z}/n, 2); \mathbb{Z}) \cong \mathbb{Z}/2\epsilon_2(n).$$

Hence we have $S_{3,4}^0 = 0$. There is no other non-trivial differential out of $S_{*}^{*,*}$ for obvious degree reasons, so c_2 is a permanent cocycle. □

Later we will need the following

Lemma 3.3 (Lemma 6.1, [6]). Suppose $\epsilon_2(n)n|m$. Recall that $H^3(K(\mathbb{Z}/n, 2); \mathbb{Z})$ is generated by an element β_n, and that $H^3(K(\mathbb{Z}/n, 2); \mathbb{Z}) \cong \mathbb{Z}/\epsilon_3(n)n$ is generated by R_n. In the spectral sequence $S_{*}^{*,*}$, we have $S_{3,6}^{0,6}(c_3) = 2\epsilon_2(\beta_n)$ with kernel generated by

$$\frac{n}{\epsilon_2(n)}c_3,$$

and

$$S_{d_7}^{0,6} \left(\frac{n}{\epsilon_2(n)}c_3 \right) = \frac{\epsilon_3(n)c_3(m/n)}{\epsilon_3(mn)}nR_n.$$

All the other differentials out of $S_{*}^{0,6}$ are trivial.

In particular $S_{d_3}^{0,6}$ is the only non-trivial differential out of $S_{*}^{0,6}$ when $\epsilon_3(n)n|m$.

See Figure 2 for the differentials mentioned in the lemmas above.

Lemma 3.4. Suppose $\epsilon_2(n)n|m$.

1. The element $Sq_3^2(e'_2)$ is a linear combination of $x_1'e_2'$ and $R_n(x_1')$.
2. The element $R_n(e'_2)$ is of order $\epsilon_3(n)n$.
3. The cardinality of the group $H^7(BP(n, mn); \mathbb{Z})$ is $\epsilon_2(n)\epsilon_3(n)n$.

Proof. As indicated in Figure 2 we have the exact sequence

$$0 \to S_{E^*}^{7,0} \to H^7(BP(n, mn); \mathbb{Z}) \to S_{E^*}^{3,4} \to 0,$$
where $S^7 E^\infty_{\infty}$ and $S^{3,4} E^\infty_{\infty}$ are generated by $R_n(x'_1)$ and $x'_1 e'_2$, respectively. Hence (1) and (2) follows. To verify the statement (3), it suffices to check the cardinality of $S^{3,4} E^\infty_{\infty}$ and $S^7 E^\infty_{\infty}$.

\[\square \]

4. THE K-INARIANT

Consider the space $BP(n,mn)[6]$, the 6th level of the Postnikov tower of $BP(n,mn)$. We assume throughout this section that $\epsilon_2(n) | m$, $n > 1$, for when this holds, we have the homotopy equivalence

$$BP(n,mn)[6] = BP(n,mn)[5] \simeq K(\mathbb{Z}/n,2) \times K(\mathbb{Z},4).$$

(Proposition 4.11, [6].) We consider the following map

$$BP(n,mn) \rightarrow BP(n,mn)[6] \rightarrow K(\mathbb{Z},4)$$

such that both arrows above are the obvious projections, and we denote by Y its homotopy fiber. Therefore we have a fiber sequence

\[(4.1) \]

$$Y \rightarrow BP(n,mn) \rightarrow K(\mathbb{Z},4).$$

By construction the second arrow induces an isomorphism of homotopy groups

$$\pi_4(BP(n,mn)) \cong \pi_4(K(\mathbb{Z},4)).$$

This isomorphism lies in the long exact sequence of homotopy groups of the fiber sequence (4.1), from which, together with (1.4), we deduce

\[(4.2) \]

$$\pi_i(Y) \cong \begin{cases} \mathbb{Z}/n, n = 2, \\
\mathbb{Z}, & \text{if } 6 \leq i < 2mn + 1, \text{ and } i \text{ is even,} \\
0, & \text{if } 0 < i < 2mn, \text{ and } i \text{ is odd, or } i = 4. \end{cases}$$

The fiber sequence (4.1) induces another one

\[(4.3) \]

$$K(\mathbb{Z},3) \xrightarrow{g} Y \rightarrow BP(n,mn).$$

Consider the projection from Y to the bottom level of its Postnikov tower

$$g : Y \rightarrow K(\mathbb{Z}/n,2).$$

Lemmas 4.1.

1. The induced homomorphisms

$$g^* : H^k(K(\mathbb{Z}/n,2); \mathbb{Z}) \rightarrow H^k(Y; \mathbb{Z})$$

are isomorphisms for $k \leq 5$.

2. The homomorphism $H^6(g; \mathbb{Z})$ is injective. Furthermore, we have

$$H^6(Y; \mathbb{Z}) = g^*(H^6(K(\mathbb{Z}/n,2); \mathbb{Z})) \oplus (\omega) \cong H^6(K(\mathbb{Z}/n,2); \mathbb{Z}) \oplus \mathbb{Z},$$

where ω generates the summand \mathbb{Z}.

3. The induced homomorphism

$$g^* : H^7(K(\mathbb{Z}/n,2); \mathbb{Z}) \rightarrow H^7(Y; \mathbb{Z})$$

is surjective.

4. $H^6(Y; \mathbb{Z}/2) = g^*(H^6(K(\mathbb{Z}/n,2); \mathbb{Z}/2)) + (\bar{\omega})$,

where an integral cohomology class with an overhead bar denotes its reduction in cohomology with coefficients in $\mathbb{Z}/2$.
Proof. It follows from (4.2) that we have the following partial picture of its Postnikov tower

\[
\begin{align*}
Y[7] & \longrightarrow K(\mathbb{Z}, 9) \\
\downarrow & \\
K(\mathbb{Z}, 6) & \longrightarrow Y[6] \\
\downarrow & \\
Y[2] & = K(\mathbb{Z}/n, 2) \longrightarrow K(\mathbb{Z}, 7)
\end{align*}
\]

The statements (1), (2) and (3) follow from a simple observation on the fiber sequence

\[K(\mathbb{Z}, 6) \rightarrow Y[6] \rightarrow K(\mathbb{Z}/n, 2)\]

and the Serre spectral sequence associated to it. Finally, (4) follows from (2), (3), and Künneth formula.

The equations (2.1) and (2.2) together with the Künneth formula give us

\[H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4); \mathbb{Z}) = (R_n \times 1) \oplus (\beta_n \times \iota_4) \oplus (1 \times \Gamma_4) \cong \mathbb{Z}/\epsilon_3(n)n \oplus \mathbb{Z}/n \oplus \mathbb{Z}/2,\]

where \(R_n \times 1, \beta_n \times \iota_4\) and \(1 \times \Gamma_4\) generate the three summands, respectively.

When \(n\) is even, it follows from Theorem 6.8 of [6] that up to an invertible coefficient, we have

\[(4.5) \quad \kappa_5 \equiv \lambda R_n \times 1 + \lambda_2 \beta_n \times \iota_4 + 1 \times \Gamma_4 \mod 2 - \text{torsion},\]

an element in \(H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4); \mathbb{Z})\), where \(\lambda\) is invertible in \(\mathbb{Z}/\epsilon_3(n)n\).

To narrow down the choices of \(\kappa_5\), we have the following

Lemma 4.2. Suppose \(\epsilon_2(n)n|m, n > 1\). In \(H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4); \mathbb{Z})\) we have

\[\kappa_5 \equiv 1 \times \Gamma_4 \mod (R_n \times 1, \beta_n \times \iota_4).\]

Proof. Assume that the lemma is false. Since \(1 \times \Gamma_4\) is of order 2, we have

\[\kappa_5 \in (R_n \times 1, \beta_n \times \iota_4).\]

Therefore, we have

\[H^7(BP(n, mn); \mathbb{Z}) \cong H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4); \mathbb{Z})/(\kappa_5) \cong (R_n \times 1) \oplus (\beta_n \times \iota_4) \oplus (1 \times \Gamma_4)/(\kappa_5) \cong [(R_n \times 1) \oplus (\beta_n \times \iota_4)/(\kappa_5)] \oplus (1 \times \Gamma_4) \cong H^7(BP(n, mn); \mathbb{Z}) \oplus (1 \times \Gamma_4),\]

where the last step follows from (1) of Lemma 3.4 This is a contradiction since every group in sight is finite.

To prove Proposition 1.1 we are only interested in the case \(4|n\). Following Theorem 3 of [3] and Theorem 1.2 it suffices to consider the case \(n = 2^r, m = 2^{2r}\), where \(r > 1\). We assume this for the rest of this section.
Lemma 4.3. We have
\[\kappa_5 \equiv \lambda_2 \beta_n \times \iota_4 \pmod{(R_n \times 1, 1 \times \Gamma_4)}, \]
where the coefficient \(\lambda_2 \) is invertible in \(\mathbb{Z}/n \).

Proof. We argue by contradiction. Suppose that \(\lambda_2 \) is not invertible in \(\mathbb{Z}/n \). Notice that, for our choice of \(m \) and \(n \), equation (4.5) implies
\[\kappa_5 \equiv 2^{r-1} \lambda R_n \times 1 + \lambda_2 \beta_n \times \iota_4 + 1 \times \Gamma_4 \pmod{2 - \text{torsion}}. \]
Since \(\lambda_2 \) is not invertible, \(\kappa_5 \) has order less than \(2^r \). On the other hand, it follows from (4.3) that the group \(H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4); \mathbb{Z}) \) has cardinality \(2^{2r+1} \).

Therefore the group
\[H^7(BP(n, mn); \mathbb{Z}) \cong H^7(K(\mathbb{Z}/n, 2) \times K(\mathbb{Z}, 4); \mathbb{Z})/\langle \kappa_5 \rangle \]
has cardinality greater than \(2^{r+1} \), contradicting Lemma 3.4 \(\square \)

Notice that \(\kappa_5 \) is determined by the Postnikov tower merely up to multiplication by an invertible coefficient. By the choice we make of \(m \) and \(n \), this means that we are free to multiply \(\kappa_5 \) by any odd integer. Hence, we are enabled by Lemma 4.3 to normalize (4.5) by specializing \(\lambda_2 = 1 \):
\[\kappa_5 = 2^{r-1} \lambda R_n \times 1 + \beta_n \times \iota_4 + 1 \times \Gamma_4 \pmod{2 - \text{torsion in } (R_n \times 1, 1 \times \Gamma_4)}, \]
where \(\lambda \) is odd. However, since \(R_n \) is of order \(2^r \), and \(2^{r-1} \equiv 2^{r-1} \lambda \pmod{2^r} \) for all odd integer \(\lambda \), the preceding equation becomes
\[\kappa_5 = 2^{r-1} R_n \times 1 + \beta_n \times \iota_4 + 1 \times \Gamma_4 \pmod{2 - \text{torsion in } (R_n \times 1, 1 \times \Gamma_4)}. \]

Combining (4.6) \(\kappa_5 = 2^{r-1} R_n \times 1 + \beta_n \times \iota_4 + 1 \times \Gamma_4 \pmod{2 - \text{torsion in } (R_n \times 1)} \)

In other words, we have the following

Lemma 4.4. The abelian group \(H^7(BP(n, mn); \mathbb{Z}) \) is additively generated by \(R_n(x'_1) \), \(x'_1 e'_2 \) and \(Sq^3_{12}(e'_2) \), modulo the relation
\[\mu R_n(x'_1) + x'_1 e'_2 + Sq^3_{12}(e'_2) = 0, \]
where \(\mu \) is either 0 or \(2^{r-1} \). Moreover, only one of the two possible relations holds.

Proof. It remains to show the uniqueness. Indeed, if both relations hold, then we have
\[2^{r-1} R_n(x'_1) = 0, \]
and
\[x'_1 e'_2 + Sq^3_{12}(e'_2) = 0. \]

Then the abelian group \(H^7(BP(n, mn); \mathbb{Z}) \) is generated by \(R_n(x'_1) \) and \(Sq^3_{12}(e'_2) \), whose orders divide \(2^{r-1} \) and 2, respectively.

Therefore the cardinality of \(H^7(BP(n, mn); \mathbb{Z}) \) divides \(2^r \), contradicting Lemma 3.4 \(\square \)

We turn to the hard work of determining \(\mu \). Consider the fiber sequence (4.3). Let \((E^*_n(Z), d'_n^{*}) \) and \((E^*_n(Z/2), d'_n^{*}) \) denote the associated cohomological Serre spectral sequences with coefficients in \(\mathbb{Z} \) and \(\mathbb{Z}/2 \), respectively.
We first consider the case with coefficients in \(\mathbb{Z}/2 \). This is easier since \(\mu \equiv 0 \) mod 2 whatever. We study the homomorphism

\[
h^* : H^6(Y; \mathbb{Z}/2) \to H^6(K(\mathbb{Z}, 3); \mathbb{Z}/2)
\]

with the spectral sequence \(E_\infty^*, \ast \) (\(\mathbb{Z}/2 \)), from which, with a little luck, we obtain enough information on the homomorphism

\[
h^* : H^6(Y; \mathbb{Z}) \to H^6(K(\mathbb{Z}, 3); \mathbb{Z})
\]

to determine a particular differential of the spectral sequence \(E_\infty^*(\mathbb{Z}) \), which in turn determines the coefficient \(\mu \).

As in Lemma 4.1 we use overhead bars to denote the mod 2 reductions of integral cohomology classes.

Lemma 4.5. The homomorphism

\[
h^* : H^6(Y; \mathbb{Z}/2) \to H^6(K(\mathbb{Z}, 3); \mathbb{Z}/2)
\]

is surjective. Furthermore, we have

\[
h^*(\bar{e}) = i_3^2.
\]

Proof. Consider the spectral sequence \((E_\infty^*, \ast, d_\ast^*) \), refer to Figure 3 for the relevant differentials.

It follows from (1) of Lemma 4.1 that \(d_4^{0,3} \) is the first nontrivial differential out of the bidegree \((0, 3)\) and it is an isomorphism:

\[
d_4^{0,3} : E_4^{0,3}(\mathbb{Z}) \cong \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \cong E_4^{4,0}(\mathbb{Z})
\]

sending the generator \(i_3 \) of \(H^3(K(\mathbb{Z}, 3); \mathbb{Z}) \) to \(\pm e_2' \), the generator of \(H^4(BP(n, mn); \mathbb{Z}) \).

Passing to \((E_\infty^*(\mathbb{Z}/2), d_\ast^*) \) as shown in Figure 3 it follows from (4.10) that

\[
i_3 \in H^3(K(\mathbb{Z}, 3); \mathbb{Z}/2) \cong E_2^{0,3}(\mathbb{Z}/2)
\]

is transgressive (cf. Section 6.2 of [7]) such that

\[
d_4^{0,3}(i_3) = e_2' \in H^4(BP(n, mn); \mathbb{Z}/2) \cong E_2^{4,0}(\mathbb{Z}/2) \cong E_4^{4,0}(\mathbb{Z}/2).
\]

Therefore, \(i_3^2 = \text{Sq}^3(i_3) \) is also transgressive and we have

\[
d_7^{0,6}(i_3^2) = d_7^{0,6}(\text{Sq}^3(i_3)) = \text{Sq}^3(d_4^{0,3}(i_3)) = \text{Sq}^3(e_2').
\]

It follows from (4.11) that we have

\[
d_4^{3,3}(x_1' i_3) = x_1' e_2' \in H^7(BP(n, mn); \mathbb{Z}/2) \cong E_2^{7,0}(\mathbb{Z}/2) \cong E_4^{7,0}(\mathbb{Z}/2).
\]

Taking the mod 2 reduction of \(\kappa_5 \) as in (4.7), we have \(\mu \equiv 0 \) mod 2 since \(r > 1 \). Therefore it follows from Lemma 4.4 that we have

\[
x_1' e_2' + \text{Sq}^3(e_2') = 0 \in H^7(BP(n, mn); \mathbb{Z}/2).
\]

This relation, together with (4.13), shows

\[
\text{Sq}^3(e_2') \equiv 0 \in E_5^{7,0}(\mathbb{Z}/2) \cong H^7(BP(n, mn); \mathbb{Z}/2)/(x_1' e_2').
\]

Then it follows from (4.12) that \(d_7^{0,6}(i_3^2) = 0 \). Hence, \(i_3^2 \) is a permanent cocycle, which proves that \(i_3^2 \) is in the image of \(h^* \), and in particular, that \(h^* \) is surjective in dimension 6 and with coefficients in \(\mathbb{Z}/2 \).

To verify (4.9), notice that \(g \) factors as

\[
Y \to BP(n, mn) \to K(\mathbb{Z}/n, 2)
\]
Figure 3. Differentials of the spectral sequence $E_2^{**}(\mathbb{Z}/2)$. The dashed arrow represents a trivial differential.

since the map $Y \to BP(n, mn)$ induces an isomorphism $\pi_2(Y) \cong \pi_2(BP(n, mn))$. In particular, it follows that

$$g \circ h : K(\mathbb{Z}, 3) \to Y \to K(\mathbb{Z}/n, 2)$$

is null homotopic. The equation (4.10) then follows from the surjectivity of h^* and (4) of Lemma 4.1, which says

$$H^6(Y; \mathbb{Z}/2) = g^*(H^6(K(\mathbb{Z}/n, 2); \mathbb{Z}/2)) + (\bar{\omega}).$$

Passing to the integral case, we have the following

Lemma 4.6. The homomorphism

$$h^* : H^6(Y; \mathbb{Z}) \to H^6(K(\mathbb{Z}, 3); \mathbb{Z})$$

is surjective. Furthermore, $h^*(\omega) = i_3^2$.

Proof. Since $H^6(K(\mathbb{Z}, 3); \mathbb{Z}) \cong \mathbb{Z}/2$ has only two elements, 0 and i_3^2, we have either $h^*(\omega) = i_3^2$ or $h^*(\omega) = 0$. Lemma 4.1 shows that the latter is impossible.

We proceed to determine κ_5.

Proposition 4.7.

$$\kappa_5 = \beta_n \times i_4 + 1 \times \Gamma_4.$$

Proof. Consider the spectral sequence $(E_\infty^{**, *}(\mathbb{Z}), d_\infty^{**, *})$. (The picture of the differentials looks the same as Figure 3 but with all the overhead bars removed, and Sq^3 replaced by Sq^3_2.) For obvious degree reasons the only possibly nontrivial differentials hitting the bidegree $(7, 0)$ are $d_7^{0,6}$ and $d_4^{3,3}$. It follows from (4.10) and the Leibniz rule that

$$d_4^{3,3} (x_1^i t_3) = x_1^i e_2.$$
and
\[(4.15) \quad E^7_0(Z) = E^7_0(Z) \cong H^7(BP(n, mn); \mathbb{Z})/(x'_1 e'_2)\]
It follows from \((4.10)\) that \(\iota_3\) is transgressive. Therefore, so is \(Sq^3_3(e_3) = \iota_2^3\). (See Proposition 2.1.) Furthermore, since transgressions commute with stable cohomology operations, we have
\[(4.16) \quad d^7_7(e_3) = Sq^3_3(Z) = H^7(BP(n, mn); \mathbb{Z})/(x'_1 e'_2),\]
where the last step follows from \((4.10)\). On the other hand, it follows from Lemma 4.6 that \(\iota_2^3\) is a permanent cocycle. Therefore, \((4.15)\) and \((4.16)\) implies that \(Sq^3_3(Z) = \iota_2^3\). for some integer \(\nu\).

It follows from Lemma 4.4 that \(2x'_1 e'_2 = 0\). Therefore we only need to chose from \(\nu = 0\) and \(\nu = 1\). If \(\nu = 0\), then \(d^3_3(e'_2) = 0\). Applying Lemma 4.4 again, we see that
\[x'_1 e'_2 = 2^{-1} R_n(x'_1),\]
which implies that \(H^7(BP(n, mn); \mathbb{Z})\) is generated by \((R_n(x'_1))\), contradicting (2) and (3) of Lemma 3.4. It then follows that \(\nu = 1\) and we have
\[x'_1 e'_2 + d^3_3(e'_2) = 0 \in H^7(BP(n, mn); \mathbb{Z}).\]

By Lemma 4.4, the proof is complete.

\[\Box\]

\textbf{Proof of Proposition 1.1} Consider the following homotopy lifting problem
\[(4.18) \quad BP(n, mn) \quad \xrightarrow{sk_8(K(Z/n, 2))} K(Z/n, 2)\]
which is equivalent to
\[(4.19) \quad BP(n, mn)[7] \quad \xrightarrow{=} K(Z/n, 2)\]
It follows from \([6]\) that we have the following
\[(4.20) \quad BP(n, mn)[6] \quad \xrightarrow{f_5} BP(n, mn)[5] \simeq K(Z/n, 2) \times K(Z, 4) \xrightarrow{\kappa_5} K(Z, 7)\]
\[\xrightarrow{f_5=Id} K(Z/n, 2)\]
where the map f_5 is the obvious inclusion. Therefore f_5^* annihilates all cohomology classes of $K(\mathbb{Z}, 4)$ in positive degrees, in particular, ι_4 and Γ_4. Therefore, by Proposition 4.7 we have

$$f_5^*(\kappa_5) = f_5^*(\beta_n \times \iota_4 + 1 \times \Gamma_4) = 0,$$

and the dashed arrow exists. Proposition 1.1 then follows from Theorem 1.2 and Proposition 1.6.

References

1. B. Antieau and B. Williams, The Topological Period-Index Problem over 6-Complexes, J. Top. 7 (2014), 617-640.
2. B. Antieau and B. Williams, The Topological Period-Index Problem for Twisted topological K-theory, Geometry & Topology 18 (2014), no. 2, 1115-1148.
3. B. Antieau and B. Williams, Prime decomposition for the index of a Brauer class, Annali della scuola normale superiore di Pisa C classe di scienze, XVII(2017), 277-285.
4. M. Atiyah and G. Segal, Twisted K-Theory and Cohomology, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 5-43.
5. H. Cartan and J-P. Serre, Séminaire Henri Cartan, Vol. 7, no. 1, 1954-1955.
6. X. Gu, The Topological Period-Index Problem over 8-complexes, arXiv:1709.00787.
7. J. McCleary, A User’s Guide to Spectral Sequences, Second Edition, Cambridge University Press, 2001.