Population variation in anti-\textit{S. aureus} IgG isotypes influences surface protein A mediated immune subversion

Julia Whitehousea, Amy Flaxmana, Christine Rollierb, Matthew K. O'Sheaa,c, Joanne Fallowfieldd, Michael Lindsaye, Frances Gunnerd, Kyle Knoxc, David H. Wylliea,f,* Yuko Yamaguchia

a Jenner Institute, Centre for Cellular & Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
b Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Drive, Oxford OX3 7JE, United Kingdom
c Department of Academic Medicine, Royal Centre for Defence Medicine, Birmingham B15 2SQ, United Kingdom
d Environmental Medicine and Science Division, Institute of Naval Medicine, Hampshire PO12 2DL, United Kingdom
e Nuffield Department of Primary Care Health Sciences, New Radcliffe House, 2nd floor, Walton Street, Jericho OX2 6NW, United Kingdom
f Nuffield Department of Medicine, Department of Microbiology, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom

\textbf{A R T I C L E I N F O}

Article history:
Received 26 November 2015
Received in revised form 3 February 2016
Accepted 15 February 2016
Available online 26 February 2016

Keywords:
\textit{Staphylococcus aureus}
Immunosenescence
Antibody
Protein A
Vaccine

\textbf{A B S T R A C T}

\textbf{Background}: \textit{Staphylococcus aureus} is a pathogen which causes life-threatening infection, the incidence of which rises during adult life. This, together with the emergence of drug-resistant strains and the expansion of more susceptible elderly populations, represents the rationale for the ongoing development of \textit{S. aureus} vaccines targeting adult populations. Humoral responses to \textit{S. aureus} naturally develop early in life, influence susceptibility to infection, and potentially influence the effect of vaccination. Despite this, the nature of pre-existing anti-\textit{S. aureus} antibodies in healthy adult populations is not fully characterised.

\textbf{Methods}: Immunoglobulin levels against \textit{S. aureus} surface antigens were measured by a filter membrane enzyme-linked immunosorbent assay using fixed \textit{ΔSpA} \textit{S. aureus} as an antigen in serum samples obtained from three clinical cohorts comprising 133 healthy adult volunteers from 19 to 65 years of age. Functional capacity of antibody was also assessed, using antibody-mediated attachment of FITC-stained \textit{S. aureus} to differentiated HL-60 cells.

\textbf{Results}: Wide variation in the concentrations of immunoglobulins recognising \textit{S. aureus} surface antigens was observed among individuals in all three cohorts. There was a decline of anti-\textit{S. aureus} IgG1 with age, and a similar trend was observed in IgM, but not in IgA or other IgG sub-classes. Antibody mediated bacterial attachment to cells was associated with IgG1 and IgG3 concentrations in serum. The presence of SpA on the bacterial cell surface reduced antibody-mediated binding of bacteria to phagocytes in serum with low, but not high, levels of naturally occurring anti-\textit{S. aureus} IgG3 antibodies.

\textbf{Conclusions}: Naturally acquired immunoglobulin responses to \textit{S. aureus} are heterogeneous in populations and their concentrations alter during adulthood. Elevated IgG1 or IgG3 titres against \textit{S. aureus} enhance \textit{S. aureus} recognition by phagocytosis and may be correlates of natural protection and/or vaccine efficacy in adult populations.

\textcopyright 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

\textit{Staphylococcus aureus} is a human pathogen primarily found in the anterior nares [1], and asymptomatic persistent carriage of the bacterium occurs in ~30% of the general population [2]. \textit{S. aureus} infections can range from mild skin conditions to invasive bacteraemia and pneumonia [3]. Persistent exposure to \textit{S. aureus}, as occurs in \textit{S. aureus} carriage, appears to confer some limited protection from some forms of \textit{S. aureus} disease [4], while epidemiological data showing a gradual increase of the invasive disease incidence rate with increasing age, most marked from the age of about 40 years upwards [5,6], might be compatible with a slow decline of natural protection with ageing.

http://dx.doi.org/10.1016/j.vaccine.2016.02.034
0264-410X/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
S. aureus is listed by WHO as a growing healthcare and economic concern due to development of antibiotic resistance [7,8]. In the absence of new antibiotic discovery, vaccination is considered an alternative approach to control S. aureus infection. Humoral immunity mediates opsonisation of S. aureus and induces clearance by neutrophils [5,10]. Successful passive immunisation against the surface protein A (SpA) immune subversion antigen has been demonstrated in a murine challenge model [11]. Although S. aureus vaccines have, to date, failed in phase III clinical trials, new candidates inducing humoral immunity against cell surface proteins are in development [12–14]. Such vaccines will be deployed into a previously exposed human population, since antibody responses against S. aureus antigens start to rise in the first years of life and remain detectable through adulthood [15–17].

Immunoglobulin G (IgG) is the predominant isotype found in serum, comprising ~15% of plasma protein, and is further divided into 4 sub-classes (IgG1, IgG2, IgG3, and IgG4), classified in terms of their abundance and of functional differences [18,19]. While the Fab region of the antibody binds to specific antigen, the constant Fc region interacts with the host immune system, e.g. Fcy receptors (FcγRs), to initiate downstream effects such as phagocytosis and antibody dependent cellular cytotoxicity, complement activation, and the release of reactive oxygen species [20–22]. Most clinical isolates of S. aureus express and secrete Spa [23], which sequesters human IgG sub-classes 1, 2 and 4 through high-affinity binding to the Fc region [24], thus interfering with antibody interaction with host cells and complement in *in vivo* and *in vitro*. As a result, S. aureus suppresses antibody-mediated immunity, impedes phagocytosis by human neutrophils, and interacts with B cell receptors inducing activation and subsequent cell death [25,26]. Thus, an effective antibody response against S. aureus has to overcome the immunomodulatory influence of Spa. Interestingly, its affinity for IgG3 is much lower and is allotype-specific [27], yet the levels of each IgG sub-class detecting S. aureus in individuals have not been investigated as being of relevance to SpA-mediated immune evasion.

Since naturally-acquired immunity against S. aureus is poorly understood, we investigated the variation of a range of isotypes of naturally-acquired antibodies against S. aureus within three healthy human populations, as well as their impact on SpA function. We discuss natural variation in titre and isotypes in the context of both vaccine response and natural protection from clinical infection in man.

2. Materials and methods

2.1. Experimental design and sampling

Antibody responses against S. aureus surface antigens were screened using serum collected from three separate cohorts of healthy adults, aged between 19 and 65 years old (Table 1).

Table 1 Demographic data of three clinical cohorts.

Cohort	A	B	C
Number of participants	36	26	71
Average age	31.9 ± 1.34	35.7 ± 1.45	38.1 ± 1.45
Number of volunteers in each age group			
19–30	15	6	28
31–40	17	13	16
41–50	3	6	10
51–60	1	1	14
61–70	0	0	3
Male (rate)	36(1)	10(0.38)	25(0.35)
S. aureus nasal carriage (rate)	15(0.30)	8(0.31)	ND

ND, not determined.

data were analysed for serum antibody responses against S. aureus surface antigens.

Cohort B: Healthy adult volunteers, declaring themselves to be of Northern European ancestry, were recruited in Oxfordshire, UK *(n = 26)*, as part of a S. aureus nasal carriage study (manuscript in progression). Exclusion criteria were: pregnancy, taking immunomodulatory drugs, diagnosis of cancer, connective tissue disease, blood borne viruses, or organ transplantation. Written consent was obtained, a questionnaire administered, and a nasal swab and blood taken on the day of recruitment. Serum samples were stored at −80 °C. A second nasal swab was obtained between 1 and 2 months later from all subjects.

Cohort C: Healthy adult volunteers were recruited in Oxfordshire, UK *(n = 400)*, for screening of healthy serum samples in immunoassays for vaccine development. There were no exclusion criteria for enrolment. Serum samples were stored at −80 °C and 71 samples were randomly selected for antibody analysis.

2.2. Ethical approval

The study performed on Royal Navy servicemen (cohort A) was approved by the UK Ministry of Defence Research Ethics Committee (MODREC), Ref. 0903/228. The two human volunteer studies performed in Oxford (cohorts B and C) were approved by the National Research Ethics Service (NRES) Committee South Central (reference number 11/SC/0307), and NRES Committee South West (reference number 10/H0102/23), respectively.

2.3. Determination of nasal carriage

In both cohorts A and B, individuals with two positive swabs were considered persistent carriers [28]. Nasal samples were processed as described [28].

2.4. Enzyme linked immunosorbent assay (ELISA) for immunoglobulin isotyping

The assay was performed as described previously [29]. Briefly, 2 × 10^7 CFU/well paraformaldehyde (PFA)-fixed S. aureus spa::TcR isogenic DUF5873 mutant [30] (obtained from Prof. Tim Foster, Trinity College, Dublin) (∆Spa Newman strain) were immobilised on filter plates (Merck Millipore, MAGVS2210). Plates were blocked and incubated overnight with different serum concentrations. Plates were washed using MultiScreenHTS Vacuum Manifold (Merck Millipore) and incubated with various anti-human secondary antibodies [IgG1-HRP (Life Tech., MH1715); IgG2-ALP (Abcam, ab99783); IgG3-ALP (Abcam, ab99828); IgG4-ALP (Abcam, ab99822); IgG-ALP (Sigma, A3187); IgA-ALP (Sigma, A9669); IgM-ALP (Sigma, A3275)]. After further washing, the relevant substrate was added [tetramethylbenzidine or p-nitrophenyl phosphate
2.6. Antibody-mediated interaction of differentiated HL-60 cells with \textit{S. aureus}

29 serum samples from cohorts A and B were randomly selected, heat inactivated at 56 °C for 30 min, then stored at –80 °C until used. The acute myeloid leukaemia cell line HL-60 cells (obtained from Prof. Andrew Pollard) were cultured in RPMI 1640 medium containing 2 mM L-glutamine supplemented with 10% foetal bovine serum (all from Sigma) with 100 mM N,N-dimethylformamide (Fischer Scientific) for 3 days for differentiation to FcyR expressing phagocytes [33]. \textit{S. aureus} (wild-type and \textit{\Delta}SpA) were incubated in 10 ml tryptic soya broth (Oxoid) overnight and used to set fresh cultures for 1.5 h growth. Bacteria were washed and stained with FITC (Sigma), then incubated with heat-inactivated serum for 10 min at 37 °C with shaking at 130 rpm. Antibody-coated bacteria were washed and resuspended in medium. Differentiated HL-60 cells in medium were added to the wells containing bacteria (2 × 10^5 cells to 1 × 10^6 CFU per well) and incubated at 37 °C for 15 min with shaking at 130 rpm. Samples were placed on ice immediately after incubation and cells were stained with Aqua live/dead stain (Invitrogen) then fixed with 4% PFA. Data was acquired with a CyAn7 cytometer and analysed with Summit analysis software V4.3.01 (Dako Colorado, Inc.). Antibody-mediated binding of bacteria to phagocytes was measured as a percentage of cell-associated fluorescence (FITC^+ HL-60 cells) (Fig. 3A–F), where the background signal was 2.76 ± 0.60% without pre-incubation of bacteria with serum (Fig. 3E). Inhibitory effect of SpA on antibody-mediated binding of bacteria to phagocytes per sample was calculated by: (% HL-60 cells with FITC^+ \textit{\Delta}SpA) – (% HL-60 cells with FITC^+ wild-type).

2.7. Statistical analysis

Statistical analysis was performed using GraphPad Prism version 6.03, IBM SPSS Statistics version 22, and R 3.1.1 for Windows. Analysis was performed on log_{10} transformed data, using linear regression and generalised linear modelling with Wald-chi square test, and Spearman rank correlation tests. Linear modelling of interaction assay was performed using the glm function in \textit{R}.

3. Results

3.1. IgG1 levels against \textit{S. aureus} surface antigens show decline with age

Serum IgM, IgG and IgA levels were measured against \textit{\Delta}SpA \textit{S. aureus} Newman strain in cohort A. There was a wide variation in baseline levels of these immunoglobulins recognising the \textit{S. aureus} surface (Fig. 1), with about 10-fold variation between individuals. There were trends towards higher levels of IgM (p = 0.052) and IgG binding (p = 0.08) to \textit{S. aureus} surface antigens with increasing age (Fig. 1A and B), while anti-\textit{S. aureus} IgA levels were more stable (Fig. 1C). Of all the IgG sub-classes, only anti-\textit{S. aureus} IgG1 levels showed a negative correlation with age (Fig. 1E–H). Since the anti-gene lacked SpA, anti-\textit{S. aureus} IgG response against a recombinant SpA domain with KKA mutations [32] which abrogate Fc binding, was also measured. The anti-SpA KKA IgG response was not significantly associated with age (Fig. 1D), so it is possible that age-specific decline in IgG titres is restricted to only some cell surface antigens.

To determine whether the pattern seen in the submariner cohort, all of which was male, was representative of the general population, serum IgG1 levels against \textit{\Delta}SpA \textit{S. aureus} surface antigens were analysed in healthy adults in Oxfordshire (cohort B and C). The inverse relationship of anti-\textit{S. aureus} IgG1 with age was confirmed in these populations (Fig. 2A), and this was evident in both genders (Fig. 2B). \textit{S. aureus} nasal carriage status was determined in cohort A and B (Table 1), and an age-associated anti-\textit{S. aureus} IgG1 decline was observed in both \textit{S. aureus} nasal carriers and non-carriers (Fig. 2C). Notably, and similarly to the result observed with cohort A, the levels of anti-\textit{S. aureus} IgG3 did not decline significantly with age in either cohorts B or C (Fig. 2D). Of note, most of the subjects studied (120/136) were aged between 19 and 50, and the age-associated decline observed was driven by these individuals (Spearman’s rho = −0.2874 p = 0.002, for those age 50 or under).

3.2. IgG levels against \textit{\Delta}SpA \textit{S. aureus} surface antigens correlates with functional capability

Uptake of antibody-opsonized pathogens by phagocytes, through Fc-mediated receptor binding [34], is an important function of pathogen specific immunity. To assess this, we adapted the opsonophagocytic assay using the \textit{HL-60} cell line [33], which can be differentiated into Fc receptor positive neutrophil-like cells in vitro, providing a consistent supply of phagocytic cells for assessing Fc-receptor mediated pathogen binding, and fluorescent labelled bacteria to measure the rate of bacteria-bound cells by flow cytometry [35,36]. In vitro culture of opsonised FITC^+ \textit{S. aureus} \textit{\Delta}SpA with \textit{HL-60} cells showed a positive correlation between serum anti-\textit{S. aureus} IgG titres and percentages of cell-associated fluorescence, suggesting that anti-\textit{S. aureus} IgG levels correlate with functional capacity to mediate phagocyte–antigen interaction (Fig. 3G).

If this cell-associated fluorescence requires Fc binding of antibody to Fc receptors, the interaction should be reduced by SpA, which mediates non-specific immunoglobulin Fc binding [24]. The same assay was performed using wild-type \textit{S. aureus}; cell-associated fluorescence was reduced in presence of SpA for most
samples, however the positive correlation persisted between anti-
S. aureus IgG titre and cell-associated fluorescence (Fig. 3H). However, the inhibitory effect of SpA, measured as the difference between the cell-associated fluorescence of ΔSpA and wild-type
S. aureus, diminished as anti-*S. aureus* IgG titres increased (Fig. 3I). Thus, endogenous levels of IgG against *S. aureus* surface antigens correlates with functional activity, and the immunoevasive effect of SpA is greater at lower concentrations of anti-*S. aureus* IgG.

3.3. *High serum IgG3 titre against S. aureus diminishes the immunoevasive effect of SpA*

Affinities of SpA to each IgG sub-class are different, thus negative association of anti-*S. aureus* IgG titre and inhibitory effect of SpA may be differently influenced by the concentration of each IgG sub-class. Correlations between percentages of cell-associated fluorescence with wild-type *S. aureus* and levels of anti-*S. aureus* IgG...
sub-clones showed a strong positive relationship between levels of anti-
S. aureus IgG3 and cell-associated fluorescence of wild-type *S. aureus*, while there were no associations with IgG1, IgG2 or IgG4 using univariate analysis (Fig. 4, top panels). Anti-*S. aureus* IgG sub-class titres within the general population displayed only weak correlations with each other (maximum $r = 0.27$ between sub-
clones, Table 2), which allowed multivariate analysis, modelling cell-associated fluorescence of wild-type *S. aureus* as a function of
IgG1, 2, 3 and 4 concentrations. A multivariate model supported a
contribution of IgG3 to cellular-bacterial interaction, independent of other sub-clones ($p = 2.2 \times 10^{-6}$ in multivariate model). It also
suggested that an independent role may be played by anti-*S. aureus*
IgG1 ($p = 0.007$ in multivariate model).

Levels of anti-*S. aureus* IgG sub-clones were then compared
with the impact of SpA on cell-associated fluorescence. There was
a negative correlation between effect of SpA and anti-*S. aureus* IgG3
titres, but not with titres of other IgG isotypes (Fig. 4, bottom panel).
Thus antibody-mediated binding of cells and *S. aureus* was influ-
enced by concentrations of anti-*S. aureus* IgG3 and IgG1 in serum,
and that increased concentrations of IgG3 within the physiological
range can overcome the effect of SpA.

4. Discussion

This paper describes an age-associated decline of naturally
induced IgG1 antibodies against *S. aureus* surface antigens, and hetero-
genesis of concentrations of immunoglobulin isotypes against
S. aureus in healthy adults between 19 and 65 years old. This age-
dependent decline in IgG1 titre against *S. aureus* surface antigens
is congruent with reports of a decline in IgG responses to ClfB, a
S. aureus surface antigen, with increasing age [17]. While natu-
really acquired human IgG1 and IgG3 titres against *S. aureus*
were associated with antibody-mediated *S. aureus* attachment to phago-
cytes, attachment was attenuated by SpA in sera with low, but not high, IgG3 levels. Since antibody-dependent uptake and killing
of *S. aureus* by neutrophils is the primary mechanism of bacterial
clearance by the host immune system [10,37], the naturally occur-
ring variation in antibody responses, attenuated by SpA to different
degrees between individuals, may influence both natural protec-
tion from infection and post-vaccination immune response in man.
Since IgM and IgG1 are the major immunoglobulin isotypes present
in serum, we suggest that the age-associated decline observed in
this study is likely to contribute to an increased risk of invasive *S.
aureus* disease in the middle-aged to elderly [38]. The implication
is that boosting of immune responses in the middle-aged popula-
tion, before the waning of adaptive immunity to sub-optimal levels
[39,40] and prior to the period of highest risk, as occurs with immu-
nity to *Varicella zoster* virus [41], may improve later-life immune
responses. Of note, the study cohorts were mainly composed of
individuals from 19 to 50 years old, with none over 65 years old.
The effect described was observed if one restricts to individuals
under 50 years of age. Therefore, one could speculate that a fur-
ther decline of IgG1, and possibly IgM, against *S. aureus* would be
observed in the population above 65 years of age. This, together
with an explanation of whether such effects also occur against

Table 2

Correlation matrix of IgG sub-clases. Pearson correlation coefficients for $n = 29$
individuals of cohort A and B, the sera of which was used to assess antibody-mediated
binding of HL-60 cells and FITC+ wild-type *S. aureus*.

	IgG1	IgG2	IgG3	IgG4
IgG1	1.00	-0.20	-0.09	-0.25
IgG2	-0.20	1.00	0.24	0.27
IgG3	-0.09	0.24	1.00	0.23
IgG4	-0.25	0.27	-0.23	1.00
other bacterial pathogens, including Gram negative pathogens, is an important area for further investigation. In this study, although modelling indicates that IgG1 (which declines during adult life) contributes to opsonophagocytosis, it was notable that the anti-
Staphylococcus aureus IgG3 response was found to be independent to the effect of ageing, and the concentrations of this sub-class correlated to the interaction of phagocytes with wild-type *S. aureus*, presumably due to its low affinity for Fc-mediated sequestration by SpA. IgG3 dependent protection may also operate by other means, such as specific enhancement of antibody dependent cellular cytotoxicity, as suggested by analysis of the ALVAC-HIV (‘Thai trial’) in which IgG3 levels against HIV were associated with protection [42]. Stability of anti-*S. aureus* IgG3 responses across the age groups indicates that naturally acquired levels of anti-*S. aureus* IgG3 alone cannot maintain the level of protection required. Considering its low abundance and short half-life in serum [19], induction of IgG3 responses along with the maintenance of IgG1 levels may be possible correlate of vaccine efficacy and natural protection in the population above middle age.

One limitation concerns the use of serum as a source of antibodies during our in vitro studies. Physiologically the site of interaction of antibody with the cell surface of *S. aureus* is usually mucosal, and

![Figure 3](image-url)
functional antibody–bacterium interactions at this site have been studied for *Streptococcus pyogenes*, another IgG binding bacterium [43]. Antibody concentrations in mucosal fluids, such as saliva, are much lower than in serum, and the impact of SPA on the function of the sub-classes present in the saliva of human populations may be much more pronounced than that evident in our studies using serum, as described for *S. pyogenes* [43]. This area could be studied further.

Independent of the mechanisms behind IgG sub-class action against *S. aureus*, the data presented suggest emphasis needs to be placed on the quality of the immune response generated both by natural exposure and vaccination programmes. In particular, we suggest that the age-associated decline of anti-*S. aureus* immunoglobulin isotypes, particularly IgG1, perhaps combined with the documented decline in neutrophil function, including phagocytosis and respiratory burst, which occurs with age [44], may be contribute to rising *S. aureus* susceptibility in the vulnerable patient group. Better understanding of naturally-acquired immunity, correlated with epidemiological data may assist logical vaccine design when attempting to protect a population with heterogeneous pre-existing immunity against *S. aureus* infection.

Acknowledgements

We would like to thank the UK Ministry of Defence for the support in the RN cohort (cohort A), Prof. Andrew Pollard, of the Oxford Vaccine Group, for donating the cohort C serum samples and the HL-60 acute myeloid leukaemia cell line, and Prof. Tim Foster, Trinity College Dublin, for providing the *S. aureus* spa::TcR isogenic DU5873 mutant strain.

The research was supported in part by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford (JW, DW). Additionally, the research leading to these results has received funding from the European Union’s Seventh Framework Programme under the grant agreement number 601783 (BELLEPHON project). CR is a Jenner investigator and Oxford Martin fellow. The views expressed are those of the author(s) and not necessarily those of the MOD, Royal Navy, NHS, the NIHR or the Department of Health.

References

[1] Williams RE. Healthy carriage of *Staphylococcus aureus*: its prevalence and importance. Bacteriol Rev 1963;27:56–71.
[2] Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of *Staphylococcus aureus*: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10(3):505–20.
[3] Lowy FD. *Staphylococcus aureus* infections. N Engl J Med 1998;339(8):520–32.
[4] Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial *Staphylococcus aureus* bacteraemia in nasal carriers versus non-carriers. Lancet 2004;364(9435):703–5.
[5] Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant *Staphylococcus aureus* infections in the United States. JAMA 2007;298(15):1763–71.
[6] Laupland KB, Lyutykainen O, Sogaard M, Kennedy KJ, Knudsen JD, Ostergaard C, et al. The changing epidemiology of *Staphylococcus aureus* bloodstream infection: a multinational population-based surveillance study. Clin Microbiol Infect 2013;19(5):465–71.
[7] WHO. Antimicrobial Resistance Fact sheet No. 194; 2015 [April].
[8] Moran GJ, Krishnasasan A, Gorwitz RJ, Fosheim GE, McDougall LK, Carey RB, et al. Methicillin-resistant *S. aureus* infections among patients in the emergency department. N Engl J Med 2006;355(7):666–74.
[9] Spaan AN, Surewaard BG, Nijland R, van Strijp JA. Neutrophils versus *Staphylococcus aureus*: a biological tug of war. Annu Rev Microbiol 2013;67:629–50.
[10] van Kessel KP, Bestebroer J, van Strijp JA. Neutrophil-mediated phagocytosis of *Staphylococcus aureus*. Front Immunol 2014;5:667.
[11] Kim HK, Emolo C, DeDent AC, Falugi F, Misissakis DM, Schneewind O. Protein A-specific monoclonal antibodies and prevention of *Staphylococcus aureus* disease in mice. Infect Immun 2012;80(10):3460–70.
[12] Fowler Jr VG, Proctor RA. Where does a Staphylococcus aureus vaccine stand? Clin Microbiol Infect 2014;20(1):S20–S26.

[13] Nissen M, Marshall H, Richmond P, Shakh S, Jiang Q, Cooper D, et al. A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine 2015;33(15):1846–54.

[14] Fattom A, Matalon A, Buerkert J, Taylor K, Damaso S, Boutriau D. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. Hum Vaccines Immunother 2015;11(3):623–41.

[15] Dryla A, Prustomskys S, Gelbmann D, Hanner M, Bettinger E, Kocsis B, et al. Comparison of antibody repertoire against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin Diag Lab Immunol 2005;12(3):387–98.

[16] Verkaijk NJ, Lebon A, de Vogel CP, Hooijkaas H, Verbrugh HA, Jaddoe VW, et al. Induction of antibodies by Staphylococcus aureus nasal colonization in young children. Clin Microbiol Infect 2010;16(8):1312–7.

[17] Colque-Navarro P, Jacobsson G, Andersson R, Flock JI, Molby R. Levels of antibody against 11 Staphylococcus aureus antigens in a healthy population. Clin Vaccine Immunol 2010;17(7):1117–23.

[18] Gillis C, Couet-Cheron A, Jonsson P, Bruhns P. Contribution of human FcyRs to disease with evidence from human polymorphisms and transgenic animal studies. Front Immunol 2014;5:254.

[19] Vidarsson G, Dekkers G, Rispen T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014;5:520.

[20] Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 2004;4(2):89–99.

[21] Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect 2003;5(14):1307–15.

[22] Walport MJ. Complement. First of two parts. N Engl J Med 2001;344(14):1058–66.

[23] Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 1999;37(11):3556–63.

[24] Kronwall G, Williams Jr RC. Differences in anti-protein A activity among IgG subgroups. J Immunol 1969;103(4):828–33.

[25] Peterson PK, Verhoeff J, Sabath LD, Quie PG. Effect of protein A on staphylococcal opsonization. Infect Immun 1977;15(3):760–4.

[26] Silverman GJ, Goodyear CS. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 2006;6(6):465–75.

[27] Van Loghem E, Frangione B, Recht B, Franklin EC. Staphylococcal protein A and human IgG subclasses and allotypes. Scand J Immunol 1982;15(3):275–8.

[28] Miller RR, Walker AS, Godwin H, Fung R, Yotintseva A, Bowden R, et al. Dynamics of acquisition and loss of carriage of Staphylococcus aureus strains in the community: the effect of clonal complex. J Infect 2014;68(5):426–39.

[29] van Diemen PM, Yamaguchi Y, Paterson GK, Rollier CS, Hill AV, Wyllie DH. Irradiated wild-type and Spa mutant Staphylococcus aureus induce anti-S. aureus immune responses in mice which do not protect against subsequent invasive challenge. Pathog Dis 2013;68(1):20–6.

[30] McDevitt D, Francois P, Vaudaux P, Foster TJ. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol Microbiol 1995;16(5):895–907.

[31] Burlbeo PD, Goldman R, Mattson TL. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins. BMC Biotechnol 2005;5:22.

[32] Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O. Nontoxic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med 2010;207(9):1863–70.

[33] Romero-Steiner S, Libbatti D, Pais LB, Dykes J, Anderson P, Whitin JC, et al. Standardization of an opsonophagocytic assay for the measurement of functional antibody activity against Streptococcus pneumoniae using differentiated HL-60 cells. Clin Diagn Lab Immunol 1997;4(4):415–22.

[34] Amigorena S, Salamero J, Davoust J, Fridman WH, Bonnerot C. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature 1992;358(6384):337–41.

[35] Sokolovska A, Becker CE, Stuart LM. Measurement of phagocytosis, phagosome acidification, and intracellular killing of Staphylococcus aureus. In: Coligan JE, et al., editors. Current protocols in immunology, 2012 [Chapter 14/Unit 14.30].

[36] Ko YP, Kuipers A, Freitag CM, Jongerius I, Medina E, van Rooijen WJ, et al. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 2013;9(12):e1003816.

[37] Gordon DL, Rice JL. Opsonin-dependent and independent surface phagocytosis of S. aureus proceeds independently of complement and complement receptors. Immunology 1988;64(4):709–14.

[38] Lamagni TL, Potz N, Powell D, Pebody R, Wilson J, Duckworth G. Mortality in patients with meticillin-resistant Staphylococcus aureus bacteremia, England 2004–2005. J Hosp Infect 2011;77(1):16–20.

[39] Gorozy NJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol 2013;14(5):428–36.

[40] Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 2009;8(1):18–25.

[41] Gagliardi AM, Gomes Silva BN, Torloni MR, Soares BG. Vaccines for preventing herpes zoster in older adults. Cochrane Database Syst Rev 2012;10:CD008858.

[42] Yates NL, Liao HK, Fong Y, deCamp A, Vandergrift NA, Williams WT, et al. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014;6(228):228ra335.

[43] Nordenfelt P, Waldemarson S, Linder A, Morgelin M, Karlsson C, Malmstrom J, et al. Antibody orientation at bacterial surfaces is related to invasive infection. J Exp Med 2012;209(13):2367–81.

[44] Wenisch C, Patrutia S, Daxbock K, Krause R, Horl W. Effect of age on human neutrophil function. J Leukoc Biol 2000;67(1):40–5.