Hook Interpolations

Ron M. Adin∗‡§ Avital Frumkin† Yuval Roichman†‡§

submitted July 30, 2001; revised November 14, 2002

Abstract

The hook components of $V^\otimes n$ interpolate between the symmetric power $\text{Sym}^n(V)$ and the exterior power $\wedge^n(V)$. When V is the vector space of $k \times m$ matrices over \mathbb{C}, we decompose the hook components into irreducible $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$-modules. In particular, classical theorems are proved as boundary cases. For the algebra of square matrices over \mathbb{C}, a bivariate interpolation is presented and studied.

1 Introduction

The vector space $M_{k,m}$ of $k \times m$ matrices over \mathbb{C} carries a (left) $GL_k(\mathbb{C})$-action and a (right) $GL_m(\mathbb{C})$-action. A classical Theorem of Ehresmann [2] describes the decomposition of an exterior power of $M_{k,m}$ into irreducible bimodules. The symmetric analogue was given later (cf. [6]). See Subsection 2.3 below.

In this paper we present a natural interpolation between these theorems, in terms of hook components of the n-th tensor power of $M_{k,m}$. Duality and asymptotics of the decomposition of hook components follow.

Similar methods are then applied to the diagonal two-sided $GL_k(\mathbb{C})$-action on the vector space of $k \times k$ matrices. Classical theorems of Thrall

∗Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel. Email: radin@math.biu.ac.il
†Sackler School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel. Email: frumkin@math.tau.ac.il
‡Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel. Email: yuvalr@math.biu.ac.il
§Research was supported in part by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, and by internal research grants from Bar-Ilan University.
[18] and James [7] (for the symmetric powers of symmetric matrices), and of Helgason [4], Shimura [14] and Howe [5] (for the symmetric powers of anti-symmetric matrices) are extended, and a bivariate interpolation is presented.

Proofs are obtained using the representation theory of the symmetric and hyperoctahedral groups, together with Schur-Weyl duality; no use is made of highest weight theory.

1.1 Main Results

Let $M_{k,m}$ be the vector space of $k \times m$ matrices over C. The tensor power $M_{k,m} \otimes^n$ carries a natural S_n-action by permuting the factors. This action decomposes the tensor power into irreducible S_n-modules. Let $M_{k,m} \otimes^n(t)$ be the isotypic component of $M_{k,m} \otimes^n$ corresponding to the irreducible S_n-representation indexed by the hook $(n-t,1^t)$, where $0 \leq t \leq n-1$. This component still carries a $GL_k(C) \times GL_m(C)$-action.

Theorem 1.1 Let λ and μ be partitions of n, of lengths at most k and m, respectively. For every $0 \leq t \leq n - 1$, the multiplicity of the irreducible $GL_k(C) \times GL_m(C)$-module $V^\lambda_k \otimes V^\mu_m$ in $M_{k,m} \otimes^n(t)$ is

$$\left(\begin{array}{c} n-1 \\ t \end{array}\right) \sum_{i=0}^{t} (-1)^{t-i} \sigma_{\lambda,\mu}(i) = \left(\begin{array}{c} n-1 \\ t \end{array}\right) \sum_{i=t+1}^{n} (-1)^{i-t} \sigma_{\lambda,\mu}(i)$$

where

$$\sigma_{\lambda,\mu}(i) := \sum_{\alpha+n-i, \beta+i} c^\lambda_{\alpha,\beta} c^\mu_{\alpha,\beta'},$$

$c^\lambda_{\alpha,\beta}$ are Littlewood-Richardson coefficients, and β' is the partition conjugate to β.

See Theorem 3.3 below; for definitions and notation see Section 2 below. Theorem 1.1 interpolates between two well-known classical theorems (Theorems 2.4 and 2.5 below; see the remark following Theorem 3.3).

The following corollary generalizes the duality between Theorem 2.4 and Theorem 2.5.

Corollary 1.2 Let $\mu \subseteq (m^m)$ and λ be partitions of n. For every $0 \leq t \leq n - 1$ the multiplicity of $V^\lambda_k \otimes V^\mu_m$ in $M_{k,m} \otimes^n(t)$ is equal to the multiplicity of $V^\lambda_k \otimes V^\mu'_m$ in $M_{k,m} \otimes^n(n - 1 - t)$.

2
See Corollary 3.4 below.

Let λ and μ be partitions of n. Define the distance
\[
d(\lambda, \mu) := \frac{1}{2} \sum_i |\lambda_i - \mu_i|.
\]

Theorem 1.3 If $V^\lambda_k \otimes V^\mu_m$ appears as a factor in $M^{\otimes n}_{k,m}(t)$ (for some $0 \leq t \leq n - 1$) then
\[
d(\lambda, \mu) < km.
\]

See Theorem 4.3 below. This shows that, for $V^\lambda_k \otimes V^\mu_m$ to appear in a hook component, λ and μ must be very “close” to each other (for k and m fixed, n tending to infinity).

Consider now the vector space $M_{k,k}$ of $k \times k$ square matrices over C. Let $M^{\otimes n}_{k,k}(t,j)$ be the component of $M^{\otimes n}_{k,k}(t)$ consisting of tensors with j skew symmetric and $n-j$ symmetric factors. $M^{\otimes n}_{k,k}(t,j)$ carries a $GL_k(C)$ two-sided diagonal action. The following theorem describes its decomposition as a $GL_k(C)$-module.

Theorem 1.4 Let λ be a partition of $2n$ of length at most k. For every $0 \leq t \leq n - 1$ and $0 \leq j \leq n$, the multiplicity of V^λ_k in $M^{\otimes n}_{k,k}(t,j)$ is
\[
\binom{n-1}{t} \sum_{i=0}^{t} (-1)^{t-i} \sigma(\lambda, i, j) = \binom{n-1}{t} \sum_{i=t+1}^{n} (-1)^{t-1} \sigma(\lambda, i, j)
\]
where
\[
\sigma(\lambda, i, j) := \sum_{|\alpha|+|\beta|+|\gamma|+|\delta|=n, \ |\gamma|+|\delta|=i, \ |\beta|+|\delta|=j} c_{2-\alpha,(2,\beta)'-2\gamma,(2\delta)'-\lambda},
\]
and the sum is over all partitions $\alpha, \beta, \gamma, \delta$ with total size n such that γ and δ have distinct parts and total size i, and β and δ have total size j. The operations $*$ and \cdot are defined in Subsection 2.1. Definition of the (extended) Littlewood-Richardson coefficients is given in Subsection 2.2.

See Theorem 5.7 below. Theorem 1.4, for $t = 0$, interpolates between classical results, regarding symmetric powers of the spaces of symmetric and skew symmetric matrices (Theorems 2.6 and 2.7 below). Another boundary case, $t = n$, gives an interpolation between exterior powers of the same matrix spaces.
Corollary 1.5 Let $\lambda \subseteq (k^k)$ be a partition of $2n$. For every $0 \leq t \leq n - 1$ and $0 \leq j \leq n$, the multiplicity of V^λ_k in $M_{k,k}^\otimes (t,j)$ is equal to the multiplicity of V^λ_k in $M_{k,k}^\otimes (t,n-j)$.

See Corollary 5.8 below.

2 Background and Notation

2.1 Partitions

Let n be a positive integer. A partition of n is a vector of positive integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$, where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ and $\lambda_1 + \ldots + \lambda_k = n$. We denote this by $\lambda \vdash n$. The size of a partition $\lambda \vdash n$, denoted $|\lambda|$, is n, and its length, $\ell(\lambda)$, is the number of parts. The empty partition \emptyset has size and length zero: $|\emptyset| = \ell(\emptyset) = 0$. The set of all partitions of n with at most k parts is denoted by $\text{Par}_k(n)$.

For a partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ define the conjugate partition $\lambda' = (\lambda'_1, \ldots, \lambda'_t)$ by letting λ'_i be the number of parts of λ that have size at least i.

A partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ may be viewed as the subset

$$\{(i,j) \mid 1 \leq i \leq k, 1 \leq j \leq \lambda_i\} \subseteq \mathbb{Z}^2,$$

the corresponding Young diagram. Using this interpretation, we may speak of the intersection $\lambda \cap \mu$ and the set difference $\lambda \setminus \mu$ of any two partitions. The set difference is called a skew shape; when $\mu \subseteq \lambda$ it is usually denoted λ/μ.

Let $(k^m) := (k, \ldots, k)$ (m equal parts). Thus, for example, $\lambda \subseteq (k^m)$ means $\lambda_1 \leq k$ and $\lambda'_1 \leq m$.

We shall also use the Frobenius notation for partitions, defined as follows: Let λ be a partition of n and set $d := \max\{i \mid \lambda_i - i \geq 0\}$ (i.e., the length of the main diagonal in the Young diagram of λ). Then the Frobenius notation for λ is $(\lambda_1 - 1, \ldots, \lambda_d - d \mid \lambda'_1 - 1, \ldots, \lambda'_d - d)$.

For any partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ of n define the following doubling operation

$$2 \cdot \lambda := (2\lambda_1, \ldots, 2\lambda_k) \vdash 2n.$$

If all the parts of λ are distinct, define also

$$2 \ast \lambda := (\lambda_1, \ldots, \lambda_k \mid \lambda_1 - 1, \ldots, \lambda_k - 1) \vdash 2n$$

in the Frobenius notation.
2.2 Representations

For any group G denote the trivial representation by 1_G. In this paper we shall denote the irreducible S_n-modules (Specht modules) by S^λ, and the irreducible $GL_k(C)$-modules (Weyl modules) by V^λ_k.

The Littlewood-Richardson coefficients describe the decomposition of tensor products of Weyl modules. Let $\mu \vdash t$ and $\nu \vdash n-t$. Then

$$V^\mu_k \otimes V^\nu_k \cong \bigoplus_{\lambda \vdash n} c^\lambda_{\mu,\nu} V^\lambda_k,$$

for $k \geq \max\{\ell(\lambda), \ell(\mu), \ell(\nu)\}$ (and the coefficients $c^\lambda_{\mu,\nu}$ are then independent of k).

By Schur-Weyl duality they are also the coefficients of the outer product of Specht modules. Namely,

$$(S^\mu \otimes S^\nu) \uparrow_{S_{t^1} \times S_{n-t^1}}^{S_n} \cong \bigoplus_{\lambda \vdash n} c^\lambda_{\mu,\nu} S^\lambda.$$

The following identity is well-known: For all triples of partitions λ, μ, ν

$$(2.a) \quad c^\lambda_{\mu,\nu} = c^\lambda_{\mu',\nu'}.$$

We shall also use the following notation for extended Littlewood-Richardson coefficients:

$$c^\lambda_{\alpha,\beta,\gamma,\delta} := \sum_{\mu,\nu} c^\lambda_{\alpha,\mu} c^\mu_{\beta,\nu} c^\nu_{\gamma,\delta};$$

so that

$$V^\alpha_k \otimes V^\beta_k \otimes V^\gamma_k \otimes V^\delta_k = \bigoplus_{\lambda} c^\lambda_{\alpha,\beta,\gamma,\delta} V^\lambda_k.$$

Let B_n be the Weyl group of type B and rank n, also known as the hyperoctahedral group or the group of signed permutations. A bipartition of n is an ordered pair (μ, ν) of partitions of total size $|\mu| + |\nu| = n$. The irreducible characters of B_n are indexed by bipartitions of n; denote by $\chi^{\mu,\nu}$ the character indexed by (μ, ν).

Consider the following natural embeddings of S_n into B_n and of B_n into S_{2n}: S_{2n} is the group of permutations on $\{-n, \ldots, -1, 1, \ldots, n\}$. B_n is embedded as the subgroup of all $\pi \in S_{2n}$ satisfying $\pi(-i) = -\pi(i)$ ($1 \leq i \leq n$).
S_n is embedded as the subgroup of all $\pi \in B_n$ satisfying also $\pi(i) > 0 \ (1 \leq i \leq n)$.

The following lemmas, used in Section 5, describe certain induced characters via the above embeddings. Lemma 2.1 is an immediate consequence of [12, Ch. I §7 Ex 4, Ch. I §8 Ex 5-6, and Ch. VII (2.4)]. See also [16].

Lemma 2.1

(a) $1_{B_n} \uparrow_{B_n}^{S_{2n}} = \chi^{(n)}, \emptyset \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{2\cdot\lambda}$;

(b) $\chi^{\emptyset, (n)} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{(2\cdot\lambda)'},$

(c) $\chi^{(1^n), \emptyset} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{2\cdot\lambda}$;

(d) $\chi^{\emptyset, (1^n)} \uparrow_{B_n}^{S_{2n}} = \sum_{\lambda \vdash n} \chi^{(2\cdot\lambda)'},$

where the last two sums are over partitions with distinct parts.

Lemma 2.2

(a) $\chi^{(n)} \uparrow_{S_n}^{B_n} = \sum_{i=0}^{n} \chi^{(i), (n-i)}$.

(b) $\chi^{(1^n)} \uparrow_{S_n}^{B_n} = \sum_{i=0}^{n} \chi^{(1^i), (1^{n-i})}$.

For a proof, see Section 6.1.

The following lemma is a special case of the Littlewood-Richardson rule for B_n, cf. [17, Lemma 7.1].

Lemma 2.3

$$\chi^{(i), (n-i)} = (\chi^{(i)}, \emptyset \otimes \chi^{\emptyset, (n-i)}) \uparrow_{B_i \times B_{n-i}}^{B_{n-i}}.$$
2.3 Symmetric and Exterior Powers of Matrix Spaces

In this subsection we cite well-known classical theorems, concerning the decomposition into irreducibles of symmetric and exterior powers of matrix spaces, which are to be generalized in this paper.

Let $M_{k,m}$ be the vector space of $k \times m$ matrices over \mathbb{C}. Then $M_{k,m}$ carries a (left) $GL_k(\mathbb{C})$-action and a (right) $GL_m(\mathbb{C})$-action. A classical Theorem of Ehresmann [2] (see also [10]) describes the decomposition of an exterior power of $M_{k,m}$ into irreducible $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$-modules.

Theorem 2.4 The n-th exterior power of $M_{k,m}$ is isomorphic, as a $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$-module, to

$$\bigwedge^n(M_{k,m}) \cong \bigoplus_{\lambda \vdash n \text{ and } \lambda \subseteq (m^k)} V_{k}^{\lambda} \otimes V_{m}^{\lambda'},$$

where λ' is the partition conjugate to λ.

The following three results on symmetric powers were proved several times independently; these results may be found in [6] and [3].

The symmetric analogue of Theorem 2.4 was studied, for example, in [6, (11.1.1)] and [3, Theorem 5.2.7].

Theorem 2.5 The n-th symmetric power of $M_{k,m}$ is isomorphic, as a $GL_k(\mathbb{C}) \times GL_m(\mathbb{C})$-module, to

$$\text{Sym}^n(M_{k,m}) \cong \bigoplus_{\lambda \vdash n \text{ and } t(\lambda) \leq \min(k,m)} V_{k}^{\lambda} \otimes V_{m}^{\lambda},$$

Let $M_{k,k}^+$ be the vector space of symmetric $k \times k$ matrices over \mathbb{C}. This space carries a natural two sided $GL_k(\mathbb{C})$-action. The following theorem describes the decomposition of its symmetric powers into irreducible $GL_k(\mathbb{C})$-modules.

Theorem 2.6 The n-th symmetric power of $M_{k,k}^+$ is isomorphic, as a $GL_k(\mathbb{C})$-module, to

$$\text{Sym}^n(M_{k,k}^+) \cong \bigoplus_{\lambda \in \text{Par}_k(n)} V_{k}^{2\lambda}.$$
This theorem was proved by A.T. James [7], but had already appeared in an early work of Thrall [18]. See also [5], [14], [6, (11.2.2)] and [3, Theorem 5.2.9] for further proofs and references.

Let $M_{k,k}^-$ be the vector space of skew symmetric $k \times k$ matrices over C. Then

Theorem 2.7 The n-th symmetric power of $M_{k,k}^-$ is isomorphic, as a $GL_k(C)$-module, to

$$\text{Sym}^n(M_{k,k}^-) \cong \bigoplus_{(2i,i) \in \text{Par}_k(2n)} V_{k}^{(2i,i)}.$$

This theorem is proved in [4], [5], [14]. See also [6, (11.3.2)] and [3, Theorem 5.2.11].

3 Hook Components of $M_{k,m}^\otimes n$

Consider $M = M_{k,m} = C^{k \times m}$, the vector space of $k \times m$ matrices over C. Then $M \cong V \otimes W$, where $V \cong C^k$ and $W \cong C^m$. Thus M carries a (left) $GL(V)$-action and a (right) $GL(W)$-action, which commute. Its tensor power $M^\otimes n \cong V^\otimes n \otimes W^\otimes n$ thus carries a $GL(V) \times S_n \times S_n \times GL(W)$ linear representation; one copy of the symmetric group S_n permutes the factors in $V^\otimes n$, and the other copy of S_n permutes the factors in $W^\otimes n$. The actions of all four groups clearly commute. We are interested in the $GL(V) \times S_n \times GL(W)$-action on $M^\otimes n$ obtained through the diagonal embedding $S_n \hookrightarrow S_n \times S_n$, $\pi \mapsto (\pi, \pi)$.

Lemma 3.1

$$M^\otimes n \cong \bigoplus_{\lambda \in \text{Par}_k(n), \mu \in \text{Par}_m(n)} \alpha_{\lambda \mu \nu} V_k^{\lambda} \otimes S^\mu \otimes V_m^\nu,$$

where

$$\alpha_{\lambda \mu \nu} := \langle \chi^{\lambda}, \chi^{\mu}, \chi^{\nu}, 1_S \rangle.$$

Proof. By Schur-Weyl duality (the double commutant theorem) [3, Theorem 9.1.2]

$$V^\otimes n \cong \bigoplus_{\lambda \in \text{Par}_k(n)} V_k^\lambda \otimes S^\lambda.$$
as $GL(V) \times S_n$-modules. Similarly,

$$W^\otimes n \cong \bigoplus_{\lambda \in \text{Par}_m(n)} V^\lambda_k \otimes S^\lambda_m$$

as $GL(W) \times S_n$-modules. Therefore

$$M^\otimes n \cong V^\otimes n \otimes W^\otimes n \cong \bigoplus_{\lambda \in \text{Par}_n(n)} \bigoplus_{\mu \in \text{Par}_m(n)} V^\lambda_k \otimes (S^\lambda \otimes S^\mu) \downarrow_{S_n \times S_n} \otimes V^\mu_m$$

as $GL(V) \times S_n \times S_n \times GL(W)$-modules.

Using the diagonal embedding $S_n \hookrightarrow S_n \times S_n$,

$$M^\otimes n \cong \bigoplus_{\lambda \in \text{Par}_n(n)} \bigoplus_{\mu \in \text{Par}_m(n)} V^\lambda_k \otimes (S^\lambda \otimes S^\mu) \downarrow_{S_n \times S_n} \otimes V^\mu_m$$

as $GL(V) \times S_n \times GL(W)$-modules.

Note that the S_n-character of $(S^\lambda \otimes S^\mu) \downarrow_{S_n \times S_n}$ is the standard inner tensor product (sometimes called Kronecker product) of the S_n-characters χ^λ and χ^μ. Hence, by elementary representation theory

$$(S^\lambda \otimes S^\mu) \downarrow_{S_n \times S_n} \cong \bigoplus_{\nu \vdash n} \alpha_{\lambda\mu\nu} S^\nu,$$

where

$$\alpha_{\lambda\mu\nu} = \langle \chi^\lambda \chi^\mu, \chi^\nu \rangle = \frac{1}{n!} \sum_{\pi \in S_n} \chi^\lambda(\pi) \chi^\mu(\pi) \chi^\nu(\pi) = \langle \chi^\lambda \chi^\mu \chi^\nu, 1_{S_n} \rangle.$$

\[\square\]

In particular, Lemma 3.1 gives Theorem 2.4 and Theorem 2.5.

Corollary 3.2

(1) $\text{Sym}^n(M) \cong \bigoplus_{\lambda \vdash n \text{ and } \ell(\lambda) \leq \min(k,m)} V^\lambda_k \otimes V^\lambda_m.$

(2) $\wedge^n(M) \cong \bigoplus_{\lambda \vdash n \text{ and } \lambda \subseteq (m^k)} V^\lambda_k \otimes V^\lambda_m.$
Proof. \(\text{Sym}^n(M) \) is the isotypic component of \(M^\otimes n \) corresponding to the trivial character \(\chi^{(n)} \) of the symmetric group. Thus, by Lemma 3.1

\[
\text{Sym}^n(M) \cong \bigoplus_{\lambda \in \text{Par}_k(n) \text{ and } \mu \in \text{Par}_m(n)} \alpha_{\lambda,\mu,(n)} V_k^\lambda \otimes S^{(n)} \otimes V_m^\mu.
\]

But by the orthonormality of irreducible characters

\[
\alpha_{\lambda,\mu,(n)} = \langle \chi^\lambda \chi^\mu, \chi^{(n)} \rangle = \langle \chi^\lambda, \chi^\mu \rangle = \delta_{\lambda\mu}.
\]

This proves (1), namely Theorem 2.5.

The \(n \)-th exterior power is the isotypic component of \(M^\otimes n \) corresponding to the sign character \(\chi^{(1^n)} \) of the symmetric group. Recall that for any partition \(\mu \vdash n \), \(\chi^\mu \chi^{(1^n)} = \chi^{\mu'} \). Thus

\[
\alpha_{\lambda,\mu,(1^n)} = \langle \chi^\lambda \chi^\mu, \chi^{(1^n)} \rangle = \langle \chi^\lambda, \chi^{\mu'} \rangle = \delta_{\lambda\mu'}.
\]

This proves (2), namely Theorem 2.4.

\[\square\]

Let \(M \) be the vector space of \(k \times m \) matrices as before. The tensor power \(M^\otimes n \) carries a natural \(S_n \)-action by permuting the factors. This action decomposes into irreducible \(S_n \)-representations. Let \(M^\otimes n(t) \) be the component of \(M^\otimes n \), corresponding to the irreducible hook representation \((n-t,1^t) \), \(0 \leq t \leq n-1 \). This component carries a \(GL_k(C) \times GL_m(C) \)-action.

Theorem 3.3 Let \(\lambda \in \text{Par}_k(n) \) and \(\mu \in \text{Par}_m(n) \). For every \(0 \leq t \leq n-1 \), the multiplicity of the irreducible \(GL_k(C) \times GL_m(C) \)-module \(V_k^\lambda \otimes V_m^\mu \) in \(M^\otimes n(t) \) is

\[
\binom{n-1}{t} \sum_{i=0}^t (-1)^{t-i} \sigma_{\lambda,\mu}(i) = \binom{n-1}{t} \sum_{i=t+1}^n (-1)^{i-t-1} \sigma_{\lambda,\mu}(i)
\]

where

\[
\sigma_{\lambda,\mu}(i) := \sum_{\alpha \vdash n-i, \beta \vdash i} c_{\alpha\beta}^\lambda c_{\alpha\beta'}^\mu,
\]

\(c_{\alpha\beta}^\lambda \) are Littlewood-Richardson coefficients, and \(\beta' \) is the partition conjugate to \(\beta \).
Remark. Theorem 3.3 may be considered as an interpolation between Theorem 2.4 and Theorem 2.5. Taking $t = 0$ gives $M^{\otimes n}(0) \cong \text{Sym}^n(M)$, and $\beta \vdash 0$ means $\beta = \emptyset$. Hence $\lambda = \alpha = \mu$, yielding multiplicity $\delta_{\lambda\mu}$. This gives Theorem 2.5.

Similarly, taking $t = n - 1$ gives $M^{\otimes n}(n - 1) \cong \wedge^n(M)$, and $\alpha \vdash 0$ means $\alpha = \emptyset$. Hence $\lambda = \beta = \mu'$, yielding multiplicity $\delta_{\lambda\mu'}$. This gives Theorem 2.4.

Proof. By Lemma 3.1

$$M^{\otimes n}(t) \cong \bigoplus_{\lambda \in \text{Par}_k(n) \text{ and } \mu \in \text{Par}_m(n)} \alpha_{\lambda,\mu,(n-t,1^t)} V_k^\lambda \otimes S^{(n-t,1^t)} \otimes V_m^\mu$$

is the decomposition of this component into irreducibles.

Denote by 1_t and ε_t the trivial and sign characters, respectively, of S_t.

By the combinatorial interpretation of the Littlewood-Richardson rule (cf. [8, Theorem 2.8.13]), for every $0 \leq t \leq n$

$$(3.a) \quad (1_{n-t} \otimes \varepsilon_t)^{S_n}_{S_{n-t} \times S_t} = \chi^{(n-t,1^t)} + \chi^{(n-t+1,1^{t-1})}.$$

Hence, by Frobenius reciprocity

$$\alpha_{\lambda,\mu,(n-t,1^t)} + \alpha_{\lambda,\mu,(n-t+1,1^{t-1})} = \langle \chi^\lambda \chi^\mu, \chi^{(n-t,1^t)} + \chi^{(n-t+1,1^{t-1})} \rangle =$$

$$= \langle \chi^\lambda \chi^\mu, (1_{n-t} \otimes \varepsilon_t)^{S_n}_{S_{n-t} \times S_t} \rangle = \langle (\chi^\lambda \chi^\mu)^{S_n}_{S_{n-t} \times S_t}, 1_{n-t} \otimes \varepsilon_t \rangle =$$

$$= \langle \chi^\lambda \chi^{S_n}_{S_{n-t} \times S_t}, \chi^\mu \chi^{S_n}_{S_{n-t} \times S_t} \cdot (1_{n-t} \otimes \varepsilon_t) \rangle.$$

By the Littlewood-Richardson rule the last expression is equal to

$$\langle \sum_{a \vdash n-t, \beta \vdash t} c_{a\beta}^\lambda \chi^a \otimes \chi^\beta, \sum_{a \vdash n-t, \beta \vdash t} c_{a\beta}^\mu \chi^a \otimes \chi^\beta \cdot (1_{n-t} \otimes \varepsilon_t) \rangle =$$

$$= \langle \sum_{a \vdash n-t, \beta \vdash t} c_{a\beta}^\lambda \chi^a \otimes \chi^\beta, \sum_{a \vdash n-t, \beta' \vdash t} c_{a\beta'}^\mu \chi^a \otimes \chi^\beta' \rangle = \sum_{a \vdash n-t, \beta \vdash t} c_{a\beta}^\lambda c_{a\beta'}^\mu,$$

which was denoted $\sigma_{\lambda,\mu}(t)$ in the statement of the theorem. Alternating summation and the well-known fact

$$\dim S^{(n-t,1^t)} = \binom{n-1}{t}$$

now complete the proof. \square

The following corollary generalizes the “duality” of Theorem 2.4 and Theorem 2.5.
Corollary 3.4 Let $\lambda \in \operatorname{Par}_k(n)$, and let $\mu, \mu' \in \operatorname{Par}_m(n)$ be conjugate partitions. Then, for every $0 \leq t \leq n - 1$, the multiplicity of $V_\lambda^k \otimes V_\mu^m$ in $M^\otimes n(t)$ is equal to the multiplicity of $V_\lambda^k \otimes V_{\mu'}^m$ in $M^\otimes n(n - 1 - t)$.

Proof. By Theorem 3.3, we need to show that

$$\binom{n - 1}{t} \sum_{i=0}^{t} (-1)^{t-i} \sigma_{\lambda,\mu}(i) = \binom{n - 1}{n - 1 - t} \sum_{j=n-t}^{n} (-1)^{j-n+t} \sigma_{\lambda,\mu'}(j).$$

This follows from

$$\sigma_{\lambda,\mu}(i) = \sigma_{\lambda,\mu'}(n-i),$$

which in turn follows from (2.a).

Examples. Let $\lambda \in \operatorname{Par}_k(n)$, $\mu, \mu' \in \operatorname{Par}_m(n)$. The multiplicities of $V_\lambda^k \otimes V_\mu^m$ in $M^\otimes n(t)$ for $t = 0$ and $t = n - 1$ are given by Theorems 2.5 and 2.4. Consider two other pairs of t-values.

- $t = 1$: For $\lambda = \mu$ the multiplicity is $n - 1$ times the number of (inner) corners in λ, minus 1. For $\lambda \neq \mu$ it is $n - 1$ if $|\lambda \setminus \mu| = 1$, and zero otherwise.

- $t = n - 2$: For $\lambda = \mu'$ the multiplicity is $n - 1$ times the number of (inner) corners in λ, minus 1. For $\lambda \neq \mu'$ it is $n - 1$ if $|\lambda \setminus \mu'| = 1$, and zero otherwise.

- $t = 2$ ($n > 2$): For $\lambda = \mu$ the multiplicity is nonzero iff λ has at least 3 inner corners. For $\lambda \neq \mu$ it is nonzero iff there is a partition α of $n - 2$ such that λ / α is a horizontal strip and μ / α is a vertical strip, or vice versa.

- $t = n - 3$ ($n > 2$): Analogous to the previous case, with μ replaced by μ'.

4 Asymptotics

Let λ and μ be partitions of the same number n. Recalling the definition of the set difference $\lambda \setminus \mu$ from Subsection 2.1, define the distance

$$d(\lambda, \mu) := |\lambda \setminus \mu| = \frac{1}{2} \sum_{i} |\lambda_i - \mu_i|.$$
Lemma 4.1 If $V_k^\lambda \otimes V_m^\mu$ appears as a factor in $M^\otimes n(t)$ (for some $0 \leq t \leq n - 1$) then $d(\lambda, \mu) \leq t$ and $d(\lambda, \mu') \leq n - 1 - t$.

Proof. By Theorem 3.3, if $V_k^\lambda \otimes V_m^\mu$ appears as a factor in $M^\otimes n(t)$ then there exists a pair of partitions, $\alpha \vdash n - i$ and $\beta \vdash i$, with $0 \leq i \leq t$, such that $c_{\alpha\beta}^\lambda c_{\alpha\beta'}^\mu \neq 0$. $c_{\alpha\beta}^\lambda \neq 0 \Rightarrow \alpha \subseteq \lambda$, and $c_{\alpha\beta'}^\mu \neq 0 \Rightarrow \alpha \subseteq \mu$. Hence

$$|\lambda \setminus \mu| \leq |\lambda \setminus \alpha| = i \leq t.$$

Using the second expression in Theorem 3.3, if $V_k^\lambda \otimes V_m^\mu$ appears as a factor in $M^\otimes n(t)$ then there exists a pair of partitions, $\alpha \vdash n - j$ and $\beta \vdash j$, with $t + 1 \leq j \leq n$, such that $c_{\alpha\beta}^\lambda c_{\alpha\beta'}^\mu \neq 0$. $c_{\alpha\beta}^\lambda \neq 0 \Rightarrow \beta \subseteq \lambda$, and $c_{\alpha\beta'}^\mu \neq 0 \Rightarrow \beta \subseteq \mu'$. Hence

$$|\lambda \setminus \mu'| \leq |\lambda \setminus \beta| = n - j \leq n - t - 1.$$

Altogether, we get the desired claim. \square

Let ψ be an S_n-character (not necessarily irreducible). Define the height of ψ by

$$\text{height}(\psi) := \max \{ \ell(\nu) \mid \nu \vdash n, \langle \psi, \chi^\nu \rangle \neq 0 \}.$$

The following result was proved by Regev.

Lemma 4.2 [13, Theorem 12] For any $\lambda, \mu \vdash n$,

$$\text{height}(\chi^\lambda \chi^\mu) \leq \ell(\lambda) \cdot \ell(\mu).$$

Theorem 4.3 If $V_k^\lambda \otimes V_m^\mu$ appears as a factor in $M^\otimes n(t)$ (for some $0 \leq t \leq n - 1$) then

$$d(\lambda, \mu) < km.$$

Proof.

$$d(\lambda, \mu) \leq t \leq \text{height}(\chi^\lambda \chi^\mu) - 1 \leq \ell(\lambda) \cdot \ell(\mu) - 1 \leq km - 1.$$

Inequalities (1), (2) and (3) follow from Lemmas 4.1, 3.1 (for $\nu = (n - t, 1^t)$) and 4.2, respectively. \square

Let ψ be an S_n-character (not necessarily irreducible). Define the width of ψ by

$$\text{width}(\psi) := \max \{ \nu \mid \nu \vdash n, \langle \psi, \chi^\nu \rangle \neq 0 \}.$$

The following result of Dvir strengthens Lemma 4.2.
Lemma 4.4 [1, Theorem 1.6] For any $\lambda, \mu \vdash n$,

(1) \hspace{1cm} \text{width}(\chi^\lambda \chi^\mu) = |\lambda \cap \mu|$

and

(2) \hspace{1cm} \text{height}(\chi^\lambda \chi^\mu) = |\lambda \cap \mu'|.

This result gives another way of proving Theorem 4.3.

Second Proof of Theorem 4.3.

\[d(\lambda, \mu) = |\lambda \setminus \mu| = n - |\lambda \cap \mu| \leq t \leq \text{height}(\chi^\lambda \chi^\mu) - 1 \leq |\lambda \cap \mu'| - 1 \leq km - 1. \]

Inequality (1) follows from Lemma 4.4(1), since $n - t \leq \text{width}(\chi^\lambda \chi^\mu)$. Inequality (2) follows from Lemma 3.1. Equality (3) is Lemma 4.4(2).

Note: For any two partitions λ, μ of n with $\ell(\lambda) \leq k$ and $\ell(\mu) \leq m$, $V_k^\lambda \otimes V_m^\mu$ appears as a factor in $M^{\otimes n}$. Theorem 4.3 shows that, in order to appear in a hook component, λ and μ must be very “close” to each other (for k and m fixed, n tending to infinity).

5 Square Matrices

Consider now the vector space $M_k = M_{k,k}$ of $k \times k$ matrices over \mathbb{C}. This space carries a diagonal (left and right) $GL_k(\mathbb{C})$-action, defined by

\[g(m) := g \cdot m \cdot g^t \quad (\forall g \in GL_k(\mathbb{C}), \forall m \in M_k). \]

5.1 Symmetric Powers

Recall from Section 2.1 the definition of $2 \cdot \lambda$, for a partition λ.

Theorem 5.1 For $\lambda \in Par_k(2n)$, the multiplicity of V_k^λ in $\text{Sym}^n(M_k)$ is

\[\sum_{|\mu|+|\nu|=n} c_{2\mu,(2\cdot\nu)'}^\lambda. \]

Corollary 5.2 Let $\lambda \in Par(2n)$, $\lambda \subseteq (k^k)$ (i.e., $\lambda, \lambda' \in Par_k(2n)$). Then the multiplicities of V_k^λ and of $V_k^{\lambda'}$ in $\text{Sym}^n(M_k)$ are equal.
Proof. This is an immediate consequence of Theorem 5.1, applying identity (2.a).

Proof of Theorem 5.1. Let $V \cong \mathbb{C}^k$. Then $V \otimes V$ carries a diagonal (left) GL_k-action, and

$$M_k \cong V \otimes V$$

as GL_k-modules. Thus

$$M_k^\otimes n \cong V^\otimes 2n$$

as GL_k-modules. Moreover, $V^\otimes 2n$ carries an $S_{2n} \times GL_k$-action: S_{2n} permutes the $2n$ factors in the tensor product, and GL_k acts on all of them simultaneously (on the left). The S_{2n}- and GL_k-actions satisfy Schur-Weyl duality (the double commutant theorem), so that

$$V^\otimes 2n \cong \bigoplus_{\lambda \in \text{Par}_k(2n)} V^\lambda_k \otimes S^\lambda,$$

as $GL_k \times S_{2n}$-modules.

Now, $\text{Sym}^n(M_k)$ is the part of $M_k^\otimes n$ which is invariant under the action of $S_n \hookrightarrow S_{2n}$, where the embedding $S_n \hookrightarrow S_n \times S_n \subseteq S_{2n}$ is diagonal: $\pi \mapsto (\pi, \pi)$. It follows that the multiplicity of V^λ_k in $\text{Sym}^n(M_k)$ is equal to the multiplicity of the trivial character 1_{S_n} in the restriction $\chi^\lambda \uparrow_{S_{2n}}^{S_n}$, where S_n is diagonally embedded.

By Frobenius reciprocity,

$$\langle 1_{S_n}, \chi^\lambda \uparrow_{S_{2n}}^{S_n} \rangle = \langle 1_{S_n} \uparrow_{S_n}^{B_n}, \chi^\lambda \rangle.$$

We conclude that, for $\lambda \in \text{Par}_k(2n)$, the multiplicity of V^λ_k in $\text{Sym}^n(M_k)$ is

$$\langle 1_{S_n} \uparrow_{S_n}^{B_n}, \chi^\lambda \rangle.$$

We shall compute these multiplicities in several steps.

First, we induce in two steps:

$$1_{S_n} \uparrow_{S_{2n}}^{S_n} = (1_{S_n} \uparrow_{S_n}^{B_n}) \uparrow_{B_n}^{S_{2n}}.$$

By Lemmas 2.2(a) and 2.3,

$$(\chi^{(n)} \uparrow_{S_n}^{B_n}) \uparrow_{B_n}^{S_{2n}} = \sum_{i=0}^{n} \chi^{(i), (n-i)} \uparrow_{B_n}^{S_{2n}} =$$
\[
\sum_{i=0}^{n} (\chi(i), \emptyset \otimes \chi^{(n-i)}) \uparrow_{B_i \times B_{n-i}}^{B_n} = \\
\sum_{i=0}^{n} (\chi(i), \emptyset \otimes \chi^{(n-i)}) \uparrow_{B_i \times B_{n-i}}^{S_{2n}}.
\]

Again, let us induce in two steps:
\[
(\chi(i), \emptyset \otimes \chi^{(n-i)}) \uparrow_{B_i \times B_{n-i}}^{S_{2n}} = (\chi(i), \emptyset \otimes \chi^{(n-i)}) \uparrow_{B_i \times B_{n-i}}^{S_{2i} \times S_{2n-2i}}.
\]

By Lemma 2.1 (a)-(b), the right hand side is equal to
\[
(\sum_{\mu \vdash i} \chi^{2\mu} \otimes \chi^{(2\nu)'}) \uparrow_{S_{2i} \times S_{2n-2i}}^{S_{2n} \times S_{2n-2i}}.
\]

We conclude that
\[
1_{S_n} \uparrow_{S_{2n}} = \sum_{i=0}^{n} \sum_{\mu \vdash i, \nu \vdash n-i} (\chi^{2\mu} \otimes \chi^{(2\nu)'}) \uparrow_{S_{2i} \times S_{2n-2i}}^{S_{2n} \times S_{2n-2i}}.
\]

Applying the Littlewood-Richardson rule completes the proof.

\[\boxdot\]

5.2 A Graded Refinement of Symmetric Powers

The space \(M_k^{\otimes n}\) carries not only an \(S_n\)-action but also a \(B_n\)-action, where the signed permutation \((i, -i)\) \((1 \leq i \leq n)\) acts by transposing the \(i\)-th factor in the tensor product of \(n\) square matrices. \(M_k = M_k^+ \oplus M_k^-\), where \(M_k^+ (M_k^-)\) is the vector space of symmetric (skew symmetric) matrices of order \(k \times k\). Consequently, \(M_k^{\otimes n}\) is graded by the number of skew symmetric factors. The component of \(M_k^{\otimes n}\) with \(i\) skew symmetric factors, denoted \(M_k^{\otimes n}(i)\), is invariant under the \(B_n\)-action, as well as under the diagonal two-sided \(GL_k\)-action.

Lemma 5.3 If the irreducible \(B_n\)-character \(\chi^{\mu, \nu}\) appears in the decomposition of the \(B_n\)-action on \(M_k^{\otimes n}(i)\), then \(|\nu| = i\).

For a proof see Section 6.2.

Since the components \(M_k^{\otimes n}(i)\) are invariant under the \(S_n\)-action, the \(S_n\)-invariant subspace \(\text{Sym}^n(M_k)\) inherits the grading by the number of skew symmetric factors. Let \(\text{Sym}^n(M_k)\) denote the component with \(i\) skew symmetric factors. The following theorem refines Theorem 5.1.
Theorem 5.4 For \(\lambda \in \text{Par}_k(2n) \), the multiplicity of \(V^\lambda_k \) in \(\text{Sym}^n_{i}(M_k) \) is
\[
\sum_{\mu \vdash n-i, \nu \vdash i} c^\lambda_{2 \mu,(2 \nu)'}.
\]

Note: Theorem 5.4 interpolates between two classical results, Theorem 2.6 and Theorem 2.7. Indeed, \(\text{Sym}^n_0(M_k) = \text{Sym}^n(M_k^+) \) is the \(n \)-th symmetric power of the vector space of symmetric matrices. In this case \(i = 0 \), so \(\nu = \emptyset \). Hence
\[
\sum_{\mu \vdash n} c^\lambda_{2 \mu,\emptyset} = \begin{cases} 1, & \text{if } \lambda = 2 \cdot \mu \text{ for some } \mu \vdash n; \\ 0, & \text{otherwise.} \end{cases}
\]
This gives Theorem 2.6. Similarly, \(\text{Sym}^n_n(M_k) = \text{Sym}^n(M_k^-) \). In this case \(i = n \), \(\mu = \emptyset \), and a similar computation gives Theorem 2.7.

An analogue of Corollary 3.4 follows.

Corollary 5.5 Let \(\lambda, \lambda' \in \text{Par}_k(2n) \) be conjugate partitions. Then, for every \(0 \leq i \leq n \), the multiplicity of \(V^\lambda_k \) in \(\text{Sym}^n_{i}(M_k) \) is equal to the multiplicity of \(V^{\lambda'}_k \) in \(\text{Sym}^n_{n-i}(M_k) \).

Proof. Combine Theorem 5.4 with identity (2.a).

Proof of Theorem 5.4. This is a refinement of the proof of Theorem 5.1. In this refinement the group \(B_n \) appears in an essential way, whereas in the proof of Theorem 5.1 it was used only as a technical tool.

\(M^\otimes_n \) is a \(B_n \)-module, and \(\text{Sym}^n(M_k) \) is its submodule, for which the \(B_n \)-action, when restricted to \(S_n \), is trivial. Hence, if the irreducible \(B_n \)-character \(\chi^{\mu,\nu} \) appears in \(\text{Sym}^n(M_k) \), then
\[
\langle \chi^{\mu,\nu} \uparrow_{S_n}^{B_n}, 1_{S_n} \rangle \neq 0.
\]

By Lemma 2.2(a),
\[
\langle \chi^{\mu,\nu} \uparrow_{S_n}^{B_n}, 1_{S_n} \rangle = \langle \chi^{\mu,\nu}, 1_{S_n} \uparrow_{S_n}^{B_n} \rangle = \langle \chi^{\mu,\nu}, \sum_{j=0}^{n} \chi^{(n-j),(j)} \rangle,
\]
and this is nonzero (and equal to 1) if and only if \(\mu = (n-j) \) and \(\nu = (j) \) for some \(0 \leq j \leq n \).

Combining this with Lemma 5.3 we conclude that \(\chi^{(n-i),(i)} \) is the unique irreducible \(B_n \)-character in \(\text{Sym}^n_i(M_k) \).
Now, as in the proof of Theorem 5.1, the multiplicity of \(V^\lambda_k \) in \(\text{Sym}_i^n(M_k) \) is
\[
\langle \chi^\lambda \uparrow_{S^2_n} B_n, \chi^{(n-i),(i)} \rangle = \langle \chi^\lambda, \chi^{(n-i),(i)} \uparrow_{S^2_n} B_n \rangle.
\]
By Lemmas 2.3 and 2.1(a)-(b),
\[
\chi^{(n-i),(i)} \uparrow_{S^2_n} B_n = (\chi^{(n-i),0} \otimes \chi^0,(i)) \uparrow_{S^2_n} B_{n-i} \times B_i = \left(\sum_{\mu \vdash n-i} \chi^{2\mu} \otimes \sum_{\nu \vdash i} \chi^{(2\nu)'}, \uparrow_{S^2_n} S^2_n - 2i \times S^2_i \right).
\]
The Littlewood-Richardson rule completes the proof of Theorem 5.4.

\[\square\]

5.3 Hook Components of Tensor Powers

In this subsection we generalize the results of the previous sections to obtain a bivariate interpolation between symmetric and exterior powers of symmetric and skew symmetric matrices.

As before, the \(n \)-th tensor power \(M_k \otimes^n \) carries an \(S_n \)-action. The symmetric power \(\text{Sym}^n(M_k) \) is the \(S_n \)-invariant part, i.e., corresponds to the trivial character \(\chi^{(n)} \). The exterior power corresponds to the sign character \(\chi^{(1^n)} \). We shall denote the factor corresponding to the hook character \(\chi^{(n-t,1^t)} \) (\(0 \leq t \leq n-1 \)) by \(M_k \otimes^n(t) \). Then

Theorem 5.6 For every \(0 \leq t \leq n-1 \) and \(\lambda \in \text{Par}_k(2n) \), the multiplicity of \(V^\lambda_k \) in \(M_k \otimes^n(t) \) is
\[
\binom{n-1}{t} \sum_{i=0}^t (-1)^{t-i} \sigma_\lambda(i) = \binom{n-1}{t} \sum_{i=t+1}^n (-1)^{i-t-1} \sigma_\lambda(i)
\]
where
\[
\sigma_\lambda(i) := \sum_{|\alpha|+|\beta|=n-i, |\gamma|+|\delta|=i} c^\lambda_{2\alpha,(2\beta)' \ast 2\gamma,(2\delta)'}
\]
and the sum runs over all partitions \(\alpha \) and \(\beta \) with total size \(n - i \), and all partitions \(\gamma \) and \(\delta \) with distinct parts and total size \(i \). The operations \(\ast \), \(\ast \) are as defined in Subsection 2.1, and the extended Littlewood-Richardson coefficients are as defined in Subsection 2.2.
Proof. Similar arguments to those in the proof of Theorem 5.1 show that the multiplicity of V_k^λ in the hook component $M_k^{\otimes n}(t)$ is

$$\binom{n-1}{t} \langle \chi^{(n-t,1^t)} \uparrow_{S_n}^{S_{2n}} \chi^\lambda \rangle.$$

By (3.a),

$$\langle (\chi^{(n-t,1^t)} + \chi^{(n-t+1,1^{t-1})}) \uparrow_{S_n}^{S_{2n}} \chi^\lambda \rangle =$$

$$= \langle (\chi^{(n-t)} \otimes \chi^{(1^t)}) \uparrow_{S_{n-t} \times S_t}^{S_{2n}} \uparrow_{S_n}^{S_{2n}} \chi^\lambda \rangle =$$

$$= \langle (\chi^{(n-t)} \otimes \chi^{(1^t)}) \uparrow_{S_{n-t} \times S_t}^{B_{n-t} \times B_t} \uparrow_{S_n}^{S_{2n}} \chi^\lambda \rangle.$$

By Lemmas 2.2 and 2.3, for every t

$$\langle \chi^{(n-t)} \otimes \chi^{(1^t)} \rangle \uparrow_{S_{n-t} \times S_t}^{B_{n-t} \times B_t} = \langle \chi^{(n-t)} \rangle \uparrow_{S_{n-t} \times S_t}^{B_{n-t} \times B_t} \langle \chi^{(1^t)} \rangle \uparrow_{S_{n-t} \times S_t}^{B_{n-t} \times B_t} =$$

$$= \sum_{i=0}^{n-t} \chi^{(i),(n-t-i)} \otimes \sum_{j=0}^{t} \chi^{(1^t)} \uparrow_{B_{n-t} \times B_t}^{B_{n-t} \times B_t}.$$

Hence

$$\langle \chi^{(n-t)} \otimes \chi^{(1^t)} \rangle \uparrow_{S_{n-t} \times S_t}^{S_{2n}} =$$

$$\sum_{i=0}^{n-t} \chi^{(i),(n-t-i)} \otimes \chi^{(1^t)} \uparrow_{B_{n-t} \times S_{n-i} \times S_t}^{B_{n-t} \times B_{n-t-i} \times B_t \times S_{n-i} \times S_t} \otimes \sum_{j=0}^{t} \chi^{(1^t)} \uparrow_{B_{n-t} \times B_t}^{B_{n-t} \times B_t}.$$

Let $M_k^{\otimes n}(t, j)$ be the component of $M_k^{\otimes n}(t)$ with j skew symmetric factors. The following result is a common refinement of Theorems 5.4 and 5.6.

Theorem 5.7 For every $0 \leq t \leq n - 1$, $0 \leq j \leq n$ and $\lambda \in Par_k(2n)$, the multiplicity of V_k^λ in $M_k^{\otimes n}(t, j)$ is

$$\binom{n-1}{t} \sum_{i=0}^{t} (-1)^{t-i} \sigma(i, j) = \binom{n-1}{t} \sum_{i=t+1}^{n} (-1)^{t-1} \sigma(i, j).$$
where
\[\sigma(\lambda(i,j)) := \sum_{|\alpha|+|\beta|+|\gamma|+|\delta|=n, |\gamma|+|\delta|=i, |\beta|+|\delta|=j} c_{\alpha,\beta,\gamma,\delta}^2 \]
and the sum is over all partitions \(\alpha, \beta, \gamma, \delta \) with total size \(n \) such that \(\gamma \) and \(\delta \) have distinct parts and total size \(i \), and \(\beta \) and \(\delta \) have total size \(j \).

Proof. Lemma 5.3, used as in the proof of Theorem 5.4, shows that the factors of \(M^\otimes(n,k) \), in the decomposition given in Theorem 5.6, are those for which \(|\beta| + |\delta| = j \).

\[\blacksquare \]

Corollary 5.8 Let \(\lambda \subseteq (k^k) \) be a partition of \(2n \). For every \(0 \leq t \leq n-1 \) and \(0 \leq j \leq n \), the multiplicity of \(V^\lambda_k \) in \(M^\otimes(t,j) \) is equal to the multiplicity of \(V^{\lambda'}_k \) in \(M^\otimes(t,n-j) \).

Proof. By Theorem 5.7, it suffices to show that
\[\left(\frac{n-1}{t} \right) \sum_{i=0}^{t} (-1)^{t-i} \sigma(\lambda(i,j)) = \left(\frac{n-1}{t} \right) \sum_{i=0}^{t} (-1)^{t-i} \sigma(\lambda'(i,n-j)). \]

This follows from
\[\sigma(\lambda(i,j)) = \sigma(\lambda'(i,n-j)), \]
which in turn follows from (2.a).

\[\blacksquare \]

6 Appendices.

6.1 Proof of Lemma 2.2

Lemma 2.2 follows from a more general result.

For partitions \(\lambda = (\lambda_1, \ldots, \lambda_k) \) and \(\mu = (\mu_1, \ldots, \mu_m) \), let \(\lambda \oplus \mu \) be the skew shape defined by
\[\lambda \oplus \mu := (\lambda_1 + \mu_1, \lambda_2 + \mu_2, \ldots, \lambda_k + \mu_k, \mu_1, \mu_2, \ldots, \mu_m) / (\mu_1^k). \]

Theorem 6.1 If \((\lambda, \mu) \) is a bipartition of \(n \) then the restriction
\[\chi^{\lambda \mu} \downarrow_{B_n}^{S_n} = \chi^{\lambda \oplus \mu}. \]
Proof. The characters $\chi^{\lambda \oplus \mu}$ and $\chi^{\lambda \mu}$, evaluated at elements of S_n, have the same recursive formula (Murnaghan-Nakayama rule). For $\chi^{\lambda \mu}$ see [17, Theorem 4.3]. For $\chi^{\lambda \oplus \mu}$ see [9, Theorem 5.6.16].

Proof of Lemma 2.2.
(a) Let (λ, μ) be a bipartition of n. By Frobenius reciprocity and Theorem 6.1,
\[\langle \chi^{(n)} \uparrow B_n, \chi^{\lambda \mu} \downarrow B_n \rangle = \langle \chi^{(n)} \downarrow B_n, \chi^{\lambda \mu} \uparrow B_n \rangle = \langle \chi^{(n)}, \chi^{\lambda \oplus \mu} \rangle = \begin{cases} 1, & \max \{ \ell(\lambda), \ell(\mu) \} \leq 1; \\ 0, & \text{otherwise.} \end{cases} \]
The last equality follows from the Littlewood-Richardson rule, reformulated for skew shapes [15, (7.64)]. By this rule, $\langle \chi^{(n)}, \chi^{\lambda \oplus \mu} \rangle$ is nonzero (and equal to 1) if and only if $\lambda \oplus \mu$ is a horizontal strip (i.e., each column contains at most one box).

(b) The proof for $\chi^{(1^k)}$ is similar.

6.2 Proof of Lemma 5.3

Proof. Let $\sigma_i := (i, -i) \in B_n$ (1 ≤ i ≤ n), and let η be the sum $\sum_{i=1}^{n} \sigma_i \in C[B_n]$. Consider the tensor product $w = w_1 \otimes w_2 \otimes \cdots \otimes w_n \in M^{\otimes n}_k$, where each w_i is either a symmetric or a skew symmetric matrix. Then according to the B_n-action, defined in Section 5.2,
\[\sigma_i(w) = \begin{cases} w, & \text{if } w_i \text{ is symmetric;} \\ -w, & \text{if } w_i \text{ is skew symmetric.} \end{cases} \]
Hence, for every vector $v \in M^{\otimes n}_k(i)$
\[(6.a) \quad \eta(v) = (n - 2i)v. \]

On the other hand, the set $\{ \sigma_i \mid 1 \leq i \leq n \}$ is a conjugacy class in B_n. Thus the element $\eta = \sum_{i=1}^{n} \sigma_i$ is in the center of $C[B_n]$. By Schur’s Lemma, for every vector v in the irreducible B_n-module $S^{\mu, \nu}$
\[\eta(v) = c^{\mu, \nu} \cdot v, \]
where
\[c^{\mu, \nu} = \frac{\chi^{\mu, \nu}(\eta)}{\chi^{\mu, \nu}(id)} = \frac{n\chi^{\mu, \nu}(\sigma_1)}{\chi^{\mu, \nu}(id)}. \]
Let $f^\lambda, f^{\mu,\nu}$ be the number of standard Young tableaux (bitableaux) of shapes $\lambda, (\mu, \nu)$ respectively. Recall that
\[\chi^{\mu,\nu}(id) = f^{\mu,\nu} = \binom{n}{|\nu|} f^\mu f^\nu, \]
and that $\chi^{\mu,\nu}(\sigma_1)$ is equal to the number of standard Young bitableaux of shape (μ, ν), in which the digit 1 is in the first diagram μ, minus the number of those in which 1 is in the second diagram ν. Thus
\[\chi^{\mu,\nu}(\sigma_1) = \left(\frac{n-1}{|\nu|} \right) f^\mu f^\nu - \left(\frac{n-1}{|\nu| - 1} \right) f^\mu f^\nu = \frac{n - 2|\nu|}{n} \left(\binom{n}{|\nu|} \right) f^\mu f^\nu. \]

It follows that
\[c^{\mu,\nu} = \frac{n\chi^{\mu,\nu}(\sigma_1)}{\chi^{\mu,\nu}(id)} = n - 2|\nu|, \]
and therefore
\[(6.b) \quad \eta(v) = (n - 2|\nu|)v \quad (\forall v \in S^{\mu,\nu}). \]

Combining (6.a) with (6.b) completes the proof.

\[\square \]

Acknowledgments. The authors thank R. Howe, A. Regev, T. Seeman, N. Wallach and an anonymous referee for their useful comments.

References

[1] Y. Dvir, On the Kronecker product of S_n characters. J. Algebra 154 (1993), 125–140.

[2] C. Ehresmann, Sur la topologie de certains espaces homogènes. Ann. of Math. 35 (1934), 396–443.

[3] R. Goodman and N. R. Wallach, Representations and Invariants of the Classical Groups. Encyclopedia of Math. and its Appl. Vol. 68, Cambridge University Press, 1998.

[4] S. Helgason, A duality for symmetric spaces with applications. Adv. Math. 5 (1970), 1–54.
[5] R. Howe, Remarks on Classical Invariant Theory. Trans. Amer. Math. Soc. 313 (1989), 539–570.

[6] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann. 290 (1991), 565–619.

[7] A. T. James, Zonal polynomials of the real positive definite matrices. Annals of Math. 74 (1961), 456–469.

[8] G. D. James and A. Kerber, The Representation Theory of the Symmetric Group. Encyclopedia of Math. and its Appl. Vol. 16, Addison-Wesley, 1981.

[9] A. Kerber, Algebraic combinatorics via finite group actions. Bibliographisches Institut, Mannheim, 1991.

[10] B. Kostant, Lie algebra cohomology and the generalized Borel Weil theorem. Ann. of Math. 74 (1961), 329–387.

[11] J. P. Serre, Linear Representations of Finite Groups. Springer-Verlag, 1977.

[12] I. G. Macdonald, Symmetric Functions and Hall Polynomials. second edition, Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1995.

[13] A. Regev, The Kronecker product of \(S_n\) characters and an \(A \otimes B\) theorem for Capelli identities. J. Algebra 66 (1980), 505–510.

[14] G. Shimura, On differential operators attached to certain representations of classical groups. Invent. Math. 77 (1984), 463–488.

[15] R. P. Stanley, Enumerative Combinatorics, Volume II. Cambridge Univ. Press, Cambridge, 1999.

[16] J. R. Stembridge, On Schur Q-functions and the primitive idempotents of commutative Hecke algebra. J. Alg. Combin. 1 (1992), 71–95.

[17] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products. Pacific J. Math. 140 (1989), 359–396.

[18] R. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring. Amer. J. Math. 64 (1942), 371–388.