The Value Iteration Algorithm is Not Strongly Polynomial for Discounted Dynamic Programming

Eugene A. Feinberg, Jefferson Huang

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA

Abstract
This note provides a simple example demonstrating that, if exact computations are allowed, the number of iterations required for the value iteration algorithm to find an optimal policy for discounted dynamic programming problems may grow arbitrarily quickly with the size of the problem. In particular, the number of iterations can be exponential in the number of actions. Thus, unlike policy iterations, the value iteration algorithm is not strongly polynomial for discounted dynamic programming.

Keywords: Markov Decision Process, value iteration, strongly polynomial, policy, algorithm

1. Introduction
Value iterations, policy iterations, and linear programming are three major methods for computing optimal policies for Markov Decision Processes (MDPs) with expected total discounted rewards [1], [3, Chapter 6], also known under the name of discounted dynamic programming. As is well-known, policy iterations can be viewed as implementations of the simplex method applied to one of the two major linear programs used to solve MDPs; see e.g. [1], [3, Section 6.9]. Ye [5] proved that policy iterations are strongly polynomial when the discount factor is fixed. This note shows value iterations may not be strongly polynomial.

For value iteration, the best known upper bound on the required number of iterations was obtained by Tseng [4] (see also Littman [2] and Ye [5]), and is a polynomial in the number of states \(n \), the number of actions \(m \), the number of bits \(B \) needed to write down the problem data, and \((1 - \beta)^{-1}\), where \(\beta \in (0, 1) \) is the discount factor. Since the number of arithmetic operations needed per iteration is at most a constant times \(n^2 m \), this means that the value iteration algorithm is weakly polynomial if the discount factor is fixed.

This note provides a simple example that demonstrates that, if exact computations are allowed, the number of operations performed by the value iteration algorithm can grow arbitrarily quickly as a function of the total number of available actions. In particular, the running time can be exponential with respect to the total number of actions \(m \). Thus, unlike policy iterations, value iterations are not strongly polynomial.

2. Example
Consider an arbitrary increasing sequence \(\{M_i\}_{i=1}^\infty \) of natural numbers. Let the state space be \(X = \{1, 2, 3\} \), and for a natural number \(k \) let the action space be \(\mathcal{A} = \{0, 1, \ldots, k\} \). Let \(\mathcal{A}(1) = \mathcal{A}, \mathcal{A}(2) = \{0\} \) and \(\mathcal{A}(3) = \{0\} \) be the sets of actions available at states 1, 2, and 3, respectively. The transition probabilities are given by \(p(2|1, i) = p(3|1, 0) = p(2|2, 0) = p(3|3, 0) = 1 \) for \(i = 1, \ldots, k \). Finally, the one-step rewards are given by \(r(1, 0) = r(2, 0) = 0, r(3, 0) = 1, \) and

\[
r(1, i) = \frac{\beta}{1 - \beta}(1 - \exp(-M_i)), \quad i = 1, \ldots, k.
\]

Figure 1 below illustrates such an MDP for \(k = 2 \).
2.1. Discounted-reward criterion

Here we are interested in maximizing expected infinite-horizon discounted rewards. In particular, a **policy** is a mapping $\phi : X \rightarrow A$ such that $\phi(x) \in A(x)$ for each $x \in X$. It is possible to consider more general policies, but for infinite-horizon discounted MDPs with finite state and action sets it is sufficient to consider only policies of this form; see e.g. [3, p. 154]. Let F denote the set of all policies. Also, given an initial state $x \in X$, let P^ϕ_x denote the probability distribution on the set of possible histories $x_0a_0x_1a_1\ldots$ of the process under the policy ϕ with $x_0 = x$, and let E^ϕ_x be the expectation operator associated with P^ϕ_x. Then the expected total discounted reward earned when the policy ϕ is used starting in state $x \in X$ is

$$v_\beta(x, \phi) = E^\phi_x \sum_{t=0}^{\infty} \beta^t r(x_t, a_t).$$

The goal is to find an **optimal policy**, i.e. a policy ϕ^* such that $v_\beta(x, \phi^*) = \sup_{\phi \in F} v_\beta(x, \phi)$ for all $x \in X$. It is well-known that if X and A are finite, then an optimal policy exists; see e.g. [3, p. 154].

For the above described MDP each policy is defined by an action selected at state 1. Note that if action $i \in \{1, \ldots, k\}$ is selected, then the total discounted reward starting from state 1 is $r(1, i)$; if action 0 is selected, the corresponding total discounted reward is $\beta/(1 - \beta)$. Since

$$r(1, i) = \frac{\beta}{1 - \beta} (1 - \exp(-M_i)) < \frac{\beta}{1 - \beta}$$

for each $i = 1, \ldots, k$, action 0 is the unique optimal action in state 1.

2.2. Running time of value iterations

We are interested in obtaining the optimal policy using **value iteration**. In particular, set $V_0 \equiv 0$, and for each $x \in X$ and $j = 0, 1, \ldots$ let

$$V_{j+1}(x) = \max_{a \in A(x)} \{ r(x, a) + \beta \sum_{y \in X} p(y|x, a)V_j(y) \},$$

and

$$\phi^{j+1}(x) \in \arg\max_{a \in A(x)} \{ r(x, a) + \beta \sum_{y \in X} p(y|x, a)V_j(y) \}.$$

Since the numbers M_i increase in i, for $j = 0, 1, \ldots$

$$V_{j+1}(1) = \max \left\{ \frac{\beta(1 - \beta^j)}{1 - \beta}, \frac{\beta(1 - \exp(-M_k))}{1 - \beta} \right\},$$

$$V_{j+1}(2) = 0,$$

$$V_{j+1}(3) = \frac{1 - \beta^{j+1}}{1 - \beta},$$

which means that

$$\phi^{j+1}(1) = \begin{cases} k, & \text{if } j < M_k/(\ln \beta), \\ 0, & \text{if } j \geq M_k/(\ln \beta). \end{cases}$$
Hence more than $M_k/(-\ln \beta)$ iterations are needed to select the optimal action 0 in state 1. In particular, since $m = k + 3$, for $M_k = e^{k+3}$, $k = 1, 2, \ldots$, more than $e^m/(-\ln \beta)$ iterations are required to obtain the optimal policy.

References

[1] L.C.M. Kallenberg, Finite state and action MDPs, in: E.A. Feinberg, A. Schwartz (Eds.), Handbook of Markov Decision Processes, Kluwer, Boston, 2002, pp. 21–87.

[2] M.L. Littman, T.L. Dean, L.P. Kaelbling, On the complexity of solving Markov Decision Problems, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (1995) 394–402.

[3] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley & Sons, Inc., New York, 1994.

[4] P. Tseng, Solving h-horizon, stationary Markov Decision Problems in time proportional to $\log(h)$, Operations Research Letters 9 (1990) 287–297.

[5] Y. Ye, The simplex and policy-iteration methods are strongly polynomial for the Markov Decision Problem with a fixed discount rate, Mathematics of Operations Research 36 (2011) 593–603.