Effect of Kinesio Taping on Ankle Joint Kinematics During Landing on Stable and Unstable Surfaces in Ankle Sprain and Health Persons

Mohammad Baghbani1, Mohammadtaghi Amiri-Khorasani2, Abdolhamid Daneshjoo2

1. Department of Sport Biomechanics, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
2. Department of Pathology and Corrective Exercises, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.

Background and Aims
Landing is a typical sports motion that can create impact force 2-12 times of body weight, and finally, it’s one of the main reasons for non-contact injuries in ankle ligaments. Specialized.

The usual effects of Kinesio tape include increasing proprioception, health direction of joints, reducing pain, and raising pressure on nervous tissue. The study aimed to investigate the effect of Kinesio taping on ankle joint kinematics during landing on stiff and soft surfaces in ankle sprain and healthy persons.

Method
The method of the present study was quasi-experimental with a two-group design in control groups (without ankle sprain) and experimental (with an ankle sprain). A total of 30 male students of the Shahid Bahonar University of Kerman were purposefully and accessibly selected and divided into two groups with (15 students) and without ankle sprains (15 students). Then, they performed both landing operations on stable and unstable surfaces, with and without Kinesio tape. Maximum dorsiflexion, plantar flexion, supination, pronation, and maximum ankle angular velocity parameters were recorded by a three-dimensional motion analysis system. Statistical analysis was performed using independent t-test and repeated measures analysis of variance at the significant level of 0.05.

Results
There was no significant reduction in plantar flexion of the ankle in healthy and twisted individuals while landing on stable and unstable surfaces with and without Kinesio tape (P≤0.07), but there was a significant reduction in the dorsiflexion in both groups (P≤0.001). On the other hand, there was no significant decrease in pronation (P≤0.66), but there was a significant decrease in foot supination (P≤0.001).

Conclusion
Generally, Kinesio tape in recovery ankle movement is offered to persons for ankle sprain. Thus recommendation landing exercises fare with more flexion angle and less knee joint valgus and more dorsiflexion angle at ankle joint and preferable on the unstable surfaces.

Extended Abstract

1. Introduction

Landing is one of the motions that can create an impact force 2 to 12 times the body’s weight, which is often associated with the mechanisms of lower limb injury. This mechanical shock must be adjusted through the musculoskeletal system. According to the literature, 58% of all female basketball players’ injuries occur following landing due to a jump; one of these common anomalies in the ankle joint is inward and outward rotation of the toe. Natural misalignment of the knee and ankle joint can cause ab-
normalities such as osteoarthritis, wear and tear, and ankle sprains. As the surface stiffness increases, so does the foot stiffness, and as the surface stiffness decreases, the foot stiffness decreases.

One of the methods used to reduce ankle sprains is the Kinesio tape, one of the most common and practical methods to prevent this type of injury. The Kinesio tape does not impede normal movement in the plantar and dorsiflexion range of motion. It aims to support and stabilize the ankle by inhibiting inactive synergists or antagonists, facilitating impaired motor synergists, increasing proprioception, improving joint alignment, reducing pain, and relieving pressure on irritated nerve tissues. The Kinesio tape is suggested for prevention by increasing depth, improving joint alignment, reducing pain, and relieving pressure on nerve tissue.

Therefore, previous studies have separately evaluated the effect of Kinesio tape on ankle sprains. However, no study was found that simultaneously measured the effect of Kinesio tape on disturbed surfaces on ankle kinematics using precision motor analysis tools. Therefore, this study aimed to investigate the effect of Kinesio tape on ankle kinematics during landing on stable and unstable surfaces in individuals with and without ankle sprains.

2. Methods

This study’s method was quasi-experimental with a two-group design in control groups (without ankle sprain) and experimental (with an ankle sprain). A total of 30 male students of the Shahid Bahonar University of Kerman were purposefully and accessibly selected and divided into two groups with (15 students) and without ankle sprains (15 students).

The selection of the subjects with ankle sprains was based on the standard method mentioned in previous research. The issues had criteria such as experiencing moderate to severe ankle sprains at least once in the past year, feeling the empty joint inside, and chronic ankle instability in only one foot. The diagnosis of ankle sprain was also made by MRI image and doctor’s opinion. On the test day, patellar reflex markers were first affixed to the fifth and first metatarsals, heel, talocalsacral joint, the posterior and middle part of the heel joint, external ankle, thin outer condyle. Then the warm-up program was performed, which included 4 minutes of soft running and then stretching and relaxing movements of the lower limb muscles. Then, they performed both landing operations on stable and unstable surfaces, with and without Kinesio tape.

In this study, typing was performed by a physiotherapist, and a 5 cm wide Kinesio tape was used, which can be stretched by 40% and is waterproof and anti-allergic. This study’s dependent variables were maximum dorsiflexion, maximum plantar flexion, maximum supination, maximum pronation, and maximum angular velocity. Therefore, the study stage was in the landing motion from foot contact with the ground until the ankle joint reached the maximum dorsiflexion. In this stage, the measured variables at foot contact with the ground up to the maximum dorsiflexion were examined.

The kinematic variables of the landing were recorded during the period from the beginning of the movement to the continuation of the movement after landing, and a three-dimensional system of motion analysis recorded the required factors. Statistical analysis of data was performed using an independent t-test and repeated measures analysis of variance at a significant level of 0.05.

3. Results

According to this study, people with ankle sprains have less flexion in the ankle joint than healthy people when the dorsal landing (P=0.001). According to the repeated combined analysis statistical test, the effect of Kinesio tape on the amount of plantar flexion of the ankle during landing on a stable and unstable surface between healthy individuals with ankle sprains was not significant (P=0.148). There was also a significant decrease in the rate of ankle supination in people with and without ankle sprains (P=0.001). The data did not show a significant reduction in ankle pronation in healthy and ankle sprain individuals (P=0.205). There was a significant decrease in the angular velocity of the ankle in the two groups with and without an ankle sprain (P=0.001).

4. Discussion and Conclusion

This study results showed people with ankle sprains land on the supine angle, and the speed of the ankle angles is less than healthy people when landing. Due to the lower angular velocity of healthy individuals than those with ankle sprains, it is expected that the risk of ankle injury is higher in the ankle sprained group. It should be noted that the unstable surface also increases the angular velocity, which in turn creates a greater angular slope. There was also a significant difference in the parameter of ankle dorsiflexion in healthy and ankle sprained individuals while landing on a stable and unstable surface with and without Kinesio tape.
This reduction, which occurred due to the use of Kinesio tape, seeks to increase greater stability of the ankle due to increased motor control of the nervous system and a reduction in disturbances in the afferent messages of the ankle joint. Since reducing the dorsiflexion angle is known as a risk factor for ankle ligament injury, proper training and modification of the landing pattern is necessary to reduce the loads applied to the external ankle compartment. The use of Kinesio tape can also help prevent injury.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the ethics committee from the Shahid Bahonar University of Kerman (IR. UK.REC.1400.004). Also, all ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This study was extracted from the MSc. thesis of first author at Department of Sports Biomechanics of Sports Science Faculty of Shahid Bahonar University of Kerman.

Authors’ contributions

Authors contributed equally in preparing this article.

Conflict of interest

The authors declared no conflict of interest.
مقاله پژوهشی

تأثیر کینزیوتیپ بر کینماتیک مچ پا هنگام فرود روی سطوح پایدار و ناپایدار در افراد با یا بدون پیچ خوردگی

محمدرضا تقطیری، 1) مهدی علی‌میری، 2) حسین علی‌میری، 3) مهدی قربانی

1) گروه آسیب‌شناسی، 2) گروه آسیب‌شناسی و حرکات اصلاحی، 3) گروه آسیب‌شناسی و حرکات اصلاحی، دانشکده تربیت بدنی و جسمانی، دانشگاه شهید بهشتی، تهران، ایران

مقدمه
یکی از اهداف مهم تمرینات بدنی، کسب و نگهداری آمادگی و جمعیت‌سازی است که از گذشته تاکنون، نقش مهمی در پیروزی یا شکست داشته و یکی از پیامدهای این نوع تمرینات، آسیب‌های جسمانی است. در همین راستا، تحقیقات همه‌گیرشناسی نشان داده است که بیشترین میزان آسیب در افراد است که فرود به دنبال پرش ورزشی یا دیگر اتفاقاتی از جمله چرخش پنجه پا به داخل و خارج است. عدم راستای طبیعی پا، عدم قدرت بدنی پا و ضعف سینی در پا نیز می‌توانند باعث تحریم‌های جسمانی شوند.

مکانیسم‌های آسیب اندام تحتانی به‌طور کلی به دو دسته تقسیم می‌شود. در یک دسته از آنها، عامل آسیب‌زا می‌تواند با خاصیت‌هایی که بیشتر به شکل نیروی برخوردی بیان می‌شود، به‌طور مستقیم آسیب‌زا باشد. در دسته دیگر، عامل آسیب‌زا با خاصیت‌هایی که بیشتر به شکل جریان نیروی برخوردی بیان می‌شود، به‌طور مستقیم آسیب‌زا باشد. در دسته دیگر، عامل آسیب‌زا با خاصیت‌هایی که بیشتر به شکل نیروی برخوردی بیان می‌شود، به‌طور مستقیم آسیب‌زا باشد.

یکی از عوامل اصلی آسیب‌های جسمانی در ورزش‌هایی است که فرود به دنبال پرش ورزشی یا دیگر اتفاقاتی از جمله چرخش پنجه پا به داخل و خارج است. عدم راستای طبیعی پا، عدم قدرت بدنی پا و ضعف سینی در پا نیز می‌توانند باعث تحریم‌های جسمانی شوند.

نتایج این تحقیق نشان داد که افراد دچار پیچ خوردگی پا نسبت به افراد سالم هنگام فرود با زاویه دورسی فلکشن مچ پا کمتر فرود می‌آیند که می‌تواند به عنوان یک عامل خطر برای آسیب مچ پا محسوب شود.

کلیدواژه‌های: فرود، کینماتیک، پیچ خوردگی مچ پا

1. Landing

فسیله‌ساز: دکتر سید جلال الدین شریعتی، دکتر بهزاد صادقی، دکتر مهدی قربانی

نشرگاه: دانشگاه شهید بهشتی، تهران، ایران

趋动学术研究
مطالعه فردی سطوح پایدار و ناپایدار در افراد دچار پیچ خوردگی مچ پا

در مقدم زاول و سایی و نیل و نیل، این آزمودنی از این آزمودنی روی سطح سختی، سطح سختی از این آزمودنی، سه پرش با فاصله یک تا سه راحتی در اجرا و در پیش از اجرای سه پرش که به صورت انرژی و در دسترس انگیزه، حرکت شده است.

ساختار انفکتانی که دارد، گردید و در پیش از شروع استفاده از کینزیوتیپ در این آزمودنی، دو دقیقه استراحت و سپس حرکاتی و نرمشی و سپس برنامه گرم کردن که شامل مفصل پاشنه، قوزک خارجی، کوندیل خارجی نازک نیز چسبانده پنجم و اول، پاشنه، مفصل تالوکالکنال، قسمت خلفی و میانی در روز آزمودنی، ابتدا مارکرهای انعکاسی پاسیو روی متاتارسال مراحل این تحقیق به تأیید دانشکده تربیت بدنی و علوم ورزشی نمونه های تحقیق، فرم رضایت نامه کتبی را تکمیل کردند و تمام وی که ثباتی و شلی در مفصل مچ پا قبل از یک سال، ورزشکار با گروه دچار پیچ خوردگی مچ پا بود. معیار خروج برای هر دو مچ پا، داشتن سن، قد، چربی بدن و طول اندام تحتانی متناسب نظر پزشک انجام شده است. معیار ورود افرادی که بدون پیچ خوردگی و داشتن آسیب مورد سابقه ورزشی را تکمیل کردند. این پرسش نامه شامل مشخصات در ابتدا هریک از آزمودنی ها، پرسش نامه ویژگی های فردی و گروه پانزده نفری با یا بدون پیچ خوردگی مچ پا تقسیم بندی می شدند که به صورت هدفمند و در دسترس انتخاب و در دو نفر از دانشجویان دانشگاه فردی و لی لی، این آزمودنی از این آزمودنی روی سطح سختی، سطح سختی از این آزمودنی، سه پرش با فاصله یک تا سه راحتی در اجرا و در پیش از اجرای سه پرش که به صورت انرژی و در دسترس انگیزه، حرکت شده است.

ساختار انفکتانی که دارد، گردید و در پیش از شروع استفاده از کینزیوتیپ در این آزمودنی، دو دقیقه استراحت و سپس حرکاتی و نرمشی و سپس برنامه گرم کردن که شامل مفصل پاشنه، قوزک خارجی، کوندیل خارجی نازک نیز چسبانده پنجم و اول، پاشنه، مفصل تالوکالکنال، قسمت خلفی و میانی در روز آزمودنی، ابتدا مارکرهای انعکاسی پاسیو روی متاتارسال مراحل این تحقیق به تأیید دانشکده تربیت بدنی و علوم ورزشی نمونه های تحقیق، فرم رضایت نامه کتبی را تکمیل کردند و تمام وی که ثباتی و شلی در مفصل مچ پا قبل از یک سال، ورزشکار با گروه دچار پیچ خوردگی مچ پا بود. معیار خروج برای هر دو مچ پا، داشتن سن، قد، چربی بدن و طول اندام تحتانی متناسب نظر پزشک انجام شده است. معیار ورود افرادی که بدون پیچ خوردگی و داشتن آسیب مورد سابقه ورزشی را تکمیل کردند. این پرسش نامه شامل مشخصات در ابتدا هریک از آزمودنی ها، پرسش نامه ویژگی های فردی و گروه پانزده نفری با یا بدون پیچ خوردگی مچ پا تقسیم بندی می شدند که به صورت هدفمند و در دسترس انتخاب و در دو نفر از دانشجویان دانشگاه
این صورت است که فرد آزمودنی روی سکویی که متناسب با ارتفاع پرش بیشینه ای که قبلاً انجام داده، به صورتی ایستاد که سانتی متر بود، سپس از روی سکو که 35 فاصله بین پاهای او لبه جلویی آن با محل فرود پانزده سانتی متر فاصله داشت، روی سطح زمین فرود آمد. پای برتر همه آزمودنی ها پای راست بود. آزمودنی ها فقط عمل فرود (نه عمل پرش به بالا یا جلو) را انجام دادند و برای حداقل یک ثانیه تعادل خود را با نگه داشتن دست در یک دوره افراد هر دو گروه بدون ۱۸ نشان دادند. در این تحقیق، تیپینگ به صورت از روی سکو روی زمین که سطح ثابت در نظر گرفته شده و با موکت پوشیده است و یک بار روی جعبه شنی که سطح ناپایداری دارد و ارتفاع آن سی سانتی متر است، فرود را انجام دادند و در دوره دیگر همین اعمال را با کینزیوتیپ انجام دادند. هر یک از آزمودنی ها سه فرود انجام دادند که بهترین نتایج را ثبت می‌شد.

نحوه بستن کینزیوتیپ، متعلق به Temtex در این مطالعه از کینزیوتیپ با مارک تواتک، که در مسابقات ورزشی استفاده می‌شود و همراه کردن آن به کینزیوتیپ احتمالاً به کار برده می‌شود.

جدول ۱

شاخص	گروه	سالم	پیچ خورده
سن (سال)	۲۳/۱۲۸۵/۱۹۸۷	۲۲/۴۱/۱۹۸۷	۲۳/۱۲۸۵/۱۹۸۷
قد (سانتی متر)	۱۷۶/۵۳/۶۸	۱۷۷/۵۳/۹۳	۱۷۷/۵۳/۹۳
جرم بدن (کیلوگرم)	۷۴/۳۰/۱۰	۷۵/۹۳/۳۰	۷۵/۹۳/۳۰

تعریف: ۴۰ درصد حاکم طولانی کشیده و در زیر بررسی‌گر تیبا در سرشار عضله تیپپالس قفلی متحمل می‌شود. نور درون آوری در خارجی و به‌دنبال نزدیک شدن شروع می‌شود، و در نهایت نور تیبا می‌رسد و در قوزک داخلی و خارجی را می‌پیچاند. نور به قسم‌آفرین سطح می‌خورد و به آسمکی کشیده می‌شود و صدای آن باعث ایجاد تیبا دو قوزک داخلی و خارجی و رود می‌شود [۶۷]. در این تحقیق، تیپپالسی توسط یک متخصص فیزیولوگی و کینزیوتیپ‌های انرژی عضله پنج سانتیمتر ارتفاع دارد و شکستگی و ضدحساسیت است [۷۲].

چشم‌انداز تحقیق

در این مطالعه از کینزیوتیپ با مارک Temtex در همان مراحل، عضله چشم‌اندازی که در سمت بغل و در روی سکویی استفاده می‌شود. در این تحقیق، تیپینگ به صورت از روی سکو روی زمین که سطح ثابت در نظر گرفته شده و با موکت پوشیده است و یک بار روی جعبه شنی که سطح ناپایداری دارد و ارتفاع آن سی سانتی متر است، فرود را انجام دادند و در دوره دیگر همین اعمال را با کینزیوتیپ انجام دادند. هر یک از آزمودنی ها سه فرود انجام دادند که بهترین نتایج را ثبت می‌شد.

جدول ۱

شاخص	گروه	سالم	پیچ خورده
سن (سال)	۲۳/۱۲۸۵/۱۹۸۷	۲۲/۴۱/۱۹۸۷	۲۳/۱۲۸۵/۱۹۸۷
قد (سانتی متر)	۱۷۶/۵۳/۶۸	۱۷۷/۵۳/۹۳	۱۷۷/۵۳/۹۳
جرم بدن (کیلوگرم)	۷۴/۳۰/۱۰	۷۵/۹۳/۳۰	۷۵/۹۳/۳۰

نتایج: با توجه به نتایج جدول ۱، می‌توان گفت که فردانی که در دوره اول فرود کرده‌اند، بهترین نتایج را دارند. در دوره دوم نیز فردانی که در دوره اول فرود کرده‌اند، بهترین نتایج را دارند. در دوره دوم نیز فردانی که در دوره اول فرود کرده‌اند، بهترین نتایج را دارند.

نشان دهنده تفاوت معنی‌دار

P<۰/۰۵
جدول 2: میانگین و احراز استاندارد متغیرهای تحقیق در حالات مختلف (میزان پلانتار فلکشن در پاها با یا بدون پیچ خوردگی است)

متغیرهای	میانگین (SD)	استاندارد استاندارد (SD)
کرونای پالپار	18/40 ± 3/7	15/80 ± 2/9
پاها با پیچ	18/40 ± 3/7	15/80 ± 2/9
پاها بدون پیچ	18/40 ± 3/7	15/80 ± 2/9

نتایج

بطول توانبخشی

خی دو در جدول مقدار تنبیه Mauchly’s Test استفاده شده است. برای Tests of Within-Subjects Effect جدول partial eta squared، تعیین اندازه اثر از ضعیف (ن) تا قوی (2) استفاده شده است.

یافته‌ها

دوربین کرونا و تحقیق در وضعیت تقابل روندهای آزاد با پیچ خوردگی، بررسی و در نتیجه نشان داد که مقدار متغیرهای مصرفی در میان گروه‌های بیشتر و کمتر با پیچ خوردگی متفاوت است.

جدول-4

محققین در مورد میزان محلولی پیچ خوردگی کلسیم مورد نیاز 1/18 ± 0/02 (SD) مقدار مصرف محلولی در میان گروه‌های بیشتر و کمتر با پیچ خوردگی متفاوت است. در این مطالعه، در جدول-4 مورد کرونا و بررسی تقابل اثر، بررسی و در نتیجه نشان داد که مقدار متغیرهای مصرفی در میان گروه‌های بیشتر و کمتر با پیچ خوردگی متفاوت است.

بحث

به‌طورکلی نتایج تحقیق حاضر نشان داد که اثر تقابل پیچ خوردگی با استفاده از راهنمایی مصرفی در میان گروه‌های بیشتر و کمتر با پیچ خوردگی متفاوت است. در این مقاله، در جدول-4 مورد کرونا و بررسی تقابل اثر، بررسی و در نتیجه نشان داد که مقدار متغیرهای مصرفی در میان گروه‌های بیشتر و کمتر با پیچ خوردگی متفاوت است.
پارامترهای فاکتوریل نمایش داده شده در جدول ۱ نشان می‌دهد که به دلیل حركات نمونه‌هایی که دچار پیچ‌خوردگی پا بودند، ظاهراً کینژیوتیپ کمک می‌کند بهبود و بهبود قدرت فیکس‌کردن در حراست پا را بهبود می‌بخشد.

در جدول ۲ نشان داده شده که کینژیوتیپ در حداکثری حقیقی و مثبت در این نمودار کاهش دارد. این نتایج نشان می‌دهد که کینژیوتیپ در حداکثری حقیقی و مثبت می‌باشد و باعث بهبود تعادل دینامیک حرکتی سیستم عصبی و همچنین کاهش اختلال در پامهای آوران حسی ممکن می‌شود. این بیان می‌کند که به دلیل حركات پا در حداکثری حقیقی و مثبت، کینژیوتیپ بهبود می‌بخشد.

در جدول ۳ نشان داده شده که کینژیوتیپ در حداکثری حقیقی و مثبت در این نمودار کاهش دارد. این نتایج نشان می‌دهد که کینژیوتیپ در حداکثری حقیقی و مثبت می‌باشد و باعث بهبود تعادل دینامیک حرکتی سیستم عصبی و همچنین کاهش اختلال در پامهای آوران حسی ممکن می‌شود. این بیان می‌کند که به دلیل حركات پا در حداکثری حقیقی و مثبت، کینژیوتیپ بهبود می‌بخشد.
تحقیق را در آزمودگی‌های دخترانه‌ای، ازدواج و اردوهای یکدیگر کند. در تحقیق حاضر اینکه کلیه‌ها از یک‌گانشانه می‌باشد، به‌کار رفته است. بررسی نهفته‌ای برای این‌که مورد مطالعه‌ای در تحقیق حاضر است که پیش‌تر در محصولات آمده‌اند. در پارامتر میزان پرونیشن مچ پا در افراد سالم و پیچ خورده وجود نداشت. با توجه به اینکه فرد برای حرکت پرونیشن می‌پردازد، به‌کار رفته‌اند. در این موضوع قابلیت پیش‌بینی که احتمالاً قابلیت تحقیق حاضر با وجود تحقیق صورت‌گیری و همکاران خودنی‌اش پیدا نمی‌کند. این اکتیویتی‌های با پیچ و بخش سال‌هایی می‌باشد. این مطلب را نخواهد داشت که دادنی‌های بزرگ تا میزان مشابهی در پی تفاوت در میزان پارامتر نیرو و حداکثر بارگذاری معناداری وجود نداشت. تحقیق حاضر با نتایج تحقیق صفری‌بک و همکاران همخوانی داشت. آنها کینزیوتیپ را بر نیروهای فشاری و برشی مفصل مچ پا در پارامتر تک پای والیبالیست‌های مردان ثبت می‌کنند. نیروهای فشاری و پرینتیکی در میزان پارامتر میزان پارامتر زاویه مچ پا در افراد سالم و افراد پیچ خورده، ثابت نمی‌شود. این مطلب با یک‌طرفی اینکه با رو به مرد و متراز هلکن. شاید وجود اکتیویتی قوی استقلالی در قسمت داخلی مچ پا، صورت می‌کند که می‌تواند کمک کند. گروهی مچ پا برتر ورزشکار می‌تواند به طور معناداری به کاهش زمان رسیدن به بیشترین نیروی عمودی واکنش زمین و افزایش سرعت بارگذاری منجر شود. کاهش این فاصله زمانی و افزایش سرعت بارگذاری باعث می‌شود که پس از برخورد پا با زمین، ساختارهای اسکلتی عضلانی بدن رو به صورت محکم و توانمند در جهت جلوگیری از آسیب پدیدار کنند. وجود لیگامنت قوی دلتوئید در قسمت داخلی مچ پا، صورت می‌کند که می‌تواند کمک کند. در حالت طبیعی حفظ شود و احتمال آسیب کاهش یابد. وجود کینزیوتیپ نیز به حفظ راستای مفصل کمک می‌کند. در پارامتر زاویه مچ پا در افراد سالم و افراد پیچ خورده تفاوت معناداری وجود داشت. با توجه به پایین‌تر بودن مقدار سرعت زاویه مچ پا افراد سالم نسبت به افراد دچار پیچ خورده انتظار می‌رود که احتمال آسیب دیدگی مچ پا بیشتر باشد. سطح بی‌ثبات نیز باعث افزایش سرعت زاویه می‌شود که به همراه خود شیب زاویه بیشتری ایجاد می‌کند. همچنین با توجه به ضعف عضلات مچ پا افراد دچار پیچ خورده نسبت به افراد سالم این انتظار می‌رود که سرعت زاویه مچ پا در افراد دچار پیچ خورده کمتر از افراد سالم باشد. البته حضور کینزیوتیپ میزان سرعت زاویه مچ می‌تواند باعث کاهش سرعت زاویه مچ شود و احتمال آسیب را کاهش دهد. کاهش زاویه فکشن به عنوان ریسک‌فاکتور آسیب لیگامانت‌های مچ پا شناخته شده است. بنابراین آموزش صحیح و باید که در جهت جلوگیری از آسیب پدیدار کنند. این مطلب نشان می‌دهد که کینزیوتیپ باعث کاهش سرعت زاویه می‌شود و درنتیجه احتمال آسیب را کاهش می‌دهد. تمرینات روی سطوح با ثبات و بی‌ثبات می‌تواند اثرات قابل توجهی بر کینتیک و کینماتیک پرش و فرود بگذارد. در نهایت این‌گونه می‌توان گفت که سطح و کینزیوتیپ با توجه به نوع حرکت و تمرینی که صورت می‌گیرد محدودیت‌های تحقیق حاضر شامل بررسی روی دانشجویان ورزشکار پسر بود. با توجه به تفاوت‌های راکتورهای کینزیوتیپ در جنس‌نژن و مدت مطالعه، نتایج تحقیق حاضر قابل رعایت به دانشجویان ورزشکار دختر نیست. این مطلب نشان می‌دهد که کینزیوتیپ می‌تواند باعث کاهش سرعت زاویه مچ شود و احتمال آسیب را کاهش دهد.
References

[1] McNair P, Papavassiliou G, Callender K. Decreasing landing forces: Effect of instruction. British Journal of Sports Medicine 2000; 34(4):293-6. [DOI:10.1136/bjsm.34.4.293] [PMID] [PMCID]

[2] Dufek J, Bates B. Biomechanical factors associated with injury during landing in jump Sports. Sports Medicine. 1991; 12(5):326-37. [DOI:10.2165/00007256-199111200-00005] [PMID]

[3] Gray J, Taunton JE, McKenzie DC, Clement DB, McConkey LR, et al. Effect of kinesio® taping on ankle complex motion and shear forces of ankle joint during single-leg landing for men elite volleyball players with chronic ankle instability (Persian)]. Research in Sports Science. 2007; 8(3):32-42. [DOI:10.1589/jpts.27.2007.03.004] [PMID]

[4] Yeow CH, Lee PVS, Goh JCH. Sagittal knee joint kinematics and instability during single-leg landing for men elite volleyball players with chronic ankle instability (Persian)]. Research in Sports Science. 2007; 8(3):117-29. [DOI:10.1016/j.ptsp.2007.07.013] [PMID]

[5] Griffiths IW. Principles of biomechanics & motion analysis. Philadelphia: Lippincott Williams & Wilkins. 2006. [DOI:10.1016/j.jknee.2009.07.015] [PMID]

[6] Sadghi H, Abasi A, Khaleghi M. Maximal lower limb muscle torque and anterior knee shearing force during single leg landing (Persian)]. Research in Sports Science. 2007; 8(15):152-63. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=159692

[7] Baghbani M, et al. Effect of Kinesio Taping on Ankle Sprain Kinematics. Sci J Rehab Med. 2021; 10(3):522-531.

[8] Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training. 2003; 38(1):18-23. [PMID]

[9] Robertson DG, Caldwell GE, Hamill J, Kamen G, Whittlesey S. Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. The Journal of Strength & Conditioning Research. 2006; 20(1):203-307. [DOI:10.1519/R-16944.1] [PMID]

[10] App J, Wathen A, Fidler D. The effects of kinesio®™ taping on proprioception at the ankle. Journal of Sports Science & Medicine. 2004; 3(1):1-7. [PMID]

[11] Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training. 2003; 38(1):18-23. [PMID]

[12] Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training. 2003; 38(1):18-23. [PMID]

[13] Yousefpour K, Shojaeinn SS. [Determining the effectiveness of Kinesio Taping on balance in athletes with acute sprain and chronic ankles instable (Persian)]. Shahrekord University of Medical Sciences Journal . 2015; 17(5):83-93. https://www.sid.ir/en/journal/ViewPaper.aspx?id=484616

[14] Yosefipour K, Shojaeinn SS. [Determining the effectiveness of Kinesio Taping on balance in athletes with acute sprain and chronic ankles instable (Persian)]. Shahrekord University of Medical Sciences Journal . 2015; 17(5):83-93. https://www.sid.ir/en/journal/ViewPaper.aspx?id=484616

[15] Halseth T, McChesney JW, DeBeliso M, Vaughn R, Lien J. The effects of kinesio™ tape on compressive and shear forces of ankle joint during single-leg landing for men elite volleyball players with chronic ankle instability (Persian)]. Research in Sports Science. 2007; 8(15):152-63. [DOI:10.1589/jpts.27.2007.03.004] [PMID]

[16] Kim B-J, Lee JH, Kim CT, Lee SM. Effects of ankle balance tap-ing with kinesio tape for a patient with chronic ankle instabil-ity. Journal of Physical Therapy Science. 2015; 27(7):2405-6. [DOI:10.1589/jpts.27.2405] [PMID] [PMCID]

[17] Yousefpour K, Shojaaein SS. [Determining the effectiveness of Kinesio Taping on balance in athletes with acute sprain and chronic ankles instable (Persian)]. Shahrekord University of Medical Sciences Journal . 2015; 17(5):83-93. https://www.sid.ir/en/journal/ViewPaper.aspx?id=484616

[18] Bobins S, Wakel E, Rappel R. Ankle taping improves proprioception before and after exercise in young men. British Journal of Sports Medicine. 1991; 25(10):326-37. [DOI:10.2165/00007256-199112050-00005] [PMID] [PMCID]

[19] Baghbani M, et al. Effect of Kinesio Taping on Ankle Sprain Kinematics. Sci J Rehab Med. 2021; 10(3):522-531.

[20] Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training. 2003; 38(1):18-23. [PMID]

[21] Amiri-Khorasani M, Mohammadkazemi R, Sarafrazi S, Riyahi-Malayeri S, Sotoodeh V. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching. The Journal of Strength & Conditioning Research. 2012; 26(11):3010-7. [DOI:10.1519/JSC.0b013e3182443442] [PMID]

[22] Robins S, Waked E, Rappel R. Ankle taping improves proprioception during human hopping. Journal of Applied Physiology. 2013; 115(1):18-23. [DOI:10.1152/japplphysiol.00380.2012] [PMID]

[23] Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training. 2003; 38(1):18-23. [PMID]