Symmetric Vertices for Symmetric Modules in Characteristic 2

John C. Murray

In memory of J. A. Green

Abstract

Let G be a finite group and let k be an algebraically closed field of characteristic 2. We develop the theory of kG-modules with symmetric G-forms using the notion of an involutary G-algebra. In particular we investigate orthogonal decompositions, induction from subgroups and relative projectivity by adapting as far as possible the theory of G-algebras.

Fong’s Lemma asserts that each nontrivial self-dual irreducible module has a symplectic geometry. We show that in addition to its vertex, such a module has a symplectic vertex.

1. Introduction

1.1. Main Results

Throughout the paper G is a finite group, k is an algebraically closed field of characteristic 2 and M is a finite dimensional left kG-module. A symmetric G-form on M is a non-degenerate symmetric bilinear form $B : M \times M \to k$ such that $B(gm_1, gm_2) = B(m_1, m_2)$, for all $m_1, m_2 \in M$ and $g \in G$. If B exists we say that M is of symmetric type and call (M, B) a symmetric kG-module.

Each finite dimensional k-vector space has one isometry class of non-degenerate non-symplectic symmetric bilinear forms. We refer to these as diagonal forms. An even dimensional space has in addition one isometry class of non-degenerate symplectic bilinear forms. As $\text{char}(k) = 2$, each symplectic form is symmetric. We say that (M, B) is of diagonal or symplectic type, depending on the type of B.

Recall that M is said to be H-projective, for $H \leq G$, if M is a component of an induced module $\text{Ind}_H^G L$, for some kH-module L. If M is indecomposable, a vertex of M is a 2-subgroup V of G which is minimal subject to M being V-projective. By a result of J. A. Green \cite{6}, the vertices of M are determined up to G-conjugacy.

There is a standard way of inducing a symmetric kH-module (L, B_1) to a symmetric kG-module $\text{Ind}_H^G(L, B_1)$. We say that B is H-projective if there is a kG-isometry $(M, B) \to \text{Ind}_H^G(L, B_1)$, for some symmetric kH-module (L, B_1). We say M is symmetrically H-projective if it has a symmetric G-form which is H-projective.

Now suppose that M is indecomposable and of symmetric type. In \cite{2,3} we define a symmetric vertex of M to be a subgroup T of G which is minimal subject to M being symmetrically T-projective.

Theorem 1.1. Each symmetric vertex contains a vertex with index at most 2.
For any symmetric G-form B, we do not know whether the minimal subgroups $T \leq G$ for which B is T-projective form a single G-orbit. However, T is determined by B, if it happens to be a symmetric vertex:

Theorem 1.2. If B is T-projective, where T is a symmetric vertex of M, then B is H-projective, for $H \leq G$, if and only if $T \leq_G H$.

The trivial module has a diagonal G-form, and P. Fong [2] noted that each non-trivial self-dual irreducible kG-module has a symplectic G-form, determined up to a non-zero scalar. So Theorem 1.2 implies:

Theorem 1.3. The symmetric vertices of a self-dual irreducible kG-module are determined up to G-conjugacy.

It is clear (from the proof) that this is true for any indecomposable kG-module which has only one isometry class of symmetric G-forms.

Let e be a primitive idempotent in $Z(kG)$ with $e = e^o$. Then ekG is an indecomposable $kG \times G$-module, and a real 2-block of G. In addition to defect groups, ekG has extended defect groups, in the sense of [3].

Theorem 1.4. Let E be an extended defect group of the real 2-block ekG. Then ΔE is a symmetric vertex of ekG, as $G \times G$-module.

In fact, let B_1 be the standard $G \times G$-invariant diagonal form on kG. Then its restriction B_e to ekG is non-degenerate and ΔE-projective. We do not know whether kGe can have a symmetric vertex which is not $G \times G$-conjugate to ΔE.

We prove Theorems 1.2, 1.3 and 1.4 in 3.3.

As regards the rest of the paper, we begin in 1.2 by discussing the failure of unique factorization (the Krull-Schmidt Theorem) for symmetric kG-modules. So classical arguments about the vertices of indecomposable kG-modules cannot be directly applied to symmetric kG-modules.

Given a group representation $G \to \text{GL}(M)$, the endomorphism ring $E(M) = \text{End}_k(M)$ of M is a G-algebra. We use $E_G(M)$ to denote the algebra of kG-endomorphisms in $E(M)$.

The adjoint of a G-form B on M is a k-involution σ of $E(M)$. A key idea in this paper is to study (M, B) via the involutory G-algebra $(E(M), \sigma)$. Note that σ acts on the points, maximal ideals and multiplicity algebras of $E(M)$. The most general results that we obtain using this approach are Propositions 3.11, 3.13 and 3.14.

Lemma 2.1 is an idempotent lifting result for involutory k-algebras. This is a trivial, yet vital, generalization of [10], 1.4. In the rest of 2.1 we clarify the relationship between bilinear forms and their adjoints. Lemma 2.4 shows that each projective representation of G lifts to a representation of G, in the presence of a G-equivariant involution.

We consider the action of σ on $E_G(M)$ in 2.2 Lemma 2.6 gives a bijection between $E_G(M)$ and perfect G-pairings between pairs of submodules and Proposition 2.9 gives a bijection between non-degenerate submodules and self adjoint idempotents. We use these ideas to prove the main result of [5], in Lemma 2.12.

In 2.3 we explore the concept of H-projectivity for forms. The notion of ‘form induction’ appears in many places, for example [5], [13] and [14]. In particular [13] was a key inspiration for this paper. We prove a symmetric version of Higman’s Criterion in Lemma 2.15.
Many of the results in 3.1 on principal indecomposable modules appear in a weaker or disguised form in [4] or [13]. Corollary 3.7 gives a clean proof of a result of the author which is related to [15].

All our vector spaces and modules are finite dimensional and algebras and groups act on the left on their modules, unless stated otherwise.

1.2. Krull-Schmidt

Temporarily, let k be a field of arbitrary characteristic. Each kG-module M has a decomposition $M = M_1 + \ldots + M_k$ where the M_i are indecomposable kG-modules. The Krull-Schmidt theorem is the assertion that the summands are uniquely determined up to isomorphism and ordering.

Now suppose that B is a symmetric (alternating) G-form on M. Then $(M, B) = (M_1, B_1) \perp \ldots \perp (M_k, B_k)$ where each (M_i, B_i) is orthogonally indecomposable. W. Willems proved in his Ph.D. Thesis [17] 3.11) that the analogue of Krull-Schmidt holds, if $\text{char}(k) \neq 2$; the (M_i, B_i) are uniquely determined up to isometry and ordering. He also showed that this is false if $\text{char}(k) = 2$.

From now on $\text{char}(k) = 2$. The following examples show that in this case the obvious analogue of the Krull-Schmidt theorem does not hold for symmetric kG-modules.

Example 1. Let M be a kG-module. There is a perfect G-pairing $P : M^* \times M \to k$ given by evaluation $P(f, m) := f(m)$, for all $f \in M^*$ and $m \in M$. This extends to a symmetric G-form, also denoted P, on $M^* \oplus M$, which is zero when restricted to M^* or to M.

Now suppose that M is indecomposable. Then $(M^* \oplus M, P)$ is orthogonally indecomposable. Suppose that M has a symmetric G-form B. In particular $M \cong M^*$ as kG-modules. The ‘diagonal’ submodule of $(M, B) \perp (M, B) \perp (M, B)$ is isomorphic to (M, B), and its orthogonal complement is isomorphic to $(M^* \oplus M, P)$. So we have incomparable orthogonal decompositions into indecomposables

$$(M, B) \perp (M, B) \perp (M, B) \cong (M, B) \perp (M^* \oplus M, P)$$

where even the dimensions of indecomposables do not match up.

In view of Lemma 2.1 and the proof of Lemma 2.12 this is a generic phenomenon originating in decompositions of symmetric k-spaces.

Example 2. [17] 3.13] Let $V_4 = \{1, r, s, t\}$ be the Klein 4-group, and let M be the regular kV_4-module. The V_4-invariant symplectic bilinear forms on M are $\{B_x \ | \ x \in kV_4, B_1(x, 1) = 0\}$, in the notation of 2.1 below. Moreover B_x is non-degenerate if and only if $B_1(x, x) \neq 0$, and $(M, B_x) \cong (M, B_y)$ if and only if $y = \lambda x$, for some $\lambda \in k^\times$. Consider the symplectic kV_4-module $(M, B_r) \perp (M, B_s)$. Its non-degenerate submodules are parametrized by the nondiagonal 1-dimensional subspaces of k^2. So any two distinct orthogonal decompositions of $(M, B_r) \perp (M, B_s)$ give non-isomorphic indecomposable components, and the module has infinitely many such decompositions

$$(M, B_r) \perp (M, B_s) = (M, B_{ar + \beta s}) \perp (M, B_{\beta r + \alpha s}), \text{ if } \alpha \neq \beta.$$
Each \(\gamma \in \mathcal{M} \) of \(A \) is an idempotent \(\in A \). \(\hat{M} \), \(\hat{L} \) and \((\gamma \eta) = \hat{M} \cdot \hat{L} \). \(M \rightarrow \hat{M} \) is a \(\mathcal{M} \)-isometry. If \(a \in \mathcal{M} \), \(\hat{M} \) is a \(\mathcal{M} \)-invariant symmetric bilinear form on \(M \) and \(\alpha_j : (M,\hat{M}) \rightarrow (L_j,\hat{B}_j) \) is an isometry.

2. General results on Forms and Adjoints

2.1. Involutions, Forms and Adjoints

Let \(A \) be a \(k \)-algebra, with units group \(A^\times \). A point of \(A \) is a \(A^\times \)-conjugacy class \(\epsilon \) of primitive idempotents of \(A \). There is a unique maximal 2-sided ideal \(\mathcal{M}_\epsilon \) of \(A \) which does not contain \(\epsilon \). The multiplicity module of \(\epsilon \) is the irreducible \(A \)-module \(P_\epsilon \) whose annihilator is \(\mathcal{M}_\epsilon \), and the multiplicity algebra of \(\epsilon \) is \(E(P_\epsilon) = A/\mathcal{M}_\epsilon \). We use \(\pi_\epsilon \) to denote the projection \(A \rightarrow E(P_\epsilon) \).

An involution of \(A \) is a \(k \)-algebra anti-automorphism \(\tau \) on \(A \) whose square is the identity. We write \(a^\tau \) for the image of \(a \in A \) under \(\tau \). So \(\tau \) is a bijective \(k \)-linear map on \(A \) such that \((a^\tau)^\tau = a \) and \((ab)^\tau = b^\tau a^\tau \), for all \(a, b \in A \). We call \((A,\tau) \) an involutary \(k \)-algebra.

Now \(\epsilon^\tau \) is a point of \(A \) and \(\mathcal{M}_\epsilon \cap \mathcal{M}_{\epsilon^\tau} \) is a \(\tau \)-invariant ideal of \(A \). So \(\tau \) defines an involution, also denoted by \(\tau \), on the \(k \)-algebra \(A/\mathcal{M}_\epsilon \cap \mathcal{M}_{\epsilon^\tau} \). We use \(\pi_{\epsilon,\epsilon^\tau} = \pi_\epsilon \times \pi_{\epsilon^\tau} \) to denote the projection \(A \rightarrow E(P_\epsilon) \times E(P_{\epsilon^\tau}) \).

If \(I \) is a 2-sided ideal of \(A \), set \(\overline{A} = A/I \) and \(\overline{\tau} = a + I \in \overline{A} \). This notation should be clear from context. We will make extensive use of an idempotent lifting result which is given in weaker form in [10] 1.4:

Lemma 2.1. Let \((A,\tau) \) be an involutary \(k \)-algebra and let \(I \) be a \(\tau \)-invariant 2-sided ideal of \(A \). Suppose that \(\overline{\tau} \) is a \(\tau \)-invariant idempotent in \(\overline{A} \). Then there is a \(\tau \)-invariant idempotent \(e \in A \) such that \(\overline{\tau} = \overline{\pi}_\tau \) and \(e = f(aa^\tau) \) for some \(f \in \text{rk}[x] \). In particular \(e \in aAa^\tau \).

If \(\overline{\tau} \) is primitive in \(\overline{A} \) then \(e \) can be chosen to be primitive in \(A \).

Proof. Note that \((\overline{A},\overline{\tau}) \) is an involutary \(k \)-algebra, via \(\overline{a^\tau} := \overline{a}^\tau \), for all \(a \in A \). We may assume that \(\overline{T} \) and \(\overline{\pi} \) are linearly independent in \(\overline{A} \). Set \(b = aa^\tau \). Then \(b^\tau = b \) and \(\overline{b} = \overline{\pi}_\tau \overline{\pi} = \overline{\pi} \). We apply idempotent lifting [8, (3.2)] to the \(k \)-algebra \(k[b] \) modulo its ideal \(k[b] \cap I \). So there is an idempotent \(e \in k[b] \) such that \(\overline{\pi} = \overline{b} \). Then \(e \) is \(\tau \)-invariant as \(b \) is \(\tau \)-invariant and \(k[b] \) is commutative. Write \(e = f(b) \), where \(f \in \text{rk}[x] \). Then \(\overline{\pi} = f(0)\overline{T} + (f(1) - f(0))\overline{\pi} \). So \(f(0) = 0 \).
Now suppose that π is primitive in \mathfrak{A}. The proof of [8 (3.10)] shows that we may choose $e \in k[b]$ to be a primitive idempotent in A. \hfill \Box

Let M be a k-vector space. The endomorphism ring $E(M)$ is isomorphic to a full matrix algebra over k. By a form on M we mean a non-degenerate k-valued bilinear form. Let B be a symmetric form on M. We call (M, B) a symmetric k-space. The adjoint of B is a k-algebra anti-automorphism σ of $E(M)$: the adjoint f^σ of $f \in E(M)$ is defined by $B(m_1, fm_2) = B(f^\sigma m_1, m_2)$, for all $m_1, m_2 \in M$. We note that $(E(M), \sigma)$ is an involutary k-algebra.

Let $M^* = \text{Hom}_k(M, k)$ be the dual space of M. So $M^* \otimes M^*$ is the space of bilinear forms on M. For $f \in E(M)$, define the bilinear form

$$B_f(m_1, m_2) := B(fm_1, m_2), \quad \text{for all } m_1, m_2 \in M. \quad (2.1)$$

So $f \rightarrow B_f$ is a k-isomorphism $E(M) \rightarrow M^* \otimes_k M^*$, B_f is symmetric if and only if $f = f^\sigma$, and B_f is non-degenerate if and only if $f \in E(M)$.

Lemma 2.2. (i) If σ is an involution of $E(M)$, then up to scalars M has a unique symmetric form with adjoint σ.

(ii) Let $M = M_1 + M_2$ and let σ be an involution of $E(M_1) \times E(M_2)$ such that $1_{M_1} = 1_{M_2}$. Then σ has a unique extension to an involution of $E(M)$. The associated form on M is symplectic with $M_1^\perp = M_1$.

Proof. Let B be a symmetric form on M with adjoint τ on $E(M)$. In case (ii) we require in addition that B is symplectic and M_1, M_2 are totally isotropic for B. In particular $1_{M_1} = 1_{M_2}$.

Assume (i). Then $\sigma \tau$ is an automorphism of $E(M)$. So by the Skolem-Noether theorem there is $g \in \text{GL}(M)$ such that $f^{\sigma \tau} = gf g^{-1}$, for all $f \in E(M)$. So $f^\sigma = g^{-\tau} f^\tau g^\tau$. Set $B_g(m_1, m_2) := B(gm_1, m_2)$, for all $m_1, m_2 \in M$. Then B_g is a symmetric form whose adjoint is σ. Moreover g, and thus B_g, is determined up to a non-zero scalar.

Assume (ii). Then 1_{M_1} and 1_{M_2} are the projections onto M_1 and M_2 with kernels M_2 and M_1, respectively. We identify $1_{M_1} E(M_1) 1_{M_1} + 1_{M_2} E(M_1) 1_{M_2}$ with $E(M_1) \times E(M_2)$. Now $\sigma \tau$ maps each $E(M_i)$ onto itself and hence restricts to an automorphism on the semi-simple k-algebra $E(M_1) \times E(M_2)$. By the Skolem-Noether theorem there exists $g_i \in \text{GL}(M_1)$, and $g_2 \in \text{GL}(M_2)$, each determined up to a nonzero scalar, such that $(f_1 + f_2)^{\sigma \tau} = (g_1 f_1 g_1^{-1} + g_2 f_2 g_2^{-1})$, for all $f_1 \in E(M_1)$ and $f_2 \in E(M_2)$. Applying τ to both sides, we get $(f_1 + f_2)^\tau = g_2^{-\tau} f_2 g_2 + g_1^{-\tau} f_1 g_1$. Then

$$f_1 + f_2 = ((f_1 + f_2)^\sigma)^\tau = g_2^{-\tau} g_1 f_1 g_1^{-1} g_2 + g_1^{-\tau} g_2 f_2 g_2^{-1} g_1.$$

This holds for all $f_1 \in E(M_1)$. So there is $\lambda \in k^\times$ such that $g_2 = \lambda g_1$. Thus $g_1 = \lambda^{-1} g_2$. Now replace g_2 by $\lambda^{-1} g_2$. Then $g_2 = g_1$ and

$$(f_1 + f_2)^\sigma = g_1^{-1} f_1 g_1 + g_2^{-1} f_1 g_2, \quad \text{for all } f_1 \in E(M_1), f_2 \in E(M_2).$$

Note that $g_1 + g_2 \in \text{GL}(M)$. Then $B_{g_1 + g_2}$ is a symplectic form on M whose adjoint is an extension of σ to $E(M)$. Moreover this is the only involution on $E(M)$ which extends σ. \hfill \Box

An isometry is a k-linear map between symmetric spaces which preserves the forms. Note that an isometry is injective, but not necessarily surjective. Two symmetric spaces are isomorphic if there is a surjective isometry between them. Two symmetric forms are isometric if the corresponding symmetric spaces are isomorphic.

Set $n = \dim(M)$. As mentioned in the introduction, there are at most two isometry classes of symmetric forms on M:
- B is a symplectic form if $B(m, m) = 0$, for all $m \in M$. Then n is even and M has a symplectic basis $\{m_i\}$ i.e. $B(m_i, m_j) = 1$ or 0, as $i \equiv j + n/2 \pmod{n}$ or not.
- B is a diagonal form if it is symmetric but not symplectic. Then M has an orthonormal basis with respect to B.

Now $\text{GL}(M, B) = \{g \in \text{GL}(M) \mid g^\sigma = g^{-1}\}$ is the group of isometries of (M, B). It is not too hard to show that

$$\text{GL}(M, B) \cong \begin{cases}
\text{Sp}(n, k), & \text{if } B \text{ is symplectic, } n \text{ even.} \\
\text{Sp}(n - 1, k), & \text{if } B \text{ is diagonal, } n \text{ odd.} \\
k^{n-1} : \text{Sp}(n-2, k), & \text{if } B \text{ is diagonal, } n \text{ even.}
\end{cases} \quad (2.2)$$

The following is well-known:

Lemma 2.3. Let M be a kG-module which affords a diagonal G-form B. Then M has a trivial submodule and a trivial quotient module.

Proof. Define $q(m) = \sqrt{B(m, m)}$ for all $m \in M$. Then $q : M \to kG$ is a non-zero kG-homomorphism. Let η be the sum of the vectors in any orthonormal basis for M. Then $q(m) = B(\eta, m)$, for all $m \in M$. As a consequence η spans a trivial submodule of M. \hfill \Box

The action of σ on $E(M)$ maps $\text{GL}(M)$ onto itself and fixes the scalar matrices. So σ acts as an isomorphism on $\text{PGL}(M) = \text{GL}(M)/k^\times 1_M$. We set $\text{PGL}(M, \sigma)$ as the centralizer of σ in $\text{PGL}(M)$. The following result, which should be well-known, is true only in characteristic 2.

Lemma 2.4. Each projective representation $\theta : G \to \text{PGL}(M, \sigma)$ lifts to a group representation $G \to \text{GL}(M, B)$.

Proof. Let ρ be the projection of $\text{GL}(M)$ onto $\text{PGL}(M)$ with kernel $k^\times 1_M$. So $\rho(a)f := gfg^{-1}$, for all $g \in \text{GL}(M)$ and $f \in E(M)$. We claim that ρ restricts to an isomorphism $\text{GL}(M, B) \cong \text{PGL}(M, \sigma)$. As σ inverts scalars, the identity is the only scalar in $\text{GL}(M, B)$. So ρ is injective on $\text{GL}(M, B)$. Moreover, it is clear that ρ maps $\text{GL}(M, B)$ into $\text{PGL}(M, \sigma)$.

Let $a \in \text{PGL}(M, \sigma)$. Choose $g \in \text{GL}(M)$ such that $a = \rho(g)$. Then

$$g^{-\sigma}fg^\sigma = (af\sigma)^\sigma = af = gfg^{-1}, \quad \text{for } f \in E(M).$$

So $g^\sigma = \lambda g^{-1}$ for some $\lambda \in k^\times$. Then $\sqrt{\lambda^{-1}}g \in \text{GL}(M, B)$ and $\rho(\sqrt{\lambda^{-1}}g) = a$. Our claim follows from this. \hfill \Box

We recall some results from [11] Appendix A. Assume the hypothesis and notation of Lemma 2.2 (ii) and let B be a symplectic form on M whose adjoint is σ. The stabilizer of $\{M_1, M_2\}$ in $\text{GL}(M)$ is the group $\text{GL}(M_1, M_2) = \text{GL}(M_1) \times \text{GL}(M_2) : \langle s \rangle$, where s is an involution in $\text{GL}(M, B)$ which interchanges M_1 and M_2.

Let $\text{PGL}(M_1, M_2) \cong \text{PGL}(M_1) : \langle \sigma \rangle$ be the group of k-automorphisms of $E(M_1) \times E(M_2)$. Now $\text{GL}(M_1, M_2)$ acts by conjugation on $E(M_1) \times E(M_2)$ and the resulting map $\phi : \text{GL}(M_1, M_2) \to \text{PGL}(M_1, M_2)$ is surjective. Moreover $\ker(\phi) = \{a1_{M_1} + b1_{M_2} \mid a, b \in k^\times\} \cong k^\times \times k^\times$.

Set $\text{Sp}(M_1, M_2) = \text{GL}(M, B) \cap \text{GL}(M_1, M_2)$. If τ is transposition then

$$\text{Sp}(M_1, M_2) = \{(g, sg^{-1}s) \in \text{GL}(M_1) \times \text{GL}(M_2) \mid sgs = g^{-\tau}\} : \langle s \rangle$$
Now let $\text{PGL}(M_1, M_2, \sigma)$ be the centralizer of σ in $\text{PGL}(M_1, M_2)$. Then ϕ restricts to a surjective map $\theta : \text{Sp}(M_1, M_2) \to \text{PGL}(M_1, M_2, \sigma)$. The kernel of θ is $K = \{(a, a^{-1}) \mid a \in k^*\}$. So $K \cong k^*$ and s inverts each element of K.

Lemma 2.5. Each projective representation $\rho : G \to \text{PGL}(M_1, M_2, \sigma)$ is realised by a group representation $\chi : H \to \text{Sp}(M_1, M_2)$ which arises from a commutative diagram of finite groups with exact rows

$$
\begin{array}{ccccccccc}
1 & \longrightarrow & O & \xrightarrow{\text{inc}} & H & \xrightarrow{\nu} & G & \longrightarrow & 1 \\
& & \downarrow{\eta} & & \downarrow{x} & & \downarrow{\rho} & & \\
1 & \longrightarrow & K & \xrightarrow{\text{inc}} & \text{Sp}(M_1, M_2) & \xrightarrow{\theta} & \text{PGL}(M_1, M_2, \sigma) & \longrightarrow & 1
\end{array}
$$

Here O is a cyclic group of odd order, η is injective, $[H : C_H(O)] \leq 2$ and all elements of $H \setminus C_H(O)$ invert O.

Proof. The pull-back diagram associated with ρ and θ is

$$
\begin{array}{ccccccccc}
1 & \longrightarrow & K & \xrightarrow{\text{inc}} & \hat{G} & \xrightarrow{\nu} & G & \longrightarrow & 1 \\
& & \downarrow{=} & & \downarrow{x} & & \downarrow{\rho} & & \\
1 & \longrightarrow & K & \xrightarrow{\text{inc}} & \text{Sp}(M_1, M_2) & \xrightarrow{\theta} & \text{PGL}(M_1, M_2, \sigma) & \longrightarrow & 1
\end{array}
$$

Every element of G centralizes or inverts K. In this way $K \cong k^*$ is a (possibly non-trivial) ZG-module. Set $\gamma(\lambda) = \lambda|G|$, for all $\lambda \in K$. As k is algebraically closed, γ is a surjective endomorphism of K. We have a short exact sequence of abelian groups

$$
1 \longrightarrow O \xrightarrow{\eta} K \xrightarrow{\gamma} K \longrightarrow 1.
$$

Here O is the set of roots of $x|G| - 1$ in k. So O is a finite group. This induces a long exact sequence in cohomology, including

$$
\ldots \longrightarrow \text{H}^2(G, O) \xrightarrow{\eta} \text{H}^2(G, K) \xrightarrow{\gamma} \text{H}^2(G, K) \longrightarrow \ldots .
$$

Now γ_* is the zero map, as multiplication by $|G|$ annihilates $\text{H}^2(G, K)$. Let $d \in \text{H}^2(G, K)$ be the factor set associated with

$$
1 \longrightarrow K \xrightarrow{\text{inc}} \hat{G} \xrightarrow{\nu} G \longrightarrow 1.
$$

Then there exists $c \in \text{H}^2(G, O)$ mapping onto d. This gives us the commutative diagram in the statement of the Lemma. }

We mention that Theorem A.5 in [11] wrongly claims (in the notation used here) that H is a central extension of G. Now [11] 7.2 relies on Theorem A.5, but does not require $O \leq Z(H)$. So 7.2 is still correct.

2.2. *Forms and Modules*

Fix a symmetric G-form B on M. If B is non-degenerate on a submodule M_1 of M, then M_1^+ is a submodule of M and $M = M_1 + M_1^+$; we call M_1 a B-direct summand of M. We say that L is a B-component of M if there is a kG-isometry $(L, B_1) \to (M, B)$, for some G-form B_1. In particular L is of symmetric type.

Now in the notation 2.1 the G-invariant bilinear forms on M are $\{B_\theta \mid \theta \in E_G(M)\}$. Clearly

- B_θ is non-degenerate if and only if θ is a unit in $E_G(M)$.
- B_θ is symmetric if and only if $\theta^* = \theta$.

- B_θ is symplectic if and only if $\theta = \phi + \phi^\sigma$, for some $\phi \in E(M)$.

Suppose that L_1 and L_2 are kG-modules. Then $L_1 \cong L_2$ if and only if there is a perfect G-pairing P between L_1 and L_2. So $P : L_1 \times L_2 \to k$ is a bilinear map such that $P(g\ell_1, g\ell_2) = P(\ell_1, \ell_2)$, for all $\ell_1 \in L_1$ and $g \in G$. Moreover the left and right radicals of P are trivial.

Let $\theta \in E_G(M)$. Then $m_1 \in \ker(\theta)$ if and only if $B(m_1, \theta^\sigma m_2) = B(\theta m_1, m_2) = 0$, for all $m_2 \in M$. So $\ker(\theta) = (\theta^\sigma)^\perp$. There is a bilinear map $B_\theta : \theta M \times \theta^\sigma M \to k$ (well-)defined by
\[
B_\theta(\theta m_1, \theta^\sigma m_2) = B(\theta m_1, m_2) = B(m_1, \theta^\sigma m_2), \quad \text{for } m_1, m_2 \in M. \quad (2.3)
\]

Lemma 2.6. \hat{B}_θ is a perfect G-pairing, and thus $\theta^\sigma M \cong (\theta M)^*$. Conversely if P is a perfect G-pairing between submodules L_1 and L_2 of M there is $\psi \in E_G(M)$ such that $L_1 = \psi M, L_2 = \psi^\sigma M$ and $P = \hat{B}_\psi$.

Proof. Let $\theta^\sigma m_2$ be in the right radical of \hat{B}_θ, where $m_2 \in M$. Then $\theta^\sigma m_2 = 0$, as $B(m_1, \theta^\sigma m_2) = 0$, for all $m_1 \in M$. Likewise the left radical of \hat{B}_θ is trivial.

Let $P : L_1 \times L_2 \to k$ be a perfect G-pairing. Then for each $m \in M$ there is $\psi m \in L_1$ such that $B(m, \ell_2) = P(\psi m, \ell_2)$ for all $\ell_2 \in L_2$. Check that $\psi \in E_G(M)$ and $\psi M = L_1$. Likewise there is $\psi^\sigma \in E_G(M)$ such that $B(\ell_1, m) = P(\ell_1, \psi^\sigma m)$ for all $\ell_1 \in L_1$. Now for all $m_1, m_2 \in M$
\[
B(m_1, \psi^\sigma m_2) = P(\psi m_1, \psi^\sigma m_2) = B(\psi m_1, m_2).
\]

It follows that $\psi^\sigma = \psi$ and $P = \hat{B}_\psi$. \hfill \square

Note that $\theta^\sigma = \theta$ if and only if $\theta M = \theta^\sigma M$ and \hat{B}_θ is symmetric.

Corollary 2.7. Let $\theta \in E_G(M)$. Then B is non-degenerate on θM if and only if θ^σ restricts to an isomorphism $\theta M \to \theta^\sigma M$.

Proof. We have $(\theta M)^\perp = \ker(\theta^\sigma)$. So θM is non-degenerate if and only if θ^σ is injective on θM. Now $\dim(\theta M) = \dim(\theta^\sigma M)$. So the restriction $\theta^\sigma : \theta M \to \theta^\sigma M$ is injective if and only if it is surjective. \hfill \square

Lemma 2.8. Let $e \in E_G(M)$ be idempotent. Then each G-invariant bilinear form on eM is the restriction of B_θ, for a unique $\theta \in e^*E_G(M)e$.

Proof. Using Lemma 2.6, $e^*E(M)e = \text{Hom}(eM, e^\sigma M) \cong (eM)^* \otimes (eM)^*$. Also B_ϕ and $B_{e\phi}$ have the same restrictions to eM, for all $\phi \in E_G(M)$.

Let \hat{B} be a G-invariant bilinear form on eM. Then $B(e\cdot e\cdot)$ defines a G-invariant bilinear form on M. So there exists $\theta \in e^*E_G(M)e$ with $\hat{B}(em_1, em_2) = B_\theta(m_1, m_2)$, for all $m_1, m_2 \in M$. \hfill \square

Proposition 2.9 Orthogonal Projection. A kG-submodule L of M is a B-direct summand if and only if $L = eM$, for some σ-invariant idempotent $e \in E(M)$. If e exists it is unique, G-invariant and $\ker(e) = L^\perp$.

Proof. Suppose that e exists. Then $e^\sigma M = e^\sigma eM = eM$. So B is non-degenerate on L, by Corollary 2.7. Moreover $\ker(e) = (e^\sigma M)^\perp = L^\perp$. This ensures that e is unique, and this forces $e \in E_G(M)$. \hfill \square
Conversely, suppose that \(L \cap L^\perp = 0 \). Let \(e \) be projection onto \(L \) with kernel \(L^\perp \). Then \(\ker(e^\sigma) = (eM)^\perp = L^\perp \) and \(e^\sigma M = \ker(e)^\perp = L \). So \(e^\sigma \) is projection onto \(L \) with kernel \(L^\perp \). We deduce that \(e^\sigma = e \).

Let \(e, f \) be idempotents in \(E_G(M) \). By \(\text{[8]} \) \(eM \cong fM \) as \(kG \)-modules if and only if there exist \(x, y \in E_G(M) \) such that \(e = xy \) and \(f = yx \).

Lemma 2.10. Let \(e \) and \(f \) be \(\sigma \)-invariant idempotents in \(E_G(M) \). Then \((eM, B) \cong (fM, B) \) if and only if
\[
e = h^\sigma h \quad \text{and} \quad f = hh^\sigma,
\]
for some \(h \in E_G(M) \).

Proof. Let \(h \in E_G(M) \) with \(e = h^\sigma h \) and \(f = hh^\sigma \). Then \(h : eM \rightarrow fM \) is a \(k \)-isomorphism, with inverse \(h^\sigma \). Now for all \(m_1, m_2 \in M \)
\[
B(hem_1, hem_2) = B(h^\sigma hem_1, em_2) = B(em_1, em_2).
\]
So \(h : (eM, B) \rightarrow (fM, B) \) is an isomorphism.

Conversely, let \(h : (eM, B) \rightarrow (fM, B) \) be an isomorphism. We may assume that \(h = fhe \in E_G(M) \). Then \(h^\sigma h = e \), as
\[
B(h^\sigma hem_1, em_2) = B(hem_1, hem_2) = B(em_1, em_2).
\]
Moreover \(h^\sigma : (fM, B) \rightarrow (eM, B) \) is an isometry as \(hM = fM \) and
\[
B(h^\sigma hm_1, h^\sigma hm_2) = B(em_1, em_2) = B(hm_1, hm_2).
\]
This implies that \(hh^\sigma = f \).

In our next result we may assume that \(k \) is an arbitrary field. The proof uses ideas from the proof of \(\text{[4]} \) Lemma 3.4].

Lemma 2.11. Let \(A \) be a semi-simple subalgebra of \(E(M) \) and let \(e \in A \) be an idempotent such that \(e^\sigma \in A \) and \(eM \) is a non-degenerate submodule of \(M \). Then orthogonal projection onto \(eM \) belongs to \(E_G(M) \cap A \).

Proof. Corollary \(\text{[2,4,1]} \) implies that \(e^\sigma eM = e^\sigma M \). So by the Artin-Wedderburn Theorem and the Jacobson Density Lemma \(e^\sigma = e^\sigma ea \) for some \(a \in A \). Set \(f = eae^\sigma \). Then
\[
f^\sigma f = (e^\sigma ea)^\sigma(eae^\sigma) = e^\sigma (e^\sigma ea)e^\sigma = e^\sigma (e^\sigma)^2 = f^\sigma.
\]
So \(f = (f^\sigma f)^\sigma = (f^\sigma f) \). Then \(f^2 = f^\sigma f = f \). Moreover \(f \in A \).

Now \(e^\sigma f = (e^\sigma ea)e^\sigma = e^\sigma \). So \(\text{rank}(f) \geq \text{rank}(e^\sigma) = \text{rank}(e) \). It follows that \(\dim(fM) \geq \dim(eM) \). But \(fM \subseteq eM \). So \(fM = eM \). Now \(f \in E_G(M) \), as \(f \) is projection onto \(eM \) and \(\ker(f) = (eM)^\perp \).

The next result is proved in \(\text{[5]} \) Proposition] and is part of the ‘folklore’ of the subject. Our proof anticipates the methods we use later.

Lemma 2.12. Suppose that \(M = M_1 + \ldots + M_t \) where each \(M_i \) is an indecomposable \(kG \)-module. Then for each \(i \)
\[(i) \ \text{B is non-degenerate on } M_i \text{ or}
(ii) \ B \text{ is non-degenerate on } M_i + M_j \text{ for some } j \neq i \text{ with } M_j \cong M_i^* .
\]
Proof. Write \(1_M = e_1 + \ldots + e_i\) where \(e_1, \ldots, e_i\) are pairwise orthogonal primitive idempotents in \(E_G(M)\) with \(e_jM = M_j\). Let \(\epsilon\) be the point of \(E_G(M)\) containing \(e_i\). We use \(\perp\) for images in \(E(P_e)\).

Suppose first that \(M_i \cong M^*_i\). Then \(\epsilon \sigma = \epsilon\), using Lemma 2.6. So \((E(P_e), \sigma)\) is an involutary \(k\)-algebra. Lemma 2.2 implies that \(P_e\) affords a symmetric form \(B_e\) with adjoint \(\sigma\). For all \(j\) with \(e_j \in \epsilon\), choose \(s_j \in \tau^{-1}P_e\) with \(s_j \neq 0\). Then the \(s_j\) form a basis of \(P_e\).

Say \(B_e(s_i, s_j) \neq 0\). Then \(B_e\) is non-degenerate on \(ks_i\). Let \(x_i + e_jE(P_e)\) be orthogonal projection onto \(ks_i\), as given by Proposition 2.9. By Lemma 2.1, there is a \(\sigma\)-invariant idempotent \(f_i \in \epsilon_iE_G(M)\) such that \(f_i = x_i\). Then \(f_iM = M_i\), as \(f_iM \subseteq M_i\) and \(M_i\) is indecomposable. So \(B\) is non-degenerate on \(M_i\), by Proposition 2.9.

Now say \(B_e(s_i, s_j) = 0\). As \(B_e\) is non-degenerate, we may choose \(j \neq i\) such that \(B_e(s_i, s_j) \neq 0\). So \(B_e\) is non-degenerate on \(ks_i + ks_j\). Let \(x_{ij} \in e_i + e_jE(P_e)\) be orthogonal projection onto \(ks_i + ks_j\), as given by Proposition 2.9. By Lemma 2.1, there is a \(\sigma\)-invariant idempotent \(f_{ij} \in (e_i + e_j)E_G(M)\) such that \(f_{ij} = x_{ij}\). Then \(f_{ij}M = M_i + M_j\), as \(f_{ij}M \subseteq M_i + M_j\) but \(f_{ij}\) is not primitive. So \(B\) is non-degenerate on \(M_i + M_j\), by Proposition 2.9.

Finally, suppose that \(M_i \not\cong M^*_i\). Then \(\epsilon \neq \epsilon\) and \((E(P_e), \epsilon, \epsilon)(P_e, \sigma)\) is an involutary \(k\)-algebra satisfying the hypothesis of Lemma 2.2(ii). Let \(B_{e, \sigma}\) be the corresponding symplectic form on \(P_e \oplus P_\sigma\). We proceed as above; there exists \(j\) such that \(e_j \in \epsilon\) and \(B_{e, \epsilon}\) is non-degenerate on \(\pi_{e, \epsilon}(e_i + e_j)(P_e \oplus P_\sigma)\). Then there is a \(\sigma\)-invariant idempotent \(f_{ij} \in (e_i + e_j)E_G(M)\) such that \(f_{ij}M = M_i + M_j\). So \(B\) is non-degenerate on \(M_i + M_j\), and \(M_i \cong M^*_i\). Q.E.D.

2.3. Form Induction

We continue to assume that \(M\) is a \(kG\)-module, \(B\) is a \(G\)-form on \(M\) and \(\sigma\) is the adjoint of \(B\) on \(E(M)\). For \(H \leq G\), let \(G/H\) be a left transversal to \(H\) in \(G\) and set \(E_H(M) = \text{End}_{kH}(M)\). The relative trace map \(\text{tr}_{H}^G : E_H(M) \to E_G(M)\) is the \(k\)-linear map \(\text{tr}_{H}^G(f) := \sum_{g \in G/H} gfg^{-1}\) for all \(f \in E_H(M)\). Its image is an ideal of \(E_G(M)\), which we denote by \(E_H(M)\). The \(\sigma\)-invariant elements in \(E_H(M)\) form a subspace, but not an ideal, of \(E_H(M)\).

Let \(L\) be a \(kH\)-module. We use \(L^G\) or \(\text{Ind}^G_H(L)\) for the induced \(kG\)-module, and \(M_H\) or \(\text{Res}^G_H(M)\) for the restricted \(kH\)-module. Set \(\#H = gHg^{-1}\), for \(g \in G\). So there is a conjugation isomorphism \(\#H \cong H\). Now \(\text{Ind}^G_H(L) = kG \otimes_{kH} L\) is a direct sum of the \(k\)-vector spaces \(\#L\), as \(g\) ranges over \(G/H\). Here \(\#L = g \otimes L\) is the \(\#H\)-module such that \(ghg^{-1}(g \otimes \ell) = g \otimes h\ell\), for all \(h \in H\) and \(\ell \in L\).

Let \(B_1\) be a symmetric \(H\)-form on \(L\). The induced symmetric \(kG\)-module \(\text{Ind}^G_H(L, B_1)\) is \(\text{Ind}^G_H(L)\) with the induced \(G\)-form \(B_1^G\), where

\[
B_1^G(g_1 \otimes \ell_1, g_2 \otimes \ell_2) = \begin{cases}
B_1(g_1^{-1}g_1, \ell_1, \ell_2), & \text{if } g_1H = g_2H, \\
0, & \text{if } g_1H \neq g_2H.
\end{cases}
\]

Let \(\#B_1\) denote the restriction of \(B_1^G\) to \(\#L\). Then \(\text{Ind}^G_H(L, B_1)\) is the orthogonal direct sum of the symmetric \(k\)-spaces \((\#L, \#B_1)\). It is clear that \(B_1^G\) is symplectic if and only if \(B_1\) is symplectic.

There is a symmetric version of Mackey’s formula [12, 3.1.9]:

Lemma 2.13. Given \(K \leq G\), there is an isomorphism of symmetric \(kK\)-modules

\[
\text{Res}^G_K \text{Ind}^G_H(L, B_1) \cong \bigoplus_{g \in K \setminus G/H} \text{Ind}^K_{K \cap gH} \text{Res}^g_H(\#L, \#B_1).
\]
Proof. Let $g \in G$. The assignment $i \to ig$ maps $K/K \cap gH$ to a set of representatives for the left cosets of H in KgH and $\sum_{i \in K/K \cap gH} igL \cong \text{Ind}_{K/K \cap gH}^{K} gL$. This induces an isomorphism $\sum_{i \in K/K \cap gH} (gL, igB_1) \cong \text{Ind}_{K/K \cap gH}^{K} (gL, gB_1)$ of symmetric kK-modules. \hfill \square

Higman’s Criterion \cite[4.2.2]{12} is the definitive result on H-projectivity:

\begin{lem}
Let L be a submodule of $\text{Res}_{H}^{G}(M)$. Then $M \mid \text{Ind}_{H}^{G}(L)$ if and only if there is $\phi \in E_{H}(M)$ such that $\text{tr}_{H}^{G}(\phi)$ is a unit in $E_{G}(M)$ and ϕM is isomorphic to a submodule of L. So the following are equivalent:

(i) M is a component of $\text{Ind}_{H}^{G} \text{Res}_{H}^{G} M$.

(ii) M is a component of $\text{Ind}_{H}^{G} L$ for some kH-module L.

(iii) $\text{tr}_{H}^{G}(\phi)$ is a unit in $E_{G}(M)$, for some $\phi \in E_{H}(M)$.
\end{lem}

Now let θ be a σ-invariant unit in $E_{G}(M)$. Then we say that

- θ is (H, σ)-projective if $\theta = \text{tr}_{H}^{G}(\alpha)$ for some σ-invariant $\alpha \in E_{H}(M)$.

- B_{θ} is H-projective if (M, B_{θ}) is an orthogonal direct summand of a symmetric kG-module induced from H.

- M is symmetrically H-projective if it has a H-projective symmetric G-form.

We also say that

- B_{θ} is strongly H-projective if there is a kG-isometry

\[(M, B_{\theta}) \to \text{Ind}_{H}^{G} \text{Res}_{H}^{G}(M, B_{\theta}).\]

Note: if B_{θ} is H-projective and $H \leq K \leq G$ then B_{θ} is K-projective. However, if B_{θ} is strongly H-projective, we are not able to show that B_{θ} is strongly K-projective.

Recall the definition \cite[2.3]{12} of the perfect H-pairing B_{α}, for $\alpha \in E_{H}(M)$.

\begin{lem}
B_{θ} is H-projective if and only if θ is (H, σ)-projective; given $\alpha \in E_{H}(M)$ such that $\alpha^{\sigma} = \alpha$ and $\text{tr}_{H}^{G}(\alpha) = \theta$, there is a kG-isometry $(M, B_{\theta}) \to \text{Ind}_{H}^{G}(\alpha M, B_{\alpha})$.
\end{lem}

Proof. Suppose first that θ is (H, σ)-projective and α is as given. Set $\phi = \text{tr}_{H}^{G}(1 \otimes \alpha) : M \to \text{Ind}_{H}^{G}(\alpha M)$. Then

\[B_{\theta}^{G}(\phi m_1, \phi m_2) = \sum_{g \in G/H} B_{\alpha}(g \alpha m_1, g \alpha m_2) = \sum_{g \in G/H} B(\alpha g m_1, g m_2) = B_{\theta}(m_1, m_2).\]

As $\phi : (M, B_{\theta}) \to \text{Ind}_{H}^{G}(\alpha M, B_{\alpha})$ is a kG-isometry, B_{θ} is H-projective.

Conversely, suppose that B_{θ} is H-projective. Then there is a kG-isometry $\phi : (M, B_{\theta}) \to \text{Ind}_{H}^{G}(L, B_{1})$ for some symmetric kH-module (L, B_{1}). Let $e \in E_{H}(L^{G})$ be orthogonal projection onto $1 \otimes L$. Now $(m_1, m_2) \to B_{1}(e \phi m_1, e \phi m_2)$ is a symmetric H-form on M. So there exists $\alpha \in E_{H}(M)$ such that $\alpha^{\sigma} = \alpha$ and

\[B_{1}(e \phi m_1, e \phi m_2) = B(\alpha m_1, m_2), \text{ for all } m_1, m_2 \in M.\]

As ϕ is an isometry, we have

\[B_{\theta}(m_1, m_2) = B_{1}(e \phi m_1, e \phi m_2) = \sum_{g \in G/H} B_{1}(e \phi g m_1, e \phi g m_2) = \sum_{g \in G/H} B(\alpha g m_1, g m_2) = B(\text{tr}_{H}^{G}(\alpha) m_1, m_2).\]
So $\theta = \text{tr}^G_H(\alpha)$ is (H, σ)-projective.

The proof of the next result is similar, and omitted.

Lemma 2.16. B_θ is strongly H-projective if and only if $\text{tr}^G_H(\alpha \theta \alpha^\sigma) = \theta$, for some $\alpha \in E_G(M)$.

We can now prove a symmetric analogue of Lemma 2.14.

Proposition 2.17. The following are equivalent:

(i) M is symmetrically H-projective.

(ii) B_θ is H-projective for some σ-invariant unit $\theta \in E_G(M)$.

(iii) θ is (H, σ)-projective for some unit $\theta \in E_G(M)$.

Proof. (1) and (2) are equivalent, from the definitions. Lemma 2.15 shows that (2) and (3) are equivalent.

For indecomposable modules, we have:

Lemma 2.18. Suppose that M is indecomposable and symmetrically H-projective. Then there is an indecomposable kH-module L which has a symmetric H-form B_1 such that M is a B_1^G-component of L^G.

Proof. Choose a symmetric kH-module (L, B_1) with $\dim(L)$ minimal subject to the existence of a kG-isometry $\phi : (M, B_\theta) \to \text{Ind}_H^G(L, B_1)$, for some θ. Using Lemma 2.15, (L, B_1) is orthogonally indecomposable.

We claim that L is indecomposable. Otherwise $L = L_1 \oplus L_2$, where $L_i \cong L_2$, byLemma 2.12. Let $e \in E_H(L^G)$ be orthogonal projection onto $1 \otimes L$ and for $i = 1, 2$, let $e_i = ee_ie$ be projection onto $1 \otimes L_i$ with kernel $1 \otimes L_{3-i}$. Now for $i, j = 1, 2$ there are $\alpha_{ij} \in E_H(M)$ such that

$$B_1(e_i \phi m_1, e_j \phi m_2) = B(\alpha_{ij} m_1, m_2),$$

for all $m_1, m_2 \in M$.

It is easy to check that $\alpha_{ij}^2 = \alpha_{ij}$.

As $e = e_1 + e_2$ and ϕ is an isometry, we have

$$\sum_{i,j=1,2} \text{tr}^G_H(\alpha_{ij}) = \theta.$$

But $\text{tr}^G_H(\alpha_{12}) + \text{tr}^G_H(\alpha_{21}) \in J(E_G(M))$, as $\text{tr}^G_H(\alpha_{12})^\sigma = \text{tr}^G_H(\alpha_{21})$ and $E_G(M)$ is a local ring. So $\theta_{ii} := \text{tr}^G_H(\alpha_{ii})$ is a unit, for some i. Lemma 2.15 gives an isometry $(M, B_{\theta_{ii}}) \to \text{Ind}_H^G(\alpha_{ii} M, B_{\theta_{ii}})$. But $\dim(\alpha_{ii} M) < \dim(L)$. This contradiction establishes our claim.

Proof of Theorem 1.1 Let T be a symmetric vertex of M and let $V \leq T$ be a vertex of M. There is nothing to prove if $V = T$. So assume that $V \neq T$. By Lemma 2.14, $\text{tr}^G_V(\alpha) = 1_M$, for some $\alpha \in E_V(M)$, and by Proposition 2.17, $\theta = \text{tr}_T^G(\beta)$ for some σ-invariant $\beta \in E_T(M)$. Then

$$\theta = \text{tr}_V^G(\alpha) \text{tr}_T^G(\beta) \text{tr}_V^G(\alpha^\sigma) = \sum_{a, b \in G/V, c \in G/T} (^c a)(^c \beta)(^b \alpha^\sigma).$$
Now each G-orbit in $G/V \times G/T \times G/V$ contains a triple (aV, T, bV). We say that this orbit is:
- diagonal if $aV = bV$,
- symmetric if $aV \neq bV$ but the orbit contains (bV, T, aV),
- antisymmetric if the orbit does not contain (bV, T, aV).

We denote the collections of such orbits by O_d, O_s, and O_a, respectively.

The stabilizer of (aV, T, bV) is $^aV \cap {}^bV \cap T$. So the orbit sum is
\[\text{tr}(a, b) := \text{tr}_{G/V \cap {}^bV \cap T}((^a \alpha \beta ^b \alpha^\sigma)) \in E_G(M). \]

Now $\text{tr}(a, b)^\sigma = \text{tr}(b, a)$. So θ is a sum, in $E_G(M)$, of σ-invariant terms
\[\theta = \sum_{O_d} \text{tr}(a, a) + \sum_{O_s} \text{tr}(a, b) + \sum_{O_a} (\text{tr}(a, b) + \text{tr}(b, a)). \]

Write $\text{tr}(a, b) = \lambda_1 M + j$, with $\lambda \in k^\times$ and $j \in J(E_G(M))$. Then for each pair of anti-symmetric orbits $\text{tr}(a, b) + \text{tr}(b, a) = j + j^\sigma$ belongs to $J(E_G(M))$. Suppose that $\text{tr}(a, a)$ is a unit in $E_G(M)$, for some diagonal orbit. Then $B_{\text{tr}(a, a)}$ is a $(^aV \cap T)$-projective symmetric G-form on M. This is impossible, as $V \cap T \leq T$.

Now θ is a unit in the local ring $E_G(M)$. So we can choose a triple (aV, T, bV) in a symmetric orbit such that $\text{tr}(a, b)$ is a unit. We then replace V by a conjugate so that $a = 1$, to simplify the notation. Then $\text{tr}(1, b)$ is a unit and (V, T, bV) is in a symmetric G-orbit.

As (bV, T, V) is G-conjugate to (V, T, bV) there is $t \in T$ with $tV = bV$ and $tbV = V$. So $t \in N_T(V \cap bV)$ and $t^2 \in V \cap bV$. Then $VbV = Vb^{-1}V$ is a self-dual double coset and $[(V \cap bV) \langle t \rangle : V \cap bV] = 2$.

Set $\gamma := \alpha \beta ^b \alpha^\sigma$. Then $\gamma^\sigma = ^b \alpha \beta \alpha^\sigma = \gamma t$. So $\gamma + t \gamma$ is fixed by both σ and $(V \cap bV) \langle t \rangle \cap T$. Moreover $\text{tr}(1, b) = \text{tr}_{G/(V \cap bV) \langle t \rangle} (\gamma + t \gamma)$. As T is a symplectic vertex of M, this forces $(V \cap bV) \langle t \rangle = T$. But $V \neq T$ and $t^2 \in V$. We deduce that $V = bV$, $T = V \langle t \rangle$ and $[T : V] = 2$. \qed

3. Symmetric Vertices

3.1. Projective Modules

We interpret some results from [4] and [11] on the symmetric forms of projective kG-modules. We denote the projective cover of a kG-module M by $P(M)$.

The ring multiplication in kG induces maps $\ell, r : kG \to E(kG)$, where
\[\ell(x)(y) = r(y)(x) = xy, \quad \text{for all } x, y \in kG. \]

So ℓ is the structural k-homomorphism of the left regular kG-module and $r : kG^{op} \to E_kG(kG)$ is a k-algebra isomorphism.

The elements of G form an orthonormal basis for a symmetric G-form B_1 on kG. Let σ be the adjoint of B_1 on $E(kG)$ and let o be the contragredient map on kG i.e. $g^\sigma = g^{-1}$ for all $g \in G$. Then
\[B_1(xy, z) = B_1(x, zy^o) = B_1(y, x^o z), \quad \text{for all } x, y, z \in kG. \]

Equivalently $\ell(x)^\sigma = \ell(x^o)$ and $r(y)^\sigma = r(y^o)$.

Our first result includes Fong’s Lemma:

Lemma 3.1. Each non-trivial selfdual irreducible kG-module M affords a unique symplectic G-form, up to scalars. The form B_1 is degenerate on each direct summand of kG that is isomorphic to $P(M)$.
Proof. Let ϵ be the point of $E_{kG}(M)$ such that $P(M) \cong kG\epsilon$ for $\epsilon \in \epsilon$. Then the surjective k-algebra map $\pi_\epsilon : kG \to E(M)$ has kernel $M\epsilon$. As $P(M) \cong P(M)^*$, we have $M\epsilon = M\epsilon$. So $(E(M),^o)$ is an involutory k-algebra. Let \hat{B} be a symmetric form on M whose adjoint is o, as given by Lemma 2.2. Then \hat{B} is G-invariant as $\pi_\epsilon(g)^o = \pi_\epsilon(g)^{-1}$, for all $g \in G$, and symplectic, as M has no trivial submodule.

Following Proposition 2.9, suppose that ϵ contains an o-invariant idempotent ϵ. So B_1 non-degenerate on $kG \cong P(M)$. Then $\pi_\epsilon(\epsilon)$ is an o-invariant primitive idempotent in $E(M)$. So \hat{B} is a diagonal form. As this is false, no such ϵ exists, proving the last statement.

Our next result includes a proof of [4 (1.6)].

Lemma 3.2. B_1 restricts to a diagonal G-form on each direct summand of kG that is isomorphic to $P(kG)$. Also $\dim P(kG)/|G|_2$ is odd.

Proof. We may write $kG \cong \sum P(S)^{\dim S}$ where S ranges over the irreducible k-modules. In particular $P(kG) \cong P(kG)^*$ occurs once in kG and B_1 is symplectic on any direct summand not isomorphic to $P(kG)$. So B_1 is non-degenerate and diagonal on any direct summand isomorphic to $P(kG)$.

Now $|G|_2 = \sum (\dim P(S)/|G|_2) \dim S$, where each $\dim P(S)/|G|_2$ is an integer. If $S \cong S^*$ and $S \not\cong kG$ then $\dim S$ is even, by Fong’s Lemma. If $S \not\cong S^*$, then S and S^* contribute equally to the sum. We conclude that $1 = \dim P(kG)/|G|_2 \pmod{2}$.

Adapting the notation of Section 2.1 the G-invariant bilinear forms on kG are B_a, for $a \in kG$. Here $B_a(x, y) = B_1(xa, y)$, for all $x, y \in kG$. Then B_a is non-degenerate if and only if a is a unit in kG, symmetric if and only if $a = a^o$ and symplectic if and only if $a = a^e$ and $B_1(a, 1) = 0$. In particular B_t is a symplectic G-form, for each involution $t \in G$.

We use B_1 to identify $kG \otimes_k kG$ with $E(kG)$ as k-vector spaces: $x \otimes y \in kG \otimes kG$ gives the endomorphism

$$(x \otimes y)(z) = B_1(y, z)x, \quad \text{for all } z \in kG.$$

Then $(x \otimes y)^o = y \otimes x$ and $(x \otimes y) = gx \otimes gy$, for $g \in G$. Using this

$$\text{tr}_G(x \otimes y) = r(y^o x), \quad \text{for all } x, y \in kG.$$

It is useful to list the elements of G as

$$1, t_1, \ldots, t_m, \quad \frac{g_1}{g_1^{-1}}, \ldots, \frac{g_n}{g_n^{-1}}$$

where each t_i is an involution.

Lemma 3.3. A basis for the σ-invariant elements in $E_G(kG)$ is

$$r(1), r(t_1), \ldots, r(t_m), r(g_1 + g_1^{-1}), \ldots, r(g_n + g_n^{-1}).$$

Of these $r(1)$ and $r(g_i + g_i^{-1})$ are $(1, \sigma)$-projective, while $r(t_i)$ is (H, σ)-projective, for $H \leq G$, if and only if $^\sigma t_i \in H$, for some $g \in G$.

Proof. Clearly $\{r(g) \mid g \in G\}$ is a basis for $E_G(kG)$ and $r(g)^o = r(g^{-1})$ for all $g \in G$. The first statement follows from these facts.

Let $g \in G$. Then $1 \otimes 1$ and $g \otimes 1 + 1 \otimes g$ are σ-invariant and

$$\text{tr}_G^G(1 \otimes 1) = r(1), \quad \text{tr}_G^G(g \otimes 1 + 1 \otimes g) = r(g + g^{-1}).$$
So \(r(1) \) and \(r(g + g^{-1}) \), for \(g \neq g^{-1} \), are \((1, \sigma)\)-projective.

Let \(t = t_i \). Then \(t \otimes 1 + 1 \otimes t \in E_i(M) \) is \(\sigma \)-invariant and

\[
\text{tr}^G_i(t \otimes 1 + 1 \otimes t) = r(t).
\]

So \(r(t) \) is \((t, \sigma)\)-projective, if \(t \neq 1 \).

Let \(H \) be a subgroup of \(G \). Then the endomorphisms \(\text{tr}^H_1(a \otimes b) \) span \(E_H(M) \), as \(a, b \) range over all elements of \(G \). Now

\[
\text{tr}^H_1(a \otimes b)(g) = \begin{cases} gb^{-1}a, & \text{if } g \in Hb. \\ 0, & \text{if } g \in G \setminus Hb. \end{cases}
\]

So \(\text{tr}^H_1(a \otimes b) \) is \(\sigma \)-invariant if and only if \(Ha = Hb \) and \(b^{-1}a = a^{-1}b \) i.e. if and only if \(t := b^{-1}a \) is an involution such that \(b t \in H \). The last statement of the lemma follows from this. \(\square \)

Lemma 3.4. Let \(H \leq G \) and let \(a \) be a unit in \(kH \). Then

\[\text{Ind}^G_H(kH, B_a) \cong (kG, B_a). \]

In particular \((kG, B_1) \cong \text{Ind}^G_1(k\langle t \rangle, B_1), \) for all \(t \in G \) with \(t^2 = 1 \).

Proof. Let \(r_H(a) \) be the endomorphism \(x \to xa \) of \(kH \). Then \(r_H(a) \) extends to a \(kH \)-endomorphism of \(kG \) (acting as 0 on \(k(G\setminus H) \)) and \(\text{tr}^H_G(r_H(a)) = r_G(a) \). The Lemma is a consequence of this fact. \(\square \)

Lemma 3.5. Two involutions \(s, t \in G \) are \(G \)-conjugate if and only if \(\langle k\langle s \rangle, B_s \rangle \) is a component of \(\text{Res}^G_{\langle s \rangle}(kG, B_t) \).

Proof. It is clear that there is an \(\langle s \rangle \)-isometry \(\langle k\langle s \rangle, B_s \rangle \to \text{Res}^G_{\langle s \rangle}(kG, B_t) \) if and only if \(B_t(x, sx) \neq 0 \), for some \(x \in kG \). If \(x = \sum_{g \in G} x_g g \), with \(x_g \in k \), then

\[
B_t(x, sx) = B_1(x_t, sx) = \sum_{g \in G} x_g x_{sgt} = \sum_{g \in G, g \neq sgt} x_g^2,
\]

using \(x_g x_{sgt} + x_{sgt} x_g = 0 \). So if \(B_t(x, sx) \neq 0 \) then \(g = sgt \), for some \(g \in G \). In that case \(s = gtg^{-1} \) is conjugate to \(t \).

Conversely, if \(s = gtg^{-1} \), then \(B_t(g, sg) = 1 \). \(\square \)

For the next two results we let \(e \) be a primitive idempotent in \(kG \).

Lemma 3.6. Let \(\hat{B} \) be a symplectic \(G \)-form on \(kGe \). Then there is an involution \(t \in G \) such that \(B_t \) is non-degenerate on \(kGe \) and \(\langle k\langle t \rangle, B_t \rangle \) is a component of \(\text{Res}^G_1(kG, \hat{B}) \).

Proof. By Lemma 2.8 there is \(a \in ekGe^G \) so that \(\hat{B}(xe, ye) = B_a(x, y) \), for all \(x, y \in kG \). Then \(a = a^\sigma \) and \(B_1(a, 1) = 0 \), as \(\hat{B} \) is symplectic. Write \(a = \sum_{i=1}^n \alpha_i t_i + \sum_{j=1}^n \beta_j (g_j + g_j^{-1}) \), with \(\alpha_i, \beta_j \in k \). Now \(E_G(kGe) \) is a local ring. So each \(\beta_j (g_j + g_j^{-1}) \) is degenerate on \(kGe \). It follows that \(B_{\alpha_i t_i} \) is non-degenerate on \(kGe \), for some \(i \). Set \(t = t_i \). Then \(B_t \) is non-degenerate on \(kGe \) and \(B_a(e, te) = \alpha_i \neq 0 \). So \(ke + kte \) is a \(B_a \)-direct summand of \(\text{Res}^G_1(kG) \) which is isomorphic to \(k\langle t \rangle \). We conclude that \(\langle k\langle t \rangle, B_t \rangle \) is a component of \(\text{Res}^G_1(kG, \hat{B}) \). \(\square \)

Our last result in this section strengthens [11, 6.5]:
COROLLARY 3.7. Suppose that $t \in G$, $t^2 = 1$ and B_t is non-degenerate on kGe. Then there is a kG-isometry $(kGe, B_t) \to \text{Ind}^G_{(t)} \text{Res}^G_G(kGe, B_t)$.

Let $M = \text{hd}(kGe)$. Then $\text{Res}^G_{C_G(t)} M$ affords a diagonal $C_G(t)$-form. In particular $k_{C_G(t)}$ is a submodule and a quotient module of $\text{Res}^G_{C_G(t)} M$.

Proof. If $t = 1$, then $kGe \cong P(kGe)$, and Lemma 3.2 gives all conclusions. So assume that t is an involution. By Lemma 3.6 there is an involution $s \in G$ and so an isometry $(k\langle s \rangle, B_s) \to \text{Res}^G_{(s)}(kGe, B_t)$. Then s and t are G-conjugate, according to Lemma 3.5. This proves the first assertion.

We may assume that $M \not\cong kG$. Recall the notation of Lemma 3.1. So there is a surjection $\pi : kG \to E(M)$ and M has a symplectic G-form \dot{B}. Define the bilinear form $B_t(m_1, m_2) := B(tm_1, m_2)$, for all $m_1, m_2 \in M$. Then B_t is a symmetric $C_G(t)$-form on M. Its adjoint σ satisfies $\pi_\sigma(x) = \pi_\tau(tx^\sigma t)$, for all $x \in kG$.

Let $\tau(f)$ be the orthogonal projection onto kGe with respect to B_t, as given by Proposition 3.4. So $kGe = kGf$ and $tf^\sigma t = f$ (as in [14], 3.1). It follows that $\pi_\sigma(f)$ is a non-zero τ-invariant primitive idempotent in $E(M)$. As a consequence B_t is a diagonal $C_G(t)$-form on M. The last assertion now follows from Lemma 2.8. \(\square\)

3.2. Indecomposable Modules

In this section M is an indecomposable kG-module, with vertex V and V-source Z. There is a point μ of $E_G(Z^G)$ such that $Z^G \cong M$, for all $a \in \mu$ and there is a point δ of $E_V(M)$ such that $dM \cong Z$, for all $d \in \delta$. The point μ induces an embedding $F : E(M) \to E(Z^G)$ of G-algebras. Set Δ as the point of $E_V(Z^G)$ containing $F(\delta)$.

Let $N_G(V, Z)$ be the stabilizer of Z in $N_G(V)$. Set $N := N_G(V, Z)/V$. Then $E(P_\Delta)$ is an N-algebra. So P_Δ is a module for a twisted group algebra $k_\gamma N$ of N over k. Likewise $E(P_\delta)$ is an N-algebra and P_δ is a module for a twisted group algebra $k_\gamma N$ of N over k. According to [16], (26.1), P_δ is the regular $k_\gamma N$-module. Now F induces an embedding of N-algebras $E(P_\delta) \to E(P_\Delta)$. This in turn induces a group isomorphism between the central extensions of N corresponding to the cocycles γ and γ'. In this way, P_δ can and will be identified with an indecomposable component of P_Δ, as $k_\gamma N$-modules.

Lemma 3.8. Suppose that $Z \cong Z^*$ and either Z or M is of symmetric type. Then $k_\gamma N \cong kN$. So P_Δ is the regular kN-module.

Proof. Suppose first that Z has a symmetric V-form B_0. Let σ_0 be the adjoint of B_0^G on $E(Z^G)$. As $Z \cong Z^*$, Lemma 2.6 implies that $\Delta^{\sigma_0} = \Delta$. So $\mathfrak{M}_{\sigma_0} = \mathfrak{M}_{\Delta}$ and σ_0 is an involution on $E_V(Z^G)/\mathfrak{M}_{\Delta}$. In this way $(E(P_\Delta), \sigma_0)$ is a simple involutary N-algebra.

By Lemma 2.4 there is a symmetric form B_{σ_0} on P_Δ such that the action of N on $E(P_\Delta)$ lifts to a representation $N \to \text{GL}(P_\Delta, B_{\sigma_0})$. In particular $k_\gamma N \cong kN$ as twisted group algebras and P_Δ is the regular kN-module.

Conversely suppose that M has a symmetric G-form B. Let σ be the adjoint of B on $E(M)$. Then $\Delta^{\sigma} = \delta$. So $\mathfrak{M}_{\sigma} = \mathfrak{M}_{\delta}$ and σ induces an involution on $E_V(M)/\mathfrak{M}_{\delta}$. According to Lemma 2.4, the action of N on $E(P_\delta)$ lifts to a representation $N \to \text{GL}(P_\delta, B_{\sigma})$, where B_{σ} is a symmetric form on P_δ. Thus $k_\gamma N \cong kN$ as twisted group algebras. But $k_\gamma N \cong k_\gamma N$. So as before P_Δ is the regular kN-module. \(\square\)

Set $N^* = N_G^G(V, Z)/V$, where $N_G^G(V, Z)$ is the stabilizer of $\{Z, Z^*\}$ in $N_G(V)$. So $[N^* : N] \leq 2$. The following is based on [16], (14.8)].
Lemma 3.9. Let L be a component of Z^G and let e be a point of $E_V(L)$ contained in Δ. For $V \leq H \leq G$ set $N_H = N_H(V,Z)/V$ and $N_H^* = N_H^*(V,Z)/V$. Then for all $f \in E_V(L)eE_V(L)$ we have:

(i) $\pi, tr_1^N f = tr_1^{N_H} \pi, tr_1^V f$ and $\pi, res_1^N f : E_H(L) \to E_{N_H}(P_e)$ is onto.

(ii) If σ is a G-involution of $E(L)$, then $\pi, tr_1^N f = tr_1^{N_H} \pi, tr_1^V f$ and $\pi, res_1^N f : E_H(L) \to N_H^*(E(P_e) \times E(P_{e^*}))$ is onto.

Proof. (i) follows from Remark (19.9) in [16] as $E_H(L) = tr_1^H(E(V,L))$.

From the proof of [16] (14.7) we see that $\pi, tr_1^N f = tr_1^{N_H} \pi, tr_1^V f$. So $\pi, tr_1^N f$ maps $E_H(L)$ onto $tr_1^{N_H}(E(P_e) \times E(P_{e^*}))$. This is a 2-sided ideal of $N_H^*(E(P_e) \times E(P_{e^*}))$ which is contained in $\pi, tr_1^{N_H} E_H(L)$.

We now modify [16] (14.8). As $L \mid Z^G$, we have $1_L = tr_1^{H}(i)$ for some $i \in E_V(L)eE_V(L)$. So $1_{P_e + P_{e^*}} = tr_1^{N_H} (\pi, e) (i)$ and hence

$$tr_1^{N_H} (E(P_e) \times E(P_{e^*})) = N_H^*(E(P_e) \times E(P_{e^*})).$$

Now (ii) follows from this and the previous paragraph.

In our situation the Puig correspondence [16] (19.1) is a multiplicity preserving bijection between the indecomposable components of Z^G with vertex V and the indecomposable components of P_Δ. More concretely, if e is a primitive idempotent in $E_G(Z^G)$ such that eZ^G has vertex V, then $\pi_\Delta(e)$ is a primitive idempotent in $E_N(P_\Delta)$, and $\pi_\Delta(e)P_\Delta$ is the Puig correspondent of eZ^G.

Proposition 3.10. Suppose that Z has a symmetric V-form B_0. Then the Puig correspondent of $P(k_N)$ is the unique indecomposable B_0^G-component of Z^G that has vertex V.

Proof. Lemma 3.8 applies, and we adopt its notation. Let $e \in \Delta$ be the orthogonal projection $Z^G \to 1 \otimes Z$. So $e, e = e$ and $tr_1^V(e) = 1_{Z^G}$. Set $\tau := \pi_\Delta(e)$. Then $1_{P_\Delta} = tr_1^N (\tau)$, using Lemma 3.9 (i). Moreover $\tau, V = \tau$. So $(P_\Delta, B_{n_\tau}) \mid \text{Ind}_1^N (\tau P_\Delta, B_\tau)$, according to Lemma 2.13. But $\text{dim}(\tau P_\Delta) = 1$. So $(\tau P_\Delta, B_\tau) \cong (k_1, B_1)$ and thus $\text{Ind}_1^N (\tau P_\Delta, B_\tau) \cong (kN, B_1)$. So we can and do identify (P_Δ, B_{n_τ}) with (kN, B_1).

Write $Z^G = L_1 + L_2 + \ldots + L_n$, where the L_i are indecomposable kG-modules and L_1 is the Puig correspondent of $P(k_N)$. Then $L_i \not= L_j^*$ for $i > 1$. So B_0^G is non-degenerate on L_1, by Lemma 2.12.

Now suppose that B_0^G is non-degenerate on L_i, where L_i has vertex V. Then L_i has V-source Z. Let $a \in E_G(Z^G)$ be orthogonal projection onto L_i. Then $\pi_\Delta(a)$ is a σ_ψ-invariant primitive idempotent in $E_N(P_\Delta)$. So $\pi_\Delta(a)kN \cong P(k_N)$, by Lemma 3.1. We deduce that $L_i = L_1$.

From now on we assume that M is of symmetric type.

Proposition 3.11. The following are equivalent:

(i) V is a symmetric vertex of M.

(ii) Z has symmetric type and M is the Puig correspondent of $P(k_N)$.

(iii) Z has symmetric type and if B_0 is a symmetric V-form on Z then M is a B_0^G-component of Z^G.

(iv) M has a symmetric G-form B such that Z is a B-component of M_V.
Proof. Assume (i). Then by Lemma 2.4.18 there is a symmetric kV-module (Y, B_t) such that Y is indecomposable and M is a B_t-component of Y^G. Then Y is a V-source of M. But $Z = nY$, for some $n \in N_G(V)$. So (iii) holds. Moreover, (i) and (ii) are equivalent, by Proposition 3.10.

Lemma 3.8 applies if (ii), (iii) or (iv) hold. We adopt its notation.

Assume (iii). Then M has a V-projective G-form. So (i) is true. Choose $a \in \mu$ such that $a^n = a$. But B_0^G is non-degenerate on $aZ^G \cong M$. Set $\overline{a} = \pi_\Delta(a)$. Then $\pi_\Delta B_0 \cong P(kN)$. Lemma 3.2 implies that B_1 is non-degenerate on a 1-dimensional subspace of $\pi_\Delta kN$. So there is a σ_Δ-invariant primitive idempotent $\overline{\pi_e} \in \pi E(kN)[\overline{\pi}]$, by Proposition 2.9.

Now π_Δ restricts to a surjective map $aE_V(Z^G)a \rightarrow \pi E(kN)[\overline{\pi}]$. So by Lemma 2.1 there is a primitive σ_Δ-invariant idempotent $d \in aE_V(Z^G)a$ such that $\pi_\Delta(d) = \overline{d}$. In particular $d \in \Delta$ and $d = ad\bar{a}$. Then B_0^G is non-degenerate on the V-component dZ^G of $aZ^G \cong M$. So (iv) holds.

Assume (iv). By Proposition 2.9 this means that there is $d \in \delta$ with $d^\sigma = d$. As $\pi_\delta(d)$ is a σ-invariant primitive idempotent in $E(P_\delta)$, B_σ is a diagonal N-form on P_δ. So $P_\delta \cong P(kN)$, using Lemma 3.11. Now $P(kN)$ is the only self-dual principal indecomposable kN-module which has multiplicity 1 in kN. So $P_\delta \cong P(kN)$, when regarded as a component of P_Δ. So (ii) holds.

The principal 2-block $b_0(G)$ is the block containing kG.

\textbf{Corollary 3.12.} If V is a symmetric vertex of M, then M is in $b_0(G)$.

Proof. From Proposition 3.11 M is the Puig correspondent of $P(kN)$. Set $C = VC_G(V)$. Then $\text{Res}^M_C(V, P(kN)) \cong P(kC/V)^m$, for some $m \geq 1$. So $(V, P(kC/V))$ is a root of M, in the terminology of ([9]). Now $P(kC/V)$ is in $b_0(C)$, and Brauer's Third Main Theorem implies that $(V, b_0(C))$ is a $b_0(G)$-subpair. So M belongs to $b_0(G)$, according to [9].

\textbf{Proposition 3.13.} Suppose that $Z \cong Z^\ast$. Let B be a symmetric G-form on M such that Z is not a B-component of M_V. Then

(i) There is $V \leq T \leq N_G(V, Z)$ with $[T : V] = 2$ such that Z^T is a B-component of M_T.

(ii) Let B_0 be a symmetric T-form on Z^T such that Z is a B_0-component of $(Z^T)_V$. Then M is a B_0-component of Z^G.

(iii) Either V or T is a symmetric vertex of M.

Proof. Lemma 3.8 applies, and we adopt its notation.

As B is degenerate on each submodule of M_V isomorphic to Z, σ does not fix any idempotent in δ. So σ does not fix any primitive idempotent in $E(P_\delta)$, in view of Lemma 2.4.1 This means that (P_δ, B_σ) is a symplectic kN-module. Lemma 3.6 gives an involution $t \in N$ such that B_t is non-degenerate on P_δ. Moreover $\text{Res}^G_{(t)}(P_\delta, B_\sigma)$ has a component $(k(t), B_t)$. So there is a σ-invariant primitive idempotent $\overline{\pi_e} \in E_{(t)}(P_\delta)$.

Let $T \leq N$ with $T/V = \langle t \rangle$. Then $\pi_\delta \text{Res}^T_V : E_T(M) \rightarrow E_{(t)}(P_\delta)$ is surjective, by Lemma 3.9 (i). Lemma 2.4.1 gives a primitive σ-invariant idempotent $y \in E_T(M)$ with $\pi_\delta(y) = \overline{\pi_e}$. So $Y = E_{(t)}(P_\delta)$ is a B-direct summand of M_T. Now Y is V-projective, $|T/V| = 2$ and Z is a component of Y_V. So $Y \cong Z^T$. The conclusion of (i) follows.

Assume the hypothesis of (ii). Note that $\text{Ind}_V^G(Y) \cong \text{Ind}_V^G(Z)$. Let σ_0 be the adjoint of B_0^G on $E(Z^G)$. Now $(E(P_\Delta), \sigma_0)$ is an involutory N-algebra. So $k_N \cong kN$, P_Δ is the regular kN-module and σ_0 is the adjoint of a symmetric N-form B_{σ_0} on P_Δ. By hypothesis on B_0, the N-form B_{σ_0} is symplectic.
Let $e \in E_V(Z^G)$ be orthogonal projection onto $1 \otimes Y$. Then $\text{tr}^G_T(e) = 1_{Z^G}$ and $e \in \text{tr}^G_T(E_V(Z^G) \Delta E_V(Z^G))$. Set $\pi = \pi_\Delta(e)$. Then

$$1_{E(P_\Delta)} = \pi \text{tr}^G_T(e) = \text{tr}^N_T(\pi),$$

using Lemma 3.9(i).

As $\pi^{\sigma_0} = \pi$, Lemma 2.15 gives a kN-isometry $(P_\Delta, B_{\sigma_0}) \rightarrow \text{Ind}_N^G(\pi P_\Delta, B_\pi)$. But $\dim(\pi P_\Delta) = 2$. So this isometry is surjective, as both sides have dimension $|N|$. Now B_{σ_0} is symplectic, and $\langle t \rangle$ is cyclic of order 2. So $(\pi P_\Delta, B_\pi) \cong (k\langle t \rangle, B_t)$. We deduce that $(P_\Delta, B_{\sigma_0}) \cong (kN, B_t)$.

Now P_δ is a B_1-component of P_Δ. So there is a primitive σ_0-invariant idempotent $\pi \in E_N(P_\Delta)$ with $\pi P_\Delta \cong P_\delta$. Since $\pi_\Delta \text{res}^{G^0}_G : E_G(Z^G) \rightarrow E_N(P_\Delta)$ is surjective, idempotent lifting gives a primitive σ_0-invariant idempotent $a \in E_G(Z^G)$ with $\pi_\Delta(a) = \pi$. So aZ^G is a B_0^G-direct summand of Z^G. But $aZ^G \cong M$. The conclusion of (ii) follows.

(iii) holds as M has a T-projective symmetric G-form. □

Proposition 3.14. Suppose that $Z \not\cong Z^*$ and B is any symmetric G-form on M. Then

(i) There is $V \subseteq T \subseteq N_\sigma^0(V, Z)$ with $|T : V| = 2$ such that Z^T is a B-component of M_T. Then $N^* = N : (T/V)$.

(ii) Let B_0 be any symmetric T-form on Z^T. Then M is a B_0^G-component of Z^G.

(iii) T is a symmetric vertex of M.

Proof. Set Δ^T as the point of $E_G(Z^G)$ corresponding to Z^*. Lemma 2.6 implies that $\delta^T \not= \delta$. So $(E(P_\delta) \times E(P_\sigma), \sigma)$ is an involutory N^σ-algebra satisfying the hypothesis of Lemma 2.2(ii). This algebra is embedded in the N^σ-algebra $E(P_\Delta) \times E(P_\sigma)$ as follows. According to Lemma 3.9(ii), the restriction $\pi_{\Delta, \Delta^T} : E_G(Z^G) \rightarrow N^\sigma(E(P_\Delta) \times E(P_\sigma))$ is surjective. Let $a \in \mu$. So $aZ^G \cong M$. Then $\pi : = \pi_{\Delta, \Delta^T}(a)$ is a primitive idempotent in $N^\sigma(E(P_\Delta) \times E(P_\sigma))$. We identify $E(P_\delta) \times E(P_\sigma)$ with $\pi E(P_\Delta) \times E(P_\sigma)$, and $P_\delta + P_\sigma$ with $\pi(P_\Delta + P_\sigma)$.

By Lemma 2.6 there is a commutative diagram

$$
\begin{array}{c}
1 \longrightarrow O \xrightarrow{\text{inc}} H \xrightarrow{\theta} N^* \longrightarrow 1 \\
\downarrow \eta \quad \downarrow \chi \quad \quad \downarrow \rho \\
1 \longrightarrow K \xrightarrow{\text{inc}} \text{Sp}(P_\delta, P_\sigma) \xrightarrow{\rho} \text{PGL}(P_\delta, P_\sigma, \sigma) \longrightarrow 1
\end{array}
$$

where O is a finite cyclic group of odd order and $\theta(C_H(O)) = N$. Each element of $H(C_H(O))$ maps P_δ onto P_σ. Moreover σ is the adjoint of a symplectic H-form B_σ on $P_\delta + P_\sigma$, with

$$
(P_\delta)_{1} = P_\delta \quad \text{and} \quad (P_\sigma)_{1} = P_\sigma.
$$

Now $e_\eta = \frac{1}{|O|} \sum_{\lambda \in O} \eta(\lambda^{-1})\lambda$ is a central idempotent in kH such that $P_\Delta + P_\Delta^\sigma \cong kHe_\eta$ as kH-modules. So $E_{N^\sigma}(P_\Delta + P_\Delta^\sigma) \cong e_\eta kHe_\eta$.

By Lemma 3.6 there is an involution $t \in H$ such B_t is non-degenerate on $P_\delta + P_\sigma$ and $k(t)$ is a B_σ-component of $(P_\delta + P_\sigma)_{t}$. This means that there is $p \in P_\delta + P_\sigma$ such that $B_\sigma(p, tp) \neq 0$.

Write $p = p_1 + p_2$ where $p_1 \in P_\delta$ and $p_2 \in P_\sigma$.

We claim that $t \notin C_H(O)$. Otherwise, $tp_1 \in P_\delta$ and $tp_2 \in P_\sigma$. Then

$$B_\sigma(p, tp) = B_\sigma(p_1, tp_2) + B_\sigma(p_2, tp_1), \quad \text{by } 3.1
$$

$$= B_\sigma(p_1, tp_2) + B_\sigma(tp_1, p_2), \quad \text{as } B_\sigma \text{ is symmetric}
$$

$$= B_\sigma(p_1, p_2), \quad \text{as } t^\sigma = t.
$$

This contradicts our choice of p and thus establishes our claim.

Now $tp_1 \in P_\sigma$ and $tp_2 \in P_\delta$. So $B_\sigma(p, tp) = B_\sigma(p_1, tp_1) + B_\sigma(p_2, tp_2)$. Replace p by p_1 or p_2 so that $p \in P_\delta$ and $B_\sigma(p, tp) \neq 0$. Then replace p by $\sqrt{B_\sigma(p, tp)}^{-1} p$, so that $B_\sigma(p, tp) = 1$.

Define $\overline{\theta} \in E_{(t)}(P_3 + P_{3\sigma})$ by $\overline{\theta}(x) = B(x, tp)p + B(x, p)tp$, for all $x \in P_3 + P_{3\sigma}$. Then $\overline{\theta}$ is orthogonal projection onto $kp + ktp$. Moreover, $\overline{\theta}P_3 \subseteq P_3$ and $\overline{\theta}P_{3\sigma} \subseteq P_{3\sigma}$. So $\overline{\theta}$ is a σ-invariant primitive idempotent in $\langle t \rangle (E(P_3) \times E(P_{3\sigma}))$.

Let $T \geq V$ such that $T/V = (\theta(t))$. Then $N_G(V, Z) = N_G(V, Z)T$, $N_G(V, Z) \cap T = V$ and T/V is a complement to N in N^*. Now by Lemma 3.9(ii) the restriction $\pi_{\delta, \delta^*} : E_T(M) \to \langle t \rangle (E(P_3) \times E(P_{3\sigma}))$ is surjective. So by Lemma 2.1 there is a σ-invariant primitive idempotent $y \in E_T(M)$ such that $\pi_{\delta, \delta^*}(y) = \overline{\theta}$. Then yM is a B-direct summand of MT which lies over Z and Z^*. But $|T/V| = 2$. So $yM \cong ZT$.

Let B_0 be any symplectic T-form on Z^T. Identifying $\text{Ind}_T^G(Z^T)$ with $\text{Ind}_V^G(Z)$, we regard B_0^G as a symplectic G-form on Z^G. Let σ_0 be the adjoint of B_0^G on $E(Z^G)$. Then $(E(P_\Delta) \times E(P_{\Delta^*})), \sigma_0)$ is an involutive N^*-algebra satisfying the hypothesis of Lemma 2.2(ii). So σ_0 is the adjoint of a symmetric N^*-form B_{δ_0} on $P_\Delta + P_{\Delta^*}$ such that $(P_{\Delta^*})^\perp = P_\Delta$ and $(P_{\Delta^*})^\perp = P_{E_G}$.

Let $e \in E_T(Z^G)$ be orthogonal projection onto $1 \otimes Z^T$. Then $\text{tr}_{E_G}^G(e) = 1_{Z^G}$ and $e \in \text{tr}_{E_T}^G(E_T(Z^G)\Delta E_T(Z^G))$. Set $\pi = \pi_{\Delta, \Delta^*}(e)$, a primitive idempotent in $\langle t \rangle (E(P_\Delta) \times E(P_{\Delta^*}))$. As O acts trivially on $E(P_\Delta) \times E(P_{\Delta^*})$, we have

$$1_{P_\Delta + P_{\Delta^*}} = \pi_{\Delta, \Delta^*}\cdot \text{tr}_{E_G}^G(e) = \text{tr}_{\theta(t)}^G(\overline{\theta}), \text{ by Lemma 3.9(ii)}$$

$$= \text{tr}_1^G(\overline{\theta}), \text{ as } N^* = N : (\theta(t)).$$

$$= \text{tr}_C^G(O)) = \text{tr}_O^C(\overline{\theta}), \text{ as } |O| \text{ is odd.}$$

$$= \text{tr}_{E_T}^G(\overline{\theta}), \text{ as } H = C_H(O) : (t).$$

Now $(\overline{\pi}(P_\Delta + P_{\Delta^*}), B_{\sigma_0}) \cong (k(t), b_1)$ as symmetric $k(t)$-modules. It then follows from Proposition 2.17 that $(P_\Delta + P_{\Delta^*}, B_{\sigma_0}) \cong (kH_{\sigma_0}, b_1)$.

As B_1 is non-degenerate on $P_\Delta + P_{\Delta^*}$, we may choose $\overline{\pi}$ so that σ_0 is non-degenerate on $\overline{\pi}(P_\Delta + P_{\Delta^*})$. Since $\overline{\pi}$ belongs to the σ_0-invariant semi-simple subalgebra $E(P_\Delta) \times E(P_{\Delta^*})$ of $E(P_\Delta + P_{\Delta^*})$, it follows from Lemma 2.11 that the orthogonal projection π onto $\overline{\pi}(P_\Delta + P_{\Delta^*})$ belongs to $N'(E(P_\Delta) \times E(P_{\Delta^*}))$.

Lemma 3.9(ii) states that $\pi_{\Delta, \Delta^*} : E_G(Z^G) \to N'(E(P_\Delta) \times E(P_{\Delta^*}))$ is surjective. So by Lemma 2.1 there is a σ_0-invariant primitive idempotent $b \in E_G(Z^G)$ such that $\pi_{\Delta, \Delta^*}(b) = \overline{\pi}$. Then bZ^G is a B_0^G-direct summand of Z^G isomorphic to M. This completes the proof of (i) and (ii).

(iii) holds as M has a T-projective symmetric G-form, but V is not a symmetric vertex of M.

3.3. Proofs of the main theorems

In this section M is an indecomposable kG-module of symmetric type, with a symmetric vertex T, a vertex $V \leq T$ and a V-source Z.

Proof Proof of Theorem 12.1 The first statement and the ‘if’ implication holds by Proposition 2.17. The ‘only if’ holds if T is a vertex of M. So we assume from now on that T is not a vertex of M.

Suppose that there is a kG-isometry $(M, B_1) \to (L, B_1)$, where $H \leq G$ and (L, B_1) is a symmetric kH-module. Let (V, Z) be a vertex-source pair of M. Then according to Propositions 3.13 and 3.14 there is $V \leq S \leq N_G(V, Z)$ with $[S : V] = 2$, a kS-isometry $(Z^S, B_0) \to \text{Res}^G_S(M, B_1)$ and a kG-isometry $(M, B_2) \to \text{Ind}^G_S(Z^S, B_0)$, where B_0 is a symmetric S-form on Z^S and B_2 is a symmetric G-form on M.

Composing the 3 isometries of the previous paragraph produces a kG-isometry $(M, B_2) \to \text{Ind}^G_S \text{Res}^G_S \text{Ind}^G_H(L, B_1)$. Now Lemma 2.12 gives

$$\text{Ind}^G_S \text{Res}^G_S \text{Ind}^G_H(L, B_1) \cong \bigoplus_{g \in S \cap G/H} \text{Ind}^G_{S \cap G/H} \text{Res}^H_{S \cap G/H}(gL, gB_1).$$
So by Lemma 1.15 there is a kG-isometry
\[(M, B_3) \to \text{Ind}_{S \cap H}^G \text{Res}_{S \cap H}^H (\varrho L, \varrho B_1),\]
for some $g \in G$ and some symmetric G-form B_3 on M. So B_3 is $S \cap H$-projective. But S is a symmetric vertex of M. It follows that $S \leq \varrho H$.

Choosing $H = T$, the work above shows that $S = \varrho T$. Then taking H to be any subgroup of G, we get $T \leq_G H$. \hfill \square

Here is a precise statement and proof of Theorem 1.3:

Theorem 3.15. If M is self-dual and irreducible then its symmetric vertices are determined up to G-conjugacy.

Let T be a symmetric vertex of M. Then Z^T is a B-component of M_T and for every symmetric T-form B_0 on Z^T, there is a kG-isometry $(M, B) \to \text{Ind}_T^G (Z^T, B_0)$.

Proof. Let S be any symmetric vertex of M. As B is the unique G-form on M, B is both T and S-projective. Then by Theorem 1.2, $T \leq_G S$ and $S \leq_G T$. So $T = G S$. This proves that there is one G-conjugacy class of symmetric vertices of M.

The other conclusions now follow from Propositions 3.11, 3.13 and 3.14. \hfill \square

Note that in case $T = V$ is a vertex of M, Proposition 3.11 implies that the defect multiplicity module P_3 of $E(M)$ is $P(k_N)$. But P_3 is an irreducible projective kN-module, by a well-known theorem of R. Knörr. This forces $P_3 = k_N$. So V is a Sylow 2-subgroup of $N_G(V, Z)$.

We now turn to the blocks of kG. Recall that kG is a left $kG \times G$-module via $(g_1, g_2)x := g_1 x g_2^{-1}$, for all $(g_1, g_2) \in G \times G$ and $x \in kG$. Clearly the elements of G form a transitive $G \times G$-set under this action and the stabilizer of 1 is ΔG. So $kG \cong \text{Ind}_{\Delta G}^{G \times G} (k_{\Delta G})$.

Let C be a conjugacy class of G and set $C^+ := \sum_{c \in C} c$ in kG. Then the C^+ form a basis for $Z(kG) \cong E_{G \times G}(kG)$; the corresponding $kG \times G$-endomorphism of kG is $\ell(C^+) = r(C^+)$. It is easy to show that $r(C^+) = \text{tr}^{G \times G}_{\Delta G} (c \otimes 1)$ in $E(kG)$, for each $c \in C$. So $r(C^+) = \text{tr}^{G \times G}_{\Delta G} (c \otimes 1)$, where Q is a Sylow 2-subgroup of $C_G(c)$. We call Q a defect group of c; the G-conjugates of Q are the defect groups of C. Set $C^\circ = \{c^{-1} | c \in C\}$ as the inverse conjugacy class of C.

Let e be a primitive idempotent in $Z(kG)$, also called a block idempotent of kG. Then ekG is an indecomposable $G \times G$-direct summand of kG, and a block of kG. Now ekG has vertex ΔD as $kG \times G$-module, where $D \leq G$ is minimal subject to $e \in \text{tr}^{G \times G}_{\Delta D} (E_{\Delta D}(kG))$. J. A. Green [7] showed that each D is a defect group of the block ekG, in the sense of [1]. Now $e = \sum_{g \in G} B_1(e, g) g$. If $B_1(e, g) \neq 0$, it is known that g has 2-order and D contains a conjugate of a defect group of g, and there is $c \in G$ such that $B_1(e, c) \neq 0$, and D is a defect group of c.

Recall that $g \in G$ is said to be real (in G) if $g^2 = g^{-1}$, for some $t \in G$. Then $C_G^o (g) = C_G (g) \langle t \rangle$ is a subgroup of G, called the extended centralizer of g in G. The Sylow 2-subgroups of $C_G^o (g)$ are called extended defect groups of g. So conjugacy classes have extended defect groups.

Now the block ekG is said to be real if $e^o = e$. Then $B_1(e, g) = B_1(e, g^{-1})$, for all $g \in G$. R. Gow defined the extended defect groups of a real 2-block ekG in [3]. This is a G-conjugacy class of 2-subgroups of G. If ekG is the principal 2-block of G then its extended defect groups are just its defect groups. For any other real block with a defect group D, there is an extended defect group $E \supseteq D$ with $[E : D] = 2$.

The author has shown that if $B_1(e, g) \neq 0$ and g is real with extended defect group R, then there is $s \in G$ such that $R \leq \langle E \rangle$ and $R \cap D$ is a defect group of g. Moreover, there is $c \in G$ such that $B_1(e, c) \neq 0$, c is real, E is an extended defect group of c and D is a defect group of c.
THEOREM 3.16. Let e be a real 2-block of kG and let E be an extended defect group of e in G. Set B_e as the restriction of B_1 from kG to ekG. Then B_e is ΔE-projective and ΔE is a symmetric vertex of ekG.

Proof. Write $e = \sum_{i=1}^n B_1(e, c_i)(C_i \cup C_i^\sigma)^+$, where the C_i are distinct conjugacy classes of G, $c_i \in C_i$ and $B_1(e, c_i) \neq 0$, for all i. Let $D \leq E$ be a defect group of ekG and let E_i be an extended defect group of c_i. We choose the C_i so that $D_i := D \cap E_i$ is a defect group of c_i, and also $E = DE_i$, if c_i is real. As c_i is 2-regular, $b_i^2 = c_i$ for $b_i \in \langle c_i \rangle$. Then b_i has defect group D_i and extended defect group E_i.

If $C_i \neq C_i^o$, set $\alpha_i = tr^{\Delta E}_{\Delta D_i}(b_i \otimes b_i^{-1} \otimes b_i)$. If $C_i = C_i^o$, set $\alpha_i = tr^{\Delta E}_{\Delta D_i}(b_i \otimes b_i^{-1})$. In both cases $\alpha_i = \alpha_i^o$ and $tr^{G \times G}_{\Delta \theta}(\alpha_i) = (C_i \cup C_i^\sigma)^+$. So

$$e = tr^{G \times G}_{\Delta \theta}(\sigma),$$

where $\theta = (\sum_{i=1}^n B_1(e, c_i)\alpha_i \otimes 1)$. Then $e = tr^{G \times G}_{\Delta \theta}(e \theta e)$ and $e \theta e$ is σ-invariant. As $E(ekG) = eE(kG)e$, we deduce that B_e is ΔE-projective.

If ekG is the principal 2-block of kG, then $\Delta E = \Delta D$ is a vertex of ekG, as $kG \times G$-module. So ΔE is a symmetric vertex of ekG. If ekG is not the principal 2-block of kG, then ekG belongs to a non-principal 2-block of $G \times G$. So ΔD is not a symmetric vertex of ekG, by Corollary 3.12. As $|\Delta E : \Delta D| = 2$ and ekG has a ΔE-projective symmetric $G \times G$-form, it follows that ΔE is a symmetric vertex of ekG in this case.

Acknowledgements. Many years ago B. Külshammer challenged me to define the ‘extended vertices’ of self-dual modules. My search for the correct definition led me to develop the ideas in this paper. I thank B. Külshammer, J. Müller and E. C. Dade for clarifying the proof of Lemma 2.1.

References
1. R. Brauer, ‘Zur Darstellungstheorie der Gruppen endlicher Ordnung’, Math. Zeit. 63 (1956) 406–444.
2. P. Fong, ‘On decomposition numbers of J_1 and $R(q)$’, Symposia Mathematica Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), pp. 415-422. (Academic Press, London, 1974).
3. R. Gow, ‘Real 2-blocks of characters of finite groups’, Osaka J. Math. 25 (1) (1988) 135-147.
4. R. Gow and W. Willems, ‘Quadratic geometries, projective modules and idempotents’, J. Algebra 160 (1993) 253-272.
5. R. Gow and W. Willems, ‘A note on Green correspondence and forms’, Comm. Algebra 23 (4) (1995) 1239-1248.
6. J. A. Green, ‘On the indecomposable representations of a finite group’, Math. Zeit. 70 (1959) 430–445.
7. J. A. Green, ‘Blocks of modular representations’, Math. Zeit. 79 (1962) 100–115.
8. B. Külshammer, Lectures on Block Theory, Lond. Math. Soc. Lecture Notes 161, (Cambridge Univ. Press 1991).
9. B. Külshammer, ‘Roots of simple modules’, Canad. Math. Bull. 49 (1) (2006) 96–107.
10. P. Landrock and O. Manz, ‘Symmetric forms, idempotents and involutory anti-isomorphisms’, Nagoya Math. J. 125 (1992) 33–51.
11. J. Murray, ‘Projective indecomposable modules, Scott modules and the Frobenius-Schur indicator’, J. Algebra 311 (2007) 800–816.
12. H. Nagao and Y. Tsushima, Representations of finite groups, (Academic Press, 1987).
13. G. Nebe, ‘Orthogonal Frobenius reciprocity’, J. Algebra 225 (2000) 250–260.
14. E. Pacifici, ‘On tensor induction for representations of finite groups’, J. Algebra 288 (2) (2005) 287-320.
15. G. R. Robinson, ‘The Frobenius-Schur Indicator and Projective Modules’, J. Algebra126 (1989) 252–257.
16. J. Thévenaz, G-algebras and Modular Representation Theory, Oxford Science Publications, (Clarendon Press, Oxford, 1995).
17. W. Willems, ‘Metrische moduln Über gruppenringen’, Ph.D. Thesis, Johannes Gutenberg-Universität, Mainz, 1976.
