Textural characteristics of bone marrow blast nucleus images with different variants of acute lymphoblastic leukemia

V G Nikitaev¹, A N Pronichev¹, E V Polyakov¹, A V Mozhenkova², N N Tupitsin², M A Frenkel²
¹National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia.
²N.N. Blokhin Russian Cancer Research Center, Kashirskoe shosse 23, 115478, Moscow, Russia

E-mail: VGNikitayev@mephi.ru

Abstract. The paper describes the method of recognition of T- and B- variants of acute lymphoblastic leukemia in microscopic images of blood cells. The method is based on the use of texture characteristics of images. Experimental recognition accuracy evaluation is obtained from the sample of 38 patients (17 with T-ALL and 21 with B-ALL variants of acute lymphoblastic leukemia). The obtained results show the possibility of applying the proposed approach to the differential diagnosis of T- and B- variants of acute lymphoblastic leukemia.

1. Introduction.
Diagnosis of acute lymphoblastic leukemia (ALL) and their variants is based on integrated morphocytochemical and immunophenotypic study of blasts in bone marrow aspirate [1, 2]. The study of cells in stained preparations includes evaluation of their various parameters: size, shape, and characteristics of the nuclei chromatin structure: thin netting, lumpy or dense. Blasts nuclei structure polymorphism is associated with a variety of immunophenotypical features, due to their belonging to different lines of hemopoiesis of B- or T-direction. Morphological heterogeneity of blast population is noted at T- and B- variants of ALL. Attempts of identifying of a logical relationship between the chromatin structure of blasts nuclei and immunophenotypic status has failed to date. Computer microscopy with using a multispectral camera has more wide opportunities to study the structure of nuclear chromatin fibres than optical microscopy. It allows you to objectify the data obtained in the form of numerical indices. Digital expression of the results of the study provides detailed analysis of the peculiarities of the blasts nuclei structure images in preparations of bone marrow of patients with B- and T- ALL [3-8].

The aim of this work is the comparative evaluation of texture characteristics of nuclei chromatin of bone marrow blasts with T- and B- variants of ALL. Wavelet transformation and spatial adjacency matrix were used for texture characteristics calculations.

2. Materials and methods
The sample of preparations of 38 patients was formed. 17 of them had T-ALL and 21 patients had B-ALL. The diagnosis was revealed on using morphocytochemical and immunophenotypic studies,
which were carried out in the laboratory of immunology of hematopoiesis of N. N. Blokhin Russian Cancer Science Center (head of the laboratory MD. Professor N. N. Tupitsyn).

The automated microscope Olympus BX43 with the Imperx camera IPX-4M1ST-GCFB was used for shooting digital images.

4930 images of bone marrow lymphoblasts were obtained for the study. There were 2048 lymphoblasts images from bone marrow preparations of patients with T-ALL and 2882 lymphoblasts images from bone marrow preparations of patients with B-ALL. Textural and wavelet features of blasts nuclei were calculated for the obtained images. Color model RGB, XYZ, HSL, Lab, Luv, LCH, HLS, HSV, YUV, YIQ, YCbCr, CMY were used for computation [9-13]. The areas with a size of 45x45 pixels inside blasts nuclei were selected for analyze. 513 types of textural characteristics for each of the cells were calculated. Then the characteristics averages for the cells sample in the preparations of each of patients were calculated.

The ALL type recognition was carried out using a linear classifier with a distance function Euclidean, Manhattan and Chebyshev in two-dimensional feature space [8]. We used all possible pairs of averages for all 513 textural characteristics types.

Table 1. Generalized characteristics M_{ENT} and M_{RENGE}^{-1} for the group of T- and B-cells of ALL patients

The patient (type of blasts)	Quantity of cells	M_{ENT}	M_{RENGE}^{-1}	The patient (type of blasts)	Quantity of cells	M_{ENT}	M_{RENGE}^{-1}
P 1(B)	159	5,778	72,501	P 20(B)	181	5,824	68,640
P 2(B)	176	5,373	66,157	P 21(B)	193	6,104	69,871
P 3(B)	166	5,798	71,040	P 22(T)	82	5,904	78,917
P 4(B)	103	5,664	69,700	P 23(T)	154	5,527	69,256
P 5(B)	100	5,874	72,396	P 24(T)	100	5,574	70,021
P 6(B)	183	5,887	73,818	P 25(T)	121	5,784	73,764
P 7(B)	146	5,730	66,776	P 26(T)	83	5,791	74,632
P 8(B)	170	6,055	72,907	P 27(T)	130	5,740	75,390
P 9(B)	117	6,120	70,409	P 28(T)	131	6,176	77,764
P 10(B)	116	5,898	72,213	P 29(T)	124	5,518	75,200
P 11(B)	107	5,640	68,775	P 30(T)	172	5,683	75,799
P 12(B)	33	5,867	77,986	P 31(T)	76	5,895	75,241
P 13(B)	168	6,097	71,219	P 32(T)	37	5,619	73,221
P 14(B)	51	5,921	71,565	P 33(T)	153	5,357	70,243
P 15(B)	115	5,954	74,195	P 34(T)	181	5,701	80,181
P 16(B)	73	6,007	73,637	P 35(T)	113	5,542	71,888
P 17(B)	185	5,798	65,043	P 36(T)	124	5,701	73,003
P 18(B)	214	5,607	66,611	P 37(T)	128	5,656	71,110
P 19(B)	126	5,637	67,796	P 38(T)	139	5,274	67,594

3. Results

M_{ENT} and M_{RENGE}^{-1} were identified as a couple of signs, in which the ALL variants detection occurred with minimal error. M represents the average value for the blast cells of the patient preparation. Index "ENT" corresponds to the texture characteristic entropy, calculated for R (red) coordinate in the RGB color space. The index "RENGE^{-1}" corresponds to the value of wavelet characteristic "relative range" for U (color-difference) component in the YUV color space. The data obtained are presented in Table 1. A graphical representation of Table 1 is shown in figure 1.
Thus, on these characteristics, you can judge the ALL variant (T - or B - type). Using of these characteristics allowed to achieve 95% recognition accuracy of ALL variants (T - or B – type).

Generalized criterion C_{GC} was proposed for the practical evaluation of the ALL type. The value of this criterion is calculated according to the formula: $C_{GC} = M_{ENT} \cdot 0.998 + M_{RENGE} \cdot (-0.065)$.

C_{GC} criterion distribution histogram for two classes of patients with ALL T-type and B-type is presented in figure 2.

Using a criterion value $C_{GC} = 1.405$, you can diagnose variant of acute lymphoblastic leukemia according to the rule: if $C_{GC} > 1.405$, then B-ALL type is, if $C_{GC} \leq 1.405$, then T-ALL type is [14].

Thus, a study based on computer analysis of images of the nuclear chromatin structure showed effective application of the apparatus of the texture analysis for establishing the T- and B- variants of acute lymphoblastic leukemia.
4. Conclusion
The study showed that the use of the texture analysis method of the blood cells nuclei images on microscopic examination of bone marrow aspirates allows to distinguish T- and B-variants of acute lymphoblastic leukemia. In experimental studies were used bone marrow aspirates preparations from 17 patients with T-ALL and 21 patients with B-ALL.

In further experiments we plan to increase the volume of the preparations sample. In addition, research will be conducted to establish correlations between morphological and immunophenotypical characteristics of lymphoblasts L1, L2, L3 types, pre-B, pre-pre-B, Pro-B and pre-T types for the differential diagnosis of appropriate modifications of acute leukemia with the use of computer microscopy.

Acknowledgments
The reported study was funded by RFBR according to the research project № 17-07-01496

References
[1] Frenkel M A 2007 Laboratory diagnosis of acute leukemia Clinical Hematology edited by Professor M A Volkova (original Russian title: Laboratornaya diagnostika ostryh leykozov Klinicheskaya onkogematologiia pod redaktsiey prof. M.A.Volkovoy) (Moscow Medicine publisher) pp 306-319
[2] Tupitsin N N 2007 Immunodiagnostics of acute leukemia and non-Hodgkin's lymphoma. Clinical Hematology edited by Professor M. A. Volkova (original Russian title: Immunodiagnostika ostryh leykozov i nehodzhkinskih limfom. Klinicheskaya onkogematologiia pod redaktsiey prof. M.A.Volkovoy) (Moscow Medicine publisher) pp 338-370
[3] Frenkel M A 2014 (in Russia) Haematopoiesis immunology 12(1-2) 18
[4] Volkova S A and Borovkov N N 2013 Fundamentals of clinical Hematology (original Russian title: Osnovi klinicheskoy gamatologii) (N. Novgorod: Lower GMA publisher) p 400
[5] Fiyas A T 2013 (in Russian) Hematological malignancies: clinical features, diagnosis, treatment (original Russian title: Gemoblastosi: klinika, diagnostika, lechenie) (Grodno: GrGMU publisher) p 172
[6] Swerdlow S H et al. 2008 WHO classification of tumours of haematopoietic and lymphoid tissues, (IARC: Lyon)
[7] Shivhare S and Shrivastava R 2012 International Journal of Scientific & Technology Research 1(4) s 125
[8] Nikitaev V G et al. 2015 Measurement Techniques 57(10) 1203
[9] Pronichev A. N et al. 2017 Journal of Physics: Conference Series 784(1) 012003
[10] Nikitaev V G et al. 2015 TRANSACTIONS on BIOLOGY and BIOMEDICINE 12(3) 16-19
[11] Nikitaev V G et al. 2015 Proceedings of the 6th International Conference on Bioscience and Bioinformatics (ICBB’15) (Dubai United Emirates February 22-24) p 120
[12] Nikitaev V G et al. 2015 Proceedings of the 15th International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV’15) (Sliema Malta August 17-19) p 49
[13] Nikitaev V G et al. 2016 International journal of biology and biomedical engineering 10 2016 p 109
[14] Nikitaev V G et al. 2016 Bulletin of the Lebedev Physics Institute 43(10) 306-308