β-Amino acids constitute a highly significant branch in organic chemicals, which have been found to possess diverse bioactivities and are employed as useful building blocks for the preparation of β-lactam antibiotics and heterocycles. In addition, β-amino acid derivatives frequently occur in numerous biologically active natural products. Among various compounds investigated to date, β-enaminolactone derivatives, the precursors of enantiopure β-amino acids, are the main structural components of many bioactive natural products that have attracted significant attention.

Owing to the abovementioned interesting functions of β-enaminolactone, several synthetic protocols have been nicely demonstrated during the past few decades to access these compounds. For instance, Abarbri and coworkers first reported the reaction of ethyl perfluorobut-2-ynoate with amino alcohols to generate 5-(perfluoroalkyl)-3,4-dihydro-2H-[1,4]oxazepin-7-ones via the intermolecular Michael addition and lactone formation. In 2005, Dechoux’s group reported an efficient method for the synthesis of β-enaminolactones via the condensation of acetonedicarboxylate with β-amino alcohols followed by an intramolecular cyclization step. However, during this synthesis, the reaction intermediates needed to be isolated and it required excess NaH to achieve the cyclization; moreover, an additional neutralization manipulation by adding NH4Cl/H2O was essential to obtain the desired products after the completion of the reaction. From the viewpoint of green chemistry, the development of efficient shortcuts for accessing β-enaminolactones from easily available feedstocks would be of high significance.

As a part of our program aimed at developing new synthetic methodologies for the construction of heterocycles, we initially had the idea to develop a ruthenium-catalyzed synthesis of ester-substituted pyrrole 3a′ from alkynoate 1a and β-amino alcohol 2a via dehydrogenative cyclization (Scheme 1, eqn (1)). However, we failed to obtain even traces of the anticipated product, and a small portion of β-enaminolactone 3a was obtained. Further investigations showed that the ruthenium catalyst was not essential for the product formation (3a), whereas the presence of 10 mol% of AlCl3 was able to improve the yield of 3a to 18% (eqn (2)). Upon a thorough investigation of this new observation, a straightforward method for the efficient synthesis of β-enaminolactones from alkynoates and β-amino alcohols using a task-specific sulfonic ionic liquid as the catalyst was realized and has been reported herein.

Our initial investigation was to develop a more efficient reaction system by choosing the synthesis of β-enaminolactone 3a from diethyl but-2-ynedioate 1a and 2-amino-2-phenylethanol 2a as a model reaction. First, the reaction in...
t-amyl alcohol was performed at 120 °C for 12 h, and several conventional Lewis acid catalysts were tested (Table 1, entries 1–7); it was found that Cu(OTf)2 or Zn(OTf)2 shows good performance in affording the desired product 3a. However, in the absence of an acid catalyst, the desired product was not obtained (Table 1, entry 8), indicating that the acidic catalyst played a crucial role in the reaction. Moreover, attracted by the significant advantages, such as the designability, easy recovery, and reusability,a–c of task-specific acidic ionic liquids, we evaluated the utility of a sulfonic-functionalized ionic liquida (TSIL-1: [TMBSA]HSO\textsubscript{4}) as a catalyst. Gratifyingly, this catalyst exhibited an excellent activity in the production of product 3a (entries 9–11), and 10 mol% catalyst loading was essential to afford a satisfactory yield (entry 9). Further, changes in the reaction temperatures led to diminished product yields (Table 1, entry 8), indicating that the acidic catalyst plays a crucial role in the reaction. Moreover, affected by the electron-donating groups on the aryl ring of the substrates 1d–2c, the reactions of 2-amino-2-phenylethanol 2a and 2-amino-3-phenylpropan-1-ol 2c to provide the products 3a and 3c in 86% and 94% yields, respectively (Table 2, entries 1 and 3). Moreover, even a sterically hindered substrate, such as 2-amino-1,2-diphenylethanol 2b, also underwent smooth transformation with 2-amino-2-phenylethanol 2a, affording the desired product in 78% yield (Table 2, entry 2). Similarly, the reactions of 1a with amino alcohols 2d and 2e produced the corresponding products 3d and 3e in excellent yields (Table 2, entries 4 and 5), respectively. Interestingly, the less reactive ethyl 3-phenylpropiolate 1c could also generate the desired coupling products in moderate to good yields, demonstrating that the developed chemistry was applicable for a broad substrate scope (Table 2, entries 6–10). Note that amino alcohols (2a and 2e) with a phenyl group or a benzyl substituent could afford higher yields (Table 2, entries 6 and 9) than those with an alkyl group (Table 2, entries 1 and 3–5). Moreover, amino alcohols with an isopropyl group gave a relatively lower yield (Table 2, entry 8), presumably because of the influence of its strong electron-donating effect, thus deactivating the ester group. On the other hand, the secondary alcohols such as 1-aminopropan-2-ol 2f reacted with alkanoate 1c to give the corresponding product 3j in 74% yield (Table 2, entry 10). Note that various functional groups such as 4-Cl, 4-Br, 4-F, and 4-CH\textsubscript{3}CO on the phenyl ring of alkanoates (1d–1g) were well tolerated, affording the corresponding products in good to excellent yields (Table 2, entries 12–14, 19 and 20). Similarly, electron-donating groups on the aryl ring of the substrates 2 were also compatible with the transformation (Table 2, entries 15–17). The retention of these functional groups would offer the potential for further molecular complexity via chemical transformation.

To gain insight into the reaction information, we performed the control experiments. It was found that hydroamination between alkynoate 1a and amino alcohol 2a completed in 5 minutes without any catalyst or additive. Then, the resulting enamine intermediate (3a–4) under standard conditions furnished the cyclization product 3a in an almost quantitative yield (Scheme 2). This result, in combination with the fact that in the absence of a catalyst, product 3a cannot be formed (Table 1, entry 8), indicates that the acidic catalyst plays a crucial role in the activation of the ester group. These findings suggest that the product formation is initiated by fast intramolecular hydroamination followed by [TMBSA]HSO\textsubscript{4}-catalyzed intramolecular transesterification.

Table 1 Screening of the reaction conditionsa

Entry	Catalyst (mol%)	Temp. (°C)	Solvent (2.0 mL)	Yieldb (%)
1a	AlCl\textsubscript{3} (10)	120	t-Amyl alcohol	18
2	ZnCl\textsubscript{2} (10)	120	t-Amyl alcohol	35
3	FeCl\textsubscript{3} (10)	120	t-Amyl alcohol	40
4	Yb(OTf\textsubscript{3}) (10)	120	Toluene	80
5	Cu(OTf\textsubscript{2}) (10)	120	Toluene	84
6	Cu(OTf\textsubscript{2}) (10)	120	Toluene	84
7	Zn(OTf\textsubscript{2}) (10)	120	Toluene	80
8	None	120	Toluene	77
9	TSILs (10)	120	Toluene	94
10	TSILs (5)	120	Toluene	92
11	TSILs (15)	120	Toluene	90
12b	TSILs (10)	120	Toluene	36
13	TSILs (10)	140	Toluene	87
14	TSILs (10)	120	Dioxane	36
15	TSILs (10)	120	Dioxane	22
16	TSILs (10)	120	DMSO	56
17	TSILs (10)	120	1,4-Dioxane	14
18	TSILs (1 mL)	120	1,4-Dioxane	77

a Reaction conditions: unless otherwise stated, the reaction mixture of dimethyl acetylenedicarboxylate (1) (0.5 mmol), 2-amino-2-phenylethanol (2) (0.6 mmol), catalyst loaded in different solvents (2.0 mL) was stirred at 120 °C for 12 h under atmospheric condition. b GC yield using \textit{n}-hexadecane as an internal standard. c Under a N\textsubscript{2} atmosphere. d No product detectives.
Finally, we demonstrated the utility of the developed new method. The reaction of the diethyl but-2-yne-dioate 1a with enantiopure amino alcohol (S)(+)-2a produced the enantiopure enaminolactone (S)(+)-3a in an excellent yield with retention of the chiral configuration (Scheme 3). This result shows that the task-specific acidic ionic liquid-catalyzed protocol is also applicable for the preparation of chiral β-enaminolactones from chiral amino alcohols.

In summary, by employing a task-specific sulfonic ionic liquid as the catalyst, we demonstrated an environmentally friendly and straightforward approach for the versatile synthesis of β-enaminolactones from readily available amino alcohols and alkynoates for the first time. The synthetic protocol proceeds via tandem intermolecular hydroamination and intramolecular esterification processes; moreover, it furnished the desired products in a step- and atom-economic fashion with the advantages of high isolated yields, broad substrate scope, good functional tolerance, and operational simplicity, which offers an important basis for the construction of β-enaminolactones.

Acknowledgements

The authors are grateful to the funds of the Science Foundation for Young Teachers of Wuyi University (No: 2016zk03, 2014zk04 and No: 2015td01), the Scientific Research Foundation for the Returned Overseas as Chinese Scholar, State Education Ministry ([2015]1098), the Natural Science Foundation of Guangdong Province (No: 2014A030310211), and the Foundation of the Department of Education of Guangdong Province (No: 2016KTSCX144).
Notes and references

1 (a) O. W. Griffith, *Annu. Rev. Biochem.*, 1986, 55, 855–878; (b) E. Juaristi, D. Quintania and J. Escalante, *Aldrichimica Acta*, 1994, 27, 3–11; (c) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, *Org. Biomol. Chem.*, 2006, 4, 2337–2347.

2 (a) D. Seebach and J. L. Matthews, *Chem. Commun.*, 1997, 2015–2022; (b) R. P. Cheng, S. H. Gellman and W. F. DeGrado, *Chem. Rev.*, 2001, 101, 3219–3232.

3 S. Richard, G. Prie, A. Guignard, J. Thibonnet, J. L. Parrain, A. Duchene and M. Abarbri, *Helv. Chim. Acta*, 2003, 86, 726–732.

4 J. Alladoum and L. Dechoux, *Tetrahedron Lett.*, 2005, 46, 8203–8205.

5 J. Alladoum, V. Toum, S. Hebbe, C. Kadouri-Puchot and L. Dechoux, *Tetrahedron Lett.*, 2009, 50, 617–619.

6 Y. Ishida, N. Iwahashi, N. Nishizono and K. Saigo, *Tetrahedron Lett.*, 2009, 50, 1889–1892.

7 A. K. Singh, R. Chawla and L. D. S. Yadav, *Synthesis*, 2012, 44, 2353–2358.

8 Y. Tian, X. Wang, Q. Xiao, C. Sun and D. Yin, *J. Org. Chem.*, 2014, 79, 9678–9685.

9 M. Petkovic, K. R. Seddon, P. N. Rebelo and C. S. Pereira, *Chem. Soc. Rev.*, 2011, 40, 1383–1403.

10 N. Isambert, M. M. S. Duque, J.-C. Plaquevent, Y. Génisson, J. Rodríguez and T. Constantieux, *Chem. Soc. Rev.*, 2011, 40, 1347–1357.

11 R. Sheldon, *Chem. Commun.*, 2001, 23, 2399–2407.

12 T. Welton, *Chem. Rev.*, 1999, 99, 2071–2083.

13 J. P. Hallett and T. Welton, *Chem. Rev.*, 2011, 111, 3508–3576.

14 T. Welton, *Coord. Chem. Rev.*, 2004, 248, 2459–2477.

15 A. S. Amarasekara, *Chem. Rev.*, 2016, 116, 6133–6183.

16 (a) S. G. Lee, *Chem. Commun.*, 2006, 1049–1063; (b) G. Y. Zhao, T. Jiang, H. X. Gao, B. X. Han, J. Huang and D. H. Sun, *Green Chem.*, 2004, 6, 75–77; (c) D. Q. Xu, J. Wu, S. P. Luo, J. Zhang, J. Y. Wu, X. H. Du and Z. Y. Xu, *Green Chem.*, 2009, 11, 1246.

17 (a) C. B. Bheeter, L. Chen, J.-F. Soulé and H. Doucet, *Catal. Sci. Technol.*, 2016, 6, 2005–2049; (b) L. Chen, X. Luo and Y. Li, *Monatsh. Chem.*, 2017, 148, 957–961; (c) J. Cai, S. Huang, R. He, L. Chen, D. Chen, S. Jiang, B. Li and Y. Li, *Org. Biomol. Chem.*, 2017, 15, 333–337; (d) Y. Li, L. Cheng, B. Li, S. Jiang, L. Chen and Y. Shao, *ChemistrySelect*, 2016, 5, 1092–1095.