Supplemental information

Breaking the trade-off between selectivity and adsorption capacity for gas separation

Naveen Kumar, Soumya Mukherjee, Nathan C. Harvey-Reid, Andrey A. Bezrukov, Kui Tan, Vinicius Martins, Matthias Vandichel, Tony Pham, Lisa M. van Wyk, Kolade Oyekan, Amrit Kumar, Katherine A. Forrest, Komal M. Patil, Leonard J. Barbour, Brian Space, Yining Huang, Paul E. Kruger, and Michael J. Zaworotko
Supplemental Information for

Breaking the trade-off between selectivity and adsorption capacity for C$_2$H$_2$/CO$_2$ separation

Naveen Kumar,¹,† Soumya Mukherjee,¹,† Nathan C. Harvey-Reid,² Andrey A. Bezrukov,¹ Kui Tan,³ Vinicius Martins,⁴ Matthias Vandichel,¹ Tony Pham,⁵ Lisa M. van Wyk,⁶ Kolade Oyekan,³ Amrit Kumar,¹ Katherine A. Forrest,⁵ Komal M. Patil,² Leonard J. Barbour,⁶ Brian Space,⁵ Yining Huang,⁴ Paul E. Kruger,² and Michael J. Zaworotko¹,*
*correspondence: xtal@ul.ie
†These authors contributed equally.

Materials and Methods S4
Supplemental Text S8
Figures S1 to S73

Figure S1. PXRD profiles of SIFSIX-21-Ni, TIFSIX-4-Ni and NbOFFIVE-3-Ni, validating phase purity S20
Figure S2. PXRD profiles of SIFSIX-21-Cu, TIFSIX-4-Cu and NbOFFIVE-3-Cu, validating phase purity S20
Figure S3. Pawley profile fit of the PXRD patterns of NbOFFIVE-3-Ni S21
Figure S4. Pawley profile fit of the PXRD patterns of NbOFFIVE-3-Cu S21
Figure S5. Variable temperature PXRD patterns of SIFSIX-21-Ni S22
Figure S6. Variable temperature PXRD patterns of TIFSIX-4-Ni S22
Figure S7. Variable temperature PXRD patterns of NbOFFIVE-3-Ni S23
Figure S8. Variable temperature PXRD patterns of SIFSIX-21-Cu S23
Figure S9. Variable temperature PXRD patterns of TIFSIX-4-Cu S24
Figure S10. Variable temperature PXRD patterns of NbOFFIVE-3-Cu S24
Figure S11. In situ PXRD patterns of SIFSIX-21-Ni on C$_2$H$_2$ dosing S25
Figure S12. In situ PXRD patterns of SIFSIX-21-Cu on C$_2$H$_2$ dosing S25
Figure S13. Thermogravimetric analysis profiles of the as-synthesised SIFSIX-21-Ni, TIFSIX-4-Ni and NbOFFIVE-3-Ni S26
Figure S14. Thermogravimetric analysis profiles of the as-synthesised SIFSIX-21-Cu, TIFSIX-4-Cu and NbOFFIVE-3-Cu S26
Figure S15. Low temperature sorption isotherms for SIFSIX-21-Ni S27
Figure S16. C$_2$H$_2$ and CO$_2$ adsorption isotherms for SIFSIX-21-Ni S27
Figure S17. Low temperature sorption isotherms for TIFSIX-4-Ni S28
Figure S18. C$_2$H$_2$ and CO$_2$ adsorption isotherms for TIFSIX-4-Ni S28
Figure S19. Low temperature sorption isotherms for NbOFFIVE-3-Ni S29
Figure S20. C$_2$H$_2$ and CO$_2$ adsorption isotherms for NbOFFIVE-3-Ni S29
Figure S21. Low temperature sorption isotherms for SIFSIX-21-Cu S30
Figure S22. C$_2$H$_2$ and CO$_2$ adsorption isotherms for SIFSIX-21-Cu S30
Figure S23. Low temperature sorption isotherms for TIFSIX-4-Cu S31
Figure S24. C$_2$H$_2$ and CO$_2$ adsorption isotherms for TIFSIX-4-Cu S31
Figure S25. Low temperature sorption isotherms for NbOFFIVE-3-Cu S32
Figure S26. C$_2$H$_2$ and CO$_2$ adsorption isotherms for NbOFFIVE-3-Cu S32
Figure S27. Isothermal enthalpies of adsorption for SIFSIX-21-Ni

Figure S28. Isothermal enthalpies of adsorption for TIFSIX-4-Ni

Figure S29. Isothermal enthalpies of adsorption for NbOFFIVE-3-Ni

Figure S30. Isothermal enthalpies of adsorption for SIFSIX-21-Cu

Figure S31. Isothermal enthalpies of adsorption for TIFSIX-4-Cu

Figure S32. Isothermal enthalpies of adsorption for NbOFFIVE-3-Cu

Figure S33. Virial Fitting of the CO$_2$ isotherms for SIFSIX-21-Ni

Figure S34. Virial Fitting of the C$_2$H$_2$ isotherms for SIFSIX-21-Ni

Figure S35. Virial Fitting of the CO$_2$ isotherms for TIFSIX-4-Ni

Figure S36. Virial Fitting of the C$_2$H$_2$ isotherms for TIFSIX-4-Ni

Figure S37. Virial Fitting of the CO$_2$ isotherms for NbOFFIVE-3-Ni

Figure S38. Virial Fitting of the C$_2$H$_2$ isotherms for NbOFFIVE-3-Ni

Figure S39. Virial Fitting of the CO$_2$ isotherms for SIFSIX-21-Cu

Figure S40. Virial Fitting of the C$_2$H$_2$ isotherms for SIFSIX-21-Cu

Figure S41. Virial Fitting of the CO$_2$ isotherms for TIFSIX-4-Cu

Figure S42. Virial Fitting of the C$_2$H$_2$ isotherms for TIFSIX-4-Cu

Figure S43. Virial Fitting of the CO$_2$ isotherms for NbOFFIVE-3-Cu

Figure S44. Virial Fitting of the C$_2$H$_2$ isotherms for NbOFFIVE-3-Cu

Figure S45. C$_2$H$_2$/CO$_2$ selectivity calculated by IAST for SIFSIX-21-Ni

Figure S46. C$_2$H$_2$/CO$_2$ selectivity calculated by IAST for TIFSIX-4-Ni

Figure S47. C$_2$H$_2$/CO$_2$ selectivity calculated by IAST for NbOFFIVE-3-Ni

Figure S48. C$_2$H$_2$/CO$_2$ selectivity calculated by IAST for SIFSIX-21-Cu

Figure S49. C$_2$H$_2$/CO$_2$ selectivity calculated by IAST for TIFSIX-4-Cu

Figure S50. C$_2$H$_2$/CO$_2$ selectivity calculated by IAST for SIFSIX-21-Cu

Figure S51. Mixed isotherms for Ni HUM series

Figure S52. Mixed isotherms for Cu HUM series

Figure S53. C$_2$H$_2$ and CO$_2$ binding sites for SIFSIX-21-Ni

Figure S54. Sorption kinetics for C$_2$H$_2$ and CO$_2$ for Ni HUM series

Figure S55. Sorption kinetics for C$_2$H$_2$ and CO$_2$ for Cu HUM series

Figure S56. Schematic of dynamic column breakthrough experimental setup

Figure S57. Temperature programmed desorption experiments

Figure S58. Comparison of Q_a(C$_2$H$_2$) for C$_2$H$_2$/CO$_2$ separating MOMs

Figure S59. Comparison of ΔQ_a(C$_2$H$_2$/CO$_2$) for C$_2$H$_2$/CO$_2$ separating MOMs

Figure S60. Difference IR spectra for CO$_2$ and C$_2$H$_2$ adsorption in SIFSIX-21-Ni

Figure S61. IR spectra of activated NbOFFIVE-3-Cu and SIFSIX-21-Ni

Figure S62. Theoretical IR spectrum of pypz from DFT calculation

Figure S63. Evolution of the ν_{as}(C$_2$H$_2$) bands in NbOFFIVE-3-Cu

Figure S64. 13C static NMR spectra of 13CO$_2$ adsorbed in NbOFFIVE-3-Cu

Figure S65. Modelled structures to illustrate distance between CO$_2$ and C$_2$H$_2$ molecules from the metal centres

Figure S66. Experimental and simulated 2H static spectra of C$_2$D$_2$ absorbed in NbOFFIVE-3-Cu

Figure S67. A comparison of experimental 2H static NMR spectra of NbOFFIVE-3-Cu loaded with 0.4 and 0.8 eq. and 0.4 eq. C$_2$D$_2$ at room temperature

Figure S68. PXRD patterns of humidity exposed samples

Figure S69. PXRD patterns of regenerated samples of SIFSIX-21-Ni

Figure S70. PXRD patterns of regenerated samples of SIFSIX-21-Cu
Figure S70. PXRD patterns of regenerated samples of TIFSIX-4-Ni S56
Figure S71. Supplemental figures of TIFSIX-4-Ni S57
Figure S72. Supplemental figures of SIFSIX-21-Cu S57
Figure S73. Supplemental figures of TIFSIX-4-Cu S58

Tables S1-S4
 Table S1. Structural information, sorption data and C$_2$H$_2$/CO$_2$ selectivities S59
 Table S2. Crystallographic data for SIFSIX-21-Ni, TIFSIX-4-Ni, SIFSIX-21-Cu and TIFSIX-4-Cu S61
 Table S3. DSLF fitting parameters summary for C$_2$H$_2$ and CO$_2$ sorption S62
 Table S4. Calculated averaged total potential energies (in kJ mol$^{-1}$) for a single C$_2$H$_2$ and CO$_2$ molecule S63

References S64
Materials and Methods.

Starting materials, reagents and solvents were purchased from commercial sources (Sigma-Aldrich, TCI Europe N.V., AK Scientific Inc. USA) and used without further purification.

Powder X-ray Diffraction (PXRD). Diffractograms were recorded using a PANalytical Empyrean™ diffractometer equipped with a PIXcel3D detector operating in scanning line detector mode with an active length of 4 utilizing 255 channels. The diffractometer is outfitted with an Empyrean Cu LFF (long fine-focus) HR (9430 033 7310x) tube operated at 40 kV and 40 mA and CuKα radiation (λα = 1.540598 Å) was used for diffraction experiments. Continuous scanning mode with the goniometer in the theta-theta orientation was used to collect the data. Incident beam optics included the Fixed Divergences slit with anti-scatter slit PreFIX module, with a 1/8° divergence slit and a 1/4° anti-scatter slit, as well as a 10 mm fixed incident beam mask and a Soller slit (0.04 rad). Divergent beam optics included a P7.5 anti-scatter slit, a Soller slit (0.04 rad) and a Ni-β filter. In a typical experiment, 25 mg of sample was dried, ground into a fine powder and was loaded on a zero background silicon disks. The data was collected from 5°−40° (2θ) with a step-size of 0.0131303° and a scan time of 30 seconds per step. Crude data were analyzed using the X’Pert HighScore Plus™ software V 4.1 (PANalytical, The Netherlands).

Variable Temperature Powder X-ray Diffraction (VT-PXRD). Diffractograms at different temperature were recorded using a PANalytical X’Pert Pro-MPD diffractometer equipped with a PIXcel3D detector operating in scanning line detector mode with an active length of 4 utilizing 255 channels. Anton Paar TTK 450 stage coupled with the Anton Paar TCU 110 Temperature Control Unit was used to record the variable temperature diffractograms. The diffractometer is outfitted with an Empyrean Cu LFF (long fine-focus) HR (9430 033 7300x) tube operated at 40
kV and 40 mA and CuKα radiation ($\lambda_\alpha = 1.54056$ Å) was used for diffraction experiments. Continuous scanning mode with the goniometer in the theta-theta orientation was used to collect the data. Incident beam optics included the Fixed Divergences slit, with a 1/4° divergence slit and a Soller slit (0.04 rad). Divergent beam optics included a P7.5 anti-scatter slit, a Soller slit (0.04 rad), and a Ni-β filter. In a typical experiment, 20 mg of sample was dried, ground into a fine powder and was loaded on a zero background sample holder made for Anton Paar TTK 450 chamber. The data was collected from 5°–45° (2θ) with a step-size of 0.0167113° and a scan time of 50 seconds per step. Crude data were analyzed using the X’Pert HighScore Plus™ software V 4.1 (PANalytical, The Netherlands).

Thermogravimetric Analysis (TGA). Thermograms were recorded under nitrogen using TGA instrument TA Q50 V20.13 Build 39. Platinum pans and a flow rate of 60 cm3 min$^{-1}$ for the nitrogen gas were used for the experiments. The data was collected in the High Resolution Dynamic mode with a sensitivity of 1.0, a resolution of 4.0 and a temperature ramp of 20 °C min$^{-1}$ up to 550 °C. The data was evaluated using the T.A. Universal Analysis suite for Windows XP/Vista Version 4.5A.

Gas Sorption Measurements. For gas sorption experiments, ultrahigh-purity gases were used as received from BOC Gases Ireland: research-grade He (99.999%), CO$_2$ (99.995%), C$_2$H$_2$ (98.5%) and N$_2$ (99.998%). Adsorption experiments (up to 1 bar) for 77 K N$_2$ and 195 K CO$_2$ were performed on Micromeritics Tristar II 3030. Micromeritics 3Flex surface area and pore size analyser 3500 was used for collecting the 273 and 298 K sorption isotherms for C$_2$H$_2$ and CO$_2$. Before sorption measurements, activation of all six different HUMs was achieved by degassing the air-dried samples on a SmartVacPrep™ using dynamic vacuum and heating for 8 h (each
sample heated from RT to 333 K with a ramp rate of 5 °C. Brunauer-Emmett-Teller (BET) surface areas were determined from the CO₂ and N₂ adsorption isotherms at 195 K and 77 K respectively, using the Micromeritics Microactive software. About 100 mg of activated samples were used for the measurements. A Julabo temperature controller was used to maintain a constant temperature in the bath throughout the experiment. The bath temperatures of 273 and 298 K were precisely controlled with a Julabo ME (v.2) recirculating control system containing a mixture of ethylene glycol and water. The low temperature at 77 K and 195 K were controlled by a 4 L Dewar filled with liquid N₂ and dry ice/acetone, respectively. At every interval of two independent isotherms recorded for any sorbent, samples were regenerated by degassing over 5 h under high vacuum at 333 K, before commencing the next sorption experiment.

Accelerated Stability Protocol. In a typical experiment, as followed by the pharmaceutical industries,¹ microcrystalline samples of each of the HUMs was exposed to 313 K and 75 % RH for 1, 7 and 14 days (d) in a desiccator (corresponding to 4 d, 1 month and 2 months shelf-life, respectively). These conditions were achieved by using a supersaturated aqueous solution of NaCl maintained at 313 K in a closed desiccator. After 1, 7 and 14 d, sample aliquots were removed from desiccator and characterized by PXRD measurements in order to detect signs the sample which may have been affected by humidity.

Single-gas sorption cycling test. Gravimetric uptakes were recorded under pure C₂H₂ gas, using TGA instrument TA Q50 V20.13 Build 39. Platinum pans and gas flow rates of 10 cm³/min were used in these experiments. Desorption at 60 °C was performed under N₂ flow of 20 cm³/min. The data was collected in the High Resolution Dynamic mode with a sensitivity of 1.0, a resolution of 4.0 and the weight changes during C₂H₂ gas adsorption step were monitored under isothermal condition at 60 °C. The data was evaluated using the T.A. Universal Analysis suite for Windows
Breakthrough Experiments. In typical breakthrough experiments, ~ 0.5 g of pre-activated HUMs were placed in quartz tubing (8 mm diameter; 8 mm x 6 mm x 400 mm) to form fixed beds. First, the adsorbent bed was purged under a 30 cm3 min$^{-1}$ flow of He gas at 333 K for 30 min prior to breakthrough experiment. Upon cooling to room temperature, the gas flow was switched to the desired C$_2$H$_2$/CO$_2$ gas mixture compositions (2:1 and 1:1 respectively), maintained at a total flow rate of 1.0 cm3 min$^{-1}$. Herein, 2:1 and 1:1 C$_2$H$_2$/CO$_2$ binary breakthrough experiments were conducted at 298 K for all six HUMs. The outlet composition was continuously monitored by a Shimadzu Nexis GC-2030 gas chromatograph until complete breakthrough was achieved. For temperature programmed desorption (TPD), post-breakthrough saturated sorbent beds were heated at a constant rate to 60 °C under He flow, 20 cm3min$^{-1}$. The desorbed gases were monitored continuously.
Supplemental Text

Single Crystal X-ray Diffraction.

Single crystal X-ray diffraction data of all the crystals were collected on a Bruker Quest diffractometer equipped with a μS microfocus X-ray source (Cu Kα, λ = 1.54178 Å; Mo Kα, (λ = 0.71073 Å) and CMOS detector. APEX3 was used for collecting, indexing, integrating and scaling the data. Open-flow nitrogen attachment with Oxford Cryosystem was used for low temperature measurements. Absorption correction was performed by multi-scan method. Space groups were determined using XPREP as implemented in APEX3. All the scaled data were solved using intrinsic phasing method (XT) and refined on F² using SHELXL inbuilt in OLEX2 v1.2 (2009) program. All non-hydrogen atoms present in the frameworks were refined anisotropically. Hydrogen atoms were located at idealized positions from the molecular geometry and refined isotropically with thermal parameters based on the equivalent displacement parameters of their carriers. The reported structures were refined from twin crystals. Each of the crystals of SIFSIX-21-Ni, TIFSIX-4-Ni, SIFSIX-21-Cu and TIFSIX-4-Cu was revealed as a two-domain twin. Appropriate PART instructions were used to model framework disorder in these structures. Where needed, especially for disordered sections of the frameworks, restraints (SIMU, DELU, ISOR, RIGU) were used to ensure proper geometry of the molecules and to allow anisotropic refinement of non-hydrogen atoms. Crystallographic data for all the HUMs reported in this paper, are summarised in Table S2. Crystal structures are deposited to the Cambridge Crystallographic Data Centre (CCDC 2052024-2052025; 2052046-2052047).
Adsorption Energy Calculations.

Except the six HUMs studied herein, other Q_{st} plots and associated parameters were obtained from data extraction using WebPlotDigitizer.\(^8\)

A virial-type expression of the below form was used to fit the combined 273 and 298 K isotherm data of C\(_2\)H\(_2\) and CO\(_2\) for all six HUMs, where P is the pressure described in Pa, N is the adsorbed amount in mmol g\(^{-1}\), T is the temperature in K, a_i and b_i are virial coefficients and m and n are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and R is the universal gas constant. All fitting was performed using Origin Pro 8.\(^9\)

Fitting parameters thus obtained for the six HUMs can be found in Figures S33–S44.

\[
\ln P = \ln N + \sum_{i=0}^{m} a_i N_i + \sum_{i=0}^{n} \binom{n}{k} b_i N_i
\]

Q_{st} was calculated from the virial model using the equation below.

\[
-Q_{st} = -R \sum_{i=0}^{m} a_i N_i
\]

Adsorption Selectivity Calculations.

The selectivities for the adsorbate mixture composition of interest were calculated from the single-component adsorption isotherms using Ideal Adsorbed Solution Theory (IAST), using a modified version of the program pyIAST.\(^\text{10}\) First, the single-component isotherms for the gas sorbates at 298 K were fitted to the dual-site Langmuir-Freundlich (DLF) equation.\(^\text{11}\)

\[
n(P) = \frac{q_1 (k_1 P)^{n_1}}{1 + (k_1 P)^{n_1}} + \frac{q_2 (k_2 P)^{n_2}}{1 + (k_2 P)^{n_1}}
\]

In this equation, q_1 is the amount adsorbed per unit mass of material (in mmol g\(^{-1}\)), P is the total
pressure (in bar) of the bulk gas at equilibrium with the adsorbed phase, q_1 and q_2 are the saturation uptakes (in mmol g$^{-1}$) for sites 1 and 2 respectively, k_1 and k_2 are the affinity coefficients (in bar$^{-1}$) for sites 1 and 2 respectively and n_i^{-1} and n_j^{-1} represent the deviations from the ideal homogeneous surface (unit-less) for sites 1 and 2 respectively. Final selectivity for adsorbate i relative to adsorbate j was calculated using the following equation.

$$S_{i/j} = \frac{\left(\frac{x_i}{x_j}\right)}{\left(\frac{y_i}{y_j}\right)}$$

Here, x_i and x_j are the mole fractions of components i and j, respectively, in the adsorbed phase and y_i and y_j are the mole fractions of components i and j, respectively, in the gas phase. Dual-site Langmuir-Freundlich equation fitting parameters thus obtained for all the adsorbents can be found in Table S3.

Separation factor / Separation selectivity Calculations.

The amount of adsorbed gas i (q_i) is calculated from the breakthrough curve as follows:

$$q_i = \frac{V_i T_0 - V_{dead} - \int_0^{T_0} V_e \Delta T}{m}$$

Here, V_i is the influent flow rate of gas (cm3 min$^{-1}$), V_e is the effluent flow rate of gas (cm3 min$^{-1}$), V_{dead} is the dead volume of the system (cm3), T_0 is the adsorption time (min) and m is the mass of the sorbent (g).

The amount of adsorbed gas i (q_i) is calculated from the breakthrough curve as follows:

$$q_i = \frac{V_f \Delta T P_i}{m}$$

Here, V_f is the total flow rate of gas (cm3 min$^{-1}$), P_i is the partial pressure of gas i (bar), ΔT is the time for initial breakthrough of gas i to occur (min) and m is the mass of the sorbent (g). The
separation factor, also known as separation selectivity \((\alpha)\) for the breakthrough experiment \(i.e\), breakthrough derived selectivity is determined as follows:

\[
\alpha = \frac{q_1 y_2}{q_2 y_1}
\]

\(y_i\) is the partial pressure of gas \(i\) in the gas mixture. In the case where one gas component has negligible adsorption, the amount of gas adsorbed is treated as \(\leq 1\) cm\(^3\) for calculations.

For C\(_2\)H\(_2/\)CO\(_2\) DCB experiments, the C\(_2\)H\(_2\) concentration is defined by:

\[
Concentration(C_2H_2) = \frac{signal(C_2H_2)}{signal(C_2H_2) + signal(CO_2)}
\]

CO\(_2\) purity is defined by:

\[
Purity(CO_2) = \frac{signal(CO_2)}{signal(C_2H_2) + signal(CO_2)}
\]

The C\(_2\)H\(_2\) uptake calculation in breakthrough experiment is defined by:

\[
n(C_2H_2) = \int_0^{t_2} \left(u_i y_{C_2H_2} - u_e(t) y_e(t) \right) dt = \frac{F \times y_{C_2H_2} \times \int_0^{t_2} (1 - \frac{C(t)}{C_0}) dt}{V_m}
\]

\[
= \frac{F \times y_{C_2H_2} \times (t_2 - \int_0^{t_2} \frac{C(t)}{C_0} dt)}{V_m}
\]

Where \(n(C_2H_2)\) is the C\(_2\)H\(_2\) uptake in mmol g\(^{-1}\), \(t_2\) is the C\(_2\)H\(_2\) saturation time, \(u_e(t)\) is the transient linear velocity in outlet gas, \(y_e(t)\) is the transient C\(_2\)H\(_2\) volume fraction in the outlet gas, \(u_i\) is the transient linear velocity in inlet gas, \(F\) is the inlet gas volume flow rate, \(y_{C_2H_2}\) is the volume fraction of C\(_2\)H\(_2\) in the mixed gas, \(\int_0^{t_2} \frac{C(t)}{C_0} dt\) is the integrated area between the C\(_2\)H\(_2\) breakthrough curve and the X-axis within the range 0 and \(t_2\), \(C(t)\) is the detected C\(_2\)H\(_2\) concentration in the outlet gas, \(C_0\) is the detected C\(_2\)H\(_2\) concentration in the outlet gas and \(V_m\) is molar volume of the gas.
In situ Variable Pressure PXRD.

Crystals of each material were activated in a glass oven at 40 °C under vacuum (pressure: \(\sim 1 \times 10^{-2}\) millibar) for approximately 4 h. The activated solid was ground into a fine powder using a pestle and mortar and packed into an environmental gas cell (EGC). The EGC consists of a 0.5 mm glass Lindemann Capillary attached to a steel nut with epoxy, which is then screwed into a valve body. The EGC allows for pressurisation/evacuation of the immediate sample environment while the valve allows for this environment to be isolated and transported to the diffractometer. To determine a diffractogram under vacuum an EGC was attached to a manifold, that in turn was connected to a vacuum pump (pressure: \(\sim 7 \times 10^{-3}\) millibar) and left to equilibrate for approximately 4 h. For the variable pressure studies an EGC was attached to a C\(_2\)H\(_2\) cylinder *via* a regulator. The system was pressurised and left to equilibrate under static pressure for approximately 4–6 h. After the valve to the EGC was closed, it could be transported to the diffractometer. A PANalytical XPERT-PRO diffractometer was used to record experimental diffractograms. The diffractometer utilises Bragg-Brentano geometry and Cu Ka radiation \((\lambda = 1.5418 \ \text{Å})\) as the incident beam. Intensity data were recorded using a capillary spinner to which the EGC was attached. The samples were scanned between 4° and 45° 2\(\theta\) with a varying scan speed and step size, which was dependent on the nature of the sample.

In situ Infrared (IR) Spectroscopy.

In situ IR measurements were performed on a Nicolet 6700 FTIR spectrometer using a liquid N\(_2\)-cooled mercury cadmium telluride (MCT-A) detector. A vacuum cell is placed in the sample compartment of the infrared spectrometer with the sample at the focal point of the beam. The samples (\(~5\) mg) were gently pressed onto KBr pellet and placed into a cell that is connected to a vacuum line for evacuation. The samples of NbOFFIVE-3-Cu and SIFSIX-21-Ni were activated
by evacuation overnight at 60 °C, respectively, and then cooled back to room temperature for CO₂ and C₂H₂ gas exposure measurement. Note that the IR absorption of the gas phase is prohibitively high at this pressure, making the observation of adsorbed molecules impossible. We pumped out the gas phase and recorded spectra as a function of time in the desorption process. Within ~5 seconds of evacuation, the pressure of gas-phase drops below ~500 mTorr (negligible gas-phase IR absorption).

DFT calculation of vibrational bands of pypz linker.

The DFT calculations and IR vibrational modes presented here were obtained using the Jaguar electronic structure program.¹³, ¹⁴ Geometry relaxation included perturbation of all rotatable proper and improper torsions, except those in rings and double bonds, to ensure convergence at the minimum energy structure. Subsequent single point vibrational frequencies calculation was carried out to obtain the IR spectrum shown in Figure S62. All structure derivatives were computed using the B3LYP-D3 hybrid functional¹⁵ and 6-31G** basis set.¹⁶ The chemical structure images were drawn with Maestro.¹⁷

Solid-state (SS) NMR Spectroscopy.

100 mg of the **NbOFFIVE-3-Cu** sample was ground into a fine powder, packed into an L-shaped glass tube, and then connected to a Schlenk line where it was left evacuating at room temperature for 24 h. The samples were then loaded with the guest gases (¹³CO₂: 0.4 eq. per metal; C₂D₂: 0.4 and 0.8 eq. per metal) and sealed off from the Schlenk line. The guest-loaded samples were then left at room temperature for 24 h before the NMR experiments to allow for the equilibration. All SSNMR experiments were carried out using a Varian Infinity Plus NMR spectrometer, equipped with an Oxford 9.4 T wide-bore magnet and a 5 mm HX static Varian/Chemagnetics
probe. Static 13C NMR spectra [$\nu_0(^{13}$C) = 100.5 MHz] were referenced to TMS using the high-frequency signal of ethanol at 58.05 ppm as a secondary reference. Experiments were performed using the DEPTH-echo pulse sequence to remove the background from the probe, with a 90° pulse width of 3.2 µs and a 180° pulse width of 6.4 µs. The spectral width was 300 kHz and the optimized recycle delay was 3 s. The number of scans required for static VT 13C ranges from 700 to 1000 scans. Static 2H NMR spectra [$\nu_0(^{13}$C) = 61.3 MHz] were referenced using the signal of D$_2$O(l) at 4.80 ppm as a secondary reference. A quadrupolar echo pulse sequence of the form $(\pi/2-\tau_1-\pi/2-\tau_2)$ was used with a 90° pulse width of 4.0 µs, a τ_1 of 30.0 µs and a τ_2 of 30.0 µs. The spectral width was 500 kHz and the optimized 2H recycle delay was 0.5 s. The number of scans required for static 2H VT SSNMR experiments ranges between 3000 and 3200 scans. The WSolids software package was used to simulate all static SSNMR spectra in order to extract the NMR parameters of gas molecules from observed spectra. The EXPRESS software was used to simulate the effects of guest motion.

Synthesis of compounds.

3,5-dimethyl-1H-pyrazol-4-yl)pyridine (pypz) synthesis.

3,5-dimethyl-1H-pyrazol-4-yl)pyridine was synthesized following reported procedure.

Preparation of SIFSIX-21-Ni single crystals. Single crystals of the compound SIFSIX-21-Ni were obtained by solvothermal reaction as following: a suspension of pypz (0.1 mmol, 17 mg) and NiSiF$_6.6$H$_2$O (0.05 mmol, 15 mg) in MeOH (3 mL) were reacted at 85 °C in a small 10.5 mL glass vial for overnight, keeping in a fixed-temperature oven. The crystals were collected in ca. 75 % yield by filtration and washed with MeOH three times.

Preparation of TIFSIX-4-Ni single crystals. MeOH (2 mL) was carefully layered over a solution of NiTiF$_6.6$H$_2$O (0.05 mmol, 16 mg) 2 mL of MeOH to which pypz (0.1 mmol, 17 mg) in 2 mL
of MeOH was layered. Light pink single crystals were obtained after several days with \textit{ca.} 60 \% yield. The crystals were harvested by filtration and washed with MeOH three times.

Preparation of SIFSIX-21-Cu single crystals.

Single crystals of the compound \textbf{SIFSIX-21-Cu}. An ethylene glycol solution (2 ml) of Cu(NO$_3$)$_2$ (8.4 mg, 0.035 mmol) and (NH$_4$)$_2$SiF$_6$ (6.2 mg, 0.035 mmol) was prepared and carefully transferred to a test tube of 10 cm length and 1 cm diameter. A buffer solution of ethylene-glycol:methanol (1:1/v:v) was prepared and 6 ml of this was carefully layered above the first solution, creating a defined layer between the two. A methanol solution (2 ml) of ligand \textit{pypz} (12 mg, 0.07 mmol) was layered on top of the buffer solution creating a third layer. The test-tube was sealed and left to stand. After two weeks, small blue/violet coloured crystals formed on the inside of the test-tube.

Preparation of TIFSIX-4-Cu single crystals.

Single crystals of the compound \textbf{TIFSIX-4-Cu}. Crystals were made following the same method as that used for \textbf{TIFSIX-4-Cu}, however (NH$_4$)$_2$TiF$_6$ (6.7 mg, 0.035 mmol) was used in place of (NH$_4$)$_2$SiF$_6$.

Preparation of NbOFFIVE-3-Ni crystalline powder. Crystalline powder of \textbf{NbOFFIVE-3-Ni} can be prepared by solvothermal reaction as following: a suspension of \textit{pypz} (1 mmol, 170 mg) and NiNbOF$_5$.6H$_2$O (0.5 mmol, 185 mg) in MeOH (15 mL) were reacted at 85 °C in a 100 ml Schott Duran® bottle for overnight, keeping in a fixed-temperature oven. The powder was collected in \textit{ca.} 70\% yield by filtration and washed with MeOH three times.

Preparation of NbOFFIVE-3-Cu crystalline powder. Crystalline powder of \textbf{NbOFFIVE-3-Cu} can be prepared from the similar procedure of \textbf{NbOFFIVE-3-Ni}, using CuNbOF$_5$.6H$_2$O (0.5 mmol, 187 mg) instead of NiNbOF$_5$.6H$_2$O.
Preparation of SIFSIX-21-Cu crystalline powder. Crystalline powder of SIFSIX-21-Cu can be prepared from the similar procedure of NbOFFIVE-3-Ni, using CuSiF₆.6H₂O (0.5 mmol, 157 mg) instead of NiNbOF₅.6H₂O.

Preparation of TIFSIX-4-Cu crystalline powder. Crystalline powder of TIFSIX-4-Cu can be prepared from the similar procedure of NbOFFIVE-3-Ni, using CuTiF₆.6H₂O (0.5 mmol, 167 mg) instead of NiNbOF₅.6H₂O.

Preparation of TIFSIX-4-Ni crystalline powder. Crystalline powder of TIFSIX-4-Ni can be prepared from the similar procedure of NbOFFIVE-3-Ni, using NiTiF₆.6H₂O (0.5 mmol, 164 mg) instead of NiNbOF₅.6H₂O.

Scale up for SIFSIX-21-Ni. SIFSIX-21-Ni can be scaled up from the similar procedure of NbOFFIVE-3-Ni, using NiSiF₆.6H₂O (0.5 mmol, 154 mg) instead of NiNbOF₅.6H₂O.

Modelling Studies.

The binding sites for C₂H₂ and CO₂ in SIFSIX-21-Ni were determined through classical molecular simulations. All parametrizations and simulations were performed on the single X-ray crystallographic structure published herein for the material.

All atoms of SIFSIX-21-Ni were treated with Lennard-Jones (LJ) parameters (ε and σ), point partial charges and point polarizabilities in order to model repulsion/dispersion, stationary electrostatic and many-body polarization interactions, respectively. The LJ parameters for all C and H atoms were taken from the Optimized Potentials For Liquid Simulations – All Atom (OPLS-AA) force field,⁴ while those for the N, F, Si and Ni atoms were taken from the Universal Force Field (UFF).⁵ The partial charges for the chemically distinct atoms in SIFSIX-21-Ni were determined through the Restrained Electrostatic Potential (RESP) method⁶ using the CP2K program.⁷ The exponential damping-type polarizability values for all C, H, N and F atoms were
taken from a carefully parametrized set provided by the work of van Duijnen and Swart. The polarizability parameter for Si\(^{4+}\) and Ni\(^{2+}\) was calculated in previous work and used herein. After the hydrogen nuclei were optimized, a Restrained Electrostatic Surface Potential (RESP) charge fit was performed to obtain partial charges on each atom for use in empirical simulation. Universal force Field (UFF) radii were used during the sphere sampling protocol.

Simulated annealing (SA) calculations were performed for a single molecule of both adsorbates through a canonical Monte Carlo (NVT) process in a 2 × 2 × 2 supercell of SIFSIX-21-Ni. This was done in order to identify the most favorable binding site for both adsorbates in the material. All HUM atoms were kept fixed at their crystallographic positions throughout the simulations. A spherical cut-off distance of 14.6342 Å, representing half the shortest supercell dimension length, was used for the simulations. C\(_2\)H\(_2\) and CO\(_2\) were modeled using polarizable potentials of the respective adsorbates that were developed previously. The total potential energy of the HUM–adsorbate system was calculated through the sum of the repulsion/dispersion, stationary electrostatic and many-body polarization energies. These were calculated using the LJ potential, the Ewald summation technique, and a Thole-Applequist type model, respectively. SA calculations for both adsorbates utilized an initial temperature of 500 K and this temperature was scaled by a factor of 0.99999 after every 1.0 × 10\(^3\) Monte Carlo steps. The simulations continued until the temperature of the system dropped below 10 K.

Next, canonical Monte Carlo (CMC) simulations were performed for a single molecule of C\(_2\)H\(_2\) and CO\(_2\), individually, positioned at their global minimum in SIFSIX-21-Ni. This was done in order to evaluate the averaged classical potential energy for both adsorbates about their energy minimum position in the material. As with the SA calculations, the simulations were carried out
within the rigid $2 \times 2 \times 2$ supercell of the HUM using the same force fields. The CMC simulations were performed at a temperature of 298 K and a pressure of 0.10 atm. These simulations ran for a total of 1.0×10^6 Monte Carlo steps to ensure reasonable ensemble averages for the total potential energy of the system. The averaged classical potential energies for C$_2$H$_2$ and CO$_2$ localized about their energy minimum position in SIFSIX-21-Ni are presented in Table S4. All SA calculations and CMC simulations were carried out using the Massively Parallel Monte Carlo (MPMC) code.40, 41

Modelling details of C$_2$H$_2$ and CO$_2$ sites which corresponds to the Figure S53.

To study the C$_2$H$_2$ and CO$_2$ binding sites in SIFSIX-21-Ni systematically, periodic DFT calculations are performed with the Vienna Ab Initio Simulation Package (VASP 5.4.4).42, 43 To describe the interactions between the HUM and adsorbates accurately, we opted for the BEEF-vdW functional.44 This functional is parametrized with training data based on the CCSD(T) method, it is therefore also an excellent choice to account for van der Waals interactions as well as hydrogen bonds especially valuable for the comparison of CO$_2$ and C$_2$H$_2$ adsorption enthalpies. The one-electron Kohn-Sham orbitals were expanded in a plane wave basis set with a kinetic energy cut-off of 550 eV for all calculations. PAW potentials are employed to describe the interaction between the valence electrons and the core.45 The HUM is first structurally cell-optimized (Γ-point) until the largest force is smaller than 0.02 eV/Å. Afterwards, the atomic positions of the HUM-lattice are fixed and the adsorbates are optimized until the largest force is smaller than 0.01 eV/Å. Furthermore, a Gaussian smearing of 0.05 eV is applied to improve convergence,42 while the convergence criterion for the electric self-consistent field (SCF) problem is set to 10^{-5} eV for all optimizations. For the energy calculations on the converged structures, the reciprocal space integration over the Brillouin zone is approximated with finite sampling using
Monkhorst-Pack grids \cite{46,47} using a 3x3x3 k-point grid. For the optimized binding site of C$_2$H$_2$ (Figure S53a), there were no imaginary modes observed, while for the optimized binding sites of CO$_2$, there are 1 or 2 imaginary modes for the geometries given in Figures S53b and S53c, respectively. For the calculation of the enthalpies, these imaginary modes are replaced by an arbitrary mode of 100 cm$^{-1}$. To verify the local minima, a relevant partial Hessian vibrational analysis (PHVA) is employed, keeping all atoms from the framework fixed except the adsorbate. The PHVA is used also to obtain zero-point corrections and enthalpy contributions.\cite{48,49} The numerical partial Hessian is calculated by displacements in x, y and z-directions of ± 0.004 Å and the vibrational modes are extracted using the normal mode analysis as implemented in the post-processing toolkit TAMKIN.\cite{50}
Powder X-ray Diffraction.

Figure S1. PXRD profiles of SIFSIX-21-Ni, TIFSIX-4-Ni and NbOFFIVE-3-Ni, validating phase purity.

Figure S2. PXRD profiles of SIFSIX-21-Cu, TIFSIX-4-Cu and NbOFFIVE-3-Cu, validating phase purity.
Figure S3. Pawley profile fit of the PXRD patterns of NbOFFIVE-3-Ni. Space group = Pnna, a = 14.804(8) Å, b = 15.50(15) Å, c = 14.10(12) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 3236(3) Å3, Rwp = 16.9 %.

Figure S4. Pawley profile fit of the PXRD patterns of NbOFFIVE-3-Cu. Space group = Pnna, a = 14.894(3) Å, b = 15.705(3) Å, c = 14.272(3) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 3338(17) Å3, Rwp = 9.18 %.
Figure S5. Variable temperature (VT) PXRD profiles of SIFSIX-21-Ni.

Figure S6. VT-PXRD profiles of TIFSIX-4-Ni.
Figure S7. VT-PXRD profiles of NbOFFIVE-3-Ni.

Figure S8. VT-PXRD profiles of SIFSIX-21-Cu.
Figure S9. VT-PXRD profiles of TIFSIX-4-Cu.

Figure S10. VT-PXRD profiles of NbOFFIVE-3-Cu.
Figure S11. *In situ* PXRD profiles of SIFSIX-21-Ni on C$_2$H$_2$ dosing.

Figure S12. *In situ* PXRD profiles of SIFSIX-21-Cu on C$_2$H$_2$ dosing.
Thermogravimetric Analysis (TGA).

Figure S13. Thermogravimetric analysis profiles of the as-synthesised SIFSIX-21-Ni, TIFSIX-4-Ni and NbOFFIVE-3-Ni.

Figure S14. Thermogravimetric analysis profiles of the as-synthesised SIFSIX-21-Cu, TIFSIX-4-Cu and NbOFFIVE-3-Cu.
Gas Sorption Isotherms.

Figure S15. Low temperature CO$_2$ and N$_2$ sorption isotherms for **SIF SIX-21-Ni** (filled shape: adsorption; hollow shape: desorption) with BET surface areas 871 m2g$^{-1}$ and 776 m2g$^{-1}$ determined from N$_2$ and CO$_2$ isotherms respectively.

Figure S16. C$_2$H$_2$ and CO$_2$ adsorption isotherms for **SIF SIX-21-Ni**.
Figure S17. Low temperature CO$_2$ and N$_2$ sorption isotherms for TIFSIX-4-Ni (filled shape: adsorption; hollow shape: desorption) with BET surface areas 931 m2g$^{-1}$ and 700 m2g$^{-1}$ determined from N$_2$ and CO$_2$ isotherms respectively. Last adsorption data point is an outcome of condensation in inter-particle voids (similar to other physisorbents, such as ZIF-8, microporous silica material, and carbon nitride)$^{51-54}$.

Figure S18. C$_2$H$_2$ and CO$_2$ adsorption isotherms for TIFSIX-4-Ni.
Figure S19. Low temperature CO₂ and N₂ sorption isotherms for NbOFFIVE-3-Ni (filled shape: adsorption; hollow shape: desorption) with BET surface areas 761 m²g⁻¹ and 599 m²g⁻¹ determined from N₂ and CO₂ isotherms respectively. Last adsorption data point is an outcome of condensation in inter-particle voids (similar to other physisorbents, such as ZIF-8, microporous silica material, and carbon nitride).⁵¹-⁵⁴

Figure S20. C₂H₂ and CO₂ adsorption isotherms for NbOFFIVE-3-Ni.
Figure S21. Low temperature CO$_2$ and N$_2$ sorption isotherms for SIFSIX-21-Cu (filled shape: adsorption; hollow shape: desorption) with BET surface areas 839 m2g$^{-1}$ and 695 m2g$^{-1}$ determined from N$_2$ and CO$_2$ isotherms respectively.

Figure S22. C$_2$H$_2$ and CO$_2$ adsorption isotherms for SIFSIX-21-Cu.
Figure S23. Low temperature CO₂ and N₂ sorption isotherms for TIFSIX-4-Cu (filled shape: adsorption; hollow shape: desorption) with BET surface areas 747 m²g⁻¹ and 568 m²g⁻¹ determined from N₂ and CO₂ isotherms respectively.

Figure S24. C₂H₂ and CO₂ adsorption isotherms for TIFSIX-4-Cu.
Figure S25. Low temperature CO$_2$ and N$_2$ sorption isotherms for NbOFFIVE-3-Cu (filled shape: adsorption; hollow shape: desorption) with BET surface areas 805 m2g$^{-1}$ and 722 m2g$^{-1}$ determined from N$_2$ and CO$_2$ isotherms respectively. Last adsorption data point is an outcome of condensation in inter-particle voids (similar to other physisorbents, such as ZIF-8, microporous silica material, and carbon nitride).$^{51-54}$

Figure S26. C$_2$H$_2$ and CO$_2$ adsorption isotherms for NbOFFIVE-3-Cu.
Figure S27. Isosteric enthalpies of adsorption for C$_2$H$_2$ and CO$_2$ for SIFSIX-21-Ni.

Figure S28. Isosteric enthalpies of adsorption for C$_2$H$_2$ and CO$_2$ for TIFSIX-4-Ni.
Figure S29. Isosteric enthalpies of adsorption for C$_2$H$_2$ and CO$_2$ for NbOFFIVE-3-Ni.

Figure S30. Isosteric enthalpies of adsorption for C$_2$H$_2$ and CO$_2$ for SIF SIX-21-Cu.
Figure S31. Isosteric enthalpies of adsorption for C$_2$H$_2$ and CO$_2$ for TIFSIX-4-Cu.

Figure S32. Isosteric enthalpies of adsorption for C$_2$H$_2$ and CO$_2$ for NbOFFIVE-3-Cu.
Q_{st} Calculation - Virial Fitting

Figure S33. Fitting of the CO$_2$ isotherm data for **SIFSIX-21-Ni** to the virial equation.

Figure S34. Fitting of the C$_2$H$_2$ isotherm data for **SIFSIX-21-Ni** to the virial equation.
Figure S35. Fitting of the CO$_2$ isotherm data for TIFSIX-4-Ni to the virial equation.

Figure S36. Fitting of the C$_2$H$_2$ isotherm data for TIFSIX-4-Ni to the virial equation.
Figure S37. Fitting of the CO$_2$ isotherm data for NbOFFIVE-3-Ni to the virial equation.

Figure S38. Fitting of the C$_2$H$_2$ isotherm data for NbOFFIVE-3-Ni to the virial equation.
Figure S39. Fitting of the CO$_2$ isotherm data for SIFSIX-21-Cu to the virial equation.

Figure S40. Fitting of the C$_2$H$_2$ isotherm data for SIFSIX-21-Cu to the virial equation.
Figure S41. Fitting of the CO$_2$ isotherm data for TIFSIX-4-Cu to the virial equation.

Figure S42. Fitting of the C$_2$H$_2$ isotherm data for TIFSIX-4-Cu to the virial equation.
Figure S43. Fitting of the CO$_2$ isotherm data for NbOFFIVE-3-Cu to the virial equation.

Figure S44. Fitting of the C$_2$H$_2$ isotherm data for NbOFFIVE-3-Cu to the virial equation.
IAST(S_{AC}) data.

Figure S45. Selectivity for C$_2$H$_2$ and CO$_2$, S_{AC} (1:1 and 2:1 gas mixtures) to 1 bar and 298 K, as calculated by IAST for SIFSIX-21-Ni.

Figure S46. Selectivity for C$_2$H$_2$ and CO$_2$, S_{AC} (1:1 and 2:1 gas mixtures) to 1 bar and 298 K, as calculated by IAST for TIFSIX-4-Ni.
Figure S47. Selectivity for C$_2$H$_2$ and CO$_2$, S_{AC} (1:1 and 2:1 gas mixtures) to 1 bar and 298 K, as calculated by IAST for NbOFFIVE-3-Ni.

Figure S48. Selectivity for C$_2$H$_2$ and CO$_2$, S_{AC} (1:1 and 2:1 gas mixtures) to 1 bar and 298 K, as calculated by IAST for SIFSIX-21-Cu.
Figure S49. Selectivity for C$_2$H$_2$ and CO$_2$, S_{AC} (1:1 and 2:1 gas mixtures) to 1 bar and 298 K, as calculated by IAST for TIFSI6-4-Cu.

Figure S50. Selectivity for C$_2$H$_2$ and CO$_2$, S_{AC} (1:1 and 2:1 gas mixtures) to 1 bar and 298 K, as calculated by IAST for NbOFFIVE-3-Cu.
Mixed isotherms.

Figure S51. IAST calculations for C₂H₂ and CO₂ uptake capacities for equimolar (1:1) and 2:1 C₂H₂/CO₂ mixtures (X-axis refers to the total gas phase pressure in bar and Y-axis refers to fractional loading of the gases) at 298 K, for (a, b) NbOFFIVE-3-Ni, (c, d) TIFSIX-4-Ni and (e, f) SIFSIX-21-Ni.
Figure S52. IAST calculations for C$_2$H$_2$ and CO$_2$ uptake capacities for equimolar (v/v = 1:1) and 2:1 (v/v) C$_2$H$_2$/CO$_2$ mixtures (X-axis refers to the total gas phase pressure in bar and Y-axis refers to fractional loading of the gases) at 298 K, for (a, b) NbOFFIVE-3-Cu, (c, d) TIFSIX-4-Cu and (e, f) SIFSIX-21-Cu.
Binding sites.

Figure S53. Plausible binding sites for SIFSIX-21-Ni, for C\textsubscript{2}H\textsubscript{2} (a) and (b, c) CO\textsubscript{2}.
Kinetic studies

Figure S54. C2H2 kinetic plots for a) SIFSIX-21-Ni, b) TIFSIX-4-Ni and c) NbOFFIVE-3-Ni; CO2 kinetic plots for d) SIFSIX-21-Ni, e) TIFSIX-4-Ni and f) NbOFFIVE-3-Ni.

Figure S55. C2H2 kinetic plots for a) SIFSIX-21-Cu, b) TIFSIX-4-Cu and c) NbOFFIVE-3-Cu; CO2 kinetic plots for d) SIFSIX-21-Cu, e) TIFSIX-4-Cu and f) NbOFFIVE-3-Cu.
Dynamic gas breakthrough separation experimental setup.

Figure S56. Schematic of gas mixing unit, gravimetric gas uptake analyser and gas separation analyser for breakthrough experiments.

Temperature programmed desorption.

Figure S57. Temperature programmed desorption experiments conducted on a) SIFSIX-21-Ni; b) NbOFFIVE-3-Cu packed beds. Desorption temperature was set at 60 °C (set along the blue profile) and the He flow was maintained at 20 cm³ min⁻¹.
$Q_{st}(\text{C}_2\text{H}_2)$ comparison.

Figure S58. Comparison of isosteric heat of adsorption profiles for C$_2$H$_2$, considering all the C$_2$H$_2$/CO$_2$ separating MOM physisorbents.

Figure S59. Comparison of $\Delta Q_{st}(\text{C}_2\text{H}_2/\text{CO}_2)$ at low loading, considering all the C$_2$H$_2$/CO$_2$ separating MOM physisorbents.
In situ Infrared (IR) spectra.

Figure S60. Difference IR spectra showing the adsorbed CO\(_2\) (orange) and C\(_2\)H\(_2\) (pink) upon loading at 1 bar adsorbate pressure into **SIFSIX-21-Ni** and subsequent evacuation of the gas phase within 3 seconds, respectively. Each is referenced to the spectrum of activated HUMs. Inset shows the \(\nu_{as}(CO_2)\) band.

Figure S61. IR spectra of activated **NbOFFIVE-3-Cu** (top) and **SIFSIX-21-Ni** (bottom), referenced to pure KBr pellet in vacuum (< 2.66645 \(\times\) 10\(^{-5}\) bar base pressure).
Figure S62. IR spectrum of pypz from DFT calculation.

Figure S63. Evolution of the $\nu_{\text{as}}(\text{C}_2\text{H}_2)$ bands at 3308 (triangle) and 3209 cm$^{-1}$ (circle) in NbOFFIVE-3-Cu under vacuum.
Solid-state NMR spectra

Figure S64. Experimental 13C static NMR spectra of 13CO$_2$ adsorbed in NbOFFIVE-3-Cu as a function of temperature (blue line) and the spectrum of activated NbOFFIVE-3-Cu (red line).

Figure S65. a) Modelled structure of NbOFFIVE-3-Cu showing the distances between the 13C of CO$_2$ and the nearby Cu(II) centres. b) Modelled structure of NbOFFIVE-3-Cu showing the distances between the H atoms in C$_2$H$_2$ and the nearby Cu(II) centres. Note: the structure of SIFSIX-21-Ni is used instead of the isostructural HUM NbOFFIVE-3-Cu.
Figure S66. a) Experimental 2H static spectra of 0.4 C$_2$D$_2$ per Cu adsorbed in NbOFFIVE-3-Cu as a function of temperature (blue line) and simulated 2H spectrum of static C$_2$D$_2$. b) Experimental (blue) and simulated static 2H spectra showing two different sites. c) Simulated 2H spectra of C$_2$D$_2$ at site 1. Dynamical model for simulation: rotation of the C$_2$D$_2$ about a C$_3$ axis. d) Simulated 2H spectra of C$_2$D$_2$ at site 2. Dynamical model for simulation: rotation of the C$_2$D$_2$ about a C$_3$ axis followed by a two-site hopping motion. e) Illustration of the dynamical models of C$_2$D$_2$ within NbOFFIVE-3-Cu. Note: the structure of SIFSIX-21-Ni is used instead of the isostructural HUM NbOFFIVE-3-Cu.
Figure S67. Comparison of experimental 2H static NMR spectra of NbOFFIVE-3-Cu loaded with 0.4 and 0.8 C$_2$D$_2$ per Cu at room temperature.

Accelerated Stability Tests.

Figure S68. Comparison of experimental and calculated PXRD patterns with those of the three distinct humidity exposed phases: 1, 7 and 14 days a: SIFSIX-21-Ni, b: TIFSIX-4-Ni, c: NbOFFIVE-3-Ni, d: SIFSIX-21-Cu, e: TIFSIX-4-Cu, f: NbOFFIVE-3-Cu.
Figure S69. PXRD patterns of calculated (black), as-synthesised samples (red), the samples after exposed to humidity for a day (blue) and the regenerated SIFSIX-21-Ni (pink) in methanol solution.

Figure S70. VT-PXRD profiles for humidity exposed samples (for 1 day) of TIFSIX-4-Ni.
Supplemental figures for the previously unreported HUMs.

Figure S71. (a) View of the C$_2$H$_2$ binding pocket in adsorbent TIFSIX-4-Ni along the diagonally opposite F atoms of TiF$_6^{2-}$ pillars; (b) View of the ultramicropore along the crystallographic b-axis of TIFSIX-4-Ni.

Figure S72. (a) View of the C$_2$H$_2$ binding pocket in adsorbent SIFSIX-21-Cu along the diagonally opposite F atoms of SiF$_6^{2-}$ pillars; (b) View of the ultramicropore along the crystallographic b-axis of SIFSIX-21-Cu.
Figure S73. (a) View of the C₂H₂ binding pocket in adsorbent **TIFSIX-4-Cu** along the diagonally opposite F atoms of TiF₆²⁻ pillars; (b) View of the ultramicropore along the crystallographic b-axis of **TIFSIX-4-Cu**.
Tables S1-S4.

Table S1. Summary of structural information, sorption data and C$_2$H$_2$/CO$_2$ selectivities.

Material	Pore size (Å x Å)	S_{BET} / m2g$^{-1}$	C$_2$H$_2$/CO$_2$ Q_s at zero loading (kJ mol$^{-1}$)	C$_2$H$_2$/CO$_2$ Q_s at half loading (kJ mol$^{-1}$)	C$_2$H$_2$/CO$_2$ uptakes at 1 bar,\[a\] mmol g$^{-1}$	S_{AC}[b]	α_{AC} (1:1/2:1)	Ref
[Cu$_2$(pzdc)$_2$(pyz)]	4.0 x 6.0	571	42.5/31.9	–	1.9/0.07	26[di]	–	55, 56
Zn-MOF-74	11.0 x 11.0	1360	22.1/26.8	–	5.5/5.4	4[i]	–	57, 58
ZJU-60a	4.4 x 5.4	1627	17.6/15.2	–	6.7/3.3	6.7[i]	–	59
MIL–100(Fe)	5.5 x 8.6	2300	65.0/30.0	–	5.3/2.5	12.5[i]	–	60
PCP-33	9.0 x 22.0	1248	27.5/26.3	–	5.4/2.6	5.6[i]	–	61
FJU-22a	7.1 x 7.1	828	23.0/19.0	22.9/19.4	5.1/5.0	7.1[i]	1.9/–	12
UTSA-74a	8.0 x 8.0	830	31.0/25.0	31.4/25.5	4.8/3.2	14.3[i]	20.1/–	58
TIFSX-2-Cu-i	5.1 x 5.1	685	46.0/36.0	41.9/34.6	4.1/4.3	10.0[i]/10.7[i]	–/50[i]	62
UTSA-300a	2.4 x 3.3	311	57.6[i]/30.0[i]/–	–	3.3/0.2	743	–	63
DICRO-4-Ni-i	6.2 x 6.6	398	37.7/33.9	35.4/34.6	1.9/1.0	18.2[i]/13.9[i]	–/13[i]	31
NKMOF-1-Ni	5.8 x 5.8	382	60.3/40.9	46.0/36.4	2.7/2.3	–/60[i]/2[i]	2.6/1.8	64
JCM-1	12.5 x 3.9	550	36.9/33.4	–	3.3/1.7	13[i]	4.4/–	65
ZJU-196	5.1 x 5.1	–	39.2[i]/15.0[i]/–	–	3.7/0.4	25[i]	–	66
[Ni$_3$(HCOO)$_6$]	4.3 x 4.3	289	40.9/24.5	–	2.4/1.6	22[i]	–	67
FJU-90a	5.4 x 5.1	1572	25.1/20.7	–	8.0/4.6	4.3[i]	–	68
JNU-1	16.3 x 6.6	818	13.0, 47.6[i]/–	–	2.7/2.2	3[i]	–	69
MUF-17	4.7 x 4.8	247	49.5/33.8	–	2.7[i]/2.2[i]	6[i]	–	70
ZJUT-2a	3.2 x 3.2	350	41.5/35.5	–	3.4/2.2	10[i]	–	71
FJU-89a	12 x 8	774	31.0/27.8	24.9/23.5	4.5/2.7	4.3	3	72
HOF-3	7.0 x 7.0	165	20.0	–	2.1/0.9	14.0	2.0	73
FJU-6-TATB	(15.6 x 6.4)	1306	29.0/26.0	–	4.9/2.6	5.3-3.1	2.3	74
	(16.9 x 21.9)	1006	39.9/27.1	31/26.9	6.0/4.3	8.5-4.5	2.9	75
----------------	---------------	------	-----------	---------	---------	---------	-----	----
SNNU-45	4.5 x 5.1	406	32.9/25.2	30.2/26.8	2.5/1.5	5	9.9	76
JXNU-5	4.6, 6.7							
FJU-36a	(9.1 x 13.4); (10.2 x 15.4)	409	32.9/31.1	2.3/1.6	2.8	2.1	77	
FeNi-M′MOF	(4.15 x 4.27); (3.94 x 4.58)	383	27.0/24.5	4.3/2.7	24	1.7	78	
TCuI	3.66 x 3.66	250	38.4/26.6	37.3/29.6	2.2/1.6	6.7%4.5	33.4/7.8	79
TCuBr	3.59 x 3.59	173	36.6/30.2	38.2/32.7	2.8/2.0	9.1%9.1	104.5/10.5	79
TCuCl	3.69 x 3.69	167	41.0/30.1	39.5/31.4	3.0/2.0	16.0%16.1	143.1/25.4	79
FJI-H8-Me	-	2044±3	33.7/21.8	-	10.2/4.7	10.4	-	80
SIFSIX-Cu-TPA	-	1330	39.1/25.7	-	8.3/4.8	5.3	1.97	81
SIFSIX-21-Ni	3.16 x 3.64	871	37.9/19.4	35.2/20.3	4.0/1.3	7.8	27.7/10.0	This work
TIFSIX-4-Ni	3.98 x 3.98	931	41.4/27.4	36.4/25.5	3.8/2.0	7.6	4.4/3.1	This work
NbOFFIVE-3-Ni	-	761	36.7/25.0	33.4/25.6	3.8/1.9	6.0	15.0/6.5	This work
SIFSIX-21-Cu	4.46 x 4.46	839	36.3/24.0	34.2/23.8	3.9/1.5	10.0	4.6/3.1	This work
TIFSIX-4-Cu	4.69 x 4.69	747	40.6/27.0	35.1/26.4	3.5/2.0	8.3	5.4/4.1	This work
NbOFFIVE-3-Cu	-	805	41.9/25.8	38.6/23.4	4.0/1.6	9.5	16.9/7.9	This work

[a] Unless otherwise mentioned, all values correspond to 298 K measurements; [b] unless otherwise mentioned, all values are calculated from IAST selectivities for 1:1 equimolar mixtures; [c] title compound is a metal-organic complex with 1D channels; [d] uptake ratio at 0.01 bar for 270 K measurements; [e] IAST selectivity at 0.15 bar for 1:1 ratio; [f] IAST selectivity at 0.15 bar for 2:1 ratio; [g] for gas mixture 10:5:85 C2H2/CO2/He; [h] at zero loading; [i] consistent for loadings > 0.22 mmol g⁻¹; [j] uptake at 0.01 bar; [k] uptake ratio at 0.5 bar; [l] IAST selectivity at 1 bar for 1:1 ratio; [m] at uptake 2 mmol g⁻¹; [n] recorded at 293 K. [o] determined from Horvath–Kawazoe method applied on N2 isotherm at 77 K.
Table S2. Crystallographic data of SIFSIX-21-Ni, TIFSIX-4-Ni, SIFSIX-21-Cu and TIFSIX-21-Cu.

	SIFSIX-21-Ni	TIFSIX-4-Ni	SIFSIX-21-Cu	TIFSIX-4-Cu
Formula	C13H14F6NiSiO5	C13H14F6NiTiO5	C16H23CuF6N2O9SiO4	C16H23CuF6N2O9SiO4
Formula weight	643.33	663.108	740.28	730.02
Temperature/K	100.0	100.0	120.0(5)	120.00(12)
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	Pnna	Pnna	Pnna	Pnna
a/Å	14.8769(12)	14.9625(11)	14.9853(16)	16.2099(14)
b/Å	14.6342(11)	15.0720(12)	15.7634(10)	14.7716(14)
c/Å	14.6946(11)	14.5962(12)	14.2288(16)	14.445(2)
a°	90	90	90	90
β°	90	90	90	90
γ°	90	90	90	90
Volume/Å³	3199.2(4)	3291.7(5)	3361.1(6)	3458.8(7)
Z	4	4	4	4
ρcalc, g/cm³	1.335	1.338	1.463	1.402
μ/mm⁻¹	1.845	3.365	1.982	0.918
F(000)	1113	1145.2	1124.0	1156.0
Radiation	CuKα (λ = 1.54178)	CuKα (λ = 1.54178)	CuKα (λ = 1.54184)	Mo Kα (λ = 0.71073 Å)
Reflections	17785	19154	18207	15644
Independent	1758 [R(int) = 0.0849, R(exp) = 0.0427]	2516 [R(int) = 0.0700, R(exp) = 0.0468]	3516 [R(int) = 0.1237, R(exp) = 0.0795]	3857 [R(int) = 0.1230, R(exp) = 0.1354]
Reflections	1758/194/240	2516/126/240	3516/255/235	3857/257/193
Goodness-of-fit	0.065	1.335	0.956	0.994
Final R indexes	R₁ = 0.0764, wR₂ = 0.2105	R₁ = 0.0986, wR₂ = 0.2798	R₁ = 0.0946, wR₂ = 0.2621	R₁ = 0.1167, wR₂ = 0.2982
[all data]	R₁ = 0.0936, wR₂ = 0.2303	R₁ = 0.1069, wR₂ = 0.2951	R₁ = 0.1358, wR₂ = 0.3034	R₁ = 0.1722, wR₂ = 0.3432
Table S3. DSLF fitting parameters summary for C₂H₂ and CO₂ sorption.

Adsorbent	gas	q_1	k_1	n_1	q_2	k_2	n_2	R^2
NbOFFIVE-3-Ni	C₂H₂	3.591	0.0006	0.965	3.125	0.008	0.954	0.999
	CO₂	4.609	0.0008	1.180	0.180	0.009	0.939	0.999
SIFSIX-21-Ni	C₂H₂	4.060	0.006	1.878	0.059	4173.33	15.759	0.998
	CO₂	6.581	0.0003	1.048	0.094	0.0008	0.657	0.999
TIFSIX-4-Ni	C₂H₂	4.0825	1.6914	0.852066	1.40998	19.4212	0.991972	0.999
	CO₂	12.352	0.668	1.469	1.995	1.320	0.984	0.999
NbOFFIVE-3-Cu	C₂H₂	0.551	1.089	4.068	4.331	5.973	0.914	0.999
	CO₂	1.398	0.671	1.923	2.466	0.904	1.033	0.999
SIFSIX-21-Cu	C₂H₂	3.614	9.498	1.162	0.691	1.435	3.729	0.999
	CO₂	9.033	0.187	0.985	0.0140	5.9e-08	218.447	0.999
TIFSIX-4-Cu	C₂H₂	4.681	1.585	0.757	0.782	51.723	1.032	0.999
	CO₂	2.293	1.121	0.982	1.746	0.815	1.558	1.000
Table S4: Calculated averaged total potential energies (in kJ mol\(^{-1}\)) for a single C\(_2\)H\(_2\) and CO\(_2\) molecule, individually, positioned at their global minimum in SIFSIX-21-Ni as determined from CMC simulations at 298 K/0.10 atm.

Adsorbate	HUM–Adsorbate Energy (kJ mol\(^{-1}\))
C\(_2\)H\(_2\)	–40.40
CO\(_2\)	–25.85
1. Waterman, K. C., Understanding and Predicting Pharmaceutical Product Shelf-Life. In *Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices*, Huynh-Ba, K., Ed. Springer New York: New York, 2009; pp 115-135.

2. Kumar, A.; Hua, C.; Madden, D. G.; O’Nolan, D.; Chen, K.-J.; Keane, L.-A. J.; Perry, J. J.; Zaworotko, M. J., Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. *Chem. Commun.* 2017, 53, 5946-5949.

3. Krause, L.; Herbst-IRmer, R.; Sheldrick, G. M.; Stalke, D., Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. *J. Appl. Crystallogr.* 2015, 48, 3-10.

4. Shen, J.; He, X.; Ke, T.; Krishna, R.; van Baten, J. M.; Chen, R.; Bao, Z.; Xing, H.; Ding, M.; Zhang, Z.; Yang, Q.; Ren, Q., Simultaneous interlayer and intralayer space control in two-dimensional metal–organic frameworks for acetylene/ethylene separation. *Nat. Commun.* 2020, 11, 6259.

5. Sheldrick, G., *SHELXT - Integrated space-group and crystal-structure determination*. Acta Crystallogr., Sect. A 2015, 71, 3-8.

6. Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C* 2015, 71, 3-8.

7. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* 2009, 42, 339-341.

8. Rohatgi, A., *WebPlotDigitalizer: HTML5 based online tool to extract numerical data from plot images* 2015, Version: 4.2.

9. *Origin(Pro)*, Version 2021. OriginLab Corporation, Northampton, MA, USA.

10. Myers, A. L.; Prausnitz, J. M., Thermodynamics of mixed-gas adsorption. *AIChE J.* 1965, 11, 121-127.

11. Yang, R. T., *Gas separation by adsorption processes*. Butterworth-Heinemann: 2013.

12. Yao, Z.; Zhang, Z.; Liu, L.; Li, Z.; Zhou, W.; Zhao, Y.; Han, Y.; Chen, B.; Krishna, R.; Xiang, S., Extraordinary Separation of Acetylene-Containing Mixtures with Microporous Metal–Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. *Chem. Eur. J.* 2016, 22, 5676-5683.

13. Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A., Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. *Int. J. Quantum Chem.* 2013, 113, 2110-2142.

14. Schrödinger Release 2020-1: Jaguar, Schrödinger, LLC, New York, NY. 2020] in the Schrödinger software suite (Release 2020-1).

15. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* 2010, 132, 154104.

16. Hehre, W. J.; Radom, L.; von R. Schleyer, P.; Pople, J. A. Ab initio molecular orbital theory (Wiley, New York, 1986).

17. Schrödinger Release 2020-1: Maestro, Schrödinger, LLC, New York, NY, 2020.

18. Chen, M.; Chen, S.; Chen, W.; Lucier, B. E. G.; Zhang, Y.; Zheng, A.; and Huang, Y. Analyzing Gas Adsorption in an Amide-Functionalized Metal Organic Framework: Are the Carbonyl or Amine Groups Responsible? *Chem. Mater.*, 2018, 30, 3613-3617.
19. Gul-E-Noor, F.; Mendt, M.; Michel, D.; Pöppl, A.; Krautscheid, H.; Haase, J.; and Bertmer, M. Adsorption of Small Molecules on Cu₃(btc)₂ and Cu₃,Zn,(btc)₂ Metal–Organic Frameworks (MOF) As Studied by Solid-State NMR. *J. Phys. Chem. C* 2013, 117, 7703-7712.

20. Eichele, K., WSolids1, Version 1.20.15. Universität Tübingen: Tübingen, Germany, 2011.

21. Vold, R. L.; Hoatson, G. L., Effects of jump dynamics on solid state nuclear magnetic resonance line shapes and spin relaxation times. *J. Magn. Reson.* 2009, 198, 57-72.

22. Kruger, P. E.; Moubaraki, B.; Fallon, G. D.; Murray, K. S., Tetranuclear copper(II) complexes incorporating short and long metal–metal separations: synthesis, structure and magnetism. *J. Chem. Soc., Dalton Trans.* 2000, 713-718.

23. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. *J. Am. Chem. Soc.* 1996, 118, 11225-11236.

24. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. *J. Am. Chem. Soc.* 1992, 114, 10024-10035.

25. Bayly, C. I.; Cieplak, P.; Cornell, W. N.; Kollman, P. A., A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. *J. Phys. Chem.* 1993, 97, 10269-10280.

26. Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schifflmann, F.; Golze, D.; Wilhelm, J.; Chulkov, S.; Bani-Hashemian, M. H.; Weber, V.; Borštnik, U.; Taillefumier, M.; Jakobovits, A. S.; Lazzaro, A.; Pabst, H.; Müller, T.; Schade, R.; Guidon, M.; Andermatt, S.; Holmberg, N.; Schenter, G. K.; Hehn, A.; Bussy, A.; Belleflamme, F.; Tabacchi, G.; Glöß, A.; Lass, M.; Bethune, I.; Mundy, C. J.; Plessl, C.; Watkins, M.; VandeVondele, J.; Krack, M.; Hutter, J., CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. *J. Chem. Phys.* 2020, 152, 194103.

27. van Duijnen, P. T.; Swart, M., Molecular and Atomic Polarizabilities: Thole's Model Revisited. *J. Phys. Chem. A* 1998, 102, 2399-2407.

28. Pham, T.; Forrest, K. A.; McLaughlin, K.; Tudor, B.; Nugent, P.; Hogan, A.; Mullen, A.; Cioce, C. R.; Zaworotko, M. J.; Space, B., Theoretical Investigations of CO₂ and H₂ Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. *J. Phys. Chem. C* 2013, 117, 9970-9982.

29. Pham, T.; Forrest, K. A.; Banerjee, R.; Orcajo, G.; Eckert, J.; Space, B., Understanding the H₂ Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn). *J. Phys. Chem. C* 2015, 119, 1078-1090.

30. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by Simulated Annealing. *Science* 1983, 220, 671.

31. Scott, H. S.; Shivanna, M.; Bajpai, A.; Madden, D. G.; Chen, K.-J.; Pham, T.; Forrest, K. A.; Hogan, A.; Space, B.; Perry Iv, J. J.; Zaworotko, M. J., Highly Selective Separation of C₂H₂ from CO₂ by a New Dichromate-Based Hybrid Ultramicroporous Material. *ACS Appl. Mater. Interfaces* 2017, 9, 33395-33400.

32. Mullen, A. L.; Pham, T.; Forrest, K. A.; Cioce, C. R.; McLaughlin, K.; Space, B., A Polarizable and Transferable PHAST CO₂ Potential for Materials Simulation. *J. Chem. Theory Comput.* 2013, 9, 5421-5429.
33. Jones, J. E.; Chapman, S., On the determination of molecular fields- II. From the equation of state of a gas. *Proc. Math. Phys. Eng. Sci.*** 1924, *106, 463-477.
34. Ewald, P. P., Die Berechnung optischer und elektrostatischer Gitterpotentiale. *Ann. Phys. (Berl.)*** 1921, *369, 253-287.
35. Wells, B. A.; Chaffee, A. L., Ewald Summation for Molecular Simulations. *J. Chem. Theory Comput.*** 2015, *11, 3684-3695.
36. Applequist, J.; Carl, J. R.; Fung, K.-K., Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. *J. Am. Chem. Soc.*** 1972, *94, 2952-2960.
37. Thole, B. T., Molecular polarizabilities calculated with a modified dipole interaction. *Chem. Phys.*** 1981, *59, 341-350.
38. Bode, K. A.; Applequist, J., A New Optimization of Atom Polarizabilities in Halomethanes, Aldehydes, Ketones, and Amides by Way of the Atom Dipole Interaction Model. *J. Phys. Chem.*** 1996, *100, 17820-17824.
39. McLaughlin, K.; Cioce, C. R.; Pham, T.; Belof, J. L.; Space, B., Efficient calculation of many-body induced electrostatics in molecular systems. *J. Chem. Phys.*** 2013, *139, 184112.
40. Belof, J. L.; Space, B. Massively Parallel Monte Carlo (MPMC). 2012, Available on GitHub. https://github.com/mpmccode/mpmc.
41. Franz, D. M.; Belof, J. L.; McLaughlin, K.; Cioce, C. R.; Tudor, B.; Hogan, A.; Laratelli, L.; MulcAIR, M.; Mostrom, M.; Navas, A.; Stern, A. C.; Forrest, K. A.; Pham, T.; Space, B., MPMC and MCMD: Free High-Performance Simulation Software for Atomistic Systems. *Adv. Theory Simul.*** 2019, *2, 1900113.
42. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comp. Mater. Sci.*** 1996, *6, 15-50.
43. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B*** 1996, *54, 11169-11186.
44. Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W., Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. *Phys. Rev. B*** 2012, *85, 235149.
45. Blochl, P. E., Projector augmented-wave Method. *Phys. Rev. B*** 1994, *50, 17953-17979.
46. Pack, J. D.; Monkhorst, H. J., "Special points for Brillouin-zone integrations"-a reply. *Phys. Rev. B*** 1977, *16, 1748-1749.
47. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Phys. Rev. B*** 1976, *13, 5188-5192.
48. Vandichel, M.; Hajek, J.; Vermaoortele, F.; Waroquier, M.; De Vos, D. E.; Van Speybroeck, V., Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: a theoretical rationalization. *Crystengcomm*** 2015, *17, 395-406.
49. Vandichel, M.; Hajek, J.; Ghysels, A.; De Vos, A.; Waroquier, M.; Van Speybroeck, V., Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks. *Crystengcomm*** 2016, *18, 7056-7069.
50. Ghysels, A.; Verstraeten, T.; Hemelsoet, K.; Waroquier, M.; Van Speybroeck, V., TAMkin: A Versatile Package for Vibrational Analysis and Chemical Kinetics. *J Chem Inf Model*** 2010, *50, 1736-1750.
51. Sotomayor, F. J.; Cychosz, K. A.; Thommes, M., Characterization of micro/mesoporous materials by physisorption: concepts and case studies. *Acc. Mater. Surf. Res* **2018**, *3*, 34-50.

52. Schejn, A.; Aboulaich, A.; Balan, L.; Falk, V.; Lalevée, J.; Medjahdi, G.; Aranda, L.; Mozet, K.; Schneider, R., Cu²⁺-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. *Catal. Sci. Technol.* **2015**, *5*, 1829-1839.

53. Kooli, F.; Kiyozumi, Y.; Rives, V.; Mizukami, F., Synthesis and Textural Characterization of a New Microporous Silica Material. *Langmuir* **2002**, *18*, 4103-4110.

54. Liu, L.; Ma, D.; Zheng, H.; Li, X.; Cheng, M.; Bao, X., Synthesis and characterization of microporous carbon nitride. *Microporous and Mesoporous Materials* **2008**, *110*, 216-222.

55. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y., Highly controlled acetylene accommodation in a metal–organic microporous material. *Nature* **2005**, *436*, 238-241.

56. Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R., Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. *Science* **2012**, *335*, 1606-1610.

57. Xiang, S.; Zhou, W.; Zhang, Z.; Green, M. A.; Liu, Y.; Chen, B., Open Metal Sites within Isostructural Metal–Organic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature. *Angew. Chem. Int. Ed.* **2010**, *49*, 4615-4618.

58. Luo, F.; Yan, C.; Dang, L.; Krishna, R.; Zhou, W.; Wu, H.; Dong, X.; Han, Y.; Hu, T.-L.; O’Keeffe, M.; Wang, L.; Luo, M.; Lin, R.-B.; Chen, B., UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. *J. Am. Chem. Soc.* **2016**, *138*, 5678-5684.

59. Duan, X.; Zhang, Q.; Cai, J.; Yang, Y.; Cui, Y.; He, Y.; Wu, C.; Krishna, R.; Chen, B.; Qian, G., A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. *J. Mater. Chem. A* **2014**, *2*, 2628-2633.

60. Yoon, J. W.; Lee, J. S.; Lee, S.; Cho, K. H.; Hwang, Y. K.; Daturi, M.; Jun, C.-H.; Krishna, R.; Chang, J.-S., Adsorptive Separation of Acetylene from Light Hydrocarbons by Mesoporous Iron Trimesate MIL-100(Fe). *Chem. Eur. J.* **2015**, *21*, 18431-18438.

61. Duan, J.; Jin, W.; Krishna, R., Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability. *Inorg. Chem.* **2015**, *54*, 4279-4284.

62. Chen, K.-J.; Scott, Hayley S.; Madden, D. G.; Pham, T.; Kumar, A.; Bajpai, A.; Lusi, M.; Forrest, K. A.; Space, B.; Perry, J. J.; Zaworotko, M. J., Benchmark C₂H₂/CO₂ and CO₂/C₂H₂ Separation by Two Closely Related Hybrid Ultramicroporous Materials. *Chem 2016*, 1, 753-765.

63. Lin, R.-B.; Li, L.; Wu, H.; Arman, H.; Li, B.; Lin, R.-G.; Zhou, W.; Chen, B., Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. *J. Am. Chem. Soc.* **2017**, *139*, 8022-8028.

64. Peng, Y.-L.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K.-J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z., Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. *Angew. Chem. Int. Ed.* **2018**, *57*, 10971-10975.
65. Lee, J.; Chuah, C. Y.; Kim, J.; Kim, Y.; Ko, N.; Seo, Y.; Kim, K.; Bae, T. H.; Lee, E., Separation of Acetylene from Carbon Dioxide and Ethylene by a Water-Stable Microporous Metal–Organic Framework with Aligned Imidazolium Groups inside the Channels. *Angew. Chem. Int. Ed.* **2018**, *57*, 7869-7873.

66. Zhang, L.; Jiang, K.; Li, L.; Xia, Y.-P.; Hu, T.-L.; Yang, Y.; Cui, Y.; Li, B.; Chen, B.; Qian, G., Efficient separation of C\textsubscript{2}H\textsubscript{2} from C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} mixtures in an acid–base resistant metal–organic framework. *Chem. Commun.* **2018**, *54*, 4846-4849.

67. Zhang, L.; Jiang, K.; Zhang, J.; Pei, J.; Shao, K.; Cui, Y.; Yang, Y.; Li, B.; Chen, B.; Qian, G., Low-Cost and High-Performance Microporous Metal–Organic Framework for Separation of Acetylene from Carbon Dioxide. *ACS Sustain. Chem. Eng.* **2019**, *7*, 1667-1672.

68. Ye, Y.; Ma, Z.; Lin, R.-B.; Krishna, R.; Zhou, W.; Lin, Q.; Zhang, Z.; Xiang, S.; Chen, B., Pore Space Partition within a Metal–Organic Framework for Highly Efficient C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} Separation. *J. Am. Chem. Soc.* **2019**, *141*, 4130-4136.

69. Zeng, H.; Xie, M.; Huang, Y.-L.; Zhao, Y.; Xie, X.-J.; Bai, J.-P.; Wan, M.-Y.; Krishna, R.; Lu, W.; Li, D., Induced Fit of C\textsubscript{2}H\textsubscript{2} in a Flexible MOF Through Cooperative Action of Open Metal Sites. *Angew. Chem. Int. Ed.* **2019**, *58*, 8515-8519.

70. Qazvini, O. T.; Babarao, R.; Telfer, S. G., Multipurpose Metal–Organic Framework for the Adsorption of Acetylene: Ethylene Purification and Carbon Dioxide Removal. *Chem. Mater.* **2019**, *31*, 4919-4926.

71. Wen, H.-M.; Liao, C.; Li, L.; Yang, L.; Wang, J.; Huang, L.; Li, B.; Chen, B.; Hu, J., Reversing C\textsubscript{2}H\textsubscript{2}–CO\textsubscript{2} adsorption selectivity in an ultramicroporous metal–organic framework platform. *Chem. Commun.* **2019**, *55*, 11354-11357.

72. Ye, Y.; Chen, S.; Chen, L.; Huang, J.; Ma, Z.; Li, Z.; Yao, Z.; Zhang, J.; Zhang, Z.; Xiang, S., Additive-Induced Supramolecular Isomerism and Enhancement of Robustness in Co(II)-Based MOFs for Efficiently Trapping Acetylene from Acetylene-Containing Mixtures. *ACS Appl. Mater. Inter.* **2018**, *10*, 30912-30918.

73. Li, P.; He, Y.; Zhao, Y.; Weng, L.; Wang, H.; Krishna, R.; Wu, H.; Zhou, W.; O’Keeffe, M.; Han, Y.; Chen, B., A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} at Room Temperature. *Angew. Chem. Int. Ed.* **2015**, *54*, 574-577.

74. Liu, L.; Yao, Z.; Ye, Y.; Yang, Y.; Lin, Q.; Zhang, Z.; O’Keeffe, M.; Xiang, S., Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} Separation. *J. Am. Chem. Soc.* **2020**, *142*, 9258-9266.

75. Li, Y.-P.; Wang, Y.; Xue, Y.-Y.; Li, H.-P.; Zhai, Q.-G.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C.; Bu, X., Ultramicroporous Building Units as a Path to Bi-microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. *Angew. Chem. Int. Ed.* **2019**, *58*, 13590-13595.

76. Liu, R.; Liu, Q.-Y.; Krishna, R.; Wang, W.; He, C.-T.; Wang, Y.-L., Water-Stable Europium 1,3,6,8-Tetrakis(4-carboxylphenyl)pyrene Framework for Efficient C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} Separation. *Inorg. Chem.* **2019**, *58*, 5089-5095.

77. Liu, L.; Yao, Z.; Ye, Y.; Chen, L.; Lin, Q.; Yang, Y.; Zhang, Z.; Xiang, S., Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal–Organic Frameworks Containing Various Metal–O–Metal Chains. *Inorg. Chem.* **2018**, *57*, 12961-12968.
78. Gao, J.; Qian, X.; Lin, R.-B.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B., Mixed Metal–
Organic Framework with Multiple Binding Sites for Efficient C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} Separation. *Angew. Chem. Int. Ed.* **2020**, *59*, 4396-4400.

79. Mukherjee, S.; He, Y.; Franz, D.; Wang, S.-Q.; Xian, W.-R.; Bezrukov, A. A.; Space, B.;
Xu, Z.; He, J.; Zaworotko, M. J., Halogen–C\textsubscript{2}H\textsubscript{2} Binding in Ultramicroporous Metal–
Organic Frameworks (MOFs) for Benchmark C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} Separation Selectivity. *Chem. Eur. J.* **2020**, *26*, 4923-4929.

80. Di, Z.; Liu, C.; Pang, J.; Chen, C.; Hu, F.; Yuan, D.; Wu, M.; Hong, M. Cage - like Porous
Materials with Simultaneous High C\textsubscript{2}H\textsubscript{2} Storage and Excellent C\textsubscript{2}H\textsubscript{2}/CO\textsubscript{2} Separation Performance. *Angew. Chem. Int. Ed.* **2021**, https://doi.org/10.1002/anie.202101907.

81. Li, H.; Liu, C.; Chen, C.; Di, Z.; Yuan, D.; Pang, J.; Wei, W.; Wu, M.; Hong, M. An
Unprecedented Pillar-Cage Fluorinated Hybrid Porous Framework with Highly Efficient
Acetylene Storage and Separation. *Angew. Chem. Int. Ed.* **2021**, *60*, 7547-7552.