Das & Singh (2021) published a paper representing serious flaws, forgery, and data manipulation in the paper published in the same journal in 2021 by Paul & Sultana, which may have led to an inadvertent understanding developed by Das & Singh (2021). Therefore, through this communication, below-mentioned facts and circumstances are shared which should resolve the queries raised by Das & Singh (2021).

The title of the original paper is “Is habitat heterogeneity effective for conservation of butterflies in urban landscapes of Delhi, India?” and not “If habitat heterogeneity is effective for conservation of butterflies in urban landscapes of Delhi, India?” which totally changes the concept of the paper.

1. Thesis is objective based writing as per the guidelines of the University whereas paper writing is solely an exclusive style of concept presentation by the author. The data presented in the paper were not included in the thesis as they don’t comply with the objectives of the thesis. Such raw reanalysed data were published in the paper (Paul & Sultana 2021). This paper was updated with new idea and improved by the considered comments and suggestions of reviewers. Authors agree that in the thesis (Paul 2019) the word microhabitat was used which are in fact small specialised ‘habitats’ only within a larger habitat. It is clearly mentioned in the study area and methodology section that three random transects were laid at each six different sites and habitats were sampled on those transects only. The data were collected on different habitats on different transects at these sites. Those habitats were pooled together irrespective of sites because the objective was to check the effect of habitat heterogeneity on butterfly species and accordingly diversity indices were calculated after normalising data only. The unequal sample size can be standardised for the analyses. The data were collected on different scales, so it was transformed to normalise and thus reduced the heteroscedasticity. These lines of action are prerequisite before analyses, so they were not mentioned in the paper. The mentioned paper (Paul & Sultana 2020) comprised totally different objective and not dealt with habitats therefore should not be seen as repetition.

2. The data were collected and was available with first author and it was utilised to calculate diversity indices. Diversity indices were calculated habitat wise for ‘Pollard walk’ method. That’s why the diversity indices were ‘0’ for the ‘Artificial light’ as only one species was found, and it was sampled by other type of study which is clearly mentioned in the paper. Transects were laid at different sites not in different habitats (mentioned in methodology). Nine habitats were identified on these transects at different sites. So as mentioned in Table 3, bird droppings were present at all sites. *Melanitis leda* was sighted in dense forested habitat throughout the day.

3. Artificial light is considered a microhabitat/ habitat by many researchers (Usman 1956; Donahue 1962; Shull 1964; Shull & Nadkerny 1967; Sharma &
Colotis fausta. Other habitats too like between trees and Hedges/crops/during the study, similar kind of sharing was shown by was the only butterfly species found in the artificial light with her Ph.D. supervisor to publish the research papers had some hearing mistake while having verbal discussion with her Ph.D. supervisor to publish the research papers not calculated for the species. The percentage sharing of habitats (Table 2) between artificial light and Hedges/crops/bushes was 2.5%. Coincidentally, Melanitis leda was the only butterfly species found in the artificial light during the study. Similar kind of sharing was shown by other habitats too like between trees and Hedges/crops/bushes for Colotis fausta.

The raw data were reanalysed to discuss the effectiveness of habitat heterogeneity for conservation of butterfly species in urban landscape. Das & Singh (2021) were right that in the thesis the preference of habitat was discussed in terms of number of sightings but in the paper the authors have discussed the diversity of butterfly species, i.e., number of species which was considered as new idea. The flowerbeds were absent in the randomly transect laid in Northern Ridge and discussion was based on results only. Das & Singh (2021) may be right in saying that flowerbeds must be present in Northern Ridge.

COVID-19 statement should not be considered as mere speculation but may be seen as increasing the scope of study in urban centres for butterflies as have been published for other faunal species (Rutz et al. 2020; Gilby et al. 2021) during lockdown.

5. The first author sincerely apologizes to her supervisor and co-supervisor for not bringing the manuscript to their knowledge before publication. She had some hearing mistake while having verbal discussion with her Ph.D. supervisor to publish the research papers without their names in the authorship. However, the first author thoroughly acknowledged everyone (including both of her supervisors) who so ever helped her during her Ph.D. work in her thesis. It happened unintentionally and first author sincerely apologizes for her mistake. The co-author of the original paper provided all technical contribution to the paper for publication and therefore became co-author as per the desire of the first author.

In the light of the above facts and circumstances these issues should be closed with learning for the co-author to think before extending any support and help to students to avoid such unnecessary controversies.

References

Chaturvedi 1999; Nair 2001; Sharma & Chaturvedi 2005; Chowdhury & Soren 2011. The diagram was accordingly presented in the paper which was somehow not considered in the thesis and therefore should not be considered as tampered. It may be noted that many other views of reviewers are also incorporated in the paper in general to further bring new ideas. Figure 2 shows data in a graphical mode with species name only whereas Table 2 represents numerical data which is not reflected in Figure 2 and therefore should not be seen as duplication. Generalist and specialist butterflies name have not been included in the paper as the scope of the paper is always limited in any journal. It is not written anywhere in the paper that species found in flowerbeds and grass are specialist so should not be seen as misinterpretation of data. The actual percent overlapping among various habitats are clearly mentioned in Table 2. The independent sharing was calculated for overlapping of different habitats in terms of species shared and it was not calculated for the species. The percentage sharing of habitats (Table 2) between artificial light and Hedges/crops/bushes was 2.5%. Coincidentally, Melanitis leda was the only butterfly species found in the artificial light during the study. Similar kind of sharing was shown by other habitats too like between trees and Hedges/crops/bushes for Colotis fausta.

4. The raw data were reanalysed to discuss the effectiveness of habitat heterogeneity for conservation of butterfly species in urban landscape. Das & Singh (2021) were right that in the thesis the preference of habitat was discussed in terms of number of sightings but in the paper the authors have discussed the diversity of butterfly species, i.e., number of species which was considered as new idea. The flowerbeds were absent in the randomly transect laid in Northern Ridge and discussion was based on results only. Das & Singh (2021) may be right in saying that flowerbeds must be present in Northern Ridge.

Sharma, R.M. & N. Chaturvedi (2019). Butterflies attracted to light at Aralam Wildlife Sanctuary, Kerala. Zoos’ Print Journal 16(12): 670.

Sharma, R.M. & N. Chaturvedi (2005). Additions to the light attracted butterflies. Journal of the Bombay Natural History Society 102(1): 129.

Shull, E.M. & N.T. Nadkarny (1967). Insects attracted to mercury vapour lamp in the Surat Dangs, Gujarat State. Journal of the Bombay Natural History Society 64(2): 256–266.

Shull, E.M. (1964). Butterflies attracted to light in Gujarat State, India. Journal of the Lepidopterists’ Society 18(30): 159–163.

Usman, S. (1956). Some insects attracted to light- Part III. Journal of the Bombay Natural History Society 53(3): 482–484.
Communications

Updated distribution of seven Trichosanthes L. (Cucurbitales: Cucurbitaceae) taxa in India, along with taxonomic notes
Kanakasabapathi Pradhleep, Soyimchiten, Gjalagatlag Dasaiah Harish, Mohammed Abdul Nizar, Kailash Chandra Bhatt, Anjula Pandey & Sudhir Pal Ahiawat, Pp. 20143–20152

Dragonflies and Damselflies (Insecta: Odonata) of Aryanad Grama Panchayat, Kerala, India
– Reji Chandran & A. Vivek Chandran, Pp. 20153–20166

Checklist of Odonata (Insecta) of Doon Valley, Uttarakhand, India
– Kirthih De, Sarika Bhatt, Amar Paul Singh, Manisha Uniyal & Virendra Prasad Uniyal, Pp. 20167–20173

Diversity of moths from the urban set-up of Valmiki Nagar, Chennai, India
– Vikas Madhav Nagarajan, Rohith Srinivasan & Mahathi Narayanaswamy, Pp. 20174–20189

Ichthyofaunal diversity with relation to environmental variables in the snow-fed Tamor River of eastern Nepal
– Jawan Tumbahangfe, Jash Hang Limbu, Archana Prasad, Bharat Raj Subba & Dil Kumar Limbu, Pp. 20190–20200

Observations on the foraging behavior of Tricoloured Munia Lonchura malacca (Linnaeus, 1766) and its interaction with pearl millet fields in Villupuram District, Tamil Nadu, India
– M. Pandian, Pp. 20201–20208

Roosting patterns of House Sparrow Passer domesticus Linn., 1758 (Aves: Passeridae) in Bhavnagar, Gujarat, India
– Foram P. Patel & Pravinansing P. Dodia, Pp. 20209–20217

Review

Comprehensive checklist of algal class Chlorophyceae (sensu Frtitsch, 1935) for Uttar Pradesh, India, with updated taxonomic status
– Sushma Verma, Kiran Toppo & Sanjeeva Nayaka, Pp. 20218–20248

View Points

Wildlife managers ignore previous knowledge at great risk: the case of Rivaldo, the iconic wild Asian Elephant Elephas maximus L. of the Sigur Region, Nilgiri Biosphere Reserve, India
– Jean-Philippe Puyravaud & Priya Davidar, Pp. 20249–20252

Short Communications

Diversity and distribution of macro lichens from Kalpetta Municipality of Wayanad District, Kerala, India
– Greeshma Balu, A.R. Rami, Stephen Sequeira & Biju Haridas, Pp. 20253–20257

Extended distribution of two endemic epiphytes from the Western Ghats to the Deccan Plateau
– Sonali Vishnu Deore, Mangala Dala Sonawane & Sharad Suresh Kambale, Pp. 20258–20260

Nomenclatural notes and report of Boehmeria penduliflora Wedd. ex D.G. Long from the Terai region of Uttar Pradesh, India
– Arin Gupt, Imtyyaz Ahmad Hurrah, Aparna Shukla & Vijay V. Wagh, Pp. 20261–20265

New distribution record of a true coral species, Psammocora contigua (Esper, 1794) from Gulf of Kachchh Marine National Park & Sanctuary, India
– R. Chandran, R. Senthil Kumaran, D.T. Vasavada, N.N. Joshi & Osman G. Husen, Pp. 20266–20271

A new species of flat-headed mayfly Afronurus meenmutti (Ephemeroptera: Heptageniidae: Ecdyonurinae) from Kerala, India
– Marimuthu Muthukatturaj & Chellaiyah Balasubramanian, Pp. 20272–20277

Photographic record of Dholes predating on a young Banteng in southwestern Java, Indonesia
– Dede Aulia Rahman, Mohamad Syamsudin, Asep Yayas Firdaus, Herry Trisa Afriandi & Anggodo, Pp. 20278–20283

Latrine site and its use pattern by Large Indian Civet Viverra zibetha Linnaeus, 1758: record from camera trap
– Bhuvan Singh Bist, Prashant Ghimire, Basant Sharma, Chiranjeevi Khanal & Anoj Subedi, Pp. 20284–20287

Notes

Two additions to the flora of Kerala, India
– M. Murugan, Basil Paul & M. Sulaiman, Pp. 20288–20291

Pentatropis R.Br. ex Wight & Arn. (Apocynaceae), a new generic record for Kerala, India
– V. Ambika, Jose Sojan & V. Suresh, Pp. 20292–20294

New record of Kashmir Birch Mouse Sicista concolor leathemi (Thomas, 1893) (Rodentia: Sminthidae) in the Indian Himalaya
– S.S. Talmale, Avtar Kaur Sidhu & Uttam Saikia, Pp. 20295–20298

Breeding record of Black-headed Ibis Threskiornis melanopcephalus (Aves: Threskiornithidae) at Mavoor wetland, Kozhikode District, Kerala, India
– C.T. Shifa, Pp. 20299–20301

Response

Crop and property damage caused by Purple-faced Langurs Trachypithecus vetulus (Mammalia: Primates: Cercopithecidae)
– Vincent Nijman, Pp. 20302–20306

Reply

If habitat heterogeneity is effective for conservation of butterflies in urban landscapes of Delhi, India? Unethical publication based on data manipulation: Response of original authors
– Monalisa Paul & Aisha Sultana, Pp. 20307–20308

Book Review

Freshwater fishes of the Arabian Peninsula
– Rajeev Raghavan, Pp. 20309–20310