ON THE TRANSVERSAL NUMBER AND VC-DIMENSION OF FAMILIES OF POSITIVE HOMOTHETS OF A CONVEX BODY

MÁRTON NASZÓDI AND STEVEN TASCHUK

Abstract. Let F be a family of positive homothets (or translates) of a given convex body K in \mathbb{R}^n. We investigate two approaches to measuring the complexity of F. First, we find an upper bound on the transversal number $\tau(F)$ of F in terms of n and the independence number $\nu(F)$. This question is motivated by a problem of Grünbaum [2]. Our bound $\tau(F) \leq 2^n (\frac{2^n}{n}) (n \log n + \log \log n + 5\log \log n)$ is exponential in n, an improvement from the previously known bound of Kim, Nakprasit, Pelsmajer and Skokan [10], which was of order n^n. By a lower bound, we show that the right order of magnitude is exponential in n.

Next, we consider another measure of complexity, the Vapnik–Cervonenkis dimension of F. We prove that vcdim(F) ≤ 3 if $n = 2$ and is infinite for some F if $n \geq 3$. This settles a conjecture of Grünbaum [6]: Show that the maximum dual VC-dimension of a family of positive homothets of a given convex body K in \mathbb{R}^n is $n + 1$. This conjecture was disproved by Naiman and Wynn [13] who constructed a counterexample of dual VC-dimension $\lfloor \frac{3}{2} n^2 \rfloor$. Our result implies that no upper bound exists.

1. Definitions and Results

A convex body in \mathbb{R}^n is a compact convex set with non-empty interior. A positive homothet of a set $S \subseteq \mathbb{R}^n$ is a set of the form $\lambda S + x$, where $\lambda > 0$ and $x \in \mathbb{R}^n$. The cardinality, closure, convex hull and volume of S are denoted as $\text{card}(S)$, $\text{cl}(S)$, $\text{conv}(S)$ and $\text{vol}(S)$, respectively. The origin of \mathbb{R}^n is denoted o.

Let F be a family of positive homothets (or translates) of a given convex body K in \mathbb{R}^n. In this note we study two approaches to measuring the complexity of F.

First, we bound the transversal number $\tau(F)$ in terms of the dimension n and the independence number $\nu(F)$. The transversal number $\tau(F)$ of a family of sets \mathcal{F} is defined as

$$\tau(F) = \min \{ \text{card}(S) : S \cap F \neq \emptyset \text{ for all } F \in \mathcal{F} \}.$$

The independence number $\nu(F)$ of \mathcal{F} is defined as

$$\nu(F) = \max \{ \text{card}(S) : S \subseteq F \text{ and } S \text{ is pairwise disjoint} \}.$$

Clearly $\nu(F) \leq \tau(F)$. The problem of finding an inequality in the reverse direction originates in the following question of Grünbaum [2]: Is it true that $\nu(F) = 1$
implies \(\tau(\mathcal{F}) \leq 3 \) for any family \(\mathcal{F} \) of translates of a convex body in \(\mathbb{R}^2 \). Karasev [9] proved the affirmative answer. One of the main results of [10] by Kim, Nakprasit, Pelsmajer and Skokan is that in \(\mathbb{R}^n \) we have \(\tau(\mathcal{F}) \leq 2^{n-1} n^\nu(\mathcal{F}) \). We improve the dependence on \(n \) to exponential.

Theorem 1. Let \(K \subseteq \mathbb{R}^n \) be a convex body and \(\mathcal{F} \) a family of positive homothets of \(K \). Then

\[
\nu(\mathcal{F}) \leq \tau(\mathcal{F}) \leq \frac{\text{vol}(2K - K)}{\text{vol}(K)}(n \log n + \log \log n + 5n)\nu(\mathcal{F})
\]

\[
\leq \begin{cases}
3^n(n \log n + \log \log n + 5n)\nu(\mathcal{F}) & \text{if } K = -K, \\
2^n(\binom{n}{2})n(n \log n + \log \log n + 5n)\nu(\mathcal{F}) & \text{otherwise.}
\end{cases}
\]

The following proposition shows that an exponential bound is the best possible, even when \(\mathcal{F} \) contains only translates of \(K \).

Proposition 2. For sufficiently large \(n \), there is a convex body \(K \) in \(\mathbb{R}^n \) and a family \(\mathcal{F} \) of translates of \(K \) such that \(\tau(\mathcal{F}) \geq \frac{1}{2}(1.058)^n\nu(\mathcal{F}) \).

Our second approach is to investigate the VC-dimension of a family \(\mathcal{F} \) of positive homothets (or translates) of a convex body \(K \). This combinatorial measure of complexity was introduced by Vapnik and Červonenkis [19], and is defined as

\[\text{vcdim}(\mathcal{F}) = \sup \{ \text{card}(X) : \mathcal{F} \text{ shatters } X \} \]

where a set system \(\mathcal{F} \) is said to shatter a set of points \(X \) if for every subset \(X' \subseteq X \), there exists a set \(F \in \mathcal{F} \) such that \(X \cap F = X' \). Note that if there is no upper bound on the sizes of sets shattered by \(\mathcal{F} \), then this definition yields \(\text{vcdim}(\mathcal{F}) = \infty \).

Our main motivation in studying the VC-dimension is its involvement in upper bounds on transversal numbers (see the Epsilon Net Theorem of Haussler and Welzl [7] and Corollary 10.2.7 of [11]) and related phenomena (see [12], for example). We show, however, that \(\text{vcdim}(\mathcal{F}) \) is bounded from above only in dimension two.

Theorem 3. If \(K \subseteq \mathbb{R}^2 \) is a convex body and \(\mathcal{F} \) is a family of positive homothets of \(K \), then \(\text{vcdim}(\mathcal{F}) \leq 3 \).

Example 4. We construct a convex body \(K \subseteq \mathbb{R}^3 \) and a countable family \(\mathcal{F} \) of translates of \(K \) such that \(\text{vcdim}(\mathcal{F}) = \infty \).

This example can, of course, be embedded in \(\mathbb{R}^n \) for \(n > 3 \) as well.

Example 4 also settles a conjecture of Grünbaum on dual VC-dimension (see Section 10.3 of [11] for this notion). He showed [6] that if \(\mathcal{F} \) is a family of positive homothets of a convex body in \(\mathbb{R}^2 \), then \(\text{vcdim}(\mathcal{F}^*) \leq 3 \), and conjectured (point (7) on p. 21 of [6]) the upper bound \(\text{vcdim}(\mathcal{F}^*) \leq n + 1 \) for such families in \(\mathbb{R}^n \).

(Grünbaum uses a different terminology: instead of dual VC-dimension, he writes “the maximal number of sets in independent families”, where “independence” is not as we defined above.) Naiman and Wynn [13] disproved this conjecture by giving an example with \(\text{vcdim}(\mathcal{F}^*) = \left\lfloor \frac{3n}{2} \right\rfloor \); our example shows that no upper bound exists, since \(\text{vcdim}(\mathcal{F}) < 2^{\text{vcdim}(\mathcal{F}^*)+1} \) (III, Lemma 10.3.4).

Corollary 5. There is a convex body \(K \subseteq \mathbb{R}^3 \) and a countable family \(\mathcal{F} \) of translates of \(K \) such that \(\text{vcdim}(\mathcal{F}^*) = \infty \).
The construction of example 4 shares some principles with the constructions given in [8] and in Theorem 2.9 of [4] to show that certain Helly-type and Hadwiger-type theorems for line transversals of families of translates of a convex set in the plane do not generalize to \mathbb{R}^3. These examples and ours show that, in some sense, translates of a convex set in \mathbb{R}^3 may form set systems of high complexity. They also suggest that finding good bounds for the transversal numbers of such families is a difficult task.

In Section 2, we prove Theorem 1 and Proposition 2. In Section 3, we prove Theorem 3 and construct Example 4.

2. Transversal and Independence Numbers of Positive Homothets

Let K and L be convex bodies in \mathbb{R}^n. Let $N(K, L)$ denote the covering number of K by L; that is, the smallest number of translates of L required to cover K.

Theorem 6 (Rogers [14], Rogers–Zong [16]). Let $K, L \subset \mathbb{R}^n$ be convex sets. Then

$$N(K, L) \leq \frac{\text{vol}(K - L)}{\text{vol}(L)} (n \log n + \log \log n + 5n).$$

Proof of Theorem 6. First, we prove the theorem in the case when F consists of translates of K only. Let $\{K_1, K_2, \ldots, K_\ell\}$ be a maximal set of independent (i.e., pairwise disjoint) elements of F. Clearly, $\ell \leq \nu(F)$. Let $F_1 = \{F \in F : F \cap K_1 \neq \emptyset\}$, and for $i = 2, \ldots, \ell$ let

$$F_i = \left\{ F \in F \setminus \bigcup_{j=1}^{i-1} F_j : F \cap K_i \neq \emptyset \right\}.$$

We will construct a transversal T_i for each F_i.

It is easy to show that, for any set $S \subseteq \mathbb{R}^n$,

$$S - K = \{x \in \mathbb{R}^n : (K + x) \cap S \neq \emptyset\}.$$

An immediate consequence is that if $K_i - K \subseteq T_i - K$, then T_i is a transversal of F_i. By Theorem 6, for each i, there is such a set T_i with

$$\text{card}(T_i) \leq \frac{\text{vol}(K_i - K + K)}{\text{vol}(-K)} (n \log n + \log \log n + 5n)$$

$$= \frac{\text{vol}(2K - K)}{\text{vol}(K)} (n \log n + \log \log n + 5n)$$

$$\leq \begin{cases} 3^n (n \log n + \log \log n + 5n) & \text{if } K = -K, \\ 2^n \left(\frac{2^n}{n}\right) (n \log n + \log \log n + 5n) & \text{otherwise.} \end{cases}$$

The last inequality for the non-symmetric case follows from the Rogers–Shephard inequality [15]. Hence, $T = \bigcup_{i=1}^{\ell} T_i$ is a transversal of F of cardinality bounded from above as stated in the theorem.

The proof of the case when F contains finitely many positive homothets of K follows from an argument given in [10], which we repeat here. First, assume that $\inf \{\lambda : \lambda K + x \in F\} > 0$. Let ε be a positive number, to be specified later. We say that $\lambda K + x$ is a small member of a subset $A \subseteq F$ if

$$\lambda < (1 + \varepsilon) \inf \{\mu : \mu K + x \in A\}.$$
Let F_1 be a small element of \mathcal{F}, and let $\mathcal{F}_1 = \{F \in \mathcal{F} : F \cap F_1 \neq \emptyset \}$. Next, for each $i = 2, 3, \ldots , \ell$ inductively, let F_i be a small element in $\mathcal{F} \setminus \bigcup_{j=1}^{i-1} \mathcal{F}_j$, and let

$$\mathcal{F}_i = \left\{ F \in \mathcal{F} \setminus \bigcup_{j=1}^{i-1} \mathcal{F}_j : F \cap F_i \neq \emptyset \right\}.$$

Let $\lambda_i = \inf \{ \lambda : \lambda K + x \in \mathcal{F}_i \}$. By assumption, $\lambda_i > 0$. Our inductive procedure of defining F_i, \mathcal{F}_i and λ_i will terminate with $\ell \leq \nu(\mathcal{F})$.

Now, for each $F \in \mathcal{F}_i$, choose a point z in $F \cap F_i$, and shrink F with center z to obtain a translate of $\lambda_i K$. The shrunk copy of F is clearly contained in F. Let \mathcal{F}'_i be the family of these shrunk copies. Now, \mathcal{F}'_i contains only translates of $\lambda_i K$, any transversal of \mathcal{F}'_i is a transversal of \mathcal{F}_i, and each member of \mathcal{F}'_i intersects F_i. Thus if $F_i - \lambda_i K \subseteq T_i - \lambda_i K$, then T_i is a transversal of \mathcal{F}_i. Theorem 6 yields such a set T_i with cardinality

$$\text{card}(T_i) \leq \frac{\text{vol}(1 + \varepsilon) \lambda_i K - \lambda_i K + \lambda_i K)}{\text{vol}(-\lambda_i K)}(n \log n + \log \log n + 5n).$$

Since $\text{card}(T_i)$ is an integer, choosing a sufficiently small ε provides the right bound.

Finally, we sketch the additions necessary to handle the case when $\inf \{ \lambda : \lambda K + x \in \mathcal{F} \} = 0$, a case not considered in [10]. Let $(\delta_m)_{m=1}^\infty$ be a sequence of positive real numbers with $\delta_m \downarrow 0$. For every $m \in \mathbb{Z}^+$ we define $\mathcal{F}^m = \{ \lambda K + x \in \mathcal{F} : \lambda > \delta_m \}$. Using the previous proof, we obtain a transversal $T^m = \{ t^m_1, \ldots , t^m_k \}$ of \mathcal{F}^m for each m, where k is the desired bound. Now, choose some $G_1 \in \mathcal{F}$. By the pigeonhole principle, there is an $i \in \{1, \ldots , k\}$ with $t^m_i \in G_1$ for infinitely many m; assume $i = 1$. Passing to a subsequence of $(T^m)_{m=1}^\infty$, we may further assume that $t^m_i \to t_1 \in G_1$. If $\{t_1\}$ is not a transversal of \mathcal{F}, choose $G_2 \in \mathcal{F}$ with $t_1 \notin G_2$; passing to a further subsequence of $(T^m)_{m=1}^\infty$, we may assume that $t^m_2 \to t_2 \in G_2$. If $\{t_1, t_2\}$ is not a transversal of \mathcal{F}, continue in this manner, obtaining eventually a transversal of \mathcal{F}.

For the proof of Proposition 2, we need the following definition. A set $S \subseteq \mathbb{R}^n$ is called strictly antipodal if, for any two points x_1 and x_2 in S, there exists a hyperplane H through o such that $H + x_1$ and $H + x_2$ support S and $(H + x_1) \cap S = \{ x_1 \}$ and $(H + x_2) \cap S = \{ x_2 \}$. For more on this notion, see [5].

Proof of Proposition 2 First, we show that if S is a strictly antipodal set then $\mathcal{F} = \{ K + s : s \in S \}$, where $K = \text{conv}(S)$, is a family of pairwise touching translates of K, and no three members of \mathcal{F} have a point in common. We may assume that $o \in K$. Let x_1, x_2 be two distinct points in S. Clearly, $x_1 + x_2 \in (K + x_1) \cap (K + x_2)$. On the other hand, if H is a hyperplane as in the definition of strict antipodality, then $H' = H + x_1 + x_2$ separates $K + x_1$ and $K + x_2$. Moreover, $(K + x_1) \cap H' = (K + x_2) \cap H' = \{ x_1 + x_2 \}$. So, $K + x_1$ and $K + x_2$ touch each other. We need to show that for any $x_3 \in S \setminus \{ x_1, x_2 \}$, we have that $K + x_3$ does not contain $x_1 + x_2$. Suppose it does. Then $x_1 + x_2$ is a common point of $K + x_1$ and $K + x_2$, hence, by the previous argument, $x_1 + x_2 = x_1 + x_3$, so $x_2 = x_3$, a contradiction.

On the other hand, Füredi, Lagarias and Morgan (Theorem 2.4. in [3]) give a construction, for sufficiently large n, of a symmetric strictly convex body K and a finite set $S \subseteq \mathbb{R}^n$ with the property that any two translates of K in the family $\{ s + K : s \in S \}$ touch each other, moreover $\text{card}(S) \geq (1.02)^n$. It follows that S
is a strictly antipodal set. Later, Swanepoel observed (Theorem 2 in Section 2.2, [17]) that a better bound, \(\text{card}(S) \geq (1.058)^n \) follows from the proof in [3]. Thus, for the resulting \(F \) we have \(\nu(F) = 1 \) and \(\tau(F) \geq \frac{1}{2} \text{card}(F) = \frac{1}{2}(1.058)^n \). \(\square \)

3. VC-Dimension of Positive Homothets

Proof of Theorem 3. Let \(F \) be a family of positive homothets of a convex body \(K \subseteq \mathbb{R}^2 \). Suppose, for contradiction, that \(F \) shatters some set of four points, say, \(X = \{x_1, x_2, x_3, x_4\} \).

Case 1: One of the points of \(X \) is in the convex hull of the other three, say, \(x_1 \in \text{conv}(\{x_2, x_3, x_4\}) \). By hypothesis, there is an \(F \in F \) such that \(X \cap F = \{x_2, x_3, x_4\} \). But since \(F \) is convex, it follows that \(x_1 \in F \), which is a contradiction.

Case 2: The points of \(X \) are in convex position, forming the vertices of a convex quadrilateral in, say, the order \(x_1 x_2 x_3 x_4 \). (See Figure 1) Without loss of generality, \(X \cap K = \{x_1, x_3\} \) and \(X \cap TK = \{x_2, x_4\} \), where \(T : \mathbb{R}^2 \to \mathbb{R}^2, Tx = \lambda x + t \) is a homothety with ratio \(\lambda \geq 1 \).

First suppose \(\lambda > 1 \). Let

\[
p = \frac{1}{1-\lambda} t
\]

be the centre of the homothety \(T \). If \(p \) is in the (closed) region \(A \) shown in Figure 1, then \(x_2 \in \text{conv}(\{x_1, x_3, p\}) \). On the other hand, \(T^{-1}x_2 \) is a convex combination of \(p \) and \(x_2 \); thus \(x_2 \in \text{conv}(\{x_1, x_3, T^{-1}x_2\}) \). (See Figure 2) But \(\{x_1, x_3, T^{-1}x_2\} \subseteq K \), so by convexity, \(x_2 \in K \), a contradiction.

Similarly, if \(p \in B \) then \(x_4 \in \text{conv}(\{x_1, x_3, T^{-1}x_4\}) \subseteq K \); if \(p \in C \cup D \) then \(x_3 \in \text{conv}(\{x_2, x_4, Tx_3\}) \subseteq TK \); and if \(p \in D \cup E \) then \(x_1 \in \text{conv}(\{x_2, x_4, Tx_1\}) \subseteq TK \). In all cases we obtain a contradiction.

The case \(\lambda = 1 \), when \(T \) is a translation, succumbs to essentially the same argument, with \(p \) an ideal point corresponding to the direction of the translation. We omit the details.

\(\square \)
Figure 3. The paraboloid $z = x^2 + y^2$ and a few sections of it.

Construction of Example 4. To illustrate the ideas of the construction, we first sketch how to construct, for any $M \in \mathbb{N}$, a convex body K whose translates shatter a set of M points.

The sections of the paraboloid $z = x^2 + y^2$ by planes parallel to the yz-plane are all translates of the same parabola. (See Figure 3.) Choose some 2^M of these sections and some set X of M points on one of them. Each section contains a translated copy of X; assign a subset to each section, take that subset of its copy of X, and let K be the convex hull of the points in these subsets of copies. The translates of K then shatter X, since an appropriate translation will superimpose the section corresponding to any desired subset on the section containing X.

Now, we present Example 4. Let \mathcal{E} be the family of all finite subsets of \mathbb{N}, and let $E : \mathbb{N} \to \mathcal{E}$ be a bijection. Set $A = \{(m, n) \in \mathbb{N}^2 : m \in E(n)\}$.

For $m, n \in \mathbb{N}$, let $u_m = (\frac{1}{m}, 0, \frac{1}{m^2})$ and $v_n = (0, \frac{1}{n}, \frac{1}{n^2})$, and define $p : \mathbb{N}^2 \to \mathbb{R}^3$, $p(m, n) = u_m + v_n$.

Let $K = \text{conv}(\text{cl}(p(A)))$ and $\mathcal{F} = \{K - v_n : n \in \mathbb{N}\}$. We claim that $\text{vcdim}(\mathcal{F}) = \infty$.

Let $P \subseteq \mathbb{R}^3$ be the paraboloid with equation $z = x^2 + y^2$. Since P is the boundary of a strictly convex set, $P \cap \text{conv}(S) = S$ for any $S \subseteq P$. Since $p(\mathbb{N}^2)$ is a discrete set, $p(\mathbb{N}^2) \cap \text{cl}(S) = S$ for any $S \subseteq p(\mathbb{N}^2)$. So if $T \subseteq p(\mathbb{N}^2)$, then $T \cap K = T \cap p(\mathbb{N}^2) \cap P \cap K = T \cap p(\mathbb{N}^2) \cap \text{cl}(p(A)) = T \cap p(A)$.

Now, let $M \in \mathbb{N}$, $X = \{u_1, \ldots, u_M\}$, and $X' \subseteq X$. Let $n \in \mathbb{N}$ be such that $X' = \{u_m : m \in E(n)\}$. Then

$$(X + v_n) \cap K = (X + v_n) \cap p(A) = X' + v_n,$$

that is, $X \cap (K - v_n) = X'$. Thus \mathcal{F} shatters X, so $\text{vcdim}(\mathcal{F}) \geq M$. \qed

Acknowledgements

The authors are grateful to Nicole Tomczak-Jaegermann and Alexander Litvak for their support and encouragement, and we thank the University of Alberta. We
thank Leonard Schulman who, upon learning of our example 4, brought the question asked by Grünbaum in [6] to our attention and thus put our result in context. The first named author holds a Postdoctoral Fellowship of the Pacific Institute for the Mathematical Sciences at the University of Alberta, and the second named author was supported by a Canada Graduate Scholarship of the Natural Sciences and Engineering Research Council of Canada. We thank them as well.

4. A NOTE

After the publication of the paper, Konrad Swanepoel brought the following to our attention: In Lemma 9.11.2 of [1] (proved by I. Talata in [18]) an explicit construction of an o-symmetric strictly convex smooth body is given with $\sqrt[3]{3n}/3$ pairwise touching translates. That changes the bound in Proposition 2 to $\tau(F) \geq \frac{2\sqrt{3}n}{9} \nu(F)$.

REFERENCES

[1] Károly Böröczky, Jr. Finite packing and covering, volume 154 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2004.
[2] Ludwig Danzer, Branko Grünbaum, and Victor Klee. Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, pages 101–180. Amer. Math. Soc., Providence, R.I., 1963.
[3] Z. Füredi, J. C. Lagarias, and F. Morgan. Singularities of minimal surfaces and networks and related extremal problems in Minkowski space. In Discrete and computational geometry (New Brunswick, NJ, 1989/1990), volume 6 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 95–109. Amer. Math. Soc., Providence, RI, 1991.
[4] Jacob E. Goodman, Richard Pollack, and Rephael Wenger. Geometric transversal theory. In New trends in discrete and computational geometry, volume 10 of Algorithms Combin., pages 163–198. Springer, Berlin, 1993.
[5] Branko Grünbaum. Strictly antipodal sets. Israel J. Math., 1:5–10, 1963.
[6] Branko Grünbaum. Venn diagrams and independent families of sets. Math. Mag., 48:12–23, 1975.
[7] David Haussler and Emo Welzl. ε-nets and simplex range queries. Discrete Comput. Geom., 2(2):127–151, 1987.
[8] Andreas Holmsen and Jiří Matoušek. No Helly theorem for stabbing translates by lines in \mathbb{R}^3. Discrete Comput. Geom., 31(3):405–410, 2004.
[9] R. N. Karasev. Transversals for families of translates of a two-dimensional convex compact set. Discrete Comput. Geom., 24(2-3):345–353, 2000. The Branko Grünbaum birthday issue.
[10] Seog-Jin Kim, Kittikorn Nakprasit, Michael J. Pelsmajer, and Jozef Skokan. Transversal numbers of translates of a convex body. Discrete Math., 306(18):2166–2173, 2006.
[11] Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
[12] Jiří Matoušek. Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom., 31(2):251–255, 2004.
[13] Daniel Q. Naiman and Henry P. Wynn. Independent collections of translates of boxes and a conjecture due to Grünbaum. Discrete Comput. Geom., 9(1):101–105, 1993.
[14] C. A. Rogers. A note on coverings. Mathematika, 4:1–6, 1957.
[15] C. A. Rogers and G. C. Shephard. The difference body of a convex body. Arch. Math., 8:220–233, 1957.
[16] C. A. Rogers and C. Zong. Covering convex bodies by translates of convex bodies. Mathematika, 44(1):215–218, 1997.
[17] Konrad J. Swanepoel. Equilateral sets in finite-dimensional normed spaces. In Seminar of Mathematical Analysis, volume 71 of Colecc. Abierta, pages 195–237. Univ. Sevilla Secr. Publ., Seville, 2004.
[18] István Talata. On equilateral dimensions of strictly convex bodies. in preparation.
[19] V. N. Vapnik and A. Ja. Červonenkis. On the uniform convergence of relative frequencies of events to their probabilities. *Dokl. Akad. Nauk SSSR*, 181, 4:781ff., 1968. In Russian; English translation in *Theor. Probab. Appl.*, 16:264–280 (1971).

DEPT. OF MATH. AND STATS., 632 CENTRAL ACADEMIC BUILDING, UNIVERSITY OF ALBERTA, EDMONTON, AB, CANADA T6G 2G1

E-mail address: mnaszodi@math.ualberta.ca, staschuk@ualberta.ca