Consumption of processed food and risk of nasopharyngeal carcinoma: a systematic review and meta-analysis

Haiyan Feng¹, Ying Zhou², Liuzhen Wang¹, Yiling Wang¹, Shiping Zhou¹, Fanyun Tian¹

¹Department of Otorhinolaryngology, Liuzhou People's Hospital, Liuzhou, China; ²Department of Healthcare Medicine, Liuzhou People's Hospital, Liuzhou, China

Contributions: (I) Conception and design: H Feng, Y Zhou; (II) Administrative support: H Feng, Y Zhou; (III) Provision of study materials or patients: L Wang; (IV) Collection and assembly of data: Y Zhou, L Wang, Y Wang, S Zhou; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Background: Consumption of processed foods has been associated with nasopharyngeal carcinoma (NPC), but with inconsistent results. Therefore, we conducted a systematic review and meta-analysis to compute results regarding the association between processed foods and risk of NPC in included studies.

Methods: Studies exploring the association between consumption of processed food and risk of NPC were included in the present study. All included studies were case-control or cohort designed. PubMed, Web of Science, EMBASE, Medline and Google Scholar databases were searched for articles published before July 2021. We recorded the following data: author, publication year, sample size, study type, study location, years of diagnosis, food item and comparison, and the covariates considered were multivariate adjusted odds ratios (ORs) or relative risks (RRs) with corresponding 95% confidence intervals (CIs) for the highest vs. lowest categories of processed food intake. STATA 12.0 software was used to compute the multivariate ORs or RRs and 95% CIs of the association. Quality appraisal was made using the Cochrane Risk of Bias Tool.

Results: A meta-analysis was made for 29 case-control studies (including 14,378 NPC patients and 17,928 controls). The meta-analysis showed that the highest categories of processed food intake were associated with a 65% increase in NPC risk compared with the lowest categories in a random effects model (OR =1.67; 95% CI: 1.56–1.79; P value for Q test <0.001; I²=86.9%). Subgroup study showed significant positive associations regarding consumption of processed food and risk of NPC in both Asians and Caucasians (Asian: OR =1.68, 95% CI: 1.56–1.81; Caucasian: OR =1.36, 95% CI: 1.09–1.71).

Conclusions: The association of processed foods with NPC risk might be significant. Further prospective studies and experimental research are needed to explore this relationship.

Keywords: Meta-analysis; nasopharyngeal carcinoma (NPC); processed food

Submitted Feb 22, 2022. Accepted for publication Apr 11, 2022.
doi: 10.21037/tcr-22-690

View this article at: https://dx.doi.org/10.21037/tcr-22-690

Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy with distinct geographical distribution, with an estimated 129,079 new cases and 72,987 deaths in 2018 worldwide, and most NPC patients are geographically localized to southern China and east and southeast Asia (1). According to relevant epidemiological data, the incidence and mortality of NPC in China were 3.09/100,000 and 1.57/100,000, respectively, which was higher the global data, and the top three incidence and mortality provinces are all located in southern China (2). NPC is a head and neck cancer with poor prognosis, and epidemiological trends in the past...
decades have shown the incidence and mortality of NPC have been decline (3). It is thought that NPC is the result of both genetic susceptibility and exposure to environmental factors such as Epstein-Barr virus infection (4).

Salt-preserved and fermented foods such as salted fish are traditional southern Chinese food, and favored by the local population due to the unique flavor of preserved foods and local food culture. Previous studies have proved that the intake of traditional salt-processed food is associated with gastrointestinal tumors including esophageal and gastric cancer (5,6). Pro-cancer factors in processed meat, including excess fat, excess protein, excess iron and heat-induced mutagens, may also be involved in carcinogenesis, plus the salt and nitrite added during the curing process (7). Several studies (8-20) have demonstrated that the consumption of processed foods is associated with risk of NPC. However, some inconsistent results exist. Some studies (21-24) showed no significant association between consumption of processed foods and risk of NPC. Therefore, we conducted a systematic review and meta-analysis to summarize the association of processed foods and NPC and assess the relationship. We present the following article in accordance with the MOOSE reporting checklist (available at https://tcr.amegroups.com/article/view/10.21037/tcr-22-690/rc).

Methods

Search strategy

PubMed, Web of Science, EMBASE, Medline and Google Scholar databases were searched by investigators for articles published before July 2021 regarding the association between consumption of processed food and risk of NPC. We used the search terms: ‘(processed OR ‘pickle’ OR ‘pickled’ OR ‘moldy’ OR ‘fermented’ OR ‘saltextractible’ OR ‘salted’) AND (nasopharyngeal) AND (cancer OR ‘carcinoma’ OR ‘neoplasm’ OR ‘neoplasia’ OR ‘neoplastic’). All articles were published in English.

Exclusion criteria

Studies exploring the association between consumption of processed food and risk of NPC were included in the present study. All included studies were case-control or cohort designed. Exclusion criteria were: (I) not provide information regarding the relative risk (RR) or odds ratio (OR) estimates and the 95% confidence interval (CI) for the association between consumption of processed food and risk of NPC; (II) not case-control or cohort design; and (III) reviews, meta-analyses and case studies were removed.

Data collection

We recorded the following data: author, publication year, sample size, study type, study location, years of diagnosis, food item and comparison, and the covariates considered were multivariate adjusted ORs or RRs with corresponding 95% CI for the highest vs. lowest categories of processed food intake.

Statistical analysis

STATA 12.0 software was used to compute the multivariate ORs or RRs and 95% CIs regarding the association between consumption of processed food and risk of NPC. Q test and I² were used to evaluate heterogeneity between studies. With invariably high heterogeneity (P value for Q test ≤0.05 and I²≥50%), a random effects model was used to generate summary effect size of studies; conversely, in the absence of between-study heterogeneity (P value for Q test >0.05 and I²<50%), a fixed effects model was used to summarize the effect size. Meta-regression analysis was applied to explore source of heterogeneity. Subgroup analysis for different ethnicities was used to explore the effect of heterogeneous ethnicities on the heterogeneity of the meta-analysis. Subgroup analysis for studies adjusted for confounders and studies which did not report covariates was used to explore the source of heterogeneity. Sensitivity analysis was conducted by removing 1 individual study each time to assess the source of heterogeneity. Publication bias was evaluated with Egger’s regression test, Begg’s adjusted rank correlation test, and funnel plots. Quality appraisal was made using the Cochrane Risk of Bias Tool. Data were analyzed using Review Manager 5.3.

Results

Search results

Figure 1 shows procedure for exclusion and Table S1 shows the studies’ characteristics and results. A meta-analysis was made for 29 case-control studies (including 14,378 NPC patients and 17,928 controls). N=13 case-control studies (8-20) reported consumption of processed foods is associated with risk of NPC, whereas n=16 studies (21-36) showed no significant association between consumption of
processed foods and risk of NPC.

Meta-analysis results

The meta-analysis showed that the highest categories of processed food intake were associated with a 67% increase in NPC risk compared with the lowest categories in a random effects model (OR =1.67; 95% CI: 1.56–1.79; P value for Q test <0.001; I²=86.9%; Figure 2). Subgroup study showed significant positive associations regarding consumption of processed food and risk of NPC in both Asians and Caucasians (Asian: OR =1.68, 95% CI: 1.56–1.81; Caucasian: OR =1.36, 95% CI: 1.09–1.71; Figure 3). Meta-regression analysis indicated that publication year, gender and age were not responsible for heterogeneity across studies (publication year: P value =0.242; gender: P value =0.509; age: P value =0.837). Subgroup study showed significant positive associations between consumption of processed food and risk of NPC in studies adjusted for confounders and studies which did not report covariates (studies adjusted for confounders: OR =1.64, 95% CI: 1.52–1.76; studies which did not report covariates: OR =2.10, 95% CI: 1.65–2.67; Figure 4). A sensitivity analysis showed no changes in the direction of effect when any 1 study was excluded (Figure 5). In addition, Begg's test, Egger's test and funnel plot showed no significant publication bias in the included studies (Egger's test: P=0.066; Begg's test: P=0.082; Figure 6). Risk of bias graph was showed in Figure S1. Details of the risk of bias summary was showed in Figure S2.

Discussion

In this meta-analysis, we included 29 case-control studies with 14,378 NPC patients and 17,928 controls. Our results suggested a significant association of processed foods to NPC risk with a random effects model score showing OR of 1.67 at 95% CI of 1.56–1.79 (P<0.01). And for both Asians and Caucasians, processed foods were a high-risk factor for NPC.

Our result was consistent with that of previous several studies. Okekpa et al. reported that salted fish consumption was significantly associated with an increased risk in NPC (OR =1.41; 95% CI: 1.13–1.75) (37). Similarly, Li et al. reported a significant association between total processed meat consumption dose and risk of NPC, and the risk of NPC increased with increased consumption dose of processed meat (low-rank intake: RR =1.46, 95% CI: 1.34–1.64; moderate-rank intake: RR =1.59, 95% CI: 1.30–1.90; high-rank intake: RR =2.11, 95% CI: 1.31–3.42) (38).

Due to the process of salted preservation, salted fish can accumulate high levels of nitrosamines, which have a
Figure 2 Forest plot of the association between processed food intake and NPC risk. OR, odds ratio; CI, confidence interval; NPC, nasopharyngeal carcinoma.

Figure 3 Subgroup study of the associations between processed food intake and NPC risk in Asians, Africans, and Caucasians. OR, odds ratio; CI, confidence interval; NPC, nasopharyngeal carcinoma.
Study ID	ORs (95% CI)	Weight
Armstrong et al. 1983	12.13 (2.41, 61.20)	0.18
Yu et al. 1986	3.30 (1.84, 5.91)	1.38
Yu et al. 1988	1.52 (0.52, 4.52)	0.40
Ning et al. 1990	2.20 (1.30, 3.70)	1.72
Jeannel et al. 1990	2.41 (0.89, 2.50)	1.76
Lee et al. 1994	0.80 (0.20, 2.90)	0.26
Zheng et al. 1994	3.80 (1.50, 9.80)	0.53
Armstrong et al. 1998	4.22 (2.23, 7.99)	1.15
Farrow et al. 1998	1.54 (0.71, 3.33)	0.79
Ward et al. 2000	1.50 (0.80, 2.60)	1.20
Yuan et al. 2000	1.31 (1.10, 1.56)	15.40
Chelleng et al. 2000	11.50 (3.40, 38.50)	0.32
Zou et al. 2000	3.20 (1.70, 6.10)	1.15
Yang et al. 2005	1.78 (0.82, 3.89)	0.78
Feng et al. 2007	3.20 (1.70, 5.90)	1.21
Guo et al. 2009	1.82 (1.28, 2.52)	3.66
Jia et al. 2010	2.09 (1.22, 3.60)	1.61
Ren et al. 2010	2.62 (2.24, 3.07)	18.92
Turkoz et al. 2011	1.83 (1.16, 2.87)	2.29
Polese et al. 2011	1.40 (0.85, 2.29)	1.91
Hsu et al. 2012	0.89 (0.59, 1.35)	2.74
Fachiroh et al. 2012	0.92 (0.68, 1.25)	5.07
Ruan et al. 2013	1.55 (1.25, 1.90)	10.20
Lourembam et al. 2015	7.95 (4.31, 14.66)	1.25
Barrett et al. 2019	0.93 (0.78, 1.10)	15.90
Subtotal (I-squared =86.5%, P<0.001)	1.64 (1.52, 1.76)	91.80
NR	4.19 (2.91, 6.02)	3.56
Sriamporn et al. 1992	2.50 (1.20, 5.20)	0.87
West et al. 1993	0.79 (0.32, 0.88)	1.84
Ekburanawat et al. 2010	1.38 (0.84, 2.25)	1.94
Subtotal (I-squared =90.4%, P<0.001)	2.10 (1.65, 2.67)	8.20
Overall (I-squared =86.9%, P<0.001)	1.67 (1.56, 1.79)	100.00

Figure 4 Subgroup study of the associations between processed food intake and NPC risk in studies adjusted for confounders and studies which did not report covariates. OR, odds ratio; CI, confidence interval; NR, not reported; NPC, nasopharyngeal carcinoma.

Study ID	ORs (95% CI)
Armstrong et al. 1983	1.56
Yu et al. 1988	1.63
Yu et al. 1989	2.02
Ning et al. 1990	2.51
Jeannel et al. 1990	2.62
Sriamporn et al. 1992	1.56
West et al. 1993	1.63
Lee et al. 1994	2.02
Zheng et al. 1994	2.51
Armstrong et al. 1998	2.62
Farrow et al. 1998	1.56
Ward et al. 2000	1.63
Yuan et al. 2000	2.02
Chelleng et al. 2000	2.51
Zou et al. 2000	2.62
Yang et al. 2005	1.56
Feng et al. 2007	1.63
Guo et al. 2009	2.02
Jia et al. 2010	2.51
Ren et al. 2010	2.62
Turkoz et al. 2011	1.56
Polese et al. 2011	1.63
Hsu et al. 2012	2.02
Fachiroh et al. 2012	2.51
Ruan et al. 2013	2.62
Lourembam et al. 2015	1.56
Barrett et al. 2019	1.63

Figure 5 Sensitivity analysis of the association between processed food intake and NPC. OR, odds ratio; NPC, nasopharyngeal carcinoma.
carcinogenic effect on multiple organs (39). In addition, extracts of processed food have reactivated Epstein-Barr virus in cell lines (40). Lau et al. showed that decreasing incidence and mortality of NPC in Hong Kong correlated with declining salted fish consumption (41). Barrett et al. also reported an increased risk of NPC with a high level of intake of hard Chinese-style salted fish during adolescence (OR =1.19, 95% CI: 1.03–1.39) (26). As well as salted fish, salted and picked vegetables have also been proved to be associated with elevated risk of cancer incidence, including gastric cancer, and NPC (42,43). These findings indicated a need to reduce the consumption of processed foods.

However, several study limitations should be acknowledged. First, although observation studies can suggest an association between processed foods and NPC, the molecular mechanisms of the pathogenesis of NPC caused by processed foods are still unclear. Second, in our study we did not discuss the effect of some variates, including the intake dose and duration of consumption of processed foods, whether from adolescence or as an adult. Third, the status of Epstein-Barr virus may affect the result regarding the association between processed foods and NPC, so the lack of Epstein-Barr virus affection may lead to an inaccurate conclusion.

Conclusions

In summary, our findings of this present study voted that the result for the association of processed foods with NPC risk might be significant. And further prospective studies and experimental researches are needed to explore the relationship between processed foods and NPC risk.

Acknowledgments

Funding: None.

Footnote

Reporting Checklist: The authors have completed the MOOSE reporting checklist. Available at https://tcr.amegroups.com/article/view/10.21037/tcr-22-690/rc

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://tcr.amegroups.com/article/view/10.21037/tcr-22-690/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Lee HM, Okuda KS, González FE, et al. Current Perspectives on Nasopharyngeal Carcinoma. Adv Exp Med Biol 2019;1164:11-34.
2. Wei KR, Zheng RS, Zhang SW, et al. Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chin J
Feng BJ, Jalbout M, Ayoub WB, et al. Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer 2007;121:1550-5.

Jia WH, Luo XY, Feng BJ, et al. Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 2010;10:446.

Ren ZF, Liu WS, Qin HD, et al. Effect of family history of cancers and environmental factors on risk of nasopharyngeal carcinoma in Guangdong, China. Cancer Epidemiol 2010;34:419-24.

Ruan HL, Qin HD, Shugart YY, et al. Developing genetic epidemiological models to predict risk for nasopharyngeal carcinoma in high-risk population of China. PLoS One 2013;8:e56128.

Lourembam DS, Singh AR, Sharma TD, et al. Evaluation of Risk Factors for Nasopharyngeal Carcinoma in a High-risk Area of India, the Northeastern Region. Asian Pac J Cancer Prev 2015;16:4927-35.

Yu MC, Mo CC, Chong WX, et al. Preserved foods and nasopharyngeal carcinoma: a case-control study in Guangxi, China. Cancer Res 1988;48:1954-9.

Jeannel D, Hubert A, de Vathaire F, et al. Diet, living conditions and nasopharyngeal carcinoma in Tunisia--a case-control study. Int J Cancer 1990;46:421-5.

Lee HP, Gourley L, Duffy SW, et al. Preserved foods and nasopharyngeal carcinoma: a case-control study among Singapore Chinese. Int J Cancer 1994;59:585-90.

Farrow DC, Vaughan TL, Berwick M, et al. Diet and nasopharyngeal cancer in a low-risk population. Int J Cancer 1998;78:675-9.

Armstrong RW, Armstrong MJ, Yu MC, et al. Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res 1983;43:2967-70.

Barrett D, Ploner A, Chang ET, et al. Past and Recent Salted Fish and Preserved Food Intakes Are Weakly Associated with Nasopharyngeal Carcinoma Risk in Adults in Southern China. J Nutr 2011;141:1596-605.
fresh fish, green tea and coffee: a case-control study in Taiwan. PLoS One 2012;7:e41779.
31. Polesel J, Franceschi S, Talamini R, et al. Tobacco smoking, alcohol drinking, and the risk of different histological types of nasopharyngeal cancer in a low-risk population. Oral Oncol 2011;47:541-5.
32. Turkoz FP, Celenkoglu G, Dogu GG, et al. Risk factors of nasopharyngeal carcinoma in Turkey—an epidemiological survey of the Anatolian Society of Medical Oncology. Asian Pac J Cancer Prev 2011;12:3017-21.
33. Ward MH, Pan WH, Cheng YJ, et al. Dietary exposure to nitrite and nitrosamines and risk of nasopharyngeal carcinoma in Taiwan. Int J Cancer 2000;86:603-9.
34. West S, Hildesheim A, Dosemeci M. Non-viral risk factors for nasopharyngeal carcinoma in the Philippines: results from a case-control study. Int J Cancer 1993;55:722-7.
35. Yang XR, Diehl S, Pfeiffer R, et al. Evaluation of risk factors for nasopharyngeal carcinoma in high-risk nasopharyngeal carcinoma families in Taiwan. Cancer Epidemiol Biomarkers Prev 2005;14:900-5.
36. Yuan JM, Wang XL, Xiang YB, et al. Preserved foods in relation to risk of nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 2000;85:358-63.
37. Okekpa SI, SM N Mydin RB, Mangantig E, et al. Nasopharyngeal Carcinoma (NPC) Risk Factors: A Systematic Review and Meta-Analysis of the Association with Lifestyle, Diets, Socioeconomic and Sociodemographic in Asian Region. Asian Pac J Cancer Prev 2019;20:3505-14.
38. Li F, Duan F, Zhao X, et al. Red Meat and Processed Meat Consumption and Nasopharyngeal Carcinoma Risk: A Dose-response Meta-analysis of Observational Studies. Nutr Cancer 2016;68:1034-43.
39. Qiu Y, Chen JH, Yu W, et al. Contamination of Chinese salted fish with volatile N-nitrosamines as determined by QuEChERS and gas chromatography-tandem mass spectrometry. Food Chem 2017;232:763-9.
40. Shao YM, Poirier S, Ohshima H, et al. Epstein-Barr virus activation in Raji cells by extracts of preserved food from high risk areas for nasopharyngeal carcinoma. Carcinogenesis 1988;9:1455-7.
41. Lau HY, Leung CM, Chan YH, et al. Secular trends of salted fish consumption and nasopharyngeal carcinoma: a multi-jurisdiction ecological study in 8 regions from 3 continents. BMC Cancer 2013;13:298.
42. Yoo JY, Cho HJ, Moon S, et al. Pickled Vegetable and Salted Fish Intake and the Risk of Gastric Cancer: Two Prospective Cohort Studies and a Meta-Analysis. Cancers (Basel) 2020;12:996.
43. Yong SK, Ha TC, Yeo MC, et al. Associations of lifestyle and diet with the risk of nasopharyngeal carcinoma in Singapore: a case-control study. Chin J Cancer 2017;36:3.

Cite this article as: Feng H, Zhou Y, Wang L, Wang Y, Zhou S, Tian F. Consumption of processed food and risk of nasopharyngeal carcinoma: a systematic review and meta-analysis. Transl Cancer Res 2022;11(4):872-879. doi: 10.21037/tcr-22-690