HMI SIMULATION OF BIOGAS HANDLING OF GAS ENGINE SYSTEM

Effect of Temperature on Biohydrogen Production from Palm Oil Mill Effluent (POME) Fermentation

Nugroho Adi Sasongko1, Anton Rahmawan2, Hartadhi1, Arga Febriantoni1, Winalda Erza N.H3, M Taufiqi Arrais1, and Agus Rochmansyah3

1Pusat Teknologi Sumberdaya Energi dan Industri Kimia Agency for The Assessment and Application of Technology (BPPT)
Kawasan PUSPIPTEK Serpong - Tangerang Selatan 15314
2Sepuluh NopemberTechnology Institute (ITS), Surabaya
Email: nugroho.adi@bppt.go.id

Abstrak
Limbah minyak sawit seperti Palm Oil Mill Effluent (POME) dapat membahayakan lingkungan, karena POME masih mengandung senyawa organik dengan indikator COD dan BOD yang tinggi. Untuk menurunkan COD dan BOD, POME perlu diproses menjadi produk yang ramah lingkungan dan bermanfaat. Salah satu produknya adalah biogas, yang dapat digunakan sebagai bahan bakar untuk mesin gas untuk menghasilkan listrik. Biogas bisa menjadi alternatif pengganti bahan bakar diesel. Hasil penelitian menunjukkan bahwa terdapat beberapa kriteria kandungan gas pada biogas dari proses limbah POME yang dapat digunakan untuk memasok mesin gas. Untuk itu diperlukan desain Human Machine Interface (HMI) dari sistem pembersihan biogas seperti bioscrubber, dehumidifier, dan unit blower, yang menggunakan perangkat lunak instrumentasi dan kontrol yang disebut Laboratorium Instrumen Rekayasa Virtual Workbench (LabVIEW). LabVIEW adalah platform desain sistem dan lingkungan pengembangan untuk bahasa pemrograman visual dari National Instruments (NI), AS. Sistem instrumentasi dan kontrol dirancang untuk otomatisasi dengan bahasa pemrograman grafis. Interface pada LabVIEW membantu menyederhanakan fungsi kompleks seperti memvisualisasikan sistem kontrol dalam database besar dan mengoptimalkan pemrosesan sistem yang telah dirancang.

Kata kunci: biogas, gas engine, gas handling, labVIEW, POME (Palm Oil Mill Effluent)

Abstrak
Palm oil waste such as Palm Mill Effluent (POME) can endanger the environment, since POME still contains organic compounds with high COD and BOD. To reduce COD and BOD level, POME needs to be processed into environmentally friendly and useful products. One of the products is biogas, which can be used as fuel for gas engines to produce electricity. Biogas can be an alternative to diesel fuel. The results of the study indicated that the amount of biogas content from the new POME waste process can be used to supply gas engines. It is necessary to optimize the design of the Human Machine Interface (HMI) of the biogas cleaning system such as bioscrubber, dehumidifier, and blower units, using instrumentation and control software called Virtual Instrument Engineering Workbench Laboratory (LabVIEW). LabVIEW is a system design platform and development environment for visual programming languages from National Instruments (NI), USA. Instrumentation and control systems are designed for automation with graphic programming languages. The built-in interface helps simplify complex functions such as visualizing the control system in a large database and system-processing optimization that has been designed.

Kata kunci: biogas, gas engine, gas handling, labVIEW, POME (Palm Oil Mill Effluent)

1. INTRODUCTION
Palm Oil Mill Effluent (POME) can endanger the environment, since POME is categorized as a very high contaminating wastewater that can contain a biochemical oxygen demand (BOD) of 25,000 mg and chemical oxygen demand (COD) of 69,500 mg (Najafpour, 2006). Since raw POME normally is discharged at 80–90 °C, therefore several researchers reported that treatment of POME can be done whether in mesophilic or thermophilic conditions (Zhang, 2008; Mustapha, 2003). Production of biogas from POME is widely known by using either anaerobic or aerobic digestion (Akobi, C. et al., 2016). The typical production process is as illustrated in Figure 1. Anaerobic digestion is a process where organic materials are decomposed in a condition where there is no oxygen present and useful biogas is produced, simultaneously. There are three stages of
reactions involved in anaerobic digestion and then, its potential of treating wastes while producing renewable energy become biogas. The first stage is hydrolysis, followed by acidogenesis and lastly methanogenesis (O-Thong, et al., 2016; Yuzir A. et al., 2012).

Gas engine is a spark ignition combustion that uses gas fuel, in which the mixture of air and gas is compressed and ignited with spark plug. Biogas could be an alternative fuel to replace biomass fuel and diesel. Biogas is typically composed of 50–75% methane (CH₄), 25–45%, carbon dioxide (CO₂), and trace amounts of other gases (Rahayu, dkk., 2015; Youngsukkasem, et al., 2013; Yunus, dkk., 2015).

Gas engine usually used fossil fuel and now gas engine can use biogas from result POME processing.

Beforehand, POME is treated with some processes, one of which is separation process from unnecessary substances in the scrubber system, water content separation with biogas in the dehumidifier system, and distribution of gas by blower to gas engine by blower system and finally the gas engine will convert the mechanical energy to electrical energy. All of those processes starting from bioscrubber system until supplying biogas to a gas engine is called gas handling. Different blends of biogas with methane or propane and hydrogen additions are used according to the gas engine requirement which is presented in Table 1 (Gómez Montoya JP., et al., 2016).

Table 1. Typical composition of biogas

Compound	Formula	%
Methane	CH₄	50-75
Carbon Dioxide	CO₂	25-50
Nitrogen	N₂	0-10
Hydrogen	H₂	0-1
Hydrogen Sulphide	H₂S	0-3
Oxygen	O₂	0-0

3. RESULTS AND DISCUSSION

3.1. HMI, Process System and Logic Diagram

In the bio-scrubber system as shown in Figure 3, gas from the SC2 valve enters the SC2 pipe and goes into the scrubbersystem. In scrubbersystem, the temperature and pH of the gas will be purified to reduce H₂S levels by flushing water which will convert H₂S to SO₄. The temperature inside the scrubber must be in the range of 40-50°C and pH between 6.5 - 7.5 after the methane gas is lowered the gas will enter the GH 21 and GH 22 pipes and then enter the gas holder.

In the dehumidifier system as shown in Figure 4, water content of biogas will be reduced through cooling process. Before entering gas dehumidifier, the biogas must meet requirements that H₂O must be below 80%, H₂S must be below 2000 ppm, CH₄ must be below 60% and the pH must be between 6.5 to 7.5.
Gas handling system as shown in Figure 5 will direct the gas with reduced water content from dehumidifier to enter the gas holder. Gas in the gas holder will be pumped to the gas engine as fuel by the blower system. If the system detected excessive pressure in the gas holder, the valve (Valve 2) to flaring system will then open and direct the gas to flaring system.

Figure 6 show that there are 5 while loops in the logic diagram, each while loops has different function in value change box the function for hyperlinking and launching the program simulation.
There are 4 led indicator in the dehumidifier logic diagram, the led indicator will show green colour if the gas from bio-scrubber is suitable with all the gas components requirement and the blower will purify the gas to remove the water content. Each gas components have specific requirement for content and level, it can be less than or higher than or in the midst of. Also, this logic diagram is using basic logic gates, especially AND. Because in the dehumidifier, if one gas component not suitable with the requirement, the blower will not activate and the gas will be directed back to the bio-rubber.

There are 2 LED indicator in the scrubber logic diagram. The led indicator will show green and red colour. Green LEDs indicates that the biogas has entered the scrubber is in accordance with pH level requirement, if the pH level is appropriate then the LED will turn on the indicator to enter the gas engine. Red LED indicator indicates no biogas supply goes to the gas engine because the biogas will be looped once more into the scrubber for treatment repetition. If after treatment it does not show the pH level that matches gas engine specification, the biogas will be directed to flaring system and LED indicator on the flaring system will be turned on.
Many indicators are contained in the gas engine diagram block. Because in fact there are many parts of the engine that must be continuously monitored. The block diagram above is a simple example that has been made in part from the overall engine monitoring system. Part of the monitoring system is specific fuel consumption of the engine during operation. Another is input voltage from PLN which is displayed with aims to compare the supply voltage of PLN and the voltage produced by the gas engine generator. Then there is frequency indicator, engine battery voltage, and of course the engine speed (RPM). In addition, there will be a graph of engine vibration, engine oil control, power factor (PF), gas engine display, blower display and other supporting displays that can be added as needed.
3.2. Instrument and Prototype

3.2.1. Gas Engine
Gas engine is a spark ignition combustion engine that uses gas fuel, in which the mixture of air and gas is compressed and ignited with spark plug.

Figure 10. 700 kW Gas Engine installed in PKS Tandun, PTPN 5 Riau

3.2.2. Arduino Mega
Arduino is a microcontroller which is an open source, so it's easily to access. Arduino Mega has 54 digital I/O pins and 16 analog inputs.

Figure 11. Arduino Mega

3.2.3. Pressure Transmitter (PT)
MPX 53DP is a pressure transmitter and pressure sensor. MPX 53DP has Operating Pressure of 7.25 PSI (50 Kpa) and max pressure 25.38 PSI (175 Kpa).

Figure 12. Pressure Transmitter (left) and Prototype Pressure Transmitter MPX 53DP
3.2.4. Temperature Transmitter (TT)
Thermocouple MAX6675 is one of thermometer and can use to measurement 0-800°C with Ktype temperature probe.

Figure 13. Temperature Transmitter (left) and Prototype Thermocouple MAX6675

3.2.5. Flow Transmitter (FT)
Flow sensor can use to measurement air flow or liquid flow. This sensor can measurement flow between 10 L/min.

Figure 14. Flow Transmitter (left) and prototype FT Flow sensor

3.2.6. Gas sensor
The MQ series of gas sensors use a small heater inside with an electro-chemical sensor. They are sensitive for a range of gasses and are used indoors at room temperature.

Figure 15. MQ Series Gas sensors

4. CONCLUSIONS
The experiment result showed that, process of POME can be processed to produce biogas fuel. Result of substances is 50–75% methane (CH₄), 25–45% carbon dioxide (CO₂), and trace amounts of other gases (Rahayu, dkk., 2015; Youngsukkasem, et al., 2013; Yunus, dkk., 2015). Methane (CH₄) will then become gas engine fuel.

REFERENCES
Akobi C, Yeo H, Hafez H, Nakhla G., (2016). Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass. Appl Energy 184:548-59.

Gómez Montoya JP, Amell AA, Olsen DB., (2016). Prediction and measurement of the critical compression ratio and methane number for blends of biogas with methane, propane and hydrogen. Fuel 186:168e75.

Mustapha S., (2003). Start-up Strategy of a Thermophilic Upflow Anaerobic Filter for Treating Palm Oil Mill Effluent. Process Safety and Environmental Protection 81:4:262-266

Najafpour G. D., (2006). High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochemistry 41:370-379.

O-Thong S, Suksong W, Promnua K, Thipsuem M, Mammin C, Prasertsan P., (2016). Two stage thermophilic fermentation and mesophilic methanogenic process for biogas production from palm oil mill effluent with methanogenic effluent recirculation for pH control. Int J Hydrogen Energy 41:21702-12.

Rahayu, A. S., Karsiwulan, D., Yuwono, H., Trisnawati, I., Mulyasari, S., Rahardjo, S., Hokermin, S., & Paramita, V. (2015). Handbook POME-to-Biogas Project Development in Indonesia (B. Castermans, et al. Eds. 2 ed.). United States of America: Winrock International.

Youngsukkasem, S., Barghi, H., Rakshit, S. K., & Taherzadeh, M. J. (2013). Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor, Efficiency of Synthetic Polymeric Membranes. Energies, 6, 6211-6224.

Yunus, A., Zahira, Y., Parul, A., & Kamaruzzaman, S. (2015). Production of Biogas and Performance Evaluation of Yeast and Yeast-like Organisms. Bioresource Technol 109:31-7.

Zhang Y., (2008). Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. Journal of Environmental Sciences 20:6:658-663
