Risk factors for rejection after deceased donor kidney transplantation: a mono-institutional analysis of paired kidneys

Fuxun Zhang
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Zhihong Liu
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Jiayu Liang
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Yang Xiong
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Changjing Wu
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Fan Zhang
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Kan Wu
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Yipeng Lu
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Xianding Wang (✉ foolsoon.c@163.com )
Sichuan University West China Hospital  https://orcid.org/0000-0003-0113-0395

Tao Lin
Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Research
Abstract

Background

Deceased donor kidney transplantation is an important therapeutic option for end-stage renal diseases. Adverse events including acute rejection after deceased donor kidney transplantation are not uncommon and result in poor transplant outcomes. Exploration of risk factors and patient stratification is increasingly significant to improve graft survival. This study aim to evaluate and identify the risk factors for treated rejection of patients after deceased donor kidney transplantation.

Methods

Clinical and immunological data of deceased donors and corresponding recipients between 2015 and 2018 in West China Hospital were retrospectively collected. The Kolmogorov-Smirnov test was used to indicate distribution of variables. Univariate comparisons of baseline characteristics were made with Chi-square, t and Mann-Whitney U tests. Logistic regression was constructed to analysis potential risk factors. Receiver operating characteristic curve and Jordan index were generated to determine optimal cut-off value for continuous variables.

Results

Data of 123 deceased donors and 246 recipients were obtained. The median (range) age was 41 (4–62) years in recipients and 39 (1–65) years in donors. The recipients who died or suffered graft loss during the follow-up period were 8 (3.3%) and 12 (4.9%) respectively. After univariate analysis and subsequent multivariate analysis, some preoperative hemato-biochemical and transplantation-related parameters including uric acid (HR 2.132, 95%CI: 1.016–4.476, P = 0.045), platelet (HR 2.202, 95%CI:1.051–4.617, P = 0.037), absolute neutrophil count (HR 2.164, 95%CI:1.018–4.599, P = 0.045) and HLA-DQ mismatch (HR 2.197, 95%CI:1.119–4.317, P = 0.022) showed statistical significance and could be considered as independent predictors for treated rejection.

Conclusions

Including unexpected serum uric acid, several hemato-biochemical and transplantation-related parameters were found to be independent risk factors for rejection, which may contribute to stratify patients and develop personalized regimen in perioperative period.

Introduction

Worldwide, kidney transplantation from deceased donors is an important therapeutic option for patients with end-stage kidney diseases[1]. With improvement of surgical conditions and reduction of ischemic
time in recent years, the long-term survival of recipients after deceased donor kidney transplantation (DDKT) appears to be possible. Thus, researches on complications related to graft failure and mortality after organ transplantation are essential[2]. Despite some risk factors associated outcomes after DDKT have been documented before, recent evidence reveals that short-term adverse events, especially acute rejection, are still the principal reason for increased incidence of graft loss, re-transplantation and even death[3, 4]. On the other hand, it is undoubted that kidneys from deceased donors inevitably suffer various injuries in donation for many reasons[5]. It is reported that kidneys from donation after cardiac death (DCD) donors are susceptible to warm ischaemia, whilst kidneys from donation after brain-stem death (DBD) incur greater metabolic disturbance and inflammatory response[6, 7]. Thus, intricate harmful factors may limited graft survival in DDKT and require unremitting investigation[8, 9].

Actually, the association of rejection in DBD with inferior graft outcomes have been established prior to this study[6]. Meanwhile, the definition, diagnostic criteria, determination and treatment of rejection have been refined[10]. However, the outcomes of DDKT might be affected by specific allocation, health care, surgical experience and complicated risk factors related to donors and recipients, causing inevitable confounding factors and statistical bias. Thus, analysis of risk factors basing on paired donor and recipient might be conducive to reduce the bias, make correct decision on allocation and adequate preparation for recipients. Taken together, the exploration of risk factors and patients stratification are increasingly significant to improve graft survival[1]. This study aim to evaluate and identify the risk factors for treated rejection of DDKT basing on the data of paired kidneys.

**Methods**

**Patients and data collection**

We collected detailed data of both donors and recipients performed DDKT between 2015 and 2018 from the medical archives of West China Hospital. The end of follow-up period in this study is December 2020. After exclusion of 8 DDKT donors and 16 paired recipients according to exclusion criteria such as lack of major perioperative parameters, insufficient follow-up data, dual organ transplantation and donor age older than 65, we included 123 pairs and analyzed their information (Supplementary Fig. 1). Baseline characteristics included recipient profile, donor characteristics and transplantation-related features, which were showed in Tables 1–3. Recipient age were not restricted, and donor-recipient characteristics were matched correspondingly to analyze covariates better and control confounding variables. For each recipient, clinical and laboratory data within two years after transplantation were obtained.
Table 1
Baseline characteristics of recipients and their association with treated rejection.

| Variables (n = 246)                                      | Treated rejection | P-value |
|----------------------------------------------------------|-------------------|---------|
|                                                          | Yes               | No      |         |
| Gender, n(%)                                             |                   |         | 0.488   |
| Male                                                     | 33 (13.4)         | 146 (59.3) |         |
| Female                                                   | 15 (6.1)          | 52 (21.1) |         |
| Blood type, n(%)                                         |                   |         | 0.235   |
| O                                                        | 20 (8.1)          | 61 (24.8) |         |
| A                                                        | 14 (5.7)          | 56 (22.8) |         |
| B                                                        | 7 (2.8)           | 58 (23.6) |         |
| AB                                                       | 7 (2.8)           | 23 (9.3)  |         |
| Primary renal disorders, n(%)                            |                   |         | 0.467   |
| Unknown                                                  | 36 (14.6)         | 158 (64.2) |         |
| Glomerulonephritis-related                               | 12 (4.9)          | 40 (16.3) |         |
| Diabetes mellitus, n(%)                                  |                   |         | 0.613   |
| No                                                       | 46 (18.7)         | 186 (75.6) |         |
| Yes                                                      | 2 (0.8)           | 12 (4.9)  |         |
| DGF, n(%)                                                |                   |         | 0.284   |
| No                                                       | 31 (12.7)         | 142 (58.2) |         |
| Yes                                                      | 17 (7.0)          | 54 (22.1) |         |
| Preoperative dialysis, n(%)                              |                   |         | 0.911   |
| HD                                                       | 38 (16.0)         | 149 (62.6) |         |
| PD/PD combined with HD                                   | 10 (4.2)          | 41 (17.2)  |         |
| Previous kidney transplantation                          |                   |         | 0.096   |
| No                                                       | 48 (19.5)         | 187 (76.0) |         |
| Yes                                                      | 0 (0.0)           | 11 (4.5)   |         |
| Postoperative infections, n(%)                           |                   |         | 0.558   |
| None                                                     | 26 (10.6)         | 125 (50.8) |         |
| Variables (n = 246) | Treated rejection |        |        | P-value |
|-------------------|------------------|--------|--------|---------|
|                   | Yes              | No     |        |         |
| Infection         |                  |        |        |         |
| Pulmonary         | 19 (7.7)         | 46 (18.7) |        | 0.158   |
| Urinary           | 3 (1.2)          | 7 (2.8) |        |         |
| Others            | 0 (0.0)          | 20 (8.1) |        |         |
| Death, n(%)       |                  |        |        |         |
| Survival          | 48 (19.5)        | 190 (77.2) |        |         |
| Died              | 0 (0.0)          | 8 (3.3) |        |         |
| Overall graft loss, n(%) |          |        |        | 0.318   |
| No                | 47 (19.1)        | 187 (76.0) |        |         |
| Yes               | 1 (0.4)          | 11 (4.5) |        |         |
| Variables                                                  | N = 246 | Association with treated rejection |
|-----------------------------------------------------------|---------|------------------------------------|
| Age, years(range)                                         | 41 (4–62) | 0.687                              |
| BMI, kg/m^2(range)                                        | 21.5 (13.7–38.2) | **0.003**                          |
| Duration of preoperative dialysis, months(range)          | 24(1-240) | 0.540                              |

Preoperative laboratory workup

| Variables                                                  | N = 246 | Association with treated rejection |
|-----------------------------------------------------------|---------|------------------------------------|
| Serum creatinine, µmol/L(range)                           | 868 (254–1722) | 0.119                              |
| FBG, mmol/L(range)                                        | 5.25 (3.44–27.75) | 0.494                              |
| UA, µmol/L(mean ± SD)                                     | 387.5 ± 116.8 | **0.004**                          |
| Hb, g/dL(mean ± SD)                                       | 113.6 ± 21.6 | 0.173                              |
| PLT, 10^9(range)                                           | 164 (60–401) | **0.034**                          |
| WBC, 10^9(range)                                           | 6.61 2.90–13.45) | **0.003**                          |
| ALC, 10^9(range)                                           | 1.15 (0.11–2.77) | 0.544                              |
| AMC, 10^9(range)                                           | 0.33 (0.07–1.02) | 0.360                              |
| ANC, 10^9(range)                                           | 4.65 (1.76–10.49) | **0.003**                          |
| NLR, ratio(range)                                          | 4.12 (1.29–67.91) | 0.900                              |
| HDL, mmol/L(range)                                         | 1.25 (0.10–5.14) | 0.313                              |
| LDL, mmol/L(range)                                         | 2.12 (0.36–7.94) | 0.774                              |
| Triglyceride, mmol/L(range)                                | 1.37 (0.01–108.00) | 0.773                              |

Abbreviations: BMI body mass index; HD hemodialysis; PD peritoneal dialysis; DGF delayed graft function; FBG fasting blood-glucose; UA uric acid; Hb Hemoglobin; PLT Platelet; WBC white blood cell; ALC absolute lymphocyte count; ANC absolute neutrophil count; AMC absolute monocyte count; NLR neutrophil-to-lymphocyte ratio; HDL high-density lipoprotein; LDL Low-density lipoprotein.

Bold figures indicate as statistical significance at P < 0.10.
Table 2
Transplantation-related features and their association with treated rejection.

| Variables (n = 246) | Treated rejection |        | P-value |
|---------------------|-------------------|--------|---------|
|                     | Yes (n)           | No (n) |         |
| CIT                 |                   |        | 0.855   |
| PRA I, n(%)         |                   |        | 0.211   |
| PRA ≤ 10%           | 47 (19.3)         | 182 (74.9) |       |
| PRA > 10%           | 1 (0.4)           | 13 (5.3) |         |
| PRA II, n(%)        |                   |        | 0.576   |
| PRA ≤ 10%           | 46 (18.9)         | 189 (77.5) |       |
| PRA > 10%           | 2 (0.8)           | 7 (2.9)  |         |
| HLA mismatch, n(%)  |                   |        |         |
| A                   |                   |        | 0.883   |
| 0                   | 6 (2.5)           | 31 (12.9) |       |
| 1                   | 30 (12.5)         | 121 (50.4) |      |
| 2                   | 11 (4.6)          | 41 (17.1) |       |
| B                   |                   |        | 0.023   |
| 0                   | 0 (0.0)           | 3 (1.3)  |       |
| 1                   | 11 (4.6)          | 77 (32.1) |       |
| 2                   | 36 (15.0)         | 113 (47.1) |      |
| DR                  |                   |        | 0.247   |
| 0                   | 2 (0.8)           | 6 (2.5)  |       |
| 1                   | 17 (7.1)          | 101 (42.1) |      |
| 2                   | 28 (11.7)         | 86 (35.8) |       |
| DQ                  |                   |        | 0.028   |
| 0                   | 0 (0.0)           | 13 (6.0)  |       |
| 1                   | 22 (10.1)         | 103 (47.5) |      |
| 2                   | 20 (9.2)          | 59 (27.2)  |       |
| Type I              |                   |        | 0.202   |
| Variables (n = 246) | Treated rejection |         | P-value |
|---------------------|-------------------|---------|---------|
|                     | Yes   | No    |         |
| 0                   | 1 (0.4) | 7 (2.8) |         |
| 1                   | 0 (0.0) | 15 (6.1) |         |
| 2                   | 13 (5.3) | 67 (27.2) |         |
| 3                   | 27 (11.0) | 79 (32.1) |         |
| 4                   | 7 (2.8) | 30 (12.2) |         |
| Type II             |       |       | 0.067   |
| 0                   | 1 (0.4) | 9 (3.7) |         |
| 1                   | 4 (1.6) | 22 (8.9) |         |
| 2                   | 17 (6.9) | 83 (33.7) |         |
| 3                   | 7 (2.8) | 30 (12.2) |         |
| 4                   | 19 (7.7) | 54 (22.0) |         |
| Induction, n(%)     |       |       | 0.722   |
| ATG                 | 21 (8.6) | 88 (35.9) |         |
| BSX/others          | 27 (11.0) | 109 (44.5) |         |
Table 3
Baseline characteristics of donors and their association with treated rejection.

| Variables               | N = 246 | Association with treated rejection |
|-------------------------|---------|-----------------------------------|
| Age, years (range)      | 39 (1–65) | 0.808                             |
| Gender, n(%)            |         | 0.535                             |
| Male                    | 89 (72.4) |                                   |
| Female                  | 34 (27.6) |                                   |
| Blood type, n(%)        |         | 0.505                             |
| O                       | 46 (37.4) |                                   |
| A                       | 32 (26.0) |                                   |
| B                       | 34 (27.6) |                                   |
| AB                      | 10 (8.1)  |                                   |
| Diabetes mellitus, n(%) |         | 0.494                             |
| No                      | 115 (93.5) |                                  |
| Yes                     | 1 (0.8)  |                                   |
| Hypertension, n(%)      |         | 0.545                             |
| No                      | 96 (78.0) |                                   |
| Yes                     | 25 (20.3) |                                   |
| Viral hepatitis, n(%)   |         | 0.853                             |
| HBV positive            | 7 (5.7)  |                                   |

Abbreviations: HBV hepatitis B virus; DBD donation after brain death; DCD donation after cardiac death.

Bold figures indicate as statistical significance at P < 0.10.

Clinical outcomes

The primary clinical outcomes was treated rejection (TR) defined as treatment for rejection within 24 months after DDKT. Meanwhile, the baseline characteristics of 123 pairs and transplantation were assessed as covariant for exploring potential risk factors. DGF was defined as receiving dialysis within 1 week following transplantation. Overall graft loss was regaining permanent dialysis after transplantation or death with functioning graft by any cause. Cold ischemic time (CIT) was defined by the time from cold storage to reperfusion following implantation. Levels of serum creatinine in recipients at preoperation and 24 months after transplantation were available for evaluation of recipient renal function and graft performance, respectively.
Statistical analysis

Statistical analyses in this study were conducted using SPSS 23.0 (SPSS Inc, Chicago, USA). The Kolmogorov-Smirnov test was used to indicate distribution of variables. Univariate comparisons of baseline characteristics between transplants suffered TR versus no rejection were made with chi-square tests, t tests and Mann-Whitney U test, as appropriate. Additionally, variables were considered as statistical significance at P values less than 0.10, which might be conducive to seek possible correlation. Logistic regression model was constructed to analysis potential risk factors. Possibly significant characteristics of recipients, paired donors and transplantation in prior correlation analyses were incorporated into regression model as covariates. Variables with statistically significance in univariate analysis were chosen into multivariate analysis. In multivariate analysis, the stepwise regression method was selected to prevent multicollinearity. Receiver operating characteristic (ROC) curve and corresponding Jordan index were generated to determine optimal cut-off value for continuous variables included regression model. In univariate and multivariate analysis, P values were two-sided and statistical significance was defined as P < 0.05.

Results

Characteristics of study population and their relevance with TR

Of 246 DDKT recipients, 128 (52.0%) were from donors suffered severe craniocerebral injury, 84 (34.2%) from intracranial hemorrhage and 34 (13.8%) from other diseases such as intracranial tumours. The median (range) age was 41(4–62) years in recipients and 39 (1–65) years in donors. The recipients who died or suffered graft loss during the follow-up period were 8 (3.3%) and 12 (4.9%) respectively. The median (range) body mass index (BMI) of recipients was 21.5 (13.7–38.2) Kg/m$^2$, which showed potential correlation with treated rejection (P = 0.003). Of transplantation-related variables, human leukocyte antigen (HLA)-B mismatch, HLA-DQ mismatch and Type II showed significant correlation with TR (P = 0.023, 0.028 and 0.067, respectively). Unexpectedly, several parameters of preoperative laboratory workup showed robust association with TR. Uric acid (UA) (P = 0.004), Platelet (P = 0.034), white blood cell (WBC) (P = 0.003) and absolute neutrophil count (ANC) (P = 0.003) showed statistical significance in association with TR. All characteristics of donors and recipients and their relevance with TR were showed in Table 1–3.

Risk factors associated with rejection

Optimal cut-off values of significant continuous variables in preliminary correlations analysis were confirmed via ROC curve and corresponding Jordan index. After that, dichotomous variables were generated and entered into univariate and multivariate analysis to explore independent risk factors. It is revealed in univariate analysis that several variables of recipients and transplantation were strongly associated with TR (Table 4). Among them, BMI (HR 3.145, 95%CI: 1.500-6.596, P = 0.002), preoperative
UA (HR 2.309, 95%CI: 1.207–4.419, P = 0.011), PLT (HR 2.519, 95%CI: 1.317–4.818, P = 0.005), WBC (HR 2.273, 95%CI: 1.193–4.330, P = 0.013) and absolute lymphocyte count (ALC) (HR 2.532, 95%CI: 1.317–4.868, P = 0.005) of recipients demonstrated potential risk for TR. Meanwhile, HLA B-mismatch (HR 2.325, 95%CI: 1.134–4.764, P = 0.021) and HLA DQ-mismatch (HR 1.950), 95%CI: 1.057-3.600, P = 0.033) might be risk factors for TR. Previous kidney transplantation did not acquire statistical assignment, perhaps due to the small size of recipients with previous transplantation (n = 11). In the multivariate analysis, UA > 400µmol/L (HR 2.132, 95%CI: 1.016–4.476, P = 0.045), platelet (PLT) > 185*10^9 (HR 2.202, 95%CI:1.051–4.617, P = 0.037), ANC > 5.0*10^9 (HR 2.164, 95%CI:1.018–4.599, P = 0.045) and HLA-DQ mismatch (HR 2.197, 95%CI:1.119–4.317, P = 0.022) still showed statistical relevance and could be considered as independent predictors for TR (Table 4).
Table 4
Risk factors for treated rejection in univariate and multivariate analysis.

| Risk factors                        | Univariate analysis | Multivariate analysis |
|-------------------------------------|---------------------|-----------------------|
|                                     | HR(95%CI)           | P-value               | HR(95%CI)           | P-value |
| Recipient-preoperative              |                     |                       |                      |         |
| BMI > 24.5kg/m^2                    | 3.145(1.500-6.596)  | 0.002                 | 2.225(0.953-5.196)  | 0.065   |
| Previous kidney transplantation     | 0.000(0.000-ns)     | 0.999                 |                      |         |
| UA > 400µmol/L                      | 2.309(1.207-4.419)  | 0.011                 | 2.132(1.016-4.476)  | 0.045   |
| PLT > 185*10^9                      | 2.519(1.317-4.818)  | 0.005                 | 2.202(1.051-4.617)  | 0.037   |
| WBC > 7.3*10^9                      | 2.273(1.193-4.330)  | 0.013                 | 1.748(0.832-3.672)  | 0.140   |
| ANC > 5.0*10^9                      | 2.532(1.317-4.868)  | 0.005                 | 2.164(1.018-4.599)  | 0.045   |
| Transplantation-related             |                     |                       |                      |         |
| HLA mismatch                        |                     |                       |                      |         |
| B                                   | 2.325(1.134-4.764)  | 0.021                 | 1.698(0.791-3.645)  | 0.174   |
| DQ                                  | 1.950(1.057-3.600)  | 0.033                 | 2.197(1.119-4.317)  | 0.022   |
| Type II                             | 1.286(0.966-1.713)  | 0.085                 |                      |         |

Abbreviations: BMI body mass index; UA uric acid; PLT Platelet; WBC white blood cell; ANC absolute neutrophil count; HLA human leukocyte antigen;

Bold figures indicate as statistical significance at P < 0.05.

Discussion

For comprehensive analysis of outcomes from DDKT cohort, our study involved 123 donors and 246 recipients with follow-up period of 2 years at least after transplantation and detected several possible risk factors for TR. In this study, donor profiles were matched to corresponding recipients for analysis, reducing feasible selection biases in evaluation of relationship between risk factors and outcomes, and may provide pragmatic value in clinical practice.
Given the great infectious risk from over-immunosuppression caused by imbalance between immuno- suppressive protocols and occurrence of rejection, appropriate stratification of recipient is important to clinical practices. Not only could be induction regimen individually tailored for each recipient, but also immunosuppression medication be personalized basing on the profile of immunologic hazard. Hence the assessment of risk factors for rejection would be beneficial to improve graft survival and long-term prognosis of patients.

Traditionally, re-transplantation, grafts from deceased donor and high level of panel reactive antibody (PRA) have been reportedly associated with increased risk of graft loss and rejection after transplantation\[11, 12\]. In current cohort, these risk factors were also evaluated and none of them demonstrated significant relevance with rejection in multivariate analysis. However, apart from HLA-DQ mismatch as an independent predictor of rejection was confirmed (HR 2.197, 95%CI:1.119–4.317, P = 0.022), we also observed that several unexpected indicators from hemato-biochemical work up of recipients showed statistical relevance in regression model. Precisely, UA with cutoff value of 400µmol/L, PLT with 185*10^9 and ANC with 5.0*10^9 exhibited robust association with TR and maybe the probable risk factors for it.

Platelet, neutrophil and neutrophil-to-lymphocyte ratio (NLR) have been seemed as the surrogates for inflammatory severity which positively correlated prognosis in several diseases\[13, 14\]. It’s speculated that these parameters or ratios could reflect the systemic inflammation which might have adverse impacts on hematologic cell lines and subsequently result in alteration of their ratios\[14, 15\]. Current study indicated a positive correlation of both PLT and ANC with TR (HR 2.202, 95%CI:1.051–4.617, P = 0.037 and HR 2.164, 95%CI:1.018–4.599, P = 0.045, respectively). Our hypothesis is that elevated preoperative PLT and ANC of recipients maybe represent robust inflammatory response or over-activated immune system by any cause, which may underlie the pathogenesis of rejection. Thus, for recipients with high preoperative PLT and ANC, aggressive regimen of induction and maintenance immunosuppression could be considered to decrease the risk of rejection in these patients.

Another unexpected finding in our analysis was that preoperative UA levels revealed independent association with TR. However, the comprehensive effect of UA on graft outcomes still remains controversial in published studies\[16\]. Although hyperuricemia could result in deterioration of renal disease by inducing endothelial dysfunction and inflammatory dysregulation, it is hard to identify that UA is a immediate cause of renal disease due to unclear causal link between elevated UA and impaired renal function\[17\]. It is unclear why UA could be an independent risk factor for TR in our investigation. However, to our knowledge, the association of decreased UA with reduced graft-versus-host disease (GVHD) in allogeneic stem cell transplantation (allo-SCT) has been verified by animal models, and levels of serum UA could be used as predictor for allo-SCT outcome\[18\]. We therefore assume that higher level of UA from reduced renal clearance might initiate non-infectious inflammation and contribute to immune reconstitution, which increased the risk of rejection. Moreover, it is not unusual that hyperuricemia would be concomitant with end-stage renal diseases. Thus, although further studies are needed to confirm our results, it is necessary to address the hyperuricemia during perioperative period.
In addition to retrospective design, this study has several inherent limitations. On one hand, despite characteristics of donors were matched to paired recipients and analysed with recipients data at once to control potential confounding variables, regression residual is an important and iterative confounding factor in observational studies. On the other hand, for the sake of reducing negative effects of multicollinearity, the stepwise method was adopted in regression model with matched donor-recipient, probably leading some variables were marginalized by those with more statistical weight. Finally, our data originated from single center, which may somewhat limit its feasibility and relevance in other settings. However, although this retrospective study based on a single-center cohort and need further validation, heterogeneity of large dataset from multi-center or even transnational registry could be significantly reduced in current analysis.

**Conclusions**

Our study found that several hemato-biochemical and transplantation-related parameters might be independent risk factors for treated rejection after DDKT. Actually, the exploration on these inexpensive, easily obtainable and potentially reversible indicators may contribute to stratify patients and develop personalized regimen in perioperative period for better graft outcomes. We hope our work could motivate further meta-analysis and clinical studies to provide more high-level evidence.

**Declarations**

**Competing interests:**

The authors declare no conflict of interest.

**Ethics approval and consent to participate:**

This article does not contain any studies with human or animal trials. This study was approved by the Institutional Ethical Committee of the West China Hospital.

**Consent for publication:**

All patients included in this study provided informed consent for use and publication of their data.

**Abbreviations**

CIT cold ischemic time; PRA panel reactive antibody; HLA human leukocyte antigen; ATG anti thymocyte globulin; BSX, basiliximab.

**Funding:**
This study was collectively supported by grants from the National Natural Science Foundation of China (81870513), the Sichuan Science and Technology Program (2019YJ0133), the Chengdu Science and Technology Program (2019-YF05-00084-SN), and 1.3.5 Project for Disciplines of Excellence – Clinical Research Incubation Project, West China Hospital, Sichuan University (2018HXFH049, ZY2016104, ZYJC18004).

Authors’ contributions:
FXZ: project development, data collection, data analysis, manuscript writing; ZL: project development, data analysis; JL: data collection; KW: data collection; FZ: data collection; CW: data analysis; YX: data analysis; YL: project development, data analysis; YL: project development, data analysis, manuscript correction, manuscript editing.

Acknowledgments:
The authors would like to thank Jiuhong Yuan and Feng Qin in project development.

Abbreviations
Deceased donor kidney transplantation
DDKT; Donation after cardiac death: DCD; Donation after brain-stem death: DBD; Treated rejection: TR; Cold ischemic time: CIT; Receiver operating characteristic: ROC; White blood cell: WBC; Absolute neutrophil count: ANC; Absolute lymphocyte count: ALC; Neutrophil-to-lymphocyte ratio: NLR; Body mass index: BMI; Uric acid: UA; Human leukocyte antigen: HLA; Platelet: PLT; Panel reactive antibody: PRA; Graft-versus-host disease: GVHD; Allogeneic stem cell transplantation: allo-SCT;

References
1. Summers DM, Johnson RJ, Allen J, et al. Analysis of factors that affect outcome after transplantation of kidneys donated after cardiac death in the UK: a cohort study. Lancet. 2010;376(9749):1303–11.
2. Morrissey PE, Monaco AP. Donation after circulatory death: current practices, ongoing challenges, and potential improvements. Transplantation. 2014;97(3):258–64.
3. Troppmann C, Gillingham KJ, Benedetti E, et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis Transplantation. 1995;59(7):962–8.
4. Zens TJ, Danobeitia JS, Leveron G, et al. The impact of kidney donor profile index on delayed graft function and transplant outcomes: A single-center analysis. Clin Transplant. 2018;32(3):e13190.
5. Summers DM, Watson CJ, Pettigrew GJ, et al. Kidney donation after circulatory death (DCD): state of the art. Kidney Int. 2015;88(2):241–9.
6. Pratschke J, Wilhelm MJ, Kusaka M, et al. Accelerated rejection of renal allografts from brain-dead donors. Ann Surg. 2000;232(2):263–71.
7. Ziturr LJ, Chlebeck PJ, Odorico SK, et al. Brain death enhances activation of the innate immune system and leads to reduced renal metabolic gene expression. Transplantation. 2019;3(9):1821–33.
8. Locke JE, Segev DL, Warren DS, et al. Outcomes of kidneys from donors after cardiac death: implications for allocation and preservation. Am J Transplant. 2007;7(7):1797–807.
9. Barlow AD, Metcalfe MS, Johari Y, et al. Case-matched comparison of long-term results of non-heart beating and heart-beating donor renal transplants. Br J Surg. 2009;96(6):685–91.
10. Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8(4):753–60.
11. Betjes MGH, Sablik KS, Otten HG, et al. Pretransplant Donor-Specific Anti-HLA Antibodies and the Risk for Rejection-Related Graft Failure of Kidney Allografts. J Transplant. 2020;2020:5694670.
12. Dunn TB, Noreen H, Gillingham K, et al. Revisiting traditional risk factors for rejection and graft loss after kidney transplantation. Am J Transplant. 2011;11(10):2132–43.
13. Spolverato G, Maqsood H, Kim Y, et al. Neutrophil-lymphocyte and platelet-lymphocyte ratio in patients after resection for hepato-pancreatico-biliary malignancies. J Surg Oncol. 2015;111(7):868–74.
14. Naranjo M, Agrawal A, Goyal A, et al. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Predict Acute Cellular Rejection in the Kidney Allograft. Ann Transplant. 2018;23:467–74.
15. Vartolomei MD, Kimura S, Ferro M, et al. Is neutrophil-to-lymphocytes ratio a clinical relevant preoperative biomarker in upper tract urothelial carcinoma? A meta-analysis of 4385 patients. World J Urol. 2018;36(7):1019–29.
16. Kim ED, Famure O, Li Y, et al. Uric acid and the risk of graft failure in kidney transplant recipients: a re-assessment. Am J Transplant. 2015;15(2):482–8.
17. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67(5):1739–42.
18. Penack O, Peczynski C, van der Werf S, et al. Association of uric acid levels before start of conditioning with mortality after allogeneic hematopoietic stem cell transplantation - a prospective, non-interventional study of the EBMT Transplant Complication Working Party. Haematologica. 2020;15(7):1977–83.

Table 4

Table 4. Risk factors for treated rejection in univariate and multivariate analysis.
| Risk factors                      | Univariate analysis | Multivariate analysis |
|----------------------------------|---------------------|-----------------------|
|                                  | HR(95%CI)           | P-value               | HR(95%CI)           | P-value               |
| Recipient preoperative           |                     |                       |                      |                       |
| BMI > 24.5kg/m^2                 | 3.145(1.500-6.596)  | **0.002**             | 2.225(0.953-5.196)  | 0.065                 |
| Previous kidney transplantation  | 0.000(0.000-ns)     | 0.999                 |                      |                       |
| UA > 400μmol/L                   | 2.309(1.207-4.419)  | **0.011**             | 2.132(1.016-4.476)  | **0.045**             |
| PLT > 185*10^9                   | 2.519(1.317-4.818)  | **0.005**             | 2.202(1.051-4.617)  | **0.037**             |
| WBC > 7.3*10^9                   | 2.273(1.193-4.330)  | **0.013**             | 1.748(0.832-3.672)  | 0.140                 |
| ANC > 5.0*10^9                   | 2.532(1.317-4.868)  | **0.005**             | 2.164(1.018-4.599)  | **0.045**             |
| Transplantation related          |                     |                       |                      |                       |
| HLA mismatch                     |                     |                       |                      |                       |
| B                                | 2.325(1.134-4.764)  | **0.021**             | 1.698(0.791-3.645)  | 0.174                 |
| DQ                               | 1.950(1.057-3.600)  | **0.033**             | 2.197(1.119-4.317)  | **0.022**             |
| Type II                          | 1.286(0.966-1.713)  | 0.085                 |                      |                       |

Abbreviations: BMI body mass index; UA uric acid; PLT Platelet; WBC white blood cell; ANC absolute neutrophil count; HLA human leukocyte antigen; Bold figures indicate as statistical significance at P<0.05.

**Supplementary Files**

This is a list of supplementary files associated with this preprint. Click to download.

- transplantationflowchartT.tif