Interval-valued neutrosophic soft sets and its decision making

Irfan Deli

Kilis 7 Aralık University, 79000 Kilis, Turkey, (irfandeli@kilis.edu.tr)

Abstract

In this paper, the notion of the interval valued neutrosophic soft sets (ivn-soft sets) is defined which is a combination of an interval valued neutrosophic sets and a soft sets. Our ivn-soft sets generalizes the concept of the soft set, fuzzy soft set, interval valued fuzzy soft set, intuitionistic fuzzy soft set, interval valued intuitionistic fuzzy soft set and neutrosophic soft set. Then, we introduce some definitions and operations on ivn-soft sets sets. Some properties of ivn-soft sets which are connected to operations have been established. Also, the aim of this paper is to investigate the decision making based on ivn-soft sets by level soft sets. Therefore, we develop a decision making methods and then give a example to illustrate the developed approach.

Keyword: Interval sets, soft sets, fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets, level soft set.

1 Introduction

Many fields deal with the uncertain data may not be successfully modeled by the classical mathematics, since concept of uncertainty is too complicate and not clearly defined object. But they can be modeled a number of different approaches including the probability theory, fuzzy set theory, rough set theory, neutrosophic set theory and some other mathematical tools.

This theory have been applied in many real applications to handle uncertainty. In 1999, Molodtsov successfully proposed a completely new theory so-called soft set theory by using classical sets because its been pointed out that soft sets are not appropriate to deal with uncertain and fuzzy parameters. The theory is a relatively new mathematical model for dealing with uncertainty from a parametrization point of view.

After Molodtsov, there has been a rapid growth of interest in soft sets and their various applications such as: algebraic structures (e.g. [1] [2] [5] [11]), ontology (e.g. [22]), optimization (e.g. [19]), lattice (e.g. [17] [32] [37]), topology (e.g. [3]
In recent years, many interesting applications of soft set theory have been expanded by embedding the ideas of fuzzy sets (e.g. [9, 11, 12, 16, 26]), rough sets (e.g. [15]) and intuitionistic fuzzy sets (e.g. [20, 25]), interval valued intuitionistic fuzzy (e.g. [21, 40]), Neutrosophic (e.g. [24, 27]).

Intuitionistic fuzzy sets can only handle incomplete information because the sum of degree true, indeterminacy and false is one in intuitionistic fuzzy sets. But neutrosophic sets can handle the indeterminate information and inconsistent information which exists commonly in belief systems in neutrosophic set since indeterminacy is quantified explicitly and truth-membership, indeterminacy-membership and falsity-membership are independent. It is mentioned in [36]. Therefore, Maji firstly proposed neutrosophic soft sets with operations, which is free of the difficulties mentioned above, in [24]. He also, applied to decision making problems in [27]. After Maji, the studies on the neutrosophic soft set theory have been studied increasingly (e.g. [6, 7]).

From academic point of view, the neutrosophic set and operators need to be specified because is hard to be applied to the real applications. So the concept of interval neutrosophic sets [36] which can represent uncertain, imprecise, incomplete and inconsistent information was proposed. In this paper, we first define interval neutrosophic soft sets (INS-sets) which is generalizes the concept of the soft set, fuzzy soft set, interval valued fuzzy soft set, intuitionistic fuzzy soft set, interval valued intuitionistic fuzzy soft sets. Then, we introduce some definitions and operations of interval neutrosophic soft sets. Some properties of INS-sets which are connected to operations have been established. Also, the aim of this paper is to investigate the decision making based on interval valued neutrosophic soft sets. By means of level soft sets, we develop an adjustable approach to interval valued neutrosophic soft sets based decision making and a examples are provided to illustrate the developed approach.

The relationship among interval neutrosophic soft set and other soft sets is illustrated as;

\[
\text{Soft set} \subseteq \text{Fuzzy soft set} \\
\subseteq \text{Intuitionistic fuzzy soft set (Interval valued fuzzy soft set)} \\
\subseteq \text{Interval valued intuitionistic fuzzy soft set} \\
\subseteq \text{Interval valued neutrosophic soft set}
\]

Therefore, interval neutrosophic soft set is a generalization other each the soft sets.

2 Preliminary

In this section, we present the basic definitions of neutrosophic set theory [36], interval neutrosophic set theory [36] and soft set theory [30] that are useful for
Definition 2.1 [34] Let $U$ be a space of points (objects), with a generic element in $U$ denoted by $u$. A neutrosophic sets (N-sets) $A$ in $U$ is characterized by a truth-membership function $T_A$, an indeterminacy-membership function $I_A$ and a falsity-membership function $F_A$. $T_A(u)$, $I_A(x)$ and $F_A(u)$ are real standard or nonstandard subsets of $[0,1]$. There is no restriction on the sum of $T_A(u)$, $I_A(u)$ and $F_A(u)$, so $0 \leq \sup T_A(u) + \sup I_A(u) + \sup F_A(u) \leq 3$.

Definition 2.2 [36] Let $U$ be a space of points (objects), with a generic element in $U$ denoted by $u$. An interval value neutrosophic set (IVN-sets) $A$ in $U$ is characterized by truth-membership function $T_A$, an indeterminacy-membership function $I_A$ and a falsity-membership function $F_A$. For each point $u \in U$, $T_A$, $I_A$ and $F_A$ $\subseteq [0,1]$. Thus, a IVN-sets over $U$ can be represented by the set of

$$A = \{<T_A(u), I_A(u), F_A(u)> / u \in U\}$$

Here, $(T_A(u), I_A(u), F_A(u))$ is called interval value neutrosophic number for all $u \in U$ and all interval value neutrosophic numbers over $U$ will be denoted by $IVN(U)$.

Example 2.3 Assume that the universe of discourse $U = \{u_1, u_2\}$ where $u_1$ characterises the quality, $u_2$ indicates the prices of the objects. It may be further assumed that the values of $u_1$ and $u_2$ are subset of $[0,1]$ and they are obtained from an expert person. The expert construct an interval value neutrosophic set the characteristics of the objects according to by truth-membership function $T_A$, an indeterminacy-membership function $I_A$ and a falsity-membership function $F_A$ as follows:

$$A = \{(0.1, 1.0], [0.1, 0.4], [0.4, 0.7]) / u_1, (0.8, 1.0], [0.4, 0.6]) / u_2\}$$

Definition 2.4 [36] Let $A$ a interval neutrosophic sets. Then, for all $u \in U$,

1. $A$ is empty, denoted $A = \emptyset$, is defined by

$$\emptyset = \{<0, 0], [1, 1], [1, 1]> / u \in U\}$$

2. $A$ is universal, denoted $A = \bar{E}$, is defined by

$$\bar{E} = \{[1, 1], [0, 0], [0, 0]> / u \in U\}$$

3. The complement of $A$ is denoted by $\bar{A}$ and is defined by

$$\bar{A} = \{< \inf F_A(u), \sup F_A(u), \sup T_A(u), 1 - \inf I_A(u), 1 - \sup I_A(u)>, [\inf T_A(u), \sup T_A(u)] / u \in U\}$$
Definition 2.5 [30] An interval neutrosophic set $A$ is contained in the other interval neutrosophic set $B$, $A \subseteq B$, if and only if
\[
\begin{align*}
\inf A(u) &\leq \inf B(u) \\
\sup A(u) &\leq \sup B(u) \\
\inf I_A(u) &\geq \inf I_B(u) \\
\sup F_A(u) &\geq \sup F_B(u)
\end{align*}
\]
for all $u \in U$.

Definition 2.6 An interval neutrosophic number $X = (T_X, I_X, F_X)$ is larger than the other interval neutrosophic number $Y = (T_Y, I_Y, F_Y)$, denoted $X \sqsubseteq Y$, if and only if
\[
\begin{align*}
\inf T_X &\leq \inf T_Y \\
\sup I_X &\geq \sup I_Y \\
\inf I_X &\geq \inf I_Y \\
\sup F_X &\geq \sup F_Y
\end{align*}
\]

Definition 2.7 [30] Let $A$ and $B$ be two interval neutrosophic sets. Then, for all $u \in U$, $a \in \mathbb{R}^+$,

1. Intersection of $A$ and $B$, denoted by $A \cap B$, is defined by
\[
A \cap B = \{ < \min(\inf T_A(u), \inf T_B(u)), \min(\inf I_A(u), \inf I_B(u)), \min(\sup F_A(u), \sup F_B(u)) > /u : u \in U \}
\]

2. Union of $A$ and $B$, denoted by $A \cup B$, is defined by
\[
A \cup B = \{ < \max(\inf T_A(u), \inf T_B(u)), \max(\inf I_A(u), \inf I_B(u)), \max(\sup F_A(u), \sup F_B(u)) > /u : u \in U \}
\]

3. Difference of $A$ and $B$, denoted by $A \setminus B$, is defined by
\[
A \setminus B = \{ < \min(\inf T_A(u), \inf F_B(u)), \min(\sup T_A(u), \sup F_B(u)), \min(\sup I_A(u), 1 - \inf I_B(u)), \min(\sup F_A(u), \inf T_B(u)) > /u : u \in U \}
\]

4. Addition of $A$ and $B$, denoted by $A + B$, is defined by
\[
A + B = \{ < \min(\inf T_A(u) + \inf T_B(u), 1), \min(\inf I_A(u) + \inf I_B(u), 1), \min(\sup F_A(u) + \inf F_B(u), 1), \min(\sup F_A(u) + \sup F_B(u), 1) > /u : u \in U \}
\]

5. Scalar multiplication of $A$, denoted by $Aa$, is defined by
\[
Aa = \{ < \min(\inf T_A(u)a, 1), \min(\inf I_A(u)a, 1), \min(\sup F_A(u)a, 1) > /u : u \in U \}
\]
6. Scalar division of $A$, denoted by $A/a$, is defined by

$$A/a = \{<\min(\inf I_A(u)/a, 1), \min(\sup I_A(u)/a, 1)\},$$

$$\min(\inf F_A(u)/a, 1), \min(\sup F_A(u)/a, 1)] > /u : u \in U\}$$

7. Truth-Favorite of $A$, denoted by $\Delta A$, is defined by

$$\Delta A = \{<\min(\inf T_A(u) + \inf I_A(u), 1), \min(\sup T_A(u) + \sup I_A(u), 1)]\}, [0, 0],$$

$$\min(\inf F_A(u), \sup F_A(u)] > /u : u \in U\}$$

8. False-Favorite of $A$, denoted by $\nabla A$, is defined by

$$\nabla A = \{<\min(\inf T_A(u) + \inf I_A(u), 1), \min(\sup F_A(u), \sup F_A(u)] \}> u : u \in U\}$$

**Definition 2.8** Let $U$ be an initial universe, $P(U)$ be the power set of $U$, $E$ be a set of all parameters and $X \subseteq E$. Then a soft set $F_X$ over $U$ is a set defined by a function representing a mapping $f_X : E \rightarrow P(U)$ such that $f_X(x) = \emptyset$ if $x \notin X$.

Here, $f_X$ is called approximate function of the soft set $F_X$, and the value $f_X(x)$ is a set called $x$-element of the soft set for all $x \in E$. It is worth noting that the sets is worth noting that the sets $f_X(x)$ may be arbitrary. Some of them may be empty, some may have nonempty intersection. Thus, a soft set over $U$ can be represented by the set of ordered pairs $F_X = \{(x, f_X(x)) : x \in E, f_X(x) \in P(U)\}$

**Example 2.9** Suppose that $U = \{u_1, u_2, u_3, u_4, u_5, u_6\}$ is the universe contains six house under consideration in an real agent and $E = \{x_1 = cheap, x_2 = beautiful, x_3 = greensurroundings, x_4 = costly, x_5 = large\}$.

A customer to select a house from the real agent. then, he can construct a soft set $F_X$ that describes the characteristic of houses according to own requests. Assume that $f_X(x_1) = \{u_1, u_2\}, f_X(x_2) = \{u_3\}, f_X(x_3) = \emptyset, f_X(x_4) = U, \{u_1, u_2, u_3, u_4, u_5\}$ then the soft-set $F_X$ is written by $F_X = \{(x_1, \{u_1, u_2\}), (x_2, \{u_4, u_5, u_6\}), (x_4, U), (x_5, \{u_1, u_2, u_3, u_4, u_5\})\}$

The tabular representation of the soft set $F_X$ is as follow:

| $U$ | $u_1$ | $u_2$ | $u_3$ | $u_4$ | $u_5$ | $u_6$ |
|-----|-------|-------|-------|-------|-------|-------|
| $x_1$ | 1 | 1 | 0 | 0 | 0 | 0 |
| $x_2$ | 1 | 0 | 0 | 1 | 1 | 1 |
| $x_3$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $x_4$ | 1 | 1 | 1 | 1 | 1 | 1 |
| $x_5$ | 1 | 1 | 1 | 1 | 1 | 0 |
Definition 2.10 Let $U = \{u_1, u_2, ..., u_k\}$ be an initial universe of objects, $E = \{x_1, x_2, ..., x_m\}$ be a set of parameters and $F_X$ be a soft set over $U$. For any $x_j \in E$, $f_X(x_j)$ is a subset of $U$. Then, the choice value of an object $u_i \in U$ is $c_i$, given by $c_i = \sum_j u_{ij}$, where $u_{ij}$ are the entries in the table of the reduct-soft-set. That is,

$$
u_{ij} = \begin{cases} 
1, & u_i \in f_X(x_j) \\
0, & u_i \notin f_X(x_j) 
\end{cases}$$

Example 2.11 Consider the above Example 2.9. Clearly,

$$c_1 = \sum_{j=1}^{5} u_{1j} = 4,$$
$$c_3 = c_6 = \sum_{j=1}^{5} u_{3j} = \sum_{j=1}^{5} u_{6j} = 2,$$
$$c_2 = c_4 = c_5 = \sum_{j=1}^{5} u_{2j} = \sum_{j=1}^{5} u_{4j} = \sum_{j=1}^{5} u_{5j} = 3.$$

Definition 2.12 Let $F_X$ and $F_Y$ be two soft sets. Then,

1. **Complement of $F_X$** is denoted by $\bar{F}_X$. Its approximate function $f_{\bar{X}}(x) = U \setminus f_X(x)$ for all $x \in E$.

2. **Union of $F_X$ and $F_Y$** is denoted by $F_X \cup F_Y$. Its approximate function $f_{X \cup Y}$ is defined by

$$f_{X \cup Y}(x) = f_X(x) \cup f_Y(x) \text{ for all } x \in E.$$

3. **Intersection of $F_X$ and $F_Y$** is denoted by $F_X \cap F_Y$. Its approximate function $f_{X \cap Y}$ is defined by

$$f_{X \cap Y}(x) = f_X(x) \cap f_Y(x) \text{ for all } x \in E.$$
Definition 3.1 Let $U$ be an initial universe set, $IVN(U)$ denotes the set of all interval valued neutrosophic sets of $U$ and $E$ be a set of parameters that describe the elements of $U$. An interval valued neutrosophic soft sets (ivn-soft sets) over $U$ is a set defined by a set valued function $\Upsilon_K$ representing a mapping

$$v_K : E \rightarrow IVN(U)$$

It can be written a set of ordered pairs

$$\Upsilon_K = \{(x, v_K(x)) : x \in E\}$$

Here, $v_K$, which is interval valued neutrosophic sets, is called approximate function of the ivn-soft sets $\Upsilon_K$ and $v_K(x)$ is called $x$-approximate value of $x \in E$. The subscript $K$ in the $v_K$ indicates that $v_K$ is the approximate function of $\Upsilon_K$.

Generally, $v_K$, $v_L$, $v_M$, ... will be used as an approximate functions of $\Upsilon_K$, $\Upsilon_L$, $\Upsilon_M$, ..., respectively.

Note that the sets of all ivn-soft sets over $U$ will be denoted by $IVNS(U)$.

Now let us give the following example for ivn-soft sets.

Example 3.2 Let $U = \{u_1, u_2\}$ be set of houses under consideration and $E$ is a set of parameters which is a neutrosophic word. Consider $E = \{x_1 = cheap, x_2 = beatiful, x_3 = greensurroundings, x_4 = costly, x_5 = large\}$. In this case, we give an (ivn-soft sets) $\Upsilon_K$ over $U$ as:

$$\Upsilon_K = \{(x_1, \{(0.6, 0.8), (0.8, 0.9), (0.1, 0.5)\}/u_1, \{(0.5, 0.8), (0.2, 0.9), (0.1, 0.7)\}/u_2\},
\{(x_2, \{(0.1, 0.4), (0.5, 0.8), (0.3, 0.7)\}/u_1, \{(0.1, 0.9), (0.6, 0.9), (0.2, 0.3)\}/u_2\},
\{(x_3, \{(0.2, 0.9), (0.1, 0.5), (0.7, 0.8)\}/u_1, \{(0.4, 0.9), (0.1, 0.6), (0.5, 0.7)\}/u_2\},
\{(x_4, \{(0.6, 0.9), (0.6, 0.9), (0.6, 0.9)\}/u_1, \{(0.5, 0.9), (0.6, 0.8), (0.1, 0.8)\}/u_2\},
\{(x_5, \{(0.0, 0.9), (1.0, 1.0), (1.0, 1.1)\}/u_1, \{(0.0, 0.9), (0.8, 1.0), (0.2, 0.5)\}/u_2\})\}$$

The tabular representation of the ivn-soft set $\Upsilon_K$ is as follow:

| $U$ | $u_1$ | $u_2$ |
|-----|-------|-------|
| $x_1$ | $[0.6, 0.8], [0.8, 0.9], [0.1, 0.5]$ | $[0.5, 0.8], [0.2, 0.9], [0.1, 0.7]$ |
| $x_2$ | $[0.1, 0.4], [0.5, 0.8], [0.3, 0.7]$ | $[0.1, 0.9], [0.6, 0.9], [0.2, 0.3]$ |
| $x_3$ | $[0.2, 0.9], [0.1, 0.5], [0.7, 0.8]$ | $[0.4, 0.9], [0.1, 0.6], [0.5, 0.7]$ |
| $x_4$ | $[0.6, 0.9], [0.6, 0.9], [0.6, 0.9]$ | $[0.5, 0.9], [0.6, 0.8], [0.1, 0.8]$ |
| $x_5$ | $[0.0, 0.9], [1.0, 1.0], [1.0, 1.1]$ | $[0.0, 0.9], [0.8, 1.0], [0.2, 0.5]$ |

Table 1: The tabular representation of the ivn-soft set $\Upsilon_K$

Definition 3.3 Let $\Upsilon_K \in IVNS(U)$. If $v_K(x) = \tilde{0}$ for all $x \in E$, then $N$ is called an empty ivn-soft set, denoted by $\tilde{0}$.

Definition 3.4 Let $\Upsilon_K \in IVNS(U)$. If $v_K(x) = \tilde{E}$ for all $x \in E$, then $\Upsilon_K$ is called a universal ivn-soft set, denoted by $\Upsilon_{\tilde{E}}$.
Example 3.5 Assume that $U = \{u_1, u_2\}$ is a universal set and $E = \{x_1, x_2, x_3, x_4, x_5\}$ is a set of all parameters. Consider the tabular representation of the $\mathcal{Y}_0$ is as follows:

| $U$      | $u_1$      | $u_2$      |
|----------|------------|------------|
| $x_1$    | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ |
| $x_2$    | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ |
| $x_3$    | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ |
| $x_4$    | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ |
| $x_5$    | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.0, 1.0, 1.0, 1.0 \rangle$ |

Table 2: The tabular representation of the ivn-soft set $\mathcal{Y}_0$

The tabular representation of the $\mathcal{Y}_E$ is as follows:

| $U$      | $u_1$      | $u_2$      |
|----------|------------|------------|
| $x_1$    | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ |
| $x_2$    | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ |
| $x_3$    | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ |
| $x_4$    | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ |
| $x_5$    | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ | $\langle 1.0, 1.0, 0.0, 0.0, 0.0 \rangle$ |

Table 3: The tabular representation of the ivn-soft set $\mathcal{Y}_E$

Definition 3.6 Let $\mathcal{Y}_K, \mathcal{Y}_L \in IVNS(U)$. Then, $\mathcal{Y}_K$ is an ivn-soft subset of $\mathcal{Y}_L$, denoted by $\mathcal{Y}_K \subseteq \mathcal{Y}_L$, if $v_K(x) \subseteq v_L(x)$ for all $x \in E$.

Example 3.7 Assume that $U = \{u_1, u_2\}$ is a universal set and $E = \{x_1, x_2, x_3, x_4, x_5\}$ is a set of all parameters. Consider the tabular representation of the $\mathcal{Y}_K$ is as follows:

| $U$      | $u_1$      | $u_2$      |
|----------|------------|------------|
| $x_1$    | $\langle 0.5, 0.7, 0.8, 0.9, 0.2, 0.5 \rangle$ | $\langle 0.3, 0.6, 0.3, 0.9, 0.2, 0.8 \rangle$ |
| $x_2$    | $\langle 0.0, 0.3, 0.6, 0.8, 0.3, 0.9 \rangle$ | $\langle 0.1, 0.8, 0.8, 0.9, 0.3, 0.5 \rangle$ |
| $x_3$    | $\langle 0.1, 0.7, 0.4, 0.5, 0.8, 0.9 \rangle$ | $\langle 0.2, 0.5, 0.5, 0.7, 0.6, 0.8 \rangle$ |
| $x_4$    | $\langle 0.2, 0.4, 0.7, 0.9, 0.6, 0.9 \rangle$ | $\langle 0.3, 0.9, 0.6, 0.9, 0.3, 0.9 \rangle$ |
| $x_5$    | $\langle 0.0, 0.2, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.1, 0.9, 1.0, 0.2, 0.9 \rangle$ |

Table 4: The tabular representation of the ivn-soft set $\mathcal{Y}_K$

The tabular representation of the $\mathcal{Y}_L$ is as follows:

| $U$      | $u_1$      | $u_2$      |
|----------|------------|------------|
| $x_1$    | $\langle 0.6, 0.8, 0.8, 0.9, 0.1, 0.5 \rangle$ | $\langle 0.5, 0.8, 0.2, 0.9, 0.1, 0.7 \rangle$ |
| $x_2$    | $\langle 0.1, 0.4, 0.5, 0.8, 0.3, 0.7 \rangle$ | $\langle 0.1, 0.9, 0.6, 0.9, 0.2, 0.3 \rangle$ |
| $x_3$    | $\langle 0.2, 0.9, 0.1, 0.5, 0.7, 0.8 \rangle$ | $\langle 0.4, 0.9, 0.1, 0.6, 0.5, 0.7 \rangle$ |
| $x_4$    | $\langle 0.6, 0.9, 0.6, 0.9, 0.6, 0.9 \rangle$ | $\langle 0.5, 0.9, 0.6, 0.8, 0.1, 0.8 \rangle$ |
| $x_5$    | $\langle 0.0, 0.9, 1.0, 1.0, 1.0 \rangle$ | $\langle 0.0, 0.9, 0.8, 1.0, 0.2, 0.5 \rangle$ |
Let \( \text{Definition 3.14} \) we have \( \mathcal{Y}_K \subseteq \mathcal{Y}_L \).

**Remark 3.8** \( \mathcal{Y}_K \subseteq \mathcal{Y}_L \) does not imply that every element of \( \mathcal{Y}_K \) is an element of \( \mathcal{Y}_L \) as in the definition of the classical subset.

**Proposition 3.9** Let \( \mathcal{Y}_K, \mathcal{Y}_L, \mathcal{Y}_M \in \text{IVNS}(U) \). Then,

1. \( \mathcal{Y}_K \subseteq \mathcal{Y}_L \)
2. \( \mathcal{Y}_K \subseteq \mathcal{Y}_K \)
3. \( \mathcal{Y}_K \subseteq \mathcal{Y}_K \)
4. \( \mathcal{Y}_K \subseteq \mathcal{Y}_L \) and \( \mathcal{Y}_L \subseteq \mathcal{Y}_M \Rightarrow \mathcal{Y}_K \subseteq \mathcal{Y}_M \)

**Proof 3.10** They can be proved easily by using the approximate function of the ivn-soft sets.

**Definition 3.11** Let \( \mathcal{Y}_K, \mathcal{Y}_L \in \text{IVNS}(U) \). Then, \( \mathcal{Y}_K \) and \( \mathcal{Y}_L \) are ivn-soft equal, written as \( \mathcal{Y}_K = \mathcal{Y}_L \), if and only if \( v_K(x) = v_L(x) \) for all \( x \in E \).

**Proposition 3.12** Let \( \mathcal{Y}_K, \mathcal{Y}_L, \mathcal{Y}_M \in \text{IVNS}(U) \). Then,

1. \( \mathcal{Y}_K = \mathcal{Y}_L \) and \( \mathcal{Y}_L = \mathcal{Y}_M \iff \mathcal{Y}_K = \mathcal{Y}_M \)
2. \( \mathcal{Y}_K \subseteq \mathcal{Y}_L \) and \( \mathcal{Y}_L \subseteq \mathcal{Y}_K \iff \mathcal{Y}_K = \mathcal{Y}_L \)

**Proof 3.13** The proofs are trivial.

**Definition 3.14** Let \( \mathcal{Y}_K \in \text{IVNS}(U) \). Then, the complement \( \mathcal{Y}^c_K \) of \( \mathcal{Y}_K \) is an ivn-soft set such that

\[ v^c_K(x) = \overline{v_K}(x), \text{ for all } x \in E. \]

**Example 3.15** Consider the above Example 3.7, the complement \( \mathcal{Y}^c_L \) of \( \mathcal{Y}_L \) can be represented into the following table:

\[
\begin{array}{|c|c|c|}
\hline
U & u_1 & u_2 \\
\hline
x_1 & ([0.1, 0.5], [0.1, 0.2], [0.6, 0.8]) & ([0.1, 0.7], [0.1, 0.8], [0.5, 0.8]) \\
\hline
x_2 & ([0.3, 0.7], [0.2, 0.5], [0.1, 0.4]) & ([0.2, 0.3], [0.1, 0.4], [0.1, 0.9]) \\
\hline
x_3 & ([0.7, 0.8], [0.5, 0.9], [0.2, 0.9]) & ([0.5, 0.7], [0.4, 0.9], [0.4, 0.9]) \\
\hline
x_4 & ([0.6, 0.9], [0.1, 0.4], [0.6, 0.9]) & ([0.1, 0.8], [0.2, 0.4], [0.5, 0.9]) \\
\hline
x_5 & ([1.0, 1.0], [0.0, 0.0], [0.0, 0.9]) & ([0.2, 0.5], [0.0, 0.2], [0.0, 0.9]) \\
\hline
\end{array}
\]

**Table 6:** The tabular representation of the ivn-soft set \( \mathcal{Y}^c_L \)

**Proposition 3.16** Let \( \mathcal{Y}_K \in \text{IVNS}(U) \). Then,
1. $(\hat{\upsilon}_K)^c = \upsilon_K$
2. $\hat{\upsilon}_{E} = \upsilon_E$
3. $\hat{\upsilon}_{\emptyset} = \upsilon_{\emptyset}$

**Proof 3.17** By using the fuzzy approximate functions of the $ivn$-soft set, the proofs can be straightforward.

**Theorem 3.18** Let $\upsilon_K \in IVNS(U)$. Then, $\upsilon_K \subseteq \upsilon_L \iff \hat{\upsilon}_L \subseteq \hat{\upsilon}_K$

**Proof 3.19** By using the fuzzy approximate functions of the $ivn$-soft set, the proofs can be straightforward.

**Definition 3.20** Let $\upsilon_K, \upsilon_L \in IVNS(U)$. Then, union of $\upsilon_K$ and $\upsilon_L$, denoted $\upsilon_K \cup \upsilon_L$, is defined by

$$v_{K \cup L}(x) = v_K(x) \cup v_L(x) \quad \text{for all } x \in E.$$  

**Example 3.21** Consider the above Example 3.7, the union of $\upsilon_K$ and $\upsilon_L$, denoted $\upsilon_K \cup \upsilon_L$, can be represented into the following table:

| $U$ | $u_1$ | $u_2$ |
|-----|-------|-------|
| $x_1$ | $[0.6, 0.8], [0.8, 0.9], [0.1, 0.5]$ | $[0.5, 0.8], [0.2, 0.9], [0.1, 0.7]$ |
| $x_2$ | $[0.1, 0.4], [0.5, 0.8], [0.3, 0.7]$ | $[0.1, 0.9], [0.6, 0.9], [0.2, 0.3]$ |
| $x_3$ | $[0.2, 0.9], [0.1, 0.5], [0.7, 0.8]$ | $[0.4, 0.9], [0.1, 0.6], [0.5, 0.7]$ |
| $x_4$ | $[0.6, 0.9], [0.6, 0.9], [0.6, 0.9]$ | $[0.5, 0.9], [0.6, 0.8], [0.1, 0.8]$ |
| $x_5$ | $[0.0, 0.9], [1.0, 1.0], [1.0, 1.0]$ | $[0.0, 0.9], [0.8, 1.0], [0.2, 0.5]$ |

Table 7: The tabular representation of the $ivn$-soft set $\upsilon_K \cup \upsilon_L$

**Theorem 3.22** Let $\upsilon_K, \upsilon_L \in IVNS(U)$. Then, $\upsilon_K \cup \upsilon_L$ is the smallest $ivn$-soft set containing both $\upsilon_K$ and $\upsilon_L$.

**Proof 3.23** The proofs can be easily obtained from Definition 3.20.

**Proposition 3.24** Let $\upsilon_K, \upsilon_L, \upsilon_M \in IVNS(U)$. Then,

1. $\upsilon_K \cup \upsilon_K = \upsilon_K$
2. $\upsilon_K \cup \upsilon_{\emptyset} = \upsilon_K$
3. $\upsilon_K \cup \upsilon_E = \upsilon_E$
4. $\upsilon_K \cup \upsilon_L = \upsilon_L \cup \upsilon_K$
5. $(\upsilon_K \cup \upsilon_L) \cup \upsilon_M = \upsilon_K \cup (\upsilon_L \cup \upsilon_M)$

**Proof 3.25** The proofs can be easily obtained from Definition 3.20.
Definition 3.26 Let $\Upsilon_K, \Upsilon_L \in IVNS(U)$. Then, intersection of $\Upsilon_K$ and $\Upsilon_L$, denoted $\Upsilon_K \cap \Upsilon_L$, is defined by

$$v_{K \cap L}(x) = v_K(x) \cap v_L(x) \quad \text{for all } x \in E.$$ 

Example 3.27 Consider the above Example 3.7 the intersection of $\Upsilon_K$ and $\Upsilon_L$, denoted $\Upsilon_K \cap \Upsilon_L$, can be represented into the following table:

| $U$ | $u_1$                              | $u_2$                              |
|-----|------------------------------------|------------------------------------|
| $x_1$ | ($[0.5, 0.7], [0.8, 0.9], [0.2, 0.5]$ | ($[0.3, 0.6], [0.3, 0.9], [0.2, 0.8]$ |
| $x_2$ | ($[0.0, 0.3], [0.6, 0.8], [0.3, 0.9]$ | ($[0.1, 0.8], [0.8, 0.9], [0.3, 0.5]$ |
| $x_3$ | ($[0.1, 0.7], [0.4, 0.5], [0.8, 0.9]$ | ($[0.2, 0.5], [0.5, 0.7], [0.6, 0.8]$ |
| $x_4$ | ($[0.2, 0.4], [0.7, 0.9], [0.6, 0.9]$ | ($[0.3, 0.9], [0.6, 0.9], [0.3, 0.9]$ |
| $x_5$ | ($[0.0, 0.2], [1.0, 1.0], [1.0, 1.0]$ | ($[0.0, 0.1], [0.9, 1.0], [0.2, 0.9]$ |

Table 8: The tabular representation of the ivn-soft set $\Upsilon_K \cap \Upsilon_L$

Proposition 3.28 Let $\Upsilon_K, \Upsilon_L \in IVNS(U)$. Then, $\Upsilon_K \cap \Upsilon_L$ is the largest ivn-soft set containing both $\Upsilon_K$ and $\Upsilon_L$.

Proof 3.29 The proofs can be easily obtained from Definition 3.26.

Proposition 3.30 Let $\Upsilon_K, \Upsilon_L, \Upsilon_M \in IVNS(U)$. Then,

1. $\Upsilon_K \cap \Upsilon_K = \Upsilon_K$
2. $\Upsilon_K \cap \Upsilon_\emptyset = \Upsilon_\emptyset$
3. $\Upsilon_K \cap \Upsilon_E = \Upsilon_K$
4. $\Upsilon_K \cap \Upsilon_L = \Upsilon_L \cap \Upsilon_K$
5. $(\Upsilon_K \cap \Upsilon_L) \cap \Upsilon_M = \Upsilon_K \cap (\Upsilon_L \cap \Upsilon_M)$

Proof 3.31 The proof of the Propositions 1-5 are obvious.

Remark 3.32 Let $\Upsilon_K \in IVNS(U)$. If $\Upsilon_K \neq \Upsilon_\emptyset$ or $\Upsilon_K \neq \Upsilon_E$, then $\Upsilon_K \cap \Upsilon_K \neq \Upsilon_K \cap \Upsilon_E$ and $\Upsilon_K \cap \Upsilon_K \neq \Upsilon_\emptyset$.

Proposition 3.33 Let $\Upsilon_K, \Upsilon_L \in IVNS(U)$. Then, De Morgan’s laws are valid

1. $(\Upsilon_K \cap \Upsilon_L)^c = \Upsilon_K^c \cap \Upsilon_L^c$
2. $(\Upsilon_K \cap \Upsilon_L)^c = \Upsilon_K^c \cap \Upsilon_L^c$.

Proof 3.34 The proofs can be easily obtained from Definition 3.14, Definition 3.26, and Definition 3.20.

Proposition 3.35 Let $\Upsilon_K, \Upsilon_L, \Upsilon_M \in IVNS(U)$. Then,
1. \( \Upsilon_K \cap (\Upsilon_L \cap \Upsilon_M) = (\Upsilon_K \cap \Upsilon_L) \cap (\Upsilon_K \cap \Upsilon_M) \)

2. \( \Upsilon_K \cap (\Upsilon_L \cap \Upsilon_M) = (\Upsilon_K \cap \Upsilon_L) \cap (\Upsilon_K \cap \Upsilon_M) \)

3. \( \Upsilon_K \cup (\Upsilon_K \cap \Upsilon_L) = \Upsilon_K \)

4. \( \Upsilon_K \cap (\Upsilon_K \cup \Upsilon_L) = \Upsilon_K \)

**Proof 3.36** The proofs can be easily obtained from Definition 3.20 and Definition 3.26.

**Definition 3.37** Let \( \Upsilon_K, \Upsilon_L \in IVNS(U) \). Then, OR operator of \( \Upsilon_K \) and \( \Upsilon_L \), denoted \( \Upsilon_K \lor \Upsilon_L \), is defined by a set valued function \( \Upsilon_O \) representing a mapping \( \nu_O : E \times E \rightarrow IVN(U) \) where
\[
\nu_O(x, y) = \nu_K(x) \cup \nu_L(y) \quad \text{for all } (x, y) \in E \times E.
\]

**Definition 3.38** Let \( \Upsilon_K, \Upsilon_L \in IVNS(U) \). Then, AND operator of \( \Upsilon_K \) and \( \Upsilon_L \), denoted \( \Upsilon_K \land \Upsilon_L \), is defined by is defined by a set valued function \( \Upsilon_A \) representing a mapping \( \nu_A : E \times E \rightarrow IVN(U) \) where
\[
\nu_A(x, y) = \nu_K(x) \land \nu_L(y) \quad \text{for all } (x, y) \in E \times E.
\]

**Proposition 3.39** Let \( \Upsilon_K, \Upsilon_L, \Upsilon_M \in IVNS(U) \). Then,
1. \( (\Upsilon_K \lor \Upsilon_L)^c = \Upsilon_K^c \land \Upsilon_L^c \)
2. \( (\Upsilon_K \land \Upsilon_L)^c = \Upsilon_K^c \lor \Upsilon_L^c \)
3. \( (\Upsilon_K \lor \Upsilon_L) \lor \Upsilon_M = \Upsilon_K \lor (\Upsilon_L \lor \Upsilon_M) \)
4. \( (\Upsilon_K \land \Upsilon_L) \land \Upsilon_M = \Upsilon_K \land (\Upsilon_L \land \Upsilon_M) \)

**Proof 3.40** The proof of the Propositions 1- 4 are obvious.

**Definition 3.41** Let \( \Upsilon_K, \Upsilon_L \in IVNS(U) \). Then, difference of \( \Upsilon_K \) and \( \Upsilon_L \), denoted \( \Upsilon_K \setminus \Upsilon_L \), is defined by
\[
v_{K \setminus L}(x) = \nu_K(x) \setminus \nu_L(x) \quad \text{for all } x \in E.
\]

**Definition 3.42** Let \( \Upsilon_K, \Upsilon_L \in IVNS(U) \). Then, addition of \( \Upsilon_K \) and \( \Upsilon_L \), denoted \( \Upsilon_K + \Upsilon_L \), is defined by
\[
v_{K + L}(x) = \nu_K(x) + \nu_L(x) \quad \text{for all } x \in E.
\]
Proposition 3.43 Let $\mathcal{Y}_K, \mathcal{Y}_L, \mathcal{Y}_M \in IVNS(U)$. Then,
1. $\mathcal{Y}_K(x) \bowtie \mathcal{Y}_L(x) \equiv \mathcal{Y}_L(x) \bowtie \mathcal{Y}_K(x)$
2. $(\mathcal{Y}_K(x) \bowtie \mathcal{Y}_L(x)) \bowtie \mathcal{Y}_M(x) = \mathcal{Y}_K(x) \bowtie (\mathcal{Y}_L(x) \bowtie \mathcal{Y}_M(x))$

Proof 3.44 The proofs can be easily obtained from Definition 3.42.

Definition 3.45 Let $\mathcal{Y}_K \in IVNS(U)$. Then, scalar multiplication of $\mathcal{Y}_K$, denoted $a \hat{\times} \mathcal{Y}_K$, is defined by
$$a \hat{\times} \mathcal{Y}_K = a \hat{\times} \mathcal{Y}_K$$ for all $x \in E$.

Proposition 3.46 Let $\mathcal{Y}_K, \mathcal{Y}_L, \mathcal{Y}_M \in IVNS(U)$. Then,
1. $\mathcal{Y}_K(x) \hat{\times} \mathcal{Y}_L(x) = \mathcal{Y}_L(x) \hat{\times} \mathcal{Y}_K(x)$
2. $(\mathcal{Y}_K(x) \hat{\times} \mathcal{Y}_L(x)) \hat{\times} \mathcal{Y}_M(x) = \mathcal{Y}_K(x) \hat{\times} (\mathcal{Y}_L(x) \hat{\times} \mathcal{Y}_M(x))$

Proof 3.47 The proofs can be easily obtained from Definition 3.45.

Definition 3.48 Let $\mathcal{Y}_K \in IVNS(U)$. Then, scalar division of $\mathcal{Y}_K$, denoted $\mathcal{Y}_K/\hat{a}$, is defined by
$$\mathcal{Y}_K/\hat{a} = \mathcal{Y}_K/\hat{a}$$ for all $x \in E$.

Example 3.49 Consider the above Example 3.7, the truth-Favorite of $\mathcal{Y}_K$, denoted $\mathcal{Y}_K/\hat{5}$, can be represented into the following table;

| $U$ | $u_1$ | $u_2$ |
|-----|-------|-------|
| $x_1$ | (0.16, 0.01, 0.18, 0.04, 0.1) | (0.06, 0.12, 0.15, 0.18, 0.04, 0.16) |
| $x_2$ | (0.0, 0.06, 0.12, 0.16, 0.16, 0.18) | (0.02, 0.16, 0.16, 0.18, 0.15, 0.25) |
| $x_3$ | (0.02, 0.14, 0.08, 0.1, 0.16, 0.18) | (0.04, 0.1, 0.1, 0.14, 0.12, 0.16) |
| $x_4$ | (0.04, 0.08, 0.14, 0.18, 0.12, 0.18) | (0.15, 0.18, 0.12, 0.18, 0.06, 0.18) |
| $x_5$ | (0.0, 0.04, 0.2, 0.2, 0.2, 0.2) | (0.0, 0.05, 0.18, 0.2, 0.04, 0.18) |

Table 9: The tabular representation of the ivm-soft set $\mathcal{Y}_K/\hat{5}$

Definition 3.50 Let $\mathcal{Y}_K \in IVNS(U)$. Then, truth-Favorite of $\mathcal{Y}_K$, denoted $\hat{\Delta}_{\mathcal{Y}_K}$, is defined by
$$\hat{\Delta}_{\mathcal{Y}_K} = \hat{\Delta}_{\mathcal{Y}_K}$$ for all $x \in E$.

Example 3.51 Consider the above Example 3.7, the truth-Favorite of $\mathcal{Y}_K$, denoted $\hat{\Delta}_{\mathcal{Y}_K}$, can be represented into the following table;

| $U$ | $u_1$ | $u_2$ |
|-----|-------|-------|
| $x_1$ | (0.6, 1.0, 0.0, 0.0, 0.2, 0.5) | (0.6, 1.0, 0.0, 0.0, 0.2, 0.8) |
| $x_2$ | (0.6, 1.0, 0.0, 0.0, 0.3, 0.9) | (0.9, 1.0, 0.0, 0.0, 0.3, 0.5) |
| $x_3$ | (0.5, 1.0, 0.0, 0.0, 0.8, 0.9) | (0.7, 1.0, 0.0, 0.0, 0.6, 0.8) |
| $x_4$ | (0.9, 0.0, 0.6, 0.9) | (0.9, 1.0, 0.0, 0.0, 0.3, 0.9) |
| $x_5$ | (1.0, 1.0, 0.0, 0.0, 1.0, 1.0) | (0.9, 1.0, 0.0, 0.0, 0.2, 0.9) |
Proposition 3.52 Let \( Y_K, Y_L \in IVNS(U) \). Then,

1. \( \Delta \Delta Y_K = \widehat{\Delta Y_K} \)
2. \( \widehat{\Delta(Y_K \cup Y_K)} \subset \widehat{\Delta Y_K} \cup \widehat{\Delta Y_K} \)
3. \( \widehat{\Delta(Y_K \cap Y_K)} \subset \widehat{\Delta Y_K} \cap \widehat{\Delta Y_K} \)
4. \( \widehat{\Delta(Y_K \oplus Y_K)} = \widehat{\Delta Y_K} \oplus \widehat{\Delta Y_K} \)

Proof 3.53 The proofs can be easily obtained from Definition 3.20, Definition 3.26 and Definition 3.54.

Definition 3.54 Let \( Y_K \in IVNS(U) \). Then, False-Favorite of \( Y_K \), denoted \( \widehat{\vee} Y_K \), is defined by

\[ \widehat{\vee} Y_K = \widehat{\vee} v_K \quad \text{for all } x \in E. \]

Example 3.55 Consider the above Example 3.7, the False-Favorite of \( Y_K \), denoted \( \widehat{\vee} Y_K \), can be represented into the following table:

| \( U \) | \( u_1 \) | \( u_2 \) |
|---|---|---|
| \( x_1 \) | \([0.5, 0.7], [0.0, 0.0], [1.0, 1.0] \) | \([0.3, 0.6], [0.0, 0.0], [0.5, 1.0] \) |
| \( x_2 \) | \([0.0, 0.3], [0.0, 0.0], [0.9, 1.0] \) | \([0.1, 0.8], [0.0, 0.0], [1.0, 1.0] \) |
| \( x_3 \) | \([0.1, 0.7], [0.0, 0.0], [1.0, 1.0] \) | \([0.2, 0.5], [0.0, 0.0], [1.0, 1.0] \) |
| \( x_4 \) | \([0.2, 0.4], [0.0, 0.0], [1.0, 1.0] \) | \([0.3, 0.9], [0.0, 0.0], [0.9, 1.0] \) |
| \( x_5 \) | \([0.0, 0.2], [0.0, 0.0], [1.0, 1.0] \) | \([0.0, 0.1], [0.0, 0.0], [1.0, 1.0] \) |

Table 11: The tabular representation of the ivs-soft set \( \widehat{\vee} Y_K \)

Proposition 3.56 Let \( Y_K, Y_L \in IVNS(U) \). Then,

1. \( \widehat{\vee \vee} Y_K = \widehat{\vee} Y_K \)
2. \( \widehat{\vee(Y_K \cup Y_K)} \subset \widehat{\vee Y_K} \cup \widehat{\vee Y_K} \)
3. \( \widehat{\vee(Y_K \cap Y_K)} \subset \widehat{\vee Y_K} \cap \widehat{\vee Y_K} \)
4. \( \widehat{\vee(Y_K \oplus Y_K)} = \widehat{\vee Y_K} \oplus \widehat{\vee Y_K} \)

Proof 3.57 The proofs can be easily obtained from Definition 3.20, Definition 3.26 and Definition 3.54.

Theorem 3.58 Let \( P \) be the power set of all iv-soft sets defined in the universe \( U \). Then \((P, \subseteq, \cap, \cup)\) is a distributive lattice.

Proof 3.59 The proofs can be easily obtained by showing properties; idempotency, commutativity, associativity and distributivity.
4  \textit{ivn--soft set based decision making}

In this section, we present an adjustable approach to \textit{ivn--soft set based decision making} problems by extending the approach to interval-valued intuitionistic fuzzy soft sets. [40]. Some of it is quoted from [20, 23, 36, 40].

\textbf{Definition 4.1} Let $\Upsilon_K \in \text{IVNS}(U)$. Then a relation form of $\Upsilon_K$ is defined by

$$R_{\Upsilon_K} = \{(r_{\Upsilon_K}(x,u)/(x,u)) : r_{\Upsilon_K}(x,u) \in \text{IVN}(U), x \in E, u \in U\}$$

where

$$r_{\Upsilon_K} : E \times U \to \text{IVN}(U)$$ and $r_{\Upsilon_K}(x,u) = v_{\Upsilon_K}(x)(u)$ for all $x \in E$ and $u \in U$.

That is, $r_{\Upsilon_K}(x,u) = v_{\Upsilon_K}(x)(u)$ is characterized by truth-membership function $T_K$, a indeterminacy-membership function $I_K$ and a falsity-membership function $F_K$. For each point $x \in E$ and $u \in U$; $T_K$, $I_K$ and $F_K \subseteq [0,1]$.

\textbf{Example 4.2} Consider the above Example 4.4, then, $r_{\Upsilon_K}(x,u) = v_{\Upsilon_K}(x)(u)$ can be given as follows

$$v_{\Upsilon_K}(x_1)(u_1) = (0.6, 0.8), [0.8, 0.9], [0.1, 0.5],$$

$$v_{\Upsilon_K}(x_1)(u_2) = (0.5, 0.8), [0.2, 0.9], [0.1, 0.7],$$

$$v_{\Upsilon_K}(x_2)(u_1) = (0.1, 0.4), [0.5, 0.8], [0.3, 0.7],$$

$$v_{\Upsilon_K}(x_2)(u_2) = (0.1, 0.9), [0.6, 0.9], [0.2, 0.3],$$

$$v_{\Upsilon_K}(x_3)(u_1) = (0.2, 0.9), [0.1, 0.5], [0.7, 0.8],$$

$$v_{\Upsilon_K}(x_3)(u_2) = (0.4, 0.9), [0.1, 0.6], [0.5, 0.7],$$

$$v_{\Upsilon_K}(x_4)(u_1) = (0.6, 0.9), [0.6, 0.9], [0.6, 0.9],$$

$$v_{\Upsilon_K}(x_4)(u_2) = (0.5, 0.9), [0.6, 0.8], [0.1, 0.8],$$

$$v_{\Upsilon_K}(x_5)(u_1) = (0.0, 0.9), [1.0, 1.0], [1.0, 1.0],$$

$$v_{\Upsilon_K}(x_5)(u_2) = (0.0, 0.9), [0.8, 1.0], [0.2, 0.5].$$

Zhang et al. [40] introduced level-soft set and different thresholds on different parameters in interval-valued intuitionistic fuzzy soft sets. Taking inspiration these definitions we give level-soft set and different thresholds on different parameters in \textit{ivn--soft sets}.

\textbf{Definition 4.3} Let $\Upsilon_K \in \text{IVNS}(U)$. For $\alpha, \beta, \gamma \subseteq [0,1]$, the $(\alpha, \beta, \gamma)$-level soft set of $\Upsilon_K$ is a crisp soft set, denoted $(\Upsilon_K; < \alpha, \beta, \gamma >)$, defined by

$$(\Upsilon_K; < \alpha, \beta, \gamma >) = \{(x_i, \{u_{ij} : u_{ij} \in U, \mu(u_{ij}) = 1\}) : x_i \in E\}$$

where

$$\mu(u_{ij}) = \begin{cases} 1, & (\alpha, \beta, \gamma) \leq v_{\Upsilon_K}(x_i)(u_j) \\ 0, & \text{others} \end{cases}$$

for all $u_j \in U$.

Obviously, the definition is an extension of level soft sets of interval-valued intuitionistic fuzzy soft sets [40].
Remark 4.4 In Definition 4.3, \( \alpha = (\alpha_1, \alpha_2) \subseteq [0,1] \) can be viewed as a given least threshold on degrees of truth-membership, \( \beta = (\beta_1, \beta_2) \subseteq [0,1] \) can be viewed as a given greatest threshold on degrees of indeterminacy-membership and \( \gamma = (\gamma_1, \gamma_2) \subseteq [0,1] \) can be viewed as a given greatest threshold on degrees of falsity-membership. If \( (\alpha, \beta, \gamma) \leq u_{K(x)}(u) \), it shows that the degree of the truth-membership of \( u \) with respect to the parameter \( x \) is not less than \( \alpha \), the degree of the indeterminacy-membership of \( u \) with respect to the parameter \( x \) is not more than \( \gamma \) and the degree of the falsity-membership of \( u \) with respect to the parameter \( x \) is not more than \( \beta \). In practical applications of inv-soft sets, the thresholds \( \alpha, \beta, \gamma \) are pre-established by decision makers and reflect decision makers requirements on truth-membership levels, indeterminacy-membership levels and falsity-membership levels, respectively.

Example 4.5 Consider the above Example 3.7.

Clearly the \(([0.3,0.4],[0.3,0.5],[0.1,0.2])\)-level soft set of \( Y_K \) as follows

\[ (Y_K; < [0.3,0.4],[0.3,0.5],[0.1,0.2]) = \{ (x_1, \{ u_1 \}), (x_4, \{ u_1, u_2 \}) \} \]

Note 4.6 In some practical applications the thresholds \( \alpha, \beta, \gamma \) decision makers need to impose different thresholds on different parameters. To cope with such problems, we replace a constant value the thresholds by a function as the thresholds on truth-membership values, indeterminacy-membership values and falsity-membership values, respectively.

Theorem 4.7 Let \( Y_K, Y_L \in IV NS(U) \). Then,

1. \( (Y_K; < \alpha_1, \beta_1, \gamma_1) \) and \( (Y_K; < \alpha_2, \beta_2, \gamma_2) \) are \( < \alpha_1, \beta_1, \gamma_1 \)-level soft set and \( < \alpha_2, \beta_2, \gamma_2 \)-level soft set of \( Y_K \), respectively. If \( < \alpha_2, \beta_2, \gamma_2 > \preceq < \alpha_1, \beta_1, \gamma_1 > \), then we have

\[ (Y_K; < \alpha_1, \beta_1, \gamma_1) \preceq (Y_K; < \alpha_2, \beta_2, \gamma_2) \].

2. \( (Y_K; < \alpha, \beta, \gamma > \) and \( (Y_L; < \alpha, \beta, \gamma > \) are \( < \alpha, \beta, \gamma \)-level soft set \( Y_K \) and \( Y_L \), respectively. If \( Y_K \preceq Y_L \), then we have \( (Y_K; < \alpha, \beta, \gamma > \preceq (Y_L; < \alpha, \beta, \gamma > \).

Proof 4.8 The proof of the theorems are obvious.

Definition 4.9 Let \( Y_K \in IV NS(U) \). Let an interval-valued neutrosophic set \( < \alpha, \beta, \gamma > Y_K : A \rightarrow IVN(U) \) in \( U \) which is called a threshold interval-valued neutrosophic set. The level soft set of \( Y_K \) with respect to \( < \alpha, \beta, \gamma > Y_K \) is a crisp soft set, denoted by \( (Y_K; < \alpha, \beta, \gamma > Y_K) \), defined by:

\[ (Y_K; < \alpha, \beta, \gamma > Y_K) = \{ (x_i, \{ u_{ij} : u_{ij} \in U, \mu(u_{ij}) = 1 \}) : x_i \in E \} \]

where,

\[ \mu(u_{ij}) = \begin{cases} 1, & < \alpha, \beta, \gamma > Y_K(x_i) \leq u_{K(x_i)}(u_j) \\ 0, & \text{others} \end{cases} \]

for all \( u_j \in U \).
Obviously, the definition is an extension of level soft sets of interval-valued intuitionistic fuzzy soft sets [40].

**Remark 4.10** In Definition 4.9, \( \alpha = (\alpha_1, \alpha_2) \subseteq [0, 1] \) can be viewed as a given least threshold on degrees of truth-membership, \( \beta = (\beta_1, \beta_2) \subseteq [0, 1] \) can be viewed as a given greatest threshold on degrees of indeterminacy-membership and \( \gamma = (\gamma_1, \gamma_2) \subseteq [0, 1] \) can be viewed as a given greatest threshold on degrees of falsity-membership of \( u \) with respect to the parameter \( x \).

If \( < \alpha, \beta, \gamma >_{\Upsilon_K} (x_i) \leq v_{K(x_i)}(u) \) it shows that the degree of the truth-membership of \( u \) with respect to the parameter \( x \) is not less than \( \alpha \), the degree of the indeterminacy-membership of \( u \) with respect to the parameter \( x \) is not more than \( \gamma \) and the degree of the falsity-membership of \( u \) with respect to the parameter \( x \) is not more than \( \beta \).

**Definition 4.11** Let \( \Upsilon_K \in IVNS(U) \). Based on \( \Upsilon_K \), we can define an interval-valued neutrosophic set \( < \alpha, \beta, \gamma >_{\Upsilon_K}^{avg}; A \rightarrow IVN(U) \) by

\[
< \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} (x_i) = \sum_{u \in U} v_{K(x_i)}(u)/|U|
\]

for all \( x \in E \).

The interval-valued neutrosophic set \( < \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} \) is called the avg-threshold of the \( ivn-soft \) set \( \Upsilon_K \). In the following discussions, the avg-level decision rule will mean using the avg-threshold and considering the avg-level soft set in \( ivn-soft \) sets based decision making.

Let us reconsider the \( ivn-soft \) set \( \Upsilon_K \) in Example 3.7. The avg-threshold \( < \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} \) of \( \Upsilon_K \) is an interval-valued neutrosophic set and can be calculated as follows:

\[
< \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} (x_1) = \sum_{i=1}^{2} v_{K(x_1)}(u_i)/|U| = ([0.55, 0.8], [0.5, 0.9], [0.1, 0.6])
\]

\[
< \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} (x_2) = \sum_{i=1}^{2} v_{K(x_2)}(u_i)/|U| = ([0.1, 0.65], [0.55, 0.85], [0.25, 0.5])
\]

\[
< \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} (x_3) = \sum_{i=1}^{2} v_{K(x_3)}(u_i)/|U| = ([0.15, 0.9], [0.1, 0.55], [0.6, 0.75])
\]

\[
< \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} (x_4) = \sum_{i=1}^{2} v_{K(x_4)}(u_i)/|U| = ([0.55, 0.9], [0.6, 0.85], [0.35, 0.85])
\]

\[
< \alpha, \beta, \gamma >_{\Upsilon_K}^{avg} (x_5) = \sum_{i=1}^{2} v_{K(x_5)}(u_i)/|U| = ([0.0, 0.9], [0.9, 1.0], [0.6, 0.75])
\]
Theorem 4.17

Let

Proof 4.16

The proof of the theorems are obvious.

Example 4.12

Consider the above Example \( \mathcal{Y} \). Clearly;

\[ (\mathcal{Y}_K; <\alpha,\beta,\gamma>^\text{avg}_{\mathcal{Y}_K}) = \{(x_5, \{u_2\}) \} \]

Definition 4.13

Let \( \mathcal{Y}_K \in IVNS(U) \). Based on \( \mathcal{Y}_K \), we can define an interval-valued neutrosophic set \( \langle \alpha,\beta,\gamma >^\text{Mmm}_{\mathcal{Y}_K} : A \rightarrow IVN(U) \) by

\[ <\alpha,\beta,\gamma >^\text{Mmm}_{\mathcal{Y}_K} = \{ [\max_{u \in U}\{\inf_{v_{K(x)}(u)}\}, \max_{u \in U}\{\sup_{v_{K(x)}(u)}\}], \min_{u \in U}\{\inf_{v_{K(x)}(u)}\}, \min_{u \in U}\{\sup_{v_{K(x)}(u)}\}] > / x_i : x_i \in E \}

The interval-valued neutrosophic set \( <\alpha,\beta,\gamma >^\text{Mmm}_{\mathcal{Y}_K} \) is called the max-min-min-threshold of the ivn—soft set \( \mathcal{Y}_K \). In what follows the Mmm-level decision rule will mean using the max-min-min-threshold and considering the Mmm-level soft set in ivn—soft sets based decision making.

Definition 4.14

Let \( \mathcal{Y}_K \in IVNS(U) \). Based on \( \mathcal{Y}_K \), we can define an interval-valued neutrosophic set \( <\alpha,\beta,\gamma >^\text{mmm}_{\mathcal{Y}_K} : A \rightarrow IVN(U) \) by

\[ <\alpha,\beta,\gamma >^\text{mmm}_{\mathcal{Y}_K} = \{ [\min_{u \in U}\{\inf_{v_{K(x)}(u)}\}, \min_{u \in U}\{\sup_{v_{K(x)}(u)}\}], \min_{u \in U}\{\inf_{v_{K(x)}(u)}\}, \min_{u \in U}\{\sup_{v_{K(x)}(u)}\}] > / x_i : x_i \in E \}

The interval-valued neutrosophic set \( <\alpha,\beta,\gamma >^\text{mmm}_{\mathcal{Y}_K} \) is called the min-min-min-threshold of the ivn—soft set \( \mathcal{Y}_K \). In what follows the mmm-level decision rule will mean using the min-min-min-threshold and considering the mmm-level soft set in ivn—soft sets based decision making.

Theorem 4.15

Let \( \mathcal{Y}_K \in IVNS(U) \). Then, \( \mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{avg}_{\mathcal{Y}_K}, (\mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{Mmm}_{\mathcal{Y}_K}), (\mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{mmm}_{\mathcal{Y}_K}), (\mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{MMM}_{\mathcal{Y}_K}) \) are the avg-level soft set, Mmm-level soft set, mmm-level soft set, MMM-level soft set of \( \mathcal{Y}_K \in IVNS(U) \), respectively. Then,

1. \( \mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{Mmm}_{\mathcal{Y}_K}\) \( \subseteq \mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{avg}_{\mathcal{Y}_K} \)

2. \( \mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{mmm}_{\mathcal{Y}_K}\) \( \subseteq \mathcal{Y}_K; <\alpha,\beta,\gamma >^\text{Mmm}_{\mathcal{Y}_K} \)

Proof 4.16

The proof of the theorems are obvious.

Theorem 4.17

Let \( \mathcal{Y}_K, \mathcal{Y}_L \in IVNS(U) \). Then,
1. Let \( < \alpha_1, \beta_1, \gamma_1 >_{\Upsilon K} \) and \( < \alpha_2, \beta_2, \gamma_2 >_{\Upsilon K} \) be two threshold interval-valued neutrosophic sets. Then, \((\Upsilon K; < \alpha_1, \beta_1, \gamma_1 >_{\Upsilon K})\) and \((\Upsilon K; < \alpha_2, \beta_2, \gamma_2 >_{\Upsilon K})\) are \( < \alpha_1, \beta_1, \gamma_1 >_{\Upsilon K}\)-level soft set and \( < \alpha_2, \beta_2, \gamma_2 >_{\Upsilon K}\)-level soft set of \( \Upsilon K \), respectively.

If \( \gamma \leq \alpha_1, \beta_1, \gamma_1 >_{\Upsilon K} \), then we have
\[
(\Upsilon K; < \alpha_1, \beta_1, \gamma_1 >_{\Upsilon K}) \subseteq (\Upsilon K; < \alpha_2, \beta_2, \gamma_2 >_{\Upsilon K}).
\]

2. Let \( < \alpha, \beta, \gamma >_{\Upsilon K} \) be a threshold interval-valued neutrosophic sets.

Then, \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K})\) and \((\Upsilon L; < \alpha, \beta, \gamma >_{\Upsilon K})\) are \( < \alpha, \beta, \gamma >_{\Upsilon K}\)-level soft set \( \Upsilon K \) and \( \Upsilon L \), respectively.

If \( \Upsilon K \subseteq \Upsilon L \), then we have \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}) \subseteq (\Upsilon L; < \alpha, \beta, \gamma >_{\Upsilon K})\).

Proof 4.18 The proof of the theorems are obvious.

Now, we construct an ivn—soft set decision making method by the following algorithm:

**Algorithm:**

1. Input the ivn—soft set \( \Upsilon K \),

2. Input a threshold interval-valued neutrosophic set \( < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{avg}} \) (or \( < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{Mmm}}, < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{mmm}} \)) by using avg-level decision rule (or Mmm-level decision rule, mmm-level decision rule) for decision making.

3. Compute avg-level soft set \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{avg}})\) (or Mmm-level soft set \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{Mmm}}), \) mmm-level soft set \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{mmm}})))\)

4. Present the level soft set \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{avg}})\) (or the level soft set \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{Mmm}}), \) the level soft set \((\Upsilon K; < \alpha, \beta, \gamma >_{\Upsilon K}^{\text{mmm}})))\) in tabular form.

5. Compute the choice value \( c_i \) of \( u_i \) for any \( u_i \in U \),

6. The optimal decision is to select \( u_k \) if \( c_k = \max_{u_i \in U} c_i \).

**Remark 4.19** If \( k \) has more than one value then any one of \( u_k \) may be chosen.

If there are too many optimal choices in Step 6, we may go back to the second step and change the threshold (or decision rule) such that only one optimal choice remains in the end.

**Remark 4.20** The aim of designing the Algorithm is to solve ivn—soft sets based decision making problem by using level soft sets. Level soft sets construct bridges between ivn—soft sets and crisp soft sets. By using level soft sets, we need not treat ivn—soft sets directly but only cope with crisp soft sets derived from them after choosing certain thresholds or decision strategies such as the mid-level or the topbottom-level decision rules. By the Algorithm, the choice value of an object in a level soft set is in fact the number of fair attributes which belong to that object on the premise that the degree of the truth-membership
of \( u \) with respect to the parameter \( x \) is not less than truth-membership levels, the degree of the indeterminacy-membership of \( u \) with respect to the parameter \( x \) is not more than indeterminacy-membership levels and the degree of the falsity-membership of \( u \) with respect to the parameter \( x \) is not more than falsity-membership levels.

**Example 4.21** Suppose that a customer to select a house from the real agent. He can construct a ivn−soft set \( \Upsilon_K \) that describes the characteristic of houses according to own requests. Assume that \( U = \{u_1, u_2, u_3, u_4, u_5, u_6\} \) is the universe contains six house under consideration in an real agent and \( E = \{x_1 = \text{cheap}, x_2 = \text{beautifull}, x_3 = \text{greensurroundings}, x_4 = \text{costly}, x_5 = \text{large}\} \).

Now, we can apply the method as follows:

1. **Input the ivn−soft set \( \Upsilon_K \) as,**

|   | \( u_1 \)     | \( u_2 \)     |
|---|---------------|---------------|
| \( x_1 \) | \( [0.5, 0.7], [0.8, 0.9], [0.2, 0.5] \) | \( [0.3, 0.6], [0.3, 0.9], [0.2, 0.8] \) |
| \( x_2 \) | \( [0.2, 0.4], [0.7, 0.9], [0.6, 0.9] \) | \( [0.3, 0.9], [0.6, 0.9], [0.3, 0.9] \) |
| \( x_3 \) | \( [0.0, 0.2], [1.0, 1.0], [1.0, 1.0] \) | \( [0.0, 0.1], [0.9, 1.0], [0.2, 0.9] \) |

|   | \( u_3 \)     | \( u_4 \)     |
|---|---------------|---------------|
| \( x_1 \) | \( [0.5, 0.8], [0.8, 0.9], [0.3, 0.9] \) | \( [0.1, 0.9], [0.5, 0.9], [0.2, 0.4] \) |
| \( x_2 \) | \( [0.9, 0.9], [0.2, 0.3], [0.3, 0.5] \) | \( [0.7, 0.9], [0.1, 0.3], [0.5, 0.6] \) |

|   | \( u_5 \)     | \( u_6 \)     |
|---|---------------|---------------|
| \( x_1 \) | \( [0.6, 0.8], [0.8, 0.9], [0.1, 0.5] \) | \( [0.5, 0.8], [0.2, 0.9], [0.1, 0.7] \) |

**Table 12:** The tabular representation of the ivn-soft set \( \Upsilon_K \)

2. **Input a threshold interval-valued neutrosophic set \( < \alpha, \beta, \gamma >^\text{avg}_{\Upsilon_K} \) by using avg-level decision rule for decision making as:**

\[
< \alpha, \beta, \gamma >^\text{avg}_{\Upsilon_K} = \{ ([0.41, 0.76], [0.56, 0.9], [0.18, 0.63]) / \langle x_1 \rangle, ([0.31, 0.7], [0.46, 0.66], [0.31, 0.58]) / \langle x_2 \rangle, ([0.41, 0.8], [0.21, 0.53], [0.61, 0.76]) / \langle x_3 \rangle, ([0.45, 0.81], [0.61, 0.86], [0.45, 0.86]) / \langle x_4 \rangle, ([0.25, 0.65], [0.7, 0.9], [0.61, 0.76]) / \langle x_5 \rangle \}
\]

3. **Compute avg-level soft set \( (\Upsilon_K; < \alpha, \beta, \gamma >^\text{avg}_{\Upsilon_K}) \) as:**

\[
(\Upsilon_K; < \alpha, \beta, \gamma >^\text{avg}_{\Upsilon_K}) = \{ (x_2, \{u_3\}), (x_3, \{u_4\}), (x_4, \{u_6\}), (x_5, \{u_3\}) \}
\]
4. Present the level soft set \((Y_K; <\alpha, \beta, \gamma>^\text{avg}_{Y_K})\) in tabular form as:

| \(U\)  | \(u_1\) | \(u_2\) | \(u_3\) | \(u_4\) | \(u_5\) | \(u_6\) |
|--------|--------|--------|--------|--------|--------|--------|
| \(x_1\) | 0      | 0      | 0      | 0      | 0      | 0      |
| \(x_2\) | 0      | 0      | 1      | 0      | 0      | 0      |
| \(x_3\) | 0      | 0      | 0      | 1      | 0      | 0      |
| \(x_4\) | 0      | 0      | 0      | 0      | 0      | 1      |
| \(x_5\) | 0      | 0      | 1      | 0      | 0      | 0      |

Table 13: The tabular representation of the soft set \(F_X\)

5. Compute the choice value \(c_i\) of \(u_i\) for any \(u_i \in U\) as:

\[
c_1 = c_2 = c_5 = \sum_{j=1}^{5} u_{1j} = \sum_{j=1}^{6} u_{2j} = \sum_{j=1}^{5} h_{5j} = 0, \]

\[
c_4 = c_6 = \sum_{j=1}^{5} u_{4j} = \sum_{j=1}^{6} h_{6j} = 1 \]

\[
c_3 = \sum_{j=1}^{5} u_{3j} = 2 \]

6. The optimal decision is to select \(u_3\) since \(c_3 = \max_{u_i \in U} c_i\).

Note that this decision making method can be applied for group decision making easily with help of the Definition 3.37 and Definition 3.38.

5 Conclusion

In this paper, the notion of the interval valued neutrosophic soft sets (ivn—soft sets) is defined which is a combination of an interval valued neutrosophic sets[30] and a soft sets[30]. Then, we introduce some definitions and operations of ivn—soft sets sets. Some properties of ivn—soft sets which are connected to operations have been established. Finally, we propose an adjustable approach by using level soft sets and illustrate this method with some concrete examples. This novel proposal proves to be feasible for some decision making problems involving ivn—soft sets. It can be applied to problems of many fields that contain uncertainty such as computer science, game theory, and so on.

References

[1] U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59 (2010) 3458-3463.
[2] H. Aktaş and N. Çağman, Soft sets and soft groups, Information Sciences, 177 (2007) 2726-2735.

[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.

[4] M. I. Awang, A.N. M. Rose, T. Herawan, M. M. Deris, Soft Set Approach for Selecting Decision Attribute in Data Clustering, Advanced Data Mining and Applications Lecture Notes in Computer Science 6441 (2010) 87–98

[5] A. Aygünoglu and H. Aygün, Introduction to fuzzy soft groups, Computers and Mathematics with Applications 58 (2009) 1279-1286.

[6] S. Broumi, Generalized Neutrosophic Soft Set International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), 3/2, 2013 doi:10.5121/ijcseit.2013.3202.

[7] S. Broumi, F. Smarandache, Intuitionistic Neutrosophic Soft Set, Journal of Information and Computing Science 8/2, (2013), 130–140.

[8] N. Çağman, S. Karataş and S. Enginoğlu, Soft Topology, Computers and Mathematics with Applications 62 (2011) 351 - 358.

[9] N. Çağman, F. Erdoğan and S. Enginoğlu, FP-soft set theory and its applications, Annals of Fuzzy Mathematics and Informatics, 2/2 (2011) 219-226.

[10] N. Çağman and S. Enginoğlu, Soft set theory and uni-int decision making, European Journal of Operational Research, 207 (2010) 848-855.

[11] N. Çağman, I. Deli, Means of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, 41 (5) (2012), 615–625.

[12] N. Çağman, I. Deli, I. Product of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, 41 (3) (2012), 365 - 374.

[13] Deli, I. Applications of Soft And Fuzzy Soft Sets to Game Theory (In Turkish), PhD Thesis, Gaziosmanpasa University, Graduate School of Natural and Applied Science, 2013.

[14] N. Çağman, I. Deli, I. Soft Games, http://arxiv.org/abs/1302.4568 2013.

[15] F. Feng, C. Li, B. Davvaz, M. Irfan Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14 (2010) 899–911.

[16] F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft sets based decision making, Journal of Computational and Applied Mathematics, 234 (2010) 10-20.

[17] F. Karaaslan, N. Çağman and S. Enginoğlu, Soft Lattices, Journal of New Results in Science 1 (2012) 5-17.
[18] A. Kharal, Distance and Similarity Measures for Soft Sets, New Math. and Nat. Computation, 06, 321 (2010). DOI: 10.1142/S1793005710001724.

[19] D.V. Kovkov, V. M. Kolbanov and D. A. Molodtsov, Soft sets theory-based optimization, Journal of Computer and Systems Sciences International 46/6 (2007) 872-880.

[20] Y. Jiang, Y. Tang, Q. Chen, An adjustable approach to intuitionistic fuzzy soft sets based decision making, Applied Mathematical Modelling, 35 (2011) 824836.

[21] Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties, Computers and Mathematics with Applications, 60 (2010) 906–918.

[22] Y. Jiang, H. Liu, Y. Tang, Q. Chen, Semantic decision making using ontology-based soft sets, Journal Mathematical and Computer Modelling, 53 5/6, (2011) 1140–1149.

[23] P.K. Maji, A.R. Roy, An application of soft sets in a decision making problem, Computers and Mathematics with Applications 44 (2002) 1077-1083.

[24] P.K. Maji, Neutrosophic soft set, Computers and Mathematics with Applications, 45 (2013) 555-562.

[25] P.K. Maji, A.R. Roy, R. Biswas, On Intuitionistic Fuzzy Soft Sets. The Journal of Fuzzy Mathematics, 12(3) (2004) 669-683.

[26] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3) (2001) 589-602.

[27] P.K. Maji, A neutrosophic soft set approach to a decision making problem, Annals of Fuzzy Mathematics and Informatics, 3/2, (2012), 313–319.

[28] R. Mamat, T. Herawan, M. M. Deris, MAR: Maximum Attribute Relative of soft set for clustering attribute selection, Knowledge-Based Systems 52 (2013) 11-20.

[29] W. K. Min, A Note on Soft Topological Spaces, Computers and Mathematics with Applications 62 (2011) 3524-3528.

[30] D.A. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999) 19-31.

[31] D.A. Molodtsov, The Theory of Soft Sets (in Russian), URSS Publishers, Moscow, 2004.

[32] E.K.R. Nagarajan, G. Meenambigai, An application of soft sets to lattices, Kragujevac Journal of Mathematics, 35, (2011), No. 1, 75-87.
[33] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences, 11 (1982) 341-356.

[34] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005) 287-297.

[35] M. Shabir and M. Naz, On Soft Topological Spaces, Computers and Mathematics with Applications 61 (2011) 1786-1799.

[36] H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, Hexis; Neutrosophic book series, No: 5, 2005.

[37] Şerife Yılmaz, O. Kazancı, soft lattices(ideals, filters) related to fuzzy point, U.P.B. Sci. Bull., Series A, 75/3, (2013) 75-90.

[38] S.Yüksel, T. Dizman, G. Yildizdan and U. Sert, Application of soft sets to diagnose the prostate cancer risk, Journal of Inequalities and Applications 2013,doi:10.1186/1029-242X-2013-229.

[39] L.A. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965) 338-353.

[40] Z. Zhang, C. Wang, D. Tian, K. Li, A novel approach to interval-valued intuitionistic fuzzy soft set based decision making, Applied Mathematical Modelling, xxx (2013) xxxxxx(n press)

[41] J. Zhan and Y.B. Jun, Soft BL-algebras based on fuzzy sets, Computers and Mathematics with Applications, 59 (2010) 2037-2046.