Comparison of Afirma GEC and GSC to Nodules Without Molecular Testing in Cytologically Indeterminate Thyroid Nodules

Preethi Polavarapu MD1,2, Abbey Fingeret MD3, Ana Yuil-Valdes MD4, Daniel Olsen MD5, Anery Patel MD1, Vijay Shivaswamy MD1,2, Troy D. Matthias, CT (ASCP)4, Whitney Goldner MD1

1 Department of Internal Medicine, Division of Diabetes, Endocrinology, Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, USA
2 Department of Internal Medicine, Division of Diabetes, Endocrinology, Metabolism, VA Nebraska-Western Iowa Health System, Omaha, Nebraska, USA
3 Department of Surgery, Division of Surgical Oncology, Omaha, Nebraska, USA
4 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
5 Department of Pathology and Microbiology, VA Nebraska-Western Iowa Health System, Omaha, Nebraska, USA

Key Words: Thyroid nodule, Bethesda III, Bethesda IV, Indeterminate Thyroid FNA Cytopathology, Afirma Gene Expression Classifier (GEC), Afirma Genomic Sequencing Classifier (GSC)

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Corresponding Author and Reprint Requests:
Preethi Polavarapu, MBBS
984120 Nebraska Medical Center
Omaha, NE 68198-4120
preethi.polavarapu@unmc.edu

Grants or fellowships: none

Disclosure summary:
PP, AF, AYV, DO, AP, TM: no disclosures
VS: Site PI for multicenter trials for NovoNordisk, Eli Lilly, Kowa Pharmaceuticals
WG: Site PI for Roche, Siemens
Abstract:

Background: Analysis of cytologically indeterminate thyroid nodules with Afirma Gene Expression Classifier (GEC) and Genomic Sequencing Classifier (GSC) can reduce surgical rate and increase malignancy rate of surgically resected indeterminate nodules.

Methods: Retrospective cohort analysis of all adults with cytologically indeterminate thyroid nodules from January 2013 through December 2019. We compared surgical and malignancy rates of those without molecular testing to those with GEC or GSC, analyzed test performance between GEC and GSC, and identified variables associated with molecular testing.

Results: 468 indeterminate thyroid nodules were included. No molecular testing was performed in 273, 71 had GEC, and 124 had GSC testing. Surgical rate was 68% in the group without molecular testing, 59% in GEC, and 40% in GSC. Malignancy rate was 20% with no molecular testing, 22% in GEC, and 39% in GSC (p = 0.022). GEC benign call rate (BCR) was 46%, sensitivity 100%, specificity 61% and PPV 28%. GSC BCR was 60%, sensitivity 94%, specificity 76%, and PPV 41%. Those with no molecular testing had larger nodule size, pre-operative growth of nodules, and constrictive symptoms, and those who underwent surgery in the no molecular testing group had higher BMI, constrictive symptoms, higher TIRADS and Bethesda classification. Type of provider was also associated with the decision to undergo surgery.

Conclusion: Implementation of GEC showed no effect on surgical or malignancy rate, but GSC resulted in significantly lower surgical and higher malignancy rates. This study provides insight into the factors that affect the real-world use of these molecular markers preoperatively in indeterminate thyroid nodules.
Introduction

Thyroid nodules are common, affecting 65% of the population by the age of 60\(^1\). Although ultrasound-guided fine needle aspiration (FNA) is the gold standard for evaluation, 15-30% of thyroid nodules have indeterminate cytology which predicts a risk of malignancy of 10-40%\(^2,3\). When evaluating cytologically indeterminate thyroid nodules, current guidelines recommend observation with repeat biopsy, molecular testing, or surgical removal for definitive diagnosis \(^4,5\).

Molecular analysis using the Afirma Gene Expression Classifier (GEC) and Genomic Sequencing Classifier (GSC) are two of the available tests used in the evaluation of indeterminate Bethesda System for Reporting Thyroid Cytopathology category III and IV thyroid nodules \(^4,5\). Afirma GEC became commercially available in 2011, and measures messenger RNA expression of 167 gene patterns \(^6\). The next generation GSC replaced GEC in 2017 and also tests for RET, BRAFV600E, RET/PTC1/3 in addition to the mRNA gene expression. It also more accurately identifies parathyroid and Hurthle cell lesions \(^7\).

Implementation of GEC and subsequently GSC has resulted in higher benign call rates (BCR) and reduced overall surgical rates for patients with cytologically indeterminate thyroid nodules \(^7-15\).

In institution specific analyses, Afirma GEC has reported sensitivities of 83-100% \(^6,8-13,16-21\) (Table 1) and GSC has reported sensitivities of 90-100% \(^7,8,10,11,18,19\) (Table 2). PPV improved from 16-57% \(^6,8-13,16-25\) with GEC to 47-85% \(^7,8,10,11,13,18,19,25\) with GSC and the BCR also
improved from 27-78% with GEC6, 8-13, 15-27 (Table 1) to 54-76% with GSC (Table 2)7, 8, 10, 11, 13, 15, 18, 19, 25.

Despite these improvements in preoperative evaluation of indeterminate nodules, it is our experience that not all patients undergo molecular testing to aid in decision making. We evaluated our own institutional experience with cytologically indeterminate thyroid nodules after implementation of GEC and subsequently GSC in two Midwest health centers. Test performance for GEC and GSC in this cohort was compared to previously published data. We also evaluated patient and nodule characteristics of those who did not undergo molecular testing to determine impact of other variables on the evaluation and management of indeterminate thyroid nodules.

Methods:

We received Institutional Review Board approval from both the University of Nebraska Medical Center (UNMC) and The Nebraska-Western Iowa Health System Veteran’s Hospital (VA). We performed a retrospective cohort analysis of consecutive adult patients with cytologically indeterminate thyroid nodules at UNMC and the VA from January 2013 through December 2019. GEC was first available at our institutions in 2013, and replaced by GSC in October, 2017. The decision to obtain molecular testing for cytologically indeterminate thyroid nodules was based on joint decision making between the provider and the patient. Molecular testing was not reflexive or mandatory for each patient with indeterminate thyroid nodule cytopathology.
and was an individual decision. This data includes all providers involved in caring for patients with indeterminate thyroid nodules, so is representative of multiple groups of providers in the two institutions. We included all nodules that were biopsied from both institutions, with indeterminate cytology (Bethesda III and Bethesda IV), with and without molecular testing, who also had follow-up data during the study period. Clinical and demographic variables were assessed including age, gender, race or ethnicity, location of residence, body mass index (BMI), thyroid nodule characteristics, imaging characteristics, generation of molecular testing, Bethesda cytologic category, extent of surgery, time to surgery, histopathologic diagnosis, and length of follow up. Noninvasive follicular thyroid neoplasm with papillary like nuclear features (NIFTP) was included with malignant tumors in the analysis since they require surgical resection for definitive diagnosis. Malignancy was defined for this cohort as carcinoma present in the index indeterminate nodule. Incidental thyroid cancers were excluded from overall malignancy calculations.

Univariate analysis was performed using nonparametric tests with Chi-squared, Fisher’s exact, and Kruskal Wallis tests for categorical variables and Mann Whitney U and one-way analysis of variance (ANOVA) tests for continuous variables. A Cochran Armitage nonparametric trend test was used to assess trends over time for surgery and molecular testing for the timeline of no reflex molecular testing available, reflex GEC available and reflex GSC available. Statistical analysis was performed using STATA version 15 (College Station, TX, StataCorp LLC). A p-value of < 0.05 was considered statistically significant.

Measurement of test performance for both GEC and GSC was calculated using two different methods, using a priori designations for each category using the following assumptions: First – for patients with benign molecular testing, these were evaluated as true negative only if surgical pathology was available to confirm; second – for patients with benign molecular testing results, these were assumed to be true
negatives if they did not undergo surgery for definitive diagnosis. Test performance was assessed with calculation of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for each Bethesda category by generation of molecular test.

Results:

A total of 468 Bethesda III and IV thyroid nodules met inclusion criteria for analysis (Figure 1). Of the 468 nodules analyzed, 273 did not undergo molecular testing, 71 underwent GEC, and 124 underwent GSC testing. There were no differences between the groups with regard to age, sex, BMI, race or ethnicity, and location of residence (local vs out of town). The presence of preexisting hypothyroidism and number of thyroid nodules was similar between groups, but there was a significant difference in dominant nodule size between groups with size being the smallest in the GSC group. Nodule size in greatest dimension was significantly larger at 2.8 ± 1.4 cm in those without molecular testing and 2.8 ± 1.2 cm in the GEC group, compared with 2.3 ± 1.0 cm in the GSC group ($p=0.0001$). In addition, the presence of constrictive symptoms was significantly higher in those who did not undergo molecular testing (19.6%) vs those who underwent GEC (8.2%) or GSC (6.8%) ($p=0.0018$). Imaging characteristics using both TIRADS and ATA thyroid ultrasound imaging criteria were not significantly different between groups ($p=0.0767$ TIRADS and $P=0.465$ ATA). Surgical rates were significantly different between groups, with lowest rates occurring in the GSC group (39.5%), vs GEC (59.2%), and no molecular testing (67.8%) ($p=0.0001$). (Table 3) The median time to surgery was longest for the GEC group at 90 days (IQR 56.5 to 269 days), 58 days (IQR 44 – 86) for GSC, and shortest for the group without molecular testing at 44 days (IQR 30 – 75 days) ($p = 0.0001$). The proportion of patients who underwent surgery after 180 days was also highest in the GEC group at 34.4% compared with 15.2% for the GSC group and 10.6% for the group without molecular testing ($p = 0.0022$). (Table 3)

In a Cochrane Armitage nonparametric time trend analysis, there was no difference in the rate of surgery over time comparing three timeframes: the timeframe without reflex molecular testing sample collection, the timeframe with reflex GEC, and the timeframe with reflex GSC sample collection at the time of FNA ($p = 0.0723$). There was however, a significant increase in the rate of molecular testing during these time periods from 20.7% to 23.5% to 74.6% respectively ($p < 0.0001$).

The distribution of Bethesda III AUS/FLUS and Bethesda IV Follicular neoplasm (FN) and Hurthle cell neoplasm (HCN) nodules was significantly different between the three groups ($p=0.0073$). Sixty seven percent of the GSC were from the Bethesda III AUS/FLUS group, compared with 17% from the GSC Bethesda IV FN and 16% in the GSC Bethesda IV HCN groups. This compares with the GEC group who had 60% in the Bethesda III AUS/FLUS, 30% Bethesda IV FN and 10% Bethesda IV HCN groups.
When evaluating only the group who did not undergo molecular testing, those who underwent surgery had a significantly higher BMI ($p=0.019$) and had the presence of constrictive symptoms ($p=0.022$). They also had nodules with higher TIRADS scores: 54.9% of the surgery group had a with TIRADS 4 and 13.6% had a TIRADS 5 nodule, compared to 46.1% TIRADS 4 and 9.2% TIRADS 5 nodules in the no surgery group ($p=0.0353$). The type of provider evaluating the nodule was also significantly different ($p=0.027$). In the surgery group, 61.8% were seen by a surgeon, compared with 37.4% of the no surgery group were seen by a surgeon. (Table 4)

Reasons for not undergoing molecular testing in our cohort of 273 people were also evaluated. Fifty-six percent (153/273) were recommended surgery and not offered molecular testing by the treating physician, 32% (87/273) were offered testing but declined, and 12% (33/273) had no data. Of the 87 that were offered molecular testing, 54% (47/87) preferred surgery for other reasons including: concurrent Graves’ disease, concurrent hyperparathyroidism, growth of nodule, constrictive symptoms, and anxiety/worry about undiagnosed cancers. Seven percent (6/87) had concurrent, non-thyroid cancers, 8% (7/87) had Hurthle cell neoplasms on FNA and opted not to undergo testing (during the GEC testing when there was a known high false positive rate), 11% (10/87) required a second biopsy to do testing and declined, 3% (3/87) felt the cost of molecular testing was prohibitive, and 16% (14/87) opted for second FNA rather than molecular testing and repeat FNA was benign, hence eliminating the need for molecular testing.

Overall, BCR was not significantly different between groups with GEC at 46% and GSC 60% ($p=0.7855$). (Table 5) Surgical rates overall were significantly different between groups, with GSC having the lowest rates at 40% ($p < 0.001$). However, for Bethesda III AUS/FLUS nodules specifically, surgical rates were not different ($p=0.2959$). There was a significant reduction in surgical rate in the Bethesda IV FN group with 79% for those without molecular testing, 62% for GEC and 33% for GSC ($p < 0.0001$). For nodules with Bethesda IV HCN cytology, surgical rates were 81% in those without molecular testing, 86% with GEC, and 30% with GSC ($p< 0.0005$). (Table 6)

When analyzing only those with benign molecular testing, surgical rates were lower in the GSC group at 8%, as compared with GEC at 30% ($p<0.001$). Conversely, when evaluating nodules with suspicious molecular testing, surgical rates were 88 and 89% respectively for GEC and GSC ($p=0.853$). (Figure 1)

Overall malignancy rates were highest in the GSC group at 39%, as compared with those without molecular testing at 20%, and 22% for GEC $p=0.0222$). (Table 7) When evaluating malignancy rates by individual Bethesda categories, Bethesda III AUS/FLUS was the only category with significant differences: 15% malignancy rate in the no molecular testing group, GEC 26%, and GSC 39% ($p=0.0217$). Malignancy rates were not significantly different within the Bethesda IV groups (Table 7) In the nodules with suspicious molecular testing that underwent surgery, eight (27%) of GEC and 17(42%) of GSC had cancer
in the index nodule (p=0.0222). (Figure 1) There were only four cases of NIFTP in this cohort, three did not have molecular testing, and the 4th had GSC with a suspicious result. Incidental thyroid cancer found on histopathology outside of the index indeterminate nodule was noted in 9%, though these did not contribute to malignancy rate calculations for analysis of test performance.

For Bethesda IV HCN nodules specifically, the BCR was significantly different: BCR was 1/7 (14.3%) for GEC and 13/20 (65%) for GSC (p=0.0254) (Table 5) Surgical rates were highest for the no molecular testing group at 81% as compared with GEC at 86% and GSC at 30% (p 0.0005) (Table 6). Malignancy rates were 12% for those without molecular testing, 02% with GEC and 33% in GSC group (p=0.2204) (Table 7) None of the resected HCN nodules were malignant in the GEC group.

Measurements of test performance were calculated for both GEC and GSC. We calculated performance using two different methods. First, we included only the surgically resected nodules. Using this definition, GEC sensitivity was 100%, specificity 32%, PPV 28%, and NPV 100%. This compares to GSC with a sensitivity of 94%, specificity 17%, PPV 41% and NPV 83%. (Table 8) The second method included both surgically resected nodules and unresected GEC or GSC benign nodules as true negatives. Using this definition, GEC sensitivity was 100%, specificity 61%, PPV 28% and NPV 100%. GSC sensitivity was 94%, specificity 76%, PPV 41%, and NPV 97%. (Table 9)

Test performance for GEC and GSC was also measured for each Bethesda category. (Tables 8 and 9) Due to the small number of Hurthle cell lesions, performance measures were not calculated

Discussion:

We report Afirma GEC and GSC use in cytologically indeterminate thyroid nodules in two Midwest academic institutions. We evaluated BCR, surgical and malignancy rates, as well as sensitivity, specificity, PPV, and NPV and found our experience to be similar to multiple previously published institutional experience studies 6,13,15,17-22,24-27 (Tables 1 and 2).

Over the last decade, there have been progressive improvements to commercially available molecular tests for cytologically indeterminate thyroid nodules. Surgical rates were reported as 34-87% for GEC, and reduced to 18-54% with GSC 7,13,15,16,17-19,21-24,26,27. In our cohort, surgical rate for indeterminate nodules without molecular testing was 68% and implementation of GEC did not significantly reduce this. Only after implementation of GSC was the rate of surgery significantly reduced to 40%. This is similar to the results published by Sacks et al. where overall surgical rate was similar for those without molecular testing at 43.5% compared with 46.5% for those with GEC. 23 We captured follow up data and included all patients who underwent surgery at a later date with records available at our institution. We had a mean follow up of 20.6 months (SD=12), minimizing the possibility of missed surgeries within two years of biopsy so we do not believe this was a falsely low estimate of total number of surgeries. Additionally,
time to surgery was the highest with GEC and the lowest for no molecular testing. When GEC testing was offered at our institutions, it initially required a second biopsy which could explain the time to surgery. Once we implemented sample collection at the time of initial FNA with reflex testing for indeterminate cytology, time to surgery was reduced. We also captured those who had surgery during follow up > 180 days after biopsy. GEC had the highest proportion of patients (34.4%) who had surgery > 180 days after biopsy compared with 15.2% of GSC and 10.6% of no molecular testing groups. Data for time to surgery for benign GEC result is available for 6 of the 10 patients and is a median of 312 days (IQR 158.5 to 778 days), mean 488 days (SD 478 days). Nodule growth characteristics were available for 6 of these patients with median growth of 0.55cm (IQR 0.3 – 0.6), mean 0.62cm (SD 0.46cm).

This difference between GEC and GSC could be attributed to decreased time for overall follow up, or it could be due to improved performance of the test.

When assessing the surgical rate by Bethesda category in our cohort, Bethesda III surgical rates were not significantly different between those without molecular testing, those with GEC or GSC. For patients with Bethesda IV nodules however, surgical rate significantly declined progressively from those without molecular testing to GEC and further to GSC, indicating GSC does have a significant impact on surgical rate reduction. This was also true for Bethesda IV HCN groups, consistent with previous studies, reporting improved BCR in Hurthle cell lesions.7, 10, 11, 13, 16

The malignancy rates and test performance in this cohort are similar to previously published data. Our malignancy rate is 20% for those without molecular testing, 22% for those with GEC and 39% for GSC. These are comparable to San Martin et al.’s malignancy prevalence of 22% in GEC and 28% in GSC11. When assessing test performance, our findings of high sensitivity and NPV are also comparable to previously published data7-13, 15, 16. The GSC has been reported as higher specificity and higher PPV compared with GEC. 7, 8, 10, 11, 13. In our study, this finding was replicated with improvement of specificity from GEC to GSC from 61% to 76% and PPV from 28% to 41% when using all nodules. For those with surgical confirmation, the performance was not as robust, with GEC versus GSC specificity 32% to 17% and PPV 28% to 41%. Other studies have shown PPV of 16-57% for GEC and 47-85% for GSC.6-8, 10-13, 15-25. Our GEC and GSC PPV is comparable to other previously published institutional analyses. (Tables 1 & 2) In our study, NPV was 100% for GEC, but 83% for GSC when only evaluating those with surgical confirmation. There were only seven people in the GSC group, and one had cancer. The low numbers in this group likely contribute to the low NPV in this study, which is lower than previously published studies. NPV is higher at 99% in our cohort when including benign GSC nodules without surgical confirmation.

In addition to evaluating cytologically indeterminate thyroid nodules with Afirma GEC or GSC testing, we also looked at those with indeterminate thyroid nodules who did not undergo molecular testing. Not
surprisingly, patients who did not undergo molecular testing had significantly larger nodule size, growth of the nodule prior to biopsy, and constrictive symptoms. All these factors likely influenced the joint patient/provider decision to forego pre-operative molecular testing and proceed straight to surgery. Those without molecular testing had significantly higher rates of surgery. Ultrasound characteristics evaluated by both TIRADS and ATA sonographic risk of malignancy criteria were not different between groups overall, and specifically echogenicity and presence of calcifications was also not significantly different. However, it should be noted that many of the years included in this retrospective study were prior to the current ATA thyroid nodule guidelines that first recommended consideration of molecular testing in indeterminate thyroid nodules. We also did not find significant differences between Bethesda category in those who did and did not undergo molecular testing. This is in contrast to Lee and colleagues who explored patient preferences for molecular testing of indeterminate thyroid nodules and reported a higher number of patients with Bethesda IV cytology or high-risk ultrasound features opted for molecular testing, which was not seen in our study. Time trend analysis showed there was no difference in the rate of surgery over the three different time frames in our analysis: pre reflex molecular testing, reflex GEC, and reflex GSC testing. However, there was a significant increase in the rate of molecular testing overall during these time frames indicating molecular testing became more acceptable and commonplace over time.

To better understand the decision making regarding molecular testing and surgery we also evaluated the differences between those without molecular testing who did and did not undergo surgery. Unlike the comparison between groups for or against molecular testing, among those who did not undergo molecular testing, there was a difference between those who underwent surgery and those who didn’t regarding ultrasound TIRADS score and cytology. Those who underwent surgery had higher TIRADS scores and were more likely to have Bethesda IV (FN or HCN) cytologic diagnosis. Type of provider was also a significant predictor of surgery. If a person with an indeterminate thyroid nodule was seen by an endocrinologist, 41% did not undergo surgery and 35% did undergo surgery. If seen by a surgeon, 62% underwent surgery compared with 37% who did not, and if seen by providers other than an endocrinologist or surgeon, they were more likely to avoid surgery. Depending on the location, patients have variable access to different types of providers. Provider familiarity with guidelines, available testing, and interpretation of testing can vary widely amongst providers and likely have a much larger impact on decision making regarding molecular testing in indeterminate thyroid nodules than has been previously evaluated.

One of the limitations of this study is the retrospective methodology. We reviewed all ultrasounds and sonographic characteristics as well as clinical notes to determine reasons for or against molecular testing, but some had missing data. When evaluating these factors, there was no apparent difference between groups who did not have molecular testing and those who had GEC or GSC in regards to pre
biopsy sonographic characteristics, Bethesda cytology classification or demographic characteristics including age, sex, BMI, race, and distance from the treating facility. This makes it less likely that selection of lower risk nodules for molecular testing reduced the PPV and specificity in our study.

Another limitation of this study is the inability to formally characterize patients with benign molecular testing who did not undergo surgery for confirmation of benignity. Up to 6% false negative rate has been reported in those with benign molecular testing, discovered by changes on serial ultrasound assessment longitudinally. However, this is a limitation of all retrospective indeterminate thyroid FNA molecular studies, given surgery is avoided in all those with benign molecular test results.

Conclusions:

Surgical rates in patients with cytologically indeterminate thyroid nodules without molecular testing and those with Afirma GEC were not significantly different in our cohort. Only those with Afirma GSC testing had a significant reduction in surgical rates and increase in malignancy rates after implementation of testing. Sensitivity and NPV were high for both GEC and GSC. Those who do not undergo molecular testing of thyroid nodule more commonly have larger nodule size, growth of thyroid nodule, and constrictive symptoms. In patients who did not undergo molecular testing, those that underwent surgery had overall higher BMI, constrictive symptoms, higher TIRADS score on ultrasound imaging, and higher Bethesda classification. In those without molecular testing, if patients had seen a surgeon, they were more likely to undergo surgery, as compared with seeing an endocrinologist or other provider. Further studies are needed to understand the practical application of these molecular markers preoperatively in cytologically indeterminate thyroid nodules as not all patients opt for the use molecular testing for further evaluation in this clinical scenario.

Data Availability:

Some or all data generated or analyzed during this study are included in this published article.
References

1. Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C. M., Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. *Eur J Clin Invest* 2009, 39 (8), 699-706.

2. Cibas, E. S.; Ali, S. Z., The 2017 Bethesda System for Reporting Thyroid Cytopathology. *Thyroid* 2017, 27 (11), 1341-1346.

3. Baloch, Z. W.; Cooper, D. S.; Gharib, H.; Alexander, E. K., Overview of Diagnostic Terminology and Reporting. In *The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria, and Explanatory Notes*, Ali, S. Z.; Cibas, E. S., Eds. Springer International Publishing: Cham, 2018; pp 1-6.

4. Haugen, B. R.; Alexander, E. K.; Bible, K. C.; Doherty, G. M.; Mandel, S. J.; Nikiforov, Y. E.; Pacini, F.; Randolph, G. W.; Sawka, A. M.; Schlumberger, M.; Schuff, K. G.; Sherman, S. I.; Sosa, J. A.; Steward, D. L.; Tuttle, R. M.; Wartofsky, L., 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid* 2016, 26 (1), 1-133.

5. Network, N. C. C. Thyroid Carcinoma (Version 2.2020). https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf (accessed August 24th, 2020).

6. Alexander, E. K.; Kennedy, G. C.; Baloch, Z. W.; Cibas, E. S.; Chudova, D.; Diggans, J.; Friedman, L.; Kloos, R. T.; LiVolsi, V. A.; Mandel, S. J.; Raab, S. S.; Rosai, J.; Steward, D. L.; Walsh, P. S.; Wilde, J. I.; Zeiger, M. A.; Lanman, R. B.; Haugen, B. R., Preoperative Diagnosis of Benign Thyroid Nodules with Indeterminate Cytology. *New England Journal of Medicine* 2012, 367 (8), 705-715.

7. Patel, K. N.; Angell, T. E.; Babiarz, J.; Barth, N. M.; Blevins, T.; Duh, Q.-Y.; Ghossein, R. A.; Harrell, R. M.; Huang, J.; Kennedy, G. C.; Kim, S. Y.; Kloos, R. T.; LiVolsi, V. A.; Randolph, G. W.; Sadow, P. M.; Shanik, M. H.; Sosa, J. A.; Traweek, S. T.; Walsh, P. S.; Whitney, D.; Yeh, M. W.; Ladenson, P. W., Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. *JAMA surgery* 2018, 153 (9), 817-824.

8. Endo, M.; Nabhan, F.; Porter, K.; Roll, K.; Shirley, L. A.; Azaryan, I.; Tonkovich, D.; Perlick, J.; Ryan, L. E.; Khawaja, R.; Meng, S.; Phay, J. E.; Ringel, M. D.; Sipos, J. A., Afirma Gene Sequencing Classifier Compared with Gene Expression Classifier in Indeterminate Thyroid Nodules. *Thyroid* 2019, 29 (8), 1115-1124.

9. Wu, J. X.; Young, S.; Hung, M. L.; Li, N.; Yang, S. E.; Cheung, D. S.; Yeh, M. W.; Livhits, M. J., Clinical Factors Influencing the Performance of Gene Expression Classifier Testing in Indeterminate Thyroid Nodules. *Thyroid* 2016, 26 (7), 916-22.
10. Harrell, R. M.; Eyerly-Webb, S. A.; Golding, A. C.; Edwards, C. M.; Bimston, D. N., STATISTICAL COMPARISON OF AFIRMA GSC AND AFIRMA GEC OUTCOMES IN A COMMUNITY ENDOCRINE SURGICAL PRACTICE: EARLY FINDINGS. *Endocr Pract* **2019**, *25* (2), 161-164.

11. San Martin, V. T.; Lawrence, L.; Beno, J.; Madhun, N. Z.; Berber, E.; Elsheikh, T. M.; Nasr, C. E., Real-world Comparison of Afirma GEC and GSC for the Assessment of Cytologically Indeterminate Thyroid Nodules. *J Clin Endocrinol Metab* **2020**, *105* (3).

12. McIver, B.; Castro, M. R.; Morris, J. C.; Bernet, V.; Smalridge, R.; Henry, M.; Kosok, L.; Reddi, H., An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. *J Clin Endocrinol Metab* **2014**, *99* (11), 4069-77.

13. Angell, T. E.; Heller, H. T.; Cibas, E. S.; Barletta, J. A.; Kim, M. I.; Krane, J. F.; Marqusee, E., Independent Comparison of the Afirma Genomic Sequencing Classifier and Gene Expression Classifier for Cytologically Indeterminate Thyroid Nodules. *Thyroid* **2019**, *29* (5), 650-656.

14. Liu, Y.; Pan, B.; Xu, L.; Fang, D.; Ma, X.; Lu, H., The Diagnostic Performance of Afirma Gene Expression Classifier for the Indeterminate Thyroid Nodules: A Meta-Analysis. *Biomed Res Int* **2019**, 2019, 7150527.

15. Wei, S.; Veloski, C.; Sharda, P.; Ehya, H., Performance of the Afirma genomic sequencing classifier versus gene expression classifier: An institutional experience. *Cancer Cytopathol* **2019**, *127* (11), 720-724.

16. Harrell, R.; Bimston, D., Surgical Utility of Afirma: Effects of High Cancer Prevalence and Oncocytic Cell Types in Patients with Indeterminate Thyroid Cytology. *Endocrine Practice* **2014**, *20* (4), 364-369.

17. Chaudhary, S.; Hou, Y.; Shen, R.; Hooda, S.; Li, Z., Impact of the Afirma Gene Expression Classifier Result on the Surgical Management of Thyroid Nodules with Category III/IV Cytology and Its Correlation with Surgical Outcome. *Acta Cytol* **2016**, *60* (3), 205-10.

18. Gortakowski, M.; Feghali, K.; Osakwe, I., Single Institution Experience with Afirma and Thyroseq Testing in Indeterminate Thyroid Nodules. *Thyroid* **2021**.

19. Geng, Y.; Aguilar-Jakthong, J. S.; Moatamed, N. A., Comparison of Afirma Gene Expression Classifier with Gene Sequencing Classifier in indeterminate thyroid nodules: A single-institutional experience. *Cytopathology* **2021**, *32* (2), 187-191.

20. Livhits, M. J.; Kuo, E. J.; Leung, A. M.; Rao, J.; Levin, M.; Douek, M. L.; Beckett, K. R.; Zanocco, K. A.; Cheung, D. S.; Gofnung, Y. A.; Smooke-Praw, S.; Yeh, M. W., Gene Expression Classifier vs Targeted Next-Generation Sequencing in the Management of Indeterminate Thyroid Nodules. *J Clin Endocrinol Metab* **2018**, *103* (6), 2261-2268.

21. Yang, S. E.; Sullivan, P. S.; Zhang, J.; Govind, R.; Levin, M. R.; Rao, J. Y.; Moatamed, N. A., Has Afirma gene expression classifier testing refined the indeterminate thyroid category in cytology? *Cancer Cytopathol* **2016**, *124* (2), 100-9.

22. Jug, R. C.; Datto, M. B.; Jiang, X. S., Molecular testing for indeterminate thyroid nodules: Performance of the Afirma gene expression classifier and ThyroSeq panel. *Cancer Cytopathol* **2018**, *126* (7), 471-480.
23. Sacks, W. L.; Bose, S.; Zumsteg, Z. S.; Wong, R.; Shiao, S. L.; Braunstein, G. D.; Ho, A. S., Impact of Afirma gene expression classifier on cytopathology diagnosis and rate of thyroidectomy. *Cancer Cytopathol* **2016**, *124* (10), 722-728.

24. Kay-Rivest, E.; Tibbo, J.; Bouhabel, S.; Tamilia, M.; Leboeuf, R.; Forest, V. I.; Hier, M. P.; Savoury, L.; Payne, R. J., The first Canadian experience with the Afirma® gene expression classifier test. *J Otolaryngol Head Neck Surg* **2017**, *46* (1), 25.

25. Yang, Z.; Zhang, T.; Layfield, L.; Esebua, M., Performance of afirma gene sequencing classifier versus gene expression classifier in thyroid nodules with indeterminate cytology. *J Am Soc Cytopathol* **2021**.

26. Celik, B.; Whetsell, C. R.; Nassar, A., Afirma GEC and thyroid lesions: An institutional experience. *Diagn Cytopathol* **2015**, *43* (12), 966-70.

27. Lastra, R. R.; Pramick, M. R.; Crammer, C. J.; LiVolsi, V. A.; Baloch, Z. W., Implications of a suspicious afirma test result in thyroid fine-needle aspiration cytology: an institutional experience. *Cancer Cytopathol* **2014**, *122* (10), 737-44.

28. Lee, D. J.; Xu, J. J.; Brown, D. H.; Gilbert, R. W.; Gullane, P. J.; Irish, J. C.; Rotstein, L. E.; Goldstein, D. P.; de Almeida, J. R., Determining Patient Preferences for Indeterminate Thyroid Nodules: Observation, Surgery or Molecular Tests. *World J Surg* **2017**, *41* (6), 1513-1520.

29. Zhu, C. Y.; Donangelo, I.; Gupta, D.; Nguyen, D. T.; Ochoa, J. E.; Yeh, M. W.; Livhits, M. J., Outcomes of Indeterminate Thyroid Nodules Managed Nonoperatively after Molecular Testing. *J Clin Endocrinol Metab* **2021**, *106* (3), e1240-e1247.

30. Roychoudhury, S.; Klein, M.; Souza, F.; Gimenez, C.; Laser, A.; Shaheen Cocker, R.; Chau, K.; Das, K., How "suspicious" is that nodule? Review of "suspicious" Afirma gene expression classifier in high risk thyroid nodules. *Diagn Cytopathol* **2017**, *45* (4), 308-311.
Figure 1: Flow chart demonstrating distribution of the indeterminate thyroid nodules, surgical and malignancy rates
| GEC | Sensitivity % | Specificity % | PPV % | NPV % | BCR % | # nodule | Surgical Rate % | Malignancy Rate % |
|--------------|---------------|---------------|-------|-------|-------|----------|-----------------|-------------------|
| Alexander | 92 | 52 | 47 | 93 | 38 | 265 | 100 | 32 |
| Angell | - | - | 34 | - | 47.9 | 486 | 51 | 31 |
| Chaudhary | 100 | 15 | 38 | 100 | 40 | 158 | 54.4 | 33.7 |
| Celik | - | - | - | - | 33.3 | 66 | 57.6 | 50 |
| Endo | 94 | 19 | 33 | 89 | 48.1 | 343 | 52.4 | 42 |
| Endo | 94 | 61 | 33 | 98 | 48.1 | 343 | 52.4 | 42 |
| Gortakowski | 85.7 | 60.4 | 22.2 | 97 | 60 | 92 | 36.9 | 19.3 |
| Geng | 91 | 28 | 51 | 79 | 49 | 167 | 42.5 | 30 |
| Harrell | 94.4 | 23.5 | 38-57 | 80-90 | 34 | 58 | 63 | 33-51.4 |
| Harrell | 88 | 32 | 57 | - | 42 | 509 | 56 | 51.4 |
| Jug | - | - | 30.1 | - | 51 | 207 | 46.3 | 21 |
| Livhits | 100 | 15.8 | 38.5 | 100 | 42.9 | 70 | 43 | 34.4 |
| Lastra | - | - | - | - | 53 | 132 | 37.8 | 44 |
| Mclver | 83 | 10 | 16 | 75 | 27 | 60 | 60 | 17 |
| San Martin | 97 | 60 | 40 | 98.6 | 41 | 178 | 47.8 | 21.6 |
| Sacks | 33.3 | - | 37.1 | - | 37.1 | 140 | 45.1 | 36 |
| Study | Sensitivity | Specificity | Diagnoses | TP | FP | PPV | NPV | ACC |
|-------------------------------|------------|------------|-----------|----|----|-----|-----|-----|
| Roychoudhury 30*** | - | - | - | - | - | - | - | - |
| Kay-Rivest 24# Newfoundland | - | - | 51.51 | 46 | 63 | 52.3| 52 | |
| Kay-Rivest 24# Montreal | - | - | 45.71 | 55 | 109| 40.3| 48 | |
| Wu 9*** | 95.2 | 60.1 | 93.3-100 | 46.2| 245| 52 | 49 | |
| Wei 15 | - | - | 36.7 | 45.4| 194| 74.5| 37 | |
| Yang, SE 21 | 100 | 15.4 | 50.7 | 42 | 217| 33.6| 46.5| |
| Yang, Z 25 | - | - | 47 | 88 | 53 | 49 | - | |

*all nodules with surgical confirmation
**all nodules with surgical confirmation + benign GEC/GSC nodules
***range accounts for cancer prevalence ranging from 33%-51.4%
****Afirmasuspicious nodule only
-Not reported
non diagnostic not included
GSC	Sensitivity %	Specificity %	PPV %	NPV %	BCR %	# nodules	Surgical Rate %	Malignancy Rate %
Angell13*	-	68.3**	50**	-	65.8	114	32	46
Endo*	100	17*	60*	100	76.2	164	17.6	52
Endo**	100	94**	60**	100	76.2	164	17.6	52
Harrell10	97	44	76	-	61.2	146	31	64
Gortakowski18	100	73.7	61.5	97	78	73	20.5	61.5
Geng19	100	42	61	100	61	133	34.5	36
Kepal7	91.1	68.3	47.2%	96.1	54	191	100	24
San Martin11**	90.6	94	85.3**	96.3	67.3	121	34.7	27.6
Wei15*	-	-	57.9*	-	66.7	78	53.8	57
Yang, Z25	-	-	64	100	63	51	-	-

*all nodules with surgical confirmation
**all nodules with surgical confirmation + benign GEC/GSC nodules
- Not reported
non diagnostic excluded
Table 3: Demographics and clinicopathologic features of those with and without molecular testing

	No Molecular Testing (n=273)	Molecular Testing GEC (n=71)	Molecular Testing GSC (n=124)	p-value
Age in years, mean ± SD	5.9 ± 14.9	55.4 ± 16.7	56.17 ± 15.7	0.434
Female, n (%)	202 (74%)	45 (63%)	85 (69%)	0.502
BMI, kg/m^2, mean ± SD	30.3 ± 6.9	30.5 ± 6.3	31.1 ± 6.9	0.566
Race				0.3109
Caucasian	229/273 (83.9%)	62/71 (87.3%)	111/124 (89.5%)	
Black	29/273 (10.6%)	4/71 (5.6%)	9/124 (7.3%)	
Hispanic	3/273 (1.1%)	0/71 (0%)	1/124 (0.8%)	
Asian	5/273 (1.8%)	2/71 (2.8%)	2/124 (1.6%)	
Other	7/273 (2.6%)	3/72 (4.2%)	1/124 (0.8%)	
Location of residence, (% local)	146/273 (54.5%)	37/71 (52.1%)	71/124 (57.3%)	0.7238
Clinical characteristics				
Preexisting hypothyroidism (%)	12/71 (16.9%)	16/124 (12.9%)		0.6667
# nodules, mean ± SD	2.2 ± 1.2	2.1 ± 1.5	2.1 ± 1.0	0.178
Nodule size in cm, mean ± SD	2.8 ± 1.4	2.8 ± 1.2	2.3 ± 1.0	0.0001
Increased growth prior to biopsy, n (%)	78/221 (35.3%)	14/54 (25.9%)	24/113 (21.2%)	0.0235
Constrictive symptoms, n (%)	46/235 (19.6%)	5/61 (8.2%)	8/118 (6.8%)	0.0018
Imaging characteristics				
TIRADS				0.0767
TIRADS 1, n (%)	1/238 (0.4%)	0/56 (0%)	0/113 (0%)	
TIRADS 2, n (%)	8/238 (3.4%)	3/56 (5.4%)	5/113 (4.4%)	
TIRADS 3, n (%)	76/238 (31.9%)	24/56 (42.9%)	28/113 (24.8%)	
TIRADS 4, n (%)	124/238 (52.1%)	23/56 (41.1%)	62/113 (54.9%)	
TIRADS 5, n (%)	29/238 (12.2%)	6/56 (10.7%)	18/113 (15.9%)	
ATA				0.465
ATA Very Low, n (%)	3/238 (1.3%)	0/56 (0%)	4/113 (3.5%)	
ATA Low, n (%)	86/238 (36.1%)	26/56 (46.4%)	36/113 (31.9%)	
ATA Intermediate, n (%)	114/238 (47.9%)	23/56 (41.1%)	54/114 (47.8%)	
ATA High, n (%)	35/238 (14.7%)	7/56 (12.5%)	19/113 (16.8%)	
Hypoechoic, n (%)	151/237 (63.7%)	30/56 (53.8%)	69/111 (62.2%)	0.3724
------------------	-----------------	---------------	----------------	--------
Calcifications, n (%)	67/241 (27.8%)	12/56 (21.4%)	36/113 (31.9%)	0.3622
Cytopathology characteristics				**0.0073**
Bethesda III- AUS/FLUS, n (%)	126 (46%)	43 (60%)	83 (67%)	
Bethesda IV- FN, n (%)	115 (42.1%)	21 (30%)	21 (17%)	
Bethesda IV- HCN, n (%)	32 (12%)	7 (10%)	20 (16%)	
# underwent surgery, n (%),	185/273 (67.8%)	42/71 (59.2%)	49/124 (39.5%)	**0.0001**
Time to surgery in days, median (IQR)	44 (30 – 75)	90 (56.5 – 269)	58 (44 – 86)	**0.0001**
Time to surgery > 180 days, n (%)	18 (10.6)	11 (34.4)	7 (15.2)	**0.0022**

AUS: Atypia of Undetermined Significance
FLUS: Follicular Neoplasm of Undetermined Significance
FN: Follicular Neoplasm
HCN: Hurthle Cell Neoplasm
Table 4: Demographics and clinicopathologic features of those without molecular testing who did and did not undergo surgery

	No Surgery (88)	Surgery (185)	p-value
Age in years, mean ± SD	57.7 ± 16.0	53.6 ± 14.2	0.199
Race			
Caucasian	69/88 (78.4%)	160/185 (86.5%)	0.086
Black	12/88 (13.6%)	17/185 (9.2%)	
Hispanic	1/88 (1.1%)	2/185 (1.1%)	
Asian	3/88 (3.4%)	2/185 (1.1%)	
Other	3/88 (3.4%)	4/185 (2.2%)	
Female, n (%)	65/88 (73.9%)	137/185 (74.1%)	0.9734
BMI kg/m2, mean ± SD	28.3 ± 5.8	31.2 ± 7.2	0.019
Location of residence, n (% local)	54/88 (61.4%)	92/185 (49.7%)	0.072
Preexisting hypothyroidism, n (%)	11/82 (13.4%)	23/181 (12.7%)	0.874
# nodules number ± SD	2.4 ± 1.3	2.1 ± 1.2	0.298
Max size of nodule cm, n ± SD	2.46 ± 1.3	2.96 ± 1.5	0.103
Increased growth prior to biopsy, n (%)	22/53 (41.5%)	56/168 (33.3%)	0.277
Cytology result			0.0001
AUS/FLUS, n (%)	58/88 (65.9%)	68.185 (36.8%)	
FN, n (%)	24/88 (27.3%)	91/185 (49.2%)	
HCN, n (%)	6/88 (6.8%)	26/185 (14.1%)	
Constrictive symptoms	7/68 (10.3%)	39/167 (23.4%)	0.022
TIRADS			0.0353
TIRADS 1, n (%)	0/76 (0%)	1/162 (0.6%)	
TIRADS 2, n (%)	5/76 (6.6%)	3/162 (1.9%)	
TIRADS 3, n (%)	29/76 (38.2%)	47/162 (29.0%)	
TIRADS 4, n (%)	35/76 (46.1%)	89/162 (54.9%)	
TIRADS 5, n (%)	7/76 (9.2%)	22/162 (13.6%)	
ATA			0.0912
Very low, n (%)	2/76 (2.6%)	1/162(0.6%)	
Low, n (%)	32/76 (42.1%)	54/162 (33.3%)	
Intermediate, n (%)	33/76 (43.4%)	81/162 (50%)	
High, n (%)	9/76 (11.8%)	26/162 (16.1%)	
Hypoechogenicity, n (%)	47/76 (61.8%)	104/161 (64.6%)	0.681
------------------------	---------------	-----------------	-------
Calcifications, n (%)	20/78 (25.6%)	47/163 (28.8%)	0.605
Type of provider			0.027
Endocrine, n (%)	34/83 (40.96%)	60/170 (35.3%)	
Surgeon, n (%)	31/83 (37.4%)	105/170 (61.8%)	
Other, n (%)	18/83 (21.7%)	5/170 (2.9%)	
Table 5: Benign Call Rate

	GEC	GSC	P value
Overall, n (%)	33/71 (46%)	75/124 (60%)	0.7855
Bethesda III- AUS/FLUS, n (%)	21/43 (49%)	50/83 (60%)	0.544
Bethesda IV- FN, n (%)	11/21 (52%)	12/21 (57%)	0.451
Bethesda IV- HCN, n (%)	1/7 (14%)	13/20 (65%)	0.0254

AUS: Atypia of Undetermined Significance
FLUS: Follicular Neoplasm of Undetermined Significance
FN: Follicular Neoplasm
HCN: Hurthle Cell Neoplasm
	Molecular Testing Not Performed	GEC	GSC	P value
Overall, n (%)	185/273 (68%)	42/71 (59%)	49/124 (40%)	0.0001
Bethesda III- AUS/FLUS, n (%)	68/126 (54%)	23/43 (53%)	36/83 (43%)	0.2959
Bethesda IV- FN, n (%)	91/115 (79%)	13/21 (62%)	7/21 (33%)	0.0001
Bethesda IV- HCN, n (%)	26/32 (81%)	6/7 (86%)	6/20 (30%)	0.0005

AUS: Atypia of Undetermined Significance
FLUS: Follicular Neoplasm of Undetermined Significance
FN: Follicular Neoplasm
HCN: Hurthle Cell Neoplasm
	Molecular Testing Not Performed	GEC	GSC	P value
Overall, n (%)	37/185 (20%)	9/41(22%)	19/49 (39%)	**0.0222**
Bethesda III- AUS/FLUS, n	10/68 (15%)	6/23 (26%)	14/36(39%)	**0.0217**
Bethesda IV- FN, n (%)	24/91 (26%)	3/12 (25%)	3/7 (43%)	0.6322
Bethesda IV- HCN, n (%)	3/26 (12%)	0/6 (0%)	2/6 (33%)	0.2204

AUS: Atypia of Undetermined Significance
FLUS: Follicular Neoplasm of Undetermined Significance
FN: Follicular Neoplasm
HCN: Hurthle Cell Neoplasm
Table 8: Performance of GEC and GSC: all nodules with surgical confirmation

	Sensitivity	Specificity	PPV	NPV	BCR
GEC all nodules	100%	32%	28%	100%	46%
Bethesda III nodules	100%	29%	33%	100%	49%
Bethesda IV nodules- FN	100%	44%	29%	100%	52%
GSC all nodules	94%	17%	41%	83%	60%
Bethesda III nodules	92%	19%	43%	80%	60%
Bethesda IV nodules- FN	100%	0%	43%	0%	57%

FN: Follicular Neoplasm

Table 9: Performance of GEC and GSC: all nodules with surgical confirmation + benign GEC/GSC nodules

	Sensitivity	Specificity	PPV	NPV	BCR
GEC all nodules	100%	61%	28%	100%	46%
Bethesda III nodules	100%	64%	33%	100%	49%
Bethesda IV nodules- FN	100%	69%	29%	100%	52%
GSC all nodules	94%	76%	41%	97%	60%
Bethesda III nodules	93%	74%	43%	98%	60%
Bethesda IV nodules- FN	100%	75%	43%	100%	57%

FN: Follicular Neoplasm
Figure 1: Flow chart demonstrating distribution of the indeterminate thyroid nodules, surgical and malignancy rates

- **Nodules Analyzed, 468**
 - **No molecular testing**
 - Surgery 185 (68%)
 - Cancer 37 (20%)
 - **GEC**
 - 71 (15%)
 - Non diagnostic, 4
 - Benign 33 (46%)
 - Suspicious 34 (48%)
 - Surgery 10 (30%)
 - Cancer 0 (0)
 - Cancer 8 (27%)
 - **GSC**
 - 124 (26%)
 - Non diagnostic, 3
 - Suspicious 46 (37%)
 - Benign 75 (60%)
 - Surgery 6 (8%)
 - Surgery 41 (89%)
 - Cancer 1 (17%)
 - Cancer 17 (41%)