Dermacentor reticulatus biorhythms in the northern forest-steppe of the Tyumen region

Yu V Glazunov¹, L A Glazunova² and Yu A Vinogradova²
¹Acarology laboratory, ASRIVEA – Branch of Tyumen Scientific Centre SB RAS, Tyumen, Russia
²Department of Infectious and Invasive Diseases, FSBEI HE Northern Trans-Ural SAU, Tyumen, Russia
E-mail: glazuovyyv@gausz.ru

Abstract. To forecast the number of ticks and take successful measures for decreasing them in population it is necessary to know the features of their phenology in a particular region. The majority of acarologists pays attention to the features of Ixodes persulcatus activity as they transmit ixodid infections. The proved epizootic and epidemiological importance of Dermacentors dictates the necessity of developing and organizing the comprehensive control system against this specie of ticks to prevent diseases. This demand the fullest and comprehensive studying of ecology and phenology features of Dermacentor reticulatus of a particular region. The aim of the research is the detailed studying of bioecology of Dermacentor reticulates ticks, the most widespread ticks in the Tyumen region. We had monitored over the life cycle features of Dermacentor reticulates in natural biotopes over the 2013 to 2014 period in the subzone of the northern forest-steppe of the Tyumen region. In natural climatic conditions of the specified climatic zone Dermacentor reticulatus are capable to give one generation per a parasitizing season if parasite juvenile forms meet feeders. The whole process of reproduction from egg up to the adult specimen emerge took from 69 to 161 days, and averagely 115±1.99 full days. Metamorphosis of larvae had taken the shortest time period (29.1±2.0 full days or 25.3% of all cycle time), nymph and imago formations had happened practically for equal periods of 34.5±2.3 and 37.0±5.0 full days respectively. Having studied the regularities of the Dermacentor reticulates life cycles we can prove the emergence and the activity peaks of both juvenile, and adult phases of these ticks activity. That allows to plan actions on controlling these parasites in places of their dwelling.

1. Introduction

Nowadays, according to the statistics the infectious diseases with a natural nidality remain the most dangerous in every respect and cause concern with close attention of many scientists and practicians [1–5]. Therefore, it calls for comprehensive studying infectious diseases and developing science-based reasonable anti-epizootic and anti-epidemic actions on a. All this allows not only to expect scientifically, but also to prevent the emergence and spread of many infections, including those which are transferred by ixodid ticks [6–8].

Ixodid ticks have great medical and veterinary value. It is defined by their vector-borne transmission of many most dangerous pathogens for humans and farm animals. It is considered that the list of the expert diagnosed diseases transmitted by ixodid ticks is not nearly complete [9–13].

At a complication of epidemiologic and epizootologic situations on tick-borne infections it is necessary to start conducting series of measures directed to localization of center of infections soon
as possible. The priority measures in this case are the treatment of natural biotopes and animals by highly effective acaricides, but at the same time it is necessary to know life cycle of a parasite in details as it can be influenced by abiotic and biotic factors [14,15].

In recent years most of researchers have turned their focus toward studying the features of lifecycles and biological rhythms of Ixodes ticks as they have been considered as the main vector force of spreading tick-borne infections until recently. Lately in press there is much more information about participating Dermacentor ticks in this process [16–18].

Taking in to account the widest reading of ticks Dermacentor reticulatus in the Tyumen region and the improved active in volvement in saving and trans mitting the tick-borne encephalitis virus, Borrelia, Anaplasma and Babesia, it is necessary to study the peculiarities of life cycles of these tick species to control the situation in epizootic and epidemiologic processes [10,11].

2. Materials and methods
The experimental part of the study has been carried out by the Russian National Research Institute of veterinary entomology and arachnology in the laboratory of acarology under support of Programme of fundamental research of the RAS, project IX. 135.2.3, as well as by the Northern Trans-Ural State Agricultural University at the department of infectious and invasion diseases. We had observed the life-cycle features of ticks Dermacentor reticulates in natural biotopes over the 2013 to 2014 period. For tri a establishment of ticks in natural conditions they were caught in natural stations in the first decade of September (autumn activity peak). To study the ixodidae capacity of survival in winter period they were fed on laboratory animals (rabbits) and were put into cages specially prepared for that experiment (Figures 1–3).

Figure 1. Moving of congested female tick into forest litter. Figure 2. Female tick. Dermacentor reticulatus in natural conditions. Figure 3. Woodencage with the female tick D. reticulatus.

Each congested female was put into an individual cage, which was stationed at discount area in biotope for wintering. The female ticks were put on September 19, 2013 at the air temperature of 11.3°C and relative humidity of 90%.

3. Research results
The female ticks were under observation during the ixodidae activity season. As result, we have established that none female could lay eggs in autumn period (Figures 4, 5).
Considering negative meteorological factors which were characterized by heavy rains and low ambient temperature the terms of tick parasitizing in such conditions have been limited. The last active ticks in 2013 were caught in the nature on 29 September. Such behaviour of female ticks was justified. In spite of the fact that the fall was long, air temperature had not been down to below 10°C up to December.

Weather conditions in winter months were standard for the region: the average air temperature was -13.8°C, the average indicator of atmospheric pressure was 755.2 mm Hg, the rainfall was 66 mm, the snow cover depth was 26.5 cm that corresponds to normal climatic indexes for studying region.

The observation over full females was continued at the beginning of the ixodid ticks activity season. The laying was checked on March 24, we stated the existence of all bions in the cages showing life signs. At the same time no one female tick started the process of egg-laying. After opening the cages we continued daily observations over the ticks, in the course of which we established the death of one female from the unknown wrecker (Figure 6), and three female ticks started their egg-laying on 6 May.
In 4 days (May 10) two more female ticks started laying eggs, next day the other two female ticks started laying eggs (Figures 7–9).

We have noted that females started egg-laying only when the air temperature was stabilized at the level of 15.4–24.9°C. The last alive female had fallen into diapause, it did not lay eggs during all season, and died at the end of the season. As a result, all 9 female ticks successfully overwintered, whereas only 7 females (77.8%) laid eggs.

The duration of the separate stages of Dermacentor reticulatus development in natural conditions is presented in the Table 1. The Table 1 illustrates that the process of egg-laying had lasted for 6–14 days, then the period of larvae formation had started and lasted for 11–26 days, the emerge of the first larvae was registered on June 01. The process of larvae emerges had lasted for 23 days and finished on June 23 (Figures 10, 11).
Table 1. The duration of particular stages of *Dermacentor reticulatus* development in natural conditions from 2013 to 2014.

Stage of development	Duration of development, full day limits	According to life stages	%	%	
Egglaying	6...14	10.0±2.7	8.7	10.0±2.7	8.7
Larva metamorphosis	11...26	18.5±4.8	16.1	33.5±2.0	29.1
Larva emerge	7...23	15.0±2.0	13.0		
Larva feeding	5...7	6.0±1.0	5.2		
Nymph metamorphosis	11...22	16.5±3.6	14.3	34.5±2.3	30.0
Nymph emerge	9...15	12.0±2.2	10.4		
Nymph feeding	7...18	12.5±3.6	10.9		
Imago metamorphosis	13...36	24.5±6.5	21.3	37.0±5.0	32.2
Imago emerge	-	-	-		
Total period of tick development	69...161	115.0±1.9	100	115.0±6.4	100

To actualize life cycles of *Dermacentor reticulatus* the individual cages with female ticks were demounted and all larvae were unified in one cage. The construction was strengthened by metal plates sunk 20 cm into the earth. To feed up larvae the white mice were put into the cage for 5–7 full days (Figures 12–14).

On the 8th day of the observation (June 30) there were no any larvae on the mice (Figure 14).

![Figure 11. Process of larvae grouping.](image1)

![Figure 12. The cage for feeding pre-imago ixodidae in the biotope.](image2)
Figure 13. Larvae creeping to the feeder. Figure 14. Keeping feeders in the cage.

Nymph metamorphosis from larvae had lasted for 11-22 full days, then on July 8 we had noticed the nymph emerges in cage, which had lasted for 9-15 days and had finished on July 23. To feed up nymphs and continue their metamorphosis, we put white mice in to the cage on July 24 for 7-18 days as they were feeders for ixodidae at nymphal stage. We stopped feeding nymphs on 10 August. The imago metamorphosis had lasted for the most long time (13-36 full days), and the first adults had appeared in the cage only on August 22, and the imago emerge had stopped by September 4, i.e. it had lasted for 13 days.

Analyzing the data presented in Table 1 we have revealed that the duration of separate stages of D. reticulatus development is various. Thus, larva metamorphoses had taken the smallest time period (29.1±2.0 full days or 25.3% of all time of a cycle) in comparison with the other active phases of ixodidae formation. Nymph and imago formations happened practically in equal periods of 34.5±2.3 and 37.0±5.0 full days respectively. We have noted that, Dermacentor reticulatus ticks are capable to give one generation for a parasitizing season if parasite juvenile forms meet feeders. All the process of reproduction from egg up to the emergence of an adult tick takes from 69 to 161 days, averagely 115±1.99 full days. During the observation we noticed that the preimaginal stages of the D. reticulatus spend 18.5% of time in metamorphosis by eating on an animal (without imago feeding time).

4. Conclusions

In natural climate conditions of the Northern Trans-Ural region the Dermacentor reticulatus ticks are capable to give one generation for a parasitizing season on condition of meeting juvenile forms of a parasite with a feeder. All process of reproduction from egg up to the emergence of an adult tick takes from 69 to 161 days, averagely 115±1.99 full days. Metamorphoses of larvae takes the smallest time period – 29.1±2.0 full days or 25.3% of all time of a cycle, the formation of nymphs and imagos happens practically in equal time periods of 34.5±2.3 and 37.0±5.0 full days respectively. Having studied these regularities of life cycles of the Dermacentor reticulates ticks of we can prove the emergence and the peaks of activity of both juvenile, and adult phases of these ticks activity that allows to plan actions for extermination of these parasites in places of their dwelling.
Acknowledgment
The article was prepared with the financial support of the Program of Fundamental Research of the Russian Academy of Sciences, registration number AAAA-A18-118020690240-3 "Monitoring of the epizootic situation and freacstes of the development of possible outbreaks of parasitic animal diseases".

References
[1] Bourdeau P, Ximenes T and Beziade O 2004 Journal Veterinary Dermatology 15 49
[2] Buczek A, Zajac Z, Woźniak A, Kulina D and Bartosik K 2017 Ann Agric Environ Med 24 271–275 doi: 10.5604/12321966.1230736.
[3] Hornok S, Meli M, Gönczi E and Hofmann-Lehmann R 2017 Acta Vet Hung 65 81–88 doi: 10.1556/004.2017.008
[4] Tohov Y, Lutsuk S and Dyachenko Y 2013 Parasitology 47 437–447
[5] Vongphayloth K, Hertz J, Lakeomany K, Apanaskevich D, Robbins R and Sutherland I Brey P 2018 J Med Entomol 55 1047–1050 doi: 10.1093/jme/tjy041
[6] Medlock J, Hansford K, Vaux A, Cull B, Abdullah S, Pietzsch M, Wall R, Johnson N and Phipps L 2017 Med Vet Entomol 31(3) 281–288
[7] Moraru G, Portugal J, Bednarova A, Mcinnis S, Paddock C, Becker T, Smith T, Svobodova Z and Goddard J 2018 Med Entomol 55 871–876 doi: 10.1093/jme/tjy009.
[8] Olivieri E, Gazzonis A, Zanzani, Veronesi S and Manfredi M 2017 Ticks Tick Borne Dis 8 772–779 doi: 10.1016/j.ttbdis.2017.06.002
[9] Brugger K, Walter M, Chitimia-Dobler L, Dobler G and Rubel F 2018 Exp Appl Acarol. 75 281–288 doi: 10.1007/s10493-018-0267-6
[10] Glazunov Y and Glazunova L 2018 Journal of Pharmaceutical Sciences and Research 10 129–131
[11] Glazunov Y and Glazunova L 2018 Indian Vet. J. 95 19–22
[12] Radzijevskaja J, Mardosaitė-Busattienė D, Aleksandravičienė A and Paulauskas A 2017 Ticks Tick Borne Dis 9 270–274 doi: 10.1016/j.ttbdis.2017.09.013
[13] Selmi M, Tomassone L, Ceballos L, Crisci A, Ragaglì C, Pintore M, Mignone W, Pautasso A, Ballardini M, Casalone C and Mannelli A 2018 Exp Appl Acarol. 75 209–225 doi: 10.1007/s10493-018-0257-8.
[14] Skipin L, Gaevaya E, Zaharova E, Petukhova V and Sidorova K 2016 Procedia Engineering 165 860–868
[15] Stolbova O, Glazunov Y and Skosyrskikh L 2018 Indo American journal of pharmaceutical sciences 05 1675–1682
[16] Glazunova L, Glazunov Y and Ergashev A 2018 Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 1687–1693
[17] Machtinger E and Li A 2017 Exp Appl Acarol 73(3-4) 451–460. doi: 10.1007/s10493-017-0185-z
[18] Glazunov Y and Glazunova L 2020 EurAsian Journal of BioSciences 14(1) 255–258