Lack of a genuine time crystal in a chiral soliton model

Andrzej Syrwid,1 Arkadiusz Kosior,1,2 and Krzysztof Sacha1

1Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, ulica Profesora Stanisława Lojasiewicza 11, PL-30-348 Kraków, Poland
2Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany

(Received 25 May 2020; accepted 3 August 2020; published 17 August 2020)

In a recent publication [Phys. Rev. Lett. 124, 178902 (2020)], Öhberg and Wright claim that in a chiral soliton model it is possible to realize a genuine time crystal which corresponds to a periodic evolution of an inhomogeneous probability density in the lowest-energy state. We show that this result is incorrect and present a solution which possesses lower energy with the corresponding probability density that does not reveal any motion. It implies that the authors’ conclusion that a genuine time crystal can exist in the system they consider is not true.

DOI: 10.1103/PhysRevResearch.2.032038

I. INTRODUCTION

The idea of a quantum time crystal was proposed by Wilczek in 2012 [1]. He considered attractively interacting bosons on a ring which formed a localized wave packet (more precisely, a bright soliton) and, in the presence of a magneticlike flux, were supposed to move periodically along a ring even if the energy of the system was the lowest possible. The existence of such a genuine time crystal would involve spontaneous breaking of the continuous time translation symmetry into a discrete time translation symmetry in the system’s ground state, in full analogy to the spontaneous breaking of the continuous time translation corresponding to a periodic evolution of an inhomogeneous probability density in the lowest-energy state. We show that this result is incorrect and present a solution which possesses lower energy with the corresponding probability density that does not reveal any motion. It implies that the authors’ conclusion that a genuine time crystal can exist in the system they consider is not true.

II. WILCZEK MODEL

A single particle on a ring (whose position is denoted by an angle θ) in the presence of a constant magneticlike flux α is described by the Hamiltonian $H = (p - \alpha \dot{\theta})^2 / 2$. The periodic boundary conditions on a ring, i.e., $\Psi(\theta + 2\pi) = \Psi(\theta)$, imply the quantization of the particle momentum $p_\alpha = n$ where n is an integer. If the flux α is not equal to an integer number,
then in the ground state, $\Psi_{n}(\theta) = e^{i\omega_{n}/\sqrt{2N}}$, the probability current is not zero,
\[
\frac{\partial H}{\partial P_{n}} = n - \alpha \neq 0,
\] (1)
where n is the closest integer to α. The corresponding probability density $|\Psi_{n}(\theta)|^{2}$ is spatially uniform and cannot be identified with a time crystal. Wilczek’s idea was to consider N interacting bosons on a ring in the presence of the constant magneticlike flux α [1]. If the interactions between particles are attractive and sufficiently strong, it is known that the system forms a bright soliton in its lowest-energy state. That is, in the solitonic regime, spontaneous breaking of the space translation symmetry occurs and the system’s ground state collapses to a mean-field solution where all bosons occupy a bright soliton state [72]. Wilczek hoped that in the presence of the flux α, not only could one observe spontaneous breaking of the space translation symmetry, but also the soliton would move periodically on a ring. However, it does not happen and the easiest way to see it is to analyze the center of mass of the system which is described by the Hamiltonian
\[
H_{CM} = (P - N\alpha)^{2}/(2N).
\] The center-of-mass momentum is quantized, $P_{n} = n \in \mathbb{Z}$, but in the ground state, the probability current related to the center-of-mass motion vanishes in the $N \to \infty$ limit regardless of a choice of α,
\[
\frac{\partial H_{N}}{\partial P_{n}} = n/N - \alpha \approx 0.
\] (2)
Thus, if the N-particle system in the lowest-energy state forms a bright soliton, then the soliton does not move when $N \to \infty$ [5]. One might wonder whether the time crystal could be saved if we keep N large but finite which, due to Eq. (2), would correspond to a slowly moving ground state soliton solution. It turns out that we do need the infinite N limit, because otherwise the center-of-mass position is subjected to quantum fluctuations and the mean-field bright soliton description breaks down. In Wilczek’s model, the quantum fluctuations of the center-of-mass position require infinite time to appear, only when $N \to \infty$ but $N g = \text{const}$ (where g is a contact interaction strength). Similarly, an ordinary space crystal is stable only in the thermodynamic limit ($N, V \to \infty$, $N/V = \text{const}$) where the energy difference between symmetry broken states and the true ground state is infinitesimally small. Otherwise, a space crystal would melt due to quantum fluctuations of the center-of-mass position [2].

It is worth analyzing the absence of a genuine time crystal also in the mean-field description. The mean-field approximation assumes that all N bosons occupy the same single-particle wave function $\Psi(\theta,t)$ which fulfills the Gross-Pitaevskii equation (GPE) [73]. Assuming dimensionless variables as in Ref. [69], the GPE reads
\[
i\partial_{t}\Psi = [(-i\partial_{\theta} - \alpha)^{2} + g|\Psi|^{2}]\Psi,
\] (3)
with a contact interaction strength g, a constant α, and $\langle \Psi|\Psi \rangle = 1$. As the system is confined in a ring geometry we assume that Ψ fulfills periodic boundary conditions, $\Psi(\theta + 2\pi,t) = \Psi(\theta,t)$, and thus its phase can change only by $2\pi j$, where $j \in \mathbb{Z}$ is the phase winding number. The GPE, Eq. (3), is generated by the action associated with the energy functional,
\[
E_{\text{LAB}} = \int d\theta \Psi^{*} [(-i\partial_{\theta} - \alpha)^{2} + W + g|\Psi|^{2}]\Psi.
\] (4)
The energy E_{LAB} is the energy of the system in the laboratory frame which we want to minimize if we are looking for a genuine time crystal. It turns out that for $g < -\pi$ and arbitrary α, stable solitonic solutions of the GPE, Eq. (3), exist and they can move with any velocity u. These solutions are known analytically and can be expressed in terms of Jacobi elliptic functions and complete elliptic integrals [74–77]. Note that the fact that mean-field solitons on a ring can propagate with any velocity is consistent with the center-of-mass momentum quantization, i.e., in the limit $N \to \infty$ the momentum per particle n/N becomes a continuous variable. Thus, in contrast to Wilczek’s initial claim, it does not matter if α is an integer or not, the lowest-energy state represented by a soliton solution reveals no periodic evolution.

III. CHIRAL SOLITON MODEL

Let us consider the system of N attractive bosons on a ring in the presence of a density-dependent gauge potential [69,71,78]. Within the mean-field description all bosons populate a Bose-Einstein condensate, where the condensate wave function $\Psi(\theta,t)$ fulfills periodic boundary conditions, i.e., $\Psi(\theta + 2\pi,t) = \Psi(\theta,t)$. In the dimensionless variables the laboratory frame energy per particle of the system reads
\[
E_{\text{LAB}} = \int d\theta \Psi^{*} [(-i\partial_{\theta} - A)^{2} + W + g|\Psi|^{2}]\Psi,
\] (5)
where $A = \frac{q}{2} + a|\Psi|^{2}$ is the density-dependent vector potential, $W = \frac{q^{2}}{4}$ is a scalar potential, q is an integer, and a determines the strength of the first-order density-dependent contribution to the vector potential. From now on we will refer to this model as a chiral soliton model. The chiral soliton model can be realized in ultracold atomic setups where the gauge fields W,A arise as effective potentials due to light-matter interactions [78]. In particular, q is related to the gradient of the laser’s phase and its quantization results from the winding number of the Laguerre-Gaussian laser beam [69]. The time evolution of the system is governed by the time-dependent GPE
\[
i\partial_{t}\Psi = [(-i\partial_{\theta} - A)^{2} - aj + W + g|\Psi|^{2}]\Psi,
\] (6)
generated by the action associated with Eq. (5), where
\[
f = -i\Psi^{*}(\partial_{\theta} - iA)\Psi + \text{c.c.}
\] (7)
is the nonlinear current. In order to answer the question whether a genuine time crystal exists in this system, we are going to look for the lowest-energy solution in the frame moving with a velocity u. After that, we shall return to the laboratory frame and evaluate its energy. If the soliton has a minimal energy for $u = 0$, then no genuine time crystal exists. It is crucial to be in the soliton regime where the formation of a localized wave packet is energetically favorable because only nonhomogeneous probability density that evolves periodically in time can represent a time crystal.
Switching to the frame moving with a velocity u,
\[\Psi'(\theta, t) = e^{iu\theta} \Psi(\theta, t) = \Psi(\theta + ut, t), \]
the GPE reads
\[i\partial_t \Psi' = \left((-i\partial_\theta - A')^2 - aJ^2 - (g - 2au)\Psi' \right) \Psi'. \tag{8} \]
where
\[J^2 = -i\Psi'(\partial_\theta - iA')\Psi' + \text{c.c.}, \tag{9} \]
$A' = \frac{u}{2} + \frac{q}{2} + a|\Psi'|^2$, and constant contributions are accounted for in the chemical potential. Note that in the moving frame the wave function Ψ' also fulfills periodic boundary conditions, i.e., $\Psi'(\theta + 2\pi, t) = \Psi'(\theta, t)$.

In order to find the lowest-energy stationary solution $\Psi'(\theta)$ in the moving frame we evolve the GPE, Eq. (8), in the imaginary time [79]. A uniform solution loses its stability for a sufficiently strong interparticle attraction g, where the formation of a localized lump—a soliton—becomes more energetically favorable. To identify a parameter regime of a solitonic phase in the moving frame, we perform a Bogoliubov stability analysis of the uniform solution with the phase winding number $J \in \mathbb{Z}$. $\Psi' = e^{i\theta} / \sqrt{2\pi}$. That is, we study the linear stability of the stationary solution Ψ' of the GPE in Eq. (8) under a small perturbation $\delta \Psi'$, i.e., $\Psi' \rightarrow \Psi'_0 = \Psi' + \delta \Psi'$, where up to a trivial phase evolution,
\[\delta \Psi'(\theta, t) = \sum_{k \in \mathbb{Z}} (u_k e^{ik\theta} e^{-i\omega_k t} + v_k e^{-ik\theta} e^{i\omega_k t}), \tag{10} \]
with (u_k, v_k) being the eigenstates and eigenvalues of the Bogoliubov–de Gennes equations [72], respectively. It is worth emphasizing that for each real eigenvalue ω_k corresponding to the eigenvector with a positive norm $N_k = (u_k v_k) = +1$ the so-called “+ family” of the Bogoliubov modes [72], there exists also an eigenvalue $-\omega_k$ related to the eigenvector with a negative norm $N_k = -1$ (“− family”). By employing the Bogoliubov formalism one easily finds that for $g < g_{d}^{(J)}$,
\[g_{d}^{(J)} = -\pi + 2a(2J - q) - 3a^2 / \pi, \tag{11} \]
the uniform solution $\Psi' = e^{i\theta} / \sqrt{2\pi}$ is dynamically unstable. However, for $g_{c}^{(J)} < g < g_{d}^{(J)}$, where
\[g_{c}^{(J)} = -\pi + 2au + 4\pi (\Omega - J)^2, \tag{12} \]
with $\Omega = \frac{u}{2} + \frac{q}{2} + \frac{g c}{2}$, there is a negative eigenvalue of a “+ family” Bogoliubov mode [72], and consequently $\Psi' = e^{i\theta} / \sqrt{2\pi}$ describes a dynamically stable excited state of the system. In a result, for $g < g_{c}$,
\[g_{c} = \min_{J \in \mathbb{Z}} g_{c}^{(J)}, \tag{13} \]
there exists a stationary soliton solution which represents the lowest-energy state of the system in the moving frame. Note that the critical values of the interaction strength g are different than reported in Refs. [69,71]. In Fig. 1 we illustrate the influence of different values of the parameters a and q on the critical interaction strength g_{c}, Eq. (13), at which a chiral soliton moving with velocity u appears [80].

Having the lowest-energy soliton solution $\Psi'(\theta)$ in the frame moving with a velocity u, we return to the laboratory frame. This yields a solution moving periodically on a ring $\Psi(\theta, t) = e^{-iu\theta} \Psi'(\theta) = \Psi'(\theta - ut)$, and in Fig. 2 we present the results obtained for parameters for which Öhberg and Wright claim an existence of the time crystal, i.e., $a = \pi / 2, g = -6$, and even q, but the final conclusion is the same for any choice of parameters a, g, and $q \in \mathbb{Z}$. While the soliton solutions that fulfill periodic boundary conditions exist for any $u \gtrsim -1.64$, FIG. 1. Critical interaction strength g_{c}, Eq. (13), for the chiral soliton model. (a) illustrates the situation where no density-dependent gauge potential is present, i.e., when $a = 0$, which corresponds to the Wilczek model with $a = \frac{1}{2}$. An influence of a density-dependent gauge potential is shown in (b) and (c), where $a = -1$ and $a = +1$, respectively. Note that $-\pi + 2au \leq g_{c} \leq 2au$, which is indicated by dotted lines. In every panel the case of even (odd) q is represented by solid (dashed) lines.

FIG. 2. Results of numerical simulations for exemplary parameters $a = \pi / 2, g = -6$, and even q. (a) Color-coded plot of the chiral soliton density vs u. (b) Critical value g_{c} of interaction strength vs u (dashed line shows $g = -6$). (c) The energy \mathcal{E}_{LAB} (5) of a chiral soliton moving with a velocity u. Circles indicate energies of solutions obtained within the ansatz used in Ref. [71], i.e., for $u = -0.5$ and $u = 1.5$. Clearly, the ansatz solutions do not represent the system ground state. The density $|\Psi(\theta)|^2$ and phase $\varphi(\theta) = \text{Arg}(\Psi)$ of the chiral soliton for $u = 0$ which minimizes \mathcal{E}_{LAB} are depicted in the inset.
the laboratory frame energy \mathcal{E}_{LAB}, Eq. (5), is minimal when $u = 0$ and consequently in the lowest-energy state no motion of the soliton is allowed. The corresponding density $|\Psi|^2$ and phase $\varphi = \text{Arg}(\Psi)$ of the lowest-energy solution is depicted in the inset of Fig. 2(c). We stress that a nontrivial phase φ of the stationary solution visible in the inset is due to a nonzero A. Indeed, according to the continuity equation, the probability current $j = 2|\Psi|^2(\partial_t \varphi - A)$ for stationary states can be nonzero but must be constant.

In Ref. [71] where the existence of a genuine time crystal is claimed, the authors introduce the following ansatz,

$$\Psi(\theta, t) = e^{i\Theta(\theta, t)} \Phi(\theta - ut, t),$$

with

$$\Theta(\theta, t) = \frac{q\theta}{2} + \frac{ut\theta}{2} + \int_0^\theta d\theta'|\Phi(\theta', t)|^2.$$

Substitution of the ansatz to the GPE, Eq. (6), significantly simplifies the equation but in general implies twisted boundary conditions Φ,

$$\Phi(\theta - ut + 2\pi, t) = e^{-i(\Theta(\theta + 2\pi, t) - \Theta(\theta, t))} \Phi(\theta - ut, t).$$

However, if one insists (as it is done in Ref. [71]) that

$$\Theta(\theta + 2\pi, t) - \Theta(\theta, t) = 2\pi k, \quad k \in \mathbb{Z},$$

then Φ fulfills periodic boundary conditions (similarly as Ψ) which enforces that the velocity u is allowed to take quantized values only—e.g., for even q, the velocity $u = 2k - a/\pi$. Then, the ansatz represents a certain class of solutions only. If it was a general solution, then the velocity would be quantized even in the case of $a = 0$ where analytical soliton solutions propagating with any u are known [74–77]. Importantly, the ansatz does not describe the ground state of the system [see Fig. 2(c)]. The latter corresponds to the stationary probability density and consequently the system does not represent a genuine time crystal.

\section*{IV. DISCUSSION AND CONCLUSIONS}

It turns out that it is not easy to realize a genuine time crystal. The initial proposition by Wilczek relied on attractively interacting bosons on a ring in the presence of a magnetictuslike flux (the so-called Aharonov-Bohm ring) [1]. In the single-particle case when the flux does not match the quantized values of the momentum of a particle on a ring, the probability current is nonzero even for the lowest-energy state, but the corresponding probability density is uniform and does not change over time. In a many-body case, the situation is quite the opposite: Although there exist spatially localized solutions which could travel nondispersively, the ground state probability current is zero in the thermodynamic limit [5].

Öhberg and Wright proposed an extension of the original Wilczek model, where they replaced a constant flux with a density-dependent gauge potential and claimed the existence of a time crystal behavior in the ground state of the system [69]. The idea was very attractive because such a genuine time crystal could be realized in ultracold atom laboratories. The publication triggered a debate in the literature whether the results are correct [70,71]. In this Rapid Communication we are taking the final step of the discussion.

We have reexamined the chiral soliton model and showed that in Ref. [71] a certain class of mean-field solutions is considered only and one can find other states which possess lower energy. It turns out that the ground state of the system is represented by a stationary probability density and consequently a genuine time crystal cannot be observed in the chiral soliton model.

\section*{ACKNOWLEDGMENTS}

Support of the National Science Centre, Poland via Projects No. 2018/28/T/ST2/00372 (A.S.), No. 2016/21/B/ST2/01086 (A.K.), and No. 2018/31/B/ST2/00349 (K.S.) is acknowledged. A.S. and A.K. acknowledge the support of the Foundation for Polish Science (FNP).

\begin{thebibliography}{99}

[1] F. Wilczek, Phys. Rev. Lett. \textbf{109}, 160401 (2012).
[2] K. Sacha and J. Zakrzewski, Rep. Prog. Phys. \textbf{81}, 016401 (2018).
[3] P. Bruno, Phys. Rev. Lett. \textbf{110}, 118901 (2013).
[4] F. Wilczek, Phys. Rev. Lett. \textbf{110}, 118902 (2013).
[5] A. Syrwid, J. Zakrzewski, and K. Sacha, Phys. Rev. Lett. \textbf{119}, 250602 (2017).
[6] P. Bruno, Phys. Rev. Lett. \textbf{111}, 070402 (2013).
[7] H. Watanabe and M. Oshikawa, Phys. Rev. Lett. \textbf{114}, 251603 (2015).
[8] H. Watanabe, M. Oshikawa, and T. Koma, J. Stat. Phys. \textbf{178}, 926 (2020).
[9] V. K. Kozin and O. Kyriienko, Phys. Rev. Lett. \textbf{123}, 210602 (2019).
[10] V. Khemani, R. Moessner, and S. L. Sondhi, arXiv:2001.11037.
[11] V. K. Kozin and O. Kyriienko, arXiv:2005.06321.
[12] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath et al., Nature (London) \textbf{543}, 217 (2017).
[13] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani et al., Nature (London) \textbf{543}, 221 (2017).
[14] S. Pal, N. Nishad, T. S. Mahesh, and G. J. Sreejith, Phys. Rev. Lett. \textbf{120}, 180602 (2018).
[15] J. Rovny, R. L. Blum, and S. E. Barrett, Phys. Rev. Lett. \textbf{120}, 180603 (2018).
[16] J. Smits, L. Liao, H. T. C. Stoof, and P. van der Straten, Phys. Rev. Lett. \textbf{121}, 185301 (2018).
[17] K. Sacha, Phys. Rev. A \textbf{91}, 033617 (2015).
[18] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett. \textbf{116}, 250401 (2016).
[19] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. \textbf{117}, 090402 (2016).
[20] N. Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vishwanath, Phys. Rev. Lett. \textbf{118}, 030401 (2017).
[21] A. Lazarides and R. Moessner, Phys. Rev. B \textbf{95}, 195135 (2017).
[22] A. Russomanno, F. Iemini, M. Dalmonte, and R. Fazio, Phys. Rev. B \textbf{95}, 214307 (2017).
\end{thebibliography}

LACK OF A GENUINE TIME CRYSTAL IN A CHIRAL … PHYSICAL REVIEW RESEARCH

[23] T.-S. Zeng and D. N. Sheng, Phys. Rev. B 96, 094202 (2017).
[24] K. Nakatsugawa, T. Fujii, and S. Tanda, Phys. Rev. B 96, 094308 (2017).
[25] W. W. Ho, S. Choi, M. D. Lukin, and D. A. Abanin, Phys. Rev. Lett. 119, 016002 (2017).
[26] B. Huang, Y.-H. Wu, and W. V. Liu, Phys. Rev. Lett. 120, 110603 (2018).
[27] Z. Gong, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120, 040404 (2018).
[28] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte, and R. Fazio, Phys. Rev. Lett. 121, 035301 (2018).
[29] R. R. W. Wang, B. Xing, G. G. Carlo, and D. Poletti, Phys. Rev. E 97, 020202(R) (2018).
[30] F. Flicker, SciPost Phys. 5, 001 (2018).
[31] W. C. Yu, J. Tangpanitanon, A. W. Glaetzle, D. Jaksh, and D. G. Angelakis, Phys. Rev. A 99, 033618 (2019).
[32] K. Tucker, B. Zhu, R. J. Lewis-Swan, J. Marino, F. Jimenez, J. G. Restrepo, and A. M. Rey, New J. Phys. 20, 123003 (2018).
[33] F. M. Surace, A. Russomanno, M. Dalmonte, A. Silva, R. Fazio, and F. Iemini, Phys. Rev. B 99, 104303 (2019).
[34] K. Giergiel, A. Dauphin, M. Lewenstein, J. Zakrzewski, and K. Sacha, New J. Phys. 21, 052003 (2019).
[35] E. Lustig, Y. Sharabi, and S. Segev, Optica 5, 1390 (2018).
[36] K. Giergiel, A. Kuroś, and K. Sacha, Phys. Rev. B 99, 220303(R) (2019).
[37] F. M. Gambetta, F. Carollo, M. Marcuzzi, J. P. Garrahan, and I. Lesanovsky, Phys. Rev. Lett. 122, 015701 (2019).
[38] A. Pizzi, J. Knolle, and A. Nunnenkamp, Phys. Rev. Lett. 123, 150601 (2019).
[39] A. Pizzi, J. Knolle, and A. Nunnenkamp, arXiv:1910.07539.
[40] F. M. Gambetta, F. Carollo, A. Lazarides, I. Lesanovsky, and J. P. Garrahan, Phys. Rev. E 100, 060105 (2019).
[41] C.-h. Fan, D. Rossini, H.-X. Zhang, J.-H. Wu, M. Arttoni, and G. C. La Rocca, Phys. Rev. A 101, 013417 (2020).
[42] P. Matus and K. Sacha, Phys. Rev. A 99, 033626 (2019).
[43] B. Zhu, J. Marino, N. Y. Yao, M. D. Lukin, and E. A. Demler, New J. Phys. 21, 073028 (2019).
[44] B. Buča, J. Tindall, and D. Jaksh, Nat. Commun. 10, 1730 (2019).
[45] A. Lazarides, S. Roy, F. Piazza, and R. Moessner, Phys. Rev. Research 2, 022002(R) (2020).
[46] Z. Cui, Y. Huang, and W. V. Liu, Chinese Phys. Lett. 37, 050503 (2020).
[47] K. Giergiel, T. Tran, A. Zaheer, A. Singh, A. Sidorov, K. Sacha, and P. Hannaford, arXiv:2004.00755.
[48] A. Kuroś, R. Mukherjee, W. Golletz, F. Sauvage, K. Giergiel, F. Mintert, and K. Sacha, arXiv:2004.14982.
[49] H. Keßler, J. G. Cosme, C. Georges, L. Mathey, and A. Hemmerich, arXiv:2004.14633.
[50] L. Obeerter, U. Seifert, and A. C. Barato, arXiv:2002.09078.
[51] A. Russomanno, S. Notarnicola, F. M. Surace, R. Fazio, M. Dalmonte, and M. Heyl, Phys. Rev. Research 2, 012003 (2020).
[52] L. Guo, M. Marthaler, and G. Schön, Phys. Rev. Lett. 111, 205303 (2013).
[53] K. Sacha, Sci. Rep. 5, 10787 (2015).
[54] K. Sacha and D. Delande, Phys. Rev. A 94, 023633 (2016).
[55] L. Guo and M. Marthaler, New J. Phys. 18, 023006 (2016).
[56] L. Guo, M. Liu, and M. Marthaler, Phys. Rev. A 93, 053616 (2016).
[57] L. Pengfei, M. Michael, and L. Guo, New J. Phys. 20, 023043 (2018).
[58] K. Giergiel and K. Sacha, Phys. Rev. A 95, 063402 (2017).
[59] M. Mierzejewski, K. Giergiel, and K. Sacha, Phys. Rev. B 96, 140201(R) (2017).
[60] D. Delande, L. Morales-Molina, and K. Sacha, Phys. Rev. Lett. 119, 230404 (2017).
[61] A. Kosior and K. Sacha, Phys. Rev. A 97, 053621 (2018).
[62] A. Kosior, A. Syrwid, and K. Sacha, Phys. Rev. A 98, 023612 (2018).
[63] K. Giergiel, A. Miroszewski, and K. Sacha, Phys. Rev. Lett. 120, 140401 (2018).
[64] K. Giergiel, A. Kosior, P. Hannaford, and K. Sacha, Phys. Rev. A 98, 013613 (2018).
[65] K. Mizuta, K. Takasan, M. Nakagawa, and N. Kawakami, Phys. Rev. Lett. 121, 093001 (2018).
[66] R. W. Bomanntara and J. Gong, Phys. Rev. Lett. 120, 230405 (2018).
[67] V. Khemani, R. Moessner, and S. L. Sondhi, arXiv:1910.10745.
[68] L. Guo and P. Liang, arXiv:2005.03138.
[69] P. Öhberg and E. M. Wright, Phys. Rev. Lett. 123, 250402 (2019).
[70] A. Syrwid, A. Kosior, and K. Sacha, Phys. Rev. Lett. 124, 178901 (2020).
[71] P. Öhberg and E. M. Wright, Phys. Rev. Lett. 124, 178902 (2020).
[72] Y. Castin, in Coherent Atomic Matter Waves, edited by R. Kaiser, C. Westbrook, and F. David (Springer, Berlin, 2001), pp. 1–136.
[73] C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, UK, 2002).
[74] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A 62, 063611 (2000).
[75] R. Kanamoto, H. Saito, and M. Ueda, Phys. Rev. A 67, 013608 (2003).
[76] R. Kanamoto, H. Saito, and M. Ueda, Phys. Rev. A 68, 043619 (2003).
[77] R. Kanamoto, L. D. Carr, and M. Ueda, Phys. Rev. A 79, 063616 (2009).
[78] M. J. Edmonds, M. Valiente, G. Juzeliunas, L. Santos, and P. Öhberg, Phys. Rev. Lett. 110, 085301 (2013).
[79] L. Lehtovaara, J. Toivonen, and J. Eloranta, J. Comput. Phys. 221, 148 (2007).
[80] Note that \dot{q} does not change when we change q within the same parity class. Such a feature manifests at the level of the GPE, Eq. (6), and energy functional, Eq. (5). Indeed, if Ψ is a solution of Eq. (6) with $q = q_0$, then $\Psi = \Psi e^{i\theta}$ is a solution of the same problem but with $q = q_0 + 2s$ where $s \in Z$, i.e., the change $q \rightarrow q + 2s$ only modifies the phase winding numbers of the GPE solutions so that $J \rightarrow J + s$. Additionally, while the energies, Eq. (5), corresponding to Ψ and Ψ, differ only by a constant associated with the change $W = q^2/4 \rightarrow (q + 2s)^2/4$, the probability current, Eq. (7), remains unchanged.