A NOTE ON δ-STRONGLY COMPACT CARDINALS

TOSHIMICHI USUBA

Abstract. In this paper we investigate more characterizations and applications of δ-strongly compact cardinals. We show that, for a cardinal κ the following are equivalent: (1) κ is δ-strongly compact, (2) For every regular $\lambda \geq \kappa$ there is a δ-complete uniform ultrafilter over λ, and (3) Every product space of δ-Lindelöf spaces is κ-Lindelöf. We also prove that in the Cohen forcing extension, the least ω_1-strongly compact cardinal is a precise upper bound on the tightness of the products of two countably tight spaces.

1. Introduction

Bagaria and Magidor [2, 3] introduced the notion of δ-strongly compact cardinals, which is a variant of strongly compact cardinals.

Definition 1.1 (Bagaria-Magidor [2, 3]). Let κ, δ be uncountable cardinals with $\delta \leq \kappa$. κ is δ-strongly compact if for every set A, every κ-complete filter over A can be extended to a δ-complete ultrafilter.

δ-strongly compact cardinals, especially for the case $\delta = \omega_1$, have various characterizations and many applications, see Bagaria-Magidor [2, 3], Bagaria-da Silva [4], and Usuba [9, 10]. In this paper, we investigate more characterizations and applications of δ-strongly compact cardinals.

Ketonen [7] characterized strongly compact cardinals by the existence of uniform ultrafilters, where a filter F over a cardinal λ is uniform if $|X| = \lambda$ for every $X \in F$. Ketten proved that an uncountable cardinal κ is strongly compact cardinal if, and only if for every regular $\lambda \geq \kappa$, there exists a κ-complete uniform ultrafilter over λ. We prove a similar characterization for δ-strongly compact cardinals.

Theorem 1.2. Let κ and δ be uncountable cardinals with $\delta \leq \kappa$. Then κ is δ-strongly compact if, and only if, for every regular $\lambda \geq \kappa$, there exists a δ-complete uniform ultrafilter over λ.

2010 Mathematics Subject Classification. Primary 03E55, 54A25.
Key words and phrases. countably tight, δ-strongly compact cardinal, Lindelöf space, ω_1-strongly compact cardinal, uniform ultrafilter.
In [3], Bagaria and Magidor characterized ω_1-strongly compact cardinals in terms of topological spaces. Let μ be a cardinal. A topological space X is μ-Lindelöf if every open cover of X has a subcover of size $< \mu$. An ω_1-Lindelöf space is called a Lindelöf space.

Bagaria and Magidor proved that a cardinal κ is ω_1-strongly compact if and only if every product space of ω_1-Lindelöf spaces is κ-Lindelöf. Using Theorem 1.2, we generalize this result as follows:

Theorem 1.3. Let $\delta \leq \kappa$ be uncountable cardinals. Then the following are equivalent:

1. κ is δ-strongly compact.
2. For every family $\{X_i \mid i \in I\}$ of δ-Lindelöf spaces, the product space $\prod_{i \in I} X_i$ is κ-Lindelöf.

We turn to another topological property, the tightness. For a topological space X, the **tightness number** $t(X)$ of X is the minimum infinite cardinal κ such that whenever $A \subseteq X$ and $p \in \overline{A}$ (where \overline{A} is the closure of A in X), there is $B \subseteq A$ with $|B| \leq \kappa$ and $p \in \overline{B}$. If $t(X) = \omega$, X is called a **countably tight** space.

The product of countably tight spaces need not to be countably tight: A typical example is the sequential space $S(\omega_1)$. It is a Fréchet-Urysohn space, but the square of $S(\omega_1)$ has uncountable tightness. It is also known that if κ is regular uncountable cardinal and the set $\{\alpha < \kappa \mid \text{cf}(\alpha) = \omega\}$ has a non-reflecting stationary subset, then $t(S(\kappa)^2) = \kappa$ (see Eda-Gruenhage-Koszmider-Tamano-Todorčević [5]). In particular, under $V = L$, the tightness of the product of two Fréchet-Urysohn spaces can be arbitrary large.

We show that an ω_1-strongly compact cardinal gives an upper bound on the tightness of the product of two countably tight spaces.

Theorem 1.4. If κ is ω_1-strongly compact, then $t(X \times Y) \leq \kappa$ for every countably tight spaces X and Y.

We also show that an ω_1-strongly compact cardinal is a **precise** upper bound in the Cohen forcing extension.

Theorem 1.5. Let \mathbb{C} be the Cohen forcing notion, and G be (V, \mathbb{C})-generic. Then for every cardinal κ the following are equivalent in $V[G]$:

1. κ is ω_1-strongly compact.
2. For every countably tight spaces X and Y we have $t(X \times Y) \leq \kappa$.
3. For every countably tight Tychonoff spaces X and Y we have $t(X \times Y) \leq \kappa$.

Here we present some definitions and facts which will be used later.
Definition 1.6. For an uncountable cardinal \(\kappa \) and a set \(A \), let \(P_\kappa A = \{ x \subseteq A \mid |x| < \kappa \} \). A filter \(F \) over \(P_\kappa A \) is fine if for every \(a \in A \), we have \(\{ x \in P_\kappa A \mid a \in x \} \in F \).

Theorem 1.7 ([2, 3]). For uncountable cardinals \(\delta \leq \kappa \), the following are equivalent:

1. \(\kappa \) is \(\delta \)-strongly compact.
2. For every cardinal \(\lambda \geq \kappa \), there exists a \(\delta \)-complete fine ultrafilter over \(P_\kappa \lambda \).
3. For every set \(A \) with \(|A| \geq \kappa \), there exists a \(\delta \)-complete fine ultrafilter over \(P_\kappa A \).
4. For every cardinal \(\lambda \geq \kappa \), there exists an elementary embedding \(j : V \rightarrow M \) into some transitive model \(M \) such that \(\delta \leq \text{crit}(j) \leq \kappa \) and there is a set \(A \in M \) with \(|A|^M < j(\kappa) \) and \(j" \lambda \subseteq A \). Where \(\text{crit}(j) \) denotes the critical point of \(j \).

Theorem 1.8 ([2, 3]). If \(\kappa \) is \(\delta \)-strongly compact, then there is a measurable cardinal \(\leq \kappa \).

2. On uniform ultrafilters

In this section we give a proof of Theorem 1.2. It can be obtained by a series of arguments in Ketkonen [7] with some modifications.

Lemma 2.1. Suppose \(\kappa \) is \(\delta \)-strongly compact for some uncountable \(\delta \leq \kappa \). Then for every regular \(\lambda \geq \kappa \), there exists a \(\delta \)-complete uniform ultrafilter over \(\lambda \).

Proof. Fix a regular \(\lambda \geq \kappa \), and take an elementary embedding \(j : V \rightarrow M \) such that \(\delta \leq \text{crit}(j) \leq \kappa \), and there is \(A \in M \) with \(j" \lambda \subseteq A \subseteq j(\lambda) \) and \(|A|^M < j(\kappa) \). Then we have \(\sup(j" \lambda) < j(\lambda) \). Now define an ultrafilter \(U \) over \(\lambda \) by \(X \in U \iff \sup(j" \lambda) \in j(X) \). It is clear that \(U \) is a \(\delta \)-complete uniform ultrafilter over \(\lambda \). \(\square \)

For the converse direction, we need several definitions and lemmas.

Let \(U \) be an \(\omega_1 \)-complete ultrafilter over some set \(A \). Let \(\text{Ult}(V, M) \) denote the ultrapower of \(V \) by \(U \), and we identify the ultrapower with its transitive collapse. Let \(j : V \rightarrow M \approx \text{Ult}(V, U) \) be an elementary embedding induced by \(U \). Let \(\text{id}_A \) denote the identity map on \(A \), and for a function \(f \) on \(A \), let \([f]_U \in M \) denote the equivalence class of \(f \) modulo \(U \). We know \([f]_U = j(f)([\text{id}_A]_U) \).

Definition 2.2. Let \(\mu, \nu \) be cardinals with \(\mu \leq \nu \). An ultrafilter \(U \) over some set \(A \) is said to be \((\mu, \nu) \)-regular if there is a family \(\{ X_\alpha \mid \alpha < \nu \} \) of measure one sets of \(U \) such that for every \(a \in [\nu]^{\mu} \), we have \(\bigcap_{\alpha \in a} X_\alpha = \emptyset \).
We note that if ν is regular and U is (μ, ν)-regular, then $|X| \geq \nu$ for every $X \in U$.

Lemma 2.3. Let $\mu \leq \nu$ be cardinals where ν is regular. Let U be an ω_1-complete ultrafilter over some set A, and $j : V \rightarrow M \cong \text{Ult}(V, U)$ an elementary embedding induced by U. Then U is (μ, ν)-regular if and only if $\text{cf}^M(\text{sup}(j^{\text{``}\nu\text{''}})) < j(\mu)$.

Proof. First suppose U is (μ, ν)-regular, and let $\{X_\alpha \mid \alpha < \nu\}$ be a witness. Let $j(\{X_\alpha \mid \alpha < \nu\}) = \{Y_\alpha \mid \alpha < j(\nu)\}$. Let $a = \{\alpha < \text{sup}(j^{\text{``}\nu\text{''}}) \mid [\text{id}_A]_U \in Y_\alpha\} \in M$. We know $j^{\text{``}\nu\text{''}} \subseteq a$, hence a is unbounded in $\text{sup}(j^{\text{``}\nu\text{''}})$, and $\text{cf}^M(\text{sup}(j^{\text{``}\nu\text{''}})) \leq |a|^M$. By the choice of a, we have $\bigcap_{\alpha \in a} X_\alpha \neq \emptyset$. Hence we have $|a|^M < j(\mu)$, and $\text{cf}^M(\text{sup}(j^{\text{``}\nu\text{''}})) < j(\mu)$.

For the converse, suppose $\text{cf}^M(\text{sup}(j^{\text{``}\mu\text{''}})) < j(\mu)$. Take a function $f : A \rightarrow \nu + 1$ such that $[f]_U = j(f)([\text{id}_A]_U) = \text{sup}(j^{\text{``}\nu\text{''}})$ in M. Then $Z = \{x \in A \mid \text{cf}(f(x)) < \mu\} \in U$. For each $x \in Z$, take $c_x \subseteq f(x)$ such that $\text{ot}(c_x) = \text{cf}(f(x))$ and $\text{sup}(c_x) = f(x)$. Then, by induction on $i < \nu$, we can take a strictly increasing sequence $\langle \nu_i \mid i < \nu \rangle$ in ν such that $\{x \in Z \mid [\nu_i, \nu_{i+1}) \cap c_x \neq \emptyset\} \in U$ as follows. Suppose ν_i is defined for all $i < j$. If j is limit, since ν is regular, we have $\sup\{\nu_i \mid i < j\} < \nu$. Then take $\nu_j < \lambda$ with $\sup\{\nu_i \mid i < j\} < \nu_j$. Suppose $j = k + 1$. Consider $c_{[\text{id}_A]_U} \subseteq j(f)([\text{id}_A]_U) = \text{sup}(j^{\text{``}\nu\text{''}})$. $c_{[\text{id}_A]_U}$ is unbounded in $\text{sup}(j^{\text{``}\nu\text{''}})$. Pick some $\xi \in c_{[\text{id}]}$ with $j(\nu_k) < \xi$, and take $\nu_j < \nu$ with $\xi < j(\nu_j)$. Then ν_j works. Finally, let $X_i = \{x \in Z \mid [\nu_i, \nu_{i+1}) \cap c_x \neq \emptyset\} \in U$. We check that $\{X_i \mid i < \nu\}$ witnesses that U is (μ, ν)-regular. So take $a \in [\nu]^{\mu}$, and suppose $x \in \bigcap_{i \in a} X_i$. Then $[\nu_i, \nu_{i+1}) \cap c_x \neq \emptyset$ for every $i \in a$. Since $\langle \nu_i \mid i < \nu \rangle$ is strictly increasing, we have $|c_x| \geq \mu$, this contradicts to the choice of c_x. \hfill \Box

Lemma 2.4. Let κ and δ be uncountable cardinals with $\delta \leq \kappa$. Then the following are equivalent:

1. κ is δ-strongly compact.
2. For every regular $\lambda \geq \kappa$, there exists a δ-complete (κ, λ)-regular ultrafilter over some set A.

Proof. Suppose κ is δ-strongly compact. Fix a regular cardinal $\lambda \geq \kappa$, and take a δ-complete fine ultrafilter U over $\mathcal{P}_\kappa \lambda$. For $\alpha < \lambda$, let $X_\alpha = \{x \in \mathcal{P}_\alpha \lambda \mid \alpha \in x\} \in U$. Then the family $\{X_\alpha \mid \alpha < \lambda\}$ witnesses that U is (κ, λ)-regular.

For the converse, pick a cardinal $\lambda \geq \kappa$. By (2), there is a δ-complete (κ, λ^+)-regular ultrafilter W over some set A. Take an elementary embedding $i : V \rightarrow N \cong \text{Ult}(V, W)$. We have $\text{cf}^N(\text{sup}(i^{\text{``}\lambda^+\text{''}})) < i(\kappa)$ by...
Lemma 2.3. By the elementarity of i, one can check that for every stationary $S \subseteq \{\alpha < \lambda^+ \mid \text{cf}(\alpha) = \omega\}$, we have that $i(S) \cap \sup(i^\alpha \lambda^+)$ is stationary in $\sup(i^\alpha \lambda^+)$ in N (actually in V). (e.g., see [3]). Fix a stationary partition $\{S_i \mid i < \lambda \}$ of $\{\alpha < \lambda^+ \mid \text{cf}(\alpha) = \omega\}$, and let $i(\{S_i \mid i < \lambda\}) = \{S'_\alpha \mid \alpha < i(\lambda)\}$. Let $a = \{\alpha \in i(\lambda) \mid S'_\alpha \cap \sup(i^\alpha \lambda^+)$ is stationary in $\sup(i^\alpha \lambda^+)$ in $N\}$. We have $a \in N$ and $i^\alpha \lambda^+ \subseteq a$. Moreover, since $\text{cf}(\sup(i^\alpha \lambda^+)) < i(\kappa)$, we have $|a|^N < i(\kappa)$. Hence $a \in i(P_{\kappa} \lambda)$, and the filter U over $P_{\kappa} \lambda$ defined by $X \in U \iff a \in i(X)$ is a δ-complete fine ultrafilter over $P_{\kappa} \lambda$. □

Definition 2.5. Let λ be an uncountable cardinal and U an ultrafilter over λ. U is weakly normal if for every $f : \lambda \to \lambda$ with $\{\alpha < \lambda \mid f(\alpha) < \alpha\} \in U$, there is $\gamma < \lambda$ such that $\{\alpha < \lambda \mid f(\alpha) < \gamma\} \in U$.

Lemma 2.6. Let λ be a regular cardinal, and $\delta \leq \lambda$ an uncountable cardinal. If λ carries a δ-complete uniform ultrafilter, then λ carries a δ-complete weakly normal uniform ultrafilter as well.

Proof. Let U be a δ-complete uniform ultrafilter over λ, and $j : V \to M \cong \text{Ult}(V, U)$ be an elementary embedding induced by U. Since U is uniform, we have $\sup(j^\alpha \lambda) \leq [id_\lambda]^U \in j^{\lambda}(\lambda)$. Then define W by $X \in W \iff \sup(j^\alpha \lambda) \in j(X)$. It is easy to see that W is a required weakly normal ultrafilter. □

The following is immediate:

Lemma 2.7. Let λ be a regular cardinal, and U an ω_1-complete weakly normal ultrafilter over λ. Let $j : V \to M \cong \text{Ult}(V, U)$ be an elementary embedding induced by U. Then $[id_\lambda]^U = \sup(j^\alpha \lambda)$. Hence U is (μ, λ)-regular if and only if $\{\alpha < \lambda \mid \text{cf}(\alpha) < \mu\} \in U$.

Definition 2.8. Let A be a non-empty set, and U an ultrafilter over A. Let $X \in U$, and for each $x \in X$, let W_x be an ultrafilter over some set A_x. Then the U-sum of $\{W_x \mid x \in X\}$ is the collection D of subsets of $\{\langle x, y \rangle \mid x \in X, y \in A_x\}$ such that for every Y, $Y \in D \iff \{x \in X \mid \langle y \in A_x \mid \langle x, y \rangle \in Y\} \in W_x \in U$. D is an ultrafilter over the set $\{\langle x, y \rangle \mid x \in X, y \in A_x\}$, and if U and the W_x’s are δ-complete, then so is D.

Lemma 2.9. Let κ and δ be uncountable cardinals with $\delta \leq \kappa$. Suppose for every regular $\lambda \geq \kappa$, there exists a δ-complete uniform ultrafilter over λ. Then κ is δ-strongly compact.

Proof. First suppose κ is regular. To show that κ is δ-strongly compact cardinal, by Lemma 2.4, it is enough to see that for every regular $\lambda \geq \kappa$,
there exists a δ-complete (κ, λ)-regular ultrafilter over λ. We prove this
by induction on λ. For the base step $\lambda = \kappa$, by Lemma 2.6, we can take
a δ-complete weakly normal uniform ultrafilter U over κ. Then $\{\alpha < \kappa \mid
\text{cf} (\alpha) < \kappa\} \in U$, hence U is (κ, κ)-regular by Lemma 2.7.

Let $\lambda > \kappa$ be regular, and suppose for every regular μ with $\kappa \leq \mu < \lambda$, there exists a δ-complete (κ, μ)-regular ultrafilter U_μ over μ. Fix a
δ-complete weakly normal uniform ultrafilter U over λ. If $\{\alpha < \lambda \mid \text{cf} (\alpha) < \kappa\} \in U$, then U is (κ, λ)-regular by Lemmas 2.3 and 2.7, and we have done. Suppose $\{\alpha < \lambda \mid \text{cf} (\alpha) \geq \kappa\} \in U$. Let $X^* = \{\alpha < \lambda \mid \text{cf} (\alpha) \geq \kappa\}$. For $\alpha \in X^*$, let $W_\alpha = U_{\text{cf} (\alpha)}$, a δ-complete ($\kappa, \text{cf} (\alpha)$)-regular ultrafilter over $\text{cf} (\alpha)$. Let $B = \{\langle \alpha, \beta \rangle \mid \alpha \in X^*, \beta < \text{cf} (\alpha)\}$. Note that $|B| = \lambda$. Let
us consider the U-sum of $\{W_\alpha \mid \alpha \in X^*\}$. D is a δ-complete ultrafilter
over B. We claim that D is (κ, λ)-regular, and then we can easily take a
δ-complete (κ, λ)-regular ultrafilter over λ.

For $\alpha \in X^*$, let $j_\alpha : V \to M_\alpha \approx \text{Ult} (V, W_\alpha)$ be an elementary embedding induced by W_α. Let $g_\alpha : \text{cf} (\alpha) \to \alpha + 1$ be a function which represents $\sup (j_\alpha " \alpha")$. Note that, since W_α is ($\kappa, \text{cf} (\alpha)$)-regular, we have $\text{cf}^{M_\alpha} (\sup (j_\alpha " \alpha")) = \text{cf}^{M_\alpha} (\sup (j_\alpha " \alpha")) < j_\alpha (\kappa)$, so $\{\beta < \text{cf} (\alpha) \mid \text{cf} (g_\alpha (\beta)) < \kappa\} \in W_\alpha$.

Let $i : V \to N \approx \text{Ult} (V, D)$ be an elementary embedding induced by D.
Define the function g on B by $g (\alpha, \beta) = g_\alpha (\beta)$. We see that $\sup (i " \lambda") = [g]_D$. First, for $\gamma < \lambda$, we have $X^* \setminus \gamma \in U$, and $\{\beta < \text{cf} (\alpha) \mid g_\alpha (\beta) \geq \gamma\} \in W_\alpha$ for all $\alpha \in X^* \setminus \gamma$. This means that $\{\langle \alpha, \beta \rangle \in B \mid g (\alpha, \beta) \geq \gamma\} \in D$, and $i (\gamma) < [g]_D$. Next, take a function h on B with $[h]_D < [g]_D$. Then $\{\langle \alpha, \beta \rangle \in B \mid h (\alpha, \beta) < g (\alpha, \beta)\} \in D$, and $X' = \{\alpha \in X^* \mid \beta < \alpha \mid h (\alpha, \beta) < g (\alpha, \beta)\} \in W_\alpha$. For $\alpha \in X'$, we know $\{\beta < \text{cf} (\alpha) \mid h (\alpha, \beta) < g (\alpha, \beta)\} \subseteq W_\alpha$. Because $g (\alpha, \beta) = g_\alpha (\beta)$ represents $\sup (j_\alpha " \alpha")$, there is some $\gamma_\alpha < \alpha$ such that $\{\beta < \text{cf} (\alpha) \mid h (\alpha, \beta) < \gamma_\alpha\} \subseteq W_\alpha$. Now, since U is weakly normal and $\gamma_\alpha < \alpha$ for $\alpha \in X'$, there is some $\gamma < \lambda$ such that $\{\alpha \in X' \mid \gamma_\alpha < \gamma\} \in U$. Then we have $[h]_D < i (\gamma) \leq \text{sup} (i " \lambda")$.

Finally, since $\{\beta < \text{cf} (\alpha) \mid \text{cf} (g (\alpha, \beta)) < \kappa\} \subseteq W_\alpha$ for every $\alpha \in X^*$, we have $\{\langle \alpha, \beta \rangle \in B \mid \text{cf} (g (\alpha, \beta)) < \kappa\} \subseteq D$, which means that $\text{cf}^N ([g]_D) = \text{cf}^N (\sup (i " \lambda") < i (\kappa))$, and D is (κ, λ)-regular.

If κ is singular, take a δ-complete weakly normal uniform ultrafilter U over κ^+. We have $\{\alpha < \kappa^+ \mid \text{cf} (\alpha) \leq \kappa\} \in U$, and $\{\alpha < \kappa^+ \mid \text{cf} (\alpha) < \kappa\} \in U$ since κ is singular. Then U is (κ, κ^+)-regular. The rest is the same to the case that κ is regular.

This completes the proof of Theorem 1.2.

Using Theorem 1.2, we also have the following characterization of δ-strongly compact cardinals.
Corollary 2.10. Let $\delta \leq \kappa$ be uncountable cardinals. Then the following are equivalent:

1. κ is δ-strongly compact.
2. For every regular $\lambda \geq \kappa$, there is an elementary embedding $j : V \rightarrow M$ into some transitive model M with $\delta \leq \text{crit}(j) \leq \kappa$ and $\sup(j^{+}\lambda) < j(\lambda)$.
3. For every regular $\lambda \geq \kappa$, there is an elementary embedding $j : V \rightarrow M$ into some transitive model M with $\delta \leq \text{crit}(j)$ and $\sup(j^{+}\lambda) < j(\lambda)$.

Proof. For (1) \Rightarrow (2), suppose κ is δ-strongly compact. Then for every regular $\lambda \geq \kappa$, there is a δ-complete fine ultrafilter over $\mathcal{P}_\kappa \lambda$. If $j : V \rightarrow M$ is the ultrapower induced by the ultrafilter, then we have that the critical point of j is between δ and κ, and $\sup(j^{+}\lambda) < j(\lambda)$.

(2) \Rightarrow (3) is trivial. For (3) \Rightarrow (1), it is enough to see that every regular $\lambda \geq \kappa$ carries a δ-complete uniform ultrafilter. Let $\lambda \geq \kappa$ be regular. Take an elementary embedding $j : V \rightarrow M$ with $\delta \leq \text{crit}(j)$ and $\sup(j^{+}\lambda) < j(\lambda)$. Define $U \subseteq \mathcal{P}(\lambda)$ by $X \subseteq U \iff \sup(j^{+}\lambda) \in j(X)$. It is easy to check that U is a δ-complete uniform ultrafilter over λ.

Bagaria and Magidor [3] proved that the least δ-strongly compact cardinal must be a limit cardinal. We can prove the following slightly stronger result using Theorem 1.2.

For a regular cardinal ν and $f,g \in {}^{\nu}\nu$, define $f \leq^* g$ if the set $\{\alpha < \nu \mid f(\alpha) > g(\alpha)\}$ is bounded in ν. A family $F \subseteq {}^{\nu}\nu$ is unbounded if there is no $g \in {}^{\nu}\nu$ such that $f \leq^* g$ for every $f \in F$. Then let $b_\nu = \min\{|F| \mid F \subseteq {}^{\nu}\nu \text{ is unbounded}\}$. Note that b_ν is regular and $\nu^+ \leq b_\nu \leq 2^{\nu}$.

Proposition 2.11. Let δ be an uncountable cardinal, and suppose κ is the least δ-strongly compact cardinal. Then for every cardinal $\mu < \kappa$, there is a regular ν with $\mu \leq \nu < b_\nu < \kappa$. As an immediate consequence, κ is a limit cardinal.

Proof. Fix $\mu < \kappa$. Take a regular ν as follows. If $\mu \geq \delta$, by the minimality of κ, there is a regular $\nu \geq \mu$ such that ν cannot carry a δ-complete uniform ultrafilter over ν. We know $\nu < \kappa$ since κ is δ-strongly compact. If $\mu < \delta$, let $\nu = \mu^+$. ν is regular with $\nu \leq \delta \leq \kappa$. We show that $b_\nu < \kappa$ in both cases. Let $\lambda = b_\nu$, and suppose to the contrary that $\lambda \geq \kappa$. By Corollary 2.10, we can find an elementary embedding $j : V \rightarrow M$ with $\delta \leq \text{crit}(j) \leq \kappa$ and $\sup(j^{+}\lambda) < j(\lambda)$. Then we have $\sup(j^{+}\nu) = j(\nu)$; Otherwise, we can take a δ-complete uniform ultrafilter $U = \{X \subseteq \nu \mid \sup(j^{+}\nu) \in j(X)\}$ over ν. If $\mu \geq \delta$, this contradicts to the choice of ν. Suppose $\mu < \delta$. Note that U
is in fact \(\text{crit}(j) \)-complete. Since \(\nu \leq \delta \leq \text{crit}(j) \leq \nu \), we have \(\text{crit}(j) = \nu \). However this is impossible since \(\nu \) is successor but \(\text{crit}(j) \) is measurable.

Fix an unbounded set \(F \subseteq {}^{\nu} \nu \) with size \(\lambda \). Let \(F = \{ f_\alpha \mid \alpha < \lambda \} \). Consider \(j(F) = \{ f'_\alpha \mid \alpha < j(\lambda) \} \). Let \(\gamma = \sup(j^{\nu} \nu) < j(\lambda) \). By the elementarity of \(j \), the set \(\{ f'_\alpha \mid \alpha < \gamma \} \) is bounded in \(j^{(\nu) \nu} \) in \(M \). Thus there is \(g' \in j^{(\nu) \nu} \) such that \(f'_\alpha \leq^* g' \) for every \(\alpha < \gamma \). Take \(g \in {}^{\nu} \nu \) so that \(g'(j(\xi)) \leq j(g(\xi)) \) for every \(\xi < \nu \), this is possible since \(\sup(j^{(\nu) \nu}) = j(\nu) \). Then there is \(\alpha < \lambda \) with \(f_\alpha \not\leq^* g \). \(j(f_\alpha) = f'_{j(\alpha)} \leq^* g' \), thus there is \(\eta < \nu \) such that \(j(f_\alpha(\xi)) = f'_{j(\alpha)}(j(\xi)) \leq g'(j(\xi)) \) for every \(\xi \geq \eta \). However then \(j(f_\alpha(\xi)) \leq g'(j(\xi)) \leq j(g(\xi)) \), and \(f_\alpha(\xi) \leq g(\xi) \) for every \(\xi \geq \eta \), this is a contradiction.

\(\square \)

Question 2.12. For an uncountable cardinal \(\delta \), is the least \(\delta \)-strongly compact cardinal strong limit? Or a fixed point of \(\aleph \) or \(\beth \)-functions?

3. On Products of \(\delta \)-Lindelöf Spaces

In this section we give a proof of Theorem 1.3. The direction \((2) \Rightarrow (1)\) just follows from the proof in [3]. For the converse direction in the case \(\delta = \omega_1 \), in [3], they used an algebraic method. We give a direct proof, an idea of it come from Gorelic [6].

Now suppose \(\kappa \) is not \(\delta \)-strongly compact. By Theorem 1.2, there is a regular cardinal \(\lambda \geq \kappa \) such that \(\lambda \) cannot carry a \(\delta \)-complete uniform ultrafilter. Let \(F \) be the family of all partitions of \(\lambda \) with size \(\delta \), that is, each \(A \in F \) is a family of pairwise disjoint subsets of \(\lambda \) with \(\bigcup A = \lambda \) and \(|A| < \delta \). Let \(\{ A^\alpha \mid \alpha < 2^\lambda \} \) be an enumeration of \(F \). For \(\alpha < 2^\lambda \), let \(\delta_\alpha = |A^\alpha| < \delta \), and \(\{ A^\alpha_{\xi} \mid \xi < \delta_\alpha \} \) be an enumeration of \(A^\alpha \). We identify \(\delta_\alpha \) as a discrete space, it is trivially \(\delta \)-Lindelöf. We show that the product space \(X = \prod_{\alpha < 2^\lambda} \delta_\alpha \) is not \(\kappa \)-Lindelöf.

For \(\gamma < \lambda \), define \(f_\gamma \in X \) as follows: For \(\alpha < 2^\lambda \), since \(A^\alpha \) is a partition of \(\lambda \), there is a unique \(\xi < \delta_\alpha \) with \(\gamma \in A^\alpha_\xi \). Then let \(f_\gamma(\alpha) = \xi \).

Let \(Y = \{ f_\gamma \mid \gamma < \lambda \} \). It is clear that \(|Y| = \lambda \).

Claim 3.1. For every \(g \in X \), there is an open neighborhood \(O \) of \(g \) such that \(|O \cap Y| < \lambda \).

Proof. Suppose not. Then the family \(\{ A^\alpha_{g(\alpha)} \mid \alpha < 2^\lambda \} \) has the finite intersection property, moreover for every finitely \(\alpha_0, \ldots, \alpha_n < 2^\lambda \), the intersection \(\bigcap_{i \leq n} A^\alpha_{g(\alpha_i)} \) has cardinality \(\lambda \). Hence we can find a uniform ultrafilter \(U \) over \(\lambda \) extending \(\{ A^\alpha_{g(\alpha)} \mid \alpha < 2^\lambda \} \). By our assumption, \(U \) is not \(\delta \)-complete.

Then we can take a partition \(A \) of \(\lambda \) with size \(< \delta \) such that \(A \not\in U \) for every \(A \in \mathcal{A} \). We can take \(\alpha < 2^\lambda \) with \(\mathcal{A} = A^\alpha \). However then \(A^\alpha_{g(\alpha)} \in U \), this is a contradiction. \(\square \)
For each \(g \in X \), take an open neighborhood \(O_g \) of \(g \) with \(|O_g \cap Y| < \lambda \). Let \(\mathcal{U} = \{O_g \mid g \in X\} \). \(\mathcal{U} \) is an open cover of \(X \), but has no subcover of size \(< \lambda \) because \(|Y| = \lambda \). Hence \(\mathcal{U} \) witnesses that \(X \) is not \(\lambda \)-Lindelöf, and not \(\kappa \)-Lindelöf. This completes our proof.

By the same proof, we have:

Corollary 3.2. Let \(\kappa \) be an uncountable cardinal, and \(\delta < \kappa \) a cardinal. Then the following are equivalent:

1. \(\kappa \) is \(\delta^+ \)-strongly compact.
2. Identifying \(\delta \) as a discrete space, for every cardinal \(\lambda \), the product space \(\delta^\lambda \) is \(\kappa \)-Lindelöf.

4. On Products of Countably Tight Spaces

We prove Theorems 1.4 and 1.5 in this section. For a topological space \(X \) and \(Y \subseteq X \), let \(\overline{Y} \) denote the closure of \(Y \) in \(X \).

Lemma 4.1. Let \(S \) be an uncountable set and \(U \) a \(\sigma \)-complete ultrafilter over the set \(S \). Let \(X \) be a countably tight space, and \(\{O_s \mid s \in S\} \) a family of open sets in \(X \). Define the set \(O \subseteq X \) by \(x \in O \iff \{s \in S \mid x \in O_s\} \in U \) for \(x \in X \). Then \(O \) is open in \(X \).

Proof. It is enough to show that \(\overline{X \ \setminus \ O} \subseteq X \ \setminus \ O \). Take \(x \in \overline{X \ \setminus \ O} \), and suppose to the contrary that \(x \notin X \ \setminus \ O \). We have \(\{s \in S \mid x \in O_s\} \in U \).

Since \(X \) is countably tight, there is a countable \(A \subseteq X \ \setminus \ O \) with \(x \in \overline{A} \). For each \(y \in A \), we have \(\{s \in S \mid y \notin O_s\} \in U \). Since \(A \) is countable and \(U \) is \(\sigma \)-complete, there is \(s \in S \) such that \(y \notin O_s \) for every \(y \in A \) but \(x \in O_s \). Then \(A \subseteq X \ \setminus \ O_s \). Since \(O_s \) is open, we have \(\overline{X \ \setminus \ O_s} \subseteq X \ \setminus \ O_s \). Hence \(x \in \overline{A} \subseteq \overline{X \ \setminus \ O_s} \subseteq X \ \setminus \ O_s \), and \(x \notin O_s \). This is a contradiction. \(\square \)

The following proposition immediately yields Theorem 1.4.

Proposition 4.2. Suppose \(\kappa \) is \(\omega_1 \)-strongly compact, and \(\mu \leq \kappa \) the least measurable cardinal. Let \(I \) be a set with \(|I| < \mu \), and \(\{X_i \mid i \in I\} \) a family of countably tight spaces. Then \(t(\prod_{i \in I} X_i) \leq \kappa \). More precisely, for every \(A \subseteq \prod_{i \in I} X_i \) and \(f \in \overline{A} \), there is \(B \subseteq A \) such that \(|B| < \kappa \) and \(f \in \overline{B} \).

Proof. Take \(A \subseteq \prod_{i \in I} X_i \) and \(f \in \overline{A} \). We will find \(B \subseteq A \) with \(|B| < \kappa \) and \(f \in \overline{B} \).

Since \(\kappa \) is \(\omega_1 \)-strongly compact, we can find a \(\sigma \)-complete fine ultrafilter \(U \) over \(\mathcal{P}_\kappa(\prod_{i \in I} X_i) \). Note that \(U \) is in fact \(\mu \)-complete. We show that \(\{s \in \mathcal{P}_\kappa(\prod_{i \in I} X_i) \mid f \in \overline{A \cap s}\} \in U \). Suppose not and let \(E = \{s \in \mathcal{P}_\kappa(\prod_{i \in I} X_i) \mid f \notin \overline{A \cap s}\} \in U \). For each \(s \in E \), since \(f \notin \overline{A \cap s} \), we can
choose finitely many \(i_0^n, \ldots, i_n^n \in I\) and open sets \(O_{i_k}^n \subseteq X_{i_k}\) respectively such that \(f(i_k^n) \in O_{i_k}^n\) for every \(k \leq n\) but \(\{g \in A \cap s \mid \forall k \leq n (g(i_k^n) \in O_{i_k}^n)\}\) = \(\emptyset\). Since \(U\) is \(\mu\)-complete and \(|I| < \mu\), we can find \(i_0, \ldots, i_n \in I\) such that \(E' = \{s \in E' \mid \forall k \leq n (i_k = i_k^n)\} \in U\).

For each \(i_k\), let \(O_{i_k} \subseteq X_{i_k}\) be a set defined by \(x \in O_{i_k} \iff \{s \in E' \mid x \in O_{i_k}^n\} \in U\). By lemma 4.1, each \(O_{i_k}\) is open in \(X_{i_k}\) with \(f(i_k) \in O_{i_k}\). Since \(f \in \mathcal{A}\), there is \(h \in A\) such that \(h(i_k) \in O_{i_k}\) for every \(k \leq n\). Because \(U\) is fine, we can take \(s \in E'\) with \(h \in A \cap s\) and \(h(i_k) \in O_{i_k}\) for every \(k \leq n\). Then \(h \in \{g \in A \cap s \mid \forall k \leq n (g(i_k^n) \in O_{i_k}^n)\}\), this is a contradiction. \(\square\)

Note 4.3.

1. The restriction \(|I| < \mu\) in Proposition 4.2 cannot be eliminated. If \(I\) is an infinite set and \(\{X_i \mid i \in I\}\) is a family of \(T_1\) spaces with \(|X_i| \geq 2\), then \(t(\prod_{i \in I} X_i) \geq |I|\); For each \(i \in X\) take distinct points \(x_i, y_i \in X\). For each finite subset \(a \subseteq I\), define \(f_a \in \prod_{i \in I} X_i\) by \(f_a(i) = x_i\) if \(\gamma \in a\), and \(f_a(i) = y_i\) otherwise. Let \(X = \{f_a \mid a \in [I]^{<\omega}\}\), and \(g\) the function with \(g(i) = x_i\) for \(i \in I\).

 Then \(g \in \mathcal{Y}\) but for every \(Y \subseteq X\) with \(|Y| < |I|\) we have \(g \notin \mathcal{Y}\).

2. On the other hand, we do not know if Proposition 4.2 can be improved as follows: If \(\kappa\) is the least \(\omega_1\)-strongly compact and \(I\) is a set with size \(< \kappa\), then the product of countably tight spaces indexed by \(I\) has tightness \(\leq \kappa\).

Recall that the Cohen forcing notion \(\mathbb{C}\) is the poset \(2^{<\omega}\) with the reverse inclusion order.

Lemma 4.4. Let \(\kappa\) be a cardinal which is not \(\omega_1\)-strongly compact. Let \(\mathbb{C}\) be the Cohen forcing notion, and \(G\) be \((V, \mathbb{C})\)-generic. Then in \(V[G]\), there are regular \(T_1\) Lindelöf spaces \(X_0^n\) and \(X_1^n\) such that \(X_0^n\) and \(X_1^n\) are Lindelöf for every \(n < \omega\), but the product space \(X_0 \times X_1\) has an open cover which has no subcover of size \(< \kappa\).

Proof. Let \(X_0^n\) and \(X_1^n\) be spaces constructed in the proof of Proposition 3.1 in [9]. We know that \(X_0 \times X_1^n\) has an open cover which has no subcover of size \(< \kappa\). In addition, we can check that \(X_0^n\) and \(X_1^n\) are Lindelöf for every \(n < \omega\) (see the proof of Proposition 3.9 in [9]). \(\square\)

For a Tychonoff space \(X\), let \(C_p(X)\) be the space of all continuous functions from \(X\) to the real line \(\mathbb{R}\) with the pointwise convergent topology. For a topological space \(X\), the Lindelöf degree \(L(X)\) is the minimum infinite cardinal \(\kappa\) such that every open cover of \(X\) has a subcover of size \(\leq \kappa\). Hence \(X\) is Lindelöf if and only if \(L(X) = \omega\).

Theorem 4.5 (Arhangel’skii-Pytkeev [1, 8]). Let \(X\) be a Tychonoff space, and \(\nu\) a cardinal. Then \(L(X^n) \leq \nu\) for every \(n < \omega\) if and only if \(t(C_p(X)) \leq \nu\).

10
\(\nu \). In particular, each finite power of \(X \) is Lindelöf if and only if \(C_p(X) \) is countably tight.

Proposition 4.6. Let \(\kappa \) be a cardinal which is not \(\omega_1 \)-strongly compact. Let \(\mathbb{C} \) be the Cohen forcing notion, and \(G \) be \((V, \mathbb{C}) \)-generic. Then in \(V[G] \), there are regular \(T_1 \) Lindelöf spaces \(X_0 \) and \(X_1 \) such that \(C_p(X_0) \) and \(C_p(X_1) \) are countably tight and \(t(C_p(X_0) \times C_p(X_1)) \geq \kappa \).

Proof. Let \(X_0 \) and \(X_1 \) be spaces in Lemma 4.4. By Theorem 4.5, \(C_p(X_0) \) and \(C_p(X_1) \) are countably tight. It is clear that \(C_p(X_0) \times C_p(X_1) \) is homeomorphic to \(C_p(X_0 \oplus X_1) \), where \(X_0 \oplus X_1 \) is the topological sum of \(X_0 \) and \(X_1 \). We have \(L((X_0 \oplus X_1)^2) \geq L(X_0 \times X_1) \geq \kappa \), hence \(t(C_p(X_0) \times C_p(X_1)) \geq \kappa \) by theorem 4.5 again. \(\square \)

Combining these results we have Theorem 1.5:

Corollary 4.7. Let \(\mathbb{C} \) be the Cohen forcing notion, and \(G \) be \((V, \mathbb{C}) \)-generic. Then for every cardinal \(\kappa \) the following are equivalent in \(V[G] \):

1. \(\kappa \) is \(\omega_1 \)-strongly compact.
2. For every countably tight spaces \(X \) and \(Y \) we have \(t(X \times Y) \leq \kappa \).
3. For every countably tight Tychonoff spaces \(X \) and \(Y \) we have \(t(X \times Y) \leq \kappa \).
4. For every regular \(T_1 \) Lindelöf spaces \(X \) and \(Y \), if \(C_p(X) \) and \(C_p(Y) \) are countably tight then \(t(C_p(X) \times C_p(Y)) \leq \kappa \).

Theorem 1.5 is a consistency result, and the following natural question arises:

Question 4.8. In ZFC, is the least \(\omega_1 \)-strongly compact cardinal a precise upper bound on the tightness of the products of two countably tight spaces? How about Fréchet-Urysohn spaces?

References

[1] A. V. Arhangel’skii, *On some topological spaces that arise in functional analysis*, Russian Math. Surveys Vol. 31, No. 5 (1976), 14–30.
[2] J. Bagaria, M. Madigor, *Group radicals and strongly compact cardinals*. Trans. Am. Math. Soc. Vol. 366, No. 4 (2014), 1857–1877.
[3] J. Bagaria, M. Madigor, *On \(\omega_1 \)-strongly compact cardinals*. J. Symb. Logic Vol. 79, No. 1 (2014), 268–278.
[4] J. Bagaria, S. G. de Silva, *\(\omega_1 \)-strongly compact cardinals and normality*. preprint.
[5] K. Eda, G. Gruenhage, P. Koszmider, K. Tamano, S. Todorcević, *Sequential fans in topology*. Top. App. 67 (1995), 189–220.
[6] I. Gorelic, *On powers of Lindelöf spaces*. Comment. Math. Univ. Carol. Vol. 35, No. 2 (1994), 383–401.
[7] J. Ketonen, *Strong compactness and other cardinals sins*. Ann. Math. Logic Vol. 5 (1972), 47–76.
[8] E. G. Pytkeev, *The tightness of spaces of continuous functions*. Russian Math. Survey Vol. 37, No.1 (1982), 176–177.

[9] T. Usuba, *$G_δ$-topology and compact cardinals*. Fund. Math. Vol. 246 (2019), 71–87.

[10] T. Usuba, *A note on the tightness of $G_δ$-modification*. To appear in Top. App.

(T. Usuba) Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555 Japan

E-mail address: usuba@waseda.jp