Review

Reactive oxygen species: toxic molecules or spark of life?
Sheldon Magder

McGill University Health Centre, Royal Victoria Hospital, Division of Critical Care, Pine Av W, Montreal, Quebec, Canada H3A 1A1

Corresponding author: S Magder, Sheldon.magder@muhc.mcgill.ca

Published: 3 February 2006
This article is online at http://ccforum.com/content/10/1/208
© 2006 BioMed Central Ltd

Abstract

Increases in reactive oxygen species (ROS) and tissue evidence of oxidative injury are common in patients with inflammatory processes or tissue injury. This has led to many clinical attempts to scavenge ROS and reduce oxidative injury. However, we live in an oxygen rich environment and ROS and their chemical reactions are part of the basic chemical processes of normal metabolism. Accordingly, organisms have evolved sophisticated mechanisms to control these reactive molecules. Recently, it has become increasingly evident that ROS also play a role in the regulation of many intracellular signaling pathways that are important for normal cell growth and inflammatory responses that are essential for host defense. Thus, simply trying to scavenge ROS is likely not possible and potentially harmful. The 'normal' level of ROS will also likely vary in different tissues and even in different parts of cells. In this paper, the terminology and basic chemistry of reactive species are reviewed. Examples and mechanisms of tissue injury by ROS as well as their positive role as signaling molecules are discussed. Hopefully, a better understanding of the nature of ROS will lead to better planned therapeutic attempts to manipulate the concentrations of these important molecules. We need to regulate ROS, not eradicate them.

Introduction

Production of reactive oxygen species (ROS) and oxidative stress are associated with tissue injury and many pathological processes, including septic shock [1,2]. This has prompted clinical attempts to regulate oxygen radical production and oxidative stress [3-7]. Signs of oxidative stress often have been reduced, at least in blood, but by and large these clinical trials have had little beneficial outcome, although a reduction of mortality was observed in one trial [8] and a reduction in multi-organ system failure in another [9]. An underlying assumption has been that ROS randomly and indiscriminately attack important chemical pathways and, thereby, cause cell injury or death, but more recently it has become evident that ROS can act as important signaling molecules under physiological and pathophysiological conditions [10-14]. Thus, to understand the potential benefits and limitations of therapeutic approaches aimed at increasing ROS scavenging, one must understand the 'meaning' of oxidation and ROS. It will then become evident that although ROS are potentially very toxic, they are also essential factors in normal metabolism.

Oxygen is now the most prevalent element in the earth’s crust [15]. It exists in air as a diatomic molecule, O₂. Except for a small number of anaerobic bacteria, all living organisms use O₂ for energy production and it is thus essential for life as we know it. Energy production from food material by organisms requires 'oxidation', which means the loss of electrons. In anaerobic organisms, electrons are taken up by hydrogen, but in aerobic organisms, the loss of electrons occurs much more efficiently through the use of electron carriers such as nicotinamide adenine dinucleotide (NAD+) and flavins, which are 'reduced' in the process by gaining electrons from target molecules and are re-oxidized by donating electrons to O₂ through oxidative phosphorylation. The potential for O₂ to oxidize other molecules also makes it toxic. Oxidation is the basic process in combustion; fires do not burn without O₂. It is also the cause of rust. Oxidation can inactivate important enzymes and anaerobes that do not have anti-oxidant mechanisms do not survive in an O₂ environment. Thus, for organisms to have evolved in an O₂ world there has had to be evolution of potent mechanisms to control oxidative processes.

Terminology

Before continuing with a discussion of potential beneficial and harmful aspects of ROS, we need to review the terms involved [15]. Oxidation is the gain of oxygen by a substance or a loss of an electron. A useful reminder is ‘LEO’, which stands for ‘lose electron oxidized’. Reduction is the loss of oxygen by a substance, the gain of an electron or the gain of hydrogen; a useful reminder is ‘GER’, which stands for ‘gain electron reduced’. An oxidizing agent takes an electron or hydrogen from another chemical or adds oxygen. A reducing agent supplies electrons or hydrogen to another chemical, or removes oxygen. An important chemical principle is that because of their spin, electrons are most stable when they are paired in their orbits. Unpaired electrons are attracted to

PTP-1B = phosphatase 1B; ROS = reactive oxygen species; SERCA = sarco/endoplasmic reticulum calcium ATPase; SOD = superoxide dismutase.
magnetic fields, which makes them more reactive. Substances that have unpaired electrons and are capable of independent existence are called free radicals. By this definition, atomic hydrogen is a free radical because it only has one electron. O\textsubscript{2} is a radical because it has two unpaired electrons in its outer orbitals, and this gives O\textsubscript{2} its reactivity. However, the two unpaired electrons on O\textsubscript{2} have parallel spins, which means that O\textsubscript{2} can only oxidize another molecule by accepting a pair of electrons that have antiparallel spin so as to fit into the two vacant spaces of O\textsubscript{2}. This tends to make O\textsubscript{2} still not a very reactive radical; in the presence of H+ or HO\textsubscript{2}– it can reduce O\textsubscript{2}– to H\textsubscript{2}O\textsubscript{2} or be oxidized to O\textsubscript{2}.

Another term that is often used is ‘reactive oxygen species’ (ROS). This term includes radicals as well as chemicals that can take part in radical type reactions (i.e. gain or lose electrons), but are not true radicals in that they do not have unpaired electrons. Examples of non-radical ROS include hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), hypochlorous acid (HOCl), ozone (O\textsubscript{3}) and singlet oxygen (1\DeltaO\textsubscript{2}). An important product of the two radicals O\textsubscript{2}– and NO is peroxynitrite (ONOO–); this reaction occurs at a diffusion limited rate [16,17]. Although not a radical itself, ONOO– can result in cytotoxic processes, including lipid peroxidation, the formation of nitrotyrosine residues that can inactivate enzymes, depletion of glutathione, and DNA injury. Besides oxygen-based radicals, there are also reactive nitrogen species such as nitric oxide (NO) and nitrogen dioxide (NO\textsubscript{2}), sulfur based molecules such as thiol (RS) and perthiol (RSS), as well as carbon centered molecules such as trichloromethyl (CC\textsubscript{3}I), which is a product of metabolism of carbon tetrachloride (CC\textsubscript{4}) [15].

Sources of O\textsubscript{2}– and ROS
Under the conditions of normal metabolism the most important source of O\textsubscript{2}– is the mitochondrial electron transport chain, which leaks a few electrons directly onto O\textsubscript{2} as part of normal metabolism. It is estimated that 1% to 3% of O\textsubscript{2} reduced in mitochondria is in the form of O\textsubscript{2}– [18]. This comes from two sites, complex I (NADH dehydrogenase) and complex III (ubiquinone-cytochrome c reductase), with the latter being the major source under normal conditions [11].

Several enzymes also contribute to O\textsubscript{2}– production. One of the best characterized is xanthine oxidase, which is present in the cytosol of many tissues but also can be found in circulating blood and bound to glycosaminoglycan sites in the arterial wall [19]. Normally the enzyme acts as a dehydrogenase and transfers electrons to NAD+ rather than O\textsubscript{2}, but in ischemia reperfusion [20,21] or in sepsis [21,22] the active site of the enzyme is oxidized and the enzyme acts as an oxidase and produces O\textsubscript{2}–.

In phagocytic cells the major source of O\textsubscript{2}– is a multi-component oxidase called NAD(P)H oxidase [23,24]. In response to membrane signals this complex produces a burst of O\textsubscript{2}– that is important for killing invading microorganisms. Genetic mutations in components of the complex result in chronic granulomatous disease, which is characterized by repeated infections. There are at least five components to the complex. Two, p22phox (phox stands for phagocyte associated oxidase) and gp91phox (subsequently called NOX2) are found in membranes [25,26]. NOX2 is the component that produces O\textsubscript{2}–. The complex is activated when the cytosolic component p67phox is transported to the membrane complex by the transporter molecule p47phox [27]. The attachment of p67phox to the membrane complex results in a conformational change in p22phox that exposes the active site on NOX2. The small g-protein Rac also contributes to the activity of the enzyme and transmits membrane signals to the complex. Recently, a family of non-phagocytic NOXs with the same basic components as the phagocytic type have been identified in numerous types of cells, including vascular smooth muscle, endothelial, skeletal muscle, fibroblast, and mesangial cells [28-30]. The non-phagocytic form produces much lower amounts of O\textsubscript{2}– compared to the phagocytic form but is constitutively active.

O\textsubscript{2}– is also produced by a number of metabolically active enzymes as part of their normal function or when there is inadequate substrate. For example, cytochrome P450 enzymes can produce O\textsubscript{2}– as a side reaction when they breakdown target molecules [15]. Nitric oxide synthases, the family of enzymes that produce NO, produce O\textsubscript{2}– when the substrates L-arginine or co-factor tetrahydropteridines are insufficient [21,31,32].

O\textsubscript{2}– can also be produced by cyclooxygenase as part of arachidonic acid metabolism. O\textsubscript{2}– even can be produced through auto-oxidation of molecules such as gylceraldehyde, FMNH2, FADH2, adrenaline, noradrenaline, dopamine and thiol containing molecules such as cysteine in the presence of O\textsubscript{2} [1,15]. Since we live in an oxygen rich environment, and ROS are byproducts of normal metabolism, potent protective mechanisms have evolved to allow life to continue. One of the most fundamental antioxidant enzymes is superoxide dismutase (SOD), which catalyzes the reaction of two O\textsubscript{2}– and two H+ to H\textsubscript{2}O\textsubscript{2} (reduced) and O\textsubscript{2} (oxidized) [33]. There are three forms to this enzyme: SOD1, a copper/zinc (Cu/Zn) isofrom present in the cytosol; SOD2, a manganese (Mn) isofrom present in mitochondria; and SOD3, a Cu/Zn isofrom present in the extracellular space. Knockout of SOD2 in mice is lethal in the first week of life [34,35] whereas deficiencies of SOD1 and SOD3 are not lethal but result in less tolerance of neuronal injury [36] or hyperoxia, respectively [37]. H\textsubscript{2}O\textsubscript{2} itself is not a radical but is a ROS and may actually account for most of the O\textsubscript{2}– reactions. What makes H\textsubscript{2}O\textsubscript{2} so important is that it is more stable than O\textsubscript{2}– and can diffuse across membranes. In the presence of iron in the ferrous form
(Fe²⁺), H₂O₂ can be reduced to the highly reactive OH⁻ radical. It is thus important that H₂O₂ also be reduced in a controlled manner and this is achieved by catalase or glutathione peroxidase. Other antioxidants include cysteine, glutathione itself, ascorbic acid (vitamin C) and α-tocopherol (vitamin E), which can also scavenge peroxynitrite.

Production of injury by ROS

One of the major toxic effects of excessive ROS is damage to cellular membranes by the process of lipid peroxidation. Species such as OH⁻, HO₂⁻, and OONO⁻, but not O₂⁻, can extract an H from methylene (-CH₂-), which creates the carbon radical -CH-. This carbon radical then attacks other -CH₂- groups in lipid molecules, and creates a chain reaction that alters the fluidity and shape of the membrane. This is the same process that makes oil rancid. A consequence of the change to the cell membrane is disruption of calcium handling, which is essential for intracellular signaling. Lipid peroxides can also damage DNA and proteins.

Attack of DNA by ROS results in DNA strand breaks. As with lipids, O₂⁻ and H₂O₂ do not do this by themselves but do so in the presence of hypochlorous acid (HOCl). It is also possible that oxidative stress results in the release of bound intracellular iron and copper ions that can then generate the highly toxic OH⁻ through what is known as the Fenton reaction [15]. The potential for this to produce mutations and to alter normal transcriptional and translational processes is obvious. Besides these direct effects of oxidative injury, there can be indirect injury because the nicks and breaks in DNA strands can trigger activation of Poly(ADP) polymerase (PARP), which alters gene expression, DNA replication and may trigger apoptosis. It can also deplete NAD+, which leads to cellular ATP depletion [38].

Proteins, too, can be targets of oxidative alterations. Protein oxidation disrupts receptors, enzyme function and signal transduction pathways. The amino acid tyrosine is particularly prone to attack by ROS, especially reactive nitrogen species such as OONO⁻ [39]. The product of OONO⁻ and tyrosine is 3-nitrotyrosine and antibodies against it are used as a ‘footprint’ of protein oxidation [40]. Oxidation of proteins also can lead to products with carbonyl groups [41]. The amino acids histidine, arginine, lysine and proline are especially vulnerable. However, just because a protein is oxidized does not mean that it has lost its function and the biological significance of oxidation of a particular protein needs to be confirmed by evidence of an alteration in function. An example of a protein function altered by oxidation is the inactivation of the intra-mitochondrial SOD, SOD2, by peroxynitrite [42]. Because O₂⁻ scavenging is reduced, oxidative processes are accelerated. Potentially important functional sites for oxidation of proteins are the -SH groups because the formation of -S-S- bonds between different protein strands or parts of the same strand can result in conformational changes in the protein that alter its function (see below).

ROS in sepsis

There is evidence from animal studies that an increase in ROS in sepsis is of pathophysiological importance. Oxygen radical scavengers reduce lung injury in animal models [43-48] and improve hemodynamics [48,49]. An interesting and potentially clinically important example of O₂⁻ induced injury is the deactivation of catecholamines in inflammatory reactions [50]. Catecholamines can act as antioxidants because of their ability to interact with ROS, but this process also leads to their deactivation and the formation of adrenochromes, which are toxic themselves. Of interest, in the first identification of SOD, one of the tests of the activity of the enzyme was the prevention of oxidation of catecholamines [33]. The potential clinical importance of the oxidation of catecholamines was demonstrated by Salvemini and coworkers [50] who showed that ROS decrease the activity of catecholamines and oxygen radical scavengers restore cardiovascular responsiveness to catecholamines in an animal model of sepsis.

There is also evidence for a clinically significant role for ROS in humans. Patients with sepsis who are able to achieve a normal antioxidant potential in their plasma have better survival [51] and treatment of septic patients with the antioxidants glutathione and N-acetylcysteine decreases measures of oxidative injury [4]. N-acetylcysteine reduces the respiratory burst from neutrophils of septic patients [52] and patients with lung injury randomized to antioxidant therapy with N-acetylcysteine versus placebo had an improvement in systemic oxygenation and a reduction in the need for ventilatory support [5]. An improvement in hepatic blood flow in septic patients has also been observed [6]. On the other hand, no significant clinical advantage to the administration of N-acetylcysteine was observed in two studies [3,7]. An important limitation of N-acetylcysteine is that it works by increasing the intracellular cysteine concentration, which normally is high relative to the plasma concentration [53]. Thus, potentially toxic plasma levels are needed to reach the necessary intracellular levels. N-acetylcysteine also has a low Km for the removal of O₂⁻, which is why it has to be present at high concentrations. Augmenting oxygen radical scavenging activity in patients with septic shock by combining N-acetylcysteine and glutathione produced a trend towards less organ damage [4] but results were not conclusive. To date there is no clear evidence that antioxidant therapy alters outcome in septic patients [54], although as noted in the introduction, supplementation of feeds with vitamins was shown to reduce mortality of a general group of severely ill patients [8] and reduce multiorgan dysfunction in a group of critically ill patients who were primarily trauma victims [9].

ROS and cell signalling

Perhaps the failure to find a clinical role for therapies aimed at the reduction of ROS is that they are based on the limited paradigm that ROS only cause injury. An alternative view is...
that although ROS are potentially highly toxic, redox reactions are also part of the basic chemical processes of life [10,11]. Since organisms have had to develop efficient regulatory mechanisms to keep the production of ROS under control, these same mechanisms could be used to regulate other intracellular processes [12-14,53,55]. A parallel might be seen with that of Ca²⁺ handling. The intracellular Ca²⁺ concentration is kept at less than 1/10,000 of extracellular Ca²⁺ so as to avoid the interaction of Ca²⁺ and phosphate and bone formation. Because of the large transmembrane gradient of Ca²⁺, the leak of small amounts of Ca²⁺ across cell membranes through specialized channels can provide one of the cell’s basic signalling mechanisms. Similarly, regulation of extracellular and intracellular levels of O₂⁻ and H₂O₂ could provide potential for signalling of extracellular to intracellular mechanisms. In this paradigm, ROS are not just random destructive species but regulators of metabolic processes and part of the chemistry of life [10,11]. Furthermore, evidence of oxidative injury may be the end result of the inflammatory process rather than the major cause of injury, in which case the use of antioxidants may be too late. Another analogy might be helpful. Consider walking along a beach and observing a rusted old ship lying on the shore. You conclude that the reason why the ship was abandoned is because it is so rusted (oxidized) until you walk past the ship and notice a large hole in the hull. You then realize that the ship was abandoned because of the hole and rusted when it was no longer cared for. Signs of oxidative changes may simply indicate that molecules or cells have been abandoned by the organism and are not themselves the major cause of the disease process.

Although there is a lot of evidence indicating that ROS and the redox state have a signaling role in bacteria and plants, there was less evidence in mammalian cells until recently. For example, in bacteria the transcription factor OxyR is redox sensitive [13]. There is now an increasing number of examples in animals of ROS-based signaling, including protein tyrosine phosphatase 1B (PTP-1B) [56], thioredoxin [57], SERCA2 [58] and Ras [59]. A well-characterized radical that has a major role in normal physiological function is nitric oxide (NO⁺). This radical has a central role in the regulation of vascular tone, nerve function and immune regulation. Even the potentially toxic by-product of NO⁺ and O₂⁻, OONO⁻, has recently been shown to play a role in the regulation of vascular tone [58]. Cohen and coworkers found that NO⁺ induced dilatation occurs by the production of low concentrations of OONO⁻, which directly stimulates the sarco/endoplasmic reticulum calcium (Ca²⁺) ATPase (SERCA) to decrease intracellular Ca²⁺ and thereby produce vasodilatation. This occurs by reversible S-glutathiolation of the thiol of a cysteine molecule on SERCA. Thus, by removing O₂⁻ and preventing the formation of OONO⁻, superoxide scavengers actually blocked NO-induced vascular relaxation. However, high levels of oxidative stress, including high concentrations of OONO⁻, resulted in irreversible oxidation of key thiols and prevented normal NO-induced relaxation. An important lesson may be learnt from the NO system. Endothelial and neuronal cells that use NO for signalling produce NO in small amounts, whereas macrophages and neutrophils that use NO to attack invading organisms produce large amounts. Similarly, the NAD(P)H oxidase in phagocytic cells produces large quantities of O₂⁻, whereas the NAD(P)H oxidases in non-phagocytic cells produce much smaller amounts of O₂⁻, consistent with a signalling role.

The role of ROS in the signaling of a number of growth factors has also been well established. An excellent example is the role of ROS in angiotensin signaling as established by Griendling and co-workers [29,60-62]. They showed that exposure of vascular smooth muscle to angiotensin II results in smooth muscle growth that is dependent upon increased production of O₂⁻ by NAD(P)H oxidase and its subsequent dismutation to H₂O₂. H₂O₂ then activates downstream prosurvival pathways and, in vivo, this results in vascular hypertrophy. Other growth factors such as platelet derived growth factor-α [22,64-72] and this too seems to occur

Figure 1

The change from thiols (-SH) to disulfide bonds (-S-S-) can produce a conformational change that may allow better protein-protein or protein-DNA interactions. Adapted from Droge et al. [11].
through O_2^{-} produced by NAD(P)H oxidase and likely involves regulation of the transcriptional activity of NFκB. Similarly, it has recently been shown that lipopolysaccharide activation of Toll-like receptor 4 increases O_2^{-} production by NAD(P)H oxidase and this too leads to NFκB activation [73].

Various mechanisms have been explored recently that can explain how ROS can signal intracellular events. These generally involve the oxidation of cysteine residues and formation of -S-S- bonds [12,14,53,74,75] (Figs 1 to 3). These bonds can be within a molecule and result in a conformational change (Fig. 1) or between protein strands, in which case they result in dimerization of proteins. The creation of -S-S- bonds can also result in the release of an inhibitory molecule (Fig. 2). Some reactions are irreversible and result in protein instability or irreversible protein cross-linking. However, an interesting reversible process is oxidation of cysteinyl thiols by S-glutathiolation from thiol disulfide exchange reactions involving oxidized glutathione or from direct oxidation of protein cysteinyl thiols followed by reaction with reduced glutathione [75] (Fig. 3). In the case of PTP-1B, stabilization of an oxidized cysteine occurs through the formation of a mixed disulfide with glutathione (Fig. 3). The formation of the mixed disulfide prevents the irreversible oxidation of the thiol to sulfinic or sulfonic acid and allows for the reactivation of the enzyme by cellular thioreductase.

Figure 2

Oxidation of thioredoxin (Trx) by hydrogen peroxide (H_2O_2) leads to a change in shape of the molecule and the release of the transcriptional factor ASK1. Trx is then reduced again by Trx reductase, which allows it to again bind to ASK1 and inactivate this transcriptional factor. Through this mechanism the redox state of the cell can regulate the activity of the transcriptional factor ASK1.

Figure 3

Regulation of phosphatase by the redox state. Cysteine molecules have sulfur atoms (S) that are protonated and not reactive in most proteins. However, on some molecules, such as phosphatases, S can form thiolates (S-) at normal pH and these can be reversibly oxidized. The top of the figure shows the balance between phosphatase activity (which dephosphorylates molecules) and kinase activity (which phosphorylates and activates molecules). Phosphatase activity is regulated by the redox state as shown in the cycle below the bracket. Oxidation to sulfinic acid (-S-OH) is reversible. This can occur by glutathiolation (GSH) or by the formation of disulfides. However, excessive oxidation leads to sulfonic acid, which cannot easily be converted back to reduced forms of sulfur.
although recently it has become apparent that even sulfenic groups can be re-oxidized [76-78].

Implications

ROS are an essential part of many metabolic pathways; they are part of the flame of basic energy producing processes. Organisms have had to evolve elaborate mechanisms to live with these reactive molecules and seem also to have evolved to use the reactive nature of these molecules for intracellular signal transduction. Thus, a key concept in dealing with ROS must be to regulate but not eradicate, for turning off production of ROS is tantamount to turning off the engine that powers us. ROS also seem to have specific roles in different cell types and thus therapeutic strategies for the manipulation of ROS should take into account the source of ROS, the targets of the ROS, specific cell types involved and the specific location of ROS production in these cells, for one needs to know that the potential therapeutic agent actually can get to the site of excess ROS production. A list of things to consider when examining the potential of a therapeutic agent to deal with ROS is given in Table 1. In the management of ROS we will need to be careful to not repeat the mistake that was made with global inhibition of NO production.

Competing interests

The author(s) declare that they have no competing interests.

References

1. Salvenini D, Cuzzocrea S: Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radical Biol Med 2002; 33:1173-1185.

2. Halliwell B: The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 1993; 23:118-126.

3. Jepsen S, Herlevsen P, Knudsen P, Bud MI, Klausen NO: Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome: A prospective, randomized, placebo-controlled study. Crit Care Med 1992, 20:918-923.

4. Orlani O, Conti A, De Gaudio AR, Moraldi E, Cantini O, Novelli G: The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock. Am J Resp Crit Care Med 2000, 161:1907-1911.

5. Suter P, Domignetti G, Schaller M-D, Laverriere M-C, Ritx R, Perret C: N-acetylcysteine enhances recovery from acute lung injury in man. Chest 1994, 105:190-194.

6. Rank N, Michel C, Haertel C, Lenhart A, Welte M, Meier-Hellmann A, Spies C: N-acetylcysteine increases liver blood flow and improves liver function in septic shock patients: Results of a prospective, randomized, double-blind study. Crit Care Med 2000, 28:3799-3807.

7. Bernard GR, Wheeler AP, Arons MM, Morris PE, Paltz HL, Russell JA, Wright PE: A trial of antioxidants N-acetylcysteine and pro-cysteine in ARDS. Chest 1997, 112:164-172.

8. Crimi E, Liguori A, Condorelli M, Clifti M, Astuto M, Bontempo P, Migliorosa O, Veitri MT, Molinaro AM, Sica V, Della Corte F, Napoli C: The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomised, double-blind, placebo-controlled trial. Anesth Analg 2004, 99:857-863.

9. Mathews AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, Radella F, Garcia I, Maier RV: Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg 2002, 236:814-822.

10. Finkel T: Oxygen radicals and signaling. Curr Opin Cell Biol 2000; 12:719-725.

11. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408:239-247.

12. Forman HJ, Torres M, Fukuto J: Redox regulation of ROS. Annu Rev Biochem 2002, 71:23-54.

13. Droge W: Free radicals in the physiological control of cell function. Physiol Rev 2002, 82:47-95.

14. Thannickal VJ, Fanburg BL: Reactive oxygen species in cell signalling. Annu Rev Physiol 2000, 62:1005-1028.

15. Halliwell B, Gutteridge JMC: Free Radicals in Biology and Medicine. 3rd edition. Oxford: Oxford University Press; 1999.

16. Pryor WA, Squardo GL: The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 1995, 268:L689-L722.

17. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996, 40:C1424-C1437.

18. Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol 2003, 552:335-344.

19. White CR, Darley-Usmar V, Berrington WR, McAdams M, Gore JZ, Thompson JA, Parks DA, Tarpey MM, Freeman BA: Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci USA 1996, 93:8745-8749.

20. Ullrich V, Bachschmid M: Superoxide as a messenger of endothelial function. Biochem Biophys Res Commun 2000, 278:1-8.

21. Mueller CF, Laude K, McNally JS, Harrison DG: ATVF in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 2005, 25:274-278.

22. Brandes RP, Koddenberg G, Gwinner W, Kim D, Kruse HJ, Busse JA, Griendling KK, Lambeth JD: The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 2004, 279:1715-1718.

23. Quinn MT, Gauss KA: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004, 76:760-781.

24. Babiak MB: NADPH oxidase: an update. Blood 1999, 93:1464-1478.

25. Li JM, Shah AM: Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 2004, 287:R1014-R1030.

26. Geiszt M, Leto TL: The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 2004, 279:686-695.

27. Nisimoto Y, Motalebi S, Han CH, Lambeth JD: The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem 1999, 274: 23999-24005.

28. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griending KK, Lambeth JD: Cell transformation by the superoxide-generating oxidase Mox1. Nature1999, 401:79-82.

29. Griending KK, Sorescu D, Ushio-Fukai M: NADPH oxidase. Role in cardiovascular biology and disease. Circ Res 2000, 86: 494-501.

30. Lassegue B, Cimpean RE: Vascular NADPH oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003, 285:R277-R297.

31. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL: Nitric
oxide synthase generates superoxide and nitric oxide in argi-
nine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 1996, 93:6770-6774.
32. Xia Y, Zweier JL: Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 1997, 94:6954-6958.
33. McLeod JM, Fridovich I: Superoxide dismutase. An enzymic function for erythrocuppren (hemocuprein). J Biol Chem 1969, 244:6909-6914.
34. Melov S, Coskun P, Patel M, Elgindy A, Turco A, Cottrell B, Jun AS, Nilsen TO, Mjos KD, Veldhoven PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, et al: Mitochon-
drial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 1999, 96:846-851.
35. Reaume AG, Elliott JL, Hoffman EK, Kowal NW, Ferrante RJ, Saucedo DF, Wilcox HM, Flood DG, Beal MF, Brown RJ Jr, et al: Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996, 13:43-47.
36. Carlson LM, Jonsson J, Edlund T, Marklund SL: Mice lacking electrolyte superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995, 92:6264-6268.
37. Szabo C, Zingarelli B, O'Connor M, Salzman AL: The effects of angiotensin II on superoxide and catalase mimetic, ameliorates acute lung injury in vivo. J Biol Chem 1999, 274:17654-17662.
38. Carlsson LM, Jonsson J, Edlund T, Marklund SL: Copper/zinc superoxide dismutase-, superoxide dismutase-1- and superoxide dismutase-3-deficient mice. Methods Enzymol 1999, 307:113-147.
39. Adachi T, Pimentel DR, Ying J, Sharov VS, Schöneich C, Cohen RA: S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 2004, 10:1200-1207.
40. Adachi T, Pimentel DR, Heibeck T, Hou X, Lele YJ, Jiang B, Ido Y, Chen RA: S-glutathiolation of Ras mediates redox-sensitive signaling by antioxidant II in vascular smooth muscle cells. J Biol Chem 2004, 279:29857-29862.
41. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994, 74:1141-1148.
42. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK: Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999, 274:22699-22704.
43. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Fingel T: Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995, 270:296-299.
44. Matsubara T, Ziff M: Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol 1986, 137:3295-3298.
45. Ferro TJ, Gertzberg N, Selden L, Neumann P, Johnson A: Endothelial barrier dysfunction and p42 oxidation induced by TNF-alpha are mediated by nitric oxide. Am J Physiol Lung Cell Mol Physiol 1997, 272:L79-L86.
46. Rahman A, Kefer J, Bando M, Niles W, Malik AB: E-selectin expression in human endothelial cells by TNF-alpha-induced oxidant generation and MK-kb activation. Am J Physiol Lung Cell Mol Physiol 1998, 275:L533-L544.
47. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK: Tumour necrosis factor a activates a p22 gpox.
48. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK: Tumour necrosis factor a activates a p22 gpox.
49. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK: Tumour necrosis factor a activates a p22 gpox.
50. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK: Tumour necrosis factor a activates a p22 gpox.
51. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK: Tumour necrosis factor a activates a p22 gpox.
edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isoform is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κB. J Immunol 2004, 173:3589-3593.

74. Xu D, Rovira II, Finkel T: Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell 2002, 2:251-252.

75. Filomeni G, Rotilio G, Cinolo MR: Cell signalling and the glutathione redox system. Biochem Pharmacol 2002, 64:1057-1064.

76. Woo HA, Chae HA, Hwang SC, Yang K-S, Kang SW, Kim K, Rhee SG: Reversing the inactive form of peroxiredoxins caused by cysteine sulfenic acid formation. Science 2003, 300:653-656.

77. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW: Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 2004, 117:625-635.

78. Woo HA, Kang SW, Kim HK, Yang K-S, Chae HZ, Rhee SG: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfenic acid: Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 2000, 278:47361-47364.