Evidence on the effect of gender of newborn, antenatal care and postnatal care on breastfeeding practices in Ethiopia: a meta-analysis and meta-regression analysis of observational studies

Tesfa Dejenie Habtewold, Nigussie Tadesse Sharew, Sisay Mulugeta Alemu

To cite: Habtewold TD, Sharew NT, Alemu SM. Evidence on the effect of gender of newborn, antenatal care and postnatal care on breastfeeding practices in Ethiopia: a meta-analysis and meta-regression analysis of observational studies. BMJ Open 2019;9:e023956. doi:10.1136/bmjopen-2018-023956

ABSTRACT

Objectives The aim of this systematic review and meta-analysis was to investigate the association of gender of newborn, antenatal care (ANC) and postnatal care (PNC) with timely initiation of breast feeding (TIBF) and exclusive breastfeeding (EBF) practices in Ethiopia.

Design Systematic review and meta-analysis.

Data sources To retrieve all available literature, PubMed, EMBASE, CINAHL, WHO Global Health Library, Web of Science and SCOPUS databases were systematically searched and complemented by manual searches. The search was done from August 2017 to September 2018.

Eligibility criteria All observational studies including cross-sectional, case-control, cohort studies conducted in Ethiopia from 2000 to 2018 were included. Newcastle-Ottawa Scale was used for quality assessment of included studies.

Data extraction and synthesis Study area, design, population, number of mothers (calculated sample size and participated in the study) and observed frequency from 2000 to 2018 were included. Newcastle-Ottawa Scale was used for quality assessment of included studies.

Results Of 523 articles retrieved, 17 studies (n=26,146 mothers) on TIBF and 24 studies (n=17,819 mothers) on EBF were included in the final analysis. ANC (OR=2.24, 95% CI 1.65 to 3.04, p<0.001, I²=90.9%), PNC (OR=1.86, 95% CI 1.41 to 2.47, p<0.001, I²=63.4%) and gender of newborn (OR=1.31, 95% CI 1.01 to 1.68, p=0.04, I²=81.7%) was significantly associated with EBF. ANC (OR=1.70, 95% CI 1.10 to 2.65, p=0.02, I²=93.1%) was also significantly associated with TIBF but not with gender of newborn (OR=1.02, 95% CI 0.86 to 1.21, p=0.82, I²=66.2%).

Strengths and limitations of this study

- This systematic review and meta-analysis was conducted based on the registered and published protocol.
- Since this is the first study in Ethiopia, the evidence could be helpful for future researchers, public health practitioners and healthcare policy-makers.
- Almost all included studies were observational which might weaken the strength of evidence due to residual heterogeneity and measure variability attributed to heterogeneity, respectively.
- The trend of evidence over time was examined by performing a cumulative meta-analysis.

Conclusions In line with our hypothesis, gender of newborn, ANC and PNC were significantly associated with EBF. Likewise, ANC was significantly associated with TIBF. Optimal care during pregnancy and after birth is important to ensure adequate breast feeding. This meta-analysis study provided up-to-date evidence on breastfeeding practices and its associated factors, which could be useful for breastfeeding improvement initiative in Ethiopia and cross-country and cross-cultural comparison.

Trial registration number CRD42017056768

INTRODUCTION

WHO and Unicef recommend timely initiation of breast feeding (TIBF) (ie, initiating breast feeding within 1 hour of birth) and exclusive breast feeding (EBF) (ie, feeding only human milk during the first 6 months) for maintaining maternal and newborn health. Breast feeding provides optimal nutrition, increase cognitive development, reduce morbidity and mortality for the newborn; for...
example, TIBF prevents 22% of neonatal deaths. Inappropriate breastfeeding practice, on the other hand, causes more than two-thirds of under-five child mortality, of which 41% of these deaths occur in Sub-Saharan Africa. Breast feeding also prevents maternal long-term chronic diseases, such as diabetes mellitus.

According to a new 2017 global Unicef and WHO report, only 42% start breast feeding within an hour of birth, leaving an estimated 78 million newborns to wait over 1 hour to be put to the breast, the majority born in low-income and middle-income countries. The prevalence rate of TIBF varies widely across regions from 35% in the Middle East and North Africa to 65% in Eastern and Southern Africa. Another report also shows that only two in five infants <6 months of age are exclusively breast fed. The prevalence rate of EBF ranges from 22% in East Asia and Pacific to 56% in Eastern and Southern Africa. Based on our meta-analysis in 2018, the prevalence of TIBF and EBF in Ethiopia is 66.5% and 60.1% respectively. To date, globally, only 22 nations have achieved the WHO goal of 70% coverage in TIBF and 23 countries have achieved at least 60% coverage in EBF.

To promote optimal breast feeding, WHO, Unicef and other (inter)national organisations have been working in developing countries, and several studies have been conducted on the advantages of breast feeding. However, it is still challenging to achieve the expected coverage and attributed to several factors including antenatal (ANC), postnatal care (PNC) and gender of newborn, and breastfeeding coverage continued to be suboptimal as a result. In Ethiopia, several meta-analyses studies were done on infant and young child feeding. In our previous meta-analysis, we explored the association between maternal employment, lactation counselling, mode of delivery, place of delivery, maternal age, newborn age and discarding colostrum breastfeeding practices (ie, TIBF and EBF). We also separately studied the association between TIBF and EBF. However, none of these meta-analyses did study the pooled effect of gender of newborn, ANC and PNC on TIBF and EBF. Given the absence of pooled estimates, up-to-date evidence is required to design intervention-based studies targeting these factors. Therefore, we aimed to investigate whether TIBF and EBF in Ethiopia are influenced by gender of newborn, ANC and PNC. We hypothesised at least one ANC or PNC visit significantly improves TIBF and EBF practices. Additionally, mothers with male newborn have higher odds of TIBF and EBF compared with mothers with female newborn.

METHODS
Protocol registration and publication
The study protocol was registered with the University of York, Centre for Reviews and Dissemination, International prospective register of systematic reviews (PROSPERO) and published.

Search strategy and databases
PubMed, EMBASE, CINAHL, WHO Global Health Library, Web of Science and SCOPUS electronic databases were searched to extract all available literature. The search strategy was developed using Population Exposure Controls and Outcome (PECO) searching guide in consultation with a medical information specialist (online supplementary file 1). The search was done from August 2017 to September 2018. Grey literature and cross-references of included articles and previous meta-analysis were also hand searched.

PECO guide
Population
All mothers with newborn up to 23 months of age.

Exposure
Gender of the newborn, ANC and PNC visit (at least one visit).

Comparison
Female newborn, no ANC visit and no PNC visit.

Outcome
TIBF and EBF practices.

Inclusion and exclusion criteria
Studies were included if they met the following criteria: (1) observational studies including cross-sectional, case-control, cohort studies; (2) conducted in Ethiopia; (3) published in English language and (4) published between 2000 and 2018. Studies were excluded on any one of the following conditions: (1) conducted in women with HIV/AIDS, preterm newborn and newborn in intensive care unit; (2) published in language other than English; (3) abstracts without full text and (4) qualitative studies, symposium/conference proceedings, essays, commentaries and case reports.

Selection and quality assessment
Initially, all identified articles were exported to Refwork citation manager (RefWorks 2.0; ProQuest LLC, Bethesda, Maryland, USA, http://www.refworks.com), and duplicate studies were cancelled. Next, a pair of independent reviewers identified articles by analysing the title and abstract for relevance and its compliance with the proposed review topic. Agreement between the two reviewers, as measured by Cohen’s Kappa, was 0.76. After removing irrelevant studies through a respective decision after discussion, full texts were systematically reviewed for further eligibility analysis. Newcastle-Ottawa Scale (NOS) was used to examine the quality of studies and for potential risk of bias. In line with the WHO standard definition, outcome measurements were TIBF (the percentage of newborn who breast feed within the first hour of birth) and EBF (the percentage of infants who exclusively breast fed up to 6 months since birth). Finally, Joanna Briggs Institute (JBI) tool was used to extract the following data: study area (region and place), method (design), population, number of mothers (calculated sample size and participated in.
the study) and observed data (ie, 2×2 table). Geographic regions were categorised based on the current Federal Democratic Republic of Ethiopia administrative structure. Disagreement between reviewers was solved through discussion and consensus.

Statistical analysis

A meta-analysis using a weighted inverse variance random-effects model was performed to obtain a pooled OR. In addition, a cumulative meta-analysis was done to illustrate the trend of evidence regarding the effect of gender of newborn, ANC and PNC on breastfeeding practices. Publication bias was assessed by visual inspection of a funnel plot and Egger’s regression test for funnel plot asymmetry using SE as a predictor in mixed-effects meta-regression model at a p value threshold ≤0.010. Duval and Tweedie trim-and-fill method was used to manage publication bias. Cochrane’s Q X2 test, τ2 and I2 statistics were used to test heterogeneity, estimate amount of total/residual heterogeneity and measure variability attributed to heterogeneity, respectively. Mixed-effects meta-regression analysis was done to examine the effect of variation in study area (region), residence of women, sample size and publication year on between-study heterogeneity. The total amount of heterogeneity (R2) accounted for these factors was calculated by subtracting the residual amount of heterogeneity from the total amount of heterogeneity and dividing by the total amount of heterogeneity. Moreover, to assess the moderation effect of these factors, Omnibus test of moderators was applied. The data were analysed using ‘metafor’ packages in R software V.3.2.1 for Windows.

Data synthesis and reporting

We analysed the data in two groups based on outcome measures (ie, TIBF and EBF). Results are presented using forest plots. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was strictly followed to report our results.

Minor post hoc protocol changes

Based on the authors’ decision and reviewers’ recommendation, the following changes were made to our published protocol methods. We added the JBI tool to extract the data. In addition, we used the Duval and Tweedie trim-and-fill method to manage publication bias. Furthermore, cumulative meta-analysis and mixed-effects meta-regression analysis were done to reveal the trends of evidence and identify possible sources of between-study heterogeneity, respectively.

Patient and public involvement

The research questions and outcome measures were developed by the authors (TDH and NTS) in consultation with public health professionals and previous studies. Given this is a systematic review and meta-analysis based on published data, patients/study participants were not directly involved in the design and analysis of this study. The results of this study will be disseminated to patients/study participants through health education on factors affecting breastfeeding and disseminating the key findings using brochure in the local language.

RESULTS

Search results

In total, we obtained 533 articles from PubMed (n=169), EMBASE (n=24), Web of Science (n=200), SCOPUS (n=85) and CINHAL and WHO Global Health Library (n=5). Fifty additional articles were found through manual search. After removing duplicates and screening of titles and abstracts, 84 studies were selected for full-text review. Of these, 43 articles were excluded due to several reasons: 19 studies on complementary feeding, 3 studies on prelactal feeding, 3 studies on malnutrition, 17 studies with different variables of interest and 1 project report. As a result, 41 articles fulfilled the inclusion criteria and used in this meta-analysis: 17 studies investigated the association between TIBF and gender of newborn and ANC whereas 24 studies between EBF and gender of newborn, ANC and PNC. The PRISMA flow diagram of literature screening and selection process is shown in figure 1. One study could report more than one outcome measures or associated factors.

Study characteristics

As presented in table 1, 17 studies reported the association of TIBF and gender of newborn and ANC in 26146 mothers. Among these studies, 13 of them were conducted in Amhara (n=5), Oromia (n=4) and Southern Nations, Nationalities and Peoples’ (SNNP) (n=4) region. Regarding the residence status, eight studies were conducted in both urban and rural whereas six studies in urban women. All studies passed the NOS quality assessment criteria at a cut-off value ≥7.

Twenty-four studies reported the association between EBF and gender of newborn, ANC and PNC in 17819 mothers. Of these studies, 11 were conducted in Amhara and seven in SNNP region. Based on the residence status, 10 studies were conducted in urban, 8 in urban and rural, and 6 in rural women. Even though almost all studies were cross-sectional, five studies have used nationally representative data of the Ethiopian Demographic Health Survey. Detailed characteristics of the included studies are shown in table 2.

Meta-analysis

Timely initiation of breast feeding

Among the 17 selected studies, 10 studies reported the association between TIBF and gender of newborn in 16411 mothers (table 1A). The pooled OR of gender of newborn was 1.02 (95% CI 0.86 to 1.21, p=0.82, I2=66.2%) (figure 2). Mothers with male newborn had 2% higher chance of initiating breast feeding within 1 hour of birth compared with female newborn although not statistically significant. There was no significant publication bias (z=0.41, p=0.68) (online supplementary figure 1).
Likewise, 13 studies reported the association between TIBF and ANC in 12,535 mothers (table 1B). The pooled OR of ANC was 1.70 (95% CI 1.10 to 2.65, p=0.02, I²=93.1%) (figure 3). Mothers who had at least one ANC visit had 70% significantly higher chance of initiating breast feeding within 1 hour of birth compared with mothers who had no ANC visit. There was no significant publication bias (z=0.96, p=0.34) (online supplementary figure 2).

Exclusive breast feeding

Out of the 24 studies included, 11 studies reported the association between EBF and gender of newborn in 6527 mothers (table 2A). The pooled OR of newborn gender was 1.08 (95% CI 0.86 to 1.36, p=0.49, I²=71.7%) (figure 4). Since significant publication bias detected (z=-3.64, p=0.001), we did Duval and Tweedie trim-and-fill analysis and calculated a new effect size for gender of newborn (OR=1.31, 95% CI 1.01 to 1.68, p=0.04, I²=81.7%) after including imputed studies (ie, estimated number of missing studies=4) (online supplementary figure 3). Therefore, mothers with male newborn had 31% significantly higher chance of exclusive breast feeding during the first 6 months compared with mothers with female newborn.

Twenty-one studies reported the association between EBF and ANC in 16,052 mothers (table 2B). The pooled OR of ANC was 2.24 (95% CI 1.65 to 3.04, p<0.0001, I²=90.9%) (figure 5). Mothers who had at least one ANC visit had 2.24 times significantly higher chance of exclusively breast feed compared with mothers who had no ANC visit. There was no significant publication bias (z=1.69, p=0.09) (online supplementary figure 4).
Table 1 Characteristics of included studies on TIBF

Author/publication year	Study area	Study design	Study population	Sample size/ Participated	TIBF Within 1 hour	TIBF After 1 hour	TIBF Total
A. Gender of newborn versus TIBF							
Regassa 2014	SNNPR, Sidama zone	Cross-sectional	Mothers with infants aged between 0 and 6 months old	1100/1094 Male	488	107	595
		study		Female	389	110	499
				Total	877	217	1094
Alemayehu 2014	Tigray, Axum town	Cross-sectional	Mothers who had children aged 6–12 months	418/418 Male	75	141	216
		study		Female	99	103	202
				Total	174	244	418
Berhe et al 2013	Tigray, Mekelle town	Cross-sectional	Mothers of children aged 0–24 months	361/361 Male	166	42	208
		study		Female	112	37	149
				Total	278	79	357
Beyene et al 2016	SNNPR, Dale Woreda	Cross-sectional	Mothers of children <24 months	634/634 Male	262	51	313
		study		Female	255	50	305
				Total	517	101	618
Lakew et al 2015	National	Cross-sectional	Mothers who had children <5 years	11 654/11 553 Male	3124	2860	5984
		study*		Female	3057	2511	5568
				Total	6181	5371	11 552
Liben and Yesuf 2016	Afar, Dubti town	Cross-sectional	Mothers of infants aged <6 months	346/333 Male	81	122	203
		study		Female	70	130	200
				Total	151	252	403
Setegn et al 2011	Oromia, Goba district	Cross-sectional	Mothers with children (<12 months)	668/608 Male	164	152	316
		study		Female	150	133	283
				Total	314	285	599
Wolde et al 2014	Oromia, Nekemte town	Cross-sectional	Mothers who had a child less <24 months	182/174 Male	70	10	80
		study		Female	84	10	94
				Total	154	20	174
Woldemichael 2016	Oromia, Tiyo Woreda	Cross-sectional	Mothers who have children <1 year age	386/373 Male	153	60	213
		study		Female	98	62	160
				Total	251	122	373

Continued
Table 1 Continued

Author/publication year	Study area	Study design	Study population	Sample size/Participated	Factors	TIBF		
						Within 1 hour	After 1 hour	Total
Mekonen et al 2018	Amhara, South Gondar	Cross-sectional	Mothers of infants <12 months	845/823	Male	214	229	443
		study			Female	187	193	380
					Total	401	422	823
B. Antenatal care versus TIBF								
Gultie and Sebsibie 2016	Amhara, Debre Berhan town	Cross-sectional study	Mothers having children aged <23 months old	548/548	ANC	482	88	570
					No ANC	16	15	31
					Total	498	103	601
Tamiru et al 2012	Oromia, Jimma Arjo Woreda	Cross-sectional study	Mothers of index children aged 0–6 months	384/382	ANC	115	69	184
					No ANC	120	71	191
					Total	235	140	375
Tamiru and Tamrat 2015	SNNPR, Arba Minch Zuria Woreda	Cross-sectional study	Mothers of infants aged ≤2 years	384/384	ANC	179	140	319
					No ANC	40	24	64
					Total	219	164	383
Berhe et al 2013	Tigray, Mekelle town	Cross-sectional study	Mothers of children aged 0–24 months	361/361	ANC	263	66	329
					No ANC	15	13	28
					Total	278	79	357
Adugna 2014	SNNPR, Arba Minch Zuria	Cross-sectional study	Women who had children <2 years	384/383	ANC	179	140	319
					No ANC	40	24	64
					Total	219	164	383
Beyene et al 2016	SNNPR, Dale Woreda	Cross-sectional study	Mothers of children <24 months	634/634	ANC	206	58	264
					No ANC	311	43	354
					Total	517	101	618
Derso 2017	Amhara, Dabat district	Cross-sectional study*	Mothers with children <5 years of age	6761/6761	ANC	2135	2220	4355
					No ANC	670	1364	2034
					Total	2805	3584	6389
Liben and Yesuf 2015	Afar, Dubti town	Cross-sectional study	Mothers of infants aged <6 months	346/333	ANC	110	196	306
					No ANC	41	56	97
					Total	151	252	403

Continued
Author/Publication year	Study Area	Study Design	Study Population	Sample size/Participated	Factors	TIBF Within 1 hour	TIBF After 1 hour	TIBF Total
Seid et al. 2013	Amhara, Bahir Dar city	Cross-sectional study	Mothers who delivered in the last 12 months	819/819	ANC	680	94	774
					No ANC	29	12	41
					Total	709	106	815
Setegn et al. 2011	Oromia, Goba district	Cross-sectional study	Mothers with children (<12 months)	668/608	ANC	270	238	508
					No ANC	37	19	56
					Total	307	257	564
Tewabe 2016	Amhara, Motta town	Cross-sectional study	Mothers with infant <6 months-old	423/405	ANC	282	41	323
					No ANC	37	45	82
					Total	319	86	405
Woldemichael 2016	Oromia, Tiyo Woreda	Cross-sectional study	Mothers who have children <1 year age	386/373	ANC	194	41	235
					No ANC	57	81	138
					Total	251	122	373
Mekonen et al. 2018	Amhara, South Gondar	Cross-sectional study	Mothers of infants <12 months	845/823	ANC	370	332	702
					No ANC	31	90	121
					Total	401	422	823

*Used nationally representative EDHS data.
ANC, antenatal care; EDHS, Ethiopian Demographic Health Survey; SNNPR, Southern Nations, Nationalities and Peoples' Region; TIBF, timely initiation of breast feeding.
Table 2 Characteristics of included studies on EBF

Author/publication year	Study area	Study design	Study population	Sample size/Participated	Factors	EBF	Yes	No	Total
A. Gender of newborn versus EBF									
Asemahagn 2016	Amhara, Azezo district	Cross-sectional study	Women having children aged from 0 to 6 months	346/332	Male	95	38	133	
					Female	167	32	199	
					Total	262	70	332	
Setegn et al 2012	Oromia, Bale Zone, Goba district	Cross-sectional study	Mothers–infant pairs	668/608	Male	107	43	150	
					Female	92	37	129	
					Total	199	80	279	
Sonko and Worku 2015	SNNPR, Halaba special woreda	Cross-sectional study	Mothers with children <6 months of age	422/420	Male	145	60	205	
					Female	151	64	215	
					Total	296	124	420	
Regassa 2014	SNNPR, Sidama zone	Cross-sectional study	With infants aged between 0 and 6 months old	1100/1094	Male	109	19	128	
					Female	89	17	106	
					Total	198	36	234	
Alemayehu 2014	Tigray, Axum town	Cross-sectional study	Mothers who had children aged 6–12 months	418/418	Male	97	119	216	
					Female	77	128	205	
					Total	174	247	421	
Biks et al 2015	Amhara, Dabat district	Nested case–control study*	All pregnant women in the second/third trimester	1769/1769	Male	271	619	890	
					Female	727	1148	1875	
					Total	998	1767	2765	
Arage and Gedamu 2016	Amhara, Debre Tabor Town	Cross-sectional study	Mothers of infants <6 months of age	470/453	Male	119	40	159	
					Female	227	67	294	
					Total	346	107	453	
Adugna et al 2017	SNNPR, Hawassa city	Cross-sectional study	Mothers with infants aged 0–6 months	541/529	Male	169	88	257	
					Female	153	119	272	
					Total	322	207	529	
Egata et al 2013	Oromia, Kersa district	Cross-sectional study	Mothers of children <2 years of age	881/860	Male	323	124	447	
					Female	294	119	413	
					Total	617	243	860	
Teka et al 2015	Tigray, Enderta Woreda	Cross-sectional study	Mothers having children aged <24 months	541/530	Male	158	60	218	
					Female	214	98	312	
					Total	372	158	530	

Continued
Author/publication year	Study area	Study design	Study population	Sample size/Participated	Factors	EBF
Sefene 2013\(^{50}\)	Amhara, Bahir Dar city	Cross-sectional study	Mothers who had a child aged <6 months	170/159	Male 36	Yes 83
					Female 42	No 76
					Total 78	Total 159
B. Antenatal care versus EBF						
Asemahagn 2016\(^{42}\)	Amhara, Azezo district	Cross-sectional study	Women having children aged from 0 to 6 months	346/332	ANC 243	Yes 300
					No ANC 19	No 32
					Total 262	Total 332
Gultie and Sebsibie 2016\(^{35}\)	Amhara, Debre Berhan town	Cross-sectional study	Mothers having children aged <23 months old	548/548	ANC 263	Yes 516
					No ANC 10	No 31
					Total 273	Total 547
Hunegnaw et al 2017\(^{50}\)	Amhara, Gozamin district	Cross-sectional study	Mothers who had infants aged between 6 and 12 months	506/478	ANC 341	Yes 450
					No ANC 17	No 28
					Total 358	Total 478
Lenja et al 2016\(^{53}\)	SNNPR, Offa district	Cross-sectional study	Mothers of infants <6 months	403/396	ANC 233	Yes 276
					No ANC 44	No 132
					Total 277	Total 408
Seid et al 2013\(^{51}\)	Amhara, Bahir Dar city	Cross-sectional study	Mothers who delivered in the last 12 months	819/819	ANC 405	Yes 777
					No ANC 7	No 42
					Total 412	Total 819
Setegn et al 2011\(^{31}\)	Oromia, Goba district	Cross-sectional study	Mothers with children (<12 months)	668/608	ANC 166	Yes 231
					No ANC 27	No 37
					Total 193	Total 268
Sonko and Worku 2015\(^{44}\)	SNNPR, Halaba special woreda	Cross-sectional study	Mothers with children <6 months of age	422/420	ANC 258	Yes 346
					No ANC 38	No 74
					Total 296	Total 420
Tadesse et al 2016\(^{54}\)	SNNPR, Sorro District	Cross-sectional Study	Mothers with infants aged 0–5 months	602/579	ANC 211	Yes 332
					No ANC 59	No 182
					Total 270	Total 514
Tariku et al 2017\(^{55}\)	Amhara, Dabat District	Cross-sectional study *	Mothers with children aged <59 months	5227/5227	ANC 1979	Yes 3332
					No ANC 713	No 1589
					Total 2692	Total 4921

Continued
Author/publication year	Study area	Study design	Study population	Sample size/ Participated	Factors	EBF	Yes	No	Total
Tewabe 2016	Amhara, Motta town, East Gojjam zone	Cross-sectional study	Mothers with an infant <6 months old	423/405	ANC	185	164	349	
					No ANC	18	38	56	
					Total	203	202	405	
Tamiru et al 2012	Oromia, Jimma Arjo Woreda	Cross-sectional study	Mothers of index children aged 0–6 months	384/382	ANC	87	103	190	
					No ANC	96	96	192	
					Total	183	199	382	
Tamiru and Tamrat 2015	SNNPR, Arba Minch Zuria Woreda	Cross-sectional study	Mothers of infants aged ≤2 years	384/384	ANC	228	92	320	
					No ANC	27	37	64	
					Total	255	129	384	
Biks et al 2015	Amhara, Dabat district	Nested case–control study	All pregnant women in the second/third trimester	1769/1769	ANC	180	277	457	
					No ANC	363	949	1312	
					Total	543	1226	1769	
Abera 2012	Harari, Harar town	Cross-sectional study	Mothers of children aged <2 years	604/583	ANC	194	163	357	
					No ANC	13	29	42	
					Total	207	192	399	
Arage and Gedamu 2016	Amhara, Debre Tabor Town	Cross-sectional study	Mothers of infants <6 months of age	470/453	ANC	384	39	423	
					No ANC	18	12	30	
					Total	402	51	453	
Adugna et al 2017	SNNPR, Hawassa city	Cross-sectional study	Mothers with infants aged 0–6 months	541/529	ANC	221	111	332	
					No ANC	101	96	197	
					Total	322	207	529	
Egata et al 2013	Oromia, Kersa district	Cross-sectional study	Mothers of children <2 years of age	881/860	ANC	233	135	368	
					No ANC	384	108	492	
					Total	617	243	860	
Taddele 2014	Amhara, Injibara Town	Comparative cross-sectional study	Employed and unemployed mothers of children aged ≤1 year	524/473	ANC	90	98	188	
					No ANC	6	23	29	
					Total	96	121	217	
Echamo 2012	SNNPR, Arbaminch town	Cross-sectional study	Mothers of infants within the age of 6–12 months	768/768	ANC	332	360	692	
					No ANC	25	51	76	
					Total	357	411	768	

Continued
Author/publication year	Study area	Study design	Study population	Sample size/Participated	Factors	EBF
Teka et al 2015⁴⁹	Tigray, Enderta Woreda	Cross-sectional study	Mothers having children aged <24 months	541/530	ANC	325
					No ANC	47
					Total	372
Chekol et al 2017⁵⁹	Amhara, Gondar town	Cross-sectional study	Mothers with children aged 7–12 months	333/333	ANC	131
					No ANC	29
					Total	160
C. Postnatal care versus EBF						
Asemahagn 2016⁴²	Amhara, Azezo district	Cross-sectional study	Women having children aged from 0 to 6 months	346/332	PNC	137
					No PNC	125
					Total	262
Lenja et al 2016⁵³	SNNPR, Offa district	Cross-sectional study	Mothers of infants <6 months	403/396	PNC	188
					No PNC	121
					Total	309
Sonko and Worku 2015⁴⁴	SNNPR, Halaba special woreda	Cross-sectional study	Mothers with children <6 months of age	422/420	PNC	98
					No PNC	197
					Total	295
Tadesse et al 2016⁵⁴	SNNPR, Sorro District	Cross-sectional Study	Mothers with infants aged 0–5 months	602/579	PNC	204
					No PNC	66
					Total	270
Tewabe et al 2016⁶⁰	Amhara, Motta town, East Gojam zone	Cross-sectional Study	Mothers with an infant <6 months old	423/405	PNC	116
					No PNC	87
					Total	203
Abera 2012⁵⁶	Harari, Harar town	Cross-sectional study	Mothers of children aged <2 years	604/583	PNC	29
					No PNC	178
					Total	207
Teka et al 2015⁴⁹	Tigray, Enderta woreda	Cross-sectional study	Mothers having children aged <24 months	541/530	PNC	167
					No PNC	205
					Total	372

*Used nationally representative EDHS data.

ANC, antenatal care; EBF, exclusive breast feeding; EDHS, Ethiopian Demographic Health Survey; PNC, postnatal care; SNNPR, Southern Nations, Nationalities and Peoples’ Region.
Furthermore, seven studies reported the association between EBF and PNC in 2995 mothers (table 2C). The pooled OR of PNC was 1.86 (95% CI 1.41 to 2.47, p<0.0001, I²=63.4%) (figure 6).

Figure 2 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of 10 studies on the association of gender of newborn and TIBF. The horizontal line represents the CI, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled OR. The reference category is ‘Female’. LIBF, late initiation of breast feeding; REM, random-effects model; TIBF, timely initiation of breast feeding.

Figure 3 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of 13 studies on the association of ANC and TIBF. The horizontal line represents the CI, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled OR. The reference category is ‘No ANC follow-up’. ANC, antenatal care; LIBF, late initiation of breast feeding; REM, random-effects model; TIBF, timely initiation of breast feeding.

Figure 4 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of 13 studies on the association of newborn gender and EBF. The horizontal line represents the CI, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled OR. The reference category is ‘Female’. EBF, exclusive breast feeding; NEBF, non-exclusive of breast feeding; REM, random-effects model.

Figure 5 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of 21 studies on the association of ANC and EBF. The horizontal line represents the CI, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled OR. The reference category is ‘No ANC follow-up’. ANC, antenatal care; EBF, exclusive breast feeding; NEBF, non-exclusive of breast feeding; REM, random-effects model.
Habtewold TD, et al. BMJ Open 2019;9:e023956. doi:10.1136/bmjopen-2018-023956

There was no significant publication bias ($z=-0.91$, $p=0.36$) (online supplementary figure 5).

Cumulative meta-analysis

As illustrated in figure 7, the effect of gender of newborn (figure 7) has not been changed whereas the effect of ANC on TIBF (figure 8) has been increasing over time.

Similarly, the effect of gender of newborn on EBF (figure 9) has not been changed over time. The effect of ANC (figure 10) and PNC (figure 11) have been increasing.

Meta-regression analysis

In studies reporting the association between TIBF and ANC, 26.29% of the heterogeneity was accounted for the variation in study area (region), residence of mothers, sample size and publication year. Based on the omnibus test of moderators, however, none of these factors influenced association between TIBF and ANC ($Q_{M}=11.57$, df=8, $p=0.17$). In studies reporting the association between TIBF and gender of newborn, the estimated amount of total heterogeneity was substantially low ($\tau^2=4.28\%$);

Figure 6 Forest plot of the unadjusted odds ratios with corresponding 95% CIs of seven studies on the association of PNC and EBF. The horizontal line represents the CI, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled OR. The reference category is ‘No PNC follow-up’. EBF, exclusive breast feeding; NEBF, non-exclusive breast feeding; PNC, postnatal care; REM, random-effects model.

Figure 7 Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of gender of newborn on TIBF. TIBF, timely initiation of breast feeding.

Figure 8 Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of ANC on TIBF. ANC, antenatal care; TIBF, timely initiation of breast feeding.

Figure 9 Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of gender of newborn on EBF. EBF, exclusive breast feeding.

Table 1

Studies and Publication year	Odds ratio [95% CI]
Setegn et al: 2011	0.96 [0.69, 1.32]
+ Berhe et al: 2013	1.05 [0.79, 1.39]
+ Regassa: 2014	1.15 [0.92, 1.44]
+ Alemayehu et al: 2014	0.97 [0.66, 1.43]
+ Wolde et al: 2014	0.96 [0.68, 1.35]
+ Lakew et al: 2015	0.94 [0.73, 1.21]
+ Liben et al: 2016	0.98 [0.78, 1.22]
+ Woldemichael et al: 2016	1.04 [0.82, 1.31]
+ Beyene et al: 2017	1.03 [0.84, 1.26]
+ Mekonen et al: 2018	1.02 [0.86, 1.21]

Table 2

Studies and Publication year	Odds ratio [95% CI]
Setegn et al: 2011	1.38 [0.86, 2.20]
+ Tamiru et al: 2012	1.15 [0.83, 1.59]
+ Berhe et al: 2013	1.56 [0.80, 3.05]
+ Adugna: 2014	1.30 [0.74, 2.30]
+ Sed: 2014	1.53 [0.87, 2.66]
+ Tamiru et al: 2015	1.35 [0.82, 2.23]
+ Gutlie et al: 2016	1.61 [0.93, 2.76]
+ Liben et al: 2016	1.45 [0.88, 2.39]
+ Tewabe: 2016	1.51 [0.97, 2.37]
+ Woldemichael et al: 2016	1.79 [1.08, 2.97]
+ Beyene et al: 2017	1.56 [0.65, 2.65]
+ Derso et al: 2017	1.61 [0.81, 2.77]
+ Mekonen et al: 2018	1.70 [1.10, 2.65]

Figure 10 Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of ANC on TIBF. ANC, antenatal care; TIBF, timely initiation of breast feeding.

Figure 11 Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of gender of newborn on EBF. EBF, exclusive breast feeding.
as a result, it is not relevant to investigate the possible reasons for heterogeneity.

Among studies reporting the association between EBF and gender of newborn, ANC and PNC, 77.66%, 60.29% and 100% of the heterogeneity were accounted for the variation in study area (region), residence of mothers, sample size and publication year, respectively. Based on the omnibus test of moderators, study area (region) and publication year negatively influenced the association between gender of newborn and EBF practice (Qₐ=18.46, df=7, p=0.01). Study area (region) negatively influenced the association between ANC and EBF practice (Qₐ=27.55, df=8, p=0.001) (table 3).

Figure 10
Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of ANC on EBF. ANC, antenatal care; EBF, exclusive breast feeding.

Studies and Publication year	Odds ratio [95% CI]
Abers, 2012	0.85 [0.49, 1.47]
+ Sonko et al; 2015	1.30 [0.57, 2.98]
+ Teko et al; 2015	1.37 [0.88, 2.14]
+ Asenmahgnis, 2016	1.49 [1.05, 2.12]
+ Lega et al; 2016	1.66 [1.17, 2.35]
+ Tadesse et al; 2016	1.84 [1.31, 2.58]
+ Teko et al; 2015	1.70 [0.95, 3.03]
+ Sonko et al; 2015	1.74 [1.13, 2.68]
+ Asemahgnis, 2016	1.81 [1.21, 2.71]
+ Gulte et al; 2016	1.83 [1.25, 2.66]
+ Lega et al; 2016	2.11 [1.37, 3.24]
+ Tadesse et al; 2016	2.19 [1.46, 3.29]
+ Arage et al; 2016	2.33 [1.56, 3.49]
+ Huneegruw et al; 2017	2.31 [1.58, 3.58]
+ Tadesse et al; 2016	2.27 [1.59, 3.25]
+ Tewabe et al; 2017	2.27 [1.62, 3.19]
+ Adugna et al; 2017	2.25 [1.63, 3.10]
+ Chekol et al; 2017	2.24 [1.65, 3.04]

Figure 11
Forest plot showing the results from a cumulative meta-analysis of studies examining the effect of PNC on EBF. EBF, exclusive breast feeding; PNC, postnatal care.

Studies and Publication year	Odds ratio [95% CI]
Abers, 2012	0.85 [0.49, 1.47]
+ Sonko et al; 2015	1.30 [0.57, 2.98]
+ Teko et al; 2015	1.37 [0.88, 2.14]
+ Asenmahgnis, 2016	1.49 [1.05, 2.12]
+ Lega et al; 2016	1.66 [1.17, 2.35]
+ Tadesse et al; 2016	1.84 [1.31, 2.58]
+ Teko et al; 2015	1.74 [1.13, 2.68]
+ Sonko et al; 2015	1.81 [1.21, 2.71]
+ Asemahgnis, 2016	1.83 [1.25, 2.66]
+ Gulte et al; 2016	2.11 [1.37, 3.24]
+ Tadesse et al; 2016	2.19 [1.46, 3.29]
+ Arage et al; 2016	2.33 [1.56, 3.49]
+ Huneegruw et al; 2017	2.31 [1.58, 3.58]
+ Tadesse et al; 2016	2.27 [1.59, 3.25]
+ Tewabe et al; 2017	2.27 [1.62, 3.19]
+ Adugna et al; 2017	2.25 [1.63, 3.10]
+ Chekol et al; 2017	2.24 [1.65, 3.04]

DISCUSSION
This meta-analysis assessed the association between breastfeeding practices (ie, TIBF and EBF) and gender of newborn, ANC and PNC. The key findings were EBF was significantly associated with ANC, PNC and gender of newborn whereas TIBF was significantly associated with ANC but not with gender of newborn.

In congruent with our hypothesis and the large body of global evidence,61–66 our finding indicated that mothers who had at least one antenatal visit had a significantly higher chance of initiating breast feeding within 1 hour of birth and exclusively breast feed for the first 6 months compared with mothers who had no ANC visit. This may be because health professionals provide breastfeeding guidance and counselling during ANC visit.7 The Ethiopian Ministry of Health has also adopted Baby-Friendly Hospital Initiative programme as part of the national nutrition programme and is now actively working to integrate to all public and private health facilities and improving breastfeeding practice as a result.

We also showed that mothers who had at least one PNC visit had nearly twice higher chance of exclusively breast feeding during the first 6 months compared with mothers who had no PNC follow-up. This result supported our hypothesis, and various studies have similarly reported a significantly high rate of EBF in mothers who had a postnatal visit at health institution66 or postnatal home visit.67 The possible justification could be that postnatal visit health education may positively influence the belief and decision of the mothers to exclusively breast feed. Previous studies have also shown that postnatal education and counselling are important to increase EBF practice.68 In addition, in our previous meta-analyses, we showed that guidance and counselling during PNC was significantly associated with high-rate EBF.7 Furthermore, PNC may ease breastfeeding difficulty, increase maternal confidence and encourage social/family support which lead the mother to continue EBF for 6 months.

Finally, in agreement with our hypothesis and previous studies,69–71 we uncovered gender of newborn was significantly associated with EBF practice. Mothers with male newborn had a 31% significantly higher chance of exclusively breast feeding during the first 6 months compared with mothers of female newborn. This finding disproved the traditional perception and belief in Ethiopia that male newborn has prelacteal feeding to be strong and healthy compared with female newborn. On the other hand, several studies63 66 depicted that gender of newborn is not significantly associated with breastfeeding practice, such as TIBF as we showed in our meta-analysis. This discrepancy might be due to the sociocultural difference and lack of adequate power given that we only found 10 studies to estimate the pooled effect size.

This systematic review and meta-analysis was conducted based on published protocol,15 and PRISMA guideline for literature reviews. In addition, publication bias was quantified using Egger’s regression statistical test and NOS was used to assess the quality of included studies. Since it is
the first study in Ethiopia, the evidence could be helpful for future researchers, public health practitioners and healthcare policy-makers. The inclusion of all previously published studies is a further strength of this meta-analysis. This study has limitations as well. Almost all included studies were observational, which weakens the strength of evidence and hinders causality inference. Even though we have used broad search strategies, the possibility of missing relevant studies cannot be fully exempted and the finding may not be nationally representative. Based on the conventional method of heterogeneity test, a few analyses suffer from high between-study variation. The course of heterogeneity was carefully explored using meta-regression analysis, and this variation may be due to the difference in study area (region), residence of mothers, sample size, publication year or other residual

Variables (reference category)*	Estimate	SE	Z value	P value	CI.lb	CI.ub
TIBF						
ANC						
Amhara region (Afar)	1.71	1.17	1.46	0.15	−0.59	4.01
Oromia region (Afar)	1.48	0.91	1.62	0.10	−0.31	3.28
SNNPR region (Afar)	0.54	1.09	0.50	0.62	−1.58	2.67
Tigray region (Afar)	1.58	1.30	1.21	0.23	−0.97	4.12
Urban residence (Rural)	0.71	1.07	0.67	0.51	−1.38	2.80
Urban and rural residence (Rural)	0.65	1.25	0.52	0.61	−1.81	3.10
≥501 mothers (≤500 mothers)	−0.54	0.81	−0.66	0.51	−2.13	1.06
Published 2016–2018 (2011–2015)	0.14	0.82	0.17	0.87	−1.47	1.74
EBF						
Gender of newborn						
Oromia region (Amhara)	−0.54	0.24	−2.22	0.03	−1.02	−0.06
SNNPR region (Amhara)	0.12	0.26	0.46	0.64	−0.39	0.63
Tigray region (Amhara)	−0.39	0.30	−1.31	0.19	−0.98	0.19
Urban residence (Rural)	0.79	0.51	1.57	0.12	−0.20	1.78
Urban and rural residence (Rural)	−0.10	0.44	−0.24	0.81	−0.96	0.75
≥501 mothers (≤500 mothers)	0.78	0.23	3.34	<0.001	0.32	1.24
Published 2016–2018 (2011–2015)	−1.14	0.44	−2.59	0.01	−1.99	−0.28
ANC						
Harari region (Amhara)	−0.11	0.64	−0.17	0.87	−1.37	1.16
Oromia region (Amhara)	−1.27	0.39	−3.28	0.001	−2.03	−0.51
SNNPR region (Amhara)	0.09	0.35	0.27	0.78	−0.59	0.78
Tigray region (Amhara)	−0.49	0.57	−0.87	0.38	−1.60	0.62
Urban residence (Rural)	−0.18	0.38	−0.47	0.63	−0.92	0.56
Urban and rural residence (Rural)	−0.26	0.52	−0.49	0.62	−1.28	0.76
≥501 mothers (≤500 mothers)	−0.30	0.34	−0.87	0.38	−0.96	0.37
Published 2016–2018 (2011–2015)	0.08	0.28	0.29	0.77	−0.46	0.62
PNC†						
Harari region (Amhara)	−0.60	0.48	−1.24	0.22	−1.54	0.35
SNNPR region (Amhara)	0.25	0.30	0.82	0.41	−0.34	0.83
Tigray region (Amhara)	−0.16	0.64	−0.25	0.80	−1.42	1.10
≥501 mothers (≤500 mothers)	0.11	0.31	0.36	0.72	−0.50	0.73
Published 2016–2018 (2011–2015)	0.26	0.36	0.71	0.47	−0.45	0.96

*Since we do not have a specific hypothesis, the reference category is selected arbitrarily; †Residence is dropped from the model due to small sample size of included studies. Cut-off value for sample size and publication year was arbitrarily chosen.

ANC, antenatal care; CI.lb, CI interval, lower bound; CI.ub, CI interval, upper bound; EBF, exclusive breast feeding; PNC, postnatal care; SNNPR, Southern Nations, Nationalities and Peoples’ Region; TIBF, timely initiation of breast feeding.
factors; therefore, the result should be interpreted with caution. Moreover, the dose–response relationship between the number of ANC or PNC visits and breastfeeding practices was not examined. Lastly, significant publication bias was detected in studies that reported the association between EBF and gender of newborn. We did Duval and Tweedie trim-and-fill analysis to adjust publication bias and to provide an unbiased estimate; however, the result should be cautiously interpreted.

CONCLUSIONS
In line with our hypothesis, we found that increasing the use of antenatal and PNC has a positive effect on breastfeeding practices (ie, TIBF and EBF), which signifies stakeholders would provide emphasis on ANC and PNC service to optimise breast feeding. This meta-analysis study provided an overview of up-to-date evidence for public nutrition professionals and policy-makers in Ethiopia. It could also be useful for breastfeeding improvement initiative in Ethiopia and cross-country and cross-cultural comparison. From the research point of view, in general, intervention and outcome based studies on breast feeding in Ethiopia are required.

Author affiliations
1Department of Nursing, Debre Berhan University, Debre Berhan, Ethiopia
2Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
3Department of Public Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Acknowledgements Our special gratitude forwarded to Sjurke van der Werf (University of Groningen, the Netherlands) for her support to develop the search strings and Balewvigizie Sileshi (University of Groningen, the Netherlands) for his support during the title and abstract screening.

Contributors NTS and TDH conceived and designed the study. TDH developed a syntax for searching databases, analysed the data and interpreted the results. TDH and SMA wrote and revised the manuscript. All authors read and approved the final manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All data generated or analysed in this study are included in the article and its supplementary files.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. World Health Organization. Infant and young child feeding: a tool for assessing national practices, policies and programmes, 2003.
2. World Health Organization. Babies and mothers worldwide failed by lack of investment in breastfeeding. Saud Med J 2017;38:S74–5.
3. Edmond KM, Zandoh C, Quigley MA, et al. Delayed breastfeeding initiation increases risk of neonatal mortality. Pediatrics 2006;117:e380–6.
4. World Health Organization. Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals. Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals, 2009.
5. Unicef. Capture the Moment – Early initiation of breastfeeding: The best start for every newborn, 2018.
6. Unicef. Infant and young child feeding, 2018. Available at https://data.unicef.org/topic/nutrition/infant-and-young-child-feeding/ (Accessed 20 Sep 2018).
7. Habtewold TD, Mohammed SH, Endalamaraw A, et al. Breast and complementary feeding in Ethiopia: new national evidence from systematic review and meta-analyses of studies in the past 10 years. Eur J Nutr 2018.
8. Boccolini CS, Mld C, Oliveira, Maria Inês Couto de. Factors associated with exclusive breastfeeding in the first six months of life in Brazil: a systematic review. Rev Saude Publica 2015:49.
9. Sharma IK, Byrne A. Early initiation of breastfeeding: a systematic literature review of factors and barriers in South Asia. Int Breastfeed J 2016:11:17.
10. Alemu SM, Alemu YM, Habtewold TD. Association of age and colostrum discarding with breastfeeding practice in Ethiopia: systematic review and meta-analyses. Public Health Nutr 2019:1–20.
11. Abelel, Dejene G, Mullu G, et al. Timely initiation of breastfeeding and its association with birth place in Ethiopia: a systematic review and meta-analysis. Int Breastfeed J 2017;12:44.
12. Abelel A, Tesma C, Temsengel B, et al. Exclusive breastfeeding practice in Ethiopia and its association with antenatal care and institutional delivery: a systematic review and meta-analysis. Int Breastfeed J 2018;13:31.
13. Temesgen H, Negesse A, Woyraw W, et al. Dietary diversity feeding practice and its associated factors among children age 6-23 months in Ethiopia from 2011 up to 2018: a systematic review and meta-analysis. Ital J Pediatr 2018:44:109.
14. Temesgen H, Negesse A, Woyraw W, et al. Prelacteal feeding and associated factors in Ethiopia: systematic review and meta-analysis. Int Breastfeed J 2018;13:49.
15. Habtewold TD, Islam MA, Sharaw NT, et al. Eystmatic review and meta-analyis of infant and young child feeding Practices (ENAT-P) in Ethiopia: protocol. BMJ Open 2017;7:e017437.
16. Kraemer HC. Kappa coefficient. Wiley StatsRef: Statistics Reference Online 2014:1–4.
17. Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2011.
18. Munn Z, Tufanaru C, Aromataris E. JBI's systematic reviews: data extraction and synthesis. Am J Nurs 2014;114:49–54.
19. Brinkhoff T. Federal Democratic Republic of Ethiopia, 2015, 2018, Available at http://www.citypopulation.de/Ethiopia.html.
20. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
21. Duval S, Tweedie R, Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455–63.
22. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58.
23. Viechtbauer W. Conducting Meta-Analyses in R with the metafor package. J Stat Softw 2010:36.
24. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
25. Regassa N. Infant and child feeding practices among farming communities in Southern Ethiopia. Kontak 2014:16:e215–22.
26. Alemayehu M. Factors Associated with Timely Initiation and Exclusive Breast Feeding among Mothers of Axum Town, Northern Ethiopia. Science Journal of Public Health 2014:2:394–401.
27. Berhe H, Mekonnen B, Baganu A, et al. Determinants of Breastfeeding Practices Among Mothers Attending Public Health Facilities, Mekelle, Northern Ethiopia; A Cross Sectional Study. International Journal of Pharmaceutical Sciences and Research 2013;4:650.
28. Beyene MG, Geda NR, Habtewold TD, et al. Early initiation of breastfeeding among mothers of children under the age of 24 months in Southern Ethiopia. Int Breastfeed J 2016;12.
29. Lakey Y, Tabar L, Hallie D. Socio-medical determinants of timely breastfeeding initiation in Ethiopia: Evidence from the 2011 national wide Demographic and Health Survey. Int Breastfeed J 2015:10.
30. Liben ML, Yesuf EM. Determinants of early initiation of breastfeeding in Amhara region, Northern Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2016;11.

31. Setegn T, Gerbaba M, Belachew T. Determinants of timely initiation of breastfeeding among mothers in Goba Woreda, South East Ethiopia: a cross-sectional study. *BMJ Public Health* 2011;11:217-2458-11-217.

32. Wolde T, Birhanu T, Ejeta E. Prevalence and determinants of timely initiation of breastfeeding among lactating mothers of urban dwellers in Western Ethiopia: a community based cross-sectional study. *Food Science and Quality Management* 2014;31.

33. Woldenemichael B. Timely Initiation of Breastfeeding and Its Associated Factors among Mothers in Tiyo Woreda, Arsi Zone, Ethiopia: A Community-Based Cross Sectional Study. *Clinics in Mother and Child Health* 2016;13:231.

34. Mekonen L, Seifu W, Shiferaw Z. Timely initiation of breastfeeding and associated factors among mothers of infants under 12 months in South Gondar zone, Amhara regional state, Ethiopia; 2013. *Int Breastfeed J* 2014;9.

35. Gultie T, Sebitanga G. Determinants of suboptimal breastfeeding practice in Debre Berhan town, Ethiopia: a cross sectional study. *Int Breastfeed J* 2016;11.

36. Tamiru D, Belachew T, Loha E, et al. Sub-optimal breastfeeding of infants during the first six months and associated factors in rural communities of Jimma Arjo Woreda, Southwest Ethiopia. *BMJ Public Health* 2012;12:363,2458-12-363.

37. Tamiru D, Tamrat M. Constraints to the optimal breastfeeding practices of breastfeeding mothers in the rural communities of Arba Minch Zuria Woreda, Ethiopia: a community-based, cross-sectional study. *South African Journal of Clinical Nutrition* 2015;28:134-9.

38. Adugna DT. Women’s perception and risk factors for delayed initiation of breastfeeding in Arba Minch Zuria, Southern Ethiopia. *Int Breastfeed J* 2014;9.

39. Deriso T, Biks GA, Tariku A, et al. Correlates of early neonatal feeding practice in Dabat HDSS site, northwest Ethiopia. *Int Breastfeed J* 2017;12.

40. Tewabe T. Timely initiation of breastfeeding and associated factors among mothers in Motta town, East Gojjam zone, Amhara regional state, Ethiopia: a cross-sectional study. *BMJ Pregnancy Childbirth* 2016;16:314.

41. Musa Seid A. Vaginal Delivery and Maternal Knowledge on Correct Breastfeeding Initiation Time as Predictors of Early Breastfeeding Initiation: Lesson from a Community-Based Cross-Sectional Study. ISRN Epidemiology 2014;2014:1-6.

42. Asemahagn MA. Determinants of exclusive breastfeeding practices among mothers in azezo district, northwest Ethiopia. *Int Breastfeed J* 2016;11.

43. Setegn T, Belachew T, Gerbaba M, et al. Factors associated with exclusive breastfeeding practices among mothers in Goba district, south east Ethiopia: A cross-sectional study. *Int Breastfeed J* 2012;7.

44. Sonko A, Worku A. Prevalence and predictors of exclusive breastfeeding for the first six months of life among women in Halaba special woreda, Southern Nations, Nationalities and Peoples’ Region/SNNPR, Ethiopia: a community based cross-sectional study. *Arch Public Health* 2015;73.

45. Biks GA, Tariku A, Tessema GA. Effects of antenatal care and institutional delivery on exclusive breastfeeding practice in northwest Ethiopia: a nested case-control study. *Int Breastfeed J* 2015;10:30.

46. Arage G, Gedamu H. Exclusive Breastfeeding Practice and Its Associated Factors among Mothers of Infants Less Than Six Months of Age in Debre Tabor Town, Northwest Ethiopia: A Cross-Sectional Study. *Adv Public Health* 2016;1:7.

47. Adugna B, Tadele H, Reta F, et al. Determinants of exclusive breastfeeding in infants less than six months of age in Hawassa, an urban setting, Ethiopia. *Int Breastfeed J* 2017;12:45.

48. Egata G, Berhane Y, Worku A. Predictors of non-exclusive breastfeeding at six months among rural mothers in east Ethiopia: a community-based analytical cross-sectional study. *Int Breastfeed J* 2013;8:8.

49. Tekle B, Asefa H, Haileslassie K. Prevalence and determinant factors of exclusive breastfeeding practices among mothers in Enderta woreda, Tigray, North Ethiopia: A cross-sectional study. *Int Breastfeed J* 2015;10:2.

50. Sefene A. Determinants of Exclusive Breastfeeding Practice among Mothers of Children Age Less Than 6 Month in Bahir Dar City Administration, Northwest Ethiopia: A Community Based Cross-Sectional Survey. *Science Journal of Clinical Medicine* 2013;2:153-9.

51. Seid AM, Yesuf ME, Koye DN. Prevalence of Exclusive Breastfeeding Practices and associated factors among mothers in Bahr Dar city, Northwest Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2013;8:14.

52. Hunegnaw MT, Gezie LD, Teferra AS. Exclusive breastfeeding and associated factors among mothers in Gomazin district, northwest Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2017;12.

53. Lenja A, Demissie T, Yohannes B, et al. Determinants of exclusive breastfeeding practice to infants aged less than six months in Ofa district, Southern Ethiopia: a cross-sectional study. *Int Breastfeed J* 2016;11:32.

54. Tadesse T, Mesfin F, Chane T. Prevalence and associated factors of non-exclusive breastfeeding of infants during the first six months in rural area of Sorro District, Southern Ethiopia: a cross-sectional study. *Int Breastfeed J* 2016;11:25,016-0085-6. eCollection 2016.

55. Tariku A, Alemu K, Gizaw Z, et al. Mothers’ education and ANC visit improved exclusive breastfeeding in Dabat Health and Demographic Surveillance System Site, northwest Ethiopia. *PLoS One* 2017;12:e0179056.

56. Abeba K. Infant and young child feeding practices among mothers living in Harar, Ethiopia. Harar Bulletin of Health Sciences 2012:6:86-78.

57. Taddele M. Exclusive Breastfeeding and Maternal Employment in Ethiopia: A Comparative Cross-Sectional Study. *International Journal of Nutrition and Food Sciences* 2014;3:497-503.

58. Echamo M. Exclusive breast feeding in Arbaminch, SNNPR, Ethiopia. *Harar Bull Health Sci* 2012;5:44-59.

59. Chekol DA, Biks GA, Gelaw YA, et al. Exclusive breastfeeding and mothers’ employment status in Gondar town, Northwest Ethiopia: a comparative cross-sectional study, *Int Breastfeed J* 2017;12:27.

60. Tewabe T, Mandesh A, Gualu T, et al. Exclusive breastfeeding practice and associated factors among mothers in Motta town, East Gojjam zone, Amhara Regional State, Ethiopia, 2015: a cross-sectional study. *Int Breastfeed J* 2016;12.

61. Patel A, Badhoniya N, Khadsie S, et al. South Asia Infant Feeding Research Network. Infant and young child feeding indicators and determinants of poor feeding practices in India: secondary data analysis of National Family Health Survey 2005-06. *Food Nutr Bull* 2010;31:314-315.

62. Mihrshahi S, Kabir I, Roy SK, et al. South Asia Infant Feeding Research Network. Determinants of infant and young child feeding practices in Bangladesh: secondary data analysis of Demographic and Health Survey 2000. *Food and nutrition bulletin* 2010;31:352-362.

63. Senarath U, Dibley MJ, Godakandage SS, et al. South Asia Infant Feeding Research Network (SAIFRN)*. Determinants of infant and young child feeding practices in Sri Lanka: secondary data analysis of Demographic and Health Survey 2000. *Food and nutrition bulletin* 2010;31:295-313.

64. Ogunlesi TA. Maternal socio-demographic factors influencing the initiation and exclusivity of breastfeeding in a Nigerian semi-urban setting. *Matern Child Health J* 2010;14:459-65.

65. Okafor IP, Olatona FA, Olufemi GA. Breastfeeding practices of mothers of young children in Lagos, Nigeria. *Niger J Paediatr* 2014;41:43-7.

66. Subedi N, Paudel S, Rana T, et al. Infant and young child feeding practices in Chepang communities. *J Nepal Health Res Coun* 2012;10:141-6.

67. Bashour HN, Kharouf MH, Abdulsalam AA, et al. Effect of postnatal home visits on maternal/infant outcomes in Syria: a randomized controlled trial. *Public Health Nurs* 2008;25:115-25.

68. Su LL, Chong YS, Chan YH, et al. Antenatal education and postnatal support strategies for improving rates of exclusive breast feeding: a randomised controlled trial. *BMJ* 2007;335:596.

69. Agbo KE, Dibley MJ, Odiase JI, et al. Determinants of exclusive breastfeeding in Nigeria. *BMJ Pregnancy Childbirth* 2011;11:2.

70. Ogada IA. Effectiveness of couple counselling versus maternal counselling in promoting exclusive breast feeding: a randomised controlled trial in Nyando District, Kenya. 2014.

71. Al Ghwass MM, Ahmed D. Prevalence and predictors of 6-month exclusive breastfeeding in a rural area in Egypt. *Breastfeed Med* 2011;6:191-6.
Correction: Evidence on the effect of gender of new-born, antenatal care and postnatal care on breastfeeding practices in Ethiopia: a meta-analysis and meta-regression analysis of observational studies

Habtewold TD, Sharew NT, Alemu SM. Evidence on the effect of gender of newborn, antenatal care and postnatal care on breastfeeding practices in Ethiopia: a meta-analysis and meta-regression analysis of observational studies. BMJ Open 2019;9:e023956. doi: 10.1136/bmjopen-2018-023956

The following amendments were considered to the original version of this article.

Reference 35: Gultie T, Sebsibie G. Determinants of suboptimal breastfeeding practice in Debre Berhan town, Ethiopia: a cross sectional study. Int Breastfeed J 2016;11 has been excluded from the published article.

Authors have found in their meta-analysis,1 that this study in reference 352 was retracted from the International Breastfeeding Journal in 2018 (online: 07 March 2018) because of significant overlap of both text and data with the Master’s Thesis of Hilina Ketma, “Assessment of prevalence and determinants of suboptimal breastfeeding among mothers of children aged less than two years in Dire Dawa City Administration, Ethiopia, June 2013”, which was defended at the School of Graduate Studies, Addis Ababa University, Addis Ababa, Ethiopia in June 2013.3

Therefore, authors have performed reanalysis by excluding Gultie and Sebsibie study (reference 35), and revised figure 3 and figure 5.

In conclusion, despite having excluded Gultie and Sebsibie study, the results show that antenatal care significantly associated with timely initiation of breastfeeding and exclusive breastfeeding. Therefore, the central findings of the original article remain unaffected.

Please, find the revised figures.

Figure 3

Forest plot of the unadjusted odds ratios with corresponding 95% cis of 13 studies on the association of ANC and TIBF. The horizontal line represents the CI, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled or. The reference category is ‘no ANC follow-up’. ANC, antenatal care; LIBF, late initiation of breastfeeding; REM, random-effects model; TIBF, timely initiation of breastfeeding.
Figure 5 Forest plot of the unadjusted odds ratios with corresponding 95% c.i.s of 21 studies on the association of ANC and EBF. The horizontal line represents the C.I, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled or. The reference category is ‘no ANC follow-up’. ANC, antenatal care; EBF, exclusive breast feeding; NEBF, non-exclusive of breast feeding; REM, random-effects model.

REFERENCES

1 Habtewold TD, Sharew NT, Alemu SM. Evidence on the effect of gender of newborn, antenatal care and postnatal care on breastfeeding practices in Ethiopia: a meta-analysis and meta-regression analysis of observational studies. BMJ Open 2019;9:e023956.

2 Gultie T, Sebsibie G. Determinants of suboptimal breastfeeding practice in Debre Berhan town, Ethiopia: a cross sectional study. Int Breastfeed J 2016;11:5. eCollection 2016.

3 Gultie T, Sebsibie G. Retraction note: determinants of suboptimal breastfeeding practice in Debre Berhan town, Ethiopia: a cross sectional study. Int Breastfeed J 2018;13:13.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.