Are Ethnicity, Social Grade, and Social Deprivation Associated With Severity of Thyroid-Associated Ophthalmopathy?

Matthew R. Edmunds, M.R.C.P., M.R.C.Ophth*, Julie A. Huntbach, M.R.C.S. (Ed)†, and Omar M. Durrani, F.R.C.S. Ophth‡

*Academic Unit of Ophthalmology, College of Medical and Dental Sciences, University of Birmingham, Birmingham and Midland Eye Centre; and †Birmingham & Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom

**ORiGiNAl invESTiGATiOn

Purpose: Previous studies have extensively investigated the pathophysiology, genetics, and lifestyle risk factors of thyroid-associated ophthalmopathy (TAO). The aim of this study was to investigate the independent contribution of ethnic origin, social grade, and level of social deprivation to TAO severity in a large, multiethnic, and urban population.

Methods: Retrospective case note review of all TAO patients seen at Birmingham and Midland Eye Centre, United Kingdom over a 14-year period. Ethnicity (White, Asian, or Black) was recorded, and residence postcode was used to determine social grade (National Readership Survey classification) and level of social deprivation (Index of Multiple Deprivation 2007). TAO severity was defined by European Group on Graves’ Orbitopathy criteria. Moderate-to-severe: necessity for TAO treatment with oral or intravenous steroid, long-term immunosuppressants, or orbital radiotherapy. Sight-threatening: presence of dysthyroid optic neuropathy (DON) or need for urgent orbital decompression surgery. Multivariable logistic regression was performed to measure the independent influence of ethnicity, social grade, and social deprivation on indicators of severe TAO.

Results: Lower social grade was significantly associated with increased odds ratio (OR) of TAO patients having severe TAO, including treatment with oral (OR: 2.3 (95% CI 1.1–5.1) p = 0.03) and intravenous steroid (OR: 2.6 (95% CI 1.0–7.0) p = 0.04) and DON (OR: 4.0 (95% CI 1.2–12.7) p = 0.02), compared with those of highest social grade. Similar results were observed for social deprivation. Ethnicity had no independent association with any measure of TAO severity.

Conclusions: In this cohort, lower social grade and higher social deprivation, but not ethnicity, had independent, statistically significant association with more severe TAO.

(Original Investigation 2014;30:241–245)

Accepted for publication October 29, 2013.

Funding: The Academic Unit of Ophthalmology is supported by the Birmingham Eye Foundation (UK Registered Charity 257549). Matthew R. Edmunds is funded by the Wellcome Trust, United Kingdom.

The authors have no financial or conflicts of interest to disclose.

Address correspondence and reprint requests to Matthew Edmunds, M.R.C.P., M.R.C.Ophth, Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, Dudley Rd., Birmingham, United Kingdom. E-mail: m.edmunds@bham.ac.uk

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1097/IOP.0000000000000077

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
M. R. Edmunds et al.

Ophthalmic Plastic & Reconstructive Surgery, Vol. 30, No. 3, 2014

The measures chosen to define EUGOGO “moderate-to-severe” TAO were need for treatment with oral (prednisolone) or intravenous steroid (methylprednisolone), need for long-term immunosuppressant treatment (e.g., azathioprine, methotrexate, or cyclosporin), and need for orbital radiotherapy. The markers chosen to determine EUGOGO “sight-threatening” TAO were the presence of DON (clinically or on electrodiagnostic testing) and the need for urgent orbital decompression surgery for DON. In addition, the authors analyzed for influence on whether patients had evidence of active TAO (defined as a Clinical Activity Score [CAS] of ≥3) at the time of original presentation.

One-way analysis of variance (ANOVA) (with Bonferroni post hoc test) was used to compare age, Fisher exact test was used to compare proportions of all other demographic factors, and TAO severity markers in each ethnic group, social grade, and IMD 2007 quintile. Chi-square test compared the frequency of TAO patients observed in each West Midlands IMD 2007 quintile with the frequency expected. Multivariable logistic regression was then performed to simultaneously measure the influence (in the form of odds ratios [OR]) of a number of independent variables—age, gender, cigarette smoking status, NRS social grade, IMD 2007 deprivation quintile, and ethnicity—on markers of TAO severity as determined by the EUGOGO severity classification. Data were analyzed by using SPSS version 18 (IBM, Chicago, IL). p ≤ 0.05 was considered statistically significant.

RESULTS

Three hundred and forty-three TAO patients were seen during the study period. Complete medical records of at least 2 years follow up were available for 273 (80%) of these. Mean age (SD) was 49 ± 14 years (range 17–87 years), with 74% (201/273) women, 72% (196/273) aged ≥40 years at time of presentation, and 36% (99/273) smokers. Of all TAO subjects, 77% (210/273) were of White ethnic origin, 12% (32/273) Asian, and 11% (31/273) Black. Two patients, each of White ethnic origin, had postcodes for which it was not possible to gain an IMD 2007 score and were therefore not included in these analyses. No patients were of East Asian (Chinese, Japanese, Korean, and Taiwanese) ethnic origin.

White subjects were significantly older than Asian and Black TAO subjects (mean age 51 years vs 42 and 43 years; p < 0.0001 and p < 0.0001, respectively). White patients were more likely to be in social grade A&B than Asian or Black individuals (27% vs 16% and 10%, respectively; p = 0.04) and were also more likely to be in the least deprived quintile 1 (17% vs 3% and 0%, respectively; p = 0.04) and less likely to be in the most deprived quintile 5 (22% vs 44% and 55%, respectively, p = 0.01). Furthermore, White subjects were more likely to smoke (40% vs 31% and 16%, respectively; p = 0.01) and be women (78% vs 56% and 61%, respectively; p = 0.01).

Chi-square comparison of the TAO patient frequency in each of the West Midlands IMD 2007 quintiles with the expected frequency of one-fifth in each quintile determined that there was statistically significant overrepresentation of TAO patients with higher levels of deprivation than that predicted from the reference population (p < 0.0001) (Table 3).

TABLE 1. Severity of TAO as defined by the European Group on Graves’ Orbitopathy (EUGOGO).

EUGOGO severity	Description	% Population
Mild	Patients with TAO that does not have a major impact on their life and therefore does not require medical or surgical treatment	4
Moderate-to-severe	Patients without sight-threatening TAO, but with disease that affects their everyday existence to an extent sufficient to warrant immunosuppressive treatment (if features of active TAO are manifest) or surgical rehabilitation (if there are no features of active TAO)	22
Sight-threatening	Patients who require urgent medical or surgical intervention for dysthyroid optic neuropathy (DON) or corneal compromise (with, e.g., intravenous glucocorticoid or urgent orbital decompression surgery)	29

TABLE 2. National Readership Survey social grade classification with percentage of the United Kingdom population (2010) represented in each grade.

Social grade	Description	% Population
A	Higher managerial, administrative, and professional	4
B	Intermediate managerial, administrative, and professional	22
C1	Supervisory, clerical and junior managerial, administrative, and professional	29
C2	Skilled manual workers	21
D	Semi-skilled and unskilled manual workers	15
E	State pensioners, casual and lowest grade workers, unemployed with state benefits only	8

January 1998 and March 2012. A diagnosis of TAO was made according to clinical examination (presence of upper or lower eyelid retraction, exophthalmos, inflammatory signs of the ocular and periorbicular tissues, and restrictive myopathy), deranged thyroid function tests (TFTs), presence of thyroid autoantibodies, and radiologic signs (enlargement of extracocular muscles or orbital fat). Institutional review board was waived for this study.

A minimum period of follow up of 2 years (or definitive disease) was stipulated to capture the full period of TAO inflammatory activity and consequent medical and surgical interventions. Note was taken of documented ethnicity—White (White-British, White-Irish, and White-Other), Asian (Indian, Pakistani, and Bangladeshi), or Black (African or Caribbean). Residence postcode was used to determine National Readership Survey (NRS) social grade and the level of social deprivation according to Index of Multiple Deprivation 2007 (IMD 2007).

The NRS classification is a demographic system of social grade classification based on the occupation of the chief income earner of the household and has been used since the 1960s (Table 2). IMD 2007 is a well-validated indicator of social deprivation that integrates 7 "domains" of deprivation (income, employment, health deprivation and disability, educational skills and training, barriers to housing and services, crime, and living environment) that are combined, with appropriate weighting, in a single, overall deprivation score and ranking for each geographical area. For all analyses related to social grade, the 6 NRS classifications were abbreviated to 3 (A&B, C1&C2, and D&E). For all analyses related to social deprivation, TAO patients were ranked from lowest (least deprived) to highest (most deprived) score and divided into West Midlands-specific IMD 2007 quintiles, with quintile 1 the least deprived and quintile 5 the most deprived.
Overall, the rate for the need for treatment with oral steroid was 33% (89/273), intravenous steroid 19% (53/273), immunosuppressants 8% (23/273), and orbital radiotherapy 7% (19/273). Rates of DON were 16% (43/273) and orbital decompression 9% (25/273). Univariable comparison of the frequency of these measures of TAO severity between different ethnicities, NRS social grades, and IMD 2007 social deprivation scores revealed increased proportions of patients requiring oral (p = 0.02) and intravenous steroid (p = 0.03), having DON (p = 0.01) and requiring orbital decompression (p = 0.04) in social grades A&B as compared with social grades C. Except for the requirement for orbital decompression, this was replicated in analyses related to IMD 2007. However, there were no significant differences related to ethnicity.

Multivariable logistic regression demonstrated association between lower social grade (NRS A&B) and lowest social deprivation scores (quintile 1). The postcode at the time of original clinic attendance was used to define the social status of each individual. However, it is possible that a number of patients moved between social strata over the study period.

We observed more definite independent associations of social position on TAO severity indices by using the NRS social grading rather than IMD 2007. IMD 2007 is a multifaceted measure of the level of social deprivation, encompassing a wide range of different issues of social disadvantage, not only financial. It is therefore likely to be the more robust method of analysing the influence of lower social status on disease than NRS, which measures only the occupation of the chief income earner of the household. However, IMD 2007 measures only deprivation within a postcode, not affluence.

Not every person within a deprived area will necessarily be deprived. Likewise, there may be disadvantaged people living in the least deprived areas. In addition, we could not take account of social mobility over the 14-year period of the study.

The postcode at the time of original clinic attendance was used to define the social status of each individual. However, it is possible that a number of patients moved between social strata over the study period.

To minimize this possible confounding factor, we used IMD 2007 rather than the more up-to-date IMD 2010. IMD 2007 measures only deprivation within a postcode, not affluence.

We observed more definite independent associations of social position on TAO severity indices by using the NRS social grading rather than IMD 2007. IMD 2007 is a multifaceted measure of the level of social deprivation, encompassing a wide range of different issues of social disadvantage, not only financial. It is therefore likely to be the more robust method of analysing the influence of lower social status on disease than NRS, which measures only the occupation of the chief income earner of the household. However, IMD 2007 measures only deprivation within a postcode, not affluence. Not every person within a deprived area will necessarily be deprived. Likewise, there may be disadvantaged people living in the least deprived areas. In addition, we could not take account of social mobility over the 14-year period of the study.

The postcode at the time of original clinic attendance was used to define the social status of each individual. However, it is possible that a number of patients moved between social strata over the study period.

To minimize this possible confounding factor, we used IMD 2007 rather than the more up-to-date IMD 2010. IMD 2007 measures only deprivation within a postcode, not affluence. Not every person within a deprived area will necessarily be deprived. Likewise, there may be disadvantaged people living in the least deprived areas. In addition, we could not take account of social mobility over the 14-year period of the study.

The postcode at the time of original clinic attendance was used to define the social status of each individual. However, it is possible that a number of patients moved between social strata over the study period.

To minimize this possible confounding factor, we used IMD 2007 rather than the more up-to-date IMD 2010. IMD 2007 measures only deprivation within a postcode, not affluence. Not every person within a deprived area will necessarily be deprived. Likewise, there may be disadvantaged people living in the least deprived areas. In addition, we could not take account of social mobility over the 14-year period of the study.

The postcode at the time of original clinic attendance was used to define the social status of each individual. However, it is possible that a number of patients moved between social strata over the study period.

To minimize this possible confounding factor, we used IMD 2007 rather than the more up-to-date IMD 2010. IMD 2007 measures only deprivation within a postcode, not affluence. Not every person within a deprived area will necessarily be deprived. Likewise, there may be disadvantaged people living in the least deprived areas. In addition, we could not take account of social mobility over the 14-year period of the study.

The postcode at the time of original clinic attendance was used to define the social status of each individual. However, it is possible that a number of patients moved between social strata over the study period.

To minimize this possible confounding factor, we used IMD 2007 rather than the more up-to-date IMD 2010. IMD 2007 measures only deprivation within a postcode, not affluence. Not every person within a deprived area will necessarily be deprived. Likewise, there may be disadvantaged people living in the least deprived areas. In addition, we could not take account of social mobility over the 14-year period of the study.
TABLE 5. Multivariable logistic regression analysis for the influence (in the form of odds ratios) of independent variables on markers of severe thyroid-associated ophthalmopathy, including social deprivation.

Variable	IV steroid	Oral steroid	Radiotherapy	Immunosuppression	DON	Decompression	CAS≥3
Age ≤40 y	1.0	1.0	1.0	1.0	1.0	1.0	1.0
>40 y	4.3 (1.6–11.2)	3.4 (1.7–7.1)	3.6 (0.7–17.5)	9.0 (1.3–69.2)	6.6 (1.9–22.9)	3.7 (1.0–13.5)	3.1 (1.4–7.1)
Gender Female	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Male	1.0 (0.5–2.0)	1.0 (0.6–2.0)	2.0 (0.7–5.7)	0.2 (0.05–0.9)	0.7 (0.3–1.6)	0.6 (0.2–1.8)	1.3 (0.6–2.5)
Smoking No	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Yes	1.3 (0.7–2.6)	1.6 (0.9–2.7)	1.9 (0.7–5.2)	2.4 (1.1–6.5)	1.3 (0.6–2.6)	0.9 (0.3–2.2)	1.8 (1.0–3.4)
Ethnicity White	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Asian	1.9 (0.7–5.3)	1.1 (0.4–2.7)	1.2 (0.2–6.5)	2.7 (0.8–11.5)	1.0 (0.3–3.5)	0.4 (0.4–3.0)	2.3 (0.9–5.7)
Black	1.1 (0.4–3.2)	0.9 (0.3–2.2)	1.3 (0.3–6.1)	0.9 (0.2–7.0)	1.4 (0.5–4.3)	2.1 (0.6–7.0)	1.0 (0.4–2.7)
IMD 2007 Quintile 1 (least deprived)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2	2.8 (0.9–8.7)	2.8 (1.1–6.8)	2.5 (0.5–13.6)	1.6 (0.4–4.3)	1.6 (0.5–5.2)	0.6 (0.1–3.6)	4.2 (1.4–12.7)
3	1.7 (0.5–5.8)	1.5 (0.6–3.8)	1.5 (0.2–9.8)	1.5 (0.7–3.9)	1.2 (0.3–4.5)	1.7 (0.4–7.8)	2.2 (0.7–7.2)
4	3.3 (1.1–10.4)	3.5 (1.4–8.7)	1.2 (0.2–7.7)	2.5 (0.8–5.2)	3.1 (1.0–10)	2.4 (0.5–10.7)	3.2 (1.0–10.1)
5 (most deprived)	2.4 (0.7–8.2)	2.4 (0.9–6.4)	2.4 (0.4–14.7)	1.8 (0.7–6.4)	2.2 (0.6–7.7)	3.1 (0.7–13.8)	3.5 (1.1–11.3)

CAS, Clinical Activity Score; DON, dysthyroid optic neuropathy; IMD, Index of Multiple Deprivation 2007; IV, intravenous.

62 of these moving down a quintile in a more deprived group. Nevertheless, reanalysis of the data by using IMD 2010 demonstrated similar results to those by using IMD 2007.

It was necessary to undertake the statistical method of multivariable logistic regression as the White population differed so significantly from the Asian and Black populations in important demographic factors such as age, gender, and smoking status. The direct statistical comparison of the proportions of each social or ethnicity group having each indicator of severe TAO is subject to confounding due to these inherent differences. By undertaking multivariable logistic regression, we aimed to “pick apart” the different factors known to influence TAO development and gain an independent measure for each (Supplemental Digital Content, Tables 1 and 2, http://links.lww.com/IOP/A77).

One of the most striking features of the data is that those aged greater than 40 years had increased odds of more severe TAO than those aged 40 years or less. Studies have already determined that there is an association between the severity of TAO and increased age and male gender. However, smoking is the risk factor that has been most consistently associated with the development and severity of TAO, with those who stop smoking for at least a year having a risk equivalent to never smokers. In other studies, more than 40% of smokers either developed or had worsening of TAO, almost double the rate of nonsmokers. It is therefore surprising that the authors’ study found few associations between smoking and severe TAO. There are a number of possible reasons for this. Although the statistical model incorporated a measure of whether each TAO patient smoked cigarettes at their original presentation, we did not classify patients by number of cigarettes smoked per day. In addition, smoking status may have been underreported, and it was also not possible to determine whether the rate of smoking cessation following presentation with TAO, or the passive smoking rate, differed in those of different social status or ethnicity.

It may be argued that further independent risk factors for severe TAO should be incorporated in the multivariable logistic regression model. For example, the duration of underlying autoimmune thyroid disease, thyroid autoantibody status, stability of TFTs, and previous treatment with radioactive iodine may also have had a significant contribution to the onset or worsening of TAO. These data were not available for incorporation in the analysis.

In conclusion, this is the first study to consider the independent influence of social grade, level of social deprivation, and ethnicity on TAO severity in a large cohort of patients from a diverse, multiethnic population. In this cohort, we have illustrated that increased age, lower social grade, and higher social deprivation, but not ethnicity, have statistically significant association with some markers of severe TAO. Future studies should investigate further the influence of social factors and ethnicity on aspects of TAO presentation, treatment burden, prognosis, and the complex mechanisms underpinning these.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Peter Nightingale, Statistician, Wellcome Trust Clinical Research Facility, Birmingham, United Kingdom, for providing statistical advice and reviewing the final manuscript. We would also like to thank Daniel Eayres, Head of Health Intelligence, West Midlands Commissioning Support Unit for assisting with the collation and interpretation of Index of Multiple Deprivation 2007 and 2010 data.
REFERENCES

1. Bahn RS. Graves’ ophthalmopathy. N Engl J Med 2010;362:726–38.
2. Bartalena L, Baldeschi L, Dickinson AJ, et al. Consensus statement of the European group on Graves’ orbitopathy (EUGOGO) on management of Graves’ orbitopathy. Thyroid 2008;18:333–46.
3. Quan H, Chen G, Walker RL, et al. Hypertension Outcome and Surveillance Team. Incidence, cardiovascular complications and mortality of hypertension by sex and ethnicity. Heart 2013;99:715–21.
4. Patzer RE, McClellan WM. Influence of race, ethnicity and socioeconomic status on kidney disease. Nat Rev Nephrol 2012;8:533–41.
5. Thompson RJ, Agostini K, Potts L, et al. Deprivation and ethnicity impact on diabetes control and use of treatment regimen. Diabet Med 2013;30:491–4.
6. Basu D, Lopez I, Kulkarni A, et al. Impact of race and ethnicity on inflammatory bowel disease. Am J Gastroenterol 2005;100:2254–61.
7. Crosslin KL, Wiginton KL. The impact of race and ethnicity on disease severity in systemic lupus erythematosus. Ethn Dis 2009;19:301–7.
8. ERAS Study Group. Socioeconomic deprivation and rheumatoid disease: what lessons for the health service? Ann Rheum Dis 2000;59:794–9.
9. Nessim M, Denniston AK, Nolan W, et al. Research into Glaucoma and Ethnicity (ReGAE) 8: is there a relationship between social deprivation and acute primary angle closure? Br J Ophthalmol 2010;94:1304–6.
10. Chng CL, Seah LI, Khoo DH. Ethnic differences in the clinical presentation of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 2012;26:249–58.
11. National Readership Survey: Social Grade Definitions and Discriminatory Power, 2012. Available from http://www.nrs.co.uk/lifestyle-data/. Accessed November 2012.
12. Sharp L, Cotton S, Thornton A, et al. Who defaults from colposcopy? A multi-centre, population-based, prospective cohort study of predictors of non-attendance for follow-up among women with low-grade abnormal cervical cytology. Eur J Obstet Gynecol Reprod Biol 2012;165:318–25.
13. Report of the Fruit and Vegetables Task Force, August 2010. Available from: http://archive.defra.gov.uk/foodfarm/food/policy/partnership/fvtf/documents/100826-fvtf-report.pdf. Accessed November 2012.
14. Perros P, Crombie AL, Matthews JN, et al. Age and gender influence the severity of thyroid-associated ophthalmopathy: a study of 101 patients attending a combined thyroid-eye clinic. Clin Endocrinol (Oxf) 1993;38:367–72.
15. Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf) 1996;45:477–81.
16. Eckstein AK, Plicht M, Lax H, et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab 2006;91:3464–70.
17. Ponto KA, Zang S, Kahaly GJ. The tale of radioiodine and Graves’ orbitopathy. Thyroid 2010;20:785–93.