Role of the bed nucleus of the stria terminalis in aversive learning and memory

Travis D. Goode and Stephen Maren

Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA

Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the “affective forebrain”—including the amygdala, ventral hippocampus, and medial prefrontal cortex—and the hypothalamic and brainstem areas that have been implicated in neuroendocrine, autonomic, and behavioral responses to actual or anticipated threats. However, the precise contribution of the BNST to defensive behavior is unclear, both in terms of the antecedent stimuli that mobilize BNST activity and the consequent defensive reactions. For example, it is well known that the BNST is essential for contextual fear conditioning, but dispensable for fear conditioning to discrete conditioned stimuli (CSs), at least as indexed by freezing behavior. However, recent evidence suggests that there are circumstances in which contextual freezing may persist independent of the BNST. Furthermore, the BNST is involved in the reinstatement (or relapse) of conditioned freezing to extinguished discrete CSs. As such, there are critical gaps in understanding how the BNST contributes to fundamental processes involved in Pavlovian fear conditioning. Here, we attempt to provide an integrative account of BNST function in fear conditioning. We discuss distinctions between unconditioned stress and conditioned fear and the role of BNST circuits in organizing behaviors associated with these states. We propose that the BNST mediates conditioned defensive responses—not based on the modality or duration of the antecedent threat or the duration of the behavioral response to the threat—but rather as consequence the ability of an antecedent stimulus to predict when an aversive outcome will occur (i.e., its temporal predictability). We argue that the BNST is not uniquely mobilized by sustained threats or uniquely involved in organizing sustained fear responses. In contrast, we argue that the BNST is involved in organizing fear responses to stimuli that poorly predict when danger will occur, no matter the duration, modality, or complexity of those stimuli. The concepts discussed in this review are critical to understanding the contribution of the human BNST to fear and anxiety disorders.

The bed nucleus of the stria terminalis (BNST) is a diverse cluster of neuronal nuclei located within the ventral forebrain of humans and other animals (Dumont 2009). The connectivity of the bilateral BNST (or sometimes BST) is extensive and far-reaching—the BNST is interconnected with the amygdala, dorsal raphe, hippocampus, hypothalamus, medulla, nucleus accumbens, periaqueductal gray, prefrontal cortex, thalamus, ventral tegmental area, among others (for recent reviews, see Avery et al. 2016; Lebow and Chen 2016). As a result of this connectivity, it is perhaps not surprising that the BNST has been implicated in a number of functions and behaviors relevant to psychiatric disorders, including the acquisition and expression of Pavlovian fear conditioning, reinstatement of drug seeking, negative affect in pain, compulsivity, the expression of social defeat and learned helplessness, social attachment and reproductive behaviors, and regulation of the stress axis (Davis et al. 2010; Hammad et al. 2012; Crestani et al. 2013; Petruis 2013; Adhikari 2014; Coria-Avila et al. 2014; Stamatakis et al. 2014; Takahashi 2014; Fox et al. 2015; Kash et al. 2015; Minami and Ide 2015; Avery et al. 2016; Daniel and Rainnie 2016; Gungor and Paré 2016; Lebow and Chen 2016; Mantsh et al. 2016; Waraczynski 2016; Laman-Maharg and Trainor 2017; Vranjkovic et al. 2017). Moreover, a growing body of research links BNST function (and its dysfunction) to a number of human pathological disorders such as anxiety and addiction (Fox et al. 2015; Avery et al. 2016; Lebow and Chen 2016)—disorders that are widespread, extremely costly to the individual, and often comorbid (Kessler et al. 2005a,b; Koob 2009; McEwen 2012; Whiteford et al. 2013; DiLuca and Olesen 2014; Gonzalez and Martinez 2014). Accordingly, the BNST represents an important target for therapeutic interventions aimed at treating various psychopathologies.

Within the realm of aversively motivated behaviors, early studies suggested a limited role of the BNST in fear conditioning to only certain stimulus modalities (e.g., LeDoux et al. 1988). It has been suggested that temporal factors (either in terms of the duration of the antecedent stimulus or consequent behavioral response) explain BNST’s selective function in learned fear (e.g., Davis et al. 2010). Further, it is now understood that different populations of neurons within the BNST can bidirectionally regulate various unlearned anxiety-like responses (Jennings et al. 2013; Kim et al. 2013; Crowley et al. 2016; Marlingkiewicz et al. 2016; Mazzone et al. 2016). Despite this progress, we still lack an updated and integrated view of BNST function that accounts for its diverse contributions to aversive learning and memory. Accordingly, the purpose of this review is to dissect the current literature in an effort to provide a cohesive analysis of BNST function in Pavlovian fear conditioning.

© 2017 Goode and Maren. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
conditioning and how this might relate to its roles in stress- and anxiety-like behaviors. While this review focuses primarily on animal studies, we also examine recent and relevant developments in human BNST research. We will begin by addressing the fundamentals of aversive learning, followed by a review of the BNST’s relationship with other conditioned fear-regulating regions of the brain. In subsequent sections, we will address the role of the BNST in the conditioning and expression of fear in detail. Finally, we will consider how these results may be unified under an updated model of conditioned fear-related BNST function. Based on a growing and converging data set, we argue that an overarching function of the BNST in humans and other animals is to generate defensive behaviors to unpredictable threats independent of their modality or duration.

Learning to fear

Pavlovian conditioning is the process through which animals learn associations between stimuli (Pavlov 1927). For aversive events, Pavlovian fear conditioning models how humans and other animals learn about threats in their environment (Rescorla 1988; LeDoux 2000; Maren 2001; Phelps and LeDoux 2005). Importantly, the conditioning, extinction, and relapse of fear may contribute to and interact with trauma-related psychopathologies such as post-traumatic stress disorder (PTSD) (Jovanovic and Ressler 2010; Mahan and Ressler 2012; Milad and Quirk 2012; Goswami et al. 2013; Gonzalez and Martinez 2014; VanElzakker et al. 2014; Careaga et al. 2016; also, see LeDoux 2012, 2014, 2017; LeDoux 2013; Gonzalez and Martinez 2014; VanElzakker et al. 2014; Careaga et al. 2016; also, see LeDoux 2012, 2014, 2017; LeDoux and Pine 2016; LeDoux and Brown 2017).

In specific terms, Pavlovian fear conditioning is a process through which a salient cue (e.g., a tone or light source) is paired with an unavoidable and noxious outcome (e.g., electric shock). Exposure to the shock (the unconditioned stimulus, or US) induces various species-specific “circa-strike” defensive responses (termed unconditioned responses) (e.g., escape, defensive fighting, etc.; Bolles 1970; Bolles and Fanselov 1980; Fanselov 1980, 1994).

Through the process of conditioning, the cue comes to predict the aversive outcome (hence, termed the conditioned stimulus, or CS), and with one or more pairings with the US, a “post-encounter” conditioned response (e.g., freezing and autonomic activity in rodents) to the CS alone emerges. In addition to freezing in the presence of a shock-paired CS, animals will suppress instrumental responses for food (a phenomenon termed conditioned suppression; e.g., Waddell et al. 2006, 2008) and will increase the magnitude of their startle responses to other loud acoustic stimuli (termed fear-potentiated startle; e.g., Lee and Davis 1997). In humans, conditioned fear is often indexed using physiological measures, including skin conductance, heart rate, and pupil dilation (Lonsdorf et al. 2017). Fear conditioning can occur in the absence of a discrete CS (the US is “unsigned”); in this case, the environment or “context” serves as the CS (and is referred to as contextual conditioning; Rudy et al. 2004; Curzon et al. 2009; Maren et al. 2013; Uncelay and Miller 2014). Standard conditioning procedures to a discrete CS often result in at least some concurrent contextual conditioning as the discrete CS may not fully acquire all of the associative strength of the US (Rescorla and Wagner 1972).

In contrast to conditioning, repeated presentations of the CS in the absence of the US will ultimately lead to a reduction in conditional responding, a process termed extinction (Pavlov 1927; Myers and Davis 2002; Chang et al. 2009). Numerous studies indicate that extinction results in a new inhibitory memory that suppresses conditional fear in a context-dependent manner (Maren 2011). Specifically, fear to an extinguished CS will return when that CS is presented outside of the extinction context, a fundamental form of “relapse” termed renewal (Bouton and Bolles 1979a).

Renewal is not the only way in which fear can relapse: fear reinstates after reexposure to the US (Rescorla and Herth 1975; Bouton and Bolles 1979b; Bouton and King 1983; Westbrook et al. 2002; Morris et al. 2005; Goode et al. 2015a) and fear can spontaneously recover after a passage of time in the absence of the CS (Pavlov 1927; Rescorla 2004). Distinct mechanisms are thought to underlie these and other various forms of relapse (and are examined elsewhere in detail: Bouton 2002, 2004; Verrelst et al. 2013; Goode and Maren 2014; Haaker et al. 2014; McConnell and Miller 2014; Maren and Holmes 2016), but it should be noted that contextual information is thought to be critical for many of these phenomena (Bouton et al. 2006).

Neural circuits for aversive learning and memory

Originally considered a subregion of the “extended amygdala” (Johnson 1923; Alheid and Heimer 1988; Alheid et al. 1998; Alheid 2003), the BNST has numerous direct connections with other areas of the brain that are involved in Pavlovian fear conditioning, including the amygdala, hippocampus, and prefrontal cortex (PFC). Brain circuits for the acquisition and expression of conditioned fear as well as for its extinction and relapse have received considerable attention over the years (Fendt and Fanselov 1999; LeDoux 2000; Maren 2001; Maren and Quirk 2004; Quirk and Mueller 2008; Herry et al. 2010; Orsini and Maren 2012; Furini et al. 2014; Izuierdo et al. 2016). In brief, CS and US signals converge on the lateral nucleus (LA) of the amygdala and plasticity within this nucleus is vital for the acquisition, consolidation, and expression of conditioned fear (Rogan et al. 1997; Maren 1999a, 2005; Johansen et al. 2011). Output from the amygdala, via the central nucleus of the amygdala (CeA), targets downstream structures such as the periaqueductual gray (PAG) and hypothalamus to engage freezing and stress responses (respectively) in the presence of conditioned cues (LeDoux et al. 1988; Behbehani 1995; McMurever et al. 1999; Keifer et al. 2015; Toyote et al. 2015). Additionally, the hippocampus—by way of its connections with the PFC and amygdala—fundamentally regulates the acquisition and expression of contextual fear in a time-dependent manner (Kim and Fanselov 1992; Phillips and LeDoux 1992; Maren et al. 1998, 2013; Fanselov 2000; Fanselov and Dong 2010; Xu et al. 2016). Furthermore, PFC has been shown to drive or impair extinction via its projections to fear-promoting or inhibiting neurons within the amygdala (Vertes 2004; Quirk et al. 2006; Hooper and Vertes 2007; Herry et al. 2008; Knapska et al. 2012; Senn et al. 2014; Adhikari et al. 2015; Rozeske et al. 2015; Giustino and Maren 2015; Gourley and Taylor 2016)—processes that are regulated by the hippocampus (Iji and Maren 2007, 2015a,b; Goosens 2011; Maren et al. 2013; Orsini et al. 2011; Xu et al. 2016).

The BNST is well positioned to integrate information from the amygdala, hippocampus, and PFC (Weller and Smith 1982; Sun et al. 1991; Cantera and Swanson 1992; McDonald et al. 1999; Dong et al. 2001a; Reynolds and Zahm 2005; Jalabert et al. 2009; deCampo and Fudge 2013; Torrisi et al. 2015; Lebow and Chen 2016; Oler et al. 2017; Reichard et al. 2017), and BNST subregions may have differential roles in this process (for recent reviews, see Lebow and Chen 2016; Gungor and Paré 2016). Nevertheless, the functions of these circuits in fear conditioning are not well characterized. BLA activity appears to be required for BNST-dependent fear behaviors in most cases, insofar as BLA lesions block both phasic and long-lasting fear responses even with the BNST intact (Maren et al. 1996; Maren 1999b; Davis et al. 2010; but, see overtraining studies: Poulos et al. 2010; Zimmerman and Maren 2011). However, it is not yet clear if neurons required for BNST-dependent or independent conditioned fears are distinct.
or overlapping within the BLA (Davis et al. 2010). Furthermore, it is unclear if direct projections from the BLA are required for BNST-dependent aversive learning and memory, particularly because photostimulation of these afferents produces nonassociative anxiolytic effects (Kim et al. 2013; Crowley et al. 2016).

The CeA also densely innervates the BNST, but the role of the CeA in BNST-dependent defensive behaviors has been an area of debate. There is evidence that these structures mediate different aspects of conditioned fear (Walker and Davis 2008; Walker et al. 2009; Davis et al. 2010), although others have suggested that their roles in these processes are similar (Fox et al. 2015; Gungor and Paré 2016; Shackman and Fox 2016, also, see Gorka et al. 2017). That said, there are some recent and compelling data indicating that the CeA is required for BNST-dependent conditioned fears. For example, Asok and colleagues (2017) demonstrated that optogenetic silencing of central amygdala CRF-positive afferents in the BNST during training blunts fear expression to a shock-associated context, at least in the later portion of the retrieval (note that it is possible that other circuits may be involved and at different stages). The anxiogenic functions of the BNST are generally attributed to its anterior regions, (see Crown et al. 2000; Koenschellenberg et al. 2014) a region targeted by CeA (and BLA) neurons (Gungor and Paré 2016).

Beyond the amygdala, the significance of hippocampal inputs to the BNST in the context of aversive learning is not well understood. The hippocampus exerts inhibitory control over stress hormone release (via the hypothalamic–pituitary–adrenal [HPA] axis) through its glutamatergic projections to the BNST (Cullinan et al. 1993; Forray and Gysling 2004). Thus, projections from the hippocampus to the BNST may modulate anxiety (and perhaps BNST-dependent fear) not by driving defensive responses per se but by reducing stress responses in particular contexts (Glangot et al. 2017; also, see Gorka et al. 2017). The PFC, particularly the infralimbic (IL) region of the PFC, projects strongly to the BNST—this circuit (along with BNST-projecting cells from the neighboring orbitofrontal cortex) may be involved in both reward (Jalabert et al. 2009; Reisiger et al. 2014) and threat processing (Spencer et al. 2005; Fox et al. 2010; Motzkain et al. 2015). Nonetheless, a role for IL projections to the BNST in conditioned fear has not been explored. The prelimbic (PL) region of the PFC has been shown to play important roles in contextual conditioning (e.g., Corcoran and Quirk 2007; Ye et al. 2017), but its direct projections to the BNST are sparse. Outside of these circuits, recent work on serotonergic inputs to the BNST has implicated dorsal raphe afferents (Dong et al. 2017; Oler et al. 2017); little is known regarding the roles of these circuits in aversive memories. BNST efferents are largely GABAergic, with a smaller portion consisting of glutamatergic neurons (Tovote et al. 2015; Vranjkovic et al. 2017; also, see McElliott et al. 2013; Avery et al. 2014; Kaufling et al. 2017). little is known regarding the roles of these circuits in aversive memories. BNST efferents are largely GABAergic, with a smaller portion consisting of glutamatergic neurons (Tovote et al. 2015; Vranjkovic et al. 2017; also, see McElliott et al. 2013; Avery et al. 2014; Kaufling et al. 2017). BNST subregions are highly interconnected (Turesson et al. 2013), suggesting that BNST-dependent behavioral responses reflect an integration of activity within these areas (Kim et al. 2013; Gungor and Paré 2016). Outside of its connections with the amygdala, PFC, and hippocampus, the BNST is positioned to elicit defensive behavior via direct projections to the hypothalamus and PAG (Holstege et al. 1985; Gray and Magnusson 1992; Nagy and Paré 2008). Finally, it is worth noting that in humans (Allen and Gorski 1990; Chung et al. 2002) and rodents (Hines et al. 1985; Hines et al. 1992), the male BNST is generally larger than in females (also, see Avery et al. 2014). It is not yet clear if this sexual dimorphism impacts BNST function in aversive learning, but (perhaps relatedly) male rodents generally express greater levels of contextual (but not discretely cued) freezing when compared with females (Maren et al. 1994; Markus and Zecevic 1997; Pryce et al. 1999; Gupta et al. 2001; Barker and Galea 2010; Nagaya et al. 2015; Acca et al. 2017; Bangasser and Wicks 2017; also, see Gruene et al. 2015; Pellman et al. 2017). With these connections in mind, we will now explore the various factors that may account for the roles of the BNST in conditioned fear.

BNST function in response to unconditioned aversive stimuli

Exposure of animals to aversive events—including both physical (e.g., unsignaled footshock, restraint) and psychological stressors (e.g., open or elevated spaces, bright lights, predator odors, alarm pheromones)—readily engage or influence signaling within the BNST (Rosen et al. 2015; Daniel and Rainnie 2016; Gungor and Paré 2016). Currently, it is understood that BNST neurons do not react uniformly to these various stressful stimuli. For example, the BNST has been shown to exhibit alterations (albeit, increases or decreases depending on the study) in immediate early gene expression in its anterolateral and anterointermediate regions after restraint alone, inescapable tailshock, or predator odor (Lino-de-Oliveira et al. 2001; Day et al. 2005; Christianson et al. 2011; Butler et al. 2016). Electrophysiological studies have further shown that aversive footshock exposure can rapidly recruit and modify activity in BNST neurons (Marcinkiewicz et al. 2016; also, see Daldrup et al. 2016). In turn, BNST lesions often reduce or eliminate the behavioral and physiological changes (termed unconditioned fear responses) that come with direct exposure to these aversive stimuli. For example, BNST lesions block freezing responses in the presence of predator odors (Fendt et al. 2003, 2005). Additionally, stress (in the form of extensive footshock exposure) can potentiate acoustic startle in a separate context; lesions of the BNST block this effect (Gewirtz et al. 1998; also, see Hammack et al. 2004; Meloni et al. 2006). In cases where BNST lesions fail to alter unconditioned stress responses (e.g., Treit et al. 1998), it is thought that this may be due to the disruption of both stress-promoting and -attenuating circuits within the BNST (Adhikari 2014; Luyck and Luyten 2015). Nevertheless, the BNST functions, in part, to generate unconditioned stress responses and to mediate stress-induced sensitization.

Along these lines, BNST manipulations can also induce unconditioned stress and fear- or anxiety-like responses in a subregion-speciﬁc and neurotransmitter system-dependent manner (Levita et al. 2004; Hammack et al. 2009b; Daniel and Rainnie 2016). For example, increasing CRF, calcitonin gene-related peptide (CGRP), or serotonin signaling within the BNST can potentiate acoustic startle in the absence of any other training, and tends to increase anxiety in other tasks in the short term (Lee and Davis 1997; Sahuque et al. 2006; Lee et al. 2008; Sink et al. 2011, 2013b; Mazzone et al. 2016). Similarly, β-adrenergic agonism in the BNST or induction of pituitary adenylyl cyclase-activating polypeptide (PACAP) signaling within the BNST promotes stress and anxiety-like responses (Deyama et al. 2008; Hammack et al. 2009a, 2010; Naka et al. 2013; Hammack and May 2015). Increasing nitric oxide production within the BNST has also been shown to induce unconditioned freezing in a novel arena (Faria et al. 2016; also, see Deyama et al. 2017). Furthermore, stimulation or inhibition of select BNST circuits, including BLA→BNST and BNST→VTA neurons, can increase or decrease avoidance (or modulate stress responding) without any prior learning (Jennings et al. 2013; Kim et al. 2013; Crowley et al. 2016; Marcinkiewicz et al. 2016; Mazzone et al. 2016).
Stress may lead to plasticity in the BNST that will ultimately affect circuit function during future stressors or tasks. For example, acute restraint stress significantly alters plasticity in the BNST in response to PFC-dependent input (Glengat et al. 2013). Chronic stress in the form of multiday unpredictable shock exposure generally increases serotonin release in the BNST and alters serotonin receptor expression in the BNST (Hazra et al. 2012). Additionally, it has been shown that stress-enhancement of trace eyelblink conditioning in rats (through the use of restraint and tail shock) is mediated by the BNST (Bangasser et al. 2005; Bangasser and Shors 2008). From a translational perspective, and in light of pathologies in which patients may have experienced a significant degree of stress, these data are important to consider when examining unconditioned anxiety- and (perhaps) conditioned fear-related function in the BNST. Indeed, circuit-specific manipulations often occur in animals where stress history is minimal (Belzung et al. 2014). As such, important questions remain as to whether the effects seen in the circuit-selective studies (Jennings et al. 2013; Kim et al. 2013; Crowley et al. 2016; Marcinkiewcz et al. 2016; Mazzone et al. 2016) remain true following a history of stress and whether plasticity in the BNST shifts the phenotypic function of any of these circuits (also, see Conrad et al. 2011). In total, the BNST processes unconditioned aversive stimuli, but it is important to consider that negative outcomes may occur in a distinct place and in the presence of particular cues, which may foster associative learning.

BNST function in fear conditioning: stimulus modality and duration

BNST lesions (whether permanent or temporary) do not universally blunt somatic, autonomic, or hormonal responses during fear conditioning. Rather, several studies have now demonstrated a necessary role for the BNST in the learning and/or expression of contextual—but not discretely cued—fear, as indexed by freezing, conditioned suppression, potentiated startle, and stress hormone release (LeDoux et al. 1988; Hitchcock and Davis 1991; Lee and Davis 1997; Gewirtz et al. 1998; Sullivan et al. 2004; Waddell et al. 2006; Resstel et al. 2008; Duvarci et al. 2009; Poulos et al. 2010; Zimmerman and Maren 2011; Hott et al. 2012, 2017; Sink et al. 2013a; Davis and Walker 2014; Goode et al. 2015b; Hammack et al. 2015; Asok et al. 2016). Relatedly, electrical stimulation of the BNST can either increase or decrease conditioned contextual fear (as assessed by freezing or startle amplitude), effects that depend on the location, intensity, and frequency of the stimulation (Luyck et al. 2017; also, see Baas et al. 2014; Luyck and Luyten 2015). Disrupting BNST signaling does not appear to impair discrimination between two nonaversive contexts per se (e.g., given the persistence of context-dependent renewal in BNST-lesioned animals in the study by Goode et al. 2015b), suggesting that contextual representations (e.g., spatial/visual properties, etc.) are processed upstream of the BNST in the hippocampus. It has not yet been demonstrated whether unconditional fear- and stress-attenuating circuits of the BNST (Jennings et al. 2013; Kim et al. 2013; Crowley et al. 2016; Marcinkiewcz et al. 2016; Mazzone et al. 2016) (or BNST neurons in general) play any fundamental role in the extinction of conditioned fear to cues or contexts (also, see Ranjan et al. 2017).

Some of the aforementioned studies involved pretraining permanent lesions of the BNST, making it difficult to determine whether the BNST’s role in context fear is specific to acquisition, consolidation, expression, or some combination of these processes (granted, there are few studies published that specifically examine the role of the BNST in the acquisition or consolidation of fear). However, there are a handful of studies using temporary or post-training lesions (or inhibitors of protein synthesis) that implicate BNST function in the acquisition (Davis and Walker 2014; also, see Asok et al. 2017), consolidation (Poulos et al. 2010), and expression of context fear (Sullivan et al. 2004; Zimmerman and Maren 2011; Goode et al. 2015b; but, see Davis and Walker 2014). Consistent with these ideas, cued or contextual conditioning increases immediate early gene expression (e.g., c-fos) in the BNST (Passerin et al. 2000; Ranjan et al. 2017), as does the expression of contextual fear (Beck and Fibiger 1995; also, see Luyten et al. 2012). Furthermore, the BNST has been shown to be important for consolidation of contextual fear in overtrained animals if the BLA is lesioned (this consolidation effect is eliminated if the BLA remains intact; Poulos et al. 2010; Zimmerman and Maren 2011). These effects on acquisition and consolidation suggest that BNST afferents (e.g., Asok et al. 2017) or perhaps BNST neurons themselves are at least in part a node for BNST-dependent fear memory in certain cases. However, overtraining studies suggest that the BNST is not an alternative locus for standard fear conditioning (Poulos et al. 2010; Zimmerman and Maren 2011). Thus, it is not yet clear whether plasticity within the BNST serves to store BNST-dependent conditioned fear memories and/or if the BNST is simply recruited by learning-dependent plasticity in other regions in the presence of particular conditioned stimuli. Collectively, these findings suggest a unique role for the BNST in contextual fear conditioning, but why the BNST is selective for contextual fear is unclear.

Conditioned contexts and discrete CSs not only differ in terms of their modality, but they also often differ in duration. To determine which factor is more relevant to BNST function, Hammack et al. (2015) tested whether the duration of context exposure prior to US onset in a context conditioning procedure influenced the role of the BNST in the task. Specifically, Hammack et al. (2015) placed rats in a context where unsignaled footshock occurred either 1 or 10 min after animals entered the chamber. Rats were removed from the chambers 30 sec after shock offset (thereby, the groups differed on both the timing of shock onset as well as total context exposure). After several training sessions, rats were tested in the absence of shock to the context. The results revealed that contextual fear was only affected by the BNST lesions in the context in which shock occurred at a 10-min delay; rats with BNST lesions conditioned normally to the context in which shock occurred at a 1-min delay. Importantly, these data suggest that contextual fear can be independent of the BNST under some conditions (which may also have interesting implications for context fear-induced reinstatement). Consistent with these findings, an earlier report by Waddell et al. (2006) demonstrated that lesions of the BNST attenuated conditioned suppression in the presence of a long-duration (10 min), but not a short-duration (1 min), auditory CS. Based on these results, the authors (Waddell et al. 2006; Hammack et al. 2015) argued that it was stimulus duration, not modality or response duration, that determined whether the BNST was recruited during fear conditioning procedures.

However, stimulus duration alone may not fully account for the recruitment of the BNST during fear conditioning. For example, BNST lesions prevent fear reinstatement to short-duration CSs (Waddell et al. 2006, 2008; Goode et al. 2015b). Likewise, shock-induced reinstatement of extinguished fear to a discrete CS is associated with increased activity in the human BNST (Scharfenort and Lonsdorf 2016). Furthermore, BNST lesions can enhance discrimination between a CS+ and CS− (Duvarci et al. 2009; Radke 2009) by attenuating fear to the CS+ (also, see Botta et al. 2015; De Bundel et al. 2016; Sanford et al. 2017). Thus, the BNST may also be involved in the generalization of conditioned fear to both discrete cues and contexts (also, see Jasnow et al. 2017). Similarly, serotinin in the BNST during training to a phasic CS has been shown to increase fear responding to that same CS.
when tested off-drug in a familiar but different context (Ravinder et al. 2013; however, it is unclear if these effects are confounded by enhanced contextual fear on top of the tone response at test; also, see Marcinkiewicz et al. 2016). In total, there are many circumstances in which the BNST regulates fear to unimodal or even discrete stimuli.

BNST function in fear conditioning: response duration

Early and seminal research on the role of downstream targets of the BLA in aversive learning demonstrated a double dissociation in the roles of the BNST and CeA in sustained and phasic fear responses, respectively (Lee and Davis 1997; Walker and Davis 1997; but, see Sullivan et al. 2004). In particular, CRF- and unconditioned light-enhanced startle—paradigms associated with long-duration fear-like responses—were shown to be mediated by the BNST (and not the CeA); conversely, fear-potentiated startle, which involves a phasic CS-evoked fear response, was attenuated by CeA lesions (and not the BNST) (Lee and Davis 1997). In this framework, the BNST was argued to be necessary to maintain long-lasting fear responses, whereas the CeA drives rapid, phasic fear responses (Davis 1998, 2006; Davis and Shi 1999; Walker et al. 2009; Davis et al. 2010; Rodríguez-Sierra et al. 2016; also, see Herrmann et al. 2016; Brinkmann et al. 2017a).

Nevertheless, a growing body of evidence indicates that the BNST mediates both rapid and sustained fear responses at least in some cases (also, see Nagy and Paré 2008). For example, work in humans has revealed that the BNST can exhibit rapid and short-lived neural responses to phasic images of an approaching tarantula or to relatively brief unpredictable threats of shock (Mobbs et al. 2010; Choi et al. 2012; Klumpers et al. 2015; Shackman and Fox 2016; also, see Schlund et al. 2013). At the behavioral level, post-training lesions or inactivation of the BNST rapidly attenuate freezing responses to an aversive context (e.g., as early as within the first minute; Zimmerman and Maren 2011; Goode et al. 2015b)—these effects coincide with rapid prevention of reinstatement to the onset of discrete extinguished CSs. Other studies examining the effects of various neuromodulators or neurosteroids within the BNST have also shown rapid alterations in behavioral responding upon return to a conditioned context (Nagaya et al. 2015; Acca et al. 2017). At the physiological level, Restell et al. (2008) demonstrated that blockade of neurotransmitter release within the BNST (via the infusion of cobalt chloride) prevented the immediate increase in mean arterial pressure and heart rate that coincided with being placed in a previously conditioned context. Intra-BNST administration of NMDA antagonists or nNOS inhibitors also blocks these rapid physiological changes (Hott et al. 2017). These data suggest that the BNST does not selectively mediate sustained fear responses.

BNST function in fear conditioning: state-dependence

Recently, it has been observed that intra-BNST infusions of the neurosteroid allopregnanolone (ALLO, a progesterone metabolite that potentiates GABA_A receptors) produce state-dependent retention deficits of contextual fear (Nagaya et al. 2015; Acca et al. 2017). In other words, animals trained or tested after ALLO infusions exhibit impaired contextual freezing, however animals trained and tested after ALLO infusions exhibit robust freezing. This suggests that the BNST not only processes environmental (i.e., exteroceptive) conditioned contexts, but might also be involved in representing interoceptive contexts (such as hormonal states). Moreover, state-dependence is not observed when ALLO is infused into the BLA, suggesting that the effects of ALLO on state-dependence relates to its actions within the BNST (Acca et al. 2017). However, it is not yet clear if other drugs that are commonly used to assess BNST function also induce state-dependence via the BNST, or if other brain areas might mediate these state-dependent effects. For example, infusions of NBQX (an AMPA receptor antagonist) or muscimol (a GABA receptor agonist) into the BNST did not cause renewal of fear to an extinguished CS as might be expected if there was a drug-induced shift in the animals interoceptive context (i.e., interoceptive renewal; Goode et al. 2015b). Nevertheless, when examining the role of the BNST in conditioned fear, it is important to consider the role of interoceptive contexts that may be associated with the aversive event; a change in interoceptive context might induce state-dependent generalization decrements.

Temporal unpredictability in BNST-dependent aversive learning and memory

Up to this point, we have reviewed studies that suggest that the BNST (1) is particularly attuned to aversive (US-like) stimuli, (2) is implicated in acquisition, expression, reinstatement, and at times consolidation of conditioned fear, (3) does not mediate all forms of contextual fear, (4) mediates fear to unimodal or multimodal stimuli, (5) can respond to phasic or sustained cues, (6) can exhibit phasic or sustained neural responses in the presence of threats, (7) may be involved in aversive learning to interoceptive states, and (8) can rapidly mediate defensive behaviors. What unifies these properties and what may account for BNST’s selectivity in fear conditioning? We propose that the BNST is specifically recruited to aversive learning by temporally unpredictable events (Fig. 1).

By this view, the BNST is not involved in aversive contextual conditioning or expression per se, rather it becomes engaged by stimuli (whether cues or exteroceptive/interoceptive contexts) that are associated with temporally unpredictable USs (even if the probability that the US will occur is 100%). In other words, the BNST is recruited when the animal cannot reliably predict the onset of shock. This account of BNST function explains its diverse roles in conditioning to stimuli of various modalities or durations. For example, the BNST mediates fear to long CSs (whether unimodal or multimodal) because long CSs are poor predictors of when the aversive US will occur during presentation of the stimulus (e.g., Waddell et al. 2006; Hammack et al. 2015; also, see Fig. 1E, G). Conversely, discrete CSs (whether contexts or cues) that are trained with near immediate shock (Fig. 1A,B) allow the animal to reliably predict US onset and thereby do not require the BNST. However, the BNST is required for conditioning to relatively short, unimodal CSs if those CSs are trained as poor predictors of when a US occurs (Fig. 1C; Lange et al. 2016). This interpretation of BNST function is perhaps specific to its role in aversive learning—that is, temporal uncertainty of a US may foster BNST-dependence to various CSs, whereas nonassociative stressors (serving as USs) may engage the BNST for reasons not necessarily related to timing. Nevertheless, time as a factor in unconditioned stress is plausible (e.g., bright lights may signal a degree of vulnerability during which the animal is uncertain of the time in which a direct threat or predator will appear), but such possibilities are still in need of exploration.

One possibility is that unpredictable threats operate to produce sustained fear as the animal has learned that the risk of US onset is nearly continuous throughout presentation of the CS—these sustained fear responses have been argued to require the BNST (e.g., Walker and Davis 2008; Walker et al. 2009; Davis et al. 2010). However, temporally predictable CSs (albeit, massed) or contexts (e.g., Hammack et al. 2015) can also produce long-lasting and sustained fear responses, such as freezing behaviors, that do
Figure 1. Temporally predictable and unpredictable aversive conditioning procedures. Standard fear conditioning procedures produce temporally predictable discrete CSs that do not require the BNST—fear to the conditioning context may be BNST-dependent given that the context is a poor predictor of shock onset (A). Contextual conditioning with early—but not necessarily immediate—shock onset, however, is temporally predictive of the US, and may therefore be BNST-independent (this procedure may require multiple training sessions and may not necessarily require extensive context exposure post-shock) (B). Temporally unpredictable conditioned stimuli can be generated by varying the duration of the CS across conditioning trials (C), randomizing the onset of shock during presentation of a CS (D), extending the duration of the CS to exhibit remote shock onset (E), or conditioning a context with multiple un signaled and temporally unpredictable shocks (F) or late shock onset (G). BNST circuitry has been implicated in all of these cases of temporally unpredictable aversive stimuli (outside of example D, which has not yet been tested).
Brinkmann L, Buff C, Neumeister P, Tupak SV, Becker MP, Herrmann MJ, Straube T. 2017b. Dissociation between amygdala and bed nucleus of the stria terminals during threat anticipation in female post-traumatic stress disorder patients. *Hum Brain Mapp* 38: 2190–2205.

Bubulsky CV, Meck WH. 2005. What makes in tick? Anterior and neural mechanisms of interval timing. *Nat Rev Neurosci* 6: 755–765.

Butler RK, Oliver EM, Sharko AC, Parilla-Carrero J, Kaigler KF, Fadel JR, Wilson MA. 2016. Activation of corticotropic releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminals following exposure to two different anxiogenic stressors. *Behav Brain Res* 304: 92–101.

Canteras NS, Swanson LW. 1992. Projections of the ventral subiculum to the amygdala, septum, and in the expression of the immediate early gene c-fos: with and without c-fos. *J Comp Neurol* 315: 3: 267–281.

Chang CH, Knapska E, Orsini CA, Rabinak CA, Zimmerman JM, Maren S. 2009. Fear induction in rodents. *Curr Protoc Neurosci Chapter* 8: Unit 8.23.

Choi JM, Padmala S, Pessoa L. 2012. Impact of state anxiety on the interaction between threat monitoring and cognition. *Neuroimage* 59: 1912–1923.

Christianson JP, Jennings JH, Ragole T, Flyer JG, Benison AM, Barth DS, Watkins LR, Maier SF. 2011. Safety signals mitigate the consequences of uncontrollable stress via a circuit involving the insular cortex and bed nucleus of the stria terminals. *Biol Psychiatry* 70: 458–464.

Chung WC, De Vries GJ, Swaab DF. 2002. Sexual differentiation of the bed nucleus of the stria terminals in humans may extend into adulthood. *J Neurosci* 22: 1027–1033.

Conrad KL, Louderback KM, Gessner CP, Winder DG. 2011. Stress-induced alterations in anxiety-like behavior and adaptations in plasticity in the bed nucleus of the stria terminals. *Physiol Behav* 104: 248–256.

Corcoran KA, Quirk GJ. 2007. Activity in preoptic area cortex is necessary for the expression of learned, but not innate, fears. *J Neurosci* 27: 840–844.

Coria-Avila GA, Manzo J, Garcia LL, Carrillo P, Miquel MP, Pfaus JG. 2014. Neurobiology of social attachments. *Neurosci Biobehav Rev* 37: 173–182.

Curzon P, Rustay NR, Brownwe KE. 2009. Cued and contextual fear conditioning in rodents. In *Methods of behavior analysis in neuroscience*, 2nd edition (ed. Buccafusco JJ), Chapter 2. CRC Press, Boca Raton.

Crestani CC, Alves FH, Gomes FV, Resstel LB, Correa FM, Herrmann JP. 2013. Mechanisms in the bed nucleus of the stria terminals involved in control of autonomic and neuroendocrine functions: a review. *Curr Neuropharmacol* 11: 141–159.

Crowley NA, Bloodgood DW, Hardaway JA, Kendra AM, McCall MJ, Al-Hassani R, McCall NM, Yu W, Schools ZL, Krashes MJ, et al. 2016. Dopaminergic controls the gain of an amygdalar anxiety circuit. *Cell Rep* 14: 2774–2783.

Crowne KC, King TE, Meagher MW, Grau JW. 2000. Shock-induced hyperalgesia. III. Role of the bed nucleus of the stria terminals and neuropeptide-nuclei. *Behav Brain Sci* 13: 515–325.

CROWNED IN 11: 485–494.

Daldrop T, Remmes J, Lesting J, Gaburov S, Fendt M, Meuth P, Kolke V, Pape HC, Seidenbecher T. 2015. Expression of freezing and fear-potentiated startle during sustained fear in mice. *Genes Brain Behav* 14: 281–291.

Daldrup T, Lesting J, Meuth P, Seidenbecher T, Pape HC. 2016. Neuronal correlates of sustained fear in the anterolateral part of the bed nucleus of stria terminals. *Neurobiol Learn Mem* 131: 137–146.

Davies CD, Craske MG. 2015. Psychophysiological responses to unpredictable threat: effects of cue and temporal unpredictability. *Emotion* 15: 195–200.

Davis M. 1998. Are different parts of the extended amygdala involved in fear versus anxiety? *Biol Psychiatry* 44: 1239–1247.

Davis M. 2006. Neural systems involved in fear and anxiety measured with fear-potentiated startle. *Am Psychol* 61: 741–756.

Davis M, Shi C. 1999. The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminais differentially involved in fear versus anxiety? *Ann N Y Acad Sci* 877: 281–291.

Dawson SP, Westbrook RF, Corcoran KA, Maren S. 2006. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. *Biol Psychiatry* 60: 352–360.

Bouton ME. 1983. Contextual control of the extinction of fear. *Learn Mem* 11: 485–494.

Bouton ME, Bolles RC. 1979b. Role of conditioned contextual stimuli in the reinstatement of extinguished fear. *J Exp Anim Behav Process* 5: 248–265.

Bouton ME, Bolles RC. 1979a. Functional characteristics of the midbrain periaqueductal gray. *Prog Neurobiol* 46: 575–605.

Belzung C, Turiault M, Gribeil G. 2014. Optogenetics to study the circuits of fear- and depression-like behaviors: a critical analysis. *Pharmacol Biochem Behavior* 122: 145–157.

Bolles RC. 1970. Species-specific defensive reactions and avoidance learning. *Psychol Rev* 77: 32–48.

Bolles RC, Ranslow MS. 1980. PDR-a multi-level model of fear and pain. *Behav Brain Sci* 3: 315–323.

Botta P, Demmuo L, Kasugai Y, Markovic M, Xu C, Fadok SV, Lu T, Poe MM, Xu L, Cook JM, et al. 2015. Regulating anxiety with extrasynaptic inhibition. *Nat Neurosci* 18: 1495–1500.

Bouton ME. 2002. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. *Biol Psychiatry* 52: 976–986.

Bouton ME. 2004. Context and behavioral processes in extinction. *Learn Mem* 11: 485–494.

Bouton ME, Bolles RC. 1979a. Contextual control of the extinction of conditioned fear. *Learn Motiv* 10: 445–466.

Bouton ME, Bolles RC. 1979b. Role of conditioned contextual stimuli in reinstatement of extinguished fear. *J Exp Anim Behav Process* 5: 368–378.

Bouton ME, King DA. 1983. Contextual control of the extinction of conditioned fear: tests for the associative value of the context. *J Exp Anim Behav Process* 9: 248–265.

Bouton ME, Mineva S, Barlow DH. 2001. A modern learning theory perspective on the etiology of panic disorder. *Psychol Review* 108: 4–32.

Bouton ME, Westbrook RF, Corcoran KA, Maren S. 2006. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. *Biol Psychiatry* 60: 352–360.

Brinkmann L, Buff C, Feldker K, Tupak SV, Becker MP, Herrmann MJ, Straube T. 2017a. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminals during threat anticipation in panic disorder. *Psychol Med*. doi: 10.1017/S0033291717001192.

Brinkmann L, Buff C, Neumeister P, Tupak SV, Becker MP, Herrmann MJ, Straube T. 2017b. Dissociation between amygdala and bed nucleus of the stria terminals during threat anticipation in female post-traumatic stress disorder patients. *Hum Brain Mapp* 38: 2190–2205.
Ravinder S, Burghardt NS, Brodyk R, Bauer EP, Chattarji S. 2013. A role for the extended amygdala in the fear-enhancing effects of acute selective serotonin reuptake inhibitor treatment. Transl Psychiatry 3: e209.

Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahn DS. 2017. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 222: 1971–1988.

Reisiger AR, Kaufling J, Manzoni O, Cador M, Georges F, Caillé S. 2014. Nicotine self-administration induces CRF-dependent LTP in the bed nucleus of the stria terminalis. J Neurosci 34: 4285–4292.

Rescorla RA. 1988. Pavlovian conditioning. It’s not what you think it is. Ann Psychol 43: 151–160.

Rescorla RA. 2004. Spontaneous recovery. Learn Mem 11: 501–509.

Rescorla RA, Heth CD. 1975. Reinstatement of fear to an extinguished conditioned stimulus. J Exp Anim Behav Process 2: 88–96.

Rescorla RA, Wagner AR. 1972. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In (ed. Black AH, Prokasy WF) Conditioning: insights from a two-process model. Academic Press: 186–243.

Reynolds SM, Zahm DS. 2005. Specificity in the projections of prefrontal and insular cortex to ventral striato-pallidum and the extended amygdala. J Neurosci 25: 11757–11767.

Robinson OJ, Overstreet C, Allen PS, Pine DS, Grillon C. 2012. Acute tryptophan depletion increases translational indices of anxiety but not fear: serotonergic modulation of the bed nucleus of the stria terminalis? Neuropsychopharmacology 37: 1963–1971.

Rodríguez-Sierra OE, Goswami S, Turesson HK, Pare D. 2016. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety. Transl Psychiatry 6: e857.

Rogat MG, Staubli UV, Le Doux JE. 1997. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390: 604–607.

Rosen JR, Asok, A, Chakraborty T. 2015. The smell of fear: innate threat of 2,3-dihydro-4,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front Neurosci 9: 292.

Rozeske RR, Valerio S, Chaudun F, Henry C. 2015. Prefrontal neuronal circuits of contextual fear conditioning. Genes Brain Behav 14: 22–36.

Rudy JW, Huff NC, Matus-Amat P. 2004. Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 28: 675–685.

Sahueke LL, Kulberg E, McGeahlen AJ, Kinder JR, Hicks MP, Blanton MG, Janak PH, Olive MF. 2006. Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis as the role of CRF receptor subtypes. Psychopharmacology (Berl) 186: 122–132.

Sanford CA, Soden ME, Baird MA, Miller SM, Schulin J, Palmeter RD, Clark M, Zweifel LS. 2017. A central amygdala CRF circuit facilitates learning about conditioned fear. Neuropsychopharmacology 42: 1762–1774.

Scharfenort R, Lonsdorf TB. 2016. Neural correlates and of processes underlying generalized and differential return of fear. Soc Cogn Affect Neurosci 11: 612–620.

Schlundt MW, Budiggins CD, Magee S, Dymond S. 2013. Neuroimaging the temporal dynamics of human avoidance to sustained threat. Behav Brain Res 257: 148–155.

Schmitz A, Grillon C. 2012. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat Protoc 7: 527–532.

Seldenbecher T, Remmes J, Daldrup T, Lesting J, Pape HC. 2016. Distinct state anxiety after predictable and unpredictable fear training in mice. Behav Brain Res 304: 20–23.

Senn V, Wolff SB, Henry C, Grenier F, Ehrlich I, Gründeman J, Fadok JP, Müller C, Letzkus JJ, Lüthi A. 2014. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81: 428–437.

Shackman AJ, Fox AS. 2016. Contributions of the central extended amygdala to fear and anxiety. J Neurosci 36: 8050–8063.

Shaham Y, Shaev Y, Lu L, De Witt H, Stewart J. 2003. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 165: 98–107.

Silverman Y, Winder DG. 2013. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry 4: 42.

Sink KS, Walker DL, Yang Y, Davis M. 2011. Calcitonin gene-related peptide in the bed nucleus of the stria terminalis produces an anxiety-like pattern of behavior and increases neural activation in anxiety-related structures. J Neurosci 31: 1802–1810.

Sink KS, Davis M, Walker DL. 2013a. GCRF antagonist infused into the bed nucleus of the stria terminals impairs the acquisition and expression of contextually cued fear. Learn Mem 20: 730–739.

Sink KS, Chung A, Ressler KJ, Davis M, Walker DL. 2013b. Anxiogenic effects of GCRF within the BNST may be mediated by CRF acting at BNST CRF1 receptors. Behav Brain Res 234: 256–293.

Sladek J, Geissbuhler N, Plaßhan DM, Kraus C, Tikoletz M, Paul K, Vaniecek T, Auer B, Krans GA, et al. 2017. Unsmoothed functional MRI of the human amygdala and bed nucleus of the stria terminalis during processing of emotional faces. Neuroimage. doi: 10.1016/j.neuroimage.2016.12.022.

Somerville LH, Whalen PJ, Kelley WM. 2010. Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol Psychiatry 68: 416–424.

Spraker SJ, Buller KM, Day TA. 2005. Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol 481: 363–376.

Stamatakis AM, Sparta DR, Jennings JH, McElloght ZA, Decot H, Stuber GD. 2010. Amygdala and bed nucleus of the stria terminalis circuitry: implications for addiction-related behaviors. Neuropsychopharmacology 36(pt 1): 320–328.

Sullivan GM, Apergis J, Bush DE, Johnson LR, Hou M, Ledoux JE. 2004. Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128: 7–14.

Sun N, Roberts L, Cassell MD. 1991. Rat central amygdaloid nucleus projections to the bed nucleus of the stria terminalis. Brain Res Bull 27: 651–662.

Takahashi KL. 2014. Offactory systems and neural circuits that modulate predator odor fear. Front Behav Neurol 7: 72.

Thorsell JD, Ridgwell C, McHugh M, Beckers S, Blackford JU. 2017. Manual segmentation of the human bed nucleus of the stria terminals using 3T MRI. Neuroimage 146: 288–292.

Torrtsi S, O’Connell K, Davis A, Reynolds R, Balderston N, Fudge JL, Grillon C, Ernst M. 2015. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Map 36: 4076–4088.

Torote P, Fadok JP, Lüthi A. 2015. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16: 317–331.

Treit D, Aujla H, Menard J. 1998. Does the bed nucleus of the stria terminalis impairs the acquisition and expression of conditioned fear? Brain Res 764: 286–289.

Walker DL, Davis M. 1997. Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. Brain Res 775: 99–106.

Walker DL, Miles LA, Davis M. 2009. Selective participation of the bed nucleus of the stria terminalis in drug-associated behavior and affect: a circuit-based perspective. Neuropharmacology 122: 106–106.

Waddell J, Boulton ME, Falls WA. 2008. Central CRF receptor antagonist a-helical CRFP-41 blocks reinstatement of extinguished fear: the role of the bed nucleus of the stria terminalis. Behav Neurosci 122: 1061–1069.

Waddell J, Morris RW, Boulton ME. 2006. Effects of bed nucleus of the stria terminals lesions on conditioned anxiety: aversive conditioning with long-duration conditional stimulus and reinstatement of extinguished fear. Behav Neurosci 120: 244–248.

Walker DL, Davis M. 1997. Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 17: 9375–9383.

Waddell DL, Davis M. 2008. Extremed amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 213: 29–42.

Walker DL, Miles LA, Davis M. 2009. Selective participation of the bed nucleus of the stria terminals and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 33: 1291–1308.

Waraczynski M. 2016. Toward a systems-oriented approach to the role of the extended amygdala in adaptive responding. Neurosci Biobehav Rev 68: 177–194.
Weller KL, Smith DA. 1982. Afferent connections to the bed nucleus of the stria terminalis. \textit{Brain Res} \textbf{232}: 255–270.

Westbrook RF, Iordanova M, McNally G, Richardson R, Harris JA. 2002. Reinstatement of fear to an extinguished conditioned stimulus: two roles for context. \textit{J Exp Psychol Anim Behav Process} \textbf{28}: 97–110.

Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson HJ, Norman RE, Flaxman AD, Johns N, et al. 2013. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. \textit{Lancet} \textbf{382}: 1575–1586.

Xu C, Krabbe S, Gründemann J, Botta P, Fadok JP, Osakada F, Saur D, Grewe BF, Schnitzer MJ, Callaway EM, et al. 2016. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. \textit{Cell} \textbf{167}: 961–972.e16.

Ye X, Kappeler-Libermann D, Travaglia A, Inda MC, Alberini CM. 2017. Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. \textit{Nat Neurosci} \textbf{20}: 52–61.

Zimmerman JM, Maren S. 2011. The bed nucleus of the stria terminalis is required for the expression of contextual but not auditory freezing in rats with basolateral amygdala lesions. \textit{Neurobiol Learn Mem} \textbf{95}: 199–205.

Received April 23, 2017; accepted in revised form June 30, 2017.