Electronic Supplementary Information

Gold nanobipyramid doped with Au/Pd alloyed nanoclusters for high efficiency ethanol electrooxidation

Baihe Hanqi,a Juan Xu,a Xingzhong Zhua,b and Caixia Kana,b,*

a College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: cxkan@nuaa.edu.cn;
b MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

* Email: cxkan@nuaa.edu.cn

Supplementary figures

\textbf{Fig. S1} (a) TEM image and (b) corresponding optical spectrum of the AuBPs (Scale bars: 100 nm)
Fig. S2 (a) UV-vis-NIR absorption spectra of AuBPs@Au$_x$Pd$_{1-x}$ nanostructures with varying Au/Pd proportion in the alloy shell. TEM images of the nanostructures obtained under the addition of varying H$_2$PdCl$_4$ of 2mM (b), 1.5mM (c), 1mM (d) and 0.25mM (e) obtained at 65°C with respective addition of 0.2 mL HAuCl$_4$ and 0.2 mL H$_2$PdCl$_4$ (Scale bars: 100 nm).

Fig. S3 Absorption spectra of 4-NP reduced by NaBH$_4$ in the presence of AuBPs@Au$_x$Pd$_{1-x}$. (a) AuBPs@Au$_0$Pd$_1$, (b) AuBPs@Au$_{0.2}$Pd$_{0.8}$, (c) AuBPs@Au$_{0.4}$Pd$_{0.6}$, (d) AuBPs@Au$_{0.6}$Pd$_{0.4}$, (e) AuBPs@Au$_{0.8}$Pd$_{0.2}$.
Fig. S4 (a) Cyclic voltammograms for the AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanocatalysts in N\textsubscript{2}-saturated KOH (0.3M) solution at a scan rate of 50 mV s-1. (b) CV curves for the AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanocatalysts in N\textsubscript{2}-saturated KOH (0.3M) solution containing ethanol (0.5M) at a scan rate of 50 mV s-1. (c) CV curves by the ECSAs. (d) Mass activities (green) and specific activities (orange) of AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanocatalysts from measurement. Note: AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanocatalysts were obtained with addition of 0.2 mL HAuCl\textsubscript{4} and 0.2 mL H\textsubscript{2}PdCl\textsubscript{4}.
Fig. S5 (a) specific activity of the AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanostructures obtained at 65°C with addition of HAuCl\textsubscript{4}/H\textsubscript{2}PdCl\textsubscript{4} precursor (0.2 mL and 0.4 mL). (b) Cycling measurement of the AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanocatalysts obtained at 65°C with addition of HAuCl\textsubscript{4}/H\textsubscript{2}PdCl\textsubscript{4} precursor (0.2 mL and 0.4 mL). (c) specific activity of the AuBPs@Au\textsubscript{0.8}Pd\textsubscript{0.2} nanocatalysts obtained at 65°C with addition of different volume of HAuCl\textsubscript{4}/H\textsubscript{2}PdCl\textsubscript{4} precursor (0.2 mL and 0.4 mL).

Fig. S6 (a) Cycling measurement for AuBPs@Au\textsubscript{x}Pd\textsubscript{1-x} nanocatalysts with addition of 0.2 mL HAuCl\textsubscript{4}/H\textsubscript{2}PdCl\textsubscript{4} precursor. (b) Chronoamperometric curves in mixture solution of KOH (0.3M) and ethanol (0.5M) for 1000s at -0.23V versus Ag/AgCl potential.
Table S1 The AuBPs@Au$_x$Pd$_{1-x}$ with different concentration for Au and Pd precursors

Sample	Concentration of H$_2$PdCl$_4$ (mM)	Concentration of HAuCl$_4$ (mM)	Amount of H$_2$PdCl$_4$ (mL)	Amount of HAuCl$_4$ (mL)
AuBPs@Au$_{0.8}$Pd$_{0.2}$	1	0.25	0.4	0.4
AuBPs@Au$_{0.6}$Pd$_{0.4}$	1	1.5	0.4	0.4
AuBPs@Au$_{0.4}$Pd$_{0.6}$	1.5	1	0.4	0.4
AuBPs@Au$_{0.2}$Pd$_{0.8}$	0.5	2	0.4	0.4
AuBPs@Au$_{0}$Pd$_1$	2.5	0	0.4	0.4

Table S2 Comparison of the AuBPs@Au$_x$Pd$_{1-x}$ with different mole fractions for Au and Pd precursors.

Sample	Pd amount of substance concentration (mg/ L)	Pd mass percent	Au/Pd atomic ratio
AuBPs@Au$_{0.8}$Pd$_{0.2}$	0.32	40.5%	44.2:55.8
AuBPs@Au$_{0.6}$Pd$_{0.4}$	0.50	50.0%	35.0:65.0
AuBPs@Au$_{0.4}$Pd$_{0.6}$	0.96	65.3%	25.5:74.5
AuBPs@Au$_{0.2}$Pd$_{0.8}$	1.92	80.3%	11.6:83.4
AuBPs@Au$_{0}$Pd$_1$	3.02	82.9%	9.9:90.1