Arc-transitive bicirculants

Alice Devillers1 | Michael Giudici1 | Wei Jin2

1 Department of Mathematics and Statistics, Centre for the Mathematics of Symmetry and Computation, The University of Western Australia, Crawley, Western Australia, Australia
2 School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, P.R. China

Correspondence
Wei Jin, School of Mathematics and Statistics, Central South University, Changsha, Hunan 410075, P.R. China.
Email: jinweipei82@163.com

Abstract
In this paper, we characterise the family of finite arc-transitive bicirculants. We show that every finite arc-transitive bicirculant is a normal \(r \)-cover of an arc-transitive graph that lies in one of eight infinite families or is one of seven sporadic arc-transitive graphs. Moreover, each of these ‘basic’ graphs is either an arc-transitive bicirculant or an arc-transitive circulant, and each graph in the latter case has an arc-transitive bicirculant normal \(r \)-cover for some integer \(r \).

MSC 2020
05E18, 20B25 (primary)

1 | INTRODUCTION

A graph with \(2n \) vertices is called a bicirculant if it admits an automorphism \(g \) of order \(n \) with exactly two cycles of length \(n \). The class of bicirculants includes Cayley graphs of dihedral groups, the generalised Petersen graphs \([11]\), rose-window graphs \([34]\) and Tabacjtn graphs \([3]\). The last three families are particularly nice as the two orbits of \(\langle g \rangle \) are cycles in the graph. Arc-transitive bicirculants have been classified for small valencies, for example, valency 3 \([11, 27, 29]\), valency 4 \([19–21]\) and valency 5 \([2, 3]\). Moreover, bicirculants of valency 6 were recently investigated \([16]\), while the automorphisms of bicirculants on \(2p \) vertices for \(p \) a prime are well understood \([26]\).

We call a graph with \(n \) vertices a circulant if it has an automorphism \(g \) that is an \(n \)-cycle. Let \(\Gamma \) be a connected arc-transitive circulant which is not a complete graph. Then Kovács \([18]\) and Li \([24]\) proved that either \(\langle g \rangle \) is a normal subgroup of \(\text{Aut}(\Gamma) \), or \(\Gamma \) is the lexicographic product of an...
arc-transitive circulant and an empty graph, or \(\Gamma \) is obtained by the lexicographic product of an arc-transitive circulant \(\Sigma \) and an empty graph and then removing some copies of \(\Sigma \). In this paper, we continue the study of arc-transitive bicirculants and give a characterisation for these graphs which is of a similar style to the result of Kovács and Li.

Let \(\Gamma \) be a \(G \)-vertex-transitive graph. Let \(B = \{ B_1, ..., B_m \} \) be a \(G \)-invariant partition of the vertex set, that is, for each \(B_i \) and each \(g \in G \), either \(B_i^g \cap B_i = \emptyset \) or \(B_i^g = B_i \). Then the quotient graph \(\Gamma_B \) of \(\Gamma \) induced on \(B \) is the graph with vertex set \(\mathcal{M} \) and \(\mathcal{M}' \) are adjacent if there exist \(x \in B_i \) and \(y \in B_j \) such that \(x, y \) are adjacent in \(\Gamma \).

Theorem 1.1. Every finite connected arc-transitive bicirculant which is not equal to \(K_2 \) is a normal \(r \)-cover of one of the following graphs:

(a) \(K_{n,n} \), \(n \geq 2 \);
(b) \(K_n \), \(K_{n[2]} \), \(K_n - nK_2 \), \(n \geq 3 \);
(c) \(G(2p, e) \), where \(p \) is a prime and \(e > 1 \) divides \(p - 1 \);
(d) \(B(\text{PG}(n, q)) \), \(B'(\text{PG}(n, q)) \) where \(q \) is a prime power and \(n \geq 2 \);
(e) \(\text{Cay}(p, e) \), where \(p \) is a prime and \(e \) is an even integer dividing \(p - 1 \);
(f) \(B'(H(11)) \);
(g) Petersen graph, \(H(2, 4) \), Clebsch graph, and their complements.

Moreover, each of the graphs in (a)–(g) is either an arc-transitive bicirculant or an arc-transitive circulant that has an arc-transitive bicirculant normal \(r \)-cover.

Lemma 2.4 determines exactly which graphs listed in Theorem 1.1 are circulants and Lemma 2.5 determines which ones are bicirculants. Note that a graph can be both a circulant and a bicirculant.

A transitive permutation group \(G \leq \text{Sym}(\Omega) \) is said to be quasiprimitive, if every non-trivial normal subgroup of \(G \) is transitive on \(\Omega \), while \(G \) is said to be bi-quasiprimitive if every non-trivial normal subgroup of \(G \) has at most two orbits on \(\Omega \) and there exists one which has exactly two orbits on \(\Omega \). Quasiprimitivity is a generalisation of primitivity as every normal subgroup of a primitive group is transitive, but there exist quasiprimitive groups which are not primitive. For more information about quasiprimitive and bi-quasiprimitive permutation groups, refer to [30–32].

The proof of Theorem 1.1 proceeds as follows. Let \(\Gamma \) be a connected \(G \)-arc-transitive bicirculant with at least 3 vertices (otherwise \(\Gamma = K_2 \)). Let \(N \) be a normal subgroup of \(G \) maximal with respect to having at least three orbits. It is proved in Theorem 3.3 that \(\Gamma \) is an \(r \)-cover of the quotient graph induced by \(N \) whose automorphism group contains \(G/N \), this quotient graph is \(G/N \)-arc-transitive and is either a circulant or a bicirculant, and \(G/N \) is quasiprimitive or bi-quasiprimitive on its vertex set. The families of vertex quasiprimitive and bi-quasiprimitive arc-transitive circulants are obtained in Proposition 3.4. Then we determine precisely the vertex quasiprimitive arc-transitive bicirculants in Proposition 4.2, and a key part of the proof is Müller’s classification of primitive groups containing a cyclic subgroup with two orbits. The vertex bi-quasiprimitive arc-transitive bicirculants are given in Propositions 5.1 and 5.2. Note that the graphs in Theorem 1.1
do not necessarily have an arc-transitive quasiprimitive or bi-quasiprimitive group of automorphisms for all values of the parameters. Each of the graphs in (a)–(g) is either an arc-transitive bicirculant or an arc-transitive circulant by Lemmas 2.4 and 2.5. Moreover, the ones that are circulants have a normal cover that is an arc-transitive bicirculant by Lemma 2.6.

Finally, in Section 6, we relate Theorem 1.1 to the classifications of arc-transitive bicirculants of valencies 3, 4 and 5.

2 | PRELIMINARIES

In this section, we give some definitions about groups and graphs and also prove some results which will be used in the following discussion.

2.1 | Groups and graphs

All graphs in this paper are finite, simple, connected and undirected. For a graph \(\Gamma \), we use \(V(\Gamma) \) and \(\text{Aut}(\Gamma) \) to denote its vertex set and automorphism group, respectively. The size of the vertex set of a graph is said to be the order of the graph. For the group theoretic terminology not defined here we refer the reader to [5, 10, 33].

We denote by \(\mathbb{Z}_n \) the cyclic group of order \(n \). Let \(G \) be a permutation group on a set \(\Omega \) and \(\alpha \in \Omega \). Denote by \(G_{\alpha} \) the stabiliser of \(\alpha \) in \(G \), that is, the subgroup of \(G \) fixing the point \(\alpha \). We say that \(G \) is semiregular on \(\Omega \) if \(G_{\alpha} = 1 \) for every \(\alpha \in \Omega \) and regular if \(G \) is transitive and semiregular. An arc of a graph is an ordered pair of adjacent vertices. A graph \(\Gamma \) is said to be \(G \)-vertex-transitive or \(G \)-arc-transitive if \(G \leq \text{Aut}(\Gamma) \) is transitive on the set of vertices or on the set of arcs, respectively. Moreover, if \(G = \text{Aut}(\Gamma) \), then we drop the prefix “\(G \)-” in the definitions.

Let \(G \) be a transitive permutation group on a set \(\Omega \) and let \(B \) be a \(G \)-invariant partition of \(\Omega \). Then \(G \) induces a transitive permutation group on \(B \), denoted by \(G^B \). If the only possibilities for \(B \) are the partition into one part, or the partition into singletons then \(G \) is called primitive. The kernel of \(G \) on \(B \) is the normal subgroup of \(G \) consisting of all elements that fix setwise each \(B \in B \). We call \(B \) maximal if \(G^B \) is primitive on \(B \). Let \(B \) be a non-empty subset of \(\Omega \). Then \(B \) is called a block of \(G \) if, for any \(g \in G \), either \(B^g = B \) or \(B^g \cap B = \emptyset \). If \(N \) is an intransitive normal subgroup of \(G \), then each \(N \)-orbit is a block of \(G \), and the set of \(N \)-orbits forms a \(G \)-invariant partition of \(\Omega \). Let \(\Gamma \) be a \(G \)-vertex-transitive graph and let \(B \) be the set of \(N \)-orbits of \(V(\Gamma) \) for some normal subgroup \(N \) of \(G \); then we denote \(\Gamma_B \) by \(\Gamma_N \) and call \(\Gamma_N \) a normal quotient graph.

For a finite group \(T \), and a subset \(S \) of \(T \) such that \(1 \notin S \) and \(S = S^{-1} \), the Cayley graph \(\text{Cay}(T, S) \) of \(T \) with respect to \(S \) is the graph with vertex set \(T \) and edge set \(\{(g, sg) \mid g \in T, s \in S\} \). In particular, \(\text{Cay}(T, S) \) is connected if and only if \(T = \langle S \rangle \). The group \(R(T) = \{\sigma_t \mid t \in T\} \) of right multiplications \(\sigma_t : x \mapsto xt \) is a subgroup of the automorphism group of \(\text{Cay}(T, S) \) and acts regularly on the vertex set. Indeed, a graph is a Cayley graph if and only if it admits a regular group of automorphisms. We note that circulants are precisely the Cayley graphs for cyclic groups.

A graph \(\Gamma \) is said to be a bi-Cayley graph over a group \(H \) if it admits \(H \) as a semiregular automorphism group with two orbits of equal size. (Some authors have used the term semi-Cayley instead; see [9, 22].) Moreover, bicirculants are exactly the bi-Cayley graphs over cyclic groups. The family of bi-Cayley graphs has been extensively studied, for example, cubic bi-Cayley graphs over abelian groups were investigated by Zhou and Feng [35] while the automorphism groups of bi-Cayley graphs were studied in [36].
For a graph Γ, its complement $\overline{\Gamma}$ is the graph with vertex set $V(\Gamma)$, and two vertices are adjacent if and only if they are not adjacent in Γ. We denote the complete graph on n vertices by K_n.

Let Γ_1 and Γ_2 be two graphs. The lexicographic product $\Gamma_1[\Gamma_2]$, of Γ_1 and Γ_2, is the graph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ such that (u_1, u_2) is adjacent to (v_1, v_2) if and only if either $\{u_1, v_1\}$ is an edge of Γ_1, or $u_1 = v_1$ and $\{u_2, v_2\}$ is an edge of Γ_2.

The following theorem is the characterisation of arc-transitive circulants by Kovács [18] and Li [24]. A normal circulant is a Cayley graph $\text{Cay}(T, S)$ such that T is a cyclic group and $R(T)$ is a normal subgroup of $\text{Aut}(\Gamma)$.

Theorem 2.1 [24, Theorem 1.3]. Let Γ be a connected arc-transitive graph of order n which is not a complete graph and with a cyclic regular group. Then either

1. Γ is a normal circulant, or
2. there exists an arc-transitive circulant Σ of order m, such that $mb = n$ with $m, b \geq 2$, and

$$\Gamma = \begin{cases} \Sigma[K_b], & \text{or} \\ \Sigma[K_b] - b\Sigma, & (m, b) = 1. \end{cases}$$

2.2 The graphs appearing in Theorem 1.1

For $m, n \geq 2$, we denote the complete multipartite graph with m parts of size n by $K_{m[n]}$, that is, the graph such that two vertices are adjacent if and only if they are in distinct parts. The graph $K_{2[n]}$ is often denoted by $K_{n,n}$.

The Hamming graph $H(d, r)$ has vertex set $\Delta^d = \{(x_1, x_2, \ldots, x_d) | x_i \in \Delta\}$, where $\Delta = \{0, 1, \ldots, r - 1\}$, and two vertices v and v' are adjacent if and only if they are different in exactly one coordinate. The Hamming graph $H(d, 2)$ is called a d-cube, and a folded d-cube is the quotient of $H(d, 2)$ by the partition into blocks of size 2 given by pairs of vertices at distance d. The complement of the folded 5-cube is the Clebsch graph.

Let p be an odd prime and let e be an even integer such that e divides $p - 1$. Let Z_p be the group of integers modulo p and let σ be a generator of $\text{Aut}(Z_p) \cong Z_{p-1}$. Suppose that $p - 1 = er$ for some positive integer r. Let $\tau = \sigma^r$ and $S = \{1, 1^r, 1^{r^2}, \ldots, 1^{r^{e-1}}\} \subseteq Z_p$. Then $\text{Cay}(Z_p, S)$ denotes the graph $\text{Cay}(Z_p, S)$.

Let p be an odd prime and let r be a positive integer dividing $p - 1$. Let A and A' denote two disjoint copies of Z_p and denote the corresponding elements of A and A' by i and i', respectively. Let $L(p, r)$ be the unique subgroup of the multiplicative group of Z_p of order r. We define two graphs, $G(2p, r)$ and $G(2, p, r)$, with vertex set $A \cup A'$. The graph $G(2p, r)$ has edge set $\{(x, y') | x, y \in Z_p, y - x \in L(p, r)\}$, while the graph $G(2, p, r)$ (defined only for r even) has edge set $\{(x, y), (x', y), (x, y'), (x', y') | x, y \in Z_p, y - x \in L(p, r)\}$. Note that $G(2, p, r)$ is a non-bipartite graph as it contains a p-cycle and is a 2-cover of $\text{Cay}(p, r)$, while $G(2p, r)$ is bipartite.

For each integer $d \geq 3$ and prime power q, let $B(\text{PG}(d - 1, q))$ be the bipartite graph with vertices the one-dimensional and $(d - 1)$-dimensional subspaces of a d-dimensional vector space over $\text{GF}(q)$, and two subspaces are adjacent if and only if one is contained in the other. We denote the bipartite complement of $B(\text{PG}(d - 1, q))$ by $B'(\text{PG}(d - 1, q))$, that is, the bipartite graph with the same vertex set but a 1-subspace and a $(d - 1)$-subspace are adjacent if and only if their intersection is the zero subspace.
We define $B'(H(11))$ to be the bipartite graph with vertices the elements of \mathbb{Z}_{11} and the sets $R + i$, where $i \in \mathbb{Z}_{11}$ and $R = \{1, 3, 4, 5, 9\}$, that is, the set of non-zero quadratic residues modulo 11, such that $n \in \mathbb{Z}_{11}$ is adjacent to $R + i$ if and only if $n \not\in R + i$. We note that the bipartite complement of $B'(H(11))$ is isomorphic to $G(22, 5)$; see also [7, p. 200].

2.3 Basic lemmas

We state some lemmas which will be used in the following discussion. The first lemma gives three simple observations.

Lemma 2.2.

1. Every circulant of even order is a bicirculant.
2. A graph is a circulant if and only if its complement is a circulant.
3. A graph is a bicirculant if and only if its complement is a bicirculant.

Lemma 2.3. Let $\Gamma = G(2p, r)$ with $r > 1$ such that r divides $p - 1$. Then the following hold.

1. Γ is a Cayley graph of a dihedral group and hence is a bicirculant.
2. Γ is a circulant if and only if r is even.

Proof. Recall that $V(\Gamma)$ consists of the elements i and $i’$ for $i \in \mathbb{Z}_p$. Let

$$
\tau : V(\Gamma) \mapsto V(\Gamma), \quad i \mapsto i + 1, \quad i’ \mapsto (i + 1)’,
$$

$$
\sigma : V(\Gamma) \mapsto V(\Gamma), \quad i \mapsto (-i)’, \quad i’ \mapsto -i.
$$

Then τ is an automorphism of Γ of order p consisting of two p-cycles, and σ is an automorphism of Γ of order 2 swapping the two orbits of τ. Moreover, $\sigma \tau \sigma = \tau^{-1}$, and $\langle \sigma, \rho \rangle \cong D_{2p}$ is a dihedral group of order $2p$ that acts regularly on the vertex set. Thus Γ is a Cayley graph of D_{2p}, and so Γ is a bicirculant, and (1) holds.

If r is even, then $i \in L(p, r)$ if and only if $-i \in L(p, r)$. Hence

$$
\rho : V(\Gamma) \mapsto V(\Gamma), \quad i \mapsto i’, \quad i’ \mapsto i
$$

is a graph automorphism of Γ of order 2 and $\rho \tau = \tau \rho$. Moreover, $\langle \tau, \rho \rangle \cong \mathbb{Z}_{2p}$ is regular on $V(\Gamma)$. Thus Γ is a circulant.

Now let r be an odd divisor of $p - 1$ and suppose that Γ is a circulant of the cyclic group T. Then $\Gamma = \text{Cay}(T, S)$ where S is a subset of $T \setminus \{1_T\}$. Hence $|S| = r$ is an odd integer. Since Γ is undirected, it follows that $S = S^{-1}$, and so S contains the unique involution of T. Suppose that $T < \text{Aut}(\Gamma)$ and let $u = 1_T$. Then by [13, Lemma 2.1], $\text{Aut}(\Gamma)u \leq \text{Aut}(T)$. Since Γ is arc-transitive and $\Gamma(u) = S$, it follows that all elements in S are involutions, a contradiction. Thus by Theorem 2.1, there exists an arc-transitive circulant Σ of order m, such that $mb = 2p$ with $m, b \in \{2, p\}$, and

$$
\Gamma = \begin{cases}
\Sigma[K_b], & \text{or} \\
\Sigma[K_b] - b\Sigma.
\end{cases}
$$

Assume first that $\Gamma = \Sigma[K_b]$. If $(m, b) = (2, p)$, then $\Gamma \cong K_{p, p}$ has valency $p > r$, a contradiction. If $(m, b) = (p, 2)$, then each block has 2 vertices, and any two adjacent blocks induce a
subgraph $K_{2,2}$, and so Γ has even valency, again a contradiction. Now suppose that $\Gamma = \Sigma [K_b] - b\Sigma$. If $(m, b) = (2, p)$, then $\Gamma \cong K_p, p - pK_2$ has valency $p - 1 > r$, a contradiction. If $(m, b) = (p, 2)$, then each block has 2 vertices, and any two adjacent blocks induce a subgraph $2K_2$. Thus Γ is a cover of Σ, and Σ has valency r and order p. However, both p and r are odd integers, which is impossible. Hence Γ is not a circulant when r is an odd divisor of $p - 1$. Therefore, Γ is a circulant if and only if r is even, so that (2) holds.

Lemma 2.4. A graph in Theorem 1.1 (a)–(g) is a circulant if and only if it is one of the following graphs:

1. $K_{n,n}$, $n \geq 2$;
2. $K_n, K_{n[2]}$, $n \geq 3$;
3. $K_{n,n} - nK_2$, $n \geq 3$ is an odd integer;
4. $G(2p, r)$, where p is a prime and even $r > 1$ divides $p - 1$;
5. $\text{Cay}(p, e)$, where p is a prime and e is an even integer dividing $p - 1$.

Proof. Clearly K_n, $K_{n,n}$ and $K_{n[2]}$ are circulants for all $n \geq 2$, while $\text{Cay}(p, e)$ is a circulant by definition. By Lemma 2.3, $G(2p, r)$ is a circulant if and only if r is an even divisor of $p - 1$.

It can be easily checked, for example, by Magma [4], that $H(2, 4), B'(H(11))$, the Clebsch graph and the Petersen graph are not circulants, and by Lemma 2.2 (2), neither are their complements.

Let $\Gamma = K_{n,n} - nK_2$. Then $\text{Aut}(\Gamma) \cong S_n \times S_2$ and when n is odd, this contains a cyclic subgroup of order $2n$ that is regular on the vertex set, and so Γ is a circulant. Moreover, when $n \geq 4$ is even, Γ is not a circulant; see, for example, [1, Theorem 1.1].

It remains to consider the graphs $B(\text{PG}(d - 1, q))$ and $B'(\text{PG}(d - 1, q))$, which have automorphism group $\text{Aut} (\text{PSL}(d, q))$. Suppose that these graphs are circulants. Since $\text{PGL}(d, q)$ acts primitively on each bipartite half and these graphs are neither complete bipartite nor of the form $K_{n,n} - nK_2$, the results of Kovács [18] and Li [24] imply that $\text{Aut}(\Gamma)$ contains a normal cyclic regular subgroup, a contradiction.

Lemma 2.5. The graphs in Theorem 1.1 (a)–(g) are bicirculants except for $\text{Cay}(p, e)$ and K_n with n odd.

Proof. Since the graphs $\text{Cay}(p, e)$ and K_n with n odd, have an odd number of vertices, they are not bicirculants. It remains to prove that the remaining graphs in Theorem 1.1(a)–(g) are bicirculants.

By Lemma 2.4, K_n with n even, $K_{n,n}$ with $n \geq 2$ and $K_{n[2]}$ with $n \geq 3$ are circulants. Moreover, all of them have an even number of vertices, and so by Lemma 2.2(1), they are bicirculants. Clearly, the Petersen graph and its complement, and $K_{n,n} - nK_2$ with $n \geq 3$ are bicirculants.

The group $\text{PGL}(d, q)$ has a cyclic subgroup of order $(q^d - 1)/(q - 1)$ that acts regularly on the set of one-dimensional subspaces and the set of hyperplane of $\text{GF}(q)^d$. Thus both $B(\text{PG}(d - 1, q))$ and $B'(\text{PG}(d - 1, q))$ are bicirculants.

By Lemma 2.3, $G(2p, r)$ is a bicirculant. Note that $B(H(11)) \cong G(22, 5)$ is a bicirculant on 22 vertices. Hence its complement, $B'(H(11))$, is also a bicirculant by Lemma 2.2(3).

If $\Gamma = H(2, 4)$, then $\text{Aut}(\Gamma) \cong S_4 \cap S_2$ has a cyclic subgroup of order 8 that is semiregular with two orbits of size 8 on the vertex set. Hence $H(2, 4)$ is a bicirculant. Similarly, if Γ is the Clebsch graph then $\text{Aut}(\Gamma) \cong \mathbb{Z}_2^4 \cdot S_5$ has a cyclic subgroup of order 8 that is semiregular with two orbits of size 8 on the vertex set. Thus the Clebsch graph is a bicirculant.
Let Γ be a graph with vertex set $V(\Gamma)$ and arc set $A(\Gamma)$. We define a bipartite graph from Γ in the following way. Let $\hat{\Gamma}$ be the graph with vertex set $V(\Gamma) \times \{1, 2\}$, and 2 vertices $(x, 1)$ and $(y, 2)$ are adjacent if and only if $(x, y) \in A(\Gamma)$. Then the new graph $\hat{\Gamma}$ is called the standard double cover of Γ, and it is bipartite with bipartite halves $V(\Gamma) \times \{i\}$ for each $i = 1, 2$. Note that $\hat{\Gamma}$ is connected if and only if Γ is not bipartite; see [12, Lemma 3.3].

The following lemma shows that all the circulants arising in Theorem 1.1 are the quotient graphs of some bicirculants.

Lemma 2.6. If Γ is a circulant then the standard double cover of Γ is a bicirculant. Moreover, if Γ is G-arc-transitive then there exists $X \leqslant \text{Aut} (\hat{\Gamma})$ such that $\hat{\Gamma}$ is X-arc-transitive and $N < X$ such that $\hat{\Gamma}_N \cong \Gamma$.

Proof. Suppose that $g \in \text{Aut}(\Gamma)$. Then g induces an automorphism \hat{g} of $\hat{\Gamma}$ by $(x, i) \mapsto (x^g, i)$. Moreover, if g is an n-cycle on $V(\Gamma)$ then \hat{g} has two n-cycles on $V(\hat{\Gamma})$. Thus the first part of the lemma follows.

Note that $\tau : (x, i) \mapsto (x, 3 - i)$ is an automorphism of $\hat{\Gamma}$ and $X := \hat{G} \times \langle \tau \rangle \leqslant \text{Aut}(\hat{\Gamma})$ where $\hat{G} = \{g | g \in G\} \cong G$. If Γ is G-arc-transitive then $\hat{\Gamma}$ is X-arc-transitive. Letting $N = \langle \tau \rangle \leqslant X$ we see that the orbits of N are $\{(v, i) | i \in \{1, 2\}\}$ for each $v \in V(\Gamma)$. Moreover, $\hat{\Gamma}_N \cong \Gamma$. \hfill \Box

All arc-transitive graphs on $2p$ vertices for a prime p are given by the following result.

Theorem 2.7 [7, Theorem 2.4]. Let Γ be a connected arc-transitive graph. If $|V(\Gamma)| = 2p$ for some prime number p, then Γ is one of the following graphs:

1. K_{2p} or K_p, p;
2. the Petersen graph or its complement;
3. $G(2, r)$ for some even integer r dividing $p - 1$;
4. $G(2p, r)$ for some integer $r > 1$ dividing $p - 1$;
5. $B(\text{PG}(n - 1, q))$ or $B'(\text{PG}(n - 1, q))$, and $p = \frac{q^n - 1}{q - 1}$;
6. $B'(H(11))$ and $p = 11$.

We also give the following well-known lemma. Note that every connected bipartite graph has a unique bipartite partition. For a G-vertex-transitive bipartite graph, we use G^+ to denote the stabiliser in G of the two bipartite halves.

Lemma 2.8. Let Γ be a G-arc-transitive connected graph such that G is bi-quasiprimitive on $V(\Gamma)$. If G^+ acts unfaithfully on each orbit, then $\Gamma \cong K_{n,n}$ for some $n \geqslant 2$.

Proof. Let Δ_0 and Δ_1 be the bipartite halves of Γ. Let $G^+_{\langle \Delta_0 \rangle}$ be the kernel of G^+ on Δ_0 and $G^+_{\langle \Delta_1 \rangle}$ be the kernel of G^+ on Δ_1. Suppose that G^+ acts unfaithfully on each Δ_i, that is, $G^+_{\langle \Delta_i \rangle} \neq 1$ for $i = 0, 1$.

Also, let $\sigma \in G$ be an element interchanging Δ_0 and Δ_1 and note that $G = \langle G^+, \sigma \rangle$. Then $(G^+_{\langle \Delta_i \rangle})^\sigma = G^+_{\langle \Delta_{1-i} \rangle}$ and so $1 \neq G^+_{\langle \Delta_0 \rangle} \times G^+_{\langle \Delta_1 \rangle} < G$. Since G is bi-quasiprimitive on $V(\Gamma)$ and $G^+_{\langle \Delta_0 \rangle} \times G^+_{\langle \Delta_1 \rangle}$ is not transitive, it follows that $G^+_{\langle \Delta_0 \rangle} \times G^+_{\langle \Delta_1 \rangle}$ has two orbits on $V(\Gamma)$, namely Δ_0 and Δ_1. Thus $G^+_{\langle \Delta_i \rangle}$ fixes each vertex in Δ_0 and is transitive on Δ_1. Since G is arc-transitive it follows that $\Gamma = K_{n,n}$ where $n = |\Delta_i| \geqslant 2$. \hfill \Box
2.4 Some group theory

The classification of primitive permutation groups that contain a cyclic regular subgroup was independently obtained by Jones [17] and Li [23, Corollary 1.2]. Moreover, by [25, Theorem 1.2], every quasiprimitive group with a regular cyclic subgroup is primitive. Hence, the family of quasiprimitive groups with a regular cyclic subgroup is also completely determined in the following lemma.

Lemma 2.9 [17; 23, Corollary 1.2]. A primitive permutation group G of degree n contains a cyclic regular subgroup if and only if one of the following holds:

(i) $\mathbb{Z}_p \leq G \leq \text{AGL}(1, p)$, where $n = p$ is a prime;
(ii) $G = A_n$ with $n \geq 5$ odd, or S_n, where $n \geq 4$;
(iii) $\text{PGL}(d, q) \leq G \leq \text{PΓL}(d, q)$ and $n = (q^d - 1)/(q - 1)$;
(iv) $(G, n) = (\text{PSL}(2, 11), 11), (M_{11}, 11), (M_{23}, 23)$.

Moreover, in cases (ii)–(iv) G is 2-transitive.

The following result about primitive permutation groups that contain an element with exactly two equal cycles is due to Müller.

Theorem 2.10 [28, Theorem 3.3]. Let G be a primitive permutation group of degree $2n$ that contains an element with exactly 2-cycles of length n. Then one of the following holds, where G_0 denotes the stabiliser of a point.

(1) (Affine action) $\mathbb{Z}_2^m \triangleleft G \leq \text{AGL}(m, 2)$ is an affine permutation group, where $n = 2^{m-1}$. Further, one of the following holds:
 (a) $n = 2$, and $G_0 = \text{GL}(2, 2)$;
 (b) $n = 2$, and $G_0 = \text{GL}(1, 4)$;
 (c) $n = 4$, and $G_0 = \text{GL}(3, 2)$;
 (d) $n = 8$, and $G_0 \in \{\mathbb{Z}_4 : \mathbb{Z}_4, \Gamma L(1, 16), (\mathbb{Z}_3 \times \mathbb{Z}_3) : \mathbb{Z}_4, \Sigma L(3, 4), \Gamma L(2, 4), A_6, \text{GL}(4, 2), (S_3 \times S_3) : \mathbb{Z}_2, S_5, S_6, A_7\}$.

(2) (Almost simple action) $S \leq G \leq \text{Aut}(S)$ for a non-abelian simple group S, and one of the following holds:
 (a) $n \geq 3$ and $A_{2n} \leq G \leq S_{2n}$ in its natural action;
 (b) $n = 5$ and $A_5 \leq G \leq S_5$ in the action on the set of 2-subsets of $\{1, 2, 3, 4, 5\}$;
 (c) $n = (q^d - 1)/2(q - 1)$ and $\text{PGL}(d, q) \leq G \leq \text{PΓL}(d, q)$ for some odd prime power q and $d \geq 2$ even;
 (d) $n = 11$ and $M_{22} \leq G \leq \text{Aut}(M_{22})$;
 (e) $n = 6$ and $G = M_{12}$;
 (f) $n = 12$ and $G = M_{24}$.

Lemma 2.11. Let Γ be a G-arc-transitive bipartite graph of order $2n$ with n not a prime, such that G^+ acts faithfully and 2-transitively on each bipartite half.

† We note that [28, Theorem 3.3] gives $|\Gamma L(1, 16) : G_0| = 3$ as one of the possibilities but there is a unique such group, namely the $\mathbb{Z}_5 : \mathbb{Z}_4$ that we list here.
(1) If G^+ contains a cyclic subgroup that is transitive on each bipartite half then $\Gamma = K_{n,n} - nK_2$ for some $n \geq 3$, $B(PG(d - 1, q))$ or $B'(PG(d - 1, q))$ for some $d \geq 3$ and q a prime power.

(2) If G^+ is almost simple and contains a cyclic subgroup with two equal-sized orbits on each bipartite half then $\Gamma = K_{12,12}$, $K_{n,n} - nK_2$ for some $n \geq 3$, $B(PG(d - 1, q))$ or $B'(PG(d - 1, q))$ for some even $d \geq 3$ and odd prime power q.

Proof. Let Δ_0 and Δ_1 be the bipartite halves of Γ and let $u \in \Delta_0$. If all 2-transitive actions of G^+ on n points are equivalent then there exists $v \in \Delta_1$ such that $(G^+)_u = (G^+)_v$. Moreover, $(G^+)_u$ is transitive on both $\Delta_1 \setminus \{v\}$ and $\Delta_0 \setminus \{u\}$. Hence $\Gamma = K_{n,n} - nK_2$ for some $n \geq 3$. It remains to consider the case where the action of G^+ on Δ_0 and Δ_1 are inequivalent 2-transitive actions on n points.

Suppose first that G^+ contains a cyclic subgroup that is transitive on Δ_0. Then recalling that n is not a prime and G^+ is primitive on Δ_0, we have from Lemma 2.9, that one of the following holds:

(1) $G^+ = S_6$ and $n = 6$;

(2) $PGL(d, q) < G^+ \leq P\Gamma L(d, q)$ and $n = (q^d - 1)/(q - 1)$ with $d \geq 3$.

In the first case, an element acting on Δ_1 as a 6-cycle acts on Δ_2 as a product of a 2-cycle and a 3-cycle, and so no suitable cyclic subgroup exists. In the second case, $PGL(d, q) < G^+$ and Δ_0 and Δ_1 correspond to the set of 1-spaces and $(d - 1)$-spaces of a d-dimensional vector space over $GF(q)$. Thus $\Gamma = B(PG(d - 1, q))$ or $B'(PG(d - 1, q))$.

Next suppose that G^+ is almost simple and contains a cyclic subgroup with two equal-sized orbits on Δ_0. Then Theorem 2.10 implies that one of the following holds:

(1) $A_6 < G^+ \leq S_6$ and $n = 6$;

(2) $PGL(d, q) < G^+ \leq P\Gamma L(d, q)$ and $n = (q^d - 1)/(q - 1)$ with even $d \geq 3$ and odd q;

(3) $G^+ = M_{12}$ and $n = 12$.

In the first case, if $g \in G^+$ acts on Δ_0 as two disjoint 3-cycles then it has three fixed points on Δ_2, a contradiction. We have also already determined the graph in the second case. In the last case, $(G^+)_u$ is transitive on Δ_1 and so $\Gamma = K_{12,12}$. □

3 REDUCTION RESULT AND CIRCULANTS

In this section, we give a reduction result for the family of arc-transitive bicirculants. Let Γ be a G-vertex-transitive bicirculant over a cyclic subgroup H of G. Then the first lemma presents a relationship between the two orbits of H and the blocks for the action of G on the vertex set.

Lemma 3.1. Let Γ be a G-vertex-transitive bi-Cayley graph over the subgroup H of G. Let H_0 and H_1 be the two orbits of H on $V(\Gamma)$ and let B be a G-invariant partition of $V(\Gamma)$. Then the following hold.

(1) Either all elements of B are subsets of H_0 or H_1; or $B \cap H_0 \neq \emptyset$ and $B \cap H_1 \neq \emptyset$ for every $B \in B$.

(2) If $B \in B$ and $B \cap H_i \neq \emptyset$ for some i, then $B \cap H_i$ is a block for H on H_i.

Proof. (1) Suppose that there exists some $B \in B$ such that $B \subseteq H_i$ for some $i \in \{0, 1\}$, and assume that there is another block $B' \in B$ such that $B' \cap H_0 \neq \emptyset$ and $B' \cap H_1 \neq \emptyset$. Then for each vertex...
Let $b \in B$, there exists $h \in H$ such that $b^h \in B' \cap H_i$, as H acts transitively on H_i. Thus $b^h \in B' \cap B^h$. Since $B^h \subseteq B$ and B is a block system, we get $B' = B^h \subseteq H_i$, a contradiction. Therefore either all elements of B are subsets of H_0 or H_1, or the intersection of each $B \in B$ with H_0 and H_1 is non-empty.

(2) Let $B \in B$ and suppose that $B \cap H_i \neq \emptyset$ for some i. Let $h \in H$. Then $B^h = B$ or $B^h \cap B = \emptyset$. Since $(B \cap H_i)^h \subseteq H_i$, it follows that $(B \cap H_i)^h = B \cap H_i$ or $(B \cap H_i)^h \cap (B \cap H_i) = \emptyset$ and so $B \cap H_i$ is a block for H on H_i.

Lemma 3.2. Let Γ be a G-vertex-transitive bi-Cayley graph with at least 3 vertices over the abelian subgroup H of G, and let H_0 and H_1 be the two orbits of H on $V(\Gamma)$. Let N be a normal subgroup of G maximal with respect to having at least three orbits. Then Γ_N is a G/N-vertex-transitive graph, G/N is faithful on $V(\Gamma_N)$ and the following hold.

(1) If each N-orbit is a subset of either H_0 or H_1, then Γ_N is a bi-Cayley graph over HN/N. In particular, if H is a cyclic group, then Γ_N is a bicirculant of HN/N.

(2) If each N-orbit intersects both H_0 and H_1 non-trivially, then Γ_N is isomorphic to a Cayley graph of HN/N. In particular, if H is a cyclic group, then Γ_N is isomorphic to a circulant of HN/N.

Proof. Let K be the kernel of the action of G on $V(\Gamma_N)$. Then $N \leq K$. If $N < K$, then K has one or two orbits on $V(\Gamma)$, which is impossible. Thus $N = K$. Since Γ is G-vertex-transitive, Γ_N is G/N-vertex-transitive. Let $B = \{B_1, \ldots, B_t\}$ be the set of N-orbits.

(1) Suppose that each N-orbit is a subset of either H_0 or H_1. Then $|B_i|$ divides $|H|$, and without loss of generality, we may assume that $H_0 = B_1 \cup \cdots \cup B_r$ and $H_1 = B_{r+1} \cup \cdots \cup B_{2r}$ where $2r = t$. Since H is an abelian group, $HN/N \cong H/(H \cap N)$ is an abelian group. Since H is transitive on both H_0 and H_1, it follows that HN/N is regular on both sets $\{B_1, \ldots, B_r\}$ and $\{B_{r+1}, \ldots, B_{2r}\}$. Therefore, Γ_N is a bi-Cayley graph of HN/N.

(2) Suppose that each N-orbit intersects both H_0 and H_1 non-trivially. Then by Lemma 3.1(2), for each $B \in B$ we have that $B \cap H_i$ is a block for H on H_i for each $i \in \{0, 1\}$. As H is transitive on H_0, HN/N is transitive on $\{B_1 \cap H_0, \ldots, B_t \cap H_0\}$. Since N is the kernel of the action of G on $V(\Gamma_N)$, $H \cap N$ is the kernel of the action of H on $\{B_1 \cap H_0, \ldots, B_t \cap H_0\}$. Since H is an abelian group, it follows that HN/N acts regularly on $\{B_1 \cap H_0, \ldots, B_t \cap H_0\}$. Thus HN/N acts regularly on B, and so Γ_N is a Cayley graph of HN/N. In particular, if H is a cyclic group, then Γ_N is a circulant of HN/N.

We are ready to give a reduction result.

Theorem 3.3. Let Γ be a connected G-arc-transitive bicirculant with at least 3 vertices over the cyclic subgroup H of G. Let N be a normal subgroup of G maximal with respect to having at least three orbits. Then Γ is an r-cover of Γ_N, where r divides the valency of Γ, Γ_N is G/N-arc-transitive and is either a circulant or a bicirculant over HN/N, and G/N is faithful and either quasiprimitive or bi-quasiprimitive on $V(\Gamma_N)$.

Proof. Since N is a normal subgroup of G maximal with respect to having at least three orbits, it follows from Lemma 3.2 that G/N is faithful on $V(\Gamma_N)$. Moreover, all normal subgroups of G/N are transitive or have two orbits on $V(\Gamma_N)$. Thus G/N is quasiprimitive or bi-quasiprimitive on $V(\Gamma_N)$. Let $B = \{B_1, \ldots, B_t\}$ be the set of N-orbits, so that $t \geq 3$. Since Γ is G-arc-transitive, it follows that Γ_N is a G/N-arc-transitive graph, and each induced subgraph $[B_i]$ is empty. For an arc (B_1, B_2)
of Γ_N, there exists a vertex b_1 of Γ such that $b_1 \in B_1$ and $\Gamma(b_1) \cap B_2 \neq \emptyset$. For any $b'_1 \in B_1$, we have $b'_1 = b_1^n$ for some $n \in N$. Hence

$$\Gamma(b'_1) \cap B_2 = \Gamma(b_1)^n \cap B_2 = (\Gamma(b_1) \cap B_2)^n \neq \emptyset.$$

Thus the number of vertices in B_2 adjacent to a given vertex of B_1 is constant. If $\Gamma(b_1) \subseteq B_2$, then by the connectivity of Γ, we have $t = 2$, a contradiction. Hence $\Gamma(b_1) \nsubseteq B_2$ and so there exists $b_2 \in B \setminus \{b_1, B_2\}$ such that B_1 and B_2 are adjacent in Γ_N. Let $b_2 \in B_2$ and $b_3 \in B_3$ such that (b_1, b_2) and (b_2, b_3) are arcs of Γ. Since Γ is G-arc-transitive, there exists $g \in G_{b_1}$ such that $b_2^g = b_3$. Since B_1, B_2, B_3 are blocks of G, it follows that $B_1^g = B_1$ and $B_2^g = B_2$. Thus $(\Gamma(b_1) \cap B_2)^g = \Gamma(b_1) \cap B_2$, and so $|\Gamma(b_1) \cap B_2| = |\Gamma(b_1) \cap B_2|$ for any i such that (B_1, B_i) is an arc of Γ_N. We also showed above that $|\Gamma(b_1) \cap B_2| = |\Gamma(b'_1) \cap B_2|$ for all $b_1, b'_1 \in B_1$. Therefore, Γ is an r-cover of Γ_N where $r = |\Gamma(b_1) \cap B_2|$ is a divisor of $|\Gamma(b_1)|$.

Let H_0 and H_1 be the two orbits of H on $V(\Gamma)$. If $B_i \subseteq H_i$ for some $i \in \{0, 1\}$, then by Lemma 3.1(1), for each $B' \in B$, either $B' \subset H_0$ or $B' \subset H_1$. It follows from Lemma 3.2 that Γ_N is a bicirculant over $HN/N \cong H/(H \cap N)$. Finally, suppose that $B \cap H_0 \neq \emptyset$ and $B \cap H_1 \neq \emptyset$ for some $B \subseteq B$. Then again by Lemma 3.1(1), $B' \cap H_0 \neq \emptyset$ and $B' \cap H_1 \neq \emptyset$ for every $B' \subseteq B$. Hence, by Lemma 3.2, Γ_N is isomorphic to a circulant of HN/N.

Our next proposition determines the family of arc-transitive circulants that are vertex quasiprimitive or vertex bi-quasiprimitive.

Proposition 3.4. Let Γ be a connected G-arc-transitive circulant over a cyclic subgroup H of G. Then the following statements hold.

1. If G is quasiprimitive on $V(\Gamma)$, then Γ is one of the following two graphs:
 1.1. a complete graph;
 1.2. $\text{Cay}(p, e)$ where e is an even integer dividing $p − 1$.
2. If G is bi-quasiprimitive on $V(\Gamma)$, then Γ is one of the following three graphs:
 2.1. $K_{n,n}$;
 2.2. $K_{n,n} - nK_2$ where n is an odd integer;
 2.3. $G(2p, r)$ where p is a prime and r is an even divisor of $p − 1$.

Proof. (1) Suppose that G is quasiprimitive on $V(\Gamma)$. Then by [25, Theorem 1.2], G is primitive on $V(\Gamma)$. Moreover, G is listed in Lemma 2.9: either $|V(\Gamma)| = p$ is a prime and $G \leq AGL(1, p)$, or G is 2-transitive on $V(\Gamma)$. If G is 2-transitive on $V(\Gamma)$, then Γ is a complete graph, and case (1.1) holds; if $|V(\Gamma)| = p$ is a prime and $G \leq AGL(1, p)$, then by Chao [6], Γ is a Cayley graph $\text{Cay}(p, e)$ where e is an even integer dividing $p − 1$, that is, (1.2) occurs.

(2) Suppose that G is bi-quasiprimitive on $V(\Gamma)$. Then G has a minimal normal subgroup that has exactly two orbits on $V(\Gamma)$, say Δ_0 and Δ_1. Hence $|H|$ is even. Since Γ is G-arc-transitive and connected, it follows that each Δ_i does not contain any edge of Γ, and so Γ is a bipartite graph with Δ_0 and Δ_1 being the two bipartite halves. Let $G^+ = G_{\Delta_0} = G_{\Delta_1}$. Since G is transitive on the vertex set, it follows that G^+ is a normal subgroup of G of index 2, and so $G = \langle G^+, \sigma \rangle$ for some element $\sigma \in G \setminus G^+$ with $\sigma^2 \in G^+$. Moreover, $\Delta_0^2 = \Delta_1$ and $\Delta_1^2 = \Delta_0$. Since H is cyclic and regular on $V(\Gamma)$, the group $H^+ = H \cap G^+$ is transitive and so regular on each Δ_i.

Suppose that G^+ is not faithful on Δ_0 and Δ_1. Then by Lemma 2.8, $\Gamma \cong K_{|H_1/2|, |H_1/2|}$, and (2.1) holds. In the remainder, we assume that G^+ is faithful on Δ_0 and Δ_1. Suppose first that G^+ is
not quasiprimitive on each Δ_i. Let N be a maximal intransitive normal subgroup of G^+ on Δ_0. Then N^G is a maximal intransitive normal subgroup of G^+ on Δ_1. Let B_0 be the set of N-orbits on Δ_0, and let B_1 be the set of N^G-orbits on Δ_1. Then $|B_0| = |B_1| \geq 2$. Let $B = B_0 \cup B_1$. Then as $N^G = N$, B is a G-invariant partition of $V(\Gamma)$. Let K be the kernel of G acting on B. Then K is a normal subgroup of G with at least four orbits on $V(\Gamma)$. Since G is bi-quasiprimitive, we have $K = 1$. Thus G and hence H act faithfully on B. Since H is abelian and transitive on $V(\Gamma)$ it follows that H is transitive and so regular on B. Thus $|B| = |H| = |V(\Gamma)|$, a contradiction. Hence G^+ is quasiprimitive on each Δ_i.

Since H is cyclic and transitive on $V(\Gamma)$, H^+ is cyclic, transitive and so regular on each Δ_i. It follows from [25, Theorem 1.2] that G^+ is primitive on Δ_i. Then by Lemma 2.9, either $|H| = 2p$ for some prime p and $G^+ \leq AGL(1, p)$, or G^+ is 2-transitive on Δ_i.

If $|H| = |V(\Gamma)| = 2p$ for some prime p, then as Γ is connected G-arc-transitive, Γ is one of the graphs listed in Theorem 2.7. By Lemma 2.4, $B'(H(11))$, $B(PG(n - 1, q))$ and $B'(PG(n - 1, q))$ are not circulants, while Δ_0, Δ_1-invariant partition of Ω and Δ_0, Δ_1-invariant partition of Ω. Then by Lemma 2.9, either G is quasiprimitive on both Δ_0 and Δ_1, hence Γ is given by Lemma 2.11 (1). However, by Lemma 2.4, the graphs $B(PG(d - 1, q))$ and $B'(PG(d - 1, q))$ are not circulants, and so $\Gamma = K_{2p}$, in which case n must be odd by Lemma 2.4, and case (2.3) holds.

Finally, assume that $|H| = |V(\Gamma)| \neq 2p$ for any prime p. Then G^+ is 2-transitive on both Δ_0 and Δ_1, hence Γ is given by Lemma 2.11 (1). However, by Lemma 2.4, the graphs $B(PG(d - 1, q))$ and $B'(PG(d - 1, q))$ are not circulants, and so $\Gamma = K_{2p}$, in which case n must be odd by Lemma 2.4, and case (2.2) holds.

4 VERTEX QUASIPRIMITIVE ARC-TRANSITIVE BICIRCULANTS

This section is devoted to classifying all vertex quasiprimitive arc-transitive bicirculants. The first lemma gives a useful observation on quasiprimitive imprimitive permutation groups that contain a cyclic subgroup with exactly two orbits.

Lemma 4.1. Let G be a quasiprimitive imprimitive permutation group on a set Ω. Suppose that H is a cyclic subgroup of G that has exactly two orbits, H_0 and H_1, on Ω and $|\Omega| = 2|H|$. Let B be a non-trivial maximal G-invariant partition of Ω. Then G is faithful and primitive on B, and also the following hold:

1. H is regular on B, and for each $B \in B$ we have $|B| = 2$ and $|B \cap H_0| = 1 = |B \cap H_1|$;
2. G and $|H|$ are as in Lemma 2.9, and in particular, either G is a 2-transitive group on B or $|H| = p$ for some prime p.

Proof. Since G is quasiprimitive on Ω, it follows that G acts faithfully on B. Moreover, the maximality of B implies that G is primitive on B. Suppose that for each $B \in B$, either $B \subseteq H_0$ or $B \subseteq H_1$. Then $|B|$ divides $|H|$ and we may assume that $H_0 = B_1 \cup \cdots \cup B_r$ and $H_1 = B_{r+1} \cup \cdots \cup B_{2r}$. Since H_0 and H_1 are the two orbits of H, it follows that H is transitive on both sets $\{B_1, \ldots, B_r\}$ and $\{B_{r+1}, \ldots, B_{2r}\}$. Since G is faithful on B, H is faithful on B. Further, as H is a cyclic group, it is regular on each orbit on B. Thus $|B| = 2|H| = |\Omega|$, contradicting the fact that B is a non-trivial G-invariant partition of Ω. Hence there exists $B \in B$ such that $B \cap H_0 \neq \emptyset$ and $B \cap H_1 \neq \emptyset$. By Lemma 3.1, for all $B \in B$, we have

$$B \cap H_0 \neq \emptyset \quad \text{and} \quad B \cap H_1 \neq \emptyset.$$
Let \(B = \{ B_1, \ldots, B_t \} \). For \(i \in \{0,1\} \), let \(B_i = \{ B_j \cap H_i, \ldots, B_t \cap H_i \} \). Since each \(B_j \) meets each \(H_i \) non-trivially, we have that \(|B_0| = |B_1| = t \). Moreover, as \(H \) is transitive on each \(H_i \), it is transitive on each \(B_i \). Since \(H \) is cyclic, it has a unique subgroup of each order and so the kernel of \(H \) on \(B_0 \) is equal to the kernel of \(H \) on \(B_1 \), and so is in the kernel of \(H \) on \(B \). It follows that \(H \) acts faithfully and hence regularly on each \(B_i \). Thus \(|H| = t = |B_i| \), and so each \(B \in B \) has size 2. Hence (1) holds. Furthermore, the action of \(G \) on \(B \) satisfies the conditions of Lemma 2.9, so \(G \) and \(|H| \) are as in Lemma 2.9, and hence either \(G \) is 2-transitive on \(B \) or \(|B| = p \) is a prime, so that (2) holds. \(\square \)

The following proposition determines all the vertex quasiprimitive arc-transitive bicirculants.

Proposition 4.2. Let \(\Gamma \) be a connected \(G \)-arc-transitive bicirculant over the cyclic subgroup \(H \) of order \(n \) such that \(G \) is quasiprimitive on \(V(\Gamma) \). Then one of the following holds:

(1) \(G \) is primitive on \(V(\Gamma) \) and \(\Gamma \) is one of the following graphs:
 (1.1) \(K_{2n} \), and \(G \) is a 2-transitive group of degree \(2n \) as in Theorem 2.10;
 (1.2) Petersen graph or its complement, and \(A_5 \leq G \leq S_5 \);
 (1.3) \(H(2,4) \) or its complement, and \(G \) is a rank 3 subgroup of \(AGL(4,2) \);
 (1.4) Clebsch graph or its complement, and \(G \) is a rank 3 subgroup of \(AGL(4,2) \).

(2) \(G \) is not primitive on \(V(\Gamma) \) and \(\Gamma \) is one of the following graphs:
 (2.1) \(K_{n[2]} \) and \(G \) has rank 3 on vertices;
 (2.2) \(K_{n,n} - nK_2 \) with \(PGL(d,q) \leq G \leq PΓL(d,q) \) and \(n = (q^d - 1)/(q - 1) \).

Proof. Suppose first that \(G \) is primitive on \(V(\Gamma) \). Then \(G \) is given in Theorem 2.10. If \(G \) is 2-transitive on \(V(\Gamma) \), then \(\Gamma \) is isomorphic to a complete graph \(K_{2n} \), so that (1.1) holds. Now assume that \(G \) is not 2-transitive on \(V(\Gamma) \). Then \(n, G \) and the vertex stabiliser \(G_u \) are one of the following:

(i) \(n = 8 \), \(G \leq AGL(4,2) \) and \(G_u \in \{ Z_5 : Z_4, (Z_3 \times Z_3) : Z_4, (S_3 \times S_3) : Z_2, S_5 \} \).
(ii) \(n = 5 \), and \(A_5 \leq G \leq S_5 \) in the action on the set of 2-subsets of \(\{1,2,3,4,5\} \).

If \(\Gamma \) is in case (ii), then by [10, p.75], \(\Gamma \) is the Petersen graph or its complement, and (1.2) holds. Now we determine the graphs in case (i) by MAGMA [4]. In all cases \(G \) has rank three. If \(G_u = (S_3 \times S_3) : Z_2 \) or \((Z_3 \times Z_3) : Z_4 \), then \(\Gamma = H(2,4) \) or its complement, and (1.3) holds. If \(G_u = Z_5 : Z_4 \) or \(S_5 \), then \(\Gamma \) is the Clebsch graph or its complement (the folded 5-cube), so (1.4) holds.

It remains to consider the case that \(G \) is not primitive on \(V(\Gamma) \). Let \(B \) be a non-trivial maximal block system of \(G \) on \(V(\Gamma) \). Then by Lemma 4.1, for each \(B \in B \), we have that \(|B \cap H_0| = 1 = |B \cap H_1| \) and \(|B| = 2 \). Moreover, \(H \) is regular on \(B \), \(G \) is faithful and primitive on \(B \), and the pair \((G,n)\) is as in Lemma 2.9.

If the pair \((G,n)\) is as in case (i) of Lemma 2.9, then \(|V(\Gamma)| = 2p \) for some prime \(p \) and \(H \) is a normal subgroup of \(G \) of order \(p \). However, this contradicts \(G \) being quasiprimitive on a set of size \(2p \). Moreover, \((G,n) \not\in \{ (PSL(2,11),11),(M_{23},23) \} \), as in these cases \(G \) does not have a transitive action on \(2n \) points.

It remains to assume that \((G,n)\) is either \((M_{11},11)\) or is as in cases (ii) and (iii) of Lemma 2.9. Thus \(G \) is 2-transitive on \(B \) and \(G \) has a quasiprimitive action on \(2n \) points. Hence the quotient graph \(\Gamma_p \) is a complete graph on \(n \) vertices for some \(n \geq 4 \). Let \(B_1, B_2 \in B \). Then \(B_1 \) and \(B_2 \) are adjacent in \(\Gamma_p \). Let \(b_1 \in B_1 \) and recall that \(|B_1| = |B_2| = 2 \).

Suppose first that \(|\Gamma(b_1) \cap B_2| = 2 \). Then as \(\Gamma \) is \(G \)-arc-transitive, \(|\Gamma(b_2) \cap B_1| = 2 \) for each \(b_2 \in B_2 \), and so

\[\{B_1 \cup B_2 \} \cong K_{2,2} \]
Since $\Gamma_B \cong K_n$, it follows that $\Gamma \cong K_{n[2]}$. In particular, for each vertex u of Γ, there is a unique vertex at distance two from u. Since Γ is G-arc-transitive, it follows that G has rank three, so that (2.1) holds.

Next assume that $|\Gamma(b_1) \cap B_2| = 1$. First suppose that $|B_1 \cup B_2|$ contains exactly one edge. Then the valency of Γ_B is twice the valency of Γ. Since $\Gamma_B \cong K_n$, the valency of Γ_B is $n - 1$ and so n is an odd integer. Let $B_1 = \{b_1, b'_1\}$ and suppose that b_1 is adjacent to $b_2 \in B_2$. Then b'_1 is not adjacent to any vertex of B_2. Furthermore, b_1 is adjacent to a unique vertex of $(n - 1)/2$ neighbours in Γ_B of B_1, say Θ_1, and b'_1 is adjacent to a unique vertex of the remaining $(n - 1)/2$ neighbours in Γ_B of B_1, say Θ_2. Since G_{B_1, B_2} fixes b_1 and b_2, it fixes Θ_1 and Θ_2 setwise. Hence, as $n \geq 4$, it follows that G is not 3-transitive on $V(\Gamma_B)$. Thus Lemma 2.9 implies that $\text{PGL}(d, q) \leq G \leq \text{PΓL}(d, q)$ and $n = (q^d - 1)/(q - 1)$ with $d \geq 3$ (note that $\text{PGL}(2, q)$ is 3-transitive on $q + 1$ vertices). Moreover, the elements of $V(\Gamma_B)$ can be identified with the set of one-dimensional subspaces of a d-dimensional vector space over $\text{GF}(q)$. Then we see that G_{B_1, B_2} has two orbits on the set of remaining one-dimensional subspaces: those in the span U of B_1 and B_2, and those outside U. Since $B_2 \in \Theta_2$, it follows that Θ_1 is one of these two orbits, but neither has size $(n - 1)/2$, a contradiction.

Thus $|B_1 \cup B_2| \cong 2K_2$, and Γ is a cover of $\Gamma_B \cong K_n$. It follows that for any vertex $v \in V(\Gamma) \setminus B_1$, v is adjacent to either b_1 or b'_1, so $v \in \Gamma(b_1) \cup \Gamma(b'_1)$. Thus

$$V(\Gamma) = \{b_1\} \cup \Gamma(b_1) \cup \Gamma(b'_1) \cup \{b'_1\}.$$

Since Γ is a cover of Γ_B, we have that $\Gamma(b_1) \neq \Gamma(b'_1)$ and since Γ is G-arc-transitive, the vertex stabiliser $G_{b_1} = G_{b'_1}$ is transitive on $\Gamma(b_1)$ and $\Gamma(b'_1)$. Thus G_{b_1} has four orbits on $V(\Gamma)$. Since Γ is a cover of Γ_B, we have $b'_1 \not\in \Gamma_2(b_1)$. Thus Γ has diameter 3, $\Gamma_3(b_1) = \Gamma(b'_1)$ and $\Gamma_3(b_1) = \{b'_1\}$. Hence Γ is G-distance-transitive and is an antipodal cover of K_n with fibres of size 2. Therefore Γ and G are listed in cases (1), (3) or (6) of [14, Main Theorem]. Recall that either $(G, n) = (M_{11}, 11)$, or n and G as an abstract group are given in cases (ii) and (iii) of Lemma 2.9. Thus either case (1) or case (3)(e) of [14, Main Theorem] holds. If case (1) occurs then $\Gamma \cong K_{n,n} - nK_2$. However, M_{11} does not have a rank four action of degree 22 while S_n and A_n do not have a quasiprimitive action of degree $2n$ where the blocks have size 2. Thus (G, n) is as in case (iii) of Lemma 2.9, that is, $\text{PGL}(d, q) \leq G \leq \text{PΓL}(d, q)$, and $n = (q^d - 1)/(q - 1)$, so that (2.2) holds. Finally, if case (3)(e) occurs, then $\text{Aut}(\Gamma) \cong \text{PΣL}(2, p) \times S_2$ where $p = n - 1 \equiv 1$ (mod 4). Since G is quasiprimitive on $V(\Gamma)$ and is transitive on the set of arcs of K_n, it follows that G is isomorphic to a subgroup of $\text{PΣL}(2, p)$. However, here G does not contain an element of order $n = p + 1$. This completes the proof.

We remark that quasiprimitive rank 3 groups have been classified in [8], and the possibilities for the group G in case (2.1) of Proposition 4.2 can be determined using [8, Table 1].

5 VERTEX BI-QUASIPRIMITIVE ARC-TRANSITIVE BICIRCULANTS

In this section, we will complete the proof of Theorem 1.1 by determining the arc-transitive vertex bi-quasiprimitive bicirculants.

Let Γ be a G-arc-transitive graph and suppose that G acts bi-quasiprimitively on $V(\Gamma)$. Then G has a minimal normal subgroup M that has exactly two orbits on $V(\Gamma)$. Since Γ is G-arc-transitive and connected, each M-orbit contains no edge of Γ. Thus Γ is a bipartite graph, and the two
M-orbits form the two bipartite halves of \(\Gamma \). In particular, all intransitive normal subgroups of \(G \) have the same orbits. Recall that \(G^+ \) denotes the index two subgroup of \(G \) that is the stabiliser of each bipartite half.

The following proposition classifies arc-transitive bicirculants that are vertex bi-quasiprimitive and such that the two orbits of the cyclic subgroup are the two bipartite halves.

Proposition 5.1. Let \(\Gamma \) be a connected \(G \)-arc-transitive graph such that \(G \) is bi-quasiprimitive on \(V(\Gamma) \) and \(G \) contains a cyclic subgroup \(H \) of order \(n \) such that the two bipartite halves are \(H \)-orbits. Then \(\Gamma \) is one of the following graphs:

(a) \(K_{n,n} \) where \(n \geq 2 \);
(b) \(K_{n,n} - nK_2 \) where \(n \geq 3 \);
(c) \(B'(H(11)) \);
(d) \(G(2p,r) \) where \(p \) is a prime and \(r > 1 \) divides \(p - 1 \);
(e) \(B(PG(d - 1, q)) \) and \(B'(PG(d - 1, q)) \), where \(d \geq 3, q \) is a prime power.

Proof. Identify the two bipartite halves of \(\Gamma \) with \(H \) and denote them by \(H_0 \) and \(H_1 \). Let \(G^+ = G/H_0 = G/H_1 \). Since \(G \) is transitive on the vertex set, it follows that \(G = \langle G^+, \sigma \rangle \) for some element \(\sigma \in G \setminus G^+ \) with \(\sigma^2 \in G^+ \). If \(G^+ \) acts unfaithfully on each \(H_i \), then it follows from Lemma 2.8 that \(\Gamma = K_{n,n} \) for some \(n \geq 2 \).

From now on we suppose that \(G^+ \) acts faithfully on each \(H_i \). Assume that \(G^+ \) acts imprimitively on \(H_0 \). Take a maximal \(G^+ \)-invariant partition \(B_0 \) on \(H_0 \). Then \(B_0^G \) is a maximal \(G^+ \)-invariant partition on \(H_1 \). Let \(C = B_0 \cup B_0^G \). Then \(G \) leaves invariant this partition \(C \) of the vertex set, as \(B_0^2 = B_0 \). Since \(G \) is bi-quasiprimitive on \(V(\Gamma) \) and \(|C| \geq 4 \), it follows that \(G \) acts faithfully on \(C \). Let \(M_0 \) be the kernel of \(H \) acting on \(B_0 \) and \(M_1 \) be the kernel of \(H \) acting on \(B_0^G \). Since \(H \) acts transitively on \(B_0 \) and \(B_0^G \), it follows that \(|M_0| = |H|/|B_0| = |H|/|B_0^G| = |M_1| \). Then as \(H \) is a cyclic group and has a unique subgroup of each order, it follows that \(M_0 = M_1 \), that is, the kernel of \(H \) on \(B_0 \) is the same as the kernel on \(B_0^G \), and is hence in the kernel of \(G \) on \(C \). However, \(G \) is faithful on \(C \), and so \(H \) acts faithfully on \(B_0 \). Thus \(\{|B_0| = |H| \} \), contradicting \(G^+ \) being imprimitive on \(H_0 \).

Therefore \(G^+ \) is primitive on each \(H_i \). Since \(G^+ \) contains the cyclic subgroup \(H \) that is transitive on each \(G^+ \)-orbit, it follows from Lemma 2.9 that either \(|H| = p \) is a prime or \(G^+ \) is 2-transitive on \(H_i \). If \(|H| = p \), then as \(\Gamma \) is a bipartite graph it follows from Theorem 2.7 that \(\Gamma \) is one of the following graphs: \(K_{p,p}, G(2p,r) \) with \(r > 1 \), \(B'(H(11)) \) where \(p = 11 \), \(B(PG(d - 1, q)) \) and \(B'(PG(d - 1, q)) \) where \(p = (q^d - 1)/(q - 1), d \geq 3 \) and \(q \) is a prime power. Suppose that \(G^+ \) is 2-transitive on \(H_i \) with \(|H_i| \) not a prime. Then Lemma 2.11 (1) implies that \(\Gamma = K_{n,n} - nK_2 \) where \(n \geq 3 \), \(B(PG(d - 1, q)) \), or \(B'(PG(d - 1, q)) \).

It remains to consider the case where the two \(H \)-orbits are not the two bipartite halves.

Proposition 5.2. Let \(\Gamma \) be a \(G \)-arc-transitive graph such that \(G \) is bi-quasiprimitive on \(V(\Gamma) \) and \(G \) contains a cyclic subgroup \(H \) of order \(n \) such that \(H \) has two orbits of size \(n \) and these are not the bipartite halves of \(\Gamma \). Then \(n \) is even and \(\Gamma \) is one of \(K_{n,n} \), \(K_{n,n} - nK_2 \), \(B(PG(d - 1, q)) \) or \(B'(PG(d - 1, q)) \) for even \(d \geq 3 \) and odd \(q \).

Proof. Let \(\Delta_0 \) and \(\Delta_1 \) be the two bipartite halves of \(\Gamma \), and let \(H_0 \) and \(H_1 \) be the two \(H \)-orbits. Let \(G^+ \) be the index two subgroup of \(G \) that stabilises both \(\Delta_0 \) and \(\Delta_1 \), and let \(\sigma \in G \) such that \(G = \langle G^+, \sigma \rangle \) and \(\sigma^2 \in G^+ \). If \(|V(\Gamma)| \leq 4 \), then the only candidate for \(\Gamma \) is \(K_{2,2} \), so from now on we suppose that
\(|V(\Gamma)| > 4\). Then \(\{\Delta_0, \Delta_1\}\) is the unique \(G\)-invariant partition of \(V(\Gamma)\) into two equal-sized parts. Since the \(\Delta_i\) are not \(H\)-orbits and \(H\) has two orbits of size \(n\), it follows that \(H^+ := H \cap G^+\) has index two in \(H\) and has two equal-sized orbits on each \(\Delta_i\). Thus \(n\) is even and \(G = (G^+, H)\).

If \(G^+\) is unfaithful on each \(\Delta_i\), then it follows from Lemma 2.8 that \(\Gamma = K_{n,n}\). Thus in the remainder we assume that \(G^+\) is faithful on each \(\Delta_i\).

Suppose first that \(G^+\) is primitive on each \(\Delta_i\). Since \(H^+\) is a cyclic subgroup with exactly two orbits of size \(n/2\) on \(\Delta_i\), the possibilities for \(G^+\) are given by Theorem 2.10. In particular, either \(G^+\) is almost simple or \(\mathbb{Z}_2^m \leq G^+ \leq \text{AGL}(m, 2)\) with \(2 < m \leq 4\). If \(\mathbb{Z}_2^m \leq G^+ \leq \text{AGL}(m, 2)\) then \(G^+\) has a normal subgroup \(N \cong \mathbb{Z}_2^m\) that is regular on each \(\Delta_i\). Now \(N\) is characteristic in \(G^+\) and so is normal in \(G\). Moreover, since \(H^+\) is cyclic, either \(H \cap N = 1\) or \(H \cap N = \mathbb{Z}_2\). Further, since \(N\) is self-centralising in \(G^+\) and \(H^+\) is cyclic, either \(|H| = 4\) and \(C_H(N) = H\), or \(C_H(N) = H^+ \cap N\). If \(m \geq 3\), then \(|H| = 2^m > 8\) and \(H^+ \cap N \neq H^+, \text{ so } C_H(N) = H^+ \cap N\). Thus \(H/(H^+ \cap N)\) is isomorphic to a cyclic subgroup of \(\text{GL}(m, 2)\) of order \(2^m\) or \(2^{m-1}\). Since \(m = 3\) or \(4\), it follows that \(m = 3\),

\[G^+ = \text{AGL}(3, 2)\quad \text{and } H^+ \cap N = 2\]. Since \(|H| = 8\) and \(G^+\) does not have an element of order \(8\), it follows that \(G = \text{Aut}(\text{AGL}(3, 2))\). In particular, given \(u \in \Delta_0\) we have that \(G^+\) is transitive on \(\Delta_1\) and so \(\Gamma = K_{8,8}\). It remains to consider the case where \(m = 2\) and \(G^+ = A_4 \cong \text{AGL}(1, 4)\) or \(S_4 \cong \text{AGL}(2, 2)\). If \(G^+ = S_4\) then \(G = S_4 \times \mathbb{Z}_2\), contradicting \(G\) being bi-quasiprimitive. Thus \(G^+ = A_4\) and either \(G = A_4 \times \mathbb{Z}_2\) or \(G \cong S_4\). The first group does not contain an element of order \(4\) (and is also not bi-quasiprimitive), while the second implies that \(\Gamma = K_{4,4} - 4K_2\).

Next suppose that \(G^+\) is almost simple. Then either \(G^+\) is 2-transitive on each \(\Delta_i\), or \(n = 10\) and \(A_5 \leq G^+ \leq S_5\). In the first case, Lemma 2.11 (2) implies that \(\Gamma = K_{n,n} - nK_2\) where \(n \geq 3\), \(K_{12,12}, B(\text{PG}(d - 1, q))\) or \(B'(\text{PG}(d - 1, q))\) where \(d \geq 3\) is an even integer and \(q\) is odd. Suppose instead that \(n = 10\) and \(A_5 \leq G^+ \leq S_5\). Then by [10, p.75], the action of \(G^+\) on \(\Delta_i\) is \(S_5\) or \(A_5\) acting naturally on the set of unordered pairs of \(\{1, 2, 3, 4, 5\}\). Let \(u \in \Delta_0\). Then \(G^+\) has only orbits of size \(1, 3\) or \(6\) on both \(\Delta_0\) and \(\Delta_1\). Moreover, there exists \(u' \in \Delta_1\) such that \(G^+_u = G^+_{u'} = G^+_{u''}\). Since \(G^+\) is transitive on \(\Gamma(u)\), it follows that \(|\Gamma(u)| = 3\) or \(6\). Thus \(\Gamma\) is either the standard double cover of the Petersen graph, or the standard double cover of the complement of the Petersen graph. In both cases \(\text{Aut}(\Gamma) = S_5 \times \mathbb{Z}_2\). If \(G \leq \text{Aut}(\Gamma)\) contains an element \(g\) of order \(10\) with 2-cycles of length \(10\) on \(V(\Gamma)\), it follows that \(g^5\) is an involution that centralises the element \(g^2 \in S_5\) of order \(5\). As \(S_5\) contains no such involution, we have \((g^5) = \text{Z}(\text{Aut}(\Gamma)) \leq G\), contradicting the fact that all normal subgroups of \(G\) have at most two orbits.

It remains to consider the case where \(G^+\) is imprimitive on \(\Delta_i\). Let \(B_0\) be a maximal \(G^+\)-invariant partition of \(\Delta_0\). Then \(B_1 = B_2^c\) is a maximal \(G^+\)-invariant partition of \(\Delta_1\). Note that \(B = B_0 \cup B_1\) is a \(G\)-invariant partition of \(V(\Gamma)\) with at least four parts. Thus the kernel of \(G\) acting on \(B\) has at least four orbits and so the bi-quasiprimitivity of \(G\) implies that \(G\) acts faithfully on \(B\).

Suppose that each \(B \in B\) is contained in either \(H_0\) or \(H_1\). Then for \(i \in \{0, 1\}\), let \(C_i = \{B \in B \mid B \subseteq H_i\}\) and let \(M_i\) be the kernel of \(H\) acting on \(C_i\). Then \(H/M_i\) is transitive and so regular on \(C_i\). Since \(|C_0| = |C_1|\), we have \(|M_0| = |M_1|\), and since \(H\) is cyclic, it follows that \(M_0 = M_1\). Thus \(M_0\) lies in the kernel of \(G\) acting on \(B\). Since \(G\) is faithful on \(B\) it follows that \(M_0 = 1\). Hence \(|B| = |H| = 1\), contradicting the fact that \(B\) is a non-trivial block system of \(G\) on \(V(\Gamma)\). Thus Lemma 3.1(1) implies that each \(B \in B\) has non-empty intersection with both \(H_0\) and \(H_1\). Hence \(H\) is transitive on \(\Delta_i\) and \(G\) is a circulant. As \(|H| = |V(\Gamma)|/2\), it follows that each \(B \in B\) has size \(2\). Moreover, \(H^+\) acts transitively on each \(B_i\).

For \(i = 0, 1\), let \(K_i\) be the kernel of \(G^+\) acting on \(B_i\). Then \(K_0^2 = K_1\) and \(K_0 \cap K_1\) is contained in the kernel of \(G\) acting on \(B\). Thus \(K_0 \cap K_1 = 1\) and so \(K_0 \times K_1 \leq G\). Since \(G\) is bi-quasiprimitive, it follows that \(K_1 = 1\) or \(K_i\) acts transitively on \(B_{1-i}\).
Suppose that K_i acts transitively on B_{1-i}. Then $\Gamma_B \cong K_{n/2,n/2}$ is complete bipartite. Since $K_0 \times K_1 \leq G^+$, it follows that $(K_0 \times K_1)/K_0 \leq G^+/K_0 \cong (G^+)_{K_0}$. Since each block in B_i has size 2, it follows that K_i contains only elements of order 2. Thus K_i is abelian and $K_i \cong \mathbb{Z}_2^r$. Based on this together with the fact that K_i acts transitively on B_{1-i}, we conclude that K_i is regular on B_{1-i}, and so $n/2 = |B_{1-i}| = |K_i| = 2$. Furthermore, $\mathbb{Z}_2^r \cong (K_0 \times K_1)/K_0 \leq (G^+)_{K_0}$. Since B_0 is a maximal G^+-invariant partition of Δ_0, $(G^+)_{K_0}$ acts primitively on B_0. In particular, $(G^+)_{K_0}$ acts primitively on B_0 of affine type. Recall that the cyclic group $(H^+)_{K_0} \leq (G^+)_{K_0}$ acts transitively on B_0. By Lemma 2.9, $\frac{n}{2} = p$ is a prime, so $\frac{n}{2} = p = 2$. Hence $n = 4$ and $\Gamma_B \cong K_{2,2}$. Let $B_0 = \{B_1, B_2\}$ and $B_1 = \{D_1, D_2\}$. If $[B_1 \cup D_j]$ contains exactly one edge of Γ, then Γ has valency 1, and so Γ is disconnected, a contradiction. Suppose that $[B_1 \cup D_1] \cong 2K_2$. Then Γ is a cover of Γ_B. Hence Γ has valency 2 and Γ is a cycle. Since each block in B has size 2, it follows that $\Gamma \cong C_8$. However, in this case, $\text{Aut}(\Gamma)$ has a unique order 4 cyclic subgroup whose two orbits are the two bipartite halves of Γ, a contradiction. If $[B_1 \cup D_1] \cong K_{2,2}$, then $\Gamma \cong K_{4,4}$.

Thus it remains to consider the case that G^+ acts faithfully on each B_i. The maximality of B_i implies that G^+ is primitive on B_i. If $|B_i| = p$ and $G^+ \leq \text{AGL}(1, p)$, then G^+ has a unique minimal normal subgroup N of order p. Since N is characteristic in G^+, it is normal in G. However, $|\text{V}(\Gamma)| = 4p$ and so N has four orbits, contradicting G being bi-quasiprimitive. Since H^+ is a cyclic transitive subgroup of G^+ in its action on B_i, it follows that G^+ is given by Lemma 2.9 and in particular is 2-transitive on B_i. Moreover, if $B \in B_0$, then $(G^+)_{M}$ has an index two subgroup (the stabiliser of a vertex in B) and so either $G^+ = S_{n/2}, M_{11}$ or $\text{PGL}(d, q) \leq G^+ \leq \text{PGL}(d, q)$. If $G^+ = M_{11}$ or $S_{n/2}$ with $n \neq 12$, then $G = G^+ \times \mathbb{Z}_2$, contradicting G being bi-quasiprimitive. If $G^+ = S_6$, then $G = \text{Aut}(S_6)$. However, in this case, all the order 6 elements of G are in $G^+ = S_6$, again a contradiction. Thus $\text{PGL}(d, q) \leq G^+ \leq \text{PGL}(d, q)$. Then either $|\text{C}_G(\text{PSL}(d, q))| = 2$ or $G \leq \text{Aut}(\text{PSL}(d, q))$. The first case is not possible as this would imply that G has a normal subgroup of order 2, which would contradict G being bi-quasiprimitive. Thus $G \leq \text{Aut}(\text{PSL}(d, q))$. If $G \not\leq \text{PGL}(d, q)$ then Γ_B is either $B(\text{PG}(d-1, q))$ or $B'(\text{PG}(d-1, q))$. However, these graphs are not circulants (Lemma 2.4) and so $G \leq \text{PGL}(d, q)$. In this case $|B| = 2(q^d - 1)/(q - 1)$, but $\text{PGL}(d, q)$ does not contain an element of this order, contradicting H being regular on B.

\section{Prime and Small Valency Arc-Transitive Bicirculants}

In this section, we compare our Theorem 1.1 to the classifications of arc-transitive bicirculants of valencies 3 and 5, and also make some observations about the prime valent case in general.

We first give a corollary of Theorem 1.1 about prime valency arc-transitive bicirculants.

\begin{corollary}
Let Γ be a G-arc-transitive bicirculant of prime valency $p \geq 3$. Then Γ is a normal cover of one of the following graphs:

\begin{enumerate}
 \item[(a)] $K_{p,p}$;
 \item[(b)] $K_{p+1}, K_{p+1,p+1} - (p+1)K_2$;
 \item[(c)] $G(2q, p)$, where q is a prime integer and p divides $q - 1$;
 \item[(d)] $B(\text{PG}(n, q))$, where q is a prime power, $n \geq 2$, and $p = \frac{q^n - 1}{q - 1}$;
 \item[(e)] Petersen graph ($p = 3$), Clebsch graph ($p = 5$).
\end{enumerate}

Moreover, examples exist in all cases.
\end{corollary}
Proof. Let Γ be a G-arc-transitive bicirculant of prime valency $p \geq 3$. Then by Theorem 1.1, G has a normal subgroup N such that Γ is a normal r-cover of Γ_N where Γ_N is one of the graphs in Theorem 1.1. Moreover, since r divides the prime number p, it follows that $r = 1$, and so Γ is a normal cover of Γ_N. Thus Γ_N has valency p.

Note that, for the graphs in Theorem 1.1, $K_n[2]$ has valency $2(n-1)$ which is not a prime; $\text{Cay}(q,e)$ (a prime) has even valency $e; \text{B}'(\text{PG}(n,q))$ has valency $q^n; \text{H}(2,4), \text{B}'(\text{H}(11))$ and the complement of the Petersen graph have valency 6; and the complement of the Clebsch graph has valency 10. Thus Γ_N is as claimed. Moreover, since all graphs listed in (a)–(e) are themselves arc-transitive prime valency bicirculants by Lemma 2.5, examples trivially exist for all these listed graphs.

For the class of arc-transitive bicirculants of valency 3 or 5 that are Cayley graphs of dihedral groups we obtain the following lemma using [2, 27].

Lemma 6.2. Let $n \geq 11$ and $k = 3$ or 5. Let $\Gamma_{n,k} = \text{Cay}(D_{2n},\{b, ba, bar^{+1}, \ldots, ba^{k-2+r+1}\})$, where $D_{2n} = \langle a, b | a^n = b^2 = (ba)^2 = 1 \rangle$, and $r \in \mathbb{Z}^+$ such that $r(k-1) + \cdots + r^2 + r + 1 \equiv 0 \pmod{n}$. Then $\Gamma_{n,k}$ is a bipartite arc-transitive graph and the following hold.

(a) $\langle a^p \rangle \cong \mathbb{Z}_n/p$ is a normal subgroup of $\text{Aut}(\Gamma_{n,k})$, where p is a prime divisor of n.
(b) There exists a prime divisor p of n such that $k \mid (p-1)$.
(c) Let p be a prime divisor of n such that $k \mid (p-1)$ and let $N = \langle a^p \rangle$. Then $(\Gamma_{n,k})_N \cong G(2p,k)$.

Proof. By the definition of $\Gamma_{n,k}$, we see that $\Gamma_{n,k}$ is a bipartite graph, and the two bipartite halves of $\Gamma_{n,k}$ are $\Delta_0 = \{1, a, a^2, \ldots, a^{n-1}\}$ and $\Delta_1 = \{b, ba, ba^2, \ldots, ba^{n-1}\}$ which are both $\langle a \rangle$-orbits.

If $k = 3$, then by [27, pp. 978–979], $\Gamma_{n,3}$ is arc-transitive with $\text{Aut}(\Gamma_{n,3}) = \mathbb{Z}_n : \mathbb{Z}_6$ where $\mathbb{Z}_n = \langle a \rangle$; if $k = 5$, then by Lemma 3.7 and [2, Proof of Theorem 3.11], $\Gamma_{n,5}$ is arc-transitive and $\langle a \rangle \cong \mathbb{Z}_n$ is a normal subgroup of $\text{Aut}(\Gamma_{n,5})$. Thus in both cases $\langle a \rangle \cong \mathbb{Z}_n$ is a normal subgroup of $\text{Aut}(\Gamma_{n,k})$. Since for each prime divisor p of n, $\langle a^p \rangle$ is a characteristic subgroup of $\langle a \rangle$, it follows that $\langle a^p \rangle \cong \mathbb{Z}_n/p$ is a normal subgroup of $\text{Aut}(\Gamma_{n,k})$.

Let $n = p_1^{e_1}p_2^{e_2} \cdots p_f^{e_f}$, where p_1 is a prime. Since $k < n$, we know $r \neq 1$. Since $r^{k-1} + \cdots + r^2 + r + 1 \equiv 0 \pmod{n}$, it follows that $(r-1)(r^{k-1} + \cdots + r^2 + r + 1) \equiv 0 \pmod{n}$, so $r^{k-1} \equiv 1 \pmod{n}$. Let $(n,r) = t$. Since $r^k = ne + 1$ for some integer e, it follows that t divides 1, so $t = 1$. Hence r belongs to the group of units of the ring \mathbb{Z}_n, which has order $\phi(n)$ (Euler totient function). Therefore, since k is a prime, the order of r in the group of units is k, and so k divides $\phi(n) = p_1^{e_1-1}p_2^{e_2-1} \cdots p_f^{e_f-1} \Pi(p_i - 1)$. Suppose that k (which is a prime) divides $p_1^{e_1-1}p_2^{e_2-1} \cdots p_f^{e_f-1}$. Then k^2 divides n. As $r^{k-1} + \cdots + r^2 + r + 1 \equiv 0 \pmod{n}$, we have $r^{k-1} + \cdots + r^2 + r + 1 \equiv 0 \pmod{k^2}$. However, considering the possibilities for r module k^2 and evaluating $r^{k-1} + \cdots + r^2 + r + 1$, we see that we never have $r^{k-1} + \cdots + r^2 + r + 1 \equiv 0 \pmod{k^2}$, a contradiction. Thus k^2 does not divide n, and so k divides $\Pi(p_i - 1)$. Since k is a prime number, there exists a prime divisor p_1 of n such that k divides $p_1 - 1$.

Let p be a prime divisor of n such that $k \mid (p-1)$ and let $N = \langle a^p \rangle$. Then N has p-orbits on each bipartite half. Thus $(\Gamma_{n,k})_N$ is a bipartite arc-transitive graph of valency k and with $2p$ vertices, and also its automorphism group has two blocks of size p. By [7, Lemma 3.9], $(\Gamma_{n,k})_N \cong G(2p,k)$.

□
6.1 Arc-transitive bicirculants of valency 3

The generalised Petersen graph $GP(n, r)$ is the graph on the vertex set

$$\{u_0, u_1, \ldots, u_{n-1}, v_0, v_1, \ldots, v_{n-1}\}$$

with the adjacencies:

$$u_i \sim u_{i+1}, \quad v_i \sim v_{i+r}, \quad u_i \sim v_i, \quad i = 0, 1, \ldots, n-1.$$

Hence each generalised Petersen graph $GP(n, r)$ has valency 3. By [11], $GP(n, r)$ is arc-transitive if and only if $(n, r) = (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5)$ and $(24, 5)$.

The following classification of cubic arc-transitive bicirculants follows from [11, 27, 29].

Theorem 6.3. Let Γ be a finite connected arc-transitive bicirculant of valency 3. Then Γ is one of the following graphs:

(a) $K_4, K_{3,3}$;
(b) $GP(4, 1)$ ($K_{4,4} - 4K_2$), $GP(5, 2)$ (Petersen graph), $GP(8, 3)$ (Möbius-Kantor graph), $GP(10, 2)$, $GP(10, 3)$ (Desargues graph), $GP(12, 5)$ (Nauru graph), $GP(24, 5)$;
(c) Heawood graph ($BPG(2, 2)$);
(d) $\text{Cay}(D_{2n}, \{b, ba, ba^{r+1}\})$, where $D_{2n} = \langle a, b \mid a^n = b^2 = (ba)^2 = 1 \rangle$, $n \geq 11$ is odd and $r \in \mathbb{Z}_n^*$ such that $r^2 + r + 1 \equiv 0 \pmod{n}$.

Define the following permutations of $V(GP(n, r))$.

$$\rho : u_i \mapsto u_{i+1}, \quad v_i \mapsto v_{i+1};$$
$$\delta : u_i \mapsto u_{-i}, \quad v_i \mapsto v_{-i};$$
$$\sigma : u_{4i} \mapsto u_{4i}, \quad u_{4i+2} \mapsto v_{4i-1}, \quad u_{4i+1} \mapsto u_{4i-1}, \quad u_{4i-1} \mapsto v_{4i},$$
$$v_{4i} \mapsto u_{4i+1}, \quad v_{4i-1} \mapsto v_{4i+5}, \quad v_{4i+1} \mapsto u_{4i-2}, \quad v_{4i+2} \mapsto v_{4i-6}.$$

The following lemma essentially follows from [11].

Lemma 6.4. Let $\Gamma = GP(n, r)$ where $(n, r) = (4, 1), (8, 3), (12, 5)$ or $(24, 5)$. Let $A := \text{Aut}(\Gamma)$. Then Γ is bipartite, 2-arc-transitive and the following hold:

(a) $A = \langle \rho, \sigma, \delta \rangle$ and $A_{u_0} = \langle \sigma, \delta \rangle$;
(b) $\langle \rho^4 \rangle \cong \mathbb{Z}_{n/4}$ is a normal subgroup of $\text{Aut}(\Gamma)$;
(c) If $N = \langle \rho^4 \rangle$, then $\Gamma_N \cong K_{4,4} - 4K_2$.

Proof. By [15], the generalised Petersen graph $GP(n, r)$ is bipartite if and only if n is even and r is odd, so Γ is bipartite. By [11, p. 217], Γ is 2-arc-transitive, and $A = \langle \rho, \sigma, \delta \rangle$, where $\rho^n = \delta^2 = \sigma^3 = 1, \delta \rho \delta = \rho^{-1}, \delta \sigma \delta = \sigma^{-1}, \sigma \rho \sigma = \rho^{-1}, \sigma \rho^4 = \rho^4 \sigma$. Thus $\langle \rho^4 \rangle$ is a normal subgroup of A. Moreover, by definition, $A_{u_0} = \langle \sigma, \delta \rangle$.

Note that the two orbits H_0 and H_1 of $\langle \rho \rangle$ are not the two bipartite halves of Γ. Thus H_i intersects each bipartite half with exactly $n/2$ vertices. Further, $\langle \rho^2 \rangle$ fixes the two bipartite halves of Γ setwise. Let $N = \langle \rho^4 \rangle$. Then each N-orbit is in a bipartite half, Γ_N has 8 vertices and has valency 3, and it is also 2-arc-transitive. It follows that $\Gamma_N \cong K_{4,4} - 4K_2$.

\[\square\]
TABLE 1 Cubic arc-transitive bicirculants

Γ	Γ_N	Aut(Γ)	N		
K_4	K_4	S_4	1		
K_{3,3}	K_{3,3}	S_3 ⋊ S_2	1		
K_{4,4} − 4K_2	K_{4,4} − 4K_2	S_4 × S_2	1		
Heawood graph	Heawood graph	PGL(3,2)	1		
G(5,2)	Petersen graph	S_5	1		
G(8,3)	K_{4,4} − 4K_2	GL(2, 3) ⋊ S_2	S_2		
G(10,2)	Petersen graph	A_5 × S_2	S_2		
G(10,3)	Petersen graph	S_5 × S_2	S_2		
G(12,5)	K_{4,4} − 4K_2	S_4 × S_3	Z_3		
G(24,5)	K_{4,4} − 4K_2		Aut(Γ)	= 288	Z_6
Cay(D_{2n}, {b, ba, ba^{r+1}}), n \geq 11 odd, as in Theorem 6.3	G(2p, 3), prime p	n, 3	p − 1	Z_6 \times Z_6/p	

By [11, p. 217], G(10, 2) has automorphism group A_5 × S_2, and G(10, 3) is the Desargues graph which has automorphism group S_5 × S_2. For these two graphs, choose the normal subgroup S_2 of the automorphism group, then the corresponding quotient graph has 10 vertices and is of valency 3. Moreover, the automorphism group induces A_5 or S_5 on the quotient graph, respectively, and in both cases the quotient graph is the Petersen graph. The graphs K_4, K_{3,3}, G(4, 1) = K_{4,4} − 4K_2, G(5, 2) and G(14, 3) are in Theorem 1.1.

Lemmas 6.2 and 6.4 now allow us to show how each cubic arc-transitive bicirculant gives rise to a graph in Theorem 1.1.

Proposition 6.5. Let Γ be a finite connected arc-transitive bicirculant of valency 3. Then there exists a normal subgroup N of Aut(Γ) such that Γ_N is a graph in Theorem 1.1. Moreover, Γ, Γ_N, Aut(Γ) (if known), and N are as in Table 1.

Note that in Proposition 6.5, N and Γ_N are not necessarily unique. For instance, if Γ is G(12, 5), then its automorphism group is S_4 × S_3, and Γ_N is K_4 whenever N = S_3, and Γ_N is K_{3,3} when N = Z_2 × Z_2.

6.2 Arc-transitive bicirculants of valency 5

Let L, R, and M be subsets of an additive group H := \mathbb{Z}_n such that L = −L, R = −R and R ∪ L does not contain the zero element of H. Define the bicirculant BC_n[L, M, R] to have vertex set the union of the left part H_0 = \{h_0 | h ∈ H\} and the right part H_1 = \{h_1 | h ∈ H\}, and edge set the union of the left edges \{\{h_0, (h + l)_0\} | l ∈ L\}, the right edges \{\{h_1, (h + r)_1\} | r ∈ R\} and the spokes \{\{h_0, (h + m)_1\} | m ∈ M\}.

The family of arc-transitive bicirculants of valency 5 have been classified in [2, 3].

Theorem 6.6. Let Γ be a finite connected arc-transitive bicirculant of valency 5. Then Γ is one of the following graphs:

(a) K_6;
(b) K_{6,6} − 6K_2;
TABLE 2 Pentavalent arc-transitive bicirculants

Γ	Γₐ	Aut(Γ)	N
K₅	K₅	S₆	1
K₆,₆ − 6K₂	K₆,₆ − 6K₂	S₆ × S₂	1
B(PG(2, 4))	B(PG(2, 4))	PΓL(3, 2) × S₂	1
Clebsch graph	Clebsch graph	Z₄² : S₅	1
BC₆[±1, 0, 1, 2, 3, 4]	K₆,₆ − 6K₂		
BC₂₄[∅, {0, 1, 3, 11, 20}, ∅]	K₆,₆ − 6K₂		
BC₂₄[∅, {0, 1, 3, 11, 20}, ∅]	BC₂₄[∅, {0, 1, 3, 11, 20}, ∅]		
Cay(D₂ₙ, {b, ba, ba⁻¹, ba⁻²+ra⁻¹, ba⁻²⁻¹+ra⁻¹})	G(2p, 5), prime p∤5, 5∤p−1		

The complete graph K₆ is isomorphic to the graph BC₅[±1, 0, 1, 2, 3, 4] in [2, Theorem 1.1]. Remark 1.2 of [2] indicates that

K₆,₆ − 6K₂ ≅ BC₆[∅, {0, 1, 2, 3, 4}, ∅]
≈ BC₆[±1, 3, {0, 2}, {±1, 3}] ≅ BC₆[±1, {0, 2, 4}, {±1}],

and B(PG(2, 4)) ≅ BC₂₄[∅, {0, 1, 4, 14, 16}, ∅]. It can be checked by Magma [4] that the Clebsch graph is the graph BC₅[±1, 4, {0, 2}, {±3, 4}] in [2, Theorem 1.1]. The graph K₅,₅ is the Cayley graph Cay(D₁₀, {b, ba, ba², ba³, ba⁴}) in Theorem 6.6(h).

The graphs K₆, K₆,₆ − 6K₂, B(PG(2, 4)) and the Clebsch graph are in Theorem 1.1. Let Γ = BC₁₂[∅, {0, 1, 2, 4, 9}, ∅] and Γ’ = BC₂₄[∅, {0, 1, 3, 11, 20}, ∅]. Then by [2, Theorem 3.11, p. 666], Aut(Γ) has a normal subgroup M ≅ Z₂ and Aut(Γ’) has a normal subgroup N ≅ Z₄ such that Γₐ ≅ Γ’ₐ ≅ K₆,₆ − 6K₂. It can be easily checked using Magma [4] that the automorphism group of BC₆[±1, {0, 1, 5}, {±2}] is PΓL(2, 5) × S₂.

Now we use Lemma 6.2 to show how each valency 5 arc-transitive bicirculant gives rise to a graph in Theorem 1.1.

Proposition 6.7. Let Γ be a finite connected arc-transitive bicirculant of valency 5. Then there exists a normal subgroup N of Aut(Γ) such that Γₐ is a graph in Theorem 1.1. Moreover, Γ, Γₐ, Aut(Γ) (if known), and N are as in Table 2.

6.3 Arc-transitive bicirculants of valency 4

We conclude with a brief discussion of the valency 4 case. By Theorem 1.1, such a graph is either a cover of one of the graphs of valency 4 listed or a 2-cover of one of the graphs of valency 2 listed.
Note that a connected graph of valency 2 is a cycle and appears in Theorem 1.1 as Cay$(p, 2)$ for p odd, or as $K_{2,2}$. The graphs of valency 4 listed in Theorem 1.1 are

(a) $K_{4,4}$;
(b) K_5;
(c) $K_{3,5} - 5K_2$;
(d) $K_{3}[2]$;
(e) $G(2p, 4)$ with $p \equiv 1$ (mod 4);
(f) $B(PG(2, 3))$;
(g) $B'(PG(2, 2))$;
(h) Cay$(p, 4)$ with $p \equiv 1$ (mod 4).

All finite arc-transitive bicirculants of valency 4 were classified in [21].

ACKNOWLEDGEMENTS
The second author was supported by the Australian Research Council grant DP150101066 while the third author was supported by NSFC (12061034, 12071484) and NSF of Jiangxi (20192ACBL21007, 20212BAB201010, 2016KY26).

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES
1. B. Alspach, M. Conder, D. Marušič, and M. Y. Xu, A classification of 2-arc transitive circulants, J. Algebraic Combin. 5 (1996), 83–86.
2. I. Antončič, A. Hujdurovič, and K. Kutnar, A classification of pentavalent arc-transitive bicirculants, J. Algebraic Combin. 41 (2015), 643–668.
3. A. Arroyo, I. Hubard, K. Kutnar, E. O’Reilly, and P. Šparl, Classification of symmetric Tabačjn graphs, Graphs Combin. 31 (2015), 1137–1153.
4. W. Bosma, C. Cannon, and C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265.
5. P. J. Cameron, Permutation groups, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge, 1999.
6. C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 157 (1971), 247–256.
7. Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196–211.
8. A. Devillers, M. Giudici, C. H. Li, G. Pearce, and C. E. Praeger, On imprimitive rank 3 permutation groups, J. Lond. Math. Soc. (2) 85 (2012), 649–669.
9. M. J. de Resmini and D. Jungnickel, Strongly regular semi-Cayley graphs, J. Algebraic Combin. 1 (1992), 171–195.
10. J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, 1996.
11. R. Frucht, J. E. Graver, and M. E. Watkins, The groups of the generalized Petersen graphs, Proc. Camb. Philos. Soc. 70 (1971), 211–218.
12. M. Giudici, C. H. Li, and C. E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 356 (2003), 291–317.
13. C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981), 243–256.
14. C. D. Godsil, R. A. Liebler, and C. E. Praeger, *Antipodal distance transitive covers of complete graphs*, European J. Combin. 19 (1998), 455–478.
15. B. Horvat, T. Pisanski, and A. Žitnik, *Isomorphism checking of I-graphs*, Graphs Combin. 28 (2012), no. 6, 823–830.
16. R. Jajcay, S. Miklavič, P. Šparl, and G. Vasiljević, *On certain edge-transitive bicirculants*, Electron. J. Combin. 26 (2019), no. 2, #P2.6.
17. G. Jones, *Cyclic regular subgroups of primitive permutation groups*, J. Group Theory 5 (2002), no. 4, 403–407.
18. I. Kovács, *Classifying arc-transitive circulants*, J. Algebraic Combin. 20 (2004), 353–358.
19. I. Kovács, K. Kutnar, and D. Marušič, *Classification of edge-transitive rose window graphs*, J. Graph Theory 65 (2010), 216–231.
20. I. Kovács, B. Kuzman, and A. Malnič, *On non-normal arc-transitive 4-valent dihedrants*, Acta Math. Sinica, (Engl. Ser.) 26 (2010), 1485–1498.
21. I. Kovács, B. Kuzman, A. Malnič, and S. Wilson, *Characterization of edge-transitive 4-valent bicirculants*, J. Graph Theory 69 (2012), 441–463.
22. K. H. Leung and S. L. Ma, *Partial difference triples*, J. Algebraic Combin. 2 (1993), 397–409.
23. C. H. Li, *The finite primitive permutation groups containing an abelian regular subgroup*, Proc. Lond. Math. Soc. (3) 87 (2003), 725–748.
24. C. H. Li, *Permutation groups with a cyclic regular subgroup and arc transitive circulants*, J. Algebraic Combin. 21 (2005), 131–136.
25. C. H. Li and C. E. Praeger, *On finite permutation groups with a transitive cyclic subgroup*, J. Algebra 349 (2012), 117–127.
26. A. Malnič, D. Marušič, P. Šparl, and B. Frelih, *Symmetry structure of bicirculants*, Discrete Math. 307 (2007), 409–414.
27. D. Marušič and T. Pisanski, *Symmetries of hexagonal molecular graphs on the torus*, Croat. Chem. Acta 73 (2000), 969–981.
28. P. Müller, *Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials*, Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (2013), 369–438.
29. T. Pisanski, *A classification of cubic bicirculants*, Discrete Math. 307 (2007), 567–578.
30. C. E. Praeger, *An O’Nan Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs*, J. London Math. Soc. 47 (1993), no. 2, 227–239.
31. C. E. Praeger, *Finite transitive permutation groups and finite vertex-transitive graphs*, Graph Symmetry: Algebraic Methods and Applications (Montreal, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 497, Kluwer, Dordrecht, 1997, 277–318.
32. C. E. Praeger, *Finite transitive permutation groups and bipartite vertex-transitive graphs*, Illinois J. Math. 47 (2003), 461–475.
33. H. Wielandt, *Finite permutation groups*, Academic Press, New York, 1964.
34. S. Wilson, *Rose window graphs*, Ars Math. Contemp. 1 (2008), 7–19.
35. J. X. Zhou and Y. Q. Feng, *Cubic bi-Cayley graphs over abelian groups*, European J. Combin. 36 (2014), 679–693.
36. J. X. Zhou and Y. Q. Feng, *The automorphisms of bi-Cayley graphs*, J. Combin. Theory Ser. B 116 (2016), 504–532.