Numerical Simulation of Random Vibration Analysis for Ball Grid Array Package

Wenhao Luo¹,²,³, Wei Su¹,³,*, Xianshan Dong¹,³, Zhenhua Nie¹,² and Agam Tomar¹,⁴

¹MOE Key lab of Disaster Forecast and Control in Engineering, Guangzhou, China
²School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
³Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, China
⁴Faculty of Engineering and Mathematical Sciences, University of Western Australia, Perth, Australia

*Corresponding author: suwei@ceprei.com

Abstract. This paper uses ANSYS Workbench (a finite element analysis software) to simulate BGA ceramic packing. The author models fixture, ceramic and metal steel. Then different thickness papers are laid on the BGA product. By random vibration analysis, the natural frequency and mode of the sample are obtained. According the results, the author discusses the relationship between different thickness papers and PSD-frequency curve. It provides a benefit instruction for the design of BGA packing.

Keywords: BGA, Finite Element Simulation, Random vibration analysis, ANASYS

1. Introduction
With the constant enhancement of the integration of BGA products, a large number of products have been in service for a long time under the working conditions where the vibration environment varies greatly [1]. During the service period, the operating environment of equipment is harsh, and it suffers from frequent vibration cycles and constant equipment startup and shutdown [2]. The solder ball in BGA package is easy to fall off during the service period. After the breakdown of products, it is necessary to collect products collectively for repair, which has a great impact on the project schedule and efficiency [3-4]. In the pages that follow, therefore, it will be argued that the relationship between different thickness of papers and frequency-PSD curve through random vibration analysis.

2. Theory of Random Vibration Analysis
The basic characteristics of the random signal x(t) in the frequency domain are described by the power spectral density function. It can characterize the distribution of vibration energy at different frequencies. When the integral of the autocorrelation function in the interval is finite, the autopower spectral density function is
\[S(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-i2\pi f \tau} d\tau \] (1)

In the formula, \(f \) is frequency. \(S(f) \) and \(R_x(\tau) \) is a pair of Fourier transform. Their relationship is generally called the Wiener-Sinchin relationship, so there is

\[R_x(\tau) = \int_{-\infty}^{\infty} S(f) e^{i2\pi f \tau} df \] (2)

Because \(R_x(\tau) \) is even function. In engineering, only the positive frequency part of the steady-state random process is calculated

\[R_x(\tau) = \int_{-\infty}^{\infty} S(f) \cos(2\pi f \tau) df \] (3)

Therefore, the one-sided auto-power spectral density function is defined as \(G(f) \) to satisfy

\[
\begin{align*}
G(f) &= \begin{cases}
2S(f) & f \geq 0 \\
0 & f < 0
\end{cases}
\end{align*}
\] (4)

Then there is

\[R_x(\tau) = \int_{0}^{\infty} G(f) \cos(2\pi f \tau) df \] (5)

It can be seen from equation (5) that \(G(f) \) is the one-sided cross-power spectrum of \(f > 0 \), and \(G(f) \) is the acceleration auto-power spectral density function in the random vibration test of integrated circuits.

3. Finite Element Model

3.1. Establishment of the model

The initial model mainly consists of three parts, fixture (6061 aluminum alloy), ceramic panel (ceramic), and metal sheet (4J29 Kovar alloy). The simplified model of the sample and fixture is shown in the Figure 1.

Based on the initial geometric model, a simulation test is performed by laying a layer of paper (0.1mm thick) on the bottom of the ceramic panel, and laying different layers of paper on the metal sheet. The number of paper is as follows:

BGA	Thickness	Bottom	Top
0.1mm+0.51mm	1 layer	5 layers	
0.1mm+0.91mm	1 layer	9 layers	
0.1mm+1.51mm	1 layer	15 layers	
0.1mm+2.51mm	1 layer	25 layers	

For multi-layer paper modeling, it is regarded as a whole modeling. The BGA sample profile is shown in the Figure 2:
3.2. Material properties
The material parameters of this analysis are as follows:

Material	Density (kg/m\(^3\))	Elastic modulus(Mpa)	Poisson's ratio
Paper	2700	70000	0.33
6061 Al-alloy	700	1000	0.3
Ceramics	7500	120000	0.24
4J29 Kovar alloy	8100	210000	0.3

3.3. Meshing
Solid187 unit in Ansys to simulate various components. It is a high-order 3-dimensional 10-node solid structure element, which is used to ensure the calculation accuracy [5-6]. Meshing size: 3mm for fixtures, 0.5mm for other sizes (the meshing is obtained after a convergence test). The mesh is as shown Figure 3 and Figure 4:
3.4. Boundary condition
The model includes fixtures (bottom and cover), ceramics, metal sheets, and paper. Except for the bottom plate with fixed restraint (releasing the degree of freedom in the Z direction), other parts are in binding contact.

3.5. Input condition
This paper mainly focuses on random vibration analysis of BGA samples, and the known input conditions are as follows:

Table 3. Input power spectrum of random vibration analysis

Frequency(Hz)	PSD(m/s²)²/Hz
50	5.02
100	20
2000	5.02
1000	20

3.6. Analysis process
Random vibration analysis step:
1) Modeling of BGA sample
2) Obtain the modal solutions
3) Convert to spectral analysis
4) Define and apply PSD excitations
5) Solve
6) Analyze results

4. Random Vibration Analysis Result
Random vibration analysis is performed by changing the thickness of the paper, and then random vibration analysis is conducted. The frequency and PSD data of the observation point are shown as table 4 and table 5.

Table 4. Natural frequency data of different thickness of paper

Order	Frequency (Hz)	0.1mm+0.51mm	0.1mm+0.91mm	0.1mm+1.51mm	0.1mm+2.51mm
1	8953.4	8969.3	8986.1	9034.5	
2	10845	10855	10886	10950	
3	13027	13027	13017	13000	
4	18825	18752	18693	18369	
5	20046	20016	19938	19904	
6	23768	23792	23796	23817	
7	26168	26159	26165	25692	
8	27018	26971	26747	26025	
9	31073	30057	28404	26042	
10	32005	31081	30673	28596	

By extracting the first two modes of each model, it can be known that the first mode is the external excitation direction (vibrating up and down in the Z direction), and the second mode is the torsional mode. The specific first two modes are shown as figure 5:
Figure 5. First two modes of BGA (0.1mm+0.51mm) sample

Table 5. Frequency and PSD data of different thickness of paper

Frequency (Hz)	0.1mm+0.51mm	0.1mm+0.51mm	0.1mm+0.51mm	0.1mm+0.51mm
50	482.8	482.8	482.8	482.8
100	1923.9	1923.9	1923.9	1923.9
152.63	1924.5	1924.5	1924.5	1924.5
255.26	1926.4	1926.4	1926.4	1926.4
357.89	1929.4	1929.4	1929.3	1929.3
460.53	1933.3	1933.3	1933.3	1933.3
563.16	1938.2	1938.2	1938.2	1938.2
665.79	1944.1	1944.1	1944.1	1944.1
768.42	1951.3	1951.1	1951	1951
871.05	1959.1	1959	1958.7	1958.7
973.68	1968.1	1968	1967.7	1967.7
1000	1970.6	1970.5	1970.2	1970.2
1076.3	1708.4	1708.3	1708	1708
1178.9	1433	1432.7	1432.6	1432.3
1281.6	1220.6	1220.5	1220.1	1220.1
1384.2	1053.8	1053.7	1053.4	1053.4
1486.8	920.41	920.33	919.97	919.97
1589.5	812.03	811.95	811.59	811.59
1692.1	722.73	722.73	722.36	722.36
1794.7	648.42	648.29	648.05	648.05
1897.4	585.91	585.91	585.52	585.52
2000	532.83	532.83	532.43	532.43
Finally, the displacement and stress distribution figure cloud diagram of random vibration analysis is shown in the Figure 7 and Figure 8.

Figure 6. BGA random vibration analysis

Figure 7. Random vibration analysis results of BGA sample (Displacement)
5. Conclusion
This paper uses ANSYS finite element software to perform random vibration analysis on BGA samples. The author models fixtures, samples, and metal sheets. By laying different thicknesses of paper on the bottom and top of the sample, the author discusses the influence of paper thickness on the frequency-PSD curve. The analysis results show that different layers of paper on the metal sheet hardly changes the frequency-PSD curve. Therefore, it is questionable to use this method to adjust dynamic response parameters.

Acknowledgments
This work was financially supported by the MOE Key lab of Disaster Forecast and Control in Engineering (20200904010), Jinan University.

References
[1] R.R. Tummala. Fundamentals of Microsystems Packaging [M]. New York: McGraw-Hill, 2001.
[2] Advanced electronic packaging[M]. Wiley, 2005.
[3] K.N. Tu, K. Zeng K. Tin–lead (SnPb) solder reaction in flip chip technology[J]. Materials science and engineering: R: reports, 2001, 34(1): 1-58.
[4] K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects [J]. Journal of Applied Physics, 2003, 94(9): 5451-5473.
[5] A. Syed. Overview of Reliability Models and Data Needs[C]/Workshop on modeling and Data Needs for Lead-Free Solders, sponsored by NEMI, NIST, NSF, and TMS. 2001, 2.
[6] P. Lall and K. Banerji. Assembly-level reliability of flex-substrate BGA, elastomer-on-flex packages and 0.5 mm pitch partial array packages[J]. Microelectronics and Reliability, 2000, vol. 40:1081-1095.