Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of *Candida glabrata*

Shuying Yu1,2,3, Padmaja Paderu1, Annie Lee1, Sami Eirekat4, Kelley Healey4, Liang Chen1,5, David S. Perlin1,5, Yanan Zhao1,5,*

1. Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.
2. Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China.
3. Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China.
4. Department of Biology, William Paterson University, Wayne, New Jersey, USA.
5. Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA.
6. Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057

* Address correspondence to Yanan Zhao, Ph.D. yanan.zhao@hmh-cdi.org, phone: 201-880-3503
SUPPLEMENTARY MATERIALS

FKS mutant construction methods
FKS mutant strains were constructed as described in Healey et al., 2020 (1). Briefly, Fks1-625delF, Fks1-S629P, Fks2-659delF, and Fks2-S663P were generated in strain ATCC 2001 through transformation of a purified PCR product. Desired mutations were PCR-amplified along with regions flanking the FKS1 or FKS2 hotspot 1 region (approximately 400 bp) from mutant isolates (see Table S1 for primers). Transformants were selected on low levels of caspofungin- (0.3 µg/mL) or micafungin- (0.03 µg/mL) containing YPD agar medium. All FKS1 and FKS2 hotspots were sequenced in each transformant to confirm the expected mutation was present and all other amino acids remained unaltered.

Figure S1. Growth curves of Candida glabrata wild type (WT), gcn5∆ and gcn5∆::GCN5 strains in YPD media.

Figure S2. (A) Immunoblots showed visibly decreased abundance of both H3K9Ac and H3K14Ac in gcn5∆, compared to WT and complemented strains. (B) Acetylation level comparison in WT, gcn5∆, and gcn5∆::GCN5. Signals of H3K9Ac and H3K14Ac were normalized to that of H3 in corresponding strain. Acetylated H3K9 and H3K14 in gcn5∆ decreased to 60% and 46% of that in WT, respectively. Representative blots from two independent experiments and mean ratios ± SD are shown.
Figure S3. qRT-PCR verification of representative DEGs in gcn5Δ cells. Expression was normalized to reference gene PGK1 and shown as a fold change compared to WT. Plots represent the mean ± SD from ≥ 3 independent experiments (*P<0.05, **P<0.01, ***P<0.001).

Figure S4. Venn diagram of upregulated gene sets in WT and gcn5Δ associated with fluconazole treatment.
Figure S5. qRT-PCR verification of representative DEGs in WT and gcnpΔ cells in response to flucanazole (FLC) pressure. Expression was normalized to reference gene PGK1 and shown as a fold change compared to WT no drug control (NDC). Plots represent the mean ± SD from ≥ 3 independent experiments (*P <0.05, **P<0.01, ***P<0.001).

Figure S6. Venn diagram of micafungin triggered up- and down-regulated gene sets in WT and gcnpΔ cells.

Upregulation

Downregulation

Gene	WT NDC	WT FLC	gcnpΔ NDC	gcnpΔ FLC
CAGL0L06776g				
CAGL0L03828g				
CAGL0H09614g				
AWP7				
ERG11				
PDR1				
CDR1				
CDR2				
STR3				
CDR3				

Gene	WT NDC	WT FLC	gcnpΔ NDC	gcnpΔ FLC
65	89	487		
33	70	440		
Figure S7. qRT-PCR verification of representative DEGs in WT and *gcn5Δ* cells triggered by micafungin (MCF) treatment. Expression was normalized to reference gene *PGK1* and shown as a fold change compared to WT no drug control (NDC). Plots represent the mean ± SD from ≥ 3 independent experiments (*P* < 0.05, **P**<0.01, ***P***<0.001, ns denotes for no statistical significance).

Table S1. Sequences of primers and oligos used in this study

Oligo	Sequence (5’-3’)	Application
GCN5-F364	CGATTACAAATGTTTACCCG	GCN5 upstream PCR
pRS-GCN5_R-67	CTCAGTAAATCCTGCCTGACGCAGCAA	GCN5 upstream PCR
CYC1_GCN5_F1757	AGTATGTCACGCTTACACCCATGAT	GCN5 downstream PCR
GCN5-R2071	GGTGAAACACGGGCAACAAA	GCN5 downstream PCR
pRS-F	CGCAGAACGGCAGATGTA	Amplification of *NAT* cassette from pCN-PDC1
CYC1-R	GCCTGAATGTAAGCGTGAC	Amplification of *NAT* cassette from pCN-PDC1
TEFp263F	TCTGATGACCTCCACCTTTAT	GCN5 knockout validation sequencing
NAT297R	GTACGAGACGACCACGAAAC	GCN5 knockout validation sequencing
Gcn5-crRNA	GAGAGGUGAACAAUCCACCG	CRISPR crRNA, N20 sequence underlined
DNA-crRNA	CGUGACACCCUUCUCGAGUUAGA	CRISPR crRNA, N20 sequence underlined
CgFKS1c1757F	ACGTTACCAATGTTTACCCG	FKS1 mutant construction, hotspot 1 PCR
CgFKS1c2225R	GGTGAAACACGGGCAACAAA	FKS1 mutant construction, hotspot 1 PCR/sequence
CgFKS1c1674F	CGCAGAACGGCAGATGTA	screen/sequence
CgFKS1c3918F	GCCTGAATGTAAGCGTGAC	FKS1 mutant construction, hotspot 2 PCR
CgFKS1c4225R	TCTGATGACCTCCACCTTTAT	FKS1 mutant construction, hotspot 2/sequence
CgFKS2c1790F	GTACGAGACGACCACGAAAC	FKS2 mutant construction, hotspot 1 PCR
CgFKS2c2165R	GAGAGGUGAACAAUCCACCG	FKS2 mutant construction, hotspot 1 PCR/sequence
CgFKS2c1419F	CGUGACACCCUUCUCGAGUUAGA	screen/sequence
CgFKS2c3930F	ACGTTACCAATGTTTACCCG	FKS2 mutant construction, hotspot 2 PCR
CgFKS2c4312R	GGTGAAACACGGGCAACAAA	FKS2 mutant construction, hotspot 2 PCR/sequence
PDR1u175F	CGUGACACCCUUCUCGAGUUAGA	PDR1 amplification
PDR1d110-R	ACGTTACCAATGTTTACCCG	PDR1 amplification and sequencing
Primer ID	Sequence	Description
-----------	---------------------------	-------------------
PDR1-c828R	AAGTGACTTAGTGTTGGCAC	PDR1 sequencing
PDR1-c1703R	GCAACAGCTACATCTAACGAAACC	PDR1 sequencing
PDR1-c2600R	CTCTCATTTTGGTGGTGGCAC	PDR1 sequencing
PGK1-F	CAACAGGTTGAAAGAGACGGA	
PGK1-R	CGTCACACCGTTGCAAGGAAG	
GCN5-F	GGTGCTAAACCGCGAGAAAAG	
GCN5-R	CTCTATTGTCGCTGCTGATCTT	
EPA13-F	CAACATTGCTCTTTGGCTTTC	
EPA13-R	CTTTCATTGACTACGTTGCA	
EPA6-F	GACTGACGCGAGCCCTACTGAA	
EPA6-R	GCTTGATTGAGGATAAATTCG	
BMT5-F	TCCATTGACTACGTTGCA	
BMT5-R	TTCTTTGCAAAACGCTTGTC	
BMT2-F	ACCGACACCAAAATCAATC	
BMT2-R	AAGATGCACCTTCCGTCATC	
HBN1-F	TGATGACACACGCGAGAAAAG	
HBN1-R	AACAGGCTTGAGATCTGGAT	
CAGL09018g-F	ACTGGGAAACTGGCTTGGTG	
CAGL09018g-R	TTCTTACTGACACGCTACC	
CAGL00157g-F	ACTGTGACGCGCAGCTCAC	
CAGL00157g-R	AGCTTGTTTGGCTTTTCTG	
FKS1-F	CTCCTACTGTGCTAAGAATT	qRT-PCR verification
FKS1-R	AGGATCTTGATATCACATACC	
FKS2-F	ATATGCTGTTTGTTCTACATTCC	
FKS2-R	ACGGACCTTGTGGATGCA	
CDR1-F	TACGCATAACACTACAGGAAGCT	
CDR1-R	AGAAGGAACATTTAGAAGTGAATC	
CDR2-F	GTCTTTTATGAAAGGCTACAGATTT	
CDR2-R	TTTTGCCCGGAGATAATCACG	
CRZ1-F	AGGCTGCTAAAGGAGGCTAT	
CRZ1-R	AGGCTGCTAAAGGAGGCTAT	
STR3-F	GTCTAGTGGATGAGAGAAGAAG	
STR3-R	TCTTTGATATTTGCTAAGGACCC	
CAGL00977s-F	CTGCTGATGCAAAATCTCAA	
CAGL00977s-R	GCCATAGGCTTCTCCTCCTCC	
CAGL03828s-F	CGGTCAGCTTCTGGACTATTG	
CAGL03828s-R	CCAACTTACACCACCCTTCG	
CAGL0H06414-F	CCATCTTCTCTAAAGGCTTTC	
CAGL0H06414-R	TCACCGATTTTGGAGATAGC	
AWP7-F	TGCTCAGAAACCGACAAATCACA	
AWP7-R	CTGTGATGCGCTCAGTCA	
ERG11-Fn	ACGGTACCAAGCAGCAGAG	
ERG11-Rn	GAACACTGGGGTGGTGAAGT	
PDR1-F	AAGAGGATGACACGCGAGAAAG	
PDR1-R	ATGGATGTCATTGGATATT	
CAGL0M03377s-F	TGGATCCCTCTTGATTATCCA	
CAGL0M03377s-R	CGTTGTAAGTCAGCGGTAAA	
CAGL0K10626-F	CAACAAAGTGTCGGGATTATTAC	
CAGL0K10626-R	ACAGGTTAGACCTCTCTGAG	
CAGL000484-F	CTGTAAGTCAGGCGGCTAAG	
CAGL000484-R	CTCCTGAATGAGAATGGAATGTA	
SUT2-F	CTAAACACGTGGCAGCATTG	
SUT2-R	GCAGACAAACAAAGGGGAGAAGA	

Reference

1. Healey KR, Paderu P, Hou X, Jimenez Ortigosa C, Bagley N, Patel B, Zhao Y, Perlin DS. 2020. Differential Regulation of Echinocandin Targets Fks1 and Fks2 in Candida glabrata by the Post-Transcriptional Regulator Ssd1. J Fungi (Basel) 6.