Original Article

Comparison of gene expression and mitochondria number between bovine blastocysts obtained in vitro and in vivo

Tatsuo Noguchi¹, Takuro Aizawa¹, Yasuhisa Munakata¹ and Hisataka Iwata¹

¹Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan

Running head: Gene expression in bovine blastocysts

Correspondence: H Iwata (e-mail: h1iwata@nodai.ac.jp)
Abstract. Embryo transfer uses embryos developed *in vivo* or *in vitro* for cattle production, however there is a difference in the quality of the embryos obtained by the two methods. This study addresses the differences in gene expression between blastocysts developed *in vitro* and *in vivo*. *In vivo* blastocysts were flushed from the uteri of super-ovulated cows and blastocysts developed *in vitro* were derived from *in vitro* matured and fertilized embryos. The same batch of frozen bull sperm was used for insemination and *in vitro* fertilization. Blastocysts were then subjected to RNA sequencing. Differentially expressed genes upregulated in *in vitro* blastocysts were annotated to focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling and the genes that were upregulated in *in vivo* blastocysts were annotated to oxidation-reduction processes, mitochondrion organization, and mitochondrial translation. Although the total cell number of the two types of blastocysts was similar, the mitochondrial quantity (determined by mitochondrial DNA copy numbers and expression levels of TOMM20), and ATP content in the blastocysts were lower in *in vivo* blastocysts compared with those developed *in vitro*. In conclusion, RNAseq revealed differential molecular backgrounds between *in vitro* and *in vivo* developed blastocysts and mitochondrial number and function are responsible for these differences.

Key words: Blastocysts, Gene expression, *In vivo*, *In vitro*, Mitochondria
Introduction

Embryo transfer is now a widespread assisted reproductive technique for bovine industry. In general, there are two methods for the production of bovine blastocysts, namely development of blastocysts in vitro and in vivo. Although embryos of both origins have similar contributions regarding cattle production, there is a fundamental biological difference in the quality of the embryos. In general, the pregnancy rate of the in vivo produced blastocysts has been higher than that of in vitro developed blastocysts. In addition, a higher rate of embryonic degeneration has been reported for in vitro produced blastocysts [1]. Early studies comparing embryos produced in vitro and in vivo have reported differences in cleavage speed and weights of resultant calves [2, 3], which were attributed to the in vitro culture conditions [4, 5]. Recent studies, using current genomic analysis technologies, have revealed differences in gene expression, as well as different methylation patterns, between in vitro and in vivo developed embryos, thereby highlighting that these differences originate from changes in the molecular background [6, 7]. This information is useful in identifying abnormalities in blastocysts developed in vitro and in improving culture conditions for in vitro embryo productions. Due to difficulties in obtaining large numbers of embryo produced in vivo, studies about the differences between in vitro and in vivo produced embryos are few. In the present study, we examined gene expression in embryos using next-generation sequencing technology and addressed the differences in mitochondrial number and function between embryos with two different origins.

Materials and methods
Chemicals

All the drugs used in this study were purchased from Nacalai Tesque (Kyoto, Japan) unless stated otherwise. Medium 199 supplemented with 10% fetal cow serum (FCS) (FCS; 5703H; ICN Pharmaceuticals, Costa Mesa, CA, USA) and 5 mM taurine was used for maturation (IVM medium). Synthetic oviductal fluid (SOF) was used for *in vitro* fertilization (IVF) and *in vitro* culture (IVC) [8]. For IVF, SOF was supplemented with 5 mg/ml BSA (Bovine Serum Albumin-fatty acid free) and 10 U/ml heparin (Sigma-Aldrich, St Louis, MO, USA). For IVC, SOF was supplemented with essential and non-essential amino acids (Sigma-Aldrich), 1% FCS, 5 mM taurine, and 1.5 mM glucose.

Ovary and oocyte collection

Ovaries were collected from Japanese Black Cows at a slaughter house and stored at 25 °C in phosphate-buffered saline (PBS) containing 10 mM glucose, 10 mM sucrose, and antibiotics, and were transported to the laboratory within 4 h. Cumulus oocyte complexes (COCs) were collected from ovaries of each cow using a syringe with an 18-G needle.

In vitro maturation and fertilization

COCs were matured in IVM medium for 21 h (10 COCs/100 µl drop). After maturation, the complexes were washed with IVF medium and co-incubated with frozen-thawed semen from a Japanese black bull. For fertilization, the semen was washed with a 45–60% Percoll solution (Amersham Biosciences, Uppsala, Sweden) to create a discontinuous gradient for centrifugation (800 × g for 10 min). The sperm and COCs were co-incubated for 6 h (The sperm concentration in the IVF medium 1 × 10^6 cells/ml), and the COCs were transferred in IVC medium containing 1% FCS.

In vitro culture of embryos

After fertilization, COCs were cultured for 2 days in IVC medium. Subsequently, the cleaved
embryos over 7 cell-stages were removed from the surrounding cumulus cells and transferred to a new 50 µL droplet of IVC medium and further cultured for 5 days. The atmospheric culture conditions were 5% CO₂ in air for IVM, IVF, and first IVC (until 48 h post insemination), and 5% CO₂, 5% O₂, and 90% N₂ for second IVC (from 48 h to 7 days post insemination). After 7 days of IVC, the quality of the obtained blastocysts was evaluated using the International Embryo Technology Society (IETS) manual [https://www.iets.org/pub_manual.asp], and only embryos categorized as grade 1 or 2 were used for further experiments.

Superovulation and flushing of embryos

Fifteen Japanese black cows were used for in vivo embryo production. Cows with corpus luteum were inserted with a progesterone-releasing intravaginal device (controlled internal drug release (CIDR), Livestock improvement corporation, Tokyo Japan). The day of CIDR insertion was defined as day 0. On day 1 Estradiol benzoate (Asuka, Tokyo, Japan) was administered (2 mg) and on day 6 cows were administered FSH (total 20 AU, Antrin, Kyoritsu, Tokyo, Japan) for three days. On the morning of day 8, the cows were treated with PGF2α (d-cloprostenol, Dalmazin, Kyoritsu, Tokyo, Japan) and the CIDR was removed. Two days after the PGF2α treatment, artificial insemination was performed. Frozen-thawed semen from the same Japanese black bull was used for in vitro fertilization. Resulting embryos were non-surgically flushed from the uterus at 6.5 days after insemination. The embryos were classified using the IETS manual and only embryos categorized as grade 1 were used for further experiments. Superovulation from cows was approved by the Ethical Committee for Animal Experiment of Tokyo University of Agriculture.

Assessment of mitochondrial DNA copy number

Mitochondrial DNA copy number (Mt number) in blastocysts was determined by real time PCR. Each blastocyst was lysed in 6 µl of lysis buffer (20 mM Tris, 0.4 mg/ml proteinase K, 0.9%)
Nonidet-40, and 0.9% Tween 20) at 55°C for 30 min and then at 95°C for 5 min. Mt number was determined by real-time PCR using the Rotor-Gene 6500 real-time rotary analyzer (Corbett Research, Sydney, Australia). The PCR primer set was designed using the Primer3Plus tool based on the bovine mitochondrial complete genome sequence (NC_006853.1) (5’- ACCCCTTGTACCTTTTG -3’ and 5’- TCTGGTTTCGGGCTGT -3’, 81bp). The PCR conditions were as follows: an initial denaturation at 95°C for 1 min, followed by 40 cycles at 98°C for 5 s and at 60°C for 10 s. A standard curve was generated for each run using 10-fold serial dilutions representing the copy number of the external standard. The external standard was the PCR product of the corresponding gene cloned into a vector using the Zero Blunt TOPO PCR cloning kit (Invitrogen, Carlsbad, CA, USA), which was sequenced before use. The amplification efficiency in all trials was > 1.98.

ATP assay

The ATP content of embryos was measured as luminescence generated in an ATP-dependent luciferin–luciferase bioluminescence assay (ATP assay kit; Toyo-Inc., Tokyo, Japan). Individual embryos were lysed and luminescence was measured immediately using a plate-reader (Sperk 10M Tekan, Tokyo, Japan).

Immunostaining

Embryos were fixed in 4% paraformaldehyde and were incubated in PBS containing 0.9% TritonX-100 for 30 min followed by incubation in PBS containing 5 mg/ml BSA. The primary antibody used was rabbit anti-TOMM20 (Santacruz Biotech, 1:200) and the secondary antibody was anti-rabbit IgG Fab2 conjugated with Alexa Fluor 555 (Cell signaling). The embryos were then mounted on glass slides using an antifade reagent (Invitrogen, Carlsbad, CA, USA) and were observed under a fluorescent microscope (DMI 6000 B; Leica, Wetzlar, Germany).

Transcriptome analysis
Twenty-four *in vivo* produced blastocysts were collected from 6 Japanese black cows following superovulation (4 blastocysts from each cow, Grade 1 and 2 according to the IETS standard) and were used for RNA-seq. Moreover, 200 blastocysts produced *in vitro* using 100 Japanese Black cows were used for RNA-seq.

Total RNA was extracted from blastocysts using the RNAqueous kit (Life Technologies, Carlsbad, CA, USA). The RNA quality was confirmed using the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and cDNA libraries were prepared using the TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA). Library quality and quantity were determined using the Agilent 2100 Bioanalyzer and the KAPA Library Quantification Kit (KAPA Biosystems, Wilmington, MA, USA), respectively. Clusters were generated on a cBot (Illumina) and one lane of the multiplied samples was sequenced as 100 bp reads (single read) on the HiSeq 2500 (Illumina). Image analysis, base calling, and quality filtering were performed using the bcl2fastq2 (Illumina) software according to the manufacturer’s instructions. Sequence data were filtered to discard adapter sequences, ambiguous nucleotides, and low-quality sequences. The remaining sequence data were aligned to the Bos Taurus genome sequence (ARS-UCD1.2/bosTau9) to count sequence reads. Using mapped sequence data, expression values for each gene and statistical analysis of differentially expressed genes were determined. Filtering, mapping, and subsequent analysis were performed using the CLC Genomics Workbench software (Qiagen, Redwood City, CA, USA). Statistical significance was determined by empirical analysis using DGE tool [9]. Differentially expressed genes (fold-change \geq 2.0, FDR adjusted P < 0.05, and q < 0.2 [10]) were used for further analyses. To predict upstream transcriptional regulators, genes that had significant differences in expression were interpreted using the upstream regulator function of the Ingenuity Pathway Analysis software (IPA, Qiagen). This helped to determine how many known targets of each transcriptional regulator were present in the differentially expressed gene list and calculated overlapping P values to measure statistically significant overlap. Fisher’s exact test was used in the analysis of gene set enrichment in each functional category and significance was generally attributed to a P value of less than 0.01. Gene expression analysis data have
been registered (DRA006210).

Statistical analysis

Mitochondrial number, total cell number, fluorescent intensity following immunostaining, and ATP contents between the two types of blastocysts were compared using the Student’s t-test. P-values < 0.05 were considered statistically significant.
Results

Differentially expressed genes between embryos produced *in vitro* and *in vivo*

In First, we selected significantly overexpressed genes (2.5-fold difference) in embryos produced either *in vitro* (No. 2488) or *in vivo* (No. 1174) and analyzed them using a functional annotation tool (DAVID software, https://david.ncifcrf.gov/). As shown in Table 1, genes expressed higher in *in vitro* produced blastocyst were annotated in Focal adhesion, ECM-receptor interaction and PI3K-Akt signaling and the genes which expressed higher in *in vivo* produced embryos were annotated to Oxidation-reduction process, mitochondrion organization, and mitochondrial translation. As such, we compared the expression of genes associated with mitochondrial proteins. Interestingly, genes coded in the mitochondrial genome had lower expression levels, whereas the nuclear-encoded genes associated with mitochondrial proteins had higher expression levels in embryos produced *in vivo* compared with those produced *in vitro* (Table 2). Furthermore, IPA revealed 194 upstream regulators (Supplementary Table 1), which included miRNAs, as activators in embryos produced *in vivo* and trichostatin A, 5-azacitidine, hydrogen peroxide, p38MAPK, ERK, and caspase as activators in blastocysts produced *in vitro* (Table 3).

We further assessed mitochondrial number and function in the blastocysts. Mitochondrial DNA copy number in *in vivo* produced blastocysts was 130,793 ± 21,527 which was significantly less than that of *in vitro* produced embryos (P < 0.01, 180,560 ± 30,426, Figure 1-A). ATP content in *in vivo* produced embryos was less than that observed in *in vitro* produced embryos (0.40 ± 0.1 and 2.3 ± 0.2, P < 0.01, Figure 1-B). The high mitochondrial copy number in embryos produced *in vitro* was confirmed by the high expression levels of TOMM20 in these embryos (1.44-fold, P < 0.01, Figure 2-A). When observing the embryos in a bright field, the *in vivo* produced embryos looked more transparent, but the total cell number was similar between the two blastocysts groups (Figure 2-B).
Discussion

This study investigated the gene expressions in blastocysts produced in vitro and in vivo and demonstrated differential backgrounds with upstream regulators and pathways of the differentially expressed genes. In addition, we found significant differences in mitochondrial number and ATP contents between blastocysts produced in vitro and in vivo.

Until now, studies reporting on the differences in gene expression between embryos produced in vitro and in vivo relied on using reverse transcription PCR with housekeeping genes H2A, B2M, ACTB, GAPDH, and others as controls [11]. However, our results revealed differences in the expression levels of the housekeeping genes between in vitro and in vivo produced embryos (Supplementary Table 2). Therefore, the results of previous gene expression studies should be carefully evaluated.

After functionally annotating genes with significant difference between groups, we found that gene upregulation in in vitro embryos was associated with Focal adhesion, ECM-receptor interaction and PI3K-Akt signaling. The results indicated that in vitro culture conditions upregulate interactions between embryos and the culture environment. We further explored the upstream regulators of the differentially expressed genes by IPA analysis. Predicted activation factors of embryos produced in vitro (N.134) included trichostatin A and 5-azacitizine, which indicated hyperacetylation and hypomethylation in embryos produced in vitro. Consistent with our results, previous studies have reported that in vitro culture conditions induce changes in methylation and acetylation [12]. Additionally, hydrogen peroxide, p38 MAPK, caspase, and NFkB have also been predicted as upstream regulators. The results indicate that certain adverse factors in the culture conditions and cellular stress including reactive oxygen species and apoptosis, may present in vitro produced embryos.

Interestingly, several microRNAs were presumed to act as activation upstream regulators for embryos developed in vivo. There have been very few reports about the function of these miRNAs in bovine embryo development. They are present in the exosomes in bovine oviductal fluids and uterine fluids, and the hypothesis that miRNAs are upstream regulators suggests that certain miRNAs regulate
embryo development in vivo. Functional annotation of genes upregulated in in vivo embryos showed that genes associated with mitochondria are a promising avenue for differential gene expression between blastocysts produced in vitro and in vivo. Nuclear coded mitochondrial genes had higher expression levels whereas mitochondrial genome coded genes had lower expression levels in embryos produced in vivo (Table 3). These results indicate that the mitochondria in embryos are differentially regulated between in vitro and in vivo conditions. In the case of oocytes, greater mitochondrial content is an indicator of good oocytes [13, 14] whereas this is not the case in blastocysts. Recently, several studies reported that low mitochondrial content was linked to a high developmental ability of the blastocysts [15, 16]. In addition, high mitochondrial DNA copy number was found in equine blastocysts produced in vitro as compared with embryos produced in vivo [17]. Furthermore, high mitochondrial DNA content is reported to be associated with aneuploidy of the embryos [18, 19]. The results of the current study showed that although the total cell number was the same, mitochondrial DNA copy number and expression levels of TOMM20 (outer mitochondrial membrane protein) were higher for blastocysts produced in vitro. ATP generation is one of the main mitochondrial functions and ATP is one of the markers that reflect the quality of oocytes [20, 21]. Though ATP content in bovine blastocysts produced in vitro and in vivo has not been extensively investigated, an earlier study [22] reported that culturing embryos in vitro increased the ATP content in mouse blastocysts. In the present study, we observed significantly high ATP content in blastocysts produced in vitro. These findings suggest that mitochondrial activity is abnormally high in in vitro culture conditions. The limitation of the present study is that we used in vitro matured, fertilized, and cultured blastocysts, as well as superovulated blastocysts. Each in vitro step, as well as the superovulation process, may have affected embryo quality [23]. In the present study, we used blastocysts developed in vivo (6.5 days post insemination), which are younger than those from embryos produced in vitro (7.0 days after fertilization). In addition, the timing of fertilization, i.e., the timing of ovulation and sperm-oocyte interaction in the oviduct is unclear for embryos produced in vivo. This difference is likely linked to differential gene expression in the different developmental stages of embryos. Therefore, we cannot
define a causal factor for the differences found between in vivo and in vitro produced embryos. Furthermore, studies using a greater number of cows are required.

In conclusion, the gene expression levels differ between embryos produced in vitro and in vivo and mitochondrial quantity and function extensively differ between the two kinds of blastocysts.
References

1. **Barnwell CV, Farin PW, Whisnant CS, Alexander JE, Farin CE.** Maternal serum progesterone concentration and early conceptus development of bovine embryos produced *in vivo* or *in vitro*. *Domest Anim Endocrinol* 2015; **52**: 75-81.

2. **Farin PW, Farin CE.** Transfer of bovine embryos produced *in vivo* or *in vitro*: survival and fetal development. *Biol Reprod* 1995; **52**: 676-82.

3. **Ushijima H, Akiyama K, Tajima T.** Transition of cell numbers in bovine preimplantation embryos: *in vivo* collected and *in vitro* produced embryos. *J Reprod Dev* 2008; **54**: 239-43.

4. **Thompson JG.** Comparison between *in vivo*-derived and *in vitro*-produced pre-elongation embryos from domestic ruminants. *Reprod Fertil Dev* 1997; **9**: 341-54.

5. **Iwata H, Minami N, Imai H.** Postnatal weight of calves derived from *in vitro* matured and *in vitro* fertilized embryos developed under various oxygen concentrations. *Reprod Fertil Dev* 2000; **12**: 391-6.

6. **Bauer BK, Isom SC, Spate LD, Whitworth KM, Spollen WG, Blake SM, Springer GK, Murphy CN, Prather RS.** Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in *in vivo*-derived versus *in vitro*-cultured porcine blastocyst stage embryos. *Biol Reprod* 2010; **83**: 791-8.

7. **Salilew-Wondim D, Saeed-Zidane M, Hoelker M, Gebremedhn S, Poirier M, Pandey HO, Tholen E, Neuhoff C, Held E, Besenfelder U, Havlicek V, Rings F, Fournier E, Gagné D, Sirard MA, Robert C, Gad A, Schellander K, Tesfaye D.** Genome-wide DNA methylation patterns of bovine blastocysts derived from *in vivo* embryos subjected to *in vitro* culture before, during or after embryonic genome activation. *BMC Genomics* 2018; **19**: 424.

8. **Iwata H, Hashimoto S, Ohota M, Kimura K, Shibano K, Miyake M.** Effects of follicle size and electrolytes and glucose in maturation medium on nuclear maturation and developmental competence of bovine oocytes. *Reproduction* 2004; **127**: 159-64.
9. **Robinson, M. D., McCarthy, D. J., and Smyth, G. K.** edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139-140.

10. **Benjamini Y, Hochberg Y.** Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol 1995; 57: 289-300.

11. **Tesfaye D, Ponsuksili S, Wimmers K, Gilles M, Schellander K.** A comparative expression analysis of gene transcripts in post-fertilization developmental stages of bovine embryos produced *in vitro* or *in vivo*. Reprod Domest Anim 2004; 39: 396-404.

12. **Wu FR, Liu Y, Shang MB, Yang XX, Ding B, Gao JG, Wang R, Li WY.** Differences in H3K4 trimethylation in *in vivo* and *in vitro* fertilization mouse preimplantation embryos. Genet Mol Res 2012; 11: 1099-108.

13. **Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, Liang XY.** Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in *in vitro* matured human oocytes. Hum Reprod 2007; 22: 1681-6.

14. **Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA.** The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 2010; 83:52-62.

15. **Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, Diaz-Gimeno P, Valbuena D, Simón C.** Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril 2015; 104: 534-41.

16. **Seli E.** Mitochondrial DNA as a biomarker for *in vitro* fertilization outcome. Curr Opin Obstet Gynecol 2016; 28: 158-63.

17. **Hendriks WK, Colleoni S, Galli C, Paris DBBP, Colenbrander B, Stout TAE.** Mitochondrial DNA replication is initiated at blastocyst formation in equine embryos. Reprod Fertil Dev 2019; 31: 570-578.

18. **de Los Santos MJ, Diez Juan A, Mifsud A, Mercader A, Meseguer M, Rubio C, Pellicer A.** Variables associated with mitochondrial copy number in human blastocysts: what can we learn from trophectoderm biopsies? Fertil Steril 2018; 109: 110-117.
19. Klimczak AM, Pacheco LE, Lewis KE, Massahi N, Richards JP, Kearns WG, Saad AF, Crochet JR. Embryonal mitochondrial DNA: relationship to embryo quality and transfer outcomes. *J Assist Reprod Genet* 2018; 35: 871-877.

20. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after *in vitro* maturation: correlation with morphological criteria and developmental capacity after *in vitro* fertilization and culture. *Biol Reprod* 2001; 64: 904-9.

21. Ge H, Tollner TL, Hu Z, Dai M, Li X, Guan H, Shan D, Zhang X, Lv J, Huang C, Dong Q. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation *in vitro* on oocyte quality and subsequent embryo developmental competence. *Mol Reprod Dev* 2012; 79: 392-401.

22. Spielmann H, Jacob-Mueller U, Schulz P, Schimmel A. Changes of the adenine ribonucleotide content during preimplantation development of mouse embryos *in vivo* and *in vitro*. *J Reprod Fertil* 1984; 71: 467-73.

23. Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. *Epigenetics* 2014; 9: 803-15.
Table 1. Functional annotation (Kegg pathway) of genes expressing greater (2.5-fold) in embryos *in vitro* or *in vivo*

Origin	Term	P-Value
VITRO	Focal adhesion	7.24151E-11
	ECM-receptor interaction	1.8947E-09
	PI3K-Akt signaling pathway	1.3372E-06
	Oxytocin signaling pathway	3.22306E-06
	Protein digestion and absorption	1.1462E-05
VIVO	Oxidation-reduction process	3.37163E-16
	Mitochondrion organization	3.79235E-12
	Mitochondrial translation	7.73522E-12
	Cellular respiration	4.16333E-11
	Respiratory electron transport chain	5.72642E-10
Table 2. The number of differentially expressed nuclear and mitochondrial genes encoding mitochondrial proteins

Origin	location	Total	Down	Up
Mt		19	19	0
Nucleus	Inner membrane	58	5	53
	Outer membrane	23	5	18
	Matrix	82	19	63
	Cytoplasmic side	24	7	18
	Integral membrane	59	13	46

Down; Fold change < −1.0, Up; Fold change > 1.0.
Table 3. A part of the upstream regulators of differentially expressed genes between embryos developed *in vivo* and *in vitro*

Chemical drug	Activation z-score	P value
curcumin	2.741	0.00584
mir-210	3.096	0.000303
mir-17	2.537	0.000852
mir-10	2.341	0.00171
mir-15	2.214	0.0293
mir-193	2.53	0.0377
mir-25	3.106	0.0481
5-azacytidine	−2.775	0.00384
Akt	−3.785	0.00412
caspase	−2.035	0.00296
Creb	−2.541	0.0000136
D-glucose	−2.184	5.39E-11
ERK	−3.03	0.0000464
hydrogen peroxide	−3.589	0.000283
NFKB (complex)	−2.321	0.000851
P38 MAPK	−3.852	0.00606
Tgf beta	−3.942	0.00164
trichostatin A	−2.403	0.0000227
Vegf	−2.077	8.86E-08
Fig. 1. Mitochondrial DNA copy number (A) and ATP contents in blastocyst produced in vitro and in vivo. a–b; P < 0.05.
Fig. 2. TOMM20 expression levels (A) and total cell number of blastocysts (B) produced in vitro and in vivo. Fluorescent intensity of the embryos developed in vivo was defined as 1.0. (C) Representative image of embryos. a–b; P < 0.05.
Supplementary Table 1. Upstream regulators of differentially expressed genes between embryos developed in vivo and in vitro

Upstream Regulator	Molecule Type	Predicted State	Activation z-score	p-value of overlap
geldanamycin	chemical - endogenous non-mammalian	Activated	2.452	0.0396
LY294002	chemical - kinase inhibitor	Activated	3.713	3.4E-06
PD98059	chemical - kinase inhibitor	Activated	2.975	1.35E-05
SB203580	chemical - kinase inhibitor	Activated	4.307	0.0129
PP2/AG1879 tyrosine kinase inhibitor	chemical - kinase inhibitor	Activated	2.332	0.0482
sirolimus	chemical drug	Activated	2.262	1.48E-10
camptothecin	chemical drug	Activated	3.233	8.13E-10
plicamycin	chemical drug	Activated	3.478	2.26E-06
arsenic trioxide	chemical drug	Activated	2.347	9.74E-05
halofuginone	chemical drug	Activated	2.621	0.00382
curcumin	chemical drug	Activated	2.741	0.00584
actinomycin D	chemical drug	Activated	3.557	0.00871
vitamin E	chemical drug	Activated	2.297	0.0221
ramipril	chemical drug	Activated	3.162	0.029
eplerenone	chemical drug	Activated	2.597	0.0323
cycloheximide	chemical reagent	Activated	3.207	0.000497
1,2-dithiol-3-thione	chemical reagent	Activated	2.474	0.000676
BAPTA-AM	chemical reagent	Activated	2.097	0.0176
4-nitroquinoline-1-oxide	chemical toxicant	Activated	2.236	0.0318
KRAS	enzyme	Activated	2.035	1.17E-10
RHEB	enzyme	Activated	2.382	7.85E-05
POR	enzyme	Activated	3.573	0.00114
ACACB	enzyme	Activated	2.425	0.0318
GPR37	g-protein coupled receptor	Activated	2.216	0.0138
estrogen receptor	group	Activated	2.135	3.26E-08
ADRB	group	Activated	3.903	2.28E-06
ANGPT1	growth factor	Activated	2.419	0.0204
Gene Symbol	Gene Type	Status	Value 1	Value 2
-------------	-----------	-----------------	---------	-----------
PKD1	ion channel	Activated	2.65	0.000211
PEX5L	ion channel	Activated	2.425	0.00851
PRKAA2	kinase	Activated	2.034	0.0116
AHR	ligand-dependent nuclear receptor	Activated	2.003	0.000976
NR0B2	ligand-dependent nuclear receptor	Activated	2.764	0.0153
miR-200b-3p	mature microrna	Activated	2.668	0.00726
mir-210	microrna	Activated	3.096	0.000303
mir-17	microrna	Activated	2.537	0.000852
mir-10	microrna	Activated	2.341	0.00171
mir-15	microrna	Activated	2.214	0.0293
mir-193	microrna	Activated	2.53	0.0377
mir-25	microrna	Activated	3.106	0.0481
FBN1	other	Activated	3.12	0.0013
MIR17HG	other	Activated	2.474	0.00134
LMNB1	other	Activated	2.621	0.00192
CR1L	other	Activated	3.212	0.00273
UPF2	other	Activated	2.01	0.00424
NPPB	other	Activated	2.596	0.00424
PEBP1	other	Activated	2.183	0.0226
RBM5	other	Activated	2.012	0.0331
RB1	transcription regulator	Activated	2.3	3.29E-08
VHL	transcription regulator	Activated	2.212	3.29E-07
E2F3	transcription regulator	Activated	2.201	2.27E-06
KLF3	transcription regulator	Activated	2.017	8.53E-06
SNAI1	transcription regulator	Activated	2.331	1.62E-05
SPDEF	transcription regulator	Activated	3.549	3.43E-05
SMAD7	transcription regulator	Activated	4.241	9.69E-05
SMAD5	transcription regulator	Activated	2.395	0.000197
TAF4	transcription regulator	Activated	2.688	0.0017
HOXC8	transcription regulator	Activated	2.138	0.00189
FOXA1	transcription regulator	Activated	2.011	0.00326
	Category	Status	Value 1	Value 2
------------------------	---------------------------	---------------	-----------	-----------
FOXF2	transcription regulator	Activated	2.425	0.0228
WWC1	transcription regulator	Activated	2.236	0.0376
GnRH analog	biologic drug	Inhibited	-2.008	1.04E-10
ghrelin	biologic drug	Inhibited	-2	0.00765
vancomycin	biologic drug	Inhibited	-2.2	0.041
D-glucose	chemical - endogenous mammalian	Inhibited	-2.184	5.39E-11
tretinoin	chemical - endogenous mammalian	Inhibited	-4.333	6.22E-11
dihydrotestosterone	chemical - endogenous mammalian	Inhibited	-2.458	7.39E-07
nitric oxide	chemical - endogenous mammalian	Inhibited	-2.156	0.000134
hydrogen peroxide	chemical - endogenous mammalian	Inhibited	-3.589	0.000283
cholic acid	chemical - endogenous mammalian	Inhibited	-2.17	0.00348
sphingosine-1-phosphate	chemical - endogenous mammalian	Inhibited	-2.055	0.0313
benzoyloxy carbonyl-Leu-Leu-Leu aldehyde	chemical - protease inhibitor	Inhibited	-3.489	0.00351
lactacystin	chemical - protease inhibitor	Inhibited	-3.017	0.00471
lipopolysaccharide	chemical drug	Inhibited	-3.055	1.36E-09
dexamethasone	chemical drug	Inhibited	-2.709	3.03E-09
decitabine	chemical drug	Inhibited	-5.924	2.61E-07
doxorubicin	chemical drug	Inhibited	-3.26	4.13E-07
trichostatin A	chemical drug	Inhibited	-2.403	2.27E-06
CD 437	chemical drug	Inhibited	-2.083	4.08E-06
fulvestrant	chemical drug	Inhibited	-2.138	1.81E-05
valproic acid	chemical drug	Inhibited	-2.991	2.01E-05
calcitriol	chemical drug	Inhibited	-3.271	6.82E-05
cocaine	chemical drug	Inhibited	-2.644	0.000623
phorbol myristate acetate	chemical drug	Inhibited	-3.847	0.000705
dimethyl sulfoxide	chemical drug	Inhibited	-2.25	0.000902
isoquercitrin	chemical drug	Inhibited	-2.975	0.00102
ezetimibe	chemical drug	Inhibited	-2.796	0.0012
mitomycin C	chemical drug	Inhibited	-2.191	0.00169
bexarotene	chemical drug	Inhibited	-2.086	0.00191
5-azacytidine	chemical drug	Inhibited	-2.775	0.00384
Chemical/Complex	Type	Status	Log IC50	pIC50
--------------------------------------	-------------------	----------	----------	---------
isoproterenol	chemical drug	Inhibited	-2.968	0.00583
SN-38	chemical drug	Inhibited	-2.449	0.00719
lovastatin	chemical drug	Inhibited	-3.109	0.0132
phenacetin	chemical drug	Inhibited	-2.271	0.0176
pitavastatin	chemical drug	Inhibited	-2.957	0.0249
gentamicin C	chemical drug	Inhibited	-2.236	0.0263
gemcitabine	chemical drug	Inhibited	-2.019	0.0293
daunorubicin	chemical drug	Inhibited	-2.037	0.0323
triamterene	chemical drug	Inhibited	-2.046	0.0423
metribolone	chemical reagent	Inhibited	-2.101	0.00327
cobalt chloride	chemical reagent	Inhibited	-2.1	0.000774
hexamethylene bisacetamide	chemical reagent	Inhibited	-2.054	0.00633
fenamic acid	chemical reagent	Inhibited	-2.303	0.0364
thioacetamide	chemical toxicant	Inhibited	-3.622	3.66E-05
benzo(a)pyrene	chemical toxicant	Inhibited	-2.059	5.09E-05
thapsigargin	chemical toxicant	Inhibited	-2.209	0.0116
hexachlorobenzene	chemical toxicant	Inhibited	-2.099	0.0179
NFkB (complex)	complex	Inhibited	-2.321	0.000851
Cg	complex	Inhibited	-2.381	0.00324
PI3K (complex)	complex	Inhibited	-4.168	0.00418
Smad2/3-Smad4	complex	Inhibited	-2.184	0.0134
T3-TR-RXR	complex	Inhibited	-3.85	0.0139
OSM	cytokine	Inhibited	-3.165	1.17E-08
EDN1	cytokine	Inhibited	-3.909	5.37E-06
PRL	cytokine	Inhibited	-2.273	1.92E-05
CD40LG	cytokine	Inhibited	-2.103	0.000238
IL4	cytokine	Inhibited	-2.305	0.00107
IFNA2	cytokine	Inhibited	-2.73	0.00236
CD44	enzyme	Inhibited	-3.066	2.1E-06
OGT	enzyme	Inhibited	-2	8.82E-05
CYP7A1	enzyme	Inhibited	-2.538	0.000153
Gene/Group	Description	Status	log2(fold change)	p-value
--------------	--------------------------------------	----------	------------------	-------------
GNA12	enzyme	Inhibited	-2.262	0.00728
AKR1B1	enzyme	Inhibited	-2.213	0.0217
ADORA2A	g-protein coupled receptor	Inhibited	-2.003	0.00127
GPER1	g-protein coupled receptor	Inhibited	-2.077	0.0054
FSHR	g-protein coupled receptor	Inhibited	-2.975	0.0242
Vegf	group	Inhibited	-2.077	8.86E-08
Creb	group	Inhibited	-2.541	1.36E-05
ERK	group	Inhibited	-3.03	4.64E-05
Tgf beta	group	Inhibited	-3.942	0.00164
caspase	group	Inhibited	-2.035	0.00296
Akt	group	Inhibited	-3.785	0.00412
P38 MAPK	group	Inhibited	-3.852	0.00606
TGFB1	growth factor	Inhibited	-5.719	1.81E-16
TGFB3	growth factor	Inhibited	-3.907	3.62E-05
NGF	growth factor	Inhibited	-2.201	3.66E-05
AGT	growth factor	Inhibited	-4.727	5.18E-05
TGFB2	growth factor	Inhibited	-3.416	6.82E-05
INHBA	growth factor	Inhibited	-3.805	0.000117
FGF2	growth factor	Inhibited	-2.853	0.00132
IGF1	growth factor	Inhibited	-3.388	0.00764
TGFA	growth factor	Inhibited	-2.097	0.0362
PTK2	kinase	Inhibited	-2.01	6.19E-06
PRKCE	kinase	Inhibited	-2.667	0.00181
RAF1	kinase	Inhibited	-2.439	0.00314
EIF2AK4	kinase	Inhibited	-2.382	0.0066
CHUK	kinase	Inhibited	-2.8	0.00902
MAPK9	kinase	Inhibited	-2.555	0.0109
IKBKB	kinase	Inhibited	-2.886	0.014
MAP2K1	kinase	Inhibited	-2.414	0.0247
ESR1	ligand-dependent nuclear receptor	Inhibited	-2.925	5.21E-24
AR	ligand-dependent nuclear receptor	Inhibited	-2.692	0.00001
Gene	Category	Activity	Value1	Value2
------------	------------------	-----------	------------	------------
PGR	ligand-dependent nuclear receptor	Inhibited	-2.598	0.000269
RICTOR	other	Inhibited	-4.097	1.23E-11
NRG1	other	Inhibited	-2.662	2.29E-05
PTH	other	Inhibited	-2.027	0.000292
SERPINA3	other	Inhibited	-2	0.000452
CYR61	other	Inhibited	-3.485	0.0058
AMER1	other	Inhibited	-2	0.0192
SH2B3	other	Inhibited	-2	0.0192
F2	peptidase	Inhibited	-2.937	2.59E-06
MBTPS1	peptidase	Inhibited	-2.333	0.000219
HTT	transcription regulator	Inhibited	-3.072	1.64E-11
CTNNB1	transcription regulator	Inhibited	-3.814	1.58E-10
KDM5A	transcription regulator	Inhibited	-3.979	1.89E-08
SP1	transcription regulator	Inhibited	-3.785	6.25E-08
HIF1A	transcription regulator	Inhibited	-4.284	1.02E-07
EGR1	transcription regulator	Inhibited	-3.813	1.28E-06
GLI1	transcription regulator	Inhibited	-3.195	1.49E-06
CDKN2A	transcription regulator	Inhibited	-3.474	1.72E-06
TCF7L2	transcription regulator	Inhibited	-4.288	2.95E-06
SMARCA4	transcription regulator	Inhibited	-3.328	4.42E-06
EP300	transcription regulator	Inhibited	-2.298	2.12E-05
PPARGC1B	transcription regulator	Inhibited	-2.566	2.18E-05
SREBF2	transcription regulator	Inhibited	-3.535	2.26E-05
ERG	transcription regulator	Inhibited	-3.772	2.52E-05
KLF4	transcription regulator	Inhibited	-3.073	3.07E-05
MYOCD	transcription regulator	Inhibited	-2.316	4.76E-05
SREBF1	transcription regulator	Inhibited	-5.135	5.09E-05
SOX4	transcription regulator	Inhibited	-3.211	0.000744
MYOD1	transcription regulator	Inhibited	-2.386	0.00151
EGR2	transcription regulator	Inhibited	-2.672	0.00254
CEBPA	transcription regulator	Inhibited	-2.794	0.00293
Gene	Category	Status	Fold Change	p-value
--------	-----------------------	----------	-------------	----------
HNF1A	transcription regulator	Inhibited	-2.886	0.00307
ATF4	transcription regulator	Inhibited	-2.91	0.0033
ETV4	transcription regulator	Inhibited	-2.155	0.0166
EBF1	transcription regulator	Inhibited	-2.839	0.0169
ARNT	transcription regulator	Inhibited	-2.093	0.0174
CDX2	transcription regulator	Inhibited	-2.002	0.0177
TOB1	transcription regulator	Inhibited	-2.164	0.0232
SMAD2	transcription regulator	Inhibited	-2.19	0.0414
SMARCB1	transcription regulator	Inhibited	-2.277	0.0425
ITGA5	transmembrane receptor	Inhibited	-2.991	0.000437
ATP7B	transporter	Inhibited	-2.5	0.00104
ABCB6	transporter	Inhibited	-3.015	0.0037
Supplementary Table 2. Expression levels of housekeeping genes between embryos developed *in vivo* and *in vitro*

Name	Fold Change	P-Value
ATP5F1B	3.472468306	0
ATP5F1C	2.72931513	0
ATP5F1D	3.111822042	0
ATP5F1E	2.33684366	0
RPLP0	-2.399189941	0
RPS18	-1.94437609	0
PPIA	2.26404619	0
TFRC	-4.344992075	0
RPLP1	-2.548654792	0
HPRT1	3.427693936	0
TBP	2.055735901	0
GAPDH	1.570291761	6.197E-11
ACTB	3.476044971	0
B2M	1.9113208	0
PGK1	2.174724813	0
GUSB	1.234961642	0.003732
YWHAZ	2.170849883	0