Review

Salmonella Typhimurium as a potential anticancer agent: A Review

SO Enejiyon¹, NU Adabara¹, MM Wuna¹, RA Fasasi¹

Sri Lankan Journal of Infectious Diseases 2020 Vol.10(2):98-113

DOI: http://dx.doi.org/10.4038/sljid.v10i2.8289

Abstract

Bacteria mediated cancer therapy has not been used as much as other methods, despite being considered a potential adjunct in anticancer therapeutic strategy for decades. However, in recent years, there has been considerable interest in exploration of the option of bacteria mediated cancer immunotherapy. The conventional anticancer therapy does not eradicate cancer completely. It often fails and has several other limitations which can easily be overcome through the bacteria mediated approach as an adjunctive therapy.

Members of the genus *Salmonella* have the ability to colonize all forms of tumours and their metastasis much more efficiently than other bacteria. *Salmonella* has over 2500 serovars of which *Salmonella* Typhimurium, a non-typhoidal strain, is the most extensively studied for its anticancer activity. *S*. Typhimurium has the intrinsic attribute of being able to selectively colonize solid tumours and their metastasis.

S. Typhimurium is able to target and destroy tumours in three specific ways; inducing immune response to the presence of tumours, utilizing bacterial toxins to directly activate caspase-3, (an important enzyme of the apoptotic pathway) and also as a vector in delivering of anti-cancer compounds to tumour sites. *S*. Typhimurium is currently considered as a bacterium with great potential in the field of cancer immunotherapy. In this review, the explanation of the mechanisms of anticancer activity of live attenuated and engineered *S*. Typhimurium strains *in vitro* and *in vivo* is attempted.

Keywords: bacteria, cancer, immunotherapy, Salmonella, tumours.

Introduction

Cancer is a major cause of death in millions of individuals throughout the world.¹ According to the global observatory report of the International Agency for Research on Cancer (IARC), the
The burden of cancer in 2018 is estimated to have risen to about 18.1 million new cases and 9.6 million deaths. One in 5 men and one in 6 women will develop cancer during their lifetime before the age of 75 and one in 8 men and one in 11 women will die from the disease. Cancer is a leading cause of economic loss worldwide due to premature deaths, disabilities, vast sum of money spent on treatment and also the loss of economic and social activity. The World Health Organization (WHO) estimated that the number of cancer cases will increase to 19 million by 2025, 22 million by 2030 and 24 million by 2035. More than 60% of the global cases of cancer occur in Africa, Asia and Central and South America, and these regions also tend to account for about 70% of the world cancer deaths.

Oncotherapy

Among the well-known and practiced strategies used in oncotherapy, surgery is the most common conventional cancer treatment approach and has been used for decades. However, it has not been an effective treatment for metastatic disease which requires combination treatment involving other conventional therapies such as radiation and chemotherapy. Conventional therapies are characterized by poor survival rates due to several limitations. Surgery and radiation therapy are associated with being limited to localized tumours. Chemotherapy may induce severe side effects including, toxicity, poor tumour targeting, limited tissue penetration, development of drug-resistance and lack of tumour specificity, resulting in undesirable side effects on healthy cells. These limitations are infrequently associated with incomplete eradication of cancerous cells, possible regrowth and/or secondary neoplasia. It is extremely important to find effective adjuncts that can complement existing treatment regimens in tackling the menace of cancer that has remained one of the major challenges of the 21st century. Immunotherapy using bacteria happens to be a promising research direction that needs to be fully explored.

Bacteria-mediated oncotherapy

The idea of treating tumours with bacteria was first explored in the middle of the 19th century when Dr. William Coley (1862-1936) observed the regression of tumours in patients who developed postoperative bacterial infections. This observation prompted him to develop a mixture of bacterial extracts (*Streptococcus pyogenes* and *Serratia marcescens*) to successfully treat patients with different types of cancer. Bacteria were previously considered as one of the primary agents involved in the causation of cancer. However, recent research has shown that bacteria can be an effective agent for cancer treatment. Bacteria-mediated oncotherapy has evolved to overcome most of the limitations associated with conventional therapeutic methods. Bacterial species can also be manipulated genetically to overcome many of the limitations that frequently impede cancer therapy by directly targeting cancer cells, destroying these cells through innate bacterial toxicity, competing for nutrients or acting as a vector in delivery of anti-cancer agents.

The use of bacteria for cancer therapy has many advantages over conventional cancer therapies. The amount of bacteria accumulation in tumours is approximately one thousand times higher than in normal organs. The highly proliferative nature of the bacterium enhances its therapeutic effect, thereby circumventing the need for external supply. Although these bacteria grow in viable as well as necrotic regions of tumours, nutritional auxotrophy severely limits growth in normal tissues.

Several species and strains of anaerobes (obligate and facultative) have been explored for their possible anti-cancer potential. These include *Mycobacterium bovis*, *Streptococcus pyogenes*, OK
Serratia marcescens, Magnetococcus marinus, Clostridium sp., Bifidobacterium sp., Listeria sp., Escherichia coli and Salmonella sp. Among all these bacteria, S. Typhimurium has been the most extensively studied for its potential use in cancer therapy with varying degrees of success.11-15 S. Typhimurium, a non-typhoidal Salmonella strain which is a Gram-negative, facultative anaerobic bacterium, is able to grow and replicate within the cells of it host.16 S. Typhimurium can penetrate deep into tumours and are unaffected by the tumour’s immune evasion strategies. In addition, S. Typhimurium is motile and can easily be manipulated genetically.

A large number of studies have shown the immunotherapeutic role of S. Typhimurium strain both in vitro and in murine models.17,18 Attenuated and engineered S. Typhimurium strains have been demonstrated to eliminate virulence while provoking anti-tumour activity through different mechanisms.19 S. Typhimurium also serves as a suitable vector in antitumour immunotherapy15 with the following characteristics; their tumour colonizing ability20,21, metastasis12 and affinity for antigen-presenting cells.22 Systemic infection with Salmonella stimulates the expression of proinflammatory cytokine and infiltration of immune cell in the host due to immunostimulation by Salmonella lipopolysaccharide and other components.23

Selectivity of S. Typhimurium for tumour tissue

The choice of S. Typhimurium as a therapeutic alternative against cancer,11,24 is due mainly to the ability of the bacterium to selectively colonize the tumour microenvironment.25 S. Typhimurium is able to successfully penetrate and invade tumour tissue as they are drawn towards chemical compounds produced by cancer cells such as aspartate, serine, citrate, ribose or galactose, which serve as chemoattractants and preferentially grow within tumour tissues.14 Migration of the organism towards the tumour site is based on the ability of the organism to sense nutrients using receptors that are located on the outer membrane of the bacterial cell.26 Two of those receptors have been characterized; the TAR receptor (which detects aspartate secreted by cancerous tissues) and the TRG receptor (which detects ribose found in necrotic tissues). Ethanolamine, a chemical compound found in high concentration in neoplasia27 has also been shown to act as a chemotactic agent. The excision of the eutC gene (portion of the operon encoding the enzyme ethanolamine-ammonia-lyase which metabolizes ethanolamine) in S. Typhimurium, reduced its colonization in a murine model of breast cancer.28,29

The tumour microenvironment is characterized by hypoxia, with oxygen concentrations ranging between 10 to 30 mmHg which is caused by rapidly growing tumours with insufficient blood supply,15,30 acidity that is conditioned by lactic acid resulting from anaerobic metabolism due to reduced oxygen,31 and necrosis resulting from the death of tumour cells due to insufficient nutrients and excessive uncontrolled growth.24 These characteristics are thought to explain why S. Typhimurium selectively colonizes tumour tissues. The anaerobic property of hypoxic or necrotic regions within tumours enhances growth of both obligate and facultative anaerobes.24 In addition, areas of necrosis may also supply nutrients including purines to further promote the growth of bacteria in the tumour.32
Direct tumour-killing activity of S. Typhimurium

The mechanisms underlying the direct anti-tumour activities of *Salmonella* have not been clearly elucidated but it is recognized that several mechanisms are involved in the *Salmonella*-induced killing of tumour cells.\(^{33}\) Multiple mechanisms are utilized by *S. Typhimurium* to induce tumour apoptosis and this includes, but is not limited to competition for nutrients, stimulation of immune response and production of toxins.\(^{23}\)

Salmonella may also cause death of tumour cells directly by the activation of apoptosis and autophagic pathways using 3-methyladenine (an autophagy inhibitor) and Z-VAD-FMK (an apoptosis inhibitor).\(^{34}\) The signalling pathways leading to the activation of autophagy induced by bacteria in tumour cells is still being investigated. One of the pathways found to negatively regulate autophagy in tumour cells is the AKT/mTOR/p70S6K signalling pathway.\(^{34,35}\) Levels of phosphorylated AKT, mTOR, and p70S6K decreased significantly in tumour cells treated with *S. Typhimurium*.\(^{36}\) These results showed that *Salmonella* can induce autophagic activities as well as caspase-dependent apoptosis in tumour cells. Autophagy may occur simultaneously with apoptosis in tumour cells exposed to *Salmonella*. Also, at later phases of infection, autophagy may partially participate in death of tumour cells by enhancing apoptosis. When apoptosis is barred, infected tumour cells undergo enhanced autophagy. *Salmonella* treatment efficiently destroys tumour cells by inducing both autophagy and apoptosis, which combine to induce cell death cooperatively by modifying the expression of beclin-1 and caspase.\(^{19}\)

Bacterial replication within tumours and eventual lysis of tumour cells may stimulate cell-mediated immune responses to tumour cells. Higher oncolysis could account for an increased infiltration of immune cells into tumours. The cells undergoing *Salmonella*-induced cell death show heterogeneous morphological characteristics.\(^{37}\)
S. Typhimurium is attracted to the tumour site by chemoattractants such as galactose, ribose, serine, aspartic acid and ethanolamine. Presence of S. Typhimurium in tumour microenvironment leads to recruitment of phagocytic cells, secretion of cytokines, activation of CD4+ and CD8+ and expression of soluble mediators such as nitric oxide (NO) and VEGF which are essential for activation of immune response and direct oncolytic activity.

Activation of host immune system by Salmonella-tumour interaction

Invasion of S. Typhimurium into the body is expected to stimulate the production of specific immune reactions against specific types of cancer cells. Two possible mechanisms have been proposed to explain the role of Salmonella in activating the host immune system; the chemotactic and motility-based system and the passive initiation of secretion of infiltrating pro-inflammatory cytokines upon intravenous injection of Salmonella.

The development of several immune evading strategies by tumour cells have enabled the generation of more aggressive phenotypes, which have resulted in the development of resistance to tumour immune therapy. The immune response against Salmonella is composed of an immediate response mediated by the innate immune system followed by adaptive immune system. The host immune system also plays a significant role in the regulation of Salmonella-tumour interaction in vivo.

Figure 1: S. Typhimurium selectivity for the tumour, oncolytic activity and activation of immune response

Source: Hernández-Luna MA, Munoz-Lopez P, Luria-Perez R, et al. Infection by Salmonella enterica promotes or demotes tumour development. Salmonella - a reemerging pathogen 2018; 54-71
doi: https://doi.org/10.5772/intechopen.75481
Activation of innate immunity by *Salmonella*

S. Typhimurium can promote anti-tumour immunity as a potent natural adjuvant by activating innate immune cells followed by secretion of cytokines that can recruit and activate other immune cells at the tumour site. In the tumour microenvironment, *S. Typhimurium* induces the reversal of the suppressor environment by enabling the expression of soluble mediators, including inducible nitric oxide synthase and interferon-γ molecules that promote antitumour activity and inhibition of immunosuppressive factors such as interleukin-6 (IL-6) and arginase-1, transforming growth factor-beta (TGF-β) and vascular endothelial growth factor (VEGF). S. Typhimurium expresses soluble mediators which may play a significant role in decreasing the activity of myeloid-derived suppressor cells and promoting the recruitment of intra-tumoural natural killer cells (NK), neutrophils, macrophages, T lymphocytes and B lymphocytes.

It was previously reported that lipopolysaccharide (LPS) found in *S. Typhimurium* might be crucial in the activation and recruitment of immune cells and production of tumour necrosis factor-alpha (TNF-α). TLR4 signalling is involved in the *Salmonella*-induced cytokine expression.

Anti-tumour effectiveness of *Salmonella* depends greatly on the induction of the innate immune response through the toll-like receptor-myeloid differentiation primary response gene (TLR-MYD88) signalling pathway. This is similar to an earlier report that *Salmonella* induces cytokine production and antitumour activities through toll-like receptor 4 (TLR4) signalling, which may aid the clarification of the molecular mechanism of *Salmonella*-induced host antitumour responses. Increased expression of interferon-induced chemokines in the tumour was observed during *Salmonella* treatment *in vivo*. Interferon-dependent chemokines induced by *Salmonella*, such as monokines induced by Interferon-γ (MIC) and IFN-inducible protein-10 (IP-10), are expected to recruit activated effector cells within the tumour. It was further reported that increased expression of pro-inflammatory cytokines (IL-1b and TNF-α) by *S. Typhimurium* into the tumour environment results in tumour regression in response to *S. Typhimurium* infection. In contrast, TNF-α causes apoptosis-induced tumour cell death, IL-1b causes CD8+ cytotoxic T lymphocytes and CD4+ T cells induce tumour cell death. The increased TNF-α in the tumour microenvironment would therefore promote bleeding from the blood vessels of the tumour and allow infiltration by immune response cells which leads to elimination of the tumour cells. Additionally, the presence of *S. Typhimurium* in tumour tissues increases the number of immune effector cells in the spleen, which subsequently migrates to the tumour and contribute to its eradication.

Activation of anti-tumour adaptive immunity by *Salmonella*

Salmonella-induced immune responses, especially the adaptive immune response, may include both anti-*Salmonella*-specific and antitumour-specific antigen responses. *S. Typhimurium* has been utilized as a delivery system of tumour-associated antigen or tumour-specific antigen. Expression and release of tumour-associated antigen or tumour-specific antigen through type I and type III secretion systems of *S. Typhimurium* has the role of inducing a specific immune response against the tumour, considering the great tropism of *S. Typhimurium* for antigen-presenting cells.

Salmonella can cause formation of gap junctions (Cx43) between dendritic cells of the immune system and melanoma cells. The dendritic cells employ peptides transferred from the tumour
cells to induce T cells to recognize and kill tumour cells and also prevent metastasis formation.53 This process has been observed in solid tumours, their metastases,57 as well as, nonsolid tumours.44 \textit{Salmonella} act by recruiting T cells that subdue tumour growth and systemically encourage development of the immune response via the cross-presentation of tumour antigen.53

\textit{S. Typhimurium} and tumour interaction upregulation of the cellular protein connexin43 also results in gap junction formation between cancer cells and antigen presenting cells, thus allowing antigen presenting cells access to pre-processed tumour antigens, which they can then present to T-cells.58 Lysis of tumour cells by \textit{Salmonella} may cause cell-mediated immune responses to tumour cells by increasing the infiltration of CD8+ T cells in the tumour cells. The cytotoxic T cell response against tumour cells may increase the antitumour efficacy of cytokines showing an ability to regulate host immunity and suppress tumour growth recruited by \textit{Salmonella}.47,56,59 Following injection of \textit{Salmonella} into the host cell, strong host immunity may develop, and also, synthesis of specific antibodies directed against \textit{Salmonella}. The immune responses against \textit{Salmonella} existing within the host influence the tumour-targeting potential of \textit{Salmonella} after systemic administration. The limited accumulation of \textit{Salmonella} within the tumour contributes to the inhibition of the \textit{Salmonella}-mediated antitumour response. These results may explain the limited accumulation of \textit{Salmonella} within tumour sites and the non-significant antitumour response after systemic administration in clinical trials.60

Engineered \textit{S. Typhimurium}

\textit{S. Typhimurium} mediated cancer immunotherapy has some limitations which can be countered by the use of engineered or attenuated strains. Some of the limitations include the trigger of host antibacterial responses upon an increase in the concentration of bacteria, which ultimately lead to clearance of the introduced bacteria.61

Prior exposure to the organism may hinder the therapeutic potential of bacteria-mediated tumour therapy and the accompanied cytotoxic effect.60,62 This limiting effect of prior exposure was addressed by engineering \textit{Salmonella} Typhimurium strain SF200, resulting in a modified Lipid A structure through the deletion of DlpXR9, DpagL7 and DpagP8 genes, and mutations of DydiV and DflfF genes to modify flagella synthesis.62

Various strategies have been employed to engineer the bacterium in order to reduce its cytotoxic effects on normal cells. The cytotoxic effect is a major limitation in the development of a safe \textit{Salmonella} strain for immunotherapy. This effect can be reduced by incorporating certain genetic manipulations in the organism to enhance its efficiency in tumour regression.63 A \textit{Salmonella} strain with a synchronized lysis circuit, mediated by a quorum-sensing lysis system, which permits the release of toxic substances in a wobbling manner into the tumour was developed.64 This strain caused a notable reduction of tumour activity along with reduced cytotoxicity on normal cells.

A strategy for controlling therapeutic agent delivery is the engineering of \textit{Salmonella} to produce cytosine deaminase; an enzyme that cleaves the pro-drug 5-fluorocytosine to the active chemotherapeutic agent (5-fluorouracil) inside the tumour.65,66 A genetically engineered strain of \textit{S. Typhimurium} (A1-R) was able to specifically target and penetrate cancer cells.57 As monotherapy, \textit{S. Typhimurium} A1-R was able to inhibit or eliminate primary and metastatic tumours in mouse models of prostate,67 breast,68 lung,69 pancreas,70,71 ovaries,72 stomach,73
cervix,74 sarcoma75 and glioma,76,77 all of which are extremely aggressive tumours. Some genetically manipulated strains of *S. Typhimurium* that have been developed for various studies and clinical trials in cancer immunotherapy are presented in Table 1.

Strain	Mutation	Tumour
S14028	Pur, ilv, arg, ura, aro	Melanoma21
SL7207	aroA, hisG46, cheY, fliGHI, invG, phoP, sseD	Colon cancer78
SL1344	ssrB, purA	Colon cancer78
SL3235	aroA	Plasmocytoma79
VNP20009	purI, msbB	Metastasic melanoma80
Wild-type LT2	ΔppGpp, hisD2550, rpoS, aroA, rfaH, thyA	Prostate cancer, Breast cancer81
14028 auxotrophy	Leu, Arg	Breast cancer67, breast cancer bone metastases22, ovarian72, cervical74, bone tumour and lung metastasis of osteosarcoma75
14028 auxotrophy		Spinal cord glioma72, B-cell lymphoma83
14028 auxotrophy		T-cell lymphoma84
As shown in Figure 2, conventional therapy is indicated in the green box showing the inability of the chemotherapeutic agent to penetrate deep into the tumour. The advantages offered by *Salmonella* sp. are indicated in the blue box showing its motility, specificity, high replication in tumour cells, formation of gap junctions between adjacent cells and as a delivery vector.

S. Typhimurium as a gene delivery vector

S. Typhimurium has been applied as a vector for gene-delivery and other numerous compounds including cytotoxic agents, green fluorescent protein for targeting and visualizing tumours, deoxyribonucleic acid (DNA) used for gene therapy, and small interfering ribonucleic acids (siRNA) to target expression of fundamental proteins within tumours that can be delivered by bacteria to a tumour site. Multiple *S. Typhimurium* strains notably VNP20009, A1-R, and CRC2631, are being developed for targeted delivery of chemotherapeutic agents. The therapeutic potential of *S. Typhimurium* as a means of delivery has also been evaluated by its ability to easily penetrate and destroy tumour cells. Several promoters of *S. Typhimurium* that preferentially respond to the anaerobic environment of the tumour have been identified and explored as delivery vehicles for novel anticancer molecules such as Cp53 peptide and L-asparaginase.
through genetic engineering of the organism, which has resulted in tumour regression.6 The use of murine carcinoma cell lines showed that a recombinant strain of attenuated \textit{S. Typhimurium} expressed a cytotoxin, encoded by the gene LIGHT, which had anti-tumour activity without any substantial toxicity.89

\textbf{Combination therapy with \textit{S. Typhimurium}}

\textit{Salmonella} mediated tumour immunotherapy is no longer focused on using only the organism as a means of battling cancer. Combination of \textit{Salmonella} with other therapeutic options and strategies with anticancer potential are being explored in quite a number of studies.19,90 \textit{Salmonella} was explored as part of a synergistic therapy with chemotherapy using cisplatin, and also as stand-alone immunotherapy for tumours in mice.91 The authors concluded that the synergy of \textit{Salmonella} and cisplatin exerts more additive therapeutic effects in delaying tumour growth and prolonging the survival of the tumour-bearing mice. \textit{Salmonella}’s ability to suppress the expression of multidrug resistant peptides in tumours has encouraged researchers to utilize several cancer chemotherapeutic agents such as cisplatin or 5-Fluorouracil in combination with \textit{Salmonella} for treatment.58,92 \textit{Salmonella} also enhances the response to chemotherapeutic agents by increasing the passage of these drugs between neighbouring tumour cells. Combination of \textit{Salmonella} therapy and cyclophosphamide for treatment improves tumour regression and substantially decreases tumour microvascularization in the melanoma model.93 Effect of chemotherapy using CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) in B-cell non-Hodgkin lymphoma bearing mice was enhanced as a result of pre-treatment with \textit{Salmonella}.94 Pre-treatment with chemotherapy in the mouse model prior to \textit{Salmonella} treatment showed enhanced natural killer cell cytotoxic activity and a significantly higher lymphoma-specific humoral and cellular immune responses compared to treatment using \textit{Salmonella} alone or the chemotherapy alone.94

The \textit{Salmonella} strain VNP20009 was used in combination with photothermal therapy using carbon-based nanomaterial (polydopamine) by coating the strain with polydopamine, designated as pDA-VNP, to function as photothermal agent.95 It was discovered that the targeting ability of \textit{Salmonella} successfully delivered polydopamine to the tumour site and that near-infrared irradiation caused substantial increase in temperature in the tumour site enough to induce tumour cell decay. \textit{In vitro} cytotoxicity showed significantly lower viable B16F10 cells in pDA-VNP post-irradiation group in comparison with VNP20009 alone.96

\textbf{Conclusion}

Bacteria mediated cancer therapy has made major strides in the past decades and is now viewed as a tangible alternative for future cancer therapy. Infection with attenuated \textit{S. Typhimurium} promotes the elimination of tumour cells via intrinsic mechanisms that induce an oncolytic effect on the tumour cell while simultaneously promoting antitumour innate and adaptive immune responses. \textit{S. Typhimurium} as a live attenuated bacterial vector is currently considered to have great potential in the field of cancer immunotherapy but despite the encouraging results from preclinical studies, the approach is yet to be proven successful in clinical practice. \textit{Salmonella} is an important antitumour agent owing to its tumour-targeting potential, antitumour capability and its capacity to deliver therapeutic genes.
The potential for bacterial mediated therapy seems infinite but some fundamental issues such as clearance of therapeutic microbes by the host immune system, maintenance of genetic stability in microbes determinants of the susceptibility or resistance of specific cancer types to microbial therapy need to be tackled before this kind of therapy moves into routine clinical practice.

Conflict of interest
There are no conflicts of interest

Reference

1. Russell RCG, Williams NS, Bulstrode CJK. Bailey & Love’s short practice of surgery. Arnold. 2000.
2. World Health Organisation (WHO). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer death in 2018. Press Release No 263, 12 September, 2018. Retrieved from: www.iarc.fr
3. Patyar S, Joshi R, Prasad DS, et al. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci, 2010; 17:21-30. doi: http://doi.org/10.1186/1423-0127-17-21
4. Saga K, Kaneda Y. Virosome presents multimodel tumor therapy without viral replication. Biomed Res Int, 2013; 764706 doi: http://doi.org/10.1155/2013/764706
5. Ryan RM, Green J, Lewis CE. Use of bacteria in anticancer therapies. Bioessays. 2006; 28:84-94. doi: http://dx.doi.org/10.1002/bies.20336
6. Nguyen VH, Min JJ. Salmonella-mediated cancer therapy: roles and potential. Nucl Med Mol Imag, 2010; 51:118-126 doi: http://doi.org/10.1007/s13139-016-0415-z
7. Song S, Vual1 MS, Zhong M. The role of bacteria in cancer therapy—inemies in the past, but allies at present. Infect Agent Cancer. 2018; 13:9-12 doi: http://doi.org/10.1186/s13027-018-0180-y
8. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J, 2006; 26:154-158. No doi
9. Stritzker J, Weibel S, Seubert C, et al. Enterobacterial tumor colonization in mice depends on bacterial metabolism and macrophages but is independent of chemotaxis and motility. Int J Med Microbiol 2010; 300(7):449-456 doi: http://dx.doi.org/10.1016/j.ijmm.2010.02.004
10. Hernández-Luna MA, Munoz-Lopez P, Luria-Perez R, et al. Infection by Salmonella enterica promotes or demotes tumour development. Salmonella - a re-emerging pathogen 2018; 54-71 doi: http://doi.org/10.5772/intechopen.75481
11. Chavez-Navarro H, Hernández-Cueto DD, Vilchis-Estrada A, et al. Salmonella enterica: An ally in the therapy of cancer. Bol Med Hosp Infant Mex. 2015; 72(1):15-25 doi: http://doi.org/10.1016/j.bmhimx.2015.02.005
12. Ganai S, Arenas RB, Sauer JP, et al. In tumours Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther 2011; 18:457–466 doi: http://doi.org/10.1038/cgt.2011.10
13. Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine 2017; 89:160-172 doi: http://doi.org/10.1016/j.cyto.2016.01.002
14. Wall DM, Srikanth CV, McCormick BA. Targeting tumours with Salmonella Typhimurium - potential for therapy. Oncotarget 2010; 1(8):721-728 doi: http://doi.org/10.18632/oncotarget.101208
15. Wei MQ, Ellem KAO, Dunn P, et al. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Euro J Cancer 2007; 43:490-496 doi: http://doi.org/10.1016/j.ejca.2006.10.005
16. Felgner S, Kocijancic D, Frahm M, et al. Optimizing Salmonella enterica serovar Typhimurium for bacteria mediated tumor therapy. Gut Microbes 2016; 7(2):171-177
doi: https://doi.org/10.1155/2016/8451728.
17. Wang L, Wang C, Jia Y, et al. Resveratrol increases anti-proliferative activity of Bestatin through downregulating P-Glycoprotein expression via inhibiting PI3K/Akt/mTOR pathway in K562/ADR cells. J Cell Biochem 2016; 117:1233–1239 doi: http://doi.org/10.1002/jcb.25407
18. Lawrenz HM. Part II: Breakthroughs in tumor-seeking bacteria. Biotechniques. 2018; 64:9–10. doi: http://doi.org/10.2144/000114625
19. Chang WW, Lee CH. Salmonella as an innovative therapeutic antitumor agent. Int J Mol Sci 2014; 51:14546–14554 doi: http://doi.org/10.3390/ijms15081454
20. Moreno M, Kramer MG, Yim L, Chabalgoity JA. Salmonella as live Trojan horse for vaccine development and cancer gene therapy. Curr Gene Ther, 2010; 10(1):56–76 doi: http://doi.org/10.1016/j.molcel.2014.03.009
21. Zhang Y, Miwa S, Zhang N, et al. Tumor-brain metastasis. Oncotarget, 2015; 6:2615-2622. doi: http://doi.org/10.18632/oncotarget.2811
22. Lee CH. Engineering bacteria toward tumor targeting for tumor treatment: Current state and perspectives. Appl Microbiol Biotechnol 2012; 93:517–523 doi: http://doi.org/10.1007/s00253-011-3695-3
23. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 2010; 10(11):785-794 doi: https://doi.org/10.1038/nrc2934.
24. Hernandez MA, Luria PR, Huerta YS. Therapeutic intervention alternatives in cancer, using attenuated live bacterial vectors: Salmonella enterica as a carrier of heterologous molecules. Rev Invest Clin, 2013; 65(1):65-73. PMID: 23745445
25. Kasinskas RW, Forbes NS. Salmonella Typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res 2007; 67:3201-3209 doi: https://doi.org/10.1158/0008-5472.CAN-06-2618
26. Cheng M, Bhujwalla ZM, Glunde K. Targeting phospholipid metabolism in cancer. Front Oncol. 2016; 6:266–272 doi:https://doi.org/10.3389/fonc.2016.00266
27. Bovell AM, Warncke K. The structural model of Salmonella Typhimurium ethanolamine ammonia-lyase directs a rational approach to the assembly of the functional [(EutBEutC)(2)](3) oligomer from isolated subunits. Biochemistry. 2013; 52(8):1419-1428 doi: https://doi.org/10.1021/bi301651n
28. Silva-Valenzuela CA, Desai PT, Molina-Quiroz RC, et al. Solid tumours provide niche-specific conditions that lead to preferential growth of Salmonella. Oncotarget, 2016; 7(23):35169-35180. doi: https://doi.org/10.18632/oncotarget.9071.
29. St Jean AT, Zhang M, Forbes NS. Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol 2008; 19:511–517 doi: https://doi.org/10.1016/j.copbio.2008.08.04
30. Martínez UE, Peiris-Pages M, Pestell RG, et al. Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 2017; 14(2):113 doi: https://doi.org/10.1038/nrclinonc.2017.1
31. Crull K, Weiss S. Antibiotic control of tumor-colonizing Salmonella enterica serovar Typhimurium. Exp Biol Med (Maywood). 2011; 236:1282–1290. doi: https://doi.org/10.1258/ebm.2011.011111
32. Hernandez LD, Pypaert M, Flavell RA, et al. A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol. 2003; 163:1123–1131 doi: https://doi.org/10.1083/jcb.200309161
33. Gomes LC, Dikic I. Autophagy in antimicrobial immunity. Mol Cell. 2014; 54:224–233 doi: https://doi.org/10.1016/j.molcel.2014.03.009
34. Pangilinan CR, Che-Hsin L. Salmonella-based targeted cancer therapy: updates on a promising and innovative tumor immunotherapeutic strategy. Biomed 2019; 7:36-50
immunodominant epitopes correlate with disease activity of virulent Salmonella lacking the ZnuABC transporter. Maybeno M, Redeker A, Welten O, et al. Attenuated mutant strain of Salmonella enterica serovar Typhimurium Leschner S, Westphal K, Dietrich N, et al. Tumor invasion of Salmonella enterica serovar Typhimurium mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity. Cancer Immunol, Immunother 2014; 63(6):587-599

doi: https://doi.org/10.1007/s00262-014-1543-x

39. Lukasiewicz K, Fol M. Microorganisms in the treatment of cancer: advantages and limitations. J Immunol Res 2018; 2397808 doi: https://doi.org/10.1155/2018/2397808

40. Spranger S, Gajewski, TF. Mechanisms of tumor cell–intrinsic immune evasion. Annual Rev Cancer Biol 2018; 2:213–228 doi: https://doi.org/10.1146/annurev-cancerbio-030617-050606

41. Lee CH, Hsieh JL, Wu CL, et al. T cell augments the antitumor activity of tumor targeting Salmonella. Appl Microbiol Biotechnol, 2011a; 90(4):1381-1388 doi: https://doi.org/10.1007/s00253-011-3180-z

42. Torres W, Lameda V, Oliver LC, et al. Bacteria in cancer therapy; beyond immunostimulation. J Cancer Meta Treat 2018; 4:4-10. doi: 10.20517/2394-4722.2017.49

43. Tam JW, Kullas AL, Mena P, et al. CD11b+ Ly6Chi Ly6G- immature myeloid cells recruited in response to Salmonella enterica serovar Typhimurium infection exhibit protective and immunosuppressive properties, Infect Immun 2014; 82(6): 2606-2614 doi: https://doi.org/10.1128/IAI.01590-13

44. Grille S, Moreno M, Bascuas T, et al. Salmonella enterica serovar Typhimurium immunotherapy for B-cell lymphoma induces broad anti-tumour immunity with therapeutic effect. Immunology. 2014; 143(3):428-437 doi: https://doi.org/10.1111/imm.12320

45. Barak YF, Schreiber F, Thorne SH, et al. Role of nitric oxide in Salmonella Typhimurium-mediated cancer cell killing. BMC Cancer, 2010; 10(1):146-152 doi: https://doi.org/10.1186/1471-2407-10-146

46. Lee CH, Hsieh JL, Wu CL, et al. B cells are required for tumor-targeting Salmonella in host. Appl Microbiol Biotechnol. 2011b; 92(6):1251-1260 doi: https://dx.doi.org/10.1007/s00253-011-3386-0

47. Kocijancic D, Leschner S, Felgner S, et al. Therapeutic benefit of Salmonella attributed to LPS and TNF-α is exhaustible and dictated by tumor susceptibility. Oncotarget, 2017; 8:36492–36508 doi: https://doi.org/10.18632/oncotarget.16906

48. Lee CH, Wu CL, Shiau AL. Toll-like receptor 4 mediates an antitumor host response induced by Salmonella Choleraesuis. Clin Cancer Res 2008; 14:1905–1912 doi: https://doi.org/10.1158/1078-0432-CCR-07-2050

49. Kim, J.E., Phan, T.X., Nguyen, V.H., et al. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1beta. Theranos 2015; 5:1328–1342 doi: https://doi.org/10.7150/thno.11432.

50. Leschner S, Westphal K, Dietrich N, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α, PLOS One, 2009; 4(8):e6692 doi: https://doi.org/10.1371/journal.pone.0006692.

51. Chirullo B, Ammendola S, Leonardi L, et al. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response. Oncotarget 2015; 6(19):17648-17660 doi: https://doi.org/10.18632/oncotarget.3893

52. Maybeno M, Redeker A, Welten SP, et al. Polyfunctional CD4+ T cell responses to immunodominant epitopes correlate with disease activity of virulent Salmonella. PLoS One 2012; 7:e43481 doi: https://doi.org/10.1371/journal.pone.0043481
Saccheri F, Pozzi C, Avogadri F, et al. Bacteria-induced gap junctions in tumours favor antigen cross-presentation and antitumor immunity. Sci Transl Med 2010; 2:44-57. doi: https://doi.org/10.1126/scitranslmed.3000739

Linley AJ, Ahmad M, Rees RC. Tumour-associated antigens: considerations for their use in tumour immunotherapy. Int J Hematol. 2011; 93(3):263–273. doi: https://doi.org/10.1007/s12185-011-0783-1

Santos RL, Baumler AJ. Cell tropism of Salmonella enterica. Int Med Microbiol 2004; 294(4):225-233. doi: https://doi.org/10.1016/j.ijmm.2004.06.029

Avogadri F, Martinoli C, Petrovska L, et al. Cancer immunotherapy based on killing of Salmonella-infected tumor cells, Cancer Res, 2005; 65(9):3920–3927. doi: https://doi.org/10.1158/0008-5472.Can-04-3002

Zhao M, Yang M, Li XM, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFExpression Salmonella Typhimurium. Proc Natl Acad Sci USA 2005; 102:755-760. doi: https://doi.org/10.1073/pnas.0408422102

Chang WW, Lai CH, Chen MC, et al. Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int J Cancer 2013; 133:1926–1935. doi: https://doi.org/10.1002/ijc.28155

Stern C, Kasnitz N, Kocijancic D, et al. Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int J Cancer 2015; 137;2019-2028. doi: https://doi.org/10.1002/ijc.29567

Lee CH, Wu CL, Chen SH, et al. Humoral immune responses inhibit the antitumor activities mediated by Salmonella enterica serovar Choleraesuis. J Immunother 2009; 32:376–388. doi: https://doi.org/10.1097/CJI.0b013e31819d4ebc

Palffy R, Gardlik R, Hodosy J, et al. Bacteria in gene therapy: Bactofection versus alternative gene therapy. Gene Ther 2006; 13:101–105. doi: https://doi.org/10.1038/sj.gt.3302635

Fegler S, Kocijancic D, Frahm M, et al. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy, Oncocoimmunology 2018;7:2:e1382791. doi: https://doi.org/10.1080/2162402X.2017.1382791

Jazeela K, Chakraborty A, Karunasagar I, et al. Nontyphoidal Salmonella: a potential anticancer agent. J Appl Microbiol 2019; 338-351. doi: https://doi.org/10.10111/jam.14297

Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 2016; 536:81–85. doi: https://dx.doi.org/10.1038/nature18930

Dang LH, Bettegowda C, Huso DL, et al. Combination bacteriolytic therapy for the treatment of experimental tumours. Proc Natl Acad Sci USA. 2001; 98:15155–15160. doi: https://doi.org/10.1073/pnas.251543698

King I, Itterson M, Bermudes D. Tumor-targeted Salmonella Typhimurium overexpressing cytosine deaminase: a novel, tumor-selective therapy. Methods Mol Biol. 2009; 542:649-659. doi: https://doi.org/10.1007/978-1-59745-561-9_33

Zhao M, Yang M, Ma H, Targeted therapy with a Salmonella Typhimurium leucine-arginine auxotroph cures orthotopic human breast tumour in nude mice. Cancer Res 2006; 66:7647-7652. doi: https://doi.org/10.1158/0008-5472.

Zhao M, Geller J, Ma H, et al. Monotherapy with a tumor-targeting mutant of Salmonella Typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 2007; 104:10170-10174. doi: https://doi.org/10.1073/pnas.0703867104.

Liu T, Chopra AK. An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth. Cancer Gene Ther. 2010; 17(2):97-108. doi: https://doi.org/10.1038/cgt.2009.58.
70. Hiroshima Y, Zhao M, Zhang Y, et al. Comparison of efficacy of Salmonella Typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle 2013; 12:2774-2780. doi: 10.4161/cc.25872
71. Yam C, Zhao M, Hayashi K, et al. Monotherapy with a tumor-targeting mutant of S. Typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 2010; 164:248-255 doi: https://doi.org/10.1016/j.jss.2009.02.023
72. Matsumoto Y, Miwa S, Zhang Y, et al. Intraperitoneal administration of tumor-targeting Salmonella Typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice. Oncotarget. 2015; 6:11369-11377 doi: https://doi.org/10.18632/oncotarget.3607
73. Yano S, Zhang Y, Zhao M, et al. Tumor-targeting Salmonella Typhimurium A1-R decoys quiescent cancer cells to cycle as visualized by Fucci imaging and become sensitive to chemotherapy. Cell Cycle 2014; 13:3958-3963 doi: https://doi.org/10.1016/j.cellcyt.2014.06.034
74. Hiroshima, Y, Zhang Y, Zhao M, et al. Tumor-targeting Salmonella Typhimurium A1-R in combination with Trastuzumab eradicates HER-2-positive cervical cancer cells in patient-derived mouse models. PLoS One 2015; 10:e0120358 doi: https://doi.org/10.1371/journal.pone.0120358.
75. Hayashi K, Zhao M, Yamauchi K, et al. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella Typhimurium. J Cell Biochem. 2009; 106:992–998 doi: https://doi.org/10.1002/jcb.22078
76. Kimura H, Zhang L, Zhao M, et al. Targeted therapy of spinal cord glioma with a genetically-modified Salmonella Typhimurium. Cell Prolif. 2010; 43(1):41-48 doi: https://doi.org/10.1111/j.1365-2184-2009.00652.x
77. Momiyama M, Zhao M, Kimura H, et al. Inhibition and eradication of human glioma with tumor-targeting Salmonella Typhimurium in an orthotopic nude-mouse model. Cell Cycle, 2012; 11:628-632 doi: https://doi.org/10.4161/cc.11.3.19116
78. Crull K, Bumann D, Weiss S. Influence of infection route and virulence factors on colonization of solid tumors by Salmonella enterica serovar Typhimurium. FEMS Immunol Med Microbiol. 2011; 62(1):75-83 doi: https://doi.org/10.1111/j.1574-695X.2011.00790.x
79. Eisenstein TK, Bushnell B, Meissler JJ, et al. Immunotherapy of a plasmacytoma with attenuated Salmonella. Med Oncol. 1995; 12(2):103-108 doi: https://doi.org/10.1007/BF01676710
80. Toso JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002; 20(1):142-152 doi: https://doi.org/10.1200/JCO.2002.1.1.142
81. Choe E, Kazmierczak RA, Eisenstark A. Phenotypic evolution of therapeutic Salmonella enterica serovar Typhimurium after invasion of TRAMP mouse prostate tumor. MBio. 2014; 5(4):e01182-e01114 doi: https://doi.org/10.1128/mBio.01182-14.
82. Kimura H, Zhang L, Zhao M, et al. Targeted therapy of spinal cord glioma with a genetically modified Salmonella Typhimurium. Cell Prolif. 2010; 43(1):41-48 doi: https://doi.org/10.1111/j.1365-2184-2009.00652.x
83. Grille S, Moreno M, Brugnini A, et al. A therapeutic vaccine using Salmonella-modified tumor cells combined with interleukin-2 induces enhanced antitumor immunity in B-cell lymphoma. Leukemia Res. 2013; 37(3):341-348 doi: https://doi.org/10.1016/j.leukres.2012.10.003
84. Vendrell A, Gravisaco MJ, Goin JC et al. Therapeutic effects of Salmonella Typhi in a mouse model of T-cell lymphoma. J Immunother. 2013; 36(3):171-180 doi: https://doi.org/10.1097/CJI.0b013e318288d9f
85. Basu D, Herlyn M. Salmonella Typhimurium as a novel RNA interference vector for cancer gene therapy. Cancer Biol Ther. 2008; 7:151-152. PMID:18347415
86. Arrach N, Zhao M, Porwollik S, et al. Salmonella promoters preferentially activated inside tumors. Cancer Res 2008; 68:4827–4832 doi: https://doi.org/10.1158/0008-5472.CAN.09.4005
87. Leschner S, Deyneko IV, Lienklaus S, et al. Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic. Nucleic Acids Res 2012; 40:2984–2994
Camacho EM, Mesa-Pereira B, Medina C, et al. Engineering *Salmonella* as intracellular factory for effective killing of tumour cells. *Sci Rep* 2016; 6:30591 doi: https://doi.org/10.1038/srep30591

Loeffler M, Le'Negrate G, Krajewska M, et al. *Salmonella Typhimurium* engineered to produce CCL21 inhibit tumor growth. *Cancer Immunol Immunother.* 2009; 58(5):769-775 doi: https://doi.org/10.1007/s00262-008-0555-9

Nguyen VH, Min JJ. *Salmonella*-Mediated Cancer Therapy: Roles and Potential. *Nucl Med Mol Imag.* 2017; 51:118-126. doi: https://doi.org/10.1007/s13139-016-0415-z

Lee CH, Wu CL, Tai YS, et al. Systemic administration of attenuated *Salmonella choleraesuis* in combination with cisplatin for tumor therapy. *Mol Ther.* 2005; 11:707–716 doi: https://doi.org/10.1016/j.ymthe.2005.01.008

Yang CJ, Chang WW, Lin ST, et al. *Salmonella* Overcomes Drug resistance in tumor through P-glycoprotein downregulation. *Int J Med Sci* 2018; 15:574-579 doi: https://doi.org/10.7150/ijms.23285

Jia LJ, Wei DP, Sun QM, et al. Tumor-targeting *Salmonella Typhimurium* improves cyclophosphamide chemotherapy at maximum tolerated dose and low-dose metronomic regimens in a murine melanoma model. *Int J Cancer* 2007; 121:666-674 doi: https://doi.org/10.1002/ijc.22688

Bascuas T, Moreno M, Grille S, et al. *Salmonella* immunotherapy improves the outcome of CHOP chemotherapy in non-Hodgkin lymphoma-bearing mice. *Front Immunol.* 2018; 9:7-12 doi: https://doi.org/10.3389/fimmu.2018.00007

Chen W, Wang Y, Qin M, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. *ACS Nano* 2018; 12:5995-6005 doi: https://doi.org/10.1021/acsnano.8b02235

Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. *Biomater Sci* 2018; 6:746–765 doi: https://doi.org/10.1039/C7BM01210A