Interactive Effects of Apolipoprotein E ε4 and Triiodothyronine on Memory Performance in Patients With Subjective Cognitive Decline

Jin San Lee¹, Yunsoo Soh², Hyug-Gi Kim³, Kyung Mi Lee³, Young Nam Kwon⁴, Sung Sang Yoon¹, Key-Chung Park¹ and Hak Young Rhee⁵*

¹ Departments of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea, ² Departments of Rehabilitation Medicine, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea, ³ Departments of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea, ⁴ Department of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea, ⁵ Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea

Background: The aim of the present study was to investigate the associations between thyroid hormones, cognitive performance, and apolipoprotein E (APOE) genotype in euthyroid patients with subjective cognitive decline (SCD).

Methods: We recruited 197 euthyroid patients that fulfilled the criteria for SCD. All participants were classified into APOE ε4 carriers and non-carriers based on the presence of the APOE ε4 allele. Patients with SCD who had the APOE ε2/ε4 genotype were excluded from the study. We then performed correlation and regression analyses to evaluate the associations between cognitive performance and thyroid hormones in APOE ε4 carriers and non-carriers.

Results: We found no significant differences in cognitive function between APOE ε4 carriers and non-carriers. However, higher levels of triiodothyronine (T3) were associated with better verbal memory performance (immediate and delayed recall tasks) in APOE ε4 carriers, whereas a negative association was found in APOE ε4 non-carriers. Furthermore, there was a significant interactive effect of APOE ε4 status and T3 levels on verbal memory performance (immediate and delayed recall tasks).

Conclusions: These findings suggest that in patients with SCD, T3 might have a protective effect on memory in those who are APOE ε4 carriers. The differential susceptibility hypothesis would thus support a gene-by-hormone crossover interaction between APOE ε4 allele and T3 in this study. Early identification and intervention of high-risk individuals for cognitive decline is important to establish new strategies for preventing dementia.

Keywords: thyroid hormone, apolipoprotein E, subjective cognitive decline, Alzheimer's disease, triiodothyronine
INTRODUCTION

Thyroid hormones have been demonstrated to play an important role in cellular metabolism, growth, and differentiation of human organ systems. Thyrotropin-releasing hormone, produced by the hypothalamus, stimulates the release of thyroid-stimulating hormone (TSH) in the pituitary gland, which, in turn, induces the release of triiodothyronine (T3) and thyroxine (T4) in the thyroid gland (1). T4 is a major form of thyroid hormone in the blood, and has a longer half-life than T3. T4 is converted to the active T3 (three to four times more potent than T4), and this regulatory process is maintained by a neuroendocrine feedback mechanism in healthy individuals. Thyroid hormones are also essential for the development of the nervous system and play crucial roles in the maintenance of brain function (2). Common causes of reversible cognitive impairment include clinical hypothyroidism and hyperthyroidism (3, 4), and the thyroid function test has thus become a standard screening test in individuals who complain of cognitive decline (5).

Subjective cognitive decline (SCD) is the self-reported experience of worsening memory decline without objective cognitive deterioration (6). Previous studies have reported that SCD may represent the early symptomatic stage of Alzheimer’s disease (AD) and related dementias (6, 7). SCD is part of a heterogeneous group of disorders, which includes preclinical AD and various conditions that can affect cognition such as depression and anxiety (6). Growing interest in strategies to maintain cognitive health in midlife has led many people who experience cognitive decline to visit a memory clinic (8, 9). However, lifestyle modifications, such as a healthy diet, adequate exercise, limiting alcohol, and abstaining from smoking are mainly recommended for most patients who have been diagnosed with SCD, unless other causes of cognitive deterioration are found.

Previous studies have reported interesting findings on the association between thyroid hormones and cognitive function in healthy euthyroid subjects. For instance, higher levels of T4 correlated positively with better general cognition in elderly men (10), and lower levels of T4 were related to a greater risk of cognitive worsening in elderly women (11). However, higher levels of free T3 were negatively correlated with executive functions in elderly women (1). In patients with mild cognitive impairment (MCI), the classically defined prodromal stage of dementia, higher levels of T3 were also negatively associated with cognitive performance across all cognitive domains (12), while lower levels of free T3 were associated with worse cognitive functioning in patients with coronary artery disease (13). While the investigation of thyroid hormones may be useful for assessments of cognitive performance in the elderly population, to date, knowledge regarding the relationship between thyroid hormones within the normal range and cognitive function in patients with SCD is limited.

Understanding the hormonal interrelationships that occur in SCD can provide opportunities for earlier interventions in patients who are progressing to MCI or dementia. The objective of this study was to investigate the relationship between thyroid hormones as well as TSH and cognitive performance in euthyroid patients with SCD. Specifically, considering that the apolipoprotein E (APOE) ε4 allele is not only a genetic risk factor for sporadic AD but also for earlier stages such as MCI or even SCD (14, 15), we hypothesized that thyroid hormones as well as TSH may have distinct effects on cognitive performance in participants depending on their APOE ε4 status.

232 patients with SCD who underwent standardized cognitive screening and thyroid function tests (From March 2016 to June 2018)

Excluded:
- No information about APOE genotype (N = 21)
- Subjects with APOE ε2/ε4 (N = 4)
- Subjects with subclinical thyroid problems (N = 10)

197 clinically euthyroid patients with SCD

FIGURE 1 | Flow chart of the study participants. SCD, subjective cognitive decline; MRI, magnetic resonance imaging; APOE, apolipoprotein E.

TABLE 1 | Brief descriptions of the neuropsychological tests and related cognitive functions.

Cognitive domains and neuropsychological tests	Related cognitive functions
Attention	
Digit span forward	Attention efficiency and capacity
Digit span backward	Working memory, attention
Language	
K-BNT	Confrontation naming, semantic representation
Visuospatial	
RCFT copy	Visuo-perceptive and visuo-constructive functions
Verbal memory	
SVLT immediate recall	Learning ability (verbal memory)
SVLT delayed recall	Consolidation ability (verbal memory)
SVLT recognition	Retrieval ability (verbal memory)
Visual memory	
RCFT immediate recall	Learning ability (visual memory)
RCFT delayed recall	Consolidation ability (visual memory)
RCFT recognition	Retrieval ability (visual memory)
Frontal/executive	
COWAT phonemic total	Frontal executive function, language function
Stroop color reading	Selective attention, cognitive flexibility
Global	
MMSE	Overall measure of global cognitive functioning

K-BNT, Korean version of the boston naming test; RCFT, Rey-osterrieth complex figure test; SVLT, Seoul verbal learning test; COWAT, Controlled oral word association test; MMSE, Mini-mental state examination.
MATERIALS AND METHODS

Study Participants

The flow chart of the study participants is presented in Figure 1. We consecutively recruited 232 patients with SCD at age 50 or older from the Memory Clinic at Kyung Hee University Hospital (Seoul, Korea) from March 2016 to June 2018, in line with the following criteria (16): (1) subjective memory complaints by patients or caregivers, (2) no objective cognitive dysfunction in any cognitive domain in detailed neuropsychological tests, and (3) no dementia. All participants underwent a standardized diagnostic assessment protocol for cognitive impairment and dementia including high-resolution 3.0T magnetic resonance imaging (MRI) as well as detailed neuropsychological tests. Brain MRI confirmed the absence of structural lesions including cerebral hemorrhage or infarction, hippocampal sclerosis, brain tumors, traumatic encephalomalacia, and vascular malformation. The exclusion criteria included a history of thyroid axis disorders, thyroid hormone replacement therapy, psychological disease, stroke, brain surgery, seizure, head trauma, severe cerebral white matter hyperintensities (deep white matter \(\geq 25 \) mm, and caps or band \(\geq 10 \) mm), other medication that could interfere with thyroid hormone metabolism (such as amiodarone), and current systemic medical diseases that could affect cognition.

Laboratory tests were conducted to exclude other causes of cognitive impairment, and included thyroid function tests (T3, free T4 [fT4], and TSH), a metabolite profile, vitamin B12 and folate levels, complete blood counts, blood chemistry, and syphilis serology. APOE genotyping was performed in 211 (90.9%) of the 232 participants. We excluded four patients who had the APOE \(\varepsilon2/\varepsilon4 \) genotype from the study, since the putative opposing effects of the \(\varepsilon4 \) and \(\varepsilon2 \) alleles could result in some confusion in the interpretation of results (17, 18). All study participants were clinically euthyroid, but 10 participants showed subclinical thyroid problems in endocrinological assessments, and these subjects were also excluded from the study. The final sample size was 197.

Standard Protocol Approval, Registration, and Patient Consent

Written informed consent was obtained from all participants before inclusion in the study. The study was approved by the Institutional Review Board (IRB) of Kyung Hee University Hospital (IRB file number: 2018-01-023). All procedures were carried out in accordance with approved guidelines.

TABLE 2 | Demographic and clinical characteristics of the study participants.

	Total	APOE \(\varepsilon4 \) status	\(p \)-value	
	Non-carriers	Carriers		
N	197 (100.0)	148 (75.1)	49 (24.9)	
Age, years	65.5 (8.3)	65.5 (8.2)	65.2 (8.7)	0.857
Age range, years	50–88	51–86	50–85	
Women	142 (72.1)	110 (74.3)	32 (65.3)	0.223
Education, years	11.2 (4.6)	10.7 (4.9)	12.5 (3.4)	0.005
Vascular risk factors				
Hypertension	75 (38.1)	59 (39.9)	16 (32.7)	0.368
DM	27 (13.7)	20 (13.5)	7 (14.3)	0.892
Hyperlipidemia	68 (34.5)	49 (33.1)	19 (38.8)	0.470
Cardiovascular disease	28 (14.2)	20 (13.5)	8 (16.3)	0.625
History of stroke	1 (0.5)	1 (0.7)	0 (0.0)	0.564
APOE genotype				
\(\varepsilon2 \) carriers	16 (8.1)	16 (10.8)		
\(\varepsilon3/\varepsilon3 \) carriers	132 (67.0)	132 (89.2)		
\(\varepsilon4 \) carriers	49 (24.9)	49 (100.0)		
Thyroid hormones				
T3, ng/dL	104.7 (17.1)	104.1 (17.4)	106.4 (16.0)	0.408
Range	76.1–167.9	76.1–167.9	81.2–161.1	
fT4, ng/dL	1.3 (0.2)	1.3 (0.2)	1.2 (0.2)	0.587
Range	0.9–1.8	0.9–1.8	0.9–1.8	
TSH, mU/mL	2.3 (1.2)	2.3 (1.2)	2.5 (1.3)	0.400
Range	0.5–4.5	0.5–4.0	0.7–4.5	

Values are mean (SD) or N (%). Chi-square and Student’s t-tests were performed for comparisons of variables between APOE \(\varepsilon4 \) carriers and non-carriers. N, number; SD, standard deviation; APOE, apolipoprotein E; DM, diabetes mellitus; T3, triiodothyronine; fT4, free thyroxine; TSH, thyroid-stimulating hormone.

TABLE 3 | Comparisons of neuropsychological performance between APOE \(\varepsilon4 \) carriers and non-carriers in patients with SCD.

	Total	APOE \(\varepsilon4 \) status	\(p \)-value	
	Non-carriers	Carriers		
Attention				
Digit span forward	0.4 (1.1)	0.3 (1.1)	0.6 (1.0)	0.146
Digit span backward	0.6 (1.3)	0.7 (1.4)	0.4 (1.1)	0.218
Language				
K-BNT	0.5 (0.6)	0.5 (0.6)	0.4 (0.7)	0.152
Visual spatial function	0.5 (0.8)	0.5 (0.8)	0.4 (0.8)	0.618
SVLT immediate recall	0.7 (1.4)	0.8 (1.8)	0.4 (0.9)	0.166
SVLT delayed recall	0.6 (1.0)	0.6 (1.1)	0.6 (0.9)	0.734
SVLT recognition	0.5 (0.8)	0.5 (0.8)	0.4 (0.8)	0.618
Verbal memory				
ROFT immediate recall	0.4 (0.9)	0.5 (0.9)	0.4 (0.8)	0.421
ROFT delayed recall	0.4 (0.8)	0.4 (0.8)	0.3 (0.7)	0.610
ROFT recognition	0.5 (1.1)	0.6 (1.0)	0.4 (1.3)	0.236
Frontal/executive function	0.8 (1.2)	0.8 (1.2)	0.8 (1.1)	0.947
Stroop color reading	0.6 (0.7)	0.6 (0.7)	0.5 (0.7)	0.766
Global				
MMSE	0.5 (0.7)	0.6 (0.8)	0.4 (0.7)	0.074

Age- and education-specific Z-scores were used for comparisons of neuropsychological performance between APOE \(\varepsilon4 \) carriers and non-carriers in patients with SCD. APOE, apolipoprotein E; SCD, subjective cognitive decline; K-BNT, Korean version of the boston naming test; ROFT, Rey-osterrieth complex figure test; SVLT, Seoul verbal learning test; COWAT, Controlled oral word association test; MMSE, Mini-mental state examination.
Neuropsychological Testing and Clinical Assessments

All participants underwent detailed neuropsychological tests using the standardized Seoul Neuropsychological Screening Battery (19, 20). The battery contains tests for attention (the Digit Span Forward and Backward), language (the Korean version of the Boston Naming Test [K-BNT]), visuospatial function (the Rey-Osterrieth Complex Figure Test [RCFT]; copying), verbal and visual memory (the Seoul Verbal Learning Test [SVLT] and RCFT; immediate and 20-min delayed recall, and recognition), and frontal/executive function (the phonemic and semantic Controlled Oral Word Association Test [COWAT] and a Stroop Test; word and color reading). Cognitive functions associated with each neuropsychological test are presented in Table 1. Age- and education-adjusted norms for each test based on 447 cognitively normal individuals were used for comparison. Z-scores lower than −1.0 standard deviation (SD) of the age- and education-adjusted norms were considered abnormal. We also used the Mini-Mental Status Examination (MMSE), the Clinical Dementia Rating, the Clinical Dementia Rating Sum of Boxes, and the Geriatric Depression Scale.

APOE Genotyping

Genomic DNA was extracted from peripheral blood leukocytes using the QIAamp DSP DNA Mini Kit following the manufacturer’s instructions (QIAGEN GmbH, Hilden, Germany). Two single nucleotide polymorphisms (rs429358 for codon 112 and rs7412 for codon 158) in the APOE gene were genotyped using LG AdvanSureTM apoE Genotyping real-time PCR (LG Lifescience, Korea) on a SLAN real-time PCR Detection System (LG Lifescience, Korea) according to the manufacturer’s instructions. Subjects with at least one APOE ε4 allele were identified as ε4 carriers. In addition, subjects with ε2/ε2, ε2/ε3, and ε3/ε3 alleles were identified as ε4 non-carriers.

Thyroid Function Tests

Serum levels of total T3, fT4, and TSH were evaluated with a chemiluminescence immunoassay using the STRATEC SR 300 analyzer (Brahms, Berlin, Germany). According to our laboratory-verified reference ranges, the normal serum T3, fT4, and TSH intervals were 76–170, 0.9–1.8, and 0.5–4.5 µIU/mL, respectively.

Statistical Analyses

Continuous variables were presented as means ± SD and were compared using the Student’s t-test. Categorical variables were compared using a Chi-square test or Fisher’s exact test. For comparisons of neuropsychological performance between APOE ε4 carriers and non-carriers, we used age- and education-specific Z-scores. To evaluate correlations between the results of neuropsychological tests and thyroid hormones as well as TSH according to APOE ε4 status, bivariate

Table 1

Test	Total	Non-carriers	Carriers
Attention			
Digit span forward	−0.174*	−0.132	−0.368*
Digit span backward	0.025	0.039	−0.004
Language			
K-BNT	0.071	0.078	0.045
Visuospatial			
RCFT copy	−0.001	−0.066	0.208
Verbal memory			
SVLT immediate recall	−0.055	−0.119*	0.352*
SVLT delayed recall	−0.081	−0.176*	0.284*
SVLT recognition	−0.023	−0.080	0.188
Visual memory			
RCFT immediate recall	−0.102	−0.122	−0.013
RCFT delayed recall	−0.073	−0.101	0.038
RCFT recognition	−0.198*	−0.189*	−0.217
Frontal/executive			
COWAT phonemic total	−0.056	−0.046	−0.097
Stroop color reading	0.002	0.033	0.125
Global			
MMSE	0.002	−0.033	0.128

Note: Pearson’s correlation coefficients were calculated using age- and education-specific Z-scores. *Indicates p < 0.05. APOE, apolipoprotein E; SCD, subjective cognitive decline; T3, triiodothyronine; fT4, free thyroxine; TSH, thyroid-stimulating hormone; K-BNT, Korean version of the boston naming test; RCFT, Rey-osterrieth complex figure test; SVLT, Seoul verbal learning test; COWAT, Controlled oral word association test; MMSE, Mini-mental state examination.
relationships were calculated using Pearson’s correlation coefficient. Multiple linear regression was performed using sex, vascular risk factors (hypertension, diabetes mellitus, hyperlipidemia, cardiovascular disease, and history of stroke), APOE ε4 status, thyroid hormones including TSH, and an interaction term (thyroid hormones including TSH by APOE ε4 status) as independent variables. All tests were two-tailed, and statistical significance was set at \(p < 0.05 \). The Statistical Package for the Social Sciences (SPSS) version 20.0 (SPSS Inc., Chicago, IL, USA) was used to perform all statistical analyses.

RESULTS

Demographic and Clinical Characteristics

Demographic and clinical characteristics of the study participants are presented in Table 2. The mean age of our participants was 65.5 years, and 142 (72.1%) were female. We identified 49 (24.9%) APOE ε4 carriers, and there were no significant differences in demographics between the carriers and the non-carriers except for education level. Furthermore, there were no significant differences in thyroid hormones and TSH levels between the two groups.

Comparisons of Neuropsychological Performances

Table 3 shows comparisons of neuropsychological performance between APOE ε4 carriers and non-carriers among our patients with SCD. Although the mean Z-scores of neuropsychological tests were higher in non-carriers than in carriers, except for the Digit Span Forward Test, there were no statistically significant differences between the two groups.

Correlation Between Neuropsychological Performance and Thyroid Hormones as Well as TSH

The results of the correlation analyses between neuropsychological performance and thyroid hormones as well as TSH are presented in Table 4. There was a negative correlation between T3 levels and Digit Span Forward and RCFT recognition task Z-scores in our patients with SCD. Levels of T3 and TSH correlated negatively with the Z-score of the Digit Span Forward task in APOE ε4 carriers. Levels of T3 correlated negatively with the Z-scores of the SVLT immediate and delayed recall as well as the RCFT recognition task in APOE ε4 non-carriers, while in APOE ε4 carriers, levels of T3 correlated positively with the Z-scores of the SVLT immediate and delayed recall tasks. In addition, there was a positive overall correlation

TABLE 5	Interaction effects of APOE ε4 status and thyroid hormone levels as well as TSH on neuropsychological performance.											
	T3*APOE ε4						T4*APOE ε4				TSH*APOE ε4	
	B	SE	\(p \)									
Attention												
Digit span forward	-0.014	0.011	0.215	0.280	0.757	0.711	-0.151	0.121	0.213			
Digit span backward	-0.003	0.014	0.840	0.611	0.952	0.522	-0.034	0.152	0.822			
Language												
K-BNT	<0.001	0.008	0.985	0.543	0.519	0.296	0.083	0.083	0.318			
Visuospatial												
RCFT copy	0.012	0.006	0.045*	-0.291	0.432	0.502	0.078	0.068	0.251			
Verbal memory												
SVLT immediate recall	0.032	0.015	0.004*	-0.161	1.046	0.878	0.045	0.164	0.783			
SVLT delayed recall	0.030	0.010	0.004*	-0.269	0.731	0.713	0.019	0.115	0.869			
SVLT recognition	0.013	0.008	0.097	0.469	0.559	0.402	-0.060	0.088	0.499			
Visual memory												
RCFT immediate recall	0.006	0.009	0.483	-0.240	0.643	0.709	0.115	0.101	0.256			
RCFT delayed recall	0.007	0.008	0.423	-0.750	0.568	0.188	0.137	0.090	0.128			
RCFT recognition	-0.009	0.011	0.440	0.408	0.792	0.607	-0.135	0.126	0.285			
Frontal/executive												
COWAT phonemic total	-0.004	0.012	0.741	-0.265	0.836	0.752	-0.028	0.135	0.835			
Stroop color reading	0.008	0.007	0.275	-0.167	0.496	0.736	-0.061	0.079	0.437			
Global												
MMSE	0.006	0.007	0.358	-0.059	0.480	0.902	-0.093	0.076	0.222			

Multiple linear regression was performed using sex, vascular risk factors (hypertension, diabetes mellitus, hyperlipidemia, cardiovascular disease, and history of stroke), APOE ε4 status, thyroid hormones including TSH, and an interaction term (thyroid hormones including TSH by APOE ε4 status) as independent variables. Age- and education-specific Z-scores were used as dependent variables. *Indicates \(p < 0.05 \). APOE, apolipoprotein E; SCD, subjective cognitive decline; T3, triiodothyronine; T4, free thyroxine; TSH, thyroid-stimulating hormone; B, \(B \) value; SE, standard error; K-BNT, Korean version of the boston naming test; RCFT, Rey-osterrieth complex figure test; SVLT, Seoul verbal learning test; COWAT, Controlled oral word association test; MMSE, Mini-mental state examination.
FIGURE 2 | Scatter plots investigating the relation between memory performance and serum T3 levels in patients with SCD according to APOE ε4 status showing interaction effects of APOE ε4 status and T3 level on the results of (A) the SVLT immediate recall (p = 0.032) and (B) the SVLT delayed recall (p = 0.004) task. T3, triiodothyronine; SCD, subjective cognitive decline; APOE, apolipoprotein E; SVLT, Seoul verbal learning test.

between fT4 levels and Z-scores of the COWAT phonemic total task and the MMSE in our patients with SCD. Specifically, levels of fT4 correlated positively with the Z-score of the COWAT phonemic total task in APOE ε4 non-carriers. In APOE ε4 carriers, levels of TSH correlated negatively with the Z-score of the Digit Span Forward task.

Interaction Effect of APOE ε4 Status and T3 Level on Neuropsychological Performance

Multiple linear regressions were performed to evaluate the interactive effects of APOE ε4 status and thyroid hormones as well as TSH on neuropsychological performance (Table 5). There were significant interactive effects of APOE ε4 status and T3 level on the RCFT copy (p = 0.045), SVLT immediate (p = 0.032), and delayed recall (p = 0.004) tasks, suggesting that higher levels of T3 were associated with better memory performance in APOE ε4 carriers. Figure 2 shows scatter plots investigating the relation between neuropsychological performance and T3 levels in our patients with SCD according to APOE ε4 status.

DISCUSSION

In this study, we investigated the effect of thyroid hormones as well as TSH on cognitive performance in APOE ε4 carriers and non-carriers among euthyroid patients with SCD. The key findings of our study are that levels of T3 correlated positively with memory performance in APOE ε4 carriers, whereas a negative correlation was found in APOE ε4 non-carriers. Moreover, there was a significant interactive effect of APOE ε4 status and T3 level on memory performance. This suggests that T3 has a protective effect on memory in APOE ε4 carriers with SCD, which might represent a risk group for cognitive deterioration and development of AD.

Individuals with SCD have generally been regarded as the “worried well,” used to describe individuals who are at risk of developing disease, given the lack of objective evidence of cognitive impairment. However, previous studies suggest that, for substantial numbers of individuals with SCD, self-reported experience of worsening memory decline may indeed herald the development of cognitive decline to dementia (16, 21). Apolipoprotein E, on the other hand, is a plasma lipoprotein that has functions in Aβ clearance (22). APOE ε4 has been well-established as an important risk factor for developing AD (23), whereas APOE ε2 reduces the risk of AD (24). In general, APOE ε4 has been an established risk factor for memory decline, despite ongoing cognitively normal status (25–27). In a recent meta-analysis, the presence of APOE ε4 increased the risk of conversion to AD from 0.78% per year among non-carriers to 3.24% per year among carriers among patients with SCD (15). Therefore, APOE ε4 carriers with SCD have an additional risk for dementia (25, 28).

Current evidence have allowed for a shift in the definition of AD from a syndromal to a biological construct, based on biomarkers that are proxies of pathology (29). However, little is known about mechanisms underlying the disease progression at its early stages, such as SCD. To date, various clinical trials focusing on multimodal interventions (nutritional, physical, cognitive, and medical) have attempted to prevent the progression of dementia in patients with SCD. However, the available evidence with regards to lifestyle interventions for SCD is limited (30). Our finding that T3 may have a protective effect on memory in APOE ε4 carriers with SCD has clinical significance.
in terms of prevention of cognitive deterioration and dementia. Although not much research on the supplementation of thyroid hormones in patients with SCD has been reported to date, we speculate that supplementing T3 in APOE ε4 carriers with SCD might help prevent cognitive decline.

Indeed, we have found some evidence to support our speculation in a few previous studies on several neuropsychological diseases: in depressed patients with normal levels of thyroid hormones, the addition of T3 to antidepressant drugs had some benefit in the treatment of both manic and depressed phases of mood disorders (31); application of T3 orally improved performance on a verbal fluency task in healthy subjects (32); and partial substitution of T3 for T4 led to improved neuropsychological performance and mood in patients with hypothyroidism (33). However, these findings need to be interpreted with caution, since these results are derived from groups with other diseases and small sample sizes. Contrary to our suggestion, a previous report demonstrated that the use of thyroid drugs was associated with the incidence of AD dementia (34). Thyroid hormone therapy with levothyroxine also provided no benefit with regard to executive cognitive function in older persons with subclinical hypothyroidism (35). Moreover, elderly subjects who had high levels of thyrotropin, above the normal range, were found to have an elongated life span (36).

The detrimental effect of T3 on memory in APOE ε4 non-carriers could be explained by several reports of a potential direct action of T3 on cognitive performance. Aggravation of the cholinergic deficit and related cognitive dysfunction observed in patients with AD has been suggested to be due to thyroid hormone-induced depletion of acetylcholine (37). Thyroid hormone-induced oxidative damage and reduced antioxidative defense enzyme levels have been associated with progressive neurodegeneration (38). However, there is little biological evidence for the protective effect of T3 on memory in APOE ε4 carriers with SCD. Thyroid hormones modulate gene expression and intracellular signal transduction by regulating the synthesis of enzymes necessary for the production of neurotransmitters (2). We suggest that the differential susceptibility hypothesis (39)—genetic factors that are supposed to confer vulnerability may lead to differential susceptibility to both the negative and positive effects of some other factor—supports a gene-by-hormone crossover interaction between the APOE ε4 allele and T3 in this study. In other words, APOE ε4 carriers with higher levels of T3 (beneficial circumstances) may function better than APOE ε4 non-carriers, which is consistent with the results from a previous study reporting on testosterone (40). Alternatively, as the APOE ε4 allele has been reported to be positively associated with hypothyroidism (41), this mechanism might also be related to compensation.

The strength of our study is the sample size that enabled us to conduct substantial statistical analyses. However, there are some limitations. First, our study has a cross-sectional design, which prevents us from making claims of causality. Second, the study participants were recruited from a memory disorder clinic, and the sample might thus not be representative of the general population. Third, the interpretation of our findings is limited since serum concentrations of thyroid hormones do not accurately reflect the metabolism of thyroid hormones in the brain. Fourth, although we confirmed that our participants had no crucial metabolic problems, it is possible that other factors or metabolic pathways influenced the effects of thyroid hormones on cognitive function we observed. Finally, although sex is regarded to be an important parameter in estimating the risk of AD or thyroid disease (42), we did not perform analyses according to sex, due to the relatively small number of men in our sample. Nevertheless, our findings provide important insights that help our understanding of the associations between thyroid hormones, cognitive performance, and APOE genotypes in patients with SCD. Early identification of high-risk individuals and interventions for cognitive decline are important in the quest to establish new strategies for preventing dementia, in keeping with the paradigm shift in focus from AD dementia to preclinical AD in the development of therapeutic interventions. However, further evidence for the supplementation of T3 in APOE ε4 carriers with SCD to prevent cognitive decline can only be gathered from a well-designed, randomized clinical trial.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by institutional review board at the Kyung Hee university hospital. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

JL and HR: conception and design of the study and final approval of the manuscript. JL, SY, K-CP, and HR: acquisition of data. JL, YS, H-GK, KL, YK, SY, K-CP, and HR: analysis and interpretation of the data. JL, YK, and HR: drafting and revising the manuscript for content.

FUNDING

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (NRF-2020R1C1C1006623) and Basic Science Research Program through the Ministry of Education of the Republic of Korea (NRF-2018R1D1A1B07041308).

ACKNOWLEDGMENTS

This paper extends the results published in the proceedings version (43) in substantial and meaningful ways.
REFERENCES

1. Grigorova M, Sherwin BB. Thyroid hormones and cognitive functioning in healthy, euthyroid women: a correlational study. Horm Behav. (2012) 61:617–22. doi: 10.1016/j.yhbeh.2012.02.014

2. Bernal J. Action of thyroid hormone in brain. J Endocrinol Invest. (2002) 25:268–88. doi: 10.1007/BF03344003

3. Cummings J, Benson DF, LoVerme S Jr. Reversible dementia. Illustrative cases, definition, and review. JAMA. (1980) 243:2434–9. doi: 10.1001/jama.1980.03300490052031

4. Smith JS, Kiloh LG. The investigation of dementia: results in 200 consecutive admissions. Lancet. (1991) 1:824–7. doi: 10.1016/S0140-6736(81)92692-1

5. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Screening for cognitive impairment in older adults: US preventive services task force recommendation statement. JAMA. (2020) 323:757–63. doi: 10.1001/jama.2020.0435

6. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. (2014) 10:844–52. doi: 10.1016/j.jalz.2014.01.001

7. Rabin LA, Smart CM, Amariglio RE. Subjective cognitive decline in preclinical Alzheimer’s disease. Annu Rev Clin Psychol. (2017) 13:369–96. doi: 10.1146/annurev-clinpsy-032816-045136

8. Blackburn DJ, Wakefield S, Shanks MF, Harkness K, Reuber M, Veneri A. Thyroid hormones are associated with poorer cognition in mild cognitive impairment. J Gerontol A Biol Sci Med Sci. (2002) 58:1055–61. doi: 10.1212/WNL.58.7.1055

9. Quinlan P, Nordlund A, Lind K, Gustafson D, Edman A, Wallin A. Thyroid hormones and APOE epsilon4 influence the susceptibility for Alzheimer's disease but not other dementias. J Alzheimers Dis. (2015) 48 (Suppl. 1):S63–86. doi: 10.3233/JAD-150154

10. Lovati C, Galmxberti D, Albani D, Bertora P, Venturelli E, Cislaghi G, et al. APOE epsilon2 and epsilon4 influence the susceptibility for Alzheimer’s disease but not other dementias. Int J Mol Epidemiol Genet. (2010) 1:193–200. Available online at: http://ijmge.org/files/IJMEG1002005.pdf

11. Ahn HJ, Chin J, Park A, Lee BH, Suh MK, Seo SW, et al. Seoul neuropsychological screening battery-dementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. J Korean Med Sci. (2010) 25:1071–6. doi: 10.3346/jkms.2010.25.7.1071

12. Kang SH, Park YH, Lee D, Kim JP, Chin J, Ahn Y, et al. The cortical neuroanatomy related to specific neuropsychological deficits in Alzheimer’s continuum. Dement Neurocogn Disord. (2019) 18:77–95. doi: 10.12799/dnd.2019.18.3.77

13. Reisberg B, Shulman MB, Torossian C, Leng L, Zhu W. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimers Dement. (2010) e11–24. doi: 10.1016/j.jalz.2009.10.002

14. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neuros. (2009) 10:333–44. doi: 10.1038/nrn2620

15. Liu CC, Kanekiyto T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neuros. (2013) 9:106–18. doi: 10.1038/nrn3884.

16. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. (1996) 7:180–4. doi: 10.1038/ng0694-180

17. Dik MG, Jonker C, Coimi HS, Bouter LM, Twisk JW, van Kolk GI, et al. Memory complaints and APOE-epsilon4 accelerate cognitive decline in cognitively normal elderly. Neurology. (2001) 57:2217–22. doi: 10.1212/WNL.57.12.2217

18. Kang JH, Logroscino G, De Vivo I, Hunter D, Grodstein F. Apolipoprotein E, cardiovascular disease and cognitive function in aging women. Neurobiol Aging. (2005) 26:675–84. doi: 10.1016/j.neurobiolaging.2004.05.003

19. Caselli RJ, Dueck AC, Osborne D, Saffab MN, Connor DJ, Ahern GL, et al. Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med. (2009) 361:255–63. doi: 10.1056/NEJMoA0809437

20. Muller-Gerards D, Weimar C, Abramowski J, Tegbruge S, Jokisch M, Dragano N, et al. Subjective cognitive decline, APOE epsilon4, and incident mild cognitive impairment in men and women. Alzheimers Dement. (2019) 11:221–30. doi: 10.1016/j.dadm.2019.01.007

21. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. (2018) 14:535–62. doi: 10.1016/j.jalz.2018.02.018

22. Bhome R, Berry AJ, Huntley JD, Howard RJ. Interventions for subjective cognitive decline: systematic review and meta-analysis. BMJ Open. (2018) 8:e021610. doi: 10.1136/bmjopen-2018-021610

23. Esposito S, Prange AJ Jr, Golden RN. The thyroid axis and mood disorders: overview and future prospects. Psychopharmacol Bull. (1997) 33:205–17.

24. Kathmann N, Klausie U, Bommmer M, Naber D, Muller OA, Engel RR. Effects of elevated triiodothyronine on cognitive performance and mood in healthy subjects. Neuropsychobiology. (1994) 29:136–42. doi: 10.1515/009190019976

25. Bunevicius R, Kazanavicius G, Zalinevickis R, Prange AJ Jr. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothryoidism. N Engl J Med. (1999) 340:424–9. doi: 10.1056/NEJM199901231401003

26. Harper PC, Roe CM. Thyroid medication use and subsequent development of dementia of the Alzheimer type. J Geriatr Psychiatr Neurol. (2010) 23:63–9. doi: 10.1177/0891988709342723

27. Stott DJ, Rodondi N, Kearney PM, Ford I, Westendorp RGJ, Moviisaart SP, et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N Engl J Med. (2017) 376:2534–44. doi: 10.1056/NEJMoa1603825

28. Guuskeloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA. (2004) 292:2591–9. doi: 10.1001/jama.292.21.2591

29. Tan ZS, Beiser A, Vasan RS, Au R, Auerbach S, Kiel DP, et al. Memory complaints and APOE-epsilon4 accelerate cognitive decline in very old adults. Arch Intern Med. (2008) 168:1514–15. doi: 10.1001/archinte.2008.18.13.37

30. Bianchi G, Solaroli E, Zaccheroni V, Grossi G, Bargossi AM, Melchionda N, et al. Oxidative stress and anti-oxidant metabolites in patients with hyperthyroidism: effect of treatment. Horm Metab Res. (1999) 31:620–4. doi: 10.1055/s-2007-978808
39. Belsky J, Jonassaint C, Pluess M, Stanton M, Brummett B, Williams R. Vulnerability genes or plasticity genes? Mol Psychiatr. (2009) 14:746–54. doi: 10.1038/mp.2009.44
40. Panizzon MS, Hauger R, Xian H, Vuoksimaa E, Spoon KM, Mendoza SP, et al. Interaction of APOE genotype and testosterone on episodic memory in middle-aged men. Neurobiol Aging. (2014) 35:1778.e1771–1778. doi: 10.1016/j.neurobiolaging.2013.12.025
41. Percy ME, Potyomkina Z, Dalton AJ, Fedor B, Mehta P, Andrews DF, et al. Relation between apolipoprotein E genotype, hepatitis B virus status, and thyroid status in a sample of older persons with down syndrome. Am J Med Genet A. (2003) 120a:191–8. doi: 10.1002/ajmg.a.20099
42. Bojar I, Stasiak M, Cyniak-Magierska A, Raczkiewicz D, Lewinski A. Cognitive function, APOE gene polymorphisms, and thyroid status associations in postmenopausal women in poland. Dement Geriatr Cogn Disord. (2016) 42:169–85. doi: 10.1159/000449373
43. Lee J, Park KC, Rhee H. Interactive effects of apolipoprotein E4 and triiodothyronine (T3) on memory in cognitively normal individuals. Alzheimer's Dement. (2019) 15:P1466. doi: 10.1016/j.jalz.2019.06.4099

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Lee, Soh, Kim, Lee, Kwon, Yoon, Park and Rhee. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.