Fault-Tolerant Preparation of Quantum Polar Codes Encoding One Logical Qubit

Ashutosh Goswami1, Mehdi Mhalla2, Valentin Savin1

1 Univ. Grenoble Alpes, CEA-Leti, F-38054 Grenoble, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
ashutosh-kumar.goswami@cea.fr, mehdi.mhalla@univ-grenoble-alpes.fr, valentin.savin@cea.fr
(Dated: March 2, 2023)

This paper explores a new approach to fault-tolerant quantum computing (FTQC), relying on quantum polar codes. We consider quantum polar codes of Calderbank-Shor-Steane type, encoding one logical qubit, which we refer to as Q_1 codes. First, we show that a subfamily of Q_1 codes is equivalent to the well-known family of Shor codes. Moreover, we show that Q_1 codes significantly outperform Shor codes, of the same length and minimum distance. Second, we consider the fault-tolerant preparation of Q_1 code states. We give a recursive procedure to prepare a Q_1 code state, based on two-qubit Pauli measurements only. The procedure is not by itself fault-tolerant, however, the measurement operations therein provide redundant classical bits, which can be advantageously used for error detection. Fault-tolerance is then achieved by combining the proposed recursive procedure with an error detection method. Finally, we consider the fault-tolerant error correction of Q_1 codes. We use Steane error correction, which incorporates the proposed fault-tolerant code state preparation procedure. We provide numerical estimates of the logical error rates for Q_1 and Shor codes of length 16 and 64 qubits, assuming a circuit-level depolarizing noise model. Remarkably, the Q_1 code of length 64 qubits achieves a logical error rate very close to 10^{-6} for the physical error rate $p = 10^{-3}$, therefore, demonstrating the potential of the proposed polar codes based approach to FTQC.

Large scale quantum computers are expected to use quantum error correcting (QEC) codes to provide resilience against noise \cite{1}. A QEC code encodes one or more logical qubits into many noisy physical qubits, so that the logical qubits are more robust against noise than the physical qubits. However, a QEC code alone does not provide the ability to do fault-tolerant quantum computation (FTQC). To avoid the uncontrolled propagation of errors, it must be complemented with several fault-tolerant procedures \cite{2}, aimed at \textit{(i)} preparing logical code states, \textit{(ii)} operating on logical states, and \textit{(iii)} performing error correction.

In this paper, we explore a new approach to fault-tolerant quantum computation (FTQC), relying on quantum polar codes. Introduced first in 2009 for classical systems \cite{3}, and then generalized to the quantum case \cite{4–7}, polar codes arguably represent one of the most important advances of the past decade in the coding theory. They achieve the coherent information (one-shot capacity) of any quantum channel, and come equipped with an efficient decoding algorithm, known as successive cancellation (SC), whose complexity scales log-linearly with the code length.

It is worth noticing that a low-complexity decoding algorithm is key to performing fault-tolerant error correction. Indeed, the decoding must be faster than the syndrome extraction rate, since otherwise, the latency overhead becomes exponential in the number of non-Clifford gates, hindering any quantum advantage \cite{8}.

Yet, despite their excellent error correction properties, polar codes have been hardly explored for quantum computing, except the work in \cite{9} on magic state distillation. Here, we focus on two closely related ingredients of FTQC, namely fault-tolerant code state preparation and fault-tolerant error correction.

The main contributions are as follows.

We consider quantum polar codes of Calderbank-Shor-Steane (CSS) type that encode one logical qubit, which we refer to as Q_1 codes. We show that Q_1 codes are a natural generalization of the well-known family of Shor codes, providing improved error correction performance.

We then consider the fault-tolerant preparation of Q_1 code states under the effect of noise. We propose a procedure to prepare Q_1 code states, by recursively performing Pauli $Z \otimes Z$ or Pauli $X \otimes X$ measurements. This procedure is not by itself fault-tolerant, however, the measurement operations therein provide redundant classical bits, which can be advantageously used for error detection. Hence, to achieve fault-tolerance, the proposed procedure is complemented by an error detection method.

Finally, we consider the fault-tolerant error correction of Q_1 codes, using Steane error correction \cite{10, 11}. We provide numerical estimates of the logical error rate (LER), assuming a circuit-level depolarizing noise model, for Q_1 and Shor-Q_1 codes of length $N = 16$ and $N = 64$. Remarkably, the Q_1 code of length 64 qubits achieves an LER very close to 10^{-6} for the physical error rate $p = 10^{-3}$, therefore, demonstrating the potential of the proposed polar codes based approach to FTQC.
Relevant background information, as well as proofs of the main theorems and additional numerical results are provided in the Supplemental material appended to this paper.

1. CSS Quantum Polar Codes

The quantum polar transform Q_N, where $N = 2^n$, with $n > 0$, is the unitary operation on N qubits that operates in the computational basis as the classical polar transform P_N. Precisely, for any $u = (u_1, \ldots, u_N) \in \{0,1\}^N$, we define $Q_N(u) = |P_Nu\rangle$, where $P_N = (\begin{smallmatrix} 1 & 1 \\ 1 & -1 \end{smallmatrix} \otimes \cdots \otimes 1)^n$. Hence, Q_N can be realized by recursively applying the quantum CNOT gate, transversely, on subblocks of 2^k qubits, for $k = 0, \ldots, n-1$ (see Fig. 1).

Let $S = \{1, \ldots, N\}$ denote an N-qubit quantum system. For a CSS quantum polar code [4], the system S is partitioned into $S = \mathcal{Z} \cup \mathcal{I} \cup \mathcal{X}$, and the input quantum state of the polar transform is taken as follows.

For $\mathcal{Z} \subseteq S$, the quantum state is frozen to a known Pauli Z basis state $|u\rangle_{\mathcal{Z}}$, where $u := (u_1, \ldots, u_n) \in \{0,1\}^{|\mathcal{Z}|}$. For $\mathcal{X} \subseteq S$, with $\mathcal{Z} \cap \mathcal{X} = \emptyset$, it is frozen to a known Pauli X basis state $|\mathcal{X}\rangle$, where $v \in \{0,1\}^{|\mathcal{X}|}$ and we use the notation $|0\rangle := |+\rangle$, and $|1\rangle := |-\rangle$. The remaining subset $\mathcal{I} := S \setminus (\mathcal{X} \cup \mathcal{Z})$ is used to encode quantum information $|\phi\rangle_{\mathcal{I}}$.

Therefore, the logical code state, denoted by $|\tilde{\phi}\rangle_S$, is given by $|\tilde{\phi}\rangle_S = Q_N(|u\rangle_{\mathcal{Z}} \otimes |\phi\rangle_{\mathcal{I}} \otimes |\mathcal{X}\rangle)$.

![Fig. 1: The quantum polar code, with $N = 2^3$, frozen sets $\mathcal{Z} = \{1,2,3\}$, $\mathcal{X} = \{6,7,8\}$ (chosen only for the simplicity of illustration), and frozen states $|u\rangle_{\mathcal{Z}} = |0,0,0\rangle$, and $|\mathcal{X}\rangle = |+,+,+\rangle$.]

2. Q_1 codes: Quantum Polar Codes Encoding One Logical Qubit

As Q_1 codes encode only one qubit, the information set $\mathcal{I} = \{i\}$, for some $i \in S = \{1, \ldots, N\}$. Given the index i, the frozen sets \mathcal{Z} consists of the set of indices preceding i, i.e., $\mathcal{Z} := \{1, \ldots, i-1\}$, and the frozen set \mathcal{X} consists of the set of indices succeeding i, i.e., $\mathcal{X} := \{i+1, \ldots, N\}$.

The choice of the frozen sets \mathcal{Z} and \mathcal{X}, given the information qubit position i, is simply explained by the sequential nature of the SC decoding, and the fact that only logical errors corresponding to i (i.e., X and Z errors on position i at the level of uncoded qubits) need to be corrected. Indeed, freezing qubit $j > i$ in Z basis would be of no help in decoding of logical X error on i, while freezing it in X basis amounts to ignoring X error that happen on it at the level of uncoded qubits, as it corresponds to a X type stabilizer. A similar observation holds for Z errors.

In case the information position is a power of two, that is, $i = 2^k, 0 \leq k \leq n$, the corresponding Q_1 code is a Shor code[12, 13]. This follows from Theorem 1 below. We refer to these codes as Shor-Q_1 codes, or simply Shor codes, when no confusion is possible.

Theorem 1. For a given $i = 2^k, 0 \leq k \leq n$, the logical states $|\bar{0}\rangle_S$ and $|\bar{1}\rangle_S$ of the $Q_1(N, i)$ code are as follows (up to a normalization factor),

\begin{align}
|\bar{0}\rangle_S &= \otimes_{r=1}^{2^k} \left(\otimes_{c=1}^{2^{n-k}} |+\rangle_{r,c} + \otimes_{c=1}^{2^{n-k}} |-\rangle_{r,c} \right), \\
|\bar{1}\rangle_S &= \otimes_{r=1}^{2^k} \left(\otimes_{c=1}^{2^{n-k}} |+\rangle_{r,c} - \otimes_{c=1}^{2^{n-k}} |-\rangle_{r,c} \right),
\end{align}

where r and c are row and column indexes, with S being reshaped as a $2^k \times 2^{n-k}$ matrix of qubits.

The construction of a Q_1 code refers to the choice of the information position i, which determines how well the code protects the encoded quantum information. Hence, the position $i \in S$ should be chosen in a way to optimize the LER performance, depending on the specific noisy quantum channel. For the subfamily of Shor-Q_1 codes, the choice is restricted to positions $i = 2^k, 0 \leq k \leq n$.

For depolarizing quantum channels, we use the density evolution technique [3, 14] to numerically estimate the LER of Q_1 and Shor-Q_1 codes. The numerical results are shown in Fig. 2 for both Q_1 and Shor codes, for even recursion levels $n = 4$ to 12, where the legend gives the best index i for low physical error rates. It can be observed that the Q_1 code in general outperforms the Shor code, for a given n. From the corresponding values of i given in Fig. 2, one may further note that the Q_1 and Shor codes have the same quantum minimum distance, for a given value of n. The superior performance of Q_1 codes owes to the SC decoding, which is able to decode beyond the minimum distance of the code, by effectively exploiting the channel polarization property of polar codes.

For the odd recursion levels, our numerical results (omitted here) indicate performance gains, depending on n and the physical error rate value.
3. Measurement Based Preparation of Q_1 Code States

The conventional encoding of quantum polar codes in Fig. 1 is not fault-tolerant, as errors propagate through the CNOT gates. Further, measuring the stabilizer generators using the standard “phase kickback trick” [2], similar to the case of quantum LDPC codes [15], is also not fault-tolerant, due to the high weights of generators.

Hence, we propose a new procedure to prepare Q_1 code states, based on two-qubit Pauli measurements only. We describe our procedure in two steps. First, we assume that all the operations are error free, and show that the proposed procedure does indeed prepare a Q_1 code state. Then, we consider our procedure under the effect of errors (i.e., noisy gates and measurements), and show that it can be made fault-tolerant by incorporating an error detection gadget, exploiting the redundancy in the measurement outcomes.

We consider the preparation of logical $|0\rangle$ and $|+\rangle$ states, for which all the input qubits are frozen in either Z or X basis. Consequently, we consider the preparation of general Q_1 code states, with frozen sets $Z = \{1, \ldots, i\}$ and $X = \{i+1, \ldots, N\}$, for some arbitrary $1 \leq i \leq N$, where $N = 2^n, n \geq 1$. Further, since our preparation procedure is recursive, to clearly indicate the length of the prepared Q_1 state, we will use the notation $i(n) := i$, $Z(n) := Z$, and $X(n) := X$. Therefore, we want to prepare the following N-qubit Q_1 state on the system $S = \{1, \ldots, N\}$,

$$|q_N\rangle_S := Q_N (|u, v\rangle) = Q_N \left(|u\rangle_{Z(n)} \otimes |v\rangle_{X(n)} \right),$$

where $u \in \{0,1\}^{i(n)}$ and $v \in \{0,1\}^{N-i(n)}$. When no confusion is possible, we may simply write $|q_N\rangle_S$ instead of $|q_N\rangle_S$. Here, we consider Q_1 states defined by the same value of $i(n)$ as equivalent, regardless of the corresponding frozen values u, v. Indeed, equivalent Q_1 states are defined by the same stabilizer generators, up to sign factors.

To prepare $|q_N\rangle_S$ from (3), we consider the following measurement based procedure.

Procedure 1 (Measurement Based Preparation). Given a n-bit sequence $b_1 \cdots b_n \in \{0,1\}$, our measurement based procedure on $N = 2^n$ qubit system $S = \{1, \ldots, N\}$ is as follows.

1. First, S is initialized in a Pauli Z basis state $|u\rangle_S, u \in \{0,1\}^N$.

2. Then, two-qubit Pauli measurements are recursively applied for n levels. The recursion is the same as the recursion of the quantum polar transform (see Fig. 1), except the CNOT gate is replaced by either Pauli $X \otimes X$ or $Z \otimes Z$ measurement. Precisely, if $b_k = 0$ (or, $b_k = 1$), we apply Pauli $X \otimes X$ (or, $Z \otimes Z$) measurements at the k^{th}, $k = 1, \ldots, n$ recursion level.

Theorem 2. Consider the Q_1 state $|q_N\rangle_S$ from (3), with $1 \leq i(n) \leq N$. Let $b_1 \cdots b_n$ be the binary representation of $i(n) - 1$, with b_n being the most significant bit, i.e, $i(n) - 1 = \sum_{k=1}^n b_k 2^{k-1}$. Then, $|q_N\rangle_S$ can be prepared, using the measurement based procedure in Procedure 1, corresponding to the n bit sequence $b_1 \cdots b_n$.

The measurement based preparation for $N = 8, i(n) = 3$ is illustrated in Fig. 3.

We first show in Lemma 1 that given two equivalent Q_1 states of length $K/2$, $K = 2^k$, we can prepare a Q_1 state of length K by performing $Z \otimes Z$ or $X \otimes X$ measurements transversely on them. Further, when we apply Pauli $Z \otimes Z$
measurements, we have \(i(k) = i(k - 1) + K/2 > K/2 \) and when we apply Pauli \(X \otimes X \) measurements, we have \(i(k) = i(k - 1) \leq K/2 \). The proof of Theorem 2 then simply follows from Lemma 1, by noting that \(b_k = 1 \iff i(k) > K/2 \) (hence, \(b_k = 0 \iff i(k) \leq K/2 \)).

Lemma 1. Consider two equivalent \(Q_1 \) states on \(K/2 \)-qubit systems \(S_1 := \{1, \ldots, K/2\} \) and \(S_2 := \{K/2 + 1, \ldots, K\} \) as follows, \(|q^{1}_K\rangle_{S_1} := Q_{K/2} |u_1, v_1\rangle_{S_1} \), and \(|q^{2}_K\rangle_{S_2} := Q_{K/2} |u_2, v_2\rangle_{S_2} \), where \(u_1, u_2 \in \{0,1\}^{i(k-1)} \) and \(v_1, v_2 \in \{0,1\}^{i(k-1)} \), with \(1 \leq i(k-1) \leq K/2 \). Let \(S := S_1 \cup S_2 \) be the joint system, then we have the following two cases.

Case 1: If we apply transversal Pauli \(Z \otimes Z \) measurements on the corresponding qubits of \(S_1 \) and \(S_2 \), we get the \(K/2 \) bit measurement outcome as follows,

\[
m = P_{\frac{K}{2}}(u', x) \in \{0,1\}^\frac{K}{2},
\]

where \(u' = u_1 \oplus u_2 \in \{0,1\}^{i(k-1)} \) and \(x = x \in \{0,1\}^{i(k-1)}-i(k-1) \) is a random vector, and \(P_{\frac{K}{2}} \) is the classical polar transform. After measurements, the state of \(S \) is a \(Q_1 \) state, \(|q_K\rangle_S = Q_{K/2}(|u', x, u_2\rangle, v_1 \oplus v_2\rangle) \), with \(i(k) = i(k - 1) + K/2 > K/2 \), and where \(x \) is determined from the measurement outcome \(m \) in (4) by, \(x = P_{K/2}(m)|_{X(k-1)} \), i.e., the subvector of \(P_{K/2}(m) \) in \(\{0,1\}^{K/2} \) corresponding to indices in the set \(X(k-1) \).

Case 2: If we apply transversal Pauli \(X \otimes X \) measurements on the corresponding qubits of \(S_1 \) and \(S_2 \), we get the \(K/2 \) bit measurement outcome as follows,

\[
m = P_{\frac{K}{Z}}(z, v') \in \{0,1\}^\frac{K}{Z},
\]

where \(z \in \{0,1\}^{i(k-1)} \) is a random vector, and \(v' = v_1 \oplus v_2 \in \{0,1\}^{i(k-1)} \). After measurements, the state on \(S \) is a \(Q_1 \) state \(|q_K\rangle_S = Q_{K/2}(|u, z, v'\rangle) \), with \(i(k) = i(k - 1) \leq K/2 \) and from (5), \(z = P_{K/2}(m)|_{Z(k-1)} \).

4. Fault-Tolerant Measurement Based Procedure

We now consider our measurement based procedure under the effect of Pauli noise. We assume the standard implementation of Pauli \(Z \otimes Z \) and \(X \otimes X \) measurements, where a bare ancilla qubit is initialized in either Pauli \(Z \) or Pauli \(X \) basis state, then two CNOT gates are applied between data and ancilla qubits, and finally the ancilla qubit is measured in Pauli \(Z \) or \(X \) basis. Therefore, any two-qubit Pauli measurement decomposes into four basic components, namely one single-qubit initialization, two CNOT-gates, and one single-qubit measurement.

As the preparation of \(|q_N\rangle_S \) consists of \(N \) single-qubit initializations, followed by \(N/2 \log N \) two-qubit Pauli measurements, the total number of components in the preparation is equal to \(N(1 + 2 \log N) \).

We assume that each component fails independently with some probability \(p \), according to a circuit level Pauli noise model as follows.

A failure in a CNOT gate corresponds to applying the perfect CNOT gate, followed by a two-qubit Pauli error on the output qubits of the CNOT gate. A failure in initialization in Pauli \(Z \) (or \(X \)) basis corresponds to the perfect initialization, followed by an \(X \) (or \(Z \)) error on the initialized qubit. A failure in Pauli \(Z \) (or \(X \)) measurement corresponds to first applying a Pauli \(X \) (or \(Z \)) error on the qubit to be measured, and then doing the perfect Pauli \(Z \) (or \(X \)) measurement.

We note that the preparation in Procedure 1 is not fault-tolerant by itself. Due to failures in the components, the measurement outcomes of transversal Pauli \(Z \otimes Z \) or \(X \otimes X \) measurements are noisy. Precisely, we have \(m = P_{\frac{K}{Z}}(u', x) \oplus e_X \) instead of (4), and \(m = P_{\frac{K}{Z}}(z, v') \oplus e_Z \) instead of (5), where \(e_X, e_Z \in \{0,1\}^{K/2} \) are unknown error terms. Recall from Lemma 1 that vectors \(x \) and \(z \) are determined from \(m \), and they are necessary to know the prepared state \(|q_K\rangle_S \) after Pauli \(Z \otimes Z \) and \(X \otimes X \) measurements, respectively. However, due to unknown error terms, the methods in Lemma 1 may not correctly determine \(x \) and \(z \). Accepting a wrong estimate \(\hat{x} \neq x \) and \(\hat{z} \neq z \) amounts to extra \(X \) and \(Z \) errors on the respective prepared states, given by the vectors \(P_K(0, \hat{x} \oplus x, 0, 0) \), and \(P_K(0, 0, \hat{z} \oplus z, 0) \), respectively.

To make the measurement based preparation fault-tolerant, we consider the following error detection procedure.

Procedure 2 (Measurement based Preparation with Error Detection). Consider the preparation of a \(Q_1 \) state of length \(N \) from Procedure 1. We further incorporate an error detection gadget within each level of recursion, \(k = 1, \ldots, n \), consisting of the following two steps.

1. For all \(2^{n-k} \) instances of prepared \(|q_K\rangle \) states at the \(k \)th level of recursion, we first determine the syndrome of the error in the measurement outcome \(m \) as follows. When Pauli \(Z \otimes Z \) measurements are performed (i.e., Case 1 of Lemma 1), we determine the syndrome of the error term \(e_X \) in the measurement outcome \(m \) as, \(P_{\frac{K}{Z}}(e_X)|_{X(k-1)} = P_{\frac{K}{Z}}(m)|_{X(k-1)} \oplus u' \). Similarly, when Pauli \(X \otimes X \) measurements are performed (i.e., Case 2 of Lemma 1), we determine the syndrome of the error term \(e_Z \) as, \(P_{\frac{K}{Z}}(e_Z)|_{X(k-1)} = P_{\frac{K}{Z}}(m)|_{X(k-1)} \oplus v' \).
(2) If the syndrome is the zero vector for all the 2^{n-k} instances of $|q_R\rangle$, we determine the value of x or z for all prepared states as in Lemma 1, and proceed to the next level of recursion. Otherwise, we declare a preparation failure.

In case Procedure 2 fails, we may restart the procedure from the beginning, by initializing N qubits in a Pauli Z basis state.

The fault-tolerance of the successfully prepared state (i.e., when errors are not detected at any recursion level $k = 1$ to n), follows from Theorem 3.

Theorem 3. Consider the measurement based preparation with error detection from Procedure 2. Suppose a successful preparation of $|q_N\rangle$, where T_n component failures occur during the preparation. Let $e'_X, e'_Z \in \{0, 1\}^N$ be the final Pauli X and Z errors in the noisy prepared state $|q_N'\rangle$, due to the component failures. Then, there exist equivalent errors $e''_X \equiv e'_X$ and $e''_Z \equiv e'_Z$, so that $wt(e''_X) \leq T_n$ and $wt(e''_Z) \leq T_n$, where $wt(u)$ denotes the Hamming weight of u.

Theorem 3 implies that the weight of X and Z errors on a successfully prepared state remains small given a sufficiently low component failure probability p. In particular, it upper bounds the average weight of the final error by $N(1 + 2 \log N)p$. Our numerical simulation suggests that the average error weight is much lower than $N(1 + 2 \log N)p$, which is expected as we discard the preparations where errors are detected.

5. Fault-tolerant error correction

For fault-tolerant error correction of Q_1 codes, we consider Steane error correction. The Q_1 states, needed in the Steane error correction, are prepared using Procedure 2, assuming a circuit-level depolarizing noise model. Further, as Procedure 2 consists of error detection, we consider polar code states of small lengths $N = 16$ and $N = 64$.

Let $p_{\text{prep}} = \lim_{R \to \infty} \frac{t}{R}$ be the preparation rate, where t is the number of successful preparations out of R preparation attempts. For a component failure probability $p = 10^{-3}$, our numerical simulation gives $p_{\text{prep}} \approx 0.88$ and $p_{\text{prep}} \approx 0.47$, respectively, for $Q_1(N = 16, i = 7)$ and $Q_1(N = 64, i = 23)$ codes.

The numerical estimate of the LER for Q_1 and Shor codes of length $N = 16$ and $N = 64$ qubits are given in Fig. 4. The LER has been estimated by Monte-Carlo (MC) simulation of the Steane error correction procedure, until a number of f logical errors are reported, where f is taken to be between 50 and 200. We also provide a theoretical upper-bound of the LER based on density evolution (DE), providing a trustworthy extrapolation of the LER for smaller values of p, which is a unique feature (among quantum codes) of great interest in practical applications.

Finally, it can be observed that the pseudothreshold (crossing point between the LER curve and the diagonal line [16, 17]) of the $Q_1(N = 16, i = 7)$ code is $p_{\text{th}} \approx 0.001$, while for the $Q_1(N = 64, i = 23)$ code, we get $p_{\text{th}} \approx 0.01$. If the physical error rate p falls below the pseudothreshold, then the code is guaranteed to lower the logical error rate below p.

Discussion

Polar encoded quantum computation may be seen as an error correction centric approach to FTQC. It exploits a family of codes that have met with remarkable success, fueled by their excellent error correction performance, under practical, low complexity decoding. In this paper, we focused on two closely related ingredients of FTQC, namely fault-tolerant code state preparation and fault-tolerant error correction. We considered polar codes encoding one logical qubit, referred to as Q_1 codes, constituting a case of practical interest to FTQC (they support transversal logical CNOT gate), and which we showed to be a meaningful generalization of the well-known Shor codes. We may also notice that the preparation procedure presented here naturally extends to the case of quantum polar codes encoding several logical qubits, provided they are encoded in consecutive information positions.

We provided here numerical estimates of the logical error rates for Q_1 and Shor codes of length 16 and 64 qubits, assuming a circuit-level depolarizing noise model. Our
numerical results showed that Q_1 codes notably outperforms Shor codes, for the same code length and minimum distance. To prepare longer Q_1 code states, a possible approach is to replace the error detection mechanism incorporated in the preparation procedure, by an error correction one. Moreover, the gap between Q_1 and Shor codes is expected to increase with the code length, due to the Q_1 codes construction that effectively exploits the channel polarization property.

Finally, we note that our preparation procedure requires distant interactions between qubits, which may be possible on some quantum technologies only. Yet, for quantum systems with local interaction constraints, it is possible to reduce the number of distant operations required to prepare small Q_1 codes, by arranging the qubits in an appropriate manner (taking advantage of the polar code structure). Distant operations may then be implemented through the use of swap gates, or by physically moving the qubits around. For longer codes, solutions have to be sought that may heavily depend on the specific quantum technology.

Acknowledgment

The authors would like to thank Davide Orsucci for useful discussions. This work was supported by the QuantERA grant EQUIP, by the French Agence Nationale de la Recherche, ANR-22-QUA2-0005-01.
Supplemental Material for:
Fault-Tolerant Preparation of Quantum Polar Codes Encoding One Logical Qubit

In Sections I and II, we provide introductions to classical and quantum polar codes, respectively. For quantum polar codes, we detail Steane’s error correction procedure in Section II.C. In Section III, we first provide a proof of Theorem 1 from the main text, and then provide further details on the construction of Q_1 codes. In Section IV, we first consider the measurement-based preparation without noise and provide the proof of Lemma 1 from the main text. We then consider the measurement-based preparation with noise and provide the proof of fault tolerance, according to Theorem 3 from the main text. Finally, in Section V, we discuss numerical methods to estimate logical error rates of Q_1 codes, using Steane error correction, incorporating our measurement based preparation. In this context, we also provide some extra numerical results.

I. Classical Polar Codes

I.A. Encoding

The encoding of classical polar codes is done by applying the reversible XOR gate recursively on an N bit input $u = (u_1, \ldots, u_N) \in \{0, 1\}^N$, where $N = 2^n$, with $n > 0$ (see Fig. 1). For a set of positions $\mathcal{F} \subseteq \{1, \ldots, N\}$, the corresponding component $u|_{\mathcal{F}} \in \{0, 1\}^{\mid \mathcal{F}}$ of the input vector u is frozen. We may take $u|_{\mathcal{F}}$ to be any vector in $\{0, 1\}^{\mid \mathcal{F}}$, but it should be known to both the encoder and the decoder. The set \mathcal{F} is called the frozen set. The remaining positions $\mathcal{I} := \{1, \ldots, N\} \setminus \mathcal{F}$ are used to encode information bits. The set \mathcal{I} is called the information set.

The encoding of classical polar codes is done by applying the reversible XOR gate recursively on an N bit input $u = (u_1, \ldots, u_N) \in \{0, 1\}^N$, where $N = 2^n$, with $n > 0$ (see Fig. 1). For a set of positions $\mathcal{F} \subseteq \{1, \ldots, N\}$, the corresponding component $u|_{\mathcal{F}} \in \{0, 1\}^{\mid \mathcal{F}}$ of the input vector u is frozen. We may take $u|_{\mathcal{F}}$ to be any vector in $\{0, 1\}^{\mid \mathcal{F}}$, but it should be known to both the encoder and the decoder. The set \mathcal{F} is called the frozen set. The remaining positions $\mathcal{I} := \{1, \ldots, N\} \setminus \mathcal{F}$ are used to encode information bits. The set \mathcal{I} is called the information set.

In the following, we denote by $\mathcal{P}(N, \mathcal{F}, u|_{\mathcal{F}})$, the classical polar code of length N, frozen positions \mathcal{F}, and frozen vector $u|_{\mathcal{F}} \in \{0, 1\}^{\mid \mathcal{F}}$.

The action of the $\text{XOR}_{2 \rightarrow 1}$ gate on input $u = (u_1, u_2) \in \{0, 1\}^2$ gives $x = (u_1 \oplus u_2, u_2)$. In matrix form, we may write $x = P_2 u$, where

$$P_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

The classical polar transform, that is, the recursive application of $\text{XOR}_{2 \rightarrow 1}$ on $N = 2^n$ qubits, is thus given by the matrix

$$P_N = P_2^\otimes n.$$

For any value of the information bits $u_\mathcal{I} \in \{0, 1\}^{\mid \mathcal{I}}$, $x = P_N(u|_{\mathcal{F}}, u|_{\mathcal{I}}) \in \{0, 1\}^N$ is a codeword of the polar code $\mathcal{P}(N, \mathcal{F}, u|_{\mathcal{F}})$. If $u|_{\mathcal{F}}$ is the all zero vector, the polar code $\mathcal{P}(N, \mathcal{F}, u|_{\mathcal{F}})$ is generated by the columns of P_N corresponding to the information set \mathcal{I}.

![Fig. 1](image)

Fig. 1: (a) Polar transform recursion: P_N in terms of $P_{N/2}$. (b) Example of a classical polar code encoding $|\mathcal{I}| = 5$ bits into $N = 2^3$ bits, with frozen set $\mathcal{F} = \{1, 2, 3\}$, and frozen vector $u|_{\mathcal{F}} = (0, 0, 0)$. Here, the set \mathcal{F} (thus, \mathcal{I}) is chosen only for the purpose and the simplicity of the illustration. In general, it needs not consist of consecutive positions.
I.B. Construction

The construction of a classical polar code refers to the choice of the information set \mathcal{I} (or, equivalently, the frozen set \mathcal{F}). This is done in a channel specific way as follows.

Consider a discrete, memoryless, classical channel $W(y | x)$, with binary input $x \in \{0, 1\}$, and output $y \in \mathcal{Y}$. For $u \in \{0, 1\}^N$, let $x = P_N(u) \in \{0, 1\}^N$ (note that here \mathcal{F} and \mathcal{I} need not be defined) and $y \in \mathcal{Y}^N$ be the output corresponding to N uses of the W channel, with inputs x_1, \ldots, x_N. For $i = 1, \ldots, N$, let $W^{(i)}(y, u_{1:i-1} | u_i)$ denote the so-called virtual channel, with input $u_i \in \{0, 1\}$ and output $(y, u_{1:i-1}) \in \mathcal{Y} \times \{0, 1\}^{i-1}$, where $u_{1:i-1} := (u_1, \ldots, u_{i-1})$.

Informally, the channel polarization theorem [3] states that, for sufficiently large N, almost all the virtual channels become arbitrarily close to either the noiseless (perfect) channel or to the completely noisy (useless) channel. The closeness to the either perfect or useless channel can be expressed in terms of different parameters, such as the mutual information $I(W^{(i)})$, the Bhattacharyya parameter $Z(W^{(i)})$, or the error probability $P_e(W^{(i)})$, which can be computed analytically for some channels (e.g., binary erasure channels), or estimated numerically through density evolution, for more general channels [14]. Once one of these parameters is computed for all the virtual channels, they are sorted from the most reliable (closest to the perfect channel) to the least reliable (closest to the useless channel) one.

For a polar code encoding K information bits, the information set \mathcal{I} consists of the indexes corresponding to the K most reliable virtual channels (equivalently, the $N-K$ least reliable virtual channels are frozen). The usefulness of this construction will become apparent in relation to the successive cancellation decoding, discussed in the next section.

I.C. Decoding

Classical polar codes come equipped with an efficient successive cancellation (SC) decoding algorithm. SC decoding takes advantage of the polar code construction, by estimating inputs u_1, \ldots, u_N sequentially. For $i = 1, \ldots, N$, SC decoding outputs the maximum a posteriori estimate \hat{u}_i of u_i, conditional on the observed output y and previous estimates $\hat{u}_{1:i-1} = (\hat{u}_1, \ldots, \hat{u}_{i-1})$. Precisely, we have

$$\hat{u}_i := \begin{cases} u_i, & \text{if } i \in \mathcal{F} \\ \arg \max_{u \in \{0, 1\}} W^{(i)}(y, u_{1:i-1} | u), & \text{if } i \in \mathcal{I} \end{cases}$$

If the information set contains indexes of good virtual channels (close to the perfect channel), the maximum a posteriori estimate \hat{u}_i is equal to the input u_i with high probability. This does not happen for bad virtual channels (close to the useless channel), which must then be frozen, so that the corresponding inputs are known to both the encoder and decoder. It is worth noticing that the maximum a posteriori decoding of the virtual channels can be performed in an efficient way, by using a message passing algorithm that takes advantage of the recursive structure of the polar code [3]. Overall, the complexity of the SC decoding scales as $O(N \log(N))$.

Finally, we note that Polar codes under SC decoding are known to achieve the channel capacity [3]. This means that for sufficiently large N, it is possible to choose an information set of size $|\mathcal{I}|$ arbitrary close of $NI(W)$, where $I(W)$ is the channel’s mutual information, while ensuring an arbitrary small error probability under SC decoding.

II. Quantum Polar Codes

II.A. Encoding

The encoding of quantum information for CSS quantum polar codes is briefly given in the main text under the paragraph “CSS Quantum Polar Codes”. In this section, we provide more details.

Recall from the main text that the quantum polar transform Q_N corresponds to the recursive action of the quantum CNOT gate on an N-qubit quantum state. The quantum CNOT gate induces the reversible XOR gate in the Pauli Z and Pauli X bases. Precisely, CNOT$_{2 \rightarrow 1}$ acts as XOR$_{2 \rightarrow 1}$ in the Pauli Z basis, while it acts as XOR$_{1 \rightarrow 2}$ in the Pauli X basis. Hence, it follows that Q_N acts as the classical polar transform P_N in the Pauli Z basis, while it acts as the reverse classical polar transform (i.e., with inverted target and control bits) in the Pauli X basis.
It can be seen that the reversed classical polar transform is described by P_N^T, where P_N^T is the transpose of P_N [4]. Therefore, we have the following, for $u \in \{0, 1\}^N$,

\begin{align}
Q_N|u\rangle &= |P_Nu\rangle, \\ Q_N|\bar{u}\rangle &= |P_N^T\bar{u}\rangle.
\end{align}

(4)

(5)

In the following, we denote by $Q(N, Z, x, |u\rangle_Z, |v\rangle_x)$, the quantum polar code on N qubits, with frozen sets Z and x, corresponding to the Pauli Z and Pauli X bases, respectively, and with corresponding frozen quantum states $|u\rangle_Z$ and $|v\rangle_x$. It induces two classical polar codes, one in Z basis, with frozen set Z, and one in X basis, with frozen set x, where the latter is defined by a reversed polar transform, as illustrated in Fig. 2.

Let π denote the reverse order permutation of $S = \{1, \ldots, N\}$, defined by $\pi(i) = N + 1 - i$. Then, the classical polar code induced in the Z basis is $P(N, Z, u)$, while the classical polar code induced in the X basis is $P(N, \pi(x), \pi(v))$, where the vector $\pi(v)$ is defined by permuting the entries of v according to π, that is, $\pi(v)_i := v_{\pi(i)}$, $\forall i \in X$.

The X and Z type stabilizer generators of $Q(N, Z, x, |u\rangle_Z, |v\rangle_x)$ are given by the lemma below.

Lemma 2. Let $c_i \in \{0, 1\}^N$ be the binary vector, with 0 everywhere except 1 at the i-th position. Then, the stabilizer group of $Q(N, Z, x, |u\rangle_Z, |v\rangle_x)$ is generated by the following X and Z type operators

\begin{align}
(-1)^{v_i}X_{c_i}, & \forall i \in x, \\
(-1)^{u_i}Z_{c_i}, & \forall i \in Z.
\end{align}

(6)

(7)

Proof. Note that the input of the polar transform, that is, the quantum state $|u\rangle_Z \otimes |\phi\rangle_z \otimes |v\rangle_x$, is stabilized by the following Pauli operators

\begin{align}
(-1)^{v_i}X_{c_i}, & \forall i \in x, \\
(-1)^{u_i}Z_{c_i}, & \forall i \in Z.
\end{align}

(8)

(9)

Therefore, the encoded quantum state $|\tilde{\phi}\rangle_z = Q_N(|u\rangle_z \otimes |\phi\rangle_z \otimes |v\rangle_x)$ is stabilized by the following Pauli operators

\begin{align}
(-1)^{v_i}Q_NX_{c_i}Q_N, & \forall i \in x, \\
(-1)^{u_i}Q_NZ_{c_i}Q_N, & \forall i \in Z.
\end{align}

(10)

(11)

The operators in (10)-(11) are a generating set of the stabilizer group of $Q(N, Z, x, |u\rangle_Z, |v\rangle_x)$. These generators can be written in terms of classical polar transforms P_N and P_N^T as follows.

We first consider the case of two qubits, and observe that the sandwiching actions of the CNOT gate on Pauli operators gives, for $u \in \{0, 1\}^2$,

\begin{align}
\text{CNOT}_{2\rightarrow 1}X^u \text{ CNOT}_{2\rightarrow 1} &= X^{P_2u}, \\
\text{CNOT}_{2\rightarrow 1}Z^u \text{ CNOT}_{2\rightarrow 1} &= Z^{P_2^T u}.
\end{align}

(12)

(13)

Using (12)-(13) and (2), the sandwiching action of Q_N is described by the classical polar transforms P_N and P_N^T, respectively, on X and Z type operators. Hence, the stabilizer generators from (10)-(11) can be written as given in (6)-(7) \(\square\)

Fig. 2: Classical polar codes in (a) Z basis, and (b) X basis, induced by the CSS quantum polar code $Q(N, Z, x, |u\rangle_Z, |v\rangle_x)$. The permutation π in (b) is the reverse order permutation. (Note that in this example the two codes are actually the same.)
Note, from (6), that the indicator vector of X-type generators are given by the columns of P_N, corresponding to the set X. Further, from (7), the indicator vectors of the Z-type generators are given by the columns of P_N^\top (i.e., the rows of P_N), corresponding to the set Z.

Similarly to Lemma 2, logical Pauli operators can be determined by passing X and Z operators through the polar transform, as shown in the lemma below.

Lemma 3. Let \tilde{X}_i and \tilde{Z}_i be the logical X and Z operators, corresponding to the encoded qubit at the position $i \in I$. Then,

$$\tilde{X}_i = X^{P_N}e_i, \quad (14)$$

$$\tilde{Z}_i = Z^{P_N^\top}e_i. \quad (15)$$

II.B. Construction

The construction of a CSS quantum polar code refers to determining the frozen sets Z and X (thus, the information set I), which exploits the classical polarization in Z and X bases, respectively [4]. We shall assume a Pauli channel W, with qubit input, given by

$$W(\rho) = p_I \rho + p_X X \rho X + p_Y Y \rho Y + p_Z Z \rho Z, \quad (16)$$

where ρ denotes the density matrix of the qubit (mixed) state, and $p_I, p_X, p_Y, p_Z \in [0, 1]$ are probability values, summing to 1.

In Z basis, only X errors matter. Thus, the Z-basis induced channel, denoted W_Z, captures the effect of X-type errors on the quantum state, and is given by

$$W_Z(|u\rangle\langle u|) = (p_I + p_Z) |u\rangle\langle u| + (p_X + p_Y) X |u\rangle\langle X|u|, \text{ for } u \in \{0, 1\}. \quad (17)$$

Hence, W_Z is a classical binary symmetric channel (BSC), with error probability $p_X + p_Y$. Similarly, the X-basis induced channel, denoted W_X, captures the effect of Z-type errors on the quantum state, and is given by

$$W_X(|\overline{\pi}\rangle\langle \overline{\pi}|) = (p_I + p_X) |\overline{\pi}\rangle\langle \overline{\pi}| + (p_Z + p_Y) Z |\overline{\pi}\rangle\langle Z|, \text{ for } u \in \{0, 1\}. \quad (18)$$

Hence, W_X is a classical BSC, with error probability $p_X + p_Y$.

To construct the CSS quantum polar code, we exploit the classical polarization of W_Z and W_X channels (See Section I.C). Note that this construction ignores the correlations between X and Z (we will explain how these correlations can be captured a little later, below). The frozen set Z is determined by the classical polarization of the W_Z channel, under the classical polar transform P_N, while the frozen set X is determined by the classical polarization of the W_X, under the reversed classical polar transform P_N^\top. The remaining information set I corresponds to virtual channels that are good in both Z and X bases. The frozen set Z corresponds to virtual channels that are bad in Z basis. These channels may be either bad or good in X basis, it does not matter, since we need not decode Z errors on corresponding inputs (such errors correspond to Z-type generators, thus they act trivially on the code space). Similarly, the frozen set X corresponds to virtual channels that are bad in X basis, and which may be either bad or good in Z basis. Precisely, positions in X that do not impact the decoding of subsequent positions in I (if any) may correspond to bad virtual channels in Z basis. For instance, this may be the case for some positions in X that come after the last position in I, i.e., some $j \in X$, such that $i < j, \forall i \in I$. See also Fig. 2a.

To capture the correlations between X and Z errors, one of the two channels, say W_X, has to be extended [4]. The extended channel, denoted by $W_{X'}$, is thus defined by the conditional probability of a Z error, given the X error. Precisely,

$$W_{X'}(|\overline{\pi}\rangle\langle \overline{\pi}|) = (p_I + p_Z) |0\rangle\langle 0|_X \otimes \left(\frac{p_I}{p_I + p_Z} |\overline{\pi}\rangle\langle \overline{\pi}| + \frac{p_Z}{p_I + p_Z} Z |\overline{\pi}\rangle\langle Z| \right) +$$

$$+ (p_X + p_Y) |1\rangle\langle 1|_X \otimes \left(-\frac{p_X}{p_X + p_Y} |\overline{\pi}\rangle\langle \overline{\pi}| + \frac{p_Y}{p_X + p_Y} Z |\overline{\pi}\rangle\langle Z| \right), \quad (19)$$
where \(\{0\}_X, \{1\}_X \) is an orthogonal basis of an auxiliary system, indicating whether an \(X \) error happened or not. Put differently, \(W_X' \) is a classical mixture of two BSCs, the first with error probability \(p_Z/(p_I + p_Z) \) (when no \(X \) error happened), and the second with error probability \(p_Y/(p_X + p_Y) \) (when an \(X \) error happened).

The construction of the CSS quantum polar code, taking into account the correlations between \(X \) and \(Z \) errors, is done in the same way as above, while replacing the \(W_X \) channel by its extended version \(W_X' \).

II.C. Steane Error Correction

We describe here the Steane error correction procedure [10, 11] (see also [2, Section 4.4]), applied to CSS quantum polar codes. Throughout this section, we consider an encoded state \(\tilde{\phi}_S = Q_N(\{u\}_Z \otimes \{\phi\}_I \otimes \{\tilde{v}\}_X) \) of the quantum polar code \(Q(N, Z, \mathcal{X}, \{u\}_Z, \{\mathcal{V}\}_X) \), that we want to protect against Pauli errors.

Steane’s error correction procedure consists of the following steps.

1. An ancilla system \(S' \) is prepared either in the logical all-\(+\) state or the logical all-\(-\) state of \(Q(N, Z, \mathcal{X}, \{u\}_Z, \{\mathcal{V}\}_X) \). The former state is prepared for \(X\)-error correction, while the latter of \(Z\)-error correction.

2. A transverse CNOT gate is applied between \(S \) (original) and \(S' \) (ancilla) systems, in such a way that either the \(X \) or the \(Z \) errors on \(S \) are copied to \(S' \), while the two systems remain separated.

3. The ancilla system is measured, outputting a random codeword of a classical polar code (in either \(Z \) or \(X \) basis), corrupted by the error that has been copied to \(S' \).

4. A classical SC decoding is applied to determine the error (possibly, the corresponding corrective operation is applied on the \(S \) system).

It is easily seen that steps (2) and (3) are fault-tolerant, as they consist only of transverse gates and single qubit measurements.

By a slight abuse of language, we shall refer to steps (1)-(3) above as syndrome extraction \(^1\). In case of ideal syndrome extraction, steps (1)-(3) are assumed to be error free, and the error corrected at step (4) is the one preexisting on system \(S \), before the syndrome is extracted. In case of noisy syndrome extraction, steps (1)-(3) may generate additional errors on systems \(S \) and \(S' \). We will analyze the impact of these errors, together with providing the details of Steane’s error correction applied to either \(X \) or \(Z \) errors, on the two subsections below.

We will consider an ancilla system \(S' = \{1', \ldots, N'\} \) and subsets \(Z', I', \mathcal{X}' \subseteq S' \). They are the counterparts of the subsets \(Z, I, \mathcal{X} \subseteq S \), in the sense that \(i' \in Z' \Leftrightarrow i \in Z \), and similarly for \(I' \) and \(\mathcal{X}' \).

X-Error Correction. To extract the syndrome for \(X \) errors, the ancilla system \(S' = Z' \cup I' \cup \mathcal{X}' \) must be prepared in a logical \(X \) basis state. Usually, the ancilla state is taken to be the logical all-\(+\) state, obtained by encoding the all-\(+\) state on system \(I' \). Here, we consider a slightly more general logical \(X \) basis state, as follows,

\[
\tilde{\{w\}}_{S'} = Q_N(\{u'\}_Z \otimes \{w\}_I \otimes \{v'\}_{\mathcal{X}'}),
\]

where \(u', w', v' \) are known. Note that frozen values \(u' \) and \(v' \) may be different from frozen values \(u \) and \(v \). The reason we consider the above logical state is that our preparation procedure for logical polar code states is measurement based, for which \(u', w', v' \) are determined based on random outcomes of measurements therein.

Steane’s \(X\)-error syndrome extraction procedure is depicted in Fig. 3a. After preparing the state \(\tilde{\{w\}}_{S'} \) on system \(S' \), the transversal CNOT \(S \rightarrow S' \) gate is applied on corresponding qubits of systems \(S \) and \(S' \). Then, each qubit in the ancilla system \(S' \) is measured in the Pauli \(Z \) basis. We denote by \(m = (m_1, \ldots, m_N) \) the classical outputs of these measurements.

The following lemma gives the state of the \(S \) system, as well as the measurement result \(m \), after the syndrome extraction procedure. We consider errors \(e_X \) and \(e'_X \) that have happened on systems \(S \) and \(S' \), respectively. We assume that

\(^1\) Strictly speaking, the classical information obtained at step (3) is not an error syndrome, but an error corrupted version of a random codeword (of course, if needed, one may classically compute the corresponding error syndrome).
Let Proof. Similarly, the noisy ancilla state can be written as

$$u \leftarrow P \leftarrow \phi.$$ Further, the measurement outcome is a noisy codeword of the classical polar code $P(N, Z, u \oplus u')$, with frozen set Z and frozen vector $u \oplus u'$, as follows,

$$m = P_N(u \oplus u', a', x') \oplus e_X \oplus e'_X \in \{0, 1\}^N,$$

where $a' \in \{0, 1\}^{|Z|}$ and $x' \in \{0, 1\}^{|X|}$ are random vectors.

Lemma 4. Let e_X and e'_X be preparation errors that have happened on systems S and S', respectively. Then, after the Steane’s X-error syndrome extraction, the state of the system S is given by

$$X^{e_X} |Z^{w'}\phi\rangle_S = X^{e_X} Q_N(|u\rangle_Z \otimes Z^{w'}|\phi\rangle_Z \otimes |u \oplus v\rangle_{X'}).$$

Further, the measurement outcome is a noisy codeword of the classical polar code $P(N, Z, u \oplus u')$, with frozen set Z and frozen vector $u \oplus u'$, as follows,

$$m = P_N(u \oplus u', a', x') \oplus e_X \oplus e'_X \in \{0, 1\}^N,$$

where $a' \in \{0, 1\}^{|Z|}$ and $x' \in \{0, 1\}^{|X|}$ are random vectors.

Proof. Let $|\phi\rangle_Z = \sum_{a' \in \{0, 1\}^{|Z|}} \phi_{a'} |a\rangle_{Z'}$. Note also that $|\bar{v}\rangle_X = \sum_{x \in \{0, 1\}^{|X|}} (-1)^{v \cdot x} |x\rangle_X$ (up to a normalization factor, which will be omitted in the sequel). Then, the noisy logical state $X^{e_X} |\bar{\phi}\rangle_S$ can be written as

$$X^{e_X} |\bar{\phi}\rangle_S = X^{e_X} Q_N(|u\rangle_Z \otimes |\phi\rangle_Z \otimes |\bar{v}\rangle_X) \leftarrow \sum_{a, x} \phi_{a} (-1)^{v \cdot x} P_N(u, a, x) \oplus e_X.$$

Similarly, the noisy ancilla state can be written as

$$X^{e'_X} |\bar{w}\rangle_{S'} = X^{e'_X} Q_N(|u'\rangle_Z \otimes |w\rangle_{Z'} \otimes |\bar{v}\rangle_{X'}).$$

$$= \sum_{a', x'} (-1)^{w' \cdot a' + v' \cdot x'} P_N(u', a', x') \oplus e'_X.$$
After the transverse \(\text{CNOT}_{S \rightarrow S'} \) gate is applied, we get the following state on the bipartite \(SS' \) system,

\[
|\theta\rangle_{SS'} := \text{CNOT}_{S \rightarrow S'} \left(X^{ex} |\tilde{\phi}\rangle_S \otimes X^{ex} [\tilde{w}]_{S'} \right)
= \sum_{a,x} \phi_a (-1)^{a \cdot x} P_N (u, a, x) \otimes X^{ex} \sum_{a', x'} (1)^{a' \cdot x'} \langle \tilde{w}' | -e_N \rangle \langle \tilde{w}' | x' \rangle \langle P_N (u, a, x) \otimes X^{ex} \rangle
= \sum_{a,x} \phi_a (-1)^{a \cdot x} \langle \tilde{w}' | e_N \rangle \langle \tilde{w}' | x' \rangle \langle P_N (u, a, x) \otimes X^{ex} \rangle
\]

where for the last equality, we use variable changes \(a' \leftarrow a \oplus a \), and \(x' \leftarrow x \oplus x \). It can be seen that the error on the system \(S \) has propagated to the system \(S' \), and \(|\theta\rangle_{SS'} \) is a product state that can be rewritten as

\[
|\theta\rangle_{SS'} = X^{ex} Q_N (|u\rangle_Z \otimes Z^{ex} |\tilde{\phi}\rangle_{\tilde{X}} \otimes (|v\rangle + |v\rangle)_{X} \rangle \otimes X^{ex} e_X Q_N (|u\rangle_Z \otimes |\tilde{w}'\rangle_{\tilde{X}} \otimes |\tilde{w}'\rangle_{X'}). \tag{30}
\]

Hence, the partial state of the system \(S \) is the same as in (21). Further, measuring the qubits of the ancilla system in the Pauli \(Z \) basis, we get \(m = P_N (u \oplus u', a', x') \oplus e_X \oplus e_X' \in \{0,1\}^N \), for some random vectors \(a' \in \{0,1\}^2 \) and \(x' \in \{0,1\}^X \).

Two observations are in place here.

First, from (21), it follows that the frozen vector corresponding to \(X \subset S \) (original system) has changed to \(v \oplus v' \), after the Steane’s procedure. Further, the logical \(Z \) operator corresponding to \(Z^{ex} \) gets applied on \(S \). However, since we know \(v', \) we can reverse this logical operation using (15). Hence, the logical information encoded in \(S \) has not been altered, due to the syndrome extraction.

The second observation concerns the SC decoding, which takes as input the measurement outcome \(m = P_N (u \oplus u', a', x') \oplus e_X \oplus e_X' \), and the frozen vector \(u \oplus u' \). It produces an estimate of the information vector \((a', x') \), from which we can produce an estimate of the total error \(e_X \oplus e_X' \). The vector \(a' \) may be correctly estimated, owning to the fact that it corresponds to good virtual channels. Some of the \(x' \) positions may be incorrectly estimated, but this does not matter, as the induced logical error corresponds to an \(X \)-type stabilizer operator, acting trivially on the code space.

Hence, assuming the vector \(a' \) is decoded correctly, we also get the correct value of the total error \(e_X \oplus e_X' \) (up to an \(X \)-type stabilizer operator). We then correct the \(S \) system by applying \(X^{ex} e_X \), which will leave the error \(X^{ex} \) (original error on \(S' \)) on \(S \) after correction. This leftover error, may hopefully be corrected in the next round of correction, where we may similarly add another error from the ancilla system. However, note that the advantage of error correction is that it does not allow errors to accumulate and the only left error on the encoded state is due to the last round of error correction (which may be corrected, when the encoded logical state is eventually measured). Hence, we may stabilize logical qubits against noise, by doing error correction repeatedly.

It is worth noticing that for topological (or some families of quantum LDPC codes), fault tolerant error correction needs the decoding operation to be applied on a time window, composed of several consecutive syndrome extractions, e.g., [18]. For Steane’s fault tolerant error correction, decoding is simply applied on each extracted “syndrome” (recall the “syndrome” in this case is actually a noisy codeword).

Z-Error Correction. The decoding of \(Z \) errors can be done similarly to the case of \(X \) errors as follows. To extract the syndrome for \(Z \) errors (see Fig. 3b), one needs an ancilla system \(S' \) prepared in a logical \(Z \) basis state,

\[
|\tilde{w}'\rangle_{S'} = Q_N (|u'\rangle_Z \otimes |w'\rangle_{\tilde{X}} \otimes |\tilde{w}'\rangle_{X'}). \tag{31}
\]

After preparing the state \(|\tilde{w}'\rangle_{S'} \) on ancilla system \(S' \), the transversal \(\text{CNOT}_{S' \rightarrow S} \) gate is applied on corresponding qubits of systems \(S \) and \(S' \). Then, each qubit in the ancilla system \(S' \) is measured in the Pauli \(X \) basis. The measurement output \(m \) is a noisy codeword of the classical polar code \(P(N, \pi(X), \pi(v)) \), induced in \(X \) basis (Fig. 2b).

Lemma 5. Let \(e_Z \) and \(e'_Z \) be preparation errors that has happened on systems \(S \) and \(S' \), respectively. Then, after the Steane’s \(Z \)-error syndrome extraction, the state of the system \(S \) is given by

\[
Z^{e_Z} X^{w'} |\tilde{\phi}\rangle_S = Z^{e_Z} Q_N (|u \oplus u'\rangle_Z \otimes X^{w'} |\tilde{\phi}\rangle_{\tilde{X}} \otimes |\tilde{w}'\rangle_{X'}). \tag{32}
\]
Further, the measurement outcome is a noisy codeword of the classical polar code \(\mathcal{P}(N, \pi(\mathcal{X}), \pi(v)) \), with frozen set \(\mathcal{X} \) and frozen vector \(\pi(v \oplus v') \), as follows,

\[
m = P_N^\top(z', a', v \oplus v') \oplus e_Z \oplus e'_Z,
\]

where \(a' \in \{0, 1\}^{|\mathcal{Z}|} \) and \(x' \in \{0, 1\}^{|\mathcal{X}|} \) are random vectors.

The proof of Lemma 5 is similar to that of Lemma 4, by expanding quantum states of systems \(S \) and \(S' \) in the Pauli \(X \) basis. Finally, based on the frozen vector \(v \oplus v' \) and the noisy codeword \(m \) in (33), the SC decoder generates an estimate of \(a' \), and in turn we can obtain an estimate of the error \(e_Z \oplus e'_Z \) (up to a \(Z \)-type stabilizer operator).

III. \(Q_1 \) Codes: Quantum Polar Codes Encoding One Qubit

III.A. Shor \(Q_1 \) Codes (Proof of Theorem 1 From the Main Text)

To prove Theorem 1, we will use the decomposition \(Q_N = (I_{2^k} \otimes Q_{2^{n-k}})(Q_{2^k} \otimes I_{2^{n-k}}) \), for \(0 \leq k \leq n \). This decomposition is illustrated in Fig. 4, where we have \(2^{n-k} \) parallel \(Q_{2^k} \) blocks, followed by \(2^k \) parallel \(Q_{2^{n-k}} \) blocks. If one considers the quantum system \(S \) as a vector of \(N \) qubits, the decomposition illustrated in Fig. 4 is equivalent to reshaping \(S \) as a \(2^k \times 2^{n-k} \) matrix of qubits, with columns filled in by consecutive qubits from the original vector, then applying \(Q_{2^k} \) on each column, and \(Q_{2^{n-k}} \) on each row.

For the logical state \(|0\rangle_S\), the first \(i = 2^k \) inputs of the quantum polar transform \(Q_N \) are equal to \(|0\rangle\), while the remaining \(2^n - 2^k \) inputs are equal to \(|+\rangle\) (see Fig. 4). Hence, each of the \(2^{n-k} \) parallel \(Q_{2^k} \) unitaries in Fig. 4 acts trivially on its input state. Therefore, the input of the \(r \)-th \(Q_{2^{n-k}} \) unitary, where \(1 \leq r \leq 2^k \), is the quantum state \(|0\rangle_{r,1} \otimes e_{c=2}^{2^{n-k}} |+\rangle_{r,c}\). It follows that (omitting normalization factors),

\[
|0\rangle_S = \otimes_{r=1}^{2^k} Q_{2^{n-k}} \left(|0\rangle_{r,1} \otimes e_{c=2}^{2^{n-k}} |+\rangle_{r,c}\right) = \otimes_{r=1}^{2^k} Q_{2^{n-k}} \left(|+\rangle_{r,1} + |-\rangle_{r,1}\right) \otimes e_{c=2}^{2^{n-k}} |+\rangle_{r,c}\)
\]

\[
= \otimes_{r=1}^{2^k} \left(Q_{2^{n-k}} \left(|+\rangle_{r,1} \otimes e_{c=1}^{2^{n-k}} |+\rangle_{r,c}\right) + Q_{2^{n-k}} \left(|-\rangle_{r,1} \otimes e_{c=2}^{2^{n-k}} |+\rangle_{r,c}\right)\right) = \otimes_{r=1}^{2^k} \left(|+\rangle_{r,c} \otimes e_{c=1}^{2^{n-k}} |+\rangle_{r,c}\right) \quad \text{(34)}
\]

For the logical state \(|1\rangle_S\), the inputs of \(Q_N \) is \(|1\rangle_{r,1} \otimes e_{c=2}^{2^{n-k}} |+\rangle_{r,c}\). Hence, using \(|1\rangle_{r,1} = |+\rangle_{r,1} - |\rangle_{r,1}\) it follows similarly that \(|1\rangle_S = \otimes_{r=1}^{2^k} \left(|+\rangle_{r,c} \otimes e_{c=1}^{2^{n-k}} |+\rangle_{r,c}\right) - \otimes_{r=1}^{2^k} \left(|+\rangle_{r,c} \otimes e_{c=1}^{2^{n-k}} |\rangle_{r,c}\right)\).

Fig. 4: Quantum polar transform decomposition, using \(Q_{2^n} = (I_{2^k} \otimes Q_{2^{n-k}})(Q_{2^k} \otimes I_{2^{n-k}}) \). Bent wires go under the blocks they cross. In case input qubits are prepared as shown on the left, the encoded state is the logical \(|0\rangle\) state of a Shor code.
III.B. Construction of General Q_1 Codes

In this section, we provide more details about the construction of Q_1 codes, and further numerically estimate its performance on Pauli and erasure channels.

For Q_1 codes, SC decoder only needs to decode the virtual channels corresponding to the information position i for both X and Z error channels W_Z and W_X, respectively. Let $P_e \left(W_i^{(j)}_Z\right)$ and $P_e \left(W_i^{(j)}_X\right)$ denote the error probability of the respective virtual channels, corresponding to the information position i. Recall that the error probability of a classical channel, is the probability of the maximum a posteriori estimate of the channel input, conditional on the observed channel output, not being equal to the actual input. Hence, the logical error rate of the Q_1 code, with respect to the information position i, is given by

$$P_e^L(i) = 1 - \left(1 - P_e \left(W_i^{(j)}_Z\right)\right) \left(1 - P_e \left(W_i^{(j)}_X\right)\right).$$ \hspace{1cm} (38)

The information position i should be chosen so as to minimize the corresponding logical error rate in (38). Precisely, we have

$$i = \arg\min_{j=1,...,N} P_e^L(j), \text{ for } Q_1 \text{ codes.}$$ \hspace{1cm} (39)

$$i = \arg\min_{j=2^0,...,2^n} P_e^L(j), \text{ for } \text{Shor-}Q_1 \text{ codes.}$$ \hspace{1cm} (40)

III.C. Numerical Results

Here, we provide numerical results for the construction of Q_1 and Shor-Q_1 codes, for the quantum depolarizing and quantum erasure channels.

The quantum depolarizing channel with physical error probability p, is a Pauli channel as in (16), with $P_I = 1 - p$, and $P_X = P_Y = p_Z = p/3$. We use density evolution [14] to estimate the error probability of virtual channels, i.e., $P_e \left(W_{i}^{(j)} \otimes \rho\right)$ and $P_e \left(W_{i}^{(j)} \otimes 1\right)$, $j = 1, \ldots, N$. The information positions for the Q_1 and Shor-Q_1 codes are then determined according to (39) and (40). Moreover, we consider the two constructions (or decoding strategies) given in Section II.B, that is, either using or ignoring the correlations between X and Z errors. Here, ignoring correlations between X and Z errors may seem unfounded. We will later provide the rationale for this in Section V.B, under the paragraph “Prepared Codes”.

The quantum erasure channel erases the input qubit, with some probability ε, or transmits it perfectly, with probability $1 - \varepsilon$. When a qubit is erased, it is replaced by a totally mixed state. Further, the channel also outputs a classical flag, which indicates whether the qubit has been erased ($|1\rangle_E$) or not ($|0\rangle_E$). Hence, it can be represented as a quantum operation as follows,

$$W_E(\rho) = (1 - \varepsilon)|0\rangle_E \langle 0| \otimes \rho + \varepsilon|1\rangle \langle 1| \otimes \frac{1}{2}.$$ \hspace{1cm} (41)

It is easily seen that W_E acts as a classical erasure channel with erasure probability ε in both Pauli Z and Pauli X basis. Hence, the induced channels W_X and W_Z are classical erasure channels, with erasure probability ε. The erasure probability of virtual channels ($P_e \left(W_i^{(j)} \otimes 1\right)$, $j = 1, \ldots, N$) can be computed analytically [3]. The information positions for the Q_1 and Shor-Q_1 codes are then determined according to (39) and (40). For this channel, the two construction strategies (using or ignoring correlations) are easily seen to be equivalent.

Considering the quantum depolarizing channel, Fig. 5 shows the logical error rate $P_e^L(i)$ vs. the physical error probability p, for the Q_1 and Shor-Q_1 codes, with information position determined according to to (39) and (40). Note that for fixed codewidth $N = 2^n$, the information position may vary depending on the physical error probability value. We consider the two decoding strategies mentioned above, namely, either using or ignoring the correlations between X and Z errors. It can be observed that using correlations yield (slightly) better decoding performance. Moreover, in both cases, we observe that the logical error rate of the Q_1 code is in general lower than that of the Shor code, and the gap is increasing with increasing codewidth (i.e., number of polarization steps n). We emphasize that the gap in the decoding performance is due to the channel polarization phenomenon and not to the minimum distance (Q_1 and Shor-Q_1 codes have actually the same minimum distance, see below).
As just mentioned, the information position i may vary, depending on the physical error probability p. However, numerical results suggest that as p goes to zero, the information position i reaches a stable (constant) value. These values are reported in Table I, for both decoding strategies (either using or ignoring correlations), and different values of n. We also report in Table I similar results for the quantum erasure channel (we omit the logical error rate curves for the quantum erasure channel, since they are of the same nature as the logical error rate curves in Fig. 5). It can be observed that for Q_1 codes, the information position values reported in Table I depend on the noise model (depolarizing or erasure channel), as well as the decoding strategy (using or ignoring correlations).

Finally, we note that for a given n value, all Q_1 and Shor codes with information positions given in Table I have the same minimum distance, which is reported on the last column of the table. The reported minimum distance is the minimum weight of logical X and Z operators, and can be computed by using (14) and (15). As mentioned in the main text, the superior performance of Q_1 codes owes to the SC decoding, which is able to decode beyond the minimum distance of the code, by effectively exploiting the channel polarization property of polar codes (or, to a certain extent, the degree of freedom provided by the full flexibility on the choice of the information index).
TABLE I: Best information positions for low error probabilities

Levels of Recursion (n)	Depolarizing Channel using correlations	Depolarizing Channel ignoring correlations	Erasure Channel	Min dist.
	Q_1 Shor Q_1 Shor Q_1 Shor	Q_1 Shor		
3	4 (6.4 \times 10^{-2}) 4 (2.0 \times 10^{-1})	4 (1.0 \times 10^{-3}) 4 (1.0 \times 10^{-3})	2 (5.0 \times 10^{-1}) 2 (5.0 \times 10^{-1})	2
4	13 (2.0 \times 10^{-1}) 8 (2.0 \times 10^{-1})	7 (9.0 \times 10^{-4}) 8 (2.0 \times 10^{-1})	7 (5.0 \times 10^{-1}) 4 (5.0 \times 10^{-1})	4
5	8 (2.0 \times 10^{-1}) 8 (2.0 \times 10^{-1})	8 (2.0 \times 10^{-1}) 8 (2.0 \times 10^{-1})	4 (2.0 \times 10^{-1}) 4 (2.0 \times 10^{-1})	4
6	50 (1.0 \times 10^{-1}) 8 (1.8 \times 10^{-2})	23 (3.4 \times 10^{-1}) 8 (8.8 \times 10^{-2})	23 (5.0 \times 10^{-1}) 8 (8.8 \times 10^{-2})	8
7	16 (6.0 \times 10^{-3}) 16 (3.0 \times 10^{-4})	16 (1.8 \times 10^{-2}) 16 (2.0 \times 10^{-1})	8 (2.6 \times 10^{-2}) 8 (1.9 \times 10^{-1})	8
8	199 (1.4 \times 10^{-4}) 16 (2.0 \times 10^{-3})	91 (6.2 \times 10^{-2}) 16 (4.0 \times 10^{-3})	87 (2.6 \times 10^{-1}) 16 (6.0 \times 10^{-3})	16
9	32 (1.0 \times 10^{-3}) 32 (1.6 \times 10^{-2})	32 (2.4 \times 10^{-3}) 32 (2.4 \times 10^{-2})	16 (5.0 \times 10^{-3}) 16 (4.4 \times 10^{-2})	16
10	806 (6.0 \times 10^{-5}) 32 (3.0 \times 10^{-4})	363 (6.2 \times 10^{-2}) 32 (6.0 \times 10^{-4})	343 (9.0 \times 10^{-2}) 32 (1.0 \times 10^{-3})	32
11	96 (3.0 \times 10^{-4}) 64 (4.0 \times 10^{-3})	96 (6.4 \times 10^{-4}) 64 (6.3 \times 10^{-3})	32 (1.0 \times 10^{-3}) 32 (1.0 \times 10^{-3})	32
12	3222 (6.0 \times 10^{-5}) 64 (6.0 \times 10^{-5})	1451 (6.6 \times 10^{-2}) 64 (1.0 \times 10^{-4})	1367 (4.4 \times 10^{-2}) 64 (2.4 \times 10^{-4})	64

(*) For the depolarizing channel, we consider physical error rates \(p \in [10^{-5}, 2 \times 10^{-1}] \) (note that the coherent information of the channel vanishes for \(p \approx 0.1893 \)). Reported information position values are constant for physical error rates \(p \in [10^{-5}, p_0] \). The value of \(p_0 \) is reported between round brackets, under the value of \(i \) (tiny font size). Similarly, for the quantum erasure channel, we consider channel erasure probability values \(\varepsilon \in [10^{-5}, 5 \times 10^{-1}] \). Reported information position values are constant for channel erasure probabilities \(\varepsilon \in [10^{-5}, \varepsilon_0] \), where the value of \(\varepsilon_0 \) is reported between round brackets, under the value of \(i \).

IV. Measurement-Based Preparation of Logical \(Q_1 \) Code States

IV.A. Measurement-Based Preparation Without Noise (Proof of Lemma 1 From the Main Text)

We consider the standard “phase kickback trick” implementation of Pauli \(X \otimes X \) and \(Z \otimes Z \) measurements, using ancilla qubits as in Fig. 6.

\[
\begin{align*}
\text{(a) Pauli } Z \otimes Z \text{ measurement: shorthand notation (left) and quantum circuit implementing the Pauli } Z \otimes Z \text{ measurement (right).} \\
q_1 \quad Z \quad &\equiv\quad q_1 \\
q_2 \quad Z \quad &\equiv\quad q_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{(b) Pauli } X \otimes X \text{ measurement: shorthand notation (left) and quantum circuit implementing the Pauli } X \otimes X \text{ measurement (right).} \\
q_1 \quad X \quad &\equiv\quad q_1 \\
q_2 \quad X \quad &\equiv\quad q_2 \\
\end{align*}
\]

Fig. 6: Two-qubit Pauli measurements: shorthand notation and quantum circuits implementing the measurements.

Case 1: Preparation Using Pauli \(Z \otimes Z \) Measurements

In this case, our procedure consists of performing transversal Pauli \(Z \otimes Z \) measurements on corresponding qubits of systems \(S_1 = \{1, \ldots, K/2\} \), and \(S_2 = \{K/2 + 1, \ldots, K\} \), prepared in \(Q_1 \) code states \(|q_{S_1}^X\rangle = Q_{S_2} |u_1, \overline{v}_1\rangle_{S_1} \) and \(|q_{S_2}^Z\rangle = Q_{S_1} |u_2, \overline{v}_2\rangle_{S_2} \), respectively, as illustrated in Fig. 7.
Expanding the quantum state $|q_{1/2}\rangle_{S_1}$ in the Pauli Z basis, and using (4), we get, up to a normalization factor,

$$
|q_{1/2}\rangle_{S_1} = \sum_{x_1, x_2 \in \{0, 1\}} (-1)^{v_1 \cdot x_1 + v_2 \cdot x_2} |P_{\frac{z}{2}}(u_1, x_1)\rangle_{S_1} |P_{\frac{z}{2}}(u_2, x_2)\rangle_{S_2} |P_{\frac{z}{2}}(u_1 \oplus u_2, x_1 \oplus x_2)\rangle_{S_3}.
$$

Similarly, we may also expand the quantum state $|q_{K/2}\rangle_{S_2}$ in the Pauli Z basis. Further, we consider the circuit in Fig. 6a to perform transversal Pauli $Z \otimes Z$ measurements, which are done in the following two steps (below, we denote by S_3 the ancilla system A from Fig. 6a).

1. We first take an $(K/2)$-qubit ancilla state $|0\rangle_{S_3}$, and then apply transversal CNOT gates, CNOT$_{S_1 \rightarrow S_3}$ and CNOT$_{S_2 \rightarrow S_3}$. This gives the following joint quantum state on $S_1 \cup S_2 \cup S_3$.

$$
|\eta\rangle_{S_1 S_2 S_3} = \sum_{x_1, x_2 \in \{0, 1\}} (-1)^{v_1 \cdot x_1 + v_2 \cdot x_2} |P_{\frac{z}{2}}(u_1, x_1)\rangle_{S_1} |P_{\frac{z}{2}}(u_2, x_2)\rangle_{S_2} |P_{\frac{z}{2}}(u_1 \oplus u_2, x_1 \oplus x_2)\rangle_{S_3}.
$$

2. Then, we measure each qubit in the ancilla system S_3 in the Pauli Z basis. From (43), the measurement outcome gives a binary vector of length $K/2$ as follows,

$$
m = P_{\frac{z}{2}}(u', x) \in \{0, 1\}^{K/2},
$$

where $u' = u_1 \oplus u_2 \in \{0, 1\}^{l(k)}$, and $x \in \{0, 1\}^{\frac{K}{2} - i(k)}$ is a random vector. Further, from (43) and (44), the state of the joint system $S_1 \cup S_2$ after the measurements is as follows

$$
|\eta'\rangle_{S_1 S_2} = \sum_{x_1, x_2 \in \{0, 1\}} \sum_{x_1 \oplus x_2 = x} (-1)^{v_1 \cdot x_1 + v_2 \cdot x_2} |P_{\frac{z}{2}}(u_1, x_1)\rangle_{S_1} |P_{\frac{z}{2}}(u_2, x_2)\rangle_{S_2} |P_{\frac{z}{2}}(u_1 \oplus u_2, x_1 \oplus x_2)\rangle_{S_3}.
$$

It can be seen as follows that the quantum state $|\eta'\rangle_{S_1 S_2}$ is the Q_1 code state $|q_K\rangle_{S_1 S_2}$ as in Case 1 from the main text,

$$
|\eta'\rangle_{S_1 S_2} = \sum_{x_1, x_2 \in \{0, 1\}} (-1)^{v_1 \cdot x_1 + v_2 \cdot x_2} |P_{\frac{z}{2}}(u_1, x_1)\rangle_{S_1} |P_{\frac{z}{2}}(u_2, x_2)\rangle_{S_2} = (Q_K |u', x, u_2, v_1 \oplus v_2\rangle)_{S_1 S_2},
$$

where in the second equality, we have used $u_1 = u' \oplus u_2$ and $x_1 = x \oplus x_2$, and in the third equality, we have used $P_K(a, b) = (P_{\frac{z}{2}}(a \oplus b), P_{\frac{z}{2}}(b))$, $a, b \in \{0, 1\}^{K/2}$, using the recursion of the classical polar transform given in Fig. 1a.
Hence, after the Pauli $Z \otimes Z$ measurements, we have prepared the Q_1 code state on the joint system $S = S_1 \cup S_2$,

$$|q_K\rangle_S = Q_K|u', x, u_2, v_1 \oplus v_2\rangle_S.$$ \hfill (47)

Finally, from (44), we have that $P_T^m(m) = (u', x) \in \{0, 1\}^{K/2}$ (using $P_T^m = I$). Hence, x is determined by, $x = P_T^m(m)|_{x(n-1)}$, as desired.

Case 2: Preparation Using Pauli $X \otimes X$ Measurements

In this case, our procedure consists in performing transversal Pauli $X \otimes X$ measurements on corresponding qubits of systems S_1 and S_2, prepared in Q_1 code states $|q^1_Z\rangle_{S_1} = Q_Z^e |u_1, v_1\rangle_{S_1}$ and $|q^2_Z\rangle_{S_2} = Q_Z^e |u_2, v_2\rangle_{S_2}$, as illustrated in Fig. 8.

![Fig. 8: Preparation using Pauli $X \otimes X$ measurements](image)

We skip the proof here as it is similar to the Case 1. By expanding $|q^1_Z\rangle_{S_1}$ and $|q^2_Z\rangle_{S_2}$, the in the Pauli X basis instead and using (5) it can be seen that the measurement outcome of Pauli $X \otimes X$ measurements is given by,

$$m = P_T^Z(z, v') \in \{0, 1\}^{K/2},$$ \hfill (48)

where $z \in \{0, 1\}^{i(k-1)}$ is a random vector, and $v' = v_1 \oplus v_2 \in \{0, 1\}^{K/2-i(k-1)}$. Further, after measurements, the state on $S = S_1 \cup S_2$ is a Q_1 state is given by,

$$|q_K\rangle_S = |u_1 \oplus u_2, (v_1, z, v')\rangle,$$ \hfill (49)

where z can be determined from (48) as, $z = P_T^Z(m)|_{z(k-1)}$.

IV.B. Fault-tolerant Measurement-Based Preparation with Noise

In this section, supposing a circuit level noise model with Pauli errors, we detail the measurement based preparation with the error detection from Procedure 2 in the main text, for both Case 1 and Case 2. Then, we provide a proof of fault tolerance according to Theorem 3 from the main text.

We suppose that we are given noisy versions of Q_1 code states of length $K/2$ on $S_1 = \{1, \ldots, K/2\}$, and $S_2 = \{K/2 + 1, \ldots, K\}$, as follows.

$$|q^1_Z\rangle_{S_1} = X^{e^1_X} Z^{e^1_Z} Q_Z^e |u_1, v_1\rangle_{S_1},$$ \hfill (50)

$$|q^2_Z\rangle_{S_2} = X^{e^2_X} Z^{e^2_Z} Q_Z^e |u_2, v_2\rangle_{S_2},$$ \hfill (51)

where $u_1, u_2 \in \{0, 1\}^{i(k-1)}$, $v_1, v_2 \in \{0, 1\}^{K/2-i(k-1)}$, and the errors $e^1_X, e^1_Z, e^2_X, e^2_Z \in \{0, 1\}^{K/2}$ are unknown.
Case 1: Preparation Using Noisy Pauli $Z \otimes Z$ Measurements.

We suppose that the following errors happen due to the component failures during transversal Pauli $Z \otimes Z$ measurements (see also Fig. 9, where all errors are given; also recall from the previous section, that S_1 denotes the ancilla system needed for the “phase kickback trick” implementation of $Z \otimes Z$ measurements, i.e., system A in Fig. 6a).

(1) Suppose failures during the initialization of S_3 in the Pauli Z basis cause an X error $e^I_X \in \{0,1\}^{K/2}$ on S_3.

(2) Suppose CNOT failures in CNOT$_{S_1 \rightarrow S_2}$ cause X, Z type errors $e^{C_1}_X, e^{C_1}_Z \in \{0,1\}^{K/2}$, respectively, on S_1, and X, Z type errors $e^{C_3}_X, e^{C_3}_Z \in \{0,1\}^{K/2}$, respectively, on S_3.

(3) Suppose CNOT failures in CNOT$_{S_2 \rightarrow S_1}$ cause X, Z type errors $e^{C_2}_X, e^{C_2}_Z \in \{0,1\}^{K/2}$, respectively, on S_2, and X, Z type errors $e^{C_3}_X, e^{C_3}_Z \in \{0,1\}^{K/2}$, respectively, on S_3.

(4) Suppose failures during the measurement of S_3 in the Pauli Z basis cause an X error $e^M_X \in \{0,1\}^{K/2}$ on S_3.

The measurement outcome of the transversal Pauli $Z \otimes Z$ measurements and the state of the joint system $S = S_1 \cup S_2$ after measurements is given in Lemma 6.

Lemma 6. The measurement outcome of noisy transversal Pauli $Z \otimes Z$ measurements on systems S_1 and S_2, respectively in (50) and (51), is equal to

$$m' = m \oplus e_X \in \{0,1\}^K,$$

where m is the measurement outcome corresponding to the preparation without noise from (44) and $e_X = e^I_X \oplus e^1_X \oplus e^{C_3}_X \oplus e^2_X \oplus e^{C_3}_X \oplus e^M_X$. Further, after the measurement, we get

$$|q_K\rangle_S = X^{e_X} Z^{e_Z} |q_K\rangle_S,$$

where $|q_K\rangle_S$ is the prepared state without noise from (47) and the errors are as follows,

$$e_X = (e^1_X \oplus e^{C_1}_X, e^2_X \oplus e^{C_2}_X) \in \{0,1\}^K.$$

$$e_Z = (e^1_Z \oplus e^{C_1}_Z, e^2_Z \oplus e^{C_3}_Z \oplus e^{C_2}_Z) \in \{0,1\}^K.$$

Proof. Note that X errors in Fig. 9a and Z errors in Fig. 9b propagate from the LHS to the RHS, as follows:

(1) An X error simply passes through the target of a CNOT gate, and it propagates from the control of the CNOT gate to its target.

(2) An Z error simply passes through the control of a CNOT gate, and it propagates from the target of the CNOT gate to its control.

Fig. 9: The representation of errors during the preparation with Pauli $Z \otimes Z$ measurements. The crossed wires represent $K/2$-qubit systems S_1, S_2 and S_3, respectively. The CNOT gate between two systems represents the transversal CNOT gates between the systems. The errors are represented where they happen. For example, in the left figure, e^I_X, e^1_X, and e^2_X represent the initial errors on systems S_1, S_2 and S_3, respectively. Further, $e^{C_1}_X$ and $e^{C_1}_Z$ represent the errors caused by the first CNOT, applied between S_1 and S_2, respectively. Similarly, the errors due to the second CNOT are represented on systems S_2 and S_3. Finally, e^M_X represents the X error due to the measurement on system S_3.
TABLE II: Total errors on systems S_1, S_2, and S_3.

System	total X error	total Z error
S_1	$e_X^k + e_X^{C(1)}$	$e_Z^k + e_Z^{C(1)}$
S_2	$e_X^{l1} + e_X^{C(2)}$	$e_Z^{l1} + e_Z^{C(2)}$
S_3	$e_X^l + e_X^l + e_X^{C(3)} + e_X^l + e_X^{C(4)} + e_X^l + e_X^{C(5)}$	$e_Z^{C(3)} + e_Z^{C(4)}$

The X and Z errors on the RHS for S_1, S_2 and S_3 are given in Table II. It follows that the noisy measurement outcome m' is equal to the binary sum of the measurement outcome m in the noiseless case and the X error on system S_3, therefore, from Table II, we get (52). Further, the prepared state $|q_K\rangle_S$ is equal to the noiseless state $|q_K\rangle_S$, with some X and Z errors on it. The X (or Z) error on S is simply the concatenation of the total X (or Z) errors on systems S_1 and S_2. Therefore, from Table II, we get (54), and (55), for X and Z errors in $|q_K\rangle_S$, respectively.

We may write

$$P_Z(e_X)|z(k-1)\rangle = 0. \quad (56)$$

Then the prepared state is accepted and the random vector x in (53) is estimated as

$$\hat{x} = P_Z(m')|x(k-1)\rangle. \quad (57)$$

The total error in the prepared state, with respect to the estimate \hat{x}, is given in Lemma 7.

Lemma 7. Consider the error e_X in the measurement outcome m in (52) so that its syndrome is a zero vector, i.e.,

$$P_Z(e_X)|z(k-1)\rangle = 0. \quad (56)$$

Then the prepared state is accepted and the random vector x in (53) is estimated as

$$\hat{x} = P_Z(m')|x(k-1)\rangle. \quad (57)$$

The total error in the prepared state, with respect to the estimate \hat{x}, is given in Lemma 7.

Lemma 7. Consider the error e_X in the measurement outcome m from (52), so that it satisfies (56), and let \hat{x} be defined according to (57). Then, the state of the joint system S in (53) can be written as follows, with respect to \hat{x}.

$$|q'_K\rangle_S = X^{e_X}Z^{e_Z}Q_K(|u', \hat{x}, u_2, v_1 \oplus v_2\rangle_S), \quad (58)$$

where $e_X = \bar{e}_X + (e_X, 0)$ and $e_Z = \bar{e}_Z$, so that \bar{e}_X and \bar{e}_Z are according to (54) and (55), respectively.

Proof. From (44), (52), and (57), we have that

$$\hat{x} = x \oplus P_Z(e_X)|x(n-1)\rangle. \quad (59)$$

We may write $|q'_K\rangle_S$ in (53), with respect to \hat{x} as follows,

$$|q'_K\rangle_S = X^{e_X}Z^{e_Z}Q_K(|u', x, u_2, v_1 \oplus v_2\rangle)
= X^{e_X}Z^{e_Z} \sum_{u_2} (-1)^{|v_1 \oplus v_2\rangle x_2} |P_Z(u', \hat{x} \oplus P_Z(e_X)|x(n-1), u_2, x_2\rangle)
= X^{e_X}Z^{e_Z} \sum_{u_2} (-1)^{|v_1 \oplus v_2\rangle x_2} X^{e_X, 0}|P_Z(u', \hat{x}, u_2, x_2\rangle)
= X^{e_X}Z^{e_Z}Q_K(|u', \hat{x}, u_2, v_1 \oplus v_2\rangle), \quad (60)$$

where in the second equality, we have expanded the quantum state in the Pauli Z basis and used (59), and in the third equality, we have used $e_X = P_Z(P_Z(e_X)|z(n-1), P_Z(e_X)|x(n-1)\rangle = P_Z(0, P_Z(e_X)|x(n-1)\rangle$.

Case 2: Preparation Using Noisy Pauli $X \otimes X$ Measurements.

The errors during the preparation with Pauli $X \otimes X$ measurements are given in Fig. 10. Note that we have Z type initialization and measurement errors on the ancilla system S_3, which are denoted by $e_Z^m \in \{0, 1\}^{K/2}$, respectively. For the errors caused by the CNOT gates, CNOT$_{S_3 \rightarrow S_1}$ and CNOT$_{S_3 \rightarrow S_2}$, we have used the same notation as in the case of Pauli $Z \otimes Z$ measurements.

Here, we provide Lemmas 8 and 9, which are analogous to Lemmas 6 and 7, respectively, and thus their proofs have been omitted.
Lemma 8. The measurement outcome of transversal Pauli X \otimes X measurements on systems S_1 and S_2, respectively in (50) and (51), is equal to

\[m' = m \oplus e_Z \in \{0, 1\}^K, \]

where \(m \) is the measurement outcome corresponding to the preparation without noise, as in (48), and \(e_Z = e_Z^1 \oplus e_Z^2 \oplus e_Z^{C_1(3)} \oplus e_Z^{C_2(2)} \). Further, after the measurement, we get,

\[|q'_K\rangle_S = X\tilde{e}_X Z\tilde{e}_Z |q_K\rangle_S, \]

where \(|q_K\rangle_S \) is the prepared state without noise, as in (49) and the errors are as follows,

\[\tilde{e}_X = (e_X^1 \oplus e_X^{C_1(1)}), e_X^2 \oplus e_X^{C_2(2)} \in \{0, 1\}^K. \]

\[\tilde{e}_Z = (e_Z^1 \oplus e_Z^{C_1(1)}), e_Z^2 \oplus e_Z^{C_2(2)} \in \{0, 1\}^K. \]

We now combine the noisy preparation in Lemma 8 with the error detection gadget according to Procedure 2 from the main text. Recall that when no error is detected, the prepared state is accepted and the \(z \) in (62) is estimated as

\[\hat{z} = P^\top_Z (m') |_{Z^{(k-1)}}. \]

Lemma 9. Consider the error \(e_Z \) in the measurement outcome \(m \) from (61), so that its syndrome is a zero vector, i.e., \(P^\top_Z (e_Z) |_{X^{(n-1)}} = 0 \), and let \(\hat{z} \) be defined as in (65). Then, the state of the joint system \(S \) in (62) can be written as follows, with respect to \(\hat{z} \).

\[|q'_K\rangle_S = Xe_X^f Z\tilde{e}_Z Q_K |u_1 \oplus u_2, v_1, \hat{z}, v^f\rangle_S, \]

where \(e_X^f = \tilde{e}_X \) and \(e_Z^f = \tilde{e}_Z \oplus (0, e_Z) \), so that \(\tilde{e}_X \) and \(\tilde{e}_Z \) are according to (54) and (55), respectively, and \(e_Z \) is the measurement error in (61).

Proof of Theorem 3 From the Main Text

We provide a proof of Theorem 3, using the mathematical induction. The base case, i.e., the zeroth level of recursion, corresponds to the initialization of \(N \) qubits in a Pauli Z basis state. Let \(T_0 \) be the number of failures in initialization. As a failure in initialization produces only a single qubit X error, therefore, we have that \(\text{wt}(e_X^f) = T_0 \), for the error \(e_X^f \in \{0, 1\}^N \) after the zeroth level of recursion. Hence, Theorem 3 holds for the zeroth level of recursion.

We show in Lemma 11 below that if Theorem 3 is true for the \((k-1) \)th, \(1 \leq k \leq n \), level of recursion, it remains true for the \(k \)th level of recursion, therefore, implying that Theorem 3 holds for any \(1 \leq k \leq n \).

Recall that at the \(k \)th level of recursion, we prepare \(2^{n-k} \) copies of \(|q_K\rangle \), where each copy is prepared by applying transversal two-qubit Pauli measurements on two copies of \(|q_{K/2}\rangle \). It is enough to show that Theorem 3 holds for a given preparation instance of \(|q_K\rangle \). Hence, we consider \(|q_{K/2}\rangle_{S_1} \) and \(|q_{K/2}\rangle_{S_2} \) from (50) and (51), and for the sake of brevity, we suppose that Pauli Z \(\otimes Z \) measurements are applied at the \(k \)th level of recursion. Similar results to the ones that will be proven here can be obtained for the case of Pauli X \(\otimes X \) measurements.
We suppose that \(t_k \) component failures happen during the implementation of transversal Pauli \(Z \otimes Z \) measurements on \(S_1 \) and \(S_2 \), using an ancilla system \(S_3 \) (see also Fig. 9). We decompose \(t_k \) as follows,

\[
t_k = t_k^l + t_k^{C_1} + t_k^{C_2} + t_k^M, \tag{67}
\]

where \(t_k^l \) is the number of failures during the initialization of \(S_3 \) in the Pauli \(Z \) basis, \(t_k^{C_i} \) for \(i \in \{1, 2\} \) is the number of CNOT failures in \(\text{CNOT}_{S_i \rightarrow S_3} \), and \(t_k^M \) is the number of failures during the Pauli \(Z \) measurement on \(S_3 \). To relate with Fig. 9, note that the errors \(e_{X}^i \) and \(e_{Z}^M \) are produced by \(t_k^l \) and \(t_k^M \)-faults, respectively. Further, the errors \(e_{X}^{C_1(i)}, e_{X}^{C_2(i)}, e_{X}^{C_1(3)}, e_{X}^{C_2(3)} \) are produced by \(t_k^{C_1} \)-faults, and finally the errors \(e_{X}^{C_2(2)}, e_{X}^{C_2(3)}, e_{Z}^{C_2(2)}, e_{Z}^{C_2(3)} \) are produced by \(t_k^{C_2} \)-faults.

We will also need the following notation:

(i) For \(i \in \{1, 2\} \), let \(t_k^{C_i}(X) \) be the number of CNOT failures in \(\text{CNOT}_{S_i \rightarrow S_3} \) that produce a single qubit \(X \) error on the corresponding outputs, i.e., the number of CNOT failures, where one of the following errors \(X \otimes I, X \otimes Z, I \otimes X, Z \otimes X, Y \otimes I, Y \otimes Z, I \otimes Y, Z \otimes Y \) is produced. Similarly, let \(t_k^{C_i}(Z) \) be the number of CNOT failures in \(\text{CNOT}_{S_i \rightarrow S_3} \) that produce a single qubit \(Z \) error.

(ii) For \(i \in \{1, 2\} \), let \(t_k^{C_2}(XX) \) be the number of CNOT failures in \(\text{CNOT}_{S_i \rightarrow S_3} \) that produce a two qubit \(X \) error, i.e., the number of CNOT failures, where one of the following errors \(X \otimes X, X \otimes Y, Y \otimes X, Y \otimes Y \) is produced. Similarly, let \(t_k^{C_2}(ZZ) \) be the number of CNOT failures in \(\text{CNOT}_{S_i \rightarrow S_3} \) that produce a two qubit \(Z \) error.

Note that the following inequalities hold trivially for \(i \in \{1, 2\} \),

\[
t_k^{C_2}(X) + t_k^{C_2}(XX) \leq t_k^{C_i}. \tag{68}
\]

\[
t_k^{C_2}(Z) + t_k^{C_2}(ZZ) \leq t_k^{C_i}. \tag{69}
\]

In Lemma 10, we provide several inequalities, connecting the number of faults with the weight of the produced errors (see Fig. 9). We will use these equalities later in the proof of Lemma 11.

Lemma 10. The following inequalities hold at the \(k \)th level of recursion,

\[
\text{wt}(e_{X}^i) = t_k^l, \tag{70}
\]

\[
\text{wt}(e_{X}^M) = t_k^M, \tag{71}
\]

\[
\text{wt}(e_{X}^{C_1(i)} \oplus e_{X}^{C_2(3)}) = t_k^{C_1}(X), i \in \{1, 2\}. \tag{72}
\]

\[
\text{wt}(e_{X}^{C_1(i)} + e_{X}^{C_2(3)}) = t_k^{C_1}(X) + 2t_k^{C_2}(XX), i \in \{1, 2\}. \tag{73}
\]

\[
\text{wt}(e_{Z}^{C_1(i)} \oplus e_{Z}^{C_2(3)}) = t_k^{C_1}(Z), i \in \{1, 2\}. \tag{74}
\]

\[
\text{wt}(e_{Z}^{C_1(i)} + e_{Z}^{C_2(3)}) = t_k^{C_1}(Z) + 2t_k^{C_2}(ZZ), i \in \{1, 2\}. \tag{75}
\]

Proof. The equalities in (70) and (71) simply follow from the fact a failure in Pauli \(Z \) basis initialization or measurement produces a single qubit \(X \) error on the output.

Suppose the \(j \)th, \(j \in \{1, \ldots, K/2\} \)-CNOT gate in \(\text{CNOT}_{S_i \rightarrow S_3} \) failed. If it produces a single qubit \(X \) error on the output, the \(j \)th component of either \(e_{X}^{C_1(i)} \) or \(e_{X}^{C_2(3)} \) is equal to \(1 \). If it produces a two qubit \(X \) error on the output, the \(j \)th component of both \(e_{X}^{C_1(i)} \) and \(e_{X}^{C_2(3)} \) is equal to \(1 \). This observation directly implies (72) and (73). Similarly, it can be seen that (74) and (75) hold.

\[\square\]

Lemma 11. Suppose that \(T_k^{l-1} \) faults occur during the (successful) preparation of \(|q_{K/2}\rangle_{S_1} \) in (50) and \(T_k^{2} \) faults occur during the preparation of \(|q_{K/2}\rangle_{S_2} \) in (51), using the measurement based procedure incorporated with the error detection. Further, suppose that the following holds for \(i \in \{1, 2\} \)

\[
\text{wt}(e_{X}^i) \leq T_k^{l-1}. \tag{76}
\]

\[
\text{wt}(e_{Z}^i) \leq T_k^{l-1}. \tag{77}
\]
Consider the prepared state \(|q_K\rangle \) according to (58). Then, there exist equivalent errors \(e^f_X = e^t_X \), \(e^f_Z = e^t_Z \), satisfying,

\[
\begin{align*}
\text{wt}(e^f_X) & \leq T_k, \\
\text{wt}(e^f_Z) & \leq T_k,
\end{align*}
\]

where \(T_k = T_{k-1}^1 + T_{k-1}^2 + t_k \), where \(t_k \) is from (67), is the total number of failures after the \(k \)th level of recursion.

Proof. We first prove (78). Let \(e_X \) be the measurement error in (52), so that its syndrome is zero according to (56). Then the syndrome of \((e_X, e_X) \) is also zero, that is, \(P_N(e_X, e_X) |_{(n)} = 0 \). It can be seen as follows. We have that

\[
\begin{align*}
(e_X, e_X) & = (P_{K/2}(0, P_{Z}(e_X) |_{(n-1)}) P_{K/2}(0, P_{Z}(e_X) |_{(n-1)}) \\
 & = P_K(0, 0, 0, P_{Z}(e_X) |_{(n-1)})
\end{align*}
\]

Using \(|(n-1)| = |(n)| \) and (81), it follows that \(P_N(e_X, e_X) |_{(k)} = 0 \). Therefore, \((e_X, e_X) \) gives a stabilizer (up to a sign factor) of the quantum state \(|q'_K\rangle \) in (58), implying that \(e^f_X := e_X + (0, e_X) \) is an equivalent error to \(e^f_X = e_X + e_X, 0 \) in (58).

We now provide upper bounds on \(\text{wt}(e^f_X) \) and \(\text{wt}(e^f_Z) \).

From (52) and (54), we have that

\[
e^f_X = (e^2_X \oplus e^t_X \oplus e^{C_1(1)}_X \oplus e^{C_1(3)}_X \oplus e^{C_2(3)}_X \oplus e^M X, e^2_X \oplus e^{C_2(2)}_X).
\]

Further,

\[
\begin{align*}
\text{wt}(e^f_X) & \leq 2 \text{wt}(e^2_X) + \text{wt}(e^t_X) + \text{wt}(e^{C_1(1)}_X \oplus e^{C_1(3)}_X) + \text{wt}(e^{C_2(3)}_X) + \text{wt}(e^M X) \\
& \leq 2 \left(\text{wt}(e^2_X) + t^k_1(X) \right) + t^k_1(X) + t^k_2(X) + t^k_2(X) + t^k_M,
\end{align*}
\]

where the first equality follows from (82) and using \(\text{wt}(\sum_i u_i) \leq \sum_i \text{wt}(u_i) \), and the second equality follows from (72)-(73). Similarly, it can be shown that

\[
\begin{align*}
\text{wt}(e^f_X) & \leq 2 \left(\text{wt}(e^2_X) + t^k_1(X) \right) + t^k_1(X) + t^k_2(X) + t^k_2(X) + t^k_M
\end{align*}
\]

Without loss of generality, we may assume that \(\text{wt}(e^2_X) + t^k_1(X) \leq \text{wt}(e^2_X) + t^k_2(X) \). Therefore, we have that

\[
\begin{align*}
\text{wt}(e^f_X) & \leq \text{wt}(e^1_X) + t^k_1(X) + \text{wt}(e^2_X) + t^k_1(X) + t^k_2(X) + t^k_2(X) + t^k_M \\
& \leq \text{wt}(e^1_X) + \text{wt}(e^2_X) + t^k_1(X) + t^k_2(X) + t^k_2(X) + t^k_2(X) + t^k_M
\end{align*}
\]

where the third equality follows from (76) and (68), and the fourth equality follows from (67).

We now prove (79). Using (55), we get for \(e^f_Z \) in (58),

\[
e^f_Z = (e^1_Z \oplus e^{C_1(1)}_Z, e^2_Z \oplus e^{C_1(3)}_Z \oplus e^{C_2(2)}_Z).
\]

As \(Z \otimes Z \) on the corresponding qubits of \(S_1 \) and \(S_2 \) is a stabilizer generator, it follows that the following error is equivalent to \(e^f_Z \) in (90),

\[
e^{fZ} = e^f_Z \oplus e^{C_2(3)}_Z \oplus e^{C_2(3)}_Z = (e^1_Z \oplus e^{C_1(1)}_Z \oplus e^{C_1(3)}_Z, e^2_Z \oplus e^{C_2(2)}_Z).
\]

We have,

\[
\begin{align*}
\text{wt}(e^{fZ}) & \leq \text{wt}(e^1_Z) + \text{wt}(e^2_Z) + \text{wt}(e^{C_1(1)}_Z \oplus e^{C_1(3)}_Z) + \text{wt}(e^{C_2(2)}_Z) \\
& \leq T_{k-1}^1 + T_{k-1}^2 + t^k_1(Z) + t^k_2(Z) + 2t^k_2(ZZ) \\
& \leq T_{k-1}^1 + T_{k-1}^2 + t^k_1 + t^k_2 \\
& \leq T_{k-1} + T_{k-1} + t_k,
\end{align*}
\]

where the first inequality follows from (91) and using \(\text{wt}(\sum_i u_i) \leq \sum_i \text{wt}(u_i) \), the second inequality follows from (77), and (74)-(75), the third inequality follows from (69), and finally the fourth inequality follows from (67).
V. Numerical Results on Fault Tolerant Error Correction

In this section, we provide details about the methods used to generate numerical results regarding the logical error rates of Q_1 codes, under Steane error correction in conjunction with the proposed measurement based preparation with error detection. In this context, we also provide new simulation results on the rate of successful preparation of Q_1 code states, for the measurement based preparation with error detection.

We start by presenting first the noise model used to produce errors during the simulation of the measurement-based preparation procedure and the Steane error-correction scheme. Note that we consider the implementation of Pauli $Z \otimes Z$ and Pauli $X \otimes X$ measurements according to circuits in Fig. 6a and Fig. 6b, respectively. However, for the Pauli $X \otimes X$ measurement in Fig. 6b, we consider the initialization in Pauli Z basis followed by the Hadamard gate as one operation, corresponding to the initialization in Pauli X basis, and similarly, we consider the last Hadamard gate followed by the Pauli X measurement as one operation, corresponding to a Pauli X measurement.

V.A. Noise Model

We only need noise models for the basic components of the procedure, i.e., initialization operations and single-qubit measurements, in either Z or X basis, and CNOT gates. We consider the following types of errors, corresponding to the circuit based depolarizing noise model from [18]. The probability parameter p below, is referred to as the physical error rate.

1. The noisy initialization in Pauli Z basis is equal to perfectly initializing a qubit in a Pauli Z basis state, then applying a Pauli X error on the qubit, with probability p. Similarly, the noisy initialization in Pauli X basis is equal to perfectly initializing a qubit in a Pauli X basis state, then applying a Pauli Z error on the qubit, with probability p.

2. The noisy Pauli Z measurement is equal to first applying a Pauli X error, with probability p, on the qubit we want to measure, and then applying the perfect Pauli Z measurement. Similarly, the noisy Pauli X measurement is equal to first applying a Pauli Z error, with probability p, and then applying the perfect Pauli X measurement.

3. The noisy CNOT gate is equal to the perfect CNOT followed by a two-qubit depolarizing channel, with error probability p. Precisely, after the perfect CNOT, any one of the 15 two qubit Pauli errors $I \otimes X, I \otimes Y, I \otimes Z, X \otimes I, X \otimes X, X \otimes Y, X \otimes Z, Y \otimes I, Y \otimes X, Y \otimes Y, Y \otimes Z, Z \otimes I, Z \otimes X, Z \otimes Y, Z \otimes Z$, may occur with probability $\frac{p}{15}$.

V.B. Simulation of the Preparation Procedure

Consider the Q_1 code state $|q_N\rangle_S$ on the $N = 2^n$ qubit system $S = \{1, \ldots, N\}$. To prepare $|q_N\rangle_S$, we first initialize the N qubits in a Pauli Z basis state (using the noisy initialization defined above), and then follow the recursive preparation procedure based on two qubit Pauli measurements. During the recursive procedure, initialization operations, CNOT gates, and single-qubit measurements are replaced by their noisy versions, and errors generated at some point by noisy operations are propagated throughout the rest of the procedure. If an error is detected at any recursion level (according to the error detection method from Procedure 2 in the main text), then we discard the whole procedure and restart from the beginning, by initializing the N qubits in a Pauli Z basis state. See also the example in Fig. 11.

As qubits are initialized in Pauli Z basis, we may ignore the first k_1, $1 \leq k_1 \leq n$ levels of recursion in case Pauli $Z \otimes Z$ measurements are needed to be applied consecutively for the first k_1 levels of recursion correspond to applying Pauli $Z \otimes Z$ measurements. This reduces the number of component in the preparation circuit, hence improving the probability that the preparation succeeds.

At the end of recursion, we have the knowledge of the $|u\rangle_{Z(n)}$ and $|v\rangle_{X(n)}$, hence the knowledge of prepared Q_1 code state. Further, we also know the total X and Z type errors on the prepared state, which we will use for simulating Steane’s error correction in the next sections.

Further, we determine the preparation rate of the measurement based procedure as follows. We run the preparation procedure $R > 0$ times, and denote by t the number of times the preparation completed (that is, no error has been detected during the preparation procedure). Then, the preparation rate, denoted by p_{prep}, is defined as follows:

$$p_{\text{prep}} = \lim_{R \to \infty} \frac{t}{R}. \quad (96)$$
states. p close to zero, N = 16 that the preparation circuit, in general, consists of much larger number of components for N of length N = 16 number of components in the preparation circuit, as explained before. For example, for Z states, we have Pauli p values of p is non-zero for sufficiently low

Fig. 11: Measurement based preparation for the Q1(N = 8, i(n) = 3), with Pauli Z ⊗ Z and Pauli X ⊗ X measurements implemented according to Fig. 6a and Fig. 6b. Initialization operations are shown as ket states. For single-qubit measurement operations, the Pauli basis is also indicated. Initialization operations, measurements, and CNOT gates are noisy, according to the assumed circuit level depolarizing noise model. Note that errors are generated only by the above noisy operations (we do not consider errors that might occur while the qubits are idle). Error detection is performed after each recursion level (one round of measurements of the four ancilla qubits), and the procedure is restarted from the beginning if an error is detected. Error detection after the first level of recursion is useless, hence it is not performed.

Prepared Codes. We consider Q1 codes of length N = 16 and N = 64 qubits. We choose the information position i according to the results in Table I (best positions of the corresponding lengths, for sufficiently low error rate), assuming a depolarizing noise model and ignoring correlations between X and Z errors. Thus, for N = 16, we take the information position i = 7, and for N = 64, we take i = 23.

The fact that the Q1 code construction ignores correlations between between X and Z errors is due to the Steane error correction. Indeed, X and Z errors are corrected independently, considering ancilla states prepared in either a logical X basis state |w⟩S, or a logical Z basis state |w⟩S, respectively. During the X-error correction step (Fig. 3a), Z errors that happened on the ancilla system S' while preparing |w⟩S, are copied to the original system S. Similarly, during the Z-error correction step (Fig. 3b), X errors that happened on the ancilla system S' while preparing |w⟩S, are copied to S. Clearly, these X and Z errors are decorrelated, since they happened during the preparation of different logical states.

Fig. 12 shows the preparation rate p prep, for the logical Z and logical X code states of Q1 and Shor codes of length N = 16, 64, with respect to the physical error rate p. Here, the total number of runs is R = 10^5. We observe that p prep is non-zero for sufficiently low p and it approaches to 1 as p goes to zero, for all the Q1 code states. Further, for p close to zero, p prep is symmetric, in the sense that it is virtually the same for all code states for a given N. For bigger values of p, the difference in p prep for different code states of the same length is explained by the fact that for some code states, we have Pauli Z ⊗ Z measurements at the first levels of recursion, which may be ignored, hence, reducing the number of components in the preparation circuit, as explained before. For example, for Z logical states of Shor codes N = 16, i = 4 and N = 64, i = 23, we may ignore the first two and three levels of recursions, respectively, explaining their higher p prep compared to other code states of the same length. Furthermore, p prep is much lower for codes states of length N = 64, compared to that of length N = 16, especially at higher values of p. This is also explained by the fact that the preparation circuit, in general, consists of much larger number of components for N = 64 than N = 16.
V.C. Monte-Carlo Based Estimates of the Logical Error Rates

In this section, we provide a practical method to estimate logical error rates of Q_1 codes (given in Fig. 4 of the main text and see also Fig. 13), under the Steane’s error correction. We consider a Q_1 code of length N, with information position i, and consider the following notation $I = \{i\}$, $Z = \{1, \ldots, i-1\}$, $X = \{i+1, \ldots, N\}$, and $S = Z \cup I \cup X$.

Logical X Error Rate. To determine the logical X error rate, we prepare a logical Pauli Z basis code state $|\tilde{w}\rangle_S = Q_N(|u\rangle_Z \otimes |v\rangle_Z \otimes |0\rangle'_X)$, $w \in \{0, 1\}$, that we want to protect against X errors. Further, we prepare a logical Pauli X basis code state $|\tilde{w}'\rangle_{S'} = Q_N(|u'\rangle_Z \otimes |v'\rangle_Z \otimes |0\rangle'_X)$, $w' \in \{0, 1\}$, to be used as the ancilla system for syndrome extraction (see Fig. 3a.).

The logical X error rate is determined as follows.

1. **Preparing Q_1 code states:** We first simulate the measurement based preparation of $|\tilde{w}\rangle_S$ and $|\tilde{w}'\rangle_{S'}$ states, as described before (in case of error detection, we restart the preparation procedure until it completes). After the preparation completes, we know the frozen vectors $u, u' \in \{0, 1\}^{i-1}$, corresponding to the frozen sets Z and Z', and the frozen vectors $v, v' \in \{0, 1\}^{N-i}$ corresponding to the frozen sets X and X'. Further, for $|\tilde{w}\rangle_S$, we know the logical Z value w_i, and for $|\tilde{w}'\rangle_{S'}$, we know the logical X value w'_i. Moreover, we also have the final errors e_X and e'_X on systems S and S', respectively.

2. **Generating the syndrome:** We generate the syndrome according to Steane’s procedure (Fig. 3a.). According to Lemma 4, the syndrome m consists of a noisy version of a random codeword of the classical polar code $P_{N, Z, u \oplus u'}$. We generate m as the sum of the random codeword from (2.1) and the three error terms from (2.2), below.

(2.1) First, we generate a random codeword $P_{N}(u \oplus u', a', x')$, by taking random values $a' \in \{0, 1\}$ and $x' \in \{0, 1\}^{N-i}$.

(2.2) We then add to the generated codeword, the following

- The first error term is $e_X \oplus e'_X$, where e_X and e'_X are given in step (1) (see also (22)).
- The second term corresponds to the X error generated on the system S' during the implementation of the qubitwise CNOT$_{S \rightarrow S'}$.
- The third error term is due to Pauli Z measurements on the system S'.

Let e'_X and e''_X be the error produced by CNOT$_{S \rightarrow S'}$ on S and S', respectively. Further, let e''_X is the error produced by Pauli Z measurements on S'. Then, we have that

$$m = P_{N}(u \oplus u', a', x') \oplus e''_X.$$

(97)

Fig. 12: Preparation rate for the logical X and logical Z code states of Q_1 codes ($N = 16, i = 7$) and ($N = 64, i = 23$).
where \(e_{X}^{\text{tot}} := e_{X} + e_{X}^{C} + e_{X}^{M} \) is the total X-error that happened on the system \(S' \).

Further, we also update the error on system \(S \), by adding \(e_{X}^{C} \) to \(e_{X} \), i.e., adding the \(X \) error that happened on system \(S \) during the implementation of the qubitwise CNOT \(S \rightarrow S' \).

(3) Error correction: Given the frozen value \(u \oplus u' \) from step (1), and the extracted syndrome \(m \) from step (2), we use SC decoding\(^2\) to get an estimate \(\hat{a}' \in \{0, 1\} \) of \(a' \), and then generate an estimate of the total error \(e_{X}^{\text{tot}} \) in (97), as follows

\[
e_{X}^{\text{tot}} = m \oplus P_N(u \oplus u', \hat{a}', 0).
\]

Note that we do not need to estimate \(x' \) here, since the induced logical error corresponds to an \(X \)-type stabilizer operator, acting trivially on the code space (see also the discussion after Lemma 4).

We then perform error correction on the state of the system \(S \), and update the \(X \) error on \(S \), by adding the estimated total error \(e_{X}^{\text{tot}} \). Let \(e_{X}^{\text{corc}} \) be the the error on system \(S \) after correction. From (97) and (98), it follows that \(e_{X}^{\text{corc}} \) is equivalent to the following error,

\[
e_{X}^{\text{corc}} = e_{X}' + e_{X}^{C} + e_{X}^{C'} + e_{X}^{M} \oplus P_N(0, a' \oplus \hat{a}', 0, 0).
\]

(4) Guessing the logical value: The error correction is successful if we can successfully recover the logical \(Z \) value from the state of the system \(S \), after error correction.

To get the logical \(Z \) value, we need to perform single-qubit Pauli \(Z \) measurements on system \(S \), and then estimate the logical value from the measurement outcome.

It can be seen that the measurement outcome of Pauli \(Z \) measurements gives a noisy version of a random codeword of the classical polar code \(P(N, Z, u \oplus u') \), as follows,

\[
m = P_N(u \oplus u', w, x) \oplus e_{X}^{\text{corc}} \oplus e_{X}^{M},
\]

where \(w \) is the logical \(Z \) value corresponding to the initial state on the system \(S \), \(x \) is a random vector, \(e_{X}^{\text{corc}} \) is the \(X \) error on the system \(S \) after the error correction from (99), and \(e_{X}^{M} \) is the error caused by the single-qubit Pauli \(Z \) measurements on system \(S \).

From the frozen vector \(u \oplus u' \) and the noisy codeword \(m \) in (100), we generate an estimate \(\hat{w} \) of \(w \), using the SC decoding. If \(\hat{w} \neq w \), we report a decoding failure, otherwise the decoding succeeds.

We run the above steps (1)-(4), until we report \(f > 0 \) decoding failures. Let \(R \) be the number of runs for \(f \) decoding failures, then the logical \(X \) error rate, denoted by \(P_{X}^{L} \), is computed as follows,

\[
P_{X}^{L} = \frac{f}{R}.
\]

For our numerical simulations, the value of \(f \) varies between 50 to 200, depending on the physical error rate \(p \) of our noise model.

Logical Z Error Rate. To determine the logical \(Z \) error rate, we consider a logical Pauli \(X \) basis code state \(|\overline{w}\rangle_S = Q_N(|u\rangle_Z \otimes |\overline{w}\rangle_X \otimes |\overline{w}\rangle_X) \), \(w \in \{0, 1\} \), that we want to protect against \(Z \) errors. Further, we consider a logical Pauli \(Z \) basis code state \(|w'_i\rangle_{S'} = Q_N(|u'_i\rangle_Z \otimes |w'_i\rangle_T \otimes |\overline{w}\rangle_X) \), \(w'_i \in \{0, 1\} \), to be used as the ancilla system for syndrome extraction (Fig. 3b). The logical \(Z \) error rate is then determined similarly to the above description for logical \(X \) error rate, while inverting \(X \) and \(Z \) bases, and using Lemma 5 instead of Lemma 4. The logical \(Z \) error rate is denoted by \(P_{Z}^{L} \).

Finally, the **logical error rate** (accounting for both \(X \) and \(Z \) errors), denoted by \(P_{e}^{L} \), is given as follows,

\[
P_{e}^{L} = P_{X}^{L} + P_{Z}^{L} - P_{X}^{L}P_{Z}^{L}.
\]

\(^2\) The SC decoding assumes that \(e_{X}^{N} \) is a vector of independent and identically distributed Bernoulli variables, that is \(P(e_{X}^{N}(i) = 1) = p_{X}^{N} \), for all \(i = 1, \ldots, N \), and for some probability value \(p_{X}^{N} \in (0, 1) \), which is referred to as the input error probability of the decoder. While the “belief-propagation” variant of the SC decoding needs an estimate of \(p_{X}^{N} \) (in order to calculate the input log-likelihood ratios of the decoder, \(\text{LLR}(i) := (−1)^{m(i)} \log((1 − p_{X}^{N})/p_{X}^{N}), \forall i = 1, \ldots, N) \), here we use the so-called “min-sum” approximation of the SC decoding, which does not need such an estimate (in this case, the input log-likelihood ratio values of the decoder may be simply set to \(\text{LLR}(i) := (−1)^{m(i)}, \forall i = 1, \ldots, N) \).
V.D. Density-Evolution Based Estimates of the Logical Error Rates

To reliably estimate the logical error rate value, the Monte-Carlo method described in Section V.C requires an increasingly large number of simulations as the logical error rate decreases. Hence, as p decreases, this requires increasingly more computational time (or resources) and becomes practically unfeasible for small values of p. In this section, we provide a theoretical method to estimate the logical error rate, based on density evolution [14] (see also Fig. 13).

Consider the Steane’s error correction for X errors from Section V.C. Note that it involves two steps of decoding; the first during Step (3) for error correction and the second during Step (4) for guessing the logical value. Each failure in decoding introduces a logical X error; hence, the logical value is incorrectly determined if and only if one of the two decoder fails.

For a given realization of errors (i.e., e_X^{tot} in (97), or $e_X^{\text{corc}} \oplus e_M$ in (100)), the SC decoding works by propagating the corresponding log-likelihood ratio (LLR) values throughout the polar encoding graph (from the right-hand side of the graph, corresponding to the encoded information, to the left-hand side of the graph, corresponding to the uncoded information; see also footnote 2). Rather than propagating LLR values for a given sample (realization of errors), the density evolution method propagates their probability density functions, thus averaging over all the sample space. To determine the probability distribution of the input LLRs, one needs to estimate the input error probability of the decoder (i.e., $P(e_X^{\text{tot}}(i) = 1)$ for the SC decoding in Step (3), or $P(e_X^{\text{corc}}(i) \oplus e_M(i) = 1)$ for the SC decoding in Step (4)).

Accordingly, we determine the logical X error rate in the following two steps.

(1) Input error probabilities of decoders: To determine the input error probabilities of the decoders in Step (3) and (4), we need to generate statistics for the error terms e_X^{tot} in (97) and $e_X^{\text{corc}} \oplus e_M$ in (100). In particular, we need to estimate the output X error probabilities of the Z and X logical states, by numerical simulation. This is done as follows.

For a given physical error rate p, we run the measurement based preparation with the error detection for logical Z and X states until we have R successful preparations for each one of them \(^3\). Let $e_X^r, e_X^r \in \{0, 1\}^N, 1 \leq r \leq R$, be the X errors corresponding to the rth successful preparation of the logical Z and X states, respectively. Then, the average output X error rate for Z and X logical states are estimated as follows,

$$p_X^{\text{prep}} = \frac{1}{RN} \sum_{r=1}^{R} \text{wt}(e_X^r). \quad (103)$$

$$p_X^{\text{prep}} = \frac{1}{RN} \sum_{r=1}^{R} \text{wt}(e_X^r). \quad (104)$$

Let $p_X^{\text{in}_1}$ and $p_X^{\text{in}_2}$ be the input error rate of the first and second decoders, respectively. From (97), we have that

$$p_X^{\text{in}_1} = 1 - (1 - p_X^{\text{prep}})(1 - p_X^{\text{prep}})(1 - \frac{8p}{15})(1 - p) \quad (105)$$

Further, for the sake of simplicity, we compute the input error rate of the second decoder, assuming that the first decoder has succeeded. Then, from (99) and (100), we have that

$$p_X^{\text{in}_2} = 1 - (1 - p_X^{\text{prep}})(1 - \frac{8p}{15})(1 - p)^2. \quad (106)$$

Note that as long as the first decoder succeeds with a probability close to one, (106) approximates well the input error rate of the second decoder.

(2) X logical error rate: After obtaining the input error probabilities $p_X^{\text{in}_1}$ and $p_X^{\text{in}_2}$, we compute output error rates of the decoders \(^4\), using density evolution. Let $p_X^{\text{out}_1}$ and $p_X^{\text{out}_2}$ be the output error probabilities of the first and second decoders, respectively. Then, we determine the X logical error rate of the Steane’s error correction as follows,

$$p_X = 1 - ((1 - p_X^{\text{out}_1})(1 - p_X^{\text{out}_2}) + p_X^{\text{out}_1} p_X^{\text{out}_2}). \quad (107)$$

\(^3\) In our numerical simulation, we have taken $R = 100/p$.

\(^4\) Precisely, we determine the probability distributions of the input LLRs of the decoder, propagate these probability distributions numerically throughout the polar encoding graph, then take the corresponding output error rates.
We may similarly determine the Z input error probabilities for the first and second decoder, estimate their output probabilities using density evolution, and then determine P_L^Z, i.e., the Z logical error rate of the Steane’s error correction. Finally, using P_L^X and P_L^Z, we may determine the logical error rate P_L^e as in (102).

V.E. Numerical Results

Numerical results for the logical error rates of $Q_1(N = 16, i = 7)$ and $Q_1(N = 64, i = 23)$ codes, based on either Monte-Carlo simulation or density evolution, are provided in Fig. 13. It can be seen that density evolution based estimates closely upper bound those obtained through Monte-Carlo simulation, thus providing a trustworthy extrapolation of the logical error rate values for small values of p.

![Fig. 13: Numerical results for Q_1 and Shor codes of length $N = 16$ and $N = 64$.](image1)

(a) Monte-Carlo (MC) and Density-evolution (DE) based estimates of the X/Z logical error rates of Q_1 and Shor codes of length $N = 16$ and $N = 64$.

![Fig. 13: Numerical results for Q_1 and Shor codes of length $N = 16$ and $N = 64$.](image2)

(b) Monte-Carlo (MC) and Density-evolution (DE) based estimates of the logical error rate of Q_1 and Shor codes of length $N = 16$ and $N = 64$.

(here, the logical error rate $P_L^e = P_L^X + P_L^Z - P_L^X P_L^Z$, where P_L^X and P_L^Z are given in (a) above).
[1] John Preskill. Fault-tolerant quantum computation. In *Introduction to quantum computation and information*, pages 213–269. World Scientific, 1998.

[2] Daniel Gottesman. An introduction to quantum error correction and fault-tolerant quantum computation. In *Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics*, volume 68, pages 13–58, 2010.

[3] Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. *IEEE Transactions on Information Theory*, 55(7):3051–3073, 2009.

[4] Joseph M. Renes, Frédéric Dupuis, and Renato Renner. Efficient polar coding of quantum information. *Physical Review Letters*, 109(5):050504, August 2012.

[5] Mark M. Wilde and Saikat Guha. Polar codes for degradable quantum channels. *IEEE Transactions on Information Theory*, 59(7):4718–4729, July 2013.

[6] Joseph M. Renes and Mark M. Wilde. Polar codes for private and quantum communication over arbitrary channels. *IEEE Transactions on Information Theory*, 60(6):3090–3103, June 2014.

[7] Frédéric Dupuis, Ashutosh Goswami, Mehdi Mhalla, and Valentin Savin. Polarization of quantum channels using Clifford-based channel combining. *IEEE Transactions on Information Theory*, 67(5):2857–2877, 2021. arXiv:1904.04713.

[8] Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Massoud Pedram, and Frederic T Chong. NISQ+: Boosting quantum computing power by approximating quantum error correction. arXiv:2004.04794, 2020.

[9] Anirudh Krishna and Jean-Pierre Tillich. Magic state distillation with punctured polar codes. arXiv preprint arXiv:1811.03112, 2018.

[10] Andrew M Steane. Active stabilization, quantum computation, and quantum state synthesis. *Physical Review Letters*, 78(11):2252, 1997.

[11] Andrew M Steane. Fast fault-tolerant filtering of quantum codewords. arXiv quant-ph/0202036, 2002.

[12] Peter W Shor. Scheme for reducing decoherence in quantum computer memory. *Physical review A*, 52(4):R2493, 1995.

[13] Dave Bacon. Operator quantum error-correcting subsystems for self-correcting quantum memories. *Physical Review A*, 73(1):012340, 2006.

[14] Ido Tal and Alexander Vardy. How to construct polar codes. *IEEE Transactions on Information Theory*, 59(10):6562–6582, 2013.

[15] Daniel Gottesman. Fault-tolerant quantum computation with constant overhead. *Quantum Information & Computation*, 14(15-16):1338–1372, 2014.

[16] Krysta M Svore, Andrew W Cross, Isaac L Chuang, and Alfred V Aho. A flow-map model for analyzing pseudothresholds in fault-tolerant quantum computing. *Quantum Information & Computation*, 6(3):193–212, 2006.

[17] Yu Tomita and Krysta M Svore. Low-distance surface codes under realistic quantum noise. *Physical Review A*, 90(6):062320, 2014.

[18] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface codes: Towards practical large-scale quantum computation. *Physical Review A*, 86(3):032324, 2012.