Positional Order and Diffusion Processes in Particle Systems

Hiroshi Watanabe, Satoshi Yukawa, and Nobuyasu Ito

1 Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furouchou, Chikusa-ku, Nagoya 464-8601, Japan
2 Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan and
3 Department of Applied Physics, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Nonequilibrium behaviors of positional order are discussed based on diffusion processes in particle systems. With the cumulant expansion method up to the second order, we obtain a relation between the positional order parameter \(\Psi \) and the mean square displacement \(M \) to be

\[
\Psi \sim \exp \left(-K^2 M/2d \right)
\]

with a reciprocal vector \(K \) and the dimension of the system \(d \). On the basis of the relation, the behavior of positional order is predicted to be

\[
\Psi \sim \exp \left(-K^2 D t \right)
\]

when the system involves normal diffusion with a diffusion constant \(D \). We also find that a diffusion process with swapping positions of particles contributes to higher orders of the cumulants. The swapping diffusion allows particle to diffuse without destroying the positional order while the normal diffusion destroys it.

PACS numbers: 66.30.Pa, 64.70.Dv, 05.20.-y

The melting behavior of the hard-disk system was reported first by Alder et al. [1], and they showed that only repulsive interactions can involve the melting transition. This melting transition also confirmed in three-dimensional systems and is now often referred to Alder transition. However, Mermin ruled out the positional transition. The positional order parameter is the characteristic of two-dimensional melting and, to our knowledge, there are less studies about the three-dimensional positional order.

Consider a \(d \)-dimensional system with \(N \) particles. A positional order parameter \(\Psi \) of the system is defined to be

\[
\Psi = \frac{1}{N} \sum_{j} \exp \left(-i K \cdot r_j \right),
\]

with the position of the particles \(r_j \) and one of the reciprocal vectors \(K \) of the system. Let \(r_i \) be the equilibrium position of the particle \(i \) and \(u_i \) the deviations from it, namely, \(r_i = R_i + u_i \). The positional parameter is reduced to be

\[
\Psi = \langle \exp \left(-i K \cdot u_j \right) \rangle,
\]

where \(\langle \cdots \rangle \) means the average for all particles. Assuming that all components of \(u_i \) have the Gaussian distribution, Eq. (2) is reduced to be

\[
\Psi = \exp \left(-1/2 \langle (K \cdot u_i)^2 \rangle \right).
\]

Assuming that \(u_i \) is isotropic, we have,

\[
\langle (K \cdot u_i)^2 \rangle = \frac{K^2 \langle u_i^2 \rangle}{d} \quad (K \equiv |K|).
\]

From Eqs. (3) and (4), we obtain the relation between the positional order and the diffusion to be, positional order parameter to be,

\[
\Psi = \exp \left(-\frac{K^2 \langle u_i^2 \rangle}{2d} \right),
\]

or equivalently,

\[
\langle u_i^2 \rangle = -\frac{2d}{K^2} \ln \Psi.
\]

Note that, the above argument is the cumulant expansion. The positional order parameter is the characteristic
function of displacements. Assuming the distribution of the displacement to be the Gaussian distribution, we can express the positional order parameter only with the second order cumulant, which is diffusion.

When a system involves the normal diffusion, the asymptotic behavior of the mean square displacement is expected to be,

$$\langle u_i^2 \rangle \sim 2dDt,$$

with a diffusion constant D. From Eqs. (3) and (4), the asymptotic behavior of the positional order to be,

$$\Psi(t) \sim \exp(-K^2Dt),$$

regardless of the dimension. It implies that when the system involves the normal diffusion, the positional order should decay exponentially with the decay time D^{-1}. This limits the diffusion behavior in solid phases. In the solid phase of the system with $d \geq 3$, the parameter Ψ has non-zero value in the equilibrium state. Therefore, the mean displacement cannot become larger than some constant value. The behavior in two-dimensional solid is different from those in $d \geq 3$. On the basis of the Halperin-Nelson-Young theory, the positional order parameter in two-dimensional solid behaves as,

$$\Psi(t) \sim t^{-\lambda}.$$ \hspace{1cm} (9)

The mean square displacement in two-dimensional solid behaves logarithmically as,

$$\langle u_i^2 \rangle = \frac{4\lambda}{K^2z} \ln t.$$ \hspace{1cm} (10)

Therefore, two-dimensional solid cannot involve the normal diffusion process in the usual sense.

The above arguments are based on the cumulant expansion up to the second order. In order to check the validity of our arguments, we perform numerical simulations. For the simplicity, we treat the hard-particle systems. There are two kinds of methods to study time evolution of a particle system, a molecular dynamics (MD) method and a Monte Carlo (MC) method. The MD simulation is performed by integrating the classical equations of motion. In the hard particle system, the time evolution is performed by proceeding collision events. This algorithm is called the Event-Driven method, which is very
efficient to treat the hard-particle system. When the time evolution of the system is performed by MD, however, the positional order has oscillations because of the momentum conservation. This oscillation prevents us from studying the order parameter, therefore, MC simulations are performed in this study.

Each system contains \(N \) particles with the radius \(\sigma \). The density is normalized to be \(\rho = 1 \) when the system is in the perfect square/cubic lattice, that is, \(\rho = (2d/L)^d N \) with the dimension of the system \(d \) and the linear size of the system \(L \). Throughout this study, the number of particles \(N = 23288 \) for two- and \(N = 32000 \) for three-dimensional systems and up to 512 independent samples are averaged for each density. The step length is set to be \(\sigma = 0.2 \sigma \) with the radius \(\sigma \). At the beginning of each run, the particles are set up in the perfect ordered configuration, namely, the hexagonal lattice in the two-dimensional and the face centered cubic lattice. The periodic boundary conditions are taken along the all axes. The densities from \(\rho = 0.7 \) to 1.0 are studied.

The time evolutions of the mean square displacements \(M \) are shown in Fig. (a) We can see the normal diffusions starting after some initial relaxations, for example, the data of three-dimensional system with \(\rho = 0.9 \) has a bend at \(t \sim 10^5 \). It implies that the normal diffusion started after the positional order are almost destroyed. The time evolutions of the positional order parameters are shown in Fig. (b). While the positional order is well approximated by the second order cumulant in the region where the positional order parameter is not so small, there are differences especially in the low densities.

These differences are caused by the higher order cumulants which are ignored in Eq. These higher order cumulants can be explained by a swapping diffusion process. In particle systems, there are two kinds of ways to diffuse; by normal diffusion and the swapping. While the normal diffusion destroys the positional order parameters as described in Fig. (a), the swapping does not. In Fig. (b) the diffusion behavior in two-dimensional solid is shown. The density is \(\rho = 0.92 \) which is high enough than the melting points \(\rho_m \), i.e., \(\rho_m \sim 0.902 \) reported by Zollweg and Chester [4] and \(\rho_m < 0.905 \) by Weber et al. [5], and \(\rho_m \sim 0.893 \) by Watanabe et al. [13]. The diffusion shows logarithmic behavior up to \(t \sim 10^4 \) as Mermin predicted [2]. However, it varies from the logarithmic behavior because of the swapping diffusion around at \(t \sim 10^5 \). The distribution of the displacement \(u_i \) at this time is shown in Fig. (c). The points around at the center correspond to the results of the normal diffusion and the six groups around the center group correspond to that of the swapping diffusion.

In order to treat the effect of the swapping, we consider the system with two types of diffusion, the continuous diffusion and the swapping diffusion with a swapping rate \(E_r \) on the lattice with a lattice constant \(a \). The rate \(E_r \) denotes the probability to jump to the nearest position at equilibrium per unit time. The diffusion with swapping diffusion and the swapping diffusion with a swapping rate \(E_r \) is expressed to be,

\[
\langle u_i^2 \rangle' = \langle u_i^2 \rangle + da^2 E_r t, \tag{11}
\]

with the diffusion without swapping \(\langle u_i^2 \rangle \). In the following, the positional order parameter calculated from Eq. (1) is denoted by \(\Psi' \) in order to distinguish from the original definition in Eq. (1). Using \(E_r \), \(\Psi' \) can be expressed to be,

\[
\Psi' = \exp \left(-\frac{K^2 \langle u_i^2 \rangle'}{2d} \right) \tag{12}
\]

\[
= \Psi \exp \left(-2\pi^2 E_r t \right).
\]

Therefore, \(\Psi' \) is always smaller than \(\Psi \), since \(E_r > 0 \). The contribution of the higher order cumulants is ex-

![Fig. 3](image-url) (a) Mean square displacement \(M \) of the two-dimensional solid. The number of particles \(N = 23288 \) and the density \(\rho = 0.92 \). The solid line is \(C_1 \ln t \) with \(C_1 = 1.6 \cdot 10^{-2} \). Error bars are smaller than the size of the symbols. It shows that the crossover from the normal diffusion (logarithmic) to the swapping diffusion (power-law). (b) The time evolution of the value \(\ln (\Psi/\Psi') \), where \(\Psi \) is the positional order parameter with the definition in Eq. (1) and \(\Psi' \) is the value calculated from diffusion using Eq. (3). The decimal logarithms are taken for the both axes. The solid and dashed lines are drawn for for the guides to the eyes; The solid line is \(C_2 t^{1.75} \) and the dashed line is \(C_2 t \) with \(C_2 = 4.0 \cdot 10^{-10} \) and \(C_2 = 3.5 \cdot 10^{-7} \). It shows that the exchange rate increases as \(E_r \sim t^{0.75} \).
The lattice constant is $a = 0\sigma$. The time evolution of the value $\ln (\Psi / \Psi')$ is shown to be,

$$\ln (\Psi / \Psi') = 2\pi^2 E_r t.$$ \hspace{1cm} (13)

The points around at the center correspond to the normal diffusion and the six small groups around the center group correspond to the swapping diffusion.

![Distribution of displacements u_i at $t = 5 \cdot 10^5$ of the two-dimensional system. A small system with $N = 2900$ is shown for visibility. The density of the system is $\rho = 0.92$. The lattice constant is $a = 2$ and the radius of particles is $\sigma = 0.89$ in this scale. The center $(0,0)$ corresponds to the initial position R_i. The points around at the center correspond to the normal diffusion and the six small groups around the center group correspond to the swapping diffusion.](image)

To summarize, we study the dynamics of the positional order in the particle systems based on the diffusion processes. We discuss the relation between the positional order parameter Ψ and the mean square displacement M with the cumulant expansion. We find that there are two kinds of diffusion processes in particle systems, one is the normal diffusion and another is the swapping diffusion which allows particles to diffuse without destroying the positional order. These diffusion processes can be understood as cumulants of the displacements; the normal diffusion is the second order cumulant, and the swapping diffusion contributes to the higher orders. This swapping diffusion process will play important roles in systems with two or more kinds of particles in high density region. The presented arguments are very general, and applicable to other systems with general pair potentials. Studying dynamic aspects of Alder transitions based on the cumulant expansion should be a further issue.

We thank M. Mori for helpful suggestions. The computation was partially carried out using the facilities of the Supercomputer Center, Institute for Solid State Physics, University of Tokyo. This work was supported by the 21st COE program, “Frontiers of Computational Science”, Nagoya University and the Grant-in-Aid for Scientific Research (C), No. 15607003, of Japan Society for the Promotion of Science.

[1] B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962); W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207 (1957).
[2] N. D. Mermin, Phys. Rev. 176, 250 (1968).
[3] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); A. P. Young, Phys. Rev. B 19, 1855 (1979).
[4] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
[5] S. T. Chui, Phys. Rev. Lett. 48, 933 (1982).
[6] J. A. Zollweg, G. V. Chester, Phys. Rev. B 46, 11186 (1992).
[7] J. Lee and K. J. Strandburg, Phys. Rev. B 46, 11190 (1992).
[8] H. Weber, D. Marx and K. Binder, Phys. Rev. B 51, 14636 (1995).
[9] J. F. Fernandez, J. J. Alonso and J. Stankiewicz, Phys. Rev. Lett. 75, 3477 (1995).
[10] A. Jaster, Phys. Rev. E 59, 2594 (1999).
[11] S. Sengupta, P. Nielaba, and K. Binder, Phys. Rev. E 61, 6294 (2000).
[12] K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
[13] H. Watanabe, S. Yukawa, Y. Ozeki, and N. Ito, Phys. Rev. E 66, 041110 (2002); H. Watanabe, S. Yukawa, Y. Ozeki, and N. Ito, Phys. Rev. E 69, 045103(R) (2004); H. Watanabe, S. Yukawa, and N. Ito, Phys. Rev. E 71, 016702 (2005).
[14] N. Ito, Pramana-J. Phys. 64, 871 (2005).
[15] K. Zahn and G. Maret, Phys. Rev. Lett. 85, 3656 (2000).
[16] In the low density limit, the mean square displacement M of MC is exactly obtained to be $M = \sigma^2 d/(d+2) \cdot t$ with the step length σ, and the dimension of the system d. Since the step length is set to be $\sigma = 0.2\sigma$ in this study, the lines $0.04d/(d+2) \cdot t$ are shown in Fig. 4.

We have also performed simulations with other values of step length $\sigma = 0.01, 0.05$ and 0.1, and confirmed that the parameter only changes the time scale of the system and the results are not changed qualitatively.

[22] Consider a diffusion process on the grid with the lattice constant a. If particles jump randomly to the next site every τ, the system involves diffusion with a diffusion constant $D = a^2/2\tau$ and the exchanging rate E_r is denoted by $E_r = \tau^{-1}$. If the exchanging rate E_r is constant, the value should increase as $\sim t$. Therefore, the exchanging rate E_r increases. It implies that the destruction of the positional order enhances the swapping of the particles.