Disseminated Gonococcal Infection Complicated by Prosthetic Joint Infection: Case Report and Genomic and Phylogenetic Analysis

Osakpolor Ogbebor,1,* Tutum D. Mortimer,1 Kyra Fryling,2 Jessica J. Zhang,1 Nitin Bhanot,1 and Yonatan H. Grad1,2,3

1Division of Infectious Diseases, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA; 2Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA

Keywords. antibiotic resistance; disseminated gonococcal infection; genomics; Neisseria gonorrhoeae; prosthetic joint infection.

Since its nadir in 2009, the rate of Neisseria gonorrhoeae infections have been increasing globally, with prevalence rising across age groups [1]. This rise has coincided with joint replacements taking place at younger ages. In this study, we report a case of disseminated gonococcal infection (DGI) involving a prosthetic joint, and we use whole-genome sequencing to characterize resistance genes, putative virulence factors, and the phylogenetic lineage of the infecting isolate. We review the literature on sequence-based prediction of antibiotic resistance and factors that contribute to risk for DGI. We argue for routine sequencing and reporting of invasive gonococcal infections to aid in determining whether an invasive gonococcal infection is sporadic or part of an outbreak and to accelerate understanding of the genetic features of N. gonorrhoeae that contribute to pathogenesis.

CASE REPORT

In fall 2019, a 59-year-old white man with a history of left knee replacement 8 years ago presented to the emergency department of a hospital in Pennsylvania with a 2-day history of pain and swelling involving multiple joints. He first noticed pain, swelling, and redness over the dorsum of his left hand, followed by similar symptoms in the right wrist, shoulders, right hip, and left knee. The joint pain was exacerbated by movement and limited weight-bearing. He reported no pain on micturition or penile discharge. He reported he was monogamous. On exam, he appeared uncomfortable. His temperature was 36.9°C. Joint exam revealed tenderness in his shoulders and left 2nd to 5th metacarpophalangeal joints, swelling and erythema of the dorsum of the left hand, and decreased range of movement in his shoulders, knees, and right hip. Laboratory work revealed white blood cell count (WBC) of 15.9 × 10^3 cells/mL, with 89% neutrophils. The erythrocyte sedimentation rate was greater than 130 mm/hr and C-reactive protein was 33 mg/dL. Human immunodeficiency virus and rapid plasma reagin were negative. Arthrocentesis of the left knee yielded purulent fluid, with a WBC of 162 000 cells/mL, 89% neutrophils, and red blood cell count of 5000 cells/mL.

The differential diagnosis included joint infection due to commonly encountered pathogens, such as staphylococci, DGI, and migratory polyarticular arthritis secondary to a rheumatological disease. He was started empirically on vancomycin and cefepime, pending culture results, and changed to vancomycin and ceftriaxone after infectious disease consult. After culture from the knee aspirate fluid grew N. gonorrhoeae, he acknowledged multiple recent unprotected heterosexual encounters.

E-test of the N. gonorrhoeae isolate showed an azithromycin minimum inhibitory concentration (MIC) of 0.38 µg/mL, ceftriaxone MIC of <0.016 µg/mL, and ciprofloxacin MIC of 0.003 µg/mL. Management included irrigation and debridement of the left knee with synovectomy and polyethylene liner exchange, arthroscopic irrigation and debridement of the right hip, as well as 4 weeks of intravenous ceftriaxone and a single 1-gram dose of oral azithromycin. He then received 300 mg of cefdinir twice a day for four and a half months, given concern for PJI. His recovery was complicated by tenosynovitis of the left 2nd and 4th compartment with a torn extensor pollicis longus tendon, requiring tendon transfer and repair. He has had no reported recurrence of symptoms.

NOVEL ID CASES • OFID • 1
The *N. gonorrhoeae* isolate, which appeared piliated and opaque on culture, underwent genome sequencing on the Illumina platform and analysis for resistance mutations and loci postulated to be associated with invasiveness [3–6] (see Supplemental Material). Analysis confirmed the absence of known antibiotic resistance determinants for ceftriaxone, with no known resistance variants in *penA*, *rpoB*, or *rpoD* [3, 6]. Likewise, no variants in *gyrA* or *parC* that confer resistance to ciprofloxacin were observed [3]. The isolate’s mosaic *mtrD* with a K823E mutation and the A39T mutation in *mtrR* can increase the azithromycin MIC by altering the MtrCDE efflux pump and increasing its expression, but do not on their own increase the MIC above clinical thresholds for resistance [3, 4]. No other known azithromycin resistance conferring mutation was observed, with no resistance variants in the 23S rRNA or *rplD* genes [5].

Although no genetic basis for dissemination or invasive disease in *N. gonorrhoeae* has been well established, several genetic loci have been speculated to be involved in invasiveness and serum resistance, including the gonococcal genetic island [7], the *opa* genes [8], the genes *porB* [9] and *lptA* [10], and the *lgt* operon [11, 12]. The isolate causing this case lacked the gonococcal genetic island and encoded wild-type *lptA* and *porB1b*. The *lgt* operon codes for glycosyl transferases that mediate biosynthesis of lipooligosaccharide (LOS) and several of the genes in this locus are phase variable, thus influencing the nature of the LOS [13]. Assessment of phase variation indicated that *lgtA* and *lgtC* were off and *lgtD* was on; however, the in vitro passaging of the clinical isolate may have resulted in genetic changes in these loci, rendering interpretation of the phase variation at these loci unclear. The 11 *opa* loci in the genome each have 2 hypervariable regions and could not be resolved and typed by the short sequencing reads.

Phylogenetic analysis revealed that the clinical isolate is derived from an internationally circulating lineage of antibiotic-susceptible *N. gonorrhoeae* with NG-MAST 20638 and MLST 11428. No other isolate causing DGI has been reported from this lineage to date. Comparison with recently reported sporadic cases of DGI in a large genomic epidemiology study revealed that the isolates causing those infections derive from distinct genetic lineages (see Figure 1).

Patient Consent Statement

Patient consent was obtained. Institutional Review Board review is not required for this activity, for, as a case report, this work neither produces generalizable knowledge nor is it an investigation of a US Food and Drug Administration-regulated product.

DISCUSSION

Disseminated gonococcal infection can present with dermatitis, migratory arthritis, and tenosynovitis [15]. In this case, the patient presented with migratory arthritis and left-hand tenosynovitis. This case of DGI was complicated by PJI, with only one other case to our knowledge reported in the literature [16], and DGI-associated tendon rupture.

The rarity of gonococcal PJI may be due to DGI as an uncommon manifestation of gonorrhea and the low prevalence of joint replacements in the age group of patients at highest risk of gonococcal infection [15, 17]. However, these groups are increasingly overlapping: more people are having prosthetic joint surgeries at earlier ages [17], and rates of gonococcal infections in the United States rose 63% from 2014 to 2018, with cases of gonorrhea in individuals aged 40+ years more than doubling [1].

The recommended treatment for uncomplicated gonococcal infection is single-dose intramuscular ceftriaxone plus...
invasiveness. However, this auxotype seems to have stopped cir-

defining lineage carried genetic determinants that promoted

AHU auxotype) [27–31], raising suspicion that this auxotype-

tuting to invasiveness have been more challenging to establish,

complement deficiency [25, 26]. The pathogen factors contrib-

suggestions that advances in genotype-to-phenotype models may

the Etest result. The accuracy of quantitative MIC prediction

mtrD

ability, the variants observed in

and

ceftriaxone, and azithromycin, in keeping with the observed

resistance to these antibiotics [23, 24]. In the case presented

here, the genotype predicted susceptibility to ciprofloxacin,

ance prediction make this a promising direction. Polymerase

chain reaction-based tests for ciprofloxacin resistance [22]

and growing understanding of the genetic basis of resistance

to ceftriaxone and azithromycin provide an evidence base for

development of genotypic assays for predicting phenotypic

resistance to these antibiotics [23, 24]. In the case presented

here, the genotype predicted susceptibility to ciprofloxacin,

ceftiraxone, and azithromycin, in keeping with the observed

phenotype. Beyond the categorical determination of suscepti-

bility, the variants observed in mtrD and mtrR, each expected

to slightly increase the azithromycin MIC, were consistent with

the Etest result. The accuracy of quantitative MIC prediction

suggests that advances in genotype-to-phenotype models may

make these assays useful for nuanced clinical decision making.

The factors that influence the likelihood of invasive gono-
coccal disease remain incompletely understood. Host factors
predisposing to disseminated disease include innate or acquired
complement deficiency [25, 26]. The pathogen factors contribut-
ing to invasiveness have been more challenging to establish,
because they have been based on small numbers of cases. An
outbreak of DGI in the late 1970s and early 1980s was caused by
an auxotype requiring arginine, hypoxanthine, and uracil (the
AHU auxotype) [27–31], raising suspicion that this auxotype-
defining lineage carried genetic determinants that promoted

invasiveness. However, this auxotype seems to have stopped cir-
culating, and further genomic and phenotypic characterization

of this lineage remains to be done. Other genetic loci speculated
to be virulence factors include the gonococcal genetic island
[7], the opa genes [8], the genes porB [9] and lptA [10], and the
lgt operon [11, 12], with several of these loci contributing to

escape of complement-mediated killing [32]. Recent outbreaks,
including one among heterosexuals in Michigan, have renewed
questions about the genetic predisposition of particular lineages
to invasiveness [2, 33].

Routine reporting of genome sequences of invasive N.
gonorrhoeae isolates together with the clinical contexts can aid
in the effort to define the genetic basis for gonococcal viru-

ence and represent an important complement to in vitro and
animal-model studies. For comparison, recent studies using se-
quence data from isolates collected over many years and coun-
tries has expanded our knowledge of the genetic modulators of
antimicrobial resistance in clinical isolates of N. gonorrhoeae as
well as its adaptation to anatomical sites of infection [4–6, 34,
35]. Likewise, the genome sequences of Neisseria meningitidis
isolates causing sporadic cases and outbreaks of urethritis have
aided in understanding the genetic basis of meningococcal ad-
aptation to the urogenital niche and in clarifying the impor-
tance of putative virulence loci [34, 36–38].

Although N. gonorrhoeae genome sequencing has primarily

relied on cultured specimens, recent advances demonstrated
the potential of sequencing directly from patient specimens
[39, 40]. The most likely near-term use of these technologies

includes point-of-care prediction of antibiotic susceptibility
based on genome sequence either by direct assessment of one
or more loci [23, 39, 40] or by phylogenetic-neighbor typing
methods [41]. The use of long-read platforms to sequence di-
rectly from patient specimens also contributes to efforts to iden-
tify loci that contribute to invasiveness. This approach will allow
for querying phase-variable sites (such as in the lgt operon) di-
rectly, thereby eschewing the confounding phase alterations
that may arise during in vitro passage. In addition, long-read
sequencing will allow for the comprehensive characterization
of the Opa repertoire that is challenging to do with short-read
sequencing platforms.

CONCLUSIONS

Reporting of sporadic and outbreaks of DGI cases together
with genome sequence data and host risk factors can inform
and enable similar efforts to combine data and uncover the
N. gonorrhoeae genetic contributors to invasiveness as well
as understand the extent to which cases reflect gonococcal
lineages with a higher risk of invasion. At least 10 individual
cases of DGI and one DGI outbreak have been published and
indexed on PubMed over the past year [2, 42–52]. Sequences
from these isolates would address several key questions. First,
to what extent are DGI cases sporadic, and to what extent do
they represent a lineage's propensity to cause invasive disease?
For example, of the isolates from DGI cases in Australia [14]
included in the phylogeny, some isolates are clustered and
others appear sporadic (Figure 1). Adding more isolate
genomes to this phylogeny will help assess whether the clustered
cases represent outbreaks, and additional outbreak lineages
will provide statistical power to identify the genetic basis for
invasiveness. Second, although disseminated infection remains
rare and rates appear to have declined over the past several dec-
ades [53], is the lower rate attributable to changes in circulating
strains? Third, if there is a DGI cluster, how geographically and
demographically widespread is it? For example, the reporting of genome sequences from the recent Michigan DGI outbreak will inform on whether the case reported here reflects spread of an invasive lineage and inform efforts for surveillance.

The number of genome sequences from clinical N. gonorrhoeae isolates in public databases is over 13,000 and steadily growing. Just as the subset of these isolates for which antibiotic resistance data has helped expand our understanding of the genetic basis of resistance [4, 5, 34], routinely sequencing and reporting invasive strains will increase the statistical power to address critical questions of N. gonorrhoeae virulence and help inform public health surveillance and interventions.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments
Financial support. Y. H. G. is funded by the National Institutes of Health (NIH) (Grants R01AI132606 and R01AI153521) and the Smith Family Foundation, T. D. M. is funded by the NIH/National Institute of Allergy and Infectious Diseases (Grant F32 AI145157).

Potential conflict of interest statement. Y. H. G. reports receiving consulting fees from Quidel and serving on the scientific advisory board of DayZeroDiagnostics. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References
1. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2018. Available at: https://www.cdc.gov/std/stats18/gonorrhea.htm. Accessed 5 November 2019.
2. Nettleton WD, Kent JB, Macomber K, et al. Notes from the field: ongoing cluster of highly related disseminated gonococcal infections - Southwest Michigan, 2019. MMWR Morb Mortal Wkly Rep 2020; 69:353–4.
3. Mortimer TD, Grad YH. Applications of genomics to slow the spread of multidrug-resistant Neisseria gonorrhoeae. Ann N Y Acad Sci 2019; 1435:93–109.
4. Ma KC, Mortimer TD, Grad YH. Efflux pump antibiotic binding site mutations are associated with azithromycin nonsusceptibility in clinical Neisseria gonorrhoeae isolates. mBio 2020; 11:e01509–20.
5. Ma KC, Mortimer TD, Dukett MA, et al. Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nat Commun 2020; 11:5374.
6. Palace SG, Wang Y, Rubin DHE, et al. RNA polymerase mutations cause cephaparin resistance in clinical Neisseria gonorrhoeae isolates. Elife 2020; 9:e51407.
7. Dillard JP, Seifert HS. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 2001; 41:263–77.
8. Roth A, Matthes C, Muenzner P, et al. Introne recognition by neutrophil granulocyte cytoxes differs between Neisseria gonorrhoeae strains causing local or disseminating infections. Infect Immun 2013; 81:2358–70.
9. Ram S, Cullinean M, Blom AM, et al. ClpB binding to porin mediates stable serum resistance of Neisseria gonorrhoeae. Int Immunopharmacol 2001; 1:423–32.
10. Lewis LA, Choudhury B, Balthazar JT, et al. Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun 2009; 77:1112–20.
11. Shafer WM, Datta A, Kolli VS, et al. Phase variable changes in genes lgtA and lgtD within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J Endotoxin Res 2002; 8:47–58.
12. Balthazar JT, Gusa A, Martin LE, et al. Lipooligosaccharide structure is an important determinant in the resistance of Neisseria gonorrhoeae to antimicrobial agents of innate host defense. Front Microbiol 2011; 2:30.
13. Braun DC, Stein DC. The lgtABCDE gene cluster, involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae, contains multiple promoter sequences. J Bacteriol 2004; 186:1038–49.
14. Williamson DA, Chow EPF, Gorrie CL, et al. Bridging of Neisseria gonorrhoeae lineages across sexual networks in the HIV pre-exposure prophylaxis era. Nat Commun 2019; 10:3988.
15. Kerle KK, Mascaro JR, Miller TA. Disseminated gonococcal infection. Am Fam Physician 1992; 45:209–14.
16. Gassiep I, Gilpin B, Douglas J, Siebert D. Gonococcal prosthetic joint infection. J Bone Jt Infect 2017; 2:160–2.
17. Maradit Kremers H, Larson DR, Crowson CS, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am 2015; 97:1386–97.
18. Workowski KA, Bolan GA; Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 2015; 64:1–137.
19. Osmon DR, Berbari EF, Berendt AR, et al.; Infectious Diseases Society of America. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2013; 56:e1–25.
20. Fingerhuth SM, Lowe N, Bonhoeffer S, Althaus CL. Detection of antibiotic resistance is essential for gonorrhoea point-of-care testing: a mathematical modelling study. BMC Med 2017; 15:142.
21. Tuite AR, Gift TL, Chesson HW, et al. Impact of rapid susceptibility testing and antibiotic selection strategy on the emergence and spread of antibiotic resistance in gonorrhoea. J Infect Dis 2017; 216:1141–9.
22. Ebeyan S, Windsor M, Bordin A, et al.; GRAND2 Study Investigators. Evaluation of the ResistancePlus GC (beta) assay: a commercial diagnostic test for the direct detection of ciprofloxacin susceptibility or resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2019; 74:1820–4.
23. Demczuk W, Martin I, Sawatzky P, et al. Equations to predict antimicrobial MICs in Neisseria gonorrhoeae using molecular antimicrobial resistance determinants. Antimicrob Agents Chemother 2020; 64:e02005–19.
24. Hadad R, Cole MJ, Ebeyan S, et al. Evaluation of the SpeeDx ResistancePlus(R) GC and SpeeDx GC 23S 2611 (beta) molecular assays for prediction of antimicrobial resistance/susceptibility to ciprofloxacin and azithromycin in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:84–90. Available at: https://doi.org/10.1093/jac/dkaa381.
25. Crew PE, Abara WE, McCulley L, et al. Disseminated gonococcal infections in patients receiving ceftriaxone: a case series. Clin Infect Dis 2019; 69:596–600.
26. Ellison RT Jr, Gard JG, Kohler PF, et al. Underlying complement deficiency in patients with disseminated gonococcal infection. Sex Transm Dis 1987; 14:201–4.
27. Noble RC, Reyes RR, Parekh MC, Haley JV. Incidence of disseminated gonococcal infection correlated with the presence of AHU auxotype of Neisseria gonorrhoeae in a community. Sex Transm Dis 1984; 11:68–71.
28. Knapp JS, Holmes KK. Disseminated gonococcal infections caused by Neisseria gonorrhoeae with unique nutritional requirements. J Infect Dis 1975; 132:204–8.
29. Schoolnik GK, Buchanan TM, Holmes KR. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera. J Clin Invest 1976; 58:1163–73.
30. Cannon JG, Buchanan TM, Sparling PF. Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect Immun 1983; 40:816–9.
31. Sandström EG, Knapp JS, Roller LB, et al. Serogrouping of Neisseria gonorrhoeae: correlation of serogroup with disseminated gonococcal infection. Sex Transm Dis 1984; 11:77–80.
32. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 2018; 16:226–40.
33. Belkacem A, Caumes E, Ouanich J, et al. Changing patterns of disseminated gonococcal infection in France: cross-sectional data 2009–2011. Sex Transm Infect 2012; 89:113–5.
34. Ma KC, Mortimer TD, Hicks AL, et al. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020; 11:4126.
35. Wadsworth CB, Arnold BJ, Sater MRA, Grad YH. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. MBio 2018; 9:e00419–18.
36. Retschloss AC, Kretz CB, Chang HY, et al. Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles. BMC Genomics 2018; 19:176.
37. Tseng YL, Bazan JA, Turner AN, et al. Emergence of a new Neisseria meningitidis clonal complex 11 lineage 112 clade as an effective urogenital pathogen. Proc Natl Acad Sci U S A 2017; 114:4237–42.
38. Ma KC, Unemo M, Jeverica S, et al. Genomic characterization of urethritis-associated *Neisseria meningitidis* shows that a wide range of *N. meningitidis* strains can cause urethritis. J Clin Microbiol 2017; 55:3374–83.

39. Sanderson ND, Swann J, Barker L, et al.; GonFast Investigators Group. High precision *Neisseria gonorrhoeae* variant and antimicrobial resistance calling from metagenomic Nanopore sequencing. Genome Res 2020; 30:1354–63.

40. Street TL, Barker L, Sanderson ND, et al. Optimizing DNA extraction methods for nanopore sequencing of *Neisseria gonorrhoeae* directly from urine samples. J Clin Microbiol 2020; 58:e01822–19.

41. Břinda K, Callendrello A, Ma KC, et al. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nat Microbiol 2020; 5:455–64.

42. Florez-Pollack S, Mauskar MM. Disseminated gonococcal infection. N Engl J Med 2019; 380:1565.

43. Vidaurrazaga MM, Perlman DC. Disseminated gonococcal infection. N Engl J Med 2019; 380:1565.

44. Smith EL, Hodgetts KE, Anstey NM. Case Report: Severe disseminated gonococcal infection with polyarticular gout: two cases in older travelers. Am J Trop Med Hyg 2019; 100:209–12.

45. Liakos W, Schaffler B, Rajan S, Hagmann SHF. Gonococcal osteomyelitis in a pediatric patient with disseminated gonococcal infection: implications for antimicrobial management. IDCases 2020; 21:e00875.