The Structural Basis of Compstatin Activity Examined by Structure-Function-based Design of Peptide Analogs and NMR*

Received for publication, January 2, 2002, and in revised form, February 13, 2002
Published, JBC Papers in Press, February 14, 2002, DOI 10.1074/jbc.M200021200

Dimitrios Morikis**, Melinda Roy*, Arvind Sahu**, Anastasios Troganis***, Patricia A. Jennings*, George C. Tsokos**, and John D. Lambris**

From the **Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, the *Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92033, the †National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India, the ‡Department of Biological Applications and Technologies, University of Ioannina, GR 45110 Ioannina, Greece, §§Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, and the ¶¶Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

We have previously identified compstatin, a 13-residue cyclic peptide, that inhibits complement activation by binding to C3 and preventing C3 cleavage to C3a and C3b. The structure of compstatin consists of a disulfide bridge and a type I β-turn located at opposite sides to each other. The disulfide bridge is part of a hydrophobic cluster, and the β-turn is part of a polar surface. We present the design of compstatin analogs in which we have introduced a series of perturbations in key structural elements of their parent peptide, compstatin. We have examined the consistency of the structures of the designed analogs compared with compstatin using NMR, and we have used the resulting structural information to make structure-complement inhibitory activity correlations. We propose the following. 1) Even in the absence of the disulfide bridge, a linear analog has a propensity for structure formation consistent with a turn of a 3_10-helix or a β-turn. 2) The type I β-turn is a necessary but not a sufficient condition for activity. 3) Our substitutions outside the type I β-turn of compstatin have altered the turn population but not the turn structure. 4) Flexibility of the β-turn is essential for activity. 5) The type I β-turn introduces reversibility and sufficiently separates the two sides of the peptide, whereas the disulfide bridge prevents the termini from drifting apart, thus aiding in the formation of the hydrophobic cluster. 6) The hydrophobic cluster at the linked termini is involved in binding to C3 and activity but alone is not sufficient for activity. 7) β-Turn residues Glu\(^5\) (Asn\(^5\))-Asp\(^6\)-Trp\(^7\)(Phe\(^7\))-Gly\(^8\) are specific for the turn formation, but only Glu\(^5\)(Asn\(^5\))-Asp\(^6\)-Trp\(^7\)(Phe\(^7\))-Gly\(^8\) residues are specific for activity. 8) Trp\(^7\) is likely to be involved in direct interaction with C3, possibly through the formation of a hydrogen bond. Finally we propose a binding model for the C3-compstatin complex.

Compstatin, a 13-residue cyclic peptide, is a novel complement inhibitor with the potential to be developed into a therapeutic agent (1). Compstatin binds to C3, which is a central complement component, through which all three pathways of complement activation, the classical, alternative, and lectin, converge (2). Although complement is part of the innate immune system while acting as a bridge between the innate and adaptive immune systems, and its activation is an important line of defense against invading foreign pathogens (3–5), its inappropriate activation can result in host cell damage (6). This is the case in more than 25 pathological conditions, including a number of autoimmune diseases, burn injuries, ischemia reperfusion injuries, stroke, dialysis, and cardiopulmonary bypass (see Ref. 7 for a complete list and references). The following have been shown. (a) Compstatin inhibits complement activation in vitro in human serum (8). (b) Compstatin totally inhibits in vivo heparin/protamine-induced complement activation in primates without side effects, in a situation that is typical in cardiac surgery (9). (c) Compstatin inhibits complement activation without toxicity in whole blood, in models of extracorporeal circuits, which resemble those used in cardiopulmonary bypass, dialysis, and plasmapheresis (10). (d) Compstatin prolongs the lifetime of porcine-to-human ex vivo perfused kidney xenograft model with human blood (11). (e) Finally, compstatin does not appear to have significant cytotoxicity as it showed little or no inhibition of clotting (12).

Compstatin was first identified as a 27-residue peptide using combinatorial phage-displayed random peptide library and was subsequently truncated, without loss of activity, to a 13-residue peptide (8). An attempt to further truncate the 13-residue peptide yielded inactive fragments (13). The sequence of compstatin is Ile\(^1\)-Cys\(^2\)-Val\(^2\)-Val\(^2\)-Gln\(^5\)-Asp\(^6\)-Trp\(^7\)-Gly\(^8\)-His\(^10\)-Arg\(^11\)-Cys\(^12\)-Thr\(^14\)-NH\(_2\), where Cys\(^2\) and Cys\(^12\) are disulfide-bonded. Reduction and alkylation of the two cysteines result in loss of inhibitory activity (8). We have determined previously the three-dimensional structure of compstatin in solution using NMR and a restrained hybrid distance geometry/simulated annealing methodology (14) and an alternative refinement methodology using global optimization (15). Compstatin forms
a type I β-turn spanning residues Gln⁵-Asp⁶-Trp⁷-Gly⁸. Measurements of inhibitory activities of compstatin analogs designed using an alanine scan in the sequence between residues Cys² and Cys¹² have shown that Val³ and the four residues of the β-turn are essential for retaining activity (14). Alamine replacement for each one of the remaining residues resulted in reduced but not lost inhibitory activity (14). Fig. 1, A and C, shows the hydrophobic character of the structure of compstatin. We observe a hydrophobic clustering forming a patch at the linked termini involving residues Ile¹, Cys², Val³, Val⁴, Cys¹², Thr¹³, whereas the ring of Trp⁷ caps the β-turn with orientation toward the hydrophobic clustering. We have hypothesized that this hydrophobic clustering may be essential for structural stability and inhibitory activity of compstatin (1, 14). Fig. 1B shows the electrostatic character of compstatin. Positive charges from His⁹, His¹⁰ (each about 50% protonated at the experimental pH), and Arg¹¹ and a negative charge from Asp⁶ are observed at the opposite side of the hydrophobic cluster. However, a positive charge from the amino terminus is disrupting the hydrophobic cluster. This charge was neutralized by acetylation of the amino terminus in our effort to avoid cleavage of the peptide bond between Ile¹ and Cys² during the biotransformation of compstatin (13). Interestingly, upon acetylation activity of compstatin was increased by a factor of 3 (13). We then designed our subsequent studies using the more effective sequence of Ac-Ile¹-Cys²-Val³-Val⁴-Gln⁵-Asp⁶-Trp⁷-Gly⁸-His⁹-His¹⁰-Arg¹¹-Cys¹²-Thr¹³-NH₂.

Because of its activity, low toxicity, and structural simplicity compstatin is a promising candidate for drug development (1, 12, 13). It is not unusual for a short cyclic peptide to become an oral drug; a successful example is the widely used immunosuppressant cyclosporin (16). Also, it is known that several immunogenic peptides adopt functional β-turn structures (17, 18). In an earlier study we designed and tested a number deletion analogs of compstatin in an attempt to truncate further the 13-residue peptide, but none of them was active (13). Neither a retro-inverso analog nor β-turn analogs, with substitutions that we expected to enhance a type I or a type II β-turn, were active (13).

With the goal to improve on the activity of compstatin, we have initiated the rational design of compstatin analogs based on the β-turn. We have chosen the NMR structure of the non-acetylated peptide deposited in the Protein Data Bank under code 1A1P (14).

![Fig. 1. A, the hydrophobic surface of compstatin. Hydrophobic residues are drawn in green, and the rest are drawn in gray. B, the electrostatic surface of compstatin, where blue and red correspond to residues with positive and negative charges, respectively. The orientation is the same as in A. C, a van der Waals sphere representation of compstatin that shows the continuity of the hydrophobic patch in a different view than in A and B. Residues Trp⁷ and Thr¹³ are colored in light green to denote less hydrophobicity, compared with Ile¹, Val³, Val⁴, Cys², Cys¹² (darker green). Note that this structure corresponds to non-acetylated compstatin at the amino terminus. The lowest energy structure of compstatin has been used from the ensemble of NMR structures deposited in the Protein Data Bank under code 1A1P (14). The program MOLMOL (29) has been used for molecular representation. Nter, amino terminus; Cter, carboxyl terminus.](image)

![TABLE I](image)

Peptide	Sequence	IC₅₀ (µM)	Activity
Compstatin	I*CVQDGHHR*C*T-NH₂	12	Active
Compstatin ring-only	*CVQDGHHR*C*	33	Active
Ac-Compstatin	Ac-I*CVQDGHHR*C*T-NH₂	4.5	Active
C2A/C12A	IA*VQDGHHR*A T-NH₂	>500	Inactive
Ac-H9A	Ac-I*CVQDWAHR*C*T-NH₂	2.9	Active
Ac-V4A/H9A/T13I	Ac-I*CVAQDWAHR*C*T-NH₂	4	Active
Ac-V3A	Ac-I*CVAQDGHHR*C*T-NH₂	NA	NA
V3A ring-only	*CVQDGHHR*C* -NH₂	>1200	Inactive
Ac-W7F	Ac-I*CVQDFGHHR*C*T-NH₂	>400	Inactive
Ac-Q5G/D6A/W7A	Ac-I*CVQGAFGHHR*C*T-NH₂	>100	Inactive
Ac-Q5G/D6P/W7F	Ac-I*CVQGFGGHHR*C*T-NH₂	>400	Inactive

* Underlined residues are points of amino acid replacement or acetyl group addition.

* Ac stands for acetylated N terminus.

* Asterisks on the left and right of Cys² and Cys¹², respectively, denote disulfide-linked cysteines.

* Complement activities were determined by measuring alternative pathway-mediated erythrocyte lysis.

* From Morikis et al. (14).

* From Sahu et al. (13).

* Not available.
NMR Studies of Compstatin Analogs

Peptide synthesis and purification was performed as described previously (8, 14). Inhibitory activity of compstatin and its analogs on the complement system was studied by measuring their effect on the alternative pathway. Complement activation inhibition was assessed by measuring the lysis of rabbit erythrocytes in normal human serum, as described previously (8, 14). All analogs were examined by mass spectroscopy and found to be monomeric. The analogs of compstatin used for NMR studies were acetylated with the exception of the C2A/C12A analog. The NMR samples were prepared in 90% H2O, 10% D2O buffer containing 50 mM potassium phosphate, 100 mM potassium chloride, 0.1% sodium azide, and 10 μM EDTA. Sample pH was 6 for the C2A/C12A, Ac-V3A, Ac-W7F, Ac-Q5G/D6A/W7A, and Ac-Q5G/D6P/W7F analogs and 6.5 for the Ac-H9A and Ac-V4A/H9A/T13I analogs. Peptide concentrations were in the range of 1.5–5 mM, depending on the analog. NMR spectra were recorded at 5 °C.

Figure 2 shows the analogs of compstatin we have studied by NMR and their inhibitory activities. These are the single replacement analogs Val3 → Ala (Ac-V3A), Trp7 → Phe (Ac-W7F), and His9 → Ala (Ac-H9A), the double replacement analog Cys3 → Ala/Cys12 → Ala (C2A/C12A), and the triple replacement analogs Val14 → Ala/His8 → Ala/Thr13 → Ile (Ac-V4A/H9A/T13I), Glu5 → Gly/Asp9 → Ala/Trp7 → Ala (Ac-Q5G/D6A/W7A), and Glu5 → Gly/Asp9 → Pro/Trp7 → Phe (Ac-Q5G/D6P/W7F). Given that we know the solution structure of compstatin (14) we can now examine by using NMR the following: 1) if the

MATERIALS AND METHODS

We present here the design of the 7 analogs, one of which is equally as active as compstatin.

RESULTS

Table I shows the analogs of compstatin we have studied by NMR and their inhibitory activities. These are the single replacement analogs Val3 → Ala (Ac-V3A), Trp7 → Phe (Ac-W7F), and His9 → Ala (Ac-H9A), the double replacement analog Cys3 → Ala/Cys12 → Ala (C2A/C12A), and the triple replacement analogs Val14 → Ala/His8 → Ala/Thr13 → Ile (Ac-V4A/H9A/T13I), Glu5 → Gly/Asp9 → Ala/Trp7 → Ala (Ac-Q5G/D6A/W7A), and Glu5 → Gly/Asp9 → Pro/Trp7 → Phe (Ac-Q5G/D6P/W7F). Given that we know the solution structure of compstatin (14) we can now examine by using NMR the following: 1) if the

1 The abbreviations used are: TOCSY, total correlation spectroscopy; DQF-COSY, double quantum filtered correlated spectroscopy; NOE, nuclear Overhauser effect; NOESY, NOE spectroscopy.
NMR Studies of Compstatin Analogs

Fig. 3. NMR spectra of the Ac-H9A compstatin analog. A, portion of the H(\(i\))-H(\(i+1\)) region of the DQF-COSY spectrum showing the backbone of the peptide. B, the H(\(i\))-H(\(i+1\)) region of the NOESY spectrum. Sequential NOE connectivities corresponding to intra-residue H(\(i\))-H(\(i+1\)) are shown, but only the intra-residue NOEs are labeled for simplicity. A weak cross-peak (circled) corresponds to the Asp(\(i\)) H(\(i\))-Gly(\(i+1\)) H(\(i+1\)) NOE, which is characteristic of the presence of a \(\beta\)-turn in the same region as in the parent peptide compstatin. C, the H(\(i\))-H(\(i+1\)) region of the NOESY spectrum. Cross-peaks corresponding to Asp(\(i\)) H(\(i\))-Trp(\(i\)) H(\(i+1\)) and Trp(\(i\))-H(\(i+1\)) NOEs are observed, which are characteristic of the presence of a type I \(\beta\)-turn in the same region as in the parent peptide compstatin. Symmetry related cross-peaks are labeled once at either side of the diagonal.

designed analogs form structures consistent with the type I \(\beta\)-turn of compstatin or with some other type of \(\beta\)-turn or secondary structure; 2) the role of the disulfide bridge in the formation of structure in compstatin; 3) the role of the hydrophobic and polar surfaces in the structural stability of compstatin; and 4) which of the above structural characteristics are essential for function.

We begin our analysis by focusing on the two major types of \(\beta\)-turns, type I and II. We test the consistency of the observed NOEs with the expected NOEs for type I and type II \(\beta\)-turns. This can be accomplished by examining the following NOEs: H(\(i\))-H(\(i+3\)), H(\(i\))-H(\(i+4\)), H(\(i\))-H(\(i+5\)), and H(\(i\))-H(\(i+6\)), where the numbers in parentheses refer to residues 2, 3, and 4 of the \(\beta\)-turn (20). NOEs H(\(i\))-H(\(i+3\)) and H(\(i\))-H(\(i+4\)) should always be present in the case of a \(\beta\)-turn, but they are also generic NOEs in the case of extended structure. The weak NOE H(\(i\))-H(\(i+4\)) is characteristic of the presence of a \(\beta\)-turn of both types, type I and type II. A strong H(\(i\))-H(\(i+4\)) NOE is also characteristic of the presence of a \(\beta\)-turn of both types, type I and type II. The NOE that distinguishes a type I from a type II \(\beta\)-turn is the H(\(i\))-H(\(i+3\)), which has strong intensity in the case of a type I \(\beta\)-turn and weak intensity in the type II \(\beta\)-turn. The turn assignment can be further refined by looking at the intensities of the H(\(i\))-H(\(i+3\)) NOE, which should be medium for a type I \(\beta\)-turn and strong for type II \(\beta\)-turn (20).

The Linear Analog with Cys(2)→Ala/Cys(12)→Ala (C2A/C12A) Double Replacement—In the C2A/C12A analog the two cysteines are replaced by alanines, making it a linear peptide. This is an inactive peptide (Table I). The rationale for the design of the linear C2A/C12A analog was to test the significance of the disulfide bridge in restricting the conformational space of compstatin and in the formation of the type I \(\beta\)-turn.

Fig. 2A shows the H(\(i\)) side chain-H(\(i+4\)) region of the TOCSY spectrum of the C2A/C12A analog, where all residues with the exception of Ile1 have been identified. (Note that this analog is not acetylated which makes the amide of the first residue unobservable because of fast exchange with the solvent.) Chemical shift overlaps in both the H(\(i\)) and H(\(i+4\)) of Val(7)/Val(1), and to a lesser extent Arg(11)/Ala(12) are present. Also, chemical shift overlaps in the H(\(i\)) of Trp(1)/His(3), and to a lesser extent Asp(7)/Trp(7)/His(9) are present. Finally, chemical shift overlaps in the H(\(i\)) of Ala(2)/His(10) are present. These overlaps are characteristic of the flexibility of this analog.

Fig. 2B shows the H(\(i\))/H(\(i+1\))/H(\(i+2\)) region of the NOESY spectrum of the C2A/C12A analog. Sequential connectivities corresponding to intra-residue H(\(i\))-H(\(i+1\)) and short range inter-residue H(\(i\))-H(\(i+2\)) are shown, but only the intra-residue NOEs are labeled for simplicity. Unfortunately, because of the overlap of the H(\(i\))s of Asp(7)/Trp(7), we cannot distinguish the presence of a weak H(\(i\))-H(\(i+2\)) NOE cross-peak for the Asp(7) H(\(i\))-Gly(8) H(\(i+1\)) NOE from the strong Trp(7) H(\(i\))-Gly(8) H(\(i+1\)) cross-peak (Fig. 2B, arrow), which would be consistent with \(\beta\)-turn of the parent peptide, compstatin. This led us to look closer at the H(\(i\)) side chain region of the spectrum where indeed a very weak H(\(i\))-H(\(i+2\)) NOE is present corresponding to the Asp(7) H(\(i\))-Trp(7) H(\(i+1\)) NOE (Fig. 2, B and C). This cross-peak is consistent with the presence of a turn population in the segment Gln(5)-Asp(7)-Trp(7)-Gly(8) as in parent pep-
Further examination of $\text{H}^{\text{N}}(\delta_i)-\text{H}^{\text{N}}(\delta_j)$ region of the NOESY spectrum (Fig. 2D) reveals a medium Trp7 H^{N}-Gly8 H^{N} cross-peak. An Asp6 H$^{\text{N}}$-Trp7 H$^{\text{N}}$ cross-peak is also present but somehow obscured by the diagonal (Fig. 2D). These two cross-peaks are consistent with the presence of a type I β-turn in the segment Gln5-Asp6-Trp7-Gly8, as in parent peptide compstatin. Closer examination of the spectra in Fig. 2, B and D, reveals the presence of Gln5 H$^{\text{N}}$-Trp7 H$^{\text{N}}$ and Gln5 H$^{\text{N}}$-Asp6 H$^{\text{N}}$ cross-peaks, which in combination with the Asp6 H$^{\text{N}}$-Trp7 H$^{\text{N}}$ cross-peak are characteristic of the presence of a type I β-turn in the segment Val4-Gln5-Asp6-Trp7. Alternatively, we can say that two fused type I β-turns are present in the segment Val4-Gln5-Asp6-Trp7-Gly8. A weak H$^{\text{i}}$(i)-H$^{\text{N}}$(i + 3) cross-peak, Gln5 H$^{\text{N}}$-Gly8 H$^{\text{N}}$ (Fig. 2B), in combination with the H$^{\text{i}}$(i)-H$^{\text{N}}$(i + 2) and H$^{\text{i}}$(i)-H$^{\text{N}}$(i + 1) cross-peaks mentioned above for the fused β-turns, is suggestive of the presence of a population forming a turn of a 3π-helix (20) in the segment Gln5-Asp6-Trp7-Gly8.

Based on the observed NOEs for the C2A/C12A analog and the β-turn forming analogs (see below), we conclude that the linear sequence of compstatin has a propensity to form a 3π-helix, which upon formation of the disulfide bond is reduced to a β-turn. Interestingly, a type III β-turn is classified as a turn of a 3π-helix (19, 27). A type III β-turn has characteristic dihedral angles for residues 2 and 3 of the turn $(\phi_2, \psi_2) = (-60^\circ, 0^\circ)$ and $(\phi_3, \psi_3) = (-60^\circ, -30^\circ)$ compared with a type I β-turn which has dihedral angles $(\phi_2, \psi_2) = (-60^\circ, -30^\circ)$ and $(\phi_3, \psi_3) = (-90^\circ, 0^\circ)$. However, because there is a statistical variation associated with dihedral angles of $\pm 30^\circ$ (which is also the error of calculated dihedral angles from NMR data), the type III β-turn is often classified under the type I β-turn category. In this report we do not distinguish a type III from a type I β-turn. The structure of the C2A/C12A analog is not sufficient for C3 binding and activity (Table I), which makes the disulfide bridge necessary for activity. Based on the structure of compstatin (Fig. 1), we propose that the disulfide bridge brings together the termini of compstatin thus contributing to the formation of the hydrophobic patch, which in turn is necessary for recognition and binding to C3.

The Single Replacement His9 → Ala (Ac-H9A) Analog.— In the Ac-H9A analog the His9, right outside the C-terminal residue of the β-turn, is replaced by Ala. This is an analog slightly more active than its parent peptide, Ac-compstatin (Table I). The rationale for the design of the Ac-H9A analog was to introduce additional conformational freedom at one end of the type I β-turn by removing the bulky histidine and replacing it with the smaller alanine. This accomplishes a test for the turn stability without losing activity, given that a non-acetylated ring-only form of this analog (with missing residues Ile3 and Thr13 outside the peptide ring) was active, although less active than its parent peptide ring-only compstatin (Table I of Ref. 14).

Fig. 3A shows the $\text{H}^{\text{N}}(\delta_i)-\text{H}^{\text{N}}(\delta_j)$ region of the DQF-COSY spectrum of the Ac-H9A analog, where all residues have been identified. Chemical shift overlaps in the H^{N} are observed for Cys3/Cys12 and Gln3/Ala8. Chemical shift overlaps in the H$^{\text{N}}$ are observed for Ala3/Arg13 and Gln3/Thr13.

Fig. 3B shows the $\text{H}^{\text{N}}(\delta_i)-\text{H}^{\text{N}}(\delta_j)$ region of the NOESY spectrum of the Ac-H9A analog. Sequential connectivities corresponding to intra-residue $\text{H}^{\text{N}}(\text{i})-\text{H}^{\text{N}}(\text{i})$-H$^{\text{N}}$ NOE, which would be characteristic of the presence of a β-turn in the same region as in the parent peptide compstatin. **C.** the $\text{H}^{\text{N}}(\delta_i)-\text{H}^{\text{N}}(\delta_j)$ region of the NOESY spectrum. Asp6 H$^{\text{N}}$-Trp7 H$^{\text{N}}$ and Trp7 H$^{\text{N}}$-Gly8 H$^{\text{N}}$ NOE's are observed, which are characteristic of the presence of a type I β-turn in the same region as in the parent peptide compstatin.
H^N(i + 1) NOE cross-peaks are marked in the figure. In addition, a weak H^N(i)-H^N(i + 2) cross-peak corresponding to Asp^6 H^N-Gly^8 H^N is observed (circled in Fig. 3B), which is consistent with the presence of a β-turn. Fig. 3C shows the H^N(δ_i)-H^N(δ_j) region of the NOESY spectrum of the Ac-H9A analog where observed H^N(δ_i)-H^N(δ_j) cross-peaks are labeled. Medium intensity cross-peaks corresponding to Asp^6 H^N-Trp^7 H^N and Trp^7 H^N-Gly^8 H^N NOEs are observed which are consistent with the presence of a type I β-turn in the segment Gln^5-Asp^6-Trp^7-Gly^8, as in compstatin. In compstatin, a very weak H^N(i)-H^N(i + 2) NOE of Asp^6 H^N-Gly^8 H^N was also observed (14), which is absent in the Ac-H9A analog (data not shown). This suggests a slightly increased flexibility or alternatively slightly reduced population of the type I β-turn in Ac-H9A analog compared with compstatin.

The above NOE data are consistent with the presence of a weak (with small but observable population) type I β-turn in the segment Gln^5-Asp^6-Trp^7-Gly^8 of Ac-H9A analog, as was the case of parent peptide compstatin. In compstatin, the presence of Gly^8 at position 4 of the type I β-turn was deemed necessary to reduce side chain steric hindrance for turn reversal. By replacing the next residue His^9 by Ala, we introduced additional flexibility outside one end of the β-turn by increasing the available conformational space. This additional flexibility did not alter the type I β-turn structure, although it slightly reduced its population. It is worth noting that the population of the type β-turn in compstatin was estimated at 42–63% (14), which suggests flexibility in the parent peptide as well. This analog possesses slightly higher inhibitory activity than compstatin (Table I), which suggests flexibility outside the β-turn contributes to activity.

The Triple Replacement Val^3→Ala/His^9→Ala/Thr^13→Ile (Ac-V4A/H9A/T13I Analog)—In the Ac-V4A/H9A/T13I analog not only His^9 but also Val^3, right outside both ends of the β-turn, are replaced by alanines, with the rationale of introducing even more conformational freedom outside the turn, than in the Ac-H9A analog. In addition, Thr^13 is replaced with the more hydrophobic isoleucine to enhance the hydrophobic clustering at the termini. This analog is equally active as compstatin (Table I).

Fig. 4A shows the H^N(δ_i)-H^N(δ_j) region of the DQF-COSY spectrum of the Ac-V4A/H9A/T13I analog, where all residues except Ile^4 have been identified (Ile^4 has been identified in the TOCSY spectrum, see the Supplemental Material). Chemical shift overlap in the H^d spectrum is observed for Ala^4/Gly^8, Gln^5/Ile^13, and Ala^9/Arg^11. Despite the overlaps in individual dimensions, the resulting cross-peaks are distinct (Fig. 4A).

Fig. 4B shows the H^N(δ_i)-H^N(δ_j) region of the NOESY spectrum of the Ac-V4A/H9A/T13I analog. All sequential connectivities corresponding to intra-residue H^N(i)-H^N(i) and short range H^N(i)-H^N(i + 1) NOE cross-peaks are observed and marked in the figure. However, a weak H^N(i)-H^N(i + 2) cross-peak for the Asp^6 H^N-Gly^8 H^N NOE is not observed (position indicated by an arrow in Fig. 4B). Fig. 4C shows the H^N(δ_i)-H^N(δ_j) region of the NOESY spectrum of the Ac-V4A/H9A/T13I analog, where observed H^N(i)-H^N(i + 1) NOEs are labeled. Medium/weak intensity cross-peaks corresponding to Asp^6 H^N-Trp^7 H^N and Trp^7 H^N-Gly^8 H^N NOEs are observed, which are consistent with the presence of a type I β-turn in the segment Gln^5-Asp^6-Trp^7-Gly^8, as in compstatin. It should be noted that the absence of the Asp^6 H^N-Gly^8 H^N NOE suggests a reduced turn population in the Ac-V4A/H9A/T13I analog compared with the Ac-H9A analog.

The above NOE data are consistent with the presence of a small population of type I β-turn in the segment of the Ac-V4A/H9A/T13I analog, which is smaller than the turn population in the same segment of the Ac-H9A analog. Despite the increase of conformational freedom and weakening of the type I β-turn, this peptide is an analog equally active to compstatin (Table I).

The fact that both Ac-H9A and Ac-V4A/H9A/T13I but not the linear C2A/C12A analog are active suggests that flexibility between the β-turn and disulfide bridge structures is necessary for binding activity.

The Single Replacement Val^3→Ala (Ac-V3A) Analog—In the Ac-V3A analog Val^3 is replaced by Ala. The rationale for this replacement was to weaken the hydrophobic clustering at the termini. This replacement resulted in an inactive analog (Table I).

Fig. 5A shows the H^N(δ_i)-H^N(δ_j) region of the DQF-COSY spectrum of the Ac-V3A analog, where all residues have been identified. Chemical shift overlaps in both H^N and H^d are observed for Asp^6/His^9. Chemical shift overlaps in the H^N are observed for Cys^2/Cys^12 and to a lesser extent for Ala^7/Arg^11. Chemical shift overlaps in the H^d are observed for Asp^6/Trp^7/His^a and Gln^5/Arg^11. Interestingly, the Ac-V3A replacement had an impact in the chemical shift of Asp^6, which is shifted upfield (Fig. 5A) compared with the other analogs (Figs. 2A, 3A, and 4A).

Fig. 5B shows the H^N(δ_i)-H^N(δ_j) region of the NOESY spectrum of the Ac-V3A analog. All sequential connectivities corresponding to intra-residue H^N(i)-H^N(i) and short range H^N(i)-H^N(i + 1) NOE cross-peaks are observed and marked in the figure. In addition, a medium H^N(i)-H^N(i + 2) cross-peak is observed corresponding to NOE Asp^6 H^N-Gly^8 H^N, which is characteristic of the presence of a β-turn in the segment Gln^5-Asp^6-Trp^7-Gly^8. Fig. 5C shows the H^N(δ_i)-H^N(δ_j) region of the NOESY spectrum of the Ac-V3A analog, where observed H^N(i)-H^N(i + 1) NOEs are labeled. Two strong cross-peaks corresponding to NOEs between Gln^5 H^N-Asp^6 H^N and Trp^7 H^N-Gly^8 H^N are observed, but because of the overlap of the amide protons of Asp^6 and Trp^7 we cannot determine or exclude the presence of the Asp^6 H^N-Trp^7 H^N cross-peak. Because of the intensities of the observed NOEs, we deduce that the observed structure is consistent with the presence of a strong type I β-turn in the segment Gln^5-Asp^6-Trp^7-Gly^8, as in parent peptide compstatin.

Based on the NOE data of the Ac-V3A analog, the Val^3→Ala replacement has resulted in a stronger (of higher population) type I β-turn. It appears that the remote, in relation with the β-turn of compstatin, residue Val^3 somehow influences the β-turn stability in the parent peptide. Because the activity of the Ac-V3A analog is lost (Table I), we can say that Val^3 influences the binding of the parent peptide compstatin to C3, possibly either through the hydrophobic clustering of the termini or through some type of stabilization of the β-turn. The simultaneous presence of both effects cannot be excluded.

The Single Replacement Trp^7→Phe (Ac-W7F) Analog—In the Ac-W7F analog Trp^7 is replaced by Phe. The rationale for this replacement was to enhance the hydrophobicity of the β-turn and participation of residue 7 in the hydrophobic clustering, if any (Fig. 1A). This replacement resulted in an inactive analog (Table I).

Fig. 6A shows the H^N(δ_i)-H^N(δ_j) region of the DQF-COSY spectrum of the Ac-W7F analog, where all residues have been identified. Chemical shift overlaps in the H^N are observed for Cys^2/Cys^12 and Gln^5/Thr^13. Chemical shift overlaps in the H^d are observed for Phe^7/His^a, Gln^5/Arg^11, and His^a/Thr^13. Despite the overlaps in individual dimensions, the resulting cross-peaks are distinct (Fig. 6A).

Fig. 6, B and C, shows the H^N(δ_i)-H^N(δ_j) and H^N(δ_i)-H^N(δ_j)
regions, respectively, of the NOESY spectrum of the Ac-W7F analog. All sequential connectivities corresponding to intra-residue H^\(\alpha(i)-H^N(i)\) and short range H^\(\alpha(i)-H^N(i+1)\) NOE cross-
peaks are observed and marked in Fig. 6B. In addition, a medium/weak intensity $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ cross-peak is observed corresponding to NOEs of Asp6 H-NGly3 HN, which is characteristic of the presence of β-turn in the segment Gln5-Asp6-Trp7-Gly8. The segment Gln5-Asp6-Trp7-Gly8 can be further assigned as a type I β-turn because of the presence of the medium intensity $H^{i}(\delta_{i})-H^{i+1}(\delta_{i+1})$ cross-peaks of Asp6 H-NPhe7 HN and Phe7 H-NGly8 HN NOEs (Fig. 6C).

Based on the NOE data it appears that Trp7 specifically is not unique for the formation of the type I β-turn, as the turn is present in the Ac-W7F analog as well. The need for participation of an aromatic residue at position 7 in the formation of the type I β-turn cannot be excluded. It is also possible that an aromatic residue at position 7 simultaneously influences the structure of the amino-terminal half of compstatin, which is part of the hydrophobic cluster. Because of loss of inhibitory activity in the Ac-W7F analog, it is possible that Trp7 participates in binding with C3. This could be possible through a hydrogen bond involving the indole amide of Trp7 as a donor.

The Triple Replacement Gln5 → Gly/Asp6 → Ala/Trp7 → Ala (Ac-Q5G/D6A/W7A) Analog—In the Ac-Q5G/D6A/W7A analog Gln5 is replaced by Gly and Asp6 and Trp7 are replaced by Ala. The rationale for this replacement was to introduce steric simplification and flexibility within the β-turn of the parent peptide, compstatin. This replacement resulted in an inactive analog (Table I).

Fig. 7A shows the $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ region of the DQF-COSY spectrum of the Ac-Q5G/D6A/W7A analog, where all residues have been identified. Chemical shift overlaps in the H^N are observed for Cys2/Gly3, Val3/Arg11, and His10/Cys12 and in the H^α for Ala6/Ala7 and His7/His9. Despite the H^α overlap the resulting cross-peaks are distinct (Fig. 7A).

Fig. 7B and C shows the $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ and $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ regions, respectively, of the NOESY spectrum of the Ac-Q5G/ D6A/W7A analog. All sequential connectivities corresponding to intra-residue $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ and short range $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ NOE cross-peaks are observed and marked in Fig. 7B. A $H^i(\delta_i)-H^{i+1}(\delta_{i+1})$ cross-peak corresponding to Ala6 H-NGly8 HN NOE that if present would be consistent with the type I β-turn of the parent peptide, compstatin, cannot be assigned with certainty, as it would overlap with the strong intensity Ala7 H-NGly8 HN cross-peak (marked with arrow in Fig. 7B). To have a type I β-turn in the same segment as the parent peptide compstatin, Ala7 H-NGly8 HN and Ala7 H-NGly8 HN NOEs should be present in Fig. 7C. From these cross-peaks only the Ala7 H-NAla7 HN NOE is present, thus excluding structural similarity with the parent peptide compstatin.

The presence of sequential Gln5 H-NAla6 HN and Ala6 H-NAla7 HN NOEs could be consistent with a type I β-turn in the segment Val4/Gly5/Ala6/Ala7, but because of missing of the accompanying Gly5 H-NAla7 HN NOE in Fig. 7B, we conclude that the Ac-Q5G/D6A/W7A analog is unstructured.

Based on the NOE data, the introduction of flexibility within the type I β-turn of compstatin resulted in both loss of the structural stability and loss of inhibitory activity. This suggests that either the type I β-turn or specific residues in the turn segment or both are necessary for C3 binding and inhibitory activity.

The Triple Replacement Gln5 → Gly/Asp6 → Pro/Trp7 → Phe (Ac-Q5G/D6P/W7F) Analog—In the Ac-Q5G/D6P/W7F spectrum. Cross-peaks corresponding to Gly5 H-NAla6 HN and Ala6 H-NAla7 HN NOEs are observed. These NOEs are consistent with the presence of type I β-turn in the region Val1/Gly2/Ala3/Ala4, which would be shifted by one residue when compared with the type I β-turn of the parent peptide compstatin. However, in the absence of the $H^{i}(\delta_{i})-H^{i+1}(\delta_{i+1})$ NOE between Gly5 H-NAla3 HN (B) we cannot assign with certainty a β-turn.
NMR Studies of Compstatin Analogs

Fig. 8. NMR spectra of the Ac-Q5G/D6P/W7F compstatin analog. A, the backbone $H^2(\delta_i)-H^5(\delta_i)$ region of the two-dimensional NOESY spectrum. Intra-residue $H^2(\delta_i)-H^5(\delta_i)$ and sequential $H^2(\delta_i)-H^5(\delta_i+1)$ NOEs are connected with straight lines. Additional cross-peaks characteristic of structure involving Gly5 H-Phe^7 H5 (circled), Gly5 H-His^9 H9 (circled), and Pro6 H-Phe^7 H6 are observed. B, portion of A containing Gly8 plotted at lower contour level, which reveals the weak Gly8 H-Gly^9 H8 and the extremely weak Pro6 H-Gly^9 H8 NOEs (each circled). C, the backbone $H^2(\delta_i)-H^5(\delta_i)$ region of the two-dimensional NOESY spectrum showing $H^2(\delta_i)-H^5(\delta_i+1)$ cross-peaks.

TABLE II

Peptidea	Sequencea	IC$_{50}$ (mM)b
Ac-V3L	Ac-I-$CVQGWOGH$ RC-T-NH_2	10
Ac-Q5N	Ac-I-$CVQGWOGH$ RC-T-NH_2	4.2
Ac-V3LQ5N	Ac-I-$CVQGWOGH$ RC-T-NH_2	8.3
R11K	I-$CVQGWOGH$ RC-T-NH_2	20.2
Ac-R11S	Ac-I-$CVQGWOGH$ SC-T-NH_2	25
Ac-QSN/R11A	Ac-I-$CVQGWOGH$ SC-T-NH_2	60
Ac-H9A/R11A	Ac-I-$CVQGWOGH$ SC-T-NH_2	9.9
Ac-H9A/R11Dr	Ac-I-$CVQGWOGH$ SC-T-NH_2	>1000
Ac-T13H	Ac-I-$CVQGWOGH$ SC-T-NH_2	3.2

a Underlined residues/groups are points of amino acid replacement or acetylation compared to parent peptide compstatin (Table I).

b Ac stands for acetylated N terminus.

Based on the NOE data the radical triple replacement in the Ac-Q5G/D6P/W7F analog produced a structured segment Gly5-Phe^7-Gly^9, in which a small turn populations in the segment Gly5-Phe^7-Gly^9, and Gly5 H^5-His^9 H9, respectively. These NOEs could be characteristic of a turn of an α-helix in the segment Gly5-Phe^7-Gly^9, but the assignment cannot be completed using H5-H^8 NOEs because of lack of amide proton in proline. Thus, we conclude that these NOEs are consistent with the presence of undetermined structure in the segment Gly5-Phe^7-Gly^9.

Activity Studies of Compstatin Analogs with Conservative Replacements—We have constructed a number of conservative replacement compstatin analogs and have tested their activity (Table II), without performing the NMR analysis, as it was deemed unnecessary. Some of these analogs are active, but only one of them has shown slightly higher activity than Ac-compstatin (Table II). When comparing the Ac-V3L, Ac-Q5N, and R11K compstatin analogs to compstatin, it appears that Val is a preferred amino acid at position 11, although the double replacement analog Ac-V3LQ5N also resulted in a 2-fold lower activity than Ac-compstatin (Table II). To address the issue of proteolytic cleavage at Arg11 during biotransformation of compstatin (13), we have prepared the Ac-R11S, Ac-Q5N/R11A, Ac-H9A/R11A compstatin analogs, none of which was more active than compstatin (Table II). It appears that Arg is a preferred amino acid at position 11, although the double replacement analog Ac-

analog Gly6 is replaced by Gly; Asp6 is replaced by Pro; and Trp7 is replaced by Phe. The rationale for this replacement was to enforce the β-turn and test relation to activity. We hypothesized that this could be achieved by the following: (a) introduction of steric hindrance imposed on the backbone from the side chain of the first residue of the type I β-turn by replacing Gly6 with Gly; (b) introduction of a proline that provides a backbone bend frequently observed in type II β-turns in proteins (28); and (c) replacement of Trp7 by Phe to retain, to a certain extent, bulkiness at position 3 of the turn of parent peptide, while maintaining hydrophobicity.

Fig. 8, A and C, shows the $H^2(\delta_i)-H^5(\delta_i)$ and $H^2(\delta_i)-H^5(\delta_i)$ regions, respectively, of the NOESY spectrum of the Ac-Q5G-/D6P/W7F analog. Fig. 8B is a portion of Fig. 8A including NOEs involving the H^2 of Gly8, plotted at lower contour level. All sequential connectivities corresponding to intra-residue $H^2(\delta_i)-H^5(\delta_i)$ and short range $H^2(\delta_i)-H^5(\delta_i+1)$ NOE cross-peaks are observed and marked in Fig. 8A, except for the lack of amide in Pro6 which introduces a break. An extremely weak $H^2(\delta_i)-H^5(\delta_i+2)$ cross-peak between Pro6 H-Gly^9 H9 is present in Fig. 8B, which is consistent with the presence of a very weak turn segment in Gly5-Phe^7-Gly^9, as was the case in the corresponding segment of compstatin. In addition, we observe a medium intensity $H^2(\delta_i)-H^5(\delta_i+2)$ cross-peak and weak intensity $H^2(\delta_i)-H^5(\delta_i+3)$ and $H^2(\delta_i)-H^5(\delta_i+4)$ cross-peaks corresponding to NOEs of Gly5 H-Phe^7 H5, Gly5 H-Gly^9 H9, and Gly5 H-His^9 H9, respectively. These NOEs could be characteristic of a turn of an α-helix in the segment Gly5-Phe^7-Gly^9-His^9, but the assignment cannot be completed using H5-H^8 NOEs because of lack of amide proton in proline. Thus, we conclude that these NOEs are consistent with the presence of undetermined structure in the segment Gly5-Phe^7-Gly^9-His^9.

TABLE II Compstatin analogs with conservative replacements

- Underlined residues/groups are points of amino acid replacement or acetylation compared to parent peptide compstatin (Table I).
- Ac stands for acetylated N terminus.
- Asterisks on the left and right of Cys2 and Cys12, respectively, denote disulfide-linked cysteines.
- Complement activities were determined by measuring alternative pathway-mediated erythrocyte lysis.
H9A/R11A showed only about 2-fold reduced activity than compstatin because of compensation from the H9A substitution. Also, replacement of Arg11 with dArg resulted to total loss of inhibitory activity.

To test further our hypothesis of hydrophobic clustering at the termini, we prepared the Ac-T13I analog, where Thr was replaced with the more hydrophobic Ile to enhance hydrophobicity. This analog showed slightly higher activity than compstatin (Table II), consistent with our hypothesis.

DISCUSSION

We have designed seven analogs of compstatin in which we have introduced a series of perturbations in key structural elements of their parent peptide, compstatin. The design was based on the previously determined three-dimensional structure of compstatin (14). The structure of compstatin consists of a disulfide bridge on one side and a type I \(\beta \)-turn on the opposite side. The disulfide bridge is part of a hydrophobic cluster, and the type I \(\beta \)-turn is part of a polar surface. The structural perturbations were made to test the effect of specific residue replacements in the structural stability of compstatin and their contributions in binding to C3 and complement inhibitory activity. We know that the disulfide bridge is essential for activity, and we have hypothesized that both the type I \(\beta \)-turn and the hydrophobic clustering at the termini are necessary for activity (1, 13, 14). Our first goal was to correlate structure with activity for each analog and for compstatin. Our second goal was to design analogs that are equally active to or more active than compstatin. Specifically, our structural perturbations were made for the following reasons: 1) to test the significance of the disulfide bridge in the formation of structure in compstatin; 2) to locally alter the structure of compstatin, outside and inside the \(\beta \)-turn, to test the structural stability of the \(\beta \)-turn; and 3) to locally alter the hydrophobic clustering to test its contribution in the formation of the \(\beta \)-turn. The structural analysis of the compstatin analogs was made using NMR data. We used correlation spectroscopy for proton assignments and NOE spectroscopy to elucidate NOE connectivity patterns that are consistent with structure. The known three-dimensional structure of compstatin (14) was used as a base-line structural template for our analysis. Fig. 9 summarizes the backbone NOE connectivity patterns observed for the seven compstatin analogs studied by NMR. The higher intensities of the \(H^i-N^j \) compared with \(H^i-H^{j+1} \) NOEs suggest NOE averaging because of the presence of extended conformations, in addition to the observable populations of the proposed structures. This is expected because of flexibility and conformational interconversion that is present in small peptides in solution.

The C2A/C12A linear analog showed a structure consistent with the presence of a turn of a 3_10-helix. A 3_10-helix contains a type III \(\beta \)-turn, which is typically considered as a special case of a type I \(\beta \)-turn, because it differs only by 30° in \(\phi_n \) and \(\psi_n \), two of four backbone dihedral angles (\(\phi_2, \psi_2, \phi_3, \psi_3 \)) used to characterize \(\beta \)-turns. This suggests that the sequence of compstatin has inherent propensity to form structures consistent with a turn (helical or reverse). The C2A/C12A analog is inactive which indicates that its structure is not sufficient for inhibitory activity. It appears that the disulfide bridge of compstatin is necessary to bring together the two termini and in effect contribute in the formation of the hydrophobic clustering of residues Ile1-Cys2-Val3-Val4-Cys12-Thr13.

Acetylation of compstatin effectively neutralizes the amino terminus, which in charged form (non-acetylated) disrupts the hydrophobic clustering of the termini (the carboxyl terminus is also blocked and neutral). The Ac-compstatin has shown 3-fold increase in inhibitory activity compared with compstatin (12, 13). This enforces our hypothesis that the hydrophobic clustering of the termini is essential for binding to C3. The remaining six analogs studied here were acetylated.

The fourth residue of the \(\beta \)-turn of compstatin, Gly8, is a favored residue at position 4 in type I \(\beta \)-turns in proteins because the lack of side chain of Gly provides conformation freedom for the formation of the turn. In the Ac-H9A analog we introduced more conformational freedom immediately outside the type I \(\beta \)-turn, following Gly8, by replacing the bulky His9 with the simpler Ala. The structure of this analog is consistent with the presence of a type I \(\beta \)-turn in the same segment as compstatin but of a slightly reduced population (or in other words a type I \(\beta \)-turn with slightly higher flexibility). The population of compstatin itself also suggests flexibility (14). With a similar rational we prepared the Ac-V4A/H9A/T13I analog where we introduced conformational freedom immediately outside both ends of the type I \(\beta \)-turn of compstatin, by simultaneously replacing branched Val8 and bulky His9 with alanines. In addition, we replaced Thr13 with the more hydrophobic Ile to enhance the hydrophobic clustering at the termini. The structure of this analog is also consistent with the presence of a type I \(\beta \)-turn in the same segment as compstatin but of even more reduced population than the Ac-H9A analog. Given that the Ac-H9A analog is slightly more active than Ac-compstatin, the Ac-V4A/H9A/T13I analog is as active as Ac-compstatin, and all three of them incorporate in their structures a

![Fig. 9. Summary of backbone NOE connectivities for the seven compstatin analogs.](image)
NMR Studies of Compstatin Analogs

flexible type I β-turn, we propose that the type I β-turn is necessary for activity. Also, because the type I β-turn is flexible in all three peptides, Ac-compstatin, Ac-H9A, and Ac-V4A/H9A/T13I, it is not unlikely that flexibility is important for activity.

The third residue of compstatin, Val3, is essential for inhibitory activity of compstatin (14). We have hypothesized that this is because of participation of Val3 in the hydrophobic clustering of the termini, which in turn is important for binding to C3. In the Ac-V3A analog we introduced weakening in the hydrophobic clustering by replacing Val3 with Ala. The structure of this analog is consistent with the presence of a strong type I β-turn in the same region as in compstatin. This suggests that the presence of Val3 does not directly influence the formation of the β-turn structure, although it may influence its flexibility. The loss of inhibitory activity for the Ac-V3A analog may be attributed to the disruption of the hydrophobic clustering of the termini, which may be essential for binding to C3.

The role of Trp7 in the formation of the type I β-turn has been intriguing to us. It has not been clear what is the significance of the hydrophobic side chain of Trp7, which caps the β-turn and bends toward the clustering of Val3 and Val4 in compstatin. In the Ac-W7F analog we introduced another aromatic residue, Phe, which is more hydrophobic than Trp. The structure of this analog is consistent with the presence of a type I β-turn in the same region as in compstatin, but the analog is inactive. These results do not exclude the possibility of participation of the hydrophobic side chain in position 7 of compstatin or Ac-W7F (position 3 of the β-turn) in the formation of the turn; however, these results implicate Trp7 but not Phe7 in recognition and binding to C3. This is probably accomplished through the indole amide of Trp, which can act as an intermolecular hydrogen bond donor to a C3 residue.

We have proposed above, based on our results for the Ac-H9A and Ac-V4A/H9A/T13I analogs, that the type I β-turn is a necessary condition for binding to C3. Based on our results for the Ac-V3A and Ac-W7F analogs, we propose that the type I β-turn is not a sufficient condition for binding of compstatin to C3. Additional interactions of side chains may contribute to recognition and binding of compstatin to C3, and we have identified so far Trp7 and the hydrophobic surface presented by the side chain clustering of Ile5-Cys6-Val7-Cys8-Thr9. We have excluded Val3, which is also part of the hydrophobic clustering in compstatin, because even in the absence of Val4 the Ac-V4A/H9A/T13I analog is equally active as compstatin.

In the remaining two analogs we introduced radical triple replacements inside the β-turn for turn residues 1–3, while leaving Gly at the fourth position. The analog Ac-Q5G/D6A/W7A with oversimplified turn region consisting only glycines and alanines showed no structure. The analog Ac-Q5G/D6P/W7F, in which Pro7 introduced a bend thought to be necessary for turn formation, was found to have undetermined structure in the region Gly2-Pro6-Phe7-Gly8-His9. Our results on the triple substitution analogs within the type I β-turn of compstatin together with our earlier inhibitory activity results (13, 14) suggest specificity of the residues Gln5-Asp6-Trp7-Gly8 for turn formation and activity.

Finally, a number of conservative replacement analogs were tested for activity without performing parallel structural studies (Table II). From these analogs the Ac-T13I showed slightly better inhibitory activity than Ac-compstatin. From the remaining analogs we conclude that there is no preference for Gln or Asn at position 5; Val is preferred in position 3 than Leu; and Arg is preferred in position 11 than Lys. Interestingly, the Ac-H9A/R11A was found to be only about 2-fold less active than Ac-compstatin, in contrast to Ac-Q5N/R11A which was found to be about 13-fold less active than Ac-compstatin. This means that some combinations of replacements can have compensatory effects in gaining or losing activity.

Overall, we conclude that the type I β-turn serves to introduce reversibility and to separate sufficiently the two sides of compstatin. At the same time the disulfide bridge at the opposite end serves to prevent the two sides from drifting apart, facilitating the formation of the hydrophobic cluster. Also, residues in the turn and in the hydrophobic patch are essential for recognition and binding to C3 and activity.

We have shown previously that compstatin binds to C3 and inhibits cleavage of C3 to C3a and C3b (the proteolytically activated form of C3) by the C3 convertase C3b,Bb (8). We have also shown that inhibition of C3 cleavage does not occur in part because of inhibition of the formation of C3b,Bb or inhibition of the formation of properdin-stabilized C3b,Bb (C3b,Bb,P; see Ref. 8). In addition, we have demonstrated that compstatin binds to C3b and C3c with 22- and 74-fold, respectively, reduced relative affinities compared with binding to native C3 (13). Binding of compstatin to C3 is biphasic following the model A + B ↔ AB ↔ AB*, where AB* refers to some reorganization of the binding site upon binding, although binding of compstatin to C3b and C3c is monophasic following the model A + B ↔ AB (13). Based on the kinetic data we propose that the conformational change that occurs when compstatin binds to C3 involves a segment of C3a that participates in the formation of the active site to better accommodate compstatin. Fig. 10 describes a model for binding of compstatin at the interface or proximity of C3b with C3a. Based on the structural data on compstatin presented here, we propose that the recognition and binding of compstatin to C3 occurs through interactions involving the following: 1) the hydrophobic cluster of compstatin (residues Ile5-Cys6-Val7-Cys8-Thr9) and a partially hydrophobic pocket on C3, and 2) a knob-and-hole shape complementarity that facilitates fit of the type I β-turn of compstatin within the active pocket, with the possible aid of an intermolecular hydrogen bond between Trp7 and a residue with a suitable acceptor on C3. Our proposed conformational change for C3a, which is responsible for the high affinity biphasic binding of compstatin to native C3, may aid binding by enhancing the hydrophobic character or the shape complementarity of the active pocket, or by facilitating the formation of a hydrogen bond with Trp7 of compstatin, or by affecting all three.
Acknowledgments—We thank Lynne Spruce for peptide synthesis and Jacco van Beek for providing us with matNMR for spectral processing and for incorporating special features for our analysis.

REFERENCES

1. Sahu, A., Morikis, D. & Lambris, J. D. (2000) in Therapeutic Interventions in the Complement System (Lambris, J. D. & Holers, V. M., eds) pp. 75–112, Humana Press Inc., Totowa, NJ
2. Sahu, A. & Lambris, J. D. (2001) Immunol. Rev. 180, 35–48
3. Lambris, J. D., Reid, K. B. & Volanakis, J. E. (1999) Immunol. Today 20, 207–211
4. Walport, M. J. (2001) N. Engl. J. Med. 344, 1140–1144
5. Walport, M. J. (2001) N. Engl. J. Med. 344, 1058–1066
6. Lambris, J. D. & Holers, V. M. (eds) (2000) in Therapeutic Interventions in the Complement System, Humana Press Inc., Totowa, NJ
7. Sahu, A. & Lambris, J. D. (2000) Immunopharmacology 49, 133–148
8. Sahu, A., Kay, B. K. & Lambris, J. D. (1996) J. Immunol. 157, 884–891
9. Soulika, A. M., Khan, M. M., Hattori, T., Bowen, F. W., Richardson, B. A., Hack, C. E., Sahu, A., Edmunds, L. H., Jr. & Lambris, J. D. (2000) Clin. Immunol. 96, 212–221
10. Nilsson, B., Larsson, R., Hong, J., Elgue, G., Ekhdal, K. N., Sahu, A. & Lambris, J. D. (1998) Blood 92, 1661–1667
11. Fiane, A. E., Moline, T. E., Videm, V., Hovig, T., Hogasen, K., Mellbye, O. J., Spruce, L., Moore, W. T., Sahu, A. & Lambris, J. D. (1999) Xenotransplantation 6, 52–65
12. Furlong, S. T., Dutta, A. S., Coath, M. M., Gormley, J. J., Hubbs, S. J., Lloyd, D., Mauger, R. C., Strimpler, A. M., Sylvester, M. A., Scott, C. W. & Edwards, P. D. (2000) Immunopharmacology 48, 199–212
13. Sahu, A., Soulika, A. M., Morikis, D., Spruce, L., Moore, W. T. & Lambris, J. D. (2000) J. Immunol. 165, 2491–2499
14. Morikis, D., Asua-Munt, N., Sahu, A. & Lambris, J. D. (1998) Protein Sci. 7, 619–627
15. Klepeis, J. L., Floudas, C. A., Morikis, D. & Lambris, J. D. (1999) J. Comp. Chem. 20, 1354–1370
16. Schreiber, S. L. (1991) Science 251, 283–287
17. Dyson, H. J., Lerner, R. A. & Wright, P. E. (1988) Annu. Rev. Biophys. Biophys. Chem. 17, 305–324
18. Dyson, H. J., Ranze, M., Houghten, R. A., Lerner, R. A. & Wright, P. E. (1988) J. Mol. Biol. 201, 161–200
19. Rose, G. D., Gierasch, L. M. & Smith, J. A. (1985) Adv. Protein Chem. 37, 101–109
20. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley Interscience, New York
21. Dyson, H. J. & Wright, P. E. (1991) Annu. Rev. Biophys. Biophys. Chem. 20, 519–538
22. Merutta, G., Morikis, D., Bruschweiler, R. & Wright, P. E. (1993) Biochemistry 32, 13089–13097
23. Dyson, H. J. & Wright, P. E. (1995) PASEB J. 9, 37–42
24. Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1990) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, Oxford
25. Piotti, M., Saudek, V. & Sklenar, V. (1992) J. Biomol. NMR 2, 661–665
26. Marion, D., Ikura, M. & Bax, A. (1989) J. Magn. Reson. 84, 425–430
27. Richardson, J. S. (1981) Adv. Protein Chem. 34, 167–339
28. Wilmot, C. M. & Thornton, J. M. (1988) J. Mol. Biol. 203, 221–232
29. Koradi, R., Billeter, M. & Wuthrich, K. (1998) J. Mol. Graphics 14, 51–55