Calculation of Water Environmental Capacity in the Lower Reaches of the Lancang River Basin

Jian TANG, Wen Liang Zhai, Hui Qun CAO*
Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China
Email: tang0815@yeah.net

Abstract: The deterioration of water quality in the lower reaches of the Lancang River basin has attracted worldwide attention. Reasonable estimation of water environmental capacity (WEC) can effectively implement the prevention and control of water pollution in the lower reaches of Lancang River basin. However, research on WEC was scarce in the Lancang River basin. In this study, a two-dimensional water quality model was established to calculate the WEC in the Jinghong-Guanlei segment located at the downstream of the Lancang River basin. The WEC of CODCr in the Jinghong-Guanlei segment with different design flow rates (90%, 75% and 50% hydrological guarantee flow rate) are 2.83, 3.05 and 3.32 million tons/year, respectively. Design flow rate plays an important role in the calculating the WEC in the lower reaches of the Lancang River basin. Influence of cascade dams operation on flow rate is minor. Therefore, cascade dams operation will not have a greater impact on the WEC of CODCr in the lower reaches of the Lancang River basin. The current water quality in the segment is fairly good. However, under the couple effects of climate change and cascade dams operations, there is an increasing trend of CODCr concentrations in the lower reaches of the Lancang River basin. Therefore, water quality monitoring and water pollution controlling should be strengthened in the long run. Research results will provide scientific basis for decision-making and implementation of regional water pollution control measures.

1. Introduction
Water environmental capacity (WEC) has the same concept as total maximum daily load (TMDL). It refers to the maximum number of pollutants discharged into a water environment element under the specified environment objectives, and denotes that the allowable discharge of pollutions should not wreck the functions of environmental element [1, 2]. With the development of society and economy, water pollution problems are becoming one of the most important restricting factors for the world sustainable development. Therefore, the simulation and research of regional WEC are vital to the water quality simulation, water pollution prevention plan and control, and have become one of the hot and frontier research areas in water management science [3-6].

The Lancang-Mekong River is an important international river in Southeast Asia. As the upstream of the international river, water environmental issues in the Lancang River basin have attracted worldwide attention [7, 8]. Because of the operation of cascade reservoirs in the Lancang River basin, research mainly focuses on flow regime, soil erosion and fish resources [9-11]. However, research on water environment capacity was scarce in the Lancang River basin. Under the influencing of human activities and climate change, the deterioration of water quality in the lower reaches of the Lancang River basin has become increasingly serious [12]. If the estimation and allocation of WEC are unreasonable, the prevention and control of water pollution may not be able to effectively carry out in...
the Lancang River basin. The consequent water environmental issues will not only hinder the regional economic and social sustainable development, but also affect the related interests of countries along the international river. Therefore, it is urgent to calculate the WEC in the lower reaches of the Lancang River basin. Research results will provide scientific basis for decision-making and implementation of regional water pollution control measures.

Jinghong-Guanlei segment locates at the downstream of the Lancang River basin. This study takes the segment as the research object, constructs a two-dimensional water quality model to calculate the WEC in the segment, and then analyses the effects of flow rates and cascade dams operation on the WEC.

2. Study Area
The Lancang River, located at the upstream of the Lancang-Mekong River, which is an important international river in Asia that runs through 6 countries: China, Burma, Laos, Thailand, Cambodia, and Vietnam. The Lancang River runs south until it leaves China, then changes name from the Lancang River to the Mekong River. This region is rich in water resources and hydropower. Against the background of rapid economic and population growth, the “two dam and eight cascades” program has been planned in the mainstream of the Lancang River in Yunnan Province to meet the increasing demand for hydropower.

The water quality in the segment is fairly good; however, there is an increasing trend of COD$_c$ and NH$_4^+$–N concentrations (Zhang et al., 2005). Considering the data availability, this study focuses on WEC of COD$_c$ in the Jinghong-Guanlei segment (Figure 1).

3. Data and Methods
3.1 Water Environmental Capacity Calculation Model
According to the hydrological conditions and the water purification mechanism, calculation of WEC need to select an appropriate model to simulate the dilution, diffusion, migration of pollutants in water, and then estimate the maximum number of pollutants discharged into a water environment element under the specified environment objectives. WEC calculation models have zero-dimensional, one-dimensional and two-dimensional models. These models have corresponding application range. The average annual flow of Jinghong-Guanlei segment is larger than 150 m3/s. The segment belongs to

Figure 1 Sketch map of the study area
large river reach. A two-dimensional water quality models was therefore developed to calculate the WEC in the Jinghong-Guanlei segment. The model is described by the following equation:

\[M = [(C_s - C_0 + \frac{m}{h\sqrt{\pi E_x v}}) \exp(-K \sqrt{\frac{x}{v}})]Q \]

(1)

Where, \(M \) (g/sec) is the water environmental capacity of the segment for a certain pollutant. \(C_s \) (mg/L) is the according concentration of the pollutant at the end of the segment based on the specified environment objectives. \(C_0 \) (mg/L) is the water quality at the beginning of segment. \(m \) (g/sec) is the pollution load of the segment. \(h \) (m) is the average water depth of the segment. \(E_x \) (m²/sec) is the transverse diffusion coefficient. \(x \) (m) is the length of the segment. \(v \) (m/sec) is the average flow velocity of the segment. \(K \) (sec⁻¹) is the comprehensive degradation coefficient of the pollutant. \(Q \) (m³/s) is the design flow rate.

3.2 Pollution Load Calculation

According to the data of Yunnan Statistical Yearbook-2015, the pollution load of COD\(_{Cr}\) in the Jinghong-Guanlei segment was calculated.

1) Industrial pollution load of COD\(_{Cr}\), which is calculated by the following equation: Industrial pollution load of COD\(_{Cr}\) = the gross value of industrial output × COD\(_{Cr}\) emission per output value.

 The gross value of industrial output in Yunnan Province is 392.5 billion Yuan (Chinese currency). COD\(_{Cr}\) emission per output value is 4.17 kg. Industrial pollution load of COD\(_{Cr}\) in Yunnan Province is therefore 5.19 kg/sec. Yunnan province has a drainage basin area of 390,000 km\(^2\). The Jinghong-Guanlei segment is 12900 km\(^2\). Based on the proportion of the segment area to Yunnan province area, Industrial pollution load of COD\(_{Cr}\) in the segment is 171.7 g/sec.

2) Agricultural pollution load of COD\(_{Cr}\), which is calculated by the following equation: Agricultural pollution load of COD\(_{Cr}\) = Agricultural land area × water consumption per unit of area × COD\(_{Cr}\) in agricultural water withdrawals.

 Agricultural land area in Yunnan province is 43.1 million mu. Water consumption per unit of area is 398 m\(^3\). COD\(_{Cr}\) in agricultural water withdrawals is 46.52 mg/L. Agricultural pollution load of COD\(_{Cr}\) in Yunnan Province is therefore 25.3 kg/sec. Based on the proportion of the segment area to Yunnan province area, Agricultural pollution load of COD\(_{Cr}\) in the segment is 836.3 g/sec.

3) Pollution load of COD\(_{Cr}\) from domestic sewage is about 2.9 million tons in Yunnan province. Based on the proportion of the segment area to Yunnan province area, Pollution load of COD\(_{Cr}\) from domestic sewage in the segment is 300.9 g/sec.

 To sum up, the pollution load of COD\(_{Cr}\) in the Jinghong-Guanlei segment is 1308.9 g/sec.

3.3 Model Parameters Setting

The depth and flow velocity of the segment under design flow are calculated by uniform-flow equation. According to water function zoning, \(C_s \) in the segment is set to 20 mg/L. Based on mean value of COD\(_{Cr}\) for the Yongjinghong station during the past 10 years, \(C_0 \) is set to 2.2 mg/L. Based on National Water Environment Capacity Verification Manual, transverse diffusion coefficient (K) and comprehensive degradation coefficient (\(E_x \)) are calculated by the following equations:

\[K = 10.3Q^{-0.40} \]

(2)

\[E_x = (0.1 \sim 0.2)H \sqrt{gJ} \]

(3)

Where, \(g \) is the gravity. \(J \) is the hydraulic slope.

4. Results and Discussion

4.1 Influence of Design Flow Rate on the WEC of COD\(_{Cr}\) in the Lower Reaches of the Lancang River Basin

Based on the long-term hydrological data during 1967-2013, 90%, 75% and 50% hydrological
guarantee flow rate are calculated and set to be the design flow rate. The WEC of COD$_{Cr}$ is calculated with different design flow rates and the results are shown in Table 1. The WEC of COD$_{Cr}$ in the Jinghong-Guanlei segment with different design flow rates (90%, 75% and 50% hydrological guarantee flow rate) are 2.83, 3.05 and 3.32 million tons/year, respectively. Comparing to the WEC of COD$_{Cr}$ calculated with 90% hydrological guarantee flow rate, the WEC of COD$_{Cr}$ with 75% and 50% hydrological guarantee flow rates are larger.

Length (km)	Environment Objectives	WEC (ton/year)		
		90% hydrological guarantee flow rate	75% hydrological guarantee flow rate	50% hydrological guarantee flow rate
86	III	283130	305142	332642

Design flow rate plays an important role in the calculating WEC in the lower reaches of the Lancang River basin. The amount, dilution and self-purification of the pollutants in the water will be different with different flow rates, which will result in the differences in WEC of the water. Based on the monthly average flow in the segment during 1967~2013, the relationship between flow and WEC of COD$_{Cr}$ in the segment was established (Figure 2). As can be seen from Fig. 2, the WEC of COD$_{Cr}$ in the Jinghong-Guanlei segment is positively related to the flow rate. 1m3/sec increase in flow rate can result in a 630 tons increase in the WEC of COD$_{Cr}$ in the segment.

![Figure 2 Regression Relation between Flow Rates and the WEC of COD$_{Cr}$ in Jinghong-Guanlei Segment](image)

4.2 Influence of Cascade Dams Operation on the WEC of COD$_{Cr}$ in the Lower Reaches of the Lancang River Basin

Dam construction and operation are the dominant human activities resulting in flow rates changes in the Lancang River basin. The Manwan dam, which began operation in 1993, is the first dam on the Lancang River. In this study, therefore, 1993 is adopted as the segment point of the flow series. During the period 1967~1992, there were no impacts of dam on natural flow. This period was used as the reference period. From 1994 to 2013, dam construction and operation exert influences on flow. This period was regarded as the changed period.

Under the effects of cascade dams operation, flow changes have taken place in the segment. Table 2 shows the flow changes in Jinghong hydrologic station in the Lancang River basin. Compared to the flow rate during reference period, 90%, 75% and 50% hydrological guarantee flow rate during changed period have a decrease of 1.5%, 4.1% and 7.2%, respectively.
Table 2 Flow Changes in Jinghong Hydrologic Station in the Lower Reaches of the Lancang River Basin

Period	Design Flow Rate (m³/sec)	Change (%)				
	50% hydrological guarantee	75% hydrological guarantee	90% hydrological guarantee	50% hydrological guarantee	75% hydrological guarantee	90% hydrological guarantee
Reference Period	528.40	490.10	461.79	1.5	4.1	7.2
(1967~1993)						
Changed Period	520.52	470.10	428.67			
(1994~2013)						

During the reference and changed periods, the WEC of CODₐ in the segment is calculated with different design flow rates and the results are shown in Table 3. Compared to the WEC of CODₐ during reference period, the WEC of CODₐ with 90%, 75% and 50% hydrological guarantee flow rate during changed period have a decrease of 1.2%, 4.2% and 7.1%, respectively. Because of the relationship between flow and WEC of CODₐ in the segment, Influence of cascade dams operation on flow is minor (Table 3). Therefore, cascade dams operation will not have a greater impact on the WEC of CODₐ in the lower reaches of the Lancang River basin.

Table 3 Influence of Cascade Dams Operation on the WEC of CODₐ in the Jinghong-Guanlei Segment

Period	WEC (ton/year)	Change (%)				
	50% hydrological guarantee	75% hydrological guarantee	90% hydrological guarantee	50% hydrological guarantee	75% hydrological guarantee	90% hydrological guarantee
Reference Period	333272	309116	291260	1.2	4.4	7.1
(1967~1993)						
Changed Period	329273	295515	270581			
(1994~2013)						

5. Conclusion
The WEC of CODₐ in the Jinghong-Guanlei segment with different design flow rates (90%, 75% and 50% hydrological guarantee flow rate) are 2.83, 3.05 and 3.32 million tons/year, respectively. Design flow rate plays an important role in the calculating the WEC in the lower reaches of the Lancang River basin. 1 m³/sec increase in flow rate can result in a 630 tons increase in the WEC of CODₐ in the segment. Influence of cascade dams operation on flow rate is minor. Therefore, cascade dams operation will not have a greater impact on the WEC of CODₐ in the lower reaches of the Lancang River basin. The current water quality in the segment is fairly good. However, under the couple effects of climate change and cascade dams operations, there is an increasing trend of CODₐ concentrations in the lower reaches of the Lancang River basin. Therefore, water quality monitoring and water pollution controlling should be strengthened in the long run.

Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (No. 51609008), the Special Funds Targeting at Industrial Scientific Researches for Public Welfare of Ministry of Water Resources (MWR) (No. 201501002), and the Natural Science Foundation of Hubei Province (No. 2016CFA092).

References
[1] Zhang Y L. The development basic concept of water environment capacity[J]. Research of Environment Sciences, 1992, 5(3): 59-61. (in Chinese)
[2] USEPA (United States Environmental Protection Agency). Total Maximum Daily Loads (TMDLs) A Watershed Planning Tool for Counties. 2008. http://www.epa.gov/owow/tmdl.
[3] Chen Q W, Wang Q B, Li Z J, et al. Uncertainty analyses on the calculation of water environmental capacity by an innovative holistic method and its application to the Dongjiang River[J]. Journal of Environmental Sciences, 2014, 26(9): 1783-1790.

[4] Han H Y, Li K Q, Wang X L, et al. Environmental capacity of nitrogen and phosphorus pollutions in Jiaozhou Bay, China: Modeling and assessing[J]. Marine Pollution Bulletin, 2011, 63(5): 262-266.

[5] Zhou X Y, Lei K, Meng W, et al. Space-time approach to water environment carrying capacity calculation[J]. Journal of Cleaner Production, 2017, 149: 302-312.

[6] Ranjbar M H, Hadjizadeh Z N. Estimation of environmental capacity of phosphorus in Gorgan Bay, Iran, via a 3D ecological-hydrodynamic model[J]. Environmental Monitoring and Assessment, 2016, 188(11): 649-649.

[7] Wei G L, Yang Z F, Cui B S, et al. Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China[J]. Water Resources Management, 2009, 23(9): 1763-1780.

[8] Zhao Q H, Liu S L, Deng L, et al. Spatio-temporal variation of heavy metals in fresh water after dam construction: a case study of the Manwan Reservoir, Lancang River[J]. Environmental Monitoring and Assessment, 2012, 184(7): 4253-4266.

[9] Tang J, Yin X A, Yang P, et al. Assessment of contributions of climatic variation and human activities to streamflow changes in the Lancang River, China[J]. Water resources Management, 2014, 28(10): 2953-2966.

[10] Yi Y J, Tang C H, Yang Z F, et al. Influence of Manwan Reservoir on fish habitat in the middle reach of the Lancang River[J]. Ecological Engineering, 2014, 69: 106-117.

[11] Kummu M, Varis O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River[J]. Geomorphology, 2007, 85(3): 275-293.

[12] Zhang Y X, Liu J G, Wang L G. Changes in water quality in the downstream of Lancangjiang River after the construction of Manwan hydropower station[J]. Resources and Environment in the Yangtze Basin, 2005, 14(4): 501-506. (in Chinese)