The students’ mathematical communication skill on caring community-based learning cycle 5E

K Aini¹,², Hobri¹,², A C Prihandoko¹,³, D Yuniar¹,², A K A Faozi¹,², and Asmoni⁴
¹LS iMeL University of Jember
²Mathematics Education Departement, University of Jember, Indonesia
³Information Technology Departement, University of Jember, Indonesia
⁴Education Management, STKIP PGRI of Sumenep, Indonesia

Email: kurratul.aini.25@gmail.com

Abstract. This research aimed to develop the instruments of Mathematics instructional by using caring community-based learning cycle 5E on “Matrix Operations” Learning Material for the eleventh grade students of senior high school as well as to know its effect on the student’s mathematical communication skill. The research method used in this study can be considered as a combination of qualitative and quantitative methods. Qualitative methods are used to obtain data related to the results of the development of learning tools and quantitative methods are used for statistical analysis. The research subjects were the students of SMAN 1 Tegaldlimo, Banyuwangi Regency, from which three classes were chosen as the research samples, class XI MIPA 4 as the control class and class XI MIPA 5 as the first experimental class and class XI MIPA 2 as the second experimental class. Mathematical communication skill was measured by using the essay test. In the normality test, the data obtained were normally distributed and the data were homogeneous based on the homogeneity test, so that it was necessary to do parametric data analysis by using One-Way ANOVA analysis. The results of the research showed that: (1) the instructional instrument resulted was valid, the implementation of the instructional instrument was practical and effective; (2) the significance value (2-tailed) was 0.000 (p < 0.05), which indicated that the application of learning by using caring community-based learning cycle 5E had a significant effect on the student’s mathematical communication skill.

1. Introduction
Life in the 4.0 era required people to master skills in facing and preparing their selves to face the challenges in the future [1]. Mathematics as a subject learned in each level of education has an important role to develop the world’s knowledge, technology and education. Understanding mathematics is very important for students, because this lesson is obtained by students ranging from basic to more complex material introduced at every level of education starting from the elementary level to the tertiary level. In this case, the ability to communicate is needed in the learning process, especially written communication in the mathematics learning process as a means of students to express their mathematical ideas or thoughts in writing as one of the students' intellectual activities in the learning process at school or in college. This written communication aimed to measure how many students who were able to absorb the material explained by teacher by requesting students to write what they were thinking or understanding in their answer sheets [2]. Therefore, the model and method of learning must be in accordance with the objectives of learning process.
Cognitive, affective, and psychomotor skills are the three domains that must be improved by supporting the selection of models and appropriate learning methods in the learning process [3]. This is also in line with the aim of the implementation of 2013 curriculum in Indonesia today. One of the learning models needed in the 4.0 era now is the learning cycle Learning model that can provide opportunities for students to learn optimally and develop their thinking so that it is expected to improve the communication skills needed in daily life [4]. Learning Cycle Model is one of the learning models that involves students actively in the learning process where in the learning center the student center takes precedence over the teacher center. Learning Cycle Model that is applied in the learning process consists of several types, one of them is Learning Cycle 5E. There are 5 phases in the 5E learning cycle which includes engagement, exploration, explanation, elaboration, and evaluation [4,5]. In addition, critical and creative thinking, active communication, and creating meaningful learning through group learning are also needed in this era to stimulate students to be actively involved in the learning process [6]. Through a group learning, the students are expected to interact one another and enhance the sense of caring among students. Therefore, Caring Community as one of characteristics of Lesson Study for Learning Community needed in the learning process [7,8].

One of mathematics materials of the Senior High School students class XI related to the implementation of learning cycle and mathematical communication is “Matrix” material. At the beginning of this study, the results of interviews as follows: (1) the students were less confident in communicating their ideas and still doubt in expressing their answers when asked by the teacher; (2) students find it difficult and confused in solving problems presented in the form of story problems, they get difficulties in creating the mathematical model from the story; (3) the students were not able to communicate ideas or opinions well, the opinions delivered by the students were less structural so it was difficult to understand by the teacher or their friends. These problems indicated the low mathematical communication skill of the students in the school. Based on the explanation, shows the need for the development of teaching instruments with caring community learning 5E learning cycle models in hopes of overcoming students' low mathematical communication skills so that students can express ideas or ideas in the learning process. This is also in accordance with the indicators of the students’ mathematical communication skill according to NCTM [9] opinion which can be seen on the following table.

Indicators of NCTM Mathematical Communication	Sub-Indicators of Mathematical Communication
The skill to express mathematical ideas orally, in written as well as describe visually.	The students write an idea with mathematical term and symbol
The skill to interpret and evaluate mathematical ideas both oral and written.	The students write the strategy up to the conclusion in order from the problem completion based on their mathematical thinking logically and clearly.
The ability to use mathematical terms, symbols, and structures to model mathematical situations or problems.	The students convert the sentences into mathematical forms.
	The students are able to connect the problems in daily life into mathematical application.

2. Research Methodology

The method used in this study aims to test the results of a particular product or to test the effectiveness of a particular process. Therefore, mix research method which is a combination of two methods namely qualitative methods and quantitative methods [10] can be used in this study. The qualitative method is used to test the effectiveness of the process, while the quantitative method is used to inform the effectiveness of the results of the study using quasi-experimental (quasi-experimental) with pretest-posttest control group design.
This combination research process, begins with qualitative research that is used to develop learning tools. The development in this study uses the Thiagarajan model known as 4-D (define, design, develop, disseminate) [11, 12]. The research aimed at developing the learning model for learning cycle 5E model which was based on caring community on matrix subject. The learning tools developed in this research were Lesson Plan, Student Worksheets, and Learning Achievement Test, while the research instruments involved the observation sheets of students’ activities, the observation sheet of teacher activity, and the questionnaire of students’ responses. Research tools and instruments can be used in the learning process if they meet valid criteria. However, if it does not meet the valid criteria, then they must be revised again based on suggestions and input provided by the validator until they meet the valid criteria.

In quantitative research, SPSS software version 19 is used to analyze the results of the implementation of the initial ability test and the final ability test previously conducted prerequisite tests in the form of normality tests using Kolmogorov-Smirnov and homogeneity tests using the Levene Statistical Test with a significance level of 0.05 P <0.05. Furthermore, the One Way Anova Test will be conducted if the data are normally distributed and the Non Parametric Test uses the MannWhitney Test if the data is not normally distributed.

The population of this research was the students of grade XI at SMA Negeri 1 Tegaldlimo in Banyuwangi, East Java, Indonesia. The samples were chosen through cluster random sampling technique. The class determined as experimental group 1 was XI MIPA 5, the class targeted as experimental group 2 was XI MIPA 2 and the class selected as a control group was XI MIPA 4. The experimental group 1 used the learning cycle 5E, the experimental group 2 used the caring community-based learning cycle 5E whilst the control group used conventional learning model.

The design used in this research was the pretest-posttest control group design. The description of the design in this research can be seen on Table 2.

Class	Pretest	Treatment Stages	Posttest
Experimental 1	A₁	Learning cycle 5E	A₂
Experimental 2	B₁	Caring community-based Learning cycle 5E	B₂
Control	C₁	Conventional	C₂

3. Results
This research was conducted on odd semester students at SMA Negeri 1 Tegaldlimo Banyuwangi in the academic year 2019/2020. This study uses 3 classes, each XI MIPA 4 as a control class, XI MIPA 5 as an experimental class 1, and XI MIPA 2 as an experimental class 2. The framework figure of the variables in this research is as follows.

![Figure 1. The framework of research variables.](image-url)
This research was done through 3 stages involving "Plan", "do", and "see". Development of learning tools that affect students' mathematical communication is the main objective of this study. The development of learning tools that meet the valid, practical, and effective criteria, [11] and affect students' mathematical communication skills is the main objective of this study. The following is a description of the three criteria.

The Validation of Research Instruments

At the beginning of the study (plan), the researcher first prepares and designs a learning device which includes instrument instructional and research instruments which include student observation sheets, teacher observation sheets and student questionnaire responses in accordance with the research objectives, namely developing mathematical learning devices learning cycle models learning 5E (learning cycle 5E) based on caring community that is expected to affect the mathematical communication skills of students. Furthermore, there needs to be 3 validators consisting of 2 expert lecturers and 1 mathematics subject teacher to obtain some input, suggestions and improvements to the learning tools and research instruments that will be used. Validation is done by providing the text of the learning device (instructional instrument) and research instruments that must be validated by the validator. Data from the validation results were analyzed by calculating the average acquisition score of each component which can be seen in Figure 2 and Figure 3.

![Figure 2. The validation result of learning tools.](image1)

![Figure 3. The validation results of research instruments.](image2)

Figure 2 and Figure 3 show that the results of the validation of learning tools and research instruments that have been validated by 3 validators meet valid criteria. Learning tools meet valid criteria with an average of 3.8, and research instruments meet valid criteria with an average of 3.8. The
data was obtained by researchers from the validation results in the form of quantitative data which was then converted to qualitative data.

The Practicality of Learning Tools

The next stage was the "Do". At this stage, the practicality of learning tools was seen from the results of the instrument research. In its implementation, this research was conducted in class XI MIPA 4 as a control class, class XI MIPA 5 as an experimental class 1 and class XI MIPA 2 as an experimental class 2. The learning was process consists of 6 meetings, the first meeting and the sixth meeting each used for the implementation of the pretest and posttest. Submission of Matrix material is carried out at the 2nd meeting, the 3rd meeting, the 4th meeting, and the 5th meeting. This pretest as a prerequisite test conducts a normality test and a homogeneity test which aims to choose the class to be used as a research sample. The summary of normality test results can be seen in the following table.

Table 3. Normality test (kolmogorov-smirnov).

CLASS	Kolmogorov-Smirnov*	Shapiro-Wilk			
MATHEMATICAL COMMUNICATION CONTROL	.131	.200	.957	28	.303
EXPERIMENT 1	.131	.200	.969	28	.560
EXPERIMENT 2	.162	.059	.935	28	.082

Based on Table 3, can be seen that the significant value for the control class is 0.303, experiment 1 is 0.560 and for class 2 experiments is 0.82. This shows that the significant value is more than 0.05, which means the post-test results from three classes of normal distribution. While the homogeneity test can be seen in the following table.

Table 4. Homogeneity test using levene statistics.

Levene Statistic	df1	df2	Sig.
.070	2	81	.932

From table 5 can be seen that Sig. on Levene Statistics test for variance equation was 0.932> 0.05, so the learning outcomes of students' mathematics communication class 2 was sig = 0.59, while the significance value in the control class was sig = 0.200. After the normality test is done and the distribution is normal, the homogeneity test is then performed using the Levene test, which showed homogeneity. It means that the average difference between the two classes is not significant.

In the control class, the learning process still uses conventional models, where learning activities are centered on the teacher. Students tend to be just listeners to explain from the teacher, so students cannot be active in the learning process freely. Students get bored more quickly, especially on subjects that students find difficult like math. In the experimental class 1, the learning process used 5E learning cycle model, while in experimental class 2, using learning cycle 5E based on Caring Community which is done when delivering the material. Learning activities carried out through the formation of small groups of students independently consisting of 4 students. Learning was done through several stages, namely; (a) engagement, (b) exploration, (c) explanation, (d) elaboration, (e) evaluation. In caring community-based learning, students collaborate in the learning process with friends in groups so that children's social interaction abilities can develop which are then followed by the development of children's academic abilities [13,14] in accordance with the vision of caring community, namely in student learning not may be left alone or "no student is ignored". Students in the experimental class are guided to be in groups, ask each other questions and explain to their friends so that caring among friends arises. Meanwhile, in the control class, the presentation of the material was only oriented towards the teacher as the teacher center.
The activities of students in the experimental class, both experiment 1 and experiment class 2 which have been divided into groups, are presented respectively in Figure 4 and Figure 5 below (taken from one group as a sample).

Figure 4. Discussion activities of experimental class 1.

Figure 5. Discussion activities of experimental class 2.

In Figure 4, can be seen that group discussion in experimental class 1 went quite well. There are 4 people in the group namely student A, student B, student C, and student D. In the picture, it appears that student B is very active compared to other students. This is because student B understands the material better than the others in the group. Student B gives an explanation to all group members. This shows the concern of student B towards his other friends. However, there are only two students who dare to ask questions, namely student A and student C. While student D still does not understand the material so it is not active in the discussion. Thus, friends in groups who already understand the material try to explain it back to student D so student D can also understand the material. This shows no students who feel neglected / alienated because each group member has a feeling of caring for one another [15]. In the next meeting (Figure 4. Meeting 2), the students seemed to be able to collaborate well, each student also seems to have a sense of caring for other friends. This can be seen from the way students exchanged sitting positions in groups at this meeting. Student D who was not very active in the previous meeting sat side by side with student B who was more active and understood the material better. Thus, student D begins to understand the material and begins to dare to ask his friends, even student D also begins to develop the courage to help his friends who have difficulty understanding the material. At this meeting all students seemed to be actively collaborating in solving problems encountered, caring for each other by helping their friends, and sharing with each other in study groups [13,16].

From Figure 5, can be seen that group discussion in experiment class 2 went quite well. There are 4 people in the group namely student A, student B, student C, and student D. In the picture, it appears that student A is very active compared to other students because they understand the material better than the others. Student A gives an explanation to all group members to help their friends understand the material. Student B and student C show concern by helping to explain to student D. At the next meeting (Figure 5. Meeting 2), students seem to be able to collaborate well, can conduct discussions well, each student also seems to have a sense of concern for other friends. This can be seen from the way students exchanged sitting positions in groups at this meeting. Student D who was not very active
in the previous meeting sat side by side with student A who was more active and understood the material better. So student A is more free to explain to student D. At this meeting, all students seemed to actively collaborate in solving problems, caring for one another, and sharing with each other in study groups [13,16].

The group discussions occurred in the control class was presented on the following figure.

\[\text{Figure 6. Group discussion in the control class.}\]

Unlike the experimental class, the control class students were not involved in the discussion at all. In the picture seen in 1 group there are 4 students namely students K, students L, students M, and students N. Students K is more active than other students. In the first meeting and second meeting K still only gives answers or explanations to other friends. Whereas those involved in the question and answer session were only L students and M students. In general, group discussion activities were only intended to answer questions from problems that were given without car-ing to group members who still did not understand the material presented.

In general, at the "see" stage, the observation sheet of student activities showed that in the experimental class 1, 64% were included in the active category and 36% were very active. In the experimental class 2 it was also seen that most of the students were active in the learning process, this was indicated by the results of the percentage of active students as much as 57% and as many as 43% of students were included in the category of very active students. In contrast, different conditions were shown in the control class where only 29% were active and 71% were less active. Therefore, it can be concluded that most students are active when attending Mathematics using the caring community 5E learning cycle. The results of this study are in line with research conducted by Atikurrahman, et al [17]. This similarity is related to increasing student activity after participating in learning activities with PBL based on caring community.

In addition to observing student activities, observations of teacher activity were also carried out by 3 observers in experimental class 1 and in experimental class 2. In experimental class 1 and experiment 2 each teacher activity was carried out and 92%, meaning the dexterity of learning devices showed excellent categories. Furthermore, researchers also provide student response questionnaires that must be filled out by students after the learning process. Following are the results of the student response questionnaire shown in Figure 7.

\[\text{Figure 7. Results of student response questionnaire.}\]

The results of the analysis of student responses that have been presented in Figure 7. show that in 7% of students disagree, 11% of students disagree, 25% quite agree, and 57% of students agree.
Further the reason for students is because learning is done with a lot of practice, is fun, and encourages them to find new ideas. The worksheets presented are adjusted to the student's character, equipped with pictures, so that students do not feel bored in working on problem solving and encourage students to be more active in doing practice questions. This worksheet received a positive response from students as well because the language used was easily understood by students. The difficulty of students in LKS is that when working on questions in the form of stories, students have difficulty making mathematical models of these problems because they are not accustomed to working on questions in the form of stories. Therefore, in the worksheet, the researcher provides more story questions so that students can get used to working on it and hopefully students do not feel difficulties with these questions.

Based on the results of the research instrument, it can be concluded that the learning cycle model of learning cycle 5E based on caring community developed by researchers is practically used in the learning process.

The Effectiveness of Learning Tools

Assessment of the effectiveness of learning tools is measured based on students' cognitive learning outcomes as indicated by the results of the post-test are shown on the following table 5:

Table 5. The students’ mathematical communication skills post-test results.

(I) CLASS	(J) CLASS	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval Lower Bound	Upper Bound
CONTROL	EXPERIMEN 1	-2,179	1,203	.172	-5.05	.69
EXPERIMEN 1	EXPERIMEN 2	-6,679	1,203	.000	-9.55	-3.81
EXPERIMEN CONTROL	EXPERIMEN 2	2,179	1,203	.172	-3.69	5.05
EXPERIMEN CONTROL	EXPERIMEN 2	-4,500	1,203	.001	-7.37	-1.63
EXPERIMEN 2	EXPERIMEN 1	6,679	1,203	.000	3.81	9.55
EXPERIMEN 1	EXPERIMEN 1	4,500	1,203	.001	1.63	7.37

Furthermore, to determine the effect of the caring community-based learning cycle 5E model developed by researchers on students' mathematical communication skills, a One Way Anova test was conducted. The One Way Anova Test results are shown on Table 6.

Table 6. Test results using one way anova.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	649,595	2	324,798	16,040	.000
Within Groups	1640,214	81	20,250		
Total	2289,810	83			

Based on the results of One Way Anova test on Table 5, it was known that the results of significance <0.05. It meant that the caring community-based learning cycle 5E model affected the students’ mathematical communication skills. The following is also displayed one of the results of student’s work.
From the students’ answers on Figure 8, it can be seen that these students had mathematical communication skills because they met 3 indicators (4 sub-indicators) [9]. In the picture above, it is known that students already have mathematical communication skills because students’ answers show indicators of mathematical communication skills. Following are the results of the interview between the teacher and students whose answers are shown above.

Researcher: How do you feel about learning activities using Caring Community-based 5E Learning Cycles?

Student: I think this activity is fun because students can more actively understand the material associated with everyday life and can also collaborate with friends.

Researcher: What makes you happy / unhappy when doing learning activities using the 5E Caring Community-based Learning Cycle?

Student: Very happy because the steps are clear and also help me in completing the material.

Researcher: What is your understanding of the material that has been explained?

Student: Initially did not understand but after being explained by the teacher and input from the group I finally understood and I could also explain to students who did not understand.

Researcher: How do you solve problems like on student worksheets?

Student: I follow the steps that are already on the student worksheet.

4. Discussion

Class sample data were analyzed using SPSS software version 19, which was previously subjected to prerequisite tests in the form of normality and homogeneity tests. The normality test uses the Kolmogorov-Smirnov test, while the homogeneity test uses the Levene statistical test with a significance level of 0.05 (P <0.05) [13]. Related to the effectiveness of learning tools, it can be said that learning tools are effective. This can be seen from: (1) the percentage of classical completeness of student learning outcomes (2) the results of student activities during the learning process are categorized active, (3) there is a significant increase in students' mathematical communication skills in the experimental class. Meanwhile, based on observations, it is known that the application of the learning process in every aspect shows that it runs well with an average score of 92%. Meanwhile, from the student response questionnaire, it was found that students gave a positive response to the learning tools in the implementation of learning Caring Community 5E Learning Cycle as much as...
57%. Based on the data above, it can be concluded that the practical test of learning tools developed meets the following criteria: (1) the level of implementation of the learning process is categorized as practical; (2) students have a positive response to the media as well as the implementation of the 5E Learning Cycle based on Caring Community. The results of the non-parametric analysis showed that there were significant differences in students' mathematical communication skills in the experimental and control classes. The results of this study indicate that there is a significant increase in the experimental class. The results of this study are in line with research conducted by Atikurrahman, et al [17]. This similarity is related to increasing student activity after participating in learning activities with PBL based on caring community.

5. Conclusion
The results showed that the learning model of the learning cycle 5E model based on caring community met the criteria of valid, practical and effective. The learning device is declared valid based on the results of data analysis that has been filled out by the validator. The practicality of learning tools is measured through research instruments that have been validated before. The analysis shows that practical learning tools are used in the learning process. The effectiveness of the learning device is measured based on students' cognitive learning outcomes in the form of a post-test and One Way Anova Test was performed which showed that the significance <0.05. That is, learning tools for the 5E learning cycle model based on caring community have an effect on students' mathematical communication skills.

Acknowledgement
The author would like to thank all the lecturers of the Faculty of Teacher Training and Education of Jember University, school principals and mathematics teachers at SMA Negeri 1 Tegaldlimo, Banyuwangi Regency who guided the researcher during the research and provided support for researchers to finish this journal.

References
[1] Rohman S, Susanto, Hobri, Saiful and Sahnawi 2019 An analysis of students’ literacy ability in mathematics teaching with realistic mathematics education based on lesson study for learning community Journal of Physics: Conference Series 1265 012004
[2] Pantaleon K V, Juniati D, Lukito A and K Mandur 2018 The written mathematical communication profile of prospective math teacher in mathematical proving Journal of Physics: Conference Series 947 012070
[3] Sugiarti A C, Suyatno S and I G M Sanjaya 2018 The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in thermochemistry Journal of Physics: Conference Series 1006 012039
[4] Supriyanto, Hobri, Susanto, Sahnawi and Yuan U 2019 The effectiveness of learning cycle with lesson study for learning community to build students creative thinking skills on algebraic form Journal of Physics: Conference Series 1265 012007
[5] Yeni N, Suryabayu E P and T Handayani 2017 The effect of teaching model ‘learning cycles 5E’ toward students’ achievement in learning mathemat in X years class SMA Negeri 1 Banuhampu 2013/2014 academic year Journal of Physics: Conference Series 812 012107
[6] Fauziah E W, Hobri, Yuliati N and D Indrawanti 2019 Student’s creative thinking skills in mathematical problem posing based on lesson study for learning community Journal of Physics: Conference Series 243 012142
[7] Harisudin L, Susanto, and Hobri 2019 The development of mathematics learning tools through the bridge games based on lesson study for learning community and its relationship with the higherorder thinking skills in probability theory Journal of Physics: Conference Series 1211 012075
[8] Andini S A, Susanto and Hobri 2017 Students’ activity in problem based learning (pbl) math
classroom be oriented lesson study for learning community (LSL) International Journal of Advanced Research (IJAR) 5(9) 1395-1400
[9] NCTM 2000 Principles and Standards for School Mathematics Reston (The National Council of Teacher of Mathematics, Inc) pp 60-345
[10] Sugiyono 2017 Metode penelitian kombinasi (mixed methods) (Bandung: Alfabeta)
[11] Hobri 2010 The methodology of research and development (Jember: Pena Salsabila)
[12] Hobri, Septiawati I and A C Prihandoko 2018 High-order thinking skill in contextual teaching and learning of mathematics based on lesson study for learning community International Journal of Engineering & Technology. 7(3) 1576-1580
[13] Hobri 2016 LSLC: Revier of short term on lesson study V in Japan Proceeding of Conference 12-21 28 May (Pamekasan: Madura University)
[14] Saito E and Atencio M 2014 LSLC: Conceptualising teachers’ practices within a -social justice perspective Discourse: Studies in the Cultural Politics of Education Las Visit on November
[15] Saito E, Watanabe M, Gillies R, Someya I, Nagashima T, Sato M and Murase M 2015 School reform for positive behaviour support through collaborative learning Utilising Lesson Study for a Learning Community, Cambridge Journal of Education 45(4) 489-518
[16] Mustadi A 2014 Fundamental school reform through lesson study for learning community (LSLC): a study of collaborative learning in Indonesia and Japan Proceeding International Conference on Fundamentals and Implementation -of Education (ICFIE) p 87-95
[17] Atikurrahman M, Hobri and N Yuliati 2019 The development of comparison material tool with problem based learning based on caring community and its effect on the student’s connection ability Journal of Physics: Conference Series 1211 012091