Cervical adjacent segment pathology following fusion: Is it due to fusion?

Philip Rosenthal, Kee D Kim

Abstract

Adjacent segment pathology affects 25% of patients within ten years of anterior cervical disectomy and fusion (ACDF). Laboratory studies demonstrate fused segments increase adjacent level stress including elevated intradiscal pressure and increased range of motion. Radiographic adjacent segment pathology (RASP) has been associated to ACDF in multiple statistically significant studies. Randomized controlled trials (RCTs) comparing anterior cervical disectomy and arthroplasty (ACDA) and ACDF have confirmed ACDF accelerates RASP. The question of greatest clinical interest is whether ACDA, artificial disc surgery, results in fewer adjacent level surgeries than ACDF. Current RCT follow up results reveal only non statistically significant trends favoring the anterior cervical disectomy and arthroplasty (ACDA). Higher rates of radiographic adjacent level pathology, after anterior cervical disectomy and fusion (ACDF) is already documented. We predict that as the RCT average age mid forty-year-old patients continue to their almost forty year expected longevity, adjacent level surgery rates after ACDF will also increase in comparison to the ACDA patients.

Rosenthal P, Kim KD. Cervical adjacent segment pathology following fusion: Is it due to fusion? World J Orthop 2013; 4(3): 112-113 Available from: URL: http://www.wjgnet.com/2218-5836/full/v4/i3/112.htm DOI: http://dx.doi.org/10.5312/wjo.v4.i3.112

Key words: Cervical; Diskectomy; Fusion; Arthroplasty; Adjacent; Degeneration

Core tip: Cervical artificial disc surgery has brought the expectation of a lower rate of adjacent segment pathology. Randomized controlled trials (RCTs), currently have only two to four years follow ups and the results regarding adjacent segment surgery indicate only non statistically significant trends favoring the anterior cervical disectomy and arthroplasty (ACDA). Higher rates of radiographic adjacent level pathology, after anterior cervical disectomy and fusion (ACDF) is already documented. We predict that as the RCT average age mid forty-year-old patients continue to their almost forty year expected longevity, adjacent level surgery rates after ACDF will also increase in comparison to the ACDA patients.

ADJACENT SEGMENT PATHOLOGY

The advent of anterior cervical disectomy and arthroplasty (ACDA) has brought the expectation of reduced adjacent level disease that may lead to additional surgery. Randomized control trials (RCT), conducted in the United States for a variety of cervical artificial discs have a control arm consisting of anterior cervical disectomy and fusion (ACDF). Thus, these studies may give definitive answers to the much discussed and debated question; Does fusion surgery lead to adjacent segment pathology?
Adjacent segment pathology (ASP) is a serious problem after ACDF. Hilibrand et al. reported that 25% of patients experienced symptomatic clinical ASP (CASP) within ten years of ACDF. Fused cervical segments have been documented to increase adjacent level stress in multiple ways including increased pressure and increased range of motion.

Radiographic adjacent segment pathology (RASP), has been linked to ACDF in multiple statistically significant studies. Baba et al. reported 25% new spinal stenosis adjacent to ACDF. Gorce et al. reported 25% new and 25% progression of degenerative disc changes at adjacent segments within five years of ACDF. Goffin et al. reported that 92% of patients developed RASP within five years of ACDF. They concluded that RASP was correlated also to CASP as an independent effect above the natural history of cervical degenerative disc disease. Not all randomized RCTs looked at RASP but those that have, confirmed that ACDF accelerates RASP. Coric et al. found much less RASP after the artificial disc compared to fusion. At two year follow-up, 24.8% of ACDF patients compared to 9% of ACDA had RASP with very high statistical significance, \(P = 0.0001 \). Beaureain et al. for the Moby-C RCT, also at two year follow-up 34.6% RASP with ACDF compared to 17.5% after ACDA. Looking at all the available data, most will agree there is an overwhelming and robust evidence for ACDA. Looking at all the available data, most will agree that there is an overwhelming and robust evidence for increased RASP with ACDF as opposed to ACDA.

But does fusion lead to more adjacent level surgeries than an artificial disc? Currently published and/or available data from RCTs show a trend, albeit statistically insignificant, towards increased ASP surgeries. Most current RCT reports have only a two year follow up and not surprisingly there is no statistically significant difference between ACDF and ACDA with respect to CASP. Two, or even four year follow up are too short a time when dealing with DDD that may take decades to become symptomatic. Most of the RCT patients were in their 40’s and they are expected to live 30 or 40 more years. The increased RASP and the trend of increased CASP in the ACDF patients portend what is obvious. Cervical fusion accelerates adjacent segment pathology and will lead to increased adjacent segment surgery. We predict that given sufficient length of follow-up (at least 10 years), fusion will lead to statistically significant increased rate of adjacent level surgery as opposed to artificial disc.

REFERENCES

1. Upadhyaya CD, Wu JC, Trost G, Haid RW, Traynelis VC, Tay B, Coric D, Mummaneni PV. Analysis of the three United States Food and Drug Administration investigational device exemption cervical arthroplasty trials. J Neurosurg Spine 2012; 16: 216-228 [PMID: 22195608 DOI: 10.3171/2011.6.SPINE10623]

2. Ding C, Hong Y, Liu H, Shi R, Hu T, Li T. Intermediate clinical outcome of Bryan Cervical Disc replacement for degenerative disk disease and its effect on adjacent segment disks. Orthopedics 2012; 35: e909-e916 [PMID: 22691666 DOI: 10.3928/01477447-20120525-33]

3. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlmann HH. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 1999; 81: 519-528 [PMID: 10225797]

4. NATARAJAN RN, Chen BH, An HS, Andersson GB. Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis. Spine (Phila Pa 1976) 2000; 25: 955-961 [PMID: 10767808 DOI: 10.1097/00007632-200004150-00010]

5. FULLER DA, Kirkpatrick JS, Emery SE, Wilber RG, Davy DT. A kinematic study of the cervical spine before and after segmental arthrodesis. Spine (Phila Pa 1976) 1998; 23: 1649-1656 [PMID: 9704371 DOI: 10.1097/00007632-199808010-00006]

6. CHANG UK, Kim DH, Lee MC, Willenberg R, Kim SH, Lim J. Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 2007; 7: 33-39 [PMID: 17633485 DOI: 10.3171/SPI-07/07/033]

7. Weinholfer SJ, Guyer RD, Herbert M, Griffith SL. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976) 1995; 20: 526-531 [PMID: 7604432 DOI: 10.1097/00007632-199505001-00004]

8. ECK JC, Humphreys SC, Lim TH, Jeong ST, Kim JG, Hodges SD, An HS. Biomechanical study of the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976) 2002; 27: 2431-2434 [PMID: 12435970 DOI: 10.1097/01.BRS.0000031261.66972.B1]

9. LOPEZ-ESPINA CG, Amirouche F, Havalad V. Multilevel cervical fusion and its effect on disc degeneration and osteophyte formation. Spine (Phila Pa 1976) 2006; 31: 972-978 [PMID: 16641772 DOI: 10.1097/01.brs.0000215205.66437.c3]

10. Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine (Phila Pa 1976) 1984; 9: 667-671 [PMID: 6508533 DOI: 10.1097/00007632-198410000-00002]

11. Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K. Late radiographic findings after anterior cervical fusions for spondylotic myelaradiculopathy. Spine (Phila Pa 1976) 1993; 18: 2167-2173 [PMID: 8278827 DOI: 10.1097/00007632-199311000-00004]

12. Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Van Calenbergh F, van Loon J. Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 2004; 17: 79-85 [PMID: 15260088 DOI: 10.1097/01.SDT.0000152052.6437.e3]

13. Coric D, Nunley PD, Guyer RD, Musante D, Carmody CN, Gordon CR, Laurysen C, Ohnmeiss DD, Bohles MO. Prospective, randomized, multicenter study of cervical arthroplasty: 269 patients from the Kineflex | artificial disc investigational device exemption study with a minimum 2-year follow-up: clinical article. J Neurosurg Spine 2011; 15: 348-358 [PMID: 21694971 DOI: 10.3171/2011.5.SPINE10681]

14. Beaureain J, Bernard P, Dufour T, Fuentes JM, Hovorka I, Huppert J, Steib JP, Vial J, Aubourg L, Vila T. Intermedi clinical and radiological results of cervical TDR (Mobi-C) with up to 2 years of follow-up. Eur Spine J 2009; 18: 841-850 [PMID: 19434431 DOI: 10.1007/s00586-009-1017-6]
