Under some assumptions, the author transfers some properties established in the case of the one-dimensional affinoid algebras of rigid analytic geometry to the extended Robba rings of p-adic Hodge theory. These rings enjoy some nice properties, such as being regular and excellent.

Reviewer: Ali Benhissi (Monastir)

MSC:
13F35 Witt vectors and related rings
12J25 Non-Archimedean valued fields
13F40 Excellent rings

Keywords:
Fargues-Fontaine curve; Robba rings; p-adic Hodge theory; excellent rings

Full Text: DOI arXiv

References:
[1] Bosch, S., Gühriz, U. and Remmert, R., Non-Archimedean Analysis, , Vol. 261 (Springer-Verlag, Berlin, 1984). · Zbl 0539.14017
[2] O. Brinon and B. Conrad, CMI summer school notes on p-adic Hodge theory; http://math.stanford.edu/conrad/.
[3] Caix, B. and Davis, C., Canonical Cohen rings for norm fields, Int. Math. Res. Not. (2014); https://doi.org/10.1093/imrn/rna098. · Zbl 1342.13028
[4] B. Conrad, Lecture notes on perfectoid spaces; http://math.stanford.edu/conrad/Perseminar.
[5] Fargues, L. and Fontaine, J.-M., Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque406 (2018) xiii+382. · Zbl 1470.14001
[6] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence, preprint (2021); arXiv:2102.13459.
[7] Fujiwara, K. and Kato, F., Foundations of rigid geometry 1, Eur. Math. Soc.7 (2018) 863. · Zbl 1400.14001
[8] Hazewinkel, M., Formal Groups and Applications, , Vol. 78 (Academic Press Inc., Harcourt Brace Jovanovich Publishers, New York, 1978). · Zbl 0454.14020
[9] Huber, R., A generalization of formal schemes and rigid analytic varieties, Math. Z.217 (1994) 513-551. · Zbl 0814.14024
[10] Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, , Vol. E30 (Friedrich Vieweg \& Sohn, Braunschweig, 1996). · Zbl 0868.14010
[11] Kedlaya, K. S., Nonarchimedean geometry of Witt vectors, Nagoya Math. J.209 (2013) 111-165. · Zbl 1271.14029
[12] Kedlaya, K. S., Noetherian properties of Fargues-Fontaine curves, Int. Math. Res. Not.8 (2015) rnv227. · Zbl 1342.13028
[13] Kedlaya, K. S. and Liu, R., On families of $\gamma(\phi,\operatorname{operatorname{Gamma}})$-modules, Algebra Number Theory4 (2010) 943-967. · Zbl 1278.11060
[14] Kedlaya, K. S. and Liu, R., Relative p-adic Hodge theory: Foundations, Astérisque371 (2015) 239. · Zbl 1370.14025
[15] K. S. Kedlaya and R. Liu, Relative p-adic Hodge theory II: Imperfect period rings, preprint (2016); arXiv:1602.06899v2.
[16] Kiehl, R., Der Endlichkeitssatz für eigene Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. Math.2 (1967) 191-214. · Zbl 0202.20101
[17] Kiehl, R., Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie, J. Math.234 (1969) 89-98. · Zbl 0169.36501
[18] Kunz, E., On noetherian rings of characteristic p, Am. J. Math.98(4) (1976) 999-1013. · Zbl 0341.13009
[19] Matsumura, H., Commutative Algebra, 2nd edition (W. A. Benjamin, New York, 1980).
[20] May, J. P., Munshi’s proof of the Nullstellensatz, Amer. Math. Mon.110 (2003) 133-140. · Zbl 1053.13010

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.