Nonparaxial abruptly autofocusing beams

Raluca-Sorina Penciu,1 Konstantinos G. Makris,2 and Nikolaos K. Efremidis1

1Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Crete, Greece
2Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, 71003, Heraklion, Greece.

(Dated: February 5, 2016)

We study nonparaxial autofocusing beams with pre-engineered trajectories. We consider the case of linearly polarized electric optical beams and examine their focusing properties such as contrast, beam width, and numerical aperture. Such beams are associated with larger intensity contrasts, can focus at smaller distances, and have smaller spot sizes as compared to the paraxial regime.

Since 2007 when exponentially truncated diffraction-free Airy beams have been predicted and observed [1, 2], the study of curved and accelerating beams has attracted a lot of attention. Due to their unique properties such beams are associated with a variety of potential applications in areas including imaging [3–4], filamentation [5–6], particle manipulation [7, 8], and plasmon generation [9–10].

Abruptly autofocusing (AAF) waves are accelerating waves that suddenly generate a focal spot, in the sense that the intensity of light remains almost constant during propagation up until the focal point where it abruptly increases by several orders of magnitude [11]. The principle of operation relies on the radial caustic collapse at the focal point. Such beam were observed in [8, 12] and utilized for creating ablation spots [12] and in particle manipulation [8]. Originally AAF beams relied on radial Airy waves, but subsequently different classes following pre-engineered caustic trajectories were suggested [13].

The generation of AAF waves in the Fourier space is much simpler requiring the application of a phase mask to a slowly varying amplitude [14–15]. Utilizing the same principles autofocusing beams (whose intensity drops by orders of magnitude right after a hot spot) and bottle beams (high intensity closed light surfaces) have been suggested [15]. AAF waves have been utilized for the controlled filament generation at particular spatial locations [16]. By inducing a vortex phase to the autofocusing beams it is shown that the focus takes the form of a vortex ring [17, 18]. The polarization degree of freedom in generating autofocusing beams has been explored in [11, 20].

In the nonparaxial regime accelerating waves offer the possibility of bending at large angles [21–22]. Such accelerating beams with circular profiles have the form of a filtered Bessel function [22–23]. Accelerating beams with parabolic and elliptic trajectories can be expressed in terms of Mathieu and Weber functions [25–27]. In [28] closed form expressions for the input phase required for nonparaxial accelerating beams with different trajectories were found.

In this work we utilize the properties of nonparaxial accelerating beams in abruptly autofocusing and autodefocusing waves. We consider the case of linearly polarized (LP) electric modes that follow different trajectories. We systematically analyze the focusing properties of these beams, such as the amplitude of the field components, the beam full width at half maximum (FWHM), the aperture size, and the amplitude of the initial profile. We find that nonparaxial AAF waves can have larger intensity contrasts, can focus at smaller distances, and have smaller spot sizes as compared to the paraxial regime.

We consider the beam propagation in a homogeneous dielectric medium under linear conditions. Utilizing Gauss’ law \(\nabla \cdot D = 0 \), the electric field is expressed as

\[
E = -\frac{1}{\epsilon} \nabla \times F,
\]

where \(F \) is an auxiliary vector potential and \(\epsilon \) the electric permittivity. In the case of monochromatic waves the vector potential satisfies the Helmholtz equation

\[
\nabla^2 F + k^2 F = 0,
\]

where \(k = n \omega/c = 2\pi/\lambda \), \(\nabla^2 = \partial_x^2 + \partial_y^2 + \partial_z^2 \), \((x, y)\) and \((r, \theta)\) are the transverse coordinates in Cartesian and polar form, and \(z \) is the propagation coordinate. We assume that at the input plane \((z = 0)\) the \(F \) potential if polarized along the \(y \) direction is radially symmetric. Due to the symmetries of the Helmholtz equation the auxiliary vector potential maintains its radial profile upon propagation, i.e., \(F = yF(r, z) \). Substitution to Eq. (1) then leads to

\[
E = (1/\epsilon)(\hat{x}\partial_z F - \hat{z}\cos \theta \partial_r F).
\]

In Eq. (3) we notice that the \(x \) component of the electric field is radially symmetric, whereas the \(z \) component exhibits a dipolar structure. Thus, in the rest of the paper we prefer to depict the intensity along the \(x - z \) plane where the amplitude attains a maximum as a function of \(\theta \).

Within the ray optics approximation the solution of Eq. (2) takes the form \(F(r) = \)
Then from Eq. (1) we obtain an approximate expression for the optical field

$$E \approx (i/\epsilon)[\hat{\alpha}k_x F - \hat{\beta}k_z F].$$

In the $x-z$ plane k_y is zero and thus the intensity

$$I(x, y = 0, z) = |E|^2 \approx k^2|F(x, y = 0, z)|^2/\epsilon^2$$

is proportional to $|F|^2$. This expression is highly accurate except from regions where the amplitude features are of the order of the wavelength. Furthermore, since along the $x-z$ plane $k_x = \phi_r(\rho) = \phi_\xi(\xi)$ and $k_z = \sqrt{k^2 - k_x^2}$ which can be utilized to obtain approximate expressions for the electric field components by utilizing the exact formulas of [28]. In the rest of the paper we prefer to numerically compute Eq. (3), although the comparison with the exact expressions given by Eqs (3)-(5) is excellent. Our numerical algorithm consists of exactly solving Helmholtz Eq. (2) in the Fourier space using Hankel transforms, then the electric field is directly computed using Eqs. (3).

The geometry of the nonparaxial autofocusing beams is shown in Fig 1(a). At the input plane the beam extends between $R_0 < r < \rho_m$. The inner part of the initial condition is a void disc with radius R_0 and the aperture is defined by ρ_m. The rays launched from an arbitrary radius at the input plane are tangent to the caustic surface at $(r_c(\rho), z_c(\rho))$). Such rays intersect the focus at $r = \rho_f$ leading to an abrupt increase of the intensity profile at the focus [see Fig. 1(b)].

We can engineer autofocusing beams with desired trajectories and intensity contrasts at the focus by selecting the amplitude and the phase of the vector potential at the input plane as $F(\rho) = A(\rho)e^{i\phi(\rho)}$. We define the intensity contrast as the maximum intensity at the transverse plane ($z = \text{constant}$) divided by the maximum intensity at the input plane $C(z) = I_{\text{max}}(z)/I_{\text{max}}(0)$. In all our simulations we set $I_{\text{max}}(0) = 1$ and thus $C(z) = I_{\text{max}}(z)$. Since the rays cannot distinguish between Cartesian (x,z) and radially symmetric cylindrical coordinates (r,z), the expressions for the phase are exactly the same as in the 1+1D case. Thus we can directly adopt the results of [28] where analytic expressions for the phase were provided to generate nonparaxial caustics with different trajectories. Note that the utilization of ray optics in our analysis implies that the scale of the trajectories is larger than the wavelength. Then we independently select the amplitude of the autofocusing beam. Unless stated otherwise, the amplitude of the initial vector potential is zero for $\rho < R_0$ or $\rho > \rho_m$ while it attains smoothly a constant value inside the interval $R_0 < \rho < \rho_m$, as shown for example in the solid line of Fig. 2(a) [due to Eq. (5) along the x direction $|F|^2$ and $|E|^2$ are almost proportional].

We first study nonparaxial autofocusing light beams, following the circular trajectory $r = \sqrt{R^2 - z^2} - (R -}$
R_0) with radius R. The value of ρ_m is selected to be large enough, so that it does not significantly affect the intensity contrast (we are going to separately study the effect of ρ_m in more detail later on). From Eq. (4) we find that $I_x = |E_x|^2 \approx k_x^2 |F|^2 / \epsilon^2$ and $I_z = |E_z|^2 \approx k_z^2 |F|^2 / \epsilon^2$ where $k_x = k_\rho \cos \theta$, $k_z = (k^2 - k_\rho^2)^{1/2}$, and $k_\rho = k(\rho + R - R_0)^2 - R^2)^{1/2}/(\rho + R - R_0)$. The field component amplitude behavior becomes apparent by noting that at the input plane as ξ increases the rays bend at larger angles and thus the x and z field components decrease and increase, respectively.

In Fig. 2(b) we show the evolution of the maximum intensity along the z direction, with an intensity contrast of about 6.5×10^4 at the focus. We note that the intensity remains at low levels until the focal point. Then, even in the logarithmic scale, a knee appears and abruptly the intensity increases by several orders of magnitude. In Figs. 2(c)-(e), we depict the intensity profile at the focal plane ($z = z_f$). Note that E_x is radially symmetric and exhibits its maximum on axis, while $|E_z|$ is zero on the y-axis and its dipolar structure is characterized by two maxima centered symmetrically with respect to the y axis. Thus, the resulting total beam intensity is elliptic with FWHM diameters $(0.81, 0.52)\lambda$ in the transverse directions. In Figs. 2(f)-(h) we present the field intensity in the (x, z) plane in the vicinity of the focal point.

In Fig. 3 we show results similar with those shown in Fig. 2 this time for a parabolic autofocusing beam.

The field distribution has the same characteristics as in Fig. 2 while the intensity contrast at the focal point is increased up to 1.7×10^5. In the transverse plane the FWHM is $(0.74, 0.57)\lambda$. The main difference of such power law caustics is that ideally the rays never bend up to 90°. Thus for the same trajectory can extend to large distances.

It is highly desirable to generate a focal spot that is as small as possible with the highest contrast. In Fig. 4(a)-(b) we see the maximum amplitude of AAF beams following a circular trajectory as a function of R_0. By increasing R_0 the amplitude of both components increases. For smaller values of R_0 the x component is stronger than the z component. However, there is a point where, due to increased bending of the rays, the z component becomes stronger than the x component. The FWHM depicted in Fig. 4(c) are the same for both cases shown in Figs. 4(a)-(b). Thus, the beam diameters are mainly angle dependent (rather than scale dependent) variables at least for beam dimensions much larger than the wavelength. A strong z component increases the ellipticity of the focal spot as shown in Fig. 4(c). The x component has radial symmetry and thus its FWHM D_x is the same along both transverse directions. The z component of the field is zero along the y direction. Along the x direction its FWHM, D_z, takes into account both peaks of the dipole structure. The FWHM of the beam is then $D_y = D_x$ along the y direction. Along the x direction as R_0 goes to zero we reach the paraxial regime where the beam takes a radial profile and $D_z = d_x$. On the other hand, as R_0/R increases the beam becomes elliptic elongated along the x direction and D_x approaches d_x. We note that the due to higher bending of the rays, along the y direction the FWHM monotonically decreases with R_0/R whereas the value of D_x attains a minimum for an intermediate value of R_0/R.

The amplitude contrast of the field components as a function of the trajectory parameters is also depicted in Fig. 5(a)-(b) for elliptic autofocusing beams following the trajectory $r = \sqrt{R^2 - (z/\alpha)^2} - (R - R_0)$, with $R = 200\lambda$ for $\alpha = 0.5$ (major axis along the x direction).
and $\alpha = 1.5$ (major axis along the z direction). We see that when the major axis of the ellipse is in the propagation direction, R_0 can reach higher values before $|E_{z\text{max}}|$ surpasses $|E_{x\text{max}}|$ and the electric field contrast is more pronounced. In Fig. 5(c) the beam diameters of the field and its components is shown for $\alpha = 1.5$.

The decrease in the maximum intensity after the focus is not monotonic, but it exhibits oscillations leading to a slower decay of the autofocusing beam, as can be seen in Fig. 5(a) in the case of a parabolic trajectory. It would be desirable to be able to reduce the intensity of the laser beam after the focus as fast as possible. Noting that the rays contributing to such oscillations are generated after ρ_f, a simplified solution (that does not take into account diffraction) would be to set the amplitude to zero for $\rho > \rho_f$. As shown in Fig. 6(c) the elimination of the ray after ρ_f leads to increased diffraction of the part of the beam that contributes to the focus and thus to the reduction of the intensity contrast. An optimum value of the aperture is one that reduces as much as possible the intensity oscillations after the focus, without significantly reducing the value of the intensity contrast. Specifically, we see in Figs. 6(a)-(b) that for an aperture $\rho_m = 2\rho_f$ and $\rho_m = 5\rho_f/4$ the intensity contrast remains almost the same. However, for $\rho_m = 5\rho_f/4$ the intensity oscillations after the focus are significantly reduced.

We now explore the influence of the initial amplitude of the vector potential on the intensity contrast. We assume an amplitude of the form $A(\rho) = \rho^{-\gamma}$ for $R_0 \leq \rho \leq \rho_m$ that smoothly going to zero elsewhere. By varying the amplitude exponent γ as shown in Fig. 7 we find that the maximum intensity contrast at the focus is reached for $\gamma = 0$ for different classes of trajectories. The contrast is enhanced for $\gamma = 0$ because for this value the amplitude is maximized in the initial plane at ρ_f.

The same principles described before can be applied for the generation of abruptly autofocusing beams. The intensity profile of such beams decreases rapidly after the focus by several orders of magnitude. Abruptly autofocusing beams can be utilized in burning the surface of a material without affecting its bulk. A typical example is shown in Fig. 8 for a circular trajectory $r = f(z) = \sqrt{R^2 - (z_0 - z)^2} - (R - R_0)$.

In conclusion, we have studied nonparaxial autofocusing and autofocusing beams with pre-engineered trajectories. For linearly polarized electric fields, we have studied their focusing properties such as contrast, beam width, and numerical aperture. We have found that such beams are associated with larger intensity contrasts, focusing at smaller distances, and smaller spot sizes as compared to the paraxial case.

Supported by the Research Project ANEMOS co-
financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Thales. The paper and the participation of N.K.E. has been made in the framework of the “Erasmus Mundus NANOPHI project, contract number 2013-5659/002-001”. K.G.M. is supported by the European Union Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement 316165.

* Corresponding author: nefrem@uoc.gr

[1] G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[2] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[3] S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photon. 8, 302 (2014).
[4] T. Vettenburg, H. I. C. Dalgarno, J. Nyk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, Nat. Meth. 11, 541 (2014).
[5] P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, Science 324, 229 (2009).
[6] P. Polynkin, M. Kolesik, and J. Moloney, Phys. Rev. Lett. 103, 123902 (2009).
[7] J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
[8] P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 2883 (2011).
[9] A. Salandrino and D. N. Christodoulides, Opt. Lett. 35, 2082 (2010).
[10] Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Self-accelerating Airy Beams: Generation, Control, and Applications,” in *Nonlinear Photonics and Novel Optical Phenomena*, Z. Chen and R. Morandotti, eds., vol. 170 of *Springer Series in Optical Sciences*, pp. 1–46 (Springer New York, 2012).
[11] N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010).
[12] D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, Opt. Lett. 36, 1842 (2011).
[13] I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt. Lett. 36, 1890 (2011).
[14] I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 3675 (2011).
[15] I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, Phys. Rev. A 85, 023828 (2012).
[16] P. Panagiotopoulos, D. Papazoglou, A. Couairon, and S. Tzortzakis, Nat. Commun. 4, 2622 (2013).
[17] J. A. Davis, D. M. Cottrell, and D. Sand, Opt. Express 20, 13302–13310 (2012).
[18] Y. Jiang, K. Huang, and X. Lu, Opt. Express 20, 18579–18584 (2012).
[19] S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, Opt. Lett. 38, 2416 (2013).