Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease

Marzena Ułamek-Kozioła,1, Janusz Kocki,1, Anna Bogucka-Kocka,1, Alicja Petniak,2, Paulina Gil-Kulik,3, Sławomir Januszewski,4, Jacek Bogucki,5, Mirosław Jabłoński,6, Wanda Furmaga-Jabłońska,6, Judyta Brzozowska,6, Stanisław J. Czuczwar,1,2 and Ryszard Pluta,4,2,∗

1First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
2Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
3Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
4Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
5Warsaw Higher Humanistic School, Warsaw, Poland
6Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Lublin, Poland
7Department of Neonate and Infant Pathology, Medical University of Lublin, Lublin, Poland
8Department of Clinical Psychology, Medical University of Lublin, Lublin, Poland
9Department of Pathophysiology, Medical University of Lublin, Lublin, Poland

Accepted 23 May 2016

Abstract. Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7–30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7–30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia.

Keywords: Alzheimer’s disease, BECN 1, BNIP 3, brain ischemia, caspase 3, genes, rat, selective vulnerability, temporal cortex

1These authors contributed equally to this work.
2These authors are co-senior authors.
∗Correspondence to: Ryszard Pluta, Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Pawińskiego 5 Str., Poland; Tel.: +48 22 6086 540/48 22 6086 469; Fax: +48 22 6086 627; E-mail: pluta@imdik.pan.pl.
INTRODUCTION

Brain ischemia leads to chronic metabolic and structural changes within special brain regions: the hippocampus and temporal lobe [1–14]. Brain ischemia has been found as the most effective predictor for the later development of Alzheimer-type dementia [1–7]. Additionally, medial temporal lobe atrophy among ischemic brain survivors creates higher risks for memory dysfunction and the diagnosis of dementia [15]. Those patients with moderate to severe medial temporal lobe atrophy demonstrated poor performance on measures of learning, story recall, visual reproduction, visual spatial reasoning, and processing speed [15]. Post-ischemic dementia might be the result of direct influence of ischemia [12, 16–22] (also Pluta et al. unpublished results), ischemic white matter changes [23, 24], and Alzheimer-type neuropathology [12–14, 25–27], or combinations of these three [1].

Neuropathological changes associated with Alzheimer’s disease (AD) begin in the hippocampus including medial temporal lobe structures [28, 29]. Hippocampus damage in AD features neuron loss in the CA1 area and in medial temporal lobe early in the process. It has not been finally determined whether the primary event of pathology in AD starts in the hippocampus and proceeds to medial temporal lobe and other parts of brain or may be started in the medial temporal lobe itself [30]. There are some studies underpinning the fact that memory impairment is directly correlated to the atrophy of medial temporal lobe during development of AD [31, 32]. Some other reports suggest that patients with ischemic brain injury and post-ischemic medial temporal lobe atrophy might have preclinical AD, which is clinically revealed by ischemic brain lesions [1, 33]. Currently, AD still lacks an etiology, early prediction, diagnosis, and effective treatment. AD can be called the “disease of theories”, e.g., amyloid hypothesis. While amyloid investigations have pivotal role in understanding some interactions and pathways, nothing is as powerful as an accurate animal model. Many transgenic models of AD have undoubtedly been of great benefit but the majority of mice genetically altered to overproduce amyloid-β peptide do not show significant tau protein pathology and have relatively little neurodegeneration [34, 35]. In summary, the results of the systematic review have revealed that mice bred to show increased levels of amyloid-β peptide do not perform significantly worse in cognitive tests than mice that do not have elevated amyloid-β peptide levels [36]. These results suggest that amyloid-β peptide may be considered as a biochemical “side effect” in the AD neuropathology [36]. Because of the large discrepancy in the behavioral findings observed across the AD mouse models, a question arises whether we are really any closer today to determining what these mechanisms actually are. In addition, another argument that complicates the use of transgenic models based exclusively on amyloid-β protein precursor and/or tau protein mutations is that other mechanisms may be also of importance. Is this simply because mice do not live long enough to trigger tau protein pathology and the associated neuronal death? Finally, the above models often fail to reproduce the selective vulnerability in the hippocampus CA1 area and it is impossible to follow how the neuropathology spreads into the other parts of brain. In using a non-genetic model to examine AD-like neuropathologies, we remove the variability that is associated with transgenic animals. For instance, transgene integration is apparently random. Also, experiments reveal that the genetic surrounding of the inserted transgenic construct is modulating the expression pattern of the transgene itself both quantitatively and qualitatively. To fully elucidate mechanisms of AD, it is essential that a good model is available [12, 37]. Ischemic brain injury with dementia and AD share apparently common features: protein aggregation [12, 16–19, 26, 27, 38, 39], specific vulnerability of certain classes of neurons [11–14], inflammation [13, 25, 40], long incubation period, and finally global brain atrophy [12–14] with dementia [4, 6, 7, 17]. It may suggest that these features reflect common neuropathological pathways in ischemic brain injury and AD and that the ischemic model is more faithfully recapitulating AD. In our experimental approach, we allow for normal aging and disease onset to occur instead of forcing the system to a disease state.

Based on known anatomical topography, we hypothesized that the local ischemic thickness of CA1 hippocampus field [12, 14] would be associated with medial temporal lobe damage and atrophy [8], reflecting an association between AD-related injury to hippocampal neurons and neurodegeneration in medial temporal lobe. To test this hypothesis, we decided to study disease progression from the hippocampus to the medial temporal lobe in the ischemic model of AD [12, 13, 37]. In this study, we present for the first time the time course of expression of autophagy, mitophagy, and apoptotic gene levels, all
of which are implicated in AD, in the medial temporal lobe cortex subjected to transient complete brain ischemia.

MATERIALS AND METHODS

Brain ischemia, cortex sampling, and extraction of total cellular RNA

Female Wistar rats (n = 37, 2 month old, 160–180 g) were submitted to 10-min global brain ischemia due to cardiac arrest [37]. The rats were maintained in pairs per cage in a room temperature of 24 ± 2°C, with 55 ± 5% humidity, and with a 12 h light-dark cycle. All animals had free access to commercial laboratory chow and tap water ad libitum. All experimental procedures were performed during the light phase, under identical conditions. The rats used for experiments were treated in strict accordance with the NIH Guide for Care and Use of Laboratory Animals and European Communities Council Directive 142, as well as with the approval of the local Ethical Committee. After brain ischemia, the animals were allowed to survive 2 (n = 11), 7 (n = 10), and 30 days (n = 16). Sham-operated rats (n = 37) were exposed to the same procedures as ischemic animals but without induced cardiac arrest and thus served as controls.

Prior to sampling, the brains were perfused with cold 0.9% NaCl via the left ventricle in order to flush blood vessels. After removing the brain from the skull, the brain was put on an ice chilled Petri dish. The ischemic and control pooled samples (1 mm³ volume of medial temporal lobe cortex left and right (all cortical layers) were taken with a narrow scalpel and were immediately placed in RNALater solution (Life Technologies, USA) [20–22]. Total cellular RNA isolation was performed according to the method described by Chomczynski and Sacchi [41]. The RNA quality and quantity was assessed using the NanoDrop 2000 spectrophotometer (Thermo Scientific, USA) [20–22]. Obtained RNA was stored in 80% ethanol at −20°C for further analysis [20–22].

The cDNA synthesis

The cDNA was synthesized using High-Capacity cDNA Reverse Transcription Kit, according to manufacturer’s instructions (Applied Biosystems, USA). Each reactive mixture contained the following set of reagents: 1 × RT buffer, 20 U RNase inhibitor, 50 U reverse transcriptase (Multiscribe Reverse Transcriptase), 1 × RT Random Primers, 4 mM of each deoxynucleotide: dATP, dGTP, dTTP and dCTP plus examined 1 µg RNA in DNase-, RNase- and protease-free water (Sigma-Aldrich, USA) to complete the volume required for reaction [20]. Afterwards, the reactive components were thoroughly mixed and centrifuged to fuse them well. The cDNA was synthesized on Veriti Dx (Applied Biosystems, USA) under the following conditions: stage I: 25°C, 10 min, stage II: 37°C, 120 min, stage III: 85°C, 5 min, stage IV: 4°C.

The RT-qPCR protocol

The cDNA, which was obtained by reverse transcription (RT) procedure, was amplified by real-time gene expression analysis (qPCR) on 7900HT Real-Time Fast System (Applied Biosystems, USA), using the manufacturer’s SDS software [20]. Reaction components included: 1.25 µl mixture of probe and oligonucleotide starters specific for genes examined, 12.5 µl buffer TaqMan Universal PCR Master Mix, 1 µl cDNA, DNase-, RNase- and protease-free water (Sigma Aldrich, USA) to complete the required reactive volume. The reaction was performed on an optic 25 µl-well reaction plate, using probe sets of TaqMan Gene Expression Assays (Applied Biosystems, USA) with FAM-NFQ markers and oligonucleotide starters for rat genes: autophagy (BECN 1), mitophagy (BNIP 3) and caspase 3 and the housekeeping gene: Rpl13a was used as an internal control gene [42]. Amplification protocol included the following cycles: initial denaturation: 95°C, 10 min and 40 cycles, each composed of two temperatures: 95°C, 15 s and 60°C, 1 min. The number of copies of DNA molecules was monitored and calculated on 7900HT Real-Time Fast System (Applied Biosystems, USA) in each amplification cycle. To calculate the number of examined DNA molecules present in the mixture at the onset of reaction, the number of PCR cycles after which the level of fluorescence exceeded the defined threshold cycle (C_T) RQ Study Software (Applied Biosystems, USA) was used. The C_T value for each sample of endogenous control gene (Rpl13a) was used to normalize the level of the examined gene expression. The relative level of gene expression was calculated according to the formula [43]: 1) Calculating C_T differences between the examined gene and the reference gene are presented below: for the examined gene after ischemia of medial temporal lobe cortex:
\[\Delta C_T \text{ ischemic sample} = C_T \text{ target gene from ischemic sample} - C_T \text{ reference gene, ischemic sample} \]
\[\Delta C_T \text{ calibrator} = C_T \text{ target gene from control sample} - C_T \text{ reference gene, control sample} \]

1) Normalizing \(\Delta C_T \) of the ischemic sample to the \(\Delta C_T \) of the calibrator
\[\Delta \Delta C_T = \Delta C_T \text{ ischemic sample} - \Delta C_T \text{ calibrator} \]

2) Normalizing \(\Delta C_T \) of the ischemic sample to the \(\Delta C_T \) of the calibrator
\[\Delta \Delta C_T = \Delta C_T \text{ ischemic sample} - \Delta C_T \text{ calibrator} \]

3) Relative expression (RQ) of rat genes was calculated by the formula: RQ = 2\(^{-\Delta \Delta C_T}\). The RQ defines the expression of the examined gene in the medial temporal lobe cortex taken from an ischemic rat with reference to the gene expression in the same structure of a control rat. Finally, the RQs were analyzed after their logarithmic conversion into logarithm of RQ (LogRQ) [20]. Thus, the obtained results were more legible. LogRQ = 0 means that gene expression in the calibrated sample and the ischemic one are the same. LogRQ <0 points to decreased gene expression in the ischemic sample, whereas LogRQ >0 points to increased gene expression in the ischemic sample compared to the calibrated one.

Statistical analyses

The results were statistically analyzed by SPSS v. 17 software by means of the non-parametric Kruskal-Wallis test and Spearman rho correlation analysis. Data were presented as mean ± SEM. The level of statistical significance was set at \(p \leq 0.05 \).

RESULTS

Changes in expression of BECN 1, BNIP 3, and caspase 3 genes in rats 2 days following brain ischemia

BECN 1 gene expression increased to a maximum of 1.029–fold change but both BNIP 3 and caspase 3 genes decreased to a minimum of –1.887 and –0.523 – fold change, respectively. The mean expression levels of genes were as follows: BECN 1 0.434 ± 0.115, BNIP 3 –0.877 ± 0.204, and caspase 3 –0.160 ± 0.110.

Changes in expression of BECN 1, BNIP 3, and caspase 3 genes in rats 7 days following brain ischemia

BECN 1 gene expression decreased to a minimum of 0.550 – fold change, but both BNIP 3 and caspase 3 genes increased to a maximum of 3.668 and 0.471 – fold change, respectively. The mean expression levels of genes were as follows: BECN 1 0.161 ± 0.066, BNIP 3 1.487 ± 0.547, and caspase 3 0.196 ± 0.053.

Changes in expression of BECN 1, BNIP 3, and caspase 3 genes in rats 30 days following brain ischemia

Both BECN 1 and BNIP 3 genes expression decreased to a minimum of 0.490 and 0.437 – fold change, respectively. Caspase 3 gene increased to a maximum of 0.536 – fold change. The mean expression levels of genes were as follows: BECN 1 0.129 ± 0.048, BNIP 3 0.176 ± 0.037, and caspase 3 0.258 ± 0.040.

Summary of the mean levels of genes expression in medial temporal lobe cortex in rats 2, 7, and 30 days following brain ischemia

Figures 1–3 show changes in the mean expression levels of genes with statistical significance: BECN 1 (Fig. 1), BNIP 3 (Fig. 2), and caspase 3 (Fig. 3) after 10-min complete brain ischemia in rats with survival 2, 7, and 30 days. Significant correlations between the expression of genes in the medial temporal lobe cortex 2, 7 and 30 days after global brain ischemia was evident for BNIP 3 and caspase 3 (Spearman rho correlation test \(p \leq 0.01 \)).
Fig. 2. The mean expression levels of BNIP 3 gene in the medial temporal lobe cortex in rats 2, 7, and 30 days after 10-min of global brain ischemia. Marked SEM—standard error of the mean. Indicated statistically significant differences in levels of gene expression between 2 and 7 and between 2 and 30 days after 10-min of global brain ischemia (Kruskal-Wallis test). *p ≤ 0.05, **p ≤ 0.01.

Fig. 3. The mean expression levels of caspase 3 gene in the medial temporal lobe cortex in rats 2, 7, and 30 days after 10-min of global brain ischemia. Marked SEM—standard error of the mean. Indicated statistically significant differences in levels of gene expression between 2 and 7 and between 2 and 30 days after 10-min of global brain ischemia (Kruskal-Wallis test). *p ≤ 0.05, **p ≤ 0.01.

DISCUSSION

In the present study, we provide evidence for the first time for the activation of an autophagic BECN 1 gene in the medial temporal lobe cortex during 30 days after brain ischemia. The overexpression of the BECN 1 gene was accompanied by an early (during 2 days) downregulation of both BNIP 3 and caspase 3 genes. Next, during 7–30 days expression of both genes was significantly upregulated. It has been suggested that ischemia induces classical apoptotic neuronal death in the cortex [44–46] but our data have indicated that the situation is more complex and that this form of neuronal death in temporal cortex is to some extent delayed for 7 days by protective overexpression of BECN 1 gene.

Overexpression of BECN 1 gene in the medial temporal lobe cortex was noted in all studied times after brain ischemia and suggest a possible efficient role of autophagy-mediated neuronal protection [47, 48]. Some studies indicate that the autophagy has an important role in amyloid protein precursor processing as well as in the autophagic clearance of aggregation-prone proteins in neurodegeneration [48–50]. We have postulated that an efficient autophagic response in the temporal cortex might protect cortical neurons from acute and/or fast cell death triggered by ischemia [44–46], which is not observed in the hippocampus (Pluta et al., unpublished results).

In this study, we have noted that BNIP 3 gene is significantly downregulated 2 days after ischemia, which is not in accordance with data from the focal brain ischemia [51] and the ischemic hippocampus (Pluta et al., unpublished results). Next during 7–30 days post-ischemia, this gene expression was significantly upregulated. In this context, it is important to stress that there is an association between the increased activity of BNIP 3 gene and different mitochondrial neurotoxic proteins such as AIF, Endo G, or PARP 1 [52–55], which are involved in neuronal death. Brain ischemia appears to cause redistribution of BNIP 3, AIF, Endo G, and PARP 1 from the mitochondria to the neuronal nucleus [52, 53, 55–59]. It has been shown that BNIP 3 induces cell death mostly via mitochondrial dysfunction, in that homodimeric BNIP 3 inserts into mitochondrial outer membrane to increase its permeability leading to a release of different cytotoxic proteins such as Endo G, AIF, and others [60]. In addition, it has been shown that BNIP 3 interacts with LC3 to target damaged mitochondria to autophagosomes, initiating the process of mitophagy in the ischemic neurons [61]. Moreover, double immunostaining for BNIP 3 and caspase 3 indicates that most ischemic neurons were stained for both proteins [51, 62]. However, some BNIP 3 positive neurons did not stain for caspase 3
Importantly, as amyloid-β protein and thus increase BACE 1 activity [68, 69]. Moreover, caspase 3 could cleave the GGA3 pro-nuclear DNA damage and finally apoptosis [44–46]. repair enzyme, such as PARP 1, which leads to [64–67]. Activated caspase 3 cleaves nuclear DNA repair enzyme, such as PARP 1, which leads to nuclear DNA damage and finally apoptosis [44–46]. Moreover, caspase 3 could cleave the GGA3 protein and thus increase BACE 1 activity [68, 69]. Importantly, as amyloid-β protein precursor has been elevated long-term after brain ischemia [10, 12, 14, 23, 24, 70, 71] and has been shown a substrate for caspase 3 [62] and caspase 3 can enhance BACE 1 activity [68, 69], this pathway may also have influence on the development of neuronal changes in the medial temporal lobe cortex. Recent studies have indicated that increased level of activated caspase significantly correlates to elevated levels of truncated tau protein and formation of neurofibrillary tangles [72, 73]. In addition, cognitive decline was significantly negatively associated with increased levels of caspase activity and tau protein truncated by caspase 3 [67].

Presented data suggest a possible efficient role of autophagy gene in slowing cortical neuronal damage and death mediated by ischemic injury [47]. Our data may suggest that brain ischemia induced neuronal death in the medial temporal lobe cortex with delay by 7 days as compared to hippocampus (Pluta et al., unpublished results), by caspase 3 and BNIP 3 gene activation. This study suggests that BNIP 3 gene regulates ischemia-induced caspase-independent cortical neuronal death probably through influence on Endo G, AIF, and PARP 1 in the neuronal cell nucleus [52, 74]. Mitochondrial BNIP 3 gene is probably an upstream signal of these proteins. The levels of anti- and pro-apoptotic proteins were studied before now in our model what recently is in accordance with gene induction [75]. For already examined proteins such as beclin 1 and BNIP 3 in the brain ischemia by other scientists [52, 53, 61, 76, 77], we have added now new data related to their genes. Caspase-dependent and caspase-independent neuronal death can occur coincidently within ischemic neurons of the medial temporal lobe cortex, leading to cell death of mixed neurochemical features [59, 62].

ACKNOWLEDGMENTS

The authors acknowledge support by the Polish National Science Centre (DEC-2013/09/B/NZ7/01345-RP) and by the Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland (T3-RP). Also, this study was supported by a grant from Medical University of Lublin, Poland (DS 475/15-SJC and DS 222/14-JK). The research was developed using the equipment purchased within the Project “The equipment of innovative laboratories doing research on new medicines used in the therapy of civilization and neoplastic diseases” within the Operation Program Development of Eastern Poland 2007–2013, Priority Axis I Modern Economy, Operations I.3 Innovation Promotion (JK, SJC).

Authors’ disclosures available online (http://lj-alz.com/manuscript-disclosures/16-0387r1).

REFERENCES

[1] Leys D, Henon H, Mackowiak-Cordoliani MA, Pasquier F (2005) Poststroke dementia. Lancet Neurol 4, 752–759.
[2] De la Torre JC (2006) How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res 28, 637-644.
[3] Pinkston JB, Alekseeva N, Gonzalez Toledo E (2009) Stroke and dementia. Neurol Res 31, 824-831.
[4] Barra de la Tremblaye P, Plamondon H (2011) Impaired conditioned emotional response and object recognition are
concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats. *Behav Brain Res* **219**, 227-233.

[5] Kiyryk A, Pluta R, Figiel I, Mikosz M, Ulamek M, Niewiadomska G, Jabłoński M, Kaczmarek L (2011) Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury. *Behav Brain Res* **219**, 1-7.

[6] Li J, Wang YJ, Zhang M, Fang CQ, Zhou HD (2011) Cerebral ischemia aggravates cognitive impairment in a rat model of Alzheimer’s disease. *Life Sci* **89**, 86-92.

[7] Cohen CH, Neumann JT, Dave KR, Aleksyenko A, Binkert M, Stranks K, Lin HW, Barnes CA, Wright CB, Perez-Pinzon MA (2015) Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. *PLoS One* **10**, e0124918.

[8] Pluta R (1985) Influence of prostacyclin on early morphological changes in the rabbit brain after complete 20-min ischemia. *J Neurol Sci* **70**, 305-316.

[9] De la Torre JC (2008) Pathophysiology of neuronal energy crisis in Alzheimer’s disease. *Neurodegener Dis* **5**, 126-132.

[10] Pluta R, Januszewski S, Jabłoński M, Ulamek M (2010) Factors in creepy delayed neuronal death in hippocampus following brain ischemia-reperfusion injury with long-term survival. *Acta Neurochir* **106**(Suppl), 37-41.

[11] Pluta R, Jabłoński M, Czuczwar SJ (2012) Postischemic dementia with Alzheimer phenotype: Selectively vulnerable versus resistant areas of the brain and neurodegeneration versus β-amyloid peptide. *Folia Neuropathol* **50**, 101-109.

[12] Pluta R (2000) The role of apolipoprotein E in the deposition of β-amyloid peptide during ischemia-reperfusion brain injury. A model of early Alzheimer’s disease. *Ann NY Acad Sci* **903**, 324-334.

[13] Pluta R (2002) Astroglial expression of the beta-amyloid in ischemia-reperfusion brain injury. *Ann NY Acad Sci* **977**, 102-108.

[14] Pluta R, Ulamek M, Jabłoński M (2009) Alzheimer’s mechanisms in ischemic brain degeneration. *Anat Rec* **292**, 1863-1881.

[15] Jokinen H, Kalska H, Ylikoski R, Hietanen M, Mäntylä J, Kalska H, Ylikoski R, Hietanen M, Mäntylä J (2004) Medial temporal lobe atrophy and memory deficits in elderly stroke patients. *Eur J Neurol* **11**, 825-832.

[16] Pluta R, Kida E, Lossinsky AS, Golabek AA, Mossakowski MJ, Wisniewski HM (1994) Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer’s β-amyloid protein precursor in the brain. *Brain Res* **649**, 323-328.

[17] Kida E, Pluta R, Lossinsky AS, Golabek A, Choi–Miura NH, Wisniewski HM, Mossakowski MJ (1995) Complete cerebral ischemia with short-term survival in rat induced by cardiac arrest. II. Extracellular and intracellular accumulation of apolipoproteins E and J in the brain. *Brain Res* **674**, 341-346.

[18] Wen Y, Yang SH, Liu R, Perez EJ, Brun-Ziukemagel AM, Koulou P, Simpkins JW (2007) Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. *Biochim Biophys Acta* **1772**, 473-483.

[19] Pluta R, Furmaga-Jabłońska W, Maciejewski R, Ulamek-Kozioł M, Jabłoński M, Jabłoński M (2013) Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: Significance in sporadic Alzheimer’s disease. *Mol Neurobiol* **47**, 425-434.

[20] Kocik J, Ulamek-Kozioł M, Bogucka-Kocka A, Januszewski S, Jabłoński M, Gil-Kulik P, Brzozowska J, Petniak A, Furmaga-Jabłońska W, Bogucki J, Czuczwar SJ, Pluta R (2015) Dysregulation of amyloid-β protein precursor, β-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable CA1 subfield of hippocampus following transient global brain ischemia. *J Alzheimers Dis* **47**, 1047-1056.

[21] Pluta R, Kocik J, Ulamek-Kozioł M, Bogucki-Kocka A, Gil-Kulik P, Januszewski S, Jabłoński M, Petniak A, Brzozowska J, Bogucki J, Furmaga-Jabłońska W, Czuczwar SJ (2016) Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest. *Pharmacol Rep* **68**, 155-161.

[22] Pluta R, Kocik J, Ulamek-Kozioł M, Petniak A, Gil-Kulik P, Januszewski S, Bogucki J, Jabłoński M, Brzozowska J, Furmaga-Jabłońska W, Bogucka-Kocka A, Czuczwar SJ (2016) Discrepancy in expression of β-secretase and amyloid-β protein precursor in Alzheimer-related genes in the rat medial temporal lobe cortex following transient global brain ischemia. *J Alzheimers Dis* **51**, 1023-1031.

[23] Pluta R, Ulamek M, Januszewski S (2006) Micro-blood-brain barrier openings and cytotoxic fragments of amyloid precursor protein accumulation in white matter after ischemic brain injury in long-lived rats. *Acta Neurochir* **96**(Suppl), 267-271.

[24] Pluta R, Januszewski S, Ulamek M (2008) Ischemic blood-brain barrier and amyloid in white matter as etiological factors in leukoaraiosis. *Acta Neurochir* **102**(Suppl), 353-356.

[25] Sekeljic V, Bataveljic D, Stamenkovic S, Ulamek M, Jabłoński M, Radenovic L, Pluta R, Andjus PR (2012) Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. *Brain Struct Funct* **217**, 411-420.

[26] Pluta R, Jabłoński M, Ulamek-Kozioł M, Kocik J, Brzozowska J, Januszewski S, Furmaga-Jabłońska W, Bogucka-Kocka A, Maciejewski R, Czuczwar SJ (2013) Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. *Mol Neurobiol* **48**, 500-515.

[27] Ulamek-Kozioł M, Pluta R, Bogucka-Kocka A, Januszewski S, Kocik J, Czuczwar SJ (2016) Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins. *Pharmacol Rep* **68**, 582-591.

[28] Lee DY, Fletcher E, Carmichael OT, Singh B, Mungas D, Reed B, Martinez O, Buonocore MH, Persianinova M, De Carli C (2012) Sub-regional hippocampal injury is associated with fornix degeneration in Alzheimer’s disease. *Front Aging Neurosci* **4**, 1.

[29] Louwersheimer E, Keulen MA, Steenwijk MD, Wattjes MP, Jiskoot LC, Vrenken H, Teunissen CE, van Berckel BN, van der Flier WM, Scheltens P, van Swieten JC, Pijnenburg YA (2016) Heterogeneous language profiles in patients with primary progressive aphasia due to Alzheimer’s disease. *J Alzheimers Dis* **51**, 581-590.

[30] Maggin B, Mesrob L, Kinkingn É, Pelégrini-Issac M, Colliot O, Sarazin M, Dubois B, Lehéricy S, Benali H (2009) Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. *Neuroradiology* **51**, 73-83.

[31] Petersen RC, Jack CR Jr, Xu YC, Waring SC, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Boeve BF, Kokmen E (2000) Memory and MRI-based hippocampal volumes in aging and AD. *Neurology* **54**, 581-587.

[32] Jauhiainen AM, Pihlajamäki M, Tervo S, Niskanen E, Tanila H, Hänninen T, Vanninen RL, Soininen H (2009)
Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment. *Hippocampus* **19**, 166-175.

[33] Pasquier F, Leys D (1997) Why are stroke patients prone to develop dementia? *J Neurol** 244**, 135-142.

[34] Koistinaho M, Kettunen MI, Goldsteins G, Keinanen R, Salminen A, Ort M, Bures J, Liu D, Kaupinnen RA, Higgins LS, Koistinaho J (2002) Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: Role of inflammation. *Proc Natl Acad Sci U S A* **99**, 1610-1615.

[35] Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: Learning from animals. *NeuroRx* **2**, 423-437.

[36] Foley AM, Ammar ZM, Lee RH, Mitchell CS (2015) Autophagy, a guardian against neurodegeneration. *Acta Neuropathol* **129**, 1-11.

[37] Yang SH, Simpkins JW (2007) Ischemia-reperfusion pathways in Alzheimer’s disease: Learning from animals. *NeuroRx* **4**, 691-698.

[38] Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. *Anal Biochem* **162**, 156-159.

[39] Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang H9251, Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesnila N, Zhu C, Landshamer S, Becattini B, Wagner E, Plesni
Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. *PLoS One* **7**, e50985.

[64] Quintanilla RA, Dolan PJ, Jin YN, Johnson GV (2012) Truncated tau and Aβ cooperatively impair mitochondria in primary neurons. *Neurobiol Aging* **33**, 619e25-619e35.

[65] Jarero-Basulto JJ, Luna-Munoz J, Mena R, Kristofikova Z, Ripova D, Perry G, Binder LI, Garcia-Sierra F (2013) Proteolytic cleavage of polymeric tau protein by caspase-3: Implications for Alzheimer’s disease. *J Neuropathol Exp Neurol* **72**, 1145-116.

[66] McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. *Cold Spring Harb Perspect Biol* **5**, a008656.

[67] Means JC, Venkatesan A, Gerdes B, Fan JY, Bjes ES, Price JL (2015) Drosophila spagheti and double time link the circadian clock and light to caspases, apoptosis and tauopathy. *PLoS Genet* **7**, e1005171.

[68] Tesco G, Koh YH, Kang EL, Cameron AN, Das S, Sena-Esteves M, Hiltunen M, Yang SH, Zhong Z, Shen Y, Simpkins JW, Tanzi RE (2007) Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. *Neuron* **54**, 721-737.

[69] Sarajarvi T, Haapasalo A, Viswanathan J, Mikinen P, Laitinen M, Soininen H, Hiltunen M (2009) Down-regulation of seladin-1 increases BACE1 levels and activity through enhance GGA3 depletion during apoptosis. *J Biol Chem* **284**, 34433-34443.

[70] Pluta R (2003) Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival. *Acta Neurochir* **86**(Suppl), 117-122.

[71] Jabłoński M, Maciejewski R, Januszewski S, Ulamek M, Pluta R (2011) One year follow up in ischemic brain injury and the role of Alzheimer factors. *Physiol Res* **60**(Suppl 1), S113-S119.

[72] De Calignon A, Fox LM, Pitstick R, Carlson GA, Bacsak BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. *Nature* **464**, 1201-1204.

[73] Hanger DP, Wray S (2010) Tau cleavage and tau aggregation in neurodegenerative disease. *Biochem Soc Trans* **38**, 1016-1020.

[74] Walls KC, Ghosh AP, Ballestas ME, Klocke BJ, Roth KA (2009) Bcl-2/Adenovirus E1B 19 kDa interacting protein-3 (BNIP3) regulates hypoxia-induced neural precursor cell death. *J Neuropathol Exp Neurol* **68**, 1326-1338.

[75] Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC (1995) Upregulation of bax protein levels in neurons following cerebral ischemia. *J Neurosci* **15**, 6364-6376.

[76] Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG (2009) RNA interference-mediated downregulation of Beclin 1 attenuates cerebral ischemic injury in rats. *Acta Pharmacol Sin* **30**, 919-927.

[77] Xingyong C, Xicui S, Huanxing S, Jingsong O, Yi H, Xu Z, Ruxun H, Hong P (2013) Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats. *BMC Neurosci* **14**, 56.