INVARIANT CONNECTIONS AND INVARIANT
HOLOMORPHIC BUNDLES ON HOMOGENEOUS MANIFOLDS

INDRANIL BISWAS AND ANDREI TELEMAN

Abstract. Let \(X \) be a differentiable manifold endowed with a transitive action \(\alpha : A \times X \longrightarrow X \) of a Lie group \(A \). Let \(K \) be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects:

1. equivalence classes of \(\alpha \)-invariant \(K \)-connections on \(X \),
2. \(\alpha \)-invariant gauge classes of \(K \)-connections on \(X \), and
3. \(\alpha \)-invariant isomorphism classes of pairs \((Q, P)\) consisting of a holomorphic \(K^C \)-bundle \(Q \rightarrow X \) and a \(K \)-reduction \(P \) of \(Q \) (when \(X \) has an \(\alpha \)-invariant complex structure).

1. Introduction. Invariant gauge classes of connections

Hermitian holomorphic bundles on the upper half-plane, which are \(\text{SL}(2, \mathbb{R}) \)-invariant up to isomorphism, can be classified [Bi1]. Our starting point is the observation of the second author that this problem can be reformulated and generalized using ideas from gauge theory.

Let \(X \) be a connected manifold, \(A \) a connected Lie group, and \(\alpha : A \times X \longrightarrow X \) a smooth action. For any \(a \in A \), the diffeomorphism \(x \mapsto \alpha(a, x) \) of \(X \) will be denoted by \(f_a \). Let \(K \) be a Lie group with Lie algebra \(\mathfrak{k} \), and let \(p : P \longrightarrow X \) be a principal \(K \)-bundle over \(X \). Since \(A \) is connected, it follows that \(f_a^*(P) \simeq P \) for every \(a \in A \). This follows from the homotopy invariance of pull-backs (see [Hu] Theorem 9.9). Therefore the isomorphism type of \(P \) is \(\alpha \)-invariant.

Definition 1. A connection \(\Gamma \) on \(P \) will be called gauge \(\alpha \)-invariant if for every \(a \in A \) there is an id\(_X\)-covering principal \(K \)-bundle isomorphism \(\phi : P \longrightarrow f_a^*(P) \) such that \(\phi^*(f_a^*(\Gamma)) = \Gamma \).

The above condition depends only on the image of \(A \) in the diffeomorphism group \(\text{Aut}(X) \), so \(\Gamma \) is gauge \(\alpha \)-invariant if and only if it is invariant with respect to the natural action of the image of \(A \) in this group. Note that an id\(_X\)-covering bundle isomorphism \(P \longrightarrow f_a^*(P) \) can be regarded as an \(f_a \)-covering bundle isomorphism \(P \longrightarrow P \).

There exists an interesting alternative interpretation of this definition using ideas from gauge theory: Let \(p : P \longrightarrow X \) be an arbitrary principal \(K \)-bundle on a manifold \(X \) and \(\mathcal{K}_P \) its gauge group, i.e., the group \(\text{Aut}(P) \) of id\(_X\)-covering bundle
automorphisms of P commuting with the action of K. This group can be identified with the group of C^∞ sections of the group bundle $P \times_{\text{Ad}} K$, where
\[\text{Ad} : K \to \text{Aut}(K) \]
is the adjoint action $(k, l) \mapsto klk^{-1}$ of K on itself.

We recall that two connections Γ, Γ' on P are called gauge equivalent if there exists an $\varphi \in K_P$ such that $\Gamma' = \varphi^*(\Gamma)$, meaning they are conjugate modulo the natural action of the gauge group K_P on the affine space $A(P)$ of connections on P. The moduli space of connections on P is the quotient
\[B(P) := A(P)/K_P, \]
edowed with the quotient topology of the C^∞-topology on the affine space $A(P)$.

Note that if two principal K-bundles $p : P \to X$ and $q : Q \to X$ are isomorphic (as principal K-bundles over X), then there exists a canonical identification
\[B(P) = B(Q), \]
because any two id_X-covering isomorphisms $P \to Q$ differ by the composition with a gauge transformation of P. Therefore, we can define in a coherent way the moduli space $B(\mathfrak{P})$, where \mathfrak{P} is an isomorphism class of principal K-bundles over X. Formally $B(\mathfrak{P})$ is the disjoint union $\bigsqcup_{\mathfrak{P} \in B(P)} B(P)$ factorized by the equivalence relation generated by the canonical identifications $B(P) = B(Q)$ mentioned above.

Since $f_a^*(P) \simeq P$ for every $a \in A$, the isomorphism type \mathfrak{P} of P is a fixed point under that natural action of A on the set of isomorphism types of K-bundles on X. So the moduli space $B(\mathfrak{P})$ associated with the isomorphism type of P comes with a well-defined right A-action given by
\[(a, [\Gamma]) \mapsto [f_a^*(\Gamma)] \in B(f_a^*(P)) = B(\mathfrak{P}), \]
where $\Gamma \in A(P)$. Definition\[\Box\] can be reformulated as follows:

Remark 2. A connection Γ on P is gauge α-invariant if and only if its gauge class $[\Gamma] \in B(P) = B(\mathfrak{P})$ is a fixed point with respect to the natural A-action on $B(\mathfrak{P})$.

Our first goal is to describe the set of all classes of gauge α-invariant connections on K-bundles on X. More precisely let $B_K(X)$ be the union
\[B_K(X) := \bigsqcup_{\mathfrak{P} \text{ isomorphism type of } K\text{-bundles on } X} B(\mathfrak{P}), \]
so it is the moduli space of all gauge equivalent classes of connections in K-bundles on X. This moduli space comes with a natural A-action given by
\[A \times B(\mathfrak{P}) \ni (a, [\Gamma]) \mapsto [f_a^*(\Gamma)] \in B(f_a^*(\mathfrak{P})) \]

Using this formalism, we see that our first goal is to describe the space of A-invariant elements in $B_K(X)$, in other words, to describe the fixed point set:
\[F_{\alpha,K} := \{ \gamma \in B_K(X) | f_a^*(\gamma) = \gamma \forall a \in A \} \subset B_K(X). \]

The elements of the above set correspond bijectively to the equivalence classes of pairs (P, Γ), where P is a principal K-bundle on X, and Γ is a gauge α-invariant connection on P; the equivalence relation is defined by id_X-covering bundle isomorphisms. The elements of this set will be called α-invariant gauge classes of K-connections on X. When A is a subgroup of the diffeomorphism group $\text{Aut}(X)$
(or, equivalently, when the action \(A \) is effective), we will also say \(A \)-invariant gauge classes of \(K \)-connections on \(X \).

We will study this problem in detail in the particular case where \(K \) is compact and \(A \) acts transitively on \(X \).

Our second goal concerns the case when \(X \) has an \(A \)-invariant complex structure. In this case we will be interested in the subset \(\mathcal{F}_{A,\alpha}^{1,1} \subset \mathcal{F}_{A,\alpha} \) of \(\alpha \)-invariant gauge classes of type \((1,1)\) connections on \(K \)-bundles on \(X \). We recall that, for a compact Lie group \(K \), a connection on a principal \(K \)-bundle \(P \) on a complex manifold \(X \) is of type \((1,1)\) if its curvature \(F_\Gamma \) is of Hodge type \((1,1)\). This condition is equivalent to the condition that the almost complex structure on the complexified bundle \(Q := P \times_K K^C \) associated with \(\Gamma \) via the Chern correspondence (see for instance \([LT\) Section 7.1]) is integrable. In other words, denoting by \(G \) the complex reductive group \(K^C \), we see that the elements of \(\mathcal{F}_{A,\alpha}^{1,1} \) correspond bijectively to equivalence classes of holomorphic principal \(G \)-bundles \(Q \) on \(X \) endowed with a \(K \)-reduction, with the equivalence relation defined by \(\text{id}_X \)-covering holomorphic isomorphisms which respect the \(K \)-reductions. Equivalently, two pairs \((Q, P)\) and \((Q', P')\) consisting of holomorphic \(G \)-bundles endowed with \(K \)-reductions are considered equivalent if they are \emph{holomorphically isometric}, meaning there is a holomorphic isomorphism \(Q \rightarrow Q' \) of principal \(G \)-bundles that takes \(P \) to \(P' \).

2. Equivariant bundles and invariant connections

Let \(\alpha : A \times X \rightarrow X \) be a smooth action of a connected Lie group \(A \) on a connected smooth manifold \(X \). For \(a \in A \), denote by \(f_a : X \rightarrow X \) the diffeomorphism \(x \mapsto \alpha(x,a) \). Let \(K \) be a connected Lie group.

Definition 3. A principal \((K,\alpha)\)-bundle over \(X \) is a pair \((P, \beta)\) consisting of a principal \(K \)-bundle \(p : P \rightarrow X \) on \(X \) and an action \(\beta : A \times P \rightarrow P \) such that for every \(a \in A \), the corresponding diffeomorphism \(\beta_a : P \rightarrow P \), \(z \mapsto \beta(a, z) \), is an \(f_a \)-covering isomorphism of principal \(K \)-bundles.

In other words, \(\beta \) is an \(\alpha \)-covering action by principal \(K \)-bundle isomorphisms. According to the terminology used in the literature, a pair \((P, \beta)\) as in Definition 3 is also called an \(\alpha \)-equivariant (or an \(A \)-equivariant) principal \(K \)-bundle over the \(A \)-manifold \((X, \alpha)\).

Definition 4. Let \((P, \beta)\) and \((P', \beta')\) be two principal \((K,\alpha)\)-bundles over \(X \). An isomorphism

\[
(P, \beta) \rightarrow (P', \beta')
\]

is an \(\text{id}_X \)-covering \(K \)-bundle isomorphism that commutes with the \(A \)-actions \(\beta \) and \(\beta' \) on \(P \) and \(P' \) respectively.

Definition 5. Let \((P, \beta)\) be a principal \((K,\alpha)\)-bundle. A connection \(\Gamma \) on \(P \) is called invariant if \(\beta_a^*(\Gamma) = \Gamma \) for every \(a \in A \). In this case, we will also say that \(\Gamma \) is a \(\beta \)-invariant connection on \(P \).

An \(\alpha \)-invariant \(K \)-connection on \(X \) is a triple \((P, \beta, \Gamma)\), where \((P, \beta)\) is a principal \((K,\alpha)\)-bundle on \(X \), and \(\Gamma \) is an invariant connection on \(P \).

Let \((P, \beta)\) be a principal \((K,\alpha)\)-bundle. Let \(\mathcal{A}(P) \) be the space of all connections on \(P \) and \(\mathcal{A}(P)^\beta \subset \mathcal{A}(P) \) the invariant connections on \((P, \beta)\). Let \(\mathcal{A}^1(\text{ad}(P))^\beta \) denote the \(\beta \)-invariant \(\text{ad}(P) \)-valued 1-forms. We will need an explicit description of the space \(\mathcal{A}(P)^\beta \), supposing that it is non-empty. The difference \(\Gamma' - \Gamma \) of two
invariant connections is an element of $A^1(\text{ad}(P))$. Conversely, for $\Gamma \in \mathcal{A}(P)$ and $\omega \in A^1(\text{ad}(P))$, clearly $\Gamma + \omega \in \mathcal{A}(P)$. Therefore, if non-empty, the space $\mathcal{A}(P)$ has a natural affine space structure over $A^1(\text{ad}(P))$. We recall that, denoting by \mathfrak{t} the Lie algebra of K, the space $A^1(\text{ad}(P))$ can be identified with the space $A^1_{\text{ad}}(P, \mathfrak{t})$ of \mathfrak{t}-valued tensorial forms of type ad on P (defined in [KN, p. 75]; see [KN, p. 76, Example 5.2] for this identification.

Fix now $x_0 \in X$ and denote by H_0 the stabilizer of x_0 in A. Choose $y_0 \in P_{x_0}$, and note that H_0 acts on the fiber P_{x_0} via β. We define the map $\chi_{y_0} : H_0 \to K$ by

$$\phi_h(y_0) := \beta(h, y_0) = y_0(\chi_{y_0}(h)).$$

This map is a group homomorphism because for $h, k \in H_0$ we have

$$y_0(\chi_{y_0}(kh)) = \beta(kh, y_0) = \beta(k, \beta(h, y_0)) = \beta(k, y_0(\chi_{y_0}(h))) = \beta(k, y_0)(\chi_{y_0}(h)) = y_0(\chi_{y_0}(k))(\chi_{y_0}(h)).$$

It is easy to check that, replacing y_0 by y_0k for an element $k \in K$, we have

$$\chi_{y_0k} = k^{-1}\chi_{y_0}k = \iota_k \circ \chi_{y_0},$$

so χ_{y_0} is well defined up to conjugation by an element of K. In this formula we used the notation ι_k for the inner automorphism defined by k.

Let $\eta \in A^1_{\text{ad}}(P, \mathfrak{t})$ be a β-invariant tensorial form of type ad. Its restriction η_{y_0} to $T_{y_0}(P)$ descends to a linear map $\eta_{y_0} : T_{x_0}(X) \to \mathfrak{t}$ given by $\eta_{y_0}(\xi) := \eta_{y_0}(\xi)$, where ξ is an arbitrary lift of ξ in $T_{y_0}P$. For a tangent vector $\xi \in T_{x_0}(X)$ and a lift $\xi \in T_{y_0}(P)$ of ξ, we have $p_*(\beta_{h*}(\xi)) = f_{h*}(\xi)$ for all $h \in H_0$. So $\beta_{h*}(\xi)$ (and every right translation of it) is a lift of $f_{h*}(\xi)$. Since η is β-invariant and ad-tensorial we obtain

$$\eta_{y_0}(\xi) = \eta_{y_0}(\xi) = \eta_{y_0}(\phi_{h*}(\xi)) = \eta_{y_0}(\chi_{y_0}(h))((\phi_{h*}(\xi))) =$$

$$= R_{\chi_{y_0}(h)}^*(\eta)(R_{\chi_{y_0}(h)}^{-1}((\phi_{h*}(\xi))) = \text{ad}_{\chi_{y_0}(h)}(\eta_{y_0}(R_{\chi_{y_0}(h)}^{-1}((\phi_{h*}(\xi)))) =$$

$$= \text{ad}_{\chi_{y_0}(h)}(\eta_{y_0}(f_{h*}(\xi))),$$

where (as in [KN]) R_k stands for the right translation $P \to P$ associated with an element $k \in K$. Therefore η_{y_0} must satisfy the identity

$$\eta_{y_0}(f_{h*}(\xi)) = \text{ad}_{\chi_{y_0}(h)}(\eta_{y_0}(\xi)) \forall \xi \in T_{x_0}(X), \forall h \in H_0. \ (3)$$

Composing η_{y_0} with the derivative $\alpha_{x_0*} : a \to T_{x_0}(X)$ at $e \in A$ of the map $a \mapsto f_a(x_0)$ we get a linear map

$$\mu^0 := \eta^0 \circ \alpha_{x_0*} : a \to \mathfrak{t}$$

satisfying the properties

$$\mu^0 \big|_{y_0} = 0, \ (1)$$

$$\mu^0 \circ \text{ad}_h = \text{ad}_{\chi_{y_0}(h)} \circ \mu^0 \forall h \in H_0. \ (2)$$

The following result is a consequence of Wang’s classification theorem for invariant connections on a principal bundle with respect to a “fibre-transitive” action (see [W], [KN] p. 106). We include a short proof for completeness.
Lemma 6. Let \((P, \beta)\) be a \((K, \alpha)\)-bundle. Choose \(x_0 \in X, y_0 \in P_{x_0}\), and let \(\chi_{y_0} : H_0 \rightarrow K\) be the associated group morphism. If \(\alpha\) is transitive, then the above map

\[s_{y_0} : \eta \mapsto \mu^y := \eta^y \circ \alpha_{x_0, y} \]

defines an isomorphism between the space \(A^1_{\text{ad}}(P, \mathfrak{k})\) of \(\beta\)-invariant tensorial 1-forms of type \(\text{ad}\) on \(P\), and the subspace

\[S_{y_0} := \{ \mu \in \text{Hom}(\mathfrak{a}, \mathfrak{k}) \mid \mu|_{\mathfrak{h}_0} = 0, \mu \circ \text{ad}_h = \text{ad}_{\chi_{y_0}(h)} \circ \mu \forall h \in H_0 \} \subset \text{Hom}(\mathfrak{a}, \mathfrak{k}) \]

For fixed \(x_0\), the space \(S_{y_0}\) and the isomorphism \(s_{y_0} : A^1_{\text{ad}}(P, \mathfrak{k}) \rightarrow S_{y_0}\) depend on \(y_0 \in P_{x_0}\) according to the formula

\[S_{y_0} = \text{ad}_{k^{-1}}(S_{y_0}) , \quad s_{y_0} = \text{ad}_{k^{-1}} \circ s_{y_0} \forall k \in K \]

Proof. Given a linear map \(\mu : \mathfrak{a} \rightarrow \mathfrak{k}\) satisfying the above two conditions we obtain easily a linear map \(\eta_{y_0} : T_y(P) \rightarrow \mathfrak{k}\) vanishing on the vertical tangent space at \(y_0\). Using the right \(K\)-equivariance and left \(A\)-invariance property of the tensorial forms of type \(\text{ad}\), and the transitivity assumption, we can extend this form to all tangent spaces \(T_y(P)\). The two properties

\[\mu|_{\mathfrak{h}_0} = 0, \mu \circ \text{ad}_h = \text{ad}_{\chi_{y_0}(h)} \circ \mu \forall h \in H_0 \]

ensure that this extension is well-defined, meaning for \(y \in P\), the resulting linear map \(T_y(P) \rightarrow \mathfrak{k}\) does not depend on the representation \(y = \phi_{\alpha}(y_0)k\), with \(\alpha \in A\) and \(k \in K\). \(\square\)

Remark 7. The condition \(\mu|_{\mathfrak{h}_0} = 0\) means that the linear map \(\mu : \mathfrak{a} \rightarrow \mathfrak{k}\) descends to a linear map \(\mathfrak{a}/\mathfrak{h}_0 \rightarrow \mathfrak{k}\). This map will also be denoted by \(\mu\). The condition

\[\mu \circ \text{ad}_h = \text{ad}_{\chi_{y_0}(h)} \circ \mu \]

in the definition of the space \(S_{y_0}\) has a very natural interpretation: it means that \(\mu\) is a morphism of \(H_0\) spaces, where \(\mathfrak{a}/\mathfrak{h}_0\) is considered as a \(H_0\)-space via the adjoint representation of the subgroup \(H_0 \subset A\), and \(\mathfrak{k}\) is considered a \(H_0\)-space via \(\text{ad} \circ \chi_{y_0}\).

Corollary 8. Let \((P, \beta)\) be a \((K, \alpha)\)-bundle. Suppose that \(\alpha\) is transitive and that \(P\) admits a \(\beta\)-invariant connection. Choose \(x_0 \in X, y_0 \in P_{x_0}\), and let

\[\chi_{y_0} : H_0 \rightarrow K \]

be the associated group morphism. Then the space \(\mathcal{A}(P)^\beta\) of invariant connections on \((P, \beta)\) is naturally an affine space over the finite dimensional space \(S_{y_0} \subset \text{Hom}(\mathfrak{a}/\mathfrak{h}_0, \mathfrak{k})\).

Our next goal is the classification of \(\beta\)-invariant connections on different bundles of type \((K, \alpha)\) up to equivalence.

Definition 9. Two \(\alpha\)-invariant connections \((P, \beta, \Gamma), (P', \beta', \Gamma')\) on \(X\) are called equivalent if there is an isomorphism \(\phi : (P, \beta) \rightarrow (P', \beta')\) of \((K, \alpha)\)-bundles such that \(\phi'(\Gamma') = \Gamma\).

We denote by \(\Phi_{\alpha, K}\) the set of isomorphism classes of \(\alpha\)-invariant connections. Since the isomorphism class of a \(\alpha\)-invariant connection \(\Gamma\) is preserved by gauge transformations commuting with \(\alpha\), we obtain an obvious comparison map

\[\rho_{\alpha, K} : \Phi_{\alpha, K} \rightarrow \mathcal{F}_{\alpha, K}, \ [P, \beta, \Gamma] \mapsto [\Gamma] \]
which will be used in the next section to understand the set $\mathcal{F}_{\alpha,K}$ in $[1]$. Intuitively, the comparison map $\rho_{\alpha,K}$ relates equivalence classes of invariant connections to invariant equivalence (gauge) classes of connections. Whereas the right hand set $\mathcal{F}_{\alpha,K}$ depends only on the image of A in $\text{Aut}(X)$, the left hand set $\Phi_{\alpha,K}$ depends effectively on the action α. In particular, replacing α by the induced action $\bar{\alpha}$ of the universal cover \bar{A} of A we will get a comparison map

$$\rho_{\bar{\alpha},K} : \Phi_{\bar{\alpha},K} \longrightarrow \mathcal{F}_{\bar{\alpha},K} = \mathcal{F}_{\alpha,K}$$

which will play an important role in the next section.

We will now give an explicit description of the set $\Phi_{\alpha,K}$ in the special case where α is transitive and the principal H_0-bundle $q : A \longrightarrow X$, $a \longmapsto \alpha(a, x_0)$, where H_0 is the stabilizer of x_0, has an invariant connection. We will see that this condition has a simple interpretation and is satisfied for a large class of interesting examples.

From now on, throughout this section, we will suppose that α is transitive. We will regard the composition $\lambda : A \times A \longrightarrow A$ as a left-translation action of A on itself. Note that (A, λ) is a principal (H_0, α)-bundle over X, i.e., λ is an α-covering action by bundle isomorphisms (see Definition 3). This pair should be regarded as a tautological equivariant bundle over X, because it was constructed using only the pointed manifold (X, x_0) and the transitive action α on X.

This tautological equivariant bundle has an important role in our constructions, because we will see that any (K, α)-bundle (P, β) over X (for an arbitrary Lie group K) can be regarded, in an essentially well defined way, as a bundle associated with the tautological equivariant bundle (A, λ) over X. This simple remark will allow us to construct invariant connections on every (K, α)-bundle (P, β) over X, starting with an invariant connection on this tautological equivariant bundle.

Let (P, β) be a (K, α)-bundle over X. Choose $y_0 \in P_{x_0}$, and consider the homomorphism $\chi_{y_0} : H \longrightarrow K$ in $[2]$. The map

$$\psi_{y_0} : A \longrightarrow P$$

given by $\psi_{y_0}(a) := \beta(a, y_0)$ is an id$_X$-covering principal bundle morphism of type $\chi_{y_0} : H_0 \longrightarrow K$, because for $a \in A$ and $h \in H_0$ we have

$$\psi_{y_0}(ah) = \beta(ah, y_0) = \beta(a, \beta(h, y_0)) = \beta(a, y_0 \chi_{y_0}(h))$$

$$= \beta(a, y_0)(\chi_{y_0}(h)) = \psi_{y_0}(a)(\chi_{y_0}(h))$$

by the definition of χ_{y_0}. We refer to [KN] for the concept of bundle morphism and for the transformation of connections via bundle morphisms.

Suppose that the equivariant tautological bundle (A, λ) over X has an invariant connection Γ_0. We obtain a connection $(\psi_{y_0})_*(\Gamma_0)$ on P which will be β-invariant because, for any $a \in A$ we have

$$(\phi_a)_*((\psi_{y_0})_*(\Gamma_0)) = (\psi_{y_0})_*((l_a)_*(\Gamma_0)) = (\psi_{y_0})_*(\Gamma_0).$$

Moreover, the invariant connection $(\psi_{y_0})_*(\Gamma_0)$ on P does not depend on the choice of $y_0 \in P_{x_0}$, because $\psi_{y_0,k} = R_k \circ \psi_{y_0}$, so the horizontal spaces of the connections $(\psi_{y_0})_*(\Gamma_0)$ and $(\psi_{y_0,k})_*(\Gamma_0)$ coincide.

Using Lemma $[3]$ and Corollary $[3]$ we obtain:

Proposition 10. Suppose that α is transitive. Fix $x_0 \in X$ with stabilizer H_0, and let Γ_0 be an invariant connection on the tautological equivariant H_0-bundle (A, λ). Then
(1) Any \((K, \alpha)\)-bundle \((P, \beta)\) over \(X\) has a canonical invariant connection.

(2) After choosing a point \(y_0 \in P_{x_0}\), there is a canonical identification between the space \(\mathcal{A}(P)\) of \(\beta\)-invariant connections on \(P\) and the space

\[
S_{y_0} := \{ \mu \in \text{Hom}(a/h_0, \mathfrak{k}) | \mu \circ \text{ad}_h = \text{ad}_{\chi_{y_0}} \circ \mu \forall h \in H_0 \} \subset \text{Hom}(a/h_0, \mathfrak{k}).
\]

Now we can prove the main result of this section.

Definition 11. We introduce the moduli space \(\mathcal{M}(A, H_0, K)\) by

\[
\mathcal{M}(A, H_0, K) := \{ (\chi, \mu) \in \text{Hom}(H_0, K) \times \text{Hom}(a/h_0, \mathfrak{k}) | \mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \forall h \in H_0 \}/K,
\]

where \(K\) acts by conjugation on the set of pairs \((\chi, \mu)\).

Theorem 12. Suppose that \(\alpha\) is transitive. Fix \(x_0 \in X\) with stabilizer \(H_0\), and suppose that the tautological equivariant \(H_0\)-bundle \((A, \lambda)\) over \(X\) has a \(\lambda\)-invariant connection \(\Gamma_0\). Let \(K\) be a Lie group. Let \(\Phi_{a,K}\) be the set of equivalence classes of \(\alpha\)-invariant connections, i.e., the set of triples \((P, \beta, \Gamma)\), where \((P, \beta, \Gamma)\) is a \((K, \alpha)\)-bundle and \(\Gamma\) a \(\beta\)-invariant connection on \(P\), up to equivalence. There exists a natural bijection

\[
C_{x_0} : \Phi_{a,K} \xrightarrow{\sim} \mathcal{M}(A, H_0, K).
\]

Proof. Consider a triple \((P, \beta, \Gamma)\), where \((P, \beta)\) is a \((K, \alpha)\)-bundle and \(\Gamma\) a \(\beta\)-invariant connection on \(P\). Choosing a point \(y_0 \in P_{x_0}\) and using the construction explained above we obtain a group morphism \(\chi_{y_0} : H_0 \rightarrow K\), an equivariant bundle map \(\psi_{y_0} : (A, \lambda) \rightarrow (P, \beta)\) over \(X\), and a \(\beta\)-invariant connection \((\psi_{y_0})_*(\Gamma_0)\). By Corollary 6 the difference \(\Gamma - (\psi_{y_0})_*(\Gamma_0)\) can be regarded as an element \(\mu_{y_0} \in S_{y_0}\). We define the map \(C_{x_0}\) by

\[
(P, \beta, \Gamma) \rightarrow (\chi_{y_0}, \mu_{y_0}).
\]

Using the equivariance properties proved above, we see that \((\chi_{y_0}, \mu_{y_0})\) is independent of \(y_0\) up to conjugation. The proof uses the fact that the reference connection \((\psi_{y_0})_*(\Gamma_0)\) is independent of \(y_0\) (this was shown above), so \(\Gamma - (\psi_{y_0})_*(\Gamma_0)\) is a well defined \(\beta\)-invariant tensorial form of type \(\text{ad}\). Moreover, two equivalent triples \((P, \beta, \Gamma), (P', \beta', \Gamma')\) define obviously the same element in the quotient

\[
\{ (\chi, \mu) \in \text{Hom}(H_0, K) \times \text{Hom}(a/h_0, \mathfrak{k}) | \mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \forall h \in H_0 \}/K.
\]

In order to prove that \(C_{x_0}\) is bijective, we will construct an inverse map. For a pair \((\chi, \mu) \in \text{Hom}(H_0, K) \times \text{Hom}(a/h_0, \mathfrak{k})\) with \(\mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu\), we define a triple \((P, \beta, \Gamma)\) by

\[
P := A \times \chi K, \quad \beta(a', [a, k]) := [a' a, k], \quad \Gamma = \psi_{x_0}(\Gamma_0) + \eta_\mu,
\]

where \(\psi : A \rightarrow P\) is the obvious map defined by \(\psi(a) := [a, e]\), and \(\eta_\mu\) denotes the \(\beta\)-invariant tensorial 1-form of type \(\text{ad}\) associated with \(\mu\). This map is a morphism of principal bundle of type \(\chi\) over \(X\) (see [KN]), and it is equivariant with respect to the left \(A\)-actions.

Taking into account Remark 4 we get

Remark 13. The condition on \(\mu\) in the definition of the moduli space \(\mathcal{M}(A, H_0, K)\) has a natural interpretation: \(\mu\) is a \(H_0\)-equivariant linear map \(a/h_0 \rightarrow \mathfrak{k}\) with \(\mathfrak{k}\) regarded as a \(H_0\)-space via \(\text{ad} \circ \chi\).
Remark 14. Suppose that \(\alpha \) is transitive. Fix \(x_0 \in X \) with stabilizer \(H_0 \). Then the map
\[
\Gamma \mapsto \Gamma_c \subset \mathfrak{a}
\]
defines a bijection between the space of \(\lambda \)-invariant connections on the \(H_0 \)-bundle \(A \to X \) and the space of \(\text{ad}_{H_0} \)-invariant complements of \(\mathfrak{t}_0 \) in \(\mathfrak{a} \). In particular the tautological \((H_0, \alpha)\)-bundle \((A, \lambda)\) over \(X \) admits an invariant connection if the pair \((A, H_0)\) satisfies the condition
\[
(4) \quad \text{The subalgebra } \mathfrak{h}_0 \subset \mathfrak{a} \text{ admits an } \text{ad}_{H_0} \text{-invariant complement in } \mathfrak{a}.
\]
If \(\mathfrak{h}_0 \) has an \(\text{ad}_{H_0} \)-invariant complement \(\mathfrak{s} \) in \(\mathfrak{a} \), then the tautological \((H_0, \alpha)\)-bundle \((A, \lambda)\) over \(X \) has a unique invariant connection \(\Gamma_0 \) whose horizontal space in \(e \in A \) is \(\mathfrak{s} \). This follows directly from Proposition XVIII in [GHV, p. 285] and is also implicitly used in Theorem 11.7 [KN]. The connection \(\Gamma_0 \) corresponding to a complement \(\mathfrak{s} \) is flat if and only if \(\mathfrak{s} \) is a Lie subalgebra.

Note the condition (1) plays an important role in the theory of homogeneous spaces. If it is satisfied, the homogeneous space \(A/H_0 \) (or more precisely the pair \((A, H_0)\)) is called reductive [Ya, p. 30]. The following remark shows that this condition is always satisfied when \(H_0 \) is compact, and that it is compatible with covers \(\tilde{A} \to A \):

Lemma 15. Suppose again that \(\alpha \) is transitive. Fix \(x_0 \in X \) with stabilizer \(H_0 \).

1. If \(H_0 \) is compact, then the pair \((A, H_0)\) satisfies the condition (1).
2. If \((A, H_0)\) satisfies the condition (4) and \(c : \tilde{A} \to A \) is a cover of \(A \), then the pair \((\tilde{A}, c^{-1}(H_0))\) also satisfies the condition (4).

Proof. The first statement is Corollary III p. 286 in [GHV].

The subgroup \(c^{-1}(H_0) \) will be denoted by \(\widetilde{H}_0 \). For any \(\tilde{a} \in \tilde{A} \) one has \(\text{ad}_{\tilde{a}} = \text{ad}_{c(\tilde{a})} \in \text{GL}(\mathfrak{a}) = \text{GL}(\tilde{\mathfrak{a}}) \). So for any \(\text{ad}_{\tilde{H}_0} \)-invariant complement \(\mathfrak{s} \) of \(\mathfrak{h}_0 \) in \(\mathfrak{a} \), the pull-back \(c^{-1}_*(\mathfrak{s}) \) is an \(\text{ad}_{\tilde{H}_0} \)-invariant complement of \(\tilde{\mathfrak{h}}_0 \) in \(\tilde{\mathfrak{a}} \). Hence the second statement follows. \qed

Corollary 16. Suppose that the action \(\alpha \) is transitive. Fix \(x_0 \in X \), and suppose that the pair \((A, H_0)\) satisfies the condition (4). Then Theorem 12 applies to \(\alpha \) and to the induced action \(\tilde{\alpha} : \tilde{A} \times X \to X \) associated with any cover \(c : \tilde{A} \to A \). Therefore, for any such cover \(c \), we get an identification
\[
\Phi_{\tilde{\alpha}, K} \cong \mathcal{M}(\tilde{A}, \tilde{H}_0, K),
\]
where \(\tilde{H}_0 := c^{-1}(H_0) \).

In the particular case when \(\tilde{H}_0 \) is simply connected, the right hand quotient in Corollary 14 can be described using Lie algebra morphisms \(\chi \) instead of Lie group morphisms:

Remark 17. If \(\tilde{H}_0 := c^{-1}(H_0) \) is simply connected, then
\[
\mathcal{M}(\tilde{A}, \tilde{H}_0, K) = \{ (\chi, \mu) \in \text{Hom}_{\text{Lie-Alg}}(\mathfrak{h}_0, \mathfrak{t}) \times \text{Hom}(\mathfrak{a}/\mathfrak{h}_0, \mathfrak{t}) \mid \mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \forall h \in \mathfrak{h}_0 \}/K,
\]
which is the quotient of a \(K \)-invariant real algebraic affine subvariety of the vector space \(\text{Hom}(\mathfrak{h}_0, \mathfrak{t}) \times \text{Hom}(\mathfrak{a}/\mathfrak{h}_0, \mathfrak{t}) \) on which \(K \) acts by linear automorphisms.
3. Comparing isomorphism classes of invariant connections with invariant gauge classes of connections

Let \(p : P \rightarrow X \) be a principal \(K \)-bundle on \(X \). As we have seen in Section 1, the elements of the gauge group \(\mathcal{G}_P \) of \(P \) can be interpreted as sections of the group bundle \(P \times_{\text{Ad}} K \). The fiber \(K_x \) of \(P \times_{\text{Ad}} K \) at a point \(x \in X \) is identified with the group of automorphisms \(P_x \rightarrow P_x \) which commute with the right action of \(K \) on \(P_x \) (this follows from the fact that the group of diffeomorphisms of \(K \) commuting with the right translation action of \(K \) on itself is precisely the left translations). Therefore, \(K_x \cong K \) (unique up to an inner automorphism) for every \(x \in X \), and a point \(y \in P_x \) defines an isomorphism \(i_y : K_x \rightarrow K \) which is given by the formula \(y(i_y(g)) = g(y) \) for any \(g \in K_x \).

Since \(A \) is connected the isomorphism type of \(P \) is \(\alpha \)-invariant; let \(\Gamma \) be a gauge \(\alpha \)-invariant connection on \(P \) (see Definition 1). We denote by \(U \) the stabilizer of \(\Gamma \) in the gauge group \(\mathcal{G}_P \) of \(P \). The elements of \(U \) correspond bijectively to \(\Gamma \)-parallel sections of the associated bundle \(P \times_{\text{Ad}} K \) endowed with the connection induced by \(\Gamma \). This proves that, for any fixed \(x \in X \), the group \(U \) can be identified with the closed subgroup of \(K_x \) consisting of the elements that commute with the holonomy group of the connection \(\Gamma \) on \(P \) (the holonomy group is a subgroup of \(K_x \) obtained by taking parallel translations of \(P_x \) along loops based at \(x \)). Note that \(U \) does not need to be connected.

Following [Bi1] we define an extension of \(A \) by \(U \) by

\[
V := \{ (\phi, a) \mid a \in A, \phi : P \rightarrow P \text{ is an } f_a\text{-covering bundle isom. with } \phi^*(\Gamma) = \Gamma \}.
\]

It is easy to see that \(V \) has a Lie group structure such that the natural monomorphism \(j : U \rightarrow V \) identifies the stabilizer \(U \) with a closed subgroup of \(V \), and such that the natural projection \(\pi : V \rightarrow A \) becomes a Lie group epimorphism. Therefore we obtain a Lie group exact sequence

\[
(5) \quad 1 \rightarrow U \xrightarrow{j} V \xrightarrow{\pi} A \rightarrow 1.
\]

Proposition 18. Suppose that the Lie algebra \(a \) is semi-simple and \(A \) is simply connected. Then the following statements hold:

1. There exists a Lie group homomorphism \(s : A \rightarrow V \) such that \(\pi \circ s = \text{id}_A \).
2. If moreover \(K \) is compact and all simple summands of \(a \) are non-compact\(^{1}\), then \(s \) is unique.

Proof. Statement (1): Using the terminology and [CE, p. 122, Theorem 24.4] we see that when \(a \) is semisimple, the Lie algebra extension

\[
0 \rightarrow u \xrightarrow{j} v \xrightarrow{\pi} a \rightarrow 0
\]

associated with \(\mathfrak{g} \) is inessential. Therefore there exists a homomorphism of Lie algebras \(\sigma : a \rightarrow v \) such that \(\pi_s \circ \sigma = \text{id}_a \). If \(A \) is simply connected then \(\sigma \) is associated with a group homomorphism \(s : A \rightarrow V \). This homomorphism clearly satisfies the condition \(\pi \circ s = \text{id}_A \).

Statement(2): Since \(K \) is compact, its closed subgroup \(U \) is also compact. As \(A \) is

\(^{1}\)By compact Lie algebra we mean a Lie algebra \(\mathfrak{g} \) which is the Lie algebra of a compact Lie group, or equivalently, a Lie algebra which admits an inner product which is ad-invariant, in the sense that the endomorphisms \(\text{ad}(X), \ X \in \mathfrak{g} \) are skew-symmetric (see [BM] p. 194, Theorem 6.6).
connected, the adjoint representation Ad of V defines via s a group homomorphism
$r : A \rightarrow \text{Aut}_0(U)$ in the connected component $\text{Aut}_0(U)$ of the automorphism
 group $\text{Aut}(U)$ of U. Since U is a compact Lie group it follows that $L := \text{Aut}_0(U)$ is
 a compact Lie group (see [HM, p. 264, Theorem 6.66]). We obtain an induced Lie
 algebra homomorphism $r_* : a \rightarrow \mathfrak{l}$, which must vanish, because the Lie algebra
 \mathfrak{l} is compact and all the simple summands of a are non-compact. Therefore the
 homomorphism r is trivial, implying that the elements of $A' := s(A)$ commute
 with the elements of $U' := j(U)$.

Therefore, the map $v \mapsto v(s\pi(v))^{-1}$ is a group homomorphism $\theta : V \rightarrow U$
 whose kernel is A'. For another group homomorphism $s_1 : A \rightarrow V$ with
 $\pi \circ s_1 = \text{id}_A$, we obtain a group homomorphism $\theta \circ s_1 : A \rightarrow U$, which is also
 trivial because U is compact and all the simple summands of a are non-compact.
 Therefore $\text{im}(s_1) \subset A'$, which shows that $s_1(a) = (\pi|_{U'})^{-1}(a) = s(a)$ for every
 $a \in A$.

Note that a group homomorphism $s : A \rightarrow V$ with $\pi \circ s = \text{id}_A$ can be
 regarded as an action $\beta : A \times P \rightarrow P$ by bundle isomorphisms leaving Γ
 invariant. Therefore:

Corollary 19. Suppose that a is semi-simple, and denote by $\tilde{\alpha} : \tilde{A} \times X \rightarrow X$
 the induced action of the universal cover \tilde{A} of A. Then for every gauge α-invariant
 connection $\Gamma \in \mathcal{A}(P)$, there exists an $\tilde{\alpha}$-covering action $\beta : \tilde{A} \times X \rightarrow P$
 by bundle isomorphisms such that Γ is β-invariant. If, moreover, K is compact and
 all simple summands of a are non-compact, the action β is unique.

In the case when we have uniqueness of action preserving Γ, we will write β_T
 instead of β.

Suppose now that we have two gauge α-invariant connections $\Gamma \in \mathcal{A}(P)$ and
 $\Gamma' \in \mathcal{A}(P')$ and an id_X-covering bundle isomorphism $\phi : P \rightarrow P'$ such that
 $\phi^*(\Gamma') = \Gamma$. Using the uniqueness of action in Proposition 15 we see that ϕ
 is equivariant with respect to the two actions $\beta_T, \beta_{T'}$. In other words, in this case one
 can assign in a well defined way to every α-invariant gauge class $[\Gamma]$ of K-connections
 an equivalence class $[P, \beta_T, \Gamma]$ of $\tilde{\alpha}$-invariant connections.

Therefore, recalling that the set $\mathcal{F}_{\alpha,K}$ in (11) depends only on the image of A in
 $\text{Aut}(X)$, we obtain:

Corollary 20. If a is semisimple then the comparison map

$$
\rho_{\tilde{\alpha},K} : \Phi_{\tilde{\alpha},K} \rightarrow \mathcal{F}_{\tilde{\alpha},K} = \mathcal{F}_{\alpha,K} : [P, \beta, \Gamma] \mapsto [\Gamma]
$$

is surjective. If, moreover, K is compact and all the simple summands of a are non-compact, this map is bijective.

Using Corollary 16 and Remark 17 we obtain:

Corollary 21. Suppose that a is semisimple, K is compact, all the simple sum-
 mands of a are non-compact, the action α is transitive, and the pair (A, H_0) satis-
 fies the condition (11) (which holds automatically when H_0 is compact). Then the
 set $\Phi_{\tilde{\alpha},K} \simeq \mathcal{F}_{\tilde{\alpha},K}$ can be identified with $\mathcal{M}(\tilde{A}, H_0, K)$ (see Definition 77),
 where $H_0 := c^{-1}(H_0)$. If, moreover, the pull-back \tilde{H}_0 is simply connected, then the set
 $\Phi_{\tilde{\alpha},K}$ can be identified with the quotient

$$
\left\{ (\chi, \mu) \in \text{Hom}(\text{LieAlg}(h_0, \mathfrak{t}) \times \text{Hom}(a/h_0, \mathfrak{t}) \mid \mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \ \forall \ h \in h_0 \right\}/K,
$$
which is the quotient of a K-invariant real algebraic affine subvariety of the vector space $\text{Hom}(h_0, \mathfrak{t}) \times \text{Hom}(\mathfrak{a}/h_0, \mathfrak{t})$ on which K acts by linear automorphisms.

4. Examples

4.1. Invariant connections over the half-plane. The main result in [Bi1] can be recovered as a special case of our general results. The upper half-plane \mathbb{H} can be identified with the homogeneous manifold $\text{PSL}(2)/H_0$, where $H_0 = \text{SO}(2)/\{\pm 1\}$, whose Lie algebra is

$$h_0 = \mathbb{R}h_0, \quad h_0 := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Since the pull-back \tilde{H}_0 in $\tilde{\text{PSL}}(2)$ is simply connected, we obtain

$$\mathcal{M}(\tilde{\text{PSL}}(2), \tilde{H}_0, K) = \{ (\chi, \mu) \in \text{Hom}_{\text{LieAlg}}(h_0, \mathfrak{t}) \times \text{Hom}(sl(2)/h_0, \mathfrak{t}) | \mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \quad \forall \ h \in h_0 \}/K.$$

The space $\text{Hom}(sl(2, \mathbb{R})/h_0, \mathfrak{t})$ can be identified with $\text{Hom}(h_0^\perp, \mathfrak{t})$, where h_0^\perp is the complement

$$h_0^\perp := \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$$

of h_0, which is ad_{H_0}-invariant. Putting

$$B := \mu \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad C := \mu \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

we see that the condition $\mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \quad \forall \ h \in h_0$ is equivalent to

$$[\chi(h_0), B] = 2C, \quad [\chi(h_0), C] = -2B,$$

so, denoting $A := C + iB \in \mathfrak{t} \otimes \mathbb{C}$, this can be written as

$$(6) \quad [\chi(h_0), A] = 2iA.$$

On the other hand χ is obviously determined by the vector $\chi_0 := \chi(h_0) \in \mathfrak{t}$. Therefore, the moduli space $\mathcal{M}(\text{PSL}(2), \tilde{H}_0, K)$ can be identified with the quotient

$$\mathcal{M}_K := \{ (\chi_0, A) \in \mathfrak{t} \times (\mathfrak{t} \otimes \mathbb{C}) | [\chi_0, A] = 2iA \}/K.$$

Denoting by $\alpha_{\mathbb{H}}, \tilde{\alpha}_{\mathbb{H}}$ the standard actions of $\text{PSL}(2)$, respectively $\tilde{\text{PSL}}(2)$ on \mathbb{H}, and using Corollary 21 we obtain

Corollary 22. The set $\Phi_{\tilde{\alpha}_{\mathbb{H}}, K}$ of equivalence classes of $\tilde{\alpha}_{\mathbb{H}}$-invariant K-connections on \mathbb{H} can be naturally identified with the moduli space \mathcal{M}_K. If K is compact, then the same moduli space classifies

1. $\alpha_{\mathbb{H}}$-invariant gauge classes of K-connections,
2. $\alpha_{\mathbb{H}}$-invariant isomorphism classes of pairs (Q, P) consisting of a holomorphic $K^\mathbb{C}$-bundle Q and a differentiable K-reduction P of Q.

4.2. The case of complex homogeneous complex manifolds. We begin with the following important

Definition 23. Let K be compact Lie group and X a complex manifold. A Hermitian holomorphic K-bundle is a pair (Q, P) consisting of a holomorphic K-bundle $Q \to M$ and a K-reduction P of Q. An isomorphism (or an isometric biholomorphic isomorphism) of Hermitian holomorphic K-bundles (Q, P), (Q', P') is a holomorphic isomorphism $f : Q \to Q'$ such that $f(P) = P'$.

Suppose that the conditions of Corollary 21 are satisfied, K is compact, and X possesses an A-invariant complex structure. The classification of isomorphism classes of Hermitian holomorphic K-bundles (Q, P) on X reduces to the classification of α-invariant gauge classes of K-connections which are of type $(1, 1)$ (defined in Section 4.1). The condition of being type $(1, 1)$ produces an explicit algebraic equation on the space of pairs (χ, μ) (as in Corollary 21). This equation has a simple form when the tautological equivariant H_0-bundle (A, λ) over X has a λ-invariant connection Γ_0, which is itself of type $(1, 1)$. This is the case when X is an irreducible Hermitian symmetric space of non-compact type (see [B2]).

Suppose that the pair (A, H_0) is reductive (i.e., it satisfies condition (11)). Let \mathfrak{s} be a H_0-invariant complement of \mathfrak{h}_0 in \mathfrak{a} and Γ_0 the corresponding invariant connection on the H_0-bundle $A \to X$. When Γ_0 is of type $(1, 1)$, all the induced connections $(\psi_y)_* (\Gamma_0)$ (see the proof of Theorem 12) will also be of type $(1, 1)$. For a pair $(\chi, \mu) \in \text{Hom}(H_0, K) \times \text{Hom}(\mathfrak{a}/\mathfrak{h}_0, \mathfrak{t})$ with $\mu \circ \text{ad}_h = \text{ad}_h \chi(h) \circ \mu \forall h \in H_0$, the condition that the associated connection is of type $(1, 1)$ reduces to the following condition:

\begin{equation}
(D_0(\eta_\mu) + \frac{1}{2}[\eta_\mu \wedge \eta_\mu])^2 + (D_0(\eta_\mu) - \frac{1}{2}[\eta_\mu \wedge \eta_\mu])^{0,2} = 0,
\end{equation}

where D_0 is the exterior covariant derivative [K] associated with the type $(1, 1)$ connection $(\psi)_* (\Gamma_0)$, and η_μ is the β-invariant tensorial 1-form of type ad associated with μ (see the proof of Theorem 12). The tensorial 2-form $D_0(\eta_\mu) + \frac{1}{2} [\eta_\mu \wedge \eta_\mu]$ is determined by its value at $y_0 = [(e, e)] \in A \times K$, which is an anti-symmetric bilinear map $T_{y_0}(P) \times T_{y_0}(P) \to \mathfrak{t}$ whose pull-back via ψ_{y_0} is a bilinear map $\mathfrak{a} \times \mathfrak{a} \to \mathfrak{t}$ vanishing when one of the arguments belongs to \mathfrak{h}_0.

Lemma 24. The restriction to $\mathfrak{s} \times \mathfrak{s}$ of the anti-symmetric bilinear map $\mathfrak{a} \times \mathfrak{a} \to \mathfrak{t}$ induced by $D_0(\eta_\mu) + \frac{1}{2} [\eta_\mu \wedge \eta_\mu]$ via ψ_{y_0} is given by

\[(\xi, \zeta) \mapsto -\mu([\xi, \zeta]) + [\mu(\xi), \mu(\zeta)].\]

Proof. The exterior covariant derivative $D_0(\eta_\mu)$ with respect to the connection $\psi_* (\Gamma_0)$ of η_μ corresponds to the exterior covariant derivative with respect to Γ_0 of the pull-back of η_μ via the bundle morphism ψ. This pull-back is a tensorial 1-form of type $\chi \circ \text{ad}$ on the total space A of the H_0-bundle $A \to X$, and coincides with the left invariant \mathfrak{t}-valued 1-form $\tilde{\mu}$ on A whose restriction to \mathfrak{a} is μ. It suffices to compute $(D_{\Gamma_0}(\tilde{\mu}))(\xi, \zeta)$ for two tangent vectors $\xi, \zeta \in \mathfrak{s}$. Let ξ, ζ be the left invariant vector fields on A determined by ξ, ζ. Since ξ and ζ are Γ_0-horizontal, and $\tilde{\mu}(\xi), \tilde{\mu}(\zeta)$ are constant, we get

\[D_{\Gamma_0}(\tilde{\mu})(\xi, \zeta) = (d\tilde{\mu})(\xi, \zeta) = \xi(\tilde{\mu}(\zeta)) - \tilde{\mu}(\xi(\zeta)) - \tilde{\mu}(\xi, \eta) = -\tilde{\mu}(\xi, \zeta).\]
This shows that $D_{\xi}(\mu)(\xi, \zeta) = -\mu([\xi, \zeta])$ where $[\xi, \eta]$ denotes the Lie bracket of ξ, η in the Lie algebra \mathfrak{a}. Note that $\mu([\xi, \eta])$ depends only on the s-component (the horizontal component) of $[\xi, \eta]$.

Using Lemma 24 and our results about the classification of invariant connections we obtain:

Theorem 25. Let s be a H_0-invariant complement of h_0 in a endowed with a complex structure \mathcal{J} such that

1. The invariant almost complex structure determined by \mathcal{J} on $X = A/H_0$ is integrable.
2. The curvature of the connection Γ_0 on the H_0-bundle $A \to X = A/H_0$ is of Hodge type $(1,1)$.

Let K be a compact Lie group. Then the equivalences classes of triples (Q, P, β) consisting of a holomorphic K-bundle (Q, P) on X, and an α-lifting action β by holomorphic K-bundle isomorphisms, correspond bijectively to the points of the quotient $\mathcal{M}(A, H_0, K, s, J) \subset \mathcal{M}(A, H_0, K)$ defined by

$$\mathcal{M}(A, H_0, K, s, J) := \left\{(\chi, \mu) \in \text{Hom}(H_0, K) \times \text{Hom}(a/h_0, t) \mid \mu \circ \text{ad}_h = \text{ad}_{\chi(h)} \circ \mu \forall h \in H_0, \quad \mathfrak{J}(\mu) = 0 \right\}/K$$

where the map $\mathfrak{J}_J : \text{Hom}(a/h_0, t) \to \text{Alt}^2(s, t)$ is defined by

$$\mathfrak{J}_J(\mu)(\xi, \zeta) := -\mu([\xi, \zeta]) + [\mu(\xi), \mu(\zeta)] + \mu([J\xi, J\zeta]) - [\mu(J\xi), \mu(J\zeta)].$$

If, moreover, a is semisimple and all the simple summands of a are of non-compact type, then the α-invariant isomorphism classes of holomorphic K-bundles on X correspond bijectively to the points of the quotient $\mathcal{M}(\tilde{A}, \tilde{H}_0, K, s, J)$, where $c : \tilde{A} \to A$ is the universal cover of A and $\tilde{H}_0 := c^{-1}(H_0)$.

The main result of [12] can be recovered as a special case of this general theorem:

Remark 26. Taking for A a simple Lie group of non-compact type and for H_0 a maximal compact subgroup of A, we obtain the classification of α-invariant classes of holomorphic K-bundles (Q, P) on any irreducible symmetric Hermitian space of non-compact type. The condition of being type $(1,1)$ required in Theorem 25 is satisfied by the results of [Ra], so in this case the α-invariant equivalence classes of pairs (Q, P) correspond bijectively to the moduli space $\mathcal{M}(A, H_0, K, s, J)$.

4.3. **Non-transitive actions.** Let now α be a smooth action of a Lie group A on a manifold X. Restricting an α-invariant K-connection (P, β, Γ) on X to an orbit $Y \subset X$ of α, one obtains an α_Y-invariant K-connection on Y endowed with the induced transitive action α_Y.

If A acts on X with compact stabilizers, then Theorem 12 can be applied to all these transitive actions, and one obtains for every orbit Y an explicit description of the set $\Phi_{\alpha_Y, K}$ of equivalence classes of α_Y-invariant K-connections on Y in terms of a moduli space \mathcal{M}_Y, which is a K-quotient of a finite dimensional space. A natural problem is to endow the union $\mathcal{M} := \bigsqcup_{Y \in X/A} \mathcal{M}_Y$ with a natural topology such that the projection

$$r : \mathcal{M} \to X/A$$
is continuous, and such that every α-invariant K-connection (P, β, Γ) on X defines a continuous section of r. We believe that a natural strategy for understanding the set $\Phi_{\alpha,K}$ of equivalence classes of α-invariant K-connections on X is to study the map R which associates to every α-invariant K-connection (P, β, Γ) on X the section of the fibration r obtained by restriction to the orbits. The first step in this direction would be to describe explicitly the topology of the total space \mathcal{M}, and the image and the fibers of R.

References

[Bi1] Biswas, I.: Homogeneous principal bundles over the upper half-plane, Kyoto J. Math. Volume 50, 325–363 (2010).
[Bi2] Biswas, I.: Classification of Homogeneous holomorphic Hermitian principal bundles over G/K, Forum Mathematicum, online first, February 2013.
[CE] Chevalley, C.; Eilenberg, S.: Cohomology Theory of Lie Groups and Lie Algebras, Trans. Amer. Math. Soc. 63, 85–124 (1948).
[Do] Donaldson, S. K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50, 1–26 (1985).
[DK] Donaldson, S.; Kronheimer, P.: The Geometry of Four-Manifolds, Oxford Univ. Press (1990).
[GHV] Greub, W.; Halperin, S.; Vanstone, R.: Curvature, and Cohomology. Vol. 2: Lie Groups, Principal Bundles, and Characteristic Classes, Academic Press (1973).
[HM] Hofmann, K.; Morris, S.: The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert, De Gruyter Studies in Mathematics, 2 Revised edition (2006).
[Hu] Husemoller, D.: Fibre bundles, Springer Verlag, Graduate Texts in Mathematics 20, 3rd edition (1994).
[KN] Kobayashi, S.; Nomizu, K.: Foundations of differential geometry, I, Interscience Tracts in Pure and Applied Math., No. 15. John Wiley and Sons, Inc., New York (1963).
[LT] Lübke, M.; Teleman, A.: The universal Kobayashi-Hitchin correspondence on Hermitian surfaces, Memoirs of the AMS, Vol. 183, No. 863 (2006).
[Ra] Ramanan, S.: Holomorphic vector bundles on homogeneous spaces, Topology, 5, 159–177 (1966).
[W] Wang, H.-C.: On invariant connections over a principal fibre bundle, Nagoya Math. J. 13, 1–19 (1958).
[Ya] Yang, K.: Almost complex homogeneous spaces and their submanifolds, World Sci. Publ. (1987).

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
E-mail address: indranil@math.tifr.res.in

CMI, LATP, Aix-Marseille Université, 39 Rue F. Joliot-Curie, F-13453 Marseille Cedex 13, France
E-mail address: teleman@cmi.univ-mrs.fr