Mediterranean nekton traits: Distribution, relationships and significance for marine ecology monitoring and management

Evangelos Tzanatos Corresp., 1, Catherine Moukas 1, Martha Koutsidi 1

1 Department of Biology, University of Patras, Patras, Greece

Corresponding Author: Evangelos Tzanatos
Email address: tzanatos@upatras.gr

Biological traits are increasingly used in order to study aspects of ecology as they are related to the organisms’ fitness. Here we analyze a dataset of 23 traits regarding the life cycle, distribution, ecology and behavior of 235 nektonic species of the Mediterranean Sea in order to evaluate the distribution of traits, identify rare ones, detect relationships between trait pairs and identify species functional groups. Trait relationships were tested using correlation and non-linear regression for continuous traits, parametric and non-parametric inference tests for pairs of continuous-categorical traits and cooccurrence testing for categorical traits. The findings have significant implications concerning the potential effects of climate change (e.g. through the relationships of the trait of optimal temperature), fisheries or habitat loss (from the relationships of traits related to tolerance ranges). Furthermore, some unexpected relationships are documented, like the inversely proportional relationship between longevity and age at maturity as a percentage of life span. Associations between functional traits show affinities derived from phylogenetic constraints or life strategies, however relationships among functional and ecological traits can indicate the potential environmental filtering that acts on functional traits. In total, 18 functional groups were identified by Hill-Smith ordination and hierarchical clustering and were characterized by their dominant traits. For the assessment of the results, we first evaluate the importance of each trait at the level of population, community, ecosystem and landscape and then propose the traits that should be monitored for the regulation and resilience of ecosystem functioning and the management of the marine ecosystems.
Mediterranean nekton traits: Distribution, relationships and significance for marine ecology monitoring and management

Evangelos Tzanatos, Catherine Moukas, Martha Koutsidi

Department of Biology, University of Patras, Rio, Patras, Greece

Corresponding Author:
Evangelos Tzanatos
Department of Biology, University of Patras, Rio, Patras, GR26504, Greece
Email address: tzanatos@upatras.gr

Abstract

Biological traits are increasingly used in order to study aspects of ecology as they are related to the organisms’ fitness. Here we analyze a dataset of 23 traits regarding the life cycle, distribution, ecology and behavior of 235 nektonic species of the Mediterranean Sea in order to evaluate the distribution of traits, identify rare ones, detect relationships between trait pairs and identify species functional groups. Trait relationships were tested using correlation and non-linear regression for continuous traits, parametric and non-parametric inference tests for pairs of continuous-categorical traits and cooccurrence testing for categorical traits. The findings have significant implications concerning the potential effects of climate change (e.g. through the relationships of the trait of optimal temperature), fisheries or habitat loss (from the relationships of traits related to tolerance ranges). Furthermore, some unexpected relationships are documented, like the inversely proportional relationship between longevity and age at maturity as a percentage of life span. Associations between functional traits show affinities derived from phylogenetic constraints or life strategies, however relationships among functional and ecological traits can indicate the potential environmental filtering that acts on functional traits. In total, 18 functional groups were identified by Hill-Smith ordination and hierarchical clustering and were characterized by their dominant traits. For the assessment of the results, we first evaluate the importance of each trait at the level of population, community, ecosystem and landscape and then propose the traits that should be monitored for the regulation and resilience of ecosystem functioning and the management of the marine ecosystems.

Introduction

Today, the characteristics of organisms, usually referred to as traits, are increasingly used in order to study aspects of biology and ecology as they are related to the organisms’ ability to
survive, grow and produce offspring, i.e. to influence their fitness (Violle et al., 2007). The so-called traits-based approaches, comprise an arsenal of methods that use traits instead of taxonomic information to characterize ecosystems, providing various advantages like alternative ways to study biological communities and their functioning (Bellwood, Hoey & Choat, 2003; Bremner, 2008; Pecuchet et al., 2017, 2018). Furthermore, they can be used to elucidate the effects of environmental or anthropogenic stressors on ecosystem functioning (Frelat et al., 2018; McLean, Mouillot & Auber, 2018).

However, the study of biological traits is not novel in marine biology. Traits have long been studied in order to determine relationships between aspects of an organisms’ physiology or ecology. Additionally, evolutionary processes have provided specific combinations of characteristics to organisms; hence the traits appearing in any given species are not random (e.g. Winemiller & Rose, 1992; Charnov, 1993). It has been demonstrated that traits are not only related, as there are various relationships among them, but also there are trade-offs between them because of physiological constraints (Litchman et al. 2013). As the energy captured must be used to achieve maintenance, growth and reproduction of the organism, the allocation of energy between these in time (spanning aspects ranging from physiology to ecology) shapes the major aspects of the species’ life histories. Trait combination into life histories serves functions like survival, growth, sexual maturation and reproduction at the organismal level (Beverton & Holt, 1959; Beverton, 1992) shaping fitness that can act at the level of populations and, ultimately, communities. However, the relationships between traits can be important, not only for understanding how evolution has shaped life into form and function (Charnov, Gislason & Pope, 2013), but also in order to assess the potential effects of environmental factors. Even more so as, apart from environmental filtering (Bejarano et al., 2017), anthropogenic stressors like fisheries can favour the selection of specific traits (e.g. de Juan et al. 2007) and thus indirectly alter future community trait composition, possibly modifying the functioning of communities or the ecosystem. As a result, there is a probability that the selection of specific traits may lead to changes in the frequencies of others that are associated with them as a side effect. This supposition gives novel importance to the study of relationships between traits. Furthermore, the study of trait frequencies and the identification of rare traits may indicate keystone species for ecosystem functioning (Violle et al., 2017).

In order to comprehend the functional aspect of traits and the implications of their relationships it is important to document their significance not only for shaping the life history of an organism at the level of the individual. Highlighting the importance of traits at the population scale comes easily, as traits are related to the adaptations of the species to its environment aiming to maximize fitness at the individual and population level (Violle et al., 2007). Various works have examined the significance of traits for the population/species possessing them (e.g. Tornroos & Bonsdorff, 2012; Costello et al., 2015; Henseler et al., 2019). Villeger et al. (2017) expand the relation of functioning at the population level to ecosystem processes and services. However, an overall evaluation of the importance or the implications of biological traits should be carried out at levels beyond that of the population, especially for nekton, where a multitude of species are under exploitation and inter-specific interactions have raised important challenges. Thus, a brief presentation of the significance and implications of nekton traits at various ecological levels, i.e. (a) that of the population, (b) interspecific relationships and communities, (c) overall ecosystem functioning and even (d) relevance for anthropogenic effects like fisheries and climate change is presented in Table 1.
While the term “trait” generally refers to morphological, physiological or phenological features that are measurable at the individual level without reference to the environment, Violle et al. (2007) define as functional traits the characteristics that may affect survival, growth, or reproduction and thus indirectly impact fitness. Beauchard et al. (2017) determine as ecological traits characteristics related to environmental preferences (like optimal temperature or depth). Often, analyses of trait patterns focus on functional traits (e.g. to determine how evolution has shaped life strategies), however the inclusion of data on ecological traits in the analyses can provide insights into how the environment may affect aspects of organismal fitness by associations with functional traits.

The investigation of patterns and relationships between traits are especially important for regions that host a high biodiversity like the Mediterranean Sea (Myers et al., 2000, Bianchi & Morri, 2000). Furthermore, the Mediterranean has a long history of human presence and is today facing challenges due to stressors that are either novel or are acting at unprecedented levels (Lejeusne et al., 2010). Koutsidi et al. (2016) have already studied traits relationships and rarity; however, in that work traits had been assembled only for a limited number of species (mainly commercial species targeted or caught by fisheries). Additionally, in that work traits had been evaluated only as categorical variables (i.e. with each trait being described by trait categories). This may possibly have blurred the results in the case of quantitative traits like life span or size.

The aim of the present study is to use an extensive dataset of 23 traits assembled from the bibliography for 235 nektonic species of the Mediterranean Sea in order to: (a) determine whether there are rare or dominant traits by evaluating the distribution of traits, (b) detect whether there are undocumented relationships between pairs of biological traits by looking for patterns between functional traits, ecological traits or both, (c) identify functional groups and (d) evaluate selected rare traits with regard to climate change and to species' resilience to human impact.

Materials & Methods

Information on 23 traits related to the life cycle, distribution, ecology and behaviour of 235 species of nekton (217 fish, 10 cephalopods, 8 crustaceans) occurring in the Mediterranean Sea was collected from the bibliography (Table 2). For species selection, an already existing dataset assembled and analyzed in the work of Koutsidi et al. (2016) was extended, using as criteria to: (a) cover the catches of the common commercial fishing gears as much as possible. Compared against the onboard sampling catch composition data, i.e. species both landed and discarded by fishermen, from the application of the European Union Data Collection Framework (EC 199/2008) in the eastern Ionian Sea (GFCM area: GSA20) in 2013-2014 the species accounted for over 98% of the catches in terms of biomass (both total catches and also catches by gear, which for some gears reached 100%), (b) adequately depict the traits of the fisheries landings in a pan-Mediterranean scale. Compared to the FAO-GFCM landings dataset of 2015, after excluding general organismal categories (like “fishes” or “mollusks”), the dataset corresponded to 75% of the total landings (which naturally also include various benthic species like bivalves) by taxon, (c) include all the species found in highly diverse habitats: For this we included the inventory of species from Posidonia beds and coralligène formations, that comprise the two marine habitats with the highest biodiversity in the Mediterranean. Regarding coralligène
formations, information was obtained from the review article by Ballesteros (2006). As there was no review on the nekton of Posidonia beds, we included the lists from five different publications - that use different sampling techniques and come from different areas of the Mediterranean Sea: Francour (1997); Guidetti (2000); Fernandez et al. (2005); Moranta et al. (2006); Kalogiriou et al. (2010), (d) Incorporate species distributed in lagoons that are highly productive ecosystems with brackish characteristics (Nikolaidou et al., 2010). Overall, we included 68 species from Posidonia beds, 26 species from coralligène formations and 28 species from lagoons, (e) finally, 22 Lessepsian species (species invading the Mediterranean Sea through the Suez canal), as listed by the review of Corsini-Foka & Economidis (2007), were also included. Even though some of these 235 species can be characterized as benthic (e.g. Octopus vulgaris, Nephrops norvegicus or fish species living in burrows/crevices) they were included in the dataset as they mainly interact with nekton and are not sessile.

Trait information is often found in printed sources (e.g. fish identification keys) and terms are not standardized. Thus, no systematic review could be performed. Instead, the information was collected from books, review articles or journal research articles by searching using the species name and adding the name of the trait or relevant terms (e.g. “life span” instead of “longevity”, “reproduction” instead of “spawning period”). Regarding reference sources, we preferred to use information from peer-reviewed publications or books over grey literature. As the objective was to collect data on Mediterranean species, when there was a unique reference about a species it was used regardless of the source, however, if there was information coming from locations outside and inside the Mediterranean (e.g. from two different papers), preference was given to the latter. If there were multiple sources of information from different areas within the Mediterranean (e.g. from various papers), we chose the references from the central Mediterranean (Ionian Sea). Regarding habitats, again we preferred information coming from marine habitats (e.g. rather than brackish waters or lagoons) if a species is distributed in many habitat types. In the case of species that can be found over different substrates and we had different publications with variable trait values we tried to focus on the most common habitat.

The various traits comprise different types of variables: continuous (e.g. size or maximum lifespan), range (e.g. depth) and categorical (e.g. spawning habitat: pelagic or benthic). Concerning categorical traits, each species was assigned to one trait category/modality per trait. The definition of these 23 traits and their modalities is provided in Supplementary Table S1. The information on traits as continuous variables and the information on traits categories per species as well as the bibliographic reference for the documentation of each trait per species can be found at: https://figshare.com/articles/Koutsidi_Moukas_Tzanatos_23_biological_traits_of_235_species/1347406

For the detection of patterns in their distribution, the range type traits (fecundity, optimal depth, optimal temperature, trophic level) were expressed as such, while for statistical tests and the detection of relationships between trait pairs they were used as the average between the minimum and the maximum (thus used as continuous type traits). Continuous and range-type traits were investigated for outlier detection using the Grubbs test (Grubbs, 1950). As this test is parametric, it was performed after the log-transformation of the traits: longevity and maximum length, while age at maturity was transformed using the square root to achieve normality. As average fecundity and average depth could not be described by a normal distribution with any possible transformation the Grubbs test was not used on these variables. Regarding the
identification of rare traits, the distribution of trait values (for continuous variable-type trait) or the frequencies of trait categories (for categorical variable-type trait) allowed the identification of rare traits as these shared by less than 5% of species.

To identify potential relationships the continuous traits longevity, fecundity, maximum length and depth were transformed using the natural logarithm. Each of the total of 23 traits was examined for the existence of a potential relationship with all other ones, depending on their types. Regarding pairs of continuous traits, Pearson correlation between all pairs of continuous traits was used. As carrying out a test for multiple hypotheses increases the probability of a rare event, the likelihood of incorrectly rejecting the null hypothesis (Type I error) increases; hence in the results the Bonferroni correction was incorporated. Correlation has the advantage of investigating relationships without assuming causality, however it can only detect linear relationships. In cases where the residuals indicated a non-linear pattern, a polynomial regression was additionally used to investigate the existence of non-linear relationships and, in cases of better fit, these relationships are presented instead.

For the detection of relationships between continuous and categorical traits, the t-test or Analysis of Variance (ANOVA) was used, depending on the number of categories of the categorical trait. As these tests are parametric, the Shapiro-Wilk’s test was used to test for normality. Fischer’s exact test (for traits including only two trait categories) or Levene’s test (for traits with more than two trait categories) were used to examine the homogeneity of variances. Regarding normality, only longevity and maximum length (their logarithm) were found to follow a normal distribution. As in general, both ANOVA and t-test are considered as robust inferential tests (Zar 1999), if the tests for homogeneity of variance did not reject the null hypothesis the parametric tests were used. In the cases where the parametric prerequisites were not fulfilled, the Mann-Whitney or Kruskal-Wallis tests were used instead (Zar, 1999). Similarly, we incorporated the Bonferroni correction here.

To detect relationships between categorical traits, we followed the approach by Koutsidi, et al. (2016) that had been used for a smaller number of traits (21) and species (86). This approach investigates pairwise patterns of traits co-occurrence and compares these co-occurrences to the number of randomly expected ones, characterizing them thus as positive (the pair of traits tends to co-occur more than expected by the product of their independent frequencies), negative (the pair of traits tends to co-occur less than expected by the product of their independent frequencies) or random co-occurrences. For this analysis we used the library “co-occur” (Griffith, Veech & Marsh, 2016) in R-language (R Core Team 2019).

For the identification of species functional groups, first we carried out a Hill-Smith ordination (Hill & Smith 1976) of the species for which we had a complete 23 trait dataset. This type of analysis can handle both continuous (range-type traits were analyzed as continuous variables using their average) and categorical variables concurrently. In order to provide equal weights to all traits we expressed all continuous-type traits as percentages of their maximum value. From the results of the Hill-Smith ordination we analyzed the species coordinates on the 11 major axes derived (58% of variance explained) by hierarchical clustering carried out using Ward’s method, similar to Benedetti et al. (2016, 2018). For this analysis we used the library “ade4” in R (Dray & Dufour 2007).

The groups identified by the above method, were then characterized by their traits. Regarding categorical traits: (a) we considered that if more than 90% of the species of a group share a specific modality of a certain trait then the entire group is characterized by this modality.
(as a major percentage of species possess it). Furthermore, (b) we highlighted modalities that have particular importance for a group, i.e. (even if not shared by more than 90% of the species) were found in a percentage that was more than 20% (arbitrarily defined) higher compared to that modality percent frequency in the species pool. For continuous traits, we compared the averages of the 18 functional groups through ANOVA (optimal temperature) or their medians through Kruskal-Wallis (all other traits, as the parametric prerequisites were not fulfilled) and, in case of statistical significance, indicate the groups with highest/lowest averages or medians in the functional group characterization.

The significance level $\alpha=0.05$ was used for all inferential tests, subsequently incorporating the Bonferroni correction as stated above.

**Results**

Trait frequencies and distributions allowed the identification of dominant and rare traits in the 235 species examined. Regarding continuous traits, 89.6% of the species examined were found to have a maximum life span of up to 25 years (minimum: 1.1 years, maximum: 118.0 years, average: 14.4 years, median: 9 years), but life cycles can reach up to ~120 years with the rare high longevity frequency classes shared in most cases by only a few species (Figure 1A). Concerning age at maturity as a percentage of lifespan (minimum: 2.0%, maximum: 75.0%, average: 25.2%, median: 21.8%), both early and late age at maturity come as outliers with low frequencies (Figure 1B). Finally, regarding size (minimum: 5.0 cm, maximum: 800 cm, average: 63.7 cm, median: 37.4 cm), nekton species with a maximum length over ~80 cm were uncommon (~78% of species examined may reach below this size), while nekton reaching 2-8 m were scarce. Slightly over 5% were the number of nekton species with a maximum size below 10 cm (Figure 1C). No outliers were found in the log-transformed longevity (Grubbs test, $G=2.82$, $p=0.91$) and maximum length data (Grubbs test, $G=3.25$, $p=0.23$) or in the square root age at maturity (Grubbs test, $G=3.44$, $p=0.10$).

For range type traits (Figure 1D-G), fecundity showed a distribution where the extreme values (low and high fecundities) are represented by only a few species, whereas the majority of species demonstrate very similar fecundity ranges (also indicated by the S-shaped curve in the figure). Especially the values of low fecundity are mostly associated with Chondrichthyes (the 20 species with the lowest fecundity values are all cartilaginous fish). The highest values of fecundity were obtained by a heterogeneous group of species (Thunnus thynnus, Labrus merula, Psetta maxima, Scophthalmus rhombus, Polyprion americanus). Distribution across depth is relatively continuous with many species being distributed in shallow depths (40 species with an average depth shallower than 20 m and 86 above 50 m). Only a few species were found to be distributed in deep habitats (only 17 had an average depth deeper than 500 m, but the case is that deep-living nekton generally includes species whose traits are relatively unknown and, as a result, were generally not included in the dataset of the 235 species examined here). The distribution of trophic level indicated the rarity of low (reaching up to trophic level 3) trophic level species among the nekton, while the distribution of optimal temperatures did not indicate important outliers. The Grubbs test indicated no outliers regarding average trophic level (Grubbs test, $G=3.14$, $p=0.34$) and optimal temperature (Grubbs test, $G=2.15$, $p=0.99$).

Regarding categorical traits (Figure 2), gonochorism (86%), subtropical distribution (64%), summer spawning (61%), free exposure type (67%), bentho-pelagic habitat use (63%), grazing feeding type (60%), eurythermal temperature range (66%), stenohaline salinity range...
(61%) and solitary behavior (57%) were dominant trait categories among the species examined. Flat (9%) and long body shape (7%), tropical (9%) and cosmopolitan geographic distribution (3%), autumn (3%), winter (7%) and all year spawning (6%), hard substrate seabed type (9%), ambusher mobility (6%), ambushing predation feeding behaviour (7%) and herbivorous (2%) and zooplankton diet (9%) were found to be shared by below 10% of the total species.

The relationships between continuous traits indicated eight statistically significant correlations, incorporating the Bonferroni correction (Table 3, Figure 3). Longevity had most correlations, with three positive ones (long-living organisms are larger, have high trophic level and dwell deeper) and one negative (long-living organisms have lower age at maturity – as a percentage of life span). Fecundity was found to increase with optimal temperature (Figure 3J), while maximum length increased with both trophic level and depth (Figure 3B, E). Depth and trophic level were also positively correlated (Figure 3H). Finally, in three cases, non-linear relationships provided better residual fit than linear ones (Figure 3C, F, I): fecundity was higher in species of low and high longevity (R²=0.286, p<0.001), fecundity had the highest values in intermediate depths (R²=0.055, p=0.004) and optimal temperature was higher in species of intermediate depths (R²=0.046, p=0.008), in the last two cases the correlation model explaining a low percentage of variance.

The relationships between continuous and categorical traits indicated 20 cases where there are significant statistical differences in the value of a continuous trait between the different modalities incorporating the Bonferroni correction (Table 4). The main findings are summarized in Table 5 (but see Supplementary Figure S1 for pairwise comparisons between trait categories). Longevity was highest in flat-shaped species, in ambushing and active predators, piscivorous species and pelagic spawners. Fecundity was higher in atractoid and pelagic species; however, if seabed type is also taken into account apart from open sea species hard substrate ones had higher values. Maximum length had significant variation across six categorical traits, with the most striking being the highest values in pelagics, pelagic spawners and non-migratory species.

Regarding depth, eurybathic species and benthic spawners were found to occur deeper, herbivore diet/grazing behavior and euryhaline species were found shallower. The highest trophic level was naturally found in piscivorous species, ambushing predators (and mobility type) and eurybathic species. Optimal temperature was found to be higher in species of high and medium mobility, stenothermal species and species of tropical distribution.

The trait co-occurrence analysis documented 170 (17.4%) positive, 183 (18.8%) negative, and 622 (63.8%) random modality associations (Figure 4). The modalities with the highest number of positive co-occurrences are associated with the pelagic (e.g. free exposure with 13 positive co-occurrences) or the benthic way of living (e.g. benthic spawning habitat with 14 positive co-occurrences, flat body shape and benthic habitat type with 13). The modalities with the highest number of negative co-occurrences are associated mostly with the pelagic way of living (attractoid body shape, sociability schools, seabed type water column and pelagic habitat all had 15-17 negative co-occurrences). Additionally, deep body shape and solitary sociability had relatively many positive and negative co-occurrences. Relatively rare trait categories (e.g. tropical distribution, autumn spawning) had a small number of co-occurrences. At the scale of entire traits, body shape, depth range, mobility and exposure had the highest cumulative positive co-occurrences of all their modalities, while body shape, mobility, habitat type and exposure had the highest cumulative negative cooccurrences. The lowest number of cumulative co-occurrences (both negative and positive) was found for the traits: hermaphroditism, diet, seasonal migrations, seabed type and optimal temperature.
The Hill-Smith ordination resulted into many axes, each explaining a relatively small variance percentage (in Figure 5, the first two axes presented explain 19% of cumulative variance). The dendrogram resulting from the hierarchical clustering of the species coordinates (Figure 6), if cut at a high value of dissimilarity (e.g. 70 %, not shown in the figure) distinguishes three major groups of pelagic, bentho-pelagic and benthic species and the associated traits. At lower dissimilarities (42 %), six main groups are extracted. As these groups include in some cases a wide range of species with very different functional roles (e.g. group A includes pelagic species spanning from swordfish and tuna to anchovy and sardine) it was deemed necessary to determine grouping in lower dissimilarity levels (13.5 % as shown in the figure) resulting in the definition of 18, more homogeneous internally, functional groups. The traits characterizing the six major and the 18 minor functional groups are presented in Supplementary Table S2. From both Figures 5 and 6 and the supplementary table, it is evident that while the coarse distinction (six groups: A-F) can indicate the major groupings of nektonic organisms, the grouping at a higher level of similarity can highlight major functional components of the nektont within the ecosystem, like small pelagic species (Group 1) or herbivorous fish (Group 3).

Discussion

The nektont functional groups identified here can be a useful tool to study the ecology of the Mediterranean Sea, both in analyses using empirical data and in simulation models that utilize functional groups to operate (e.g. Ecopath -Pauly et al., 2000). Despite the fact that, from the clustering of Figure 5, the initial choice would be to divide the dendrogram either in the three major clades (pelagic, bentho-pelagic and benthic groups) or in the six groups (A-F) identified at 42% dissimilarity level, it is more informative and reasonable to use a lower dissimilarity that leads to the distinction of groups with different actual functional roles (e.g. 1: small pelagics, 3: vegetation grazers) or with higher homogeneity in traits (like the division the pelagic group A that on average had large size into the species with small size in group 1 and those with larger size in group 2). As nektont can be generally expected to occupy a variety of ecological niches because of the variety in species traits like size, habitat use and diet, it is not surprising to have more functional groups than those found in zooplankton (e.g. Benedetti et al., 2018). Further steps examining only traits related to resource use could shed light into potential inter-specific competition relationships and niche overlap (M. Koutsidi unpublished data).

Violle et al. (2017) underline the importance of functional rarity and the ecology of outliers as complementary to the concept of the traditional taxonomic rarity. While rare species may share traits with more abundant ones, in the case that the traits (and resulting functions) are rare, loss of the species that possess them may significantly alter ecosystem functioning (Jain et al., 2014). This is also relevant to the concept of keystoneness (a keystone species being a species whose importance for its community is disproportionally high in comparison to its abundance -Bond, 2001). Here we document the rarity (even below 5% of the species total) of autumn spawning (but also winter and all year spawning) as well as that of herbivory. Herbivory is anyway considered a crucial aspect of ecosystem functioning as alterations in herbivory may cause community phase shifts where the main habitat-formers are lost or substituted by very different ones: Verges et al. (2014) have documented this regarding the populations of Siganus sp. that have invaded the Mediterranean Sea, but there are also examples from coral reefs (Hughes et al., 2010) and temperate algal forests (Steneck et al., 2002). Thus, it is important to maintain and regulate the abundance and the rate of renewal of this trait, especially taking into...
account the fact that some of the invading species (e.g. *Siganus* sp.) in the Mediterranean are herbivorous and competing with resident species (M. Koutsidi, unpublished data). Similar rarity of herbivory has been documented by Beukhof et al. (2019) for marine fish from North Atlantic and Northeast Pacific continental shelf seas (in that work the importance of piscivory is much lower, however the dominant modality is that of generalist feeding, which was not used in the dataset of the present work). It is true that herbivory is also carried out by other, benthic, biota (e.g. echinoderms); however, they have different traits (e.g. mobility) that may change this function. Successful seasonal spawning, like autumn and winter spawning -and also the success of the recruitment that follows it- may be prone to various environmental factors, also possibly affected by anthropogenic effects like fisheries (that are characteristically seasonal in the Mediterranean) or climate change that may decrease the duration of the window-period suitable for spawning (Table 1). The above indicate the clear need for a holistic assessment evaluation of traits including all biotic elements of the ecosystem (plankton, nekton and benthos).

The rarity of other traits like hard seabed type preference may be related to the relatively small extent of this habitat type in the marine environment. Similarly, the low occurrence of long body shape may be related to the scarcity in characteristics of the habitat (e.g. structurally complex habitat for long body shape which here was indeed found to cooccur with cryptic exposure). However, the similarly rare flat body shape cooccurs with soft seabed preference which is a relatively common trait, indicating that trait relationships may be less straightforward. Even though the body-shape trait categories in Beukhof et al. (2019) for North Atlantic and Northeast Pacific are not exactly similar, the long and eel-like body shapes are overall more common there, while the deep body shape tends to be more common in the Mediterranean.

It is important to note that trait rarity should not only be evaluated at the species level, but also weighted with species abundance or biomass to indicate the actual “abundance” of traits in the ecosystem (Violle et al., 2017). E.g. the planktivorous diet trait category may be rare if evaluated using the number of species but very abundant as the small pelagic or benthopelagic species that possess it have very high abundances. Still, the fact that it is shared by only a handful of species may be a risk for ecosystem functioning, especially taking into account the fact that these species are known to have interannual abundance fluctuations. Even more so, some of these species like the European anchovy *Engraulis encrasicolus* and the European pilchard *Sardinia pilchardus* are under intense fishing pressure and have been shown to be affected by climate (Tzanatos et al., 2013).

The present work confirms that the combinations of functional traits in species of Mediterranean fisheries resources are not random (e.g. Jennings et al., 2002), since the evolutionary process has provided species with certain trait combinations (Gislason et al., 2010). Here we reconfirm that species with a long lifespan also have large body size (Vila-Gispert, Alcaraz & Garcia-Berthou 2005). Charnov, Gislason & Pope (2013) note that species only grow to a large body size if natural mortality rates are low, thus their life span is long. The examination of the distribution of species in trait space using a randomization approach similar to Diaz et al. (2016) could provide more definitive results on the non-random distribution of traits.

In the present work, longevity and age at maturity are negatively correlated, in ostensible disagreement with previous studies documenting a positive relationship (Froese & Binohlan, 2000; Jarić & Gavčič, 2012). Contrary to these works (where age at maturity is expressed in years), here age at maturity was examined as a percentage of the species lifespan. Indeed, if age
at maturity is expressed in years in our dataset, there is a positive correlation with longevity
\((r=0.72, p<0.001)\); however here we had intended to determine how early or late a species
matures regarding its life duration. Therefore, species with a short life span tend to mature
relatively late in their lifetime. This can be interpreted, if we take into account that even a short-
lived species needs to have completed an amount of growth to reach a minimum size and
biomass for reproduction (Beverton, 1963).

The positive relationship between size and trophic level found in this study has also been
documented in other works (e.g. Romanuk, Hayward, & Hutchings 2011). Trophic level
increases with increasing body size, because most predators are larger than their prey (Kaiser et
al., 2005). Jennings et al. (2002) also point out that, in benthic communities, trophic level and
body mass of species have a strong relationship. Additionally, in this study we found a
relationship between maximum body length and average depth species distribution. Finally, in
this study, non-linear (polynomial) relationships between traits are indicated perhaps because of
the existence of sharks and rays in the dataset. Especially their high longevity and low fecundity,
result in deviations from the linear pattern.

The co-occurrence analysis indicates some positive and negative associations between
pairs of trait modalities. The main characteristics of small pelagic fish (e.g. *Sardina pilchardus,
Engraulis encrasicolus*) have the highest number of positive and negative associations with the
other modalities. The traits of the family Sparidae, such as deep body shape, hermaphroditism
(e.g. *Sparus aurata*) and grazing feeding (e.g. *Sarpa salpa*), were found to have a relatively high
number of positive associations with other modalities. The detection of relationships between
traits is important not only as a way to explore the relationships of characteristics shaping life,
but also because it could be useful to predict the possible effects of anthropogenic pressures on
these traits. For example, climate change can be expected to favour thermophilic species, thus
traits related to high optimum temperatures (high fecundity, deep body shape, high mobility)
may be favoured as well. Koutsidi et al. (2016) have documented the removal of specific traits
by fisheries; this could also result in modification of traits composition depending on fisheries
management. Furthermore, Edeline et al. (2007) have demonstrated that anthropogenic stressors
like fishing may act as selective pressures favouring specific traits (in their study slow growth)
that are heritable. Law (2000) mentions some examples of phenotypic changes induced by
fisheries and discusses the heritability of these traits. Mousseau & Roff (1987) have documented
higher heritability of morphological traits to life-history traits. Law (2000) indicates that
heritability in the range of that demonstrated for life history traits, despite being relatively small
is still enough to cause substantial selection responses within a small number of generations. The
existence of fisheries-induced evolution is now well-documented in traits like growth and
maturation (Kuparinen & Merila, 2007; Enberg et al., 2012) and complex interactions between
natural and anthropogenic selection factors acting in opposite directions may exist (Edeline et al.,
2007).

The current work has some findings differing from those of Koutsidi et al. (2016), as e.g.
the associations of depth with fecundity and optimal temperatures documented here are not
reported there. This can be a result of the inclusion of many more species here, but also because
of the treatment of traits according to the variable type here and not as categories in all cases.
Many rare traits identified like ambushing feeding behavior, flat and long body shape, autumn
spawning, cosmopolitan and tropical distribution and low trophic level and fecundity are
common in both works while others like long lifespan and distribution in deep water are novel
here and again indicate that continuous traits are better analyzed as such.
Naturally (and as shown also here) traits are related. This is not only with regard to life strategies shaped by evolutionary processes (e.g. larger species having longer life duration too), but also as they may be relevant (e.g. diet and trophic level). Still, apart from the trait affinity, and despite the fact that there is the tendency to try to include only functional traits (i.e. more relevant to life cycle and resource use), different traits may still convey different information and still vary (e.g. as shown here piscivorous fish tend to have higher trophic level, but may still span a range of trophic level values depending on their prey). Furthermore, even relevant traits may incorporate information with different significance for ecosystem functioning or resilience (see e.g. the significance of traits regarding tolerance range for variables like temperature and depth in comparison to the optimal values of these factors in Table 5). Thus, depending on the research question, some, even relevant traits can be useful for the evaluation of findings.

Here, we have not limited our analyses to the 13 functional traits (Violle et a., 2007) of our dataset, but also include ten traits that would be rather characterized as ecological (Beauchard et al., 2017). The determination of relationships between functional traits can indicate affinities derived from phylogenetic constraints or indicate life strategies as they have been shaped by evolution. Relationships between ecological traits can indicate the major aspects of organismal distribution in time and space, while relationships among functional traits and ecological traits can indicate the potential environmental filtering that acts on functional traits. It should be noted that, apart from traits that are not related with many others (like age at maturity and fecundity), most traits were found to have significant relationships with both functional and ecological other traits independent of themselves being of a functional or ecological significance, thus showing some level of environmental filtering on functional aspects; however these relationships should also be examined weighted by abundance or biomass. Anthropogenic stressors may also affect differently these two trait types, as e.g. fisheries act on both functional (e.g. life-cycle, behaviour) and ecological (e.g. habitat) aspects of a population, while the effect of climate is primarily ecological (e.g. temperature optimum and range), but both stressors can have indirect effects on other, related, traits.

In this work, we have assigned each species to a single modality per trait. However, it is true that traits can vary across individuals or populations (Violle et al., 2017) and in some cases a species could be assigned to have more than one modality in a quantitative way (e.g. a species spawning from December to April is here assigned to spawn in winter, while alternatively it could be assigned as spawning in 100% of winter months and 33% of spring) using fuzzy coding. Such an approach should be evaluated in future works not only regarding the correct assignment of information to modalities, but also to account for species plasticity thus rendering the analyses more realistic (Chevenet et al. 1994). In the same context, while we used one value as representative of a species, trait values may vary across the entire species distribution or the region examined (e.g. there may be differences between the western and eastern Mediterranean, especially in some continuous traits). Additionally, while in many cases, trait datasets are assembled only regarding the mature stages of a species, it is true that juveniles can possess different trait values (e.g. diet). Furthermore, the major part of abundance/biomass of a population may belong to the juvenile stages. An interesting approach would be to enrich trait datasets with distinct trait values between juveniles and adults. Data from monitoring programs regarding population structure (e.g. through the length distribution that is typical in fisheries monitoring) could be used along with community composition for a more realistic depiction of actual trait space occupied. This would be a very valuable expansion of trait datasets and their usage; however, information on juvenile stages might be hard to obtain, especially for non-
commercial species, whose biology is in some cases not fully documented. Finally, basic biological research (especially for the largely unknown deep-sea fish) and assembly of even more extensive trait datasets in terms of species, at least with a focus to the traits that are more representative of functional diversity would help fill the gaps of the trait database, especially with the aim to focus on understudied Mediterranean ecosystems.

The question as to which traits constitute more fundamental information for ecosystem functioning still pertains. As ecosystem functioning is related to the transfer of energy and material and the regulation and maintenance of ecological processes (Naeem et al. 1999; Bremner, Rogers & Frid 2006; Paterson, Defew & Jabour, 2012), traits related to trophic interactions like diet and trophic level (i.e. effect traits according to Lavorel & Garnier, 2002; Violle et al., 2007; Suding et al., 2008) are of direct significance. Traits affecting these interactions in space and time (mainly response traits according to the same authors), such as habitat and depth distribution, migration, spawning season and even fecundity are also relevant (Table 1). In plants, it has been shown that, in cases where response traits are also effect traits, there can be loss of ecosystem function (Suding et al., 2008). Moving from the scale of nekton to the scale of the entire ecosystem, i.e. incorporating biotic components like plankton and benthos, as functional traits like maximum length and diet/trophic level are key for energy transfer they should be prioritized to be taken into consideration. Pecuchet et al. (2019), investigating ecosystem-wide functional reorganization in the Baltic Sea by examining multi-trophic communities indicate that diet or type of feeding traits are in many cases relevant for many of the groups examined; however, they underline that different traits are involved and demonstrate diverse dynamics among areas. Litchman et al. (2013) refer to the significance of body size as a trait that is related to many others that are worth monitoring for ecosystem studies (like growth rate, stoichiometric requirements, grazing rate and trophic niche breadth), but underline that the choice on which traits to monitor ultimately relies on the questions asked. In this regard, ecological traits regarding spatial and temporal distribution (habitat and seabed type, environmental variable ranges and optima) or occurrence of critical life cycle events like spawning (spawning period and habitat) could also be useful in supplementing this information to describe the spatio-temporal cooccurrence of the different elements for a holistic evaluation of the marine ecosystem.

With the global ocean being under a multitude of anthropogenic effects (e.g. Crain et al., 2009), it is crucial to identify traits that are significant for monitoring human induced alterations in the structure and dynamics of the marine ecosystem. These traits are not only important as descriptors of the marine community (see e.g. the “mean temperature of the catch” -Cheung, Watson & Pauly, 2013) useful in monitoring, but should also be maintained to some minimum levels, to avoid function loss or the creation of too many empty ecological niches that could more easily be colonized, e.g. by alien species (Givan et al., 2017). Thus, regarding climate change, traits like optimal temperature and temperature range are significant, as communities with a diversity of thermal affinities and narrow ranges of thermal tolerance are more sensitive to climate change (Burrows et al., in press); yet all range-type traits and also distribution seem to have important implications for ecosystem dynamics and resilience. Regarding fisheries effects, size (also because of the various significant relationships it has with other traits and its implications for management) is a crucial trait. Other core biological traits like longevity, fecundity and age at maturity are also important for fisheries management, but also some behavioural traits relevant for the interaction of nekton with fishing gear may bear some importance. Lavorel & Garnier (2002) and Violle et al. (2007) suggest that traits whose attributes
vary as a response to changes in environmental conditions are response traits, while traits
determining the effect of an organism to the environmental conditions, biotic or abiotic are effect
traits. While this distinction is both valid and useful, Lavorel & Garnier (2002) and Suding et al.
(2008) have already indicated that a trait can act as both response and effect; in Table 1 we also
document that, in some cases, a response trait (e.g. optimal temperature), having been affected
by change in environmental conditions may in turn act as an effect trait altering subsequently the
dynamics or composition of the community. This is especially important regarding the direct and
indirect effects of anthropogenic stressors like fisheries and climate change. The relationships
between traits documented here and elsewhere may help explaining the dynamics of nektonic
communities (Marquez et al. 2019) and marine ecosystems and also make predictions for future
scenarios, as anthropogenic stressors may alter trait composition indirectly (Henderson et al.
2019), through selection of associated traits.

Conclusions

Relationships between biological traits have long been studied to investigate how evolution has
shaped life into form and function and how characteristics are combined into life strategies.
However, the study of nektonic trait distribution and combinations presented here can be useful
to elucidate trait interactions significant for indirect alterations of ecosystem functioning,
especially today, when the marine environment is under a multitude of anthropogenic stressors
that can act on specific traits. The documentation of rare traits (like winter and autumn spawning,
herbivory, very low or high size or fecundity, hard substrate type and ambushing predation) in
species together with the appraisal of the significance of traits at various scales indicates aspects
of crucial importance that need to be preserved. Under a more synthetic scope, nektonic
functional groups are broadly determined around major aspects of habitat use (pelagic,
benthopelagic or benthic), but can be distinguished in more detail showing affinities among and
between functional and ecological traits that can be used in the future to understand nektonic
communities and model ecosystems. In any case, the documentation of a multitude of
relationships between functional and ecological traits found here indicates how the environment,
through the delimitation of species distribution in space and time depending on their traits, can
filter functional traits, while the validation of functional trait associations hints at functional
interdependencies determined by evolution. The findings documented here highlight the traits
that should be evaluated and monitored in the future both at the level of nekton or in combination
with other major ecosystem components for the assessment of ecosystem functioning and those
that should be maintained to ensure ecosystem resilience.

Acknowledgements

The authors would like to thank the editor as well as the three reviewers for their valuable
suggestions and comments that helped to significantly improve the manuscript.

References

Ballesteros E. 2006. Mediterranean coralligenous assemblages: A synthesis of present
knowledge. Oceanography and Marine Biology - An Annual Review 44, 123–195. DOI:
10.1201/9781420006391.
Bamber RN. 1995. The influence of rising background temperature on the effects of marine thermal effluents. Journal of Thermal Biology 20, 105-110. DOI: 10.1016/0306-4565(94)00038-K.

Beuchard O, Verissimo H, Queirós AM, Herman PMJ. 2017. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecological Indicators 76, 81-96. DOI: 10.1016/j.ecolind.2017.01.011.

Bejarano S, Jouffray JB, Chollett I, Allen R, Roff G, Marshall A, Steneck R, Ferse SCA, Mumby PJ. 2017. The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory. Functional Ecology 31, 1312-1324. DOI: 10.1111/1365-2435.12828.

Bellwood DR, Hoey AS, Choat JH. 2003. Limited functional redundancy in high diversity systems: Resilience and ecosystem function on coral reefs. Ecology Letters 6(4), 281-285. DOI: 10.1046/j.1461-0248.2003.00432.x.

Benedetti F, Gasparini S, Ayata SD. 2016. Identifying copepod functional groups from species functional traits. Journal of Plankton Research, 38, 1, 159-166. DOI: 10.1093/plankt/fbv096.

Benedetti F, Vogt M, Righetti, D, Guilhaumon F, Ayata S-D. 2018. Do functional groups of planktonic copepods differ in their ecological niches? Journal of Biogeography 45, 604-616. DOI: 10.1111/jbi.13166.

Beverton RJ. 1963. Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing. Rapports. Process-Verbaux du Conseil International pour l’Exploration de la Mer 154, 44-67.

Beverton RJ. 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology 41 (Supplement B), 137-160. DOI: 10.1111/j.1095-8649.1992.tb03875.x.

Beverton RJH, Holt SJ. 1959. A review of the lifespans and mortality rates of fish in nature and the relation to growth and other physiological characteristics. In: Colloquia in ageing. V; The lifespan of animals. London: Ciba Foundation, 142-77.

Beukhof E, Dencker TS, Palomares MLD, Maureaud A. 2019. A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas. PANGAEA. DOI: 10.1594/PANGAEA.900866.

Bianchi CN, Morri C. 2000. Marine biodiversity of the Mediterranean Sea: Situation, problems and prospects for future research. Marine Pollution Bulletin 40, 367–376. DOI: 10.1016/S0025-326X(00)00027-8.

Bond W. 2001. Keystone species – Hunting the snark? Science, 292, 63-64. DOI: 10.1126/science.1060793.

Bremner J. 2008. Species' traits and ecological functioning in marine conservation and management. Journal of Experimental Marine Biology and Ecology 366 (1-2), 37-47. DOI: 10.1016/j.jembe.2008.07.007.

Bremner J, Rogers SI, Frid CLJ. 2006. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6, 609-622. DOI: 10.1016/j.ecolind.2005.08.026.

Burrows MT, Bates AE, Costello MJ, Edwards M, Edgar GJ, Fox CJ, Halpern BS, Hiddink JG, Pinsky ML, Batt RD, Molinos JG, Payne BL, Schoeman DS, Stuart-Smith RD, Poloczanska ES.
in press. Ocean community warming responses explained by thermal affinities and temperature gradients. Nature Climate Change. DOI:10.1038/s41558-019-0631-5.

Charnov EL. 1993. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford: Oxford University Press.

Charnov EL, Gislason H, Pope JG. 2013. Evolutionary assembly rules for fish life histories. Fish and Fisheries 14, 213–224. DOI: 10.1111/j.1467-2979.2012.00467.x.

Cheung WWL, Watson R, Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature 497, 365–368. DOI: 10.1038/nature12156.

Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos M-S, Koukouras A, Lampadariou N, Laxamana E, López-Fé de la Cuadra CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JJ, Vicente CS, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5, e11842. DOI: 10.1371/journal.pone.0011842.

Corsini-Foka M, Economidis PS. 2007. Allochthonous and vagrant ichthyofauna in Hellenic marine and estuarine waters. Mediterranean Marine Science 8, 67-123. DOI: 10.12681/mms.163.

Costello MJ, Claus S, Dekeyzer S, Vandepitte L, Tuama EO, Lear D, Tyler-Walters H. 2015. Biological and ecological traits of marine species. PeerJ 3:e1201. DOI: 10.7717/peerj.1201.

Côté IM., Poulin R. 1995. Parasitism and group size in social animals: a meta-analysis. Behavioral Ecology 6, 159-165. DOI: 10.1093/beheco/6.2.159.

Crain CM, Halpern BS, Beck MW, Kappel CV. 2009. Understanding and managing human threats to the coastal marine environment. Annals of the New York Academy of Sciences 1162, 39-62. DOI: 10.1111/j.1749-6632.2009.04496.x.

Díaz S, Kattge J, Cornelissen JH, Wright JI, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet'ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD. 2016. The global spectrum of plant form and function. Nature, 529 (7585), 167-71. DOI: 10.1038/nature16489.de Juan S, Thrush SF, Demestre M. 2007. Functional changes as indicators of trawling disturbance on a benthic community located in a fishing ground (NW Mediterranean Sea). Marine Ecology Progress Series, 334, 117–129. DOI: 10.3354/meps334117.

Dray S, Dufour A. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. DOI: 10.18637/jss.v022.i04.

Dutil JD. 1986. Energetic constraints and spawning interval in the anadromous Arctic char (Salvelinus alpinus). Copeia 1986, 945-955. DOI: 10.2307/1445291.

Edworthy C, Strydom N. 2016. Habitat partitioning by juvenile fishes in a temperate estuarine nursery, South Africa. Scientia Marina 80, 151-161. DOI: 10.3989/scimar.04333.01B.

Edeline E, Carlson SM, Stige LC, Wintfield IJ, Fletcher JM, James JB, Haugen TO, Vollestad LA, Stenseth NC. 2007. Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. Proceedings of the National Academy of Sciences of the United States of America 104:15799–15804. DOI: 10.1073/pnas.0705908104.
Enberg K, Jørgensen C, Dunlop ES, Varpe Ø, Boukal DS, Baulier L, Eliassen S, Heinno M. 2012. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence: fishing-induced evolution of growth. Marine Ecology, 33: 1-25. DOI: 10.1111/j.1439-0485.2011.00460.x.

Engelhard GH, Heino M. 2005. Scale analysis suggests frequent skipping of the second reproductive season in Atlantic herring. Biology Letters 1, 172-175. DOI: 10.1098/rsbl.2004.0290.

Erisman B, Heyman W, Kobara S, Ezer T, Pittman S, Aburto-Oropeza O, Nemeth RS. 2017. Fish spawning aggregations: where well-placed management actions can yield big benefits for fisheries and conservation. Fish and Fisheries 18, 128-144. DOI: 10.1111/faf.12132.

Fernandez TV, Milazzo M, Badalamenti F, D'Anna G. 2005. Comparison of the fish assemblages associated with Posidonia oceanica after the partial loss and consequent fragmentation of the meadow. Estuarine, Coastal and Shelf Science, 65(4), 645-653. DOI: 10.1016/j.ecss.2005.07.010

Ferno A, Olsen S. 1994. Marine fish behavior in capture and abundance estimation. Fishing News Books, Oxford: Blackwell Science.

Floeter SR, Krohling W, Gasparini JL, Ferreira CEL, Zalmon IR. 2007. Reef fish community structure on coastal islands of the southeastern Brazil: The influence of exposure and benthic cover. Environmental Biology of Fishes 78, 147-160. DOI: 10.1007/s10641-006-9084-6.

Francour P. 1997. Fish assemblages of Posidonia oceanica beds at Port-Cros (France, NW Mediterranean): assessment of composition and long-term fluctuations by visual census. Marine Ecology, 18(2), 157-173. DOI: 10.1111/j.1439-0485.1997.tb00434.x.

Frelat R, Orio A, Casini M, Lehmann A, Mérigot B, Otto SA, Sguotti C, Möllmann C. 2018. A three-dimensional view on biodiversity changes: spatial, temporal, and functional perspectives on fish communities in the Baltic Sea. ICES Journal of Marine Science 75(7), 2463-2475. DOI: 10.1093/icesjms/fsy027.

Froese R., Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology, 56, 758–773. DOI: 10.1111/j.1095-8649.2000.tb00870.x.

Galil BS. 2007. "Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea". Marine Pollution Bulletin. Marine Bioinvasions: A collection of reviews. 55, 314–322. DOI: 10.1016/j.marpolbul.2006.11.008.

Gerlach SA, Hahn AE, Schrage M. 1985. Size spectra of benthic biomass and metabolism. Marine Ecology Progress Series 26, 161-173. DOI: 10.3354/meps026161.

Giacomini HC, Shuter BJ, Baum JK. 2016. Size-based approaches to aquatic ecosystems and fisheries science: a symposium in honour of Rob Peters. Canadian Journal of Fisheries and Aquatic Sciences, 73, 471-476. DOI: 10.1139/cjfas-2016-0100.

Gislason H, Daan N, Rice JC, Pope JG. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11, 149–158. DOI: 10.1111/j.1467-2979.2009.00350.x.

Givan O, Parravicini V, Kulbicki M, Belmaker J. 2017. Trait structure reveals the processes underlying fish establishment in the Mediterranean. Global Ecology and Biogeography 26, 42-153. DOI: 10.1111/geb.12523.
Godin J-GJ, Classon LJ, Abrahams MV. 1988. Group Vigilance and Shoal Size in a Small Characin Fish. Behaviour 104, 29-40. DOI: 10.1163/156853988X00584.

Griffith DM, Veech JA, Marsh CJ. 2016. cooccur: Probabilistic species co-occurrence analysis in R. Journal of Statistical Software 69(2), 1-17. DOI: 10.18637/jss.v069.c02.

Grubbs FE. 1950. Sample criteria for testing outlying observations. Annals of Mathematical Statistics 21, 27–58. DOI:10.1214/aoms/1177729885.

Guidetti P. 2000. Differences among fish assemblages associated with nearshore Posidonia oceanica seagrass beds, rocky–algal reefs and unvegetated sand habitats in the Adriatic Sea. Estuarine, Coastal and Shelf Science, 50(4), 515-529. DOI: 10.1006/ecss.1999.0584

Henderson CJ, Gilby BL, Schlacher TA, Connolly RM, Sheaves M, Maxwell PS, Flint N, Borland HP, Martin TS, Gorissen B, Olds AD. 2019. Landscape transformation alters functional diversity in coastal seascapes. Ecography 42, 1-11. DOI:10.1111/ecog.04504.

Henriques S, Cardoso P, Cardoso I, Laborde M, Cabral HN, Vasconcelos RP. 2017. Processes underpinning fish species composition patterns in estuarine ecosystems worldwide. Journal of Biogeography 44, 627-639. DOI: 10.1111/jbi.12824.

Henseler C, Nordström MC, Törnroos A, Snickars M, Pecuchet L, Lindegren M, Bonsdorff E. 2019. Coastal habitats and their importance for the diversity of benthic communities: A species- and trait-based approach. Estuarine, Coastal and Shelf Science 226, 106272. DOI: 10.1016/j.ecss.2019.106272.

Hill MO, Smith AJ. 1976. Principal Component Analysis of taxonomic data with multi-state discrete characters, Taxon 25, 249-255. DOI:10.2307/1219449.

Hoare DJ, Krause J, Peuhkuri N, Godin J-GJ. 2005. Body size and shoaling in fish. Journal of Fish Biology 57, 1351-1366. DOI: 10.1111/j.1095-8649.2000.tb02217.x.

Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS. 2010. Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution 25, 633–642. DOI: 10.1016/j.tree.2010.07.011.

Jain M, Flynn DFB, Prager CM, Hart GM, De Van CM, Arestani FS, Palmer MI, Bunker DE, Knops JMH, Jouseau CF, Naeem S. 2014. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecology and Evolution 4, 104–112. DOI: 10.1002/ece3.915.

Jarić I, Gavečić Z. 2012. Relationship between the longevity and the age at maturity in long-lived fish: Rikhter/Efanov’s and Hoenig’s methods. Fisheries Research 129-130, 61–63. DOI: 10.1016/j.fishres.2012.06.010.

Jennings S. 2005. Size-based analyses of aquatic food webs. In: Belgrano A., Scharler U.M., Dunne J., Ulanowicz R.E. (eds.): Aquatic Food Webs: An ecosystem approach. Oxford University Press 262 pp.

Jennings S, Kaiser MJ, Reynolds JD. 2001. Marine Fisheries Ecology. Blackwell Science, Oxford. 417 pp.

Jennings S, Pinnegar JK, Polunin NVC, Warr KJ. 2002. Linking size-based and trophic analyses of benthic community structure. Marine Ecology Progress Series, 226, 77–85. DOI: 10.3354/meps226077.
Jonsson B, Jonsson N. 1993. Partial Migration – Niche Shift Versus Sexual-Maturation in Fishes, Reviews in Fish Biology and Fisheries 3, 348-365. DOI: 10.1007/BF00043384.

Kaiser MJ, Atrill MJ, Jennings S, Thomas DN, Barnes DKA, Brierley AS, Hiddink JG, Kaartokallio H, Polunin NVC, Williams PJ le B. 2005. Marine Ecology: Processes, Systems and Impacts. Oxford University Press, 557 pp. DOI: 10.1007/s11099-006-0039-0.

Kaiser MJ, Clarke KR, Hinz H, Austen MCV, Somerfield PJ, Karakassis I. 2006. Global analysis of response and recovery of benthic biota to fishing. Marine Ecology Progress Series 311, 1-14. DOI: 10.3354/meps311001.

Kalogirou S, Corsini-Foka M, Sioulas A, Wennhage H, Pihl L. 2010. Diversity, structure and function of fish assemblages associated with Posidonia oceanica beds in an area of the eastern Mediterranean Sea and the role of non-indigenous species. Journal of Fish Biology, 77, 2338-2357. DOI: 10.1111/j.1095-8649.2010.02817.x.

Katselis G, Koutsikopoulos C, Dimitriou E, Rogdakis Y. 2003. Spatial and temporal trends in the composition of the fish barriers fisheries production of the Messolonghi–Etoliko lagoon (western Greek coast). Scientia Marina 67 (4), 501-511. DOI: 10.3989/scimar.2003.67n4501.

Kerr SR, Dickie LM. 2001. The biomass spectrum: a predator–prey theory of aquatic production. New York: Columbia University Press.

Koutsidi M, Tzanatos E, Machias A, Vassilopoulou V. 2016. Fishing for function: the use of biological traits to evaluate the effects of multispecies fisheries on the functioning of fisheries assemblages. ICES Journal of Marine Science 73(4), 1091-1103. DOI: 10.1093/icesjms/fsw006.

Krause J, Godin J-GJ. 1995. Predator preferences for attacking particular prey group sizes: consequences for predator hunting success and prey predation risk. Animal Behaviour 50, 465-473. DOI: 10.1006/anbe.1995.0260.

Krause J, Ruxton GD. 2002. Living in groups. Oxford: Oxford University Press.

Kuparinen A, Merilä J. 2007. Detecting and managing fisheries-induced evolution. Trends in Ecology & Evolution 22, 652–659. DOI: 10.1016/j.tree.2007.08.011.

Law R. 2000. Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science 57, 659-668. DOI: 10.1006/jmsc.2000.0731.

Leis JM. 2006. Are Larvae of Demersal Fishes Plankton or Nekton? Advances in Marine Biology 51, 57-141. DOI: 10.1016/S0065-2881(06)51002-8.

Lejeusne C., Chevaldonné P., Pergent-Martini C., Boudouresque C. F., Pérez T. (2010): Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution 25, 250-260. DOI: 10.1016/j.tree.2009.10.009.

Litchman E, Ohman MD, Kiørboe T. 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35, 473-484. DOI: 10.1093/plankt/fbt019.

Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 294, 804-808. DOI: 10.1126/science.1064088.

Mariani P, Andersen KH, Visser AW, Barton AD, Kiørboe T. 2013. Control of plankton seasonal succession by adaptive grazing. Limnology and Oceanography 58, 173-184. DOI: 10.4319/lo.2013.58.1.0173.
Martino EJ, Able KW. 2003. Fish assemblages across the marine to low salinity transition zone of a temperate estuary. Estuarine, Coastal and Shelf Science 56, 969-987. DOI: 10.1016/S0272-7714(02)00305-0.

Matheson RE., Flaherty-Walia KE, Switzer TS, McMichael RH. 2017. The importance of time of day in structuring demersal ichthyofaunal assemblages on the West Florida Shelf. Bulletin of Marine Science 93, 407-437.

Marquez JF, Lee AM, Aanes S, Engen S, Herfindal I, Salthaug A, Sæther B. 2019. Spatial scaling of population synchrony in marine fish depends on their life history. Ecology Letters 22, 1787-1796. DOI: 10.1111/ele.13360.

McLean M, Moullot D, Auber A. 2018. Ecological and life history traits explain a climate-induced shift in a temperate marine fish community. Marine Ecology Progress Series 606, pp. 175-186. DOI: 10.3354/meps12766.

McLusky DS, Elliott M. 2007. Transitional waters: a new approach, semantics or just muddying the waters? Estuarine, Coastal & Shelf Science, 71, 359-363. DOI: 10.1016/j.ecss.2006.08.025.

Moranta J, Palmer M, Morey G, Ruiz A, Morales-Nin B. 2006. Multi-scale spatial variability in fish assemblages associated with Posidonia oceanica meadows in the Western Mediterranean Sea. Estuarine, Coastal and Shelf Science, 68, 579-592. DOI: 10.1016/j.ecss.2006.03.008.

Mousseau TA, Roff DA. 1987. Natural selection and the heritability of fitness components. Heredity, 59, 181–197.

Moyle PB, Cech Jr JJ. 2004. Fishes: An introduction to Ichthyology. Pearson Benjamin Cummings, 5th edition, 726 pp.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. DOI: 10.1038/35002501.

Naeem S, Chapin FS, Costanza R, Ehrlich PR, Golley FB, Hooper DU, Lawton JH, O’Neill RV, Mooney HA, Sala OE, Symstad AJ, Tilman D. 1999. Biodiversity and Ecosystem Functioning: Maintaining Natural Life Support Processes Issues in Ecology, vol. 4. Washington: Ecological Society of America, 11.

Nicolaidou A, Reizopoulos S, Koutsoubas D, Orfanidis S, Kevrekidis T. 2005. Biological components of Greek Lagoonal Ecosystems: An overview. Mediterranean Marine Science, 6 (2), 31-50. DOI: 10.12681/mms.184.

Occhipinti-Ambrogi A, Savini D. 2003. Biological invasions as a component of global change in stressed marine ecosystems Marine Pollution Bulletin 46, 542-551. DOI: 10.1016/S0025-326X(02)00363-6.

Park TH, Lee CI, Kang CK, Kwak JH, Lee SH, Park HJ (2019). Seasonal Variation in Food Web Structure and Fish Community Composition in the East/Japan Sea. Estuaries and Coasts 42, 1-15. https://doi.org/10.1007/s12237-019-00530-4.

Pasquaud S, Vasconcelos RP, França S, Henriques S, Costa MJ, Cabral H. 2015. Worldwide patterns of fish biodiversity in estuaries: Effect of global vs. local factors. Estuarine, Coastal and Shelf Science 154, 122-128. DOI: 10.1016/j.ecss.2014.12.050.

Paterson DM, Defew EC, Jabour J. 2012. Ecosystem function and co-evolution of terminology in marine science and management. In: Solan M., Aspden R.J., Paterson D.M. (editors): Marine biodiversity and ecosystem functioning. Oxford: Oxford University Press, 24-33.
Pauly D., Christensen V., Dalsgaard J., Froese R., Torres F (1998). Fishing down marine food webs. Science 279, 860-863. DOI: 10.1126/science.279.5352.860.

Pauly D, Christensen V, Walters C. 2000. Ecopath, Ecosim and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science 57: 697-706. DOI: 10.1006/jmsc.2000.0726.

Paxton A. B., Revels L. W., Rosemond R. C., Van Hoeck R. V., Lemoine H. R., Taylor J. C., Peterson CH. 2018. Convergence of fish community structure between a newly deployed and an established artificial reef along a five-month trajectory. Ecological Engineering 123, 185-192. DOI: 10.1016/j.ecoleng.2018.09.012.

Pecuchet L, Lindegren M, Hidalgo M, Delgado M, Esteban A, Fock HO, Gil de Sola L, Punzón A, Sólmundsson J, Payne MR. 2017. From traits to life-history strategies: Deconstructing fish community composition across European seas. Global Ecology and Biogeography 26(7), 812-822. DOI: 10.1111/geb.12587.

Pecuchet L, Lindegren M, Kortsch S, Całkiewicz J, Jurgensone I, Margonski P, Otto SA, Putnis I, Strāķe S, Nordström MC. 2019. Spatio-temporal dynamics of multi-trophic communities reveal ecosystem-wide functional reorganization. Ecography 42, 1-12. DOI: 10.1111/ecog.04643.

Pecuchet L, Reygondeau G, Cheung WWL, Licandro P, van Denderen D, Payne MR, Lindegren M (2018). Spatial distribution of life-history traits and their response to environmental gradients across multiple marine taxa. Ecosphere 9(10), e02460. DOI: 10.1002/ecs2.2460.

Pereira PHC, Macedo CH, Nunes J d ACC, Marangoni LF d B, Bianchini A. 2018. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072. https://doi.org/10.1371/journal.pone.0203072.

Pianka ER. 1970. On r-and K-selection. American Naturalist, 592-597.

Pitcher TJ, Parrish JK. 1993. Functions of shoaling behaviour in teleosts. In Pitcher, T. J. (ed.), Behaviour of Teleost Fishes. London: Chapman & Hall, 363–439.

R Core Team 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rideout RM, Morgan MJ, Lilly GR. 2006. Variation in the frequency of skipped spawning in Atlantic cod (Gadus morhua) off Newfoundland and Labrador. ICES Journal of Marine Science 63, 1101–1110. DOI: 10.1016/j.icesjms.2006.04.014.

Rijnsdorp AD, Bastardie F, Bolam SG, Buhl-Mortensen L, Eigaard OR, Hamon KG, Hiddink JG, Hintzen NT, Ivanović A, Kenny A, Laffargue P, Nielsen JR, O'Neil FG, Piet GJ, Polet H, Sala A, Smith C, van Denderen PD, Van Kooten T, Zengin M. 2016. Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem. ICES Journal of Marine Science 73, i127-i138. DOI: 10.1093/icesjms/fsv207.

Romanuk T, Hayward A, Hutchings JA. 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography, 20, 231–240. DOI: 10.1111/j.1466-8238.2010.00579.x.

Schrandt MN, Switzer TS, Stafford CJ, Flaherty-Walia KE, Paperno R, Matheson RE. 2018. Similar habitats, different communities: Fish and large invertebrate assemblages in eastern Gulf of Mexico polyhaline seagrasses relate more to estuary morphology than latitude. Estuarine, Coastal and Shelf Science 213, 217-229. DOI: 10.1016/j.ecss.2018.08.022.
Wooton RJ. 1999. Ecology of Teleost fishes. 2nd Edition, Dordrecht: Kluwer Academic Publishers, Fish and Fisheries Series 24.

Zar JH. 1999. Biostatistical analysis, 4th ed. Englewood Cliffs, NJ: Prentice-Hall.
Table 1

Significance of traits at the level of species, community, ecosystem functioning and anthropogenic effects.

NR: Not relevant. References with explanation/examples are indicated with numbers corresponding to in-text citations following and are listed in detail in the Reference list.

1Ballesteros (2006), 2Bamber (1995), 3Beauchard et al. (2017), 4Charnov, Gislason & Pope (2013), 5Cheung, Watson & Pauly D. (2013), 6Coll et al. (2010), 7Costello et al. (2015), 8Côté & Poulin (1995), 9Dutil (1986), 10Edworthy & Strydom (2016), 11Engelhard & Heino (2005), 12Erisman et al. (2017), 13Ferno & Olsen (1994), 14Floeter et al. (2007), 15Galil (2007), 16Gerlach, Hahn & Schrage (1985), 17Giacomini, Shuter & Baum (2016), 18Givan et al. (2017), 19Godin, Classon & Abrahams (1988), 20Henriques et al. (2017), 21Henseler et al. (2019), 22Hoare et al. (2005), 23Jennings (2005), 24Jennings, Kaiser & Reynolds (2001), 25Jonsson & Jonsson (1993), 26Kaiser et al. (2005), 27Kaiser et al. (2006), 28Kalogirou et al. (2010), 29Katselis et al. (2003), 30Kerr & Dickie (2001), 31Krause & Godin (1995), 32Krause & Ruxton (2002), 33Leis (2006), 34Lejeusne et al. (2010), 35Loreau et al. (2001), 36Mariani et al. (2013), 37Martino & Able (2003), 38Matheson et al. (2017), 39McLusky & Elliott (2007), 40Moyle & Cech (2004), 41Occhipinti-Ambrogi & Savini (2003), 42Park et al. (2019), 43Pasquaud et al. (2015), 44Pauly et al. (1998), 45Paxton et al. (2018), 46Pereira (2018), 47Pianka (1970), 48Pitcher & Parrish (1993), 49Rideout, Morgan & Lilly (2006), 50Rijnsdorp et al. (2016), 51Schrandt et al. (2018), 52Secor (2015), 53Solan, Aspden & Paterson (2012), 54Tserpes, Tzanatos & Peristeraki (2011), 55Tzanatos et al. (2006), 56Vasilakopoulos et al. (2017), 57Vega-Cendejas & de Santillana (2019), 58Winemiller &...
Rose (1992), Wooton (1999)
| a/a | Trait (example) | Population/species | Significance or implications at the level of: |
|-----|----------------|---------------------|---------------------------------------------|
|     |                |                     | Community | Ecosystem | Anthropogenic effects |
| 1   | Longevity (5 years) | Longer lifespan increases reproductive success over time\(^5\) | Higher longevity renders individual more important both as prey and as a predator as more instances of predation | Longevity is related with natural mortality and thus with energy transfer in the ecosystem\(^4\) | Longevity and age at maturity are related with the ability to recover from anthropogenic disturbance\(^5\) |
|     |                 | May indicate population stability over time and potential of the various life stages to disperse\(^7\) |  |  |  |
| 2   | Age-at-maturity (30% of lifespan) | Early maturity may increase resilience in unfavourable environmental conditions\(^2\) | NR | Ecosystem characteristics (e.g. productivity) may enhance or delay maturation | Longevity and age at maturity are related with the ability to recover from anthropogenic disturbance\(^2\) |
|     |                 | Associated with cessation of growth\(^2\) |  |  | Early maturation may increase resilience in high exploitation rates. Maturity significant for fisheries management (measures planned to ensure population part achieves sexual maturity) |
| 3   | Fecundity (5-10 eggs) | If low should ensure offspring survival-population fitness, as energy allocated to survival of offspring or fecundity (r/K-selection strategy)\(^47\) | High fecundity means higher abundance of young “defenceless” stages (eggs, larvae) that are possible prey for other populations, but higher inter-specific competition later on\(^6\) | As it provides easy-to-capture and rich in energy prey (compared to adult prey) may influence energy flow rates | Together with mortality until recruitment may affect stock size which is very relevant for fisheries\(^24\) |
| 4   | Hermaphroditism (gonochoristic) | Sexual maturity of the second (in succession) sex must be achieved through survival to guarantee successful spawning and recruitment | NR | NR | As both sex ratio and gear selectivity change with size, exploitation of one size part of the population may affect sex ratio and possibly reproductive success. |
|     |                 | Size is important in determining male reproductive success\(^59\) |  |  |  |
| Trait (example)       | Significance or implications at the level of: | Community | Ecosystem | Anthropogenic effects |
|----------------------|-----------------------------------------------|-----------|-----------|----------------------|
| Maximum length (20 cm) | Related to individual biomass, food web position, abundance, metabolic rates, and dispersal | As in the marine ecosystem there is an "eat what is smaller" pattern, there has to be some variability in species sizes to support a community | Related to energy flow in the ecosystem (because of association with trophic level/diet) and resulting food webs | Relevant for fisheries (with regard to body shape) for selectivity |
| Body form (flat)     | Related to position in the water column/habitat, diet/potential prey, activity | Because of association with habitat, specific communities may have higher frequencies of some body forms | Not relevant | Related to the way fishing gear may affect selectivity (together with size) |
| Optimal depth (0-50 m) | Physical factor determining potential species habitat | Depth is a major factor shaping marine communities | Depth may affect productivity and energy flow as e.g. below the euphotic zone the lack of primary production modifies trophic links. Also effects of elements like critical depth or seagrass bed distribution | Different gears and fishing sectors are often operating in different depths resulting in different communities prone to exploitation and resulting catch composition |
| Optimal temperature (25-30°C) | Defines optimal temperature conditions for population fitness. May affect movement between water masses (behavioural thermoregulation) and thus abundance and distribution | Due to climate change can shift to dominance of more thermophilic species | NR | More thermophilic species may appear more frequently in the catches |
| Habitat type (benthic) | Populations are closely associated to pelagic or benthic habitat or migrate between them | Specific habitats are characterised by specific communities | Effect of seabed type on ecosystem functioning expected to be significant as both are related to biodiversity and its attributes | Has implications for target species abundance and bycatch (thus fishing gear use) |
| Distribution (tropical) | Related to proximity to the geographic distribution of the area examined (if e.g. through Gibraltar or Suez in the Med) and could be associated to favourable environmental conditions | Species of alien distribution (invasive) species may dominate the community through colonisation of empty niches/lack of "natural enemies" | NR | Climate change or other environmental changes may be forcing changes in distribution patterns |
| a/a | Trait (example) | Population/species | Community | Ecosystem | Anthropogenic effects |
|-----|----------------|-------------------|-----------|-----------|----------------------|
| 11  | Sea bed type (hard) | Physical factor determining potential species habitat | Specific habitats host and are characterized by specific communities | Effect of seabed type on ecosystem functioning expected to be significant as both are related to biodiversity and its attributes | Has implications for target species abundance and bycatch (thus gear use) |
| 12  | Spawning habitat (pelagic) | Spawning habitat determines the nature and intensity of hazards encountered by eggs and larvae | May determine seasonal communities as a result of spawning seasonality and also of populations feeding on eggs and juveniles | If spawning habitat different from adult stage habitat may be relevant to benthopelagic coupling | May create aggregations prone to fisheries |
| 13  | Temperature range (eurythermal) | May increase population resilience to abrupt temperature changes or ability to change environment | Eurythermal species may dominate community under climate change/frequent weather changes | NR | May increase population resilience to climate change, invasion rates and appearance in the fisheries catch |
| 14  | Salinity range (stenohaline) | May be related to population ability to approach/enter productive habitats like estuaries & lagoons | Shapes communities of brackish waters, e.g. along salinity gradients | Relevant to matter & energy transfer between the ocean and brackish waters through euryhaline species | Shapes the resources exploited by fisheries in brackish environments (e.g. lagoon fisheries) |
| 15  | Depth range (eurybathic) | Eurybathic species have more potential habitat and might be more resilient to habitat loss | Communities dominated by eurybathic species may be more resilient to environmental changes and disturbance | Eurybathic species may transfer energy through depth zones and contribute to benthopelagic coupling | More eurybathic species may be more resilient to habitat degradation by fisheries or other anthropogenic effects |
| 16  | Seasonal migrations (migratory) | Can change the population ecological status, may lead to a seasonal (periodic) life strategy and shape seasonal energy needs | Community will change seasonally, qualitatively and quantitatively | Can have impact on energy flow, creating seasonal dynamics | Many fisheries are based on seasonal migrations for fishing grounds or even operation of specific gears (e.g. lagoon fisheries) |
| 17  | Trophic level (3.5-4.2) | Derived from the type and frequency of trophic objects in its diet | Influence on other species abundance and community structure and dynamics | May alter nutrient cycling in the ecosystem | Depending on exploitation removing part of the trophic network may result in fishing down the food web |
| 18  | Diet (zooplankton) | Determines food web position | Influence on other species abundance and community structure and dynamics | May alter nutrient cycling in the ecosystem | Relevant to fishing gear mode of operation exploiting diet (hook and line gears e.g. longlines) and associated target species & catch composition |
| a/a | Trait (example) | Population/species | Community | Ecosystem | Anthropogenic effects |
|-----|----------------|---------------------|-----------|-----------|-----------------------|
| 19  | Spawning period (spring) | Shapes the period that the population must feed to prepare spawning and non-feeding period. May be associated with "weak" period (bad condition) after spawning. | May shape feeding interactions and trophic links within the community seasonally, both as a result of preying on eggs and larvae and, secondarily, because of the seasonal pattern of recruitment. | Is affected by suitability of the environmental conditions for eggs & larvae. Is affected by energy supply (low energy may result in delay or skipping spawning). As the spawning period generates eggs and larvae it provides potential prey. | Seasonality of fisheries may lead to unsuccessful spawning and result in few individuals recruited |
| 20  | Feeding type (plankton) | Related to the diet and the trophic level through the relative size and mobility of the prey in comparison to the predator. | By shaping diet can affect the community composition | Related to prey community composition and lower trophic level succession patterns. | Relevant to fishing gear mode of operation exploiting feeding behaviour (hook and line gears e.g. trolling lines, longlines) and associated target species & catch composition. |
| 21  | Sociability (schools) | Benefits like predation avoidance, food location and foraging strategy, improvement of reproductive success. | Schooling important in shaping communities regarding hydrodynamic characteristics. | Schooling/pelagic fish may colonise new habitats (e.g. reefs) more easily. | Relevant to fishing gear mode of operation exploiting gregarious fish behaviour (e.g. purse seines) and associated target species & catch composition. |
| 22  | Exposure (cryptic-temporarily) | Population must balance ability to graze/predate and predation avoidance | Depending on conditions (e.g. habitat type) cryptic species may dominate communities. | Level of exposure and cryptic behaviour relevant to differences in diel community composition. | NR |
| 23  | Mobility (high) | Indicates a dispersal potential and a more or less mobile lifestyle. | Might differentiate pelagic (more motile) from benthic (more static) communities | May be relevant to transfer of energy between ecosystems or benthopelagic coupling | Relevant to fishing gear mode of operation exploiting fish motility behaviour (e.g. nets) and associated target species & catch composition. |
**Table 2** (on next page)

List of traits used in the analyses, trait type (functional/ecological), variable type and categories/modalities used for categorical traits.

CON: Continuous. RAN: Continuous, provided as a range for most/all species. CAT: Categorical. *as % of maximum age. **scale of eggs/juveniles per spawn, maximum value indicated. ***indicating that food items have negligible or low mobility related to predator.
| Trait                                      | Trait type | Variable type | Trait categories/modalities (in case of categorical trait) |
|--------------------------------------------|------------|---------------|------------------------------------------------------------|
| Longevity                                  | Functional | CON           |                                                             |
| Age at maturity*                           | Functional | CON           |                                                             |
| Fecundity**                                | Functional | CON           |                                                             |
| Gonochorism                                | Functional | CAT           | Gonochoristic, Hermaphrodite                                |
| Maximum length                             | Functional | CON           |                                                             |
| Body shape                                 | Functional | CAT           | Flat, Long, Deep, Atractoid, Rounded                        |
| Optimal depth                              | Ecological | RAN           |                                                             |
| Optimal temperature                        | Ecological | RAN           |                                                             |
| Habitat type                               | Ecological | CAT           | Pelagic, Benthic, Benthopelagic                              |
| Distribution                               | Ecological | CAT           | Global, Temperate, Tropical, Subtropical                    |
| Seabed morphology                          | Ecological | CAT           | Open sea, Soft, Hard, Variable                              |
| Spawning habitat                           | Ecological | CAT           | Pelagic, Benthic                                           |
| Temperature range                          | Ecological | CAT           | Stenothermal, Eurythermal                                  |
| Salinity range                             | Ecological | CAT           | Stenohaline, Euryhaline                                   |
| Depth range                                | Ecological | CAT           | Eurybathic, Stenobathic                                   |
| Seasonally migratory                       | Ecological | RAN           | Migratory, Non-migratory                                   |
| Trophic level                              | Functional | RAN           |                                                           |
| Diet                                       | Functional | CAT           | Herbivore, Zoobenthivore, Zoobenthivore-Hyperbenthos, Omnivore, Zooplankton, Piscivore |
| Spawning period                            | Functional | CAT           | Winter, Spring, Summer, Autumn, All year                   |
| Feeding behaviour***                       | Functional | CAT           | Grazer***, Active predator, Ambushing predator             |
| Sociability                                | Functional | CAT           | Schools, Shoals-large groups (>10), Small groups (<10), Solitary |
| Exposure                                   | Functional | CAT           | Free, Cryptic (permanently)                                |
| Mobility                                   | Functional | CAT           | Ambusher, Small, Medium, High                              |
Table 3 (on next page)

Pearson correlation coefficients between continuous traits.

Statistically significant correlations without taking into account the Bonferroni correction are denoted in red color, while these incorporating the Bonferroni correction are indicated in green. Pairs of traits where non-linear regression indicated that a non-linear relationship was better than a linear one in describing trait fluctuations are framed (in all these cases the non-linear p<0.01 remained significant after the Bonferroni correction).
| Trait              | ln(Longevity) | Age at maturity | ln(Fecundity) | ln(Maximum length) | ln(Depth) | Trophic level | Optimal temperature |
|--------------------|---------------|-----------------|---------------|--------------------|-----------|---------------|--------------------|
| ln(Longevity)      | -             | -               |               |                    |           |               |                    |
| Age at maturity    | -0.34         | -               | -0.19         | -                  |           |               |                    |
| ln(Fecundity)      | 0.16          | -0.19           | -             |                    |           |               |                    |
| ln(Maximum length) | 0.65          | -0.14           | 0.11          | 0.30               |           |               |                    |
| ln(Depth)          | 0.22          | 0.08            | 0.01          | 0.30               |           |               |                    |
| Trophic level      | 0.27          | 0.03            | -0.06         | 0.50               | 0.38      |               |                    |
| Optimal temperature| -0.08         | -0.01           | 0.23          | 0.06               | -0.10     | -0.04         |                    |
Table 4 (on next page)

Results of the statistical analyses between continuous and categorical traits.

Test (A: ANOVA, T: t-test, K: Kruskal-Wallis, M: Mann-Whitney) indicated as superscript next to result. *p<0.05, **p<0.01, ***p<0.001. Statistically significant differences between groups (categorical traits) without taking into account the Bonferroni correction are denoted in red color, while these incorporating the Bonferroni correction are indicated in green.
| Trait                      | ln(Longevity) | Age-at-maturity | ln(Fecundity) | ln(Maximum length) | ln(Depth) | Trophic level | Optimal temperature |
|----------------------------|---------------|-----------------|---------------|--------------------|------------|---------------|----------------------|
| Gonochorism                | -1.21<sup>T</sup> | -339.50<sup>M</sup> | 391.5<sup>M</sup> | -75.50<sup>M</sup> | 214.50<sup>M</sup> | 0.21<sup>T</sup> | -1.23<sup>T</sup>     |
| Body shape                 | **17.71<sup>K</sup>** | 1.81<sup>A</sup> | ***24.28<sup>K</sup>** | ***8.56<sup>K</sup>** | 8.67<sup>K</sup> | 7.05<sup>K</sup> | **4.04<sup>A</sup>**  |
| Habitat type               | 0.79<sup>A</sup> | 0.8<sup>A</sup> | ***13.43<sup>K</sup>** | ***9.38<sup>A</sup> | 0.13<sup>A</sup> | **10.32<sup>A</sup>** | *3.34<sup>A</sup>     |
| Seasonally migratory       | 629.50<sup>M</sup> | -0.34<sup>T</sup> | *-2.45<sup>T</sup> | ***-5.27<sup>T</sup> | 0.10<sup>T</sup> | -1.61<sup>T</sup> | -0.73<sup>T</sup>     |
| Distribution              | 2.08<sup>A</sup> | *2.75<sup>A</sup> | 1.52<sup>A</sup> | 2.00<sup>A</sup> | *3.42<sup>A</sup> | 0.83<sup>A</sup> | ***12.17<sup>A</sup>  |
| Seabed morphology         | 0.96<sup>A</sup> | 0.48<sup>A</sup> | ***16.97<sup>K</sup>** | 2.57<sup>A</sup> | 1.58<sup>A</sup> | 3.57<sup>A</sup> | *4.22<sup>A</sup>     |
| Diet                      | ***6.16<sup>A</sup>** | 0.57<sup>A</sup> | 10.58<sup>K</sup> | ***30.41<sup>A</sup> | ***49.43<sup>K</sup>** | ***143.7<sup>A</sup> | 1.65<sup>A</sup>     |
| Feeding behaviour         | ***27.29<sup>K</sup>** | 0.72<sup>A</sup> | 2.65<sup>A</sup> | ***42.98<sup>K</sup>** | ***21.38<sup>K</sup>** | ***76.18<sup>A</sup> | 1.64<sup>A</sup>     |
| Spawning period           | 4.65<sup>K</sup> | 0.83<sup>A</sup> | 0.65<sup>A</sup> | 1.13<sup>A</sup> | *3.00<sup>A</sup> | 0.86<sup>A</sup> | *2.49<sup>A</sup>     |
| Spawning habitat          | **1276.50<sup>M</sup>** | 1.03<sup>T</sup> | ***-2.85<sup>T</sup> | ***1664<sup>M</sup> | ***1762<sup>M</sup> | -1.53<sup>T</sup> | -0.8<sup>T</sup>      |
| Depth range               | 0.11<sup>T</sup> | **-1222<sup>M</sup>** | -1.18<sup>T</sup> | *2.5<sup>T</sup> | ***-63.65<sup>M</sup> | ***3.53<sup>T</sup> | -0.76<sup>T</sup>     |
| Temperature range         | 1.59<sup>T</sup> | -0.49<sup>T</sup> | -1.83<sup>T</sup> | -0.95<sup>T</sup> | 0.03<sup>T</sup> | 681.5<sup>M</sup> | ***-4.8<sup>T</sup>    |
| Salinity range            | 0.81<sup>T</sup> | -1.3<sup>T</sup> | 1.37<sup>T</sup> | 1.51<sup>T</sup> | ***-5.47<sup>T</sup> | -1.58<sup>T</sup> | -0.31<sup>T</sup>     |
| Sociability               | 0.23<sup>A</sup> | 1.98<sup>A</sup> | **12.72<sup>K</sup>** | 0.18<sup>A</sup> | 2.24<sup>A</sup> | 7.6<sup>K</sup> | 2.16<sup>A</sup>     |
| Exposure                  | 0.11<sup>A</sup> | *3.78<sup>A</sup> | 2.22<sup>A</sup> | 0.81<sup>A</sup> | *4.25<sup>A</sup> | 0.89<sup>A</sup> | *3.02<sup>A</sup>     |
| Mobility                  | **4.31<sup>A</sup>** | 0.82<sup>A</sup> | ***4.23<sup>A</sup> | ***4.44<sup>A</sup> | *3.48<sup>A</sup> | **15.25<sup>K</sup>** | **4.79<sup>A</sup>**  |
Table 5 (on next page)

Summary of the main findings of the significant relationships between continuous and categorical traits.

For pairwise contrasts between trait categories see Supplementary Figure S1.
| Continuous trait | Categorical trait | Main findings |
|------------------|------------------|---------------|
| Longevity        | Body shape       | Highest in flat species, lowest in rounded species |
|                  | Feeding type     | Highest in ambush & active predators, lowest in grazers |
|                  | Spawning habitat | Higher in pelagic spawners |
|                  | Diet             | Highest in piscivorous species, lowest in zooplanktivorous-zoobentivorous |
| Fecundity        | Body shape       | Higher in atractoid and deep-bodied, lower in flat and long species |
|                  | Habitat type     | Highest in pelagic species, intermediate in benthopelagic, lowest in benthic |
|                  | Seabed type      | Highest in the open sea and over hard substrate, lowest over soft substrate |
| Maximum length   | Body shape       | Higher in long, atractoid and flat body shape, lowest in rounded body shape |
|                  | Habitat type     | Highest in pelagic species, intermediate in benthic, lowest in benthopelagic |
|                  | Seasonal migrations | Higher in non-migratory species |
|                  | Diet             | Highest in piscivorous species |
|                  | Feeding type     | Highest in active & ambushing predators, lowest in grazers |
|                  | Spawning habitat | Higher in pelagic spawners |
| Depth            | Depth range      | Eurybathic species deeper |
|                  | Diet             | Herbivores most shallow, piscivores and zoobenthivores deeper |
|                  | Feeding type     | Active predators deepest, grazers shallowest |
|                  | Spawning habitat | Benthic spawners deeper |
|                  | Salinity range   | Euryhaline species in shallower depth |
| Trophic level    | Diet             | Herbivores have lowest trophic level, piscivores the highest |
|                  | Feeding type     | Highest in ambush & active predators, lowest in grazers |
|                  | Habitat type     | Highest in pelagic species |
|                  | Depth range      | Eurybathic species have higher trophic level |
|                  | Mobility         | Ambushers have highest trophic level |
| Optimal temperature | Mobility | Higher in species of high & medium mobility, lower in small mobility species |
|                   | Temperature range | Higher in stenothermal species |
|                   | Distribution     | Higher in tropical species, lowest in temperate |
Figure 1

A. Distribution of continuous traits of the nekton species examined. B. Ranges and/or means of range-type traits. Species are ranked according to the mean of the range.

Note: In the bibliography, sometimes fecundity is provided as the maximum number of offspring with no indication of the minimum. In these cases it is here denoted not as a range, but with the same symbol as the mean.
Figure 2

Frequency distribution of categorical traits of the nektonic species examined

[Graphs showing distributions of traits such as Herkstoff lithium, seasonally migratory, spawning habitat, depth range, body shape, geographic distribution, spawning season, exposure, habitat type, feeding behaviour, temperature range, mobility, seabed type, diet, salinity range, and sociability. Each graph includes bars depicting the percentage of occurrences in various categories.]
Figure 3

The statistically significant correlations or non-linear relationships between continuous traits after incorporating the Bonferroni correction.
Figure 4

Diagonal matrix of positive, random, and negative co-occurrence between the trait category/modality pairs. Cumulative number of positive, negative and random co-occurrences are also provided for each trait category.
Figure 5

Species positions across the first two major axes (explaining 19% of cumulative variance) of the Hill-Smith ordination. Species major groups (at 42% dissimilarity) are indicated by colours corresponding to the dendrogram of Figure 6 and some species names.
Hierarchical clustering of nektonic species using the coordinates of the 11 major axes of the Hill-Smith ordination and functional group identification at two dissimilarity levels: 42% (Groups A-F) and 13% (Groups 1-18).