Moments of permutation statistics and central limit theorems

Stoyan Dimitrov
University of Illinois at Chicago
(joint work with Niraj Khare)

Rutgers Experimental Mathematics seminar
October 14, 2021
Consider the set, \(\Pi_n \), of all partitions of \([n] := \{1, 2, \ldots, n\}\).

Their number is \(B_n \) - the \(n \)-th Bell number. For example, \(B_3 = 5 \):
\[
\{\{1\}, \{2\}, \{3\}\}, \{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{1\}, \{2, 3\}\}, \{1, 2, 3\}.
\]
Consider the set, Π_n, of all partitions of $[n] := \{1, 2, \ldots, n\}$.

Their number is B_n - the n-th Bell number. For example, $B_3 = 5$:

\[
\{\{1\}, \{2\}, \{3\}\}, \{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{1\}, \{2, 3\}\}, \{1, 2, 3\}.
\]

Let $X_1(\lambda) :=$ the number of blocks of size 1 in $\lambda \in \Pi_n$.

Can we find $M(X_1; n)$, where $M(f; n) := \sum_{\lambda \in \Pi_n} f(\lambda)$?
Consider the set, Π_n, of all partitions of $[n] := \{1, 2, \ldots, n\}$.

Their number is B_n - the n-th Bell number. For example, $B_3 = 5$: $\{\{1\}, \{2\}, \{3\}\}$, $\{\{1, 2\}, \{3\}\}$, $\{\{1, 3\}, \{2\}\}$, $\{\{1\}, \{2, 3\}\}$, $\{1, 2, 3\}$.

Let $X_1(\lambda) :=$ the number of blocks of size 1 in $\lambda \in \Pi_n$.
Can we find $M(X_1; n)$, where $M(f; n) := \sum_{\lambda \in \Pi_n} f(\lambda)$?

Answer: $M(X_1; n) = nB_{n-1}$.

Let $cr_2(\lambda) :=$ the number of 2-crossings in $\lambda \in \Pi_n$, i.e., numbers $i_1 < i_2 < j_1 < j_2$, such that i_1, j_1 and i_2, j_2 are in two different blocks. For instance, $cr_2(\{\{1\}, \{2\}, \{3\}\}) = 2$.

Can we find $M(cr_2; n)$?

$M(cr_2; n) = 14(5B_n - 2 + (2n + 9)B_n + 1 + (2n + 1)B_n),$ (Kasraoui, 2013 [6]).
Consider the set, Π_n, of all partitions of $[n] := \{1, 2, \ldots, n\}$. Their number is B_n - the n-th Bell number. For example, $B_3 = 5$:

$\{{\{1\}, \{2\}, \{3\}\}}, \{{\{1, 2\}, \{3\}\}}, \{{\{1, 3\}, \{2\}\}}, \{{\{1\}, \{2, 3\}\}}, \{1, 2, 3\}$.

Let $X_1(\lambda) :=$ the number of blocks of size 1 in $\lambda \in \Pi_n$.

Can we find $M(X_1; n)$, where $M(f; n) := \sum_{\lambda \in \Pi_n} f(\lambda)$?

Answer: $M(X_1; n) = nB_{n-1}$.

Let $cr_2(\lambda) :=$ the number of 2-crossings in $\lambda \in \Pi_n$, i.e., numbers $i_1 < i_2 < j_1 < j_2$, such that i_1, j_1 and i_2, j_2 are in two different blocks. For instance, $cr_2(\{{\{1, 3\}, \{2, 4, 5\}\}}) = 2$.

Can we find $M(cr_2; n)$?
Consider the set, Π_n, of all partitions of $[n] := \{1, 2, \ldots, n\}$.

Their number is B_n - the n-th Bell number. For example, $B_3 = 5$:

$\{\{1\}, \{2\}, \{3\}\}$, $\{\{1, 2\}, \{3\}\}$, $\{\{1, 3\}, \{2\}\}$, $\{\{1\}, \{2, 3\}\}$, $\{1, 2, 3\}$.

Let $X_1(\lambda) :=$ the number of blocks of size 1 in $\lambda \in \Pi_n$.

Can we find $M(X_1; n)$, where $M(f; n) := \sum_{\lambda \in \Pi_n} f(\lambda)$?

Answer: $M(X_1; n) = nB_{n-1}$.

Let $cr_2(\lambda) :=$ the number of 2-crossings in $\lambda \in \Pi_n$,

i.e., numbers $i_1 < i_2 < j_1 < j_2$, such that i_1, j_1 and i_2, j_2 are in two different blocks. For instance, $cr_2(\{\{1, 3\}, \{2, 4, 5\}\}) = 2$.

Can we find $M(cr_2; n)$?

$M(cr_2; n) = \frac{1}{4}(-5B_{n+2} + (2n + 9)B_{n+1} + (2n + 1)B_n)$ (Kasraoui, 2013 [6]).
Chern, Diaconis, Kane and Rhoades [4] found that

\[M(X_1^2; n) = nB_{n-1} + (n^2 - n)B_{n-2}. \]

and

\[M(cr_2^2; n) = \frac{1}{144} (225B_{n+4} - (180n + 814)B_{n+3} + (36n^2 + 156n + 489)B_{n+2} + \\
(72n^2 + 72n - 260)B_{n+1} + (36n^2 + 24n - 23)B_{n}). \]
Chern, Diaconis, Kane and Rhoades [4] found that

\[M(X_1^2; n) = nB_{n-1} + (n^2 - n)B_{n-2}. \]

and

\[M(cr_2^2; n) = \frac{1}{144} (225B_{n+4} - (180n + 814)B_{n+3} + (36n^2 + 156n + 489)B_{n+2} + (72n^2 + 72n - 260)B_{n+1} + (36n^2 + 24n - 23)B_n). \]

Theorem 1 (CDKR)

For a family of set partition statistics, the moments can be written as linear combinations of shifted Bell numbers, where the coefficients are polynomials in \(n \).
Khare, Lorentz and Yan [7] developed the same approach on the set of perfect matchings (set partitions with blocks of size 2) on $[2m]$.

Theorem 2 (KLY)

For a family of statistics on perfect matchings, the moments can be written as linear combinations of double factorials with constant coefficients.
Khare, Lorentz and Yan [7] developed the same approach on the set of perfect matchings (set partitions with blocks of size 2) on $[2m]$.

Theorem 2 (KLY)

For a family of statistics on perfect matchings, the moments can be written as linear combinations of double factorials with constant coefficients.

For example, they found:

$$
\sum_{M \in \mathcal{M}_{2m}} cr_2^2(M) = \binom{2m}{4} T_{2m-4} + 12 \binom{2m}{6} T_{2m-6} + 70 \binom{2m}{8} T_{2m-8},
$$

where $T_{2m} = |\mathcal{M}_{2m}| = (2m - 1)(2m - 3) \cdots 3 \cdot 1 = (2m - 1)!!$.
Khare, Lorentz and Yan [7] developed the same approach on the set of perfect matchings (set partitions with blocks of size 2) on $[2m]$.

Theorem 2 (KLY)

For a family of statistics on perfect matchings, the moments can be written as linear combinations of double factorials with constant coefficients.

For example, they found:

$$\sum_{M \in \mathcal{M}_2m} cr_2^2(M) = \binom{2m}{4} T_{2m-4} + 12 \binom{2m}{6} T_{2m-6} + 70 \binom{2m}{8} T_{2m-8},$$

where $T_{2m} = |\mathcal{M}_{2m}| = (2m - 1)(2m - 3) \cdots 3 \cdot 1 = (2m - 1)!!$.

Goal: Develop the same approach for permutations!
· permutation - ordering of the numbers in \([n]\).

· \(S_n\) - the set of permutations of size \(n\).

 \textit{Example:} \(4172365 \in S_7\).

· Let \(A(\pi) := \{(u, v) \mid u = \pi_i, v = \pi_j, i < j\}\) be the arc set of \(\pi\).

 \textit{Example:} \(A(312) = \{(3, 1), (3, 2), (1, 2)\}\).

· \(\text{red}(s_1s_2 \cdots s_k) := p_1 \cdots p_k \in S_k\), where \(p_i < p_j\) iff \(s_i < s_j\).

 \textit{Example:} \(\text{red}(6253) = 4132\).
Definition

(i) A permutation pattern P of size k is a tuple $P = (P, C(P), D(P))$, where $P = p_1 \cdots p_k \in S_k$ and $C(P) \subseteq [k - 1], D(P) \subseteq [k - 1]$.

(ii) An occurrence of the pattern $P = (p_1 p_2 \cdots p_k, C(P), D(P))$ of size k in $\sigma \in S_n$ is a tuple $t = (t_1, t_2, \ldots, t_k)$ with $t_i \in [n]$, such that:

a) $t_1 < t_2 < \cdots < t_k$.

b) $(t_i, t_j) \in A(\sigma)$, if and only if $(i, j) \in A(P)$.

c) if $i \in C(P)$, then the positions of t_{p_i} and t_{p_i+1} in σ are consecutive.

d) if $i \in D(P)$, then $t_{i+1} = t_i + 1$.

Write $t \in_\sigma P$, if t is an occurrence of P in σ.

Examples:

1. $P = 132 = (132, \emptyset, \emptyset)$ [classical patterns].

 $t = (3, 4, 5) \in_\sigma 31524$, since $\text{red}(354) = 132$.
Definition

(i) A permutation pattern P of size k is a tuple $P = (P, C(P), D(P))$, where $P = p_1 \cdots p_k \in S_k$ and $C(P) \subseteq [k - 1], D(P) \subseteq [k - 1]$.

(ii) An occurrence of the pattern $P = (p_1p_2 \cdots p_k, C(P), D(P))$ of size k in $\sigma \in S_n$ is a tuple $t = (t_1, t_2, \ldots, t_k)$ with $t_i \in [n]$, such that:
 a) $t_1 < t_2 < \cdots < t_k$.
 b) $(t_i, t_j) \in A(\sigma)$, if and only if $(i, j) \in A(P)$.
 c) if $i \in C(P)$, then the positions of t_{p_i} and t_{p_i+1} in σ are consecutive.
 d) if $i \in D(P)$, then $t_{i+1} = t_i + 1$.

Write $t \in_{P} \sigma$, if t is an occurrence of P in σ.

Examples:

2. $P = \underline{3214} = (3214, \{1\}, \emptyset)$ [vincular patterns].
 $t = (2, 3, 5, 7) \in_{P} 4536217$, since $\text{red}(5327) = 3214$
 and the positions of $t_3 = 5$ and $t_2 = 3$ are consecutive.
Definition

(i) A permutation pattern \(\underline{P} \) of size \(k \) is a tuple \(\underline{P} = (P, C(\underline{P}), D(\underline{P})) \), where \(P = p_1 \cdots p_k \in S_k \) and \(C(\underline{P}) \subseteq [k - 1], D(\underline{P}) \subseteq [k - 1] \).

(ii) An occurrence of the pattern \(\underline{P} = (p_1p_2 \cdots p_k, C(\underline{P}), D(\underline{P})) \) of size \(k \) in \(\sigma \in S_n \) is a tuple \(t = (t_1, t_2, \ldots, t_k) \) with \(t_i \in [n] \), such that:

a) \(t_1 < t_2 < \cdots < t_k \).

b) \((t_i, t_j) \in A(\sigma)\), if and only if \((i, j) \in A(\underline{P})\).

c) if \(i \in C(\underline{P}) \), then the positions of \(t_{p_i} \) and \(t_{p_i+1} \) in \(\sigma \) are consecutive.

d) if \(i \in D(\underline{P}) \), then \(t_{i+1} = t_i + 1 \).

Write \(t \in _\sigma \) if \(t \) is an occurrence of \(\underline{P} \) in \(\sigma \).

Examples:

3. \(\underline{P} = \frac{1234}{4312} = (4312, \{2\}, \{3\}) \) [bivincular patterns].

\(t = (1, 3, 5, 6) \in \underline{P} \) 625143, since \(\text{red}(6513) = 4312 \), the positions of \(t_3 = 5 \) and \(t_1 = 1 \) are consecutive, and \(t_4 = 6 = t_3 + 1 \).
simple statistic: a pattern \(P \) of size \(k \) and a valuation function \(Q(t, w) = Q_1(t)Q_2(w) \), where \(Q_1, Q_2 \in \mathbb{Z}[y_1, \ldots, y_k, m] \).

\[
f(\sigma) = f_{P,Q}(\sigma) := \sum_{t \in P\sigma} Q(t, \sigma^{-1}(t)) = \sum_{t \in P\sigma} Q_1(t)Q_2(\sigma^{-1}(t)).
\]

\(f \) is of degree \(d(f) := 2k + \deg(Q) \).

statistic: a finite linear combination of simple statistics.
simple statistic: a pattern P of size k and a valuation function $Q(t, w) = Q_1(t)Q_2(w)$, where $Q_1, Q_2 \in \mathbb{Z}[y_1, \ldots, y_k, m]$.

$$f(\sigma) = f_{P, Q}(\sigma) := \sum_{t \in \sigma} Q(t, \sigma^{-1}(t)) = \sum_{t \in \sigma} Q_1(t)Q_2(\sigma^{-1}(t)).$$

f is of degree $d(f) := 2k + \deg(Q)$.

statistic: a finite linear combination of simple statistics.

Examples (simple statistic):

1. $\text{cnt}_P(\sigma) := f_{P, 1}(\sigma) = \sum_{t \in \sigma} 1$, for any pattern P, e.g., 21, 1324, 123, $123\overline{312}$.
Family of statistics

simple statistic: a pattern P of size k and a valuation function $Q(t, w) = Q_1(t)Q_2(w)$, where $Q_1, Q_2 \in \mathbb{Z}[y_1, \ldots, y_k, m]$.

$$f(\sigma) = f_{P,Q}(\sigma) := \sum_{t \in P \sigma} Q(t, \sigma^{-1}(t)) = \sum_{t \in P \sigma} Q_1(t)Q_2(\sigma^{-1}(t)).$$

f is of degree $d(f) := 2k + \text{deg}(Q)$.

statistic: a finite linear combination of simple statistics.

Examples (simple statistic):

1. $\text{cnt}_P(\sigma) := f_{P,1}(\sigma) = \sum_{t \in P \sigma} 1$, for any pattern P, e.g., 21, 1324, $\underline{123}$, $\underline{312}$.

2. $\text{drops}(\sigma) := \sum_{\sigma_i > \sigma_{i+1}} \sigma_i - \sigma_{i+1} = \sum_{(t_1, t_2) \in 2_1 \sigma} t_2 - t_1$.

$P = 21$, $Q(t, w) = Q_1(t)Q_2(w)$, where $Q_1(t) = Q_1(t_1, t_2) = t_2 - t_1$ and $Q_2(w) = 1$.
simple statistic: a pattern P of size k and a valuation function $Q(t, w) = Q_1(t)Q_2(w)$, where $Q_1, Q_2 \in \mathbb{Z}[y_1, \ldots, y_k, m]$.

$$f(\sigma) = f_{P,Q}(\sigma) := \sum_{t \in P} Q(t, \sigma^{-1}(t)) = \sum_{t \in P} Q_1(t)Q_2(\sigma^{-1}(t)).$$

f is of degree $d(f) := 2k + \deg(Q)$.

statistic: a finite linear combination of simple statistics.

Example (statistic):

$$\text{peakSqSum}(\sigma) := \sum_{\sigma(i-1) < \sigma(i) > \sigma(i+1)} \sigma(i)^2 = \sum_{(t_1,t_2,t_3) \in 132} t_3^2 + \sum_{(t_1,t_2,t_3) \in 231} t_3^2.$$

This is a sum of the simple statistics f_{132,t_3^2} and f_{231,t_3^2}.
Theorem 3

Let $f_{P,Q}$ be a simple statistic of degree m, where $|P| = k$, $|C(P)| = c$ and $|D(P)| = d$. Then

$$M(f_{P,Q}, n) = R(n)(n - k)!,$$

where $R(x)$ is a polynomial of degree no more than $m - c - d$. Equivalently for $n \geq k$,

$$M(f_{P,Q}, n) = \begin{cases}
0 & n < k \\
\sum_{i=0}^{m-c-d} c_i(n - k + i)! & n \geq k
\end{cases},$$

for some constants $c_i \in \mathbb{Q}$.
Simple statistics:

1. cnt_{1324}.

 \[
 M(\text{cnt}_{1324}, n) = \frac{1}{24} n! - \frac{1}{6} (n+1)! + \frac{1}{8} (n+2)! - \frac{1}{36} (n+3)! + \frac{1}{576} (n+4)! .
 \]

 In fact, $M(\text{cnt}_P, n) = \frac{1}{k!} \binom{n}{k} n!$ for any classical pattern P of size k.

 Express rising factorials in terms of falling factorials to get

 \[
 M(\text{cnt}_P, n) = \frac{1}{k!} \binom{n}{k} n! = \frac{(-1)^k}{k!} n! + \sum_{j=1}^{k-1} \frac{(-1)^{k-j}}{(j!)^2 (k-j)!} (n+j)! + \frac{1}{(k!)^2} (n+k)! .
 \]

2. Descent drop.

 \[
 M(\text{drops}, n) = -\frac{1}{2} (n+1)! + \frac{1}{6} (n+2)! .
 \]
Theorem 4

For any statistic f of degree m, there is a positive integer $L \leq \frac{m}{2}$, such that for all $n \geq L$,

$$M(f, n) = U(n)(n - L)!,$$

where $U(n)$ is a polynomial of degree no more than $m + L$. Equivalently, if $n \geq L$,

$$M(f, n) = \sum_{-L \leq i \leq m} \alpha_i(n + i)!,$$

for some constants $\alpha_i \in \mathbb{Q}$.

Example: Sum of peak squares.

$$M(\text{peakSqSum}, n) = (n + 1)! - \frac{5}{4}(n + 2)! + \frac{1}{5}(n + 3)!.$$
Higher moments of statistics

Goal: Show that the higher moments of statistics are also statistics!
Goal: Show that the higher moments of statistics are also statistics!

Key observation: The union of two (or more) occurrences of a pattern σ in π is an occurrence of another pattern in π.

Example:

$\pi = 516243$

$\sigma = 132$
Goal: Show that the higher moments of statistics are also statistics!

Key observation: The union of two (or more) occurrences of a pattern σ in π is an occurrence of another pattern in π.

Example:

$\pi = 516243$
$\sigma = 132$

$(1, 4, 6) \in_{132} 516243,$
$(2, 3, 4) \in_{132} 516243$
Goal: Show that the higher moments of statistics are also statistics!

Key observation: The union of two (or more) occurrences of a pattern σ in π is an occurrence of another pattern in π.

Example:

$\pi = 516243$

$\sigma = 132$

$(1, 4, 6) \in_{132} 516243,$

$(2, 3, 4) \in_{132} 516243$

$(1, 2, 3, 4, 6) \in_{15243} 516243$
Let P_1, P_2 and P_3 be patterns of sizes k_1, k_2 and k_3, respectively. A *merge* of P_1 and P_2 onto P_3 is a pair of increasing functions $m_1 : [k_1] \rightarrow [k_3]$ and $m_2 : [k_2] \rightarrow [k_3]$ with certain properties. Denote a merge by $m_1, m_2 : P_1, P_2 \rightarrow P_3$.
Let P_1, P_2 and P_3 be patterns of sizes k_1, k_2 and k_3, respectively.

A merge of P_1 and P_2 onto P_3 is a pair of increasing functions $m_1 : [k_1] \rightarrow [k_3]$ and $m_2 : [k_2] \rightarrow [k_3]$ with certain properties.

Denote a merge by $m_1, m_2 : P_1, P_2 \rightarrow P_3$.

Example:

$m_1(1) = 1, m_2(1) = 2,$
$m_1(2) = 4, m_2(2) = 3,$
$m_1(3) = 5, m_2(3) = 4.$

Then $m_1, m_2 : 132, 132 \rightarrow 15243.$
Lemma 1

Let P_1 and P_2 be two patterns. For any $\sigma \in S_n$, there is a one-to-one correspondence between the following sets.

$$\{(s_1, s_2) : s_1 \in_{P_1} \sigma, s_2 \in_{P_2} \sigma\} \leftrightarrow \{s_3 \in_{P_3} \sigma \mid m_1, m_2 : P_1, P_2 \rightarrow P_3\}$$
Lemma 1

Let P_1 and P_2 be two patterns. For any $\sigma \in S_n$, there is a one-to-one correspondence between the following sets.

$$\{ (s_1, s_2) : s_1 \in P_1 \sigma, s_2 \in P_2 \sigma \} \leftrightarrow \{ s_3 \in P_3 \sigma \mid m_1, m_2 : P_1, P_2 \to P_3 \}$$

Using Lemma 1, we prove that the product of two simple statistics is a statistic:

$$f_{P_1, Q_1} (\sigma) g_{P_2, Q_2} (\sigma) = \sum_{s_1 \in P_1 \sigma} Q_1(s_1) Q'_1(\sigma^{-1}(s_1)) \sum_{s_2 \in P_2 \sigma} Q_2(s_2) Q'_2(\sigma^{-1}(s_2))$$

(by Lemma 1)

$$= \sum_{P_3} \left(\sum_{s_3 \in P_3 \sigma} \left(\sum_{m_1, m_2 : P_1, P_2 \to P_3} Q_{m_1, m_2, Q_1, Q_2}(s_3) Q'_{m_1, m_2, Q_1, Q_2}(\sigma^{-1}(s_3)) \right) \right) = \sum_{P_3} f_{P_3, \tilde{Q}}.$$
Theorem 5

Let f be any statistic of degree m. Then, for any positive integer r, the r-th moment of f is given by

$$M(f^r, n) = \sum_{-I \leq i \leq J} \alpha_i(n + i)!,$$

where I and J are constants that satisfy $-I \geq \frac{-rm}{2}$, $J \leq mr$ and $n \geq I$, and the α_i’s are rational constants.
Corollary 1

If P is a vincular pattern of size k, such that $|C(P)| = c$, then

$$M(\text{cnt}_P^r, n) = \sum_{0 \leq i \leq r(k-c)} \alpha_i (n + i)!,$$

for $n \geq rk$.

Zeilberger [8] showed that if P is a classical pattern of size k, then $\mathbb{E}(\text{cnt}_P^r)$ for a random permutation of size n, is a polynomial in n of degree rk. Corollary 1 is a generalization.
1. Second moment of the number of double ascents.

\[M(\text{cnt}_{123}^2, n) = -\frac{1}{12}n! - \frac{1}{15}(n + 1)! + \frac{1}{36}(n + 2)!. \]

2. Second moment of \(\text{cnt}_{123}^3 \).

\[M(\text{cnt}_{123}^3, n) = \frac{1}{2}n! - \frac{9}{28}(n + 1)! + \frac{29}{672}(n + 2)! + \frac{11}{10080}(n + 3)! - \frac{1}{45360}(n + 4)!. \]
Corollary 2

Let P be a pattern of size k with $|C(P)| = c$, $|D(P)| = d$. Then,

$$M(\text{cnt}^r_P, n) = \sum_{\tilde{k}, \tilde{c}, \tilde{d}} w_{\tilde{k}, \tilde{c}, \tilde{d}}^{(r)} \left(\frac{n - \tilde{c}}{\tilde{k} - \tilde{c}} \right) \left(\frac{n - \tilde{d}}{\tilde{k} - \tilde{d}} \right) (n - k)!,$$

where $w_{\tilde{k}, \tilde{c}, \tilde{d}}^{(r)}$ is the number of ways to merge r copies of P and get a pattern P^r of size k, with $|C(P^r)| = \tilde{c}$, $|D(P^r)| = \tilde{d}$ and where $k \leq \tilde{k} \leq rk$, $c \leq \tilde{c} \leq rc$ and $d \leq \tilde{d} \leq rd$.

Next goal: Apply Corollary 2 to some simple patterns.
Corollary 2

Let P be a pattern of size k with $|C(P)| = c$, $|D(P)| = d$. Then,

$$M(\text{cnt}^r_P, n) = \sum_{\tilde{k}, \tilde{c}, \tilde{d}} w^{(r)}_{\tilde{k}, \tilde{c}, \tilde{d}} \binom{n - \tilde{c}}{k - \tilde{c}} \binom{n - \tilde{d}}{\tilde{k} - \tilde{d}} (n - k)!,$$

where $w^{(r)}_{\tilde{k}, \tilde{c}, \tilde{d}}$ is the number of ways to merge r copies of P and get a pattern P^r of size k, with $|C(P^r)| = \tilde{c}$, $|D(P^r)| = \tilde{d}$ and where $k \leq \tilde{k} \leq rk$, $c \leq \tilde{c} \leq rc$ and $d \leq \tilde{d} \leq rd$.

Next goal: Apply Corollary 2 to some simple patterns.
Theorem 6

Let \(\text{des} := \text{cnt}_{21} \). Consider a random permutation in \(S_n \). Then, for any \(r \geq 2 \),

\[
\mathbb{E}(\text{des}') = \sum_{m=2}^{\min(n,2r)} \sum_{u=1}^{\left\lfloor \frac{m}{2} \right\rfloor} \left(\sum_{w=0}^{m-u} (-1)^w \binom{m-u}{w} (m - u - w)^r \right) \left(\sum_{q_1 + \cdots + q_u = m} \binom{m}{q_1, \ldots, q_u} \right) \frac{(n-(m-u))}{m!}.
\]
Theorem 6

Let \(\text{des} := \text{cnt}_{21} \). Consider a random permutation in \(S_n \). Then, for any \(r \geq 2 \),

\[
\mathbb{E}(\text{des}^r) = \min(n, 2r) \sum_{m=2}^{\lceil \frac{m}{2} \rceil} \left(\sum_{u=1}^{m-u} (-1)^w \binom{m-u}{w} (m-u-w)^r \right) \left(\sum_{q_1+\ldots+q_u=m \atop q_i \geq 2} \binom{m}{q_1,\ldots,q_u} \right) \frac{(n-(m-u))}{m!}.
\]

Sketch of proof:

Let \(P^r \) be a pattern of size \(m \), obtained after a merge of \(r \) copies of 21.

Every such \(P^r \) with \(u \) segments has \(|C(P^r)| = m - u \).

Thus \(M(\text{cnt}_{P^r}, n) = \left(\frac{n-(m-u)}{u} \right) m! \) and

\[
w^{(r)}_{\frac{m}{2},m-u} = \sum_{u=1}^{\left\lfloor \frac{m}{2} \right\rfloor} \left(\sum_{w=0}^{m-u} (-1)^w \binom{m-u}{w} (m-u-w)^r \right) \sum_{q_1+\ldots+q_u=m \atop q_i \geq 2} \binom{m}{q_1,\ldots,q_u}.
\]
Moments of minimal descents

Theorem 7

Let $\adj := \cnt_{12}$. Consider a random permutation in S_n. Then, for any $r \geq 1$,

$$
\mathbb{E}(\adj^r) = \sum_{m=2}^{\min(n,2r)} \sum_{u=1}^{\left\lfloor \frac{m}{2} \right\rfloor} \left(\sum_{w=0}^{m-u} (-1)^w \binom{m-u}{w} (m-u-w)^r \right) \binom{m-u-1}{u-1} u! \frac{(n-(m-u))^2}{n(m)}.
$$

We will use this result to prove a limit theorem for \adj.
Central limit theorems for cnt_P

cnt_P has Normal distribution, when $n \to \infty$:

i. True, when P is a classical pattern (Bóna, 2007 [1]).

ii. True, when P is a vincular pattern (Hofer, 2017 [5]).

iii. Not true for an arbitrary bivincular pattern
 (last proof by Corteel, Louchard and Pemantle, 2004 [3])
cnt_P has Normal distribution, when $n \to \infty$:

i. True, when P is a classical pattern (Bóna, 2007 [1])

ii. True, when P is a vincular pattern (Hofer, 2017 [5])

iii. Not true for an arbitrary bivincular pattern
(last proof by Corteel, Louchard and Pemantle, 2004 [3])

We will reprove **i.** and **iii.** and give a lemma that would imply **ii.**
Bóna [1] uses the method of dependency graphs to obtain that the following theorem implies the CLT for an arbitrary classical pattern.

Theorem 8

Let $X_n := \text{cnt}_\sigma$ *be the number of occurrences of a classical pattern* $\sigma \in S_k$ *in a random permutation of size* n. *Then, there exists* $c > 0$, *such that for all* n,

$$\text{Var}(X_n) \geq cn^{2k-1}.$$
Bóna [1] uses the method of *dependency graphs* to obtain that the following theorem implies the CLT for an arbitrary classical pattern.

Theorem 8

Let \(X_n := \text{cnt}_\sigma \) be the number of occurrences of a classical pattern \(\sigma \in S_k \) in a random permutation of size \(n \). Then, there exists \(c > 0 \), such that for all \(n \),

\[
\text{Var}(X_n) \geq cn^{2k-1}.
\]

Sketch of proof:

Use Corollary 2 to obtain that

\[
\text{Var}(X_n) = \mathbb{E}(X_n^2) - \mathbb{E}^2(X_n) = \left[a_\sigma(2k) \frac{\binom{n}{2k}}{(2k)!} + a_\sigma(2k - 1) \frac{\binom{n}{2k-1}}{(2k-1)!} + O(n^{2k-2}) \right] - \frac{\binom{n}{k}^2}{(k!)^2},
\]

where \(a_\sigma(r) \) is the number of ways to merge two copies of \(\sigma \) and get a pattern of size \(r \).
Sketch of proof (cont.)

Note that \(a_\sigma(2k) = \left(\begin{array}{c} 2k \\ k \end{array} \right)^2 \) and simplify to get:

\[
\text{Var}(X_n) \geq cn^{2k-1} \iff a_\sigma(2k - 1) > \left(\begin{array}{c} 2k - 1 \\ k \end{array} \right)^2.
\]
Sketch of proof (cont.)

Note that \(a_\sigma(2k) = \binom{2k}{k}^2 \) and simplify to get:

\[
\text{Var}(X_n) \geq cn^{2k-1} \iff a_\sigma(2k-1) > \binom{2k-1}{k}^2.
\]

Lemma 2 (Burstein and Hästö, [2, Lemma 4.3])

For any classical pattern \(\sigma \in S_k \),

\[
a_\sigma(2k - 1) > \binom{2k-1}{k}^2.
\]
Interpretation of the lemma

\[A_{\sigma,\sigma'}(2k - 1) := \{(\pi, x, y) \mid \pi \in S_{2k-1}, x, y \in \text{subs}(\pi), \ \text{red}(x) = \sigma, \ \text{red}(y) = \sigma', \ |x \cap y| = 1\}, \]

where \(\text{subs}(\pi) \) denotes the set of the subsequences of the permutation \(\pi \).

\(a_{\sigma}(2k - 1) \), is the number of triples in the set \(A_{\sigma,\sigma}(2k - 1) \).

Example: \(A_{312,312}(5) \) contains \((54213, 523, 413)\).
Interpretation of the lemma

\[A_{\sigma, \sigma'}(2k - 1) := \{ (\pi, x, y) \mid \pi \in S_{2k-1}, \ x, y \in \text{subs}(\pi), \ \text{red}(x)=\sigma, \ \text{red}(y)=\sigma', \ |x \cap y| = 1 \}, \]

where \(\text{subs}(\pi) \) denotes the set of the subsequences of the permutation \(\pi \).

\(a_{\sigma}(2k - 1) \), is the number of triples in the set \(A_{\sigma, \sigma}(2k - 1) \).

Example: \(A_{312,312}(5) \) contains \((54213, 523, 413)\).

\[
\begin{array}{|c|c|c|c|c|}
\hline
5 & 4 & 2 & 1 & 3 \\
\hline
5 & 2 & 3 & & \\
\hline
4 & 1 & 3 & & \\
\hline
\end{array}
\]

Theorem 9

If \(a_{\sigma, \sigma'}(2k - 1) := |A_{\sigma, \sigma'}(2k - 1)| \), then Lemma 2 is equivalent to

\[a_{\sigma}(2k - 1) > \mathbb{E}(a_{\sigma, \sigma'}(2k - 1)), \]

for any fixed \(\sigma \in S_k \) and \(\sigma' \) chosen uniformly at random in \(S_k \).
Theorem 10 (Hofer, [5])

Let $X_n = \text{cnt}_\sigma$ be the number of occurrences of a vincular pattern σ with j blocks, in a random permutation of size n. Then, there exists $c > 0$, such that for all n,

$$\text{Var}(X_n) \geq cn^{2j-1}.$$
Theorem 10 (Hofer, [5])

Let $X_n = \text{cnt}_\sigma$ be the number of occurrences of a vincular pattern σ with j blocks, in a random permutation of size n. Then, there exists $c > 0$, such that for all n,

$$\text{Var}(X_n) \geq cn^{2j-1}.$$

Let $b_{\sigma}(m, j')$ be the number of merges of two copies of σ, where the resulting pattern is of size m and has j' blocks.

Example: $\sigma = \underline{431 \ 52}$. Below is a merge of two copies of σ.

The resulting pattern, $\underline{6531 \ 84 \ 72}$, has size $m = 8$ and $j' = 3$ blocks:

6	5	3	1	8	4	7	2
6	5	3		8	4		
	5	3	1			7	2

Merge of two copies of the pattern $\underline{431 \ 52}$.
Theorem 10 (Hofer, [5])

Let $X_n = \text{cnt}_\sigma$ be the number of occurrences of a vincular pattern σ with j blocks, in a random permutation of size n. Then, there exists $c > 0$, such that for all n,

$$\text{Var}(X_n) \geq cn^{2j-1}.$$

Theorem 11

Theorem 10 is equivalent to

$$\sum_{l=1}^{M_{\sigma}} (2k)_l b_{\sigma}(2k-l, 2j-1) > \binom{2k}{k} \binom{2j-1}{j} j,$$

for any vincular pattern σ with j blocks, where M_{σ} is the maximal size of a block of σ.

Recall that \(\text{adj} \) denotes \(\text{cnt}_{\text{12}}^{21} \).

We use Theorem 7 and the method of moments to prove the following.

Theorem 12

\(\text{adj} \) converges in distribution to \(\text{Po}(1) \).

Sketch of proof:

Show that \(\lim_{n \to \infty} E(\text{adj}^r) = B_r \), where \(B_r \) is the \(r \)-th Bell number.
Recall that adj denotes cnt_{T_2}. \[21\]

We use Theorem 7 and the method of moments to prove the following.

Theorem 12

adj converges in distribution to Po(1).

Sketch of proof:

Show that $\lim_{n \to \infty} \mathbb{E}(\text{adj}^r) = B_r$, where B_r is the r-th Bell number.

Therefore, cnt_P does not necessarily converge to a Normal distribution, when P is a bivincular pattern.
1) Can we find a combinatorial proof of Lemma 2 and the corresponding fact for vincular patterns?
Further questions

1) Can we find a combinatorial proof of Lemma 2 and the corresponding fact for vincular patterns?

2) Can we adapt the approach of Chern et al. to other combinatorial structures, e.g., trees, polyominoes, etc.?
1) Can we find a combinatorial proof of Lemma 2 and the corresponding fact for vincular patterns?

2) Can we adapt the approach of Chern et al. to other combinatorial structures, e.g., trees, polyominoes, etc.?

Back in 2004, Zeilberger suggested some other structures in the abstract of [8]:

“...This would be hopefully followed by sequels applied to other combinatorial objects like graph-colorings, Boolean functions, and Random Walks...”
Further questions

1) Can we find a combinatorial proof of Lemma 2 and the corresponding fact for vincular patterns?

2) Can we adapt the approach of Chern et al. to other combinatorial structures, e.g., trees, polyominoes, etc.?

Back in 2004, Zeilberger suggested some other structures in the abstract of [8]:

“…This would be hopefully followed by sequels applied to other combinatorial objects like graph-colorings, Boolean functions, and Random Walks…”

Thanks for the attention!
[1] Bóna, M. (2007). The copies of any permutation pattern are asymptotically normal. arXiv preprint arXiv:0712.2792.

[2] Burstein, A. and Hästö, P., 2010. Packing sets of patterns. European Journal of Combinatorics, 31(1), pp.241-253.

[3] Corteel, S., Louchard, G. and Pemantle, R., 2004. Common intervals of permutations. In Mathematics and Computer Science III (pp. 3-14). Birkhäuser, Basel.

[4] Chern, B., Diaconis, P., Kane, D. M., & Rhoades, R. C. (2014). Closed expressions for averages of set partition statistics. Research in the Mathematical Sciences, 1(1), 2.

[5] Hofer, L., 2017. A central limit theorem for vincular permutation patterns. arXiv preprint arXiv:1704.00650.

[6] Kasraoui, A., 2013. Average values of some Z-parameters in a random set partition. arXiv preprint arXiv:1304.4813.
[7] Khare, N., Lorentz, R., & Yan, C. H. (2017). Moments of matching statistics. Journal of Combinatorics, 8(1), 1–27.

[8] Zeilberger, D., 2004. Symbolic moment calculus I: foundations and permutation pattern statistics. Annals of Combinatorics, 8(3), pp.369-378.