Synthesis and bioactivity of several new hetaryl sulfonamides

Parham Taslimi, Afsun Sujayev, Sevgi Mamedova, Pinar Kalin, İlhami Gülçin, Nastaran Sadeghian, Sukru Beydemir, O. İrfan Kufrevioğlu, Saleh H. Alwase, Vagif Farzaliyev and Sabir Mamedov

Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey; Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey

ABSTRACT

1-(4-Methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxalkyl-imidazoles were synthesized from different tetrahydropropyrimidinetiones and aryl sulfonyl chloride. These compounds were tested for metal chelating effects and to determine the phrase in which inhibition occurred between two physiologically pertinent compounds and carbonic anhydrase (CA) isozymes I and II (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). AChE was detected in high concentrations in the brain and red blood cells. BChE is another enzymes that is abundant available in the liver and released into the blood in a soluble form. Newly synthesized hetaryl sulfonamides exhibited impressive inhibition profiles with Ki values in the range of 1.42–6.58 nM against hCA I, 1.72–7.41 nM against hCA II, 0.20–1.14 nM against AChE and 1.55–5.92 nM against BChE. Moreover, acetazolamide showed Ki values of 43.69 ± 6.44 nM against hCA I and 31.67 ± 8.39 nM against hCA II. Additionally, tacrine showed Ki values of 25.75 ± 3.39 nM and 37.82 ± 2.08 against AChE and BChE, respectively.

Introduction

Pyridine thione compounds are the building blocks of drugs that improve cerebral blood flow (nimodipine, nifedipinum (calcium channel blockers). At present, non-glycoside and nonadrenergic carbonotronics with a large range of therapeutic actions are actively being sought. Their synthetic analogs-amrinone, peroxyim and milrinone- are widely used in intensive treatment. Furthermore, sulfonamides that contain pyrimidine moieties exhibit cytotoxic effects that permit their use as antiviral and anticancer drugs. However, these compounds are also potent bactericides. Their anti-microbial activity and effect on various microorganisms depends on the nature of the heterocycle and various functional groups. Therefore, the synthesis of new sulfonamides containing bicyclic compounds is relevant, particularly the reaction of aryl sulfonyl chlorides with heterocyclic amines. The influence of the heterocycle’s composition and the location of the amine are studied. Interestingly, the amino group’s position in the isoxazole greatly affects its reactivity. Within the reaction of sulphonic-acid chloride with 5-amino 3,4-dimethyl isoxazole and biphenyl isoxazole, hetaryl sulfonamides were obtained in high yields. The reaction of sulfonyl chlorides with five-membered aminoheterocycles such as oxazole and pyrazole also proceed in high yield. However, the reaction of sulfonyl chlorides with benzoxazole requires a long boiling period in pyridine solution.

The reaction of aryl sulfonyl chlorides with piperazines, connected via oxygen, sulfur, N-pyridyl or pyrimidine diyl moieties proceeds very easily. The influence of the radicals and functional groups on the reaction was not observed. These sulfonamides are used for treating diseases of the central nervous system and kidney function disorders. Despite the presence of bischnenic acid in the 4-amino benzenesulfonyl chloride moiety, the reaction of 2-amino-4,6-dimethylpyrimidine proceeds very easily to form sulfonamides that exhibit anti-inflammatory and analgesic activity.

It was observed that the reaction of acetamide benzenesulfonyl chloride in the presence of DMSO is easily connected with chitosan derivatives. These sulfonamides have antifungal activity against Alternaria Solani and Phomopsis asparage. Pyridazinyl sulfonamide derivatives obtained by the reaction of sulfonyl chlorides with pyridazinyl also have antimicrobial activity. Thus aminoheterocycle reactivity depends on the structure, location and presence of functional groups. Studies of aryl sulfonyl chloride reactions with heterocyclic and bicyclic amines are important for both obtaining new sulfonamide compounds and investigating their germicidal and other properties. It was discovered that the reaction of aryl sulfonyl chlorides in heterocyclic amine solvents results in the separation of hydrogen chloride when using freshly distilled pyridine. A similar separation of hydrogen chloride was also observed when aryl sulfonyl chlorides were reacted in ethyl alcohol or triethylamine solvent. New hetaryl sulfonamides were observed by continuing focused research on synthesizing various classes of organic sulfur compounds and the studying their transformations.

Carbonic anhydrase (CA) enzymes (EC 4.2.1.1) are present in many living systems and play a role in a diversity of pathological and physiological effects including neurological disorders, fluid balance, pH regulation, bone resorption, carboxylation reactions, glaucoma, calcification, osteoporosis, cancer, tumorigenicity and the synthesis of bicarbonate (HCO₃⁻). CAs are a player main role in the physiology of coral calcification. CA has active confidents in the gastric mucosa, brain, kidney, salivary glands, eye lens, pancreas, nerve myelin sheath, prostate and uterus.
addition, CA amounts are considerably decreased in the brain tissue of patients suffering from Alzheimer’s disease, proving an essential involvement of various human CA isozymes (hCA I, II, IV, and VII) in cognitive and learning functions. CA inhibitors (CAIs) are classified into two principal groups: the unsubstituted sulfonamides and the metal complexing anions. Sulfonamides are very momentous CAIs and sulfonamide varieties are effective organic compounds in medicinal chemistry. The detection of CA inhibition with sulfanilamide by Mann and Keilin was the beginning of these applications and many additional scientific discoveries.

CAIs are biological catalysts that convert water and carbon dioxide (CO2) to bicarbonate (HCO3−) and a proton (H+) in the environment and is required by animals and plants for survival.

\[\text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{CA}} \text{H}_2\text{CO}_3 \xrightarrow{\text{H}^+} \text{HCO}_3^- + \text{H}^+ \]

CAIs have six distinct enzyme families: the α-, β-, γ-, δ-, ε- and η-CA. α-CAs (expressed in vertebrates and algae) usually have monomer structures and occasionally a dimer form. β-CAs (in plants and prokaryotes) have dimer, tetramer or octamer forms. γ-CAs (in archaea) are trimers and the δ- and ε-CAs (in marine diatoms) are less well understood up to now. All human CAs (hCAs) belong to the α-class. Thus far, 16 isoenzymes have been identified. All CA families are metalloenzymes, which have Ca2+, Zn2+ or Fe2+ at their active sites. Different isoforms of CA have been recognized for their therapeutic effects toward several diseases. Therefore, the purpose of developing isozyme-specific inhibitors is to develop new and improved treatments.

Cholinesterases (ChEs) have a role in catalyzing the hydrolysis of acetylcholine (ACh) into choline and acetic acid, a fundamental process for the restoration of the cholinergic neurotransmission. Acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) are among the various ChEs.

Acetylcholine (ACh) molecules are synthesized in pre-synaptic finals from choline and they are necessary for cholinergic neurotransmission in the peripheral nervous systems (PNS) and the central nervous system (CNS). Alzheimer’s disease (AD) is characterized by dementia, memory loss and cognitive impairment. Perception is affected in one of derangements such as AD.

An unusually low concentration of ACh can be create several neuropsychological and neuropsychiatric perturbations such as AD and Parkinson’s disease. Generally, the treatment of AD is centralized on AChE inhibitors, such as rivastigmine, tacrine, galantamine and donepezil. AD is shown as a complex syndrome where various agents are responsible for its etiology such as tau protein aggregation, β-amylloid aggregation and low levels of ACh. Additionally, AChE inhibitors are used in the treatment of multiple neuromuscular diseases, and they were implemented in the treatment of AD because AChE accelerates hydrolysis and enables the regulation of ACh.

BChE is commonly referred to as plasma ChE and is also a nonspecific ChE enzyme that hydrolyzes several choline-based esters. BChE exhibits high activity levels in the intestine, liver, kidney, heart and lung; whereas high levels of AChE are present in the brain, muscle and erythrocyte membrane. Because BChE and AChE have up to 84% sequences similarity, they display similar activity in a variety of therapeutic applications and, thus, play an important role in medical science. In this study, we synthesized several new hetaryl sulfonamides (1–12), characterized their inhibition confidants against hCA I, hCA II, AChE and BChE and evaluated their inhibition confidants against acetazolamide (AZA), which is a clinical standard used as a CA inhibitor. Additionally, tacrine (TAC) was used as a standard for BChE and AChE inhibition.

Experimental

General methodology

Synthesis of 1-(4-methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxyalkyl-imidazoles (1–12)

In this work, 0.01 mmol of the appropriate heterocyclic amine was dissolved in 10 mL of ethanol. Then, 0.01 mmol of aryl sulfonyl chloride and 0.011 mmol of triethylamine were slowly added to the solution. The mixture was heated at 70–80°C for 1.5–2 h, cooled and diluted with acetone or water until crystals developed. The crystals were filtered and recrystallized from ethanol. The physical and chemical characteristics of the hetaryl sulfonamides are shown in Tables 1 and 2.

Biochemical studies

CA isoenzyme purification and inhibition studies

Affinity chromatography is an essential purification method because it offers high resolution, high selectivity and high capacity for protein purification. Recently there has been a strong interest in two of the most important hCA isoforms that are particularly common proteins found in many tissues. Both cytosolic hCA isoforms were purified by the Sepharose-4B-l-tyrosine-sulfonamide affinity segregation method using a single purification step. In this study, the proteins present in the column eluates were spectrophotometrically determined at 280 nm. We then performed the sodium dodecyl sulfate-polyacrylamide gel electrophoresis method (SDS-PAGE) after purifying of the enzymes.

Upon visualizing the proteins by SDS-PAGE techniques, a single band was identified for each isoenzyme. After spectrophotometrically purifying the samples, the protein concentrations were measured at 595 nm according to the Bradford technique. The Sepharose-4B-l-tyrosine-sulfonamide affinity gel was cleaned with Tris-HCl (25 mM)/Na2SO4 (22 mM) at pH 8.7. Both CA isoforms were washed with NaCl (1.0 M)/NaHPO4 (25 mM) at pH 6.3 and NaCl/NaOH (0.1 M)/NaClO4 (0.5 M) at pH 5.6 respectively.

The effects of the new hetaryl sulfonamides derivatives (1–12) were investigated by measuring the hydratase activity and determined in triplicate analysis at each concentration used. In this study,
No	Z	R¹	X	Yield (%)	Mp (°C)	Brutto formula	Element analysis, Found/Calculated (%)	Spectrum analysis
1	COOCH₂CH₃	H	C₆H₅	70.1	254–256	C₇H₈N₂O₄S₂	8.58, 19.61	19.69
2	COCH₃	CH₃	C₆H₅	45.5	190–192	C₅H₅N₂O₄S₂	8.95, 20.58	20.64
3	COCH₃	CH₃	C₆H₄OH	68.6	208–210	C₈H₈N₂O₄S₂	8.49, 19.49	19.57
4	COOC₂H₅CH₃	CH₂	C₆H₄CH₄	35.8	205	C₈H₁₀N₂O₄S₂	7.59, 17.46	17.53
5	COOC₂H₅OCOC₂H₅CH₃	CH₃	C₆H₅	44.3	171–172	C₁₀H₁₄N₂O₄S₂	6.54, 15.01	15.09
6	COC₂H₅	OCH₂	CH₃	9.20	145–146	C₁₀H₁₆N₂O₄S₂	9.03, 20.69	20.78
7	COC₂H₅	OCH₂	CH₃	17.5	158–159	C₁₀H₁₄N₂O₄S₂	9.45, 21.69	21.77
8	COC₂H₅	CH₃	CH₃	89.80	212	C₁₀H₁₄N₂O₄S₂	10.01, 22.95	22.99
9	COC₂H₅	CH₃	CH₃	90.67	220	C₁₀H₁₄N₂O₄S₂	8.19, 18.78	18.82
10	COCH₃	OCH₃	CH₃	26.3	198–199	C₁₀H₁₄N₂O₄S₂	10.01, 22.95	22.99

(continued)
the variations in activity were determined at 348 nm by measuring the conversion of the p-nitrophenylacetate substrate (NPA) to p-nitrophenolate (NP) and recording measurements in 3 min intervals at the room temperature (25°C) by using a spectrophotometer (Shimadzu, UV-VIS Spectrophotometer, UVmini-1240, Kyoto, Japan)57,58.

AChE/BChE activity determination

The inhibitory effects of several new hetaryl sulfonamides (1–12) on AChE/BChE activity were recorded according to the spectrophotometric technique of Ellman et al.59 Butyrylthiocholine iodide and acetylthiocholine iodide (BChI/AChI) were applied as substrates for both repercussions. 5,50-Dithio-bis(2-nitro-benzoic)acid (DTNB, D8130-1G, Sigma-Aldrich, Steinheim, Germany) was used for the measurement of the AChE/BChE reactions. In this study, 100 mL of Tris/HCl buffer (1 M, pH 8.0), and 10 mL of sample solution were dissolved in distilled water at varying concentrations and then 50 mL AChE/BChE (5.32 \pm 1.03 EU) solution was added and the reaction was incubated for 10 min at 25°C. Then, 50 mL of DTNB (0.5 mM) was added. The activity was then initiated by the addition of 50 mL of AChI/BChI31.

Metal chelating activity

Metal chelating capacity of hetaryl sulfonamides 1–12 was determined according to Dinis et al.60 The Fe2+-binding capacity of the hetaryl sulfonamides was spectrophotometrically recorded at 562 nm. Simultaneously, to a mixture of FeCl\textsubscript{2} (0.1 mL, 0.6 mM), three concentrations (10–30 \mu g/mL) of hetaryl sulfonamides 1–12 in ethanol (0.4 mL) were added. The activities were initiated by the addition of ferrozine molecules (0.1 mL, 5 mM). Additionally, the reaction was mixed and maintained in a dark room for 10 min. Finally, the activities of the hetaryl sulfonamide mixture was recorded spectrophotometrically at 562 nm41.

Results and discussion

Synthesis

The synthesis of 1-(4-methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxyalkyl-imidazoles is reported in Scheme 1. The reaction of tetrahydropyrimidinethiones substituted with different heterocyclic amines and aryl sulfonyl chloride in the presence of triethylamine led to the desired new compounds (1–12). The reactions completed within 2.5–3.0 h at 70–80°C. The newly synthesized compounds were crystalline and their structures were confirmed.

Table 2.

No	Z	R¹	X	Yield (%)	Mp (°C)	Brutto formula	Spectrum analysis
1	CH\textsubscript{3}	COCH\textsubscript{3}	23.30	68	C\textsubscript{10}H\textsubscript{14}N\textsubscript{2}O\textsubscript{5}S	3100–3000, 1690 (CO), 1593, 1483 (SO\textsubscript{2}), 1305 (m, 3H, CH\textsubscript{3}), 1257 (s, 3H, CH\textsubscript{3}), 1158 (s, 2H, NH), 781 (s, 2H, CH\textsubscript{2}Ar), 7.39 (s, 3H, Ar–CH\textsubscript{3}).	7.57 (m, 1H, CH\textsubscript{2}Ar); 7.83 (m, 1H, NH); 8.14 (s, 1H, CH=NH).
2	CH\textsubscript{3}	COOC\textsubscript{2}H\textsubscript{5}	14.2	168	C\textsubscript{15}H\textsubscript{18}N\textsubscript{2}O\textsubscript{5}S	3100–3000, 1690 (CO), 1593, 1483 (SO\textsubscript{2}), 1305 (m, 3H, CH\textsubscript{3}), 1257 (s, 3H, CH\textsubscript{3}), 1158 (s, 2H, NH), 781 (s, 2H, CH\textsubscript{2}Ar), 7.39 (s, 3H, Ar–CH\textsubscript{3}).	7.57 (m, 1H, CH\textsubscript{2}Ar); 7.83 (m, 1H, NH); 8.14 (s, 1H, CH=NH).
3	CH\textsubscript{3}	COOC\textsubscript{2}H\textsubscript{5}	14.2	168	C\textsubscript{15}H\textsubscript{18}N\textsubscript{2}O\textsubscript{5}S	3100–3000, 1690 (CO), 1593, 1483 (SO\textsubscript{2}), 1305 (m, 3H, CH\textsubscript{3}), 1257 (s, 3H, CH\textsubscript{3}), 1158 (s, 2H, NH), 781 (s, 2H, CH\textsubscript{2}Ar), 7.39 (s, 3H, Ar–CH\textsubscript{3}).	7.57 (m, 1H, CH\textsubscript{2}Ar); 7.83 (m, 1H, NH); 8.14 (s, 1H, CH=NH).
Compounds hCA I \(r^2 \) hCA II \(r^2 \) AChE \(r^2 \) BChE \(r^2 \) IC\(_{50}\) (nM) \(K_i \) (nM)

1 4.33 0.9899 3.37 0.8518 3.17 0.9746 6.24 0.9674 1.43 ± 0.09 2.85 ± 0.58 1.14 ± 0.26 2.02 ± 0.45
2 4.31 0.9540 3.14 0.9338 2.62 0.9426 5.50 0.9827 1.43 ± 0.24 2.75 ± 0.58 1.14 ± 0.26 2.02 ± 0.45
3 4.51 0.9325 3.19 0.9316 2.77 0.9377 5.97 0.9661 1.42 ± 0.24 2.85 ± 0.58 1.14 ± 0.26 2.02 ± 0.45
4 4.78 0.9925 6.60 0.9745 0.76 0.9817 5.87 0.9827 1.92 ± 0.26 6.03 ± 0.99 0.21 ± 0.04 2.45 ± 0.32
5 4.61 0.9755 5.49 0.9771 0.95 0.9546 5.25 0.9868 1.92 ± 0.26 6.03 ± 0.99 0.21 ± 0.04 2.45 ± 0.32
6 4.99 0.9911 7.69 0.9821 1.59 0.9625 7.88 0.9637 1.42 ± 0.24 6.97 ± 0.99 0.49 ± 0.17 5.92 ± 1.63
7 6.03 0.9930 7.22 0.9834 1.95 0.9666 8.06 0.9941 2.06 ± 0.26 5.49 ± 1.74 0.47 ± 0.21 5.33 ± 0.93
8 4.08 0.8833 2.86 0.9349 2.21 0.9939 4.71 0.9709 6.58 ± 2.01 nM
9 3.61 0.9704 6.29 0.9679 1.54 0.9943 7.29 0.9656 6.58 ± 2.01 nM
10 5.06 0.9729 5.47 0.9771 0.95 0.9546 5.25 0.9868 1.92 ± 0.26 6.97 ± 0.99 0.49 ± 0.17 5.92 ± 1.63
11 4.50 0.9970 6.42 0.9355 1.60 0.9595 6.79 0.9613 6.58 ± 2.01 nM
12 5.37 0.9838 6.03 0.9611 2.06 0.9810 6.03 0.9703 6.58 ± 2.01 nM
AZA 46.19 0.9925 34.65 0.9947 – – – – – – 43.69 ± 6.44 31.67 ± 8.39
TAC – – – – – 62.43 0.9984 86.63 0.9721

Table 3

The inhibition profiles of a dozen 1-(4-methylsulfonyl)-2-thione-4-aryl-5-nucleosides, coumarins, carboxylic acids and their derivatives, and also fullerenes. The hCA I and II isoenzyme inhibitory activity of the new hetaryl sulfonamides (1–12) is shown in Table 3. Cytosolic hCA I enzyme is found in the body and also could be observed in high concentrations in the erythrocytes and gastrointestinal tissues.

by spectral and physico-chemical methods, including IQ, \(^1\)H and \(^13\)C NMR spectroscopies.

Biochemistry

A variety of special isoforms from the CA family of zinc containing metalloenzymes have been applied in the treatment of diseases. Classical CAIs, generally sulfonamide-based compounds and their features, are known for their antiepileptic, antiobesity, antiglaucoma, anticancer and antineuropathic pain applications. Anticonvulsant drugs such as topiramate acetazolamide and zonisamide are recognized CA inhibitors. Classic CA enzymes, which are typically inhibited by compounds that contain a sulfonamide-based (SO\(_2\)NH\(_2\)) zinc-binding group (ZBG) or their bioisosteres such as sulfamides and sulfamates. Because CA II enzymes are the most physiologically abundant isoforms, they are often regarded as the predominant all-purpose isozymes of which inhibitions are to be eschewed. Recently, multiple types of compounds have been categorized as non-classical CAIs, including polyamines, phe- nols, coumarins, carboxylic acids and their derivatives, and also fullerenes. The hCA I and II isoenzyme inhibitory activity of the new hetaryl sulfonamides (1–12) is shown in Table 3. Cytosolic hCA I enzyme is found in the body and also could be observed in high concentrations in the erythrocytes and gastrointestinal tissues.

i. The low cytosolic isoform hCA I was measured for each new hetaryl sulfonamides (1–12), and the resulting Ki values ranged between 1.42 ± 0.24–6.58 ± 2.01 nM (Table 3). In addition, acetazolamide (AZA), which is known to exhibit medicinal activity as an hCA I inhibitor, showed a Ki of 43.69 ± 6.44 nM. Likewise, the strongest hCA I inhibition level was observed for hetaryl sulfonamide 6, with a Ki value of 1.42 ± 0.24 nM. The inhibitory activity of hetaryl sulfonamides (1–12) was also assessed against the low cytosolic hCA I isoform, the higher activity cytosolic hCA II isoenzyme and the AChE enzyme. Interestingly, these hetaryl sulfonamide compounds were determined to be effective due to their ferric ions (Fe\(^{3+}\))-chelating effects. The importance of an isoenzyme and its effects on the physiologically dominant cytosolic hCA II enzyme varies by the disease target. For hCA II, new hetaryl sulfonamides 1–12 had Ki values in the range of 1.42 ± 0.24–7.41 ± 2.32 nM. Hetaryl sulfonamide 3 demonstrated the best inhibition profile, with a Ki value of 1.72 ± 0.62 nM. In addition, acetazolamide (AZA, 5-aceta-mido-1,3,4-thiadiazole-2-sulfona-mide), a clinical standard used in this study as a medium strength CA II inhibition for this isoenzyme, exhibited a stable level of inhibition at 31.67 ± 8.39 nM.

ii. A significant cause contributing to the onset of AD is the reduced amount of ACh and other enzymes responsible for its synthesis and reduction in the brain tissue. Generally, a person who has suffered from AD will exhibit lower amounts of ACh (i.e., less than 0.20 μM ACh). Recently, Wei and coworkers have determined the levels of ACh using carbon dots. Schistosome AChE plays a significant role in limiting this action and other reactions by inhibiting the AChE emul-ator ligand causig receptor desensitization. AChE can increase the deposition of aging β-amyloid plaques in aging brain tissue. It has been recorded that the use of AChE inhibitors can strongly reduce some of the cognitive symptoms of AD and other behavioral traits. Recently, Chen and his coworkers recorded a sensor for determining the activity of AChE using a changed BSA preserved cluster. During the blood lodging steps of schistosomes, AChE is available on the parasite stratum membrane. Effective BChE and AChE inhibitors can also be used for AD therapy. Thus far, the typical drugs for treating AD on the market -including rivastig- mine, tacrine, donepezil and galantamine- are BChE or AChE inhibitors. AChE originated in the brain and in erythrocyte cells with higher prudaction levels and it is an important enzyme for neural devices. The activity (%)-[Hetaryl sulfonamide] graphs were plotted and the IC\(_{50}\) values of each hetaryl sulfonamide against AChE were computed after appropriate each dilution. Accordingly, the manufacturing of new inhibitors is important for the developing improved therapies to treat AD. The inhibitory effects of hetaryl sulfonamides 1–12 on AChE and BChE are shown in Table 3. In this study, the recently synthesized compounds exhibited strong inhibitory activity against AChE, with Ki values ranging from 0.20 ± 0.05 nM to 1.14 ± 0.26 nM. In addition, tacrine as a standard inhibitor for AChE exhibited a Ki value of 25.75 ± 3.39 nM. Based on these results, the inhibition of AChE by hetaryl sulfonamides 1–12 is significantly stronger than that of tacrine, a standard AD medication. The BChE enzyme play a major role as an ACh hydrolyzing enzyme in environmental mammalian systems. The BChE enzyme has a particular role in cholinergic neurotransmission and it has been a key factor in AD. An improved Ellman method was defined to quantify the activity of BChE.
Currently, the most commonly prescribed cholinesterase inhibitors are galantamine, donepezil and rivastigmine. Donepezil and galantamine are short-lived reversible competitive inhibitors, whereas rivastigmine actively reacts with ChEs. However, rivastigmine has an equal affinity for both the BChE and AChE enzymes, which makes it a very momentous drug currently prescribed for the therapeutic treatment of AD.

It has also been shown that phenothiazines inhibit ChEs, especially BChE. In this study, hetaryl sulfonamides \textbf{1–12} inhibited BChE, with \textit{K}_i values in the range of 1.55 ± 0.44–5.92 ± 1.63 nM. Additionally, hetaryl sulfonamide \textbf{10} was potent BChE inhibitor (\textit{K}_i: 1.55 ± 0.44 nM). Moreover, all of the hetaryl sulfonamides displayed higher BChE inhibition activity than tacrine (\textit{K}_i: 37.82 ± 2.08 nM).

The metal chelating procedure used in this study is also an antioxidant technique that is based on the absorbance measurement of the ferrous ion (Fe$^{2+}$)-ferrozine molecule after subsequent treatment of a Fe$^{2+}$ solution with the experimental sample. The ferrozine–Fe$^{2+}$ molecule created a red chromophore with an absorbance that was measured at 562 nm. A weak antioxidant method for iron chelation would be strongly underestimated in low concentrations. The metal-chelating process was considerable since it decreased the concentration of the catalyzing transition metal in lipid peroxidation. EDTA is a potent metal chelator; therefore, this compound was recorded as a standard metal chelator in this test.

Moreover, it was determined that the IC$_{50}$ values for hetaryl sulfonamide compounds \textbf{1–12} were calculated in the range of 43.31–196.11 μg/mL (Table 4). Additionally, the IC$_{50}$ values corresponding to the Fe$^{2+}$ ion-chelating method of the positive control samples – like trolox, α-tocopherol, BHA, BHT and EDTA – were determined to be in the range of 9.36–76.96 mg/mL. A lower IC$_{50}$ value corresponds to a higher Fe$^{2+}$ ion-binding capacity.

Conclusion

In this work, we focus on new hetaryl sulfonamides \textbf{1–12}, which exhibited effective inhibition profiles against BChE and AChE enzymes and hCA isoforms. We also defined the AZA data, as this standard sulfonamide inhibitor exhibits anticonvulsant properties. In addition, the IC$_{50}$ values of the compounds were studied; the best inhibitor was compound \textbf{8} toward hCA II. Both the BuChE and AChE enzymes hydrolyze ACh and demonstrate retained AChE levels in AD patients. In this work, the AChEIs have been a primary drug target for regulating AD at the symptomatic level. Human AChE and BuChE also have 65% amino acid sequence similarity. Furthermore, these compounds showed effective metal chelating activity in the presence of Fe$^{2+}$ ions and ferrozine.

Acknowledgements

S.H. Alwasel would like to thank the Distinguished Scientist Fellowship Program at King Saud University for financial support.

Disclosure statement

The authors declare that there is no conflict of interest.

ORCID

Ilhami Gulcin http://orcid.org/0000-0001-5993-1668

Table 4. Determination of the half maximal concentrations (IC$_{50}$, μg/mL) of Fe$^{2+}$ chelating of several new hetaryl sulfonamides \textbf{1–12} and standard compounds including BHA, BHT, α-Tocopherol, Trolox and EDTA.
Antioxidant compounds
BHA
BHT
α-Tocopherol
Trolox
EDTA
1
2
3
4
5
6
7
8
9
10
11
12

References

1. Chang MP, Ruju BC. USA Patent 6541492, appl. 27.12.2003, publ. 01.04.2003.
2. Polniaczek RO, Wang X, Pandit CR. USA Patent 6515130, appl. 24.08.1998, publ. 04.02.2003.
3. Taritsuka K, Ocasio M, Yamamoto N, Seishi K. Application 63-44534 (Japan), appl. 11.08.2006, K-Ni 61-189020, publ. 23.02.2008.
4. Tosheva M, Antonova A. Department of Chemistry of Sophiya University 2005;91:149–52.
5. Braje WM, Haupt A, Labrich W, et al. USA Patent 7320979, appl. 13.04.2004, publ. 22.01.2008.
6. Novikov MV, Michalov AM, Konishev ME, et al. Pat Russia 2364594, appl. 09.01.2008, publ. 20.08.2009.
7. Zhimli Z, Rong C, Ronga X. Synthesis and antifungal properties of sulfanilamide derivatives of chitosan. Carbohydrate Res 2007;342:2390–5.
8. Mohammed MJ. Bulg Chem Commun 2007;39:152–8.
9. Gülcin I, Beydemir S. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev Med Chem 2013;13:408–30.
10. Supuran CT, Scozzafava A. Carbonic anhydrase inhibitorsand their therapeutic potential. Exp Opin Ther Pat 2000;10:575–600.
11. Gocer H, Akincioglu A, Göksu, et al. Carbonic anhydrase inhibitory properties of phenolic sulfonamides derived from dopamine related compounds. Arab J Chem 2014. [Epub ahead of print], doi: 10.1016/j.arabjc.2014.08.005
12. Taslimi P, Gulcin I, Ozgeris B, et al. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxindane derivatives. J Enzyme Inhib Med Chem 2016;31:152–7.
13. Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 2007;15:4336–50.
14. Güney M, Coşkun A, Topal F, et al. Oxidation of cyanobenzocycloheptatrienes: synthesis, photooxygénation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropane derivatives. Bioorg Med Chem 2014;22:3537–43.
15. Tafreshi NK, Lloyd MC, Bui MM, et al. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Subcell Biochem 2014;75:221–54.

16. Lomelino CL, Supuran CT, McKenna R. Non-classical inhibition of carbonic anhydrase. Int J Mol Sci 2016;17:1150.

17. Takakura M, Yokomizo A, Tanaka Y, et al. Carbonic anhydrase I as a new plasma biomarker for prostate cancer. ISRN Oncol 2012;2012:768190.

18. Vullo D, De Luca V, Del Prete S, et al. Sulfonamide inhibition studies of the c-carbonic anhydrase from the *Antarctic cyanobacterium* Nostoc commune. Bioorg Med Chem 2015;23:1728–34.

19. Winum JY, Scozzafava A, Montero JL, Supuran CT. Design of zinc binding functions for carbonic anhydrase inhibitors. Curr Pharm Des 2008;14:615–21.

20. Scozzafava A, Passaponti M, Supuran CT, Gülçin I. Carbonic anhydrase inhibitors: guaiacol and catechol effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015;30:586–91.

21. Arabaci B, Gülçin I, Alwasef S. Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes. Molecules 2015;19:10103–14.

22. ArasHisar Ş, Hisar O, Beydemir Ş, et al. Effect of vitamin E on carbonic anhydrase enzyme activity in rainbow trout (*Oncorhynchus mykiss*) erythrocytes in vitro and in vivo. Acta Vet Hung 2004;52:413–22.

23. Maccallini C, Di Matteo M, Vullo D, et al. Indazole, pyrazole, and oxazole derivatives targeting nitric oxide synthases and carbonic anhydrases. ChemMedChem 2016;11:1695–97.

24. Hanf E, Böhmer A, Zinke M, et al. Carbonic anhydrases are producers of S-nitrosothiols from inorganicnitrogen and modulators of soluble guanylyl cyclase in human platelets. Amino Acids 2016;48:1695–706.

25. Özgeris B, Goksü S, Köse Polat L, et al. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds. Bioorg Med Chem 2016;24:2318–29.

26. Boztas M, Çetinkaya Y, Topal M, et al. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxy-bromophenol derivatives incorporating cyclopropane moieties. J Med Chem 2015;58:640–50.

27. Taslimi P, Gülçin İ, Oztasın N, et al. The effects of some bromophenols on human carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2016;31:603–7.

28. Gülçin İ, Scozzafava A, Supuran CT, et al. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2016;31:1698–702.

29. Scozzafava A, Kain P, Supuran CT, et al. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015;30:941.

30. Özbey F, Taslimi P, Gülçin İ, et al. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. J Enzyme Inhib Med Chem 2016; [Epub ahead of print]. doi: 10.1080/14756366.2016.1189422.

31. Garibov E, Taslimi P, Sujaev A, et al. Synthesis of 4,5-disubstituted-2-thiox0-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. J Enzyme Inhib Med Chem 2016. [Epub ahead of print]. doi: 10.1080/14756366.2016.1198901.

32. Haider A, Inam W, Khan SA, et al. β-Glucan attenuated scopalamine induced cognitive impairment via hippocampal acetylcholinesterase inhibition in rats. Brain Res 2016;1644: 141–8.

33. Mathew MS, Bakiş A, Pradeep T, et al. Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@BSA clusters. Biosen Bioelect 2016;81:68–74.

34. Gülçin İ, Beydemir Ş, Büyükkokuroğlu ME. In vitro and in vivo effects of dantrolene on carbonic anhydrase enzyme activities. Biol Pharm Bull 2004;27:613–16.

35. Danish Rizvi SM, Shaikh S, Naaž D, et al. Kinetics and molecular docking study of an anti-diabetic drug gliclazide as acetylcholinesterase inhibitor: implication for Alzheimer's disease-diabetes dual therapy. Neurochem Res 2016;41:1475–82.

36. Bertucci A, Moya A, Tambutté S, et al. Carbonic anhydrases in anchozoan corals – a review. Bioorg Med Chem 2013;21:1437–50.

37. Akincioglu A, Akincioglu H, Gülçin I, et al. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg Med Chem 2015;23:3592–602.

38. Aksu K, Nar M, Tanc, M, et al. Synthesis and carbonic anhydrase inhibitory properties of sulfamides structurally related to dopamine. Bioorg Med Chem 2013;21:2925–31.

39. Yıldırım A, Atmaca U, Keskin A, et al. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorg Med Chem 2015;23:2598–605.

40. Kucuk M, Gülçin I. Purification and characterization of the carbonic anhydrase enzyme from Black Sea trout (*Salmo trutta* Labrax Coruhensis) kidney and inhibition effects of some metal ions on enzyme activity. Environ Toxicol Pharmacol 2016;44:134–9.

41. Aksu K, Topal F, Gülçin İ, et al. Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines. Arch Pharm 2015;348:446–55.

42. Gocer H, Akincioglu A, Öztaskın N, et al. Synthesis, antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch Pharm 2013;346:783–92.

43. Artuçın, T, Çetinkaya Y, Gocer H, et al. Synthesis of 4-[2-(3,4-dimethoxybenzyl)cyclopentyl]-1,2-dimethoxybenzene derivatives and evaluations of their carbonic anhydrase isoenzymes inhibitory effects. Chem Biol Drug Des 2016;87:594–607.

44. Beydemir Ş, Gülçin İ, Küfrevioğlu Ö. Çiftçi M. Glucose 6-phosphate dehydrogenase: in vitro and in vivo effects of dantrolene sodium. Pol J Pharmacol 2003;55:787–92.

45. Göksu S, Naderi A, Akbaba Y, et al. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg Chem 2014;56:75–82.

46. Gül Hl, Tugtrak M, Sakagami H, et al. Synthesis and bioactivity studies on new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indenol[1,2-c]pyrazol-2-yl) benzene sulfonamides. J Enzyme Inhib Med Chem 2016;31:1619–24.

47. Coban TA, Beydemir S, Gülçin I, Ekinci D. The effect of ethanolder carbonic anhydrase isoenzymes activity: an in vitro and in vivo study. J Enzyme Inhib Med Chem 2008;23:266–70.
48. Coban TA, Beydemir S, Gülçin I, Ekinci D. Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biol Pharm Bull 2007;30:2257–61.

49. Darvesh S, Darvesh KV, McDonald RS, et al. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem 2008;51:4200–12.

50. Şentürk M, Gülçin I, Beydemir S, et al. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chem Biol Drug Des 2011;77:494–9.

51. Atasever A, Özdemir H, Gülçin I, Kufrevioglu OI. One-step purification of lactoperoxidase from bovine milk by affinity chromatography. Food Chem 2013;136:864–70.

52. Nar M, Çetinkaya Y, Gülçin I, Menzek A. (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors. J Enzyme Inhib Med Chem 2013;28:402–6.

53. Innocenti A, Öztürk Sarıyıldız SB, Gülçin I, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I–XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 2010;18:2159–64.

54. Gökşu H, Topal M, Keskin A, et al. 9,10-Dibromo-N-aryl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones: synthesis and investigation of their effects on carbonic anhydrase isozymes I, II, IX, and XII. Arch Pharm 2016;349:446–74.

55. Gökcen T, Gülçin I, Öztürk T, et al. A class of sulfonamides as carbonic anhydrase I and II inhibitors. J Enzyme Inhib Med Chem 2016. [Epub ahead of print]. doi: 10.1080/14756366.2016.1198900.

56. Oktay K, Polat Köse L, Şendil K, et al. The synthesis of (Z)-4-Oxo-4-(arylamino)but-2-enic acids derivatives and determination of theirs inhibition properties against human carbonic anhydrase I, and II isozymes. J Enzyme Inhib Med Chem 2016;31:939–45.

57. Hisar O, Beydemir Ş, Gülçin I, et al. The effects of melatonin hormone on carbonic anhydrase enzyme activity in rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro and in vivo. Turk J Vet Anim Sci 2005;29:841–5.

58. Hisar O, Beydemir Ş, Gülçin I, et al. Effect of low molecular weight plasma inhibitors of rainbow trout (Oncorhyncyes mykiss) on human erythrocytes carbonic anhydrase-II isozyme activity in vitro and rat erythrocytes in vivo. J Enzyme Inhib Med Chem 2005;20:35–9.

59. Ellman GL, Courtney KD, Andres V, Featherston RM. A new and rapid colorimetric demination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.

60. Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivateis (acetooaminoeph, sylcylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peryoxyl radical scavengers. Arch Biochem Biophys 1994;315:161–9.

61. Sujayev A, Polat Köse L, Gariboğ E, et al. Synthesis of N-alkyl (aril)-tetra pyrimidine thiones and investigation of their human carbonic anhydrase I and II inhibitory effects. J Enzyme Inhib Med Chem 2016;31:1192–97.

62. Topal M, Gülçin I. Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor. Turk J Chem 2014;38:894–902.

63. Gülçin I, Kufrevioglu OI, Oktay M. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibitory effects of some chemicals on enzyme activity. J Enzyme Inhib Med Chem 2005;20:297–302.

64. Huyut Z, Beydemir S, Gülçin I. In vitro and in vivo inhibitory effects of some phenolic compounds on the activities of carbonic anhydrase. J Enzyme Inhib Med Chem 2016;31:1234–40.

65. Turan B, Şendil K, Şengül E, et al. The synthesis of some β-lactams and investigation of their metal-chelating activity, carbonic anhydrase and acetylcholinesterase inhibition profiles. J Enzyme Inhib Med Chem 2016. [Epub ahead of print]. doi: 10.3109/14756366.2016.1170014.

66. Gülçin I, Elías R, Gepdiremen A, et al. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci Technol 2009;43:195–212.

67. Talaz O, Gülçin I, Goksu S, Saracoğlu N. Antioxidant activity of 5,10-dihydroxindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorg Med Chem 2009;17:6583–9.

68. Gülçin I, Elías R, Gepdiremen A, et al. Antioxidant activity of bisbenzylisouquinoline alkaloids from Stephania rotunda: cepharanthine and fangchinoline. J Enzyme Inhib Med Chem 2010;25:44–53.

69. Kalin P, Gülçin I, Göven AC. Antioxidant activity and polyphenol content of Vaccinium macrocarpon. Rec Nat Prod 2015:9:496–502.

70. Bursal E, Köksal E, Gülçin I, et al. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res Int 2013;51:66–74.

71. Yılmaz S, Akbaba Y, Özgeriş B, Et al. Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholine esterase. J Enzyme Inhib Med Chem 2016;31:1484–91.

72. Ozmen OD, Yamali C, Gül H, et al. Inhibitory effects of isatin mannich bases on carbonic anhydrases, acetylcholinesterase and butyrylcholinesterase. J Enzyme Inhib Med Chem 2016;31:1498–501.

73. Sujayev A, Gariboğ E, Taslimi P, et al. Synthesis of some tetrahydropyrimidine-5-carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase. J Enzyme Inhib Med Chem 2016;31:1531–9.

74. Öztakın N, Çetinkaya Y, Taslimi P, et al. Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorg Chem 2015;60:49–57.

75. Gülçin I, Elmastas M, Aboul-Enein HY. Antioxidant activity of clove oil-a powerful antioxidant source. Arab J Chem 2012;5:489–99.

76. Gülçin I, Beydemir S, Topal F, et al. Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. J Enzyme Inhib Med Chem 2012;27:587–94.

77. Bursal E, Gülçin I. Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia delicosa). Food Res Int 2011;44:1482–9.

78. Gülçin I, Huyut Z, Elmastas S, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 2010;3:43–53.

79. Gülçin I, Topal F, Çakmakçı R, et al. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 2011;76:C585–93.

80. Gülçin I, Topal F, Öztürk Sarıyıldız SB, et al. Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Rec Nat Prod 2011;5:158–75.

81. Gülçin I. Antioxidant activity of eugenol: a structure-activity relationship study. J Med Food 2011;14:975–85.

82. Köksal E, Bursal E, Dikici E, et al. Antioxidant activity of Melissa officinallis leaves. J Med Plants Res 2011;5:217–22.

83. Şerbetçi TH, Gülçin I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int J Food Propert 2010;13:657–71.
84. Gülçin I, Kirecci E, Akkemik E, et al. Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turk J Biol 2010;34:175–88.
85. Gülçin I. Antioxidant properties of resveratrol: a structure-activity insight. Innov Food Sci Emerg 2010;11:210–18.
86. Köksal E, Gülçin I, Öztürk Sankaya SB, Bursal E. On the in vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 2009;24:395–405.
87. Gülçin I, Daştan A. Synthesis of dimeric phenol derivatives and determination of in vitro antioxidant and radical scavenging activities. J Enzyme Inhib Med Chem 2007;22:685–95.
88. Gülçin I, Beydemir Ş, Şat İG, Kürevioğlu ÖI. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment Hung 2005;34:193–202.
89. Topal F, Topal M, Gocer H, et al. Antioxidant activity of taxifolin: an activity-structure relationship. J Enzyme Inhib Med Chem 2016;31:674–83.
90. Topal M, Gocer H, Topal F, et al. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J Enzyme Inhib Med Chem 2016;31:266–75.