Metrological traceability of holmium oxide solution

D E F Gonçalves¹, J F S Gomes², A P D Alvarenga², P P Borges³ and T O Araujo³

¹Department of Reference Material, Visomes Comercial Metrológica, São Paulo, Brazil
²Optical Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Xerem, Rio de Janeiro, Brazil
³Chemical and Thermal Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Xerem, Rio de Janeiro, Brazil

E-mail: debora@visomes.com.br

Abstract. Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.

1. Introduction
According to ISO/IEC 17025 [1], a measurement result is reliable when it presents evidence of its traceability, accompanied by an estimative of its measurement uncertainty. In measurements performed with UV/Vis spectrophotometry, these requirements can be fulfilled with the proper use of certified reference materials (CRMs).

1.1. Metrological traceability and CRM
Metrological traceability can be defined as the property of a measurement result related to a reference through an uninterrupted and documented chain of calibrations, contributing to measurement uncertainty [2]. Measurement uncertainty is a parameter associated with each measurand, adequate to the intended use of the measurement results [2]; it indicates data quality and helps interpretation and decisions taking.

CRMs are one of the main bases for attainment of accuracy and reliability of chemical measurements. Its use is a requirement for the process of equipment calibration and method validation. CRM definition in ISO 17034 [3] states that the material must be characterized by a metrologically valid procedure (traceable to the International System of Units or to an internationally accepted scale) and it must be accompanied by a certificate that provides the property value, its associated uncertainty and a statement of metrological traceability.

1.2. Spectrophotometry
The spectrophotometry technique has low operational cost and is easy to use. Spectrophotometer is a fundamental instrument for analysis of several parameters in many areas, and thus, it is very important to verify its performance and also to keep the measurements traceability.

UV/Vis spectrophotometer measures the amount of absorbed light in ultraviolet (UV) and visible (Vis) spectrum by chemical compounds, allowing to quantify its concentration in different samples.
Many analytes have their sensitivity intensely reduced due to a small variation in wavelength, and thus, calibration of the spectrophotometers wavelength scale is essential for measurements accuracy. CRMs are usually employed for periodic verification and calibration of the equipment [4].

Holmium oxide CRM (Ho\textsubscript{2}O\textsubscript{3}) is the principal substance used as reference for the UV/Vis spectrometers and spectrophotometers wavelength scale calibration due to its stability and characteristics. It presents intrinsic and well resolved sharp peaks from 240 nm to 640 nm, covering the range used by the majority of the laboratories in diverse areas such as petrochemical and pharmacological. There are others CRMs with extended wavelength range into the infrared, but they are compounds into a glass matrix, which results in broader peaks and bands, and are less stable. The development of a CRM for spectrophotometers wavelength accuracy, such as Ho\textsubscript{2}O\textsubscript{3}, is important to assure reliability of the measurements results made by the laboratories.

1.3. Objective
This work aims to present the methodology for establishment of metrological traceability and for calculating measurement uncertainty of produced Ho\textsubscript{2}O\textsubscript{3} CRM used for the wavelength scale calibration of UV/Vis spectrophotometers. This type of CRM will be the first one developed in Brazil.

2. Experimental

2.1. Ho\textsubscript{2}O\textsubscript{3} CRM production
The developed CRM was the Ho\textsubscript{2}O\textsubscript{3} solution, which is essential to guarantee the reliability of UV/Vis spectrophotometric analysis.

The production was based on the procedure of Weidner et al. [5], with 99.99 % purity Ho\textsubscript{2}O\textsubscript{3} and 70% perchloric acid (HClO\textsubscript{4}). A 4 % Ho\textsubscript{2}O\textsubscript{3} solution in 10 % HClO\textsubscript{4} was gravimetrically prepared. The acid solution was bottled into 5 mL ampoule of clear glass containing a volume of approximately 4 mL, as shown in figure 1. This procedure was accomplished at Inmetro’s Electrochemistry Laboratory.

In order to meet the ISO 17034 requirements [3], the homogeneity and stability of the produced batch must be assessed. These studies are ongoing. The batch characterization will be performed through a comparison between Inmetro’s Radiometry and Photometry Laboratory and Visomes Laboratory, and further combination of the results.

![Figure 1. Candidate CRM of Ho\textsubscript{2}O\textsubscript{3}](image-url)
2.2. **Traceability**
Inmetro and Visomes spectrophotometers wavelength scale have been calibrated by using SRM-2034, a standard from the National Institute of Standards and Technology (NIST), in order to guarantee the measurements traceability in the Ho₂O₃ characterization. It was used for both the measurement method validation and the produced CRM batch traceability. The sources of uncertainty considered for the spectrophotometer calibration are showed in figure 2.

The SRM-2034 has certified wavelength values of minimum transmittance for 14 bands from 240 nm to 650 nm, for spectral bandwidth of 1 nm. The certified wavelengths are metrologically traceable to the SI derived unit expressed as nanometer.

2.3. **Uncertainty evaluation**
The uncertainty of the CRM produced will be evaluated according to the ISO GUM [6] and ISO GUIDE 35 [7]. For the CRM certified value, the following uncertainty contributions will be considered:
(a) characterization,
(b) non-homogeneity of the material,
(c) changes in property values during transport (short-term stability),
(d) changes in property values during storage (long-term stability).

3. **RESULTS**
After bottling the first batch, a sample of the CRM was measured and the spectrum can be observed in figure 3. The spectrophotometer has dual beam, double monochromator, wavelength range from 190 nm to 900 nm. The parameters were: 0.01 nm resolution, 1 nm spectral bandwidth, 20 nm-min⁻¹ scanning speed, cycles of 2 measurement and 3 replicates, using a 10 mm optical path quartz cuvette.
Figure 3. Transmittance spectrum of Ho$_2$O$_3$ in perchloric acid and the 14 studied peaks.

Table 1 shows the preliminary results of the measured sample together with the calculated normalized errors (E_n) between the SRM-2034 certified values and the produced Ho$_2$O$_3$ CRM candidate measured values. All of the 14 peaks ranging from 240 nm to 650 nm for spectral bandwidth of 1 nm were employed as indicated in figure 3. For all peaks resulted in $E_n < 1$, indicating satisfactory results. According to these preliminary results, one can proceed to the studies for certification of the batch of the candidate CRM of Ho$_2$O$_3$.

Table 1. Comparison between SRM-2034 values and measured values from candidate CRM of Ho$_2$O$_3$.

Certified value	U certificate	Measured value	U measured	Normalized error (E_n)
241.12	0.05	241.18	0.09	0.60
249.89	0.05	249.93	0.09	0.40
278.13	0.05	278.17	0.09	0.40
287.22	0.05	287.26	0.09	0.40
333.48	0.05	333.50	0.11	0.17
345.38	0.05	345.43	0.10	0.45
361.25	0.05	361.30	0.09	0.50
385.61	0.04	385.67	0.08	0.66
416.25	0.05	416.32	0.08	0.75
451.45	0.05	451.38	0.10	0.64
467.82	0.04	467.84	0.07	0.26
485.23	0.04	485.30	0.07	0.92
536.56	0.04	536.63	0.07	0.84
640.50	0.04	640.55	0.07	0.59
3.1. Characterization
The uncertainty calculation for the candidate CRM of Ho$_2$O$_3$ will be evaluated by each laboratory using its own standards. The following uncertainty sources will be considered:
(a) measurements repeatability,
(b) SRM-2034 traceability,
(c) spectrophotometer calibration uncertainty.

The characterization uncertainty (u_{char}) will be calculated as the square root of the sum of squares of each laboratory uncertainty, according to (1).

$$u_{\text{char}} = \sqrt{u_{\text{LAB}1}^2 + u_{\text{LAB}2}^2}$$ \hspace{1cm} (1)

3.2. Non-homogeneity
In order to estimate the degree of non-homogeneity of the produced batch, the data obtained was analyzed using the single-factor analysis of variance (ANOVA), which allows the calculation of the standard deviation between the units of CRM and the standard deviation of the repeatability of the measurement method.

Measurement uncertainty of non-homogeneity (u_h) is a function of the mean square (M) values between the ampoules (M_b) and within the ampoules (M_w). If M_b is greater than the M_w, the uncertainty is calculated by (2). If M_w is greater than M_b, the uncertainty can be obtained by (3).

$$u_h = \sqrt{\frac{M_b - M_w}{n}}$$ \hspace{1cm} (2)

$$u_h = \sqrt{\frac{M_w}{n} \times \frac{2}{df_{M_w}}}$$ \hspace{1cm} (3)

where n is the number of repeated measurement on the same ampoule and df_{M_w} is the M_w degree of freedom [7].

3.3. Stability
The stability assessment will be analyzed using the linear regression tool to evaluate data and estimate the uncertainty obtained in the stability studies. For stability studies, it will be checked the absence of a significant trend of the CRM value over the time.

Measurement uncertainties for the short-term (u_{ss}) and long-term (u_{ls}) stabilities are determined by multiplying the standard error (e_{sd}), obtained from the linear regression calculations, by the studied time (t_{stud}) (in the case of the short-term study) or by the estimated time for material validity (t_{estim}) (in the case of the long-term study), as shown in (4) and (5), respectively [7].

$$u_{ss} = e_{sd} \times t_{stud}$$ \hspace{1cm} (4)

$$u_{ls} = e_{sd} \times t_{estim}$$ \hspace{1cm} (5)
3.4. CRM uncertainty
Uncertainty evaluation of the produced CRM will be finally obtained as described in (6).

\[U = k \times \sqrt{u_{char}^2 + u_h^2 + u_{ss}^2 + u_{char}^2} \] (6)

where \(U \) is the expanded uncertainty of the CRM and \(k \) is the coverage factor for an approximately 95% of confidence level [7].

4. Conclusion
In this article it was emphasized the importance of traceability and uncertainty evaluation of the candidate CRM of Ho$_2$O$_3$. It was presented all the necessary steps for the metrological certification of this material that is being produced as a future CRM by the first time in Brazil. After certification, this CRM can be used in spectrophotometric wavelength measurements for assuring accuracy and reliability on chemical and photometric measurements. Preliminary results from the first produced batch showed good agreement with the NIST SRM-2034 reference material, therefore the ensuing characterization is under way.

References
[1] ISO/IEC 17025-2017 – General requirements for the competence of testing and calibration laboratories
[2] JCGM 200-2012 – International Vocabulary of Metrology. Basic and general concepts and associated terms
[3] ISO 17034-2016 – General requirements for the competence of reference material producers
[4] Gomes JFS, Guedes MB, Couceiro IB and Grieneisen HP 2008 Enqualab
[5] Weidner VR, Mavrodineanu R, Mielenz KD, Velapoldi RA, Eckerle KL and Adams B 1985 Journal of Research of the National Bureau of Standards 90 115
[6] JCGM 100-2008 – Evaluation of measurement data – Guide to the expression of uncertainty in measurement
[7] ISO GUIDE 35-2017 – Reference materials – Guidance for characterization and assessment of homogeneity and stability