Single Qubit Quantum Secret Sharing

Christian Schmid1,2, Pavel Trojek1,2, Harald Weinfurter1,2, Mohamed Bourennane3, Marek Żukowski4 and Christian Kurtsiefer5
1Sektion Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
2Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
3Department of Microelectronics and Information Technology, Royal Institute of Technology, SE-164 40 Kista, Sweden
4Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, PL-80-952 Gdański, Poland
5Department of Physics, National University of Singapore, Singapore 117 542, Singapore
(Dated: December 29, 2004)

We present a simple and practical protocol for the solution of a secure multiparty communication task, the secret sharing, and its experimental realization. In this protocol, a secret message is split among several parties in a way that its reconstruction requires the collaboration of the participating parties. In the proposed scheme the parties solve the problem by a sequential communication of a single qubit. Moreover we show that our scheme is equivalent to the use of a multiparty entangled GHZ state but easier to realize and better scalable in practical applications.

PACS numbers: 03.67.Hk, 03.67.Dd, 03.67.-a.

Splitting a secret message in a way that a single person is not able to reconstruct it is a common task in information processing and especially high security applications. Suppose e.g. that the launch sequence of a nuclear missile is protected by a secret code, and it should be ensured that not a single lunatic is able to activate it but at least two lunatics. A solution for this problem and its generalization including several variations is provided by classical cryptography1 and is called secret sharing. It consists of a way of splitting the message using mathematical algorithms and the distribution of the resulting pieces to two or more legitimate users by classical communication. However all ways of classical communication currently used are susceptible to eavesdropping attacks. As the usage of quantum resources can lead to unconditionally secure communication (e.g.2,3), a protocol introducing quantum cryptography to secret sharing was proposed1,4,5,6. In this protocol a shared GHZ-state allows the information splitting and the eavesdropper protection simultaneously. But, due to lack of efficient multi-photon sources an experimental demonstration of secret sharing is still missing. Till now solely the principle feasibility of an experimental realization using pseudo-GHZ states was shown6.

Here we propose a protocol for \((N+1)\) parties in which only sequential single qubit communication between them is used and show its equivalence to the GHZ-protocol. As our protocol requires only single qubits it is realizable with the current state-of-the-art technologies and above all much more scalable with respect to the number of participating parties. These gains enabled the experimental demonstration of our protocol for six parties. To our knowledge this is the first experimental implementation of a full protocol for secret sharing and by far the highest ever reported number of participants in any quantum information processing task.

Let us first shortly describe the entanglement based protocol using a GHZ state for secret sharing. Consider \((N+1)\) persons, each having a particle from the maximally entangled \((N+1)\) particle GHZ-state

\[
|GHZ\rangle = \frac{1}{\sqrt{2}} \left(|00\ldots 0\rangle + |11\ldots 1\rangle \right)_{N+1}.
\]

One of the parties, let’s call him distributor, wants to distribute a secret message among the remaining \(N\) persons (recipients) in a way that all of them have to cooperate in order to reconstruct the distributed message. To achieve this task each participant performs a projection measurement of his particle onto the eigenstates \(|k_j, \phi_j\rangle\) \((j = 1, 2, \ldots, N+1)\) of the operator

\[
\hat{\sigma}_j(\phi_j) = \sum_{k_j} k_j |k_j, \phi_j\rangle \langle k_j, \phi_j|,
\]

where \(k_j = \pm 1\) denotes the local result in mode \(j\) for a preselected parameter \(\phi_j\). The partners randomly and independently choose between \(\phi_j = 0\) or \(\pi/2\). The correlation function for a \((N+1)\) particles GHZ state is defined as the expectation value of the product of \((N+1)\) local results and is therefore given by

\[
E(\phi_j) = \langle \prod_{j} \hat{\sigma}_j(\phi_j) \rangle = \cos \left(\sum_{j} \phi_j \right).
\]

After the measurement each recipient publicly announces her/his choice of \(\phi_j\), but keeps the result \(k_j\) secret. By doing so the distributor can decide when this procedure leads to perfect (anti-)correlated results, i.e. when \(|\cos(\sum_{j} \phi_j)| = 1\), which happens in half of the runs. In these instances each of the recipients is able to infer the distributor’s measurement result \(k_d\) if and only if he/she knows the measurement results \(k_r\) \((r = 1, 2, \ldots, N)\) of all the other recipients. Consequently
FIG. 1: Scheme for \((N + 1)\) party single qubit secret sharing. The distributor prepares a qubit in an initial state and acts on it with the phase operator \(\hat{\sigma}(\varphi_d)\). Afterwards the qubit is sequentially communicated from one recipient to another each acting on it with \(\hat{\sigma}(\varphi_j)\) as well. The last recipient performs finally a measurement of the qubit leading to the result \(\pm 1\). In half of the cases the phases add up such that the preparation and the measurement are perfectly (anti-)correlated.

The cooperation of all the recipients is required and any subset of the parties has no information on the secret. For a security proof of this scheme against eavesdropping attacks see [1, 2].

An equivalent \((N + 1)\) party scheme (see fig. 2) for the same task where only the sequential communication of a single qubit is used, runs as follows.

The distributor randomly prepares a qubit in one of the four states \(|\pm x\rangle, |\pm y\rangle\) of two mutually unbiased bases \(x\) and \(y\) with

\[
|\pm x\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle) \quad (4)
\]

\[
|\pm y\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm i|1\rangle). \quad (5)
\]

Note that all these states are of the form

\[
|\chi\rangle_i = \frac{1}{\sqrt{2}}\left(|0\rangle + e^{i\varphi_d}|1\rangle\right), \quad (6)
\]

where \(\varphi_d\) is chosen to have one out of the four values \(\{0, \pi, \pi/2, 3\pi/2\}\). During the protocol the qubit is then sequentially communicated from recipient to recipient each acting on it with the unitary phase operator

\[
\hat{\sigma}_j(\varphi_j) = \begin{cases}
|0\rangle \to |0\rangle \\
|1\rangle \to e^{i\varphi_j}|1\rangle,
\end{cases} \quad (7)
\]

where \(\varphi_j \in \{0, \pi, \pi/2, 3\pi/2\}\) as well. Therefore having passed all parties the qubit will end up in the state

\[
|\chi\rangle_f = \frac{1}{\sqrt{2}}\left(|0\rangle + e^{i\varphi_d + \sum_j \varphi_j}|1\rangle\right). \quad (8)
\]

After this communication stage each participant divides his action for every run into two classes: a class \(X\) corresponding to the choice of \(\varphi_j \in \{0, \pi\}\) and a class \(Y\) corresponding to \(\varphi_j \in \{\pi/2, 3\pi/2\}\). Following this classification they inform the distributor about the class-affiliation of their action for each run. Note that they keep the particular value of \(\varphi_j\) secret. This corresponds to the announcement of \(\varphi_j\) while keeping \(\varphi_i\) secret in the GHZ-scheme. The order in which the recipients \(R_j\) announce the class-affiliation is randomly determined by the distributor. The last recipient \(R_N\) finally measures the received qubit in the \(x\) basis. Therefore for her/him it suffices to choose only between \(\varphi_N = 0\) or \(\varphi_N = \pi/2\) and keep the outcome \(k_N\) of the measurement secret [10].

The probability that \(R_N\) detects the state \(|+x\rangle\) is given by

\[
p_+(\varphi_d, \varphi_1, \ldots, \varphi_N) = \frac{1}{2}(1 + \cos(\varphi_d + \sum_j \varphi_j)), \quad (9)
\]

whereas the probability to detect the state \(|-x\rangle\) is

\[
p_-(\varphi_d, \varphi_1, \ldots, \varphi_N) = \frac{1}{2}(1 - \cos(\varphi_d + \sum_j \varphi_j)). \quad (10)
\]

So the expectation value of the measurement result is

\[
A(\varphi_d, \varphi_1, \ldots, \varphi_N) = p_+(\varphi_d, \varphi_1, \ldots, \varphi_N)
- p_-(\varphi_d, \varphi_1, \ldots, \varphi_N) = \cos(\varphi_d + \sum_j \varphi_j). \quad (11)
\]

From the broadcasted class-affiliations of all introduced phase shifts \(\varphi_j\) the distributor is able to decide which runs lead to perfect (anti-)correlations, means when \(|\cos(\varphi_d + \sum_j \varphi_j)| = 1\), what happens in half of the runs. We call this a valid run of the protocol. In these cases each of the recipients is able to infer the distributor’s choice of \(\varphi_d\) if and only if he/she knows the choice of \(\varphi_j\) of the other recipients. Consequently the collaboration of all recipients is necessary.

By associating the particular value of \(\varphi_d\) with "0" and "1", say e.g. \(\varphi_d \in \{0, \pi/2\} \equiv 0\) and \(\varphi_d \in \{\pi, 3\pi/2\} \equiv 1\), the parties are able to secretly share a common bit string (key). This is possible as obviously the required correlations based on local manipulation of relative phases can equivalently be established by communicating a single qubit instead of employing many entangled qubits of a GHZ-type state; (compare equation 8 and 11).

In order to ensure the security of the protocol against eavesdropping or cheating [11] the distributor arbitrarily selects a certain number (might depend on the degree of security requirements) of particular valid runs. For this subset the correlations are publicly compared, again in a random order of the recipients. The public comparison will reveal any eavesdropping or cheating strategy. That can be easily seen from the following intercept/resend eavesdropping attacks. Imagine for instance the first recipient \(R_1\) tries to infer the secret without the help or the authorization
of the remaining participants by measuring the qubit sent by the distributor before acting on it with $\hat{\sigma}_1(\varphi_1)$ and afterwards sending it ahead to the second recipient R_2. For convenience, let us assume R_1 chooses for this measurement one of the two protocol bases x or y. As the distributor applies randomly one of four different phase shifts, the probability that the state $|\chi\rangle_i$ is an eigenstate of the measurement chosen by R_1 is 1/2. In the other half of the cases the measurement result of R_1 will be completely random as it holds that $\langle(\pm y | \pm x)\rangle = \langle(\pm x | \pm y)\rangle = 1/2$. This means that recipient R_1 gets no information about the distributor’s choice of φ_d. Furthermore this cheating will cause an overall error of 25% in the correlations. That’s because if R_1 has chosen the wrong basis, the final state of the qubit after all $(N+1)$ introduced phase shifts will be of the form

$$|\chi\rangle_f = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\sum_{j=1}^N \varphi_j} |1\rangle \right)$$

instead of $|\chi\rangle_f$.

The state $|\chi\rangle_f$ will, measured by the last recipient R_N, give with probability 1/2 a result which is not compatible to the expected correlations. The same situation an eavesdropper is faced with, when applying such a strategy. The usage of the bases x and y for an intercept/resend attack is already the optimal one concerning the information gain on the valid runs. One might only consider using the intermediate (or so called Breidbart) basis $|\pm b\rangle = \frac{1}{\sqrt{2}} (|\pm x\rangle \pm |\pm y\rangle) = \frac{1}{\sqrt{2}} (|0\rangle \pm e^{i\pi/4} |1\rangle)$ which gives the eavesdropper maximum information on all exchanged bits [12]. But even here the error rate goes necessarily up to 25%. The security of the presented protocol against a general eavesdropping attack follows from the proven security (see for detail [2]) of the well known BB84 protocol [13]. Each communication step between two successive parties can be regarded as a BB84 protocol using the bases x and y. Any set of dishonest parties in our scheme can be viewed as an eavesdropper in BB84 protocol.

The presented protocol was experimentally implemented for six $(5+1)$ parties, thus clearly showing the practicality and user-friendliness of the scheme.

We encoded the qubit of the protocol in a single photon where the basis states $|0\rangle$ and $|1\rangle$ are represented by the polarization states of the photon $|H\rangle$ and $|V\rangle$ respectively, corresponding to horizontal (H) and vertical (V) linear polarization. The single photons were provided by a heralded single photon source. The setup is shown in Fig. 2. A pair of photons is created via a spontaneous parametric down conversion (SPDC) process. As the photons of a pair are strongly correlated in time the detection of one photon in D_T heralds the existence of the other one which is used for the protocol. Thus from a coincidence detection between D_T and D_{+}/D_{-} within a chosen time window of 4 ns we assume the communication of a single photon only. For this coincidence time window and singlecount rates of about 70000 s$^{-1}$ in D_{+}/D_{-} accidental coincidences were negligible. The SPDC process was run by pumping a 2 mm long β-barium borate (BBO) crystal with a blue single mode laser diode (402.5 nm) at an optical output power of 10 mW. Type-II phase matching was used at the degenerate case leading to pairs of orthogonally polarized photons at a wavelength of $\lambda = 805 \text{ nm}$ ($\Delta \lambda \approx 6 \text{ nm}$).

In order to prepare the initial polarization state a polarizer transmitting vertically polarized photons was put in front of the trigger detector D_T ensuring that only horizontally polarized photons can lead to a coincidence detection. The distributor was equipped with a motorized half-wave plate (HWP$_1$) followed by quarter-wave plate (QWP) at an angle of 45°. By rotation of HWP$_1$ to the angles 0°, 45° and 22.5° – 22.5° he could transform the horizontally polarized photons coming from the source to $|\pm y\rangle$ and $|\pm x\rangle$. This corresponds to applying the phase-shifts $\varphi_d \in \{\pi/2, 3\pi/2\}$ and $\varphi_d \in \{0, \pi\}$ respectively. As the phase-shifts of the recipients had to be applied independently from the incoming polarization state the usage of standard wave plates was not possible. Therefore the unitary phase operator was implemented using birefringent uniaxial 200 μm thick Yttrium Vanadate (YVO$_4$) crystals (C_i). The crystals were cut such that their optic axis lies parallel to the surface and aligned that H and V polarization states correspond to their normal modes. Therefore by rotating the crystals along the optic axis for a certain angle a specific relative phase shift was applied independent from the incoming polarization state. An additional YVO$_4$ crystal (C_{comp}, 1000 μm thick) was used to compensate for dispersion effects. The last party performed the projection measurement using a half-wave plate (HWP$_2$) at an angle of 22.5° followed by polarizing beam-splitter (PBS). The photons were detected at D_{+}/D_{-} and D_T by passively quenched silicon avalanche

![FIG. 2: Setup for single qubit secret sharing. Pairs of orthogonally polarized photons are generated via a type II SPDC process in a BBO crystal. The detection of one photon from the pair by D_T heralds the existence of the other one used for the performance of the protocol. The initial polarization state is prepared by the distributor by a polarizer in front of the trigger detector and a half- and quarter wave plate (HWP1, QWP). Each of the recipients ($R_1 \ldots R_5$) introduces one out of four phase shifts according to a number from a pseudo random number generator (RNG) by the rotation of YVO$_4$ crystals ($C_1 \ldots C_5$). The last party analyzes additionally the resulting polarization state of the photon with a half-wave plate (HWP$_2$) and a polarizing beam splitter.](image)
TABLE I: Results of the simulation of an intercept/resend eavesdropping strategy in the protocol- and intermediate basis. The attack was done by inserting a polarizer between the distributor and the first recipient. In each case the quantum bit error rate (QBER) rises up to more than 25\% and by this blows the eavesdropper’s cover.

	z_{total}	z_{one}	z_{raw}	z_{val}	QBER [%]	
$	\pm x\rangle$	27501	9814	883	452	26.22 \pm 2.04
$	\pm y\rangle$	24993	9188	784	409	30.32 \pm 2.27
$	\pm b\rangle$	38174	13706	1137	588	30.27 \pm 1.89

In summary, we introduced a new scheme for solving multi-party communication task of secret sharing. Unlike other schemes employing multi-particle entangled states our protocol uses only the sequential communication of a single qubit. As single qubit operations using linear optical elements and the analysis of photon polarization states are quite well accomplishable with present day technology, we were therefore able to present a first experimental demonstration of the protocol for six parties. This is to our knowledge the highest number of actively performing parties in a quantum protocol ever implemented so far, and the first ever experimental implementation of a full quantum secret sharing protocol. We also simulated an eavesdropping intercept/resend attack and by this showed the resistance of the protocol against such kind of strategies because of a significantly increasing error rate. In principle we see no experimental barrier to extend the performed protocol to even significantly higher number of participants. The achieved key exchange rate could be easily increased by using fast electro-optical phase modulators. Also the use of weak coherent pulses of light containing much less than one photon on average, instead of a heralded single photon source, is possible and might further reduce the experimental effort. However, this would be at the expense of the concept of communicating strictly one qubit and can be also disadvantageous for the practical performance of the protocol.

M.Z. is supported by an FNP Profesorial Subsidy, and MNiI Grant 1 P03B 04927. The work is a part of MNiI/DAAD collaboration program and was furthermore supported by German DFG and BMBF, the Bavarian high-tech initiative, Swedish Research Council (VR), and the European Commission through the IST FET QIPC RamboQ.

[1] B. Schneier, Applied Cryptography (John Wiley & Sons, Inc., 1996).
[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[3] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[4] M. \.Zukowski, A. Zeilinger, M. A. Horne, and H. Weinfurter, Acta Phys. Pol 93, 187 (1998).
[5] M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).
[6] R. Cleve, D. Gottesmann, and H.-K. Lo, Phys. Rev. Lett. 83, 648 (1999).
[7] A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev. A 59, 162 (1998).
[8] W. Tittel, H. Zbinden, and N. Gisin, Phys. Rev. A 63, 042301 (2001).
[9] V. Scarani and N. Gisin, Phys. Rev. A 65, 012311 (2001).
[10] Alternatively it is of course also possible to choose φ_N out of four values and announce in addition to the class-affiliation the value of k_N. The parties should only agree in the beginning which variation of the protocol they prefer.
[11] By eavesdropping we refer to an attack from a person which is not officially participating in the protocol whereas by cheating we refer to an attack from a partic-
[12] B. Huttner and A. K. Ekert, J. Mod. Opt. 41, 2455 (1994).
[13] C. Bennett and G. Brassard, Proc. of IEEE International Conference on Computer, Systems & Signal Processing, Bangalore, India pp. 175–179 (1984).
[14] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000).
[15] N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000).