Vascular risk factors for male and female urgency urinary incontinence at age 68 years from a British birth cohort study

Alex Tsui*, Diana Kuh*, Linda Cardozo† and Daniel Davis*

*MRC Unit for Lifelong Health and Ageing at UCL, London, UK, and †Department of Urogynaecology, King’s College Hospital, London, UK

Objective
To investigate the prevalence of urgency urinary incontinence (UUI) at age 68 years and the contribution of vascular risk factors to male and female UUI pathogenesis in addition to the associations with raised body mass index (BMI).

Subjects and methods
In all, 1 762 participants from the Medical Research Council (MRC) National Survey for Health and Development birth cohort who answered the International Consultation on Incontinence Questionnaire short form (ICIQ-SF), at age 68 years, were included. Logistic regression was used to estimate associations between UUI and earlier life vascular risk factors including: lipid status, diabetes, hypertension, BMI, previous stroke or transient ischaemic attack (TIA) diagnosis; adjusting for smoking status, physical activity, co-presentation of stress UI symptoms, educational attainment; and in women only, type of menopause, age at period cessation, and use of hormone replacement therapy (HRT).

Results
UUI was reported by 12% of men and 19% of women at age 68 years. Female sex, previous stroke or TIA diagnosis, increased BMI and hypertension (in men only) at age 60–64 years were independent risk factors for UUI. Female sex, increased BMI, and a previous diagnosis of stroke/TIA increased the relative risk of more severe UUI symptoms. Type and timing of menopause and HRT use did not alter the estimated associations between UUI and vascular risk factors in women.

Conclusion
Multifactorial mechanisms lead to UUI and vascular risk factors may contribute to the pathogenesis of bladder overactivity in addition to higher BMI. Severe UUI appears to be a distinct presentation with more specific contributory mechanisms than milder UUI.

Keywords
urgency, urinary incontinence, vascular, adiposity, prevalence, ageing, #incontinence

Introduction
Urgency urinary incontinence (UUI) is involuntary loss of urine associated with urgency (a sudden compelling desire to pass urine that is difficult to defer) [1], commonly presenting with urinary frequency and nocturia as part of the overactive bladder (OAB) syndrome. UUI is common: prevalence of 30% has previously been reported for those aged >65 years [2,3]. The actual prevalence of UUI is likely to be even higher, as many older people may be too embarrassed to report symptoms [4,5]. Greater frequency or severity of UUI symptoms are associated with worse quality of life [2,6–8] and increased risk of depression [9], negatively impacting social interactions, relationships, and self-esteem [10]. The cost of OAB syndrome in the UK alone is currently estimated at £800 million/year, with a further 22% increase anticipated by 2020 as a result of medications, increased need for social care, and higher risk of admission to a nursing home [11].

The multifactorial causes of UUI are reflected in the wide range of risk factors identified in cross-sectional and longitudinal studies. These include increasing age [12], diagnosis of depression [13], alcohol intake [14], and limitations in physical capability [15]. In addition, increased body mass index (BMI) has been consistently associated with all types of UI, including UUI in a number of cohorts [16–18]. It is understood that central adiposity increases intra-abdominal and bladder pressure in stress UI (SUI) and to a lesser extent in UUI [3]. However, increased BMI is also commonly associated with vascular risk factors, such as insulin resistance and glucose intolerance, dyslipidaemia and hypertension, as part of the metabolic syndrome [19]. As such, vascular mechanisms may contribute to UUI.
pathophysiology at the peripheral and central nervous systems, as well as directly on the detrusor muscle and pelvic soft tissue.

Although UUI impacts a significant proportion of both sexes in the population, risk factors for UUI have mostly been explored in cross-sectional samples of women [17,18,20–22]. In the present study, we investigated vascular risk factors assessed at age 60–64 years and UUI subsequently ascertained in men and women at age 68 years within a birth cohort, taking account of a number of clinical and socio-behavioural factors. We addressed four main questions:

1. What is the prevalence of male and female UI subtypes at age 68 years?
2. Do vascular risk factors contribute to male and female UUI in addition to the effects of raised BMI?
3. Is there evidence for a central neurological contribution to UUI, through the additional contribution of a stroke/TIA diagnosis over and above vascular risk factors in general?
4. Are the same vascular risk factors observed in association with severe and mild UUI?

Subjects and Methods

The MRC National Survey for Health and Development (NSHD) is the oldest British birth cohort study, following a sample of 5362 male and female participants, born in 1 week in March 1946. During the 24th data collection in 2014–2015, 2942 participants in the target sample living in England, Scotland and Wales were contacted and 2453 (83.4%) returned a postal questionnaire. The target sample did not include participants no longer in the study (n = 2420): 957 (17.8% of the original sample) had already died, 620 (11.6%) had previously withdrawn from the study, 448 (8.3%) had emigrated and had no contact with the study, and 395 (7.4%) had been untraceable for >5 years [23]. The 2294 participants (93.5% of 2453 who had returned a postal questionnaire), whose symptoms reported on the postal questionnaire corresponded to a recognised UI syndrome were used as the maximum sample for analysis. Of these, 1753 (76.4%) men and women had full covariate data (detailed below), and comprised the complete sample.

Urinary Leakage

Questions on urinary leakage were based on the International Consultation on Incontinence Questionnaire Short Form (ICIQ-SF) [24]: ‘1. How often do you leak urine?’, ‘2. How much urine do you usually leak?’; ‘3. How much does leaking urine interfere with your everyday life, on a scale of 0 to 10?’.

Urinary symptoms were categorised into those with (i) UUI only; (ii) SUI only; (iii) mixed UI (MUI). Participants with UUI were defined as those who reported urine leakage ‘before you can get to the toilet’ or ‘when you are asleep’. Participants with SUI were defined by urine leakage ‘when you cough or sneeze’ or ‘when you are physically active or exercising’. MUI was defined as responses with combination of SUI and UUI. A severity score was calculated from the ICIQ-SF using the sum of question 1, question 2 score multiplied by two and question 3, as recommended [24]. A severity score was not calculated for 14 participants who did not respond to all three components. UI severity was defined as: no UI (score of 0), mild UI (3–5), and more severe UI (≥6).

Vascular Exposures

At age 60–64 years, information was collected by a research nurse at a home or clinic visit [25] on vascular risk factors typically recognised as a component of the metabolic syndrome [19]: lipid status, diabetes, hypertension, BMI, and waist circumference. Hypertension was defined as a doctor diagnosis of hypertension, regular prescription of an anti-hypertensive, or systolic blood pressure of >160 mmHg or diastolic blood pressure >100 mmHg (taken from two readings) [26]. Participants reported doctor-diagnosed type 1 or 2 diabetes mellitus. During the home or clinic visits, waist circumference, height and weight were measured by standardised protocols, and BMI was calculated (kg/m²). A fasting blood sample was also taken during this home visit. Lipid status was defined according to whether the participant was hypercholesterolaemic (total cholesterol >6 mmol/l) and/or if a cholesterol-lowering medication was prescribed. At age 68 years, participants reported any previous diagnosis of stroke/transient ischaemic attack (TIA) ascertained by a doctor.

Other Covariates

Other covariates selected included: smoking status (defined as current smoker, ex-smoker, or lifelong non-smoker, validated against reports at earlier ages); co-presentation of SUI symptoms at age 68 years; physical activity at age 60–64 years, and educational attainment by the age of 26 years. Educational attainment was categorised into: less than ordinary secondary level; ‘O’ levels; advanced secondary level (‘A’ level); and higher. Participants were asked how many times in the last 4 weeks they had taken part in sports or vigorous activities, categorised as inactive (no episodes), less active (1–4 exercise episodes/month) and more active (≥5 exercise episodes/month). In women, we also accounted for type of menopause (natural menopause, bilateral oophorectomy or hysterectomy with at least one conserved ovary), age at period cessation, and ever-use of hormone replacement therapy (HRT) [27].

Statistical Analysis

First, using the maximum sample, the proportion of men and women with UUI at age 68 years by each vascular risk factor...
and covariate was described. Logistic regression was used to assess the strength of the associations for men and women separately, testing for any sex interactions. Second, we repeated the logistic regressions in 1 762 men and women with complete covariate data, and made a series of three adjustments: (i) for female sex, SUI, and previous diagnosis of stroke/TIA; (ii) additionally for vascular risk factors; and (iii) additionally for all other covariates. Analyses adjusted for BMI per standard deviation (SD) rather than waist circumference as the measure of adiposity; using both would have resulted in collinearity. Third, we estimated multinomial logistic regression models to compare risk factor profiles between those with severe and mild UUI symptoms. Fourth, we estimated logistic regression models to investigate the associations of type and timing of menopause and HRT use on UUI in women, to test whether any observed associations between UUI and vascular risk factors could be accounted for by menopause variables.

Results

Of 2 294 participants, 825 reported symptoms at age 68 years consistent with a recognised UI subtype. For men, 15% reported UI (UUI 12%, SUI 1.5%, MUI 1%); for women, 54% reported UI (UUI 19% SUI 21% MUI 14%), demonstrating a sex difference ($P < 0.01$). In men, 7% with an UI subtype had severe symptoms, compared with 18% of women.

Co-presentation of SUI was associated with UUI in both sexes, but was stronger in men than women (men = odds ratio [OR] 5.3, 95% CI: 2.4–11.4; women = OR 1.6, 95% CI: 1.2–2.0; Table 1). Those diagnosed with a previous stroke or TIA reported more UUI (26.3% vs 12.5% for men [OR 2.6, 95% CI: 1.4–4.8]; 47.5% vs 32.6% for women [OR 1.9, 95% CI: 1.0–3.6]). A diagnosis of hypertension was associated with an increased UUI risk in men and women; diabetes was associated with an increased UUI risk in men but not in women (sex interactions with hypertension $P = 0.49$, with diabetes, $P = 0.03$). Raised BMI was associated with increased UUI risk in men and women. No associations between physical activity and UUI were evident.

Univariate models in those with complete data confirmed that being female, SUI symptoms, a previous stroke or TIA diagnosis, increased BMI, hypertension and diabetes (in men only) continued to be associated with higher odds of UUI (Table 2, model 1). There were no associations between smoking status, educational attainment or physical activity and UUI. After adjusting for sex, SUI and any stroke or TIA diagnosis the ORs for the other vascular factors were attenuated but independent associations with BMI and hypertension remained (model 2). In the fully adjusted model, being female (OR 4.12, 95% CI: 2.49–6.82; $P \leq 0.01$), co-presentation of SUI (OR 1.8, 95% CI: 1.36–2.37; $P \leq 0.01$), having had a stroke or TIA diagnosis (OR 1.99, 95% CI: 1.14–3.49, $P < 0.01$) and increased BMI (OR 1.19 per SD, 95% CI: 1.05–1.34; $P = 0.01$) were independent risk factors for UUI.

A previous diagnosis of stroke/TIA increased the relative risk of severe UUI symptoms (relative risk ratio [RRR] 3.65, 95% CI: 1.87–7.1); no corresponding association was seen with mild UUI. Increased BMI and being female were risk factors for both mild and severe UUI (Table 3). There were no sex interactions in these multivariate models. Type and timing of menopause and HRT use did not alter the estimated associations between UUI and vascular risk factors in women (Table 4).

Discussion

In a large representative British population cohort at the age of 68 years, the prevalence of UI was 15% in men (where UUI was the most common subtype), and 54% in women (with similar proportions of UUI and SUI subtypes). Female sex, a previous diagnosis of stroke/TIA, increased BMI, and SUI were associated with UUI symptoms. Stronger associations were found between these risk factors and UUI if severe UUI was reported. For those with milder symptoms, the associations were weaker, except for the negative association with educational attainment. In women, no associations were found between UUI symptoms and menopause or HRT use. Taken together, these results suggest that vascular risk factors, in particular hypertension, may contribute towards UUI pathophysiology in addition to previous stroke/TIA, raised BMI, female sex and co-presentation with SUI.

A strength of these analyses was the prospective ascertainment of all variables. We used the ICIQ-SF, a structured, validated scale with a specific component evaluating impact on daily life. A limitation is the lack a definite operationalisation of UI subtypes in ICIQ-SF, excluding a small number of participants reporting only atypical symptoms. Also, the severity of UI was measured using self-reported symptom impact, without objective urodynamic measures. Third, vascular covariates could not be further characterised by cumulative exposure, such as duration since first diagnosis, introducing a dose-dependent element to the associations. Lastly, the definition of previous TIA/stroke did not differentiate between temporary or permanent neurological deficits, size of lesion or neuroanatomical location of stroke.

Whilst the estimated prevalence of female UUI at the age of 68 years was similar to other studies with samples of similar ages [21,22], UUI prevalence in men was higher than that reported (11.7% for men aged >65 years, 95% CI: 9.27–14.14%) in a recent pooled analysis of men aged >65 years [28]. The increased prevalence of UUI in both men and
Variable	Female	Male	P value for interaction	
	N	Any UUI at age 68 years, n (%) OR 95% CI P	N	Any UUI at age 68 years, n (%) OR 95% CI P
Any UII symptoms at age 68 years	1 235	413 (33.4) 1.6 1.2 2.0	1 059	140 (13.2) 5.3 2.4 11.4 <0.01 <0.01
Any SUI symptoms at age 68 years	1 261	173 (40.3) 1.9 1.0 3.5	1 059	12 (42.9) 128 (12.4)
Yes				
No				
Any Stroke/TIA diagnosis by age 68 years	1 102	19 (47.5) 1.3 1.0 1.7	836	55 (15.07) 104 (12.5) 1.6 1.0 2.3 0.03 0.49
Yes				
No				
Hypertension at age 60–64 years	1 019	133 (37.9) 1.0 0.6 1.7	966	56 (10.3) 100 (11.3) 2.3 1.3 4.1 <0.01 0.03
Yes				
No				
Diabetes by age 60–64 years	1 107	23 (33.8) 1.8 1.2 2.7	912	18 (24.3) 100 (11.3) 0.03 <0.01
Yes				
No				
Lipid and statin status at age 60–64 years	1 152	185 (34.58) Ref 0.45 1 024	64 (11.49) Ref 0.17	
Normal LDLs				
No statins, raised LDLs	138 (30.8) 0.8 0.6 1.1	24 (11.4) 0.6 0.3 1.3		
Prescribed statins, normal LDLs	56 (33.1) 0.9 0.6 1.4	37 (15.68) 1.4 0.9 2.2		
BMI quintile	1 028	0.03 912	0.01	
20%				
40%				
60%				
80%				
100%				
Waist circumference quintile	1 026	0.01 910	0.02	
20%				
40%				
60%				
80%				
100%				
Smoking status at age 60–64 years	1 082	0.07 954	0.60	
Current	116	32 (26.67) Ref 0.07 1 156	10 (9.17) Ref 0.89	
Ex-smoker	566	205 (35.53) 1.5 1.0 2.4	71 (12.54) 1.4 0.7 2.8	
Never	380	115 (29.87) 1.2 0.7 1.9	35 (12.54) 1.4 0.7 3.0	
Educational attainment by age 26 years	1 261	<0.01 1 156	0.89	
<O Levels	480	154 (27.92) Ref 130 (32.19) 1.2 0.9 1.7	52 (12.41) Ref 0.19	
≥A Levels	461	176 (38.18) 1.6 1.2 2.1	18 (10.98) 0.9 0.5 1.5	
Exercise at age 68 years	1 248	0.19 1 143	0.80	
Inactive	748	231 (30.88) Ref 0.19 1 143	86 (12.45) Ref 0.19	
Less active (1–4/week)	166	55 (33.13) 1.1 0.8 1.6	15 (12.1) 1.0 0.5 1.7	
More active (>5/week)	334	122 (36.53) 1.3 1.0 1.7	36 (10.98) 0.9 0.6 1.3	

LDLs, low-density lipoproteins. Bold highlights significant findings.
Table 2 ORs for UUI risk factors in complete sample of 1,766 participants from the NSHD birth cohort with complete data for vascular risk factors.

Risk Factor	Univariate Adjusted for sex, SUI and stroke	Adjusted for sex, SUI, stroke and vascular risk factors	Adjusted for all covariates
	OR 95% CI P	OR 95% CI P	OR 95% CI P
Sex	3.70 (2.88, 4.75) < 0.01	1.82 (1.38, 2.40) < 0.01	4.12 (2.49, 6.82) < 0.01
Any SUI symptoms at age 68 years	2.98 (2.32, 3.83) < 0.01	2.02 (1.15, 3.52) < 0.01	1.80 (1.36, 2.37) < 0.01
Any stroke/TIA diagnosis by age 68 years	1.82 (1.09, 3.03) 0.02	1.36 (0.88, 2.09)	1.99 (1.14, 3.49) < 0.01
Hypertension at age 60-64 years	1.52 (1.00, 2.33) 0.03	1.36 (0.88, 2.09)	1.36 (0.88, 2.10)
Men	1.39 (1.04, 1.84) 0.48	1.17 (0.87, 1.58)	1.17 (0.87, 1.58)
Women	1.94 (0.99, 3.81) 0.12	1.63 (0.81, 3.26)	1.61 (0.81, 3.23)
Diabetes by age 60-64 years	1.02 (0.56, 1.86) 0.16	0.68 (0.35, 1.30)	0.68 (0.36, 1.31)
Lipid and statin status at age 60-64 years	Ref (1.00) 0.16	Ref (1.00) 0.16	Ref (1.00) 0.16
Normal LDLs	1.01 (0.79, 1.29) 0.79	0.82 (0.63, 1.07)	0.82 (0.63, 1.07)
No statins, raised LDLs	0.99 (0.73, 1.35) 0.79	0.88 (0.62, 1.26)	0.88 (0.62, 1.26)
Prescribed statins, normal LDLs	0.99 (0.73, 1.35) 0.79	0.88 (0.62, 1.26)	0.88 (0.62, 1.26)
BMI (per SD) at age 60-64 years	1.26 (1.12, 1.40) 0.01	1.19 (1.06, 1.34)	1.19 (1.05, 1.34) 0.01
Smoking status at age 60-64 years	1.20 (0.82, 1.76) 0.12	1.26 (0.85, 1.88)	1.26 (0.85, 1.88)
Current	Ref (1.00) 0.31	Ref (1.00) 0.31	Ref (1.00) 0.31
Ex-smoker	1.12 (0.75, 1.68) 0.11	1.30 (0.72, 1.68)	1.30 (0.72, 1.68)
Never	1.12 (0.75, 1.68) 0.11	1.30 (0.72, 1.68)	1.30 (0.72, 1.68)

LDLs, low-density lipoproteins. *P value for sex interaction < 0.1. Bold highlights significant findings.
The present study provides prevalence of UI subtypes for men and women within a representative large cohort in their late 60s. We demonstrate that severe UUI is a distinct disease entity, whilst those with milder UUI may represent a broad range of contributory mechanisms. Our present findings suggest that multifactorial mechanisms lead to UUI and that vascular risk factors are additionally associated, potentially playing a role in the development of pathological bladder overactivity.

Table 3 Multinomial regression analyses of RRRs in mild and severe UUI in 1,761 participants from the NSHD with complete data for vascular risk factors and UI severity scores.

N = 1,748		Mild UUI		Severe UUI				
Female sex		3.51	2.58	4.77	<0.01			
Any stroke/TIA diagnosis by age 68 years	1.08	0.49	2.40	0.84	3.65	1.87	7.10	<0.01
Hypertension at age 60–64 years	1.21	0.90	1.63	0.21	1.31	0.89	1.91	0.17
Diabetes by age 60–64 years	0.96	0.52	1.78	0.89	1.18	0.60	2.34	0.63
Lipid and statin status at 60–64 years								
No statins, normal LDLs	0.95	0.70	1.28	0.72	0.66	0.44	0.99	0.05
No statins, raised LDLs	0.93	0.61	1.42	0.74	0.82	0.46	1.38	0.45
Prescribed statins, normal LDLs	1.13	0.98	1.30	0.09	1.32	1.12	1.57	<0.01
Smoking status at age 60–64 years								
Current	1.34	0.82	2.20	0.24	1.19	0.67	2.13	0.55
Never	1.37	0.82	2.29	0.23	0.71	0.37	1.35	0.30

Table 4 ORs for UUI in female NSHD participants with complete data for women’s health and vascular risk variables.

Variable, n = 752	Univariate (complete n)	Adjusted for all covariates	
	OR 95% CI P	OR 95% CI P	
Type of menopause	Natural Ref 0.29	Natural Ref	
Hysterectomy	1.25 0.83 1.88	1.65 0.94 2.88	0.08
Bilateral oophorectomy	1.38 0.85 2.26	1.54 0.89 2.64	0.12
Period cessation age (years)		1.28 0.79 2.08	0.32
Natural	1.30 0.80 2.09	0.29	
Hysterectomy	1.17 0.61 2.24	0.64	
Bilateral oophorectomy	2.09 0.81 5.39	0.13	
Ever used HRT	Natural 0.92 0.65 1.32 0.59	0.89 0.62 1.28 0.53	
Hysterectomy	0.66 0.27 1.63 0.48	0.74 0.29 1.88 0.53	
Bilateral oophorectomy	3.66 0.41 32.95 0.24	4.83 0.47 49.36 0.18	
Any UUI symptoms at age 68 years	1.60 1.17 2.19	1.58 1.14 2.17	0.01
Any stroke/TIA diagnosis by age 68 years	1.79 0.78 4.11	1.60 0.67 3.82	0.29
Hypertension at age 60–64 years	1.26 0.92 1.73	1.13 0.80 1.59	0.48
Diabetes by age 60–64 years	1.00 0.50 1.98	0.76 0.35 1.64	0.48
Lipid and statin status at age 60–64 years		0.73 0.37 1.33	0.33
Normal LDLs	Ref	0.81 0.58 1.13	
No statins, raised LDLs	0.79 0.57 1.10	0.74 0.44 1.25	
Prescribed statins, normal LDLs	0.86 0.54 1.38	0.74 0.44 1.25	
BMI at age 60–64 years	1.17 1.02 1.34 0.02	1.14 0.99 1.33 0.07	

LDLs, low-density lipoproteins. Bold highlights significant findings.

Acknowledgements

The authors thank all study members of NSHD and NSHD scientific and data collection teams. Data used in this publication are available upon request to the MRC NSHD Data Sharing Committee. Further details can be found at: http://www.nshd.mrc.ac.uk/data. https://doi.org/10.5522/nshd/q101; https://doi.org/10.5522/nshd/q102; https://doi.org/10.5522/nshd/q103.
Conflict of Interests

The authors declare no conflicts of interest.

References

1. Haylen BT, de Ridder D, Freeman RM et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. *Int Urogynecol J* 2010; 21: 5–26

2. Milsom I, Coyne KS, Nicholson S, Kvasz M, Chen CI, Wein AJ. Global prevalence and economic burden of urgency urinary incontinence: a systematic review. *Eur Urol* 2014; 65: 79–95

3. Noblett KL, Jensen JK, Ostergard DR. The relationship of body mass index to intra-abdominal pressure as measured by multichannel cystometry. *Int Urogynecol J* 1997; 8: 323–6

4. Branch LG, Walker LA, Wette TT, DuBeau CE, Resnick NM. Urinary incontinence knowledge among community-dwelling people 65 years of age and older. *J Am Geriatr Soc* 1994; 42: 1257–62

5. Cheater FM, Castleden CM. Epidemiology and classification of urinary incontinence. *Baillieres Best Pract Res Clin Obstet Gynaecol* 2000; 14: 183–205

6. Samuelsson E, Mansson I, Milsom I. Incontinence aids in Sweden: users and costs. *BJU Int* 2001; 88: 893–8

7. Sexton CC, Coyne KS, Vats V, Kopp ZS, Irwin DE, Wagner TH. Impact of overactive bladder on work productivity in the United States: results from EpiLUTS. *Am J Manag Care* 2009; 15(Suppl.):S98–107.

8. Lai HH, Shen B, Rawal A, Vetter J. The relationship between depression and overactive bladder/urinary incontinence symptoms in the clinical OAB population. *BMC Urol* 2016; 16: 60

9. Melville JL, Delaney K, Newton K, Katon W. Incontinence severity and major depression in incontinent women. *Obstet Gynecol* 2005; 106: 585–92

10. Wyman JF, Harkins SW, Fani J. Psychosocial impact of urinary incontinence in the community-dwelling population. *J Am Geriatr Soc* 1990; 38: 282–8

11. Reeves P, Irwin D, Kelleher C et al. The current and future burden and cost of overactive bladder in five European countries. *Eur Urol* 2006; 50: 1050–7

12. Stewart WF, Van Rooyen JB, Cundiff GW et al. Prevalence and burden of overactive bladder in the United States. *World J Urol* 2003; 20: 327–36

13. Hirayama A, Torimoto K, Mustasita C et al. Risk factors for new-onset overactive bladder in older subjects: results of the Fujiwara-kyo study. *Urology* 2012; 80: 71–6

14. Uzun H, Zorba OU. Metabolic syndrome in female patients with overactive bladder. *Urology* 2012; 79: 72–5

15. Komesu YM, Schrader RM, Keti LH, Rogers RG, Dunivan GC. Epidemiology of mixed, stress, and urgency urinary incontinence in middle-aged/older women: the importance of incontinence history. *Int Urogynecol J* 2016; 27: 763–72

16. Kuh D, Cardozo L, Hardy R. Urinary incontinence in middle aged women: childhood enuresis and other lifetime risk factors in a British prospective cohort. *J Epidemiol Community Health* 1999; 53: 453–8

17. Khullar V, Sexton CC, Thompson CL, Milsom I, Bitoun CE, Coyne KS. The relationship between BMI and urinary incontinence subgroups: results from EpiLUTS. *Neurolour Urodyn* 2014; 33: 392–9

18. Ikeda Y, Nakagawa H, Ohmori-Matsuda K et al. Risk factors for overactive bladder in the elderly population: a community-based study with face-to-face interview. *Int J Urol* 2011; 18: 212–8

19. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. *Lancet* 2005; 365: 1415–28

20. Uzun H, Yilmaz A, Kemik A, Zorba OU, Kalkan M. Association of insulin resistance with overactive bladder in female patients. *Int Neurolour J* 2012; 16: 181–6

21. Reigota RB, Pedro AO, de Souza Santos Machado V, Costa-Paiva L, Pinto-Neto AM. Prevalence of urinary incontinence and its association with multimorbidity in women aged 50 years or older: a population-based study. *Neurolour Urodyn* 2016; 35:62–8.

22. Liu RT, Chung MS, Lee WC et al. Prevalence of overactive bladder and associated risk factors in 1359 patients with type 2 diabetes. *Urology* 2011; 78: 1040–5

23. Kuh D, Wong A, Shah I et al. The MRC National Survey of Health and Development reaches age 70: maintaining participation at older ages in a birth cohort study. *Eur J Epidemiol* 2016; 31: 1135–47
ICIQ: a brief and robust measure for evaluating the symptoms and impact of urinary incontinence. Neurourol Urodyn 2004; 23: 322–30

Cohort profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. Int J Epidemiol 2011; 40: e1–9

Midlife blood pressure predicts future diastolic dysfunction independently of blood pressure. Heart 2016; 102: 1380–7

Menopause, reproductive life, hormone replacement therapy, and bone phenotype at age 60-64 years: a British birth cohort. J Clin Endocrinol Metab 2016; 101: 3827–37

Male urinary incontinence: prevalence, risk factors, and preventive interventions. Rev Urol 2009; 11: 145–65

Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol 2006; 50: 1306–15

Health Survey for England - 2012, Trend tables. Available at: https://digital.nhs.uk/catalogue/PUB13219. Accessed January 2018.

Estimating the prevalence and incidence of type 2 diabetes using population level pharmacy claims data: a cross-sectional study. BMJ Open Diabetes Res Care 2017; 5: e000288

British Heart Foundation. Stroke Statistics 2009. British Heart Foundation Statistics Database. Available at: http://www.heartstats.org/. Accessed January 2018.

Correspondence: Alex Tsui, MRC Unit of Lifelong Health and Ageing at UCL, 33 Bedford Place, London WC1B 5JU, UK.
e-mail: a.tsui@ucl.ac.uk

Abbreviations: (S)(M)(U)UI, (stress) (mixed) (urgency) urinary incontinence; BMI, body mass index; HRT, hormone replacement therapy; ICIQ-SF, International Consultation on Incontinence Questionnaire Short Form; NSHD, National Survey for Health and Development; OAB, overactive bladder; OR, odds ratio; RRR, relative risk ratio; TIA, transient ischaemic attack.