We discuss an improved detection scheme for a light-shining-through-wall (LSW) experiment for axion-like particle searches. We propose to use: gyrotrons or klystrons, which can provide extremely intense photon fluxes at frequencies around 30 GHz; transition-edge-sensors (TES) single photon detectors in this frequency domain, with efficiency ≈ 1; high quality factor Fabry-Perot cavities in the microwave domain, both on the photon-axion conversion and photon regeneration sides. We compute that present laboratory exclusion limits on axion-like particles might be improved by at least four orders of magnitude for axion masses $\lesssim 0.02$ meV.

1 Introduction

Axions [1] are between the most serious dark matter candidates. They are light neutral scalar or pseudoscalar bosons, with mass $m_a \approx \mu eV - meV$, coupled to the electromagnetic field via

$$\mathcal{L}_I = \frac{1}{4} G a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

In QCD axion models (DFSZ [2] and KSVZ [3]), the axion-photon coupling constant G is directly related to m_a; thus, G is the only free parameter of the theory. In axion-like particle (ALP) searches, the parameter space is extended: G and m_a are the free parameters [4].

Axions and ALPs experimental searches can be divided into two main categories: 1) Axions from astrophysical and cosmological sources; 2) Laboratory searches. In the former case, exclusion limits on the axion-photon coupling constant are provided by estimates of stellar-energy losses [4 5], helioscopes [6 7 8] and haloscopes [6 9]. In the latter case, limits on G are given by photon polarization [10] and Light-Shining-Through-Wall (LSW) [6 11 12 13 14] experiments.

In this contribution, we will focus on LSW experiments. After a brief description of the standard LSW experimental apparatus, we will discuss how to improve present ALPs laboratory limits on G by at least four orders of magnitude [15]. We are willing to do this by using extremely intense photon fluxes from gyrotron sources at frequencies around 30 GHz, TES single photon detectors with efficiency ≈ 1, and high quality factor Fabry-Perot cavities in the microwave domain ($Q \approx 10^4 - 10^5$), both on the photon-axion conversion and photon regeneration sides.
2 LSW experiments

In a LSW experiment \[6, 11, 12, 13, 14\], a coherent photon beam traverses an intense magnetic field, \(H\). Here, some photons can convert into axions via the Primakoff effect. Photons exchange 3-momentum \(q\) with \(H\), the energy is conserved. If the \(\hat{x}\) axis is chosen in the direction of the propagating photon beam, then the external magnetic is assumed to be uniform in the volume \(L_xL_yL_z = L_zS\).

The photons which do not convert into axions are stopped by an optical barrier, “the wall”. while axions can cross the wall, due to their negligible cross-section with ordinary matter. On the other side of the wall there is a second magnetic field, which can convert axions back to photons. Reconverted photons may be detected via a single-photon detector.

In the \(\epsilon_\gamma \gg m_a\) limit, the photon to axion (axion to photon) conversion probability is given by \[6\]

\[
P_{\gamma \rightarrow a} = P_{a \rightarrow \gamma} = G^2 H^2 \frac{\sin^2(q_x L_x/2)}{q_x^2} \frac{\epsilon_\gamma}{\sqrt{\epsilon_\gamma^2 - m_a^2}} \tag{2}
\]

where \(\epsilon_\gamma\) is the photon (axion) energy and \(m_a\) the axion mass. In the limit \(\epsilon_\gamma \approx m_a\), which is relevant for the STAX experiment, the previous expression for the conversion probability has to be regulated \[15\]

\[
P_{\gamma \rightarrow a} = P_{a \rightarrow \gamma} = G^2 H^2 \frac{\sin^2(q_x L_x/2)}{q_x^2} \frac{\epsilon_\gamma}{1 + \sqrt{\epsilon_\gamma^2 - m_a^2}} \tag{3}
\]

The photon-axion-photon rate reads

\[
\frac{dN_{\gamma}}{dt} = \Phi_\gamma \eta P_{\gamma \rightarrow a}^2 \tag{4}
\]

where \(\Phi_\gamma \text{ [s}^{-1}\text{]}\) is the initial photon flux and \(\eta\) the single-photon-detector efficiency. The rate can be increased by introducing a Fabry-Perot cavity in the magnetic field area before the wall by a factor of \(Q\), which is the quality factor of the cavity. Moreover, as discussed in Ref. \[16\], the rate can be further increased with the addition of a second Fabry-Perot cavity in the magnetic field region beyond the wall. See Fig. \[1\]
3 STAX experimental configuration and calculated exclusion limits

The best laboratory limits for the axion-photon coupling constant have been provided by the ALPS Collaboration [11]. The second stage of ALPS, ALPS-II [13], will improve the previous limits mainly by increasing the magnetic field length as well as introducing a second cavity in the magnetic field region behind the wall. ALPS-II configuration is very similar to that of Fig. [1] but in this case the photon flux is provided by an optical laser.

![Exclusion Plot Axion-Like Particle.](image)

Figure 2: 90% CL exclusion limits that STAX and STAX 2 may achieve in case of a null result for axions with \(m_a \lesssim 0.02 \text{ meV} \). An exposure time of one month and zero dark counts are considered. “STAX” and “STAX 2” configurations correspond to a 100 kW and 1 MW gyrotron sources, respectively. Picture from Ref. [15]; Elsevier B.V. copyright.

Our goal is to develop a new generation LSW experiment and improve the limits on \(G \) by using sub-THz photon sources. Sub-THz sources, like gyrotrons and klystrons, can provide very high powers (up to 1 MW) at small photon frequencies, resulting in photon fluxes up to \(10^{10} \) more intense than those from optical lasers, used in previous LSW experiments. We will also use high Q-factor Fabry-Perot cavities for microwave photons and single-photon detectors for light at these frequencies, with almost zero dark count, based on the (Transition-Edge-Sensor) TES technology. The TES detector will be coupled to an antenna and operated at temperatures \(\approx 10 \text{ mK} \).

In this way, we computed that present laboratory exclusion limits on axion-like particles might be improved by at least four orders of magnitude for axion masses \(\lesssim 0.02 \text{ meV} \) [15]. The limits that STAX experiment may achieve are compared to previous experimental results in Fig. [2]
References

[1] R.D. Peccei and H. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38, 1440 (1977); S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, “Problem of Strong p and t Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40, 279 (1978).

[2] M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett. B 104, 199 (1981); A.R. Zhitnitsky, “On Possible Suppression of the Axion Hadron Interactions,” Sov. J. Nucl. Phys. 31, 260 (1980).

[3] J.E. Kim, “Weak Interaction Singlet and Strong CP Invariance,” Phys. Rev. Lett. 43, 103 (1979); M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, “Can Confinement Ensure Natural CP Invariance of Strong Interactions?,” Nucl. Phys. B 166, 493 (1980).

[4] See the review “Axions and Other Similar Particles” on K. A. Olive et al. [Particle Data Group Collaboration], “Review of Particle Physics,” Chin. Phys. C 38, 090001 (2014).

[5] M.S. Turner, “Windows on the Axion,” Phys. Rep. 197, 67 (1990); G.G. Raffelt, “Astrophysical methods to constrain axions and other novel particle phenomena,” Phys. Rep. 198, 1 (1990).

[6] P. Sikivie, “Experimental Tests of the ‘Invisible’ Axion,” Phys. Rev. Lett. 51, 1415 (1983).

[7] M. Arik et al. [CAST Collaboration], “New solar axion search using the CERN Axion Solar Telescope with 4He filling,” Phys. Rev. D 92 (2015) 2, 021101.

[8] E. Armengaud et al. [IAXO Collaboration], “Conceptual Design of the International Axion Observatory (IAXO),” JINST 9, T05002 (2014); T. Dafni et al. [IAXO and CAST Collaborations], “Axion helioscopes update: the status of CAST & IAXO,” PoS TIPP 2014, 130 (2014).

[9] S. J. Asztalos et al. [ADMX Collaboration], “A SQUID-based microwave cavity search for dark-matter axions,” Phys. Rev. Lett. 104, 041301 (2010).

[10] L. Maiani et al., “Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field,” Phys. Lett. B 175, 359 (1986); Y. Semertzidis et al., “Limits on the Production of Light Scalar and Pseudoscalar Particles,” Phys. Rev. Lett. 64, 2988 (1990); E. Zavattini et al. [PVLAS Collab.], “Experimental observation of optical rotation generated in vacuum by a magnetic field,” Phys. Rev. Lett. 96, 110406 (2006); E. Zavattini et al. [PVLAS Collab.], “New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum,” Phys. Rev. D 77, 032006 (2008).

[11] K. Ehret et al. [ALPS Collaboration], “New ALPS Results on Hidden-Sector Lightweights,” Phys. Lett. B 689, 149 (2010).

[12] M. Betz, F. Caspers, M. Gasior, M. Thumm and S. W. Rieger [CROWS Collaboration], “First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS),” Phys. Rev. D 88, no. 7, 075014 (2013).

[13] R. Bähre et al. [ALPS-II Collaboration], “Any light particle search II. Technical Design Report,” JINST 8, T09001 (2013); B. Döhrich [ALPS-II Collaboration], “What’s new in ALPS-II,” arXiv:1309.3965

[14] R. Ballou et al. [OSQAR Collaboration], “New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from “Light Shining Through a Wall”, arXiv:1506.08082

[15] L.M. Capparelli, G. Cavoto, J. Ferretti, F. Giazotto, A.D. Polosa and P. Spagnolo, “Axion-like particle searches with sub-THz photons,” Phys. Dark Univ. 12, 37 (2016).

[16] P. Sikivie, D.B. Tanner, K. van Bibber, “Resonantly enhanced axion-photon regeneration,” Phys. Rev. Lett. 98, 172002 (2007).