Inhomogeneity of epidemic spreading

Zhenzhen Liu, a Xingyuan Wang,a and Mogei Wang
School of Electronic and Information Engineering, Dalian University of Technology, Liaoning 116024, People's Republic of China

(Received 20 October 2009; accepted 13 May 2010; published online 23 June 2010)

In this study, we use the characteristic infected cluster size to investigate the inhomogeneity of the epidemic spreading in static and dynamic complex networks. The simulation results show that the epidemic spreads inhomogeneously in both cases. Also, the inhomogeneity of the epidemic spreading becomes smaller with increasing speed of moving individuals and almost disappears when the speed is high enough. © 2010 American Institute of Physics. [doi:10.1063/1.3445630]

The epidemic has always been a threat to the human health. The rule of the epidemic spreading as an important issue has been quite extensively studied for many years, but has not been mastered well. The epidemic spreads by the interaction between people, and complex networks, whose nodes represent individuals or organizations and link the interactions among them, can characterize this interpersonal interaction perfectly. In order to conveniently study the epidemic spreading, researchers usually adopt the homogeneous network structure and the homogeneous mixing hypotheses. Recently, researchers began to discuss the credibility of the homogeneous network structure hypothesis and consider the inhomogeneity of the network structure. However, the credibility of the homogeneous mixing hypothesis has not been well discussed until now. In this paper, we try to discuss this credibility and carry out numerical simulations on an epidemic spreading model. The results show that the epidemic spreading is inhomogeneous whether the individuals are stationary or moving. However, the inhomogeneity decreases with the increase of individuals’ speed, and almost disappears when the speed is high enough.

I. INTRODUCTION

In recent years, physicists and biologists have been attracted to the spreading of the epidemic. Undoubtedly, the successive large-scale outbreaks of SARS (Severe Acute Respiratory Syndrome) and H1N1 make them more enthusiastic about this study. Complex networks as a new branch of statistical physics provide a reliable model for the intensive study of the epidemic spreading. When studying the epidemic spreading in complex networks, researchers usually adopt the homogeneous network structure1–8 and homogeneous mixing hypotheses.9–11 As research progressed, researchers began to discuss the credibility of the homogeneous network structure hypothesis and take into account the inhomogeneity of the network structure.1–5,12 In this study, we try to check the credibility of the homogeneous mixing hypothesis, meaning that each infected individual has the same probability of contacting with any susceptible (healthy) individual,13 which has not been well discussed until now.

We will focus on the susceptible-infected-susceptible (SIS) model14 on complex networks. Here each node in the network represents an individual, and each link represents a connection along which the epidemic can spread. A susceptible individual can be infected by its infected neighbors with some probability, and the infected individual can become susceptible with other probability. As the infected individuals always infect their neighbors, we predict that the spreading of the epidemic may actually be inhomogeneous. That is, the probabilities of infected individuals connecting with susceptible ones differ significantly. To investigate the inhomogeneity, we perform large scale numerical simulations on static and dynamic networks. In these simulations, we study two spreading modes of the SIS model. In one mode, the probability that a susceptible individual is infected is unrelated to the number of its infected neighbors. In another mode, the probability increases with the number.

In this work, the inhomogeneity of the epidemic spreading is characterized by the characteristic infected cluster size (hereinafter referred to as “CICS”), where the cluster is the subnet whose nodes are connected15,13,15 (i.e., from any node, one can reach any other node along links in the subnet), the infected cluster only includes infected individuals, and the CICS is the typical size of the largest infected cluster, namely, the number of infected individuals of the largest infected cluster. The simulation results show that the infected individuals are always distributed inhomogeneously and prone to gather into large clusters, even if they walk randomly. More interestingly, the inhomogeneity of the epidemic spreading decreases with increasing speed of the individuals, and the epidemic nearly spreads homogeneous when the moving speed is high enough.

II. MODEL

In our model, N individuals walk randomly in a square of linear size L with periodic boundary conditions, and they are distributed randomly in the square initially. The x(t) and \(\theta(t) \) are the position and motion direction of the i\(^{th} \) individual at time t. Then, at time \(t + \Delta t \), they are updated according to

\[x(t + \Delta t) = x(t) + \Delta t \cdot \dot{x}(t) \]

\[\theta(t + \Delta t) = \theta(t) + \Delta t \cdot \dot{\theta}(t) \]

where \(\dot{x}(t) \) and \(\dot{\theta}(t) \) are the velocity and angular velocity, respectively.
The epidemic spreading of mode 2 in dynamic networks has the epidemic spreading of mode 2 in community networks. Individuals are connected to each other. The network is divided into many small clusters, then not many individuals will be infected. As a result, the epidemic will disappear soon.

In this work, we only discuss the cases when \(L \) is proper. When \(v = 0 \) (static networks), the percentage of the infected individuals is plotted as a function of \(\alpha \) with different \(L \) in Fig. 1. As shown in Fig. 1(a) [Fig. 1(b)], when \(L = 10 \) in mode 1 (mode 2), only when \(\alpha \) is above 0.6 (0.45), the epidemic can spread in the network. When \(L = 4 \) in mode 1 (mode 2), the epidemic persists as long as \(\alpha \) is above 0.15 (0.07); about one third (half) of the individuals are infected when \(\alpha \) equals to 0.5. Thus, we choose \(L = 7 \) to ensure that neither the epidemic will disappear, nor too many individuals will be infected, with a large range of \(\alpha \) value. Moreover, Fig. 6(b) in Sec. IV indicates that the moving of individuals cannot affect the percentage of the infected individuals in mode 2 and has little influence on the percentage in mode 1. So, we also choose \(L = 7 \) when \(v > 0 \) (dynamic networks).

In static networks, the individuals are distributed randomly and keep still over time, so each individual connects to another with the same probability. Thus the degree distribution \(P(k) \), as the probability that a node is linked to \(k \) other nodes, of static networks is Poissonian. In dynamic networks, the individuals are randomly distributed initially and walk randomly in the square. Therefore, the probability that an individual connects to another is a constant, which equals to the probability of the static case. Then the degree distribution \(P(k) \) of dynamic networks is also Poissonian. In Sec. III, we investigate the epidemic spreading in static networks \((v = 0)\). Section IV is devoted to the study of the epidemic spreading in dynamic networks \((v > 0)\).

III. Epidemic Spreading in Static Networks

In order to characterize the homogeneity of the epidemic spreading, we introduce the “homogeneous mode.” In this mode, the infected individuals, whose number is \(N_H \), are randomly scattered in a square of linear size \(L \) \((L = 7)\). Then their distribution is homogeneous. When the infection den-
sity $\rho_H=N_H/L^2$ is not quite large, the distribution of the infected cluster size χ in homogeneous mode is similar to the distribution of the cluster size of the site percolation. That is, there exists a χ_c. When $\chi<\chi_c$, the number of infected clusters n decays approximately as a power law in χ, while decaying much faster than a power law for $\chi>\chi_c$ (see Fig. 2). In reality, the infected clusters whose sizes are larger than χ_c barely exist, so the infected cluster with the critical infected cluster size χ_c is regarded as the largest infected cluster that can be observed, and χ_c is denoted as the CICS.

With the increase of ρ_H, a critical infection density ρ_c emerges, above which it is possible that all the individuals gather into one cluster. Our experiments show that ρ_c is about 1.4. As shown in Fig. 1, the maximum number of infected individuals is about 50, that is, the maximum infection density is about 1 ($50/7^2$). In such cases, N_H infected individuals always gather into more than one cluster. Then we can characterize the homogeneity of their distribution with the CICS. For the convenience of discussion, we denote the CICS of homogeneous mode as χ_H.

Correspondingly, the number and density of the infected individuals and the CICS in mode 1 (mode 2) are denoted by N_1, $\rho_1=N_1/L^2$, and χ_1 (N_2, $\rho_2=N_2/L^2$, χ_2), respectively. We will see later that when $\rho_1=\rho_2=\rho_H$, χ_1, χ_2, and χ_H differ significantly, that is, the epidemic spreads inhomogeneously in mode 1 and mode 2. At $t=0$, a given number of individuals are taken as the seeds of the infection (the proportion is 10%), while all the others start from the susceptible state. Also, all individuals are scattered randomly in the square, namely, the infected and susceptible individuals mix well. After an initial transient process, the systems stabilize in a steady state with a constant average infection density.
For each value of α, we can get the values of (ρ_1, χ_1). With changing α, χ_1 is plotted as a function of ρ_1 [the middle curve in Fig. 3(a)]. In the same way, χ_2 is plotted as a function of ρ_2 [the top curve in Fig. 3(a)]. In homogeneous mode, each ρ_H (or each $N_H=\rho_H L^2$) corresponds to one χ_H, then we can plot χ_H as a function of ρ_H [the bottom curve in Fig. 3(a)]. For the sake of getting α value corresponding to a given ρ_1 (ρ_2), we plot ρ_1 versus α, $i=1,2$ in Fig. 3(b).

The initial infection density is 10%, so the epidemic will be persistent with time, only when the infection density is larger than 0.1 after a long spreading. Therefore, we make the epidemic spread in the square for a long time and then discuss the situation when $\rho_H, i=0,1,2$ is up to 0.1 below. As is shown in Fig. 3(a), we draw the following conclusions by contrasting $\chi_i, i=0,1,2$ with $\rho_H=\rho_1=\rho_2$. When $\rho_H, i=0,1,2 \in [0.1, 0.7]$, χ_1 and χ_2 are larger than χ_H significantly, which means that the inhomogeneity exists. Concretely, when $\rho_H, i=0,1,2$ is near 0.2, χ_1 and χ_2 are up to 2–3 times χ_H, which is a significant difference. With increasing $\rho_H, i=0,1,2$, the multiple becomes less although the difference between χ_H and χ_1 (χ_2) has little change. Then we can say that the smaller the infection density $\rho_H, i=0,1,2$, the larger the inhomogeneity of the epidemic spreading.

In these cases, when $\chi_H=\chi_1=\chi_2$, ρ_H can reach two or more times χ_1 and χ_2 [see the line of Fig. 3(a)], that is, the number of infected individuals of homogeneous mode is two or more times that of mode 1 and mode 2. It illustrates that, from another point of view, the epidemic spreading in mode...

![Fig. 4](image-url)
1 and mode 2 is inhomogeneous. When $\rho_{H,1,2}$ is about 0.8, χ_H and χ_1 (χ_2) are similar, that is, infected individuals are distributed homogeneously in mode 1 and mode 2. However, the α values of mode 1 and mode 2 reach 0.5 and 0.8, respectively [see Fig. 3(b)]. They are so large that we do not discuss this case. In fact, the epidemic always spreads near the infected individuals, that is, the infected individuals only infect their susceptible neighbors, and thus it is a natural thing for epidemic to spread inhomogeneously when the infection density is not so large.

Figure 3(a) also shows that when $\rho_1=\rho_2$ and $\rho_{H,1,2} \in [0.1,0.7]$, $\chi_2 > \chi_1$. It means that the epidemic spreading in mode 2 is more inhomogeneous than in mode 1, namely, the infected individuals are much easier to gather into large clusters in mode 2 than in mode 1. In addition, when the values of α are the same, $\rho_2 > \rho_1$, as can be seen from Fig. 3(b). It also demonstrates the same conclusion. The reason is that the probability that a susceptible individual is infected increases with the number of its infected neighbors in mode 2, i.e., the susceptible individuals are more easily infected in mode 2 than in mode 1.

IV. EPIDEMIC SPREADING IN DYNAMIC NETWORKS

In this section, we discuss the inhomogeneity of the epidemic spreading while the individuals walk randomly in the square ($\nu > 0$), and let $\nu \in [0.2,10]$. As has been argued, L is set to 7, the initial proportions of the infected individuals in

![Graphs showing the evolution of the CICS in different modes.](image)
mode 1 and mode 2 are 10%. In Fig. 4, we plot the evolution of the infection density ρ_1 and ρ_2 in mode 1 and mode 2 in the case that $v \in [0.2, 10]$, respectively. As shown in Fig. 4, after the initial transient process, ρ_1 (ρ_2) fluctuates narrowly around a value, which means that the SIS model reaches the steady state. Figure 5 shows the evolution of $\chi(t)$ and $\chi_2(t)$ in the case that $v \in [0.2, 10]$ and $\rho_1 = \rho_2 = 0.4$.

For each value of v, we can plot χ_1 (χ_2) as a function of ρ_1 (ρ_2) by changing the α value. Curves of χ_i versus ρ_i, $i=1,2$ at $v=0.2$ and the curve of χ_i versus ρ_i [same with that in Fig. 3(a)] are given in Fig. 6(a). It shows that when ρ_1 (ρ_2) is set to 0.1, the epidemic spreading is homogeneous; when ρ_1 (ρ_2) is about 0.8, the infected individuals are distributed homogeneously. Clearly, this conclusion is consistent with that of static networks, which are drawn in Fig. 3(a). The correspondences between ρ_1 (ρ_2) and α for different $v \in [0, 10]$ are given in Fig. 6(b). Interestingly, the different v (including $v=0$) corresponds to the similar ρ_2 for a given α, as shown in Fig. 6(b). This means that the moving of individuals cannot affect the proportion of the infected individuals in mode 2. This conclusion can be obtained by letting the delay of the model $\tau=0$ in Ref. 18.

In order to further study the impact of speed v on the inhomogeneity of the epidemic spreading, we will investigate the variation of χ_1 (χ_2) with increasing of v for different ρ_1 (ρ_2). As the epidemic spreading emerges the inhomogeneity when ρ_1 (ρ_2) is set to 0.2, 0.4, and 0.6 in the following discussion. At first, we plot χ_1 as a function of ρ_1 by changing the value of α for each v. Then a set of functions of χ_1 and ρ_1 is obtained by changing the v value. Corresponding to $\rho_1=0.2$, a set of (v, χ_1) can be gotten. Then χ_1 is plotted as a function of v when $\rho_1=0.2$ in the

FIG. 6. (Color online) (a) When $v=0.2$, χ_i vs ρ_i, $i=1,2$ with the change of α: mode 1 (circles) and mode 2 (squares). Also, χ_i vs ρ_i (diamonds). (b) ρ_1 vs α, $i=1,2$ for $v \in [0, 10]$: mode 1 (the bottom curves) and mode 2 (the top curves). Results are averaged over 15 runs.

FIG. 7. (Color online) (a) In mode 1, the CICS χ_1 as a function of speed v ($v \in [0.2, 10]$) for the infection density $\rho_1=0.2, 0.4, 0.6$ (from bottom to top). Each bottom (top) dashed line corresponds to χ_1 (χ_1) for the same ρ_1 in Fig. 3(a). (b) Same as (a) but for mode 2. Results are averaged over 15 runs.
bottom subplot of Fig. 7(a). For the sake of comparison, we plot two straight lines in the same subplot, which respectively correspond to χ_H (the bottom dashed line) and χ_1 (the top one) for $\rho_1=0.2$ in Fig. 3(a). Similarly, the curves and straight lines corresponding to $\rho_1=0.4, 0.6$ are also plotted in Fig. 7(a) (the middle subplot for $\rho_1=0.4$, the top subplot for $\rho_1=0.6$). In the same way, we plot χ_2 as a function of v for $\rho_2=0.2, 0.4, 0.6$, respectively, and the corresponding straight lines in Fig. 7(b).

As can be seen in Fig. 7, when $v \in [0.2, 2]$, χ_1 (χ_2) is apparently larger than χ_H for each ρ_1 (ρ_2), which means that the epidemic spreading is inhomogeneous. Concretely, when $v=0.2$, χ_1 (χ_2) is close to that of the static network ($v=0$). With increasing of v, χ_1 (χ_2) decreases evidently and moves toward χ_H (homogeneous mode) progressively. This means that the inhomogeneity of the epidemic spreading becomes smaller with increasing speed v. Generally speaking, it is easier to maintain a structure in the static environment. Interestingly, our simulation results indicate that when the individuals walk randomly and the speed is not very high, their distribution is inhomogeneous. That is, the inhomogeneity of the epidemic spreading is kept in the dynamic environment. When $v>2$, χ_1 (χ_2) is always near χ_H, which means that the distribution of the infected individuals is approaching to that in homogeneous mode. This is because when v is large enough, any infected individual can easily jump out the area that is covered by its infected neighbors. Therefore, the large infected clusters cannot form.

As also shown in Fig. 7, the infection density affects the difference between the maximum and minimum of χ_1 (χ_2). When $\rho_1=0.2$ ($\rho_2=0.2$), the maximum of χ_1 (χ_2) is 1.54 (2.26) times the minimum, while when $\rho_1=0.6$ ($\rho_2=0.6$), the maximum of χ_1 (χ_2) is 1.16 (1.34) times the minimum. Then we can say that the smaller the infection density ρ_1 (ρ_2), the stronger v affects the inhomogeneity of the epidemic spreading. Besides, comparing Fig. 7(a) and Fig. 7(b) represents that when $\rho_1=\rho_2$ and $v \in [0.2, 2]$ are the same, χ_2 are always larger than χ_1. This means that the inhomogeneity is more obvious in mode 2 than in mode 1 at the same speed v, which is in accord with the case of static networks.

V. CONCLUSIONS

In this paper, the inhomogeneity of the epidemic spreading in two spreading modes of the SIS model is investigated. The simulations in the static and dynamic networks show that the infected individuals are usually prone to gather into large clusters as the infected individuals always infect their neighbors. For such a reason, the epidemic usually spreads inhomogeneously. Even in dynamic networks, the inhomogeneity can be kept well. And, the smaller the infection density, the more inhomogeneously the epidemic spreads. However, the inhomogeneity decreases with the increase of the individuals’ speed in the dynamic networks, and the epidemic spreading becomes almost homogeneous when the speed is large enough.

ACKNOWLEDGMENTS

This research is partially supported by the National Natural Science Foundation of China (Grant Nos. 60973152 and 60573172), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province (Grant No. 20082165).

1R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117 (2001).
2R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001).
3M. Boguñá and R. Pastor-Satorras, Phys. Rev. E 66, 047104 (2002).
4R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 66, 036104 (2002).
5A. L. Barabási, Z. Deszo, E. Ravasz, S. H. Yook, and Z. Oltvai, ALP Conf. Proc. 661, 1 (2003).
6R. Olinky and L. Stone, Phys. Rev. E 70, 030902 (2004).
7L. Buzna, K. Petersen, and D. Helbing, Physica A 363, 132 (2006).
8F. C. Santos, J. F. Rodrigues, and J. M. Pacheco, Phys. Rev. E 72, 056128 (2005).
9M. Barthélémy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 92, 178701 (2004).
10R. Pastor-Satorras and A. Vespignani, “Epidemics and immunization in scale-free networks,” in Handbook of Graph and Networks, edited by S. Bornholdt and H. G. Schuster (Wiley-VCH, Berlin, 2003).
11J. Zhou, Z. Liu, and B. Li, Phys. Lett. A 368, 458 (2007).
12L. Hufnagel, D. Brockmann, and T. Geisel, Proc. Natl. Acad. Sci. U.S.A. 101, 15124 (2004).
13S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Phys. Rep. 424, 175 (2006).
14N. T. J. Bailey, The Mathematical Theory of Infectious Diseases, 2nd ed. (Griffin, London, 1975); J. D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1993).
15L. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas, Adv. Phys. 56, 167 (2007).
16V. M. Eguílluz and K. Klemm, Phys. Rev. Lett. 89, 108701 (2002).
17Z. Liu and B. Hu, Europhys. Lett. 72, 315 (2005).
18M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Phys. Rev. E 74, 036110 (2006).
19R. M. Anderson and R. M. May, Infectious Diseases in Humans (Oxford University Press, New York, 1992).
20K. Christensen and N. R. Moloney, Complexity and Criticality (Imperial College Press, London, 2005).