Free vibration analysis of rectangular plates with central cutout

Kanak Kalita* and Salil Haldar

Abstract: A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.

Subjects: Acoustical Engineering; Engineering Mathematics; Mathematics & Statistics for Engineers; Mechanical Engineering

Keywords: finite element method; FSDT; rotary inertia; natural frequency; cutout

1. Introduction
Rectangular plates are widely used across various engineering disciplines and from a technical viewpoint it becomes necessary to know the natural frequencies of such structures. It is well known that natural frequency of the plate depends significantly on its thickness, aspect ratios, and the boundary conditions. Research on free vibration of rectangular plates has a long established history as seen from the excellent comprehensive review articles by Leissa (1978a, 1978b, 1980a, 1980b, 1987a, 1987b), Liew, Xiang, and Kitipornchai (1995), Yamada and Irie (1987) and bibliographical information by Mackerle (1999) among many others. However, more than often it is seen that this research

*Corresponding author: Kanak Kalita, Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science & Technology, Shibpur 711103, West Bengal, India
E-mails: kanakkalita02@gmail.com, kanak.kalita@nmims.edu

Reviewing editor: Duc Pham, University of Birmingham, UK

Additional information is available at the end of the article

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

ABOUT THE AUTHORS
Kanak Kalita is working as an assistant professor in the Department of Mechanical Engineering, MPSTME, SVKM’S Narsee Monjee Institute of Management Studies, Maharashtra, India. His research areas include composites, stress and vibration analysis of plates. He is also associated with Department of Aerospace Engineering & Applied Mechanics, Indian Institute of Engineering Science & Technology as a PhD Scholar.

Salil Haldar is working as a professor and former head in the Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science & Technology, West Bengal, India. His research areas include laminated composites, finite element method, and structural analysis.

PUBLIC INTEREST STATEMENT
Cutouts are often provided in plate structures to meet some functional or esthetic requirement. These cutouts alter the free vibration characteristics of the plates. The focus of the manuscript is on the computation of natural frequencies of such perforated plates with-and-without considering the rotary inertia effect. For the thick plates, it is necessary to consider the first-order shear deformation theory (FSDT) for the displacements with middle-surface shear rotations. Due to the inherent robustness of the formulation and high accuracy of the results, the outcomes from this work are important to engineers and designers.
Kalita & Haldar, *Cogent Engineering* (2016), 3: 1163781

http://dx.doi.org/10.1080/23311916.2016.1163781

is based on the classical Kirchhoff hypothesis, which neglects the effect of shear deformation and rotary inertia resulting in over-estimation of vibration frequencies. This problem is avoided in this article by following Mindlin’s hypothesis. Often these plates contain cutouts or holes which significantly alter the dynamic characteristic. Literature on plates with cutouts having various shapes – rectangular (Liew, Kitipornchai, Leung, & Lim, 2003; Srivastava, Datta, & Sheikh, 2004), circular (Malik & Singru, 2013), etc. can be found.

Although it is difficult to give an exact date for the invention of the finite element (FE) method, the method is born from the need to solve elasticity and structural analysis problems involving complex domain in civil engineering and aeronautics and received her real momentum in the 1960s and 1970s by the developments of Argyris and colleagues at the University of Stuttgart, Clough, and his colleagues at UC Berkeley and Zienkiewicz and colleagues at Swansea university (Zienkiewicz & Taylor, 2005). Since then, several FEs have been developed for the thin/thick plate analysis among which isoparametric elements are most widely used (Batoz, Bathe, & Ho, 1980; Clough & Tocher, 1965; Hrabok & Hrudey, 1984).

Yu (2009) used the Gorman method to calculate the dynamic repose of cantilever plates with attached point mass. Very recently bending and free vibration behavior of laminated soft core skew sandwich plate with stiff laminate face sheets was investigated using a recently developed C₀ FE model based on higher order zigzag theory (Chalak, Chakrabarti, Sheikh, & Iqbal, 2014). A new implementation of the ancient Chinese method called the Max-Min Approach and Homotopy Perturbation Method was presented by Bayat, Pakar, and Bayat (2011) to obtain natural frequency and corresponding displacement of tapered beams. Amabili and Carra (2012) experimentally studied the large-amplitude forced vibrations of a stainless-steel thin rectangular plate carrying different concentrated masses. Dozio (2011) used the trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates. Mantari, Oktem, and Guedes Soares (2012) performed bending and free vibration analysis of multilayered plates and shells using higher order shear deformation theory. A number of other numerical methods can be used for the plate vibration problem (Algazin, 2010).

No literature is found on investigation of variations in calculated natural frequencies of perforated rectangular plates by considering both rotary inertia and without rotary inertia. This work makes a novel attempt to address the issue. The paper is structured in the following way. Section 1 gives a brief idea on the previous research works and motivation for the present work. Section 2 contains the FE formulation (for nine-node isoparametric element) necessary to generate the FEM code. Validation and convergence study is provided in Section 3. Some numerical examples are provided in Section 4 for plate with central cutout followed by summary bulletin of the study under Section 5. The numerical results are compared with existing literature and some novel data are provided.

2. FE formulation

In the current formulation, FEM has been used for free vibration analysis of the plate. The mid plane is assumed to be the reference plane. This was done using the theory of Mindlin plate where it is assumed that the normal to the mid plane of the plate remains straight but not necessarily normal to the deformed mid surface. The first-order shear deformation theory (FSDT) assumes the displacement through the thickness of the plate to be linear. However there is no change in thickness of the plate after deformation. Further, the normal stress throughout the thickness is ignored; a hypothesis which is also called the plane stress state. Though the shear strain is not neglected in this theory, the assumption that it is constant over the entire thickness of the plate is not true. Across the thickness of the plate the shear stress is known to be parabolic. Hence a shear correction factor is applied. The accuracy of solutions of the FSDT is strongly dependent on predicting better estimates for the shear correction factor. In this case, the shear correction factor is assumed to be 5/6. This ensures that the correct amount of internal energy is predicted by the theory. In past, this formulation has been used by the author for analysis of shell (Majumdar, Manna, & Haldar, 2010) and composite plates (Pandit, 2010).
Haldar, & Mukhopadhyay, 2007). A more detailed analysis on vibration of plates can be found in Chakraverty (2008).

A nine-node isoparametric element is used in the current FE formulation. One of the main advantages of the element is that any form of plate can be well managed with an elegant mapping technique that can be defined as

\[x = \sum_{r=1}^{9} N_r x_r \text{ and } y = \sum_{r=1}^{9} N_r y_r \]

(1)

Thus by using this simple mapping technique the coordinates at any place within the element \((x, y)\) are expressed as the summation of the product of the Lagrange interpolation function \((N_r)\) and the coordinates of the \(r\)th nodal point \((x_r, y_r)\). Considering the bending rotations as independent field variables (since they are not derivatives of \(w\)), the effect of shear deformation may be incorporated as

\[\begin{Bmatrix} \phi_x \\ \phi_y \end{Bmatrix} = \begin{Bmatrix} \theta_x - \frac{\partial w}{\partial x} \\ \theta_y - \frac{\partial w}{\partial y} \end{Bmatrix} \]

Since this is an isoparametric formulation the same interpolation functions used for element geometry have been used to describe the displacement field at any point within the element in terms of nodal variables as

\[w = \sum_{r=1}^{9} N_r w_r, \theta_x = \sum_{r=1}^{9} N_r \theta_{xr} \text{ and } \theta_y = \sum_{r=1}^{9} N_r \theta_{yr} \]

(2)

The stresses and strains of any continuous elastic material are connected by a linear relationship that is mathematically similar to Hooke’s law and may be expressed as

\[\{\sigma\} = |D| \{\epsilon\} \]

(3)

where

\[\{\sigma\} = \begin{bmatrix} M_x & M_y & M_{xy} & Q_x & Q_y \end{bmatrix} \]

(4)

\[\{\epsilon\} = \begin{bmatrix} -\partial \theta_x / \partial x \\ -\partial \theta_y / \partial y \\ -\partial \theta_x / \partial y - \partial \theta_y / \partial x \\ \partial w / \partial x - \theta_x \\ \partial w / \partial y - \theta_y \end{bmatrix} \]

(5)

Using Equations (2) and (5),

\[-\frac{\partial \theta_x}{\partial x} = -\left(\frac{\partial N_r}{\partial x} \right) \theta_{xr} - \frac{\partial \theta_y}{\partial y} = -\left(\frac{\partial N_r}{\partial y} \right) \theta_{yr} \]

\[\frac{\partial w}{\partial x} - \theta_x = -\left(\frac{\partial N_r}{\partial x} \right) w_r - \left(N_r \right) \theta_{xr} \]

\[\frac{\partial w}{\partial y} - \theta_y = -\left(\frac{\partial N_r}{\partial y} \right) w_r - \left(N_r \right) \theta_{yr} \]
From Equations (2) and (5), the strain vector may be expressed as

\[
[D] = \begin{bmatrix}
D_{11} & D_{12} & 0 & 0 & 0 \\
D_{21} & D_{22} & 0 & 0 & 0 \\
0 & 0 & D_{33} & 0 & 0 \\
0 & 0 & 0 & D_{44} & D_{45} \\
0 & 0 & 0 & D_{54} & D_{55}
\end{bmatrix}
\]

(6)

where

\[
D_{11} = D_{22} = \frac{E}{(1 - \nu^2)}; D_{12} = D_{21} = \nu D_{11}; D_{33} = \frac{E}{2(1 + \nu)}; D_{44} = D_{55} = \frac{Eh^3}{12(1 - \nu^2)}; D_{45} = D_{54} = \nu D_{44}
\]

From Equations (2) and (5), the strain vector may be expressed as

\[
\{\epsilon\} = \sum_{r=1}^{9} [B]_r \{\delta_r\}_e
\]

(7)

where \([B]\) is the strain displacement matrix containing interpolation functions and their derivatives.

Using the virtual work method the stiffness may be expressed as

\[
[K] = t \int_{-1}^{1} \int_{-1}^{1} [B]^T[D][B]|J|d\xi d\eta
\]

(8)

where \(|J|\) is the determinant of the Jacobian matrix.

Similarly the consistent mass matrix may be expressed as

\[
[M] = \rho h \int_{-1}^{1} \int_{-1}^{1} \left([N_w]^T[N_w] + \frac{h^2}{12} [N_{wx}]^T[N_{wx}] + \frac{h^2}{12} [N_{wy}]^T[N_{wy}] \right) |J|d\xi d\eta
\]

(9)

The global stiffness matrix \([K_0]\) and global mass matrix \([M_0]\) are calculated by assembling individual stiffness matrix and individual mass matrix of all the elements. Using equation of motion,

\[
[K_0] = \omega^2 [M_0]
\]

(10)

The boundary conditions used are:

Simply supported condition (denoted by S):

\[
w = \theta_x = 0, \text{ at boundary line parallel to } x\text{-axis.}
\]

\[
w = \theta_y = 0, \text{ at boundary line parallel to } y\text{-axis.}
\]

Clamped condition (denoted by C):

\[
w = \theta_x = \theta_y = 0
\]

Free boundary condition (denoted by F):

\[
w \neq 0, \theta_x \neq 0, \theta_y \neq 0
\]

3. Convergence and validation study

Example 1 CSCS rectangular plates with a centrally located cutout
Two opposite edges of the rectangular plate are clamped, while the other two edges are simply supported. The physical dimensions of the rectangular plate (Figure 1) are similar to the experimental results quoted by Aksu and Ali (1976). The aspect ratio (a/b) of the plate is $9/8$, Poisson’s ratio 0.3, and thickness ratio (h/a) 0.01. The accuracy of the solution is validated by comparing it with the experimental results of Aksu and Ali (1976), the FE solution of Lam, Hung, and Chow (1989), and solutions by Liew, Xiang, and Kitipornchai (1993), they had used Ritz procedure to obtain the results. Excellent convergence in results of rectangular plate with existing literature is seen at 18*18 mesh. Two different mass lumping schemes are introduced in this paper. In the first lumping scheme, the effect of in-plane and transverse movements of mass has been considered. In the second mass lumping scheme, the effect of rotary inertia as well as transverse and in-plane movements of mass has been considered. In this paper, they are called as LSWORI (mass lumping scheme without rotary inertia) and LSWRI (mass lumping scheme with rotary inertia). The difference in natural frequencies with- and without- rotary inertia (for 18*18 mesh) is calculated and shown as percent variation. For example, in Table 1 LSWRI (10*10) means present solution with 10×10 mesh divisions considering rotary inertia and LSWORI (10*10) present solution with 10×10 mesh divisions without rotary inertia. The data within the brackets such as (10*10), (18*18), etc. indicate the different mesh sizes.

Example 2 Square plates with square cutouts

![Figure 1. CSCS rectangular plate with central cutout.](image)

Cutout size	Source	Mode	1	2	3	4
$\frac{a}{3} \times \frac{b}{3}$	LSWRI(9*9)	34.1099	54.2274	64.0188	95.4592	
	LSWRI(12*12)	34.1024	54.1605	63.9469	95.4196	
	LSWRI(15*15)	32.5430	58.1617	65.2617	96.8441	
	LSWRI(18*18)	32.5421	58.1577	65.2573	96.8386	
	LSWORI(9*9)	34.1161	54.2390	64.0333	95.4941	
	LSWORI(12*12)	34.1085	54.1720	63.9614	95.4545	
	LSWORI(15*15)	32.5474	58.1716	65.2744	96.8726	
	LSWORI(18*18)	32.5465	58.1676	65.2700	96.8670	
	% Variation	0.0135	0.0170	0.0195	0.0294	
Aksu and Ali (1976)	33.2200	53.0100	61.9100	91.8700		
Lam et al. (1989)	34.0400	54.5700	65.0500	95.3800		
Experimental (Aksu & Ali, 1976)	33.8300	53.9900	62.4900	95.0300		
Liew et al. (1993)	32.4250	53.4260	62.3530	94.8390		
Figure 2. Rectangular plate with central cutout.

Table 2. Non-dimensional frequency parameters $\lambda = \omega a^2 \sqrt{h/D}$ of SSSS square plate with central square cutout

h/a	Source	Mode	Cutout size ($m \times n$)	0.2$a \times 0.2$a	0.4$a \times 0.4$a	0.6$a \times 0.6$a	0.8$a \times 0.8$a
0.001	LSWRI	1	19.127	20.752	28.372	57.392	
			(19.200)	(20.807)	(28.453)	(57.512)	
			(20.080))	(21.000)	(29.850)	(58.070)	
		2	47.670	41.051	42.628	69.634	
		3	47.670	41.051	42.628	69.634	
		4	76.427	71.408	68.833	87.305	
	LSWORI	1	19.127	20.752	28.372	57.392	
		2	47.670	41.051	42.628	69.634	
		3	47.670	41.051	42.628	69.634	
		4	76.427	71.408	68.833	87.305	
0.1	LSWRI	1	18.401	19.816	26.297	45.825	
			(18.679)	(20.246)	(27.379)	(51.465)	
			(19.070)	(21.030)	(27.540)	(51.550)	
		2	42.754	35.884	36.697	51.911	
		3	42.754	35.884	36.697	51.912	
		4	67.555	63.265	53.928	59.669	
	LSWORI	1	18.569	20.115	27.126	51.129	
		2	43.319	36.474	37.186	57.918	
		3	43.319	36.474	37.186	57.918	
		4	69.030	64.643	55.734	66.587	
0.2	LSWRI	1	16.942	18.106	22.928	31.436	
			(17.452)	(19.163)	(25.688)	(44.069)	
			(17.550)	(19.270)	(26.060)	(44.100)	
		2	35.194	29.538	29.506	33.027	
		3	35.194	29.538	29.506	33.027	
		4	45.630	46.570	39.418	34.772	
	LSWORI	1	17.431	19.013	25.371	43.647	
		2	36.221	30.938	32.592	46.000	
		3	36.221	30.938	32.592	46.000	
		4	45.630	46.570	43.552	48.653	

Notes: Data in () indicate fundamental frequencies published in Reddy (1982) and in (()) indicate fundamental frequencies published in Hota and Padhi (2007).
The problem considers fundamental frequency of a square plate (i.e. $b/a = 1$) of isotropic material $\nu = 0.3$ having a central square cutout (i.e. $m = n$) of various sizes for different thickness ratios. Figure 2 is a schematic of the problem. The purpose is to verify the capability of the model to handle problems in the range of thick to thin plates. The first four modes are extracted for each case. The results along with the fundamental frequencies published in Reddy (1982) and Hota and Padhi (2007) are presented in Table 2 and it shows good agreement with the published results.

Example 3 Square plates with rectangular cutouts

A SSSS isotropic square plate having Poisson's ratio $\nu = 0.3$ with rectangular cutout of different sizes has been analyzed. Table 3 shows the non-dimensional fundamental frequency of the plate having different thickness ratios. The obtained results show a good agreement with the results published by Lee, Lim, and Chow (1990). The problem is solved for various thickness range, ranging from thin to thick plate.

h/a	Source	Mode	Cutout size (m × n)	0.4a × 0.2a	0.8a × 0.4a	0.6a × 0.2a	0.6a × 0.4a
0.01	LSWRI	1	19.036	23.501	18.964	22.572	
		2	40.993	28.024	32.134	33.775	
		3	46.597	55.464	47.845	46.253	
		4	73.718	64.747	68.616	69.294	
	LSWORI	1	19.038	23.506	18.966	22.577	
		2	40.998	28.029	32.138	33.782	
		3	46.606	55.487	47.857	46.268	
		4	73.740	64.768	68.635	69.316	
	Ref (Lee et al., 1990)	1	19.010	23.580	18.980	–	
		2	41.430	28.260	62.530	–	
		3	46.580	55.640	47.810	–	
		4	74.100	65.180	69.170	–	
0.1	LSWRI	1	18.281	21.899	18.109	21.358	
		2	35.357	24.495	27.439	29.378	
		3	42.186	49.718	43.710	41.275	
		4	65.045	55.716	59.407	60.687	
	LSWORI	1	18.480	22.313	18.326	21.761	
		2	35.753	24.909	27.737	29.873	
		3	42.854	51.420	44.605	42.393	
		4	66.379	57.097	60.530	62.136	
0.2	LSWRI	1	16.800	19.305	16.535	19.208	
		2	28.535	20.488	22.353	24.206	
		3	35.176	40.523	36.783	34.065	
		4	45.973	44.200	46.699	46.567	
	LSWORI	1	17.397	20.503	17.189	20.411	
		2	29.406	21.651	23.114	25.507	
		3	36.523	44.295	38.680	36.812	
		4	45.973	46.853	46.699	47.468	
Table 4. Non-dimensional frequency parameters $\lambda = \omega a^2 \sqrt{h/D}$ of SSSS rectangular plate with central cutout

b/a	h/a	Source	1	2	3	4	5	6
Cutout size $(\frac{a}{L} \times \frac{a}{b})$								
1	0.01	LSWRI(15*15)	19.098	47.487	47.488	76.225	95.513	103.162
		LSWORI(15*15)	19.100	47.496	47.496	76.250	95.551	103.220
		% variation	0.010	0.018	0.018	0.032	0.039	0.056
		Mode Shapes	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)	![Image](image5)	
	0.1	LSWRI(15*15)	18.402	42.742	42.741	67.510	82.323	88.856
		LSWORI(15*15)	18.571	43.306	43.306	68.986	84.277	92.132
		% variation	0.908	1.303	1.305	2.139	2.319	3.556
		Mode Shapes	![Image](image6)	![Image](image7)	![Image](image8)	![Image](image9)	![Image](image10)	
2	0.01	LSWRI(15*15)	11.427	18.941	27.632	33.664	44.926	49.538
		LSWORI(15*15)	11.428	18.942	27.635	33.669	44.934	49.550
		% variation	0.009	0.008	0.014	0.016	0.019	0.025
		Mode Shapes	![Image](image11)	![Image](image12)	![Image](image13)	![Image](image14)	![Image](image15)	
	0.1	LSWRI(15*15)	11.082	18.012	24.209	31.179	41.152	45.410
		LSWORI(15*15)	11.176	18.143	24.517	31.606	41.772	46.342
		% variation	0.834	0.719	1.257	1.352	1.484	2.011
		Mode Shapes	![Image](image16)	![Image](image17)	![Image](image18)	![Image](image19)	![Image](image20)	
Cutout size $(\frac{a}{L} \times \frac{a}{b})$								
1	0.01	LSWRI(15*15)	19.718	42.674	42.674	72.658	88.398	120.638
		LSWORI(15*15)	19.720	42.681	42.681	72.680	88.426	120.699
		% variation	0.013	0.017	0.017	0.030	0.031	0.050
		Mode Shapes	![Image](image21)	![Image](image22)	![Image](image23)	![Image](image24)	![Image](image25)	
	0.1	LSWRI(15*15)	18.933	37.681	37.681	64.604	73.120	99.084
		LSWORI(15*15)	19.170	38.218	38.219	65.968	74.493	101.987
		% variation	1.237	1.406	1.406	2.068	1.842	2.847
		Mode Shapes	![Image](image26)	![Image](image27)	![Image](image28)	![Image](image29)	![Image](image30)	
2	0.01	LSWRI(15*15)	11.496	19.494	32.209	36.989	47.922	48.023
		LSWORI(15*15)	11.497	19.496	32.214	36.994	47.932	48.033
		% variation	0.006	0.008	0.013	0.013	0.020	0.020
		Mode Shapes	![Image](image31)	![Image](image32)	![Image](image33)	![Image](image34)	![Image](image35)	
	0.1	LSWRI(15*15)	11.176	18.712	30.424	32.622	43.806	44.220
		LSWORI(15*15)	11.244	18.840	30.825	32.961	44.504	44.904
		% variation	0.605	0.679	1.303	1.030	1.567	1.523
Table 5. Non-dimensional frequency parameters $\lambda = \omega a^2 \sqrt{\rho h/D}$ of CCCC rectangular plate with central cutout

b/a	h/a	Source	Modes							
			1	2	3	4	5	6		
			0.01	LSWRI(15×15)	36.612	69.424	69.424	103.715	126.563	140.943
				LSWOR(15×15)	36.617	69.438	69.438	103.752	126.617	141.015
				% variation	0.014	0.020	0.020	0.036	0.043	0.065
				Mode shapes						
			0.1	LSWRI(15×15)	33.164	57.583	57.584	83.949	98.699	108.815
				LSWOR(15×15)	33.505	58.258	58.258	85.592	100.670	112.466
				% variation	1.019	1.157	1.157	1.920	1.958	3.246
			0.1	LSWRI(15×15)	24.828	31.437	45.704	53.760	61.532	68.849
				LSWOR(15×15)	24.830	31.440	45.712	53.768	61.546	68.865
				% variation	0.009	0.009	0.018	0.015	0.023	0.023
				Mode shapes						
			0.1	LSWRI(15×15)	23.093	28.614	40.848	44.566	53.409	58.666
				LSWOR(15×15)	23.254	28.808	41.407	45.042	54.265	59.501
				% variation	0.694	0.673	1.349	1.056	1.576	1.404

Cutout size ($\frac{1}{4} \times \frac{1}{4}$)

b/a	h/a	Source	Modes							
			1	2	3	4	5	6		
			0.01	LSWRI(15×15)	42.900	64.218	64.219	99.137	113.253	153.247
				LSWOR(15×15)	42.909	64.233	64.233	99.172	113.291	153.330
				% variation	0.019	0.022	0.022	0.035	0.033	0.054
				Mode shapes						
			0.1	LSWRI(15×15)	38.441	53.350	53.349	80.678	85.836	114.779
				LSWOR(15×15)	38.994	54.143	54.142	82.240	87.314	117.697
				% variation	1.417	1.465	1.465	1.900	1.693	2.479
			0.1	LSWRI(15×15)	28.626	31.744	46.198	49.912	64.666	66.359
				LSWOR(15×15)	28.629	31.747	46.207	49.923	64.681	66.379
				% variation	0.011	0.010	0.020	0.021	0.023	0.030
				Mode Shapes						
			0.1	LSWRI(15×15)	26.470	28.672	39.825	43.527	55.121	57.161
				LSWOR(15×15)	26.696	28.890	40.411	44.194	55.942	58.367
				% variation	0.847	0.755	1.450	1.510	1.467	2.067
4. Results and discussion

4.1. Uniform thickness rectangular plates with central cutout

Isotropic rectangular plates with central cutout (Figure 2) of different sizes are analyzed by considering the two different mass lumping schemes. The analysis is carried out for two different thickness ratios ($h/a = 0.01$ and 0.1) and two aspect ratios ($b/a = 1$ and 2). Poisson’s ratio is taken as 0.3. Since this study attempts to study the frequency variations in isotropic plate with respect to boundary conditions, aspect ratio, and thickness ratio, the elastic moduli is so adjusted that it depends on thickness and the resulting frequency is obtained in non-dimensional form. The frequency parameters for SSSS and CCCC plate investigated with and without rotary inertia are presented here in non-dimensional form in Tables 4 and 5. It is observed that with increase in cutout size the frequency parameters increase, due to reduction in mass of the plate. For the sake of brevity modes shapes are shown for simply supported and clamped plates for thickness $h/a = 0.01$ only. It is interesting to note that for square plates with square cutouts the modes shapes at $h/a = 0.01$ are similar for both simply supported and clamped plates.

The aspect ratios, thickness ratios, and boundary conditions have significant influence on the modes of vibration of rectangular plates. It is seen that as the thickness of the plate increases the frequency parameter decreases clearly showing the effect of rotary inertia and shear deformation on free vibration of plates. If rotary inertia are omitted there is an overestimation of natural frequencies. Also the obtained results clearly show that frequency parameters increase if more constraints are included. For example, SSSS have lower frequency than CCCC due to clamping in all four sides in the later. This means that as the constraints on the edges increases the flexural rigidity of the plate increases and hence there is an increase in the frequency. It is observed that the frequency decreases as the aspect ratio increases for all types of boundary conditions. It is also seen that as the thickness of the plates increases the percentage variation between LSWRI and LSWORI results increases.

5. Conclusions

In this paper, the dynamic characteristics of thick and thin, rectangular plates with central cutouts have been investigated by incorporating the FSDT in the FE method. The non-dimensional frequency parameters for plates of various aspect ratio, boundary conditions, and thickness ratios have been computed. The convergence of the eigen solutions was first checked and the results were then validated by comparing with known experimental and numerical data. It is evident that the results are within reasonable agreement of the published literature. A maximum deviation of 3% was seen in the worst case and in most cases the present results were within 1% of established results. This concludes beyond doubt the accuracy and rigor of the present formulation. Thus, the formulation presented here is theoretically sound, clear, and simple and does not require any complicated mathematical knowledge. The following conclusions are drawn based on the study:

- For thick plates, rotary inertia is very significant; for thin plates and shells, rotary inertia has no effect.
- With increase in thickness ratio the percentage variation in frequency parameters calculated with and without rotary inertia increases.
- The above-said effect decreases with increase in the aspect ratio for the same boundary condition.
- With increase in thickness ratio the frequency decreases.
- The increase in the cutout area causes fundamental frequency to increase.
- Natural frequency is lowest when an edge is kept free, followed by a simply supported edge and maximum for clamped edge i.e. natural frequencies increase if constraints at the boundary increase.
Due to the inherent features of the current analytical solution, the present findings will be useful as benchmark solutions for evaluating other analytical and numerical methods. Future works will show the results for plates with cutouts in plates with linearly and parabolically varying thickness.

Symbols

\[[B] \] strain displacement matrix
\[[D] \] rigidity matrix
\[[K] \] global stiffness matrix
\[[N] \] shape function
\[[N_r] \] null matrix
\[[M] \] consistent mass matrix
\[[J] \] Jacobian matrix
\[[N_r] \] interpolation function of the \(r \)th point
\[[K_0] \] overall stiffness matrix
\[[M_0] \] overall mass matrix
\[w \] transverse displacement
\[\theta_x, \theta_y \] total rotations in bending
\[E \] modulus of elasticity
\[G \] modulus of rigidity
\[\nu \] Poisson's ratio
\[h \] thickness of plate
\[a, b \] plate dimensions
\[D \] flexural rigidity
\[\omega \] natural frequency
\[\phi_x, \phi_y \] average shear rotation
\[\theta_x, \theta_y \] total rotation in bending
\[\{\sigma\} \] stress vector
\[\{\epsilon\} \] strain vector
\[M_x, M_y \] bending moments in x and y direction
\[M_{xy} \] twisting moment
\[Q_x, Q_y \] transverse shear forces
\[\xi, \eta \] natural coordinates
\[\rho \] density

Funding
The authors received no direct funding for this research.

Author details
Kanak Kalita
E-mails: kanakkalita02@gmail.com, kanak.kalita@nmims.edu
ORCID ID: http://orcid.org/0000-0001-9289-9495

Salil Haldar
E-mail: salilhaldar@rediffmail.com

1 Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science & Technology, Shibpur 711103, West Bengal, India.

Citation information
Cite this article as: Free vibration analysis of rectangular plates with central cutout, Kanak Kalita & Salil Haldar, Cogent Engineering (2016), 3: 1163781.

References
Aksu, G., & Ali, R. (1976). Determination of dynamic characteristics of rectangular plates with cutouts using a finite difference formulation. Journal of Sound and Vibration, 44, 147-158.

Algazi, S. D. (2010). Numerical algorithms of classical mathematical physics. Moscow: Dialog-MIFI.
Amabili, M., & Carra, S. (2012). Experiments and simulations for large-amplitude vibrations of rectangular plates carrying concentrated masses. Journal of Sound and Vibration, 331, 155–166. http://dx.doi.org/10.1016/j.jsv.2011.08.008

Batra, R. C., Bathe, K.-J., & Ho, L.-W. (1980). A study of threenode triangular plate bending elements. International Journal for Numerical Methods in Engineering, 15, 1771–1812. http://dx.doi.org/10.1002/issn.1097-0207

Bayat, M., Pakar, I., & Bayat, M. (2011). Analytical study on the vibration frequencies of tapered beams. Latin American Journal of Solids and Structures, 8, 149–162.

Chakraverty, S. (2008). Vibration of plates. Boca Raton, FL: CRC Press. http://dx.doi.org/10.1201/9781420053968

Chalik, H. D., Chakraborti, A., Sheikh, A. H., & Iqbal, M. A. (2014). C, FE model based on HOZT for the analysis of laminated soft core sandwich plates: Bending and vibration. Applied Mathematical Modelling, 38, 1211–1223. http://dx.doi.org/10.1016/j.apm.2013.08.005

Clough, R. W., & Tocher, J. L. (1965). Finite element stiffness matrices for analysis of plates in bending. Proceedings of Conference on Matrix Methods in Structural Analysis, 1, 515–545.

Dozier, L. (2011). On the use of the trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates. Thin-Walled Structures, 49, 129–144. http://dx.doi.org/10.1016/j.tws.2010.08.014

Hota, S. S., & Padhi, P. (2007). Vibration of plates with arbitrary shapes of cutouts. Journal of Sound and Vibration, 302, 1030–1036.

Hrabok, M. M., & Hruday, T. M. (1984). A review and catalogue of plate bending finite elements. Computers & Structures, 19, 479–495.

Lam, K. Y., Hung, K. C., & Chow, S. T. (1989). Vibration analysis of plates with cutouts by the modified Rayleigh–Ritz method. Applied Acoustics, 28, 49–60. http://dx.doi.org/10.1016/0003-682X(89)90030-3

Lee, H. L., Lim, S. P., & Chow, S. T. (1990). Prediction of natural frequencies of rectangular plates with rectangular cutouts. Computers and Structures, 36, 861–869. http://dx.doi.org/10.1016/0045-7949(90)90157-W

Leissa, A. W. (1978a). Recent research in plate vibrations, 1973–1976: Classical theory. Shock and Vibration Digest, 10, 9–19. http://dx.doi.org/10.1177/058310248701900304

Leissa, A. W. (1978b). Recent research in plate vibrations, 1976–Complicating effects. The Shock and Vibration Digest, 13, 11–22.

Leissa, A. W. (1980). Recent research in plate vibrations, 1975–1976: Classical theory. Shock and Vibration Digest, 10, 21–35. http://dx.doi.org/10.1177/05831024801001204

Leissa, A. W. (1980a). Plate vibration research, 1976–1980: Classical theory. Shock and Vibration Digest, 13, 11–22.

Leissa, A. W. (1980b). Plate vibration research, 1976–1980: Complicating effects. Shock and Vibration Digest, 13, 19–36.

Leissa, A. W. (1987a). Literature review: Survey and analysis of the Shock and Vibration literature: Recent studies in plate vibrations: 1981–Part II. Classical theory. The Shock and Vibration Digest, 19, 11–18. http://dx.doi.org/10.1177/058310248701900204

Leissa, A. W. (1987b). Literature review: Survey and analysis of the Shock and Vibration literature: Recent studies in plate vibrations: 1981–85 Part II. Complicating effects. The Shock and Vibration Digest, 19, 10–24. http://dx.doi.org/10.1177/058310248701900304

Liew, K. M., Xiang, Y., & Kitipornchai, S. (1993). Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions. Computers & Structures, 49(1), 1–29.

Liew, K. M., Kitipornchai, S., Leung, A. Y. T., & Lim, C. W. (2003). Analysis of the free vibration of rectangular plates with central cut-outs using the discrete Ritz method. International Journal of Mechanical Sciences, 45, 941–959. http://dx.doi.org/10.1016/S0020-7403(03)00109-7

Mali, K. D., & Singru, P. M. (2013). Determination of the fundamental frequency of perforated rectangular plates: Concentrated negative mass approach for the perforation. Advances in Acoustics and Vibration, 2013, 1–6.

Mantari, J. L., Oktem, A. S., & Guedes Soares, C. (2012). Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory. Composites Part B: Engineering, 43, 3348–3360. http://dx.doi.org/10.1016/j.compositesb.2012.01.062

Moeini, A., Manno, M. C., & Haldar, S. (2010). Bending of skewed cylindrical shell panels. International Journal of Computer Applications, 1, 89–93.

Mali, K. D., & Singru, P. M. (2013). Determination of the fundamental frequency of perforated rectangular plates: Concentrated negative mass approach for the perforation. Advances in Acoustics and Vibration, 2013, 1–6.

Moeini, A., Manno, M. C., & Haldar, S. (2010). Bending of skewed cylindrical shell panels. International Journal of Computer Applications, 1, 89–93.

Mali, K. D., & Singru, P. M. (2013). Determination of the fundamental frequency of perforated rectangular plates: Concentrated negative mass approach for the perforation. Advances in Acoustics and Vibration, 2013, 1–6.

Mantari, J. L., Oktem, A. S., & Guedes Soares, C. (2012). Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory. Composites Part B: Engineering, 43, 3348–3360. http://dx.doi.org/10.1016/j.compositesb.2012.01.062

Pandit, M. K., Haldar, S., & Mukhopadhyay, M. (2007). Free vibration analysis of laminated composite rectangular plate using finite element method. Journal of Reinforced Plastics and Composites, 26, 69–80. http://dx.doi.org/10.1177/0731684407069955

Reddy, J. N. (1982). Large amplitude flexural vibration of layered composite plates with cutouts. Journal of Sound and Vibration, 83(1), 1–10. http://dx.doi.org/10.1016/0022-460X(82)80071-0

Srivastava, A. K., Datta, P. K., & Sheikh, A. H. (2004a). Transverse vibration of stiffened plates with cutouts subjected to in-plane uniform edge loading at the plate boundary. Shock and Vibration, 11, 9–19. http://dx.doi.org/10.1155/2004/891580

Yan, C. J., & Irie, T. (2007). Plate vibration research in Japan. Applied Mechanics Reviews, 60, 879–892. http://dx.doi.org/10.1115/1.3149546

Yu, S. D. (2009). Free and forced flexural vibration analysis of cantilever plates with attached point mass. Journal of Sound and Vibration, 321, 270–285. http://dx.doi.org/10.1016/j.jsv.2008.09.042

Zienkiewicz, O. C., & Taylor, R. L. (2005). The finite element method for solid and structural mechanics. Oxford: Butterworth-Heinemann.