Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions

WWW 2022

slides credit to

Xiaotie Deng
Peking University

Xinyan Hu
Peking University

Tao Lin
Harvard University

Weiqiang Zheng
Yale University
Internet Advertising Auctions

- Second Price Auction (SPA): highest bidder wins, pays the 2nd highest bid
- First Price Auction (FPA): highest bidder wins, pays its own bid

\[v^1 = 800 \]

\[v^2 = 600 \]
Strategic bidding in FPA

Online learning!

\[v^1 = \$800 \]
\[b^1 = \$800 \]
\[v^2 = \$600 \]
\[b^2 = \$600 \]
Main Questions:
How will bidders behave in repeated first price auctions if they use online-learning algorithms to learn to bid? (cf., single bidder learning)

Will they converge to a Nash equilibrium?

Our Results
A wide class of online learning algorithms (“mean-based”) converge to a Nash equilibrium in the first price auction (under some assumptions on bidders’ values).
Online Learning in Repeated FPA

Each bidder i
- has a **fixed value** v^i;
- runs an **online learning algorithm** (mean-based).

Bidders get feedback from the auction to update algorithms.

Infinite horizon:
Round $t \geq 1$

Bidder i submits a bid b_t^i
chosen by its algorithm.

Bidder who bids the highest (random tie-breaking) wins, pays its own bid.

Utility u_t^i of bidder i at round t:
- $v^i - b_t^i$, for the winner;
- 0, for a loser.

Nash equilibrium of one-shot auction

Suppose all values and bids are in a **discrete** space normalized to a bounded non-negative integer space $\{0, 1, \ldots, V\}$.
Online Learning in Repeated FPA

Each bidder i
- has a fixed value v^i;
- runs an online learning algorithm (mean-based).

Bidder i submits a bid b_t^i chosen by its algorithm.

Bidders get feedback from the auction to update algorithms.

Infinite horizon:
Round $t \geq 1$

FPA single item
- Bidder who bids the highest (random tie-breaking) wins, pays its own bid.
- Utility u_t^i of bidder i at round t:
 - $v^i - b_t^i$, for the winner;
 - 0, for a loser.

Nash equilibrium of one-shot auction

Suppose all values and bids are in a discrete space normalized to a bounded non-negative integer space $\{0, 1, \ldots, V\}$.

[Hon-Snor-Monderer-Sela 98], [Kolumbus-Nisan 22]…
Mean-Based Learning algorithm

[Braverman-Mao-Schneider-Weinberg 2018, Feng-Guruganesh-Liaw-Mehta 2021]

• Let $\alpha_t^i(b)$ be the average utility of bidder i if it bids b in the first t rounds:

$$\alpha_t^i(b) = \frac{1}{t} \sum_{s=1}^{t} u_s^i(b, b_s^{-i})$$

• A learning algorithm is (γ_t)-mean-based if

$$\alpha_{t-1}^i(b') - \alpha_{t-1}^i(b) > V\gamma_t \Rightarrow Prob(\text{ i bids } b \text{ in round } t) \leq \gamma_t$$

where $\gamma_t \to 0$

Examples:
• Greedy (Follow the Leader)
• No-regret mean-based learning algorithms
 • ϵ-Greedy
 • Multiplicative Weights Update (MWU)
• Follow the Perturbed Leader
Nash Equilibria of (One-Shot) FPA

• Let $v^1 = v^2 = \ldots = v^M > v^{M+1} = \ldots = v^{M'} > \ldots \geq v^N$.

 - highest-value bidders
 - second-highest-value bidders (if exist)

• Assume each bidder bids strictly smaller than its own value.

• Nash equilibria (omitting corner cases and other bidders):

M	highest-value bidders	second-highest-value bidders
≥ 3	$v^1 - 1$	any
2	$v^1 - 1$ or $v^1 - 2$	any
1	$v^{M+1} = v^2$	$v^{M+1} - 1 = v^2 - 1$
Main Results (Informal)

M	Time-average	Last-iterate
≥ 3	✓	✓
2	✓	✗
1	✗	✗

$M = \#$ bidders with the highest value v^1.

✓: Almost surely converge.

✗: May not converge.

• Time-average:
 • (traditional) the empirical distributions of bids approach a Nash equilibrium.
 • (ours) the fraction of rounds where bidders play a Nash equilibrium approaches 1.

• Last-iterate:
 • bidders’ mixed strategy profile approaches a Nash equilibrium.
Main Results (Formal)

• If \(M \geq 3 \), then with probability 1, **both of** the following happen:

 \[
 \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} I[b_s^i = v^1 - 1, \forall i \in M^1] = 1
 \]

 \[
 \forall i \in M^1, \lim_{t \to \infty} x_t^i = 1_{v^1-1}
 \]

• If \(M = 2 \), then with probability 1, **one of** the following happen:

 \[
 \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} I[b_s^i = v^1 - 1, \forall i \in M^1] = 1, \text{ and } \forall i \in M^1, \lim_{t \to \infty} x_t^i = 1_{v^1-1}
 \]

 \[
 \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^{t} I[b_s^i = v^1 - 2, \forall i \in M^1] = 1
 \]

• If \(M = 1 \), there exists a mean-based algorithm that does not converge to NE, either in last-iterate or in time-average.
$M = 1$: Non-Convergence

- Three bidders with $v^1 = 10, v^2 = v^3 = 7$
- Each player uses the **Follow the Leader** algorithm (0-mean based)
- They may generate the following bidding path \((b_t^1, b_t^2, b_t^3)_{t \geq 1}\)
 - \((7, 6, 1), (7, 1, 6), (7, 1, 1), (7, 6, 1), (7, 1, 6), (7, 1, 1), \ldots\)
- \((7, 1, 1)\) happens in 1/3-fraction of rounds but is not a Nash equilibrium
- Do not converge in empirical distribution or last-iterate

- Experiments also show such non-convergence for **no-regret** mean-based algorithms such as MWU
$M \geq 2$: Proof of Convergence

• Intuition:
 • First price auction (with fixed values and $M \geq 2$) can be solved by iterative elimination of dominated strategies. [Hon-Snir-Monderer-Sela 1998]

• Proof Sketch:
 • Example: 3 bidders with the same value v^1. NE: all bid $v^1 - 1$.
 • $b \in \{0, 1, \ldots, v^1 - 2, v^1 - 1\}$.
 • \mathcal{A}_t is a (γ_t)-mean-based algorithm if:
 \[a_t^i(b') - a_t^{i-1}(b) > V\gamma_t \implies \text{Prob(} i \text{ bids } b \text{ in round } t) \leq \gamma_t \]

• Challenge: randomness of algorithms.
 • A mean-based algorithm may pick a dominated strategy with a positive probability.

• Technique: time-partitioning and repeated use of Azuma’s inequality. [Feng-Guruganesh-Liaw-Mehta 2021]
Summary &
Open Questions

- Any mean-based learning algorithms converge to the Nash equilibrium in a first price auction with bidders having fixed values, if there are more than one highest-value bidders.
 - **Open question #1**: what’s the convergence rate?
- If there is only one highest-value bidder, not all mean-based learning algorithms converge.
 - **Open question #2**: better algorithms that always converge?
- **Open question #3**: the Bayesian setting of the first price auction.
 - [Feng-Guruganesh-Liaw-Mehta, 2021]: two uniform[0, 1] i.i.d. bidders + mean based algorithms with uniform exploration phase => converge to BNE.

M	Time-average	Last-iterate
≥ 3	✓	✓
2	✓	X
1	X	X

Thanks!