Abstract: The construction of carbon–carbon bonds by direct involvement of two unactivated carbon–hydrogen bonds, without any directing group, ensures a high atom economy of the entire process. Here, we describe a simple protocol for the Pd(II)/Cu(II)-promoted intermolecular cross-dehydrogenative coupling (CDC) of 5-arylimidazoles, benzimidazoles, benzoxazole and 4,5-diphenylimidazole at their C-2 position with functionalized styrenes. This specific CDC, known as the Fujiwara–Moritani reaction or oxidative Heck coupling, also allowed the C-4 alkenylation of the imidazole nucleus when both 2 and 5 positions were occupied.

Keywords: C-H activation; imidazoles; Fujiwara–Moritani reaction; dehydrogenative coupling; oxidative Heck coupling; styrenes; palladium catalysis; copper salts

1. Introduction

Transition metal-catalyzed carbon–carbon bond-forming reactions that occur by the breaking of carbon–hydrogen bonds are attracting increasing interest in modern synthetic organic chemistry since this approach does not require any pre-activation of the starting materials [1–11]. When compared with conventional cross-coupling methodologies that require the use of organic halides and/or preformed organometallic reagents, this strategy, known as cross dehydrogenative coupling (CDC), allows the obtention of a high degree of atom economy and structural complexity in the target molecule, while ensuring high chemoselectivity. In addition, unlike traditional cross-couplings, the possibility of avoiding the use of metals and halogens in stoichiometric quantities reduces the production of inorganic waste.

In this context, the palladium-catalyzed cross-coupling between (hetero)arenes and terminal alkenes, known as the Mizoroki–Heck alkenylation [12–14], represents one of the most classic CDC reactions for the functionalization of (hetero)arenes [2–4,6,11,15–17]. Although this reaction was first reported in 1967 [12], and thus historically precedes the development of the Mizoroki–Heck alkenylation [18,19], problems related to poor regioselectivity and the need to use oxidants have in the past limited its application in favor of both the aforementioned Mizoroki–Heck alkenylation and the traditional cross-coupling procedures, and also the most recent direct alkenylation of aromatic C-H bonds, also catalyzed by transition metals, involving alkenyl halides [20–26]. If problems associated with the use of oxidants in stoichiometric quantities can be overcome by the latest electrochemical approaches [27–30], the achievement of high regioselectivity is still often an issue to be solved. In this regard, however, it is important to note that when the reaction is conducted using a heteroarene as a partner, the presence of one or more heteroatoms leads to an innate distinction among the different C-H bonds, thus allowing, with appropriate optimization of the reaction conditions, the selective involvement of a specific Csp2-H bond.
Due to our continuous interest in the development of methods for the palladium-catalyzed regioselective C-H functionalization of azoles and in their application to the preparation of new organic materials [31–36], we recently decided to evaluate the Fujiwara–Moritani reaction as an atom economy way to achieve the preparation of styryl-substituted imidazoles. Our interest in this investigation was also given by the fact that while several procedures are reported for the dehydrogenative alkenylation of indoles, pyrroles, and oxazoles [4,11], to the best of our knowledge only two papers reported the synthesis of styryl-substituted imidazoles by dehydrogenative alkenylation, both using only unfunctionalized styrene as the coupling partner.

In a study mainly devoted to the dehydrogenative C-2 alkenylation of benzoxazole, in 2014, Ong and coworkers reported the synthesis of 1-methyl-2-styrylbenzimidazole starting from the corresponding 1-methylazoles and 2.5–5 equiv of styrene, in the presence of 10–20 mol% palladium(II) trifluoroacetate (Pd(TFA)₂) as the pre-catalyst, 15–30 mol% 1,10-phenantroline (1,10-Phen) as the ligand, 1.0–2.0 equiv of silver(I) trifluoroacetate (AgTFA) as the oxidant, in toluene at 130 °C for 16 h (Scheme 1) [37].

![Scheme 1. Cross-dehydrogenative C-2 alkenylation of 1-methylimidazole and 1-methylbenzimidazole with styrene, according to Ong and co-workers [37].](image)

In 2018, Joo and co-workers described a protocol for the regioselective C-5 alkenylation of 1-substituted imidazoles with styrene, according to Joo and co-workers [38]. The optimized conditions involved the coupling of 1-methylimidazole with 2.0 equiv of styrene in the presence of 10 mol% palladium(II) acetate (Pd(OAc)₂), 2.0 equiv potassium pivalate (KOPiv) in N,N-dimethylacetamide (DMA) at 120 °C for 24 h under an oxygen atmosphere. When 1,2-disubstituted imidazoles were used as the reaction partners, the authors found it better to perform the coupling using copper (II) acetate (Cu(OAc)₂) as the stoichiometric oxidant instead of oxygen, in dioxane at 100 °C for 15 h.

In this paper, we are pleased to summarize our efforts in finding an effective and simple protocol for the dehydrogenative alkenylation of imidazole derivatives, which allowed us to develop a simple procedure for the dehydrogenative alkenylation of 5-aryl-1-methylimidazoles and some related azoles with functionalized styrenes (Scheme 3). The optimized reaction conditions involve the use propanoic acid as the solvent at 120 °C, in the presence Pd(OAc)₂ as the pre-catalyst and Cu(OAc)₂ as the oxidant.
Cetamide (DMA) at 120 °C for 24 h under an oxygen atmosphere. When 1,2-disubstituted imidazole derivatives, which allowed us to develop a simple procedure for the dehydrogenative alkenylation of 5-aryl-imidazoles. Our interest in this investigation was also given by the fact that while several procedures are reported for the dehydrogenative alkenylation of indoles, reported procedures for the dehydrogenative alkenylation of azoles have been carried out according to Joo and co-workers [38].

Due to the fact that no protocols for the dehydrogenative alkenylation of imidazoles were reported, we started our trial performing the reaction between 1a and 2.0 equiv of 2a were stirred at 130 °C in toluene, an unsatisfactory 59% GLC conversion of 1a was formed in a 58:42 GLC ratio with the 2-alkylimidazole was observed. Moreover, the required alkenyl-substituted imidazole 3a was observed. These derivatives were isolated in 24 and 12% yields, respectively, and their structures confirmed by NMR analyses. The unexpected formation of compound 4 can be explained by admitting that the carbopalladation of styrene by the Pd-imidazole complex (resulting from the activation of the heteroaromatic C2-H bond, see later) occurred with incomplete regioselectivity [11].

An even worse result was observed when 1a and 2a were reacted using the Joo protocol [38], i.e., in the presence of 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv AgTFA in DMA at 120 °C for 24 h under an oxygen atmosphere. When 1a was reacted in the presence of 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv AgTFA (Scheme 4).

After stirring the reaction mixture for 16 h at 130 °C in toluene, an unsatisfactory 59% GLC conversion of 1a was observed. Moreover, the required alkenyl-substituted imidazole 3a was formed in a 58:42 GLC ratio with the 2-alkylimidazole 4. These derivatives were isolated in 24 and 12% yields, respectively, and their structures confirmed by NMR analyses. The unexpected formation of compound 4 can be explained by admitting that the carbopalladation of styrene by the Pd-imidazole complex (resulting from the activation of the heteroaromatic C2-H bond, see later) occurred with incomplete regioselectivity [11].

Our protocol for the cross-dehydrogenative Pd(II)/Cu(II)-mediated alkenylation of imidazoles.

2. Results and Discussion

2.1. Screening of the Reaction Conditions

At the onset of our study, we decided to test the efficiency of the Ong protocol by trying a dehydrogenative alkenylation of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole (1a) with styrene (2a), chosen as model reaction partners. Hence, 1a and 2.5 equiv of 2a were reacted using the Ong protocol [37], i.e., in the presence of 10 mol% Pd(OAc)2, 2.0 equiv potassium pivalate (KOPiv) in 1,4-dioxane, 100 °C, 15h.

Due to our continuous interest in the development of methods for the palladium-catalyzed regioselective C-H functionalization of azoles and in their application to the preparation of new organic materials [31–36], we recently decided to evaluate the Fujiwara–Moritani reaction as an atom economy way to achieve the preparation of styryl-imidazoles.
under an oxygen atmosphere. In fact, the GLC conversion of 1a after 24 h at 120 °C was less than 15% (result not shown).

These unsatisfactory results prompted us to search for alternative reaction conditions. Considering that classical Fujiwara–Moritani protocols require the use of simple carboxylic acid (such as acetic acid) as the reaction solvent [3,13], and that many of the reported procedures for the dehydrogenative alkenylation of azoles have been carried out in acidic solvents [4,11], we decided to start a screening of the reaction conditions using a carboxylic acid as the solvent and examining the influence of the nature of the solvent, the oxidant, and the palladium pre-catalyst on the reaction outcome.

Due to the fact that no protocols for the dehydrogenative alkenylation of imidazoles using acidic solvents were reported, we started our trial performing the reaction between imidazole 1a and styrene (2a) under reaction conditions very similar to those described by Miura and co-workers in 2010 for the regioselective C-5 dehydrogenative alkenylation of 2-substituted oxazoles and thiazoles [39]. Hence, 1a and 2.0 equiv of 2a were stirred at 120 °C in propionic acid (EtCOOH), in the presence of 5 mol% palladium(II) acetate (Pd(OAc)₂) and 3.0 equiv of silver(I) acetate (AgOAc) (entry 1, Table 1). After 24 h the expected C-2 alkenylated imidazole 3a was obtained in 33% GLC yield, along with a higher molecular weight side product, that was preliminarily identified by GLC-MS and UPLC-MS analyses to be the bis-alkenylated imidazole 5a.

Interestingly, under acidic conditions the formation of the 2-alkylimidazole 4 was not observed in the crude reaction mixture, proving that propionic acid as solvent cleanly increases the regioselectivity of the carbopalladation step of the mechanistic pathway (see later).

With the aim of evaluating the influence of the carboxylic acid, we then carried out the Ag(I)-promoted coupling using acetic acid and pivalic acid as the reaction solvent (entries 2 and 3, Table 1). However, both the acidic solvents revealed less effectiveness in promoting the alkenylation when compared with propionic acid, scoring 24 and 23% GLC yields, respectively. As recently reported [40], the efficiency of C-H activation reactions carried out using palladium catalysts with carboxylate ligands strictly depends on the pKa of the carboxylic acid used as the solvent. It is in fact necessary to find a balance between the generation of an active catalyst and the N-3 protonation of the imidazole nucleus with its consequent deactivation. In our case, the pKa of propionic acid (4.87) is intermediate between that of pivalic acid (5.05) and acetic acid (4.76), which means that acetic acid gave a higher percentage of unreactive imidazolium salt, while pivalic acid is not enough acid to generate an active catalyst.

Notably, while the use of silver(I) salts different from AgOAc gave GLC yields ranging from 32 to 38% (entries 4–6, Table 1), when the alkenylation was performed in the presence of 3.0 equiv of copper(II) acetate (Cu(OAc)₂), a relevant increase in the GLC yield of 3a was observed, and the C-2 alkenylated product was isolated in a satisfactory 56% yield (entry 7, Table 1). From the crude reaction mixture, we were also able to isolate the side-product 5a in a 13% yield.
Table 1. Screening of the reaction conditions for the palladium-catalyzed dehydrogenative alkenylation of 1-methyl-5-(4-methoxyphenyl)imidazole (1a) with styrene (2a).

| Entry | Oxidant | Solvent | 1a Conversion (GLC %) | Yield of 3a (%) 2 | 3a:5a Ratio (AP%) 3 |
|-------|---------|---------|-----------------------|-------------------|---------------------|
| 1     | AgOAc   | EtCOOH  | 90                    | 33                | 68:32               |
| 2     | AgOAc   | AcOH    | 69                    | 24                | 65:35               |
| 3     | AgOAc   | PrvOH   | 64                    | 23                | 60:40               |
| 4     | Ag2O3   | EtCOOH  | 93                    | 32                | 61:39               |
| 5     | AgSO    | EtCOOH  | 79                    | 38                | 70:30               |
| 6     | AgTFA   | EtCOOH  | 75                    | 35                | 66:35               |
| 7     | Cu(OAc)2| EtCOOH  | >95                   | 61(56) 4          | 76:24               |
| 8 5   | Cu(OAc)2| EtCOOH  | 81                    | 39                | 82:18               |
| 9 6   | Cu(OAc)2| EtCOOH  | <5 traces             | –                 |                     |
| 10 7  | Cu(OAc)2| EtCOOH  | <5 traces             | –                 |                     |
| 11    | CuO     | EtCOOH  | >95                   | 31                | 52:48               |
| 12    | CuCl2   | EtCOOH  | <5 traces             | –                 |                     |
| 13    | PhI(OAc)2| EtCOOH | <5 traces             | –                 |                     |
| 14    | NMO     | EtCOOH  | <5 traces             | –                 |                     |
| 15 8  | Cu(OAc)2| EtCOOH  | >95                   | 50(42) 4          | 74:26               |
| 16 9  | Cu(OAc)2| EtCOOH  | 94                    | 37                | 69:31               |
| 17    | Cu(OAc)2| EtCOOH/DMF | 91                  | 44                | 61:39               |
| 18    | Cu(OAc)2| EtCOOH/NMP | 94                  | 45                | 56:44               |

1 Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), Pd(OAc)2 (0.025 mmol), oxidant (1.5 mmol), solvent (5.0 mL) for 24 h at 120 °C (oil bath temperature) under an argon atmosphere, unless otherwise reported. 2 GLC yield vs. PPh3. In parentheses isolated yield. 3 AP% is the area percent of the products in the GLC chromatogram. AP% values are uncorrected for the differences in GLC response factors. 4 Compound 5a was also isolated in 13% yield. 5 This reaction was carried out using 0.5 mmol of 2a. 6 This reaction was performed at 80 °C (oil bath temperature). 7 This reaction was carried out under a dioxygen atmosphere. 8 This reaction was carried out using PdCl2 (0.025 mmol) as pre-catalyst. 9 This reaction was carried out using Pd(acac)2 (0.025 mmol) as pre-catalyst.

In an attempt to reduce the amount of undesired double alkenylated imidazole 5a, we lowered the amount of styrene to 1.0 equiv, but a parallel lowering of the 3a yield without a significant increase in the selectivity was observed (entry 8, Table 1).

Lowering the reaction temperature from 120 °C to 80 °C led to a complete recovery of the reactants (entry 9, Table 1), and a similar negative result was observed when the coupling was performed under a dioxygen atmosphere (entry 10, Table 1).

None of the other typical copper(II) salts tested gave results comparable with that obtained when Cu(OAc)2 was used. CuO gave 3a in 31% GLC yield (entry 11, Table 1), while no reaction was observed when CuCl2 was employed as the oxidant (entry 12, Table 1). The use of two typical organic oxidants, i.e., NMO and PhI(OAc)2 gave unsatisfactory results (entries 13 and 14, Table 1).

As regards the palladium pre-catalyst, replacing Pd(OAc)2 with PdCl2 gave 3a in a 50% GLC yield (entry 15, Table 1), while a lower 37% GLC yield was obtained when Pd(acac)2 was employed (entry 16, Table 1).

In order to reduce the amount of propionic acid, we tried also the alkenylation involving 1a and 2a using 1:1 (v/v) mixtures of propionic acid with, respectively, DMF or NMP (entries 17–18, Table 1), but the presence of an organic solvent depletes the formation of the required alkenylimidazole 3a.

2.2. Scope of the Pd-Catalyzed Dehydrogenative Alkenylation of Imidazoles and Related Azoles

Considering the results of the preliminary screening, the scope and limitations of this regioselective C-2 dehydrogenative alkenylation under the experimental conditions of entry 7, Table 1, were then evaluated by us. Hence, 5-aryl-1-methylimidazoles 1a–f and styrenes 2a–g (Figure 1) were reacted in the presence of 5 mol% Pd(OAc)2 and 3.0 equiv of Cu(OAc)2 in EtCOOH at 120 °C (Table 2).
Catalysts 2021, 11, x  6 of 18

Pd-catalyzed, Cu(II)-promoted synthesis of 2-alkenyl-5-aryl-1-methylimidazoles

In Table 1, we report the results of the dehydrogenative coupling of 5-arylimidazoles 1a–f with styrenes 2a–g using palladium catalysts with carboxylate ligands. As summarized in Table 2, all the 5-arylimidazoles 1a–f gave the required 2-alkenyl-5-aryl-1-methylimidazoles 3a–r by intermolecular dehydrogenative alkenylation of imidazoles 1a–f with styrenes 2a–g.

Table 2. Pd-catalyzed, Cu(II)-promoted synthesis of 2-alkenyl-5-aryl-1-methylimidazoles 3a–r by intermolecular dehydrogenative alkenylation of imidazoles 1a–f with styrenes 2a–g.

| Entry 1 | Product 3 | Ar | Ar 1 | Yield of 3 (%) 2,3 | 3:5 Ratio (AP%) 4 |
|---------|-----------|----|------|-------------------|---------------------|
| 1       | a         | 4-MeOC₆H₄ | C₆H₅ | 56                | 76:24              |
| 2       | b         | 4-MeOC₆H₄ | C₆H₅ | 41                | 77:23              |
| 3       | c         | 4-MeOC₆H₄ | C₆H₅ | 61                | 85:15              |
| 4       | d         | 4-MeOC₆H₄ | C₆H₅ | 49                | 79:21              |
| 5       | e         | 4-MeOC₆H₄ | C₆H₅ | 51                | 77:23              |
| 6       | f         | 4-MeOC₆H₄ | C₆H₅ | 44                | 82:18              |
| 7       | g         | 4-Cl₅C₆H₄ | C₆H₅ | 43                | 78:22              |
| 8       | h         | 4-Cl₅C₆H₄ | C₆H₅ | 41                | 75:25              |
| 9       | i         | 4-Cl₅C₆H₄ | C₆H₅ | 44                | 75:25              |
| 10      | j         | 4-Cl₅C₆H₄ | C₆H₅ | 50                | 79:21              |
| 11      | k         | 4-MeOC₆H₄ | C₆H₅ | 45                | 78:22              |
| 12      | l         | 4-MeOC₆H₄ | C₆H₅ | 28 5             | nd                  |
| 13      | m         | 4-MeOC₆H₄ | C₆H₅ | 46                | 93:7               |
| 14      | n         | 4-MeOC₆H₄ | C₆H₅ | 16 6,7           | nd                  |
| 15      | o         | 4-MeOC₆H₄ | C₆H₅ | 27 6,8           | nd                  |
| 16      | p         | 3-F₅-4-MeOC₆H₃ | 4-MeOC₆H₄ | 56                | 78:22              |
| 17      | q         | 4-MeOC₆H₄ | C₆H₅ | 30 9             | nd                  |
| 18      | r         | 3,4-MethylendioxyC₆H₄ | 4-MeOC₆H₄ | 52                | 76:24              |

1 Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), Pd(OAc)₂ (0.025 mmol), Cu(OAc)₂ (1.5 mmol), EtCOOH (5.0 mL) for 24 h at 120 °C (oil bath temperature) under an argon atmosphere, unless otherwise noted. 2 Isolated yield. 3 After 24 h the GLC conversion of 1 was >95% unless otherwise noted. 4 AP% is the area percent of the products in the GLC chromatogram. AP% values are uncorrected for the differences in GLC response factors. 5 The GLC conversion of 1e was 49%. 6 The coupling was carried out for 72 h. 7 The GLC conversion of 1f was 45%. 8 The GLC conversion of 1f was 56%. 9 The GLC conversion of 1g was 53%.

As summarized in Table 2, all the 5-arylimidazoles 1a–f gave the required 2-alkenyl substituted analogues in moderate to good yields. In details, 5-arylimidazoles 1a, 1d, and 1f, bearing electron-rich aryl rings at their 5-position gave slightly better results, giving the alkenylated products 3a–f, 3p and 3r in 41–61% isolated yield (entries 1–6, 16, and 18, Table 2). In contrast, 5-(4-trifluoromethylphenyl) imidazole 1b, 5-(4-chlorophenylimidazole 1c, and 5-(4-nitrophenylimidazole 1e gave lower yields and sometimes incomplete GLC conversions when reacted with styrenes 2a–d (entries 7–13, and 17, Table 2), confirming that the efficiency of this dehydrogenative coupling is related to the electronic nature of the C-5 aromatic substituent.

That electron-poor substituents negatively influence the coupling is evidenced also when styrenes 2f and 2g were employed as reaction partners, and it seems synergic with the effect exerted by electron-withdrawing groups at C-5 on the imidazole counterpart. Actually, while an acceptable 44% isolate yield was observed when imidazole 1a was reacted with 4-nitrostyrene 2g (entry 6, Table 2), a more significant reduction in the chemical
yield was recorded when the 4-chlorophenyl substituted imidazole 1c reacted with the electron-poor styrenes 2f and 2g (entries 14 and 15, Table 2).

Regarding the results summarized in Table 2, it is also important to note that the efficiency of the coupling strongly depends also on the relative stability of the substituted styrenes 2 in the acid medium. It is in fact well known that electron-rich styrenes, such as 4-methoxystyrene 2b, are highly susceptible to polymerization in an acidic environment, while electron-poor analogues such as 4-nitrostyrene 2g are almost inert under the same conditions [41]. For this reason, it is not possible to make a clear correlation between the nature of the coupling partners 1 and 2 and the observed isolated yields of compounds 3.

We were pleased to find that the reaction conditions summarized in Table 1, entry 7, are also well suited for the C-2 dehydrogenative alkenylation of 1-methyl-1H-benzimidazole (6) and 1H-benzimidazole (7). As summarized in Scheme 5, 1-methyl-2-styrylbenzimidazole 8 and 2-styrylbenzimidazole 9 were isolated in a satisfactory 87 and 64% yield, respectively. In contrast, the reaction involving benzoazole 10 with styrene gave the required 2-styrylbenzazole 11 in a lower isolated yield (30%) (Scheme 5), while no product was observed when benzoazole was submitted to the dehydrogenative alkenylation (result not shown).

A positive result was instead obtained in the C-2 alkenylation of 4,5-diphenyl-1-methyl-1H-imidazole (12) with styrene (2a). In fact, the expected 2-styryl-substituted derivative 13 was isolated in a satisfactory 55% yield (Scheme 5). However, when the coupling was carried out using the analogue NH-free imidazole 14 the expected 4,5-diphenyl-2-styrylimidazole 15 was recovered in 36% isolated yield (Scheme 5).

Considering also that the C4-H bond seems to be reactive when the other two positions on the imidazole ring are occupied due to the formation of side-products 5, we also tried to force the C-4 alkenylation by using 5-(4-methoxyphenyl)-1,2-dimethyl-1H-imidazole (16) as a typical 2,5-disubstituted imidazole. Fortunately, when the reaction was carried out using 2-methyl substituted imidazole 16 and 5.0 equiv of 2a, the expected C4-alkenylated imidazole 17 was recovered in a 50% isolated yield (Scheme 6).
Scheme 6. Pd-catalyzed, Cu(II)-promoted dehydrogenative alkenylation of 5-(4-methoxyphenyl)-1,2-dimethyl-1H-imidazole (16) with styrene (2a).

With the intention of verifying the regioselectivity of our new Pd/Cu-mediated dehydrogenative alkenylation protocol, we set up a model reaction involving 1-methylimidazole 1a and styrene (2a) the experimental conditions of entry 7, Table 1. Hence, 18 and 2.0 equiv of 2a were reacted in the presence of 5 mol% Pd(OAc)2 and 3.0 equiv of Cu(OAc)2 in EtCOOH (Method A, Scheme 7). To our delight, after stirring at 120 °C for 24 h, the GLC conversion of 18 was 83%, and we were able to isolate (E)-1-methyl-2-styryl-1H-imidazole (19) in 45% yield confirming the expected C-2 selectivity.

Scheme 7. Pd-catalyzed dehydrogenative alkenylation of 1-methyl-1H-imidazole (18) with styrene (2a) according to our new protocol (Method A), or to Ong procedure (Method B) [37].

In contrast, when the same coupling was carried out using the Ong protocol [37], i.e., reacting 16 and 2.5 equiv of 2a in a closed vessel for 16 h at 130 °C in toluene in the presence of 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv AgTFA, the GLC conversion of 16 was lower (70%), and the required imidazole 19 was observed in only 33% isolated yield (vs. a reported 67% yield [37]) (Method B, Scheme 7). It is worth mentioning that also in this case GLC-MS analysis of the crude reaction mixture evidences the presence of the side-product 22, a structural analogue to imidazole 4 already observed when the same reaction was performed with 1-methylbenzimidazole 1a (Scheme 4), in a 77:23 GLC ratio with 19.

As already noted for Pd/Cu-mediated direct arylation reactions of 1,3-azoles with aryl halides [44-46], it is thought that an initial N-3 protonation or complexation with copper enhances the acidity of the C2-H bond, allowing a fast and regioselective palladation to give the imidazole intermediate A. The subsequent regioselective carbopalladation yields the intermediate B, which decomposes through β-elimination to generate the desired product 3 and Pd(0). Finally, the reoxidation of Pd(0) to Pd(II) by Cu(II) closed the catalytic cycle.

Based on previous reports [2,11,13,42,43] and according to the results described here, a plausible reaction mechanism is summarized in Figure 2.
In contrast, when the same coupling was carried out using the Ong protocol [37], i.e., 1-methylbenzimidazole with 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv AgTFA, the GLC conversion was 70%, and the required imidazole was observed in only 33% isolated yield (vs. a reported 67% yield [37]) (Method A).

Figure 2. Suggested mechanistic pathway for the Pd/Cu-mediated dehydrogenative alkenylation of imidazoles.

3. Materials and Methods

Melting points were recorded on a hot-stage microscope (Reichert Thermovar). Pre-coated silica gel PET foils (Sigma-Aldrich, St. Louis, MO, USA) were used for TLC analyses. GLC analyses were performed on a Dani GC 1000 instrument equipped with a PTV injector and recorded with a Dani DDS 1000 data station. Three types of capillary columns were used: an Agilent J&W HP-5 ms column (30 m × 0.25 mm i.d. × 0.25 µm), an Agilent J&W DB-5 column (30 m × 0.25 mm i.d. × 1 µm) and an Alltech AT-35 FSOT column (30 m × 0.25 mm i.d. × 0.25 µm). EI-MS spectra were recorded at 70 eV by GLC-MS, performed on an Agilent 6890N gas-chromatograph interfaced with an Agilent 5973N mass detector. The ESI spectra were acquired on an Acquity QDa Water spectrometer (Temperature Probe: 600 °C; ESI capillary voltage 1.5 V; Cone voltage 15 V; mass range 200–1000) coupled with an Acquity UPLC Water (Phase A 95/5 H2O/ACN + 0.1% Formic Acid, Phase B 5/95 H2O/ACN + 0.1% Formic Acid; Column Acquity UPLC 2.1 × 100 mm, BEH C18, 1.7 µm; Flow 0.6 mL/min). Elementar analyses were acquired with an Elementar Vario Micro Cube in CHNS mode. 1H NMR spectra were recorded on a Varian Gemini 200 or on a Bruker 400 MHz spectrometer using TMS as an internal standard. The following notation was used in order to report NMR spectra: s = singlet, bs = broad singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, q = quadruplet. The 13C NMR spectra were recorded at 50 or 100 MHz, using Varian Gemini or Bruker instrument respectively, and the spectra were referred to as the signal of the solvent. Copies of 1H and 13C NMR spectra of all the new compounds are provided as Supplementary Materials. Unless otherwise stated all the reactions were performed under a positive atmosphere of argon by standard syringe, cannula and septa techniques. All the liquid styrenes 2a–d,f were purified by distillation at reduced pressure over CaH2. Propionic acid was distilled at atmospheric pressure. 5-(4-Methoxyphenyl)-1-methyl-1H-imidazole (1a), 1-methyl-5-(4-(trifluoromethyl)phenyl)-1H-imidazole (1b), 1-methyl-5-(4-chlorophenyl)-1H-imidazole (1c), 5-(3-fluoro-4-methoxyphenyl)-1-methyl-1H-imidazole (1d), 5-(4-nitrophenyl)-1-methyl-1H-imidazole (1e), 5-(benzo[d][1,3]dioxol-5-yl)-1-methyl-1H-imidazole (1f) were synthesized according to literature procedure previously developed by us [47]. The following compounds were prepared according to reported procedures: 1-Methyl-4,5-diphenyl-1H-imidazole (12) (yield: 80%) [48], 5-(4-methoxyphenyl)-1,2-
dimethyl-1H-imidazole (16) (yield: 66%) \[49\], 1-nitro-4-vinylbenzene (2g) (yield: 61\%) \[50\]. All the other commercially available reagents and solvents were used as received.

3.1. (E)-5-(4-Methoxyphenyl)-1-methyl-2-styryl-1H-imidazole (3a) and 5-(4-methoxyphenyl)-1-methyl-2-(1-phenylethyl)-1H-imidazole (4)

As summarized in Scheme 4, a mixture of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole (1a) (94.0 mg, 0.5 mmol), styrene (2a) (0.14 mL, 130 mg, 1.25 mmol), Pd(TFA)\(_2\), (16.6 mg, 0.05 mmol), 1,10-phenantroline (13.5 mg, 0.075 mmol), and AgTFA (27.3 mg 1.0 mmol) in toluene (2 mL) was stirred in a Paar Microwave \(^{50}\) reactor for 16 h at 130 °C. After cooling to room temperature, the mixture was diluted with AcOEt (20 mL) then filtered on celite and the filter was washed with 15 mL AcOEt and 20 mL CH\(_2\)Cl\(_2\). The crude reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (90:10) as eluent. Concentration of the first eluted chromatographic fractions allowed the isolation of compound 2a (34.8 mg, 24 \%) light-pink solid: m.p. 150–152 °C. \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.63 (d, 1H, \(J = 15.85\) Hz), 7.54 (d, 2H, \(J = 7.54\)), 7.40–7.22 (m, 5H), 7.09 (s, 1H), 7.00–6.92 (m, 3H), 3.84 (s, 3H), 3.64 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 159.39, 146.26, 136.69, 134.34, 132.12, 130.06 (2C), 128.68 (2C), 128.07, 127.49, 126.66 (2C), 122.23, 114.15(2C), 113.86, 55.24, 30.95. EI-MS m/z (%): 290 (31), 289 (100), 274 (6), 245 (10), 144 (5). C\(_{19}\)H\(_{18}\)N\(_2\)O (290.37): calcd. C, 78.59; H, 6.25; N, 9.65; found C 78.64, H 6.26, N 9.67.

Concentration of the last eluted chromatographic fractions with AcOEt allowed the isolation of compound 4 (17.5 mg, 12 \% yield) as a light orange oil. \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.35–7.27 (m, 3H), 7.26–7.18 (m, 4H), 7.02 (s, 1H), 6.95–6.90 (m, 2H), 4.16 (q, 1H, \(J = 7\) Hz), 3.82 (s, 3H), 3.26 (s, 3H), 1.77 (d, 3H, \(J = 7\)Hz). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 159.30, 150.65, 143.87, 133.72, 130.24 (2C), 128.80 (2C), 127.30 (2C), 126.59, 125.50, 122.83, 114.07 (2C), 55.33, 38.91, 30.91, 21.86. EI-MS m/z (%): 292 (100), 277 (90), 262 (10), 233 (20), 215 (12), 201 (40). C\(_{10}\)H\(_{20}\)N\(_2\)O (292.38): calcd. C, 78.05; H, 6.25; N, 9.58; found C 77.98, H 6.89, N 9.56.

Compound 3a was also obtained in a 56% isolated yield from the Pd(OAc)\(_2\)-catalyzed reactions of 1a and 2a carried out using Ag\(_2\)O, AgTFA, or Cu(OAc)\(_2\) as oxidant (entry 7, Table 1), and in 42% isolated yield when the alkenylation was performed using PdCl\(_2\)/Cu(OAc)\(_2\) as pre-catalyst/oxidant (entry 15, Table 1).

3.2. Procedure for the Screening of the Reaction Conditions for the Pd-Catalyzed Dehydrogenative C2-Alkenylation of 5-(4-Methoxyphenyl)-1-Methyl-1H-Imidazole (1a) with Styrene (2a) Using Carboxylic Acids as Reaction Solvents

A mixture of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole (1a) (94 mg, 0.5 mmol), styrene (2a) (0.12 mL, 104 mg, 1.0 mmol), palladium pre-catalyst (0.025 mmol) oxidant (1.5 mmol), in the selected solvent (5 mL) was stirred for 24 h at 120 °C. All the other commercially available reagents and solvents were used as received.

(1.5 mmol), in the selected solvent (5 mL) was stirred for 24 h at 120 °C. All the other commercially available reagents and solvents were used as received.

(E)-5-(4-methoxyphenyl)-1-methyl-2-styryl-1H-imidazole (3a) and 5-(4-methoxyphenyl)-1-methyl-2,4-dii(E)-styryl)-1H-imidazole (5a)

The crude reaction mixture (entry 7, Table 1) was concentrated at reduced pressure and the residue was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (90:10) as eluent. Concentration of the first eluted chromatographic fractions allowed the isolation of compound 5a (25.5 mg, 13 \%) as a yellow solid: m.p 57–58 °C. \(^{1}\)H NMR (400
Catalysts 2021, 11, 762

128.18, 126.92 (2C), 125.82 (q, 2C, $J_{151–152}^\circ$ 145.9, 138.2, 137.2, 136.8, 133.3, 132.5, 131.9 (2C), 128.8 (2C), 128.5 (2C), 128.3, 127.2, 126.9 (2C), 126.8, 126.3 (2C), 121.6, 119.6, 114.4 (2C), 113.7, 55.4, 31.1. EI-MS m/z (%): 392 (90), 391 (100), 207 (6), 157 (10), 144 (13) 115 (6). C$_{27}$H$_{24}$N$_2$O (262.35): calcd. C, 82.62; H, 6.16; N, 7.14; found C 82.57, H 6.12, N 7.16.

The concentration of the last fractions, eluted with a mixture of toluene and AcOEt (50:50) allowed the isolation of compound 3a (81.1 mg, 56%) as a light-pink solid, m.p. 151–152 °C. The physical and spectral properties of this compound are in agreement with those reported in Section 3.1.

3.3. General Procedure for the Pd(II)/Cu(II)-Promoted Dehydrogenative Alkenylation of Azoles with Styrenes

To a suspension of the appropriate azole 1a–f, 6, 7, 10, 12 or 14 (0.5 mmol), Pd(OAc)$_2$ (5.6 mg, 0.025 mmol), Cu(OAc)$_2$ (272.5 mg, 1.5 mmol) in EtCOOH (5 mL), the appropriate styrene 2a–g (1.0 mmol) was added under vigorous stirring. The resulting mixture was heated for 24 h at 120 °C. After cooling to room temperature, the crude reaction mixture was diluted with AcOEt (50 mL) and sequentially washed with a 2:1 (v/v) solution of saturated aqueous NH$_4$Cl and aqueous NH$_4$OH (2 × 20 mL), H$_2$O (1 × 20 mL), and brine (1 × 20 mL). The aqueous phase was extracted with CH$_2$Cl$_2$ (2 × 20 mL). The combined organic extracts were washed with water, dried, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel. This procedure was used to prepare compounds 3b–r (Table 2), 8, 9, 11, 13, 15 (Scheme 5) and 17 (Scheme 6).

3.3.1. (E)-5-(4-Methoxyphenyl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3b)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with 2b (entry 2, Table 2), was purified by flash chromatography on silica gel with a mixture of CH$_2$Cl$_2$ and MeOH (97:3) as eluent to give 3b (65.7 mg, 41%) as a light-orange solid: m.p. = 173–175 °C. $^1$H NMR (400 MHz, CDCl$_3$): δ 7.58 (d, 1H, $J$ = 15.9 Hz), 7.48 (d, 2H, $J$ = 8.5 Hz), 7.30 (d, 2H, $J$ = 8.7), 7.07 (s, 1H), 6.97 (d, 2H, $J$ = 8.6 Hz), 6.90 (d, 2H, $J$ = 8.5 Hz), 6.82 (d, 1H, $J$ = 15.9 Hz), 3.84 (s, 3H), 3.82 (s, 3H), 3.62 (s, 3H). $^{13}$C NMR (100 MHz, CDCl$_3$): δ 159.87, 159.54, 146.81, 143.21, 134.20, 130.27 (2C), 129.69, 128.17 (2C), 127.45, 122.58, 114.31 (4C), 111.88, 55.46, 55.43, 31.14. EI-MS m/z (%): 320 (39), 319 (100), 304 (7), 276 (5), 160 (5). ESI-MS (+): m/z (%) = 321 (100) [M+H]$^+$.

C$_{20}$H$_{20}$N$_2$O$_2$ (320.39): calcd. C, 74.98; H, 6.29; N, 8.74; found C, 75.05, H, 6.31, N, 8.76.

3.3.2. (E)-5-(4-Methoxyphenyl)-1-methyl-2-(4-trifluoromethyl)styryl)-1H-imidazole (3c)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with 2c (entry 3, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (65:35) as eluent to give 3c (109.2 mg, 61% yield) as yellow solid: m.p. = 174–175 °C. $^1$H NMR (400 MHz, CDCl$_3$): δ 7.60–7.47 (m, 5H), 7.26–7.23 (m, 2H), 7.05 (s, 1H), 6.97 (d, 1H, $J$ = 15.09 Hz), 6.94–6.90 (m, 2H), 3.79 (s, 3H), 3.60 (s, 3H). $^{13}$C NMR (100 MHz, CDCl$_3$): δ 159.77, 155.86, 140.41, 140.39, 130.53, 130.38 (2C), 129.80 (q, $J$ = 32.4 Hz), 128.18, 126.92 (2C), 125.82 (q, 2C, $J$ = 3.8 Hz), 124.29 (q, $J$ = 27.19 Hz), 122.26, 116.29, 114.42 (2C), 55.51, 31.23. EI-MS m/z (%): 358 (30), 357 (100), 342 (5), 313 (10). ESI-MS (+): m/z (%) = 359 (100) [M+H]$^+$. C$_{20}$H$_{17}$F$_3$N$_2$O$_2$ (358.36): calcd. C, 67.03; H, 4.78; N, 7.82; found C, 66.97, H, 4.79, N, 7.80.

3.3.3. (E)-5-(4-Methoxyphenyl)-1-methyl-2-(4-methylstyryl)-1H-imidazole (3d)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with 2d (entry 4, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (20:80) as eluent to give 3d (74.5 mg, 49% yield) as dark orange solid: m.p. = 124–129 °C. $^1$H NMR (400 MHz, CDCl$_3$): δ 7.60 (d, 1H, $J$ = 15.9 Hz), 7.46–7.42 (m, 2H), 7.32–7.26 (m, 2H), 7.18–7.14 (m, 2H), 7.09 (s, 1H), 6.99–6.95 (m, 2H), 6.89 (d, 1H, $J$ = 15.9 Hz), 7.18–7.15 (m, 2H), 7.04–7.03 (m, 2H), 6.98 (d, $J$ = 15.8 Hz, 1H), 6.89 (d, $J$ = 15.8 Hz, 1H), 3.90 (s, 3H), 3.55 (s, 3H). $^{13}$C NMR (100 MHz, CDCl$_3$): δ 159.8, 145.9, 138.2, 137.2, 136.8, 133.3, 132.5, 131.9 (2C), 128.8 (2C), 128.5 (2C), 128.3, 127.2, 126.9 (2C), 126.8, 126.3 (2C), 121.6, 119.6, 114.4 (2C), 113.7, 55.4, 31.1. EI-MS m/z (%): 390 (92), 391 (100), 207 (6), 157 (10), 144 (13) 115 (6). C$_{27}$H$_{24}$N$_2$O (262.35): calcd. C, 82.62; H, 6.16; N, 7.14; found C 82.57, H 6.12, N 7.16.
3.84 (s, 3H), 3.62 (s, 3H), 2.35 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.56, 146.67, 138.28, 134.35, 134.14, 132.46, 130.29 (2C), 129.56 (2C), 127.63, 126.79 (2C), 122.56, 114.32 (2C), 113.05, 55.45, 31.15, 21.41. EI-MS m/z (%): 304 (30), 303 (100), 288 (5), 259 (10), 144 (5). ESI-MS (+): m/z (%) = 305 (100) [M+H]+. C20H20N2O (304.39): calcd. C, 78.92; H, 6.62; N, 9.20; found C, 79.02; H, 6.63; N, 9.22.

3.3.4. (E)-2-(2-(6-Methoxynaphthalen-2-yl)vinyl)-5-(4-methoxyphenyl)-1-methyl-1H-imidazole (3e)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with 2e (entry 5, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (60/40) as eluent to give 3e (94.5 mg, 51% yield) as brown solid: m.p. = 184–186 °C. 1H NMR (200 MHz, CDCl3): δ 7.83–7.77 (m, 5H), 7.33–6.96 (m, 8H), 3.90–3.83 (m, 6H), 3.66 (s, 3H). 13C NMR (50 MHz, CDCl3): δ 159.36, 157.89, 134.43, 133.11, 131.82, 131.73, 130.08 (2C), 129.62, 128.85, 127.24, 127.10, 126.62, 123.80 (2C), 121.93, 119.03 (2C), 114.11, 113.83, 112.37, 105.80 (2C), 55.28 (2C), 31.17. EI-MS m/z (%): 370 (52), 369 (100), 326 (8), 281 (7), 207 (60). ESI-MS (+): m/z (%) = 371 (100) [M+H]+. C24H22N2O2 (370.45): calcd. C, 77.81; H, 5.99; N, 7.56; found C, 77.96; H, 6.00; N, 7.55.

3.3.5. (E)-5-(4-Methoxyphenyl)-1-methyl-2-(4-nitrostyryl)-1H-imidazole (3f)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with 2g (entry 6, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (60/40) as eluent to give 3f (73.5 mg, 44% yield) as red solid: m.p. = 195–197 °C. 1H NMR (200 MHz, CDCl3): δ 8.24–8.20 (m, 2H), 7.71–7.62 (m, 3H), 7.35–7.26 (m, 2H), 7.16 (s, 1H), 7.08–6.95 (m, 3H), 3.87 (s, 3H), 3.71 (s, 3H). 13C NMR (50 MHz, CDCl3): δ 159.66, 146.88, 145.33, 143.26, 135.39, 130.23 (2C), 129.16 128.43, 127.04 (2C), 121.92, 121.83, 117.86, 114.31 (2C), 55.46, 31.25. EI-MS m/z (%): 335 (28), 334 (100), 304(14), 288 (38), 207 (13). ESI-MS (+): m/z (%) = 336 (100) [M+H]+. C19H17N3O3 (335.36): calcd. C, 68.05; H, 5.11; N, 12.53; found C, 68.18; H, 5.12; N, 12.52.

3.3.6. (E)-1-Methyl-2-styryl-5-(4-trifluoromethyl)phenyl)-1H-imidazole (3g)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with 2a (entry 7, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (80/20) as eluent to give 3g (70.6 mg, 43% yield) as yellow solid: m.p. = 163–165 °C. 1H NMR (400 MHz, CDCl3): δ 7.73–7.65 (m, 3H), 7.58–7.47 (m, 4H), 7.40–7.35 (m, 2H), 7.32–7.28 (m, 1H), 7.22 (s, 1H), 6.97 (d, 1H, J = 15.9 Hz), 3.71 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 147.91, 146.88, 145.33, 143.26, 135.39, 130.23 (2C), 129.16 128.43, 127.04 (2C), 121.92, 121.89, 121.82, 117.86, 114.31 (2C), 55.46, 31.15. EI-MS m/z (%): 328 (30), 327 (100), 312 (10), 128 (5). ESI-MS (+): m/z (%) = 329 (100) [M+H]+. C19H15F3N2 (328.34): calcd. C, 69.50; H, 4.61; N, 8.53; found C, 69.60; H, 4.62; N, 8.52.

3.3.7. (E)-2-(4-Methoxystyryl)-1-methyl-5-(4-(trifluoro-methyl)phenyl)-1H-imidazole (3h)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with 2b (entry 8, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (60/40) as eluent to give 3h (73.4 mg, 41% yield) as yellow solid: m.p. = 193–195 °C. 1H NMR (400 MHz, CDCl3): δ 7.71–7.67 (m, 2H), 7.63 (d, 1H, J = 15.8 Hz), 7.54–7.46 (m, 4H), 7.21 (s, 1H), 6.93–6.89 (m, 2H), 6.83 (d, 1H, J = 15.9 Hz), 3.83(s, 3H), 3.69 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 160.13, 148.34, 133.81, 133.43, 133.00, 129.75 (q, 1C, J = 15.9 Hz).
3.3.8. (E)-1-Methyl-2-(4-methylstyrlyl)-5-(4-(trifluoro-methyl)phenyl)-1H-imidazole (3i)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with 2d (entry 9, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (40/60) as eluent to give 3i (75.3 mg, 44% yield) as yellow solid: m.p. = 200–202 °C; 1H NMR (400 MHz, CDCl3): δ 7.71–7.67 (m, 2H), 7.65 (d, 1H, J = 15.9 Hz), 7.52–7.48 (m, 2H), 7.47–7.43 (m, 2H), 7.21 (s, 1H), 7.20–7.16 (m, 2H), 6.91 (d, 1H, J = 15.8 Hz), 3.69 (s, 3H), 2.36 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 148.13, 138.70, 133.83, 133.75, 133.12, 129.75 (q, 1C, J = 32.7 Hz), 129.64 (2C), 129.19 (2C), 128.67 (2C), 126.94 (2C), 125.87 (q, 2C, J = 3.70 Hz), 124.23 (q, 1C, J = 272.0 Hz), 112.50, 31.50, 21.44. EI-MS m/z (%): 342 (30), 341 (100), 326 (5), 170 (5). ESI-MS (+): m/z (%) = 343 (100) [M+H]+. C20H17F3N2 (342.37): calcd. C, 70.16; H, 5.01; N, 8.18; found C, 70.20; H, 5.02; N, 8.17.

3.3.9. (E)-1-methyl-5-(4-Trifluoromethylphenyl)-2-(4-(trifluoromethyl-styrlyl)-1H-imidazole (3j)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with 2c (entry 10, Table 2), was purified by flash chromatography on silica gel with a mixture of petroleum ether and AcOEt (70/30) as eluent to give 3j (82.7 mg, 50% yield) as yellow solid: m.p. = 146–148 °C; 1H NMR (400 MHz, CDCl3): δ 7.75–7.61 (m, 7H), 7.55–7.51 (m, 2H), 7.25 (s, 1H), 7.06 (d, 1H, J = 15.8 Hz), 3.75. (s, 3H). 13C NMR (100 MHz, CDCl3): δ 147.24, 140.07, 133.75, 133.48, 133.43, 133.12, 132.83, 132.11, 124.21 (q, 1C, J = 32.7 Hz), 129.57, 128.86 (2C), 127.07 (2C), 125.99 (q, 2C, J = 3.8 Hz), 125.89 (q, 2C, J = 3.8 Hz), 124.24 (q, 1C, J = 271.8 Hz), 124.14 (q, 1C, J = 271.8 Hz), 115.77, 31.55. EI-MS m/z (%): 396 (30), 395 (100), 380 (10), 378 (10), 327 (5), 196 (5). ESI-MS (+): m/z (%) = 397 (100) [M+H]+. C20H16F3N2 (396.34): calcd. C, 60.61; H, 3.56; N, 7.07; found C, 60.55; H, 3.57; N, 7.06.

3.3.10. (E)-5-(4-Chlorophenyl)-1-methyl-2-styrlyl-1H-imidazole (3k)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with 2a (entry 11, Table 2), was purified by flash chromatography on silica gel with a mixture of CH2Cl2 and MeOH (97/3) as eluent to give 3k (70.5 mg, 45% yield) as yellow solid: m.p. = 163–165 °C; 1H NMR (400 MHz, CDCl3): δ: 7.65 (d, 1H, J = 15.9 Hz), 7.56–7.52 (m, 2H), 7.45–7.27 (m, 7H), 7.15 (s, 1H), 6.95 (d, 1H, J = 15.9 Hz), 3.65 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 147.28, 136.70, 134.07, 133.48, 133.43, 133.12, 132.83, 129.88 (2C), 129.17, 129.06 (2C), 128.62, 128.25, 128.23, 114.30 (2C), 111.51, 55.39, 31.25. EI-MS m/z (%): 396 (100), 395 (100), 394 (10), 380 (10), 378 (10), 327 (5), 196 (5). ESI-MS (+): m/z (%) = 395 (100) [M+H]+. C19H15ClN2 (394.78): calcd. C, 73.34; H, 5.13; N, 9.50; found C, 73.15; H, 5.14; N, 9.49.

3.3.11. (E)-5-(4-Chlorophenyl)-2-(4-methoxystyrlyl)-1-methyl-1H-imidazole (3l)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with 2b (entry 12, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (70/30) to give 3l (45.4 mg, 28% yield) as yellow solid: m.p. = 169–171 °C; 1H NMR (400 MHz, CDCl3): δ 7.59 (d, 1H, J = 15.8 Hz), 7.50–7.46 (m, 2H), 7.42–7.38 (m, 2H), 7.31–7.27 (m, 2H), 7.12 (s, 1H), 6.91–6.87 (m, 2H), 6.80 (d, 1H, J = 15.9 Hz), 3.81 (s, 3H), 3.62 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.96, 147.62, 133.88, 133.17, 132.83, 129.88 (2C), 129.44, 129.06 (2C), 128.62, 128.25, 128.23, 114.30 (2C), 111.51, 55.39, 31.25. EI-MS m/z (%): 326 (10), 325 (34), 324 (32), 323 (100), 308 (7), 280 (10). ESI-MS (+): m/z (%) = 325 (100), 327 (36) [M+H]+. C19H17ClN2O (324.81): calcd. C, 70.26; H, 5.28; N, 8.62; found C, 70.41; H, 5.27; N, 8.63.

3.3.12. (E)-5-(4-Chlorophenyl)-1-methyl-2-(4-(trifluoromethyl)styryl)-1H-imidazole (3m)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with 2c (entry 13, Table 2), was purified by flash chromatography on silica gel with a mixture of CH2Cl2 and MeOH (99/1) to give 3m (83.3 mg, 46% yield) as an orange solid: m.p. = 127–129 °C; 1H NMR (400 MHz, CDCl3): δ 7.70–7.58 (m, 5H), 7.47–7.43 (m, 2H), 7.35–7.31 (m, 2H), 7.18 (s, 1H), 7.05 (d, 1H, J = 15.9 Hz), 3.70 (s, 3H). 13C NMR (100 MHz,
Catalysts, 11, 762

3.3.13. (E)-4-(2-(5-(4-Chloro-1H-imidazol-2-yl)vinyl)-pyridine (3n)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with 2f (entry 14, Table 2), was purified by flash chromatography on silica gel with a mixture of CH₂Cl₂ and MeOH (97/3) to give 3n (23.8 mg, 16% yield) as pale brown wax. ¹H NMR (200 MHz, CDCl₃): δ 7.60–6.98 (m, 9H), 3.71 (s, 3H). ¹³C NMR (50 MHz, CDCl₃): δ 149.99, 143.7, 134.22 (2C), 131.32, 129.86 (2C), 129.75 (2C), 129.18, 129.01 (2C), 128.80 (2C), 127.87, 117.58, 31.40. EI-MS m/z (%): 364 (10), 363 (20), 362 (30), 361 (100), 346 (10), 196 (5). ESI-MS (+): m/z (%) = 363 (100), 365 (38) [M+H]+. C₁₉H₁₄ClF₂N₂ (362.78): calcd. C, 62.91; H, 3.89; N, 7.72; found C, 62.89; H, 3.90; N, 7.71.

3.3.14. (E)-5-(4-Chloro-1H-imidazol-2-(4-nitrostyryl)-1H-imidazole (3o)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with 2g (entry 15, Table 2), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (70/30) to give 3o (45.8 mg, 27% yield) as pale red solid: m.p. = 187–189 °C. ¹H NMR (200 MHz, CDCl₃): δ 8.24–8.20 (m, 2H), 7.74–7.60 (m, 3H), 7.49–7.06 (m, 6H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 147.01, 146.07, 142.99, 134.34 (2C), 131.64, 129.95 (2C), 129.12 (2C), 128.18, 127.94, 127.13 (2C), 124.19 (2C), 117.50, 31.36. EI-MS m/z (%): 341 (10), 340 (37), 339 (35), 338 (100), 308 (15), 292 (40). ESI-MS (+): m/z (%) = 340 (100), 342 (37) [M+H]+. C₁₉H₁₄ClN₃O₂ (339.78): calcd. C, 63.63; H, 4.15; N, 12.37; found C, 63.65; H, 4.14; N, 12.38.

3.3.15. (E)-5-(3-Fluoro-4-methoxyphenyl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3p)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with 2b (entry 16, Table 2), was purified by flash chromatography on silica gel with a mixture of CH₂Cl₂ and MeOH (97/3) to give 3p (94.7 mg, 56% yield) as beige solid: m.p. = 70 °C. ¹H NMR (200 MHz, CDCl₃): δ 7.67 (d, 1H, J = 15.6 Hz), 7.53–7.49 (m, 2H), 7.27 (s, 1H), 7.14–6.76 (m, 7H), 3.94(s, 3H), 3.84(3H), 3.65 (s, 3H). ¹³C NMR (50 MHz, CDCl₃): δ 160.11, 150.73 (d, 1C, J = 393.0 Hz), 147.90 (d, 1C, J = 10.6 Hz), 133.82, 133.11, 129.29, 128.43 (2C), 126.82, 125.09 (d, 1C, J = 3.3 Hz), 122.63 (d, 1C, J = 7.2 Hz), 116.69 (d, 1C, J = 19.03 Hz), 114.48 (2C), 113.77 (d, 1C, J = 2.42 Hz), 110.77, 56.51, 55.52, 31.44. EI-MS m/z (%): 338 (38), 337 (100), 322 (10), 169 (5). ESI-MS (+): m/z (%) = 339 (100) [M+H]+. C₂₀H₁₉FN₂O₂ (338.38): calcd. C, 70.99; H, 5.66; N, 8.28; found C, 70.89; H, 5.67; N, 8.29.

3.3.16. (E)-2-(4-Methoxystyryl)-1-methyl-5-(4-nitrophenyl)-1H-imidazole (3q)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1e with 2b (entry 17, Table 2), was purified by flash chromatography on silica gel with a mixture of CH₂Cl₂ and MeOH (97/3) to give 3q (54.5 mg, 30% yield) as red solid: m.p. = 190–192 °C. ¹H NMR (200 MHz, CDCl₃): δ 8.33–8.29 (m, 2H), 7.65 (d, 1H, J = 15.8 Hz), 7.60–7.45 (m,4H), 7.30–7.26 (m, 2H), 6.94–6.90 (m, 2H), 6.83 (d, 1H, J = 15.8 Hz), 3.84(s, 3H), 3.75 (s, 3H). ¹³C NMR (50 MHz, CDCl₃): δ 160.20, 149.27, 146.74, 136.53, 134.23, 132.26, 130.28, 129.11, 128.43 (2C), 128.34 (2C), 124.34 (2C), 114.37 (2C), 110.91, 55.51, 31.16. EI-MS m/z (%): 335 (33), 334 (100), 304 (22), 288 (32). ESI-MS (+): m/z (%) = 336 (100) [M+H]+. C₁₉H₁₇N₂O₃ (335.36): calcd. C, 68.05; H, 5.11; N, 12.53; found C, 68.11; H, 5.12; N, 12.55.

3.3.17. (E)-5-(Benzo[d][1,3]dioxol-5-yl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3r)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1f with 2b (entry 18, Table 2), was purified by flash chromatography on silica gel with a mixture of CH₂Cl₂ and MeOH (98/2) to give 3r (54.5 mg, 52% yield) as pale red wax. ¹H NMR
Catalysts (20 MHz, CDCl₃): δ 7.58 (d, 1H, J = 15.8 Hz), 7.51–7.47 (m, 2H), 7.07 (s, 1H), 6.93–6.76 (m, 8H), 6.01 (s, 2H), 3.83(s, 3H), 3.63 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 160.04, 148.09, 147.75, 146.84, 134.18, 133.10, 129.55, 128.37 (2C), 127.11, 123.69, 122.93, 114.40 (2C), 111.38,109.47, 108.82, 101.55, 55.56, 31.42. EI-MS m/z (%): 334 (38), 333 (100), 318 (4), 290 (6). ESI-MS (+): m/z (%): 335 (100) [M+H]⁺. C₂₂H₁₈N₂O₃ (334.38): calcd. C, 71.84; H, 5.43; N, 8.38; found C, 71.88; H, 5.44; N, 8.37.

3.3.18. (E)-1-Methyl-2-styryl-1H-benzo[d]imidazole (8)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 6 with 2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of CH₂Cl₂ and AcOEt (99/1) to give 8 (101.8 mg, 87% yield) as beige solid: m.p. 118–120 °C, lit [51]. mp 119–121 °C. ¹H NMR (200 MHz, CDCl₃): δ 7.97 (d, 1H, J = 15.9 Hz), 7.83–7.72 (m, 1H), 7.65–7.58 (m, 2H) 7.47–7.19 (m, 6H), 7.09 (d, 1H, J = 15.9 Hz), 3.83(s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 150.91, 143.02, 137.02, 135.91, 128.97, 128.78 (2C), 127.17 (2C), 122.52 (2C), 119.12, 112.90 (2C), 109.17, 29.52. EI-MS m/z (%): 334 (36), 233 (100), 219 (7), 218 (19), 117 (7). ESI-MS (+): m/z (%): 235 (100) [M+H]⁺. C₁₆H₁₄N₂ (234.30): calcd. C, 82.02; H, 6.02; N, 11.96; found C, 82.11; H, 6.03; N, 12.00.

3.3.19. (E)-2-Styryl-1H-benzo[d]imidazole (9)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 7 with 2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (50/50) to give 9 (70.0 mg, 64% yield) as white solid: m.p. 195–197 °C, lit[52] mp 195–197 °C. ¹H NMR (400 MHz, CDCl₃+DMSO-d₆): δ 7.71 (d, 1H, J = 16.5 Hz), 7.60 (br, 2H), 7.51–7.47 (m, 2H), 7.36–7.25 (m, 4H), 7.24–7.15 (m, 3H). ¹³C NMR (100 MHz, CDCl₃+DMSO-d₆): δ 151.37, 135.89, 134.96, 128.33 (2C), 126.87 (2C), 126.88 (2C), 123.39 (3C), 117.21. EI-MS m/z (%): 220 (32), 219 (100), 218 (14), 109 (7). ESI-MS (+): m/z (%): 221 (100) [M+H]⁺. C₁₅H₁₃N₂O (220.28): calcd. C, 81.79; H, 5.42; N, 12.72; found C, 81.84; H, 5.50; N, 12.75. The NMR spectroscopic data of this compound were in agreement with those previously reported [52].

3.3.20. (E)-2-Styrylbenzo[d]oxazole (11)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 10 with 2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (95/5) to give 11 (33.2 mg, 30% yield) as brown solid: m.p. 84–86 °C, lit[53] mp 86–88 °C. ¹H NMR (200 MHz, CDCl₃): δ 7.78 (d, 1H, J = 16.4 Hz), 7.73–7.65 (m, 1H), 7.62–7.48 (m, 3H), 7.45–7.28 (m, 6H), 7.07 (d, 1H, J = 16.4 Hz). ¹³C NMR (50 MHz, CDCl₃) δ 162.79, 150.42, 142.23, 139.54, 135.40, 128.86, 129.81, 129.05, 129.19, 127.64, 126.30, 119.95, 119.02, 110.42. EI-MS m/z (%): 221 (33), 220 (100), 191 (7), 165 (3). ESI-MS (+): m/z (%): 222 (100) [M+H]⁺. C₁₅H₁₃NO (212.26): calcd. C, 81.43; H, 5.01; N, 6.33; found C, 81.35; H, 5.02; N, 6.35. The NMR spectroscopic data of this compound were in agreement with those previously reported [53].

3.3.21. (E)-1-Methyl-4,5-diphenyl-2-styryl-1H-imidazole (13)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 12 with 2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of toluene and AcOEt (93/7) to give 13 (89.0 mg, 55% yield) as orange glassy solid: m.p. 65–69 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, 1H, J = 15.9 Hz), 7.60–7.56 (m, 2H), 7.54–7.50 (m, 2H), 7.48–7.41 (m, 3H), 7.40–7.26 (m, 5H), 7.24–7.16 (m, 2H), 7.00 (d, 1H, J = 15.9 Hz), 3.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.50, 138.56, 136.96, 134.75, 133.00, 131.02 (2C), 130.22, 129.10 (2C), 128.87 (2C), 128.68, 128.29, 128.22 (2C), 127.22 (2C), 126.94 (2C), 126.54, 113.86, 31.13. EI-MS m/z (%): 336 (50), 335 (100), 319 (10), 165 (5). ESI-MS (+): m/z (%): 337 (100) [M+H]⁺. C₂₄H₂₀N₂ (336.44): calcd. C, 85.68; H, 5.99; N, 8.33; found C, 85.76; H, 6.01; N, 8.35. The NMR spectroscopic data of this compound were in agreement with those previously reported [54].
3.3.22. (E)-4,5-Diphenyl-2-styryl-1H-imidazole (15)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 14 with 2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of CH$_2$Cl$_2$ and MeOH (95/5) to give 15 (59.6 mg, 36% yield) as orange solid: m.p. 120–122 °C. $^1$H NMR (400 MHz, CDCl$_3$): $\delta$ 7.47–7.40 (m, 4H), 7.38–7.32 (m, 2H), 7.30–7.20 (m, 10H), 7.00 (d, 1H, $J = 16.6$ Hz). $^{13}$C NMR (100 MHz, CDCl$_3$): $\delta$ 145.10, 135.93, 133.64, 132.02, 131.34, 128.92, 128.89 (2C), 128.81, 128.76 (5C), 128.07 (6C), 127.06 (2C), 114.44. EI-MS $m/z$ (%): 322 (50), 321 (100), 165 (10), 115 (5). ESI-MS (+): $m/z$ (%) = 323 (100) [M+H$^+$]. C$_{23}$H$_{18}$N$_2$ (322.41): calcd. C, 85.68; H, 5.63; N, 8.69; found C, 85.78; H, 5.62; N, 8.70. The NMR spectroscopic data of this compound were in agreement with those previously reported [55].

3.3.23. (E)-5-(4-Methoxyphenyl)-1,2-dimethyl-4-styryl-1H-imidazole (17)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 16 with 2a (Scheme 6), was purified by flash chromatography on silica gel with a mixture of CH$_2$Cl$_2$ and MeOH (96/4) to give 17 (76.0 mg, 50% yield) as orange solid: m.p. 39–40 °C. $^1$H NMR (400 MHz, C$_6$D$_6$): $\delta$ 8.00 (d, $J = 15.8$ Hz, 1H), 7.38–7.39 (m, 2H), 7.25 (d, $J = 15.8$ Hz, 1H), 7.05–7.10 (m, 4H), 6.95–6.99 (m, 1H), 6.81–6.84 (m, 2H), 3.35 (s, 3H), 2.62 (s, 3H), 2.08 (s, 3H). $^{13}$C NMR (400 MHz, C$_6$D$_6$): $\delta$ 159.93, 144.93, 139.15, 136.43, 131.91 (2C), 131.02, 128.77 (2C), 126.99, 126.64, 126.55 (2C); 123.16, 120.90, 114.53 (2C), 54.90, 30.33, 13.49. EI-MS: $m/z$ = 304 (100), 303 (95), 288 (5), 249 (15), 152 (6), 56 (11). ESI-MS (+): $m/z$ (%) = 305 (100) [M+H$^+$]. C$_{20}$H$_{20}$N$_2$O (304.39): calcd. C, 78.92; H, 6.62; N, 9.20; found C, 79.01; H, 6.63; N, 9.22.

3.3.24. (E)-1-Methyl-2-styryl-1H-imidazole (19)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 18 with 2a (Scheme 7), was purified by flash chromatography on silica gel with a mixture of CH$_2$Cl$_2$ and MeOH (93:7) as eluent to give Y (83 mg, 45%) as a light brown oil. $^1$H NMR (400 MHz, CDCl$_3$): $\delta$ 7.59 (d, $J = 16.08$ Hz), 7.42–7.26 (m, 5H), 7.11 (s, 1H), 6.90 (s, 1H), 6.85 (d, $J = 16.06$), 3.68 (s, 3H). EI-MS: $m/z$ (%) = 184 (25), 183 (100), 168 (12), 128 (5), 115 (7). ESI-MS (+): $m/z$ (%) = 185 (100) [M+H$^+$].

4. Conclusions

In this work, we developed a simple and efficient Pd(II)/Cu(II)-promoted dehydrogenative alkenylation of 5-arylimidazoles, 4,5-diphenylimidazole, benzimidazoles and benzoxazole with functionalized styrenes. Starting from a preliminary screening of the role of oxidant, catalyst precursors, solvents, and reaction temperature on the efficiency and selectivity of the alkenylation of 5-(4-methoxyphenyl)-1,2-dimethyl-1H-imidazole (1a) with styrene (2a) we were able to identify reaction conditions suitable for the simple preparation of several 2-alkenyl-substituted azoles. We believe that our findings may represent an important clue for late-stage functionalization protocols [56–58] involving imidazoles, because no pre-activation of the reactive bonds is required. Further studies on the application of this interesting methodology to the synthesis of new heteroaromatic organic fluorophores are underway.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/catal11070762/s1: $^1$H and $^{13}$C NMR spectra of all the new compounds.

Author Contributions: Conceptualization, F.B.; methodology, F.B., M.L. and A.C.; investigation, A.N., L.L. and M.P.; data curation, M.L., A.C.; writing—original draft preparation, F.B.; writing—review and editing, F.B., M.L. and A.C.; supervision, F.B. and M.L.; funding acquisition, F.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Università di Pisa under PRA 2020–2021 (project No. PRA_2020_21).
Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bansal, S.; Shabade, A.B.; Punji, B. Advances in C(sp^2)-H/C(sp^2)-H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. *Adv. Synth. Catal.* 2021, *363*, 1998–2022. [CrossRef]
2. Bellina, F.; Perego, L.A. 12 Aerobic Oxidative Intermolecular Cross-Coupling and Heck Reactions; Georg Thieme Verlag: Stuttgart, Germany, 2017.
3. Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C-H bond activation. *Acc. Chem. Res.* 2001, *34*, 633–639. [CrossRef] [PubMed]
4. Le Bras, J.; Muzart, J. Intermolecular dehydrogenative Heck reactions. *Chem. Rev.* 2011, *111*, 1170–1214. [CrossRef]
5. Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C-H Functionalizations. *Chem. Rev.* 2015, *115*, 12138–12204. [CrossRef]
6. Maes, J.; Maes, B.U.W. A Journey through Metal-Catalyzed CH Functionalization of Heterocycles. In *Heterocyclic Chemistry in the 21st Century—A Tribute to Alan Katritzky*; Academic Press: Cambridge, MA, USA, 2016; pp. 137–194.
7. Varun, B.V.; Dhineshkumar, J.; Battadapu, K.R.; Siddaraju, Y.; Alagiri, K.; Prabhu, K.R. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. *Tetrahedron Lett.* 2017, *58*, 803–824. [CrossRef]
8. Wang, D.; Weinstein, A.B.; White, P.B.; Stahl, S.S. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. *Chem. Rev.* 2018, *118*, 2636–2679. [CrossRef]
9. Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H Coupling Reactions between Two (Hetero)arenes. *Chem. Rev.* 2017, *117*, 8787–8863. [CrossRef] [PubMed]
10. Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: Forming carbon-bond oxidizing two carbon-hydrogen bonds. *Chem. Rev.* 2011, *111*, 1215–1292. [CrossRef] [PubMed]
11. Bras, J.L.; Muzart, J. Pd-Catalyzed Intermolecular Dehydrogenative Heck Reactions of Five-Membered Heteroarenes. *Catalysts* 2020, *10*, 571. [CrossRef]
12. Moritani, I.; Fujiwara, Y. Aromatic substitution of styrene-palladium chloride complex. *Tetrahedron Lett.* 1967, *8*, 1119–1122. [CrossRef]
13. Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II)acetate. *J. Am. Chem. Soc.* 1969, *91*, 7166–7169. [CrossRef]
14. Moritani, I.; Danno, S.; Fujiwara, Y.; Teranishi, S. Aromatic Substitution of Olefins XV. The Steric Course of the Reaction. *Bull. Chem. Soc. Jpn.* 1971, *44*, 578–579. [CrossRef]
15. Wu, Y.; Wang, J.; Mao, F.; Kwong, F.Y. Palladium-catalyzed cross-dehydrogenative functionalization of C(sp^2)-H Bonds. *Chem. Asian J.* 2014, *9*, 26–47. [CrossRef] [PubMed]
16. Broggini, G.; Beccalli, E.M.; Fasana, A.; Gazzola, S. Palladium-catalyzed dual C-H or N-H functionalization of unfunctionalized indole derivatives with alkenes and arenes. *Beilstein J. Org. Chem.* 2012, *8*, 1730–1746. [CrossRef] [PubMed]
17. Zhu, W.; Gunnoe, T.B. Advances in Group 10 Transition-Metal-Catalyzed Arene Alkylation and Alkenylation. *J. Am. Chem. Soc.* 2021, *143*, 6746–6766. [CrossRef]
18. Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. *J. Org. Chem.* 2002, *67*, 3230–3232. [CrossRef]
19. Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of Olefin with Aryl Iodide Catalyzed by Palladium. *Bull. Chem. Soc. Jpn.* 1971, *44*, 481. [CrossRef]
20. Besseliere, F.; Piguel, S.; Mahuteau-Bepter, F.; Grierson, D.S. Stereoselective direct copper-catalyzed alkynylation of oxazoles with bromoalkenes. *Org. Lett.* 2008, *10*, 4029–4032. [CrossRef]
21. Gottumukkala, A.L.; Derridj, F.; Djebbar, S.; Doucet, H. Alkenyl bromides: Useful coupling partners for the palladium-catalysed coupling with heteroaromatics via a C–H bond activation. *Tetrahedron Lett.* 2008, *49*, 2926–2930. [CrossRef]
22. Verrier, C.; Hoarau, C.; Marsais, F. Direct palladium-catalyzed alkenylation, benzylation and alkylation of ethyl oxazole-4-carboxylate with alkanyl-, benzyl- and alkyl halides. *Org. Biomol. Chem.* 2009, *7*, 647–650. [CrossRef]
23. Sahoun, S.; Messaoudi, S.; Brion, J.-D.; Alami, M. Pd/Cu-Catalyzed Direct Alkenylation of Azole Heterocycles with Alkenyl Halides. *Eur. J. Org. Chem.* 2010, *2010*, 6097–6102. [CrossRef]
24. Vabre, R.; Chevot, F.; Legraverend, M.; Piguel, S. Microwave-assisted Pd/Cu-catalyzed C-8 direct alkenylation of purines and related azoles: An alternative access to 6,8,9-trisubstituted purines. *J. Org. Chem.* 2011, *76*, 9542–9547. [CrossRef]
25. Yao, Y.-X.; Fang, D.-M.; Gao, F.; Liang, X.-X. Room-temperature palladium-catalyzed direct 2-alkenylation of azole derivatives with alkanyl bromides. *Tetrahedron Lett.* 2019, *60*, 68–71. [CrossRef]
26. Mahuteau-Bepter, F.; Piguel, S. Synthesis and evaluation of photophysical properties of Series of π-conjugated oxazole dyes. *Tetrahedron Lett.* 2013, *54*, 3188–3193. [CrossRef]
27. Waldvogel, S.R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C.J. Electrochemical Arylation Reaction. *Chem. Rev.* 2018, *118*, 6706–6765. [CrossRef] [PubMed]
28. Chen, J.; Lv, S.; Tian, S. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. *ChemSusChem* 2019, *12*, 115–132. [CrossRef] [PubMed]
29. Yuan, Y.; Lei, A. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Acc. Chem. Res. 2019, 52, 3309–3324. [CrossRef] [PubMed]

30. Vanourout, J.C. From Bench to Plant: An Opportunity for Transition Metal Paired Electrocatalysis. Org. Process Res. Dev. 2021. [CrossRef]

31. Lessi, M.; Manzini, C.; Minei, P.; Perego, L.A.; Bloino, J.; Egidi, F.; Barone, V.; Pucci, A.; Bellina, F. Synthesis and Optical Properties of Imidazole-Based Fluorophores having High Quantum Yields. ChemPlusChem 2014, 79, 366–370. [CrossRef]

32. Barone, V.; Bellina, F.; Biczysko, M.; Bloino, J.; Fornaro, T.; Latouche, C.; Lessi, M.; Marianietti, G.; Minei, P.; Panattoni, A.; et al. Toward the design of alkynylimidazole fluorophores: Computational and experimental characterization of spectroscopic features in solution and in poly(methyl methacrylate). Phys. Chem. Chem. Phys. 2015, 17, 26710–26723. [CrossRef] [PubMed]

33. Bellina, F.; Manzini, C.; Marianiatti, G.; Pezzetta, C.; Fanizza, E.; Lessi, M.; Minei, P.; Barone, V.; Pucci, A. Colourless p-phenylene-spaced bis-imidazoles for luminescent concentrators. Dyes Pigment. 2016, 134, 118–128. [CrossRef]

34. Lessi, M.; Panzetta, G.; Marianiatti, G.; Bellina, F. Improved Synthesis of Symmetrical 2,5-Diarylimidazoles by One-Pot Palladium-Catalyzed Direct Arylation Tailored on the Electronic Features of the Aryl Halide. Synthesis 2017, 49, 4676–4686. [CrossRef]

35. Marianiatti, G.; Lessi, M.; Barone, V.; Bellina, F.; Pucci, A.; Minei, P. Solar collectors based on luminescent 2,5-diarylimidazoles. Dyes Pigment. 2018, 157, 334–341. [CrossRef]

36. Lessi, M.; Lucci, A.; Cuzzola, A.; Bellina, F. Imidazo-Fused Isoindoles by Pd(II)/Ag(I)-Promoted Intramolecular Dehydrogenative Coupling. Eur. J. Org. Chem. 2020, 2020, 796–802. [CrossRef]

37. Lee, W.C.; Wang, T.H.; Ong, T.G. Ligand promoted Pd-catalyzed dehydrogenative alkenylation of heteroarenes. Chem. Commun. 2014, 50, 3671–3673. [CrossRef] [PubMed]

38. Kim, H.; Hwang, Y.J.; Han, I.; Joo, J.M. Regioselective C-H alkenylation of imidazoles and its application to the synthesis of unsymmetrically substituted benzimidazoles. Chem. Commun. 2018, 54, 6879–6882. [CrossRef]

39. Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M. Palladium-catalyzed direct oxidative alkenylation of azoles. J. Org. Chem. 2010, 75, 5421–5424. [CrossRef]

40. Vano, J.; Bartacek, J.; Hanusek, J.; Roithova, J.; Sedlak, M. C-H Functionalization by Palladium Carboxylates: The Acid Effect. J. Org. Chem. 2019, 84, 12746–12754. [CrossRef]

41. Schubert, W.M.; Keeffe, J.R. Acid-catalyzed hydration of styrenes. J. Org. Chem. 1972, 94, 559–566. [CrossRef]

42. Grimster, N.P.; Gauntlett, C.; Godfrey, C.R.; Gaunt, M.J. Palladium-catalyzed intramolecular alkenylation of indoles by solvent-controlled regioselective C-H functionalization. Angew. Chem. Int. Ed. 2005, 44, 3125–3129. [CrossRef]

43. Djakovitch, L.; Rouge, P. New homogeneously and heterogeneously [Pd/Cu]-catalysed C3-alkenylation of free NH-indoles. J. Mol. Catal. A Chem. 2007, 273, 230–239. [CrossRef]

44. Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. Regiocontrolled Synthesis of 1,2-Diarylimidazoles by Palladium and Copper-Mediated Direct Coupling of 1-Aryl-1H-imidazoles with Aryl Halides under Ligandless Conditions. Eur. J. Org. Chem. 2006, 693–703. [CrossRef]

45. Storr, T.E.; Baumann, C.G.; Thatcher, R.J.; De Ornellas, S.; Whitwood, A.C.; Fairlamb, I.J. Pd(0)/Cu(I)-mediated direct arylation of 2'-deoxyadenosines: Mechanistic role of Cu(I) and reactivity comparisons with related purine nucleosides. J. Org. Chem. 2009, 74, 5810–5821. [CrossRef]

46. Gorelsky, S.I. Tuning the Regioselectivity of Palladium-Catalyzed Direct Arylation of Azaoles by Metal Coordination. Organometallics 2011, 31, 794–797. [CrossRef]

47. Bellina, F.; Cauteruccio, S.; Di Fiore, A.; Rossi, R. Regioselective Synthesis of 4,5-Diaryl-1-methyl-1H-imidazoles Including Highly Cytotoxic Derivatives by Pd-Catalyzed Direct C-5 Arylation of 1-Methyl-1H-imidazole with Aryl Bromides. Eur. J. Org. Chem. 2008, 5436–5445. [CrossRef]

48. Kang, P.; Foote, C.S. Photosensitized oxidation of 13C,15N-labeled imidazole derivatives. J. Am. Chem. Soc. 2002, 124, 9629–9638. [CrossRef] [PubMed]

49. Baghbanzadeh, M.; Pilger, C.; Kappe, C.O. Palladium-catalyzed direct arylation of heteroaromatic compounds: Improved conditions utilizing controlled microwave heating. J. Org. Chem. 2011, 76, 8138–8142. [CrossRef] [PubMed]

50. Molander, G.A.; Brown, A.R. Suzuki-Miyaura cross-coupling reactions of potassium vinyll trifluoroborate with aryl and heteroaryl electrophiles. J. Org. Chem. 2006, 71, 9681–9686. [CrossRef] [PubMed]

51. Petzer, J.P.; Steyn, S.; Castagnoli, K.P.; Chen, J.-F.; Schwarzchild, M.A.; Van der Schyf, C.J.; Castagnoli, N. Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Biorg. Med. Chem. 2003, 11, 1299–1310. [CrossRef]

52. Moorthy, J.N.; Neogi, I. IBX-mediated one-pot synthesis of benzimidazoles from primary alcohols and arylmethyl bromides. Tetrahedron Lett. 2011, 52, 3868–3871. [CrossRef]

53. Kidwai, M.; Bansal, V.; Saxena, A.; Aerry, S.; Mozumdar, S. Cu-Nanoparticles: Efficient catalysts for the oxidative cyclization of Schiff’s bases. Tetrahedron Lett. 2006, 47, 8049–8053. [CrossRef]

54. Moore, T.W.; Sana, K.; Yan, D.; Krumm, S.A.; Thepchatri, P.; Snyder, J.P.; Marengo, J.; Arrendale, R.F.; Prussia, A.J.; Natchus, M.G.; et al. Synthesis and Metabolic Studies of Host Directed Inhibitors for Antiviral Therapy. ACS Med. Chem. Lett. 2013, 4, 762–767. [CrossRef] [PubMed]

55. Dutta, S. Synthesis and anthelmintic activity of some novel 2-substituted-4,5-diphenyl imidazoles. Acta Pharm. 2010, 60, 229–235. [CrossRef] [PubMed]
56. Breslow, R.; Baldwin, S.; Flechtner, T.; Kalicky, P.; Liu, S.; Washburn, W. Remote oxidation of steroids by photolysis of attached benzophenone groups. *J. Am. Chem. Soc.* **1973**, *95*, 3251–3262. [CrossRef]
57. Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. *Nat. Chem.* **2013**, *5*, 369–375. [CrossRef]
58. Cernak, T.; Dykstra, K.D.; Tyagarajan, S.; Vachal, P.; Kraska, S.W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. *Chem. Soc. Rev.* **2016**, *45*, 546–576. [CrossRef] [PubMed]