Nonparametric Identification for Respondent-Driven Sampling

Peter M. Aronow\textsuperscript{1,2} and Forrest W. Crawford\textsuperscript{2}
\\textsuperscript{1}Department of Political Science, Yale University
\textsuperscript{2}Department of Biostatistics, Yale School of Public Health

April 15, 2015

Abstract
Respondent-driven sampling is a survey method for hidden or hard-to-reach populations in which sampled individuals recruit others in the study population via their social links. The most popular estimator for the population mean assumes that individual sampling probabilities are proportional to each subject’s reported degree in a social network connecting members of the hidden population. However, it remains unclear under what circumstances these estimators are valid, and what assumptions are formally required to identify population quantities. In this short note we detail nonparametric identification results for the population mean when the sampling probability is assumed to be a function of network degree known to scale. Importantly, we establish general conditions for the consistency of the popular Volz-Heckathorn (VH) estimator. Our results imply that the conditions for consistency of the VH estimator are far less stringent than those suggested by recent work on diagnostics for RDS. In particular, our results do not require random sampling or the existence of a network connecting the population.

Keywords: Horvitz-Thompson estimator, network degree, respondent-driven sampling

1 Introduction
Respondent-driven sampling (RDS) is a method for surveying hidden or hard-to-reach populations such as sex workers or injection drug users (Heckathorn, 1997; Broadhead et al, 1998). Starting with a group of initial subjects called “seeds”, respondents recruit others who are also members of the study population by giving them “coupons” to present to the researcher. These new subjects are interviewed, given coupons, and the process repeats. Many researchers have approximated RDS as a sampling design in which the sampling probability for subject $i$ is proportional to their network degree $d_i$ (Salganik and Heckathorn, 2004; Volz and Heckathorn, 2008; Gile and Handcock, 2010; Gile, 2011). In particular, Salganik and Heckathorn (2004) and Volz and Heckathorn (2008) justify this choice by modeling the recruitment process as a with-replacement random walk on a connected population network, where only one coupon is given to each subject, recruitment is uniformly at random from network neighbors, and each subject can be recruited infinitely many times. For an RDS sample of size $n$, Volz and Heckathorn (2008) (hereafter VH) give the estimator

$$\hat{\mu}_{VH} = \frac{\sum_{i=1}^{n} y_i d_i^{-1}}{\sum_{i=1}^{n} d_i^{-1}} \quad (1)$$

where $y_i$ is the outcome of interest and $d_i$ is the degree of subject $i$. 
Several authors have expressed skepticism about RDS survey methodology in general and the VH estimator in particular (Heimer, 2005; Johnston et al, 2008; Goel and Salganik, 2010; Gile and Handcock, 2010; Salganik, 2012; White et al, 2012). Many alternative characterizations of the recruitment process exist (Goel and Salganik, 2009; Gile and Handcock, 2010; Gile, 2011; Berchenko et al, 2013; Crawford, 2014). Empirical studies have also cast doubt on the performance of the VH estimator in real-world RDS datasets (Wejnert, 2009; McCreesh et al, 2012; Rudolph et al, 2013).

A recent paper by Gile et al (2015) presents diagnostics whose purpose is to help researchers determine whether the assumptions often invoked to motivate the VH estimator are met in empirical RDS data. The diagnostics presented by Gile et al (2015) address a particular class of motivating assumptions about the structure of a hypothesized social network and the process by which new subjects are sampled. These assumptions, characterized by Gile et al (2015, pg. 3) as “required by the [VH] estimator,” are summarized in Table 1, reproduced from the original paper.

In this short note, we give an alternative, nonparametric set of conditions under which the VH estimator is consistent, and note identification conditions for a generalization of the VH estimator. The conditions we articulate for consistency are restrictive and untestable, but they are nevertheless less stringent than the traditional model used to justify the VH estimator. Consistency of the VH estimator does not require random sampling or even the existence of a network connecting the members of the study population. Our results clarify the inferential challenges posed by RDS data, challenges beyond those of other non-probability samples. Importantly, however, our results suggest conditions that can be more generally implied by other generative models that may justify the VH estimator or variants thereof.

2 Results

Formally, consider a sequence of populations and samples converging weakly to a joint limit distribution on the outcome, (reported) degree, and sample, denoted \((Y, D, S)\). Let the \(E[\cdot]\) and \(Pr[\cdot]\) operators refer to features of this limiting distribution. In RDS, we observe the empirical joint distribution of the outcome \(Y\) and degree \(D\) conditional on the sampling indicator \(S = 1\). Without loss of generality, suppose that \(Y\) has bounded support and that \(D\) has support in the set \(\{1, \ldots, K\}\).

**Condition 1** (Ignorability). For all \(k\) such that \(Pr[D = k] > 0\), \(E[Y|S = 1, D = k] = E[Y|D = k]\) and \(Pr[S = 1|D = k] > 0\).

**Condition 2** (Knowledge of the Conditional Probability of Sampling). \(Pr[S = 1|D = k] = f(k)\), where \(f(\cdot)\) is known up to a unknown scale parameter \(c\).
Proposition 1. Given Conditions \(1\) and \(2\) the population mean is identified, with

\[
E[Y] = \frac{\sum_{k=1}^{K} E[Y|S = 1, D = k] Pr[D = k|S = 1]}{\sum_{k=1}^{K} Pr[D = k|S = 1] f(k)}. \tag{2}
\]

Proof. We can identify \(E[Y|D = k]\) for each degree \(k\) from Condition \(1\) since \(E[Y|D = k] = E[Y|S = 1, D = k]\). We can identify each \(Pr[D = k]\) to scale directly from Condition \(2\) as

\[
Pr[D = k] = \frac{Pr[D = k|S = 1] Pr[S = 1]}{Pr[S = 1|D = k]} = \frac{Pr[S = 1] Pr[D = k|S = 1]}{c f(k)}.
\tag{3}
\]

Then by the law of total expectation,

\[
E[Y] = \frac{\sum_{k=1}^{K} E[Y|D = k] Pr[S = 1] Pr[D = k|S = 1]}{\sum_{k=1}^{K} cPr[S = 1] Pr[D = k|S = 1] f(k)} = \frac{\sum_{k=1}^{K} E[Y|D = k] Pr[D = k|S = 1]}{\sum_{k=1}^{K} Pr[D = k|S = 1] f(k)}. \tag{4}
\]

Given Proposition \(1\) consistency of the VH estimator directly follows from convergence of sample analogues to population quantities.

Corollary 1. Given Conditions \(1\) and \(2\) the VH estimator is consistent for \(E[Y]\) if \(f(k) \propto k\).

3 Discussion

A variant of Condition \(1\) is usually assumed implicitly in statistical arguments in favor of the VH estimator (Salganik and Heckathorn, 2004; Salganik, 2006; Volz and Heckathorn, 2008). Ignorability is not empirically testable from RDS data alone, since researchers never observe \(E[Y|S = 0, D = k]\) for any \(k\). While ignorability is a strong but common assumption imposed for inference from non-probability samples, Condition \(2\) highlights the additional challenges posed by RDS data. The researcher does not generally have knowledge of the population distribution of degree, and thus ignorability with respect to degree is not sufficient to identify the population mean. Specification of the conditional sampling probability in Condition \(2\) provides an alternative means for identification, and has typically been the focus of researchers’ efforts to justify the VH estimator. The random-walk argument serves to motivate the choice of \(f(k) \propto k\) in the VH estimator, but is not strictly necessary for its consistency. Under any model that implies subjects with higher reported degrees are more likely to be sampled and \(f(k) \propto k\) characterizes this relationship, Condition \(2\) holds. Finally, we note that our results suggest that the VH estimator and variants thereof may be appropriate even when diagnostics predicated on a more restrictive model (e.g., Gile et al., 2015) fail.

Without knowledge of the characteristics of the unsampled subjects, neither Condition 1 nor Condition 2 has directly testable implications, and thus the value of any diagnostics must depend on further assumptions about the generative process. Under further parametric assumptions, some of the conditions listed in Table 1 might be sufficient to imply consistency of the VH estimator. A formalization of these assumptions as part of a generative model for the recruitment process would allow researchers to evaluate the statistical properties of diagnostics like those proposed by Gile et al. (2015).
References

Berchenko Y, Rosenblatt J, Frost SD (2013) Modeling and analysing respondent driven sampling as a counting process. arXiv preprint arXiv:1304.3505

Broadhead RS, Heckathorn DD, Weakliem DL, Anthony DL, Madray H, Mills RJ, Hughes J (1998) Harnessing peer networks as an instrument for AIDS prevention: results from a peer-driven intervention. Public Health Reports 113(Suppl 1):42

Crawford FW (2014) The graphical structure of respondent-driven sampling. ArXiv Pre-print URL http://arxiv.org/pdf/1406.0721

Gile KJ (2011) Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. Journal of the American Statistical Association 106(493):135–146

Gile KJ, Handcock MS (2010) Respondent-driven sampling: An assessment of current methodology. Sociological Methodology 40(1):285–327

Gile KJ, Johnston LG, Salganik MJ (2015) Diagnostics for respondent-driven sampling. Journal of the Royal Statistical Society, Series A In press

Goel S, Salganik MJ (2009) Respondent-driven sampling as Markov chain Monte Carlo. Statistics in Medicine 28(17):2202–2229

Heckathorn DD (1997) Respondent-driven sampling: a new approach to the study of hidden populations. Social Problems 44(2):174–199

Heimer R (2005) Critical issues and further questions about respondent-driven sampling: comment on Ramirez-Valles, et al.(2005). AIDS and Behavior 9(4):403–408

Johnston LG, Malekinejad M, Kendall C, Iuppa IM, Rutherford GW (2008) Implementation challenges to using respondent-driven sampling methodology for HIV biological and behavioral surveillance: field experiences in international settings. AIDS and Behavior 12(1):131–141

McCreeh N, Frost S, Seeley J, Katongole J, Tarsh MN, Nungwe R, Jichi F, Lunel NL, Maher D, Johnston LG, et al (2012) Evaluation of respondent-driven sampling. Epidemiology 23(1):138

Rudolph AE, Fuller CM, Latkin C (2013) The importance of measuring and accounting for potential biases in respondent-driven samples. AIDS and Behavior 17(6):2244–2252

Salganik MJ (2006) Variance estimation, design effects, and sample size calculations for respondent-driven sampling. Journal of Urban Health 83(1):98–112

Salganik MJ (2012) Commentary: respondent-driven sampling in the real world. Epidemiology 23(1):148–150

Salganik MJ, Heckathorn DD (2004) Sampling and estimation in hidden populations using respondent-driven sampling. Sociological Methodology 34(1):193–240

Volz E, Heckathorn DD (2008) Probability based estimation theory for respondent driven sampling. Journal of Official Statistics 24(1):79–97

Wejnert C (2009) An empirical test of respondent-driven sampling: Point estimates, variance, degree measures, and out-of-equilibrium data. Sociological Methodology 39(1):73–116

White RG, Lamsky A, Goel S, Wilson D, Hladik W, Hakim A, Frost SD (2012) Respondent driven sampling where we are and where should we be going? Sexually Transmitted Infections 88(6):397–399