A parametrization of the abstract Ramsey theorem

José G. Mijares (jmijares@euler.ciens.ucv.ve)
Departamento de Matemáticas IVIC
Escuela de Matemática
Universidad Central de Venezuela

Jesús E. Nieto (jnieto@usb.ve)
Departamento de Matemáticas
Universidad Simón Bolívar

Abstract

We give a parametrization with perfect subsets of 2^{∞} of the abstract Ramsey theorem (see [13]). Our main tool is an extension of the parametrized version of the combinatorial forcing developed in [11] and [13], used in [8] to obtain a parametrization of the abstract Ellen
tuck theorem. As one of the consequences, we obtain a parametrized version of the Hales-Jewett theorem. Finally, we conclude that the family of perfectly S-Ramsey subsets of $2^{\infty} \times \mathcal{R}$ is closed under the Souslin operation.

Key words and phrases: Ramsey theorem, Ramsey space, parametrization.

1 Introduction

In [13], S. Todorcevic presents an abstract characterization of those topological spaces in which an analog of Ellen
tuck’s theorem [1] can be proven. These are called topological Ramsey spaces and the main result about them is referred to in [13] as abstract Ellen
tuck theorem. In [8], a parametrization with perfect subsets of 2^{∞} of the abstract Ellen
tuck theorem is given, obtaining in this way new proofs of parametrized versions of the Galvin-Prikry theorem [6] (see [9]) and of Ellen
tuck’s theorem (see [12]), as well as a parametrized version of Milliken’s theorem [10]. The methods used in [8] are inspired by those used

MSC: 05D10; 05C55.
in [5] to obtain a parametrization of the semiselective version of Ellentuck’s theorem.

Nevertheless, topological Ramsey spaces are a particular kind of a more general type of spaces (introduced in [13]), in which the Ramsey property can be characterized in terms of the abstract Baire property. These are called Ramsey spaces. One of such spaces, known as the Hales-Jewett space, is described below (for a more complete description of this – non topological – Ramsey space, see [13]). S. Todorcevic has given a characterization of Ramsey spaces which is summed up in a result known as the abstract Ramsey theorem. It turns out that the abstract Ellentuck theorem is a consequence of the abstract Ramsey theorem (see [13]). Definitions of all these concepts will be given below.

In this work we adapt in a natural way the methods used in [8] in order to obtain a parametrized version of the abstract Ramsey theorem. In this way, we not only generalize the results obtained in [8] but we also obtain, in corollary 1 below, a parametrization of the infinite dimensional version of the Hales-Jewett theorem [7] (see [13]), which is the analog to Ellentuck’s theorem corresponding to the Hales-Jewett space.

In the next section we summarize the definitions and main results related to Ramsey spaces given in [13]. In section 3 we introduce the (parametrized) combinatorial forcing adapted to the context of Ramsey spaces and present our main result (theorem 5 below). Finally, we conclude that the generalization of the perfectly Ramsey property (see [2] and [12]) to the context of Ramsey spaces is preserved by the Souslin operation (see corollary 4 below).

We’ll use the following definitions and results concerning to perfect sets and trees (see [12]). For \(x = (x_n) \in 2^\mathbb{N} \), \(x|_k = (x_0, x_1, \ldots, x_{k-1}) \). For \(u \in 2^{\text{infty}} \), let \(|u| = \{ x \in 2^\mathbb{N} : (\exists k)(u = x|_k) \} \) and denote the length of \(u \) by \(|u| \). If \(Q \subseteq 2^\mathbb{N} \) is a perfect set, we denote \(T_Q \) its asociated perfect tree. For \(u, v = (v_0, \ldots, v_{|v|-1}) \in 2^{<\mathbb{N}} \), we write \(u \sqsubseteq v \) to mean \((\exists k \leq |v|)(u = (v_0, v_1, \ldots, v_{k-1})) \). Given \(u \in 2^{<\mathbb{N}} \), let \(Q(u) = Q \cap [u(Q)] \), where \(u(Q) \) is defined as follows: \(\emptyset(Q) = \emptyset \). If \(u(Q) \) is already defined, find \(\sigma \in T_Q \) such that \(\sigma \) is the \(\supseteq \)-extension of \(u(Q) \) where the first ramification occurs. Then, set \((\sigma^\gamma_i)(Q) = \sigma^\gamma_i, i = 1, 0 \). Where “\(\supseteq \)“ is concatenation. Thus, for each \(n, Q = \bigcup\{ Q(u) : u \in 2^n \} \). For \(n \in \mathbb{N} \) and perfect sets \(S, Q \), we write \(S \sqsubseteq_n Q \) to mean \(S(u) \subseteq Q(u) \) for every \(u \in 2^n \). Thus “\(\sqsubseteq_n \)“ is a partial order and, if we have chosen \(S_u \subseteq Q(u) \) for every \(u \in 2^n \), then \(S = \bigcup_u S_u \) is perfect, \(S(u) = S_u \) and \(S \sqsubseteq_n Q \). The property of fusion of this order is: if \(Q_{n+1} \sqsubseteq_{n+1} Q_n \) for \(n \in \mathbb{N} \), then \(Q = \cap_n Q_n \) is perfect and \(Q \sqsubseteq_n Q_n \) for each \(n \).
2 Abstract Ramsey theory

We introduce some definitions and results due to Todorcevic (see [13]). Our objects will be structures of the form \((R, S, \leq, \leq_0, r, s)\) where \(\leq\) and \(\leq_0\) are relations on \(S \times S\) and \(R \times S\) respectively; and \(r, s\) give finite approximations:

\[
r: R \times \omega \rightarrow AR \\
s: S \times \omega \rightarrow AS
\]

we denote \(r_n(A) = r(A, n), s_n(X) = s(X, n)\), for \(A \in R, X \in S, n \in \mathbb{N}\). The following three axioms are assumed for every \((P, p) \in \{(R, r), (S, s)\}\).

(A.1) \(p_0(P) = p_0(Q)\), for all \(P, Q \in P\).

(A.2) \(P \neq Q \Rightarrow p_n(P) \neq p_n(Q)\) for some \(n \in \mathbb{N}\).

(A.3) \(p_n(P) = p_m(Q) \Rightarrow n = m\) and \(p_k(P) = p_k(Q)\) if \(k < n\).

In this way we can consider elements of \(R\) and \(S\) as infinite sequences \((r_n(A))_{n \in \mathbb{N}}, (s_n(X))_{n \in \mathbb{N}}\). Also, if \(a \in AR\) and \(x \in AS\) we can think of \(a\) and \(x\) as finite sequences \((r_k(A))_{k < n}, (s_k(X))_{k < m}\) respectively; with \(n, m\) the unique integers such that \(r_n(A) = a\) and \(s_m(X) = x\). Such \(n\) and \(m\) are called the length of \(a\) and the length of \(x\), which we denote \(|a|\) and \(|x|\), respectively.

We say that \(b \in AR\) is an end-extension of \(a \in AR\) and write \(a \sqsubseteq b\), if \((\exists B \in Rb = r_n(B)) \Rightarrow \exists m \leq |b| (a = r_m(B))\). In an analogous way we define the relation \(\sqsubseteq\) on \(AS\).

(A.4) **Finization:** There are relations \(\leq_{fin}\) and \(\leq_{fin}^0\) on \(AS \times AS\) and \(AR \times AS\), respectively, such that:

1. \(\{a: a \leq_{fin}^0 x\}\) and \(\{y: y \leq_{fin} x\}\) are finite for all \(x \in AS\).
2. \(X \leq Y\) iff \(\forall n \exists m s_n(X) \leq_{fin} s_m(Y)\).
3. \(A \leq_{fin}^0 X\) iff \(\forall n \exists m r_n(A) \leq_{fin}^0 s_m(X)\).
4. \(\forall a \in AR \forall x, y \in AS [a \leq_{fin}^0 x \leq_{fin} y \Rightarrow (a \leq_{fin}^0 y)]\).
5. \(\forall a, b \in AR \forall x \in AS [a \sqsubseteq b \text{ and } b \leq_{fin}^0 x \Rightarrow \exists y \sqsubseteq x (a \leq_{fin}^0 y)]\).

We deal with the basic sets

\(\begin{align*}
[a, Y] &= \{A \in R: A \leq_{fin}^0 Y \text{ and } \exists n (r_n(A) = a)\} \\
[x, Y] &= \{X \in S: X \leq Y \text{ and } \exists n (s_n(X) = x)\}
\end{align*}\)
for $a \in \mathcal{AR}$, $x \in \mathcal{AS}$ and $Y \in \mathcal{S}$. Notation:

$$[n, Y] = [s_n(Y), Y]$$

Also, we define the depth of $a \in \mathcal{AR}$ in $Y \in \mathcal{S}$ by

$$\text{depth}_Y (a) = \begin{cases} \min \{k : a \leq s_k(Y)\}, & \text{if } \exists k (a \leq s_k(Y)) \\ -1, & \text{otherwise} \end{cases}$$

The next result is immediate.

Lemma 1. If $a \sqsubseteq b$ then $\text{depth}_Y (a) \leq \text{depth}_Y (b)$. ■

Now we state the last two axioms:

(A.5) Amalgamation: $\forall a \in \mathcal{AR}$, $\forall Y \in \mathcal{S}$, if $\text{depth}_Y (a) = d$, then:

1. $d \geq 0 \Rightarrow \forall X \in [d, Y] ([a, X] \neq \emptyset)$.
2. Given $X \in \mathcal{S}$,

$$X \leq Y \text{ and } [a, X] \neq \emptyset \Rightarrow \exists Y' \in [d, Y] ([a, Y'] \subseteq [a, X])$$

(A.6) Pigeon hole principle: Suppose $a \in \mathcal{AR}$ has length l and $\mathcal{O} \subseteq \mathcal{AR}_{l+1} = r_{l+1}(\mathcal{R})$. Then for every $Y \in \mathcal{S}$ with $[a, Y] \neq \emptyset$, there exists $X \in [\text{depth}_Y (a), Y]$ such that $r_{l+1}([a, X]) \subseteq \mathcal{O}$ or $r_{l+1}([a, X]) \subseteq \mathcal{O}^c$.

Definition 1. We say that $\mathcal{X} \subseteq \mathcal{R}$ is \mathcal{S}-Ramsey if for every $[a, Y]$ there exists $X \in [\text{depth}_Y (a), Y]$ such that $[a, X] \subseteq \mathcal{X}$ or $[a, X] \subseteq \mathcal{X}^c$. If for every $[a, Y] \neq \emptyset$ there exists $X \in [\text{depth}_Y (a), Y]$ such that $[a, X] \subseteq \mathcal{X}$, we say that \mathcal{X} is \mathcal{S}-Ramsey null.

Definition 2. We say that $\mathcal{X} \subseteq \mathcal{R}$ is \mathcal{S}-Baire if for every $[a, Y] \neq \emptyset$ there exists a nonempty $[b, X] \subseteq [a, Y]$ such that $[b, X] \subseteq \mathcal{X}$ or $[b, X] \subseteq \mathcal{X}^c$. If for every $[a, Y] \neq \emptyset$ there exists a nonempty $[b, X] \subseteq [a, Y]$ such that $[b, X] \subseteq \mathcal{X}$, we say that \mathcal{X} is \mathcal{S}-meager.

It is clear that every \mathcal{S}-Ramsey set is \mathcal{S}-Baire and every \mathcal{S}-Ramsey null set is \mathcal{S}-meager.

Considering \mathcal{AS} with the discrete topology and $\mathcal{AS}^\mathbb{N}$ with the completely metrizable product topology; we say that \mathcal{S} is closed if it corresponds to a closed subset of $\mathcal{AS}^\mathbb{N}$ via the identification $X \rightarrow (s_n(X))_{n \in \mathbb{N}}$.
Definition 3. We say that \((R, S, \leq, \leq^0, r, s)\) is a Ramsey space if every \(S\)-Baire subset of \(R\) is \(S\)-Ramsey and every \(S\)-meager subset of \(R\) is \(S\)-Ramsey null.

Theorem 1 (Abstract Ramsey theorem). Suppose \((R, S, \leq, \leq^0, r, s)\) satisfies (A.1) ... (A.6) and \(S\) is closed. Then ■

Example: The Hales-Jewett space
Fix a countable alphabet \(L = \sqcup_{n \in \mathbb{N}} L_n\) with \(L_n \subseteq L_{n+1}\) and \(L_n\) finite for all \(n\); fix \(v \notin L\) a "variable" and denote \(W_L\) and \(W_{Lv}\) the semigroups of words over \(L\) and of variable words over \(L\), respectively. Given \(X = (x_n)_{n \in \mathbb{N}} \subseteq W_L \cup W_{Lv}\), we say that \(X\) is rapidly increasing if
\[
|x_n| > \sum_{i=0}^{n-1} |x_i|
\]
for all \(n \in \mathbb{N}\). Put
\[
W_L^{[\infty]} = \{X = (x_n)_{n \in \mathbb{N}} \subseteq W_L : X \text{ is rapidly increasing}\}
\]
\[
W_{Lv}^{[\infty]} = \{X = (x_n)_{n \in \mathbb{N}} \subseteq W_{Lv} : X \text{ is rapidly increasing}\}
\]
By restricting to finite sequences with
\[
r_n : W_L^{[\infty]} \to W_L^{[n]} \quad s_n : W_{Lv}^{[\infty]} \to W_{Lv}^{[n]}
\]
we have rapidly increasing finite sequences of words or variable words. The combinatorial subspaces are defined for every \(X \in W_L^{[\infty]}\) by
\[
[X]_L = \{x_n[\lambda_0] \cdots x_n[k] : n_0 < \cdots < n_k, \lambda_i \in L_n\}
\]
\[
[X]_{Lv} = \{x_n[\lambda_0] \cdots x_n[k] : n_0 < \cdots < n_k, \lambda_i \in L_n, \cup \{v\}\}
\]
where "\(^\sim\)" denotes concatenation of words and \(x[\lambda]\) is the evaluation of the variable word \(x\) on the letter \(\lambda\).
For \(w \in [X]_L \cup [X]_{Lv}\) we call support of \(w\) in \(X\) the unique set \(\text{supp}_X(w) = \{n_0 < n_1 < \cdots < n_k\}\) such that \(w = x_n[\lambda_0] \cdots x_n[k]\) as in the definition of the combinatorial subspaces \([X]_L\) and \([X]_{Lv}\). We say that \(Y = (y_n)_{n \in \mathbb{N}} \in W_{Lv}^{[\infty]}\) is a block subsequence of \(X = (x_n)_{n \in \mathbb{N}} \in W_L^{[\infty]}\) if \(y_n \in [X]_{Lv} \forall n\) and
\[
\max(\text{supp}_X(y_n)) < \min(\text{supp}_X(y_m))
\]
whenever \(n < m \), and write \(Y \leq X \). We define the relation \(\leq^0 \) on \(W^{[\omega]}_L \times W^{[\omega]}_{Lv} \) in the natural way. Then, if \((\mathcal{R}, \mathcal{S}, \leq, \leq^0, r, s) = (W^{[\omega]}_L, W^{[\omega]}_{Lv}, \leq, \leq^0, r, s)\) is as before, where \(r, s \) are the restrictions

\[
\begin{align*}
 r_n(X) &= (x_0, x_1, \ldots, x_{n-1}) \\
 s_n(Y) &= (y_0, y_1, \ldots, y_{n-1})
\end{align*}
\]

we have \((A.1)\ldots(A.6)\), particularly, \((A.6)\) is the well known result:

Theorem 2. For every finite coloring of \(W_L \cup W_{Lv} \) and every \(Y \in W^{[\omega]}_{Lv} \) there exists \(X \leq Y \) in \(W^{[\omega]}_{Lv} \) such that \([X]_L\) and \([X]_{Lv}\) are monochromatic. ■

And as a particular case of theorem 1, we have (see [7])

Theorem 3 (Hales–Jewett). The field of \(W^{[\omega]}_{Lv} \)-Ramsey subsets of \(W^{[\omega]}_L \) is closed under the Souslin operation and it coincides with the field of \(W^{[\omega]}_{Lv} \)-Baire subsets of \(W^{[\omega]}_L \). Moreover, the ideals of \(W^{[\omega]}_{Lv} \)-Ramsey null subsets of \(W^{[\omega]}_L \) and \(W^{[\omega]}_{Lv} \)-meager subsets of \(W^{[\omega]}_L \) are \(\sigma \)-ideals and they also coincide. ■

3 The parametrization

We will denote the family of perfect subsets of \(2^{\omega} \) by \(\mathbb{P} \) and define

\[
\mathcal{A}R[X] = \{ b \in \mathcal{A}R : [b, X] \neq \emptyset \}
\]

also we'll use this notation

\[
M \in \mathbb{P} \upharpoonright Q \iff (M \in \mathbb{P}) \land (M \subseteq Q)
\]

From now on we assume that \((\mathcal{R}, \mathcal{S}, \leq, \leq^0, r, s)\) is an Ramsey space; that is, \((A.1)\ldots(A.6)\) hold and \(\mathcal{S} \) is closed. The following are the abstract versions of perfectly-Ramsey sets and the \(\mathbb{P} \times \text{Exp}(\mathcal{R}) \)-Baire property as defined in [5].

Definition 4. \(\Lambda \subseteq 2^{\omega} \times \mathcal{R} \) is **perfectly \(\mathcal{S} \)-Ramsey** if for every \(Q \in \mathbb{P} \) and \([a, Y] \neq \emptyset\), there exist \(M \in \mathbb{P} \upharpoonright Q \) and \(X \in [\text{depth}(a), Y] \) with \([a, X] \neq \emptyset\) such that \(M \times [a, X] \subseteq \Lambda \) or \(M \times [a, X] \subseteq \Lambda^c \). If for every \(Q \in \mathbb{P} \) and \([a, Y] \neq \emptyset\), there exist \(M \in \mathbb{P} \upharpoonright Q \) and \(X \in [\text{depth}(a), Y] \) with \([a, X] \neq \emptyset\) such that \(M \times [a, X] \subseteq \Lambda^c \); we say that \(\Lambda \) is **perfectly \(\mathcal{S} \)-Ramsey null**
A parametrization of the abstract Ramsey theorem

Definition 5. $\Lambda \subseteq 2^\infty \times R$ is perfectly S-Baire if for every $Q \in \mathbb{P}$ and $[a, Y] \neq \emptyset$, there exist $M \in \mathbb{P} \upharpoonright Q$ and $[b, X] \subseteq [a, Y]$ such that $M \times [b, X] \subseteq \Lambda$ or $M \times [b, X] \subseteq \Lambda^c$. If for every $Q \in \mathbb{P}$ and $[a, Y] \neq \emptyset$, there exist $M \in \mathbb{P} \upharpoonright Q$ and $[b, X] \subseteq [a, Y]$ such that $M \times [b, X] \subseteq \Lambda^c$; we say that Λ is perfectly S-meager.

Now, the natural extension of combinatorial forcing will be given. From now on fix $\mathcal{F} \subseteq 2^{<\infty} \times \mathcal{A}R$ and $\Lambda \subseteq 2^\infty \times R$.

Combinatorial forcing 1 Given $Q \in \mathbb{P}$, $Y \in \mathcal{S}$ and $(u, a) \in 2^{<\infty} \times \mathcal{A}R[Y]$; we say that (Q, Y) accepts (u, a) if for every $x \in Q(u)$ and for every $B \in [a, Y]$ there exist integers k and m such that $(x_{|k}, r_m(B)) \in \mathcal{F}$.

Combinatorial forcing 2 Given $Q \in \mathbb{P}$, $Y \in \mathcal{S}$ and $(u, a) \in 2^{<\infty} \times \mathcal{A}R[Y]$; we say that (Q, Y) accepts (u, a) if $Q(u) \times [a, Y] \subseteq \Lambda$.

For both combinatorial forcings we say that (Q, Y) rejects (u, a) if for every $M \in \mathbb{P} \upharpoonright Q(u)$ and for every $X \leq Y$ compatible with a; (M, X) does not accept (u, a). Also, we say that (Q, Y) decides (u, a) if it accepts or rejects it.

The following lemmas hold for both combinatorial forcings.

Lemma 2. a) If (Q, Y) accepts (rejects) (u, a) then (M, X) also accepts (rejects) (u, a) for every $M \in \mathbb{P} \upharpoonright Q(u)$ and for every $X \leq Y$ compatible with a.

b) If (Q, Y) accepts (rejects) (u, a) then (Q, X) also accepts (rejects) (u, a) for every $X \leq Y$ compatible with a.

c) For all (u, a) and (Q, Y) with $[a, Y] \neq \emptyset$, there exist $M \in \mathbb{P} \upharpoonright Q$ and $X \leq Y$ compatible with a, such that (M, X) decides (u, a).

d) If (Q, Y) accepts (u, a) then (Q, Y) accepts (u, b) for every $b \in r_{|a|+1}([a, Y])$.

e) If (Q, Y) rejects (u, a) then there exists $X \in [\text{depth}_Y(a), Y]$ such that (Q, Y) does not accept (u, b) for every $b \in r_{|a|+1}([a, X])$.

f) (Q, Y) accepts (rejects) (u, a) iff (Q, Y) accepts (rejects) (v, a) for every $v \in 2^{<\infty}$ such that $u \subseteq v$.

Proof: (a) and (b) follow from the inclusion: $M(u) \times [a, X] \subseteq Q(u) \times [a, Y]$ if $X \leq Y$ and $M \subseteq Q(u)$.
Suppose that we have \((Q, Y)\) such that for every \(M \in \mathbb{P} \) and every \(X \leq Y\) compatible with \(a\), \((M, X)\) does not decide \((u, a)\). Then \((M, X)\) does not accept \((u, a)\) if \(M \in \mathbb{P} \mid Q(u)\); i.e. \((Q, Y)\) rejects \((u, a)\).

(d) Follows from: \(a \subseteq b\) and \([a, Y] \subseteq [b, Y]\), if \(b \in r_{|a|+1}([a, X])\).

(e) Suppose \((Q, Y)\) rejects \((u, a)\) and define \(\phi: \mathcal{AR}_{|a|+1} \rightarrow 2\) by \(\phi(b) = 1\) if \((Q, Y)\) accepts \((u, b)\). By \((A.6)\) there exist \(X \in [\text{depth}_Y(a), Y]\) such that \(\phi\) is constant in \(r_{|a|+1}([a, X])\). If \(\phi(r_{|a|+1}([a, X])) = 1\) then \((Q, X)\) accepts \((u, a)\), which contradicts \((Q, Y)\) rejects \((u, a)\) (by part (b)). The result follows.

(f) \((\Leftarrow)\)Obvious.

\((\Rightarrow)\) Follows from the inclusion: \(Q(v) \subseteq Q(u)\) if \(u \subseteq v\).

We say that a sequence \([n_k, Y_k]\) \(k \in \mathbb{N}\) is a fusion sequence if:

1. \((n_k)_{k \in \mathbb{N}}\) is nondecreasing and converges to \(\infty\).
2. \(X_{k+1} \in [n_k, X_k]\) for all \(k\).

Note that since \(S\) is closed, for every fusion sequence \([n_k, Y_k])_{k \in \mathbb{N}}\) there exist a unique \(Y \in S\) such that \(s_{n_k}(Y) = s_{n_k}(X_k)\) and \(Y \in [n_k, X_k]\) for all \(k\). \(Y\) is called the fusion of the sequence and is denoted \(\text{lim}_k X_k\).

Lemma 3. Given \(P \in \mathbb{P}, Y \in S\) and \(N \geq 0\); there exist \(Q \in \mathbb{P} \mid P\) and \(X \leq Y\) such that \((Q, X)\) decides every \((u, a)\) \(\in 2^{<\infty} \times \mathcal{AR}[X]\) with \(N \leq \text{depth}_X(a) \leq |u|\).

Proof: We build sequences \((Q_k)_k\) and \((Y_k)_k\) such that:

1. \(Q_0 = P, Y_0 = Y\).
2. \(n_k = N + k\).
3. \((Q_{k+1}, Y_{k+1})\) decides every \((u, b)\) \(\in 2^{n_k} \times \mathcal{AR}[Y_k]\) with \(\text{depth}_Y(b) = n_k\).

Suppose we have defined \((Q_k, Y_k)\). List \(\{b_0, \ldots, b_r\} = \{b \in \mathcal{AR}[Y_k]: \text{depth}_Y(b) = n_k\}\) and \(\{u_0, \ldots, u^{n_k-1}\} = 2^{n_k}\). By lemma 1(c) there exist \(Q_k^{0,0} \in \mathbb{P} \mid Q_k(u_0)\) and \(Y_k^{0,0} \in [n_k, Y_k]\) compatible with \(b_0\) such that \((Q_k^{0,0}, Y_k^{0,0})\) decides \((u_0, b_0)\). In this way we can obtain \((Q_k^{i,j}, Y_k^{i,j})\) for every \((i, j) \in \{0, \ldots, 2^{n_k} - 1\} \times \{0, \ldots, r\}\), which decides \((u_i, b_j)\) and such that \(Q_k^{i,j+1} \in \mathbb{P} \mid Q_k^{i,j}(u_i), Y_k^{i,j+1} \leq Y_k^{i,j}\) is compatible with \(b_{j+1}, Q_k^{i+1,0} \in \mathbb{P} \mid Q_k(u_{i+1})\) and \(Y_k^{i+1,0} \leq Y_k^{i,r}\).
Define
\[Q_{k+1} = \bigcup_{i=0}^{2^{n_k} - 1} Q_{i,r}^{i+1} \quad \text{and} \quad Y_{k+1} = Y_{k}^{2^{n_k} - 1,r} \]

Then, given \((u, b) \in 2^{n_k} \times AR[Y_{k+1}]\) with \(\text{depth}_{Y_{k+1}}(b) = n_k = \text{depth}_X(b)\), there exist \((i, j) \in \{0, \ldots, 2^{n_k} - 1\} \times \{0, \ldots, r\}\) such that \(u = u_i\) and \(b = b_j\). So \((Q_{k}^{i,j}, Y_{k}^{i,j})\) decides \((u, b)\) and, since
\[Q_{k+1}(u_i) = Q_{k}^{i,r} \subseteq Q_{k}^{i,j}(u_i) \subseteq Q_{k}^{i,j} \quad \text{and} \quad Y_{k+1} \subseteq Y_k \]
we have \((Q_{k+1}, Y_{k+1})\) decides \((u, b)\) (by lemma 1(a)) We claim that \(Q = \cap_k Q_k\) and \(X = \lim_k Y_k\) are as required: given \((u, a) \in 2^{\leq \infty} \times AR[X]\) with \(N \leq \text{depth}_X(a) \leq |u|\), we have \(\text{depth}_X(a) = n_k = \text{depth}_Y(a)\) for some \(k\). Then, if \(|u| = n_k\), \((Q_{k+1}, Y_{k+1})\) from the construction of \(X\) decides \((u, a)\) and hence \((Q, X)\) decides \((u, a)\). If \(|u| > n_k\) \((Q, X)\) decides \((u, a)\) by lemma 1(f).

\textbf{Lemma 4.} Given \(P \in \mathbb{P}, Y \in \mathcal{S}, (u, a) \in 2^{\leq \infty} \times AR[Y]\) with \(\text{depth}_Y(a) \leq |u|\) and \((Q, X)\) as in lemma 2 with \(N = \text{depth}_Y(a)\); if \((Q, X)\) rejects \((u, a)\) then there exist \(Z \leq X\) such that \((Q, Z)\) rejects \((v, b)\) if \(u \sqsubset v, a \sqsubset b\) and \(\text{depth}_Z(b) \leq |v|\).

\textbf{Proof:} Let’s build a fusion sequence \([n_k, Z_k]_k\), with \(n_k = |u| + k\). Let \(Z_0 = X\). Then \((Q, Z_0)\) rejects \((u, a)\) (and by lemma 1(f) it rejects \((v, a)\) if \(u \sqsubset v\)). Suppose we have \((Q, Z_k)\) which rejects every \((v, b)\) with \(v \subseteq 2^{n_k}\) extending \(u, a \sqsubset b\) and \(\text{depth}_{Z_k}(b) \leq n_k\). List \(\{b_0, \ldots, b_r\} = \{b \in AR[Z_k]: a \sqsubset b\} \) and \(\text{depth}_{Z_k}(b) \leq n_k\}\} and \(\{u_0, \ldots, u_s\}\) the set of all \(v \subseteq 2^{n_k+1}\) extending \(u\). By lemma 1(f) \((Q, Z_k)\) rejects \((u_i, b_j)\), for every \((i, j) \in \{0, \ldots, s\} \times \{0, \ldots, r\}\). Use lemma 1(e) to find \(Z_{k,0}^0 \subseteq [n_k, Z_k]\) such that \((Q, Z_{k,0}^0)\) rejects \((u_0, b)\) if \(b \in r_{|b_0|+1}([b_0, Z_{k,0}^0])\). In this way, for every \((i, j) \in \{0, \ldots, s\} \times \{0, \ldots, r\}\), we can find \(Z_{k,i,j}^0 \subseteq [n_k, Z_k]\) such that \(Z_{k+1} = Z_{k,i,j}^0 \subseteq [n_k, Z_k]^0\}\}) and \((Q, Z_{k,i,j}^0)\) rejects \((u_i, b)\) if \(b \in r_{|b_j|+1}([b_j, Z_{k,i,j}^0])\). Define \(Z_{k+1} = Z_{k,i,j}^{r+1}\). Note that if \((v, b) \in 2^{\leq \infty} \times AR[Z_{k+1}], a \sqsubset b, u \sqsubset v\) and \(\text{depth}_{Z_{k+1}}(b) = n_k + 1\) then \(v = u_i\) for some \(i \in \{0, \ldots, s\}\) and \(b = r_{|b|}(A)\), \(a = r_{|a|}(A)\) for some \(A \subseteq Z_{k+1}\); by (A.4)(5) there exist \(m \leq n_k\) such that \(b' = r_{|b|+1}(A) \leq s_m(Z_{k+1})\), so \(\text{depth}_{Z_{k+1}}(b') \leq n_k\), i.e. \(b' = b_j\) for some \(j \in \{0, \ldots, r\}\). Then \(b \in r_{|b|+1}([b_j, Z_{k+1}^0])\). Hence, by lemma 1(f), \((Q, Z_{k+1})\) rejects \((v, b)\). Then \(Z = \lim_k Z_k\) is as required: given \((v, b)\) with \(u \sqsubset v, a \sqsubset b\) and \(\text{depth}_{Z}(b) \leq |v|\) then \(\text{depth}_{Z}(b) = \text{depth}_{Y}(a) + k \leq n_k\) for some \(k\) and \(b \in r_{|b|+1}([b_j, Z_{k+1}^j])\) for some \(j \in \{0, \ldots, r\}\) from the construction of \(Z\) (again, by (A.4)(5)). So

(Q, Z_k) (from the construction of Z) rejects (v, b) and, by lemma 1(a), (Q, Z) also does it. ■

The following theorem is an extension of theorem 3 [8] and its proof is analogous.

Theorem 4. For every $F \subseteq 2^{<\omega} \times AR$, $P \in P$, $Y \in S$ and $(u, a) \in 2^{<\omega} \times AR$ there exist $Q \in \mathbb{P} \upharpoonright P$ and $X \leq Y$ such that one of the following holds:

1. For every $x \in Q$ and $A \in [a, X]$ there exist integers $k, m > 0$ such that $(x|_k, r_m(A)) \in F$.

2. $(T_Q \times AR[X]) \cap F = \emptyset$.

Proof: Without loss of generality, we can assume $(u, a) = (\langle \rangle, \emptyset)$. Consider combinatorial forcing 1. Let (Q, X) as in lemma 3 ($N = 0$). If (Q, X) accepts $(\langle \rangle, \emptyset)$, part (1) holds. If (Q, X) rejects $(\langle \rangle, \emptyset)$, use lemma 4 to obtain $Z \leq X$ such that (Q, X) detects $(u, a) \in 2^{<\omega} \times AR[Z]$. If $(t, b) \in (T_Q \times AR[Z]) \cap F$, find $u_t \in 2^{<\omega}$ such that $Q(u_t) \subseteq Q \cap [t]$. Thus, (Q, Z) accepts (u, b). In fact: for $x \in Q(u_t)$ and $B \in [b, Z]$ we have $(x|_k, r_m(A)) = (t, b) \in F$ if $k = |t|$ and $m = |b|$. By lemma 2(f), (Q, Z) accepts (v, b) if $u_t \sqsubset v$ and $depth_Z(b) \leq |v|$. But this contradicts the choice of Z. Hence, $(T_Q \times AR[X]) \cap F = \emptyset$. ■

The next theorem is our main result and its proof is analogous to theorem 3 [8].

Theorem 5. For $\Lambda \subseteq 2^{<\omega} \times R$ we have:

1. Λ is perfectly S-Ramsey iff it is perfectly S-Baire.

2. Λ is perfectly S-Ramsey null iff it is perfectly S-meager.

Proof: (1) We only have to prove the implication from right to left. Suppose that $\Lambda \subseteq 2^{<\omega} \times R$ is perfectly S-Baire. Again, without loss of generality, we can lead with a given $Q \times [0, Y]$. Using combinatorial forcing and lemma 3, we have the following:

Claim 1. Given $\hat{\Lambda} \subseteq 2^{<\omega} \times R$, $P \in P$ and $Y \in S$, there exists $Q \in \mathbb{P} \upharpoonright P$ and $X \leq Y$ such that for each $(u, b) \in 2^{<\omega} \times AR[X]$ with $depth_X(b) \leq |u|$ one of the following holds:

i) $Q(u) \times [b, X] \subseteq \hat{\Lambda}$

ii) $R \times [b, Z] \not\subseteq \hat{\Lambda}$ for every $R \subseteq Q(u)$ and every $Z \leq X$ compatible with b.

By applying the claim to Λ, P and Y, we find $Q_1 \subseteq P \upharpoonright P$ and $X_1 \leq Y$ such that for each $(u, b) \in 2^{<\infty} \times AR[X_1]$ with $\text{depth}_{X_1}(b) \leq |u|$ one of the following holds:

- $Q_1(u) \times [b, X_1] \subseteq \Lambda$ or
- $R \times [b, Z] \not\subseteq \Lambda$ for every $R \subseteq Q_1(u)$ and every $Z \leq X_1$ compatible with b.

For each $t \in T_{Q_1}$, choose $u_1^t \in 2^{<\infty}$ with $u_1^t(Q_1) \upharpoonright t$. If we define the family

$$F_1 = \{(t, b) \in T_{Q_1} \times AR[X_1]: Q_1(u_1^t) \times [b, X_1] \subseteq \Lambda\}$$

then we find $S_1 \subseteq Q_1$ and $Z_1 \leq X_1$ as in theorem 4. If (1) of theorem 4 holds, we are done. If part (2) holds, apply the claim to Λ^c, S_1 and Z_1 to find $Q_2 \subseteq P \upharpoonright P$ and $X_2 \leq Y$ such that for each $(u, b) \in 2^{<\infty} \times AR[X_2]$ with $\text{depth}_{X_2}(b) \leq |u|$ one of the following holds:

- $Q_2(u) \times [b, X_2] \subseteq \Lambda^c$ or
- $R \times [b, Z] \not\subseteq \Lambda^c$ for every $R \subseteq Q_2(u)$ and every $Z \leq X_2$ compatible with b.

Again, for each $t \in T_{Q_2}$, choose $u_2^t \in 2^{<\infty}$ with $u_2^t(Q_2) \upharpoonright t$. Define the family

$$F_2 = \{(t, b) \in T_{Q_2} \times AR[X_2]: Q_2(u_2^t) \times [b, X_2] \subseteq \Lambda\}$$

and find $S_2 \subseteq Q_2$ and $Z_2 \leq X_2$ as in theorem 4. If (1) holds, we are done and part (2) is not possible since Λ is perfectly S-Baire (see [8]). This proves (1).

To see part (2), notice that, as before, we only have to prove the implication from right to left, which follows from part (1) if Λ is perfectly S-meager.

Corollary 1 (Parametrized infinite dimensional Hales-Jewett theorem). For $\Lambda \subseteq 2^{<\infty} \times W^{[\infty]}_L$ we have:

1. Λ is perfectly Ramsey iff it has the $P \times W^{[\infty]}_L$-Baire property.
2. Λ is perfectly Ramsey null iff it is $P \times W^{[\infty]}_L$-meager.

Making $R = S$ in $(\mathcal{R}, \leq, R, S, \leq, [0, r, s])$, we obtain the following:

Corollary 2 (Mijares). If $(\mathcal{R}, \leq, (p_n)_{n \in \mathbb{N}})$ is a topological Ramsey space then:

1. $\Lambda \subseteq \mathcal{R}$ is perfectly Ramsey iff has the $P \times \text{Exp}(\mathcal{R})$-Baire property.
Corollary 3 (Pawlikowski). For $\Delta \subseteq 2^\omega \times N[\omega]$ we have:

1. Λ is perfectly Ramsey iff it has the $P \times \text{Exp}(N[\omega])$-Baire property.

2. Λ is perfectly Ramsey null iff Λ is $P \times \text{Exp}(N[\omega])$-meager.

Now we will prove that the family of perfectly S-Ramsey and perfectly S-Ramsey null subsets of $2^\omega \times \mathcal{R}$ are closed under the Souslin operation. Recall that the result of applying the Souslin operation to a given $(\Lambda_{\alpha})_{\alpha \in \mathcal{A}}$ is

$$\bigcup_{\alpha \in \mathcal{A}} \bigcap_{n \in \mathbb{N}} \Lambda_{\alpha_n}(A)$$

Proposition 1. The perfecty S-Ramsey null subsets of $2^\omega \times \mathcal{R}$ form a σ-ideal.

Proof: This proof is also analogous to its corresponding version in [8] (lemma 3). So we just expose the main ideas. Given an increasing sequence of perfectly S-Ramsey null subsets of $2^\omega \times \mathcal{R}$ and $P \times [\emptyset, Y]$, we proceed as in lemma 3 to build fusion sequences $(Q_n)_n$ and $[n+1, X_n]$ such that

$$Q_n \times [b, X_n] \cap \Lambda_n = \emptyset$$

for every $n \in \mathbb{N}$ and $b \in \mathcal{A}R[X_n]$. Thus, if $Q = \cap_n Q_n$ and $X = \lim_n X_n$, we have $Q \times [\emptyset, X] \cap \bigcup_n \Lambda_n = \emptyset$.

Recall that given a set X, two subsets A, B of X are "compatibles" with respect to a family \mathcal{F} of subsets X if there exists $C \in \mathcal{F}$ such that $C \subseteq A \cap B$. And \mathcal{F} is M-like if for $\mathcal{G} \subseteq \mathcal{F}$ with $|\mathcal{G}| < |\mathcal{F}|$, every member of \mathcal{F} which is not compatible with any member of \mathcal{G} is compatible with $X \setminus \bigcup \mathcal{G}$. A σ-algebra A of subsets of X together with a σ-ideal $A_0 \subseteq A$ is a Marczewski pair if for every $A \subseteq X$ there exists $\Phi(A) \in \mathcal{A}$ such that $A \subseteq \Phi(A)$ and for every $B \subseteq \Phi(A) \setminus A$, $B \in A \Rightarrow B \in A_0$. The following is a well known fact:

Theorem 6 (Marczewski). Every σ-algebra of sets which together with a σ-ideal is a Marczewski pair, is closed under the Souslin operation.

Let’s denote $\mathcal{E}(\mathcal{S}) = \{[n, Y] : n \in \mathbb{N}, Y \in \mathcal{S}\}$.

Proposition 2. If $|\mathcal{S}| = 2^{\aleph_0}$, then the family $\mathcal{E}(\mathcal{S})$ is M-like.
Proof: Consider $B \subseteq \mathcal{E}(S)$ with $|B| < |\mathcal{E}(S)| = 2^{\aleph_0}$ and suppose that $[a, Y]$ is not compatible with any member of B, i.e., for every $B \in B$, $B \cap [a, Y]$ does not contain any member of $\mathcal{E}(S)$. We claim that (Q, Y) is compatible with $\mathcal{R} \setminus \bigcup B$. In fact:

Since $|B| < 2^{\aleph_0}$, $\bigcup B$ is \mathcal{S}-Baire (it is \mathcal{S}-Ramsey). So, there exist $[b, X] \subseteq [a, Y]$ such that:

1. $[b, X] \subseteq \bigcup B$ or
2. $[b, X] \subseteq \mathcal{R} \setminus \bigcup B$

(1) is not possible because $[a, Y]$ is not compatible with any member of B. And (2) says that $[a, Y]$ is compatible with $\mathcal{R} \setminus \bigcup B$.

As consequences of the previous proposition and theorem 6, the following facts hold.

Corollary 4. If $|S| = 2^{\aleph_0}$, then the family of perfectly \mathcal{S}-Ramsey subsets of $2^\omega \times \mathcal{R}$ is closed under the Souslin operation.

Corollary 5. The field of perfectly $W^\omega_{L^\omega}$-Ramsey subsets of $2^\omega \times W^\omega_{L^\omega}$ is closed under the Souslin operation.

Finally, making $\mathcal{R} = S$ in $(\mathcal{R}, S, \leq, \leq^0, r, s)$, we obtain the following:

Corollary 6 (Mijares). If (\mathcal{R}, \leq, r) satisfies (A.1) . . . (A.6), \mathcal{R} is closed, and $|\mathcal{R}| = 2^{\aleph_0}$ then the family of perfectly Ramsey subsets of $2^\omega \times \mathcal{R}$ is closed under the Souslin operation.

Corollary 7 (Pawlikowski). The field of perfectly Ramsey subsets of $2^\omega \times \mathbb{N}^{[\omega]}$ is closed under the Souslin operation.

References

[1] Carlson, T. J, Simpson, S. G. *Topological Ramsey theory*, in Nešetřil, J., Rödl, *Mathematics of Ramsey Theory* (Eds.), Springer, Berlin, 1990, pp. 172–183.

[2] Di Prisco, C., *Partition properties and perfect sets*, Adv. in Math., 176(2003), 145–173.

[3] Di Prisco, C., Todorcevic, S., *Souslin partitions of products of finite sets*, Notas de Lógica Matemática Vol. 8, Universidad Nacional del Sur, Bahía Blanca, Argentina, 1993, pp. 119-127.
[4] Elentuck, E. *A new proof that analitic sets are Ramsey*, J. Symbolic Logic, 39(1974), 163–165.

[5] Farah, I. *Semiselective coideals*, Mathematika., 45(1998), 79–103.

[6] Galvin, F., Prikry, K. *Borel sets and Ramsey’s theorem*, J. Symbolic Logic, 38(1973), 193–198.

[7] Hales, A.W. and Jewett, R.I., *Regularity and Propositional Games*, Trans. Amer. Math. 106 (1963), 222-229.

[8] Mijares, J. *Parametrizing the abstract Ellentuck theorem*, Discrete Math., 307(2007), 216–225.

[9] A. Miller, *Infinite combinatorics and definibility*, Ann. Pure Appl. Logic 41(1989), 178–203.

[10] Milliken, K., *Ramsey’s theorem with sums or unions*, J. Comb. Theory, ser A 18(1975), 276–290.

[11] Nash-Williams, C. St. J. A., *On well-quasi-ordering transfinite sequences*, Proc. Cambridge Philo. Soc., 61(1965), 33–39.

[12] J. Pawlikowski, *Parametrized Elletuck theorem*, Topology and its applications 37(1990), 65–73.

[13] Todorcevic, S., *Introduction to Ramsey spaces*, Princeton University Press, Princeton, New Jersey, 2010.