Genome-wide characterization of copy number variations in genetic resistance to Marek’s disease using next generation sequencing

CURRENT STATUS: UNDER REVIEW

Hao Bai
bhowen1027@yzu.edu.cn
Yangzhou University
Corresponding Author
ORCID: 0000-0002-5738-4186

Yanghua He
Department of Animal and Avian Sciences, University of Maryland, College Park

Yi Ding
Department of Animal and Avian Sciences, University of Maryland, College Park

Huanmin Zhang
USDA-ARS Avian Disease and Oncology Laboratory, East Lansing

Jilan Chen
Institute of Animal Science, Chinese Academy of Agricultural Sciences

Jiuzhou Song
Department of Animal and Avian Sciences, University of Maryland, College Park

DOI: 10.21203/rs.2.12741/v1

SUBJECT AREAS
Molecular Genetics Population Genetics

KEYWORDS
Copy number variation; Chicken; Inbred lines; Recombinant congenic strains; Marek’s disease; Next generation sequencing
Abstract

Background: Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD. Results: In the present study, to unravel the potential genetic mechanisms underlying MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1,649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1,360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using qRT-PCR, all of which were successfully confirmed. Finally, qRT-PCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying MD in view of its function and overlaps with
previous study. Conclusions: Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.

Background

Marek’s disease (MD) is a T cell lymphoma induced by the highly oncogenic α-herpesvirus II disease virus [1], which goes through a complex life with four main phases [2, 3]: an early cytolytic phase at 2-7 days post infection (dpi), a latent phase around 7-10 dpi, a late cytolytic phase with the presence of tumors that is triggered between 14-21 dpi and finally a proliferation phase after 28 dpi. Currently, MD is a commercially important neoplastic disease of chickens and also one of the main chronic infectious diseases concern threatening the global poultry industry. The control of MD mainly relies on vaccination, however, the vaccination efficacy has been experiencing erosion because of new emerging strains of Marek’s disease virus (MDV) with escalated virulence. Enhancing genetic resistance to MD in poultry is an important long-term goal to control MD. Therefore, understanding of genetic basis of MD and improving MD resistance in chickens are of great interest for the poultry industry and animal welfare. In order to optimally implement this control strategy through marker assisted selection (MAS) and to understand the etiology and mechanisms of MD, it is necessary to identify more specific variants and genes with respect to MD latency.

Genetic variations play crucial roles in phenotypic diversity [4], some of which may underlie major mechanisms that account for variations in disease resistance. The identification of structural variations and potential genetic markers is very
important for better understanding of disease resistance, as well as genomic prediction and MAS. There are several types of genetic variations, where copy number variation (CNV) is one of the important genetic variants. To our knowledge, CNV is a type of important genomic structural variation which includes intermediately sized DNA segments that have undergone submicroscopic insertion, deletion, segmental duplication, and complex changes of greater than 1 kilobases (Kb) to several megabases (Mb) in size [5]. It is also a major source of genetic variation underlying phenotypic diversity [6]. Since the first two genome-wide scans for CNVs in human [7, 8], an large amount of CNV detection studies have been performed, which revealed that CNVs are ubiquitously distributed in the genome and can influence the phenotype via regulations of gene expression and gene dosage [9-11]. Besides, numerous studies in other species have also shown that CNVs contributed to phenotypic variation of complex diseases and traits [12-19], including MD studies [20-22]. Two major platforms based on SNP chip, comparative genomic hybridization (CGH) array and SNP genotyping array, are traditionally used for CNVs detection. However, due to the limitation in resolution and sensitivity, it is difficult to detect small CNVs shorter than 10 kb in length and to identify the precise boundaries of CNVs. In recent years, a variety of CNV detection approaches based on next-generation sequencing (NGS) were proposed and offer promising alternatives as they have higher effective resolution and sensitivity to discover CNVs with more types and wider size ranges. Advances in NGS have provided a new platform for more detailed characterization of CNVs in genomes [23-25].

The primary aim of the present study is to perform a genome-wide CNV analysis to detect CNVs contribute to MD resistance or susceptibility. We applied deep sequencing on nine different genetic chicken lines that significantly vary in genetic
resistance to MD. CNVnator [26] was employed to identify a comprehensive map of CNVRs and genes. qRT-PCR was used to verify the detected CNVRs. Our analysis provides valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.

Results

Mapping statistics and CNV detection

In this study, we performed whole genome sequencing in nine different lines (Fig. 1) of female chickens using Illumina paired-end libraries. The average number of raw reads were approximately 242.26, 230.56, 127.06, 31.39, 34.50, 42.12, 61.06, 57.68 and 37.72 million for lines 63, 72, F1, and RCS-A, D, J, L, M, X, respectively (Additional file 1: Table S1). After quality control, an average of 30.42 to 226.30 million reads of each chicken line were successfully aligned to the reference genome with the mapping levels ranging from 90.04% to 98.10% for all the individuals. The sequencing effective depth varied from an average of 5.95× for six RCSs to an average of 19.84× for lines 63, 72 and their F1 hybrid, and the average coverage with respect to the reference genome was 88.25%. These high quality alignments were confident for the subsequent analysis with a minimum of false positives.

We then applied the CNVnator software for CNV detection and the average number of CNVs per individual was 1,888, ranging from 1,368 in line RCS-A to 2,476 in line RCS-J that passed our stringent filtering criteria. The size of these CNVs ranges from 1 Kb to 9.56 Mb, with an average of 95.56 Kb. Detailed statistics of CNV calls are shown in Additional file 2: Table S2. A total of 1,649 CNV regions (CNVRs) (Table 1)
allowing for CNV overlaps of 1 bp or greater were obtained across all the chicken lines after merging, covering autosomes 1-28, and sex chromosomes Z and W. The chicken CNV map across the genome is shown in Fig. 2. The length of CNVRs ranged from 1 Kb to 18.19 Mb with an average of 0.36 Mb. In total, 1,200 (72.8%) out of all CNVRs had sizes varying from 1 to 200 Kb (Fig. 3A). The count of CNVRs on each chromosome was directly proportional to the chromosome length, and five macrochromosomes (chr1-5) possessed a large proportion (874, 53.0%) of all putative CNVRs. The number of CNVRs in different chicken lines varied greatly, ranging from 536 in RCS-L to 852 in RCS-A. Among all CNVRs, 495 (30.02%) were present in only one chicken line and 90 (5.46%) CNVRs are shared in all the nine chicken lines (Fig. 3B). In addition, the CNVRs belonging to gain and loss account for 47.1% (776 events) and 52.9% (873 events), respectively.

Gene annotation and functional analysis

The genes harbored in the inferred CNVRs were extracted using custom Perl scripts. As a result, a total of 2,588 RefSeq genes within the regions of the 1,649 CNVRs were obtained, where a majority of these genes were involved in immune, tumor and diseases. The identified genes were submitted to DAVID (version 6.8) for GO and pathway enrichment analyses. Using functional annotation clustering, at the highest classification stringency, 145 clusters were formed, where only 9 clusters were chosen after using an enrichment cutoff at > 1.0 (Additional file 3: Table S3). GO terms and KEGG pathways analyses invoked in DAVID yielded 36 significant enriched (28 terms of biological process, 2 terms of cellular component, and 6 terms of molecular function) functional terms ($P < 0.05$, Fig. 4), and 6 significant enriched pathways ($P < 0.05$, Table 2), including the JAK/STAT signaling pathway (ggao4630, Additional file 4: Figure S1). The detailed information of all the GO
terms and pathways are shown in Additional file 5: Table S4.

PCA analysis and cluster

To investigate genetic structure in nine inbred chicken lines, we performed a principal component analysis (PCA) using the CNV segments by custom R scripts. Nine principal components were calculated and the first two PCs were used in the plot (Fig. 5A). The nine lines were clustered to approximate four groups with the similar patterns, as indicated by dashed circles (Fig. 5A), which were consistent with their susceptibility to MD (Fig. 5B). Lines RCS-A, M and 7_2 were well clustered together with high MD incidence. Lines RCS-D, J, L and X were clustered together with high resistance to MD. Interestingly enough, as expected, F_1 individuals with a medium MD incidence were in an intermediary position between line 7_2 and line 6_3, which provided the theoretical basis of heterosis and identification of imprinting genes for disease resistance.

Shared versus line-specific CNVRs

To investigate how frequently CNVRs were shared or lineage-specific across different lines, we calculated the CNVR numbers among the nine inbred chicken lines (Table 1). In total, 90 CNVRs were detected across all the individuals, which represented the commonly shared CNVRs. A total of 55, 44, 82, 15, 14, 72, 190, 18, and 5 CNVRs were detected as line-specific CNVRs in line 6_3, 7_2, F_1, RCS-A, D, J, L, M, and X, respectively, as compared to other lines (Table 1, Additional file 6: Table S5). Importantly, the line 6_3 and 7_2 lineage-specific CNVRs could potentially offer certain clues to explore the genetic mechanisms of MD resistance or susceptibility. So, a total of 62 and 57 harbored genes were identified in line 6_3 and 7_2, respectively, including several immune-, tumor- and disease-related genes, such as
interferon regulatory factor 2 (IRF2), which was a line 7₂ line-specific gene in this study (Additional file 7: Table S6). Interestingly, our lab also found a MD-resistant associated differentially methylated region (DMR, chr4: 38,999,001-39,000,000), which was hypermethylated in line 6₃ than 7₂, in the previous DNA methylation study (not published). The harbored region was also IRF2, which is involved in immune response IFN alpha/beta signaling pathway. This gene could be a candidate gene associated with MD susceptibility.

CNVRs validation by qRT-PCR

To confirm the identified CNVRs, 10 CNVRs containing gains (duplications) and losses (deletions) detected here were validated by qRT-PCR using two reference genes (THRSP and β-actin). We found that all of the 10 CNVRs were confirmed in agreement with the CNVnator results (Fig. 6A), further supporting the reliability of the detected CNVRs. We also performed a qRT-PCR validation on two line 7₂ lineage-specific deletion CNVRs: CNVR6 (chr4: 38,999,001-39,000,200, harbored gene: IRF2) and CNVR7 (chr4: 82,407,001-82,409,800, harbored gene: MAX dimerization protein 4, MXD4). For CNVR6, a total deletion was detected in line 7₂, while line 6₃ had a normal status. For CNVR7, line 7₂ had two third of the normal copy numbers, while line 6₃ also had a normal status (Fig. 6B). Therefore, the copy numbers of these two loci were found significantly lower in line 7₂ as compared to line 6₃, again supporting our CNV calls and suggesting that they are potentially linked to MD susceptibility.

Comparison with other studies on CNV in chickens

Considering that most of the previous CNV detection studies based on the galGal2 and galGal3 genome assembly, coordinates of the CNVRs were converted using the
UCSC liftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). We migrated all chromosomal CNVRs from galGal2 and galGal3 (used in previous studies) to galGal4. We eventually obtained 585 CNVRs in the present study for comparison. Our results were then compared to 12 previous reports on chicken genomic CNV (Table 3). As a result, about 3.7%, 5.2% and 4.1% of the Crooijmans et al.’s [27], Tian et al.’s [28] and Yi et al.’s [25] results can be validated in our study, respectively. Moreover, about 12.1%, 4.0% and 8.8% of the Luo et al.’s [20], Yan et al.’s [21] and Xu et al.’s [22] results that also involved in MD were validated in our study. Taken together, 42.2% of our CNVRs overlapped with these three MD studies. The detailed information of CNVRs identified in this study and previous studies is provided in Additional file 8: Table S7.

Discussion

MD, a complicated tumor disease, has been used as a model for human tumor study [29]. The genetic mechanism underlying MD is likely to be very complex and remains incompletely understood. Thus, it is important to understand the genetic basis of MD-resistant or MD-susceptible for poultry, which can provide crucial clues for human diseases. In the present study, based on the high throughput sequencing platform, some bioinformatics analyses were conducted to identify CNVs, genes and enriched pathways taking full advantage of identical genetic background in nine inbred chicken lines.

Copy number variations in the chicken genome have been explored by many research groups in the past decade. However, most of the previous studies focused on the CNV discoveries using low-density SNP arrays [30, 31]. With the development of high-throughput genotyping technology, the NGS data has been used to detect
the complex diseases and traits-related CNVs. CNV detections based on NGS data, which has much higher density compared to SNP chip data, have been developed and implemented in different tools [32]. There are four main methods for detecting CNVs with NGS data: Read-Pair (RP), Spit Read (SR), Read Depth (RD), and assembly (AS) based methods, including CNVnator [26] used here, Pindel [33], ReadDepth [34], PEMer [35], and some other useful methods. However, each of the methods have different advantages and limitations in their applicability and suitability for NGS data. CNVnator based on RD method was the only software employed in this study. To our knowledge, it uses the established mean-shift approach with additional corrections for multiple-bandwidth partitioning and GC correction for more accurate CNV detection. Previous approaches using RD were limited to only unique regions of the genome, discovered only large CNVs with poor breakpoint resolution, or could not perform genotyping. CNVnator is able to discover CNVs in a vast range of sizes, from a few hundred bp to several Mb in length, in the whole genome. Therefore, our results here could reveal additional novel genetic variations underlying MD than those revealed by SNP arrays alone.

In the present study, we performed comparisons with the previous CNV studies, especially three researches also involved in MD. We found 247 CNVRs covering 93.9 Mb length overlapped with these three MD studies, where only 7 (1.2%) and 15 (2.6%) CNVRs shared with Luo et al.’s [20] and Xu et al.’s [22] results using SNP chip data, which may be, in part, related to limited sample sizes, different platforms, different analysis methods, and different chicken genome references (although we converted the genome positions from two previous genome assemblies (galGal2 and galGal3) to a newer one (galGal4) with the help of LiftOver based on UCSC, some information may still be missed). More importantly, we also used
different chicken lines, especially the selected RCSs from a total of 19 RCSs (Figure 1). We also compared with the CNV identified in lines 6\textsubscript{3} and 7\textsubscript{2} using NGS data for MD study [21], and found 228 (39.0\%) CNVRs overlapped, which provided more effective information for our study. Moreover, our study explored the genetic structure based on CNV in different inbred chicken lines. The PCA analysis showed clearly that the first two PCs can divide all chickens into four unique groups, which is similar to the results of Xu et al. [22]. Therefore, our study further confirms that CNV markers can be used to study the genetic variability in diverse chicken lines, which could possibly contribute to lineage-specific phenotypes.

The genetic mechanism underlying MD is likely to be very complex and not clear yet. It may be determined by some specific structural variations but not a single gene or a SNP mutation, though several candidate genes have been reported in previous studies described above. In the current study, we investigated CNVs among diverse inbred lines and found 55 and 44 unique CNVRs in line 6\textsubscript{3} and 7\textsubscript{2}, respectively, which could be associated with MD. Notably, we successfully identified a CNVR, which was a deletion and a normal copy number in all individuals from line 7\textsubscript{2} and line 6\textsubscript{3}, respectively, including a nearby gene \textit{IFR2}. Fortunately, the \textit{IFR2} gene was also highlighted in our former DNA methylation study (not published) involved in a critical DMR identified by methyl-CpG binding domain protein enriched genome sequencing (MBD-seq) with a false discover rate (FDR) < 0.1 and validated by bisulfite cloning sequencing, which was hypermethylated in line 6\textsubscript{3} than 7\textsubscript{2}. The region of the DMR identified in previous study and the CNVR identified here was almost completely the same, which has the same start site with 1000 bp overlaps. The nearby gene \textit{IRF2} is a disease- and virus-related gene involved in interferon
gamma signaling pathway and immune response IFN alpha/beta signaling pathway [36]. This gene is conserved in human and some other species like chimpanzee, Rhesus monkey, dog, cow, mouse, rat, zebrafish, and frog. Thus, some mutations or structural variations of this gene could be key factors that related to disorders or diseases. It was reported that IRF2 gene was associated with several diseases in chickens like necrotic enteritis [37], pancreatic cancer [38], and atopic dermatitis and eczema herpeticum [39]. More interestingly, this gene can specifically bind to the upstream regulatory region of type I IFN and IFN-inducible MHC class I genes, which could be an important clue to explore the genetic mechanisms of MD resistance because, to our knowledge, MHC plays an important role in the determination of resistance to MD [1]. Therefore, IRF2 may be a very important gene with structural variation identified here related to MD according to the known functions and our former studies. Another useful information obtained in this study is the JAK/STAT signaling pathway, which was also considered as a potential pathway responding to MDV infection reported by Perumbakkam et al. [40]. The JAK/STAT signaling pathway is one of a handful of pleiotropic cascades used to transduce a multitude of signals for development and homeostasis in animals [41]. JAK activation stimulates cell proliferation, differentiation, cell migration and apoptosis. These cellular events are critical to immune development and some other processes. Importantly, mutations that constitutively activate or fail to regulate JAK signaling properly cause inflammatory disease, including several chicken diseases [42, 43]. Additionally, a previous study reported that IRF2 can regulate macrophage apoptosis through a STAT1/3 [44], which provides valuable and potential interaction of IFR2 and JAK/STAT pathway who might jointly contribute to the genetic resistance to MD. Therefore, we hypothesize a probable mechanism of complex disease: the
deletions in CNV could associate with different epigenetic effects, which further regulate an interacting pathway leading to occurrence of diseases.

Conclusion

In summary, we investigated copy number variations in inbred chicken lines using next generation sequencing. We have successfully identified a number of line-specific CNVRs, as well as revealed genes and pathways that may be involved in genetic resistance to MD. Combining with our previous study and due to the complexity of MD, we ultimately found a high-confidence candidate gene IRF2, and an immune- or disease-related pathway, JAK/STAT signaling pathway, which could jointly play potentially important roles in response to MD resistance. Overall, our findings in the present study will provide valuable insights for understanding the genetic mechanism of resistance to MD and will be worthy of further functional characterization.

Methods

Experimental population

A total of 26 chickens without treatments were used for blood collection in this study, including three chickens from each of the line 6_3 (MD-resistant), line 7_2 (MD-susceptible) and six recombinant congenic strains (RCSs, RCS-A, D, J, L, M, and X), and two chickens from reciprocal cross F_1 hybrid 6_3×7_2 (USDA-ARS ADOL, East Lansing, Michigan, USA) [45]. RCSs were developed using line 6_3 as the parental strain mated to line 7_2 and then backcrossed to line 6_3 twice followed by full-sib mating for more than 20 generations (Fig. 1). Eventually, diverse RCSs were
generated and they contain 87.5% of line 6_3 and 12.5% of line 7_2 in the genetic
background but differ in MD resistance/susceptibility [46].

Library construction and sequencing

Blood samples were collected from the brachial vein by venipuncture. Genomic DNA (gDNA) from blood samples were extracted using the DNeasy Blood & Tissue Mini Kit (Qiagen, USA) according to the manufacturer’s instructions. The purity and concentration of the gDNA samples were measured by NanoDrop ND-1000 spectrophotometer (Thermo Scientific, USA) and by agarose gel electrophoresis. After the examinations, paired-end libraries were generated for each eligible sample using standard procedures (Illumina, USA). The average insert size was 500 bp, and the average read length was 100 bp for line 6_3 and line 7_2, and 150 bp for the rest chicken lines. All libraries were sequenced on an Illumina® HiSeq 2000 sequencing platform to an average raw read sequence coverage of ×20 for lines 6_3, 7_2 and their F_1 hybrid, and ×6 for six RCSs, respectively. The depth ensured the accuracy and reduced the false-negative rate of CNV calling for downstream analysis. Library preparation and all Illumina runs were performed as the standard manufacturer’s protocols.

Read alignment and CNV calling

Chicken genome assembly (galGal4) was retrieved from the UCSC Genome Browser website (http://hgdownload.soe.ucsc.edu/goldenPath/galGal4/bigZips/) [47]. In order to minimize the mapping errors, quality control was performed by FastQC [48] and low quality reads were removed with the help of FastX Toolkit [49] and Trimmomatic [50] with default parameters. The resulting FastQ files of mapping reads of each sample were aligned to the reference genome individually using Burrows-Wheeler
Aligner (BWA-MEM) (v0.7.15) [51] with mainly default parameters. SAMtools (v1.3) [52] was then used to convert the alignment results (SAM format) to BAM format and all converted BAM files were sorted with command SAMtools. Duplicate reads were removed from individual sample alignments using MarkDuplicates in the Picard package (http://broadinstitute.github.io/picard/) to avoid any influence on variant detection, and reads were merged using MergeSam-Files. We additionally performed local realignment using Genome Analysis Toolkit (GATK, v3.5) [53] to enhance the alignments in regions of indel polymorphisms, which can greatly improve the sensitivity and specificity in CNV calling [54].

After mapping, CNV calling was performed using CNVnator (v0.3.3) software [26] based on read depth (RD) method to predict genomic CNVs between the nine chicken lines and the reference. CNVnator firstly calculated the counts of mapped reads within user specified non-overlapping bins of equal size as the RD signal, and then adjusted the signal in consideration of the potential correlation between RD signal and GC content of the underlying genomic sequence. The mean-shift algorithm was employed to segment the signal with presumably different underlying CN. Then CNVs were predicted by applying statistical significance tests to the segments. We then ran CNVnator with a bin size of 100 bp for our data. CNV calls were filtered using stringent criteria including \(P \)-value < 0.05 and minimum size > 1 Kb, and calls with > 50% of q0 (zero mapping quality) reads within the CNV regions were removed (q0 filter). All CNV calls overlapping with gaps in the reference genome were excluded from consideration. CNVs located on random contigs (chrN_random), unlocalized chromosomes (chrUn), or in overlapping gaps were discarded for further analysis due to the shorter length of the chrUn contigs and mapping ambiguity of chrUn sequence reads. In order to compare our results with
previous studies, we converted all chromosomal CNVRs from galGal2 and galGal3 (used in previous studies) to galGal4 with the assistance of LiftOver based on UCSC (http://genome.ucsc.edu/cgi-bin/hgLiftOver).

Gene detection and functional analysis

Results from CNVnator were combined to obtain a collective set of unique CNVs with different start or end coordinates. These CNVs were then merged into non-overlapping CNV regions (CNVRs) by aggregating CNVs that overlap by at least 1 bp across all samples of each chicken line. The Ensembl genes (release 85 Database) were obtained using BioMart software based on the chicken gene sequence assembly (galGal4) and the genes harbored in the inferred CNVRs were extracted using custom Perl scripts. The Database for Annotation, Visualization, and Integrated Discovery (DAVID, version 6.8) (https://david.ncifcrf.gov/) [55] was used to perform the gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.

Validation of CNVRs by qRT-PCR

To experimentally validate the detected CNV calls by CNVnator, we performed qRT-PCR confirmation of ten CNVRs randomly selected from line 6$_3$ and line 7$_2$, respectively. All the primers were designed based on the GenBank reference sequences using the Primer 3.0 webtool (http://frodo.wi.mit.edu/primer3/) (Table S8). The β-actin gene and thyroid hormone responsive (THRSP) gene served as reference genes. For each chicken line, at least three individuals were used to do the validation. qRT-PCR using SYBR Green PCR Kit was performed in triplicate based on iCycler iQ PCR System (Bio-Rad). qRT-PCR reaction program was run as follow: pre-incubation (95 °C for 10 min), 40 cycles of amplification (95 °C for 10 s, 60 °C for 10 s, and 72 °C for 10 s), melting curves using a heat ramp and cool down. Cycle
threshold values (Ct values) were obtained from iCycler iQ PCR software. The $2^{-\Delta\Delta CT}$ method was used to calculate the copy number [56-58]. The corresponding equation was (see Equation in Supplementary Materials)

$$\Delta\Delta CT$$

where CT is the threshold cycle, sample A is the tested individual, and sample B is the control individual with single copy or no variation in copy number. Samples with Normal Ratio (NR) about 1 denote normal individuals (two copies), samples with NR about 0.5 denote one copy loss individuals, and samples with NR about 1.5 or more denote copy number gain individuals [59, 60].

Abbreviations

ADOL, avian disease and oncology laboratory; CGH, comparative genomic hybridization; chr, chromosome; CNV, copy number variation; CNVR, copy number variation region; DAVID, The database for annotation, visualization and integrated discovery; DMR, differentially methylated region; dpi, days post infection; FDR, false discovery rate; gDNA, genomic DNA; GO, gene ontology; IRF2, interferon regulatory factor 2; Kb, kilobases; KEGG, kyoto encyclopedia of genes and genomes; Mb, megabases; MBD-seq, methyl-CpG binding domain protein enriched genome sequencing; MD, Marek’s disease; MDV, Marek’s disease virus; MXD4, MAX dimerization protein 4; NGS, Next generation sequencing; PCA, principal component analysis; RCS, recombinant congenic strain; THRSP, thyroid hormone responsive.

Declarations

Ethics approval and consent to participate

All of the chickens were kept in a pathogen-free facility at the Avian Disease and Oncology Laboratory (ADOL). All animals were approved by the United States
Department of Agriculture, Agricultural Research Service, ADOL Animal Care and Use Committee and followed their guidelines (revised April 2005) as well as the Guide for the Care and Use of Laboratory Animals published by Institute for Laboratory Animal Research (ILAR Guide) in 1996 (http://www.nap.edu/openbook.php?record_id=5140) and University of Maryland (R-08-62). All efforts were made to minimize discomfort and suffering.

Consent for publication

Not applicable.

Availability of data and material

The sequencing data have been submitted to the NCBI Sequence Read Archive (SRA), and are accessible through the accession number SUB6079549.

Competing interests

The authors declare that they have no competing interests.

Funding

This project was supported by the National Research Initiative Competitive Grant (No. USDA-NRI/NIFA 2010-65205-20588) from the USDA National Institute of Food and Agriculture and by the China National Science Foundation International Program Competitive Grant (No. 21023130). We are deeply grateful to all donors who participated in this program.

Authors’ contributions

JS, JC, HZ and HB conceived and designed the experiments. YD and HZ performed the experiments and participated in the data collection. HB and YH analyzed the data. YH and YD contributed reagents/materials/analysis tools. HB wrote the paper. JS, JC, HZ and HB revised the manuscript. All authors read and approved the final manuscript.
Acknowledgements

We thank all contributors of the present study. We also thank China Scholarship Council for their supports of this study.

References

1. Bacon L, Hunt H, Cheng H: A review of the development of chicken lines to resolve genes determining resistance to diseases. Poultry science 2000, 79(8):1082-1093.

2. Calnek B, Witter RL: Marek's disease-a model for herpesvirus oncology. CRC Critical reviews in microbiology 1985, 12(4):293-320.

3. Calnek B: Pathogenesis of Marek’s disease virus infection. In: Marek’s Disease. Springer; 2001: 25-55.

4. Weischenfeldt J, Symmons O, Spitz F, Korbel JO: Phenotypic impact of genomic structural variation: insights from and for human disease. Nature Reviews Genetics 2013, 14(2):125.

5. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W: Global variation in copy number in the human genome. nature 2006, 444(7118):444-454.

6. Zhang F, Gu W, Hurles ME, Lupski JR: Copy number variation in human health, disease, and evolution. Annual review of genomics and human genetics 2009, 10:451-481.

7. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: Detection of large-scale variation in the human genome. Nature genetics 2004, 36(9):949-951.

8. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H,
Walker M, Chi M: Large-scale copy number polymorphism in the human genome. Science 2004, 305(5683):525-528.

9. Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L: Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome research 2006, 16(12):1566-1574.

10. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP: Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009, 459(7246):569-573.

11. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P: Origins and functional impact of copy number variation in the human genome. Nature 2010, 464(7289):704-712.

12. Fontanesi L, Beretti F, Riggio V, Gómez González E, Dall’Olio S, Davoli R, Russo V, Portolano B: Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors. Cytogenetic and genome research 2009, 126(4):333-347.

13. Wright D, Boije H, Meadows JR, Bed’Hom B, Gourichon D, Vieaud A, Tixier-Boichard M, Rubin C-J, Imsland F, Hallböök F: Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet 2009, 5(6):e1000512.

14. Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF: Copy number variation of individual cattle genomes using next-generation sequencing. Genome Research 2012, 22(4):778-790.

15. Zhou W, Liu R, Zhang J, Zheng M, Li P, Chang G, Wen J, Zhao G: A genome-wide
detection of copy number variation using SNP genotyping arrays in Beijing-You chickens. Genetica 2014, 142(5):441-450.

16. Yi G, Qu L, Chen S, Xu G, Yang N: Genome-wide copy number profiling using high-density SNP array in chickens. Animal genetics 2015, 46(2):148-157.

17. Wu Y, Fan H, Jing S, Xia J, Chen Y, Zhang L, Gao X, Li J, Gao H, Ren H: A genome-wide scan for copy number variations using high-density single nucleotide polymorphism array in Simmental cattle. Animal genetics 2015, 46(3):289-298.

18. Zhu C, Fan H, Yuan Z, Hu S, Ma X, Xuan J, Wang H, Zhang L, Wei C, Zhang Q: Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Scientific reports 2016, 6.

19. Bai H, Sun Y, Liu N, Liu Y, Xue F, Li Y, Xu S, Ni A, Ye J, Chen Y: Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays. Animal genetics 2018, 49(3):226-236.

20. Luo J, Yu Y, Mitra A, Chang S, Zhang H, Liu G, Yang N, Song J: Genome-wide copy number variant analysis in inbred chickens lines with different susceptibility to Marek’s disease. G3: Genes, Genomes, Genetics 2013, 3(2):217-223.

21. Yan Y, Yang N, Cheng HH, Song J, Qu L: Genome-wide identification of copy number variations between two chicken lines that differ in genetic resistance to Marek’s disease. BMC genomics 2015, 16(1):843.

22. Xu L, He Y, Ding Y, Sun G, Carrillo J, Li Y, Ghaly M, Ma L, Zhang H, Liu G: Characterization of copy number variation’s potential role in Marek’s disease. International journal of molecular sciences 2017, 18(5):1020.
23. Zhan B, Fadista J, Thomsen B, Hedegaard J, Panitz F, Bendixen C: Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC genomics 2011, 12(1):557.

24. Clop A, Vidal O, Amills M: Copy number variation in the genomes of domestic animals. Animal genetics 2012, 43(5):503-517.

25. Yi G, Qu L, Liu J, Yan Y, Xu G, Yang N: Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC genomics 2014, 15(1):962.

26. Abyzov A, Urban AE, Snyder M, Gerstein M: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome research 2011, 21(6):974-984.

27. Crooijmans RP, Fife MS, Fitzgerald TW, Strickland S, Cheng HH, Kaiser P, Redon R, Groenen MA: Large scale variation in DNA copy number in chicken breeds. BMC genomics 2013, 14(1):398.

28. Tian M, Wang Y, Gu X, Feng C, Fang S, Hu X, Li N: Copy number variants in locally raised Chinese chicken genomes determined using array comparative genomic hybridization. BMC genomics 2013, 14(1):262.

29. Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S: Marek's disease virus: from miasma to model. Nature Reviews Microbiology 2006, 4(4):283-294.

30. Wang X, Nahashon S, Feaster TK, Bohannon-Stewart A, Adefope N: An initial map of chromosomal segmental copy number variations in the chicken. BMC genomics 2010, 11(1):351.

31. Völker M, Backström N, Skinner BM, Langley EJ, Bunzey SK, Ellegren H, Griffin DK: Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome research 2010, 20(4):503-
32. Pirooznia M, Goes FS, Zandi PP: Whole-genome CNV analysis: advances in computational approaches. Frontiers in genetics 2015, 6:138.

33. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z: Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 2009, 25(21):2865-2871.

34. Miller CA, Hampton O, Coarfa C, Milosavljevic A: ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PloS one 2011, 6(1):e16327.

35. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein MB: PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome biology 2009, 10(2):R23.

36. Mizutani T, Tsuji K, Ebihara Y, Taki S, Ohba Y, Taniguchi T, Honda K: Homeostatic erythropoiesis by the transcription factor IRF2 through attenuation of type I interferon signaling. Experimental hematology 2008, 36(3):255-264.

37. Broom LJ, Kogut MH: Deciphering desirable immune responses from disease models with resistant and susceptible chickens. Poultry science 2018, 98(4):1634-1642.

38. Cui L, Deng Y, Rong Y, Lou W, Mao Z, Feng Y, Xie D, Jin D: IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumor Biology 2012, 33(1):247-255.

39. Gao P-S, Leung DY, Rafaels NM, Boguniewicz M, Hand T, Gao L, Hata TR, Schneider LC, Hanifin JM, Beaty TH: Genetic variants in interferon regulatory
factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. Journal of Investigative Dermatology 2012, 132(3):650-657.

40. Perumbakkam S, Muir WM, Black-Pyrkosz A, Okimoto R, Cheng HH: Comparison and contrast of genes and biological pathways responding to Marek's disease virus infection using allele-specific expression and differential expression in broiler and layer chickens. BMC genomics 2013, 14(1):64.

41. Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway. Journal of cell science 2004, 117(8):1281-1283.

42. Sandford EE, Orr M, Balfanz E, Bowerman N, Li X, Zhou H, Johnson TJ, Kariyawasam S, Liu P, Nolan LK: Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC genomics 2011, 12(1):469.

43. Lin J, Xia J, Zhang K, Yang Q: Genome-wide profiling of chicken dendritic cell response to infectious bursal disease. BMC genomics 2016, 17(1):878.

44. Cuesta N, Nhu QM, Zudaire E, Polumuri S, Cuttitta F, Vogel SN: IFN regulatory factor-2 regulates macrophage apoptosis through a STAT1/3-and caspase-1-dependent mechanism. The Journal of Immunology 2007, 178(6):3602-3611.

45. Stone HA: Use of highly inbred chickens in research: Agricultural Research Service, US Dept. of Agriculture; 1975.

46. Chang S, Ding Z, Dunn JR, Lee LF, Heidari M, Song J, Ernst CW, Zhang H: A comparative evaluation of the protective efficacy of rMdsΔMeq and CVI988/Rispens against a vv+ strain of Marek's disease virus infection in a series of recombinant congenic strains of White Leghorn chickens. Avian diseases 2011, 55(3):384-390.

47. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA,
Rosenbloom KR, Roe G, Rhead B: The UCSC Genome Browser database: extensions and updates 2013. Nucleic acids research 2013, 41(D1):D64-D69.

48. Schmieder R, Edwards R: Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27(6):863-864.

49. Gordon A, Hannon G: Fastx-toolkit. FASTQ/A short-reads preprocessing tools (unpublished) http://hannonlab cshl edu/fastx_toolkit 2010.

50. Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014:btu170.

51. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.

52. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.

53. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 2010, 20(9):1297-1303.

54. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics 2011, 43(5):491.

55. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 2009, 4(1):44-57.

56. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-
time quantitative PCR and the \(2^{-\Delta\Delta CT}\) method. methods 2001, 25(4):402-408.

57. Bodin L, Beaune PH, Loriot M-A: Determination of cytochrome P450 2D6 (CYP2D6) gene copy number by real-time quantitative PCR. BioMed Research International 2005, 2005(3):248-253.

58. D’haene B, Vandesompele J, Hellemans J: Accurate and objective copy number profiling using real-time quantitative PCR. Methods 2010, 50(4):262-270.

59. Wang J, Jiang J, Fu W, Jiang L, Ding X, Liu J-F, Zhang Q: A genome-wide detection of copy number variations using SNP genotyping arrays in swine. BMC genomics 2012, 13(1):273.

60. Wang Y, Gu X, Feng C, Song C, Hu X, Li N: A genome-wide survey of copy number variation regions in various chicken breeds by array comparative genomic hybridization method. Animal genetics 2012, 43(3):282-289.

Tables

Table 1. Summary statistics of line-specific and shared CNVRs.

Group	No. of CNVRs	Gain	Loss	Total	Common	Harbored genes	Line-specific	Gain	Loss	Harbored genes
63	1,193	210	98	1,649	90	1,360	55	4	51	62
72	1,134	205	92	9	1,649	90		44	7	37
F1	1,111	212	89	9	1,649	90		82	4	78
RCS_A	722	140	58	2	1,649	90			15	1
RCS_D	801	555	24	6	1,649	90		14	7	7
RCS_J	949	601	34	8	1,649	90		72	23	49
RCS_L	1,031	812	21	9	1,649	90		190	185	5
RCS_M	765	133	63	2	1,649	90		18	1	17
RCS_X	895	617	27	8	1,649	90		5	2	3
Table 2. Enriched KEGG pathways of the genes harbored in the CNVRs ($P < 0.05$).

Category	Term	Count	%	P-Value
KEGG_PATHWAY	gga00900:Terpenoid backbone biosynthesis	10	0.45	2.31E-03
KEGG_PATHWAY	gga04144:Endocytosis	49	2.22	1.92E-02
KEGG_PATHWAY	gga04146:Peroxisome	20	0.90	2.10E-02
KEGG_PATHWAY	gga04120:Ubiquitin in mediated proteolysis	28	1.27	3.06E-02
KEGG_PATHWAY	gga04630:JAK/STAT signaling pathway	25	1.13	4.65E-02
KEGG_PATHWAY	gga04520:Adherence junction	17	0.77	4.85E-02

Table 3. A summary of the chicken CNVRs identified in this study and previous studies.

Study	Platform	Number of CNVRs	Total length (Mb)	Concordant number with our study
Griffin et al., 2008	NimbleGen 385K	20	2.84	1
Skinner et al., 2009	NimbleGen 385K	15	2.91	2
Wang et al., 2010	NimbleGen 385K	96	16.14	4
Volker et al., 2010	NimbleGen 385K	25	5.29	1
Wang et al., 2012	Agilent 400K	130	3.34	4
Crooijmans et al., 2013	Agilent 244K	1,553	61.67	57
Luo et al., 2013	Agilent 400K	33	1.92	4
Tian et al., 2013	Agilent 400K	308	10.81	16
Zhou et al., 2014	Illumina 60K	137	27.32	7
Yi et al., 2014	Illumina HiSeq 2000	7,530	88.12	306
Yan et al., 2015	Illumina HiSeq 2000	5,680	28.94	228
Xu et al., 2017	Affymetrix 600 K	170	0.83	15
This study	Illumina HiSeq 2000	585	88.16	-
Additional Files

Additional file 1: Table S1. Summary statistics for sequencing.

Additional file 2: Table S2. Summary statistics of raw and screened CNVs.

Additional file 3: Table S3. The detailed lists of clusters which enrichment scores >1.0 from DAVID.

Additional file 4: Figure S1. JAK/STAT signaling pathway.

Additional file 5: Table S4. The detailed lists of all the GO terms and pathways from DAVID.

Additional file 6: Table S5. Lists of line-specific and shared CNVRs in all the chicken lines.

Additional file 7: Table S6. Lists of disease-related genes in line 6\textsubscript{3} and line 7\textsubscript{2}, respectively.

Additional file 8: Table S7. The detailed information of CNVRs identified in this study and previous studies.

Additional file 9: Table S8. All the primer sequences used in qRT-PCR for CNVRs validation.

Figures
Figure 1

The chicken population used in this study. Chicken lines labeled blue were selected for CNV detection.
Figure 2

Circos plot illustrating CNV regions in nine chicken lines. Regions with copy numb
Figure 3
Distribution of CNVRs in nine chicken lines. (A) Length distribution of CNVRs. 1,200 (72.8%) CNVR events are unique, 270 (15.6%) CNVRs occur in only one chicken line, and 90 (5.46%) CNVRs are shared in all nine chicken lines.

Figure 4
Histogram presentation of Gene Ontology (GO) classification. The y-axis indicates...
Figure 5

(A) PCA plot based on the first two principal components in all the nine chicken lines. These nine lines... number of birds with tumors/total number of birds challenged within each of the lines multiplied by 100.

Figure 6

qRT-PCR validation. (A) Normalized ratio (NR) obtained by qRT-PCR for 10 CNVRs.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Equation.jpg
Additional file7_Table S6.xlsx
Additional file1_Table S1.xlsx
Additional file2_Table S2.xlsx
Additional file 4 Figure S1.jpg
Additional file5_Table S4.xlsx
Additional file3_Table S3.xlsx
Additional file9_Table S8.xlsx
Additional file6_Table S5.xlsx

32
Additional file8_Table S7.xlsx