Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa, six confirmed and one putative species of lyssavirus have been identified. Rabies lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the primary reservoir – resulting in the highest per capita death rate from rabies globally. Rabies is typically transmitted through the injection of virus-laden saliva through a bite or scratch from an infected animal. Due to the inhibition of specific immune responses by multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue and subsequently enters the peripheral nervous system at the neuromuscular junction. Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular apoptosis as the virus progresses to the central nervous system and brain using viral protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the encephalitic and the paralytic form - with differing clinical manifestations and survival times. Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal apoptosis. While much is known about rabies, there remain many gaps in knowledge about the neuropathology of the disease. It should be emphasized however, that rabies is vaccine preventable and dog-mediated human rabies has been eliminated in various countries. The global elimination of dog-mediated human rabies in the foreseeable future is therefore an entirely feasible goal.

Keywords: Rabies, lyssavirus, encephalitis, zoonosis, immune evasion, pathophysiology

INTRODUCTION

Lyssaviruses are responsible for rabies, which is arguably the deadliest encephalitic disease known. The prototype, rabies lyssavirus (RABV), is thought to be able to infect all terrestrial mammals. Transmission is through virus-laden saliva, typically through the bite of an infected animal, but sometimes through other means such as scratches and in rare occasions, organ transplants and other means (1, 2). The genus Lyssavirus (family Rhabdoviridae) is presently composed of 17 viral species and one putative (3). All lyssaviruses are bullet-shaped particles containing negative sense RNA genomes of approximately 11 000 nucleotides in length. The genome encodes 5 structural proteins, namely the nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and the polymerase (5’-N-P-M-G-L-3’) with a 5’ – 3’ transcriptional bias (4, 5). The N protein...
encapsidates the viral RNA, and together with the P and L proteins, forms the ribonucleoprotein (RNP) complex, which can initiate viral transcription and replication (6). The M protein condenses the RNP into the characteristic bullet-shape and recruits the RNP to the cellular membrane during replication. The M protein is also essential for the budding of the enveloped virus from the cell and specifically interacts with the G protein – also known as the transmembrane spike protein, which is the primary antigenic determinant (7, 8).

RABV is not only the type species of the genus, but by far poses the most significant public health threat among all the lyssaviruses. The domestic dog is the primary reservoir for RABV in dog-rabies endemic countries, but several other terrestrial mammalian species can maintain transmission – most notably carnivores such as raccoons, skunks, foxes, and jackals.

THE GLOBAL BURDEN OF DOG RABIES

Globally, an estimated 59,000 people die from dog-mediated rabies every year, of which approximately 40% are children under the age of 15 years (9). Rabies affects the poorest and most underserved communities, with the burden being greatest in developing countries of Africa and Asia (10). However, the disease is seriously underreported for a variety of reasons and remains among the most significant diseases of neglect in the world (11).

By continent, Africa has the second highest burden of rabies, with an estimated 23,500 deaths annually, and has the highest per capita death rate (9). RABV is endemic throughout mainland Africa, with only a handful of island nations having never detected rabies in domestic or wildlife species (e.g., La Réunion, Mayotte, Mauritius) (12).

Of the seventeen recognized lyssavirus species, six confirmed and one putative species have been identified in Africa, namely, RABV, Duvenhage virus (DUVV), Lagos bat lyssavirus (LBV), Mokola lyssavirus (MOKV), Ikoma lyssavirus (IKOV), Shimoni Bat Lyssavirus (SHIBV) and the putative Matlo lyssavirus. Of these, only DUVV (n=3), MOKV (n=2) and RABV have been associated with human fatalities (13). While RABV is only associated with non-volant terrestrial mammals in Africa, DUVV and LBV are both associated with bat reservoirs, while IKOV and MOKV have yet unidentified reservoirs (14, 15).

PATHOPHYSIOLOGY

Viral Entry, Spread and Proliferation

The most common method of viral entry is through the injection of virus-containing saliva into the muscle tissue or other peripheral tissue through the bite of an infected animal (Figure 1). After inoculation, RABV typically infects muscle cells — thought to be facilitated through the nicotinic acetylcholine receptor — and replicates therein at a low rate (16). The virus remains localized to muscle cells and does not spread through the general circulation. After a latency period of several days, the virus spreads to peripheral nerves, causing a retrograde axonal transport facilitated by metabotropic glutamate receptor subtype 2. The viral replication, often accompanied with clinical symptoms, occurs in the peripheral and central nervous system. The virus then spreads to non-neuronal organs facilitating anterograde transport via terminal axons to salivary glands and eventually to the brain.

![Figure 1](https://example.com/figure1.png)

FIGURE 1 | Key insights of Rabies lyssavirus (RABV) entry, spread and proliferation, and some important functionalities of each RABV protein. IFN, Interferon; CNS, Central nervous system; PNS, Peripheral nervous system; RNP, Ribonucleoprotein complex.
the inoculation site for variable periods — which may contribute to
the variable incubation period characteristic of rabies (17). In
contrast, in the case of higher titers of inoculum, RABV can infect
motor endplates without the need for the initial replication in the
muscle (18). RABV gains entry into the peripheral nervous system
(PNS) via motor endplates at the neuromuscular junction, but the
exact means of virus internalization remains poorly understood.

RABV travels through the PNS towards the CNS via
microtubule dependent retrograde fast axonal transport (19,
20). The virus travels from neuron to neuron, replicates, and
continues its progression towards the CNS and the brain (21).
This neuronal spread is facilitated by the p75NTR receptor,
which is non-essential for infection, but facilitates directed and
more rapid transport of RABV to the CNS (22). The L protein
manipulates microtubules for improved transport efficiency (23),
while the M protein facilitates the depolymerization of
microtubules resulting in improved viral transcription and
replication efficiency (24) (Figure 1). While retrograde
transport occurs at an approximate rate of 50 – 100mm per
day in humans [with species-dependent variation (20, 25)],
evidence also suggests that RABV undergoes active, G protein-
dependent anterograde transport in peripheral neurons - such as
Dorsal Route Ganglion (DRG) neurons — at a rate three times
faster than that of retrograde transport (25). However, the
significance of this anterograde transport mechanism is unclear, but recent evidence signifies its importance in the
spread of RABV through the PNS (including to non-neuronal
organisms) after centrifugal spread from the CNS (26), contrasting
previous evidence that suggested that RABV spreads by both
axonal and trans-synaptic transport exclusively in the retrograde
direction (21, 27). Once in the CNS, RABV continues to spread
via retrograde axonal transport thought to be facilitated by
metabotropic glutamate receptor subtype 2, which is a cellular
entry receptor that is abundant throughout the central nervous
system (CNS) (28). The virus reaches the brainstem and
subsequently the brain, where it proliferates and clinical
symptoms manifest. It spreads to the salivary glands along
terminal axons via anterograde transport (29) where it
continues to proliferate and is subsequently shed in the saliva
for transmission to another host. RABV can spread to, peripheral,
non-neuronal organs anterograde transport, and can be detected
in these sites after the onset of clinical symptoms (21, 26).

Symptoms, Disease Progression, Prevention, and Treatment

Rabies presents with a wide variety of clinical manifestations that
vary depending on multiple factors, many of which remain
unknown. However, the species of lyssavirus or the strain of
RABV influences the presentation of differing clinical symptoms.
For example, bat RABV infections more commonly present with
tremors and involuntary twitching/jerking (myoclonus), while dog
strains more frequently present with classical hydrophobia and
aerophobia (30). Moreover, the presentation of symptoms localized
to the wound were more common in bat rabies exposures than in
dog-rabies exposures (30). Two forms of rabies can manifest,
namely encephalitic (furious or classical) and paralytic (dumb)
rabies. The encephalitic form of rabies is more common and
presents in approximately 80% of patients, of which between 50 –
80% present with the classic symptoms such as hydrophobia and
aerophobia — symptoms that are unique to rabies (31, 32). However,
the remaining symptoms are common to many encephalitic
diseases, especially in African countries where diseases such as
cerebral malaria are endemic and can result in misdiagnosis of
rabies (33). Encephalitic rabies typically progresses to severe flaccid
paralysis, coma and death caused by multiple organ failure, in
contrast to paralytic rabies which manifests with prominent muscle
weakness early in the course of illness (31). While there remains a
gap in the understanding of the causes for the manifestation of these
two different forms of rabies, it is known that the anatomical site of
the exposure is unrelated (34). Initially rabies symptoms were
thought to be caused by large-scale neuronal cell death, but
neuronal apoptosis is only stimulated during infection with low
pathogenicity strains (35, 36). Rather, symptoms are thought to be
due to neuronal cell dysfunction (35, 37–41), partly induced by the
increased production of Nitric Oxide (NO) via inducible nitric
oxide synthase (iNOS) in neurons and macrophages (42–44). Elevated levels of NO produced by iNOS leads to mitochondrial
dysfunction and as a result, axonal swelling (44, 45) — a pathology
that is associated with the onset of symptoms (41, 46), and
hypothesitally explains the development of encephalitic
symptoms (47). Another mechanism behind neurological
dysfunction and the onset of neurological symptoms has been
demonstrated to be reliant upon a host-derived mechanism that
results in the loss of axons and dendrites as a means to prevent the
spread of the virus (48).

The survival time for patients manifesting paralytic rabies is
approximately 41% longer than that of patients with encephalitic
rabies (30, 49), yet the incubation periods for both forms remain
similar – ranging from 2 weeks to several months. For most cases,
the incubation period is 2 – 3 months in humans, but some
exceptional cases have been documented with an incubation
period of more than a year and even up to 8 years (50, 51). There
is no known accepted treatment for rabies after the onset of clinical
symptoms. Palliative care is recommended for rabies patients,
which is aimed to reduce suffering and may temporarily prolong
survival time, but in all but the most exceptional circumstances, the
victim succumbs to the disease (32, 50). However, effective pre- and
post-exposure prophylaxis exists for those viruses that fall within
lyssavirus phylogroup 1 [RABV, European bat lyssavirus-1 and -2,
Bokeloh bat lyssavirus, DUVV, Australian bat lyssavirus, Aravan
lyssavirus, Khujand lyssavirus, Irkut lyssavirus, Taiwan bat
lyssavirus, Gannoruwa bat lyssavirus (GBLV)]. Experimental
evidence suggests that the vaccines are not effective against
phylogroup 2 (LBV, MOKV, SHIVB) or phylogroup 3
lyssaviruses (IKOV, West Caucasian bat lyssavirus, Lleida bat
lyssavirus) (50, 52–56).

IMMUNE RESPONSE AND IMMUNE EVASION

Upon initial infection, the innate immune response is triggered
in the periphery and evidence suggests that this response is
partially effective against even the most pathogenic strains, with some viral particles being eliminated (57). However, further clearance is not achieved as pathogenic strains poorly stimulate and inhibit the activation and maturation of dendritic cells, resulting in a poorer antibody immune response (58–60). This prevention of the maturation of DCs is achieved through the inhibition of the interferon (IFN) autocrine feedback loop that is directly correlated to its pathogenicity, with pathogenic strains inducing a minimal response and successfully evading immune clearance (18). All the RABV proteins are multifunctional, with roles in viral entry, replication and spread, as well as in the sequestration of the immune system – either directly or indirectly (62). This ability is reliant solely on the immune-suppressive capabilities of viral proteins - primarily being the P, G and N proteins. The P protein is typically involved in sequestering the innate immune response by inhibiting the production of multiple antiviral products such as MxA, OAS1 and IFN-stimulated gene products (62). Furthermore, the P protein inhibits type I IFN responses and subsequent innate and adaptive immune responses through the inhibition of various IFN-related signaling pathways (63–67). The evasion of IFN responses in infected neurons is likely to be essential for the spread of RABV through the PNS, enabling the virus to reach the brainstem and eventually the salivary glands for spread to a new host (57). Similarly, the N is also predominantly involved in the sequestration of the innate response, primarily through the inhibition of RIG-I activation (68–70). Apoptosis in macrophages, T cells (including infiltrating T cells in the CNS) and microglia plays an important role in immune evasion and is stimulated by the G protein of pathogenic strains (71, 72), which appears to assist in the effective infiltration, replication and spread of the virus in the CNS (36, 73, 74).

DISCUSSION

While rabies has arguably been recognized for thousands of years, there remain many gaps in scientific knowledge of the disease and its causal agents. The rapid detection of 10 novel lyssaviruses in the past two decades raises multiple public health concerns, with their broader distribution and possible public health impact being yet unknown (13, 75). While information relating to many of the lyssavirus species remains poor, studies suggest that sustained spillover events from non-RABV lyssaviruses are likely to be rare, as almost all lyssaviruses – except for RABV and ABLV – arerestricted to a single host species (76). However, many lyssavirus species have only a single, or few, isolates, including the novel GBLV which has a recent common ancestor with ABLV (56). In addition, host shifts in areas where RABV is endemic are likely to remain undetected due to poor surveillance (76). While host shift events remain rare, their impact can be devastating. North America alone is endemic for multiple terrestrial RABV variants, each being resultant of a host shift event (77). While host shift events may be geographically restricted, the potential for the translocation of the virus through human means remains a distinct possibility and risk (78–81). For example, the largest epizootic in recorded history resulted from the human-mediated translocation of a raccoon from the south-east of the United States to the north-eastern states (82). Further evidence suggests that raccoon rabies was enzootic at low levels for many years before its detection, natural spread, and subsequent human translocation (83). The raccoon RABV variant now accounts for nearly 75% of all terrestrial rabies cases in the USA and resulted in a significant increase in the number of human exposures in those areas where it is endemic (84). Thus, despite the rabies-related viruses not posing a significant health threat at present, continued efforts need to be made to ensure public health safety based on the limited knowledge and surveillance data available.

Despite the availability of an effective prophylactic treatment before the onset of symptoms, there remains no cure once rabies symptoms manifest. In addition, the majority of immunopathological knowledge available pertains to RABV, with limited studies being available for the rabies-related lyssaviruses. Therefore, there is a need for continued investigation into the mechanisms of infection, disease progression, host biology and a better understanding of bat immunology. Over and above, there is a dire need for improved global surveillance for all lyssaviruses. Given the significant public health threat posed by dog-mediated RABV, such surveillance data should play a critical role in the elimination of the disease from those dog populations where it is still rampant due to a failure to effectively break transmission through mass vaccination.

REFERENCES

1. Zhang J, Lin J, Tian Y, Ma L, Sun W, Zhang L, et al. Transmission of Rabies Through Solid Organ Transplantation: A Notable Problem in China. BMC Infect Dis (2018) 18(1):273. doi: 10.1186/s12879-018-3112-y
2. World Health Organization. WHO Expert Consultation on Rabies. Third Report. In: World Health Organization Technical Report Series, vol. 1012.
3. Walker PJ, Blasdell KR, Calisher CH, Dietzgen RG, Kondo H, Kurath G, et al. ICTV Virus Taxonomy Problem in China. BMC Infect Dis (2018) 18(1):273. doi: 10.1186/s12879-018-3112-y
4. World Health Organization. WHO Expert Consultation on Rabies. Third Report. In: World Health Organization Technical Report Series, vol. 1012.

AUTHOR CONTRIBUTIONS

TS: Conception, preparation of first draft, editing and final review. LN: Conception, editing and final review. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

The authors would like to credit the ‘Dog and man’ image to ‘Freepik from Flaticon.com’. The ‘Rabies virus’ image, adapted under Creative Commons CC BY 4.0 license, is owned by the authors.
5. Finke S, Cox J, Conzelmann KKK. Differential Transcription Attenuation of Rabies Virus Genes by Intergenic Regions: Generation of Recombinant Viruses Overexpressing the Polymerase Gene. *J Virol* (2000) 74(16):7261–9. doi: 10.1128/JVI.74.16.7261-7269.2000

6. Yang J, Hooper DC, Wunner WH, Koprowski H, Dietzschold B, Fu ZF. The Specificity of Rabies Virus RNA Encapsulation by Nucleoprotein. *Virol* (1998) 242(1):107–17. doi: 10.1016/S0042-739X(97)70022-X

7. Bennmansour A, Leblois H, Coulon P, Tuffereau C, Gaudin Y, Flamand A, et al. Antigenicity of Rabies Virus Glycoprotein. *J Virol* (1991) 65(8):4198. doi: 10.1128/vi.65.8.4198-4203.1991

8. Meoastion T, Weiland F, Conzelmann K-K. Matrix Protein of Rabies Virus is Responsible for the Assembly and Budding of Bullet-Shaped Particles and Interacts With the Transmembrane Spike Glycoprotein G. *J Virol* (1999) 73(1):242. doi: 10.1128/JVI.73.1.242-250.1999

9. Hampson K, Coudeliev L, Lembo T, Sambo M, Kieffer A, Atlan M, et al. Estimating the Global Burden of Endemic Canine Rabies. *PloS Negl Trop Dis* (2015) 9(4):e0003709. doi: 10.1371/journal.pntd.0003709

10. Nel LH. Factors Impacting the Control of Rabies. *Microbiol Spectr* (2013) 1(2):1–12. doi: 10.1128/microbiolspec.OH-0006-2012

11. Nel LH. Discrepancies in Data Reporting for Rabies, Africa. *Emerg Infect Dis* (2013) 19(4):529–33. doi: 10.3201/eid1904.120185

12. Andriamandimbry SF, Héraud J, Ramiamandrasoa R, Ratsitorahina M, Rasambainarivo JH, Dacheux L, et al. Surveillance and Control of Rabies in La Réunion, Mayotte, and Madagascar. *Vet Res* (2013) 44(7):1–9. doi: 10.1186/1297-9116-44-77

13. Markower KT, Coevert J. Bat Lyssaviruses. *Rev Sci Tech* (2018) 37(2):385–400. doi: 10.2506/rst.37.2.2018

14. Marston D, Horton D, Ngeleja C. Ikoma Lyssavirus, Highly Divergent Novel Lyssavirus in Australian Marsupials. *J Virol* (2014) 88(10):5214–8. doi: 10.1128/JVI.02254-14

15. Gholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, et al. Antigenicity of Rabies Virus Glycoprotein. *J Virol* (1991) 65(8):4198. doi: 10.1128/jvi.65.8.4198-4203.1991

16. Lafon M. Rabies Virus Receptors. *Rev Sci Tech* (2007) 26(2):161–6. doi: 10.2506/rst.2007.26.2.34

17. Charlton KM, Nadin-Davis S, Casey GA, Campbell JB. Experimental Rabies in Skunks: Failure to Explain the Clinical Disease and Fatal Outcome of Experimental Rabies in Yellow Fluorescent Protein-Expressing Transgenic Mice. *J Virol* (2008) 82(1):513–20. doi: 10.1128/JVI.01677-07

18. Lycke E, Tsiang H. Rabies Virus Infection of Cultured Rat Sensory Neurons. *J Neurovirol* (2005) 11(1):101–6. doi: 10.1080/13550280500900445

19. Scott CA, Rossiter JP, Andrew RD, Jackson AC. Structural Abnormalities in Neurons Are Sufficient to Explain the Clinical Disease and Fatal Outcome of Experimental Rabies in Yellow Fluorescent Protein-Expressing Transgenic Mice. *J Virol* (2008) 82(1):513–20. doi: 10.1128/JVI.01677-07

20. Yan X, Prosnai M, Curtis MT, Weiss ML, Faber M, Dietzschold B, et al. Silver-Hearted Bat Rabies Virus Variant Does Not Induce Apoptosis in the Brain of Experimentally Infected Mice. *J Neurovirol* (2001) 7(6):518–27. doi: 10.1080/135502801753248107

21. Guignon C, Coulon P. Rabies Virus Is Not Cytolytic for Rat Spinal Sensory Dorsal Root Ganglia Neurons. *J Neurovirol* (2012) 18(5):539–48. doi: 10.1080/13550280.2012.689312

22. Usui K, Kikuchi T, Tsubouchi M, Shimada R, Wada Y, Osawa K, et al. Expression of Inducible Nitric Oxide Synthase in Brain of Experimentally Infected Mice. *Acta Neuropathol Commun* (2016) 4:101. doi: 10.1186/s40478-016-01074-6

23. Hooper DC, Ohnishi ST, Kean R, Numagami Y, Dietzschold B, Koprowski H. Silver-Haired Bat Rabies Virus Variant Does Not Induce Apoptosis in the Central Nervous System of Mice. *J Gen Virol* (1991) 72:1191–4. doi: 10.1099/0022-1317-72-5-1191

24. Scott and Nel

25. Scott and Nel

26. Scott and Nel

27. Scott and Nel

28. Scott and Nel

29. Scott and Nel

30. Scott and Nel

31. Scott and Nel

32. Scott and Nel

33. Scott and Nel

34. Scott and Nel

35. Scott and Nel

36. Scott and Nel

37. Scott and Nel

38. Scott and Nel

39. Scott and Nel

40. Scott and Nel

41. Scott and Nel

42. Scott and Nel

43. Scott and Nel

44. Scott and Nel

45. Scott and Nel

46. Scott and Nel

47. Scott and Nel

48. Scott and Nel

49. Scott and Nel

50. Scott and Nel

51. Scott and Nel

52. Scott and Nel

53. Scott and Nel

54. Scott and Nel

55. Scott and Nel

56. Scott and Nel

57. Scott and Nel

58. Scott and Nel

59. Scott and Nel

60. Scott and Nel

61. Scott and Nel

62. Scott and Nel

63. Scott and Nel

64. Scott and Nel

65. Scott and Nel

66. Scott and Nel

67. Scott and Nel

68. Scott and Nel

69. Scott and Nel

70. Scott and Nel

71. Scott and Nel

72. Scott and Nel

73. Scott and Nel

74. Scott and Nel

75. Scott and Nel

76. Scott and Nel

77. Scott and Nel

78. Scott and Nel

79. Scott and Nel

80. Scott and Nel

81. Scott and Nel

82. Scott and Nel

83. Scott and Nel
46. Jackson AC, Kamarแอณ W, Zherebitskaya E, Fernyhough P. Role of Oxidative Stress in Rabies Virus Infection of Adult Mouse Dorsal Root Ganglion Neurons. J Virol (2010) 84(9):4697–705. doi: 10.1128/JVI.02654-09
47. Jackson AC. Diabolical Effects of Rabies Encephalitis. J Neurovirol (2016) 22(1):8–13. doi: 10.1080/13550280802216502
48. Sundaramoorthy V, Green D, Locke K, O'Brien CM, Dearney M, Bingham J. Novel Role of SARM1 Mediated Axonal Degeneration in the Pathogenesis of Rabies. PloS Pathog (2020) 16(2):1–20. doi: 10.1371/journal.ppat.10041-8
49. Malerczyk C, Freuling C, Gniel D, Giesen A, Selhorst T, Pfîller T. Cross-Neutralization of Antibodies Induced by Vaccination With Puri Fied Chick Embryo Cell Vaccine (PCECV) Against Different Lyssavirus Species. Hum Vaccines Immunother (2014) 10(10):2799–804. doi: 10.4161/hvi.2014377241
50. Horton DL, Banyard AC, Marston DA, Wise E, Selden D, Nunez A, et al. Lyssavirus in Indian Flying Foxes, Sri Lanka. Jpn J Infect Dis (2018) 71(10):1363–6. doi: 10.1292/jvms.11-0151
51. Boland TA, McGuone D, Jindal J, Rocha M, Cumming M, Rupprecht CE, et al. Phylogenetic and Epidemiologic Evidence of Multiyear Incubation in Human Rabies. Ann Neurol (2014) 75(1):155–60. doi: 10.1002/ana.24016
52. Masatani T, Ito N, Yio, Nakagawa K, Abe M, Yamaoka S, et al. Importance of Rabies Virus Nucleoprotein in Viral Evasion of Interferon Response in the Brain. Microbiol Immunol (2013) 57(7):511–7. doi: 10.1111/1348-0421.12058
53. Dearnley M, Bingham AS, Oko, Los, Lopez CA, Juste J, et al. Novel Lyssavirus in Bat. Spain. Emerg Infect Dis (2013) 19(5):793–5. doi: 10.3201/eid1905.121071
54. Jackson AC, Kamarแอณ W, Zherebitskaya E, Fernyhough P. Role of Oxidative Stress in Rabies Virus Infection of Adult Mouse Dorsal Root Ganglion Neurons. J Virol (2010) 84(9):4697–705. doi: 10.1128/JVI.02654-09
55. Hu S-C, Hsu C-L, Lee M-S, Wu C-H, Lee S-H, Ting L-J, et al. Lyssavirus in Japanese Pipistrelle, Taiwan. Emerg Infect Dis (2018) 24(4):2016–9. doi: 10.3201/eid2404.171696
56. Gnanadurai CW, Yang Y, Huang Y, Li Z, Leyson CM, Cooper TL, et al. Lyssavirus in Indian Flying Foxes, Sri Lanka. Emerg Infect Dis (2016) 22(8):1456–9. doi: 10.3202/eid2208.151986
57. Wiltzer L, Larrous F, Oksayan S, Ito N, Marsh GA, Wang LF, et al. Conservation of a Unique Mechanism of Immune Evasion Across the Lyssavirus Genus. J Virol (2012) 86(18):10194–9. doi: 10.1128/JVI.01249-12
58. Singh AJ, Chipman RB, Fiiter S, Gary R, Haskell MG, Kirby J, et al. Translocation of a Stray Cat Infected With Rabies From North Carolina to a Terrestrial Rabies-Free County in Ohio, 2017. Morb Mortal Wkly Rep (2018) 67(42):1174. doi: 10.15585/mmwr.mm742a2
59. Curry P, Kostiuk D, Werker D, Bakkie M, Ntimachou A, Ahert F, et al. Rabies: Translocated Dogs From Nunavut and the Spread of Rabies. Canada Compendium (2016) 42(6):121. doi: 10.14754/ccr.v42i6602
60. Wu J, Guo Z, Li Y, Li B, Ji Q, Li W, et al. Molecular Epidemiology of Rabies in Southern People's Republic of China. Emerg Infect Dis (2009) 15(8):1192. doi: 10.3201/eid1508.081551
61. Centers for Disease Control and Prevention. Update: Rabies Epidemic in the United States and Canada, 1999. Morb Mortal Wkly Rep (2009) 49(2):3–11
62. Brien CM, Dearnley M, Bingham AS, Oko, Los, Lopez CA, Juste J, et al. Novel Lyssavirus in Bat. Spain. Emerg Infect Dis (2013) 19(5):793–5. doi: 10.3201/eid1905.121071
63. Kasempimolporn S, Tirawatnapong T, Saengseesom W, Nookhai S, Sitprija V. Immunosupression in Rabies Virus Infection Mediated by Lymphocyte Apoptosis. Jpn J Infect Dis (2001) 54(4):144–7.
64. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current Status of Rabies and Prospects for Elimination. Lancet (2014) 384(9951):1389–99. doi: 10.1016/S0140-6736(13)62707-5
65. Masatani T, Ito N, Yio, Nakagawa K, Abe M, Yamaoka S, et al. Importance of Rabies Virus Nucleoprotein in Viral Evasion of Interferon Response in the Brain. Microbiol Immunol (2013) 57(7):511–7. doi: 10.1111/1348-0421.12058
66. Vidy A, El Bougrini J, Chelbi-alix MK, Blondel D. The Nucleocytoplasmic Shift of Interferon Regulatory Factor 3. Proc Natl Acad Sci USA (2002) 99(12):7673–81. doi: 10.1128/JVI.79.12.7673-7681.2005
67. Chen C, Zhang C, Li H, Wang Z, Yuan Y, Zhou M, et al. TLR4 Regulates Rabies. J Neurovirol (2010) 16(2):1–20. doi: 10.1371/journal.pntd.0008113
68. Tao X-Y, Tang Q, Li H, Mo Z-J, Zhang H, Wang D-M, et al. Molecular Epidemiology of Rabies in Southern People's Republic of China. Emerg Infect Dis (2009) 15(8):1192. doi: 10.3201/eid1508.081551
69. Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses (2016) 8(231):1–26. doi: 10.3390/v8080231
70. Rupprecht CE, Smith JS. Raccoon Rabies: The Re-Emergence of an Epizootic in a Densely Populated Area. Semin Virol (1994) 5(2):155–64. doi: 10.1006/smvy.1994.1016
71. Scott and Nel Lyssaviruses and the Encephalitis Rabies
84. Pieracci EG. Vital Signs: Trends in Human Rabies Deaths and Exposures — United States, 1938–2018. MMWR Morb Mortal Wkly Rep (2019) 68(23):524–8. doi: 10.15585/mmwr.mm6823e1

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Scott and Nel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.