AN EXPLICIT ERROR TERM IN THEOREM A

NICOLAS BERGERON AND CARLOS MATHEUS

1. INTRODUCTION

Recall that Theorem A above ensures the existence of a constant \(\delta > 0 \) such that the number \(N(V) \) of sLag fibrations with volume \(\leq V \) in a generic twistor family of K3 surfaces is

\[
N(V) = C \cdot V^{20} + O(V^{20-\delta})
\]

where \(C > 0 \) is the ratio of volumes of two concrete homogenous spaces.

The goal of this appendix is to prove that \(\delta \) can be taken to be \(\left(\frac{4}{697633} \right) \):

Theorem 1.1. In the same setting as Theorem A above, one actually has

\[
N(V) = C \cdot V^{20} + O_\varepsilon\left(V^{\frac{10352656}{697633}+\varepsilon}\right)
\]

for all \(\varepsilon > 0 \).

2. REDUCTION OF THEOREM 1.1 TO DYNAMICS IN HOMOGENOUS SPACES

Filip derived his counting formula (1.1) from certain equidistribution results. More precisely, let \(\Lambda \subset H^2(S, \mathbb{Z}) \) be a lattice isomorphic to \(H^2(S, \mathbb{Z}) \), where \(S \) is a K3 surface. Fix \(P \subset \Lambda_R \) a positive-definite 3-plane. Denote by \(\Lambda^0 \subset \Lambda \) the set of primitive isotropic integral vectors and fix \(e \in \Lambda^0 \). For each \(v \in \Lambda_R = P \oplus P^\perp \), let \(v = (v)P \oplus (v)P^\perp \) with \((v)P \in P \) and \((v)P^\perp \in P^\perp \). Consider the orthogonal group \(G := O(\Lambda_R) \), the lattice \(\Gamma := O(\Lambda) \) and the maximal compact subgroup \(K := O(P) \times O(P^\perp) \) of \(G \), and, for a fixed \(e \in \Lambda^0 \), denote by \(H_e := Stab_G(e) \) and \(\Gamma_e := Stab_\Gamma(e) \).

The volumes of the locally homogenous spaces \(X := \Gamma \setminus G \) and \(Y := \Gamma_e \setminus H_e \) are finite. As it is observed in [3, pp. 4], the constants \(C > 0 \) and \(\delta > 0 \) in (1.1) are the constant described in [3, Theorem 3.1.3]. In particular,

\[
C = \frac{\text{Vol} \ Y}{20 \cdot \text{Vol} \ X}
\]

The constant \(\delta > 0 \) is related to the dynamics of a certain one-parameter subgroup \(a_t \) of \(G \approx SO(3, 19)(\mathbb{R}) \). More concretely, given \(e \) and \(P \) as above, let \(e' \) be the isotropic vector given by

\[
e' := (e)P \oplus -(e)P^\perp \quad \text{where} \quad e := (e)P \oplus (e)P^\perp
\]

In this context, we denote by \(\{a_t\}_{t \in \mathbb{R}} \subset G \) the one-parameter subgroup defined as

\[
a_t \cdot e = \exp(-t) \cdot e, \quad a_t \cdot e' = \exp(t) \cdot e', \quad a_t |_{e \oplus e'} = \text{id}.
\]

\textbf{Date:} October 24, 2018.
It is explained in [3] Subsection 3.6.9 that the quantity δ in (1.1) is

$$
\delta = \frac{\delta_0}{d_{l_0} + 1}
$$

where $(d_l)_{l \in \mathbb{N}}$ are the exponents in [3] Proposition 3.5.10 (ii), and $\delta_0 > 0$, $l_0 \in \mathbb{N}$ are the constants in the following equidistribution statement in [3] Theorem 4.3.1:

$$
\int_{Y_{\alpha t}} w \, d\mu_{\gamma_{\alpha t}} = \frac{\text{Vol} Y}{\text{Vol} X} \int_X w \, d\mu_X + O(\|w\|_l \varepsilon^{-\delta_0 t})
$$

for all Sobolev scales $l \geq l_0$ (see [3] §4.2.2 for the definition of the Sobolev norms in this context).

A quick inspection of the proof of [3] Proposition 3.5.10 (ii) (related to the thickening of K) reveals that the exponents d_l depend linearly on l. In fact, the constant $c_1(l)$ in [3] Equation (3.5.15) gives the power of ε associated to the volumes of ε-balls at the origin of $p_m \times n^+ \times a$, that is, $c_1(l) = \dim(G) - \dim(K)$ (and, hence, $c_1(l)$ indepdends of l). Since the l-th derivative of χ_ε is bounded by a multiple of $\varepsilon^{-c_1(l) - l}$ and it is supported in a ε-neighborhood of K, the l-Sobolev norm of χ_ε is bounded by a multiple of $\varepsilon^{-(l-c_1(l))/2}$. Therefore,

$$
d_l := l + \frac{\dim(G) - \dim(K)}{2}.
$$

3. Equidistribution and rates of mixing

The constants $\delta_0 > 0$ and $l_0 \in \mathbb{N}$ in (2.2) are described in [3] pp. 36 and they are related to the geometry of $Y \subset X$ and the rate of mixing of α_t.

3.1. Injectivity radius. We denote by $\text{inj}(x)$ the local injectivity radius at a point $x \in X$ and we let $Y_\varepsilon := \{y \in Y : \text{inj}(y) \geq \varepsilon\}$. By [3] Proposition 4.1.3, we know that the arguments of [1] Lemma 11.2 provide a constant $p > 0$ such that $\mu_Y(Y \setminus Y_\varepsilon) = O(\varepsilon^p)$. Actually, a close inspection of these arguments (of integration over Siegel sets) reveal that $p = 1$ in our specific setting (of $G \simeq SO(3,19)(\mathbb{R})$):

$$
\mu_Y(Y \setminus Y_\varepsilon) = O(\varepsilon)
$$

3.2. Thickening of Y. Let us fix some parameter $0 < \varepsilon' < 1$ (very close to one in practice) and consider [3] Proposition 4.1.6] (of thickening of Y') where it is constructed a family of smooth versions ϕ_ε of the characteristic function of Y. As it turns out, ϕ_ε is the product of two functions: τ_ε is a bump function supported on $Y_{\varepsilon'}$ and ρ_ε is a bump function supported on the ε-neighborhood of the identity in a certain Lie group N' of dimension $\dim(N') = \dim(X) - \dim(Y)$.

1Indeed, [3] pp. 29] says that the optimal choice of δ occurs precisely when the terms $\varepsilon e^{20T} = e^{(20-\delta)T}$ and $e^{-d_{l_0} e^{(20-\delta_0)T}} = e^{(20-\delta_0+4d_{l_0})T}$ have the same order in T.

2In fact, Filip sets $\varepsilon' = 1/2$ for his construction of τ_ε, but any value of $0 < \varepsilon' < 1$ can be taken here: indeed, the construction of τ_ε can be made as soon as the local product structure statement [3] Proposition 4.1.5] holds (and this is the case for any choice of $0 < \varepsilon' < 1$ because $e^{\varepsilon'} \gg 2\varepsilon$ for all sufficiently small $\varepsilon > 0$).
The bump function ρ_ε is obtained by rescaling of a fixed smooth bump function on N', so that its l-th Sobolev norm satisfies $\|\rho_\varepsilon\|_l = O(\varepsilon^{-l - \frac{\dim(X) - \dim(Y)}{2}})$.

The function τ_ε is

$$\tau_\varepsilon = \frac{\sum_{y_j \in \mathcal{F}} \beta_{y_j, \varepsilon}}{\sum_{y_i \in \mathcal{G}} \beta_{y_i, \varepsilon}},$$

where $\{y_k\} \subset Y_{\varepsilon'}$ is a maximal collection of points such that the balls $B(y_k, \varepsilon^3) \subset Y$ are mutually disjoint, $\mathcal{F} = \{y_k\} \cap Y_{4\varepsilon'}$, $\mathcal{G} = \{y_k\} \cap Y_{2\varepsilon'}$, and the functions $\beta_{y, \varepsilon}$ are translates of a bump function β_ε whose l-th Sobolev norm is $\|\beta_\varepsilon\|_l = O(\varepsilon^{-l - \frac{\dim(Y)}{2}})$.

On one hand, since a ball B of radius ε at a point of $Y_{\varepsilon'}$ has volume $O(\varepsilon^{\dim(Y)})$, the cardinality of $\mathcal{G} \cap B$ is $O(\varepsilon^{-2 \dim(Y)})$, the arguments in [1] pp. 1928 imply that the L^∞-norm of the first l derivatives of $1/\beta_{\mathcal{G}, \varepsilon}$ is $O(\varepsilon^{-l - 2 \dim(Y)})$. On the other hand, the cardinality of \mathcal{F} is $O(\varepsilon^{-3 \dim(Y)})$ and $\|\beta_{y_j, \varepsilon}\|_l = \|\beta_\varepsilon\|_l$. It follows that

$$\|\tau_\varepsilon\|_l = O(\varepsilon^{-l - \frac{\dim(Y)}{2}}).$$

By inserting these facts into the definition of ϕ_ε in [3] Equation (4.1.7), we deduce from Sobolev’s lemma that

$$\|\phi_\varepsilon\|_l = O(\varepsilon^{-2l - \frac{\dim(Y)}{2}}),$$

for all $l > \dim(X)/2$, that is, the constant C_l in [3] Proposition 4.1.6 (iii)] is

$$C_l := 2l + 4 \dim(Y) + \frac{\dim(X)}{2}.$$

For later use, notice that ϕ_ε verifies $\int_X \phi_\varepsilon \, d\mu_X = \text{Vol } Y + O(\text{Vol}(Y \setminus Y_{\varepsilon'})).$

By combining this estimate with (3.1), we get

$$\int_X \phi_\varepsilon \, d\mu_X = \text{Vol } Y + O(\varepsilon^{3'}).$$

3.3. Wavefront lemma. The proof of Lemma 4.1.10 in [3] says that

$$\int_X w \cdot (\phi_\varepsilon \cdot a_t) \, d\mu_X = \int_Y w(ya_t \varepsilon) \, d\mu_Y + O(\varepsilon \text{Lip}(w)) + O(\varepsilon^{3p'} \|w\|_{L^\infty})$$

where $p > 0$ is the parameter such that $\mu_Y(Y \setminus Y_{\varepsilon'}) = O(\varepsilon^{3p'})$. Therefore, we deduce from (3.1) and Sobolev’s lemma that

$$\int_X w \cdot (\phi_\varepsilon \cdot a_t) \, d\mu_X = \int_Y w(ya_t \varepsilon) \, d\mu_Y + O(\varepsilon^{3p'} \|w\|_l)$$

for all $l > 1 + \dim(X)/2$.

3.4. Reduction of equidistribution to rate of mixing. By following [3, pp. 36], let us compute the constants $\delta_0 > 0$ and $l_0 \in \mathbb{N}$ in (2.2) in terms of the following quantitative mixing statement: there exists $\delta'_0 > 0$ such that

\[
\left| \int_X \alpha \cdot (\beta \cdot g) d\mu - \left(\int_X \alpha d\mu \right) \left(\int_X \beta d\mu \right) \right| = O\left(\|\alpha\|_l \|\beta\|_l \|g\|^{-\delta'_0} \right)
\]

for all $l \geq l'_0$. (Here, $\mu = \mu_X / \text{Vol} X$ is the normalized Haar measure.)

By (3.2) and (3.3), the previous estimate implies

\[
\int_X w \cdot (\phi \cdot a_t) d\mu_X = \frac{\text{Vol} Y}{\text{Vol} X} \left(\int_X wd\mu_X \right) + O(\|w\|_l) + O(\|w\|_l e^{-C_1 e^{-t\delta'_0}})
\]

for all $l \geq \max\{l'_0, \lfloor \text{dim}(X)/2 \rfloor + 1\}$.

By plugging (3.4) into the estimate above, we conclude that

\[
\int_{Y a_t} wd\mu_{Y a_t} = \frac{\text{Vol} Y}{\text{Vol} X} \left(\int_X wd\mu_X \right) + O(\|w\|_l) + O(\|w\|_l e^{-C_1 e^{-t\delta'_0}})
\]

for all $l \geq l_0 := \max\{l'_0, \lfloor \text{dim}(X)/2 \rfloor + 2\}$.

By taking $\varepsilon := e^{-\delta'_0}$ and by optimizing\(^\text{3}\) the value of δ'_0, we obtain that

\[
\int_{Y a_t} wd\mu_{Y a_t} = \frac{\text{Vol} Y}{\text{Vol} X} \left(\int_X wd\mu_X \right) + O(\|w\|_l e^{-t\delta_0})
\]

for $l_0 := \max\{l'_0, \lfloor \text{dim}(X)/2 \rfloor + 2\}$ and $\delta_0 = \frac{\delta'_0}{p + 2l_0}$.

Since $0 < p' < 1$ is an arbitrary parameter, we deduce that (2.2) holds for $l_0 := \max\{l'_0, \lfloor \text{dim}(X)/2 \rfloor + 2\}$ and any choice of δ_0.

(3.6)

\[
0 < \delta_0 < \frac{\delta'_0}{1 + 2l_0 + 4 \text{ dim}(Y) + \frac{\text{dim}(X)}{2}}
\]

4. Rates of mixing and representation theory

Definition 4.1. 1. A unitary representation π of G in a (separable) Hilbert space \mathcal{H}_π is a morphism $G \to U(\mathcal{H}_\pi)$ such that for any $v \in \mathcal{H}_\pi$ the map $G \to \mathcal{H}_\pi; g \mapsto \pi(g)v$ is continuous. If this map is smooth one says that v is a C^∞-vector of π. We denote by \mathcal{H}_π^c the set of C^∞-vectors of π.

2. Given two vectors $v, w \in \mathcal{H}_\pi$, we define the matrix coefficient $c_{v,w} : G \to \mathbb{C}$ of π as the continuous map $g \mapsto \langle \pi(g)v, w \rangle$. The coefficient $c_{v,w}$ is said to be K-finite if both the vector spaces generated by $\pi(K) \cdot v$ and $\pi(K) \cdot w$ are finite dimensional.

3. Let $p(\pi)$ be the infimum of the set of real numbers $p \geq 2$ such that all K-finite matrix coefficients of π are in $L^p(G)$.

\(^3\text{i.e., we choose } \delta'_0 > 0 \text{ so that } e^{p'} = e^{-C_1 e^{-t\delta'_0}}.\)
4. Say that a unitary representation σ of G is \textit{weakly contained} in π if any matrix coefficient of σ can be obtained as the limit, with respect to the topology of uniform convergence on compact subsets, of a sequence of matrix coefficients of π.

Given an element $g = nak \in G$, we write $a = e^{H(g)}$. The \textit{Harish-Chandra} function is $\Xi = \Xi_G : G \to \mathbb{R}$ defined by

$$\Xi(g) = \int_K e^{-\rho(H(kg^{-1}))} dk$$

where ρ is half the sum of the positive restricted roots counting multiplicities. The Harish-Chandra function decreases exponentially fast along A^+; modulo a polynomial factor of a logarithmic argument, it decreases like $e^{-\rho(H)}$.

Let $d = \dim(K)$ be the dimension of K and fix a basis B of the Lie algebra \mathfrak{k} of K. Given a smooth vector $v \in \mathcal{H}_\pi$ we set

$$S(v) = \sum_{\text{ord}(D) \leq [d/2]+1} ||\pi(D)v||,$$

where D varies among all monomials in elements of B of degree $\leq [d/2] + 1$ and, if X_1, \ldots, X_r are elements of B, we have $\pi(X_1 \cdots X_r) = \pi(X_1) \cdots \pi(X_r)$ and each $\pi(X_i)$ acts by derivation.

\textbf{Proposition 4.2.} For all positive ε and $k \in \mathbb{N}^*$, there exists a constant $C = C(\varepsilon, k)$ such that if π is a unitary representation of G with $p(\pi) \leq 2k$, then for all $v, w \in \mathcal{H}_\pi$ and for all positive t we have:

$$|\langle \pi(a_t)v, w \rangle| \leq CS(v)S(w)e^{-p/k-\varepsilon}t,$$

where $p = \rho(H)$ and H is the infinitesimal generator of the one-parameter subgroup (a_t).

\textit{Proof.} Up to replacing π by the tensor product $\pi^\otimes k$ we may suppose that $k = 1$; see [2, p. 108]. It then follows from [2, Theorem 1] that π is weakly contained in the (right) regular representation $L^2(G)$. We are then reduced to prove the proposition in the case where π is the regular representation of G (and $k = 1$); see the proof of [2, Theorem 2] for more details on this last reduction.

Now consider v and w in $L^2(G) \cap C^\infty(G)$. The functions

$$\varphi : x \mapsto \sup_{k \in K} |v(xk)| \quad \text{and} \quad \psi : x \mapsto \sup_{k \in K} |w(xk)|$$

are both positive and K-invariant, and we have:

$$|\langle \pi(a_t)v, w \rangle_{L^2(G)}| \leq \int_G \varphi(xa_t)\psi(x)dx = |\langle \pi(a_t)\varphi, \psi \rangle_{L^2(G)}|.$$

Now the Sobolev lemma (see [5, Proposition 2.6]) implies that the L^∞ norms of φ and ψ can be estimated in terms of their Sobolev norms along K. More precisely: there exists a constant c such that the for all $x \in G$,

$$\varphi(x)^2 = \sup_{k \in K} |v(xk)|^2 \leq c \sum_{\text{ord}(D) \leq [d/2]+1} ||(\rho(D)v)(x)\rangle||_{L^2(K)}.$$
Integrating over \(G \) (here we assume for simplicity that the measure of \(K \) is 1) one concludes that \(||\varphi||_{L^{2}(G)} \leq \sqrt{ES(v)} \) and similarly for \(\psi \). It remains to prove that there exists a constant \(d_e \) such that if \(\varphi, \psi \in L^{2}(G) \) are two \(K \)-invariant, positive functions of norm 1, then

\[
|\langle \pi(a_t)\varphi, \psi \rangle| \leq d_e e^{-p/(k+\varepsilon)t}.
\]

First it follows from the computations of [2, pp. 106-107] that

\[
|\langle \pi(g)\varphi, \psi \rangle| = \int_{K} \left(\int_{NA} \varphi(na)\psi(nakg^{-1})e^{2\rho(\log a)}dn da \right) dk
\]

\[
\leq ||\varphi||_{L^{2}(G)} \int_{K} \left(\int_{NA} \psi(naH(kg^{-1})^{2}e^{2\rho(\log a)}dn da \right)^{1/2} dk
\]

\[
= ||\varphi||_{L^{2}(G)} \cdot ||\psi||_{L^{2}(G)} \int_{K} e^{-\rho(H(kg^{-1}))}dk = ||\varphi||_{L^{2}(G)} \cdot ||\psi||_{L^{2}(G)} \Xi(g).
\]

Now recall that, up to “polynomial factors of logarithmic arguments”, the function \(\Xi(a_t) \) decreases like \(e^{-\rho(H)} = e^{-pt} \). The proposition follows. \(\square \)

We shall apply this proposition to the (quasi-)regular representation \(\pi \) of \(G \) in the subspace \(L^{2}_{0}(\Gamma \backslash G) \) of \(L^{2}(\Gamma \backslash G) \) that is orthogonal to the space of constant functions. It follows from [4] that \(p(\pi) = 20 \). Proposition 4.2 therefore applies with \(k = 10 \). Note that in our case \(p = 10 \).

Now let \(\alpha \) and \(\beta \) be two smooth functions in \(L^{2}(X) \) then

\[
\alpha_{0} := \alpha - \int_{X} \alpha d\mu \quad \text{and} \quad \beta_{0} := \beta - \int_{X} \beta d\mu \in L^{2}_{0}(X)
\]

and we have:

\[
\langle \pi(g)\alpha_{0}, \beta_{0} \rangle_{L^{2}_{0}(X)} = \int_{X} \alpha \cdot (\beta \cdot g)d\mu - \left(\int_{X} \alpha d\mu \right) \left(\int_{X} \beta d\mu \right).
\]

From Proposition 4.2 and the fact that \(S(\alpha) \leq ||\alpha||_{|d/2|+1} \) we conclude that

\[
\left| \int_{X} \alpha \cdot (\beta \cdot a_{t})d\mu - \left(\int_{X} \alpha d\mu \right) \left(\int_{X} \beta d\mu \right) \right| = O(||\alpha||_{l}||\beta||_{l}e^{-\delta_{0}l})
\]

for any \(l \geq l_{0} := \lfloor \dim(K)/2 \rfloor + 1 \) and any \(\delta_{0} < 1 \).

5. END OF PROOF OF THEOREM 1.1

The explicit value of \(\delta \) announced in Theorem 1.1 can be easily derived from the discussion above. Indeed, we just saw in Section 4 that \(\delta_{0} = 1 \) and \(l_{0} = \lfloor \dim(K)/2 \rfloor + 1 \). Because \(174 = \dim(K) < \dim(X) = 231 \) and \(\dim(Y) = 210 \), we deduce from (3.6) that \(l_{0} = \lfloor \dim(X)/2 \rfloor + 2 = 117 \) and

\[
\delta_{0} = \left(\frac{1}{1 + 2 \times 117 + 4 \times 210 + \frac{231}{2}} \right)^{-} = \left(\frac{2}{2381} \right)^{-}
\]
Finally, by inserting these informations into (2.3) and (2.1), we conclude that

$$\delta = \frac{\delta_0}{l_0 + \frac{37}{2} + 1} = \left(\frac{4}{697633}\right)^{-1} \approx (5.7336737224 \cdots \times 10^{-6})^{-1}.$$