Is intraoperative corticosteroid a good choice for postoperative pain relief in total joint arthroplasty? A meta-analysis of 11 randomized controlled trials

Lu-kai Zhang, MDa,b,*, Fang-bing Zhu, MDa,b, Huan-huan Gao, MDa,b, Lei Zhang, MDa,b, Ren-fu Quan, MDa,b

1. Introduction

Total joint arthroplasty (TJA) is one of the most effective methods for end-stage osteoarthritis.[1,2] It was reported that the demand for primary total knee arthroplasty (TKA) is expected to grow by 673% to 3.48 million in America when it comes to 2030.[3] While postoperative pain following TJA is the most common problem which concerns surgeons.[4–7] Postoperative pain following TJA is an inevitable question which may delay functional exercise and hospitalization days.[8,9] Adequate pain relief following total knee and hip arthroplasty can promote early rehabilitation.

Corticosteroids have strong anti-inflammatory properties and relieve pain following surgeries.[10–14] Recently several published studies demonstrate the superiority of corticosteroids in analgesic effect compared to the non-corticosteroids group.[15–17] There is a growing consensus that the corticosteroids should be recommended as the analgesic choice for patients undergoing TJA. However, the safety and effectiveness of corticosteroids remain controversial. Thus, we made the meta-analysis.

The hypothesis of this meta-analysis was that the corticosteroids have effects on pain relief following TJA?

2. Materials and methods

The study was approved by the Ethics Committee of the Xiaoshan Traditional Chinese Medical Hospital.

2.1. Search strategy

Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and Cochrane Handbook were used to evaluate the quality of the included studies to insure our results were reliable and verifiable. We systematically searched PubMed (1996–December 2020), Embase (1996–December 2020), and the Cochrane Library (CENTRAL, December 2020)
We also searched related references and Google Scholar meanwhile. Only randomized controlled trials (RCTs) were included in our study. ‘Total knee arthroplasty’, ‘Total hip arthroplasty’, ‘Total joint arthroplasty’, ‘corticosteroids’ were used as key words using Boolean operators ‘AND’ or ‘OR’. The search results are shown in Figure 1.

2.2. Inclusion and exclusion criteria

Trials were included in our meta-analysis on condition they met the PICOS criteria (patients, intervention, comparator, outcome, study design). Patients: patients had underwent TKA or total hip arthroplasty for the first time. Intervention: corticosteroids for TKA or total hip arthroplasty. Comparator: non-corticosteroids. Outcomes: visual analogue scale (VAS) at rest, VAS at movement, total morphine consumption, periprosthetic joint infection (PJI), and length of stay (LOS). Study design: RCT.

2.3. Data extraction and bias risk assessment

Two researchers collected available data from included studies independently, and any disagreement between the 2 researches was judged by a third reviewer. Basic characteristics included patients, age, gender, body mass index, surgery type, and reference type. The VAS was the primary outcome in our meta-analysis. In order to compare the opioids consumption, all opioids were converted to equivalent morphine consumption dosage according the standard formula (Table 1). In order to compare the total amount of corticosteroid used by patients, all corticosteroid was converted to dexamethasone dosage according to standard formula (Table 2). The VAS score consists of 11 pain level with 0 being no pain and 10 representing the worst pain. Secondary outcomes consisted of VA, PJI, and LOS. We chose the Cochrane Handbook for systematic review of interventions (Review Manager Version 5.3 (Cochrane Collaboration’s software) to evaluate the risk bias of included studies.

2.4. Statistical analysis

We used Review Manager software 5.3 for our meta-analysis. For continuous data, the mean differences (MDs) with 95% confidence intervals (CIs) were applied to weigh the effect interval. Conversely, the risk ratio with 95% CIs was used to figure the effect interval. We used the values of P and I^2 to assess statistical heterogeneity among the included studies. When $I^2 < 50\%$ and $P > .05$ we applied a fixed-effect model, otherwise a random-effect model was applied.
3. Results

3.1. Search results

A total of 301 articles were identified, and their records were included in Endnote X7 (Clarivate Analytics, Philadelphia, PA). After removing 55 duplicates, remaining 301 articles were screened according to the titles and abstracts. A full-text assessment was conducted on the rest of the 63 articles. Finally, 11 RCTs\(^\text{16–26}\) were included in this meta-analysis. The basic characteristics and interventions are summarized in Tables 3 and 4.

3.2. Risk of bias and quality assessment

According to the Cochrane Handbook for Systematic Reviews of Interventions, the risk of bias of the included RCTs were evaluated as follows: randomization; allocation concealment; blind method; selective reporting; incomplete outcome data; and other bias. The bias of assessment of RCTs are presented in Figures 2 and 3. We used funnel plot to evaluated reporting bias, which are presented in Figure 4. The symmetrical funnel plot diagram indicated that there were no significant risks of publications bias of VAS at rest and movement, total morphine equivalent consumption, PJI, and LOS.

Table 1

Analgesics	Dosage of morphine equivalents (mg)
Morphine (subcutaneous or intramuscular)	10
Hydromorphone (subcutaneous or intramuscular/oral)	1.5/7.5
Codeine (subcutaneous or intramuscular/oral)	120/200
Oxycodone (oral)	20
Demerol (subcutaneous or intramuscular/oral)	80/300

Table 2

Corticosteroids	Dosage (mg)
Dexamethasone	0.75
Triamcinolone acetonide	4
Methylprednisolone	5
Hydrocortisone	20

Table 3

Corticosteroid group/control group	Patients (n)	Ages (yrs)	Female gender (%)	BMI	Surgery	Reference type
Tammachote et al (2018)	54/54	69/68	79.6/81.5	27/27	TKA	RCT
Li et al (2018)	36/32	63.9/64.7	80.6/84.3	25.3/24.7	TKA	RCT
Samona et al (2017)	55/47	64.8/62.6	54.5/59.6	N/A	TKA	RCT
Luna et al (2017)	21/19	68/67	71.4/42.1	28.8/28.2	TKA	RCT
Tsukada et al (2016)	40/37	75/72	87.5/86.5	26.7/27.3	TKA	RCT
Rytt et al (2015)	35/37	65/66	51.4/45.9	28.3/30.4	TKA	RCT
Koh et al (2013)	135/134	72/72	87/89	26.3/26.1	TKA	RCT
Chia et al (2013)	42/43	66.8/65	N/A	31/31.4	TKA	RCT
Lunn et al (2012)	24/24	66/66	50/62	27/27	THA	Use
Lunn et al (2010)	24/24	66/67	45.8/66.7	28/30	TKA	RCT
Kardash et al (2008)	25/25	69/68.8	52/44	N/A	THA	RCT

BMI = body mass index, N/A = not applicable, RCT = randomized controlled trial, THA = total hip arthroplasty, TKA = total knee arthroplasty.

Table 4

Corticosteroid	Type	Dosage (mg)	Surgical approach	Anesthesia	Pneumatic tourniquet
Tammachote et al (2018)	Triamcinolone acetonide	100	Medial parapatellar approach	Spinal epidural + epidural anesthesia	N/A
Li et al (2018)	Hydrocortisone	8	Medial parapatellar approach	Local infiltration analgesia	Use
Samona et al (2017)	Dexamethasone	40	N/A	Spinal or general anesthesia	N/A
Luna et al (2017)	Methylprednisolone	125	N/A	Spinal or general anesthesia	N/A
Tsukada et al (2016)	Methylprednisolone	125	N/A	Spinal or general anesthesia	N/A
Rytt et al (2015)	Methylprednisolone	125	N/A	Spinal or general anesthesia	N/A
Koh et al (2013)	Dexamethasone	10	N/A	Spinal or general anesthesia	N/A
Chia et al (2013)	Dexamethasone	100	Medial parapatellar approach	Spinal or general anesthesia	N/A
Lunn et al (2012)	Methylprednisolone	125	N/A	Spinal or general anesthesia	N/A
Lunn et al (2010)	Methylprednisolone	125	N/A	Spinal or general anesthesia	N/A
Kardash et al (2008)	Dexamethasone	125	N/A	Spinal or general anesthesia	N/A

N/A = not applicable.
3.3. Results of meta-analysis

3.3.1. VAS at rest. Data from 8 studies with 1941 patients reported the VAS at rest. Subgroup analysis showed that the corticosteroids group had lower VAS at 12 hours (MD = -0.66, 95% CI: [-0.99, -0.34], P < .05; Fig. 5), 24 hours (MD = -1.24, 95% CI: [-2.18, -0.30], P < .05; Fig. 5), 48 hours (MD = -0.23, 95% CI: [-0.43, -0.03], P < .05; Fig. 5), and 72 hours (MD = -0.30, 95% CI: [-0.34, -0.26], P < .05; Fig. 5) when compared to the control group. A random effect model was used due to moderate heterogeneity in union time (x² = 1641; df = 19; P < .05; I² = 99%; Fig. 5).

3.3.2. VAS at movement. Four articles with 718 patients showed the outcome of VAS at movement. Subgroup analysis indicated compared with the control group, the corticosteroid group showed lower VAS at 12 hours (MD = -0.80, 95% CI: [-0.99, -0.61], P < .05; Fig. 6), 24 hours (MD = -2.33, 95% CI: [-4.63, -0.04], P < .05; Fig. 6), and 72 hours (MD = -0.71, 95% CI: [-1.38, -0.04], P < .05; Fig. 6). No significant differences were found at 48 hours between 2 groups (MD = -0.94, 95% CI: [-2.26, 0.38], P = .16; Fig. 6). We used random effect model due to the statistical heterogeneity (x² = 399; df = 9; P < .05; I² = 98%; Fig. 6).

3.3.3. Total equivalent morphine consumption. Data from 5 studies with 510 patients reported the total equivalent morphine consumption. Pooled data indicated that the corticosteroid group consumed less morphine compared to the control group (MD = -10.56, 95% CI: [-13.10, -8.01], P < .05; Fig. 7). A fixed effect model was used because of the low heterogeneity (x² = 4.68; df = 4; P = .32; I² = 15%; Fig. 7).

3.3.4. Periprosthetic joint infection. Five studies with 328 patients recorded the PJI. No significant differences were found between the corticosteroid group and the control group (risk ratio = 1.23, 95% CI: [0.36, 4.21], P = .74; Fig. 8). We used fixed effects model due to the low heterogeneity (x² = 0.23; df = 1; P = .63; I² = 0%; Fig. 8).

3.3.5. Length of stay. We extracted the data of LOS from 3 studies. No significant differences were found between the corticosteroid group and the control group (MD = -0.24, 95% CI: [-0.7, 0.23], P = .32; Fig. 9). We used a random effect model.
due to the statistical heterogeneity ($x^2 = 8.17; \text{df} = 2; P < .05; I^2 = 76\%$; Fig. 9).

4. Discussion

As far as we know, several meta-analyses compared the efficacy of corticosteroid on pain relief in TJA. Considering the inconsistencies results and limitations of these meta-analysis, we were inspired to make the meta-analysis.\cite{27-30} Our meta-analysis has several advances and strengths compared with previous studies. First, compared with previous studies, we included the largest number of RCTs. Hence, the pooled data are more feasible, convincing, and instructive. Second, we firstly evaluated the postoperative VAS in terms of 2 parts: at rest and movement, which made our results more objective and specific. Third, we also analyzed the safety of corticosteroids by evaluating the postoperative prosthesis infection rate between the 2 groups, which contribute a more comprehensive evaluation.
Finally, we analyzed the source of heterogeneity between the RCTs, which made the pooled data more reliable.

VAS was the primary outcome assessed in our meta-analysis. VAS is used to assess the pain of patients after knee and hip surgeries. Our pooled data showed that corticosteroids are better for postoperative pain relief in patients with total knee or hip arthroplasty. Meanwhile, an RCT conducted by Li et al. demonstrated that corticosteroids showed better analgesic effects in VAS at rest at 12 hours, 24 hours, and 48 hours postoperatively. This was consistent with our findings. In our meta-analysis, we demonstrated that corticosteroids group got better VAS at rest and movement. Similar findings were reported by Koh et al. and Tsukada et al. Therefore, we conducted a comparison between the control group, the corticosteroid group provided better VAS at rest and movement. Similar findings were reported by Koh et al. and Tsukada et al. Therefore, we conducted a comparison between the control group and corticosteroid group. The length of hospital stay between the 2 groups also showed no significant differences.

Also, there are some limitations in our meta-analysis. Firstly, only 11 studies in our meta-analysis. The test power for statistical would be more credible if more RCT are included. Secondly, unavoidable heterogeneity (racial differences, surgery procedures, anesthesia methods, age, and so on) between the included studies may affect the results of pooled data. Thirdly, with regard

Study or Subgroup	Corticosteroid	Control	Mean Difference (IV, Random, 95% CI)
1.1.1 at 12 hours			
Kardon et al. 2008	2.4	1.7	-0.70 [-1.69, 0.39]
Li et al. 2016	2.7	0.3	-1.10 [-1.27, -0.93]
Ryttar et al. 2015	2.2	2.5	-2.80 [-5.35, -0.20]
Tsukada et al. 2016	0.8	2.1	-0.20 [-1.18, 0.78]
Subtotal (95% CI)	133	131	18.00 [-2.18, -0.30]

Heterogeneity: tau^2 = 0.76; chi^2 = 23.17, df = 3 (P < 0.0001); I^2 = 87%

Test for overall effect: Z = 2.56 (P = 0.010)

1.1.2 at 24 hours

Study or Subgroup	Corticosteroid	Control	Mean Difference (IV, Random, 95% CI)
Kardon et al. 2008	2.5	0.0	0.40 [-1.23, 0.04]
Koh et al. 2013	2.3	0.3	3.73 [-0.94, 0.66]
Li et al. 2018	2.1	2.5	3.62 [-0.81, 1.59]
Lunn et al. 2010	0.6	1.3	0.40 [-1.06, 0.26]
Lunn et al. 2012	2.6	0.9	0.50 [-0.96, -0.04]
Tsukada et al. 2016	1.7	2.3	0.90 [-1.81, 0.01]
Subtotal (95% CI)	316	313	34.14 [-1.15, 0.47]

Heterogeneity: tau^2 = 0.43; chi^2 = 127.51, df = 6 (P < 0.00001); I^2 = 97%

Test for overall effect: Z = 3.54 (P = 0.0003)

1.1.3 at 48 hours

Study or Subgroup	Corticosteroid	Control	Mean Difference (IV, Random, 95% CI)
Kardon et al. 2008	5.0	0.5	0.20 [-0.11, 0.51]
Koh et al. 2013	3.5	0.2	-0.40 [-0.46, -0.34]
Li et al. 2018	1.7	0.3	-0.30 [-0.46, -0.14]
Lunn et al. 2010	0.5	0.8	-0.50 [-0.74, 0.26]
Tamamchote et al. 2018	1.3	1.8	-0.30 [-1.10, 0.50]
Tsukada et al. 2016	3.4	1.5	0.50 [-0.21, 0.21]
Subtotal (95% CI)	305	301	23.52 [-0.43, -0.03]

Heterogeneity: tau^2 = 0.04; chi^2 = 21.62, df = 5 (P = 0.0006); I^2 = 77%

Test for overall effect: Z = 2.27 (P = 0.02)

1.1.4 at 72 hours

Study or Subgroup	Corticosteroid	Control	Mean Difference (IV, Random, 95% CI)
Koh et al. 2013	3.4	0.1	-0.30 [-0.34, -0.26]
Tamamchote et al. 2018	0.9	1.3	-0.40 [-1.02, 0.22]
Tsukada et al. 2016	2.9	1.8	-0.10 [-0.91, 0.71]
Subtotal (95% CI)	222	220	15.32 [-0.34, -0.26]

Heterogeneity: tau^2 = 0.00; chi^2 = 0.33, df = 2 (P = 0.85); I^2 = 0%

Test for overall effect: Z = 14.95 (P = 0.00001)

Total (95% CI)

Mean Difference (IV, Random, 95% CI)
976
985
100.00%

Heterogeneity: tau^2 = 0.46; chi^2 = 1641.19, df = 19 (P < 0.0001); I^2 = 99%

Test for overall effect: Z = 3.99 (P < 0.0001)

Test for subgroup differences: chi^2 = 15.82, df = 3 (P = 0.01); I^2 = 72.3%

Figure 5. A forest plot diagram showing the VAS at rest. VAS = visual analogue scale.
to the significant heterogeneity of VAS at postoperatively 24 hours ($I^2 = 97\%$) at rest, we tried to find the source of heterogeneity. When we did not include the RCT of Koh et al.[21] the heterogeneity of VAS at postoperatively 24 hours ($I^2 = 67\%$) reduced significantly. Thus we thought the study of Koh et al.[21] was the sources of the heterogeneity. In the study of Koh et al.[21] they used the dosage of 10mg in the corticosteroids group. While other studies applied at least a dosage of 40mg of corticosteroids. Hence, we thought the dosage of corticosteroids may be a cause of heterogeneity. Although some limitations exist in our study, high quality of included studies and accurate statistical method ensured the reliability of our meta-analysis.

5. Conclusions
In conclusion, we found the corticosteroid group in our meta-analysis is superior in terms of VAS at rest and movement, and total morphine equivalent consumption, without increasing the risk of PJI and LOS, when compared to the control group. Thus, we conclude that the corticosteroid is a feasible analgesic choice for patients undergoing TJK. However, further high-quality research is necessary to confirm these findings.
studies are needed to explore the optimal dosage of corticosteroid.

Author contributions

Conceptualization: Lu-kai Zhang.
Funding acquisition: Ren-fu Quan.
Investigation: Ren-fu Quan.
Methodology: Huan-huan Gao.
Project administration: Huan-huan Gao.
Resources: Fang-bing Zhu, Huan-huan Gao.
Software: Fang-bing Zhu.
Supervision: Fang-bing Zhu.
Writing – original draft: Lu-kai Zhang, Ren-fu Quan.
Writing – review & editing: Lu-kai Zhang, Lei Zhang.

References

[1] de Steiger RN, Graves SE. Orthopaedic registries: the Australian experience. EFORT Open Rev 2019;4:409–15.
[2] Kheir M, Rondon AJ, Bonaddio V, et al. Perioperative telephone encounters should be included in the relative value scale update committee review of time spent on total hip and knee arthroplasty. J Arthroplasty 2019;34:1563–9.
[3] Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89:780–5.
[4] Cheng BY, So EHK, Hu GKM, et al. Pre-operative intravenous steroid improves pain and joint mobility after total knee arthroplasty in Chinese population: a double-blind randomized controlled trial. Eur J Orthop Surg Traumatol 2019;29:1473–9.
[5] Judd DL, Wolfe P, LeDoux CV, Hogan C, Dayton MR, Stevens-Lapley JE. Trajectories of functional performance and muscle strength recovery differ after total knee and total hip replacement: a performance-based, longitudinal study. Int J Rehabil Res 2019;42:211–6.
[6] Louw A, Puente dela EF, Reed J, Zinmey K, Grimm D, Landers MR. A controlled clinical trial of preoperative pain neuroscience education for patients about to undergo total knee arthroplasty. Clin Rehabil 2019;33:1722–31.
[7] Perruccio AV, Fitzpatrick J, Power JD, et al. The effects of depression, low back pain and comorbidities on pain after total knee arthroplasty for osteoarthritis are modified by sex. Arthritis Care Res 2019;72:
[8] Li D, Zhao J, Yang Z, Kang P, Shen B, Pei F. Multiple low doses of intravenous corticosteroids to improve early rehabilitation in total knee arthroplasty: a randomized clinical trial. J Knee Surg 2019;32:171–9.
[9] Tan Z, Kang P, Pei F, Shen B, Zhou Z, Yang J. A comparison of adductor canal block and femoral nerve block after total-knee arthroplasty regarding analgesic effect, effectiveness of early rehabilitation, and lateral knee pain relief in the early stage. Medicine (Baltimore) 2018;97:e13391.
[10] Farshad M, Burgegger JM, Held U, Steurer J, Dennler C. Do preoperative corticosteroid injections increase the risk for infections or wound healing problems after spine surgery?: a Swiss prospective multicenter cohort study. Spine 2018;43:1089–94.
[11] Wang AS, Armstrong EJ, Armstrong AW. Corticosteroids and wound healing: clinical considerations in the perioperative period. Am J Surg 2013;206:410–7.
[12] Herrera-Briones FJ, Prados Sanchez E, Reyes Botella C, Vallecillo Capilla M. Update on the use of corticosteroids in third molar surgery: systematic review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;116:e342–51.
[13] Mohammad HR, Trivella M, Hamilton TW, Strickland I, Murray D, Pandit H. Perioperative adjuvant corticosteroids for post-operative
analgesia in elective knee surgery - a systematic review. Syst Rev 2017;6:92.

[14] Rodriguez-Merchan EC. Intra-articular corticosteroid injections in haemophilic arthropathy: are they recommended? Hosp Pract (1995) 2018;46:1–4.

[15] Klement MR, Wilkens HS, Fillingham YA, Manrique J, Austin MS, Parvizi J. Intraoperative dexamethasone reduces readmission rates without affecting risk of thromboembolic events or infection after total joint arthroplasty. J Arthroplasty 2018;33:3252–6.

[16] Li D, Zhao J, Yang Z, Kang P, Shen B, Pei F. Multiple low doses of intravenous corticosteroids to improve early rehabilitation in total knee arthroplasty: a randomized clinical trial. J Knee Surg 2018;32:171–9.

[17] Tammachote N, Seangleulur A, Kanti Nate S. Lumbar epidural corticosteroid injection reduces subacute pain and improves knee function in the first six weeks after total knee arthroplasty: a double-blind randomized trial. J Bone Joint Surg Am 2018;100:950–7.

[18] Kardash KJ, Frederic S, Tessler MJ, Velly AM. Single-dose dexamethasone reduces dynamic pain after total hip arthroplasty. Anesth Analg 2008;106:1253–7.

[19] Lunn TH, Kristensen BB, Andersen LØ, et al. Effect of high-dose preoperative methylprednisolone on pain and recovery after total knee arthroplasty: a randomized, placebo-controlled trial. Br J Anaesth 2011;106:230–8.

[20] Chia SK, Wernecke GC, Harris IA, Bohm MT, Chen DB, Macdessi SJ. Peri-articular steroid injection in total knee arthroplasty: a prospective, double blinded, randomized controlled trial. J Arthroplasty 2013;28:620–1.

[21] In Jun K, Bum CC, Jung Ha L, Young-Tae J, Tae Kyun K. Preemptive low-dose dexamethasone reduces postoperative emesis and pain after TKA: a randomized controlled study. Clin Orthop Relat Res 2013;471:3010–20.

[22] Lunn TH, Andersen L, Kristensen BB, et al. Effect of high-dose preoperative methylprednisolone on recovery after total hip arthroplasty: a randomized, double-blind, placebo-controlled trial. Br J Anaesth 2013;110:66–73.

[23] Tsukada S, Waku M, Hoshino A. The impact of including corticosteroid in a periarticular injection for pain control after total knee arthroplasty: a double-blind randomised controlled trial. Bone Joint J 2016;98-B:194–200.

[24] Luna IE, Kehlet H, Jensen CM, et al. The effect of preoperative intra-articular methylprednisolone on pain after TKA: a randomized double-blinded placebo controlled trial in patients with high-pain knee osteoarthritis and sensitization. J Pain 2017;18:1476–87.

[25] Rytter S, Stilling M, Munk S, Hansen TB. Methylprednisolone reduces pain and decreases knee swelling in the first 24 h after fast-track unicompartimental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017;25:284–90.

[26] Samona J, Cook C, Krupa K, et al. Effect of intraoperative dexamethasone on pain scores and narcotic consumption in patients undergoing total knee arthroplasty. Orthop Surg 2017;9:110–4.

[27] Feeley AA, Feeley TB, Feeley IH, Sheehan E. Postoperative infection risk in total joint arthroplasty after perioperative IV corticosteroid administration: a systematic review and meta-analysis of comparative studies. J Arthroplasty 2021;36:3042–53.

[28] Huang LY, Hu HH, Zhong ZL, Teng C, He B, Yan SG. Should corticosteroids be administered for local infiltration analgesia in knee arthroplasty? A meta-analysis and systematic review. J Clin Pharm Ther 2021;46:1441–58.

[29] Lex JR, Edwards TC, Packer TW, Jones GG, Ravi B. Perioperative systemic dexamethasone reduces length of stay in total joint arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Arthroplasty 2021;36:1168–86.

[30] Li Q, Mu G, Liu X, Chen M. Efficacy of additional corticosteroids to multimodal cocktail periarticular injection in total knee arthroplasty: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2021;16:77.