First report of Wolbachia in Damaeus onustus (Acari: Oribatida)

Edyta Konecka1*, Ziemowit Olszanowski2 and Aleksandra Jagiello1,2

Abstract

Purpose: Little is known about the distribution and phylogeny of bacterial endosymbionts in oribatid mites (Acari: Oribatida). Thus, we undertook the issue of occurrence of these microbial symbionts in this arthropod group.

Methods: We used PCR technique for detection of Wolbachia in Damaeus onustus. Phylogenetic analysis of the bacterium was conducted based on the 16S rDNA sequence.

Results: To the best of our knowledge, we present a novel finding of Wolbachia infection in the sexually reproducing oribatid mite, D. onustus. The presence of uninfected individuals (ca. 93%) suggests that the bacteria do not function as primary symbionts. A comparison of the bacterial 710-bp 16S rDNA sequence detected in the oribatid mite with the sequences deposited in GenBank revealed its 92–93% similarity to the 16S rDNA sequences of Wolbachia identified in some springtails (Collembola) and Bryobia sp. mite. Bacteria from D. onustus showed phylogenetic relationships with Wolbachia from springtails, Megalothorax minimus and Neelus murinus, which were included by other authors into a separate Wolbachia clade.

Conclusion: Our finding suggests that the strains of Wolbachia from D. onustus may form a new Wolbachia supergroup.

Keywords: Wolbachia, 16S rDNA, Oribatida, Phylogenetic analysis

Findings

Wolbachia is one of the most frequent intracellular symbiont of invertebrates: arthropods and nematodes. It is estimated that 52% of arthropod species are infected with Wolbachia (Weinert et al. 2015; Huang et al. 2019). The bacterium is responsible mainly for manipulating its host reproduction (Ali et al. 2016; Mariño et al. 2017) and causing sex-ratio distortion in the infected population (Salunkhe et al. 2014; Duplouy and Hornett 2018). However, the range of its impact is much broader and includes host fitness (Zug and Hammerstein 2015; Liu et al. 2018), viral infection inhibition (Geoghegan et al. 2017; Tan et al. 2017), and defense against pathogens through the involvement in the production of host anti-predator and alarm pheromones (Becerra et al. 2015).

Wolbachia is transmitted vertically through the egg cytoplasm, from mother to offspring within the host population (Zhao et al. 2013; Guo et al. 2018). Horizontal transmission of the endosymbiont between hosts can also occur (Kremer and Huigens 2011; Brown and Lloyd 2015; Ahmed et al. 2016; Pietri et al. 2016) and is usually inferred from the presence of similar or identical bacterial strains in two unrelated host species. Food may be a medium for Wolbachia transmission among similarly feeding invertebrates, and sharing the same diet may promote horizontal transmission of these bacteria (Haine et al. 2005; Sintupachee et al. 2006; Li et al. 2016; Chrostek et al. 2017). The ingestion of infected carcasses or eggs could be a possible source of Wolbachia introduction, and eating dead invertebrates with bacterial cells inside their tissues may facilitate horizontal transmission of Wolbachia (Brown and Lloyd 2015).
Outside the host tissue, *Wolbachia* cannot be cultured in laboratory conditions using conventional bacteriological techniques. Identification and distribution of the endosymbiont in different hosts rely on molecular PCR-based screening methods. Sequence analysis of 16S rDNA and housekeeping genes of *Wolbachia* provides information useful in typing, evolutionary research, and phylogeny of these bacteria (Baldo et al. 2006; Werren et al. 2008). Different sets of genes are applied in the symbiont characterization. Phylogenetic analysis is based on 16S rDNA and housekeeping genes, for example, *atpD* (ATP synthase beta chain), *dnaA* (chromosomal replication initiator protein), and *topI* (DNA topoisomerase I) (Crainey et al., 2010). The *wsp* gene coding for the *Wolbachia* surface protein is also a reliable tool in the bacteria phylogeny (Baldo et al. 2006). Currently, strains of genus *Wolbachia* are divided into supergroups A-Q (Glowska et al. 2015).

Although a few studies on endosymbionts in oribatid mites (Acari: Oribatida) have been conducted (Pierrot-Minnot and Norton 1997; Weeks et al. 2003; Liana and Witaliński 2010; Konecka and Olszanowski 2015, Konecka and Olszanowski 2019a, Konecka and Olszanowski 2019b, Konecka and Olszanowski 2019c, Konecka et al. 2019), still little is known about the distribution and phylogeny of microorganisms in this arthropod group. We identified *Wolbachia* in *Damaeus onustus*. Phylogenetic analysis of the bacterium was conducted based on the 16S rDNA sequence.

Fifteen individuals of the oribatid mite, *D. onustus* (Acari: Oribatida) were isolated from a sample of soil and litter collected in a deciduous forest in the Wkrzańska Forest, West Pomeranian Voivodeship in Poland (53° 58′ N, 14° 43′ E).

DNA was extracted using the Genomic Mini kit (A&A Biotechnology). Amplifications of the 781-bp product of *Wolbachia* 16S rDNA were performed in a standard PCR mixture with 553F_W (5′-CTTCATRYACTCGAGT TGCWGAGT-3′) and 1334R_W (5′-GAKTTAAAYCGYGCAGGGTTT-3′) primers, as presented by Simões et al. (2011). A negative control without DNA template was included in the reaction. The PCR program was as follows: 94 °C for 2 min; 35 cycles of 94 °C for 30 s, 62 °C for 30 s, and 72 °C for 45 s; and 72 °C for 10 min (Simões et al. 2011). Amplicons were electrophoresed, sequenced with BigDye Terminator v3.1 on an ABI Prism 3130XL Analyzer (Applied Biosystems), and analyzed with BLASTn. The 710-bp 16S rDNA sequence was deposited in GenBank under accession no. MH921824.

The 16S rDNA sequence of *Wolbachia* from *D. onustus* was aligned with the loci identified in other invertebrate hosts. The alignment of 32 *Wolbachia* sequences was constructed with the use of CLUSTAL W (Thompson et al. 1994). An outgroup of *Ehrlichia* spp. sequences was added. The jModelTest 2 software (Darriba et al. 2012) was used to select the optimal model of sequence evolution. The General Time Reversible model with gamma distribution among site rate variation (GTR +G) was selected. Phylogenetic analysis was conducted using MEGA.

Table 1 *Wolbachia* strains used in phylogenetic analysis

Designation of Wolbachia supergroup	Host of Wolbachia
A	*Drosophila melanogaster*, *Telemeca cucurbitina*
B	*Drosophila simulans*, *Armadillidium vulgare*
C	*Dirofilaria immitis*, *Onchocerca ochengi*
D	*Litomosoides sigmodontis*
E	*Ceratozetes thienemanni*, *Mesaphorura italica*, *Gustavia microcephala*, *Folsomia candida*, *Megalothorax incertus*
F	*Coptotermes acinaciiformis*, *Nasutitermes nipriceps*
H	*Zoospermopsis angusticalis*, *Zoospermopsis nevadensis*
I	*Ctenocephalides felis*, *Orchopeas leucopus*
J	*Dipetalonema gracile*
K	*Bryobia* sp.
L	*Radopholus similis*
M	*Brevicoryne brassicae*, *Aphis fabae*
N	*Tauxoptera aurantii*
O	*Bemisia tabaci*
P	*Syringophilopsis turdus*, *Torotrogla merulae*
Q	*Torotrogla cardueli*
?	*Damaeus anustus*, *Megalothorax minimus*, *Neelus murinus*
version 6.0 (Tamura et al. 2013). The maximum likelihood bootstrap support was determined by using 1000 bootstrap replicates. Recombination in genes between strains was detected by the φ test using the SplitsTree4 software (Huson and Bryant 2006).

To the best of our knowledge based on an extensive literature search, this is the first report of Wolbachia infection in the sexually reproducing oribatid mite D. onustus. We examined 15 specimens of D. onustus and only one of them was infected with Wolbachia. The low occurrence of infected individuals in this small sample (ca. 7%) suggests that the bacteria do not function as primary symbionts.

The 710-bp 16S rDNA sequence of Wolbachia was deposited in GenBank under accession no. MH921824. The φ test did not find statistically significant evidence of recombination (φ = 0.4885). A comparison of the bacterial 16S rDNA sequence detected in D. onustus with the sequences deposited in GenBank revealed similarity of 92–93% to the 16S rDNA sequences of Wolbachia identified in springtails (Collembola): Megalothorax minimus (accession no. KC767945), M. incertus (accession no. KT799584), and Neelus murinus (accession no. KC767946). The Wolbachia sequence was also highly similar (92%) to mite, Bryobia sp. (accession no. EU499316). These sequences were included in phylogenetic analysis of bacteria together with Wolbachia sequences representing supergroups A-Q (Table 1).

Phylogeny based on the 16S rDNA and ftsZ gene sequences of M. minimus and N. murinus bacteria was presented by Tanganelli et al. (2014). These authors found that Wolbachia from the two species of springtails did not cluster with known Wolbachia supergroups and formed a separate

Fig. 1 Maximum likelihood reconstruction of Wolbachia phylogeny based on the sequences of 16S rDNA. Strains are designated by the names of their hosts, except for the outgroup. NCBI accession numbers for sequences are presented after the names of hosts. Bar, substitutions per nucleotide. Bootstrap values based on 1000 replicates are shown on the branches.
and M. mini-chia
tus from keeping genes is required to explain the membership of bacteria phylogeny based on the sequences of house-
two separate supergroups. Further analysis, including the bacteria that infected Collembola also clustered into
tantly related supergroups and confirmed the fact that (Konecka et al. 2019) and
Mesaphor-
supergroup E bacteria from other springtails, mus
nelli et al. (2014) that
are phylogenetically distinct from supergroup E bacteria from other springtails, (Konecka and Olszanowski 2019a).
Our results sug-
gested that Wolbachia from Oribatida formed two dis-
tantly related supergroups and confirmed the fact that the bacteria that infected Collembola also clustered into
itself and into two separate supergroups. Further analysis, including bacteria phylogeny based on the sequences of house-
keeping genes is required to explain the membership of Wolbachia from D. onustus to a potentially new Wolba-
ch supergroup.

In conclusion, our study presents for the first time the occurrence of Wolbachia infection in Oribatida D. onus-
the 16S rDNA sequence of Wolbachia from the mite indicated similarity and phylogenetic relationship with bacteria found in springtails, M. mini-
us and N. murinus. Our discovery suggested that the strains may form a new Wolbachia supergroup. The role
of these bacteria in D. onustus remains unknown and also needs further investigations. Nevertheless, the effect of parthenogenesis induction by Wolbachia could be excluded considering the fact that D. onustus is a sexually
producing species.

Competing interests
The authors declare no conflicts of interest.

Ethics approval and consent to participate
All work performed in studies involving invertebrate animals (mites) was
done in compliance of the ethical standards following for the environmental
t primarily used in studies involving invertebrate animals (mites) was
done in compliance of the ethical standards following for the environmental
samples. This article does not contain any studies with human participants, laboratory animals, or vertebrate animals. The informed consent was not
applicable.

Authors’ contributions
EK and ZO designed the study and planned the experiments. AJ collected
the sample. EK, ZO, and AJ carried out the experiments. EK analyzed the data
and wrote the manuscript with input from ZO. The authors read and
approved the final manuscript.

Funding
N/A

Author details
1Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
2Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

Received: 16 October 2019 Accepted: 13 May 2020
Published online: 15 June 2020

References
Ahmed MZ, Breinholt JW, Kawahara AY (2016) Evidence for common horizontal
transmission of Wolbachia among butterflies and moths. BMC Evol Biol 16:118
https://doi.org/10.1186/s12862-016-0660-x
Ali H, Hou Y, Tang B, Shi Z, Huang B, Muhammad A, Sanda NB (2016) Way of
reproductive manipulation and biology of Wolbachia pipientis. J Exp Biol Agri
Sci 4(2):156–168. https://doi.org/10.1186/2462-1568
Baldó L, Dunning Hotopp JCD, Jolley KJ, Bordenstein SR, Biber SA, Choudhry RR,
Hayashi C, Maiden NCM, Tettelin H, Werren JH (2006) Multilocus sequence
typing system for the endosymbiont Wolbachia pipientis. Appl Environ
Microbiol 72:7098–7110. https://doi.org/10.1128/AEM.00731-06
Beccera JX, Venable GX (2015) Saedii V (2015) Wolbachia-free heteropterans do
not produce defensive chemicals or alarm pheromones. J Chem Ecol 41:593–601.
https://doi.org/10.1007/s10886-015-0996-4
Brown AN, Lloyd WK (2015) Evidence for horizontal transfer of Wolbachia by a
Drosophila mite. Exp Appl Acarol 60:301–311. https://doi.org/10.1007/s10493-
015-9918-z
Chrostek E, Pełz-Stelinski K, Hurst GD, Hughes GL (2017) Horizontal transmission
of intracellular insect symbionts via plants. Front Microbiol 8:2237. https://doi.
or/10.3389/fmicb.2017.02237
Crainey J, Wilson MD, Post RJ (2010) Phylogenetically distinct Wolbachia gene
and pseudogene sequences obtained from the African ochroocheraxis vector
Smulium squamosum. Int J Parasitol 40:569–578. https://doi.org/10.1016/j.
ijpara.2009.10.017
Darriba D, Taboada GL, Doallo R (2012) Posada D (2012) ModelTest 2: more
models, new heuristics and parallel computing. Nat Methods 9:772. https://
doi.org/10.1038/nmeth.2109
Duplouy A, Hornett EA (2018) Uncovering the hidden players in Lepidoptera
biology: the heritable microbial endosymbionts. PeerJ 6:e4629. https://doi.
or/10.7287/peerj.preprints.26768v1
Geoghegan V, Statkun K, Rainey SM, Ant TH, Dowlle AA, Larson T, Hester S,
Charles PD, Thomas B, Sinkins SP (2017) Perturbed cholesterol and vesicular
trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti
cells. Nat Commun 8:526. https://doi.org/10.1038/s41467-017-00610
Glovska E, Dragun-Damian A, Dabert M, Gerth M (2015) New Wolbachia
supergroups detected in quill mites (Acari: Syringophilidae). Infect Genet Evol
30:140–146. https://doi.org/10.1016/j.meegid.2014.12.019
Guo Y, Hoffmann AA, Xu XQ, Mo PW, Huang HJ, Gong JT, Ju JF, Hong YX (2018)
Vertical transmission of Wolbachia is associated with host vitellogenin in
Laodelphax striatellus. Front Microbiol 9:2016. https://doi.org/10.3389/fmicb.
2018.02016
Haine ER, Pickup NJ, Cook JM (2005) Horizontal transmission of Wolbachia in
Drosophila community. Ecol Entomol 30:464–472. https://doi.org/10.1111/j.
0307-6946.2005.00715.x
Huang HJ, Cui JR, Chen J, Bing XL, Hong YX (2019) Proteomic analysis of
Laodelphax striatellus gonads reveals proteins that may manipulate host
reproduction by Wolbachia. Insect Biochem Mol Biol 113:103211. https://doi.
or/10.1016/j.ibmb.2019.103211
Huhta V, Siira-Pieliskäinen A, Persttinen R, Räty M (2010) Soil fauna of Finland:
Acarina, Collembola and Enchytraeidae. Memoranda Soc Fauna Flora Fenn
86:59–82
Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary
studies. Mol Biol Evol 23:254–267. https://doi.org/10.1093/molbev/msj030
Konecka E, Olszanowski Z (2015) A screen of maternally inherited microbial
endosymbionts in orbibatid mites (Acari: Oribatida). Microbiol (SMG) 161:1561–
1571. https://doi.org/10.1007/s10493-014-9492-1
Konecka E, Olszanowski Z (2019a) Phylogenetic analysis based on the 16S rDNA,
gfiA, gatB, and hcp4 gene sequences of Wolbachia from the novel host
Ceratozetes thienemanni (Acari: Oribatida). Infect Genet Evol 170:175–181.
https://doi.org/10.1016/j.meegid.2019.01.032
Konecka E, Olszanowski Z (2019b) A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Mol Phylogenet Evol 135:230–235. https://doi.org/10.1016/j.ympev.2019.03.019

Kovač L, Luptáčik P, Miklosová D, Matti R (2001) Soil Oribatida and Collembola communities across a land depression in an arable field. Eur J Soil Biol 37:285–289. https://doi.org/10.1016/j.ejsobi.2011

Liu QQ, Zhang TS, Li ChX GJW, Hou JB, Dong H (2018) Decision-making in a bisexual line and a thelytokous invasion. Mol Ecol 27:2406–2419. https://doi.org/10.1111/mec3.10318

Mariño YA, Rodrigues JCV, Bayman P (2017) Wolbachia affects reproduction and population dynamics of the coffee berry borer (Hypothenemus hampei): implications for biological control. Insects 8:3390. https://doi.org/10.3390/insects8100390

Perrot-Minnot MJ, Norton RA (1997) Obligate thelytoky in oribatid mites: no evidence for Wolbachia inducement. Can Entomol 129:691–698. https://doi.org/10.4039/Ent129691-4

Pietri JE, DeBruhl H, Sullivan W (2016) The rich somatic life of Cardinium. Naturwissenschaften 103:1019–1027. https://doi.org/10.1007/s00114-016-1312-3

Salunkhe RC, Narkhede KP, Shouche YS (2014) Distribution and evolutionary impact of Wolbachia in thrips and chironomids. Appl Microbiol Biotechnol 98:173–182. https://doi.org/10.1007/s00253-013-5013-0

Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol 51:294–301. https://doi.org/10.1007/s00248-006-9036-x

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc Biol Sci 270:1857–1865. https://doi.org/10.1098/rspb.2003.2425

Weinert LA, Araujo-Jr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Roy Soc Lon 282:20150249. https://doi.org/10.1098/rspb.2015.0249

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.