A new species of *Gonyosoma* Wagler, 1828 (Serpentes, Colubridae), previously confused with *G. prasinum* (Blyth, 1854)

Shuo Liu¹, Mian Hou², Ye Htet Lwin³, Qiaoyan Wang⁴, Dingqi Rao⁵

¹ Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
² College of Continuing (Online) Education, Sichuan Normal University, Chengdu, 610066, China
³ Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, 05282, Myanmar
⁴ Research Institute of Xishuangbanna National Nature Reserve, Jinghong, 666100, China
⁵ Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China

http://zoobank.org/03620F93-FD7A-4396-B158-554FD9866350

Corresponding author: Dingqi Rao (raodq@mail.kiz.ac.cn)

Abstract

A new species of the genus *Gonyosoma* Wagler is described from Yunnan Province, China. The new species closely resembles *G. prasinum* (Blyth), but it is differentiated from the latter species by the following characters: precloacal plate divided, iris blue and inside of mouth greyish-white in life. Based on phylogenetic analyses of mitochondrial cytochrome b sequence data, the new species is recovered as the sister species to *G. prasinum* by Bayesian Inference and Maximum Likelihood analyses. The uncorrected pairwise distance between the new species and other species of the genus *Gonyosoma* ranged from 11.78% to 17.07% calculated using the mitochondrial cytochrome b sequence. This discovery increases the number of *Gonyosoma* species to seven.

Key Words

Htamanthi, morphology, phylogeny, systematics, taxonomy, Yunnan

Introduction

Once considered members of a single genus, *Elaphe* Fitzinger, the ratsnakes have been divided into a number of genera including *Gonyosoma* (Burbrink and Lawson 2007; Chen et al. 2017). The genus *Gonyosoma* currently includes six recognized species, namely *G. boulengeri* (Mocquard, 1897); *G. frenatum* (Gray, 1853); *G. jansenii* (Bleeker, 1859); *G. margaritatum* Peters, 1871; *G. oxycephalum* (Boie, 1827) and *G. prasinum* (Chen et al. 2014, 2017; Uetz et al. 2021).

Gonyosoma prasinum, a wholly green, arboreal snake (Schulz 1991, 1996; Das 2002, 2012), its type locality is in Assam, Northeastern India (Blyth 1854; Boulenger 1894; Smith 1943), and has been considered to be widely distributed in India, Bhutan, Myanmar, Thailand, Malaysia, Laos, Vietnam, and China (Schulz 1996; Zhao et al. 1998; Wu et al. 2002; Vogel and Pauwels 2004; Pauwels et al. 2006; Zhao 2006; Ziegler et al. 2007; Yang and Rao 2008; Hecht et al. 2013; Pham et al. 2014; Luu et al. 2020; Nguyen et al. 2020; Wang et al. 2020; Wangyal et al. 2020; Uetz et al. 2021).

During our fieldworks in southern China and northern Myanmar from 2019 to 2020, some specimens of *Gonyosoma cf. prasinum* were collected, six from Yunnan Province, China, and two from Htamanthi Wildlife Sanctuary, northwestern Myanmar, relatively close to the type locality of *G. prasinum*. The specimens from China and Myanmar showed some differences in scale counts and coloration in life. In addition, phylogenetically, the sequences of the specimens from China and from Myanmar were placed in two separate clades and had an obvious genetic divergence. Therefore, we treated the specimens from China and from Myanmar to be two distinct species.

The question was, which one is the true *Gonyosoma prasinum*? As no molecular data for the type specimens
is available, we can only solve this problem through morphological characteristics. However, we cannot judge this problem from the original description (Blyth 1854) of *G. prasinum* as it is too short and not detailed enough. Since most of the subsequent descriptions and photographs (e.g., Boulenger 1894; Smith 1943; Schulz 1996; Cox et al. 1998; Zhao et al. 1998; Zhao 2006; Yang and Rao 2008; Das 2010, 2012; Shi et al. 2011; Purkayastha 2013; Qi 2019) of *G. prasinum* are either quoted from previous publications or based on specimens whose collection sites are distant from the type locality, these specimens may not be the true *G. prasinum*, so these data cannot be used here. We can only identify this species according to the descriptions and photographs (e.g., Das 2013; Khandekar et al. 2021) of specimens originating from its type locality and its vicinities.

Materials and methods

Sampling

Field surveys in Yunnan, China, were conducted under the permits of Xishuangbanna National Natural Reserve Management Bureau and Wuliangshang National Nature Reserve Management Bureau. Field survey in Northern Myanmar was undertaken at the invitation of the Republic of the Union of Myanmar, Ministry of Natural Resources and Environmental Conservation, Forest Department, Forest Research Institute. Four specimens (KIZ2019025–KIZ2019028) were collected from Mengla County, Yunnan Province, China, in April to May 2019, one specimen (KIZ20200729) was collected from Zhenyuan County, Yunnan Province, China, in July 2020, two specimens (SEABR2019120043, SEABR2019120075) were collected from Menglian County, Yunnan Province, China, in September 2020, and two specimens (SEABR2019120043, SEABR2019120075) were collected from Htamanthi wildlife sanctuary, Sagaing, Myanmar, in December 2019. Specimens were collected by hand, and photographs were taken to document color pattern in life prior to euthanasia. Liver tissues were stored in 99% ethanol for taxa used in this study were listed in Table 1. DNA was extracted using DNeasy Blood and Tissue kit (Qiagen, Germany) following the manufacturer’s instructions. A fragment of mitochondrial cytochrome b (cyt b) gene was amplified using the primer pair L14910: 5’–GACCTGTGATMTGAAACACAYCGT–3’ and H16064: 5’–CTTTGGTTTACAAGAACAAT–3’ (Burbink et al. 2000). PCR amplifications were performed in 25 μl reactions by using the following cycling conditions: initial denaturation for 120 s at 95 °C, followed by 35 cycles: denaturation at 94 °C for 40 s, annealing at 48.5 °C for 25 s, elongation at 72 °C for 15 s, and then finalized with elongation step of 120 s at 72 °C, with the PTC-100 thermal cycler (BioRad, USA). The products were purified by using the DNA Agarose Gel Extraction Kit (Omega, USA) according to the manufacturer’s instructions. Purified PCR products were sequenced using the same PCR primers. Sequencing was completed by Beijing Qingke New Industry Biotechnology Co., Ltd. Sequences were edited and manually managed using SeqMan in Lasergene 7.1 (DNASTAR Inc., Madison, WI, USA) and MEGA X (Kumar et al. 2018). Sequences were aligned using ClustalX 2.0 (Thompson et al. 1997) with the default parameters. Pairwise distances between species were calculated in MEGA X (Kumar et al. 2018). The best substitution models HKY+F+I+G4 and GTR+F+I+G4 were selected for Bayesian inference and Maximum Likelihood analysis, respectively, using the Akaike Information Criterion (AIC) in ModelFinder (Kalyaanamoorthy et al. 2017).

Molecular data and phylogenetic analyses

All species of the genus *Gonyosoma* were included in the study. Homologous sequences were obtained from GenBank. Six samples from China and two sample from Myanmar were incorporated in the analysis, and the new sequences have been deposited in GenBank. *Elaphe taeniura* (Cope) and *Coelognathus radiatus* (Boie) were used as outgroups. All the GenBank accession numbers for taxa used in this study were listed in Table 1.

Table 1. Sequences of cyt b gene used in this study.

Species	Voucher	Locality	Accession
Coelognathus radiatus	CHS556	Wenshan, Yunnan, China	MK201411
Elaphe taeniura	CHS203	Xiangcheng, Sichuan, China	MK201333
Gonyosoma boulengeri	YPX1102	/	AY471305
Gonyosoma frenatum	HS11038	/	KF669250
Gonyosoma marquetanum	KI00504	Hainan, China	MK201361
Gonyosoma niura	YPX1102	/	KF669251
Gonyosoma oxycephalum	SEABR2019120043	Htamanthi, Sagaing, Myanmar	MZ228664
Gonyosoma prasinum	SEABR2019120075	Myanmar	MZ228663
Gonyosoma coeruleum sp. nov.	KIZ019025	Mengla, Yunnan, China	MZ228670
Gonyosoma jansenii	KU321724	/	KM370886
Gonyosoma margaritatum	/	/	AY471304
Gonyosoma oxycephalum	ROM3762	/	KR969870
Gonyosoma prasinum	SEABR2019120043	Htamanthi, Sagaing, Myanmar	MZ228663
Gonyosoma coeruleum sp. nov.	KIZ019026	Mengla, Yunnan, China	MZ228666
Gonyosoma jansenii	KIZ019027	/	MZ228668
Gonyosoma jansenii	KIZ019028	/	MZ228667
Gonyosoma jansenii	KIZ2001729	Zhenyuan, Yunnan, China	MZ228666
Gonyosoma jansenii	KIZ20190904	Mengliang, Yunnan, China	MZ228665
Bayesian inference was performed in MrBayes 3.2.7 (Ronquist et al. 2012). Two runs were performed simultaneously with four Markov chains starting from random tree. The chains were run for 10,000,000 generations and sampled every 1000 generations. The first 25% of the sampled trees was discarded as burn-in after the standard deviation of split frequencies of the two runs was less than a value of 0.01, and then the remaining trees were used to create a 50% majority-rule consensus tree and to estimate Bayesian posterior probabilities. Maximum Likelihood analysis was performed in RaxmlGUI 2.0 (Silvestro and Michalak 2012), nodal support was estimated by 1,000 rapid bootstrap replicates.

Morphology

Body and tail lengths were measured with a ruler to the nearest 1 mm (Jablonski et al. 2019). Scale counts were taken following Janssen et al. (2019). Ventral scales were counted according to Dowling (1951). Bilateral scale counts were given as left / right order. Abbreviations of morphological characters are as follows: Atem, number of anterior temporals; DSR, dorsal scale rows number at one head length anterior to the head – number of dorsal scale rows at midbody – number of dorsal scale rows at one head length anterior to the vent, respectively; IL, infralabials (counted on lower lips); Lor, loreals; Lor / eye, loreal scale touching the eye (yes or no); PostOc, postoculars; Prec, precloacal plate (corresponds to term anal plate in older literature) (single or divided); PreOc, preoculars; PTem, number of posterior temporals; SL, supralabials (counted on upper lips); SL / orbit, number of supralabials entering orbit; SubC, number of subcaudal scales; SVL, snout-vent length (from tip of snout to vent); TaL, tail length; TaL / TL, ratio of tail length / total length; TL, total length; Ven, number of ventral scales.

Results

The topologies derived from Bayesian inference and Maximum Likelihood analysis were consistent (Fig. 1). The sequences of the specimens from China formed a separate clade sister to the sequences of the specimens from Myanmar, however, the nodal supports were low. The average uncorrected pairwise distance (p-distance) between the sequences of the specimens from China and the sequences of the specimens from Myanmar is 11.78% (Table 2).

Table 2. Average uncorrected p-distances (%) between members of *Gonyosoma* and outgroups calculated from cytb gene sequences.

	1	2	3	4	5	6	7	8
1	100.00							
2	13.01	100.00						
3	13.35	7.56	100.00					
4	17.07	15.63	16.88	100.00				
5	12.33	12.51	12.41	16.91	100.00			
6	15.77	15.32	16.36	7.75	15.98	100.00		
7	11.78	12.89	12.65	17.69	12.71	15.96	100.00	
8	19.32	18.40	18.15	19.49	18.97	19.66	17.35	100.00
9	16.27	15.56	15.59	16.21	16.07	16.92	16.32	15.90

Morphological measurements, scale counts and colorations in life were presented in Table 3. The coloration of the iris of this species. Therefore, we consider the specimens from Myanmar to be conspecific with the true *G. prasinum* and the specimens from China to belong to a new species.

Gonyosoma coeruleum sp. nov.
http://zoobank.org/81045CF9-66A-4E9C-A563-4794208D0A40

Holotype. KIZ2019028, adult female, Mengla County, Xishuangbanna Autonomous Prefecture, Yunnan Province, China, 29 April 2019, 21°32’12”N, 101°32’51”E, 900 m a.s.l.

Paratypes. KIZ2019025, one adult female and KIZ2019026–KIZ2019027, two adult males, Mengla County, Xishuangbanna Autonomous Prefecture, Yunnan Province, China, 4 May 2019, 21°55’9”N, 101°32’12”E, 890 m, a.s.l. KIZ20200729, adult female, collected from Zhenyuan County, Puer City, Yunnan Province, China, 29 July 2020, 24°3’37”N, 101°3’43”E, 1,240 m a.s.l. KIZ20200904, one juvenile, collected from Menglian County, Puer City, Yunnan Province, China, 3 September 2020, 22°10’16”N, 99°18’31”E, 1,200 m a.s.l.

Etymology. The specific epithet “coeruleum” is the neutral gender of the Latin adjective *coeruleus* (a, um) meaning “blue”, and is given in reference to the coloration of the iris of this species.

Diagnosis. Body size medium (SVL 656–833mm in adults); body slender, head elongated and distinct from neck; large eyes with round pupil; tail long (23–28% of total length) and slender; dorsal scales in 19–19–15 rows, 7–11 rows of mid-dorsal scales keeled; single preocular;
Figure 1. The consistent phylogram inferred from Bayesian Inference and Maximum Likelihood analyses based on cyt b gene sequences. Numbers before slashes indicate Bayesian posterior probabilities (values below 0.9 were not shown) and numbers after slashes indicate bootstrap support for Maximum Likelihood analyses (values below 60 were not shown).

Table 3. Measurements (in mm), scalation data, and coloration of *Gonyosoma coeruleum* sp. nov. and *G. prasinum*. For abbreviations see Materials and methods.
two postoculars; one or two anterior temporals and two or three posterior temporals; 189–202 ventral scales; 89–106 paired subcaudals; precloacal plate divided. Dorsal surface bright green with brownish-yellow tip of tail, iris blue, inside of mouth greyish white; tongue brownish yellow with black tips.

Description of the holotype. Head elongate, distinct from the neck, flattened, longer than wide, narrowed
anteriorly; nostril lateral; eye large, pupils round; rostral triangular, broader than high, visible from above; nasal divided into two scales; two internasals, wider than high, bordered by two large prefrontals posteriorly; frontal single, enlarged, pentagonal, narrowed posteriorly; parietals longer than wide, in contact with each other; supralabials 8/9, first and second in contact with the prenasal and postnasal, third and fourth entering orbit on left side, fourth and sixth entering orbit on right side, eighth largest; infralabials 10/10, first pair in broad contact with each other, first to fifth in contact with anterior pair of chin shields; anterior and posterior pairs of chin shields elongate, second pair meeting in midline; preocular 1/1; postoculars 2/2, lower ones smaller, bordering anterior temporals; anterior temporals 2/2, posterior temporals 2/2. SVL 814 mm; TaL 245 mm; TaL/TL 0.23; DSR 19-19-15, nine rows keeled in the vertebral region, otherwise smooth; ventrals 202 with a lateral keel; subcaudals 89, paired; precloacal plate divided.

Color of holotype in life. Dorsal surface bright green with brownish-yellow tip of tail, reticulate pattern consisting of yellow, black, and white on the interstitial skin; upper lips yellowish-green; anterior ventral surface greenish-white and posterior ventral surface light green; tip of tail brownish-yellow on its ventral surface; ventrals outside the lateral keel usually yellowish-white; iris blue; pale grey inside of mouth; tongue brownish-yellow with black tips.

Variations. The paratypes resemble the holotype in most aspects except that the rows of mid-dorsal scales keeled vary from seven to eleven, anterior temporals vary from one to two, and posterior temporals vary from two to three in paratypes; moreover, the male paratype KIZ2019027 has a relatively longer tail (TaL/TL 0.28).

Distribution. *Gonyosoma coeruleum* sp. nov. is currently known from Xishuangbanna Autonomous Prefecture and Puer City, Yunnan Province, China (Fig. 6), it is probably also distributed in other parts of Yunnan Province and Sichuan, Guizhou, and Hainan Province, China, as well as Southern Myanmar, Thailand, Laos, and Vietnam.

Natural history. The specimens from Mengla County were collected on big trees bordering rivers, the specimen from Zhenyuan County was collected on a big tree on the side of a small road in forest, and the specimen from Menglian County was collected on a small tree bordering
Figure 4. Comparisons of the colors of iris, the colors of inside of mouth, and the precloacal plates. A, C, and E the holotype (KIZ2019028) of *Gonyosoma coeruleum* sp. nov. B, D, and F the specimen (SEABRI2019120043) of *G. prasinum*.
Figure 5. The specimens of Gonyosoma coerulescens sp. nov. and G. prasinum in life. A the female paratype (KIZ20200729) of Gonyosoma coerulescens sp. nov. B the juvenile paratype (KIZ20200904) of Gonyosoma coerulescens sp. nov. C the specimen (SEABRI2019120043) of G. prasinum from Myanmar D the specimen (SEABRI2019120075) of G. prasinum from Myanmar.

a stream. All specimens were found at night while they were asleep on tree branches, what shows that this species is diurnal. Through direct observation, we found that they like to feed on small rodents, and whether they also prey on other animals is unknown.

Comparisons. Gonyosoma coerulescens sp. nov. can be distinguished from G. boulengeri in lacking a nasal appendage (vs. rostral distinct from the nasal appendage), and no dark stripe behind the eye (vs. an indistinct dark stripe behind the eye) (Mocquard 1897; Smith 1943).

Gonyosoma coerulescens sp. nov. is distinguishable from G. frenatum based on its single, distinct loreal (vs. loreal united with the prefrontal), and no black streak along the side of the head (vs. a black streak along the side of the head above the supraoculars) (Gray 1853; Boulenger 1894; Smith 1943).

Gonyosoma coerulescens sp. nov. can be separated from G. jansenii by having 19 midbody dorsal scale rows (vs. 23–25), and dorsal surface uniform bright green with brownish-yellow tip of tail (vs. olive or yellowish-brown, entirely black posteriorly and on the tail) (Bleecker 1859; Boulenger 1894).

From Gonyosoma margaritatum, Gonyosoma coerulescens sp. nov. can be differentiated by its dorsal surface uniform bright green with brownish-yellow tip of tail (vs. black, each scale with a yellowish green spot, or green with black borders to the scales, hinder part of body and tail with bright orange rings), and no black streak on each side of the head (vs. a black streak on each side of the head behind the eye) (Peters 1871; Boulenger 1894).

From Gonyosoma oxycephalum, Gonyosoma coerulescens sp. nov. can be differentiated by the different colors of tail (green with brownish-yellow tip vs. the whole tail light chestnut or buff-red or yellowish brown), no blackish stripe along the side of the head (vs. an indistinct blackish stripe along the side of the head immediately above the supraoculars), and the number of midbody dorsal scale, 19 rows (vs. 23–27 rows) (Boie 1827; Boulenger 1894; Smith 1943).

Gonyosoma coerulescens sp. nov. closely resembles G. prasinum, but the colorations of their iris in life are obviously different, the iris of Gonyosoma coerulescens sp. nov. is blue (Fig. 4A) while the iris of G. prasinum is greenish-yellow (Fig. 4B; Khandekar et al. 2021). The colors of the inside of mouth are slightly different, the inside of mouth of Gonyosoma coerulescens sp. nov. is pale grey (Fig. 4C) while it is pink (Fig. 4D) in G. prasinum. In addition, the precloacal plate of Gonyosoma coerulescens sp. nov. is divided (Fig. 4E) while it is single (Fig. 4F; Das 2013) in G. prasinum.
Figure 6. Map showing the type locality of *Gonyosoma coeruleum* sp. nov. (blue star) in Mengla County, Yunnan Province, China; the other collection sites of *Gonyosoma coeruleum* sp. nov. in Zhenyuan County (blue pentagon) and Menglian County (blue triangle), Yunnan Province, China; the type locality (green square) of *G. prasinum* in Assam, India; and the new collection site (green dot) of *G. prasinum* in Htamanthi wildlife sanctuary, Sagaing, Myanmar.

Figure 7. A habitat at the type locality of *Gonyosoma coeruleum* sp. nov. B *Gonyosoma coeruleum* sp. nov. asleep on a tree at night.
Discussion

One type specimen of Gonyosoma prasinum is currently available in the Natural History Museum, London (BMNH 1946.1.10.22). We have tried to check the type specimen but failed due to the pandemic circumstances. However, we collected two specimens from northwestern Myanmar, where relatively close to the type locality, and these two specimens agree with the descriptions and photographs (Das 2013; Khandekar et al. 2021) of G. prasinum from the type locality and its vicinities, therefore we can confirm that the specimens from northwestern Myanmar belongs to G. prasinum.

Although there is no major difference in scalation between the new species and Gonyosoma prasinum in morphological characters, however, the colorations of the iris of them in life are obviously different. As, furthermore, the new species and G. prasinum have a large genetic divergence, they therefore deserve distinct a distinct status at species level.

Previously, Gonyosoma prasinum has been recorded in India, Bhutan, Myanmar, Thailand, Malaysia, Laos, Vietnam, and China (Wangyal et al. 2020; Uetz et al. 2021), and within China, it was recorded from Yunnan, Guizhou, Sichuan, and Hainan Provinces (Zhao et al. 1998; Wu et al. 2002; Zhao 2006; Yang and Rao 2008; Shi et al. 2011). However, we speculate that G. prasinum is only distributed in India, Bhutan, northern Myanmar, and Southeastern Tibet, China. Based on the photographs (e.g. Vogel and Pauwels 2004; Pauwels et al. 2006; Zhao 2006; Ziegler et al. 2007; Yang and Rao 2008; Shi et al. 2011; Hecht et al. 2013; Pham et al. 2014; Qi 2019; Lüu et al. 2020; Nguyen et al. 2020; and unpublished data) of snakes previously identified as G. prasinum from other parts of Yunnan Province, and Sichuan, Guizhou, and Hainan Province, China, Thailand, Laos, and Vietnam, through the coloration of the iris, we speculate that these populations also belong to Gonyosoma coeruleum sp. nov. For the populations distributed in Malaysia, as we do not have specimens and photographs, whether they also belong to Gonyosoma coeruleum sp. nov. is still unknown.

Gonyosoma coeruleum sp. nov. is a familiar species in southern Yunnan, China, however, we observed that Gonyosoma coeruleum sp. nov. was often captured and traded as pets due to its beautiful appearance. In order to protect this beautiful species, we suggest that this species to be added to the local protected animal lists and be banned from pet trading.

Acknowledgements

The field survey in Myanmar was undertaken at the invitation of the Republic of the Union of Myanmar, Ministry of Natural Resources and Environmental Conservation, Forest Department, Forest Research Institute. We thank them for the invitation. Thanks also to the staff and the local guides of Myanmar for their help in the field. This work was supported by Science-Technology Basic Condition Platform from the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2005DKA21402), the project of the second comprehensive scientific investigation of Xishuangbanna National Nature Reserve, and the project of Ministry of Ecology and Environment of China: Investigation and assessment of amphibians and reptiles in Jinghong City, Menghai County, and Mengla County.

References

Bleeker P (1859) Gonyosoma janseni Blkr., eenie nieuwe slang van Ma-nado. Natuurkundig Tijdschrift voor Nederlandsch Indië 16(4): e242. Blyth E (1854) Notices and descriptions of various reptiles, new or little known, Part 2. Journal of the Asiatic Society of Bengal 23(3): 287–302.

Boulenger GA (1894) Catalogue of the snakes in the British Museum (Natural History). Volume II., containing the conclusion of the Colubridae Aglypha. British Museum Natural History, London, 382 pp.

Burbrink FT, Lawson R (2007) How and when did Old World rat snakes disperse into the New World? Molecular Phylogenetics and Evolution 43(1): 173–189. https://doi.org/10.1016/j.ympev.2006.09.009

Burbrink FT, Lawson R, Slowinski JB (2000) Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 54: 2107–2118. https://doi.org/10.1111/j.0014-3820.2000.tb01253.x

Chen X, Lemmon AR, Lemmon EM, Pyron AR, Burbrink FT (2017) Using phylogenomics to understand the link between biogeographic origins and regional diversification in ratsnakes. Molecular Phylogenetics and Evolution 111: 206–218. https://doi.org/10.1016/j.ympev.2017.03.017

Chen X, McKelvey AD, Grismer LL, Matsui M, Nishikawa K, Burbrink FT (2014) The phylogenetic position and taxonomic status of the Rainbow Tree Snake Gonyophis margaritatus (Peters, 1871) (Squamata: Colubridae). Zootaxa 3881(6): 532–48. http://dx.doi.org/10.11646/zootaxa.3881.6.3

Cox MJ, van Dijk PP, Nabhitabhata J, Thrakkapt K (1998) A Photographic Guide to Snakes and Other Reptiles of Thailand and Southeast Asia. Asia Books, Bangkok, 144 pp.

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772. https://doi.org/10.1038/nmeth.2109

Das I (2002) A Photographic Guide to Snakes and other Reptiles of India. New Holland Publishers, London, 144 pp.

Das I (2010) A Field Guide to the Reptiles of South-East Asia. New Holland Publishers, London, 376 pp.

Das I (2012) A Naturalist’s Guide to the Snakes of South-East Asia – Malaysia, Singapore, Thailand, Myanmar, Borneo, Sumatra, Java and Bali. John Beaufoy Publishing, Oxford, 160 pp.

Das A (2013) Notes on ratsnakes from north-eastern India. In: Schulz K-D (Eds) Old World ratsnakes – A collection of papers. Bushmaster Publications, Würenlingen, 309–336.

Dowling HG (1951) A proposed standard system of counting ventral in snakes. Journal of Herpetology 1(5): 97–99.

Gray JE (1853) Descriptions of some undescribed species of reptiles collected by Dr. Joseph Hooker in the Khassia Mountains, East Ben-
gal, and Sikkim Himalaya. Annals and Magazine of Natural History (2), 12(72): 386–392. https://doi.org/10.1080/03745485709495063
Hecht VL, Pharm CT, Nguyen TT, Nguyen TQ, Bonkowski M, Ziegler T (2013) First report on the herpetofauna of Tay yen Tu Nature Reserve, northeastern Vietnam. Biodiversity Journal 4(4): 507–552.
Jablonski D, Kushkushin OV, Avci A, Bunyavosta S, Kumlutağ Ç, Poljakova E, Shiriyaev K, Tuniyev B, Jandzik D (2019) The biogeo-
graphy of Elaphe sauromates (Pallas, 1814), with a description of a new
rat snake species. PeerJ 7: e6944. https://doi.org/10.7717/peerj.6944
Janssen HY, Pharm CT, Ngo HT, Le MD, Nguyen TQ, Ziegler T (2019) A new species of Lyodon Boie, 1826 (Serpentes, Colubridae) from
northern Vietnam. ZooKeys 875: 1–29. https://doi.org/10.3897/zoo-
keys.875.35993
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenet-
ic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/n
meth.4285
Khandaker A, Roy P, Kunte K (2021) Reptiles of India, v. 1.25. https://
www.indianreptiles.org [Accessed on 25 March 2021]
Kumar S, Stecher G, Li M, Kayaz C, Tamura K (2018) MEGA X:
Molecular Evolutionary Genetics Analysis across computing plat-
forms. Molecular Biology and Evolution 35: 1547–1549. https://doi.
org/10.1093/molbev/msy096
Luu VQ, Dinh TS, Lo OV, Nguyen TQ, Ziegler T (2020) New records
and an updated list of reptiles from Ba Vi National Park, Vietnam. Bonn zoological Bulletin 69(1): 1–9.
Mocquard F (1897) Notes herpétologiques. Bulletin du Muséum Na-
tional d’Histoire naturelle 3: 211–217. https://doi.org/10.5962/bhl.
part.19256
Nguyen TV, Brakels P, Maury N, Sudavanh S, Phumthao S, Poyarkov NA (2020) New herpetofaunal observations from Laos based on
photo records. Amphibian & Reptile Conservation 14(2): 218–249.
Pauwels OS, Droz B, Vogel G (2006) Elaphe prasina (Blyth, 1854) in
Thailand. Elaphe 14(4): e62.
Peters W (1871) Über neue Reptilien aus Ostafrika und Sarawak (Bor-
neo), vorzüglich aus der Sammlung des Hrn. Marquis J. Doria zu
Genau. Monatssberichte der Königlichen Preussische Akademie Des Wissenschaften zu Berlin 1871: 566–581.
Pham AV, Nguyen SLH, Nguyen TQ (2014) New records of snakes
(Squamata: Serpentes) from Son La Province, Vietnam. Herpetol-
yology Notes 7: 771–777.
Purkayastha J (2013) An Amateur’s Guide to Reptiles of Assam. EBH
Publishers, Guwahati, 146 pp.
Qi S (2019) A photographic guide to reptiles of China. Chongqing Uni-
versity Press, Chongqing, 236 pp.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S,
Larget B, Liu L, Sachard MA, Huelsenbeck JP (2012) MrBayes 3.2:
efficient Bayesian phylogenetic inference and model choice across
a large model space. Systematic Biology 61: 539–542. https://doi.
org/10.1093/sysbio/sys029
Schulz K-D (1996) A monograph of the colubrid snakes of the genus
Elaphe Fitzinger. Koeltz Scientific Books, Havelickav Brod, 439 pp.
Schulz K-D (1991) Die hinterwärtischen kleinetenmatt der Gattung
Elaphe Teil XX Elaphe prasina (Blyth 1854) und Elaphe frenata
(Gray 1853). Sauria 13(2): 15–17.
Shi HT, Zhao EM, Wang LJ, Bi H, Lyu SQ, Liu HN, Wang JC, Zhao H,
Hong ML (2011) Amphibian and Reptile Fauna of Hainan. Science
Press, Beijing, 285 pp.
Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for
RaxML. Organisms Diversity and Evolution 12(4): 335–337.
https://doi.org/10.1007/s13127-011-0056-0
Smith MA (1943) The fauna of British India, Ceylon and Burma, in-
cluding the whole of the Indo-chinese subregion. Reptilia and Am-
phibia (Vol. III). Serpentes. Taylor and Francis, London, 583 pp.
Thompson JD, Gibson TJ, Pfeuti A, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: Flexible strategies for
multiple sequence alignment aided by quality analysis tools. Nu-
cleic Acids Research 25: 4876–4882. https://doi.org/10.1093/
nar/25.24.4876
Uetz P, Freep P, Nosek J (2021) The Reptile Database. http://www.rept-
tile-database.org [Accessed on 25 March 2021]
Vogel G, Pauwels OS (2004) Geographic distribution. Elaphe prasina
(Green Bush Rat Snake). Herpetological Review 35(4): e410.
Wang K, Ren JL, Chen HM, Luy ZT, Guo XG, Jiang K, Chen JM, Li
JT, Guo P, Wang YY, Che J (2020) The updated checklists of am-
phibians and reptiles of China. Biodiversity Science 28(2): 189–218.
http://www.biodiversity-science.net/CN/10.17520/biods.2019238
Wangyal JT, Bower DS, Sherub, Tshewang S, Wangdi D, Rinchen K,
Nidup D, Wanfdi N, Phuentsho, Norbu L, Wangdi K, Wangchuk T,
Tshewang R, Dorji T, Das I (2020) New Herpetofaunal Records from
the Kingdom of Bhutan Obtained through Citizen Science. Herpe-
tological Review 51(4): 790–798.
Wu GI, Wu TH, Zhu J, Xiao L (2002) A new record of snake species in
Sichuan Province – Elaphe prasina. Sichuan Journal of Zoology
21(2): 66.
Yang DT, Rao DQ (2008) Amphibia and Reptilia of Yunnan. Yunnan
Publishing Group Corporation, Yunnan Science and Technology
Press, Kunming, 411 pp.
Zhao EM (2006) Snakes of China. Anhui Science Technology Publish-
ing House, Hefei, 285 pp.
Zhao EM, Huang ZJ, Wei G, Yang DQ, Li DJ (1998) Fauna Sinica
Reptilia-database.org Teil XXI. Serpentes. Science Press, Beijing, 522 pp.
Ziegler T, Hendrix R, Vu TN, Vogt M, Forster B, Dang KN (2007) The
diversity of a snake community in a karst forest ecosystem in the
central Truong Son, Vietnam, with an identification key. Zootaxa
1493: 1–40. https://doi.org/10.11646/zootaxa.1493.1.1