Preference Incorporation into Evolutionary Multiobjective Optimization using Preference Information Implicit in a Set of Assignment Examples

Laura Cruz-Reyes1 Eduardo Fernandez2 Rafael Olmedo2 Patricia Sanchez1 Jorge Navarro2

1Instituto Tecnologico de Ciudad Madero, Cd. Madero, Mexico
2Universidad Autonoma de Sinaloa, Culiacan, Mexico

lauracruzreyes@itcm.edu.mx, jpatricia.sanchez@gmail.com, \{eddyf, rafael, jnavarro\}@uas.edu.mx

Abstract

Nowadays, most approaches in the evolutionary multiobjective optimization literature concentrate mainly on adapting an evolutionary algorithm to generate an approximation of the Pareto frontier. However, this does not solve the problem. We present a new idea to incorporate into a MOEA the Decision Maker (DM) preferences, expressed in a set of solutions assigned to ordered categories. We modified the Non-dominated Sorting Genetic Algorithm 2 (NSGA2) to make selective pressure towards non-dominated solutions that belong to the most preferred category. In several instances, on the project portfolio problem, our proposal outperforms the standard NSGA2, achieving non-dominated solutions that best match the DM’s preferences.

Keywords: evolutionary algorithms; multiobjective optimization; preference incorporation; multicriteria sorting.

1. Introduction

Most real world optimization problems involve multiple criteria to be considered simultaneously ([1, 2]). As a consequence of the conflicting nature of the criteria, it is not possible to obtain a single optimum, and, consequently, the ideal solution of a multiobjective problem (MOP) cannot be reached. As was stated by Fernandez et al. ([3]), unlike single-objective optimization, the best solution of a MOP is not well-defined from a purely mathematical point of view. To solve a MOP means to find the best compromise solution according to the decision maker’s (DM’s) particular system of preferences. Since all the compromise solutions are mathematically equivalent, the DM should provide some additional information for choosing the most preferred one.

Multi-Objective Evolutionary Algorithms (MOEAs) are particularly attractive to solve MOPs because they deal simultaneously with a set of possible solutions (the MOEA’s population) which allows them to obtain an approximation of the Pareto frontier in a single algorithm’s run. Thus, by using MOEAs the DM and/or the decision analyst does not need to perform a set of separate single-objective optimizations (as normally required when using operations research methods) in order to generate compromise solutions. Additionally, MOEAs are more robust regarding the shape or continuity of the Pareto front, whereas these two issues are a real concern for operations research optimization methods (cf. [4]). These features are shared by other population-based multiobjective metaheuristics. However, according to Deb ([5]) and Fernandez et al. ([3, 6]), one aspect that is often disregarded in the MOEAs’ literature is the fact that the solution of a problem involves not only the search, but also the decision making process. Most current approaches in the metaheuristic multiobjective optimization literature concentrate on adapting a metaheuristic algorithm to generate an approximation of the Pareto optimal set. Nevertheless, finding this set does not completely solve the problem. The DM still has to choose the best compromise solution out of that set. This is not a difficult task when dealing with problems having 2 or 3 objectives. However, as the number of criteria increases, two important difficulties arise ([3]):

a. The algorithm’s capacity to find this Pareto frontier quickly degrades (e.g. [2, 7]).

b. The cardinal of a representative portion of the known Pareto frontier may be too large. It becomes harder, or even impossible for the DM to establish valid judgments in order to compare many solutions with several conflicting criteria. Besides, the approaches from the field of multicriteria decision analysis do not perform well on such large decision problems, making difficult to obtain a unique solution.

In order to make the decision making phase easier, the DM would agree with incorporating his/her multicriteria preferences into the search process. This preference information is used to guide the search towards the Region Of Interest (ROI) ([8]), the privileged zone of the Pareto frontier that best matches the DM’s preferences.

The DM’s preference information can be expressed in different ways. According to Bechikh ([9]), the following are the most commonly used ones:
Those in which importance factors (weights) are assigned by the DM to each objective function.

Those in which the DM makes pair-wise comparisons on a subset of the current MOEA’s population in order to rank the sample’s solutions.

When pairwise comparisons between pairs of objective functions are performed in order to rank the set of objective functions.

Those based on goals or aspiration levels to be achieved by each objective (reference point).

When the DM supplies his/her aspiration levels and his/her reservation point, that is, the worst value he/she considers acceptable.

When the DM identifies acceptable trade-offs between objective functions.

When the DM supplies the model’s parameters to build a fuzzy outranking relation.

Construction of a desirability function that is based on the assignment of some desirability thresholds.

An explicit expression of preferences is used by the above methods. But preferences may be also implicitly given. Let us suppose that a set of solutions has been sorted by the DM on a set of ordered categories like {Very Good, Good, Acceptable, No Good, Bad}. These assignments express the DM’s assignment policy. So, the set of assignments can be considered preference knowledge. Using this knowledge in the framework of a multicriteria sorting method, each new solution generated by the search process can be assigned to one of those categories. To some extent, such preference information surrogates the DM in judging new solutions. A way of using this capacity to make selective pressure towards the ROI is needed in order to complete this original approach.

The paper is structured as follows: some background is given in Section 2. Our proposal is described in Section 3, followed by numerical experiments in Section 4. Finally, we draw concluding remarks in the last section.

2. Background

2.1. Notation and premises

Let us consider a MOP of the form:

$$\text{Max } F = (f_1(z), f_2(z), \ldots, f_n(z))$$

$$z \in R_F$$

in which z denotes a vector of decision variables and R_F is determined by a set of constraints.

Let us denote by O the image of R_F in the objective space mapped by the vector function F. An element $x \in O$ is a vector (x_1, \ldots, x_n), where x_i is the i-th objective function value.

Some premises follow:

- i) The DM can define a finite set of ordered categories $C_t = \{C_1, \ldots, C_M\}$, which he/she judges adequate for representing the quality of the solutions; C_M is assumed to be the preferred category.

- ii) The DM agrees with certain decision policy defined on a subset O' of O. According to this policy, there should be a certain function $G: O' \rightarrow C_t$ such that for each $x \in O'$ the DM accepts that $G(x)$ is the most appropriate assignment of x. G expresses the assignment policy from the DM.

- iii) The DM is able to provide a set of reference objects or training examples T, which is composed of elements $b_{k,h} \in O'$ assigned to category $C_k, (k=1,\ldots,M)$.

- iv) The DM’s multi-criteria preferences can be aggregated in a fuzzy outranking relation $\sigma(x,y)$ defined on a representative subset of $O \times O$. Its value models the truth value of the predicate ‘x is at least as good as $y’$ from the DM’s perspective. σ can be set by using outranking multicriteria methods (e.g. [10]). The parameter setting of σ can be directly performed by the DM (probably in a constructive framework collaborating with a decision analyst), or be inferred by using an indirect elicitation method ([11, 12]).

Let us consider a real value $\lambda > 0.5$.

Definition 1: The following crisp binary relations are given on a representative subset of O:

$$(x,y) \in S(\lambda) \text{ iff } \sigma(x,y) \geq \lambda \text{ (\lambda-outranking)}$$

$$(x,y) \in P(\lambda) \text{ iff } \sigma(x,y) \geq \lambda \text{ and } \sigma(y,x) < 0.5 \text{ (\lambda-strict preference)}$$

$$(x,y) \in Q(\lambda) \text{ iff } \sigma(x,y) \geq \lambda \text{ and } 0.5 \leq \sigma(y,x) < \lambda \text{ (\lambda-weak preference)}$$

$$(x,y) \in I(\lambda) \text{ iff } \sigma(x,y) \geq \lambda \text{ and } \sigma(y,x) \geq \lambda \text{ (\lambda-indifference)}.$$
bQ(\lambda)x \Rightarrow C(b) \geq C(x)

xI(\lambda)b \Rightarrow C(x) \geq C(b) \land C(b) \geq C(x)
\iff C(x) = C(b)
(2.c)

Note that C(x) is a variable whose domain is the set of ordered categories. Equations (2.a-c) express the necessary consistency amongst the preference model, the reference set and the appropriate assignments of x. The assignment C(x) should be as compatible as possible with the current knowledge about the assignment policy.

THESEUS uses the inconsistencies with Equations (2.a-c) to compare the possible assignments of x. More specifically:

- The set of P(\lambda)-inconsistencies for x and C(x) is defined as DP = \{(x,b), (b,x), b \in T\} such that (2.a) is FALSE).
- The set of Q(\lambda)-inconsistencies for x and C(x) is defined as DQ = \{(x,b), (b,x), b \in T\} such that (2.b) is FALSE).
- The set of I(\lambda)-inconsistencies for x and C(x) is defined as DI = \{(x,b), b \in T\} such that (2.c) is FALSE).

Some I(\lambda)-inconsistencies might be explained by ‘discontinuity’ of the description based on the set of categories. The cases in which xI(\lambda)b \land |k-j|=1 will be called second-order I(\lambda)-inconsistencies and grouped in the set D2I. The set D1I = DI - D2I contains the so-called first-order I(\lambda)-inconsistencies, which are not consequences of the described discontinuity effect. Let nP, nQ, n1I, n2I denote the cardinality of the above-defined inconsistency sets, and N1 = nP + nQ + n1I, N2 = n2I.

THESEUS suggests an assignment that minimizes the above inconsistencies with lexicographic priority favoring N1, which is the most important criterion (cf. [13]). The basic assignment rule is:

a. Assign the minimum credibility level \lambda > 0.5.
b. Starting with \ k = 1 \ (k=1,...,M) and considering each b_{k,b} \in T, calculate N1(C1).
c. Identify the set \{C_j\} whose elements hold C_j = \text{argmin} \ N1(C_j).
d. Select C_k = \text{argmin} \ N2(C)
\{C_j\}
e. If C_k is a single solution, assign x_j to C_k; other situations are approached below.

The suggestion may be a single category or a sequence of categories. The first case is called a well-defined assignment; otherwise, the obtained solution highlights the highest category (C_{k0}) and the lowest category (C_{k*}) which is appropriate for assigning the object, but fails in determining the most appropriate.

3. The MultiCriteria Sorting Genetic Algorithm (MCSGA)

In a MOP the ROI should be composed of solutions that belong to the most preferred category CM. So, the ROI is characterized by two features: i) to be non-dominated; ii) to be assigned to CM. The simple idea behind this new proposal consists in making selective pressure towards solutions that hold both properties.

We propose to use a variant of the popular NSGA2, which is called here the MultiCriteria Sorting Genetic Algorithm. It works like the NSGA2, with the following differences:

a. Each solution of the first front of NSGA2 (the non-dominated front) is assigned by **THESEUS** to one category of the set C1.
b. The first front of NSGA2 is divided in M’≤M sub-fronts; the first ranked sub-front contains the solutions that were assigned to the most preferred category;
c. The fronts of the current NSGA2 population are reordered by considering each sub-front of the original non-dominated front as a new front;
d. The same operations of NSGA2 are applied, but considering the new fronts; particularly, the NSGA2 elitism concerns the new first front, which is now composed of non-dominated solutions belonging to the most preferred category.

The basic procedure is shown below:

```
PROCEDURE MCSGA (L, Number_of_Generations)
Set preference information
Initialize Reference set T
Initialize \sigma-\ parameters
Initialize Population P
Generate random population with size L
Evaluate objective values
Generate non-dominated fronts on P
Assign to these fronts a rank (level)
Calculate \sigma on \chi \times \chi;
For each \chi \in \chi, assign \chi to one preference category
Form M’ sub-fronts of \chi
Assign these sub-fronts a rank (level) and
update the levels of the remaining fronts
Generate Child Population Q with size L
Perform Binary Tournament Selection
Perform Recombination and mutation
FOR I = 1 to Number_of_Generations DO
Assign \chi’ = \chi + Q
Generate non-dominated fronts on \chi’
Assign to these fronts a rank (level)
Calculate \sigma on \chi’ x \chi;
For each \chi \in \chi, assign \chi to one preference category
Form M’ sub-fronts of \chi
Assign these sub-fronts a rank (level) and
update the levels of the remaining fronts
FOR each parent and child in \chi’ DO
Calculate crowding distance
Loop (inside) by adding solutions to the next generation
until L individuals have been found
END FOR
Replace P by the L individuals found
Generate Child Population Q with size L
Perform Binary Tournament Selection
```

181
Remarks:
In order to form the reference set, the DM should evaluate several existing or fictitious solutions. This information can be used by an indirect elicitation method to infer the outranking model’s parameters.

Some inconvenience could arise when T is populated with fictitious solutions. In the beginning of the search process, the DM is usually unable to identify good solutions in the objective space with pre-image in the feasible decision variable space. In this starting phase the DM does not know even a rough approximation to his/her ROI. So, he/she can hardly identify feasible solutions belonging to the most preferred categories. Hence, the selective pressure towards the ROI is weak.

To overcome this drawback, we propose to hybridize the above MCGSA. This will be combined with another multiobjective metaheuristic approach, which provides an approximation to the Pareto frontier. The DM’s preferences will be impressed on a subset of that approximation, T being thus constructed. Once T has been initialized, the outranking model’s parameters can be inferred by an indirect elicitation method ([11]). The hybrid procedure is described below:

PROCEDURE H-MCSGA (L, Number_of_Generations)
Run a multiobjective optimization method and obtain an approximation to the Pareto frontier PF
Initialize Reference set T by using a subset of PF
Set σ - parameters agreeing with T
Initialize Population P
Generate random population with size L
Evaluate objective values
Generate non-dominated fronts on P
Assign to these fronts a rank (level)
Calculate σ on R1 × R1
For each x ∈ R1, assign x to one preference category
Form M* sub-fronts of R1
Assign to these sub-fronts a rank (level) and update the levels of the remaining fronts
Generate Child Population Q with size L
Perform Binary Tournament Selection
Perform Recombination and mutation
FOR I = 1 to Number_of_Generations DO
Assign P* = P ∪ Q
Generate non-dominated fronts on P*
Assign to these fronts a rank (level)
Calculate σ on R1 × R1
For each x ∈ R1, assign x to one preference category
Form M* sub-fronts of R1
Assign to these sub-fronts a rank (level) and update the levels of the remaining fronts
FOR each parent and child in P'
Perform Recombination and mutation
Calculate crowding distance
Loop (inside) by adding solutions to the next generation until L individuals have been found
End FOR
Replace P by the L individuals found
Generate Child Population Q with size L
Perform Binary Tournament Selection
Perform Recombination and mutation
End FOR
End PROCEDURE

4. Several computer experiments

4.1. Multiobjective optimization of a portfolio’s measures derived from a project ranking

Let us suppose that in the first phase of the process low-quality project proposals are discarded, and that the ranked projects are acceptable proposals for the funding organization.

The information provided by the simple project ranking is very poor for portfolio optimization purposes. It is necessary to compare the quality of the possible portfolios in order to find the best one. This problem was approached by Fernandez and Olmedo ([14]) under the assumption that “the portfolio impact on a decision maker’s mind is determined by the number of supported projects and their particular rank”. If project a is clearly ranked better than b, then a is admitted to have “more social impact” than b. The DM should take this information from the ranking into account. The appropriateness of a portfolio is not only defined by the quality of the included projects, but also by the amount of contained projects. The purpose is to build a good portfolio by increasing the number of supported projects and controlling the possible disagreements between the DM’s preferences, which is assumed, are incorporated into the input ranking. Some discrepancies may be acceptable between the information provided by the ranking and the decisions concerning the approval (hence supporting) of projects, whenever this fact increases the number of projects in the portfolio. However, this inclusion should be controlled because the admission of unnecessary discrepancies is equivalent to underestimating the ranking information. A multiobjective optimization problem is solved by using NSGA2, in which the objective functions are the number of supported projects and the number of discrepancies (separately in several functions, in regard to the importance of each kind of discrepancy).

Fernandez and Olmedo ([14]) define:

- A set of absolute discrepancies \(D_a = \{ (a, b) \in P_r \times P_r \mid a \gg b, b \in C, a \notin C \} \)
- A set of strict discrepancies \(D_s = \{ (a, b) \in P_r \times P_r \mid a > b, b \in C, a \notin C \} \)
- A set of weak discrepancies \(D_w = \{ (a, b) \in P_r \times P_r \mid a \gg b, b \in C, a \notin C \} \)

where

* \(C \) is a portfolio;
* \(P_r \) is the set of projects
* \(a \gg b \) means absolute preference according to the relative ranks of projects \(a, b \):
 * \(a > b \) means strict preference according to the relative ranks of projects \(a, b \);
 * \(a \gg b \) denotes weak preference.

Let \(n_s, n_r, n_w \) denote the respective cardinality of the above sets. Considering also the number of supported projects in \(C \) (denoted by \(n_p \)), Fernandez and Olmedo ([14]) propose to solve the problem:
Max \(n_{pr} \), Min \((n_r, n_s, n_m) \) \(\quad (3) \)

As illustration, let us consider the problem of distributing 2.5 billion dollars among 100 projects, all of them deserving individual financing. Information about these projects (costs in million dollars and their ranks according to some preference ordering) is shown in Table 1.

The NSGA2 was used as the first step of the hybrid MCGSA. Binary encoding was used; a ‘1’ in the individual \(m \)-th allele means that the \(m \)-th project belongs to this particular portfolio. One-point crossover and the standard mutation operator were implemented (cf. [15]). Binary tournament selection was performed as suggested by [1].

The approach for handling constraints is based on the principle that any individual satisfying the constraints is always better than any individual that does not. If the feasible individuals in the population are classified into \(k \) non-dominated classes, then any unfeasible individual is relegated to class \(k+1 \). This implies that in binary tournaments any feasible individual shall have priority over any non-feasible individual.

The parameters of the evolutionary search were: crossover probability = 1; mutation probability = 0.02; population size = 100, number of generations= 500.

A representative sample of the Pareto front is shown in Table 2. Solution 63 \((n_{pr}, n_s, n_r, n_m) = (22, 0, 0, 0)\) corresponds to allocating funds according to the ranking. If the DM is willing to accept some minor discrepancies, he/she can select the solutions \((n_{pr}, n_s, n_r, n_m) = (25, 0, 16, 0)\), or \((24, 0, 13, 0)\).

Note that the reference set contains five fictitious solutions, which are useful for providing the DM’s tradeoffs.

Applying the indirect parameter elicitation method from ([11]), we obtained:

Weights = \((0.210, 0.608, 0.122, 0.060)\)
Indifference thresholds = \((0, 0, 0, 0)\)
Strict preference thresholds = \((1, 1, 1, 2)\)
Pre-veto thresholds = \((1, 1.818, 2.95, 3.96)\)
Veto thresholds = \((3.006, 2.550, 4.880, 5.996)\)

The credibility threshold \(\lambda = 0.67 \).

These parameter values are used to calculate the degree of credibility of outranking according to ELECTRE III (cf. [10]), with the simplification introduced by Mousseau and Dias ([16]).

Table 1. Information about projects

Position in Ranking	Requirements (million dollars)						
1	84.00	26	31.25	51	27.50	76	46.50
2	124.50	27	26.50	52	41.25	77	44.00
3	129.75	28	36.25	53	29.50	78	25.75
4	147.75	29	50.00	54	25.25	79	38.25
5	126.00	30	34.75	55	40.00	80	40.75
6	137.25	31	48.25	56	30.75	81	42.75
7	96.00	32	46.00	57	39.00	82	43.00
8	84.75	33	36.75	58	44.50	83	32.25
9	93.00	34	34.00	59	47.50	84	37.75
10	121.50	35	26.00	60	36.00	85	44.75
11	102.75	36	31.75	61	28.50	86	27.00
12	141.75	37	29.75	62	29.00	87	39.50
13	105.75	38	37.25	63	30.25	88	30.00
14	98.25	39	26.75	64	49.50	89	37.50
15	101.25	40	43.75	65	33.00	90	49.00
16	83.25	41	27.25	66	38.50	91	41.75
17	109.50	42	47.00	67	33.50	92	39.25
18	107.25	43	41.00	68	48.50	93	34.50
19	135.00	44	30.50	69	35.00	94	49.75
20	97.50	45	45.25	70	28.75	95	48.00
21	127.50	46	26.25	71	25.50	96	29.25
22	114.00	47	45.50	72	40.25	97	47.75
23	106.50	48	44.25	73	38.75	98	42.25
24	94.50	49	48.75	74	46.75	99	46.25
25	43.50	50	33.25	75	37.00	100	39.75
Total			5542.00				

Table 2. Some Pareto solutions

Solution	\((n_{pr}, n_s, n_r, n_m)\)	Solution	\((n_{pr}, n_s, n_r, n_m)\)
63	(22, 0, 0, 0)	117	(31, 0, 78, 0)
91	(24, 0, 13, 0)	107	(32, 0, 86, 0)
93	(25, 0, 16, 0)	286	(33, 0, 103, 0)
100	(26, 0, 27, 0)	198	(34, 3, 114, 0)
110	(27, 0, 27, 0)	25	(34, 6, 112, 0)
112	(28, 0, 31, 0)	123	(35, 6, 129, 0)
191	(28, 0, 44, 0)	400	(36, 12, 156, 1)
114	(29, 0, 57, 0)	154	(37, 16, 170, 0)
252	(30, 0, 70, 0)	155	(38, 24, 182, 2)
48	(31, 0, 78, 0)	30	(37, 25, 159, 1)

In order to construct the reference set, the DM expresses his/her preferences trough the set of categories \{Good, Probably Good, No Good, Bad, Very Bad\}. This is shown in Table 3.
Table 3. The reference set

Id	n_{pr}	n_{c}	n_{s}	n_{w}	Category
1	22	0	0	0	Probably Good
2	24	0	13	0	Good
3	25	0	16	0	Good
4	26	0	27	0	Probably Good
5	27	0	31	0	Probably Good
6	28	0	44	0	No Good
7	29	0	57	0	No Good
8	30	0	70	0	No Good
9	31	0	78	0	No Good
10	34	3	114	0	Bad
11	34	6	112	0	Very Bad
12	35	6	129	0	Very Bad
13	23	0	2	0	Good
14	24	0	0	15	Good
15	25	0	0	20	Good
16	23	1	0	0	No Good
17	23	2	0	0	Bad

Running the second phase of the H-MCSGA the following solutions are identified as shown by Table 4:

Table 4. The ROI

Id	(n_{pr}, n_{c}, n_{s})	Category
1	(25, 0, 12,0)	Good
2	(24, 0, 11, 0)	Good

Figure 1. The ROI represented in the decision variable space

4.2. Multiojective optimization of project portfolios described by many criteria

Let us consider a decision making situation in which the DM is choosing among L' different public policies (projects) each with a direct social impact. This is measured by using a K-dimensional vector (N_1, N_2, \ldots, N_K). $N_i = n_{ij}$ denotes the number of people belonging to the k-th social category (e.g. Extreme Poverty, Poverty, Middle) who receive the j-th benefit level (e.g. High Impact, Middle Impact, Low Impact) from that policy or project. In the following N_i^m denotes the value of N_i associated to the m-th project. The project quality is measured as the number of beneficiaries for each of i criteria established previously. C' denotes a portfolio (a subset of the L' projects which receives financial support). The value of N_i for the whole portfolio is $N_i (C') = x_1 N_i^1 + \ldots + x_L N_i^L$, where $x_j = 1$ if the j-th project is supported and $x_j = 0$ otherwise. The aim of this decision problem is to choose the “best” portfolio satisfying some budget constraints. Formally, the problem is:

$$\text{Max } (N_1(C'), N_2(C'), \ldots, N_K(C'))$$

$$C' \in R_F$$

where R_F is a feasible region determined by budget constraints. There is a total budget that the organization is willing to invest, which is denoted as B, and each project proposal l has an associated cost to carry it out, denoted as c_l, it is understood that the formation of any portfolio C' is subject to the constraint:

$$\sum_{i=1}^{L} x_i c_l \leq B$$

(5)

Other budget constraints are imposed by the area of project (educational, health, etc.), and its geographic region. In either case, the budget is bounded by a lower and upper limit. In this problem the only accepted solutions are those that satisfy the constraints.

Let us consider, as an illustration to the application of H-MCSGA, the problem of distributing 2.5 billion dollars in a set of applicant projects. This set is composed of 100 proposals and nine objectives each, all of which deserve financing. Information about some projects (values of objectives, costs, area, and the region) is shown in Table 5.

In the first phase of the H-MCSGA, the Ant Colony Optimization Algorithm (ACO) by Rivera et al. ([17]) was
used. This algorithm incorporates preferences by using
the outranking model from ([3]). The ACO parameters
were the same as those reported in the article, but we did
not use local search or consider synergy. The solutions
were categorized by simulating a DM whose preferences
are compatible with the outranking model from ([3]).

Table 5. Information about some projects

Project	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	Cost	Area	Region
1	42890	8915	25565	13685	28980	15900	32300	13500	67295	9450	1 2
2	47565	24220	35845	11540	50315	14320	37085	21950	49010	6360	3 2
3	35435	18125	31280	23450	32650	24875	64150	18000	48310	5890	2 1
4	11010	32855	43650	13995	37600	28755	29025	37485	29625	7820	3 2
5	23030	31265	29890	26510	66610	24140	78980	37430	15740	9555	2 2

The model’s parameters were set as follows:

Weights: (10, 13, 10, 12, 7, 13, 10, 7, 18).
Veto thresholds = (60000, 45000, 75000, 50000, 84000, 60000, 100000, 78000, 79000).
Indifference thresholds = (7500, 6000, 9000, 6000, 12000, 7500, 12000, 10500, 10500).
The credibility threshold $\lambda = 0.67$.

Examples of solutions included in a reference set are shown in Table 6. It is noteworthy that the number of ele-
ments of the most preferred category in the reference set
is very small.

The classified solutions were processed in order to con-
struct a consistent reference set that satisfies Equations
(2.a-c). In cases of poorly populated reference sets, it is
necessary to add fictitious solutions (derived from an ex-
isting solution). These solutions are used to extend and
intensify the reference set when some category is poorly
represented.

The procedure to generate them is as follows: search a pair of objectives with similar weights, choose a solution
and at the corresponding objectives add and subtract the
same amount. The way in which fictitious solutions are generated is pointed-out in Table 7.

We experimented with five random instances, creating
for each of them one distinct reference set. Every instance
was run ten times, and the parameters of the evolutionary
search in the second phase of the H-MCSGA were: cross-
over probability = 1; mutation probability = 0.05; popula-
tion size = 100, number of generations = 500.

The second phase of the H-MCSGA was run, and the
obtained solutions were compared with the solutions from
the standard NSGA2. The results are illustrated in Table 8.

Table 6. Some ACO solutions included in the reference set

Portfolio	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	Cost	Area	Region
1	1247615	884570	1396870	914930	1689460	1147495	1773720	1421840	1520465	Bad	
2	1305365	100930	1307305	1333580	1329260	12926	1337660	1317720	1612195	1612695	1612955
66	1324110	100876	1322735	1328230	12926	1337660	1317720	1612195	1612695	1612955	1612955
98	1346255	101306	1563525	102980	1678160	12926	1337660	1317720	1612195	1612695	1612955
99	1327040	1014050	1596565	982735	1681330	1328230	2095395	1464250	1793820	1793820	1793820
100	1334615	103882	1616815	976525	1714145	1322735	2095395	1464250	1793820	1793820	1793820
101	133585	100116	1569390	100091	1705255	1307305	2098165	1499430	1807120	1807120	1807120

Table 7. Real and fictitious solutions

Reference element	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	Category
12	1320410	100876	1612095	977740	1696005	1317720	2046040	1449645	1782705	No Good
13	1320910	100876	1612195	977740	1696005	1317720	2046040	1449645	1782705	No Good
We can see a better performance of the $H\text{-MCSGA}$. Our proposal satisfies the ROI conditions, that is, it always finds non-dominated solutions of the most preferred category. Many solutions from the NSGA2 are dominated, and there is no NSGA2 solution belonging to the best category. Also, we used the outranking net flow score to rank the set $A \cup B$. The net flow is a very popular measure defined as (cf. [18])

$$F_n(a) = \sum_{c \in A \setminus \{a\}} [\sigma(a,c) - \sigma(c,a)]$$

As can be seen in the last column of Table 8, the $H\text{-MCSGA}$ always obtains solutions with the highest net flow, confirming a better convergence towards the ROI.

The results also reveal that our proposal provides a better characterization of the most preferred category with respect to the ACO. This characteristic is measured in terms of the number of solutions contained in the best category.

5. Conclusions

An original idea to incorporate preferences into multi-objective evolutionary optimization has been presented. To the best of our knowledge this is the first time in which an implicit way of modeling the DM’s preferences has been suggested.

Our proposal is basically a derivation from the standard NSGA2 but making selective pressure towards the Region of Interest instead the Pareto front. The DM’s preferences are captured in a reference set of solutions assigned to ordered categories. Using the THESEUS multi-criteria sorting method, a sort of “assignment machine” is built. Thus, good solutions are identified by the algorithm, and a convenient selective pressure towards the ROI is performed.

Unlike Pareto-based evolutionary algorithms, the number of “good” solutions in the earlier populations does not depend on the dimension of the objective space. Therefore, the selective pressure is not degraded with the number of objective functions.

In examples with 9 objectives, this proposal improves solutions obtained by NSGA2. Besides, we obtained a better characterization of the most preferred category with respect to the solutions given by an ant colony algorithm with “a priori” incorporation of preferences. More experimentation is required to reach definitive conclusions.

References

[1] K. Deb, “Multi-Objective Optimization using Evolutionary Algorithms,” John Wiley & Sons, Chichester-New York-Weinheim-Brisbane-Singapore-Toronto, 2001.
[2] C. Coello, G. Lamont, and Van Veldhuizen, D.A., “Evolutionary Algorithms for Solving Multi-Objective Problems,” Second Edition, Springer, New York, 2007.
[3] E. Fernandez, E. Lopez, F. Lopez, and C. Coello, “Increasing selective pressure toward the best compromise in Evolutionary Multiobjective Optimization: the extended NOSGA method”, Information Sciences, pp. 44-56, 181, 2011.
[4] C. Coello, “A comprehensive survey of Evolutionary-Based Multiobjective Optimization techniques,” Knowledge and Information Systems. An International Journal 1 (3), pp. 269-308, 1999.
[5] K. Deb, “Current trends in Evolutionary Multi-objective Optimization,” International Journal for Simulation and Multidisciplinary Design Optimisation, 1 (1), pp. 1-8, 2007.
[6] E. Fernandez, E. Lopez, S. Bernal, C. Coello, and J. Navarro, “Evolutionary Fernandez multiobjective optimization using an outranking-based dominance generalization,” Computers & Operations Research, 37 (2), pp. 390-395, 2010.
[7] Y. Wang, and Y. Yang, “Particle swarm optimization with preference order ranking for multi-objective optimization,” Information Sciences, 179 (12), pp. 1944-1959, 2009.
[8] K. Deb and H. Gupta, “Introducing robustness in multi-objective optimization,” Evolutionary Computation, 14(4), pp. 463–494, 2006.

[9] S. Bechikh, “Incorporating Decision Maker’s Preference Information in Evolutionary Multi-objective Optimization”, Diss. PhD thesis, High Institute of Management of Tunis, University of Tunis, Tunisia. http://delta.cs.cinvestav.mx/~cocoello/EMOO/thesis-bechikh.pdf.gz, 2013.

[10] B. Roy, “The Outranking Approach and the Foundations of ELECTRE methods,” In: Bana e Costa, C.A. (ed.), Reading in Multiple Criteria Decision Aid, Springer-Verlag, Berlin, pp. 155-183, 1990.

[11] E. Fernandez, J. Navarro, and G. Mazcorro, “Evolutionary multi-objective optimization for inferring outranking model’s parameters under scarce reference information and effects of reinforced preference,” Foundations of Computing and Decision Sciences, vol. 37, no. 3, pp. 163-197, 2012.

[12] M. Doumpos, Y. Marinakis, M. Marimaki, and C. Zopounidis, “An evolutionary approach to construction of outranking models for multicriteria classification: The case of ELECTRE TRI method,” European Journal of Operational Research, 199 (2), pp. 496-505, 2009.

[13] E. Fernandez, and J. Navarro, “A new approach to multicriteria sorting problems based on fuzzy outranking relations: The THESEUS method,” European Journal of Operational Research, vol. 213, pp.405-413, 2011.

[14] E. Fernandez and R. Olmedo, “Public project portfolio optimization under a participatory paradigm”, Applied computational intelligence and soft computing, vol. 2013, Article ID 891781, 13 pages, doi:10.1155/2013/891781, 2013.

[15] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs”, Springer Verlag, Berlin-Heidelberg-New York, 1996.

[16] V. Mousseau, L. Dias, “Valued outranking relations in ELECTRE providing manageable disaggregation procedures”, European Journal of Operational Research, 156-2, pp. 467–482, 2004.

[17] G. Rivera, C. Gómez, E. Fernández, L. Cruz, O. Castillo and S. Bastiani, “Handling of Synergy into an Algorithm for Project Portfolio Selection”, Book Recent Advances on Hybrid Intelligent Systems, pp. 417-430, 2013.

[18] J. Fodor, M. Roubens, “Fuzzy Preference Modeling and Multicriteria Decision Support”, Kluwer, Dordrecht, 1994.