Clinical short communication

Can the radiological scale “iNPH Radscale” predict tap test response in idiopathic normal pressure hydrocephalus?

Tiberiu Laticevschi a,*, Alma Lingenberg b, Stéphane Armand a,c, Alessandra Griffa b, Frédéric Assal a,b, Gilles Allali a,b,d

a Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1206 Geneva, Switzerland
b Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA

ARTICLE INFO

Keywords:
Normal pressure hydrocephalus
Gait
TUG
Imaging
Tap test

ABSTRACT

Background: Idiopathic normal pressure hydrocephalus (iNPH) presents typical radiological signs that have been summarised in a semi-quantitative scale named the iNPH Radscale. However, the iNPH Radscale’s predictive value for response to cerebrospinal fluid (CSF) tap test has never been studied. This study aims to investigate if the iNPH Radscale can predict locomotion improvement after CSF tap test.

Methods: A total of 100 patients with iNPH (age: 76.3 ± 7.9, gender: 36% female) were included in this retrospective study. Two raters, blinded to the response of the CSF tap test, evaluated the iNPH Radscale and its seven subitems (Evan’s index, callosal angle, size of temporal horns, narrow high-convexity sulci, dilated Sylvian fissures, focally dilated sulci, and periventricular hypodensities). Locomotion improvement was assessed by the Timed Up and Go (TUG) performed before, and 24 h after, the CSF tap test.

Results: The iNPH Radscale (total score) was similar between the CSF tap test responders and non-responders (responders: 8.31 ± 1.96, non-responders: 9.18 ± 2.51, p = 0.128). However, the temporal horns score was smaller in the responders group (1.66 ± 0.57 versus 1.94 ± 0.24, p = 0.045), even after adjusting for age, gender, education level, white matter changes, and global cognition (β: -0.250, C.I. 95%: [-0.385; -0.111], p = 0.031).

Conclusion: The iNPH Radscale (total score) does not predict locomotion improvement after CSF tap test, while a smaller temporal horns score at baseline is associated with a positive tap test responder status.

1. Introduction

Idiopathic normal pressure hydrocephalus (iNPH) is characterised by locomotion disturbance, cognitive impairment, and urinary incontinence, with enlarged ventricles at brain imaging [1,2]. Its treatment relies on an invasive neurosurgical shunt procedure [3]. iNPH is often associated with comorbid neurological conditions, such as Alzheimer’s disease or other neurodegenerative conditions, which interfere with the reversibility of symptoms [4]. Various neuroimaging biomarkers, such as the hippocampal volume or microstructural changes in specific white matter tracts [5,6], have been studied to identify iNPH patients with good prognosis after shunt surgery. However, these neuroimaging features rely on complex image processing approaches, which are difficult to apply in clinical practice. Furthermore, these neuroimaging biomarkers mainly apply to MRI and not to CT-Scans that are largely performed in iNPH patients.

Recently, the iNPH Radscale – a semi-quantitative radiological scale that includes seven radiological parameters (Evan’s index, narrow sulci, Sylvian fissures, focally enlarged sulci, temporal horns, callosal angle, and periventricular hypodensities) – has been validated to identify patients with iNPH [7]. The severity of the iNPH Radscale correlates with the severity of clinical symptoms in iNPH patients [7], and demonstrates

Abbreviations: ARWMC, Age-Related White Matter Changes; CSF, Cerebrospinal Fluid; GHS, Global Health Status; HAD, Hospital Anxiety and Depression; ICC, Intraclass Correlation Coefficients; iNPH, idiopathic Normal Pressure Hydrocephalus; MMSE, Mini-Mental State Examination; SD, Standard Deviation; TUG, Times Up and Go.

* Corresponding author at: Faculty of Medicine, University of Geneva, rue Michel-Servet 1, 1206 Geneva, Switzerland.
E-mail address: tlaticevschi@gmail.com (T. Laticevschi).

https://doi.org/10.1016/j.jns.2020.117239
Received 20 June 2020; Received in revised form 2 November 2020; Accepted 20 November 2020
Available online 23 November 2020
0022-510X/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
high specificity and sensitivity for distinguishing iNPH patients from asymptomatic individuals in the general population [8]. Furthermore, the iNPH Radscale demonstrates a similar validity when assessing brain imaging with CT or MRI [9]. However, the iNPH Radscale and its subitems have never been studied for their ability to identify iNPH responders from non-responders.

This study aims to investigate if the iNPH Radscale and its subitems can predict if iNPH patients improve their locomotion after cerebrospinal fluid (CSF) tap test (i.e. responders), by using the Timed Up and Go (TUG) – a largely used clinical test that has been also validated in iNPH [10,11]. Establishing this would contribute to the identification of appropriate iNPH candidates for shunt surgery.

2. Materials and methods

2.1. Sample

A total of 179 consecutive patients enrolled in the Geneva Protocol [12] from September 2009 to February 2019 were selected for this study. The study procedures were previously described [12]. Briefly, inclusion criteria for this analysis were: patients with (i) a diagnosis of iNPH [10,11]. Establishing this would contribute to the identification of appropriate iNPH candidates for shunt surgery.

2.2. The iNPH Radscale

The iNPH Radscale is a semi-quantitative imaging scale validated to screen for iNPH [7]. Scores range from 0 to 12, with higher values indicating more severe radiological signs. The iNPH Radscale includes seven subitems: Evan’s index, narrow sulci, Sylvian fissures, focally enlarged sulci, temporal horns, callosal angle, and periventricular hypodensities. Details about the method used to evaluate these subitems can be found in the original iNPH Radscale article [7]. In our cohort, iNPH Radscale scores were evaluated by two independent raters (TL and GA) blinded to the CSF tap test responder status.

2.3. Tap test responder status

Tap test responder status was defined with the Timed Up and Go (TUG), as the TUG has been validated for evaluating improvement in locomotion in iNPH patients [11,14]. The TUG was measured before, (TUG), as the TUG has been validated for evaluating improvement in 24 h after the CSF tap test, defining any improvement in TUG time 24 h after the CSF tap test, responders from non-responders.

2.4. Covariates

The NPH grading scale [15] was used to quantify the severity of iNPH symptoms. Global cognition was evaluated using the Mini-Mental State Examination (MMSE). Behavioural symptoms were evaluated using the Starkstein for apathy [16] and the Hospital Anxiety and Depression (HAD) scale for depression and anxiety [17]. The Global Health Status (GHS: range 0–10) was defined based on the presence of diabetes, chronic heart failure, arthritis, hypertension, depression, stroke, Parkinson’s disease, chronic obstructive pulmonary disease, angina, and myocardial infarction [12]. White matter lesions were rated with the age-related white matter changes – a validated semi-quantitative scale [18]. Medial temporal lobe atrophy was evaluated using the Scheltens scale (average score) [19–21].

2.5. Statistics

Descriptive statistics were compared between responders and non-responders with a Mann-Whitney U test. Multivariate linear regression adjusted for age, gender, education level, white matter changes, and global cognition was performed to assess the association between responder status (independent variable) and temporal horns (dependent variable). All analyses were conducted using SPSS version 25 (IBM Corp., Armonk, NY., USA).

3. Results

Table 1 shows the characteristics of tap test responders versus non-responders: 83% of the patients were classified as responders based on TUG improvement after the CSF tap test. Both groups presented similar clinical characteristics, including age, global cognitive performance, disease duration, as well as the extent of white matter lesions. However, tap test responders performed the TUG slower than non-responders before the CSF tap test (p = 0.036). Kappa values and intraclass correlation coefficients (ICC) for iNPH Radscale subitems were similar to those reported by Kockum et al. (kappa range: 0.28–1.00 vs 0.35–0.85)

Table 1

| Variable                     | Tap Test Responders (n = 83) | Tap Test Non-Responders (n = 17) | p-value |
|------------------------------|------------------------------|----------------------------------|---------|
| Demographics:                |                              |                                  |         |
| Age (years)                  | 76.2 ± 7.9                   | 76.6 ± 8.3                       | 0.755   |
| Gender (% female)            | 39.5 ± 1.6                   | 49.0 ± 3.4                       | 0.240   |
| Disease Duration (months)    | 41.6 ± 21.0                  | 35.3 ± 25.7                      | 0.892   |
| Education (years)            | 11.7 ± 3.9                   | 12.8 ± 2.6                       | 0.385   |
| Comorbidities - GHS (0–10)   | 1.5 ± 1.1                    | 1.8 ± 1.1                        | 0.191   |
| Number of Medications (n)    | 4.5 ± 2.9                    | 4.6 ± 2.4                        | 0.766   |
| NPH grading scale:           |                              |                                  |         |
| Gait (0–4)                   | 2.0 ± 0.4                    | 1.9 ± 0.6                        | 0.962   |
| Cognition (0–4)              | 2.1 ± 0.5                    | 2.3 ± 0.5                        | 0.202   |
| Urinary (0–4)                | 1.3 ± 1.1                    | 0.9 ± 0.8                        | 0.351   |
| Gait:                        |                             |                                  |         |
| Timed Up and Go (TUG):       |                              |                                  |         |
| Pre tap test TUG (s)         | 28.8 ± 28.5                  | 23.7 ± 28.1                      | 0.036*  |
| Post tap test TUG (s)        | 20.2 ± 14.4                  | 33.0 ± 44.8                      | 0.271   |
| ∆TUG (%)                     | −25.9 ± 24.0                 | 19.8 ± 26.4                      | <0.001* |
| Cognition:                   |                              |                                  |         |
| MMSE (0–30)                  | 23.8 ± 4.5                   | 23.7 ± 4.4                       | 0.826   |
| Behaviour:                   |                              |                                  |         |
| Anxiety (0–21)               | 7.3 ± 3.9                    | 6.4 ± 2.3                        | 0.461   |
| Depression (0–21)            | 7.0 ± 3.8                    | 5.8 ± 3.0                        | 0.449   |
| Apathy (0–42)                | 17.1 ± 6.0                   | 13.5 ± 5.5                       | 0.068   |
| White matter lesions:        |                              |                                  |         |
| Total ARWMC (0–30)           | 6.7 ± 4.4                    | 8.0 ± 5.8                        | 0.438   |

Abbreviations: ARWMC: Age-Related White Matter Changes; GHS: Global Health Scale; MMSE: Mini-Mental State Examination; SD: standard deviation. * Statistically significant p-values are indicated with a *.

\[ \text{∆TUG} = \frac{(\text{post tap TUG}) - (\text{pre tap TUG})}{0.5^*[(\text{post tap TUG}) + (\text{pre tap TUG})]} \]
for Kockum et al.; ICC range: 0.57–1.00 vs 0.74–0.97 for Kockum et al.) [7].

Both groups presented a similar total composite iNPH Radscale score \((p = 0.128)\) (Table 2). However, for individual subitems of the iNPH Radscale (Table 2), the tap test responders exhibited a smaller temporal horns score compared to the non-responders \((p = 0.045)\). This difference in temporal horns scores (using the semi-quantitative iNPH Radscale), was confirmed by the quantitative measurement of temporal horns width (Fig. 1): \(7.71 \pm 2.47 \) mm for the tap test responders, versus \(9.12 \pm 2.29 \) mm for the non-responders \((p = 0.031)\). This association between smaller temporal horns width and positive tap test responder status remained significant even after adjusting for age, gender, education level, white matter changes, and global cognition \((\beta = -0.250, \text{C.I. 95\%: } -3.185; -0.161, p = 0.031)\). Scheltens' scale for medial temporal lobe atrophy yielded a score of \(1.63 \pm 0.86\) for tap test responders vs \(2.27 \pm 0.99\) for non-responders \((p = 0.010)\), and \(1.74 \pm 0.91\) for the entire sample of iNPH patients.

The sensitivity analysis using cut-offs of TUG improvement between 0% and 10% yielded similar results to Table 2. The association between smaller temporal scores and positive tap test responder status was not significant anymore at a cut-off of TUG improvement \(\geq 6\%\). However, when using a TUG improvement cut-off \(\geq 10\%\) for responders and \(< 0\%\) for non-responders, the results closely resemble those shown in Table 2, including for the temporal horns observation (temporal horns scores \(1.64 \pm 0.61\) \(n = 61\) vs \(1.94 \pm 0.24\) \(n = 17\), respectively, \(p = 0.044)\). Furthermore, all of our findings were similar when defining TUG improvement in \% as \(\frac{\text{post tap TUG} - \text{pre tap TUG}}{\text{pre tap TUG}} \times 100\).

4. Discussion

4.1. Main findings

While the iNPH Radscale (total score) does not predict locomotion improvement after CSF tap test, a smaller temporal horns score – a subitem of the iNPH Radscale - is associated with improvement in locomotion.

4.2. Temporal horns

Smaller temporal horns (iNPH Radscale score and quantitative

| Table 2 |
| --- |
| Radiological characteristics of tap test responders and non-responders. |
| Variable | Tap Test Responders (\(n = 83\)) | Tap Test Non-Responders (\(n = 17\)) | \(p\) value |
| INPH Radscale Total Score (0–12) | 8.31 ± 1.96 | 9.18 ± 2.51 | 0.128 |
| INPH Radscale Subitems | | | |
| Evans Index (0–2) | 1.99 ± 0.11 | 2.00 ± 0.00 | 0.651 |
| Temporal Horns (0–2) | 1.66 ± 0.57 | 1.94 ± 0.24 | 0.045* |
| Callosal Angle (0–2) | 1.05 ± 0.66 | 1.24 ± 0.75 | 0.282 |
| Narrow Sulci (0–2) | 1.30 ± 0.89 | 1.59 ± 0.80 | 0.201 |
| Sylvian Fissure (0–1) | 0.71 ± 0.46 | 0.71 ± 0.47 | 0.967 |
| Focally Enlarged Sulci (0–1) | 0.83 ± 0.38 | 0.71 ± 0.47 | 0.232 |
| Periventricular Hypodensity (0–2) | 0.77 ± 0.83 | 1.00 ± 1.00 | 0.396 |

Abbreviations: SD: standard deviation. * Statistically significant \(p\)-values are indicated with a *.

measurement) are associated with a positive tap test responder status in iNPH patients. This result is in contradiction with previous reports showing that increased temporal horns predict positive outcomes after shunt surgery [22,23], as well as with studies showing that temporal horns cannot predict shunt outcome [24]. Virhammar’s study [25] reported 13% smaller average temporal horns widths than our study, using a similar measuring method. Few explanations may contribute to these discrepancies. Patients in our sample are older than those reported in previous studies [22,23], suggesting a longer disease duration with more brain atrophy. Furthermore, the older age and wider temporal horns in our sample may reflect more comorbid Alzheimer’s pathology [25], which could be linked with a poorer responder status. To test this hypothesis, a post-hoc evaluation of medial temporal lobe atrophy was carried out using Scheltens’ scale. This analysis shows that the tap test responder group is below the threshold for Alzheimer’s Disease \((\geq 2\) for individuals aged 75–84) [21], while tap test non-responders are above. It should, however, be noted that Scheltens’ scale has not been validated to distinguish patients with Alzheimer’s disease from iNPH. Future studies should investigate the ability of the temporal horns subitem of the iNPH Radscale to distinguish temporal lobe atrophy from ventricular enlargement. Another explanation may be associated with the definition of responder status. Most prognostic studies define response to treatment as any improvement in locomotion, cognition or urinary symptoms. Here, we restricted the definition to any improvement in locomotion, as locomotion represents the key symptom of iNPH [26,27].

4.3. The iNPH Radscale

The iNPH Radscale total score does not predict the CSF tap test responder status. This finding is supported by previous studies demonstrating that a combination of radiological parameters is unable to predict response to shunt surgery in iNPH [22,24,28,29]. The iNPH Radscale linearly correlates with iNPH symptom severity [7], indicating that more severe symptoms are associated with more severe radiological signs. However, it is well known that disease severity increases with disease duration [30], and a longer disease duration has a negative effect on shunting outcomes [27,31–33]. Consequently, more severe iNPH Radscale scores would be associated with worse treatment outcomes,
thus reducing the ability of the iNPH Radscale to predict the responder status. Furthermore, focusing on specific radiological signs rather than on composite scores, could uncover underlying comorbidities such as Alzheimer’s pathology.

4.4. TUG and CSF tap test

The CSF tap test is not a perfect proxy of a shunt, but TUG change after a tap test is a good predictor of shunt outcomes [10,11]. Previous studies have used a TUG improvement cut-off of ≥10% [10,11]. Meanwhile, false-negatives are a concern when using the tap test for predicting a positive shunt outcome [10,34,35]. We deliberately used a cut-off of 0% to maximise the sensitivity of the approach. Furthermore, a sensitivity analysis using different cut-offs for TUG improvement suggests a ceiling effect, as the association between smaller temporal scores and positive tap test responder status was not significant anymore at a cut-off of TUG improvement ≥6%. In addition, when separating the sample in clear responders (TUG improvement ≥10%) and clear non-responders (TUG improvement <0%), our results remained unchanged.

4.5. Post-shunt outcome

Our post-shunt evaluations could not be used in this analysis because of the small size of the shunt non-responder sample (n = 4), and because the outcome of the post-shunt evaluation was not standardised (i.e. TUG), but based on the subjective evaluation of the neurosurgeon during the post-shunt clinical evaluation.

4.6. Strengths and weaknesses

The main strength of this study is the inclusion of a high number of iNPH patients with a quantitative locomotion measurement before and after the CSF tap test. Another strength relies on the use of a validated radiological scale to differentiate atrophy from ventricular enlargement without atrophy.

5. Conclusion

The iNPH Radscale (total score) does not predict CSF tap test responder status, while a subitem of the iNPH Radscale in iNPH patients. However, the main limitation of the study is the absence of neuropathological confirmation for iNPH (and other co-morbid neurological conditions) and the absence of standardised quantitative outcomes after shunt surgery.

Data availability statement

Anonymised data that are not published in this article will be made available on request from any qualified investigator, after the approval by the Institutional Review Board of the Geneva University Hospitals.

Funding

This work was supported by the Geneva University Hospitals (grant numbers PRD 11-1-3 and PRD 12-2013-D) and the Swiss National Science Foundation (grant number 320030_173153). The funding bodies had no involvement in the preparation of this article.

Disclosure of conflict of interest

The authors have no conflicts of interest.

References

[1] R.D. Adams, et al., Symptomatic occult hydrocephalus with ‘Normal’ cerebrospinal-fluid pressure: A treatable syndrome, N. Engl. J. Med. 273 (1965) 117–126.
[2] S. Hakim, R.D. Adams, The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics, J. Neurol. Sci. 2 (4) (1965) 307–327.
[3] E. Mori, et al., Guidelines for management of idiopathic normal pressure hydrocephalus: second edition, Neuroil. Med. Chir. (Tokyo) 52 (11) (2012) 775–809.
[4] L. Pomeranz, et al., Concurrent Alzheimer’s pathology in patients with clinical normal pressure hydrocephalus: correlation of high-volume lumbar puncture results, cortical brain biopsies, and outcomes, J. Neurolurg. 124 (2) (2016) 382–388.
[5] S. Savolainen, et al., MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis, AJNR Am. J. Neuroradiol. 21 (2) (2000) 409–414.
[6] K. Kamiya, et al., Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus, Neuroimage Clin 14 (2017) 663–671.
[7] K. Kockum, et al., The idiopathic normal pressure hydrocephalus Radscale: a radiological scale for structured evaluation, Eur. J. Neurol. 25 (3) (2018) 569–576.
[8] K. Kockum, et al., Diagnostic accuracy of the iNPH Radscale in idiopathic normal pressure hydrocephalus, PLoS One 15 (4) (2020), e0232275.
[9] K. Kockum, et al., Standardized image evaluation in patients with idiopathic normal pressure hydrocephalus: consistency and reproducibility, Neuroradiology 61 (12) (2019) 1397–1406.
[10] M. Ishikawa, et al., The value of the cerebrospinal fluid tap test for predicting shunt effectiveness in idiopathic normal pressure hydrocephalus, Fluids Barriers CNS 9 (1) (2012) 1.
[11] M. Ishikawa, S. Yamada, K. Yamamoto, Early and delayed assessments of quantitative gait measures to improve the tap test as a predictor of shunt effectiveness in idiopathic normal pressure hydrocephalus, Fluids Barriers CNS 13 (1) (2016) 20.
[12] G. Allah, et al., A combined cognitive and gait quantification to identify normal pressure hydrocephalus from its mimics: the Geneva’s protocol, Clin. Neurol. Neurosurg. 160 (2017) 5–11.
[13] N. Relkin, et al., Diagnosing idiopathic normal-pressure hydrocephalus, Neurosurgery 57 (3 Suppl) (2005) S4–16 (discussion ii–iv).
[14] D. Feike, et al., Sensitivity and predictive value of occupational and physical therapy assessments in the functional evaluation of patients with suspected normal pressure hydrocephalus, J. Rehabil. Med. 40 (9) (2008) 715–720.
[15] Y. Kubo, et al., Validation of grading scale for evaluating symptoms of idiopathic normal-pressure hydrocephalus, Dement. Geriatr. Cogn. Disord. 25 (1) (2008) 37–45.
[16] L.O. Wahlund, et al., The predictive value of the iNPH Radscale for structured evaluation, J. Clin. Neurosci. 34 (2016) 294.
[17] M.J. McGirt, et al., Diagnosis, treatment, and analysis of long-term outcomes in normal-pressure hydrocephalus from its mimics: the Geneva protocol, Clin. Neurol. Neurosurg. 160 (2017) 5–11.
[18] A.S. Zigmund, R.P. Snaith, The hospital anxiety and depression scale, Acta Psychiatr. Scand. 67 (6) (1983) 361–370.
[19] L.O. Wahlund, et al., A new rating scale for age-related white matter changes applicable to MRI and CT, Stroke 32 (6) (2001) 1318–1322.
[20] P. Scheltens, et al., Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus, J. Neurol. Sci. 273 (2009) 171–174.
[21] M. Fromm, et al., Practical cuts-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment, J. Intern. Med. 278 (3) (2015) 277–290.
[22] C. Wijkelso, et al., Computed tomography of the brain in the diagnosis of and prognosis in normal pressure hydrocephalus, Neurosurgery 31 (2) (1999) 160–165.
[23] J. Virhammar, et al., Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus, AJNR Am. J. Neuroradiol. 35 (12) (2014) 2311–2318.
[24] M. Kojoukhova, et al., Feasibility of radiological markers in idiopathic normal pressure hydrocephalus, Acta Neurochir. 157 (10) (2015) 1709–1718 (discussion 1719).
[25] D.B. Frisoni, et al., Radial width of the temporal horn: a sensitive measure in Alzheimer disease, AJNR Am. J. Neuroradiol. 23 (1) (2002) 35–47.
[26] N.R. Graff-Radford, J.C. Godersky, Normal-pressure hydrocephalus. Onset of gait abnormality before dementia predicts good surgical outcome, Arch. Neurol. 43 (9) (1986) 940–942.
[27] M.J. McGirt, et al., Practical cuts-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment, J. Intern. Med. 278 (3) (2015) 277–290.
[28] C. Wijkelso, et al., Computed tomography of the brain in the diagnosis of and prognosis in normal pressure hydrocephalus, Neurosurgery 31 (2) (1999) 160–165.
[29] J. Virhammar, et al., Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus, AJNR Am. J. Neuroradiol. 35 (12) (2014) 2311–2318.
[31] R. Caruso, et al., Idiopathic normal-pressure hydrocephalus in adults: result of shunting correlated with clinical findings in 18 patients and review of the literature, Neurosurg. Rev. 20 (2) (1997) 104–107.

[32] U. Meier, A. Konig, C. Miethke, Predictors of outcome in patients with normal-pressure hydrocephalus, Eur. Neurol. 51 (2) (2004) 59–67.

[33] R.C. Petersen, B. Mokri, E.R. Laws Jr., Surgical treatment of idiopathic hydrocephalus in elderly patients, Neurology 35 (3) (1985) 307–311.

[34] C. Wikkelso, et al., The European iNPH multicentre study on the predictive values of resistance to CSF outflow and the CSF tap test in patients with idiopathic normal pressure hydrocephalus, J. Neurol. Neurosurg. Psychiatry 84 (5) (2013) 562–568.

[35] A. Marmarou, et al., The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus, Neurosurgery 57 (3 Suppl) (2005) S17–S28 (discussion ii–v).