Ultrasound-Guided Cervical Medial Branch Blocks: A Systematic Review and Meta-Analysis

Stephania Paredes MD 1, Roderick J. Finlayson MD 2, Samer Narouze MD PhD 3, Sameh M Hakim MD MSc (Pain) MSc (Anesth) PGDipM DipBiostat,MB, BCh 4, Daniel Adams PA-C MSHS DMA 3, Nimish Mittal MBBS MD MSc 5, Michael Catapano BHSc MD 5, Lynn Kohan MD 6, Patrick Connell BSc 3, Nebojsa Nick Knezevic MD PhD 1, Alex Feoktistov MD PhD 7, Imanuel Lerman MD MSc 8, Antoun Nader MD 9, Dmitri Souza MD PhD* 3

1 Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
2 McGill Alan Edwards Pain Management Unit, McGill University, Montreal, QC, Canada
3 Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, OH, USA
4 Department of Anesthesiology, Intensive Care and Pain Management, Ain Shams University Faculty of Medicine, Cairo, Egypt
5 Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
6 Department of Anesthesiology and Pain Medicine, University of Virginia, Charlottesville, VA, USA
7 Diamond Headache Clinic, Chicago, IL, USA
8 Center for Pain Medicine, UC San Diego Health University of California, San Diego, CA, USA
9 Department of Anesthesiology, Feinberg School of Medicine, Chicago, IL, USA

*Corresponding Author: Dmitri Souza, MD, PhD
Address: Center for Pain Medicine, Western Reserve Hospital, 1900 23rd St, Cuyahoga Falls, OH 44223, USA
Email: dmitrisouz@gmail.com
Twitter: @DmitriSouza

Article Information
DOI: 10.30756/ahmj.2020.03.01
Article Type: Review Article
Issue: 03.01
Manuscript ID: 2020014
Received: May 6, 2020
Revised: Jun 29, 2020
Accepted: Jun 30, 2020
Published: Jul 13, 2020
Keywords: Cervical medial branch blocks, neck pain, ultrasonography, fluoroscopy, computed tomography, imaging guidance, back pain, pain management, chronic pain, medical education

Recommended Citation:
Paredes S, Finlayson R, Narouze S, et al. Ultrasound-Guided Cervical Medial Branch Blocks: A Systematic Review and Meta-Analysis. Ann Head Med. 2020:03:01.

Abstract

Objective: Cervical medial branch blocks (CMBBs) are useful in differentiating facetogenic pain from other sources of cervicogenic headaches and neck pain. The purpose of this systematic review and meta-analysis is to determine the efficacy, performance time, pain reduction, and adverse events associated with ultrasound (US) guided CMBB compared with other commonly used guidance methods such as fluoroscopy and computed tomography (CT).

Methods: Searches of MEDLINE, EMBASE, Cochrane Library, and Ovid were completed to identify studies addressing CMBBs utilizing ultrasound compared to other imaging techniques. Three reviewers independently screened the titles, abstracts, and full texts, extracting data from eligible studies. Outcomes of interest including success rate, efficacy, performance time and complication profile were analyzed in meta-analysis. All other reported measures and complication profiles were analyzed descriptively.

This is an open access journal distributed under the terms of the Creative Commons Attribution 4.0 License in which authors agree to make articles, including data, graphics, and supplements, legally available for reuse, without permission or fees, for virtually any purpose. Any individual or institution is free to copy, distribute, reproduce, or reuse these publications, as long as the author and original source are properly cited and credited.
Results: A total of 9 studies were included. Four randomized controlled trials (RCTs) and 5 cohort studies satisfied inclusion criteria. US-guided CMBBs demonstrated similar success rates (OR = 1.05, 95% CI = 0.15 to 7.52, z = 0.05, P = 0.96) and similar pain efficacy (SMD = -0.54, 95% CI = -1.91 to 0.83, z = -0.77, P = 0.44) compared to traditional guidance techniques. However, US-guided CMBBs demonstrated reduced performance time (SMD = -1.77, 95% CI = -2.65 to -0.89, z = -3.94, P <0.01) and rate of vascular injury/injection (OR = 0.09, 95% CI = 0.01 to 0.75, z = -2.23, P = 0.03) compared to fluoroscopy guided CMBBs.

Conclusion: This review and meta-analysis demonstrated that US-guided cervical medial branch blocks are a reliable alternative to fluoroscopy- and CT-guided CMBBs, with similar efficacy but a potentially improved safety and performance time.

Introduction

Chronic neck pain is the fourth most common cause of years lived with disability worldwide 1. Nearly 116 million American adults live with neck pain, a higher number than the total affected by cancer, diabetes and heart disease combined 2, 3, 4. Episodes of neck pain commonly subside with or without treatment, although 50% of people continue to suffer from chronic neck pain. 5. Lack of timely anatomical diagnosis leads to poor long-term outcomes with conservative treatment of neck pain. Patients with persistent neck pains frequently progress to a trial of a diagnostic block of nerves that supply cervical zygapophyseal joints owing to a lack of valid clinical or radiologic signs for affected joints.

Cervical medial branch blocks (CMBBs) involve anesthetizing the neural supply to the cervical facet joints, typically at several levels. 2, 6, 7. These blocks provide essential diagnostic information regarding the anatomic pain generators and predict the response to subsequent radiofrequency ablation that can result in sustained pain relief for up to 12-18 months 2, 6, 7. As such, these procedures necessitate the need for reliability, safety and time efficiency 8, 9, 10.

Traditionally, CMBBs have been performed utilizing either fluoroscopy or computed tomography (CT) to confirm correct needle placement. 11. Real-time fluoroscopy with contrast injection is necessary to confirm needle placement and lack of vascular penetration 12, 13, 14. Limited availability of specialized equipment, qualified personnel and associated cost are barriers to widespread use of CT in cervical facet interventions. Ultrasound (US) guidance is an emerging imaging modality in the field of spine interventions that may offer several advantages 7, 15.

For instance US guided CMBB: 1) afford for easily accessible machine and or device use, 2) a potential to decrease block performance time, 3) significant reduction in radiation dose and 3) potential reduction in adverse effects due to unintentional intravascular injections 7, 16, 17, 18, 19, 20.

The objective of this systematic review and meta-analysis is to examine the clinical efficacy, performance time, pain reduction, and complication profile of US-guided CMBBs compared to traditional guidance methods of CT or fluoroscopy. We hypothesize that US-guided CMBBs have similar efficacy with improved performance time and reduced adverse events thus serving as a reasonable and safe alternative for the guidance of CMBBs.

Methods

Protocol and registration

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines 21. The review protocol was registered on PROSPERO via study number CRD42020153433 22.

Eligibility Criteria

Studies were included if they were comparison studies reporting the results of CMBB completed under US-guidance (intervention) versus CMBB completed under fluoroscopy or CT-guidance (controls) in adults, >18 years of age, with chronic neck pain. Included studies consisted of randomized control trials (RCTs) and cohort studies reporting: (1) success rate of the block, (2) measure of pain level change after intervention, (3) performance time of CMBB, or (4) adverse effects such as aberrant
spread or vascular puncture. Cohort studies and RCTs were chosen to provide the best clinical evidence. Studies classified as: reviews, editorials or technique papers, case reports, animal models or cadaveric studies, and/or studies published in a language other than English were excluded. In addition, studies examining nerve blocks performed at levels other than the cervical spine, studies involving pediatric populations, or studies employing guidance other than US, CT, or fluoroscopy were excluded.

Information sources and searches
MEDLINE, EMBASE, Cochrane Library and OVID were searched from database inception to September 1st, 2019. Initial search was completed on January 1st, 2017 and repeated on September 1st, 2019. Search terms “cervical medial branch block,” “neck pain,” “ultrasound-guided,” and “nerve block” were used.

Study selection
The titles, abstracts, and full texts were reviewed independently and in duplicate by two investigators to determine the relevance of studies (SP, DA). Any discordant articles were reviewed by a third reviewer (DS) to determine the individual article’s eligibility. In addition, the references of included studies were reviewed to identify any additional articles for inclusion.

Data Abstraction
Data abstraction was performed by two reviewers (SP, DA) and reviewed and verified by a third reviewer (DS). Authors of selected articles were contacted via email to collect additional numerical data not available in published manuscripts. If communication with authors was not successful, data were collected through graphics and converted from the available data through standardized formulas presented in the Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0.

Quality Assessment
The quality of the included RCTs was assessed using the updated guidelines by the Cochrane Neck and Back Group. No scoring system was adopted. Quality assessments were used for descriptive purposes. The risk of bias assessment was performed in the following domains: selection bias (criteria 1, 2, 9), performance bias (criteria 3, 4, 10, 11), attrition bias (criteria 6, 7), detection/measurement bias (criteria 5, 12), reporting bias (criterion 8) and other bias (criterion 13). These domains include all the criterion reported in Cochrane risk of bias tool with additional clarity.

The risk of bias of the individual cohort studies was assessed using the guidelines for methodologic quality assessment of nonrandomized studies of interventional techniques and ROBINS-I. This quality assessment was performed by one of the authors (DA) and checked by additional authors (NM and DS). The ROBINS-I assessment tool is designed primarily for cohort studies with interventional and control groups that investigate clinical outcomes. It utilizes the technique of imagining a “target study” to help conceptualize a study’s possible deficiencies compared to an ideal RCT of the same topic. Bias is assessed in seven domains with signaling questions following a standardized format leading to a “triangulation” between similar studies to refine the analysis. This is a thorough method which ensures full consideration of the domains in question, but we found that single arm and/or feasibility studies with more technical outcomes were less valid targets of the ROBINS-I. To address this concern, we supplemented the evaluation with the IPM-QRBMR tool, designed specifically for the assessment of bias of pain medicine interventions.

Statistical analysis
Statistical analysis was performed using Comprehensive Meta-Analysis® (CMA®) version 2.2.046 (Biostat®, Englewood, NJ). Binary outcomes were compared via estimation of the odds ratios (OR) with 95% confidence interval (CI). Continuous outcomes were compared by calculation of the standardized mean differences (SMDs) and their 95% CI. Estimates from included studies were pooled using the DerSimonian and Laird Random-Effects Method (REM) or the Mantel-Haenszel Fixed-Effects Method (FEM), depending on the presence or absence of significant heterogeneity, respectively.

Sub-group analysis was performed, whenever applicable, by pooling of studies sub-grouped according to the study design (RCT or retrospective) or according to the comparator modality (fluoroscopy or CT) examined versus the US. Point
estimates were calculated by pooling of all included studies. Studies included in the meta-analysis were tested for heterogeneity using the Cochran Q Chi-squared test and by calculation of the I-squared (I²) index.

Publication bias was assessed by examination of funnel plots of the estimated effect size on the horizontal axis versus a measure of study size (standard error for the effect size) on the vertical axis. In addition, the Duval and Tweedie Trim and Fill method was used to impute missing studies, if any, and to re-compute an adjusted combined effect.

Results

Search Results and Study Characteristics
A combined search of MEDLINE, EMBASE, Cochrane Library and OVID yielded 152 results after duplications were removed. Following the title screen, 18 were included in the abstract screening, of which nine progressed to full text review. Nine studies were excluded at the abstract screening stage because they didn’t meet the inclusion criteria, specifically, they did not address cervical medial branch injections. Of the nine studies included, five studies were cohort studies 7, 15, 27, 28, 29 and four studies were RCTs 10, 30, 31, 32 (Figure 1). All studies included in the full text review met eligibility criteria. Five of the 9 studies were included in the meta-analysis. One cohort study 28 was included in the meta-analysis because this study evaluated two comparable groups. Other cohort studies included only one group of patients. No additional articles were retrieved through manual reference search of the included articles. Table 1 summarizes study characteristics, primary outcomes, and principal findings of the studies.

Risk of Bias Assessment
The risk of bias summary for RCTs is presented in Table 2. All RCTs scored a low risk of bias for all the domains except performance bias as three out of four studies did not blind patients or assessors. Data were adequate to examine publication bias for performance time and percentage of pain relief for RCTs. There was no evidence of publication bias regarding either outcome.

Included cohort studies demonstrated appropriate study design, setting, image guidance, statistical methods, outcome assessment and funding. However, there was generally a privation of cohort studies with regards to assessment and reporting of potential patient factors, including baseline potential prognostic factors or confounders. Two different bias assessment tools for the cohort studies aided to provide a comprehensive view of these studies. The results of cohort studies assessment using ROBINS-I tool 26 presented in Table 3. The results of the assessment with the IPM-QRBNR tool 25 presented in Table 4. The overall risk of bias was found to be low, corresponding to the current trend in pain medicine 33. The specific comments on the individual studies are presented in comments to Table 3.

Procedural Success of CMBB under US-guidance
Two RCTs compared CMBB performed with US or fluoroscopy guidance, assessing the correct needle placement for CMBB under each guidance technique 30, 31. A successful block of the third occipital nerve (TONB) was determined as a block that resulted in hypoesthesia of the suboccipital area 30. Alternatively, a successful block of the C7 medial branch, was determined as a block that resulted in the presence of contrast agent continuous with the contour of the C7 superior articular process and covering the entire length and
proximal half of the transverse process in an anterior-posterior view \cite{31}.

In both studies, the success rates were similar for the standard technique using fluoroscopy guidance and investigative technique utilizing US guidance with no statistically significant difference between groups. Pooling of included studies using FEM demonstrated no statistically significant difference between US- or fluoroscopy-guidance, with an OR for successful block of 1.05, 95% CI = 0.15 to 7.52, \(z = 0.05, P = 0.06 \). These results (Figure 2) indicate no difference in success rates comparing the US- and fluoroscopy-guidance.

Percentage of pain relief

Three RCT’s reported pain scores before and after CMBB, one utilized a Visual Analogue Scale (VAS) while two others utilized a Numerical Rate Scale (NRS) \cite{30,31,32}. Individual studies did not demonstrate a statistical difference in pain relief between standard guidance methods and US-guidance. Pooling of included studies using REM demonstrated no statistically significant difference no statistically significant difference between US and all (US vs CT vs Fluoro) standard guidance techniques (SMD = -0.54, 95% CI = -1.91 to 0.83, \(z = -0.77, P = 0.44 \)). Sub-group analysis comparing US and fluoroscopy demonstrated no statistically significant difference between the modalities as well (SMD = 0.13, 95% CI = -0.28 to 0.55, \(z = 0.62, P = 0.53 \)) (Figure 3).

Success of the Block

Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Finlayson 2013	0.32	0.01	8.26	-0.69	0.49
Finlayson 2015	2.09	0.18	24.61	0.58	0.56

Figure 2. Forest plot for success of the cervical medial branch block.
FL - Fluoroscopy, US - Ultrasound

Percentage of Pain Relief

Group by Comparator	Study name	Std diff in means	Standard error	Variance	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value
CT	Obernauer 2013	-1.26	0.35	0.12	-1.94	0.59	-3.65	-0.01			
CT	Finlayson 2013	0.05	0.32	0.10	-0.57	0.67	0.16	0.87			
FL	Finlayson 2013	0.20	0.28	0.08	-0.36	0.75	0.69	0.49			
FL	Finlayson 2015	0.13	0.21	0.04	-0.28	0.55	0.62	0.53			
Overall		-0.54	0.70	0.49	-1.91	0.83	-0.77	0.44			

Figure 3. Forest plot for the percentage of pain relief
CT – Computed tomography, FL- Fluoroscopy, US - Ultrasound

This is an open access journal distributed under the terms of the Creative Commons Attribution 4.0 License in which authors agree to make articles, including data, graphics, and supplements, legally available for reuse, without permission or fees, for virtually any purpose. Any individual or institution is free to copy, distribute, reproduce, or reuse these publications, as long as the author and original source are properly cited and credited.
Table 1. Trials Pertaining to Ultrasound-guided Cervical Facet/Medial Branch Blocks and Radiofrequency Ablation Published up to September 1st, 2019.

Authors (Year)	Study Type	Number of Patients/Groups	Description	IP vs OOP approach	Fluoroscopy or CT utilized	Primary Outcome	Principal Findings
Eichenberger et al (2006)	RCT	11/ crossover trial	Volunteers underwent USG TONB with LA on one side and saline on the other	OOP approach	After USG TONB	Presence of cutaneous hypoesthesia in the distribution of the TON; needle position relative to fluoroscopic target point	Needle was correctly placed over the C2/C3 joint in all but one case. Cutaneous hypoesthesia was seen in seen in all but one of the LA blocks.
Siegenthaler et al, 2011	CH	15/1	Examined the effect of a shortened fluoroscopic radiofrequency neurotomy procedure (fewer lesions), using ultrasound assistance to guide cannula placement	N/A	For the RFA after the CMBB was localized with USG	Reduction in pre-procedural pain intensity	A pain reduction of at least 80% was observed in 14 of the subjects at 15 days. Median duration of 50% pain relief was 44 weeks.
Siegenthaler et al 2012	CH	60/1	Volunteers underwent USG needle placements with contrast injection simulating CMBB and TONB	OOP approach	After USG CMBB	Needle tip position and contrast distribution relative to conventional fluoroscopic target points	Overall accuracy was 77% for needle placement and 84% for contrast distribution. Results varied by spinal level and were lowest at C7.
Finlayson et al 2012	CH	53/1	Two-phase study examining the accuracy of USG TONB and CMBB (C3-C6) in patients with neck pain	IP approach	After USG TONB and CMBB	Needle tip position and contrast distribution as assessed by post-procedural radiographs	Phase 1: 80.9% of needles placed correctly. Phase 2: contrast covered appropriate area in 94.5% of injections.
Finlayson et al 2013	RCT	40/2	Patients with suspected cervicogenic headaches underwent TONB using either fluoroscopy or USG	IP approach	In control group only	Performance time was the primary outcome; secondary outcomes included success rates and sensory distribution of the blocks	USG was associated with a significantly shorter performance time (212.8 vs 396.5 seconds; P = 0.000) and fewer needle passes (2 vs 6; P = 0.000). Both imaging modalities resulted in similar success rates (92% vs 100%).
Obernauer et al 2013	RCT	40/2	Patients undergoing cervical intraarticular facet blocks were assigned to CT guidance or USG	IP approach	In control group only	Primary outcomes were performance time and accuracy (as assessed by CT control); secondary outcomes included pain reduction at 30 minutes and 1 month	USG was associated with 100% accuracy and significant reduction in performance times (04:46 vs 11:12 minutes P <0.05) as well as radiation dose. Pain relief was similar in both groups.
Finlayson et al 2014	CH	40/1	Patients with cervical pain underwent USG CMBB at the C5 and C6 levels	bi-planar (IP) technique	After USG CMBB	Contrast distribution, as assessed by a blinded observer on anteroposterior and lateral radiographic views	Appropriate contrast distribution was seen in 100% and 97.5% of C5 and C6 levels, respectively.
Finlayson et al 2015	RCT	50/2	Patients undergoing a C7 CMBB were randomized to either USG or fluoroscopic guidance	bi-planar (IP) technique	In control group only	Performance time was the primary outcome and secondary outcomes included success rates, number of needle passes, and pain relief	Ultrasound guidance was associated with a shorter performance time (233.6 vs 390.6 seconds; P <0.001) and fewer needle passes. Both pain relief and success rates (92%-98%) were similar between groups.
Park et al 2017	CH	68 (USG) 58 (Fluoro)	Retrospective chart review of patients with neck pain who had undergone CMBB with either fluoroscopic or USG	IP approach	In fluoroscopy group only	Neck Disability Index and pain scores at 1, 3, and 6 months after injection. Secondary measures included performance time, number of needle passes, and complications.	USG was associated with a shorter performance time and fewer needle passes. Pain relief and functional improvement were similar for both groups. No major complications were noted.
Table 2. Bias assessment of randomized controlled trials in CMBB utilizing Cochrane review criteria 24

Abbreviations: Y=Yes; N=No; U=Unsure; TON=Third occipital nerve

Source of Possible Bias	Eichenberger (2006)	Finlayson (2013)	Obernauer (2013)	Finlayson (2015)
1 Randomization adequate	Y	Y	Y	Y
2 Concealed treatment allocation	Y	Y	N	U
3 Patients blinded	Y	N	N	N
4 Care provider blinded	Y	N	N	N
5 Outcome assessor blinded to intervention (*=primary outcome)	Y-Visualization of TON*	N-Performance time*	U-Accuracy*	N- Performance time*
	Y-Hypoesthesia*	Y-Pain levels	U-Radiation dose	U- Pain relief
	Y-Area of hypoesthesia	Y-Quality of block	Y-Complications	N- # of needle passes
	Y- Needle position	Y-Complications	N- # of needle passes	Y-Complications
6 Drop-out rate described and acceptable	Y	Y	Y	Y
7 Randomized participants analyzed in their group	Y	Y	Y	Y
8 Avoidance of selective outcomes reporting	Y	Y	Y	Y
9 Baseline group similarity	Y	Y	Y	Y
10 Co-interventions avoided or similar	Y	Y	Y	Y
11 Compliance acceptable in all groups	Y	Y	Y	Y
12 Similar timing of outcome assessments	Y	Y	Y	Y
13 Other sources of potential bias unlikely	Y	Y	Y	Y

Table 3. Bias assessment of observational studies in CMBB utilizing ROBINS-I assessment tool 26

Additional Comments on Studies included in the assessment using ROBINS-I tool.

Study	D1	D2	D3	D4	D5	D6	D7	Overall
Siegenthaler (2011)	=	+	=	+	=	+	+	+
Siegenthaler (2012)	=	+	+	+	+	+	+	+
Finlayson (2012)	=	+	+	+	=	+	!	=
Finlayson (2014)	+	+	+	+	+	+	+	+
Park (2017)	+	=	+	!	+	+	+	=

Domains of bias

- D1: Due to confounding
- D2: In selection of participants into the study
- D3: In classification of interventions
- D4: Due to deviations from intended interventions
- D5: Due to missing data
- D6: In measurement of outcomes
- D7: Bias in selection of the reported result

Risk of bias judgement

- Low
- Moderate
- Serious
- Critical
- NI: No information

This is an open access journal distributed under the terms of the Creative Commons Attribution 4.0 License in which authors agree to make articles, including data, graphics, and supplements, legally available for reuse, without permission or fees, for virtually any purpose. Any individual or institution is free to copy, distribute, reproduce, or reuse these publications, as long as the author and original source are properly cited and credited.
Performance time
Three included studies described procedure performance time utilizing the US versus standard imaging techniques. The time was recorded for US from initial skin contact following the application of sterile US gel until the procedure was “successfully complete,” as determined by the sonographer detecting placement of the needle tip directly at the inter-articular space or facet joint and completion of the injection. For CT, the elapsed time was measured from the first CT scan until confirmation of the correct needle position on the final confirmation scan. For fluoroscopy, performance time was measured as the interval between the first radiograph and the end of injection.

Compared to both fluoroscopic imaging and CT, the US-guided procedure was associated with significantly shorter performance times in each individual study. Pooling of all guidance techniques versus US-guidance using REM demonstrated no statistically significant difference in performance time (SMD = 0.30, 95% CI = -0.82 to 4.42, z = -0.14, P = 0.89) (Figure 4). However, sub-group analysis showed shortened CMBB performance time with US-guidance when compared to CMBB with fluoroscopic-guidance (SMD = -1.77, 95% CI = -2.65 to -0.89, z = -3.94, P < 0.01).

Incidence of vascular puncture
Two included studies reported the incidence of vascular injection. The vascular puncture was defined as the aspiration of blood prior to the injection of local anesthetic during either US or standard techniques. Of the two included studies, both reported a benefit with US-guidance, with a fewer cases of vascular puncture due to early identification of vessels under ultrasound guidance and, therefore, prevention of puncture (Figure 5).

Meta-analysis of the included studies demonstrated presumably true but seems too broad a statement when there were no clinical outcomes assessed. The use of intentional misplacement would have resulted in even less risk of bias in the “measurement of outcomes” domain in phase I, but would not likely have changed results very much.

Finlayson (2014) No blinding of provider possible, which may have been relevant in the “target study.” This may have influenced performance time and needle placement—leading to different clinical outcomes. Relatively low BMI in “convenience” sample.

D3: No discussion on inter-operator variability.

Park (2017) Decently designed for a retrospective study but limited by this design and population size.

D1: The second injection or reevaluation was not considered if there was an aggravation of pain, no relief of pain, or the patient satisfaction score equal to or below “fair” grade.

D2: Group sizes may have been different enough to confound and were relatively small. Baseline p values may not have been as good as RCT, but probably not confounding.

D4: One provider doing procedure in both groups (unblinded), but probably not an influence on outcomes (procedure time) in a retrospective study. However, this may have influenced needle placement and, therefore, clinical outcomes. Relatively more non-responders in the FL group. Co-interventions could not be limited due to retrospective design.
a significantly reduced rate of vascular injections with US-guidance compared to fluoroscopy-guidance (OR = 0.09, 95% CI =0.01 to 0.75, z = -2.23, P = 0.03).

Additional outcomes

Additional outcomes of the incidence of intra-articular injection, intra-foraminal injection, or other aberrant spread were analyzed. Two included studies reported the incidence of unintentional intra-articular injection. Meta-analysis of studies reporting TON blocks and CMBBs demonstrated no statistically significant difference between US-guidance and fluoroscopy guidance (OR = 0.19, 95% CI = 0.02 to 1.75, z = -1.46, P = 0.14 (Figure 6)\(^\text{30, 31}\). Only one study reported data on intra-foraminal or other aberrant spread. Odds Ratio was completed comparing US-guidance and fluoroscopy guidance, which showed no statistically significant difference between US and fluoroscopy \(^\text{31}\).

Table 4. Quality assessment of cohort studies for CMBB utilizing IPM-QRBNR criteria \(^\text{25}\).

Abbreviations: NA = Not applicable (scored as 0)

	Siegenthaler (2011)	Siegenthaler (2012)	Finlayson (2012)	Finlayson (2014)	Park (2017)
I.	STROBE OR TREND Guidance	/4 4 4 4 4 4 4			
1.	Study Design Guidance and Reporting	/4 4 4 4 4 4 4			
II.	DESIGN FACTORS				
2.	Study design & type	/4 2 2 2 2 2 1			
3.	Setting/physician	/2 2 2 2 2 2 2			
4.	Imaging guidance	/3 3 3 3 3 3 3			
5.	Sample size	/4 2 2 2 2 2 2			
6.	Statistical methodology	/2 2 2 2 2 2 2			
III.	PATIENT FACTORS				
7b.	Inclusiveness of population	/4 4 NA NA NA 2 4			
8.	Duration of pain	/2 2 NA NA NA 2 2			
9.	Previous treatments	/2 2 NA NA NA 1 2			
10.	Duration of follow-up with appropriate interventions	/4 3 NA NA NA 1 2			
IV.	OUTCOMES				
11.	Outcomes assessment for significant improvement	/4 4 NA NA NA 3 3			
12.	Description of dropout rate	/2 2 2 2 2 NA			
13.	Baseline group similarity; prognostic indicators	/2 0 0 0 0 0 2			
14.	Role of co-interventions	/2 NA NA NA NA 2 2			
V.	ASSIGNMENT				
15.	Method of assignment of participants	/4 NA NA NA NA NA 3			
VI.	CONFLICTS OF INTEREST				
16.	Funding & sponsorship	/3 2 2 2 2 2 2			
TOTAL /48 – NA ratings	34 /42 20 /26 20 /26 30 /44 37 /46				
Performance Time

Group by Comparator	Study name	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value
CT	Obernauer 2013	2.43	0.42	0.17	1.61	3.25	5.83	<0.01
CT	Finlayson 2013	2.43	0.67	0.45	1.12	3.75	3.62	<0.01
FL	Finlayson 2013	-2.26	0.40	0.16	-3.05	-1.47	-5.58	<0.01
FL	Finlayson 2015	-1.36	0.31	0.10	-1.97	-0.74	-4.33	<0.01
FL	Finlayson 2013	-1.77	0.45	0.20	-2.65	-0.89	-3.94	<0.01
Overall		0.30	2.10	4.42	3.82	4.42	0.14	0.89

Figure 4. Forest plot for the performance time
CT – Computed tomography, FL- Fluoroscopy, US - Ultrasound

Incidence of Vascular Puncture

Group by Design	Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
R	Park 2017	0.05	0.00	0.90	-2.03	0.04
R	Finlayson 2013	0.18	0.01	4.01	-1.08	0.28
RCT	Finlayson 2013	0.18	0.01	4.01	-1.08	0.28
RCT	Finlayson 2013	0.18	0.01	4.01	-1.08	0.28
Overall		0.09	0.01	0.75	-2.23	0.03

Figure 5. Forest plot for the incidence of vascular puncture
CT – Computed tomography, FL- Fluoroscopy, US - Ultrasound

Incidence of Intra-Articular Spread

Study name	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Finlayson 2013	0.12	0.01	2.53	-1.36	0.17
Finlayson 2015	0.32	0.01	8.25	-0.69	0.49
	0.19	0.02	1.75	-1.48	0.14

Figure 6. Forest plot for the incidence of intra-articular (IA) spread
CT – Computed tomography, FL- Fluoroscopy, US - Ultrasound
Discussion

This systematic review and meta-analysis demonstrate that US-guided CMBB is a reliable alternative to fluoroscopy and CT guidance with similar procedure success rates and pain relief level. US-guided CMBB also shown a significant potential to with significant potential to improve performance time and decrease risk of vascular injury. Moreover, there was no increase in aberrant spread of local anesthetic with the use of US-guided CMBB compared to other guidance techniques.

The wide-spread applicability of US including ease of accessibility and convenience as well as increase in the patient safety secondary to a reduction of radiation exposure, and the ability to visualize soft tissues and vascular structures, make US a promising tool for guiding nerve. The findings of this systematic review and meta-analysis, are in line with previously published work demonstrating reliability of US-guided CMBB compared with fluoroscopy and CT guidance techniques. Finlayson and colleagues concluded that US-guided CMBB is efficacious, efficient and safe. Ultrasonographic guidance was associated with an effective block at a frequency of 100% and 97.5% for C5 and C6 levels, respectively. Park et al. retrospectively compared the outcomes of CMBB performed with either US or fluoroscopy guidance in 126 patients with 6-months follow up. Pain scores and functional status improved similarly in both groups during the study period, and no complications were noted. It was also suggested that US offers dynamic real-time imaging of the cervical spine facets and surrounding tissue, therefore avoiding the need to continuously adjust the C-arm to obtain a true lateral view of the cervical spine necessary to correct parallax effects.

The ability to identify and avoid vessels in the trajectory of the needle is an important advantage of US-guided cervical spine interventions. Cohen et al reported a 7% incidence of unintentional intravascular injections during fluoroscopically guided CMBBs. Ultrasonography is a valuable tool for detecting and, hence, preventing vascular injury during CMBBs, whereas contrast fluoroscopy can only demonstrate that the tip of the needle is intravascular, after the penetration of the vessel. Cervical vessel penetration and/or injection can cause intravascular thrombosis and other potentially life-threatening complications, including stroke. It was hypothesized that fluoroscopy may not detect that the needle has already traversed a vessel on its way to the target, whereas ultrasonography may help avoid this complication. Our systematic review and meta-analysis demonstrated that the rate of accidental puncture of paraspinal vessels was reduced. In addition, 10% of fluoroscopically guided cases were associated with vascular breach compared with no cases in the US-guided group.

While the success rate of TON and CMBBs, which were determined by the presence or absence of hypoesthesia in the suboccipital area, were similar between fluoroscopy and US-guidance (95%-100%), the performance times were significantly shorter with US guidance.

Another advantage of US-guided cervical facet and medial branch injections, in addition to shorter procedure time compared to fluoroscopy, is an option to insert only one needle. Since the cervical medial branches and the TON have variable anatomy, it was suggested to place more than one needle to accommodate the anatomic variability and ensure targeting the selected nerve, when the procedure is performed under fluoroscopic guidance. The location of both the TON and the lower cervical medial branches showed significant cranio-caudal location variability from their proposed bony landmarks, which are the C2/3 joint cleft for the TON and the deepest point of the articular pillar for the C3–C6 medial branches. An upper limit cranio-caudal range of 2.2 mm has been documented at the C4 level. Real-time ultrasonography allows visualization of the TON and cervical medial branches in most cases and allows for the use of a single needle, which is of benefit to both patient and physician. Even if the TON is not well visualized, the C2/3 articulation is typically obvious. Eichenberger et al examined accuracy of needle position over the C2/C3. The investigators performed TON blocks in 10 volunteers using a transverse (short-axis view) and needle out-of-plane approach. They reported accurate needle position over the C2/C3 joint in 82% of blocks (as verified by fluoroscopy) and a success rate of 90%, as determined by the presence of hypoesthesia in the suboccipital area.
As in C2/C3 level procedures, our findings were that C7 CMBB completed under fluoroscopic imaging was associated with significantly longer performance times, more needle passes, and a higher incidence of vascular breach compared to US imaging 31,44. While fluoroscopically guided CMBBs at C7 level pose unique challenges, the ultrasound-guided technique at this particular level is no exception 44. C7 medial branches were visualized on sonography in only one-third of cases 46. Not surprisingly, a case of iatrogenic spinal cord injury from an US-guided C7 CMBB was reported 47. This was the first, and, to the best of our knowledge, the only serious injury from the US-guided CMBBs. The authors confirmed previous concerns that extreme caution should be emphasized with the performance of certain cervical procedures, including CMBB at the C7 level, independently of the imaging modality used 29,31,40,44,46. Some experts suggest to use US scanning before the planned procedure 37,44 to help with the diagnosis of identifying underlying conditions, including facet joint effusions or vascular malformations. The pre-injection scanning can be performed in the short-axis view to identify blood vessels in the vicinity of the target structure, and then, during the procedure, the needle can be placed in the same view to avoid such blood vessels 44.

Although US-guidance is well established for CMBB, there has been only a single clinical study that has examined the use of US guidance for radiofrequency ablation (RFA) 27. The feasibility of US-guided cervical medical branch RFA was initially proposed by Lee an co-authors 48. Siegenthaler et al examined the effect of US assistance to refine cannula positioning and reduce the number of lesions performed during fluoroscopy-guided RFA. In a cohort of 15 patients, they demonstrated that accurate detection of the nerve under US guidance could decrease the number of lesions and performance time 27. Kim et al reported two successful cases of pulsed RFA performed at C2/3 levels 49.

All studies comparing US-guided cervical interventions with fluoroscopy and CT-guided procedures emphasize the absence of radiation exposure with US guidance 37,44,45,49,50,51,52. Radiation-free imaging is particularly important with cervical interventions because of increased scattered radiation from the C-arm 44,53. Only one group of authors chose to dismiss the risks of radiation exposure during cervical interventional procedures, suggesting that the level of radiation, with appropriate protection, is low 54. It is necessary to emphasize that while the radiation exposure during the cervical interventions is considered to be below the conventional yearly limits, it can lead to appalling sequelae years later, including cell damage and genetic mutations, and, therefore, should be avoided if possible 55,56.

The similarity in efficacy demonstrated in this review compared to traditional guidance techniques in combination with the intrinsic benefits of US, may increase the availability of CMBB in those with chronic neck pain and decrease the time to intervention that may translate to improved overall quality of life in patients with chronic neck pain 7,8,16,30,37,57. Finally, US-guided CMBB reduced risk for vascular injection/injury. US-guided CMBB, therefore, provides a safe option for chronic pain patients and physicians 7,16,18,19,20,58. A recent narrative review 54 suggested, without adequate evidence, that ultrasound-guided cervical injections “confers a unique risk profile” including spinal cord injury. In contrast, this rare, but devastating complication is not unique for ultrasound-guided injections 12,13,14. Our systematic review and meta-analysis support the efficacy and safety of US-guided CMBBs.

One of the limitations of US-guided CMBB, similarly to any interventions, including fluoroscopy- or CT-guided procedures, is that any of these procedures require proper training. While basic training in US-guided injections may help learn how to visualize the tip of the needle, specialized training is necessary for verifying the levels of the cervical spine. This particular skill is essential for safe and effective US-guided CMBB.

Even though the rigorous methodology of this review (comprehensive literature search, screening process, and thorough assessment of bias) strengthens the conclusions outlined above 21,23,24,26, there are limitations inherent in such an analysis. Limitations are the heterogeneity of the included studies, limited inclusion criteria, and variability of the outcomes reported. In addition, this paper is limited by the small number of studies published and the need for mixed study inclusion, including both RCTs and cohort.
studies. Despite the high quality of few RCTs included, the addition of cohort studies may introduce additional bias and necessitates the need for further RCTs. Although several RCTs were included, the methodologies, including comparison guidance technique and outcomes reported, were variable and resulted in reduced numbers of papers included in each meta-analysis. This study demonstrates the usefulness and safety of US as a guidance technique for CMBBs. Additional high-quality RCTs are needed to further assess the subgroups of patients, including obese individuals, the elderly, and patients with advanced degenerative changes.

Conclusions

Current evidence suggests that US-guided cervical medial branch blocks may serve as feasible alternative to fluoroscopy-guided and/or CT-guided procedures. US-guided CMBB nerve blocks demonstrated similar efficacy, as well as potentially improved performance time safety compared to fluoroscopy-guided and/or CT-guided procedures. There was no increase in aberrant spread of local anesthetic with the use of US-guided CMBB compared to other guidance techniques. US-guided CMBBs demonstrated significantly decreased the risk of vascular injury. These findings, in addition to the inherent benefits of US compared to traditional imaging guidance techniques, can influence the growth of sonography as a promising imaging guidance modality for nerve blocks and denervation procedures. Additional high-quality clinical trials are needed to further assess the subgroups of patients, including obese individuals, the elderly, and patients with advanced degenerative changes. Although US has the potential to increase the safety of CMBB, specialized training is necessary to obtain expected outcomes, as success, similar to fluoroscopy- and CT-guided interventions, is operator dependent 15, 37, 44.

Acknowledgement

Prior presentation

Parts of the work have been presented at a previous congress or meetings, including International Headache Congress in Dublin, Ireland (2019), American Society of Regional Anesthesia, Pain Medicine Meeting in New Orleans, LA (2019) and American Academy of Pain Medicine Meeting in National Harbor, Washington DC, USA (2020)

Disclosures

Dr. Samer Narouze is the current EIC for Annals of Headache Medicine. Dr Magdalena Anitescu was the acting EIC handling this manuscript.

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Hoy D, March L, Woolf A, et al. The global burden of neck pain: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014 Jul;73(7):1309-15. PubMed CrossRef
2. Kim PS. Role of injection therapy: review of indications for trigger point injections, regional blocks, facet joint injections, and intra-articular injections. Curr Opin Rheumatol. 2002 Jan;14(1):52-7. PubMed CrossRef
3. Boswell MV, Shah RV, Everett CR, et al. Interventional techniques in the management of chronic spinal pain: evidence-based practice guidelines. Pain Physician. 2005 Jan;8(1):1-47. PubMed
4. Carrino JA, Morrison WB, Parker L, et al. Spinal injection procedures: volume, provider distribution, and reimbursement in the U.S. medicare population from 1993 to 1999. Radiology. 2002 Dec;225(3):723-9. PubMed CrossRef

This is an open access journal distributed under the terms of the Creative Commons Attribution 4.0 License in which authors agree to make articles, including data, graphics, and supplements, legally available for reuse, without permission or fees, for virtually any purpose. Any individual or institution is free to copy, distribute, reproduce, or reuse these publications, as long as the author and original source are properly cited and credited.
5. Cohen SP. Epidemiology, diagnosis, and treatment of neck pain. Mayo Clin Proc. 2015 Feb;90(2):284-99. PubMed CrossRef

6. Galiano K, Obwegeser AA, Bale R, et al. Ultrasound-guided and CT-navigation-assisted periradicular and facet joint injections in the lumbar and cervical spine: a new teaching tool to recognize the sonoanatomic pattern. Reg Anesth Pain Med. May-Jun 2007;32(3):254-7. PubMed CrossRef

7. Finlayson RJ, Gupta G, Alhujairi M, et al. Cervical medial branch block: a novel technique using ultrasound guidance. Reg Anesth Pain Med. Mar-Apr 2012;37(2):219-23. PubMed CrossRef

8. Galiano K, Obwegeser AA, Bodner G, et al. Ultrasound-guided facet joint injections in the middle to lower cervical spine: a CT-controlled sonoanatomic study. Clin J Pain. Jul-Aug 2006;22(6):538-43. PubMed CrossRef

9. Galiano K, Obwegeser AA, Bodner G, et al. Ultrasound-guided periradicular injections in the middle to lower cervical spine: an imaging study of a new approach. Reg Anesth Pain Med. Jul-Aug 2005;30(4):391-6. PubMed CrossRef

10. Eichenberger U, Greher M, Kapral S, et al. Sonographic visualization and ultrasound-guided block of the third occipital nerve: prospective for a new method to diagnose C2-C3 zygopophysial joint pain. Anesthesiology. 2006 Feb;104(2):303-8. PubMed CrossRef

11. Gangi A, Dietemann JL, Mortazavi R, et al. CT-guided interventional procedures for pain management in the lumbosacral spine. Radiographics. May-Jun 1998;18(3):621-33. PubMed CrossRef

12. Verrills P, Nowesnitz G, Barnard A. Penetration of a cervical radicular artery during a transforaminal epidural injection. Pain Med. 2010 Feb;11(2):229-31. PubMed CrossRef

13. Heckmann JG, Mahhofner C, Lanz S, et al. Transient tetraplegia after cervical facet joint injection for chronic neck pain administered without imaging guidance. Clin Neurol Neurosurg. 2006 Oct;108(7):709-11. PubMed CrossRef

14. Edlow BL, Wainger BJ, Frosh MP, et al. Posterior circulation stroke after C1-C2 intraarticular facet steroid injection: evidence for diffuse microvascular injury. Anesthesiology. 2010 Jun;112(6):1532-5. PubMed CrossRef

15. Finlayson RJ, Etheridge JP, Tiaprasertkul W, et al. A prospective validation of biplanar ultrasound imaging for C5-C6 cervical medial branch blocks. Reg Anesth Pain Med. Mar-Apr 2014;39(2):160-3. PubMed CrossRef

16. Obernauer J, Galiano K, Gruber H, et al. Ultrasound-guided versus Computed Tomography-controlled facet joint injections in the middle and lower cervical spine: a prospective randomized clinical trial. Med Ultrason. 2013 Mar;15(1):10-5. PubMed CrossRef

17. Greher M, Kirchmair L, Enna B, et al. Ultrasound-guided lumbar facet nerve block: accuracy of a new technique confirmed by computed tomography. Anesthesiology. 2004 Nov;101(5):1195-200. PubMed CrossRef

18. Loizides A, Gruber H, Peer S, et al. A new simplified sonographic approach for pararadicular injections in the lumbar spine: a CT-controlled cadaver study. AJNR Am J Neuroradiol. 2011 May;32(5):828-31. PubMed CrossRef

19. Loizides A, Peer S, Plaikner M, et al. Ultrasound-guided injections in the lumbar spine. Med Ultrason. 2011 Mar;13(1):54-8. PubMed

20. Loizides A, Obernauer J, Peer S, et al. Ultrasound-guided injections in the middle and lower cervical spine. Med Ultrason. 2012 Sep;14(3):235-8. PubMed

21. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7):e1000097. PubMed CrossRef

22. Souza D, Adams D. Imaging modalities for cervical facet blockade PROSPERO2020. https://crd.york.ac.uk/prospero/display_record.php?ID=CRD42020153433. Accessed April 2, 2020.

23. Li T, Higgins JPT, Deeks JJ (editors). Chapter 5: Collecting data. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. https://training.cochrane.org/handbook. Accessed July 12, 2020.

24. Furlan AD, Malmivaara A, Chou R, et al. 2015 Updated Method Guideline for Systematic Reviews in the Cochrane Back and Neck Group. Spine (Phila Pa 1976). 2015 Nov;40(21):1660-73. PubMed CrossRef

25. Manchikanti L, Hirsch JA, Heavern JE, et al. Development of an interventional pain management specific instrument for methodologic quality assessment of nonrandomized studies of interventional techniques. Pain Physician. May-Jun 2014;17(3):E291-317. PubMed

26. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 Oct 12;355:i4919. PubMed CrossRef

27. Siegenthaler A, Eichenberger U, Curatolo M. A shortened radiofrequency denervation method for cervical zygapophysial joint pain based on ultrasound localization of the nerves. Pain Med. 2011 Dec;12(12):1703-9. PubMed CrossRef
28. Park KD, Lim DJ, Lee WY, et al. Ultrasound versus fluoroscopy-guided cervical medial branch block for the treatment of chronic cervical facet joint pain: a retrospective comparative study. Skeletal Radiol. 2017 Jan;46(1):81-91. PubMed CrossRef

29. Siegenthaler A, Mlekusch S, Trelle S, et al. Accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints. Anesthesiology. 2012 Aug;117(2):347-52. PubMed CrossRef

30. Finlayson RJ, Etheridge JP, Vieira L, et al. A randomized comparison between ultrasound- and fluoroscopy-guided third occipital nerve block. Reg Anesth Pain Med. May-Jun 2013;38(3):212-7. PubMed CrossRef

31. Finlayson RJ, Etheridge JP, Tiyparsertkul W, et al. A randomized comparison between ultrasound- and fluoroscopy-guided c7 medial branch block. Reg Anesth Pain Med. Jan-Feb 2015;40(1):52-7. PubMed CrossRef

32. Obermaier J, Galiano K, Gruber H, et al. Ultrasound-guided versus computed tomography-controlled periradicular injections in the middle and lower cervical spine: a prospective randomized clinical trial. Eur Spine J. 2013 Nov;22(11):2532-7. PubMed CrossRef

33. Park J, Mukhdomi T, Kendall M, Oliveira G. Publication Bias In Pain Literature 2019. http://www.asaabstracts.com/strands/asaabstracts/abstract.htm?year=2019&index=3&absnum=1067 Accessed April 2, 2020.

34. Pekkafahli MZ, Kiralp MZ, Baskim CC, et al. Sacroiliac joint injections performed with sonographic guidance. J Ultrasound Med. 2003 Jun;22(6):553-9. PubMed CrossRef

35. Galiano K, Obwegeser AA, Bodner G, et al. Real-time sonographic imaging for periradicular injections in the lumbar spine: a sonographic anatomic study of a new technique. J Ultrasound Med. 2005 Jan;24(1):33-8. PubMed CrossRef

36. Jee H, Lee JH, Kim J, et al. Ultrasound-guided selective nerve root block versus fluoroscopy-guided transforaminal block for the treatment of radicular pain in the lower cervical spine: a randomized, blinded, controlled study. Skeletal Radiol. 2013 Jan;42(1):69-78. PubMed CrossRef

37. Narouze SN. Ultrasound-guided cervical spine injections: ultrasound “prevents” whereas contrast fluoroscopy “detects” intravascular injections. Reg Anesth Pain Med. Mar-Apr 2012;37(2):127-30. PubMed CrossRef

38. Narouze SN, Vydyanathan A, Kapural L, et al. Ultrasound-guided cervical selective nerve root block: a fluoroscopy-controlled feasibility study. Reg Anesth Pain Med. Jul-Aug 2009;34(4):343-8. PubMed CrossRef

39. Cohen SP, Strassels SA, Kurihara C, et al. Randomized study assessing the accuracy of cervical facet joint nerve (medial branch) blocks using different injectate volumes. Anesthesiology. 2010 Jan;112(1):144-52. PubMed CrossRef

40. Rathmell JP, Michna E, Fitzgibbon DR, et al. Injury and liability associated with cervical procedures for chronic pain. Anesthesiology. 2011 Apr;114(4):918-26. PubMed CrossRef

41. Baker R, Dreyfuss P, Mercer S, Bogduk N. Cervical transforaminal injection of corticosteroids into a radicular artery: a possible mechanism for spinal cord injury. Pain. 2003 May;103(1-2):211-5. PubMed CrossRef

42. Benny B, Azari P, Briones D. Complications of cervical transforaminal epidural steroid injections. Am J Phys Med Rehabil. 2010 Jul;89(7):601-7. PubMed CrossRef

43. Brouwers PJ, Kottink EJ, Simon MA, Prevo RL. A cervical anterior spinal artery syndrome after diagnostic blockade of the right C6-nerve root. Pain. 2001 Apr;91(3):397-9. PubMed CrossRef

44. Narouze SN, Provenzano DA. Sonographically guided cervical facet nerve and joint injections: why sonography? J Ultrasound Med. 2013 Nov;32(11):1885-96. PubMed CrossRef

45. Govind J, King W, Bailey B, Bogduk N. Radiofrequency neurotomy for the treatment of third occipital headache. J Neuronal Neurosurg Psychiatry. 2003 Jan;74(1):88-93. PubMed CrossRef

46. Siegenthaler A, Schilessbach J, Curatolo M, Eichenberger U. Ultrasound anatomy of the nerves supplying the cervical zygapophyseal joints: an exploratory study. Reg Anesth Pain Med. Nov-Dec 2011;36(6):606-10. PubMed CrossRef

47. Park D, Seong MY, Kim HY, Ryu JS. Spinal Cord Injury During Ultrasound-Guided C7 Cervical Medial Branch Block. Am J Phys Med Rehabil. 2017 Jun;96(6):e111-e4. PubMed CrossRef

48. Lee SH, Kang CH, Lee SH, et al. Ultrasound-guided radiofrequency neurotomy in cervical spine: sonoanatomic study of a new technique in cadavers. Clin Radiol. 2008 Nov;63(11):1205-12. PubMed CrossRef

49. Kim ED, Kim YH, Park CM, et al. Ultrasound-guided Pulsed Radiofrequency of the Third Occipital Nerve. Korean J Pain. 2013 Apr;26(2):186-90. PubMed CrossRef

50. Lord SM, Barnsley L, Wallis BJ, McDonald GJ, Bogduk N. Percutaneous radio-frequency neurotomy for chronic cervical zygapophyseal-joint pain. N Engl J Med. 1996 Dec 5;335(23):1721-6. PubMed CrossRef

51. McDonald GJ, Lord SM, Bogduk N. Long-term follow-up of patients treated with cervical radiofrequency neurotomy for chronic neck pain. Neurosurgery. 1999 Jul;45(1):61-7; discussion 67-8. PubMed CrossRef
52. Barnsley L. Percutaneous radiofrequency neurotomy for chronic neck pain: outcomes in a series of consecutive patients. *Pain Med.* Jul-Aug 2005;6(4):282-6. PubMed CrossRef
53. Giordano BD, Baumhauer JF, Morgan TL, Rechtine GR. Cervical spine imaging using standard C-arm fluoroscopy: patient and surgeon exposure to ionizing radiation. *Spine (Phila Pa 1976).* 2008 Aug 15;33(18):1970-6. PubMed CrossRef
54. Schneider B, Popescu A, Smith C. Ultrasound Imaging for Cervical Injections. *Pain Med.* 2020 Jan 1;21(1):196-197. PubMed CrossRef
55. Choi EJ, Go G, Han WK, Lee PB. Radiation exposure to the eyes and thyroid during C-arm fluoroscopy-guided cervical epidural injections is far below the safety limit. *Korean J Pain.* 2020 Jan 1;33(1):73-80. PubMed CrossRef
56. Andreassi MG. The biological effects of diagnostic cardiac imaging on chronically exposed physicians: the importance of being non-ionizing. *Cardiovasc Ultrasound.* 2004 Nov 22;2:25. PubMed CrossRef
57. Fishman SM, Smith H, Meleger A, Seibert JA. Radiation safety in pain medicine. *Reg Anesth Pain Med.* May-Jun 2002;27(3):296-305. PubMed CrossRef
58. Greher M, Scharbert G, Kamolz LP, et al. Ultrasound-guided lumbar facet nerve block: a sonoanatomic study of a new methodologic approach. *Anesthesiology.* 2004 May;100(5):1242-8. PubMed CrossRef