Objective: To analyze surveys measuring the prevalence of burnout among Chinese doctors and reveal the overall prevalence, characteristics, timeline, and factors related to burnout.

Methods: A comprehensive search was conducted on China National Knowledge Infrastructure, WANFANG, PubMed, EMBASE, PsycINFO and Cochrane Library databases from their inception to 28 February 2021. Random-effects meta-analyses, meta-regression and planned subgroup analyses were performed, and the standardized mean difference was adopted for comparisons between subgroups. Egger’s and Begg’s tests were performed to evaluate publication bias. Heterogeneity across the studies was tested using the I² statistic. The study protocol was registered on PROSPERO (CRD42018104249).

Results: In total, 3,210 records were reviewed; 64 studies including 48,638 Chinese doctors were eligible for meta-analysis. The prevalence of burnout increased continuously from 2008 to 2017 and decreased significantly from 2018 to 2020, a little increase from 2020 to 2021. The overall prevalence of burnout was 75.48% (95% CI, 69.20 to 81.26; I² = 99.23%, P < 0.001), and high burnout was 9.37% (95% CI, 4.91 to 15.05, I² = 98.88%, P < 0.001). The prevalence of emotional exhaustion was 48.64% (95% CI, 38.73 to 58.59; I² = 99.53%, P < 0.001), depersonalization was 54.67% (95% CI, 46.95 to 62.27; I² = 99.20%, P < 0.001), and reduced personal accomplishment was 66.53% (95% CI, 58.13 to 74.44; I² = 99.37%, P < 0.001). Gender, marriage, professional title and specialty all influenced burnout.

Conclusions: The results showed that the total prevalence of doctor burnout in China is very high. The prevalence of burnout varies by location. Gender, marital status and professional title all affect burnout scores.

1. Introduction

Burnout is a syndrome resulting from overload and stress during work (Peters and Rajasingam, 2019). Maslach characterized burnout according to 3 dimensions, namely, emotional exhaustion (EE), depersonalization (DP), and reduced personal accomplishment (PA) (Maslach et al., 2001), and developed the Maslach Burnout Inventory (MBI) to measure these dimensions. Health care providers are highly prone to burnout, with burnout prevalence being twice as high as that of other professions (Coombs et al., 2019), and the burnout of doctors has become a focus of public health (Chemali et al., 2019; Kopacz et al., 2019). In the United States, 54.4% of physicians had at least one symptom of burnout (Shanafelt et al., 2015), and the burnout prevalence among doctors was as high as 50% (Chambers et al., 2016) in New Zealand, 49% (Kansoun et al., 2019) in France. While in China, 53.2% of neurologists and 69% of anesthesiologists experienced burnout (Zhou et al., 2017) (Li et al.,...
policies might in annual trend on which the changing of public attitude and government.

MeSH terms and related keywords are shown in Appendix 1. We reduced developed search terms and combined overlapping areas with key words to 28 February 2021. An information professional (XW, an author) statement (Moher et al., 2015; Stroup et al., 2000). Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) advance and was published (Zheng et al., 2019). This systematic review in English was published, and no meta-analysis has been conducted (Lo our knowledge, only one systematic review including 11 studies reported and meta-analysis to analyze studies measuring the prevalence of burnout among Chinese doctors using the Maslach burnout scales and to reveal the overall prevalence, characteristics, timeline, and factors related to burnout. Analyzing the overall burnout rate is of great importance for establishing strategies or policies to reduce burnout among Chinese doctors and improve the quality of medical services.

2. Methods

The protocol was registered on PROSPERO (CRD42018104249) in advance and was published (Zheng et al., 2019). This systematic review and meta-analysis is reported according to the Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 2015; Stroup et al., 2000).

2.1. Search strategy

QZ (an author) conducted a comprehensive search without data limits in the China National Knowledge Infrastructure, WANFANG, PubMed, EMBASE, PsyCINFO and Cochrane Library databases from their inception to 28 February 2021. An information professional (XW, an author) developed search terms and combined overlapping areas with key words such as Chinese doctor or physician and burnout or job burnout. The MeSH terms and related keywords are shown in Appendix 1. We reduced publication bias by searching conference records and unpublished literature and using forward and backward citation tracking for included records.

2.2. Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) studies involving Chinese doctors; (2) observational studies; (3) studies published in English or Chinese; (4) studies that used the following 3 validated scales: Maslach Burnout Inventory-General Survey (MBI-GS), Maslach Burnout Inventory-Human Services Survey (MBI-HSS), or Chinese Maslach Burnout Inventory (CMBI); (5) studies that provided the necessary data. Studies were included if they met all 5 of the above conditions.

The exclusion criteria were as follows: (1) studies including medical technicians and paramedics; (2) duplicate publications; (3) studies without sufficient data for the meta-analysis. Records were excluded if they met any of the above criteria.

2.3. Job burnout scale

The MBI-HSS scale includes 22 items scored from 0 to 6 (Maslach et al., 1996). The MBI-GS scale includes 15 items scored from 0 to 6 (Maslach et al., 2001). The CMBI scale includes 15 items scored from 1 to 7 (Yongxin, 2003). In the analysis, we respectively analyzed data from studies using the MBI-HSS, CMBI, and MBI-GS. According different assessment standards applied in studies, we further classified the MBI-GS scale as either MBI-GS-A or MBI-GS-B or MBI-GS-C, and the MBI-HSS scale as either MBI-HSS-A or MBI-HSS-B. Detailed descriptions of the scales and the assessment standards are shown in Appendix 2.1-2.3.

2.4. Identification and data extraction

The selected studies were screened in four stages. QZ imported the title and abstracts of identified records into EndNote Software (version X8, Thomson Scientific, USA) and screened them to exclude duplicates and irrelevant studies. In the next stage, QZ and XP S (two authors) independently reviewed the full text of the selected articles for eligibility assessment and examined them according to the inclusion and exclusion criteria.

The data from the included studies were extracted by QZ and added to an Excel table containing the following variables: author name, publication year, research design, region, number of participants, number of doctors exhibiting burnout, burnout score, burnout scale, gender, marital status, professional title, specialty and methodological quality. The discrepancies were resolved through a consensus discussion with a third author (PP). The level of consistency between QZ and XP S was 90%. When the presented data were not clear, one author (XW) contacted the authors by email or telephone. In 7 instances (Hongyan et al., 2016; Hui and Ning, 2008; Li et al., 2013; Lingyun, 2015; Nengzhli et al., 2010; Xiuzhen et al., 2009; Yun, 2011), clarification was obtained from the corresponding author. A random subsample of 20% of the data used for the meta-analysis was examined by ZH O (an author).

2.5. Quality assessment

Because all studies were observational, the quality of the included studies was evaluated with reference to the quality evaluation standard for observational studies proposed by Hoy et al. (2012). The scale includes 11 items. The answer “yes” is scored 1 point, and “no” or “not clear” is scored as 0 points. In this study, the articles were classified as having “excellent” (10–11 points), “good” (7–9 points), “weak” (4–6 points) or “poor” (0–3 points) methodological quality. QZ completed the full quality assessment, and ZH O independently double-checked the accuracy.

2.6. Statistical analysis

2.6.1. Assessment of heterogeneity

The heterogeneity across the studies was assessed by determining the I² statistic (Huedo-Medina et al., 2006) and the underlying theoretical model and whether study-to-study variability, to quantitatively measure the inconsistency across studies. Exploratory subgroup and meta-regression analyses were conducted to examine the possible sources of heterogeneity, and sensitivity analyses were performed to assess the robustness and stability of the results. We choose the random-effects
because the expectation of study effects is unlikely identical and the variability across the studies is expected.

2.6.2. Assessment of reporting biases

Reporting biases were assessed by scrutinizing the protocols of the included studies. Potential publication bias was assessed by visually inspecting the funnel plots and quantified by Egger’s and Begg’s tests.

2.6.3. Data synthesis

The pooled estimates of the outcomes are expressed as percentages with 95% confidence intervals (CIs). Meta-regression analysis was performed to explore the time trend based on the publication year.

The standardized mean difference (SMD) was calculated through the estimated mean difference between the two groups divided by the mean standard deviation (SD) because it can eliminate the influence of the magnitude caused by the different burnout scales (Takeshima et al., 2014).

All analyses were performed with Stata Statistical Software (version 14.0, Stata Corp, College Station, Texas, USA). Visualization was performed with R software (R Foundation for Statistical Computing, Vienna, Austria, version 3.6.1). All analyses were 2-tailed, and a P value < 0.05 was considered statistically significant. The details of the whole meta-analysis procedure are shown in the Appendix 3.

3. Results

3.1. Literature search

We identified 3,210 records through database searches and 64 studies were eventually included in the meta-analysis (Chenlilang, 2019; Dianzhen, 2013; Diwen et al., 2019; Enfang and Yan, 2017; Fuyingcong, 2012; Gang and Lijun, 2020; Hao, 2012; Haoyun et al., 2019; Hongyan et al., 2016; Hongyao, 2017; Houyuan, 2014; Huang et al., 2020; Huqiang and Zuoqiang, 2011; Hui and Ning, 2008; Huimin et al., 2019; Jing and Yujian, 2017; Jingquan and Wenxiu, 2018; Lei et al., 2015; Li et al., 2013, 2018; Lianhong et al., 2015; Limei and Congying, 2020; Lingyun, 2015; Liqun and Lin, 2020; Lu et al., 2016; Ma et al., 2020; Meng, 2016; Meng et al., 2018; Mengying et al., 2019; Mingke et al., 2011; Nengzhi et al., 2010; Pu et al., 2017; Qiuyu, 2020; Shanshan and Li, 2020; Sun et al., 2012; Suqiu, 2019; Tieshuang, 2010; Xiaoyan et al., 2019; Xiaoyan et al., 2017; Ye et al., 2019; Yi and Liping, 2016; Ye et al., 2019; Yuanbin, 2005; Yun, 2011, 2017; Zou et al., 2020) including 21,501 Chinese doctors provided data about the prevalence of the 3 dimensions of burnout. The overall prevalence of EE was 48.64% (95% CI, 38.73 to 58.59; I^2 = 99.53%, P < 0.001), the overall prevalence of DP was 46.67% (95% CI, 46.95 to 62.27; I^2 = 99.23%, P < 0.001), and the overall prevalence of reduced PA was 66.53% (95% CI, 58.13 to 74.44; I^2 = 99.37%, P < 0.001). The details are shown in Table 2 and Appendix 4.2-4.3.

3.2. Prevalence estimates

3.2.1. Total prevalence of burnout

Thirty-two studies including 27,130 Chinese doctors reported the prevalence of burnout as dichotomous data (Diwen et al., 2019; Enfang and Yan, 2017; Hao, 2012; Haoyun et al., 2019; Hongyan et al., 2016; Hongyao, 2017; Houyuan, 2014; Huang et al., 2020; Huimin et al., 2019; Jingquan and Wenxiu, 2018; Lei et al., 2015; Li et al., 2013; Lingyun, 2015; Ma et al., 2020; Meng, 2016; Miao et al., 2012; Mingke et al., 2011; Nengzhi et al., 2010; Pu et al., 2017; Shanshan and Li, 2020; Wang et al., 2020a, 2021; Wen et al., 2016; Xi et al., 2020; Xiaoyan et al., 2019; Xizheng et al., 2009; Ye et al., 2019; Yun, 2011, 2017; Zheng et al., 2018; Zhou et al., 2020). Of the 32 studies, 19 studies including 12,056 Chinese doctors reported the prevalence of different degrees of burnout as dichotomous data (Diwen et al., 2019; Enfang and Yan, 2017; Hao, 2012; Haoyun et al., 2019; Hongyan et al., 2016; Houyuan, 2014; Hui and Ning, 2008; Lei et al., 2015; Lingyun, 2015; Meng, 2016; Miao et al., 2012; Mingke et al., 2011; Nengzhi et al., 2010; Shanshan and Li, 2020; Xi et al., 2020; Xiaoyan et al., 2019; Ye et al., 2019; Yun, 2011, 2017). The prevalence of low and moderate burnout was 62.01% (95% CI, 54.59 to 69.15, I^2 = 98.51%, P < 0.001), and the prevalence of high burnout was 9.37% (95% CI, 4.91 to 15.05, I^2 = 98.88%, P < 0.001). The specific content is shown in Table 2 and Appendix 4.2-4.3.
high, DP, and decreased PA dimensions (all $P > 0.05$) of burnout prevalence. The detailed results are shown in Appendix 5.1-5.6.

3.2.4. Prevalence of burnout over time

The burnout prevalence over time is shown in Figure 2. The total prevalence of burnout increased continuously from 2008 to 2017 and decreased significantly from 2018 to 2020, a little increase from 2020 to 2021. Furthermore, we analyzed the prevalence based on different scales and 3 dimensions. The prevalence of EE gradually decreased from 2005 to 2014, and gradually increased from 2015 to 2021. The prevalence of DP decreased gradually from 2005 to 2014, increased gradually from 2015 to 2016, and decreased significantly from 2017 to 2021. The prevalence of reduced PA increased gradually from 2005 to 2016, decreased significantly from 2017 to 2019, but increased slightly from 2020 to 2021. All the detailed time trends are shown in Appendix 6.1-6.7.

3.2.5. The influence of individual factors on burnout

In this study, we compared burnout prevalence among different genders, marital statuses, title, and specialty. Twenty-five studies (Chenliang, 2019; Dianzhen, 2013; Fuyingcong, 2012; Hao, 2012; Huang et al., 2020; Hui and Ning, 2008; Lianhong et al., 2015; Ma et al., 2020; Qiuyu, 2020; Sun et al., 2012; Suqiu, 2019; Tieshuang, 2010; Tingmei, 2016; Wang et al., 2012, 2020b; Weiyang et al., 2018; Wencheng, 2011; Wenxuan et al., 2016; Xia et al., 2007; Xiao et al., 2014; Xiaojuan and Fuzhong, 2015; Ye et al., 2019; Yu, 2015; Yun, 2011, 2017) including 1,431 physicians, 980 surgeons, 105 obstetricians, 79 pediatricians and 256 psychiatrists provided data of specialties.

We compared the 3 dimensions of burnout using the SMD according to sex, marital status, professional title and specialty of doctors. All detailed results, values of SMD and I^2 are shown in Table 3.

The results showed that in terms of gender, the EE and DP scores of male doctors were significantly higher than those of female doctors. The PA score of male doctors was also significantly lower than that of female doctors. In terms of marital status, doctors with primary professional title scored lower than those with advanced professional title on the DP dimension. Additionally, doctors with primary professional title scored lower than those with advanced professional title on the PA dimension.

In terms of specialty, no significant difference was observed between the scores of physicians and surgeons, they all had higher EE scores and lower PA scores than psychiatrists and pediatricians.

The subgroup analyses also showed that the scores of the 3 dimensions were affected by the individual factors, such as gender, marital...
Table 1. Descriptive characteristics of the included studies.

Lead author	Publication year	Research design	Number	Region	Burnout measurement	Quality score
Li Yuanbin et al.	2005	Cross-sectional	281	Chengdu City	MBI-HSS	8
Ren Xia et al.	2007	Cross-sectional	256	Beijing City	MBI-HSS	7
Wang Hui et al.	2008	Cross-sectional	646	Nanjing, Wuxi and Lianyungang City	CMBI	8
Chen Xuezhen et al.	2009	Prospective	108	Haikou City	MBI-HSS	7
Zhang Yuan et al.	2009	Cross-sectional	364	Inner Mongolia	MBI-GS	7
Chi Tieshuang et al.	2010	Cross-sectional	1105	Liaoning Province	MBI-GS	7
Jiang Nengzi et al.	2010	Cross-sectional	461	Shandong, Hebei Province and Beijing City	CMBI	7
Yu Mingke et al.	2011	Cross-sectional	230	Nanning City	CMBI	8
Huang Yun et al.	2011	Cross-sectional	692	Jiangsu, Anhui and Guizhou Province	CMBI	8
Yang Wencheng et al.	2011	Cross-sectional	1007	Liaoning Province	MBI-GS	7
Zhong Huaxing et al.	2011	Cross-sectional	68	Ganzhou City	CMBI	7
Liu Fuyingcong	2012	Cross-sectional	266	Shenzhen City	MBI-HSS	7
Cheng Hao et al.	2012	Cross-sectional	653	Western China	MBI-HSS	8
Liu Miao et al.	2012	Cross-sectional	1569	Eastern, western and central China	CMBI	8
Yang Wang et al.	2012	Cross-sectional	1011	Liaoning Province	MBI-GS	9
Wei Sun et al.	2012	Cross-sectional	1034	Liaoning Province	MBI-GS	9
Li Yanli et al.	2012	Cross-sectional	219	Sichuan Province	MBI-GS	8
Tang Dianzheng	2013	Cross-sectional	902	12 Provinces of China	CMBI	7
Huang Li et al.	2013	Cross-sectional	735	Shanghai City	MBI-GS	7
Yubei XIAO et al.	2014	Cross-sectional	205	Beijing City	MBI-GS	8
Luo Houyuan et al.	2014	Cross-sectional	2404	Eastern, western and central China	CMBI	7
Shi Lingyun et al.	2015	Cross-sectional	435	Xinjiang Province	CMBI	7
Zhou Lianhong et al.	2015	Cross-sectional	1611	Beijing City	MBI-HSS	8
Zhang Yu et al.	2015	Cross-sectional	160	Beijing City	MBI-HSS	7
Liu Xiaojuan et al.	2015	Cross-sectional	415	Jilin City	MBI-HSS	8
Huang Lei et al.	2015	Cross-sectional	775	Zhejiang City	MBI-GS	8
Juncai Pu et al.	2016	Cross-sectional	5558	China	MBI-HSS	8
Wang Lu et al.	2016	Cross-sectional	78	Taiyuan City	MBI-HSS	8
Xin Wen et al.	2016	Cross-sectional	1537	10 Provinces of China	MBI-GS	9
Zhu Hongyan et al.	2016	Cross-sectional	414	Shanghai City	MBI-GS	8
Lv Meng et al.	2016	Cross-sectional	312	Xinjiang Province	CMBI	7
Zhang Wexuan et al.	2016	Cross-sectional	1098	12 Provinces of China	CMBI	7
Li Yiyi et al.	2016	Cross-sectional	292	Shenzhen City	MBI-HSS	7
Yan Tingmei et al.	2016	Cross-sectional	1863	Liaoning Province	MBI-GS	7
Fan Enfang et al.	2017	Cross-sectional	85	Shanghai City	CMBI	7
Li Hongyao et al.	2017	Cross-sectional	1047	Chongqing City	MBI-GS	7
Hanlong Zheng et al.	2017	Cross-sectional	202	China	MBI-HSS	7
Sun Yun et al.	2017	Cross-sectional	379	Wuhan City	MBI-GS	7
Yang Jing et al.	2017	Cross-sectional	560	Xinjiang Province	MBI-GS	7
Cai Jingquan et al.	2018	Cross-sectional	475	Beijing City	MBI-GS	7
Hange Li et al.	2018	Cross-sectional	2873	Beijing, Tianjin City and Hebei Province	MBI-HSS	9
Yang Meng et al.	2018	Cross-sectional	227	Guangdong Province	MBI-HSS	7
Liang Weiyi et al.	2018	Cross-sectional	225	Beijing, Tianjin City and Hebei Province	MBI-HSS	8
Zhai Chendiang	2019	Cross-sectional	245	Wuhan City	MBI-HSS	8
Lu Huimin et al.	2019	Cross-sectional	568	Xuzhou City	MBI-GS	8
Qi Xiaoyu et al.	2019	Cross-sectional	217	Shanghai City	MBI-GS	8
Zhang Haoyun et al.	2019	Cross-sectional	131	Guangzhou Province	MBI-GS	8
Wu Ye et al.	2019	Cross-sectional	499	Jilin Province	MBI-GS	9
Hui Ma et al.	2019	Cross-sectional	2530	China	CMBI	9
Shen Diwen et al.	2019	Cross-sectional	602	China	CMBI	9
Zheng et al.	2019	Cross-sectional	3236	China	MBI-HSS	8
Cao Suqiu et al.	2019	Cross-sectional	110	Guangzhou Province	CMBI	8
Li Mengying et al.	2019	Cross-sectional	265	Henan Province	MBI-GS	9
Gu Shanghan et al.	2020	Cross-sectional	244	Chongqing City	CMBI	9
Ying Zhou et al.	2020	Cross-sectional	125	Shanghai City	MBI-HSS	9
Lei Huang et al.	2020	Cross-sectional	318	Shanghai City	MBI-HSS	9
Jing Wang et al.	2020	Cross-sectional	58	4 Provinces of China	MBI-HSS	9
Zhang Xi et al.	2020	Cross-sectional	1308	Jiangsu Province	MBI-GS	9

(continued on next page)
status, title, and specialty. Furthermore, through a visual inspection of the funnel plots and Egger’s and Beggs’s tests, we qualitatively and quantitatively evaluated the publication bias of the analysis of individual factors. The results showed that 52 of the 60 studies had no publication bias (P > 0.05). Eight studies that reported data for specialty had biases because the sample size was limited. Therefore, the results for specialty should be considered with caution. The forest plots of the subgroup studies and funnel plots of publication bias are shown in Appendix 7.1-7.4.

4. Discussion

The results of our study showed that the total prevalence of burnout in doctors in China was 75.48%, and the prevalence of high burnout was 9.37%, suggesting that the burnout situation in Chinese doctors might be very serious, since the total prevalence of burnout of doctors was 49% in France (Kansoun et al., 2019) and 51.64% in United State (Low et al., 2019) This result is consistent with a previous study reporting that the prevalence of doctor burnout was higher in Asian countries than in Western countries (De Simone et al., 2019). We also found the prevalence of EE was 48.64%, the prevalence of DP was 54.67%, and the prevalence of reduced PA was 66.53% among Chinese doctors. The results were obviously higher than those among doctors in France (EE 21%, DP 29% and reduced PA 21%) (Kansoun et al., 2019) and consistent with a previous study reporting that Chinese doctors had the highest EE scores among 37 middle-income countries worldwide (Sabitova et al., 2020).

The reasons for the high prevalence of burnout in Chinese doctors might be as follows.

First, heavy workload could lead to severe burnout. According to the Fifth Survey of Doctors’ Clinical Conditions by the Chinese Medical Doctors Association, 52.72% of doctors worked more than 40 h per week, and 32.69% of doctors worked more than 60 h per week (Association, 2015). Although the Chinese healthcare system is structured into three tiers (primary clinics, secondary hospitals and tertiary hospitals), the payment for consultation and tests in different tiers of hospitals is regulated by the government and is approximately same price. Chinese patients are free to visit any higher-tier hospital without referral by a primary doctor (Bo et al., 2020); thus, doctors in top-tier hospitals are overloaded due to an increased number of patients and forced to reduce the consultation time for all patients.

Second, government health care policies might contribute to burnout. In China, the government spends only 3% of the total world health expenditure on 20% of the world’s population (L.E. 2014). The national investment in medical services has been neglected since 1979, with the total medical expenditure less than 7% of the annual state fiscal expenditure each year (China), and the proportion of the medical insurance expenditure of the total medical expenditure has decreased from 36% to 16% (X et al., 2000). Meanwhile, medical insurance payments for services have been strictly controlled (O et al., 2014). Therefore, in order to sustain themselves, Chinese doctors are encouraged by hospitals to prescribe more medicines and expensive tests for patients. The conversion from a doctor to businessman not only causes doctors to experience severe burnout but also leads patients to mistrust doctors (J et al., 2014; Lancet, 2010).

Third, violence against doctors might lead to burnout as well. Due to the situations mentioned above, patients’ dissatisfaction with and...
distrust of doctors has triggered violence against doctors. The incidence of violence increased abruptly after 2010 (Bo et al., 2020; L.E, 2014; Paper, 2017). Among Chinese doctors, one-third had experienced conflict with patients, and thousands had been injured (L.E, 2014).

These three reasons have not only caused and exacerbated burnout but also negatively influenced the recruitment and retention of Chinese doctors. More than 60% of physicians have expressed an unwillingness to advise their children to go into the medical profession (Association, 2015). Additionally, 35.2% of general practitioners (Yanling et al., 2019b) and 34.03% of primary care doctors (Binjie et al., 2018) have admitted to having thoughts of altering career. From 2005 to 2015, all medical collages in China enrolled 4.7 million medical students, but the total number of doctors increased by only 0.75 million (Paper, 2017). The quantity and quality of Chinese doctors has been negatively impacted (Bo et al., 2020).

We also found that, although the burnout prevalence was significantly high, starting from 2018, the total burnout prevalence of Chinese doctors and the scores of the 3 dimensions had started to obviously decline. The decreasing trend might mainly be caused by alteration of regulations and laws. For example, the Regulations on Prevention and

Figure 2. Prevalence of burnout in Chinese doctors through 2020. The total prevalence of burnout increased from 2008 to 2017 and decreased significantly from 2018 to 2020, a little increase from 2020 to 2021. The prevalence of EE gradually decreased from 2005 to 2014, and gradually increased from 2015 to 2021. The prevalence of DP decreased gradually from 2005 to 2014, increased gradually from 2015 to 2016, and decreased significantly from 2017 to 2021. The prevalence of reduced PA increased gradually from 2005 to 2016, decreased significantly from 2017 to 2019, but increased slightly from 2020 to 2021.

Table 3. Comparison of related factors according to the three dimension.

Gender	EE	P	I-squared	DP	P	I-squared	PA	P	I-squared
Male vs Female	0.094 (0.064, 0.124)	<.001	74.90%	0.117 (0.087, 0.147)	<.001	52.20%	-0.079 (-0.109, -0.049)	<.001	74.70%
Marriage stage									
Single vs Married	0.017 (-0.029, 0.062)	0.473	42.40%	0.133 (0.088, 0.179)	<.001	74.20%	0.002 (-0.044, 0.048)	0.933	77.90%
Title									
Primary vs Intermediate	-0.038 (-0.091, 0.015)	0.164	0.00%	-0.072 (-0.125, -0.019)	0.008	59.30%	0.011 (-0.042, 0.064)	0.682	39.80%
Primary vs Advance	0.042 (-0.044, 0.128)	0.336	76.90%	-0.109 (-0.195, -0.023)	0.013	87.60%	-0.086 (-0.173, 0)	0.05	92.80%
Department									
Physician vs Surgeon	0.052 (-0.030, 0.134)	0.211	71.00%	-0.058 (-0.140, 0.024)	0.165	32.30%	0.078 (-0.004, 0.160)	0.062	51.80%
Physician vs Psychiatrist	0.216 (0.072, 0.361)	0.003	0	-0.029 (-0.173, 0.115)	0.695	0	-0.202 (-0.346, -0.057)	0.006	21.80%
Surgical vs Psychiatry	0.179 (0.029, 0.330)	0.019	51.40%	0.052 (-0.098, 0.202)	0.5	0	-0.366 (-0.517, -0.214)	<.001	61.90%
Physician vs Obstetrician	-0.012 (-0.238, 0.215)	0.92	75.40%	0.017 (-0.213, 0.247)	0.885	92.20%	0.320 (0.094, 0.546)	0.006	40.80%
Surgeon vs Obstetrician	0.023 (-0.206, 0.252)	0.844	75.50%	0.083 (-0.148, 0.314)	0.479	85.80%	0.417 (0.185, 0.648)	<.001	80.70%
Physician vs Pediatrician	0.352 (0.080, 0.623)	0.011	0	0.387 (0.114, 0.659)	0.005	63.10%	0.087 (-0.185, 0.358)	0.532	79.90%
Surgeon vs Pediatrician	0.375 (0.104, 0.645)	0.007	0	0.385 (0.113, 0.656)	0.005	32.30%	0.120 (-0.150, 0.390)	0.383	61.20%

SMD

1-V pooled SMD; I-squared: variation in SMD attributable to heterogeneity; P: Test of SMD = 0.
Treatment of Medical Disputes was approved by Chinese State council in June 2018, to protect doctors from violence (PRC, 2018). Meanwhile, a series of policies and projects was applied in 2018 to improve the health care system, referral regulation and insurance coverage of low-income people. New regulation of the network was also applied in 2018 to restrict vicious and insulting information against doctors on websites. All these reformative policies and regulations might contribute to the decrease in burnout of Chinese doctors. However, there was a slight upward trend from 2020 to 2021, which may be due to the impact of the COVID-19.

Meanwhile, our results also suggested that gender, marital status, professional title, and specialty were all related to occupational burnout. Male doctors were more prone to emotional failure, disinhibition of personality, and having a lower sense of achievement than female doctors. These results are different from previous studies in Western countries. One survey in Australia suggested that female doctors were more likely to suffer from burnout (Clough et al., 2020). One study in the United States observed that the burnout prevalence of female doctors was 1.6 times higher than that of male doctors (McMurray et al., 2000). The reason for this inconsistency might be due to the different context and culture by which Chinese males are required to bear more life responsibilities (Wei, 2006). In the present study, single doctors were more likely to be depersonalized than married doctors. Due to the lack of support from partners, they often retreat when encountering difficulties in work and life (Ma et al., 2020). This was consistent with the results of previous studies in the United States and European countries (Banerjee et al., 2017; Halbesleben, 2006; Shanafelt et al., 2014). Meanwhile, possibly due to the enthusiasm of junior doctors, in our study, they had a lower DP score than doctors with intermediate and advanced professional titles. We also found that physicians and surgeons were more likely to suffer from EE and reduced PA, which was consistent with a previous study conducted in the United States (Shanafelt et al., 2019). However, this result was tentative due to the high heterogeneity and publication biases in studies included in the specialty analysis.

4.1. Strengths and limitations

This study has some strengths worth mentioning. To the best of our knowledge, this is the first comprehensive meta-analysis of studies surveying burnout among Chinese doctors. We applied a holistic strategy to search the literature and conducted a robust statistical procedure in the analysis. Studies in both the English and Chinese languages were included. Because 3 different burnout scales were applied in 64 studies and the quality of studies was uneven, sensitivity and subgroup analyses were conducted to evaluate the potential heterogeneity and bias in the analysis.

Several limitations still exist. First, the quality of literature included in this study was not excellent, with a mean quality score of 7.92. However, the sensitivity analysis showed that the main results of our study were not significantly impacted by the factor of quality. Second, although we conducted a subgroup exploration based on different scales, the heterogeneity of the included studies was still high. Nevertheless, this approach is widely accepted and applied, and heterogeneity is an inevitable and primary characteristic in meta-analyses of prevalence rates. The heterogeneity has been shown high in previous meta-analysis studies of burnout prevalence (Kansoun et al., 2019; Low et al., 2019; Sabitova et al., 2020). Third, we used the publication year instead of the research year to analyze time trends; therefore, a delay effect might be present, but it did not affect the overall result. Forth, when measuring the effects of individual factors on burnout, the sample size was limited, thus caution is needed when interpreting this result.

5. Conclusions

The total prevalence of doctor burnout in China was higher than that in developed countries. Gender, marital status, professional title and specialty all might affect burnout scores. The prevalence of burnout in Chinese doctors has decreased since 2018, which suggests that transformative policies and government regulations might affect burnout in Chinese doctors, although longitudinal research is needed to provide evidence supporting this conclusion. Because of the high heterogeneity and limited quality of the included studies, the conclusions are tentative. In the future, more effective policies will be continuously needed to improve burnout. Meanwhile, a unified standard and normative scale of burnout should be developed and applied in high quality studies with large sample sizes. The results would help to establish a theoretical basis for developing strategies to alleviate burnout in doctors, increase the recruitment and retention of doctors, improve the quality of medical services, and eventually optimize the health care system.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

Qin Zheng was supported by Beijing Science and Technology Planning Project (Z171100010172277).

Data availability statement

Data included in article supp. material/referenced in article.

Declaration of interest's statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi:10.1016/j.heliyon.2022.e09821.

References

Association, C.M.D., 2015. White paper on Chinese physician practice status. Banerjee, S., Califano, R., Corral, J., de Aza-Sanabria, E., De Mattos-Arruda, L., Guarnieri, V., Hauka, M., Jarden, K., Martineelli, E., Mounatges, G., Ozturk, M.A., Petrova, M., Postel-Vinay, S., Preuner, M., Quoterp, C., Volkov, M.N.M., Tabernero, J., Olmos, D., Strijbos, M.H., 2017. Professional burnout in European young oncologists: results of the European society for medical oncology (ESMO) young oncologists committee burnout survey. Ann. Oncol.: Off. J. Eur. Soc. Med. Oncol. 28, 1590–1596.

Binjie, S., Lielin, H., Lili, Y., Yuanli, L., 2018. Turnover intention and its influencing factors among village doctors in Central China. Chin. Gen. Pract. 21, 4183–4187.

Bo, S., Chen, J., Song, Y., Zhou, S., 2020. Media attention and choice of major: evidence from anti-doctor violence in China. J. Econ. Behav. Organ. 179, 1–19.

Chambers, C.N., Frampton, C.M., Barclay, M., McKee, M., 2016. Burnout prevalence in New Zealand’s public hospital senior medical workforce: a cross-sectional mixed methods study. BMJ Open 6, e013947.

Chen, Z., Erazdelovic, F.J., Geluye, B., Dousset, M.L., Salameh, J., Briar, M., Dubale, R., Frichonione, G., 2019. Burnout among healthcare providers in the complex environment of the Middle East: a systematic review. BMC Publ. Health 19, 1337.

Chenliang, Z., 2019. The Effect of Work-Family Conflict on Doctors’ Job Burnout: the Chain Mediating Role of Mindfulness and Resilience. Anhui Normal University. China, M.o.F.o.t.P.s.R.o.

Clough, B.A., Ireland, M.J., Leane, S., March, S., 2020. Stressors and protective factors among regional and metropolitan Australian medical doctors: a mixed methods investigation. J. Clin. Psychol.

Coombs, D.M., Lanni, M.A., Fosnot, J., Patel, A., Korentager, R., Lin, I.C., Djohan, R., 2019. Professional burnout in United States plastic surgery residents: is it a legitimate concern? Aesthetic Surg. J.

D., W., V., W., R.F., L., T., H., 2014. Health system reforms, violence against doctors and job satisfaction in the medical profession: a cross-sectional survey in Zhejiang Province, Eastern China. BMJ Open 4, e006431.

De Simone, S., Vargas, M., Serrillo, G., 2019. Organizational strategies to reduce physician burnout: a systematic review and meta-analysis. Aging Clin. Exp. Res.
Dianzhen, T., 2013. Study on Residents' Job Burnout and Related Influencing Factors of Some Organizations. Nanjing Normal University.

Diven, S., Ning, Z., Hu, L., Junjian, J., 2015. The status of occupational burnout among surgeons and its correlative factors. J. Clin. Psychiatri. 29, 192–194.

Enfang, F., Yan, Y., 2017. Status of job burnout and turnover intention among general practitioners in suburb communities of Puding District of Shanghai. Occup. Health Law China 37, 1228–1267.

Fuyingcong, L., 2012. Influencing Factors and Intervention on Studies of Burnout of the Public Hospitals. Guang Xi University.

Gang, S., Lijun, S., 2020. Study on correlation between occupational burnout and excessive drinking behavior among 16284 surgical residents in grade III-A classhospitals in tianjyu. Health Med. 22, 680–686.

Hua, M., Qiao, H., Qu, W., Huang, J., Cheng, H., Ciao, D., Zhan, X., Zhan, N., 2020. Role stress, social support and occupational burnout among physicians in China: a path analysis approach. Int. Health 12, 157–165.

Lei, H., Dinglun, Z., Yongcheng, Y., Yajia, L., 2015. Relationship of personality with job burnout and psychological stress risk in clinicians Chin. J. Ind. Hyg. Occup. Dis. 84, 308–312.

Lu, W., Nan, W., Taotao, X., Huiling, L., Chengxing, H., Feng, J., 2016. Analysis of job burnout and related factors of anesthetists in grade III-B class-A hospitals in tianjin. Mod. Hosp. 19, 1281–1285.
work unit safety grades in relationship to reported medical errors. Mayo Clin. Proc. 93, 1571–1580.

Tiezhuan, C., 2010. Research of Occupational Stress, job Burnout and Depression Symptoms among Physicians. China Medical University.

Tingmei, Y., 2016. Study on Relationship among Job Burnout and Mental Health in the Hospital Staffs. Chinese Medical University.

Wang, Y., Liu, L., Wang, J., Wang, L., 2012. Work-family conflict and burnout among Chinese doctors: the mediating role of psychological capital. J. Occup. Health 54, 232–240.

Wang, J., Wang, W., Laureys, S., Di, H., 2020a. Burnout syndrome in healthcare professionals who care for patients with prolonged disorders of consciousness: a cross-sectional study. BMC Health Serv. Res. 20, 841.

Wang, L., Wang, H., Shao, S., Jia, G., Xiang, J., 2020b. Job burnout on subjective well-being among Chinese female doctors: the moderating role of perceived social support. Front. Psychol. 11, 435.

Wang, J., Hu, B., Peng, Z., Song, H., Cai, S., Rao, X., Li, L., Li, J., 2021. Prevalence of burnout among intensivists in mainland China: a nationwide cross-sectional survey. Crit. Care 25, 8.

Wei, Y., 2006. Male Liberation: an Important Approach to Anti-traditional Gender Culture. Party School of the Central Committee of the Communist Party of China.

Wen, J., Yan, C., Yongsheng, T., Juan, L., Liting, Z., Jing, A., 2018. Relationship between the job burnout and personality trait in psychiatrists. Chin. Ment. Health J. 32, 1025–1028.

Wen, J., Cheng, Y., Hu, X., Yuan, P., Hao, T., Shi, Y., 2016. Workload, burnout, and medical mistakes among physicians in China: a cross-sectional study. Biosci. Trends 10, 27–33.

Wencheng, Y., 2011. Research of Occupational Stress, Job Burnout, Job Satisfaction and Depression Symptoms among Physicians. China Medical University.

Wenxuan, Z., Huai, W., Dianzhen, T., Hao, C., Ning, Z., 2016. Analysis on resident burnout and its related organizational factors. Acta Univ. Med. Nanjing 16, 37–40.

Xi, Z., Weinan, L., Binhai, Z., 2020. Current situation and influencing factors of general practitioners’ job burnout in primary medical institutions. Chin. J. Med. Manage. Sci. 10, 26–31.

Xia, R., Hong, S., Fengchi, Y., 2007. An Investigation and Analysis on Job Burnout of Doctor in 3A Hospital. Chinese Hospital Management, pp. 15–17.

Xiao, Y., Wang, J., Chen, S., Wu, Z., Cai, J., Weng, Z., Li, C., Zhang, X., 2014. Psychological distress, burnout level and job satisfaction in emergency medicine: a cross-sectional study of physicians in China. Emerg. Med. Australasia (EMA) 26, 538–542.

Xiaojuan, L., Fuzhong, X., 2015. Survey on current status of job burnout among doctors in 3A Hospitals,Jinan city, 2014. Prev. Med. Trib. 21, 459–461.

Xiaoyan, Q., Menghua, Q., Hua, J., 2019. Analysis of job burnout and related influencing factors in family physicians in Hongkou District of Shanghai. Occup. Health & Emerg. Rescue. 37, 11–14.

Xu, L., Y., N., C., 2000. The Chinese experience of hospital price regulation. Health Pol. Plann. 15, 157–163.

Xuwen, Z., Yanmei, F., Ruili, Z., Tao, W., 2009. Prospective study of rates of medication errors among burnout residents. China J. Med. Mod. 2721–2724.

Yanli, L., 2012. Psychiatrist Job Burnout and Self-Efficacy Related Research. Yangtze University.

Yanling, Z., Fang, Y., Yanli, C., Minyi, Y., Ling, L., Yong, G., Lieqie, L., Yudi, Y., Zuxun, L., 2019a. Prevalence and influencing factors for job burnout among general practitioners in China. Chin. Gen. Pract. 22, 764–769.

Yanling, Z., Fang, Y., Yanli, C., Minyi, Y., Ling, L., Yudi, Y., Yong, G., Lieqie, L., Zuxun, L., 2019b. Turnover intention and related factors among general practitioners in China. Chin. Gen. Pract. 17, 1543–1546.

Ye, W., Liuhang, W., Leping, R., 2019. Job burnout of rural doctors in Jilin province. Chin. Rural Health Serv. Adm. 39, 57–61.

Yi, L., Leping, L., 2016. An investigation on job burnout of medical personnel in a top three hospital. Chin. J. Ind. Hyg. Occup. Dis. 357–360.

Yongxin, L., 2003. Job burnout and its measurement. Psychol. Sci. 26, 556–557.

Yu, Z., 2015. Study on Job Burnout among General Practitioners in Fengtai District of Beijing. China University of Geosciences.

Yuan, Z., 2009. Researches into the Relationships among Job Burnout,self-Esteem and Social Support of Doctors Inner Mongolia. Normal University.

Yuabin, L., 2005. A Study on the Job Burnout and Related Factor of the Clinical Doctor and Non-clinical Doctor. Southwest Normal University.

Yun, H., 2011. Investigation and Analysis on the Status of Job Burnout among General Practitioners. Nanjing Medical University.

Yun, S., 2017. Research on the Relations between Career Burnout, Job Satisfaction and Turnover Tendency of the Country Doctors. wannan Medical College.

Zheng, H., Shao, H., Zhou, Y., 2018. Burnout among Chinese adult reconstructive surgeons: incidence, risk factors, and relationship with intraoperative irritability. J. Arthroplasty 33, 1253–1257.

Zheng, Q., Yang, K., Wang, X., Ou, Z., Su, X., Zhang, J., Qu, M., 2019. Burnout among doctors in China through 2018: a protocol of systematic review and meta-analysis. Medicine 98, e17117.

Zhou, X., Pu, J., Zhong, X., Zhu, D., Yin, D., Yang, L., Zhang, Y., Fu, Y., Wang, H., Xie, P., 2017. Burnout, psychological morbidity, job stress, and job satisfaction in Chinese neurologists. Neurology 88, 1727–1735.

Zhou, Y., Guo, W., Tao, R., Chen, C., 2020. The impact of gender and working hours on pulmonary physician burnout. Ann. Transl. Med. 8, 1166.