Structural characterization and antimycobacterial evaluation of a benzimidazole analogue of the antituberculosis clinical drug candidate TBA-7371

Adrian Richter, Richard Goddard, Roy Schönefeld, Peter Imming and Rüdiger W. Seidel*

Received 21 October 2022
Accepted 1 November 2022
Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: benzimidazole; TBA-7371; scaffold morphing; DprE1 inhibitor; tuberculosis; crystal structure.

CCDC reference: 2216847
Supporting information: this article has supporting information at journals.iucr.org/e

The crystal structure and in vitro antimycobacterial properties of N-(2-fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1H-benzo[d]imidazole-4-carboxamide (C\textsubscript{17}H\textsubscript{18}FN\textsubscript{5}O\textsubscript{2}, I), a previously reported benzimidazole analogue of the 1,4-azaindole-based antituberculosis drug candidate TBA-7371, are reported. The structure determination was achieved using Hirshfeld atom refinement. Compound I crystallizes in the triclinic system (space group \textit{P}\textsubscript{1}) with two molecules in the asymmetric unit (\textit{Z} = 2). The two crystallographically distinct molecules exhibit a similar conformation with the amide groups in a \textit{Z} conformation, forming an intramolecular \textit{N}amide—\textit{H}—\textit{C}\textsubscript{1}/\textsubscript{C}\textsubscript{1}/\textsubscript{C}\textsubscript{1}/\textsubscript{N}benzimidazole hydrogen bond. The most significant supramolecular feature in the solid-state is a relatively short \textit{C}benzimidazole—\textit{H}—\textit{C}\textsubscript{1}/\textsubscript{C}\textsubscript{1}/\textsubscript{C}\textsubscript{1}/\textsubscript{N}pyrimidine hydrogen bond. Antimycobacterial testing confirmed in vitro activity against \textit{Mycobacterium smegmatis}, but no growth inhibition of \textit{Mycobacterium abscessus} was found.

1. Chemical context

TBA-7371 (Fig. 1) is a 1,4-azaindole-based drug candidate for the treatment of tuberculosis, which has advanced to a Phase 2a clinical study (ClinicalTrials.gov identifier: NCT04176250). The compound is a non-covalent inhibitor of the mycobacterial enzyme decaprenylphosphoryl-\textbeta-d-ribose-2'-epimerase (DprE1), which is essential for cell-wall synthesis in \textit{Mycobacterium tuberculosis}, the causative agent of tuberculosis (Shirude \textit{et al.}, 2013, 2014; Chikhale \textit{et al.}, 2018). As
shown in Fig. 1, scaffold morphing, a medicinal chemistry approach to the design of new ligands for the same target with a different core, led to the identification of \(N\)-(2-fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1\(H\)-benzo[\(d\)]imidazole-4-carboxamide (I) (Manjunatha et al., 2019). In I, the 1,4-azaindole core has been replaced by a benzimidazole core, while the 6-methoxy-5-methylpyrimidine-4-yl group and the amide side chain were maintained. Compound I exhibits potent DprE1 inhibition and antimycobacterial activity (vide infra).

Late steps in the synthesis of I, following the previously published route (Manjunatha et al., 2019), are sketched in Fig. 2. Benzimidazole derivative A was reacted with 4-(chloromethyl)-6-methoxy-5-methylpyrimidine to give B. It is worth mentioning that N-alkylation in part occurred at position 3 of the benzimidazole scaffold, affording side product C. Regioisomers B and C were separated by flash chromatography, resulting in an approximate 3.75:1 ratio.

Compound C was identified by \(^1H\) and \(^{13}C\) NMR spectroscopy and APCI mass spectrometry (see Supporting Information). Hydrolysis of B followed by amide coupling with 2-fluoroethanamine gave the target compound I. X-ray crystallography unambiguously confirmed the structure.

2. Structural commentary

Compound I crystallizes in the triclinic space group \(P\bar{T}\) with two crystallographically distinct molecules (Fig. 3). In both molecules, the tilt of the 6-methoxy-5-methylpyrimidin-4-yl group of the plane out of the central benzimidazole moiety renders the conformers axially chiral. The \(C2—N1—C11—C12\) torsion angle is 101.9 (1)° in molecule 1 and 79.0 (1)° in molecule 2. The enantiomeric conformers in the chosen asymmetric unit thus exhibit the same handedness, but the corresponding oppositely handed conformers are present in the centrosymmetric crystal structure. The most marked structural difference between the two unique molecules is the orientation of the 2-fluoroethyl group about the \(C9—C10\) bond with \(N2—C9—C10—F1 = 68.1 (1)°\) for molecule 1 and \(61.8 (1)°\) for molecule 2.

The plane of the amide group and the mean plane of the benzimidazole moiety are nearly co-planar in molecules 1 and 2. The angle between the two planes is 8.8 (1)° in molecule 1 and 7.7 (1)° in molecule 2. The amide group adopts a Z conformation in both molecules and forms an intramolecular N—H···H hydrogen bond to atom N3 of the benzimidazole system (Table 1), resulting in a six-membered hydrogen-bonded ring with an \(S(6)\) motif (Bernstein et al., 1995). This is in line with Etter’s second hydrogen-bond rule for organic compounds, which states that intramolecular six-membered

![Figure 2](image_url)

Figure 2

Synthesis of I, following the published procedure (Manjunatha et al., 2019). Reagents and solvents: (a) 4-(chloromethyl)-6-methoxy-5-methylpyrimidine, Cs\(_2\)CO\(_3\), NaI, DMF; (b) LiOH, MeOH; (c) HATU, 2-fluoroethanamine, NMP.

![Figure 3](image_url)

Figure 3

Asymmetric unit of I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radius. Dashed lines represent hydrogen bonds. The number after the underscore indicates unique molecule 1 or 2.
hydrogen-bonded rings form in preference to intermolecular hydrogen bonds (Etter, 1990).

3. Supramolecular features

The most significant supramolecular feature of the title compound’s solid-state structure is a short C—H⋯N contact between the amidine C2—H2 group of the benzimidazole moiety in molecule 2 and N5 of the pyrimidine ring in molecule 1 (Fig. 3), which provides structural evidence for a C—H⋯N weak hydrogen bond (Table 1). The amidine C2—H2 group in molecule 1 forms a short C—H⋯O contact to the amide carbonyl group of molecule 2. The geometric parameters including a D—H⋯A angle $>140^\circ$ (Wood et al., 2009) are characteristic of a weak hydrogen bond (Thakuria et al., 2017). F⋯F interactions are not encountered in the crystal structure, but parallel arrangements between the pyrimidine ring of molecule 1 and the benzimidazole moiety of a neighbouring molecule 2 (Fig. 4) and between the benzimidazole moieties of two molecules 1 about a center of symmetry are notable features (Fig. 5). The latter and the stacking of these units with the pyrimidine rings of molecule 2 in the b* axis direction no doubt contribute to the 040 reflection having by far the strongest intensity in the diffraction data set. A packing index of 71.9% (Kitaigorodskii, 1973), as calculated with PLATON (Spek, 2020), suggests that the solid-state structure appears to be mainly governed by close packing.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016) for acyclic 1-alkyl benzimidazole-4-carboxamides via WebCSD (accessed on 21 October 2022; CCDC, 2017) yielded the structure of 1-(2,6-difluorobenzyl)-2-(2,6-dimethoxy-5-methylpyrimidin-4-yl group and 6-methoxy-5-methylpyrimidin moieties in an AABB fashion in the b* axis direction. Dashed lines represent hydrogen bonds. H atoms have been omitted for clarity, except for amide and amidine H atoms.

5. Antimycobacterial evaluation

Manjunatha et al. (2019) reported an in vitro minimal inhibitory concentration (MIC) of 1.56–3.12 μM for 1 against M. tuberculosis H37Rv and MIC 0.78–1.56 μM against Mycobacterium smegmatis. Potent inhibition of the M. tuberculosis DprE1 and molecular docking suggested a mode of action similar to TBA-7371. We re-evaluated the in vitro activity of 1 against M. smegmatis mc2 155, using broth microdilution assays (for the assay protocols, see supporting information and Richter et al., 2018). We determined a MIC90 of 12.5 μM in Middlebrook 7H9 medium supplemented with 10% ADS (albumin-dextrose-saline) and 0.05% polysorbate 80, and...
indole TBA-7371 (Sarathy et al., 2022) showed moderate activity against several M. abscessus strains and clinical isolates for the 3,4-dihydrocarbostyril-based non-covalent DprE1 inhibitor and Phase 2b/c clinical antituberculosis drug candidate OPC-167832.

6.25 μM in Mueller Hinton II Broth with 0.05% polysorbate 80.

The non-tuberculous Mycobacterium abscessus is an opportunistic pathogen, which can cause difficult-to-treat skin, soft tissue and pulmonary infections, in particular in patients with structural lung diseases such as cystic fibrosis (Boudehen et al., 2021). Screening of antitubercular agents for activity against M. abscessus has been proposed (Ganapathy & Dick, 2022). Mechanism-based covalent DprE1 inhibitors with potent activity against M. tuberculosis and other mycobacteria like M. smegmatis form covalent adducts with the thiol group of Cys387 on the FAD substrate binding domain (Shetye et al., 2020). These compounds are usually inactive against M. abscessus, since the M. abscessus DprE1 has an alanine residue in the corresponding amino-acid position, which prevents covalent linkage. Testing of non-covalent DprE1 inhibitors against M. abscessus, however, could be a promising approach to identifying potential lead structures. Therefore, we also tested 1 against M. abscessus ATCC19977 in vitro. In both Middlebrook 7H9 medium supplemented with 10% ADS and 0.05% polysorbate 80 and Mueller Hinton II Broth with 0.05% polysorbate 80, however, no growth inhibition could be detected (MIC₉₀ > 100 μM). While this work was in progress, the same observation was reported for the parent 1,4-azaindole TBA-7371 (Sarathy et al., 2022). It is worth noting, however, that Sarathy et al. (2022) found moderate in vitro activity against several M. abscessus strains and clinical isolates for the 3,4-dihydrocarbostyril-based non-covalent DprE1 inhibitor and Phase 2b/c clinical antituberculosis drug candidate OPC-167832.

6. Synthesis and crystallization

Compound 1 was synthesized as described by Manjunatha et al. (2019). Analytical data for A, B, C and 1 can be found in the supporting information. Crystals of 1 suitable for X-ray diffraction were grown from a solution in ethyl acetate/n-heptane (1:1) by slow evaporation of the solvents at room temperature.

7. Refinement

Initially, the structure was refined to convergence using independent atom model refinement with SHELXL2018/3 (Sheldrick, 2015b). The final structure refinement was carried out by Hirshfeld atom refinement with aspherical scattering factors using NospherA2 (Kleemiss et al., 2021; Midgley et al., 2021) partitioning in OLEX2 (Dolomanov et al., 2009) based on electron density from iterative single-determinant SCF single-point DFT calculations using ORCA (Neese et al., 2020) with a B3LYP functional (Becke, 1993; Lee et al., 1988) and a def2-TZVPP basis set. Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We are grateful to Professor Christian W. Lehmann for providing access to the X-ray diffraction facility at the Max-Planck-Institut für Kohlenforschung (Mülheim an der Ruhr, Germany) and Dr Nadine Taudte and Dr Jens-Ulrich Rahfeld for providing and maintaining the biosafety level 2 facility.

Funding information

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –

Table 2

Crystal data	C₁₇H₁₈FN₅O₂
Chemical formula	
Mₘ	343.36
Crystal system, space group	Triclinic, P�
Temperature (K)	100
a, b, c (Å)	7.6940 (19), 15.013 (4), 15.281 (4)
α, β, γ (°)	71.040 (4), 77.874 (5), 87.780 (4)
V (Å³)	1631.3 (7)
Z	4
Radiation type	Mo Kα
μ (mm⁻¹)	0.10
Crystal size (mm)	0.10 × 0.05 × 0.02

Figure 6

Structure overlay of the benzene rings of the two unique molecules of 1 (molecule 1: green; molecule 2: orange) and the benzene ring of CT319 in the crystal structure of its non-covalent complex with M. tuberculosis DprE1 (pink; PDB code: 4FDQ; resolution: 2.4 Å), showing the similar conformations of the benzamide moieties.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). *J. Appl. Cryst.* **37**, 335–338.
Batt, S. M., Jabeen, T., Bhowruth, V., Quill, L., Lund, P. A., Eggelting, L., Alderweireldt, L. J., Fütterer, K. & Besra, G. S. (2012). *Proc. Natl Acad. Sci. USA* **109**, 11354–11359.
Becke, A. D. (1993). *J. Chem. Phys.* **98**, 5648–5652.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.
Boudehen, Y. M. & Kremer, L. (2021). *Trends Microbiol.* **29**, 951–952.
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* **A71**, 59–75.
Brandenburg, K. (2018). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2017). *APEX3*. Bruker AXS Inc., Madison, Wisconsin, USA.
Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., DiCostanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovicˇ, V., Namkoong, H., Peisach, E., Periskova, I., Prlič, A., Randle, C., Rose, A., Rose, P., Sala, R., Sekharan, M., Shao, C., Tan, L., Tao, Y.-P., Valasatava, Y., Voigt, M., Westbrook, J., Woo, J., Yang, H., Young, J., Zhuravleva, M. & Zardecki, C. (2019). *Nucleic Acids Res.* **47**, D464–D474.
CCDC (2017). *CSD* web interface – intuitive, cross-platform, web-based access to CSD data. Cambridge Crystallographic Data Centre, Cambridge, England.
Chikhale, R. V., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2018). *J. Med. Chem.* **61**, 8563–8593.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *Acta Cryst.* **A65**, 339–341.
Etter, M. C. (1990). *Acc. Chem. Res.* **23**, 120–126.
Ganapathy, U. S. & Dick, T. (2022). *Molecules*, 6948.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* **B72**, 171–179.
Kitaigorodskii, A. I. (1973). *Molecular crystals and molecules*. London: Academic Press.
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). *Chem. Sci.* **12**, 1675–1692.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
Structural characterization and antimycobacterial evaluation of a benzimidazole analogue of the antituberculosis clinical drug candidate TBA-7371

Adrian Richter, Richard Goddard, Roy Schönefeld, Peter Imming and Rüdiger W. Seidel

Computing details
Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: DIAMOND (Brandenburg, 2018) and Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004) and pubICIF (Westrip, 2010).

N-(2-Fluoroethyl)-1-[(6-methoxy-5-methylpyrimidin-4-yl)methyl]-1,3-benzodiazole-4-carboxamide

Crystal data
C_{17}H_{18}FN_{5}O_{2}
Mr = 343.36
Triclinic, P\textoverline{1}
a = 7.6940 (19) Å
b = 15.013 (4) Å
c = 15.281 (4) Å
α = 71.040 (4)°
β = 77.874 (5)°
γ = 87.780 (4)°
V = 1631.3 (7) Å³

Data collection
Bruker AXS Kappa Mach3 APEX II diffractometer
Radiation source: Incoatec I\textalpha S
Incoatec Helios mirrors monochromator
Detector resolution: 66.67 pixels mm⁻¹
φ- and ω-scans
Absorption correction: gaussian
(SADABS; Krause et al., 2015)
T_{\text{min}} = 0.994, T_{\text{max}} = 0.999

Refinement
Refinement on F^2
Least-squares matrix: full
R[F^2 > 2\sigma(F^2)] = 0.031
wR(F^2) = 0.072
S = 1.07
8147 reflections
595 parameters
0 restraints
0 constraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H-atom parameters refined

\[w = \frac{1}{\sigma^2(F_o^2) + (0.0302P)^2 + 0.1357P} \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

\(\Delta/\sigma \) max = −0.001
\(\Delta \rho_{\text{max}} = 0.34 \text{ e Å}^{-3} \)
\(\Delta \rho_{\text{min}} = −0.32 \text{ e Å}^{-3} \)

Special details

Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75.

Refinement. Refinement of \(F^2 \) against ALL reflections. The weighted R-factor \(wR \) and goodness of fit \(S \) are based on \(F^2 \), conventional R-factors \(R \) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > 2\sigma(F^2) \) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso/\(U_{eq}\)
C2_1	0.24678 (14)	0.11875 (7)	0.50249 (7)	0.0171 (2)
H2_1	0.1399 (16)	0.1169 (8)	0.4698 (8)	0.033 (3)*
C3A_1	0.40214 (12)	0.12795 (6)	0.60043 (7)	0.01224 (19)
C4_1	0.46666 (13)	0.12885 (6)	0.67969 (7)	0.0138 (2)
C5_1	0.64993 (14)	0.12841 (7)	0.67153 (8)	0.0188 (2)
H5_1	0.7017 (16)	0.1288 (9)	0.7320 (9)	0.037 (3)*
C6_1	0.76757 (14)	0.12644 (8)	0.58895 (8)	0.0223 (2)
H6_1	0.9064 (17)	0.1261 (8)	0.5876 (9)	0.040 (3)*
C7_1	0.70606 (13)	0.12396 (7)	0.51032 (8)	0.0187 (2)
H7_1	0.7946 (16)	0.1207 (8)	0.4507 (9)	0.038 (3)*
C7A_1	0.52267 (12)	0.12461 (6)	0.51864 (7)	0.0131 (2)
C8_1	0.35297 (14)	0.12221 (7)	0.77376 (7)	0.0175 (2)
C9_1	0.05871 (17)	0.09121 (8)	0.87354 (8)	0.0265 (3)
H9a_1	0.1274 (19)	0.0422 (11)	0.9242 (10)	0.057 (4)*
H9b_1	−0.0673 (19)	0.0628 (10)	0.8694 (10)	0.050 (4)*
C10_1	0.01296 (17)	0.17191 (8)	0.91114 (8)	0.0258 (3)
H10a_1	−0.0661 (19)	0.1461 (10)	0.9831 (11)	0.057 (4)*
H10b_1	0.1311 (18)	0.2145 (9)	0.9030 (9)	0.047 (4)*
C11_1	0.48068 (16)	0.10678 (7)	0.36547 (7)	0.0188 (2)
H11a_1	0.3719 (18)	0.0773 (9)	0.3485 (9)	0.044 (4)*
H11b_1	0.5883 (18)	0.0590 (9)	0.3682 (9)	0.048 (4)*
C12_1	0.54232 (13)	0.19816 (6)	0.28726 (7)	0.01278 (19)
C13_1	0.66938 (12)	0.19801 (6)	0.20828 (7)	0.01218 (19)
C14_1	0.70948 (12)	0.28746 (6)	0.13868 (6)	0.01223 (19)
C15_1	0.51185 (13)	0.35548 (7)	0.22720 (7)	0.0151 (2)
H15_1	0.4475 (15)	0.4202 (8)	0.2342 (8)	0.031 (3)*
C16_1	0.75853 (15)	0.11175 (7)	0.19506 (8)	0.0172 (2)
H16a_1	0.8798 (19)	0.1290 (10)	0.1421 (10)	0.054 (4)*
H16b_1	0.8024 (18)	0.0689 (10)	0.2556 (10)	0.052 (4)*
H16c_1	0.677 (2)	0.0719 (11)	0.1756 (10)	0.061 (4)*
C17_1	0.88043 (14)	0.38333 (7)	−0.00710 (7)	0.0181 (2)
H17a_1	0.9829 (17)	0.3724 (8)	−0.0611 (9)	0.040 (3)*
---	---	---	---	---
H17b_1	0.7668 (16)	0.4161 (8)	−0.0362 (8)	0.033 (3)*
H17c_1	0.9341 (16)	0.4290 (9)	0.0248 (9)	0.037 (3)*
N1_1	0.41820 (11)	0.11800 (5)	0.45741 (5)	0.01466 (17)
N2_1	0.17564 (12)	0.11793 (6)	0.78099 (6)	0.0202 (2)
N2a_1	0.1293 (17)	0.1211 (9)	0.7235 (10)	0.036 (4)*
N3_1	0.22925 (10)	0.12443 (6)	0.58814 (6)	0.01580 (18)
N4_1	0.46198 (11)	0.27632 (6)	0.29767 (6)	0.01515 (18)
N5_1	0.63354 (10)	0.36553 (5)	0.14786 (6)	0.01407 (17)
O1_1	0.41907 (11)	0.11614 (5)	0.84196 (5)	0.02732 (19)
O2_1	0.83091 (9)	0.29152 (5)	0.06084 (5)	0.01625 (15)
F1_1	−0.09275 (9)	0.23342 (5)	0.85713 (5)	0.0407 (2)
C2_2	0.63497 (13)	0.58977 (7)	0.02129 (7)	0.0161 (2)
H2_2	0.6202 (16)	0.5177 (9)	0.0635 (9)	0.038 (3)*
C3A_2	0.71862 (12)	0.72002 (6)	−0.08890 (7)	0.01256 (19)
C4_2	0.79584 (12)	0.79156 (7)	−0.17228 (7)	0.0130 (2)
C5_2	0.75312 (13)	0.88396 (7)	−0.17785 (7)	0.0161 (2)
H5_2	0.8156 (16)	0.90545 (7)	−0.10381 (7)	0.0188 (2)
C6_2	0.6057 (16)	0.9770 (9)	−0.1100 (8)	0.036 (3)*
C7_2	0.55929 (14)	0.83519 (7)	−0.02112 (7)	0.0171 (2)
H7_2	0.4735 (16)	0.8528 (8)	0.0344 (8)	0.034 (3)*
C7A_2	0.60227 (12)	0.74268 (7)	−0.01578 (7)	0.0140 (2)
C8_2	0.91827 (12)	0.77332 (7)	−0.25397 (7)	0.0138 (2)
C9_2	1.08197 (14)	0.65409 (8)	−0.31197 (8)	0.0188 (2)
C10_2	1.1513 (16)	0.5933 (9)	−0.2806 (9)	0.039 (3)*
H9a_2	1.1762 (16)	0.7109 (9)	−0.3576 (9)	0.035 (3)*
C10b_2	0.97648 (16)	0.62865 (9)	−0.37364 (8)	0.0269 (3)
C11_2	0.8958 (17)	0.6864 (9)	−0.4029 (9)	0.044 (3)*
C11b_2	1.0606 (18)	0.6044 (9)	−0.4256 (10)	0.054 (4)*
C11a_2	0.43832 (14)	0.64282 (8)	0.14634 (7)	0.0192 (2)
C11bb_2	0.3521 (16)	0.5797 (9)	0.1648 (9)	0.039 (3)*
C12_2	0.3542 (16)	0.7039 (9)	0.1409 (9)	0.038 (3)*
C12a_2	0.54170 (13)	0.63169 (7)	0.22336 (7)	0.0154 (2)
C13_2	0.45344 (13)	0.63352 (7)	0.31175 (7)	0.0161 (2)
C13_2a	0.56317 (15)	0.62089 (7)	0.37788 (7)	0.0201 (2)
C15_2	0.80399 (15)	0.60741 (8)	0.27110 (8)	0.0257 (3)
H15_2	0.9430 (17)	0.5958 (9)	0.2557 (9)	0.043 (3)*
C16_2	0.25762 (15)	0.64610 (8)	0.33854 (8)	0.0215 (2)
C16a_2	0.2278 (19)	0.6794 (10)	0.3907 (11)	0.061 (4)*
C16b_2	0.2055 (19)	0.6939 (11)	0.2826 (11)	0.063 (4)*
C16c_2	0.187 (2)	0.5814 (12)	0.3640 (11)	0.075 (5)*
C17_2	0.5973 (2)	0.61725 (10)	0.52889 (10)	0.0379 (3)
H17a_2	0.513 (2)	0.6183 (12)	0.5923 (13)	0.078 (5)*
H17b_2	0.6689 (18)	0.5546 (10)	0.5403 (10)	0.053 (4)*
H17c_2	0.691 (2)	0.6769 (12)	0.5007 (11)	0.063 (4)*
N1_2	0.54919 (11)	0.65749 (6)	0.05356 (6)	0.01600 (18)
N2_2	0.97000 (11)	0.68391 (6)	−0.23867 (6)	0.01570 (18)
H2a_2	0.9130 (17)	0.6344 (9)	−0.1783 (10)	0.034 (3)*
N3_2 0.73649 (10) 0.62313 (5) -0.06356 (6) 0.01434 (17)
N4_2 0.71695 (11) 0.61835 (6) 0.20201 (6) 0.0216 (2)
N5_2 0.73631 (12) 0.60823 (6) 0.35843 (6) 0.0252 (2)
O1_2 0.96957 (9) 0.83717 (5) -0.32943 (5) 0.01908 (16)
O2_2 0.48417 (11) 0.62231 (5) 0.46393 (5) 0.02792 (19)
F1_2 0.85963 (9) 0.55284 (5) -0.31786 (5) 0.03320 (17)

Atomic displacement parameters (Å²)

	U¹¹	U²²	U³³	U¹²	U¹³	U²³
C2_1	0.0170 (5)	0.0220 (5)	0.0124 (5)	0.0007 (4)	-0.0054 (4)	-0.0044 (4)
C3A_1	0.0134 (5)	0.0129 (4)	0.0095 (5)	0.0004 (4)	-0.0016 (4)	-0.0029 (4)
C4_1	0.0163 (5)	0.0139 (5)	0.0113 (5)	0.0005 (4)	-0.0031 (4)	-0.0041 (4)
C5_1	0.0171 (5)	0.0217 (5)	0.0184 (6)	-0.0004 (4)	-0.0067 (4)	-0.0057 (4)
C6_1	0.0120 (5)	0.0290 (6)	0.0242 (6)	-0.0018 (4)	-0.0022 (4)	-0.0071 (5)
C7_1	0.0138 (5)	0.0211 (5)	0.0174 (5)	-0.0009 (4)	0.0025 (4)	-0.0045 (4)
C7A_1	0.0140 (5)	0.0130 (4)	0.0100 (5)	-0.0002 (4)	0.0005 (4)	-0.0024 (4)
C8_1	0.0251 (6)	0.0171 (5)	0.0112 (5)	0.0044 (4)	-0.0043 (4)	-0.0059 (4)
C9_1	0.0330 (7)	0.0225 (6)	0.0184 (6)	0.0017 (5)	0.0070 (5)	-0.0068 (5)
C10_1	0.0307 (7)	0.0269 (6)	0.0178 (6)	0.0104 (5)	0.0001 (5)	-0.0088 (5)
C11_1	0.0304 (6)	0.0133 (5)	0.0103 (5)	-0.0028 (4)	0.0001 (4)	-0.0030 (4)
C12_1	0.0182 (5)	0.0107 (4)	0.0090 (5)	-0.0004 (4)	-0.0029 (4)	-0.0026 (4)
C13_1	0.0141 (5)	0.0120 (5)	0.0104 (5)	-0.0004 (4)	-0.0017 (4)	-0.0039 (4)
C14_1	0.0141 (4)	0.0127 (5)	0.0097 (5)	-0.0003 (4)	-0.0026 (4)	-0.0032 (4)
C15_1	0.0187 (5)	0.0126 (5)	0.0122 (5)	0.0021 (4)	-0.0008 (4)	-0.0031 (4)
C16_1	0.0198 (5)	0.0142 (5)	0.0180 (6)	0.0025 (4)	-0.0038 (5)	-0.0061 (4)
C17_1	0.0174 (5)	0.0197 (5)	0.0137 (5)	-0.0031 (4)	0.0004 (4)	-0.0025 (4)
N1_1	0.0194 (4)	0.0146 (4)	0.0086 (4)	-0.0007 (3)	-0.0010 (3)	-0.0029 (3)
N2_1	0.0228 (5)	0.0221 (5)	0.0142 (5)	0.0016 (4)	0.0011 (4)	-0.0071 (4)
N3_1	0.0198 (4)	0.0130 (4)	0.0116 (4)	0.0009 (3)	-0.0005 (3)	-0.0039 (3)
N4_1	0.0195 (4)	0.0127 (5)	0.0132 (5)	-0.0111 (3)	0.0013 (3)	-0.0044 (3)
C2_2	0.0188 (5)	0.0155 (5)	0.0119 (5)	0.0025 (4)	-0.0030 (4)	-0.0017 (4)
C3A_2	0.0144 (5)	0.0129 (5)	0.0102 (5)	0.0018 (4)	-0.0036 (4)	-0.0031 (4)
C4_2	0.0147 (5)	0.0132 (5)	0.0113 (5)	0.0015 (4)	-0.0034 (4)	-0.0038 (4)
C5_2	0.0201 (5)	0.0125 (5)	0.0166 (5)	0.0007 (4)	-0.0058 (4)	-0.0048 (4)
C6_2	0.0226 (5)	0.0157 (5)	0.0211 (6)	0.0041 (4)	-0.0074 (4)	-0.0089 (4)
C7_2	0.0196 (5)	0.0204 (5)	0.0156 (5)	0.0057 (4)	-0.0063 (4)	-0.0105 (4)
C7A_2	0.0161 (5)	0.0168 (5)	0.0106 (5)	0.0041 (4)	-0.0046 (4)	-0.0059 (4)
C8_2	0.0150 (5)	0.0150 (5)	0.0111 (5)	-0.0010 (4)	-0.0027 (4)	-0.0035 (4)
C9_2	0.0164 (5)	0.0215 (6)	0.0190 (5)	0.0007 (4)	-0.0011 (4)	-0.0089 (5)
C10_2	0.0316 (6)	0.0330 (7)	0.0236 (6)	0.0063 (5)	-0.0092 (5)	-0.0176 (5)
C11_2	0.0171 (5)	0.0295 (6)	0.0107 (5)	0.0041 (5)	-0.0047 (4)	-0.0053 (4)
C12_2	0.0172 (5)	0.0181 (5)	0.0111 (5)	0.0019 (4)	-0.0051 (4)	-0.0035 (4)
C13_2	0.0224 (5)	0.0151 (5)	0.0116 (5)	-0.0004 (4)	-0.0055 (4)	-0.0041 (4)
Geometric parameters (Å, °)

Bond/Distance	Value (Å)	Error	Value (Å)	Error
C2_1—H2_1	1.054	0.001	C2_2—H2_2	1.060
C2_1—N1_1	1.355	0.002	C2_2—N1_2	1.359
C2_1—N3_1	1.317	0.001	C2_2—N3_2	1.313
C3A_1—C4_1	1.406	0.002	C3A_2—C4_2	1.404
C3A_1—C7A_1	1.405	0.002	C3A_2—C7A_2	1.404
C3A_1—N3_1	1.387	0.001	C3A_2—N3_2	1.387
C4_1—C5_1	1.389	0.002	C4_2—C5_2	1.392
C4_1—C8_1	1.492	0.002	C4_2—C8_2	1.492
C5_1—H5_1	1.082	0.001	C5_2—H5_2	1.101
C5_1—C6_1	1.398	0.002	C5_2—C6_2	1.402
C6_1—H6_1	1.064	0.001	C6_2—H6_2	1.070
C6_1—C7_1	1.392	0.002	C6_2—C7_2	1.391
C7_1—H7_1	1.031	0.001	C7_2—H7_2	1.059
C7_1—C7A_1	1.389	0.002	C7_2—C7A_2	1.393
C7A_1—N1_1	1.383	0.001	C7A_2—N1_2	1.381
C8_1—N2_1	1.347	0.002	C8_2—N2_2	1.344
C8_1—O1_1	1.229	0.001	C8_2—O1_2	1.234
C9_1—H9a_1	1.092	0.001	C9_2—H9a_2	1.064
C9_1—H9b_1	1.096	0.001	C9_2—H9b_2	1.090
C9_1—C10_1	1.502	0.002	C9_2—C10_2	1.507
C9_1—N2_1	1.447	0.002	C9_2—N2_2	1.445
C10_1—H10a_1	1.091	0.001	C10_2—H10a_2	1.078
C10_1—H10b_1	1.094	0.001	C10_2—H10b_2	1.066
C10_1—F1_1	1.387	0.001	C10_2—F1_2	1.389
C11_1—H11a_1	1.076	0.001	C11_2—H11a_2	1.102
C11_1—H11b_1	1.073	0.001	C11_2—H11b_2	1.092
C11_1—C12_1	1.510	0.002	C11_2—C12_2	1.516
C11_1—N1_1	1.448	0.001	C11_2—N1_2	1.445
C12_1—C13_1	1.384	0.001	C12_2—C13_2	1.386
C12_1—N4_1	1.344	0.002	C12_2—N4_2	1.342
C13_1—C14_1	1.412	0.001	C13_2—C14_2	1.411
C13_1—C16_1	1.493	0.002	C13_2—C16_2	1.497
C14_1—N5_1	1.324	0.002	C14_2—N5_2	1.322
Bond	Dist(Å) (E)	Bond	Dist(Å) (E)	
----------------------	-------------	----------------------	-------------	
C14_1—O2_1	1.3349(11)	C14_2—O2_2	1.3344(13)	
C15_1—H15_1	1.100(11)	C15_2—H15_2	1.066(13)	
C15_1—N4_1	1.3227(13)	C15_2—N4_2	1.3289(14)	
C15_1—N5_1	1.3358(13)	C15_2—N5_2	1.3305(15)	
C16_1—H16a_1	1.076(14)	C16_2—H16a_2	1.055(16)	
C16_1—H16b_1	1.055(14)	C16_2—H16b_2	1.063(16)	
C16_1—H16c_1	1.032(16)	C16_2—H16c_2	1.047(17)	
C17_1—H17a_1	1.065(13)	C17_2—H17a_2	1.051(17)	
C17_1—H17b_1	1.092(12)	C17_2—H17b_2	1.055(14)	
C17_1—H17c_1	1.096(13)	C17_2—H17c_2	1.083(16)	
C17_1—O2_1	1.4378(12)	C17_2—O2_2	1.4341(15)	
N2_1—H2a_1	1.002(14)	N2_2—H2a_2	1.002(14)	
N1_1—C2_1—H2_1	121.8(6)	N1_2—C2_2—H2_2	121.1(7)	
N3_1—C2_1—H2_1	124.5(6)	N3_2—C2_2—H2_2	125.3(7)	
N3_1—C2_1—N1_1	113.70(9)	N3_2—C2_2—N1_2	113.60(9)	
C7A_1—C3A_1—C4_1	119.54(8)	C7A_2—C3A_2—C4_2	120.12(8)	
N3_1—C3A_1—C4_1	130.61(9)	N3_2—C3A_2—C4_2	130.02(9)	
N3_1—C3A_1—C7A_1	109.75(8)	N3_2—C3A_2—C7A_2	109.86(8)	
C5_1—C4_1—C3A_1	117.17(9)	C5_2—C4_2—C3A_2	117.23(9)	
C8_1—C4_1—C3A_1	124.80(9)	C8_2—C4_2—C3A_2	123.55(8)	
C8_1—C4_1—C5_1	117.82(9)	C8_2—C4_2—C5_2	119.22(9)	
H5_1—C5_1—C4_1	118.1(6)	H5_2—C5_2—C4_2	117.9(6)	
C6_1—C5_1—C4_1	122.32(10)	C6_2—C5_2—C4_2	121.84(9)	
C6_1—C5_1—H5_1	119.6(6)	C6_2—C5_2—H5_2	120.2(6)	
H6_1—C6_1—C5_1	118.4(7)	H6_2—C6_2—C5_2	120.5(6)	
C7_1—C6_1—C5_1	121.32(10)	C7_2—C6_2—C5_2	121.47(9)	
C7_1—C6_1—H6_1	120.3(7)	C7_2—C6_2—H6_2	118.0(6)	
H7_1—C7_1—C6_1	120.2(7)	H7_2—C7_2—C6_2	120.4(6)	
C7A_1—C7_1—C6_1	116.21(10)	C7A_2—C7_2—C6_2	116.54(9)	
C7A_1—C7_1—H7_1	123.5(7)	C7A_2—C7_2—H7_2	123.1(6)	
C7_1—C7A_1—C3A_1	123.43(9)	C7_2—C7A_2—C3A_2	122.79(9)	
N1_1—C7A_1—C3A_1	105.24(8)	N1_2—C7A_2—C3A_2	105.16(8)	
N1_1—C7A_1—C7_1	131.26(9)	N1_2—C7A_2—C7_2	132.05(9)	
N2_1—C8_1—C4_1	116.58(9)	N2_2—C8_2—C4_2	115.46(8)	
O1_1—C8_1—C4_1	121.17(9)	O1_2—C8_2—C4_2	121.45(8)	
O1_1—C8_1—N2_1	122.15(10)	O1_2—C8_2—N2_2	123.08(9)	
H9b_1—C9_1—C9a_1	114.0(11)	H9b_2—C9_2—C9a_2	110.2(9)	
C10_1—C9_1—C9a_1	105.0(8)	C10_2—C9_2—C9a_2	107.5(7)	
C10_1—C9_1—H9b_1	106.5(7)	C10_2—C9_2—H9b_2	107.5(6)	
N2_1—C9_1—C9a_1	108.6(7)	N2_2—C9_2—C9a_2	109.5(7)	
N2_1—C9_1—H9b_1	109.1(7)	N2_2—C9_2—H9b_2	109.8(6)	
N2_1—C9_1—C10_1	113.74(10)	N2_2—C9_2—C10_2	112.27(9)	
H10a_1—C10_1—C9_1	109.9(7)	H10a_2—C10_2—C9_2	110.4(7)	
H10b_1—C10_1—C9_1	111.7(7)	H10b_2—C10_2—C9_2	111.2(7)	
H10b_1—C10_1—H10a_1	114.6(10)	H10b_2—C10_2—H10a_2	113.6(10)	
F1_1—C10_1—C9_1	109.35(10)	F1_2—C10_2—C9_2	108.97(9)	
F1_1—C10_1—H10a_1	106.5(7)	F1_2—C10_2—H10a_2	106.7(7)	
Bond	Distance (Å)	Bond	Distance (Å)	
-------	--------------	-------	--------------	
F1_1—C10_1—H10b_1	104.4 (7)	F1_2—C10_2—H10b_2	105.6 (7)	
H11b_1—C11_1—H11a_1	109.0 (10)	H11b_2—C11_2—H11a_2	108.4 (9)	
C12_1—C11_1—H11a_1	108.2 (7)	C12_2—C11_2—H11a_2	109.4 (6)	
C12_1—C11_1—H11b_1	108.6 (7)	C12_2—C11_2—H11b_2	109.5 (7)	
N1_1—C11_1—H11a_1	107.6 (7)	N1_2—C11_2—H11a_2	108.5 (6)	
N1_1—C11_1—H11b_1	109.8 (7)	N1_2—C11_2—H11b_2	106.9 (6)	
N1_1—C11_1—C12_1	113.63 (8)	N1_2—C11_2—C12_2	113.96 (8)	
C13_1—C12_1—C11_1	120.19 (8)	C13_2—C12_2—C11_2	119.79 (9)	
N4_1—C12_1—C11_1	116.34 (8)	N4_2—C12_2—C11_2	117.08 (9)	
N4_1—C12_1—C13_1	123.40 (8)	N4_2—C12_2—C13_2	123.11 (9)	
C14_1—C13_1—C12_1	114.47 (8)	C14_2—C13_2—C12_2	114.56 (9)	
C16_1—C13_1—C12_1	124.13 (9)	C16_2—C13_2—C12_2	124.46 (9)	
C16_1—C13_1—C14_1	121.40 (9)	C16_2—C13_2—C14_2	120.97 (9)	
N5_1—C14_1—C13_1	123.18 (9)	N5_2—C14_2—C13_2	123.50 (10)	
O2_1—C14_1—C13_1	117.08 (8)	O2_2—C14_2—C13_2	117.25 (10)	
O2_1—C14_1—N5_1	119.74 (8)	O2_2—C14_2—N5_2	119.77 (9)	
N4_1—C15_1—H15_1	117.2 (6)	N4_2—C15_2—H15_2	117.0 (7)	
N5_1—C15_1—H15_1	116.0 (6)	N5_2—C15_2—H15_2	115.9 (7)	
N5_1—C15_1—N4_1	126.82 (9)	N5_2—C15_2—N4_2	127.12 (10)	
H16a_1—C16_1—C13_1	111.8 (7)	H16a_2—C16_2—C13_2	111.5 (8)	
H16b_1—C16_1—C13_1	113.0 (7)	H16b_2—C16_2—C13_2	113.1 (8)	
H16b_1—C16_1—H16a_1	102.7 (10)	H16b_2—C16_2—H16a_2	101.5 (11)	
H16c_1—C16_1—C13_1	111.6 (8)	H16c_2—C16_2—C13_2	111.4 (9)	
H16e_1—C16_1—H16a_1	108.3 (11)	H16e_2—C16_2—H16a_2	108.5 (12)	
H16c_1—C16_1—H16b_1	109.1 (11)	H16c_2—C16_2—H16b_2	110.3 (12)	
H17b_1—C17_1—H17a_1	110.8 (9)	H17b_2—C17_2—H17a_2	110.4 (12)	
H17c_1—C17_1—H17a_1	108.6 (9)	H17c_2—C17_2—H17a_2	111.0 (12)	
H17c_1—C17_1—H17b_1	109.7 (9)	H17c_2—C17_2—H17b_2	108.9 (11)	
O2_1—C17_1—H17a_1	105.9 (6)	O2_2—C17_2—H17a_2	106.2 (9)	
O2_1—C17_1—H17b_1	110.8 (6)	O2_2—C17_2—H17b_2	110.5 (7)	
O2_1—C17_1—H17c_1	111.0 (6)	O2_2—C17_2—H17c_2	109.8 (8)	
C7A_1—N1_1—C2_1	106.63 (8)	C7A_2—N1_2—C2_2	106.66 (8)	
C11_1—N1_1—C2_1	126.92 (9)	C11_2—N1_2—C2_2	126.10 (9)	
C11_1—N1_1—C7A_1	126.35 (8)	C11_2—N1_2—C7A_2	126.98 (9)	
C9_1—N2_1—C8_1	119.57 (10)	C9_2—N2_2—C8_2	122.13 (9)	
H2a_1—N2_1—C8_1	118.7 (8)	H2a_2—N2_2—C8_2	118.6 (7)	
H2a_1—N2_1—C9_1	120.7 (8)	H2a_2—N2_2—C9_2	118.4 (7)	
C3A_1—N3_1—C2_1	104.67 (8)	C3A_2—N3_2—C2_2	104.70 (8)	
C15_1—N4_1—C12_1	115.96 (8)	C15_2—N4_2—C12_2	115.91 (9)	
C15_1—N5_1—C14_1	116.15 (8)	C15_2—N5_2—C14_2	115.79 (9)	
C17_1—O2_1—C14_1	117.07 (8)	C17_2—O2_2—C14_2	116.88 (10)	
C2_1—N1_1—C7A_1—C3A_1	0.69 (8)	C2_2—N1_2—C7A_2—C3A_2	1.07 (8)	
C2_1—N1_1—C7A_1—C7_1	177.71 (8)	C2_2—N1_2—C7A_2—C7_2	-179.36 (8)	
C2_1—N1_1—C11_1—C12_1	101.85 (10)	C2_2—N1_2—C11_2—C12_2	78.97 (10)	
C2_1—N3_1—C3A_1—C4_1	-175.83 (7)	C2_2—N3_2—C3A_2—C4_2	-179.62 (7)	
C2_1—N3_1—C3A_1—C7A_1	0.29 (8)	C2_2—N3_2—C3A_2—C7A_2	-0.08 (8)	
C3A_1—C4_1—C5_1—C6_1	-0.47 (11)	C3A_2—C4_2—C5_2—C6_2	-0.20 (11)	
\[\text{C3A}_1—\text{C4}_1—\text{C8}_1—\text{N2}_1 \quad -2.07 \text{ (10)} \quad \text{C3A}_2—\text{C4}_2—\text{C8}_2—\text{N2}_2 \quad -8.31 \text{ (10)} \]
\[\text{C3A}_1—\text{C7A}_1—\text{C7}_1—\text{C6}_1 \quad 0.27 \text{ (11)} \quad \text{C3A}_2—\text{C7A}_2—\text{C7}_2—\text{C6}_2 \quad 0.26 \text{ (11)} \]
\[\text{C3A}_1—\text{C7A}_1—\text{N1}_1—\text{C11}_1 \quad -175.96 \text{ (7)} \quad \text{C3A}_2—\text{C7A}_2—\text{N1}_2—\text{C11}_2 \quad 175.46 \text{ (7)} \]
\[\text{C4}_1—\text{C5}_1—\text{C6}_1—\text{C7}_1 \quad -0.58 \text{ (12)} \quad \text{C4}_2—\text{C5}_2—\text{C6}_2—\text{C7}_2 \quad -0.19 \text{ (12)} \]
\[\text{C4}_1—\text{C8}_1—\text{N2}_1—\text{C9}_1 \quad 166.74 \text{ (9)} \quad \text{C4}_2—\text{C8}_2—\text{N2}_2—\text{C9}_2 \quad 177.21 \text{ (8)} \]
\[\text{C5}_1—\text{C7}_1—\text{C7A}_1—\text{N1}_1 \quad 0.27 \text{ (11)} \quad \text{C5}_2—\text{C7}_2—\text{C7A}_2—\text{N1}_2 \quad 0.16 \text{ (11)} \]
\[\text{C4}_1—\text{C8}_1—\text{N2}_1—\text{C9}_1 \quad 0.26 \text{ (11)} \quad \text{C4}_2—\text{C8}_2—\text{N2}_2—\text{C9}_2 \quad 0.16 \text{ (11)} \]
\[\text{C3A}_1—\text{C7A}_1—\text{N1}_1—\text{C11}_1 \quad 0.27 \text{ (11)} \quad \text{C3A}_2—\text{C7A}_2—\text{N1}_2—\text{C11}_2 \quad 0.16 \text{ (11)} \]
\[\text{C11}_1—\text{C12}_1—\text{C13}_1—\text{C14}_1 \quad 177.37 \text{ (9)} \quad \text{C11}_2—\text{C12}_2—\text{C13}_2—\text{C14}_2 \quad 178.99 \text{ (9)} \]
\[\text{C11}_1—\text{C12}_1—\text{C13}_1—\text{C16}_1 \quad -2.24 \text{ (12)} \quad \text{C11}_2—\text{C12}_2—\text{C13}_2—\text{C16}_2 \quad -0.06 \text{ (12)} \]
\[\text{C11}_1—\text{C12}_1—\text{C13}_1—\text{C16}_1 \quad -0.06 \text{ (12)} \quad \text{C11}_2—\text{C12}_2—\text{C13}_2—\text{C16}_2 \quad -0.37 \text{ (12)} \]
\[\text{C13}_1—\text{C14}_1—\text{N5}_1—\text{C15}_1 \quad -175.94 \text{ (9)} \quad \text{C13}_2—\text{C14}_2—\text{N5}_2—\text{C15}_2 \quad -175.04 \text{ (10)} \]

Hydrogen-bond geometry (Å, †)

D—H···A	D—H	H···A	D···A	D—H···A
C2_1—H2_1···O1_2i	1.054 (12)	2.353 (12)	3.2907 (14)	147.5 (9)
C7_1—H7_1···O1_2ii	1.031 (12)	2.245 (13)	3.2211 (14)	157.4 (10)
N2_1—H2a_1···N3_1	1.002 (14)	2.035 (14)	2.8581 (14)	137.9 (10)
C2_2—H2_2···N5_1	1.060 (13)	2.240 (13)	3.2922 (15)	171.4 (9)
C7_2—H7_2···O1_1iii	1.059 (12)	2.394 (12)	3.0915 (14)	122.3 (8)
C11_2—H11b_2···F1_1iv	1.092 (12)	2.186 (12)	3.1839 (13)	150.7 (10)
C16_2—H16c_2···F1_2v	1.047 (17)	2.403 (17)	3.2827 (15)	140.9 (12)
N2_2—H2a_2···N3_2	1.002 (14)	1.942 (14)	2.7823 (13)	139.6 (10)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1.