ALTERED GABA TRANSMISSION IN A MOUSE MODEL OF INCREASED TRAIT ANXIETY

R. O. TASAN,*A A. BUKOVAC,* Y. N. PETERSCHMITT,⁎B S. B. SARTORI,* R. LANDGRAF,* N. SINGEWALD* AND G. SPERK**

*Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
**Center for Brain Research, Department of Biochemistry and Molecular Biology, Medical University Vienna, Vienna, Austria
**Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
**Max Planck Institute of Psychiatry, Behavioral Neuroendocrinology, Munich, Germany

Abstract—Anxiety disorders are the most prevalent central nervous system diseases imposing a high social burden to our society. Emotional processing is particularly controlled by GABA-ergic transmission in the amygdala. Using in situ hybridization and immunohistochemistry we now investigated changes in the expression of GABA synthesizing enzymes (GAD65 and GAD67), GABAA (α1–5, β1–3, γ1–2) and GABAB receptors (GBBR1, GBBR2) in amygdaloid nuclei of high anxiety-related behavior (HAB) mice in comparison to mice selected for normal anxiety-related behavior (NAB). Levels of GAD65 and GAD67 mRNAs and protein, as well as those of GABA were increased in the amygdala of HAB mice. Relative to NAB controls, mRNA expression of the GABAα receptor subunits β1, β2 and γ2 was specifically increased in the basolateral amygdala of HAB mice while transcription of α5 and γ1 subunits was reduced in the central and medial amygdala. On the protein level, increases in β2 and γ2 subunit immunoreactivities were evident in the basolateral amygdala of HAB mice. No change in GABAα receptor expression was observed. These findings point towards an imbalanced GABA-ergic neurotransmission in the amygdala of HAB mice. On the other hand, FosB, a marker for neuronal activity, was increased in principal neurons of the basolateral amygdala in HAB mice, reflecting activation of excitatory neurons, possibly as a consequence of reduced GABA-ergic tonic inhibition through GABA-ergic transmission in the amygdala. Using in situ hybridization and immunohistochemistry we now investigated changes in the expression of GABA synthesizing enzymes (GAD65 and GAD67), GABAA (α1–5, β1–3, γ1–2) and GABAB receptors (GBBR1, GBBR2) in amygdaloid nuclei of high anxiety-related behavior (HAB) mice in comparison to mice selected for normal anxiety-related behavior (NAB). Levels of GAD65 and GAD67 mRNAs and protein, as well as those of GABA were increased in the amygdala of HAB mice. Relative to NAB controls, mRNA expression of the GABAα receptor subunits β1, β2 and γ2 was specifically increased in the basolateral amygdala of HAB mice while transcription of α5 and γ1 subunits was reduced in the central and medial amygdala. On the protein level, increases in β2 and γ2 subunit immunoreactivities were evident in the basolateral amygdala of HAB mice. No change in GABAα receptor expression was observed. These findings point towards an imbalanced GABA-ergic neurotransmission in the amygdala of HAB mice. On the other hand, FosB, a marker for neuronal activity, was increased in principal neurons of the basolateral amygdala in HAB mice, reflecting activation of excitatory neurons, possibly as a consequence of reduced GABA-ergic tonic inhibition through α5 and γ1 containing receptors. Ultimately these mechanisms may lead to the compensatory activation of GABA transmission, as indicated by the increased expression of GAD65/67 in HAB mice.

© 2011 IBRO. Published by Elsevier Ltd. All rights reserved. Open access under CC BY-NC-ND license.

Key words: GABAα receptor, glutamate decarboxylase, HAB, high anxiety-related behavior, amygdala, FosB.

*Corresponding author. Tel: +0043-512-9003-71210.
E-mail address: ramon.tasan@i-med.ac.at (R. O. Tasan) or guenther.sperk@i-med.ac.at (G. Sperk).

Abbreviations: BLA, basolateral amygdala; CEA, central amygdala; EPM, elevated plus maze; GAD65, glutamic acid decarboxylase of 65 kilo Dalton; GAD67, glutamic acid decarboxylase of 67 kilo Dalton; HAB, high anxiety-related behavior; LAB, low anxiety-related behavior; MEA, medial amygdala; NAB, normal anxiety-related behavior; ROD, relative optical density.

Anxiety disorders are the most prevalent disorders of the central nervous system imposing a high social burden to individuals as well as to the society (Andlín-Sobocki et al., 2005). While physiological anxiety is essential for the survival under changing environmental conditions, persistent generalized anxiety or exaggerated inappropriate fear are pathological manifestations that severely reduce quality of life (Beizung and Griebel, 2001; Norrholm and Ressler, 2009). Little is known, however, about the molecular mechanisms leading to anxiety-related conditions.

There is considerable evidence indicating a role of altered GABA-ergic transmission in human anxiety disorders (Millan, 2003). Thus, benzodiazepines acting through GABAA receptors are among the most widely prescribed anxiolytic drugs (Nemeroff, 2003). Changes in GABAA receptors were observed in limbic brain areas of panic disorder patients by [14C]flumazenil positron emission tomography (Hasler et al., 2008) and single nucleotide polymorphisms in the glutamate decarboxylase65 (GAD65) gene were associated with increased susceptibility to anxiety disorders (Hettema et al., 2006).

GABA released from axon terminals can act on two classes of receptors, GABAA and GABAB receptors. GABAA receptors are ligand-gated chloride channels (Olsen and Sieghart, 2009) consisting of five subunits derived from more than 15 different genes. Most GABAA receptors, however, consist of two α-, two β- and one γ- or δ-subunit (Sieghart and Sperk, 2002). The subunit composition determines the physiological and pharmacological properties of individual receptor subtypes. In particular α2- and γ2-subunits of the GABAA receptor have been implicated in mediating the anxiolytic effects of benzodiazepines (Cres-tani et al., 1999; Low et al., 2000; Morris et al., 2006).

GABAB receptors are G-protein coupled, inhibitory receptors that are generally formed by heteromeric assembly of two receptor molecules, one GABAB1 (GBBR1) with a GABAB2 (GBBR2) subunit (Ulrich and Bettler, 2007). GABAB receptors may also play a role in the integration of anxiety, since mice deficient in GABAB receptors (GBBR1 or GBBR2) are more anxious in several behavioral paradigms (Mombereau et al., 2004, 2005).

The GABA-ergic system in the amygdala does not only modulate fear and anxiety under physiological conditions, but alterations in this system may also predispose individuals to pathological anxiety traits (Shen et al., 2010). The aim of our present study was therefore to elucidate the role of the GABA-ergic system in anxiety-related behavior in HAB and NAB mouse lines. These two mouse lines expressing either high (HAB) or normal (NAB) levels of in-born anxiety-related behavior were selected by breeding.
Table 1. Oligonucleotide sequence for in situ hybridization

mRNA Access code	Oligonucleotide sequence
α1 NM_012505.3	5'-CCT GGC TAA GTG GGT GGT ATA GCT GTG TGG TGT AGG AGC ATA TGT 3'
α2 NM_000863.3	5'-CAT CGG GAG CAA CCT GA CCG AGT AGC GAT TGT AAC TGC 3'
α3 NM_000867.3	5'-GGC CAG ATT GAT AGG ATA GGT GGT ACC CAT TGT GAA GGT GGT G 3'
α4 NM_012512.2	5'-GGG AGG TCT TGT GTG TTT TCT CTT CAG CAG AGG AGC TGG 3'
α5 NM_176942.3	5'-TGG GGA TTG TGG GAT GGG TCA GTC TCT CAG TGT TGC TGT 3'
β1 NM_000869.4	5'-TGC CTT GCC ACC CCA CGC AAG CCC TGG CGG CTG CTC AGC GGT GAG G 3'
β2 NM_000870.3	5'-ACT GGT TGA AGA AGA ATG CCT TGA TCC TCT GTC GAC ACC TGG GGA 3'
β3 NM_01038701.1	5'-CTG TCT CCC ATG TAG CGC CCA TAC CCT TCC TGG GGC ATG TCG TGT 3'
γ1 NM_010252.4	5'-GGG AAT TAG GAT GAG TCG TCC AGG ATG ACC TGG GGA 3'
γ2 NM_000873.2	5'-GGC AAT GCG AAT ATG TAT CCT CCC ATG TCT CCA GGC TCC TGT GCG 3'
α GAD65 NM_000878.2	5'-CTC CAT CAC ACG CTG GCA GTT CGT TGG CGT GGT GAG G 3'
α GAD67 NM_000877.3	5'-GCA GGT TCT TGG AGG ACT CTC TCT TCG GCC GCC TCA C 3'
α GBBR1 NM_019439.3	5'-AAG CCA CCG TAC ATG CCA CCA GCC TGC CAG GCC GGA TGT ATA ATG C 3'
α GBBR2 NM_01081141.1	5'-GAT GTA TGT GGT CTT CTC TGG TGT TTC TGT TAG CAT GGT GAC TCC TCC TCG C 3'

EXPERIMENTAL PROCEDURES

Animals

All procedures involving animals and animal care were conducted in accordance with international laws and policies (EEC Council Directive 86/609, OJ L 358, 1, December 12, 1987; Guide for the Care and Use of Laboratory Animals, U.S. National Research Council, 1996) and were approved by the Austrian Ministry of Science. All effort was taken to minimize the number of animals used and their suffering.

Experiments were carried out on adult male HAB (n=20) and NAB (n=23) mice at 12–15 weeks of age bred in the animal facilities of the Department of Pharmacology and Toxicology, University of Innsbruck, Austria. As previously described in more detail (Kromer et al., 2005; Muigg et al., 2009), the two lines were derived from a Swiss CD-1 outbred population selectively inbred for either high or normal anxiety-related behavior displayed on the EPM, with HAB mice spending less than 15% of the testing time on its open arms, compared with approximately 35% for NAB mice with no overlapping between the lines. The high anxiety phenotype of HAB mice was confirmed in the light/dark test and ultrasonic vocalization, previously (Kromer et al., 2005). In the current experiments the behavioral phenotype of each mouse was tested by an EPM test at 7 weeks of age. Animals were housed under standard laboratory conditions (12:12 h light/dark cycle with lights on at 7:00) with food and water available ad libitum. Mice were housed in groups of four to five animals per cage.

Histochemistry

Tissue preparation. In order to avoid detection of possible immediate changes of gene expression due to acute stress exposure of the mice during EPM testing, examination of the GABA-ergic system was performed 4 weeks after behavioral experiments. Mice were killed by carbon dioxide gas inhalation or by injecting an overdose of thiopental (Thiopental, Sandoz, Austria) for in situ hybridization and immunohistochemistry, respectively. Brains were either snap frozen (isopentane, −70 °C, 3 min) for in situ hybridization or perfused with 4% paraformaldehyde (PFA) for immunohistochemistry (Tasan et al., 2010). Using a cryostat, coronal sections of 20 μm and 40 μm were cut for in situ hybridization and immunohistochemistry, respectively. Every seventh section was Nissl stained and series of matching sections were selected for subsequent histochemistry.

In situ hybridization. In situ hybridization was performed as described previously in detail (Tsunashima et al., 1997; Tasan et al., 2010). Oligonucleotide probes targeting diverse markers of the GABA-ergic system are listed in Table 1. They were custom synthesized (Microsynth, Balgach, Switzerland, purified by HPLC). Oligonucleotides (2.5 pmol) were 3'-end-labeled by incubation with [35S]dATP (50 μCi, 1300 Ci/mmolt, Hartmann Analytic GmbH, Braunschweig, Germany) and terminal transferase (Roche Diagnostics, Basel, Switzerland), as described previously in detail (Tsunashima et al., 1997). Hybridization was performed in 50% formamide, 4 × SSC (1 × SSC is 150 mM NaCl, 15 mM sodium citrate, pH 7.2), 500 μCi/μl salmon sperm DNA, 250 μg/ml yeast tRNA, 1 × Denhardt’s solution (0.02% Ficoll, 0.02% polyvinylpyrrolidone, and 0.02% bovine serum albumin), 10% dextran sulfate, and 20 mM dithiothreitol (all from Sigma) at 42 °C for 18 h. The slides were washed at stringent conditions (50% formamide in 2 × SSC, 42 °C) and briefly rinsed in water followed by 70% ethanol, and dried. Slides were exposed to BioMax MR films (Amersham Pharmacia Biotech, Buckinghamshire, UK) together with [3H]-microscales for 7–14 days. For evaluation of the hybridization signal at the cellular level, some slides were dipped in Kodak NTB-2 photosensitive emulsion (Kodak, Rochester, NY, USA; diluted 1:1 with distilled water) at 42 °C, air dried over night, and then exposed for 4–6 weeks at 4 °C. The BioMax MR films and the dipped slides were developed with Kodak D19 developer. Sections were counterstained with Cresyl Violet, dehydrated, cleared in butyl acetate, and covered with a coverslip using Eukitt (Merck, Darmstadt, Germany).

Quantitative evaluation of in situ hybridization was done using digitized images of the autoradiographs (eight bit digitized picture, 256 gray values). Gray values were measured by the public domain program ImageJ 1.38x (NIH, USA; 255=white; 0=black) and converted to relative optical density (ROD). ROD values obtained from autoradiographic images were plotted against stan-
Immunohistochemistry. Immunohistochemical analysis was performed on free-floating, FPA-fixed, 40 µm thick coronal sections using indirect peroxidase labeling, as described previously (Furtinger et al., 2001). The following antisera were used: polyclonal rabbit anti-FosB (1:2000 SC-48; Santa Cruz Biotechnology), polyclonal rabbit anti-GABA (1:2000 A2052, Sigma), monoclonal mouse anti-GAD67 (1:15,000 MAB 5406; Chemicon), monoclonal mouse anti-CaMKII (1:5000 MAB, clone 6G9, Millipore), polyclonal rabbit anti-β2 subunit (1:100, residues 351–404) and polyclonal rabbit anti-γ2 subunit (1:300, residues 319–366) (both gifts from W. Sieghart, Vienna). A mouse Ig blocking reagent (VECTOR® M.O.M. immunodetection kit, Vector laboratories, Inc., Burlingame, USA) was used for monoclonal mouse antibodies (GAD67, CaMKII). In brief, free floating coronal sections were incubated in 10% normal goat serum (Biomedica, Vienna, Austria) in Tris–HCl buffered saline (TBS; 50 mM, pH 7.2) for 90 min, followed by incubation with primary antisera. The resulting complex was visualized by incubation with horseradish peroxidase-coupled secondary antibody (1:250 P0448; Dako, Vienna, Austria) at room temperature for 150 min. Sections were further incubated in a solution containing 0.03% 3,3′-diaminobenzidine tetrahydrochloride (Sigma, St. Louis, MO, USA) and 0.005% H2O2 in TBS for 6 min. They were then mounted on slides, air-dried, dehydrated and coverslipped. After each incubation step (with the exception of preincubation with 10% normal goat serum), sections were washed three times for 5 min each with TBS. All buffers and antibody dilutions, except the buffer used for washing after peroxidase treatment and the diaminobenzidine reaction buffer, contained 0.4% Triton X-100. Normal goat serum (10%) was included in all buffers containing antibodies. In each experiment, sections without primary antibody were included as a control. No immunopositive elements were detected in these control sections.

In addition, dual labeling of FosB with either CaMKII as marker for pyramidal neurons or GAD67 as marker for non-pyramidal interneurons in the basolateral amygdala were performed to determine the type of FosB expressing neurons. Sections were incubated overnight at room temperature with rabbit anti-FosB antibody (1:500, SC-48; Santa Cruz Biotechnology) together with either a mouse monoclonal anti-CaMKII antibody (1:5000, Millipore, Billerica, MA, USA) or a mouse monoclonal anti-GAD67 antibody (1:20,000, Chemicon, USA). Sections were rinsed in TBS-Triton (0.4%) and then incubated with a Vectastain ABC-kit (Mouse IgG, Vector laboratories, Inc., Burlingame, USA) and donkey anti-rabbit Alexa Fluor 488 (1:500, Invitrogen, Eugene, USA) for 60 min at room temperature. After washing in TBS, sections were incubated in a tyramide amplification solution (1:100, TSA Plus Cyanine 3 System, PerkinElmer, MA, USA) for 2 min, mounted on slides and covered using Vectashield mounting medium (Vector laboratories, Inc., Burlingame, USA).

Number of FosB, GAD67 and GABA immunoreactive positive cells was obtained for each marker bilaterally from two matched sections per animal (four NAB and four HAB mice) in the basolateral amygdala (BLA) at a magnification of 400 times in multiple separate fields and mean values were calculated for each mouse. Results are presented as number of immunoreactivity positive cells/mm² and expressed as mean ± SEM.

Analysis of dual labeling immunofluorescence was done as described elsewhere (McDonald and Mascagni, 2010). In brief, two matched sections per animal (four NAB and four HAB mice) containing the BLA were processed for either FosB/CaMK or FosB/GAD67 dual localization. Identification of dual labeled cells was performed at 400 times magnification in multiple separate fields within the BLA in each section.

Behavioral testing

Elevated plus maze. This test was used as a widely accepted test for anxiety-like behavior as described in detail previously (Lister, 1987; Tschenett et al., 2003).

Statistical analysis

Data were presented as means ± SEM. Data were analyzed for normal distribution and equal variances using GraphPad Prism software (Prism 5 for Macintosh, GraphPad Software Inc., San Diego, CA, USA). Statistical analysis of behavior was done by Student’s t-test for data with normal distribution or Mann–Whitney test as a nonparametric test. ANOVA was used to analyze overall changes in percentage of mRNA ROD values in the CEA, BLA and MEA of HAB and NAB mice, with a Bonferroni test as a nonparametric test. ANOVA was used to analyze overall changes in percentage of mRNA ROD values in the CEA, BLA and MEA of HAB and NAB mice, with a Bonferroni post hoc test comparing HAB and NAB of the respective subregion. Linear regression and a Spearman correlation were used to investigate a correlation between mRNA expression and anxiety-related parameters as well as locomotor-related parameters on the EPM at 7 weeks of age.

RESULTS

HAB mice (n=20) showed a significantly reduced percentage of time spent in the open arms compared to NAB controls (n=23), (HAB: 5.2±0.89, NAB: 28.5±1.32, P<0.0001) and percentage of open arm entries (HAB: 21.1±2.11, NAB: 44.5±1.65, P<0.0001), indicating increased anxiety-related behavior and thus confirming the extremely anxious phenotype of each HAB mouse on the EPM. In addition, HAB mice exhibited reduced motor activity under stressful conditions as reflected by a decreased number of closed arm entries (HAB: 23.3±1.66, NAB: 33.9±1.53, P<0.0001) and reduced total distance traveled (HAB: 9.1±0.82 m, NAB: 14.3±0.46 m, P<0.0001) on the EPM during the 5 min testing period.

Histochemical results

Increased expression of GAD in the amygdala of HAB mice. As shown in Fig. 1A, the mRNAs encoding for the GABA synthesizing enzymes GAD67 and GAD65 (not shown) were particularly concentrated in the central amygdala (CEA) while their expression was lower both in the medial (MEA) and basolateral nucleus of the amygdala (BLA). In HAB mice, a pronounced up-regulation of mRNA abundance of the GABA synthesizing enzymes GAD65 and GAD67 was evident in the amygdala (Fig. 1A, B, Table 2), but not in other brain regions, including the granule cell layer of the dentate gyrus in the dorsal (% of control NAB: 100.0±7.00 and HAB: 107.0±6.15; P=0.47, Student’s t-test, mean±SEM) (Fig. 1A, C) as well as in the ventral hippocampus (% of control NAB: 100.0±6.07 and HAB: 85.4±7.09; P=0.14, Student’s t-test, mean±SEM). To investigate whether the increased mRNA expression translates into higher protein levels we performed immunohistochemistry for GAD67 and GABA (Fig. 2). Indeed immunoreactivity for GAD67 (Fig. 2A, C) as well as for GABA (Fig. 2B, C) was enhanced in the amygdala of HAB mice.
Since increased GAD67 mRNA expression may be caused by sustained neuronal activity due to chronically enhanced stress levels, we performed immunohistochemistry for \(\psi \)H9004FosB, a marker of long-term adaptive changes in the brain. The number of FosB positive cells was significantly higher in the BLA of HAB mice than of NAB controls (Fig. 3A, B). In both, HAB and NAB mice, FosB labeling was co-localized with CaMKII labeling in the BLA (Fig. 3C), but was absent from GAD67 positive neurons (Fig. 3C), indicating chronic activation of principal neurons rather than of interneurons.

Expression of mRNA and immunoreactivity of GABAA and GABA\(_{\beta}\) receptor subunits in the amygdala of NAB mice. Control NAB mice revealed a similar distribution of GABA\(_{\alpha}\) receptor subunit mRNAs in the amygdaloid nuclei as previously described for C57BL/6J mice (Heldt and Ressler, 2007a,b). High expression of GABA\(_{\alpha}\) receptor subunit \(\alpha2, \alpha3, \beta3 \) and \(\gamma2 \) mRNAs was observed in the BLA while GABA\(_{\alpha}\) receptor subunits \(\alpha4 \) and \(\beta1 \) were moderately and \(\alpha1, \alpha5, \beta2 \) and \(\gamma1 \) subunit mRNAs only weakly expressed. In the CEA, there was a predominant expression of \(\alpha2, \alpha3, \beta3 \) and \(\gamma2 \) mRNAs and a moderate expression of \(\beta1 \) and \(\gamma1 \) subunit mRNAs. The MEA was characterized by high expression of GABA\(_{\alpha}\) receptor subunit \(\alpha2, \alpha3, \beta1, \beta3, \gamma1 \) and \(\gamma2 \) mRNAs. Regarding GABA\(_{\beta}\) receptors, GBBR1 subunit mRNA was equally high expressed in the BLA, CEA and MEA, whereas the mRNA for the GBBR2 subunit was restricted mainly to the BLA and MEA.

Altered expression of GABA\(_{\alpha}\) receptor subunits in the amygdala of HAB mice. The expression profile of the different GABA\(_{\alpha}\) receptor subunit mRNAs in the amygdala of HAB mice was distinct from NAB controls. In HAB mice, there was a significant increase of GABA\(_{\alpha}\) receptor subunit \(\beta1 \) mRNA in all amygdala nuclei investigated (Table 2). In addition, the percentage of \(\beta2 \) mRNA was higher in the BLA, but not in the CEA or MEA of HAB mice (Fig. 4E–H, Table 2). Among the \(\alpha\)-subunits only expression of \(\alpha5 \) mRNA was altered in the amygdala. Although basal levels of \(\alpha5 \) mRNA were already low throughout the amygdala of NAB controls, they were further reduced in the CEA and MEA of HAB mice (Table 2). Interestingly, in HAB mice the \(\gamma1 \) mRNA levels were reduced in all amygdaloid nuclei (Fig. 4A–D, Table 2), whereas those of \(\gamma2 \) mRNA were specifically increased in the BLA and CEA (Table 2). As shown in Fig. 5, \(\beta2 \) and \(\gamma2 \) subunit immunoreactivities were also clearly increased in the BLA of HAB mice.

No difference in the mRNA abundance of both GABA\(_{\alpha}\) receptor subunits GBBR1 and GBBR2 was detected in any of the amygdaloid nuclei of HAB mice compared to NAB controls.

Correlation of GAD expression in the amygdala with EPM behavior. To investigate whether increased expression of GADs may be associated with altered anxiety-like and/or locomotor-related behavior, we performed a correlational analysis of GAD67 and GAD65 mRNA levels with the behavioral data obtained from the EPM (percentage
open arm time and total distance traveled). Indeed, the expression of GAD67 mRNA in the BLA of HAB mice, was positively correlated with the percentage of open arm time ($r=0.58, P=0.019$, Fig. 1D), but not with the total distance traveled by the mice ($r=0.40, P=0.139$). In contrast, no correlation of GAD67 mRNA levels with percentage open arm time ($r=-0.21, P=0.383$; Fig. 1E) or total distance traveled ($r=-0.005, P=0.983$) was observed in NAB mice. These findings imply that the up-regulation of the GAD67 may be a compensatory reaction to the high anxiety behavior phenotype of HAB mice. In contrast, when we included both groups, HAB and NAB mice, into the analysis there was a negative correlation of GAD65 and GAD67 mRNAs expression in all amygdaloid nuclei (BLA, CEA and MEA) with both, anxiety-like and locomotor-related behavior on the EPM (data not shown). These findings were not surprising, since they reflect largely the differences in the preselected phenotypes.

Altered GABAA receptor subunit mRNA expression correlated with anxiety- and motor activity-related behavior when both groups, HAB and NAB mice, were included. There was no correlation, however, at the level of the individual groups (not shown).

DISCUSSION

The present study identified prominent changes of the GABA system in the amygdala of HAB mice, an animal model of increased trait anxiety. These include markedly increased expression of the GABA synthesizing enzymes GAD65 and GAD67 together with increased expression of GABAA receptor subunit $\beta 1$, $\beta 2$, $\gamma 2$ mRNAs, whereas subunit $\alpha 5$ and $\gamma 1$ mRNA levels were decreased.

In the BLA, most non-pyramidal neurons use GABA as a principal neurotransmitter and exert an inhibitory action on glutamatergic principal cells (Pare et al., 2003). This inhibition is predominantly generated through GABAA receptors that mediate either a phasic response when located within the synapse or maintain tonic inhibition at extrasynaptic sites (Semyanov et al., 2003, 2004). Spontaneous firing rates in the lateral and central amygdala are among the lowest in the brain, indicating potent tonic inhibition suppressing neuronal activity in the amygdala (Quirk and Gehlert, 2003). On the other hand, repeated stimulation of the BLA, leads to long-term synaptic facilitation and a behavioral state of chronic anxiety (Sajdyk and Shekhar, 2000).

GABA synthesizing enzymes (GAD65 and GAD67)

GAD65 and GAD67 are catalyzing GABA synthesis and their activity is tightly related to the tone of GABA neurons. They are abundantly expressed in the amygdala (Fig. 1A). In the BLA both enzymes are primarily expressed in interneurons (McDonald and Pearson, 1989) whereas in the CEA they are also contained in GABA-ergic projection neurons targeting forebrain and brain stem areas (LeDoux et al., 1988; Bourgeois et al., 2001). Impaired GABA-ergic transmission in GAD65 knockout mice results in increased anxiety-related behavior in the open field and elevated.

Table 2 mRNA signals of amygdala nuclei in NAB and HAB mice

Subregion	GABA	GAD65	GAD67	GBR1	GBR2
BLA					
NAB					
HAB					
CEA					
NAB					
HAB					
MEA					
NAB					
HAB					

Data are mean ± SEM of % of NAB. Numbers of animals: NAB, n=19; HAB, n=16.
zero maze (Kash et al., 1999). Considerable evidence suggests that increased GABA-ergic transmission in the BLA is associated with reduced anxiety, while increasing the excitability of BLA projection neurons by inhibition of GABA transmission tends to be anxiogenic (Davis et al., 1994; Shekhar et al., 2003). In contrast, the high anxiety level in HAB mice is associated with an increased expression of GAD65 and GAD67. This increase in GABA synthesis may be part of a compensatory mechanism balancing the persistent over-stimulation of limbic brain areas, as indicated by the positive correlation of GAD mRNA expression with percentage open arm time. The increased expression of GADs may be driven by a sustained activation of the amygdala in HAB mice. On the other hand recent evidence suggests also excitatory actions of GABA in the basal amygdala (Woodruff et al., 2006), resulting in rapid activation of basolateral pyramidal neurons that may significantly contribute to increased anxiety-related behavior.

Activation of amygdala nuclei in response to stress has been well documented by increased expression of immediate early genes c-Fos and Zif-268 (Hoffman and Lyo, 2002; Singewald, 2007; Kovacs, 2008) and has also been

![Fig. 2. GAD67 and GABA immunoreactivity (IR) in the amygdala of HAB and NAB mice. (A) Bright field photomicrographs of representative, matched sections demonstrating GAD67-IR labeling in the amygdala of HAB and NAB mice, higher magnification depicts increased number of GAD67-IR positive cells in the BLA of HAB mice compared to NAB controls. (B) bright field photomicrographs of GABA-IR labeling on representative, matched sections demonstrating an increased number of GABA-IR positive cells in the BLA of HAB mice. (C) quantification of GAD67-IR and GABA-IR positive cells in the BLA of HAB and NAB mice. Arrows in (A) and (B) depict GAD67-IR and GABA-IR positive cells in the BLA of NAB mice, respectively. Values in (C) are means ± SEM, Mann–Whitney test, * P<0.05; ** P<0.01 (HAB n=4, NAB n=4), scale bars: low magnification 500 μm, high magnification 50 μm.](image1)

![Fig. 3. FosB immunoreactivity in the BLA of HAB and NAB mice. (A) High magnification, bright field photomicrograph of representative, matched sections showing FosB positive cells in the BLA of NAB and HAB mice, (B) quantification demonstrating increased number of FosB positive cells in the BLA of HAB mice. (C) dual labeling immunofluorescence reveals colocalization of FosB (green) staining with (red) CaMKII but not with (red) GAD67-IR in the BLA. arrows in (C) show CaMKII positive and GAD67 positive cells, respectively. Values in (B) are means ± SEM, Mann–Whitney test, * P<0.05 (HAB n=4, NAB n=4), scale bars: (A) 50 μm, (C) 10 μm. For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.](image2)
demonstrated in limbic areas of HAB mice (Muigg et al., 2009). Recently, Carta et al. (2008) reported increased expression of GABAA receptor subunit mRNAs in the amygdala of HAB and NAB mice. (A) Film autoradiographs and (C) pseudocolor coded images of GABA_A receptor γ1 subunit mRNA in the amygdala of HAB (B + D) and NAB mice (A + C) are shown, arrows in (B) and (D) indicate reduced expression of γ1 subunit mRNA in the amygdala of a HAB mouse, (E + F) film autoradiographs and (G + H) pseudocolor coded images of an in situ hybridization demonstrating increased β2 mRNA in the BLA of HAB mice (F + H) compared to NAB controls (E + G), arrows in (F) and (H) indicate increased expression of β2 mRNA in the BLA of a HAB mouse. Scale bars: (A–D) 500 μm; (E–H) 200 μm. For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.

In HAB mice, we observed a reduction of the γ1 subunit mRNA levels in all amygdaloid nuclei investigated (Table 2), whereas those of the γ2 subunit were increased specifically in the BLA and CEA (Table 2). The mRNA levels for the δ subunit were below detection limit in the amygdala. The γ2 subunit mediates postsynaptic clustering and is required for normal channel functioning.
Crestani et al., 1999). Knockout mice, heterozygous for the \(/H9253 \) subunit, display increased anxiety-related behavior and reduced benzodiazepine binding sites. Although the total number of GABA\(_\alpha\) receptors is not altered, synaptic clustering is significantly reduced (Crestani et al., 1999). The increased expression of the \(\gamma2 \) subunit mRNA in HAB mice may reflect an accelerated turnover of the \(\gamma2 \) subunit containing GABA\(_\alpha\) receptors due to chronically high stress conditions and may indicate a compensatory mechanism counteracting increased amygdala activity. Following EPM exposure, Chacur et al. (1999) observed increased [\(^{3}H\)]-flunitrazepam but not [\(^{3}H\)]-muscimol binding specifically in the CEA and BLA, indicating a higher sensitivity of GABA\(_\alpha\) receptors to benzodiazepines although the total number of receptors may not be altered (Chacur et al., 1999).

Increased sensitivity to the anxiolytic effect of diazepam is generally observed in rodents with low explorative activity and changes in the subunit composition of GABA\(_\alpha\) receptors due to altered subunit expression may be an attractive explanation for this phenomenon (Liebsch et al., 1998; Bert et al., 2001; Nelovkov et al., 2006). In the present study, also HAB mice exhibit low explorative activity during EPM stress, presumably related to the high trait anxiety of these mice. Thus, the high sensitivity of HAB mice to the anxiolytic effect of benzodiazepines (Kromer et al., 2005) may, at least in part, be related to the higher number of \(\gamma2 \) containing GABA\(_\alpha\) receptors, known to mediate the action of benzodiazepines in the amygdala.

Interestingly, whereas \(\gamma2 \) subunits are increased in the amygdala of HAB mice, \(\gamma1 \) subunits, particularly enriched in the CEA and MEA, are significantly reduced in these mice (Table 2). Esmaeili et al. (2009) recently demonstrated that GABA-ergic synapses formed by lateral inputs to the CEA, probably originating from intercalated cell masses, contain \(\gamma1 \) subunits (Esmaeili et al., 2009). These connections are important for extinction of conditioned fear (Likhitik et al., 2008). Deficits in extinction learning have been described for HAB rats (Muigg et al., 2008) and mice (Yen et al., unpublished observation) and could be associated with decreased \(\gamma1 \) subunit expression.

CONCLUSION

We demonstrated differential alterations of the GABA-ergic system in the amygdala of HAB mice, a model of pathological trait anxiety. Expression of GAD65 and GAD67 was highly up-regulated on mRNA as well as on protein level, suggesting enhanced GABA synthesis and release. Notably the increases in GAD65/67 and \(\gamma2 \) subunit expression, but also that of subunits \(\beta1 \) and \(\beta2 \), point towards a facilitated GABA transmission, aiming to compensate the high-anxiety state of HAB mice. On the other hand, the reduced expression of the \(\alpha5 \) subunit in the CEA and MEA may be part of the molecular mechanisms leading to the anxious phenotype of HAB mice. A reduced number of \(\alpha5 \) subunit containing receptors may cause reduced tonic inhibition, favoring activation of the amygdala even under non-stressful conditions as illustrated by the increase in FosB expression. Both mechanisms may be causatively related to the compensatory increase in GAD65 and GAD67 expression.

Acknowledgments—The authors declare that this work was funded by the Austrian Science fund (S10204, G. Sperk; S10202, N. Singewald; P 22830-B18, RO. Tasan). There are no other personal financial holdings of any of the authors that could be perceived as constituting a potential conflict of interest. We thank Elke Kirchmair and Anna Wieselthaler for technical assistance, Prof. Werner Sieghart for providing antibodies and Prof. Heide Hörtnagl for discussion.

REFERENCES

Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J (2005) Cost of disorders of the brain in Europe. Eur J Neurol 12 (Suppl 1):1–27.

Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125: 141–149.
Bert B, Fink H, Sohr R, Rex A (2001) Different effects of diazepam in Fischer rats and two stocks of Wistar rats in tests of anxiety. Pharmacol Biochem Behav 70:411–420.

Bourgeois L, Gauriau C, Bernard JF (2001) Projections from the nociceptive area of the central nucleus of the amygdala to the forebrain: a PHA-L study in the rat. Eur J Neurosci 14:229–255.

Carta AR, Moreno CC, Cadoni C, Tronci E, Di Chiara G (2008) Long-term increase in GAD67 mRNA expression in the central amygdala of rats sensitized by drugs and stress. Eur J Neurosci 27:1220–1230.

Chacur C, Raymond R, Hipolite DC, Giigliano EB, Leite JR, Nobrega JN (1999) Immediate increase in benzodiazepine binding in rat brain after a single brief experience in the plus maze: a paradoxical effect. Neurosci Lett 269:29–32.

Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluthmann H, Mohler H, Rudolph U (2002) Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proc Natl Acad Sci U S A 99:8980–8985.

Crestani F, Lorez M, Baer K, Essrich C, Benke D, Laurent JP, Belzung C, Fritschy JM, Luscher B, Mohler H (1999) Decreased GABA(A)-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci 2:833–839.

Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17:208–214.

Esmaeili A, Lynch JW, Sah P (2009) GABA(A) receptors containing gamma1 subunits contribute to inhibitory transmission in the central amygdala. J Neurophysiol 101:341–349.

Franklin KJB, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edition. London: Elsevier.

Furtinger S, Pirker S, Czech T, Baumgartner C, Ransmayr G, Sperk G (2001) Plasticity of Y1 and Y2 receptors and neuroepoptide Y fibers in patients with temporal lobe epilepsy. J Neurosci 21:5804–5812.

Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Dreverts CW (2008) Altered cerebral gamma-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 65:1166–1175.

Hettema JM, An SS, Neale MC, Bukszar J, van den Oord EJ, Kendler KS, Chen X (2006) Association between glutamic acid decarboxylase-67 kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 103:7385–7390.

Liebisch G, Linthorst AC, Neumann ID, Reul JM, Holsboer F, Landgraf R (1998) Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology 19:381–396.

Liktik E, Pope D, Apergis-Schoute J, Fidacaro GA, Pare D (2008) Amygdala intercalated neurons are required for expression of fear extinction. Nature 454:642–645.

Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92:180–185.

Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Ruilcke T, Bluthmann H, Mohler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134.

McDonald AJ, Mascagni F (2010) Neuronal localization of m1 muscarinic receptor immunoreactivity in the rat basolateral amygdala. Brain Struct Funct 215:37–48.

McDonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 100:53–58.

Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244.

Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF (2004) Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29:1050–1062.

Mombereau C, Kaupmann K, Gassmann M, Bettler B, van der Putten H, Cryan JF (2005) Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. Neuroreport 16:307–310.

Morris HV, Dawson GR, Reynolds DS, Attak JR, Stephens DN (2006) Both alpha2 and alpha3 GABA(A) receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur J Neurosci 23:2495–2504.

Muigg P, Hetzenuer A, Hauer G, Haushchild M, Gaburro S, Frank E, Landgraf R, Singewald N (2008) Impaired extinction of learned fear in rats selectively bred for high anxiety—evidence of altered neuronal processing in prefrontal-amygdala pathways. J Eur Neurosci 28:2299–2309.

Muigg P, Scheiber S, Salchner P, Bunck M, Landgraf R, Singewald N (2009) Differential stress-induced neuronal activation patterns in mouse lines selectively bred for high, normal or low anxiety. PLoS One 4:e5346.

Nelkovok A, Aretoua T, Inкос S, Koks S, Vasar E (2006) Rats displaying distinct exploratory activity also have different expression patterns of gamma-aminobutyric acid- and cholecystokinin-related genes in brain regions. Brain Res 1100:21–31.

Nemerooff CB (2003) The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull 37:133–146.

Nishimura T, Schwarzer C, Gasser E, Kato N, Vezzani A, Sperk G (2005) Altered expression of GABA(A) and GABA(B) receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Neuroscience 134:691–704.

Norrmholm SD, Ressler KJ (2009) Genetics of anxiety and trauma-related disorders. Neuroscience 164:272–287.

Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuroparmacology 56:141–148.

Pare D, Royer S, Smith Y, Lang EJ (2003) Contextual inhibitory gating of impulse traffic in the intra-amygdaloid network. Ann N Y Acad Sci 985:78–91.

Pirker S, Schwarzer C, Czech T, Baumgartner C, Pockberger H, Maier H, Hauer B, Sieghart W, Furtinger S, Sperk G (2003) Increased expression of GABA(A) receptor beta-subunits in the hippocampus of patients with temporal lobe epilepsy. J Neuropathol Exp Neurol 62:820–834.

Quirk GJ, Gehlert DR (2003) Inhibition of the amygdala: key to pathological states? Ann N Y Acad Sci 985:263–272.
Sajdyk TJ, Shekhar A (2000) Sodium lactate elicits anxiety in rats after repeated GABA receptor blockade in the basolateral amygdala. Eur J Pharmacol 394:265–273.

Scimemi A, Semyanov A, Sperrer G, Kullmann DM, Walker MC (2005) Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci 25:10016–10024.

Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484–490.

Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tumorically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269.

Shekhar A, Sajdyk TJ, Gehlert DR, Rainnie DG (2003) The amygdala, panic disorder, and cardiovascular responses. Ann N Y Acad Sci 985:308–325.

Shen Q, Lal R, Luellen BA, Earnheart JC, Andrews AM, Luscher B (2010) Gamma-Aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Biol Psychiatry 68:512–520.

Siegert W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816.

Singewald N (2007) Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 31:18–40.

Tasan RO, Nguyen NK, Weger S, Sartori SB, Singewald N, Heilbronn R, Herzog H, Sperk G (2010) The central and basolateral amygdala are critical sites of neuropeptide YY2 receptor-mediated regulation of anxiety and depression. J Neurosci 30:6282–6290.

Tschenett A, Singewald N, Carli M, Balducci C, Salchner P, Vezzani A, Herzog H, Sperk G (2003) Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. Eur J Neurosci 18:143–148.

Tsunashima K, Schwarzar C, Kirchmair E, Sieghart W, Sperk G (1997) GABA(A) receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80:1019–1032.

Ulrich D, Bettler B (2007) GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol 17:298–303.

Woodruff AR, Monyer H, Sah P (2006) GABAergic excitation in the basolateral amygdala. J Neurosci 26:11881–11887.

Zarnowska ED, Keist R, Rudolph U, Pearce RA (2009) GABAA receptor alpha5 subunits contribute to GABA(A), slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101:1179–1191.

(Accepted 24 March 2011)
(Available online 31 March 2011)