Genotoxicity and cytotoxicity evaluation of two thallium compounds using the *Drosophila* wing somatic mutation and recombination test

María de los Ángeles Reyes-Rodríguez, Luis Felipe Santos-Cruz, Carlos García-Castro, Ángel Durán-Díaz, Laura Castañeda-Partida, Irma Elena Duenas-García, María Eugenia Heres-Pulido, Juan José Rodríguez-Mercado

A B S T R A C T

Thallium (Tl) is a heavy and toxic metal and a byproduct of several human activities, such as cement production, mining, and coal combustion. Thallium is found in fruits, vegetables, and animal fodder with high Tl contamination; therefore, it is an environmental pollution issue and a toxicological contamination problem for human beings and other organisms when exposed to it. The mutagenic potential of Tl and its compounds is controversial, and there are few in vivo studies on its effects. We conducted the animal bioassay *Drosophila* wing somatic mutation and recombination test (SMART) to test for genotoxicity and assessed the genotoxic effects of Tl acetate (TlCH₃COO) and Tl sulfate (Tl₂SO₄) on *Drosophila melanogaster*. Third instar larvae from the SMART standard cross (ST) were fed Tl acetate [0.2, 2, 20, 200, and 600 μM] and Tl sulfate [0.2, 2, 20, 200, and 600 μM]. Hexavalent chromium [CrO₃, 500 μM] served as the positive control, and Milli-Q water served as the negative control. Only the high Tl₂SO₄ [600 μM] concentration resulted in genotoxicity with 87.6% somatic recombination, and both salts disrupted cell division of wing imaginal disc cells, showing the expected cytotoxic effects. Genotoxic risks due to high metal levels by bioaccumulation of Tl⁴⁺ or its compounds require further evaluation with other in vivo and in vitro assays.

1. Introduction

Thallium (Tl) is a rare, very reactive, highly toxic heavy metal that is not found free in the environment because it forms mono- and trivalent compounds. Tl is mainly found in Asia, Europe, and North America in the form of sulfides in minerals and rocks. It is a polluting metal and a byproduct of coal combustion and a high variety of industries, such as cement, fireworks, electronic devices, mercury lamps, low-temperature thermometers, special glasses, mixed crystals, radioactive isotopes, mining, steel and sulfuric acid production. Some Tl salts have been used as epilators and to treat venereal diseases, such as typhus, tuberculosis, malaria and ringworm. Tl sulfate (Tl₂SO₄) has been included as an active compound in insecticides and rodenticides since 1920, and its use was prohibited in the USA in 1972; nevertheless, it is still used as a rodenticide in some countries given its low price. Recently, it has been reported that the inks used in tattoos contain this metal.

The concentration of Tl in wastewater can reach 3,000 μg/L, and frequently, Tl contaminants generated by human activities end up in the trophic chain due to their absorption and accumulation in plants. The Tl concentration in foods, such as fruits and vegetables, increase by bioaccumulation, which depends on the ground concentrations, ground pH and cultivated species and varieties. In humans, an 8 mg/kg concentration may be indicative of poisoning, and a 10–15 mg/kg concentration is lethal. Tl tends to form the +3 and +1 oxidation states; therefore, it is an environmental pollution issue and a toxicological contamination problem for human beings and other organisms when exposed to it. The mutagenic potential of Tl and its compounds is controversial, and there are few in vivo studies on its effects. We conducted the animal bioassay *Drosophila* wing somatic mutation and recombination test (SMART) to test for genotoxicity and assessed the genotoxic effects of Tl acetate (TlCH₃COO) and Tl sulfate (Tl₂SO₄). Third instar larvae from the SMART standard cross (ST) were fed Tl acetate [0.2, 2, 20, 200, and 600 μM] and Tl sulfate [0.2, 2, 20, 200, and 600 μM]. Hexavalent chromium [CrO₃, 500 μM] served as the positive control, and Milli-Q water served as the negative control. Only the high Tl₂SO₄ [600 μM] concentration resulted in genotoxicity with 87.6% somatic recombination, and both salts disrupted cell division of wing imaginal disc cells, showing the expected cytotoxic effects. Genotoxic risks due to high metal levels by bioaccumulation of Tl⁴⁺ or its compounds require further evaluation with other in vivo and in vitro assays.

Keywords: Metal, Genetic toxicology, Wing spot test, Insect, Tl acetate, Tl sulfate.
the kidney and reaches the brain after systemic administration [9].

Galván-Arzate et al. [18] induced significant lipoperoxidation (LPO) in the brains of rats treated with daily sublethal doses of Tl (0.8 mg/kg); at [1.6 mg/kg], all brain regions studied presented a significant increase in LPO compared to the control, suggesting that oxidative stress is involved in Tl toxicity. Thallium intoxication diagnosis and treatment are important, although alopecia is the distinctive symptom of Tl poisoning [4, 11]. The addition of 10–15 nmol of Tl⁻¹ per mg/mitochondrial protein inhibits K⁺ translocation without affecting oxidative phosphorylation [12]; when Tl⁻¹ enters the cell, it induces oxidative stress and affects glutathione (GSH) metabolism, K⁺-regulated homeostasis and cellular and mitochondrial membrane integrity [13]. In PC12 cells incubated for 1–72 h at a single dose of Tl⁻¹ or Tl⁻² (10–250 μM), H₂O₂ increased in the mitochondria, which resulted in higher levels of reactive oxygen species (ROS) in the cytoplasm [14]. Tl⁻¹ (25–200 μM) in hepatocyte mitochondria induced ROS and decreased ATP, which triggered cytochrome c release and the activation of apoptosis [15]. Korotkov et al. [16] assumed that Tl⁻¹ might deform complex I in “Ca²⁺-loaded” mitochondria and that Tl⁻¹ to Tl⁻³ oxidation is involved in this event. Pourahmad et al. [17] studied rat hepatocytes and associated Tl⁻¹, Tl⁻³ GSH and CYP2E1 with the interruption of the electron transport chain in mitochondria and the mutual damage between mitochondria and lysosomes that resulted from an increase in ROS. The metabolism and toxicity of Tl⁻¹ are positively related to the induction of oxidative stress, apoptosis and LPO. Tl and its compounds are not classifiable as carcinogens to humans based on “inadequate information to assess its carcinogenic potential” [4]. Despite all the toxic effects described above, which mainly involve ROS increases related to DNA damage [18], there is a lack of data on the mutagenic effects of thallium compounds in humans [13]. Furthermore, very few studies evaluate Tl compound genotoxicity in vitro and in vivo [19]. We assessed the in vitro genotoxic effect of TlCH₃COO and Tl₂SO₄ in human leucocytes cultured at [0.5, 1, 5, 10, 50 and 100 μg/mL] based on structural and numerical chromosome aberrations, sister chromatid exchange and comet assays (pH > 13 and 12.1) and showed that both salts have effects on the mitotic index, exert cytotoxic, cytostatic, and clastogenic activity and cause DNA damage [20, 21]. Given these previous results, the aim of this study is to gain insight into the possible in vivo genotoxicity of TlCH₃COO and Tl₂SO₄ through an alternative animal test that uses the insect Drosophila melanogaster to realize the wing somatic mutation and recombination test (SMART) standard cross (ST) with Cyp450 basal levels [22] by pairwise comparison with negative solvent control results. This bioassay detects mutations, deletions, aneuploidies, and recombinations in wing imaginal disc cells and allows cytotoxicity to be determined based on alterations in cellular division through cumulative frequency analysis of mwh clones [23, 24].

2. Materials and methods

2.1. Chemicals

TlCH₃COO (CAS No: 563-68-8, reagent-grade 98%) and Tl₂SO₄ (CAS No: 7446-18-6, reagent-grade 99.99%) were purchased from Sigma-Aldrich® (St. Louis, MO, USA). Drosophila Instant Medium (DIM) was purchased from Carolina Biological Supply Co. (Burlington, North Carolina, USA). Chromium trioxide (CrO₃), (CAS No: 1333-82-0, reagent-grade ≥ 98%) was purchased from Sigma-Aldrich® (St. Louis, MO, USA).

2.2. LC₅₀

The LC₅₀ of each Tl salt was determined by feeding until pupation D. melanogaster third instar larvae (72 ± 4 h) of the flare strain with 0.5 g of DIM plus 2 mL of fresh solution at eight concentrations of Tl₂SO₄ or TlCH₃COO [1.9, 7.8, 31.2, 125, 500, 1000, 2000 and 4000 μM] running three independent experiments with five replicates for each compound at 25 ± 2°C and 65% relative humidity (RH) until emergence. One-factor ANOVA (P < 0.5) was performed to compare results among experiments, and the LC₅₀ was determined by regression.

2.3. SMART

To develop the Drosophila wing SMART, the ST cross was performed by mating virgin females of the flare strain (frt¹/TM3, Bd¹) to males of the mwh strain (mwh/mwh) originally donated by Dr. Ulrich Graf (ETH, Zurich, Switzerland). Eggs collected from fresh yeast media from the cross were incubated at 25 ± 2°C and 65% relative humidity (RH); equal batches of third instar larvae (72 ± 4 h) were chronically exposed by feeding until pupation with 0.5 g of DIM plus 2 mL fresh solution of TlCH₃COO [0.2, 2, 20, 200, 600 μM] or Tl₂SO₄ [0.2, 2, 20, 200 and 600 μM] dissolved in Milli-Q water, which was also used as a negative control. Hexavalent chromium [CrO₃, 500 μM] was used as a positive control [22]. Transheterozygous flies (MH, marker-heterozygous flies: mwh⁺/+;frt²; wild-type wings) were randomly selected, and wings were dissected and mounted in Entellan® and scored at 40x under a microscope (double-blind). Relative spot per fly frequencies were compared through statistical analysis using SMART v2.1. software (Frei and Würgler, unpublished), which is based on the Kastenbaum-Bowman test that contrasts the expected frequencies [25]. A Mann-Whitney-Wilcoxon U test was performed to corroborate the results [26]. When the twin spot frequency was statistically significant, we mounted and scored the BH of balancer-heterozygous flies (mwh⁺/+;TM3, Bd₅) with serrated wings to determine the recombinogenic activity of the compound [22]. Similarly, the size distribution of mwh clones was analyzed using the Kolmogorov-Smirnov test [23]. P < 0.05 was considered statistically significant in all tests.

3. Results

3.1. LC₅₀

To determine the test concentrations, first, we determined the LC₅₀ for TlCH₃COO [919 μM] by quadratic regression and for Tl₂SO₄ [460 μM] by linear regression (Figure 2).

3.2. SMART

Based on these data, we exposed third instar larvae from the ST cross of the SMART bioassay to six concentrations of TlCH₃COO [0.2, 2, 20, 200, 600 and 1200 μM] or five concentrations of Tl₂SO₄ [0.2, 2, 20, 200, and 600 μM] using Milli-Q water and CrO₃ as negative and positive controls, respectively. Tables 1 and 2 show the effect of treatments with the metal compounds and controls.

As expected, the relative frequencies of spots in the CrO₃ treatment were significantly increased for each type of spot compared to the remainder of the treatments, which confirms the mutagenic and recombinogenic effects of this positive control [22, 29]. Regarding Tl, only the highest concentration of Tl₂SO₄ [600 μM] was clearly genotoxic because all the spots per fly relative frequencies were significantly higher. Considering that the twin spots are produced exclusively by somatic mutations.
recombination between the marker \(fr \) and the centromere \([22, 24]\), only yielded a high frequency in \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)], we scored the BH balancer-heterozygous flies (\(mwh+/\text{TM3} \), \(B_+D \)) with serrated wings to calculate the percentage of spots induced by somatic recombination \([22, 30]\) dividing the frequency of total \(mwh \) spots on the BH wings by that on the MH wings (0.47*100/3.8) \([22]\) obtaining a percentage of somatic mutation of 12.4% and 87.6% of recombination. The size distribution of the \(mwh \) clones and the statistical comparison of the experimental results against the negative control allowed us to detect whether the treatment altered the cellular division from the imaginal discs from the wing. The data in Table 2 show the results of the \(mwh \) clone cumulative frequency analysis that compared the results of the maximum difference between the cumulative distributions of the negative control with respect to treatments through a Kolmogorov-Smirnov test \([23, 24]\). With both salts, all the treatments were statistically significant, with higher means at [600 \(\mu \text{M} \)]; in contrast, the [2.0 \(\mu \text{M} \)] treatment had no effect on any of the salts. Of note, only \(\text{TI\text{CH}_3\text{COO}} \) [0.2 \(\mu \text{M} \)] showed an effect, so we considered this result a false positive.

4. Discussion

Thallium exerts potent toxic effects on a wide variety of in vitro and in vivo biological systems through different routes of exposure \([4, 19]\). Considered an industrial and mining polluting byproduct \([31]\), thallium is present in the environment at subtoxic levels, but it can be found in food \([6, 7]\), plants \([6, 7]\), and animals \([33]\) because of its bioaccumulation, posing threats to human health and the environment.

Therefore, it was important to assess whether it poses a genotoxic risk to human health and to other organisms. Given the few in vivo reports on Ti genotoxicity, an alternative animal bioassay, the \(D. \text{melanogaster} \) wing spot test, was performed with the aim of collecting robust data using this alternative eukaryotic model organism, which shares 77% of the genes that cause disease in humans \([34]\) and 80–90% or more of conserved functional domains in nucleotides and proteins \([35]\). The relative spontaneous spot frequencies obtained in the negative Milli-Q water control were compared against those of the positive control, CrO\text{3}, a potent carcinogen that produces chromosomal alterations through oxidative stress and whose toxic, teratogenic and mutagenic effects have been confirmed in humans, birds \([36]\) and \(D. \text{melanogaster} \) \([22]\). The frequencies obtained with both salts show that only \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)] was genotoxic. To explain the fact that \(\text{TI\text{CH}_3\text{COO}} \) did not result in genotoxicity, we considered that each sulfate molecule has two Ti atoms compared to one atom in each acetate molecule. Thus, [300 \(\mu \text{M} \)] \(\text{Tl}_2\text{SO}_4 \) would correspond to the same amount of Ti atoms in [600 \(\mu \text{M} \)] \(\text{TI\text{CH}_3\text{COO}} \). Accordingly, we also evaluated \(\text{Tl}_2\text{SO}_4 \) [300 \(\mu \text{M} \)] and compared its results with \(\text{TI\text{CH}_3\text{COO}} \) [600 \(\mu \text{M} \)] and obtained negative and statistically similar results (data not shown). In addition, we compared the positive data of \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)] of progeny: marker-transheterozygous flies (MH, \(mwh+/−/\text{fr}^{3} \)) wild-type wings and balancer-heterozygous flies (BH, \(mwh+/\text{TM3}, B_+D \)) serrate-type wings to determine the percentage of somatic recombination induced by the compound at that concentration. This analysis was performed by dividing the total frequency of \(mwh \) spots on the BH wings by that on the MH wings \([22]\), and the results showed 12.4% (0.47*100/3.8) mutation and 87.6% recombination rates for \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)]. These outcomes do not support the hypothesis that differences between SMART results of \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)] and \(\text{TI\text{CH}_3\text{COO}} \) [600 \(\mu \text{M} \)] are due to the double number of Ti atoms in \(\text{Tl}_2\text{SO}_4 \) molecule but demonstrate increased somatic recombination events with \(\text{TI\text{CH}_3\text{COO}} \) [600 \(\mu \text{M} \)]. We do not have clear explanations for these differences, but we propose that these findings could be related to the corresponding molecule dissociation and/or the contribution of sulfur to a putative generation of genotoxic sulfur compounds \([37]\), such as hydrogen sulfide (H\(_2\)S) \([38]\) or sulfur dioxide (SO\(_2\)) \([39]\). It has been demonstrated that Ti exhibit a certain affinity for guanines in the major groove of B-DNA and for thymine, which could affect the molecule. Thus, the genotoxic effect observed with \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)] could be related to the reported adduct formation between Ti and DNA nitrogenous bases \([40]\) but also to ROS increases that generate DNA damage \([18]\). In addition, Yildirim et al. \([41]\) found significant differences in chromosome aberrations and sister chromatid exchanges three days after administration of Ti to patients exposed to this metal for a myocardial perfusion study. Decreases in the mitotic index and replicative index in vitro were demonstrated by Rodriguez-Mercado et al. \([20, 21]\), who suggested that Ti\(_{1}^{1}\) induces genetic damage and is cytotoxic. The genotoxic effects of \(\text{Tl}_2\text{SO}_4 \) [600 \(\mu \text{M} \)] in this in vivo study are evidence of the potential effects of \(\text{Tl}_2\text{SO}_4 \) that have been reported in in vitro studies at [1.8–369.8 \(\mu \text{M} \)] \([21, 42]\). The differences found in this study might be attributed to the compound’s absorption distribution, metabolism, and excretion (ADME) of this metal salt when administered in vivo.

The \(mwh \) clone cumulative frequency analysis showed a significant effect of both Ti salts (Table 2); this parameter is related to cytotoxicity that induces cell division disruption, aneuploidy \([24, 27, 28]\) or apoptosis in imaginal wing cells. These cytotoxic effects are consistent with published reports about cellular \(\text{Ti}^{1+} \) toxicity caused by its cellular accumulation \([43]\). To explain these results, we also considered putative damage derived from \(\text{Ti}^{1+} \) toxicity as glutathione (GSH) depletion in the mitochondrial redox balance \([44, 45]\). On the other hand, the production of ROS \([14, 15]\) and its known effects on mitochondria could have induced apoptosis, which would account for the cell division disruption observed (Table 2). Hantsen et al. \([27]\) detected an increase in micronuclei in lymphocyte binucleated cells of a patient who had ingested \(\text{Ti}_2\text{SO}_4 \) and associated it with the ability of metals to induce aneuploidy.
Table 1. Summary of results obtained from the standard (ST) cross\(^b\) of the Drosophila wing SMART after scoring marker-heterozygous (MH) flies (mwh\(+/+\)fr\(^b\); wild-type wings) treated with Ti acetate (TIC\(_3\)COO) [0, 0.2, 2, 20, 200, 600 and 1200 \(\mu\)M] and Ti sulfate (TIC\(_2\)SO\(_4\)) [0, 0.2, 2, 20, 200 and 600 \(\mu\)M]; balancer heterozygous (BH) flies (mwh\(+/+\)/TM3, Bds\(^d\)). Milli-Q water and chromium trioxide (CrO\(_3\)) [500 \(\mu\)M] served as negative and positive controls, respectively.

Compound	Conc. (\(\mu\)M)	Number of flies	Spots per Fly (Number of Spots)	Statistical Diagnosis\(^a\)	Mean mwh clone size class	Clone formation per 10\(^5\) cells per cell division\(^1\)					
	Cross & Progeny Type		Small single spots (1-2 cells) m = 2	Large single spots (>2 cells) m = 5	Twin spots m = 5	Total spots m = 2	mwh clones	Observed	Control corrected		
Negative and positive controls											
ST, MH	Milli-Q Water	0	52	0.42 (022)	0.13 (007)	0.00 (000)	0.56 (029)	28	1.79	1.10	
	CrO\(_3\)	500	58	3.28 (190) +	4.57 (265) +	4.28 (248) +	12.12 (703) +	659	3.28	23.30	22.20
Ti acetate treatments											
ST, MH	Milli-Q Water	0	45	0.49 (022)	0.02 (001)	0.00 (000)	0.51 (023)	23	1.39	1.05	
	TIC\(_3\)COO	0.2	41	0.29 (012) -	0.24 (010) +	0.02 (001) -	0.56 (023) -	23	2.52	1.15	0.10
	TIC\(_3\)COO	2	68	0.32 (022) -	0.01 (001) -	0.00 (000) -	0.34 (023) -	23	1.30	0.70	-0.35
	TIC\(_3\)COO	20	47	0.47 (022) -	0.06 (003) -	0.02 (001) -	0.55 (026) -	26	1.85	1.15	0.10
	TIC\(_3\)COO	200	34	0.65 (022) -	0.09 (003) -	0.09 (003) -	0.82 (028) -	28	1.93	1.70	0.65
	TIC\(_3\)COO	600	58	0.57 (033) -	0.03 (002) -	0.03 (002) -	0.64 (037) -	36	1.67	1.25	1.15
	TIC\(_3\)COO	1200	62	0.45 (028) -	0.05 (003) -	0.00 (000) -	0.50 (031) -	31	1.61	1.05	0.00
Ti sulfate treatments											
ST, BH	Milli-Q Water	0	60	0.32 (019)	0.05 (003)	0.03 (002)	0.40 (024)	24	2.04	0.8	
	TIC\(_2\)SO\(_4\)	0.2	59	0.34 (020) -	0.03 (002) -	0.00 (000)	0.37 (022) -	21	1.43	0.75	-0.1
	TIC\(_2\)SO\(_4\)	2	56	0.30 (017) -	0.12 (007) -	0.02 (001) -	0.45 (025) -	22	2.18	0.80	0.0
	TIC\(_2\)SO\(_4\)	20	55	0.20 (011) -	0.05 (003) -	0.00 (000)	0.25 (014) -	14	1.64	0.50	-0.3
	TIC\(_2\)SO\(_4\)	200	50	0.22 (011) -	0.10 (005) -	0.04 (002) -	0.36 (018) -	17	2.18	0.70	-0.1
	TIC\(_2\)SO\(_4\)	600	54	2.13 (115) +	1.13 (061) +	0.87 (047) +	4.13 (223) +	206	2.49	7.80	7.0
Ti sulfate treatment											
ST, BH	Milli-Q Water	0	60	0.12 (007)	0.00 (000)	0.00 (000)	0.12 (007)	7	0.71	0.25	
	TIC\(_2\)SO\(_4\)	600	60	0.45 (027) +	0.02 (001) -	0.00 (000) -	0.47 (028) +	28	0.57	0.90	0.65

\(^a\) Statistical diagnoses according to [25] m: minimal risk multiplication factor for the assessment of negative results. For the final statistical diagnosis of all positive (+) and negative (-) results the nonparametric Mann-Whitney and Wilcoxon U-test with significance levels \(\alpha\) = 0.05 was used to exclude false positive or negative diagnoses [26]. One side binomial test, significance levels \(\alpha\) and \(\beta\): significant results: + (\(\alpha \leq 0.05\)); no significant results: - (\(\beta \leq 0.05\)).

\(^b\) ST: standard cross.

\(^c\) Clone frequencies per fly divided by the number of cells examined per fly (48,800) provides an estimate of formation frequencies per cell and per cell division in chronic exposure experiments [26].

\(^d\) BH flies were scored to calculate the percentage of somatic mutation and recombination in this treatment [22].
The present findings in *D. melanogaster* are important because it has genes that are related to human diseases and conserved functional domains in nucleotides and proteins [34, 35, 46, 47]. Additionally, using this model can demonstrate the genotoxicity of compounds [48, 49] as well as alterations in metabolic pathways [50, 51, 52] given that enzymes related to energy metabolism are common between flies and humans [53]. Therefore, based on the aforementioned Tl effects and the data generated in this study, we consider that the genotoxic and cytotoxic risks [38] due to the high exposure by bioaccumulation of this heavy metal salt in nature, food and humans, mainly in certain regions of the world that have no control over the polluting sources, such as mining [7, 54], coal power stations and cement production [31], should be further assessed using more genotoxicity and cytotoxicity studies with other assays to increase our knowledge about the types of risk related to this metal.

Finally, this study evaluated a wide range of concentrations, including the Tl concentrations found in the blood or urine of intoxicated people, which reached values of 8.3–880 µg/L and 68–42,000 µg/L or greater, respectively [19, 55, 56]. Additionally, we believe that high concentrations must be tested because Tl accumulates in different tissues and may be found at even higher concentrations than those detected in biological fluids.

5. Conclusions

Survival rates obtained with *D. melanogaster* precisely demonstrated that different compound effects were related to the amount of Tl$^-$ [1] in each compound. Our *D. melanogaster* wing SMART results showed that Tl$_2$SO$_4$ (600 µM) was genotoxic in all types of spots and induced a high recombinogenic effect, but TlCH$_3$COO had no significant genotoxic activity at any concentration tested. Cell division disruption by both salts indicates cytotoxic effects of Tl$^-$ [1], and these findings are consistent with previous reports of the toxicity of this metal in other organisms and assays. Tl and its compounds have been proposed to be more cytotoxic than genotoxic, and the results obtained in this study support this view. However, more genotoxicity studies with other in vivo assays should be performed.

Declarations

Author contribution statement

María de los Ángeles Reyes-Rodríguez: Performed the experiments; Analyzed and interpreted the data.

Luís Felipe Santos-Cruz: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data.

Carlos García-Castro1, Ángel: Performed the experiments; Wrote the paper.

Durán-Díaz: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.

Laura Castaneda-Partida: Contributed reagents, materials, analysis tools or data; Wrote the paper.

Irma Elena Dueñas-García: Conceived and designed the experiments; Performed the experiments.

María Eugenia Hervás-Pulido: Conceived and designed the experiments; Performed the experiments; Wrote the paper.

Juan José Rodríguez-Mercado: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by the UNAM-Iztacala DIP [grant #9/1/1 to H-P.M.E.] and UNAM-PAPIIT [grant number IN225216] to R-M.J.J.

Data availability statement

Data included in article-supplementary material/referenced in article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors wish to acknowledge the technical assistance of Bárbara Ximena Huitrón García and Gabriela González Gómez. We additionally thank Norma A Velázquez Ulloa, PhD for reviewing the manuscript.

References

[1] J. Liu, X. Luo, Y. Sun, D.C.W. Tsang, J. Qi, W. Zhang, N. Li, M. Yin, J. Wang, H. Lippold, Y. Chen, G. Sheng, Thallium pollution in China and removal technologies for waters: a review, Environ. Int. 126 (2019) 771–790.

[2] IPCS: International Programme on Chemical Safety, in: Thallium. Environmental Health Criteria, 182, World Health Organization, Geneva, Switzerland, 1996. http://www.inchem.org/documents/nec/ebc/ebc/ebc182.htm.

[3] B. Karbowska, Presence of thallium in the environment: sources of contamination, distribution and monitoring methods, Environ. Monit. Assess. 188 (11) (2016) 640–659.

[4] EPA: US Environmental Protection Agency, Toxicological review of thallium and compounds, in: Support of Summary Information on the Integrated Risk Information System, IRIS, Washington, 2009. https://cfpub.epa.gov/ncea/iris/iris_reviews/documents/oxreviews/1012ir.pdf.

[5] B. Karbowska, T. Robii, J. Zembrzuska, K. Nadaslka, Thallium in color tattoo inks: risk associated with tattooing, Med. Pr. 71 (4) (2020) 405–411.

[6] J. Liu, X. Luo, J. Wang, T. Xiao, D. Chen, G. Sheng, M. Yin, H. Lippold, C. Wang, Y. Chen, Thallium contamination in arable soils and vegetables around a steel
M.A. Reyes-Rodríguez et al.

Heliyon 7 (2021) e07007

plant. A newly found significant source of Tl pollution in South China, Environ. Pollut. 224 (2017) 445–453.

[7] E. Pavoni, E. Petranz-K, G. Adam, E. Barachini, M. Crosara, A. Emili, D. Lenaz, P. Hugeras, S. Covelli, Bioaccumulation of thallium and other trace metals in Biscutella lanatae near a decommissioned zinc-lead mine (Northeastern Italian Alps), J. Environ. Manag. 156 (Pt 2) (2017) 214–224.

[8] C.J. Sickwood, M. King, P. Huntman-Manila, Assessing the fate and toxicity of thallium I and thallium III to three aquatic organisms, Ecotoxicol. Environ. Saf. 115 (2015) 300–308.

[9] C. Rios, S. Galván-Arzate, R. Tapia, Brain regional thallium distribution in rats acutely intoxicated with Tl2SO4, Arch. Toxicol. 63 (1) (1989) 34–37.

[10] S. Galvan-Arzate, A. Martinez, E. Medina, A. Santamaría, C. Rios, Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions, Toxicol. Lett. 116 (1-2) (2000) 37–43.

[11] P.D. Pigatto, S.M. Ferrucci, L. Brambilla, G. Guzz, Aoleca aretea and toxic metals, Skin Appendage Disord. 6 (3) (2020) 177–179.

[12] H. Barrera, A. Gómez-Puyuo, Characteristics of the movement of K⁺ across the mitochondrial membrane and the inhibitory of Tl⁺, J. Biol. Chem. 250 (14) (1975) 5370–5374.

[13] P. Cvojetik, I. Cvetko, M. Pavlica, Thallium toxicity in humans, Arh. Hig. Rada. Toksikol. 61 (2010) 111–119.

[14] C.E. Hanzel, S. Verstraeten, Thallium induces hydrogen peroxide generation by impairing mitochondrial function, Toxicol. Appl. Pharmacol. 216 (3) (2006) 485–492.

[15] M.R. Eskandari, V. Mashayekhi, M. Aslani, M.J. Hosseini, Toxicity of thallium on J.J. Rodríguez-Mercado, H. Hernández-Mercado, J.J. Rodríguez-Mercado, G. Mosqueda-Tapia, M.A. Altamirano-Lozano, Evaluation of cytogenetic and DNA damage caused by thallium(I) acetate in human blood cells, Environ. Toxicol. 30 (5) (2015) 572–580.

[16] J.J. Rodríguez-Mercado, G. Mosqueda-Tapia, M.A. Altamirano-Lozano, Genotoxicity assessment of four novel quinazoline-derived trypanocidal agents in Drosophila melanogaster, Genotoxicity and DNA damage caused by thallium(I) acetate in human blood cells, Environ. Toxicol. 30 (5) (2015) 572–580.

[17] J.J. Rodríguez-Mercado, M.A. Altamirano-Lozano, Genetic toxicology of thallium: a review, Drug Chem. Toxicol. 36 (3) (2013) 369–383.

[18] J.J. Rodríguez-Mercado, H. Hernández-de la Cruz, M. Felipe-Reyes, E. Jaramillo-Cruz, M.A. Altamirano-Lozano, Evaluation of cytogenetic and DNA damage caused by thallium(I) acetate in human blood cells, Environ. Toxicol. 30 (5) (2015) 572–580.

[19] J.J. Rodríguez-Mercado, M.A. Altamirano-Lozano, Induction of cytotoxicity in human cells exposed to thallium(I) and thallium(II), Curr. Top. Toxicol. 15 (2019) 17–27.

[20] C.E. Hanzel, S. Verstraeten, TI(I) and TI(II) activate both mitochondrial and extrinsic pathways of apoptosis in rat hepatocarcinoma (PC12) cells, Toxicol. Appl. Pharmacol. 226 (1) (2009) 59–70.

[21] R.J. Mailoux, M.E. Harper, Mitochondrial proteostasis and ROS signaling: lessons from the uncoupling proteins, Trends Endocrinol. Metabol. 23 (9) (2012) 451–458.

[22] R.J. Mailoux, C.N. Adjeiley, J.Y. Xuan, M.E. Harper, Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics, Faseb. J. 26 (1) (2012) 363–375.

[23] V.R. Chintapalli, J. Wang, J.A.T. Dow, Using FlyAtlas to identify better Drosophila melanogaster models of human disease, Nat. Genet. 39 (2007) 715–720.

[24] R.W. Alfá, S.K. Kim, Using Drosophila to discover mechanisms underlying type 2 diabetes, Dis. Model. Mech. 9 (4) (2016) 365–376 [Internet Available from: http://dmm.biologists.org/content/9/4/365.abstract].

[25] N. Van Schaik, U. Graf, Genotoxicity evaluation of five tricyclic antidepressants in the wing somatic mutation and recombination test in Drosophila melanogaster, Mutat. Res. 260 (2) (1991) 99–104.

[26] E.W. Vogel, U. Graf, H. Frei, M.M.J. Nivard, The results of assays in Drosophila as indicators of exposure to carcinogenic, JARC Sci. Publ. 146 (1996) 427–470.

[27] L.M. Matzkin, S. Johnson, C. Paight, G. Bozinovic, T.A. Markow, Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila, J. Nutr. 141 (6) (2011) 1127–1133 [Internet Available from: http://jrn.nutrition.org/content/141/6/1127.abstract].

[28] L.M. Matzkin, S. Johnson, C. Paight, G. Bozinovic, T.A. Markow, Effects of dietary protein and sugar on Drosophila wing size and body size, Faseb. J. 16 (2002) 2752–2759.

[29] B.M. Rovenko, N.V. Perkhulyn, D.V. Gospodaryov, A. Sanz, O.V. Lushchak, O. Lushchak, Toxicity of thallium(I) and thallium(III), Curr. Top. Toxicol. 15 (2019) 17–27.

[30] A.A. Osman, S. Masjedi, N. Mohabarian, H.A. Tajmir-Riahi, Thallium-DNA complexes in aqueous solution. Major or minor groove binding, J. Biomol. Struct. Dyn. 20 (4) (2003) 561–565.

[31] M. Vildirim, M. Ibilal, T. Anil, T. S. Sever, I. Pirim, E. Varoglu, Genotoxicity of thallium-201 in patients with angina pectoris undergoing myocardial perfusion study, Tohoku J. Exp. Med. 206 (4) (2005) 299–304.

[32] J.J. Rodríguez-Mercado, L. Álvarez-Barrera, R.A. Mateos-Nava, J.D. Rodríguez-Espitia, M.A. Altamirano-Lozano, Induction of cytotoxicity in human cells exposed to thallium(I) and thallium(II), Curr. Top. Toxicol. 15 (2019) 17–27.

[33] H. Liu, L. Liau, Long-term misdiagnosis and neurologic outcomes of thallium poisoning, Arch. Toxicol. 63 (1) (1989) 34–37.