The effect of hybridization on secondary metabolites and herbivore resistance: implications for the evolution of chemical diversity in plants

Dandan Cheng · Klaas Vrieling · Peter G. L. Klinkhamer

Received: 29 January 2010 / Accepted: 17 August 2010 / Published online: 1 September 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The diversity of secondary metabolites (SMs) has been poorly understood from both a mechanistic and a functional perspective. Hybridization is suggested to contribute to the evolution of diversity of SMs. In this paper we discuss the effects of hybridization on SMs and herbivore resistance by evaluating the literature and with special reference to our own research results from the hybrids between Jacobaea vulgaris (syn. Senecio jacobaea) and Jacobaea aquatica (syn. Senecio aquaticus). We also review the possible genetic mechanism which causes the variation of SMs and herbivore resistance in hybrids. Most SMs in hybrids are present in the parents as well. But hybrids may miss some parental SMs or have novel SMs. The concentration of parental SMs in hybrids generally is constrained by that in parental plants, but transgressive expression was present in some hybrids. Hybrids may be as susceptible (resistant) as the parents or more susceptible than the parents, but rarely more resistant than the parents. However, different hybrid classes (F1, F2, backcrossing and mixed genotypes) show different patterns in relation to herbivore resistance. The variation in SMs and herbivore resistance occurring in hybrids could be explained by complicated genetic mechanisms rather than a simple one-gene model. Most previous work in this field only reported mean trait values for hybrid classes and few studies focused on genotype differences within hybrid classes. Our study in Jacobaea hybrids showed transgressive segregation in most SMs and herbivore resistance. To summarize, our article shows that hybridization may increase the variation of SMs and affect herbivore resistance, which may partially explain the evolution of chemical diversity in plants.

Keywords Chemical defense · Pyrrolizidine alkaloids · Jacobaea vulgaris · Jacobaea aquatica

Abbreviations
AFLP Amplified fragment length polymorphism
BC Backcrossing
dw Dry weigh of plant material
PA Pyrrolizidine alkaloid
QTL Quantitative Trait Locus
SM Secondary metabolite
Introduction

The role of hybridization with respect to the origin of biodiversity has been debated for over a century. Recent research indicates that hybridization plays a role in the generation of novel traits, transgressive segregation, introgression of traits between species and speciation itself (e.g. Stebbins 1959; Arnold 1992; Rieseberg and Carney 1998). Furthermore, hybridization may contribute to the success of invasive species and cause the displacement and extinction of local species (Huxel 1999; Prentis et al. 2007). To elucidate the diversity in SMs and plant resistance from an ecological and evolutionary perspective, hybrids are regarded as a good study system (Fritz et al. 1999; Orians 2000). In this paper, we will focus on the consequences of hybridization for the generation of qualitative and quantitative variation in secondary chemistry and the possible effects on hybrids fitness in relation to herbivore resistance. We asked the following questions: (1) Do hybrids have a greater qualitative or quantitative variation of SMs and herbivore resistance relative to the parental taxa? (2) Does this pattern differ between different classes of hybrids? (3) Is the variation in SMs and herbivore resistance determined by simple genetic mechanisms? From an evolutionary point of view, it is important to know if among a hybrid population some individuals show more extreme trait values than either of the parental species. Unfortunately, most studies reported mean trait values for hybrid classes and only very few studies focused on genotype differences within hybrid classes. Finally, we therefore will summarize the development of our research on Jacobaea hybrids as a case study with special attention on within hybrid genotype variation.

Hybridization occurs frequently in Senecio and Jacobaea species. The interaction of herbivorous insects and plants of these species in relation to the pyrrolizidine alkaloids (PAs) have been intensively studied (van der Meijden et al. 1989, 1992; Vrieling et al. 1991; Hartmann 1999; Macel et al. 2002, 2005; Leiss et al. 2009a).

The effect of hybridization on SMs

Qualitative variation of SMs in hybrids

Hybrids may: (1) express all of the SMs of the parental taxa; (2) fail to express certain parental SMs; (3) express novel SMs that are absent in each parent or (4) express a parental SM in other tissues than the parents. The last two are regarded as novelty. Rieseberg and Ellstrand (1993) showed that, among 743 SMs identified in parents and their F1 hybrids of 21 genera from 24 studies, 68% were present both in the hybrids and their parents, 27% only occurred in parental plants, and 5% of the SMs were only found in the hybrids. The frequency of novelty was ca. 8% in later generation hybrids and even higher (ca. 18%) in hybrid-derived species. The survey by Orians (2000) based on 31 studies including 80 hybrid crosses showed that at least one specific SM was missing in the hybrids in ca. 60% of the crosses and at least one novel SM was found in ca. 40% of the crosses. We extended the reviews of Rieseberg and Ellstrand (1993) and Orians (2000) by including 7 studies published from 2000 to 2010. From these studies, we scored the presence and absence of SMs in different hybrid classes. The combined results show that 24.2% of the 1,112 SMs studied were not present in the hybrids, 5.5% were novel SMs only present in the hybrids and 70.3% were present in both the parents and hybrids (Table 1). Adding more studies did not change the results obtained by the previous review suggesting that the data are solid (Table 1, chi-square = 2.8, df = 2, P = 0.24).

Quantitative variation of SMs in hybrids

Orians (2000) divided the quantitative variation of the concentration of SMs in F1 hybrids relative to the parents in five categories: (1) higher than in either parent (O-overexpression); (2) intermediate between those of the two parental taxa (Im-intermediate expression); (3) lower than in either parent (U-underexpression); (4) similar to that in one of the two parental taxa (D-dominance expression); or (5) not different from either parent when the parents show similar concentrations (ND-no difference). From an evolutionary point of view, we think the fourth category (Dominance) should be divided to two subcategories: DI-dominance to the lower parent and DH-dominance to the higher parent. A meta-analysis of 5 studies showed that among the 96 parental SMs present in the F1 hybrids, most are either expressed at concentrations similar to one of the parents or at intermediate concentrations (33 and 29%, respectively), some are over expressed (19%), while others occur at lower concentrations than in
Taxa	SM	Hybrid class	Qualitative variation	Quantitative variation	Reference							
			Missing SMs	Complementary SMs	Novel SMs	ND	Im	Dl	Dh	U	O	
Allium cepa × A. kermesinum	Cysteine sulfoxides and volatile sulfur compounds	F1	0	26	0	7	8	4	1	2	4	Storsberg et al. (2004)
Corymbia citriodora subsp. variegata × C. torelliana	Hexane extracts of leaves	F1	17	29	5	0	7	1	2	0	4	Nahrung et al. (2009)
Citrus meyerii × C. limon cv. Cavone	Essential oils	F1	5	55	1	38	5	7	4	1	1	Verzera et al. (2005)
C. medica × C. limon cv. Cavone		F1	1	49	0	39	3	4	3	0	0	
Eucalyptus globulus	Sideroxylonal and macrocarpal	F1(NS)	0	6	0	0	0	1	0	1	4	O’Reilly-Wapstra et al. (2005)
Eucalyptus. grandis × E. camaldulensis	Essential oils	F1	14	10	3	0	7	1	0	1	1	Toloza et al. (2008)
E. grandis × E. tereticornis		F1	15	10	3	0	5	0	1	2	2	
Quercus. gambelii × Q. grisea	Ellagitannins	F1	0	10	0	0	5	0	0	5	0	Yames et al. (2008)
Salix caprea × S. repens	Phenolic glucosides	F1	0	7	0	0	2	4	1	0	0	Hallgren et al. (2003)
		F2	0	7	0	0	5	0	2	0	0	
		BC(c)	0	7	0	0	0	6	1	0	0	
		BC(r)	0	7	0	1	5	0	1	0	0	
Results previous reviews: (qualitative data from Rieseberg and Ellstrand 1993 and quantitative data from Orians 2000)			217	533	49	5	28	32	13	18	269 Total 782 61 96 88 84 27 36	Rieseberg and Ellstrand (1993), Orians (2000)

F1, F2, BC (pure species parents indicated by the first or first two letters), ND (no difference from both of the parents), Im (intermediate between the parents), Dl (similar to the lower parent), Dh (similar to the higher parent), U (underexpression), O (overexpression)

a The average concentration of individual SMs of 6 F1 hybrids
b SMs appearing in >50% of hybrid individuals scored as present and those appearing <50% scored as missing
c Intraspecies hybrids of two geographically distinct populations (races) of E. globulus; north-eastern Tasmania (N) and south-eastern Tasmania (S). The female parent is stated as the first letter in the cross, and the male parent is stated as the second letter in the cross
d Mean concentration of every SMs reported
e Natural hybrids, only samples collected in July
f Combination of Dl and Dh
either parent (14%, Orians 2000). We extended the review of Orians (2000) by including 7 studies published from 2000 to 2010. Most of these studies reported the mean concentration of the SMs for different hybrid classes with a statistical test which showed whether the hybrid classes and the parents were significantly different from one another. The combined results show that the parental SMs present in the hybrids were mostly expressed at concentrations similar to both of the parents, one of the parents, or at intermediate concentrations (30.8, 20.8 and 28.2%, respectively). The other SMs were over expressed (11.5%) or under expressed (8.7%, Table 1). Addition of the new studies showed that the number of over and under expressed SMs declined. These are the most interesting cases as values beyond the range present in the parents are reached, which can be subject to natural selection. However, as we will discuss later it would be more valuable to include individual variation among genotypes as well.

The effect of hybridization on herbivore resistance

Given the fact that the patterns of expression of SMs show large variation among different hybrid crosses it is expected that the patterns of resistance are highly diverse too. Fritz et al. (1994, 1999) produced a simple scheme analogous to the scheme of Orians (2000) for SMs, the only exception being that the dominant category was split into a category similar to the resistant parent and a category similar to the susceptible parent. They postulated that, resistance in hybrids may be: (1) higher than in either parent (the hybrid resistance hypothesis, R); (2) intermediate between both parents (the hybrid additive hypothesis, A); (3) lower than in either parent (the hybrid susceptibility hypothesis, S); (4) similar to the parent with the higher resistance (the hybrid resistance-dominant hypothesis, Dr); (5) similar to the parent with the lower resistance (the hybrid susceptibility-dominant hypothesis, Ds), or (6) not different from both parents (the hybrid no difference hypothesis, ND).

Fritz et al. (1999) surveyed 118 tests from 22 studies that compared responses of herbivore resistance to hybrids and parental plants and they found that the four most commonly reported responses of the hybrids to insect herbivores are: no difference, additive, susceptibility-dominant and hybrid susceptibility while there was little support for the hybrid resistance hypothesis (Table 2). We added 12 studies published between 1999 and 2010, which reported herbivore resistance on 27 hybrid taxa in 168 tests. Herbivore resistance was evaluated by various methods such as plant damage, herbivore performance (density, growth rate, developmental time, weight, etc.) or herbivore preference. These new studies involved 7 genera, among which the most intensively studied ones being *Salix* (4 studies), *Eucalyptus* (3) and *Quercus* (2). The majority of studies were concerned with trees or shrubs and only two genera with herbs (*Ipomopsis* and *Myriophyllum*) were included. Among the 27 hybrids taxa involved in these studies, 11 were F1, 5 were F2, 8 were backcrosses and 3 were mixed genotypes. Most mixed hybrids were unspecified crosses from natural hybrids zones. We combined our own survey with that from the previous work (Fritz et al. 1999). The combined result shows support for the no difference hypothesis (22.0%) and the additive hypothesis (21.7%). The hybrid susceptibility hypothesis (22.4%) was more frequent supported than the hybrid resistance hypothesis (5.9%). Support for the resistance-dominant hypothesis (12.9%) is close to that of the susceptibility-dominant hypothesis (15.0%, Table 2). If expression of SMs would be related to herbivore resistance, one would have expected the pattern of quantitative variation of SMs may be similar to that of herbivorous resistance in hybrid plants. But the results of our survey do not support this assumption as the pattern of SM variation in hybrids is dissimilar to that of herbivore resistance (Fig. 1, Chi-square: 33.7, df = 1, P < 0.001, Ds and Dr pooled for D). For instance, hybrids are more often susceptible to herbivores than can be expected on basis of the frequency of under expression of SMs. Also the different hybrid classes (F1, F2, BC and MX) show different distribution patterns over the 6 hypotheses (Fig. 2, Chi-square: 49.9, df = 4, P < 0.001). Strikingly in the F2 class the resistant category is absent and the susceptible category is increased. The increase in the hybrid susceptibility might be related to hybrid breakdown in later generations (Czesak et al. 2004). Another explanation can be that the hybrids contain SMs in combinations that attract the total suit of herbivores present on one or both of the parental species.
Genetic basis for variation of SMs and herbivore resistance in hybrids

Genetic basis for qualitative variation of SMs

The mode of qualitative inheritance of SMs is mostly considered to be Mendelian with the presence of SMs being dominant. The chemical expression in later generation hybrids and backcrosses often segregates according to Mendelian ratios. If both parents produce a chemical, hybrids almost always produce it as well (Rieseberg and Ellstrand 1993; Orians 2000). This explains why the hybrids usually show complementary patterns with respect to the qualitative chemical variation. The
explanations to the deviation from a strictly complementary pattern of chemical expression always involve the biosynthetic pathway. The loss of SMs in a hybrid individual can be caused by the gain of a gene or alleles coding for an elongation of the biosynthetic pathway. The former end product in the hybrid has then become an intermediate which is immediately transformed into the next compound in the biosynthetic pathway. This not necessarily leads to new compounds as such compounds can be already present in the parent, from which the genes or alleles are obtained. Similarly, biochemical novelty may arise if: (1) the obstruction of a biosynthetic pathway leads to accumulation of intermediate compounds that are normally only present as transients or (2) enzymes present in only one parent can lead to the formation of a compound by modifying a chemical structure that is only present in the other parent. The combination of genes and the enzymes that they code for can lead to the formation of compounds not present in either of the parental species. All the above effects can also be obtained by changes in the regulatory genes. Finally, disruption of regulatory genes following hybridization can cause a shift in where the SMs is produced (Rieseberg and Ellstrand 1993; Orians 2000; Firn and Jones 2003). On the level of large segregating populations with backcrossing to the parental species we expect that within the hybrid swarm a large variation is present as all combinations of genes and alleles can end up in the individuals of a hybrid swarm and hence leading to a large biochemical diversity (see Kirk et al. 2004).

Genetic basis for quantitative variation of SMs

The quantitative expression of SMs is often controlled by more than one gene with dominant, over-dominant, recessive, additive, or epistatic allelic effects within a locus or between loci. As the F1 hybrids nearly always show an intermediate pattern
of the chemical expression, additive inheritance is regarded as the most common model (e.g. Hallgren et al. 2003) which is supported by Table 1. The categories of ND and Im make up for 56%. Variation in quantitative expression can come about by the effect of different alleles on loci coding for the enzymes in the biosynthetic pathway or by different alleles at regulatory genes.

Genetic basis for variation of herbivore resistance

Mendelian models which assume resistance is due to a single gene are usually applied when the hybrids showed segregation of herbivore resistance response. Quantitative models assume that resistance is polygenic and hybrids have continuous variation in resistance (Fritz et al. 1994, 1999). The results (in Table 2) clearly show that a simple model of one gene with Mendelian inheritance in several cases can not explain the results. The hybrid susceptibility and resistance hypothesis and the over and under expression of SMs can not occur under such models. However they are present in about 38% of the cases for hybrid resistance and in about 19% of the cases for SMs. These results indicate that multiple genes must be involved in these traits to explain this transgressive segregation. Also one would expect that in F2 and BC hybrids would never support the hybrid susceptibility and resistance hypothesis under a one-gene model. Yet whole F2 and BC populations do support in a few cases the hybrid susceptibility and resistance hypothesis.

Variation of SM expression and herbivore resistance within hybrid class

It is useful to get a general picture of hybridization effects by comparing averages of the different hybrid classes such as F1, F2 and BC to the parents. But this method has the drawback that extreme phenotypes in hybrids such as transgressive segregation and the variation among individual genotypes may be lost (Kirk et al. 2004). Rieseberg et al. (1999, 2003) showed that most quantitative traits had at least one antagonistic QTL and transgressive segregation is common as a result from the recombination of the concerned QTLs in segregating hybrid populations. Genotypic differences can be significant within the same hybrid class both in SM expression and herbivore resistance. For instance, the profile of the cysteine sulfoxides as well as the volatile secondary metabolites in the F1 hybrids between two Allium species was not uniform (Storsberg et al. 2004). The concentrations of tannin and phenolic glycosides in different F1 hybrid families from two Salix species were different (Orians et al. 2000). McIntyre and Whitham (2003) reported F1 hybrids between two cottonwood species which differed significantly in resistance to the gall mite, Aceria parapopuli. They measured gall mite population growth rates among F1 hybrid genotypes for 4 years. The gall mite populations remained at extremely low densities on some host genotypes, but other host genotypes supported phenomenal growth. It is exactly this individual variation on which selection operates. The final composition of natural hybrid swarms will result from the continuous process of hybridization and backcrosses and natural selection operating to increase resistance. If within a hybridization event only a few individuals are more resistant than either of the two parents then these genotypes can be selected for and on a longer timescale can dominate the hybrid population and determine its success even though on average early generation hybrids were far less resistant than the parents (Barton 2001).

Case study of Jacobaea hybrids

Senecio sl. is a large genus (between 1,000 and 3,000 species), including Jacobaea species, with a worldwide distribution. The genus is notorious for the occurrence of pyrrolizidine alkaloids. Senecio species vary remarkably in morphological and ecological traits. Interspecies hybridization is widespread in this genus (e.g. Vincent 1996). For example, hybridization between Senecio squalidus and Senecio vulgaris has led to the origin of three new fertile hybrid taxa and S. squalidus itself also is a hybrid species from a cross between Senecio aethnensis and Senecio chrysanthemifolius (Abbott and Lowe 2004; James and Abbott 2005; Abbott et al. 2009). There are many other well-documented cases of hybridization between Senecio species (e.g. Beck et al. 1992; Hodalova 2002; Lopez et al. 2008). Jacobaea vulgaris (Tansy ragwort or Common ragwort) is native in Europe and west Asia but
invasive in North America, Australia and New Zealand. *Jacobaea aquatica* (Marsh ragwort) is a closely related to but not a sister species of *J. vulgaris* (Pelser et al. 2003) *J. vulgaris* mainly grows in disturbed dry, sandy soils with low levels of organic matter while *J. aquatica* is a species from wet habitats with high levels of organic matter. Natural hybrids between *J. vulgaris* and *J. aquatica* are reported and grow in locations which appear to be intermediate to parental sites with regards to soil organic content and humidity (Kirk et al. 2005b). Putative hybrids from the Zwanenwater (The Netherlands) were initially identified in 1979 based on highly variable and usually intermediate flower and leaf lobe morphology compared to *J. vulgaris* and *J. aquatica*. Kirk et al. (2004) confirmed these were hybrids between *J. vulgaris* and *J. aquatica* by using the AFLP markers and PA composition and showed that the hybrid population is strongly backcrossed with *J. vulgaris* (Kirk et al. 2004, 2005a).

PA expression in *Jacobaea* hybrids

J. vulgaris and *J. aquatica* have different PA compositions. Plants of *J. vulgaris* that hybridized with *J. aquatica* in the Zwanenwater are rich in jacobine type PAs such as jacobine, jaconine, jacoline and jacozone, while *J. aquatica* often lack these PAs or contain them in very small quantities. Compared to *J. vulgaris* levels of senecionine and erucifoline are much higher in *J. aquatica* (Macel et al. 2002; Pelser et al. 2005). Kirk et al. (2010) examined the PA composition in later generation natural hybrids, artificially generated F1 hybrids and pure *J. vulgaris* and *J. aquatica*. She reported that floroseneine, a putatively novel PA, was present in both of the natural and artificial hybrids. In addition, hybrids showed larger variation in total PA concentration and more extreme PA diversity than the parental plants over various environmental conditions. For instance, in the shoots of F1 hybrids, the total concentration varied from 0.02 to 3.02 mg/g dw and the number of PAs ranged from 1 to 10 in the wet nutrient soil, but under the same condition, the range in the parental shoots was 0.03–1.62 mg/g dw and 3–6 different PAs. These results suggest transgressive segregation in both directions.

Based on the work mentioned above, an artificial F2 hybrid system between *J. vulgaris* subs *dunensis* and *J. aquatica* subs. *aquatica* has been established. The seeds were collected for *J. vulgaris* at Meijendel, a coastal dune area in north of The Hague (The Netherlands) and for *J. aquatica* at the Zwanenwater Nature Reserve (The Netherlands). The two parental species were crossed and two F1 individuals were chosen and crossed resulting in more than 100 F2 individuals. Parents, F1 and F2 are maintained in tissue culture and can be propagated endlessly. Plants of the 2 parental genotypes, the 2 F1 and 102 F2 hybrid genotypes were grown in a climate room for 6 weeks. Parental and F1 genotypes had 12 replicates. Each F2 genotype was represented by at least 3 clones and most had 6 clones. Shoots and roots were harvested and freeze dried for PA investigation by LC-MS/MS (see methods in Joosten et al. 2009). In total, 37 PAs, including tertiary amines and the corresponding N-oxides were detected. The PA expression in F1 hybrids was often intermediate between the two parents. In contrast, transgressive segregation in two directions was found for the concentration of total PA and most individual PAs in the shoots of F2 genotypes. The mean total PA concentration for the parental genotypes was 1,627 (±SE 337) μg/g dw in *J. aquatica* and 4,942 (±SE 467) μg/g dw in *J. vulgaris*. Total PA concentration for all tested F1 and F2 genotypes ranged from 334 to 6,834 μg/g dw. Both the F1 hybrids had intermediate levels of total PAs of 2,392 (±SE 470) and 2,979 (±SE 438) μg/g dw. Only one F2 genotype had a higher amount of total PA than *J. vulgaris* while 49 (about 50%) of the F2 lines had lower total PA concentration than *J. aquatica* (Fig. 3a). For the individual PAs overexpression was observed more frequently. About 14% of the F2 hybrids showed a higher expression level of senecionine free base than in either of the parents (Fig. 3b). According to the genotype mean concentration, none of the F2 hybrid genotypes over-expressed jacobine free base in either of the parents while 20% of the F2 hybrid genotypes under-expressed jacobine (Fig. 3c). Presence and absence of PAs in F2 hybrids was more variable than in either of the parental genotypes (Cheng et al., unpublished data). This confirmed the results of Kirk et al. (2010) who showed that new combinations of PAs are found in hybrids.
Herbivore resistance in *Jacobaea* hybrids

Leiss et al. (2009a) identified four thrips (*Frankliniella occidentalis*)—resistant and four thrips—susceptible F2 genotypes in the hybrids between *J. vulgaris* and *J. aquatica*. They analyzed the PA composition and found that higher amounts of jacobine N-oxide and jaconine N-oxide were found in thrips-resistant hybrids, especially in younger leaves. A more extensive study including 94 F2 hybrids and 3–6 replicates for each genotype showed transgressive segregation of *F. occidentalis* resistance in both directions although it was far more pronounced in the direction of higher susceptibility (Fig. 3d). Eight PAs: jacobine, jaconine, jacoline, jacozine and their corresponding N-oxides were positively correlated with thrips resistance (Cheng et al., unpublished data). This strongly suggested that the segregation pattern of thrips resistance within F2 hybrids is caused by underlying segregation patterns of jacobine type alkaloids.

Outlook

The study of hybrids and their parental species offers many opportunities to investigate the variation of secondary chemistry and herbivore resistance in plants. The frequently occurring transgressive segregation in F2 hybrids offers potentially large variation in concentration and composition of secondary chemistry, which can be used for ecological experiments to test the function of such compounds in natural settings. If these are combined with in vitro tissue
culture techniques, hybrids can be maintained and replicated infinitely. This allows the repetition and new experiments on the same genotypes. Plants which have short lifecycle such as *Jacobaea* have the advantage to reduce the experimental cycle. The fast developing metabolic detection and analyses methods will facilitate identification of the compounds in interest. (e.g. Kim et al. 2009; Kuzina et al. 2009; Leiss et al. 2009a, b). QTL mapping of such hybrid crosses adds another opportunity to further unravel the genetics behind secondary chemistry and resistance.

Acknowledgments Dandan Cheng thanks the China Scholarship Council (CSC) for financial support. We thank Eddy van der Meijden, Patrick Mulder, Cilke Hermans, Karin van der Veen-van Wijk and Henk Nell for helpful insights, PA measurements and technical assistance in works related to *Jacobaea* hybrids. Furthermore we thank the two anonymous reviewers for their useful comments and suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Abbott RJ, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: *Senecio cambrensis* and *S. eboracensis* in the British Isles. Biol J Linn Soc 82:467–474

Abbott RJ, Brennan AC, James JK, Forbes DG, Hegarty MJ, Hiscock SJ (2009) Recent hybrid origin and invasion of the British Isles by a self-incompatible species. Oxford ragwort (*Senecio squalidus* L., Asteraceae). Biol Invasions 11:1451–1458

Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev Ecol Syst 23:237–261

Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

Beck E, Scheibe R, Schlutter I, Sauer W (1992) *Senecio × Saundersii* Sauer and Beck (Asteraceae), an intermediate hybrid between *S. keniodendron* and *S. keniensis* of MT Kenya. Phyton-Annales Rei Botanicae 32:9–38

Campbell DR, Crawford N, Brody AK, Forbis TA (2002) Resistance to pre-dispersal seed predators in a natural hybrid zone. Oecologia 131:436–443

Czesak ME, Knee MJ, Gale RG, Bodach SD, Fritz RS (2004) Genetic architecture of resistance to aphids and mites in a willow hybrid system. Heredity 93:619–626

Dungety HS, Potts BM (2003) Eucalypt hybrid susceptibility to *Gonipterus scutellatus* (Coleoptera: Curculionidae). Austral Ecol 28:70–74

Dungety HS, Potts BM, Whitham TG, Li HF (2000) Plant genetics affects arthropod community richness and composition: evidence from a synthetic eucalypt hybrid population. Evolution 54:1938–1946

Firn RD, Jones CG (2003) Natural products—a simple model to explain chemical diversity. Nat Prod Rep 20:382–391

Fritz RS, Nicholosrians CM, Brunsfld SJ (1994) Interspecific hybridization of plants and resistance to herbivores—hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106–117

Fritz RS, Moulia C, Newcombe G (1999) Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annu Rev Ecol Syst 30:565–591

Fritz RS, Hochwender CG, Lewkiewicz DA, Bothwell S, Orians CM (2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129:87–97

Hallgren P, Ikonen A, Hjalten J, Roininen H (2003) Inheritance patterns of phenolics in F1, F2, and back-cross hybrids of willows: implications for herbivore responses to hybrid plants. J Chem Ecol 29:1143–1158

Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

Hochwender CG, Fritz RS (2004) Plant genetic differences influence herbivore community structure: evidence from a hybrid willow system. Oecologia 138:547–557

Hodalova I (2002) A new hybrid *Senecio × slovacus* from the *S. nemorensis* group (Compositae) in the West Carpathians. Biologia 57:75–82

Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv 89:143–152

James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of *Senecio squalidus* (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547

Joosten L, Mulder PPJ, Klinkhamer PGL, van Veen JA (2009) Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in *Jacobaea vulgaris*. Plant Soil 325:133–143

Kim HK, Choi YH, Verpoorte R (2009) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549

Kirk H, Macel M, Klinkhamer PGL, Vrieling K (2004) Natural hybridization between *Senecio jacobaea* and *Senecio aquaticus*: molecular and chemical evidence. Mol Ecol 13:2267–2274

Kirk H, Choi YH, Kim HK, Verpoorte R, van der Meijden E (2005a) Comparing metabolomes: the chemical consequences of hybridization in plants. New Phytol 167:613–622

Kirk H, Vrieling K, Klinkhamer PGL (2005b) Maternal effects and heterosis influence the fitness of plant hybrids. New Phytol 166:685–694

Kirk H, Vrieling K, Van Der Meijden E, Klinkhamer PGL (2010) Species by environment interactions affect pyrrolizidine alkaloid expression in *Senecio jacobaea*, *Senecio aquaticus*, and their hybrids. J Chem Ecol 36:378–387

Kuzina V, Ekstrom CT, Andersen SB, Nielsen JK, Olsen CE, Bak S (2009) Identification of defense compounds in *Barbarea vulgaris* against the herbivore *Phyllotreta nemorum* by an ecometabolomic approach. Plant Physiol 151:1977–1990
Corymbia Nahrung HF, Waugh R, Hayes RA (2009) McIntyre PJ, Whitham TG (2003) Plant genotype affects long-

Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer Klinkhamer PGL, Vrieling K, van der Meijden E Lopez MG, Wulff AF, Xifreda CC (2008) Natural hybrids in

Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2002) Diversity of pyrrolizidine alkaloids in Senecio species does not affect the specialist herbivore Tyria jacobaeae. Oecologia 133:541–550

Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

McIntyre PJ, Whitham TG (2003) Plant genotype affects long-term herbivore population dynamics and extinction: conservation implications. Ecology 84:311–322

Nahrung HF, Waugh R, Hayes RA (2009) Corymbia species and hybrids: chemical and physical foliar attributes and implications for herbivory. J Chem Ecol 35:1043–1053

O’Reilly-Wapstra JM, Potts BM, McArthur C, Davies NW, Tilyard P (2005) Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in a Eucalyptus species. J Chem Ecol 31:519–537

Orians CM (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant-herbivore interactions. Am J Bot 87:1749–1756

Orians CM, Griffiths ME, Roche BM, Fritz RS (2000) Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: not all hybrids are created equal. Biochem Syst Ecol 28:619–632

Pelser PB, Gravendeel B, van der Meijden R (2003) Phylogeny reconstruction in the gap between too little and too much divergence: the closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Mol Phylogenet Evol 29:613–628

Pelser PB, de Vos H, Theuring C, Beuerle T, Vrielink K, Hartmann T (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295

Prentis PJ, White EM, Radford II, Lowe AJ, Clarke AR (2007) Can hybridization cause local extinction: a case for demographic swamping of the Australian native Senecio pinnatifolius by the invasive Senecio madagascariensis? New Phytol 176:902–912

Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization. Crit Rev Plant Sci 12:213–241

Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

Rieseberg LH, Widmer A, Amtz AM, Burke JM (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B Biol Sci 358:1141–1147

Roley SS, Newman RM (2006) Developmental performance of the milfoil weevil, Euhyrischiopsis lecontei (Coleoptera: Curculionidae), on northern watermilfoil, Eurasian watermilfoil, and hybrid (Northern × Eurasian) watermilfoil. Environ Entomol 35:121–126

Stebbins GL (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251

Storsberg J, Schulz H, Keusgen M, Tannous F, Dehmer KJ, Keller ERJ (2004) Chemical characterization of interspecific hybrids between Allium cepa L. and Allium kersalim Rchb. J Agric Food Chem 52:5499–5505

Tolozs AC, Lucia A, Zerba E, Masuh H, Picollo MI (2008) Interspecific hybridization of Eucalyptus as a potential tool to improve the bioactivity of essential oils against permethrin-resistant head lice from Argentina. Bioresour Technol 99:7341–7347

Tovar-Sanchez E, Oyama K (2006) Effect of hybridization of the Quercus crassifolia × Quercus crassipes complex on the community structure of endophagous insects. Oecologia 147:702–713

van der Meijden E, van Zoelen EM, Solaad LA (1989) Oviposition by the cinnabar moth, Tyria jacobaeae, in relation to nitrogen, sugars and alkaloids of ragwort, Senecio jacobaeae. Oikos 54:337–344

van der Meijden E, Klinkhamer PGL, de Jong TJ, van Wijk CAM (1992) Meta-population dynamics of biennial plants—how to exploit temporary habitats. Acta Botanica Neerlandica 41:249–270

Verzera A, Trozzi A, Zappala M, Condurso C, Cotronea A (2005) Essential oil composition of Citrus meyerii Y. Tan and Citrus medica L. cv. Diamante and their lemon hybrids. J Agric Food Chem 53:4890–4894

Vincent PLD (1996) Progress on clarifying the generic concept of Senecio, vol 1. Royal Botanic Gardens, Kew, pp 597–611

Vrielink K, Smit W, van der Meijden E (1991) Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae, and Senecio jacobaeae lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia 86:177–182

Yarnes CT, Boecklen WJ, Salminen JP (2008) No simple sum: seasonal variation in tannin phenotypes and leaf-miners in hybrid oaks. Chemoecology 18:39–51