委員会成果報告書

室内空気質のための必要換気量

平成28年10月31日

公益社団法人 空気調和・衛生工学会

換気設備委員会・室内空気質小委員会
室内空気質のための必要換気量
報告書

目次

概要および提言

1 CO₂による室内空気汚染と人体への影響および諸外国の基準
 1.1 二酸化炭素の健康影響等に関する知見
 1.2 人体発生汚染物（bioeffluent）による空気汚染のメカニズム
 1.3 海外関連基準（アメリカ、ヨーロッパ）

2 室内 CO₂と換気量の実態
 2.1 特定建築物における CO₂不適率の現状
 2.2 建築物衛生行政における換気対策
室内空気質のための必要換気量
～二酸化炭素濃度は外気濃度を基準として設定する～

これまで、必要換気量の設計は室内二酸化炭素（CO₂）濃度を関連基準値以下になるように、外気中の CO₂濃度と在室者からの炭酸ガスの発生量を仮定して行っている。ところが、近年の地球温暖化に伴い、外気中の CO₂濃度が上昇傾向になりつつある。現状では、世界の大気中の CO₂濃度の月平均値が400ppmを上回っている。

前述した通り、必要換気量の設計は外気中の CO₂濃度を仮定して行っているため、外気濃度が上昇すればその換気量を増やす必要がある。しかし、これはエネルギー消費の増大につながる。このような背景で、2013年12月6日に国土交通省大臣官房官庁営繕部から本学会加藤信介会長(当時)宛てに「外気導入量について（お願い）」が出され、外気中の CO₂濃度の上昇に伴う必要換気量の在り方について検討してほしいとの要望があった。

公益社団法人 空気調和・衛生工学 会、この要望に対応するために2014年4月1日に「室内空気質小委員会」を設置し、CO₂濃度と必要換気量について国内・海外関連文献レビューし、①室内 CO₂濃度の実態、②CO₂による健康影響、③CO₂濃度の基準値、④必要換気量設計のための CO₂濃度などについて議論を重ねてきた。また、2016年7月11日にシンポジウム「必要換気量について考える」を開催し、演者と参加者間で議論行い、「室内空気質のための設計換気量は室内と屋外の CO₂濃度差が700ppmの条件で行う」との共通認識を持つことができた。なお、この換気量は人体発生汚染物質を希釈するためのもものである。

提言：室内空気質のための換気量設計条件は室内と屋外の CO₂濃度差が700ppm以下とする。

■ CO₂ 濃度関連基準

・建築物衛生法（建築物における衛生的環境の確保に関する法律）：1,000ppm
・SHASE-S-102-2011：3,500ppm（単独指標として）
・日本産業衛生学会許容濃度：5,000ppm
・OSHA・MAK・NIOSH・ACGIH：5,000ppm

■ 健康影響

・疫学調査では、1000ppm以下の濃度でもSBS症状がみられる報告がある。
ただし、この理由は、人間から発生する体臭のための換気が不十分であることによるものではなく、建材等から発生する化学物質の濃度が高くなっていたことによるものと推測され、必ずしも、人から発生する二酸化炭素の濃度としての1000ppmの有害性を意味するものではない。何故なら、人から発生する汚染物（bio-effluent）は、SBSを引き起こすことはないからである。
・実験では、純炭酸ガス濃度3,000ppmの環境でも健康影響が見られない報告がある。

■ 必要換気量設計のための CO₂ 濃度

・学校保健安全法：CO₂濃度は1,500ppm以下であることが望ましい。
・ANSI/AHRAE Standard・62.1-2016:

\[
\text{最小必要外気量 } V_{bz} = R_p \times P_z + R_a \times A_z
\]

\[\begin{align*}
A_z : & \text{居住域床面積 (m²)}, \ P_z : \text{居住者数 (人)}, \ R_p : \text{一人当たりの必要外気量 (m³/h・人)} \\
R_a : & \text{床面積当たりの必要外気量 (m³/h・m²)}
\end{align*} \]

人員密度の条件がわからない場合、一人当たりの換気量を30m³/h（8.5L/s）としている。
体臭希釈するための換気量：室内外濃度差 700ppm

なお、本提言の学術的な根拠資料を報告書として取りまとめた。
CO₂による室内空気汚染と人体への影響および諸外国の基準

1.2 二酸化炭素の健康影響等に関する知見

1.1.1 はじめに

日本では1970年（昭和45年）に制定された「建築物における衛生的環境の確保に関する法律（建築物衛生法）」において、「建築物環境衛生管理基準」が規定され、二酸化炭素（CO₂）の空気環境管理基準が定められている。本基準は、1970年の制定後40年以上経過した現在でも、建築物の維持管理関係者に広く浸透し、衛生規制として重要な役割を担っている。本報では、CO₂について、本基準が設定された経緯や根拠を概説し、さらに近年の健康影響等に関する科学的エビデンスについて概説する。なお、本報の内容の一部は、文献1,2で詳しく解説しているので参照されたい。

1.1.2 建築物衛生法におけるCO₂の環境衛生管理基準

（1）建築物衛生法設立の背景

1965年（昭和40年）6月30日、厚生大臣の諮問に応じて、（1）環境衛生に係る公害に関する重要事項、（2）水道・清掃施設・下水道の終末処理場その他環境衛生に係る生活環境に関する重要事項、これら2項目を調査審議するために「公害審議会」（1967年11月25日に生活環境審議会に改名）が発足した。この審議会の中に生活環境部会が設置され、「健康的な居住水準の設定について」1965年9月27日に諮問された（厚生省環第659号）。その後、公害審議会の審議過程において、「多人数利用建築物の衛生水準の設定について」があわせて審議され、生活環境部会は、1966年8月13日に上記2項目に関する中間答申を公害審議会に提出した。「多人数利用建築物の衛生水準の設定について」の中間答申では、ビルなどの建築物に対する衛生上の設備およびその維持管理についての十分な規制や指導が行われていないことから、多くの問題が生じているので、国民の健康を保持、増進するためには、厚生行政の立場から建築物の環境衛生基準の設定、建築物の維持管理に関する専門技術者制度の創設等について早急に措置する必要があるというものであった。当時、夏期の冷房により消化器系疾患の罹患率が上昇する例がみられること、旧式ビルで冬期暖房中にCO₂濃度が0.3~0.4%まで上昇する例がみられること、空気調和設備が適切に使用されると粉じん濃度が外気濃度より下回ることが多いことなどが報告されていた。従って、このような背景をもとに、厚生省ではこの問題についての技術的な基礎固めを行うため、昭和40年度厚生科学研究補助金により、社団法人空気調和・衛生工学会に研究を委託した。同学会は、医学、衛生工学、建築学などの学者で組織する委員会を立ち上げ、欧米先進諸国の制度等も参考にして研究を進め、1966年3月に「ビルディングの環境衛生基準に関する研究」（委員長：小林陽太郎氏）が報告された。これらの準備を経て、1970年4月14日に「建築物における衛生的環境の確保に関する法律」が公布された。「建築物環境衛生管理基準」は、1970年10月12日に公布された「建築物衛生法施行令」の中で規定された。基準値の概念としては、理想値、目標値、推奨値、許容最低限度といった各段階がある。この管理基準は、基準違反に対して直ちに法的措置がとられるものではなく、実現可能な望ましい基準というべきもので、特定建築物の所有者、占有者、その他の者で当該特定建築物の維持管理について権原を有する者に、遵守するよう要求しているものであって、推奨値的性格の強いものとされている。

（2）CO₂の基準値設定について

1971年に作成された建築物環境衛生管理技術者講習会テキストにおいて以下の記述がある。「CO₂濃度は空気清浄度の1つの指標として従来より測定されており、また居室では、人の呼気、喫煙、炊事、また調理等により、影響を受けやすい。CO₂自体は、少量であれば人体に有害ではないが、1000 ppmを超えると倦怠感、頭痛、耳鳴り、息苦しさ等の症状を訴えるものが多くなり、フリッカー値（フリッカー値が小さいほど疲労度が高い）の低下も著しいこと等により定められたものである。」

1968年に世界保健機関（WHO）が公表した「住居の衛生基準に対する生理学的基礎」では、CO₂の基準について次の記載がある。「最近まで地上の炭酸ガス（CO₂）の作用の研究に2つの判定が用いられていた。その第1は、生理学的研究によると、0.5%（5000 ppm）以上の濃度になると、炭酸ガスは呼
吸数をガス交換に必要なレベル以上に増加させ、呼吸系統に付加的な重荷を負わせる。第2は1881年にPettenkoferとFlüggeは0.07~0.1%（700~1000 ppm）を炭酸ガスの許容濃度とみなすと提言した。第2の数値は生理学的な基礎を持っていないが、これは家庭内の空気の汚染の直接的な指標としてかなり実際的な数値であると認められた。はなはだ最近まで、この値は室の中の空気の更新に必要な速度を計算するのに用いられ、また、室の空気の質を評価して、換気システムの能率を判定するために用いられてきた。WHOの報告書では、1964年にEliseevaが発表した研究を引用し、0.1%（1000 ppm）の炭酸ガスの吸入実験によって、呼吸、循環器系、大脳の電気活動に変化がみられたと報告している。

従って、CO₂の建築物環境衛生管理基準の設定にあたっては、WHOの報告書で指摘されたCO₂の判定基準を踏まえ、さらに1000 ppmを超過した際のCO₂による健康影響を考慮し、管理基準を1000 ppmに設定したと考えられる。

1.1.3 CO₂の健康影響等に関するエビデンス

（1）調査方法
CO₂の健康影響等に関する科学的知見について文献検索を行った。国立情報学研究所論文情報ナビゲータ（CiNii）、独立行政法人科学技術振興機構のJ-Dream IIIによる科学技術関連の文献検索（1975年以降の文献を収載）、米国国立医学図書館のPubMedによる医学関連の文献検索（原則として1950年以降の文献を収載）、インターネット検索によるホームページからの情報収集及び関連資料の入手、既存の書籍および上記検索で入手した文献や資料に掲載されている参考文献等を入手した。また、諸外国におけるCO₂の室内空気質ガイドラインについても各国関係機関のホームページなどから情報を収集した。

（2）諸外国におけるCO₂の空気質基準

諸外国におけるCO₂濃度のガイドラインを調査した結果、ほとんどの諸外国で、室内空気汚染や換気の指標として、1000 ppmが採用されている（表1.1.1）。特に、シンガポール、中国香港特別行政区、韓国環境部などのアジア諸国では、日本の建築物衛生法が参照されている。ドイツでは、2008年に連邦環境庁の室内空気衛生委員会がCO₂の室内空気質ガイドラインを公表している。ドイツのガイドラインでは、健康と衛生上の問題を考慮したうえで、1000 ppm以下を無害（harmless）、1000~2000 ppmでは健康と衛生上の問題が上昇（elevated）、2000 ppm以上を許容不可能（unacceptable）としている（表1.1.2）。

諸外国（公表年）	室内濃度の指針値	対象
ノルウェー厚生省（1999）	1000 ppm（最大値）※室内空気汚染の指標	居住空間
カナダ保健省（1995）	1000 ppm※換気の指標	オフィス環境
カナダ保健省（1987）	3500 ppm以下（許容可能な長期曝露範囲）	居住空間
シンガポール環境省（1996）	1000 ppm（8時間平均）※換気の指標	空調設備を有するオフィスビル
中国香港特別行政区（2003）	最良質：800 ppm（8時間平均）良好：1000 ppm（8時間平均）	機械換気や空調設備を有する建物や閉鎖空間
中国環境保護総局（2002）	1000 ppm（24時間平均）	住宅とオフィス
韓国環境部（2003）	1000 ppm	大規模店舗、医療機関等
台湾環境保護庁（2012）	1000 ppm（8時間平均）	
ドイツ連邦環境庁による室内空気の CO₂濃度のガイダンス値

二酸化炭素濃度	健康と衛生上の評価	留意点
1000 ppm 以下	無害 (harmless) とみなされる	処置の必要なし
1000 ～ 2000 ppm	有害性が上昇する (elevated)	換気状況の確認と改善（外気導入量や換気効率の増加等）
2000 ppm 以上	許容できない (unacceptable)	必要に応じて追加措置を試みる

(3) CO₂の健康影響等に関するエビデンス
ヒトが吸入する CO₂濃度の上昇にともない、血中の pH が低下し、ヘモグロビンから酸素が離れやすくなる。そのため、吸入する CO₂濃度が 1000 ppm を超えると呼吸性アシドーシスが出現し、CO₂濃度の上昇に伴って、呼吸数の増加、頭痛、錯乱、嗜眠、記憶喪失、呼吸困難等のリスクが高くなる（表 1.1.3）。

従って、CO₂はヒトに対して有害な物質である。

表 1.1.3 CO₂の生体影響

CO₂濃度	影響
1%	呼吸数（RR）増加（37%）
1.6%	分時換気量（MV）の増加（～100%）
2%	RR 増加（～50%）、脳血流増加
3%	労働者の運動耐容能力の低下
5%	MV 増加（～200%）、RR 増加（～100%）
7.2%	RR 増加（～200%）、頭痛、めまい、嘔吐、呼吸困難
8～10%	重度の頭痛、めまい、嘔吐、呼吸困難
10%	軽い呼吸困難

従来、5000 ppm 以下の CO₂濃度では血中の CO₂に影響はないと予測されていた。しかし最近の研究によると、500 ～ 4000 ppm の低濃度域でも血中の CO₂分圧は上昇し、その領域で心拍変動の変化（交感神経刺激の上昇）と末梢血液循環の増加が生じると報告されている。このことは、600 ～ 5000 ppm の他の研究でも確認されており、1500 ppm 以上数時間の曝露では、600 ppm に比べて血圧上昇や心拍数の上昇が報告されている。

自律神経系の機能障害は、認知システム等の様々な健康への影響や、方策策定能力やワーキングメモリの低下に関連するが、このような低濃度域における意思決定能力の低下や認識機能への影響が近年報告されている。

CO₂による健康等への影響に関して、オフィスビルの CO₂濃度と健康影響に関する 21 の文献をレビューした結果、約半数の研究において、800 ppm 未満の濃度領域で、CO₂濃度の減少とともに心拍変動の変化（交感神経刺激の上昇）と末梢血液循環の増加が生じると報告されている。これは、500 ～ 5000 ppm の他の研究でも確認されており、1500 ppm 以上数時間の曝露では、600 ppm に比べて血圧上昇や心拍数の上昇が報告されている。従来、5000 ppm 以下の CO₂濃度では血中の CO₂に影響はないと予測されていた。しかし最近の研究によると、500 ～ 4000 ppm の低濃度域でも血中の CO₂分圧は上昇し、その領域で心拍変動の変化（交感神経刺激の上昇）と末梢血液循環の増加が生じると報告されている（表 1.1.3）。

従って、CO₂はヒトに対して有害な物質である。

22 名の学生を用いて、オフィス様のチャンバーで 600 ppm、1000 ppm、2500 ppm の CO₂濃度で 1 日合計 7.5 時間曝露させたところ、1000 ppm の CO₂濃度で有意に意思決定能力が低下したと報告されている。台湾の事務所労働者の調査では、800 ppm 以上の CO₂濃度で目や上気道の刺激が報告されている。45 の保育所（約 1000 ～ 2000 ppm の CO₂濃度）の子どもで喘鳴の有意な上昇が 200 ppm の CO₂濃度上昇で報告されている。

低濃度の CO₂によるヒトの健康等へ影響について、近年、フランス環境労働衛生安全庁（ANSES）
が、レビューを行っている（表1.1.4）。

それによると、CO₂濃度の室内外濃度差450 ppm以上または室内濃度600 ppm以上または室内濃度1000 ppm以上では、小児の喘息症状の増悪や成人の意思決定及び問題解決能力が低下すると報告している。このような労働生産性に対する影響は、社会経済に関与する影響が大きく、今後の重要な課題といえる。鉛の耐容摂取量の設定においては、小児における知能指数（IQ）の低下が影響指標に用いられており、このような非顕性（sub-clinical）の影響に対しても、近年対応が求められている。

表1.1.4 CO₂濃度と健康等への影響（文献18）に追加・加筆

室内と大気のCO₂濃度差	既往の疫学及び毒性学的研究所	職業曝露限界値（VLEP）
d CO₂:400ppm以下	850ppm以上	5000ppm以上
優れたIAQ	d CO₂:450ppm以上	フランスや諸外国の8時間平均値（ACGIH, NIOSH, OSHA等）
d CO₂:400-600ppm	1000ppm以上	中程度のIAQ
平均レベルのIAQ	d CO₂:600ppm以上	10000-30000ppm
d CO₂:600-1000ppm	10000ppm以上	諸外国の短時間曝露限界値（同上）
中程度IAQ	中程度の身体負荷の健康な成人における呼吸性アンドソース出現（30分曝露）	
d CO₂:1000ppm超	1000ppm以上	(DFG 2012)
低レベルのIAQ	中程度の身体負荷の健康な成人における呼吸性アンドソース出現（30分曝露）	
10000ppmに22日曝露した成人で代謝性脱酸素症（血中Caや尿中磷酸濃度の低下）		

CO₂濃度とSBS症状については、著者らの日本の研究でも、550 ppmから1320 ppmの濃度域において、CO₂濃度の上昇と頭痛等の一般症状及び健康関連のリスクに関する傾向がみられ、1000 ppmの環境基準適合と一般症状との有意な関係もみられた。上述のように、スウェーデンや台湾の調査でも、これらの低濃度域におけるSBS症状との有意な関係が報告されている。

前述のように、1000 ppm程度のCO₂濃度において、CO₂分圧の変化や自律神経系への影響が報告されている。そのため、このような低濃度域におけるヒトの認識機能に関する研究が近年研究されている。特にその発端となったのは、前述のSatishらによる1000 ppmのCO₂濃度で意思決定能力の低下を報告した研究である。

その後もSatishら、Allenら、MacNaughtonらは、環境条件（揮発性有機化合物（VOCs）、換気、CO₂強制導入等）を制御したオフィスで24名の男女を用いて6日間勤務で認識機能に関するテストを行ったところ、VOCsとCO₂（対照群に比べ945,1400 ppm）はそれぞれ独立した影響を示している。従って、VOCsやCO₂単独による認識機能への影響が確認されている。その後もSatishやAllenら、MacNaughtonらは、それぞれ米ハーバード大学公衆衛生学departmentsのSpengler教授の門下の研究者であり、Spengler教授のもとで、低濃度CO₂による意思決定や
認識機能に対する影響を近年いくつも報告している。
一方、デンマーク工科大学の Wargocki らのグループも、低濃度 CO₂によるヒトの認識機能への影響に関する研究を近年報告している。10 名の被験者を 2.5 時間で 500 及び 5000 ppm（制限導入）の部屋での CO₂ 暴露では、急性症状（上記とはほぼ同じ）や認識機能への影響はみられなかったが、呼気終末 CO₂ 分圧（ETCO₂）では差がみられたと報告している 22）。CO₂ 分圧は、通常、採血して測定を行うが、Wargocki らのグループは、間接的に被験者の呼気中の CO₂ 分圧で評価を行っている。

また、Wargocki らのグループは、25 名の被験者、55 分間 CO₂ 濃度（制限導入）とヒト由来の汚染物質（bioeffluents）を制御した部屋（CO₂ 濃度 500、1000、3000 ppm）では、bioeffluents 含む 3000 ppm の条件で頭痛、疲労、眠気への影響がみられ、bioeffluents 含む 1000 ppm の条件で拡張期血圧及び筋肉のピーキーフローの有意な減少がみられたと報告している。また、ETCO₂ と心拍数の増加は bioeffluents 含まずに限らず、いずれも CO₂ 濃度（CO₂ 濃度 500、1000、3000 ppm）に依存して上昇したと報告している 24）。

これらの一連の報告において、デンマーク工科大学の Wargocki らのグループは、CO₂ 濃度が 3000 ppm を超えないと、認識機能への影響は生じないと考えている。しかし、CO₂ への曝露時間が 2.5 時間と約 4 時間程の短時間曝露の影響を評価しているに過ぎない。Spengler らのグループは、CO₂ に 6 日間や 2 週間曝露した際の影響を評価している。1000 ppm 程度の低濃度域においても、血中に於ける CO₂ 分圧の変化が認められるとは、Spengler らのグループのみならず、Wargocki らのグループの研究結果からも報告されている。従って、CO₂ による血中の酸素の運搬が阻害された状態がオフィス等の環境で每日繰り返され、CO₂ の影響は既に事実であると考えられる。ただし、CO₂ の影響を除外できるのかどうかは不明である。

さらに、これまでの研究からは、低濃度域における CO₂ 労働生産性（意思決定能力等）への影響もヒト被験者を用いた実験室実験で示唆されており、これについては bioeffluents の影響に関して十分明らかにされていないが、低濃度における CO₂ の影響については、いずれの研究グループからも示唆されている。

1.1.4 まとめ

建築物衛生法の CO₂ の環境衛生管理基準は、1000 ppm を超えると倦怠感、頭痛、耳鳴り、息苦しさ等の症状が増加することや、疲労度が著しく上昇することに基づき定められたものである。CO₂ に対する近年の複数のエビデンスが、1000 ppm 程度の低濃度域における CO₂ 濃度の上昇と生化学的変化（血中の CO₂ 分圧、心拍数等）及びシックビルディング症候群（SBS）関連症状との関係を示している。ヒトにおける生理的変化は CO₂ によるものと考えられるが、SBS 症状については CO₂ によるものか、他の汚染物質との混合曝露によるものかはさらなる検証が必要（特に長期処置の影響）であるが、建物内の CO₂ の室内濃度を 1000 ppm 以下の低濃度に抑えることで、これらの健康影響を防止できる。近年、1000 ppm 程度の低濃度の CO₂ そのものの労働生産性（意思決定能力等）への
影響が示唆されており、bioeffluentsに関する定量的な影響を含めて、今後のさらなる検証が求められる。なお、1999年頃からCO₂の建築物環境衛生管理基準の不適合率が増加しているが、これらの増加が生じている原因として、省エネルギー対応が関わっているとの報告がある。具体的な例としては、空調機や換気設備の誤った使用方法による外気の導入不足、加湿器や空調機や換気設備のメンテナンス不良などで、空調設備の維持管理に関する問題が主な原因としてあげられている。従って、CO₂の不適合率の低減には、これらの維持管理に関する問題に対するさらなる対応が必要と考えられる。

【参考文献】
1) 東 賢一、内山巌雄. 建築物環境衛生管理基準の解説と近年の知見. ビルと環境. No. 134, pp. 4–17, 2011.
2) 東 賢一、内山巌雄: 建築物環境衛生管理基準の設定根拠の検証について. 建築物環境衛生管理に関する調査研究平成22年度研究報告書, 財団法人ビル管理教育センター, 2011.
3) IRK (Mitteilungen der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Kommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden). Gesundheitliche Bewertung von Kohlendioxid in der Innenraumluft. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 51 (11): 1358–1369, 2008.
4) Rice SA: Health effects of acute and prolonged CO₂ exposure in normal and sensitive populations. Second annual conference on carbon sequestration, Alexandria, VA, 2003.
5) MacNaughton P, Spengler JD, Vallarino J, Santanam S, Satish U, Allen JG. Environmental perceptions and health before and after relocation to a green building. Building and Environment 104:138–144, 2016.
6) Vehviläinen T, Lindholm H, Rintamäki H, Pääkkönen R, Hirvonen A, Niemi O, Vinha J. High indoor CO₂ concentrations in an office environment increases the transcutaneous CO₂ level and sleepiness during cognitive work. J Occup Environ Hyg 13:19–29, 2016.
7) Kajtár L, Herczeg L. Influence of carbon-dioxide concentration on human well-being and intensity of mental work. IDŐJÁRÁS 116:145–169, 2012.
8) Starcke K, Brand M. Decision making under stress: a selective review. Neurosci Biobehav Rev 36:1228–1248, 2012.
9) Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ. Is CO₂ an indoor pollutant? Direct effects of low-to-moderate CO₂ concentrations on human decision-making performance. Environ Health Perspect 120:1671–1677, 2012.
10) Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ Health Perspect 124:805–812, 2016.
11) Seppänen OA, Fisk WJ, Mendell MJ. Association of ventilation rates and CO₂ concentrations with health and other responses in commercial and institutional buildings. Indoor Air 9(4):226–252, 1999.
12) Apte MG, Fisk WJ, Daisey JM. Associations between indoor CO₂ concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data. Indoor Air 10:246–257, 2000.
13) Erdmann CA, Apte MG. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 14(Suppl 8):127–134, 2004.
14) Norbäck D, Nordström K. Sick building syndrome in relation to air exchange rate, CO(2), room temperature and relative air humidity in university computer classrooms: an experimental study. Int Arch Occup Environ Health 82:21–30, 2008.
15) Simoni M, Annesi-Maesano I, Sigsgaard T, Norback D, Wieslander G, Nystad W, Canciani M,
Sestini P, Viegi G. School air quality related to dry cough, rhinitis and nasal patency in children. Eur Respir J 35:742–749, 2010.

16) Tsai DH, Lin JS, Chan CC. Office workers’ sick building syndrome and indoor carbon dioxide concentrations. J Occup Environ Hyg 9:345–351, 2012.

17) Carreiro-Martins P, Viegas J, Papoila AL, Aelenei D, Caires I, Araújo-Martins J, Gaspar-Marques J, Cano MM, Mendes AS, Virella D, Rosado-Pinto J, Leiria-Pinto P, Annesi-Maesano I, Neuparth N. CO₂ concentration in day care centres is related to wheezing in attending children. Eur J Pediatr 173:1041–1049, 2014.

18) ANSES: Concentrations de CO₂ dans l’air intérieur et effets sur la santé. RAPPORT d’expertise collective, 2013.

19) 東 賢一: 小児の中毒 II − 4．重金属による中毒⑥鉛. 小児科臨床, 第 65 巻増刊号, pp. 1501−1508.

20) 大澤元毅ら. 建築物環境衛生管理及び管理基準の今後のあり方に関する研究. 平成 24 年度総括・分担研究報告書、厚生労働科学研究費補助金健康安全・危機管理対策総合事業、厚生労働省、東京、2013.

21) Azuma K, Ikeda K, Kagi N, Yanagi U, Osawa H. Physicochemical risk factors for building-related symptoms: thermal conditions and combined exposure to indoor air pollutants. Proceedings of the 14th international conference of Indoor Air Quality and Climate, 7 pages, in press, 2016.

22) Zhang X, Wargocki P, Lian Z. Human responses to carbon dioxide, a follow-up study at recommended exposure limits in non-industrial environments. Building and Environment 100:162-171, 2016.

23) Zhang X, Wargocki P, Lian Z, Thyregod C. Effects of Exposure to Carbon Dioxide and Bioeffluents on Perceived Air Quality, Self-assessed Acute Health Symptoms and Cognitive Performance. Indoor Air [Epub ahead of print], 2016. doi: 10.1111/ina.12284.

24) Zhang X, Wargocki P, Lian Z. Physiological Responses during Exposure to Carbon Dioxide and Bioeffluents at Levels Typically Occurring Indoors. Indoor Air [Epub ahead of print], 2016. doi: 10.1111/ina.12286.

25) 中川晋也ら: 特定建築物における二酸化炭素濃度不適度上昇の原因と対策. 東京都健康安全研究センター研究年度第 62 号, pp. 247-251, 2011.

26) 労働者健康福祉機構広島産業保健推進センター: 冬季における事務所の湿度環境の実態と改善対策に関する研究, 平成 22 年度調査研究報告書, 2011.
1.2 人体発生汚染物（bioeffluent）による空気汚染のメカニズム

1.2.1 体臭と CO₂濃度・必要換気量について

(1) CO₂ 1000ppm 問題とは？

現在、建築基準法と建築物衛生法（建築物における衛生的環境の確保に関する法律）いずれにおいても、室内空気質の基準の一つとして、二酸化炭素濃度は 1000ppm 以下と定められているが、この意味を知る人は意外に少ない。教科書やテキストなどでは、二酸化炭素（以下、CO₂）濃度 1000ppm は CO₂ の毒性によって決められたものではなく、室内空気質の総合的指標であると書かれているが、それでも厳密にいえば正しくはない。総合的指標というと、さまざまな汚染物質が人体に与える影響を総合した指標を意味するが、実は CO₂ 濃度 1000ppm は人間の呼気由来の CO₂だけを対象としており、体臭強度を代表することができる指標であり、「CO₂ 濃度は体臭強度の代表的指標」というのが正しい。さらにいえば、嗅覚は順応することから、在室者は体臭に順応し、数分でにおいを感じなくなってしまうため、外来者評価による体臭強度の指標であるといえる。

しかしいま、多くの建物において、室内の CO₂濃度が 1000ppm を超える場合が多くなってきている。図 1.2.1 は、東京都での立ち入り検査で建築物衛生法に定められる換気基準値を満たさなかった建物の割合（不適率）の経年変化を示したものであるが、昭和 46 年当時でも 20%前後であり、ここ十数年は徐々に増加し、約 30%になっていることがわかる。しかし、この不適率の増加の原因は一体何であろうか。一つには、いわゆる地球温暖化に伴う大気中の CO₂濃度の増加が原因として挙げられる。図 1.2.2 は、東京都江東区における外気の CO₂濃度の経年変化を表した図である。CO₂ 濃度の不適率が上昇する平成 9 年あたりからでも、外気の CO₂濃度はおよそ 20ppm 上昇しており、人間一人あたりの CO₂発生量を 20 L/h とすると、一人あたりの換気量が 32.8m³/h から 33.9m³/h に増加させなければならないことになる。現在のところ、建物の換気設備は外気の CO₂濃度に応じて増減させる装置が付けていないため、自然と不適率が増えるというわけであろう。もちろん、外気の CO₂濃度上昇だけが不適率増加の原因とは言い切れないが、一つの大きな要因であることに疑いの余地はない。不適率を下げるためには、空調設備の外気導入量、即ち換気量を増大させればよいわけであるが、現在の省エネルギーや節電要求のなかで、換気量の増加は空調機の熱負荷の増大を招くことから、その必要性が議論されなければならないのでは当然のことであろう。

室内の CO₂濃度が 1000ppm を超えるとき、室内の空気環境は在室者の健康と快適性を保てないほどに悪化するか。1000ppm は是が非でも守らなければならない室内環境基準なのか。筆者は、この間違い CO₂ 1000ppm 問題と呼ぶこととし、本稿では 1000ppm が決められたに至った過程での、換気に関する考え方と必要換気量の変遷、新研究動向などを紹介し、今後の CO₂濃度基準がどうあるべきかについて、議論するための資料としたい。

![図 1.2.1 空気環境管理項目の不適率経年変化（東京都）](image1)

![図 1.2.2 外気の CO₂濃度の経年変化（江東区）](image2)
図 1.2.3 换気哲学と必要换気量の変遷（アメリカ）

表 1.2.1 空気汚染の考え方年表

年代	空気汚染の考え方	必要換気量
1790	空気中の汚染物質が人体に与える影響を考慮	40 m³/h/人
1850	建物内の湿気と温度が人体に与える影響を考慮	40 m³/h/人
1900	建物内の換気量が人体に与える影響を考慮	40 m³/h/人
1950	建物内の換気量が環境に与える影響を考慮	40 m³/h/人

図 1.2.3 换気哲学と必要换気量の変遷（アメリカ）
（3）人間の体臭と CO₂

ここでは、1936 年のヤグローの研究以来換気哲学の主流となった体臭と換気に関する内外の研究成果について紹介する。

前項で述べたように、はじめ体臭を主要な空気汚染源と位置づけたのはヤグローらであり、様々な階級（平均的階級、労働者、貧困、上流など）の在室者を対象に換気量と臭気強度の関係や二酸化炭素濃度と臭気強度との関係などを実験によって明らかにした。彼らの研究で特徴的なことは、同じ在室者数、同じ換気量であっても、在室者 1人あたりの気積が大きくなると臭気強度が低下する傾向が示されたことである。定常状態が達成されれば体臭濃度は気積にかかわらず換気量のみに依存するのであるが、この気積への依存性は理解しがたいものであり、その後の研究においても確認されていない。一方で、ヤグローらは二酸化炭素濃度が信頼性の高い指標ではないと結論づけている。

ヤグロー以後しばらくは目立った研究はなかったが、省エネルギーが重要視されるようになった 1980 年代に入り、日本でも体臭と必要換気量に関する研究が多く始められた。1982 年に南野らは 2 種類の温湿度条件下において換気量と体臭強度との関係について検討を行った。図 1.2.4 は換気量と臭気強度との関係を示したものですので、ヤグローの実験に比べると同じ換気量でも臭気強度が低くなっていることがわかる。この原因は、生活習慣・居住環境・実験方法の差異によるものだと説明されている。南野らはヤグローらと違い、呼気由来の二酸化炭素が体臭強度の信頼できる指標であることを示し、室内の臭気濃度を「少しにおう」に保つためには、二酸化炭素濃度を約 1000ppm にすれば十分良いことを示した。これには供給外気量 30m³/h 人とも対応するものである。

その後楢崎らは様々な気象、換気量、体臭の臭気強度との関係について検討し、ヤグローらが示した気積によらないことを実証した。図 1.2.5 は、二酸化炭素濃度と体臭の臭気強度との関係を示したものであるが、両者の関係に在室者 1人あたりの気積が殆ど影響を及ぼさないことがわかる。同時に臭気強度の指標として二酸化炭素濃度を位置づけると、臭気強度を「微弱」とするためには、二酸化炭素濃度を 1000ppm にしなければならないことがわかる。また楢崎らは、在室者に運動を負荷した場合や温湿度が高い場合には同じ二酸化炭素濃度でも臭気強度・不快度ともに高いことを明らかにしている。

一方、欧米では、パネル（評価者）の臭気強度や不快度といった主観度合を対象とする不快者率を評価の基準にしようという考え方が提案され、ファンガーら、岩下らをはじめ不快者率に着目した研究が行われることがわかる。図 1.2.6 は、様々な研究者によって換気量と臭気強度による不快者率との関係を示したものである。被験者はデンマーク人、アメリカ人、日本人であるが、両者の差異は見られないことがわかる。不快者率 20%に対応する換気量は 7 〜 7.5 ℓ/s 人であり、人体からの二酸化炭素発生量を 18 ℓ/h、外気の二酸化炭素濃度を 350ppm とすると、二酸化炭素濃度は 1020 〜 1060ppm となり、南野らの示した臭気強度「少しにおう」、楢崎らの示した臭気強度「微弱」に相当するものといえる。

一方、ヤグローが示した体臭強度の在室者 1人当たりの気積への依存性を説明するための試みとして、
クラウゼンら23によって、体臭の室内空間での安定性について研究が行われた。空気中での酸化作用や壁面などへの吸着によって空気中の体臭濃度は減衰する。クラウゼンらはその減衰の特性を安定係数（Stability ratio：理論濃度に対する実際の濃度の比）として定量化した。実験の結果、体臭濃度の安定係数は、時間とともに安定係数が明らかに減少したが、ヤグローの実験結果を説明できるほどの減衰は得られず、その後も、気積によって体臭強度が異なる合理的理由は見つかっていない。

（4）知覚空気汚染質の考え方と CO₂

3）では、屋内環境と臭気との関わりを必要換気量の歴史という観点から解説を行った。ここではそのなかで、1988 年にファンガー24-26によって提唱された、olf（オルフ）と decipol（デシポル）と CO₂濃度との関わりについて紹介したい。化学物質による屋内空気汚染問題を契機として、VOC についていろいろな研究が進められたが、それらの汚染物質は微量で種類は多岐にわたるため、汚染物体質と人体反応との関係を直接的に評価することは非常に困難であるが、ファンガーは、多くの化学物質には固有のにおいがあることに着目し、室内の空気質をにおいによって評価しようとする考え方、「知覚空気質（Perceived Air Quality）」という考え方を提唱した。この考え方は、室内の空気質を人間の知覚によって評価しようというものであり、人から発生する体臭に対する外来者を容認率を基準として、すべての汚染物質を定量化する試みであった。ファンガーは、人一人あたりの単位時間に発生する汚染質の発生量を 1olf と定義し、その 1olf を 10ℓ/ha の換気量で希釈したときの濃度を 1decipol と定義した。つまり、1ℓ/ha で希釈すると 1pol となる。多種多様な空気汚染質を一つの単位に統合し、加算性を仮定することで汎用性を高めた新しい考え方であった。つまり、例えばたばこ臭の 2decipol と建材臭の 5decipol を足すと、7decipol の知覚空気質となる、という考え方である。その加算性については、ワーコッキー26が提案しており、たばこ臭、建材臭、空調ダクト臭について検討し、加算できることを示している。ただ、室内に発生する他の様々な知覚汚染質全てについて、その加算性が確認できたわけではない。ただし、室内に発生する汚染質量全体を一つの単位に統合し、加算性を仮定することで汎用性を高めた新しい考え方である。この知覚空気質の考え方の最も基本となる関係は、知覚空気質（decipol）と不快者率（PD）との関係（図 1.2.7）である。ここで不快者率 PD とは、その濃度の空気の中で長時間執務することを受け入れられないと判断する人の割合であり、例えば不快者率を 20%以下にするためには、およそ 1.5 decipol の濃度に維持することが必要であることがわかる。1.5 decipol は人一人あたり、24m³/h の換気量であり、換気量 30m³/h に相当するのは、1.2decipol である。この様に、知覚空気質の概念が適用できるようであるかがわかる。1.5 decipol は人一人あたり、24m³/h の換気量であり、換気量 30m³/h に相当するのは、1.2decipol である。この様に、知覚空気質はその定義より明らかな通り、1人当たりの換気量と対応している濃度であり、直接的には CO₂との関係は明確ではないが、人一人当たりの CO₂発生量と外気濃度を想定すれば、容易に換算が可能である。いま、一人当たりの CO₂発生量を M[ℓ/h]、外気濃度を C₀とするとき、C₀の[decipol]のときの CO₂濃度 C_{CO₂}[ppm]は次式となる。

\[C_{CO₂} = \frac{1000M}{Q} + C_0 = \frac{1000MC_0}{36} + C_0 = 27.8MC_0 + C_0 \]

（5）CO₂濃度が 1000ppm と決められた経緯

ところで、現行の日本の換気基準において CO₂濃度が体臭の指標として決められたことは、空気調和・衛生工学会のビルディング環境衛生基準検討委員会の報告書にも詳しいが、当初の委員会案では、換気設備グレードに応じて CO₂濃度の基準を変えるという案などもあった。例えば、空気清浄装置の付いたグレードの高い空調設備の場合は 1500〜2000ppm でもよいが、簡単な換気扇だけならば 700〜1000ppm とするというものであった。これまで述べて来たように、もともとアメリカ（ASHRAE：米国
暖房冷凍空調学会)をはじめ各国の換気基準の源流になったのは、ペッテンコッフェル 11)の論文（1858年）であり、表1.2.1にも示す通り、ペッテンコッフェルは人による空気汚染はCO₂濃度の増加に伴うため、長時間在室する室でのCO₂濃度は700ppm、通常の室では1000ppmを提唱した。その後、ビリングス 27)（1893年）が健康の観点から一人当たりの最低換気量として51m³/（h・人）を提唱したことなどもあったが、最終的には体臭制御という目的からヤグロー 16)（1936年）らの研究成果を基礎として、ASHARE基準 62-73）（1973年）が策定された。この基準では、例えば事務所の換気量は25〜42m³/(h・人)とされ、外気のCO₂濃度が例えば330ppmとすると、806〜1130ppm程度となる換気量であった。これ以後、日本では建築物衛生法が制定され、現在に至るまでCO₂濃度1000ppmの値は変更されていない。アメリカではその後換気量基準が削減されたが、シックシンドロームビルが社会問題となり、再度換気量の見直しが図られ、現在はASHRAE Standard 62.1-2013としてさまざまな空気汚染物質に対応した詳細な基準となっている。なお、この基準では、CO₂濃度に基づいて換気量を決める場合には、外気濃度+700ppmとするべきであるが、CO₂は信頼できる確実な空気質指標ではないと付記されている。

(6) 知的生産性とCO₂

ところで、以上のような人々による空気汚染とCO₂濃度があるとするならば、様々な研究が行われてきている。ただし、忘れてはならないのは、CO₂そのものの人体影響である。

一般的に、CO₂の毒性は表1.2.2の様に示され、1000ppm程度の濃度では、目立った影響はないと言われる。しかし、呼吸・循環や大脳の電気活動に著しい変化を起こすという研究もある7）。低濃度とは言え、血液中の酸素濃度に影響があるから、人によっては頭痛や能率の低下につながる。この観点からは、知的生産性に関する興味深い研究がある。図1.2.8は若年層について、教室環境と学習効率の関係について調査を行った後藤ら29)の結果である。学習効率はビデオ講義の後に行った確認テストによるものである。図より、学習効果が換気量と相関があることがわかる。これにより温熱環境と知的生産性との相関性については知られていたが、知的生産性にも影響する要因であることがわかる。

換気量5m³/hでCO₂濃度4000ppm程度、換気量30m³/hで1000ppm程度であることから、この図に示される様々な知的生産性への影響が見られるのはかなりの高濃度の場合であることがわかる。

では、現在の基準値1000ppm付近では、知的生産性への悪影響はないのであろうか。この問題については、興味深いデータがある。

表1.2.3は、600ppm、1000ppm、2500ppmの3通りのCO₂濃度の環境下で、22名の被験者に対して、意志決定能力を測定した結果の平均値の比率を示したものである。600ppmのCO₂は人の呼吸によるものであるが、1000ppmと2500ppmについては、600ppmの室空気に100%のCO₂ガスをボンベから発生させている。意志決定能力の測定には、PCを使った戦略管理シミュレーション（Strategic Management Simulation；SMS）実験が使われ、9種類の意志決定能力が測定された。その結果、1000ppm程度の濃度であっても、600ppmと比較して、明らかにCO₂濃度増加の影響が見られたことがわかる。多くの項目で、統計的に有意な差異が見られている。一方、2500ppmの環境下においても、差異の見られない項目として、Focused Activity、Information Searchが挙げられる。何かを集中して行う場合や、情報検索では影響がないということになる。このSMSによる意志決定能力への影響だけで、すぐにCO₂の有害性を示すものと考えることは早計かもしれない。我々は、この結果について追求を行うべきであり、例えこの実験の結果が正しいものであったとしても、24時間滞在する一般環境のレベルとして許容できるものであるかどうか改めて議論するべきと考える。
表 1.2.3 被験者 22 名について CO₂濃度と 9 種類の意志決定スコアとの関係 ⑩

Variables	Score at 1,000 ppm/600 ppm	Score at 2,500 ppm/1,000 ppm	Score at 2,500 ppm/600 ppm
Basic activity	0.85*	0.65*	0.56*
Applied activity	0.83*	0.64*	0.53*
Focused activity	0.99	1.22	1.20*
Task orientation	0.89**	0.40*	0.36*
Initiative	0.82	0.09	0.07*
Information search	1.06	0.97	1.03
Information usage	0.77*	0.40*	0.31*
Breadth of approach	0.84*	0.30*	0.25*
Basic strategy	0.89**	0.07*	0.06*

*df, degrees of freedom.
*p-values based on F-test, df = 1,21, calculated for difference between score in numerator and score in denominator.
*p < 0.10, **p < 0.05, ***p < 0.01.

(7) おわりに

本項では、現在の建物の室内環境基準値のなかで、不適率 (1000 ppm より高) が高い汚染質の一つである二酸化炭素 (CO₂) が室内環境において持つ意味について考えるために、換気哲学の変遷、体臭と CO₂濃度との関係、知覚空気汚染質、CO₂濃度基準が1000 ppm が決められた背景、知的生産性への影響など、CO₂の濃度基準を考える上で最低限必要であろうと考えられる知見を紹介した。

さて議論はこれからである。人体発生の CO₂濃度は 1000 ppm でなければならないか。或いは、外気濃度を基準として、例えば外気濃度+700 ppm でもよいとするか。あなたはどう考えるだろうか？外気の CO₂濃度は今でも毎年 2 ppm 増加し続けているのである。

【参考・引用文献】
1. 公益社団法人日本建築衛生管理教育センター：「改訂 建築物の環境衛生管理（上巻）」、2013年
2. P. O. Fanger："THE PHILOSOPHY BEHIND VENTILATION：PAST、PRESENT AND FUTURE"、Proceedings of INDOOR AIR 96、Vol.4、pp.3-12、1996
3. K. Klauss、R.H.Tull、L. M. Roots and J. R. Pfafflin："History of the Changing Concepts in Ventilation Requirements"、ASHRAE Journal、June、1970
4. 渡辺英行抄訳：「換気の必要性についての概念の変遷」、空気調和・衛生工学、第51巻、第10号、1977年、pp.110-114
5. 椎崎正也：「室内空気清浄設計の原理」、GBRC、Vol.64、1991年10月、pp.8-15
6. 椎崎正也：「必要換気量について（学会換気規格案に関連して）」、環境工学研究会資料、第110号、1985年、pp.13-26
7. 椎崎正也：「室内空気質と必要換気量」、GBRC、Vol.38、1985年4月、pp.21-30
8. 吉沢晋：「室内環境基準と必要換気量」、空気調和・衛生工学、第54巻、第4号、1980年4月、pp.3-9
9. Hazim B. Awwi："Chapter 7 Ventilation "、ARCHITECTURE :COMFORT AND ENERGY、1998、pp.157-188
10. John E. Janssen："The V in ASHRAE : An Histrical Perspective"、ASHRAE Journal、Vol.36、No.8、1994、pp.126-132
11. M. V. Pettenkofer："Über den Luftwechsel in Wohngebäuden"、Mu“nchen、1858
12. T. Tredgold："The Principles of Warming and Ventilation"、Public Buildings、M. Taylor、1836
岩下剛、ローチ、山中俊夫：「建築物における必要換気量に関する研究　（第1報）」、建築環境工学論文集、第4号、1982年、p.53

S. W. Cain、B. P. Leaderer、R. Isseroff、L. G. Berglund、R. J. Huey、E. D. Lipsitt and D. Perlman："Ventilation Requirements in Buildings --- I. Control of Occupancy Odor and Tobacco Smoke Odor"、Atmospheric Environment、Vol.17、No.6、1983、pp.1183-1197

楠崎正也、佐藤隆二：「体臭に基づく必要換気量算定のための基礎的研究　（その4）実験室調査における臭気強度と臭気不快度」、日本建築学会大会学術講演概要集、1983年、pp.361-362

楠崎正也、板田昌彦：「体臭に基づく必要換気量算定のための基礎的研究　（その5）運動負荷時の臭気強度と臭気不快度」、日本建築学会近畿支部研究報告集、1984年、pp.9-12

楠崎正也、板田昌彦：「体臭に基づく必要換気量算定のための基礎的研究　（その7）高温状態における臭気強度と臭気不快度」、日本建築学会大会学術講演概要集、1985年、pp.315-316

B. Berg-Munch、G. Clausen and P. O. Fanger："Ventilation Requirements for the Control of Body Odor in Spaces Occupied by Women"、Environmental International、Vol.12、1986、pp.195-199

G. H. Clausen、P. O. Fanger、W. S. Cain and B. P. Leaderer："Stability of Body Odor in Enclosed Spaces"、Environmental International、Vol.12、1986、pp.201-205

P. O. Fanger："Introduction of the Olf and the Decipol Units to Quantify Air Pollution Perceived by Humans Indoors and Outdoors"、Energy and Buildings、Vol.12、1988、pp.1-6

P. O. Fanger、J. Lauriden、P. Bluyssen and G. Clausen："An Pollution Sources in Offices and Assembly Halls、Quantified by the Olf Unit"、Energy and Buildings、Vol.12、1988、pp.7-19

P. Wargocki："Sensory pollution sources in buildings"、Indoor Air、14(Suppl 7)、pp.82-91、2004

J. Billings："Ventilation and health"、The Engineering Record、New York、New York、1893

多田　治：「有害物質管理のための測定法」、労働科学研究所、1967年

後藤伴延、伊藤一秀：「若年層(16〜22歳)を対象とした温熱・空気環境の質が学習効率に及ぼす影響の検討」、日本建築学会環境系論文集、2010年9月、No.655、pp.767-774

Usha Satish、Mark J. Mendell、Krishnamurthy Shekhar、Toshifumi Hotchi、Douglas Sullivan、Siegfried Streufert and William J. Fisk："Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance"、Environmental Health Perspectives、Vol.120、No.12、December、2012

山中俊夫：「Q46 二酸化炭素濃度の上限値」、建築技術、No.771、2014年4月、pp.134

山中俊夫：「3.1 建物における必要換気量」、都市・建築空間の科学 ―環境心理生理からのアプリオリー、2002年、pp.91-101、技報堂出版

岩下剛：「居住環境における」知覚空気質評価の動向、臭気の研究、Vol.25、NO.2、1994年、pp.12-19
1.2.2 体臭分析と知覚空気質評価について

（1）はじめに

19世紀中頃まで、欧米では人間はAnthropotoxinという有害物質を放散していると考えられてきた。これは当時、集会場や学校、教会などの人が多く集まる場所で空気質が劣悪になる苦情が多かったからである。その当時の学者も酸素不足やCO₂過剰が空気質の劣悪さを説明し得ないと考えてはいたのだが、体臭の化学的な成分を明確にするには至らなかった。20世紀になってAnthropotoxin説は消滅したが、Winslowは次のように述べた。「体臭のような明らかな揮発性物質があると、作業効率や食欲は減退するであろう。しかしながら、この種の不快は今のところ、CO₂濃度が2000ppmを超える、換気量が6ft³/分以下である、といった表現がしか表われていない。このように多様な化学物質からなる複合臭である体臭の評価には嗅覚が用いられるようになり、Lehmbergら、Yaglouらによる1930年代の必要換気量算定に関する研究以降、体臭の官能評価においても嗅覚パネルによる評価が行われている。その後、Fangerらにより、生体発散物質（体臭の発生源の名称）、建材、たばこ煙、空調システム等による知覚空気汚染を評価する単位としてolf（オルフ）、decipol（デシポル）が提案されたが、これは生体発散物質による知覚空気汚染を基準レベルとして用いている。室内空気質の総合的な指標としてCO₂濃度を用いることが度々あるが、体臭を知覚空気汚染の指標としてCO₂濃度を表す場合、YaglouらはCO₂があまり良い指標にならないと述べており、彼らの実験結果では被験者の申告する臭気強度とCO₂濃度との相関は高くない。これは入浴頻度や衣服の洗濯頻度など代謝とは直接結びつかない要素が体臭に影響を及ぼしているからと考察されている。一方、Fangerら、岩下らは体臭が主な空気汚染源の場合、CO₂濃度が知覚空気汚染（不快者率）の良い指標となり、室内CO₂濃度1000ppmが不快者率20%に相当することを報告している。体臭の測定は、汗から直接検出したり、脱衣をヘッドスペースによって分析したりする例が多く、空間中のVOCから体臭成分を同定する例はほとんどない。設定室温が25℃の状態と、たとえば28℃の状態と、たとえば25℃室温という通常の冷房状態とでは、人体の代謝には大きな違いがないため、人体からのCO₂吐出量には差がみられないと考えられるが、臭気強度などの知覚空気質には差があることが報告されている。このようなCO₂指標の是非については様々な意見があるため、CO₂濃度以外の体臭臭気強度の指標となる物理・化学測定値を求めることは、体臭が主な空気汚染源である空間の制御に有効と考えられる。

そこで、本節では、実大チャンバー内に被験者を在室させ、チャンバー内空気をオルファクトメーターによって来室者が嗅いで臭気強度を評価する実験内容について紹介する。

（2）実験方法

図1.2.9 環境実験室内の居室大チャンバー（FAN: 排気ファン、OM: オルファクトメーター、OCP: 在室者）
図1.2.10 サンプル空気・清浄空気の経路（P: ポンプ）
a. 実験条件
実験は環境実験室（図1.2.9）にて、換気設備を取り付けた居室大チャンバー（縦1830mm×横1830mm×高さ1845mm）を作成して行った。チャンバーへの給気は機械給気、排気は自然排気の第二種機械換気である。チャンバーは温湿度制御ができないため、チャンバー内温熱環境は外部環境に左右される。来室者がチャンバー外からチャンバー内の空気を嗅ぐためには、筆者らが開発したオルファクトメーターを使用した。オルファクトメーターは図1.2.10に示すように、対象空気をポンプで吸引し、パネルである来室者がディフューザーを介して嗅ぐ装置である。

表1.2.4 実験条件及び被験者人数

条件	在室人数	設定換気量 [m³/h]	備考
冬季	A 1 10		
	B 1 60		
	C 1 60	CO₂発生あり	
	D 3 10		
	E 3 60		
夏季	F 3 40		
	G 3 10		
	H 3 10	清浄機使用	

b. 測定項目
VOC濃度はポンプにてテナックス TA捕集管に1リットルの室内空気を50mL/minの流速で吸引して捕集した後、加熱脱着装置にて加熱、コールドトラップし、ガスクロマトグラフ/質量分析（GC/MS）装置にて分析・定量を行った。また、換気量については、講義室に発生させたトレーサーガス（SF₆）の濃度減衰により求めた。

c. アンケート項目
本研究では、体臭の発生源である在室者および外部からチャンバー内空気を評価する来室者を知覚空気質の評価者としている。在室者は、においの強い化粧品、整髪剤などを身につけることを禁じられ、実験中の喫煙、においの強い食事の摂取も禁じられた。

表1.2.5 アンケート項目

1	臭気強度（0：無臭→5：耐え難く感じるにおい）
2	温冷感（+3：暑い⇔-3：寒い）
3	空気の許容度（+1：明らかに受入れられる⇔-1：明らかに受入れられない）
4	目・鼻・喉の刺激（0：刺激が無い⇔5：耐え難い刺激）
5	空気の新鮮度（-3：汚れている⇔+3：新鮮）
6	集中のしやすさ（-3：集中が困難⇔+3：集中やすい）
7	疲労感（-3：疲れている⇔+3：元気になる）
8	覚醒感（-3：頭がぼんやりしている⇔+3：頭がスッキリしている）
9	精神的な気分（-3：気分悪い⇔+3：気分良い）
10	眠気（0：眠たくない⇔6：非常に眠い）

d. 実験手順
在室者として、全条件を通して同じ3名の学生（男子3人）が参加した。在室者は、においの強い化粧品、整髪剤などを身につけることを禁じられ、実験中の喫煙、においの強い食事の摂取も禁じられた。
また、着衣は、事前に用意した洋服（Tシャツ、長ズボン、靴下）に着替えてもらった。在室者は居室大チャンバーに用意された椅子に座り、実験中安静状態で滞在した。また、チャンバー外部からオルファクトメーターを用いて室内空気を嗅ぐ来室者パネルは10名が各実験に参加した。実験A、B、Cの実験条件では在室者人数が1名であるため、3名用意した在室者被験者それぞれが1名在室状態の実験を1回ずつ、計3回行った。本研究では、その3回の実験の平均値を結果として用いる。また、夏季実験の実験F、G、Hもそれぞれ3回ずつ実施し、その平均値を結果として用いる。なお、本実験における空気汚染物質は在室者自ら発生する体臭のみであること、および実験途中であっても、体調がすぐれない場合は、退室して良い旨を被験者に事前に伝えた。実験中のチャンバー内CO₂濃度は、空気調和衛生工学会による単独指標によるCO₂設計基準濃度の3500 ppmを瞬間的にでも越えないこととした。

図1.2.11 実験手順

図1.2.12 チャンバー内CO₂濃度の経時変化（冬季）

図1.2.13 チャンバー内酸素濃度の経時変化（冬季）

図1.2.14 来室者および在室者の申告する臭気強度（冬季）

（3）実験結果

図1.2.12に冬季実験におけるチャンバー内CO₂濃度の経時変化を示す。在室者が3人で換気量の少ない実験DのCO₂濃度が最も高く、後半は3000ppmを超えている。一方、在室者が1人で換気量の多い実験BではCO₂濃度は後半でも約700ppmである。それ以外はCO₂濃度が1000～1400ppmの定常濃度となっている。実験Cは在室者が1人であり、換気量も実験Bと同等であるが、CO₂の強制発生のため、濃度は1200ppm程度となり、実験Bを上回っている。図1.2.13に冬季実験におけるチャンバーサンタス濃度の経時変化を示す。実験開始時（在室者入室直後）の酸素濃度は21％だが、時間経
過とともに低下していき、実験 D では 20.4%まで低下し、それ以外の実験条件では 20.8%程度まで低下している。実験 C は CO₂の強制発生があるが、酸素濃度については、CO₂発生以外同条件である実験 B とほぼ等しくなっている。

図 1.2.14 に冬季実験において、来室者および在室者が申告した臭気強度の経時変化を示す。臭気強度算出のため、臭気強度申告スケールは次のように数値化した：0) 無臭、1) かすかに感じるにおい、2) 軽度に感じるにおい、3) 強く感じるにおい、4) 非常に強く感じるにおい、5) 耐えがたく感じるにおい。各プロットは各回に被験者の申告した臭気強度の平均値である。図 1.2.14 をみると、来室者の申告する臭気強度は経過時間とともに上昇していき、在室者が多く換気量の少ない実験 D が最も高い値になっている。一方、在室者の臭気強度申告値は、実験中大きな変化はなく、低い値であり、実験条件間の差異もみられない。これは、臭気物質を嗅ぎ続けることによって、その物質に対する知覚が鈍る、嗅覚順応（Adaptation）12) が在室者に生じたためと考えられる。実験 C は CO₂の強制発生があるが、換気条件および在室者人数は実験 B と同等である。臭気強度をみると、実験 B と実験 C に大きな差異はみられず、CO₂自体は知覚空気質に影響を及ぼしていないことが確認された。空気質の状態がほぼ定常に達したと考えられる 400 分の時点での来室者の臭気強度申告値を用いて比較すると、有意差（p<0.05）があるのは、実験 A と D、実験 B と D、実験 C と D の間のみであった。

図 1.2.15 チャンバー内 CO₂濃度の経時変化（夏季）18)
図 1.2.16 チャンバー内酸素濃度の経時変化（夏季）18)
図 1.2.17 来室者・在室者の申告する臭気強度（夏季）18)
図 1.2.18 来室者の申告する臭気強度と化学物質濃度との関係18)
（2E1H は 2-Ethyl-1-Hexanol の意）
図 1.2.15 に夏季実験におけるチャンバーネ CO₂濃度の経時変化を示す。夏季実験はどの実験条件も在室者が 3 人であるが、換気量の少ない実験 G、H は CO₂濃度が後半は 3000 ppm 近くになっている。一方、換気量が約 40m³/h の実験 F では CO₂濃度は約 1300 ppm の定常濃度を保っている。

図 1.2.16 に夏季実験におけるチャンバー内酸素濃度の経時変化を示す。実験開始時の酸素濃度は 20.7% で、時間経過とともに低下していき、実験 F では 30.5%まで低下し、実験 G、H では 30.3%程まで低下している。

図 1.2.17 に夏季実験において、在室者が申告した臭気強度の経時変化を示す。各プロットは各回に被験者の申告した臭気強度の平均値である。図 1.2.17 をみると、冬季実験と同様に、在室者の申告と在室者の順応がうかがえる。在室者の申告では、換気量の少ない、実験 G、H の臭気強度が、換気量の多い実験 F に比べ大きな値になっていることがわかる。40 分時点での在室者による臭気強度申告で比较すると、実験 F と H の間には有意差（p<0.05）があったが、実験 G と H の間には有意差がみられなかった。実験 G と H には、在室者申告を用いた研究で用いた在室者特有の臭気成分である可能性がある。年齢差、性差等を考慮した、より多くの被験者を用いた研究が必要である。

(4) 考察
体臭は、汗、尿、便、及び呼吸、唾液、性の排泄物および皮膚分泌物の混合と考えられている。腋および足の汗を含んだガーゼをヘッドスペース+GC/MS 法により分析した結果を、Allison らは報告している。Allison らは複数の被験者の腋の汗中の 50 種類の VOC を同定・考察しており、その研究において、Nonanal, Decanal は体臭成分として報告されている。彼らが同定した VOC は体臭成分として常に検出されたわけではないが、被験者ごとに異なる種類の VOC が検出されている。また土師らは、ガーゼに吸着された皮脂を、ヘキサン（有機溶媒の一種）にて抽出し、GC/MS 法にて分析し、40 歳以上の男性のサンプルから Nonenal（ノネナル）を検出し、これが広く加齢臭の要因として知られている。今回の実験では、Nonenal は検出されなかったが、これは在室者として雇った被験者が 20 代前半の男子学生であったためと考えられる。土師らは、さらに上記の研究において、2-Ethyl-1-Hexanol, Nonanal, Decanal も体臭成分として検出しているが、これらは 40 歳以下の被験者の汗からも検出されている。ここで引用した研究を含め、体臭成分を調査する研究で用いられる方法は、ガーゼや洋服に吸着された成分を分析しているものが多く、周囲空気から分析したものは少ない。本研究の結果から、室内空気の汚染を予防するためには、これらの VOC を定量する必要があります。
臭気強度などの知覚空気質指標との相関が高く、多くの研究蓄積がある。しかし、CO₂は呼気物質であり、体臭成分でないため、CO₂は呼気物質であるCO₂を指標として用いることが妥当である一方、体臭の健康性、快適性、知的生産性への影響、体臭のリスク評価などを詳細に考察するためには、感覚測定に基づく知覚空気質評価とともに実際の体臭成分 VOC の計測が必要である。体臭成分 VOC は、今回の研究で検出された3種の VOC だけでなく、多種の物質が着衣への吸着成分として報告されているため、今後、空間でのサンプル空気からの検出が可能な体臭成分 VOC の測定、研究の蓄積が必要である。

（5）まとめ

a. 体臭成分と考えられる VOC として、2-Ethyl-1-Hexanol, Nonanal, Decanal が検出された。しかし、今後、現実空間の空気からの検出が可能な体臭成分 VOC の測定、研究の蓄積が必要である。

b. 計測の安定性、連続測定の容易度、コスト等を考慮すると、CO₂濃度を指標として用いることは、現状では妥当と考えられる。

【参考文献】
1) Cain, W.S.: Ventilation and Odor Control: Prospects for Energy Savings, ASHRAE TRANS., 85(1), pp.784-792, 1979
2) Winslow, C.E.: Fresh Air and Ventilation, Dutton, 1926
3) Lemhberg, W.H., Brandt, A.D., and Morse, K: A Laboratory Study of Minimum Ventilation Requirements: Ventilation Box Experiments, H.P. & A.C., Jan., pp.44-47, 1935
4) Yagiou, C.P., Riley, E.C., and Coggins, D.I.: Ventilation Requirements, H.P. & A.C., Jan., pp.65-76, 1936
5) Fanger, P.O.: Introduction of the Olf and the Decipol Units to Quantify Air Pollution Perceived by Humans Indoors and Outdoors, Energy and Buildings, Vol.12, pp.1-6, 1988
6) Fanger, P.O., and Berg-Munch, B.: Ventilation and Body Odor, Proc. of An Engineering Foundation Conference on Management of Atmospheres in Tightly Enclosed Spaces, Atlanta, ASHRAE, pp.45-50, 1983
7) 岩下 剛、木村建一、吉沢 晋、池田耕一、田辺新一: 人間の嗅覚に基づく室内空気質の評価に関する基礎的研究、日本建築学会計画系論文報告集、第 410 号、pp.9-19, 1990.4
8) 富田正健: 医療現場でのにおい計測 -口臭-, におい・かおり環境学会誌、36 巻 5 号、pp.250-260, 2005
9) 山賀孝之、宮崎秀夫: 歯科外来における口臭測定、におい・かおり環境学会誌、36 巻 5 号、pp.261-265, 2005
10) 岩下剛: 中立温度環境の作業効率への影響及びビデオ視聴内容の長期記憶 -室温の違いが作業効率に及ぼす影響（その 2）-、日本建築学会環境システム論文集、第 628 号、pp.815-821, 2008.6
11) 岩下剛、羽田陽：室内空気污染の知覚評価のためのオルファクトメーターシステムの開発（その 1 知覚空気質評価オルファクトメーター）、日本建築学会技術報告集、第 16 巻 第 34 号、pp.1037-1040, 2010.10
12) Gunnarsen, L., and Fanger, P.O., Adaptation to Indoor Pollution, Proc. of Healthy Buildings ’88, Vol.3, pp.157-167, 1988
13) 高木貞敬、渋谷達明（編）: 味の科学、朝倉書店、1989
14) Allison, M., Curran, S.I., Rabin, P.A., Paola, A.P., and Kenneth, G.F.: Comparison of the Volatile Organic Compounds Present in Human Odor using SPME-GC/MS, J. Chem. Ecology, 31(7), pp.1607-1619, 2005
15) Shinichiro Haze et al.: 2-Nonenal Newly Found in Human Body Odor Tends to Increase with Aging. Journal of Investigative Dermatology/The Society for Investigative Dermatology. 116(4), pp.520-524, 2001
16) Janes, D. et al.: Influence of MHC on Odour Perception of 43 Chemicals and Body Odour, Central European Journal of Biology. 5(3), pp.324-330, 2010
17) 岩下 剛、仲川 純子、玉木 元太郎: 体臭による知覚空気汚染に関する研究 -その 1 生体発散物質の VOC による表現に関する試験研究-, 日本建築学会環境系論文集、第 641 号、pp.797-802, 2009.07
岩下 剛, 日比野 貴生:VOC 濃度による体臭臭気強度の評価 体臭による知覚空気汚染に関する研究（その2）, 日本建築学会環境系論文集, 第 664 号, pp.539-545, 2011.06
1.3 海外関連基準（アメリカ、ヨーロッパ）

本節では海外（アメリカ、ヨーロッパ）における必要換気量の考え方について概観する。

1.3.1 アメリカ

本項では、ASHRAE（American Society of Heating, Refrigerating and Air-Conditioning Engineers：米国暖房冷凍空調学会）における最小外気取り入れ量の考え方について、紹介する。

ASHRAE は空調・冷凍・換気などに関する国際的な学会である。ASHRAE で定められている多くの Standard（基準）が世界各国の基準に影響を与えている。我が国の室内環境に馴染みのある基準として、温熱快適性に関する Standard 55 Thermal Environmental Conditions for Human Occupancy がある。オフィスビル等の建物の換気量については Standard 62.1 Ventilation for Acceptable Indoor Air Quality に記されている。ここでは、Standard 62.1-2016（図 1.3.1）における最小外気取り入れ量の算出手順について紹介する。

図 1.3.1 ASHRAE Standard 62.1 2016

(1) 外気の取扱い

換気のために取り込む外気の取扱について、6.2.1 Outdoor Air Treatment で以下のように記されている。

a. PM10、PM2.5について

国の基準／ガイドラインを超える地域に建つ建築物は、MERV（Minimum Efficiency Reporting Value）6 以上（PM10 の場合）、MERV11 以上（PM2.5 の場合）のフィルタもしくは空気清浄装置が必要（一部例外あり）。

b. オゾンについて

日平均（8 時間）濃度が年間で 4 番目に高い日のオゾン濃度を直近 3 年間分平均した値が 0.107ppm（209 μg/m³）を超える場合、空気清浄装置が必要（一部例外あり）。

c. その他の汚染物質について

その他の物質が基準やガイドラインを超える地域の場合、室内空気質への影響について、設計図書に記載すること。

(2) 居住域（呼吸域）における外気取り入れ量

ASHRAE では、人体に由来する汚染物質と建物に由来する汚染物質の双方を考慮し、それぞれに対して外気取り入れ量を設定している。居住域（呼吸域）における外気取り入れ量は式（1.3.1）で算出される。
$$V_{bc} = R_p \times P_z + R_s \times A_z$$ \hspace{1cm} (1.3.1)

ここで、

- V_{bc}: 居住域（呼吸域）における外気取り入れ量 [L/s]
- R_p: 一人あたりの外気取り入れ量 [L/(s・人)]
- P_z: 人数 [人]
- R_s: 単位床面積あたりの外気取り入れ量 [L/(s・m²)]
- A_z: 床面積 [m²]

R_p 及び R_s は基準の中で建物用途別に規定されている。ここでは、代表的な例として、学校とオフィスの一部を表 1.3.1 に示している。在室人数は、一般使用時の最大使用人数を想定する（例外として、変動がある場合の時間平均値の算出方法が6.2.6.2に記載されている）。最大使用人数を推定出来ない場合のために、表 1.3.1 には在室人員密度の既定値も記されている。

表 1.3.1 居住域における最小外気取入れ量

建物・室用途	一人あたりの外気取り入れ量 R_p	単位床面積あたりの外気取り入れ量 R_s	在室人員密度	一人あたりの合計外気取り入れ量	室内空気のClass
オフィスビル	2.5 L/(s・person)	0.6 L/(s・m²)	50	3.5	1
休憩室	2.5 L/(s・person)	0.3 L/(s・m²)	10	5.5	1
メインエントランスロビー	2.5 L/(s・person)	0.3 L/(s・m²)	5	8.5	1
オフィススペース	2.5 L/(s・person)	0.3 L/(s・m²)	65	4.3	1
教育施設	3.8 L/(s・person)	0.3 L/(s・m²)	70	5.1	2
食堂	3.8 L/(s・person)	0.9 L/(s・m²)	20	7.0	2
キッチン・調理場	3.8 L/(s・person)	0.6 L/(s・m²)	35	6.7	1

また、表 1.3.1 には各空間の空気質の要求レベルについて、該当するクラスが記載されており、オフィススペースは Class1 とされている。各クラスの概要は以下の通りである。

- **Class 1**: 汚染物質濃度及び感覚への刺激強度が低く、臭いが気にならない空気
- **Class 2**: 汚染物質濃度及び感覚への刺激強度が中程度あり、臭いを少し感じる空気
- **Class 3**: 汚染物質濃度及び感覚への刺激強度が高く、不快な臭いのする空気
- **Class 4**: 非常に不快で有害な物質を含む空気

表 1.3.1 から、オフィススペースにおける一人あたりの最小外気取り入れ量を計算すると、以下のようになる。

- 一人あたりの外気取入れ量 (R_p) は表より、2.5L/s （=9m³/h）である。
- 単位床面積あたりの外気取入れ量 (R_s) は表より 0.3L/(s・m²) (=1.08m³/(h・m²)) である。表中の在室人員密度 (5人/100m²) より、一人あたりの床面積は 20m² となるため、床面積から算出される外気取入れ量は 6L/s (21.6m³/h) となる。
- これらより、一人あたりの最小外気取入れ量は $2.5 + 6 = 8.5$L/s (30.6m³/h) となり、我が国で用いられている 30m³/h と概ね同様の数値となる。

なお、適用されている空調方式により、表 1.3.2 のように空気分配係数 (E_z) の既定値が定められている。

ており、これ以下の数値を用いて、室への取入れ外気量（\(V_{oz} \)）は式（1.3.2）のように算出することがで
きる。

\[
V_{oz} = \frac{V_{bz}}{E_z}
\]

ここで、

\(V_{oz} \): 室への外気取り入れ量 [L/s]
\(V_{bz} \): 居住域（呼吸域）における外気取り入れ量（式（2.3.1）） [L/s]
\(E_z \): 空気分配係数 [-]

室内の二酸化炭素（CO2）濃度については、空気質の観点から付録 C に各国の基準や規制の状況が記
されている。付録 C の一部を抜粋して表 1.3.3 に示す。労働環境においては我が国同様に 5000 ppm と
しているものが多い。カナダでは室内環境で 3500 ppm（長期間暴露時）となっている。

給気と排気の状況	\(E_z \)
天井給気（冷気）	1.0
天井給気（暖気）+床排気	1.0
天井給気（室内温より8℃以上高い暖気）+天井排気	0.8
低速度気流での換気換気（天井給気（暖気）+天井排気）、もしくは床吹出しシステム（床上8.14mの地点を通る際の給気方	
向風速が0.25m/s以下）	1.2
床給気（暖気）+床排気	1.0

表 1.3.2 空気分配係数

給気と排気の状況	\(E_z \)
天井給気（冷気）	1.0
天井給気（暖気）+床排気	1.0
天井給気（室内温より8℃以上高い暖気）+天井排気	0.8
低速度気流での換気換気（天井給気（暖気）+天井排気）、もしくは床吹出しシステム（床上8.14mの地点を通る際の給気方	
向風速が0.25m/s以下）	1.2
床給気（暖気）+床排気	1.0

表 1.3.3 室内 CO2濃度に対する基準やガイドラインの比較

二酸化炭素 (CO2)	\(C_e \)	\(C_o \)
OSHA	5000 ppm	10000 ppm [1時間曝露]
MAK	5000 ppm	3500 ppm [長期間暴露]
Canadian	3000 ppm [15分露]	
NIOSH	30000 ppm [15分露]	
ACGIH	5000 ppm	

また、付録 D では一人あたりの外気取り入れ量から逆算した CO2の室内外濃度差について触れられて
おり、式（1.3.3）に示すように、内外濃度差が 700ppm 程度であれば、多くの外来者にとって、室の臭
気が気にならない程度を維持できると記載されている。

\[
C_e - C_o = \frac{N}{V_o}
\]

\[
= 0.31/(7.5 \times 60 \text{s/min})
\]

\[
\approx 700 \text{ ppm}
\]

ここで、付録 D では

\(C_e \): 室内の CO2濃度 [-]
\(C_o \): 外気の CO2濃度 [-]
\(N \): 人体からの CO2発生量 [=0.31L/min]
\(V_o \): 一人あたりの外気取り入れ量 [ここでは 7.5L/s とされている]
としている。
なお、付録は基準の一部ではなく、あくまでも情報として記載しているのみであるとの注意書きが付録にはなされており、基準における外気取り入れ量の算出過程にはCO₂濃度は用いられていない。

2.3.2 欧州

本項では、ENにおける最小外気取り入れ量の考え方について、紹介する。ENは European Norm（European Standards：欧州統一規格）の略称であり、EN規格はEU加盟国間の貿易円滑化と同時に産業水準統一化のために、ISO（国際標準化機構）の定義によるところの「地域規格」として制定されている。EUの専門委員会であるCEN（欧州標準化委員会）などにより策定された規格を各国の規格に反映させ、矛盾する規格があれば、それを是正することが求められている。CEN規格とも呼ばれている。オフィスの換気に関連するものとして、EN15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acousticsとEN13779 Ventilation for non-residential buildings。Performance requirements for ventilation and room-conditioning systemsがある。ここでは、双方における外気取り入れ量（換気量）に関連する部分について紹介する。

（1）オフィスビル等の外気取り入れ量

オフィス等の非居住用建物における外気取り入れ量はASHRAEと同様に、人体由来の汚染物質と建物由来の汚染物質の双方を考慮し、式（1.3.4）で求められる。

\[q_{tot} = n \times q_p + A \times q_b \] \hfill (1.3.4)

ここで、

\(q_{tot} \): 室の外気取り入れ量 [L/s]
\(n \): 室の設計利用人数 [人数]
\(q_p \): 一人あたりの外気取り入れ量 [L/(s・人)]
\(A \): 床面積 [m²]
\(q_b \): 単位床面積あたりの外気取り入れ量 [L/(s・m²)]

EN規格では、室内環境を表1.3.4のように、予想される不満足者率に応じて、3つのカテゴリーに区分

Contents
Page
Framework
1 Introduction
2 Normative references
3 Terms and definitions
4 Symbols and abbreviations
5 General
6 Design inputs for deactivation of windows, heating, cooling, mechanical and ventilation systems

A.1 Recommended categories for design of mechanical heated and cooled buildings... 35
A.2 Acceptable indoor temperatures for design of buildings without mechanical heating systems... 37
A.3 Recommended indoor temperatures for energy calculations... 39

Annex A (informative) Sample for the criteria for indoor air quality and ventilation rates... 40
A.1.1 General... 40
A.1.2 Method based on person and building component... 41
A.1.3 Method based on ventilation rate per person or per floor area... 42
A.1.4 Recommended values of CO₂ for energy calculations... 43
A.1.5 Recommended design ventilation rates in non-residential buildings... 44
A.1.6 Recommended ventilation during unoccupied hours... 45
A.1.7 Recommended ventilation during unoccupied hours... 46

Annex B (informative) Examples on how to define low and very low energy buildings... 47
Annex C (informative) Recommended criteria for lighting... 48
Annex D (informative) Recommended criteria for lighting... 49
Annex E (informative) Indoor system rules criteria of some spaces and buildings... 50
Annex F (informative) Long-term evaluation of the general thermal comfort conditions... 51
Annex G (informative) Recommended criteria for acceptable deviations... 52

G.1 Building Category... 52
G.2 Length of validation... 53
Annex H (informative) Methodology for subjective evaluations... 54
Annex I (informative) Examples of assessment and certification of the indoor environment... 55

L.1 The design criteria used... 56
L.2 Whole year computer simulations of the indoor environment and performance... 57
L.3 Data sets of external parameters for the indoor environment... 58
L.4 Subjective responses from occupants... 59

Bibliography... 61

図1.3.2 EN 15251 2007②
分しており、\(q_p \)及び\(q_b \)はカテゴリー毎に定められている（表 1.3.5）。新築や改築時の標準レベルがカテゴリーIIに該当とし、既存建物での許容できるレベルがカテゴリーIIIとなる。\(q_b \)はさらに室内空気汚染の状況に応じて、3つに分類されている。EN規格においても、用途別に在室人員密度の規定値が定められている。一部を表1.3.6に示す。

表1.3.5、表1.3.6から、室内空気汚染が低い既存建物にあるオフィスでの一人あたりの最小外気取り入れ量を計算すると、以下のようになる。

・一人あたりの外気取り入れ量（\(q_p \)）は表1.3.5より、4 L/s（=14.4m³/h）である。
・単位床面積あたりの外気取り入れ量（\(q_b \））は表2.3.5より0.4L/(s・m²)(=1.44m³/(h・m²))である。表1.3.6の在室人員密度（0.1人/m²）より、一人あたりの床面積は10m²となるため、床面積から算出される外気取り入れ量は4 L/s（14.4m³/h）となる。
・これらより、一人あたりの最小外気取り入れ量は\(4 + 4 = 8 \) L/s（28.8m³/h）となり、この条件での外気取り入れ量がASHRAE同様、我が国で用いられている30m³/hに近い数値となる。

カテゴリー	説明	予想される不満足者率(%)
I	障害者や病人、乳幼児など、過敏で虚弱な人たちが使用する空間（高レベル）	15
II	新築や改築時の標準レベル	20
III	既存建物での許容できるレベル	30
IV	上記以外（このカテゴリーは一時利用の場合のみに適用）	-

表1.3.6 室用途別の在室人員密度の既定値2)

カテゴリー	在室人員密度の既定値(単位:人/m²)
オフィス	0.1
会議室	0.5
レストラン	1/1.5
教室	0.5
幼稚園	0.5

表1.3.4 カテゴリーの分類 2)

カテゴリー	単位床面積あたりの外気取り入れ量 \(q_b \)(L/s/m²)	全換気量 \(q_p \)(L/s/person)	
非常に空気汚染が低い建物	空気汚染が低い建物	空気汚染が低くない建物	
I	1.0	0.5	0.5
II	0.7	0.35	0.35
III	0.4	0.2	0.8

2) 以上の表は示すとおりの設定値を示します。
（2）CO₂濃度差と外気取り入れ量

外気取り入れ量をデマンドコントロールする場合などには、CO₂の室内外濃度差から必要とする外気取り入れ量を計算することも可能である。表1.3.7に、EN規格におけるCO₂の室内外濃度差の既定値及び運用時の範囲をカテゴリー別に示す。

表1.3.7 二酸化炭素（CO₂）濃度差の既定値及び運用時の範囲

カテゴリー	二酸化炭素（CO₂）の室内外濃度差	
	既定値	運用時の幅（EN13779）
I	350	≦ 400
II	500	400 - 600
III	800	600 - 1000

2.3.3 まとめ

本節では、オフィス等の非居住空間における最小外気取り入れ量について、ASHRAE基準とEN規格で定められている算出方法を紹介した。双方において、人体由来の室内空気汚染のみでなく、建物由来の室内空気汚染を考慮に入れた外気取り入れ量の算出方法を採用している。さらに、EN規格では、室内環境を要求度レベルに応じて、3つのかテ戈リに分類し、それぞれにおいて、外気取り入れ量の既定値を定めている。ASHRAEでは、Standard-1989以前は外気取り入れ量の算定基準に室内CO₂濃度（1000ppm）を用いていたが、1989以降は外気取り入れ量の計算にCO₂濃度を用いていない。

【参考・引用文献】
1. ASHARE: ANSI/ASHRAE Standard 62.1-2016, Ventilation for Acceptable Indoor Air Quality, 2016
2. BSi: BS EN 15251:2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, 2008
3. BSi: BS EN 13779:2007, Ventilation for non-residential buildings. Performance requirements for ventilation and room-conditioning systems, 2008
4. 日本貿易振興機構ホームページ：https://www.jetro.go.jp/world/qa/04S-040008.html
2.1 特定建築物における CO₂不適率の現状

2.1.1 全国特定建築物における環境衛生管理基準の不適率

建築物において室内環境が居住者に与える影響について、多くの知見が得られている。我が国では、「建築物における衛生環境の確保に関する法律（建築物衛生法）」において、特定建築物の維持管理として、環境衛生管理基準が表2.1.1のように定められている。この管理基準値の設定根拠については、既往の報告書において詳細に述べられている。実際の建築物においては、温度、相対湿度、二酸化炭素濃度、一酸化炭素、気流、浮遊粉じんの6項目について毎2カ月以内ごとに1回測定し、基準値との比較を行うことで適切な維持管理を行うことになっている。更に保健所により立入り検査により指導を行うことで、建物の衛生環境を良好に保つこととしている。この法律の仕組みにより、衛生的ならびに快適性も向上し、欧米諸国に比べればわが国ではシックビル症候群が抑えられているとも言われている。

表2.1.1 空気環境に関する建築物環境衛生管理基準

項目	基準値
浮遊粉じんの量	0.15 mg/m³以下
一酸化炭素の含有率	10 ppm以下
二酸化炭素の含有率	1000 ppm以下
温度	17℃以上28℃以下
相対湿度	40%以上70%以下
気流	0.5 m/秒以下
ホルムアルデヒドの量	0.1 mg/m³以下（=0.08 ppm以下）

建築物衛生法によって、特定建築物においては保健所による立入検査が行われているが、この調査結果については、厚生労働省が全国の自治体より毎年集計を行っており、独立行政法人統計情報センターで公表されている。そこで、公表されている全国の建築物の維持管理に関するデータを用いて、基準値に適合しなかった建物の割合、不適率の動向の整理を行うことにより、建築物における環境衛生の実態、特に二酸化炭素濃度の不適率の状況について把握することとする。また、上述の不適率の情報では、室内環境の物理的な測定値はないため、その原因について不明な点がある。そこで、東京都における立入測定によって得られた環境計測データを用いた検討も行った。

本報告で使用した建物維持管理の状況については、建築物衛生法に関する各都道府県、保健所設置市、特別区における建築物衛生の実態を把握することを目的とし、厚生労働省が毎年集計を行っているものである。データは建築物の維持管理項目ごとの調査件数及び不適件数が集計されている。対象期間は平成8年度から平成26年度までで、不適率の推移を見ることができる。建築物の維持管理項目は、帳簿（1項目）、空気環境の調整（16項目）、給水の管理（10項目）、雑用水の管理（9項目）、排水設備（1項目）、清掃（1項目）、防除（1項目）に分けられている。用途は興行場、百貨店、店舗、事務所、学校、旅館、その他と分かれており、それぞれの用途別ごとの不適率の比較をることができる。これらのデータに基づき、用途別不適率及び不適率の経年変化を集計し、建物維持管理の問題点の抽出を行った。

図2.1.1に空気環境6項目（浮遊粉じん、二酸化炭素、一酸化炭素、温度、相対湿度、気流）の不適率の経年変化を示す。浮遊粉じん、一酸化炭素、気流については、低い不適率で推移している。一方、二酸化炭素濃度、温度、相対湿度の不適率においては、いずれも値が高く、3回の顕著な上昇が見られた。1回目は平成11年度（相対湿度）、2回目は平成15年度（温度、相対湿度、二酸化炭素濃度）、3回目は平成23年度（温度、相対湿度、二酸化炭素濃度）であった。それぞれは省エネルギーの改定及び建築物衛生法改正の翌年、東日本大震災の年に重なる。省エネのための、設定温度・相対湿度の設定・制御の問題、換気量を削減することなどにより、基準値を逸脱する事例が増加したものと考えられる。また、平成15年度における建築物衛生法の改定により、個別空調建物が特定建築物の適用対象となったため、この方式が加わったことによる基準値の不適合の件数が増加したことが考えられる。なお、平成25年
図 2.1.1 空気環境 6 項目の不適率の経年変化 ④

図 2.1.2 用途別の二酸化炭素濃度不適率の経時変化 ④

に相対湿度の不適率が一旦減少に転じているが、その原因として加湿器を設置していない建築物において、相対湿度との比較を行わなくなったことに関係すると考えられる。

図 2.1.2 に二酸化炭素の用途別不適率の経時変化を示す。旅館を除けば、全ての用途で軒並みに上昇し続けている。特に学校と事務所の上昇が著しく、平成 8 年度の 10% 程度に比べ、平成 26 年は 3 倍超となった。なお、平成 24 年度と平成 25 年度は同程度であったものの、26 年度に再度上昇している。

学校について、学校保健安全法学校環境衛生基準において、換気の基準として 1500 ppm 以下であることが望ましいとおり、特定建築物となっている学校建築においては、同じ二酸化炭素濃度であっても、基準値が異なっていることも要因として考えられる。旅館において不適率が低い要因としては、計測場所・時間など測定条件に起因することも考えられる。例えば、宴会場において、宴会の最中に計測がされているかといえば、困難であることが想像される。

その他の項目として、温度、相対湿度は何の用途においても上昇傾向、気流、浮遊粉じん、一酸化炭素、二酸化炭素、相対湿度の不適率が増加した。特に、学校と事務所において上昇が著しく、二酸化炭素の上昇が特に著しい。
2.1.2 東京都における特定建築物の空気環境調査

東京都では建築物衛生法第11条第1項及び第13条第2項に基づき、特定区内の延床面積10,000m²を超える特定建築物に対してはビル衛生検査班が、多摩地区内の特定建築物については各保健所環境衛生係が立ち入り検査を実施している。そこで、この東京都の平成25年度及び26年度において立ち入り測定により得られた実測値を用いて、二酸化炭素の不適率の原因について検討を行った。

平成25年度及び26年度に実施された東京都による立ち入り測定の対象建築物については、共に300件超で、延床面積については、85%の対象ビルが10,000m²以上、累積分布の中央値は約17,000m²であり、比較的大規模なビルが対象となっている。図2.1.3に対象とした用途別の建築物の種類を示しているが、用途別では学校49件、興行場7件、事務所224件、集会場3件、図書館0件、店舗15件、美術館1件、百貨店6件、遊技場4件、旅館7件であった。平成26年度における測定対象は338件あり、用途別では学校52件、興行場5件、事務所216件、集会場3件、図書館0件、店舗45件、博物館1件、美術館1件、百貨店1件、遊技場7件、旅館7件であった。平成25年度と26年度を比較すると、全国特定建築物立ち入り調査の結果で不適率が高い傾向にあった事務所の割合が減り、不適率の低い店舗の割合が増加しているのが特徴となる。

図2.1.4に今回対象とした建築物の空調制御方式について示すが、制御方式別では平成25年度と26年度ともに55%程度がゾーン別制御方式であり、測定対象ビルの半数以上はゾーン別制御方式を用いており、また比較的大規模の建築物が対象建物としては多くなっているが、個別制御方式も3割程度採用している。
図 2.1.5 に二酸化炭素濃度の累積頻度分布を示す。平成 25 年度の 1071 件、平成 26 年度の 957 件の測定のうち管理基準を満たさなかったのは 104 件及び 94 件であり、不適率が 10%程度であった。図 3.1.6 に二酸化炭素の月別データを示す。二酸化炭素濃度は管理基準値の 1000ppm を超過することに関しては、季節とは関係しないこと分かった。建築物における機械換気においては、夏期の冷房運転、冬期の暖房運転、中間期など空調機の運転により相当、季節に影響されていないこととなる。よって、二酸化炭素不適の原因としては、室内における設定環境の少なさ、居住者の多さが原因となっているものと考えられる。

図 2.1.5 二酸化炭素濃度の累積頻度分布 ④

図 2.1.6 二酸化炭素濃度の測定値の変化 ④

2.1.3 まとめ
本研究では、全国の立ち入り調査のデータを用いた全国都道府県の不適率の最新動向の解析及び東京都の立ち入り測定のデータを用いた室内空気環境の詳細な検討により、下記の事柄が明らかになった。
・全国の不適率については、温度、湿度、二酸化炭素濃度が平成 11 年度から上昇し続けている。二酸
化炭素に関しては、特に学校と事務所の上昇が著しく、平成8年度の10%程度に比べ、平成26年は3倍超となった。その間に顕著な上昇が見られたのは、大規模な省エネ法の改正、建築物衛生法改平は東日本大震災に関連し、その法改正や震災直後の節電などによる省エネ行動が深く関わっていることが示唆された。

・平成25年度の東京都の事務所建築物における立ち入り測定データを用いた解析の結果、前述した全国の不適率よりも低く、二酸化炭素濃度の不適率は10%程度であった。季節ごとに不適率に変化がないことから、冷房、暖房などの空調設備の運転状況によるものではなく、室内における設定環境量の少なさ、居住者の多さが原因となっているものと考えられる。

【参考文献】
1) 高野大地、池田耕一、東賢一、鍵直樹、柳宇、大澤元毅、中川優馬：建築物利用者の職場環境と健康に関するアンケート調査。平成25年度空気調和・衛生工学会大会、pp.333-336、2013
2) 東賢一：建築物環境衛生管理基準の設定根拠の検証について、財団法人ビル管理教育センター 保健文化賞受賞基金事業「指定型」研究助成 建築物環境衛生管理に関する調査研究 平成22年度報告書、2011
3) 東賢一、池田耕一、大澤元毅、鍵直樹、柳宇、斎藤秀樹、鎌倉良太：建築物における衛生環境とその維持管理に関する調査解析、空気調和・衛生工学会論文集、No.179、pp.19-26、2012
4) 大澤元毅他：建築物環境衛生管理に係る行政監視等に関する研究、厚生労働研究補助金（健康安全・危機管理対策総合研究事業） 平成27年度 総括・分担研究報告書、2016.3
2.2 建築物衛生行政における換気対策

2.2.1 はじめに

東京都は、現在、1316万人を超える人口を有し、昼間人口は1560万人に達するといわれている。とりわけ、特別区には大規模建築物が林立しており、東京都は大都市行政を担う自治体の使命として、建築物衛生法施行前から建築物衛生に取り組んでいる。東京都健康安全研究センターは、現在、特別区の延べ面積1万㎡を超える2500余りの特定建築物の立入検査などの業務を担当している。

空気質（IAQ：Indoor Air Quality）の良し悪しは、めまい、吐き気、頭痛、眼、鼻、喉の痛みなどを主訴とするSBS（Sick Building Syndrome / シックビルディング症候群）の発症に至らないまでも、人体に少なからず影響を与えると考えられている。そのため、利用者の疾病予防、健康保持に直接関わる、空気質を左右する空気調和設備の維持管理を、建築物衛生法では建築物環境衛生管理基準として規定している。

建築物衛生法の規定により、空気調和設備を設けている場合は、浮遊粉じん量、一酸化炭素（CO）濃度、CO₂濃度、温度、相対湿度、気流、ホルムアルデヒド量について、おおむね基準に適合するよう空気を浄化し、温湿度や流量を調整することとされている。なお、建築基準法でも、建築物衛生法の基準と同じ空気質を供給できる構造設備を、空気調和設備に義務付けている。このように、法令上は、特定建築物は、建築設計時から使用時までのすべてのステージで、高品質の空気質を確保できるよう規定整備されている。しかしながら、建築物衛生法は、平成15年施行の政省令改正により、急速に普及する個別制御方式の空気調和設備も対象としたが、建築基準法は、従来どおり中央管理方式のみ対象であり、二法の連携は崩れている。

政省令改正前に対象外であった個別制御方式は、平成初期頃から特定建築物にも採用され始め、現在では、延べ面積が10万㎡を超える大規模建築物での採用も珍しくない。

これに加え、BEMS（Building Energy Management System）やZEB（Net Zero Energy Building）など、新たな空調システムが出現しており、これからの維持管理は、実測や目視の時代からセンサーによる自動制御へと変革が進んでいる。

本節では、東京都の空気調和設備への取組（※）として、今回のテーマである必要換気量に加え、空気調和設備の維持管理について解説する。（※事務所用途の特定建築物）

2.2.2 建築確認申請時の取組

保健所長は、建築確認申請のあった特定建築物について、建築主等に意見を述べることができる（建築基準法第93条第6項）。東京都では、建築物衛生法施行当時から、この規定により建築確認申請時に図面審査を実施し、構造設備や機器性能などを設備設計者と意見交換し、適正に維持管理できる特定建築物を目指して取り組んでいる。現在、同審査により、空調、給排水、清掃、ねずみ等防除など設備全般の105項目について実施しており、今回のテーマに沿って換気設備への取組の一部を紹介する。

（1）必要換気量

特別区の外気CO₂濃度は450〜460ppm付近であることが多く、設計人員の呼気排出量などから算出すると、室内を1000ppmで維持するために必要な換気量は、下記計算式で示すとおり36㎥/（h・人）以上となる。

\[Q = \frac{M(\text{C} - \text{Co})}{C - \text{Co}} \]
\[= 20 \times 10^{-3} \frac{\text{m}^3}{\text{h} \cdot \text{人}} \times \frac{1}{((1000 \text{ppm} - 450 \text{ppm}) \times 10^{-6})} \]
\[= 36.4 \text{ m}^3/\text{h} \cdot \text{人} \]

（Q：必要換気量、M：室内発生量、C：室内設計濃度、Co：外気濃度）
立入検査時には在席者調査を行っており、毎年、多少の変動はあるものの、平均在席率は53.1%である（図2.2.1）。また、空調エリアを床面積とした場合の在席者1人当たり床面積は、11.8m²人であり、設計条件である5m²人のは2.4倍である（図2.2.2）。このような経験値をよりどろとして、理論値よりも少ないものの建築基準法の規定値よりも多い、25m³（h・人）以上の換気能力を備えた空気調和設備の設置を求めている。

同センターは、東京都福祉保健局の事業所であり、建築物衛生法以外の法令を所管していないため、公衆衛生の見地からのみ行政指導している。しかしながら、換気量が多ければ空気の浄化は促進されるものの、エネルギー管理の面では、できるだけ少ない換気量が求められる。異なる視点から換気量が求められる時代を迎え、必要換気量を決定する際には、換気の目安として設定されているCO₂濃度基準1000ppmが双方にとっての境界線としてますます重要になっている。

(2) 外気取入れ

外気取入れは、沿道からの自動車排出ガスのほか、排気口や冷却塔などからの汚染防止を図る目的で、排気口と建築物との間に十分な距離をとるよう求めている。COや浮遊粉じん量の垂直分布の実態調査などの結果を踏まえ、垂直方向（図2.2.3）、水平方向（図2.2.4）ともに10m以上を目安としている。

なお、東京都が提案している垂直方向については、国土交通省監修の「建築設備設計基準」（茶本）にも参考掲載されている。

図2.2.1 在席率調査結果
図2.2.2 在席者1人当たり床面積調査結果
図2.2.3 垂直方向イメージ
図2.2.4 水平方向イメージ
2.2.3 立入検査による検証

同センターでは、所管する特定建築物に対し定期的に立入検査を行い、帳簿書類の検査に加え、設備の維持管理状況、各種測定調査などを実施し、必要に応じ指導・助言している。このうち、新規届出ビルを対象とした精密立入検査では、本来、常時測定が望ましいとされているものの、二月以内毎に一回、適切な二時点が標準仕様となっている空気環境測定について、48時間程度の連続測定を実施し、その結果から空調管理の不具合などを解明し、適切な維持管理を指導助言している。

平成15年施行の建築物衛生法改正政省令により、これまで中央管理方式のみとしていた室内環境の調整が、個別制御方式についても適切に維持管理しなければならないこととなった。個別制御方式の発生を中央管理している建築物も一部に見られるが、そのほとんどは利用者が自由に運転する本来の方式を採用している。本方式は、空調エリアを小規模にできるため、様々な区画で賃貸でき、居室レイアウトも容易である。また、入居者が空調時間を自由に設定できるなど、入居を決定する条件の上位に位置している。このような利用者側の利便性に加え、設備更新の容易さなど所有者側にもメリットがあるため、大規模建築物でも標準設計のひとつとなっている

図2.2.5は、事務所ビルでの8月のCO₂濃度の連続測定結果である。12時前と15時に一時的に基準値を超えており、この二時点で空気環境測定を実施した場合、平均値は1120ppmであることから不適合と評価される。一方、空調時間帯の1分値の平均値は800ppmであることから、実際は不適合ではなく、適切な維持管理が行われ、良好な室内環境を維持していることがわかる。

現在、適正換気量の目安であるCO₂濃度の測定は、非分散型赤外線吸収式センサーによる測定器が主流となっており、ログイン機能を備え連続測定できる機種も多い。様々な事情があるにせよ、換気量をCO₂センサーにより自動制御する方式が採用されるようになって久しいなか、連続測定して真の室内環境を把握する動きが見られることもある。
（2）個別制御方式空気調和設備の換気不良事例

図2.2.6は、6月初旬の事務所ビルでのCO₂濃度の連続測定結果である。天井内に設置した換気設備（静止型全熱交換器）で外気導入し、別置きのエアコンで温度を調整している。そのため、居室の壁面にそれぞれの操作用リモコンが並べて設置されている。

測定日は中間期であり、節電対策のためエアコンを停止する空調管理を実施していた。そのため、居室の壁面にそれぞれの操作用リモコンが並べて設置されている。

図2.2.6 CO₂濃度連続測定結果①

2.2.4 これからの空調管理の課題

（1）空気環境測定結果の正確な評価及び分析

厚生労働省が公表している「衛生行政報告例（平成26年度）」では、「不適合の割合が、相対湿度が56.5%、温度が32.0%、CO₂濃度が24.6%となるなど、近年、一部の項目で不適合率が高水準で推移している」という内容である。「建築物衛生行政の適正な運営について」平成28年4月15日、厚生労働省医薬・生活衛生局生活衛生・食品安全部生活衛生課長通知。しかしながら、衛生行政報告例は不適合の定義を明確にしていないため、維持管理上必要である場合には、空気調和設備の運転管理に関し、立入・点検を行い、適宜の措置を講ずることができるなどの規定を標準化することを期待している。

これに、個別方式空気調和設備は、十分な能力を備えていても適切に運転管理されないため、室内環境の調和ができない事例がしばしば見受けられ、特定建築物の管理上、大きな課題である。

これに、個別方式空気調和設備は、十分な能力を備えていても適切に運転管理されないため、室内環境の調和ができない事例がしばしば見受けられ、特定建築物の管理上、大きな課題である。

これに、個別方式空気調和設備は、十分な能力を備えていても適切に運転管理されないため、室内環境の調和ができない事例がしばしば見受けられ、特定建築物の管理上、大きな課題である。
善が困難な場合は、測定結果に不適切な原因を記載するなど、数値の評価や分析の参考になる記述が求められる。

(2) これからの建築物に求められる設備

建築物のエネルギー消費量は、空調管理がその半分を占めている。これからのビルは、エネルギーの見える化により分析・診断し省エネを図る、BEMS の導入が標準となる。また、近い将来実現する ZEB（Net Zero Energy Building）化により、高度なエネルギー管理が急速に浸透していくものと考える。経済産業省は、「2020年までに新築公共建築物等で、2030年までに新築建築物での実現」を目指すロードマップを示しており、1次エネルギー消費量を限りなくゼロに近づけた設備の性能及び維持管理が、空気質にどのような影響を及ぼすのか懸念される。エネルギー資源の大半を海外に依存する我が国では、エネルギー管理は早急に達成する必要に迫られた政策課題であり、政府、官公庁、業界などが一体となった取組である。そこで、インターネット検索ツールで「ZEB換気」を検索すると、多数のヒットするのは、経済産業省、大手建設会社のサイトの「自然換気」である。自然換気により必要な換気量が確保できるのか、十分に情報収集できていないが、室内 CO₂発生量などの設計条件から、自然換気量を必要換気量として計算するのは困難である。また、エネルギー管理の実証試験報告には、温度と照度に関する記載が多くを占めており、換気についてあまり触れていないように感じる。

建築物衛生法政省令の改正に先立って設置された、建築物衛生管理検討会の報告書（厚生労働省 HPに掲載）には、以下の記述があるので参考まで紹介する。「我が国の建築物がシックビル症候群の発生を免れてきたのは、建築物衛生法に基づく衛生管理体制が有効に機能してきたからではないかと考えられる」米国やヨーロッパのいくつかの国では、「シックビル症候群」（SBS：Sick Building Syndrome）として社会問題化した。同センターは、ビル管理者などからの維持管理方法や法令解釈に関する相談に、毎日応えているが、最近、ビル利用者から空気質に関する相談が増えている。その理由のひとつとして、労働安全衛生法による労働者の健康の保持増進を目的とした、快適な職場環境を設定し、立入検査の際には、建築物衛生法による空気環境測定の結果を参考に提供しているケースもよく見かける。本来、建築物衛生法による空気環境測定は、空気調和設備の適正な運転管理を目的としたものであるが、これとは違った観点から、測定値が評価、検証される時代が到来している。

これまでの事例で紹介したように、設計上は能力を備えているが、実際には十分な機能が発揮されず、維持管理の対応できない設備が現実に存在する。このことから、実証途上の設備に起因した SBS の発生が懸念される。過度なエネルギー管理としても必要換気量が確保できるように、外気冷房仕様の設備や換気システムは中央管理できる方式などについても検討いただきたい。

公共建築物の建築確認申請時に、大規模な ZEB に遭遇するのは間近に迫っている。同センターの関連情報収集への取組は、順に上がろうであり、ZEB 化による室内環境の影響に関する情報を精力的に収集するなど、新たな視点による特定建築物の維持管理について取り組む必要があると考えていている。
換気設備委員会在室空気質小委員会

委員会構成

主査	柳 宇	(工学院大学)
幹事	遠藤 智行	(関東学院大学)
委員	東 賢一	(近畿大学)
委員	池田 聡一	(日本大学)
委員	岩下 剛	(東京都市大学)
委員	鍵 直樹	(東京工業大学)
委員	菊田 弘輝	(北海道大学)
委員	倉岡 隆	(東京理科大学)
委員	小林 知広	(大阪市立大学)
委員	坂口 淳	(新潟県立大学)
委員	竹内 仁哉	(東洋熱工業)
委員	田島 昌樹	(高知工科大学)
委員	早川 眞	(早川建築環境研究室)
委員	桃井 良尚	(大阪大学)
委員	山中 俊夫	(大阪大学)

専門委員

熊谷 一清	(California Department of Public Health)
市川 貴行	(国土交通省)
神鳥 博俊	(国土交通省)
東 好宣	(厚生労働省)

執筆協力者

奥村 龍一	(東京都健康安全研究センター)
中村 和人	(清水建設)

（敬称略）