EDITORIAL

Making the most of genomic data with OMA [version 1; peer review: not peer reviewed]

Natasha M. Glover

1Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
2Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
3Center for Integrative Genomics, Lausanne, 1015, Switzerland

Abstract
The OMA Collection is a resource for users of Orthologous Matrix. In this collection, we provide tutorials and protocols on how to leverage the tools provided by OMA to analyse your data. Here, I explain the motivation for this collection and its published works thus far.

Keywords
OMA, Orthologous Matrix, collection, orthologs

Not Peer Reviewed
This article is an Editorial and has not been subject to external peer review.
Any comments on the article can be found at the end of the article.

This article is included in the The OMA collection collection.
Next generation sequencing has become commonplace, and we are now entering an age where whole genome sequences are a “dime a dozen.” Thousands of different eukaryotic species' genomes have been sequenced to date, with certain species, such as humans, sequenced tens of thousands of times over. But this is just the tip of the iceberg! For example, the Earth BioGenome Project aims to sequence all 1.5 million known eukaryotic species in 10 years. The ‘-omics’ data presents layers of complexity in the form of gene expression, regulation, network interaction, epigenetics, structural, functional, and comparative genomics and more. With all this data comes a wealth of potential biological knowledge, but there must be efficient and smart ways to make sense out of all these genes and genomes.

One fundamental way to relate genomes is by orthology, or the relationship between genes of different species which originated from a single gene in the common ancestor of those species. It is commonly contrasted with paralogy, or the relationship between genes which originated by duplication. By tracing the evolutionary history of genes and their relationships between each other, we can start to understand the complexity of the biological processes underlying the evolution of life forms.

Indeed, there are many applications of orthology, such as:

• Prediction of gene function for uncharacterized proteins.

• Elucidating gene losses, duplications, or gains (i.e. taxonomically restricted genes) to study evolution of gene families and species.

• Finding the best model systems for study based on a particular physiological process.

• Phylogenetic profiling, or correlating ortholog presence or absence among many species to detect biologically related processes.

• Studying the positional conservation of genes, which can aid in genome assembly, homology detection, and provide insight into structural evolution of chromosomes.

• Phylogenomics, among others.

One particular tool for inferring orthologs is OMA (Orthologous MAtrix), which is a method and database for the inference of orthologs among complete genomes¹. Covering over 2000 species from a broad phylogenetic range, some distinctive features of the OMA browser include a feature-rich web interface, availability of data in a wide range of formats and interfaces, and twice yearly update schedule. As part of the Dessimoz lab, I have been working on the OMA project for the past 6 years, as well as being a user of the online browser and standalone software².

There are many orthology inference methods, software, and databases at one’s disposal. From working the past decade in computational biology, I have found that the bottlenecks for effectively using many bioinformatics tools are: 1) choosing the appropriate tool to fit your needs; 2) understanding the relevant information in the black box of how the tool works; and 3) efficiently running the tool and understanding the output.

Thus, the aim of this F1000 Research Collection is to provide a resource for users of OMA to help them with their analysis needs. I hope to make it as hassle-free as possible to use OMA and the many supplementary analysis tools currently provided. In this direction, we have written several Tutorials, Guides, and Protocols on how to use OMA to get the most out of one’s biological data.

So far, this collection contains four papers:

• Identifying orthologs with OMA: A primer (Software Tool article)

• How to build phylogenetic species trees with OMA (Method article)³

• A hands-on introduction to querying evolutionary relationships across multiple data sources using SPARQL (Method article)⁴

• Expanding the Orthologous Matrix (OMA) programmatic interfaces: REST API and the OmaDB packages for R and Python (Software Tool article)⁵

All the aforementioned protocols use publicly available software, and we provide scripts, code snippets, practical examples, and plenty of explanations in order to facilitate the use of OMA in user analyses. We have several more tutorials planned for this collection and aim to continually add more resources to this collection in order to help our users.

Furthermore, with the goal of providing real-world examples on how OMA can be used, any research, commentaries, conference posters/slides, or other published work that uses OMA are welcome in this collection. Hopefully, the OMA Collection will prove to be a valuable resource for making the most of genomics data.

Data availability
No data is associated with this article.

References

1. Altenhoff AM, Glover NM, Train CM, et al.: The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces. Nucleic Acids Res. 2018; 46(D1): D477–85. PubMed Abstract | Publisher Full Text | Free Full Text

2. Altenhoff AM, Levy J, Zarowiecki M, et al.: OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Res. 2019; 29(7): 1152–60. PubMed Abstract | Publisher Full Text | Free Full Text
3. Zahn-Zabal M, Dessimoz C, Glover NM: Identifying orthologs with OMA: A primer [version 1; peer review: 2 approved]. F1000Res. 2020; 9: 27. PubMed Abstract | Publisher Full Text | Free Full Text

4. Dylus D, Nevers Y, Altenhoff AM, et al.: How to build phylogenetic species trees with OMA [version 1; peer review: awaiting peer review]. F1000Res. 2020; 9: 11. Publisher Full Text

5. Sima AC, Dessimoz C, Stockinger K, et al.: A hands-on introduction to querying evolutionary relationships across multiple data sources using SPARQL [version 1; peer review: 2 approved with reservations]. F1000Res. 2019; 8: 1822. PubMed Abstract | Publisher Full Text | Free Full Text

6. Kaleb K, Vesztrocy AW, Altenhoff AM, et al.: Expanding the Orthologous Matrix (OMA) programmatic interfaces: REST API and the OmaDB packages for R and Python [version 2; peer review: 2 approved]. F1000Res. 2019; 8: 42. PubMed Abstract | Publisher Full Text | Free Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com