Research article
The role of immune mediators in pathogenesis of hepatitis B virus infection
Hana Abdul-QaderKhuder
Assistant Lecturer, College of Medicine, Ninevah University, Mosul, Iraq

(Received: July 2021 Revised: August 2021 Accepted: August 2021)
Corresponding author: Hana Abdul-QaderKhuder. Email: hanaalkhayyat1976@gmail.com

ABSTRACT

Introduction and Aim: Viral hepatitis, is considered a major cause of cirrhosis and liver transplantation, both of which are life-threatening conditions. In comparison to Hepatitis C virus infection, Hepatitis B virus (HBV) infection has a lower rate of chronicity. The purpose of this study is to assess the immunological particles CD2 and CD4, as well as the cytokines IL-10, in HBV-infected patients.

Materials and Methods: Between April and June 2021, a case-control study was conducted on 180 female subjects with a mean age of 35 years who visited a private clinic in Mosul city. A (10 ml) sample of blood was collected from each subject by routine venipuncture technique, and the blood sample was centrifuged at 3,000 rpm for 10 minutes to separate the plasma, which was used for further investigations. The ELISA test was used to determine the sizes of cytokines in the serum (R&D Systems). A microplate reader was used to limit absorbance in copies (Beckman Coulter). The last concentration was measured in pg/ml.

Results: The findings of this study revealed that (15%) of cases had clinical symptoms of HBV, while (70%) of cases were asymptomatic, and (5%) of cases progressed to chronic liver disease. In compared to healthy control groups, HBV patients had highly significant variations in mean CD 2 and CD 4 expression (p<0.0001).

Conclusion: During the acute phase of hepatitis, the immune system successfully fights off the infection; however, differences in immune responses to different viruses may explain the tendency for acute infection to resolve rather than develop to chronic infection. Hepatitis viruses employ a variety of tactics to evade human immunity. To fully comprehend the complicated interplay between immunological mediators and HBV infection, more research is needed.

Keywords: Hepatitis B virus; cytokines; interleukin; interferons.

INTRODUCTION

Infection with the hepatitis B virus (HBV) is a common health issue. There are two billion people infected with HBV globally, with 257 million chronic carriers. Many persons afflicted with HBV, on the other hand, are completely unaware that they are infected (1). When they come into contact with a pathogen, their innate immune response is activated to prevent infection from spreading. Various cytokines are produced, as well as the activation of natural killer (NK) cells, during the early stages of viral infections (1,2).

Depending on the route and mode of infection, HBV infection can cause a variety of cytokine responses in liver cell types other than hepatocytes. Immune cells can regulate HBV in a non-lytotoxic manner by releasing cytokines and other immune mediators (1). T cells can be inhibited by tolerogenic actions of hepatic ligands and cytokines as chronic infection progresses, which limiting their antiviral activity (2). Many studies at the time were based on immunological and serological methods. Following the discovery of the HBV element and the cloning of the HBV genome, molecular investigations advanced quickly (3). As seen by the high number of asymptomatic HBV carriers with minimal liver disease, HBV proliferation does not immediately cause cell damage (4). It is possible to detect the presence of T lymphocytes, when a virus infects a hepatocyte, it activates IFN, which causes macrophage inflammatory protein-1 (MIP–1) to be produced, which strengthens NK cells, which, in turn, discharge interferon, which causes straight hepatic penetrating lymphocytes to enter the liver parenchyma, allowing MHC-Ipeptide compounds to be distinguished over the exterior of the liver (5). The presence of vital CD2+ and CD4+ T responses in patients with acute illness appears to be linked to retrieval (6). In contrast, a decrease in response appears to predict the end of chronic disease. Ab-mediated decline, on the other hand, was linked to persistent disease, implying that CD4+ play a vital role in eradicating serious disease (7). A decrease in HBV variety is linked to the regulation of acute sickness, simulating a “enclosing” of HBV variety with a positive resistance reaction, whereas chronicity is linked to quasi-species extension (8). Cytokines function as the molecules of defense reaction that result in numerous physiological roles and adjust the defensive, provocative and repairing patient reactions, and mostly concealed by mono and lymph cells. Cytokines from T cells act essentially in the host response. Stimulated T cells classified into two
The blood sample was centrifuged at 3,000 rpm for 10 minutes to extract the plasma, which was used for further research. The ELISA test was used to determine the sizes of cytokines in the serum (R and D Systems). A microplate reader was used to limit absorbance in copies (Beckman Coulter). The last concentration was measured in pg/ml.

Statistical analysis

Statistical analysis was showed by using Chi-square test to regulate the statistical changes among the groups by using a proposal statistical platform for social science (SPSS 19). The possibility of (P≤ 0.0001) was measured to be statistically significant.

RESULTS

1. **Medical remarks**

In HBV patients, clinical manifestations included vomiting, fever, and loss of appetite, while some patients never showed any of these symptoms and were found to be asymptomatic carriers, as indicated in table (1).

2. **IL-10 in hepatitis patients**

All individuals with HBV, whether those with acute or asymptomatic disease action, have a higher amount of acute HBV infection. Tenderness in the liver, hepatomegaly, and splenomegaly are some of the clinical symptoms (13). While the majority of them (80–90%) have cirrhosis at the time of diagnosis, it is possible for HCC to develop without cirrhosis; this is especially true for HBV-related HCC (14).

3. **CD2 and CD4 manifestation in HBV positive patients**

As indicated in table (3), there were extremely significant changes in mean CD 2 expression between HBV patients and healthy control groups (p<0.0001). Also Results shown that there were highly significant differences in mean of CD 4 expression among HBV patients and healthy control groups (p<0.0001) as shown in table (4).
DISCUSSION

Although it is generally known that adaptive immunity plays a critical role in viral infection clearance (17), the pathogenesis of liver damage during acute and chronic HBV infection is still poorly understood (18). Because HBV is a noncytopathic virus, the pathogenesis of liver damage following HBV infection is mostly driven by immunological processes (19). T cells and other immunoregulatory cytokines play a critical role in the immune response to HCV infection (20). In this study, it was discovered that 15% of the cases had symptoms of liver illness, and (70%) of cases were asymptomatic, (5%) progressed to chronic liver disease, which is consistent with earlier research (21). Patients with HBV who have acute or asymptomatic illness have a higher amount of IL-10 in their blood than healthy controls (22).

According to the findings, there was a high mean of CD 2 expression among HBV patients and healthy control groups, which was consistent with previous research (23). On the other hand, the findings revealed that the mean CD 4 expression in HBV patients is higher than in healthy control groups, which is consistent with previous research (24, 25).

CONCLUSION

During the acute phase of hepatitis, the immune system successfully fights off the infection; differences in immune responses to various viruses may explain the tendency for acute infection to resolve rather than develop to chronic infection. Hepatitis viruses employ a variety of tactics to evade human immunity. The pathogenesis of hepatitis virus and several ways utilized by other related viruses are still being explored. The function of immune mediators and HBV's immunological pathogenesis will be fascinating to study, and it should lead to more accurate diagnosis of chronic viral hepatitis. To fully comprehend the complicated interplay between immunological mediators and HBV infection, more research is needed. These pathways, once elucidated, could contribute to the development of new therapeutics for HBV patients who are developing liver disease.

CONFLICT OF INTEREST

Authors declare that there is no conflict of interest.

REFERENCES

1. Westin, J., Alerman, S., Castedal, M., Duberg, A. S., Eilard, A., Fischler, B., et al., Management of hepatitis B virus infection, updated Swedish guidelines. Infect Dis (Lond) 2020; 52: 1-22.

2. Rasheed, H. N., Mohamad, H. S., Amin, A. L., Ahmed, T. A. The prevalence of hepatitis B and C viruses among blood donors attending blood bank in Duhok, Kurdistan region, Iraq. Int J Infect. 2017; 4(1): e39008.

3. Hutin, Y., Desai, S., Bulters, M. Preventing hepatitis B virus infection: milestones and targets. Bull World Health Organ. 2018; 96(7): 443-443A.

4. Inan, N., Tabak, F. Hepatitis B virus: Biology and life cycle. J. Viral Hepat. 2015; 21(1): 1-7.

5. Iqbal, K., Klevens, R. M., Kainer, M. A., Baumgartner, J., Gerard, K., Poissant, T., et al., Epidemiology of acute Hepatitis B in the United States from population-based surveillance, 2006-2011. Clin Infect Dis. 2015; 61(4): 584-592.

6. Ismail, S. A., Cuadros, D. F., Benova, L. Hepatitis B in Egypt: A cross-sectional analysis of prevalence and risk factors for active infection from a nationwide survey. Liver Int. 2017; 37(12): 1814-1822.

7. Jia, W., Qi, X., Ji, Y.Y., Xun, Y.H., Wang, H., Zhang, W.H., et al., Low Serum Hepatitis B Surface Antigen Level Predicts Compensated Cirrhosis Caused by Chronic Hepatitis B in HBcAg Positive Patients in East China. Hepat Mon. 2015; 15(8): e29183.

8. Kania, D., Ottomani, L., Meda, N., Peries, M., Djulps, P., Bolloré, K., et al., Performance of two real-time PCR assays for hepatitis B virus DNA detection and quantitation. J Virol Methods. 2014 Jun; 201: 24-30.

9. Keane, E., Funk, A. L., Shimakawa, Y. Systematic review with meta-analysis: the risk of mother-to-child transmission of hepatitis B virus infection in sub-Saharan Africa. Aliment Pharmacol Ther. 2016; 44(10): 1005-1017.

10. Kramvis, A. The clinical implications of hepatitis B virus genotypes and HBcAg in pediatrics. Rev Med Virol. 2016; 26(4): 285-303.

11. Kühnert, D., Wu, C. H., Drummond, A. J. Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. Infect Genet Evol. 2011; 11(8): 1825-1841.

12. Kurbanov, F., Tanaka, Y., Mizokami, M. Geographical and genetic diversity of the human hepatitis B virus. Hepatol Res. 2010; 40(1): 14-30.

13. Lampertico, P., Agarwal, K., Berg, T., Buti, M., Janssen, H.L., Papaettheodoridis, G., et al., Clinical Practice Guidelines on the management of hepatitis B virus infection. Journal of hepatology. 2017; 67(2): 370-398.

Table 3: Expression of CD2 in patients and controls

Group	Number	Mean	Minimum	Maximum
Asymptomatic	70	09.00	3.02	12.00
Acute	15	14.00	9.00	15.00
Chronic liver disease	05	06.00	4.00	07.00
Control	90	02.00	0.90	04.00

Table 4: Expression of CD4 in patients and controls

Group	Number	Mean	Minimum	Maximum
Asymptomatic	70	09.00	05.00	20.00
Acute HBV	15	45.00	20.00	50.00
Chronic liver disease	05	14.00	09.00	15.00
Control	90	05.00	30.00	07.00

DOI: https://doi.org/10.51248/v41i4.847

Biomedicine- Vol. 41 No. 4: 2021
14. Lavanchy, D., Kane, M. Global epidemiology of hepatitis B virus infection. In Hepatitis B virus in human diseases 2016 (pp. 187-203). Humana Press, Cham.
15. de Waal Malefyt, R., Haanen, J., Spits, H., Roncarolo, M. G., te Velde, A., Figdor, C., et al., Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991; 174: 915-924.
16. Viet, L., Lan, N. T., Ty, P. X., Björkvoll, B., Hoel, H., Gutteberg, T., et al., Prevalence of hepatitis B & hepatitis C virus infections in potential blood donors in rural Vietnam. Indian J Med Res. 2012; 136(1): 74-81.
17. Patel, T. Apoptosis in hepatic pathophysiology. Clin Liver Dis. 2000; 4(2): 295-317.
18. Leverero, M., Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016; 64(1 Suppl): S84-S101.
19. Li, X., Zhao, J., Yuan, Q., Xia, N. Detection of HBV Covalently Closed Circular DNA. Viruses. 2017; 9(6): 139.
20. Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., Chen, Q., et al., Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics. 2014; 30(4): 472-479.
21. Liu, C. J., Kao, J. H. Global perspective on the natural history of chronic hepatitis B: role of hepatitis B virus genotypes A to J. Semin Liver Dis. 2013; 33(2): 97-102.
22. Liu, Z., Dai, X., Wang, T., Zhang, C., Zhang, W., Zhang, W., et al., Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells. Cancer Lett. 2017; 1; 400: 149-160.
23. Lok, A. S., McMahon, B. J. Chronic hepatitis B: update 2009. Hepatology. 2014; 50(3): 661-662.
24. Lucifora, J., Protzer, U. Attacking hepatitis B virus cccDNA- The holy grail to hepatitis B cure. J Hepatol. 2016; 64(1 Suppl): S41-S48.
25. Maini, M. K., Gehring, A. J. The role of innate immunity in the immunopathology and treatment of HBV infection. J Hepatol. 2016; 64(1 Suppl): S60-S70.