Conventional nonlinear spectroscopy, which use classical probes, can only access a limited set of correlations in a quantum system. Here we demonstrate that quantum nonlinear spectroscopy, in which a quantum sensor and a quantum object are first entangled and the sensor is measured along a chosen basis, can extract arbitrary types and orders of correlations in a quantum system. We measured fourth-order correlations of single nuclear spins that cannot be measured in conventional nonlinear spectroscopy, using sequential weak measurement via a nitrogen-vacancy center in diamond. The quantum nonlinear spectroscopy provides fingerprint features to identify different types of objects, such as Gaussian noises, random-phased AC fields, and quantum spins, which would be indistinguishable in second-order correlations. This work constitutes an initial step toward the application of higher-order correlations to quantum sensing, to examining the quantum foundation (by, e.g., higher-order Leggett-Garg inequality), and to studying quantum many-body physics.
is shown29 that quantum sensing can extract arbitrary types and orders of correlations in a quantum system by first quantum-entangling a sensor and the object and then measuring the sensor.29 Quantum sensing30 has been applied to achieve nuclear magnetic resonance (NMR) of single atoms31-33 and the second-order correlation spectroscopy34 has been adopted to enhance the spectral resolution31-34. However, quantum nonlinear spectroscopy (i.e., the measurement of higher-order correlations) of single nuclear spins39 is still elusive.

Quantum quantities, being operators, usually do not commute, i.e., two quantities \(A \) and \(B \) may have a non-zero commutator \([A, B] = AB - BA \neq 0\), in sharp contrast to classical quantities, whose commutators always vanish. Therefore, quantum systems have characteristic quantum correlations, which involve commutators of quantities, such as the second-order one \([A, B] = (A \otimes I - I \otimes A)\), means the average over many repeated measurements) and the third-order example \([A, B, C] = (A \otimes B - B \otimes A)\) (where \([A, B] = AB + BA\) denotes an anti-commutator). Such quantum correlations can be used for the classical-noise-free detection of quantum objects.34 The classical correlations reduce to the normal products when the operators are limited types of correlations1,34 to a classical force. Similarly, the noise spectroscopy can also extract the measurement basis in each shot of measurement, one can extract the noise oscillating with angular frequency \(\nu \) is applied since the timescale and the inverse strength of the noise, in the leading orders of coupling strength, the first moment is \(S_{ijk} = \langle p_j p_k \rangle = \cos (t (1 - (\delta \theta)^2) / 2 \right)\) (where \(p_j = p_j^+ - p_j^- \)), the second moment \(S_{ijk}^{\rho} = \langle p_j p_k \rangle = \sin^2 (\theta / 2) / 2 \right)\) the third moment

\[
S_{ijk}^{\rho} = \sin^2 \theta \cos \theta \left(\langle \sigma^x \sigma^x \rho \rangle + \langle \sigma^y \sigma^y \rho \rangle \right),
\]

where \(\delta \theta_j = \theta_j - \langle \theta_j \rangle \). Here we have assumed that the noise is symmetric and therefore its odd-order correlations vanish. The phase correlations are related to the field correlations by \(S_{ijk}^{\rho} = r^2 C_{ijkl}^{\rho} \) and \(\langle \sigma^x \sigma^x \rho \rangle = r^2 C_{ijkl}^{\rho} \).

The fourth-order correlations may be factorized into second-order ones with pairing patterns characteristic of the noise type. For example, a Gaussian noise allows all pairings, \(C_{ijkl}^{\rho} = C_{ijkl}^{\rho} C_{ijkl}^{\rho} + C_{ijkl}^{\rho} C_{ijkl}^{\rho} + C_{ijkl}^{\rho} C_{ijkl}^{\rho} \) and an AC field with a uniformly random phase has \(C_{ijkl}^{\rho} = C_{ijkl}^{\rho} C_{ijkl}^{\rho} + C_{ijkl}^{\rho} C_{ijkl}^{\rho} + C_{ijkl}^{\rho} C_{ijkl}^{\rho} / 2 \) (the same as Gaussian noises, except for the factor 1/2) (see Supplementary Note 3). For a noise oscillating with angular frequency \(\nu_0 \), different types of statistics would yield the same second moment \(S_{ijk}^{\rho} \propto \cos (\nu_0 t_j) \) (with \(t_j = t - t_j \)). But the third moment \(S_{ijk}^{\rho} \) (which contains the fourth-order correlation of the noise), would have different fingerprint patterns in its 2D spectrum \(\nu \) (\(\nu_0 \) and \(\nu_0 \)) obtained by 2D Fourier transform in \(t_j \) and \(\nu_0 \) for different types of noises (see Fig. 1b). In particular, the Gaussian noise has 12 peaks of equal height at \((0, \nu_0), \nu_0, \nu_0 - \nu_0, \nu_0, \nu_0 - \nu_0, \nu_0, \nu_0 \), and \(\nu_0 \nu_0 \), and the random-phase AC field has six peaks at \(\nu_0 \nu_0 \), \(\nu_0 \nu_0 - \nu_0 \), and \(\nu_0 \nu_0 \) (see Supplementary Note 3).

The key difference between a quantum noise and a classical one is that in the interaction \(V = S_{ijkl} B(t) \) the noise \(B(t) \) is an operator of the target (see Fig. 1a). In the 1st shot of measurement, starting from the initial state \(\rho(t) = \rho(t) \rho(t) \rho(t) \) (where \(\rho(t) \rho(t) \rho(t) \rho(t) \) is the target/sensor state), the interaction leads to \(\rho(t + t) = \rho(t) + \rho(t) B(t) \).
The classical part of classical variables should be replaced with anti-commutators for details). For ρ_B being a constant, the quantum correlation has only one non-vanishing term ($t_k > t_j > t_i$ assumed, see the “Methods” section for details)

$$C_{ijk}^Q = \text{Tr}\left(B_i^* B_j^* B_k^* \rho_B\right).$$

The importance of quantumness lies in the fact that without the heralded polarization of the target by back-action from measurement at t_i, the commutators at t_i would vanish in this case (see the “Methods” section). When the sensor is coupled to multiple (N spin-1/2’s at high temperature (see the “Methods” section), the classical correlation scales as $C_{ijk}^Q \propto N^3$, and the quantum correlation $C_{ijk}^Q \propto N$ (since the commutators between different spins vanish). With increasing the number, the quantum spins approach to a classical noise, with Gaussian statistics (resulting from the summation of many independent binary quantities). Figure 1c shows qualitatively different patterns in the

![Diagram](https://example.com/diagram.png)

Fig. 1 Simulated third-order correlation spectra of different types of classical and quantum noises.

a The scheme of correlation measurement. A sensor spin is initially prepared in the state $|x\rangle$, then its z-component S_z is coupled to a classical noise $B(t)$ or a quantum object by $B(t)$, and the measurements along σ_x are correlated to determine the statistical moments, e.g., S_{ijk}.

b 2D spectra $\tilde{S}(\nu_x, \nu_y)$ of the third moment S_{ijk} for a Gaussian noise (upper) and a random-phased AC field (lower).

c 2D spectra of the third moment for a sensor coupled uniformly to N spin-1/2’s ($N = 1, 2, 3, 6$).

To separate the effects on the sensor and those on the target, the commutator can be decomposed as

$$-\frac{i}{\hbar}[\hat{V}(t_j), \hat{\rho}(t_j)] = -\frac{i}{\hbar}[(\hat{S}_z \hat{\rho}_B) \otimes (\hat{B}_j \hat{\rho}_B(t_j))] + (\hat{S}_z \hat{\rho}_B(t_j)) \otimes (\hat{B}_j \hat{\rho}_B) = 2S_z \hat{\rho}_B \otimes \hat{B}_j^* \hat{\rho}_B + 2S_z \hat{\rho}_B \otimes \hat{B}_j \hat{\rho}_B,$$

where $\hat{B}_j^* \hat{\rho}_B$ and $\hat{B}_j \hat{\rho}_B$, where $B^* A \equiv (\hat{B}^* \hat{A})/2$ (essentially the anti-commutator) reduces to the normal product if $B(t)$ is a classical field and $B^* A \equiv (\hat{B}^* \hat{A})/2$ (essentially the commutator) vanishes if $B(t)$ is a classical field. By choosing to measure the sensor in the basis of S_z^+, ρ_B, one can select the target evolution driven by the commutator or the anti-commutator, i.e., $B_j^* \rho_B$ or $B_j \rho_B$, respectively. Therefore, quantum correlations that contain a nested sequence of commutators and anti-commutators of the noise operators can be extracted. Considering a target (such as a nuclear spin) at high temperature, i.e., ρ_B being a constant, the second-order quantum correlation $\text{Tr}(B_j^* B_j^* \rho_B)$ vanishes. The third momentum has both classical and quantum contributions, $S_{ijk} = S_{ijk}^c + S_{ijk}^q$.

The classical part S_{ijk}^c is the same as for classical noises (see the “Methods” section and Supplementary Note 4), except that the products of classical variables should be replaced with anti-commutators such as ($t_i > t_j > t_k$)

$$S_{ijk}^c = \text{Tr}(B_i^* B_j^* B_k^* \rho_B).$$

It should be noted that though the classical correlation in the quantum object takes the same form as in a classical noise, it has a fundamentally different origin. The correlations in the quantum object stem from the back-action of the weak measurement by the sensor, which results from the weak entanglement and measurement of the sensor on the basis of $S_z \rho_B$. Importantly, the classical correlation C_{ijk}^c of a quantum object in Eq. (2) does not contribute to conventional nonlinear spectroscopy using a classical probe.

The quantum part $S_{ijk}^q = -\frac{1}{2} \sin^2 \theta \cos \theta \tau \rho_B$ (see the “Methods” section). For ρ_B being a constant, the quantum correlation has only one non-vanishing term ($t_i > t_j > t_k$ assumed, see the “Methods” section for details)

$$C_{ijk}^Q = \text{Tr}(B_i^* B_j^* B_k^* \rho_B).$$

When the quantum object is a two-level system (such as spin-1/2 of 13C in diamond), the quantum correlations will double the third moment S_{ijk} for a Gaussian noise (upper) and a random-phased AC field (lower).
correlation spectra of a different number of spin-1/2’s with uniform coupling.

Measurement of correlations

We employ the states $|\pm\rangle = |O_{\pm}\rangle$ and $|-\rangle = |O_{-}\rangle$ in the spin triplet of an NV center in diamond as the sensor spin\(^\text{15}\). Each shot of weak measurement is realized by the pulse sequence shown in Fig. 2a. We optically pump the NV center spin into the state $|\pm\rangle$ and prepare it into the state $|\psi\rangle = (|\pm\rangle + |\mp\rangle)/\sqrt{2}$ by a π microwave pulse. A sequence of Knill dynamical decoupling XY (KDD-XY5) consisting of $N_p=100$ pulses modulates the interaction between the NV spin and a target 13C nuclear spin during the interrogation such that weak, tunable entanglement between the sensor and the target is induced. This results in alpha = 0.189 pi interaction strength. The inter pulse time is 186.68 ns, including 68.67 ns for the pi pulse length. Measurement of θ_0 is realized by a $\pi/2$ rotation changing the e_0 field axis to the z-axis followed by a projective measurement along the z-axis. To enhance the readout fidelity, we use a SWAP gate to store the sensor spin state in the 14N nuclear spin (which has been polarized in the initialization step using SWAP gates as well) and repeatedly (M times) read out the 14N spin via a CNOT gate and spin-dependent fluorescence of the NV center electron spin\(^\text{44,45}\). The statistical moments of the measurement S_i^x, S_i^y, and S_i^z are reconstructed from the photon counts (see the “Methods” section).

Figure 2b shows the second-order signal S_y of a sensor coupled to a 13C nuclear spin. Under an external magnetic field ($B_0=0.2502$ T) along the z direction (the NV axis) and dynamical decoupling control of the hyperfine interaction, the quantum field from the 13C spin in the interaction picture is effectively $B(t)=A\left[I_0 \cos(\nu_0 t) - I_0 \sin(\nu_0 t)\right]$ (see the “Methods” section) with the nuclear Zeeman frequency $\nu_0=2.6795$ MHz. Therefore, $S_y \propto C = 1 - \left(\langle B, B\rangle\right) \sin(\nu_0 t)\cos(\nu_0 t + \theta)\exp(-\nu_0 t)$ oscillates at frequency ν_0 with a measurement-induced decay (a rapid decay due to random hopping of the NV center state has been removed—see Supplementary Note 9). For comparison, Fig. 2c shows both the Fourier transform of the second-order signal for an AC field $B(t)=B_0 \cos(\nu_0 t + \phi)$ with a uniformly random phase ϕ and that for a 13C nuclear spin. As shown in Fig. 2c, the nuclear spin and the random-phased AC field lead to similar second-order signals.

The third moment of the sequential measurements has qualitatively different patterns for a quantum spin and for a classical field. We set the measurement angle $\theta=54.0037^\circ$ to maximize the amplitude of the third-order signal (which is $\sin^2 \theta \cos \theta$). The 2D spectrum of the third moment for a quantum spin target (Fig. 3a, b) clearly shows four peaks at (ν_0, ν_0) with $|\nu| \equiv |\nu_0| \equiv \nu_0$ mod $(2\nu_0/\pi)$ with ν_0 being the period of each measurement shot. The difference in the heights of the diagonal and anti-diagonal peaks is due to the fast hopping between different states of sensor spin (see Supplementary Note 6). In contrast, the 2D spectrum for the random-phased AC field (Fig. 3c), as expected, presents six peaks at $(\nu_0, \nu_0) = \pm (\nu_0, 2\nu_0), \pm (\nu_0, -\nu_0)$, and $\pm (2\nu_0, \nu_0)$ mod $(2\nu_0/\pi)$.

The quantum nonlinear spectroscopy has qualitatively different patterns for different numbers of nuclear spins (Fig. 1c). In particular, the height of the eight peaks at $(0, \pm \nu_0), (\pm \nu_0, 0), \pm (\nu_0, 2\nu_0), \pm (2\nu_0, \nu_0)$ relative to those at ν_0 is a quantized number $\eta = 1/11$ (see Fig. 3d and Supplementary Note 5), which provides a discrete count of the number of spins (similar to the determination of the number of quantum emitters by the correlation g^2 of photon counts). The relative height η averaged over the signals at the eight points is about 0.12 ± 0.1 (Fig. 3d), indicating that the target detected by the sensor is a single nuclear spin. Instead of roughly estimating the number of nuclear spins by sensitivity, our method can determine the exact number if the couplings to different spins are of similar strength.

The third moment contains the contribution of the quantum correlation and hence can differentiate a quantum spin and a classical noise. In particular, the second moments for a spin-1/2 at higher temperature is $S_{ik}^\text{c} = \sin^2 \theta \cos^2 \nu_0 \nu t \exp(-\nu_0 t)$ (with c_0 being a constant), the third-order signal for a quantum spin target is $S_{ik}^\text{q} = -c_0 \sin^2 \theta \cos \nu_0 \nu t \sin \nu_0 \nu t \exp(-\nu_0 t)$ (see the “Methods” section) without $r=1$ for a quantum spin target and $r = 1/2$ for the classical signal S_{ik}^c. The fitted result, as shown in Fig. 4d, yield $r = 1.13$ with a standard deviation =0.368. The data confirms the quantumness of the noise from the nuclear spin.

Discussions

The results above demonstrate that quantum nonlinear spectroscopy, enabled by measurement via a quantum sensor, can extract...
Fig. 3 | Quantum nonlinear spectroscopy of a nuclear spin and a random-phased AC field. a 2D spectrum of the third moment S_{ijjk} of an NV center spin coupled to a nuclear spin. b The diagonal (orange symbols) and anti-diagonal (purple symbols) slice of a. c 2D spectrum of the third moment S_{ijjk} of an NV center spin coupled to a random-phased AC field. d The calculated average height (curve) of the eight peaks at $(0, \pm \nu_0), (\pm \nu_0, 0), \pm (2\nu_0, \nu_0), (2\nu_0, \pm \nu_0)$ relative to those at $\pm (\nu_0, -\nu_0)$ as a function of the number of uniformly coupled nuclear spins. The symbols are experimental values (green is from Fig. 3a and blue is from Supplementary Fig. S12, measured with a different number of dynamical decoupling pulses). Error bars are standard deviation.

Fig. 4 | Quantum correlation of a single nuclear spin. a–c show the third moment S_{ijpq} as a function of p for $q = 7, 8, 9$ in turn. The purple symbols are experimental data. The orange curves are theoretical results with the fitting parameter r being the ratio of the amplitude of the third moment to the amplitude squared of the second moment (not shown). t_c is the same as in Fig. 3a. d The factor r (purple symbols) obtained from fitting different data sets (see Supplementary Note 1). The blue line is the mean value of r, and the shadow area is within one standard deviation from the mean. The red (green) dashed line indicates the value $r_0 = 1$ ($r_C = 1/2$) for the total (classical only) correlations.
correlations of a quantum object that are inaccessible to conventional nonlinear spectroscopy using classical probes and quantum correlations that are missing in classical fields and cannot be retrieved by conventional noise spectroscopy. The higher-order correlations provide fingerprint features for unambiguous differentiation of noises of different kinds and for verification of quantumness.

Fourth-order correlations of a signal originate from the nuclear spin bath, analogous to the $g^{(2)}(0)$ measurements of photon statistics, allows to resolve the number of nuclear spins and particularly isolate single spins. In this work, we demonstrated this technique in application to a single nuclear spin. With multiple nuclear spins further research is required to understand how unsimilar coupling affects the correlation function, similar to the effect of dissimilarly bright quantum emitters in quantum optical second-order correlation function ($g^{(2)}(0)$). In general, a more efficient readout such as the resonant readout technique at low temperatures would help experiments by improving the readout efficiency and reducing the unwanted decoherence of nuclear spins induced by the green laser light. This could potentially open the way towards experimental observations of many-body phenomena.

Furthermore, the scheme can be generalized, by using, e.g., different initial states of the sensor spin, different measurement bases, higher orders moments, and higher spins as sensors, to extract arbitrary types and orders of correlations. In our current experiments, the measurement basis is fixed in the whole measurement sequence (along the axis with an angle θ from the x-axis). This protocol is relatively simple and also allows the fourth-order correlations of the quantum target to be extracted through correlating measurement outputs at three times (t_1, t_2, and t_3). Such a configuration for measuring the fourth order correlations is less demanding on the measurement fidelity and the system stability (needed for a long data acquisition time). However, the shortcoming is also obvious. First, the B_1^+ of the second measurement occur at the same time (namely, B_1^+), which limits the spectroscopy to be two-dimensional. Second, more importantly, the measurement along a direction between x and y axes (relative to the axis of the initial state) makes it impossible to fully distinguish the contribution from the quantum and classical correlations. Actually, in our fourth-order signal, the classical and quantum correlations have equal weight. As shown in ref. 28, by choosing a pair of orthogonal axes along which the sensor state is initialized and is measured, one can selectively address the quantum and classical correlation (given by the commutator B_1^+ and the anti-commutator B_1^-, respectively). Thus, one task for developing quantum nonlinear spectroscopy is to improve the measurement fidelity and the system stability such that in the sequence of weak measurement, the initial state and measurement axis are individually chosen in each shot of measurement and different types of correlations are fully separated. Such improved capability would enable screening of classical noise for ultrasensitive detection of quantum objects and facilitate the test of quantum foundation using higher order quantum correlations.

Information made available by quantum nonlinear spectroscopy will be useful for quantum computing (by helping characterize and optimally suppress noises), quantum sensing (by isolating quantum objects from classical noise background), studying quantum many-body physics (by detecting new types of fluctuations in mesoscopic systems), and examining quantum foundation (by testing higher-order Bell inequalities or Leggett–Garg inequalities with fewer, narrower, or even no interpretation loopholes).

Methods

Setup and sample
The measurement is carried out with a confocal microscope setup located in a room temperature bore of a superconducting magnet (see Supplementary Fig. S1). The magnet produces a field of 250 mT, aligned parallel to the NV axis, which results in a transition frequency of about 4.1 GHz between $|0\rangle$ and $|1\rangle$. The fluorescence light of the NV centers is detected with an avalanche photo diode (APD). The electron and nuclear spins are manipulated with the two channels of microwaves. We have a typical Rabi frequency of 7 MHz for the electron spin at full pulse amplitude.

The diamond sample used is a $2 \times 2 \times 80 \mu m$, (III)-oriented polished slice from a 12C-enriched (99.995%) diamond crystal. The single NV centers were created by electron irradiation. The typical lifetimes for the NV centers in this slice are $\tau_e = 50 \mu s$ (measured by Ramsey interference) and $\tau_n = 300 \mu s$ (measured by spin echo).

For details of the setup and the sample see Supplementary Note 1.

Measurement method

We use the NV center electron spin as the sensor and the nitrogen nuclear spin as a quantum memory to enhance the sensing. Each shot of measurement consists of three steps: initialization, sensing and readout. The electron spin is optically initialized in state $|0\rangle$. The spin is prepared with a (π/2)-pulse. We sense 13C nuclear spins in diamond with a Knill pulse dynamical decoupling sequence, the KDDxy, where the time between pulses matches the Larmor frequency of the 13C spin of interest. For KDD-XY5 we used $N_p = 100$, $\delta = 0.189(4)\mu s$, and estimated $A_e = 2\pi \times 14.73(3)\text{kHz}$. The estimated $A_e \approx 2\pi \times 100\text{kHz}$, where $\alpha = N_p \cdot A_e / \pi$. Therefore, the superposition state of the NV electron spin acquires a phase, conditioned on the 13C state. The sensor state gets projected, orthogonal to the preparation pulse, with a phase-shifted MW pulse. Lastly the optical readout of the sensor spin is performed. Here we SWAP the electron spin state and the 14N spin state, which is preserved during several laser readouts, enabling single-shot readout. To mitigate the effect of decoherence because of the hyperfine interaction with the target 13C when the NV center is in the excited states, we limit the readout to 40 repetitions. The SWAP between the electron and the memory spins consists of a weak MW pulse on the electron spin conditional on the 14N state (CNOTe, with duration $\sim 4 \mu s$) followed by a conditional RF-pulse on the memory spin (CNOTn, with duration $\sim 50 \mu s$) and then another CNOTe. Each readout repetition consists of one CNOTe and a laser pulse (0.3 μs).

Reconstruction of correlation from photon counts

The probability for sensor collapses to $|0\rangle$ ($|1\rangle$) is denoted by $p(+) (p(-))$. For weak noise, $\langle a \rangle = \frac{1}{2} \cos(\theta - \Phi)/2$. The distribution of photon counts of each measurement is

$$p(n) = p(n|+) + p(n|-),$$

where $p(n|+|) = \frac{1}{2} \cos^2\theta - n_p^2$ is the Poisson distribution and n_p is the average number of photons detected for the spin state $|0\rangle$ or $|1\rangle$, respectively. The photon counts can be written as

$$n = n + s_d + w_o,$$

with $n = (n_+ + n_-)/2$ is the average photon count, $d = (n_+ - n_-)/2$ is the photon count contrast between the two spin states, and $w_o = n_+ - n_- = n_p$ is the intrinsic photon count fluctuation (due to spontaneous emission, APD efficiency, etc.) satisfying the distribution $p(w_o) = p(n_+ + w_o|o)$ with zero mean value. The photon count fluctuation $\delta n_+ = n_+ - n_p$ is related to the spin signal fluctuation $\delta \sigma_z = \sigma_z - \langle \sigma_z \rangle$ by

$$\delta n_+ = \delta \sigma_z d + w_o,$$

with the first moment of the photon counts being $\langle n_i \rangle = n + \langle a \rangle d + n + c \cos \theta$. The second and third moments are $\langle \delta n_i \delta n_j \rangle = d^2 \langle \delta \sigma_z \delta \sigma_z \rangle$, and $\langle \delta n_i \delta n_j \delta n_k \rangle = d^2 \langle \delta \sigma_z \delta \sigma_z \delta \sigma_z \rangle$, respectively, for i, j, k being different. Here we have used the fact that the intrinsic photon
count fluctuations w_{ij} are independent for different shots of measurements.

Effective Hamiltonian under dynamical decoupling

The evolution during the interrogation in the interaction picture is $U = T \exp(-\theta \hat{J}^0) \exp(\hat{J} \hat{V}(t)) \exp(-\theta \hat{J}^0) = \exp(-\theta \hat{J}^0) \exp(\hat{J} \hat{V}(t)) \exp(-\theta \hat{J}^0)$, where $\hat{f}(t)$ is the modulation function alternating between +1 and -1 due to the dynamical decoupling sequence and $\hat{V}(t)$ is the hyperfine interaction in the interaction picture. By Magnus expansion for short period of time, the effective coupling $V(t) = r^{-1} \int_r^0 \bar{f}(u) \hat{V}(u) \, du$. For the coupling to a single 13C spin, $V_{ij}(t) = A_{ij} \delta \rho(t)$ with $\delta \rho(t) = \hat{J} \hat{V}(t)$, Under the KDD, the effective coupling becomes $V(t) = A_{ij} \delta \rho(t)$ with $A = 2A_i / T$.

Quantum correlations

The relation between the statistics (moments) of the sequential measurement and the correlation of the noise field $\hat{B}(t)$ can be directly obtained by the perturbative expansion of the evolution during interrogation time τ. We assume that the bath evolves freely between two adjacent interrogation processes. As shown in Fig. 1a, the measurements at different times, though conducted on a single NV center spin in the experiment, can be viewed as performed independently on different sensor spins (\hat{S}_j), each interacting with the target with Hamiltonian $V_j = S_j \hat{B}$ from t_j to $t_j + \tau$. The initial state of the target and the sensors can be written as $\hat{\rho} = \hat{\rho}_0 \otimes \hat{\rho}_1 \otimes \ldots$ with $\hat{\rho}_j = |x\rangle \langle x| = (\hat{S}_j + 1)/2$ for the jth sensor spin and $\hat{\rho}_\theta = 2^{-N}$ being the density operator of N nuclear spins at high temperature. The evolution due to the interaction with the jth sensor can be expanded as

$$\hat{\rho}(\tau) = \hat{\rho} + \tau \left[\hat{V} - \hat{\rho} \right] + \frac{\tau^2}{2!} \left[\hat{V}^2 - \hat{\rho} \right] + \ldots$$

(7)

The first moment of the measurement is

$$S_j = \langle \hat{J}_j \hat{B} \rangle = \cos \theta - \frac{1}{2!} \left[T \operatorname{Tr} \left(\hat{J}_j \hat{B} \hat{S}_j \right) \right] - \frac{\tau^2}{2!} \left[T \operatorname{Tr} \left(\hat{J}_j \hat{B} \hat{S}_j \right) \right] + \ldots$$

(8)

The second moment (for $t_j > t_\theta$) is $S_{jk} = \langle \hat{J}_j \hat{J}_k \hat{B} \hat{B} \rangle = \langle \hat{J}_j \hat{J}_k \hat{B} \hat{B} \rangle = \langle \hat{J}_j \hat{J}_k \hat{B} \hat{B} \rangle = \tau^2 \sin^2 \theta C_{jk}$. The third moment S_{ijk} can be similarly obtained as

$$S_{ijk} = \frac{\tau^3 \cos \theta \sin \theta}{2} \left(C_{ijk} - C_{ikj} C_{jk} - C_{ikj} C_{jk} - C_{ikj} C_{jk} + C_{jik} C_{jk} + C_{ikj} C_{jk} \right)$$

(10)

See Supplementary Note 4 for details.

Correlations of N uniformly coupled nuclear spins

The noise field from N uniformly coupled nuclear spins (\hat{B}_i) can be written as $\hat{B}(t) = \sum_{n=1}^N A_{n} \hat{B}_i \cos(\nu_0 t) + \sum_{n=1}^N A_{n} \sin(\nu_0 t)$ in the interaction picture. With $\rho_B = 2^{-N}$, the second-order classical correlation is

$$C_{ij} = \operatorname{Tr} \left[\hat{B}_i \hat{B}_j \hat{\rho}_\theta \right] = \frac{1}{2} N A_i A_j \cos(\nu_0 t) e^{-\nu_0 t} - O(N),$$

(11)

where decoherence of nuclear spins (due to, e.g., back-action of the weak measurement between t_θ and t_{j+1}) is taken into account as the exponential decay factor (see ref. 13). The fourth-order classical correlation is

$$C_{ijkl} = \operatorname{Tr} \left[\hat{B}_i \hat{B}_j \hat{B}_k \hat{B}_l \hat{\rho}_\theta \right] = \frac{1}{16} N A_i A_j A_k A_l \sin(\nu_0 t) \sin(\nu_0 t_{kl}) e^{-\nu_0 t_{kl}} \propto N,$$

(12)

which is the same as for a telegraph noise for $N = 1$ and approaches to the Gaussian noise for $N \gg 1$. The second-order quantum correlation $C_{ij}^Q = 0$ and the fourth order

$$C_{ijkl}^Q = \operatorname{Tr} \left[\hat{B}_i \hat{B}_j \hat{B}_k \hat{B}_l \hat{\rho}_\theta \right] = \frac{1}{16} N A_i A_j A_k A_l \sin(\nu_0 t) \sin(\nu_0 t_{kl}) e^{-\nu_0 t_{kl}} \propto N,$$

(13)

which is much smaller than the classical correlation for $N \gg 1$. For $N = 1$, the classical contribution S_{ijkl}^C is $S_{ijkl}^C \approx S_{ij}^C$, and the quantum one $S_{ijkl}^Q \sim C_{ijkl}$ are equal, and the total third moment $S_{ijkl} = 2 S_{ijkl}^C \sin(\nu_0 t) \sin(\nu_0 t_{kl}) e^{-\nu_0 t_{kl}}$. Its 2D Fourier transform $\tilde{S}(\nu_{ij}, \nu_{kl})$ has four peaks at $\pm (\nu_0, \nu_0)$ and $\pm (0, \nu_0)$, with equal height.

Data availability

Data supporting the findings of this study are available within the article and its Supplementary information and from the corresponding authors upon request. Data for reproducing the figures in the main text will be available before the publication in a publicly accessible repository with the link https://doi.org/10.18419/darus-3004.

Code availability

The custom code operating the experimental setup is available upon request from the corresponding author.

References

1. Liu, R.-B., Fung, S.-H., Fung, H.-K., Korotkov, A. N. & Sham, L. J. Dynamics revealed by correlations of time-distributed weak measurements of a single spin. *N. J. Phys.* 12, 013018 (2010).
2. Li, F., Saxena, A., Smith, D. & Sinitzyn, N. A. Higher-order spin noise statistics. *N. J. Phys.* 15, 113038 (2013).
3. Bechtold, A. et al. Quantum effects in higher-order correlators of a quantum-dot spin qubit. *Phys. Rev. Lett.* 117, 027402 (2016).
4. Yang, W., Ma, W.-L. & Liu, R.-B. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths. *Rep. Prog. Phys.* 80, 016001 (2017).
5. Ful"{u}r"{i}ski, A. Non-markovian noise. *Phys. Rev. E* 50, 2668 (1994).
6. Schweigler, T. et al. Experimental characterization of a quantum many-body system via higher-order correlations. *Nature* 545, 323 (2017).
7. Schweigler, T. et al. Decay and recurrence of non-Gaussian correlations in a quantum many-body system. *Nat. Phys.* 17, 559 (2021).
8. Tuvia, G., Maxim, K. P., M. L., Fedor, J. & Retzker, A. Quantum spectroscopy of single spins assisted by a classical clock. *Phys. Rev. A* 98, 013844 (2018).
9. Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. *Science* 356, 832 (2017).
10. Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837 (2017).
11. Larouci, A. et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 1651 (2013).
12. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).
13. Pfender, M. et al. High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nat. Commun. 10, 594 (2019).
14. Cujia, K. S., Boss, J. M., Herb, K., Zopes, J. & Degen, C. L. Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230 (2019).
15. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013).
16. Bell, J. S. On the Einstein–Podolsky–Rosen paradox. Phys. Phys. Fiz. 1, 195 (1964).
17. Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985).
18. Ruskov, R., Korotkov, A. N. & Mizel, A. Signatures of quantum behavior in single-qubit weak measurements. Phys. Rev. Lett. 96, 200404 (2006).
19. Palacios-Laloy, A. et al. Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442 (2010).
20. Bednorz, A., Belzig, W. & Nitzan, A. Nonclassical time correlation functions in continuous quantum measurement. N. J. Phys. 14, 013009 (2012).
21. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).
22. Slichter, C. P. Principles of Magnetic Resonance (Springer, 2013).
23. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and two dimensions (Clarendon press, Oxford, 1987).
24. Wang, P., Chen, C. & Liu, R.-B. Classical-noise-free sensing based on quantum correlation measurement. Chin. Phys. Lett. 38, 010301 (2021).
25. Dorfman, K. E., Schlawin, F. & Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016).
26. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).
27. Raymer, M. G., Marcus, A. H., Widom, J. R. & Vitullo, D. L. P. Entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS). J. Phys. Chem. B 117, 15559–15575 (2013).
28. Wang, P., Chen, C., Peng, X., Wraetchtup, J. & Liu, R.-B. Characterization of arbitrary-order correlations in quantum baths by weak measurement. Phys. Rev. Lett. 123, 050603 (2019).
29. Zhao, N. et al. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nat. Nanotechnol. 6, 242 (2011).
30. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
31. Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657 (2012).
32. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).
33. Tamiami, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).
34. Sinitsyn, N. A. & Pershin, Y. V. The theory of spin noise spectroscopy: a review. Rep. Prog. Phys. 79, 106501 (2016).
35. Crocker, S. A., Rickel, D. G., Balatsky, A. V. & Smith, D. L. Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance. Nature 431, 49 (2004).
36. Álvarez, G. A. & Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Phys. Rev. Lett. 107, 230501 (2011).
37. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565 (2011).
38. Yan, F. et al. Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution. Nat. Commun. 4, 2337 (2013).
39. Yoshihara, F. et al. Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions. Phys. Rev. B 89, 020503 (2014).
40. Frey, V. M. et al. Application of optimal band-limited control protocols to quantum noise sensing. Nat. Commun. 8, 2189 (2017).
41. Sung, Y. et al. Non-Gaussian noise spectroscopy with a superconducting qubit sensor. Nat. Commun. 10, 3715 (2019).
42. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).
43. Korotkov, A. N. Output spectrum of a detector measuring quantum oscillations. Phys. Rev. B 63, 085312 (2001).
44. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267 (2009).
45. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542 (2010).
46. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836 (2016).
47. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).
48. Souza, A. M., Alvarez, G. A. & Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011).

Acknowledgements
V.V., J.M., M.P., J.W. acknowledge financial support by the German Science Foundation (the DFG) via SPP1601, FOR2724, the European Research Council (ASTERIQS, SMel, ERC grant 742610), the Max Planck Society, and the project QC4BW as well as QTBW. P.W. and R.B.L. are supported by Hong Kong Research Grants Council General Research Fund Project 143000119.

Author contributions
R.-B.L. and J.W. conceived the project. P.W. and R.-B.L. carried out the theoretical study; J.W. supervised the experimental studies. V.V., J.M., B.Y., and M.P. carried out the measurements; H.S., H.O., and J.I. designed and conducted the synthesis and fabrication of the diamond substrate; V.V., J.M., P.W., R.-B.L., and J.W. analyzed the data; R.-B.L., P.W., V.V., and J.W. wrote the manuscript with contributions from other authors.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32610-8.

Correspondence and requests for materials should be addressed to Ren-Bao Liu or J. Wrachtrup.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022