Fecal microbiota transplantation in cancer management: Current status and perspectives

Danfeng Chen,† Jingyi Wu,† Duochen Jin, Bangmao Wang and Hailong Cao

Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China

The human gut is home to a large and diverse microbial community, comprising about 1,000 bacterial species. The gut microbiota exists in a symbiotic relationship with its host, playing a decisive role in the host’s nutrition, immunity and metabolism. Accumulating studies have revealed the associations between gut dysbiosis or some special bacteria and various cancers. Emerging data suggest that gut microbiota can modulate the effectiveness of cancer therapies, especially immunotherapy. Manipulating the microbial populations with therapeutic intent has become a hot topic of cancer research, and the most dramatic manipulation of gut microbiota refers to fecal microbiota transplantation (FMT) from healthy individuals to patients. FMT has demonstrated remarkable clinical efficacy against *Clostridium difficile* infection (CDI) and it is highly recommended for the treatment of recurrent or refractory CDI. Lately, interest is growing in the therapeutic potential of FMT for other diseases, including cancers. We briefly reviewed the current researches about gut microbiota and its link to cancer, and then summarized the recent preclinical and clinical evidence to indicate the potential of FMT in cancer management as well as cancer-treatment associated complications. We also presented the rationale of FMT for cancer management such as reconstruction of intestinal microbiota, amelioration of bile acid metabolism, and modulation of immunotherapy efficacy. This article would help to better understand this new therapeutic approach for cancer patients by targeting gut microbiota.

Key words: gut microbiota, dysbiosis, cancer, fecal microbiota transplantation, therapy

Abbreviations: CDI: *Clostridium difficile* infection; CRC: colorectal cancer; CTLA-4: cytotoxic T-lymphocyte-associated antigen 4; FMT: fecal microbiota transplantation; Fn: *Fusobacterium nucleatum*; GVHD: graft-vs.-host disease; HCC: hepatocellular carcinoma; HSCT: hematopoietic stem cell transplantation; PD-1: programmed cell death protein 1; PDAC: pancreatic ductal adenocarcinoma; PD-L1: programmed death ligand 1; Sgg: *Streptococcus gallolyticus* subsp. *Galloyticus*; TLRs: Toll-like receptors

Additional Supporting Information may be found in the online version of this article.

Conflict of interest: None.

†D.C. and J.W. contributed equally to this work

Grant sponsor: Tianjin Research Program of Application Foundation and Advanced Technology of China; Grant numbers: 17JCYBJC24900; Grant sponsor: National Natural Science Foundation of China; Grant numbers: 81741075, 81570478

DOI: 10.1002/ijc.32003

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

History: Received 30 Jul 2018; Accepted 13 Nov 2018; Online 20 Nov 2018

Correspondence to: Hailong Cao, Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China, Tel.: +86-022-60362608, Fax: +86-022-27813550, E-mail: caohailong@tmu.edu.cn

Introduction

The human intestinal tract is inhabited by numerous microbes, and the number of microbial cells is roughly equivalent to that of cells in human body.† The human intestine contains about 1,000 different species of known bacteria with the largest number of bacteria in colon. The bacterial populations inhabiting the gut differ greatly between individuals, depending on host specificities (such as genetics and lifestyle).

In recent decades, understanding of the role that intestinal microbial community plays in health and disease has increased.‡,3,4 The intestinal microbial community in a state of delicate balance is now widely recognized to maintain health. However, as the balance can be disrupted by various factors including host genetics, diet, antibiotics and stress, altered microorganisms potentially initiate and perpetuate different disorders.5 Various studies have shown that microbial alternations, characterized by a marked increase in the numbers of pathogens and a relative decrease in levels of beneficial bacteria, are connected with the development of gastrointestinal and extra-gastrointestinal cancers.6–13

Altering the gut microbiota is expected as a novel method to deal with diseases associated with intestinal dysbiosis. Potential routes to target intestinal microbiota community include diet, probiotics, prebiotics, antibiotics and fecal microbiota transplantation (FMT). FMT is defined as the transplantation of gut microbiota from healthy donors to sick patients via the upper or lower gastrointestinal route to restore intestinal microbial diversity.14,15 FMT is recognized as the most innovative and dramatic method due to its ability to alter the
recipients’ gut microbiota. The utilization of feces for the treatment of food poisoning or severe diarrhea was firstly recorded by a well-known medical expert named Ge Hong approximately 1,700 years ago.16 FMT was firstly reported to treat severe pseudomembranous enterocolitis by Eiseman in 1958.17 Nevertheless, this practice was less used until the first documented case of *Clostridium difficile* infection (CDI) treated with FMT was reported in 1983 by Schwan.18 Currently, FMT has been approved as a clinical method for treating recurrent CDI by 2013 guidelines19 and its clinical effectiveness has reached approximately 90%.20 Moreover, accumulating data indicate that FMT proves beneficial for the treatment of inflammatory bowel diseases and intractable functional constipation, etc.21,22 In addition, the observed intestinal dysbiosis in cancer leads to increasing interests in the potential of FMT for the management of cancer.

Fecal donors are either close relatives, family members or unrelated individuals. However, where possible, fecal material is best sourced from a healthy unrelated individual, from a centralized stool bank.23 To eliminate the risk of inadvertently transmitting infection, donors in preparation of FMT should be screened according to an established protocol.24 With regard to methods of preserving fecal materials, the frozen fecal material has the advantage of more convenient management.25 However, the bacterial diversity of frozen product seems lower than that of fresh material.26 In a recent double-blind study of patients with CDI, the frozen fecal product had a lower efficacy compared to fresh material.27 As well as differences in recipient preparation methods, the routes of administration are also various. Fecal microbiota can be delivered via capsule, nasogastric tube, nasoduodenal tube, enema, or colonoscopy.28 Although endoscopic administration allows direct evaluation of intestinal mucosa, oral administration is accepted easily by patients due to higher satisfaction.29 Retention enema is cheap and safe, but it might be hard to retain the donor microbiota.30 The optimum route of administration has not yet been determined.

A European consensus conference on FMT published in *Gut* strongly recommended the implementation of FMT centers,31 while Terveer et al. deemed that a centralized stool bank could ensure the safety of fecal materials, and permit the rest of the FMT procedures in local hospitals.32

In this review, we focused on gut microbiota in various cancers. We then summarized the current preclinical and clinical studies on the use of FMT for gastrointestinal and non-gastrointestinal cancers as well as cancer treatment-associated complications including CDI and radiation enteritis (Table 1).

Gut Microbiota and Cancer
During the past several years, the involvement of gut microbiota in carcinogenesis has been increasing recognized.9,33 Microbial dysbiosis and individual bacteria in the gut can induce carcinoma or promote cancer process by activating tumorigenic pathway, inducing inflammation and damaging host DNA34,35 (Fig. 1). Several bacteria possess or produce proteins that promote the separation of β-catenin from E-cadherin, activating β-catenin signal pathway involved in carcinogenesis. Intestinal dysbiosis leads to a decrease in the production of bacteria-derived short-chain fatty acids. Intestinal dysbiosis exerts pro-inflammatory effects, via microbiome-associated molecular patterns by Toll-like receptors (TLRs), increasing the cells’ production of pro-inflammatory factors, thereby increasing carcinogenesis. Beyond inducing inflammation, many bacteria also have the ability to damage DNA through releasing specific metabolites, which in turn promote cancer progression. Surprisingly, specific microbiota species modulate the efficacy of cancer therapy,36 markedly influencing the clinical outcome of cancer patients. Hence, a better knowledge of the link between intestinal bacteria and cancer can provide opportunities to develop promising therapeutic and diagnostic strategies.

Gut dysbiosis and cancer development
The alterations in gut microbiota composition have been implicated in the initiation and development of cancer of various tissues, including gastric cancer, colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer, breast cancer, and melanoma. Recent studies have described the specific changes in the gut bacterial community in patients with cancers (such as gastric cancer or CRC) in comparison with healthy individuals.37,38 The fecal microbiota from patients with CRC promoted tumorigenesis in germ-free or conventional mice given a carcinogen,39 which showed the carcinogenic properties of the CRC microbiota. Accumulating epidemiological evidence supports the opinion that long-term antibiotic exposures, known to change the composition and decrease the diversity of gut microbiota,40 increase the risk of CRC.41–44 as well as gastric, pancreatic, lung, breast and prostate cancers.45 Consistent with this, long-term antibiotic use was highly correlated with increased colorectal tumor progression in the *ApcMin/+* mouse, a genetic model for human adenomatous polyposis.46 However, there is conflicting data about the association between antibiotics and risk of cancer. Oral administration of metronidazole could reduce *Fusobacterium* load and colorectal tumor growth in mice bearing a colon cancer xenograft.47 Moreover, antibiotic use could clear biofilms and eliminate microbial sulﬁde, and thereby protect the colon mucous barrier and prevent epithelial hyperproliferation.48,49 Additionally, several studies have suggested that depletion of the gut microbiota upon exposure to an antibiotic cocktail could block intestinal tumorigenesis.50–52 It is possible that different antibiotic exposures (differ in dose or course) and subjects may lead to diverse variations in microbial community, which could result in distinct disease outcomes (Supporting Information, Table S1). Further investigations are required to elucidate the impact of antibiotic exposures on outcomes in cancer patients and its underlying mechanisms. With the deepening comprehension of gut dysbiosis, interest is growing rapidly worldwide in the application of microbiota-target therapy for cancer.
Special microbial pathogens in cancer

It has been estimated that some microorganisms as etiological factors, such as Human papillomavirus, Helicobacter pylori (H. pylori) and Hepatitis B virus, account for about 20% of total cancers worldwide. Several bacterial species and their tumor-promoting mechanisms have been investigated mostly on cell and animal levels, including production of toxic metabolites, alteration of intestinal microenvironment, induction of tumorigenic signaling pathways (Supporting Information, Table S2). For example, H. pylori is well known to contribute to the development of chronic gastritis and gastric carcinogenesis by secreting virulence factors and activating various tumor-promoting signaling pathways (Supporting Information, Table S2). For example, H. pylori is well known to contribute to the development of chronic gastritis and gastric carcinogenesis by secreting virulence factors and activating various tumor-promoting signaling pathways (Supporting Information, Table S2).

Additionally, gram-negative oral commensal Fusobacterium nucleatum (Fn), which is enriched in colon tumor tissues compared to adjacent healthy tissues, has been reported to promote proliferation and invasion ability of tumor cells. Lately, gram-negative oral commensal Fusobacterium nucleatum (Fn), which is enriched in colon tumor tissues compared to adjacent healthy tissues, has been reported to promote proliferation and invasion ability of tumor cells. Additionally, Fn induces cancer cell autophagy, thereby increasing chemotherapeutic drug resistance and tumor recurrence rate. The significant difference in gut microbiota composition between cancer patients and healthy individuals demonstrates diagnostic and prognostic potentials of special microbial pathogens in cancer. For example, a significant stepwise increase of Fn abundance was found in healthy controls, colorectal adenoma patients and CRC patients, indicating its potential application.
value in early diagnosis of CRC. Combining the abundance of Fn and fecal immunochemical test could improve the accuracy and sensitivity in diagnosis of CRC and advanced adenoma. In addition to the diagnostic utility, the amount of Fn in CRC tissue is associated with patient survival. Collectively, a better understanding of how special microbial pathogens elicit specific carcinogenesis may uncover valuable biomarkers for diagnosing and prognosticating cancer.
Gut microbiota and cancer therapy

Gut microbiota could influence cancer therapy efficacy. In 2013, Viaud et al. reported that gut microbiota modulated the therapeutic effect of the anti-cancer immunomodulatory agent cyclophosphamide. Subcutaneous cancer-bearing mice which were germ-free or given antibiotics therapy to kill gram-positive bacteria showed resistant to cyclophosphamide. Two bacterial species, Enterococcus hirae and Barnesiella intestinihominis, were identified to potentiate the antitumor efficacy of cyclophosphamide through engagement of immune responses.

Several studies using melanoma-bearing mice showed that the effectiveness of programmed cell death protein 1 (PD-1) inhibitor was diminished under aseptic conditions, and improved effectiveness was observed in the presence of Bifidobacterium, which activated antigen-presenting cells, thus promoting activated CD8+ T cells accumulation in the tumor microenvironment. MCA205 (mouse fibrosarcoma of C57BL background) sarcoma growth was controlled by anticytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) therapy in specific pathogen free laboratory mice, compared to germ-free or antibiotic-treated mice. These studies highlight the impact of the intestinal microbiota on responses to cancer immunotherapy in mice.

Lately, corroborating these experimental results, clinical outcomes such as survival time to anti-PD-1 monoclonal antibodies were found to positively correlate with the relative abundance of Akkermansia, one of the most abundant bacteria in the ileum of healthy individuals. Microbiome encompasses microbiota genomes, microbial products and host environment. Transfer of the gut microbiome from cancer patients who responded to immunotherapy and oral supplementation of Akkermansia improved the efficacy of immunotherapy. Together, it is tempting to speculate that FMT is beneficial for the treatment of cancer.

FMT as a Possible Therapy for Various Type of Cancers and Cancer Treatment-Associated Complications

FMT for digestive system cancers

Gastrointestinal cancers. Carcinogenesis of gastric cancers is associated with H. pylori and some oral microbiota including Fn, Parvimonas micra and Peptostreptococcus stomatis. Significant enrichment of Peptostreptococcus stomatis, Parvimonas micra, Streptococcus anginosus, Dialister pneumosintes, Slackia exigua, Clostridium colicanis and Fn depletion and dephosphorylation of Helicobacterium was observed in gastric cancer, and alterations in bacterial diversity and abundance in patients with gastric cancer revealed a dysbiotic microbial community with prediction potential. Recently, incremental data has demonstrated that eradication treatment for H. pylori could reduce the risk of gastric cancer. Collectively, these studies indicate that gastric microbiota is involved in gastric carcinogenesis. With enormous microorganism at close proximity to the colonic epithelial cells, the involvement of gut microbiota in colorectal carcinogenesis is becoming clear. Indeed, some bacterial species can trigger the occurrence of CRC through toxic substance exposure, chronic inflammation, mucosal barrier injury and bacterial translocation. Pathogenic bacteria species, such as enterotoxigenic Bacteroides fragilis, can confer pro-tumorigenic traits via producing harmful substances. Moreover, clinical studies reported significant shifts in intestinal microbiota composition between healthy individuals and those afflicted with CRC, showing a CRC-specific bacterial signature. Some bacteria (such as Lactobacillus, Bifidobacterium, etc.) were diminished, while others (such as Staphylococcaceae, Fusobacteria, Peptostreptococcus anaerobius, etc.) were augmented in stool samples from patients with CRC vs. healthy individuals. Analysis of fecal microbiota as a noninvasive tool might be used to improve detection accuracy of early CRC.

There are several evidences that support a protective role of probiotics against CRC. As known butyrate producers, Clostridium butyricum and Bacillus subtilis could inhibit DMH-induced colonic tumor in mice. Notably, another probiotic, Lactobacillus casei strain BL23 not only inhibited CRC in mice, but also counteracted gut dysbiosis induced by CRC. Additionally, recent clinical studies established that oral Bifidobacterium triple viable probiotics could improve gut dysbiosis and combat small intestinal bacterial overgrowth in CRC patients.

Our team identified the role of intestinal dysbiosis induced by deoxycholic acid (a carcinogenic secondary bile acid) in the development of CRC. We found that the transfer of feces from deoxycholic acid-treated mice increased intestinal tumor development compared to untreated donor. Interestingly, the result has been verified in patients in a recent study, and the fecal microbiota from patients with CRC promoted intestinal tumor formation and lowered microbial abundance in germ-free and conventional mice given a carcinogen. Moreover, Rosshart et al. reported that laboratory mice transplanted with intestinal microbiomes from wild mice showed better resistance to CRC and amelioration of inflammation, compared to control mice of their own bacteria, supporting the assumption that FMT could harbor a potential therapeutic ability for CRC.

Hepatocellular carcinoma. The liver is exposed to intestinal microbiota through the portal vein which delivers gut-derived bacterial products or toxins, such as lipopolysaccharide and deoxycholic acid. The close structural and functional interaction between the gut and the liver is defined as the gut-liver axis. Liver diseases are often associated with intestinal dysbiosis, and it has been shown that gut bacterial metabolites could promote the development of chronic liver disease and HCC through gut-liver axis.

Alteration of intestinal microbiota has been reported in liver disease, but the extent to which it is a cause is unknown. Microbiota transplantation from mice with high-fat diet-induced chronic liver damage revealed more liver injury in recipient mice. The stool from patients with severe alcoholic...
hepatitis increased the susceptibility to chronic alcoholic liver disease in mice. Microbial dysbiosis after penicillin or dextran sulfate sodium in rats aggravated hepatotoxicity of recipient mice. Moreover, colonization of Clostridium species, which could influence the metabolism of bile acids, increased liver tumor growth in mice with gram-positive bacteria removed. These data provide direct evidence that microbial dysbiosis could directly contribute to liver disease.

There are several clinical studies regarding the use of probiotics as a novel and effective approach to treat or prevent chronic liver disease and HCC. Probiotic VSL#3, a combination of Bifidobacteria, lactobacilli and Streptococcus thermophilus, could shorten inpatient time for patients with liver cirrhosis and hepatic encephalopathy. A randomized controlled multicenter study involving 117 alcoholic hepatitis patients found that those who received probiotics treatment with Lactobacillus subtilis and Streptococcus faecium had lower level of serum lipopolysaccharide, compared to the placebo group.

More recently, extensive research supports that FMT is showing promise as a therapy to control liver disease. FMT improved high-fat diet-induced liver injury and lipid metabolism along with increased gut microbiota diversity in mice. FMT from donor mice resistant to alcoholic liver disease could prevent alcohol-induced liver injury. Moreover, FMT has already been used in human with chronic liver disease. A recent pilot study of patients with severe alcoholic hepatitis showed that FMT was associated with increased survival and resolved ascite. Philips et al. reported a case of a young male patient with corticosteroid nonresponsive severe alcoholic hepatitis in 2017. FMT led to rapid amelioration of appetite and hyperbilirubinemia. Notably, FMT was performed in 18 patients with persistent positive HBeAg. FMT was effective for these patients via inducing HBeAg clearance, suggesting that regulating intestinal microbiota might be beneficial to chronic hepatitis B treatment. A Phase I clinical trial demonstrated that FMT restored antibiotic-induced microbial dysbiosis in patients with advanced liver cirrhosis. Even more, the effect of FMT on hepatic encephalopathy has been confirmed in both animal models and human beings. FMT alleviated cognitive function and prevented hepatic necrosis in animal models, thereby triggering improvement of hepatic encephalopathy. Kao et al. reported a significant improvement in serum ammonia and quality of life in a patient with hepatic encephalopathy after performing FMT. Bajaj et al. conducted a randomized clinical trial, which suggested that FMT has the potential to improve cognition and reduce hospitalizations in hepatic encephalopathy patients. Given the success of treating chronic liver disease, the benefit of FMT in patients with HCC deserves attention.

Pancreatic cancer. Recent studies have demonstrated that microbiota influences the development and treatment of pancreatic cancer. Evidence in mouse model manifested that lipopolysaccharide, which is generated from many gram-negative bacteria, could promote pancreatic cancer formation via activating TLR4 in immune cells. In a recently published study, 76% of subjects were positive for intratumor bacteria in 113 humans with pancreatic ductal adenocarcinoma (PDAC). Some of these detected bacteria including Gammaproteobacteria could promote resistance to gemcitabine, a chemotherapeutic drug commonly used for PDAC, while antibiotic ciprofloxacin was able to abrogate the resistance.

Previous studies have shown the variation of oral microbial composition between healthy and pancreatic cancer individuals. Among pancreatic cancer groups, significant increases were noted in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, and significant decreases were observed in phylum Fusobacteria and genus Leptotrichia, suggesting the potential of oral microbiota to serve as a noninvasive and specific clinical diagnostic marker for pancreatic cancer. Moreover, the high abundance of Fusobacterium species in pancreatic cancer tissue was independently correlated with a worse prognosis, indicating that Fusobacterium species might become a promising prognostic parameter of pancreatic cancer. The transfer of the microbiota from mice with PDAC, but not healthy mice, accelerated tumor progression in germ-free mice. Taken together, these studies revealed that microbiota-based treatment might be useful to manage pancreatic cancer.

FMT for nondigestive system cancers
Breast cancer. Hill et al. first proposed a hypothesis about gut microbiota and the etiology of breast cancer in 1971, considering the similarity of colon and breast cancer in epidemiologic characteristics. By now, studies on the direct relationship between gut microbiota and breast cancer are rather limited. Goedert et al. analyzed differences between 48 pretreatment postmenopausal breast cancer patients and 48 healthy controls. Compared to controls, patients had significantly reduced alpha diversity and alterations in the composition of fecal microbiota. Studies have been dedicated to possible mechanisms, such as estrogen metabolism, immune regulation, obesity and so forth. Evidence from animal experiments suggests that modulation of the gut microbiota by probiotics can provide protection against breast cancer. For example, oral supplement with Lactobacillus acidophilus can delay the development of breast cancer by regulating anti-tumor immune response. Further work is needed to elaborate the mechanism, and thus to manipulate gut microbiota with regards to management of breast cancer.

Melanoma. Recent evidence demonstrates that gut microbiota has implications for the progression and treatment of melanoma. Melanoma growth and its response to anti-tumor immune response is programmed death ligand 1 (PD-L1) immunotherapy in two mouse facilities (JAX and TAC) harboring distinct gut microbial compositions were remarkably different. Through genomic analyses of the gut microbiota, Bifidobacterium was
identified to facilitate the effects of PD-L1 treatment. Lately, a study of 39 metastatic melanoma patients receiving immune checkpoint therapy also showed that there was a significant correlation between the content of microorganism and the response of immunotherapy. In the responders to cancer immunotherapy, Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii and Holdemania filiformis were rich in their gut. The transfer of feces harvested from responding melanoma patients into mice established that FMT could enhance the effectiveness of immunotherapy to optimize the current therapies. A clinical study is testing the effect of FMT from PD-1 responders into intestinal tracts of nonresponders in melanoma. Thus, FMT seems to be promising in enhancing antitumor immunity in melanoma patients by transferring a favorable gut microbiota.

FMT for cancer treatment-associated complications

Clostridium difficile infection. _Clostridium difficile_ is the most common cause of antibiotic-associated diarrhea, leading to high morbidity and mortality in cancer patients. Both primary and recurrent CDI are not uncommon in patients with cancer owing to the fact that chemotherapy, frequent use of broad-spectrum antibiotics, prolonged hospitalization, immunodepression and other factors can lead to the damage of normal gut microbiota. Obviously, FMT is an effective and acceptable procedure for the treatment of recurrent CDI and now recommended in clinical use. Recent research has demonstrated the effectiveness of FMT for clinical cure of recurrent CDI approximately 90%. Apart from the successful restoration of microbial diversity and bacterial metabolites, the regulation of bile acid metabolism is also one of the mechanisms of FMT for CDI.

Although long-term safety data are lacking, the benefit of FMT on CDI in cancer patients has been confirmed by clinical studies and case reports. Hefazi et al. investigated the influence of FMT for recurrent CDI in 23 cancer patients (mainly hematologic cancer) receiving cancer chemotherapeutic agents. It is compelling to observe that the effective rate was 86% without serious adverse reactions or infectious complications. Kelly et al. analyzed 80 immunocompromised patients who underwent FMT, and found that no infectious complications resulted from FMT. In addition, several clinical trials have been conducted and published about the successful utilization of FMT for diarrhea caused by _Clostridium difficile_ in patients with T-cell lymphocytic leukemia or B-cell lymphoma. Hematopoietic stem cell transplantation (HSCT) is the most effective and promising procedure for treating hematological malignancy. To our knowledge, the first case of successful application of FMT for severe CDI that was refractory to conventional treatment with antibiotics in an HSCT patient was reported in 2012. Then two simple case reports were published about FMT as the management of CDI refractory to conventional therapy, showing that this approach is safe and effective in CDI after HSCT without infectious complications and other adverse effects while conventional therapy fails. The first case that before preparing for HSCT, FMT effectively solved the problem of pathogenic bacteria infection was reported in 2017. A male patient suffered from Philadelphia-positive acute lymphoblastic leukemia and developed a severe infection (β-lactamase-producing _E. coli, Clostridium difficile_ and carbapenemase-producing Enterobacteriaceae) before preparing for HSCT. After receiving FMT, his infection symptoms improved.

Radiation enteritis. Radiotherapy is one of the most successful cancer therapies, but it may give rise to severe tissue damage that limits its use. Small intestine epithelium has high sensitivity to radiation and is the major site of radiation-induced injury due to frequent intestinal epithelial turnover. A shift in intestinal microbiota composition after radiotherapy was observed in mice. FMT from irradiated mice to germ-free mice exposed to radiation resulted in more severe radiation damage, compared to mice transplanted with naïve microbiota. Interestingly, transplantation of fecal microbiota from healthy mice significantly alleviated radiation-induced gastrointestinal syndrome and improved the survival rate of irradiated mice. Therefore, FMT might be employed as a radioprotector in tumor radiotherapy to improve the prognosis.

Graft-versus-host disease. In allogeneic HSCT, donor T cells attack host healthy tissues, resulting in graft-vs-host disease (GVHD), which is the main cause of mortality associated with HSCT. A clinical study identified intestinal bacterial diversity as a new independent prognostic factor in allogeneic HSCT. Allogeneic HSCT led to impaired gut microbiota with decreased diversity, and patients with higher intestinal diversity had a better prognosis and prolonged survival time than patients with lower diversity. Successfully applying FMT to stem cell transplantation patients with intestinal acute GVHD was first reported by Kikihana in 2016. Of the four patients who underwent FMT, three achieved complete response, and one had a partial response. Targeted restoration of gut microbiota via FMT may present a novel ecological strategy for managing GVHD.

Safety of FMT

FMT has been designated as a biological drug by the U.S. Food and Drug Administration, and doctors need to submit an investigational new drug application so as to obtain permission to implement FMT for treating any disease or condition other than recurrent CDI. Offering FMT treatment is requested strictly, while the majority of existing literature indicating that it is not allowed in clinics without ethics approval. Because of the unidentified composition and pathogenicity of fecal bacteria, the safety of FMT remains controversial. Moreover, as an emerging treatment, FMT has not
been applied for a long time, so it lacks a long-term safety investigation. Consequently, it is quite indispensable to closely follow the patients after FMT and carefully record their condition. Our team conducted a systematic review among 1,089 patients receiving FMT in a total of 50 selected publications and found that serious side effects, such as death and virus infections, were not rare. Two cases of norovirus gastroenteritis were reported in FMT recipients, though the donor was innocent of the transmission. Although there are some encouraging success cases and clinical studies, the quality of evidence of FMT in cancer management remains generally low. High quality clinical data are still required to further investigate whether could be employed as a safe therapeutic intervention against cancer.

Conclusion and Perspective

The role of the intestinal microbiota and its relationship to carcinogenesis provide an unprecedented opportunity to explore new diagnostic and therapeutic applications for cancers. Strategically FMT is the most direct method to change the composition of gut microbiota. Case reports and series reveal the potential of FMT in alleviating various cancers linked to intestinal dysbiosis and cancer treatment-associated complications. Additionally, FMT could enhance the efficacy of cancer immunotherapy, thus remarkably affect clinical outcomes. However, FMT has not been clearly studied in cancer management and large-sample randomized controlled studies are urgently required to delineate the validity of FMT, especially focus on the long-term consequences. With the rapid progress of gut microbiology, FMT might become a promising therapeutic strategy for cancers in the near future.

References

1. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. *Cell* 2016;164:337–40.

2. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. *Nature* 2012;489:220–30.

3. Wang L, Cao H, Liu L, et al. Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a lactobacillus rhansomus GG-derived protein. *J Biol Chem* 2014;289:20334–44.

4. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. *Nat Rev Immunol* 2016;16:341–52.

5. Cao H, Liu X, An Y, et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. *Sci Rep* 2017;7:10322.

6. Schroeder BO, Bachhed F. Signals from the gut microbiota to distant organs in physiology and disease. *Nat Med* 2016;22:1079–89.

7. Mima K, Nakagawa S, Sawayama H, et al. The microbiome and hepatobiliary-pancreatic cancers. *Cancer Lett* 2017;402:9–15.

8. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. *N Engl J Med* 2016;375:2369–79.

9. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. *Science* 2012;338:120–3.

10. Khan S. Potential role of *Escherichia coli* DNA mismatch repair proteins in colon cancer. *Crit Rev Oncol Hematol* 2015;96:475–82.

11. Khan S, Zarkaria M, Rolfo C, et al. Prediction of mycoplasma hominis proteins targeting in mitochondria and cytoplasm of host cells and their implication in prostate cancer etiology. *Oncotarget* 2017;8:30830–43.

12. Khan S, Zarkaria M, Palaniappan S. Computational prediction of mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology. *Tumour Biol* 2016;37:10805–13.

13. Khan S, Imam A, Khan AA, et al. Systems biology approaches for the prediction of possible role of chlamydia pneumoniae proteins in the etiology of lung cancer. *PLoS One* 2016;11(1): e0148530.

14. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. *N Engl J Med* 2013;368:407–15.

15. Bakken JS, Borody T, Brandt LJ, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. *Clin Gastroenterol Hepatol* 2011;9:1044–9.

16. Zhang F, Luo W, Shi Y, et al. Should we standardize the 1,700-year-old fecal microbiota transplantation. *Am J Gastroenterol* 2012;107:1755–6.

17. Eiseman B, Silen W, Bascom GS, et al. Fecal enema as an adjunct in the treatment of pseudo-membranous enterocolitis. *Surgery* 1958;44:854–9.

18. Schwan A, Sjölin S, Trottestam U, et al. Relapsing clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. *Lancet* 1983;2:845.

19. Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of *Clostridium difficile* infections. *Am J Gastroenterol* 2013;108:478–98. quiz 499.

20. Konturek PC, Haziri D, Brzozowski T, et al. Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. *J Physiol Pharmacol* 2015;66:483–91.

21. Xu MQ, Cao HL, Wang WQ, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. *World J Gastroenterol* 2015;21:102–11.

22. Costello SP, Sow W, Bryant RV, et al. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. *Aliment Pharmacol Ther* 2017;46:213–24.

23. Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplantation as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. *Gut* 2018;67:1920–41.

24. Kelly CR, Kahn S, Kashyap P, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. *Gastroenterology* 2015;148:223–37.

25. Costello SP, Conlon MA, Vuaran MS, et al. Fecal microbiota transplant for recurrent Clostridium difficile infection using long-term frozen stool is effective: clinical efficacy and bacterial viability data. *Aliment Pharmacol Ther* 2015;42:1011–8.

26. Cui B, Feng Q, Wang H, et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. *J Gastroenterol Hepatol* 2015; 30:51–8.

27. Jiang ZD, Ajami NJ, Petrozzozna JJ, et al. Randomised clinical trial: faecal microbiota transplantation for recurrent Clostridium difficile infection - fresh, or frozen, or lyophilised microbiota from a small pool of healthy donors delivered by colonoscopy. *Aliment Pharmacol Ther* 2017;45:899–908.

28. Cammarata G, Ianiro G, Gasbarri A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. *J Clin Gastroenterol* 2014;48:693–702.

29. Kao D, Roach B, Silva M, et al. Effect of Oral capsule - vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. *JAMA* 2017;318:1985–93.

30. Distrutti E, Monaldi L, Ricci P, et al. Gut microbiota role in irritable bowel syndrome: new
epithelial hyperplasia and opening the mucus barrier in colon. Proc Natl Acad Sci USA 2015;112:10038–43.
50. Schulz MD, Atay C, Heringer J, et al. High-fat diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 2014;541:508–12.
51. Sethi V, Kurton S, Tarique M, et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 2018;155:33–41.
52. Cao H, Xu M, Dong W, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcino genesis. Int J Cancer 2017;140:2545–56.
53. Gagnaire A, Nadel B, Raoul D, et al. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017;15:109–28.
54. Wang F, Meng W, Wang B, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 2014;345:196–202.
55. Odenbret S, Püls J, Sedlmaier B, et al. Translocation of helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000;287:1497–90.
56. Yong X, Tang B, Li BS, et al. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun Signal 2015;13:30.
57. Ricci V. Relationship between VacA toxin and host cell autophagy in helicobacter pylori infection of the human stomach: A few answers, many questions. Toxins (Basel) 2016;8(7):203.
58. Mashima H, Suzuki J, Hirayama T, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolization induced by helicobacter pylori produced VacA. Infect Immun 2008;76:2296–303.
59. Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Infect Dis 2015;60:208–15.
60. Boleij A, Tjalsma H. The itinerary of streptococcus mutans to the aetiology of colorectal cancer. Curr Opin Gastroenterol 2015;31:60–67.
61. Cao Y, Wu K, Mehta R, et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut 2018;67:62–78.
62. Boursi B, Mantamti R, Haynes K, et al. Recurrent antibiotic exposure may promote cancer formation—another step in understanding the role of the human microbiota. Eur J Cancer 2015;51:2655–64.
63. Kaur K, Saxena A, Debnath I, et al. Antibiotic-mediated bacteriome depletion in ApoMin/+ mice is associated with reduction in mucus-producing goblet cells and increased colorectal cancer progression. Cancer Med 2017;6:2005–12.
64. Bullmann S, Pedamallu CS, Sicinska E, et al. Analysis of fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017;358:1443–8.
65. Johnson CH, Dejea CM, Edler D, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 2015;21:891–7.
66. YU T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes Chemoresistance to colorectal cancer by modulating autophagy. Cell 2017;170:548–63.
67. Xie YH, Qiu QY, Cai GX, et al. Fecal clostridium symbiosis for noninvasive detection of early and advanced colorectal cancer: test and validation studies. ElBioMedicine 2017;25:32–40.
68. Bicakci E, Tan O, Chow TC, et al. Quantitation of faecal fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut 2017;66:1441–8.
69. Vaid S, Sachchithi P, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013;342:971–6.
70. Dallaire R, Vétouz M, Waldschmidt N, et al. Enterococcus hirae and Barnesiella intestinohominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016;45:931–43.
71. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunity in melanoma patients. Science 2018;359:97–103.
72. Sivan A, Corrales R, Hubert N, et al. Commensal Bifidobacterium promotes antimicrobial and facilitates anti-PD-L1 efficacy. Science 2015;350:1084–9.
73. Vétouz M, Pitt JM, Dallière R, et al. Anticancer immunity by CTLA-4 blockade relies on the gut microbiota. Science 2015;350:1079–84.
74. Routy B, Le CE, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91–7.
75. Whiteside SA, Razvi H, Dave S, et al. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol 2015;12:81–90.
76. Dias-Jácome E, Liháni D, Borges-Cañha M, et al. Gastric microbiota and carcinogenesis: the role of non-helicobacter pylori bacteria—a systematic review. Rev Esp Enferm Dig 2016;108:530–40.
77. Hsieh YY, Tung SY, Pan HY, et al. Increased abundance of clostridium and fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep 2018;8:158.
78. Ferreira RM, Pereira-Magas M, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018;67:226–36.
79. Shah MA. Gastric cancer: the gastric microbiota - bacterial diversity and implications. Nat Rev Gastroenterol Hepatol 2017;14:692–3.
80. Doorkers E, Lagergren J, Engstrand L, et al. Helicobacter pylori eradication treatment and the risk of gastric adenocarcinoma in a Western population. Gut 2018;67:2092–2096.
81. Choi IJ, Kook MC, Kim YI, et al. Helicobacter pylori infection of the human stomach: A few answers, many questions. Toxins (Basel) 2016;8(7):203.
82. Kubota T, Yamashita M, Murata Y, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolization induced by helicobacter pylori produced VacA. Infect Immun 2008;76:2296–303.
83. Kubota T, Yamashita M, Murata Y, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolization induced by helicobacter pylori produced VacA. Infect Immun 2008;76:2296–303.
84. Kubota T, Yamashita M, Murata Y, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolization induced by helicobacter pylori produced VacA. Infect Immun 2008;76:2296–303.
85. Kubota T, Yamashita M, Murata Y, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolization induced by helicobacter pylori produced VacA. Infect Immun 2008;76:2296–303.
86. Kubota T, Yamashita M, Murata Y, et al. Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolization induced by helicobacter pylori produced VacA. Infect Immun 2008;76:2296–303.
induced steatohepatitis in mice via beneficial regu-
lation of gut microbiota. Sci Rep 2017;7:1529.

101. Ferrere G, Wrozek L, Cadieux F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017;66:806–15.

102. Philips CA, Pande A, Shasthy SM, et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017;15: 609–20.

103. Philips CA, Phadke N, Ganesan K, et al. Healthy donor faecal transplant for corticosteroid nonre-
sponsive severe alcoholic hepatitis. BMJ Case Rep 2017;2017: bcr-2017-222310.

104. Ren YD, Ye ZS, Yang LZ, et al. Fecal microbiota transplantation induces hepatitis B virus e-
agin (HBeAg) clearance in patients with posi-
tive HBeAg after long-term antiviral therapy. Hepatology 2017;65:1765–8.

105. Bajaj JS, Kikyama G, Savidge T, et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology 2018;68(4):1549–55, 1558.

106. Wang WW, Zhang Y, Huang XB, et al. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol 2017;23:6983–94.

107. Kao D, Roach B, Park H, et al. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology 2016;63:339–40.

108. Bajaj JS, Kassam Z, Fagan A, et al. Fecal micro-
biota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 2017;66:1727–38.

109. Michaud DS. Role of bacterial infections in pan-
creatic cancer. Carcinogenesis 2013;34:2193–7.

110. Ochi A, Nguyen AH, Bedrosian AS, et al. Radiation induces proin-
mammatory immune suppressor T cells. J Exp Med 2015;208:1453.

111. Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in pancreatic cancer cells. J Exp Med 2012;209:1671–87.

112. Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemothera-
pic drug gemcitabine. Science 2013;357:1156–60.

113. Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018;67:120–7.

114. Mitsuhashi K, Nosho K, Sukawa Y, et al. Association of Fusobacterium species in pancreatic cancer with smoking history. Leuk Lymphoma 2015;56:512–4.

115. Mittal C, Miller N, Meighani A, et al. Fecal microbiota transplant for recurrent Clostridium difficile infection after peripheral autologous stem cell transplant for diffuse large B-cell lymphoma. Bone Marrow Transplant 2015;50: 1010.

116. Neemann K, Eichele DD, Smith PW, et al. Fecal microbiota transplantation for fulminant Clostridium difficile infection in a patient with relapsed aggressive B-cell lym-
phoma. Leuk Lymphoma 2015;56:512–4.

117. Webb BJ, Brunner A, Ford CD, et al. Fecal microbiota transplantation for recurrent Clostridium difficile infection after peripheral autologous stem cell transplant for diffuse large B-cell lymphoma. Transpl Infect Dis 2015;17: e134.

118. Maroo H, Hassan ZM, Mobarez AM, et al. Lac-
tobacillus acidophilus could modulate the immune response against breast cancer in murine model. J Clin Immunol 2012;32:1353–9.

119. Frankel AE, Coughlin LA, Kim J, et al. Metage-
mic shotgun sequencing and unbiased Meta-
bolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in mela-
noma patients. Neoplasia 2017;19:848–55.

120. Vozzi A, Oncolologus tap the microbiome in bid to improve immunotherapy outcomes. Nat Rev Drug Discov 2018;17:153–5.

121. Kim JS, Ward KK, Shah NR, et al. Excess risk of Clostridium difficile infection in ovarian cancer is related to exposure to broad-spectrum antibi-
osites. Support Care Cancer 2013;21:1303–7.

122. Hefazi M, Patnaik MG, Hogan WJ, et al. Safety and efficacy of fecal microbiota transplant for recurrent Clostridium difficile infection in patients with cancer treated with cytotoxic che-
motherapy: a single-institution retrospective case series. Mayo Clin Proc 2017;92:1617–24.

123. Kelly CR, Bunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014;109:1065–71.

124. Blackburn LM, Bales A, Caldwell M, et al. Fecal microbiota transplantation in patients with can-
cer undergoing treatment. Clin J Oncol Nurs 2015;19:111–4.

125. Trubiano JA, George A, Barnett J, et al. A differ-
ent kind of “allogenic transplant”: successful fecal microbiota transplant for recurrent and refractory Clostridium difficile infection in a patient with relapsed aggressive B-cell lym-
phoma. Leuk Lymphoma 2015;56:512–4.

126. Mortel C, Miller N, Meighani A, et al. Fecal microbiota transplant for recurrent Clostridium difficile infection after peripheral autologous stem cell transplant for diffuse large B-cell lymphoma. Bone Marrow Transplant 2015;50: 1010.

127. Neemann K, Eichele DD, Smith PW, et al. Fecal microbiota transplantation for fulminant Clostridium difficile infection in an allogeneic stem cell transplant patient. Transpl Infect Dis 2012; 14:1361–5.

128. de Castro CG, Ganc AJ, Ganc RL, et al. Fecal microbiota transplant after hematopoietic SCT: report of a successful case. Bone Marrow Transplant 2015;50:145.

129. Webb BJ, Brunner A, Ford CD, et al. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2016;18:628–33.

130. Innes AJ, Mullish BH, Fernando F, et al. Fecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-
related non-relapse mortality. Bone Marrow Transplant 2016;52:144.

131. Gerass-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbio-
sis: transmission of inflammatory susceptibility by host cytokine induction. Gut 2018;67:97–107.

132. Cai M, Xiao H, Li Y, et al. Fecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 2017;9:448–61.

133. Stafas A, Dsm B, van den Brink MR. The intes-
tinal microbiota in allogeneic hematopoietic cell
transplant and graft-versus-host disease. Blood 2017;129:927–33.

134. Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014;124:1174–82.

135. Kakihana K, Fujioka Y, Suda W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 2016;128:2083–8.

136. Amirtha T. MICROBIOME RESEARCH. Banking on stool despite an uncertain future. Science 2016;352:1261–2.

137. Olesen SW, Leer MM, Alm EJ, et al. Searching for superstool: maximizing the therapeutic potential of FMT. Nat Rev Gastroenterol Hepatol 2018;15:387–8.

138. Wang S, Xu M, Wang W, et al. Systematic review: adverse events of fecal microbiota transplantation. PLoS One 2016;11:e0161174.

139. Schwartz M, Gluck M, Koon S. Norovirus gastroenteritis after fecal microbiota transplantation for treatment of Clostridium difficile infection despite asymptomatic donors and lack of sick contacts. Am J Gastroenterol 2013;108:1367.