BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells

Walid T. Khaled1,2,*, Song Choon Lee1,*, John Stingl3, Xiongfeng Chen4, H. Raza Ali3,5, Oscar M. Rueda3, Fazal Hadi2, Juexuan Wang1, Yong Yu1, Suet-Feung Chin3, Mike Stratton1, Andy Futreal1, Nancy A. Jenkins6, Sam Aparicio7, Neal G. Copeland6, Christine J. Watson8, Carlos Caldas3,5,9 & Pentao Liu1

Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here, we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation, whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model, Bcl11a deletion substantially decreases tumour formation, even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level, Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus, BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies.
One of the major challenges in treating breast cancer is the heterogeneous nature of the disease. TNBC accounts for around 15% of all breast cancer cases and in the absence of effective targeted therapies, TNBC patients tend to have a poor prognosis. At the molecular level, several distinct subtypes of breast cancer have been identified based on the gene expression profiling. The most commonly used classification describes six subtypes: luminal A, luminal B, Her2, claudin low, basal-like breast cancer (BLBC) and normal. More recently, analysis of large numbers of tumour samples as part of the METABRIC study identified 10 pathologically distinct subtypes known as integrative cluster (IC) 1–10. The majority of TNBC cases (80%) have a BLBC or IC10 gene expression signatures. In addition, cancer sequencing studies have identified mutations of p53, PTEN and BRCA1 in TNBC. However, driver oncogenic genomic aberrations in TNBC have not been comprehensively identified.

The developmental hierarchies of the mammary epithelium and hematopoietic lineages share many similarities in that stem cells progressively give rise to lineage-restricted progenitors, which ultimately differentiate and generate all functional cells. A number of key hematopoiesis transcription factors have important roles in mouse mammary gland development and are human breast cancer genes. For example, the key regulator of T-helper-2 cell development, GATA3, is critical in luminal mammary cell development and is a luminal breast cancer marker gene. In this study we interrogated cancer genomics data focusing on a subset of important hematopoiesis factors and identified BCL11A as a novel TNBC oncogene.

Results

BCL11A is highly expressed in triple-negative breast cancer. In an attempt to identify potential TNBC oncogenes, we selected a list of genes known to have important roles in hematopoiesis and investigated their expression across the major molecular subtypes of breast cancer. We first re-analysed a publically available microarray data set and found that out of the examined genes, BCL11A was differentially and highly expressed in BLBC (Supplementary Fig. 1a). This is in sharp contrast to GATA3, which is highly expressed only in luminal subtypes (Supplementary Fig. 1a) and is a known prognostic marker for these tumours.

We then investigated the expression of BCL11A in other patient data sets including METABRIC and TCGA, which between them have curated gene expression, copy number (CN) variation and clinical data from close to 3,000 patients. Pathologically, we found that high BCL11A expression significantly correlated with TNBC pathology (Fig. 1a). At the molecular level, high BCL11A expression was also found to significantly correlate with the BLBC subtype in the METABRIC, TCGA and six other microarray data sets (Fig. 1b and Supplementary Fig. 1b). Quantitative reverse transcription PCR (qRT–PCR) analysis of BCL11A expression on a randomly selected subset of METABRIC tumours (all subtypes, \(n = 230 \)) validated the above expression data (Supplementary Fig. 2a). In addition, we also found that high BCL11A expression in METABRIC samples correlated with the recently described IC10 cluster of tumours (Fig. 1c), thus further supporting the concordance between the BLBC and IC10 classifications. Consistent with TNBC cases, high BCL11A expression was significantly correlated with a high histological grade (Supplementary Fig. 2b).

Furthermore, high BCL11A expression in BLBC cases was further validated by immunohistochemistry (IHC) on a subset of the METABRIC tumours (all subtypes, \(n = 368 \). BLBC, \(n = 24 \). Strong BCL11A immunostaining was predominantly found in BLBC (Fig. 2a). Out of 24 BLBC samples examined from this subset, 16 scored positive for BCL11A (Fig. 2a; details in Methods). In addition, samples stained positively in IHC also had higher RNA levels compared with those scored as negative (Supplementary Fig. 2c).

Figure 1 | BCL11A is highly expressed in TNBC. (a) Significant correlation between BCL11A expression and the TNBC type of breast cancer in both METABRIC (\(n = 2,000 \)) and TCGA (\(n = 1,100 \)) data sets—* indicates t-test \(P \) value <0.005. (b) BCL11A expression across the six molecular subtypes of breast cancer (‘Normal’ refers to the PAM50 subtype) in both METABRIC and TCGA data sets—* indicates t-test \(P \) value <0.005. (c) The METABRIC samples distributed according to the ICs 1–10, showing the correlation between BCL11A expression and IC10—* indicates t-test \(P \) value <0.005.
One mechanism for the induction of high BCL11A expression in BLBC cases could be CN aberrations. From ~2,000 breast cancer cases in METABRIC, CN gains at the BCL11A genomic locus were identified in 62 patients (Supplementary Fig. 3a), which also correlates with high BCL11A expression (Supplementary Fig. 3b). Importantly, out of these 62 patients with CN gains, 39 were classified as BLBC, which account for 18.6% (39/210) of the total BLBC cases in METABRIC (Fig. 2b). Examination of the TCGA data set revealed that 38% (31/81) of BLBC samples have BCL11A CN gains, which is again significantly correlated with higher gene expression (Fig. 2c and Supplementary Fig. 3c). A similar result was also found when the METABRIC data was analysed using the integrative clustering, with 15.6% of IC10 samples having BCL11A CN gains (Fig. 2d).

Further analysis of the TGCA data set revealed that in BLBCs, the BCL11A locus is almost exclusively hypomethylated and this is correlated with high expression levels (Fig. 2e). There was also no correlation between BCL11A CNs and the methylation status. This result suggests that epigenetic changes at the BCL11A locus could be another mechanism that contributes to its high expression in BLBC. Given the strong correlation with TNBC, patients with either high expression or CN gains of BCL11A had poor survival rates compared with the rest of the cohort (Fig. 2f, g). A similar trend was also observed in four other patient data sets (Supplementary Fig. 3f-i). In particular, patients with CN gains of BCL11A had a higher rate of relapse and metastasis and a lower rate of survival (Supplementary Fig. 3d-e). The utility of BCL11A expression/CN as a biomarker in the clinic thus warrants further investigation. Indeed, the future release of

Figure 2 | Genomic alterations at the BCL11A locus. (a) Images and scoring of BCL11A IHC staining on a subset of tumours from the METABRIC study (see Methods for scoring)—* indicated χ^2-test $P<0.0001$. (b-d) Bar chart depicting the percentage of samples that harbour BCL11A CN gains in each subtype in both METABRIC and TCGA data sets—* indicates χ^2-test $P<0.0001$. (e) Scatter plots showing the methylation status of the BCL11A locus in all tumours or basal only from the TCGA data set. The colour-coded legend indicated the BCL11A CN status for each tumour. (f-g) Kaplan–Meir plots showing the survival rate comparison between patients who have normal or high levels of BCL11A expression, or between patients with CN gains or without (neutral).
Knockdown of BCL11A promote tumour development. Although BCL11A is involved in rare B-cell lymphomas and is able to transform fibroblast cells in vitro, the cellular and molecular mechanisms of BCL11A-mediated tumorigenesis remains unclear. To address this, we first tested whether BCL11A overexpression could promote the colony formation or tumour development in mammary epithelial cells. We over-expressed BCL11A in immortalized non-tumourigenic mouse EpH4 (ref. 23) or human HMLE (ref. 24,25) cells (Supplementary Fig. 4a) and performed Matrigel and suspension mammosphere assays. Forced BCL11A expression in both EpH4 and HMLE (EpH4-11A and HMLE-11A) cells resulted in double the number of spheres compared with their respective control cells (Fig. 3a-b). Furthermore, mouse EpH4-11A cells injected orthotopically in cleared mammary fat pads of immune-compromized NOD/SCID/IL2rg-/- (NSG) mice (n = 6) (Fig. 3c and Supplementary Fig. 4b). Similarly, three out of four mice injected with HMLE-11A cells developed tumours within 8 weeks of injection (Fig. 3d and Supplementary Fig. 4c) suggesting that elevated levels of BCL11A promote tumour development. Moreover, gene expression analysis of these three tumours along with the 2,000 tumours from the METABRIC study clustered them with the BLBC subgroup (Fig. 3e).

Bcl11a is required for the development of DMBA tumours. To examine the role of BCL11A in mammary tumour development in vivo, we generated Bcl11a conditional knockout (cko) mice (referred to as flox/flox; Supplementary Fig. 6a), as germline deletion of Bcl11a causes neonatal lethality and crossed them to the inducible Rosa26-CreERT2. As a tumour model, we used the potent carcinogen DMBA (7,12-dimethylbenz(a)anthracene) in combination with medroxyprogesterone acetate (MPA) to promote TNBC-like tumours in the mouse. To minimize the effects of Bcl11a deletion on non-mammary tissues, we performed shRNA knockdown experiments (Supplementary Fig. 5b, d). However, BCL11A knockdown significantly reduced the clonogenic capacity of all four cell lines (Fig. 4d-f and Supplementary Fig. 5c). To assess tumourigenic potential, BCL11A knockdown cells were injected subcutaneously into NSG recipients. Robust tumours developed from the control 4T1, MDA231, SUM159 and HMLER cells within 25 days. In contrast, the BCL11A knockdown cells produced tumours of significantly reduced sizes (Fig. 4g-i and Supplementary Fig. 5c). Furthermore, primary and secondary limiting dilution transplantations of MDA231 control or shRNA1 cells revealed a reduction in the number of tumour-initiating cells during the secondary transplants from 1/123 to 1/667 (Supplementary Fig. 5e).

Knockdown of BCL11A reduces tumourigenicity of TNBC cells. Analysis of BCL11A expression in a panel of breast cancer cell lines revealed that BCL11A is highly expressed in TNBC lines but is undetectable in any of the luminal cell lines tested (Supplementary Fig. 5a). Next, we assessed if disrupting BCL11A expression could affect the clonogenic and oncogenic potential of the TNBC cell lines. To inactivate BCL11A in these cells, we performed shRNA knockdown experiments (Supplementary Fig. 5b) in the TNBC cell lines 4T1 (mouse), MDA231, SUM159 and HMLER (human). Knockdown of BCL11A had no significant impact on cell viability, cell cycle kinetics or cell death (Fig. 4a-c and Supplementary Fig. 5b, d). However, BCL11A knockdown significantly reduced the clonogenic capacity of all four cell lines (Fig. 4d-f and Supplementary Fig. 5c). To assess tumourigenic potential, BCL11A knockdown cells were injected subcutaneously into NSG recipients. Robust tumours developed from the control 4T1, MDA231, SUM159 and HMLER cells within 25 days. In contrast, the BCL11A knockdown cells produced tumours of significantly reduced sizes (Fig. 4g-i and Supplementary Fig. 5c). Furthermore, primary and secondary limitation dilution transplantations of MDA231 control or shRNA1 cells revealed a reduction in the number of tumour-initiating cells during the secondary transplants from 1/123 to 1/667 (Supplementary Fig. 5e).

Figure 3 | High levels of BCL11A enhance clonogenicity of mammary epithelial cells and promote tumorigenesis. (a) Comparison of colony numbers in matrigel from EpH4-11A cells or from the control cells. Data are presented as mean ± s.d. (n = 3). Image on the right are depicting EpH4-control and EpH4-11A mammospheres grown in Matrigel (scale bar, 100 μm). P value indicates student’s t-test. (b) Comparison of the number of floating mammospheres formed from human HMLE-11A cells or the control cells. Data are presented as mean ± s.d. (n = 3). Images on the right are of floating mammospheres formed by HMLE-control and HMLE-11A-expressing cell (scale bar, 200 μm). P value indicates student’s t-test. (c) Graph depicting the size difference between tumours at 6 weeks after injection of EpH4-control and EpH4-11A cells orthotopically into contralateral mammary fat pads. Data are presented as mean ± s.d. (n = 6). P value indicates student’s t-test. (d) Kaplan–Meier survival curve depicting the percentage of tumour-free mice injected with either HMLE-control or HMLE-11A cells (n = 4). (e) Unsupervised clustering of the HMLE-11A tumours in the mouse with human tumours from the METABRIC study based on the PAM50 (ref. 3) gene expression. Nearest centroid correlation score is plotted against the various subtypes for all three tumours.
transplanted mammary tissue from 8- to 12-week-old control (wild type) or flox/flox virgin female mice into contralateral cleared fat pads of female NSG mice followed by DMBA mutagenesis as illustrated in Supplementary Fig. 6b. By week 15, after the last dose of DMBA was administered, palpable tumours were visible in the mammary glands engrafted with the control mammary cells, but not with the flox/flox cells (Fig. 5a). By week 22 post DMBA treatment, all control cell engraftments (8/8) developed tumours compared with only one from flox/flox mammary cells (1/8) (Fig. 5b). qRT–PCR analysis of this tumour revealed expression of Bcl11a probably owing to incomplete Cre-loxP recombination (Supplementary Fig. 6c, sample T1). Also, qRT–PCR and IHC results revealed that tumours upregulated Bcl11a expression in response to DMBA-induced carcinogenesis (Supplementary Fig. 6c-d). These data thus reveal a requirement for Bcl11a in DMBA-induced mammary tumourigenesis.

To investigate Bcl11a oncogenic activity in the DMBA model further, we performed the DMBA mutagenesis experiment using Trp53flox/flox (p53 single cko) or Bcl11aflox/flox/p53flox/flox (cko alleles for both p53 and Bcl11a or Dflox/flox) mammary tissues. In the recipients transplanted with Trp53flox/flox cells,
Bcl11a is required for mammary stem and progenitor cells. To understand the biological function of Bcl11a in healthy mammary epithelial cells, we generated a Bcl11a-lacZ knock-in mouse to determine the temporal and spatial expression of Bcl11a in the mammary gland (Supplementary Fig. 7a). X-gal staining of the reporter embryos revealed that Bcl11a was expressed in the mammary placodes from 12.5dpc (Fig. 6a). At puberty, Bcl11a was expressed in the cap cells of the terminal end buds, a region thought to harbour stem cells31 (Fig. 6b). During adult mammary gland development, Bcl11a exhibited a dynamic expression pattern with a marked increase at early gestation and a gradual decline towards lactation and involution (Supplementary Fig. 7b). qRT–PCR analysis of RNA samples from several mammary epithelial compartments32,33 detected higher levels of Bcl11a expression in the luminal progenitors (CD49b+/CD24hi), the basal cells (CD49fhi/CD24+), and the mammary stem cell (MaSC) (CD49fh/CD24med)-enriched population (Fig. 6c).

We next induced Bcl11a deletion and analysed the mammary epithelial fluorescence-activated cell sorting profile 3 weeks post deletion. The basal mammary epithelial cells from the flox/flox mice appeared to be depleted, and in particular the MaSC fraction (Fig. 6d). In addition, Bcl11a deletion caused a significant decrease in the number of luminal colony-forming cells (CFCs) (Supplementary Fig. 7c). To functionally demonstrate loss of palpable tumours were detectable as early as 4 weeks after the last injection of DMBA, and most tumours were detectable by week 10 (Fig. 5b; n = 16). However, deletion of Bcl11a together with p53 in Dflox/flox mice severely delayed tumour development with only 4 out of 16 mice developing tumours by week 17 (Fig. 5b). This result indicates that BCL11A is a potent oncogene and is required in concert with p53 for tumour development.

Bcl11a is required for the maintenance of DMBA tumours. Although Bcl11a is important for DMBA-induced mammary tumour formation, it is more clinically relevant if it has functions in mammary tumour progression and maintenance. We thus performed the DMBA mutagenesis on WT, flox/flox, p53flox/flox or Dflox/flox mammary cells. (scale bar, 500 μm) (b) Quantification of the tumours with DMBA-mediated tumour development from the four depicted groups of engrafted cells over a period of 26 weeks. A log-rank (Mantel-Cox) test was used to compare the two groups and calculate the P value.

(c) Tumour size quantification of DMBA-mediated tumours in WT, +/-flox and flox/flox mice. Mice were checked regularly for tumour development and once detected, Cre activation was induced using three injections of tamoxifen (first day of injection is indicated by black arrow). Tumours size was then monitored for up to 20 days or until they reach a critical size.

Figure 5 | Bcl11a is required in DMBA-mediated tumourigenesis. (a) Mouse images and fat pads whole-mount fat pads of either WT, flox/flox, p53flox/flox or Dflox/flox mammary cells. (scale bar, 500 μm) (b) Quantification of the tumours with DMBA-mediated tumour development from the four depicted groups of engrafted cells over a period of 26 weeks. A log-rank (Mantel-Cox) test was used to compare the two groups and calculate the P value. (c) Tumour size quantification of DMBA-mediated tumours in WT, +/-flox and flox/flox mice. Mice were checked regularly for tumour development and once detected, Cre activation was induced using three injections of tamoxifen (first day of injection is indicated by black arrow). Tumours size was then monitored for up to 20 days or until they reach a critical size.
MaSC activities upon Bcl11a deletion and to determine that the defects are cell-autonomous, we transplanted control and flox/flox cells at limiting dilution into cleared fat pads of NSG mice (see Methods). We found approximately sixfold reduction in stem cell frequency from 1/483 to 1/2859, in the Bcl11a-deficient mammary gland (Fig. 6e). Reduction of MaSCs and progenitors in the Bcl11a-deficient mammary gland was also reflected in the altered expression of the MaSC gene expression signature14 (Supplementary Table 1) (Supplementary Fig. 7e).

Discussion

We have demonstrated here that the transcription regulator BCL11A is a novel breast cancer gene. By investigating cancer genomics data from ~3,000 patients (METABRIC and TCGA), BCL11A was significantly expressed at higher levels in TNBC and particularly in BLBC/IC10 tumours both at RNA and protein levels. Experimentally, we have shown that disrupting BCL11A expression in TNBC cell lines and in the mouse significantly reduced tumour development and maintenance. At the cellular level, Bcl11a is expressed and required in both MaSCs and luminal progenitor cells in the mammary gland. Lineage tracing experiments in the future will determine if Bcl11a is expressed in the recently identified lineage-restricted luminal and basal progenitor cells35 or in the bipotent MaSCs36. Importantly, given the recent implication of luminal progenitors as the 'cell of origin' of BLBC37,38, it will be important to ascertain if Bcl11a upregulation in luminal progenitor cells is one of the earliest steps in TNBC development.

In addition, it will be important to identify how BCL11A is transcriptionally regulated and what are its downstream targets in TNBC. In erythrocytes, KLF1 has been shown to affect BCL11A transcriptionally regulated and what are its downstream targets in the breast (ref. 41). Previous work from our lab also showed that in B cells, BCL11A induces MDM2 expression, which is a negative regulator of p53 (ref. 43). However, the TCGA data does not indicate a strong correlation between KLF1 or MIR30A and BCL11A expression in the TCGA data set (Supplementary Fig. 8), suggesting that BCL11A regulation could be context dependent. In terms of downstream targets, in leukaemia, it has been shown that BCL11A abrogates p21 transcription possibly via direct regulation of SIRT1 (refs 41,42). Previous work from our lab also showed that in B cells, BCL11A induces MDM2 expression, which is a negative regulator of p53 (ref. 43). However, the TCGA data does not indicate a strong correlation between BCL11A and SIRT1 or MDM2 expression at least in the tumour context (Supplementary Fig. 8). Therefore, identifying the putative BCL11A regulators and its downstream targets in the breast epithelial cells should clarify its molecular and cellular roles in TNBC.

In conclusion, through cancer genomics, in vitro assays, experimental xenograft models and mouse genetics, we have demonstrated in this study that BCL11A is a new breast cancer gene and a critical regulator in normal mammary epithelial development. These results warrant further investigation of BCL11A as a potential candidate for TNBC-targeted therapy.
Transplantation of mammary epithelium. Mammary epithelial cells (basal fraction) from tamoxifen-injected and non-injected foxflox/foxflox-/- mice were sorted based on CD49f expression and transplanted in limiting doses (500/750/1,000/2,000 cells) into cleared fat pads of 3-week-old NSG females. In each case, non-injected and tamoxifen-injected epithelial cells were engrafted into contralateral glands of the same recipient mice. The recipient mice were impregnated 3–6 weeks after transplant and outgrowth products were dissected, stained with carmine and scored. Stem cell frequency was calculated using L-Calc (StemCell Technologies).

DMBA/MPA tumorigenesis protocol. Mammary fragments were transplanted into cleared fat pads of 3-week-old NSG mice. At the time of surgery, the MPA slow release pellet (Innovative Research of America) was also implanted subcutaneously. The mice were allowed to recover for 2 weeks and then Bcl11a deletion was induced using three injections of tamoxifen. One week after deletion of Bcl11a, 1 mg of DMBA (Sigma) was administered orally; this was followed by 1 mg acetone (vehicle control) or 1 mg DMBA two times a week for tumour incidence and allowed to recover for 48 h. Cells were then incubated with 5 μM Edu (Invitrogen) for 1 h. Cells were fixed and assayed using the EdU flow cytometry detection kit (Invitrogen) following the manufacturer’s instructions.

Cell viability assay. A total of 1,000 control or Bcl11a knockout cells (in triplicates) were seeded in 96-well plates and allowed to recover for 48 h. Cell viability was measured using the LEICA MZ75 light microscope, while the mouse mammary gland whole mounts were visualized using a Leica MZ75 light microscope. The histology slides were then deparaffinized and stained with haematoxylin and eosin.

DNA microarray analysis. The intensity value for each probe set was calculated and the average of each gene was computed before the data analysis. For the quality control (QC) step, a set of intensities of control genes were examined. All data were normalized and scaled by Partek Genomic Suite 6.4. Principal components analysis was performed to show the distribution of samples, eliminating outliers. Differentially expressed genes were selected by one-way analysis of variance by the factor (QC) step, a set of intensity value of control genes were examined. All data were normalized and scaled by Partek Genomic Suite 6.4. Principal components analysis was performed to show the distribution of samples, eliminating outliers. Differentially expressed genes were selected by one-way analysis of variance by the factor of K0 versus wild type, P value < 0.08. Hierarchical clustering of selected genes was performed to show the expression pattern. The resulting genes were then underwent a pathway analysis (GeneGo: http://www.genego.com) to determine the biological significance of the data.

Xenograft tumorigenesis assays. One hundred thousand Eph4, HMLE, 4T1, MDA231, SUM159 or HMLE cells were suspended in 25% Matrigel (BD Biosciences) and 75% Matrigel (BD Biosciences) and were injected intradermally in the back of 3-week-old NSG mice. The xenograft tumorigenesis assay was performed as described previously. Tumours were measured and quantified using the tumour volume formula: V = (l * w^2) / 2, where l is the length and w is the width of the tumour. The xenograft tumorigenesis assay was performed as described previously. Tumours were measured and quantified using the tumour volume formula: V = (l * w^2) / 2, where l is the length and w is the width of the tumour.
Biosciences) and HBSS, and injected into either cleared contralateral number 4
mammary fat pads of 3-week-old female mice or subcutaneously in 6–12-week-old
female NSG mice. For secondary transplants, tumours were dissociated using
collagenase/hyaluronase mix (Roche) for 16h and viable cells were counted and
injected into NSG recipient mice at the indicated doses.

METABRIC analysis. Matched DNA and RNA were extracted for tumours. CN
analysis was performed using the Affymetrix SNP 6.0 platform. The arrays were
pre-processed and normalized using CRMA2 (ref. 50) method from
affymetrix. Affymetrix. Affymetrix Geneset results were then filtered using
normalization, probe-level summarization and PCR fragment length normalization
were performed for each array. The intensities obtained were normalized against a
pool of 473 normals for the samples with no matched pair or against their matched
normal when available (258 samples). The log-ratios were then segmented using
the circular binary segmentation algorithm51 in the DNAcopy Bioconductor
package. Then, callings into five groups (homologous deletion, heterozygous
deletion, neutral CN, gain (>)2 and amplification (>)3) were made using
thresholds based on the variability of each sample and their proportion of tumoural
cells. RNA analysis was performed using Illumina HT-12 v3 platform and analysed
using beadarray package52. BASH53 was used to correct for spatial artifacts. The
bead-level data were summarized and a selection of suitable probes based on their
quality was done using the re-annotation of the Illumina HT-12v3 platform53. The
samples were classified into the five breast cancer subtypes using PAM50 (ref. 56),
but only those genes with a probe with perfect annotation on the chip were considered.
A mixture model was used to classify BCL11A expression into high and low values52,54.

TCGA data analysis. All TCGA data and figures were accessed, analysed and
generated using the cbio Cancer Genomics Portals55. All data included in this
manuscript is in agreement with the TCGA publication guidelines.

METABRIC IHC analysis. A subset of patients enrolled in the METABRIC study
with tumour samples represented in tissue microarrays (TMAs) were included for
the detection of BCL11A protein expression by IHC. TMAs were constructed from
formalin-fixed paraffin-embedded tumour blocks as previously described56. Each
tumour was represented by a single 0.6-mm tissue core. A total of 439 tumours
were included arising from 436 patients (three were synchronous tumours arising in
the contralateral breast). CN and gene expression data was available for 368 of
these tumours for correlative analyses. Three micrometre TMA sections were
injected into cleared contralateral number 4 tumour recipient mice (Roche) for
16h and viable cells were counted and injected into NSG recipient mice at the indicated doses.

Statistical significance. All P values were calculated using Student’s t-test unless
otherwise indicated in the figure legends.

References
1. Blows, F. M. et al. Subtyping of breast cancer by immunohistochemistry to
investigate a relationship between subtype and short and long term survival: a
collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7,
e1000279 (2010).
2. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer.
Nat. Rev. Cancer 11, 629–644 (2011).
3. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406,
747–752 (2000).
4. Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast
cancer: disease entity or clinical convenience? Nat. Rev. Clin. Oncol. 7, 683–692
(2010).
5. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast
tumours reveals novel subgroups. Nature 486, 346–352 (2012).
6. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low
intrinsic subtype of human breast cancer. Breast Cancer Res. 12, 658 (2010).
7. Weigelt, B., Baehner, F. L. & Reis-Filho, J. S. The human breast cancer
expression profile mapping to breast cancer classification, prognostication and
prediction: a retrospective of the last decade. J. Pathol. 220, 263–280 (2010).
8. TCGA. Comprehensive molecular portraits of human breast tumours. Nature
490, 61–70 (2012).
9. Stingl, J. et al. The clonal and mutational evolution spectrum of primary
triple-negative breast cancers. Nature 486, 395–399 (2012).
10. Stingl, J. & Caldas, C. Molecular heterogeneity of breast carcinomas and the
cancer stem cell hypothesis. Nat. Rev. Cancer 7, 791–799 (2007).
11. Bouras, T. et al. Notch signaling regulates mammary stem cell function and
luminal cell-fate commitment. Cell Stem Cell 3, 429–441 (2008).
12. Kourosh-Mehr, H., Storach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3
maintains the differentiation of the luminal cell fate in the mammary gland.
Cell 127, 1041–1055 (2007).
13. Asselin-Labat, M. L. et al. GATA-3 is an essential regulator of mammary-gland
morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9, 201–209
(2007).
14. Khaled, W. T. et al. The IL-4/IL-13/Stat6 signalling pathway promotes luminal
epithelial cell development. Development 134, 2739–2750 (2007).
15. Zuo, T. et al. FOXP3 is an X-linked breast cancer suppressor gene and an
important repressor of the HER-2/ErbB2 oncogene. Cell 129, 1275–1286
(2007).
16. Mehra, R. et al. Identification of GATA3 as a breast cancer prognostic marker
by global gene expression data-analysis. Cancer Res. 65, 11259–11264 (2005).
17. Trope, C. et al. Strong time dependence of the 76-gene prognostic signature
for node-negative breast cancer patients in the TRANSBIG multicenter
independent validation series. Clin. Cancer Res. 13, 3207–3214 (2007).
18. Hatzis, C. et al. A genomic predictor of response and survival following taxane-
anthracycline chemotherapy for invasive breast cancer. JAMA 305, 1873–1881
(2011).
19. Ma, X. J. et al. A two-gene expression ratio predicts clinical outcome in breast
cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004).
20. Schmidt, M. et al. The humoral immune system has a key prognostic impact in
node-negative breast cancer. Cancer Res. 68, 5405–5413 (2008).
21. Reichmann, E., Ball, R., Groner, B. & Fries, R. R. New mammalian epithelial
and fibroblastic cell clones in coculture form structures competent to differentiate
differentially. J. Cell Biol. 108, 1127–1138 (1989).
22. Ince, T. A. et al. Transformation of different human breast epithelial cell types
leads to distinct tumor phenotypes. Cancer Cell 12, 160–170 (2007).
23. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic
transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65
(2001).
24. Ishikawa, F. et al. Development of functional human blood and immune
systems in NOD/SCID/IL2 receptor (gamma) chain(null) mice. Blood 106,
1565–1573 (2005).
25. Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nat.
Immunol. 4, 525–532 (2003).
26. Herschkowitz, J. I. et al. Identification of conserved gene expression features
between murine mammary carcinoma models and human breast tumours.
Genome Biol. 8, R76 (2007).
27. Herschkowitz, J. I. et al. Comparative oncogenomics identifies breast tumors
enriched in functional tumor-initiating cells. Proc. Natl Acad. Sci. USA 109,
2778–2783 (2012).
28. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53
in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425
(2001).
29. Hennighausen, L. & Robinson, G. W. Notch signaling regulates mammary
stem cell. Nature 479, 907–913 (2009).
30. Sato, M. et al. Generation of a functional mammary gland from a single
stem cell. Cancer Res. 69, 1041–1055 (2009).
31. Jonkers, J. & Caldas, C. Molecular heterogeneity of breast carcinomas and the
cancer stem cell hypothesis. Nat. Rev. Cancer 7, 791–799 (2007).
32. Brugarolas, J. & Lin, H. A. Identification of claudin-low and basal-like breast
subpopulations reveal multiple conserved genes and pathways. Breast Cancer
Res. 12, R21 (2010).
33. Dan Keeyneul, A. et al. Distinct stem cells contribute to mammary gland
growth and maintenance. Nature 479, 189–193 (2011).
34. Rios, A. C., Fu, N. Y., Lindeman, G. I. & Visvader, J. E. In situ identification of
biotinylated stem cells in the mammary gland. Nature 506, 322–327 (2014).
35. Lin, E. et al. Aberrant luminal progenitors as the candidate target population
for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15,
992–996 (2009).
36. Molony, G. et al. BRCA1 basal-like breast cancers originate from luminal
epithelial progenitors and not from basal stem cells. Cell Stem Cell 7, 403–417
(2010).
BCL11A overexpression predicts survival and relapse in non-small cell lung cancer and is modulated by microRNA-30a and gene amplification. Mol. Cancer 12, 61 (2013).

41. Senawong, T., Peterson, V. J. & Leid, M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch. Biochem. Biophys. 434, 316–325 (2005).

42. Yin, B. et al. A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113, 1075–1085 (2008).

43. Yu, Y. et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J. Exp. Med. 209, 2467–2483 (2012).

44. Chan, W. et al. A recombineering-based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res. 35, e64 (2007).

45. Liu, P., Jenkins, N. A. & Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

46. Hameyer, D. et al. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol. Genomics 31, 32–41 (2007).

47. Donatu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003).

48. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

49. Wang, X. & Seed, B. A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res. 31, e154 (2003).

50. Bengtsson, H., Wirapati, P. & Speed, T. P. A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6. Bioinformatics 25, 2149–2156 (2009).

51. Venkatraman, E. S. & Olshen, A. B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

52. Seshan VE, O. A. DNAcopy: DNA copy number data analysis R package http://www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html (2010).

53. Dunning, M. J., Smith, M. L., Ritchie, M. E. & Tavare, S. beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23, 2183–2184 (2007).

54. Cairns, J. M., Dunning, M. J., Ritchie, M. E., Russell, R. & Lynch, A. G. BASH: a tool for managing BeadArray spatial artefacts. Bioinformatics 24, 2921–2922 (2008).

55. Barbosa-Morais, N. L. et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res. 38, e17.

56. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

57. Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. & Ruzzo, W. L. Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977–987 (2001).

58. Fraley, C. & Raftery, A. E. MCLUST Version 3 for R: Normal Mixture Modeling and Model-based Clustering. Technical Report No. 504, Department of Statistics, University of Washington (2006).

59. Cerami, E. et al. The CBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

60. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998).

Acknowledgements

W.T.K., S.C.L and J.W. were funded by the Sanger Institute. W.T.K. was also funded by a BBSRC project grant and a Junior Research Fellowship, King’s College, Cambridge and a Cancer Research UK Career establishment award. J.S. is funded by Cancer Research UK, The University of Cambridge and Hutchison Whampoa Limited. C.J.W. is funded by BBSRC, MRC and BCC. We would like to thank Dr Floris Feijer and Professor Allan Bradley for providing the p53 cko mice. We thank Dr Shannon Burke, Dr Sara Pensia and Lauma Skruzmane for comments on the manuscript. We thank Miss Malgorzata Gawełdzka from the W.T.K. lab for the technical assistance. We thank the Sanger Institute RSF, the flow cytometry core and microarray facilities for the technical assistance. This work is supported by Wellcome Trust (Grant number—098051) (P.L.).

Author contributions

W.T.K. performed the mouse tumour studies, the cell culture experiments and analysed the Bcl11a cko line. S.C.L generated and analysed the Bcl11a-LacZ mouse line and the Bcl11a cko line. J.S. performed the flow-sorting strategies, performed some of the colony assays, designed and performed some of the fat pad transplantation experiments. X.C. performed the microarray analysis. O.M.R., H.R.A., S.-F.G., S.A. and C.C. analysed and provided all the data (CN, expression, qRT–PCR and IHC) from the METABRIC cohort. All enquiries relating to the METABRIC data set should be made directly to carlos.caldas@cancer.org.uk. J.W. assisted with mouse experiments. Y.Y. assisted with qRT–PCR and cloning of shRNA constructs. A.F. and M.S. provided the reagents and contributed to the design of the study. W.T.K., S.C.L and P.L. designed the studies and wrote the manuscript. The overall research project and manuscript writing are supervised by P.L.

Additional information

Accession codes: Microarray data have been deposited in the Gene Expression Omnibus database with the accession number GSE63386.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Khaled, W.T. et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat. Commun. 6:5987 doi: 10.1038/ncomms6987 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/