Plant species compositions alleviate toxicological effects of bisphenol A by enhancing growth, antioxidant defense system, and detoxification

Xianguang Nie1 · Lin Wang1

Received: 12 May 2021 / Accepted: 19 April 2022 / Published online: 30 April 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Bisphenol A (BPA), a broadly disseminated endocrine disturbing chemicals in environment, is harmful to creatures and plants. Plants can uptake and metabolize BPA, but a single plant species ability is limited. Undeniably, plant species compositions have a more vital ability to remove pollutants than a single plant species. However, the mechanisms of plant species compositions alleviating toxicological effects of bisphenol A are poorly understood. Here, we administered plant species compositions, which based on a full-factorial design of Phragmites australis (A), Typha latifolia (B), and Arundo donax (C), to unveil their role in BPA exposure. The results illustrated that the root activity, biomass, and photosynthetic pigment contents of the mixed hydroponic group (e.g., sp(ABC)) were significantly increased under concentration of BPA (1.5, 5, and 10 mg L⁻¹), which showed that the root activity, fresh weight, dry weight, chlorophyll a, and total chlorophyll contents of shoots were increased. While mixed-hydroponic culture groups (e.g., sp(AB), sp(ABC)) significantly increased antioxidant enzyme activity and antioxidant substances under concentration of BPA (5 and 10 mg L⁻¹), it astoundingly diminished responsive oxygen species (ROS) and malondialdehyde (MDA) substance, proposing that mixed-hydroponic culture groups calmed oxidative stress. Further analysis revealed that mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) of 1.5, 5, and 10 mg L⁻¹ BPA exposure significantly increased detoxification enzyme activity of NADPH-cytochrome P450 reductase (CPR), glutathione S-transferase (GST), and glycosyltransferase (GT). Moreover, mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) decreased the BPA substance in leaves, proposing that mixed-hydroponic culture groups advanced BPA metabolism by improving CPR, GST, and GT enzyme activities. These results demonstrated that a mixed-hydroponic culture strategy can alleviate BPA phytotoxicity and possibly offer natural and potential phytoremediation methods for BPA.

Keywords Bisphenol A · Plant species compositions · Antioxidant enzymes · Oxidative stress · Detoxification

Introduction
Bisphenol A (bisphenol A;2, 2-bis (4-hydroxyphenyl) propane) is used industrially to synthesize materials such as polycarbonate and epoxy resins (Staples et al. 1998). BPA is also applied in the production of many commodities, such as toys, water pipes, sports safety equipment, dental unit, medical equipment and pipelines, and electronic materials (Im and Loffler 2016; Wang et al. 2016a, b). Although BPA can be covalently bound to these materials, when they are washed, heated, or come into contact with an acidic or basic pH, the molecules’ ester bonds are hydrolyzed, releasing the bisphenol A monomer into the environment (Liu et al. 2013). Due to the abundant volumes and transfer of items made from BPA, BPA has brought about omnipresent within the environment (Maher et al. 2016; Wisniowska et al. 2020). Previous reports have repeatedly affirmed its presence in industrial and municipal effluents and sludge, as well as in fresh water (Lee et al. 2015). In addition, the concentration of BPA was reported in landfill leachate of hazardous waste, reaching 17.2 mg L⁻¹ (Yamamoto et al. 2001). Therefore, the BPA moves into the human body through the food chain so that human beings’ health is threatened seriously.
Previous studies have shown that BPA might cause several diseases such as childhood obesity, type II diabetes, developmental defects, and cancer (Guida et al. 2015; Dumitrescu et al. 2020; Martinez et al. 2020).

Plant is an essential link in a food chain. Plants have the ability to take up BPA from their environment and translocate into above-ground parts, thus exerting severe influences on growth and development of plant (Nakajima et al. 2002, 2004). A number of studies have uncovered the effects of BPA on plant growth, seed germination, photosynthesis, reproduction, reactive oxygen, heritability, and antioxidative system in plants (Ferrara et al. 2006; Gattullo et al. 2012; Qiu et al. 2013; Ali et al. 2016, 2017; Zhang et al. 2016; Jiao et al. 2017; Xiang et al. 2018; Kim et al. 2018; Li et al. 2018a, b). The antioxidant responses and “green liver” metabolic pathways are known for their responsiveness to BPA stress (Nakajima et al. 2002, 2004; Noureddin et al. 2004; Ali et al. 2016; Ahammed et al. 2020a, b). BPA has been reported to affect the antioxidative system by reactive oxygen species (ROS), which were generated by oxidative stress of plant species (Li et al. 2008; Zhang et al. 2018). Exposure to BPA increased ROS, lipid peroxidation, and antioxidative enzymes, which scavenge ROS (Ali et al. 2016; Xiang et al. 2018). “Green liver” metabolic pathways of plant have been shown to detoxify xenobiotics (Bartha et al. 2014; He et al. 2017). Several previous studies found that xenobiotic metabolism of BPA follows three processes in plant cells. To produce more water-soluble compounds, BPA was hydroxylated in phase I via cytochrome P450 (Sasaki et al. 2008; Nakamura et al. 2011; Yu et al. 2019). In phase II, the main product of phase I was conjugated with glycosides, via GT, and glutathione, via GST, to reduce the poisoning of plant cells (Nakajima et al. 2002, 2004; Shimoda and Hamada 2009; Ahammed et al. 2020a, b). In phase III, the metabolites of phase II were compartmentalized into the vacuole. Therefore, it is necessary to conduct a complete mechanism study on the toxicity and the degradation pathway of BPA in plants.

Plants get energy from photosynthesis to absorb, retain, and assimilate pollutants. However, there are few isolated single-plant systems in nature, for in natural ecological environments, multiple-plant systems coexist (Fornara and Tilman 2008; Wang et al. 2020a, b, c). Typically, the plants’ combining serves to rectify weaknesses of each constituent when it exists alone. A variety of plant combinations have a more vital ability to remove pollutants than a single plant species (Wang et al. 2016a, b; Zhu et al. 2017). However, the plant species compositions alleviating toxicological effects of BPA have never been investigated in detail. This is because plant diversity improves the stability of ecosystem functions and enhances the effect of purifying pollutants (Zheng et al. 2016; Zhu et al. 2017). Therefore, exploring the physiological and biochemical states of various plants in various plant combinations is helpful to understand the mechanism of improving the purification efficiency of plant combinations.

Here, we picked out three macrophytes: Phragmites australis (A), Typha latifolia (B), and Arundo donax (C) who have the biotransformation and bioaccumulation capacity of environmental pollution (Bonanno 2013; He et al. 2017; Hamad 2020). Plants of Phragmites australis is the most used for BPA removal in constructed wetlands, because its root exudates can stimulate BPA-degrading bacteria activity in rhizosphere sediment under aerobic conditions (Torevlez et al. 2016, Ali et al. 2017). The Typha latifolia and Arundo donax are tolerant species to BPA and maintain a significant capacity to remove and bioaccumulate BPA in constructed wetlands (Dai et al. 2017; Campos et al. 2019; Wang et al. 2019). Three macrophytes show a high morphological plasticity and maintain a significant capacity of pollutant removal in different environmental conditions (Calheiros et al. 2009; Zhu et al. 2017; Cao et al. 2019). This study aimed to reveal a suitable plant species composition method for carrying out physiological changes in aquatic plants exposed to BPA. We checked the compositions in terms of biomass production improvement, photosynthetic system pigment content, ROS, lipid peroxidation, antioxidant enzyme activity systems, antioxidant substances, and detoxification enzymes. This study will help to understand the reaction mechanism of plant species compositions to BPA. We speculate that the alleviating effect of different plant combinations on BPA may vary with different BPA concentrations. The results of this study will provide a reference for the scientific evaluation of the ecological significance of plant species compositions and the risk of BPA pollution and formulating environmental control measures.

Materials and methods

Plant cultivation and BPA treatment

The hydroponic experiment systems were set up in April 2019, which dimension of 22 × 22 × 26 cm and total volume was 12,584 cm³. Three common large aquatic plants in China, Phragmites australis (A), Typha latifolia (B), and Arundo donax (C), were selected for the experiment. Based on a full-factorial design, three species were assembled into 7 plant combinations, including monocultures of each species (3 combinations) which were named sp(A)-(plant A, Phragmites australis), sp(B)-(plant B, Typha latifolia), and sp(C)-(plant C, Arundo donax); all possible two-species mixtures (3 combinations) which were named sp(AB)-(plant A + B, Phragmites australis + Typha latifolia), sp(AC)-(plant A + C, Phragmites australis + Arundo donax), and sp(BC)-(plant B + C, Typha latifolia + Arundo donax); and a three-species mixture of all
species which is named sp(ABC)-(plant A + B + C, Phragmites australis + Typha latifolia + Arundo donax). The plant density was settled in each hydroponic box in diverse cultured types. Each hydroponic box contained 12 individual plants, evenly distributed (i.e., 1:1 in sp(AB)/sp(AC)/sp(BC) or 1:1:1 in sp(ABC)), with each plant combination having 3 replicates (hydroponic box). In order to immobilize the pot and aquatic plants in the exposure medium, the commercially available stones were placed in each pot. All aquatic plants were allowed to acclimate in the hydroponic box of tap water for about 10 days and then Hoagland medium 10 days. The hydroponic experiment systems were fed with Hoagland medium, holding pH about 6.0 ± 0.1 using 1 M of hydrochloric acid. Next, each hydroponic box was filled with 10 L of Hoagland medium and supplemented with a total four concentrations of BPA (1.5, 5, 10, and 20 mg L⁻¹), which was renewed every 2 days for 10 days. The hydroponic test was ended at 10 days after start of BPA treatment. Shoot of plants were collected for the investigation of diverse biochemical parameters.

Before starting the exposure experiment, the possible residual BPA on the surface of hydroponic box and stones was considered and tested. Three hydroponic boxes with the small pots were prepared, filled with the same exposure medium as described above (concentration of 1.5, 5, 10, and 20 mg L⁻¹ for BPA) but without plants. The water concentrations of BPA in each hydroponic box were then analyzed immediately (Cw₀) and 2 days later (Cw₂). The difference between Cw₀ and Cw₂ for all the BPA was lower than 2%. The temperature of the outdoor experimental facilities ranged between 28 and 32 °C.

Determination of root activity, biomass, and light harvesting pigments

About 0.5 g of root samples was collected and cut into 0.5–1 cm section to measured root activity. Root activity was measured using the 2,3,5-triphenyl tetrazolium chloride (TTC) reduction method (Kong et al. 2009). Fresh weights of shoots were measured and kept in an oven at 80 °C for 96 h until a constant weight. The content of chlorophyll a and total chlorophyll pigments from leaves was measured according to a method described by Arnon (Arnon 1949). Fresh leaf samples (0.10 g) were placed in 2 mL of absolute alcohol in dark. After 48 h, the ethanolic extracts were measured using UV–vis spectrophotometer (UV-2550, Shimadzu Corporation, Japan) and scanned at 645 and 663 nm for absorbance (OD). The gotten absorbance values were utilized to calculate chlorophyll a and total chlorophyll content.

\[
\text{Chlorophyll a content} = 13.95 \times \text{OD}663 - 6.88 \times \text{OD}645
\]

\[
\text{Total chlorophyll content} = 20.2 \times \text{OD}645 + 8.02 \times \text{OD}663
\]

Assay of ROS levels and membrane lipid peroxidation

Superoxide anion (O₂⁻) contents were measured according to previous methods (Elstner and Heupel 1976). The absorbance was recorded at 530 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan). Hydrogen peroxide (H₂O₂) contents were determined according to previous methods (Patterson et al. 1984). The absorbance was recorded at 412 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan). Hydroxyl radical (·OH) contents were determined according to previous methods with slight modification (Pandey et al. 2016). The absorbance was recorded at 532 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

The malondialdehyde (MDA) content was determined according to previous methods with slight modification (Heath and Packer 1965). The absorbance was recorded at 532 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

Determination of antioxidant enzyme activity

The fresh leaves (1.00 g) were homogenized in 50 mM PBS (pH 7.8) containing 5 mM EDTA, 5 mM dithiothreitol and 1% (v/v) polyvinylpyrrolidone under ice cold conditions. The homogenates were centrifuged, and the supernatants were used to perform following enzyme assays.

The superoxide dismutase (SOD) activity was assayed according to Du (Du et al. 2015). The reaction mixture reacted about 30 min in fluorescent lights. One unit of SOD activity was defined as the cause 50% inhibition of the NBT measured at 560 nm within 1 min (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

The peroxidase (POD) activity was measured by following Maehly and Chance (Maehly and Chance 1954). The reaction mixture (3 mL) contained 1 mL of 50 mM PBS (pH 6.8), 2% guaiacol, 2% H₂O₂, and 100 μL enzyme extract. The change of absorbance was recorded at 470 nm within 1 min (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

The activity of catalase (CAT) was assayed according to previous methods with little modifications (Jiang and Zhang 2001). The reaction mixture contained 200 mM PBS (pH 7.8), 100 mM H₂O₂, and 50 μL of enzyme extract. The change of absorbance was recorded at 240 nm within 1 min (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

Determination of non-enzymatic antioxidant substance content

The ascorbic acid (AsA) content was measured in accordance with previous methods (Singh et al. 2006). The fresh
leaves (0.20 g) were homogenized in 5% TCA and centrifuged. The reaction mixture stored 0.1 mL supernatant, 0.9 mL PBS (pH 7.4), and 1 mL deionized water. The absorbance was recorded at 525 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

The glutathione (GSH) content was assayed by according to previous methods with slight modification (Devos et al. 2010). The fresh leaves (0.20 g) were homogenized in 5% TCA and centrifuged 15 min at 4 °C. The reaction mixture contained 0.1 mL supernatant, 2.6 mL PBS (pH 7.7), and 0.18 mL 5, 5-dithiobis-(2-nitrobenzoic acid). The absorbance was recorded at 412 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

The free proline (Pro) content was estimated according to previous methods with slight modification (Troll and Lindley 1955). The fresh leaves (0.20 g) were homogenized in 10 mL of 3% sulfosalicylic acid and centrifuged for 10 min at 4 °C. The reaction mixture contained supernatant, ice acetic acid and 2.5% ninhydrin (1:1:1 V/V). The absorbance was recorded at 520 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan).

Determination of detoxification enzyme activity

The microsomes are extracted according to that previously reported with slight modification (Tan et al. 2015). The fresh leaves about 5 g were homogenized in 2 volumes of 50 mM PBS (pH 7.8) and then was centrifuged at 10,000×g for 10 min at 4 °C. The supernatant was centrifuged at 100,000×g for 60 min and then the pellet was resuspended in 100 mM PBS (pH 7.8), containing 25% (v/v) glycerol and 10 mM mercaptoethanol.

The NADPH-cytochrome P450 reductase (CPR) activity was determined by the method described previously with slight modification (Guengerich et al. 2009). The reaction mixture (2 mL) contained 0.05 mL microsomal suspension, 5 mg mL⁻¹ cytochrome c, 50 mM PBS (pH 7.8), 10 mM NADPH. The absorbance was recorded at 550 nm (UV-2550 spectrophotometer, Shimadzu Corporation, Japan). The enzyme activity was expressed as nmol min⁻¹ mg⁻¹ protein using a millimolar extinction coefficient of 21.1 cm⁻¹.

The glutathione S-transferase (GST) activity was determined by a modified protocol as described previously (Fuerst et al. 1993). The fresh leaves (about 1.00 g) were homogenized in 100 mM PBS (pH 7.8) and centrifuged at 4 °C for 30 min. The reaction mixture was contained 100 μL supernatant, UDP-glucose, and p-nitrophenol. The reaction mixture was added with 250 μL methanol and chilled at −20 °C for 0.5 h. The reaction mixture was analyzed using high-performance liquid chromatography (LC-20A HPLC, Shimadzu Corporation, Japan) with an ultraviolet (UV) detection. One unit of the GT activity was defined as the consumption of 1 μmol p-nitrophenol per minute.

Measurement of BPA content

Leaves of BPA content were estimated by high-performance liquid chromatography (HPLC) as described previously with slight modification (Loffredo et al. 2010). The fresh leaves were dried until a constant weight. The dried leaves (1.00 g) were homogenized in 5 mL methanol and shaken on an oscillator for 4 h. The supernatant was evaporated off using a rotary vacuum evaporator (40 °C). The residual product was homogenized in 5 mL of 60% (v/v) acetonitrile. The supernatant was filtered through a 0.45-μm Millipore™ filter and analyzed using HPLC (LC-20A, Shimadzu Corporation, Japan) with UV detection under the following conditions: Inertsil ODS-3 column (4.6×250 mm, 5 μm), 217 nm wavelength, 70% methanol mobile phase, 0.6 mL min⁻¹ flow rate, 20 μL of the injection volume. Residual BPA content was calculated by standard curve which uses BPA samples with known concentration.

Statistical analysis

All assays were conducted in triplicates. The results were expressed as the mean ± standard deviation. Treatment groups and control were analyzed by variance (ANOVA); p < 0.05 was considered statistically significant (SPSS 22.0, IBM).

Results and discussion

BPA concentration in water and root activity

Residual BPA content in hydroponic culture group of water and root activity is presented in Fig. 1. To keep four concentrations of BPA (1.5, 5, 10 and 20 mg L⁻¹) over the exposure phase, the two inlet water concentrations of BPA were analyzed immediately (C-0 and C-2), and then 2 days later, residual BPA content was measured in seven hydroponic culture groups of water. Concentrations of BPA in seven hydroponic culture groups of water had no significant difference, respectively as compared to control (C-0/C-2). The difference between seven hydroponic culture groups and C-0/C-2 for all the BPA ranged from 2 to 7%, indicating that fluctuations were negligible. Therefore, it
can be assumed that 2 days of BPA filled water will maintain a constant water concentration of the chemical, and no further water sample collection is required. Moreover, seven hydroponic culture groups ensured optimum physiological and biochemical performance in a constant BPA concentration environment.

Plant roots are crucial for wetland plants growing in an anaerobic substrate (Kong et al. 2009). Plant roots can enhance the production of root exudates by transporting oxygen to the rhizosphere (Yang et al. 2020). Hence, root health is important for different plant species of synergistic effect toward plant growth, development, and stress tolerance. As shown in Fig. 1, the root activity showed significant
differences from 1.5 to 10 mg L\(^{-1}\) BPA concentrations, respectively, as compared to single species control (sp(A), sp(B), sp(C)). The root activity of sp(ABC-A), sp(ABC-B), and sp(ABC-C), which three plant species compositions formed sp(ABC), was significantly increased in 1.5 to 10 mg L\(^{-1}\) concentrations of BPA. This suggests that increasing plant species diversity will enhance root activity for higher synergistic effects.

Mixed-hydroponic culture groups improve the shoots fresh and dry weight

After 10 days of exposure to BPA, variation of the shoot fresh and dry weight of seven cultured groups of the single species seedlings is observed in Fig. 2. With increase of BPA concentration, the shoot fresh and dry weight increased first and then decreased respectively as compared to 0 mg L\(^{-1}\) BPA treatment. This phenomenon is in agreement with previous studies that BPA concentrations have a cytokinin-like effect, inducing plant cell elongation and proliferation, thereby promoting plant growth to a certain extent (Li et al. 2018a, b; Xiao et al. 2019). Concentrations of BPA even destroyed the cell’s structural integrity (Ali et al. 2016; Kim et al. 2018). The shoot fresh and dry weight showed significant differences from 1.5 to 10 mg L\(^{-1}\) BPA concentrations, respectively, as compared to single species control (sp(A), sp(B), sp(C)). Consequently, the shoot fresh and dry weight of sp(ABC-A), sp(ABC-B), and sp(ABC-C), in which three plant species compositions formed sp(ABC), were significantly increased in 1.5 to 10 mg L\(^{-1}\) concentrations of BPA. In detail, the shoot fresh and dry weight of sp(ABC-A), sp(ABC-B), and sp(ABC-C) were increased by a maximum of 11.66 and 21.21%, 7.90 and 22.01%, and 8.31 and 21.38%, respectively. This result recommends that upgrading plant species diversity will result in utilizing more pollutants for higher biomass production (Gross 2008; Foranara and Tilman 2009; Zhu et al. 2017).

Effect on chlorophyll a and total chlorophyll content

Chlorophyll plays a pivotal role in light capture and photosynthesis (Wang et al. 2020a, b, c; Wang et al. 2020a, b, c). It traps light energy and provides reducing power for carbon assimilation. To further explore the effect of BPA on chlorophyll, chlorophyll a and total chlorophyll content in seedling leaves are determined in Fig. 3. The chlorophyll a and total chlorophyll content were increased first and then decreased with increasing BPA concentration. Several studies have been reported on soybean and Vigna radiata chlorophyll content induced by bisphenol A (Qiu et al. 2013; Kim et al. 2018). It may be speculated that low concentration of BPA led to the hormesis phenomenon. High concentration of BPA increased the accumulation of ROS, which damaged the pigments and interfered with key enzyme in chlorophyll synthesis (Qiu et al. 2013; Jiao et al. 2015, 2017). Chlorophyll a and total chlorophyll content of sp(AB-A), sp(AC-A), sp(ABC-A), sp(AB-B), sp(ABC-B), sp(AC-C), and sp(ABC-C) were significantly higher from 1.5 to 10 mg L\(^{-1}\) BPA concentrations, as compared to single species control (sp(A), sp(B), sp(C)). Consequently, the chlorophyll a content of sp(AB-A), sp(AC-A), sp(ABC-A), sp(AB-B), sp(ABC-B), sp(AC-C), and sp(ABC-C) was increased by a maximum

![Fig. 2](image-url)
of 14.07, 13.01, 14.89, 19.44, 19.93, 15.80, and 18.95%, respectively, and total chlorophyll content was increased by a maximum of 11.39, 11.98, 11.26, 17.42, 16.98, 13.96, 13.23%, respectively. It follows that three cultured groups of sp(AB), sp(AC), and sp(ABC) were increased in chlorophyll a and total chlorophyll content. These results suggest that plant compositions improved stress tolerance and delayed chlorophyll degradation.

Plant compositions reduced ROS accumulation and lipid peroxidation

Environmental stress can produce the reactive oxygen species (ROS), which is residual products of various categories of metabolic pathways in plant cells (Ali et al. 2017). ROS accumulation exceeds the antioxidant scavenging capacity and created oxidative stress in chloroplasts, plasma membrane, mitochondria, and peroxisomes (Biczak et al. 2017). Malonaldehyde (MDA) characterizes the oxidative damage to lipid membranes to plants (Ali et al. 2016). Figure 4 shows the endogenous levels of O_2^-, H_2O_2, ·OH, and MDA contents in all large aquatic plants exposed to different concentrations of BPA. The levels of O_2^-, H_2O_2, ·OH, and MDA contents in the leaves increased with the increase in BPA concentration. Increases in levels of ROS indicate that the presence of BPA triggered oxidative stress responses and led to adding MDA content and lipid peroxidation (Dogan et al. 2010, Wang et al. 2015; Zhang et al. 2016; Pawlowska et al. 2019). ROS may be responsible for inhibiting biomass and making chlorophyll degradation. The levels of O_2^-, H_2O_2, ·OH, and MDA contents of all single species of sp(AB), sp(AC), and sp(ABC) groups are significantly lower than single species control (sp(A), sp(B), sp(C)), respectively, from 5 to 10 mg L$^{-1}$ BPA exposure. Compared to sp(A), sp(B), sp(C), the O_2^-, H_2O_2, and ·OH levels and MDA contents of sp(AB-A), sp(AB-B), sp(AC-A), sp(AC-C), sp(ABC-A), sp(ABC-B), and sp(ABC-C) were remarkably decreased in 5 to 10 mg L$^{-1}$ BPA. In summary, the levels of O_2^-, H_2O_2, ·OH, and MDA contents were all relieved stress in sp(AB), sp(AC), and sp(ABC) group. For example, the levels of O_2^-, H_2O_2, ·OH, and MDA contents of sp(AB-A) and sp(AB-B), which make up sp(AB), were reduced by a maximum of 13.69, 28.16, 8.66, and 6.21% and 10.83, 29.22, 13.33, and 6.13%, respectively. The levels of O_2^-, H_2O_2, ·OH, and MDA contents of sp(ABC-A) and sp(ABC-B) and sp(ABC-C), which make up sp(ABC), were reduced by a maximum of 14.90, 28.18, 10.56, and 7.19%; 11.36, 36.68, 14.10, and 7.18%; and 10.39, 27.69, 12.92, and 4.37%, respectively. It indicates that levels of O_2^-, H_2O_2, ·OH, and MDA contents were relaxed and relieved stress by mixed-hydroponic culture groups. It is well known that ROS (especially ·OH) participate in the degradation of BPA and decrease BPA (Wang and Lim 2011; Reis et al. 2014). In some certain conditions, ROS can be converted to each other (Mattila et al. 2015). Hence, this relieved phenomenon was probably correlated with the production of ROS (especially ·OH) by biological Fenton reaction, Haber–Weiss reactions, and antioxidant enzyme reaction (Halliwell 1999; Reis and Sakakibara 2012).
Observed effects were reported by previous studies (Wang et al. 2015; Inagaki et al. 2016; Zhang et al. 2018).

Effect of BPA on antioxidant enzymes activities

To defend plant organisms from oxidative stress, plants have an antioxidant defense mechanism that can scavenge ROS in cells (Xiao et al. 2020). The production and cleanup of ROS exists in homeostasis in vivo, and the excessive ROS can damage the plant organism (Czarnocka and Karpinski 2018). Hence, antioxidant enzymes play a key role in clearing up excess ROS or changing them, which include SOD, POD, and CAT. Protecting cells from O_2^- toxicity, SOD catalyzes the disproportionation of O_2^- to O_2 and H_2O_2. H_2O_2 is further converted to non-toxic oxygen and water by CAT and POD (Xu et al. 2008). In order to investigate the response of all large aquatic plants to BPA stress, the activities of SOD, POD, and CAT in leaves were measured (Fig. 5). It was
found that SOD, POD, and CAT activities were increased after BPA exposure. This result indicated that BPA stress induced enhanced antioxidant enzyme activities, which effectively eliminated ROS to protect normal physiological functions of the plant. In comparison to single species control (sp(A), sp(B), sp(C)), the SOD, POD, and CAT activities of all single species of sp(AB), sp(AC), sp(BC), and sp(ABC) groups were significantly increased after 10 days of 5 mg L\(^{-1}\) and 10 mg L\(^{-1}\) BPA exposure. For example, the SOD, POD, and CAT activities of sp(AB-A) and sp(AB-B), which formed sp(AB), were significantly increased by a maximum of 13.63 and 14.35\%, 32.68 and 28.00\%, and 31.03 and 71.98\%, compared with single species control (sp(A), sp(B)), respectively. Meanwhile, the SOD, POD, and CAT activities of sp(ABC-A), sp(ABC-B), and sp(ABC-C), in which three plant species compositions formed sp(ABC), were significantly increased by a maximum of 12.91, 13.72, and 40.16\%; 36.08, 29.57, and 45.21\%; and 34.53, 64.01, and 77.22\%, compared to single species control (sp(A), sp(B), sp(C)), respectively. These observations suggest that SOD, POD, and CAT activities were further enhanced by mixed-hydroponic culture groups. This result indicated that antioxidant enzyme activities further effectively eliminated ROS to increase biomass and inhibit chlorophyll degradation by mixed-hydroponic culture groups.

Effects of BPA on the content of antioxidant substances

Ascorbic acid (AsA) has antioxidant functions, which is an effective scavenger for hydroxyl radicals and superoxide (Li et al. 2020). Glutathione (GSH) is a key antioxidant copiously distributed in plants and animals (Ma et al. 2019; Ahammed et al. 2020a, b). GSH is a low-molecular-weight thiol, which can directly remove ROS (Geu-Flores et al. 2011). At the same time, GSH is also involved in the detoxification of xenobiotics (Ahammed et al. 2020a, b). Free proline (Pro) regulates cell membrane osmosis and responses to salinity, drought, and other osmotic environmental stresses (Stein et al. 2011). Figure 6 depicts the effects of BPA on antioxidant substances in all large aquatic plant leaves. With the increase in concentration of BPA, the ASA, GSH,
and Pro contents were increased in leaves. This result indicated that BPA stress induced an increase in antioxidant substance contents, which effectively eliminated ROS and reduced BPA contents and mediated osmotic adjustment in leaves. The ASA, GSH, and Pro contents of the single species of sp(AB), sp(AC), sp(BC) (without GSH), and sp(ABC) cultured groups were significantly increased from 5 to 10 mg L\(^{-1}\) BPA, as compared to single species control (sp(A), sp(B), sp(C)), respectively. For example, the ASA, GSH, and Pro contents of sp(AB-A) and sp(AB-B), which formed sp(AB), were significantly increased by a maximum of 44.09 and 54.35%, 16.43 and 13.11%, and 24.43 and 76.22%, compared with single species control (sp(A), sp(B)), respectively. Meanwhile, the ASA, GSH, and Pro contents of sp(ABC-A), sp(ABC-B), and sp(ABC-C), in which three plant species compositions formed sp(ABC), were significantly increased by a maximum of 54.12, 53.89, and 40.52%; 16.03, 15.07, and 12.53%; and 28.16, 73.67, and 50.99%, compared to single species control (sp(A), sp(B), sp(C)), respectively. These observations indicated that the ASA, GSH, and Pro contents were further enhanced by mixed-hydroponic culture groups. These results suggest that antioxidant substance contents further effectively eliminated ROS-reduced BPA contents and mediated osmotic adjustment for protecting normal physiological functions by mixed-hydroponic culture groups.

Effect of BPA dosage on detoxification enzyme activity

NADPH-cytochrome P450 reductase (CPR) is part of cytochrome P450s system, which transfers the reduced xenobiotics from NADPH to the cytochrome P450 (Chen et al. 2021). Glutathione S-transferase (GST) and glycosyltransferase (GT) catalyzed conjugation of toxicants with GSH and sugar, respectively, and the complex was further delivered to sub-cellular apartment for catabolism (Zhang et al. 2017; Chen et al. 2021). Figure 7 illustrates the effects of BPA dosage on CPR, GST, and GT activities and BPA contents in seven cultured groups of the single species seedlings leaves. Previous
studies show that BPA catalyzed the hydroxylation, epoxidation by cytochrome P450s system in phase I (Hamada et al. 2002; Sasaki et al. 2005; Gabriel et al. 2007). In phase II, BPA or BPA-hydroxylated was catalyzed synthesis reactions with GSH and sugar by GST and GT (Nakajima et al. 2002, 2004; Kanwar et al. 2020). Hence, the activities of CPR, GST, GT, and BPA contents in leaves were increased with increasing BPA dosage, implying that BPA-degraded and residual BPA content were closely related to the enhanced plant detoxification of the enzymes. The CPR, GST, and GT activities of all the single species of sp(AB), sp(AC), sp(BC) (only in 1.5 mg L⁻¹ BPA) and sp(ABC) cultured groups were significantly increased from 1.5 to 10 mg L⁻¹ BPA, respectively, as compared to single species control (sp(A), sp(B), sp(C)), respectively. For example, the CPR, GST, and GT activities of sp(AB-A) and sp(AB-B), which formed sp(AB), were
significantly increased by a maximum of 34.32 and 59.16%, 22.88 and 15.66%, and 65.51 and 55.79%, compared with single species control (sp(A), sp(B)), respectively. Meanwhile, the CPR, GST, and GT activities of sp(ABC-A), sp(ABC-B), and sp(ABC-C), in which three plant species compositions formed sp(ABC), were significantly increased by a maximum of 35.39, 75.38, and 74.98%; 21.55, 16.04, and 33.41%; and 69.47, 64.73, and 53.40%, compared to single species control, respectively.

We also measured BPA contents in leaves. The BPA contents of all the single species of sp(AB), sp(AC), and sp(ABC) cultured groups significantly decreased from 1.5 to 10 mg L⁻¹ BPA, respectively, as compared to single species control (sp(A), sp(B), sp(C)), respectively. For example, the sp(AB-A), sp(AB-B), sp(AC-A), sp(AC-C), sp(ABC-A), sp(ABC-B), and sp(ABC-C), which formed sp(AB), sp(AC), and sp(ABC) cultured groups, were significantly decreased by a maximum of 28.38, 12.61, 25.82, 24.14, 33.30, 15.20, and 30.33%, compared with single species control (sp(A), sp(B)), respectively. These results suggest that BPA contents were further effectively reduced by mixed-hydroponic culture groups in leaves.

Conclusions

In conclusion, we found that BPA can be harmful to *Phragmites australis* (A), *Typha latifolia* (B), and *Arundo donax* (C) through the induction oxidative stress in leaves, which eventually inhibited biomass production and chlorophyll content. However, the mixed-hydroponic cultures (sp(AB), sp(ABC)) alleviate toxicological effects of BPA. This conclusion is supported by a proposed model depicting the plant species compositions (Fig. 8). Firstly, BPA contents were further reduced by biotransformation and degradation of detoxification enzymes and biological Fenton reaction in the mixed-hydroponic cultures (sp(AB), sp(ABC)). BPA-induced oxidative stress ability was severely weakened. Secondly, ROS levels which were produced by oxidative stress of BPA were further lowered by antioxidant enzymes and antioxidant substance content in the mixed-hydroponic cultures (sp(AB), sp(ABC)). Thirdly, root activity, biomass production reduction, and chlorophyll degradation were relieved due to the reduction of ROS levels in the mixed-hydroponic cultures (sp(AB), sp(ABC)). These results have already illustrated that reasonable plant richness and sort play a vital part in alleviating BPA stress. This study gives valuable data on how to create artificial floating island and constructed wetland with tall working BPA expulsion.

Author contribution All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xianguang Nie. The first draft of the manuscript was written by Xianguang Nie; all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Funding This work was supported by the Program of China Scholarship Council (No. 20120370391) and the National Key Research and Development Program of China (No. 2018YFC0408000, 2018YFC0408004).

Data availability The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.
References

Ahammad GI, Wang Y, Mao Q, Wu M, Yan Y, Ren J, Wang X, Liu A, Chen S (2020) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut 259:113957. https://doi.org/10.1016/j.envpol.2020.113957

Ahammad GI Wang YQ Mao Q Wu MJ Yan JR Ren JJ Wang XJ Liu AR Chen SC (2020a) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut 259. ARTN 113957 https://doi.org/10.1016/j.envpol.2020.113957

Ali I, Liu BH, Farooq MA, Islam F, Azizullah A, Yu CY, Su W, Gan YB (2016) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza saliva as revealed by ultrastructure analysis. Ecotox Environ Safe 124:277–284. https://doi.org/10.1016/j.ecoenv.2015.10.027

Ali I, Jan M, Waked A, Azizullah A, Liu BH, Islam F, Ali A, Daud M, Liu YH, Gan YB (2017) Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thaliana subjected to bisphenol A exposure. Ecotox Environ Safe 144:62–71. https://doi.org/10.1016/j.ecoenv.2017.06.015

Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

Bartha B, Huber C, Schroder P (2014) Uptake and metabolism of diclofenac in Typha latifolia - how plants cope with human pharmaceutical pollution. Plant Sci 227:12–20. https://doi.org/10.1016/j.plantsci.2014.06.001

Biczak R, Snioszek M, Telesinski A, Pawlowska B (2017) Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Ecotox Environ Safe 139:463–471. https://doi.org/10.1016/j.ecoenv.2017.02.016

Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotox Environ Safe 97:124–130. https://doi.org/10.1016/j.ecoenv.2013.07.017

Calheiros CSC, Rangel AOSS, Castro PML (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresource Technol 100:3205–3213. https://doi.org/10.1016/j.biortech.2009.02.017

Camacho JM Queiroz SCN Roston DM (2019) Removal of the endocrine disruptor bisphenol A from synthetic landfill leachate by vertical flow constructed wetlands. Sci Total Environ 758:566–576. https://doi.org/10.1016/j.scitotenv.2016.10.232

Devos CHR, Vonk MJ, Vooijs S, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene-Cucubalus. Plant Physiol 98:853–858. https://doi.org/10.1104/pp.98.3.853

Dogar M Yumrutas O SaygiDeger SD Korkunc M Gulnaz O Sokmen A (2010) Effects of bisphenol A and tetrabromobisphenol A on chickpea roots in germination stage. Am.-European J. Agric. Environ. Sci.

Du ST, Liu Y, Zhang P, Liu HJ, Zhang XQ, Zhang RR (2015) Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chem 173:905–911. https://doi.org/10.1016/j.foodchem.2014.10.115

Dumitrascu MC Mares C Petca RC Sandru F Popescu RI Mehedintu C Petca A (2020) Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 20. ARTN 282 https://doi.org/10.3892/ol.2020.12145

Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620. https://doi.org/10.1016/0003-9861(76)90488-7

Ferrara G, Loffredo E, Senesi N (2006) Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta 223:910–916. https://doi.org/10.1007/s00204-005-0147-2

Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. https://doi.org/10.1111/j.1365-2745.2007.01345.x

Fornara DA, Tilman D (2009) Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology 90:408–418. https://doi.org/10.1890/08-0325.1

Fuerst EP, Izryk GP, Miller KD (1993) Partial characterization of glutathione-s-transferase isozymes induced by the herbicide safener benoxacor in maize. Plant Physiol 102:795–802. https://doi.org/10.1104/pp.102.3.795

Gabriel FLP, Cyris M, Giger W, Kohler HPE (2007) Ipso-substitution: a general biochemical and biodegradation mechanism to cleave alpha-quaternary alkylphenols and bisphenol A. Chem Biodivers 4:2123–2137. https://doi.org/10.1002/cbdv.200790170

Gatullo CEW, Loffredo E, Bottcher C, Olsen CE, Scheel D, Halkier BA (2011) Cytosolic gamma-glutamyl peptides process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in arabidopsis. Plant Cell 23:2456–2469. https://doi.org/10.1105/tpc.111.083998

Gross K (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett 11:929–936. https://doi.org/10.1111/j.1461-0248.2008.01204.x

Guengerich FP, Martin MV, Sohi CD, Cheng Q (2009) Measurement of cytochrome P450 and NAPDH-cytochrome P450 reductase. Nat Protoc 4:1245–1251. https://doi.org/10.1038/nprot.2009.121

Guida M, Troisi I, Ciccone C, Granazio G, Cosimato C, Sardo AD, Ferrara C, Guida M, Nappi C, Zullo F, Di Carlo C (2015) Bisphenol A and congenital developmental defects in humans. Mutat Res-Fund Mol M 774:33–39. https://doi.org/10.1016/j.mrfmmm.2015.02.007

Halliwell B (1999) Oxygen and nitrogen are pro-carcinogens, damage to DNA by reactive oxygen, chlorine and nitrogen species:
measurement, mechanism and the effects of nutrition. Mutat Res-Gen Tox En 443:37–52. https://doi.org/10.1016/S1383-5742(99)00099-5

Hamad MTMH (2020) Comparative study on the performance of *Typha latifolia* and *Cyperus Papyrus* on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands. Chromosoma. 260. ARTN 127551 https://doi.org/10.1007/j.chemospori.2020.127551

Hamada H Tomi R Asada Y Furuya T (2002) Phytoremediation of bisphenol A by cultured suspension cells of *Eucalyptus pertinaciana*-regioselective hydroxylation and glycosylation. Tetrahedron Lett. 43, 4087–4089. Pii S0040–4039(02)00647-0 https://doi.org/10.1016/S0040-4039(02)00647-0

He Yi, Langenhoff AAM, Sutton NB, Rijnaarts HHM, Blakoland MN, Chen FR, Huber C, Schroder P (2017) Metabolism of ibuprofen by *Phragmites australis*: uptake and phytodegradation. Environ Sci Technol 51:4576–4584. https://doi.org/10.1021/acs.est.7b04458

Heath RL, Packer L (1965) Effect of light on lipid peroxidation in chloroplasts. Biochem Biophys Res Co 19:716–720. https://doi.org/10.1016/0006-291x(65)90316-5

Im J, Löffler FE (2016) Fate of bisphenol a in terrestrial and aquatic environments. Environ Sci Technol 50:8403–8416. https://doi.org/10.1021/acs.est.6b00877

Inagaki Y, Cong VH, Sakakibara Y (2016) Identification and application of phyto-Fenton reactions. Chromosoma 144:1443–1450. https://doi.org/10.1007/s00494-015-0399-4

Jiang MY, Zhang HH (2001) Effect of alicyclic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273.

Jiao LY, Wang LH, Qiu ZY, Wang QQ, Zhou Q, Huang XH (2015) Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. Environ Sci Pollut R 22:5877–5886. https://doi.org/10.1007/s11356-014-1764-0

Jiao LY, Ding HZ, Wang LH, Zhou Q, Huang XH (2017) Bisphenol A effects on the chlorophyll contents in soybean at different growth stages. Environ Pollut 223:426–434. https://doi.org/10.1016/j.envpol.2017.01.042

Kanwar MK, Xie D, Yang C, Ahammed GJ, Qi Z, Hasan MK, Reiter RJ, Yu JQ, Zhou J (2020) Melatonin promotes metabolism of bisphenol A by enhancing glutathione-dependent detoxification in *Solanum lycopersicum* L. J Hazard Mater 388:121727. https://doi.org/10.1016/j.jhazmat.2019.121727

Kim D, Kwak JJ, An YJ (2018) Effects of bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chromosphere 209:875–882. https://doi.org/10.1016/j.chromosphere.2018.06.146

Kong L, Wang YB, Zhao LN, Chen ZH (2009) Enzyme and root activities in surface-flow constructed wetlands. Chromosoma 76:601–608. https://doi.org/10.1007/s00494-2009-0456-8

Lee S, Liao C, Song GJ, Ra K, Kannan K, Moon HB (2015) Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chromosoma 119:1000–1006. https://doi.org/10.1007/s00494-2014-0011

Li R, Liu Y, Chen GZ, Tam NFY, Shin PKS, Cheung SG, Luan TG (2008) Physiological responses of the alga *Cyclotella caspia* to bisphenol A exposure. Bot Mar 51:360–369. https://doi.org/10.1016/S0006-8050(08)00092-5

Li X, Wang L, Wang S, Yang Q, Zhou Q, Huang X (2018) A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicol Environ Saf 150:152–158. https://doi.org/10.1016/j.ecoenv.2017.12.031

Li XY, Wang LH, Shen F, Zhou Q, Huang XH (2018) Impacts of exogenous pollutant bisphenol A on characteristics of soybeans. Ecotox Environ Safe 157:463–471. https://doi.org/10.1016/j.ecosafe.2018.04.013

Li H Liu JX Wang Y Zhuang J (2020) The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions. Plant Sci. 296. ARTN 110500 https://doi.org/10.1016/j.plantsci.2020.110500

Liu J, Wang YF, Jiang BQ, Wang LH, Chen JQ, Guo HY, Ji R (2013) Degradation, metabolism, and bound-residue formation and release of tetrabromobisphenol A in soil during sequential anoxic-oxic incubation. Environ Sci Technol 47:8348–8354. https://doi.org/10.1021/es404322

Löffredo E, Gattullo CE, Traversa A, Senesi N (2010) Potential of various herbaceous species to remove the endocrine disruptor bisphenol A from aqueous media. Chromosoma 80:1274–1280.

Ma Y Liu HH Wu JX Yuan L Wang YQ Du XD Wang R Marwa PW Petlulu P Chen CN Zhang HZ (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res. 176. ARTN 108575 https://doi.org/10.1016/j.envres.2019.108575

Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

Maher B, English K, Norman R, Sly P, Davies P (2016) Prenatal exposure to the plasticizer bisphenol A (BPA) and adverse outcomes in human epidemiological studies. Clin Endocrinol 84:12–12

Martinez MA Blanco J Rovira J Kumara V Domingo JL Schuhmacher M (2020) Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line. Food Chem Toxicol. 140. ARTN 111298 https://doi.org/10.1016/j.fct.2020.111298

Mattila H, Khorobrykh S, Havurinne V, Tystjørviar E (2015) Reactive oxygen species: reactions and detection from photosynthetic tissues. J Photoch Photobio b 152:176–214. https://doi.org/10.1016/j.jphotobiol.2015.10.001

Nakajima N, Ohshima Y, Serizawa S, Kouda T, Edmonds JS, Shiraishi F, Aono M, Kubo A, Tamaoki M, Saji H, Morita M (2002) Processing of bisphenol A by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of *Nicotiana tabacum*. Plant Cell Physiol 43:1036–1042. https://doi.org/10.1093/pcp/pcf130

Nakajima N, Oshima Y, Edmonds JS, Morita M (2004) Glycosylation of bisphenol A by tobacco BY-2 cells. Phytochemistry 65:1383–1387. https://doi.org/10.1016/j.phytochem.2004.02.027

Nakamura S, Tezuka Y, Ushiyama A, Kawashima C, Kirigaya Y, Takahashi K, Ohta S, Mashino T (2011) Ipso substitution of bisphen A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity. Toxicol Lett 203:92–95. https://doi.org/10.1016/j.toxlet.2011.03.010

Noureddin MI, Furumoto T, Ishida Y, Fukui H (2004) Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (*Ipomoea aquatica*). Biosci Biotech Bioch 68:1398–1402. https://doi.org/10.1271/bbb.68.1398

Pandey P, Srivastava RK, Rajpoot R, Rani A, Pandey AK, Dubey RS (2016) Water deficit and aluminum interactive effects on germination of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance. Environ Sci Pollut R 23:1516–1528. https://doi.org/10.1007/s11356-015-5392-8

Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium(IV). Anal Biochem 139:487–492. https://doi.org/10.1016/0003-2697(84)90039-3

Pawlowska B, Fedor-Kubis J, Telesinski A, Biczak R (2019) Biochemical responses of wheat seedlings on the introduction of selected chiral ionic liquids to the soils. J Agr Food Chem 67:3086–3095. https://doi.org/10.1021/acs.jafc.8b05517
Qiu ZY, Wang LH, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280. https://doi.org/10.1016/j.chemosphere.2012.09.085

Reis AR, Sakakibara Y (2012) Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction. Water Sci Technol 66:775–782. https://doi.org/10.1016/j.wst.2012.241

Reis AR, Tabei K, Sakakibara Y (2014) Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants. J Hazard Mater 265:79–88. https://doi.org/10.1016/j.jhazmat.2013.11.042

Sasaki M, Akahira A, Oshima KI, Tsuchido T, Matsumura Y (2005) Purification of cytochrome P450 and ferredoxin, involved in bisphenol A degradation, from Sphingomonas sp strain AO1. Appl Environ Microbiol 71:8024–8030. https://doi.org/10.1128/Aem.71.12.8024-8030.2005

Sasaki M, Tsuchido T, Matsumura Y (2008) Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol 105:1158–1169. https://doi.org/10.1111/j.1365-2672.2008.03843.x

Shimoda K, Hamada H (2009) Bioremediation of bisphenol A and benzenophene by glycosylation with immobilized marine microalga Pavlova sp. Environ Health Insights 3:89–94. https://doi.org/10.4137/ehi.s2758

Singh N, Ma LQ, Srivastava M, RathaShoksabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282. https://doi.org/10.1016/j.plantsci.2005.08.013

Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173. https://doi.org/10.1016/S0045-6535(97)10133-3

Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberman A (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150. https://doi.org/10.1016/j.plantsci.2011.04.013

Tan LR, Lu YC, Zhang JJ, Luo F, Yang H (2015) A collection of cytochrome P450 monoxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants. Ecotox Environ Safe 119:25–34. https://doi.org/10.1016/j.ecoenv.2015.04.035

Toro-Velez AF, Madera-Parra CA, Pena-Varon MR, Lee WY, Bezares-Cruz JC, Walker WS, Cardenas-Henao H, Quesada-Calderon S, Garcia-Hernandez H, Lens PNL (2016) BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Sci Total Environ 542:93–101. https://doi.org/10.1016/j.scitotenv.2015.09.154

Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

Wang XP, Lim TT (2011) Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl Catal a-Gen 399:233–241. https://doi.org/10.1016/j.apcata.2011.04.002

Wang QQ, Wang LH, Han RB, Yang LY, Zhou Q, Huang XH (2015) Effects of bisphenol a on antioxidant system in soybean seedling roots. Environ Toxicol Chem 34:1127–1133. https://doi.org/10.1002/etc.2904

Wang JJ, Chen CY, Bornehag CG (2016) Bisphenol A exposure may increase the risk of development of atopic disorders in children. Int J Hyg Environ Health 219:311–316. https://doi.org/10.1016/j.ijheh.2015.12.001

Wang YH, Wang JF, Zhao XX, Song XS, Gong J (2016) The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands. Bioresource Technol 202:198–205. https://doi.org/10.1016/j.biortech.2015.11.049

Wang YJ, Yin TR, Kelly BC, Gin KYH (2019) Bioaccumulation behaviour of pharmaceuticals and personal care products in a constructed wetland. Chemosphere 222:275–285. https://doi.org/10.1016/j.chemosphere.2019.01.116

Wang X, Luo B, Wang L, Zhao Y, Wang Q, Li D, Gu B, Min Y, Chang SX, Ge Y. Chang J (2020) Plant diversity improves the eflluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent. J Environ Manage 266:110607. https://doi.org/10.1016/j.jenvman.2020.110607

Wang J, Jin MK, Xu LX, Xi H, Wang BH, Du ST, Liu JH, Wen YZ (2020a) Effects of ketoprofen on rice seedlings: insights from photosynthesis, antioxidative stress, gene expression patterns, and integrated biomarker response analysis. Environ Pollut. 263. ARTN 114533 https://doi.org/10.1016/j.envpol.2020a.114533

Wang J, Jin MK, Mao WF, Chen CJ, Fu LY, Li Z, Du ST, Liu JH (2020b) Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green alga Scenedesmus obliquus. Sci Total Environ. 707. ARTN 136176 https://doi.org/10.1016/j.scitotenv.2019.136176

Wisnioska B, Linke S, Pirow R, Luch A, Tylutki Z, Polak S (2020) Utilization of physiologically based pharmacokinetic modeling to assess dermal uptake of bisphenol A (BPA) and its skin and systemic exposure in humans. Int J Toxicol 39:62–62

Xiang R, Shi JQ, Yu Y, Zhang HB, Dong CC, Yang YJ, Wu ZX (2018) The effect of bisphenol A on growth, morphology, lipid peroxidation, antioxidant enzyme activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda. Arch Environ Con Tox 74:515–526. https://doi.org/10.1007/s00244-017-0454-1

Xiao CY, Wang LH, Hu DD, Zhou Q, Huang XH (2019) Effects of exogenous bisphenol A on the function of mitochondria in root cells of soybean (Glycine max L.) seedlings. Chemosphere 222:619–627. https://doi.org/10.1016/j.chemosphere.2019.01.195

Xiao CY, Wang LH, Zhou Q, Huang XH (2020) Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies. J Hazard Mater. 384. ARTN 121488 https://doi.org/10.1016/j.jhazmat.2019.121488

Xu CP, Natarajan S, Sullivan JH (2008) Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot 63:39–48. https://doi.org/10.1016/j.envexpbot.2007.10.029

Yamamoto T, Yasuhara A, Shiraiishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42:415–418. https://doi.org/10.1016/S0045-6535(00)00079-9

Yang XY, He Q, Guo FC, Sun XH, Zhang JM, Chen ML, Vymazal J, Chen Y (2020) Nanoplastics disturb nitrogen removal in constructed wetlands: responses of microbes and macrophytes. Environ Sci Technol 54:14007–14016. https://doi.org/10.1021/acs.est.0c03324

Yu K, Yi S, Li B, Guo F, Peng X, Wang Z, Wu Y, Alvarez-Cohen L, Zhang T (2019) An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. Microbiome 7:16. https://doi.org/10.1186/s40168-019-0634-5

Zhang JJ, Gao S, Xu JY, Lu YC, Lu FF, Ma LY, Su XN, Yang H (2017) Degrading and phytoextracting atrazine residues in rice (Oryza sativa) and growth media intensified by a phase II mechanism modulator. Environ Sci Technol 51:11258–11268. https://doi.org/10.1021/acs.est.7b0346

Zhang JZ, Wang LH, Zhou Q, Huang XH (2018) Reactive oxygen species initiate a protective response in plant roots to stress induced
by environmental bisphenol A. Ecotox Environ Safe 154:197–205. https://doi.org/10.1016/j.ecoenv.2018.02.020

Zhang JZ, Li XY, Zhou L, Wang LH, Zhou Q, Huang XH (2016) Analysis of effects of a new environmental pollutant, bisphenol A, on antioxidant systems in soybean roots at different growth stages. Sci Rep-Uk. 6. ARTN 23782 https://doi.org/10.1038/srep23782

Zheng YC, Wang XC, Dzakpasu M, Zhao YQ, Ngo HH, Guo WS, Ge Y, Xiong JQ (2016) Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: a comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Technol 207:134–141. https://doi.org/10.1016/j.biortech.2016.02.008

Zhu SS, Huang XC, Ho SH, Wang L, Yang JX (2017) Effect of plant species compositions on performance of lab-scale constructed wetland through investigating photosynthesis and microbial communities. Bioresource Technol 229:196–203. https://doi.org/10.1016/j.biortech.2017.01.023

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.