Is It Correct to Use a Unique Conventional Dialysis Prescription in the Elderly? Four Alternative Schedules for Dialyzing Elderly Patients

Carlos G. Musso
Paula Schwartz
Javier Deira
Juan F. Macias Núñez

Abstract
Ageing is a universal asynchronic and heterogeneous process which induces a series of changes in the organisms along the time. In addition, ageing becomes senescence when it induces structural and physiological changes which significantly reduce the body homeostatic capability making the organism vulnerable and frail. Besides, frailty detecting tools have been described such as frailty phenotype score, frailty clinical scale, or gait test. Since elderly population is heterogeneous, it seems that to use a unique conventional dialysis prescription would not be adequate in this group. Thus, different sort of dialytic schedules could be proposed for prescribing dialysis to elderly patients, lasing these alternatives, on the patient’s functional status, residual diuresis and general prognosis. From this perspective at least four sorts of dialytic programs can be delineated for this group: conventional, incremental, functional and palliative dialysis. In conclusion: Frailty phenotype evaluation allows indentifying elderly subgroups, which could be dialyzed by different dialytic programs.

Keywords
Dialysis; Elderly; Schedules

Introduction
Ageing is a universal asynchronic and heterogeneous process which induces a series of changes in the organisms along the time. This process is characterized by a functional performance reduction compared to the maximal functionality reached around the second decade of life. The ageing process is universal since it is part of everybody’s vital cycle, asynchronic since it has a particular rate on each individual and heterogeneous since it has its particular rate in each individual’s organ. As a consequence, the elderly population consists of a heterogeneous group [1]. However, ageing becomes senescence when it induces structural and physiological changes which significantly reduce the body’s homeostatic capability, making the organism vulnerable and frail [1,2]. Therefore, geriatricians have elaborated the concept of “frailty” to describe the cumulative declines across multiple physiological systems that occur with ageing and lead individuals to a state of diminished physiological reserve and increased vulnerability to stressors (senescence) [3,4]. In this sense, Fried et al. [5] coined the concept of “frailty phenotype” for clinically identifying the frailty status. Thus, frailty phenotype is based on the evaluation of five clinical domains: shrinking, weakness, poor endurance and energy slowness and low physical activity, aiming to identify older people who are at risk of disability, fall, institutionalization, hospitalization and death. It is worth mentioning that the characteristic muscles mass and strength reduction secondary to ageing (sarcopenia), is considered by many authors as part of the “shrinking domain” of the frailty phenotype [5,6]. Besides, other frailty detecting tools have been described such as the frailty clinical scale, gait test and handgrip. The prevalence of frailty phenotype in elderly people is of 7% in the general population, 14% in non-dialysis Chronic Kidney Disease (CKD) patients and 42% in chronic dialysis patients [6]. Frailty is the common pathway which leads elderly subjects to suffer from the geriatric syndromes: cognitive impairment, incontinence, gait disorders, falls and immobility syndrome. These syndromes are also known as “geriatric giants” since they affect severely many older individuals in the population [7]. Finally, when senescence combines with a chronic condition, the evolution and prognosis of this condition worsen, requiring the adjustment of the conventional therapeutic targets to the patient’s frailty status. Therefore, if a chronic disease suffers from the influence of senescence, it becomes a worse condition known as a senescent chronic disease; for instance, when chronic nephropathy suffers the influence of senescence, it becomes a worse condition called senescent chronic nephropathy [8].

Article Information
DOI: 10.31021/ijrdt.20181103
Article Type: Review
Journal Type: Open Access
Volume: 1 Issue: 1
Manuscript ID: URDT-1-103
Publisher: Boffin Access Limited
Received Date: 15 April 2018
Accepted Date: 30 June 2018
Published Date: 02 July 2018

*Corresponding author:
Carlos G. Musso
Physiology Department
University Institute of the Italian Hospital of Buenos Aires
Argentina
Tel: 1149590200-8724
E-mail: carlos.musso@hospitalitaliano.org.ar

Citation: Musso CG, Schwartz P, Deira J, Macias Núñez JF. Is It Correct to Use a Unique Conventional Dialysis Prescription in the Elderly? Four Alternative Schedules for Dialyzing Elderly Patients. Int J Ren Dis Ther. 2018 July;1(1):1-03

Copyright: © 2018 Musso CG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
CKD is a major public health problem due to its high prevalence, high health cost and poor results obtained by its therapy, being this phenomenon much more marked in elderly patients. The number of end-stage patients older than 75 who require Renal Replacement Therapy (RRT), increases rapidly worldwide. In the United States, this group is the one that grows the most, increasing its proportion since the year 2000 by 122% [10]. The same situation occurs in Canada, where its number has doubled in the period 1995-2005 [11] and in Spain, where the number of incident RRT patients is three times higher among those older than 75 [12]. Moreover, it has been demonstrated that early dialysis initiation (eGFR: ≥ 10 ml/min) does not provide a survival benefit in the elderly and it may even promote negative influence on their quality of life [13]. As a consequence, it is currently recommended to defer dialysis initiation (eGFR: ≤ 6 ml/min) in asymptomatic elderly patients. Even though, it was reported that elderly patients who refused to start dialysis and were on conservative treatment, survived for shorter (with lower hospital days), this is debatable since there is also evidence to the contrary [14]. The results obtained in these patients are of concern, especially for those on hemodialysis where mortality in the first year is very high and sometimes exceeds the one associated with conservative treatment [15,16]. It is worth mentioning that despite the undeniable benefits that an adequately prescribed chronic dialysis has, particularly in robust elderly patients; several dialysis related disadvantages have been pointed out, such as residual diuresis loss, intradialytic complications, etc., (Table 1) [14,15]. Moreover, elderly patients who suffer from geriatric syndromes (geriatric giants) usually have less tolerance to dialysis due to their propensity to intradialytic hypotension (dysautonomy), mesenteric ischemia, arrhythmia (increased susceptibility to electrolyte disequilibrium), etc. Additionally, chronic dialysis can also worsen the geriatric syndrome evolution, installing a spiral of deterioration between dialysis and the geriatric syndromes. This phenomenon could explain the reported poor patient’s survival in those on dialytic treatment respect to those on conservative treatment, unless an adequate dialytic strategy for the frail elderly patient is prescribed [16]. Regarding the dialysis adequacy evaluation, the Kt/V is the only currently validated and generally accepted parameter, however the same Kt/V target is used independently of the patient’s age: eKt/V ≥ 1.2 session (three times per week) in hemodialysis, or weekly Kt/V ≥ 1.7 in peritoneal dialysis. It is worth pointing out that no benefit has been documented with increasing Kt/V the above standard dose, even HEMO study has found no beneficial out-come with eKt/V between 1.05 and 1.4 [17,18]. Besides, elderly dialysis patients are prone to suffering from malnutrition (senile hyporexia) and/or underdialysis (vascular access dysfunction, incomplete dialysis sessions secondary to intradialytic complications), thus Kt/V monitoring can be useful to avoid these complications. However, it should be taken into account that Kt/V (Gotch equation) is based on many parameters which suffer significant changes in the elderly, particularly in the frail ones, such as the reduction in metabolic rate, body water content, body surface area, etc., (Table 2) [15]. Although, these changes could theoretically influence the Kt/V target value, probably reducing it, surprisingly this is not currently taken into account [19].

In this sense, parameters different from Kt/V has been proposed and some of them are even currently used for evaluating dialysis patients (Table 3). Among these proposed parameters some are especially important in frailty elderly individuals such as body water volume content, nutritional status, hemoglobin levels, body functionality, etc., [19].

Since the elderly population is heterogeneous, it seems that to use a unique conventional dialysis (hemo or peritoneal) prescription would not be adequate in the elderly. Thus, based on the above mentioned concepts and in the literature, different sort of dialytic schedules could be proposed for prescribing dialysis to these patients. From this perspective at least four sorts of dialytic programs can be outlined (Table 4, Figure 1) [20-24]:

Conventional dialysis

This is the current hemodialysis prescription based on 3 to 5 hours, three weekly sessions which seek to achieve a target single pool Kt/V (spKt/V) de 1.4 per HD session, with a minimum delivered spKt/V of 1.2, or peritoneal dialysis seeking a weekly Kt/V ≥ 1.7. Conventional dialysis would be ideal for treating robust anuric-oliguric elderly patients.

Advantages	Disadvantages
Longer survival	Residual renal function loss
Improve appetite	Multiple painful access procedures - infections
Increase social contact	Fatigue hypotension, cardiac, cerebral or intestinal ischemia
Reduce fluid overload	Time loss to dialysis and hospitalizations

Table 1: Advantages and disadvantages of dialysis in the elderly

Dialytic parameters	Ageing related Changes
Urea generation rate	Low protein diet (< 20%)
Urea sensitivity	Reduced basal metabolism (< 20%)
Urea volume distribution	Increased
Lean body mass	Reduced total body water
Body surface area	Sarcoenina
Body surface area	Reduced body surface area

Table 2: Kt/V dialytic parameters and ageing related changes

Non-urea toxins levels (eg: β₂ microglobulin, etc.)

- Nutritional status
- Volume status - interdialytic fluid gain
- Hemoglobin level
- Calcium-phosphorus metabolism
- Body functional test (eg: gait test, etc)

Table 3: Non-Kt/V dialysis adequacy parameters
Incremental dialysis

This regimen was first used in patients on Peritoneal Dialysis (PD), but has recently gained attention especially in developing countries. It consists of adjusting the dialysis dose based on Residual Renal Function (RRF) to achieve adequate dialysis. The KDOQI guidelines suggest a standard Kt/V target (stdKt/V) of 2.3 volumes per week with a minimum delivered dose of 2.1 for Hemodialysis (HD) schedules different from thrice weekly. Recent observational research has shown that incremental HD may be more beneficial than conventional HD (three sessions per week), particularly in preserving RRF. Regarding incremental peritoneal dialysis, the target is to achieve an adequate Kt/V target (≥ 1.7) between the patient’s peritoneal dialysis and residual diuresis. Incremental dialysis could be ideal for robust and/or vulnerable (prefrail) elderly patients who have an adequate residual diuresis.

Functional dialysis

This dialysis prescription consists of a dialytic treatment which seeks to keep a validated minimally useful dialysis dose (Kt/V: ≥ 1.05) and patient’s clinical functionality evaluated by clinical geriatrics tests such as gait test. In this modality residual diuresis (if exists) is taken into account and non-Kt/V dialysis adequacy parameters are mainly used for guiding the dialysis prescription (Table 3). Functional dialysis could be ideal for treating different degrees of frail elderly patients where prognosis is determined not by their renal disease but their frailty status.

Palliative dialysis

This dialysis prescription seeks only to relief uremic and volume overload symptoms and Kt/V value is not taken into account. Palliative dialysis is ideal for treating lucid, anuric-oliguric terminal patients who have decided neither to stop dialysis nor receive classical palliative treatment (without dialysis).

It is worth pointing out that a clinical geriatric test, such as frailty phenotype, frail clinical scale, gait test, handgrip evaluation are useful for dividing the heterogeneous elderly group in: robust, prefrail, frail (different degrees) and terminal individuals.

Frailty treatment

The treatment of frailty requires interdisciplinary interventions, including team member nurses, occupational therapists, physiotherapists, physicians, psychologists, pharmacists, speech therapists and social workers [6,25]. Frailty therapeutic strategies are based on the prescription of rehabilitation, low-intensity resistance and aerobic exercise, adequate caloric and protein intake, vitamin supplementation and avoidance of polypharmacy [6,25].

Rehabilitation is a process by which form and function are restored following injury or illness, such that life can be lived to the fullest capacity compatible with the degree of abilities and disabilities. Rehabilitation can be performed in the home, as an outpatient or as an inpatient, depending on patient needs and resources [25]. Exercise has a positive effect on brain, skeletal muscles, immune and endocrine systems, as well as it improves patient’s mobility and functional ability. Exercise can be safely implemented in end-stage renal disease patients and combined aerobic and resistance exercise, administered in the dialysis facility or outside of dialysis, have resulted in improvements in physical function [25,26]. However, the extent to which this greater degree of improvement in aerobic capacity translates to survival benefit is unclear. Besides, intradialytic exercise programs have usually higher adherence than home-based or extradialytic programs [26].
Finally, it is worth mentioning that due to the heterogeneity of the different clinical components of the frailty phenotype in each patient, a personalized therapeutic approach instead of a general one is likely to achieve success in this vulnerable population [6].

Conclusion

Dialysis prescription should be individualized, particularly in the elderly. Frailty phenotype evaluation allows identifying elderly subgroups and different dialytic strategies should be prescribed to different elderly subgroups.

References

1. Musso CG, Jauregui JR. How to differentiate renal senescence from chronic kidney disease in clinical practice. Postgrad Med. 2016 Sep;128(7):716-721.
2. Forcina M, Lavizzo-Mourey R, Schwab E. Geriatric secrets. 2nd ed. Philadelphia: Hanley & Belfus;2000.364p.
3. Roohanavan B, Khatri M, Robinson-Cohen C, Levin G, Patel KV, et al. A prospective study of frailty in nephrology-referred patients with CKD. Am J Kidney Dis. 2012 Dec;60(6):912-921.
4. Johansen KL, Delgado C, Bao Y, Kurella Tamura M. Frailty and dialysis initiation. Semin Dial. 2013;26(6):690-696.
5. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):M146-156.
6. Musso CG, Jauregui JR, Macias Núñez JF. Frailty phenotype and chronic kidney disease: a review of the literature. Int Urol Nephrol. 2015;47(11):1801-1807.
7. Musso CG. Geriatric nephrology and the ‘nephrogeriatric giants’. Int Urol Nephrol. 2002;34(2):255-256.
8. Aiello F, Dueñas EP, Musso CG. Senescent Nephropathy: The New Renal Syndrome. Healthcare (Basel). 2017 Oct;5(4):E81.
9. Hilt NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One. 2016 Jul;11(7):e0158765.
10. USRDS: 2015 Annual Data Report: Volume 2 – Endstage Renal Disease (ESRD) in the United States. United States (MI). United States Renal Data System.
11. Prakash S, O’Hare A M. Interaction of aging and chronic kidney disease. Semin Nephrol. 2009 Sep;29(5):497-503.
12. Informe de Diálisis y Trasplante 2016.
13. Park JY, Yoo KD, Kim YC, Kim DK, Joo KW, et al. Early dialysis initiation does not improve clinical outcomes in elderly end-stage renal disease patients: A multicenter prospective cohort study. PLoS One. 2017 Apr;12(4):e0175830.
14. Rosansky SJ, Schell J, Shega J, Scherer J, Jacobs L, et al. Treatment decisions for older adults with advanced chronic kidney disease. BMC Nephrol. 2017 Jun;18(1):200.
15. Tattersall J, Farrington K, Gentle G, Kooman J, Macias Núñez JF, et al. European Renal Best Practice Guidelines Group and the European Union of Geriatric Medicine Societies (EUGMS). Is Kt/V useful in elderly dialysis patients? Pro- and Con arguments. Nephrol Dial Transplant. 2018 May;33(5):742-750.
16. Musso CG. Clinical catastrophe events in geriatrics: its physiopathological bases. Electron J Biomed Hospital Italiano de Buenos Aires – Argentina; August 2005;2;9-12.
17. Brown EA, Finkelestein FO, Iyasere OU, Kliger AS. Peritoneal or hemodialysis for the frail elderly patient, the choice of 2 evils? Kidney Int. 2017 Feb;91(2):294-303.
18. Grubbs V, Tuot DS, Powe NR, O’Donoghue D, Chesla CA. System-Level Barriers and Facilitators for Foregoing or Withdrawing Dialysis: A Qualitative Study of Nephrologists in the United States and England. Am J Kidney Dis. 2017 Nov;70(5):602-610.
19. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol. 2002 May;13(5):1307-20.
20. Unruh M, Benz R, Greene T, Yan G, Beddu S, et al. HEMO Study Group. Effects of hemodialysis dose and membrane flux on health-related quality of life in the HEMO Study. Kidney Int. 2004 Jul;66(1):355-66.
21. Macias-Nunez JF, Deira J, Suarez MA, Piquero L, Musso CG. What does an adequate dialysis dose in the elderly mean? Usefulness of Kt/V, functional status and incremental dialysis in elderly patients. Int J Ren Dis Ther. 2018;1:1-3.
22. Obi Y, Streja E, Rheem CM, Ravel V, Amin AN, et al. Incremental Hemodialysis, Residual Kidney Function, and Mortality Risk in Incident Dialysis Patients: A Cohort Study. Am J Kidney Dis. 2016 Aug;68(2):256-265.
23. Grubbs V, Moss AH, Cohen LM, Fischer MJ, Germain MJ, et al. A palliative approach to dialysis care: a patient-centered transition to the end of life. Clin J Am Soc Nephrol. 2014 Dec;9(12):2203-2209.
24. Thorsteinsdottir B, Swetz KM, Albright RC. The Ethics of Chronic Dialysis for the Older Patient: Time to Reevaluate the Norms. Clin J Am Soc Nephrol. 2015 Nov;10(11):2094-2099.
25. Jassal SV. Geriatric Assessment, Falls and Rehabilitation in Patients Starting or Established on Peritoneal Dialysis. Perit Dial Int. 2015 Nov;35(6):630-634.
26. Sheshadri A, Johansen KL. Prehabilitation for the Frail Patient Approaching ESRD. Semin Nephrol. 2017 Mar;37(2):159-172.