Diabetes and Cancer

Two main questions:
Diabetes and Cancer

Two main questions:

▸ Do diabetes patients get cancer more often than non-diabetics?
 — cancer incidence studies

▸ Do cancer patients with diabetes die earlier than cancer patients without diabetes?
 — cancer survival studies

▸ Combination (ignoring the cancer diagnosis):
 Do diabetes patients die more frequently from cancer than non-diabetics?
 — cancer mortality studies
Diabetes and Cancer

Two main questions:

▶ Do diabetes patients get cancer more often than non-diabetics?
 — cancer incidence studies
▶ Do cancer patients with diabetes die earlier than cancer patients without diabetes?
 — cancer survival studies
Diabetes and Cancer

Two main questions:

- Do diabetes patients get cancer more often than non-diabetics? — cancer incidence studies
- Do cancer patients with diabetes die earlier than cancer patients without diabetes? — cancer survival studies
- Combination (ignoring the cancer diagnosis): Do diabetes patients die more frequently from cancer than non-diabetics? — cancer mortality studies
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- You cannot randomize people to
 - Diabetes
 - OAD
 - Insulin
 - ...
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- You cannot randomize people to
 - Diabetes
 - OAD
 - Insulin
 - ...

- Cancer is a rare disease, so a trial with cancer as outcome must be
 - excessively large (or long)
 - confined to an extreme high-risk group
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- You cannot randomize people to
 - Diabetes
 - OAD
 - Insulin
 - ...

- Cancer is a rare disease, so a trial with cancer as outcome must be
 - excessively large (or long)
 - confined to an extreme high-risk group

So, no trials exist or will be done
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

▶ All studies are observational
▶ All studies are subject to confounding by indication
▶ There is no remedy for this
▶ What I show is therefore a description of cancer occurrence in (various groups of) diabetes patients.
▶ Causal interpretations are purely speculation.
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are observational

Causal interpretations are purely speculation.
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are **observational**
- All studies are subject to **confounding by indication**
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are **observational**
- All studies are subject to **confounding by indication**
- There is no remedy for this
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

▶ All studies are **observational**
▶ All studies are subject to **con founding by indication**
▶ There is no remedy for this
▶ What I show is therefore a **description** of cancer occurrence in (various groups of) diabetes patients.
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are observational
- All studies are subject to confounding by indication
- There is no remedy for this
- What I show is therefore a description of cancer occurrence in (various groups of) diabetes patients.
- Causal interpretations are purely speculation.
Cancer mortality & treatment

Bowker et al. [1] found for cancer mortality:

	Patients	Deaths	RR	95% c.i.
Oral antidiabetica:				
Metformin	6,969	245	1.0	(ref)
Sulfonylurea	3,340	162	1.3	(1.1–1.6)
Insulin use:				
No insulin use	8,866	323	1.0	(ref)
Insulin use	1,443	84	1.9	(1.5–2.4)

This general pattern is repeatedly reported since then.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
- All based on 1–4 years of follow-up after drug initiation.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
- All based on 1–4 years of follow-up after drug initiation.
- All based on comparison of heavily selected subgroups of patients.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
- All based on 1–4 years of follow-up after drug initiation.
- All based on comparison of heavily selected subgroups of patients.
- Some were methodologically flawed.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
 - All based on 1–4 years of follow-up after drug initiation.
 - All based on comparison of heavily selected subgroups of patients.
 - Some were methodologically flawed.

There is biological reason to suspect insulin/analogs for a role in cancer promotion. But evidence is weak and data are limited.
Graphical overview
Graphical overview

Well

DM

Ca (W)

Ca (DM)
Graphical overview

Well

DM

Ca (W) → Dead (Ca)

Ca (DM) → Dead (Ca)
Graphical overview

Well

DM

Ca (W)
Dead (O)
Dead (O)

Ca (DM)
Dead (O)

Ca (DM)
Dead (O)

Dead (Ca)

Dead (Ca)
Cancer incidence

Well

Ca (W)

Dead (Ca)

Dead (O)

DM

Ca (DM)

Dead (Ca)

Dead (O)

Well

Ca (W)

Dead (Ca)

Dead (O)

DM

Ca (DM)

Dead (Ca)

Dead (O)
Cancer survival

Well

DM

Ca (W) Dead (Ca)
Dead (O)
Ca (DM) Dead (Ca)
Dead (O)

Dead (Ca)
Cancer mortality

Well

DM

Dead (O)

Ca (W)

Dead (Ca)

Ca (DM)

Dead (Ca)

Dead (O)
Cancer mortality

Well

DM

Ca (W)

Dead (Ca)

Dead (O)

Ca (DM)

Dead (Ca)

Dead (O)
The Danish study

- Cancer incidence study in the total population.
The Danish study

- Cancer incidence study in the total population.
- Comparing diabetes patients with non-diabetes patients.
The Danish study

- Cancer incidence study in the total population.
- Comparing diabetes patients with non-diabetes patients.
- Outcome: Rate-ratio of cancer occurrence between DM-paitiens and non-DM persons in the entire population
The Danish study

- Cancer incidence study in the total population.
- Comparing diabetes patients with non-diabetes patients.
- Outcome: Rate-ratio of cancer occurrence between DM-patients and non-DM persons in the entire population.
- Results broadly confirm previous findings [7, 8]
All malignant neoplasms
Oesophagus
Stomach
Colorectal cancer
Ascending colon
Transverse colon
Descending and sigmoid colon
Rectum
Liver
Pancreas
Lung, bronchus and pleura
Melanoma of skin
Breast
Cervix uteri
Corpus uteri
Ovary, fallopian tube etc.
Prostate
Testis
Kidney
Urinary bladder
Brain
Thyroid
Hodgkin's lymphoma
Non–Hodgkin lymphoma
Multiple myeloma
Leukaemia

RR, DM vs. non–DM

0.5 0.7 1.0 1.5 2.0 3.0 4.0 5.0

13553
10293
272
73
345
159
2003
1415
361
428
201
169
620
373
702
441
778
673
2040
1292
352
246
17
2420
240
157
0
634
0
351
2664
44
0
379
228
1228
289
252
193
32
52
46
25
358
259
184
111
329
228

10293
272
73
345
159
2003
1415
361
428
201
169
620
373
702
441
778
673
2040
1292
352
246
17
2420
240
157
0
634
0
351
2664
44
0
379
228
1228
289
252
193
32
52
46
25
358
259
184
111
329
228
The Danish study — overall

- All cancers: $RR = 1.2$

- Digestive system: $RR \approx 1.2$, varying between sites

- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$

- Pancreas: $RR = 2.8$

- Lung: $RR = 1.15$

- Endometrium: $RR = 1.6$

- Kidney: $RR = 1.7$

- Bladder: $RR_{Men} = 1.2$, $RR_{Women} = 1.0$

- Prostate: $RR = 0.95$

- Brain, lymphomas: $RR = 1.2$
The Danish study — overall

- All cancers: RR = 1.2
- Digestive system: RR \(\approx 1.2 \), varying between sites
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{\text{Men}} = 4$, $RR_{\text{Women}} = 1.8$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
The Danish study — overall

- All cancers: $\text{RR} = 1.2$
- Digestive system: $\text{RR} \approx 1.2$, varying between sites
- Liver: $\text{RR}_{\text{Men}} = 4$, $\text{RR}_{\text{Women}} = 1.8$
- Pancreas: $\text{RR} = 2.8$
- Lung: $\text{RR} = 1.15$
- Endometrium: $\text{RR} = 1.6$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
- Bladder: $RR_{Men} = 1.2$, $RR_{Women} = 1.0$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
- Bladder: $RR_{Men} = 1.2$, $RR_{Women} = 1.0$
- Prostate: $RR = 0.95$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
- Bladder: $RR_{Men} = 1.2$, $RR_{Women} = 1.0$
- Prostate: $RR = 0.95$
- Brain, lymphomas: $RR = 1.2$
How the Danish study really was

Well

DM

Ca (W)
Dead (O)

Ca (DM)
Dead (O)

Dead (Ca)

Dead (Ca)
How the Danish study really was
Danish study

Published in Diabetologia 2012 [9]:
B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
 - Duration of diabetes (time since diagnosis)
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
 - Detection effects: DM and Ins
Danish study

- Published in Diabetologia 2012 [9]: B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
 - Detection effects: DM and Ins
 - Non-ins user long term RR: 1.1
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Only new cases of diabetes (1995–2009)
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
 - Detection effects: DM and Ins
 - Non-ins user long term RR: 1.1
 - Insulin user long term RR: 1.3
Questions on incidence

- Does cancer incidence vary with diabetes duration?
Questions on incidence

- Does cancer incidence vary with diabetes duration?
- Does cancer incidence vary with duration of insulin use?
Questions on incidence

- Does cancer incidence vary with diabetes duration?
- Does cancer incidence vary with duration of insulin use?
- What is the cumulative risk of cancer?
All malignant neoplasms

Rate ratio DM+Ins vs DM

Insulin duration (years)

M F
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
- Take into account that patients die too

NOTE: this also involves the mortality rates!
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
- Take into account that patients die too
- — from other causes (\emph{i.e.} before they get cancer)
Cumulative risk of cancer

This is asking the question(s):

► What fraction of patients will have a cancer diagnosis within the next X years?
► Take into account that patients die too
► — from other causes (i.e. before they get cancer)
► NOTE: this also involves the mortality rates!
Cumulative risk of cancer

Well

DM

DM+Ins

Ca (W) Dead (Ca)
Dead (O)

Ca (DM) Dead (Ca)
Dead (O)

Ca (Ins) Dead (Ca)
Dead (O)
Cumulative risk of cancer

Well
Ca (W) Dead (Ca)
Dead (O)
DM
Ca (DM) Dead (Ca)
Dead (O)
DM+Ins
Ca (Ins) Dead (Ca)
Dead (O)
Cumulative risk of cancer

Age at start: 60 years
Age at start: 65 years
Age at start: 70 years

10 year cumulative risks of cancer and death

Age at start: 60 years
Age at start: 65 years
Age at start: 70 years
Conclusion

1. Detection “bias”
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
Conclusion

1. Detection “bias”

2. ⇒ overall effects on incidence must evaluated in the long term

3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.

4. Insulin treated generally higher than non-insulin treated.
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
5. Lung cancer elevated only for insulin treated.
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
5. Lung cancer elevated only for insulin treated.
6. No signal for breast cancer
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
5. Lung cancer elevated only for insulin treated.
6. No signal for breast cancer
7. Smaller incidence rates for prostate, more so by time.
Coarse survival study of Danish cancer pt.:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
Coarse survival study of Danish cancer pts:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
Coarse survival study of Danish cancer ptts:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
Coarse survival study of Danish cancer pt:tt:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
 - Diabetes, treated with medication other than insulin

Mortality rate-ratio relative to the non-diabetic cancer patients 27/ 32
Coarse survival study of Danish cancer patients:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
 - Diabetes, treated with medication other than insulin
 - Diabetes, treated with insulin
Coarse survival study of Danish cancer pts:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
 - Diabetes, treated with medication other than insulin
 - Diabetes, treated with insulin

- Mortality rate-ratio relative to the non-diabetic cancer patients
Mortality of (all) Danish cancer ptts:

- Colorectal
- Liver
- Pancreas
- Lung
- Melanoma
- Breast
- Cervix uteri
- Endometrium
- Ovary
- Prostate
- Kidney
- Bladder

Mortality RR vs. non-DM

No med	OAD	Insulin
3633 | 2362 | 973
262 | 376 | 237
1095 | 758 | 602
2877 | 1891 | 1034
781 | 373 | 187
3221 | 1428 | 719
209 | 78 | 56
747 | 411 | 206
366 | 191 | 108
2817 | 1692 | 593
577 | 365 | 206
1661 | 1031 | 425

No medication (No med)
Interpretation

- Causality is unknown — all studies are necessarily observational

- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary lifestyle, eating habits...

- Actual effects of drugs:
 - Metformin: Inhibition of tumour growth
 - Insulin: Promotion of tumour growth
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary lifestyle, eating habits ...
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary life style, eating habits ...
 - Actual effects of drugs:
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary life style, eating habits . . .
- Actual effects of drugs:
 - Metformin: Inhibition of tumour growth
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary lifestyle, eating habits...
- Actual effects of drugs:
 - Metformin: Inhibition of tumour growth
 - Insulin: Promotion of tumour growth
Conclusion

- Diabetes patients have overall 20% higher rates of cancer
- Varies dramatically by duration — highest in the beginning
- Long-term excess is 10% for ptt. not on insulin
- Long-term excess is 30% for ptt. on insulin
- Overall analyses suggest that patients on Metformin relative to SU have lower:
 - Cancer rates
 - Mortality rates
References

S.L Bowker, S.R. Majumdar, P. Veugelers, and J.A Johnson. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29:254–258, 2006.

L. G. Hemkens, U. Grouven, R. Bender, C. Günster, S. Gutschmidt, G. W. Selke, and P. T. Sawicki. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia, 52:1732–1744, Sep 2009.

J. M. Jonasson, R. Ljung, M. Talbäck, B. Haglund, S. Gudbjörnsdóttir, and G. Steineck. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia, 52:1745–1754, Sep 2009.

H. M. Colhoun and the SDRN Epidemiology Group. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia, 52:1755–1765, Sep 2009.
C. J. Currie, C. D. Poole, and E. A. Gale.
The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. *Diabetologia*, 52:1766–1777, Sep 2009.

U. Smith and E. A. Gale.
Does diabetes therapy influence the risk of cancer? *Diabetologia*, 52:1699–1708, Sep 2009.

H. O. Adami, J. McLaughlin, A. Ekbom, C. Berne, D. Silverman, D. Hacker, and I. Persson.
Cancer risk in patients with diabetes mellitus. *Cancer Causes Control*, 2:307–314, Sep 1991.

L. Wideroff, G. Gridley, L. Mellemkjær, W. H. Chow, M. Linet, S. Keehn, K. Borch-Johnsen, and J. H. Olsen.
Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. *J. Natl. Cancer Inst.*, 89:1360–1365, Sep 1997.

B. Carstensen, D. R. Witte, and S. Friis.
Cancer occurrence in Danish diabetic patients: duration and insulin effects. *Diabetologia*, 55(4):948–958, Apr 2012.