Long non-coding RNAs and complex diseases: from experimental results to computational models

Xing Chen*, Chenggang Clarence Yan*, Xu Zhang* and Zhu-Hong You

Abstract

LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of IncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that IncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of IncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of IncRNAs, five important IncRNA-related diseases, five critical disease-related IncRNAs and some important publicly available IncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of IncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available IncRNA-disease associations and predicting potential human IncRNA-disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at IncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related IncRNAs on a large scale and select the most promising disease-related IncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for IncRNA research.

Key words: long non-coding RNA; complex disease; IncRNA-disease association prediction; computational model; machine learning; biological network

LncRNA

According to the well-known central dogma of molecular biology, genetic information is stored in protein-coding genes [1–6]. Therefore, non-coding RNAs (ncRNAs) have been considered to be transcriptional noise for a long time until more and more evidences showed up and challenged this traditional view [7]. Protein-coding genes only account for approximately 1.5% of the whole genome, which means more than 98% of the human
Long non-coding RNAs and complex diseases

Long non-coding RNAs (lncRNAs) are a major class of important heterogeneous ncRNAs with the lengths more than 200 nucleotides [11–13]. Recently, lncRNAs have attracted much attention from researchers because increasing evidences indicated that lncRNAs play critical roles in multiple biological processes based on diverse underlying mechanisms, such as epigenetic regulation, chromatin remodeling, gene transcription, protein transport, trafficking, cell differentiation, organ or tissue development, cellular transport, metabolic processes and chromosome dynamics [14–20]. Accumulating evidences have further demonstrated that mutations and dysregulations of these lncRNAs are associated with the development and progression of various complex human diseases [21], such as prostate cancer [22, 23], colon cancer [24], lung cancer [25], Alzheimer’s diseases (AD) [26], cardiovascular diseases [27], leukemia [28], diabetes [29], AIDS [30] and neurodegeneration diseases [31]. For instance, lncRNA HOTAIR, PCA3 and UCA1 have been treated as potential markers of hepatocellular carcinoma recurrence [32], prostate cancer aggressiveness [33] and bladder cancer detection, respectively [34, 35]. However, the general features of most lncRNAs, such as structure, transcriptional regulation, functions and molecular mechanisms in multiple biological processes or various diseases, still largely remain elusive [15, 16].

LncRNA discovery and classification

With the emergence of sequencing technologies and computational algorithms for lncRNA discovery, more and more lncRNAs are being identified and characterized at a rapid pace in eukaryotic organisms ranging from nematodes to humans [36–39]. For example, the discoveries of two well-known lncRNAs, H19 and X-inactive-specific transcript (Xist), could be traced back to the early 1990s based on the traditional gene mapping [40–44]. Guttman et al. [45] developed a new genome-wide approach and identified 1600 novel large intervening non-coding RNAs (lincRNAs) across four mouse cell types using chromatin marks for promoter regions and gene bodies and gene expression data. Furthermore, they developed a functional genomics approach to assign putative functions to each lncRNA and demonstrate various critical functional roles of lncRNAs [45]. Cabili et al. [46] presented an integrative approach to build the human lincRNA catalog including more than 8000 lincRNAs across 24 different human cell types and tissues based on chromatin marks and RNA-sequencing data and characterize them by more than 30 properties, such as their sequence, structure and orthology features. A large number of lincRNAs have been recorded in biological databases such as lncRNAdb [39, 47], NONCODE [48–52], PLncDB [53] and LNCipedia [37, 38]. For example, there are 487 164 lincRNA transcripts and 324 646 lncRNA genes from 16 species (such as human, mouse, cow and rat) in NONCODE [48–52].

Increasing evidences reveal that human transcriptome is much more complex than what we thought. Based on their different features, lncRNAs could be further divided into the different subgroups as follows [16]: LincRNA [45, 54], long intronic ncRNA [55, 56], transcribed pseudogene [57, 58], transcribed ultraconserved region [28], natural antisense transcript (NAT) [59–61], promoter-associated long RNA [62], promoter upstream transcript [63], repetitive element-associated ncRNA [64–66] and enhancer-like ncRNA [7, 67]. LncRNAs could also be classified in the following three ways according to their positions relative to protein-coding genes [68, 69]: sense or antisense (classified according to whether the lncRNAs are on the same strand of the nearest protein-coding genes or not) [70], divergent or convergent (classified according to in which way the lncRNAs are transcribed compared with the nearest protein-coding genes) [12] and intronic or intergenic (classified according to the lncRNAs’ relative locations to protein-coding genes: inside the introns of a protein-coding gene or in the interval regions between two protein-coding genes) [12, 71, 72].

LncRNA function

In the past, the functionality of lncRNAs caused much controversy (even regarded as transcriptional noises) because of their relatively less cross-species conservation, lower expression levels and higher tissue specificity than protein-coding genes [69, 73, 74]. Furthermore, experimental results indicated that lncRNAs tend to have longer, but fewer, exons [11, 46, 75]. With the rapid development of biological technology and computational models, a growing number of evidences suggest that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms [15, 76]. LncRNAs are confirmed to play diverse and important roles in many fundamental and critical biological processes, including transcriptional and post-transcriptional regulation, epigenetic regulation, organ or tissue development, cell differentiation and apoptosis, cell cycle control, cellular transport, metabolic processes, chromosome dynamics, etc. [3, 18, 77–82].

More and more examples indicated that lncRNAs take the role of signal, decoy, scaffold and guide capacities at almost every stage of gene expression [83]. In addition, considering the fact that lncRNA is large and has a complex secondary and tertiary structure, recent studies also revealed that lncRNAs could bind to DNA, RNA or protein and modulate their functions [7]. Specially, Fendrr, an important and essential lncRNAs for heart and body wall development in the mouse, could interact directly with DNA [84]. It has been observed that the functional properties of lncRNAs are mainly related to their secondary structures [79]. Furthermore, the chromatin modification could be caused by the transcription-independent and transcription-dependent mechanisms of lncRNAs [85–87]. LncRNAs could also be involved in epigenetic silencing by recruiting chromatin remodeling complexes [86]. It is further observed that some lncRNAs usually interact with more than one chromatin-modifying complex [86]. For example, molecular investigations revealed that lncRNAs such as Kcnq1ot1, Airn, Xist and HOTAIR are associated with chromatin remodeling complexes such as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) [86, 88–96]. In addition, the mutations and dysregulations of lncRNAs are confirmed to be associated with diverse human diseases [83].

Although there are a large number of annotated lncRNAs, only a few lncRNAs have been extensively studied for the identification of their possible functions and the possible molecular mechanism underlying [40, 45]. Therefore, it is a big challenge for both experimental researches and computational biology to accurately identify the functions of lncRNAs [45].
LncRNA–disease associations

Considering the various functions of lncRNAs, it is not surprising to find that the mutations and dysregulations of lncRNAs are closely related to the development and progression of many kinds of human diseases [2, 16, 69, 82, 97–99], such as breast cancer [21, 100], prostate cancer [22, 23], hepatocellular cancer (HCC) [101], colon cancer [24], bladder cancer [34], thyroid cancer [102], lung cancer [25, 103], ovarian cancer [104], AD [26], diabetes [29, 105] and AIDS [30]. Based on the comprehensive lncRNA–disease associations in the lncRNADisease database (http://www.cuilab.cn/lncrnadisease), there have been more than 200 diseases associated with various lncRNAs and more than 300 lncRNAs playing critical roles in various human complex diseases [106].

LncRNAs could function as potential biomarkers for disease diagnosis, treatment and prognosis, and potential drug targets for drug discovery and clinical treatment [97]. For example, lncRNA HOTAIR is treated to be potential biomarker of HCC recurrence and breast cancer detection based on its overexpression from hundreds to even nearly two-thousand-fold in the quantitative Polymerase Chain Reaction (PCR) [21, 107]. Furthermore, lncRNA PCA3 has been confirmed to be related to the formation of prostate cancer aggressiveness by showing 60 times expression levels in prostate tumors compared with normal tissues [33]. lncRNA BC200 is expressed in many kinds of cancers, such as breast, cervix, esophagus, lung, ovary, parotid and tongue cancer, but not in corresponding normal tissues [108]. Another example is lncRNA UCA1, which could contribute to the diagnosis of bladder cancer [35]. In summary, many lncRNAs have been connected to more than one disease, and one disease can be associated with various lncRNAs. Some representative human complex diseases and lncRNAs were introduced as follows.

Breast cancer

Breast cancer is one of the most frequently diagnosed cancer which comprises 22% of all cancers in women worldwide [109, 110]. Histopathological features of breast cancer, such as tumor size, grade and lymph node status, could assist the diagnosis of breast cancer [111]. Experiments indicate that multiple molecular alterations could cause the formation of breast cancer. Especially, many lncRNAs were known to be associated with the formation and development of breast cancer. Some lncRNAs’ overexpression could enhance the carcinogenicity of breast cancer cells [112]. For example, lncRNA H19 has great effects in primary breast carcinoma [113, 114]. Down-regulation of H19 significantly reduced the anchorage-independent growth of breast cancer as well as lung cancer [115]. Besides, lncRNA BC200 was found to be expressed in the breast cancer and could be used to predict the tumor development which would benefit the diagnosis and treatment of breast cancer [108, 116]. Furthermore, CDKN2B-AS1 mainly expressed co-clustered with p14/ARF in human breast tumors [117]; GAS5 was also linked with breast cancer because its transcript levels were significantly reduced compared to unaffected normal breast epithelia [118, 119]; amplification of PVT1 could contribute to the pathophysiology of breast cancer [104]. What’s more, XIST, KCNQ1OT1 and NEAT1 were also experimentally confirmed to be closely related to breast cancer [120–122].

Lung cancer

Lung cancer is the leading cause of cancer-related deaths worldwide, with the mortality even higher than the combination of colon, breast and prostate cancers [105, 123–125]. Furthermore, the data collected in the recent 5 years further suggested that the survival rate of lung cancer patients (~15%) is much lower than other cancers [126]. According to the disease patterns and treatment strategies, lung cancer could be roughly divided into non-small cell lung cancer (NSCLC) (80.4%) and small cell lung cancer (SCLC) (16.8%) [124]. Biological experiments demonstrated that lncRNA BCYRN1 was expressed in the tissues of the lung, breast, cervix, esophagus, ovary, parotid and tongue cancer, but it was not expressed in corresponding normal tissues [108]. lncRNA H19 was also confirmed to be associated with lung cancer. Experiments showed that lung cancer cell clonogenicity and anchorage-independent growth would be significantly decreased when H19 was downregulated [113]. Besides, the expression of the tumor suppressor lncRNA GASS was also found significantly downregulated in lung cancer tissues [127].

Hepatocellular carcinoma (HCC)

As the third leading cause of cancer deaths worldwide with the surveillance rates below 20%, HCC is a big threat to human healthy in many countries [128–130]. As far as we know, many factors are closely related to the formation of HCC, such as the infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), aflatoxin B1 intake, alcohol consumption, non-alcoholic fatty liver disease and some hereditary diseases [128, 131]. Especially, the incidence of HBV and HCV is high in Asia and Africa, which largely leads to the development of HCC [132, 133]. Recently, more and more evidences demonstrated that lncRNAs have been involved in HCC. LncRNA Dreh can modify the expression and reorganization of vimentin through binding to vimentin to inhibit HCC metastasis [134, 135]. In addition, lncRNA HOTAIR, LALR and HULC can impact proliferation of hepatoma cells through targeting various key regulators of different pathways in HCC [128, 135]. Particularly, HULC’s depletion gave rise to a significant abnormality of several genes related to HCC [136]. Furthermore, lncRNA ATB was suggested to be associated with poor prognosis of HCC since it could promote HCC cell invasion and the invasion-metastasis cascade in HCC [137]. Braconi et al. [135] also found that the expression of MEG3 was markedly reduced in four human HCC cell lines compared with normal liver cells. Another downregulated lncRNA LET played a critical role in hypoxia-induced metastasis in HCC [135, 138].

Alzheimer’s disease

According to recent studies, the number of people with dementia worldwide is increasing at a rapid pace [139]. AD is a chronic progressive neurodegenerative disorder, which is caused by the loss of synapses and neurons in specific brain regions such as the CA1 region of hippocampus [140, 141]. Accumulating researches indicated that lncRNAs such as BACE1-AS and BC200 were closely related to AD. For example, the expression of BACE1-AS could drive rapid feed-forward regulation of beta-secretase in AD [26]. Furthermore, compared with age-matched normal brains, significant upregulation of BC200 RNA was found in brain areas that are involved in AD [142, 143]. Furthermore, BC200 expression levels tend to increase with the progression of AD [142, 143].
Heart failure (HF)

HF is a complex clinical syndrome with high concurrent rate and mortality rate [144–146]. Recent studies have found several lncRNAs associated with HF (such as Fendrr [84], Trpm3 and Scarb2 [144]) and revealed the critical functions of these lncRNAs in heart development and HF. These lncRNAs would have important therapeutic potential for HF [147]. For example, tissue-specific lncRNA Fendrr is an essential regulator of heart development [84]. Furthermore, lncRNA Nkx2-5 is a genetic modifier of myotonic muscular dystrophy RNA toxicity, which has important functionality in heart dysfunction [19]. The mitochondrial lncRNA LIPCAR was downregulated early after myocardial infarction but upregulated in later stages. Therefore, LIPCAR could be used to predict survival for the patients with HF and identify the state of patients’ cardiac remodeling independent to other risk markers associated with cardiovascular deaths [148].

MEG3

Recent studies showed that some lncRNAs, such as MEG3, HOTAIR, lincRNA-p21 and MALAT-1, work as “tumor-suppressor ncRNAs” or “oncogenic ncRNAs” and play a major role in the development of various cancers (breast cancer, lung cancer, HCC, colon cancer, chronic myeloid leukemia, prostate cancer, etc.) [25]. For example, a pituitary-derived MEG3 isoform could inhibit cancer cell proliferation to some extent [25, 149]. The locus of MEG3 has been predicted to be associated with the pathogenesis and progression of several kinds of tumors, such as meningiomas, nasopharyngeal carcinoma, colorectal carcinoma and leukemia [150]. It was observed that the DLK1-MEG3 locus was silenced and there was no allele loss at the MEG3 gene locus in human non-functioning pituitary tumors [150–152]. Furthermore, the imprinted DLK1-MEG3 gene region on chromosome 14q32.2 would also have influence on susceptibility to type 1 diabetes [153].

H19

H19 has been used as sensitivity diagnostic marker of many important human diseases [154, 155]. For example, upregulated H19 can regulate ID2 expression to promote bladder cancer cell proliferation [156]. Downregulated H19 can stimulated melanogenesis in melisma and may cause melanoma [157]. Furthermore, epigenetic dysregulation of H19 was associated with diseases such as pituitary adenoma and Prader–Willi syndrome [158]. Studies showed that about 37% of patients with Wilms’ tumor may be caused by H19 epimutation [159]. H19 could be used to distinguish whether disease is geneogenous for patients with Beckwith–Wiedemann syndrome [160]. In addition, H19 is also frequently overexpressed in myometrium and stroma during pathological endometrial proliferative events and thus may function as tumor suppressor of kidney cancer [154, 161].

HOTAIR

The expression level of HOTAIR would significantly increase in various cancers such as breast cancer [21], lung cancer [162] and HCC [32, 163]. The expression of HOTAIR in primary breast tumors has been treated as an effective prognosis marker of patient survival [164] considering that it showed positive association with breast cancer invasiveness and metastasis [21]. HOTAIR was also confirmed to be upregulated in lung cancer cells based on a three-dimensional organotypic culture model [165]. As a potentially useful biomarker and drug target in malignant gastrointestinal stromal tumor (GIST), frequent upregulation of HOTAIR was detected in GIST [166]. Furthermore, HOTAIR was also regarded as a negative prognostic factor in both primary tumors and blood of colorectal cancer patients [167]. HOTAIR can also be used as an independent prognostic factor of tumor recurrence for HCC patients after liver transplantation [32, 106]. Another example demonstrated that HOTAIR could function as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer [167, 168].

MALAT1

MALAT1 was found to be overexpressed in many solid tumors such as lung cancer, cervical cancer, colorectal cancer and HCC [98]. Specially, it was regarded as a decisive regulator of the metastasis phenotype of lung cancer cells [169] because of its regulation of alternative splicing [170]. Furthermore, MALAT1 expression is three-fold higher in metastasizing tumors like NSCLC than in non-metastasizing tumors. As the oncogene of bladder cancer and kidney cancer, MALAT1 also plays a critical role in cell migration and tumor metastasis [169, 171]. MALAT1 was also treated as a putative marker for prostate cancer [172].

PVT1

PVT1 has close associations with various complex diseases. For example, it has been demonstrated that PVT1 may contribute to the development and progression of diabetic nephropathy [29]. Furthermore, the overexpression of PVT1 caused by genomic abnormalities contributed to ovarian pathogenesis [104]. What’s more, the identification of chromosome 15 locus for plasmacytoma variant (6; 15) translocations suggested that PVT1 is associated with some murine T lymphomas [173]. In addition, PVT1 works as the site of reciprocal translocations to immunoglobulin loci in tumors like Burkitt’s lymphoma and plasmacytomas [174].

Databases

A plenty of lncRNA-related databases have been constructed recently, including databases annotating lncRNA’s sequences or structures such as LNCipedia [37, 38], providing comprehensive information of lncRNAs such as NONCODE [48–52] and lncRNAWiki [175], displaying the experimentally confirmed lncRNA–disease associations such as lncRNAdisease [106] and Lnc2Cancer [176], and collecting lncRNA-related interactions such as LncRNA2Target [177] and DIANA-LncBase [178].

Databases collecting comprehensive information of lncRNAs

LNCipedia

(http://www.lncipedia.org/) [37, 38]

The latest version of this database is LNCipedia 3.1, which contains 111 685 annotated human lncRNA transcripts obtained from different sources. It also provides some additional information such as protein-coding potential, secondary structure information and microRNA (miRNA) binding sites. The database is publicly available, which allows users to download the information they need or query new information of lncRNAs, such as sequences and structures.
NONCODE database
(http://www.bioinfo.org/noncode/) [48–52]

NONCODE database is an integrated knowledge database including almost all traditional ncRNA classes (except rRNAs and tRNAs). In particular, the expression profiles and predicted functions of these lncRNAs are also included in it. It also provides a service of lncRNA identification. Users can convert the RefSeq or Ensembl ID to NONCODE ID on NONCODE. In the latest version of NONCODE 2016, the number of lncRNAs has increased sharply from 21 083 to 527336 compared with NONCODE v4.0. Specially, there are 167 150 and 130 558 lncRNAs about human and mouse, respectively. NONCODE 2016 further introduces the information of conservation annotation and lncRNA–disease associations.

LncRBase
(http://bicresources.jcbose.ac.in/zhumur/Lncrbase) [179]

LncRBase collects the information of 216 562 lncRNA transcript entries in human and mouse. The basic lncRNA transcript features and additional details on genomic location, overlapping small non-coding RNAs, associated Repeat Elements, associated imprinted genes and lncRNA promoter information are all included in it. It allows users to search for the datasets through selecting one property of lncRNA.

lncRNAWiki
(http://lncrna.big.ac.cn) [175]
lncRNAWiki is a community-curated resource of lncRNA knowledge. The lncRNA sequences and annotation information in it are collected from three databases: GENCODE (version 19; 23 898 human lncRNA transcripts) [11, 12], NONCODE (version 4.0; 95 135 human lncRNA transcripts) [48–52] and LNCipedia (version 2.1; 32 181 human lncRNA transcripts) [37, 38]. Finally, 105 255 non-redundant lncRNA transcripts are obtained from these resources. The classifications of lncRNAs based on genomic location are provided in this database. LncRNAWiki allows users to edit or download the information, or add the newly identified lncRNAs to it [175].

lncRNANome
(http://genome.igib.res.in/lncRNAome) [180]
lncRNANome is an evidence-based resource for over 17 000 lncRNAs in human. Each lncRNA has several properties: the types, chromosomal locations, description on the biological functions and disease associations of lncRNAs. Users can enter the lncRNA’s name and obtain the corresponding information about it. In addition to the information mentioned above, the methylation and histone modification, single nucleotide polymorphisms, miRNA binding sites and integrated validated lncRNA–protein interactions are all available.

lncRNAdb
(http://www.lncradb.org) [39, 47]
lncRNAdb aims to summarize the knowledge of eukaryotic lncRNAs in an easily accessible and searchable format. Each entry contains information of nucleotide sequences, genomic context, gene expression data derived from the Illumina Body Atlas, structural information, subcellular localization, conservation and function with referenced literature of each entry. It allows users to search for the information about lncRNAs and submit new entries.

GreeNC
(http://greenc.science designers.com) [181]

To facilitate the study of lncRNAs for the plant research, the GreeNC database was developed to provide information about sequence, genomic coordinates, coding potential and folding energy for all the identified lncRNAs in 37 plant species and six algae. Among more than 190 000 transcripts, more than 120 000 transcripts are annotated as lncRNAs with high confidence, with 30% of them from the Triticum aestivum (17.8%) and Zea mays (8.2%).

Databases about SNP and lncRNAs
SNP@lincTFBS
(http://bioinfo.hrbrmu.edu.cn/SPN_lincTFBS) [182]

SNP@lincTFBS was designed to promote the study and understanding of lncRNA-associated variants and provide improved convenience to identify the function of the abundance of discrepant lincRNA expression in human diseases. It contains 5835 lincRNAs, 6665 single nucleotide polymorphisms (SNPs) mapped within 6614 potential transcription factor binding sites (TFBSs) of 2423 human lincRNAs, 33 181 TFBSs of 3839 human lincRNAs from ucsc dataset and 323 256 TF peaks of 4831 human lincRNAs from ChIPseq dataset. Users can search SNP or TFBSs of human lincRNAs. This important database has great significance in identification of disease-associated lincRNA candidates.

lncRNASNP
(http://bioinfo.life.hust.edu.cn/lncRNASNP) [183]
lncRNASNP is a resource including SNPs in human/mouse lncRNAs, SNP effects on lncRNA structure and lncRNA–miRNA binding. There are 495 729 SNPs in 32 108 human lincRNA transcripts of 17 436 lincRNA genes for browse or search. In addition, users can obtain the targeted lncRNAs of a miRNA through selecting the miRNA’s name in the blank.

Databases collecting lncRNA-related interactions
DIANA-LncBase
(http://www.microrna.gr/LncBase) [178]

DINAN-LncBase is used to illustrate the assumed miRNA–lncRNA functional interactions. It consists of two distinct modules: the Experimental Module and the Prediction Module. There are more than 5000 experimentally supported interactions between 2958 lincRNAs and 120 miRNAs included in the Experimental module. Furthermore, there are more than 10 million computationally predicted interactions between 56 097 lincRNAs and 3078 miRNAs and their corresponding detailed information in the Prediction module, which is calculated based on the latest version of a state-of-the-art algorithm, DIANA-microT-CDS.

lncRNA2Target
(http://www.lncrna2target.org) [177]
lncRNA2Target is a resource of differentially expressed genes (target genes of an lncRNA) after lncRNA knockdown or overexpression. The target genes regulated by an lncRNA and the regulatory lncRNAs of a specific target gene are all available for users to search and browse. In this database, there are 26 410 human lncRNA-target associations between 82 lincRNAs and 11 605 target genes and 67 152 mouse lncRNA-target associations between 134 lincRNAs and 14 762 target genes. It also allows users to download the manually curated lncRNA-target association data in the database or submit new data to the database.
Databases collecting lncRNA–disease associations

LncRNA Disease (http://www.cuilab.cn/lncrnedisease) [106]

Chen et al. developed the LncRNA Disease database that integrated more than 1000 lncRNA–disease entries and 475 lncRNA interaction entries, including 321 lncRNAs and 221 diseases from ~500 publications. LncRNA Disease curates lncRNA interactions in various levels, including the interactions with protein, RNA, miRNA and DNA. It also provides the predicted associations between human diseases and 1564 human lncRNAs. It is also a platform that integrated tool(s) which could effectively predict novel lncRNA–disease associations. Furthermore, it allows users to browse, search or download the experimentally supported lncRNA–disease association data or lncRNA interaction data and submit new entries. Finally, users can predict potential disease-lncRNA associations based on the computational models developed in literature [184] (described in detail in the following sections) and then download the predicted association results. The prediction would be implemented by identifying lncRNAs within the regions of 50 kb from any of the disease-related genes based on the genomic context of the lncRNAs and known disease-gene associations.

Lnc2Cancer (http://www.bio-bigdata.net/lnc2cancer) [176]

Lnc2Cancer is a manually curated database that aims to provide a high-quality and integrated resource for exploring the mechanisms and functions of cancer related lncRNAs. It contains 1239 entries of associations between 579 human lncRNAs and 93 human cancers, which are collected from more than 1,500 published papers. The lncRNA and cancer name, the lncRNA expression pattern, experimental techniques, a brief functional description, the original reference and additional annotation information are all provided by Lnc2Cancer.

MNDR (http://www.rna-society.org/mndr) [185]

MNDR is a repository focused on diverse ncRNA–disease relationships in mammals that aims to provide a platform to globally view the ncRNA-mediated disease network. Totally, 807 lncRNA-associated, 229 miRNA-associated, 13 piRNA-associated and 100 snoRNA-associated entries are integrated from three mammals (866, 251 and 32 from Homo sapiens, Mus musculus and Rattus norvegicus, respectively).

Computational models

As more and more research evidences have indicated that the mutations and dysregulations of lncRNAs are closely connected to diverse human diseases, more attentions have been paid on the clarity of the functions of lncRNAs and their associations with human diseases [186–188]. Especially, computational models could be effective ways for the identification of potential lncRNA functions and lncRNA–disease associations. Here, we proposed the framework of constructing powerful computational models to predict potential lncRNA–disease associations, which includes three kinds of feasible and important research schemas.

LncRNA–disease associations could be predicted based on powerful computational models in the following three ways. First, we could construct machine learning-based models to predict potential lncRNA–disease associations based on training samples (known disease-related lncRNAs) and unlabeled samples (disease–lncRNA pairs without any known association evidences). Then, we could integrate known lncRNA–disease association network, disease similarity network and lncRNA similarity network to construct heterogeneous network and implement global network similarity-based models (such as random walk and various propagation algorithms) to uncover potential associations between lncRNAs and diseases. Most of these methods cannot be applied to new diseases (diseases without any known associated lncRNAs) and/or new lncRNAs (lncRNAs without any known associated diseases or known miRNA interaction partners). Finally, considering the fact that a plenty of disease–gene associations and disease–miRNA associations have been obtained [189–195], we could obtain potential lncRNA–disease associations based on known disease-related genes/miRNAs by constructing the relationships between gene/miRNAs and lncRNAs based on their expression levels and regulation relationship.

Machine learning-based models

Laplacian Regularized Least Squares for lncRNA–Disease Association (LRLSLDA)

Chen et al. [35] developed the powerful computational model of LRLSLDA to predict potential disease-related lncRNAs based on the semi-supervised learning framework (see Figure 1). To our knowledge, LRLSLDA is the first lncRNA–disease association prediction model, which is developed based on the basic assumption that similar diseases tend to have associations with functionally similar lncRNAs. LRLSLDA integrates the known disease–lncRNA associations and lncRNA expression profiles to jointly capture the potential associations between disease and lncRNA. LRLSLDA obtains an AUC of 0.7760 in the Leave-One-Out Cross Validation (LOOCV), significantly improving the performance of previous methods which are used to solve the similar computational biology problems. More importantly, LRLSLDA does not need the information of negative samples, which are really difficult to obtain in practical problems. Of course, there are also some limitations in the LRLSLDA. For example, many parameters appear in the model and how to select the parameters is still not well solved. Furthermore, two different scores from lncRNA and disease spaces would be obtained for the same lncRNA–disease pair.

LRLSLDA–lncRNA functional Similarity calculation model (LNC SIM)

Based on the assumption that functional similar lncRNAs are always associated with similar diseases, Chen et al. [8] developed two novel LNC SIMs by calculating semantic similarity between their associated disease groups (see Figure 2). The difference between these two models (LNC SIM1 and LNC SIM2) lies in the calculation of disease semantic similarity based on disease directed acrylic graph (DAG), which could effectively represent the relationships among different diseases. When disease semantic similarity and lncRNA functional similarity (calculated by LNC SIM) are integrated with lncRNA expression similarity, lncRNA Gaussian interaction profile kernel similarity and disease Gaussian interaction profile kernel similarity used in the previous study of LRLSLDA, new lncRNA–disease association model, LRLSLDA–LNC SIM, is obtained, which could further improve the performance of LRLSLDA for lncRNA–disease association prediction. As a result, we obtained the reliable AUCs of 0.8130 and 0.8198 in LOOCV based on two versions of lncRNA similarity scores. Limitations also existed in this method. Considering the fact that the method is based on the known lncRNA–disease associations, prediction results may produce
the bias to lncRNAs with more known associated diseases. What’s more, the selection of semantic contribution decay factor has not been well solved.

LRLSLDA–Improved lncRNA functional SIMilarity calculation model (ILNCSIM)

Huang et al. further developed the ILNCSIM based on the assumption that lncRNAs with similar biological functions tend to be involved in similar diseases \[196\]. ILNCSIM was combined with the previously proposed model LRLSLDA to quantify lncRNA–disease association probabilities by using computed lncRNA functional similarity and disease semantic similarity. The main difference between ILNCSIM and previous methods is that ILNCSIM retains the general hierarchical structure information of disease DAGs in disease similarity calculation based on an edge-based method. As a result, LRLSLDA–ILNCSIM obtained
AUCs of 0.9316 and 0.9074 based on MNDR and Lnc2cancer databases in the LOOCV and AUCs of 0.9221 and 0.9033 for MNDR and Lnc2cancer database in 5-fold cross validation, respectively. Limitations also existed in ILNCSIM. For example, the similarity scores used in the model can be further optimized by adding constant terms in calculation. The calculation result was also influenced by the lack of unrecorded but real lncRNA–disease associations. Finally, ILNCSIM still failed to integrate other types of lncRNA-related or disease-related data from biological databases. It is undoubted that the prediction performance will be further improved by integrating those additional data.

Naïve Bayesian classifier
Using known cancer-related lncRNAs, Zhao et al. [76] developed a naïve Bayesian classifier-based model based on the integration of multi-omic data, genomic, regulome and transcriptome data, to identify new cancer-related lncRNAs. The model was evaluated based on 10-fold cross validation on re-annotated publicly available exon array data of multiple cancer types and knockdown data of orthologous lncRNAs on mice. As a result, the proposed model showed a good performance and successfully identified 707 potential cancer-related lncRNAs. The important limitation of supervised classifiers, such as support vector machine (SVM) and naïve Bayesian classifier used here, is that they need the information of negative samples, which are unavailable in the current study. Therefore, they always randomly select unlabeled lncRNA–disease pairs as negative samples, which would seriously influence the prediction performance.

Biological network-based models

RWRlncD
Based on the assumption that functionally related lncRNAs tend to be associated with phenotypically similar diseases, Sun et al. [197] proposed a global network-based computational method named RWRlncD based on an lncRNA–lncRNA functional similarity network. By constructing lncRNA–disease association network, lncRNA functional similarity network and lncRNA functional similarity network, RWRlncD was proposed to infer potential human lncRNA–disease associations by implementing random walk with restart (RWR) on the lncRNA functional similarity network. RWRlncD obtained an AUC of 0.822 in LOOCV based on known experimentally verified lncRNA–disease associations. However, this method cannot be applied to the diseases without any known associated lncRNAs. The prediction performance of RWRlncD would be further improved when more lncRNA–disease associations and more accurate lncRNA functional similarity measures are available in the future.

RWR on lncRNA–PCG bipartite network
Liu et al. constructed a protein-coding gene (PCG)–lncRNA bipartite network based on lncRNAs and PCGs expression profiles in prostate cancer and protein interaction datasets and further predict cancer-related lncRNAs based on RWR [198]. However, this method was seriously affected by the incomplete protein interaction datasets.

RWRHLD
Based on the assumption that lncRNAs with more common miRNA interaction partners tend to be associated with similar diseases, Zhou et al. [199] proposed the computational model of RWRHLD to identify potential lncRNA–disease associations (see Figure 3). RWRHLD integrated three networks (miRNA-associated lncRNA–lncRNA crosstalk network by calculating shared miRNA interaction partners for each lncRNA pair, disease–disease similarity network and known lncRNA–disease association network) into a heterogeneous network and implemented a random walk on it. RWRHLD obtained a reliable AUC value of 0.871 in LOOCV based on known experimentally verified lncRNA–disease associations. However, RWRHLD is only applied to lncRNAs with known lncRNA–miRNA interactions. Furthermore, the incomplete coverage of lncRNA crosstalk network and lncRNA–disease association network will probably produce some biased predictions.

Kernel-based Random Walk with Restart in Heterogeneous (KRWRH)
The computational model of KRWRH network was proposed to predict new disease–lncRNA associations using three networks: disease–disease similarity network, lncRNA–lncRNA similarity network and known lncRNA–disease association network [200]. These networks will be integrated to construct a heterogeneous network. Then, RWR would be implemented on this heterogeneous network. The experimental results in LOOCV showed that KRWRH was able to predict known and unknown disease–lncRNA associations with a reliable performance.

KATZLDA
Chen et al. [201] developed another model called KATZLDA by integrating known lncRNA–disease associations, lncRNA expression profiles, lncRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity to uncover potential lncRNA–disease associations (see Figure 4). KATZLDA first transforms link prediction into similarity calculation between nodes and further transforms similarity calculation into counting the number of walks connecting lncRNA node and disease node in the heterogeneous network and calculating the lengths of their walks to jointly decide the potential association probability. As a result, KATZLDA obtained reliable AUCs of 0.715, 0.7886 and 0.7719 in the local LOOCV, global LOOCV and 5-fold cross validation, respectively. It is important that KATZLDA could be effectively applied to new diseases and lncRNAs without any known associations. The performance of KATZLDA can be further improved by integrating more information such as disease phenotypic similarity, known disease–genes/miRNAs associations and various lncRNA-related interactions. However, KATZLDA may cause the bias to diseases with more known related lncRNAs and lncRNAs with more known associated diseases or/and more known miRNA interaction partners.

Propagation algorithm on coding-non-coding gene–disease bipartite network
Yang et al. [202] constructed coding-non-coding gene–disease bipartite network based on known disease genes and lncRNA–disease associations and further implemented a propagation algorithm on this bipartite network to infer the underlying lncRNA–disease associations. As a result, the method obtained an AUC of 0.7881 in LOOCV. However, the lack of interactions between non-coding genes and protein-coding genes and lncRNA functional annotations affected the performance of this method.

Models not based on known lncRNA–disease associations
In the above two subsections, all the computational models need the known lncRNA–disease associations to implement prediction. However, even nowadays, known experimentally
confirmed lncRNA–disease associations are still very limited. Therefore, researchers start to predict lncRNA–disease association based on the known disease-related genes/miRNAs and the relationships between lncRNAs and genes/miRNAs.

Computational framework based on disease genes

Liu et al. [203] developed the first computational method without the need to rely on known lncRNA–disease associations to predict potential human lncRNA–disease associations by integrating known human disease genes and expression profiles of human lncRNAs and gene (see Figure 5). In this method, the lncRNAs were divided into two parts: tissue-specific and non-tissue-specific lncRNAs. They first calculated the tissue specificity scores based on the expression levels of all lncRNAs in different tissues. Then, for tissue-specific lncRNAs, this computational framework infers that there could be potential...
associations between this lncRNAs with diseases related with these human tissues. Furthermore, it could obtain related diseases for non-tissue-specific lncRNAs based on disease–gene associations and gene–lncRNA co-expression relationship. The model obtained an AUC of 0.7645 in LOOCV and the prediction accuracy of 0.89 for non-tissue-specific lncRNAs. However, this method cannot predict the associated lncRNAs for diseases with no related gene records.

Genomic location-based method
Li et al. [184] proposed a computational method based on genome location to globally screen the human lncRNAs potentially involved in vascular disease. Ten lncRNAs predicted to be associated with vascular smooth muscle cells were selected for further experimental validation to test the accuracy of the method. As a result, eight of the 10 lncRNAs (80%) were confirmed. The experimental result demonstrated the reliable prediction performance of this method and its potential value for the identification of novel lncRNAs for the diagnosis and therapy of vascular disease. However, the application scope of this method is extremely limited because not all the lncRNAs have neighbor genes and even if this lncRNA has neighbor genes, it may be not functionally related with its neighbor genes.

HyperGeometric distribution for LncRNA–Disease Association (HGLDA)
Chen [204] developed a novel computational model of HGLDA inference by integrating miRNA–disease associations and lncRNA–miRNA interactions (see Figure 6). In addition, Chen also constructed a model of LncRNA Functional Similarity Calculation based on the information of MiRNA (LFSCM) to calculate lncRNA functional similarity combining disease semantic similarity, miRNA–disease associations and lncRNA–miRNA interactions. As a result, HGLDA obtained an AUC of 0.7621 in LOOCV although it did not rely on any known disease–lncRNA associations. HGLDA has a reliable performance of predicting potential disease–lncRNA associations and could be useful in detecting biomarkers for human disease diagnosis, treatment, prognosis and prevention. However, HGLDA cannot be applied to those lncRNAs without any known miRNA interaction partners. Furthermore, considering the calculation of LFSCM, it tends to cause bias to lncRNAs with more miRNA interaction partners or/and lncRNAs with miRNA interaction partners which has been associated with more diseases.

Case studies and experimental validations
A plenty of computational models mentioned above have been successfully applied to potential disease–lncRNA association prediction. For the prediction, known lncRNA–disease associations in the databases, such as lncRNADisease [106], MNDR [185] and Lnc2Cancer [176], are used as training samples. Some of prediction results have been further confirmed by biological experiments (see Table 1). Case studies about six kinds of important human cancers are summarized as follows.

Colon cancer
Researchers have implemented the computational models of LRLSLDA–ILNCSIM [196], KATZLDA [201], HGLDA [204] and LRLSLDA–LNCSIM [8] to predict potential colon cancer-related lncRNAs. As a result, we experimentally confirmed six lncRNAs out of top 20 potential predictions based on LRLSLDA–ILNCSIM. Furthermore, four and seven out of top 10 predicted lncRNAs based on LRLSLDA–LNCSIM and KATZLDA were confirmed based on various biological experiments. For example, PVT1 (3rd in the prediction results of KATZLDA) was confirmed to be functionally correlated with the proliferation and invasion of colon cancer cells based on real-time PCR and considered to be a potential independent colon cancer biomarker for disease detection and patient survival [205]. For the computational model of HGLDA, predicted lncRNAs with false discovery rate (FDR) less than 0.05 were selected as potential colon cancer-related lncRNAs and five of them were experimentally confirmed. For example, considering the frequent occurrence of loss of...
imprinting of KCNQ1OT1 in colon cancer, it has been considered as an effective biomarker for disease diagnosis [206].

Lung cancer
The computational models of LRLSLDA–LNCSIM [8], LRLSLDA–ILNCSIM [196] and HGLDA [204] have been used for lung cancer–lncRNA association prediction. As a result, three out of top 10 (LRLSLDA–LNCSIM) and seven out of top 20 (LRLSLDA–ILNCSIM) predictions were experimentally confirmed. For example, UCA1 in the 3rd of the prediction result have been confirmed to provide the high diagnostic ability for NSCLC [207]. Furthermore, seven out of all the potential lung cancer-related lncRNAs with FDR less than 0.05 were experimentally confirmed. For example, MALAT1 is an important lung cancer metastasis biomarker, which could promote lung cancer cell motility by regulating motility related gene expression [208]. TUG could affect NSCLC cell proliferation by epigenetically regulating the expression of HOXB788 [209].

Breast cancer
HGLDA [204] was applied to breast cancer for associated lncRNA prediction and seven potential lncRNAs with significant FDR less than 0.05 have been confirmed based on biological experiments. For example, NEAT1 could play critical role in nicotine-induced breast cancer development. Further experiments indicated that breast cancer patients with high NEAT1 expression tend to have low survival rate [122, 210].

Prostate cancer
As an important human complex disease, many researchers paid much attention to predicting prostate cancer–lncRNA associations based on the computational models such as LRLSLDA–ILNCSIM [196]. Six associations were successfully predicted by computational models, such as the associations between H19, CBR3-AS1, MEG3, UCA1, KCNQ1OT1, LINCRNA-P21 and prostate cancer.

Gastric cancer
KATZLDA [201] has been successfully applied to identify potential associations between human lncRNAs and gastric cancer. Six out of top 10 predicted lncRNAs (H19, CDKN2B-AS1, MEG3, PVT1, MALAT1 and HOTAIR) have been confirmed by the experimental evidences. For examples, H19 was ranked 1st in the prediction list. Its associations with gastric cancer have been confirmed by both microarray and Qrt-PCR. In the experiments, H19 was the most upregulated lncRNA among all the 135 differentially expressed lncRNAs in gastric cancer tissues [211]. Another prediction result, MALAT1 in the 5th of the prediction results, has been confirmed to induce gastric cancer cell proliferation and have frequently upregulated expression in gastric cancer cell lines [212].

Renal cancer
Potential renal cancer–lncRNA associations have been predicted based on the computational model of KATZLDA [201]. H19, MEG3, PVT1, UCA1 and MALAT1 in the top 10 prediction results have been confirmed by biological experiments.

Discussion and conclusion
More and more lncRNAs are being identified and characterized at a rapid pace with the advances in transcriptome arrays and deep sequencing [36]. Furthermore, lncRNAs are confirmed to play critical roles in multiple biological processes [3, 18, 77–80]. Therefore, there is no surprise that lncRNAs have been closely involved in the origin and development of various human complex diseases based on a growing body of evidences [16]. The roles of lncRNAs in multiple biological processes or various diseases seem to be much more complex than what we have known from GWAS studies as well as the studies of disease processes [36]. However, so far, very little annotated lncRNAs have obvious functional annotations for the lack of evolutionary conservation of lncRNAs, the lack of common biogenesis or mechanism of action for lncRNAs, and the absence of unified...
Table 1. Predicted lncRNA–disease associations based on various computational models were successfully experimentally confirmed

Model	Disease	lncRNA	Rank
LRLSLDA–ILNCSIM	Colon cancer	UCA1	3
KATZLDA	Colon cancer	HOTAIR	13
LRLSLDA–ILNCSIM	Colon cancer	H19	1
KATZLDA	Colon cancer	MALAT1	9
HGLDA	Colon cancer	XIST	14
LRLSLDA–ILNCSIM	Colon cancer	KCNQ1OT1	7
HGLDA	Colon cancer	MALAT1	2
KATZLDA	Colon cancer	PVT1	3
LRLSLDA–LNCSIM1	Colon cancer	CRNDE	9
LRLSLDA–LNCSIM2	Colon cancer	MEG3	16
LRLSLDA–LNCSIM1	Colon cancer	HULC	19
KATZLDA	Colon cancer	CDEN2B–AS1	1
LRLSLDA–LNCSIM2	Colon cancer	HOTAIR	4
HGLDA	Lung cancer	GAS5	10
LRLSLDA–LNCSIM1	Lung cancer	UCA1	3
LRLSLDA–LNCSIM2	Lung cancer	BC200	1
LRLSLDA–LNCSIM1	Lung cancer	XIST	8
LRLSLDA–LNCSIM2	Lung cancer	MEG3	17
LRLSLDA–LNCSIM1	Lung cancer	LSINCT5	20
HGLDA	Lung cancer	EP411AA–AS1	FDR < 0.05
HGLDA	Lung cancer	MALAT1	FDR < 0.05
HGLDA	Lung cancer	TUG1	FDR < 0.05
HGLDA	Lung cancer	H19	FDR < 0.05
HGLDA	Lung cancer	NEAT1	FDR < 0.05
LRLSLDA–ILNCSIM	Prostate cancer	H9	1
HGLDA	Prostate cancer	CBR9–AS1	2
LRLSLDA–ILNCSIM	Prostate cancer	UCA1	3
LRLSLDA–ILNCSIM	Prostate cancer	KCNQ1OT1	13
LRLSLDA–ILNCSIM	Prostate cancer	LINCRNA–P21	14
KATZLDA	Gastric cancer	MALAT1	5
KATZLDA	Gastric cancer	H9	5
KATZLDA	Gastric cancer	CDEN2B–AS1	2
KATZLDA	Gastric cancer	MEG3	3
KATZLDA	Gastric cancer	PVT1	4
KATZLDA	Gastric cancer	HOTAIR	7
KATZLDA	Renal cancer	UCA1	8
KATZLDA	Renal cancer	H9	1
KATZLDA	Renal cancer	MEG3	3
KATZLDA	Renal cancer	PVT1	4
KATZLDA	Renal cancer	MALAT1	6
HGLDA	Breast cancer	MALAT1	FDR < 0.05
LRLSLDA–LNCSIM1	Breast cancer	H19	FDR < 0.05
HGLDA	Breast cancer	MEG3	FDR < 0.05
HGLDA	Breast cancer	PVT1	FDR < 0.05
HGLDA	Breast cancer	NEAT1	FDR < 0.05

(continued)
obtaining negative lncRNA–disease associations. However, to develop effective prediction, which solves the problems of disease associations and unlabeled lncRNA–disease pairs to implement effective prediction, which solve the problems of obtaining negative lncRNA–disease associations. Furthermore, the semi-supervised models such as LRLSLDA could integrate positive lncRNA–disease associations and unlabeled lncRNA–disease pairs to implement effective prediction, which solve the problems of obtaining negative lncRNA–disease associations. However, supervised learning-based models, such as SVM and naive Bayes classifier, seriously rely on negative samples which are difficult to obtain. The problems of parameter section, classifier combination and prediction bias also exist in the current machine learning-based computational models.

Nowadays, network has become an effective tool in predicting potential lncRNA–disease associations. Successful network-based models would have critical impact on timely diagnosis, personalized treatment, prognosis and personalized prevention of diseases at the level of lncRNAs. Biological network-based computational models tend to integrate known lncRNA–disease association network, disease semantic/phenotypic similarity network, and lncRNA functional similarity network obtained from known lncRNA–disease associations or lncRNA–miRNA interactions. RWR or various propagation algorithms are used to implement potential predictions on constructed heterogeneous network. The important disadvantage of most of these methods is that they may not obtain prediction results for new diseases and/or new lncRNAs. Furthermore, the incomplete coverage of lncRNA–miRNA interaction network, protein interaction network and lncRNA–disease networks will probably produce some biased prediction for lncRNAs with more known associated diseases or miRNA interaction partners which has been associated with more diseases. Nowadays, a wide range of lncRNA-related databases and web servers have been built, providing a variety of resources of lncRNAs. Therefore, making full use of different types of heterogeneous data sources will help to greatly improve the predict performance of computational predictive models. Therefore, the future direction of the network-based models could be summarized as follows. On one hand, more heterogeneous networks should be integrated, such as lncRNA–disease network, disease similarity network and lncRNA functional similarity network and lncRNA-related various interaction networks. On the other hand, new network-based computational models should be implemented on this heterogeneous network rather than the single network. In this way, for the lncRNAs without known associated diseases, we still can obtain potential associated diseases of this lncRNA based on the known heterogeneous network as long as there is at least one reachable path in the network.

As for the models which do not rely on known lncRNA–disease associations, they use other biological datasets to predict potential lncRNA–disease associations, such as gene–disease associations or miRNA–disease associations. Therefore, the incomplete human disease-associated gene/miRNA dataset will greatly affect the prediction performance of these computational models. Furthermore, the computational model based on gene genomic context could be limited by the fact that not all the lncRNAs have functionally related neighbor genes.

For most of the computational models mentioned above, the prediction performance was evaluated based on cross validation. However, recently, Park et al. [215] demonstrated that the performance evaluation based on cross validation is different for in-sample and out-of-sample associations. We have developed a computational model named LRLSLDA to predict potential lncRNA–disease associations and further evaluated the performance of LRLSLDA based on the new validation framework proposed by Park et al. [35]. As a result, LRLSLDA obtained an excellent predictive performance in different test classes. Therefore, for the lncRNA–disease association prediction, it is very important and necessary to report cross validation performance for all the four independent test classes.

Key Points

• We made a brief introduction of the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc.
• Developing effective computational models to predict potential lncRNA–disease associations from heterogeneous biological data could benefit not only better understanding of human complex diseases mechanism at lncRNA level but also biomarker detection for complex human diseases diagnosis, treatment, prognosis and prevention
• LncRNA–disease associations could be predicted based on powerful computational models in the three ways, including machine learning-based models, network-based models and models without the need to rely on known lncRNA–disease associations.
• Various computational models for potential lncRNA–disease association prediction have their advantages and disadvantages.
• Making full use of different types of heterogeneous data sources could benefit more effective identification of new lncRNA–disease interactions.

Funding

The National Natural Science Foundation of China under Grant nos. 11301517 and 61572506.

References

1. Yanofsky C. Establishing the triplet nature of the genetic code. Cell 2007;128:815–8.
2. Taft RJ, Pang KC, Mercer TR, et al. Non-coding RNAs: regulators of disease. J Pathol 2010;220:126–39.
Long non-coding RNAs and complex diseases

3. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009;23:1494–504.

4. Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008;322:1845–8.

5. Bertone P, Stolc V, Royce TE, et al. Global identification of human transcribed sequences with genome tiling arrays. Science 2004;306:2242–6.

6. Crick F, Barnett L, Brenner S, et al. General nature of the genetic code for proteins. Nature 1961;192:1227–32.

7. Mohanty V, Gökmén-Polar Y, Badve S, et al. Role of IncRNAs in health and disease—size and shape matter. Brief Funct Genomics 2015;14:115–29.

8. Chen X, Yan CC, Luo C, et al. Constructing IncRNA functional similarity network based on IncRNA–disease associations and disease semantic similarity. Sci Rep 2015;5:11338.

9. Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 2007;29:288–99.

10. Esteller M. Non-coding RNAs in human disease. Nat Rev Genomics 2011;12:861–74.

11. Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760–74.

12. Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012;22:1775–89.

13. Guttmann M, Russell P, Ingolia NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 2013;154:240–51.

14. Zhao W, Luo J, Jiao S. Comprehensive characterization of cancer subtype associated long non-coding RNAs and their clinical implications. Sci Rep 2014;4:6591.

15. Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 2013;14:651.

16. Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J Mol Sci 2013;14:18790–808.

17. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 1999;59:5975–9.

18. Managadze D, Rogozin IB, Chernikova D, et al. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs. Genome Biol Evol 2011;3:1390–404.

19. Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 2012;111:1349–62.

20. Bhartiya D, Kapoor S, Jalali S, et al. Conceptual approaches for IncRNA drug discovery and future strategies. Expert Opin Drug Discov 2012;7:503–13.

21. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010;464:1071–6.

22. Chung S, Nakagawa H, Uemura M, et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011;102:245–52.

23. Cui Z, Ren S, Lu J, et al. The prostate cancer-up-regulated long noncoding RNA PcnRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol 2013;31:1117–23.

24. Pibouin L, Villaudy J, Ferbus D, et al. Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet 2002;133:55–60.

25. Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003;88:5119–26.

26. Fagnihi MA, Madarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat Med 2008;14:723–30.

27. Congrains A, Kamide K, Oguro R, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 2012;220:449–55.

28. Calin GA, Liu C-G, Ferracin M, et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and cancers. Cancer Cell 2007;12:215–29.

29. Alvarez ML, Di Stefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 2011;6:e18671.

30. Zhang Q, Chen C-Y, Yedavalli VS, et al. NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 2013;4:e00596–12.

31. Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 2012;46:245–54.

32. Yang Z, Zhou L, Wu L-M, et al. Overexpression of long noncoding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 2011;18:1243–50.

33. van Poppel H, Haese A, Graefen M, et al. The relationship between Prostate Cancer gene 3 (PCA3) and prostate cancer significance. BJU Int 2012;109:360–6.

34. Zhang Z, Hao H, Zhang C, et al. Evaluation of novel gene UCA1 as a tumor biomarker for the detection of bladder cancer. Zhonghua Yi Xue Za Zhi 2012;92:384–7.

35. Chen X, Yan G-Y. Novel human IncRNA–disease association inference based on IncRNA expression profiles. Bioinformatics 2013;29:2617–24.

36. Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta (BBA)—Gene Regul Mech 2014;1839:1097–109.

37. Volders P-J, Verheggan K, Menschaert G, et al. An update on LNCipedia: a database for annotated human IncRNA sequences. Nucleic Acids Res 2015;43:4363–4.

38. Volders P-J, Helsens K, Wang X, et al. LNCipedia: a database for annotated human IncRNA transcript sequences and structures. Nucleic Acids Res 2013;41:D246–51.

39. Amaral PP, Clark MB, Gascoigne DK, et al. LncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2011;39:D146–51.

40. Qiu M-T, Hu J-W, Yin R, et al. Long noncoding RNA: an emerging paradigm of cancer research. Tumor Biol 2013;34:613–20.

41. Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990;10:28–36.

42. Brockdorff N, Ashworth A, Kay GF, et al. The mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 1992;71:515–26.

43. Brown CJ, Hendrich BD, Rupert JL, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992;71:527–42.
44. Feil R, Walter J, Allen ND, et al. Developmental control of allele methylation in the imprinted mouse Igf2 and H19 genes. Development. 1994;120:2933–43.

45. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009;458:223–7.

46. Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011;25: 1915–20.

47. Quek XC, Thomson DW, Maag JL, et al. IntegrRNAdb v2.0: expanding the reference database for functional long non-coding RNAs. Nucleic Acids Res 2015;43:D168–73.

48. Liu C, Bai B, Skogerbø G, et al. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 2005;33:D112–5.

49. He S, Liu C, Skogerbø G, et al. NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 2008;36:D170–2.

50. Bu D, Yu K, Sun S, et al. NONCODE v3.0: integrative annotation of long non-coding RNAs. Nucleic Acids Res 2012;40:D210–5.

51. Xie C, Yuan J, Li H, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 2014;42: D98–103.

52. Zhao Y, Li H, Fang S, et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 2016;44:D203–8.

53. Jin J, Liu J, Wang H, et al. FlncDB: plant long non-coding RNA database. Bioinformatics 2013;29:1068–71.

54. Guttman M, Garber M, Levin JZ, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010;28:503–10.

55. Tahira AC, Kubrusly MS, Faria MF, et al. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer 2011;10:1476–59.

56. Louro R, Smirnova AS, Verjovski-Almeida S. Long intronic methylation in the imprinted mouse Igf2 and H19 genes. Cell 1994;120:2933–43.

57. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: new links in cancer progression. Cancer Res 2011;71:3–7.

58. Ma H, Yao Y, Dong X, et al. Molecular mechanisms and function prediction of long non-coding RNA. Sci World J 2012;2012:1841786.

59. Tsai M-C, Spitalne RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Proc Natl Acad Sci USA 2008;105:716–21.

60. Louro R, Smirnova AS, Verjovski-Almeida S. Long non-coding RNAs: new links in cancer progression. Proc Natl Acad Sci USA 2008;105:716–21.

61. Hrdlickova B, de Almeida RC, Borek Z, et al. Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta 2014;1842:1910–22.

62. Zhao T, Xu J, Liu L, et al. Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features. Mol Biosyst 2015;11:126–36.

63. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860–921.

64. Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010;1338:20–35.

65. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81:145–66.

66. Ponting CP, Oliver PL, Reik W. Evolution and functions of long non-coding RNAs. Cell 2009;136:629–41.

67. Nam J-W, Bartel DP. Long noncoding RNAs in C. elegans. Genome Res 2012;22:2529–40.

68. Pauli A, Wiltshire T, Dong Z, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 2012;22:577–91.

69. Yue H, Yang G, Cheng H, et al. Differential expression of lncRNAs between normal and transformed human gliomas. PLoS One 2013;8:e76312.

70. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81:145–66.
growth through enhancer of zeste homolog 2 in humans. Hepatology 2011;54:1679–89.
108. Chen W, Böcker W, Brosius J, et al. Expression of neural BC200 RNA in human tumours. J Pathol 1997;183:345–51.
109. Donohue HJ, Genetos DC. Genomic approaches in breast cancer research. Brief Funct Genomics 2013;12:391–6.
110. Karaog˘lu K, Sinha R, Arga KY. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways. Omics: A J Integr Biol 2015;19:115–30.
111. Meng J, Li P, Zhang Q, et al. A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 2014;33:84.
112. Wang KC, Chang HY. Molecular mechanisms of long non-coding RNAs. Mol Cell 2011;43:904–14.
113. Bara˘yte-Lovejoy D, Lau SK, Boutros PC, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 2006;66:5330–7.
114. Lottin S, Adriaenssens E, Dupre´soir T, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 2002;23:1885–95.
115. Tessier CR, Doyle GA, Clark BA, et al. Mammary tumour induction in transgenic mice expressing an RNA-binding protein. Cancer Res 2004;64:209–14.
116. Iacoangeli A, Lin Y, Morley EJ, et al. BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 2004;25:2125–33.
117. Pasmant E, Laurendeau I, Héron D, et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 2007;67:3963–9.
118. Mourtada-Maarabouni M, Pickard M, Hedge V, et al. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009;28:195–208.
119. Huarte M, Guttmann M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010;142:409–19.
120. Vincent-Salomon A, Ganem-Elbaz C, Manié E, et al. X inactive-specific transcript RNA coating and genetic instability of the X chromosome in BRCA1 breast tumors. Cancer Res 2007;67:5134–40.
121. Rodríguez BA, Weng Y-I, Liu T-M, et al. Estrogen-mediated epigenetic repression of the imprinted gene cyclin dependent kinase inhibitor 1C in breast cancer cells. Carcinogenesis 2011;32:812–21.
122. Bavarva JH, Tae H, Settlage RE, et al. Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One 2013;8:e67252.
123. Wood SL, Peremalm M, Croesbie PA, et al. Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev 2015;41:361–75.
124. White NM, Cabanski CR, Silva-Fisher JM, et al. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol 2014;15:429.
125. Liu J, Lee W, Jiang Z, et al. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 2012;22:2315–27.
126. Liu B, Fang L, Chen J, et al. miRNA-dis: microRNA precursor identification based on distance structure status pairs. Mol Biosyst 2015;11:1194–204.
127. Shi X, Sun M, Liu H, et al. A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog 2013;54:E1–12.
128. He Y, Meng X-M, Huang C, et al. Long noncoding RNAs: novel insights into hepatocellular carcinoma. Cancer Lett 2014;344:20–7.

129. Vennik AP, Papandreou C, Furuse J, et al. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 2010;15:5–13.

130. Edenvik F, Davidsdottr L, Oksanen A, et al. Application of hepatocellular carcinoma surveillance in a European setting. What can we learn from clinical practice? Liver Int 2015;35:1862–71.

131. Song P, Feng X, Zhang K, et al. Screening for and surveillance of high-risk patients with HBV-related chronic liver disease: promoting the early detection of hepatocellular carcinoma in China. Biosci Trends 2013;7:1–6.

132. Wei Q, Guo P, Mu K, et al. Estrogen suppresses hepatocellular carcinoma cells through ERα-mediated upregulation of the NLKPs inflammasome. Lab InVest 2015;95:804–16.

133. Fu SC, Huang YW, Wang TC, et al. Increased risk of hepatocellular carcinoma in chronic hepatitis B patients with new onset diabetes: a nationwide cohort study. Aliment Pharmacol Ther 2015;41:1200–9.

134. Zhang L, Yang F, Yuan J-H, et al. RNA HOTAIR enhances aggressive biological behavior and is involved in hepatocellular carcinoma progression. Gastroenterology 2012;143:577–86.

135. Huang J-L, Zheng L, Hu Y-W. Characteristics of long noncoding RNA and its relation to hepatocellular carcinoma. Carcinogenesis 2013;35:507–14.

136. Panzitt K, Tschernatsch MM, Guelly C, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007;132:330–42.

137. Yuan J-H, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014;25:666–81.

138. Yang F, Hua X-s, Yuan S-x, et al. Repression of the long non-coding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 2013;49:1083–96.

139. Schonrock N, Götz J. Decoding the non-coding RNAs in Alzheimer’s disease. Cell Mol Life Sci 2012;69:5343–59.

140. Palop JJ, Chin J, Mucke L. A network dysfunction perspective of neurodegenerative diseases. Nature 2006;443:768–73.

141. Tan L, Yu J-T, Hu N, et al. Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 2013;47:382–93.

142. Ng S-Y, Lin L, Soh BS, et al. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 2013;29:461–8.

143. Mus E, Hof PR, Tiedge H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 2007;104:10679–84.

144. Li D, Chen G, Yang J, et al. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One 2013;8:e77938.

145. Kaya Z, Leib C, Katus H. Autoantibodies in heart failure and cardiac dysfunction. Circ Res 2012;110:145–58.

146. Barsheshet A, Brenyo A, Goldenberg I, et al. Sex-related differences in patients’ responses to heart failure therapy. Nat Rev Cardiol 2012;9:234–42.

147. Papait R, Kunderfranco P, Striparo GG, et al. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res 2013;6:876–83.

148. Kumarswamy R, Bauters C, Volkman I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 2014;114:1569–75.
primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis 2014;35:1510–5.
168. Liu X, Sun M, Nie F, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 2014; 13:92.
169. Gutschner T, Hämmerle M, Eißmann M, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 2013;73:1180–9.
170. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mol Pathol 2013;26:155–65.
171. Ying L, Chen Q, Wang Y, et al. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 2012;8:2289–94.
172. Guay C, Jacovetti C, Nesca V, et al. Emerging roles of non-coding RNAs in pancreatic β-cell function and dysfunction. Diabetes Obes Metab 2012;14:12–21.
173. Graham M, Adams JM, Cory S, Murine T. lymphomas with retroviral inserts in the chromosomal 15 locus for plasmacytoma variant translocations. EMBO J 1985;4:675–81.
174. Beck-Engeser GB, Lum AM, Huppi K, et al. PVT1-encoded microRNAs in oncogenesis. Retronurology 2008;5:4.
175. Ma L, Li A, Zou D, et al. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res 2014;43:D187–92.
176. Ning S, Zhang J, Wang P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 2016;44: D980–5.
177. Jiang Q, Wang J, Wu X, et al. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2015;43:D193–6.
178. Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 2015;43:D239–45.
179. Chakraborty S, Deb A, Maji RK, et al. LncRBase: an enriched resource for lncRNA information. PLoS One 2014;9:e108010.
180. Bhatti S, Pal K, Ghosh S, et al. LncRNome: a comprehensive knowledgebase of human long noncoding RNAs. Database 2013;2013:bat034.
181. Gallart AP, Pulido AH, de Lago MC, et al. GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Res 2016;44:D1161–6.
182. Ning S, Zhao Z, Ye J, et al. SNPØ lincTFBS: an integrated database of polymorphisms in human lincRNA transcription factor binding sites. PLoS One 2014;9:e103851.
183. Gong J, Liu W, Zhang J, et al. lncRNA SNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res 2015;43:D181–6.
184. Li J, Gao C, Wang Y, et al. A bioinformatics method for predicting long noncoding RNAs associated with vascular disease. Sci China Life Sci 2014;57:852–7.
185. Wang Y, Chen L, Chen B, et al. Mammalian ncRNA-disease repository: a global view of ncRNA-mediated disease network. Cell Death Dis 2013;4:e675.
186. Li J, Ma W, Zeng P, et al. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinformatics 2015;16:806–12.
187. Ferré F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinformatics 2016;17:106–16.
188. Yotsukura S, Hancock T, Natsume-Kitani Y, et al. Computational recognition for long non-coding RNA (lncRNA): software and databases. Brief Bioinformatics 2016;bbv114.
189. Chen X, Liu M, Qiu QH, et al. Prediction of disease-related interactions between MicroRNAs and environmental factors based on a semi-supervised classifier. PLoS One 2012;7:e43425.
190. Chen X, Liu M, Yan G. WRRMDA: predicting novel human microRNA-disease associations. Mol Biosyst 2012;8:2792–8.
191. Chen X, Yan CC, Zhang X, et al. RBMMDA: predicting multiple types of disease-microRNA associations. Sci Rep 2015;5:13877.
192. Chen X, Yan G-Y. Semi-supervised learning for potential human microRNA–disease associations inference. Sci Rep 2014;4:5501.
193. Chen X, Yan GY, Liao XP. A novel candidate disease genes prioritization method based on module partition and rank fusion. OMICS: J Integr Biol 2010;14:337–56.
194. Chen X. miREFWR: a novel disease-related microRNA–environmental factor interactions prediction method. Mol Biosyst 2016;12:624–33.
195. Chen X, Yan CC, Zhang X, et al. WBSMDA: within and between score for miRNA–disease association prediction. Sci Rep 2016;6:21106.
196. Huang Y, Chen X, You Z, et al. ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 2016;7:25902–14.
197. Sun J, Shi H, Wang Z, et al. Inferring novel lncRNA–disease associations based on a random walk model of a lncRNA functional similarity network. Mol Biosyst 2014;10:2074–81.
198. Liu Y, Zhang R, Qiu F, et al. Construction of an lncRNA–PCG bipartite network and identification of cancer-related lncRNAs: a case study in prostate cancer. Mol Biosyst 2015;11:384–93.
199. Zhou M, Wang X, Li J, et al. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol Biosyst 2015;11:760–9.
200. Ganegoda GU, Li M, Wang W, et al. Heterogeneous network model to infer human disease-long intergenic non-coding RNA associations. IEEE Trans Nanobiosci 2015;14:175–83.
201. Chen X. KATZLDA: KATZ measure for the lncRNA–disease association prediction. Sci Rep 2015;5:16840.
202. Yang X, Gao L, Guo X, et al. A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS One 2014;9:e87797.
203. Liu M-X, Chen X, Chen G, et al. A computational framework to infer human disease-associated long noncoding RNAs. PLoS One 2014;9:e84408.
204. Chen X. Predicting lncRNA–disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep 2015;5:13186.
205. Takahashi Y, Sawada G, Kurashige J, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer 2014;110:164–71.
206. Tanaka K, Shiotani M, Meguro M, et al. Loss of imprinting of long QT intronic transcript 1 in colorectal cancer. Oncology 2000;60:268–73.
207. Wang H-M, Lu J-H, Chen W-Y, et al. Upregulated IncRNA-UCA1 contributes to progression of lung cancer and is closely related to clinical diagnosis as a predictive biomarker in plasma. Int J Clin Exp Med 2015;8:11824–30.
208. Tano K, Mizo N, Okada T, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 2010;584: 4575–80.
209. Zhang E, Yin D, Sun M, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 2014;5:e1243.

210. Choudhry H, Albukhari M, Morotti A, et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival, Oncogene 2014;34:4546.

211. Guo X, Xia J, Deng K. Long non-coding RNAs: emerging players in gastric cancer, tumor. Biology 2014;35:10591–600.

212. Wang J, Su L, Chen X, et al. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed Pharmacother 2014;68:557–64.

213. Jalali S, Kapoor S, Sivadas A, et al. Computational approaches towards understanding human long noncoding RNA biology. Bioinformatics 2015;31:2241–51.

214. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011;21:354–61.

215. Park Y, Marcotte EM. Flaws in evaluation schemes for pair-input computational predictions. Nat Methods 2012;9:1134–6.