Research article

Extraction, optical properties, and aging studies of natural pigments of various flower plants

S.M. Amir-Al Zumahia,b, Nourin Arobia,b, Hatem Tahac, Md Kamal Hossaina, Humayun Kabira,d, Rummana Matinee, M.S. Basharee, Farid Ahmeda, Md Abul Hossaina, M. Mahbubur Rahmana,f,*

a Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
b Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
c Department of Physics, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, 10071, Baghdad, Iraq
d School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia
e Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
f Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia

ARTICLE INFO

Keywords:
Materials science
Natural dyes
Pigment
Absorption spectra
Dye extraction methods
Aging effect

ABSTRACT

In this paper, we reported the extraction process of five different flowering plants utilizing different dye extraction methods and solvents (ethanol and water) to choose the best dye removal process. The FTIR spectra revealed the presence of several clear functional groups for all five natural dyes. The analytical studies such as UV spectrosopy, column chromatography, and vacuum evaporation were performed to isolate the dyes from their solutions. The UV-Vis studies on the pigments of flower extracts indicated broad absorption peaks in the visible region including clear bandgaps. Among the studied pigments, \textit{Alternanthera ficoides} showed the lowest direct bandgap of 1.69 eV and an Urbach energy value of 6.33 meV. The dye extraction yield rate improvement was extended from 11.7 to 24.7\% (water solvent) and 11.3–32.4\% (ethanol solvent). Throughout the studies, it was observed that ethanol produced a better extraction for organic dyes than water as a solvent. Aging studies revealed that all the dyes at the room temperature showed better stability with minor changes in the observed optical parameters in oxygen-rich conditions; however, these parameters have shown significant variations at a 60 °C temperature.

1. Introduction

The dyes have been a vital factor in the culture of people throughout the world. Dyes are not only used in a way to beautify an item but also to demonstrate the culture of different places and provide shreds of evidence on the disparities from ancient civilizations. Without chemical processing, dyes acquired from nature are known as natural dyes. Natural dyes come from different sources such as plants, minerals, insects, and/or animals. They are non-toxic and, in most cases, non-allergic. Natural dyes are an essential part of human life, environmentally friendly, harmless during use, also maintains the ecological balance \cite{1,2,3}. The invention of synthetic colorants in the 19th Century reduced the use of natural dyes. Synthetic dyes are regarded as superior terms of aesthetic appeal and scope of coloring, strength, and cost-efficiency. In the 20th Century, careful studies of synthetic dyes were carried out in conservation and restoration. Furthermore, investigating conventional dyeing techniques have been a significant aspect of social history, as seen from earlier reports \cite{4,5,6}. Recent studies showed that over 100,000 types of commercial dyes exist, and more than 7 × 105 tons per season have been produced annually \cite{7,8}.

The innovation of principal synthetic dye by Perkin \cite{9,10,11} has changed the situation. Consequently, the production of synthetic dyes increased at great speed as they found favor as alternatives to natural dyes in foods \cite{12,13,14}, non-linear optical movements \cite{15,16}, cosmetics \cite{17,18,19}, and material commercial ventures \cite{20} because of straightforwardness in dyeing, and the cost factor. Considering the energy saving and ecological security, shading of materials with natural dyes has been given more significant consideration by experts and manufacturers. Researchers working in this area are now taking steps to improve the pigment extractions from plant materials \cite{21,22,23,24,25}, such as petals, leaves, bark, and seed, to enhance the percentage of yield. Specific techniques such as magnetic stirring, ultrasound-assisted

* Corresponding author.
E-mail address: m.rahman@juniv.edu (M.M. Rahman).

https://doi.org/10.1016/j.heliyon.2020.e05104
Received 4 July 2020; Received in revised form 15 August 2020; Accepted 25 September 2020
2405-8440/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
extraction, subcritical water extraction, soxhlet process, and supercritical fluid extraction are suggested to increase the dye yield [26, 27, 28, 29].

It has been reported that, natural dyes can be easily extracted from different natural plants, such as yellow marigold [30, 31, 32], pomegranate [33, 34], alpinia blepharocalyx K. schum [35, 36], grape pomace [37], henna leaves [38], mango leaves [39], butea monosperma [40], red calico leaves [41], rosella [42], and blue pea flowers [43]. These organic compounds contain hydroxyl groups, and are poorly water-soluble and usually contain various pigments, including chlorophyll, carotene, luteol, violaxanthol, phycoerythrins, and phycocyanins in the flowers, petal or plant leaves [44, 45, 46, 47]. The use of extraction enhancement and various pigment functionalities in different natural coloring processes has been a recent research topic. However, it is imperative to improve extraction techniques to identify the right strategy for various artificial dyes applications. A significant issue in improving extraction is enhancing the stability and processing to prevent the degradation of the color-fastness of colors and/or their pigments. The causes of degradation are exogenic reasons such as temperature, humidity, and air and light [48, 49, 50]. The most effective exogenic factors are oxygen and temperature. It is also known that with or without oxygen intervention, the dyes fastness and internal properties may be degraded.

Nowadays, natural dyes’ aging effects at different time intervals due to exogenic factors remain attractive area research worldwide. It is crucial to use the proper solvent for natural dye extraction methods. Distilled water and ethanol found to perform the best as polar solvents for organic dye extractions due to their higher solubility and less polarity. For that reason, we choose these solvents to make a fair comparison to our experimental results. Among the five organic dyes reported in this paper, two of them (pereskia bleo and alternanthera ficoidea) new, and no work has been found in the literature. The activation and inactivation of pigments with absorption under two different solvents were investigated. These pigments were characterized using aging studies at two different temperatures in the compositional and optical analysis.

Given these factors, this paper is concerned with analyzing and reporting the extracted dye pigments’ activity and inactivity in two different solvents (water and ethanol). Five natural plants have been cultivated, and investigated to assist with the recognition and identification of various pigments which are present in the extracts of natural

![Figure 1](image1.png)

Figure 1. Raw materials of extracted dyes used in present research (also in Table 1): (a) portulaca grandiflora (time flower) (b) rosa ards rovar (red rose) (c) celosia argentea var. cristia (plumbed cockscomb) (d) pereskia bleo (desert rose) (e) alternanthera ficoidea (border plant).

English name	Botanical name	Plant family	Used parts	Color of used parts
(a) Time Flower	Portulaca grandiflora	Portulacaceae	Petals	Deep pink
(b) Red rose	Rosa ards rovar	Rosaceae	Petals	Red
(c) Plumbed cockscomb	Celosia argentea var. Cristia	Amaranthaceae	Comb of roster	Light red
(d) Desert rose	Pereskia bleo	Cactaceae	Petals	Orange
(e) Border plant	Alternanthera ficoidea	Amaranthaceae	Leaves	Light pink

![Figure 2](image2.png)

Figure 2. Extraction process of different natural dyes with water and/or ethanol solvent for (a) magnetic stirring and (b) ultrasound assisted extraction from 1g in 50ml solvent at 45 °C for 1h.
dyes with ethanol and water solvent; and to develop them ecologically and economically with regards to their percentage of yields, improvement of extraction, structural, and optical properties. In the water solvent case, the aging studies (in 60 days interval) of the extracted pigments have been conducted via FTIR and UV-Vis spectroscopy.

2. Experimental

2.1. Materials and methods

Portulaca grandi flora, Celosia argentea var. cristia, Rosa ards rovar, Pereskia bleo flowers petal and Alternanthera ficoidea plants leave have been used for as the source of extracting dyes. All these five plants are incredibly available at the green campus of Jahangirnagar University. The pictures of these flower plants are shown in Figure 1. A brief description of them has been outlined in Table 1.

A magnetic stirring (MS300 Hot Plate Magnetic Stirrer, Model MS300), and an ultrasonic extraction machine (Dispositivo ULTRASUONI Bandelin Sonorex DK 102P Digital 10P) were used to extract the natural dyes. The magnetic stirrer has a stirring volume of 0–2000 ml, stirring speed 0–1250 rpm, and heating temperature 0–300 °C. Heidolph solvent evaporation by Germany was used for vacuum evaporation (the fixed temperature at 50 °C and pressure 60 mbar with 100 rpm) to collect dry dyed.

The FTIR spectra were collected using the Shimadzu IR Prestige 21. The Ultraviolet visible spectra were acquired using the GBC Cintra 2020 UV-Visible spectrometer that operated in the wavelength range of 200 nm–1100 nm for water solvent, and 400 nm–1100 nm for ethanol solvent, respectively. It has a very low divergent light and noise specifications.

2.2. Dye extraction process

Natural dye bearing Portulaca grandi flora, Celosia argentea var. christie, Rosa ards rovar, Pereskia bleo and Alternanthera ficoidea flower samples were isolated into individual petals. The samples were carefully washed using distilled water. Collected petal samples with an average size of 0.5 cm were used to dry at room temperature. 1g of dry petals, from each sample, were taken and 50 ml water or ethanol solvent was introduced in a glass beaker to immerse the petals into the solvent fully. Figure 2 indicates the magnetic and ultrasound-assisted extraction process for two different solvents: water and ethanol.

The ratio of the natural dye and water/ethanol solvent was 1:50. The operating condition for the magnetic stirring and ultrasonic extraction (with medium sonic power 10 × 10%) of natural dyes from Portulaca grandi flora, Rosa ards rovar, Celosia argentea var. cristia, Pereskia bleo, and Alternanthera ficoidea were optimized at 45 °C for 60 min. According to the ethanol solvent’s volatile properties during extraction, aluminum foil has been used on the top of the beaker to minimize evaporation. The extracted liquid dyes have been shown in Figure 3. Extracted pigments were taken for further purification by column chromatography.

2.3. Aging effects

The aging effects are the degradations of natural dyes in the presence of oxygen and ozone which is facilitated by the incident light. After extracting the natural dyes, it is important to know the aging effects in order to realize the nature of color fading and/or intermolecular bond stability. The aging effects of the extracted dyes have been investigated via analyzing the absorption and FTIR spectra with water solvent at room temperature and at 60 °C in a 60 day time interval.
3. Result and discussions

3.1. Fourier transform infrared (FTIR) spectroscopy

The composition of natural dyes has been affirmed using FTIR spectroscopy, has been shown in Figure 4. A brief analysis of the FTIR spectra of five samples has been displayed in Table 2. Since various peaks obtained in FTIR studies of individual samples are approximately very similar, we have collectively expressed them employing capital letters in Table 2 (in two different sections: one for water and the other for ethanol). The main difference between Figure 4(a) and (b) is that in spectrum 4(a) the stretching band for aromatic C–H, and aliphatic ν C–H is not clear, but in spectrum 4(b), a sharp peak is seen at B (2934 cm⁻¹) and C (2851 cm⁻¹). Except for Rosa ards rovar and Perséka bleo in Figure 4(b), all dyes with ethanol solvent shows sharp band and peaks due to the aromatic ν C–H and aliphatic ν C–H stretching frequencies, respectively. In Figure 4(a), the band B at 1722 cm⁻¹ is due to Ester Carbonyl (ν C=O) stretching frequency while in Figure 4(b) the stretching band for Ester Carbonyl appears at D (1731 cm⁻¹). It is also seen that in Figure 4(a), another band C detected at 1689 cm⁻¹ is for Olefinic ν C=C stretching while in spectrum 4(b), the same peak appears at E (1635 cm⁻¹). In Figure 4(a), another band D found at 1611 cm⁻¹ is due to the stretching frequency of aromatic ν C=C is not sharp, but in spectrum 4(b), the aromatic ν C=C band is sharp at F (1614 cm⁻¹). In the wavenumber range of 1000–1500 cm⁻¹, considerable isotropic properties (see Figure 4(a)) have been seen in Portulaca grandiflora, Rosa ards rovar, Celosia argentea var. cristia, and Perséka bleo (water-based extraction) with low bending groups such as –CH₂ and –CH₃. On the other hand, Alternanthera ficoidea has shown anisotropic properties. Further investigations revealed that all the samples within the same region demonstrated the isotropic behavior with higher bending groups –CH₂ and –CH₃ (see Figure 4(b)). Our results are in good agreement with earlier reports [51, 52, 53, 54].

3.2. UV-Vis spectroscopy

Figure 5(a) and (b) show the UV visible spectra of five dye samples with water, and ethanol solvent, respectively. The obtained absorption spectrum was very sharp for all the extracted dyes at different wavelenghts, varying their intensity levels. Figure 5(a) shows that a sharp peak of Portulaca grandiflora dye solution is at the wavelength of 539 nm for water solvent. The ethanol dye solution revealed a major improvement in the absorption spectrum by introducing a new peak at 498 nm with a bathochromic shift of nearly 41 nm from the spectrum of water solvent extraction (see Figure 5(b)). The Rosa ards rovar spectrum (red line) has shown an isotopic behavior for both solvents. Figure 5 also indicates that the Perséka bleo illustrated some clear peaks at 452 nm, 478 nm, and 545 nm (in the visible range for water solvent). Still, ethanol-based extraction displayed a sharp peak at 497 nm while the other peaks were disappeared. The absorbance spectra of the Celosia argentea var. cristia (green line) and Alternanthera ficoidea (blue line) dye solution in water differs from that extracted using the ethanol solvent. The Celosia argentea var. cristia (280 nm), and Alternanthera ficoidea (265 nm and 337 nm) spectra have shown a few weak peaks for water solvent. In contrast, ethanol-based spectra demonstrated very high intense peaks in 450 nm–700 nm (see Figure 5(b)). As predicted, the level of light absorption in the ethanol-based extracted pigments was considerably greater than that of the water-based extractions.

3.3. Effect of solvent on extraction

Figure 5 showed the solvent’s effect on the absorption spectra of five flower pigments extracted using ethanol and water. The absorbance of Portulaca grandiflora, Rosa ards rovar, Celosia argentea var. cristia, Perséka bleo, and Alternanthera ficoidea demonstrates a scope of wavelength recurrence between 400 nm–700 nm, which is situated in the visible range. As seen from the spectra’s curves, the absorption peak value of the Portulaca grandiflora of ethanol solvent is 460 nm and 498 nm, which indicates the pigment γ carotene and 665 nm indicates Chlorophyll a from the absorption maxima Table 3. The water-based absorption peak value of Portulaca grandi flora is 539 nm, which indicated phycoerythrins pigment. From the figure, it is easily concluded that phycoerythrins are inactive in the ethanol-based dye solution. On the other hand γ carotene, and Chlorophyll a are active in the water-based dye solution. In Perséka bleo, the Phycoerythrins (545 nm), and Violaxanthol (452 nm, and 478 nm) are active in the water solvent. In comparison, γ carotene (497 nm), and Phycocyanin (590 nm, and 614 nm) are active in the ethanol solvent. The Phycoerythrins (537 nm, 540 nm, 549nm, 578 nm, and 588 nm), Chlorophyll a (670 nm, 675 nm, 680 nm), Phycocyanins (618 nm), β carotene (478 nm), and Chlorophyll b (627 nm) are active in the ethanol solvent for Rosa ards rovar, Celosia argentea var. cristia, and Alternanthera ficoidea respectively but inactive in the water-base dye solution. The dye solutions of Rosa ards rovar, Celosia argentea var. cristia, and Alternanthera ficoidea have no active pigments between 400 nm and 800 nm. The calculations of the optical bandgap utilizing UV-Vis absorbance spectra was achieved via Tauc relation [57]. Figure 5 (a.1 & b.1) and (a.2 & b.2) show the Tauc plots for direct and indirect bandgaps, respectively, while Table 4 represents the samples’ bandgap and Urbach energy values. Based on Table 4, the remarkable observations of the direct and indirect optical bandgaps of Portulaca grandiflora, Rosa ards rovar, and Perséka bleo have increased for the ethanol solvent. At the time that of the plumed cockscomb and border plants have dwindled. The lowest bandgap was 1.77 eV for the Rosa ards rovar (water-based extraction), and 1.67 eV for the Alternanthera ficoidea (ethanol-based extraction).

Several defect bands are developed throughout the optical absorption system as just an intermediate state within the bandgaps of the

Table 2. Structural composition of natural dyes according to their different bonds of water and ethanol solvent using ultrasonic extraction process as required from IR spectroscopy.

Peak	Dye extraction with water solvent	Dye extraction with ethanol solvent		
	Peak value (cm⁻¹)	Description	Peak value (cm⁻¹)	Description
A	3422	stretching ν O–H (alcohol)	3400	stretching ν O–H (alcohol)
B	1722	Stretching Carbonyl ν C=O (Ester)	2934	Aromatic ν C–H
C	1689	Stretching Olefinic ν C=C	2851	Stretching Aliphatic ν C–H
D	1611	stretching ν C=C	1731	Stretching Carbonyl ν C=O (Ester)
E	1400	bending –CH₂ group	1635	Stretching Olefinic ν C=C
F	1311	bending –CH₂ group	1614	aromatic ν C–C
G	1049	stretching ν C=O	1387	bending –CH₂ group
H	-	-	1314	bending –CH₂ group
I	-	-	1123	stretching ν C=C
J	-	-	1065	stretching ν C=O
Portulaca grandiflora, Celosia argentea var. cristia, Rosa ardis rovar, Perskia bleo, and Alternanthera ficoidea. These defect bands generate an energy tail that extends from both the bottom of the conduction bands and top of the valence bands to the deep of the bandgap [58, 59]. This energy correlated defect tail is termed as the Urbach energy provided by Eq. (1) [60],

\[\alpha = \alpha_0 e^{\frac{E_U}{kT}} \]

Where \(\alpha_0 \), \(\alpha \) and \(E_U \) denote the constant, absorption coefficients, and Urbach energy (energy of the band tail), respectively. Taking natural log on both sides of the equation, one obtains a straight line equation such as given by Eq. (2),

Table 3. Absorption maxima for natural dyes (different pigments) comparison with other research work according to their wavelength (nm).

Pigment	Reported wavelength (nm) [55, 56]	Obtaining wavelength (nm)	Occurrence
Chlorophyll a	430, 670	675,670,665,680	All green plants
Chlorophyll b	455, 640	627	Higher plants, green algae
\(\alpha \)-carotene	420,440,470	446	Leaves, some algae
\(\beta \)-carotene	425,450,480	484,478	Some plants
\(\gamma \)-carotene	440,460,495	460,498,497	Some plants
Luteol	425,445,475	474	Green leaves, red and brown algae
Violaxanthol	425,450,475	478	Some leaves
Phycoerythrins	490,546,576	539,540,588,549,578	Red and blue-green algae
Phycocyanins	618	618,614,590	Red and blue-green algae
\[\ln \alpha = \ln \alpha_0 + \frac{h\nu}{E_U} \]

(2)

Plotting \(\ln \alpha \) versus \(h\nu \), it is possible to obtain the Urbach energy from the straight line's slope. The Urbach energy (both for water and ethanol solvent) calculations using the variation of \(\ln \alpha \) curves with respect to the incident photon energies have been shown in Figure 6, and the measured values for all specimens are displayed in Table 4.

Urbach energy of the ethanol-based extraction is found to increase in comparison with the water-based extract. Further investigation also indicated that Urbach energy values and bandgaps are show opposite behavior for the ethanol-based and water-based extractions i.e., bandgaps are greater in water than Urbach energy values and vice versa [61]. The higher estimated Urbach energies of \textit{Portulaca grandiflora} for ethanol solvent is 13.94 meV while \textit{Celosia argentea ver. Cristis} shows the lowest for water (see Table 4). Urbach energy is related to the structural disorder mechanism of a system [62]. Higher Urbach energy means more disorders induced by insufficient crystalline or amorphous solid structures [63]. Among both solvents, the water-based samples have the minimum Urbach energy suggesting less crystal disturbance, supporting the less functional shift in the water-based FTIR spectroscopy (see Figure 4a).

The optical transmittance spectra of five organic dyes have been shown in Figure 7. The transmittance of natural dyes falls off rapidly around the UV-Vis boundary, and the transmittance is negligible in UV-regions for the water-based extraction (Figure 7(a)). However, the ethanol-based extracted natural dyes fall off in the visible regions. All the dye samples showed anisotropic properties except \textit{Portulaca grandiflora} and \textit{Rosa ards rover} in Figure 7(b). The refractive index is one of the fundamental parameters to determine the optical properties of a sample. Refractive index detection is commonly used for the analysis of dyes or compounds that has low absorption ranges. The refractive index has been computed utilizing Swanepoel's method. As per Swanepoel's formula, the refractive index \(n \), at a given wavelength, can be calculated using the following Eq. (3) [64],

\[n = \left[N_1 + (N_1^2 - s^2)^{1/2} \right]^{1/2} \]

(3)

Where, \(N_1 = 2s \frac{\text{TM}}{\text{TM} + \text{TM} + \text{TM}} \).

Here \(T_M \) and \(T_m \) indicate the upper envelop transmittance and the lower envelop transmittance respectively, at a specific wavelength \(\lambda \). \(s = 1.51 \), depends on the wavelength and may be calculated using the transmittance spectra.

Figures 8(a) and (b) displayed the variations of the refractive index for natural dyes as a function of incident photon wavelength (nm) for water and ethanol, respectively. All the extracted pigments showed nearly equal refractive index value (1.51) for both solvent, but only \textit{Alternanthera ficoidea} and \textit{Pereskia bleo} reach the maximum.

Dye solution	Band gap (eV)	Urbach energy (meV)				
	Direct	Indirect	Ethanol solvent	Direct	Indirect	Ethanol solvent
\textit{Portulaca grandiflora}	1.84	1.54	2.32	2.07	8.03	13.94
\textit{Rosa ards rover}	1.77	1.59	2.05	1.97	3.07	3.59
\textit{Celosia argentea ver. Cristis}	2.32	1.67	1.79	1.77	1.24	3.48
\textit{Pereskia bleo}	1.87	1.56	2.07	2.04	2.42	8.06
\textit{Alternanthera ficoidea}	2.42	1.71	1.69	1.66	2.32	6.33

Figure 6. Urbach energy calculation in accordance with graphical slope of photon energy versus \(\ln \alpha \) for extracted dyes at room temperature with (a) water and (b) ethanol solvent.

6
values of 56 and 60 for ethanol solvent. The higher refractive index means slower the light travels which causes a correspondingly increased change in the light's direction within the dyes. Consequently, within the dyes, the light can bend more, thereby allowing the dyes profile to be lower [65, 66]. This high refractive index may occur due to different bonds of dyes, low absorption, and/or oxygen vacancies [67]. The non-zero refractive index components of all the dyes revealed the highest value for photon energy at the visible regions. Significant isotropic behavior has been seen in the wavelength range of 550 nm–800 nm whereas 400–550 nm showed divergences in all the solvents dyes. High refractive indices at low wavelengths are due to the effect of the fundamental absorption below 350 nm [68, 69]. In the water solvent, all dyes show refractive indices in the range of 1.50–1.95 while ethanol solvent up to 60.

3.4. Gravimetric analysis

After the vacuum evaporation process, the extracted dye solutions were measured very carefully. The percentage of yields and % improvement for ultrasonic have been measured using the following Eqs. (4) and (5) [32, 70],

\[
\text{Percentage of yield} = \frac{\text{obtained natural dyes (g)}}{\text{raw material of natural dyes (g)}} \times 100\% \quad (4)
\]

\[
\text{%improvement due to ultrasound} = \frac{\%\text{yield from (Ultrasound – Magnetic stirring)}}{\%\text{yield of magnetic stirring}} \times 100\%
\quad (5)
\]

The percentage of yields and % improvement for ultrasonic of acquired natural dyes have been given in Table 5. Based on the results presented in Table 5, we see that each pigment (either ethanol or water extracted) exhibited a significant contrast for those extracted ingredients. For this reason, the extraction solvent choice is exceptionally imperative. The yield of the specimens using magnetic stirring and/or ultrasound-assisted extraction exhibited a lower yield of percentage of dye (0.73–4.01% for the water-based extraction) and (1.08–6.79% for the ethanol-based extraction). It has been also found that the colorant

![Figure 7](image-url) Transmittance spectra of natural dyes as a function of wavelength (nm) at room temperature with (a) water solvent from 200-1200 nm and (b) ethanol solvent from 400-1200 nm by ultrasonic extraction process.

![Figure 8](image-url) The variation of refractive index against wavelength (nm) of five different natural dyes with (a) water and (b) ethanol solvent for ultrasound assisted extraction process.
Table 5. Percentages of yields for dyes yielding materials and their percentage improvement for magnetic stirring and ultrasonic extraction process with ethanol and water solvent.

Sample	Obtained Weight (g)	Amount of solution (ml)	Obtained Weight (g)	Percentage of Yields (%)	% Improvement for ultrasonic extraction	% Improvement for magnetic stirring
Portulaca grandi flora	50	0.0071	0.0126	0.0143	24.66	1.28
Rosa arida rover	50	0.0091	0.0150	0.0175	33%	2.67
Celosia argentea ver. Cristia	50	0.0069	0.0108	0.0133	22%	1.78
Alternanthera ficoides	50	0.0119	0.0143	0.0185	24%	2.35

3.5. Aging effects

As dyes degrade with time and temperature, the dyes' aging effect with 60 days interval in an oxygen-rich environment at room temperature and 60 °C has been shown in Figure 9 for (the water solvent). At high pigment concentrations, a strong absorbance peak was observed in the visible region of the spectrum. In Portulaca grandi flora, absorption peaks at 252 nm and 312 nm indicated the absorption of flavonoids pigments from 220-380 nm [75]. In contrast, after 60 days at room temperature, these peaks were lost due to the heat sensitivity [76]. It may be occurred due to the chemical degradation through hydrolysis or oxidative reactions, which cuts off different bonds and formation of smaller molecules among water and dyes [77]. As extracted dyes, the absorption peak at 539 nm becomes larger and sharper at room temperature with two additional peaks at 740 nm and 840 nm. However, at 60 °C temperature, all these peaks were disappeared. The two absorption peaks seen in Rosa arida rover and Celosia argentea ver. Cristia dye (at 362 nm, and 280 nm) were shifted to 983 nm after 60 days both for 25 °C and 60 °C. In contrast to the visible region, Pereschia bleo dye displayed several peaks at 452 nm, 478 nm, and 545 nm indicating the occurrence of violaxanthol and phycoerythrin [56]. In comparison, a shift to a flavonoid region at 267 nm was apparent [78].

At 25 °C, only the peak seen at 267 nm sustains while all other visible areas have died out at 60 °C. In the case of Alternanthera ficoides dye, two extremes were detected for the as extracted pigments at 265 nm, and 337 nm, while new peaks were visualized at 674 nm, and 747 nm after the aging at room temperature. The 60 days aging at 60 °C indicated a hypsochromic shift of the peak from 674 nm (25 °C) to 671 nm. During the aging, all dyes have shown an individual rise at 983 nm at room temperature and 60 °C. All five extracted dyes have demonstrated blue shifts due to natural aging, exposure to solar irradiation, and degradation of the pigments [79]. From the above discussions, we signposted that as extracted dyes exhibited more significant activity than that of 60 days interval (both 25 °C and 60 °C temperature) under incident light (see Figure 9 (a)–(e)).

From Table 6, it can be easily claimed that the direct and indirect bandgaps of natural dyes after 60 days are continuously increasing at room temperature. Still at 60 °C, the bandgaps were significantly decreased except for portulaca grandi flora pigment. The aging effect on the transmittance spectra of five different natural dyes at room temperature and 60 °C in a time interval 60 of days has been given in Figure 10. Compared to Figure 7 (as extracted transmittance spectra), there is no fundamental difference between as extracted and 60 days aging at 25 °C whereas 60 days aging at 60 °C has confirmed no residual dyes transmission properties at the visible regions. The refractive indices of the water-based extracted natural dyes have been tabulated after the 60 days aging at room temperature and 60 °C, and the results have been summarized in Table 7. After 60 days, the dyes aging at 60 °C have shown a higher refractive index than the extracted and room temperature aged pigments. This predicted the optical density of the samples has significantly increased due to the aging. Since the refractive index value increases after aging at 60 °C, it indicated the increasing optical density and decreasing the speed of light into these materials. The experiment recorded refractive indices of these materials provided by other
Figure 9. Optical absorption spectra of as extracted, at room temperature (25 °C) and 60 °C temperature after 60 days for (a) portulaca grandiflora (b) rosa ards rovar (c) celosia argentea ver. crisia (d) pereskia belo and (e) altermanthera flecoidea, where (a.1-e.1) and (a.2-e.2) indicates the plots of $(\alpha h\nu)^2$ versus $(h\nu)$ (direct bandgap) and $(\alpha h\nu)^{1/2}$ versus $(h\nu)$ (indirect bandgap) ageing effect of five natural dyes respectively at 25 °C (black curve) and 60 °C (red curve) using Tauc relations.
researchers, nicely validating our estimations [80, 81]. Ollis et al. [82] suggested a relationship between the rate of degradation (D) and intensity of incident light (I) on the surface of a material through the following Eqs. (6) and (7).

\[D \propto I \quad \text{(at low light)} \]
\[D \propto \sqrt{I} \quad \text{(at intermediate light)} \]

Here D is considered to be independent for high incident light. The refractive index has a proportional relationship with dye degradation within a specific limit [83]. The refractive index of the aged dye increases under 60 °C temperature due to the more incident light, i.e., the dye's higher degradation. Again, at 25 °C, the refractive index is very closely compared to extracted dyes. The degradation is also less due to the incident of a lower amount of lights onto the pigments. Further aging effect on the natural dyes have been carried out via FTIR spectroscopic studies. Figure 11 reported that the FTIR spectra of five dye samples exhibited substantial degradation (compared to the FTIR data provided in Figure 4) as they have been exposed to the environment (both at room temperature and 60 °C). Significant changes in the FTIR peaks were transpired when aged for 60 days at 60 °C. The vibrational patterns suggested certain photodegradation due to the exposure at oxygen. The FTIR vibrational modes (see Figure 11) have demonstrated variations (compared to Figure 4) in the size and strength at 1722 cm⁻¹ (C=O) to 1049 cm⁻¹ (C–O) bands and thereby indicating the formation of additional hydrogen bonds for both Figure 11(a) and (b) [84, 85]. Besides, there seemed to be a rising trend of conjugated \(-\text{CH}_3, \quad \text{–CH}_2, \quad \text{C–O}\) functional groups for \textit{Portulaca grandiflora}, \textit{Rosa ardis rover}, and \textit{Alternanthera ficoidea} (Figure 11(a) at 25 °C) through the bands at 1689 cm⁻¹ and 1611 cm⁻¹. It has also been found that molecules split at C–O bond (band amplitude: 1049 cm⁻¹), \text{–CH}_3 (1311 cm⁻¹), and \text{–CH}_2 (1400 cm⁻¹) for \textit{Portulaca grandiflora}, \textit{Rosa ardis rover}, and \textit{Pereskia bleo} at 60 °C after 60 days of aging. Thus, it is appropriate to conclude that C=O groups have been formed simultaneously as the bands' signal increased at 1603 cm⁻¹ and 1250 cm⁻¹. The two giant peaks associated with the surface-adsorbed H$_2$O, and \text{–OH} group at 3500 cm⁻¹ (at 25 °C and 60 °C) have been found after 60 days interval [86, 87]. The \text{–OH} group performs a significant role (by the stability) in the process of degradation with photogenerated holes via light effect, as seen in earlier literature [88]. In the oxygen-rich environment, all dyes' functional groups for both aged temperatures mostly lost their patterns at 1750 cm⁻¹ to 1689 cm⁻¹.

Dye solution	Band gap for natural dyes at room temperature (25 °C) and 60 °C temperature with 60 days interval and comparison with as extracted dyes.					
	Direct bandgap (eV)	Indirect bandgap (eV)	As extracted dyes	After 60 days	As extracted dyes	After 60 days
------------------------------	----------------------	-----------------------	-------------------	---------------	-------------------	---------------
			At 25 °C	At 60 °C	At 25 °C	At 60 °C
\textit{Portulaca grandiflora}	1.84	2.5	1.87	1.54	1.49	1.38
\textit{Rosa ardis rover}	1.77	2.07	1.33	1.59	1.60	1.20
\textit{Celosia argentea ver. Cristia}	2.32	3.67	1.98	1.67	1.70	1.30
\textit{Pereskia bleo}	1.87	2.57	1.63	1.56	1.59	1.37
\textit{Alternanthera ficoidea}	2.42	4.15	2.01	1.71	1.72	1.25

Table 7. Calculated refractive index for natural dyes of water solvent at room temperature (25 °C) and 60 °C temperature after 60 days and comparison with as extracted dyes.

Dye solution	Refractive index for water solvent	After 60 days	
	As extracted dyes	At 25 °C	At 60 °C
\textit{Portulaca grandiflora}	1.5	1.51	9.46
\textit{Rosa ardis rover}	1.55	1.53	10.86
\textit{Celosia argentea ver. Cristia}	1.51	1.51	6.49
\textit{Pereskia bleo}	1.51	1.51	8.52
\textit{Alternanthera ficoidea}	1.51	1.51	8.18

Figure 10. Transmittance spectra of aging effect for five aged (60 days) dye solutions at (a) 25 °C and (b) 60 °C as a function of wavelength (nm).
4. Conclusions

This study has exhibited that, *Portulaca grandi flora* (Time Flower), *Rosa ards rovar* (Red Rose), *Celosia argentea var. cristia* (Plumed Cockscomb), *Pereskia bleo* (Desert Rose), and *Alternanthera ficoidea* (Border Plant) dyes can be separated as potential resources using low cost methods. The ultrasound-assisted ethanol-based extraction showed a better improvement from 15% to 33%. The direct bandgap increased from 2.05 eV to 2.32 eV, and the indirect bandgap from 1.77 eV to 2.07 eV, whereas Urbach energy was increased from 3 meV to 14 meV. If the optimum type of wavelength is used, it will provide ideal dyeing conditions for the natural dyes, such as chlorophyll a, α carotene, β carotene, luteol, and phycoerythrin. The solvent’s effect on natural dye extraction was identified together with different functional groups from the FTIR results. The aging effects on water-based extracted dyes showed that the direct and indirect bandgaps at room temperature increases from 2.07 eV to 4.15 eV, and from 1.59 eV to 1.72 eV, respectively. However, at 60 °C, the bandgaps were decreased compared to that of the room temperature extracted dyes. Under the aging conditions, the refractive index values remained nearly the same at room temperature, while at 60 °C temperature, it exhibited much higher values (from 6.49 to 10.86). The aging effects of the organic dyes in an oxygen-rich environment significantly helped to apprehend the actual effluent of solar cell applications and photocatalytic analysis. This study will play a substantial role in bringing about a new understanding of the optical behaviors and aging effects of the organic dyes and opening up new opportunities to make better artificial dyes for real-life applications.

Declarations

Author contribution statement

S M Amir-Al Zumahi: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Nourin Arobi, Hatem Taha, Md Kamal Hossain, Humayun Kabir, Rummana Matin, M S Bashar: Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Farid Ahmed, Md Abul Hossain, M Mahbubur Rahman: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by the Ministry of Science and Technology, Government of the People’s Republic of Bangladesh.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] M. Husaan, N. Iqbal, S. Adeel, M. Azeem, M.T. Javed, A. Raza, Microwave-assisted enhancement of milkweed (Calotropis procera L.) leaves as an eco-friendly source of natural colorants for textile, Environ. Sci. Pollut. Control Ser. 24 (5) (2017) 5089–5094.
[2] Joseph Sarkis, Laura M. Meade, Talluri Srinivas, E-logistics and the natural environment, Supply Chain Manag.: Int. J. 9 (4) (2004) 303–312.
[3] M.H. Fulekar, Bioremediation Technology for hazardous wastes-recent advances, in: Bioremediation Technology, Springer, Dordrecht, 2010, pp. 135–166.
[4] Mohammad Shahid, Faqeer Mohammad, Recent advancements in natural dye applications: a review, J. Clean. Prod. 53 (2013) 310–331.
[5] F. Pozzi, S. Zaleski, F. Casadio, M. Leona, M. Lombardi, Van Duyne, Surface-enhanced Raman spectroscopy: using nanoparticles to detect trace amounts of colorants in works of art, in: Nanoscience and Cultural Heritage, Atlantis Press, Paris, 2016, pp. 161–204.
[6] Jose Alberto Caram, M.J. Banera, JF Martinez Suarez, Maria Virginia Mirifico, Electrochemical behaviour of Anthraquinone dyes in non-aqueous solvent solution;
Part I. Medium effect on the electrochemical behavior. Electrochim. Acta 249 (2017) 431–445.

[2] C. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells, a review, Dyes Pigments 58 (3) (2003) 179–196.

[3] G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. Banat, G. Nagendrappa, Synthesis of phenazines by Cu-enzymes, Indian J. Biochem. Biophys. 56 (1) (2003) 81–87.

[4] N. Gagendrappa, Sir William Henry Perkin: the man and his ‘mauve’, Resonance 15 (10) (2010) 779–793.

[5] Olesens Erendur Boz, Bozyarmadde Endüstrisinin Oncüesi: bir nilim adanı ve etnolojik olardir Sir WILHELM HENRY PERKIN, Yedi 6 (2011) 23–30.

[6] Linao Yu, Xiangge Zhou, Di Wu, Haifeng Xiang, Synthesis of phenazines by Cu-enzymes, Indian J. Biochem. Biophys. 56 (1) (2003) 81–87.

[7] Petra Amchova, Hana Kotolova, Jana Ruda-Kucerova, Health safety issues of synthetic food colorants, Regul. Toxicol. Pharmacol. 73 (3) (2015) 914–922.

[8] Turgils Fosien, Luis Cabriva, Ondřej M. Andersen, Color and stability of pure anthocyanins influenced by pH including the alkaline region, Food Chem. 63 (4) (1998) 435–440.

[9] Jean-Baptiste Tarkwa, Nilaat Ouor, Elie Acayanga, Samuel Lamini, A. Mehmet, Touret, Photo-Fenton oxidation of Orange G dye: process optimization and mineralization mechanism, Environ. Chem. Lett. 17 (1) (2019) 473–479.

[10] Shrikant S. Thakare, Mavila C. Sreenath, Subrahmanya Chithrakumar, Isaac H. Joe, Nagaiyan Sekar, Non-linear optical study of BODIPY-benzimidazole conjugate by solvatochromic, Z-scan and theoretical methods, Opt. Mater. 64 (2017) 453–460.

[11] P. Narayana Prasad, David John Williams, Introduction to Nonlinear Optical Effects on chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry, Environ. Chem. Lett. 17 (1) (2019) 1667–1692.

[12] Piero Savarino, Viscardi Guido, Pierluigi Quagliotto, Enzo Montoneri, Ermanno Barni, Reactivity and effects of cyclodextrins in textile dyeing, Dyes Pigments 42 (2) (1999) 143–147.

[13] Xiuhe Fu, Tarun Belwal, Giancarlo Cravotto, Zhenhong Luo, Sun-physical and sono-chemical effects of ultrasound: primary applications in extraction and freezing operations and influence on food components, Ultrason. Sonochim. 60 (2020) 104726.

[14] Asmaa Soheil Najem, Nuraiskin A. Ludin, Mahir Faris Abdullah, Munirah A. Almesiere, Naser M. Ahmed, Mahmoud AM. Al-Alwani, Areca catechu extracted polysaccharides for current and next-generation applications, Molecules 25 (4) (2020) 930.

[15] Mohd Shabbir, Luqman Jameel Rather, Faqeer Mohammad, Alumina-supported photoelectrodes for dye-sensitized solid-state solar cell, Appl. Catal. B: Environ. 261 (2019) 117917.

[16] Madeleine Jonsson, Leila Allahgholi, Roya RR. Sardari, O. Guðmundur, Katrin Gossen, Jan Lukas Storck, Andrea Ehrmann, Infrared spectra of chlorophyll and related compounds, in: Handbook of natural dyes from Butea monosperma L., Taub bank against free radicals, genotoxicity and cancer cells, Chem. Biodivers. 14 (6) (2017), e1600484.

[17] Feriel Bouatay, Nourredine Buaka, Adel Shheid, Mohamed Farouk Mhenni, Mohammed Benhammou, A natural sources of an antioxidant as colourant: development and optimization of the extraction process using response surface methodology (RSM), Nat. Prod. Res. 33 (1) (2019) 59–65.

[18] Kairin Gosien, Jan Lukas Storck, Andreas Ehrmann, Influence of solvents on Aloe vera gel performance in dye-sensitized solar cells, Optik 180 (2019) 615–618.

[19] Suraweera Arachchi Tharindu Lakshitha, Nikethaliya Vesntha Jayanath, Walimuni Prabhahani Kaushalya Mendis Abeyskeri, Walimuni Kanchana Subhashini Mendis Abeyskeri, A commercial potential blue peel (clitoria ternatea L.) flower extract incorporated into sunscreen having functional properties, Evid. base Complement. Alternative Med. 19 (2013).

[20] Bin Huang, Hao Rong, Youju Ye, Zhouxian Ni, Meng Xu, Wangxiang Zhang, Lin Xu, Tran, Transcriptomic analysis of flower color variation in the ornamental crabapple (Malus spp.) through Illumina and PacBio Sequel Plant sequencing. Physiol. Plant. Biochem. 149 (2020) 27–35.

[21] Polturak Guy, Asaph Aharoni, “La Vie En Rose”: biosynthesis, sources, and applications of betalain pigments, mol. Plant. Med. 11 (1) (2015) 1–7.

[22] Yuhan Tang, Zhiwen Fang, Mi Liu, Daqiu Zhao, Jun Tao, Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall.), J. Biotechnol. 130 (2009) 27–36.

[23] Regina Cortes, Diego A. Luna-Vital, Daniel Margulis, Elvira Gonzalez de Mejia, Natural pigments: stabilization methods of anthocyanins for food applications, Compr. Rev. Food Sci. Food Saf. 16 (1) (2017) 180–198.

[24] Ica Van Beek, M. Pieter, Heerteries, Fading by light of organic dyes on textiles and other materials, J. Soc. Dyers Colour. 130 (8) (2014) 122–132.

[25] Patrick Dietemann, Moritz Källin, Stefan Zumbühl, Richard Knochenn, Stefan Wülfert, Renato Zenobi, A mass spectrometry and electron paramagnetic resonance study of photochemical and thermal aging of triphenyltriazines, Anal. Chem. 73 (9) (2001) 122–127.

[26] J.S. Arne, A.J. Jacobs, Richard Newman, The influence of oxygen on the fading of organic colorants, J. Am. Inst. Conserv. 18 (2) (1979) 108–117.

[27] John W. Wiegł, Robert Livingston, Infrared spectra of chlorophyll and related compounds, J. Am. Chem. Soc. 75 (9) (1953) 2173–2176.

[28] A.S. Holt, E.E. Jacobs, Infra-red absorption spectra of chlorophylls and derivatives, Plant physiology 30 (6) (1955) 553.

[29] R. Nayak, S. Houshyar, A. Khandual, R. Padhye, S. Fergusson, Identification of natural fibre pigments: in: Handbook of natural fibres, 1, Woodhead Publishing, 2020, pp. 503–534.

[30] Wei Wang, Jinggang Wang, Yuanyiao Zhang, Haoyu Bai, Mayang Huang, Tingting Zhang, Shaoxian Song, High-performance two-dimensional monomerization suppletion of macromonomer (co-acrylic-acid) hydrogel for dye removal, Environ. Pollut. 257 (2020) 113574.

[31] G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwoma-Aghayem, A. Konno, K. Tanekaze, Shino leaf pigments for dye-sensitized solid-state solar cell, Sol. Energy Mater. Sol. Cells. 86 (2005) 127–133.

[32] J. Baro, A. Sanz, J. Jimenez, A. Barrera, P. Gallo, O. Guðmundur, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell, Sol. Energy Mater. Sol. Cells. 117 (2015) 128–139.

[33] A. Amri, K. Hasan, H. Taha, M.M. Rahman, S. Herman, E. Awwalova, H. Kabir, C.-Y. Yin, K. Ibrahim, S. Bahri, Surface structural features and optical analysis of nanostructured Cu-oxide thin films coated using the sol-gel dip coating method, Ceram. Int. 45 (10) (2019) 12868–12894.
