Comment on “Self-Isospectral Periodic Potentials and Supersymmetric Quantum Mechanics”

Uday Sukhatme
Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607

Avinash Khare
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India

Abstract

We show that the formalism of supersymmetric quantum mechanics applied to the solvable elliptic function potentials
\[V(x) = mj(j + 1)\text{sn}^2(x, m), \]
produces new exactly solvable one-dimensional periodic potentials.

In a recent paper, Dunne and Feinberg have systematically discussed various aspects of supersymmetric quantum mechanics (SUSYQM) as applied to periodic potentials. In particular, they defined and developed the concept of self-isospectral periodic potentials at length. Basically, a one dimensional potential \(V_-(x) \) of period \(2K \) is said to be self-isospectral if its supersymmetric partner potential \(V_+(x) \) is just the original potential up to a discrete transformation - a translation by any constant amount, a reflection, or both. An example is translation by half a period, that is \(V_+(x) = V_-(x - K) \). In this sense, a self-isospectral potential is somewhat trivial, since application of the SUSYQM formalism to it yields nothing new. The main example considered in ref. is the class of elliptic function potentials

\[V(x) = mj(j + 1)\text{sn}^2(x, m), \quad j = 1, 2, 3, \ldots \]

Here \(\text{sn}(x, m) \) is a Jacobi elliptic function of real elliptic modulus parameter \(m \) \((0 \leq m \leq 1)\). From now on, for simplicity, the argument \(m \) is suppressed. The Schrödinger equation of the
given elliptic potential is the well-known Lamé equation [3]. There are \(j \) bound bands (whose edges have known energies) followed by a continuum band. In ref. [1] it is claimed that the potentials given in eq. (1) are self-isospectral. The purpose of this comment is to point out that although the \(j = 1 \) potential is self-isospectral, this is not the case for higher values of \(j \). Indeed, for \(j \geq 2 \), we claim that SUSYQM generates new exactly solvable periodic problems.

Taking the case \(j = 2 \), and shifting the potential by a constant so that the ground state has zero energy gives

\[
V_-(x) = -2 - 2m + 2\delta + 6m\text{sn}^2(x), \quad \delta = \sqrt{1-m+m^2}. \tag{2}
\]

The band edge energies and Bloch wave functions \(\psi^{(-)}_n(x) \) [3] are given in Table 1. The superpotential is

\[
W \equiv -\frac{d}{dx}\log\psi^{(-)}_0(x) = \frac{6m\text{sn}(x)\text{cn}(x)\text{dn}(x)}{1 + m + \delta - 3m\text{sn}^2(x)}, \tag{3}
\]

The supersymmetric partner potentials \(V_\pm(x) \) are related to \(W(x) \) via \(V_\pm(x) = W^2(x) \pm dW/dx \). Hence, the potential \(V_+ \) is given by

\[
V_+(x) = -V_-(x) + \frac{72m^2\text{sn}^2(x)\text{cn}^2(x)\text{dn}^2(x)}{(1 + m + \delta - 3m\text{sn}^2(x))^2}. \tag{4}
\]

Using SUSYQM and the known eigenfunctions \(\psi^{(-)}_n(x) \) of \(V_-(x) \) one can immediately write down the corresponding un-normalized eigenfunctions \(\psi^{(+)}_n(x) \) of \(V_+(x) \).

\[
\psi^{(+)}_0(x) = 1, \quad \psi^{(+)}_n(x) = \left(\frac{d}{dx} + W(x) \right)\psi^{(-)}_n(x). \tag{5}
\]

We have computed the band edge eigenfunctions of \(V_+(x) \) and give them in Table 1. Our expression for \(V_+(x) \) [eq. (3)] does not agree with eq. (29) in ref. [1]. We have checked the correctness of our results by direct substitution into the Schrödinger equation, and by noting that in the limit of \(m \to 1 \), our \(V_+(x) \to 4 - 2 \text{sech}^2x \), which indeed is the supersymmetric partner of \(V_-(x, m = 1) = 4 - 6 \text{sech}^2x \) [2].

Proceeding in the same way, we have also obtained a new periodic potential \(V_+(x) \) corresponding to \(j = 3 \) case of eq. (1). Here, the ground state wave function is

\[
\psi^{(-)}_0(x) = \text{dn}(x)[1 + 2m + \delta_1 - 5m\text{sn}^2(x)]
\]

and the corresponding superpotential is

\[
W = \frac{\text{msn}(x)\text{cn}(x)}{\text{dn}(x)} \left[\frac{2m + \delta_1 + 11 - 15m\text{sn}^2(x)}{2m + \delta_1 + 1 - 5m\text{sn}^2(x)} \right]. \tag{6}
\]
The partner potentials $V_{\pm}(x)$ turn out to be

$$V_-(x) = -2 - 5m + 2\delta_1 + 12msn^2(x), \quad \delta_1 \equiv \sqrt{1 - m + 4m^2},$$

and

$$V_+(x) = -V_-(x) + \frac{2m^2 sn^2(x) cn^2(x)}{dn^2(x)} \frac{[2m + \delta_1 + 11 - 15msn^2(x)]^2}{[2m + \delta_1 + 1 - 5msn^2(x)]^2}. \quad (7)$$

Clearly, the potential $V_-(x)$ is not self-isospectral. In fact, $V_-(x)$ and $V_+(x)$ are distinctly different periodic potentials which have the same seven band edges corresponding to three bound bands and a continuum band [3].

Although in this comment we have only focused on the $j = 2, 3$ cases, it is clear that SUSYQM provides a way of generating new solvable problems for all higher j values. This is an exciting result given the extreme scarcity of analytically solvable periodic potentials. Indeed, a further extension to even more general potentials involving Jacobi elliptic functions [3] yields additional quasi exactly solvable periodic potentials [4]. Partial financial support from the U.S. Department of Energy is gratefully acknowledged.

References

[1] G. Dunne and J. Feinberg, Phys. Rev. **D57**, 1271 (1998).

[2] See, for example, F. Cooper, A. Khare and U.P. Sukhatme, Phys. Rev. **251**, 267 (1995).

[3] F.M. Arscott, *Periodic Differential Equations* (Pergamon, Oxford, 1981); W. Magnus and S. Winkler, *Hill’s Equation* (Wiley, New York, 1966).

[4] A. Khare and U. Sukhatme, UIC preprint UICHEP-TH/99-3 (1999), manuscript in preparation.

**Table 1: Band Edge Eigenstates of V_\pm for $j = 2$ [}$\delta \equiv \sqrt{1 - m + m^2}$, $B \equiv 1 + m + \delta$]}

n	E_n	$\psi_n^{(-)}$	$[B - 3m sn^2(x)] \psi_n^{(+)}$
0	0	$m + 1 + \delta - 3msn^2(x)$	1
1	$2\delta - 1 - m$	$cn(x) dn(x)$	$sn(x)[6m - (m + 1)B + m sn^2(x)(2B - 3 - 3m)]$
2	$2\delta - 1 + 2m$	$sn(x) dn(x)$	$cn(x)[B + m sn^2(x)(3 - 2B)]$
3	$2\delta + 2 - m$	$sn(x) cn(x)$	$dn(x)[B + sn^2(x)(3m - 2B)]$
4	4δ	$m + 1 - \delta - 3m sn^2(x)$	$sn(x) cn(x) dn(x)$