Exploring the nature of music engagement and its relation to personality among young adults

Durgesh K. Upadhyaya, Ridhima Shukla, Viveka Nand Tripathi and Manju Agrawal

ABSTRACT
This study examined the relationship between music preferences (MP), listening styles (LS), functions of music (FoM), perceived rasa (music), and personality traits (PT – Big Five Factors). A sample of 77 young adults (M = 39; F = 38; M = 22.7 years) completed measures of the above constructs and data were analysed via correlations, one-way ANOVA, post hoc tests, and T-tests. Significant correlations were found between LS & PT; MP & PT; FoM & PT; FoM & emotion; and LS & FoM. Findings indicated stronger preferences for genres namely Romantic songs, Soft songs, and Filmy (Sad) songs. Gender difference existed in terms of MP, perceived emotions and LS. Music listening mainly served as a ‘source of pleasure and enjoyment’ and which ‘calms, motivates, or reminds of past events’. Musical genres inducing santoṣa rasa were perceived significantly higher in female participants. Based on the findings, a ‘music engagement model for Young Adults’ describing their music behaviour, have been proposed.

In order to contextualize and reflect upon research in music in India, this study explores the dynamic interactions of variables of interest namely music preferences (MP), listening styles (LS), functions of music (FoM), rasa represented or induced by music, and personality (Big Five Factors) of young adults.

All humans across all cultures are exposed to music and potentially possess the innate ability to understand and respond to music. In this modern era, music is so pervasive it is unavoidable. The music of India (one of the oldest unbroken musical traditions in the world), is inextricably interwoven not only with ritualistic and devotional side of religious lives but also with day-to-day life experiences. Music accompanies a person from birth until death. However, we have little understanding of how people use and experience music in their daily lives (cf. Chamorro-Premuzic & Furnham, 2007), and how cultural background, gender, personality, listening habits and other factors may influence the uses of music. Involvement in musical activities has been shown to have positive effects on mood (Valentine & Evans, 2001), quality of life (Clift et al., 2010) and engagement (Davidson, 2011), and to be a very rewarding leisure activity (Lamont, 2011). A challenge to such an investigation is that music is used for many different purposes.

In recent years, researchers have been particularly interested in adolescents and young adults who are marginalized and/or experiencing major psychological issues and have found that they prefer heavier forms of music such as heavy metal and hard rock (Hansen & Hansen, 1991; Took & Weiss, 1994; Wass, Miller, & Stevenson, 1989). It is presumed that these MP reflect their values, conflicts, and...
developmental issues with which these youth are dealing. Music listening is one of the most enjoyable activities reported by young adults.

Karl Mannheim relates young adulthood with the ability to question and reflect upon life and experiences. To him, this time begins about the age of seventeen (Mannheim, 1952). He justifies his age differentiation in further expressing the importance of living in the ‘present,’ ‘the up-to-dateness of youth therefore consists in their being closer to the “present” problems’ (pp. 300–301). ‘The time phrase [young adulthood] embraces what has been called the most crucial age range for the creation of a distinctive and self-conscious generation’ (Jennings & Niemi, 1981). Young adults are those who have reached sexual maturity, but are not married (Schindler, 1997).

Researchers argue that the prevalence of music in daily life constitutes an ‘informal learning environment’ through which we learn and develop our preferences for music (Batt-Rawden & Denora, 2005; Folkestad, 1998). Remarkably, however, little is known about the underlying principles on which such individual musical preferences are based. A challenge to such an investigation is that music is used for many different purposes.

Most of the research conceptualize preferences as trait-like constructs and assume that preferences reflect the types of music people listen to most of the time (Rentfrow, Goldberg, & Levitin, 2011). However, as Sloboda and O’Neill (2001) noted, music is always heard in context, so it is necessary to consider contextual forces and state-preferences in addition to trait-preferences. Weddings, funerals, sporting events or relaxation, for example, constrain musical choices, and individual preferences operate within those constraints. So far, the focus of much of the research concerned with MP has been on questions pertaining to its structure and external correlates; very few studies have actually examined the contexts in which people listen to music and the particular music they listen to. Moreover, a complete theory of musical preferences must necessarily focus on the FoM, and reflect situational constraints in interaction with personality traits (Rentfrow et al., 2011).

Recent investigations have begun to examine individual differences in MP (Rentfrow & McDonald, 2009). For example, there is evidence of individual differences in preferences for vocal as opposed to instrumental music, fast vs. slow music, and loud vs. soft music (Kopacz, 2005; McCown, Keiser, Mulhearn, & Williamson, 1997; McNamara & Ballard, 1999; Rentfrow & Gosling, 2006). Such preferences have been shown to relate to personality traits such as Extraversion, Neuroticism, Psychoticism, and sensation seeking. Researchers have found that personal preferences for musical styles correlate with how individuals use music (Getz, Chamorro-Premuzic, Roy, & Devroop, 2010; Schäfer & Sedlmeier, 2009, 2010; Ter Bogt, Mulder, Raaijmakers, & Gabhainn, 2010).

Research shows, people prefer music consistent with their personalities (Rentfrow & McDonald, 2010), and many believe MP provide information about their personalities and also about others (Rentfrow & Gosling, 2003, 2006). Veltri (2010) argued that although research has examined music from many different angles, there is a lack of literature addressing the influence of personality on music listening preferences. Because of the omnipresence of music, the amount of time and money spent in consuming music, and its role in communicating one’s personal image, it deserves to be well studied in conjunction with personality and individual preferences (Rentfrow & Gosling, 2003).

A number of studies have demonstrated differences between male and female listeners’ MP (Colley, 2008; North & Hargreaves, 2007; O’Neill, 1997), suggesting that systematic gender differences in MP are based on gender-role socialization into male toughness and female emotionality. Such differences in musical behaviour may be rooted in gender differences in affect proneness and personality traits, which are driven by physiological differences in emotional experience (Bradley, Codispoti, Sabatinnelli, & Lang, 2001). Female listeners also use music more frequently to fulfil emotional needs (North, Hargreaves, & O’Neill, 2000).

Music fulfils a broad range of functions as demonstrated in interdisciplinary research (Behne, 1997; Clayton, 2009; Hargreaves & North, 1999; Merriam, 1964; Schäfer & Sedlmeier, 2010). Music psychologists focus on personal (e.g. memories, cognitive performance, emotional expression (Sloboda, 2005) and social functions e.g. social bonding, identity and value construction (Hargreaves & North, 1999). Previous research has suggested that a holistic topography of musical functions involves personal, social,
cultural experiences with music (Boer & Fischer, 2012), some of which may vary by gender (Maidlow, 1999) and personality (Chamorro-Premuzic & Furnham, 2007). Although different researchers give different lists of FoM, there is a consensus that music serves arousing/energizing, cognitive, emotional, social and cultural functions (Boer & Fischer, 2012; Schäfer & Sedlmeier, 2010).

Music can communicate and induce a range of powerful emotions (Juslin & Sloboda, 2001). Among the most frequently felt musical emotions, according to survey studies, are: happiness, calm, nostalgia, love, sadness, interest, hope, excitement, and longing, as well various synonymous emotion terms (Juslin & Laukka, 2004; Sloboda, 1992; Wells & Hakanen, 1991; Zentner, Grandjean, & Scherer, 2008). Hunter and Schellenberg (2010) concluded considering all of the available evidences that music listening often leads to emotional responses that are more complex than simple liking and disliking. Nonetheless, music-induced affective responses may differ from common definitions of emotion, both in quality and because they are not directed at the source.

Systematic efforts to understand emotions to music are quite recent (Juslin & Sloboda, 2010). Music psychology mostly came to explore more ‘basic’ perceptual and cognitive processes involved in music listening (Deutsch, 1999). In reviving Leonard B. Meyer’s (1956) classic theory about musical expectations, Sloboda (1991) showed that ‘cognition’ and ‘emotion’ might not be far apart as one would think. Indeed, emotional responses to music require cognition (broadly defined). Sloboda would later be one of the researchers who helped to bring ‘music and emotion’ to the forefront, as a primary topic in music psychology (e.g. Thompson, 2009). In his commentary on the ‘Current trends in the study of music and emotion’ (Juslin & Zentner, 2002), Sloboda raised a question ‘to what extent the research reported in this issue points to, explicates, and encourages an understanding of diversity and complexity in musical experience’ (Sloboda, 2002, p. 242).

Concept of rasa or aesthetic relish or aesthetic mood is central to this approach to understanding affective experiences as dealt in the Natyashastra of Bharathamuni (commentary by Abhinavagupta, Eleven century). Sage Bharata conceptualized the rasa theory in the context of drama and theatre, which was later, extended to all poetry and other performing art forms. In this ancient Indian text of dramatics, all three components, i.e. physiological/behavioural, cognitive, and feelings are dealt with in detail. Bharatha suggests eight aesthetic moods or rasas corresponding to eight major emotions or bhavas. Natyashastra lists 49 emotional and non-emotional states.

Like all traditional Indian approaches, distinction is made between the major or basic emotions, and the accessory ones. Major emotions are permanent emotional dispositions, sentiments, or sthayi bhava. These transform other emotions into themselves. These are also considered innate. Permanent emotions are considered as permanent mental traces (samskaras). These when accompanied with source (vibhava), transitory emotions (vyabhicari bhava), and expressions (anubhava) can give rise to rasa. Transitory emotions are not innate and they give rise to permanent emotions and disappear after the permanent emotions show up. It is also suggested that transitory emotions represent the day-to-day normal life where similar emotions are expressed and experienced in changing situations. Accessory emotions are transitory states, i.e. vyabhicari bhava and are subordinate to the permanent emotional dispositions. These theories have dealt with the causes of emotions and also provide cues for managing heightened affect.

In answer to the question, ‘how does music arouse emotions?’ research has revealed a number of factors in the individual that could potentially affect emotional responses to music, such as the listener’s age, gender, personality, musical training, music preference, and current mood (Abeles & Chung, 1996). Similarly, Gabrielsson (2001) suggested several factors in the situation that may potentially influence emotions, such as ‘physical factors’ (e.g. acoustic and visual conditions, time and place), ‘social factors’ (e.g. listening alone vs. with others, type of audience), and ‘special occasions and circumstances’ (e.g. a vacation). However, most studies have focused on causal factors in the music itself. Research on music and emotion has also revealed individual differences in preferences for pieces of music that evoke emotions like happiness, joy, sadness, and anger (Chamorro-Premuzic & Furnham, 2007; Rickard, 2004; Schellenberg, Peretz, & Vieillard, 2008; Zentner et al., 2008). Positive emotions were the most frequently felt reactions to music (Laukka, 2006). Moreover, it was shown that such positive emotions are related to increased well-being (Laukka, 2006).
Young adults’ subsequent transition to adulthood is notoriously stressful, placing demands on young people’s coping resources and putting them at greater risk of developing mental health problems (Arnett, 1995, 2010; Laiho, 2004). There is, therefore, a need to investigate everyday strategies that young people use to support their well-being. There is a growing recognition amongst scientists that musical behaviour is central to our humanity, to what it means to be human. Not least, we engage in musical activities because doing so sweetens and structures our leisure time and thereby makes us happy and increases our well-being (Hills & Argyle, 1998; Pinker, 1997). All these assumptions, however, lack an explanation for how music can lead to such positive effects (Schafer & Sedlmeier, 2010).

Viewed against this backdrop, this study aimed to explore the dynamic interactions of variables of interest namely MP, LS, FoM, rasa represented or induced by music, and personality (Big Five Factors) of young adults. Hypotheses are as follows:

(1) Personality factors relate with music preference and nature of music engagement (time spent in music listening and listening styles).
(2) Respondents would indicate the emotions perceived by them while listening to some music genre/music piece.
(3) Gender differences will exist in terms of music preferences and listening styles.
(4) Functions of music relate with personality factors and listening styles.
(5) Respondents would favour a particular psychosocial context in which they prefer to listen to a particular music genre.

Method

Respondents
A total of 77 respondents (male = 39; female = 38 with mean age = 22.7 years), pursuing UG and PG programs from different schools/institutions of Amity University, completed the survey.

Measures

Demographic data sheet
The data sheet was used to gain demographic details of the respondents (e.g. age, gender, socioeconomic status, and music background).

Music preference scale
Music Preference Scale developed by the researcher was used to figure out the music preference of the respondents. The scale included 23 music genres, to be rated on a seven-point Likert rating scale by the respondents to indicate their preference for listening to a particular music genre. This scale also included one open ended item asking respondents to add, if any, to the already listed genres. Each music genre was accompanied by one open ended item asking them to respond to ‘when (time, place, mood, etc.) do you prefer listening to this music genre?’ Cronbach’s alpha of the scale has been found to be .85.

Music engagement scale
This Likert-type rating scale was used to assess the music engagement of the participants (cf. Wöllner, Ginsborg, & Williamon, 2010). It covered items pertaining to number of hours devoted per week by each participant and their preferred ways of listening to music.

FoM Scale
This Likert type rating scale (cf. Sloboda, 1999) comprised of 10 items was used. Cronbach’s alpha for this scale has been .76.
Music emotion scale

This rating scale, proposed by author, has been adopted from Koduri and Indurkhya (2010) and Misra (2014). It has 11 rasa (with clusters of emotions) to be rated on seven-point scale. The reliability coefficient (Cronbach’s alpha) is .83.

Big five inventory

To ascertain the personality type of the respondents ‘big five inventory’ (BFI) developed by John and Srivastava (1999) was used. The BFI contains five subscales: extraversion, agreeableness, conscientiousness, neuroticism, and openness. The inventory seeks responses on a 5-point rating scale ranging from ‘totally agree’ to ‘totally disagree’. Certain items in the inventory are reverse scored. Reliability of the BFI ranges from .79 to .88.

Survey

Based on previous literature, for example on musical engagement (Wöllner, Ginsborg, & Williamon, 2010), rasa (Koduri & Indrulkhya, 2010; Misra, 2014), personality factors (John & Srivastava, 1999), and MP (Upadhyay, in preparation), a survey with ratings scales was administered individually on the participants.

Results

Results revealed that majority of 55.90% respondents actively listened to music up to 6 h, 27.3% listened between 6 and 10 h, and 13% listened more than 10 h per week. Active listening was defined as ‘listening carefully or on purpose, instead of doing other things as well’. Only 3.90% respondents did not actively listen to music. Passive listening was defined as ‘listening in the background, while you do other things’. 53.3% respondents listened up to 6 h, 19.5% between 6 and 10 h, and 24.5% listened more than 10 h per week in the background. 2.6% indicated ‘not (listening) at all’ in the background. The male respondents (M = 4.33, SD = 1.91), in comparison to female respondents (M = 3.55, SD = 1.69) were more engaged in active listening.

Respondents’ responses to the open-ended question ‘when do you prefer listening to particular music genre’ were put in three categories: time, context and mood. Respondents indicated that they listened to Bollywood sad (slow) songs anytime (50%) being alone (100%) and when they were in bad (low) mood (60%) or felt gloomy/sad (40%). On the other hand, most of the respondents (87.5%) enjoyed listening to romantic (love) songs being alone but when they were in happy mood (90%). Genres namely rock songs (66.67%), hip-hop (85.71%), remix (57.14%) and rap (57.14%) were preferred in clubs/parties. Bhajan (88.89%) was preferred in morning whereas patriotic songs (100%) on special occasions. Respondents also showed preferences for particular genres in terms of actions they are involved in while listening to them. While driving respondents generally preferred romantic (love) songs, melodious film songs, English songs, sufi and rock songs; when felt like dancing, indicated for rap, hip-hop, pop, remix, new age, Punjabi and rock songs; and to relax they preferred listening to genres like trance, instrumental, sufi, classic, jazz and ghazal.

The Table 1 below exhibits the preference for listening to selected music genres. The one-way ANOVA revealed a significant effect of music genre on preference ratings, $F(22, 1748) = 17.43, p < .001, \eta^2 = .18$. Post-hoc tests (Bonferroni) revealed that Ghazal was rated higher at $p < .005$ than all other genres (difference to Sufi $p < .021$).

Romantic/love songs as well as film songs were generally favoured over other genres. On seven-point scales, mean ratings of ‘romantic/love songs’ were significantly higher in female respondents ($M = 6.00$, $SD = 1.21$) than male respondents ($M = 5.33$, $SD = 1.61$). Whereas, mean ratings of ‘rock song,’ ‘pop’,
‘blues,’ ‘trance,’ ‘jazz,’ and ‘instrumental music’ were significantly higher in male respondents than female respondents.

Respondents also indicated their LS on seven-point scale. Results are presented in Table 2. The highest ratings were yielded for ‘emotional listening’ (i.e. experiencing personal emotional responses to music, $M = 4.74, SD = 1.85$), followed by ‘moving the body or parts of the body’ ($M = 4.42, SD = 1.77$), ‘having visual or other associations’ ($M = 4.42, SD = 1.77$), and ‘analytical listening/concentrating on the structure’ ($M = 3.04, SD = 1.76$). Moreover, Table 2 suggests that mean ratings of ‘emotional listening’ were significantly higher in female respondents ($M = 5.26, SD = 1.65$) than male respondents ($M = 4.23, SD = 1.99$), $t(77) = 2.47$. Mean ratings of ‘moving the body or parts of the body’ were also higher in female respondents ($M = 4.87, SD = 1.60$) than male respondents ($M = 4.42, SD = 1.77$), $t(77) = 2.47$. Mean ratings of ‘moving the body or parts of the body’ were also higher in female respondents ($M = 4.87, SD = 1.60$) than male respondents ($M = 4.42, SD = 1.77$), $t(77) = 2.47$.

Music genres were correlated with personality factors. Genres namely rock song, ghazal, patriotic songs, sufi, classic, hip-hop, English songs, blues, jazz, trance and instrumental music were significantly correlated with ‘openness.’ ‘Extraversion’ was correlated with genres namely patriotic songs, melodious film songs and folk; whereas ‘neuroticism’ was negatively correlated with rock and rap music genres and ‘conscientiousness’ with English songs (Table 3).
Correlation coefficients were also calculated between LS and personality factors. The results are shown in Table 4. Significant correlations with LS were found for two personality factors. (Table 4) ‘Neuroticism’ was correlated with ‘emotional listening’, $r(77) = .28$, $p < .05$, and ‘openness’ with ‘analytical listening’, $r(77) = .27$, $p < .05$.

Respondents were asked what functions active or passive music listening have for them. Results are presented in Table 5. Results indicated that music mainly serves as a ‘source of pleasure and enjoyment’, ‘calms/releases stress/relaxes’, ‘motivates’ or ‘reminds of past events’. Significant correlations were found between hours spend in active listening and music that ‘motivates’, $r(77) = .25$, $p < .05$, and between passive listening and music that ‘reminds of past events’, $r(77) = .38$, $p < .01$.

Table 6 reveals results pertaining to the perceived rasa while listening to different music genres. Respondents rated their experienced rasa while listening to music (Table 6). The highest ratings were yielded for Śṛṅgāra rasa (represents emotions like arousal, longing, desire, naughty, romance and love, $M = 5.16$, $SD = 1.79$), followed by Sāntoṣa rasa (represents emotions like joy, pleasure, excitement, and contentment, $M = 4.58$, $SD = 2.10$), and Śānta rasa (represents emotions like steady, rest, and peace, $M = 4.25$, $SD = 2.07$). Significant difference in rating of Sāntoṣa rasa were found between female respondents ($M = 4.05$, $SD = 2.43$) and male respondents ($M = 5.10$, $SD = 1.59$), $t(77) = 2.25$, $p < .05$.

Music genres	Extraversion	Agreeableness	Conscientiousness	Neuroticism	Openness
Bollywood (sad) songs	.195	.114	.115	−.002	−.201
Melodious film songs	.217*	.209	.197	−.166	.068
Romantic (love) songs	.216	.138	.064	.146	−.119
Soft songs	.040	.159	.107	.121	.100
Folk (e.g. Bhojpuri)	.222	−.132	.103	−.190	.218
Rock song	.106	.006	−.016	−.217*	.400**
Ghazal	.031	−.103	−.070	.152	.293**
Bhajan	.043	−.069	.055	.059	.004
Punjabi	−.053	.057	−.119	−.028	.030
Patriotic songs	.306**	.161	.107	−.177	.325**
Suf music	.023	−.057	−.140	.144	.347**
Classic	.114	.011	−.003	−.082	.355**
Hip Hop	.078	−.045	−.075	−.134	.233*
English songs	.132	−.115	−.282**	.093	.405**
Remiex	−.008	−.090	−.135	−.104	−.039
Rap	.035	−.043	.054	−.224*	−.030
Pop	−.141	−.197	−.210	−.078	.112
Blues	.029	−.193	−.121	−.012	.508**
Islami songs	−.164	−.032	−.200	.131	.123
New age	−.184	−.127	−.041	.156	.000
Jazz	−.069	−.076	−.067	−.170	.318**
Trance	−.039	−.160	−.126	−.127	.368**
Instrumental	.077	−.080	−.112	−.060	.428**

*Correlation is significant at the .05 level (2-tailed).
**Correlation is significant at the .01 level (2-tailed).

Listening styles	Extraversion	Agreeableness	Conscientiousness	Neuroticism	Openness
Emotionally	.165	.082	−.037	.278	.076
Analytically	.136	.068	−.032	−.195	.268*
Moving body or parts of body	.186	.058	−.063	.165	.097
Associations	.031	−.123	−.149	.168	.075

*Correlation is significant at the .05 level (2-tailed).
Listening style 'visual and other associations' was found significantly correlated with five functions served by music listening, which were as follows: It reminds me of past events, $r(77) = .33$, $p < .01$; It evokes visual images, $r(77) = .42$, $p < .01$; It moves to tears/chills/other bodily reactions, $r(77) = .24$, $p < .05$; It functions as catharsis, $r(77) = .44$, $p < .01$; and It motivates, $r(77) = .34$, $p < .01$. This listening style was also found significantly correlated with four rasa namely Śṛṅgāra ($r = .34$, $p < .01$), Bhayānaka ($r = .25$, $p < .05$), Adbhuta ($r = .27$, $p < .05$), and Sānta ($r = .25$, $p < .05$) evoked by music listening. It indicates that respondents of this listening style could be more engaged and affected by the music they listen to.

Significant correlations with 'openness' personality factor were found with five functions served by music listening, indicating that music listening served maximum functions on respondents who are open to new experiences (Table 7).

Discussion

This study provides an overview of the nature of young adult’s musical engagement in relation to their personality and gender. It has been hypothesized that personality factors relate with young adults’ MP, and their nature of music engagement (time spent in music listening and LS); gender differences exist
in terms of their MP and LS; they would indicate the *rasa* perceived by them while listening to some music genre/music piece; functions served by music relate with personality factors and LS; and listening to a particular music genre occurs in a particular psychosocial context.

In previous research, listeners are characterized by variables that can have an influence on their music preference, such as age, gender, music experience, and personality (Schafer & Sedlmeier, 2010) to name a few. Results of this study too, indicated differences in terms of gender and relations in terms of personality factors on young adults’ MP, LS, and *rasa* perceived. Males are more engaged in active music listening and listen to music ‘analytically’ whereas females consume more time in passive listening and listen to music ‘emotionally’ and use to ‘move their body or parts of the body’. In general, the highest ratings were yielded for Śṛṅgarā rasa (represents emotions like arousal, longing, desire, naughty, romance and love, followed by Santoṣa rasa (represents emotions like joy, pleasure, excitement, and contentment), and Śānta rasa (represents emotions like steady, rest, and peace). Difference in rating of Santoṣa rasa was found significant between female respondents and male respondents.

Generally, romantic (love) songs, and melodious film songs were favoured the most by the respondents, however, females rated ‘romantic (love) songs’ more important, whereas, males rated high on contradicting genres namely ‘rock songs’, ‘pop, in one side and ‘blues’, ‘trance’, ‘jazz’, and ‘instrumental music’ on the other. Studies on the influence of gender on music preference revealed that males tend to prefer louder music (Staum & Brotons, 2000) and music with an exaggerated bass (McCown, Keiser, Mulhearn, & Williamson, 1997) more than females; females prefer softer, more romantic, and dance-oriented types of music such as pop or rhythm and blues (Christenson & Peterson, 1988; Maidlow & Bruce, 1999). The results of this study contradict the researches done by Christenson and Peterson (1988) and Maidlow and Bruce (1999) in which it was found that males tend to prefer music which is louder and is with amplified bass; and females prefer dance-oriented types of music such as pop or rhythm and blues. Moreover, preference in listening to the particular music genre varies according to the time, context, purpose and one’s mood.

As far as the personality factors of young adults are concerned, results indicated its relation with variables MP, LS, and FoM. Young adults high in facet ‘openness to experience’ have wide preferences for music genres (12 out of 23 genres) in comparison to others. They tend to listen to music ‘analytically’ and music served maximum functions to them. Young adults high on ‘neuroticism’ listen to music more emotionally.

It has been found that people high in facet – openness to feelings – experience a broader range of emotions, accept their emotions, and experience complex emotions more often (Terracciano, McCrae, Hagemann, & Costa, 2003). Likewise, for extraversion (Wilt & Revelle, 2009), the tendency to experience activated positive states is probably more fundamental than features like gregariousness and social

Extraversion is particularly notable for our purposes because extraverted people are much more likely to experience intense positive states, such as excitement, joy, and enthusiasm (Fleeson, Malanos, & Achille, 2002; Lucas, Le, & Dyrenforth, 2008; Shiota, Keltner, & John, 2006). As a result, extraversion is a credible alternative trait for understanding profound states like awe, which are experienced as both intense and rewarding (Bonner & Friedman, 2011).

Results suggest that ‘openness to experience’ was positively related to Karuṇa and Adbhuta rasas, whereas ‘extraversion’ was positively related to Śṛṅgāra. Both factors were positively correlated with two common rasa namely Bibhatsa, and Santoso. Conscientiousness was negatively correlated with Karuṇa, Bhayānaka, Adbhuta and Vira.

Music mainly serves as a ‘source of pleasure and enjoyment’, ‘calms/releases stress/relaxes’, ‘motivates’ and ‘reminds of past events’. Significant correlations were found between active listening and music that ‘motivates’ and between passive listening and music that ‘reminds of past events’. Listening style ‘visual and other associations’ was found significantly correlated with five functions served by and four rasa evoked by music listening. It indicates that respondents of this listening style could be more engaged and affected by the music they listen to.

Previous researches argue that after exercise, music is the second most commonly used mood regulation strategy in young people (Thayer, Newman, & McClain, 1994). Various forms of musical engagement were related to well-being through emotion regulation strategies (Rickard, 2012). Although, this study didn’t investigate correlations between young adults’ musical engagement and their psychological well-being. However, it can be hypothesized that young adults’ day-to-day musical engagements may predict their psychological well-being.

This study proposes a tentative Music Engagement Model for Young Adults (see Figure 1), which indicates gender differences in terms of MP, LS, types of listening, FoM and rasa perceived. MP and LS are correlated with the rasa perceived. Functions served by music listening are correlated with type of listening, LS and the rasa perceived. Personality factors are correlated with the rasa perceived, MP, FoM, LS and type of listening (active/passive). Moreover, music listening occur in a specific psychosocial context (e.g. place, time, mood etc.). Proposed model assumes that variables like types of rasa, preferences for music genres, LS and functions served by music listening may predict psychological well-being. The proposed model and its assumption are subject to verification.

Figure 1. Music engagement model (MEM) for young adults.
In conclusion, investigating young adults’ musical engagement, their background, and their personality enhances our understanding of their musical behaviour. This study puts forth several questions to be answered. For example, how do they develop preference for music genres? How do they use music strategically to regulate their moods/emotions or to deal with their sufferings? When do they prefer listening to a particular music? How many hours they spend listening to particular music genre in a day or in a week? Future research could explore the musical experiences of young adults of both music and non-music background through in-depth interviews. Answers to these questions may help researchers to explain the musical behaviour of young adults that support their well-being.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Durgesh K. Upadhyay is an assistant professor of Music Education and Music Psychology.

Ridhima Shukla is an assistant professor of Emotions and Personality Assessment.

Viveka Nand Tripathi is an assistant professor of Emotion and Cognition.

Manju Agrawal is a professor of Gender Issues, Adolescent Issues, Personality and Emotions.

ORCID

Durgesh K. Upadhyay http://orcid.org/0000-0001-7647-9458

References

Abeles, H. F., & Chung, J. W. (1996). Responses to music. In D. A. Hodges (Ed.), Handbook of music psychology (2nd ed.). (pp. 285–342). San Antonio, TX: IMR Press.

Arnett, J. J. (1995). Adolescents’ uses of media for self-socialisation. Journal of Youth and Adolescence, 24, 519–533.

Arnett, J. J. (2010). Adolescence and emerging adulthood: A cultural approach (4th ed.). Boston, MA: Prentice Hall.

Batt-Rawden, K., & Denora, T. (2005). Music and informal learning in everyday life. Music Education Research, 7, 289–304.

Behne, K. E. (1997). The development of “Musikerleben” in adolescence: How and why young people listen to music. In I. Deliege & J. A. Sloboda (Eds.), Perception and cognition of music (pp. 143–160). Hove: Psychology Press.

Boer, D., & Fischer, R. (2012). Towards a holistic model of functions of music listening across cultures: A culturally decentred qualitative approach. Psychology of Music, 40, 179–200.

Bonner, E. T., & Friedman, H. L. (2011). A conceptual clarification of the experience of awe: An interpretative phenomenological analysis. The humanistic psychologist, 39, 222–235.

Bradley, M. M., Codispoti, M., Sabatelli, D., & Lang, P. J. (2001). Emotion and motivation II: Sex differences in picture processing. Emotion, 1, 300–319.

Chamorro-Premuzic, T., & Furnham, A. (2007). Personality and music: Can traits explain how people use music in everyday life. British Journal of Psychology, 98, 175–185.

Christenson, P. G., & Peterson, J. (1988). Genre and gender in the structure of music preferences. Communication Research, 15, 282–301.

Clayton, M. (2009). The social and personal functions of music in cross-cultural perspective. In S. Hallam, I. Cross, & M. Thaut (Eds.), The oxford handbook of music psychology (pp. 35–14). New York, NY: Oxford University Press.

Clift, S., Hancox, G., Morrison, I., Hess, B., Kreutz, G., & Stewart, D. (2010). Choral singing and psychological wellbeing: Quantitative and qualitative findings from English choirs in a cross-national survey. Journal of Applied Arts and Health, 1, 19–34.

Colley, A. (2008). Young people’s musical taste: Relationship with gender and gender related traits. Journal of Applied Social Psychology, 38, 2039–2055.

Davidson, J. W. (2011). Musical participation: Expectations, experiences, and outcomes. In I. Deliege & J. W. Davidson (Eds.), Music and the mind: Essays in honour of John Sloboda (pp. 65–87). Oxford: Oxford University Press.

Deutsch, D. (1999). The psychology of music (2nd ed.). New York, NY: Academic Press.
Fleeson, W., Malanos, A. B., & Achille, N. M. (2002). An intra-individual process approach to the relationship between extraversion and positive affect: Is acting extraverted as “good” as being extraverted? *Journal of Personality and Social Psychology, 83*, 1409–1422.

Folkestad, G. (1998). Musical learning as cultural practice as exemplified in computer-based creative music-making. In B. Sundrill, G. E. McPherson, & G. Folkestad (Eds.), *Children composing* (pp. 97–135). Malmo: Lunds University.

Gabrielson, A. (2001). Emotions in strong experiences with music. In P. N. Juslin & J. A. Sloboda (Eds.), *Music and emotion: Theory and research* (pp. 431–449). Oxford: Oxford University Press.

Getz, L. M., Chamorro-Premuzic, T., Roy, M. M., & Devroop, K. (2010). The relation between affect, uses of music, and music preferences in a sample of South African adolescents. *Psychology of Music, 40*, 164–178.

Hansen, C. H., & Hansen, R. D. (1991). Schematic information processing of heavy metal lyrics. *Communication Research, 18*, 373–411.

Hargreaves, D. J., & North, A. C. (1999). The functions of music in everyday life: Redefining the social in music psychology. *Psychology of Music, 27*, 71–83.

Hills, P., & Argyle, M. (1998). Musical and religious experiences and their relationship to happiness. *Personality and Individual Differences, 25*, 91–102.

Hunter, P. G., & Schellenberg, E. G. (2010). Music and emotion. In M. R. Jones, R. F. Fay, & A. N. Popper (Eds.), *Music perception*, Vol. 36 (pp. 129–164). New York, NY: Springer.

Jennings, M. K., & Niemi, R. G. (1981). *Generation and politics*. Princeton, NJ: Princeton University Press.

John, O. P., & Srivastava, S. (1999). The big-five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), *Handbook of personality: Theory and research* (2nd ed., Vol. 2, pp. 102–138). New York, NY: Guilford Press.

Juslin, P. N., & Laukka, P. (2004). Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening. *Journal of New Music Research, 33*, 217–238.

Juslin, P. N., & Sloboda, J. A. (Eds.). (2001). *Music and emotion: Theory and research*. Oxford: Oxford University Press.

Juslin, P. N., & Sloboda, J. A. (2010). The past, present, and future of music and emotion research. In P. N. Juslin & J. A. Sloboda (Eds.), *Handbook of music and emotion: Theory, research, applications* (pp. 933–955). New York, NY: Oxford University Press.

Juslin, P. N., & Zentner, M. R. (2002). Current trends in the study of music and emotion: Overture. *Musicae Scientiae, 2001–2002*, 3–21.

Koduri, G. K., & Indurkhya, B. (2010). A behavioral study of emotions in South Indian classical music and its implications in music recommendation systems. In *Proceedings of the ACM workshop on Social, adaptive and personalized multimedia interaction and access* (pp. 55–60). New York, NY: ACM.

Kopacz, M. (2005). Personality and music preference: The influence of personality traits on preferences regarding musical elements. *Journal of Music Therapy, 42*, 216–239.

Laiho, S. (2004). The psychological functions of music in adolescence. *Nordic Journal of Music Therapy, 13*, 47–63.

Lamont, A. (2011). University students’ strong experiences of music: Pleasure, engagement and meaning. *Musicae Scientiae, 15*, 229–249.

Laukka, P. (2006). Uses of music and psychological well-being among the elderly. *Journal of Happiness Studies, 8*, 215–241.

Lucas, R. E., Le, K., & Dyrenforth, P. S. (2008). Explaining the extraversion/positive affect relation: Sociability cannot account for extraverts’ greater happiness. *Journal of Personality, 76*, 385–414.

Maidlow, S. (1999). The role of psychology research in understanding the sex/gender paradox in music – Plus ça change. *Psychology of Music, 27*, 147–158.

Maidlow, S., & Bruce, R. (1999). The role of psychology research in understanding the sex/gender paradox in music – Plus ça change. *Psychology of Music, 27*, 147–158.

Mannheim, K. (1952). The problem of generations. In P. Kecskemeti (Ed.), *Essays on the sociology of knowledge* (pp. 276–320). London: Routledge & Kegan Paul.

McCown, W., Keiser, R., Mulhearn, S., & Williamson, D. (1997). The role of personality and gender in preferences for exaggerated bass in music. *Personality and Individual Differences, 23*, 543–547.

McNamara, L., & Ballard, M. E. (1999). Resting arousal, sensation-seeking and music preference. *Genetic, Social and General Psychology Monographs, 125*, 229–250.

Merriam, A. P. (1964). *The anthropology of music*. Evanston, IL: Northwestern University Press.

Meyer, L. B. (1956). *Emotion and meaning in music*. Chicago, IL: University of Chicago Press.

Misra, G. (2014). Psychology of emotions: Some cultural perspectives. In M. Cornelissen, G. Misra, & S. Varma (Eds.), *Foundations and Applications of Indian Psychology*, (Vol. 2, pp. 205–221). Delhi: Pearson.

North, A. C., & Hargreaves, D. J. (2007). Lifestyle correlates of musical preference: 2. Media, leisure time and music. *Psychology of Music, 35*, 179–200.

North, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. *British Journal of Educational Psychology, 70*, 255–272.

O’Neill, S. A. (1997). Gender and music. In D. J. Hargreaves & A. C. North (Eds.), *The social psychology of music* (pp. 46–63). New York, NY: Oxford University Press.

Pinker, S. (1997). *How the mind works*. New York, NY: Norton.
