DRIVING NIGHT TRAVEL DECISIONS WITH LOCAL WISDOM PRODUCT OFFERS TO ENHANCE THE TRAVEL EXPERIENCE

Trenggono¹, Mengku Marhendi², Haniek Listyorini³

Sekolah Tinggi Ilmu Ekonomi Pariwisata Indonesia, Semarang

trenggono.smg@gmail.com¹, mengkumarhendi@gmail.com², hanilistyorini@yahoo.com³

ABSTRACT

Introduction: Big cities in Indonesia intensify night tourism activities in their respective cities to increase tourist visits and provide a different atmosphere for the experience. This study aims firstly to examine how the influence of local wisdom product offerings typical of a destination on the decisions of night tourism entrepreneurs, secondly to explore the impact of local wisdom products on the travel experience, and thirdly to examine the effect of night tourism decisions. Method: To test this model, 100 tourists respondents were taken at several points of night tourism activities in Semarang City; Then, the data was processed using SEM PLS. Result: The partial hypothesis test shows the value of t-independent statistical variable of local wisdom product against the dependent variable of the travel experience of 1,449 < 1.96 and the importance of t-independent statistical variable of local wisdom product to the intervening variable of night travel decision of 15,336 > 1.96. Simultaneous hypothesis testing showed the importance of t-independent statistical variables of local wisdom products against dependent variables of travel experience through intervening variables of night travel decisions of 7.289 > 1.96. Conclusion: The first study shows that local wisdom products influence the decision to travel to the city of Semarang at night. Second, the development of local wisdom also influences the travel experience—a distinctive art. The three decisions of the following night tour affect the experience of travelling at night in the city of Semarang. Fourth, the decision to travel at night is a variable that mediates the travel experience.

Keywords: Local Wisdom Products, Night Tourism Travel Decisions, Travel Experiences.

INTRODUCTION

Tourism is considered capable of being a source of economic growth and world employment because it creates 300 million jobs and contributes 13% of the world’s total Gross Domestic Product. In line with the recovery from the Covid-19 pandemic conditions in 2022, the World Travel and Tourism Council (WTTC) predicts that tourism will create 328 million jobs or absorb 1 in 10 workers worldwide (ILO, 2022).

The importance of tourism to the economy causes tourism development to become an essential issue for cities in the World (Bălan & Burghelea, 2015) (Ginting & Wahid, 2015). Cities are racing to innovate and travel at night into an innovation developed as a competitiveness strategy (Rodrígues et al., 2014). Night tourism is becoming a trend through the new habit of tourists visiting a destination (Aytuğ & Mikaeili, 2017). Cities in the world have their character, both the uniqueness of tourism products and their tourist market segments, but several cities are known for their many night trip activities (Guo et al., 2011)
In Indonesia, significant cities that experience the development of night tourism include Jakarta, Surabaya, Bandung, Medan, Makasar, Semarang, Solo, and Yogyakarta. One of the cities that steals the attention in the development of night tourism is the city of Semarang. So far, Semarang is known as a transit city; now, it is a tourist destination and a night tourism city. Various buildings and historical areas have been restored as landmarks of the city of Semarang and developed into night tourist locations. Lawang Sewu, Kota Lama, Tugu Muda, Mandala Bhakti Museum, Semawis Market, and Jawi Village are more attractive locations to enjoy Semarang tourism at night.

Previous research stated that an essential factor that encourages tourists to travel at night in big cities is the attractiveness of culinary tourism. Therefore, many destinations try introducing traditional to modern foods to provide a varied culinary experience. The quality of the knowledge sought after in food tourism is related to the destination's image, lifestyle, and the influence of word of mouth (Lee et al., 2020).

The decrease in the status level of restrictions on socio-cultural gatherings in Semarang since October 2021 has encouraged tourists to return to travel with health protocols in various places. Besides enjoying the modernization of the city of Semarang, tourists can enjoy the local wisdom of the city of Semarang. The uniqueness of a city's tourist attractions can increase tourists' interest, and the added value of local knowledge further encourages tourists to visit (Sekarlangit & Devi S., 2020). Tourism based on local wisdom prioritizes unique offerings that grow and develop in the community, both physical and non-physical aspects, such as community cultural values (Maturbongs & Lekatompessy, 2020). Membranding the city using the essence of local wisdom and then being marketed digitally can build tourist interest. Local products still exist and must be maintained at the regional and central levels (Zulkarnain & Nugroho, 2019). Culinary creations based on local wisdom have attracted domestic and international tourists, and various authentic regional foods have attracted tourists to culinary tours in multiple cities (Zahrulianingdyah, 2018).

The purpose of this study is to analyze seven problems—first, the influence of local wisdom products on night travel decisions. Second, the impact of local wisdom products on the travel experience. Third, the result of night travel decisions on the travel experience. Fourth, night travel decisions' role in mediating local wisdom products' influence on the travel experience.

METHOD

This research was conducted in Semarang City in 6 points of popular night tourism places, namely the Old City Area, Simpang Lima Area, Tugu Muda Area, Jawi Village, Semawis Market, and Pandanaran Souvenir Center. This research uses quantitative research type. The entire population is tourists who make night tourism visits in Semarang City, which cannot be known to the people for sure by researcher so the researcher will use a sample of part of the tourists based on the Lemeshow formula used a selection of 100 visitors (Sulaju et al., 2021).

The sampling technique is based on accidental convenience sampling (Sugiyono, 2019), namely the comfort and willingness of tourists to fill out questionnaires when encountered at night tourist attractions or provide WhatsApp contact numbers. Next will be sent a google form questionnaire.

The data were processed using SPSS for descriptive statistics and SEM PLS to test data analysis requirements in the outer and inner models (Sihombing, n.d.). The criteria in the Outer Model using
validity tests are carried out by measuring individual and simultaneous convergent validity and discriminant validity. The reliability test includes Cronbach Alpha and Composite Reliability. At the same time, the Inner Model criteria include R square, Q square, F square, and Goodness of Fit (GoF). After the requirement test, it is continued by testing the hypothesis of several effects of relationships between variables, namely the difficulty of direct and indirect associations (mediation effects).

RESULTS AND DISCUSSION
Model Measurement Evaluation (Outer Model)

In testing, outer models aim to see the validity and reliability of a model. This test analysis can be seen from the influence of factor loading, Average Variance Extracted (AVE), Discriminate Validity, and Composite Reliability. Here are the results of the outer model test that shows the external loading value using the SmartPLS 3 analysis tool.

1. Factor Loading

The aal stage in testing the validity of a model is to test the convergent validity, which can be seen from the loading factor for each construct indicator. The requirement for the needle to be declared valid is if the value of the loading factor > 0.7. The hand should be removed from a Model (Umar, 2013).

When viewed from the picture above, the latent variable of local wisdom products with seven indicators, all indicators have a loading factor > 0.7. Then in the night travel decision variable, all five hands have a loading factor > 0.7, and for the travel experience variable, all eight hands have a loading factor of 0.7. So it can be concluded from the results of the analysis showing that the loading factor of all items from the three variables has a value of > 0.7, so it can be said to be valid.

2. Average Variance Extracted (AVE)

AVE is a value that is also used in Convergent Validity tests. In the study results, the expected AVE value to be declared valid is > 0.5. In the table below, the constructs of latent variables all have a value of > 0.5.

Table 1. AVE Output Results Influence of Local Wisdom Products on Travel Decisions and Travel Experiences
Trenggono¹, Mengku Marhendī², Haniek Listyorini³
Driving Night Travel Decisions with Local Wisdom Product Offers to Enhance the Travel Experience

Construct	AVE
X Local Wisdom Products	0.663
Y Night Tourism Travel Decisions	0.710
Z Travel Experience	0.756

Source: Primary data processed, 2022.

The table above shows that the entire construct of a latent variable has a value of > 0.5, so it is declared valid.

3. **Discriminate validity**

Because there is no problem with convergent validity, an issue related to discriminant validity is then tested. This test is used to test the validity of a model. The discriminate validity value is seen through the cross-loading value, which shows the magnitude of the correlation between the construct and its indicators and indicators of other constructs. The results of cross-loading in the analysis of discriminate validity are found in Table 4, below

Table 2. Cross Loading Value Discriminant Validity
Night Trip Decision
Night trip Decisions
Travel Experience
Local Wisdom Products

Source: Processed primary data, 2022

This result shows that each indicator is appropriate to explain the construct of each variable and prove that the discrimination of the validity of all items is valid.

4. **Composite Reliability**

To ensure that there are no measurement-related problems, the final step in evaluating the outer model is to test the unidimensionality of the model. This unidimensionality test was carried out using composite reliability and Alpha Cronbach. For the three variables, the cut-off value is 0.7. The results of the data processing are presented in the following table:

Table 3. Composite Reliability
Construct
X Local Wisdom Products
Y Night Tourism Travel Decisions
Z Travel Experience

Source: Primary data processed, 2022
The table above shows that all constructs have a composite reliability value above 0.7. Therefore there are no problems found in the unidimensionality of the influence of local wisdom products on the decision to travel night and experiences in the city of Semarang. The entire variable is declared reliable.

Evaluation of Inner Model Testing

Coefficient of Determination R^2 (R-Square)

The value can know the goodness of fit on PLS of Q2. The value of Q2 has the same meaning as the coefficient of determination (R-Square) in regression analysis.

Construct	R^2	Adjusted R^2
Y Night Tourism Travel Decisions	0.557	0.552
Z Travel Experience	0.751	0.746

Source: Primary data processed, 2022

Based on the R^2 Table, it can be known the value of Q2, where the importance of Q2 $= 1 - \{1-R_1\}(1-R_2)$. The result is 1 - (1-0.557)(1-0.751) = 0.889 or 88.9%, meaning that the model can explain data of 88.9% consisting of Night Travel Decisions of 55.7% and Travel Experiences of 75.1%, other factors influence the rest. The value of R^2 shows that 55.7% of the variable product of local wisdom can affect travel decisions, and the rest is influenced by other variables outside the variables in this study. The value of R^2 shows that 75.1% of local wisdom products and travel decisions can affect the travel experience; the rest is influenced by other variables outside the variables in this study.

Hypothesis Testing

Partial t-statistical coefficient

PLS-SEM Bootstrapping Test To see if a hypothesis can be accepted or rejected, among others, by paying attention to the significance values between constructs, t statistics, and p-values. In the bootstrap resampling method in this study, the significance value used (two-tailed) t-table was 1.96 (significance level = 5%), provided that the t-statistical value must be greater than the t-table value of 1.96. The figure below shows a picture of the path hypothesis as follows.

![Figure 2. Results of t-statistical Test (Bootstrapping)](image)
Based on the picture above, the t-statistical value of the influence of local wisdom products on night travel decisions is 16,403 > t table 1.98 shows the impact of local wisdom products significantly on night travel decisions in Semarang City.

The t-statistical value of night travel decisions on travel experiences is 8,878 > t table 1.98, indicating that the influence of night travel decisions is significant on travel experiences.

The t-statistical value of the influence of local wisdom products on travel experiences is 1,431 < t table 1.98, this shows that the impact of local wisdom products is not significant on travel experiences.

Table 5. Significance Test Results

No	Indicator	Original Sample	Sample Mean	Standard Deviation	t-statistic	P value
H1	PK → KP	0.746	0.753	0.049	15.336	0.000
H2	PK → PW	0.131	0.130	0.090	1.449	0.148
H3	KP → PW	0.765	0.771	0.090	8.481	0.000
H4	PK → KP → PW	0.571	0.581	0.078	7.298	0.000

Hypothesis 1 : The Influence of Local Wisdom Products on Night Travel Decisions
Result : Hypothesis testing showed a t - statistical value of 16,405 >1.98 and a p-value of 0.000 < 0.05.
Conclusion : Based on the results of the calculations above, it can be concluded that hypothesis 1 is accepted and that there is a significant influence of local wisdom products on night travel decisions. Based on the results of the calculations above, it can be concluded that hypothesis 1 is accepted, and it is stated that there is a significant influence of local wisdom products on night travel decisions.

Hypothesis 2 : The influence of local wisdom products on travel experiences
Result : Hypothesis testing showed a t - statistical value of 0.149< 1.96 and a p-value of 0.90 > 0.05
Conclusion : Based on the results of the calculations above, it can be concluded that hypothesis 2 is rejected, and it is stated that there is no significant influence of local wisdom products on travel experiences.

Hypothesis 3 : The influence of night travel decisions on the travel experience
Result : Hypothesis testing showed a t - a statistical value of 8,481 > 1.96 and a p-value of 0.000 < 0.05.
Conclusion : Based on the results of the calculations above, it can be concluded that hypothesis 3 is accepted, and it is stated that there is a significant influence of night travel decisions on the travel experience.

Hypothesis 4 : The influence of local wisdom products on the travel experience through night trip decisions
Result : The partial hypothesis test shows the value of t - independent statistical variable of local wisdom product against the dependent variable of the travel experience of 1,449 < 1.96 and the importance of t - independent statistical
variable of local wisdom product to the intervening variable of night travel decision of 15,336 > 1.96. Simultaneous hypothesis testing showed the importance of t - independent statistical variables of local wisdom products against dependent variables of travel experience through intervening variables of night travel decisions of 7.289 > 1.96.

Conclusion: Based on the results of the calculations above, it can be concluded that hypothesis 4 is accepted, and it is stated that there is a significant influence of local wisdom products on the travel experience through the decision to travel at night.

Mediation Effect Test

SEM Analysis With Mediation Effect Testing of the mediation effect in PLS using the procedure developed by (Baron and Kenny 1998 in Ghozali and Latan 2015) with the following stages:

1. The first model tests the influence of independent variables on dependent variables and should be significant at t - statistics 1.98.
2. The second model tests the influence of independent variables on intervening variables and should be significant at t - statistics 1.98.
3. The third model simultaneously tests the influence of independent and intervening variables on dependent variables. In this test, if the result of independent variables on dependent variables through intervening variables is significant at t -statistics 1.98, then the intervening variables are shown to mediate the influence of independent variables on dependent variables.

Construct	Original Sample Mean	Sample Mean	Standard Deviation	t-statistic	P-value
PK → KP → PW	0.571	0.581	0.078	7.298	0.000

Source: Primary data processed, 2022

CONCLUSION

The study concludes that local wisdom products influence the decision to travel at night. Secondly, local wisdom products also affect travel; thirdly, the decision to travel at night affects the travel experience and the decision to travel at night mediates the influence of local wisdom products on the travel experience. To feel the experience of traveling, tourists must take a night tour in the city of Semarang to enjoy the effects of local wisdom.
REFERENCES

Aytuğ, H. K., & Mikaeili, M. (2017). Evaluation of Hopa's Rural Tourism Potential in the European Union Tourism Policy Context. Procedia Environmental Sciences, 37, 234–245. https://doi.org/10.1016/j.proenv.2017.03.039

Bălan, M., & Burghelea, C. (2015). Rural Tourism and its Implication in the Development of the Fundata Village. Procedia-Social and Behavioral Sciences, 188, 276–281.

Ginting, N., & Wahid, J. (2015). Exploring Identity's Aspect of Continuity of Urban Heritage Tourism. Procedia - Social and Behavioral Sciences, 202(December 2014), 234–241. https://doi.org/10.1016/j.sbspro.2015.08.227

Guo, Q., Lin, M., Meng, J. H., & Zhao, J. L. (2011). The development of urban night tourism based on the nightscape lighting projects-A case study of Guangzhou. Energy Procedia, 5(40771002), 477–481. https://doi.org/10.1016/j.egypro.2011.03.083

ILO. (2022). *Tourism is a powerful tool to tackle the crisis*. International Labour Organisation.

Lee, S., Park, H., & Ahn, Y. (2020). The influence of tourists’ experience of quality of street foods on destination’s image, life satisfaction, and word of mouth: The moderating impact of food neophobia. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010163

Maturbongs, E. E., & Lekatompessy, R. L. (2020). Kolaborasi Model Pentahelix Dalam Pengembangan Pariwisata Berbasis Kearifan Lokal Di Kabupaten Merauke. Transparansi: Jurnal Ilmiah Ilmu Administrasi, 3(1), 55–63. https://doi.org/10.31334/transparansi.v3i1.866

Rodrigues, A. L. , Rodrigues, A., & Peroff, D. M. (2014). The Sky and Sustainable Tourism Development: A Case Study of a Dark Sky Reserve Implementation in Alqueva. International Journal of Tourism Research, 113(November 2012), 101–113. https://doi.org/: 10.1002/jtr.1987

Sekarlangit, N., & Devi S., L. V. R. (2020). Architecture Branding in a Local Wisdom Based on Tourism Development 4.0 in Bali. Undagi : Jurnal Ilmiah Jurusan Arsitektur Universitas Warmadewa, 7(2), 56–65. https://doi.org/10.22225/undagi.7.2.1564.153-162

Sihombing, P. R. (n.d.). *Aplikasi SEM AMOS Untuk Statistisi Pemula*.

Sugiyono. (2019). *Metode Penelitian Kuantitatif Kualitatif dan R&D*. ALFABETA.

Sulaju, A. P., Latif, I. N., Bakrie, I., & Milasari, L. A. (2021). Statistik Ekonomi 1. In *Zahir Publishing* (1st ed.).

Umar, H. (2013). *Metode penelitian untuk skripsi dan tesis bisnis*.

Zahrulianingdyah, A. (2018). Kuliner Sebagai Pendukung Industri Pariwisata Berbasis Kearifan Lokal. Teknobjuka, 6(1), 1–9. https://doi.org/10.1529/jtbb.v6i1.16667

Zulkarnain, I., & Nugroho, H. (2019). Analisis Perilaku Produsen Dalam Mengembangkan Produk...
Driving Night Travel Decisions with Local Wisdom Product Offers to Enhance the Travel Experience