Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes

ABSTRACT

Background: Recent studies have implicated specific assembly subtypes of β-amyloid (Aβ) peptide, specifically soluble oligomers (soAβ) as disease-relevant structures that may underlie memory loss in Alzheimer disease. Removing existing soluble and insoluble Aβ assemblies is thought to be essential for any attempt at stabilizing brain function and slowing cognitive decline in Alzheimer disease. IV immunoglobulin (IVIg) therapies have been shown to contain naturally occurring polyclonal antibodies that recognize conformational neoepitopes of soluble or insoluble Aβ assemblies including soAβ. These naturally occurring polyclonal antibodies have been suggested to underlie the apparent clinical benefits of IVIg. However, direct evidence linking anti-Aβ antibodies to the clinical bioactivity of IVIg has been lacking.

Methods: Five-month-old female Dutch APP E693Q mice were treated for 3 months with neat IVIg or with IVIg that had been affinity-depleted over immobilized Aβ conformers in 1 of 2 assembly states. Memory was assessed in a battery of tests followed by quantification of brain soAβ levels using standard anti-soAβ antibodies.

Results: We provide evidence that NU4-type soAβ (NU4-soAβ) assemblies accumulate in the brains of Dutch APP E693Q mice and are associated with defects in memory, even in the absence of insoluble Aβ plaques. Memory benefits were associated with depletion from APP E693Q mouse brain of NU4-soAβ and A11-soAβ but not OC-type fibrillar Aβ oligomers.

Conclusions: We propose that targeting of specific soAβ assembly subtypes may be an important consideration in the therapeutic and/or prophylactic benefit of anti-Aβ antibody drugs. *Neuronal Neuroimmunological Neuroinflammation* 2016;3:e237; doi: 10.1212/NXI.0000000000000237

GLOSSARY

Aβ = β-amyloid; AD = Alzheimer disease; EPM = elevated plus maze; FC = fear conditioning; IG = Immune Globulin; IVIg = IV immunoglobulin; nAb = naturally occurring antibody; NOR = novel object recognition; nTg = nontransgenic; soAβ = oligomeric β-amyloid; PBS = phosphate-buffered saline; SA = spontaneous alternation; soAβ = soluble oligomeric β-amyloid.

Alzheimer disease (AD), the most common form of dementia among the elderly, is attended by decades of accumulation of the neurotoxic β-amyloid (Aβ) peptide.1 Removing existing soluble and insoluble Aβ assemblies is thought to be essential for stabilizing brain function and slowing cognitive decline. While prior active or passive immunotherapies have been successful in AD mouse models, success in clinical trials has been elusive.2

IV immunoglobulin (IVIg) consists of purified plasma Ig pooled from thousands of healthy donors, is associated with reduced risk of developing AD,3 and was shown to contain naturally occurring polyclonal antibodies to the clinical bioactivity of IVIg has been lacking.

From the Departments of Psychiatry (E.M.K., S.H.K., J.C.K., A.L., S.G., J.W.S.), Neurology (E.M.K., S.H.K., J.C.K., A.L., M.E., S.G., J.W.S.), and Pediatrics (M.E.), and Alzheimer’s Disease Research Center (E.M.K., S.H.K., J.C.K., A.L., M.E., S.G., J.W.S.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Molecular Biology and Biochemistry (A.H., R.A., C.G.G.), University of California at Irvine; King Fahad Medical Research Center (A.H., R.A., C.G.G.), KAU, Jeddah, Saudi Arabia; Department of Biochemistry (A.S.), University of California at Irvine; King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; James J. Peters VA Medical Center (S.G.), Bronx, NY; and Sanford Consortium for Regenerative Medicine (J.W.S.), University of California San Diego, La Jolla, CA.

Funding information and disclosures are provided at the end of the article. Go to Neurology.org/nn for full disclosure forms. The Article Processing Charge was paid by the authors.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially.
occurring antibodies against Aβ (nAbs-Aβ). Such nAbs-Aβ appear to be decreased in patients with AD, suggesting that some component(s) of IVIg may be useful for the treatment of early sporadic or familial forms of AD, and an independent phase 3 trial of IVIg yielded benefit in patients with moderate-stage AD who carried an APOE ε4 allele.

Immune Globulin (IG), an IVIg therapy developed by Baxter Pharmaceuticals, has shown benefit in AD models and produced cognitive benefit in early trials. IG contains nAbs that recognize conformational epitopes on detergent-soluble and -insoluble Aβ aggregates. However, direct evidence linking anti-Aβ antibodies to the clinical bioactivity of IG has been lacking. The aim of this study was to test the effects of neat or Aβ-affinity-depleted forms of IG on learning behaviors and pathology in Dutch APP E693Q transgenic mice, and to determine whether improved learning behaviors might be associated with the depletion of specific soluble oligomeric Aβ (soAβ) immunosubtypes.

METHODS Experimental animals. Animal procedures were conducted in accordance with the NIH Guidelines for the Care and Use of Experimental Animals and were approved by the Institutional Animal Care and Use Committee at the Icahn School of Medicine at Mount Sinai. All mice were given ad libitum access to food and water, and housed in micro-isolator cages under a 12-hour light/dark cycle. Generation of Dutch (APP E693Q) and PS1ΔE9 transgenic mouse lines have been described previously. For baseline cued and contextual fear conditioning (FC) behavior, experimentally naive, 6-month-old male and female mice were used: nontransgenic (nTg; n = 8), Dutch (n = 9), and Dutch/PS1ΔE9 (n = 13).

For IG drug-treatment experiments, 5-month-old female Dutch APP E693Q transgenic mice were given weekly subcutaneous injections of either saline (n = 11) or 2 g/kg neat Baxter IG (n = 12), 2 g/kg IG depleted of anti-fibril Aβ antibodies (fibril Aβ-affinity-depleted IG; n = 11), 2 g/kg IG depleted of anti-oligomer Aβ antibodies (oligomer Aβ-affinity-depleted IG; n = 11), or 2 g/kg IG depleted of both anti-oligomer and anti-fibril Aβ antibodies (Aβ-affinity-depleted IG; n = 11) for 3 months.

Preparation of Aβ monomers, oligomers, and fibrils for affinity depletion. Resin bearing Aβ42 monomers coupled at either the N or C terminus was obtained from Alpha Diagnostic International (San Antonio, TX). Aβ globular oligomers were prepared as previously described. The resultant oligomers were characterized by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and stored at 4°C for up to 2 weeks. Stabilized oligomers, for coupling to affinity columns, were cross-linked by treatment with 1 mM glutaraldehyde for 15 minutes at 20°C and terminated in 5 mM ethanolamine at 20°C. The ethanolamine was removed by ultrafiltration using a Vivaspin centrifugal concentrator with a 10-kDa cutoff centrifugal concentrator (Sartorius Stedim, Bohemia, NY). Aβ fibrils were prepared as described. HIFP-treated Aβ40 monomer was dissolved in 2 mM NaOH, then centrifuged at 10,000g for 60 minutes to remove amyloid clumps. The supernatant was adjusted to 1× phosphate-buffered saline (PBS) 0.05% NaAz and incubated with agitation at 37°C for 14 days. Fibril structure was confirmed by electron microscopy. Before coupling onto the affinity resin, the fibrils were sonicated as described.

Depletion of anti-Aβ antibodies from Baxter IG by affinity chromatography. Resins for the depletion of anti-Aβ oligomer and anti-Aβ fibril antibodies were prepared as described. Baxter IG at 10 mg/mL in PBS was passed at least 5 times over columns at 1 to 2 mL/min to deplete either anti-oligomer or anti-fibril antibodies. To produce IG deficient in antibodies against all types of amyloid, the columns, including monomer amyloid columns, were run in series. Unbound IG from the various columns was concentrated to approximately 500 mg/mL by ultrafiltration through 30k molecular weight cutoff filters (Sartorius Stedim) and dialyzed against PBS before use in the animal studies.

Behavioral testing. Mice were placed in the testing room 1 hour before testing to acclimatize to the room. All equipment was cleaned between animals. Memory was assessed in the novel object recognition (NOR), Y-maze spontaneous alternation (SA), and contextual/cued FC tests and anxiety-like behavior assessed in the elevated plus maze (EPM) as previously described.

Tissue preparation. Animals were killed, perfused with ice-cold 1× PBS, and brains were hemisected. One hemisphere was postfixed in 4% paraformaldehyde, stored at 4°C, and prepared for immunohistologic analyses. The remaining hemisphere was snap frozen and stored at −80°C before biochemical analysis. Brain samples were prepared for biochemical analysis as described previously.

Antibody-based assays. For a list of antibodies used in the current study, or for immunofluorescence and immunohistology, Western blot, dot blot, and ELISA assays described here, see e-METHODS at Neurology.org/nm.

Statistical analysis. Independent-samples t tests were used to determine significant differences between 2 groups. One-way analyses of variance with Bonferroni post hoc analyses were used to compare 3 or more groups. Significance for t tests and analyses of variance are reported with an α level of 0.05 using 2-tailed tests with an α level of 0.05. All statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA).

RESULTS Impairment of hippocampus-dependent memory is evident at 6 months of age in Dutch and Dutch APP/PS1ΔE9 mice. Six-month-old nTg, Dutch APP, and Dutch APP/PS1ΔE9 mice were trained and tested on the cued and contextual FC paradigm. By comparison to their nTg littermates, both Dutch APP and Dutch APP/PS1ΔE9 mice displayed significant impairment of contextual fear memory, whereas no differences were observed among the 3 groups for cued fear memory (figure 1, A and B). No significant differences were observed between male and female mice for performance on cued or contextual FC tasks.
Six-month-old mice were trained and tested for contextual (A) and cued (B) memory. Brain lysates were analyzed for levels of soAβ (C), soluble Aβ42/40 (D), and insoluble aggregated Aβ42 (E). Using conformation-specific antibodies, levels of soluble prefibrillar (F) or fibrillar (G) oAβ were analyzed from brain lysates. (H) Brain sections were stained for soluble prefibrillar oAβ (A11) or nuclear oligomeric assemblies (M78); scale bars = 40 μm; ×20 magnification, counterstain is DAPI. Data are representative littermates; histograms represent mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001. Aβ = β-amyloid; Agg. = aggregated; AU = arbitrary units; DAPI = 4',6-diamidino-2-phenylindole; nTg = nontransgenic; oAβ = oligomeric β-amyloid; soAβ = soluble oligomeric β-amyloid.
PS1ΔE9 mice for Aβ42/Aβ40 ratio (figure 1D), which is consistent with expression of the PS1ΔE9 transgene.12,22 We also observed a nearly 10-fold-higher accumulation of detergent-insoluble aggregated Aβ42 in the brains of Dutch APP/PS1ΔE9 mice as compared to their Dutch APP littermates (figure 1E).

Based on the observation that both mouse lines accumulate the same amount of soAβ assemblies (figure 1C), we utilized conformation-specific antibodies to assess the native conformation of the soAβ assemblies. We noted a significant decrease in levels of A11-immunoreactive soluble prefibrillar Aβ assemblies among Dutch APP/PS1ΔE9 mice when compared to their Dutch APP littermates (figure 1, F and H), whereas no difference was observed between the 2 genotypes for levels of OC-immunoreactive soluble fibrillar Aβ assemblies (figure 1G).

Previously, we reported marked intraneuronal accumulation of APP/Aβ in the brains of both Dutch APP and Dutch APP/PS1ΔE9 mice.12 We further characterized this pathology, revealing subtle differences in intra- and extraneuronal pathology between the genotypes (figure 2). Whereas Dutch APP mice primarily exhibited perinuclear intracellular 4G8-immunoreactivity without plaque-like M31-immunoreactivity, Dutch APP/PS1ΔE9 mice exhibited punctate intracellular 4G8-immunoreactivity and plaque-like M31-immunoreactivity (figure 2).

We analyzed brain lysates from nTg, Dutch APP, and Dutch APP/PS1ΔE9 for markers of autophagic/lysosomal stasis including LC3, p62, α-synuclein, and APP in order to determine whether autophagic/lysosomal failure was evident and/or associated with accumulation of soAβ assemblies or insoluble Aβ42. No accumulation of soluble LC3, p62, or α-synuclein was observed by comparison to nTg controls among either Dutch APP or Dutch APP/PS1ΔE9 mice, suggesting that autophagic/lysosomal clearance may be intact at this stage of pathology (figure 3). However, we noted a significant accumulation of insoluble p62 among only Dutch APP/PS1ΔE9 mice by comparison to their nTg and Dutch APP littermates (figure 3, A and C) and this effect was also observed to precede onset of autophagic/lysosomal failure in TgCRND8 mice.19 Based on this result, it is tempting to speculate that the insoluble accumulation of Aβ42 and p62 may represent an early marker of toxicity to the autophagic/lysosomal pathway; however, further aging studies with these mouse lines will be necessary to determine whether autophagic/lysosomal failure occurs at any age.Aβ assemblies may be responsible for the benefit provided by IG therapy. We previously reported deficits on hippocampus-dependent memory in the Morris water maze task and FC in the Dutch APP mouse line.12,23 Here, we chose a battery of tasks that target
both hippocampus-dependent memory as well as the entorhinal cortex and amygdala to assess complete memory function; these include FC, NOR, and Y-maze SA (previously untested), or anxiety-like behaviors using the EPM (previously reported). Three-month treatment of Dutch APP mice by once-weekly subcutaneous injection of neat IG prevented onset of NOR (figure 4A), SA (figure 4B), and FC (figure 4C) deficits, without affecting anxiety-like behavior in the EPM (figure 4D) in female Dutch APP mice. This behavioral protection was completely abrogated by treatment with either saline or fibrillar A\(_{42}\)-affinity-depleted or total A\(_{42}\)-affinity-depleted IG. However, a statistically significant benefit in learning behavior tasks (e.g., NOR) was observed among Dutch APP mice treated with oligomer A\(_{42}\)-affinity-depleted IG (figure 4A).

Treatment of mice with neat IG did not affect brain levels of A\(_{40}\) (figure 5, A–D) or A\(_{42}\) (figure 5, E–H), or its ratio (figure 5, I–L), but rather reduced brain levels of both toxic prefibrillar A11-immunoreactive soA\(_{42}\) (figure 5M) and NU-4-immunoreactive assemblies (figure 5N) in Dutch APP mice. Levels of OC-immunoreactive soluble fibrillar oligomers were not affected following treatment with neat IG in Dutch mice (figure 5O). Treatment of mice with fibrillar A\(_{42}\)-affinity-depleted IG apparently reduced brain levels of NU-4-immunoreactive (figure 5N) but not A11-immunoreactive (figure 5M) soA\(_{42}\) assemblies in Dutch APP mice. Thus, neat IG treatment was associated with clinical benefit and reduction of 2 immunosubtypes of soA\(_{42}\) assemblies (i.e., both A11-type and NU-4-type oligomers). Among 3 immunoaffinity-depleted IG preparations, only one was clinically effective, and, unexpectedly, that bioactive fraction was the fibrillar A\(_{42}\)-affinity-depleted IG that was associated with reduction in the content of NU-4-type soA\(_{42}\) assemblies. We cannot determine whether reduction in the content of A11-type soA\(_{42}\) assemblies might also be associated with clinical benefit. The relevance of this point is discussed in detail below.

DISCUSSION The current study indicates the utility of rodent models to study multiple stages of AD-related pathology, the relationship of A\(_{42}\) pathology to cognitive status, and the ability to separate canonical A\(_{42}\) plaque pathology from underlying toxic mechanisms. Here, we describe a hippocampus-dependent contextual fear memory deficit at 6 months of age in Dutch APP and Dutch APP/PS1\(\Delta\)E9 mice, and the accumulation of cognitive deficit–associated soA\(_{42}\) assemblies that are common to both lines. Of note, prior studies indicate that A11-immunoreactive prefibrillar soA\(_{42}\) assemblies are associated with conversion from soluble low-n multimers to insoluble fibrillar assemblies, whereas OC-immunoreactive soluble fibrillar soA\(_{42}\) assemblies do not form fibrils and, rather, seed formation of more soluble fibrillar soA\(_{42}\) assemblies. Moreover, levels of soA\(_{42}\) assemblies were recently found to be predictive of cognitive status at death among patients with AD, validating our findings (as discussed above) and the utility of these mouse models of AD. Here, we noted a significant decrease in A11-immunoreactive soA\(_{42}\) assemblies among Dutch APP/PS1\(\Delta\)E9 mice as...
compared to their Dutch APP littermates (figure 1, F–H; table). Our conclusions are supported by recent work by Liu et al. who analyzed contributions of Aβ1- and OC-immunoreactive soAβ assemblies to cognitive failure in Tg2576 mice and concluded that Aβ-immunoreactive, but not OC-immunoreactive, soAβ assemblies were associated with impaired memory. Based on these reports and our current results, we propose that Aβ- and/or NU-4-immunoreactive soAβ assemblies constitute key soAβ assemblies related to early hippocampal and entorhinal cortex-related memory failures in AD. Moreover, we propose that the Dutch APP E693Q mutation can support stabilization of these structures in a soluble state, perpetuating memory failure despite a failure to polymerize into insoluble fibrillar assemblies. A more dramatic example of this situation is exemplified by the Arctic APP E693G mutation wherein typical clinical AD develops despite the inability of the mutant peptide to form plaques, a property evidenced by the failure of [11C] Pittsburgh compound B to detect cerebral amyloidosis at any stage of the Arctic APP E693G–related familial AD.

Our group recently performed an integrative genomic analysis of the transcriptomes from human AD brain tissue or 2 independent mouse lines (including the Dutch APP mouse line) to identify altered molecules and pathways between wild-type and transgenic mice, and human patients with AD. These studies revealed consistent alterations in APP/Aβ metabolism, epigenetic control of neurogenesis, cytoskeletal organization, and extracellular matrix regulation. Comparison of these transcriptomic results with human AD postmortem gene expression data indicated significant similarities in pathway alterations between mouse models and patients with AD. In addition, it has been reported that changes in neuroinflammation-related gene regulation at early stages of AD was not related to neurofibrillary tangles, Aβ plaque burden, total Aβ40 or Aβ42, or membrane-bound
fibrillar Aβ, but rather to increased levels of soAβ.29 Taken together, these studies suggest that soAβ assemblies represent a critical driver of early-stage disease processes, leading to cognitive and cellular dysfunction observed at later stages of disease.

IVIg formulations have been previously assessed in other mouse models of AD, demonstrating that peripheral administration of IVIg crossed the blood–brain barrier and binding of Aβ deposits in APP/PS-1 mice. In ex vivo APP/PS-1 brain sections, IVIg enhanced microglial-mediated Aβ clearance and depletion of nAbs-Aβ in IVIg significantly reduced clearance.8 Treatment of TgCRND8 mice with nAbs-Aβs isolated from IVIg reduced plaque load in mice treated at 3 months of age but not those treated later during disease progression, at 12 months of age.30 When memory was assessed in Tg2576 mice, nAbs-Aβ treatment improved object recognition.30 In contrast, when APP/PS1ΔE9 mice were treated with IVIg for 3 or 8 months, no evidence of reduced Aβ was reported.9 Instead, increased monomeric Aβ\textsubscript{40} and Aβ\textsubscript{42} levels, enhancement of neurogenesis, suppression of proinflammatory cytokine gene expression, and evidence of modulation of microglial activation was observed in mice treated for 8 months.9 More recently, another study in Tg2576 mice saw an improvement in memory and synaptic plasticity following IVIg treatment that was not

Figure 5 Reduction of oligomeric Aβ following 3-month treatment of Baxter IG in Dutch APP E693Q transgenic mice

Five-month-old female Dutch APP E693Q transgenic mice were given weekly subcutaneous injections of either saline (n = 11) or 2 g/kg neat Baxter IG (n = 12), 2 g/kg IG depleted of anti-23 fibril Aβ antibodies (fibril Aβ-affinity-depleted IG; n = 11), 2 g/kg IG depleted of anti-oligomer Aβ antibodies (oligomer Aβ-affinity-depleted IG; n = 11), or 2 g/kg IG depleted of both anti-oligomer and anti-fibril Aβ antibodies (Aβ-affinity-depleted IG; n = 11) for 3 months. Aβ\textsubscript{40} (A–D), Aβ\textsubscript{42} (E–H), or Aβ\textsubscript{42/40} ratio (I–L) were unaffected with all treatments. Treatment with IG reduced brain levels of prefibrillar oligomers (M) and oligomers (N) but not fibrillar oligomers (O) in Dutch APP E693Q transgenic mice. Treatment of fibril Aβ-affinity-depleted IG reduced brain levels of oligomers in Dutch APP E693Q transgenic mice (N). (A, E, I) Total Aβ. (B, F, J) TBS fraction. (C, G, H) Triton-X fraction. (D, H, I) Formic acid fraction. (M, N, O) TBS fraction (n = 5/group). *p < 0.01; **p < 0.001. 1-way analysis of variance with Bonferroni post hoc analyses. Data expressed as mean ± SEM. Aβ = β-amyloid; IG = Immune Globulin.
linked to altered monomeric Aβ levels, but rather by the activation of complement components.31

IVIg contains antibodies against both monomeric and sOβ.32 In vitro studies in N2a neuroblastoma cells have revealed that IVIg can disaggregate Aβ fibrils and promote Aβ removal33 while preventing neurotoxicity-associated sOβ assemblies.3 Similarly, in cultured primary mouse hippocampal neurons, treatment with IVIg has been shown to reduce Aβ fibril formation and reduce Aβ neurotoxicity.3 Many studies, including ours, revealed no detectable reduction in monomeric Aβ. When IVIg was assessed in the 3xTgAD model of AD, an improvement in NOR, reduced immunologic CD4/CD8 blood ratio, reduced interleukin (IL)-5/IL-10 ratio in the cortex together with limited effects on tau but reduced Aβ42/40 ratio and levels of soluble 56-kDA Aβ oligomers were reported.34 Our study is the first to focus on oligomer immunosubtypes post IVIg treatment. In the present study, IG protection was not associated with altered levels of monomeric Aβ40 and Aβ42 levels but rather with decreased levels of some but not all immunosubtypes of soluble prefibrillar oligomeric Aβ assemblies. A11-immunosubtype and/or NU4-immunosubtype sOβ assemblies appear to be the key conformation(s) driving memory failure. This study suggests that IG may contain A11-like and NU4-like antibodies that confer some protection in the conformations of the soAβ assemblies as part of their therapeutic bioactivity. “Chaperone-like” activity has been reported for other antibodies35,36 such that the antibodies induce changes in the conformation of soAβ assemblies as part of their therapeutic action and/or as a biochemical reaction in IG-treated brain homogenates during assays. We are currently characterizing the chaperone content of our IG fractions in order to assess this possibility properly.

Baxter IG has been proposed as a potential treatment for AD, especially at moderate stage and in carriers of APOE ε4 alleles.37 IG contains natural human polyclonal IgG antibodies that recognize conformational neoepitopes expressed on soluble and insoluble Aβ assemblies. The current study demonstrates for the first time that 3 months of neat IG treatment of Dutch APP transgenic Aβ-oligomer-forming mice is associated with prevention of memory deficits in NOR, SA, and FC that is abrogated by affinity depletion of IG using certain conformers of soluble Aβ assemblies. These principles might well be kept in mind during the continued development and optimization of active and passive anti-Aβ immunotherapies and during the continued early-stage work on creating therapeutic chaperones that have the capacity to stabilize soAβ assemblies in nontoxic conformations.

Table Summary of Aβi antibodies used in the current study

Antibody	Specificity	Preparation	Clonality	Primary characterization reference
mAb 6E10	flAPP, SAPPβ, aa3-8 of Aβ, Aβi monomer, oligomer, fibrils, plaques	Purified from ascites	Monoclonal	Commercially available: Covance
OC	Soluble fibrillar oligomers, fibrils, plaques	Antiserum, purified on antigen	Polyclonal	25
mOC- (e.g., mOC31)	Polymorphic aggregation states, including fibrils	Family of monoclonals derived from OC	Monoclonal	38
NU-4	Soluble fibrillar oligomers, fibrils, plaques	Purified on protein G	Monoclonal	39
A11	Soluble prefibrillar oligomers	Antiserum, purified on antigen	Polyclonal	40
IG	Polymorphic aggregation states	Baxter IVIg preparation	Polyclonal	8
Fibril-depleted IG	Polymorphic aggregation states	Aβ fibril affinity depletion	Polyclonal	Current study
Oligomer-depleted IG	Polymorphic aggregation states	Aβ oligomer affinity depletion	Polyclonal	Current study
Aβi-depleted IG	Monomeric Aβ, polymorphic aggregation states	Aβ monomer affinity depletion	Polyclonal	Current study

Abbreviations: Aβ – β-amyloid; IG – Immune Globulin; IVIg – IV immunoglobulin.

Antibodies used in the current study are summarized to reflect known specificity, preparation, and clonality. IG antibodies were administered to Dutch APP E693Q mice before behavioral testing and biochemical studies. Soluble Aβ assemblies recognized by NU-4 and A11 were reduced following treatment with neat IG, but neither oligomeric-Aβi-depleted IG nor Aβi-depleted IG. NU-4 epitopes were also reduced in the brains of mice treated with fibril-Aβi-depleted IG, suggesting that the relevant soluble oligomeric Aβi assemblies providing cognitive benefit from IG are not fibrils or fibril-like in structure. Our results suggest that IG may contain NU4-like and/or A11-like antibodies that contribute to therapeutic benefit in the Dutch APP E693Q mouse model.
AUTHOR CONTRIBUTIONS
E.M.K. designed the experiments with M.E., P.S., N.R.R., C.M.A., C.G. G., S.G., and J.W.S. E.M.K., S.H.K., J.C.K., A.H., R.A., A.L., A.S., and P. S. performed the experiments. E.M.K. and J.W.S. analyzed the data. E.M. K., P.S., N.R.R., S.G., and J.W.S. wrote the manuscript.

STUDY FUNDING
This work was supported in part by a grant from Baxter Pharmaceuticals, Inc. J.W.S. is supported by NIH grant K12 GM068524. This work was additionally supported by NIH grants P50 AG05138 (to Mary Sano; S.G.), U01 AG046170 (S.G., M.E.), R34 AG049649 (S.G.), R01 NS075685 (S.G.), R01 MH065365 (C.M.A.), R21 AT005510 (S.G.), RF1 AG042965 (S.G.), VA MERIT Grant 101 RX060664 (S.G.), the Cure Alzheimer’s Fund (S.G.), and gifts from the Louis B. Mayer Foundation, the Sarah and Gideon Garmer Trust, the Rudin Foundation, and the Werber Family Foundation (all to S.G.).

DISCLOSURE
E. Knight, S.H. Kim, and J. Kotrutz report no disclosures. A. Hatami is an associate editor for Journal of Alzheimer’s Disease, received research support from NIH, Cure Alzheimer’s Fund. R. Albay and A. Suzuki report no disclosures. A. Lublin has been employed by Sanofi Genzyme, received research support from University of California, Riverside, holds stock or stock options in Geron and Ionis. C. Alberini is on the editorial board for Neurology: Neuroimmunology and Neuroinflammation, is an associate editor for Frontiers in Neuroscience, received research support from NIH. W.L. Klein served on the scientific advisory board for Acumen Pharmaceuticals, received research support from NIH, Baxter-NU Alliance, NUCATS/Northwestern. P. Szabo reports no disclosures. N. Relkin served on the scientific advisory board for Anavex, Herbal Science Group, Eisaí, was an associate editor for Neurology: Alert, has patents pending for Multiplexed CSF markers for Alzheimer’s disease, Diffusion tensor histogram analysis for diagnosis of hydrocephalus: an analytic method for identifying a DTI pattern associated with normal pressure hydrocephalus, Volumetric MRI for predicting response to IVIg treatment of Alzheimer’s disease, Cytokine analysis for predicting response to IVIg treatment of Alzheimer’s disease, Systems and methods for automating the retrieval of portioned search results, receives royalties from UpToDate, has consulted for Aisaí, Forest, Hydrocephalus Association. M. Ehrlich is on the editorial board for ASN Neuro, received research support from NIH, NYSSTEM. C. Globe served on the editorial board for Journal of Molecular Neurodegeneration, has patents and pending patents for immunotherapy and immunodiagnostics for AD, consults relating to intellectual property, receives license fee and royalty payments for antibodies for research purposes only and patent issues, received research support from NIH, NYSTEM. C. Glabe served on the editorial board for ASN Neuro, is a consulting editor for Neuroscience, is a member of the Data and Safety Monitoring Board from NIH. W.L. Klein served on the scientific advisory board for Sanofi Genzyme, received research support from University of California, Riverside, holds stock or stock options in Geron and Ionis. S.G. serves on the editorial board for Cell, Science, iScience, Cell Reports, Neurology: Neuroimmunology and Neuroinflammation, is an associate editor for Frontiers in Neuroscience, received support from NIH, Cure Alzheimer’s Fund. R. Albay and A. Suzuki report no disclosures. A. Lublin has been employed by Sanofi Genzyme, received research support from University of California, Riverside, holds stock or stock options in Geron and Ionis. C. Alberini is on the editorial board for Neuronal Plasticity, Neurobiology of Learning and Memory, was on the editorial board for Cell Science, is an associate editor for Frontiers in Neuroscience, received research support from NIH. W.L. Klein served on the scientific advisory board for Acumen Pharmaceuticals, received research support from NIH, Baxter-NU Alliance, NUCATS/Northwestern. P. Szabo reports no disclosures. N. Relkin served on the scientific advisory board for Anavex, Herbal Science Group, Eisaí, was an associate editor for Neurology: Alert, has patents pending for Multiplexed CSF markers for Alzheimer’s disease, Diffusion tensor histogram analysis for diagnosis of hydrocephalus: an analytic method for identifying a DTI pattern associated with normal pressure hydrocephalus, Volumetric MRI for predicting response to IVIg treatment of Alzheimer’s disease, Cytokine analysis for predicting response to IVIg treatment of Alzheimer’s disease, Systems and methods for automating the retrieval of portioned search results, receives royalties from UpToDate, has consulted for Aisaí, Forest, Hydrocephalus Association. M. Ehrlich is on the editorial board for ASN Neuro, received research support from NIH, NYSSTEM. C. Globe served on the editorial board for Journal of Molecular Neurodegeneration, has patents and pending patents for immunotherapy and immunodiagnostics for AD, consults relating to intellectual property, receives license fee and royalty payments for antibodies for research purposes only and patent issues, received research support from NIH, Cure Alzheimer’s Fund, was involved in legal proceedings for Sidney LLP. S. Gandy is an associate editor for ADAD, Molecular Neurodegeneration, is a consulting editor for FCI, received research support from Avid/ Lilly, Constellation Wines. J. Steele is a scientific advisory board member for OrPhI Therapeutics Inc., was editor-in-chief and consulting editor for Journal of Preadolescent Research, has a pending patent for Mitroprotection for treatment of lysosomal storage diseases, consulted for Amicus Therapeutics, received research support from CurePSP, DPD Deficiency Foundation, is a cofounder and on the board of directors for OrPhI Therapeutics Inc., holds stock or stock options in Amicus Therapeutics, GlimoSmithKline. Go to Neurology.org/ajn for full disclosure forms.

POTENTIAL CONFLICT OF INTEREST STATEMENT
J.W.S. is a cofounder, shareholder, and member of the board of directors and scientific advisory board of OrPhI Therapeutics Inc. (Carlsbad, CA). Within the past 5 years, S.G. has held research grants from Amicus Therapeutics. S.G. is also a member of the Data and Safety Monitoring Board for the Pfizer-Janssen Alzheimer’s Immunotherapy Alliance.

Received December 18, 2015; accepted in final form April 4, 2016.

REFERENCES
1. Gandy S. Lifelong management of amyloid-beta metabolism to prevent Alzheimer’s disease. N Engl J Med 2012; 367:864–866.
2. Gandy S, Sano M. Alzheimer disease: solanuzumab—prospects for meaningful interventions in AD? Nat Rev Neurol 2015;11:669–670.
3. Knight EM, Gandy S. Immunomodulation and AD: down but not out. J Clin Immunol 2014;34(suppl 1):S70–S73.
4. Dodel R, Hampel H, Depboylu C, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 2002;52:253–256.
5. Szabo P, Relkin N, Wekslar ME. Natural human antibodies to amyloid beta peptide. Autoimmun Rev 2008; 7:415–420.
6. Wekslar ME, Relkin N, Turkenich R, LaRusse S, Zhou L, Szabo P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 2002; 37:943–948.
7. Relkin N. Intravenous immunoglobulin for Alzheimer’s disease. Clin Exp Immunol 2014;178(suppl 1):27–29.
8. Magga J, Puli L, Pihlaja R, et al. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J Neuroinflammation 2010;7:90.
9. Pali L, Pomeschik Y, Olas K, Malm T, Koistinaho J, Tanila H. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation 2012; 9:105.
10. Relkin NR, Szabo P, Adamiak B, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2009;30:1728–1736.
11. Tsakanikas D, Shah K, Flores C, Assuras S, Relkin NR. P4-351: effects of uninterrupted intravenous immunoglobulin treatment of Alzheimer’s disease for nine months. Alzheimers Dement 2008;4:7776.
12. Gandy S, Simon AJ, Steele JW, et al. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann Neurol 2010;68:220–230.
13. Barghorn S, Nimrichter V, Striebinger A, et al. Globular amyloid beta-peptide oligomer: a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 2005;95:834–847.
14. O’Nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 2002;99:1485–1490.
15. O’Nuallain B, Williams AD, Westermark P, Wetzel R. Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 2004;279:17490–17499.
16. Szabo P, Mujalli DM, Rotondi ML, et al. Measurement of anti-beta amyloid antibodies in human blood. J Neuroimmunol 2010;227:167–174.
17. Knight EM, Williams HN, Stevens AC, et al. Evidence that small molecule enhancement of beta-hexosaminidase activity corrects the behavioral phenotype in Dutch APP (E693Q) mice through reduction of ganglioside-bound Abeta. Mol Psychiatry 2015;20:109–117.
18. Knight EM, Martins IV, Gumusgoz S, Allan SM, Lawrence CB. High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease, Systems and methods for automating the retrieval of portioned search results, receives royalties from UpToDate, has consulted for Avid/ Lilly, Constellation Wines. J. Steele is a scientific advisory board member for OrPhI Therapeutics Inc., was editor-in-chief and consulting editor for Journal of Preadolescent Research, has a pending patent for Mitroprotection for treatment of lysosomal storage diseases, consulted for Amicus Therapeutics, received research support from CurePSP, DPD Deficiency Foundation, is a cofounder and on the board of directors for OrPhI Therapeutics Inc., holds stock or stock options in Amicus Therapeutics, GlimoSmithKline. Go to Neurology.org/ajn for full disclosure forms.

Neurology: Neuroimmunology & Neuroinflammation 9
19. Steele JW, Lachenmayer ML, Ju S, et al. Latrepiridine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry 2013;18:889–897.

20. Jacobsen JS, Wu CC, Redwine JM, et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2006;103:5161–5166.

21. Laczo J, Vleck K, Vyhnanek M, et al. Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav Brain Res 2009;202:252–259.

22. Gandy S, Zhang YW, Ikin A, et al. Alzheimer’s presenilin1 modulates sorting of APP and its carboxy-terminal fragments in cerebral neurons in vivo. J Neurochem 2007;102:619–626.

23. Kim SH, Steele JW, Lee SW, et al. Proneurogenic group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Abeta oligomer mouse. Mol Psychiatry 2014;19:1235–1242.

24. Wu JW, Breydo L, Isan JM, et al. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. J Biol Chem 2010;285:6071–6079.

25. Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 2009;35:352–358.

26. Liu P, Reed MN, Kotilinek LA, et al. Quaternary structure defines a large class of amyloid-beta oligomers neutralized by sequestration. Cell Rep 2015;11:1760–1771.

27. Scholl M, Wall A, Thordardottir S, et al. Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology 2012;79:229–236.

28. Readhead B, Haure-Mirande JV, Zhang B, et al. Molecular systems evaluation of oligomeric APP and fibrillogenic APP/PSEN1 mouse models identifies shared features with human Alzheimer’s brain molecular pathology. Mol Psychiatry Epub 2016 Jan 19.

29. Lopez-Gonzalez I, Schluter A, Aso E, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 2015;74:319–344.

30. Dodel R, Balakrishnan K, Keyvani K, et al. Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci 2011;31:5847–5854.

31. Gong B, Pan Y, Zhao W, et al. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer’s disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol Immunol 2013;56:619–629.

32. Klaver AC, Finke JM, Dzigambazah J, Balasubramaniam M, Leefler DA. Antibody concentrations to Abeta42 monomer and soluble oligomers in untreated and antibody-antigen-dissociated intravenous immunoglobulin preparations. Int Immunopharmacol 2010;10:115–119.

33. Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res 2006;84:434–443.

34. St-Amour I, Pare I, Tremblay C, Coulombe K, Bazin R, Calon F. IVIg protects the 3xTg-AD mouse model of Alzheimer’s disease from memory deficit and Abeta pathology. J Neuroinflammation 2014;11:54.

35. Liu YH, Bu XL, Liang CR, et al. An N-terminal antibody promotes the transformation of amyloid fibrils into oligomers and enhances the neurotoxicity of amyloid-beta: the dust-raising effect. J Neuroinflammation 2015;12:153.

36. Solomon B, Koppel R, Frankel D, Hanan-Aharon E. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci USA 1997;94:4109–4112.

37. Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol 2014;34(suppl 1):S74–S79.

38. Hatami A, Albay R III, Monjazeb S, Milton S, Glabe C. Monoclonal antibodies against Abeta42 fibrils distinguish multiple aggregation state polymorphisms in vitro and in Alzheimer disease brain. J Biol Chem 2014;289:32131–32143.

39. Lambert MP, Velasco PT, Chang L, et al. Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem 2007;100:23–35.

40. Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486–489.
Effective anti-Alzheimer Aβ therapy involves depletion of specific Aβ oligomer subtypes

Elysse M. Knight, Soong Ho Kim, Jessica C. Kottwitz, et al.

Neurology Neuroimmunology & Neuroinflammation 2016;3;
DOI 10.1212/NXI.0000000000000237

This information is current as of May 10, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://nn.neurology.org/content/3/3/e237.full.html

Supplementary Material
Supplementary material can be found at:
http://nn.neurology.org/content/suppl/2016/05/10/3.3.e237.DC1

References
This article cites 39 articles, 8 of which you can access for free at:
http://nn.neurology.org/content/3/3/e237.full.html#ref-list-1

Citations
This article has been cited by 4 HighWire-hosted articles:
http://nn.neurology.org/content/3/3/e237.full.html#otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Alzheimer disease
http://nn.neurology.org/cgi/collection/alzheimers_disease

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://nn.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://nn.neurology.org/misc/addir.xhtml#reprintsus

Neurology Neuroimmunology & Neuroinflammation is an official journal of the American Academy of Neurology. Published since April 2014, it is an open-access, online-only, continuous publication journal. Copyright © 2016 American Academy of Neurology. All rights reserved. Online ISSN: 2332-7812.