Prevalence and genetic characterization of Cryptosporidium, Enterocytozoon, Giardia and Cyclospora in diarrheal outpatients in China

Hua Liu1,2,3, Yujuan Shen1,2,3*, Jianhai Yin1,2,3, Zhongying Yuan1,2,3, Yanyan Jiang1,2,3, Yuxin Xu1,2,3, Wei Pan1,2,3, Yuan Hu1,2,3 and Jianping Cao1,2,3*

Abstract

Background: Cryptosporidium spp., Enterocytozoon spp., Giardia spp. and Cyclospora spp. are important intestinal protozoan parasites causing diarrhea in humans, livestocks and wildlife and have a significant impact on public health. No reports exist about simultaneous prevalence rates or genotyping data of these four parasites in outpatients from China.

Methods: Fecal specimens from 252 diarrhea patients in a pediatric clinic (n = 169) and an intestinal clinic (n = 83) of a hospital in Shanghai, China, were collected between October 2012 and March 2013. All samples were examined for the presence of the four parasites by using molecular methods.

Results: In total, 76/252 (30.16%) patients were positive for at least one intestinal parasite, of which Cryptosporidium spp., Enterocytozoon bieneusi and Giardia intestinalis were detected by nested PCR in 34 (13.49%), 34 (13.49%) and 17 (6.75%) of the fecal specimens, respectively. Sequence analysis showed that all Cryptosporidium-positive specimens were C. andersoni and that most Giardia-positive patients were infected by assemblage C, which is usually found in canids, while only one sample was from assemblage B. Eight patients were co-infected with Cryptosporidium spp. and Enterocytozoon, while one was co-infected with Cryptosporidium and Giardia.

Conclusions: The patients infected with Cryptosporidium and Enterocytozoon bieneusi had higher infection rates in winter than in spring in this area. Data indicated that C. andersoni is the fourth major Cryptosporidium species infecting humans in addition to C. hominis, C. parvum and C. meleagris. Our study also revealed a short-term outbreak of cryptosporidiosis and microsporidiosis and sporadic cases of giardiasis that occurred among humans in Shanghai, China.

Keywords: Cryptosporidium, Enterocytozoon, Giardia, Cyclospora, Outpatients, Genotype
numbers of human cases have recently been reported [14,15]. The prevalent microsporidia species *E. bieneusi* has been most frequently identified in human clinical fecal samples as well as in wild and domestic animals [16,17]. Molecular diagnostic tools have been used to trace the source of human infections and transmissions, thus confirming its zoonotic potential [18].

G. intestinalis is the etiologic agent of giardiasis, a common gastrointestinal disease in humans, livestock and companion animals. *G. intestinalis* is considered as a complex species and based on genetic analysis has been grouped into eight assemblages (A–H) [19,20]. Both assemblages A and B, which can be transmitted zoonotically, have a wide host range and are responsible for human infections [21,22]. Assemblages C–G appear to be strictly host-specific: C and D are found largely in canids, E in domestic mammals, F in cats, G in rodents and H in seals [1,23].

Cyclospora cayetanensis, an emerging human pathogen, causes severe diarrheal disease and has resulted in several foodborne outbreaks in humans [2,24,25]. The transmission dynamics of this parasite are still unknown. In previous studies, feces as well as contaminated water sources were considered as transmission routes [26,27].

Currently, no reports exist about simultaneous prevalence rates and genotyping data of cryptosporidiosis, microsporidiosis, giardiasis and cyclosporiasis in China. Therefore, this study focused on the prevalence and genetic characterizations of the four diseases in diarrhea outpatients of a pediatric clinic and an intestinal clinic in Shanghai and assessed their potential zoonotic transmission.

Methods

Ethical statement

Ethical clearance for the collection and examination of human feces samples was obtained from the Ethics Committee of the National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, China (reference no. 2012–12). The objectives, procedures and potential risk were orally explained to all participants. Written informed consent was given to, and signed by all participating in the study. Parents/guardians provided consent on behalf of all infant participants.

Specimen collection and DNA extraction

Fecal specimens from 252 diarrhea patients in a pediatric clinic (n = 169) and an intestinal clinic (n = 83) of a hospital in Pudong, Shanghai, China, were collected between October 2012 and March 2013. Patient details, including their age, gender, address, frequency of diarrhea and consistency of stools, were recorded. Specimens were collected from patients with fecal excretion heavier than 200 g and with no less than three events of diarrhea per day. The stools consistency was usually thin and mixed with mucus or blood. Sufficient samples were collected for DNA extraction and purification using the QIAamp DNA stool Mini Kit (QIAGEN, Hilden, Germany). The extracted DNA was stored at −30°C for polymerase chain reaction (PCR).

Parasite identification in clinical samples

The small subunit (SSU) rRNA gene of Cryptosporidium was identified using a nested PCR [28]. The presence of *E. bieneusi*, *G. intestinalis* and *Cyclospora* in the specimens was detected using individual nested PCR and sequence analysis of the SSU rRNA gene [29], the triose phosphate isomerase (TPI) gene [30] and the 18S rRNA gene [31], respectively.

All primers used in the study are listed in Table 1. Go Taq® Green Master Mix (containing Go Taq® DNA Polymerase, dNTP mixture, Green Go Taq Reaction Buffer, MgCl2; Promega) was used to amplify the genes of *Cryptosporidium* and *G. intestinalis*, while Premix Taq® (containing Taq DNA Polymerase, dNTP mixture, Taq Buffer, Tartrazine/Xylene Cyanol FF; Takara) was used to identify *Enterocytozoon* and *Cyclospora* genes. Each 25 μl reaction mixture contained 12.5 μl Taq mix, 1 μl of 10 μM sense and antisense primers each, 1 μl DNA template and 12.5 μl nuclease-free water.

The thermal profile of *Cryptosporidium* PCR consisted of 94°C for 1 min, 35 cycles of 94°C for 30 s, 55°C for 30 s and 72°C for 1 min, followed by 72°C for 10 min, with a hold step at 4°C. A second reaction was carried out similarly. Each specimen was analyzed at least three times by PCR with positive and negative controls in each run. The other amplification conditions varied in annealing temperature and extension time. For *Enterocytozoon*, the annealing step was at 57.4°C, and the extension step was at 72°C for 90 s; the annealing step for *Giardia* was at 57.5°C, and the extension step was at 72°C for 1 min. The cycling conditions for *Cyclospora* were as follows: the primary cycle consisted of 94°C for 1 min, 35 cycles of 94°C for 50 s, 56°C for 30 s and 72°C for 90 s, followed by 72°C for 10 min, and termination at 4°C. The secondary step differed in extension time (72°C for 1 min).

Sequencing of each gene

Secondary PCR products were directly sequenced on an ABI 3730 DNA Analyzer (Applied Biosystems, Foster City, USA) using the secondary primers and a Big Dye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems). The sequence accuracy was confirmed by two-directional sequencing and by sequencing a new PCR product if necessary.
ContigExpress was used to assemble sequences. Sequences were aligned using the program ClustalX 1.83 (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/). All statistical analyses were performed using SPSS version 17.0 (SPSS Inc., Chicago, IL). The chi-squared test was used to analyse the data, with \(P < 0.05 \) considered to indicate significant differences.

Nucleotide sequence accession numbers
Representative nucleotide sequences were deposited in GenBank under the accession numbers KF271440 to KF271519.

Results

Occurrence of Cryptosporidium, Enterocytozoon, Giardia and Cyclospora

Cryptosporidium spp., *E. bieneusi* and *G. intestinalis* were detected by nested PCR in 34 (13.49%), 34 (13.49%) and 17 (6.75%) of the 252 fecal specimens, respectively (Table 2). *Cyclospora* was not detected. The *Cryptosporidium*-, *E. bieneusi*- and *Giardia*-positive patients were not restricted to a particular clinic. Polyparasitism was observed in nine of the 252 patients, eight of which were co-infected with *Cryptosporidium* and *Enterocytozoon*, while one was co-infected with *Cryptosporidium* and *Giardia*. No age-associated differences in the patients involved (ranging from 1 month to 77 years) was found in our study.

Cryptosporidium species

Sequence analysis of *Cryptosporidium* indicated that all positive specimens belonged to *C. andersoni*, which is usually found in cattle. Patients tested in winter had a higher positivity rate (17.31%) than those tested in spring (7.29%, \(P = 0.024 \); Figure 1). However, no sex- or age-associated differences in detection rates were found (\(P > 0.05 \); Figure 2).

Enterocytozoon infections

Based on sequence analysis of the SSU rRNA gene, the microsporidia-positive outpatients were identified as *E. bieneusi*. Univariate analysis did not show any significant age- or sex-associated differences in *E. bieneusi* infection rates. However, patients showed higher detection rates for microsporidiosis in winter than in spring (\(P < 0.05 \); Figure 1).

Giardia genotyping

Of the 17 *Giardia*-positive patients, most isolates belonged to assemblage C, whereas only one belonged to assemblage B; this result differs from previous reports.
Intestinal parasitic infections remain an important pathogenic factor of diarrhea in developing countries, especially among HIV-positive patients [32]. This study reports the genetic factor of diarrhea in developing countries, especially during winter. Studies have shown that dogs may serve as sources of zoonotic transmission of microsporidia, which is usually found in canids [46], thus suggesting that dogs may serve as sources of infection might be attributed to the environment, patient populations and geographic locations. Interestingly, our results were consistent with a recent study, which showed *C. andersoni* to be the dominant species in source and tap water in Shanghai [33]. Through genotyping, the researchers concluded that the contamination of source and tap water originated mainly from animal farms, especially, cattle farms. Similarly, *C. andersoni* was the most common species in the patients from our study, and sequence analysis suggested that contaminated water or infected cattle might be the possible transmission routes. In addition, the Yangtze River and Pudong Canal, which run through this area, are used for irrigation, livestock feeding and drinking water for residents. Extensive studies have reported seasonal differences in the distribution of *C. parvum* and *C. hominis* in the United Kingdom and New England, USA [36-38]. In Shanghai, increased *C. andersoni* detection rates during winter may have been due to changes in animal breeding, rainfall, travel and recreational activities.

Although *E. bieneusi* is nowadays considered to be an opportunistic pathogen in HIV-infected or organ transplant recipients, *E. bieneusi* infections have also been found in HIV-negative patients, immunocompetent and other healthy persons [39-42]. A recent study described a healthy man infected with a novel species of *Microsporidium* [43]. In the present study, 11 diarrheal adults (13.25%) and 23 children (13.61%) were detected with *E. bieneusi*, which suggested that this infection was not correlated with age in the study area (*P* > 0.05). However, humans were more susceptible to microsporidiosis in winter than in spring. The reason for this might be a reduced immunity and resistance during winter. Studies have reported *E. bieneusi* to be associated with acute and chronic diarrhea [44,45]. The sources of microsporidia infecting humans and its modes of transmission remain unclear. Due to the release of spores into the environment via stool and respiratory secretions, possible sources of infection might be humans or animals infected with microsporidia [4].

Genotyping results of *G. intestinalis* indicated that all but one positive specimens belonged to assemblage C, which is usually found in canids [46], thus suggesting that dogs may serve as sources of zoonotic transmission...
of giardiasis in this region. Sequence analyses of the TPI gene revealed that the only specimen from assemblage B had a high homology with an isolate from a primate in Japan [47].

Overall, patients in Shanghai were found to be detected with C. andersoni, E. bieneusi and G. intestinalis. These three intestinal protozoa can be transmitted through the fecal-oral or oral-oral routes, inhalation of aerosols or ingestion of food or water contaminated with fecal material [4,48]. Therefore, it can be speculated that family members may also be infected, although more questionnaires and comprehensive epidemiological investigations are required to confirm this hypothesis. It has been reported that contamination of food or water by animals such as cattle or canids are causes of several foodborne and waterborne outbreaks of cryptosporidiosis [49–51]. In order to better understand the source of infection, we will attempt to seek the cooperation of patients involved in future studies to investigate their habits, such as contact with animals, drinking water and water conditions. In addition, we will continue to monitor the patients from the intestinal clinic and the pediatric clinic to determine whether the observed prevalence rates will persist. We also aim to extend the investigation to family members to determine the existence of a household cluster outbreak.

Conclusions
Based on our study, intestinal parasites were common among the study population of diarrheal outpatients in this area in Shanghai, China, between October 2012 and March 2013. C. andersoni, E. bieneusi and G. intestinalis (mainly assemblage C) were the major parasite species. The source of these infections remains to be tracked to determine their potential zoonotic transmission route.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiments: Y.S. J.C. H.L. Performed the experiments: HL YS JY1 YX YJ WP YH Analyzed the data: YS HL JY JC Contributed reagents/materials/analysis tools: J.C. YS. Wrote the paper: HL YS JC. All authors read and approved the final version of the manuscript.

Acknowledgments
We thank Yifei Fu and Yi Fei (Shanghai Pudong District Center for Disease Control and Prevention), and the hospital personnel for assistance in specimen collection. We also thank Professor Longxian Zhang (College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, Henan, China) for kindly gift the positive samples of Enterocytozoon bieneusi as positive control. This work was supported by grants from the Shanghai Public Health Outstanding Academic Leader (No. GDWRD201214, to Y.S.), the National S & T Major Program (Nos. 2012ZX10004-201 and 2013ZX10004-005, to J.C.), Chinese Special Program for Scientific Research of Public Health (No. 201302004, to Y.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Received: 20 September 2013 Accepted: 2 January 2014
Published: 13 January 2014

References
1. Feng Y, Xiao L: Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 2011, 24(1):110–140.
2. Ortega YR, Sanchez R: Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin Microbiol Rev 2010, 23(1):218–234.
3. Xiao L: Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 2010, 124(1):80–89.
4. Mathis A, Weber R, Deplazes P: Zoonotic potential of the microsporidia. Clin Microbiol Rev 2005, 18(3):423–445.
5. Feng Y, Wang L, Duan L, Gomez-Puerta LA, Zhang L, Zhao X, Hu J, Zhang N, Xiao L: Extended outbreak of cryptosporidiosis in a pediatric hospital. China. Emerg Infect Dis 2012, 18(2):312–314.
6. Ye J, Xiao L, Ma J, Guo M, Liu L, Feng Y: Anthropic enteric parasites in monkeys in public park. China. Emerg Infect Dis 2012, 18(10):1640–1643.
7. Chalmers RM, Elvin K, Hadfield SJ, Robinson G: Sporadic human cryptosporidiosis caused by Cryptosporidium cuniculus, United Kingdom, 2007–2008. Emerg Infect Dis 2011, 17(3):536–538.
8. Giangaspero A, Berrilli F, Brandonio C: Giardia and Cryptosporidium and public health: the epidemiological scenario from the Italian perspective. Parasitol Res 2007, 101(5):1169–1182.
9. Karanis P, Kourienti C, Smith H: Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 2007, 5(1):1–38.
10. Gostin LO, Lazzarini Z, Neslund VS, Osterholm MT: Water quality laws and waterborne diseases: Cryptosporidium and other emerging pathogens. Am J Public Health 2007, 97(6):847–853.
11. Crompton DW, Savioli L: Molecular characterisation of species and genotypes of Giardia duodenalis and waterborne parasite. Clin Microbiol Rev 2010, 24(4):511–529.
12. Sulaiman IM, Fayer R, Lal AA, Trout JM, Schaefer FW 3rd, Xiao L: Microsporidiosis: an emerging and opportunistic infection in humans and animals in Pemba Island. Parasitol Int 2013.
13. Prado MS, Caimecros S, Strina A, Barreto ML, Oliveira-Assis AM, Rego S: Asymptomatic giardiasis and growth in young children longitudinal study in Salvador, Brazil. Parasitology 2005, 131:51–56.
14. Leoni F, Amar C, Nichols G, Pedraza-Diaz S, McLaughlin J: Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. J Med Microbiol 2006, 55:703–707.
15. Gates W, Ashford RW, Beeching NJ, Kamwati SK, Greenill J, Hart CA: Cryptosporidium muris infection in an HIV-infected adult. Kenya. Emerg Infect Dis 2002, 8(2):204–206.
16. Didier ES: Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop 2005, 94(1):61–76.
17. Sulaiman IM, Fayer R, Lal AA, Trout JM, Schaefer FW 3rd, Xiao L: Molecular characterization of microsporidia indicates that wild mammals Harbor host-adapted Enterocytozoon spp. as well as human-pathogenic Enterocytozoon bieneusi. Appl Environ Microbiol 2003, 69(8):4495–4501.
18. Carma VA, Pearson J, Cabrera L, Pacheco L, Gilman R, Meyer S, Ortega Y, Xiao L: Transmission of Enterocytozoon bieneusi between a child and guinea pigs. J Clin Microbiol 2007, 45(8):2708–2710.
19. Monis PT, Andrews BH, Maunder G, EY PL: Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infect Genet Evol 2003, 3(1):29–38.
20. Thompson RC, Hopkins RM, Homan WL: Nomenclature and genetic groupings of Giardia infecting mammals. Parasitol Today 2000, 16(5):210–213.
21. Thompson RC, Palmer CS, O’Handley R: The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J 2008, 177(1):18–25.
22. Xiao L, Fayer R: Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol 2008, 38(11):1239–1255.
23. Caccio SM, Ryan U: Molecular epidemiology of giardiasis. Mol Biochem Parasitol 2008, 160(2):75–89.
24. Bendall RP, Lucas S, Moody A, Toovey G, Chioldini PL: Diarrhoea associated with cyanobacterium-like bodies: a new coccidian enteritis of man. Lancet 1993, 341(8845):590–592.
25. Alfano-Sobsey EM, Eberhard ML, Seed JR, Weber DJ, Won KY, Nace EK, Moe CL: Human challenge pilot study with Cyclospora cayetanensis. Emerg Infect Dis 2004, 10(6):726–728.
26. Chacin-Bonilla L: Transmission of Cyclospora cayetanensis infection: a review focusing on soil-borne cyclosporiasis. Trans R Soc Trop Med Hyg 2008, 102(3):215–216.

27. Orlané P, Lampel KA: Extraction-free, filter-based template preparation for rapid and sensitive PCR detection of pathogenic parasitic protozoa. J Clin Microbiol 2000, 38(6):2277–2277.

28. Xiao L, Escalante I, Yang C, Sulaíman I, Escalante AA, Montalí RJ, Fayer R, Lal AA: Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl Environ Microbiol 1999, 65(4):1578–1583.

29. da Silva AJ, Schwartz DA, Visvesvara GS, de Moura H, Slemenda SB, Pieniazek NJ: Sensitive PCR diagnosis of infections by Enterocytozoon bieneusi (microsporidia) using primers based on the region coding for small-subunit rRNA. J Clin Microbiol 1996, 34(4):986–987.

30. Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, Schantz PM, Das P, Lal AA, Xiao L: Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis 2003, 9(1):1444–1452.

31. Dixon BR, Bussey JM, Parrent LG, Parenteau M: Detection of Cyclospora cayetanensis oocysts in human fecal specimens by flow cytometry. J Clin Microbiol 2005, 43(5):2375–2379.

32. Mbae CK, Nokes J, Muñíne E, Nyambura J, Wanuru A, Karuki S: Intestinal parasitic infections in children presenting with diarrhoea in outpatient and inpatient settings in an informal settlement of Nairobi, Kenya. BMC Infect Dis 2013, 13(1):243.

33. Feng Y, Xiao X, Chen J, Jin W, Zhou X, Li N, Wang L, Xiao L: Occurrence, source, and human infection potential of Cryptosporidium and Giardia spp. in source and tap water in Shanghai, China. Appl Environ Microbiol 2011, 77(11):3609–3616.

34. Lindsay DS, Upton SJ, Morgan UM, Mead JR, Blagburn BL: Molecular epidemiology of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. J Clin Microbiol 2000, 38(11):3984–3990.

35. McLaughlin J, Amar C, Pedraza-Díaz S, Nichols GL: Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. J Clin Microbiol 2000, 38(11):3984–3990.

36. Metge S, Van Nhieu JT, Dahmane D, Grimbert F, Foulet F, Safarci C, Bretagne S: A case of Enterocytozoon bieneusi infection in an HIV-negative renal transplant patient. Eur J Clin Microbiol Infect Dis 2000, 19(3):221–223.

37. Suarez TC, Zhang JH, Brown C: Detection of microsporidia in travelers with diarrhea. J Clin Microbiol 2001, 39(4):1630–1632.

38. Back R, Sprong H, Pozio E, Cacció SM: Genotyping Giardia duodenalis. Isolates from Dogs: lessons from a Multilocus Sequence Typing Study. Vector Borne Zoonotic Dis 2012, 12(3):206–213.

39. Suzuki J, Murata R, Kobayashi S, Sadamasu K, Kari A, Takeuchi T: Risk of human infection with Giardia duodenalis from cats in Japan and genotyping of the isolates to assess the route of infection in cats. Parasitology 2011, 138(4):493–500.

40. Eisenberg JN, Brookhart MA, Rice G, Brown M, Colford JM Jr: Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Perspect 2002, 110(8):783–790.

41. Abrecht H, Sobottka I: Enterocytozoon bieneusi infection in patients who are not infected with human immunodeficiency virus. Clin Infect Dis 1997, 25(2):344.

42. Liu