Effect of abhrak bhasma and silicon dioxide on hepatic and renal glutathione status in rats: hepatoprotection testing against single dose carbon tetrachloride induced hepatotoxicity

Parashuram Teli *, Jaywant Jadhav, Aruna Kanase

Cell Biology Section, Dept. of Zoology, Shivaji University, Kolhapur-416 004, MH, India
*Corresponding author E-mail: arunakanase@gmail.com

Abstract

Background: Glutathione (GSH) is an important intracellular antioxidant. Intrahepatic GSH levels are depleted in liver diseases.

Objectives: In present study, effect of abhrak bhasma (an Ayurvedic drug) and silicon dioxide (SiO₂) on hepatic and renal GSH status against CCl₄ intoxicated male albino rats were investigated.

Methods: Single dose of CCl₄ (3.0ml/kg body wt, sc) was used to induce hepatotoxicity. Graded doses (10, 20, 30 and 40mg/kg body wt) of abhrak bhasma and SiO₂ were concurrently given with CCl₄. Hepatic and renal GSH content was studied after 24 hrs.

Results: Results showed that rats exposed to CCl₄ exhibited decreased GSH in liver. It was counteracted and maintained to normal levels by the treatment of abhrak bhasma (minimum protective dose-10mg). SiO₂ treatments did not affect GSH activity in liver significantly. Single dose of CCl₄ had not influenced GSH content in kidney alone or with any of the doses of abhrak bhasma or SiO₂.

Conclusion: CCl₄ single dose depletes GSH content significantly in liver but not in kidney. These results suggest that single dose treatment of abhrak bhasma (10mg onwards) protects GSH content and thus manages CCl₄ induced free radical generation scavenging them.

Keywords: Abhrak Bhasma, Antioxidant, Glutathione, Hepatotoxicity, Silicon Dioxide.

1. Introduction

Liver and kidneys play a vital role in the metabolism, detoxification of xenobiotics by biotransformation and protect clearance (Edward & Celia, 1998; Majno & Joris; Nebbia, 2001). Carbon tetrachloride (CCl₄) is one of the most commonly used hepatotoxin in the experimental study of liver diseases. CCl₄ induced oxidative stress is associated with increased free radical generation and lipid peroxidation (LPO) (Recknagel et al, 1992; Burk et al, 1984; Kaplowitz et al, 1986; Teli et al., 2014); which leads to fatty degeneration in liver. Oxidative damage induced by free radicals can be prevented by the use of antioxidants. LPO and cellular antioxidant defense have importance in the oxidative stability. Ongoing oxidative processes and decreased intrahepatic glutathione level induced oxidative stress in liver is known (Ljubuncic et al., 2000; Ljubuncic & Bonmzon, 2006). Endogenous glutathione, a thiol compound synthesized mainly in liver plays an antioxidant role by reducing reactive oxygen species (ROS) formed during cellular metabolism and protects cells (Parke & Piotrowski, 1996; Deneke, 2000). It has negative correlation with LPO in liver and kidney.

Many researchers have focused on natural antioxidants for the treatment of oxidative stress induced complications. Abhrak bhasma is a commonly used Ayurvedic drug in various disorders including hepatitis (Sharma, 1977). In therapy it is useful in antigenation treatment, rejuvenation treatment etc. It has been reported for a strong immune system, rapidly increasing the production of T-Cell phagocytes. In our earlier work abhrak bhasma has protected single dose of CCl₄ induced increased malondialdehyde content in liver (Teli et al., 2014). Thus, to study the possible scavenging activity in vivo; it was planned to study glutathione (GSH) content in single dose of CCl₄ induced hepatotoxicity and associated changes in kidney. SiO₂ was used as silicon control for abhrak bhasma.

2. Material and methods

2.1. Animal

Male albino rats, Rattus norvegicus weighing about 130-140g each were used for experiment. They were bred and maintained in the departmental animal house (Reg. No. 233/CPCSEA) under standard conditions and were given standard pellet diet (prepared by Amrit feeds, Sangli, MS, India). Food and water were provided ad libitum.

2.2. Preparation of abhrak bhasma and silicon dioxide

Abhrak bhasma was prepared in the laboratory as described in Rasa Ratna Sannmachaya (Sharma, 1977). SiO₂ treatment was given as silicon control. To study dose dependent effects of abhrak bhasma and SiO₂ on GSH content of liver and kidney, different doses viz. 10, 20, 30 and 40 mg/kg body wt were administered orally with honey. Honey control rats that were used; showed data as normal rat. Therefore, honey control data is not presented.

2.3. Experimental design
The experimental animals were divided into following groups, each comprising of six animals.

Group 1 - The rats were maintained as normal without any treatment.

Group 2 - Hepatotoxicity induced by single dose of 3.0 ml CCl₄/kg body wt for 24 hrs sc.

Group 3 - 10 mg abhrak bhasma/kg body wt was given po.

Group 4 - 20 mg abhrak bhasma/kg body wt was given po.

Group 5 - 30 mg abhrak bhasma/kg body wt was given po.

Group 6 - 40 mg abhrak bhasma/kg body wt was given po.

Group 7 - 10 mg SiO₂/kg body wt was given po.

Group 8 - 20 mg SiO₂/kg body wt was given po.

Group 9 - 30 mg SiO₂/kg body wt was given po.

Group 10 - 40 mg SiO₂/kg body wt was given po.

Group 11 - CCl₄ (3.0 ml/kg body wt) sc + 10 mg abhrak bhasma/kg body wt po for 24 hrs.

Group 12 - CCl₄ (3.0 ml/kg body wt) sc + 20 mg abhrak bhasma/kg body wt po for 24 hrs.

Group 13 - CCl₄ (3.0 ml/kg body wt) sc + 30 mg abhrak bhasma/kg body wt po for 24 hrs.

Group 14 - CCl₄ (3.0 ml/kg body wt) sc + 40 mg abhrak bhasma/kg body wt po for 24 hrs.

Group 15 - CCl₄ (3.0 ml/kg body wt) sc + 10 mg SiO₂/kg body wt po for 24 hrs.

Group 16 - CCl₄ (3.0 ml/kg body wt) sc + 20 mg SiO₂/kg body wt po for 24 hrs.

Group 17 - CCl₄ (3.0 ml/kg body wt) sc + 30 mg SiO₂/kg body wt po for 24 hrs.

Group 18 - CCl₄ (3.0 ml/kg body wt) sc + 40 mg SiO₂/kg body wt po for 24 hrs.

The rats were killed after 24 hrs by giving deep ether anesthesia and liver and kidney tissues were separated from animals and taken for GSH estimation.

2.4. Preparation of tissue homogenate

The livers and kidneys were perfused with chilled phosphate buffer saline (PBS). They were dissected out, minced and washed with PBS. The minces were then suspended in 0.25M sucrose containing 10mM Tris-HCl buffer (pH 7.0) homogenizing buffer (HB) and washed 3 times with HB. The minces were homogenized with Potter-Elvehjem homogenizer with Teflon piston at 1500 RPM with 8 up and down strokes. The liver and kidney homogenates were centrifuged in refrigerated centrifuge at 4°C for 10 minutes at 3000 x g. The supernatants were collected and used for GSH estimation.

2.5. Estimation of GSH

Biochemical assay of GSH was performed as per method proposed by Grunert & Phillips (1951). Bioassay was conducted in different tubes, one blank and sample tube as per experimental schedule of rats. To blank tube was added 6.0 ml 0.25 M sucrose in homogenate buffer and to sample tubes added 6.0 ml of supernatants. One ml sodium nitroprusside and 1.0 ml sodium cyanide solution in sodium carbonate were added to all tubes. Optical densities were measured at 520 nm against blank.

2.6. Statistical analysis

All the experimental data was statistically evaluated and expressed as mean ± standard error for six rats in each group. Hypothesis testing methods included one way analysis of variance (ANOVA) followed by Student’s ‘t’ test. Values P<0.05, P<0.01 and P<0.001 were considered to point out statistical significance.

3. Results and discussion

Table 1: Abhrak bhasma (AB) & SiO₂ Influenced Alterations in GSH Contents in Liver and Kidney of Rats by Single Dose of Treatment.

Groups	Liver	Kidney		
	mg/ gm Tissue	µg/ mg Protein	mg/ gm Tissue	µg/ mg Protein
Normal	27.97±1.28	0.22±0.002	13.10±0.62	0.14±0.009
CCl₄ (3.0 ml sc)	21.25±2.21	0.14±0.013⁴	11.10±0.61	0.14±0.011
CCl₄ + 10mg AB	25.13±1.81	0.20±0.002⁷	12.10±0.04	0.13±0.003
CCl₄ + 20mg AB	25.64±2.31	0.21±0.006⁸	13.01±0.21	0.13±0.006
CCl₄ + 30mg AB	26.11±1.91	0.21±0.009⁹	12.90±0.15	0.13±0.004
CCl₄ + 40mg AB	28.01±2.84	0.23±0.006⁴	13.01±0.31	0.14±0.006
SiO₂ (3.0 mg)	39.21±3.11⁶	0.28±0.012⁷	11.34±0.97	0.13±0.004
SiO₂ (20 mg)	36.82±2.84⁵	0.27±0.008⁸	11.71±0.74	0.14±0.001
SiO₂ (30 mg)	35.14±1.33⁷	0.28±0.009⁹	9.24±0.96⁸	0.11±0.007⁸
SiO₂ (40 mg)	32.19±1.09⁸	0.27±0.008⁹	10.10±0.98	0.11±0.009⁹

(Values are mean ± SEM of 6 animals. P values: a < 0.05; b < 0.01; c < 0.001 vs. normal).

Glutathione is a reducing agent that is in high concentrations in mammalian tissues. It is an antioxidant, rich in cytosol. GSH reacts efficiently with oxidizing substances such as active oxygen species and lipid peroxidation. Several studies have revealed that status of GSH contents is markedly decreased in hepatic injury (Purucker et al., 1995). It is caused by reduced concentrations of liver GSH. In present work, we investigated abhrak bhasma and SiO₂ induced alterations in GSH status of liver and kidney of male albino rat, during hepatotoxicity induced by single dose of CCl₄ at 24 hrs. The results were shown in table No. 1 and 2.

Table 2: Abhrak Bhasma (AB) & SiO₂ Influenced Alterations in GSH Contents in Liver & Kidney of Rats during Induction of Toxicity by Single Dose of CCl₄.

Groups	Liver	Kidney		
	mg/ gm Tissue	µg/ mg Protein	mg/ gm Tissue	µg/ mg Protein
Normal	28.96±0.65	0.22±0.003	14.57±0.71	0.15±0.004
10mg AB	28.64±1.11	0.25±0.006	13.34±0.54	0.13±0.008⁶
20mg AB	29.39±0.14	0.26±0.00⁹	15.22±0.31	0.15±0.001
30mg AB	29.35±0.14	0.24±0.00⁴	15.36±0.65	0.16±0.00⁴
40mg AB	32.19±0.61	0.26±0.00⁵	15.54±0.94	0.16±0.00⁶
SiO₂ (10 mg)	44.19±0.6⁹	0.31±0.01⁰	14.14±0.63	0.15±0.00⁶⁵
SiO₂ (20 mg)	55.24±0.3⁴	0.42±0.01⁴	15.24±1.03	0.17±0.00⁶⁴
SiO₂ (30 mg)	81.54±3.0³	0.72±0.00⁴	13.71±1.56	0.14±0.00⁶⁴
SiO₂ (40 mg)	81.23±2.8⁵	0.75±0.00⁷	12.29±0.96	0.15±0.00⁶⁵

(Values are mean ± SEM of 6 animals. P values: a < 0.05; b < 0.01; c < 0.001 vs. normal).
tent. These results indicate that SiO₂ induces GSH content in liver. It is dose dependent in 10, 20 and 30mg, while 30mg and 40mg dose showed similar levels. Similar trend was also expressed in GSH status calculated per mg protein. Kidney GSH content remained unaffected either with abhrak bhasma doses or with SiO₂ doses used indicating single doses of any of the drugs is not influencing kidney GSH. These results are similar to malondialdehyde contents of kidney studied earlier (Teli et al, 2014); indicating free radical and free radical scavenger status is steady and normal. Single dose of CCl₄ reduced GSH significantly (P<0.05) in liver. Simultaneous treatment of abhrak bhasma (all the doses) normalized the GSH content. Minimum dose required was 10mg. But contrast to these results all the doses of SiO₂ induced GSH content in CCl₄ treated rats levels of which were significantly high over the levels reported in normal rat. These observations suggest that SiO₂ all the doses are potent inducers of GSH content in presence of CCl₄ so also in absence of CCl₄. But in kidney SiO₂ is not influencing GSH content either in presence of CCl₄ or in absence of CCl₄, same is true with abhrak bhasma doses in kidney. These results also show similarity with LPO product contents (Teli et al, 2014). Thus, indicating in kidney free radical (MDA) and free radical scavenger (GSH) status remains independent of single doses of CCl₄, abhrak bhasma and SiO₂.

Thus, primary dose response of CCl₄ toxicity in liver is protected by minimum dose of abhrak bhasma managing reduction in MDA (Teli et al, 2014) with increased GSH/ natural free radical scavenger. Single doses of SiO₂ are capable of inducing GSH content in normal and CCl₄ (single dose) treated rat liver. But GSH content of kidney is inert to CCl₄ single dose treatment, CCl₄+single doses of abhrak bhasma (10/20/30/40mg), CCl₄+SiO₂ (10/20/30/40mg), abhrak bhasma alone single doses (10/20/30/40mg) and SiO₂ alone single doses (10/20/30/40mg).

These studies require need of other parameter studies to resolve hepatoprotective mechanism of action/s of abhrak bhasma against CCl₄ induced toxicity.

Acknowledgements

Authors are thankful to Dr. S. S. Patil for his contribution in abhrak bhasma preparation and other constructive suggestions.

References

[1] Burk RF, Lane JM & Patel K (1984), Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. J Clin Invest. 74(6), 1996-2001.
[2] Deneke S (2000), Thiol-based antioxidants. Curr. Top. Cell Reg. 36, 151. http://dx.doi.org/10.1016/S0007-2137(01)80007-8.
[3] Edward AL & Celia JR (1998), Xenobiotic Metabolizing Enzymes of the Kidney” Toxicologic Pathology 26(1), 18-25. http://dx.doi.org/10.1177/019262339802600102.
[4] Granert RR & Phillips PH (1951), Determination of glutathione. Arch Biochem, 30(2), 217-225.
[5] Kaplowitz N, Aw TY, Simon FR & Stolz A (1986), Drug induced hepatotoxicity. Ann Intern Med; 104, 826-39. http://dx.doi.org/10.7326/0003-4819-104-6-826.
[6] Ljubuncic P, Tanne Z & Bomzon A (2000), Evidence of a systemic phenomenon for oxidative stress in cholstatic liver disease. Gut, 47 (5), 710-716. http://dx.doi.org/10.1136/gut.47.5.710.
[7] Ljubuncic P & Bomzon A (2006), Liver disease, oxidative stress and ursodeoxycholic acid,” in Liver Diseases: Biochemical Mechanisms and New Therapeutics, S. Ali, S. Friedman, and D. A. Munn, Eds., Science, New Hampshire, NH, USA.
[8] Majno G & Joris I (2004), Cells, Tissues, and Disease, Principals of General Pathology, 2nd Ed. Oxford University Press, New York and Oxford.
[9] Nebbia C (2001), Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. Vet J., 161(3): 238-52. http://dx.doi.org/10.1053/tvj.2000.0561.
[10] Parke DV and Piotrowski J (1996), Glutathione: Its role in detoxification of reactive oxygen species and environmental chemicals. Acta Pol. Toxicol, 4(1).
[11] Purucker E, Wernaz H & Krandik G (1995), Glutathione in plasma, liver and kidney in the development of CCl₄-induced cirrhosis of the rat. Res Exp Med. 195, 193-200. http://dx.doi.org/10.1007/BF02575788.
[12] Recknagel RO, Glende EA, Dolack JA, Walter RL (1992), Mechanism of carbon tetrachloride toxicity. Pharmacol ther, 43, 139-154. http://dx.doi.org/10.1016/0163-7258(89)90050-8.
[13] Sharma S (1977) Rasa Ratna Samuchhaya, Published by Motilal Banarasidas, New Delhi, 72-108.
[14] Teli P, Jadhav J & Kanase A (2014), Comparison of abhrak bhasma and silicon dioxide efficacy against single dose of carbon tetrachloride induced hepatotoxicity in rat by evaluation of lipid peroxidation. International journal of pharmaceutical science and research, 2 (7): 186-196.