Curves with many points over finite fields: the class field theory approach

Pavel Solomatin
p.solomatin@math.leidenuniv.nl

Leiden University, Mathematical Department,
Niels Bohrweg 1, 2333 CA Leiden

November 16, 2016

Abstract

The problem of constructing curves with many points over finite fields has received considerable attention in the recent years. Using the class field theory approach, we construct new examples of curves ameliorating some of the known bounds. More precisely, we improve the lower bounds on the maximal number of points \(N_q(g) \) for many values of the genus \(g \) and of the cardinality \(q \) of the finite field \(\mathbb{F}_q \), by looking at all unramified coverings of all genus three smooth projective curves over \(\mathbb{F}_q \), for \(q \) is an odd prime less than 19.

Acknowledgements: First, I would like to thank both my advisors, namely professor Alexey Zykin and professor Alexey Zaytsev for their advices and many helpful discussions about the project. I also want to thank professors Sergey Galkin and Peter Bruin for providing access to the Magma computer algebra system. We use the database [2] of plane quartics over finite fields. The access to the database was given by Christophe Ritzenthaler. His advices and suggestions were also helpful. Finally, I would like to thank an anonymous reviewer of an earlier version of the paper for a lot of important comments.
1 Introduction to the problem

In this paper C is a smooth projective curve over a finite field. An interesting question is how many points there can be on a curve of given genus over a given finite field. Let $\#C(\mathbb{F}_q)$ denote the number of points on C over \mathbb{F}_q. We have the following classical result:

Theorem 1 (Weil bound). Let g be the genus of the curve C, then

$$|q + 1 - \#C(\mathbb{F}_q)| \leq 2g\sqrt{q}.$$

The problem of improving this bound is very difficult. Many well-known mathematicians, such as J.-P. Serre, V. Drinfeld and others, devoted considerable efforts to its study. A reason why this problem attracts much attention is that it has quite a few applications to the coding theory, cryptography, etc.

Let us denote by $N_q(g)$ the maximum of the number of points on a smooth projective curve C of genus g over \mathbb{F}_q. By using the Weil bound, one immediately sees that $N_q(g) \leq q + 1 + 2g\sqrt{q}$.

The goal of this paper is to find new lower bounds for the number $N_q(g)$ for small g and q, that is for $g \leq 50$ and $q \leq 19$. Nowadays we do not know exactly the number $N_q(g)$ for many pairs (q, g) from the above intervals, except for the cases $g = 1, 2, 3$ or 4. For example, $N_2(1) = 5$, $N_2(2) = 6$, $N_2(4) = 8$, but $N_2(16)$ is either 17 or 18. Just a little improvement of the known bounds requires in many cases both modern mathematical tools and computer support. The up-to-date tables for $N_q(g)$ are available on the website manypoints.org.

2 Methods

2.1 Serre’s Example

Here we describe one of the ideas for constructing curves with many points. This idea belongs to Serre and its generalization is very important for our purposes. The following examples are taken from [5].

Theorem 2 (Serre). $N_2(4) \geq 8$ and $N_2(11) \geq 14$.

Proof. Consider the elliptic curve C defined over \mathbb{F}_2 by the equation $y^2 + y = x^3 + x$. It is easy to see that C has exactly five rational points: $P_0 = \infty$, $P_1 = (0, 0)$, $P_2 = (1, 1)$, $P_3 = (1, -1)$, $P_4 = (x, y)$.
\(P_1 = (0, 0), P_2 = (1, 0), P_3 = (1, 1) \) and \(P_4 = (0, 1) \) and the map \(\phi: P_i \mapsto i \), from \(C(\mathbb{F}_2) \) to \(\mathbb{Z}/5\mathbb{Z} \) is an isomorphism of abelian groups. Hence, there is a function \(f \) on \(C \) with the divisor \(D = [a_0; a_1; a_2; a_3; a_4] = \sum a_i P_i \) if and only if \(\sum a_i = 0 \) and \(\sum i * a_i = 0 \mod 5 \).

So, the divisor \(D_1 = [-3, -1, 2, 1, 1] \) is the divisor of some function \(f_1(x) \). One may take the Artin-Schreier extension \(C_1: w^2 + w = f_1(x) \). According to the Riemann-Hurwitz formula, it has genus 4. Moreover it is easy to see that it has exactly eight rational points. This shows that \(N_2(4) \geq 8 \). For the same reason, the divisor \(D_2 = [-1, -3, 1, 1, 2] \) is the divisor of some function \(f_2(x) \). The Artin-Schreier covering \(C_2: w^2 + w = f_2(x) \) also has genus 4 and eight rational points. On can take the fibre product of \(C_1 \) and \(C_2 \). It is a genus 11 curve with 14 rational points.

So, we have \(N_2(4) \geq 8 \) and \(N_2(11) \geq 14 \). Let us compare this result with the Weil-bound:

\[
N_2(4) \leq 2 + 1 + 8\sqrt{2} \approx 14.313
\]

and

\[
N_2(11) \leq 2 + 1 + 22\sqrt{2} \approx 34.11.
\]

It is possible to improve this bound. The point is that in both cases mentioned above \(g \) is “sufficiently greater” than \(q \). Let us illustrate this idea by the following theorem:

Theorem 3 (Ihara bound). We have

\[
N_q(g) \leq q + 1 + 1/2(\sqrt{8q + 1}g^2 + 4g(q^2 - q) - g).
\]

In particular if \(g \geq \frac{\sqrt{9q(q-1)}}{2} \), then Ihara bound improves the Weil bound.

Proof. See [4] or [1].

Let us take here \(q = 2 \) and \(g = 4, 11 \). The Ihara bound gives us:

\[
N_2(4) \leq 1 + 2\sqrt{19} \approx 9.7177
\]

and

\[
N_2(11) \leq \frac{1}{2}(\sqrt{2145} - 5) \approx 20.6571.
\]

Actually \(N_2(4) = 8 \) and \(N_2(11) = 14 \), but it is quite a non-trivial result, which requires the so called Weil-explicit formulae and Oesterlé bound. See [6].
2.2 A generalization

Here we describe a generalization of the above method. This generalization has been used in many papers (e.g. [3]). For clarity we save the original notation.

First of all, we notice that the equation $w^2 + w = f_1(x)$ from the above theorem gives an abelian extension where the points (x, y) such that $f_1(x) = 0$ split completely. In contrast to the above example, for the sake of clarity, we restrict ourselves to working with unramified abelian covers. The unramified abelian covers of C are parameterized by the subgroups of the Picard group $Pic^0(C)$. Thus, we find ourselves working with the class field theory.

Let us fix the ground field $k = \mathbb{F}_q$ and let us consider a curve C of genus g over k. We denote by F the function field $\mathbb{F}_q(C)$. By using class field theory we want to construct abelian extensions F' of F corresponding to new curves C' with many points.

Let $S = \{P_i\}$ be the set of all rational points of C. Let us fix one rational point O and consider the S_O-Hilbert class field which we denote by F_O. By definition, F_O is the maximal unramified abelian extension of F in which O splits completely.

The class field theory gives us the isomorphism:

$$\phi: Pic^0(C) \rightarrow Gal(F_O/F).$$

The isomorphism ϕ maps the class $[P - \deg(P)O]$ to the Artin symbol of P (the Frobenius map at point P). By using this isomorphism, one produces new curves. Namely, if G is a subgroup of $Pic^0(C)$ of index $d = [Pic^0(C) : G]$, then its image $\phi(G)$ is a subgroup of $Gal(F_O/F)$. Hence, we have the subfield $F_{\phi(G)}$ of F_O fixed by $\phi(G)$. By definition of ϕ a rational point P splits completely if and only if $[P - \deg(P)O] \in G$. This gives us an unramified abelian extension, that corresponds to a new curve. Since the extension is unramified we can control its genus and its number of rational points.

Thus, for any pair $[G, O]$ we get the unramified extension $F_{\phi(G)}$ of degree d. It has genus $d(g - 1) + 1$ and $d \cdot |G \cap \{[P_i - O]\}|$ rational points.

By searching through all the subgroups of $Pic^0(C)$ and through all the points of C, one can improve the known lower bounds on $N_q(g)$. Note that for a fixed G and different places O we get different extensions. Despite the fact that such extensions have isomorphic Galois groups, the corresponding curves may have different numbers of rational points. We will see concrete examples in the next section.
3 Examples and Calculations

3.1 How to organize the computation

Previously, the above method was used mostly for hyper-elliptic curves of small genus. For example, for the case of genus two curves over finite fields \(\mathbb{F}_q \) with cardinality \(q \leq 16 \) this search was implemented in [3]. In our search, we do the same calculation for all genus three curves. We use Magma software to perform a computer search.

If we have a genus 3 curve \(C \) then it is either a hyper-elliptic curve, or a plane quartic.

A plane quartic is a geometrically smooth projective curve given by an equation of the form \(f(x, y, z) = 0 \), where \(f(x, y, z) \in \mathbb{F}_q[x, y, z] \) is a homogeneous polynomial degree 4. By using Invariant theory, it is possible to describe very explicitly the “moduli space” of plane quartics over finite fields. This was done by Lercier, Ritzenthaler, Rovetta, and Sijsling in [2].

Otherwise, if \(C \) is a hyper-elliptic curve, then its affine part has a smooth model \(y^2 = f(x) \), where \(f(x) \) is a polynomial of degree 7 or 8 without multiple roots over algebraic closure of the ground field. To obtain a projective model one has to take the normalization of the projective closure \(C \). A good thing here is that Magma allows one to work with the projective model \(C \) when only \(f \) is given. But unfortunately, we do not have an analogue of the database [2] in this case, so it takes much machine resources to provide calculation for all hyper-elliptic curves for a given genus.

Finally, we run the algorithm for the base field \(\mathbb{F}_p \), for the prime \(p \) equal to 3, 5, 7, 11, 13, 17 and 19. We refer the reader to the next section for details.

Let us show how it works for some concrete examples.

3.2 Concrete examples

Unfortunately, for \(p = 3 \) we could not find any new curves. Otherwise, we can take the base field to be \(\mathbb{F}_5, \mathbb{F}_7, \mathbb{F}_{11}, \mathbb{F}_{13}, \mathbb{F}_{17} \) or \(\mathbb{F}_{19} \) and provide many examples improving previously known bounds.

Let us consider the case \(k = \mathbb{F}_7 \). By ranging over plane quartics, we have found the following examples.

Let \(C \) be the curve defined in \(\mathbb{P}^2 \) by the equation \(6x^4 + y^3z + 6x^2z^2 + 4xz^3 + 6z^4 = 0 \). The curve \(C \) has exactly 14 rational points, namely: \(P_0 = (0 : 1 : 1) \), \(P_1 = (0 : 0 : 1) \), \(P_2 = (1 : 0 : 1) \), \(P_3 = (0 : 1 : 0) \), \(P_4 = (1 : 1 : 0) \), \(P_5 = (1 : 0 : 0) \), \(P_6 = (0 : 0 : 1) \), \(P_7 = (1 : 1 : 0) \), \(P_8 = (0 : 1 : 0) \), \(P_9 = (1 : 0 : 1) \), \(P_10 = (0 : 0 : 1) \), \(P_11 = (1 : 1 : 0) \), \(P_12 = (0 : 1 : 0) \), \(P_13 = (1 : 0 : 1) \), \(P_14 = (0 : 0 : 1) \). These points are all the rational points on the curve \(C \).
According to Magma, $\text{Pic}^0(C)$ is an abelian group isomorphic to $\mathbb{Z}/90\mathbb{Z}$. Let us take the index 7 subgroup G spanned by 7, which is isomorphic to $\mathbb{Z}/129\mathbb{Z}$, and $O = P_0$. Then it gives us a curve of genus 15 with 56 rational points. This improves the previous lower bound for $g = 15$, which was 52.

Next, let us consider the curve C over \mathbb{F}_7 defined by the equation $6x^4 + y^3z + 2x^2z^2 + z^4 = 0$. It has 12 rational points: $P_0 = (0 : 3 : 1)$, $P'_0 = (0 : 5 : 1)$, $P''_0 = (0 : 6 : 1)$, $P_2 = (2 : 0 : 1)$, $P_3 = (3 : 3 : 1)$, $P'_3 = (3 : 5 : 1)$, $P''_3 = (3 : 6 : 1)$, $P_4 = (4 : 3 : 1)$, $P'_4 = (4 : 5 : 1)$, $P''_4 = (4 : 6 : 1)$, $P_5 = (5 : 0 : 1)$, $\infty = (0 : 1 : 0)$.

Its class group is isomorphic to $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/42\mathbb{Z}$. If one takes $O = P_2$ and the subgroup G spanned by $v = (1, 2, 2)$, then we get a curve of genus 9 with 36 rational points. The previous bound for $N_{7}(9)$ was 32.

Let us change the base field and take \mathbb{F}_{13}. Here we have also found some interesting examples improving the previous bounds. For instance, consider the curve C defined by $12x^4 + y^3z + z^4 = 0$ which has the class group $(\mathbb{Z}/3\mathbb{Z})^3 \oplus (\mathbb{Z}/12\mathbb{Z})^2$. One takes $O = (0 : 4 : 1)$ and the group G defined as follows: let $m_1 = g(2)$, $m_2 = g(4)$, $m_3 = g(1) + g(5)$, where $g(k)$ denotes the generator of the k-th component of $\text{Pic}^0(C)$ in the above decomposition. Let G be spanned by m_1, m_2 and m_3. Then, we get an extension of genus 19 with 108 rational points. The previous bound for $N_{13}(19)$ was 90.

We now summarize the results of our computations.

4 Main results

In this part we summarize all results we have found during this research. We provide this data in the following way: we give the genus and the number of rational points of a certain covering of the base curve. We also give the previously known bound to compare it with value we obtained.
Table 1: Results for the base fields $\mathbb{F}_5, \mathbb{F}_7, \mathbb{F}_{11}$

The base Field	Genus	Improvements	Previous Result
\mathbb{F}_5	25	60	55–66
\mathbb{F}_7	9	36	32–41
\mathbb{F}_7	15	56	60–77
\mathbb{F}_7	21	70	60–77
\mathbb{F}_7	29	84	unknown–98
\mathbb{F}_7	31	90	unknown–103
\mathbb{F}_7	33	96	unknown–109
\mathbb{F}_7	35	102	unknown–114
\mathbb{F}_7	37	108	unknown–119
\mathbb{F}_7	39	95	unknown–125
\mathbb{F}_7	43	105	unknown–135
\mathbb{F}_7	45	110	unknown–140
\mathbb{F}_7	47	115	unknown–145
\mathbb{F}_7	49	120	114–150
\mathbb{F}_{11}	9	52	48–59
\mathbb{F}_{11}	13	66	60–77
\mathbb{F}_{11}	21	90	80–110
\mathbb{F}_{11}	23	99	88–119
\mathbb{F}_{11}	25	108	96–127
\mathbb{F}_{11}	27	104	unknown–135
\mathbb{F}_{11}	31	120	unknown–139
\mathbb{F}_{11}	35	136	unknown–164
\mathbb{F}_{11}	37	144	unknown–171
\mathbb{F}_{11}	43	168	unknown–192
\mathbb{F}_{11}	45	176	unknown–199
\mathbb{F}_{11}	47	161	unknown–206
\mathbb{F}_{11}	49	192	unknown–213
Table 2: Results for the base fields $\mathbb{F}_{13}, \mathbb{F}_{17}$

The base field	Genus	Improvements	Previous Result
\mathbb{F}_{13}	5	42	40–44
\mathbb{F}_{13}	19	108	90–115
\mathbb{F}_{13}	23	110	unknown–133
\mathbb{F}_{13}	25	120	unknown–142
\mathbb{F}_{13}	27	130	unknown–152
\mathbb{F}_{13}	31	135	unknown–170
\mathbb{F}_{13}	33	160	128–179
\mathbb{F}_{13}	37	162	144–195
\mathbb{F}_{13}	39	152	unknown–203
\mathbb{F}_{13}	41	180	160–211
\mathbb{F}_{13}	47	184	unknown–235
\mathbb{F}_{13}	49	192	unknown–243
\mathbb{F}_{17}	5	48	unknown–53
\mathbb{F}_{17}	7	60	unknown–70
\mathbb{F}_{17}	9	72	unknown–83
\mathbb{F}_{17}	11	80	unknown–96
\mathbb{F}_{17}	13	90	unknown–107
\mathbb{F}_{17}	15	98	unknown–118
\mathbb{F}_{17}	17	112	unknown–129
\mathbb{F}_{17}	19	117	unknown–140
\mathbb{F}_{17}	21	130	unknown–150
\mathbb{F}_{17}	23	132	unknown–161
\mathbb{F}_{17}	25	144	unknown–172
\mathbb{F}_{17}	27	143	unknown–183
\mathbb{F}_{17}	29	154	unknown–194
\mathbb{F}_{17}	31	165	unknown–205
\mathbb{F}_{17}	33	192	unknown–216
\mathbb{F}_{17}	35	187	unknown–226
\mathbb{F}_{17}	37	216	unknown–237
\mathbb{F}_{17}	39	190	unknown–248
\mathbb{F}_{17}	41	240	unknown–258
\mathbb{F}_{17}	43	210	unknown–269
\mathbb{F}_{17}	45	220	unknown–280
\mathbb{F}_{17}	47	207	unknown–291
\mathbb{F}_{17}	49	240	unknown–301
Table 3: Results for the base field \mathbb{F}_{19}

The base field	Genus	Improvements	Previous Bound
\mathbb{F}_{19}	5	54	unknown–60
\mathbb{F}_{19}	7	66	unknown–76
\mathbb{F}_{19}	9	80	unknown–92
\mathbb{F}_{19}	11	90	unknown–104
\mathbb{F}_{19}	13	96	unknown–117
\mathbb{F}_{19}	15	112	unknown–128
\mathbb{F}_{19}	17	112	unknown–140
\mathbb{F}_{19}	19	126	unknown–153
\mathbb{F}_{19}	21	140	unknown–164
\mathbb{F}_{19}	23	143	unknown–175
\mathbb{F}_{19}	25	168	unknown–186
\mathbb{F}_{19}	27	156	unknown–198
\mathbb{F}_{19}	29	196	unknown–209
\mathbb{F}_{19}	31	180	unknown–221
\mathbb{F}_{19}	33	192	unknown–232
\mathbb{F}_{19}	35	204	unknown–244
\mathbb{F}_{19}	39	209	unknown–267
\mathbb{F}_{19}	43	231	unknown–289
\mathbb{F}_{19}	45	242	unknown–301
\mathbb{F}_{19}	47	253	unknown–312
References

[1] Virgile Ducet and Claus Fieker. Computing equations of curves with many points. In ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, volume 1 of Open Book Ser., pages 317–334. Math. Sci. Publ., Berkeley, CA, 2013.

[2] Reynald Lercier, Christophe Ritzenthaler, Florent Rovetta, and Jeroen Sijsling. Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields. LMS J. Comput. Math., 17(suppl. A):128–147, 2014.

[3] Karl Rökaeus. Computer search for curves with many points among abelian covers of genus 2 curves. In Arithmetic, geometry, cryptography and coding theory, volume 574 of Contemp. Math., pages 145–150. Amer. Math. Soc., Providence, RI, 2012.

[4] Michael Tsfasman, Serge Vlăduț, and Dmitry Nogin. Algebraic geometric codes: basic notions, volume 139 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.

[5] Gerard van der Geer. Hunting for curves with many points. In Coding and cryptology, volume 5557 of Lecture Notes in Comput. Sci., pages 82–96. Springer, Berlin, 2009.

[6] John Voight. Curves over finite fields with many points: an introduction. In Computational aspects of algebraic curves, volume 13 of Lecture Notes Ser. Comput., pages 124–144. World Sci. Publ., Hackensack, NJ, 2005.
