Older Age and High A-fetoprotein Predict Higher Risk of Hepatocellular Carcinoma in Chronic Hepatitis B-Related Cirrhotic Patients Receiving Nucleos(T)ide Analogue Therapy: A Retrospective Cohort Study

Ching-Chih Hu
Keelung Chang Gung Memorial Hospital

Cheng-Hao Weng
Linkou Chang Gung Memorial Hospital

Chih-Lang Lin
Keelung Chang Gung Memorial Hospital

Pei-Hung Chang
Keelung Chang Gung Memorial Hospital

Man-Chin Hua
Keelung Chang Gung Memorial Hospital

Rong-Nan Chien (ronald@cgmh.org.tw)
Linkou Chang Gung Memorial Hospital

Research Article

Keywords: chronic hepatitis B, cirrhosis, cumulative incidence, risk, hepatocellular carcinoma, tenofovir, entecavir

DOI: https://doi.org/10.21203/rs.3.rs-668622/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Nucleos(t)ide analogues (NUCs) were proved to reduce hepatocellular carcinoma (HCC) development in patients with chronic hepatitis B (CHB) infection, but data was limited on the efficacy in the CHB patients with cirrhosis.

Methods: We retrospectively analyzed data from 447 patients with CHB-related cirrhosis, who initiated tenofovir/entecavir therapy during April 2007 and August 2013. They were divided into HCC (n=48) and non-HCC (n=399) groups. The mean follow-up period was 63.2 ± 34.2 months.

Results: Forty-eight patients (10.7%) developed HCC during surveillance. The annual incidence rate of HCC was 2.04 (95% CI: 1.52–2.68) per 100 person-year. The cumulative incidence of HCC was 0.9%, 9.8% and 22.1% at the 1, 5 and 10 years, respectively. Significant predictors for HCC identified using multiple Cox regression analysis were age ≥ 50 years (hazard ratio [HR]: 2.34, 95% confidence interval [CI] = 1.08–5.1) and α-fetoprotein (AFP) ≥ 8 ng/ml (HR: 2.05, 95% CI = 1.1–3.84). The incidence rate of HCC was further analyzed in subgroups according to the risk factors identified by multivariate Cox regression. The incidence rate of HCC was 8.67-fold higher in patients with age ≥ 50 years and AFP ≥ 8 ng/ml (3.14 per 100 person-year, 95% CI = 1.99–4.72) than those with age <50 years and AFP <8 ng/ml (0.36 per 100 person-year, 95% CI = 0.06–1.19).

Conclusion: The cirrhotic CHB patients with age <50 years and AFP <8 ng/ml have the lowest annual incidence of HCC. However, the cirrhotic patients with age ≥50 years or/and AFP ≥8 ng/ml have significantly higher risk for HCC and warrant careful surveillance schedule for HCC development.

Introduction

Hepatocellular carcinoma (HCC), accounts for most of liver cancer, is the sixth most common cancer in the world. It is also the third leading cause of cancer-related mortality, causing more than 800,000 death per year (1, 2). Chronic hepatitis B virus (HBV) infection causes global health problem and more than 240 million people have the disease (3). Without treatment, 40% of the chronically infected patients will progress to cirrhosis, which increases the risk of HCC. Chronic HBV infection is also the most common cause of HCC and is associated with more than 50% of HCC cases (4, 5). Long-term therapy with nucleos(t)ide analogs (NUCs) has been well demonstrated to result in improvement of liver necroinflammation and fibrosis, and regression of cirrhosis (6–9). The risk of HCC development was also reported to be reduced significantly in the NUCs-treated patients with advanced fibrosis or cirrhosis. The risk reduction was more prominent in patients with maintained viral suppression than in those with a virological breakthrough (10–12). Because of low drug resistance rate and high potency of viral suppression, entecavir (ETV) and tenofovir disoproxil fumarate (TDF) have become the first-line NUC regimen for CHB treatment. Previous studies have shown that antiviral therapy with ETV reduce the risk of HCC in cirrhotic patients, particularly among those with maintained viral suppression. (12). The rate of
reduction of HCC incidence was also more in the ETV-treated than those with LAM-treated cirrhotic patients (13). However, the risk of HCC is not completely eliminated by NUCs therapy.

The long-term use of NUCs therapy for cirrhotic CHB patients was reimbursed by the Taiwan's national health insurance system since 2010. There are few studies focusing on assessing the predictors of on-treatment HCC development in CHB-related cirrhotic patients with NUCs therapy. Therefore, this retrospective study was conducted to elucidate the risks and predictors of HCC development during NUCs therapy, and to identify high-risk patients that warrant intensive surveillance during therapy.

Methods

Study population

The patients diagnosed with CHB-related cirrhosis and initiated long-term ETV monotherapy (0.5 mg daily) or TDF monotherapy (300 mg) in our liver research unit during April 2007 and August 2013 were enrolled in this study. Chronic HBV infection was defined as being seropositive for HBsAg for more than 6 months. Baseline clinical and biochemical data were recorded on the initiation of ETV or TDF therapy. Diagnosis of liver cirrhosis was made by liver biopsy specimen with an Ishak modified histology activity index score ≥ 5 or Metavir score =4, or ultrasonography using the previously described cirrhosis scoring system (14) with splenomegaly or esophageal/gastric varices. All patients had serum HBV DNA ≥ 2000 IU/ml at baseline. Patients with HCC diagnosed before and within six months after the beginning of therapy or with a follow up duration less than 6 months were excluded from the study. We also excluded CHB patients coinfected with chronic hepatitis C or human immunodeficiency virus, toxic hepatitis, autoimmune hepatitis, primary biliary cirrhosis, or Wilson's disease. This study was approved by the Medical Ethics Committee of Chang Gung Memorial Hospital (Institutional Review Board approval number: 104_9790B), and was carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki).

Follow-up for HCC surveillance

All patients were observed from the beginning of the NUCs therapy to the date of HCC diagnosis, last-visit or death. Liver ultrasonography and laboratory examination were routinely checked every three months. The diagnosis of HCC was confirmed by the histological evaluation of a needle biopsy sample or surgically resected specimens, two typical image studies such as dynamic liver computed tomography or magnetic resonance imaging, or one image study plus an increased serum AFP level of more than 400 ng/ml (15).

Statistical analysis

The continuous variables were reported as mean ± standard deviation. The categorial variables were summarized as a number (percentage). The difference between continuous and categorical variables was compared using the Student t test and the chi-square test. Cox proportional hazards regression
model was used to assess the clinical, biochemical and virological variables associated with the risk of HCC development. The cumulative incidence of HCC was evaluated using the Kaplan−Meier method and compared with log-rank test. All statistical tests were two-tailed, with P values <0.05 considered statistically significant. Data were analyzed using SPSS 23 software for Windows (SPSS, Inc, Chicago, IL).

Results

Patient characteristics

There was a total of 457 CHB patients with cirrhosis enrolled in our study. Six patients receiving ETV therapy and 1 patient receiving TDF therapy with a follow up duration less than 6 months, and 3 patients with HCC development within the first 6 months enrollment were excluded. Finally, 447 patients were included in our final analysis. They were divided into HCC (n = 48) and non-HCC (n = 399) groups. The baseline clinical and biochemical data of the patients on initiation of the NUC therapy was presented in Table 1. The mean age of the cirrhotic patients at initiation of NUC therapy was 55.3 ± 11.6 years, and 339 (75.8%) patients were men. Patients with HCC development during NUC therapy had lower pretreatment serum aspartate aminotransferase and higher HBV DNA levels. There was also a high percentage of patients exhibited a baseline AFP level ≥ 8 ng/ml.
Table 1
Baseline characteristics of cirrhotic chronic hepatitis B patients with and without hepatocellular carcinoma

Baseline parameters	HCC (n = 48)	Non-HCC (n = 399)	P value
Age ≥ 50 years	38 (79%)	263 (66%)	0.063
Gender (male)	40 (83%)	299 (75%)	0.199
Body mass index (kg/m²)	24.2 ± 4.3	25.4 ± 4.0	0.06
Albumin (g/dl)	3.8 ± 0.7	3.9 ± 0.6	0.231
AST (U/L)	75 ± 52	96 ± 125	0.036
ALT (U/L)	87 ± 77	109 ± 169	0.383
Total bilirubin (mg/dl)	1.4 ± 0.8	1.5 ± 2.0	0.841
AFP ≥ 8 ng/ml	29 (60%)	168 (42%)	0.016
HBV DNA (log₁₀ IU/ml)	6.1 ± 1.5	5.5 ± 1.5	0.047
White blood cells (x10³/µl)	5.7 ± 1.8	6.1 ± 2.4	0.323
Hemoglobin level (g/dl)	13.3 ± 2.6	13.1 ± 2.3	0.673
Platelet count (x10³/µl)	125.5 ± 52.3	142.9 ± 65.8	0.112
Creatinine (mg/dl)	0.9 ± 0.5	1.0 ± 1.0	0.568
Estimated GFR (MDRD)	113.4 ± 115.1	117.6 ± 41.1	0.427
Fatty liver	11 (23%)	66 (17%)	0.269
Ascites history	6/47 (12.8%)	54 (13.5%)	0.568
Variceal bleeding history	5/47 (10.6%)	31 (7.8%)	0.495
NUCs (entecavir)	41 (85%)	318 (80%)	0.347

Cumulative incidence of HCC

The median follow-up period was 62.1 months (range: 6.1–144.6 months). Forty-eight patients (10.7%) developed HCC during surveillance period with an incidence rate of 2.04 (95% CI: 1.52–2.68) new HCC case per 100 person per year. As shown in Fig. 1, the cumulative incidence of HCC was 0.9%, 9.8% and 22.1% at the 1, 5 and 10 years, respectively.
Risk Factors Associated With HCC Development

Factors associated with risk of HCC development were assessed by the Kaplan–Meier method and compared by the log-rank test (Fig. 2). Patients with HCC development during NUC therapy were significantly older (age ≥ 50 years) (P = 0.026), had higher pretreatment serum HBV DNA levels (≥ 4 x 10^5 IU/mL) (P = 0.036), and AFP levels (≥ 8 ng/ml) (p = 0.004), and lower albumin levels (< 3 g/dl) (P = 0.033). However, different NUCs did not affect the risk of HCC development.

Baseline clinical and biochemical factors identified through univariate Cox regression analysis were then entered into stepwise multiple regression analysis. The results of multivariate Cox regression analysis showed treatment age ≥ 50 years (HR: 2.34, 95% CI = 1.08–5.1) and AFP ≥ 8 ng/ml (HR: 2.05, 95% CI = 1.1–3.84) were significant independent predictors of HCC development during NUC treatment (Table 2).

Table 2

Parameters	Univariate model	Multivariate model		
	HR (95% CI)	P Value	HR (95% CI)	P Value
Age (years) (≥ 50 vs. <50)	2.17 (1.08–4.36)	0.03	2.34 (1.08–5.1)	0.032
Gender (male vs. female)	1.69 (0.79–3.62)	0.175		
Body mass index (kg/m^2)	0.93 (0.86-1.0)	0.056		
HBV DNA (≥10^5 IU/ml) (≥ 4 vs. <4)	1.96 (1.03–3.74)	0.004		
Albumin (g/dl) (< 3 vs. ≥3)	2.91 (1.04–8.15)	0.042		
AST (U/L)	1.0 (0.99-1.0)	0.26		
ALT (U/L)	1.0 (0.99-1.0)	0.268		
Total bilirubin (mg/dl)	0.99 (0.8–1.22)	0.9		
AFP (ng/ml) (≥ 8 vs. <8)	2.29 (1.28–4.1)	0.005	2.05 (1.1–3.83)	0.025
Hemoglobin level (g/dl)	1.0 (0.81–1.24)	1.0		
Platelet count (×10^3/µl)	1.0 (0.99-1.0)	0.22		
Creatinine (mg/dl)	0.91 (0.53–1.55)	0.73		
Estimated GFR (MDRD)	1.0 (0.99-1.0)	0.16		
Splenomegaly (yes vs. no)	0.72 (0.38–1.34)	0.3		
Variceal bleeding episode (yes vs. no)	1.52 (0.6–3.84)	0.38		
The analysis of incidence rate of HCC development was then stratified into subgroup according to the risk factors identified by multivariate analysis (Table 3). As compared to the patients with treatment age < 50 years and AFP < 8 ng/ml (0.36, 95% CI = 0.06–1.19), the incidence rates of HCC per 100 person-years were significantly higher in patients with age ≥ 50 years and AFP ≥ 8 ng/ml (3.14, 95% CI = 1.99–4.72), P = 0.004. The patients with age ≥ 50 years and AFP ≥ 8 ng/ml had 8.67-fold higher rate of HCC than those with age < 50 years and AFP < 8 ng/ml. Among patients with either age ≥ 50 years or AFP ≥ 8 ng/ml, the incidence rates of HCC was also higher than those with age < 50 years and AFP < 8 ng/ml.

Table 3

Hepatocellular carcinoma	Events (n)	Observation Period (Person-years)	Rate/100 person-years (95% CI)	P Value
All	48	2352.8	2.04 (1.52–2.68)	
Age ≥ 50 years vs. AFP ≥ 8 ng/ml	21	669.2	3.14 (1.99–4.72)	0.004
Age ≥ 50 years vs. AFP < 8 ng/ml	17	841.8	2.02 (1.22–3.17)	0.022
Age < 50 years vs. AFP ≥ 8 ng/ml	8	287.9	2.78 (1.29–5.28)	0.01
Age < 50 years vs. AFP < 8 ng/ml	2	553.9	0.36 (0.06–1.19)	

Discussion

In the present study, we demonstrated that long-term NUC therapy could not fully eliminate the risk of HCC development in CHB-related cirrhotic patients. Age and AFP were identified to be predictors associated with HCC development. From previous studies, the cumulative incidence of HCC at year 5 was 7–18% in NUC-treated cirrhotic patients (12, 13, 16–18). Our data showed similar results that the 5-year cumulative incidence of HCC was 9.8% with an annual incidence of 2.04 per 100 person-year.

The risk factors associated with HCC development in CHB-related cirrhotic patients under NUC therapy, including older age, male gender, HBeAg positivity, statin use, platelet count, AFP and hemoglobin levels, variceal bleeding history, and 1-year virological response, had been reported by previous studies (19–21). Our study demonstrated that an older age (≥ 50 years) and AFP ≥ 8 ng/ml were predictors for risk of HCC in those patients with long-term NUCs treatment. Previous reports have indicated that the risk of HCC in cirrhotic patients under NUC therapy was age-dependent (19–21). Tsai et al. proved that a higher risk for HCC development manifested at age 60 or higher. In our study, we showed that age ≥ 50 years was a predictor for HCC development. Serum AFP was determined as a serological biomarker for detection of HCC; therefore, it has commonly been used for HCC surveillance (22, 23). A randomized controlled trial of
surveillance among CHB patients has indicated the sensitivity and specificity of AFP level to detect HCC were 64% and 91%, respectively, using a serum cut-off point of 20 ng/ml (24). In our study, the incidence rates of new HCC case per 100 person-year were significantly higher in patients with AFP ≥ 8 ng/ml (3.03, 95% CI = 2.07–4.3) than to those with AFP < 8 ng/ml (1.36, 95% CI = 0.84–2.09), P = 0.007. The patients with AFP ≥ 8 ng/ml had a 2.19-fold rate of HCC than those with AFP < 8 ng/ml. For further analysis of the risk for HCC affected by the predictors, we stratified the patients into four groups according to the predictors identified by multivariate analysis. The incidence rate of HCC in patients with age < 50 years and AFP < 8 ng/ml was 0.36 (95% CI = 0.06–1.19) per 100 person-years. It was lower than the pooled rate of HCC incidence rate CHB patients with Child-Turcotte-Pugh A cirrhosis demonstrated by the previous meta-analysis study (25). Although the risk of HCC development in CHB-related cirrhotic patients could not be completely eliminated by long-term NUC therapy, we found this subgroup of patients obtained more benefits from therapy with significant lower rate of HCC than other subgroup of patients. On the contrary, patients with age ≥ 50 years or/and AFP ≥ 8 ng/ml had significantly higher risk for HCC, compared with those with age < 50 years and AFP < 8 ng/ml; therefore, these patients should be closely monitored for HCC occurrence during NUC therapy.

Although male patients were determined to possessed a greater risk for HCC in previous study (19), we detected contrasting result that no significant differences in HCC risk between sexes in CHB cirrhotic patients. According to a meta-analysis performed by Zhang et al in 2019, antiviral therapy for CHB patients with TDF significantly reduced the incidence of HCC compared to those with ETV (26). However, yet other studies have reported contrasting results (27–29). As shown by Fig. 2E, our data showed similar results that the incidence of HCC in cirrhotic CHB patients didn't affect by different oral anti-viral agent (20, 27).

There was limitation of our study. The mean duration of follow-up was 47.4 ± 26.5 months in TDF-treated patients and 67.0 ± 34.8 months in ETV-treated patients, respectively. The duration was relatively shorter in the TDF group and warrant a longer follow-up period in further study to clarify the long-term effect against HCC development.

Conclusions

Long-term NUC therapy could not completely eliminate the risk for HCC development in CHB-related cirrhotic patients. Cirrhotic CHB patients with age < 50 years and AFP < 8 ng/ml have the lowest annual incidence of HCC, which is lower than the pooled incidence of HCC in CHB patients. However, patients with age ≥ 50 years or/and AFP ≥ 8 ng/ml have significantly higher risk for HCC and thus warrant careful surveillance schedule.

Abbreviations

NUC, Nucleos(t)ide analogue
HCC, hepatocellular carcinoma

CHB, chronic hepatitis B

HR, hazard ratio

CI, confidence interval

AFP, α-fetoprotein

HBV, hepatitis B virus

ETV, entecavir

TDF, tenofovir disoproxil fumarate

Declarations

Ethics approval and consent to participate: This study was approved by the Medical Ethics Committee of Chang Gung Memorial Hospital (Institutional Review Board approval number: 104_9790B)

Consent for publication: Not applicable

Availability of data and materials: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests.

Funding: Not applicable

Authors' contributions: Ching-Chih Hu, Chih-Lang Lin and Rong-Nan Chien conceived the study. Ching-Chih Hu, Pei-Hung Chang and Chih-Lang Lin contributed to data collection. Ching-Chih Hu, Man-Chin Hua and Cheng-Hao Weng analyzed the data. Ching-Chih Hu, Cheng-Hao Weng and Rong-Nan Chien contributed to writing, reviewing, and revising the paper. All authors interpreted the data and approved the final manuscript

Acknowledgements: This study was supported by the Chang Gung Memory Hospital Research Grant CMRPG2H0141 and CMRPG2I0141

References

1. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380(15):1450–62.
2. [Available from: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf.](https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf)
3. Tang LSY, Covert E, Wilson E, Kottilil S. Chronic Hepatitis B Infection: A Review. JAMA. 2018;319(17):1802–13.

4. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1.

5. European Association For The Study Of The L, European Organisation For R, Treatment Of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.

6. Dienstag JL, Goldin RD, Heathcote EJ, Hann HW, Woessner M, Stephenson SL, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology. 2003;124(1):105–17.

7. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Gastroenterology. 2006;131(6):1743–51.

8. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381(9865):468–75.

9. Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010;52(3):886–93.

10. Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med. 2004;351(15):1521–31.

11. Di Marco V, Marzano A, Lampertico P, Andreone P, Santantonio T, Almasio PL, et al. Clinical outcome of HBeAg-negative chronic hepatitis B in relation to virological response to lamivudine. Hepatology. 2004;40(4):883–91.

12. Wong GL, Chan HL, Mak CW, Lee SK, Ip ZM, Lam AT, et al. Entecavir treatment reduces hepatic events and deaths in chronic hepatitis B patients with liver cirrhosis. Hepatology. 2013;58(5):1537–47.

13. Hosaka T, Suzuki F, Kobayashi M, Seko Y, Kawamura Y, Sezaki H, et al. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology. 2013;58(1):98–107.

14. Lin DY, Sheen IS, Chiu CT, Lin SM, Kuo YC, Liaw YF. Ultrasonographic changes of early liver cirrhosis in chronic hepatitis B: a longitudinal study. J Clin Ultrasound. 1993;21(5):303–8.

15. Bruix J, Sherman M, Practice Guidelines Committee AAftSoLD. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208–36.

16. Arends P, Sonneveld MJ, Zoutendijk R, Carey I, Brown A, Fasano M, et al. Entecavir treatment does not eliminate the risk of hepatocellular carcinoma in chronic hepatitis B: limited role for risk scores in Caucasians. Gut. 2015;64(8):1289–95.

17. Cho JY, Paik YH, Sohn W, Cho HC, Gwak GY, Choi MS, et al. Patients with chronic hepatitis B treated with oral antiviral therapy retain a higher risk for HCC compared with patients with inactive stage disease. Gut. 2014;63(12):1943–50.
18. Papatheodoridis GV, Dalekos GN, Yurdaydin C, Buti M, Goulis J, Arends P, et al. Incidence and predictors of hepatocellular carcinoma in Caucasian chronic hepatitis B patients receiving entecavir or tenofovir. J Hepatol. 2015;62(2):363–70.
19. Su TH, Hu TH, Chen CY, Huang YH, Chuang WL, Lin CC, et al. Four-year entecavir therapy reduces hepatocellular carcinoma, cirrhotic events and mortality in chronic hepatitis B patients. Liver Int. 2016;36(12):1755–64.
20. Tsai MC, Chen CH, Hu TH, Lu SN, Lee CM, Wang JH, et al. Long-term outcomes of hepatitis B virus-related cirrhosis treated with nucleos(t)ide analogs. J Formos Med Assoc. 2017;116(7):512–21.
21. Papatheodoridis GV, Manolakopoulos S, Touloumi G, Vourli G, Raptopoulou-Gigi M, Vafiadis-Zoumbouli I, et al. Virological suppression does not prevent the development of hepatocellular carcinoma in HBeAg-negative chronic hepatitis B patients with cirrhosis receiving oral antiviral(s) starting with lamivudine monotherapy: results of the nationwide HEPNET. Greece cohort study. Gut. 2011;60(8):1109–16.
22. Ikeda K, Saitoh S, Koida I, Arase Y, Tsubota A, Chayama K, et al. A multivariate analysis of risk factors for hepatocellular carcinogenesis: a prospective observation of 795 patients with viral and alcoholic cirrhosis. Hepatology. 1993;18(1):47–53.
23. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med. 1993;328(25):1797–801.
24. Sherman M, Peltekian KM, Lee C. Screening for hepatocellular carcinoma in chronic carriers of hepatitis B virus: incidence and prevalence of hepatocellular carcinoma in a North American urban population. Hepatology. 1995;22(2):432–8.
25. Singal AK, Salameh H, Kuo YF, Fontana RJ. Meta-analysis: the impact of oral anti-viral agents on the incidence of hepatocellular carcinoma in chronic hepatitis B. Aliment Pharmacol Ther. 2013;38(2):98–106.
26. Zhang Z, Zhou Y, Yang J, Hu K, Huang Y. The effectiveness of TDF versus ETV on incidence of HCC in CHB patients: a meta analysis. BMC Cancer. 2019;19(1):511.
27. Lee SW, Kwon JH, Lee HL, Yoo SH, Nam HC, Sung PS, et al. Comparison of tenofovir and entecavir on the risk of hepatocellular carcinoma and mortality in treatment-naive patients with chronic hepatitis B in Korea: a large-scale, propensity score analysis. Gut. 2020;69(7):1301–8.
28. Papatheodoridis GV, Dalekos GN, Idilman R, Sypsa V, Van Boemmel F, Buti M, et al. Similar risk of hepatocellular carcinoma during long-term entecavir or tenofovir therapy in Caucasian patients with chronic hepatitis B. J Hepatol. 2020;73(5):1037–45.
29. Hsu YC, Wong GL, Chen CH, Peng CY, Yeh ML, Cheung KS, et al. Tenofovir Versus Entecavir for Hepatocellular Carcinoma Prevention in an International Consortium of Chronic Hepatitis B. Am J Gastroenterol. 2020;115(2):271–80.

Figures
Figure 1

Cumulative incidence of hepatocellular carcinoma. The cumulative incidence of HCC was 0.9%, 9.8% and 22.1% at the 1, 5 and 10 years, respectively.
Figure 2

Cumulative incidence of hepatocellular carcinoma assessed by baseline risk factors: (A) age, (B) albumin, (C) HBV DNA, (D) AFP, (E) NUCs. AFP, α-fetoprotein; NUC, nucleos(t)ide analogue; TDF, tenofovir; ETV, entecavir. Patients with older age, higher AFP and HBV DNA levels, and low albumin levels have higher risk for HCC development during NUC therapy. The risk of HCC development is not different among the two NUCs.