A Mixed Graph Achieving a Moore-like Bound

Geoffrey Exoo
Department of Mathematics and Computer Science
Indiana State University
Terre Haute, IN 47802
ge@cs.indstate.edu

Thursday November 2, 2023

Mathematics Subject Classifications: 05C35, 05C20, 05C38

Abstract

Mixed graphs have both directed and undirected edges. A mixed cage is a regular mixed graph of given girth with minimum possible order. In this paper we construct a mixed cage of order 30 that achieves the mixed graph analogue of the Moore bound for degree 3, out-degree 1, and girth 6.

1 Notation and Terminology

A mixed graph is a graph with both directed and undirected edges. We refer to directed edges as arcs and undirected edges as edges. The degree of a vertex v in a mixed graph G is the number of edges incident with v, whereas the in-degree and out-degree are the numbers of arcs incident to and from v. G is regular if all three degrees are constant as v ranges over $V(G)$.

A cycle in a mixed graph is a sequence of vertices v_0, v_1, \cdots, v_k such that there are no repeated vertices except that $v_0 = v_k$, each pair of consecutive vertices (v_i, v_{i+1}) is either an edge or an arc, and there are no repeated edges or arcs. The girth of a mixed graph is the length of a shortest cycle. Note that this definition considers the possibility of 1-cycles (loops) and 2-cycles.

Mixed graphs have been studied in the context of the degree/diameter problem. We follow the notation used in that literature and denote the degree and outdegree of a regular mixed graph by r and z, respectively.
An \((r, z, g)\)-graph is a regular mixed graph with degree \(r\), out-degree \(z\), and girth \(g\). An \((r, z, g)\)-cage is an \((r, z, g)\)-graph of minimum possible order. We denote this minimum order by \(f(r, z, g)\).

Recall [2] that the Moore bound for an \(r\)-regular graph of diameter \(d\) is given by:

\[
n(r, d) \geq \frac{r(r - 1)^d - 2}{r - 2}
\]

(1)

In [1] Araujo-Pardo, Hernández-Cruz, and Montellano-Ballesteros consider the problem of finding mixed cages. They focus on the case \(z = 1\) and determine a lower bound for \(f(r, 1, g)\) based on the Moore bound. Their idea is to attach undirected Moore trees to each vertex of a directed path of length \(g - 1\), choosing trees whose depth is as large as possible while still guaranteeing that all tree vertices are distinct.

So let \(v_0, v_1, \cdots, v_{g-1}\) be the vertices of a directed path of length \(g - 1\). Using edges, attach a Moore tree of depth \(i\) to both \(v_i\) and \(v_{g-1-i}\) for \(0 \leq i \leq \lfloor g/2 \rfloor\). Note: if \(i = g-i-1\) we attach only one tree. The base path contains arcs and the Moore trees contain edges. This gives the following bound.

Theorem 1 (The AHM Bound [1])

\[
f(r, 1, g) \geq \sum_{i=0}^{g-1} n(r, \min(i, g-i-1))
\]

Theorem 2

\[
f(3, 1, 6) = 30
\]

Proof. The AHM bound for \(r = 3\), \(z = 1\), and \(g = 6\) is 30. The graph \(G\) shown in the figure has order 30 and has the require parameters.

The graph can be describe algebraically as follows. Let

\[
V(G) = \{v(i, j) \mid 0 \leq i < 3, \ 0 \leq j < 10\}
\]

be the vertex set. For \(0 \leq i < 3\), let

\[
V_i = \{v(i, j) \mid 0 \leq j < 10\}.
\]
Each V_i induces a directed 10-cycle. These three cycles are shown in figure. Let V_0 be the set of vertices in the lower partition of the figure and let V_1 and V_2 be the sets of vertices on the outer and inner (resp.) cycles in the upper part of the figure. Imagine the vertices labeled such that vertex $v_{i,0}$ is the rightmost vertex on each of the three directed 10-cycles and that the other vertices are labeled in counter-clockwise order. The arcs and edges are given as follows, where second indices are computed modulo 10:

(a) arc($v(0, j), v(0, j+1)$)
(b) edge($v(0, j), v(1, j)$)
(c) edge($v(0, j), v(2, j+5)$)
(d) edge($v(1, j), v(2, j+2)$)
(e) edge($v(1, j), v(2, j-2)$)

In the figure, edges of type (b) and (c) are not drawn but indicated by color: vertices in V_0 are adjacent to those vertices in V_1 and V_2 that have the matching color.

Note: Recently another graph achieving the AHM bound was found by the author. This graph is for the case $(6, 1, 6)$. The graph has order 90, which is the AHM bound, and can be constructed as a lift of the complement of the line graph of K_6. The adjacency matrix for the graph can be found at the following location.

https://cs.indstate.edu/ge/MixedCages/g90.txt

References

[1] G. Araujo-Pardo, C. Hernández-Cruz, and J. J. Montellano-Ballesteros, Mixed Cages. *Graphs and Combinatorics*, 35 (2019), 989–999.

[2] M. Miller and J. Sirán, Moore Graphs and Beyond: A Survey of the Degree/Diameter Problem, *Electronic Journal of Combinatorics* DS14, May 16, 2013.
Figure 1: The unique smallest \((3, 1, 6)\)-graph of order 30. Vertices in the lower figure are adjacent to vertices in the upper figure that have the matching color. The automorphism group has two generators: a rotation of \(\pi/5\) (in both figures) and an involution that transposes the inner and outer cycles in the upper figure. These generators commute, so the group is \(\mathbb{Z}_2 \times \mathbb{Z}_{10}\).