p63 is a transcriptional factor implicated in cancer and development. The presence in TP63 gene of alternative promoters allows expression of one isoform containing the N-terminal transactivation domain (TA isoform) and one N-terminal truncated isoform (ΔN isoform). Complete ablation of all p63 isoforms produced mice with fatal developmental abnormalities, including lack of epidermal barrier, limbs and other epidermal appendages. Specific TAp63-null mice, although they developed normally, failed to undergo in DNA damage-induced apoptosis during primordial follicle meiotic arrest, suggesting a p63 involvement in maternal reproduction. Recent findings have elucidated the role in DNA damage response of a novel Hominidae p63 isoform, GTAp63, specifically expressed in human spermatic precursors. Thus, these findings suggest a unique strategy of p63 gene, to evolve in order to preserve the species as a guardian of reproduction. Elucidation of the biological basis of p63 function in reproduction may provide novel approaches to the control of human fertility.

Introduction

p63 is the most ancient member of p53 family of gene, in which is included, besides p53, also p73. p63, like the other two members, uses an alternative promoter at the 5’ end of the gene to allow the expression of two different N-terminal isoforms, one containing the N-terminal transactivation domain (TA isoform) and an N-terminal truncated isoform (ΔN isoform) that lacks this domain. Moreover, the C-terminal sequence undergoes alternative splicing that gives rise to a wide range of TA and ΔN isoforms with different C-terminal organization. The DNA binding domain (DBD) in the p53 family is the region with the highest degree of conservation among the different protein members and throughout the evolutionary lineage, and, therefore, all family members bind to conserved p53 response elements (p53RE) in promoter DNA. However, there may also be some subtle preferences in the precise nucleotide sequence in the RE recognized by different family members.

The importance of the p53 family is highlighted by the global impact that these three genes have on cellular function. p53, the first family member to be identified, mainly acts as a tumor suppressor and plays a key role in maintaining the integrity of somatic cells in the vertebrate genome. Following DNA damage, activation of p53 leads to cell cycle arrest, apoptosis, induction of senescence or differentiation. However, p63 has its own very distinct roles. The first p63-knockout mouse models, independently generated by two groups in 1999, revealed a fundamental role for p63 in epidermal development. p63-null mice die shortly after birth due to the lack of an epidermal barrier and consequent dehydration. They also show additional developmental defects, including lack of limbs and other epidermal appendages. This phenotype led to two different interpretations: lack of proper epidermal stratification and commitment of epidermal embryonic precursors, or a failure in the maintenance of the full repertoire of epidermal stem cells, despite normal commitment and differentiation capabilities. However, accumulating data favor the hypothesis that ΔNp63, the dominant isoform in the skin, is crucial for the maintenance of the epidermal stem cell niche and for the proliferation of committed precursors. Conditional ΔNp63-null mice showed some patches of keratinocytes, which were able to stratify and undergo a program of terminal differentiation, as shown by the expression of loricrin, filaggrin and involucrin in the isolated clusters of disorganized epithelial cells. This finding supports the hypothesis that the absence of p63 results in progenitor cell exhaustion of skin keratinocytes. The ΔNp63-null largely phenocopies the full p63-null (lacking all p63 isoforms) exhibiting severe developmental abnormalities including truncated forelimbs, absence of hind limbs and stratified epidermis. In contrast, the role of TAp63 isoforms in specifying epidermal development has been controversial. The TAp63-null mouse engineered by McKee’s group did not show any evident morphological defects, while the TAp63-null mouse engineered in Flores’ lab, despite normal development, showed accelerated aging, blisters, skin ulcerations, senescence of hair follicles and alopecia. This complex phenotype is dependent on defective proliferation and senescence of dermal and epidermal precursors, and suggests that TAp63

Keywords: p63, oocytes, spermatozoa, reproduction, DNA damage, p53, c-Abl
mice and decades in humans) places the immature oocytes in ovulation. The extended length of this phase (more than 1 y in extraordinary extended for a long time period, until the specific a tetraploid state. This time window, in female germ line, is embryonic development and temporarily stops when cells reach division. Meiosis is a multiple steps process that starts during meiosis in order to generate haploid cells necessary for sexual cies during the evolution. Cells from female germ line undergo conserved the ancestral function of maintenance of female germ line, p53 has acquired the "modern" role of genomic stabil- represents the ancestral member of p53 family. Therefore, while required for germ line fidelity. It seems very likely that mamma-lian TAp63 in DNA damage-induced apoptosis resembles their function. Moreover, considering the p53-independence of this function invertebrate, Mckeen proposed a model, whereby p63 preserves the ancestral function of maintenance of female germ line, p53 has acquired the "modern" role of genomic stability control in somatic cells of vertebrate organisms.

Who Pulls the Trigger for TAp63 Activation? Phosphorylation of TAp63 appears to be the critical step for activation of DNA damage response in oocytes. The tyrosin kinase c-Ab1 has been reported by Gonfloni et al. to be at least one
of the upstream factors responsible for p63 phosphorylation. Gonfloni and colleagues showed that upon cisplatin treatment, in postnatal day 5 (P5) mice, TAp63 was stabilized and phosphorylated (on tyrosine residues Tyr149, Tyr171, Tyr289) consistently with c-Abl nuclear accumulation, leading to oocytes death (Fig. 2).

Inhibition of c-Abl, by imatinib, a BCR-ABL inhibitor designed and used for clinical treatment of CML (chronic myelogenous leukemia), abolished TAp63 activation and protected mouse oocytes from cisplatin chemotheray. This observation underlined the central role of c-Abl in regulation of primordial oocytes cell death and also partially clarified the molecular pathway involved in TAp63 recruitment during oocyte DNA damage response. Moreover, this would imply important medical considerations: inhibition of c-Abl/TAp63 axis, using, for example, imatinib, would open novel options to counteract oocytes cell death to prevent female infertility during cancer chemotherapy. However, it is still controverted whether damage oocytes should die; preventing infertility to result in fetal malformation would be not feasible. On the contrary, a recent report has suggested caution about the possible application of anti-Abl treatment to prevent cisplatin-induced infertility. In a correspondence to Nature Medicine editor, Kerr et al. showed how in their hands-on co-administration of imatinib and cisplatin in two different mouse strains (CD1 and C57BL6) did not rescue the primordial follicle depletion. Moreover, they showed that administration of imatinib alone increased the number of apoptotic oocytes, accordingly with a possible imatinib-dependent inhibition of the crucial factor for oocyte survival, c-kit. These results undermine the real indispensability of c-Abl for DNA damage-induced oocytes apoptosis. Furthermore, they raised the question about the low specificity of imatinib, which potentially affects enzymatic activity of some other tyrosin kinases, such as c-kit. Gonfloni and colleagues defended their hypothesis, repeating the crucial experiments by inhibiting c-Abl with an alternative compound, GNF-2, that has no affinity for the tyrosine kinase c-kit. With GNF-2, they confirmed the role of c-Abl in TAp63 activation. They explained the discrepancy of imatinib results with a different equivalency in the cisplatin solution used in the other work. Apparently, while Kerr et al. were using hospital-grade cisplatin solution, Gonfloni and colleagues were using cisplatin from Sigma. The difference in preparation may affect solubility of the compound, resulting in a different efficacy at the same concentration. However, the debate remains opened. How crucial is the c-Abl contribution for p63 phosphorylation for DNA damage-induced oocytes apoptosis? Multiple kinases showed ability to phosphorylate p63, including ATM, Cdk2, p70s6K, p38 MAPK, IκB, Plk (Fig. 2). May any of them partially overcome c-Abl inhibition? Maybe answering the questions whether the conditional c-Abl-null oocytes are sensitive to cisplatin-induced apoptosis and whether TAp63 is activated would help to clarify this point.

“GTA” p63 Relieves TAp63 in Protection of Hominoidea Male Germ Lines

Despite the fundamental role as guardian of female germ line, no evidence has been obtained for an involvement of TAp63 in DNA damage response in spermatogonic precursors. Indeed, although TAp63 mRNA has been detected in mouse male germ cells, specific antibodies failed to clearly detect protein levels, as shown as for female primordial follicles. Moreover, upon irradiation, mouse p63-/- testis did not show any significant difference in apoptotic response compared with WT. Recently, a novel p63 isoform, unique to Hominoidea (humans and great apes), has been identified in human testis. This isoform, termed GTAp63 (germ cell-encoded transactivating p63), rises from a more complex 5′ region of human TP63 gene. Indeed, here three additional upstream exons (U1, U2, U3) that can be fused by alternative splicing with the previous described exon 2, generating different N-terminal splicing variants (Fig. 3A). The most abundant splicing variant is originated by fusion of exon U1 with exon 2 and differs from the previous described TAp63 isoforms for a 19-residues long N terminus (Fig. 3B). GTAp63 is highly expressed in human male germ cell precursors, while mostly undetectable in all other tissue. Upon genotoxic stress, it shows ability to induces apoptotic p53-responsive genes (PUMA, NOXA, CD95L), thus probably contributing to maintenance of spermatozoa genome integrity. Although protective mechanisms of germ cell genome are generally crucial.
for maintenance of all species, this appears particular critical in spermatogenesis of Hominoidea, since humans produce 100 million of spermatozoa per day for a long lifespan. Expression of GTAp63, indeed, was phylogenetically allowed only recently in primate evolution, by insertion of an endogenous retrovirus, ERV9, coinciding with the Hominoidea lineage separation from other primates. The 5’ portion of exon U1, indeed, overlaps the LTR sequences of ERV9, which are predominantly transcribed in testis. Therefore, GTAp63 expression is very likely the result of ERV9 LTR promoter activity. This insertion represented a positive event during the evolution, which fortified the expression of a guardian of genome. This has, indeed, enabled a more restrictive surveillance on genome of male germ line, probably coinciding with the requirement a longer fertile lifespan of these species.

Moreover, GTAp63 represents also a potential novel tumor suppressor candidate of testicular tumors. HDAC inhibition restores expression of GTAp63 in testicular carcinomas, where p63 expression is very often lost. Consequently, treatment with HDAC inhibitors,116,117 like SAHA currently under clinical use,118 might synergistically improve anticancer ability of conventional chemotherapeutic compounds,117,119 like cisplatin, by restoring GTAp63 expression

However, a complete understanding of GTAp63 functions is still far to be clarified. Due to limits of Hominoidea “experimental system,” many questions remain elusive. One important issue, for example, concerns the dependence from p53 of DNA damage response in sperm precursors. Does GTAp63 contribute to p53-dependent apoptosis or act completely independent, mimicking TAp63 in oocytes? And does the additional 19-amino acid N-terminal tail allow an at least partial, different promoter responsivity from p53? Further efforts on the study of this novel isoform will be extremely important to completely clarify p63 contribution in human reproduction fidelity.

Concluding Remarks

Many invertebrates, such as C. elegans and Drosophila melanogaster, have only one p53 family member, which resembles more closely p63 and p73 than p53 from both structural and functional aspects. The p53 members from C. elegans, CEP-1,98,99 and from D. melanogaster, Dmp53,100 are both exclusively required for germ line fidelity. The current most accredited theory, therefore, is that, from germ line fidelity control, p53 members have adapted their function over time in different tissues, controlling different processes, including tumor suppression and development. This is also supported by the fact that from the structural point of view, CEP-1 forms dimers via C-terminal domain, resembling the dimer-tetramer strategy adopted by mammalian TAp63. The ancestral reproduction role has been mainly maintained by p63 as dimer-tetramer, while the subsequent tumor suppression role evolved in p53 as tetramer,120,121 suggesting a parallel structural-functional evolution.

Acknowledgments

This work has been supported by the Medical Research Council, United Kingdom; MIUR, MinSan, RF73, RF57, ACC12; Odysseus Grant (G.0017.12) from the Flemish government and Flanders Institute for Biotechnology, Belgium.
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
2. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/
1. www.landesbioscience.com Cell Cycle 4549
15. Dulic V. Be quiet and you'll keep young: does mTOR
14. Spinnler C, Hedström E, Li H, de Lange J, Nikulenkov
12. Riley T, Sontag E, Chen P, Levine A. Transcriptional
10. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy
9. Cheok CF, Verma CS, Baselga J, Lane DP. Translating
5. Barlev NA, Sayan BS, Candi E, Okorokov AL. The
3. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A,
Sen T, Chang X, Sidransky D, Chatterjee A. Regulation of cell cycle control proteins: implications for human diseases. Biochem Biophys Res Commun 2011; 414:451-5; PMID:21964298; http://dx.doi.org/10.1016/j.bbrc.2011.09.081.

Engel T, Tanaka K, Jimenez-Mateos EM, Caballero-A, Prehn JH, Henshall DC. Loss of p53 results in protracted electrophoretic seizures and development of an agitated epileptic phenotype following status epilepticus. Cell Death Dis 2010; 1:e79; PMID:20368852; http://dx.doi.org/10.1038/cddis.2010.55.

Agostini M, Tuuci P, Melino G. Cell death pathology: from crosstalk meets therapeutic opportunity. Oncotarget 2011; 2:259-64; PMID:21436470.

Muppani N, Nyman U, Joseph B. TAp73alpha regulates small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget 2011; 2:1145-54; PMID:22201672.

Huang Y, Ratovitski EA. Phospho-Np63α/Rnp13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells. Aging (Albany NY) 2010; 2:959-68; PMID:21191146.

Engel T, Tanaka K, Jimenez-Mateos EM, Caballero-A, Prehn JH, Henshall DC. Loss of p53 results in protracted electrophoretic seizures and development of an agitated epileptic phenotype following status epilepticus. Cell Death Dis 2010; 1:e79; PMID:20368852; http://dx.doi.org/10.1038/cddis.2010.55.

50. Ory B, Ellisen LW. A microRNA-dependent circuit controlling p63/73 homeostasis: p53 family cross-talk meets therapeutic opportunity. Oncotarget 2011; 2:259-64; PMID:21436470.

51. Muppani N, Nyman U, Joseph B. TAp73alpha regulates small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget 2011; 2:1145-54; PMID:22201672.

52. Huang Y, Ratovitski EA. Phospho-Np63α/Rnp13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells. Aging (Albany NY) 2010; 2:959-68; PMID:21191146.

53. Engel T, Tanaka K, Jimenez-Mateos EM, Caballero-A, Prehn JH, Henshall DC. Loss of p53 results in protracted electrophoretic seizures and development of an agitated epileptic phenotype following status epilepticus. Cell Death Dis 2010; 1:e79; PMID:20368852; http://dx.doi.org/10.1038/cddis.2010.55.

54. Agostini M, Tuuci P, Melino G. Cell death pathology: from crosstalk meets therapeutic opportunity. Oncotarget 2011; 2:259-64; PMID:21436470.

55. Muppani N, Nyman U, Joseph B. TAp73alpha regulates small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget 2011; 2:1145-54; PMID:22201672.

56. Huang Y, Ratovitski EA. Phospho-Np63α/Rnp13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells. Aging (Albany NY) 2010; 2:959-68; PMID:21191146.
96. Brodski B, Otretryková P, Holubék A. Decitabine-induced apoptosis is derived from Puma and Noxa induction in chronic myeloid leukemia cell line as well as in PBL, and is potentiated by SAHA. Mol Cell Biochem 2011; 350:71-80; PMID:21353663; http://dx.doi.org/10.1007/s10010-010-0683-5.

97. Kerr JB, Hunt KJ, Michalak EM, Cook M, Vandenberg CJ, Liew SH, et al. DNA Damage-Induced Primordial Follicle Oocyte Apoptosis and Loss of Fertility Require TAp63-Mediated Induction of Puma and Noxa. Mol Cell 2012; In press; PMID:23000175; http://dx.doi.org/10.1016/j.molcel.2012.08.017.

98. Derry WB, Pruzín AP, Rothman JH. Caenorhabditis elegans p53; role in apoptosis, meiosis, and stress resistance. Science 2001; 294:591-5; PMID:11557844; http://dx.doi.org/10.1126/science.1065486.

99. Ross AJ, Li M, Yu B, Gao MX, Derry WB. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans. Cell Death Differ 2010; 17:1140-9; PMID:20233842; http://dx.doi.org/10.1038/cdd.2010.180.

100. Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 2000; 101:91-101; PMID:10778859; http://dx.doi.org/10.1016/S0092-8674(00)80626-1.

101. Ullah A, Stagni V, Hussain A, Richelme S, Condi F, Prosdoimo A, et al. Abl interconnects oncogenic Met and p53 core pathways in cancer cells. Cell Death Differ 2011; 18:1608-16; PMID:21455220; http://dx.doi.org/10.1038/cdd.2011.23.

102. Melzer V, Ben-Yehoya M, Shaul Y, c-Abl tyrosine kinase in the DNA damage response: cell death and more. Cell Death Differ 2011; 18:1664-74; PMID:21475302; http://dx.doi.org/10.1038/cdd.2011.34.

103. Gugliotta G, Castagnetti F, Palandrini F, Baccarani M, Rossi G. Imatinib in chronic myeloid leukemia elderly patients. Aging (Albany NY) 2011; 3:1125-6; PMID:22203437.

104. John K, Alla V, Meier C, Putzer BM. GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ 2011; 18:874-86; PMID:21217500; http://dx.doi.org/10.1038/cdd.2010.153.

105. Pajic M, Kersbergen A, van Diepen P; Pflaum A; Jonkers J, Borst P, et al. Tumor-initiating cells are not enriched in cisplatin-surviving BRCA1p53-deficient mammary tumor cells in vivo. Cell Death Differ 2011; 18:970-91; PMID:20855963; http://dx.doi.org/10.1038/cdd.9.1813002.

106. Carlsson JB, Laritnen MP, Scott JE, Louhio H, Velentzas L, Tiuri T, et al. Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction 2006; 131:641-9; PMID:16595715; http://dx.doi.org/10.1530/rep.1.00868.

107. Maiani E, Di Bartolomeo C, Klinger FG, Cannata SM, Bernardini S, Chataveauxius S, et al. Reply to: Cipulin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat Med 2012; 18:1172-4; PMID:22869180; http://dx.doi.org/10.1038/nm.2852.

108. Adrián FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, et al. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2006; 2:95-102; PMID:16415863; http://dx.doi.org/10.1038/nchembio760.

109. Huang Y, Sen T, Nagali J, Upadhyay S, Trink B, Ratovitski E, et al. ATM kinase is a master switch for the Delta Np63 alpha phosphorylation/degradation in human head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 2008; 7:2846-55; PMID:18769144; http://dx.doi.org/10.4161/cc.7.18.6627.

110. John D, Budach W, Jänicke RU. Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 2011; 18:1664-74; PMID:21475302; http://dx.doi.org/10.1038/cdd.2011.34.

111. MacPartlin M, Zeng SX, Lu H. Phosphorylation and stabilization of TAp63gamma by IkappaB kinase-beta. Cell 2012; In press; PMID:23000175; http://dx.doi.org/10.1002/jcp.20829.

112. Petre-Lazar B, Moreno SG, Livera G, Duquenne C, Hanoux V, et al. The role of p63 in germ cell apoptosis in C. elegans. Cell Death Differ 2011; 18:1140-9; PMID:21233842; http://dx.doi.org/10.1038/cdd.2010.180.

113. Petre-Lazar B, Livera G, Moreno SG, Trautmann E, Di Giovanni S. HDAC inhibition promotes neutrophil outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010; 17:1392-408; PMID:20994059; http://dx.doi.org/10.1038/cdd.2009.216.

114. Amelio I, Melino G, Knight RA. Cell death pathology: cross-talk with autophagy and its clinical implications. Biochem Biophys Res Commun 2011; 414:277-81; PMID:21963447; http://dx.doi.org/10.1016/j.bbrc.2011.09.080.

115. Li D, Marchenko ND, Moll UM. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ 2011; 18:1392-408; PMID:21627392; http://dx.doi.org/10.1038/cdd.2011.71.

116. Beyer U, Dollberg M, Tafvizi A, Huang F, Fersht AR, Mirny LA, van Oijen MMG. Non-hominid TP63 lacks retinoic acid response element and is not a target for p53 recombination. Aging (Albany NY) 2011; 3:1154-62; PMID:22228887.

117. Meloro R, Rajagopalan S, Lázaro M, Jorger AC, Brandt T, Voprinëtsev DB, et al. Electrosca microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proc Natl Acad Sci USA 2011; 108:5557-62; PMID:21178074; http://dx.doi.org/10.1073/pnas.1015520107.

118. Tafvizi A, Huang F, Fersht AR, Minny LA, van Oijen AM. A single-molecule characterization of p53 search on DNA. Proc Natl Acad Sci USA 2011; 108:563-8; PMID:21178072; http://dx.doi.org/10.1073/pnas.1016020107.