Axial resonances $a_1(1260)$, $b_1(1235)$ and their decays from the lattice

C. B. Lang,a Luka Leskovec,b Daniel Mohler,c and Sasa Prelovsekb,d

aInstitut für Physik, University of Graz, A–8010 Graz, Austria
bJozef Stefan Institute, 1000 Ljubljana, Slovenia
cFermi National Accelerator Laboratory, Batavia, Illinois 60510-5011, USA
dDepartment of Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

E-mail: christian.lang@uni-graz.at, luka.leskovec@ijs.si, dmohler@fnal.gov, sasa.prelovsek@ijs.si

ABSTRACT: The light axial-vector resonances $a_1(1260)$ and $b_1(1235)$ are explored in $N_f=2$ lattice QCD by simulating the corresponding scattering channels $\rho\pi$ and $\omega\pi$. Interpolating fields $\bar{q}q$ and $\rho\pi$ or $\omega\pi$ are used to extract the s-wave phase shifts for the first time. We assume that ρ and ω are stable; this approximation is justified in the energy region of interest for our parameters $m_\pi \simeq 266$ MeV and $L \simeq 2$ fm. A Breit-Wigner fit of the phase shift gives the $a_1(1260)$ resonance mass $m_{a_1}^{\text{res}} = 1.435(53)(^{+0}_{-109})$ GeV compared to $m_{a_1}^{\text{exp}} = 1.230(40)$ GeV. The a_1 width $\Gamma_{a_1}(s) \equiv g^2 p/s$ is parametrized in terms of the coupling and we obtain $g_{a_1\rho\pi} = 1.71(39)$ GeV compared to $g_{a_1\rho\pi}^{\text{exp}} = 1.35(30)$ GeV derived from $\Gamma_{a_1}^{\text{exp}} = 425(175)$ MeV. In the b_1 channel, we find energy levels related to $\pi(0)\omega(0)$ and $b_1(1235)$, and the lowest level is found at $E_1 \gtrsim m_\omega + m_\pi$ but is within uncertainty also compatible with an attractive interaction. Assuming the coupling $g_{b_1\omega\pi}$ extracted from the experimental width we estimate $m_{b_1}^{\text{res}} = 1.414(36)(^{+0}_{-83})$.

KEYWORDS: decay width, axial mesons, scattering, lattice QCD
1 Introduction

Ab-initio lattice simulations of light mesons are complicated by the fact that the majority of these states are hadronic resonances and therefore decay under the strong interaction. This is the case also for all vector ($J^P = 1^-$) and axial-vector ($J^P = 1^+$) mesons. The vector resonance ρ is the only hadronic resonance that has been treated on the lattice by several collaborations [1–6], taking into account its unstable nature and extracting its resonance mass as well as the width. First steps in this direction were also made recently for the vector resonance $K^*(892)$ [7], where mass and width were extracted.

In the present paper we aim at simulating the ground state axial-vector resonances $a_1(1260)$ and $b_1(1235)$ with $I^G(J^{PC}) = 1^+ (1^{++})$ and $1^+(1^{+-})$, respectively, taking into account their strong decays $a_1 \to \rho \pi$ and $b_1 \to \omega \pi$. The experimental mass and width $\Gamma_{b_1} = 142 \pm 9$ MeV of the $b_1(1235)$ are known rather precisely. The determination of the width for the broader a_1 from the lattice is important in view of its large uncertainty $\Gamma_{a_1} = 250 – 600$ MeV assigned by the Particle Data Group [8]. While most experiments and phenomenological extractions agree on the mass of the a_1 leading to a PDG value of $m_{a_1}^{\text{PDG}} = 1.230(40)$ GeV [8], determinations of Γ_{a_1} from diffractive processes where the extraction of the resonance parameters has considerable model dependence [9], deviate substantially from an analysis of data obtained from $\tau \to a_1 \nu$ [10]. As an example for data obtained from a diffractive process, a recent COMPASS measurement published in 2010 [11] provides a much smaller error-bar $\Gamma_{a_1} = 367 \pm 9^{+28}_{-25}$ MeV.
Our simulation is the first attempt at extracting the s-wave scattering phase shifts for $\rho\pi$ or $\omega\pi$ channels in lattice QCD. We are interested in the energy region covering the lowest resonance states, i.e., up to $\mathcal{O}(1500)$ MeV. In addition to $\rho\pi$ and $\omega\pi$ there are further two-meson decay channels to consider. The a_1 can also couple to $f_0(500)\pi$ and $f_0(980)\pi$ in p-wave, which goes to three pions. The lowest possible state with three pions combining to total spin 1 needs pions with non-vanishing momentum units like $\pi(0)\pi(1)\pi(-1)$ and thus – for our parameters – has an energy clearly above the range considered here. Another possible coupled channel for a_1 and b_1 is KK^* in s-wave; its threshold would be close to 1.4 GeV, but it cannot be produced from $\bar{q}q$ interpolator in our $N_f=2$ simulation and it is Zweig-suppressed, therefore we neglect the corresponding interpolator. The b_1 channel also couples to $\eta_2\rho$, its the contribution will be relevant only for energies above $\mathcal{O}(1500)$ MeV and we omit this interpolator.\footnote{The η_2 corresponds to η for $N_f=2$ dynamical quarks and has a mass between the η and the η'.} To summarize, we assume that the elastic scattering $\rho\pi$ and $\omega\pi$ dominates both channels in the energy region of interest and rely on the same assumption when extracting $\Gamma_{a_1\to\rho\pi}$ and $\Gamma_{b_1\to\omega\pi}$ from the experimental data. We note that the inelastic scattering with coupled channels has not been treated in the lattice simulation yet, while the analytic frameworks for this challenging problem were developed, for example, in $[12-15]$. We also assume that ρ and ω are stable in our case as detailed below. To determine the phase shift in the a_1 channel, for example, we first extract the discrete energy levels of the system with $I^G(J^{PC})=1^-(1^{++})$ and total momentum zero. These levels are related to the resonant state a_1 as well as the two-particle states $\rho(p)\pi(-p)$ with $p \simeq \frac{2\pi}{L}n$. Both, $\bar{q}q$ as well as meson-meson interpolators are implemented. The energy levels render the scattering phase shifts via Lüscher’s relation $[16-19]$ and the energy-dependence of the phase shift allows the determination of the resonance mass as well as the width. The decay $b_1 \to \omega\pi$ was simulated on the lattice earlier only by McNeile and Michael $[20]$, where the Wick contractions with back-tracking loops were omitted. The width $\Gamma[b_1 \to \omega\pi]$ was extracted based on the amplitude method $[21]$ and reasonable agreement with experiment was found (see figure 3 of $[20]$). The a_1 has never been simulated taking into account its strong decay, with exception of our preliminary results $[22]$. While in quantum field theory with dynamical quarks one expects to find contributions of the intermediate meson-meson states even in correlators of $\bar{q}q$, in practice such signals were not clearly observed. The masses of a_1 and b_1 were previously determined by a number of lattice collaborations within the so-called single-hadron approach. In this approach only $\bar{q}q$ interpolators are used. One assumes that the coupling to two-particle interpolators of the type $V\pi$ ($V=\rho,\omega$) is negligible and that the mass equals the observed ground state energy level $m=E$ (for $P=0$). It turned out to be a better strategy to include meson-meson interpolators explicitly in the set of source and sink operators and to study the meson-meson system this way. Indeed in this more complete, coupled system level shifts as compared to the non-interaction case can be observed. The assumption that two-particle interpolators may be neglected is particularly questionable in our situation, since $V(0)\pi(0)$ with $E \simeq m_V + m_\pi < m_{a_1,b_1}$ is the ground state of the system.
An additional complication for the channels of interest is that the scattering particles \(\rho \) and \(\omega \) decay under the strong interaction to \(2\pi \) and \(3\pi \), respectively. We assume stable vector mesons and restrict the simulation of the axial channels to the total momentum \(P \equiv |\mathbf{P}| = 0 \), where the possible effect of vector meson decay is least significant. Analytic frameworks for the scattering of unstable particles (with some emphasis on \(s \)-wave scattering) in the finite volume were recently formulated in [23], while the related challenging problem of three particles in a finite box was analytically considered in [14, 24–26]. In Ref. [23] the approach was applied to study the effect of the \(\rho \rightarrow \pi\pi \) decay to the \(\rho\pi \) scattering. Its effect on the discrete spectrum at zero momentum is found to be negligible on our lattice with \(L \simeq 2 \) fm and \(m_\pi \simeq 266 \) MeV in the region of interest,

\[
E < E_{\rho(1)\pi(-1)} \simeq (m_\rho^2 + \left(\frac{2\pi}{L}\right)^2)^{1/2} + (m_\pi^2 + \left(\frac{2\pi}{L}\right)^2)^{1/2} \simeq 1.7 \text{ GeV} \, ,
\]

where \(a_1 \) resides [23]\(^2\). The \(\rho(0) \) behaves nearly like a stable particle since its \(p \)-wave decay to the lowest two-particle state \(\pi(1)\pi(-1) \) has sizable energy \(E_{\pi(1)\pi(-1)} \simeq 1.3 \) GeV [3]. The effect of \(\omega \rightarrow 3\pi \) decay to \(\omega\pi \) scattering has not been analytically studied in detail, but the effect is suppressed again since at least two pions have momentum when \(\omega \) decays at rest, and it is suppressed due to the small width of \(\omega \).

The \(a_1 \) and \(b_1 \) mesons have been extensively studied also by non-lattice methods. Weinberg derived \(m_{a_1}/m_\rho \simeq \sqrt{2} \) based on spectral functions of currents [27]. More recently, axial mesons emerged as dynamically generated resonances in the study of scattering between pseudoscalar and vector mesons based on chiral Lagrangians [28–30]. Unitarized Chiral Perturbation Theory models render poles related to axial mesons dynamically although these are not present in the original Lagrangian [31]. This approach was used also to determine the dependence of their masses and widths as a function of number of colors (\(N_c \)). It was found that this dependence significantly deviates from the expectation \(M \propto N_c^0 \) and \(\Gamma \propto 1/N_c \) for pure \(\bar{q}q \) structure [32]. The chiral properties and issues related to chiral restoration were considered for example in [33, 34].

After introducing our lattice setup, we present the masses of the scattering particles \(\pi \), \(\rho \) and \(\omega \) in section 3. The interpolators and the energy spectra in the \(a_1 \) and \(b_1 \) channels are discussed in section 4, while the Wick contractions are relegated to the appendix. The analysis related to the scattering phase shifts and the resonance parameters is given in two subsequent sections followed by our conclusions.

2 Lattice setup

The simulation is based on one ensemble of \(N_f = 2 \) gauge configurations with clover Wilson \(u/d \) quarks, generated by the authors of [35, 36]. The dynamical and valence \(u/d \) quarks have the same mass corresponding to \(m_\pi = 266(4) \) MeV. The parameters of the ensemble are shown in table 1, while more details are given in [3]. Due to the limited data for just a single ensemble, our determination of the lattice spacing \(a \) reported in [3] results from taking a typical value of the Sommer parameter \(r_0 \). The uncertainty associated with this choice might lead to a small shift of all dimensionful quantities.\(^2\)

\(^2\)The meson momenta are given in parenthesis \(M(p) \) in physical units or in units of \(2\pi/L \).
The sea and valence quarks obey periodic boundary conditions in space. Valence quark propagators periodic and anti-periodic in time are combined into so-called “P + A” propagators, which effectively extends the time direction to $2N_T = 64$ [3]. The errors of our results correspond to single-elimination jack-knife errors. We use translation invariance in t to sum over correlators from sources in every time slice.

A rather small volume $V = 16^3 \times 32$ ($L \simeq 2$ fm) has a practical advantage since it enforces the scattering particles $\rho(p)$ and $\omega(p)$ with $p \equiv |p| < 2\pi/L$ to be nearly stable, which is due to the sizable difference between energies of decay products $\pi(0)$ and $\pi(2\pi/L)$ at our L. As a consequence, the finite volume energies of $\rho(p)$ and $\omega(p)$ with $p < 2\pi/L$ are relatively close to the resonance mass. The given volume also enables us to use the powerful full distillation method [37], which allows for the computation of all contractions for the correlation matrix with $\bar{q}q$ and $V\pi$ interpolators.

Table 1

$N_f \times N_T$	β	$a[\text{fm}]$	$L[\text{fm}]$	$\#\text{cfgs}$	$m_{\pi}[\text{MeV}]$
$16^3 \times 32$	7.1	0.1239(13)	1.98	280	266(4)

Table 1. Parameters of the $N_f=2$ gauge configurations [3].

Table 2

$m_{\pi}a$	$m_{\rho}a$	$m_{\omega}a$
0.1673(16)	0.5107(40)	0.514(15)

Table 2. The masses of scattering particles in lattice units with $a^{-1} \simeq 1.59$ GeV.

3 Masses of π, ρ, ω

The masses of the scattering particles π, ρ, ω are needed for the position of the thresholds and we collect them in table 2. We use m_{π} as determined in [3].

The ρ mass in table 2 was extracted as $m_{\rho} = E_{\rho}(p = 0)$ in [3] and is indeed found close to m_{ρ}^{res} in all simulations [1–6]. The ω energy is calculated using quark-antiquark interpolators $O_{1}^{\mu-\nu}$ given by Eq. (21) of [3] with five different Dirac/space structures, while flavor is replaced with $\bar{u}u + \bar{d}d$. This approach is consistent with our approximation of treating $\rho(p)$ and $\omega(p)$ with $p \ll 2\pi/L$ as stable; this holds well for the narrow ω and is commonly applied also for the broader ρ. The distillation method enables straightforward calculation of the disconnected contributions to ω and the final correlators are averaged over all initial time-slices and three polarizations. The disconnected contribution is small and we find $m_{\omega} \simeq m_{\rho}$ as expected. The value of m_{ω} follows from a 2-exponent fit in range $t = 3 - 12$ using interpolators $O_{1,2,3,5}^n$ and $t_0 = 2$. This is a conservative choice with a comparatively large uncertainty and is fully consistent with the result of other possible choices.
Figure 1. Effective energies E_{eff} in the a_1 and b_1 channels, that correspond to the energy levels $E_n a$ in the plateau region. The horizontal lines indicate the $m_V + m_\pi$ threshold and the energy of non-interacting $V(1)\pi(-1)$ state, where $V=\rho$ for a_1 and $V=\omega$ for b_1. We compare the results when O_V^{π} is included in or excluded from the interpolator basis.

4 Energies in a_1 and b_1 channels

The interpolators for the a_1 channel with $J^{PC} = 1^{++}$, $|I, I_3\rangle = -|1, -1\rangle$, $P = 0$ and polarization i are

$$O_{1i}^q = \sum_x \bar{u}(x) \gamma_i \gamma_5 d(x),$$

$$O_{2i}^q = \sum_{x,j} \bar{u}(x) \tilde{\nabla} \gamma_i \gamma_5 \tilde{\nabla}_j d(x),$$

$$O_{3i}^q = \sum_{x,j,l} \epsilon_{ijl} \bar{u}(x) \gamma_j \gamma_5 \left[\tilde{\nabla}_l - \tilde{\nabla}_l \right] d(x),$$

$$O_{\rho\pi} = \frac{1}{\sqrt{2}} \left[\pi^0(0) \rho^- (0) - \rho^0(0) \pi^-(0) \right]$$

$$= \frac{1}{2} \left(\sum_{x_1} \left[\bar{u}(x_1) \gamma_5 u(x_1) - \bar{d}(x_1) \gamma_5 d(x_1) \right] \sum_{x_2} \bar{u}(x_2) \gamma_i d(x_2) \right)$$

$$- \frac{1}{2} \left(\sum_{x_1} \left[\bar{u}(x_1) \gamma_i u(x_1) - \bar{d}(x_1) \gamma_i d(x_1) \right] \sum_{x_2} \bar{u}(x_2) \gamma_5 d(x_2) \right),$$

where $x_i = (x_i, t)$ and ∇ denotes the covariant derivative. The ρ and π mesons are separately projected to zero momentum in $O_{\rho\pi}$. We do not implement the interpolator $\rho(1)\pi(-1)$ (the argument ± 1 indicates momenta $\pm 2\pi/L$) since effects of $\rho(1) \to \pi(1)\pi(0)$
but for and of the appendix. In particular in the 37

\[E < E \] region

\[\pi \] and therefore not provided. The uncertainty in \(p \) is negligible [3]. Our analysis will therefore concentrate on the lower energy region \(E < E_{p(1)^{(1)}} \simeq 1.7 \) GeV.

Similarly, for the \(b_1 \) channel with \(J^{PC} = 1^- \) and \(|I, I_3| = -|1, -1| \) we use

\[
\begin{align*}
\mathcal{O}^q_1 &= \sum_x \bar{u}(x) \gamma_i \gamma_t \gamma_5 d(x), \\
\mathcal{O}^q_2 &= \sum_{x,j} \bar{u}(x) \bar{\nabla}_j \gamma_i \gamma_t \gamma_5 \nabla_j d(x), \\
\mathcal{O}^q_3 &= \sum_x \bar{u}(x) \gamma_5 \frac{1}{2} [\bar{\nabla}_i - \nabla_i] d(x), \\
\mathcal{O}^q_4 &= \sum_x \bar{u}(x) \gamma_t \gamma_5 \frac{1}{2} [\bar{\nabla}_i - \nabla_i] d(x), \\
\mathcal{O}^{\omega \pi} &= \omega(0) \pi^-(0) = \frac{1}{\sqrt{2}} \sum_{x_1} \{ \bar{u}(x_1) \gamma_i u(x_1) + \bar{d}(x_1) \gamma_t d(x_1) \} \sum_{x_2} \bar{u}(x_2) \gamma_5 d(x_2),
\end{align*}
\]

where, again, \(\omega \) and \(\pi \) are separately projected to zero momentum.

All quark fields \(q \) in (4.1), (4.2) are smeared according to the distillation method [37], thus effectively replaced by \(\sum_{k=1}^{N_v} \nu^{(k)} \nu^{(k)} q \) with \(N_v = 96 \), where the \(\nu^{(k)} \) denote the Laplacian eigenvectors of the time slice.

The energy spectrum \(E_n \) is extracted from the correlation matrix

\[
C_{ji}(t) = \frac{1}{N_T} \sum_{t_i} \langle \mathcal{O}_j^i(t_i + t) | \mathcal{O}_i(t_i) \rangle = \sum_n Z_{jn} Z_{in}^* e^{-E_n t}
\]

averaged over all initial times \(t_i \). The Wick contractions for both channels are presented in figures 3 and 4 of the appendix. In particular in the \(b_1 \) channel a rather large number of diagrams appears. Expressions for various elements of the correlation matrix in terms

n	\(t_0 \)	interp.	\(\chi^2 \) fit range	\(E_a \) \(\text{[GeV]} \)	\(\rho \) \(\cot(\delta) \)	\(\rho \) \(\cot(\delta) \)			
1	5	\(\mathcal{O}^q_{1,2.4}, \mathcal{O}^{\omega \pi} \)	7-10	1.1	0.646(73)	1.030(12)	0.0861(95)	0.23(14)	0.34(14)
2	5	\(\mathcal{O}^q_{1,2.3}, \mathcal{O}^{\omega \pi} \)	6-9	0.015	0.8977(133)	1.430(21)	0.272(10)	88.9(5.9)	0.005(31)

Table 3. Energies and phases in the \(a_1 \) channel with \(I^{G}(J^{PC}) = 1^+(1^{++}) \) and \(P = 0 \), where \(a^{-1} \simeq 1.59 \) GeV. Both levels were obtained using a 1 exponential fit. The \(p \) give the eigen-momenta of the interacting system determined from the energy levels according to Eq. (5.1). The ground state is below \(\rho \pi \) threshold, so \(p \) and \(\delta \) are imaginary, while \(\rho \cot(\delta) \) is real.

n	\(t_0 \)	interp.	\(\chi^2 \) fit range	\(E_a \) \(\text{[GeV]} \)	\(\rho \) \(\cot(\delta) \)	\(\rho \) \(\cot(\delta) \)			
1	3	\(\mathcal{O}^q_{1,2.4}, \mathcal{O}^{\omega \pi} \)	4-11	0.12	0.694(19)	1.105(31)	-	-	-
2	2	\(\mathcal{O}^q_{1,3.4}, \mathcal{O}^{\omega \pi} \)	3-10	0.049	0.890(17)	1.418(27)	0.264(13)	93.5(7.5)	-0.018(38)

Table 4. Similar as table 3 but for \(b_1 \) channel with \(I^{G}(J^{PC}) = 1^+(1^{++}) \). Both levels were obtained using a 2 exponential fit. The second level is consistent with threshold energy \(m_\pi + m_\omega \) due to relatively large uncertainties of \(E_2 \) and \(m_\omega \); the corresponding phase with huge errors is consistent with \(\delta \simeq 0 \) and therefore not provided. The uncertainty in \(m_\omega \) has negligible effect on \(\delta \) for the second level.
of those Wick contractions are also provided in the appendix. We evaluate all the Wick contractions using the distillation method, which handles efficiently also those with backtracking quark lines.

The variational method with the generalized eigenvalue equation

\[C(t) v_n(t) = \lambda_n(t) C(t_0) v_n(t) \] \hspace{1cm} (4.4)

is applied to extract the discrete spectrum \(E_n \) [16, 38–40]. The resulting eigenvalues \(\lambda_n(t) \sim e^{-E_n(t-t_0)} \) give the effective energies \(E_n^{\text{eff}}(t) \equiv \log[\lambda_n(t)/\lambda_n(t+1)] \rightarrow E_n \). The spectrum \(E_n \) is extracted using correlated fits to \(\lambda_n(t) \).

The resulting spectrum \(E_n \) is shown in figure 1, where effective energies are plotted for the cases when \(O^{V\pi} \) is included or excluded from the correlation matrix. The horizontal lines indicate the position of the threshold \(m_V + m_\pi \) (which has sizable uncertainty in the \(b_1 \) channel), and the energy of the non-interacting \(V(1)\pi(-1) \) system.

We concentrate on the spectrum obtained including \(O^{V\pi} \), which is shown in the first and third pane of figure 1 and listed in tables 3 and 4. The lowest levels (circles) are near the \(m_V + m_\pi \) threshold, as expected, and its dominant component is the \(V(0)\pi(0) \) two-particle interpolator. The second level (squares) arises due to the presence of \(a_1(1260) \) or \(b_1(1235) \) resonances in these channels. The next level would be expected close to \(V(1)\pi(-1) \), but we do not expect to see it since the corresponding interpolator is not implemented in (4.1) and (4.2).

The third levels in figure 1 in both channels are noisy and unreliable, so we refrain from presenting quantitative results. Both levels correspond to masses close to 2 GeV or above, so we see no indication for the possible existence of \(a_1(1420) \), which was introduced to explain recent preliminary data by COMPASS in \(a_1 \rightarrow f_0\pi \) channel [41]. The third level in \(b_1 \) channel might be related to the observed \(b_1(1960) \).

5 Resonance parameters for \(a_1(1260) \)

The position of the \(1^{++} \) ground state below \(m_\rho + m_\pi \) threshold indicates that the energy of \(\rho \) and \(\pi \) is smaller if they are in the box together then if they are in the box alone. The negative energy shift is consistent with an attractive interaction in the resonant \(a_1 \) channel.

We proceed to extract the \(\rho\pi \) phase shifts and the resonance parameters of \(a_1(1260) \). Outside the interaction region the mesons are considered as free particles and the energy levels \(E \) are related to the momenta \(p \) of the two-particle state \(\rho(p)\pi(-p) \) through

\[E = \sqrt{m_\rho^2 + p^2} + \sqrt{m_\pi^2 + p^2}, \]

where we employ the continuum dispersion relation which applies well for the small momenta \(p < 2\pi/L \) of interest [3]. The s-wave phase shifts \(\delta \) at these values of \(p \) are given by the well known Lüscher relation [19]

\[\tan \delta(p) = \frac{\sqrt{\pi} \frac{L}{p} \left(\frac{p L}{2\pi} \right)^2}{2 \ Z_{00} \left(1; \frac{p L}{2\pi} \right)^2}, \] \hspace{1cm} (5.2)
which applies above and below threshold for elastic scattering. The ground state below the $m_\rho + m_\pi$ threshold renders imaginary p and real $p\cot\delta$ in table 3. The first excited level gives $\delta \approx 90^\circ$, thus it is located close to the $a_1(1260)$ resonance mass and $m_{a_1} \approx E_2$ holds.

The Breit-Wigner parametrization

$$\frac{-\sqrt{s} \Gamma(s)}{s - (m_{\text{res}})^2 + i\sqrt{s} \Gamma(s)} = \frac{1}{\cot\delta - i}, \quad \Gamma_{a_1}(s) \equiv g_{a_1 \rho \pi}^2 \frac{p^2}{s},$$

(5.3)
gives $\Gamma_{a_1}(s)$ in terms of the phase space and the coupling $g_{a_1 \rho \pi}$. We obtain

$$p \sqrt{s} \cot\delta(s) = \frac{1}{g_{a_1 \rho \pi}^2} [(m_{\text{res}})^2 - s],$$

(5.4)

which applies in the vicinity of the resonance. Assuming that (like it is the case for the ρ) linearity (5.4) is a good approximation down to the threshold and slightly below it, we interpolate linearly in s between the two values of $p\cot\delta/\sqrt{s}$ of table 3, as shown in figure 2. From the zero and the slope we obtain $m_{a_1}^{\text{res}}$ and $g_{a_1 \rho \pi}$.

Figure 2. We show $\frac{p}{\sqrt{s}} \cot\delta(s)$ with linear interpolation according to Eq. (5.4). At threshold the value is $[(m_\rho + m_\pi)\alpha_{\rho \pi}^{0}]^{-1}$, while the position of the zero gives the resonance mass.

Table 5. The resulting Breit-Wigner masses m_{res} together with the couplings g for $a_1 \to \rho \pi$ and $b_1 \to \omega \pi$, which are related to the Breit-Wigner width $\Gamma \equiv g^2 p/s$. For the resonance masses the second uncertainty given stems from the systematic uncertainty in extracting the first excited state reliably. This uncertainty has negligible effect on the extracted coupling. The experimental values for the couplings g are derived from the measured total widths [8] since the branching ratios to $V \pi$ have not been measured, but are expected to be largely dominant. The lattice value for the resonance mass of $b_1(1235)$ is obtained assuming experimental $g_{b_1 \omega \pi}^{\text{exp}}$. All results are for our value of $m_\pi \simeq 266$ GeV.

resonance	$a_1(1260)$	$b_1(1235)$			
quantity	$m_{a_1}^{\text{res}}$	$g_{a_1 \rho \pi}$	$a_{\rho \pi}^{0}$	$m_{b_1}^{\text{res}}$	$g_{b_1 \omega \pi}$
lat	1.435(33)($^{+0}_{-109}$)	1.71(39)	0.62(28)	1.414(36)($^{+0}_{-83}$)	input
exp	1.230(40)	1.35(30)	-	1.2295(32)	0.787(25)
The resulting parameters of the $a_1(1260)$ resonance are compared to experiment in table 5. The value of $m_{a_1}^{\text{phys}}$ at $m_{\pi} = 266$ MeV is slightly higher than that of the experimental resonance $a_1(1260)$. This first lattice result for $g_{a_1\rho\pi}$ is valuable since there is still considerable uncertainty on the total width Γ_{a_1} and on the $a_1 \to \rho \pi$ branching ratio. We provide the upper limit for $g_{a_1\rho\pi}^{\text{exp}}$ resulting from the total width $\Gamma_{a1}^{\text{exp}} = 250 - 600$ MeV [8], which agrees with our $g_{a_1\rho\pi}$ within the large experimental and theoretical uncertainties. Our lattice result for $g_{a_1\rho\pi}$ is also close to the value $g_{a_1\rho\pi}^{\text{phen}} \approx 0.9$ GeV obtained using an Unitarized Effective Field Theory approach [31] (converted to our convention).

The scattering length $a_{\rho\pi}^{\text{exp}}$ in table 5 is obtained using the effective range fit $p \cot(\delta) = \frac{1}{a_1} + \frac{1}{2} m_0 p^2$ through two energy levels. Our result at $m_{\pi} = 266$ MeV is close to $a_{\rho\pi}^{\text{exp}}(m_\pi^{\text{phys}}) \approx 0.37$ fm obtained from Unitarized Effective Field Theory [42], while the corresponding experimental value is not known.

6 Analysis of the b_1 channel

The robust features of the b_1 spectrum in figure 1 and in table 4 go along with the expectations: the level $\omega(0)\pi(0)$ near the $m_\omega + m_\pi$ threshold, the next level close to $b_1(1235)$ with $\delta \approx 90^\circ$ and the third level in vicinity of $b_1(1960)$.

However the exact position of the central value for the ground state E_1 in figure 1 with respect to the threshold $m_\omega + m_\pi$ shows a slight disagreement with the expectation. It is expected to be slightly below threshold due to an attractive interaction in the resonant channel. Since $\Gamma_{b_1} < \Gamma_{a_1}$ one expects a smaller size of the energy shift $\Delta E_1 = E_1 - m_V - m_\pi$ in the b_1 channel than in the a_1 channel, rendering a lattice extraction challenging. We estimate the expected energy shift $a_1 \Delta E_1 \simeq -0.01$ based on $g_{b_1\omega\pi}^{\text{exp}}$, Breit-Wigner dependence (5.4), the Lüscher relation (5.2) and the value of $m_{b_1}^{\text{res}}$ (6.1) determined below; note that this shift is smaller than the uncertainty of the ground state energy level in the b_1 channel and comparable to the uncertainty in Δm_ω. A correlated analysis reveals that our ground state E_1 is compatible with $m_\omega + m_\pi$ within the large uncertainties, although the central value leads to $E_1 \gtrsim m_\omega + m_\pi$. We stress that this discrepancy with expectations is not statistically significant.

If upon improving the statistics the ground state level still stays above threshold, this would be hard to understand. The three-pion state, for example, could hardly explain such behavior since the lowest state $\pi(0)\pi(1)\pi(1)$ with $J = 1$ has energy $\simeq 1.6$ GeV, which is significantly above the threshold on our lattice. Due to the discussed uncertainty of the ground state energy level we determine the resonance $b_1(1235)$ mass using the Breit-Wigner relation (5.4),

$$m_{b_1}^{\text{res}} = \left[E_2^2 + (g_{b_1\omega\pi}^{\text{exp}})^2 \left(\frac{p \cot(\delta)}{\sqrt{s}} \right)^2 \right]^{1/2} = 1.414(36)(^{+0}_{-83}) \text{ GeV}, \quad (6.1)$$

based on E_2 and $(p \cot(\delta/\sqrt{s}))_2$ for the second level in table 4, while we assume the experimental value of the coupling $g_{b_1\omega\pi}^{\text{exp}} = 0.787(25)$ GeV. It is derived from $\Gamma_{b_1}^{\text{exp}}$ assuming

3More precisely we assume $\Gamma_{a_1} = 425(175)$ MeV.
$Br[b_1 \rightarrow \omega \pi] \simeq 1$, which has not been measured but is expected to be valid to a good approximation. The resulting resonance mass at our m_π is somewhat higher than the experimental one.

7 Conclusions and outlook

We presented the first lattice simulation of light axial resonances a_1 and b_1 taking into account their dominant strong decays modes $\rho \pi$ and $\omega \pi$. The interpolating fields \mathcal{F}_q as well as $V \pi$ ($V = \rho, \omega$) were used for this purpose. We find an energy level near the $V(0)\pi(0)$ threshold and excited levels close to the resonance positions of $a_1(1260)$ and $b_1(1235)$. The s-wave phase shifts for $V \pi$ scattering were extracted using the Lüscher relation and they are fitted using the Breit-Wigner formula. The resonance parameters are compared to experiment in table 5.

The resonance masses $m_{a_1}^{res}$ and $m_{b_1}^{res}$ at our $m_\pi \simeq 266$ MeV are somewhat higher than the experimental values. The $a_1 \rightarrow \rho \pi$ coupling $g_{a_1 \rho \pi}$, which parametrizes the corresponding decay width, agrees with experiment within sizable error bars. The analogous $b_1 \rightarrow \omega \pi$ coupling was not extracted since the central value for the ground state in the b_1 channel is found slightly above $m_\omega + m_\pi$, while one expects it to be slightly below threshold in an attractive channel. The ground state is still consistent with $m_\omega + m_\pi$ and an attractive interaction within the sizable uncertainty. Future lattice studies with improved statistical accuracy could clarify this issue by resolving smaller energy shifts which should lead to a determination of $g_{b_1 \omega \pi}$ from Lattice QCD.

Our analysis assumes stable scattering particles ρ and ω, which is a reasonable approximation for our simulation with zero momentum, $L \simeq 2$ fm and $m_\pi \simeq 266$ MeV. However, the effects of vector meson decays might have to be taken into account in future simulations with physical pion masses, larger box sizes and possibly non-zero total momenta. Proper treatment of this problem appears considerably more challenging. An analytic framework for the scattering of unstable particles in finite volume has been recently proposed in [23] while the related problem of three particles where two of them can resonate was considered in [14, 24–26]. These approaches can serve as a guideline for future lattice simulations.

A Wick contractions and the correlation matrix

A.1 The $\rho \pi$ s-wave correlation matrix

The correlation matrix is built from four operators O_{1-3}^{π} and $O^{R\pi}$ listed in Eq. (4.1). The Wick contractions are listed in figure 3, where solid lines denote u/d quarks, while dashed lines denote the momentum projections and Dirac structures at source and sink. The correlation matrix $C(t_f,t_i)$ for the a_1 channel is built from the following linear combinations
of the Wick contractions

\[
\langle \bar{\mathcal{O}}^{\rho \pi} (t_f) \mathcal{O}^{\rho \pi \dagger} (t_i) \rangle = -A_1 , \\
\langle \mathcal{O}^{\rho \pi} (t_f) \bar{\mathcal{O}}^{\rho \pi \dagger} (t_i) \rangle = B_1 - B_2 , \\
\langle \bar{\mathcal{O}}^{\rho \pi} (t_f) \mathcal{O}^{\rho \pi \dagger} (t_i) \rangle = C_1 - C_2 , \\
\langle \mathcal{O}^{\rho \pi} (t_f) \bar{\mathcal{O}}^{\rho \pi \dagger} (t_i) \rangle = -D_1 + D_2 + D_3 - D_4 - D_5 + D_6 ,
\]

where \(A_l, B_l, C_l, D_l \) refer to labels in figure 3.
A.2 The $\omega\pi$ s-wave correlation matrix

This correlation matrix is built from five operators O_{qq}^{μ} and $O_{\omega\pi}$ listed in (4.2). In this case there is a larger number of Wick contractions, all drawn in figure 4. The correlation matrix is built from these Wick contractions as follows

$$
\langle O_{qq}^{\mu}(t_f) O_{\bar{q}q}^{\mu\dagger}(t_i) \rangle = -A_1,
$$

$$
\langle O_{\omega\pi}(t_f) O_{\bar{q}q}^{\mu\dagger}(t_i) \rangle = \sqrt{2}B_1 - \frac{1}{\sqrt{2}}B_2 - \frac{1}{\sqrt{2}}B_3,
$$

$$
\langle O_{\bar{q}q}^{\mu}(t_f) O_{\omega\pi}^{\dagger}(t_i) \rangle = \sqrt{2}C_1 - \frac{1}{\sqrt{2}}C_2 - \frac{1}{\sqrt{2}}C_3,
$$

$$
\langle O_{\omega\pi}(t_f) O_{\omega\pi}^{\dagger}(t_i) \rangle = +D_1 - \frac{1}{2}D_2 - 2D_3 + D_4 - \frac{1}{2}D_5 + D_6 + D_7 - \frac{1}{2}D_8 - \frac{1}{2}D_9 - \frac{1}{2}D_{10} - \frac{1}{2}D_{11} + D_{12}.
$$

Acknowledgments

We thank Anna Hasenfratz for providing the gauge configurations used for this work. We are grateful for valuable discussions with M. Döring, E. Oset, J. Pelaez, L. Roca and A. Rusetsky. This work is supported by the Slovenian Research Agency. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. We thank INT in Seattle for hospitality.

References

[1] CP-PACS Collaboration, S. Aoki, M. Fukugita, K.-I. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, K. Sasaki, A. Ukawa, and T. Yoshi, *Lattice QCD Calculation of the ρ Meson Decay Width*, Phys. Rev. D 76 (2007) 094506, [arXiv:0708.3705].

[2] X. Feng, K. Jansen, and D. B. Renner, *Resonance Parameters of the rho-Meson from Lattice QCD*, Phys. Rev. D 83 (2011) 094505, [arXiv:1011.5288].

[3] C. B. Lang, D. Mohler, S. Prelovsek, and M. Vidmar, *Coupled channel analysis of the rho meson decay in lattice QCD*, Phys. Rev. D 84 (2011) 054503, [arXiv:1105.5636].

[4] PACS-CS Collaboration, S. Aoki, K. I. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yamazaki, and T. Yoshié, *ρ Meson Decay in 2+1 Flavor Lattice QCD*, Phys. Rev. D 84 (2011) 094505, [arXiv:1106.5365].

[5] C. Pelissier and A. Alexandru, *Resonance parameters of the rho-meson from asymmetrical lattices*, Phys. Rev. D 87 (2013) 014503, [arXiv:1211.0092].

[6] J. J. Dudek, R. G. Edwards, and C. E. Thomas, *Energy dependence of the ρ resonance in $\pi\pi$ elastic scattering from lattice QCD*, Phys. Rev. 87 (2013) 034505, [arXiv:1212.0830].

[7] S. Prelovsek, L. Leskovec, C. B. Lang, and D. Mohler, *K pi scattering and the K^* decay width from lattice QCD*, Phys. Rev. D 88 (2013) 054508, [arXiv:1307.0736].
[8] Particle Data Group Collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (Jul, 2012) 010001.

[9] J. Basdevant and E. L. Berger, Unitary Coupled-Channel Analysis of Diffractive Production of the a1 Resonance, Phys. Rev. D 16 (1977) 657.

[10] N. A. Tornqvist, The A1 Mass From τ → A1 Neutrino Decay, Z. Phys. C 36 (1987) 695.

[11] COMPASS Collaboration, M. G. Alekseev et al., Observation of a JPC = 1−+ exotic resonance in diffractive dissociation of 190 GeV/c π− into π−π−π+, Phys. Rev. Lett. 104 (Jun, 2010) 241803.

[12] M. Döring, J. Haidenbauer, U.-G. Meißner, and A. Rusetsky, Dynamical coupled-channel approaches on a momentum lattice, Eur. Phys. J. A47 (2011) 163, [arXiv:1108.0676].

[13] M. T. Hansen and S. R. Sharpe, Multiple-channel generalization of Lellouch-Lüscher formula, Phys. Rev. D 86 (2012) 016007, [arXiv:1204.0826].

[14] R. A. Briceno, On the Determination of Elastic and Inelastic Nuclear Observables from Lattice QCD, arXiv:1311.6032.

[15] E. Garzon, R. Molina, A. Hosaka, and E. Oset, Strategies for an accurate determination of the X(3872) energy from QCD lattice simulations, arXiv:1310.0972.

[16] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. I. Stable particle states, Commun. Math. Phys. 104 (1986) 177.

[17] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. II. Scattering states, Commun. Math. Phys. 105 (1986) 153.

[18] M. Lüscher, Two-Particle States on a Torus and Their Relation to the Scattering Matrix, Nucl. Phys. B 354 (1991) 531.

[19] M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237.

[20] UKQCD Collaboration, C. McNeile and C. Michael, Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506, [hep-lat/0603007].

[21] UKQCD Collaboration, C. McNeile, C. Michael, and P. Pennanen, Hybrid meson decay from the lattice, Phys. Rev. D 65 (2002) 094505, [hep-lat/0201006].

[22] S. Prelovsek, C. B. Lang, D. Mohler, and M. Vidmar, Decay of rho and a1 mesons on the lattice using distillation, PoS LAT2011 (2011) 137, [arXiv:1111.0409].

[23] L. Roca and E. Oset, Scattering of unstable particles in a finite volume: the case of πρ scattering and the a1(1260) resonance, Phys. Rev. D 85 (2012) 054507, [arXiv:1201.0438].

[24] M. T. Hansen and S. R. Sharpe, Relativistic, model-independent, three-particle quantization condition, [arXiv:1311.4848].

[25] K. Polejaeva and A. Rusetsky, Three particles in a finite volume, Eur.Phys.J. A48 (Mar., 2012) 67, [arXiv:1203.1241].

[26] R. A. Briceno and Z. Davoudi, Three-particle scattering amplitudes from a finite volume formalism, Phys.Rev. D87 (2013) 094507, [arXiv:1212.3398].

[27] S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507–509.

[28] M. Lutz and E. Kolomeitsev, On meson resonances and chiral symmetry, Nucl.Phys. A730 (2004) 392–416, [nucl-th/0307039].
[29] M. Wagner and S. Leupold, *Tau decay and the structure of the a(1)*, Phys. Lett. B 670 (2008) 22–26, [arXiv:0708.2223].

[30] M. Wagner and S. Leupold, *Information on the structure of the a(1) from tau decay*, Phys. Rev. D 78 (2008) 053001, [arXiv:0801.0814].

[31] L. Roca, E. Oset, and J. Singh, *Low lying axial-vector mesons as dynamically generated resonances*, Phys. Rev. D 72 (2005) 014002, [hep-ph/0503273].

[32] L. Geng, E. Oset, J. Pelaez, and L. Roca, *Nature of the axial-vector mesons from their N(c) behavior within the chiral unitary approach*, Eur. Phys. J. A 39 (2009) 81–87, [arXiv:0811.1941].

[33] L. Y. Glozman, *Restoration of chiral and U(1)A symmetries in excited hadrons*, Phys. Rep. 444 (2007) 1, [hep-ph/0701081].

[34] L. Y. Glozman, C. B. Lang, and M. Schröck, *Symmetries of hadrons after unbreaking the chiral symmetry*, Phys. Rev. D 86 (2012) 014507, [arXiv:1205.4887].

[35] A. Hasenfratz, R. Hoffmann, and S. Schaefer, *Low energy chiral constants from epsilon-regime simulations with improved Wilson fermions*, Phys. Rev. D 78 (2008) 054511, [arXiv:0806.4586].

[36] A. Hasenfratz, R. Hoffmann, and S. Schaefer, *Reweighting towards the chiral limit*, Phys. Rev. D 78 (2008) 014515, [arXiv:0805.2369].

[37] Hadron Spectrum Collaboration, M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek, R. G. Edwards, B. Joo, H.-W. Lin, D. G. Richards, and K. J. Juge, *A novel quark-field creation operator construction for hadronic physics in lattice QCD*, Phys. Rev. D 80 (2009) 054506, [arXiv:0905.2160].

[38] C. Michael, *Adjoint Sources in Lattice Gauge Theory*, Nucl. Phys. B 259 (1985) 58.

[39] M. Lüscher and U. Wolff, *How to calculate the Elastic Scattering Matrix in 2-Dimensional Quantum Field Theories by Numerical Simulation*, Nucl. Phys. B 339 (1990) 222.

[40] B. Blossier, M. DellaMorte, G. von Hippel, T. Mendes, and R. Sommer, *On the generalized eigenvalue method for energies and matrix elements in lattice field theory*, JHEP 0904 (2009) 094, [arXiv:0902.1265].

[41] COMPASS Collaboration, S. Paul et al., *Precision spectroscopy with COMPASS and the observation of a new iso-vector resonance*, [arXiv:1312.3678].

[42] L. Roca and E. Oset, private communication.