Climate impacts associated with reduced diet diversity in children across nineteen countries

Meredith T. Niles¹,², Benjamin F. Emery³, Serge Wiltshire⁴, Molly E. Brown⁵, Brendan Fisher²⁶,⁷, Taylor H. Ricketts²,⁷

¹ Department of Nutrition and Food Sciences and Food Systems Program, University of Vermont, Burlington, USA
² Gund Institute for Environment, University of Vermont, Burlington, USA
³ Sandia National Laboratory, Albuquerque, USA
⁴ Department of Environmental Science, Policy, and Management. University of California, Berkeley, Berkeley, CA
⁵ Department of Geographical Sciences, University of Maryland, College Park, USA
⁶ Environmental Program, University of Vermont, Burlington, USA
⁷ Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington,

Corresponding Author:
Meredith T. Niles
mtniles@uvm.edu

Keywords: climate change, child health, malnutrition, adaptation, nutritional security
Abstract

It is widely anticipated that climate change will negatively affect both food security and diet diversity. Diet diversity is especially critical for children as it correlates with macro and micronutrient intake important for child development. Despite these anticipated links, little empirical evidence has demonstrated a relationship between diet diversity and climate change, especially across large datasets spanning multiple global regions. Here we use survey data from 19 countries and more than 107,000 children, coupled with 30 years of precipitation and temperature data, to explore the relationship of climate to child diet diversity while controlling for other agroecological, geographic, and socioeconomic factors. We find that globally, higher long-term temperatures are associated with decreases in overall child diet diversity, while higher rainfall in the previous year, compared to the long-term average, is associated with greater diet diversity. Examining six regions individually, we find that five have significant reductions in diet diversity associated with higher temperatures while three have significant increases in diet diversity associated with higher precipitation. In some regions, the statistical effect of climate on diet diversity is comparable to or greater than other common development efforts including those focused on education, improved water and toilets, and poverty reduction. These results suggest that warming temperatures and increasing rainfall variability could have profound short- and long-term impacts on child diet diversity, potentially undermining widespread development interventions aimed at improving food security.

Significance Statement

Diet diversity— the number of different kinds of foods eaten— is linked with nutritional and health outcomes. Some existing evidence suggests that climate can affect diet diversity through multiple pathways, however this research is limited generally to single countries or one type of climate (e.g. rainfall). Here we examine data from more than 100,000 children in 19 countries along with 30 years of rainfall and temperature data from those same regions. We find global and regional impacts of climate with higher temperatures linked to reductions in diet diversity and higher rainfall linked to greater diet diversity even when controlling for other factors. These results suggest that climate change may have significant impacts on child diet diversity and health outcomes.

Introduction

Childhood malnutrition and undernourishment can lead to a number of health outcomes, which can negatively impact children’s life trajectories (1). The majority of childhood malnutrition occurs in low and middle income countries in children under the age of five (2). Diet diversity is an indicator of diet quality and is demonstrated to be a good indicator of micronutrient intake, a lack of which indicates malnutrition (3) including obesity (4). Poor diet diversity is also associated with undernourishment outcomes including stunting and wasting in children (3, 5–8). Though childhood malnutrition has decreased over the past several decades globally, there has been an increase in global undernourishment since 2015, in part attributed to climate and extreme events (9). While there is an abundance of research exploring the relationship of agroecological, geographic, socioeconomic, and demographic factors to child malnutrition (10, 11), the evidence linking climate and child malnutrition is limited, especially across multiple geographic scales (12, 13).

Existing evidence suggests that many factors influence child malnutrition, including stunting and wasting. Ecological factors, including increased forest cover, have been associated with better child health outcomes like improved diet diversity and reduced stunting and wasting (11, 14). Geographic factors, including road and transportation infrastructure (15), are associated with reductions in stunting and wasting, while shorter distance to a water source is negatively correlated with stunting
Socioeconomic and demographic factors including wealth, improved water sources and improved toilet facilities as well as education are also associated with reductions in child stunting. However, with a few exceptions, most of these studies focus on a single country or region.

Compared to these factors, the role of climate and its relationship to diet and malnutrition is poorly understood, especially across diverse geographic regions. The way in which climate affects nutritional outcomes is complex, but occurs primarily through an agroecosystems pathway with diverse impacts on crops, pests, diseases, weeds, pollination, forests, livestock, and aquatic food sources. Climate can also affect nutritional outcomes through indirect pathways such as through heat impacts on pregnant women and children, and through changes in food costs, trade, and market availability associated with climate disruptions. Child malnutrition has been associated with decreases in rainfall in Rwanda, Kenya, Mexico and Swaziland as well as drought and floods at the regional or country level. Relationships between temperature and child stunting are less explored, but there is evidence that climate shocks affect child stunting via warmer temperatures in the previous dry season in Mexico. Temperature anomalies have also been found to be related to moderate stunting in Ethiopia.

A shortcoming of existing studies linking climate to child malnutrition is their limited geographic scope. For example, while 80% of studies in a 2015 review found weather variables related to child stunting outcomes, almost all of these studies focused on Africa, despite the fact that Asia has 55% of all stunted children globally. Furthermore, the majority of these studies included data from the 1980s and 1990s, with only one-third integrating any data from the early 2000s; a timeframe that might not capture the more recent anomalies and extreme events associated with climate change.

Here we aim to overcome many of the existing gaps in the literature by linking demographic health data from 107,000 children in 19 low and middle-income countries across six global regions, with climate data and other agroecological, geographic, socioeconomic, and demographic control variables. Our primary outcome of interest is the individual diet diversity of children under the age of five. In our dataset, diet diversity is measured through dietary recall across ten food categories, including those with high micronutrient density (e.g. Vitamin A), a methodology demonstrated to be a good indicator of household diet quality. We include many control variables that are often the focus of development programs to improve food security and health outcomes to assess their relative impact on diet diversity in comparison with climate.

Our work adds to the current body of research in multiple ways. First, we employ a large primary dataset with more recent data than many existing studies; a timeframe that might not capture the more recent anomalies and extreme events associated with climate change.
Table 1. Agroecological, geographic, and socioeconomic variables used in the study, with descriptions and sources.

Variable Type	Variable Name	Variable Description	Unit	Source	
Diet Diversity	Diet diversity	FAO Individual Diet Diversity Score (IDDS), scale ranging from 0 to 10 based on intake of 10 foods including cereal grains, white tubers and root foods, dark leafy greens, vitamin A rich vegetables/tubers, vitamin A rich fruits, other fruits and vegetables, meat and fish foods, eggs, legumes/nuts/seeds, and milk and milk products	Number 0-10	41	
Agroecological	Tree cover	Percent tree cover within a 20km radius of cluster	% tree cover	42	
	Time to water	Time to get to water source (mins)	minutes	41	
	Livestock density	Ruminant livestock density at cluster 10 km grid circa 2000; expressed as Tropical Livestock Units (TLU) (1: less than 1 TLU; 2: 1 to 5 TLU; 3: 5 to 10 TLU; 4: 10 to 20 TLU; 5: 20 to 50 TLU; 6: 50 to 100 TLU; 7: 100 to 200 TLU; 8: more than 200 TLU; 9: water)	Tropical Livestock Units (TLU)	43	
Geographic	Distance to urban center	Distance from a cluster to its nearest urban center (settlement with 5000 or more inhabitants) circa 2000	meters	44	
	Distance to road	Distance to nearest road	meters	45	
Population density	Average population density within 5km buffer around cluster (density in 2000 for 2000 - 2004 surveys, density in 2005 for 2005 - 2009 surveys, and density in 2010 for 2010 - 2013 surveys)	people per km²	46		
Socioeconomic	Child age	Age of child	months		
	Education of household head	Education years of head of household	years		
	Improved toilet	Improved sanitation	Binary	41	
	Improved water	Improved water based on WHO definitions	Binary		
	Male household head	Household head male	Binary male/female	41	
	Poorer household	Binary being poorer- as compared to being average		Full category is poorest, poorer, average, richer, richest	
	Poorest household	Binary being poorest- as compared to being average			
	Richest household	Binary- richest- as compared to being average			
	Richer household	Binary richer- as compared to being average			
Climate	Long-term average temperature	Average of 30 years of CHIRTS monthly data between initial year of data and survey month	degrees C	47	
	Long-term average precipitation	Average of 30 years of CHIRPS monthly data between initial year of data and survey month	centimeters	48	
	Temperature anomaly- previous year	Number of standard deviations below or above long-term average in the year prior to the survey	standard deviations	47	
Precipitation anomaly-previous year	Number of standard deviations below or above long-term average in the year prior to the survey	standard deviations	48		
Temperature anomaly-current year	Number of standard deviations below or above long-term average in the year of survey	standard deviations	47		
Precipitation anomaly-current year	Number of standard deviations below or above long-term average in the year of survey	standard deviations	48		

Results

Global and Regional Diet Diversity

On average, we find that global diet diversity of children five and under in our dataset is 3.22 (s.d. = 2.43), meaning that in the 24 hours prior to the survey interview, children ate on average 3.2 foods groups (out of 10 possible). Diet diversity ranged from a high of 4.48 in South America to a low of 2.66 in Southeast Africa (Figure 1a). Country-level diet diversity ranged from a high of 4.77 in Colombia to a low of 1.80 in Lesotho (SI Appendix Table S2, Fig S1). Additional information for all variables utilized in this analysis (means and standard deviations) globally and across regions are in SI Appendix Table S3.

![Figure 1. Child individual diet diversity score across 19 countries in the Demographic Health Surveys dataset. Color indicates the number of food groups eaten by children in the household in the last 24 hours prior to the survey. Among the surveyed countries, diet diversity is highest in South America and lowest in Southeast Africa.](image)

Global Models

A global hierarchical model with data from 19 countries and more than 107,000 individual observations finds a number of climate variables and agroecological, geographic, and socioeconomic
controls that correlate with child diet diversity (Figure 2). Factors associated with reductions in diet diversity include greater distance to urban centers and roads, higher livestock density, male-headed households, poor households, and higher long-term average temperatures (Table 2, Figure 2). Factors associated with increases in diet diversity include child age, years of education for the household head, use of an improved toilet, household wealth, and higher-than-average precipitation in the year prior to the survey (Table 2, Figure 2). While wealth is the greatest correlate predicting diet diversity, long-term average temperature and higher-than-average precipitation in the previous year correlate with diet diversity at levels equal to or greater than many variables that are often a focus of current development policy, including market access (i.e. distance to urban center), livestock density, education, and gender.

Figure 2. Standardized coefficient effects of different agroecological, geographic, socioeconomic, and climate factors on child diet diversity across 19 countries. Dark circles indicate statistically significant coefficients ($p < 0.05$). Points to the left of zero (negative coefficients) indicate the variable is associated with decreased diet diversity while those to the right of zero (positive coefficients) indicate the variable is associated with increased diet diversity. Full global model estimates are shown in Table 2.
Table 2. Global hierarchical model results predicting child diet diversity. Standardized coefficients compare relative effect sizes across all variables. Negative coefficients indicate reductions in child diet diversity while positive coefficients indicate increases in child diet diversity.

Variable	Coefficient	Std. Error	t	p
Tree cover	0.000	0.000	-0.630	0.528
Time to water	-0.001	0.004	-0.168	0.867
Livestock density	-0.011	0.006	-1.971	0.049
Distance to urban center	-0.036	0.006	-6.181	<0.001
Distance to road	-0.024	0.005	-4.624	<0.001
Population density	-0.008	0.004	-1.784	0.074
Child age	0.183	0.003	69.434	<0.001
Education of household head	0.009	0.003	3.006	0.003
Improved toilet	0.090	0.010	8.661	<0.001
Improved water	0.005	0.008	0.558	0.577
Male household head	-0.020	0.008	-2.626	0.009
Poorer household	-0.062	0.009	-6.975	<0.001
Poorest household	-0.148	0.010	-15.587	<0.001
Richer household	0.112	0.010	11.481	<0.001
Richest household	0.278	0.012	22.487	<0.001
Long-term average temperature	-0.017	0.007	-2.592	0.010
Long-term average precipitation	0.014	0.008	1.791	0.073
Temperature anomaly- previous year	0.003	0.007	0.480	0.631
Precipitation anomaly- previous year	0.021	0.005	3.998	<0.001
Temperature anomaly- current year	-0.015	0.009	-1.630	0.103
Precipitation anomaly- current year	0.010	0.005	1.801	0.072

Regional models

Regional models demonstrate similar trends as those shown in global models (Figure 3). In five out of six regions, higher temperature (either long-term averages or short-term anomalies) have a consistent negative relationship with child diet diversity. Reductions in diet diversity are significantly associated with higher long-term average temperatures in Southeast Africa and West Africa, higher than average temperatures in the year prior to the survey in North Africa and South America, and higher than average temperatures in the year of the survey in Asia, Southeast Africa, and West Africa. In half of our regional models, precipitation variables also had a significant, and consistently positive, relationship to diet diversity. Higher long-term average precipitation was significantly correlated with greater diet diversity in Southeast Africa, while greater precipitation than average in the year prior to the survey was significantly correlated with greater diet diversity in Central America and West Africa.
Figure 3. Significant standardized effects (p< 0.05) of different agroecological, geographic, socioeconomic, and climate factors on child diet diversity across 19 countries. Points indicate coefficients for each region, and only statistically significant coefficients are shown. Points to the left of zero (negative coefficients) indicate the variable is associated with decreased diet diversity while dots to the right of zero (positive coefficients) indicate the variable is associated with increased diet diversity in a given place. Full regional model results including non-significant coefficients appear in SI Appendix Tables S4-9.

Similar to the global model, we find several instances in which climate factors have a relatively large impact on diet diversity outcomes than many control variables. For example, temperature has a greater effect on diet diversity than at least some agroecological, geographic or socioeconomic controls in all regions but Central America. In many cases, these control variables are the focus of development programs, including education, gender-based programs, road and market access, poverty alleviation, and improved sanitation.

West Africa Case Study

To explore regional relationships in more detail, we examine West Africa as a case study (Figure 4). In West Africa, we find that higher long-term average temperatures have a greater negative relationship to diet diversity than being in the poorest households in the region. Higher temperature also outweighs the positive relationships between diet diversity and education, improved toilets, access to improved water, and wealth. Higher-than-average precipitation in the year prior to the survey also had a greater relationship to diet diversity than population density or education. Further, it is worth noting that higher-than-average temperatures in the previous year were associated with increases in diet diversity, counter to all other models. However, in West Africa, higher-than-average precipitation in the previous year correlated with greater diet diversity, suggesting that the coupling of both higher temperatures and greater rainfall may explain higher diet diversity in the region.
Discussion

In the largest global study to date exploring the connections between child diet diversity and climate, we find global and regional evidence that temperature and precipitation significantly correlate with diet diversity and in many cases have a larger impact than agroecological, geographic, or sociodemographic variables. Importantly, we find that climate factors, especially temperature, have a greater relative negative impact on diet diversity than the positive relationship of many factors that are often the target of development interventions, including education, water and sanitation, and poverty alleviation. We also find that overall child diet diversity within the sample is very low, with a global average of children eating slightly more than three varied food groups daily. While there are no established cut-off points to indicate adequate or inadequate dietary diversity (38), these results are significantly lower, on average, than has been found in middle income countries such as China (49), but is consistent with child diet diversity scores in similar countries in Africa (50, 51).

Our research suggests that both long- and short-term temperature increases have a significant relationship with child diet diversity globally and regionally. This evidence is important, since the effect of temperature on child malnutrition outcomes has not been extensively explored (12), with the majority of previous studies focusing on rainfall, drought, and floods (e.g. (13, 30, 34, 36)). However, our models indicate consistent relationships between high temperature and lower diet diversity in nearly all regions. In some regions (i.e. Southeast Africa and Western Africa) we find relationships between temperature and diet across multiple temporal scales, with both long-term average temperature increases and acutely hotter-than-average years associated with reductions in
child diet diversity. This provides new and broad geographic evidence that both long-term warming temperatures and acutely hot years may have consistently negative impacts on diet diversity, which in turn also may negatively affect child stunting and wasting.

There are likely both direct and indirect pathways that influence this relationship. Higher temperatures can directly impact the yield of many globally important staple crops (e.g. (52, 53)). Higher temperatures can also affect the physiology of animals and may reduce livestock productivity and also increase livestock water consumption (54). Both of these pathways could influence the amount and quality of food available in a given region and thereby affect food prices and access (12). Higher temperatures also have known physiological impacts on human beings. Women who are pregnant during hot spells often deliver babies with lower birth weights (55). Indirectly, higher temperatures also have the potential to influence the macro and micronutrient content of a variety of crops, which may not directly affect the overall number of diet categories consumed, but could contribute to micronutrient deficiencies over time (56).

Precipitation’s relationship to diet diversity in half of our models was consistently positive, which generally follows the existing evidence that dry conditions are correlated with lower diet diversity and other child malnutrition outcomes (13). Our models most commonly show that higher precipitation in the year prior to the survey, as compared to the long-term average of a given region, positively correlates with diet diversity. Others have shown that the opposite can also be true: short-term reductions in rainfall can negatively impact child nutrition (57). Similar to temperature impacts, there are likely direct and indirect pathways that lead to these outcomes (12). Mostly obviously, the direct impact of a reduction in rainfall can lead to a reduction in agricultural productivity, with these impacts most profound in drought conditions (36). Indeed, our models suggest that the greater the reduction in precipitation in a given place compared to their long-term average, the greater the impact on diet diversity. Furthermore, the impact of precipitation on diet quality likely has lag effects, with the previous year’s precipitation reductions impacting that year’s harvest leading to potential impacts on food insecurity and malnutrition the following year when there isn’t as much food to eat. Indeed, the relationship between climate and weather factors and food security is myriad and not immediate, with availability affecting food prices and access, leading to nutritional impacts over time (12). As such, we can expect that precipitation changes may have both acute impacts and longer-term anticipated outcomes.

Much of the existing research on climate and its relationship to child malnutrition and diet outcomes suggests that investments in development may help to overcome the negative impacts of a changing climate. For example, both (58) and (30) argue that while a warmer and drier future may lead to malnourished children, education and basic infrastructure may help overcome these outcomes. However, our study suggests that higher temperatures may have greater impacts on diet diversity than the presence of many common development investments including education, water and sanitation improvements, and road infrastructure in low and middle-income countries. This is deeply concerning; it indicates that in many regions these positive socioeconomic and demographic changes may not be adequate to outweigh the negative effects of a changing climate going forward.

While there has been considerable discussion of potential adaptation efforts to safeguard food security and nutritional outcomes, empirical evidence to assess the relationship between climate adaptation and human nutrition is still nascent with inconsistent outcomes. Given both the direct
and indirect pathways in which climate can affect agriculture and nutrition, potential adaptation efforts should take a food systems approach (59). Agricultural adaptations could focus on both agroecological and crop improvement pathways. For example, childhood deficiencies of Vitamin A and zinc have the greatest relative impact on childhood malnutrition outcomes (60), providing an important area of focus for crop breeding. Furthermore, recent evidence also highlights that agroecological interventions pursued for climate adaptation improved household diet diversity outcomes in Malawi (61). Other potential adaptation strategies could fall across the suite of the control variables we considered. New evidence highlights the complementary ways in which environmental conservation (e.g. forest preservation) may have beneficial outcomes for child health outcomes including malnutrition (10, 11, 24); however, the mechanisms for this relationship and possible adaptation interventions remain limited (62). There is also a rising understanding of the role that social networks can play for improving household food security outcomes (62), which may be particularly critical for marginalized households.

Given the complexity of these relationships, there is an immediate need to increase our currently poor understanding of climate adaptation efforts to safeguard childhood nutrition (62), especially for vulnerable populations in low and middle-income countries across the tropics where the most profound climate changes are expected. To achieve a better understanding of the potential adaptation strategies that may help improve child nutrition in a changing climate requires a shift away from the ways traditional food security research is conducted. Food assistance or interventions that fail to consider the complexity of food systems as well as the trickle-down effect that climate can have across that system will fall short in response. This requires a need to design studies explicitly for assessing interventions for their climate adaptation potential, rather than purely their nutritional assistance potential in the current state. These efforts could involve a better integration of climate data with health data across global datasets, but there remain many challenges with current data scale and scope, especially with a lack of comprehensive long-term panel data to enable causal inference (12). However, it is also critical that as the evidence for action increases, scaling up of any adaptation interventions come with additional resources and support to ensure that programs that expand can achieve the same health and nutrition outcomes as their original focus (63).

Conclusion

In this large-scale, multi-country analysis, we demonstrate the relationship between climate on child diet diversity outcomes, including temperature, which has not been previously widely recognized. Our work demonstrates that climate variables in some regions have a relatively greater impact on diet diversity outcomes as compared to other controls variables, including some that are commonly promoted for development-oriented projects. This suggests that safeguarding child diet diversity, and related nutrition outcomes, requires adaptation efforts explicitly considering climate, though our empirical understanding of these remains limited. Future research can explore these potential adaptation strategies and their outcomes, as well as examine the impact of climate on diet diversity outcomes at different scales, and ideally, with long-term panel data.
Methods

We utilize multiple datasets, joined together through longitude and latitude, to develop an integrated dataset to assess child diet diversity outcomes across 19 countries and six regions. Below we describe the datasets as well as our statistical approaches. Table 1 provides an overview of all of the variables utilized in this analysis.

Demographic Health Surveys

The main basis of our analysis builds off a compilation of Demographic Health Surveys (DHS) datasets, which are nationally representative data on population demography, health and nutrition, from 2000 and 2013 (SI Appendix for individual countries and years of surveys). For NSF SESYNC Grant DBI-1052875 we consolidated DHS surveys across 47 countries. We normalized survey responses across these countries for over 200 DHS variables. We used geocoded cluster references to add economic and ecological data to the health and household data of DHS (see (64) for details). We compile data across 19 developing countries in Africa, Central and South America, and Southeast Asia for geographic diversity of this original aggregated dataset. The DHS dataset was subsampled to select only the variables of interest (including complete data for diet diversity, which was limited), based on previous research, and some minor data cleaning was applied where necessary (for example, standardizing the encoding of missing values across the dataset). Our key dependent variable- an individual diet diversity score (IDDS) - is constructed through a series of questions in the DHS related to dietary intake of children under five. The IDDS is based on the United Nations Food and Agriculture Organization(65), and is a scale ranging from 0 to 10 based on intake of 10 types of foods including: 1) cereal grains; 2) white tubers and root foods; 3) dark leafy greens; 4) vitamin A rich vegetable/tubers; 5) vitamin A rich fruits; 6) other fruits and vegetables; 7) meat and fish foods; 8) eggs; 9) legumes/nuts/seeds; and 10) milk and milk products. We incorporate other variables of interest as described in Table 1, which include variables from both the DHS surveys as well as other global datasets.

Climate Data

The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset combines 0.05° resolution satellite imagery with in-situ station data to generate 30 years of local rainfall timeseries data across most of the globe at a one-month temporal resolution. The CHIRTS dataset uses similar methods to generate gridded timeseries temperature data. We obtained CHIRP/TS data according to the latitude and longitude of each survey location in the DHS dataset. We obtained all available historical timeseries CHIRP/TS datapoints for each geospatial location, and coded each row with latitude, longitude, and DHS survey date identifiers.

Based on the survey month, we calculated several temperature and precipitation columns from the raw timeseries CHIRP/TS data. We selected current and previous month values from the raw data. We calculated annual means by averaging the twelve months prior to and including the survey month. We calculated long-term averages by averaging monthly values across all full years between
the survey month and the beginning of the CHIRP/TS timeseries. I.e. if there were 124 months of available data preceding the survey month, only 120 months (10 full years) were included in the long-term average to avoid skewing the result by including e.g. an extra set of winter months. In the event that an individual monthly datapoint within the long-term data window was missing, we inputed its value based on the long-term average for that month. We stipulated that the long-term CHIRP/TS average would only be included if ten full years of data were available prior to the survey month.

We generated columns representing long-term climatic variability by calculating the standard deviation across all monthly datapoints within the long-term temperature and precipitation averages.

Additionally, we include a column representing the average number of months per year within the long-term data in which the temperature was over 32.2°C (90°F), and another for average number of months per year in which there was less than 25cm of precipitation.

Binary anomaly variables were generated indicating whether the survey month and previous month were drier or hotter than the long-term average for that month, and also whether the survey year and previous year were drier/hotter than the annual long-term average. We also calculated columns representing the number of standard deviations above or below the long term average for the survey year and previous year.

Hierarchical Models

To assess the relationship of agroecological, geographic, socioeconomic, and climate variables on IDDS, we utilize a series of regional and global hierarchical linear models with random effects. We include a random effect for the country and DHS cluster identification number, which is a geographic stratification, chosen by the survey designers, usually containing 25-30 households that are in relatively close proximity. Hierarchical models are structured with nested units (66); in our case, households, nested in DHS clusters, nested in countries, included as random effects. We run six regional models (West Africa, Southeast Africa, North Africa/Middle East, Asia, South America and Central America) as well as one global model. In total, our models represent the data from 107,741 individual responses across these regions.

Data Sharing

The underlying dataset and code for the analysis will be made available upon acceptance of this article.

Acknowledgments

We are grateful to funding support from the USDA Hatch Program (Grant Number VT-H02303, Accession Number 1010486), the Grant Biodiversity Results and Integrated Development Gains Enhanced Program of the USAID, the Luc Hoffman Institute at WWF International under funding
from the Mava Foundation, and the National Socio-Environmental Synthesis Center with funding from the National Science Foundation DBI-1052875. We thank Thomas Wentworth for figure design assistance throughout the manuscript.

References

1. S. S. Arthur, et al., Tackling malnutrition: a systematic review of 15-year research evidence from INDEPTH health and demographic surveillance systems. *Glob. Health Action* **8**, 28298 (2015).

2. Z. A. Bhutta, et al., Severe childhood malnutrition. *Nat. Rev. Dis. Prim.* **3**, 17067 (2017).

3. N. P. Steyn, J. H. Nel, G. Nantel, G. Kennedy, D. Labadarios, Food variety and dietary diversity scores in children: are they good indicators of dietary adequacy? *Public Health Nutr.* **9**, 644–650 (2006).

4. G. Asghari, P. Mirmiran, E. Yuzbashian, F. Azizi, A systematic review of diet quality indices in relation to obesity. *Br. J. Nutr.* **117**, 1055–1065 (2017).

5. I. Mueller, T. A. Smith, Patterns of child growth in Papua New Guinea and their relation to environmental, dietary and socioeconomic factors—further analyses of the 1982–1983 Papua New Guinea National Nutrition Survey. *P. N. G. Med. J.* **42**, 94–113 (1999).

6. C. Panter-Brick, Seasonal growth patterns in rural Nepali children. *Ann. Hum. Biol.* **24**, 1–18 (1997).

7. J. H. Rah, et al., Low dietary diversity is a predictor of child stunting in rural Bangladesh. *Eur. J. Clin. Nutr.* **64**, 1393–1398 (2010).

8. R. Kim, I. Mejia-Guevara, D. J. Corsi, V. M. Aguayo, S. V Subramanian, Relative importance of 13 correlates of child stunting in South Asia: Insights from nationally representative data from Afghanistan, Bangladesh, India, Nepal, and Pakistan. *Soc. Sci. Med.* **187**, 144–154 (2017).

9. FAO, “The State of Food Security and Nutrition in the World” (2018).

10. L. P. Galway, Y. Acharya, A. D. Jones, Deforestation and child diet diversity: A geospatial analysis of 15 Sub-Saharan African countries. *Health Place* **51**, 78–88 (2018).

11. K. B. Johnson, A. Jacob, M. E. Brown, Forest cover associated with improved child health and nutrition: evidence from the Malawi Demographic and Health Survey and satellite data. *Glob. Heal. Sci. Pract.* **1**, 237–248 (2013).
12. R. K. Phalkey, C. Aranda-Jan, S. Marx, B. Höfle, R. Sauerborn, Systematic review of current efforts to quantify the impacts of climate change on undernutrition. *Proc. Natl. Acad. Sci.* **112**, E4522 LP-E4529 (2015).

13. M. W. Cooper, *et al.*, Mapping the effects of drought on child stunting. *Proc. Natl. Acad. Sci.* **116**, 17219 LP – 17224 (2019).

14. R. A. Rasolofoson, M. M. Hanauer, A. Pappinen, B. Fisher, T. H. Ricketts, Impacts of forests on children’s diet in rural areas across 27 developing countries. *Sci. Adv.* **4**, eaat2853 (2018).

15. G. E. Shively, Infrastructure mitigates the sensitivity of child growth to local agriculture and rainfall in Nepal and Uganda. *Proc. Natl. Acad. Sci.* **114**, 903–908 (2017).

16. H. A. Mbwana, J. Kinabo, C. Lambert, H. K. Biesalski, Factors influencing stunting among children in rural Tanzania: an agro-climatic zone perspective. *Food Secur.* **9**, 1157–1171 (2017).

17. S. Gaire, T. D. Delbiso, S. Pandey, D. Guha-Sapir, Impact of disasters on child stunting in Nepal. *Risk Manag. Healthc. Policy* **9**, 113–127 (2016).

18. J. Lee, R. F. Houser, A. Must, P. P. de Fulladolsa, O. I. Bermudez, Disentangling nutritional factors and household characteristics related to child stunting and maternal overweight in Guatemala. *Econ. Hum. Biol.* **8**, 188–196 (2010).

19. O. Cumming, S. Cairncross, Can water, sanitation and hygiene help eliminate stunting? Current evidence and policy implications. *Matern. Child Nutr.* **12**, 91–105 (2016).

20. T. Beal, A. Tumilowicz, A. Sutrisna, D. Izwardy, L. M. Neufeld, A review of child stunting determinants in Indonesia. *Matern. Child Nutr.* **14**, e12617 (2018).

21. K. A. Dearden, *et al.*, Children with access to improved sanitation but not improved water are at lower risk of stunting compared to children without access: a cohort study in Ethiopia, India, Peru, and Vietnam. *BMC Public Health* **17**, 110 (2017).

22. J. H. Rah, *et al.*, Household sanitation and personal hygiene practices are associated with child stunting in rural India: a cross-sectional analysis of surveys. *BMJ Open* **5**, e005180 (2015).

23. R. D. Semba, *et al.*, Effect of parental formal education on risk of child stunting in Indonesia and Bangladesh: a cross-sectional study. *Lancet* **371**, 322–328 (2008).
24. R. A. Rasolofoson, M. M. Hanauer, A. Pappinen, B. Fisher, T. H. Ricketts, Impacts of forests on children’s diet in rural areas across 27 developing countries. *Sci. Adv.* 4, eaat2853 (2018).

25. V. Reddy, M. J. Devi, V. Anbumozhi, “Ensuring food and nutritional security in the face of disasters and climate change: What is the adaptive solution?” in *Towards a Resilient ASEAN Volume 1: Disasters, Climate Change, and Food Security: Supporting ASEAN Resilience*, V. Anbumozhi, M. Breiling, V. Reddy, Eds. (Economic Research Institute for ASEAN and East Asia, 2019), pp. 290–330.

26. N. G. DeNicola, B. Bekkar, S. Pacheco, R. Basu, A Scoping Review of Climate-Change Related Exposures on Obstetrics Outcomes [18G]. *Obstet. Gynecol.* 133 (2019).

27. Y. Zhang, C. Yu, L. Wang, Temperature exposure during pregnancy and birth outcomes: An updated systematic review of epidemiological evidence. *Environ. Pollut.* 225, 700–712 (2017).

28. M. E. Brown, *et al.*, Do markets and trade help or hurt the global food system adapt to climate change? *Food Policy* 68, 154–159 (2017).

29. R. Akresh, P. Verwimp, T. Bundervoet, Civil War, Crop Failure, and Child Stunting in Rwanda. *Econ. Dev. Cult. Change* 59, 777–810 (2011).

30. K. Grace, F. Davenport, C. Funk, A. M. Lerner, Child malnutrition and climate in Sub-Saharan Africa: An analysis of recent trends in Kenya. *Appl. Geogr.* 35, 405–413 (2012).

31. E. Skoufias, K. Vinha, Climate variability and child height in rural Mexico. *Econ. Hum. Biol.* 10, 54–73 (2012).

32. R. Huss-Ashmore, J. J. Curry, Diet, nutrition, and agricultural development in Swaziland. 3. Household economics and demography. *Ecol. Food Nutr.* 33, 107–121 (1994).

33. H. Alderman, Safety nets can help address the risks to nutrition from increasing climate variability. *J. Nutr.* 140, 148S–52S (2010).

34. J. M. Rodriguez-Llanes, S. Ranjan-Dash, O. Degomme, A. Mukhopadhyay, D. Guha-Sapir, Child malnutrition and recurrent flooding in rural eastern India: a community-based survey. *BMJ Open* 1, e000109 (2011).

35. S. Chotard, J. B. Mason, N. P. Oliphant, S. Mebrahtu, P. Hailey, Fluctuations in Wasting in Vulnerable Child Populations in the Greater Horn of Africa. *Food Nutr. Bull.* 31, S219–S233 (2010).
36. K. Belesova, C. N. Agabiiirwe, M. Zou, R. Phalkey, P. Wilkinson, Drought exposure as a risk factor for child undernutrition in low- and middle-income countries: A systematic review and assessment of empirical evidence. *Environ. Int.* **131**, 104973 (2019).

37. S. Hagos, T. Lunde, D. H. Mariam, T. Woldehanna, B. Lindtjørn, Climate change, crop production and child undernutrition in Ethiopia; a longitudinal panel study. *BMC Public Health* **14**, 884 (2014).

38. United Nations Food and Agriculture Organization, “The State of Food Security and Nutrition in the World 2019” (2019).

39. E. Becquey, *et al.*, The Household Food Insecurity Access Scale and an Index-Member Dietary Diversity Score Contribute Valid and Complementary Information on Household Food Insecurity in an Urban West-African Setting. *J. Nutr.* **140**, 2233–2240 (2010).

40. E. Custodio, *et al.*, Children’s dietary diversity and related factors in Rwanda and Burundi: A multilevel analysis using 2010 Demographic and Health Surveys. *PLoS One* **14**, e0223237 (2019).

41. United States Agency for International Development, Demographic Health Surveys.

42. University of Maryland, Global Land Cover Facility (2017).

43. FAO, IIASA, Global Agro-ecological Zones (GAEZ v3.0) (2010).

44. “Millennium Ecosystem Assessment” (2005).

45. NASA Socioeconomic Data and Applications Center, Global Roads Open Access Data Set (gROADS).

46. NASA Socioeconomic Data and Applications Center, Gridded Population of the World (2016).

47. C. Funk, *et al.*, A High-Resolution 1983–2016 Tmax Climate Data Record Based on Infrared Temperatures and Stations by the Climate Hazard Center. *J. Clim.* **32**, 5639–5658 (2019).

48. C. Funk, *et al.*, The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. *Sci. Data* **2**, 150066 (2015).

49. W. Zhao, *et al.*, Dietary diversity scores: an indicator of micronutrient inadequacy instead of obesity for Chinese children. *BMC Public Health* **17**, 440 (2017).

50. A. W. Girard, *et al.*, Women’s empowerment is associated with maternal and
child diet diversity but not household food security in pastoral communities in Tanzania. *FASEB J.* **31**, 455.5-455.5 (2017).

51. S. Koppmair, M. Kassie, M. Qaim, Farm production, market access and dietary diversity in Malawi. *Public Health Nutr.* **20**, 325–335 (2017).

52. S. Asseng, *et al.*, Rising temperatures reduce global wheat production. *Nat. Clim. Chang.* **5**, 143–147 (2015).

53. S. Peng, *et al.*, Rice yields decline with higher night temperature from global warming. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 9971 LP – 9975 (2004).

54. M. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, S. A. Woznicki, Climate change and livestock: Impacts, adaptation, and mitigation. *Clim. Risk Manag.* **16**, 145–163 (2017).

55. K. Grace, F. Davenport, H. Hanson, C. Funk, S. Shukla, Linking climate change and health outcomes: Examining the relationship between temperature, precipitation and birth weight in Africa. *Glob. Environ. Chang.* **35**, 125–137 (2015).

56. C. Zhu, *et al.*, Carbon dioxide (CO₂) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. *Sci. Adv.* **4**, eaaq1012 (2018).

57. A. Epstein, J. M. Torres, M. M. Glymour, D. López-Carr, S. D. Weiser, Do Deviations From Historical Precipitation Trends Influence Child Nutrition? An Analysis From Uganda. *Am. J. Epidemiol.* **188**, 1953–1960 (2019).

58. F. Davenport, K. Grace, C. Funk, S. Shukla, Child health outcomes in sub-Saharan Africa: A comparison of changes in climate and socio-economic factors. *Glob. Environ. Chang.* **46**, 72–87 (2017).

59. HLPE (High Level Panel of Experts on Food Secruity and Nutrition), “Sustainable agricultural development for food security and nutrition: what roles for livestock?” (2016).

60. R. E. Black, *et al.*, Maternal and child undernutrition: global and regional exposures and health consequences. *Lancet* **371** (2008).

61. R. Bezner Kerr, *et al.*, Participatory agroecological research on climate change adaptation improves smallholder farmer household food security and dietary diversity in Malawi. *Agric. Ecosyst. Environ.* **279**, 109–121 (2019).

62. M. K. Bailey, A. R. McCleery, G. Barnes, L. S. McKune, Climate-Driven Adaptation, Household Capital, and Nutritional Outcomes among Farmers in
63. A. M. Weber, E. Galasso, L. C. H. Fernald, Perils of scaling up: Effects of expanding a nutrition programme in Madagascar. Matern. Child Nutr. 15, e12715 (2019).

64. D. Herrera, et al., Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8 (2017).

65. United Nations Food and Agriculture Organization, “Guidelines for measuring household and individual dietary diversity” (2008).

66. S. W. Raudenbush, “Hierarchical linear models and experimental design” in Statistics: Textbooks and Monographs, L. K. Edwards, Ed. (Marcel Dekker, 1993), pp. 459–496.
Climate impacts associated with reductions in child diet diversity across nineteen countries

Meredith T. Niles, Ben Emery, Serge Wiltshire, Molly E. Brown, Brendan Fisher, Taylor Ricketts

SI Appendix

Figures
Figure S1. Individual distribution of child diet diversity scores among 19 countries in the Demographic Health Surveys dataset.

Table S1. Demographic Health Surveys included in the analysis.

Region	Country	Population	Survey Year
Asia	Timor-Leste	6,747	2009
	Nepal	4,131	2006
	Philippines	4,049	2008
Country	Average child IDDS	Standard Deviation	
--------------	--------------------	--------------------	
Colombia	4.772204807	2.305700741	
Dominican Republic	4.432351622	2.559274552	
Egypt	3.508966585	2.509983339	
Ghana	3.119315624	2.426336481	

Table S2. Individual country-level average child IDDS.
Country	Latitude	Longitude
Guyana	4.093209055	2.787254557
Haiti	2.571158392	1.756256345
Lesotho	1.800363802	1.615631067
Liberia	2.71228267	2.600830702
Madagascar	2.782849089	1.891449936
Namibia	2.807692308	2.141933964
Nepal	3.045993706	1.99304245
Nigeria	2.878336779	2.44172887
Peru	4.505171638	2.738471048
Philippines	3.912571005	2.423587673
Swaziland	3.412932501	2.326058415
Timor-Leste	2.838743145	2.230710128
Uganda	2.41060036	1.728523466
Zambia	2.936139923	2.102439008
Zimbabwe	2.43607755	1.753275874
Table S3. Variable means and standard deviations (SD) across all regions (global) and within regions.

Variable	Global	SD	Asia	SD	Central America	Mean	SD	Northern Africa	Mean	SD	South America	Mean	SD	Southeast Africa	Mean	SD	West Africa	Mean	SD
Diet diversity score	3.22	2.43	3.19	2.27	3.71	2.46	3.51	2.51	4.48	2.72	2.66	1.95	2.88	2.46					
Tree cover	20.74	17.43	33.56	16.61	27.21	13.85	5.05	3.64	12.80	20.97	25.22	15.92	15.19	12.61					
Time to water	16.11	31.30	12.26	23.05	12.61	26.67	1.30	9.95	3.94	10.59	27.80	44.27	17.65	25.78					
Livestock density	4.11	1.93	3.82	2.10	5.01	1.55	5.42	1.82	2.99	2.08	4.01	1.62	4.28	1.80					
Distance to urban center	23981.4	29766	23242.3	25236.9	12202.2	15542.6	2324.8	12139.8	23141.2	40592.9	29812.6	30816.8	29107.4	26914.1					
Distance to road	13470.70	3800.36	5239.43	2065.66	2361.70	1565.91	1551.67	12952.40	32442.30	3123.64	4027.6	2384.51	4215.94						
Population density	958.63	3079.44	1129.92	3720.63	1165.18	2698.96	4219.82	7163.47	763.11	2428.74	328.67	990.65	682.67	2053.42					
Child age	25.12	16.48	26.15	16.43	24.35	16.12	23.77	16.12	23.47	15.42	25.33	16.71	25.96	16.94					
Education of household head	6.78	10.44	5.46	5.25	8.00	16.35	7.86	6.29	9.51	13.25	6.52	11.81	5.44	5.43					
Improved toilet	0.28	0.45	0.41	0.49	0.44	0.5	0.99	0.10	0.40	0.49	0.08	0.27	0.09	0.29					
Improved water	0.48	0.5	0.57	0.49	0.39	0.49	0.95	0.22	0.73	0.44	0.38	0.49	0.31	0.46					
Male household head	0.83	0.38	0.89	0.31	0.68	0.47	0.95	0.21	0.86	0.35	0.76	0.43	0.88	0.33					
Poorer household	0.23	0.42	0.22	0.41	0.23	0.42	0.21	0.41	0.26	0.44	0.22	0.42	0.25	0.43					
Poorest household	0.29	0.45	0.28	0.45	0.36	0.48	0.24	0.43	0.29	0.45	0.28	0.45	0.28	0.45					
Richer household	0.16	0.37	0.18	0.38	0.14	0.35	0.18	0.38	0.14	0.35	0.17	0.38	0.16	0.37					
Richest household	0.12	0.32	0.13	0.33	0.09	0.28	0.17	0.37	0.09	0.29	0.13	0.33	0.12	0.32					
Long-term average temperature	29.26	4.03	28.82	3.16	30.86	1.57	28.71	2.40	25.33	5.60	28.01	3.18	32.68	1.58					
Long-term average precipitation	101.41	65.38	159.2	47.64	108.44	36.58	3.10	3.68	92.35	78.58	91.01	49.6	111.8	61.96					
Temperature anomaly-previous year	0.51	0.86	0.8	0.78	-0.28	0.70	0.25	0.21	-0.16	0.73	0.84	0.78	0.77	0.76					
Precipitation anomaly-previous year	0.13	0.8	0.04	0.74	0.03	0.77	0.46	0.68	-0.14	0.87	-0.06	0.8	0.51	0.65					
Temperature anomaly-current year	0.70	0.90	1.20	1.20	0.59	0.94	1.50	0.33	0.11	0.71	0.74	0.87	0.53	0.59					
Precipitation anomaly-current year	-0.02	0.88	0.11	0.81	-0.52	0.93	0.23	0.72	-0.24	1.0	0.14	0.9	-0.01	0.71					
Table S4. Full model results with standardized coefficients from Asia.

Variable	Coefficient	Standard Error	t value	p=
Tree cover	-0.029	0.020	-1.460	0.145
Time to water	0.001	0.008	0.092	0.927
Livestock density	-0.017	0.019	-0.935	0.350
Distance to urban center	-0.022	0.015	-1.473	0.141
Distance to road	-0.012	0.043	-0.269	0.788
Population density	-0.035	0.015	-2.392	0.017
Child age	0.204	0.008	26.718	<0.001
Education of household head	0.039	0.011	3.577	0.000
Improved toilet	0.059	0.011	5.244	0.000
Improved water	-0.016	0.009	-1.655	0.098
Male household head	0.006	0.025	0.245	0.806
Poorer household	-0.080	0.024	-3.307	0.001
Poorest household	-0.177	0.026	-6.760	0.000
Richer household	0.021	0.026	0.812	0.417
Richest household	0.252	0.033	7.683	0.000
Long-term average temperature	-0.008	0.023	-0.336	0.737
Long-term average precipitation	-0.006	0.025	-0.263	0.793
Temperature anomaly- previous year	-0.015	0.025	-0.596	0.552
Precipitation anomaly- previous year	0.036	0.022	1.651	0.100
Temperature anomaly- current year	-0.152	0.036	-4.233	0.004
Precipitation anomaly- current year	0.031	0.018	1.750	0.080
(Intercept)	0.353	0.073	4.829	0.028
Variable	Coefficient	Standard Error	t value	p=
----------------------------------	-------------	----------------	---------	--------
Tree cover	0.037	0.026	1.406	0.160
Time to water	-0.013	0.012	-1.112	0.266
Livestock density	0.025	0.017	1.533	0.126
Distance to urban center	-0.050	0.024	-2.036	0.042
Distance to road	-0.002	0.021	-0.089	0.929
Population density	-0.001	0.018	-0.073	0.942
Child age	0.216	0.009	24.472	<0.001
Education of household head	-0.001	0.007	-0.107	0.914
Improved toilet	0.001	0.010	0.103	0.918
Improved water	-0.021	0.011	-1.854	0.064
Male household head	-0.025	0.019	-1.319	0.187
Poorer household	-0.084	0.028	-2.966	0.003
Poorest household	-0.218	0.029	-7.610	0.000
Richer household	0.123	0.032	3.892	0.000
Richest household	0.250	0.040	6.293	0.000
Long-term average temperature	0.023	0.020	1.156	0.248
Long-term average precipitation	-0.032	0.018	-1.786	0.074
Temperature anomaly- previous year	-0.010	0.022	-0.442	0.658
Precipitation anomaly- previous year	0.050	0.023	2.199	0.028
Temperature anomaly- current year	0.034	0.034	0.984	0.325
Precipitation anomaly- current year	0.003	0.023	0.146	0.884
(Intercept)	0.178	0.370	0.480	0.716
Table S6. Full model results with standardized coefficients from North Africa

Variable	Coefficient	Standard Error	t value	p=
Tree cover	0.083	0.020	4.106	0.000
Time to water	0.012	0.018	0.699	0.485
Livestock density	-0.072	0.016	-4.463	0.000
Distance to urban center	0.010	0.021	0.452	0.652
Distance to road	0.003	0.019	0.138	0.890
Population density	0.004	0.013	0.317	0.751
Child age	0.279	0.011	25.292	<0.001
Education of household head	0.018	0.012	1.458	0.145
Improved toilet	0.013	0.032	0.399	0.690
Improved water	0.005	0.025	0.210	0.833
Male household head	-0.169	0.052	-3.245	0.001
Poorer household	0.055	0.035	1.594	0.111
Poorest household	-0.043	0.037	-1.163	0.245
Richer household	0.187	0.036	5.135	0.000
Richest household	0.296	0.040	7.329	0.000
Long-term average temperature	0.057	0.050	1.142	0.254
Long-term average precipitation	0.055	0.129	0.423	0.673
Temperature anomaly- previous year	-0.118	0.052	-2.269	0.023
Precipitation anomaly- previous year	-0.012	0.023	-0.536	0.592
Temperature anomaly- current year	0.004	0.032	0.135	0.893
Precipitation anomaly- current year	0.020	0.027	0.751	0.453
(Intercept)	-0.026	0.119	-0.220	0.826
Table S7. Full model results with standardized coefficients from South America

Variable	Coefficient	Standard Error	t value	p=
Tree cover	0.004	0.014	0.271	0.786
Time to water	-0.012	0.010	-1.268	0.205
Livestock density	0.012	0.013	0.950	0.342
Distance to urban center	-0.031	0.013	-2.314	0.021
Distance to road	-0.054	0.014	-3.770	0.000
Population density	-0.009	0.010	-0.877	0.381
Child age	0.301	0.009	35.122	<0.001
Education of household head	-0.001	0.007	-0.210	0.833
Improved toilet	-0.002	0.013	-0.162	0.871
Improved water	0.005	0.011	0.420	0.675
Male household head	-0.051	0.023	-2.198	0.028
Poorer household	-0.209	0.026	-7.933	0.000
Poorest household	-0.366	0.032	-11.497	<0.001
Richer household	0.098	0.029	3.353	0.001
Richest household	0.246	0.035	6.926	0.000
Long-term average temperature	0.013	0.015	0.861	0.389
Long-term average precipitation	-0.015	0.014	-1.082	0.280
Temperature anomaly- previous year	-0.024	0.011	-2.153	0.032
Precipitation anomaly- previous year	0.024	0.013	1.807	0.071
Temperature anomaly- current year	0.030	0.020	1.455	0.146
Precipitation anomaly- current year	0.017	0.010	1.710	0.088
(Intercept)	0.328	0.047	6.992	0.003
Table S8. Full model results with standardized coefficients from Southeast Africa

Variable	Coefficient	Standard Error	t value	p=
Tree cover	-0.026	0.013	-1.970	0.049
Time to water	-0.011	0.007	-1.467	0.142
Livestock density	0.025	0.012	2.044	0.041
Distance to urban center	-0.021	0.009	-2.372	0.018
Distance to road	-0.017	0.008	-2.022	0.043
Population density	0.004	0.018	0.204	0.838
Child age	0.157	0.005	31.261	<0.001
Education of household head	0.010	0.003	2.854	0.004
Improved toilet	0.065	0.007	9.477	<0.001
Improved water	-0.009	0.008	-1.089	0.276
Male household head	0.000	0.012	0.016	0.987
Poorer household	-0.039	0.016	-2.433	0.015
Poorest household	-0.114	0.017	-6.849	0.000
Richer household	0.114	0.018	6.423	0.000
Richest household	0.336	0.024	13.940	<0.001
Long-term average temperature	-0.050	0.012	-4.188	0.000
Long-term average precipitation	0.025	0.012	2.171	0.030
Temperature anomaly- previous year	-0.007	0.011	-0.667	0.505
Precipitation anomaly- previous year	0.011	0.012	0.939	0.348
Temperature anomaly- current year	-0.050	0.013	-3.813	0.000
Precipitation anomaly- current year	0.017	0.011	1.542	0.123
(Intercept)	0.142	0.093	1.531	0.175
Table S9. Full model results with standardized coefficients from West Africa

Variable	Coefficient	Standard Error	t value	p=
Tree cover	0.030	0.023	1.292	0.197
Time to water	0.020	0.009	2.305	0.021
Livestock density	0.030	0.017	1.770	0.077
Distance to urban center	0.003	0.017	0.169	0.866
Distance to road	-0.058	0.032	-1.777	0.076
Population density	-0.034	0.015	-2.299	0.022
Child age	0.191	0.006	30.308	<0.001
Education of household head	0.028	0.013	2.244	0.025
Improved toilet	0.026	0.009	2.932	0.003
Improved water	0.033	0.010	3.181	0.001
Male household head	-0.031	0.021	-1.447	0.148
Poorer household	-0.024	0.021	-1.134	0.257
Poorest household	-0.067	0.024	-2.758	0.006
Richer household	0.156	0.024	6.469	0.000
Richest household	0.259	0.034	7.549	0.000
Long-term average temperature	-0.134	0.032	-4.255	0.000
Long-term average precipitation	-0.009	0.020	-0.478	0.633
Temperature anomaly- previous year	0.066	0.020	3.239	0.001
Precipitation anomaly- previous year	0.051	0.021	2.437	0.015
Temperature anomaly- current year	-0.046	0.023	-2.012	0.044
Precipitation anomaly- current year	-0.009	0.024	-0.385	0.700
(Intercept)	0.347	0.034	10.315	<0.001