Campedelli surfaces with fundamental group of order 8

Margarida Mendes Lopes* Rita Pardini* Miles Reid

Abstract

Let \(S \) be a Campedelli surface (a minimal surface of general type with \(p_g = 0, K^2 = 2 \)), and \(\pi: Y \rightarrow S \) an etale cover of degree 8. We prove that the canonical model \(\overline{Y} \) of \(Y \) is a complete intersection of four quadrics \(\overline{Y} = Q_1 \cap Q_2 \cap Q_3 \cap Q_4 \subset \mathbb{P}^6 \). As a consequence, \(Y \) is the universal cover of \(S \), the covering group \(G = \text{Gal}(Y/S) \) is the topological fundamental group \(\pi_1 S \) and \(G \) cannot be the dihedral group \(D_4 \) of order 8.

Mathematics Subject Classification (2000): 14J29.

1 Introduction

Let \(Y \) be a minimal surface of general type with \(K_Y^2 = 16 \) and \(p_g = 7, q = 0 \), having a free action by a group \(G \) of order 8. Write \(\varphi: Y \rightarrow \overline{Y} \subset \mathbb{P}^6 \) for the 1-canonical map, with image \(\overline{Y} \). We prove the following:

Theorem 1.1 The surface \(\overline{Y} \subset \mathbb{P}^6 \) is the complete intersection of 4 quadrics. It is isomorphic to the canonical model of \(Y \).

Theorem 1.1 is known if \(G = \mathbb{Z}_2^3 \) by Miyaoka [Mi], Theorem B; in this case there are four linearly independent diagonal quadrics through \(\overline{Y} \), which necessarily form a regular sequence defining \(\overline{Y} \). We thus assume throughout that \(G \) is a group of order 8 and contains an element of order 4.

*The first author is a member of the Centre for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Lisboa. The second is a member of G.N.S.A.G.A.–I.N.d.A.M. This research was partially supported by the Italian project “Geometria delle varietà algebriche e dei loro spazi di moduli” (PRIN COFIN 2006) and by FCT (Portugal) through program POCTI/FEDER.
Corollary 1.2 Let S be a Campedelli surface and $\pi: Y \to S$ an etale cover of degree 8. Then Y is the universal cover of S and the covering group $G = \text{Gal}(Y/S)$ is the topological fundamental group $\pi_1 S$.

Corollary 1.3 The dihedral group D_4 of order 8 is not the fundamental group of a Campedelli surface.

The proof of Theorem 1.1 consists of two parts, the first of which is now quite standard (compare Reid [Re2], Naie [Na], Konno [Ko]):

Proposition 1.4 (i) The canonical linear system $|K_Y|$ on Y is free and defines a morphism $\varphi: Y \to \overline{Y} \subset \mathbb{P}^6$ that is birational to its image.

(ii) If \overline{Y} is not a complete intersection of four quadrics, its quadric hull (the intersection of all quadrics containing \overline{Y}) is a 3-fold X of degree 4, 5 or 6.

(iii) Moreover, in these three cases, \overline{Y} is contained in a hypersurface F_d of \mathbb{P}^6 not containing X, of degree $d = 6, 4, 3$ respectively.

The second part analyses the possible cases $\overline{Y} \subset X$, with ad hoc arguments involving the G-action to rule out each case; see Section 3.

1.1 The background

A Campedelli surface is a surface S of general type with $p_g = 0$, $K^2 = 2$. The algebraic fundamental group $\pi_1^{\text{alg}}(S)$ classifies finite etale covers $Y \to S$, and is the profinite completion of the topological fundamental group $\pi_1 S$. Results of Beauville [Be] and Reid [Re1, Re2] (see also Mendes Lopes and Pardini [MP]) guarantee that S has no irregular covers, and that an etale cover $Y \to S$ has degree ≤ 9. The reasons underlying [Re1], Theorem 1.1 and all related results are as follows:

Principle 1.5 (1) The automorphism group G acts on any intrinsically defined feature of Y: for example, the base points or base -2-cycles of $|K_Y|$ occur in multiples of 8.

(2) If a subgroup $H \subset G$ normalises a subscheme $Z \subset Y$, its order $|H|$ divides the Euler characteristic $\chi(O_Z)$; for example, if Y has an intrinsically defined genus g pencil $\psi: Y \to \mathbb{P}^1$ and $H \subset G$ fixes $P \in \mathbb{P}^1$ then $|H|$ divides $\chi(O_F) = g - 1$, where $F = \psi^* P$.

2
It seems most likely that all groups of order ≤ 9 except the dihedral groups of order 8 and 6 occur as $\pi_1 S$. The case $|\pi_1 S| = 9$ was treated in detail in Mendes Lopes and Pardini [MP2]. Here we treat $|\pi_1 S| = 8$, patching up the incomplete manuscript [Re2]. Naie [Na] obtained similar results for $|\pi_1 S| = 6$ using similar methods. Campedelli surfaces with $\pi_1 = \mathbb{Z}/8$ and $\mathbb{Z}/2 \oplus \mathbb{Z}/4$ are contained in passing in Barlow [Ba]. Beauville [Be2] constructs a family of Calabi–Yau 3-folds with π_1 the quaternion group H_8, and Campedelli surfaces with the same π_1 are obtained by taking the unique invariant section $X_1 = 0$ of this.

1.2 Representations of G and proof of Corollary 1.3

Let $Y \to S$ be the universal cover of a Campedelli surface with group G. Then G acts naturally on $H^0(K_Y)$ and $H^0(2K_Y)$. Since the G-action is free, $H^0(K_Y)$ is the regular representation of G minus the trivial rank 1 representation, and $H^0(2K_Y)$ is three times the regular representation (for example, by [Re4, Corollary 8.6]). Finally, the G-equivariant multiplication map

$$S^2 H^0(K_Y) \to H^0(2K_Y)$$

is surjective by Theorem 1.1.

These remarks allow one to show that the group G is not the dihedral group, and to describe explicitly Y and the G-action for all the remaining groups of order 8.

Let $G = D_4$ be the dihedral group of order 8. Write 1 for the trivial rank 1 representation, and ρ for the sole irreducible rank 2 representation; let $\chi_1 := \bigwedge^2 \rho$, χ_2 and χ_3 be the remaining rank 1 representations. Then

$$H^0(K_Y) = \chi_1 \oplus \chi_2 \oplus \chi_3 \oplus \rho^{\oplus 2},$$

$$H^0(2K_Y) = 1^{\oplus 3} \oplus \chi_1^{\oplus 3} \oplus \chi_2^{\oplus 3} \oplus \chi_3^{\oplus 3} \oplus \rho^{\oplus 6}. \tag{1.2}$$

Using the decomposition of $H^0(K_Y)$, one computes:

$$S^2 H^0(K_Y) = 1^{\oplus 6} \oplus \chi_1^{\oplus 2} \oplus \chi_2^{\oplus 4} \oplus \chi_3^{\oplus 4} \oplus \rho^{\oplus 6}. \tag{1.3}$$

Clearly the equivariant map (1.1) cannot be surjective. This contradicts Theorem 1.1 and proves Corollary 1.3.
2 Proof of Proposition 1.4

The canonical map \(\varphi : Y \to \mathbb{P}^6 \) is a morphism by Ciliberto, Mendes Lopes and Pardini [CMP Proposition 5.2] and is birational to its image \(\overline{Y} \) by [CMP, Proposition 5.3]. Thus \(\overline{Y} \) is an irreducible surface of degree 16. Since

\[
\dim S^2 H^0(Y, K_Y) = \binom{8}{2} = 28 \quad \text{and} \quad h^0(Y, 2K_Y) = \chi(O_Y) + K_Y^2 = 24,
\]

the multiplication map \(S^2 H^0(Y, K_Y) \to H^0(Y, 2K_Y) \) has kernel of dimension \(\geq 4 \); that is, \(\overline{Y} \) is contained in at least 4 linearly independent quadrics.

Let \(Q_1, Q_2, Q_3, Q_4 \) be four linearly independent quadrics through \(Y \). We are home if \(Y \) is an irreducible component of \(Q_1 \cap \cdots \cap Q_4 \). For in turn, if any of \(Q_1 \) or \(Q_1 \cap Q_2 \) or \(Q_1 \cap Q_2 \cap Q_3 \) or \(Q_1 \cap \cdots \cap Q_4 \) is reducible, then \(\deg \overline{Y} < 16 \). This is impossible, so \(\overline{Y} = Q_1 \cap \cdots \cap Q_4 \) is a complete intersection of 4 quadrics. Then \(\overline{Y} \) is Gorenstein with \(K_{\overline{Y}} = O_{\overline{Y}}(1) \) and \(K_Y = \varphi^* K_{\overline{Y}} \). Therefore it has canonical singularities and is the canonical model of \(Y \).

Write \(\text{Quad}(\overline{Y}) \subset \mathbb{P}^6 \) for the quadric hull of \(\overline{Y} \), the intersection of all the quadrics through \(\overline{Y} \), following [Re3] and Konno [Ko]. The alternative to \(\overline{Y} \) a complete intersection of four quadrics is that \(\text{Quad}(\overline{Y}) \) has a component \(X \) strictly containing \(\overline{Y} \). Then \(X \) is a 3-fold of degree 4, 5 or 6 and is the unique component of \(\text{Quad}(\overline{Y}) \) containing \(\overline{Y} \).

Indeed, by elementary inequalities due to Castelnuovo, an irreducible \(m \)-fold \(X \) spanning \(\mathbb{P}^N \) is contained in at most

\[
\left(\binom{N-m+2}{2} - \min\{\deg X, 2(N-m) + 1\} \right)
\]

linearly independent quadrics. See for example the discussion in [Re3] or [Ko, Corollary 1.5]. The equality \(X = \text{Quad}(\overline{Y}) \) follows by [Ko, Corollary 2.6]. The estimate on \(d \) follows from (2.1) or by [Ko, Proposition 1.3].

Finally, in the three cases for \(d \), crude estimates give that the restriction map

\[
H^0(\mathbb{P}^6, O(k)) \to H^0(O_X(k))
\]

has rank

\[
= 252 \quad \text{for} \quad d = 4, k = 6, \quad \text{whereas} \quad h^0(6K_Y) = 248; \\
\geq 105 \quad \text{for} \quad d = 5, k = 4, \quad \text{whereas} \quad h^0(4K_Y) = 104; \\
\geq 58 \quad \text{for} \quad d = 6, k = 3, \quad \text{whereas} \quad h^0(3K_Y) = 56
\]

(compare [Re3] and [Ko, Lemma 1.8]). This proves Proposition 1.4.
3 Proof of Theorem 1.1

We exclude the cases of Proposition 1.4, (ii) by studying the G-action on $Y \subset X$, treating separately the cases $\deg X = 4, 5$ or 6. In any case, X is linearly normal, since $Y \to Y \subset \mathbb{P}^6$ is given by the complete canonical system, and is regular, since Y is.

3.1 G-invariant linear systems on Y

The following lemmas group together a number of restrictions on G-invariant linear systems on Y, that we use several times in what follows. Their proofs are applications of Principle 1.5.

Lemma 3.1 A G-invariant linear system $|D|$ on Y with $D^2 = 2$ has a fixed part.

Proof Assume by contradiction that $|D|$ has no fixed part. Since G acts on the base locus of $|D|$, $D^2 = 2$ implies $|D|$ is free. Hence $|D|$ defines a G-equivariant 2-to-1 morphism $Y \to \mathbb{P}^2$. Since we assume that G has an element of order 4, this contradicts Beauville [Be, Corollary 5.8].

Lemma 3.2 Let $|F|$ be a G-invariant pencil on Y with $K_Y F \leq 8$. Then $|F|$ is free and $K_Y F = 8$.

Proof Since $K_Y F \leq 8$, the index theorem gives $F^2 \leq (K_Y F)^2 / K_Y^2 \leq 4$. Now F^2, equal to the degree of the base locus of $|F|$, is divisible by 8 by Principle 1.5, so $F^2 = 0$ and $|F|$ is free. If $K_Y F < 8$, the general $F \in |F|$ is nonsingular of genus $g \leq 4$, contradicting [CMP, Lemma 2.2], so $K_Y F = 8$.

Proposition 3.3 Let $\mathcal{D} \subset |K_Y|$ be a G-invariant subsystem of projective dimension ≥ 3. Then one of the following holds:

(1) \mathcal{D} is free; or

(2) \mathcal{D} has base locus consisting of 8 transversal base points.

In particular, \mathcal{D} is not composed with a pencil.
Proof If \(D \) has a nonzero fixed part \(Z \), write \(D = M + Z \) with mobile \(|M|\). The \(G \)-action takes \(Z \) to itself, so \(Z \) is the pullback from \(S = Y/G \) of a divisor \(Z_0 \) that satisfies \(K_S Z_0 \equiv Z_0^2 \) mod 2; therefore \(MZ = (K_Y - Z)Z \) is divisible by 16. Connectedness of canonical divisors gives \(MZ > 0 \), and thus \(16 \leq MZ \leq K_Y M \leq K_Y^2 = 16 \). We get:

\[
M^2 = K_Y Z = 0 \quad \text{and} \quad K_Y M = 16, \quad Z^2 = -16.
\]

Since \(|M|\) is mobile and \(M^2 = 0 \), it is contained in a multiple of a \(G \)-invariant free pencil, say \(|M| \subset |nF|\) with \(K_Y F = 16/n \); Lemma 3.2 implies \(n \leq 2 \). But \(n = \dim |nF| \geq \dim D \geq 3 \), a contradiction.

Therefore \(D \) has no fixed part. Since \(G \) acts on the base scheme of \(D \), the number \(\nu \) of base points is divisible by 8. If \(\nu > 8 \) or \(\nu = 8 \) and the base points are not transversal, two curves of \(D \) have no free intersections, hence \(D \) is composed with a pencil. Write \(D = nF \), with \(|F|\) a \(G \)-invariant pencil and \(n \geq 3 = \dim D \). Then \(F^2 = 0 \) by Lemma 3.2 contradicting \(16 = D^2 = n^2 F^2 \).

3.2 The case \(\deg X = 4 \)

In this case, by Fujita [Fu1], \(X \) is either a quartic scroll \(\mathbb{F}(a,b,c) \) with \(a + b + c = 4 \), or the cone over the Veronese surface \(V_4 \subset \mathbb{P}^5 \). By Proposition 1.4 (iii), there is a sextic hypersurface containing \(Y \) and not containing \(X \).

If \(X \) is a scroll, the birational transform of its unique ruling by planes is a \(G \)-invariant pencil \(|F|\) on \(Y \) with \(K_Y F \leq 6 \), contradicting Lemma 3.2.

If \(X \) is the cone over \(V_4 \), the linear subsystem \(D \subset |K_Y| \) formed by hyperplanes through its vertex define a \(G \)-equivariant map \(\psi: Y \to V_4 \). By Proposition 3.3 \(D \) is either free or has 8 simple base points. In the latter case, \(\deg \psi = 2 \) contradicts [Be Corollary 5.8], as in Lemma 3.1. So \(D \) is free, and \(\psi: Y \to V_4 \cong \mathbb{P}^2 \) is a morphism of degree 4. The \(G \)-action on \(\mathbb{P}^2 \) fixes some point \(P \in \mathbb{P}^2 \) by Lemma 3.4 below, whereas \(\psi^{-1} P \) consists of \(\leq 4 \) points or trees of \(-2\)-curves, on which \(G \) cannot act freely. This is a contradiction.

Lemma 3.4 Let \(G \) be a group of order \(2^r \) acting on \(\mathbb{P}^2 \). Then there is a point \(P \in \mathbb{P}^2 \) fixed by the whole of \(G \).
Indeed, G has nontrivial centre, so a central element g of order 2. The action of g on \mathbb{P}^2 must fix an isolated point P and a line L. For any $h \in G$, by the conjugacy principle, the element hgh^{-1} is an involution with isolated fixed point $h(P)$. But $hgh^{-1} = g$, so that $h(P) = P$.

3.3 The case $\deg X = 5$

This is the hard case of the proof, and we break it into several steps.

Step 1. X is a normal del Pezzo variety with $K_X = \mathcal{O}_X(-2)$. Recall from the start of the proof that we assume that X is linearly normal and regular. By [Fu3, Theorem 2.1] (or [Fu2] in the nonsingular case) X is either a normal del Pezzo variety of index 2 or a cone from a point vertex over a (weak) del Pezzo surface $V_5 \subset \mathbb{P}^5$. If X is a cone, the subsystem $D \subset |K_Y|$ given by hyperplanes through its vertex defines a G-equivariant map $\psi: Y \to V_5$. By Proposition 3.3, ψ is onto the surface V_5, and

$$\deg V_5 \cdot \deg \psi = 5 \deg \psi = 8 \text{ or } 16$$

provides a contradiction.

Step 2. $\overline{Y} \cap \text{Sing } X$ is a finite set. If $\text{Sing } X$ is positive dimensional, it contains a single line L ([Fu3, Theorem 2.7]). Apply Proposition 3.3 to the subsystem $D \subset |K_Y|$ given by hyperplanes of \mathbb{P}^6 through L; then D has no fixed part, so L is not contained in \overline{Y}.

Step 3. The general section C of \overline{Y} is nonsingular. Let Σ be a general hyperplane section of X and set $C = \Sigma \cap \overline{Y}$. The surface Σ is a (possibly singular) del Pezzo surface of degree 5, nonsingular along C by Step 2, so that C is a Cartier divisor on Σ. Write $A = -K_\Sigma = \mathcal{O}_\Sigma(1)$ for the restriction of a hyperplane to Σ. Since $AC = -K_\Sigma C = 16$, the index theorem gives $C^2 \leq (AC)^2/A^2 = 256/5$, so $C^2 \leq 51$. The curve C is the birational image of a general canonical curve of Y, so has geometric genus 17. On the other hand, the arithmetic genus of $C \subset \Sigma$ is given by $2p_a C - 2 = C^2 + K_\Sigma C = C^2 - 16$.

There are thus two possibilities:

(a) $C^2 = 48$ and C is nonsingular, or

(b) $C^2 = 50$ and C has a single node or cusp.
If case (b) holds for the general hyperplane section of \(\overline{Y} \), the codimension 1 part of the singular locus of \(\overline{Y} \) is a line \(L \), necessarily invariant under the action of \(G \). The system of hyperplanes through \(L \) then give the same contradiction to Proposition 3.3 as in Step 2.

Step 4. Conclusion of the proof. We continue to use the notation of Step 3. The canonical class of \(C \) calculated on \(Y \) is \(K_C = (K_Y + C)|_C = O_C(2A) \). Calculated on \(\Sigma \), it is \((K_\Sigma + C)|_C = O_C(-A + C) \). Therefore the Cartier divisor \(D = C - 3A \) on \(\Sigma \) restricted to \(C \) is linearly equivalent to zero. Consider the exact sequence of sheaves on \(\Sigma \):

\[
0 \to O_\Sigma(-3A) \to O_\Sigma(D) \to O_C \to 0.
\]

Since \(H^1(\Sigma, -3A) = 0 \) by Kodaira vanishing, or by well known results on del Pezzo surfaces, it follows that \(h^0(O_\Sigma(D)) = 1 \), so \(D \) is a Cartier divisor linearly equivalent to an effective divisor.

Now \(-K_\Sigma D = AD = 1 \), and \(D^2 = 48 - 96 + 45 = -3 \). This is a contradiction. Indeed, \(AD = 1 \) and \(A \) very ample implies that \(D \) is a line on \(\Sigma \). But then \(D \) is nonsingular, and because it is a Cartier divisor, \(\Sigma \) is nonsingular near \(D \), so \(D^2 = -1 \).

3.4 The case \(\deg X = 6 \)

Assume \(\deg X = 6 \). By Proposition 1.4 and its proof, the linear system of cubics of \(\mathbb{P}^6 \) containing \(\overline{Y} \) restricts on \(X \) to a positive dimensional linear system \(|N| \) of surfaces of degree 2. Now \(X \) is not ruled by planes (because it is linearly normal of degree 6 and regular), so that the moving part of \(|N| \) must be a pencil of quadrics.

The birational transform of \(|N| \) on \(Y \) is then a \(G \) invariant pencil \(|F| \) with \(K_Y F \leq 6 \) and contradicts Lemma 3.2.

References

[Ba] R.N. Barlow, *Some new surfaces with \(p_g = 0 \)*, Duke Math. J. 51 (1984) 889–904

[Be] A. Beauville, *L’application canonique pour les surfaces de type général*, Inv. Math. 55 (1979) 121–140
[Be2] A. Beauville, *A Calabi-Yau threefold with non-abelian fundamental group*, in New trends in algebraic geometry (Warwick, 1996) 13–17

[CMP] C. Ciliberto, M. Mendes Lopes and R. Pardini, *Surfaces with $K^2 < 3\chi$ and finite fundamental group*, Math. Res. Lett. 14 (2007) 1081-1098.

[Fu1] T. Fujita, *On the structure of polarized varieties with Δ--genus zero*, J. Fac. Sci. Univ. Tokyo 22 (1975) 103–115

[Fu2] T. Fujita, *On the structure of polarized varieties of total deficiency one* I, II and III, J. Math. Soc. Japan, 32 (1980) 709-725, ibid. 33 (1981) 415–434, ibid. 36 (1984) 75–89

[Fu3] T. Fujita, *Projective varieties of Δ--genus one*, in “Algebraic and Topological Theories”, to the memory of T. Miyata, Kinokuniya (1985) 149–175

[Ko] K. Konno, *On the quadric hull of a canonical surface*, Algebraic geometry, de Gruyter, Berlin (2002) 217–235

[Mi] Y. Miyaoka, *On numerical Campedelli surfaces*, in Complex analysis and algebraic geometry, Papers dedicated to K. Kodaira, Iwanami Shoten, Tokyo (1977) 113–118

[MP1] M. Mendes Lopes and R. Pardini, *On the algebraic fundamental group of surfaces with $K^2 \leq 3\chi$*, J. Differential Geometry 77 (2007) 188–199

[MP2] M. Mendes Lopes and R. Pardini, *Numerical Campedelli surfaces with fundamental group of order 9*, J.E.M.S. 10 (2008) 457–476

[Na] Daniel Naie, *Numerical Campedelli surfaces cannot have the symmetric group as the algebraic fundamental group*, J. London Math. Soc. 59 (1999) 813–827

[Re1] M. Reid, π_1 for surfaces with small K^2, Algebraic geometry (Copenhagen, 1978), Springer LNM 732 534–544

[Re2] M. Reid, *Surfaces with $p_g = 0$, $K_S^2 = 2$*, preprint available at
http://www.warwick.ac.uk/staff/Miles.Reid/surf/
[Re3] M. Reid, *Quadrics through a canonical surface*, in Algebraic geometry (L’Aquila, 1988), Springer LNM 1417, Berlin, 1990 191–213

[Re4] M. Reid, *Young person’s guide to canonical singularities*, Algebraic geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1 (1987) 345–414

Authors’ addresses:

Margarida Mendes Lopes,
Departamento de Matemática,
Instituto Superior Técnico, Universidade Técnica de Lisboa,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
e-mail: mmlopes@math.ist.utl.pt

Rita Pardini,
Dipartimento di Matematica,
Università di Pisa,
Largo B. Pontecorvo, 5, 56127 Pisa, Italy
e-mail: pardini@dm.unipi.it

Miles Reid
Math Institute,
Univ. of Warwick,
Coventry CV4 7AL
e-mail: Miles.Reid@warwick.ac.uk