Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states [version 1; referees: 2 approved]

Ada Eban-Rothschild, Luis de Lecea
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA

Abstract
Animals continuously alternate between sleep and wake states throughout their life. The daily organization of sleep and wakefulness is orchestrated by circadian, homeostatic, and motivational processes. Over the last decades, much progress has been made toward determining the neuronal populations involved in sleep/wake regulation. Here, we will discuss how the application of advanced in vivo tools for cell type–specific manipulations now permits the functional interrogation of different features of sleep/wake state regulation: initiation, maintenance, and structural organization. We will specifically focus on recent studies examining the roles of wake-promoting neuronal populations.
Introduction

Animals—including nematode worms,1,2 bees,3 flies,4 fish,5 rodents, humans, and even birds during migration—alter between wake and sleep states throughout their life. During wakefulness, animals engage in various adaptive and motivated behaviors related to foraging, courting, mating, and predator evading, among many others. Sleep is a state of quiescence with reduced responsiveness to external stimuli yet is restorative and recruits essential mechanisms for homeostatic balance.6,7

The daily organization of sleep and wake periods is orchestrated by circadian, homeostatic, and motivational processes.8,9 The circadian clock (about 24 hours long) synchronizes sleep to an appropriate time of day; for example, night in diurnal animals and day in nocturnal animals. The homeostatic process is responsible for compensating sleep loss. In addition, environmental circumstances and internal needs, such as hunger,10–12, or mating opportunities,13,14, the presence of a predator,15–17, or mating opportunities,18, can powerfully modulate sleep and wake states.

Sleep is ubiquitous in the animal kingdom, and the molecular pathways associated with sleep in the worm, fly, and mammals show much conservation, suggesting an ancient and common origin for sleep.19–22. For example, in both insects and mammals, histaminergic, noradrenergic, and dopaminergic neurotransmission promotes wakefulness whereas GABAergic and serotonergic neurotransmission promotes sleep.23–42.

Sleep/wake disturbances are a major public health concern and affect 6% to 30% of the general adult population worldwide.43 Sleep disturbances have numerous deleterious effects, including impaired cognition, reduced immunity, and elevated risks of cancer and heart disease.44–46. Perturbations of sleep/wake states are also associated with various neuropsychiatric disorders, such as major depression, substance abuse, and anxiety disorders.47. Increasing evidence suggests that several co-morbid pathologies found in neuropsychiatric disorders arise from a destabilization of sleep mechanisms.48. Elucidating the neurobiological substrates of sleep and wakefulness could not only reveal how the brain orchestrates one of the most striking transitions in behavior and physiology, but could also provide a mechanistic framework for improved intervention with therapeutic purposes.

Neuronal circuitry underlying the regulation of sleep/wake states

In mammals, birds, and reptiles, there are three general states of vigilance: wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. The different states can be distinguished using electroencephalogram (EEG) and electromyogram recordings, which measure global cortical and muscular activity, respectively. The three vigilance states also differ in various physiological parameters, such as thermoregulation, brain metabolism, and breathing.48. How does the mammalian brain control sleep and wake states? von Economo,49, Ranson,50, and Moruzzi and Magoun51 were among the first to examine a neuronal mechanism for sleep/wake regulation. Many subsequent studies have contributed to the identification of distinct neuronal populations across the brain that participate in sleep/wake regulation. It is currently understood that sleep/wake states are regulated by complex interactions between several neuronal populations, which show robust arousal state–dependent alterations in neuronal activity.52. Subcortical neuromodulatory neurons in the brainstem, midbrain, hypothalamus, and basal forebrain (BF) send widespread projections across the brain and interact with each other, the thalamus, and the cortex to drive behavioral, physiological, and electrocortical sleep/wake states.53,54. In this review, we will focus mainly on wake-promoting populations. Key components of the arousal system are the following:

1) Monoaminergic neurons, including the noradrenergic locus coeruleus (LC)55–57, dopaminergic ventral tegmental area (VTA)58,59, and serotonergic dorsal raphe nucleus (DRN)60–62, and histaminergic tuberomammillary nucleus (TMN)63–65 neurons.

2) Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT)57,66 and BF67,68.

3) Hypocretinergic (Hcrt, also known as orexinergic) neurons of the lateral hypothalamus (LH)69–71.

In each of these nuclei reside additional populations of GABAergic and glutamatergic neurons that have been shown to participate, or may participate, in sleep/wake regulation (for example,72). A balance between the wake-promoting and the sleep-promoting neurons—such as the GABAergic neurons of the ventrolateral preoptic area and the median preoptic area66–69, the GABAergic neurons of the parafacial zone72,73, and melanin-concentrating hormone neurons of the LH72—has been hypothesized as a theoretical model to understand sleep-to-wake transitions.74 According to this model, the mutually inhibitory interactions of wake-promoting and sleep-promoting neurons produce a state similar to a flip-flop switch in an electrical circuit.75

From a functional dynamic perspective, one could identify neuronal circuits involved in the initiation, maintenance, and structural organization of the three vigilance states. With traditional strategies, such as brain lesions, pharmacological interventions, and animal knockout models, it was very difficult to address the causal role of specific populations in the regulation of the different components of vigilance states because they lacked both cellular specificity and temporal resolution. With the application of in vivo optogenetic76 and chemogenetic tools for cell type–specific neural manipulations and genetically encoded calcium indicators for neural activity recordings, it is now possible to functionally interrogate the specific roles of, and interactions between, genetically defined neuronal populations across the brain in sleep/wake regulation.

Initiation of vigilance states

Animals typically wake up rapidly—an adaptive response since they may need to flee or defend themselves when awakened. The transition between sleep and wakefulness has been hypothesized to involve fast glutamate transmission and wake-promoting neuromodulators.11,12,77. Optogenetic manipulations have demonstrated that increasing activity in noradrenergic LC13, dopaminergic VTA14, and cholnergic BF78–80 neurons during sleep can rapidly
initiate wakefulness. Hcrt LH neurons have been hypothesized to regulate sleep-to-wake transitions based on homeostatic and environmental conditions. Hcrt LH neurons are sensitive to diverse peripheral and central signals associated with nutritional state, such as low glucose (for example, \cite{38,39}), and optogenetic stimulation of Hcrt LH neurons during NREM sleep increases the probability for a sleep-to-wake transition\cite{41} only under low sleep pressure\cite{42}. Cholinergic neurons have long been suggested to play a critical role in cortical activation during both wakefulness\cite{43} and REM sleep\cite{44}. Optogenetic stimulation of cholinergic BF neurons during NREM sleep can elicit a transition to either wakefulness or REM sleep\cite{45}, whereas optogenetic inhibition prolongs NREM sleep\cite{46}. These findings suggest that BF cholinergic neurons have an important role in NREM sleep termination, allowing the brain to transition to either wake or REM sleep\cite{47}.

Transitions from wakefulness to sleep are not instantaneous and can take a few seconds to minutes\cite{48}. With the initiation of NREM sleep, the EEG progressively changes from high-frequency, low-voltage waves characteristic of wakefulness, to high-voltage, slower waves designating NREM sleep\cite{49,50}. Although the physiological and electrophysiological characteristics preceding and accompanying wake-to-NREM sleep transitions have been well studied\cite{51,52,53}, relatively little is known about the neuronal underpinnings of naturalistic behaviors that precede sleep. Animals typically display species-specific behaviors prior to sleep\cite{54,55}; they will search for a safe place, may build a nest, assume a specific body posture\cite{56,57}, and engage in other behaviors, such as grooming and drinking\cite{58,59}. A recent study demonstrated that mice drink prior to sleep in anticipation to the sleep period and not as a response to an immediate physiological need\cite{60}. Moreover, drinking prior to sleep is controlled by circadian output from the central clock in the suprachiasmatic nucleus to the organum vasculosum lamina terminalis neurons\cite{61}. We have recently identified a neuronal substrate for sleep-preparatory nest-building\cite{62}. We demonstrated that chemogenetic inhibition of VTA dopaminergic neurons promotes sleep, only in the presence of a nest. In the absence of a nest, the inhibition of VTA dopaminergic neurons first promoted nest-building and only later sleep. Taken together, these findings suggest that electrocortical sleep is coupled with preceding behavioral manifestations, yet the role of this preparatory phase in sleep structure and quality remains to be elucidated.

Maintenance of vigilance states

During a normal sleep phase, animals continuously alternate between short periods of wakefulness, NREM sleep, and REM sleep. Typically, individuals enter NREM sleep from wakefulness and transition from NREM to either REM sleep or wakefulness. In humans, each cycle lasts around 90 minutes, whereas in rodents the cycles are shorter, lasting only several minutes. Once wakefulness, NREM sleep, or REM sleep is initiated, it is maintained for the duration necessary to fulfill its physiological purposes. How is the maintenance of vigilance states attained? One potential mechanism is continuous, tonic, or phasic activity in a certain neuronal population, such as histaminergic TMN neurons (for wakefulness). Activity in these neurons could directly support the maintenance of specific states, or inhibit the initiation of other vigilance states, by specific downstream projections. Another possibility, yet not mutually exclusive, is irregular phasic activity in a neuronal ensemble that initiates and supports a range of behavioral and physiological characteristics via various downstream targets. For example, Hcrt LH neurons are phasically active only during the transitions between sleep and wakefulness and during wakefulness when environmental conditions change\cite{63,64}. This “kickstart” pattern of activity is likely widespread in arousal centers as it allows more adaptive responses to changing environments.

The different arousal systems vary in their capacity to promote wakefulness, and it has been hypothesized that the different neuronal populations have distinct roles in supporting arousal under specific environmental conditions\cite{65}. For example, histaminergic TMN neurons have an important role in maintaining arousal in novel environments\cite{66,67}. Noradrenergic LC neurons promote attention and cognition during wakefulness\cite{68} and have a pivotal role in supporting arousal in threatening circumstances\cite{69,70}. Dopaminergic VTA neurons have a crucial role in wake maintenance in the face of various motivational processes, including mate- and food-seeking and predator evading\cite{71}. Serotonergic DRN neurons have been suggested to support quiet wakefulness, possibly preceding sleep initiation\cite{72,73,74}. A distinct role for each wake-related neuronal population in promoting distinct forms of arousal under specific environmental conditions could clarify the relatively surprising redundancy in wake-promoting circuits\cite{75,76}.

It is important to note that specific sleep/wake regulatory populations could have a more complex role than supporting one vigilance state. Histaminergic TMN neurons that have long been implicated in wake maintenance via histamine neurotransmission\cite{77} also release GABA, which rather seems to promote sleep\cite{78}, at least via some projections. The co-transmission of histamine and GABA could serve as a break to the wake-promoting effects of histamine\cite{79}. It would be of interest for future studies to further determine the importance of co-transmission in additional sleep/wake neuronal populations and the precise role the neuromodulatory substrates by themselves play in sleep/wake regulation.

Structural organization of vigilance states

Another important feature of sleep/wake regulatory circuits is maintaining the boundaries between vigilance states. A failure to maintain these boundaries could have severe consequences for survival if, for instance, a predator defense behavior were interrupted by an unexpected transition to sleep. In addition, the restorative and memory consolidation functions of sleep are dependent upon proper consolidation of sleep, as demonstrated by the deleterious effects of sleep fragmentation\cite{80,81}.

The daily organization of sleep and wake periods is orchestrated by circadian, homeostatic, and motivational processes. The circadian clock (about 24 hours long) synchronizes sleep to an appropriate time of day (that is, night in diurnal animals and day in nocturnal animals). The homeostatic process is responsible for compensating sleep loss following sleep debt. In addition, environmental circumstances and internal needs, here referred to as “motivational processes”, can powerfully affect sleep/wake states.
How do regulatory circuits maintain the boundaries between the vigilance states? The hypocretin system is hypothesized to orchestrate the structural organization of sleep/wake states\(^{34,106}\). The hypocretins are two neuropeptides, Hcrt-1 and Hcrt-2, produced from the pre-pro-hypocretin precursor, which are expressed solely in a glutamatergic neuronal population in the LH. Hcrt neurons project to diverse areas of the central nervous system, including major sleep/wake nuclei, such as the LC, TMN, DRN, PPT, LDT, and VTA\(^{62,07}\), that express the Hcrt receptors, Hcrt-R1 and Hcrt-R2\(^{08}\). In vitro electrophysiology and histological studies demonstrate that Hcrt neurons are activated by neurotransmitters that promote arousal, including corticotropin-releasing factor\(^{09}\) and thyrotropin-releasing hormone\(^{10}\), and inhibited by sleep-promoting substances, including GABA\(^{11}\) and adenosine\(^{12}\).

Hcrt LH neurons are essential for the stability of arousal and malfunction of the Hcrt network fragments sleep and wake states. The loss of Hcrt neurons, or its receptors, in rodents\(^{113–115}\), canines\(^{116}\), and humans\(^{117–119}\) is associated with narcolepsy with cataplexy, a neurological disorder characterized by an inability to control the boundaries between sleep/wake states. In narcoleptics, periods of wakefulness are interrupted by unexpected sleep episodes, and REM-like episodes coexist with conscious wakefulness\(^{120}\). Similarly, Hcrt knockout or Hcrt-R2-deficient mice show increased arousal state-transitions but do not vary in the total daily duration of sleep and wake states from control animals. Lastly, optogenetic stimulation of Hcrt LH neurons during sleep, in rodents, increases the probability for a sleep-to-wake transition\(^{110}\). Together, these findings suggest that under physiological conditions Hcrt LH neurons are important in maintaining the boundaries between sleep/wake states.

It is also important to note that the three vigilant states are not always mutually exclusive, and different dissociated states exist in humans as well as other animals. Slow-wave sleep can occur locally in cortical areas\(^{21–23}\) as well as in individual neurons while animals are behaviorally awake\(^{24}\). In addition, unihemispheric slow-wave sleep (USWS) has been documented in a number of aquatic mammals\(^{125}\) and birds\(^{36}\). During USWS, the eye contralateral to the awake hemisphere is open and could monitor the environment. This plasticity could permit birds to defend themselves from predators or continuously fly during long migration periods and aquatic mammals to breathe or take care of their young during critical periods\(^{126}\).

Conclusions and perspectives

During the last decade, major advances have been made in characterizing the neuronal populations participating in sleep/wake regulation. However, it is still unclear how the brain integrates information from diverse populations to control overt arousal. Are the different arousal populations promoting wakefulness in different ecological contexts? How does the brain prioritize arousal based on environmental circumstances and homeostatic needs? In addition, future studies should further examine the role of distinct subpopulations of GABAergic, glutamatergic, and peptidergic neurons in sleep/wake regulatory nuclei.

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by the Edmond and Lily Safra Center of Brain Science and Katharine McCormick postdoctoral fellowships (to AE-R); the National Institutes of Health grants RO1-MH087592, RO1-MH102638, and RO1-AG04767 (to LdL); a Brain and Behavior Research Foundation (NARSAD) grant (to LdL); and the US Israel Binational Science Foundation (LdL).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

We thank William J. Giardino, Suszie Tyree and the referees for their helpful comments on this manuscript.
18(15): R670–R679. PubMed Abstract | Publisher Full Text | Free Full Text
13. Saper CB, Fuller PM, Pedersen NP, et al.: Sleep state switching. Neuron. 2010; 68(6): 1023–42. PubMed Abstract | Publisher Full Text | Free Full Text
14. Borbély AA, Achermann P: Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999; 14(6): 557–568. PubMed Abstract | Publisher Full Text | Free Full Text
15. Borbély AA: Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res. 1977; 124(3): 457–71. PubMed Abstract | Publisher Full Text | Free Full Text
16. Danguir J, Nicolaidis S: The involvement of dopamine in the modulation of sleep. Physiol Behav. 1979; 22(2): 335–40. PubMed Abstract | Publisher Full Text | Free Full Text
17. Dewasmes G, Duchamp C, Minaire Y: Sleep changes in fasting rats. Physiol Behav. 1989; 46(2): 179–84. PubMed Abstract | Publisher Full Text | Free Full Text
18. Jacobs BL, McGinty DJ: Effects of food deprivation on sleep and wakefulness in the rat. Exp Neurol. 1971; 30(2): 212–22. PubMed Abstract | Publisher Full Text | Free Full Text
19. Lesku JA, Rattenborg NC, Valcu M, et al.: Sleep changes in fasting rats. J Biol Rhythms. 1999; 18(2): 264–72. PubMed Abstract | Publisher Full Text | Free Full Text
20. Lesku JA, Bark RJ, Martinez-Gonzalez D, et al.: Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus). Behav Brain Res. 2008; 189(2): 298–305. PubMed Abstract | Publisher Full Text | Free Full Text
21. Lesku JA, Rattenborg NC, Valcu M, et al.: Adaptive sleep loss in polygenic pectoral sandpipers. Science. 2012; 337(6102): 1654–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation
22. Gauthier-Clerc M, Tamisier A, Cezilly F: Sleep-vigilance trade-off in Green-winged Teals (Anas crecca crecca). Can J Zool. 1998; 76(12): 2214–8. PubMed Abstract | Publisher Full Text | Free Full Text
23. Dominguez J: Sleeping and vigilance in Black-tailed Godwit. J Ethol. 2003; 21(1): 57–60. PubMed Abstract | Publisher Full Text | Free Full Text
24. Lesku JA, Rattenborg NC, Valcu M, et al.: Adaptive sleep loss in polygenic pectoral sandpipers. Science. 2012; 337(6102): 1654–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation
25. Cirelli C: The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci. 2009; 10(8): 549–60. PubMed Abstract | Publisher Full Text | Free Full Text
26. Sehgal A, Mignot E: Genetics of sleep and sleep disorders. Cell. 2011; 146(2): 194–207. PubMed Abstract | Publisher Full Text | Free Full Text
27. Greenspan RJ, Tonini G, Cirelli C, et al.: Sleep and the fruit fly. Trends Neurosci. 2001; 24(3): 142–5. PubMed Abstract | Publisher Full Text | Free Full Text
28. Andretic R, van Swinderen B, Greenspan RJ: Dopaminergic modulation of arousal in Drosophila. Curr Biol. 2005; 15(13): 1165–75. PubMed Abstract | Publisher Full Text | Free Full Text
29. Kume K, Kuma S, Park SK, et al.: Dopamine is a regulator of arousal in the fruit fly. Neuron. 2005; 25(32): 7377–84. PubMed Abstract | Publisher Full Text | F1000 Recommendation
30. Pimentel D, Donlea JM, Talbot CB, et al.: Operation of a homeostatic sleep switch. Nature. 2016; 536(7616): 333–7. PubMed Abstract | Publisher Full Text | Free Full Text
31. Eban-Rothschild A, Rothschild G, Giardino WJ, et al.: VTA dopaminergic neurons regulate ethologically relevant sleepwake behaviors. Nat Neurosci. 2016; 19(10): 1356–69. PubMed Abstract | Publisher Full Text | Free Full Text
32. Dahan L, Astier B, Vautrelle N, et al.: Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007; 3(3 Suppl): S7–10. PubMed Abstract | Publisher Full Text | Free Full Text
33. Mori T, Sehgal A: A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol. 2006; 16(7): 1051–62. PubMed Abstract | Publisher Full Text | Free Full Text
34. Roth T: Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007; 3(3 Suppl): S7–10. PubMed Abstract | Publisher Full Text | Free Full Text
35. Yuan Q, Joiner WJ, Sehgal A: A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol. 2006; 16(7): 1051–62. PubMed Abstract | Publisher Full Text | Free Full Text
36. Jouve M: The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972; 64: 166–307. PubMed Abstract
37. Takahashi K, KayaYA, Lin JS, et al.: Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010; 169(3): 1115–26. PubMed Abstract | Publisher Full Text | Free Full Text
38. Jouve M: The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972; 64: 166–307. PubMed Abstract
39. Moruzzi G, Magoun HW: Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949; (4/1): 455–73. PubMed Abstract | Publisher Full Text | Free Full Text
40. Luppi PH, Peyron C, Fort P: Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med Rev. 2016; pii: S1087-0796(16)00025-3. PubMed Abstract | Publisher Full Text | Free Full Text
41. Jones BE: Arousal systems. Front Biosci. 2003; 8: e438–451. PubMed Abstract | Publisher Full Text | Free Full Text
42. Jouvet M: Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010; 169(3): 1115–26. PubMed Abstract | Publisher Full Text | Free Full Text
43. Moruzzi G, Magoun HW: Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949; (4/1): 455–73. PubMed Abstract | Publisher Full Text | Free Full Text
44. Jouve M: The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972; 64: 166–307. PubMed Abstract
45. Moruzzi G, Magoun HW: Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949; (4/1): 455–73. PubMed Abstract | Publisher Full Text | Free Full Text
46. Takahashi K, KayaYA, Lin JS, et al.: Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010; 169(3): 1115–26. PubMed Abstract | Publisher Full Text | Free Full Text
47. Lu J, Johu TC, Saper CB, et al.: Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci. 2006; 26(11): 193–202. PubMed Abstract | Publisher Full Text | Free Full Text
48. Guzmán-Marín R, Alam MN, Szymusiak R, et al.: Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming. Brain Res. 2000; 875(1–2): 23–34. PubMed Abstract | Publisher Full Text | Free Full Text
49. Sakai K, Crochet S: Serotonergic dorsal raphe neurons cease firing by disinhibition during paradoxical sleep. Neuroreport. 2000; 11(14): 3237–41. PubMed Abstract | Publisher Full Text | Free Full Text
50. Takahashi K, Lin JS, Sakai K: Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006; 26(40): 10292–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation
51. el Mansari M, Sakai K, Jouvet M: Unitary characteristics of presumptive cholinergic terminal neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res. 1989; 76(3): 519–29. PubMed Abstract | Publisher Full Text | Free Full Text
52. Broussolle S, Jones BE: Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegumentum of urethane-anesthetized rats. J Neurosci. 2009; 29(14): 4664–74. PubMed Abstract | Publisher Full Text | Free Full Text
53. Cape CG, Jones BE: Effects of nicotine against versus procarbazine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci. 2000; 12(6): 2166–84. PubMed Abstract | Publisher Full Text | Free Full Text
54. Kaur S, Junek A, Black MA, et al.: Effects of ibotenate and 192G-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J Neurosci. 2006; 26(27): 491–504. PubMed Abstract | Publisher Full Text | Free Full Text
62. Peyron C, Tighe DK, van den Pol AN, et al.: Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998; 18(3): 9996–10015. Published Abstract

63. Milejkovský BY, Kiyashchenko LJ, Siegel JM: Behavioral correlates of activity in identified orexin/hypocretin neurons. Neuron. 2005; 46(5): 787–98. Published Abstract | Publisher Full Text | F1000 Recommendation

64. Lee MG, Hassani OK, Jones BE: Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005; 25(28): 6716–20. Published Abstract | Publisher Full Text

65. Anaclet C, Pedersen NP, Ferrari L, et al.: Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015; 6: 8744. Published Abstract | Publisher Full Text | Free Full Text

66. Alam MA, Kumar S, McGinty D, et al.: Activity dynamics underlying naturalistic behavior. Rev Neurosci. 2015; 11(2): 287–99. Published Abstract | Publisher Full Text | Free Full Text

67. Shern JF, Shiromani PJ, McCarley RW, et al.: Activation of ventrolateral preoptic neurons during sleep. Science. 1998; 271(5246): 216–9. Published Abstract | Publisher Full Text | Free Full Text

68. John J, Kumar VH: Effect of NMDA lesion of the mediod preoptic region on sleep and other functions. Sleep. 1998; 21(6): 587–598. Published Abstract | Publisher Full Text | Free Full Text

69. Lu J, Greco MA, Shiromani P, et al.: Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci. 2000; 20(16): 3830–3842. Published Abstract

70. Batini C, Moruzzi G, Palestini M, et al.: Presistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science. 1998; 128(3314): 30–2. Published Abstract | Publisher Full Text | Free Full Text

71. Tye KM, Deisseroth K: Modulation of locus coeruleus neurons. J Neurosci. 2014; 11(2): 287–99. Published Abstract | Publisher Full Text | Free Full Text

72. Mileykovskiy BY, Kiyashchenko LI, Siegel JM: Effect of NMDA lesion of the medial preoptic neurons on sleep and other functions. Sleep. 2004; 27(7): 1236–45. Published Abstract | Publisher Full Text | Free Full Text

73. Carter ME, Yizhar O, Chikahisa S, et al.: Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2015; 18(11): 1641–7. Published Abstract | Publisher Full Text | Free Full Text

74. Carte ME, Yizhar O, Chikahisa S, et al.: Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2015; 18(11): 1641–7. Published Abstract | Publisher Full Text | Free Full Text

75. Sutcliffe JG, de Lecea L: Neural activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol. 2008; 89(10): 5143–50. Published Abstract | Publisher Full Text | Free Full Text

76. Rao Y, Lu M, Ge F, et al.: Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin-concentrating hormone in the lateral hypothalamus. J Neurosci. 2008; 28(37): 9101–10. Published Abstract | Publisher Full Text | Free Full Text
109. Winsky-Sommerer R, Yamanaka A, Diano S, et al.: Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004; 24(50): 11439–48. PubMed Abstract | Publisher Full Text | F1000 Recommendation

110. Hara J, Gerashchenko D, Wisor JP, et al.: Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci. 2009; 29(12): 3705–14. PubMed Abstract | Publisher Full Text | Free Full Text

111. Xie X, Crowder TL, Yamamura A, et al.: GABA receptor-mediated modulation of hypocretin/orexin neurons in mouse hypothalamus. J Physiol. 2006; 574(Pt 2): 399–414. PubMed Abstract | Publisher Full Text | Free Full Text

112. Liu ZW, Gao XB: Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol. 2007; 97(1): 837–48. PubMed Abstract | Publisher Full Text | Free Full Text

113. Mochizuki T, Arrigoni E, Marcus JN, et al.: Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A. 2011; 108(11): 4471–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

114. Mochizuki T, Crocker A, McCormack S, et al.: Behavioral state instability in orexin knock-out mice. J Neurosci. 2004; 24(36): 6291–300. PubMed Abstract | Publisher Full Text

115. Chemelli RM, Willie JT, Sinton CM, et al.: Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98(4): 437–51. PubMed Abstract | Publisher Full Text

116. Lin L, Faraco J, Li R, et al.: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999; 98(3): 365–76. PubMed Abstract | Publisher Full Text

117. Nishino S, Riley B, Overeem S, et al.: Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000; 355(9197): 39–40. PubMed Abstract | Publisher Full Text

118. Peyron C, Faraco J, Rogers W, et al.: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000; 6(8): 991–7. PubMed Abstract | Publisher Full Text | Free Full Text

119. Thannickal TC, Moore RY, Niemhuis R, et al.: Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000; 27(3): 469–74. PubMed Abstract | Publisher Full Text

120. de Lecea L: Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci. 2015; 25: 367–78. PubMed Abstract | Publisher Full Text | Free Full Text

121. Huber R, Ghiardi MF, Massimirs M, et al.: Local sleep and learning. Nature. 2004; 430(6995): 78–81. PubMed Abstract | Publisher Full Text | F1000 Recommendation

122. Krueger JM, Rector DM, Roy S, et al.: Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008; 9(12): 910–9. PubMed Abstract | Publisher Full Text | Free Full Text

123. Nir Y, Staba RJ, Andillon T, et al.: Regional slow waves and spindles in human sleep. Neuron. 2011; 70(1): 153–69. PubMed Abstract | Publisher Full Text | Free Full Text

124. Vyazovskiy VV, Olcese U, Hanlon EC, et al.: Local sleep in awake rats. Nature. 2011; 472(7344): 443–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

125. Lyamin OI, Manger PR, Ridgway SH, et al.: Cetacean sleep: an unusual form of mammalian sleep. Neurosci Biobehav Rev. 2008; 32(8): 1451–64. PubMed Abstract | Publisher Full Text

126. Rattenborg NC, Amlaner CJ, Lima SL: Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev. 2000; 24(8): 817–42. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. Tononi Guilio, University of Wisconsin-Madison, Madison, WI, USA
 Competing Interests: No competing interests were disclosed.

1. Jasna Saponjic, University of Belgrade, Belgrade, Serbia
 Competing Interests: No competing interests were disclosed.