A Critical Overview on the Extraction of Bioactive Compounds from Phaleria macrocarpa (Thymelaceae)

Alara OR* and Olalere OA

Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Abstract

Medicinal importance of many plants has drawn the attention of researchers to focus on unveiling their therapeutic molecules. Approximately, 25% of the commonly used medicines contain compounds isolated from plants. The World Health Organization has highlighted that many plants in the world have been discovered to possess high medicinal value. The presence of large amounts of polysaccharides, polyphenols, hydrosoluble tannins and other secondary metabolites makes these plants to be medicinal. Moreover, the plants may contain simple phenolic compounds, phenolic acids, coumarin, flavonoids, stilbenes, hydrosoluble and condensed tannins, lignin and lignans. The phenolic compounds and flavonoids in particular, are ubiquitous in plants and therefore, represent an important component of a normal human diet. Hence, this review tends to elucidate the extraction of bioactive compounds from Mahkota Dewa (Phaleria macrocarpa) and the extraction methods.

Keywords: Maceration; Microwave-assisted extraction; Subcritical water extraction; Supercritical-fluid extraction; Phaleria macrocarpa

Introduction

Mahkota Dewa illustrates in Figure 1 scientifically known as Phaleria macrocarpa is one of the important medicinal plants. This plant is commonly known as God’s crown [1], it originates from Papua Island located in the far east of the Indonesian archipelago, Indonesia and grows in tropical areas. Phaleria macrocarpa that belongs to Thymelaceae family has been traditionally used as an indispensable medicinal plant for centuries in Malaysia and Indonesia [2]. The Phaleria macrocarpa trees are thick, evergreen and grow in a tropical region up to 1,200 meters above sea level. The tree height ranges from 1 to 18 metres. The leaves are green and tapering with length and width ranging from 7-10 cm and 3-5 cm respectively. The flowers are either in green or maroon. The eclipse shaped fruits change from green to red when ripening. The diameter of the fruit is 3 cm and its grows on the trunks and branches of trees, and each fruit has 1 to 2 brown, ovoid and anatropous seeds [3].

The four major parts of Phaleria macrocarpa that are mostly enriched in medicine are: the stems, the leaves, the egg shell of the seeds and the fruits. The stems has been used in treating bone cancer [4], the leaves has been used for impotence, blood diseases, allergies, diabetes mellitus and tumor treatments [5,6]. Likewise, the egg shell of seeds are used for breast cancer, cervix cancer, lung diseases, liver and heart diseases treatments [7] and the fruits consisting of alkaloid, saponin, flavonoid and polyphenol and has been used as antioxidants [3].

Phaleria macrocarpa has a long history of ethnopharmacological usage. Due to the antihistamine [6], anti-oxidation [8] and antitumor effects in the plant, the stems, leaves, and fruits have been used as medicine. Empirically, Phaleria macrocarpa can be used to treat cancer [5], impotence, haemorrhoids, Diabetes mellitus [6], allergies, liver and heart diseases, kidney disorders, blood diseases, rheumatism, high blood pressure, stroke, migraine, various skin diseases, acne and so on [6,9,10].

Phaleria macrocarpa fruits can prevent arteriosclerosis and reduced cholesterol level in Japanese quails and in primary culture of rat hepatocytes [11,12]. Likewise, studies has been conducted on in-vivo and in-vitro hypercholesterolemia model to determine the effects of Phaleria macrocarpa fruit on blood lipid profile (total cholesterol, triglyceride, high density lipoprotein and low density lipoprotein) as well as LDL receptor, PCSK9 protein and mRNA expression [13]. Meanwhile, the work performed by Press [14] on DLBS1245, a Phaleria macrocarpa standardized extract of fresh fruit, revealed the anticancer activities of this plant. In the study as further, DLBS1425 showed an inhibition of proliferation on breast cancer cells, MDAMB-231 and MCF-7 cells. In addition, DLBS1425 also acts as an anti-inflammation and anti-angiogenesis [14]. Phaleria macrocarpa fruits and seeds had shown the existence of important biological activities in the extract in term of anti-microbial, anti-inflammatory and its antioxidant activity [8,15].

Phaleria macrocarpa has shown a potential value as an alternative medicine for improving the sexual strength in male adult Spraque Dawley rats by increasing the level of testosterone and libido behaviour which has suggested that Phaleria macrocarpa can be used in man’s fertility improvement [16]. Phaleria macrocarpa (Schef.) Boerl has been studied to posses anti-diabetic activity that inhibit afglukosidase...
Discussion

Table 1 shows different bioactive compounds isolated from Phaleria macrocarpa which include phenolic compounds [30] (luteonin, apigenin, tangeritin, quercetin, kaemferol, myricetin, isorhamnetin, pachypodol, hederetin, naringenin, eriodictyol, catechins and epicatechins, genistein, daidzein, glycitein, cyanidin, delphinidin, malvidin, pelargonidin,peonidin, petunidin, aurones, xanthones, and condensed tannins); terpenes (isoprenoids) compounds [28] (29-norcucurbitacin, deacetyl fevicordin A, fevicordin A glucoside, and fevicordin D glucoside); alkaloid compounds [31]; and benzophenone compounds (Makoside A [10], 4,5-dihydroxy-4´-methoxybenzophenone-3-O-glucoside [3], 4´-6-dihydroxy-4-methoxybenzophenone-2-O-glucoside [1], 3,4,5-trihydroxy-4´-methoxybenzophenone-3-O-β-D-glucoside [22], Phalerin [19], dodecenoic acid, palmitic acid, ethyl stearate, sucrose, vasorelaxant icariside C3, and mangiferin [10,22]).

Results

Table 1 and Figure 2 show the bioactive compounds that had been extracted from Phaleria macrocarpa which have medicinal values and their percentages respectively [19-23]. Table 2 reviews different methods of extraction and solvents that have been used in the extraction of bioactive compounds from Phaleria macrocarpa [24-29].

Part of Phaleria macrocarpa	Bioactive compounds present	Chemical Structure	References
Nut shell, fruit	2,4,6-trihydroxy-4-methoxy-benzophenone-2-O-β-D-glucoside (Mahkoside A)	![Chemical Structure](image1)	[10,21,23]
	2,4,6-trihydroxy-4-methoxy-6''-acetyl-benzophenone-2-O-β-D-glucoside (Mahkoside B).	![Chemical Structure](image2)	
Fruit	Magniferin	![Chemical Structure](image3)	[21,22]
Leaf	4,5-dihydroxy-4'-methoxybenzophenone-3-O-β-D-glucoside (Phalerin)	![Chemical Structure](image4)	[20,24]
Leaf	2,6,4'-trihydroxy-4'-methoxybenzophenone	![Chemical Structure](image5)	[23]
Fruit	icariside C₃	![Chemical Structure](image6)	[19]
Seed	fevicordin A	![Chemical Structure](image7)	[24]

Table 1: Bioactive compounds in Phaleria macrocarpa and their chemical structures.
Table 2: Methods of extraction, solvents used and the yield of *Phaleria macrocarpa*.

Part of *Phaleria macrocarpa*	Methods of Extraction	Solvent	Bioactive compound/Extraction Yield	References
Nut shell	Refluxing	ethanol	Mahkoside A (206 mg)	[18]
Fruit	Subcritical water		Magniferin 21.7 mg/g	
	Sohlex		24.6 mg/g	
	Room temperature		12.1 mg/g	
	Heat of reflux		18.7 mg/g	
	Supercritical		23.4 mg/g	
	carbon dioxide		7.4 mg/g	
	extraction		15.1 mg/g	
Fruit	Boiling	Water	13%	[13]
Seed	Solvent	n-hexane	55.32 g/100 g of dry sample	[2]
Fruit	Supercritical carbon dioxide	CO2	52.9 g per 100 g of dry sample	[25]
Fruit	Solvent	Methanol	0.3234 μmol DPPH/mg dry basis	[3]
Fruit	Liquid-liquid	Ethyl acetate	1736.989 μg/L of E2.2 compound	[26]
Fruit	Maceration	Ethyl acetate	15.4 g	[19]
		n-hexane	96.0 g	[19]
Fruit	Maceration	Ethyl acetate	42 g	[29]
Fruit	Maceration	Methanol	10 g	[8]
Fruit	Sohlex	Petroleum ether	3.06%	[5]
		Methanol	18.5%	[5]
		Water	6.08%	[5]

Furthermore, different extraction techniques used in the isolation of *Phaleria macrocarpa* bioactive compounds include the solvent extraction, pressurized liquid extraction, subcritical water extraction, supercritical fluid extraction, microwave-assisted extraction, ultrasonic-assisted extraction, enzyme-assisted extraction and instant controlled pressure drop-assisted extraction as shown in Table 2. Likewise, different solvents been used are water, ethanol, methanol, ethyl acetate, dichloromethane, hexane, chloroform and carbon(IV)oxide. These gave different extraction yields. From the study conducted so far, it can be clearly seen that methanol gave the highest yields as obtainable in Table 2. However, the yield from methanol had been considered as highly toxic and can therefore not be considered as generally recognised as safe (GRAS) solvent [20]. The methanol extract of *Phaleria macrocarpa* seeds exhibited the highest yields of total flavoid content, total phenolics and flavonoid contents [8].

Conclusion

In the extraction of bioactive compounds from *Phaleria macrocarpa*, the choice of extraction method is an essential factor in order to achieve quality and higher yields. During the preparation of *Phaleria macrocarpa*, the process such as grinding and drying can affected the efficiency and phytochemical constituents of the final extracts. In conclusion, there is no specific extraction methods that is the ideal method but each extraction procedures has its own uniqueness. However, the most suitable methods are microwave-assisted, hydrodistillation, maceration, supercritical fluid extraction and subcritical water extraction but supercritical fluid extraction gives the highest yield of extracts.

Acknowledgements

I acknowledge Universiti Malaysia Pahang for their contributions towards the success of this work.
References

1. Hendra R, Ahmad S, Sukari A, Shukor MY (2011) Flavonoid Analyses and Antimicrobial Activity of Various Parts of Phaleria macrocarpa (Scheff.) Boerl Fruit. Int J Mol Sci 12: 3422-3431.

2. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Sahena F, et al. (2014) Optimization of oil yield of Phaleria macrocarpa seed using response surface methodology and its fatty acids constituents. Ind Crop Prod 35: 405-412.

3. Andrean D, Prasetyo S, Kristijarti AP, Hudaya T (2014) The Extraction and Activity Test of Bioactive Compounds in Phaleria macrocarpa as Antioxidants. Procedia Chem 9: 94-101.

4. Lee SY, Mediani A, Nur Ashikin AH, Azliana ABS, Abas F (2014) Antioxidant and α-glucosidase inhibitory activities of the leaf and stem of selected traditional medicinal plants. International Food Research Journal 21: 165-172.

5. Ali RB, Atangweho U, Kuar N, Mohamed EAH, Mohamed AJ, et al. (2012) Hypoglycemic and anti-hyperglycemic study of Phaleria macrocarpa fruits pericarp. Journal of Medicinal Plants Research 6: 565.

6. Govindappa M (2015) Diabetes and metabolism: A review on role of plant(s) extracts and its phytochemicals for the management of Diabetes. Jour of Diab and Metab 6: 565.

7. Katrin E (2015) Cytotoxic activity of some fractions from ethyl acetate extract of the bark of Mahkota Dewa (Phaleria macrocarpa). p: 2.

8. Lay MM, Karsani SA, Banisalim B, Mohajer S, Abd Malek SN (2014) Antioxidants, phytochemicals, and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl seeds. Biomed Res Int 2014: 13.

9. Muhtadi R, Hendriani R, Mustarichie, Padjadjaran U (2013) Pharmacological screening of various indonesian herbs potentially used as antiabiotic. Int. Res J Pharm. App Sci 3: 90-95.

10. Zhang YB, Xu XJ, Liu H (2006) Chemical constituents from Mahkota Dewa. J Gen Med 14: 152.

11. Parhizkar S, Zainudin CZ, Dollah MA (2013) Effect of Phaleria macrocarpa on sexual function of rats. Avicenna J Phytomed 3: 371-377.

12. Rinayanti A, Radji M, Abdul M, Suyatna FD (2013) Screening Angiotensin Converting Enzyme (ACE) inhibitor activity of anthyptensive medicinal plants from Indonesia. International Journal of Pharmacy Teaching & Practices 4: 527.

13. Zhang S, Zhang Q, Zhao W, Zhang X, Zhang Q, et al. (2012) Isolation, characterization and cytotoxic activity of benzophenone glucopyranosides from Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl). Bioorg Med Chem Lett 22: 6862-6866.

14. Oshimi S, Zaima K, Matsuou Y, Hirasawa Y, Izuka T, et al. (2008) Studies on the constituents from the fruits of Phaleria macrocarpa. J Nat Med 62: 207-210.

15. Kim W, Veriansyah B, Lee Y, Kim J, Kim J (2010) Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. J Ind Eng Chem 26: 425-430.

16. Pin KY, Fariza IA, Fadzureena IU, Zunoliza A, Luqman Chuaa A (2012) Anti-inflammatory activity of the major compound from methanol extract of Phaleria macrocarpa leaves. Journal of Applied Sciences 12: 1195-1198.

17. Rao KV (2005) Phaleria, a new benzophenonic glucoside isolated from the methanolic extract of Mahkota Dewa (Phaleria macrocarpa (Scheff)). Boerl leaves 16: 51-57.

18. Matijeshi J, Pranowo HD, Anwar C (2011) Antioxidant activity of 2, 6, 4-A'-trithyrox-4- methoxy benzophenone from ethyl acetate extract of leaves of Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.). J Pharm. Pharmacol 11: 180-185.

19. Levita J, Padjadjaran U, Abdulah R, Padjadjaran U, Faried A, et al. (2012) Cytotoxicity of leveicardin-A from Phaleria macrocarpa (Scheff.) Boerl on P 388, HeLa, CasKl, TE-2, TE-8 and Precupse’s fibroblast cells. pp: 8-13.

20. Asem J, Zaidul ISM, Shafirn KM, Uddin MS, Jurhury MHA, et al. (2014) Supercritical carbon dioxide extraction of highly unsaturated oil from Phaleria macrocarpa seed. Food Research International 65: 394-400.

21. Gasong BT, Tjandrawinata RR (2016) Production of secondary metabolite E2.2 from Phaleria macrocarpa endophytic fungus. Asian Pac J Trop Biomed.

22. Suparto IH, Afanti N, Septiawati T, Triwiyahuny W, Iskandari D (2008) Ethanol extract of Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) fruit with in-vitro antioxidant activities. Proceeding of The International Seminar on Chemistry 2008, pp: 285-288.

23. MM Lay, Karsani SA, Mohajer S, MalekANS (2014) Phytochemical constituents, nutritional values, phenolics, flavonoids, lipids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (Scheff) Boerl Fruits. BMC Complement Altern Med 14: 152.

24. Yanti R, Radji M, Mun A, Suyatna FD (2014) Methanol extract of Phaleria macrocarpa (Scheff.) Boerl. improved renal and liver histological changes in fructose 10% induced rats. Pharma R L 2: 79-84.

25. Randhir R, Ms YL, Shetty K (2004) Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Nut 13: 295-307.

26. Kardonos LBS, Sri S, Bintang M (2011) α-Glucosidase inhibitory activity and hypoglycemic effect of Phaleria macrocarpa fruit pericarp extracts by oral administration to rats. Journal of Applied Sciences 6: 2312-2316.