SOME INVARIANT SUBALGEBRAS ARE GRADED ISOLATED SINGULARITIES

RUIPENG ZHU

Abstract. In this note, we prove that the invariant subalgebra of the skew polynomial algebra \(k[x_0, x_1, \ldots, x_{n-1}]/(\{x_i x_j + x_j x_i \mid i \neq j\})\) under the action \(x_i \mapsto x_{i+1}(i \in \mathbb{Z}/n \mathbb{Z})\) is a graded isolated singularity, and thus a conjecture of Chan-Young-Zhang is true.

1. Introduction

Noncommutative graded isolated singularities are defined by Ueyama [9, Definition 2.2]. A noetherian connected graded algebra \(B\) is called a graded isolated singularity if the associated noncommutative projective scheme \(\text{Proj}(B)\) (in the sense of [1]) has finite global dimension. See [4, 3, 7, 6] for some examples of graded isolated singularities.

Let \(A\) be a noetherian Artin-Schelter regular algebra and \(G\) be a finite subgroup of \(\text{Aut}_{gr}(A)\). To prove a version of the noncommutative Auslander theorem, an invariant called the pertinency of the \(G\)-action on \(A\) is introduced in [3] and [2]. We recall it here.

The pertinency of the \(G\)-action on \(A\) [2, Definition 0.1] is defined to be \(p(A, G) := \text{GKdim}(A) - \text{GKdim}(A\#G/(e_0))\), where \((e_0)\) is the ideal of the skew group algebra \(A\#G\) generated by \(e_0 := 1\#|G| \sum_{g \in G} g\).

Then, by [8, Theorem 3.10], \(A^G\) is a graded isolated singularity if and only if \(p(A, G) = \text{GKdim}(A)\). Unlike in the commutative cases, it is difficult to determine when the invariant subalgebra is a graded isolated singularity.

Let \(k\) be an algebraically closed field of characteristic zero. Let \(A = k[x_0, \ldots, x_{n-1}](n \geq 2)\) be the \((-1)\)-skew polynomial algebra, which is generated by \(\{x_0, \ldots, x_{n-1}\}\) and subject to the relations \(x_i x_j = (-1)x_j x_i(\forall i \neq j)\).

Let \(G := C_n\) be the cyclic group of order \(n\) acting on \(A\) by permuting the generators of the algebra cyclically; namely, \(C_n\) is generated by \(\sigma = (012\cdots n-1)\) of order \(n\) that acts on the generators by \(\sigma x_i = x_{i+1}, \forall i \in \mathbb{Z}_n := \mathbb{Z}/n \mathbb{Z}\).

In [5, Theorem 0.4], Chan, Young and Zhang prove the following result on graded isolated singularities.

Theorem 1.1. If either 3 or 5 divides \(n\), then \(p(A, G) < \text{GKdim}A = n\). Consequently, the invariant subalgebra \(A^G\) is not a graded isolated singularity.

Based on this theorem and [5, Theorem 0.2], Chan, Young and Zhang give the following conjecture [5, Conjecture 0.5].

Conjecture 1.2. The invariant subalgebra \(A^G\) is a graded isolated singularity if and only if \(n\) is not divisible by 3 or 5.

To prove Conjecture 1.2 is true, it suffices to prove the following theorem, which is the main result in this note.

\[\text{2020 Mathematics Subject Classification.} \quad 16S35 \quad 16S38 \quad 16W22.\]

\[\text{Key words and phrases.} \quad \text{Graded isolated singularity, group action, pertinency, Gelfand-Kirillov dimension.}\]
Theorem 1.3. If n is not divisible by 3 or 5, then $p(A, G) = \text{GKdim } A = n$. As a consequence, A^G is a graded isolated singularity.

2. Preliminaries

Before giving a proof of Theorem 1.3, let us recall some notations and results in [5]. Let ω be a primitive nth root of unity. For any $\gamma = 0, 1, \ldots, n - 1 \in \mathbb{Z}_n$, let

$$b_{\gamma} := \frac{1}{n} \sum_{i=0}^{n-1} \omega^{i\gamma} x_i \in A \subseteq A^\#C_n.$$

Then b_{γ} is an $\omega^{-\gamma}$-eigenvector of σ. Let

$$e_{\gamma} := \frac{1}{n} \sum_{i=0}^{n-1} (\omega^i \sigma)^i \in k C_n \subseteq A^\#C_n,$$

which are idempotent elements.

Suppose $\deg(x_i) = 1$ and $\deg(e_i) = 0$ for all $i \in \mathbb{Z}_n$. As usual, $[-, -]$ denotes the graded commutator of the graded ring $A^\#C_n$, that is, $[u, v] = uv - (-1)^{\deg(u) \deg(v)} vu$ for any homogeneous elements $u, v \in A^\#C_n$.

Lemma 2.1. [5, Lemma 1.1] The graded algebras A and $A^\#C_n$ can be presented as

$$A \cong \frac{k \langle b_0, \ldots, b_{n-1} \rangle}{(b_0, b_k) - (b_i, b_{k-i})} \quad \text{and} \quad A^\#C_n \cong \frac{k \langle b_0, \ldots, b_{n-1}, e_0, \ldots, e_{n-1} \rangle}{(e_0 b_0 - b_0 e_0, e_0 e_0 - \delta_{ij} e_i, b_0, b_k - (b_i, b_{k-i})]}$$

respectively, where δ_{ij} is the Kronecker delta and indices are taken modulo n.

For each $j \in \mathbb{Z}_n$, let

$$c_j := [b_k, b_{j-k}] = b_kb_{j-k} + b_{j-k}b_k = \frac{2}{n^2} \sum_{i=0}^{n-1} \omega^{ij} x_i^2.$$

Then c_j is an ω^{-j}-eigenvector of σ.

For any vector $i = (i_0, \ldots, i_{n-1}) \in \mathbb{N}^n$, we use the following notations:

$$b^i = b_{i_0} \cdots b_{i_{n-1}} \quad \text{and} \quad c^i = c_{i_0} \cdots c_{i_{n-1}}.$$

Let R_n be the subspace of A spanned by the elements $b^i c^j$ such that $\sum_{s=0}^{n-1} (i_s + j_s)s = \gamma \mod n$; that is, R_n consists of $\omega^{-\gamma}$-eigenvectors of σ. This gives an R_n-module decomposition

$$A = R_0 \oplus R_1 \oplus \cdots \oplus R_{n-1}.$$

Definition 2.2. (1) Let $\Phi_n := \{ k \mid c_k^{N_k} \in (e_0) \text{ for some } N_k \geq 0 \}$, where (e_0) is the two-sided ideal of $A^\#C_n$ containing e_0.

(2) Let $\phi_2(n) := \{ k \mid 0 \leq k \leq n - 1, \gcd(k, n) = 2^w \text{ for some } w \geq 0 \}$.

(3) Let $\Psi_j^{[n]} := \{ i \mid c_i^N \in R_j A \text{ for some } N \geq 0 \}$.

(4) [5, Definition 5.2 and Lemma 5.3(1)] We say n is admissible if, for any i and $j, i \in \Psi_j^{[n]}$, or equivalently, $\text{GKdim}(A^\#C_n/(e_0)) = 0$.

(5) Let $\overline{A} := A/(c_k \mid k \in \Phi_n)$, and $\overline{\Psi}_j^{[n]} := \{ i \mid c_i^N \in \overline{R}_j \overline{A} \text{ for some } N \geq 0 \}$ where $\overline{R}_j = \frac{R_j}{(c_k \mid k \in \overline{\Phi}_n)} \subseteq \overline{A}$.

Let \mathbb{Z}_n^\times be the set of invertible elements in \mathbb{Z}_n.

Lemma 2.3. (1) [5, Definition 6.1] Φ_n is a special subset of \mathbb{Z}_n^\times; that is, $k \in \Phi_n$ if and only if $\lambda k \in \Phi_n$ for all $\lambda \in \mathbb{Z}_n^\times$.

(2) [5, Proposition 2.3] $\phi_2(n) \subseteq \Phi_n$.

The following proposition follows from the proof of [5, Proposition 6.6].

Proposition 2.4. Let \(n \geq 2 \) such that \(3, 5 \mid n \). If \(1, \ldots, n-1 \in \overline{\Phi}_1^n \), then \(0 \in \overline{\Phi}_1^n \).

Proposition 2.5. [5, Proposition 6.8] Let \(n \geq 2 \). Suppose that

1. every proper factor of \(n \) is admissible, and
2. for each \(0 \leq i \leq n-1, i \in \overline{\Phi}_1^n \).

Then \(n \) is admissible.

3. Proof of the Theorem 1.3

Proof of Theorem 1.3. We prove it by induction on \(n \). Assume that every proper factor of \(n \) is admissible. By Proposition 2.5, it suffices to prove that

\[
\text{for each } 0 \leq i \leq n-1, i \in \overline{\Phi}_1^n .
\]

If this is not true, that is, there is \(0 \leq m \leq n-1 \) such that \(m \notin \overline{\Phi}_1^n \). Then we may assume that

1. \(m \neq 0 \), by Proposition 2.4;
2. \(m \mid n \), by Lemma 2.3 (2) as \(\mathbb{Z}_n^X \subseteq \phi_2(n) \subseteq \Phi_n \);
3. \(m > 5 \), by Lemma 2.3 (2) and assumption \(3, 5 \mid n \).

Write \(n = mq \) with \(q > 1 \).

Since \(c_m \) is an eigenvector of \(\sigma \), then \(C_n \) acts on the localization \(A[c_m^{-1}] \), and \(A[c_m^{-1}] \# C_n \langle (e_0) \rangle \cong \langle A \# C_n \rangle \langle (e_0) \rangle \). Let

\[
\tilde{A} = \frac{\langle b_0, \ldots, b_{m-1} \rangle}{\langle [b_0, b_k] - [b_1, b_{k-1}] \mid l, k \in \mathbb{Z}_m \rangle}
\]

be a subalgebra of \(A \), and \(\tilde{R}_\gamma \) be the subspace of \(\tilde{A} \) spanned by the elements \(b^i c^j \) such that

\[
\sum_{s=0}^{m-1} (i_s + j_s)s = \gamma \mod m .
\]

For any \(b^i c^j = b_0^i \cdots b_{m-1}^{i_0} \cdots c_{m-1}^{j_1} \in \tilde{R}_1 \) with

\[
\sum_{s=0}^{m-1} (i_s + j_s)s = mk + 1 \text{ for some } k \geq 0,
\]

then there exists \(l > 0 \) such that \((l-1)q \leq k < lq \). Hence \(b^i c^{j-k} \in \tilde{R}_1 A \), and \(b^i c^j \in \tilde{R}_1 A[c_m^{-1}] \).

It follows that

\[
\tilde{R}_1 \tilde{A} \subseteq \tilde{R}_1 A[c_m^{-1}] .
\]

Write \(\omega = \omega^a \). Note that \(\tilde{A} \cong k_1[\tilde{x}_0, \ldots, \tilde{x}_{m-1}] \) via \(b_\gamma \mapsto \frac{1}{m} \sum_{i=0}^{m-1} \tilde{x}^i \gamma \tilde{x}_i \). Then the cyclic group \(C_m \) of order \(m \) acts on \(\tilde{A} \) by permuting the generators of the algebra cyclically; namely, \(C_m \) is generated by \(\tilde{\sigma} = (012 \cdots m-1) \) of order \(m \) that acts on the generators by

\[
\tilde{\sigma} \tilde{x}_i = \tilde{x}_{i+1}, \forall i \in \mathbb{Z}_m .
\]

Then \(\tilde{R}_\gamma \) consists of \(\omega^{-\gamma} \)-eigenvectors of \(\tilde{\sigma} \). By assumption, \(m \) is admissible, so for any \(0 \leq i \leq m - 1 \), there exists \(N_i \) such that

\[
c_i^{N_i} \in \tilde{R}_1 \tilde{A} \subseteq \tilde{R}_1 A[c_m^{-1}] .
\]

Let \(\Gamma \) be the right ideal \(\tilde{R}_1 A[c_m^{-1}] + \sum_{\exists N_k, c_k^{N_k} \in \tilde{R}_1 A[c_m^{-1}]} c_k A[c_m^{-1}] \) of \(A[c_m^{-1}] \). Next we prove that

\[
\Gamma = A[c_m^{-1}] .
\]

The following proof is quite similar to the proof of [5, Propostition 6.6].

Claim 1. Let \(0 \leq j < \frac{m-1}{2} \). If \(c_m^s b_j \in \Gamma \) for some \(s > 0 \), then \(c_m^{s+1} b_{j+1} \in \Gamma \).
Proof of Claim 1. First of all, $b_{j+1}b_{m-j} \in \tilde{R}_1\tilde{A} \subseteq R_1A[c_m^{-1}]$ since $(j+1) + (m-j) = 1 \mod m$. Due to $c_m^s b_j \in \Gamma$, then
\[
\Gamma \ni [b_{j+1}b_{m-j}, c_m^s b_j] = c_m^s b_{j+1}b_{m-j}b_j - c_m^s b_jb_{j+1}b_{m-j} = c_m^s b_{j+1}b_{m-j}b_j + c_m^s b_{j+1}b_{m-j} - c_m^s c_{j+1}b_{m-j} = c_m^{s+1}b_{j+1} - c_m^s c_{j+1}b_{m-j}.
\]
Since there exists $N \in \mathbb{Z}$ such that $c_{N+1}^s b_{j+1} \in R_1\tilde{A}$ for $2j + 1 < m$, then $c_m^{s+1}b_{j+1} \in \Gamma$. \qed

Claim 2. Suppose that $m = 2k + 1$. If $c_m^s b_k \in \Gamma$, then $c_m^{s+2}b_{k+2} \in \Gamma$.

Proof of Claim 2. Note that $b_{k+1}b_{k+2}b_{m-1} \in \tilde{R}_1\tilde{A} \subseteq \Gamma$ as $(k+1) + (k+2) + (m-1) = 1 \mod m$.
\[
\Gamma \ni [c_m^s b_k, b_{k+1}b_{k+2}b_{m-1}] = c_m^s b_kb_{k+1}b_{k+2}b_{m-1} + c_m^s b_{k+1}b_{k+2}b_{m-1}b_k = c_m^s b_kb_{k+1}b_{k+2}b_{m-1} + c_m^s b_{k+1}b_{k+2}b_{m-1} - c_m^s b_{k+1}b_{k+2}b_{m-1} = c_m^s b_{k+1}b_{k+2}b_{m-1} + c_m^s \in \Gamma.
\]
Since $c_m+1c_m^{-1} \in R_1A$, then $c_m+1 \in R_1A[c_m^{-1}]$. Hence $c_m^{s+1}b_{k+2}b_{m-1} + c_m^s c_{3k}b_{k+1}b_{k+2} \in \Gamma$.
\[
\Gamma \ni [c_m^{s+1}b_{k+2}b_{m-1} + c_m^s c_{3k}b_{k+1}b_{k+2}, b_1] = c_m^{s+1}b_{k+2}b_{m-1}b_1 - c_m^{s+1}b_kb_{k+2}b_{m-1} + c_m^s c_{3k}b_{k+1}b_1b_{k+2} + c_m^s c_{3k}b_{k+1}b_1b_{k+2} - c_m^s c_{3k}b_{k+1}b_1b_{k+2} = c_m^{s+1}b_{k+2}b_{m-1} + c_m^s c_{3k}b_{k+1}b_1b_{k+2} - c_m^s c_{3k}b_{k+1}b_1b_{k+2}.
\]
By assumption $m > 5$, so $k > 2$. Since $k + 2 < k + 3 < 2k + 1 = m$, $c_{k+2}, c_{k+3} \in \Gamma$ by assumption. It follows that $c_m^{s+2}b_{k+2} \in \Gamma$. \qed

Claim 3. $c_m^{-1} \in \Gamma$.

Proof of Claim 3. Assume that m is even. Starting with b_1, and applying Claim 1 ($\frac{m}{2} - 1$) times, we get $c_m^{-1}b_{\frac{m}{2}} \in \Gamma$. Hence $c_m^{-1} = [c_m^{-1}b_{\frac{m}{2}}, c_m^{-1}b_{\frac{m}{2}}] \in \Gamma$.

If $m = 2k + 1$ is odd, then by applying Claim 1 ($k - 2$) and ($k - 1$) times we get $c_m^{-2}b_{k-1}$ and $c_m^{-1}b_k \in \Gamma$ respectively. By applying Claim 2 we get $c_m^{k+1}b_{k+2} \in \Gamma$.

Therefore, $c_{2k} = [c_m^{k-2}b_{k-1}, c_m^{k+1}b_{k+2}] \in \Gamma$. \qed

By Claim 3, $\Gamma = A[c_m^{-1}]$. Recall that $\Gamma = R_1A[c_m^{-1}] + \sum_{\exists N, c_N^s \in R_1A[c_m^{-1}]} c_NA[c_m^{-1}]$. It is not difficult to see that $A[c_m^{-1}] = R_1A[c_m^{-1}]$. So there exists $N \geq 0$ such that $c_N^N \in R_1A$, which is a contradiction (as $m \notin \mathbb{N}$). This implies $\mathbb{N} = \{0, 1, \cdots, n-1\}$, that is, n is admissible. Hence $\dim G(A\#C_n/(e_0)) = 0$, and $p(A, G) = n$. \qed

Acknowledgments

The author is very grateful to Professor Quanshui Wu and James Zhang who read the paper and made numerous helpful suggestions.
References

[1] M. Artin and J. J. Zhang, *Noncommutative projective schemes*, Advances in Mathematics, 109 (1994), pp. 228–287.

[2] Y. Bao, J. He, and J. J. Zhang, *Pertinency of Hopf actions and quotient categories of Cohen-Macaulay algebras*, Journal of Noncommutative Geometry, 13 (2019), pp. 667–710.

[3] Y.-H. Bao, J.-W. He, and J. J. Zhang, *Noncommutative Auslander theorem*, Transactions of the American Mathematical Society, 370 (2018), pp. 8613–8638.

[4] K. Chan, E. Kirkman, C. Walton, and J. J. Zhang, *McKay correspondence for semisimple Hopf actions on regular graded algebras, I*, Journal of Algebra, 508 (2018), pp. 512–538.

[5] K. Chan, A. Young, and J. J. Zhang, *Noncommutative cyclic isolated singularities*, Transactions of the American Mathematical Society, 373 (2020), pp. 4319–4358.

[6] J. Chen, E. Kirkman, and J. J. Zhang, *Auslander’s theorem for group coactions on noetherian graded down-up algebras*, Transformation Groups, 25 (2020), pp. 1037–1062.

[7] J. Gaddis, E. Kirkman, W. F. Moore, and R. Won, *Auslander’s theorem for permutation actions on noncommutative algebras*, Proceedings of the American Mathematical Society, 147 (2019), pp. 1881–1896.

[8] I. Mori and K. Ueyama, *Ample group action on AS-regular algebras and noncommutative graded isolated singularities*, Transactions of the American Mathematical Society, 368 (2016), pp. 7359–7383.

[9] K. Ueyama, *Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities*, Journal of Algebra, 383 (2013), pp. 85–103.

Department of Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

Email address: zhurp@sustech.edu.cn