Self-Destructing Dark Matter

Ofri Telem
Cornell University
Phenomenology 2018

arXiv:1712.00455 with Yuval Grossman, Roni Harnik and Yue Zhang
We know that it's out there

Evidence for cold Dark Matter from vastly different scales:

- Galaxies
- Clusters
- CMB
Why the loss of sensitivity at low masses?
- Nuclear recoil energy below threshold!
The light DM frontier

New detection concepts

- Semiconductors
 Essig et al. 2015
- Superconductors
 Hochberg et al. 2016
- Superfluids
 Schutz & Zurek 2016
- Color centers
 Budnik et al. 2017
- Single electron CCD - Sensei
 Tiffenberg et al. 2017
- ...

Non minimal Dark Sectors

- Asymmetric DM
 1308.0338, 1111.0293
- Freeze-in
 0911.1120
- WIMPless
 0803.4196
- SIMP
 1402.5143, 1411.3727
- ELDER
 1706.05381
- Atomic DM
 1609.03592, 1311.6468
- Co-decaying
 1607.03110
- Cannibal
 1607.03108, 1602.04219
- Vector DM
 1105.2812, 1504.02102
- ...

What about direct detection @ neutrino detectors?
Neutrino detectors

SNO+ DUNE

Borexino Super-K
Neutrino detectors

Material	Density	Volume	Threshold	Purpose	
Super-K	H2O	1 gr/cc	1×10^4 m3	5.5 MeV	solar, atmospheric, SN, θ_{13} (T2K), ...
Borexino	PC + PPO	0.9 gr/cc	3×10^2 m3	250-665 keV	solar, SN, ...
SNO+	130Te + LAB	5.7 gr/cc	9×10^2 m3	\sim1 MeV	ν-less β, pep, ...
DUNE	LAr	1.4 gr/cc	1×10^4 m3	5 MeV	ν hierarchy, δ_{CP}, ...

Low densities, large volumes, high thresholds. How are we going to look for DM with these?!

See also Agashe et al., arXiv:1405.7370, 2014
Berger et al., arXiv:1410.2246, 2015
also J. Berger’s talk on boosted DM this afternoon
What if the DM leaves more than just its kinetic energy?

See also Graham et al., arXiv:1004.0937, 2010
Pospelov et al. arXiv:1312.1363, 2014
What if the DM leaves more than just its kinetic energy? Converts all of its rest mass to signal. Self-Destructing Dark Matter.
Self-destructing DM (SDDM)

DM – cosmologically stable bound state
DM' – unstable bound state ("positronium")

1. DM + N → DM' + N
2. DM' self-annihilates into 2 dark photons V
3. Each dark photon V → SM e+e- pairs
The novelty in SDDM detection

- Can search for 10 MeV DM with a 5 MeV detector threshold
- Neutrino detectors have major reach - even if SDDM is a tiny subcomponent of DM
- If the SDDM decays in the detector: 2 back to back boosted e+e- pairs
- SDDM can decay outside the detector if dark photon decay length macroscopic

All of the DM rest mass gets converted to detectable signal!
Earth as a detector

If the dark photon decay length is long enough:

Only the detector volume and threshold matter!
Three SDDM detection regions

For different dark photon decay lengths:

- $L_{\text{decay}} \lesssim 10 \text{ m}$: 2 pairs per event. Isotropic.
- $10 \text{ m} \lesssim L_{\text{decay}} \lesssim 1 \text{ km}$: Single pair per event. Isotropic.
- $1 \text{ km} \lesssim L_{\text{decay}} \lesssim R_{\oplus}$: Single pair per event. Pointing up.

\[E_{\text{pair}} = \frac{m_{\text{SDDM}}}{2} \]
\[m_{\text{pair}} = m_{V_{\text{dark}}} \]
\[L_{V_{\text{dark}}} = c\tau_{V_{\text{dark}}} \sqrt{\frac{E_{V_{\text{dark}}}^2}{m_{V_{\text{dark}}}^2}} - 1 \]
\[\cos \theta_{\ell^+\ell^-} \sim 1 - \frac{8m_{V_{\text{dark}}}^2}{m_{\text{SDDM}}^2} \]
Models for SDDM

Models for SDDM have bound states $\chi\bar{\chi}$ that can self-annihilate into two mediators (e.g. dark photon)

- Some bound states have lifetime $> 10^{28}$ s
- Other bound states have lifetime $<< 10$ s (Earth crossing time)

Can we find examples in Nature? Yes!

Positronium decay
This talk

Coulomb barrier for fusion

Proton stability

\[\tau_p > 10^{35} \text{ s} \]
\[\tau_n \sim 15 \text{ min} \]
A model for SDDM: Angular momentum stabilization
Inspiration from positronium decay

Low angular momentum: \(\psi_{e^+} \) and \(\psi_{e^-} \)

High angular momentum: \(\psi_{e^+} \) and \(\psi_{e^-} \)

\[
\Gamma_{\text{positronium}} \sim \left| \psi^{(l)}(r = 0) \right|^2 \sim \left(\frac{\alpha}{n} \right)^{2l+3}
\]

High angular momentum dark positronium - hierarchically long lifetime for self-annihilation

In reality – can first transition to \(l=0 \) positronium and then self annihilate
Angular momentum stabilization

How do we prevent a high l state from transitioning to the ground state?

In Nature:
\(\Delta l = 1 \) selection rule & phase space, e.g.
\[\tau(4p \rightarrow 1s) \sim 14.7 \text{ ns} \]
\[\tau(4f \rightarrow 3d \rightarrow 2p \rightarrow 1s) \sim 90 \text{ ns} \]
not enough for cosmology...

For our dark positronium:
make the dark photon
heavier than \(\Delta E \)
Angular momentum stabilization - the model

\[\mathcal{L} = \overline{\chi} i \not{D} \chi - m_\chi \overline{\chi} \chi - \frac{1}{4} \phi^{\mu\nu} \phi_{\mu\nu} + \frac{1}{2} m_\phi^2 \phi_\mu \phi^\mu \]

Dark Fermion

- \[-\frac{1}{4} V^{\mu\nu} V_{\mu\nu} + \frac{1}{2} m_V^2 V_\mu V^\mu - \frac{\epsilon}{2} V_{\mu\nu} F^{\mu\nu} \]

light mediator – i.e., vector

heavy dark photon

If the mediator is light enough, \(\chi \) and \(\overline{\chi} \) form positronuim-like bound states \((\chi\overline{\chi})\)
We take the mass ranges to be:

To allow for the n_\starth bound state, its radius must be smaller than the range of the mediator interaction.

$$\frac{1}{4} \alpha^2 \phi m_\chi < m_\phi < \frac{1}{2n_\star} \alpha_\phi m_\chi$$

To prevent spontaneous emission to the ground state, the mediator has to be heavier than the Rydberg energy.

$$2m_e, \frac{1}{2} \alpha_\phi m_\chi < m_V \lesssim m_\chi$$

To allow the decays $(\chi\bar{\chi}) \rightarrow V V$ $V \rightarrow e^+e^-$ and prevent spontaneous emission
The rate for self-annihilation

The self annihilation rate for the \((n,l)\) bound state is:

\[
\Gamma_{n,\ell\rightarrow V'} \sim \left(\frac{\alpha_\phi}{n} \right)^{2\ell+3} \alpha_\nu^N m_\chi
\]

The \(\alpha_\phi^{2\ell}\) suppression is the same as in regular positronium

For \(N_\nu = 2, \quad \alpha_\phi = \alpha_\nu = 10^{-2}\) and \(m_\chi = 1\ \text{GeV},\) we have

\[
\begin{align*}
\tau_{n=10,\ell=9} & = 10^{42}\ \text{s} & \text{cosmologically stable} \\
\tau_{n=7,\ell=6} & = 10^{22}\ \text{s} & \text{problem with BBN? - not if tiny subcomponent} \\
\tau_{n=2,\ell=1} & = 10^{-9}\ \text{s} & \text{prompt}
\end{align*}
\]

angular momentum stabilization!
Viable SDDM

A small fraction < 10^{-2} of DM is in $(\chi\bar{\chi})$ bound states

The $(n \sim 10, l \sim 9)$ bound states are cosmologically stable, and their lifetime for self-annihilation/de-excitation is > 10^{41} s

when the bound states hit Earth, they can scatter through the V portal into $(n \sim 1, l \sim 0)$ bound states, with lifetime << 10 s to go to VV

This is a realization of SDDM.

We will now estimate the scattering cross section $<\sigma v>_{\text{scat}}$
\(\frac{d\sigma_{\text{scatter}}}{d|\vec{q}|^2} \approx \frac{g_V^2 e^2 e^2}{4 \pi v^2 (|\vec{q}|^2 + m_V^2)^2} \times |F_D(|\vec{q}|)|^2 \times Z^2 F^2(|\vec{q}|) \)

- DM form factor
- Woods-Saxon nuclear form factor

\[F_D(|\vec{q}|) = \int d^3 \vec{x} \Psi^*(\vec{x})_{n'0} \Psi(\vec{x})_{nl} \left[e^{i\vec{q} \cdot \vec{x}/2} - e^{-i\vec{q} \cdot \vec{x}/2} \right] \]

- Hydrogenic wavefunctions
- V plane wave
The momentum transfer for $\alpha_\phi > v$ is sharply peaked around

$$|q| \sim \sqrt{2\mu \left(m_{(n,l)} - m_{(n',0)} \right)} \sim 2\alpha_\phi m_\chi \ll m_V$$

and the cross section simplifies to

$$\sigma_{\text{scatter}} \sim \frac{64\pi \epsilon^2 \alpha_{EM} \alpha_V \alpha_\phi m_\chi^2}{\pi v m_V^4} \times \left| F_D(2\alpha_\phi m_\chi^2) \right|^2 \times Z^2 F^2(2\alpha_\phi m_V)$$

we can now calculate the **100 events/year** discovery reach for neutrino detectors:

$$\epsilon_{100}^2 = \frac{100 \text{ events}}{T_{\text{year}} \times nV \times n_{\chi\bar{\chi}} \langle \sigma v \rangle_{\text{scatter}}^{(\epsilon=1)} \times \text{Br} \left(V \to l^+l^- \right)}$$
Discovery reach for angular momentum stabilization
Conclusions

SDDM is a new class of dark matter models in which the scattering of DM with the Earth induces its decay to SM.

The novelty in SDDM detection is that all of the DM rest mass gets converted to detectable signal.

We can search for 10 MeV SDDM in Neutrino detectors with a 5 MeV threshold, even when it's a tiny subcomponent.
Thank you!