TATE MODULE TENSOR DECOMPOSITIONS AND THE SATO–TATE CONJECTURE FOR CERTAIN ABELIAN VARIETIES POTENTIALLY OF GL₂-TYPE

FRANCESC FITÉ AND XAVIER GUITART

ABSTRACT. We introduce a tensor decomposition of the ℓ-adic Tate module of an abelian variety A_0 defined over a number field which is geometrically isotypic. If A_0 is potentially of GL₂-type and defined over a totally real number field, we use this decomposition to describe its Sato–Tate group and to prove the Sato–Tate conjecture in certain cases.

CONTENTS

1. Introduction
Conventions and notations.
Acknowledgements
2. A Tate module tensor decomposition
3. The weakly compatible system $V_\lambda(B)$
4. Sato–Tate groups and Sato–Tate conjecture
5. Scenarios of applicability
Examples: modular abelian varieties
References

1. INTRODUCTION

Let A_0 be an abelian variety defined over a number field k_0 of dimension $g \geq 1$. Throughout the article, we assume that A_0 is geometrically isotypic. By this we mean that the base change $A_{0,\overline{\mathbb{Q}}} = A_0 \times_{k_0} \overline{\mathbb{Q}}$ of A_0 to an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} is isogenous to the power of a simple abelian variety B defined over $\overline{\mathbb{Q}}$, say

$$A_{0,\overline{\mathbb{Q}}} \sim B^d,$$

for some $d \geq 1$.

The main novelty of this article is the description of the rational ℓ-adic Tate module $V_\ell(A_0)$ attached to A_0 as (the induction of) a tensor product of an Artin representation and a system of ℓ-adic representations. To achieve such a description, we may reduce to the case that A_0 is simple (over k_0), assumption which we will make from now on.

Under these assumptions, the endomorphism algebra of B, denoted End(B), is a central simple algebra over a number field M, whose degree we denote by m. Let n be the Schur index of End(B). This means that End(B) is a matrix algebra over an M-central division algebra D such that $[D : M] = n^2$. Let G_{k_0} denote the
absolute Galois group of k_0. The next result accounts for the essential statements of Theorem 2.9

Theorem 1.1. Let A_0 be a simple abelian variety defined over a number field k_0 of dimension $g \geq 1$ and geometrically isotropic, and let ℓ be a prime. Then there exist:

i) a finite Galois extension k/k_0 of degree dividing m;

ii) a number field F;

iii) primes $\lambda_1, \ldots, \lambda_r$ of F lying over ℓ, where $r = m/[k : k_0]$;

iv) F-rational λ_i-adic representations $V_{\lambda_i}(B)^{\alpha B}$ of G_k of \mathbb{Q}_ℓ-dimension $2g/(dnm)$, for $1 \leq i \leq r$; and

v) a finite image representation $V(B, A)^{\alpha B}$ of G_k realizable over F;

such that there is an isomorphism

$$V_\ell(A_0) \otimes \mathbb{Q}_\ell \cong \text{Ind}_{k_0}^k \left(\bigoplus_{i=1}^r V_{\lambda_i}(B)^{\alpha B} \otimes_{\mathbb{Q}_\ell} V_{\lambda_i}(B, A)^{\alpha B} \right)$$

of $\mathbb{Q}_\ell[G_{k_0}]$-modules. In the above isomorphism, $V_{\lambda_i}(B, A)^{\alpha B}$ denotes the tensor product $V(B, A)^{\alpha B} \otimes_{F, \sigma} \mathbb{Q}_\ell$ taken with respect to the embedding $\sigma_i : F \hookrightarrow \mathbb{Q}_\ell$ corresponding to the prime λ_i.

This theorem is proven in the course of Section 2. Along the way we describe the number fields F and k, and construct the Artin representation $V(B, A)^{\alpha B}$ and the λ_i-adic representations $V_{\lambda_i}(B)^{\alpha B}$. The representations $V_{\lambda_i}(B)^{\alpha B}$ and $V(B, A)^{\alpha B}$ arise naturally as projective representations. The obstruction for these projective representations to lift to genuine representations is given by two cohomology classes in $H^2(G_k, M^\times)$ that, by a theorem of Tate, can be trivialized after enlarging the field of coefficients. It lies at the core of the proof of Theorem 1.1 the fact that these two cohomology classes are inverses to each other.

There are at least two known particular cases of this decomposition in the literature. The on hand, it is known when A_0 is \mathbb{Q}-isogenous to the power of an abelian variety B defined over \mathbb{Q} which admits a model up to \mathbb{Q}-isogeny defined over k_0 (this follows from [Fit13, Thm. 3.1] when B does not have CM and from [FS14, (3-8)] when it does). We note that if g is odd, then there does exist a model up to \mathbb{Q}-isogeny for B defined over k_0 (see Remark 2.12). On the other hand, an analogous tensor decomposition has been obtained by N. Taylor ([Tay19, §3.3] when A_0 is an abelian surface with QM; see also [BCGP18, Prop. 9.2.1]). Taylor’s explicit, but intriguing to us, construction of the tensor decomposition in the case of a QM abelian surface was a source of inspiration for the present article. Section 3 is our attempt to give a uniform, general, and more conceptual explanation of this phenomenon.

The second main contribution of the article is an application of the obtained description of the Tate module of A_0 in the context of the Sato–Tate conjecture for abelian varieties potentially of GL2-type. Following Ribet, we say that A_0 is of GL2-type if there exists a number field of degree g that injects into $\text{End}(A_0)$. In this article, by saying that A_0 is potentially of GL2-type, we mean that there exists a number field of degree g that injects into $\text{End}(A_0)$. In this case, the absolutely simple factor B is often referred to as a “building block”. If k_0 is totally real, three mutually excluding situations arise:

(CM) A_0 has potential complex multiplication, that is, there exists a number field of degree $2g$ that injects into $\text{End}(A_0)$.
(RM) \(\text{End}(B) \) is a totally real field of degree \(\dim(B) \), in which case we say that \(B \) has real multiplication.

(QM) \(\text{End}(B) \) is a quaternion division algebra over a totally real field of degree \(\dim(B)/2 \) in which case we say that \(B \) has quaternionic multiplication.

Ribet \[Rib92\] gave proofs of these facts when \(A_0 \) is defined over \(\mathbb{Q} \) (see \[Gui12, Thm. 3.3, Prop. 3.4\] for proofs in the general case).

Ribet extensively studied abelian varieties of \(\text{GL}_2 \)-type over \(\mathbb{Q} \) and showed that they share many features with elliptic curves. In particular, Ribet \[Rib92, \S 3\] showed that one can attach a rank 2 compatible system of \(\ell \)-adic representations to an abelian variety of \(\text{GL}_2 \)-type. This was extended by Wu \[Wu18\] to abelian varieties potentially of \(\text{GL}_2 \)-type defined over a totally real number field.

From Section 3 on, we assume that both \(k_0 \) and the field \(k \) produced by Theorem 1.1 are totally real, and that \(A_0 \) is potentially of \(\text{GL}_2 \)-type and does not have potential CM (this already implies that \(A_0 \) is geometrically isotypic). In this case, we can use the results of Wu to show that the representations \(V_{\lambda}(B)^{\alpha_B} \) are part of a rank 2 compatible system \((V_{\lambda}(B)^{\alpha_B})_{\lambda} \) with certain desirable properties.

The Sato–Tate conjecture is an equidistribution statement regarding the Frobenius conjugacy classes acting on \(V_\ell(A_0) \). The distribution of these classes is predicted to be governed by a compact real Lie group \(\text{ST}(A_0) \), called the Sato–Tate group of \(A_0 \). As shown by Serre \[Ser89\], this equidistribution is implied by the conjectural analytic behavior of partial Euler products attached to the irreducible representations of \(\text{ST}(A_0) \). In Section 4 we use Theorem 1.1 to determine \(\text{ST}(A_0) \).

In Section 5, using deep potential automorphy results (covered by \[BLGGT14\]) relative to the compatible system \((V_{\lambda}(B)^{\alpha_B})_{\lambda} \), we prove the desired analytic properties of the relevant partial Euler products in certain situations.

These situations are described by the following theorem. Let \(K_0/k_0 \) denote the minimal extension over which all the endomorphisms of \(A_0 \) are defined.

Theorem 1.2. Suppose that \(k_0 \) is a totally real and that \(A_0 \) is an abelian variety defined over \(k_0 \) of dimension \(g \geq 1 \) which is \(\mathbb{Q} \)-isogenous to the power of an abelian variety \(B \) which is either:

i) an elliptic curve; or

ii) an abelian surface with QM; or

iii) an abelian surface with RM; or

iv) an abelian fourfold with QM.

If the field extension \(k/k_0 \) from Theorem 1.1 is trivial and \(K_0/k_0 \) is solvable, then the Sato–Tate conjecture holds for \(A_0 \).

In the above theorem, the condition of \(B \) falling in one of the cases i), . . . , iv) amounts to requiring that the center \(M \) of the endomorphism algebra of \(B \) be a number field of degree \(m \leq 2 \). This constraint on the degree \(m \) ensures the applicability of results of Shahidi \[Sha81\] on the invertibility of the Rankin-Selberg product of automorphic \(L \)-functions, which are essential to the proof.

Let us make two remarks on the hypotheses of the theorem. On the one hand, the hypothesis that \(k/k_0 \) be trivial is vacuous for i) and ii). On the other hand, one can dispense with the hypothesis that \(K_0/k_0 \) be solvable when \(g \leq 3 \). For \(g = 2 \), the extension \(K_0/k_0 \) is in fact known to be always solvable (as a byproduct of the classification in \[FKRS12\]) and for \(g = 3 \) it can only fail to be solvable when \(B \) is
an elliptic with CM (as follows from the classification of [FKS20]), in which case the theorem is known to hold as well (see Remark 5.2).

Some particular instances of Theorem 1.2 are known. Indeed, the works of Johansson [Joh17] and N. Taylor [Tay19] altogether imply the theorem when \(g = 2 \); in other words, when \(A_0 \) is \(\overline{Q} \)-isogenous to the square of an elliptic curve, to an RM abelian surface, or to a QM abelian surface. Their proof is based on a case-by-case analysis using the classification of Sato–Tate groups of abelian surfaces defined over totally real number fields \(^1\) (as achieved in [FKRS12]). Our proof of Theorem 1.2 is indebted to [Joh17] and [Tay19] in many aspects.

A second situation where Theorem 1.2 was essentially known is when \(g \leq 3 \) and \(B \) is an elliptic curve with CM that admits a model up isogeny defined over \(k_0 \). Indeed, the computation of the moments of the measure governing the equidistribution of the normalized Frobenius traces of \(A_0 \) in this situation was carried out in [FS14, §3] (for \(g = 2 \)) and in [FLS18, §2] (for \(g = 3 \)).

Modular abelian varieties are a natural source of geometrically isotypic abelian varieties of \(GL_2 \)-type defined over \(\mathbb{Q} \). Restricted to this setting, the hypotheses on the extensions \(K_0/k_0 \) and \(k/k_0 \) are automatically satisfied and Theorem 1.2 can be presented in the following way.

Corollary 1.3. Let \(f = \sum a_m q^m \in S_2(\Gamma_1(N)) \) be a newform of Nebentypus \(\varepsilon \). Let \(A_f \) denote the abelian variety defined over \(\mathbb{Q} \) associated to \(f \) by the Eichler–Shimura construction. If \(f \) is non-CM, suppose that the field \(\mathbb{Q}(\{a_m^2/\varepsilon(m)\}_{(m,N)=1}) \) has degree at most 2 over \(\mathbb{Q} \). Then the Sato–Tate conjecture holds for \(A_f \).

As we will later discuss, we note that there exist modular abelian varieties \(A_f \) of arbitrarily large dimension for which the field \(\mathbb{Q}(\{a_m^2/\varepsilon(m)\}_{(m,N)=1}) \) has degree at most 2.

Conventions and notations. Throughout the article \(k_0 \) is a number field and all of its algebraic field extensions are assumed to be contained in a fixed algebraic closure \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \). For each prime \(\ell \), we fix an algebraic closure of \(\mathbb{Q}_\ell \) and all finite extensions of \(\mathbb{Q}_\ell \) are assumed to be contained in this fixed algebraic closure. We work in the category of abelian varieties up to isogeny. In particular, isogenies become invertible and \(\text{Hom}(C, D) \), for a pair abelian varieties \(C \) and \(D \) defined over \(k_0 \), is equipped with a \(\mathbb{Q} \)-vector space structure. Given a field extension \(k/k_0 \), we write \(C_k \) to denote the base change \(C \times_{k_0} k \) of \(C \) from \(k_0 \) to \(k \). We refer to nonzero prime ideals of the ring of integers of a number field \(E \) simply by primes of \(E \). We denote by \(I \) the identity matrix, whose size should always be clear from the context.

Acknowledgements. Thanks to Andrew Sutherland and John Voight for suggesting the existence of a theorem of the type of Theorem 2.9 (at least in the case of a geometric power of an elliptic curve) in a conversation during the conference “Arithmetic geometry, Number Theory, and Computation”, held at MIT in August 2018. Thanks to the referee for valuable suggestions for the revision and improvement.

\(^1\)Of the 35 possibilities for the Sato–Tate group of an abelian surface defined over a totally real field, 28 occur only among abelian surfaces which are geometrically isotypic and potentially of \(GL_2 \)-type. It should be noted that the works of Johansson and N. Taylor yield the Sato–Tate conjecture in 5 non geometrically isotypic cases as well: indeed, they yield the Sato–Tate conjecture in all but 2 of the 35 possible cases.
of the article. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1638352. Fité was additionally supported by the Simons Foundation grant 550033 and by MTM2015-63829-P. Guitart was partially supported by projects MTM2015-66716-P and MTM2015-63829-P. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152). Fité expresses deep gratitude to IAS for the excellent working conditions offered during the academic year 2018-19.

2. A Tate module tensor decomposition

Throughout this section A_0 will denote a simple abelian variety of dimension $g \geq 1$ defined over the number field k_0 such that:

Hypothesis 2.1. A_0 is geometrically isotypic, that is, $A_{0,\overline{\mathbb{Q}}} \sim B^d$, where B is a simple abelian variety defined over \mathbb{Q} and $d \geq 1$.

By the Wedderburn theorem, we know that $\text{End}(B)$ is a central division algebra over a number field M. Let n denote the Schur index of $\text{End}(B)$ and $m = [M : \mathbb{Q}]$.

Let K_0/k_0 denote the endomorphism field of A_0, that is, the minimal extension of k_0 such that $\text{End}(A_0,K_0) \simeq \text{End}(A_{0,\overline{\mathbb{Q}}})$.

The extension K_0/k_0 is Galois and finite. Let K/k_0 denote a finite Galois extension containing K_0/k_0. Without loss of generality we may assume that B is defined over K and that

$$\text{Hom}(B_K, A_0, K) \simeq \text{Hom}(B_{\overline{\mathbb{Q}}}, A_{0,\overline{\mathbb{Q}}}).$$

Definition 2.2. For a subextension k/k_0 of K/k_0, the abelian variety B is called a k-abelian variety (or k-variety for short) if for every $s \in \text{Gal}(K/k)$ there exists an isogeny $\mu_s : B \to B$ compatible with the endomorphisms of B, that is, such that

$$\mu_s \circ s^* \varphi = \varphi \circ \mu_s \text{ for all } \varphi \in \text{End}(B).$$

Let k/k_0 be a subextension of K/k_0 such that B is a k-variety (such a subextension obviously exist). From now on, write A for the base change $A_0 \times_{k_0} k$. Fix a system of isogenies $\{\mu_s\}_{s \in \text{Gal}(K/k)}$ compatible with $\text{End}(B)$ in the sense of (1).

We can, and do, assume that μ_s is the identity for every $s \in G_K$.

If we equip M^\times with the trivial action of $\text{Gal}(K/k)$, the map

$$c_B : \text{Gal}(K/k) \times \text{Gal}(K/k) \to M^\times, \quad c_B(s,t) = \mu_s \circ s^* \mu_t^{-1} \circ \mu_t^{-1},$$

satisfies the 2-cocycle condition and defines a cohomology class $\gamma_B \in H^2(K/k, M^\times)$. The cocycle c_B (resp. the cohomology class γ_B) gives rise by inflation to a continuous cocycle in $Z^2(G_k, M^\times)$ (resp. a cohomology class in $H^2(G_k, M^\times)$) that we will also denote by c_B (resp. γ_B).

Lemma 2.3. There is a continuous map

$$\alpha_B : G_k \to \overline{\mathbb{Q}}^\times$$

such that for every $s, t \in G_k$ we have

$$c_B(s, t) = \frac{\alpha_B(s)\alpha_B(t)}{\alpha_B(st)}.$$
Proof. The lemma is a consequence of a theorem of Tate (see [Rib92 Thm. 6.3]), which states that $H^2(G_k, \overline{\mathbb{Q}}^\times)$ is trivial, where $\overline{\mathbb{Q}}^\times$ is endowed with the trivial action of G_k. \hfill \Box

Let E denote a maximal subfield contained in End(B). The field E contains the center with degree $[E : M] = n$. Since α_B is continuous we may enlarge K so that α_B is trivial when restricted to G_K, and we will do this from now on. Let F denote a number field containing E and the values of α_B.

Fix a rational prime ℓ and an embedding $\sigma : F \to \overline{\mathbb{Q}}_\ell$. Denote by $\lambda = \lambda(\sigma)$ the prime of F above ℓ for which σ factors via the natural inclusion of F into its completion F_λ at λ.

Let $V_\ell(A)$ (resp. $V_\ell(B)$) denote the rational Tate module of A (resp. B). For a prime λ of F above ℓ, use the natural E-module structure of $V_\ell(B)$ to define

$$V_\lambda(B) = V_\ell(B) \otimes_{E \otimes \overline{\mathbb{Q}}_\ell, \sigma} \overline{\mathbb{Q}}_\ell. \quad (3)$$

Here the tensor product is taken with respect to the map induced by the inclusions $E \subseteq F$ and $\sigma : F \hookrightarrow \overline{\mathbb{Q}}_\ell$. The module $V_\lambda(B)$ has dimension

$$\dim_{\overline{\mathbb{Q}}_\ell}(V_\lambda(B)) = \frac{2 \dim B}{[E : \mathbb{Q}]} = \frac{2g}{\text{dim} \ A}.$$

It is endowed with an action of G_k by the next lemma.

Lemma 2.4. The map

$$g_\lambda^{aB} : G_k \to \text{GL}(V_\lambda(B)),$$

defined for $s \in G_k$ as the composition

$$g_\lambda^{aB}(s) : V_\lambda(B) \xrightarrow{s \otimes 1} V_\lambda(B) \xrightarrow{\mu_{s,s}} V_\lambda(B) \xrightarrow{1 \otimes \sigma(\alpha_B(s))} V_\lambda(B), \quad (4)$$

is a continuous representation. Here, $\mu_{s,s}$ denotes the isomorphism of Tate modules induced by the isogeny $\mu_s : aB \to B$.

Proof. We first check that the action is indeed $\overline{\mathbb{Q}}_\ell$-linear. This amounts to note that, in virtue of (1), for every $s \in G_k$, $v \in V_\ell(B)$, and $\varphi \in E$ we have

$$g_\lambda^{aB}(s)(\varphi(v) \otimes 1) = \mu_{s,s} \varphi \cdot (\varphi(v) \otimes \sigma(\alpha_B(s)) = \varphi \mu_{s,s}(\varphi(v) \otimes \sigma(\alpha_B(s)) = \varphi g_\lambda^{aB}(s)(v \otimes 1).$$

The proof is then a straightforward computation based on (2). Indeed, for every $s, t \in G_k$ and $v \in V_\ell(B)$ we have:

$$g_\lambda^{aB}(st)(v \otimes 1) = \mu_{st,s}(stv) \otimes \sigma(\alpha_B(st))$$

$$= \mu_{s,s} \mu_{t,s}(stv) \cdot c_B(s,t) \otimes \sigma(\alpha_B(st))$$

$$= \mu_{s,s} \mu_{t,s}(stv) \otimes \sigma(\alpha_B(s)\alpha_B(t))$$

$$= g_\lambda^{aB}(s)(g_\lambda^{aB}(t)(v \otimes 1)).$$

Since it suffices to verify continuity in a neighborhood of the identity, we are reduced to show that $g_\lambda^{aB}|_{G_K}$ is continuous. But note that the action of G_K via g_λ^{aB} coincides with the natural action of G_K on $V_\ell(B)$, which is continuous. \hfill \Box

The map

$$E \to \text{Hom}(B_K, A_K),$$

given by precomposition of maps, equips $\text{Hom}(B_K, A_K)$ with an E-module structure, which we use to define

$$V(B, A) = \text{Hom}(B_K, A_K) \otimes_E F.$$
Observe that \(V(B, A) \) has dimension
\[
\dim_F(V(B, A)) = d \frac{\dim \text{End}(B)}{[E : \mathbb{Q}]} = \frac{dn^2m}{nm} = dn.
\]
We next equip \(V(B, A) \) with an action of \(\text{Gal}(K/k) \) by means of the following lemma (compare with \cite[Lemma 2.15]{FG20}).

Lemma 2.5. The map
\[
\theta^{\alpha_B} : \text{Gal}(K/k) \to \text{GL}(V(B, A))
\]
defined for \(s \in \text{Gal}(K/k) \) as the composition
\[
(5) \quad \theta^{\alpha_B}(s) : V(B, A) \underset{s \otimes 1}{\rightarrow} V(B, A) \overset{(\mu_s)^{-1}}{\rightarrow} V(B, A) \overset{1 \otimes \sigma(\alpha_B(s)^{-1})}{\rightarrow} V(B, A)
\]
is a representation. Here, \((\mu_s)^{-1}\) is the map obtained by precomposition with \(\mu_s^{-1} \).

Proof. We first verify that the action is \(F \)-linear. For every \(s \in \text{Gal}(K/k) \), \(\psi \in \text{Hom}(B_K, A_K) \), and \(\varphi \in E \) we have
\[
\theta^{\alpha_B}(s)(\psi \circ \varphi) = s\psi \circ \varphi \circ \mu_s^{-1} \otimes \sigma(\alpha_B(s)^{-1}) = s\psi \circ \mu_s^{-1} \circ \varphi \otimes \sigma(\alpha_B(s)^{-1}) = \theta^{\alpha_B}(s)(\psi \otimes 1) \circ \varphi.
\]
For every \(s, t \in G_k \) and \(v \in \text{Hom}(B_K, A_K) \), we have that
\[
\theta^{\alpha_B}(st)(\psi \otimes 1) = (\mu_s^{-1})^*(st^1) \otimes \sigma(\alpha_B(st)^{-1}) = (\mu_t^{-1})^*(\mu_s^{-1})^*(st^1) \otimes \sigma(\alpha_B(st)^{-1}) = (\mu_t^{-1})^*(\mu_s^{-1})^*(st^1) \otimes \sigma(\alpha_B(s)^{-1} \alpha_B(t)^{-1}) = \theta^{\alpha_B}(s)(\theta^{\alpha_B}(t)(\psi \otimes 1))
\]
\[\Box\]

For a prime \(\lambda \) of \(F \) above \(\ell \), attached to the embedding \(\sigma : F \hookrightarrow \overline{\mathbb{Q}}_\ell \), define
\[
V_\lambda(B, A) = V(B, A) \otimes_{F, \sigma} \overline{\mathbb{Q}}_\ell.
\]
Let \(\theta^{\alpha_B}_\lambda \) denote the representation on \(V_\lambda(B, A) \) obtained by letting \(\text{Gal}(K/k) \) act trivially on \(\overline{\mathbb{Q}}_\ell \) and via \(\theta^{\alpha_B} \) on \(V(B, A) \). Let us write \(V_\lambda(B)^{\alpha_B} \) and \(V_\lambda(B, A)^{\alpha_B} \) to denote \(V_\lambda(B) \) and \(V_\lambda(B, A) \) equipped with actions of \(G_k \) via \(\theta^{\alpha_B}_\lambda \) and \(\theta^{\alpha_B}_\lambda \), respectively.

Since \(A_{\mathbb{Q}} \cong B^d \), we have that \(\text{End}(A_{\mathbb{Q}}) \cong M_d(\text{End}(B)) \) and therefore the center of \(\text{End}(A_{\mathbb{Q}}) \) can be identified with \(M \). Since \(B \) is a \(k \)-variety, we have that \(A_{\mathbb{Q}} \) is also a \(k \)-variety \cite[Proposition 3.2]{Gui10}, and this implies that \(M \subseteq \text{End}(A) \) \cite[Proposition 3.15]{Gui10}; that is to say, the endomorphisms of the center of \(\text{End}(A_{\mathbb{Q}}) \) are defined over \(k \). Therefore, \(V_\ell(A) \) can be endowed with a \(M \)-module structure. Define
\[
V_\lambda(A) := V_\ell(A) \otimes_{Q_\ell \otimes M, \sigma} \overline{\mathbb{Q}}_\ell,
\]
where the tensor product is taken with respect to the map obtained from the inclusions \(M \subseteq F \) and \(\sigma : F \hookrightarrow \overline{\mathbb{Q}}_\ell \). We regard \(V_\lambda(A) \) as a \(\overline{\mathbb{Q}}_\ell[G_k] \)-module by letting \(G_k \) act naturally on \(V_\ell(A) \) and trivially on \(\overline{\mathbb{Q}}_\ell \) (this is well defined because \(M \subseteq \text{End}(A) \)). Observe that \(V_\lambda(A) \) has dimension
\[
\dim_{\overline{\mathbb{Q}}_\ell}(V_\lambda(A)) = \frac{2g}{m} = \dim_{\overline{\mathbb{Q}}_\ell}(V_\lambda(B)^{\alpha_B}) \cdot \dim_{\overline{\mathbb{Q}}_\ell}(V_\lambda(B, A)^{\alpha_B}).
\]
Proposition 2.6. There is an isomorphism of $\overline{\mathbb{Q}}_\ell[G_k]$-modules
\begin{equation}
V_\lambda(A) \simeq V_\lambda(B)^{\alpha_B} \otimes_{\overline{\mathbb{Q}}_\ell} V_\lambda(B, A)^{\alpha_B}.
\end{equation}

Proof. The module $V_\lambda(A)$ is semisimple by Faltings's theorem. Let us first assume that $V_\lambda(A)$ is an irreducible $\overline{\mathbb{Q}}_\ell[G_k]$-module. Since both $V_\lambda(A)$ and $V_\lambda(B) \otimes V_\lambda(B, A)$ have the same dimension over $\overline{\mathbb{Q}}_\ell$, it will suffice to show that
\begin{equation}
W := \text{Hom}_{G_k}(V_\lambda(A), V_\lambda(B)^{\alpha_B} \otimes V_\lambda(B, A)^{\alpha_B}) \neq 0.
\end{equation}
Observe that
\begin{align*}
W &= \text{Hom}_{G_k}(V_\lambda(A) \otimes (V_\lambda(B)^{\alpha_B})^\vee, V_\lambda(B, A)^{\alpha_B}) \\
&= \text{Hom}_{G_k}(\text{Hom}_{G_k}(V_\lambda(B)^{\alpha_B}, V_\lambda(A)), V_\lambda(B, A)^{\alpha_B}).
\end{align*}
Thus, to show that $W \neq 0$, it is enough to show that the map
\begin{equation}
\Phi : V_\lambda(B, A)^{\alpha_B} \to \text{Hom}_{G_k}(V_\lambda(B)^{\alpha_B}, V_\lambda(A)), \quad \Phi(f) := f_s
\end{equation}
is G_k-equivariant. But this indeed holds:
\begin{align*}
\Phi(\theta^{\alpha_B}(s)(f)) &= (\sigma s^{-1} \circ \mu_{s^{-1}}^1) \otimes \sigma(s^{-1}) \\
&= \sigma(f \circ s^{-1} \circ \mu_{s^{-1}}^1) \otimes \sigma(s^{-1}) \\
&= \sigma(f \circ \mu_{s^{-1}}^1 \circ s^{-1} \cdot \sigma(c_B(s, s^{-1}) \cdot \alpha(s)^{-1}) \\
&= \sigma(\Phi(f) \circ \theta^{\alpha_B}(s)^{-1}),
\end{align*}
where we have used that $c_B(s, s^{-1}) = s \mu_{s^{-1}}^1 \mu_s^1$ and $c_B(s, s^{-1}) = \alpha(s) \alpha(s^{-1})$. To conclude, note that if $V_\lambda(A)$ decomposes, then $V_\lambda(B, A)$ does it accordingly, and we can apply the above argument to each of the respective irreducible constituents. \hfill \Box

Note that the proposition implies, in particular, that $V_\lambda(B)^{\alpha_B} \otimes_{\overline{\mathbb{Q}}_\ell} V_\lambda(B, A)^{\alpha_B}$ only depends on the restriction of $\sigma : F \to \overline{\mathbb{Q}}_\ell$ to M. Let $\sigma_i : F \to \overline{\mathbb{Q}}_\ell$, for $i = 1, \ldots, m$, denote extensions to F of the distinct embeddings of M into $\overline{\mathbb{Q}}_\ell$. Let λ_i denote the prime of F attached to σ_i.

Proposition 2.7. There is an isomorphism of $\overline{\mathbb{Q}}_\ell[G_k]$-modules
\begin{equation}
V_i(A) \otimes_{\overline{\mathbb{Q}}_\ell} \overline{\mathbb{Q}}_\ell \simeq \bigoplus_{i=1}^m V_{\lambda_i}(B)^{\alpha_B} \otimes_{\overline{\mathbb{Q}}_\ell} V_{\lambda_i}(B, A)^{\alpha_B}.
\end{equation}

Proof. This follows from the isomorphism
\begin{equation}
V_i(A) \otimes_{\overline{\mathbb{Q}}_\ell} \overline{\mathbb{Q}}_\ell \simeq \bigoplus_{i=1}^m V_{\lambda_i}(A),
\end{equation}
together with Proposition 2.6. \hfill \Box

Proposition 2.8. For $i \neq j$, we have that
\begin{equation}
V_{\lambda_i}(B)^{\alpha_B} \neq V_{\lambda_j}(B)^{\alpha_B}
\end{equation}
as $\overline{\mathbb{Q}}_\ell[G_{K'}]$-modules for any finite extension K'/k.

Proof. Without loss of generality we may assume that $K \subseteq K'$. On the one hand, we then have
\begin{equation}
\text{End}_{G_{K'}}(V_i(A) \otimes \overline{\mathbb{Q}}_\ell) \simeq \text{End}(\bigoplus_{i} V_{\lambda_i}(B)^{\alpha_B})).
\end{equation}
On the other hand, we have

$\text{End}(A_K) \otimes \overline{\mathbb{Q}}_\ell \simeq M_d(\text{End}(B) \otimes \overline{\mathbb{Q}}_\ell) \simeq M_{nd}(M \otimes \overline{\mathbb{Q}}_\ell)$.

By Faltings's isogeny theorem [Fal83], we have that $\dim_{\overline{\mathbb{Q}}_\ell} \text{End}(\oplus_i V_\lambda(B)^{\alpha_i}) = m$, and the proposition follows. □

So far, the subextension k/k_0 of K/k_0 has only been subject to the constraint that B be a k-variety. We now make a specific choice of k/k_0 that allows for a particularly nice description of the Tate module of A_0 in terms of that of $A = A_0 \times_{k_0} k$.

Theorem 2.9. Let A_0 be a simple abelian variety defined over k_0 satisfying Hypothesis 2.7. Let $M_0 = M \cap \text{End}(A_0)$. Then M/M_0 is Galois and there exists a Galois subextension k/k_0 of K_0/k_0 of degree $[M : M_0]$ such that for $A = A_0 \times_{k_0} k$ the following properties hold:

i) $M \subseteq \text{End}(A)$.

ii) B is a k-variety.

iii) For every rational prime ℓ, we have

\[
V_\ell(A_0) \otimes \overline{\mathbb{Q}}_\ell \simeq \bigoplus_\lambda \text{Ind}_{k_0}^k \left(V_\lambda(B)^{\alpha_B} \otimes \overline{\mathbb{Q}}_\ell V_\lambda(A, B)^{\alpha_B} \right),
\]

where the sum runs over the primes $\lambda = \lambda(\sigma)$ of F lying over ℓ attached to extensions $\sigma : F \to \overline{\mathbb{Q}}_\ell$ of the $[M_0 : \mathbb{Q}]$ distinct embeddings of M_0 into $\overline{\mathbb{Q}}_\ell$.

Proof. The existence of a Galois subextension k/k_0 of K_0/k_0 of degree $[M : M_0]$ such that $M \subseteq \text{End}(A)$ and

\[
\bigoplus_{i=1}^{[M : M_0]} V_\ell(A_0) \simeq \text{Ind}_{k_0}^k (V_\ell(A))
\]

is [Mil72, Rem. 2, p. 186]. As it is seen in the proof, there is an injection $\text{Gal}(k/k_0) \hookrightarrow \text{Aut}_{M_0}(M)$, which ensures that M/M_0 is Galois. The fact that $M \subseteq \text{End}(A)$ implies that for every $s \in \text{Gal}(K/k)$ we can fix an M-equivariant isogeny $\mu_s : B \to B$ coming from the M-equivariant isogeny

$\ast B^d \sim \ast A_K = A_K \sim B^d$.

The M-equivariant system of isogenies $\{\mu_s\}_{s \in G_k}$ can be modified into an $\text{End}(B)$-equivariant system $\{\lambda_s\}_{s \in G_k}$, so that B becomes a k-variety. Indeed, consider the M-algebra isomorphism

$\text{End}(B) \to \text{End}(B)$, \hspace{1cm} $\varphi \mapsto \mu_s \circ \varphi \circ \mu_s^{-1}$.

The Skolem–Noether theorem shows the existence of an element $\psi \in \text{End}(B)^{\times}$ such that $\mu_s \circ \varphi \circ \mu_s^{-1} = \psi \circ \varphi \circ \psi^{-1}$. Then define $\lambda_s = \psi^{-1} \circ \mu_s$. The theorem then follows by applying Proposition 2.7 to $V_\ell(A)$ and using that

$\text{Ind}_{k_0}^k (V_\lambda(B)^{\alpha_B} \otimes V_\lambda(B, A)^{\alpha_B}) \simeq \text{Ind}_{k_0}^k (V_{\lambda'}(B)^{\alpha_B} \otimes V_{\lambda'}(B, A)^{\alpha_B})$

if $\lambda = \lambda(\sigma)$, $\lambda' = \lambda'(\sigma')$, and σ and σ' coincide on M_0. The latter follows from Lemma 2.10 below. □

Lemma 2.10. Let λ be a prime of F attached to the embedding $\sigma : F \to \overline{\mathbb{Q}}_\ell$. For $s \in G_k$ we have

$\text{Tr} \text{Ind}_{k_0}^k (V_\lambda(A))(s) = \text{Tr}_{\overline{\mathbb{Q}}_\ell(\sigma M_0)} \text{Tr}(V_\lambda(A)(s))$.
Proof. Let \(g_\lambda^A \) (resp. \(g_t \)) be the representation afforded by \(V_\lambda(A) \) (by \(V_t(A_0) \)). For \(t \in G_{k_0} \) and \(s \in G_k \), define
\[
\sigma^{A,t}_\lambda(s) := g_\lambda^A(tst^{-1}), \quad g^t_t(s) := g_t(tst^{-1}).
\]
Note that \(\sigma_t \simeq g_t \) and that the isomorphism class of \(\sigma^{A,t}_\lambda \) only depends on the projection of \(t \) into \(\Gal(k/k_0) \). If \(\sigma_i = \sigma_j \circ t \), where \(t \) is regarded as an element of \(\Gal(M/M_0) \) via the isomorphism \(\Gal(k/k_0) \simeq \Gal(M/M_0) \), then by transport of structure we have
\[
(8) \quad \sigma^{A,t}_\lambda = \sigma_t \otimes_{\ell^{-1}(M),\sigma_i} \overline{\Q}_\ell \simeq g_t \otimes_{M,\sigma} \overline{\Q}_\ell = \sigma^A_\lambda.
\]
Let \(T \) denote a system of representatives of \(\Gal(k/k_0) \). Then
\[
\Tr \Ind_{k_0}^k(\sigma^A_\lambda)(s) = \sum_{t \in T} \Tr \sigma^{A,t}_\lambda(s) = \Tr_{\Q_\ell,\sigma(M)/\Q_\ell,\sigma(M_0)} \Tr g^A_\lambda(s),
\]
where we used \((8)\) in the last equality. \(\square \)

Remark 2.11. We will be later interested in the case that \(k_0 \) is totally real. Note that if \([M : M_0]\) is odd, then the injection \(\Gal(k/k_0) \hookrightarrow \Aut_{M_0}(M) \) forces \(k \) to be totally real as well. In the case that \(k_0 = \Q \) and \(\Aut_{M_0}(M) \) has a single element of order 2, then \(k \) is either totally real or CM (this follows from the fact that all complex conjugations of \(\Gal(k/\Q) \) are conjugate).

Remark 2.12. Let us review a particular case of Proposition 2.9 implicit in [FG18]. Suppose that \(A \) is \(\Q \)-isogenous to the \(g \)-th power of a non-CM elliptic curve \(B \) and that \(g \) is odd. Then, by [FG18 Theorem 2.21], the cohomology class \(\gamma_B \) of \(c_B \) in \(H^2(G_k, \Q) \) is trivial. By Weil’s descent criterion, if \(\gamma_B \) is trivial, then \(B \) admits a model \(B^* \) up to isogeny defined over \(k \). If \(L^*/k \) denotes the minimal extension such that \(\Hom(B_{L^*}, A_{L^*}) \simeq \Hom(B_\Q, A_\Q) \), then by [Fit13 Thm. 3.1] one has that
\[
V_t(A) \simeq V_t(B^*) \otimes_{\Q_\ell} \Hom(B_{L^*}, A_{L^*}),
\]
which may be regarded as a particular instance of Proposition 2.9.

3. The weakly compatible system \(V_\lambda(B) \)

Let \(A_0 \) be an abelian variety defined over \(k_0 \) satisfying Hypothesis 2.4. Let \(k/k_0 \) be as in Theorem 2.9 and write \(A = A_0 \times_{k_0} k \). In this section we assume further the following.

Hypothesis 3.1.

\begin{enumerate}
\item[i)] \(A_0 \) is potentially of \(\GL_2 \)-type and does not have potential CM.
\item[ii)] Both \(k_0 \) and \(k \) are totally real.
\end{enumerate}

Note that under this hypothesis, we have \(nm = \dim(B) \), and hence the spaces \(V_\lambda(B)^{\alpha_B} \) have \(\Q_\ell \)-dimension 2. Observe also that Hypothesis 3.1 implies Hypothesis 2.4. Keep the notations \(B \), \(\alpha_B \), and \(F \) of Section 2. The goal of this section is to present \(R = (V_\lambda(B))_\lambda \) as a rank 2 weakly compatible system of \(\ell \)-adic representations of \(G_k \) defined over \(F \) (see [BLGCT14] §5.1 for the definition of weakly compatible system of \(\ell \)-adic representations). This will rely on classical work of Ribet and on the following result of Wu (in fact, Wu’s result extends work of Ellenberg and Skinner [ES01] Prop. 2.10], who considered the \(\dim(B) = 1 \) case).
Theorem 3.5

Proposition 3.2 (Cor. 2.1.15, Prop. 2.2.1, [Wu11]). Suppose that A_0 satisfies Hypothesis 3.1. Then there exists an abelian variety $A^{\alpha B}$ of GL$_2$-type defined over k satisfying:

i) $\dim(A^{\alpha B}) = [F : \mathbb{Q}]$ and there exists an inclusion $F \hookrightarrow \text{End}(A^{\alpha B})$.

ii) There is an isomorphism of $\mathbb{Q}_\ell[G_k]$-modules

$$V_\lambda(A^{\alpha B}) \simeq V_\lambda(B)^{\alpha B},$$

where $V_\lambda(A^{\alpha B})$ is the tensor product $V_\ell(A^{\alpha B}) \otimes \mathbb{Q}_\ell$ taken with respect to the map induced by the embedding $\sigma : F \hookrightarrow \mathbb{Q}_\ell$ attached to the prime λ.

Proposition 3.3 (Ribet). Suppose that A_0 satisfies Hypothesis 3.1. Then $R = (V_\lambda(B)^{\alpha B})_\lambda$ is a weakly compatible system of ℓ-adic representations of G_k defined over F, of rank 2, and satisfying:

i) It is pure of weight 1, regular, and with Hodge–Tate weights 0 and 1.

ii) Its determinant $\delta_\lambda := \det(V_\lambda(B)^{\alpha B})$ is of the form $\varepsilon_\lambda \chi_\ell$, where

$$\varepsilon_\lambda : G_k \rightarrow F^\times \hookrightarrow \mathbb{Q}_\ell^\times$$

is a finite order character and $\chi_\ell : G_k \rightarrow \mathbb{Q}_\ell^\times$ is the ℓ-adic cyclotomic character.

iii) It is strongly irreducible and $\text{End}_{G_k}(V_\lambda(B)^{\alpha B}) \simeq \mathbb{Q}_\ell$, for every finite extension K'/k.

iv) It is totally odd, in the sense that $\delta_\lambda(\tau) = -1$ for every complex conjugation $\tau \in G_k$.

Proof. By Proposition 3.2 it suffices to prove the corresponding statements for $(V_\lambda(A^{\alpha B}))_\lambda$. When $k = \mathbb{Q}$, this can be found in the work of Ribet: the Hodge–Tate property and the description of the determinant follow from [Rib92 lem. 3.1], the totally oddness is [Rib92 lem. 3.2], and strong irreducibility amounts to [Rib92 lem. 3.3]. See [Wu11 §2.2] for the general statements.

Remark 3.4. We may also regard $(V_\lambda(B,A)^{\alpha B})_\lambda$ as a compatible system of ℓ-adic representations defined over F. Note that its tensor product with $(V_\lambda(B)^{\alpha B})_\lambda$ equals $(V_\lambda(A))_\lambda$ which is in fact defined over M.

We will later make use of the following result (see [BLGGT14 Thm. 5.4.1]).

Theorem 3.5 ([BLGGT14]). Suppose that k is a totally real field. Then given natural numbers $e_1, \ldots, e_r \geq 0$ and a finite extension k^*/k, there exists a totally real extension k'/k such that:

i) $\text{Symm}^{e_1}(R|_{G_{k'}}), \ldots, \text{Symm}^{e_r}(R|_{G_{k'}})$ are all automorphic;

ii) k'/k is linearly disjoint from k^* over k; and

iii) k'/\mathbb{Q} is Galois.

4. Sato–Tate groups and Sato–Tate conjecture

Let A_0 be an abelian variety defined over k_0 satisfying Hypothesis 3.1. Assume further that $k = k_0$, where k is the field given by Theorem 2.9. We will keep the notations of Section 2 but note that A and A_0 (resp. M and M_0, etc) become now synonyms.

The aim of this section is to describe the Sato–Tate group of A, denoted ST(A). We will describe ST(A) as the Kronecker product of $m = [M : \mathbb{Q}]$ copies of SU(2) and a finite group H closely related to the image of θ_λ^{AB}. We will also state the Sato–Tate conjecture for A.

Sato–Tate groups. Let us start by briefly recalling the definition of \(\text{ST}(A) \), a compact real Lie subgroup of \(\text{USp}(2g) \), only well-defined up to conjugacy. Fix a prime \(\ell \) and let

\[
\varrho_{\ell}: G_k \to \text{GL}(V_{\ell}(A))
\]

be the \(\ell \)-adic representation attached to \(A \). Denote by \(G_{\ell}^{\text{Zar}}(A) \) the Zariski closure of the image of \(\varrho_{\ell} \) in the algebraic group \(\text{GL}_{V_{\ell}(A)}/\mathbb{Q}_{\ell} \). The compatibility of \(\varrho_{\ell} \) with the Weil pairing, ensures that \(G_{\ell}^{\text{Zar}}(A) \) sits inside \(\text{GSp}_{2g}/\mathbb{Q}_{\ell} \). Let \(G_{\ell}^{\text{Zar},1}(A) \) denote the kernel of the restriction to \(G_{\ell}^{\text{Zar}}(A) \) of the similitude character of \(\text{GSp}_{2g} \). Fix an embedding \(\iota: \mathbb{Q}_{\ell} \to \mathbb{C} \) and denote by \(G_{\iota}^{\text{Zar}}(A) \) the group of \(\mathbb{C} \)-points of the base change of \(G_{\ell}^{\text{Zar},1}(A) \) from \(\mathbb{Q}_{\ell} \) to \(\mathbb{C} \) via \(\iota \). The Sato–Tate group \(\text{ST}(A) \) is defined as a maximal compact subgroup of \(G_{\iota}^{\text{Zar}}(A) \). It is expected that this definition coincides with the definition given by Banaszak–Kedlaya \cite{BK15}, which is independent of the choice of \(\ell \). We refer to \cite{FKRST} §2.1 for more details.

We next define in a similar way a Sato–Tate group for the system \((V_{\lambda}(B)^{a_{1}})_{1} \cdots B_{\lambda})_{\lambda} \) along the lines of \cite[§7]{BLGG11}. We will formally denote it by \(\text{ST}(B^{a_{1}}) \) in order to emphasize that it is not the Sato–Tate group of the abelian variety \(B \) defined over \(K \). Let \(G_{\lambda}^{\text{Zar}}(B^{a_{1}}) \) denote the Zariski closure of the image of

\[
\varrho_{\lambda}^{a_{1}}: G_k \to \text{GL}(V_{\lambda}(B))
\]

in the algebraic group \(\text{GL}_{V_{\lambda}(B)}/\mathbb{Q}_{\ell} \). Let \(a \) denote the order of the character \(\varepsilon \) introduced in Section 3. Let \(G_{\lambda}^{\text{Zar},1}(B^{a_{1}}) \) denote the kernel of the map

\[
\det^{a_{1}}: G_{\lambda}^{\text{Zar},1}(B^{a_{1}}) \to \mathbb{G}_{m}.
\]

Denote by \(G_{\iota}^{1}(B^{a_{1}}) \) the group of \(\mathbb{C} \)-points of the base change of \(G_{\lambda}^{\text{Zar},1}(B^{a_{1}}) \) from \(\mathbb{Q}_{\ell} \) to \(\mathbb{C} \) via \(\iota \). The Sato–Tate group \(\text{ST}(B^{a_{1}}) \) is defined as a maximal compact subgroup of \(G_{\iota}^{1}(B^{a_{1}}) \).

Lemma 4.1. We have \(\text{ST}(B^{a_{1}}) \simeq \text{SU}(2) \otimes \mu_{2a} \).

Proof. By the definition of \(\text{ST}(B^{a_{1}}) \), we clearly have a monomorphism

\[
\text{ST}(B^{a_{1}}) \hookrightarrow U(2a),
\]

where \(U(2a) \) is the subgroup of \(U(2) \) consisting of those matrices \(g \in U(2) \) with \(\det(g)^{a_{1}} = 1 \). We may compose this monomorphism with the inverse of the group isomorphism

\[
\text{SU}(2) \otimes \mu_{2a} \to U(2a), \quad A \otimes \zeta \mapsto A\zeta
\]

to get a monomorphism \(\varphi \). Since \(-I \) lies in the image of \(\varphi \) it will suffice to show that the induced monomorphism

\[
\tilde{\varphi}: \text{ST}(B^{a_{1}})/\langle -I \rangle \to \text{SU}(2) \otimes \mu_{2a}/\langle -I \otimes 1 \rangle
\]

is surjective. Consider now the monomorphism

\[
\text{ST}(B^{a_{1}})/\langle -I \rangle \overset{\tilde{\varphi}}{\longrightarrow} \text{SU}(2) \otimes \mu_{2a}/\langle -I \otimes 1 \rangle \overset{\pi_{1} \times \pi_{2}}{\longrightarrow} \text{SU}(2)/\langle -I \rangle \times \mu_{2a}/\langle -I \rangle,
\]

where \(\pi_{i} \) denotes the natural projection map. Let \(N_{i} \) denote the kernel of \(\pi_{1} \circ \tilde{\varphi} \). By part (ii) (resp. part (ii)) of Proposition \cite[lem. 5.2.1]{Ribet76} we have that that \(\pi_{1} \circ \tilde{\varphi} \) (resp. \(\pi_{2} \circ \tilde{\varphi} \)) is surjective. Then by Goursat’s lemma (as in \cite[lem. 5.2.1]{Ribet76}) we have that

\[
\text{SU}(2)/\tilde{\varphi}(N_{2}) \simeq \mu_{2a}/\tilde{\varphi}(N_{1}) \).
\]

Since \(\text{SU}(2) \) has no proper normal subgroups of finite index, we deduce that \(\tilde{\varphi}(N_{2}) \simeq \text{SU}(2)/\langle -I \rangle \). This immediately implies that \(\tilde{\varphi} \) is surjective. \(\square \)
By enlarging F if necessary we can assume that it contains the values $\sqrt{\varepsilon(s)}$ for $s \in G_k$, where ε is the character appearing in Proposition 3.3. Consider the well-defined group homomorphism

$$\tilde{\varepsilon}^{1/2} : G_k \to F^\times /\langle -1 \rangle,$$
and denote by $\tilde{\varepsilon}^{-1/2}$ its inverse. We will denote by k_ε/k the field extension cut out by the homomorphism $\tilde{\varepsilon}^{1/2}$, which coincides with the field cut out by ε. Let us denote by

$$\tilde{\theta}_\lambda^{ab} : G_k \to \text{GL}(V_\lambda(B, A))/\langle -1 \rangle$$
the group homomorphism naturally induced by θ_λ^{ab}.

Proposition 4.2. The following field extensions coincide:

1. **The endomorphism field** K_0/k.
2. **The field extension cut out by the representation** $\theta_\lambda^{ab} \otimes \theta_\lambda^{ab,\vee}$.
3. **The field extension cut out by the group homomorphism**

$$\tilde{\varepsilon}^{1/2} \otimes \tilde{\theta}_\lambda^{ab} : G_k \to \text{GL}(V_\lambda(B, A))/\langle -1 \rangle.$$

Proof. By Faltings isogeny theorem, as in the proof of Proposition 2.8 we have that K_0/k is the minimal extension of k such that

$$\text{End}_{G_{K_0}}(V_\lambda(A) \otimes \bar{\mathbb{Q}}_\ell) \simeq M_{nd}(\bar{\mathbb{Q}}_\ell).$$

Let K'/k be an arbitrary finite extension. By Proposition 2.6 we have

$$\text{End}_{G_{K'}}(V_\lambda(A)) \simeq \text{End}_{G_{K'}}((V_\lambda(B)^{ab}) \otimes V_\lambda(B, A)^{ab})$$

$$\simeq \text{Hom}_{G_{K'}}(V_\lambda(B)^{ab} \otimes V_\lambda(B)^{ab,\vee}, V_\lambda(B, A)^{ab} \otimes V_\lambda(B, A)^{ab,\vee})$$

$$\simeq (V_\lambda(B, A)^{ab} \otimes V_\lambda(B, A)^{ab,\vee})^{G_{K'}},$$

where in the last isomorphism we have used that $\text{End}_{G_{K'}}(V_\lambda(B)^{ab}) \simeq \bar{\mathbb{Q}}_\ell$, as stated in part ii) of Proposition 3.3. This shows that the field extensions of i) and ii) coincide. In fact, we could have alternatively shown the equivalence between i) and ii), by establishing the isomorphism

$$V_\lambda(B, A)^{ab} \otimes V_\lambda(B, A)^{ab,\vee} \simeq \text{End}(A_{K_0}) \otimes_{M,\sigma} \bar{\mathbb{Q}}_\ell$$
of $\bar{\mathbb{Q}}_\ell[G_k]$-modules (in the same lines as in the proof of Proposition 2.6).

Let L denote the field extension cut out by $\tilde{\varepsilon}^{1/2} \otimes \tilde{\theta}_\lambda^{ab}$. We first show that $K_0 \subseteq L$. Indeed, for every $s \in G_L$, we have that $\theta_\lambda^{ab}(s)$ is a scalar diagonal matrix. Thus $\theta_\lambda^{ab} \otimes \theta_\lambda^{ab,\vee}(s)$ is trivial, and then by ii) we deduce that $s \in G_{K_0}$.

We will give two different proofs of the fact that $L \subseteq K_0$. For $s \in G_k$, let $d(\mu_s)$ denote the “degree” of μ_s as defined on [Pyl02 p. 223]. As shown in [Pyl02 Thm. 5.12], for $s \in G_k$, we have that

$$\varepsilon(s) = \frac{\alpha_B(s)^2}{d(s)}.$$

Let now $\varphi \in V_\lambda(B, A)$ and $s \in G_{K_0}$. Since μ_s is the identity and $d(s) = 1$, we find that

$$\tilde{\varepsilon}^{1/2} \otimes \tilde{\theta}_\lambda^{ab}(s)(\varphi) = \alpha_B(s) \cdot \varphi \circ \mu_s^{-1} \otimes \alpha_B(s)^{-1} = \varphi,$$

which gives the first proof of the fact that $G_{K_0} \subseteq G_L$.

- Beware that e_B is the inverse of the 2-cocycle chosen by Pyle.
As for the second proof, let \(s \in G_{K_0} \) so that \(\theta_{\lambda}^a(s) \) is a scalar matrix. We claim that \(\tilde{\theta}_{\lambda}^a(s) \) and \(\tilde{\varepsilon}^{-1/2}(s) \) coincide as elements in \(F^\times /\langle -1 \rangle \).

By the Chebotarev density theorem it is enough to show the claim when \(s \) is of the form \(\text{Frob}_p \), for some prime \(p \) of \(k \) of good reduction for \(A \). To shorten notation let us write

\[
a_p = \text{Tr}(V_\lambda(B)^a(B \text{Frob}_p)), \quad b_p = \text{Tr}(V_\lambda(B, A)^a(B \text{Frob}_p)), \quad c_p = \text{Tr}(V_\lambda(A)(B \text{Frob}_p)).
\]

To prove the claim we may even restrict to primes \(p \) for which \(a_p \) is nonzero, since the density of those for which \(a_p = 0 \) is zero (this may be seen by applying the argument of [Ser89, Ex. 2, p. IV-13] to \(V_\lambda(B)^a \); see also [Ser81]). Recall that by [Rib92, Thm. 5.3] (see also [Wu11, Prop. 2.2.14]), we have that

\[
(9) \quad \frac{a_p^2}{\varepsilon_p} = a_p c_p \in M,
\]

where \(\varepsilon_p := \varepsilon(\text{Frob}_p) \) and \(\tau \) denotes the “complex conjugation” in \(F \). By Theorem 2.31 we have that \(a_p b_p = c_p \in M \). From this and (9), we see that

\[
b_p^2 \varepsilon_p = \frac{a_p^2}{\varepsilon_p} = \frac{c_p}{a_p c_p} = \frac{c_p}{a_p}
\]

is a totally positive element of the totally real field \(M \). The assumption that \(\text{Frob}_p \in G_{K_0} \) implies that \(b_p = nd_{\varepsilon_p} \) for some root of unity \(\zeta_2 \). We deduce that \(\zeta_2^a \varepsilon_p = 1 \). This shows that \(\tilde{\theta}_{\lambda}^a(\text{Frob}_p) \) and \(\tilde{\varepsilon}^{-1/2}(\text{Frob}_p) \) coincide as elements in \(F^\times /\langle -1 \rangle \) and the second proof of the inclusion \(L \subseteq K_0 \) is complete. \(\square \)

Proposition 4.3. The field cut out by the representation

\[
\theta_{\lambda}^a: G_k \to \text{GL}(V_\lambda(B, A))
\]

is an extension of degree at most 2 of \(k, K_0/k \).

Proof. It will suffice to show that the field extension \(L'/k \) cut out by \(\tilde{\theta}_{\lambda}^a \) is \(k \cdot K_0 \). We have that

\[
\tilde{\theta}_{\lambda}^a \simeq \tilde{\varepsilon}^{-1/2} \otimes (\tilde{\varepsilon}^{1/2} \otimes \tilde{\theta}_{\lambda}^a).
\]

First note that \(K_0 \subseteq L' \). Then, by Proposition 4.2 we have that \(L'/K_0 \) is the minimal extension cut out by \(\tilde{\varepsilon}^{-1/2}|_{G_{K_0}} \). The proposition now follows from the fact that \(k \cdot \) is also the field cut out by \(\tilde{\varepsilon}^{-1/2} \). \(\square \)

Definition 4.4. Let \(\tilde{H} \) denote the (isomorphic) image of the Galois group \(\text{Gal}(K_0/k) \) by the representation \(\tilde{\varepsilon}^{1/2} \otimes \tilde{\theta}_{\lambda}^a \). We will denote by \(H \) the preimage of \(\tilde{H} \) by the projection map

\[
\text{GL}(V_\lambda(B, A)) \to \text{GL}(V_\lambda(B, A))/\langle -I \rangle.
\]

Recall the embeddings \(\sigma_i: F \to \overline{Q}_f \), for \(i = 1, \ldots, m \), obtained as extensions to \(F \) of the distinct embeddings of \(M \) into \(\overline{Q}_f \). They define primes \(\lambda_i \) of \(F \). Write \(\varepsilon_i \) for \(\varepsilon \circ \varepsilon_{\lambda_i} \) and \(\tilde{\theta}_{\lambda_i}^a \) for \(\lambda_i \circ \theta_{\lambda_i}^a \). Let \(\varepsilon_i^{1/2} \) denote an arbitrary square root of \(\varepsilon_i \).

Note that the map \(\varepsilon_i^{1/2} \) will not be in general a character. We set

\[
\prod_{i=1}^m SU(2)^{(i)} \otimes H := \left\{ (g_i \otimes (\varepsilon_i^{1/2} \otimes \tilde{\theta}_{\lambda_i}^a)(h))_i \mid g_i \in SU(2), h \in \text{Gal}(K_0/k) \right\}.
\]

Since \(-I \) belongs to \(SU(2) \), this definition does not depend on the choice of the square root \(\varepsilon_i^{1/2} \).
Proposition 4.5. Up to conjugacy, $\text{ST}(A)$ is the subgroup

$$\prod_{i=1}^m \text{SU}(2)^{(i)} \otimes H \subseteq \text{USp}(2g).$$

In particular, we have:

i) The identity component $\text{ST}(A)^0$ of $\text{ST}(A)$ satisfies

$$\text{ST}(A)^0 \simeq \text{ST}(A_{K_0}) \simeq \text{SU}(2) \times \cdots \times \text{SU}(2).$$

ii) The group of connected components $\pi_0(\text{ST}(A))$ of $\text{ST}(A)$ is isomorphic to $\text{Gal}(K_0/k)$.

Proof. Proposition 2.7 and Lemma 4.1 imply that there is an injection V into the existence of an isomorphism ϕ. Since the projection of ϕ onto the i-th factor $\text{SU}(2)^{(i)} \otimes H$ is surjective, the lack of surjectivity of ϕ would translate into the existence of an isomorphism $V_i^\lambda(B^{a,b}) \simeq V_i^\lambda(B^{a,b})$ as $\mathbb{Q}_l[G_{K'}]$-modules for some $i \neq j$ and some finite extension K'/k. This contradicts Proposition 2.8.

The statement regarding the group of components is an immediate consequence of Proposition 4.2. \qed

Provenus conjugacy classes. Let S denote a finite set of primes of k containing the primes of bad reduction for A and the primes of bad reduction for the variety $A^{a,b}$ given by Proposition 3.2. Let $g_{i,a}^\lambda$ stand for $\iota \circ g_{i,a}^\lambda$. For $p \notin S$, let x_p be the conjugacy class in $\text{ST}(A)$ of $(g_{i,p} ^{\lambda} \otimes h_{i,p})$, where

$$g_{i,p} := \text{Nm}(p)^{-1/2} \cdot \varepsilon_i^{-1/2} \otimes g_i^\lambda \cdot (\text{Frob}_p), \quad h_{i,p} := \varepsilon_i^{1/2} \otimes \theta_i^a \cdot (\text{Frob}_p),$$

for an arbitrary choice of square root $\varepsilon_i(\text{Frob}_p)^{1/2}$ (note that the Kronecker product $g_{i,p} \otimes h_{i,p}$ does not depend on this choice). We will simply write h_p to denote $h_{1,p}$. We have an equality of characteristic polynomials

$$\text{Char}(x_p) = \text{Char}\left(\text{Nm}(p)^{-1/2} \cdot g_p \cdot (\text{Frob}_p)\right).$$

Sato–Tate conjecture. In our specific situation, the general Sato–Tate conjecture (see [FKRS12, §2.1], [Ser12, Chap. 8]) takes the following form.

Conjecture 4.6 (Sato–Tate conjecture for A). The sequence $\{x_p\}_{p \notin S}$, where the primes p are ordered with respect to their absolute norm, is equidistributed on the set of conjugacy classes of $\text{ST}(A)$ with respect to the projection on this set of the Haar measure of $\text{ST}(A)$.

Let ϱ be an irreducible representation of $\text{ST}(A)$. For $s \in \mathbb{C}$ with $\Re(s) > 1$, define the partial Euler product

$$L^S(\varrho, A, s) = \prod_{p \notin S} \det(1 - \varrho(x_p) \cdot \text{Nm}(p)^{-s})^{-1}.$$
Irreducible representations of $\text{ST}(A)$. In the next section we will prove Conjecture 4.6 in certain cases when $k_0 = k$ and $[M : \mathbb{Q}] \leq 2$. Let us describe the type of partial Euler products that one finds in this setting. Let H be as in Definition 4.4.

If $[M : \mathbb{Q}] = 1$, then $k = k_0$, and we see from Proposition 4.5 that the irreducible representations of $\text{ST}(A)$ are of the form $\text{Symm}^e \otimes \eta$, where e is an integer ≥ 0, Symm^e is the e-th symmetric power of the standard representation of $\text{SU}(2)$ and η is an irreducible representation of H such that

$$\eta(-I) = (-I)^e.$$ \hfill (10)

We then have

$$L^S(\text{Symm}^e \otimes \eta, A, s) = \prod_{p \nmid S} \det(1 - \text{Symm}^e(g_{1,p}) \otimes \eta(h_p) \text{Nm}(p)^{-s})^{-1}. \hfill (11)$$

Suppose that $[M : \mathbb{Q}] = 2$ and that $k = k_0$. Then the irreducible representations of $\text{ST}(A)$ are of the form

$$\text{Symm}^{e_1} \otimes \text{Symm}^{e_2} \otimes \eta, \hfill (12)$$

where e_1, e_2 are integers ≥ 0, and η is an irreducible representation of H such that $\eta(-I) = (-I)^{e_1 + e_2}$.

For every $e \geq 0$, we next attach to any representation η as above an Artin representation η_e that will be used in §4.5 to link the partial Euler products described above to the partial Euler products of the compatible systems $(V_\lambda(B)^{\alpha_0})_\lambda$.

Lemma 4.7. Let $\eta : H \to \text{GL}(V)$ be a complex representation such that $\eta(-I) = (-I)^e$. For every $s \in G_k$, fix a choice $\varepsilon_i^{1/2}(s)$ of a square root of $\varepsilon_i(s)$. Then the map

$$\eta_e : G_k \to \text{GL}(V), \quad \eta_e(s) := \varepsilon_i(s)^{-e/2} \otimes \eta(\varepsilon_i^{1/2}(s) \otimes \theta_{\alpha}^B(s))$$

is a representation. Moreover, it factors through an extension K_e of degree at most 2 of $K_0 k_e$.

Proof. For $s, t \in G_k$ define

$$c_e(s, t) := \frac{\varepsilon_i^{1/2}(s) \varepsilon_i^{1/2}(t)}{\varepsilon_i^{1/2}(st)} \in \{\pm 1\}.$$

Then

$$\eta_e(st) = \varepsilon_i(st)^{-e/2} \otimes \eta(\varepsilon_i^{1/2}(st) \otimes \theta_{\alpha}^B(st))$$

$$= c_e(s, t)^e \varepsilon_i(s)^{-e/2} \varepsilon_i(t)^{-e/2} \otimes \eta(c_e(s, t) \varepsilon_i^{1/2}(s) \varepsilon_i^{1/2}(t) \otimes \theta_{\alpha}^B(s) \theta_{\alpha}^B(t))$$

$$= \eta_e(s) \eta_e(t);$$

here we have used that $\eta(c_e(s, t)) = c_e(s, t)^e$, which follows from the hypothesis $\eta(-I) = (-I)^e$.

Let $\tilde{\eta}_e : G_k \to \text{GL}(V)/(-I)$ be the group homomorphism naturally induced by η_e. It factors through $K_0 k_e$ by Proposition 4.2, and therefore η_e factors through an at most quadratic extension of $K_0 k_e$. \hfill \square
5. Scenarios of applicability

Let A_0 be an abelian variety defined over k_0 satisfying Hypothesis 3.1. In this section, we use the description of the Sato–Tate group of A_0 achieved in §4 to prove the Sato–Tate conjecture in certain cases. The two main theorems of this section generalize [Tay19, Thm 3.4 and Thm 3.6]. The proofs build heavily on those in [Tay19], which in turn are deeply inspired by those in [Joh17]. Many ideas are in fact reminiscent of the seminal works [HSBT10] and [Har09].

Theorem 5.1. Suppose that k_0 is a totally real number field and that A_0 is an abelian variety defined over k_0 of dimension $g \geq 1$ which is $\overline{\mathbb{Q}}$-isogenous to the power of either:

i) an elliptic curve B without CM; or

ii) an abelian surface B with QM.

Suppose that the endomorphism field K_0 of A_0 is a solvable extension of k_0. Then Conjecture 4.6 holds.

Proof. The setting of the theorem is that of an abelian variety A_0 satisfying Hypothesis 2.1 with $M = \mathbb{Q}$. In particular, we have $k = k_0$. By Theorem 2.9, there is an isomorphism of $\mathbb{Q}_\ell[G_{k_0}]$-modules

$V_{\ell}(A) \otimes \mathbb{Q}_\ell \cong V_{\ell}(B)^{\alpha B} \otimes \mathbb{Q}_\ell V_{\ell}(B, A)^{\alpha B}$,

where $V_{\ell}(B, A)^{\alpha B}$ has dimension g. We want to show that the partial L-function

$L^S(Sym^e \otimes \eta, A_0, s)$

as defined in (11) is invertible as long as not both $e = 0$ and η is trivial. We may assume that $e \geq 1$, since otherwise we have a partial Artin L-function for which the result is well known.

To show invertibility, we will apply the Taylor–Brauer reduction method of [HSBT10] closely following the presentation of [MM09]. We first invoke Theorem 3.5 to obtain a Galois extension k'/k_0 such that

$R_e|_{G_{k'}}$, where $R_e := Symm^e(V_\lambda(B)^{\alpha B})_\lambda$,

is automorphic. Note that the partial L-function of (13) is the normalized partial L-function $L^S(R_e \otimes \eta_e, s)$ attached to the weakly compatible system of λ-adic representations $R_e \otimes \eta_e$.

Set $L = k'K_{e'}$, where $K_{e'}$ is the field introduced in Lemma 4.7 and inflate η_e to a representation of $Gal(L/k_0)$. By Brauer’s induction theorem, we may write η_e as a finite sum

$\eta_e = \bigoplus_i c_i \text{Ind}^{E_i}_{k_0}(\chi_i)$,

where c_i is an integer, E_i/k_0 is a subextension of L/k_0 such that $Gal(L/E_i)$ is solvable, and $\chi_i: Gal(L/E_i) \rightarrow \mathbb{C}^\times$ is a character. We therefore have

$L^S(R_e \otimes \eta_e, s) = \prod_i L^S(R_e|_{G_{E_i}} \otimes \chi_i, s)^{c_i}$,

and it suffices to show that the L-functions $L^S(R_e|_{G_{E_i}} \otimes \chi_i, s)$ are invertible.

By assumption, K_0/k_0 is solvable, and thus so is $K_{e'}/k_0$. Therefore L/k' is solvable. Then automorphic base change [AC89] implies that $R_e|_{G_L}$ is automorphic.

3It is not really necessary to assume that k'/k is linearly disjoint from K_0 over k_0.

Suppose that

Theorem 5.3. §

since the automorphicity of Hecke characters is well known. We will however disregard the CM setting in this section, since it has already been treated in \[\text{[BON]}\] §3.

Theorem 5.3. Suppose that \(k_0\) is a totally real number field and that \(A_0\) is an abelian variety defined over \(k_0\) of dimension \(g\geq1\) which is \(\mathbb{Q}\)-isogenous to the power of either:

i) an abelian surface \(B\) with RM; or

ii) an abelian fourfold \(B\) with QM.\footnote{Recall that in our terminology this means that \(\text{End}(B)\) is a quaternion algebra over a quadratic number field.}

Suppose that the endomorphism field \(K_0\) of \(A_0\) is a solvable extension of \(k_0\) and that the field extension \(k/k_0\) from Theorem 2.9 is trivial. Then Conjecture 4.6 holds.

Proof. The hypotheses of the theorem are a reformulation of the assumption that \(A_0\) satisfies Hypothesis \[\text{[2.9]}\] and that \(M\) is a (real) quadratic field.

Since \(k=k_0\), we have that \(M=M_0\). By Theorem 2.9 we have an isomorphism of \(\mathbb{Q}_l[G_{k_0}]\)-modules

\[
V_l(A) \otimes \mathbb{Q}_l \cong V_\lambda(B)^{\alpha\beta} \otimes V_\lambda(B)E_1 \otimes V_\lambda(B)E_2 \otimes V_\lambda(B,A)^{\alpha\beta},
\]

where \(\lambda, \overline{\lambda}\) are attached to extensions to \(F\) of the two distinct embeddings of \(M_0\) into \(\mathbb{Q}_l\). Note that \(V_\lambda(B,A)^{\alpha\beta}\) has dimension \(g/2\) as a \(\mathbb{Q}_l\)-vector space. It will suffice to show that the partial \(L\)-function

\[
L^S(\text{Symm}^{e_1} \otimes \text{Symm}^{e_2} \otimes \eta, A_0, s)
\]

attached to \(\text{[12]}\) is invertible whenever \(e_1 > 0\) or \(e_2 > 0\). Invoke Theorem 3.5 to obtain a Galois extension \(k'/k_0\) such that \(\mathcal{R}_{c_1}|_{G_{k'}}\) and \(\mathcal{R}_{c_2}|_{G_{k'}}\) are automorphic, where

\[
\mathcal{R}_{c_1} := \text{Symm}^{e_1}(V_\lambda(B)^{\alpha\beta})_{\lambda}, \quad \mathcal{R}_{c_2} := \text{Symm}^{e_2}(V_\lambda(B)E_1)_{\lambda}.
\]

Set \(L = k'K_{c_1+c_2}\) and inflate \(\eta_{c_1+c_2}\) to a representation of \(\text{Gal}(L/k_0)\). Note that

\[
L^S(\text{Symm}^{e_1} \otimes \text{Symm}^{e_2} \otimes \eta, A_0, s) = L^S(\mathcal{R}_{c_1} \otimes \mathcal{R}_{c_2} \otimes \eta_{c_1+c_2}, s).
\]

As in the proof of Theorem \[\text{[5.1]}\] by Brauer’s induction theorem applied to \(\eta_{c_1+c_2}\), there exist integers \(c_i\), subextensions \(E_i/k_0\) of \(L/k_0\) with \(\text{Gal}(L/E_i)\) solvable, and characters \(\chi_i\): \(\text{Gal}(L/E_i) \rightarrow \mathbb{C}^\times\) such that

\[
L^S(\mathcal{R}_{c_1} \otimes \mathcal{R}_{c_2} \otimes \eta_{c_1+c_2}, s) = \prod_i L^S(\mathcal{R}_{c_1}|_{G_{E_i}} \otimes \mathcal{R}_{c_2}|_{G_{E_i}} \otimes \chi_i, s)^{c_i}.
\]

As in the proof of Theorem \[\text{[5.1]}\] we have that \(L/k'\) is solvable. Using automorphic base change and automorphic descent, we find that

\[
\mathcal{R}_{c_1}|_{G_{E_i}} \text{ and } \mathcal{R}_{c_2}|_{G_{E_i}} \otimes \chi_i
\]
are automorphic. The nonvanishing of the L-function attached to f follows from \cite{Sha81} Theorem 5.2. The holomorphicity follows from the fact that the systems of \cite{10} do not become isomorphic after a finite base change, as granted by Proposition 2.8.

\begin{remark}
When $g \leq 3$, the hypothesis that K_0/k_0 be solvable in Theorem 5.1 and Theorem 5.3 is always satisfied. This follows from the classification results achieved in \cite{FKRS12} and \cite{FKS20}.
\end{remark}

Examples: modular abelian varieties. A natural source of examples of abelian varieties satisfying Hypothesis 2.1 are the modular abelian varieties associated to modular forms by the Eichler–Shimura construction. Let $f = \sum a_m q^m \in S_2(\Gamma_1(N))$ be a non-CM newform of Nebentypus ε, and let $F_f = \mathbb{Q}(\{a_m\})$ be the number field generated by its Fourier coefficients. Put $g = [F_f : \mathbb{Q}]$. There exists an abelian variety A_f defined over \mathbb{Q} of dimension g which is uniquely characterized up to isogeny by the equality of L-functions

$$L(A_f, s) = \prod_{\sigma : F_f \to \mathbb{C}} L(f^\sigma, s),$$

and satisfying that $\text{End}(A_f) \simeq F_f$. The variety A_f is simple, but it may not be geometrically simple. The structure of the base change $A_f|_L$ was determined by Ribet \cite{Rib92} and Pyle \cite{Pyl02}. They proved that $A_f|_L \sim B^d$ for some abelian variety B/\mathbb{Q} satisfying that:

- B is a \mathbb{Q}-variety, and
- $\text{End}(B)$ is a central division algebra over a totally real field M_f of Schur index $n \leq 2$ and $n[M_f : \mathbb{Q}] = \dim B$.

Moreover, the center M_f of $\text{End}(B)$ can be described in terms of f as the field generated by all the numbers $a_m^2/\varepsilon(m)$ with m coprime to N.

Denote by K_f the smallest field of definition of $\text{End}(A_f|_L)$ (this is the field called K_0 in \cite{Que12}). The extension K_f/\mathbb{Q} is abelian (cf. \cite{GL01} Proposition 2.1]), hence in particular solvable.

All these properties of the varieties A_f give the following consequence of Theorems 5.1 and 5.3

Corollary 5.5. Let $f = \sum a_m q^m \in S_2(\Gamma_1(N))$ be a newform of nebentype ε. If f is non-CM, suppose that the number field $M_f = \mathbb{Q}(\{a_m^2/\varepsilon(m)\}_{(m,N)=1})$ has degree at most 2 over \mathbb{Q}. Then the Sato–Tate conjecture is true for A_f.

Examples of these modular forms are certainly abundant even for small levels N. For example, in the tables of \cite{Que09} (the complete tables are available at \cite{Que12}), where levels up to 500 are considered, one finds many examples of modular abelian varieties A_f which are geometrically isogenous to powers of elliptic curves (\cite{Que12} §4.1), abelian surfaces with RM by a quadratic field M_f (\cite{Que12} §4.2), abelian surfaces with QM by a quaternion algebra over \mathbb{Q} (\cite{Que12} §5.1) or abelian fourfolds with QM by a quaternion algebra over a quadratic field M_f (\cite{Que12} §5.2).

Suppose that $f \in S_2(\Gamma_0(N), \varepsilon)$ is a modular form satisfying the hypotheses of Corollary 5.3 and let χ be a Dirichlet character. Then the twisted modular form $h = f \otimes \chi$ has nebentype character $\varepsilon_h = \varepsilon \chi^2$, and its Fourier coefficients b_m satisfy that $b_m = a_m \chi(m)$ for m coprime to the conductor of χ. Therefore, $b_m^2/\varepsilon_h(m) = a_m^2/\varepsilon(m)$ so the field M_h coincides with M_f and therefore h also
satisfies the hypothesis of Corollary 5.5. Since \(\dim A_h = [F_h : \mathbb{Q}] \) and \(F_h \) contains the field generated by the values of \(\varepsilon_h \), we see that Corollary 5.5 proves the Sato–Tate conjecture for varieties of the form \(A_h \) of arbitrarily large dimension.

References

[AC89] J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula. Annals of Math. Studies, vol. 120, Princeton University Press, 1989.

[BCGP18] G. Boxer, F. Calegari, T. Gee, and V. Pilloni, Abelian surfaces over totally real fields are potentially modular, available at [arXiv:1812.09269](http://arxiv.org/abs/1812.09269)

[BK15] G. Banaszak and K.S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture. Indiana Univ. Math. J. 64 (2015), 245–274.

[BLGGT14] T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179, 501–609.

[BLGG11] T. Barnet-Lamb, T. Gee, D. Geraghty, The Sato–Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), 411–469.

[ES01] J.S. Ellenberg, C. Skinner, On the modularity of \(\mathbb{Q} \)-curves, Duke Mathematical Journal, Vol. 109, No. 1 (2001).

[Fal83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366.

[FG18] F. Fité, X. Guitart, Fields of definition of elliptic \(k \)-curves and the realizability of all genus 2 Sato–Tate groups over a number field, Transactions of the American Mathematical Society 370, n. 7 (2018), 4623–4659.

[FG20] F. Fité, X. Guitart, Endomorphism algebras of geometrically split abelian surfaces over \(\mathbb{Q} \), Algebra & Number Theory 14-6 (2020), 1399–1421.

[Fit13] F. Fité, Artin representations attached to pairs of isogenous abelian varieties, Journal of Number Theory 133 n. 4 (2013), 1331–1345.

[FKRS12] F. Fité, K.S. Kedlaya, A.V. Sutherland, and V. Rotger, Sato–Tate distributions and Galois endomorphism modules in genus 2, Compositio Mathematica 148, n. 5 (2012), 1390–1442.

[FKS20] F. Fité, K.S. Kedlaya, and A.V. Sutherland, Sato–Tate groups of abelian threefolds: a preview of the classification, Contemp. Math. 770, 103–129 (2021).

[FLS18] F. Fité, E. Lorenzo García, A.V. Sutherland, Sato–Tate distributions of twists of the Fermat and the Klein quartics, Research in the Mathematical Sciences 5 (2018), 41 pages.

[FS14] F. Fité and A.V. Sutherland, Sato–Tate distributions of twists of \(y^2 = x^5 - x \) and \(y^2 = x^6 + 1 \), Algebra & Number Theory 8 n. 3 (2014), 543–585.

[GL01] J. González, and J.-C. Lario, \(\mathbb{Q} \)-curves and their Manin ideals. Amer. J. Math. 123 (2001), no. 3, 475–503.

[Gui10] X. Guitart, Arithmetic properties of abelian varieties under Galois conjugation, PhD thesis, available at http://www.maia.ub.es/~guitart/index_files/thesis.pdf

[Gui12] X. Guitart, Abelian varieties with many endomorphisms and their absolutely simple factors, Rev. Mat. Iberoam. 28 (2012), no. 2, 591–601.

[Har09] M. Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II. Progr. Math., vol. 270 (2009).

[HSBT10] M. Harris, N. Shepherd-Barron, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Annals of Math. 171 (2010), 779–813.

[Joh17] C. Johansson, On the Sato–Tate conjecture for non-generic abelian surfaces, Trans. Amer. Math. Soc., 369(9): 6303–6325, 2017. With an appendix by Francesc Fité.

[Mil72] J. Milne, On the arithmetic of abelian varieties, Inventiones Mathematicae 17, 177–190 (1972).

[MM09] M.R. Murty, V.K. Murty, The Sato–Tate conjecture and generalizations, in: Current Trends in Science: Platinum Jubilee Special, Indian Academy of Sciences, 2009, pp. 639–646.

[Pyl02] E. Pyle, Abelian varieties over \(\mathbb{Q} \) with large endomorphism algebras and their simple components over \(\overline{\mathbb{Q}} \). Modular curves and abelian varieties, Progress in Math., vol. 224 (2002), pp. 189–239.
[Que09] J. Quer, Fields of definition of building blocks. Math. Comp. 78 (2009), no. 265, 537–554.

[Que12] J. Quer, Package description and tables for the paper Fields of definition of building blocks. Available at https://arxiv.org/abs/1202.3061

[Rib76] K. A. Ribet, Galois Action on Division Points of Abelian Varieties with Real Multiplications, American Journal of Mathematics, Vol. 98, No. 3, 751–804 (1976).

[Rib945] K. A. Ribet, Fields of definition of abelian varieties with real multiplication. Arithmetic geometry (Tempe, AZ, 1993), 107–118, Contemp. Math., 174, Amer. Math. Soc., Providence, RI, 1994.

[Rib92] K. A. Ribet, Abelian varieties over \(\mathbb{Q} \) and modular forms, Algebra and topology 1992 (Taejón), Korea Adv. Inst. Sci. Tech. (1992), 53–79.

[Ser81] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. No. 54 (1981), 323–401.

[Ser89] J.-P. Serre, Abelian \(\ell \)-adic Representations and Elliptic Curves, Addison–Wesley Publ. Co., Reading, MA, 1989.

[Ser12] J.-P. Serre, Lectures on \(N_X(p) \) (CRC Press, Boca Raton, FL, 2012).

[Sha81] F. Shahidi, On certain \(L \)-functions, Am. J. Math. 103 (1981), 297–355.

[Tay19] N. Taylor, Sato–Tate distributions on abelian surfaces, Trans. Amer. Math. Soc. 373 (2020), 3541–3559.

[Wu11] Chenyan Wu, \(F \)-virtual abelian varieties of \(GL_2 \)-type and Rallis inner formula. Columbia University thesis, 2011.

[Wu18] Chenyan Wu, Virtual abelian varieties of \(GL_2 \)-type, Math. Res. Lett. 27, no. 3, 903–944 (2020).