The Einstein-Hilbert type action on almost k-product manifolds

Vladimir Rovenski*

Abstract

A Riemannian manifold endowed with $k > 2$ orthogonal complementary distributions (called a Riemannian almost k-product structure) appears in such topics as multiply warped products, the webs composed of several foliations, and proper Dupin hypersurfaces of real space-forms. In the paper we consider the mixed scalar curvature of such structure for $k > 2$, derive Euler-Lagrange equations for the Einstein-Hilbert type action with respect to adapted variations of metric, and present them in a nice form of Einstein equation.

Keywords: Almost k-product manifold, mixed scalar curvature, Einstein-Hilbert action

Mathematics Subject Classifications (2010) 53C15; 53C12; 53C40

Introduction

Many examples of Riemannian metrics come (as critical points) from variational problems, a particularly famous of which is the Einstein-Hilbert action, given on a smooth closed manifold M by

$$J : g \rightarrow \int_M \left\{ \frac{1}{2a} (S - 2\Lambda) + \mathcal{L} \right\} \text{dvol}_g,$$

(1)

e.g., [5]. Here, g is a pseudo-Riemannian metric on M, S – the scalar curvature of (M, g), Λ – a constant (the “cosmological constant”), \mathcal{L} – Lagrangian describing the matter contents, and $a = 8\pi G/c^4$ – the coupling constant involving the gravitational constant G and the speed of light c. To deal also with non-compact manifolds (“spacetimes”), it is assumed that the integral above is taken over M if it converges; otherwise, one integrates over arbitrarily large, relatively compact domain $\Omega \subset M$, which also contains supports of variations of g. The Euler-Lagrange equation for (1) (called the Einstein equation) is

$$\text{Ric} - \frac{1}{2} S \cdot g + \Lambda g = a \Theta$$

(2)

with the Ricci curvature Ric and the energy-momentum tensor Θ (generalizing the stress tensor of Newtonian physics), given in a coordinates by $\Theta_{\mu\nu} = -2 \partial \mathcal{L} / \partial g^{\mu\nu} + g_{\mu\nu} \mathcal{L}$. The solution of (2) is a metric g, satisfying this equation, where the tensor Θ (describing a specified type of matter) is given. The classification of solutions of (2) is a deep and largely unsolved problem [5].

Distributions on a manifold (i.e., subbundles of the tangent bundle) appear in various situations, e.g., [4, 8] and are used to build up notions of integrability, and specifically of a foliated manifold. On a manifold equipped with an additional structure (e.g., almost product [8] or contact [6]), one can consider an analogue of (1) adjusted to that structure. This approach was taken in [2, 3, 9, 12, 13], for M endowed with a distribution \mathcal{D} or a foliation (that can be viewed as an integrable distribution).

In this paper, a similar change in (1) is considered on a connected smooth n-dimensional manifold endowed with $k \geq 2$ pairwise orthogonal n_i-dimensional distributions with $\sum n_i = n$. The notion of a multiple warped product, e.g., [7], is a special case of this structure, which

*Mathematical Department, University of Haifa, Mount Carmel, 31905 Haifa, Israel
e-mail: vrovenski@univ.haifa.ac.il
can be also viewed in the theory of webs composed of foliations of different dimensions, see [1]. The mixed Einstein-Hilbert action on \((M, \mathcal{D}_1, \ldots, \mathcal{D}_k)\),

\[
J_D : g \mapsto \int_M \left\{ \frac{1}{2a} \left(S(\mathcal{D}_1, \ldots, \mathcal{D}_k) - 2\Lambda \right) + \mathcal{L} \right\} d\text{vol}_g, \tag{3}
\]

is an analog of [1], where \(S\) is replaced by the mixed scalar curvature \(S(\mathcal{D}_1, \ldots, \mathcal{D}_k)\), see [6]. The geometrical part of (3) is \(J_D^g : g \mapsto \int_M S(\mathcal{D}_1, \ldots, \mathcal{D}_k) d\text{vol}_g\) - the total mixed scalar curvature. The mixed scalar curvature is the simplest curvature invariant of a pseudo-Riemannian almost \(k\)-product structure, which can be defined as an averaged sum of sectional curvatures of planes that non-trivially intersect with both of the distributions. Investigation of \(S(\mathcal{D}_1, \ldots, \mathcal{D}_k)\) can lead to multiple results regarding the existence of foliations and submersions with interesting geometry, e.g., integral formulas and splitting results, curvature prescribing and variational problems, see [10] for \(k = 2\). Varying (3) as a functional of adapted metric \(g\), we obtain the Euler-Lagrange equations in the form of Einstein equation (2), i.e.,

\[
\mathcal{R}ic_D - (1/2) S_D \cdot g + \Lambda g = a \Theta \tag{4}
\]

(for \(k = 2\), see [2, 12, 13]), where the Ricci tensor and the scalar curvature are replaced by the Ricci type tensor \(\mathcal{R}ic_D\), see (22), and its trace \(S_D\). By the equality

\[
S = S(\mathcal{D}_1, \ldots, \mathcal{D}_k) + \sum_i S(D_i),
\]

where \(S(D_i)\) is the scalar curvature along the distribution \(\mathcal{D}_i\), one can combine the action [1] with (3) to obtain the perturbed Einstein-Hilbert action on \((M, \mathcal{D}_1, \ldots, \mathcal{D}_k)\):

\[
J_{\varepsilon} : g \mapsto \int_M \left\{ \frac{1}{2a} \left(S + \varepsilon S(\mathcal{D}_1, \ldots, \mathcal{D}_k) - 2\Lambda \right) + \mathcal{L} \right\} d\text{vol}_g
\]

with \(\varepsilon \in \mathbb{R}\), whose critical points describe the “space-times” in extended theory of gravity.

In the paper we consider the geometrical part of the Einstein-Hilbert type action [3] (called the total mixed scalar curvature), derive Euler-Lagrange equations with respect to adapted variations of metric (which generalize equations for \(k = 2\) in [12]), and present them in a nice form of Einstein equation. We delegate the following for further study: a) generalize our results for more general variations of metrics; b) extend our results for variations of connections (as in Einstein-Cartan theory); c) find more applications of our results in geometry and physics.

1 Preliminaries

Let \(M\) be a smooth connected \(n\)-dimensional manifold with the Levi-Civita connection \(\nabla\) and the curvature tensor \(R\). A pseudo-Riemannian metric \(g = \langle \cdot, \cdot \rangle\) of index \(q\) on \(M\) is an element \(g \in \text{Sym}^2(M)\) (of the space of symmetric \((0, 2)\)-tensors) such that each \(g_x (x \in M)\) is a non-degenerate bilinear form of index \(q\) on the tangent space \(T_x M\). For \(q = 0\) (i.e., \(g_x\) is positive definite) \(g\) is a Riemannian metric and for \(q = 1\) it is called a Lorentz metric. Let \(\text{Riem}(M) \subset \text{Sym}^2(M)\) be the subspace of pseudo-Riemannian metrics of a given signature.

A distribution \(\mathcal{D}\) on \(M\) is non-degenerate, if \(g_x\) is non-degenerate on \(\mathcal{D}_x \subset T_x M\) for all \(x \in M\); in this case, the orthogonal complement of \(\mathcal{D}\) is also non-degenerate.

Let \(M\) be endowed with \(k \geq 2\) pairwise transversal \(n_i\)-dimensional distributions \(\mathcal{D}_i (1 \leq i \leq k)\) with \(\sum n_i = n\). Denote by \(\text{Riem}(M, \mathcal{D}_1, \ldots, \mathcal{D}_k) \subset \text{Riem}(M)\) the subspace of pseudo-Riemannian metrics making \(\{\mathcal{D}_i\}\) pairwise orthogonal and non-degenerate. A \((M; \mathcal{D}_1, \ldots, \mathcal{D}_k)\) with a compatible metric \(g\) will be called a Riemannian almost \(k\)-product manifold, see [11]. Let \(P_i : TM \to \mathcal{D}_i\) be the orthoprojector, and \(P_i^\perp = \text{id}_{TM} - P_i\) be the orthoprojector onto
For a function f, the self-adjoint (1,1)-tensor Ψ to D and the integrability tensors of distributions D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_{10} are defined by

$$h_i(X,Y) = \frac{1}{2} P_i^\perp(\nabla_X Y + \nabla_Y X), \quad T_i(X,Y) = \frac{1}{2} P_i^\perp(\nabla_X Y - \nabla_Y X) = \frac{1}{2} P_i^\perp [X,Y].$$

Similarly, h_i^\perp, $H_i^\perp = \text{Tr}_g h_i^\perp$, T_i^\perp are the second fundamental forms, mean curvature vector fields and the integrability tensors of distributions D_i^\perp in M. Note that $H_i = \sum_{j\neq i} P_j H_i$, etc. Recall that a distribution D_i is called integrable if $T_i = 0$, and D_i is called totally umbilical, harmonic, or totally geodesic, if $h_i = (H_i/n_i) g$, $H_i = 0$, or $h_i = 0$, respectively.

The “musical” isomorphisms \sharp and \flat will be used for rank one and symmetric rank 2 tensors. For example, if $\omega \in \Lambda^1(M)$ is a 1-form and $X, Y \in \mathfrak{X}_M$ then $\langle \omega, Y \rangle = \langle \omega^\sharp, Y \rangle$ and $X^\flat(Y) = \langle X, Y \rangle$. For arbitrary (0,2)-tensors B and C we also have $\langle B, C \rangle = \text{Tr}_g(B^\sharp C^\sharp) = \langle B^\perp, C^\perp \rangle$.

The shape operator $(A_i)_Z$ of D_i with $Z \in D_i^\perp$, and the operator $(T_i)_Z^2$ are defined by

$$\langle (A_i)_Z(X), Y \rangle = h_i(X,Y), \quad \langle (T_i)_Z^2(X), Y \rangle = \langle T_i(X,Y), Z \rangle, \quad X, Y \in D_i.$$

Given $g \in \text{Riem}(M, D_1, \ldots, D_k)$, there exists a local g-orthonormal frame $\{E_1, \ldots, E_n\}$ on M, where $\{E_1, \ldots, E_{n_1}\} \subset D_1$ and $\{E_{n_1+1}, \ldots, E_{n_i}\} \subset D_i$ for $2 \leq i \leq k$, and $\varepsilon_a = \langle E_a, E_a \rangle \in \{-1,1\}$. All quantities defined below using an adapted frame do not depend on the choice of this frame. The squares of norms of tensors are obtained using

$$\langle h_i, h_i \rangle = \sum_{n_{i-1} < a,b \leq n_i} \varepsilon_a \varepsilon_b \langle h_i(E_a, E_b), h_i(E_a, E_b) \rangle, \quad \langle T_i, T_i \rangle = \sum_{n_{i-1} < a,b \leq n_i} \varepsilon_a \varepsilon_b \langle T_i(E_a, E_b), T_i(E_a, E_b) \rangle.$$

The divergence of a vector field $X \in \mathfrak{X}_M$ is given by $(\text{div} X) d\text{vol}_g = \mathcal{L}_X (d\text{vol}_g)$, where $d\text{vol}_g$ is the volume form of g. One may show that $\text{div} X = \text{Tr}(\nabla X) = \text{div}_i X + \text{div}_{i}^\perp X$, where

$$\text{div}_i X = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a \langle \nabla_a X, E_a \rangle, \quad \text{div}_{i}^\perp X = \sum_{b \neq n_{i-1}, n_i} \varepsilon_b \langle \nabla_b X, E_b \rangle.$$

Observe that for $X \in D_i$ we have

$$\text{div}_{i}^\perp X = \text{div} X + \langle X, H_i^\perp \rangle.$$

(5)

For a $(1,2)$-tensor Q define a $(0,2)$-tensor $\text{div}_{i}^\perp Q$ by

$$(\text{div}_{i}^\perp Q)(X,Y) = \sum_{b \neq n_{i-1}, n_i} \varepsilon_b \langle (\nabla_b Q)(X,Y), E_b \rangle, \quad X, Y \in \mathfrak{X}_M.$$

For a D_i-valued $(1,2)$-tensor Q, similarly to $[3]$, we have $\text{div}_{i}^\perp Q = \text{div} Q + \langle Q, H_i \rangle$, where

$$(\text{div} Q)(X,Y) = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a \langle (\nabla_a Q)(X,Y), E_a \rangle = -\langle Q(X,Y), H_i \rangle,$$

and $\langle Q, H_i \rangle(X,Y) = \langle Q(X,Y), H_i \rangle$ is a $(0,2)$-tensor. For example, $\text{div}_{i}^\perp h_i = \text{div} h_i + \langle h_i, H_i \rangle$.

For a function f on M, we use the notation $P_i^\perp(\nabla f)$ for the projection of ∇f onto D_i^\perp.

The D_i-deformation tensor $\text{Def}_{D_i} Z$ of $Z \in \mathfrak{X}_M$ is the symmetric part of ∇Z restricted to D_i,

$$2 \text{Def}_{D_i} Z(X,Y) = \langle \nabla_X Z, Y \rangle + \langle \nabla_Y Z, X \rangle, \quad X, Y \in D_i.$$

The self-adjoint $(1,1)$-tensors: A_i (the Casorati type operator) and T_i and the symmetric $(0,2)$-tensor Ψ_i, see $[3] [12]$, are defined using A_i and T_i by

$$A_i = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a (\langle A_i \rangle_{E_a})^2, \quad T_i = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a (\langle T_i \rangle_{E_a}^2)^2,$$

$$\Psi_i(X,Y) = \text{Tr}(\langle A_i \rangle_{Y} (A_i)_X + \langle T_i \rangle_{Y} (T_i)_X), \quad X, Y \in D_i^\perp.$$
We define a self-adjoint $(1,1)$-tensor K_i by the formula with Lie bracket,

$$K_i = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a [(T^a_i) E_a, (A_i) E_a] = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a ((T_i) E_a (A_i) E_a - (A_i) E_a (T_i) E_a).$$

For any $(1,2)$-tensors Q_1, Q_2 and a $(0,2)$-tensor S on TM, define the following $(0,2)$-tensor Υ_{Q_1, Q_2}:

$$\langle \Upsilon_{Q_1, Q_2}, S \rangle = \sum_{\lambda, \mu} \varepsilon_{\lambda} \varepsilon_{\mu} \left[S(Q_1(e_{\lambda}, e_{\mu}), Q_2(e_{\lambda}, e_{\mu})) + S(Q_2(e_{\lambda}, e_{\mu}), Q_1(e_{\lambda}, e_{\mu})) \right],$$

where on the left-hand side we have the inner product of $(0,2)$-tensors induced by g, $\{e_{\lambda}\}$ is a local orthonormal basis of TM and $\varepsilon_{\lambda} = \langle e_{\lambda}, e_{\lambda} \rangle \in \{-1,1\}$.

Remark 1. If g is definite then $\Upsilon_{h_i, h_i} = 0$ if and only if $h_i = 0$. Indeed, for any $X \in D_i$ we have

$$\langle \Upsilon_{h_i, h_i}, X^\flat \otimes X^\flat \rangle = 2 \sum_{a,b} \langle X, h_i(E_a, E_b) \rangle^2.$$

The above sum is equal to zero if and only if every summand vanishes. This yields $h_i = 0$. Thus, Υ_{h_i, h_i} is a “measure of non-total geodesy” of D_i. Similarly, if $\Upsilon_{T_i, T_i} = 0$ then

$$\langle \Upsilon_{T_i, T_i}, X^\flat \otimes X^\flat \rangle = 2 \sum_{a,b} \langle X, T_i(E_a, E_b) \rangle^2.$$

Hence, if g is definite then the condition $\Upsilon_{T_i, T_i} = 0$ is equivalent to $T_i = 0$. Therefore, Υ_{T_i, T_i} can be viewed as a “measure of non-integrability” of D_i.

2 The mixed scalar curvature

A plane in TM spanned by two vectors belonging to different distributions D_i and D_j will be called *mixed*, and the its sectional curvature is called mixed. Similarly to the case of $k = 2$, the mixed scalar curvature of $(M, g; D_1, \ldots, D_k)$ is defined as an averaged mixed sectional curvature.

Definition 1 (see [II]). Given $g \in \text{Riem}(M; D_1, \ldots, D_k)$ with $k \geq 2$ non-degenerate distributions, the following function on M will be called the *mixed scalar curvature*:

$$S(D_1, \ldots, D_k) = \sum_{i<j} S(D_i, D_j), \quad (6)$$

where

$$S(D_i, D_j) = \sum_{n_{i-1} < a \leq n_i, \ n_{j-1} < b \leq n_j} \varepsilon_a \varepsilon_b \langle R(E_a, E_b) E_a, E_b \rangle, \quad i \neq j.$$

The following symmetric $(0,2)$-tensor r will be called the *partial Ricci tensor*:

$$r(X, Y) = \frac{1}{2} \sum_{i=1}^k r_i(X, Y),$$

where the partial Ricci tensor related to D_i is

$$r_i(X, Y) = \sum_{n_{i-1} < a \leq n_i} \varepsilon_a \langle R_{E_a, P_i} X E_a, P_i Y \rangle, \quad X, Y \in \mathfrak{X}_M. \quad (7)$$

Proposition 1. We have

$$S(D_1, \ldots, D_k) = \frac{1}{2} \sum_i S(D_i, D_i^\perp) = \text{Tr}_g r.$$

Proof. This directly follows from definitions (6) and (7) and equality $\text{Tr}_g r_i = S(D_i, D_i^\perp)$.

The following formula for a Riemannian manifold \((M, g)\) endowed with two complementary orthogonal distributions \(D\) and \(D^\perp\), see [13]:

\[
\text{div}(H + H^\perp) = S(\mathcal{D}, \mathcal{D}^\perp) + \langle h, h \rangle + \langle h^\perp, h^\perp \rangle - \langle H, H \rangle - \langle H^\perp, H^\perp \rangle - \langle T, T \rangle - \langle T^\perp, T^\perp \rangle,
\]

has many interesting global corollaries (e.g., decomposition criteria using the sign of \(S\), [14]). In [11], we generalized (8) to (11) and isometric immersions of manifolds, in particular, multiply warped products.

The following formula for a Riemannian manifold \((M, g)\) is valid, see [3, 12]:

\[
S(\mathcal{D}_i, \mathcal{D}_i^\perp) = \sum_{a_i - 1 < a_i \leq n_i, \ n_i \neq \{n_i - 1, n_i\}} \varepsilon_a \varepsilon_b (R_{E_a, E_b} E_a, E_b).
\]

If \(\mathcal{D}_i\) is spanned by a unit vector field \(N\), i.e., \(\langle N, N \rangle = \varepsilon_N \in \{-1, 1\}\), then \(S(\mathcal{D}_i, \mathcal{D}_i^\perp) = \varepsilon_N \text{Ric}_{N, N}\), where \(\text{Ric}_{N, N}\) is the Ricci curvature in the \(N\)-direction. We have \(S(\mathcal{D}_i, \mathcal{D}_i^\perp) = \text{Tr}_g r_i = \text{Tr}_g r_i^\perp\). If \(\dim\mathcal{D}_i = 1\) then \(r_i = \varepsilon_N R_N\), where \(R_N = R(N, \cdot)N\) is the Jacobi operator, and \(r_i^\perp = \text{Ric}_{N, N} g_i^\perp\), where the symmetric \((0, 2)\)-tensor \(g_i^\perp\) is defined by \(g_i^\perp(X, Y) = \langle P_i^\perp X, P_i^\perp Y \rangle\) for \(X, Y \in \mathfrak{X}_M\). The following presentation of the partial Ricci tensor in [7] is valid, see [3, 12]:

\[
r_i = \text{div} h_i + \langle h_i, H_i \rangle - A_i^\perp - T_i^0 - \Psi_i^\perp + \text{Def}_{D_i} H_i^\perp.
\]

Tracing (10) over \(\mathcal{D}\) and applying the equalities

\[
\text{Tr}_g (\text{div} h_i) = \text{div} H_i, \quad \text{Tr}_g \langle h_i, H_i \rangle = \langle H_i, H_i \rangle, \quad \text{Tr}_g \Psi_i^\perp = \langle h_i^\perp, h_i^\perp \rangle - \langle T_i^\perp, T_i^\perp \rangle,
\]

we get (8) with \(\mathcal{D} = \mathcal{D}_i\).

Theorem 1 ([11]). For a Riemannian almost \(k\)-product manifold \((M, g; \mathcal{D}_1, \ldots, \mathcal{D}_k)\) we have

\[
\text{div} \sum_{i} \left(H_i + H_i^\perp \right) = 2S(\mathcal{D}_1, \ldots, \mathcal{D}_k) + \sum_{i} \left(\langle h_i, h_i \rangle - \langle H_i, H_i \rangle - \langle T_i, T_i \rangle + \langle h_i^\perp, h_i^\perp \rangle - \langle H_i^\perp, H_i^\perp \rangle - \langle T_i^\perp, T_i^\perp \rangle \right).
\]

Example 1. To illustrate the proof of (11) for \(k > 2\), consider the case of \(k = 3\). Using (8) for two distributions, \(\mathcal{D}_1\) and \(\mathcal{D}_1^\perp = \mathcal{D}_2 \oplus \mathcal{D}_3\), according to (8) we get

\[
\text{div}(H_1 + H_1^\perp) = 2S(\mathcal{D}_1, \mathcal{D}_1^\perp) + \left(\langle h_1, h_1 \rangle - \langle H_1, H_1 \rangle - \langle T_1, T_1 \rangle \right) + \left(\langle h_1^\perp, h_1^\perp \rangle - \langle H_1^\perp, H_1^\perp \rangle - \langle T_1^\perp, T_1^\perp \rangle \right),
\]

and similarly for \((\mathcal{D}_2, \mathcal{D}_2^\perp)\) and \((\mathcal{D}_3, \mathcal{D}_3^\perp)\). Summing 3 copies of (12), we obtain (11) for \(k = 3\):

\[
\text{div} \sum_{i} \left(H_i + H_i^\perp \right) = 2S(\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3) + \sum_{i} \left(\langle h_i, h_i \rangle - \langle H_i, H_i \rangle - \langle T_i, T_i \rangle + \langle h_i^\perp, h_i^\perp \rangle - \langle H_i^\perp, H_i^\perp \rangle - \langle T_i^\perp, T_i^\perp \rangle \right).
\]

Remark 2. Using Stokes’ Theorem for (11) on a closed manifold \((M, g; \mathcal{D}_1, \ldots, \mathcal{D}_k)\) yields the integral formula for any \(k \in \{2, \ldots, n\}\), which for \(k = 2\) directly follows from (8),

\[
\int_M \left(2S(\mathcal{D}_1, \ldots, \mathcal{D}_k) + \sum_{i} \left(\langle h_i, h_i \rangle - \langle H_i, H_i \rangle - \langle T_i, T_i \rangle + \langle h_i^\perp, h_i^\perp \rangle - \langle H_i^\perp, H_i^\perp \rangle - \langle T_i^\perp, T_i^\perp \rangle \right) \right) \text{dvol}_g = 0.
\]
3 Variations of metric

We consider smooth 1-parameter variations \(\{g_t \in \text{Riem}(M) : |t| < \varepsilon \} \) of the metric \(g_0 = g \).

Let the infinitesimal variations, represented by a symmetric \((0,2)\)-tensor

\[
B(t) \equiv \partial g_t / \partial t,
\]

be supported in a relatively compact domain \(\Omega \) in \(M \), i.e., \(g_t = g \) and \(B_t = 0 \) outside \(\Omega \) for \(|t| < \varepsilon \). A variation \(g_t \) is volume-preserving if \(\text{Vol}(\Omega, g_t) = \text{Vol}(\Omega, g) \) for all \(t \). We adopt the notations \(\partial_t \equiv \partial / \partial t, \ B \equiv \partial_t g_t |_{t=0} = \dot{g} \), but we shall also write \(B \) instead of \(B_t \) to make formulas easier to read, wherever it does not lead to confusion. Since \(B \) is symmetric, then \(\langle C, B \rangle = (\text{Sym}(C), B) \) for any \((0,2)\)-tensor \(C \). Denote by \(\otimes \) the product of tensors and use the symmetrization operator to define the symmetric product of tensors: \(B \otimes C = \text{Sym}(B \otimes C) = \frac{1}{2} (B \otimes C + C \otimes B) \).

Definition 2. A family of metrics

\[
\{g(t) \in \text{Riem}(M, D_1, \ldots, D_k) : |t| < \varepsilon \}
\]

such that \(g_0 = g \) will be called an adapted variation. In other words, \(D_i \) and \(D_j \) are \(g_t \)-orthogonal for all \(i \neq j \) and \(t \). An adapted variation \(g_t \) will be called a \(D_j \)-variation (for some \(j \in [1, k] \)) if

\[
g_t(X, Y) = g_0(X, Y), \quad X, Y \in D_j^\perp, \quad |t| < \varepsilon.
\]

For an adapted variation we have \(g_t = \bigoplus_{j=1}^k g_j(t) \), where \(g_j(t) = g_t|_{D_j} \). Thus, the tensor \(B_t = \partial_t g_t \) of an adapted variation of metric \(g \) on \((M; D_1, \ldots, D_k)\) can be decomposed into the sum of derivatives of \(D_j \)-variations; namely, \(B_t = \sum_{j=1}^k B_j(t) \), where \(B_j(t) = \partial_t g_j(t) = B_j |_{D_j} \).

Lemma 1. Let a local adapted frame \(\{E_a\} \) evolve by \(g_t \in \text{Riem}(M, D_1, \ldots, D_k) \) according to

\[
\partial_t E_a = -(1/2) B_t^a(E_a).
\]

Then, \(\{E_a(t)\} \) is a \(g_t \)-orthonormal adapted frame for all \(t \).

Proof. For \(\{E_a(t)\} \) we have

\[
\partial_t \langle g_t(E_a, E_b) \rangle = g_t(\partial_t E_a(t), E_b(t)) + g_t(E_a(t), \partial_t E_b(t)) + (\partial_t g_t)(E_a(t), E_b(t))
\]

\[
= B_t(E_a(t), E_b(t)) - \frac{1}{2} g_t(B_t^a(E_a(t)), E_b(t)) - \frac{1}{2} g_t(E_a(t), B_t^a(E_b(t))) = 0.
\]

From this the claim follows. \(\square \)

The following proposition was proved in [13] when \(k = 2 \).

Proposition 2. If \(g_t \) is a \(D_j \)-variation of \(g \) on \((M; D_1, \ldots, D_k)\), then

\[
\partial_t \langle h_j^+, h_j^+ \rangle = -\langle(1/2) \Upsilon_{h_j^+, h_j^+}, B_j \rangle,
\]

\[
\partial_t \langle h_j, h_j \rangle = \langle \text{div} h_j + \mathcal{K}_j, B_j \rangle - \text{div} \langle h_j, B_j \rangle,
\]

\[
\partial_t \langle H_j^+, H_j^+ \rangle = -\langle H_j^+ \otimes H_j^+, B_j \rangle,
\]

\[
\partial_t \langle H_j, H_j \rangle = \langle (\text{div} H_j) g_j, B_j \rangle - \text{div}((\text{Tr}_{D_j} B_j^2) H_j),
\]

\[
\partial_t \langle T^+_j, T^+_j \rangle = \langle (1/2) \Upsilon_{T^+_j, T^+_j}, B_j \rangle,
\]

\[
\partial_t \langle T_j, T_j \rangle = \langle 2 T_j^2, B_j \rangle,
\]
Theorem 2

for the action (3) with respect to volume-preserving adapted variations of metric if and only if

\[\partial_t \langle h_i^+ + (K_i^+)^\lambda, B_j \rangle = \langle \text{div} \, h_i^+ + (K_i^+)^\lambda, B_j \rangle, \]

\[\partial_t \langle h_i, h_i \rangle = \langle -(1/2) \Upsilon_{h_i, h_i}, B_j \rangle, \]

\[\partial_t g(H_i^+, H_i^+) = \langle (\text{div} \, H_i^+) g_i^+, B_j \rangle - \text{div}((\text{Tr} \, D_i^+(B_j)) H_i^+), \]

\[\partial_t g(H_i, H_i) = -(H_i \otimes H_i, B_j), \]

\[\partial_t (T_i^+, T_i^+) = \langle 2 (T_i^+) + , B_j \rangle, \]

\[\partial_t (T_i, T_i) = \langle (1/2) \Upsilon_{T_i, T_i}, B_j \rangle. \]

For any variation \(g_t \) of metric \(g \) on \(M \) with \(B = \partial_t g \) we have

\[\partial_t \left(\text{d} \, \text{vol}_g \right) = \frac{1}{2} \langle \text{Tr}_g B, \text{d} \, \text{vol}_g \rangle. \] \hfill (13)

Differentiating the well-known formula \(\text{div} \, X \cdot \text{d} \, \text{vol}_g = \mathcal{L}_X (\text{d} \, \text{vol}_g) \) and using (13), we obtain

\[\partial_t \left(\text{div} \, X \right) = \text{div}(\partial_t X) + \frac{1}{2} X (\text{Tr}_g B) \] \hfill (14)

for any variation \(g_t \) of metric and a \(t \)-dependent vector field \(X \) on \(M \). By (14) and (13), using the Divergence Theorem, we have

\[\frac{d}{dt} \int_M (\text{div} \, X) \, \text{d} \, \text{vol}_g = \int_M \text{div} (\partial_t X + \frac{1}{2} (\text{Tr}_g B) X) \, \text{d} \, \text{vol}_g = 0 \] \hfill (15)

for any variation \(g_t \) with \(\langle \partial_t g \rangle \subset \Omega \), and \(t \)-dependent \(X \in \mathfrak{X}_M \) with \(\langle \partial_t X \rangle \subset \Omega \).

The following theorem allows us to restore the partial Ricci curvature (22). It is based on calculating the variations with respect to \(g \) of components in (8) and using (15) for divergence terms. By this theorem and Definition 3 we conclude that an adapted metric \(g \) is critical for the action \(\Lambda \) with respect to volume-preserving adapted variations of metric if and only if (14) holds.

Theorem 2 (see [13]). A metric \(g \in \text{Riem}(M, \mathcal{D}_1, \ldots, \mathcal{D}_k) \) is critical for the geometrical part of (3) (i.e., \(\Lambda = 0 = \Theta \)) with respect to volume-preserving adapted variations if and only if

\[\sum_{i \neq j} \left(\text{div} \, h_i^+ + (K_i^+)^\lambda \right) H_i \otimes H_i - \frac{1}{2} \Upsilon_{h_i, h_i} - \frac{1}{2} \Upsilon_{T_i, T_i} - 2 (T_i^+)^\lambda \]

\[+ \text{div} \, h_j + K_j^\lambda - \frac{1}{2} \Upsilon_{h_j, h_j} + H_j \otimes H_j - \frac{1}{2} \Upsilon_{T_j, T_j} - 2 T_j^\lambda \]

\[= \left(S(\mathcal{D}_1, \ldots, \mathcal{D}_k) - \text{div}(H_j + \sum_{i \neq j} H_i^+) + \lambda_j \right) g \] \hfill (16)

for some \(\lambda_j \in \mathbb{R} \) and \(1 \leq j \leq k \).

Proof. Let \(g_t \) be a \(\mathcal{D}_j \)-variation for some \(j \), and let

\[Q(g) := S(\mathcal{D}_1, \ldots, \mathcal{D}_k) - \text{div} \sum_i (H_i + H_i^+). \]

Then

\[\frac{d}{dt} J_{\mathcal{D}, \Omega}(g_t) \big|_{t=0} = \frac{d}{dt} \int_{\Omega} Q(g_t) \, \text{d} \, \text{vol}_{g_t} \big|_{t=0} + \frac{d}{dt} \int_{\Omega} \text{div} \sum_i (H_i + H_i^+) \, \text{d} \, \text{vol}_{g_t} \big|_{t=0}. \]

For adapted variations of \(g \) supported in \(\Omega \), both fields \(\partial_t \sum_i (H_i + H_i^+) \) and \(\langle \text{Tr} \, B^2 \rangle \sum_i (H_i + H_i^+) \) vanish on \(\partial \Omega \), and by (14) we get \(\frac{d}{dt} \int_{\Omega} \text{div} \sum_i (H_i + H_i^+) \, \text{d} \, \text{vol}_{g_t} = 0 \). Thus, we have

\[\frac{d}{dt} J_{\mathcal{D}, \Omega}(g_t) \big|_{t=0} = \frac{d}{dt} \int_{\Omega} Q(g_t) \, \text{d} \, \text{vol}_{g_t} \big|_{t=0}. \]
and $Q(g)$ can be presented using (8) and (11) as

$$Q(g) = \frac{1}{2} \sum_i (\langle T_i, T_i \rangle - \langle h_i, h_i \rangle + \langle H_i, H_i \rangle + \langle T_i^+, T_i^+ \rangle - \langle h_i^+, h_i^+ \rangle + \langle H_i^+, H_i^+ \rangle).$$

By Proposition 2, we get

$$\partial_t (\langle h_i^+, h_i^+ \rangle - \langle h_i, h_j \rangle + g(H_i^+, H_j^+)) + g(H_i, H_j) + \langle T_i^+, T_j^+ \rangle + \langle T_i, T_j \rangle)
\begin{align*}
= & \langle - \text{div} h_j - K_j - H_j^+ \otimes H_j^+ + (1/2) \nabla h_j, h_j^+ \rangle + (1/2) \nabla T_j^+, T_j^+ + 2 T_j^+ + (\text{div} H_j) g_j, B_j \\
& + \text{div}(\langle h_i^+, B_j \rangle - (\text{Tr} D_i^+ B_i^\otimes) H_j),
\end{align*}
\quad \text{and for } i \neq j \text{ we have}

$$\partial_t (\langle h_i^+, h_i^+ \rangle - \langle h_i, h_i \rangle + g(H_i^+, H_i^+)) + g(H_i, H_i) + \langle T_i^+, T_i^+ \rangle + \langle T_i, T_i \rangle)
\begin{align*}
= & \langle - \text{div} h_i^+ - (K_i^+) - H_i \otimes H_i + (1/2) \nabla h_i, h_i \rangle + (1/2) \nabla T_i^+, T_i^+ + 2 (T_i^+) + (\text{div} H_i) g_i, B_j \\
& + \text{div}(\langle h_i^+, B_j \rangle - (\text{Tr} D_i^+ (B_i^\otimes) H_i^+).\]
\end{align*}
\quad \text{We use the above to derive } \partial_t Q(g). \text{ Removing integrals of divergences of vector fields compactly supported in } \Omega, \text{ we get}

$$\int_\Omega \partial_t Q(g) |_{t=0} \, d \text{vol}_g = \frac{1}{2} \int_\Omega \left(\sum_{i \neq j} \langle - \text{div} h_i^+ - (K_i^+) - H_i \otimes H_i + \frac{1}{2} \nabla h_i, h_i \rangle + \frac{1}{2} \nabla T_i^+, T_i^+ + 2 T_i^+ + (\text{div} H_i) g_i, B_j \rangle \right) \, d \text{vol}_g,
\quad \text{where } B_j = \partial_t g_t |_{t=0}.
\begin{align*}
\text{by (17) and (13), we have}
\frac{d}{dt} J_{D, \Omega}(g_t) |_{t=0} = \int_\Omega \partial_t Q(g_t) |_{t=0} \, d \text{vol}_g + \int_\Omega Q(g) \left(\partial_t \text{d vol}_{g_t} |_{t=0} \right),
\end{align*}
$$\frac{d}{dt} J_{D, \Omega}(g_t) |_{t=0} = \int_\Omega \left[\langle - \text{div} h_j - K_j - H_j^+ \otimes H_j^+ + \frac{1}{2} \nabla h_j, h_j^+ \rangle + \frac{1}{2} \nabla T_j^+, T_j^+ + 2 T_j^+ \right]
\begin{align*}
& + \sum_{i \neq j} \langle - \text{div} h_i^+ - (K_i^+) - H_i \otimes H_i + \frac{1}{2} \nabla h_i, h_i \rangle + \frac{1}{2} \nabla T_i^+, T_i^+ + 2 (T_i^+) \right]
\begin{align*}
& + \left(S(D_1, \ldots, D_k) - \text{div}(H_j + \sum_{i \neq j} H_i^+) g_j, B_j \right) \right] \, d \text{vol}_g.
\end{align*}
\quad \text{If } g \text{ is critical for } J_{D, \Omega} \text{ with respect to } D_j\text{-variations of } g, \text{ then the integral in (18)} \text{ is zero for any symmetric (0, 2)-tensor } B_j. \text{ This yields the } D_j\text{-component of Euler-Lagrange equation}

$$\begin{align*}
\text{div} h_j + K_j + H_j^+ \otimes H_j^+ - \frac{1}{2} \nabla h_j, h_j^+ - \frac{1}{2} \nabla T_j^+, T_j^+ - 2 T_j^+ \right]
\begin{align*}
& + \sum_{i \neq j} \langle \text{div} h_i^+ + (K_i^+) - H_i \otimes H_i - \frac{1}{2} \nabla h_i, h_i \rangle - \frac{1}{2} \nabla T_i^+, T_i^+ - 2 (T_i^+) \right]
\begin{align*}
& = \left(S(D_1, \ldots, D_k) - \text{div}(H_j + \sum_{i \neq j} H_i^+) \right) g_j.
\end{align*}
\end{align*}
\quad \text{For volume-preserving } D_j\text{-variations, the Euler-Lagrange equation (of the geometrical part of (3) with respect to volume-preserving adapted variations) will be (10) instead of (19).} \quad \Box
Remark 3. Using the partial Ricci tensor (7) and replacing div h_j and div h_i^\perp for $i \neq j$ in (10) according to (10), we can rewrite (16) as
\[
\sum_{i \neq j} (r_i^+ - \langle h_i^+, H_i^+ \rangle + (A_i^+)\mathbf{b} + (T_i^+)\mathbf{b} + \Psi_i - \text{Def}_{D_i} h_i + (K_i^+)\mathbf{b})
+ H_i \otimes H_i - \frac{1}{2} T_{h_i, h_i} - \frac{1}{2} T_{T_i, T_i} - 2(T_i^+)\mathbf{b} + r_j - \langle h_j, H_j \rangle + A_j^\perp + T_j^+ \\
+ \Psi_j^+ - \text{Def}_{D_j} h_j^\perp + K_j^+ + H_j^\perp \otimes H_j^\perp - \frac{1}{2} Y_{h_i^+, h_i^+} - \frac{1}{2} T_{h_i, h_i} - 2T_j^+ \\
= (S(D_1, \ldots, D_k) - \text{div}(H_j + \sum_{i \neq j} H_{i^+})) g_j + \lambda_j g_j, \quad j = 1, \ldots, k.
\] (20)

Example 2. A pair (D_i, D_j) with $i \neq j$ of distributions on a Riemannian almost k-product manifold $(M, g; D_1, \ldots, D_k)$ is called mixed integrable, if $T_{i,j}(X, Y) = 0$ for all $X \in D_i$ and $Y \in D_j$, see (11). Let $(M, g; D_1, \ldots, D_k)$ with $k > 2$ has integrable distributions D_1, \ldots, D_k and each pair (D_i, D_j) is mixed integrable. Then $T_j^+(X, Y) = 0$ for all $l \leq k$ and $X \in D_l, Y \in D_j$ with $i \neq j$, see (11) Lemma 2. In this case, (20) reads as
\[
\sum_{i \neq j} (r_i^+ - \langle h_i^+, H_i^+ \rangle + (A_i^+)\mathbf{b} + \Psi_i - \text{Def}_{D_i} h_i + H_i \otimes H_i - \frac{1}{2} T_{h_i, h_i})
+ r_j - \langle h_j, H_j \rangle + A_j^\perp + \Psi_j^+ - \frac{1}{2} T_{h_j^+, h_j^+} + H_j^\perp \otimes H_j^\perp - \text{Def}_{D_j} h_j^\perp \\
= (S(D_1, \ldots, D_k) - \text{div}(H_j + \sum_{i \neq j} H_{i^+})) g_j + \lambda_j g_j, \quad j = 1, \ldots, k.
\]

Definition 3. The Ricci type symmetric $(0, 2)$-tensor Ric_D in (4) is defined by its restrictions $\text{Ric}_{D|D_j \times D_j}$ on k subbundles $D_j \times D_j$ of $TM \times TM$,
\[
\text{Ric}_{D|D_j \times D_j} = r_j - \langle h_j, H_j \rangle + A_j^\perp + T_j^+ + \frac{1}{2} T_{h_j, h_j} + K_j^+ + H_j^\perp \otimes H_j^\perp \\
- \frac{1}{2} T_{h_i^+, h_i^+} - \frac{1}{2} T_{T_i, T_i} + \sum_{i \neq j} (r_i^+ - \langle h_i^+, H_i^+ \rangle + (A_i^+)\mathbf{b} + (T_i^+)\mathbf{b})
+ \Psi_i - \text{Def}_{D_i} h_i + (K_i^+)\mathbf{b} + H_i \otimes H_i - \frac{1}{2} Y_{h_i, h_i} - \frac{1}{2} T_{T_i, T_i} - 2(T_i^+)\mathbf{b} + \mu_j g_j.
\]

In other words,
\[
\text{Ric}_{D|D_j \times D_j} = U_j + \mu_j g_j,
\]
where U_j is the LHS of (10) and (μ_j) are uniquely determined so (see Theorem 3 below) that critical metrics satisfy Einstein type equation (4).

Theorem 3. A metric $g \in \text{Riem}(M, D_1, \ldots, D_k)$ is critical for the geometrical part of (3) (i.e., $\Lambda = 0 = \Theta$) with respect to adapted variations if and only if g satisfies Einstein type equation (4), where the tensor Ric_D is given in Definition 3 with some (uniquely defined) $\mu_i \in \mathbb{R}$.

Proof. The Euler-Lagrange equations (16) consist of $D_j \times D_j$-components. Thus, for the geometrical part of (3) we obtain (21). If $n = 2$ and $k = 2$, then we take $\mu_1 = \mu_2 = 0$, see (9). Assume that $n > 2$. Substituting (21) with arbitrary (μ_1, \ldots, μ_k) into (4) along D_j, we conclude that if the Euler Lagrange equations $U_j = b_j g_j$ $(1 \leq j \leq k)$ hold, then
\[
\text{Ric}_D - (1/2) S_D : g = 0,
\]
see (4) with $\Lambda = 0 = \Theta$, if and only if (μ_j) satisfy the following linear system:
\[
\sum_{i} n_i \mu_i - 2 \mu_j = a_j, \quad j = 1, \ldots, k,
\] (21)
with coefficients $a_j = 2 b_j - \text{Tr} \sum_{i} U_i$. The matrix of (21) is
\[
A = \begin{pmatrix}
 n_1 - 2 & n_2 & \cdots & n_{k-1} & n_k \\
 n_1 & n_2 - 2 & \cdots & n_{k-1} & n_k \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 n_1 & n_2 & \cdots & n_{k-1} & n_k - 2
\end{pmatrix}.
\]

Its determinant: \(\det A = 2^{k-1}(2-n) \) is negative when \(n > 2 \). Hence, the system (21) has a unique solution \((\mu_1, \ldots, \mu_k) \). It is given by \(\mu_i = -\frac{1}{2n-1} \left(\sum_j (a_i - a_j) n_j - 2 a_i \right) \).

Example 3 (see [9]). The symmetric Ricci type tensor \(\mathcal{R}_{icD} \) in (4) with \(k = 2 \), is defined by its restrictions on two subbundles of \(TM \times TM \),

\[
\mathcal{R}_{icD}\big|_{D \times D^\perp} = r - \langle h^\perp, H^\perp \rangle + (A^\perp)^b - (T^\perp)^b + \Psi - \text{Def}_D H + (\mathcal{K}^\perp)^b \\
+ H^b \otimes H^b - \frac{1}{2} \mathcal{T}_{h,h} - \frac{1}{2} \mathcal{T}_{T,T} + \mu_1 g^\perp, \\
\mathcal{R}_{icD}\big|_{D\times D} = r - \langle h, H \rangle + A^b - T^b + \Psi^\perp - \text{Def}_{D^\perp} H^\perp + \mathcal{K}^b \\
+ (H^\perp)^b \otimes (H^\perp)^b - \frac{1}{2} \mathcal{T}_{h^\perp,h^\perp} - \frac{1}{2} \mathcal{T}_{T^\perp,T^\perp} + \mu_2 g^\perp,
\]

(22)

where \(\mu_1 = -\frac{n-1}{n-2} \text{div}(H^\perp - H) \) and \(\mu_2 = \frac{n-1}{n-2} \text{div}(H^\perp - H) \). Here (22)_2 is dual to (22)_1 with respect to interchanging distributions \(D \) and \(D^\perp \), and their last terms vanish if \(n_1 = n_2 = 1 \). Also, \(S_D := \text{Tr}_g \mathcal{R}_{icD} = S(D, D^\perp) + \frac{n-1}{n-2} \text{div}(H^\perp - H) \).

References

[1] M.A. Akivis, V.V. Goldberg, Differential geometry of webs. In *Handbook of differential geometry*, Vol. I, pp. 1–152, North-Holland, Amsterdam, 2000

[2] E. Barletta, S. Dragomir, V. Rovenski and M. Soret, Mixed gravitational field equations on globally hyperbolic space-times, Classical and Quantum Gravity, 30 : 8, (2013) 085015, 26 pp.

[3] E. Barletta, S. Dragomir and V. Rovenski, The mixed Einstein-Hilbert action and extrinsic geometry of foliated manifolds, Balkan J. of Geometry and Its Appl. 22 : 1, (2017), 1–17

[4] A. Bejancu and H. Farran. *Foliations and geometric structures*, Springer, 2006

[5] A. L. Besse, *Einstein manifolds*. Springer, 1987

[6] D. Blair, *Riemannian geometry of contact and symplectic manifolds*, Springer, 2010

[7] B.-Y. Chen, *Differential geometry of warped product manifolds and submanifolds*. World Scientific, 2017

[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16:7 (1967), 715–737

[9] V. Rovenski, Einstein-Hilbert type action on space-times, Publications de l’Institut Mathématique, Issue: (N.S.) 103 (117) (2018), 199–210

[10] V. Rovenski, Prescribing the mixed scalar curvature of a foliation. Balkan J. of Geometry and Its Applications, 24:1, (2019), 73–92

[11] V. Rovenski, Integral formulas for a Riemannian manifold with several orthogonal complementary distributions Preprint, [arXiv:2008.01974v2], (2020).

[12] V. Rovenski and T. Zawadzki, The Einstein-Hilbert type action on foliated pseudo-Riemannian manifolds, J. Math. Physics, Analysis and Geometry, 15:1 (2019), 86–121

[13] V. Rovenski and T. Zawadzki, Variations of the total mixed scalar curvature of a distribution, Ann. Glob. Anal. Geom. 54 (2018), 87–122

[14] S.E. Stepanov and J. Mikeš, Liouville-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds, Differential Geom. and its Appl. 54, Part A (2017), 111–121

[15] P. Walczak, An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math., 58 (1990), 243–252