Realistic inversion of diffraction data for an amorphous solid: The case of amorphous silicon
Anup Pandey, Parthapratim Biswas, Bishal Bhattarai, and D. A. Drabold
Phys. Rev. B 94, 235208 — Published 22 December 2016
DOI: 10.1103/PhysRevB.94.235208
Realistic inversion of diffraction data for an amorphous solid: the case of amorphous silicon

Anup Pandey,1 Parthapratim Biswas,2 Bishal Bhattarai,1 and D. A. Drabold3

1Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Athens OH 45701, USA.
2Department of Physics and Astronomy, The University of Southern Mississippi, Hattiesburg MS 39406, USA.
3Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens OH 45701, USA.

(Dated: December 7, 2016)

We apply a new method “force enhanced atomic refinement” (FEAR) to create a computer model of amorphous silicon (a-Si), based upon the highly precise X-ray diffraction experiments of Laaziri et al. The logic underlying our calculation is to estimate the structure of a real sample a-Si using experimental data and chemical information included in a non-biased way, starting from random coordinates. The model is in close agreement with experiment and also sits at a suitable energy minimum according to density functional calculations. In agreement with experiments, we find a small concentration of coordination defects that we discuss, including their electronic consequences. The gap states in the FEAR model are delocalized compared to a continuous random network model. The method is more efficient and accurate, in the sense of fitting the diffraction data than conventional melt-quench methods. We compute the vibrational density of states and the specific heat, and find that both compare favorably to experiments.

I. INTRODUCTION

It has long been realized that the inversion of diffraction data – extracting a structural model based upon the data at hand – is a difficult problem of materials theory. It is worth noting that the success of inverting diffraction data for crystals has been one of the profound success stories of science, even revealing the structure of the Ribosome. The situation is different for non-crystalline materials. Evidence from Reverse Monte Carlo (RMC) studies show that the information inherent to pair-correlations alone is not adequate to produce a model with chemically realistic coordination and ordering. This is not really surprising, as the structure function $S(Q)$ or pair-correlation function $g(r)$ (PCF) is a smooth one-dimensional function, and its information entropy is vastly higher (and information commensurately lower) than for a crystal, the latter PCF being a sequence of sharply localized functions. It seems clear that including chemical information, in an unbiased mode, should aid the structure determination substantially. Others have clearly described this challenge as the “nanostructure problem”, and noted the appeal of including an interatomic potential. We show here that such an approach is successful, by uniting the RMC code “RMCProfile” and including chemistry in a self-consistent manner using density functional theory, but not by invoking ad hoc constraints. We have named this method “Force Enhanced Atomic Refinement” (FEAR). In this paper, we focus on the classic and persistently vexing problem of amorphous silicon. The details of the methods can be found elsewhere. The method is fast enough to make it easy to implement with ab initio interactions (SIESTA here) and plane-wave DFT (VASP) as we used in ternary chalcogenide materials in Ref.

The technological importance of a-Si in microelectronics, thin-film transistors and photo-voltaic (PV) applications has led to many studies in recent decades. In addition, the over-constrained network makes the structure of a-Si difficult to model. The only method that produces really satisfactory models for a-Si is the Wooten-Weaire-Winer (WWW) scheme, which is limited by unrealistic interactions and is also not a general technique.

From a practical modeling perspective, the utilization of a priori information by constraining chemical order and preferred coordination has improved some of the most serious limitations of RMC. (Cliffe and co-workers imposed ‘uniformity’ as a constraint in a refinement of atomistic-scale structures in their INVariant Environment Refinement Technique (INVERT), and considerably extended their analysis by invoking ‘structural simplicity’ as a guiding principle in modeling a-Si. Recently another angle has been tried: including electronic a priori information in the form of an imposed band gap. These constraints are externally imposed and sensible though they might be, they introduce the investigators bias in the modeling. In other applications, more along the lines of “Materials by Design” the point is indeed to impose conditions that the model must obey – and see if a physical realization of the desired properties may be realized. This is beyond the scope of the present paper which is focused on trying to best understand well explored specific samples of a-Si.

More in the spirit of our work, a hybrid reverse Monte Carlo (HRMC) incorporating experimental data and a penalty function scheme was introduced to find models of amorphous carbon in agreement with diffraction data also near a minimum of an empirical potential. Gereben and Pusztai employed a similar approach of hybrid RMC with bonded and non-bonded forces to study liquid dimethyl trisulfide. A method known as empiri-
cal potential structure refinement (EPSR) has been successful in modeling amorphous and liquid systems, refining the initial interatomic empirical potential function while fitting the structure factor. Our first attempt to incorporate experimental information in a first-principle approach was experimentally verified by Weaire and coworkers. In effect we alternate between fitting the RDF (or structure factor) using RMC (a random molecular relaxation) and energy minimization. When this process converged (as it did for the case of glassy GeSe, for which the method resulted), the problem was that often failed to converge. We therefore amended our method to include partial fitting of the RDF (or structure factor) and carrying out partial relaxations using ab initio calculations, as we explain in detail in Reference 8.

By carrying out the iteration in “bite-sized” steps rather than iterating full relaxations as in the original method, we find that the method is robust, working for chalcogenides with plane-wave DFT and for WWW a-Si with Siesta and also for forms of amorphous carbon.

We should clarify that in our previous work on a-Si, we used the WWW pair-correlation data as input “experimental data”, whereas in this work we have used high-energy X-ray diffraction data from Lazirri and coworkers. WWW models are a fixture of the modeling community (a continuous random network of ideal four-fold coordination and involving up to 100,000 atoms), and represent an important benchmark that a new method must handle. It is reasonably interpreted as “ideal” a-Si, with minimum strain. While the pair-correlation data of WWW and Lazirri are indeed fairly similar, there are key differences as noted by Roorda and coworkers. Given the high quality and precision of the experiments, we have undertook a FEAR inversion of their data in this paper.

One key assumption that we forthrightly emphasize is that the dataset of Lazirri and coworkers may be represented by a small supercell model of silicon. This is obviously an approximation, as the material must surely include some voids and damaged regions from the ion bombardment procedure from which the material was made, and of course the X-ray diffraction includes these. While we think this is a reasonable approximation, it is clear that a very large scale simulation with thousands of atoms allowing for internal surfaces and other inhomogeneities would be desirable, possibly opening up the possibility of paracrystallites and other longer length scale irregularities. While it is not obvious whether the RDF by itself would provide information enough to open up voids, recent studies on hydrogenated a-Si have demonstrated that inversion of experimental nuclear magnetic resonance (NMR) and infrared (IR) data can produce, in association with ab initio interactions, nanoscale inhomogeneities, such as voids and extended defect structures in a-Si:H. Further progress in this direction might be undertaken with transferable potentials devised from “machine learning” algorithms.

In our applications of FEAR, we have always started with a random model, and even for a complex ternary, the method converges with satisfactory and chemically sensible results. In effect, chemical information is provided through the partial CG relaxations, and the method explores the configuration space rather well, thanks to the excellent RMCPProfile code.

The rest of this paper is organized as follows. In Section II, we summarize FEAR and describe the methodology for the current work. In Section III, we present the results for a 216-atom a-Si FEAR model. The conclusions are given in Section IV.
II. METHODOLOGY

A detailed description of the FEAR method can be found elsewhere. To summarize, in FEAR, a random starting configuration is subjected to partial RMC refinement followed by partial conjugate-gradient (CG) relaxations using a chemically realistic total-energy functional, e.g. ab initio interactions from density functional theory. The two steps are repeated one after another until both the structure and energy converge to a prescribed accuracy. A single FEAR step comprises \(M \) accepted RMC moves followed by \(N \) CG steps, and we denote the entire process by \((M,N)\). In this work, we have carried out a \((500,5)\) process. Other combinations, such as \((M,N)=(1000,5)/(1000,20)/(6000,5)\), are also explored, which, more or less, produce similar results but exhibit different convergence behavior. An \((M,N)\) process is then repeated until convergence (namely finding a configuration that matches diffraction data and simultaneously being at a minimum of a DFT total-energy functional) is achieved. The RMC algorithm (in our case RMCPROFILE) is used to invert the experimental data. We have so far only used diffraction data, but other experimental data, such as those from EXAFS and NMR experiments, can also be used profitably as natural datasets. For complex materials, the use of multiple experimental datasets might be particularly beneficial to limit the number of unphysical configurations, while the CG relaxations enforce the local chemistry in the material. We employ a local-orbital basis DFT code (SIESTA) using the local density approximation (LDA). The cubic simulation cell (with 216 Si atoms) has a length of 16.28 Å, which corresponds to the experimental density of 2.33 gm.cm\(^{-3}\) for \(\alpha\)-Si. In the spirit of full reporting, this should be understood to be another assumption, which can be easily rectified by conducting a variable-cell CG optimization. To illustrate the choice of the number of accepted RMC moves \(M\) and the number of CG steps \(N\) on the convergence of the structure, we have explored various combinations of \((M,N)\). While a small value of \(N\) (CG steps) is highly desirable from the viewpoint of computational cost, a very small \(N\) and large \(M\) (RMC steps) may not be able to steer the system to the correct solution space. Likewise, a very small value of \(M\) might not be enough to navigate the system out from a poor local minimum on the energy surface. To address this, we have studied the evolution of the number of four-fold coordinated Si atoms in FEAR with a few combination of \(M\) and \(N\). A realistic model of \(\alpha\)-Si must contain a higher percentage of four-fold silicon with fewer defects. The convergence for three different \((M,N)\) processes are shown in Fig.1. The structure is abruptly trapped into a local minimum for a higher value of CG steps \((N=20)\). The higher number of accepted RMC moves \((M=6000)\) generates a structure with a large density of coordination defects, which take considerable number of FEAR steps to eliminate. For the efficient use of algorithm, we suggest an optimum value for \(M\) as anything between 100 and 2000 and for \(N\) any value between 3 to 20. Lower values of \(M\) and \(N\) make the method less expensive. Although, there is no significant change in the structure by a choice within this range, a short quick run with the extreme values is helpful to determine an appropriate value of \(M\) and \(N\) for new systems.

III. RESULTS AND DISCUSSION

In this section, we present results for \(\alpha\)-Si obtained from FEAR. Since the method essentially consists of incorporating the pair-correlation data via reverse monte carlo simulations (RMC), followed by \emph{ab initio} total-energy relaxations using the conjugate-gradient (CG) method, we also include the results from a CG-only model (obtained from the initial random state) to evaluate the performance of the FEAR method in relation to
the CG-only relaxation as a function of simulation “time” or steps. In particular, we address the structure factor $S(Q)$, bond-angle distribution $P(\theta)$, electronic density of states (EDOS), vibrational density of states (VDOS) and the vibrational specific heat from the FEAR model of a-Si. To examine the convergence of the method with respect to the total energy and the evolution of structure, we take a close look at the variation of the average coordination number and electronic gap as a function of FEAR steps.

Figure 2 shows the static structure factor of a-Si for the model configurations obtained from the FEAR along with the structure-factor data of a-Si (annealed sample) reported by Laaziri et al. The results from the CG-only model are also included in Fig. 2 for comparison. Data fitting was carried out in Q space. We can see that the structure factor from the FEAR model compares very well with the experimental data. The only exceptions are a minor deviation of $S(Q)$ near $Q\approx 2.5$ Å and 7 Å. A comparison of the $S(Q)$ data from the FEAR and CG-only models suggests that the former is superior to the latter as far as the two-body correlations between atoms are concerned even though both the systems have been treated with identical environment-dependent interaction potential (96%) and better than those obtained from other models in the literature.

While structural information beyond three-body correlations proves to be highly nontrivial to obtain and analyze, it is possible to gather some information by looking at the dihedral-angle distribution involving four neighboring atoms and the ring statistics reflecting the topological connectivity of an amorphous network. Figure 3 presents the dihedral-angle distributions for a 216-atom FEAR model and a WWW model. Both the distributions exhibit a maximum value near the dihedral angle of 60° and a minimum value in the vicinity of 120°. A minor deviation of the minimum in the FEAR model near 120° is probably indicative of slightly different dihedral correlations involving a chain of four neighboring atoms in WWW and FEAR models. We will see that such a deviation also affects the number of four-member rings in the FEAR models. The ring statistics for the FEAR and WWW models are presented in Fig. 4. It is remarkable that the three-member rings are not present at all in the FEAR model, which is consistent with the absence of unphysical Si triangles in good quality a-Si models. The only notable difference between the WWW and FEAR model is the existence of fewer six-member and more four-member rings in the latter model. In Table 1 we have listed the characteristic structural properties of the models along with the total energy per atom obtained from the density-functional code SIESTA. The FEAR model has 96% four-fold coordinated atoms with the remaining 4% being equally distributed between three-fold and five-fold coordinated atoms. These values are equal to those obtained from the melt-quench model using environment-dependent interaction potential (96%) and better than those obtained from other models in the literature. The average coordination number of the FEAR model is found to be 4, which deviates from that of the experimental annealed sample (3.88) by Laaziri et al. For comparison, we have presented average coordination for various models in Table 1 using a nearest-neighbor distance of 2.75 Å. It appears that the models

![Graph showing the static structure factor of a-Si using a nearest-neighbor distance of 2.75 Å.](image)
having fewer coordination defects have higher average coordination then the experimentally reported value.

The variation of the total energy (E) and χ^2 with the number of FEAR step are plotted in Fig. 5. The results suggest that the initial structure formation takes place very rapidly in the first few hundred steps with a simultaneous decrease of E and χ^2. We then reach a period of “saturation” in which there are tiny fluctuations in the energy and χ^2. This indicates that the system has reached to a region of the energy landscape of a-Si, which is characterized by configurations having more or less same average energy with some disordered fluctuations. We have reported a particular “snapshot” of a conformation, and discuss it above. However, many conformations in the saturated part of the plot are equally meaningful. Fortunately they do not fluctuate much, reflecting the fact that the combination of experimental data and chemistry converge to a well-defined collection of configurations. We track the fluctuations of the average coordination number in Fig. 7 and report the results for a simulation using the pair-correlation data from a WWW model as reported in Ref. 8. The use of WWW pair-correlation, as input “experimental” data, forces the network to have fewer defects compared to the real experimental data. This has been reflected in the average coordination number of the FEAR models obtained by using experimental pair-correlation and WWW pair-correlation data. The former produces a FEAR model with an average coordination of 3.96, whereas the latter leads to an average value of 3.99.

In Fig. 8 we also track the fluctuations in the electronic gap for the last 500 steps of FEAR, as crudely estimated as the energy splitting between the LUMO and HOMO levels. It is of considerable interest that, for the last 500 FEAR steps, there is a substantial variation in the electronic density of states near the Fermi level even though the FEAR process had already reached a “steady state” value for χ^2 and total energy (cf. Fig. 8). Observe that, while the HOMO level is fairly stationary, the LUMO meanders with relative impunity as it does not contribute to the total energy, being above the Fermi level/citesst. Thus, we see that FEAR effectively generates an ensemble of candidate structural models for a-Si, which are essentially indistinguishable according to χ^2 and energy. Nevertheless, this affords another opportunity to use a priori information—we should select one of these models with the gap most like the experimental sample. To our knowledge, the electronic density of states is not well characterized for the sample, but if it was it would be natural to use it as an additional criterion to select the most experimentally realistic FEAR model. In effect if we had electronic information, it would break the “structural degeneracy” emphasizing the information-based nature of our approach. It is evident from Fig. 5 that the FEAR model has a lower energy than its CG-only counterpart. Table 1 lists the total-energy per atom with respect to the energy of the WWW model, which is set at 0.0 eV for convenience. The energy for the FEAR model is found to be 0.06 eV/atom, which is approximately 33% lower than the CG-only model with a total energy of 0.09 eV/atom. This is a reasonable number compared with other published work.

The electronic density of states (EDOS) of a-Si obtained from the FEAR, CG-only and RMC models are shown in Fig. 9. For the 216-atom FEAR model, the quality of EDOS is significantly improved compared with that of CG-relaxed model and the RMC model. The latter is completely featureless, and does provide any useful

![FIG. 6. (Color online) Dihedral-angle distributions for two models of a-Si obtained from WWW and FEAR simulations as indicated. For visual clarity, we have plotted a running-average of the raw data, which slightly affects the distributions of very small and large angles.](image-url)
FIG. 7. (Color online) Variation of the average coordination number for the final 500 steps of FEAR using two different input RDF data. The upper panel is for high-energy X-ray diffraction data from Laaziri et al. and the lower panel is for the WWW radial distribution function (RDF) as an input data. The broken horizontal line, in the upper panel, represents the average coordination number, 3.88, reported by Laaziri et al.

FIG. 8. (Color online) Variation of the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) level for the final 500 steps of FEAR. Note the annihilation of an electronic (gap state) defect near 600 steps.

FIG. 9. (Color online) Electronic density of states (EDOS) of α-Si obtained from FEAR (red), CG-only (green) and pure RMC (blue) models. The Fermi levels are located at 0 eV.

FIG. 10. (Color online) Inverse participation ratio (IPR) of 216-atom α-Si model for FEAR (black) and RMC (red) models near the gap. Fermi levels are shown by arrows of respective colors.

Electronic information. A significant number of defects states clutters the gap in the FEAR model, which is a prediction in this case, since the EDOS has not, to our knowledge, been measured for the annealed sample whose pair-correlation data we have employing in our work. Electronic localization is studied using the inverse participation ratio (IPR), which is shown in Fig. 10. IPR measures the localization of electronic states. For a completely localized state, the IPR value is unity reflecting that the state is localized around a single atomic site. A completely delocalized or extended state, on the other hand, is distributed over N atoms or sites producing the value of $1/N$. In the FEAR model, the electronic gap is filled by several extended defect states, whereas the WWW model has a clean electronic gap with localized tail states in the vicinity of the band edges. In the case of the FEAR model, banding or coupling among the states in the gap leads to an expected delocalization and is reflected in the corresponding IPR values.

The vibrational density of states (VDOS) is computed by estimating the force-constant matrix, from finite-difference calculations resulting from perturbing the atoms of a well-relaxed 216-atom FEAR model by 0.02 Å in six directions ($\pm x$, $\pm y$ and $\pm z$ axes), and calculating the forces on all the remaining atoms for each perturbed configurations. The eigenvalues and eigenvectors are obtained by diagonalizing the dynamical matrix, the details of which can be found in a recent work of...
indicates the classical limit, shows the dependence of the specific heat
inset shows the classical “Dulong-Petit” limit at higher temperature.

The specific heat in the harmonic approximation can be readily obtained from the vibrational density of states $g(\omega)$. We compute the specific heat $C_v(T)$ using the relation

$$C_v(T) = 3R \int_0^{E_{\text{max}}} \frac{E^2}{k_B T} \left(\frac{e^{E/k_B T}}{e^{E/k_B T} - 1} \right)^2 g(E) \, dE,$$

(1)

where $g(E)$ is normalized to unity.

Figure 12 shows the dependence of the specific heat on temperature by plotting C_v/T^3 vs. T at low temperature from 5 K to 300 K for the FEAR model. The inset in Fig. 12 indicates the classical limit, $C_v \approx 3R$, at high temperature. The results show that $C_v(T)$ for the FEAR model are in good agreement with the experimental data from Ref. 53 for $T > 40$ K. This is an additional indication that the FEAR model is correctly reproducing features of a-Si beside those “built in” (from the experimental pair-correlation data), and is also an indication of consistency between the very different physical observables.

IV. CONCLUSIONS

In this paper, we have studied a-Si using a new approach FEAR. For the first time the experimental structure factor of a-Si has been employed in FEAR along with ab initio interactions to generate a homogeneous model consistent with the data and at a plausible energy minimum according to reliable interatomic interactions. FEAR retains the simplicity and logic of RMC and successfully augments it with total-energy functional and forces to generate structures that are energetically stable, even exhibiting a satisfactory VDOS. The method can also be viewed as a new way to undertake first principles modeling of materials, when structural experiments are available.

By using an entirely information-based approach, educated by chemistry through the CG sub loops, we find highly plausible models derived from experimental data with interesting similarities and differences with continuous random network models. Following this logic, the best that we can hope to achieve is a structural model jointly agreeing with all experiments, but critically, augmented with chemical information in an unbiased mode as we offer here.

To conclude, this paper offers a new method that is genuinely effective for the best known difficult structural inversion problem in the physics of amorphous materials (the structure of a-Si). A method that works well here is likely to have broad applicability (and indeed, we are building up the proof of that statement in ongoing research as we publish this, beside the work reported in Ref. 8 and 9). We observe that the method is immediately applicable to glasses and amorphous materials.
of any kind, including (perhaps) systems like amorphous pharmaceuticals. Already the approach has been applied successfully with plane-wave density functional theory to amorphous GeSeAg systems, and amorphous phases of silica and silicon. While no method is ever perfect, this paper demonstrates the need to explore this line of inquiry for the general structural inversion problem.

V. ACKNOWLEDGEMENT

We thank the US NSF under grants DMR 150683, 1507166 and 1507670 for supporting this work, and the Ohio Supercomputer Center for computer time. We acknowledge the financial support of the Condensed Matter and Surface Science program of Ohio University. We particularly thank Prof. Sjoerd Roorda for sharing his diffraction data, which formed the basis for this paper. We further thank Prof. Normand Mousseau for helpful suggestions.

*ap43911@ohio.edu
†partha.biswas@usm.edu
‡drabold@ohio.edu

1 V. Ramakrishnan, “Unraveling the structure of the ribosome (Nobel Lecture).” Angewandte Chemie International Edition 49:26 (2010): 4355-4380.
2 P. Biswas, R. Atta-Fynn and D. A. Drabold, Phys. Rev. B 69, 195207 (2004).
3 O. Gereben and L. Pusztai, Phys. Rev. B 50, 14 136 (1994).
4 McGreevy and L. Pusztai, Molecular Simulation, Vol. 1, Issue 6, pg. 359-367 (1988).
5 McGreevy R L, J. Phys.: Condens. Matt. 13 R 877 (2001).
6 E. T. Jaynes, Phys. Rev. 106, 620 (1957).
7 T. Proffen and S.J.L. Billinge, J. Appl. Crystallogr. 32, 572 (1999).
8 A. Pandey, P. Biswas and D. A. Drabold, Phys. Rev. B, 92 (15), 155205 (2015).
9 A. Pandey, P. Biswas and D. A. Drabold, Sci. Rep. 6 33731 (2016).
10 R. A. Street, Hydrogenated amorphous silicon. Cambridge University Press, (2005).
11 I. Santos, L. A. Marques, L. Pelaz and L. Colombo, Phys. Rev. B, 83 (15), 153201 (2011).
12 Y. Pan, F. Inam, M. Zhang and D. A. Drabold, Phys. Rev. Lett. 100 (20), 206403 (2008).
13 G. T. Barkema, N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).
14 K. Laaziri, S. Kycia, S. Roorda, M. Chicoine, J. L. Robertson, J. Wang, and S. C. Moss, Phys. Rev. Lett. 82, 3460 (1999).
15 A. Pandey, B. Cai, N. Podrada and D. A. Drabold, Phys. Rev. Applied, 2 (5), 054005 (2014).
16 P. Dagenais, J. L. Laurent and S. Roorda, J. Phys.: Condens. Matter 27, 295801 (2015).
17 D. Beeman, R. Tsu and M. F. Thorpe, Phys. Rev. B 32(2), 874 (1985).
18 Assuming that the bond-angle distribution in a-Si can be approximated by a gaussian or normal distribution $N(\theta, \sigma)$, the half-width at half-maximum (Γ_{HWHM}) of the distribution can be expressed as $\Gamma_{\text{HWHM}} \approx 1.18 \sigma$.
19 F. Wooten, K. Winer and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).
20 D. N. Tafen and D. A. Drabold, Phys. Rev. B 71, 054206 (2005).
21 M. J. Cliffe, M. T. Dove, D. A. Drabold and A. L. Goodwin, Phys. Rev. Lett. 104, 125501 (2010).
22 M. J. Cliffe et al. Structural Simplicity as a Constraint on the Structure of Amorphous Silicon, https://arxiv.org/abs/1609.00668
23 K. Prasai, P. Biswas and D. A. Drabold, Sci. Rep. 5, 15522 (2015).
24 K. Prasai, P. Biswas and D. A. Drabold, Phys. Stat. Sol. A 213 1653 (2016).
25 G. Opetal, T. C. Petersen, D. G. McCulloch, I. K. Snook and I. Yarovsky, J. Phys.: Condens. Matt. 17 (2005).
26 O. Gereben and L. Pusztai, Journal of computational chemistry, 33(29), 2285-2291 (2012).
27 A. K. Soper, Mol. Phys. 99, 1503 (2001).
28 P. Biswas, D. N. Tafen, R. Atta-Fynn and D. A. Drabold, J. Phys.: Condens. Matt. 16 (2004).
29 P. Biswas, D. N. Tafen, F. Inam, B. Cai and D. A. Drabold, J. Phys.: Condens. Matter 21 084207 (2009).
30 A. Pandey and D. A. Drabold (unpublished).
31 D. A. Drabold, Y. Li, B. Cai and M. Zhang, Phys. Rev. B 83 (4), 045201 (2011).
32 M. M. J. Treacy and K. B. Borisenko, Science 335 950 (2012).
33 R. Timilsina and P. Biswas, Journal of Physics: Condensed Matter 25, 165801 (2013)
34 P. Biswas and R. Timilsina, Journal of Physics: Condensed Matter 23, 065801 (2011)
35 P. Biswas and S. R. Elliott, Journal of Physics: Condens Matter 27 (43), 435201 (2015)
36 P. Biswas, D. A. Drabold and R. Atta-Fynn, Journal of Applied Physics, 116 (24), 244305 (2014)
37 N. Nosengo, Nature 533 (22) (2016).
38 Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L. and Hui, Q. Journal of Physics: Condensed Matter 19 (33), 335218 (2007).
39 J. M. Soler et al. Journal of Physics: Condensed Matter 14 (11), 2745 (2002).
40 P. Kebinski, M. Z. Bazant, R. K. Dash and M. M. Treacy, Phys. Rev. B 66, 064104 (2002).
41 M. Ishimaru, S. Munetoh and T. Motooka, Phys. Rev. B 56, 23 (1997).
42 R. Car and M. Parrinello, Phys. Rev. Lett. 60 (3), 204 (1988).
43 K. Prasai, P. Biswas and D. A. Drabold, Semiconductor Science and Technology 31 073002 (2016).
44 D. A. Drabold, Phys. Stat. Sol. RRL 5 359 (2011).
45 J. Dong and D. A. Drabold, Phys. Rev. Lett. 80 1928 (1998).
K. Prasai, P. Biswas and D. A. Drabold, Semiconductor Science and Technology, 31(7), pp.73002-73015 (2016).

B. Bhattarai and D. A. Drabold, Journal of Non-Crystalline Solids 439, 6-14 (2016).

S. M. Nakhmanson and D. A. Drabold, Journal of Non-Crystalline Solids 266-269, 156-160 (2000).

S. M. Nakhmanson and D. A. Drabold, Phys. Rev. B 58, 23 (1998).

W. A. Kamitakahara, C. M. Soukoulis, H. R. Shanks, U. Buchenau, and G. S. Grest, Phys. Rev. B 36 (12), 6539 (1987).

A. A. Maradudin, *Theory of lattice dynamics in the harmonic approximation*. New York: Academic Press (1963).

S. M. Nakhmanson and D. A. Drabold, Phys. Rev. B 58(23), 15325 (1998).

B. L. Zink, R. Pietri and F. Hellman, Phys. Rev. Lett. 96 (5), 055902 (2006).