Symmetry-Protected Scattering in Non-Hermitian Linear Systems

L. Jin1 and Z. Song1

1School of Physics, Nankai University, Tianjin 300071, China

Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics. Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices. The even-parity symmetries impose strict constraints on the scattering coefficients: the time-reversal (C and K) symmetries protect the symmetric transmission or reflection; the pseudo-Hermiticity (Q symmetry) or the inversion (P) symmetry protects the symmetric transmission and reflection. For the inversion-combined time-reversal symmetries, the symmetric features on the transmission and reflection interchange. The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric. These guiding principles are valid for both Hermitian and non-Hermitian linear systems. Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.

Introduction.—Quantum transport and light scattering depend on the properties of media 1, 2. In optics, the Lorentz reciprocity is fundamental due to the symmetric permittivity tensor; which results in symmetric transmission when the input and output channels are interchanged 2, 4. Breaking reciprocity is important for the light flow molding and the nonreciprocity plays a crucial role in tailoring the light field. The optical isolator has a propagation direction dependent transmission 3–9. The reciprocity breaks in the magneto-optical materials 10–13 and the asymmetric nonlinear optical structures 14–19. In comparison, the nonlinear systems are preferable for their integrability; however, in addition to the requirement of high intensity, the desirable light flow engineering is also comparably difficult. Alternatively, temporal modulation of the propagation constant in the linear waveguides realizes magnetic-free nonreciprocity through the synthesized magnetic flux 20–31, being advantageous for the scalable integrated devices in a wide range of optical, radio, and audible frequencies 3.

Recently, reciprocal and nonreciprocal anomalous scattering are demonstrated in non-Hermitian systems 32. The scattering dynamics closely relates to the symmetries of the scattering center. The reciprocity still holds in the parity-time-symmetric non-Hermitian metamaterials 33–35. The inversion symmetry guarantees the symmetric transmission and reflection 36–43; the time-reversal symmetry ensures the symmetric reflection 44–45, and the parity-time symmetry protects the symmetric transmission 43–45. Nevertheless, these conclusions are insufficient to fully capture the symmetric properties of scattering and the role played by the symmetry for an arbitrary linear system 46. More important, the nature of symmetry changes in non-Hermitian physics 47, 48. Now, the fundamental principles for the symmetry-protected scattering remain concealed and are urgent to be settled as the rapid progresses in non-Hermitian physics 49–100.

In this Letter, we report the symmetry-protected scattering in non-Hermitian linear systems and reveal the fundamental roles played by the symmetries. We show that the internal symmetries C, K, Q, P that classify the non-Hermitian random matrices protect the symmetric transmission and/or reflection 107. The non-Hermiticity helps breaking the symmetry protection and enables a various of intriguing asymmetric scattering in the linear photonic lattices, which has promising applications as optical diode, isolator, and modulator. The scattering theory tackles problems including light propagation in dissipative metamaterial, on-chip functional photonic device design, and quantum transport manipulation in mesoscopic.

Symmetries.—The non-Hermitian scattering center H_c is classified under the discrete symmetries 105–1108:

\begin{equation}
C \text{ sym.: } H_c = \epsilon_c E_c H^\dagger \epsilon^{-1} \;\epsilon^* = \pm 1,
\end{equation}

\begin{equation}
K \text{ sym.: } H_c = \epsilon_k E_k H^\dagger \epsilon^{-1} \;\epsilon^* = \pm 1,
\end{equation}

\begin{equation}
Q \text{ sym.: } H_c = \epsilon_q E_q H^\dagger \epsilon^{-1} \;\epsilon^* = \pm 1,
\end{equation}

\begin{equation}
P \text{ sym.: } H_c = \epsilon_p E_p H^\dagger \epsilon^{-1} \;\epsilon^* = \pm 1.
\end{equation}

H^\dagger, H^\dagger_c, and H^\dagger are the transpose, complex conjugation, and Hermitian conjugation of H_c, respectively. c, k, q, p are unitary operators. The signs $\epsilon_{c,k,q,p} = \pm 1$ denote the parity of symmetries C, K, Q, P. For non-Hermitian scattering center ($H_c \neq H_c^\dagger$), both the C and K symmetries relate to the time-reversal symmetry $\epsilon_{c,k} = +1$ and the particle-hole symmetry $\epsilon_{c,k} = -1$. The Q symmetry is pseudo-Hermitian for $\epsilon_q = +1$ and pseudo-anti-Hermitian for $\epsilon_q = -1$ (also referred to as the chiral symmetry 98). The P symmetry with even-parity $\epsilon_p = +1$ is the inversion symmetry if p is the identity matrix rotated by 90 degrees. The P symmetry with the odd-parity $\epsilon_p = -1$ is the sublattice symmetry. The eight symmetries form an E_8 Abelian group 109.

The even parity ($\epsilon_{c,k,q,p} = +1$) symmetries, including time-reversal symmetry, pseudo-Hermiticity, and generalized inversion symmetry, can result in symmetric transmission and/or reflection; the constraints imposed by the symmetries C, K are that either the transmission or the reflection is symmetric; both the symmetries P, Q...
can induce symmetric transmission and reflection. The symmetry-protected transmission or reflection was observed in many experiments [37, 54, 55, 64, 71, 110, 112]. In contrast, the odd-parity \((c_{\pi}, q, p) = (-1)\) symmetries, including particle-hole symmetry, chiral symmetry, and sublattice symmetry, do not ensure the transmission or reflection to be symmetric because they cannot impose any symmetric constraint on the scattering coefficients.

Scattering formalism.—We consider a general multi-port linear scattering center to elucidate the symmetry protection. In Fig. 1 the scattering center is a time-independent \(N\)-site network (shaded in orange). The schematic models physical systems including the coupled resonators \([8, 63, 113, 114]\), coupled waveguides \([37, 51, 55, 71, 115]\), and optical lattices \([62, 110, 116, 117]\). The solid circles stand for the resonators, the waveguides, and the sites of the optical lattice. The solid lines represent the couplings. The leads are uniform lattice chains with the coupling strength \(J\). For identical lead couplings, the scattering features are fully determined by the properties of the scattering center. The \(j\)-th lead is connected to the scattering center site \(j\) at the coupling strength \(g_j\). The arrows illustrate the scattering for the individual incidence in the \(m\)-th and \(n\)-th leads, respectively. The outgoing waves in red (green) are the reflections (transmissions). For more than one inputs, the scattering wavefunction is a superposition of wavefunctions of separately injecting each individual input; thus, the scattering properties are fully captured by the scattering of the individual input.

In the coupled mode theory \([118, 120]\), the equation of motion for the monochromatic light field amplitude \(\phi_{i,j}^l(s) = \psi_{i,j}^l(s) e^{-i\omega t}\) in the \(j\)-th lead is

\[
i \frac{d}{ds} \phi_{i,j}^l(s) = \omega_0 \phi_{i,j}^l(s) + J_j^l \phi_{i,j}^l(s-1) + J_j^l \phi_{i,j}^l(s+1),
\]

for the site \(|s| \geq 1\). The dispersion relation supported by the leads is \(\omega = \omega_0 + 2J \cos k\) for the incident momentum \(k\), obtained from the steady-state solution of the light field amplitudes [122]. The resonant incidence has frequency \(\omega_0\). The equations of motion for the light field in the scattering center are

\[
i \begin{pmatrix}
\phi_{c,1}^k \\
\vdots \\
\phi_{c,N}^k
\end{pmatrix} = (\omega_0 \mathbf{1} + H_c) \begin{pmatrix}
\phi_{c,1}^k \\
\vdots \\
\phi_{c,N}^k
\end{pmatrix} + \begin{pmatrix}
g_1 \phi_{1,1}^k(1) \\
\vdots \\
g_N \phi_{N,1}^k(1)
\end{pmatrix},
\]

where the \(N \times N\) matrix \(H_c\) characterizes the scattering center and \(\mathbf{1}\) is the \(N \times N\) identity matrix. \(\phi_{c,j}^k\) is the light field amplitude of the scattering center site \(j\). \(\phi_{c,j}^k(1)\) is the light field amplitude of the connection site on the lead \(j\). \(g_j\) is chosen \(J\) or \(0\) without loss of generality to indicate the presence or absence of the lead \(j\). For other \(g_j\), the connection sites are counted as part of the scattering center and the connection couplings remain \(J\). Setting \(\phi_{c,j}^k = \psi_{c,j}^k e^{-iks}\), we have \(d\psi_{c,j}^k/dt = 0\) at the steady-state; and the equations of motion reduce to

\[
\omega \begin{pmatrix}
\psi_{c,1}^k \\
\vdots \\
\psi_{c,N}^k
\end{pmatrix} = (\omega_0 \mathbf{1} + H_c) \begin{pmatrix}
\psi_{c,1}^k \\
\vdots \\
\psi_{c,N}^k
\end{pmatrix} + \begin{pmatrix}
g_1 \psi_{1,1}^k(1) \\
\vdots \\
g_N \psi_{N,1}^k(1)
\end{pmatrix}.
\]

In the multi-port scattering center, we consider the scattering properties of input and output in the leads \(m\) and \(n\). The steady-state equations of motion for the multi-port scattering system are equivalent to that for a two-port scattering system with leads \(m\) and \(n\). Each of the other lead \(j\) \((j \neq m, n)\) effectively reduces into an additional on-site self-energy term of the scattering center site \(j\) in the equivalent scattering center \(H_c'\) [123]. Notably, the wavefunction in the additional lead \(j\) \((j \neq m, n)\) is outgoing wave \(\psi_{j,i,j}^k(s) = t_j e^{iks}\), and the wavefunction continuity yields \(\psi_{i,j}^0(0) = \psi_{c,j}^k\). Thus, we have the relation

\[
g_j \psi_{i,j}^k(1) = g_j^2 J^{-1} e^{iks}\psi_{i,j}^k(0) = g_j^2 J^{-1} e^{iks}\psi_{c,j}^k.
\]

Consequently, the second term \(g_j \psi_{i,j}^k(1)\) in Eq. (7) results in an extra self-energy \(g_j^2 J^{-1} e^{iks}\) for the scattering center site \(j\) in the equations of motion [124], and the multi-port scattering center is effectively characterized by the two-port scattering center \(H_c' = H_c + J^{-1} e^{iks}\) diag(\(\cdots, g_m, 0, g_{m+1}, \cdots, g_{n-1}, 0, g_{n+1}, \cdots\)) with additional on-site complex self-energies except for the scattering center sites \(m\) and \(n\). Therefore, the scattering properties of the multi-port scattering center \(H_c\) are completely determined from analyzing the two-port scattering center \(H_c'\), and we focus on investigating the scattering properties of the two-port scattering center.

We take \(g_m = g_n = J\) and \(g_j = 0\) \((j \neq m, n)\). From Eq. (7), the wavefunctions for the scattering center sites \(m\) and \(n\) satisfy

\[
\psi_{c,m}^k = -\Delta_{m,j}^{-1} \psi_{j,m}^k(-1) - \Delta_{n,m}^{-1} \psi_{j,n}^k(1),
\]

\[
\psi_{c,n}^k = -\Delta_{n,j}^{-1} \psi_{j,n}^k(-1) - \Delta_{n,m}^{-1} \psi_{j,n}^k(1),
\]
where Δ^{-1}_{mn} is the element of the m-th row and n-th column of the inverse matrix of $\Delta = H_c - (2J \cos k) I$ [123]. For the multi-port case, just replace H_c with H^f in Δ.

We index -1 to $-\infty$ for sites of the left lead (lead m) and index 1 to $+\infty$ for sites of the right lead (lead n). The stationary states are the superpositions of incoming and outgoing waves [53]. The wavefunctions for the forward incidence $\psi^k_L(s)$ and backward incidence $\psi^k_R(s)$ are two linearly independent solutions

$$
\psi^k_L(s) = e^{iks} + t_L e^{-iks}, \quad (s < 0); \quad t_L e^{iks}, \quad (s > 0),
$$

(10)

$$
\psi^k_R(s) = t_R e^{-iks}, \quad (s < 0); \quad e^{-iks} + r_R e^{iks}, \quad (s > 0).
$$

(11)

The wavefunction continuity $\psi^k_{c,m} = \psi^k_{l,m}(0)$, $\psi^k_{c,n} = \psi^k_{l,n}(0)$ yields $\psi^k_{c,m} = 1 + r_L$, $\psi^k_{c,n} = t_L$ for the forward incidence; from Eq. (10), we have $\psi^k_{l,m}(-1) = e^{-ik} + t_L e^{ik}$, $\psi^k_{l,n}(1) = t_L e^{ik}$. Substituting these wavefunctions into Eqs. (8) and (9), we obtain t_L and r_L. For the backward incidence, we have $\psi^k_{c,m} = t_R$, $\psi^k_{c,n} = 1 + r_R$; from Eq. (11), we have $\psi^k_{l,m}(-1) = t_R e^{ik}$, $\psi^k_{l,n}(1) = e^{-ik} + r_R e^{ik}$. Substituting these wavefunctions into Eqs. (8) and (9), we obtain t_R and r_R.

The scattering coefficients are

$$
t_L = \frac{(J + \Delta^{-1}_{mn} e^{ik}) (J + \Delta^{-1}_{mn} e^{-ik}) - \Delta^{-1}_{mn} \Delta^{-1}_{nm} e^{-2ik}}{(J + \Delta^{-1}_{mn} e^{ik}) (J + \Delta^{-1}_{mn} e^{-ik}) + \Delta^{-1}_{mn} \Delta^{-1}_{nm} e^{2ik}},
$$

$$
r_L = \frac{(J + \Delta^{-1}_{mn} e^{ik}) (J + \Delta^{-1}_{mn} e^{-ik}) + \Delta^{-1}_{mn} \Delta^{-1}_{nm} e^{-2ik}}{(J + \Delta^{-1}_{mn} e^{ik}) (J + \Delta^{-1}_{mn} e^{-ik}) - \Delta^{-1}_{mn} \Delta^{-1}_{nm} e^{2ik}).
$$

(12)

The symmetric transmission is

$$
t_L = t_R \quad \text{for} \quad \Delta^{-1}_{mn} = \Delta^{-1}_{nm}; \quad |t_L| = |t_R| \quad \text{for} \quad |\Delta^{-1}_{mn}| = |\Delta^{-1}_{nm}|.
$$

(13)

The symmetric reflection is

$$
r_L = r_R \quad \text{for} \quad \Delta^{-1}_{mn} = \Delta^{-1}_{nm}; \quad |r_L| = |r_R| \quad \text{for} \quad \Delta^{-1}_{mn}, \Delta^{-1}_{nm}, \Delta^{-1}_{mn}, \Delta^{-1}_{nm}.
$$

(14)

The scattering properties of each pair of input-output leads are straightforwardly obtained in this manner. The symmetries of the scattering center H_c, imposing restrict constraints on the scattering coefficients, are essential to understand the symmetric scattering dynamics.

Symmetry protection.—The symmetry-protected scattering properties are closely related to the spatial structure of the scattering center and rely on two ways of mapping

$$
1 : U_1 |m(n)_c \rangle \rightarrow |m(n)_c \rangle; \quad \mathcal{I} : U_2 |m(n)_c \rangle \rightarrow |n(m)_c \rangle,
$$

(15)

where $U_{1,2} = c, k, q, p$; $|m \rangle$, and $|n \rangle$, denote the two connection sites of the scattering center that are connected with the leads m and n, respectively. The mapping manners reclassify eight even-parity symmetries

$$
C_1, C_T; K_1, K_T; Q_1, Q_T; P_1, P_T.
$$

(16)

Symmetry	C_1, K_T	C_T, K_1	Q_1, P_T	Q_T, P_1								
Constraint	$	t_L	=	t_R	$	$	r_L	=	r_R	$	Both	None

The subscripts indicate the mapping manners. The P_1 symmetry is trivial. The P_T symmetry is a generalized inversion symmetry and leads to symmetric transmission and reflection [36–43]. If the scattering center only has the C_1 or K_T symmetry, the transmission is symmetric; but the reflection is asymmetric due to the lack of symmetry protection unless Eq. (14) is satisfied. Similarly, if the scattering center only has the C_T or K_1 symmetry, the reflection is symmetric, but the transmission is asymmetric unless Eq. (13) is satisfied. Table I lists the constraints for the corresponding symmetries (Supplemental Material A). For the scattering center without the C_1, K_T, C_T, K_1, P_1, Q_1 symmetries, both the transmission and reflection are asymmetric unless Eq. (13) or (14) is satisfied. The symmetry protection still valid even though the scattering coefficients diverge at the spectral singularity in the anomalous scattering [32, 126], where lasing occurs as the time-reversal process of perfect absorbing [3, 63]. $H_c = H_T^c$ belongs to the C_1 symmetry and characterizes the Lorentz reciprocity in optics [2, 3, 33, 127]. The scattering center $H_c = [1, e^{-i\phi}, e^{i\phi}, i]$ has the C_1 symmetry, where the unitary operator is $c = \text{diag}(1, e^{i2\phi})$ and the mapping between the connection sites is $c[|m \rangle, |n \rangle] = [|m \rangle, e^{i2\phi} |n \rangle]^{T}$; consequently, $t_L = e^{2i\phi} t_R$. The C_T symmetry is the combined $P_2 C_1$ symmetry and leads to the symmetric reflection $r_L = r_R$ [125]. The K symmetry has the complex conjugation operation and relates to the time-reversal symmetry [98]. The K_1 symmetry results in the symmetric reflection $|r_L| = |r_R|$ [44, 45]. The K_T symmetry is the combined $P_2 K_1$ symmetry and results in the symmetric transmission $|t_L| = |t_R|$; the parity-time symmetry belongs to the K_T symmetry [42, 43]. The Q_1 symmetry is a combined $C_1 K_1$ or $C_2 K_2$ symmetry. For example, if $H_c = [0, i - 1; i + 1, i]$ has the Q_1 symmetry with $q = \sigma_z$; the Hermitian scattering centers possess the Q_1 symmetry with q being the identity matrix. The transmission and reflection are both symmetric under the Q_1 symmetry protection [120]. In contrast, the combined $C_1 K_2$ or $C_2 K_2$ symmetry: the Q_T symmetry, imposes no symmetric constraint on the scattering coefficients. For example, both the transmission and reflection are asymmetric for the Q_T symmetric non-Hermitian scattering center $H_c = [i\gamma, Je^{-\phi}; Je^{\phi}, -i\gamma]$, the corresponding unitary operator is $q = \sigma_z$; the cooperation between asymmetric coupling [131, 134], gain, and loss destroys the symmetric transmission and reflection.

Breaking reciprocity.—Under the guidance of symmetry protection, we exemplify asymmetric light scatter-
ideal optical isolator with asymmetric transmission, but symmetric reflection; an asymmetric transmission. Thus, the transmission is symmetric, but the reflection has the symmetric transmission. The interplay between the nonreciprocal coupling, the ensures the symmetric transmission and reflection. Without the gain and loss, the nonreciprocal coupling can also break the symmetry protection. The striking asymmetric scattering for \{V_1, V_2, V_3\} = \{i\gamma, -i\gamma, 0\} in Figs. 2(b) and 2(c) indicates a chiral perfect absorption \[92\] that unidirectional incidence is completely absorbed for the clockwise (CW) mode of the resonator experience opposite magnetic fluxes. A unidirectional transmissionless \(t_1 = 0, r_L = 1; t_R = -2i, r_R = 0\) occurs at \(\gamma = J, \phi = -\pi/2\) [Figs. 3(a) and 3(b)] and a unidirectional absorption \(t_L = -2i, r_L = 1; t_R = 0, r_R = 0\) occurs at \(\gamma = J, \phi = \pi/2\) [Figs. 3(c) and 3(d)] for resonant incidence \(k = -\pi/2\).

For the three-port scattering, the transmission in the lead 3 (2) for incidence in the lead 1 is straightforwardly obtained from Eq. (12) by taking \(m = 1, n = \beta(2)\) and replacing \(V_{2(3)}^*\) with \(V_{2(3)}^* + J e^{i\kappa}\) in \(H_c\) [124]. At \(\{V_1, V_2, V_3\} = \{0, 0, 0\}\), the input resonantly outgoes from one of the adjacent leads as indicated by the blue arrows at \(\phi = \pi/2\) and inversely at \(\phi = -\pi/2\) for the resonant incidence, and functions as a circulator [111, 112] with symmetric zero reflection protected by the \(C_2\) symmetry because \(V_2^* \neq V_2^*\).

Without the gain and loss, the non-Hermitian dissipative \[13, 133, 134, 135\] associated with nonreciprocal coupling can also break the symmetry protection and generate asymmetric transmission and reflection in the three-coupled-resonator scattering center

\[
H_c = \begin{pmatrix}
 0 & -i\kappa & J \\
 -i\kappa & 0 & J e^{-i\phi} \\
 J & J e^{i\phi} & 0
\end{pmatrix}.
\]

More details are provided in Supplemental Material C. **Discussion.**—For the two-port linear scattering center, the effective complex self-energy is absent. Thus, the non-Hermiticity is required to realize asymmetric transmission because Hermitian systems are \(Q_1\) symmetry protected. The \(C_1, K_F, P_L, Q_1\) symmetries should be absent to break symmetric transmission. In addition to the non-Hermiticity required to break the pseudo-Hermiticity (\(Q_1\) symmetry), the nonreciprocal coupling is required to break the \(C_1\) symmetry protection. The simplest example is a two-site center with

\[
(\gamma = J; \phi = -\pi/2)\]
asymmetric coupling strengths $H_c = [0, J e^{-i\gamma}, J e^{i\gamma}, 0]$. The three-coupled-resonator scattering center with $[0, -i\gamma, 0]$ is another example, and other examples include systems studied in Refs. 54–148.

The C_T, K_1, P_T, Q_1 symmetries should be absent to break symmetric reflection. Provided that the resonator gain and/or loss are not balanced, all these four symmetries are absent. Thus, the asymmetric reflection ubiquitously presents in the intriguing scattering phenomena, including the unidirectional reflectionless 54, 55, 64, 68, 149, unidirectional lasing 54, 63, coherent perfect absorber laser 47–51, 71, 150, chiral absorber 92, and chiral metamaterials 151, 152.

The situation $|V_1| \neq |V_3|$ in the three-coupled-resonator (Fig. 3) and the systems studied in Refs. 153 exemplify the asymmetric transmission and reflection without the protection of all the six symmetries $C_1, C_T, K_1, K_T, P_T, Q_1$. Properly incorporating nonreciprocal coupling, asymmetric coupling, dissipative coupling, gain, and loss generate asymmetric transmission and reflection.

For the multi-port scattering center, the effective scattering center H'_c may only possess the C_1, C_T or P_T symmetry due to the momentum dependent self-energy in H'_c. Thus, asymmetric scattering behavior easily occurs in the multi-port scattering center. If the leads are symmetrically coupled to the scattering center H_c, the transmission and (or) reflection of the multi-port scattering center are still symmetric under the P_T (C_1 or C_T) symmetry protection. Notably, the scattering properties of H'_c may be K_1, K_T or Q_1 symmetry-protected at certain momentum.

The symmetries with opposite parities, various symmetry types, and different ways of mapping may coexist in the scattering center. The constraints imposed by the symmetries on the scattering coefficients coexist and affect simultaneously. The symmetry protection provides fundamental guiding principles for manipulating quantum transport in mesoscopic and tailoring the light flow in the integrated photonics.

Conclusion.—We unveil the roles played by the symmetry for the scattering in non-Hermitian linear systems. The time-reversal symmetry, pseudo-Hermiticity (including Hermiticity), and generalized inversion symmetry protect the symmetric transmission and/or reflection (Table III); however, the particle-hole symmetry, chiral symmetry, and sublattice symmetry do not. These provide fundamental guiding principles for the light scattering in both Hermitian and non-Hermitian systems. Our findings are valid in the quantum systems and pave the way for further investigations on the transport in non-Hermitian physics.

We acknowledge the support of National Natural Science Foundation of China (Grants No. 11975128 and No. 11874225). L.J. acknowledges H. C. Wu for discussions and S. M. Zhang for useful comments on a first draft of this paper.
The combination of two symmetries that belong to the same type gives the P symmetry. The combination of the P symmetry and any of the C, K, Q symmetries does not alter the C, K, Q symmetries. The combination of any two of the three symmetries C, K, Q produces the third symmetry.

We emphasize two aspects in the definitions of symmetries that distinct from the topological classification [52]: (i) the signs c_{1} and c_{2} in the K and Q symmetries; which are absent in the definitions of the K and Q symmetries for topological classification because H_{t} and $\pm iH_{t}$ have identical topological properties. However, the scattering properties of H_{t} and $\pm iH_{t}$ are not identical. The symmetries with opposite parities impose different scattering features; (ii) the even-parity P symmetry.

The combination of two symmetries that belong to the same type gives the P symmetry. The combination of the P symmetry and any of the C, K, Q symmetries does not alter the C, K, Q symmetries. The combination of any two of the three symmetries C, K, Q produces the third symmetry.

We emphasize two aspects in the definitions of symmetries that distinct from the topological classification [52]: (i) the signs c_{1} and c_{2} in the K and Q symmetries; which are absent in the definitions of the K and Q symmetries for topological classification because H_{t} and $\pm iH_{t}$ have identical topological properties. However, the scattering properties of H_{t} and $\pm iH_{t}$ are not identical. The symmetries with opposite parities impose different scattering features; (ii) the even-parity P symmetry.

The combination of two symmetries that belong to the same type gives the P symmetry. The combination of the P symmetry and any of the C, K, Q symmetries does not alter the C, K, Q symmetries. The combination of any two of the three symmetries C, K, Q produces the third symmetry.

W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadoway, W. Yi, and B. Yan, Phys. Rev. Lett. 124, 070402 (2020).

R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343, 516 (2014).

K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. X 5, 041020 (2015).

F. Yang, Y.-C. Liu, and L. You, Phys. Rev. A 96, 053845 (2017).

H. C. Wu, X. M. Yang, L. Jin, and Z. Song, Phys. Rev. B 102, 161101(R) (2020).
A 376, 886 (2012).
[149] Y. Huang, Y. Shen, C. Min, S. Fan, and G. Veronis, Nanophotonics 6, 977 (2017).
[150] S. Cao and Z. Hou, Phys. Rev. Appl. 12, 064016 (2019).
[151] S. Droulias, I. Katsantonis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, Phys. Rev. Lett. 122, 213201 (2019).
[152] I. Katsantonis, S. Droulias, C. M. Soukoulis, E. N. Economou, and M. Kafesaki, Photonics 7, 43 (2020).
[153] L. Jin, P. Wang and Z. Song, New J. Phys. 19, 015010 (2017).
SUPPLEMENTAL MATERIAL FOR “SYMMETRY-PROTECTED SCATTERING IN NON-HERMITIAN LINEAR SYSTEMS”

L. Jin1 and Z. Song1

1School of Physics, Nankai University, Tianjin 300071, China

A: Proof of the constraints on the scattering coefficients for discrete symmetries

Symmetric scattering coefficients.—The transmission and reflection coefficients for the input-output in the leads m and n are

\begin{align}
 t_L & = \frac{\Delta_{mn}^{-1} J^{-1} (e^{ik} - e^{-ik})}{(J^{-1} + \Delta_{mm} e^{ik})(J^{-1} + \Delta_{nn} e^{-ik}) - \Delta_{mn} \Delta_{nm} e^{2ik}}, \\
 r_L & = \frac{\Delta_{mn}^{-1} \Delta_{nn}^{-1} - (J^{-1} e^{ik} + \Delta_{mm}^{-1}) (J^{-1} e^{-ik} + \Delta_{nn}^{-1})}{(J^{-1} + \Delta_{mm} e^{ik})(J^{-1} + \Delta_{nn} e^{-ik}) - \Delta_{mn} \Delta_{nm} e^{2ik}}, \\
 t_R & = \frac{\Delta_{mn}^{-1} J^{-1} (e^{ik} - e^{-ik})}{(J^{-1} + \Delta_{mm} e^{ik})(J^{-1} + \Delta_{nn} e^{-ik}) - \Delta_{mn} \Delta_{nm} e^{2ik}}, \\
 r_R & = \frac{\Delta_{mn}^{-1} \Delta_{nn}^{-1} - (J^{-1} e^{ik} + \Delta_{mm}^{-1}) (J^{-1} e^{-ik} + \Delta_{nn}^{-1})}{(J^{-1} + \Delta_{mm} e^{ik})(J^{-1} + \Delta_{nn} e^{-ik}) - \Delta_{mn} \Delta_{nm} e^{2ik}},
\end{align}

where $\Delta = H_c + (\omega_0 - \omega) 1 = H_c - (2J \cos k) 1$, Δ^{-1} indicates the inverse of Δ, and Δ_{mn}^{-1} indicates the element on the m-th row and the n-th column of Δ^{-1}.

It is obvious that

\begin{align}
 t_L = t_R & \text{ for } \Delta_{mn}^{-1} = \Delta_{mn}^{-1}, \\
 r_L = r_R & \text{ for } \Delta_{mn}^{-1} = \Delta_{mn}^{-1}.
\end{align}

Alternatively,

\begin{equation}
 |t_L|^2 = |t_R|^2 \text{ for } |\Delta_{mn}^{-1}| = |\Delta_{mn}^{-1}|.
\end{equation}

The difference between the numerators of $|r_L|^2$ and $|r_R|^2$ is given by

\begin{equation}
 |\Delta_{mm}^{-1} \Delta_{nn}^{-1} - (J^{-1} e^{ik} + \Delta_{mm}^{-1}) (J^{-1} e^{-ik} + \Delta_{nn}^{-1})|^2 - |\Delta_{mm}^{-1} \Delta_{nn}^{-1} - (J^{-1} e^{ik} + \Delta_{nn}^{-1}) (J^{-1} e^{-ik} + \Delta_{mm}^{-1})|^2
\end{equation}

\begin{equation}
 = 2J^{-2} \sin (2k) (\Delta_{mm}^{-1} \Delta_{mn}^{-1} - \Delta_{mn}^{-1} \Delta_{mm}^{-1}) + 2J^{-1} \sin k [(J^{-2} + \Delta_{mm}^{-1} \Delta_{mm}^{-1} - \Delta_{mn}^{-1} \Delta_{mn}^{-1}) (\Delta_{nn}^{-1} - \Delta_{mm}^{-1}) - (J^{-2} + \Delta_{mm}^{-1} \Delta_{nn}^{-1} - \Delta_{mn}^{-1} \Delta_{nn}^{-1}) (\Delta_{mn}^{-1} - \Delta_{nn}^{-1})].
\end{equation}

Thus, we have $|r_L|^2 = |r_R|^2$ for real Δ_{mm}^{-1}, Δ_{nn}^{-1}, and $\Delta_{mn}^{-1} \Delta_{nm}^{-1}$. These are the conclusions of Eqs. (9) and (10) in the main text. Notably, the accidental symmetric reflection $|r_L|^2 = |r_R|^2$ occurs if the conditions $J^{-2} + \Delta_{mm}^{-1} \Delta_{mn}^{-1} - \Delta_{mn}^{-1} \Delta_{mm}^{-1} = 0$ and $\Delta_{mm}^{-1} \Delta_{nn}^{-1} = \Delta_{mn}^{-1} \Delta_{nm}^{-1}$ are simultaneously satisfied.

Symmetry-protected scattering.—The mapping relations are

\begin{align}
 1 : U_1[\cdots, |m\rangle_c, \cdots, |n\rangle_c, \cdots]^T & = [\cdots, |m\rangle_c, \cdots, e^{i\alpha} |n\rangle_c, \cdots]^T, \\
 \mathcal{I} : U_\mathcal{I}[\cdots, |m\rangle_c, \cdots, |n\rangle_c, \cdots]^T & = [\cdots, |n\rangle_c, \cdots, e^{i\alpha} |m\rangle_c, \cdots]^T.
\end{align}

In the general situation, the phase factor $e^{i\alpha}$ is not necessarily to be 1. The four elements in the unitary operators that relate to the mapping between the connection sites $|m\rangle_c$ and $|n\rangle_c$ are

\begin{align}
 1 : \begin{pmatrix} U_1_{mm} & U_1_{mn} \\ U_1_{mn} & U_1_{nn} \end{pmatrix} & = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}, \\
 \mathcal{I} : \begin{pmatrix} U_\mathcal{I}_{mm} & U_\mathcal{I}_{mn} \\ U_\mathcal{I}_{mn} & U_\mathcal{I}_{nn} \end{pmatrix} & = \begin{pmatrix} 0 & 1 \\ e^{i\alpha} & 0 \end{pmatrix}.
\end{align}

Other relevant elements in the mapping relation are $U_{1,mj} = 0$ and $U_{1,jn} = 0$ for $j \neq m, n$; $U_{\mathcal{I},mj} = 0$ and $U_{\mathcal{I},jn} = 0$ for $j \neq m, n$.
The scattering center with the even-parity C symmetry satisfies $H_c = cH_c^Tc^{-1}$. From the definition $\Delta = H_c - (2J_0k)\mathbf{1}$, we have the relation $\Delta = c\Delta^Tc^{-1}$; therefore, we obtain

$$\Delta^{-1} = c(\Delta^{-1})^Tc^{-1}. \quad (33)$$

For the C_1 symmetry, we have

$$\Delta_{nm}^{-1} = e^{i\alpha}\Delta_{mn}^{-1}, \quad (34)$$

thus, we obtain the symmetric transmission

$$|t_L| = |t_R|. \quad (35)$$

For the C_2 symmetry, we have

$$\Delta_{mm}^{-1} = \Delta_{nn}^{-1}, \quad (36)$$

besides, the C_2 symmetry also demands $e^{i\alpha} = 1$ or $\Delta_{mm}^{-1} = \Delta_{nn}^{-1} = 0$. Thus, in general case we only have the symmetric reflection

$$r_L = r_R. \quad (37)$$

The scattering center with the even-parity K symmetry satisfies $H_c = kH_c^*k^{-1}$. Therefore, we obtain the relation $\Delta = k\Delta^*k^{-1}$; and consequently,

$$\Delta^{-1} = k(\Delta^{-1})^*k^{-1}. \quad (38)$$

For the K_1 symmetry, we obtain

$$\Delta_{mm}^{-1} = (\Delta_{nm}^{-1})^*, \Delta_{nn}^{-1} = (\Delta_{nm}^{-1})^*; \Delta_{mm}^{-1} = e^{i\alpha}(\Delta_{nm}^{-1})^*, \Delta_{nn}^{-1} = e^{-i\alpha}(\Delta_{nm}^{-1})^*, \quad (39)$$

thus, Δ_{mm}^{-1}, Δ_{nn}^{-1}, and $\Delta_{mm}^{-1}\Delta_{nn}^{-1}$ are all real numbers; and we have symmetric reflection

$$|r_L| = |r_R|. \quad (40)$$

For the K_2 symmetry, we obtain

$$\Delta_{nm}^{-1} = e^{i\alpha}(\Delta_{mn}^{-1})^*, \quad (41)$$

thus, we have symmetric transmission

$$|t_L| = |t_R|. \quad (42)$$

we also have $\Delta_{mm}^{-1} = (\Delta_{mn}^{-1})^*$, which does not lead to a symmetric relation on the scattering coefficients.

The scattering center with the even-parity Q symmetry satisfies $H_c = qH_c^*q^{-1}$. Therefore, we obtain $\Delta = q\Delta^*q^{-1}$; and consequently

$$\Delta^{-1} = q(\Delta^{-1})^q^{-1}. \quad (43)$$

For the Q_1 symmetry, we have

$$\Delta_{mm}^{-1} = (\Delta_{mn}^{-1})^*, \Delta_{nn}^{-1} = (\Delta_{mn}^{-1})^*; \Delta_{mm}^{-1} = e^{i\alpha}(\Delta_{mn}^{-1})^*, \Delta_{nn}^{-1} = e^{-i\alpha}(\Delta_{mn}^{-1})^*, \quad (44)$$

the Q_1 symmetry also requires $e^{2i\alpha} = 1$. From $\Delta_{mm}^{-1} = e^{i\alpha}(\Delta_{mn}^{-1})^*$, we obtain $|t_L| = |t_R|$. Notice that Δ_{mm}^{-1}, Δ_{nn}^{-1}, and $\Delta_{mm}^{-1}\Delta_{nn}^{-1}$ are all real numbers; thus, we have both the symmetric transmission and reflection

$$|t_L| = |t_R|, |r_L| = |r_R|. \quad (45)$$

For the Q_2 symmetry, we have

$$\Delta_{mm}^{-1} = (\Delta_{mn}^{-1})^*, \Delta_{nn}^{-1} = e^{i\alpha}(\Delta_{mn}^{-1})^*, \Delta_{mm}^{-1} = e^{-i\alpha}(\Delta_{mn}^{-1})^*. \quad (46)$$
These constraints are insufficient to result in the symmetric transmission as well as the symmetric reflection. The scattering center with the even-parity P symmetry satisfies $H_c = pH_p p^{-1}$; therefore, we obtain $\Delta = p\Delta p^{-1}$ and

$$\Delta^{-1} = p (\Delta^{-1}) p^{-1}. \quad (47)$$

For the P_1 symmetry, we have

$$\Delta^{-1}_{mn} = e^{i\alpha} \Delta^{-1}_{nm}, \Delta_{mm}^{-1} = e^{-i\alpha} \Delta^{-1}_{mm}. \quad (48)$$

These constraints are insufficient to result in the symmetric transmission as well as the symmetric reflection. For the P_2 symmetry, we have

$$\Delta^{-1}_{mm} = \Delta^{-1}_{nn}, \Delta^{-1}_{nm} = e^{i\alpha} \Delta^{-1}_{mn}. \quad (49)$$

Thus, we have both the symmetric transmission and reflection

$$|t_L| = |t_R|, r_L = r_R \quad (50)$$

These conclusions are summarized in Supplemental Table II and give the symmetric constraints on the scattering coefficients listed in Table I of the main text.

Symmetry	C_1	C_2	K_1	K_2	Q_1	P_1	Q_2, P_3																			
Constraint	$	t_L	=	t_R	$, $r_L = r_R$	$	r_L	=	r_R	$	$	t_L	=	t_R	$, $r_L = r_R$	$	t_L	=	t_R	$, $r_L = r_R$	$	t_L	=	t_R	$, $r_L = r_R$	None

These conclusions are straightforwardly applicable to explain the many intriguing symmetric/asymmetric scattering phenomena reported in the literatures. For example, the C_1 symmetry protected symmetric transmission $[2, 127]$; the C_2 symmetry protected symmetric reflection $[7, 8, 110, 128, 129, 140, 141]$; the K_1 symmetry protected symmetric reflection $[44, 45]$; the K_2 symmetry protected symmetric transmission $[45, 93]$; the Q_1 symmetry protected symmetric transmission and reflection $[19, 130]$; and the P_1 symmetry protected symmetric transmission and reflection $[36, 43]$. Without the protection of these symmetries, both the transmission and reflection are asymmetric $[8, 9, 153]$.

B: Details for the light scattering in the three-coupled-resonator scattering center

The scattering center of the three coupled resonators is schematically illustrated in the main text Fig. 2(a). The scattering center encloses a synthetic magnetic flux ϕ induced by the Peierls phase factor in the coupling. We now analyze the properties of the scattering center through the two-port scattering dynamics. The leads 1 and 3 are under consideration; the lead 2 is disconnected from the scattering center.

For the case $\{V_1, V_2, V_3\} = \{i\gamma, -i\gamma, 0\}$, the Hamiltonian H_c is not symmetry-protected. The scattering coefficients are obtained in the form of

$$t_L = \frac{J (e^{2ik} - 1)(e^{i\phi} + i\gamma + 2J \cos k)}{(2 - e^{-2ik} + 2e^{2ik} + e^{i(k-\phi)} + e^{i(k+\phi)})J^2 + iJ\gamma e^{ik} - \gamma^2}, \quad (51)$$

$$r_L = \frac{J e^{-i\phi}(e^{2ik} - 1)(J + i\gamma e^{i\phi} + 2Je^{i\phi} \cos k)}{(2 - e^{-2ik} + 2e^{2ik} + e^{i(k-\phi)} + e^{i(k+\phi)})J^2 + iJ\gamma e^{ik} - \gamma^2}, \quad (52)$$

$$t_R = \frac{J(e^{2ik} - 1)(J + i\gamma e^{i\phi} + 2Je^{i\phi} \cos k)}{(2 - e^{-2ik} + 2e^{2ik} + e^{i(k-\phi)} + e^{i(k+\phi)})J^2 + iJ\gamma e^{ik} - \gamma^2}, \quad (53)$$

$$r_R = \frac{(1 + e^{2ik} + e^{i(k-\phi)} + e^{i(k+\phi)})J^2 + iJ\gamma e^{nk} - \gamma^2 e^{2ik}}{(2 - e^{-2ik} + 2e^{2ik} + e^{i(k-\phi)} + e^{i(k+\phi)})J^2 + iJ\gamma e^{ik} - \gamma^2}. \quad (54)$$

The scattering coefficients are depicted in Figs. 2(b) and 2(c) of the main text; and they diverge at $J = \gamma/2$ and $\phi = \pm\pi/2$ for the resonant inputs at the momentum $k = -\pi/2$. In the general case, the transmission and reflection are asymmetric; these are reflected from the four elements of the inverse matrix Δ^{-1}

$$\begin{pmatrix}
\Delta^{-1}_{mm} & \Delta^{-1}_{nn} \\
\Delta^{-1}_{nm} & \Delta^{-1}_{nm}
\end{pmatrix} = \frac{J^2}{\text{det}\Delta} \begin{pmatrix}
1 + e^{2ik} & e^{-2ik} + i(\gamma/J) (e^{ik} + e^{-ik}) & e^{ik} + e^{-ik} + e^{-i\phi} + i(\gamma/J) \\
e^{ik} + e^{-ik} + e^{i\phi} + i(\gamma/J) & 1 + e^{2ik} + e^{-2ik} + (\gamma/J)^2
\end{pmatrix}. \quad (55)$$
where $\Delta = H_c - (2J \cos k) \mathbf{1}$. The determinant is $\det \Delta = J^3 \left[e^{-i\phi} + e^{i\phi} - e^{-3ik} - e^{3ik} - (\gamma^2/J^2) (e^{-ik} + e^{ik}) \right]$. Then, we obtain the contrast between the transmission and reflection of the inputs from the forward and backward directions for the resonant incidence with the momentum $k = -\pi/2$

$$\frac{t_R}{t_L} = \frac{e^{-i\phi} + i\gamma/J}{e^{i\phi} + i\gamma/J}, \quad \frac{r_R}{r_L} = \frac{2\cos \phi - i\gamma/J + i\gamma^2/J^2}{2\cos \phi + i\gamma/J - i\gamma^2/J^2}. \quad (56)$$

At $\gamma = J$, the special cases of $\phi = -\pi/2$ for a unidirectional transmissionless $t_L = 0, r_L = 1; t_R = -2i, r_R = 0$ and $\phi = \pi/2$ for a unidirectional absorption $t_L = -2i, r_L = 1; t_R = 0, r_R = 0$ are shown in the main text Fig. 3.

C: Non-Hermitian three-coupled-resonator scattering center with dissipative coupling

In the coupled mode theory, the equations of motion for the three-site scattering center with dissipative coupling $-i\kappa$ are given by

$$i\dot{\phi}_c^k (1) = \omega_0 \phi_c^k (1) - i\kappa \phi_c^k (2) + J \phi_c^k (3) + J \phi_1^k (-1), \quad (57)$$

$$i\dot{\phi}_c^k (2) = \omega_0 \phi_c^k (2) - i\kappa \phi_c^k (1) + J e^{-i\phi} \phi_c^k (3), \quad (58)$$

$$i\dot{\phi}_c^k (3) = \omega_0 \phi_c^k (3) + J \phi_c^k (1) + J e^{i\phi} \phi_c^k (2) + J \phi_3^k (1), \quad (59)$$

where $\phi_c^k (-1)$ and $\phi_3^k (1)$ are the wavefunctions of the sites on the leads 1 and 3 that are connected with the scattering center sites 1 and 3, respectively. The dissipative coupling is reciprocal and is directly induced by the dissipation in the link resonator between the primary resonators 1 and 2. The link resonator and the primary resonators are on resonant. The effective dissipative coupling strength $\kappa = \kappa_0 / \gamma$ is inversely proportional to the link resonator dissipation γ and quadratically proportional to the coupling strength between the link resonator and the primary resonators κ_0. The dissipative coupling has also been experimentally realized in many anti-parity-time symmetric systems.

The scattering center is described by the Hamiltonian

$$H_c = \begin{pmatrix} 0 & -i\kappa & J \\ -i\kappa & 0 & J e^{-i\phi} \\ J & J e^{i\phi} & 0 \end{pmatrix}, \quad (60)$$

the scattering properties of which are not symmetry-protected.

The contrast between the transmission and reflection from opposite incident directions are calculated as follows. We obtain the four elements of the inverse matrix Δ^{-1} in the form of

$$\begin{pmatrix} \Delta^{-1}_{mm} & \Delta^{-1}_{mn} \\ \Delta^{-1}_{nm} & \Delta^{-1}_{nn} \end{pmatrix} = \frac{J^2}{\det \Delta} \begin{pmatrix} e^{2ik} + 1 + e^{-2ik} & e^{ik} + e^{-ik} - i (\kappa/J) e^{-i\phi} \\ e^{ik} + e^{-ik} - i (\kappa/J) e^{i\phi} & e^{2ik} + 2 + e^{-2ik} + (\kappa/J)^2 \end{pmatrix}. \quad (61)$$

In general case, the transmission and reflection are asymmetric.

However, for the resonant incidence with the momentum $k = -\pi/2$, the transmission is symmetric $|t_L| = |t_R|$ because of $|\Delta^{-1}_{nm}| = |\Delta^{-1}_{mn}|$; but the reflection is asymmetric. To break the reciprocity at $k = -\pi/2$, the on-site terms $\{V_1, V_2, V_3\}$ of the scattering center are helpful

$$H_c = \begin{pmatrix} V_1 & -i\kappa & J \\ -i\kappa & V_2 & J e^{-i\phi} \\ J & J e^{i\phi} & V_3 \end{pmatrix}. \quad (62)$$

For the resonant incidence $k = -\pi/2$, the four elements of the inverse matrix Δ^{-1} are in the form of

$$\begin{pmatrix} \Delta^{-1}_{mm} & \Delta^{-1}_{mn} \\ \Delta^{-1}_{nm} & \Delta^{-1}_{nn} \end{pmatrix} = \frac{1}{\det \Delta} \begin{pmatrix} V_2 V_3 - J^2 & -JV_2 - iJ \kappa e^{-i\phi} \\ -JV_2 - iJ \kappa e^{i\phi} & V_1 V_2 + \kappa^2 \end{pmatrix}, \quad (63)$$

where the determinant $D \equiv \det \Delta = V_1 V_2 V_3 - J^2 V_1 - J^2 V_2 + \kappa^2 V_3 - iJ^2 \kappa (e^{-i\phi} + e^{i\phi})$.

At $\phi = \pm \pi/2$, the transmission is asymmetric for the real V_2; the transmission is symmetric for the imaginary V_2.

For the real $V_{1,2,3}$, the reflection is symmetric; otherwise, the reflection is asymmetric.

We take $V_1 = V_3 = 0$ as an illustration. The scattering coefficients for the momentum $k = -\pi/2$ are obtained in the form of

$$t_L = \frac{J(e^{2ik} - 1)(-iV_2 + \kappa e^{i\phi} + 2iJ \cos k)}{iJ^2e^{-2ik}(e^{4ik} + e^{2ik} - 1) + J(iV_2e^{-ik} - iV_2e^{ik} + \kappa e^{i(k-\phi)} + \kappa e^{i(k+\phi)}) - i\kappa^2},$$

$$r_L = -\frac{iJ^2e^{-2ik}(e^{4ik} + e^{2ik} - 1) + J(iV_2e^{-ik} - iV_2e^{ik} + \kappa e^{i(k-\phi)} + \kappa e^{i(k+\phi)}) - i\kappa^2}{iJ^2e^{-2ik}(e^{4ik} + e^{2ik} - 1) + J(iV_2e^{-ik} - iV_2e^{ik} + \kappa e^{i(k-\phi)} + \kappa e^{i(k+\phi)}) - i\kappa^2},$$

$$t_R = \frac{e^{-i\phi}(e^{i(k+\phi)}R + iJ)(Je^{i\phi} - i\kappa e^{ik})}{iJ^2e^{-2ik}(e^{4ik} + e^{2ik} - 1) + J(iV_2e^{-ik} - iV_2e^{ik} + \kappa e^{i(k-\phi)} + \kappa e^{i(k+\phi)}) - i\kappa^2},$$

$$r_R = -\frac{e^{-i\phi}(e^{i(k+\phi)}R + iJ)(Je^{i\phi} - i\kappa e^{ik})}{iJ^2e^{-2ik}(e^{4ik} + e^{2ik} - 1) + J(iV_2e^{-ik} - iV_2e^{ik} + \kappa e^{i(k-\phi)} + \kappa e^{i(k+\phi)}) - i\kappa^2}.$$

Both the scattering coefficients t and r diverge at $\phi = \pm \arccos\left(\frac{J^2 - \kappa^2}{2J}\right)$ and $V_2 = 0$ when the resonant momentum $k = -\pi/2$. For the real $V_2 = J$, we have the scattering coefficients $t_L = -2i, r_L = -i; t_R = 0, r_R = i$ at $\phi = -\pi/2$; and we have the scattering coefficients $t_L = 0, r_L = -i; t_R = -2i, r_R = i$ at $\phi = \pi/2$. The numerical simulations are shown in Fig. 4.

FIG. 4. Numerical simulation of the asymmetric transmission in the three-site center with dissipative coupling [Eq. (62)]. The incidences are Gaussian wave packet with the momentum $k = -\pi/2$ in the simulations. The excitation intensity is depicted. (a) Forward and (b) backward incidence for $\phi = -\pi/2$. $|t_L|^2 = 4, |r_L|^2 = 1; |t_R|^2 = 0, |r_R|^2 = 1.$ (c) Forward and (d) backward incidence for $\phi = \pi/2$. $|t_L|^2 = 0, |r_L|^2 = 1; |t_R|^2 = 4, |r_R|^2 = 1.$ The dissipative coupling is $\kappa = J = 1$ and the on-site terms are $\{V_1, V_2, V_3\} = \{0, J, 0\}$. The incident frequency is ω_0.