OS03-16

くしゃみによる気流がフェイスシールド周囲の流動に及ぼす影響

Effect of Sneezing on the Flow Around the Face Shield

○正 赤木 富士雄*1，原賀 勇壮*2
稲毛 眞一*1，秋吉 浩三郎*2
Fujio AKAGI*1, Isao HARAGA*2,
Shinichi INAGE*1 and Kozaburo AKIYOSHI*2
*1 福岡大学工学部 Faculty of Engineering, Fukuoka University
*2 福岡大学医学部 Faculty of Medicine, Fukuoka University

Key Words: Vortex ring, Transport, droplet, aerosol, Sneeze

COVID-19が世界中で猛威をふるっている現状において，感染予防手法の確立は非常に重要な課題であり，感染予防に関連した研究が多数行われている(1)。本研究では，フェイスシールドを装着した医療従事者が患者のくしゃみを正面より浴びた際の感染リスクについて検討する目的で，フェイスシールド周囲の数値シミュレーションを行った。シミュレーションにはLarge Eddy Simulationを用いた。シミュレーションの結果から，以下のことが確認された。

くしゃみによって生成される突発的な気流によって複数の渦輪が生成され，これらの渦輪はフェイスシールドの上端部および下端部に到達する。

フェイスシールドの上端部および下端部では，到達した渦輪の誘起速度により，シールドの内部から内面側に向かう流れが形成される。特に，先頭の渦輪が到達したシールド上端部の流入速度は1m/s程度と高かった。

くしゃみ流れの中に微小な飛沫物に見立てた質量ゼロの粒子を混入して粒子の輸送状況を確認したところ，フェイスシールドの内側に流入する粒子が確認された。

以上のことから，粒径が小さいくしゃみの飛沫物，および飛沫物が付着したエアロゾルが渦輪内に流入してフェイスシールドの上端部および下端部まで輸送される可能性があることが分かった。さらに，呼吸による流動と同期した場合には，輸送された微小飛沫物やエアロゾルを装着者が吸引する可能性が高いことも確認された。

文献

(1) Giacomo Busco, et al., "Sneezing and asymptomatic virus", Physic of Fluids, Vol. 32, 073309 (2020).

Figure 1. Streamwise velocity distribution and three-dimensional vortex structure

Figure 2. Distribution of aerosol-sized particles