ANP32A and ANP32B are key factors in the Rev dependent CRM1 pathway for nuclear export of HIV-1 unspliced mRNA

Yujie Wang¹, Haili Zhang¹, Lei Na¹, Cheng Du¹, Zhenyu Zhang¹, Yong-Hui Zheng¹,², Xiaojun Wang¹*

¹State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, China
²Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.

Running title: ANP32A/B support HIV-1 unspliced RNA nuclear export

* To whom correspondence should be addressed: Dr Xiaojun Wang, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001 email: wangxiaojun@caas.cn

Key words: ANP32A; ANP32B; Rev/RRE; CRM1; HIV-1 unspliced mRNA

ABSTRACT The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, other cellular factors involved in the CRM1-dependent viral RNA nuclear export remain largely unknown. Here, we demonstrate that ANP32A and ANP32B mediate the export of unspliced or partially spliced viral mRNA via interactions with Rev and CRM1. We found that a double, but not single, knockout of ANP32A and ANP32B significantly decreased the expression of gag protein. Reconstitution of either ANP32A or ANP32B restored the viral production equally. Disruption of both ANP32A and ANP32B expression led to a dramatic accumulation of unspliced viral mRNA in the nucleus. We further identified that ANP32A and ANP32B interact with both Rev and CRM1 to promote RNA transport. Our data strongly suggest that ANP32A and ANP32B play an important role in the Rev-CRM1 pathway, which is essential for HIV-1 replication, and our findings provide a candidate therapeutic target for host defense against retroviral infection.

Human immunodeficiency virus type-1(HIV-1) is an enveloped, single strand positive RNA virus, belonging to the lentivirus family. During HIV-1 replication, the 9 kb RNA genome is reverse transcribed to proviral DNA and then processed into RNA using specific splicing schemes to generate multiple species of mRNA: the unspliced 9 kb full-length genomic RNA, the 4 kb partially spliced mRNA and the 2 kb completely spliced mRNA (1). The mechanism for export of the unspliced and partially spliced viral RNAs is discrete from the
pathway for transport of completely spliced mRNA. In the early phase of HIV-1 replication, the current consensus view is that the completely spliced mRNA is presumably transported into the cytoplasm mediated by the TAP/NXF1 pathway to translate the regulatory proteins Rev, Nef, and Tat. The Rev protein of HIV-1, a 116 amino acid accessory protein, has a nuclear localization signal (NLS) recognized by importins, and also a leucine-rich nuclear export signal (NES) recognized by mammalian nuclear export factor Chromosomal Maintenance 1 (CRM1); it therefore shuttles between the nucleus and cytoplasm. Rev can specifically bind to the Rev response element (RRE) located in the env gene of the unspliced or partially spliced mRNA. In the late phase of HIV-1 replication, with Rev accumulation in the nucleus, the unspliced or partially spliced mRNAs are exported to the cytoplasm via a Rev-CRM1 dependent export pathway to translate the viral structural proteins (2-10).

The key factor in the export of viral mRNA is the Rev-CRM1 complex. In the nucleus, the multimerized Rev recruits CRM1 through the Rev leucine-rich nuclear export signal (NES) located in the C-terminal domain to assemble the ribonucleoprotein complex with Ran-GTP(11-13), thus facilitating its export. However, a number of host factors (including Matrin-3, DDX1, DDX21, DDX3, DDX5, MOV10, Sam68, and CBP80) have been reported to interact with Rev and RRE, and help viral mRNA export from the nucleus to the cytoplasm (14-23). Most of these factors have not been identified as interacting with CRM1. So far, only very few proteins, including DDX3 and Naf1, are reported to interact with the Rev-CRM1 complex to facilitate viral mRNA export. Whether other cellular proteins are involved in the Rev-CRM1 complex and direct the viral RNA export from the nucleus to the cytoplasm remains largely unknown. Foamy viruses, as simple retroviruses, do not encode an export-mediating protein. It has been reported that foamy viruses nuclear RNA export is dependent on the HuR and CRM1 pathways in which ANP32A and ANP32B act as necessary cofactors (24). However, whether ANP32A/B are involved in the Rev-dependent CRM1 pathways for HIV-1 unspliced RNA nuclear export is unknown.

In this study, we investigated the functions of two proteins that interact with CRM1, ANP32A and ANP32B, during the export of HIV-1 unspliced mRNA from the nucleus to the cytoplasm. As members of the ANP32 family, ANP32A and ANP32B, which were initially identified as a 32kDa highly conserved acidic (leucine-rich) nuclear phosphoprotein, is characterized by an N-terminal leucine rich repeat (LRR) domain and a C-terminal low-complexity acidic (LCAR) region (25). It has been suggested that the LRR domains of the ANP32 proteins (ANP32A also known as pp32) interact with several proteins, including CRM1 (26), PP2Ac (27), Ataxin-1 (28), Histone H3-H4 (29), and Clip170 (30). The ANP32 proteins are also ascribed biochemical activities including chromatin modification and remodeling, apoptotic promotion (31), as well as protein phosphatase 2A (PP2A) and histone acetyltransferase (HAT) inhibition (32-34). It has been shown that ANP32A is an essential host partner co-opted to support influenza virus vRNP polymerase activity, and contributes to the influenza virus host range (35,36).

Here, we created ANP32A and ANP32B
knockout HEK293T cell lines to evaluate their functions in HIV-1 RNA export. Our work showed that ANP32A and ANP32B play similar roles and contribute to CRM1-dependent RNA export by interacting with both Rev and CRM1, therefore enhancing viral production and replication.

RESULTS

ANP32A and ANP32B are required for HIV-1 gag expression and viral production. ANP32A, encoded on chromosome 15, and ANP32B, encoded on chromosome 9, share 72.7% sequence identity and have seven exons each (Fig. 1A). It has been reported that ANP32A/B protein can interact with CRM1, however, any role in HIV-1 replication remains unknown. To determine whether human ANP32A and ANP32B could function as cellular co-factors in HIV-1 replication, we analyzed the effect of ANP32A and ANP32B gene knockout on HIV-1 gag expression and virus production. We created ANP32A and/or ANP32B knockout (KO) cell lines in HEK293T cells using CRISPR/Cas9 technology for a previous study (37). The ANP32A single knockout cell line ∆ANP32A (AKO), ANP32B single knockout cell line ∆ANP32B (BKO), and the ANP32A/B double KO cell line (DKO) were confirmed by western blotting in this project (Fig. 1B) and gene sequencing (data not shown).

To determine the effect of ANP32A and ANP32B on HIV-1 production, we transfected pNL4-3-lucΔVifΔEnv and VSV-G plasmids into WT, AKO, BKO, and DKO cells and assessed the expression of viral Gag proteins p55 and p24. The results showed that single knockout of either ANP32A or ANP32B has no impact on HIV-1 gag expression, while a significant decrease in p24 expression in the cytosol and cell culture supernatant was observed in the DKO cells compared with WT, AKO and BKO cells (Fig. 1C). This result indicates that both ANP32A and ANP32B are functional and play similar roles in HIV-1 gag expression, and that either is enough to support virus protein expression. Furthermore, we confirmed that p24 expression was restored when either ANP32A or ANP32B was reconstituted via ectopic stable expression in the DKO cells (Fig. 1D). In addition, when ANP32A or ANP32B-expressing plasmids were transfected into DKO cells, the p24 and p55 expression in the cells and cell culture supernatants both increased in a dose-dependent manner (Fig. 1E and F). All these results demonstrate that either one of ANP32A or ANP32B is required for HIV-1 gag expression in HEK293T cells.

ANP32A and ANP32B enhance the export of unspliced and incompletely spliced transcripts from the cell nucleus to the cytoplasm. To clarify the mechanism by which ANP32A and ANP32B promote HIV-1 gag expression, the potential effect of ANP32A and ANP32B on viral reverse transcripts was investigated. HIV-1 pseudotyped virus was used to infect WT and DKO cells. Total DNA was extracted, and the viral early or late reverse transcripts were quantified using real-time PCR with specific probes at 2, 6 and 18 h post infection. There was no obvious effect on either the early or late reverse transcription products in DKO cells compared with WT (Fig. 2A and B).

We then tested the function of ANP32A and ANP32B in viral transcription and transport. HIV-1
A pseudotyped virus was used to infect the WT or DKO cells and cellular RNA was collected to analyze the total gag mRNA. Our results showed that total gag RNAs in WT and DKO cells were similar at 12 h post infection, while at 24 and 36 h post infection, levels of viral gag mRNA in DKO cells were about 10-fold lower than in WT cells (Fig. 2C). This result suggests the existence of a block to viral RNA processing after RNA generation in DKO cells.

ANP32A and ANP32B have been reported to bridge HuR and CRM1 to support FVs RNA transport (24) and also to contribute to cellular RNA transport (26,38). We next examined whether ANP32A and ANP32B had any effect on HIV-1 unspliced mRNA nucleo-cytoplasmic shuttling. We fractioned the nucleus from the cytosol, and the cytoplasmic and nuclear distributions of HIV-1 unspliced mRNA in WT or DKO cells were analyzed using quantitative PCR at 12 h and 24 h post infection. At 12 h post infection, there was no obvious difference in the distribution of viral RNA between the WT and DKO cells, in that most of the viral RNA in both cell types was located in the nucleus. In contrast, at 24 h post infection, in the WT cells 85% of the RNA was located in the cytoplasm, indicating that the viral RNA was largely exported from the nucleus into the cytoplasm. However, in the DKO cells, most of the unspliced viral RNA had accumulated in the nucleus. As the result of the viral RNA retention in the nucleus, the ratio of transported viral unspliced mRNA vs total RNA in DKO cells at 24 h post infection was very low (Fig 2D). The transport efficiency of viral gag mRNA from nucleus to cytoplasm was greatly reduced in DKO cells compared with WT (Fig 2E). However, the completely spliced tat mRNA is mostly located in the cytoplasm at 24 h post infection in both WT and DKO cells. Only slight alterations in the nuclear export of tat mRNA was observed in DKO cells (Fig 2F). We used Lamin B1 and tubulin protein, as nuclear and cytoplasmic protein controls respectively, to assess the purity of the nuclear and cytoplasmic extracts (Fig. 2G). This result implied that ANP32A and ANP32B are required for the transport of unspliced viral mRNA from the nucleus to the cytoplasm. Absence of ANP32A and ANP32B could lead to the accumulation of gag mRNA in the nucleus and subsequently reduced gag mRNA production in trans (Fig 2C).

To better illustrate this phenomenon, the subcellular distribution of unspliced gag transcripts were visualized using fluorescence in-situ hybridization (RNA Scope) with RNA probes that specifically target gag-pol mRNA. Consistent with the above observations, at 24 and 36 h post infection, gag-pol mRNA in the WT cells was mostly located in the cytoplasm (Fig. 3A), whereas most of the gag-pol mRNAs were in the nucleus of the DKO cells (Fig. 3B), indicating a defect in the nuclear export of the unspliced transcripts in the absence of ANP32A and ANP32B. The distribution of the gag-pol mRNA observed using the DeltaVision OMX 3D structured illumination microscope (3D-SIM) (GE, USA) closely mirrored the confocal microscopy result. It was clearly showed that in the WT cells, the gag-pol mRNA is mostly located in the cytoplasm (Fig. 3C), but in the DKO cells the unspliced mRNA was retained in the nucleus (Fig. 3D). These data strongly support the involvement of ANP32A and ANP32B in the efficient export of
unspliced viral *gag-pol* transcripts from the nucleus to the cytoplasm.

ANP32A and ANP32B interact with Rev. Rev is the key viral protein in the mediation of unspliced viral RNA export from nucleus to cytoplasm. To investigate whether ANP32A and ANP32B interact with Rev, Rev-HA was transfected into HEK293T cells with ANP32A-Flag or ANP32B-Flag and the formaldehyde cross-linking immunoprecipitates (39,40) were analyzed by Western blotting after 24 h. The result showed that both ANP32A and ANP32B co-immunoprecipitate with Rev protein (Fig. 4A).

As Rev is a nuclear-cytoplasmic shuttling protein, we want to explore which domain is important for the ANP32 and Rev interaction. We constructed the Rev mutants, including the Rev RBD mutant defective in RNA binding (M5), the multimerization deficient mutant (SLT40) and the NES mutant defective in CRM1 binding (M10) (Fig.4B). We then analyzed the interaction of Rev-GST and endogenous ANP32B in HeLa cells using ANP32B specific antibody. We observed that the ANP32B can interact with Rev-GST, Rev-SLT40 and Rev-M10, but not with Rev-M5 (Fig. 4C). This result demonstrated that the RBD domain of the Rev protein is required for the interaction with ANP32B, suggesting this could be an RNA-dependent interaction.

ANP32A and ANP32B have similar protein structures, which consist of four acidic leucine-rich domain (LRR) repeats at the N terminal and a low-complexity acidic region (LCAR) located at the C terminal, bridged by an LRRCT domain. In our previous study, we found that the LCAR domain is very important for the activity of the influenza A virus polymerase (37). We constructed LCAR truncation mutants of ANP32B (Fig 4D) and demonstrated that the LCAR truncations are unable to restore the gag expression in DKO cells (Fig 4E). Meanwhile we also observed that the LCAR truncation of ANP32B was unable to interact with Rev-HA (Fig 4F). This result suggests that the LCAR domain of ANP32B is required for gag expression and interaction with Rev.

To further confirm the interaction between ANP32 proteins and Rev, a bimolecular fluorescence complementation (BiFC) assay was performed. Our previous tests have showed that the function of ANP32B is similar to that of ANP32A, in the BiFC assay we investigated only the interaction between ANP32A and Rev. The BiFC assay enables direct visualization of protein interactions as well as the subcellular location in living cells. The assay is based on the finding that two non-fluorescent fragments of a fluorescent reporter protein can associate to produce the three-dimensional structure of the fluorescent protein and allow it to emit a fluorescent signal. Furthermore, a fluorescent signal can still be obtained if the association of the fragments is adjacent, for example, if they are fused to specifically interacting partners. N-terminal residues 1-173 (VN) and C-terminal residues 174-239 (VC) of Venus were fused to the C-terminus of ANP32A and Rev protein, respectively (Fig. 4G). We can confirm that the Rev-VC was functioned exactly as wild type Rev in an RRE dependent reporter system (data not shown). When ANP32A-VN-Flag and HA-Rev-VC were co-transfected into Hela cells, the Venus signal was mostly located in
the nucleus. The human SAMHD1-VC-HA plasmid which also mainly located in the nucleus was used as a negative control in this experiment (Fig. 4H). The Venus signal was observed in the nucleus only when ANP32A-VN and Rev-VC were co-transfected, and not when ANP32A-VN or Rev-VC were transfected singly (Fig. 4I). SAMHD1-VC was located in the nucleus and no signal was observed with ANP32A-VN and SAMHD1-VC co-transfection (Fig. 4I). These data suggest that ANP32A, and by inference ANP32B, can specifically interact with Rev in the nucleus of Hela cells.

ANP32A and ANP32B cooperate with CRM1 to support HIV-1 RNA nuclear export. HIV-1 Rev/RRE dependent mRNA transport relies on the CRM1 export pathway. We next investigated whether ANP32A and ANP32B interact with CRM1. To address this question, we overexpressed either ANP32A-Flag or ANP32B-Flag, both with and without a CRM1 express vector (CRM1-HA), in HEK293T cells. Formaldehyde cross-linking immunoprecipitation with HA beads was performed. The result showed that both ANP32A and ANP32B co-immunoprecipitated with CRM1 (Fig. 5A).

We then analyzed the interaction of endogenous CRM1 and ANP32B in HeLa cells using ANP32B specific antibody. We observed that the endogenous ANP32B can interact with CRM1, while LMB treatment increased the interaction between them, which is consistent with the previous finding (Fig. 5B)(26). To further confirm the interaction between CRM1 and ANP32A, we performed a BiFC assay using CRM1-VN and ANP32A-VC fusion proteins. We observed that ANP32A interacted with CRM1 at the nuclear periphery at 24 h post transfection when CRM1-VN and ANP32A-VC were co-transfected into Hela cells (Fig. 5C). When either CRM1-VN or ANP32A-VC was transfected individually into Hela cells, the CRM1-VN was located mostly in the nuclear periphery and nucleus, and the ANP32A-VN protein was located mostly in the nucleus. The human MxB protein was used as a negative control which also mainly located in the nuclear periphery (41). No signal was observed with MxB-VN and ANP32A-VC co-transfection (Fig. 5C). These results confirm that both ANP32A and ANP32B interact with CRM1 proteins.

Leptomycin B (LMB), a specific inhibitor that covalently binds to cys528 of CRM1, was used to block CRM1 mediated export from the nucleus (42). We found that HIV-1 unspliced mRNA transport from the nucleus to the cytoplasm was significantly inhibited following treatment with LMB (Fig. 5D). To further clarify the relationship between ANP32A/B and CRM1 in the HIV-1 RNA export pathway, pNL4-3-lucΔVifΔEnv was used to transfect both WT and DKO cells, either with or without LMB treatment. We found that in the WT cells, LMB treatment significantly decreased the efficiency of HIV-1 gag expression. Interestingly, depletion of ANP32A and ANP32B resulted in lower p55 expression, and the LMB treatment caused further reduction of gag expression in DKO cells (Fig. 5E). Considering the interactions between ANP32A/B and Rev/CRM1 together, we propose that ANP32A and ANP32B cooperate with CRM1 to support the Rev dependent viral RNA nuclear export. ANP32 and CRM1 are both important for the HIV-1 unspliced mRNA transport. Either one deletion will result in the reduction of
P24 expression.

In the nucleus, Rev binds to the RRE and interacts with CRM1, facilitating nuclear export of viral RNAs. We confirmed above that ANP32A/B interact both with Rev and CRM1. To determine the functional relationship between ANP32A/B and the Rev-CRM1 nuclear export pathway, we investigated whether the deletion of ANP32A/B could influence the interactions between Rev and CRM1. WT and DKO cells were co-transfected with FLAG-tagged Rev with or without HA-tagged CRM1, and CO-IP experiments were performed. Cell lysates were formaldehyde cross-linking immunoprecipitated with anti-HA beads, followed by western blotting. The results suggested that in both the WT and DKO cells, Rev protein interacts with CRM1 (Fig. 6A). The result was confirmed by the BiFC assay (Fig. 6B). These data demonstrated that deletion of ANP32A/B impaired CRM1/Rev/RRE dependent RNA transport without disruption of the interaction between Rev and CRM1.

Furthermore, coimmunoprecipitation detected interactions between CRM1-HA and Rev-GST, Rev-M5, Rev-SLT40 but not with Rev-M10, which is consistent with previous findings (Fig. 6C). Together, we conclude that ANP32A and ANP32B are key cofactors of Rev, and they interact with CRM1 to mediate export of unspliced or partially spliced viral RNA from the nucleus to the cytoplasm.

DISCUSSION

Here we use a double knock out of ANP32A and ANP32B, generated using the CRISPR/Cas9 system, to provide novel evidence that the cellular factors ANP32A and ANP32B are both functional and essential components in the production of HIV-1. ANP32A and ANP32B bind to Rev and CRM1 and support the nuclear export of unspliced and partially spliced mRNA. Furthermore, our studies show that inhibition of the function of CRM1, or deletion of both ANP32A and ANP32B, impaired unspliced viral RNA export and HIV-1 production. All these results demonstrate that ANP32A and ANP32B play important roles in HIV-1 production and presumably are key members of the Rev-CRM1 RNA export complex.

A recent study has showed that chicken ANP32A is a major host factor affecting avian influenza viral polymerase activity in human cells (35). Interestingly, we have also recently found that ANP32A and ANP32B play fundamental roles in influenza A viral polymerase activity (37). ANP32B can function as a target of the M protein of henipaviruses to support virus replication (43). Moreover, ANP32A and ANP32B act as necessary cofactors in the export of nuclear RNA of foamy virus without a Rev-like protein (24). In this study, we found that double, but not single, deletion of ANP32A and ANP32B in an HEK293T cell line significantly decreases HIV-1 production and export of unspliced viral RNA. Reconstitution of ANP32A or ANP32B restores gag expression. This result indicates that ANP32A and ANP32B function similarly and contribute equally to the export of viral RNA. ANP32A and ANP32B are functionally redundant with high similarity in their structures and the presence of either one of these proteins could support viral replication, which is similar with the study of ANP32A and ANP32B in influenza virus(37,44). This phenomenon imply
that the redundancy of host factors can escape the high-throughput screening approaches. Our finding helps to expand the understanding of the function of ANP32 protein family.

Many host factors have been reported to be involved in Rev-dependent viral RNA export. Rev interacts with transport receptor CRM1 and other host factors, including Ran-GTP, DDX3, RMB14, and Naf-1, to facilitate RNA export (11,22,45,46). Our results show that ANP32A/B can bind to Rev and CRM1. Without either ANP32A or ANP32B, hardly any gag mRNA was detected in the cytoplasm. In addition, a Rev protein defective in the RBD domain is unable to interact with ANP32A or ANP32B, while the NES domain of Rev is required to interact with CRM1 protein. From these results, we propose a key role for ANP32A/B proteins in the Rev/RRE-CRM1 RNA export pathway.

The mechanism of function of the Rev protein and the details of transport of RNA need further investigation. In our work, using RNA Scope technology, we found that without either ANP32A or ANP32B, most of the gag mRNA is restricted to the nucleus. In addition, we evaluated the contribution of CRM1 and ANP32A/B in HIV-1 Rev dependent RNA transport. We found that blocking of CRM1 by LMB dramatically reduces gag expression in WT 293T cells, which is consistent with results from previous studies. Surprisingly, in DKO cells, HIV-1 has a low-level of virus production ability and inhibition of CRM1 by LMB resulted in a slightly further reduction in viral replication (Fig. 5E). Although this result showed additive effect of ANP32A/B knockout and LMB treatment on viral RNA export, the interaction between ANP32A/B and CRM1 strongly supports that ANP32A/B cooperated with CRM1 to mediate the HIV-1 RNAs nuclear export. Thus, all our experiments appear to support the conclusion that either ANP32A or ANP32B is required to facilitate nuclear export of HIV-1 RNA though the Rev/Crm1 pathway.

We have observed that viral unspliced RNAs at 24 h post infection was predominantly located in the nucleus in the DKO cells, while in the WT cells, most of the unspliced RNA had been transported to the cytoplasm. Over-accumulation of the RNA in the nucleus presumably blocked the process of RNA synthesis. In our study, we found that total gag RNA is significantly lower in DKO cells compared with WT (Fig. 2C). Whether nuclear retention is accompanied with degradation or over-splicing of the unspliced mRNA needs to be investigated.

In summary, we found that ANP32A and ANP32B are essential host factors supporting HIV-1 virus production. ANP32A and ANP32B specifically interact with Rev and CRM1 and both contribute to the export of HIV-1 unspliced RNA. However, the exact mechanism of how ANP32A and ANP32B function in the Rev/RRE-CRM1 complex needs further investigation.

EXPERIMENTAL PROCEDURES

Cell lines. Human embryonic kidney HEK293T and HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) with 10% fetal bovine serum (FBS; Sigma), 1% penicillin and streptomycin (Gibco), and kept at 37°C with 5% CO2. HEK293T cells were used to generate ANP32A and ANP32B gene knockout cells using
CRISPR/Cas9 technology. The positive clones were screened using Western blotting. Single knockout (KO) cell lines ∆ANP32A (AKO) and ∆ANP32B (BKO), and double KO cell line (DKO) were successfully generated. Stable cell lines expressing human ANP32A and human ANP32B in DKO cells, named DKO+ANP32A, DKO+ANP32B, were generated through retroviral transduction. Briefly, HEK293T cells in 6-well plates were transfected with 2.0 μg pLPCX, 2.0 μg pCGP and 0.25 μg VSV-G expression plasmids by Lipofectamine® 2000 Transfection Reagent with recommended protocols as described previously (41). The pseudotype MLV virus expressing the ANP32 protein was harvested 48 h after transfection and used to infect the DKO cells. Positive cells were sorted using puromycin (1 μg/ml).

Plasmids. The HIV-1 luciferase (Luc) reporter proviral vector pNL4-3-lucΔVifΔEnv was a gift from Dr Yong-Hui Zheng in Michigan State University. The pCAGGS plasmids containing human ANP32A and ANP32B were kindly provided by Dr. Wendy S. Barclay. The human CRM1 gene was cloned from cDNA and inserted into a pcDNA3.1 expression vector with 2×HA tag at the C terminus. The pcDNA3.1-Rev-HA plasmid was provided by Dr. Wang Jianhua from the Institute Pasteur of Shanghai, Chinese Academy of Sciences. The VR1012-Rev-GST was constructed by cloning Rev sequence from pcDNA3.1-Rev-HA and fused to the VR1012-GST vector using Infusion HD enzyme (Clontech, Felicia, CA).

The plasmids pCAGGS-ANP32A-VN-FLAG, pCAGGS-ANP32A-FLAG-VC, pcDNA3.1-Rev-VC, pcDNA3.1-SAMHD1-VC-HA, pcDNA3.1-MxB-VN-HA and pcDNA3.1-CRM1-VN-HA were constructed by fusing the N-terminal residues 2-173 of Venus (VN) and C-terminal residues 174-239 (VC) to the C-terminus of ANP32A, Rev, SAMHD1 or CRM1 respectively. The VN was inserted into pCAGGS-ANP32-FLAG and pcDNA3.1-CRM1-HA between the gene and the HA or FLAG tags. The VC was inserted into the N-terminus of pcDNA3.1-FLAG-SAMHD1 plasmids. The pcDNA3.1-HA-Rev-VC was constructed by inserting the VC after the rev gene sequence.

VSV-G pseudotyped retrovirus production. Pseudotyped viruses of HIV-1 were produced by transfection of viral genome constructs into HEK293T cells as described previously (41). In brief, for rescue of the HIV-1 pseudovirions, HEK293T cells were seeded in 100-mm dishes and transfected with pNL4-3-lucΔVifΔEnv and vesicular stomatitis virus glycoprotein (VSV-G) using the PEI transfection reagent (Polysciences) following the manufacturer’s instruments. Forty-eight hours later, the culture supernatants were collected clarified by low-speed centrifugation and then were centrifuged at 25,000 rpm at 4 °C for 2 h using a Beckman SW-41Ti rotor. Viral pellets were resuspended in lysis buffer and subjected to Western blotting analysis.

Cell fraction and real-time PCR analysis. WT and DKO cells were seeded into 6-well plates and infected with HIV-1NL4-3 pseudotyped virus for 24 h. To measure viral reverse transcripts, virus stocks were first treated with 50 units/ml RQ1-DNase (Promega) for 1 h to remove any plasmid DNA.
Both WT and DKO cells were incubated at 37 °C with these viruses. Cells were collected at 2, 6, and 18 h post infection and the total cellular DNA was extracted using DNeasy kits (Qiagen). Equal amounts of cellular DNA after a further treatment with DpnI were then subjected to real-time PCR in order to measure early and late viral reverse transcripts, as described previously (47). β-globin DNA was measured as an endogenous control. The primers used are as follows: early oHC64-F, 5'-TAACTAGGGAACCCACTGC-3', early oHC64-R, 5'-GCTAGAGATTTTCCACACTG-3'; late RT MH531-F, 5'-TGTTGTGCCCCTCTGTTGTGT-3', late RT MH532-R, 5'-GAGTCCTGCGTCGAGAGAGC-3'; β-globin-F, 5'-CCCTTGGACCCAGAGGTTCT-3, β-globin-R, 5'-CGAGCACTTTCTTGCCATGA-3. To quantify the mRNA in the WT and DKO cells, total RNA from the cells was extracted using a Bio-fast simply P RNA extraction kit (catalog # BSC60S1, Bioer). Nuclear and cytoplasmic RNA fractions were purified with an equal volume of elution buffer by using a PARIS Protein and RNA isolation kit (Ambion, Life Technologies) following the manufacturer’s instructions. An equal volume of RNA was reverse transcribed into cDNA using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara) according to the manufacturer’s instructions. Real-time PCR was performed using the SYBR green PCR mixture to calculate the absolute quantification with standard curves for unspliced RNA (gag) and completely spliced RNA (tat). The primers used are as follows: Gag-forward, 5'-GTGTGGAAAATCTCTAGCAGTGG-3', Gag-reverse, 5'-CGCTCTCGCACCCATCTC-3 (46); Tat-forward, 5'-CAGCCTAAAACGTGCTTGTAC-3, Tat-reverse, 5'-GGAGGTGGGTTGCTTTGATA-3.

Formaldehyde cross-linking, Co-immunoprecipitation and Western Blotting. To examine the interactions between proteins in cells, HEK293T cells were transfected with the indicated plasmids using the PEI transfection reagent. Immunoprecipitations were performed using an anti-HA affinity gel (catalog NO. A2095; Sigma-Aldrich), anti-ANP32B magnetic beads (MCE protein A/G magnetic beads and ANP32B antibody from Abcam) and GST magnetic beads (from Genscript, China) following the manufacturer’s instructions. Briefly, cells co-transfected with the indicated plasmids were harvested after 48 h and washed with PBS. Formaldehyde cross-linking was subsequently performed. Firstly, cells were crosslinked with 1% formaldehyde for 20 min at RT and quenched by the addition of 0.25M glycine for 5 min. While the immunoprecipitation with ANP32B magnetic beads can get the target band easily without formaldehyde cross-linking. Then the cells were lysed with lysis buffer containing protease inhibitor cocktail (catalog NO. P8340; Sigma-Aldrich), sonicated and centrifuged at 13,000 g for 10 min. The beads were washed with ice-cold PBS and incubated with the cell lysates overnight at 4°C. Following the incubation, beads were washed with lysis buffer, and bound proteins were eluted by mixing and heating the beads in sample loading buffer for 5 min at 98°C. Samples were loaded on a 12% Tris gel (Bio-Rad). The gels were transferred to nitrocellulose membranes and blocked with 5% nonfat dry milk (NFD) for 1 h and incubated with the appropriate primary antibodies. After extensive washing with TBST, the
gels were further incubated with the relevant secondary antibody for 1 h at RT. Target protein bands were detected and analysis performed using Licor Odyssey (USA).

RNA in situ hybridization (RNA ISH). Locations of target mRNA were detected by ISH using the RNA-Scope Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics) according to the manufacturer’s instructions. In brief, HEK293T cells were cultured on cell imaging Dishes 35*10mm (Eppendorf) and transfected. Twenty-four hours later, the cells were fixed with 4% paraformaldehyde for 30 min and permeabilized for 15 min. The cells were then incubated in the HybEZ™ Oven for 2 h at 40 °C to complete the RNA hybridization step. The gag-pol mRNA probe (Advanced Cell Diagnostics, catalog # 317691) was designed and synthesized by Advanced Cell Diagnostics, and consisted of 20 pairs of oligonucleotides of the target mRNA transcript. Following proprietary preamplification and amplification steps, target mRNAs were labeled with certain fluorescence. DAPI staining was performed to visualize nuclei. Stained sections were captured and processed by fluorescence microscopy (ZEISS, LSM880, Germany).

Statistical Analysis

All experiments were performed independently at least three times, with a representative experiment being shown. All statistical analyses were performed in the GraphPad Prism using student’s t test for pairwise and one-way analysis of variance (ANOVA) for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS, not significant (p > 0.05).

ACKNOWLEDGEMENTS

The authors wish to thank W. Barclay, Dr. Hui Zhang, and Dr. Jianhua Wang for provision of the plasmids.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest with the contents of this article.

REFERENCES

1. Cullen, B. R. (1998) Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249, 203-210
2. Pollard, V. W., and Malim, M. H. (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52, 491-532
3. Hammarskjold, M. L., Heimer, J., Hammarskjold, B., Sangwan, I., Albert, L., and Rekosh, D. (1989) Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol 63, 1959-1966
4. Chang, D. D., and Sharp, P. A. (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59, 789-795
5. Emerman, M., Vazieux, R., and Peden, K. (1989) The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57, 1155-1165
6. Felber, B. K., Hadzopoulo-Cliadaras, M., Cliadaras, C., Copeland, T., and Pavlakis, G. N. (1989) rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A 86, 1495-1499
7. Suhasini, M., and Reddy, T. R. (2009) Cellular proteins and HIV-1 Rev function. *Curr HIV Res* **7**, 91-100
8. Malim, M. H., Bohnlein, S., Hauber, J., and Cullen, B. R. (1989) Functional dissection of the HIV-1 Rev trans-activator—derivation of a trans-dominant repressor of Rev function. *Cell* **58**, 205-214
9. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V., and Cullen, B. R. (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. *Nature* **338**, 254-257
10. Malim, M. H., and Cullen, B. R. (1991) HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. *Cell* **65**, 241-248
11. Cullen, B. R. (2003) Nuclear mRNA export: insights from virology. *Trends Biochem Sci* **28**, 419-424
12. Fornerod, M., Ohno, M., Yoshida, M., and Mattaj, I. W. (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. *Cell* **90**, 1051-1060
13. Neville, M., Stutz, F., Lee, L., Davis, L. I., and Rosbash, M. (1997) The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. *Curr Biol* **7**, 767-775
14. Dayton, A. I. (2011) Matrin 3 and HIV Rev regulation of mRNA. *Retrovirology* **8**, 62
15. Frohlich, A., Rojas-Araya, B., Pereira-Montecinos, C., Dellarossa, A., Toro-Ascuy, D., Prades-Perez, Y., Garcia-de-Gracia, F., Garces-Alday, A., Rubilar, P. S., Valiente-Echeverria, F., Ohlmann, T., and Soto-Rifo, R. (2016) DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. *Biochim Biophys Acta* **1859**, 719-730
16. Zhou, X., Luo, J., Mills, L., Wu, S., Pan, T., Geng, G., Zhang, J., Luo, H., Liu, C., and Zhang, H. (2013) DDX5 facilitates HIV-1 replication as a cellular co-factor of Rev. *PLoS One* **8**, e65040
17. Huang, F., Zhang, J., Zhang, Y., Geng, G., Liang, J., Li, Y., Chen, J., Liu, C., and Zhang, H. (2015) RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs. *Virology* **486**, 15-26
18. Modem, S., Badri, K. R., Holland, T. C., and Reddy, T. R. (2005) Sam68 is absolutely required for Rev function and HIV-1 production. *Nucleic Acids Res* **33**, 873-879
19. Budhiraja, S., Liu, H., Couturier, J., Malovannaya, A., Qin, J., Lewis, D. E., and Rice, A. P. (2015) Mining the human complexome database identifies RBM14 as an XPO1-associated protein involved in HIV-1 Rev function. *J Virol* **89**, 3557-3567
20. Edgcomb, S. P., Carmel, A. B., Najli, S., Ambrus-Aikelin, G., Reyes, J. R., Saphire, A. C., Gerace, L., and Williamson, J. R. (2012) DDX1 is an RNA-dependent ATPase involved in HIV-1 Rev function and virus replication. *Journal of molecular biology* **415**, 61-74
21. Hammond, J. A., Zhou, L., Lamichhane, R., Chu, H. Y., Millar, D. P., Gerace, L., and Williamson, J. R. (2018) A Survey of DDX21 Activity During Rev/RRE Complex Formation. *Journal of molecular biology* **430**, 537-553
22. Yedavalli, V. S., Neuveut, C., Chi, Y. H., Kleiman, L., and Jeang, K. T. (2004) Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. *Cell* **119**, 381-392
23. Toro-Ascuy, D., Rojas-Araya, B., Garcia-de-Gracia, F., Rojas-Fuentes, C., Pereira-Montecinos, C., Gaete-Argel, A., Valiente-Echeverria, F., Ohlmann, T., and Soto-Rifo, R. (2018) A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. *Nucleic Acids Res*
24. Bodem, J., Schied, T., Gabriel, R., Rammling, M., and Rethwilm, A. (2010) Foamy Virus Nuclear RNA Export Is Distinct from That of Other Retroviruses. *Journal of Virology* **85**, 2333-2341
25. Reilly, P. T., Yu, Y., Hamiche, A., and Wang, L. (2014) Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. *Bioessays* **36**, 1062-1071
26. Brennan, C. M., Gallouzi, I. E., and Steitz, J. A. (2000) Protein ligands to HuR modulate its interaction with target mRNAs in vivo. *J Cell Biol* **151**, 1-14
27. Chen, S., Li, B., Grundke-Iqbal, I., and Iqbal, K. (2008) I1PP2A affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. *J Biol Chem* **283**, 10513-10521
28. Matilla, A., Koshy, B. T., Cummings, C. J., Isobe, T., Orr, H. T., and Zoghbi, H. Y. (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. *Nature* **389**, 974-978
29. Tochio, N., Umehara, T., Munemasa, Y., Suzuki, T., Sato, S., Tsuda, K., Koshiba, S., Kigawa, T., Nagai, R., and Yokoyama, S. (2010) Solution structure of histone chaperone ANP32B: interaction with core histones H3-H4 through its acidic concave domain. *Journal of molecular biology* **401**, 97-114
30. de Chiara, C., Kelly, G., Frenkiel, T. A., and Pastore, A. (2007) NMR assignment of the leucine-rich repeat domain of LANP/Anp32a. *J Biomol NMR* **38**, 177
31. Pan, W., da Graca, L. S., Shao, Y., Yin, Q., Wu, H., and Jiang, X. (2009) PHAPI/pp32 suppresses tumorigenesis by stimulating apoptosis. *J Biol Chem* **284**, 6946-6954
32. Schneider, R., Bannister, A. J., Weise, C., and Kouzarides, T. (2004) Direct binding of INHAT to H3 tails disrupted by modifications. *J Biol Chem* **279**, 23859-23862
33. Li, M., Makkinje, A., and Damuni, Z. (1996) Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. *Biochemistry* **35**, 6998-7002
34. Seo, S. B., Macfarlan, T., McNamara, P., Hong, R., Mukai, Y., Heo, S., and Chakravarti, D. (2002) Regulation of histone acetylation and transcription by nuclear protein pp32, a subunit of the INHAT complex. *J Biol Chem* **277**, 14005-14010
35. Long, J. S., Giotis, E. S., Moncorgé, O., Frise, R., Mistry, B., James, J., Morisson, M., Iqbal, M., Vignal, A., Skinner, M. A., and Barclay, W. S. (2016) Species difference in ANP32A underlies influenza A virus polymerase host restriction. *Nature* **529**, 101-104
36. Sugiyama, K., Kawaguchi, A., Okuwaki, M., and Nagata, K. (2015) pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. *eLife* **4**, e08939
37. Zhang, H., Zhang, Z., Wang, Y., Wang, M., Wang, X., Zhang, X., Ji, S., Du, C., Chen, H., and Wang, X. (2019) Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity. *J Virol* **93**
38. Fries, B., Heukeshoven, J., Hauber, I., Gruttner, C., Stocking, C., Kehlenbach, R. H., Hauber, J., and Chemnitz, J. (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. *J Biol Chem* **282**, 4504-4515
39. Wiczer, B. M., and Bernlohr, D. A. (2009) A novel role for fatty acid transport protein 1 in the regulation of tricarboxylic acid cycle and mitochondrial function in 3T3-L1 adipocytes. *J Lipid Res* **50**, 2502-2513
40. Sutherland, B. W., Toews, J., and Kast, J. (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. *J Mass Spectrom* **43**, 699-715
41. Ji, S., Na, L., Ren, H., Wang, Y., and Wang, X. (2018) Equine Myxovirus Resistance Protein 2 Restricts Lentiviral Replication by Blocking Nuclear Uptake of Capsid Protein. *J Virol* **92**
42. Sun, Q., Carrasco, Y. P., Hu, Y., Guo, X., Mirzaei, H., Macmillan, J., and Chook, Y. M. (2013) Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. *Proc Natl Acad Sci U S A* **110**, 1303-1308
43. Bauer, A., Neumann, S., Karger, A., Henning, A. K., Maisner, A., Lamp, B., Dietzel, E., Kwasnitschka, L., Balkema-Buschmann, A., Keil, G. M., and Finke, S. (2014) ANP32B is a nuclear target of henipavirus M proteins. *PloS One* **9**, e97233
44. Staller, E., Sheppard, C. M., Neasham, P. J., Mistry, B., Peacock, T. P., Goldhill, D. H., Long, J. S., and Barclay, W. S. (2019) ANP32 proteins are essential for influenza virus replication in human cells. *J Virol* **92**
45. Bogerd, H. P., Echarri, A., Ross, T. M., and Cullen, B. R. (1998) Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crm1. *J Virol* **72**, 8627-8635
46. Ren, X. X., Wang, H. B., Li, C., Jiang, J. F., Xiong, S. D., Jin, X., Wu, L., and Wang, J. H. (2016) HIV-1 Nef-associated Factor 1 Enhances Viral Production by Interacting with CRM1 to Promote Nuclear Export of Unspliced HIV-1 gag mRNA. *J Biol Chem* **291**, 4580-4588

47. Wang, X., Han, Y., Dang, Y., Fu, W., Zhou, T., Ptak, R. G., and Zheng, Y. H. (2010) Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. *J Biol Chem* **285**, 14346-14355

FOOTNOTES

This study was supported by grants from the National Natural Science Foundation of China to Xiaojun Wang (81561128010 and 31222054)
FIG 1 ANP32A and ANP32B are required for HIV-1 gag expression and viral production. (A) Schematic diagram of gene analysis of human ANP32A and ANP32B in the chromosomes. (B) Verification of ANP32A, ANP32B, and actin expression by Western blotting in WT, AKO, BKO and DKO cells. The antibody for ANP32A and ANP32B were purchased from Abcam and actin antibody was purchased from sigma. (C) Gag expression in cell lysate and supernatants were identified by Western blotting. WT, AKO, BKO and DKO cells were transfected with pNL4-3-lucΔVifΔEnv and VSV-G-expressing plasmids. Virions were purified from cell culture supernatants by ultra-centrifugation 48 h post-transfection. Cells and virions were lysed and analyzed by Western blotting with the appropriate primary antibodies, including a mouse monoclonal anti-P24 antibody (Sino Biological), Rabbit Polyclonal VSV-G tag antibody (GeneTex), a mouse anti Flag antibody and mouse anti β-actin antibody (Sigma). (D) Rescue of p24 and p55 expression in the stable expressing ANP32A or...
ANP32B protein DKO cells. DKO, DKO+ANP32A or DKO+ANP32B were transfected with pNL4-3-lucΔVifΔEnv and VSV-G plasmids and HIV-1 production was quantified by measuring p24 and p55 expression 48 h later in cell lysates and cell culture supernatants. (E, F) Increasing amounts of human ANP32A (E) or human ANP32B (F) expression vectors, and virion protein expression in cells and culture supernatants were detected by Western blotting.
FIG 2 ANP32A and ANP32B enhance the export of unspliced mRNA from nucleus to cytoplasm. Both WT and DKO cells were infected with HIV-1 pseudotype virus. (A, B) Levels of accumulation of viral reverse transcripts. HIV-1 pseudotype virions were first treated with DNase and then used to infect WT and DKO cells. 2, 6, and 18 h later, cellular DNAs were extracted from these infected cells, and the viral early (A) and late reverse transcripts (B) were quantified by real-time PCR using specific primers and probes. Globin mRNA was measured as an endogenous control. (C) Total RNA was extracted from transfected cells and analyzed by real-time PCR using primers specific for unspliced mRNA. β-actin mRNA was measured as an endogenous control. (D) Cytoplasmic and nuclear RNAs isolated from WT and DKO cells at 12, 24 h post infection was analyzed by real-time PCR with primers specific for unspliced mRNA. (E) Cytoplasmic and nuclear unspliced gag RNAs distribution in the WT and DKO cells at the 24 h post infection was analyzed by real-time PCR with specific primers. (F) Cytoplasmic and nuclear completely spliced tat RNAs distribution in the WT and DKO cells at the 24 h post infection was analyzed by real-time PCR with specific primers. The cytoplasm and nucleus relative ratios were then calculated and are presented. (G) Lamin-B1 and tubulin were used as nuclear
and cytoplasmic control, respectively. Error bars represent standard deviation calculated from three experiments. ***p < 0.001, NS, not significant (p > 0.05).
FIG 3 ANP32A and ANP32B double deletion reduces the levels of unspliced HIV-1 mRNA in the cytoplasm. (A) WT cells were infected with the HIV-1 pseudotype virus and cells were fixed, and stained with fluorescent gag-pol-specific RNA probes at 12, 24 and 36 h post infection. Scale bar, 50 μm. (B) DKO cells were infected with the HIV-1 pseudotype virus and cells were fixed and stained with fluorescent gag-pol-specific RNA probes at 12, 24 and 36 h post infection. DAPI staining was performed to visualize nuclei. Stained sections were captured and processed using fluorescence microscopy (ZEISS, LSM880, Germany). Scale bar, 50 μm. (C) WT cells were infected with the HIV-1 pseudotype virus for 24 h and cells were fixed and stained with fluorescent gag-pol-specific RNA probes. DAPI staining was performed to visualize nuclei. Stained sections were captured and processed using the Delta vision OMX SR imaging system (GE). (D) DKO cells were infected with the HIV-1 pseudotype virus for 24 h and cells were fixed and stained with fluorescent gag-pol-specific RNA probes. DAPI staining was performed to visualize nuclei. Stained sections were captured and processed using the Delta vision OMX SR imaging system (GE). The experiments were performed independently at least three times, with a representative experiment being shown.
FIG 4 ANP32A and ANP32B interact with Rev. (A) Detection of ANP32A and ANP32B interactions with Rev. HEK293T cells were co-transfected with plasmids expressing ANP32A-Flag or ANP32B–Flag alone or in the presence of Rev-HA vector. Whole-cell lysates were prepared, and immunoprecipitations were performed with anti-HA beads and analyzed by Western blotting. (B) Schematic diagram of secondary structure of HIV-1 Rev protein with 116-amino acids. The RNA binding domain/nuclear localization signal (RBD) (amino acids 34 to 50) is in green and connected with multimerization domain (blue). The nuclear export signal (NES) is located in Rev’s carboxy terminus (orange). The amino acids changes in the Rev protein introduced the loss of RNA binding (M5), Rev multimerization (SLT40), and CRM1 binding (M10). (C) HeLa cells were transfected with 1 μg plasmids expressing either Rev-GST, or its M5, SLT40 or M10 mutants, and immunoprecipitations were performed with anti-ANP32B antibody and analyzed by Western blotting. (D) Schematic diagram of sequence analysis and the LCAR truncations of ANP32B is presented. ANP32B is composed of four LRR repeats (16-110 amino acids) and a low-complexity acidic region (LCAR, 162-251 amino acids) bridged by the LRRCT (123-161 amino acids) domain. The four LRR domains are depicted in red, green, yellow, and grey sequentially. The LRRCT domain is depicted in black. The LCAR domain is labeled in blue and sequentially truncated in 216, 190, 165 amino acids sites. (E) DKO cells were transfected with pNL4-3-lucΔVifΔEnv and ANP32B LCAR truncations and HIV-1 production was quantified by measuring p55 expression in cell lysates. (F) DKO cells were transfected with ANP32B-GST or ANP32B-165T-GST construct, together with Rev-HA. The coimmunoprecipitation was performed with the GST antibodies and the proteins were assessed by Western blotting. (G) A schematic of the BiFC fusion proteins is presented. Venus is divided into an N-terminal region from residues 2 to 173 (VN) and a C-terminal region from residues 174 to 239 (VC). VN and VC were fused to the C-terminus of the target proteins. (H) ANP32A-VN-Flag and HA-Rev-VC or SAMHD1-VC-HA were co-transfected into Hela cells and the BiFC green fluorescent signals were visualized using confocal microscopy. Scale bar, 50 μm. (I) ANP32A-VN-Flag and HA-Rev-VC were expressed individually or together in Hela cells and ANP32A-VN-Flag and HA-Rev-VC fusion proteins were stained with a rabbit anti-Flag and anti-HA monoclonal antibody at 1:500 dilution followed by an Alexa-Fluor-647-conjugated goat anti-rabbit antibody at 1:1000 dilution. SAMHD1-VC-HA was used as a negative control and the BiFC green fluorescent signals were visualized using confocal microscopy. Scale bar, 10 μm.
FIG 5 ANP32A and ANP32B cooperate with CRM1 to support HIV-1 RNA nuclear export. (A) Detection of ANP32A/B interaction with CRM1. HEK293T cells were co-transfected with plasmids expressing ANP32A/B-Flag alone or in the presence of the CRM1-HA vector, the whole-cell lysates were prepared, and immunoprecipitations were performed with anti-HA beads and analyzed by Western blotting. (B) HeLa cells were treated with medium or LMB (20 nM) (Beyotime, S1726) for 12 h. Endogenous immunoprecipitations between ANP32B and CRM1 were performed with anti-ANP32B antibody and analyzed by Western blotting. (C) CRM1-VN-HA or ANP32A-Flag-VC were expressed individually or together in HeLa cells and ANP32A-Flag-VC and CRM1-VN-HA fusion proteins were stained with a rabbit anti-Flag and anti-HA monoclonal antibody at 1:500 dilution followed by an Alexa-Fluor-647-conjugated goat anti-rabbit antibody at 1:1000 dilution. MxB-VN-HA and ANP32A-Flag-VC were co-transfected into HeLa cells as a negative control. The
BiFC green fluorescent signals were visualized using confocal microscopy. Scale bar, 10 μm. (D) The HEK293T cells were infected with HIV-1 pseudotype virus for 12 h and either medium or LMB (20 nM) (Beyotime, S1726) were added for additional 12 h. HIV-1 gag mRNA location was analyzed with a specific probe using an RNA Scope technology. Scale bar, 10 μm. (E) WT and DKO cells were transfected with pNL4-3-lucΔVifΔEnv plasmids for 12 h and either medium or LMB (20 nM) were added for additional 12 h. The HIV-1 production was quantified by measuring p55 expression.
FIG 6 ANP32A/B do not disrupt the interaction between Rev and CRM1. (A) Detection of CRM1 interaction with Rev. WT or DKO cells were co-transfected with plasmids expressing Rev-Flag alone or in the presence of CRM1-HA vector, the whole cells lysates were prepared, immunoprecipitations were performed with anti-HA beads, and analyzed by Western blotting. (B) CRM1-VN-HA and HA-Rev-VC were co-transfected into WT and DKO cells and the BiFC green fluorescent signals were visualized using confocal microscopy. Scale bar, 10 μm. (C) CRM1-HA were co-transfected with Rev-GST wildtype or its mutants M5, SLT40 and M10, the whole cells lysates were prepared, immunoprecipitations were performed with anti-GST beads, and analyzed using Western blotting.
ANP32A and ANP32B are key factors in the Rev dependent CRM1 pathway for nuclear export of HIV-1 unspliced mRNA
Yujie Wang, Haili Zhang, Lei Na, Cheng Du, Zhenyu Zhang, Yong-Hui Zheng and Xiaojun Wang

J. Biol. Chem. published online August 23, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.008450

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts