Determination of Maintenance Schedule of Loading and Unloading Pump Machine Using Genetic Algorithm Method

Dwi Sukma Donoriyanto, Ika Yuniar Silfiana, Endang Pudji W, Akmal Suryadi, L.Urip Widodo

Industrial Engineering Department, Faculty of Engineering
University of Pembangunan Nasional Veteran East Java

*Corresponding Author: sukmadewi2004@gmail.com; ikayuniar silkyana@gmail.com

ABSTRACT

This paper discusses the application of genetic algorithm methods in solving engine maintenance problems in an industry, from processing data that has been obtained by taking the case of engine pump maintenance where the level of damage that occurs is more than 50%. Within genetic algorithm method, we can get the optimal solution and generated in scheduling engine maintenance

Key word: Maintenance schedule, Pump Machine, Genetic Algorithm

1. Introduction

Maintenance is the concepts of all activities needed to be maintain or maintain the quality of facilities or machines to function properly as in reach the desire condition. Care is also a supportive activity that ensures the continuity of machinery and equipment of the machine so that when needed can be used as expected.

There have been many studies on engine maintenance scheduling, among others, using the Reliability Centered Maintenance (RCM) approach [1][2], where the results using this method are only limited to the physical aspects of engine maintenance by taking into account the desires of machine operators, besides the Overall Equipment Effectiveness (OEE) method used in engine maintenance scheduling, but in the use of this method only limited as a measuring instrument in measuring total productive maintenance where by paying attention to the six big loss of the engine [3][4][5].

In this study the method used is Genetic Algorithm. GA or Genetic Algorithm is a search technique in computer science engineering to solve problems in forecasting optimization [6][7][8][9][10]. Genetic algorithms are a special class of evolutionary algorithms using techniques inspired by evolutionary biology such as in heritance, mutations, natural selection and recombination (or crossover). The advantages of this method where results in scheduling treatments become more optimal.

2. Literature Review

Maintenance planning contributes significantly for every company to production [11][12][13]. Maintenance activities are very important operations for restoring equipment of the machine to a specific state [14][15]. Maintenance is an activity to maintain and make repairs to machinery or plant equipment in order to create a production operating condition that is in accordance with what is expected. Maintenance categorized into two main classes: Corrective Maintenance and Preventive Maintenance [16][17][18][19]. Corrective Maintenance is unscheduled maintenance or repair required to return items/equipment to a defined state, which is carried out because of perceived
deficiencies or failures. Preventive Maintenance is planned, periodic and specific schedule to keep equipment in a working condition [12][20][21][22].

Genetic Algorithm

Genetic Algorithm is a searching method that is based on the natural evolution process [23][24][25], which is the formation of a random initial population consisting of individuals with properties that depend on genes in their chromosomes. Individuals carry out the process reproduction to give birth to offspring, the offspring's nature is formed from a combination of the characteristics of the two parents or inherited from the parent traits.

A framework commonly used in the application of genetic algorithms to solve an optimization problem [26][27][28][29]. According to [8], the success of using genetic algorithms is largely determined by determining the statement of the problem in the form of search points called chromosomes, and the selection of operators used.

The things that must be done in using genetic algorithms are [6][30]:

1. Defining individuals, where individuals state one possible solution of the problem at hand.
2. Defining fitness values, is a measure of whether an individual is good or not or not the solution is obtained.
3. Determine the initial population generation process, usually carried out by generating random numbers.
4. Determine the selection process to be used
5. Determine the cross over process and the mutation of the gene to be used

In genetic algorithms, chromosome processing as a population by genetic operators occurs repeatedly (Cole). At first it is generated randomly in accordance with the repression of the problem to be developed. Furthermore, genetic operators will combine genetic information from population elements to form the next generation population[31][32].

3. Methodology

Variables of this research are:
- Dependent variable (Dependent), a variable that is strongly influenced by independent variables. In this research is the optimization of machine maintenance planned.
- Independent variable (Independent), that is variable affecting the dependent variable. In this case it is:
 a) Time of Machine Damage
 b) Machine Maintenance Time Data
 c) Machine setup data
 d) Machine Downtime Data

4. Result and Discussion

Data in Company

The data obtained include data on the history of engine failure, data on downtime, engine maintenance time data, machine set-up time data.

Date	ITEM Checked	Information	Time of Machine Damage (minutes)
03/08/07	REPLACE MECHANICAL SEAL	036	60
09/11/07	REPAIR LINE STEAM	028	45
02/02/08	CLEANING INLET FILTER	067	30
15/05/08	CLEANING INLET FILTER	087	30
18/09/08	REPLACE CARBON PLAT PUMP	095	30
20/12/08	REPLACE MECHANICAL SEAL	110	60
Table 2. Machine maintenance data time

No	Part of being examined	Machine Maintenance Activity	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
1	Loading Pump	Oil Gear Check	8	9	7	10	9	7	7	8	10	8	9	10
		Oil Pump Check	12	11	13	10	11	13	13	12	10	12	11	13
		Cleaning Inlet Filter	20	22	21	23	22	25	20	23	21	21	25	22
		Mechanical Seal Check	9	8	9	9	9	7	8	9	7	9	9	9
		Carbon Plat 1 Check	10	9	9	8	7	7	8	9	9	8	10	
		Carbon Plat 2 Check	9	8	8	9	10	10	9	9	10	8	7	10
2	Unloading Pump	Alignment Check	10	9	8	10	9	10	8	9	10	9	10	8
		Bearing Check	9	9	10	8	10	9	9	9	10	9	10	9

4.2 Data Processing

Initialization of random numbers in the population

Initiation with random numbers becomes a population for July 2017 until June 2018:

Value of x	Value of f
7	0.6174
5	0.5187

Value of x	Value of f
30	3.0511
12	1.0104
11	1.0253
29	1.5257
13	1.0203
4	0.3984
13	1.0189

Test the fitness value of the population
fitness of data test is done to measure the level of goodness. This fitness calculation is done using the software:
BestX = 128.9877 228.1580

Make crossover
At this stage crossovers are carried out to determine the parent and produce offspring from crossovers. Based on the results of crossovers using the Matlab software, the results are obtained father = 12 mother = 4 children X1 = 196.5136 and 164.6524 then X2 = 180.5622 and 172.6307.

Make a selection
At this stage the selection is to determine the next step of the crossover :

cumF	ncumF
0.0016	0.0704
0.0035	0.1542
0.0039	0.1684
0.0049	0.2114
0.0185	0.8057
0.0195	0.8483
0.0220	0.9573
0.0230	1.0000

Mutation in the population

kk =12
Populasi_s(kk, :)
ans =
199.2236 173.6501

Evaluation of mutase results
Based on the evaluation of mutase results obtained minf = 220.5946 and the best best repair is 2 which means 2 times in one month.

5. Conclusion
Based on the evaluation of the mutase results for the loading pump, the minf is 220.5946 and the best repair for treatment is 2, which means 2 times in 1 month. And the evaluation of the mutase results for the unloading pump obtained is 344.5943 and the best repair for treatment is 2, which means it is 2 times in 1 month Where previously the treatment was done 1 month only once and the treatment was less optimal.
Literature

[1] Irsalina Maharani, Fransiskus Tatas Dwi Atmaji, Nopendri. 2018. “Proposal of Maintenance Policy on Barmag FK6800 Machine in FT3 PT XYZ Using Reliability-Centered Maintenance and Risk-Based Maintenance Method”, *Atlantis Highlights in Engineering (AHE)*, volume 2, International Conference on Industrial Enterprise and System Engineering (IcoISE 2018).

[2] Lagrada, R.M, Bersano Jr. R.F, Carino, A.J, Sombilon, S.G, Santiago, R.V.M and Pacis, M.C. 2018. “Implementation of Maintenance Program to the Generators of the Mindanao Grid using Reliability Centered Maintenance (RCM)”, *2018 IEEE Region Ten Symposium (Tensymp)*, pp 185-190.

[3] Nallusamy, S. (2016). “Enhancement of Productivity and Efficiency of CNC Machines in a Small Scale Industry Using Total Productive Maintenance”. International Journal of Engineering Research in Africa, Vol. 25, 119–126.

[4] Kurscheidt Netto, R. J., Santos, E. A. P., de Freitas Rocha Loures, E., & Pierrezan, R. (2016). “Using Overall Equipment Effectiveness (OEE) to Predict Shutdown Maintenance”. *Engineering Systems and Networks*, Vol 13–21, doi:10.1007/978-3-319-45748-2_2.

[5] Sonmez, V., Testik, M. C., & Testik, O. M. (2017). “Overall equipment effectiveness when production speeds and stoppage durations are uncertain”. *The International Journal of Advanced Manufacturing Technology*, Volume 95(1-4), 121–130. doi:10.1007/s00170-017-1170-8.

[6] Keisuke Nagasawa, Takashi Irohara, Yosuke Matoba, Shuling Liu, 2013. “Genetic Algorithm-Based Coordinated Replenishment in Multi-Item Inventory Control”, *Vol 12, No 3*, September 2013, pp.172-180.

[7] Xiao, L., Song, S., Chen, X., & Coit, D. W. (2016). “Joint optimization of production scheduling and machine group preventive maintenance”. *Reliability Engineering & System Safety*, Volume 146, 68–78. doi:10.1016/j.ress.2015.10.013.

[8] Dahia, Z., Bellouar, A., & Billel, S. (2018). “Optimization of the Preventive Maintenance for a Multi-component System Using Genetic Algorithm”. *Lecture Notes in Networks and Systems*, 313–320. doi:10.1007/978-3-030-04789-4_34.

[9] Šetinc, M., Gradišar, M., & Tomat, L. (2013). “Optimization of a highway project planning using a modified genetic algorithm”. *Optimization, 1–21*. doi:10.1080/02331934.2013.784763.

[10] Kukuh Triyuliarno Hidayat, Riza Arifudin, Alamsyah. 2018. “Genetic Algorithm for Relational Database Optimization in Reducing Query Execution Time”, *Scientific Journal of Informatics*, Vol. 5, No. 1, pp 18-27.

[11] Qinming Liu, Ming Dong, Wenyuan Lv, Chunming Ye. 2019. “Manufacturing System Maintenance Based on Dynamic Programming Model With Prognostics Information”, *J International Manufacture*, Volume 30, pp 1155–1173.

[12] Nadia Bahria, Anis Chelbi, Imen Harbaoui Dridi and Hanen Bouchriha, 2018. “Maintenance and Quality Control Integrated Strategy for Manufacturing Systems”, *European J. Industrial Engineering*, Vol. 12, No. 3, pp 307-331.

[13] Savita Garg, Jai Singh, D.V. Singh. 2010. “Availability and Maintenance Scheduling of a Repairable Block-Board Manufacturing System”, *Reliability and Safety*, Vol. 4, No. 1, pp 104–118.

[14] Sirikarn Chansombat, Pupong Pongcharoen & Christian Hicks. 2018. “A Mixed-Integer Linear Programming Model for Integrated Production and Preventive Maintenance Scheduling in The Capital Goods Industry”, *International Journal of Production Research*, pp 1-22.

[15] Li Yang , Zhi-sheng Ye , Chi-Guhn Lee , Su-fen Yang , Rui Peng. 2018. “A Two-Phase Preventive Maintenance Policy Considering Imperfect Repair and Postponed Replacement”, *European Journal of Operational Research*, https://doi.org/10.1016/j.ejor.2018.10.049.

[16] Farahani, A, Tohidi, H, Shoja, A. 2019. “An integrated optimization of quality control chart parameters and preventive maintenance using Markov chain”, *Advances in Production Engineering & Management*, Volume 14, Number 1, pp 5–14.
[17] Zandieh, M., Khatami, A. R., & Rahmati, S. H. A. (2017). “Flexible job shop scheduling under condition-based maintenance: Improved version of imperialist competitive algorithm”. Applied Soft Computing, Volume 58, 449–464. doi:10.1016/j.asoc.2017.04.060.

[18] Boukaye Boubucar Traore, Bernard Kamsu Fougem, Fana Tangara & Xavier Desforges, 2018, “Service-Oriented Computing for Intelligent Train Maintenance”, Enterprise Information Systems, Tailor and Francis pp.1-26.

[19] Juha-Matti Ranta and Josu Takala Ranta, J-M. and Takala, J. 2007, “A Holistic Method for Finding Out Critical Features of Industry Maintenance Services’, Int. J. Services and Standards, Vol. 3, No. 3, pp.312–325.

[20] Lu, Z., Cui, W., & Han, X. (2015). “Integrated production and preventive maintenance scheduling for a single machine with failure uncertainty”. Computers & Industrial Engineering, Volume 80, 236–244. doi:10.1016/j.cie.2014.12.017

[21] Ben Mabrouk, A., Chelbi, A., & Radhoui, M. (2016). “Optimal imperfect preventive maintenance policy for equipment leased during successive periods”. International Journal of Production Research, 54(17), 5095–5110.

[22] Ding, S.-H., & Kamaruddin, S. (2014). Maintenance policy optimization—literature review and directions. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1263–1283. doi:10.1007/s00170-014-6341-2.

[23] Ji Ung Sun, 2007, “A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem”, IEMS, Vol. 6, No. 2, pp. 119-124.

[24] Hae Kyeong Lee, Friska Natalia Ferdinand, Taioun Kim, Chang Seong Ko, 2010, “A Genetic Algorithm Based Approach to the Profitable Tour Problem with Pick-up and Delivery”, IEMS, Vol. 9, No. 1, pp. 80-87.

[25] Elhadidy, A. A., Elbeltagi, E. E., & Ammar, M. A. (2015). “Optimum analysis of pavement maintenance using multi-objective genetic algorithms”. HBRC Journal, 11(1), 107–113.

[26] Chettha Chamnanlor, Kanchana Sethanan, Chen-Fu Chien, Mitsuo Gen, 2013. “Hybrid Genetic Algorithms for Solving Reentrant Flow-Shop Scheduling with Time Windows”, Industrial Engineering & Management Systems, Vol. 12, No 4, December 2013, pp.306-316.

[27] Beheshi Fakher, H., Nourelfath, M., & Gendreau, M. (2016). “A cost minimisation model for joint production and maintenance planning under quality constraints”. International Journal of Production Research, 55(8), 2163–2176. doi:10.1080/00207543.2016.1201605

[28] Sekulic, M., Pejic, V., Brezocevic, M, Gostimirovic, M, Hadzistevic, M, 2018, “Prediction of Surface Roughness in The Ball-End Milling Process Using Response Surface Methodology, Genetic Algorithms, and Grey Wolf Optimizer Algorithm”, Advances in Production Engineering & Management, Volume 13, Number 1, March 2018, pp 18–30.

[29] G. Giftson Samuel, C. Christober Asir Rajan, 2015, “Hybrid: Particle Swarm Optimization–Genetic Algorithm and Particle Swarm Optimization–Shuffled Frog Leaping Algorithm for long-term generator maintenance scheduling”, Electrical Power and Energy Systems, 65 , pp 432–442.

[30] Jiang P, DingJ.L, Guo Y, 2018, “Application and Dinamic Simulation of Improved Genetic Algorithm in Production Workshop Scheduling”, International Journal Simul Model, Vol 17, No 1, pp 159-169.

[31] Ali Şenol, Hacer Karacan, M. Ali Akcayol, 2018, “Genetic Algorithm and Fuzzy Logic Based Flexible Querying in Databases”, Journal of Computers, Volume 13, Number 6, pp678-691

[32] Compare, M., Martini, F., & Zio, E. (2015). “Genetic algorithms for condition-based maintenance optimization under uncertainty”. European Journal of Operational Research, 244(2), 611–623. doi:10.1016/j.ejor.2015.01.057.