Abstract

The effect of substitution on the potential energy surfaces of \(RE_13 \equiv PR \) (\(E_13 = B, Al, Ga, In, \) and \(Tl \); \(R = F, OH, H, CH_3, SiH_3, SiMe(SiBu_3)_2, SiPrDis_2, Tbt, and Ar^* \)) is studied using density functional theory (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ + dp). The theoretical results demonstrate that all triply bonded \(RE_13 \equiv PR \) compounds with small substituents are unstable and spontaneously rearrange to other doubly bonded isomers. That is, the smaller groups, such as \(R = F, OH, H, CH_3 \) and \(SiH_3 \), neither kinetically nor thermodynamically stabilize the triply bonded \(RE_13 \equiv PR \) compounds. However, the triply bonded \(R'E_13\equiv PR' \) molecules, possessing bulkier substituents (\(R' = SiMe(SiBu_3)_2, SiPrDis_2, Tbt \) and \(Ar^* \)), are found to have a global minimum on the singlet potential energy surface. In particular, the bonding character of the \(R'E_13\equiv PR' \) species is well defined by the valence-electron bonding model (model [III]). That is to say, \(R'E_13\equiv PR' \) molecules that feature groups are regarded as \(R'-E_13\equiv P-R' \). The theoretical evidence shows that both the electronic and the steric effects of bulkier substituent groups play a prominent role in rendering triply bonded \(R'E_13\equiv PR' \) species synthetically accessible and isolable in a stable form.

Keywords: phosphorus, group 13 elements, triple bond, substituent effects, valence electrons

1. Introduction

Phosphorus is an interesting element, but many chemists have a poor comprehension of its bonding properties. Even though phosphorus and nitrogen belong to the same group in the periodic table, molecular nitrogen is a triply bonded diatomic molecule, but elemental white phosphorus is a tetrahedral compound wherein each atom is connected by three single bonds to the other atoms in the molecule. Phosphorus is usually connected to other elements by a
single chemical bond, which has been verified by a lot of experimental evidences [1–14]. Also, molecules that feature a phosphorus double bond have been the subject of many experimental and theoretical studies of structure and reactivity [15–27]. However, little is known about the molecules that feature a phosphorus triple bond [28–32]. In particular, whether it is possible to anticipate the stability of the \(R-E_{13} \equiv \text{phosphorus-R} \) (\(E_{13} = \text{B, Al, Ga, In, and Tl} \)) species based on the effects of substituents, since the \(R-E_{13} \equiv \text{phosphorus-R} \) systems are isoelectronic to the \(R-E_{14} \equiv E_{14}-R \) (\(E_{14} = \text{C, Si, Ge, Sn, and Pb} \)) compound from the valence electron viewpoints.

This study uses the heavier acetylene analogue, \(R-E_{13} \equiv P-R \) as a model molecule to determine the possibility of generating stable \(R-E_{13}P \) species that feature the \(E_{13} \equiv P \) triple bond. In order to understand the effects of substituents on the stability of triply bonded \(R-E_{13} \equiv P \) molecules, both small and bulky groups are chosen in this work. A better understanding of the bonding character and the structure of triply bonded \(R-E_{13} \equiv P \) species will allow experimental chemists to discover novel and stable molecules that feature the \(E_{13} \equiv P \) triple bond.

1.1. General considerations

This section uses a simple valence-electron bonding model to demonstrate the bonding nature of substituted triply bonded \(R-E_{13} \equiv P \) compounds.

First, the \(R-E_{13} \equiv P \) species is separated into two units: \(R-E_{13} \) and \(R-P \). Figure 1 shows that these two fragments represent two types of valence-electron bonding model (model [I] and model [II]). Therefore, the \(R-E_{13} \) moiety and the \(R-P \) component have two and four valence electrons, respectively. The computational results show that the ground states of these two units are a singlet for \(R-E_{13} \) ([\(R-E_{13} \)\(^1\)]) and a triplet for \(R-P \) ([\(R-P \)\(^3\)]). Therefore, model [I] in Figure 1 is considered as \([R-E_{13}]^1 + [R-P]^1 \rightarrow [R-E_{13} \equiv P-R]^1\) and model [II] is given as \([R-E_{13}]^3 + [R-P]^3 \rightarrow [R-E_{13} \equiv P-R]^1\).

If the excitation energy (\(\Delta E_1 \)) from the triplet ground state to the singlet excited state for \(R-P \) is smaller than that for \(R-E_{13} \), then model [I] can be used to interpret the bonding character of \(R-E_{13} \equiv P \). That is, model [I] demonstrates that the triple bond in \(R-E_{13} \equiv P \) is a single donor-acceptor (\(E_{13} \rightarrow P \)) \(\sigma \) bond and two donor-acceptor (\(E_{13} \leftarrow P \)) \(\pi \) bonds. Therefore, the bonding character of \(R-E_{13} \equiv P \) can be viewed as \(R-E_{13} \equiv P \). However, if the promotion energy (\(\Delta E_2 \)) from the singlet ground state to the triplet excited state for \(R-E_{13} \) is smaller than that for \(R-P \), then model [II] can be used to explain the bonding character of \(R-E_{13} \equiv P \). Namely, model [II] shows that the triple bond in \(R-E_{13} \equiv P \) is a single traditional \(\sigma \) bond, a single traditional \(\pi \) bond and a single donor-acceptor (\(E_{13} \leftarrow P \)) \(\pi \) bond, so its bonding character can be viewed as \(R-E_{13} \equiv P \).

From model [I] and model [II] shown in Figure 1, two points need to be emphasized here. First, it is experimentally known that the covalent radius decreases as: \(\text{Tl (148 pm)} > \text{In (142 pm)} > \text{Ga (122 pm)} > \text{Al (121 pm)} > \text{P (107 pm)} > \text{B (84 pm)} \) [33]. Therefore, a large difference in the atomic radius results in a significant reduction in the overlap populations between \(E_{13} \) and phosphorus. Consequently, the bonding strength between phosphorus and the \(E_{13} \) element in the heteroatomic analogues of acetylene (\(R-E_{13} \equiv P \)) should be weak. Second, the \(\pi \) bond in the \(R-E_{13} \equiv P \) species is also attributed to the lone pair of the \(R-P \) moiety, which is donated into the empty \(p-\pi \) orbital of the \(R-E_{13} \) unit. Since the lone pair of the \(R-P \) component
contains the s valence orbital of phosphorus and the p valence orbital of phosphorus is not the same size as that of the E13 atom, the overlap in the orbital populations between the P and E13 elements is small. In other words, on the basis of the bonding models that are shown in Figure 1, the triple bond between E13 and phosphorus is predicted to be very weak.

The computational evidences for these predictions are given in the following sections.
2. Results and discussion

2.1. Small ligands on substituted RE13 \equiv PR

Five small substituents (R), including F, OH, H, CH3 and SiH3, are initially chosen for this study. Three types of density functional theory (DFT) (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ + dp) are used to determine the relative stability of the triply bonded RE13\equivPR species and its corresponding doubly bonded isomers (R2E13 = P: and: E13 = PR2). In other words, two types of the 1,2-substituent-shift reactions (RE13\equivPR \rightarrow TS1 \rightarrow R2E13 = P: and RE13\equivPR \rightarrow TS2 \rightarrow: E13 = PR2) are studied. The respective computational results for RB\equivPR [28], RAl\equivPR [29], RGa\equivPR [30], RIn\equivPR [31], and RTl\equivPR [32] are schematically shown in Figures 2–6.

The computational results that are shown in Figures 2–6 show that regardless of the type of small substituent that is chosen, the triply bonded RE13 \equiv PR compound cannot be stabilized on the 1,2-migration energy surfaces. That is to say, it is easy for the RE13PR species to migrate to the corresponding doubly bonded R2E13 = P: or: E13 = PR2 isomers rather than to the triply bonded RE13 \equiv PR molecules. The theoretical evidence strongly suggests that the experimental detection of RE13\equivPR that features small groups is very unlikely so they are not discussed in this section [28–32].

2.2. Large ligands on substituted R’E13 \equiv PR’

Four bulky groups (R’) are used to study the effects of substituents on the triply bonded RE13\equivPR molecules. These are SiMe(SiBu3)2, SiPrDis2, Tbt (C6H2–2,4,6-{CH(SiMe3)2}3) and Ar* (C6H3–2,6-(C6H2–2,4,6-i-Pr3)2) [34, 35]. In order to avoid the London dispersion forces [36], the dispersion-corrected M06-2X/Def2-TZVP level of theory [37] is used to compute geometrical parameters and some properties. The respective results for RB\equivPR [28], RAl\equivPR [29], RGa\equivPR [30], RIn\equivPR [31], and RTl\equivPR [32] are shown in Tables 1–5. The same level of theory is also used to determine the feasibility of producing triply bonded R’E13 \equiv PR’ compounds (Scheme 1 and Tables 1–5).

1. For bulky groups (R’), the E13\equivP triple bond distances (Å) are anticipated to be in the range, 1.736–2.023 (B\equivP), 2.152–2.183 (Al\equivP), 2.146–2.183 (Ga\equivP), 2.215–2.362 (In\equivP) and 2.336–2.386 (Tl\equivP).

2. The computed reaction enthalpies (ΔH1 and ΔH2) that are shown in Scheme 1 and Tables 1–5 show that regardless of the bulky ligand that is chosen, the energy of the triply bonded R’E13 \equiv PR’ species is much lower than those of its corresponding doubly bonded R’2E13 = P: or: E13 = PR2 isomers. This computational evidence indicates that sterically congested ligands kinetically stabilize the triply bonded R’E13 \equiv PR’ compound.

3. The theoretical data in Tables 1–5 show that the R’-E13 moiety has a singlet ground state, but the R’-P component has a triplet ground state. The production of the triply bonded
Figure 2. The relative Gibbs free energy surfaces for RB ≡ PR (R ≡ H, F, OH, SiH3, and CH3). These energies are calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp levels of theory.
Figure 3. The relative Gibbs free energy surfaces for RAl ≡ PR (R ≡ H, F, OH, SiH₃, and CH₃). These energies are calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp levels of theory.
The relative Gibbs free energy surfaces for RGa≡PR (R = H, F, OH, SiH3, and CH3). These energies are calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp levels of theory.

Figure 4.
Figure 5. The relative Gibbs free energy surfaces for RIn \(\equiv PR \) (R \(\equiv \) H, F, OH, SiH3, and CH3). These energies are calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp levels of theory.
Figure 6. The relative Gibbs free energy surfaces for RTl ≡ PR (R ≡ H, F, OH, SiH3, and CH3). These energies are calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp levels of theory.

Simulations Suggest Possible Triply Bonded Phosphorus≡E13 Molecules (E13 = B, Al, Ga, In, and TI) 35

http://dx.doi.org/10.5772/intechopen.77055
R’E13 ⋄ PR’ compound at the singlet ground state constitutes a combination of two triplet units, [R’-E13]⁺ and [R’-P]⁺. Therefore, using the information in Figure 1, the bonding nature of the E13 ⋄ P triple bond in R’E13 ⋄ PR’ can be regarded as RE13 ⋄ PR.

4. The theoretical analyses in Section II shows that the bond order for the E13 ⋄ P triple bond should be very weak. Tables 1–5 show that the Wiberg bond indices (WBI) [28, 39] for RE13 ⋄ PR compounds that feature sterically bulky substituents are all a little greater than 2.0. The theoretical evidence demonstrates that RE13 ⋄ PR that features bulky groups has only a weak triple bond because the WBI for the C⋮C bond in acetylene is computed to be 2.99.

The results of this study show that successful schemes for the synthesis and isolation of triply bonded RE13 ⋄ PR molecules are imminent.

R’	SiMe(SitBu)₂	Si/PrDis₂	Tbt	Ar⁺
B ⋄ P(Å)	1.736	2.021	2.023	2.021
zR’-B-P (°)	157.2	166.0	164.4	166.6
zB-P-R’ (°)	122.0	112.5	121.3	123.3
zR’-B-P-R’ (°)	174.7	165.5	168.9	169.5
Q₄₁	-0.2574	-0.1395	0.2718	0.3520
Q₄₂	-0.1824	-0.3922	0.2260	0.2522
ΔEB' for R’-B (kcal/mol)³	25.92	24.86	28.76	34.64
ΔEP' for R’-P (kcal/mol)⁴	-33.10	-37.47	-29.74	-30.52
HOMO-LUMO (kcal/mol)	73.76	43.44	47.10	41.60
BE (kcal/mol)⁵	89.54	90.37	85.42	71.43
ΔH₁ (kcal/mol)⁶	73.75	86.65	87.89	87.59
ΔH₂ (kcal/mol)⁶	80.53	77.67	101.7	88.01
WBI²	2.388	2.152	1.963	1.966

1The natural charge density on the boron atom.
2The natural charge density on the phosphorus atom.
3ΔEB' (kcal mol⁻¹) = E(triplet state for R’-B) - E(singlet state for R’-B).
4ΔEP' (kcal mol⁻¹) = E(triplet state for R’-P) - E(singlet state for R’-P).
5BE (kcal mol⁻¹) = E(triplet state for R’-B) + E(triplet state for R’-P) - E(singlet for R’B ⋄ PR’).
6See Scheme 1.
7The Wiberg bond index (WBI) for the B⋮P bond: see references [38, 39].

Table 1. The bond lengths (Å), bond angles (°), singlet-triplet energy splitting (ΔEB’ and ΔEP’), natural charge densities (Q’ and QP’), binding energies (BE), the Wiberg bond index (WBI), HOMO-LUMO energy gaps, and some reaction enthalpies for R’B ⋄ PR’ at the M06-2X/Def2-TZVP level of theory.
Table 2

R'	SiMe(SiBu$_3$)$_2$	SiPrDis$_2$	Tbt	Ar*
Al ☰ P(Å)	2.168	2.152	2.183	2.175
$\angle R_0$-Al-P (°)	166.5	163.4	165.0	167.3
$\angle Al$-P-R' (°)	117.4	119.7	122.1	121.3
$\angle R'$-Al-P-R' (°)	166.4	163.8	168.5	167.5
Q_{Al}	0.9712	0.9210	1.1072	1.326
Q_{P}	-0.8751	-0.9674	-0.3430	-0.359
ΔE_{Al} (kcal/mol)	28.89	29.30	42.50	40.22
ΔE_{P} (kcal/mol)	-23.10	-27.47	-30.51	-28.52
HOMO-LUMO (kcal/mol)	52.74	34.83	49.98	57.15
BE (kcal/mol)	43.49	54.96	47.51	35.41
ΔH_1 (kcal/mol)	95.15	85.23	91.83	85.60
WBI	1.572	1.592	1.685	1.534

1The natural charge density on the aluminum atom.
2The natural charge density on the phosphorus atom.
3ΔE_{Al} (kcal mol$^{-1}$) = E(triplet state for R$^-$Al)-E(singlet state for R$^-$Al).
4ΔE_{P} (kcal mol$^{-1}$) = E(triplet state for R$^-$P)-E(singlet state for R$^-$P).
5BE (kcal mol$^{-1}$) = E(triplet state for R$^-$Al) + E(triplet state for R$^-$P)-E(singlet for R$^{\equiv}$Al\equivPR$^-$).
6See Scheme 1.
7The Wiberg bond index (WBI) for the Al\equivP bond: see reference [38, 39].
Table 3.
The bond lengths (Å), bond angles (°), natural charge densities (QGa and QP), singlet-triplet energy splitting (ΔEST), binding energies (BE), the HOMO-LUMO energy gaps, the Wiberg bond index (WBI), and some reaction enthalpies for R0Ga⎣PR0⎦ at the dispersion-corrected M06-2X/Def2-TZVP level of theory.

R'	SiMe(Si tert-Bu)2	Si/iPrDis2	Tbt	Ar*
ΔH2 (kcal/mol)	86.43	85.91	88.53	84.08
WBI	2.228	2.235	2.017	2.114

1The natural charge density on the gallium atom.
2The natural charge density on the phosphorus atom.
3ΔEST (kcal mol⁻¹) = E(triplet state for R'-Ga) - E(singlet state for R'-Ga).
4ΔEST (kcal mol⁻¹) = E(triplet state for R'-P) - E(singlet state for R'-P).
5BE (kcal mol⁻¹) = E(triplet state for R'-Ga) + E(triplet state for R'-Ga) - E(singlet for R'Ga ⍺ PR').
6See Scheme 1.
7The Wiberg bond index (WBI) for the Ga-P bond: see reference [38, 39].

Table 4.
The bond lengths (Å), bond angles (°), singlet-triplet energy splitting (ΔEST), natural charge densities (QIn and QP'), singlet-triplet energy splitting (ΔEST), binding energies (BE), the HOMO-LUMO energy gaps, the Wiberg bond index (WBI), and some reaction enthalpies for R0In⎣PR0⎦ at the B97-D3/LANL2DZ + dp level of theory.

R'	SiMe(Si tert-Bu)2	Si/iPrDis2	Tbt	Ar*
ΔH2 (kcal/mol)	86.43	85.91	88.53	84.08
WBI	2.228	2.235	2.017	2.114

1The natural charge density on the central indium atom.
2The natural charge density on the central phosphorus atom.
3ΔEST (kcal mol⁻¹) = E(triplet state for R'-In) - E(singlet state for R'-In).
4ΔEST (kcal mol⁻¹) = E(triplet state for R'-P) - E(singlet state for R'-P).
5BE (kcal mol⁻¹) = E(triplet state for R'-In) + E(triplet state for R'-P) - E(singlet for R'In ⍺ PR').
6See Scheme 1.
7The Wiberg bond index (WBI) for the In-P bond: see reference [38, 39].
Table 5. The bond lengths (Å), bond angles (°), singlet-triplet energy splitting (ΔE_{ST}), natural charge densities (Q_{Tl} and Q_P), binding energies (BE), the HOMO-LUMO energy gaps, the Wiberg bond index (WBI), and some reaction enthalpies for R’Tl \equiv PR’ at the dispersion-corrected M06-2X/Def2-TZVP level of theory.

R’	SiMe(SiBu$_3$)$_2$	SiPrDis$_2$	Tbt	Ar*
TI \equiv P(Å)	2.386	2.384	2.385	2.336
\angleR’Tl-P (°/C14)	166.9	166.4	168.9	161.2
QTl1	0.975	0.739	1.166	1.218
Q_P2	−0.860	−0.826	−0.344	−0.257
ΔE_{ST} (kcal/mol)3	35.91	35.52	31.27	30.24
ΔE_{ST} (kcal/mol)4	−43.10	−37.47	−39.74	−40.52
HOMO-LUMO (kcal/mol)	71.27	27.21	58.05	39.34
BE (kcal/mol)5	80.24	85.43	62.51	67.89
ΔH_1 (kcal/mol)6	91.34	90.49	89.22	87.11
ΔH_2 (kcal/mol)6	73.98	72.83	71.27	74.01
WBI7	2.116	2.273	2.127	2.201

1The natural charge density on the central thallium atom.
2The natural charge density on the central phosphorus atom.
3ΔE_{ST} (kcal mol$^{-1}$) = E(triplet state for R’Tl)−E(singlet state for R’Tl).
4ΔE_{ST} (kcal mol$^{-1}$) = E(triplet state for R’P)−E(singlet state for R’P).
5BE (kcal mol$^{-1}$) = E(triplet state for R’Tl) + E(singlet state for R’Tl)−E(singlet for R’Tl \equiv PR’).
6See Scheme 1.
7The Wiberg bond index (WBI) for the TI=DBP bond: see reference [38, 39].

Scheme 1. Several important conclusions can be drawn from the results in Tables 1–5.
Acknowledgements

The authors are grateful to the National Center for High-Performance Computing of Taiwan for generous amounts of computing time, and the Ministry of Science and Technology of Taiwan for the financial support.

Author details

Jia-Syun Lu¹, Ming-Chung Yang¹ and Ming-Der Su¹,2*

*Address all correspondence to: midesu@mail.nctu.edu.tw

1 Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
2 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan

References

[1] Nyhlen J, Privalov T. “Frustration” of orbital interactions in Lewis base/Lewis acid adducts: A computational study of H₂ uptake by phosphanylboranes R₂P=BR₂. European Journal of Inorganic Chemistry. 2009;15:2759-2764

[2] Karsch HH, Hanika G, Huber B, Meindl K, Köög S, Krüger C, Müller G. Monomeric phosphinoboranes: The role of the B- and P-substituents for P=B multiple bonding. Journal of the Chemical Society, Chemical Communications. 1989;29:373-375

[3] Kubo K, Kawanaka T, Tomioka M, Mizuta T. Synthesis and crystal structures of p-iron-substituted phosphinoborane monomers. Organometallics. 2012;31:2026-2034

[4] Allen TL, Scheiner AC, Schaefer HF III. Theoretical studies of borylphosphine, its conjugate base, and the lithium salt of its conjugate base. The use of orbital kinetic energies to determine the origin of the driving force for changes in molecular geometry. Inorganic Chemistry. 1990;29:1930-1936

[5] Gilbert TM, Bachrach SM. Computational studies of [2+2] and [4+2] pericyclic reactions between phosphinoboranes and alkenes. Steric and electronic effects in identifying a reactive phosphinoborane that should avoid dimerization. Organometallics. 2007;26:2672-2678

[6] Privalov T. On the possibility of conversion of alcohols to ketones and aldehydes by phosphinoboranes R₂PBR’R”: A computational study. Chemistry-A European Journal. 2009;15:1825-1829

[7] Kenward AL, Pierd WE. Heterolytic H₂ activation by nonmetals. Angewandte Chemie International Edition. 2008;47:38-41
[8] Coolidge MB, Borden WT. Ab initio calculations on borylphosphines: Prediction of a synergistic substituent effect in diborylphosphine. Journal of the American Chemical Society. 1990;112:1704-1706

[9] Geier SJ, Gilbert TM, Stephan DW. Activation of H₂ by phosphinoboranes R₂PB(C₆F₅)₂. Journal of the American Chemical Society. 2008;130:12632-12633

[10] Paetzold P. The p-centered chemistry of [(di-tert-butylphosphanyl)imino]-(2,2,6,6-tetramethylpiperidino)borane. Advances in Inorganic Chemistry. 1987;31:123-170

[11] Grant DJ, Dixon DA. Thermodynamic properties of molecular borane phosphines, alane amines, and phosphine alanes and the [BH₄⁻][PH₄⁺], [AlH₄⁻][NH₄⁺], and [AlH₄⁻][PH₄⁺] salts for chemical hydrogen storage systems from ab initio electronic structure theory. The Journal of Physical Chemistry A. 2005;109:10138-10147

[12] Grant DJ, Dixon DA. σ- and π-bond strengths in main group 3–5 compounds. The Journal of Physical Chemistry A. 2006;110:12955-12962

[13] Ditty MJT, Power WP. ³¹P chemical shielding as a function of bond angle: Phosphorus chemical shielding surface of phosphinoborane R₂PBR₂. Canadian Journal of Chemistryan. 1999;77:1951-1961

[14] Jemmis ED, Subramanian G. Torsional barriers in H₂B:XCH₃ (X = NH, O, PH, and S). The Journal of Physical Chemistry. 1994;98:8937-8939

[15] Allen TL, Fink WH. Theoretical studies of borylphosphine and its conjugate base. 2. Internal rotation and inversion transition states. Inorganic Chemistry. 1992;31:1703-1705

[16] Magnusson E. Conformational energies and structural relaxation in singly bonded silicon, phosphorus and sulfur-compounds. Australian Journal of Chemistry. 1986;39:735-745

[17] Geier SJ, Gilbert TM, Stephan DW. Synthesis and reactivity of the phosphinoboranes R₂PB(C₆F₅)₂. Inorganic Chemistry. 2011;50:336-344

[18] Stephan DW, Erker G. Frustrated Lewis pairs: Metal-free hydrogen activation and more. Angewandte Chemie International Edition. 2010;49:46-76

[19] Schulz S. Group 13/15 organometallic compounds-synthesis, structure, reactivity and potential applications. Advances in Organometallic Chemistry. 2003;49:225-439

[20] Pons V, Baker T. Soluble boron-nitrogen high polymers from metal-complex-catalyzed amine borane dehydrogenation. Angewandte Chemie International Edition. 2008;47:9600-9602

[21] Clark TJ, Lee K, Manners I. Transition-metal-catalyzed dehydrocoupling: A convenient route to bonds between main-group elements. Chemistry-A European Journal. 2006;12:8634-8648

[22] Jaska CA, Bartole-Scott A, Manners I. Metal-catalyzed routes to rings, chains and macro-molecules based on inorganic elements. Dalton Transactions. 2003;21:4015-4021
[23] Maya L. Boron nitride precursors—A perspective. Applied Organometallic Chemistry. 1996;10:175-182

[24] Manners I. Polymers and the periodic table: Recent developments in inorganic polymer science. Angewandte Chemie International Edition in English. 1996;35:1602-1621

[25] Whittell GR, Manners I. Synthesis of ammonia borane nanoparticles and the diammoniate of diborane by direct combination of diborane and ammonia. Angewandte Chemie International Edition. 2011;50:10288-10289

[26] Hugle T, Hartl M, Lentz D. The route to a feasible hydrogen-storage material: MOFs versus ammonia borane. Chemistry-A European Journal. 2011;17:10184-10207

[27] Price AN, Nichol GS, Cowley MJ. Phosphaborenes: Accessible reagents for the synthesis of C-C/P-B isosteres. Angewandte Chemie International Edition. 2017;56:9953-9957

[28] Lu J-S, Yang M-C, Su M-D. Triple-bonded boron≡phosphorus molecule: Is that possible? ACS Omega. 2018;3:76-85

[29] Lu J-S, Yang M-C, Su M-D. Aluminum-phosphorus triple bonds: Do substituents make Al≡P synthetically accessible? Chemical Physics Letters. 2017;686:60-67

[30] Lu J-S, Yang M-C, Su M-D. Triply bonded gallium≡phosphorus molecules: Theoretical designs and characterization. The Journal of Physical Chemistry A. 2017;121:6630-6637

[31] Lu J-S, Yang M-C, Su M-D. Triply-bonded indium≡phosphorus molecules: Theoretical designs and characterization. American Chemical Society Omega. 2017;2:2813-2826

[32] Lu J-S, Yang M-C, Su M-D. Substituent effects on the stability of thallium and phosphorus triple bonds: A density functional study. Molecules. 2017;22:1111-1124

[33] Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Covalent radii revisited. Dalton Transactions. 2008;(21):2832-2838

[34] Kobayashi K, Takagi N, Nagase S. Do bulky aryl groups make stable silicon-silicon triple bonds synthetically accessible? Organometallics. 2001;20:234-232

[35] Takagi N, Nagase S. Substituent effects on germanium-germanium and tin-tin triple bonds. Organometallics. 2001;20:5498-5500

[36] Liptrot DJ, Power PP. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nature Reviews Chemistry. 2017;1:4

[37] Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Accounts of Chemical Research. 2008;41:157-167

[38] Wiberg KB. Application of the Pople-Santry-Segal CNDO method to the Cyclopropyl-carbinyl and Cyclobutyl cation and to Bicyclobutane. Tetrahedron. 1968;24:1083-1096

[39] Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital. Donor-Acceptor Viewpoint. Chemical Reviews. 1998;88:899-926