An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer

Enery Lorenzo¹, Katia Camacho-Caceres¹, Alexander J. Ropelewski², Juan Rosas¹, Michael Ortiz-Mojer¹, Lynn Perez-Marty¹, Juan Irizarry¹, Valerie Gonzalez¹, Jesús A. Rodriguez¹, Mauricio Cabrera-Ríos¹, and Clara Isaza¹,³,*

Enery Lorenzo: enery.lorenzo@upr.edu; Katia Camacho-Cáceres: katia.camacho@upr.edu; Alexander J. Ropelewski: ropelews@psc.edu; Juan Rosas: juan.rosas1@upr.edu; Michael Ortiz-Mojer: michael.ortiz6@upr.edu; Juan Irizarry: juan.irizarry4@upr.edu; Valerie Gonzalez: valerie.gonzalez9@upr.edu; Jesús A. Rodriguez: jesusandres.rodriguez@upr.edu; Mauricio Cabrera-Ríos: mauricio.cabrera1@upr.edu

¹Bio IE Lab, The Applied Optimization Group at UPRM, Industrial Engineering Department, University of Puerto Rico at Mayaguez, Call Box 9000, Mayagüez, PR 00681, USA
²Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA 15213, USA
³Department of Pharmacology and Toxicology, Ponce School of Medicine, PO Box 700, Ponce, PR 00732, USA

Abstract

Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.

Keywords

traveling salesman problem; signaling pathways; cancer biology

1. Introduction

Technology advancement has accelerated the capability to generate large amounts of biological data. The capability to translate these data into usable knowledge has, however,
grown at a much slower rate. The technologies used to generate these data are often rendered obsolete by newer ones before the data already available are fully analyzed and taken to their full potential for biological and medical advancement. Microarrays constitute a technology of this sort: one used to generate a large number of experiments, many of which will be greatly under-utilized. The analysis of microarrays, however, still holds a large potential for the discovery of genetic biomarkers for all types of cancer, as well as elicit their signaling pathways. Extracting this kind of knowledge from microarray experiments has historically been considered challenging, largely due to two main difficulties: (i) the use of incommensurable units across different experiments, and (ii) the lack of analysis techniques that converge to a consistent set of biomarkers. These two difficulties propagate uncertainty to the task of determining a reliable signaling pathway. To this end, this work proposes a two-step pipeline that involves (1) a meta-analysis strategy, based on multiple-criteria optimization, which circumvents both of the main difficulties described previously to detect highly differentially expressed genes; and (2) a method, based on integer programming to find the most correlated path among the genes from the previous step. The central hypothesis is that there is a strong signal of relative expression in microarrays that is effectively discoverable through mathematical optimization.

It is critical that the detection of genetic cancer biomarkers through meta-analysis can be carried out faster, more consistently, and more accurately in order to shorten the lead-time from data generation to data interpretation and knowledge application. The simultaneous meta-analysis of multiple experiments via optimization and the subsequent identification of the highest correlated genetic path described in this work offer these capabilities. Microarray data already in repositories can be readily analyzed and, prospectively, new high-throughput biological technologies could be fully utilized earlier in the fight against cancer. The gap between raw data and applicable biomedical/medical knowledge can be reduced significantly; especially when considering that historic biological data will now be able to be brought into perspective to design new experiments and focus on more precise aspects of exploration.

2. Method

The proposed analysis pipeline has two sequential stages: (1) Meta-analysis for detection of highly differentially expressed genes and (2) finding the most correlated path. These are explained next.

2.1. Stage 1: Meta-Analysis for Detection of Highly Differentially Expressed Genes

Meta-analysis involves the joint study of multiple databases to obtain conclusions that apply across all of them. Meta-analysis can help detect potential genetic cancer biomarkers through the study of microarray databases. However, to this end, a series of difficulties are apparent: (a) Microarray experiments that are publicly available use different technologies, platforms and, most of the times, different scales. Incommensurability renders many meta-analyses efforts unfeasible [1] due to the inability to make comparisons across all experiments of interest. Even when the same units are used, often time, data normalization is required for comparability. (b) There is not an efficient, systematic method to carry out meta-analysis. Most of the studies analyze one particular database and try to generalize the
results to other databases or analyze several databases separately and try to make sense of all
the independent results \[2\]. (c) The issue of having a large number of measurements and
genomes generally results in large number of significant genes that must be validated \[3\]. (d) Meta-analysis of microarrays—and of high throughput biological experiments in general—is
a laborious process that is often outpaced by the development of technology to generate
ever-larger data sets. That is, data generation capabilities are larger and grow faster than our
abilities to make sense and translate these data into usable knowledge. (e) Large repositories
of public data generated through costly microarray experiments could go underanalyzed and
underutilized in the fight for cancer when the researchers’ attention shifts to the next high-
throughput technology. The problem of making sense of large quantities of data, however,
will persist.

2.2. Multiple Criteria Optimization

Multiple Criteria Optimization (MCO) is a field from Engineering Mathematics that deals
with making decisions in the presence of multiple performance measures in conflict, \textit{i.e.},
decisions where optimizing one criterion results in moving away from optimality in at least
another criterion. Because of the presence of conflict, an MCO problem does not find a
single best solution but rather a set of best compromising solutions in light of the
performance measures under analysis. The best compromises define solutions called Pareto-
Efficient (or simply Efficient, for short) that define the Efficient Frontier of the MCO
problem at hand. A typical multiple criteria optimization with two conflicting performance
measures (objectives), PMs, can be visualized as in Figure 1. In this figure, a set of seven
candidate points, characterized by their values on both performance measures, are shown.
The performance measure represented in the x-axis is to be maximized while the
performance measure in the y-axis is to be minimized in this example. The problem is to
find those candidate points that dominate all of the other points in both performance
measures. In the face of conflict, this will result in a group of candidates in the southeast
extreme of the set in Figure 1, solutions 3 and 5. These are Pareto-efficient solutions and,
when all of them are accounted for, they integrate the Efficient Frontier of the MCO
problem. In this example, it can be noted that among efficient solutions, an improvement in
one performance measure can only come strictly at the detriment of another one: moving
from solution 5 to solution 3 will result in an improvement in the performance measure
associated to the vertical direction, but in a loss in the performance measure associated to
the horizontal direction. Note that the general problem involves at least two performance
measures to be optimized, where only the case with two performance measures has a
convenient graphical representation. An MCO problem, however, can include as many
dimensions (or performance measures) as necessary.

The general mathematical formulation of an unconstrained MCO problem is as follows:

\[
\begin{align*}
\text{Find} & \quad x \\
\text{Minimize} & \quad f_j(x) = 1, 2, \ldots, J
\end{align*}
\]

The MCO problem in (1) can be discretized onto a set \(K\) with \(|K|\) points in the space of the
decision variables so as to define particular solutions \(x_k, (k = 1, 2, \ldots, |K|)\) which can, in turn,
be evaluated in the $J$ performance measures to result in values $f_j(x^k)$. That is, the $k^{th}$ combination of values for the decision variables evaluated in the $j^{th}$ objective function. The illustrative example in Figure 1 follows this discretization with $J = 2$ performance measures and $|K| = 7$ solutions.

The MCO formulation under such discretization is, then as follows:

\[
\begin{align*}
\text{Find} & \ x^k (k \in K) \text{to} \\
\text{Minimize} & \ f_j(x^k) j = 1, 2, \ldots, J 
\end{align*}
\]  

(2)

The solutions to (2) are, then, the Pareto-efficient solutions of the discretized MCO problem. Considering formulation (2), a particular combination $x^0$ with evaluations $f_j(x^0)$ will yield a Pareto-Efficient solution to (2) if and only if no other solution $x^\psi$ exists that meets two conditions, from this point on called Pareto-optimality conditions:

\[
\begin{align*}
& f_j(x^\psi) \leq f_j(x^0) \forall j \quad \text{(Condition 1)} \\
& f_j(x^\psi) < f_j(x^0) \text{in at least one } j \quad \text{(Condition 2)}
\end{align*}
\]

Conditions (1) and (2) imply that no other solution $x^\psi$ dominates the solution under evaluation, $x^0$, in all performance measures simultaneously.

In previous publications [3,4] our group has demonstrated that if a set of candidate solutions evaluated by multiple performance measures is available, it is possible to determine a series of best compromises between all criteria through a technique called Data Envelopment Analysis (DEA). The idea behind DEA is to use an optimization model to compute a relative efficiency score for each particular solution with respect to the rest of the candidate solutions. The resulting best compromises, identified through their efficiency score, form the envelope of the solution set, therefore the name Data Envelopment Analysis. These solutions are indeed Pareto-efficient solutions of the problem under analysis.

The DEA linear programming formulations proposed by Banks, Charnes, and Cooper [5] are shown below:

\[
\begin{align*}
\text{Find} & \ \mu, \nu, \mu^+_0, \mu^-_0 \text{to} \\
\text{Maximize} & \ \mu^T \ Y^\text{max}_0 + \mu^+_0 - \mu^-_0 \\
\text{Subject to} & \\
\mu^T \ Y^\text{min}_0 & = 1 \\

\nu^T \ Y^\text{max}_j - \nu^T \ Y^\text{min}_j & \geq 0_{j=1, \ldots, n} \\
\mu^T & \geq \varepsilon \cdot 1 \\
\nu^T & \geq \varepsilon \cdot 1 \\
\mu^+_0, \mu^-_0 & \geq 0
\end{align*}
\]  

(3)
where $\mu$ and $\nu$ are column vectors containing multipliers to be optimally determined together with scalar variables $\mu_0^+$ and $\mu_0^-$ in the first case and together with $\nu_0^+$ and $\nu_0^-$ in the second case; $Y_{\min}^j$ and $Y_{\max}^j$ are column vectors containing the values of the $j$th combination of performance measures to be minimized and maximized respectively; and $\varepsilon$ is a scalar usually set to a value of $1 \times 10^{-6}$.

Model (3) is called the BCC Input Oriented Model and Model (4) is called the BCC Output Oriented Model. Both models are applied to each of the $n$ candidate solutions. A particular solution with an objective function score of 1 (i.e., an efficiency score of 1) using both formulations is in the envelope of the set and is considered to be an efficient solution to the MCO problem. The BCC model is just one of many possible DEA formulations, albeit a very powerful one. This model's mathematical linear nature provides it with the capability of finding efficient solutions associated with the data set under analysis through a series of piece-wise linear segments. Nonlinear behavior is, then, approached with tractability and with the certainty that at least the efficient solutions lying in the convex part of the frontier are being found. Figure 2 shows an MCO problem solved through with DEA, specifically with the BCC model.

DEA has several advantages including: (i) computational efficiency owing to its linear optimization structure; (ii) objectivity and consistency of results, which follows from not requiring the adjustment of parameters or assigning weights to the different performance measures by the user, and (iii) capability of analyzing several microarray experiments with incommensurate units. Appendix A discusses the volcano plot, a widely used tool to detect differentially expressed genes, to illustrate how the analyst can bias the results. On the other hand, one limitation of DEA is that of depending on a series of local linear approximations, as shown in Figure 2. Every time that a linear segment is superimposed over the set under analysis, there are genes lying in the nonconvex part of the set frontier that escape detection. These genes could be potential biomarkers, however. In order to circumvent the said disadvantage, the authors proposed that DEA be applied successively 10 times, each time removing the genes found in a particular iteration from the set for subsequent analyses. This strategy results in 10 frontiers, as seen in Figure 3. The number of efficient frontiers is, admittedly, an arbitrary number at this point, thus further refinement is necessary in this aspect.

At the end of Stage 1, the analyst is left with a set of differentially expressed genes that can be investigated to establish their role in the condition or illness under study, cancer in this
case. This set of genes in the proposed method, however, will be used to determine how these are maximally correlated in Stage 2.

### 2.3. Stage 2: Finding the Most Correlated Path

It is proposed that the most correlated path among the list of candidate genes identified in the previous stage can be found optimally. To this end, the optimization problem identified in the literature as the Travelling Salesman Problem (TSP), is introduced here as a viable model.

The TSP is generally stated as follows: a salesman needs to visit $n$ cities and needs to minimize the travel distance starting and finishing in the city of origin. Each city must be visited only once. The solution, then, is a tour. In $n$ cities, there is a total of $n!$ tours. If a particular city of origin is selected \textit{a priori}, then the number of tours is $(n-1)!$. In our case, the objective is to find the tour among $n$ genes of interest that maximizes the sum of the absolute values of pairwise correlations. This tour would then be interpreted as a surrogate for a biological pathway, defined as “a series of actions among molecules in a cell” [6], and more specifically for a genetic signaling pathway. A biological pathway “can provide clues about what goes wrong when a disease strikes.” [6].

As a first approximation, it is proposed that the absolute values of linear correlation coefficients computed among a list of genes of potential biomarkers be used to construct networks such as the one presented in Figure 4, where the TSP can be readily applied. The idea of using a linear statistical correlation is, indeed, widely used in the literature as a means to uncover genetic coexpression. This information, in turn, should help cancer researchers in understanding the disease as well as look for targeted treatments. The paper by Kumari et al. [7] has studied different coexpression measurements, recommending to carry out a preliminary study to determine the most appropriate one for different objectives. It is, then, convenient at this point to resort to the use of the Pearson correlation coefficient as a starting point in this work.

The TSP can, indeed, be understood as an optimization problem. Consider that $c_{ij}$ represents the cost of traveling from city $i$ to city $j$ and let $y_{ij}$ be a binary variable, indicating whether or not the salesman travels from city $i$ to city $j$. Additionally let us define flow variables $x_{ij}$ on each arc $(i,j)$ and assume that the salesman has $n-1$ units available at node 1, which is arbitrarily selected as a “source node”, and he must deliver 1 unit to each of the other nodes [7]. The optimization model is as follows:

Minimize

$$\sum_{(i,j)\in A} c_{ij} y_{ij}$$  \hspace{1cm} (5a)

$$\sum_{1 \leq j \leq n} y_{ij} = 1 \forall i = 1, 2, \ldots, n$$  \hspace{1cm} (5b)
Following the description in [8], let $A' = \{(i,j): y_{ij} = 1\}$ and let $A'' = \{(i,j): x_{ij} > 0\}$. The constraints (5b) and (5c) imply that exactly one arc of $A'$ leaves and enters any node $i$; therefore, $A'$ is the union of node disjoint cycles containing all of the nodes of $N$. In general, any integer solution satisfying (5b) and (5c) will be a union of disjoint cycles; if any such solution contains more than once cycle, they are referred to as subtours, since they pass through only a subset of nodes.

In constraint (5d) $N$ is an $n \times m$ matrix, called the node-arc incidence matrix of the minimum cost flow problem. Each column $N_{ij}$ in the matrix corresponds to the variable $x_{ij}$. The column $N_{ij}$ has a +1 in the $i$th row, a −1 in the $j$th row; the rest of its entries are zero. Constraint (5d) ensures that $A''$ is connected since we need to send 1 unit of flow from node 1 to every other node via arcs in $A''$. The forcing constraints (5e) imply that $A''$ is a subset $A'$. These conditions imply that the arc set $A'$ is connected and thus cannot contain subtours [8].

The TSP is known to be a hard problem to solve to optimality; however, with a manageable number of entities (nodes) optimality is well within reach. In our group’s experience it has been possible to obtain the optimal TSP tour with a list of up to 100 genes in less than 1 hour of computing time in a personal computer. The Branch and Bound—an exact algorithm—was used to this end, as coded in Matlab. An exact algorithm is defined as one capable to arrive to a global optimal solution—provided that one exists—with certainty. Although it is also possible to use heuristics to approach the TSP, it must be understood that a heuristic method by definition does not provide certainty on arriving to a global optimal solution.

Referring back to Figure 4, it should be now apparent that in $n$ genes associated to the nodes in the network, it is possible to obtain pairwise correlations to connect all genes among them resulting in a fully connected network. This network, in turn, can be mathematically translated into formulation (5a)–(5g) to identify the most correlated path. Thus, at the end of this stage, the most correlated path among all candidate genes from Stage 1, will be available as a proxy for a signalling path. The application of this two-stage analysis pipeline is demonstrated next in the context of cervix cancer.
3. Results for Cervix Cancer

3.1. Stage 1

In order to demonstrate the proposed analysis pipelines, this section presents results in cervix cancer previously published in [3]. The database used for this study was introduced in [9] and contained 8 healthy tissues and 25 cervical cancer tissues, all of them with expression level readings for 10,692 genes from a cDNA microarray. The list of 28 potential biomarkers after applying DEA is shown in Table 1. The genes in this list were cross validated for agreement in the direction of expression change in an independent database associated to [10]. As described previously, these genes were extracted from the first 10 frontiers of the analysis. The role of the selected genes in cancer was previously discussed in a previous publication of our group [3]. The fourth column of Table 1 summarizes the types of cancer that where the particular genes were found to be involved following such results.

3.2. Stage 2

Correlation is used in this project as a proxy for inhibitory or excitatory behavior between differences in the expression levels of two genes. As a first step, the linear correlation values between potential biomarkers are obtained. The following step was to arrange the correlation values in a matrix. To construct this matrix, first the differences between control and cancer tissues had to be calculated for each gene. Then, the absolute values of the correlation coefficients were calculated among each pair of genes based on these differences and stored in the said matrix. The absolute correlation values were consequently associated to the arcs in a fully connected graph with nodes representing potential biomarker genes. The resulting graph made possible the use of the formulation of the TSP. The optimal solution to this particular TSP is the tour among the genes of interest with the largest possible correlation, or similarly, the most correlated cyclic path as shown in Figure 5. It must be recalled at this point that there are a total of 28! ≈ 3.04 × 10^{29} ways in which a cyclic path can be drawn among the 28 genes.

The TSP formulation allows a wide range of analyses. In this case, the idea was to test the stability of the TSP solutions. In order to do so, TSP solutions were obtained using increasing numbers of potential biomarkers in the list of genes presented in Table 1 following the increasing order of the efficient frontier in which these were found. Starting with five genes, each time five more genes were introduced until the list was depleted on each case. Path segments that persisted across both databases were identified. Furthermore, path segments that persisted along the entire study were deemed the most stable. The results of this study were then matched against known biological pathways publicly available in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [49]. A python script was written to make this process more efficient. This script is provided in Appendix B. Table 2 summarizes the results for each progressive analysis that introduced five genes at a time. As shown in Table 2, (LRPPRC with MTHFD2) and (RPN1 with COX17) are adjacent in the correlated cyclic path when the optimal solution is obtained for 25 and 28 genes. In addition, gene S100A14 is adjacent to TSPO when the optimal solution for 5, 15, 20, and 25 genes is found.
A search for biological pathways in KEGG databases was conducted, however not every gene could be linked to a pathway. When comparing the known biological pathways with the obtained optimal solutions, for database GSE 7803 [9] and GSE 9750 [10], the only genes that appeared adjacent in the correlated cyclic path for both were COX17 with RPN1 and the only KEGG pathway common to both has the identifier 01100 that corresponds to the collection of Methabolic pathways. On the other hand, for database GSE 7803 [9], medium correlation was observed between genes HNRPA3 with BUD31, and both gene products are present in KEGG pathway 03040 that corresponds to the splicosome. For database GSE 9750 [10], PLCE1 is adjacent to PIK3R1, both gene products share the following KEGG pathways: 04012 that corresponds to the ErbB signaling pathway, 04015 Ras signaling pathway, 04015 Rap1 signaling pathway, 04066 HIF-1 signaling pathway, 04070 Phosphatidylinositol signaling system, 04370 VEGF signaling pathway, 04650 Natural killer cell mediated cytotoxicity, 04660 T cell receptor signaling pathway, 04664 Fc epsilon RI signaling pathway, 04666 Fc gamma R-mediated phagocytosis, 04670 Leukocyte transendothelial migration, 04722 Neurotrophin signaling pathway, 04750 Inflammatory mediator regulation of TRP channels, 04919 Thyroid hormone signaling pathway, 05169 Epstein-Barr virus infection, 05200 Pathways in cancer, 05214 Glioma, 05223 Non-small cell lung cancer, and the 05231 KEGG pathway that corresponds to Choline metabolism in cancer.

In cancer there are chromosomal physical changes that produce gains or losses of certain genes. To explore if the position of the genes in the cyclic path could also provide information about these chromosomal changes, the location of each gene was consider (this information was obtained from [50]). This information is listed in Table 3. All chromosomes in Table 3 have been reported as having changes in cervical cancer, in regions close to the ones where the selected genes belong. It is interesting to note that some of the genes that are neighbors in the cyclic path are also neighbors in their genetic localization.

HIPK1, NUCKS1, SMG7, and CRABP2 are all in chromosome 1, the first two genes of the list are adjacent in the cyclic path and the others are scatter through the cycle. Reported changes in chromosome 1 in cervical cancer include: gains in the 1p region [51–53], increment on the 1q32.1–32.2 genes expression [44], aneusomy of the chromosome [54] among others.

Three genes are in chromosome 2, HNRNPA3, LRPPRC and MTHFD2. There are several changes in chromosome 2 related to cervical cancer, for example reduced expression of genes in 2p has been reported [55], it has also been reported that deletions of the 2q33–q37 are common in cervical carcinoma [56] as well as loss of heterozygosity at 2q35–q37.1 [57].

COX17, RNP1, MAP4, and SMC4 (separated by three genes from the group), and ATP2C (adjacent to SMC4) are all in chromosome 3. Changes in chromosome 3 have been extensively reported for cervical cancer. Gain of chromosome 3q has been reported in pre-cancer and cancer of the cervix (these are some of the reports: [58–61]) while loss of 3p12-p14 has also been observed [62] and loss of heterozygosity on chromosome 3p has been also reported in this cancer [55].
C5orf22 and PIK3R1 are both in chromosome 5. Chromosome 5 is known to have alterations in cervical cancer [61,63–65]. BUD31 and PRSS2 belong to chromosomes 7, there are known changes of this chromosome in cervical cancer [66–68]. SNTG1 and RAD21 are in chromosome 8, examples of reported changes in this chromosome can be found in: [69–72]. Genes SSX1 and GRIA3 are both in X chromosome. Examples of the association of changes in chromosome X in cervical cancer can be found in [73–75]. Genes PFDN4, CASP1, PLC\Epsilon, ICOSLG, GADD45G, SMARCA2, and TSPO are located in different chromosomes, and there are reports for changes in each one of these chromosomes in cervix cancer, for examples the reader is refer to: [10,61,76–89].

The results suggest that the chromosomal gains and losses known for cervical cancer could include bigger regions. It is clear that true experimental validation is critical to further support the results of the proposed pipeline analysis at this point. It is also important, however, to notice its potential for biological discovery. Every time that a biological pathway is discovered, it basically is a problem of selecting a path by systematically choosing pairs of genes with scientific basis. If a mathematical point of view is adopted, this practice implies that the solution is built heuristically as opposed to optimally. This insight has important implications for the adoption of optimization methods in Medicine and Biology.

4. Conclusions

This work proposes a pipeline analysis based on optimization to facilitate the discovery of genetic signaling paths related to cancer and also could provide information about expanded chromosomal regions that are compromised for cases to be studied. In this instance, the method was applied to cervix cancer. The potential of the proposed method is significant if the detection of a biological pathway is understood as a combinatorial problem similar to the Traveling Salesman Problem, for which an optimal solution exists. If positively verified, this point of view could also imply that current biological pathways might have room for improvement to fully capture the signal in microarray experiments, and thus open the possibility of further discovery in the understanding—and fight—against cancer.

Acknowledgments

This work was made possible thanks to the National Institutes of Health (NIH) MARC Grant: T36-GM-095335 Bioinformatics Programs at Minority Institutions. It was also partially supported by BioSEi UPRM grant 330103080301 and PRLSAMP.

Appendix A

Stage 1 of the proposed analysis pipeline involves the use of Multiple Criteria Optimization (MCO). MCO does not require the adjustment of parameters by the users to detect differentially expressed genes, thus it preserves the objectivity and the consistent convergence of the analysis. As a comparative example, a tool like the volcano plot (Figure A1), would require for the user to define different cutoff values to select different genes, thereby biasing the analysis.
**Figure A1.**
A volcano plot. Two cutoff values must be set by the user to decide upon the significance of different genes: one for fold change (x-axis) and one for \( p \)-value (y-axis).

In addition to the evident result of choosing different sets of genes when the analyst picks different sets of cutoff values, this decision also greatly affects the number of genes that are deemed to change their expression significantly, as shown in Table A1.

**Table A1**
An example of how the number of genes deemed significant changes when choosing different cutoff values for fold change and \( p \)-value.

| \( p \)-value | Fold change | Differentially expressed genes (number) | Number of genes Overexpressed | Number of genes Underexpressed |
|---------------|-------------|----------------------------------------|--------------------------------|--------------------------------|
| \( 10^{-2} \)  | 2           | 934                                    | 645                            | 289                            |
| \( 10^{-2} \)  | 8           | 29                                     | 23                             | 6                              |
| \( 10^{-3} \)  | 24          | 2                                      | 1                              | 1                              |
| \( 10^{-7} \)  | 2           | 649                                    | 516                            | 133                            |
| \( 10^{-7} \)  | 8           | 27                                     | 22                             | 5                              |
| \( 10^{-7} \)  | 24          | 2                                      | 1                              | 1                              |
| p-value | Fold change | Differentially expressed genes (number) | Number of genes Overexpressed | Number of genes Underexpressed |
|---------|-------------|------------------------------------------|-------------------------------|-------------------------------|
| 10^{-12} | 2           | 130                                      | 121                           | 9                             |
| 10^{-12} | 8           | 12                                       | 11                            | 1                             |
| 10^{-12} | 24          | 2                                        | 1                             | 1                             |

**Appendix B**

A Python script was written to gather information from KEGG. This is provided in its three parts below.

```
#!/opt/python2.6/bin/python
# Import Comma Separated Value Library …
import csv
import sys
import urllib2
# Open file to be read
ifile = open('results.csv', "rb")
# Create the reader object (in order to read from CSV file)
reader = csv.reader(ifile)
# Create file to be output
ofile = open('details.csv', 'w')
# Create writer in order to write to output file
writer = csv.writer(ofile, delimiter=',', quotechar='', quoting=csv.QUOTE_MINIMAL)
# Function in charge of extracting each genes in the database file
def detailPathwayExtractor():
    for row in reader:
        if (len(row)==1):
            path=row[1]
            try:
                url_to_go_to = "http://rest.kegg.jp/get/" + path
                print url_to_go_to
                handle = urllib2.urlopen(url_to_go_to)
                #read content
                content = handle.read()
                for row_of_file in content.split("\n"):
                    if row_of_file.split() != []:
                        print row_of_file.split()
                        writer.writerow(row_of_file.split())
            # Run the pathway extractor function
            except IOError:
                pass
```

*Microarrays (Basel)*. Author manuscript; available in PMC 2015 September 17.
print "can't open file"
detailPathwayExtractor()
# Close both opened files
ifile.close()
ofile.close()

Part2
#!/opt/python2.6/bin/python
# Import Comma Separated Value Library …
import csv
import sys
import urllib2
# Open file to be read
ifile = open('test.csv', "rb")
# Create the reader object (in order to read from CSV file)
reader = csv.reader(ifile)
# Create file to be output
ofile = open('results.csv', 'w')
# Create writer in order to write to output file
writer = csv.writer(ofile, delimiter=',', quotechar="", quoting=csv.QUOTE_MINIMAL)
# Function in charge of extracting each genes in the database file
def pathwayExtractor():
    for row in reader:
        if (len(row)==4):
            HSA=row[3]
            try:
                url_to_go_to = "http://rest.kegg.jp/link/pathway/hsa:" + HSA
                print url_to_go_to
                handle = urllib2.urlopen(url_to_go_to)
                # read content
                content = handle.read()
                for row_of_file in content.split("\n"):
                    if row_of_file.split() != []:
                        print row_of_file.split()
                        writer.writerow(row_of_file.split())
            except IOError:
                print "can't open file"
                pathwayExtractor()
        # Close both opened files
        ifile.close()
#!/opt/python2.6/bin/python
# Import Comma Separated Value Library
import csv
import sys
import urllib2

# Open file to be read
ifile = open('results.csv', "rb")

# Create the reader object (in order to read from CSV file)
reader = csv.reader(ifile)

# Create file to be output
ofile = open('details.csv', 'w')

# Create writer in order to write to output file
writer = csv.writer(ofile, delimiter=',', quotechar="", quoting=csv.QUOTE_MINIMAL)

# Function in charge of extracting each genes in the database file
def detailPathwayExtractor():
    for row in reader:
        if (len(row) == 1):
            path = row[1]
            try:
                url_to_go_to = "http://rest.kegg.jp/get/" + path
                print url_to_go_to
                handle = urllib2.urlopen(url_to_go_to)
                # read content
                content = handle.read()
                for row_of_file in content.split("n"):
                    if row_of_file.split() != []:
                        print row_of_file.split()
                        writer.writerow(row_of_file.split())
            except IOError:
                print "can't open file"
    detailPathwayExtractor()

# Close both opened files
ifile.close()
ofile.close()

References

1. Fierro AC, Vandenbussche F, Engelen K, Van de Peer Y, Marchal K. Meta analysis of gene expression data within and across species. Curr Genomics. 2008; 9:525–534. [PubMed: 19516959]
2. Owzar K, Barry WT, Jung SH. Statistical considerations for analysis of microarray experiments. Clin Transl Sci. 2011; 4:466–477. [PubMed: 22212230]

3. Sánchez-Peña ML, Isaza CE, Pérez-Morales J, Rodríguez-Padilla C, Castro JM, Cabrera-Ríos M. Identification of potential biomarkers from microarray experiments using multiple criteria optimization. Cancer Medicine. 2013; 2:253–265. [PubMed: 23634293]

4. Watts-Oquendo E, Sánchez-Peña M, Isaza CE, Cabrera-Ríos M. Potential colon cancer biomarker search using more than two performance measures in a multiple criteria optimization approach. P R Health Sci J. 2012; 31:59–63. [PubMed: 22783697]

5. Charnes, A.; Cooper, WW.; Lewin, AY.; Seiford, LM. Data Envelopment Analysis: Theory, Methodology and Applications. Kluwer Academic Publishers; Boston, MA, USA: 1993.

6. National Human Genome Research Institute. [accessed on 10 February 2014] National Institute of Health. Available online: http://www.genome.gov/27530687

7. Kumari S, Nie J, Chen HS, Ma H, Stewart R, Li X, Lu MZ, Taylor WM, Wei H. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS ONE. 2012; 7:e50411. [PubMed: 23226279]

8. Ahuja, RK.; Magnanti, TL.; Orlin, JB. Network Flows: Theory, Algorithms, and Applications. Prentice Hall: Upper Saddle River, NJ, USA: 1993.

9. Zhai Y, Kuck R, Nan B, Ota I, Weiss SJ, Trimble CL, Fenton ER, Cho KR. Gene Expression Analysis of Preinvasive and Invasive Cervical Squamous Cell Carcinomas Identifies HOXC10 as a Key Mediator of Invasion. Cancer Res. 2007; 67:10163–10172. [PubMed: 17974957]

10. Scutt L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, et al. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: Potential role in progression. Gene Chromosome Canc. 2008; 47:755–765.

11. Calmon MF, Rodrigues RV, Kaneto CM, Moura RP, Silva SD, Mota LD, Pinheiro DG, Torres C, de Carvalho AF, Cury PM, et al. Epigenetic silencing of CRABP2 and MX1 in head and neck tumors. Neoplasia. 2009; 11:1329–1339. [PubMed: 20019841]

12. Geiger T, Madden SF, Gallagher WM, Cox J, Mann M. Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res. 2012; 72:2428–2439. [PubMed: 22414580]

13. Williams SJ, Gotley DC, Antalis TM. Human trypsinogen in colorectal cancer. Int J Cancer. 2001; 93:67–73. [PubMed: 11391623]

14. Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, Ramakrishnan SA. Identification and validation of genes involved in gastric tumorigenesis. Cancer Cell Int. 2010; 10:45. [PubMed: 21092330]

15. Chen H, Yuan Y, Zhang C, Luo A, Ding F, Ma J, Yang S, Tian Y, Tong T, Zhan Q, Liu Z. Involvement of S100A14 Protein in Cell Invasion by Affecting Expression and Function of Matrix Metalloproteinase (MMP)-2 via p53-dependent Transcriptional Regulation. J Biol Chem. 2012; 287:17109–17119. [PubMed: 22451655]

16. Sapkota D, Bruland O, Costea DE, Haugen H, Vassstrand EN, Ibrahim SO. S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell-lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9. Eur J Cancer. 2011; 47:600–610. [PubMed: 21074410]

17. Klubo-Gwiezdzinska J, Jensen K, Bauer A, Patel A, Costello J, Burman K, Wartofsky L, Hardwick MJ, Vasko VV. The expression of translocator protein in human thyroid cancer and its role in the response of thyroid cancer cells to oxidative stress. J Endocrinol. 2012; 214:207–216. [PubMed: 22645299]

18. Mukherjee S, Das SK. Translocator protein (TSPO) in breast cancer. Curr Mol Med. 2012; 12:443–457. [PubMed: 22348612]

19. Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, Li Y, Stemke-Hale K, Dyer MD, Zhang F, et al. High Frequency of PIK3R1 and PIK3R2 Mutations in Endometrial Cancer Elucidates a Novel Mechanism for Regulation of PTEN Protein Stability. Cancer Discov. 2011; 1:170–185. [PubMed: 21984976]
20. Nowakowska-Zajdel E, Mazurek U, Ziolkó E, Niedworok E, Fatyga E, Kokot T, Muc-Wierzgoń M. Analysis of expression profile of gene encoding proteins of signal cascades activated by insulin-like growth factors in colorectal cancer. Int J Immunopathol Pharmacol. 2011; 24:781–787. [PubMed: 21978709]

21. Chen X, Wu J, Lu H, Huang O, Shen K. Measuring β-tubulin III, Bcl-2, and ERCC1 improves pathological complete remission predictive accuracy in breast cancer. Cancer Sci. 2012; 103:262–268. [PubMed: 22035021]

22. Cucchiarelli V, Hiser L, Smith H, Frankfurter A, Spano A, Correia JJ, Lobert S. Beta-tubulin isotype classes II and V expression patterns in nonsmall cell lung carcinomas. Cell Motil Cytoskeleton. 2008; 65:675–685. [PubMed: 18613117]

23. Arany I, Ember IA, Tyring SK. All-trans-retinoic acid activates caspase-1 in a dose-dependent manner in cervical squamous carcinoma cells. Anticancer Res. 2003; 23:471–473. [PubMed: 12680251]

24. Nakayama K, Nakayama N, Wang TL, Shih IM. NAC-1 controls cell growth and survival by repressing transcription of Gadd45Gip1, a candidate tumor suppressor. Cancer Res. 2007; 67:8058–8064. [PubMed: 17804717]

25. Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res. 2011; 71:6785–6795. [PubMed: 21880588]

26. Van Duin M, Broyl A, de Knecht Y, Goldschmidt H, Richardson PG, Hop WC, van der Holt B, Joseph-Pietras D, Mulligan G, Neuwich R, et al. Cancer testis antigens in newly diagnosed and relapse multiple myeloma: Prognostic markers and potential targets for immunotherapy. Haematologica. 2011; 96:1662–1669. [PubMed: 21791470]

27. Fu T, He Q, Sharma P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 2011; 71:5445–5454. [PubMed: 21708958]

28. Tjomsland V, Spängeus A, Sandström P, Borch K, Messmer D, Larsson M. Semi mature blood dendritic cells exist in patients with ductal pancreatic adenocarcinoma owing to inflammatory factors released from the tumor. PLoS ONE. 2010; 5:e13441. [PubMed: 20976171]

29. Ripka S, Riedel J, Neesse A, Griesmann H, Buchholz M, Ellenrieder V, Moeller F, Barth P, Gress TM, Michl P. Glutamate receptor GRIA3—Target of CUX1 and mediator of tumor progression in pancreatic cancer. Neoplasia. 2010; 12:659–667. [PubMed: 20689760]

30. Sun A, Tawfik O, Gayed B, Thrashe JB, Hoestje S, Li C, Li B. Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers. Prostate. 2007; 67:203–213. [PubMed: 17075831]

31. Moloney FJ, Lyons JG, Bock VL, Huang XX, Bugeja MJ, Halliday GM. Hotspot mutation of Brahmain non-melanoma skin cancer. J Invest Dermatol. 2009; 129:1012–1015. [PubMed: 18923443]

32. Mougeot JL, Bahrani-Mougeot FK, Lockhart PB, Brennan MT. Microarray analyses of oral punch biopsies from acute myeloid leukemia (AML) patients treated with chemotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 112:446–452. [PubMed: 21862359]

33. Aikawa Y, Nguyen LA, Isono K, Takakura N, Tagata Y, Schmitz ML, Koseki H, Kitabayashi I. Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J. 2006; 25:3955–3965. [PubMed: 16917507]

34. Tian T, Ikeda JJ, Wang Y, Mamat S, Luo W, Aozasa K, Morii E. Role of leucine-rich pentatricopeptide repeat motif-containing protein (LRPPRC) for anti-apoptosis and tumorigenesis in cancers. Eur J Cancer. 2012; 48:2462–2473. [PubMed: 22326293]

35. Ziółkowski P, Gamian E, Osiecka B, Zougman A, Wiśniewski JR. Immunohistochemical and proteomic evaluation of nuclear ubiquitious casein and cyclin-dependent kinases substrate in invasive ductal carcinoma of the breast. J Biomed Biotechnol. 2009; 2009:919645. [PubMed: 20069058]

36. Miyoshi N, Ishii H, Mimori K, Nishida N, Tokuoka M, Akita H, Sekimoto M, Doki Y, Mori M. Abnormal expression of PFDN4 in colorectal cancer: A novel marker for prognosis. Ann Surg Oncol. 2010; 17:3030–3036. [PubMed: 20552408]
37. Boukakis G, Patrinou-Georgoula M, Lekarakou M, Valavanis C, Guialis A. Deregulated expression of hnRNP A/B proteins in human non-small cell lung cancer: Parallel assessment of protein and mRNA levels in paired tumour/non-tumour tissues. BMC Cancer. 2010; 10:434. [PubMed: 20716340]

38. Atienza JM, Roth RB, Rosette C, Smylie KJ, Kammerer S, Rehbock J, Ekbloom J, Denissenko MF. Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. Mol Cancer Ther. 2005; 4:361–368. [PubMed: 15767545]

39. Shimizu S, Suzukawa K, Kodera T, Nagasawa T, Abe T, Taniwaki M, Yagasaki F, Tanaka H, Fujisawa S, Johansson B, et al. Identification of breakpoint cluster regions at 1p36.3 and 3q21 in hematologic malignancies with t(1;3)(p36;q21). Genes Chromosome Canc. 2000; 27:229–238.

40. Andrew AS, Gui J, Sanderson AC, Mason RA, Morlock EV, Schned AR, Kelsey KT, Marsit CJ, Moore JH, Karagas MR. Bladder cancer SNP panel predicts susceptibility and survival. Hum Genet. 2009; 125:527–539. [PubMed: 19252927]

41. Xu X, Qiao M, Zhang Y, Jiang Y, Wei P, Yao J, Gu B, Wang Y, Lu J, Wang Z, et al. Quantitative proteomics study of breast cancer cell lines isolated from a single patient: Discovery of TIMM17A as a marker for breast cancer. Proteomics. 2010; 10:1374–1390. [PubMed: 20198662]

42. Suzuki C, Daigo Y, Kikuchi T, Katagiri T, Nakamura Y. Identification of COX17 as a therapeutic target for non-small cell lung cancer. Cancer Res. 2003; 63:7038–7041. [PubMed: 14612491]

43. Grice DM, Vetter I, Faddy HM, Kenny PA, Roberts-Thomson SJ, Monteith GR. Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem. 2010; 285:37458–37466. [PubMed: 20837466]

44. Wilting SM, de Wilde J, Meijer CJ, Berkhof J, Yi Y, van Wieringen WN, Braakhuis BJ, Meijer GA, Ylstra B, Snijders PJ, et al. Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer. 2008; 47:890–905. [PubMed: 18618715]

45. Wang M, Zhang R, He J, Qiu L, Li J, Wang Y, Sun M, Yang Y, Wang J, Yang J, et al. Potentially functional variants of PLCE1 identified by GWASs contribute to gastric adenocarcinoma susceptibility in an eastern Chinese population. PLoS ONE. 2012; 7:e31932. [PubMed: 22412849]

46. Danielsen SA, Cekaite L, Áglesen TH, Sven A, Nesbakken A, Thiiis-Evensen E, Skothemo RI, Lind GE, Lothe RA. Phospholipase C isozymes are deregulated in colorectal cancer—insights gained from gene set enrichment analysis of the transcriptome. PLoS ONE. 2011; 6:e24419. [PubMed: 21909432]

47. Chang H, Jeung HC, Jung JJ, Kim TS, Rha SY, Chung HC. Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat. 2011; 125:55–63. [PubMed: 20224928]

48. Kulawiec M, Safina A, Desouki MM, Still I, Matsui S, Bakin A, Singh KK. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther. 2008; 7:1732–1743. [PubMed: 19151587]

49. [accessed on 12 April 2015] KEGG: Kyoto Encyclopedia of Genes and Genomes. Available online: http://www.genome.jp/kegg/

50. Rehban M, Chalifa-Caspi V, Prlitsky J, Lancet D. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 1998; 14:656–664. [PubMed: 9789091]

51. Wang J, Tai LS, Tzang CH, Fong WF, Guan XY, Yang M. 1p31, 7q21 and 18q21 chromosomal aberrations and candidate genes in acquired vinblastine resistance of human cervical carcinoma KB cells. Onco1 Rep. 2008; 19:1155–1164. [PubMed: 18425371]

52. Lee M, Nam ES, Jung SH, Kim SY, Lee SJ, Yoon JH, Lee NW, Jeon S, Choi JS, Cho CH, et al. 1p36.22 region containing PGD gene is frequently gained in human cervical cancer. J Obstet Gynaecol Res. 2014; 40:545–553. [PubMed: 24125036]

53. Wilting SM, Steenbergen RD, Tijssen M, van Wieringen WN, Helmerhorst TJ, van Kemenade FJ, Bleeker MC, van de Wiel MA, Carvalho B, Meijer GA, et al. Chromosomal signatures of a subset
of high-grade premalignant cervical lesions closely resemble invasive carcinomas. Cancer Res. 2009; 69:647–655. [PubMed: 19147580]

54. Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Muraira-Rodríguez M, Said-Fernández S, Cerda-Flores RM. Association between the stages of cervical cancer and chromosome 1 aneusomy. Cancer Genet Cytogenet. 2005; 159:44–47. [PubMed: 15860356]

55. Kozłowski L, Filipowski T, Rucinska M, Pepinski W, Janica J, Skawronska M, Poznanski J, Wojtukiewicz MZ. Loss of heterozygosity on chromosomes 2p, 3p, 18q21.3 and 11p15.5 as a poor prognostic factor in stage II and III (FIGO) cervical cancer treated by radiotherapy. Neoplasma. 2006; 53:440–443. [PubMed: 17013540]

56. Rao PH, Arias-Pulido H, Lu XY, Harris CP, Vargas H, Zhang FF, Narayan G, Schneider A, Terry MB, Murty VV. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC Cancer. 2004; 4:5. [PubMed: 15018632]

57. Edelmann J, Richter K, Hänel C, Hering S, Horn LC. X chromosomal and autosomal loss of heterozygosity and microsatellite instability in human cervical carcinoma. Int J Gynecol Cancer. 2006; 16:1248–1253. [PubMed: 16803513]

58. Thomas LK, Bermejo JL, Vinokurova S, Jensen K, Bierkens R, Bergmann M, von Knebel Doeberitz M. Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract—A systematic review and meta-analysis. Eur J Cancer. 2014; 50:85–98. [PubMed: 24054023]

59. Wright TC, Campaço J, Romano P, Grazioni V, Verma Y, Kershner E, Tafas T, Kilpatrick MW. Amplification of the 3q chromosomal region as a specific marker in cervical cancer. Am J Obstet Gynecol. 2015; 213.1016/j.ajog.2015.02.001

60. Policht FA, Sonc M, Sitalo S, Ohare A, Ashfaq R, Muller CY, Morrison LE, King W, Sokolova IA. Analysis of genetic copy number changes in cervical disease progression. BMC Cancer. 2010; 10:432. [PubMed: 20712890]

61. Luhn P, Houldsworth J, Cahill L, Schimmam M, Castle PE, Zune RE, Dunn ST, Gold MA, Walker J, Wentzensen N. Chromosomal gains measured in cytology samples from women with abnormal cervical cancer screening results. Gynecol Oncol. 2013; 130:595–600. [PubMed: 23769811]

62. Lando M, Wilting SM, Snipstad K, Clancy T, Bierkens R, Aarnes EK, Holden M, Stokke T, Sundfør K, Holm R, et al. Identification of eight candidate target genes of the recurrent 3p12-p14 loss in cervical cancer by integrative genomic profiling. J Pathol. 2013; 230:59–69. [PubMed: 23335387]

63. Johnson LG, Schwartz SM, Malkki M, Du Q, Petersdorf EW, Galloway DA, Madeleine MM. Risk of cervical cancer associated with allergies and polymorphisms in genes in the chromosome 5 cytokine cluster. Cancer Epidemiol Biomarkers Prev. 2011; 20:199–207. [PubMed: 21071541]

64. Scotto L, Narayan G, Nandula SV, Subramaniyam S, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Schneider A, Arias-Pulido H, et al. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol Cancer. 2008; 7:58. [PubMed: 18559093]

65. Huang FY, Chiu PM, Tam LF, Kwok YK, Lau ET, Tang MH, Ng TY, Liu VW, Cheung AN, Ngan HY. Semi-quantitative fluorescent PCR analysis identifies PRKAA1 on chromosome 5 as a potential candidate cancer gene of cervical cancer. Gynecol Oncol. 2006; 103:219–225. [PubMed: 16595147]

66. Schrevel M, Gorter A, Kolkman-Uljee SM, Trimbos JB, Fleuren GJ, Jordanova ES. Molecular mechanisms of epidermal growth factor receptor overexpression in patients with cervical cancer. Mod Pathol. 2011; 24:720–728. [PubMed: 21252859]

67. Thein A, Trková M, Fox M, Parrington J. The application of comparative genomic hybridization to previously karyotyped cervical cancer cell lines. Cancer Genet Cytogenet. 2000; 116:59–65. [PubMed: 10616535]

68. Mian C, Bancher D, Kohlberger P, Kainz C, Haitel A, Czerwenka K, Stani J, Breitenecker G, Wiener H. Fluorescence in situ hybridization in cervical smears: Detection of numerical aberrations of chromosomes 7, 3, and X and relationship to HPV infection. Gynecol Oncol. 1999; 75:14–46. [PubMed: 10502423]
69. Ferber MJ, Eilers P, Schuuring E, Fenton JA, Fleuren GJ, Kenter G, Szuhai K, Smith DI, Raap AK, Brink AA. Positioning of cervical carcinoma and Burkitt lymphoma translocation breakpoints with respect to the human papillomavirus integration cluster in FRA8C at 8q24.13. Cancer Genet Cytogenet. 2004; 154:1–9. [PubMed: 15381365]

70. Sokolova I, Algeciras-Schimnich A, Song M, Sitailo S, Policht F, Kipp BR, Voss JS, Halling KC, Ruth A, King W, et al. Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn. 2007; 9:604–611. [PubMed: 17975027]

71. Bhattacharya N, Singh RK, Mondal S, Roy A, Mondal R, Roychowdhury S, Panda CK. Analysis of molecular alterations in chromosome 8 associated with the development of uterine cervical carcinoma of Indian patients. Gynecol Oncol. 2004; 95:352–362. [PubMed: 15491757]

72. Seng TJ, Low JS, Li H, Cui Y, Goh HK, Wong ML, Srivastava G, Sridransky D, Califano J, Steenbergen RD, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene. 2007; 26:934–944. [PubMed: 16862168]

73. Della A, Torhorst J, Gaudenz R, Mihatsch MJ, Moeh H. DNA copy number changes in cervical adenocarcinoma. Clin Cancer Res. 2003; 9:2985–2991. [PubMed: 12912946]

74. Marzano R, Corrado G, Merola R, Sbrilli C, Guadagni F, Vizza E, Del Nonno F, Carosi M, Galati MM, Sperduti I, Cianciulli AM. Analysis of chromosomes 3, 7, X and the EGFR gene in uterine cervical cancer progression. Eur J Cancer. 2004; 40:1624–1629. [PubMed: 15196550]

75. Hopman AH, Smedts F, Dignum W, Ummelen M, Sonke G, Mravunac M, Vooijs GP, Speel EJ, Ramaekers FC. Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol. 2004; 202:23–33. [PubMed: 14694518]

76. Tabach Y, Kogan-Sakin I, Buganim Y, Solomon H, Goldfinger N, Hovland R, Ke XS, Oyan AM, Kalland KH, Rotter V, et al. Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. PLoS One. 2011; 6:e14632. [PubMed: 21297939]

77. Lorenzetto E, Brenca M, Boeri M, Verri C, Piccinin E, Gasparini P, Facchinetti F, Rossi S, Salvatore G, Massimino M, et al. YAP1 acts as oncogenic target of 11q22 amplification in multiple cancer subtypes. Oncotarget. 2014; 5:2608–2621. [PubMed: 24810989]

78. Kehrmann A, Truong H, Repenning A, Boger R, Klein-Hitpass L, Pascheberg U, Beckmann A, Opalka B, Kleine-Lowinski K. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13. Cancer Genet. 2013; 206:279–292. [PubMed: 24042169]

79. Mazumder Indra D, Mitra S, Roy A, Mondal RK, Basu PS, Roychoudhury S, Chakravarty R, Panda CK. Alterations of ATM and CADM1 in chromosomal 11q22.3–23.2 region are associated with the development of invasive cervical carcinoma. Hum Genet. 2011; 130:735–748. [PubMed: 21643982]

80. Huang KF, Lee WY, Huang SC, Lin YS, Kang CY, Liou CP, Tzeng CC. Chromosomal gain of 3q and loss of 11q often associated with nodal metastasis in early stage cervical squamous cell carcinoma. J Formos Med Assoc. 2007; 106:894–902. [PubMed: 18063510]

81. Rizvi MM, Alam MS, Mehdi SJ, Ali A, Batra S. Allelic loss of 10q23.3, the PTEN gene locus in cervical carcinoma from Northern Indian population. Pathol Oncol Res. 2012; 18:309–313. [PubMed: 21901275]

82. Wang S, Li Y, Han F, Hu J, Yue L, Yu Y, Zhang Y, He J, Zheng H, Shi S, Fu X, Wu H. Identification and characterization of MARVELD1, a novel nuclear protein that is down-regulated in multiple cancers and silenced by DNA methylation. Cancer Lett. 2009; 282:77–86. [PubMed: 19364627]

83. Poignée M, Backsch C, Beer K, Jansen L, Wagenbach N, Stanbridge EJ, Kirchmaier R, Schneider A, Dürst M. Evidence for a putative senescence gene locus within the chromosomal region 10p14-p15. Cancer Res. 2001; 61:7118–7121. [PubMed: 11585743]
84. Amiel A, Kolodizner T, Fishman A, Gaber E, Klein Z, Beyth Y, Fejgin MD. Replication pattern of the p53 and 21q22 loci in the premalignant and malignant stages of carcinoma of the cervix. Cancer. 1998; 83:1966–1971. [PubMed: 9806655]

85. Simpson S, Woodworth CD, DiPaolo JA. Altered expression of Erg and Ets-2 transcription factors is associated with genetic changes at 21q22.2–22.3 in immortal and cervical carcinoma cell lines. Oncogene. 1997; 14:2149–2157. [PubMed: 9174050]

86. Lennerz JK, Perry A, Mills JC, Huettner PC, Pfeifer JD. Mucoepidermoid carcinoma of the cervix: another tumor with the (11;19)-associated CRTC1-MAML2 gene fusion. Am J Surg Pathol. 2009; 33:835–843. [PubMed: 19092631]

87. Miyai K, Furugen Y, Matsumoto T, Iwabuchi K, Hirose S, Kinoshita K, Fujii H. Loss of heterozygosity analysis in uterine cervical adenocarcinoma. Gynecol Oncol. 2004; 94:115–120. [PubMed: 15262128]

88. Engelmark MT, Ivansson EL, Magnusson JJ, Gustavsson IM, Wyöni PI, Ingman M, Magnusson PK, Gyllensten UB. Polymorphisms in 9q32 and TSCOT are linked to cervical cancer in affected sib-pairs with high mean age at diagnosis. Hum Genet. 2008; 123:437–443. [PubMed: 18392855]

89. Jee KJ, Kim YT, Kim KR, Aalto Y, Knuutila S. Amplification at 9p in cervical carcinoma by comparative genomic hybridization. Anal Cell Pathol. 2001; 22:159–163. [PubMed: 11455035]
Figure 1.
Representation of a multiple criteria optimization problem with two performance measures.
Figure 2.
Multiple Criteria Optimization Problem solved using Data Envelopment Analysis (BCC model). The efficient solutions are identified through the use of piecewise-linear segments.
Figure 3.
A case with genes characterized by two performance measures. Referring to this figure, and following the proposed method, at this point it is recommended to identify the first 10 efficient frontiers. This can be easily done by identifying the genes in the first efficient frontier through DEA, then removing them from the set and continue with a second DEA iteration.
Figure 4.
Representation of the many options for a cyclic path for 5 genes.
Figure 5.
Highest Correlated Cyclic Path among the 28 genes identified in Stage 1.
List 28 genes found through DEA as being differentially expressed in cervix cancer and cross validated for the direction of expression change [3].

| Gene Probe | Gene Name | Sign of expression change from healthy tissues to cancer tissues | Examples of cancer types where the gene is involved | Reference |
|------------|-----------|---------------------------------------------------------------|----------------------------------------------------|-----------|
| 202575_at  | CRABP2    | -                                                             | Head and Neck, Breast                               | [11,12]   |
| 205402_x_at| PRSS2     | -                                                             | Colorectal, Gastric Tumorigenesis                   | [13,14]   |
| 218677_at  | S100A14   | -                                                             | Esophageal squamous cell carcinoma cells, oral squamous cell carcinoma | [15,16]   |
| 202096_s_at| TSPO      | -                                                             | Thyroid, Breast                                     | [17,18]   |
| 212349_at  | PIK3R1    | -                                                             | Endometrial, Colorectal                              | [19,20]   |
| 212567_s_at| MAP4      | -                                                             | Breast, non small cell lung carcinomas              | [21,22]   |
| 211366_x_at| CASP1     | -                                                             | Cervical squamous carcinoma cells                   | [23]      |
| 212889_x_at| GADD45GIP1| -                                                             | SKOV3 and HeLa cell lines                           | [24]      |
| 206626_x_at| SSX1      | -                                                             | Prostate, multiple myeloma                          | [25,26]   |
| 213450_s_at| ICOSLG    | -                                                             | Metastatic melanoma, ductal pancreatic adenocarcinoma | [27,28]   |
| 220405_at  | SNTG1     | -                                                             |                                                   |           |
| 208032_s_at| GRIA3     | -                                                             | Pancreatic                                          | [29]      |
| 205690_s_at| BUD31     | -                                                             |                                                   |           |
| 206543_at  | SMARCA2   | -                                                             | Prostate, Skin                                      | [30,31]   |
| 212291_at  | HIPK1     | +                                                             | Acute myeloid leukemia                               | [32,33]   |
| 211615_s_at| LRPPRC    | +                                                             | Lung adenocarcinoma cell lines, esophageal squamous cell carcinoma, stomach, colon, mammary and endometrial adenocarcinoma, and lymphoma | [34]      |
| 222027_at  | NUCKS1    | +                                                             |                                                   | [35]      |
| 205362_s_at| PFDN4     | +                                                             | Colorectal                                          | [36]      |
| 211929_at  | HNRNPA3   | +                                                             | Non-small cell lung cancer                          | [37]      |
| 203738_at  | C5orf22   | +                                                             |                                                   |           |
| 201794_s_at| SMG7      | +                                                             |                                                   |           |
| 200607_s_at| RAD21     | +                                                             | Breast                                             | [38]      |
| 201011_at  | RPN1      | +                                                             | Hematologic malignancies                            | [39]      |
| Gene Probe    | Gene Name | Sign of expression change from healthy tissues to cancer tissues | Examples of cancer types where the gene is involved | Reference   |
|---------------|-----------|---------------------------------------------------------------|---------------------------------------------------|-------------|
| 201761_at     | MTHFD2    | +                                                             | Bladder, breast                                   | [40,41]     |
| 203880_at     | COX17     | +                                                             | Non-small cell lung cancer                        | [42]        |
| 212255_at     | ATP2C1    | +                                                             | Breast, Cervical                                  | [43,44]     |
| 205112_at     | PLCE1     | +                                                             | Gastric adenocarcinoma, colorectal                | [45,46]     |
| 201663_s_at, 201664_at | SMC4 | +                                                             | Breast, cervical                                  | [9,47,48]   |
Table 2

Adjacent genes in the solutions for the correlated cyclic path found adding five genes at a time.

| Number of Genes | Adjacent Genes                                                                 |
|-----------------|--------------------------------------------------------------------------------|
| 5               | (CRABP2 with PRSS2) and (S100A14 with TSPO)                                    |
| 10              | (PIK3R1 with MAP4) and (GADD45GIP1 with ICOSLG)                                |
| 15              | (SSX1 with BUD31), (ICOSLG with SNTG1), and (S100A14 with TSPO)                 |
| 20              | (LRPPRC with C5orf22) and (S100A14 with TSPO)                                  |
| 25              | (S100A14 with TSPO), (SSX1 with GRIA3), (LRPPRC with MTHFD2), (RAD21 with BUD31), and (RPN1 with COX17) |
| 28              | (LRPPRC with MTHFD2) and (RPN1 with COX17)                                    |
Table 3

Selected genes localization.

| Gene     | Location |
|----------|----------|
| HIPK1    | 1p13.2   |
| NUCKS1   | 1q32.1   |
| SMG7     | 1q25.3   |
| CRABP2   | 1q21.3   |
| S100A14  | 1q21.1   |
| HNRNPA3  | 2q31.2   |
| LRPPRC   | 2p21     |
| MTHFD2   | 2p13.1   |
| SMC4     | 3p26.1   |
| ATP2C    | 3q22.1   |
| RPN1     | 3q21.3   |
| MAP4     | 3p21.31  |
| COX17    | 3q13.33  |
| CSorf22  | 5p13.3   |
| PIK3R1   | 5q13.1   |
| BUD31    | 7q22.1   |
| PRSS2    | 7q34     |
| SNTG1    | 8q11.21  |
| RAD21    | 8q24.11  |
| SSX1     | Xp11.23  |
| GRIA3    | Xq25     |
| PFDN4    | 20q13.2  |
| CASP1    | 11q22.3  |
| PLCE1    | 10q23.33 |
| ICOSLG   | 21q22.3  |
| GADD45G  | 19p13.2  |
| SMARCA2  | 9p22.3   |
| TSPO     | 22q13.31 |