Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer

Sayeh Savari, Katyayni Vinnakota, Yuan Zhang, Anita Sjölander

Sayeh Savari, Katyayni Vinnakota, Yuan Zhang, Anita Sjölander, Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden

Author contributions: Savari S and Vinnakota K contributed equally to this work; all authors discussed, read and approved the manuscript.

Correspondence to: Anita Sjölander, Professor, Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Jan Waldenströms gata 35, SE-205 02 Malmö, Sweden. anita.sjolander@med.lu.se

Telephone: +46-40-391168 Fax: +46-40-391177

Received: October 6, 2013 Revised: November 16, 2013 Accepted: December 5, 2013 Published online: January 28, 2014

Abstract

Long-standing inflammation has emerged as a hallmark of neoplastic transformation of epithelial cells and may be a limiting factor of successful conventional tumor therapies. A complex milieu composed of distinct stromal and immune cells, soluble factors and inflammatory mediators plays a crucial role in supporting and promoting various types of cancers. An augmented inflammatory response can predispose a patient to colorectal cancer (CRC). Common risk factors associated with CRC development include diet and lifestyle, altered intestinal microbiota and commensals, and chronic inflammatory bowel diseases. Cysteinyl leukotrienes are potent inflammatory metabolites synthesized from arachidonic acid and have a broad range of functions involved in the etiology of various pathologies. This review discusses the important role of cysteinyl leukotriene signaling in linking inflammation and CRC.

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Eicosanoids; Cysteinyl leukotrienes; CysLT1R; CysLT2R; Inflammation; Colorectal cancer

Core tip: Despite several advances in diagnostic and therapeutic options, colorectal cancer (CRC) continues to be a major health problem and one of the leading causes of cancer-related deaths. The inflammatory milieu has been widely recognized as one of the enabling characteristics of cancer development. Cysteinyl leukotrienes are pro-inflammatory eicosanoids implicated in chronic inflammatory bowel diseases and CRC development. Hence, targeting cysteinyl leukotrienes and their receptors could provide alternative therapeutic approaches or be used in combination with existing therapies for more efficient treatment of CRC.

Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol 2014; 20(4): 968-977 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i4/968.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i4.968

INTRODUCTION

Colorectal cancer (CRC) is a global health care burden, with more than 1 million new cases diagnosed every year. It is the third most common malignancy and the fourth leading cause of cancer-related deaths worldwide[1]. A diet high in fat but low in fiber, excessive alcohol consumption, obesity and lack of physical activity, disruption of normal gut microbiota and the presence of long-term inflammatory bowel diseases (IBDs) such as ulcerative colitis (UC) and Crohn's disease (CD) predispose to CRC. Inflammation is a host-driven response to internal and external stimuli to counter non-self or self-molecules and maintain tissue homeostasis. However, chronic inflamma-
Eicosanoids can be a major health problem in allergic, cardiovascular, fibrotic, local and systemic inflammatory diseases and several cancers\cite{10-13}. In 1863, Rudolf Virchow was the first to speculate about the role of long-term inflammation in cancer based on his observations that cancerous tissues were frequently infiltrated by leukocytes\cite{14-18}. Current epidemiological data indicate that more than 25% of all cancers are related to long-term infections and other types of unresolved inflammation\cite{15-17}. Evidence from observational studies and randomized trials concerning the protective action of non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin have indicated not only a reduced long-term risk of esophageal, gastric, biliary, breast, prostate, lung, and CRC but also a lowered risk of metastasis\cite{14-18}. Inflammation present in the tumor microenvironment is characterized by high leukocyte infiltration, ranging in size, distribution and composition, such as tumor-associated macrophages (TAMs), mast cells, dendritic cells (DCs), natural killer cells (NKs), neutrophils, eosinophils and lymphocytes\cite{19-21}. These cells produce a variety of cytotoxic mediators such as reactive oxygen and nitrogen species, serine and cysteine proteases, membrane-perforating agents, matrix metalloproteinases, pro-inflammatory cytokines, interferons (IFNs) and increased levels of enzymes such as cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and phospholipase A\textsubscript{2} (PLA\textsubscript{2}), hence contributing to carcinogenesis\cite{22-23}. This review addresses the role of cysteiny1 leukotrienes in inflammation-induced colorectal carcinogenesis.

EICOSANOIDS

Eicosanoids, from the Greek word “eicosa” meaning “20,” are biologically active lipophilic molecules predominantly metabolized from arachidonic acid (AA), a 20-carbon polyunsaturated essential fatty acid, that are involved in physiological processes such as inflammation\cite{24-26}. AA belongs to the ω-6 family of polyunsaturated fatty acids and is usually found esterified at the second carbon position in the phospholipids of membranes. It serves as a precursor to several lipid pro-inflammatory mediators such as prostaglandins (PGs), prostacyclins, thromboxanes (TXAs), lipoxins and leukotrienes (LTs), which have individual as well as overlapping functions in acute and chronic inflammation\cite{20}. Aberrant AA metabolism is often linked to production of pro-inflammatory eicosanoids, chronic inflammatory diseases and carcinogenesis. The first eicosanoids were discovered in the 1960s, although in 1930 scientists had found that certain substances present in biological fluids such as sputum had the potential to induce contraction and relaxation in smooth muscles; they termed them “slow-reacting substances of anaphylaxis.” Despite these early observations, it was not until 1979 that “leukotrienes” were identified and defined by Samuelsson and co-workers for their biological effects in inflammatory processes\cite{27}. On account of their fundamental and seminal work on different eicosanoids, mainly the prostaglandins, and for their discovery of the role of anti-inflammatory compounds such as aspirin on prostaglandin metabolism, the scientists Bengt Samuelsson, John Vane and Sune Bergström were awarded the Nobel Prize for Physiology and Medicine in 1982.

AA, which is stored as diacylglycerol (DAG), is released from the phosphatidylinositol 4,5-bisphosphate (PIP\textsubscript{2}) present in the outer nuclear envelope of cells, from which it is mobilized into the cytoplasm either by activation of calcium-dependent cytosolic PLA\textsubscript{2} or by the combined action of phospholipase C (PLC) and DAG lipase\cite{26,28}. Once in the cytosol, AA can be enzymatically metabolized in a three-directional manner either by cytochrome P450 or by the COX pathway into prostaglandins, prostacyclins or thromboxanes, or through the 5-LOX pathway into leukotrienes A\textsubscript{4} (LTA\textsubscript{4}), B\textsubscript{4} (LTB\textsubscript{4}), C\textsubscript{4} (LTC\textsubscript{4}), D\textsubscript{4} (LTD\textsubscript{4}) and E\textsubscript{4} (LTE\textsubscript{4}) (Figure 1). The last three alternative derivatives to LTA\textsubscript{4} are collectively termed “cysteiny1 leukotrienes” (CysLTs) owing to the presence of a cysteine residue and are structurally similar but functionally distinct. The role of these eicosanoids in maintaining intestinal epithelial cell homeostasis is well documented\cite{29-32}. Various epidemiological, clinical, and laboratory studies have shown that dysregulation of the COX and LOX pathways results in chronic inflammation and subsequently cancer\cite{14,29}.

LEUKOTRIENES AND THEIR RECEPTORS

The term leukotriene is derived from the two words *leuko* for white blood cells and *triene*, meaning three conjugated double bonds, indicating that the ability to generate LTs from AA is largely restricted to leukocytes\cite{20}. Synthesis of LTs is initiated by 5-LOX in concert with 5-lipoxygenase-activating protein (FLAP). The latter does not exhibit any enzymatic activity but facilitates the interaction between 5-LOX and its substrate AA. The first step in this pathway is oxygenation of AA to yield unstable 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which immediately undergoes dehydration to form LTA\textsubscript{4}. Further metabolism of LTA\textsubscript{4} either generates LTB\textsubscript{4} by the action of LTA\textsubscript{4} hydrolase (LTA\textsubscript{4}-H) or leads to conjugation with glutathione in the presence of LTC\textsubscript{4} synthase (LTC\textsubscript{4}-S) or glutathione S-transferase to yield LTC\textsubscript{4}. After carrier-mediated transport of LTB\textsubscript{4} and LTC\textsubscript{4} to the extracellular milieu, LTC\textsubscript{4} can be further metabolized to LTD\textsubscript{4} through the cleavage of glutamic acid from the glutathione moiety, and additional glycine cleavage yields LTE\textsubscript{4}\cite{28,33} (Figure 1).

5-LOX is expressed predominantly by neutrophils, eosinophils, monocytes, macrophages and mast cells. Although nonleukocytes express 5-LOX and FLAP to a lesser extent and are not believed to synthesize appreciable amounts of LTs, expression of LTA\textsubscript{4}-H and/or LTC\textsubscript{4}-S, uptake of exogenous LTA\textsubscript{4} and further metabolism is possible, via a process referred to as transcellular biosynthesis\cite{34}. CysLT signaling is initiated upon binding of a li-
Arachidonic acid (AA) is a polyunsaturated fatty acid found in the phospholipids of cell membranes. AA is metabolized into the cytoplasm mostly by the activation of calcium-dependent cytosolic phospholipase A2 (cPLA2). Free AA in the cytosol can be enzymatically metabolized to eicosanoids through three major pathways: the cytochrome P450, cyclooxygenase (COX) and/or 5-lipoxygenase (5-LOX) pathways. In the P450 pathway, AA is metabolized to epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs) and hydroperoxyeicosatetraenoic acids (HPETEs). In the COX pathway, AA is enzymatically converted to the intermediate prostaglandin H2 (PGH2), which is then sequentially metabolized to prostanoids, including prostaglandins (PGs), such as PGE2, PGF2α, PGD2 and PGI2, and thromboxanes (TXs) such as TXA2 by specific prostaglandin and thromboxane synthases. In the LOX pathway, AA is metabolized by 12- and 15-LOX to 8-, 12- and 15-HPETE or by 5-LOX and 5-lipoxygenase activating protein (FLAP) to intermediary 5-HPETE. 5-HPETE is further processed as PGE2, PGD2, PGI2 and TXA2.

Figure 1: Overview of arachidonic acid metabolism. Arachidonic acid (AA) is a polyunsaturated fatty acid found in the phospholipids of cell membranes. AA is mobilized into the cytoplasm mostly by the activation of calcium-dependent cytosolic phospholipase A2 (cPLA2). Free AA in the cytosol can be enzymatically metabolized to eicosanoids through three major pathways: the cytochrome P450, cyclooxygenase (COX) and/or 5-lipoxygenase (5-LOX) pathways. In the P450 pathway, AA is metabolized to epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs) and hydroperoxyeicosatetraenoic acids (HPETEs). In the COX pathway, AA is enzymatically converted to the intermediate prostaglandin H2 (PGH2), which is then sequentially metabolized to prostanoids, including prostaglandins (PGs), such as PGE2, PGF2α, PGD2 and PGI2, and thromboxanes (TXs) such as TXA2 by specific prostaglandin and thromboxane synthases. In the LOX pathway, AA is metabolized by 12- and 15-LOX to 8-, 12- and 15-HPETE or by 5-LOX and 5-lipoxygenase activating protein (FLAP) to intermediary 5-HPETE. 5-HPETE is further processed to form leukotrienes (LTs), the first of which is the unstable leukotriene A4 (LTA4). LTA4 is subsequently converted to leukotriene B4 (LTB4) by LTA4 hydrolase or together with glutathione to leukotriene C4 (LTC4) by LTC4 synthase and glutathione-S-transferase. LTC4 is converted by ubiquitous enzymes to form leukotriene D4 (LTD4) and leukotriene E4 (LTE4). The members of the multidrug resistance-associated protein (MRP) family are efflux transporters for both PGs and LTs. The cysteinyl leukotrienes (CysLTs) LTD4, LTE4 and LTD4 act via G protein-coupled receptors CysLT1R and CysLT2R at the cell surface and induce different signaling mechanisms.
level observed in the spleen, liver, and lymphocytes[51].

Cysteinyl leukotrienes and their receptors in colorectal cancer

IBD and colorectal cancer

Inflammation and CRC initiation and dissemination go hand in hand[10,52]. The most well-established connection exists between IBD-both UC and CD- and CRC[53-55]. “IBD” is a name given to a group of prolonged inflammatory disorders of the intestinal tract associated with debilitating symptoms and epithelial damage. The risk of developing CRC is 30%-50% higher in patients with IBD[56,57]. IBDs are characterized by increased leukocyte infiltration into the intestinal wall, where they can induce non-specific inflammation through activation and production of AA-derived pro-inflammatory metabolites such as LTs and PGs and subsequent tissue injury. Thus, the gastrointestinal tract is richly supplied with these eicosanoids that mediate several gastrointestinal diseases, including cancers. High levels of LTs such as LTE4 have been detected in the urine of patients with UC and CD[58,59]. Among CysLTs, the presence of LTD4 at an IBD site increases the risk of consequential cancer development, and specific LTD4 antagonists have been shown to reduce colonic inflammation[60]. Although UC is fundamentally similar to CD, a few differences exist, primarily the presentation of a cytokine profile with a T helper 2 (Th2) antibody-mediated response[61]. CD is an autoimmune disease associated with Th helper 1 (Th1)-mediated cytokines such as interleukin-12 (IL-12), IFN-γ, and tumor necrosis factor-alpha (TNF-α)[62,63].

Colitis-associated cancer (CAC) is known to be highly infiltrated by several cells of the innate immune system, including neutrophils, mast cells, NKs, DCs and TAMs[63]. Moreover, recent evidence supports the concept that malignant tumors also recruit a specific subpopulation of myeloid cells called myeloid-derived suppressor cells[64]. These cells share some characteristics with monocytes, macrophages, neutrophils, and DCs and help suppress any potential anti-tumor immune response and tumor angiogenesis. As in several cancers, including CRC, in which the major inflammatory cellular components are macrophages, TAMs contribute immensely to cancer growth and expansion. TAMs are macrophages that display an M2 type (alternatively activated phenotype) and secrete high levels of Th2 cytokines, growth factors and inflammatory mediators that promote tumor growth, angiogenesis, and metastasis[65,66]. We have observed a high intra-tumoral density of TAMs in colon cancer tissue compared with the adjacent normal tissue, and M2 macrophages were required for effective colon cancer cell migration via factors derived from M2 macrophages and their association with signal regulatory protein alpha (SIRP-α) through CD47[67].

Eicosanoids and colorectal cancer

Apart from its role in inflammation-associated diseases such as asthma, psoriasis, rheumatoid arthritis and IBD[80], LTD4 has pro-tumorigenic effects in breast cancer, melanoma, lymphoma, and head and neck carcinoma[81-83]. Increased expression of LTD4 and its receptor BLT1 have been demonstrated in human CRC tissue[84]. Ihara et al[85] demonstrated significant expression of BLT1 in the colon cancer cell lines Caco-2 and HT-29. Using both the 5-LOX inhibitor AA-861 and selective BLT antagonist U75302 in these cell lines, the authors showed induction of apoptosis and reduced proliferation[86]. LTβ-stimulated extracellular signal-regulated kinase (Erk) activation in these cancer cells was also abrogated by U75302. A subsequent study investigated the effectiveness of another LTβ receptor antagonist (LY293111) in combination with gemcitabine, an anti-tumor adjuvant and radiosensitizer, on the proliferation rate of human colon cancer cell lines LoVo and HT-29 in an athymic heterotrophic xenograft mouse model and found a significant reduction in tumor growth due to apoptosis via the mitochondrial pathway[87]. The findings from these and several other studies emphasize the role of LTβ signaling in colon cancer cells and warrant the use of specific LTβ receptor antagonists to suppress CRC expansion.

Among the eicosanoids derived from the COX-pathway, PGE2 is the most abundant and extensively studied in cancer, including CRC[88]. In both the spontaneous adenomatous polyposis coli (Apc)Min+ mouse model of intestinal cancer and the azoxymethane (AOM)-induced CRC mouse model, PGE2 has been shown to increase the tumor burden[75,76]. Selective inhibition of PGE2 synthesis, through genetic deletion of microsomal PGES (mPGES-1), significantly reduced tumor formation in an ApcMin+ and AOM-induced mouse model of intestinal and CRC, respectively, and further established the role of PGE2 in tumorigenesis[77,78].

Increased expression of the enzymes responsible for production of PGs and LTs-COX-2 and 5-LOX, respectively has been documented in human colorectal adenocarcinomas compared with adjacent normal mucosa[79,81]. Various clinical trials over the past two decades have highlighted the use of eicosanoid-depressing and anti-inflammatory drugs in the prevention and treatment of CRC. Two groups of compounds have shown promising results: aspirin (NSAID) and celecoxib (COX-2 selective inhibitor) [82].

Cysteinyl leukotrienes, their receptors and colorectal cancer

Upregulated expression of CysLT1R has been observed in several human cancers, including transitional cell carcinoma (TCC) in the bladder, neuroblastomas, and brain, prostate, breast, and CRC[6,80,83-86]. We have shown that high CysLT1R tumor expression is associated with a poor survival prognosis in breast and CRC patients[86], whereas concomitant low CysLT1R and high CysLT4R expression indicate a good prognosis in CRC patients[89]. We have also demonstrated high CysLT4R expression in established colon cancer cell lines[90]. The CysLT1R and
CysLT-R expression ratio seems to be important in the disease etiology of CRC. Accordingly, we have shown that these two receptors are co-localized and form hetero- and homodimers in a human intestinal epithelial cell line and that LTC₄ stimulation of CysLT-R negatively regulates the plasma membrane expression of CysLT-R by inducing internalization of the receptor heterodimer complex [88]. The expression of CysLT-R has also been positively correlated with the cell survival factors COX-2 and Bcl-xL in tumor specimens from patients with CRC [80].

We have previously observed that LTD₄, via CysLT-R, induces upregulation of proteins associated with CRC - such as COX-2, β-catenin, and Bcl-2 - in intestinal epithelial cells [89]. Upregulation of β-catenin expression was shown to be dependent on phosphoinositide 3 kinase (PI3K)-glycogen synthase kinase 3β (GSK-3β) signaling [30]. Moreover, our previous work has shown that LTD₄-induced CysLT-R signaling results in cell proliferation, survival, and migration through distinct signaling pathways. LTD₄-induced CysLT-R signaling also regulates cell proliferation via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) pathways. LTD₄-CysLT-R in turn activates phospholipase C (PLC), Raf-1 and mitogen-activated protein kinase kinase (MEK-1/2). This activation leads to the translocation of p-Erk from the cytosol to the nucleus and interaction with p90RSK, which can activate various transcription factors. Conversely, LTD₄-CysLT-R mediates survival through protein kinase Cα (PKCα) and the transcription factor cAMP response element-binding protein (CREB). β-cat: β-catenin.

Figure 2 Signaling pathways of LTD₄ and CysLT-R. Upon stimulation with LTD₄, various downstream signaling pathways become activated. LTD₄ induces cell membrane ruffles through phosphoinositide 3-kinase (PI3K) signaling, which in turn stimulates protein kinase Akt/PKB and the small GTPases Rho and Rac. Akt/PKB can inhibit glycogen synthase kinase-3 β (GSK-3β), which comprises the destruction complex for cytosolic β-catenin together with Axin and adenomatous polyposis coli (APC). Inhibition of the destruction complex leads to the accumulation of β-catenin in the cytosol and translocation to the nucleus. In the nucleus, β-catenin interacts primarily with members of the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to activate target genes, leading to the expression of various proteins, such as cyclin D1, COX-2 and c-Myc, which contribute to diverse cellular processes, including proliferation and migration. LTD₄-CysLT-R signaling also regulates cell proliferation via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) pathways. LTD₄-CysLT-R in turn activates phospholipase C (PLC), Raf-1 and mitogen-activated protein kinase kinase (MEK-1/2). This activation leads to the translocation of p-Erk from the cytosol to the nucleus and interaction with p90RSK, which can activate various transcription factors. Conversely, LTD₄-CysLT-R mediates survival through protein kinase Cα (PKCα) and the transcription factor cAMP response element-binding protein (CREB). β-cat: β-catenin.
increased proliferation and migration in the colon cancer cell line HCT-116, probably via the GSK-3β/β-catenin pathway with subsequent increased transcription of the target genes MYC and CCD110’. By contrast, decreased expression of CysLT1R has been observed in different colon cancer cell lines (Caco-2 and SW480) compared with an epithelial intestinal cell line, and LTC4 stimulation of CysLT1R has been shown to induce differentiation as demonstrated by increased intestinal alkaline phosphatase activity in Caco-2 cells42. In the same colon cancer cell line, anti-tumorigenic IFN-α was shown to induce CysLT1R promoter activity and expression, whereas mitogenic epidermal growth factor (EGF) displayed the opposite effect, suppressing CysLT1R promoter activity and expression. LTC4-mediated CysLT1R signaling suppressed EGF-induced cell migration, and IFN-α induced expression of the differentiation marker mucin-2 and alkaline phosphatase activity95.

These results indicate potential pro- and anti-tumorigenic properties conveyed by CysLT1R and CysLT2R, respectively, in CRC.

LEUKOTRIENE RECEPTOR ANTAGONISTS AND LEUKOTRIENE SYNTHESIS INHIBITORS

CysLT1R antagonists have been used in studies of inflammatory diseases such as rheumatoid arthritis and atherosclerosis96,97. The CysLT1R antagonists pranlukast, zafirlukast and montelukast are commercially available and are currently in clinical use to treat asthmatic patients98. Emerging data suggest that the pro-inflammatory CysLTs might have an important role in solid tumors.

CysLT1R antagonist treatment has been shown to inhibit tumor growth by inducing apoptosis in a variety of human urological cancer cell lines (e.g., renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer)99. Montelukast has been shown to induce early apoptosis in a bladder transitional cell carcinoma (TCC) cell line, as well as in three different prostate cancer cell lines63,83. In addition, montelukast has been shown to induce the intrinsic apoptotic pathway, resulting in cleavage of caspases 3 and 9, and cell cycle arrest in neuroblastoma cell lines84.

Studies in CysLT1R-deficient mice have revealed its role in enhanced vascular permeability during an acute inflammatory response90,94. Pranlukast and montelukast have been shown to reduce vascular permeability by regulating vascular endothelial growth factor (VEGF) expression in allergen-induced asthmatic lungs of mice94. Furthermore, the two abovementioned CysLT1R antagonists have been shown to inhibit the permeability of peripheral capillaries, thereby preventing tumor metastasis in a Lewis lung carcinoma metastasis model102. Proliferation and migration of endothelial cells are needed to form new vessels, a process required in cancer development. Montelukast has been shown to reduce LTD4-CysLT1R-mediated migration of the endothelial cell line EA.hy926 via the Erk1/2 pathway109. In line with aforementioned data, we have demonstrated in a nude mouse xenograft model of colon cancer that reduction of tumor growth can be accomplished with CysLT1R antagonist treatment. The molecular mechanisms underlying the observed inhibition of tumor growth was attributed to the reduction in proliferation, induction of apoptosis and impairment of angiogenesis104.

We have also shown that the CysLT1R antagonist ZM198,615 reduces proliferation in the colon cancer cell lines Caco-2 and SW480105. Cianchi et al104 reported the additive effects of the COX-2 selective inhibitor celecoxib, when combined with either the 5-LOX inhibitor MK886 or CysLT1R antagonist LY171883, in reducing the proliferative ability of Caco-2 and HT29 cells. The combined treatment was also shown to induce apoptosis, whereas none of these compounds had any effect alone.

The COX pathway is the most extensively studied among eicosanoid pathways in CRC prevention and/or therapy. However, the cardiovascular side effects associated with long-term usage of NSAIDs and selective COX-2 inhibitors have raised some concerns. Other approaches are being explored, such as inhibition of 5-LOX activity. Simultaneous dual inhibition of COX-2 and 5-LOX activity could possibly provide a more effective and tolerable therapy than COX-inhibition alone. Accordingly, the anti-tumor effects of celecoxib in colon cancer cells were augmented when combined with inhibition of 5-LOX activity using the FLAP inhibitor MK886106. The combined inhibition of COX-2 and 5-LOX activity have also shown a more pronounced anti-tumor growth effect in a cigarette smoke-promoting mouse xenograft model of CRC97. However, targeting either the COX or LOX pathway alone resulted in a shunt toward the other pathway, except in the latter study, in which a shunt was observed when COX-2 activity was targeted with celecoxib. The abovementioned studies investigated the effects on CRC growth targeting the eicosanoid production in epithelial cells. However, the activity of 5-LOX of mast cells was also shown to be important in intestinal polyp formation in Apcmin mice. The mast cells were found to utilize 5-LOX to promote proliferation of intestinal epithelial cells and recruit myeloid-derived suppressor cells to the polyp site106. Another possible effective chemopreventive option against CRC could be the modification of AA metabolism. Apcmin mice with the fed diets containing highly purified ω-3 polynsaturated fatty acids were shown to have their mucosal AA replaced, presumably with a reduction in the production of pro-inflammatory mediators. Reduced polyp formation could be observed in both the intestine and the colon of these mice. These effects were associated with significantly decreased proliferation, COX-2 expression, and nuclear β-catenin accumulation, as well as a concomitant increase in apoptosis in the intestinal epithelium106. A reduction in size and number of rectal polyps has also been observed in patients with hereditary CRC (familial adenomatous polyposis, FAP) who have undergone colectomy and received highly purified ω-3-polyunsaturated fatty acids107.
CONCLUSION

Deregulated AA metabolism creates an imbalance in the tissue homeostatic events of proliferation, regeneration and repair, and host defense. Additionally, deregulated AA metabolism contributes to sustained inflammatory processes that could result in CRC development. Among the implicated inflammatory mediators are the eicosanoids, such as CysLTs. Thus, the modification of CysLT signaling could pave the way for the development of new personalized medicine for patients with CRC.[104]

REFERENCES

1. Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Gene 2009; 10: 353-358 [PMID: 19434079 DOI: 10.1038/nrg2574]
2. Beller TC, Friend DS, Maekawa A, Lam BK, Austen KF, Kanaoka Y. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci USA 2004; 101: 5047-5052 [PMID: 14970333 DOI: 10.1073/pnas.0402251101]
3. Capia V, Thompson MD, Taha A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27: 469-527 [PMID: 16894531 DOI: 10.1002/med.20071]
4. Riccioni G, Bäck M, Capra V. Leukotrienes and atherosclerosis. Curr Drug Targets 2010; 11: 882-887 [PMID: 20388665 DOI: 10.2174/138945010791328081]
5. Schain F, Schain D, Mahshid Y, Liu C, Porwit A, Xu D, Claesson HE, Sundström C, Björkholm M, Sjöberg J. Differential expression of cysteinyl leukotriene receptor 1 and 15-lipoxygenase-1 in non-Hodgkin lymphomas. Clin Lymphoma Myeloma 2008; 8: 340-347 [PMID: 19064938 DOI: 10.3816/CLM.2008.n.049]
6. Matsuyama M, Funao K, Hayama T, Tanaka T, Kawaihito Y, Sano H, Takemoto Y, Nakatani T, Yoshimura R. Relationship between cysteinyl-leukotriene-1 receptor and human transitional cell carcinoma in bladder. Urology 2009; 73: 916-921 [PMID: 19167045 DOI: 10.1016/j.urology.2008.11.005]
7. Spirling RI. Eicosanoids in rheumatoid arthritis. Rheum Dis Clin North Am 1995; 21: 741-758 [PMID: 8619097]
8. Nicosia S, Capra V, Rovati GE. Leukotrienes as mediators of asthma. Palm Pharmacol Ther 2001; 14: 3-19 [PMID: 11624146 DOI: 10.1006/pupt.2000.0262]
9. Hendel J, Nielsen OH. Expression of cyclooxygenase-2 mRNA in active inflammatory bowel disease. Am J Gastroenterol 1997; 92: 1170-1173 [PMID: 9219792]
10. Coussens LM. Activation of beta-catenin by CAMP-coupled activation of beta-catenin. J Cell Sci 1999; 112: 2043-2053 [PMID: 10282437 DOI: 10.1242/jcs.1999.112.2043]
11. Kanaoka Y. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci USA 2004; 101: 5047-5052 [PMID: 14970333 DOI: 10.1073/pnas.0402251101]
12. Beller TC, Friend DS, Maekawa A, Lam BK, Austen KF, Kanaoka Y. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci USA 2004; 101: 5047-5052 [PMID: 14970333 DOI: 10.1073/pnas.0402251101]
13. Capia V, Thompson MD, Taha A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27: 469-527 [PMID: 16894531 DOI: 10.1002/med.20071]
14. Riccioni G, Bäck M, Capra V. Leukotrienes and atherosclerosis. Curr Drug Targets 2010; 11: 882-887 [PMID: 20388665 DOI: 10.2174/138945010791328081]
15. Schain F, Schain D, Mahshid Y, Liu C, Porwit A, Xu D, Claesson HE, Sundström C, Björkholm M, Sjöberg J. Differential expression of cysteinyl leukotriene receptor 1 and 15-lipoxygenase-1 in non-Hodgkin lymphomas. Clin Lymphoma Myeloma 2008; 8: 340-347 [PMID: 19064938 DOI: 10.3816/CLM.2008.n.049]
16. Matsuyama M, Funao K, Hayama T, Tanaka T, Kawaihito Y, Sano H, Takemoto Y, Nakatani T, Yoshimura R. Relationship between cysteinyl-leukotriene-1 receptor and human transitional cell carcinoma in bladder. Urology 2009; 73: 916-921 [PMID: 19167045 DOI: 10.1016/j.urology.2008.11.005]
17. Spirling RI. Eicosanoids in rheumatoid arthritis. Rheum Dis Clin North Am 1995; 21: 741-758 [PMID: 8619097]
18. Nicosia S, Capra V, Rovati GE. Leukotrienes as mediators of asthma. Palm Pharmacol Ther 2001; 14: 3-19 [PMID: 11624146 DOI: 10.1006/pupt.2000.0262]
19. Hendel J, Nielsen OH. Expression of cyclooxygenase-2 mRNA in active inflammatory bowel disease. Am J Gastroenterol 1997; 92: 1170-1173 [PMID: 9219792]
20. Coussens LM. Activation of beta-catenin by CAMP-coupled activation of beta-catenin. J Cell Sci 1999; 112: 2043-2053 [PMID: 10282437 DOI: 10.1242/jcs.1999.112.2043]
21. Kanaoka Y. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci USA 2004; 101: 5047-5052 [PMID: 14970333 DOI: 10.1073/pnas.0402251101]
Savari S et al. Cysteinyl leukotrienes and their receptors

Marom Z, Sheltamer JH, Bach MK, Morton DR, Kaliner M. Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis 1982; 126: 449-451 [PMID: 7125334]

Ford-Hutchinson AW. Leukotriene B4 in inflammation. Crit Rev Immunol 1990; 10: 1-12 [PMID: 2155000]

Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871-1875 [PMID: 11729303 DOI: 10.1126/science.294.5548.1871]

Yokomizo T, Izumi T, Chang K, Takawa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 1997; 387: 620-624 [PMID: 9177352 DOI: 10.1038/42906]

Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 2000; 192: 421-432 [PMID: 10934230 DOI: 10.1084/jem.192.3.421]

Yokomizo T, Izumi T, Shimizu T. Leukotriene B4: metabolism and signal transduction. Arch Biochem Biophys 2001; 385: 231-241 [PMID: 11368003 DOI: 10.1006/abbi.2000.2168]

Hussain SP, Hofsijt LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003; 3: 276-285 [PMID: 12671666 DOI: 10.1038/nrc1046]

Bernstein CN, Blanchard JF, Klieewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 2001; 91: 854-862 [PMID: 11241255 DOI: 10.1002/1097-0142(20010215)91:4<854::AID-CNCR10>3.0.CO;2-P]

Hammerbeck DM, Brown DR. Presence of immunocytes and sulfidopeptide leukotrienes in the inflamed guinea pig distal colon. Inflammation 1996; 20: 413-425 [PMID: 8872504 DOI: 10.1017/S030149540000814X]

Rubin DC, Shaker A, Levin MS. Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol 2012; 3: 107 [PMID: 22586430 DOI: 10.3899/fimmu.2012.00107]

Eaden J. Review article: colorectal carcinoma and inflammatory bowel disease. Aliment Pharmacol Ther 2004; 20 Suppl 4: 24-30 [PMID: 15332890 DOI: 10.1111/j.1365-2036.2004.02046.x]

Ekborn A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990; 323: 1229-1233 [PMID: 2125606 DOI: 10.1056/NEJM199010303232018]

Sharon P, Stenson WF. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 1984; 86: 453-460 [PMID: 6319219]

Kim JH, Tagari P, Griffiths AM, Ford-Hutchinson A, Smith C, Sherman PM. Levels of peptideleukotriene E4 are elevated in active Crohn’s disease. J Pediatr Gastroenterol Nutr 1995; 20: 403-407 [PMID: 7636682 DOI: 10.1097/00005176-199505000-00005]

Nishikawa M, Hikasa Y, Hori K, Tanida N, Shimoyama T. Effect of leukotriene C4D4 antagonist on colonic damage induced by intracolonic administration of trinitrobenzenesulfonic acid in rats. J Gastroenterol 1995; 30: 34-40 [PMID: 7719412 DOI: 10.1007/BF01213727]

Shanahan F. Inflammatory bowel disease: immunodiagnostics, immunotherapeutics, and ecotherapeutics. Gastroenterology 2010; 139: 622-635 [PMID: 20797430 DOI: 10.1053/j.gast.2011.01.002]

Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, Fiocchi C, Strober W. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157: 1261-1270 [PMID: 8757634]

Atreya I, Neurath MF. Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev

Magnusson C, Ehrnström R, Olsen J, Sjölander A. An increased expression of cysteinyi leukotriene 2 receptor in colorectal adenocarcinomas correlates with high differentiation. Cancer Res 2007; 67: 9190-9198 [PMID: 17909024 DOI: 10.1158/0008-5472.CAN-07-0771]

Chen CC, McKee K, Tagari P, Chee P, Ford-Hutchinson A. Eosinophil-ecosanoid interactions: inhibition of eosinophil chemotaxis in vivo by a LTδ4-receptor antagonist. Eur J Pharmacol 1999; 391: 273-280 [PMID: 996405 DOI: 10.1016/S0160-0252(99)00159-U]

Barnes NC, Piper PJ, Costello JF. Comparative effects of inhaled leukotriene C4, leukotriene D4, and histamine in normal human subjects. Thorax 1984; 39: 500-504 [PMID: 6463929 DOI: 10.1136/thx.39.7.500]

Drazen JM, Austen KF, Lewis RA, Clark DA, Goto G, Marfat A, Corey EJ. Comparative airway and vascular activities of leukotrienes C1- and D in vivo and in vitro. Proc Natl Acad Sci USA 1980; 77: 4354-4358 [PMID: 6933488 DOI: 10.1073/pnas.77.7.4354]
January 28, 2014 | Volume 20 | Issue 4 | 976

Savari S et al. Cysteine leukotrienes and their receptors

Anticancer Ther 2008; 8: 561-572 [PMID: 18402523 DOI: 10.158 6/14737140.8.4.561]

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162-174 [PMID: 19192586 DOI: 10.1038/nri2596]

Solinas G, Germano G, Mantovani A, Alleva P. Tumor-as sociated macromolecules (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86: 1065-1073 [PMID: 19741157 DOI: 10.1189/jlb.0609385]

Sica A, Schioppa T, Mantovani A, Alleva P. Tumor-as sociated macromolecules are a distinct M2 polarized population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006; 42: 717-727 [PMID: 16528032 DOI: 10.1016/j.ejca.2006.01.003]

Zhang Y, Sime W, Juhas M, Sjölander A. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur J Cancer 2013; 49: 3320-3334 [PMID: 23810249 DOI: 10.1016/ j.ejca.2013.06.005]

Sampson AP. The role of eosinophils and neutrophils in inflammation. Clin Exp Allergy 2000; 30 Suppl 1: 22-27 [PMID: 10849470 DOI: 10.1046/j.1365-2222.2000.00992]

Earashi M, Noguchi M, Tanaka M. In vitro effects of eicosanoid synthesis inhibitors in the presence of linoleic acid on MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 1996; 37: 29-37 [PMID: 8750525 DOI: 10.1007/ BF01866269]

Okano-Milani H, Ikai K, Imamura S. Human melanoma cells generate leukotrienes B4 and C4 from leukotriene A4. Arch Dermatol Res 1997; 289: 347-351 [PMID: 9209681 DOI: 10.1007/s004030050203]

Bittner S, Wielckens K. Glucocorticoid-induced lymphoma cell growth inhibition: the role of leukotriene B4. Endocrinology 1988; 123: 991-1000 [PMID: 2840275 DOI: 10.1210/ endo-123-2-991]

el-Hakim IE, Langdon JD, Zakrzewski JT, Costello JF. Leukotriene B4 and oral cancer. Br J Oral Maxillofac Surg 1990; 28: 155-159 [PMID: 1966928 DOI: 10.1016/0266-4356(90)90078-Y]

Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci 2007; 103: 24-32 [PMID: 17720595 DOI: 10.1254/jphs.FP006651]

Hennig R, Ding XZ, Tong WG, Witt RC, Jovanovic BD, Adrian TE. Effect of LY293111 in combination with gemcitabine on colon cancer. Cancer Lett 2004; 210: 41-46 [PMID: 15172119 DOI: 10.1016/j.canlet.2004.02.023]

Wang D, Wang H, Shi Q, Katkuri S, Walhi W, Desvergne B, Das SK, Dey SK, DuBois RN. Prostaglandin E2 (PGE2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 2006; 6: 285-295 [PMID: 15386051 DOI: 10.1016/j.ccr.2004.08.011]

Kawamori T, Uchiya N, Sugimura T, Wakabayashi K. Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis 2003; 24: 985-990 [PMID: 12771044 DOI: 10.1093/carcin/bgf033]

Nakanishi M, Montrose DC, Clark P, Nambiar PR, Belinsky GS, Claffey KP, Xu D, Rosenberg DN. Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res 2008; 68: 3251-3259 [PMID: 18451511 DOI: 10.1158/0008-5472. CAN-07-6101]

Nakanishi M, Menoret A, Tanaka T, Miyamoto S, Montrose S, Della AT, Rosenberg DW. Selective PGE2 suppression inhibits colon carcinogenesis and modifies local mucosal immunity. Cancer Prog Res (Phila) 2011; 4: 1198-1208 [PMID: 21576330 DOI: 10.1158/1940-6207]

Dreiling KW, Hoppe U, Paskar BA, Morgenroth K, Kozus chek W, Paskar BM. Leukotriene synthesis by human gastrointestinal tissues. Biochim Biophys Acta 1986; 878: 184-193 [PMID: 3019409 DOI: 10.1016/0005-2766(86)90145-1]
Savari S et al. Cysteinyl leukotrienes and their receptors
