Two impurity Kondo problem under Aharonov–Bohm and Aharonov–Casher Effects

Tomosuke Aono

Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Dated: March 23, 2022)

We investigate electron transport under the two impurity Kondo problem with the Aharonov-Bohm and Aharonov-Casher effects. These interference effects induce the Ising-coupled Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. We discuss the inter- and intra-site spin conductance as well as charge conductance in the Kondo and the mixed-valence regimes using the slave boson mean field approximation.

PACS numbers: 72.15.Qm, 73.23.-b, 85.35.Ds, 85.75.-d,

The Aharonov–Bohm (AB) effect plays a central role in interference effects in mesoscopic systems. When the system is under the influence of the spin–orbit interaction (SOI), an additional interference effect, the Aharonov–Cashier (AC) effect emerges; An electron acquires a phase factor after passing through an AB ring because of the interaction between the spin and electric field through the ring (z-direction). The electric field can control electron transport through the ring.

Several experiments [8, 9, 10] discussed the interference effects under the SOI. In a heterojunction, a structural inversion asymmetry of the confining potential near the junction induces the Rashba SOI, $\alpha(k_y\tau^x - k_x\tau^y)$ with the coupling constant α, which is controlled by the confinement electric field, the wave vector \vec{k} of electrons, and the Pauli matrix $\vec{\tau}$ [11]. In a recent experiment [28], an interference pattern is clearly shown as a function of electric and magnetic fields in an AB ring system with the Rashba SOI. Many theoretical studies have been devoted to electron transport related to this situation [14, 15, 16, 17, 18].

Since the AC effect induces spin-dependent phases, it can control spin states in certain geometries. To demonstrate this, we consider a coupled quantum dot system embedded in an AB ring under the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction and Kondo effect. These two interactions compete with each other. This is known as the two impurity Kondo problem [19, 20, 21, 22]. In a recent experiment [23], this competition was observed in a coupled quantum dot system. Theoretical issues [24, 25] related to this experiment were also discussed. This competition is further investigated in gold grain quantum dots with magnetic impurities in the leads [27]. The Kondo effect under the AB effect was considered in a coupled dot system [26], and a triangle dot system [28]. In addition, Utsumi et al. [29] investigated the AB flux dependent RKKY interaction and discussed the two impurity problem in the perturbative regime.

In this paper, we investigate the two impurity Kondo problem under the AB and AC effects. We will show these interference effects induce the Ising-coupled RKKY interaction. This model has been investigated in capacitive coupled quantum dot systems [30, 31]. We also report spin conductance as well as charge conductance in the Kondo and mixed-valence regimes using the slave boson mean field approximation [20, 35], demonstrating how these effects control spin transport under the electron–electron interactions.

RKKY interaction under SOI.— We first summarize the RKKY interaction under the SOI without the AC effect. The spin-exchange interaction under the SOI between two localized spins \vec{S}_i ($i = 1, 2$) consists of the Heisenberg interaction, $\vec{S}_1 \cdot \vec{S}_2$, Ising (anisotropic) interactions such as $\vec{S}_1 \vec{S}_2^\dagger$, and the Dzialoshinsky-Moriya (DM) interaction, $\vec{S}_1 \times \vec{S}_2$. The sum of these terms can be rewritten in a compact form [32, 33, 34]

$$H_{\text{ex}} = J\vec{S}_1 \cdot \vec{S}_2(\theta),$$

(1)

where J is the coupling constant, and $\vec{S}_2(\theta)$ denotes the spin quantization axis of S_2 is tilted from the axis of the first impurity with an angle θ, which depends on the strength of the SOI. Equation (1) is derived as follows for the RKKY interaction, $H_{\text{RKKY}} = -\frac{J^2}{2}\sum_{\sigma} G(1, 2, \epsilon) \langle \vec{S}_1 \cdot \vec{S}_2 \rangle \langle \vec{S}_1 \cdot \vec{S}_2 \rangle G(1, 2, \epsilon) \langle \vec{S}_1 \cdot \vec{S}_2 \rangle \langle \vec{S}_1 \cdot \vec{S}_2 \rangle$, where $\langle \vec{S}_1 \cdot \vec{S}_2 \rangle$ is the spin correlation function.

We attach external leads to the impurities to investigate the two impurity problem. The spin conductance is given by [35, 36]

$$G_{\text{spin}} = \frac{1}{2} \sum_{\sigma \sigma'} \left[\langle \vec{S}_1 \cdot \vec{S}_2 \rangle - \langle \vec{S}_1 \cdot \vec{S}_2 \rangle \right]$$

(2)

where $\theta = 2maR/\hbar^2$, with electron mass m, distance R between the two impurities. $j(1, 2)$ is the RKKY function determined by R, J_{eff}, and the effective Fermi wavelength $q_F = \sqrt{2mE_F/\hbar^2 + (maR/\hbar^2)^2}$. After taking the sums, we obtain H_{RKKY} in the form of Eq. (1). The amplitude and sign of J depends on $q_F R$ [34].

We attach external leads to the impurities to induce the Kondo effect, $H_{\text{Kondo}} = \sum_{i=1, 2} \epsilon_k c_{k\sigma} c_{k\sigma} + \sum_{i=1, 2} J_i \vec{S}_i \cdot \vec{\tau}$, where $c_{k\sigma}$ is the annihilation operator of conduction electrons with energy ϵ_k, and J_i is the s-d
coupling constant. We can rotate the quantization axis of conduction electrons in the lead 2 with \(\theta \) because the kinetic term of the conduction electrons in the leads is invariant under rotation. Therefore, the two-impurity model, \(H_{\text{Kondo}} + H_{\text{RKKY}} \), is the same as the one without the SOI, except that \(J \) is modified. Note that in general, \(H_{\text{Kondo}} \) includes the Kondo effect from the ring with \(J_{ab} \).

RKKY interaction under AB and AC effects.—The AB and AC effects make a qualitative difference in the above situation. We consider the two impurity system in a ring with a radius \(r \), connected to external leads as depicted in Fig. 1(a). The magnetic and electric fields pierce the ring. When an electron passes through the upper/lower branch \((n = \pm 1) \), with spin \(\sigma \), traveling from the impurity 1 to 2, the electron acquires the phase factor of \(\exp[in\Phi_t(\sigma)] \) with \(\Phi_t(\sigma) = \Phi + \sigma\Phi_c \), where \(\Phi \) is the AB phase. The factor of \(\Phi_c \) comes from the AC effect, \(\Phi_c = -\pi/2(1 - \cos \theta) - \pi r \tan \theta \sin \theta \) with \(\tan \theta = -2\alpha mr /\hbar^2 \). In the following, we treat \(\Phi \) and \(\Phi_c \) as external parameters.

To calculate the RKKY interaction, we need to take into account the possible four rounds of electrons as depicted in Fig. 1(b). For the AB effect, this procedure has been discussed in Ref. 20. Note that the statistics of the RKKY coupling constant in disordered conductors has been discussed in Refs. 23 and 37. The result is, instead of Eq. (2),

\[
H_{\text{RKKY}} = \sum_{n,k,i,\sigma} \epsilon_{k,i,\sigma} c_{k,i,\sigma}^\dagger c_{k,i,\sigma} + V_g \sum_{i,\sigma} c_{i,\sigma} c_{i,\sigma} + V_c \sum_{i,\sigma} (\epsilon_{i,\sigma} c_{2,\sigma} + \text{h.c.}) + H_{\text{RKKY}} + U \sum_{\sigma} n_{i,\sigma} n_{i,\sigma} + V \sum_{i,\sigma} (\epsilon_{i,\sigma} c_{i,\sigma} + \text{h.c.}),
\]

where \(c_{\sigma} \) is the annihilation operator of site \(i \) electrons with spin \(\sigma \), \(n_{i,\sigma} = c_{i,\sigma}^\dagger c_{i,\sigma} \), and \(V_g \) is the gate voltage 40. Note that the spin quantization axis is different between sites 1 and 2 as in the RKKY interaction, and \(\sigma = \pm \) spin state is defined by the local axis. We have introduced the direct tunneling coupling \(V_c \). The spin state follows the local quantization axis and is unchanged during the tunneling between the sites. We assume \(J > 0 \) in \(H_{\text{RKKY}} \). We also assume the on-site Coulomb energy \(U \to \infty \), which allows to use the slave boson representation: \(c_{\sigma} = b_{\sigma} \phi_{\sigma} \) with the slave boson operator \(b \) and pseudo fermion operator \(f_{\sigma} \) with the constraint term, \(H' = \lambda \sum_{i,\sigma} (\bar{\eta}_{i,\sigma} f_{i,\sigma} + b b - 1) \). We adapt the mean field theory 20, 38, 39, introducing an extra mean field \(m = J_2 (S_{i,1}^z) = -J_2 (S_{i,2}^z) \) for the Ising anti-parallel interaction. We discuss the choice of \(m \) later. We have disregarded the Kondo effect from the ring since it does not change the conclusions below. We also discuss this point later.

The model is now reduced to the two site non-interacting model under the AB and AC effects with the effective energy scales as follows: \(H = 2\lambda (b^2 - 1) + \kappa^2 / J_1 + m^2 / J_2 + H_0 \), where

\[
H_0 = \sum_{\sigma} [f_{1,\sigma} f_{2,\sigma}] \left[\begin{array}{c} \tilde{E} + m + i \Delta \\ V_c(\sigma) \\ \tilde{E} - m + i \Delta \end{array} \right] \left[\begin{array}{c} f_{1,\sigma} \\ V_c(\sigma) \\ f_{2,\sigma} \end{array} \right],
\]

with the effective energy level \(\tilde{E} = V_g + \lambda \), and the effective site-lead coupling \(\Delta = b^2 \Delta \). 20, 38, where \(\Delta = \pi \rho |V|^2 \) with the density of states \(\rho \) of the lead electrons at the Fermi energy. Since there are two possible branches to reach from one site to the other site with different phase factors due to the AB and AC effects, the effective coupling constant \(V_c(\sigma) \) between the sites depends on the phases:

\[
V_c(\sigma) = \left(\kappa + V_c R \Delta \right) \cos \Phi_4(\sigma),
\]

where \(\kappa \) is the spin-singlet mean field parameter due to the Heisenberg term 20, 38. The cosine factor represents the interference of the hopping term between the
upper and lower branches and it induces the spin dependence. Note that if one of the branches is disconnected, the spin dependence disappears. We have disregarded multiple backscattering inside the ring \[30\]. We solve the self-consistent equations for E, Δ, κ, and m for given values of V_g, Φ, and Φ_c, choosing the lowest energy solution among the possible solutions. We calculate the inter- and intra-site conductance, as depicted in Fig. 1(c): $G_{12c} = 4e^2\Delta/h|c_1c_2\omega(\omega = 0)|^2$, $G_{11s} = -2e^2\Delta/h\text{Im}c_1c_1\omega(\omega = 0)|$ with the retarded Green function $c_\sigma c_\sigma(\omega)$ between the site i and j. Note that G_{12} has a single spin index because of $V_c(\sigma)$. To measure G_{11s}, we need an extra lead for the site 1 as depicted in Fig. 1 assuming the equal dot-lead couplings.

Phase-controlled spin state—First, we demonstrate the spin state in the ring can be tuned by the AB and AC effects. In Fig. 2 $G_{11} = G_{11+} + G_{11-}$ and J_2/J_1 are plotted as a function of Φ for $\Phi_c = \pi/6$ and $V_c = 0$. When Φ is small, the spin-singlet state due to the Heisenberg exchange is the ground state. As Φ increases, the state changes to the Kondo state, resulting in the finite conductance. As Φ increases further, when $J_2 > J_1$, it becomes the Ising state with zero conductance. When $\Phi = \pi/2n$ (n is an integer), J_1 is zero while J_2 is finite; the Ising-coupled two impurity model is realized. The model has been investigated in capacitive coupled quantum dot systems and this model exhibits a quantum phase transition \[30\]. The system presented here is another realization of this model using the phase-coherent phenomena.

Spin transport under two-impurity model.—Next, we discuss the charge/spin conductance, $G_{12c}/s \equiv G_{12c}/s \equiv G_{12c}/s \equiv G_{11+} + G_{11-}$. In Fig. 3 G_{12c}/s and G_{11c}/s are plotted as a function of V_g for several values of Φ for $\Phi_c = \pi/3$. In this figure, $J_2 < J_1$ and $m = 0$; the Heisenberg coupling dominates the RKKY interaction. The curves of G_{12c} show single peak structures, while the curves of G_{11c} show single step structures. The curves of G_{12c} show double extremum structures, with one maximum and one minimum. The curves of G_{11c}, on the other hand, show single peak structures. This means that the inter- and intra-sites spin current can flow in opposite directions for a certain range of V_g.

When V_g is high, the system is dominated by the Kondo effect while the Heisenberg exchange is less prominent. As V_g decreases, the Kondo singlet and spin-singlet states coexist, where $V_c(\sigma)$ starts to develop. This results in the peak of G_{12c} \[22\], \[39\]. On the other hand, the same effect suppresses the intra-site conductance, resulting in the step of G_{11c}. In the inset of Fig. 3(b), $|\cos(\Phi + \pi/2)|$ is plotted as a function of Φ. The spin transport is obtained when $\Phi/\pi > 0.5$, where the $V_c(+)$ increases when V_g is high, G_{12s} is determined by $V_c(+)$, and $G_{12s} > 0$ while G_{11s} is determined by $V_c(-)$, and $G_{11s} < 0$. When V_g decreases, $V_c(-)$ becomes larger so that the up spin level is away from the Fermi level. Then $V_c(\sigma)$ term is the main contribution in G_{12s}, resulting in $G_{12s} < 0$.

Mixed-valence regime.—Next, we consider the mixed-valence regime. We focus on the case of $V_c/\Delta = 1.5$ to clarify the role of the spin correlations in the previous results. Figures 2(a)-(d) show G_{12c}/s and G_{11c}/s. The curves of G_{12c}/s are qualitatively similar to those in Fig. 3. On the other hand, G_{11c}/s are qualitatively different; G_{11c} show a peak instead of a step structure, and G_{11s} is qualitatively similar to G_{12s} unlike the one in the Kondo regime. When $V_c/\Delta > 1$, $V_c(\sigma)$ is determined by $V_c\Delta/\Delta$. This means the peak structures come from the splitting of the bonding and anti-bonding states and the occupation in the sites rather than the competition between the Kondo and RKKY correlations \[22\]. The peaks in G_{12c}/s appear when the bonding (lower) level crosses the Fermi level in the leads. Since $V_c(+), V_c(-)$, the up spin state first reaches at the Fermi level, resulting in $G_{12s} > 0$. When $V_g < 0$, the up spin levels are away from the Fermi level, the down spin levels dominates the spin transport, resulting in $G_{12s} < 0$.

We should discuss two effects in the Kondo regime, when V_c is finite; the Kondo effect from the ring and the fluctuations from the mean field approximation \[28\]. The Kondo effect from the ring will induce an extra site-lead tunneling coupling $\Delta ' \sim \rho \rho_c^{-1}$ with the density of states ρ_c of the ring. Then the Kondo temperature
FIG. 4: (a) G_{12c}, (b) G_{11c}, (c) G_{12s}, and (d) G_{11s} vs. V_g for $\Phi/\pi = 0.5, 0.6, and 0.68$ for $\Phi_0 = \pi/3$ and $V_c/\Delta = 1.5$.

$T_K \propto \exp(\pi V_g/(\Delta + \Delta'))$. When V_g is normalized by $\Delta + \Delta'$, the result is the same because the competition between T_K and J is the central part of the two-impurity problem. The fluctuations around the mean field induce additional RKKY interactions $[38]: V^2/V_g$ coupling is induced. When the RKKY interaction is dominated by the Heisenberg exchange, it eventually modifies $V_0(\sigma)$, which will explain the results as those in Fig. 3. When the Ising coupling dominates the interaction, this coupling lifts the degeneracy of the Ising doublet state; the fluctuations of m are large and the mean field approximation becomes invalid. More quantitative analysis is required in the regime.

In conclusion, we investigated the two impurity Kondo problem under the AB and AC effect. The AC effect induces the Ising-coupled RKKY coupling. These interference effects can control the spin states as well as spin transport, which is qualitatively different between the Kondo and mixed-valence regimes.

We would like to thank A. Aharony, Y. Avishai, O. Entin-Wohlman, Y. Meir, R. Shaisultanov, K. Takahashi, and R. Tasgal for comments and discussions.

[1] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[2] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
[3] Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett. 63, 798 (1989).
[4] H. Mathur, and A. D. Stone, Phys. Rev. Lett. 68, 2964 (1992).
[5] A. V. Balatsky, and B. L. Altshuler, Phys. Rev. Lett. 70, 1678 (1993).
[6] A. A. Aronov, and Y. B. Lyanda-Geller, Phys. Rev. Lett. 70, 343 (1994).
[7] T.-Z. Qian, and Z. -B. Su, Phys. Rev. Lett. 72, 2311 (1994).
[8] A. F. Morpurgo, J. P. Heida, T. M. Klapwijk, B. J. van Wees, and G. Borghs, Phys. Rev. Lett. 80, 1050 (1998).
[9] J.-B. Yao, E. P. De Poortere, and M. Shayegan, Phys. Rev. Lett. 88, 146801 (2002).
[10] M. J. Yang, C. H. Yang, and Y. B. Lyanda-Geller, Europhys. Lett. 66, 826 (2004).
[11] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[12] J. Nitta, F. E. Meijer, and H. Takayanagi, Appl. Phys. Lett. 75, 695 (1999).
[13] M. K"onig et al., Phys. Rev. Lett. 96, 076804 (2006).
[14] S. Souma, and B. K. Nikolić, Phys. Rev. B 70, 195346 (2004); Phys. Rev. Lett. 94, 106602 (2005).
[15] D. Frustaglia, M. Hentschel, and K. Richter, Phys. Rev. Lett. 87, 256602 (2001); D. Frustaglia, and K. Richter, Phys. Rev. B 69, 235310 (2004).
[16] F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B 66, 033107 (2002).
[17] B. Molnár, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 69, 155335 (2004).
[18] R. Capozza, D. Giuliano, P. Lucignano, and A. Tagliazucchi, Phys. Rev. Lett. 95, 226803 (2005).
[19] B. A. Jones, C. M. Varma, Phys. Rev. Lett. 58, 843 (1987); B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett. 61, 125 (1988); B. A. Jones and C. M. Varma, Phys. Rev. B 40, 324 (1989).
[20] B. A. Jones, B. G. Kotliar, and A. J. Millis, Phys. Rev. B 39, 3415 (1989).
[21] I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 68, 1046 (1992); I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52, 9528 (1995).
[22] A. Georges, and Y. Meir, Phys. Rev. Lett 82, 3508 (1999).
[23] N. J. Craig et al., Science 304, 565 (2004).
[24] P. Simon, R. López, and Y. Oreg, Phys. Rev. Lett. 94, 086602 (2005).
[25] M. G. Vavilov, and L. I. Glazman, Phys. Rev. Lett. 94, 086805 (2005).
[26] H. B. Heersche et al., Phys. Rev. Lett. 96, 017205 (2006).
[27] W. Izumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. Jpn. 66, 717 (1997).
[28] T. Kuzmenko, K. Kikoin, and Y. Avishai, Phys. Rev. Lett. 96, 046601 (2006); Phys. Rev. B 73, 235310 (2006).
[29] Y. Utsumi, J. Martinek, P. Bruno, and H. Imamura, Phys. Rev. B 69, 155320, (2004).
[30] N. Andrei, G. T. Zimányi, and G. Schön, Phys. Rev. B 60, R5125 (1999).
[31] M. Gerst, S. Kehein,T. Pruschke, A. Rosch, and M. Vojta, Phys. Rev. B 69, 214413 (2004).
[32] L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992); L. Shekhman, A. Aharony, and O. Entin-Wohlman, Phys. Rev. B 47, 174 (1993).
[33] K. V. Kavokin, Phys. Rev. B 64, 075305 (2001); Phys. Rev. B 69, 075302 (2004).
[34] H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69, 121303(R) (2004).
[35] L. S. Levitov and E. I. Rashba, Phys. Rev. B 67, 115324 (2003).
[36] This means the ring is widely opened to the leads.
[37] A. Yu. Zyuzin and B. Z. Spivak, Pis’ma Zh. Eksp. Teor. Fiz. 43, 185 (1986) [JETP Lett. 43, 234 (1986)].
[38] P. Coleman, Phys. Rev. B 35, 5072 (1987).
[39] T. Aono and M. Eto, Phys. Rev. B 63, 125327 (2001).
[40] V_g is defined relative to the electric field in the ring to keep the confinement of the sites.