Joint Coordination-Channel Coding for Strong Coordination over Noisy Channels Based on Polar Codes

Sarah A. Obead, Jörg Kliewer
Department of Electrical and Computer Engineering
New Jersey Institute of Technology
Newark, New Jersey 07102
Email:sao23@njit.edu, jkliewer@njit.edu

Badri N. Vellambi
Research School of Computer Science
Australian National University
Acton, Australia 2601
Email: badri.n.vellambi@ieee.org

Abstract—We construct a joint coordination-channel polar coding scheme for strong coordination of actions between two agents \(X\) and \(Y\), which communicate over a discrete memoryless channel (DMC) such that the joint distribution of actions follows a prescribed probability distribution. We show that polar codes are able to achieve our previously established inner bound to the strong noisy coordination capacity region and thus provide a constructive alternative to a random coding proof. Our polar coding scheme also offers a constructive solution to a channel simulation problem where a DMC and shared randomness are together employed to simulate another DMC. In particular, our proposed solution is able to utilize the randomness of the DMC to reduce the amount of local randomness required to generate the sequence of actions at agent \(Y\). By leveraging our earlier random coding results for this problem, we conclude that the proposed joint coordination-channel coding scheme strictly outperforms a separate scheme in terms of achievable communication rate for the same amount of injected randomness into both systems.

I. INTRODUCTION

A fundamental problem in decentralized networks is to coordinate activities of different agents with the goal of reaching a state of agreement. Such a problem arises in a multitude of applications, including networks of autonomous robots, smart traffic control, and distributed computing problems. For such applications, coordination is understood to be the ability to arrive at a prescribed joint distribution of actions at all agents in the network. In information theory, two different notions of coordination are explored: (i) empirical coordination, which only requires the normalized histogram of induced joint actions to approach a desired target distribution, and (ii) strong coordination, where the sequence of induced joint actions must be statistically close (i.e., nearly indistinguishable) from a given target probability mass function (pmf).

A significant amount of work has been devoted to finding the capacity regions of various coordination problems based on both empirical and strong coordination [1]–[10], where [4], [6]–[8], [10] focus on small to moderate network settings.

While all these works address the noiseless case, coordination over noisy channels has received only little attention in the literature so far. However, notable exceptions are [11]–[13]. For example, in [11] joint empirical coordination of the channel inputs/outputs of a noisy communication channel with source and reproduction sequences is considered. Also, in [12] the notion of strong coordination is used to simulate a discrete memoryless channel via another channel. Recently, [13] explored the strong coordination variant of the problem investigated in [11].

As an alternative to the impracticalities of random coding, solutions for empirical and strong coordination problems have been proposed based on low-complexity polar-codes introduced by Arikan [14], [15]. For example, polar coding for strong point-to-point coordination is addressed in [16], [17], and empirical coordination for cascade networks in [18], respectively. The only existing design of polar codes for the noisy empirical coordination case [19] is based on the joint source-channel coordination approach in [11]. However, to the best of our knowledge, polar code designs for noisy strong coordination have not been proposed in the literature.

In this work we consider the point-to-point coordination setup depicted in Fig. 1 where only source and reproduction sequences are coordinated via a suitable polar coding scheme over DMCs. In particular, we design an explicit low-complexity nested polar coding scheme for strong coordination over noisy channels that achieves the inner bound of the two-node network capacity region of our earlier work [20]. In this work, we show that a joint coordination-channel coding scheme is able to strictly outperform a separation-based scheme in terms of achievable communication rate if the same amount of randomness is injected into the system. Note that our proposed joint coordination-channel polar coding scheme employs nested codebooks similar to the polar codes for the broadcast channel [21]. Further, our polar coding scheme also offers a constructive solution to a channel simulation problem where a DMC is employed to simulate another DMC in the presence of shared randomness [12].

The remainder of the paper is organized as follows. Sec-
tion II introduces the notation, the model under investigation, and a random coding construction. Section III provides our proposed joint coordination-channel coding design and a proof to show that this design achieves the random coding inner bound.

II. PROBLEM STATEMENT

A. Notation

Let \(N \triangleq 2^n, n \in \mathbb{N} \). We denote the source polarization transform as \(G_n = RF^{\otimes n} \), where \(R \) is the bit-reversal mapping defined in [14], \(F = [1 \ 0 \ 0 \ 1] \), and \(F^{\otimes n} \) denotes the \(n \)-th Kronecker power of \(F \). Given \(X_1:N \triangleq (X^1, X^2, \ldots, X^n) \) and \(A \subseteq [1, N] \), we let \(X_1[A] \) denote the components \(X^i \) such that \(i \in A \). Given two distributions \(P_X(x) \) and \(Q_X(x) \) defined over an alphabet \(\mathcal{X} \), we let \(D(P_X(x) || Q_X(x)) \) denote the Kullback-Leibler (KL) divergence and the total variation, respectively. Given a pmf \(P_X(x) \) we let \(\min^*(P_X) = \min \{ P_X(x) : P_X(x) > 0 \} \).

B. System Model

The point-to-point coordination setup considered in this work is depicted in Fig. 1. Node \(X \) receives a sequence of actions \(X_N \in \mathcal{X}^N \) specified by nature where \(X_N \) is i.i.d. according to a pmf \(p_X \). Both nodes have access to shared randomness \(J \) at rate \(R_J \) bits/action from a common source, and each node possesses local randomness \(M_{\ell} \) at rate \(\rho_{\ell} \), \(\ell = 1, 2 \).

\[\text{Fig. 1. Point-to-point strong coordination over a DMC.} \]

We wish to communicate a codeword \(A^N \) corresponding to the coordination message over the rate-limited DMC \(P_{BJ|A} \) to Node \(Y \). The codeword \(A^N \) is constructed based on the input action sequence \(X^N \), the local randomness \(M_1 \) at Node \(X \), and the common randomness \(J \). Node \(Y \) generates a sequence of actions \(Y^N \in \mathcal{Y}^N \) based on the received codeword \(B^N \), common randomness \(J \), and local randomness \(M_2 \).

By assumption, the common randomness is independent of the action specified at Node \(X \). A strong coordination coding scheme with rates \((R_c, R_o, \rho_1, \rho_2) \) is deemed achievable if for each \(\epsilon > 0 \), there exists an \(N \in \mathbb{N} \) such that the joint pmf of actions \(P_{X_N,Y^N} \) induced by this scheme and the \(N \) i.i.d. copies of desired joint pmf \((X,Y) \sim q_{XY} \), \(Q_{X_N,Y^N} \), are close in total variation, i.e.,

\[\|P_{X_N,Y^N} - Q_{X_N,Y^N}\|_{TV} < \epsilon. \]

C. Random Coding Construction

Consider auxiliary random variables \(A \in \mathcal{A} \) and \(C \in \mathcal{C} \) with \((A,C) \sim P_{AC} \) be jointly correlated with \((X,Y) \) as \(P_{XY|ABC} = P_{AC}P_{X|AC}P_{B|A}P_{Y|BC} \). The joint strong coordination-channel random code with parameters \((R_c, R_o, R_a, N) \) [20], where \(I \triangleq [1, 2^{NR_c}], J \triangleq [1, 2^{NR_o}] \), and \(K \triangleq [1, 2^{NR_a}] \), consists of

1) Nested codebooks: A codebook \(\mathcal{C} \) of size \(2^{N(R_o+R_c)} \) is generated i.i.d. according to a pmf \(P_C \), i.e., \(C_{ij} \sim \prod_{n=1}^{N} P_{C_n}(\cdot) \) for all \((i,j) \in I \times J \). A codebook \(A \) is generated by randomly selecting \(A_{kn} \sim \prod_{n=1}^{N} P_{A|C}(\cdot|C_{kn}) \) for all \((i,j,k) \in I \times J \times K \).

2) Encoding functions:

\[C^N : [1, 2^{NR_c}] \times [1, 2^{NR_o}] \rightarrow \mathcal{C}^N, \]
\[A^N : [1, 2^{NR_c}] \times [1, 2^{NR_o}] \rightarrow \mathcal{A}^N. \]

3) The indices \(I, J, K \) are independent and uniformly distributed over \(I, J, K \), respectively. These indices select the pair of codewords \(C_{ij} \) and \(A_{ij} \) from codebooks \(\mathcal{C} \) and \(\mathcal{A} \).

4) The selected codeword \(A_{ijk} \) is sent through the communication DMC \(P_{B|A} \), whose output \(B^N \) is used to decode codeword \(C_{ij} \), and both are then passed through a DMC \(P_{Y|BC} \) to obtain \(Y^N \).

The corresponding scheme is displayed in Fig. 2.

\[\text{Fig. 2. Joint strong coordination-channel coding scheme.} \]

The following theorem provides the inner bound for strong coordination region achieved by such joint coordination-channel code.

Theorem 1. (Strong coordination inner bound [20]) A tuple \((R_o, \rho_1, \rho_2) \) is achievable for the strong noisy communication setup in Fig. 1 if for some \(R_a, R_c \geq 0 \),

\[R_a + R_o + R_c > I(X; A|C), \]
\[R_o + R_c > I(X; Y; C), \]
\[R_a + R_c > I(X; C), \]
\[R_c > I(X; C), \]
\[R_c > I(J; C), \]
\[\rho_1 > R_a + R_c - I(X; A|C), \]
\[\rho_2 > H(Y|BC). \]

The underlying proofs and details of the coding mechanism for this joint coordination-channel coding scheme for noisy strong coordination are based on a complex channel.
resolvability framework [20]. Channel resolvability has been successfully used to study different strong coordination problems due to its ability to approximate channel output statistics with random codebooks [22]. We now propose a scheme based on polar codes that achieves the inner bound stated by Theorem 1 for the strong coordination region as follows.

III. NESTED POLAR CODE FOR STRONG COORDINATION OVER NOISY CHANNELS

Since the proposed joint coordination-channel coding scheme is based on a channel resolvability framework, we adopt the channel resolvability-based polar construction for noise-free strong coordination [17] in combination with polar coding for the degraded broadcast channel [21].

A. Coding Scheme

Consider the random variables \(X, Y, A, B, C, \hat{C} \) distributed according to \(Q_{XY|ABC} \) over \(X \times Y \times A \times B \times C \) such that \(X - (A, C) - (B, C) - Y \). Assume that \(|A| = 2\) and the distribution \(Q_{XY} \) is achievable with \(|C| = 2\). Let \(N \triangleq 2^n \).

We describe the polar coding scheme as follows:

Consider a 2-user physically degraded discrete memoryless broadcast channel (DM-BC) \(P_{AB|I} \) in Fig. 3 where \(A \) denotes the channel input and \(A, B \) denote the output to the first and second receiver, respectively. In particular, the channel DMC \(P_{AB|I} \) is physically degraded with respect to the perfect channel \(P_{A|I} \) (i.e., \(P_{A|I} \gg P_{AB|I} \)), leading to the Markov chain \(A \rightarrow A \rightarrow B \). We construct the nested polar coding scheme in a similar fashion as in [21] as this mimics the nesting of the codebooks \(\mathcal{E} \) and \(\mathcal{A} \) in Step 1 of the random coding construction in Section II-C. Here, the second (weaker) user is able to recover its intended message \(I \), while the first (stronger) user is able to recover both messages \(K \) and \(I \). Let \(C \) be the auxiliary random variable (cloud center) required for superposition coding over the DM-BC leading to the Markov chain \(C \rightarrow A \rightarrow (A, B) \). As a result, the channel \(P_{AB|C} \) is also degraded with respect to \(P_{A|C} \) (i.e., \(P_{A|C} \gg P_{AB|C} \)) [21, Lemma 3]. Let \(V \) be a matrix of the selected codewords \(A^N \) and \(C^N \) as \(V \triangleq \begin{bmatrix} A^N \mid C^N \end{bmatrix} \).

Now, apply the polar linear transformation \(G_n \) as \(\begin{bmatrix} U^N_1 \\ U^N_2 \end{bmatrix} = V G_n \).

First, consider \(C^N \triangleq U^N_2 G_n \) from (3) and (4) where \(U^N_2 \) is generated by the second encoder \(\mathcal{E}_2 \) in Fig. 3. For \(\beta < \frac{1}{2} \) and \(\delta_N \triangleq 2^{-N \beta} \) we define the very high and high entropy sets

\[
\mathcal{V}_C \triangleq \{ i \in [1, N] : H(U^N_2[i]) > 1 - \delta_N \},
\]

\[
\mathcal{V}_{C|X} \triangleq \{ i \in [1, N] : H(U^N_2[i]|X) > 1 - \delta_N \},
\]

\[
\mathcal{V}_{C|XY} \triangleq \{ i \in [1, N] : H(U^N_2[i]|X,Y) > 1 - \delta_N \},
\]

\[
\mathcal{H}_{C|B} \triangleq \{ i \in [1, N] : H(U^N_2[i]|B) > \delta_N \},
\]

\[
\mathcal{H}_{C|A} \triangleq \{ i \in [1, N] : H(U^N_2[i]|A) > \delta_N \},
\]

which by [24, Lemma 7] satisfy

\[
\lim_{N \to \infty} \frac{\mathcal{V}_C}{N} = H(C), \quad \lim_{N \to \infty} \frac{\mathcal{V}_{C|X}}{N} = H(C|X),
\]

\[
\lim_{N \to \infty} \frac{\mathcal{V}_{C|XY}}{N} = H(C|XY), \quad \lim_{N \to \infty} \frac{\mathcal{H}_{C|B}}{N} = H(C|B),
\]

\[
\lim_{N \to \infty} \frac{\mathcal{H}_{C|A}}{N} = H(C|A).
\]

These sets are illustrated in Fig. 4. Note that the set \(\mathcal{H}_{C|B} \) indicates the noisy bits of the DMC \(P_{B|C} \) (i.e., the unrecoverable bits of the codeword \(C^N \) intended for the weaker user in the DM-BC setup in Fig. 3) and is in general not aligned with other sets. Let

\[
\mathcal{L}_1 \triangleq \mathcal{V}_C \setminus \mathcal{H}_{C|A}, \quad \mathcal{L}_2 \triangleq \mathcal{V}_C \setminus \mathcal{H}_{C|B},
\]

where the set \(\mathcal{H}_{C|A} \) indicates the noisy bits of the DMC \(P_{A|C} \) (i.e., the unrecoverable bits of the codeword \(C^N \) intended for the stronger user). From the relation \(P_{A|C} \gg P_{B|C} \) we obtain \(\mathcal{H}_{C|B} \subseteq \mathcal{H}_{C|A} \). This ensures that the polarization indices are guaranteed to be aligned (i.e., \(\mathcal{L}_2 \subseteq \mathcal{L}_1 \)) [25], [21, Lemma 4]. As a consequence, the bits decodable by the weaker user are also decodable by the stronger user.

Now, consider \(A^N \triangleq U^N_1 G_n \) (see (3) and (4)), where \(U^N_1 \) is generated by the first encoder \(\mathcal{E}_1 \) with \(C^N \) as a side information as seen in Fig. 3. We define the very high entropy sets illustrated in Fig. 5 as

\[
\mathcal{V}_A \triangleq \begin{bmatrix} \mathcal{V}_{A,C} \mid \mathcal{V}_{A,C|X} \mid \mathcal{V}_{A,C|XY} \mid \mathcal{V}_{A,C|X,Y} \mid \mathcal{V}_{A,C|X,Y,Z} \mid \mathcal{V}_{A,C|X,Y,Z} \end{bmatrix},
\]

\[
\mathcal{V}_A \setminus \mathcal{V}_{A,C} \triangleq \begin{bmatrix} \mathcal{V}_{A,C} \mid \mathcal{V}_{A,C|X} \mid \mathcal{V}_{A,C|XY} \mid \mathcal{V}_{A,C|X,Y} \mid \mathcal{V}_{A,C|X,Y,Z} \mid \mathcal{V}_{A,C|X,Y,Z} \end{bmatrix}.
\]
The encoding protocol described in Algorithm 1 is performed over $k \in \mathbb{N}$ blocks of length N. Since for strong coordination the goal is to approximate a target joint distribution with a minimum amount of randomness, the encoding scheme performs channel resolvability while reusing a fraction of the common randomness over several blocks (i.e., randomness recycling) as in [17]. However, since the communication is over a noisy channel, the encoding scheme also considers a block chaining construction to mitigate the channel noise influence as in [19], [24]–[26].

More precisely, as demonstrated in Fig. 2, we are interested in successfully recovering the message I that is intended for the weak user channel given by $P_{B|A}$ in Fig. 3. However, the challenge is to communicate the set F_3 that includes bits of the message I that are corrupted by the channel noise. This suggests that we apply a variation of block chaining only at encoder E_2 generating the codeword C^N as follows (see Fig. 6). At encoder E_2, the set F_3 of block $i \in [1, k]$ is embedded in the reliably decodable bits of $F_1 \cup F_2$ of the following block $i+1$. This is possible by following the decodability constraint (see (2d), (2e) of Theorem 1) that ensures that the size of the set F_3 is smaller than the combined size of the sets F_1 and F_2 [19]. However, since these sets originally contain uniformly distributed common randomness J [17], the bits of F_3 can be embedded while maintaining the uniformity of the randomness by taking advantage of the Crypto Lemma [27, Lemma 2]. Then, to ensure that F_3 is equally distributed over $F_1 \cup F_2$, F_3 is partitioned according to the ratio between $|F_1|$ and $|F_2|$. To utilize the Crypto Lemma, we introduce F_{3b} and F_{3h}, which represent uniformly distributed common randomness used to randomize the information bits of F_3. The difference is that F_{3b}, as F_2, represents a fraction of common randomness that can be reused over k blocks whereas a realization of the randomness in F_{3h} needs to be provided in each new block. Note that, as visualized in Fig. 6, both the subsets $F_{3b} \subset F_1$ and $F_{3h} \subset F_2$ represent the resulting uniformly distributed bits of F_3 of the previous block, where $|F_{3b}| = |F_{3h}|$. Finally, in an additional block $k+1$ we use a good channel code to reliably transmit the set F_3 of the last block k.

1) Encoding: The encoding protocol described in Algorithm 1 is performed over $k \in \mathbb{N}$ blocks of length N. Since for strong coordination the goal is to approximate a target joint distribution with a minimum amount of randomness, the encoding scheme performs channel resolvability while reusing a fraction of the common randomness over several blocks (i.e., randomness recycling) as in [17]. However, since the communication is over a noisy channel, the encoding scheme also considers a block chaining construction to mitigate the channel noise influence as in [19], [24]–[26].

More precisely, as demonstrated in Fig. 2, we are interested in successfully recovering the message I that is intended for the weak user channel given by $P_{B|A}$ in Fig. 3. However, the challenge is to communicate the set F_3 that includes bits of the message I that are corrupted by the channel noise. This suggests that we apply a variation of block chaining only at encoder E_2 generating the codeword C^N as follows (see Fig. 6). At encoder E_2, the set F_3 of block $i \in [1, k]$ is embedded in the reliably decodable bits of $F_1 \cup F_2$ of the following block $i+1$. This is possible by following the decodability constraint (see (2d), (2e) of Theorem 1) that ensures that the size of the set F_3 is smaller than the combined size of the sets F_1 and F_2 [19]. However, since these sets originally contain uniformly distributed common randomness J [17], the bits of F_3 can be embedded while maintaining the uniformity of the randomness by taking advantage of the Crypto Lemma [27, Lemma 2]. Then, to ensure that F_3 is equally distributed over $F_1 \cup F_2$, F_3 is partitioned according to the ratio between $|F_1|$ and $|F_2|$. To utilize the Crypto Lemma, we introduce F_{3b} and F_{3h}, which represent uniformly distributed common randomness used to randomize the information bits of F_3. The difference is that F_{3b}, as F_2, represents a fraction of common randomness that can be reused over k blocks whereas a realization of the randomness in F_{3h} needs to be provided in each new block. Note that, as visualized in Fig. 6, both the subsets $F_{3b} \subset F_1$ and $F_{3h} \subset F_2$ represent the resulting uniformly distributed bits of F_3 of the previous block, where $|F_{3b}| = |F_{3h}|$. Finally, in an additional block $k+1$ we use a good channel code to reliably transmit the set F_3 of the last block k.

2) Decoding: The decoder is described in Algorithm 2. Recall that we are only interested in the message I intended for the weak user channel given by $P_{B|A}$ in Figure 3. As a result, we only state the decoding protocol at D_2 that recovers the codeword C^N. Note that the decoding is done in reverse order after receiving the extra $k+1$ block containing the bits of set F_3 of the last block k. In particular, in each block $i \in [1, k-1]$ the bits in F_3 are obtained by successfully recovering the bits in both F_1 and F_2 in block $i+1$.

\[\mathcal{V}_A \triangleq \{ i \in [1, N] : H(U_i) > 1 - \delta_N \}, \]
\[\mathcal{V}_{AC} \triangleq \{ i \in [1, N] : H(U_i|U_i^{i-1}) > 1 - \delta_N \}, \]
\[\mathcal{V}_{ACX} \triangleq \{ i \in [1, N] : H(U_i|U_i^{i-1}C^N) > 1 - \delta_N \}, \]
\[\mathcal{V}_{ACXY} \triangleq \{ i \in [1, N] : H(U_i|U_i^{i-1}C^N X^N Y^N) > 1 - \delta_N \} \]
\[\text{satisfying} \]
\[\lim_{N \to \infty} \frac{|\mathcal{V}_A|}{N} = H(A), \quad \lim_{N \to \infty} \frac{|\mathcal{V}_{ACX}|}{N} = H(A|CX), \]
\[\lim_{N \to \infty} \frac{|\mathcal{V}_{AC}|}{N} = H(A|C), \quad \lim_{N \to \infty} \frac{|\mathcal{V}_{ACXY}|}{N} = H(A|CXY). \]

Note that, in contrast to Fig. 4, here there is no channel dependent set overlapping with all other sets as $P_{B|A}$ is a noiseless channel with rate $H(A)$ and hence $\mathcal{H}_{A|A} = \emptyset$.

Accordingly, in terms of the polarization sets in (5) and (6) we define the sets combining channel resolvability for strong coordination and broadcast channel construction

\[F_1 \triangleq (\mathcal{V}_{C|X} \setminus \mathcal{V}_{C|XY}) \cap \mathcal{H}_{C|B}, \]
\[F_2 \triangleq \mathcal{V}_{C|XY} \cap \mathcal{H}_{C|B}, \]
\[F_3 \triangleq \mathcal{V}_{C|X} \cap \mathcal{H}_{C|B} \setminus \mathcal{H}_{C|BX}, \]
\[F_4 \triangleq \mathcal{V}_{C|X} \cap \mathcal{H}_{C|B} = \mathcal{H}_{C|BX}, \]
\[F_5 \triangleq \mathcal{H}_{C|BX}, \]
\[F_6 \triangleq \mathcal{V}_{C|X} \setminus \mathcal{H}_{C|B}, \]
\[F_7 \triangleq \mathcal{V}_{A|CX}, \]
\[F_8 \triangleq \mathcal{V}_{A|C|X}, \]
\[F_9 \triangleq \mathcal{V}_A \setminus \mathcal{V}_{A|C}. \]

Finally, with $Y^N \triangleq T^NG_n$, we define the very high entropy set:

\[\mathcal{V}_{Y|BC} \triangleq \{ i \in [1, N] : H(T)|T^{1:i-1}B^NC^N) > \log|Y| - \delta_N \}, \]
\[\text{satisfying} \]
\[\lim_{N \to \infty} \frac{|\mathcal{V}_{Y|BC}|}{N} = H(Y|BC). \]
Algorithm 1: Encoding algorithm at Node X for strong coordination

Input: $X^N_{1:k}$, uniformly distributed local randomness bits $M_{1:k}$ of the size $\lfloor k/|F_0|\rfloor$, common randomness bits $J = (J_1, J_2)$ of sizes $|F_2| \cup |F_4|$, and $|F_7|$, respectively, and $J_{1:k}$ of size $k|F_4| \cup |F_1|$ shared with Node Y.

Output: $A^N_{1:k}$

1. for $i = 2, \ldots, k$ do
2. E_2 in Fig. 3 constructs $\tilde{U}^N_{2_i}$ bit-by-bit as follows:
 - if $i = 1$ then
 - $\tilde{U}^N_{2_i} | F_1 \cup F_4 \leftarrow J_i$
 - $\tilde{U}^N_{2_i} | F_2 \cup \tilde{F}_4 \leftarrow J_1$
 - else
 - Let $F^{(i)}_1, F^{(i)}_2$ be sets of the size $(|F_m| \times |F_3| + |F_2|)$ for $m \in \{1, 2\}$.
 - $(\tilde{U}^N_{2_i} | F_1 \setminus F_3), (\tilde{U}^N_{2_i} | F_3)$ $\leftarrow J_i$
 - $(\tilde{U}^N_{2_i} | F_2 \setminus F_3), (\tilde{U}^N_{2_i} | F_3) \leftarrow J_1$
 - $\tilde{U}^N_{2_i} | F_3, \tilde{F}_3 \leftarrow \tilde{U}^N_{2_i-1} | F_3, \tilde{F}_3$ $\oplus F^{(i)}_3$
 - $\tilde{U}^N_{2_i} | \tilde{F}_3 \leftarrow \tilde{U}^N_{2_i-1} | F_3, \tilde{F}_3 \oplus F^{(i)}_3$
 end
3. $\tilde{C}^N_i \leftarrow \tilde{U}^N_i G_n$
4. E_1 in Fig. 3 constructs \tilde{U}_i^N bit-by-bit as follows:
 - $\tilde{U}_i^N | F_0 \leftarrow M_i$
 - $\tilde{U}_i^N | F_2 \leftarrow f_2$
 - Given X_2^N and \tilde{C}_i^N, successively draw the remaining components of \tilde{U}_i^N according to $\tilde{P}_{U^N_i | U^{j-1}_i | X_2^N}$ defined by
 - $\tilde{P}_{U^N_i | U^{j-1}_i | X_2^N} \triangleq \begin{cases} Q_{U^N_i | U^{j-1}_i} & j \in V_C, \\ Q_{U^N_i | U^{j-1}_i | X_2^N} & j \in F_3 \cup F_5. \end{cases}$
5. $\tilde{A}^N_i \leftarrow \tilde{U}^N_i G_n$
6. Transmit A^N_i
7. end for

B. Scheme Analysis

We now provide an analysis of the coding scheme of Section III. The analysis is based on KL divergence which upper bounds the total variation in (1) by Pinsker’s inequality. We start the analysis with a set of sequential lemmas. In particular, Lemma 1 is useful to show that the strong coordination scheme based on channel resolvability holds for each block individually regardless of the randomness recycling.

Algorithm 2: Decoding algorithm at Node Y for strong coordination

Input: $B^N_{1:k}$, uniformly distributed common randomness, \tilde{J}_1, and $J_{1:k}$ shared with Node X.

Output: $\tilde{Y}^N_{1:k}$

1. For block $i = k, \ldots, 1$ do
2. D_2 in Fig. 3 constructs $\tilde{U}^N_{2_i}$ bit-by-bit as follows:
 - $(\tilde{U}^N_{2_i} | (F_1 \setminus F_3) \cup F_4), (\tilde{F}^{(i)}_3) \leftarrow J_i$
 - $(\tilde{U}^N_{2_i} | (F_2 \setminus F_3) \cup F_4), (\tilde{F}^{(i)}_3) \leftarrow J_1$
 - Given B^N_i successively draw the components of $\tilde{U}^N_{2_i}$ according to $\tilde{P}_{U^N_i | U^{j-1}_i | B^N_i}$ defined by
 - $\tilde{P}_{U^N_i | U^{j-1}_i | B^N_i} \triangleq \begin{cases} Q_{U^N_i | U^{j-1}_i} & j \in V_C, \\ Q_{U^N_i | U^{j-1}_i | B^N_i} & j \in F_3 \cup F_5. \end{cases}$
3. if $i = k$ then
 - $\tilde{U}^N_{2_i} | F_3 \leftarrow B^N_{k+1}$
 else
 - $\tilde{U}^N_{2_i} | F_3 \leftarrow \tilde{U}^N_{2_i-1} | F_3, \tilde{F}_3 \oplus F^{(i)}_3$
 - $\tilde{U}^N_{2_i} | \tilde{F}_3 \leftarrow \tilde{U}^N_{2_i-1} | F_3, \tilde{F}_3 \oplus F^{(i)}_3$
4. Let
 - $\tilde{U}^N_{2_i} | \tilde{F}_3 \leftarrow F^{(i)}_3$
 - $\tilde{U}^N_{2_i} | F_3 \leftarrow F_3$
5. $\tilde{C}^N_i \leftarrow \tilde{U}^N_i G_n$
6. Channel simulation: given \tilde{C}^N_i and B^N_i, successively draw the components of \tilde{T}^N_i according to
 - $\tilde{P}_{T^{i,j}_{i,j-1} | B^N_i} \triangleq \begin{cases} 1/|Y| & j \in V_{BC}, \\ Q_{T^N | T^{i,j}_{i,j-1} | B^N_i} & j \in V_{BC}. \end{cases}$
7. $\tilde{Y}^N_i \leftarrow \tilde{T}^N_i G_n$
8. end for

Lemma 1. For block $i \in [1, k]$, we have

$$\mathbb{D}(Q_{A^N C^N | X^N} || \tilde{P}_{A^N C^N | X^N}) \leq 2N\delta_N.$$

Proof. We have

$$\mathbb{D}(Q_{A^N C^N | X^N} || \tilde{P}_{A^N C^N | X^N})$$

= \sum_{j=1}^{N} \sum_{j=1}^{N} \mathbb{D}(Q_{U^{i,j}_{i,j-1} | X^N} || \tilde{P}_{U^{i,j}_{i,j-1} | X^N})
\[\begin{align*}
&= \sum_{j \in F_3 \cup F_5} \mathbb{E}_{Q_{U^j_{i+1}X_{i+1}}}
&+ \sum_{j \in \mathbb{E}_u} \mathbb{E}_{Q_{U^j_{i+1}X_{i+1}}} \left[D(Q_{U^j_{i+1}X_{i+1}} \| \hat{P}_{U^j_{i+1}X_{i+1}}) \right]
&+ \sum_{j \in \mathbb{E}_u} \mathbb{E}_{Q_{U^j_{i+1}X_{i+1}}} \left[D(Q_{U^j_{i+1}X_{i+1}} \| \hat{P}_{U^j_{i+1}X_{i+1}}) \right]
&+ \sum_{j \in \mathbb{E}_u} \mathbb{E}_{Q_{U^j_{i+1}X_{i+1}}} \left[D(Q_{U^j_{i+1}X_{i+1}} \| \hat{P}_{U^j_{i+1}X_{i+1}}) \right]
&
\end{align*}\]

Lemma 2. For block \(i \in [1, k]\), we have
\[D(\hat{P}_{X_{i}^N Y_{i}^N} \| Q_{X_{i}^N Y_{i}^N}) \leq D(\hat{P}_{X_{i}^N A_{i}^N C_{i}^N B_{i}^N \hat{C}_{i} Y_{i}^N} \| Q_{X_{i}^N A_{i}^N C_{i}^N B_{i}^N \hat{C}_{i} Y_{i}^N}) \leq \delta_N^{(2)}\]
where \(\delta_N^{(2)} = \mathcal{O}(\sqrt{N \delta_N})\).

Proof. Consider the argument shown at the top of the following page. In this argument:
(a) - (b) results from the Markov chain \(X^N \to A^N C^N \to B^N \hat{C}^N \to Y^N\);
(c) follows from [17, Lemma 16] where
\[\delta_N^{(2)} = -N \log(\mu_{X A C B \hat{C} Y}) \sqrt{2 \ln 2} / \sqrt{2 N \delta_N},\]
\[\mu_{X A C B \hat{C} Y} \triangleq \min_{x,y,a,b,c} Q_{X A C B \hat{C} Y} ;\]
(d) follows from the chain rule of KL divergence [28];
(e) holds by Lemma 1 and [17, Lemma 14] where
\[\delta_N^{(1)} = -N \log(\mu_{X A C}) \sqrt{2 \ln 2} / \sqrt{2 N \delta_N},\]
\[\mu_{X A C} \triangleq \min_{x,y,a} Q_{X A C} ;\]
(f) follows from the chain rule of KL divergence [28];
(g) holds by [17, Lemma 14], where
\[\mu_{A B C \hat{C}} \triangleq \min_{x,a,b,c} Q_{A B C \hat{C}},\]
\[\mu_{Y B \hat{C}} \triangleq \min_{y,b,c} Q_{Y B \hat{C}} ;\]
(h) holds by bounding the terms
\[D(Q_{X_{i}^N C_{i}^N \hat{C}_{i} Y_{i}^N} \| \hat{P}_{X_{i}^N C_{i}^N \hat{C}_{i} Y_{i}^N}),\]
and
\[D(Q_{Y_{i}^N B_{i}^N \hat{C}_{i} Y_{i}^N} \| \hat{P}_{Y_{i}^N B_{i}^N \hat{C}_{i} Y_{i}^N}),\]
as follows:
\[D(Q_{X_{i}^N C_{i}^N \hat{C}_{i} Y_{i}^N} \| \hat{P}_{X_{i}^N C_{i}^N \hat{C}_{i} Y_{i}^N})
\]
\[= \sum_{j \in \mathbb{E}_u} \mathbb{E}_{Q_{U^j_{i}X_{i}^N}} \left[D(Q_{U^j_{i}X_{i}^N} \| \hat{P}_{U^j_{i}X_{i}^N}) \right]
\]
\[= \sum_{j \in \mathbb{E}_u} \mathbb{E}_{Q_{U^j_{i}X_{i}^N}} \left[D(Q_{U^j_{i}X_{i}^N} \| \hat{P}_{U^j_{i}X_{i}^N}) \right]
\]
\[\leq (|V_{\mathcal{C}|} + |V_{\mathcal{A}|X_{i}^N}| + |V_{\mathcal{A}|X_{i}^N}| + |V_{\mathcal{C}|X_{i}^N}|) \delta_N \leq 2N \delta_N ;\]

where
(a) holds by invertibility of \(G_1^N\);
(b) - (d) follows from the chain rule of the KL divergence [28];
(e) results from the definitions of the conditional distributions in (8), and (9);
(f) follows from the definitions of the index sets as shown in Figures 4 and 5;
(g) results from the encoding of \(\hat{U}_i^N \) and \(\hat{U}_i^N\) bit-by-bit at \(\mathcal{E}_1\) and \(\mathcal{E}_2\), respectively, with uniformly distributed randomness bits and message bits. These bits are generated by applying successive cancellation encoding using previous bits and side information with conditional distributions defined in (8) and (9);
(h) holds by the one-to-one relation between \(U_i^N\) and \(C_i^N\);
(i) follows from the sets defined in (5) and (6).
Lemma 3. blocks based on the results of Lemma 2.

two consecutive blocks and the independence between all

\[D(\tilde{P}_{Y <i \mid X <i \mid C <i} || P_{Y <i \mid X <i \mid C <i}) \]

(a) \[D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

(b) \[D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} \tilde{P}_{X <i \mid Y <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

(c) \[\delta_n^2 + D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} \tilde{P}_{X <i \mid Y <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

(d) \[N \log(\mu_{AC}) \sqrt{2 \ln 2} D(\tilde{P}_{Y <i \mid X <i \mid C <i} || P_{Y <i \mid X <i \mid C <i}) \]

(e) \[\delta_n^2 + \delta_n + D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

(f) \[\delta_n^2 + \delta_n + D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

(g) \[\delta_n^2 + \delta_n + D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

(h) \[\delta_n^2 + \delta_n + D(\tilde{P}_{Y <i \mid X <i \mid C <i} P_{Y <i \mid X <i \mid C <i} || Q_{Y <i \mid X <i \mid C <i} P_{C <i}) \]

Lemma 4. We have

\[D(\tilde{P}_{X <i \mid Y <i} || \prod_{i=1}^k \tilde{P}_{X <i \mid Y <i}) \leq (k-1)\delta_n^3 \]

where \(\delta_n^3 \) is defined in Lemma 3.

Proof. we reuse the proof of [17, Lemma 4] with substitutions \(\tilde{P}_{Y <i \mid N} \leftarrow \tilde{P}_{Y <i \mid X <i} \), \(\tilde{R}_i \leftarrow \tilde{J}_i \), \(J_i \leftarrow J_i \) in the Markov chain \(X_i <i-1 \rightarrow Y_i <i-1 \rightarrow J_i \rightarrow X_i <i \) replacing the chain in [17, Lemma 3].

Lemma 5. We have

\[D(\tilde{P}_{X <i \mid Y <i} || Q_{X <i \mid Y <i} \prod_{i=1}^k \tilde{P}_{X <i \mid Y <i}) \leq \delta_n^4 \]

where \(\delta_n^4 \) is defined in Lemma 3.

Proof. We reuse the proof of [17, Lemma 5] with substitutions \(q_{Y <i \mid X} \leftarrow Q_{X <i \mid Y}, \tilde{P}_{Y <i \mid N} \leftarrow \tilde{P}_{X <i \mid X} \).

Theorem 2. The polar coding scheme described in Algorithms 1, 2 achieves the region stated in Theorem 1. It satisfies (1) for a binary input DMC channel and a target distribution \(q_{XY} \) defined over \(X \times Y \), with an auxiliary random variable \(C \) defined over the binary alphabet.
Proof. The common randomness rate R_a is given as

$$\frac{|J_1| + |J_{1:k}|}{kN} = \frac{|V_{C|XY}| + k|V_{C|X} \setminus V_{C|XY}|}{kN} = \frac{|V_{C|XY}| + \frac{Nk}{kN} |V_{C|X} \setminus V_{C|XY}|}{N} \xrightarrow{N \to \infty} \frac{H(C|XY)}{k} + I(Y; C|X).$$

$$k \to \infty \quad I(Y; C|X).$$

The communication rate R_c is given as

$$\frac{k|\mathcal{F}_5 \cup \mathcal{F}_3|}{kN} = \frac{|V_{C} \setminus V_{C|X}|}{N} \xrightarrow{N \to \infty} I(X; C),$$

whereas R_a can be written as

$$\frac{|V_{A|CXY}| + k|\mathcal{F}_8|}{kN} = \frac{|V_{A|CXY}| + k|V_{A|C} \setminus V_{A|CXY}|}{kN} = \frac{|V_{A|CXY}| + \frac{Nk}{kN} |V_{A|C} \setminus V_{A|CXY}|}{N} \xrightarrow{N \to \infty} \frac{H(A|C|XY)}{k} + \frac{N}{k} I(A; Y|C) \quad \text{and}$$

$$k \to \infty \quad \frac{N}{k} I(A; Y|C).$$

The rates of local randomness ρ_1 and ρ_2, respectively, are given as

$$\rho_1 = \frac{k|\mathcal{F}_6|}{kN} = \frac{k|V_{A|C|X} \setminus V_{A|C|XY}|}{Nk} = \frac{|V_{A|C|X} \setminus V_{A|C|XY}|}{N} \xrightarrow{N \to \infty} I(A; Y|C),$$

and

$$\rho_2 = \frac{k|V_{Y|BC}|}{kN} \xrightarrow{N \to \infty} H(Y|BC).$$

Finally we see that conditions (2a)-(2g) are satisfied by (12)-(16). Hence, given R_a, R_c, R_e satisfying Theorem 1, based on Lemma 5 and Pinsker’s inequality we have

$$\mathbb{E}\left[\left\|\hat{P}_{XY|_{1:1}Y|_{1:k}} - Q_{X_{1:N}Y_{1:1}Y_{1:k}}\right\|_V\right] \leq \mathbb{E}\left[2E\left(D\left(P_{X_{1:N}Y_{1:k}}||Q_{X_{1:N}Y_{1:k}}\right)\right)\right] \leq 2E\left[D\left(P_{X_{1:N}Y_{1:k}}||Q_{X_{1:N}Y_{1:k}}\right)\right] \xrightarrow{N \to \infty} 0.$$

As a result, from (17) there exists an $N \in \mathbb{N}$ for which the polar code-induced pmf between the pair of actions satisfies the strong coordination condition is given by (1).