Samantha D. Praktiknjo, Farah Saad, Dominic Maier, Pamela Ip, and David R. Hipfner

From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, the Departments of Anatomy and Cell Biology and Biology, McGill University, Montreal, Quebec H3A 0C7, and the Département de médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada

Edited by Henrik G. Dohlman

Hedgehog (Hh) signaling plays a key role in the development and maintenance of animal tissues. This signaling is mediated by the atypical G protein–coupled receptor (GPCR) Smoothened (Smo). Smo activation leads to signaling through several well-characterized effectors to activate Hh target gene expression. Recent studies have implicated activation of the heterotrimeric G protein subunit Ga, and the subsequent decrease in cellular cAMP levels in promoting the Hh response in flies and mammals. Although Hh stimulation decreases cAMP levels in some insect cell lines, here using a bioluminescence resonance energy transfer (BRET)-based assay we found that this stimulation had no detectable effect in Drosophila S2-R+ cells. However, we observed an unexpected and significant Ga, dependent increase in cAMP levels in response to secreted Hedgehog (Hh) family proteins. Insufficient or excessive Smo activity can have severe consequences for the formation and maintenance of tissues (1, 2). In fact, activating mutations in Smo have been shown to drive tumor formation in several tissues (1, 3). This suggests that Smo activity must be tightly regulated in cells. Consistent with this, several complex and intersecting regulatory mechanisms for finely controlling Smo activity have been identified. Many of the details are best understood in Drosophila melanogaster, where ubiquitination (4, 5), sumoylation (6, 7), and phosphorylation (8–13) of the Smo cytoplasmic C-terminus (SmoCT) all play key roles in controlling Smo protein levels, localization, and activity.

SmoCT phosphorylation seems to be a particularly important means of controlling Smo activity. Phosphorylation of the Smo autoinhibitory domain (SAID) region of the SmoCT by the cAMP-regulated protein kinase A (PKA) is the principal mechanism for activating Drosophila Smo. PKA phosphorylation primes the SAID for phosphorylation at adjacent sites by CkI, and the combined effects are sufficient to stabilize Smo, promote its accumulation at the plasma membrane, and drive it into an active conformation (8–10, 14). However, other kinases, including GPCR kinase 2 (Gprk2)(11), CkIγ(12), and Fu (13), act after PKA to modulate Drosophila Smo activity by phosphorylating other sites in the SmoCT. Like the PKA phosphorylation sites, most of these sites are not conserved between flies and vertebrates. Interestingly, however, Gprk2 and a homologous mammalian kinase, GRK2 (together with casein kinase I), phosphorylate conserved sites in the proximal SmoCT in Drosophila and mice, respectively (11, 15). In both organisms, phosphorylation of these sites promotes Smo signaling activity (11, 15, 16), indicating that GRK phosphorylation of the SmoCT is an evolutionarily conserved mechanism for Smo activation (although it may not be critical in all species) (17). However, precisely how GRK phosphorylation enhances Smo activity is not known.

Once activated, Smo signals through a series of downstream canonical effectors that include the atypical kinesin Costal-2/
The role of PKA in the Hh response has been controversial. Experiments using a cAMP-insensitive form of the PKA catalytic subunit initially shed doubt upon the importance of regulated PKA activity in the Hh response (31, 32). However, several studies cited above have now shown clear links between Goαi proteins, cAMP, and Hh pathway activity. The link between decreased cAMP production and increased Hh target gene expression seems fairly straightforward in mammals, where the principal role of PKA is to inhibit GLI proteins (2). However, there is conflicting evidence showing that PKA can also promote Shh signaling in vertebrate cells and tissues (33, 34). The situation is similarly complex in Drosophila, where PKA functions both as an activator and inhibitor of the Hh response. For example, complete loss of PKA activity causes constitutive Ci activation and ligand-independent target gene expression (31, 35), but more moderate PKA inhibition or reduction of cAMP levels can actually decrease Hh-dependent target gene expression (8, 36). Similarly, increased cAMP levels or PKA activity can either prevent (31, 37) or enhance (8, 36, 38) expression of Hh target genes. The evidence suggests that control of cAMP levels within certain upper and lower limits is important for proper functioning of the pathway. Some of the conflicting evidence may result from cell-type–specific effects that could reflect differences in basal cellular cAMP levels in different systems (39).

To address some of the conflicting evidence about the implication of heterotrimeric G proteins in the Hh response and to examine how G protein signaling could be regulated at the level of Smo, we sought to characterize the effects of Hh signaling on cAMP levels and target gene expression using cell-based assays in Drosophila S2 cells. To our surprise, we did not observe changes in cAMP levels in Hh-treated cells. However, stronger activation of Smo caused a substantial Goαs-dependent increase in cAMP levels specifically in response to Gprk2 phosphorylation of the SmoCT. This effect on cAMP production was mediated by the evolutionarily conserved core of Smo, and occurred independently of the canonical signaling effectors Fu and Cos2. Although not essential for signaling, Goαi and Goαs depletion experiments in vivo both suggest that heterotrimeric G protein-mediated regulation of cAMP levels is important for adjusting the sensitivity of cells to endogenous Hh ligand levels.

Results

Smo can activate Goαs-dependent signaling

Drosophila Smo has been shown to activate Goαs in transfected S9 cells and Hh–treated Clone-8 cells (21, 40). Initially to see if we could observe the same response, we used a bioluminescence resonance energy transfer (BRET) assay based on the EPAC-BRET biosensor (41) to measure changes in cAMP levels in live S2 cells. The BRET signal produced by this biosensor is inversely correlated to cAMP levels. In control experiments, stimulation of cAMP production by expression of a partially activated mutant form of Goαs (GoαsQ215L) (42) caused the expected decrease in the EPAC-BRET signal (Fig. 1A). Conversely, inhibiting cAMP production with the comparable activated form of Goαs (GoαsQ206L) significantly increased the EPAC-BRET signal (Fig. 1A). Thus this assay can reliably detect both increases and decreases in cellular cAMP levels in S2 cells.

We then conducted EPAC-BRET assays to test for Hh-dependent changes in cellular cAMP levels. Transfection of S2 cells with an expression plasmid for HhN, a secreted and biologically active N-terminal fragment of Hh (43) did not yield the expected decrease in cellular cAMP levels, although it did activate target gene expression (assessed using a ptc-luciferase reporter assay) (44) (Fig. 1B and C). Even when using a myristoylated, membrane-targeted form of the EPAC-BRET biosensor to more specifically assess changes in cAMP pools at the plasma membrane (45), we did not observe the anticipated decrease (Fig. S1).

To see if enhancing Smo activity would lead to an effect in this assay, we expressed GFP-tagged, WT and mutant forms of Smo (see Fig. 1D), ptc-luc reporter activity was similarly low in WT Smo (SmoWT)-transfected cells compared with mock transfected controls (Fig. 1E), indicating that the level of Smo overexpression was moderate. Co-expression with HhN caused strong activation of ptc-luc reporter transcription (Fig. 1E). Unexpectedly, we observed a substantial Hh-dependent increase in cellular cAMP levels under these conditions (Fig. 1F). We obtained the same effect when we strongly activated signaling by expressing the PKA- and Cki-phosphomimetic,
constitutively active mutant form of Smo, SmoSD (hereafter referred to as SmoSD) (8) (Fig. 1, G and H). Thus strong activation of the Hh pathway increased both target gene expression and cAMP levels in S2 cells.

To determine whether the increase in cAMP levels we observed is an acute response to Smo activation rather than a gradual or adaptive response to days-long pathway activation in our HhN co-transfection experimental setup, we carried out a time course analysis on SmoWT-expressing cells treated with medium conditioned by control- or HhN-expressing cells. Treatment with control-conditioned medium had no effect on cAMP levels at any time point tested (Fig. 1). In short-term treatments (between 1 and 10 min), we did not observe HhN-dependent changes in cAMP levels (results not shown). Increases in cAMP levels were observed after 30 and 60 min of exposure to HhN, but they did not reach statistical significance (Fig. 1). After 2 h of HhN treatment, cAMP levels were significantly increased, and by 4 h the magnitude of increase was similar to that observed in control cells that had expressed co-transfected HhN for 2–3 days (Fig. 1). In Western blot analysis at each of these time points, HhN-dependent stabilization of Smo-GFP was just detectable after 30 min of treatment, and the shifted, hyperphosphorylated active form of Smo-GFP first became readily apparent after 2 h of HhN exposure and increased at 4 h (Fig. 1). Thus the time course of cAMP regulation closely matched the profile of Smo activation. Although

Figure 1. Strong Smo activation stimulates cAMP production in S2 cells. Graphed data represent mean ± S.D. A, EPAC-BRET assay to measure changes in cAMP levels in S2-R+ cells in response to expression of constitutively active forms of Gs (GαsQ215L) or Gi (Gιαi205L), t test versus cells transfected with empty vector (-); **, p < 0.01; ***, p < 0.001. B, ptc-luc reporter assay monitoring target gene activation in mock- and HhN-transfected S2-R+ cells. t test: ***, p < 0.001.

C, measurement of cAMP levels by EPAC-BRET assay in mock- and HhN-transfected S2-R+ cells. t test: n.s., not significant. D, schematic diagram of truncated/mutated Smo variants used in this study (not to scale). The relative locations of the 7-transmembrane domains (black boxes), the four clusters of Gprk2 phosphorylation sites (green boxes), and the SAID containing three clusters of PKA/Cki phosphorylation sites (blue box) are indicated. Numbers refer to amino acid positions in Smo. E, ptc-luc reporter assay monitoring target gene activation in control and SmoWT-GFP transfected cells, with and without HhN co-transfection. t test: ***, p < 0.001. F, measurement of cAMP levels by EPAC-BRET assay in cells transfected with empty vector (-), SmoWT-GFP, or SmoWT-GFP plus HhN. t test: ***, p < 0.001; n.s., not significant. G, ptc-luc reporter activity in cells transfected with empty vector (-) or SmoSD-GFP. H, EPAC-BRET assay of cAMP levels in SmoWT-GFP transfected cells treated for 0.5, 1, 2, or 4 h with medium conditioned by control cells or cells expressing HhN, or co-transfected with HhN expression plasmid (Smo + Hh). t test: ***, p < 0.001; n.s., not significant. J, immunoblot (IB) analysis of SmoWT-GFP in cells treated as in I.
GRK-phosphorylated Drosophila Smo activates Γ_s signaling

Figure 2. The increase in cAMP downstream of Smo is Γ_s-dependent. Graphed data represent mean ± S.D. A, immunoblot (IB) analysis of myc-tagged Smoα-transfected S2-R+ cells, treated with dsRNAs targeting β-gal (−) or Gas. The blot was probed with anti-myc tag antibody to show efficient depletion of transfected Smoα, and with anti-α-tubulin as a loading control. B, EPAC-BRET assay of cAMP levels in control (−) or Smoα-GFP-transfected S2-R+ cells treated with dsRNA targeting β-gal (control) or Gas. t test: ***; $p < 0.001$; n.s., not significant. C, immunoblot analysis of cells treated as in B. Blot was probed with anti-GFP antibody to reveal Smoα-GFP expression and anti-α-tubulin as a loading control.

the cAMP increase was similar in cells expressing HhN for days and those treated for only 4 h, the transiently exposed cells had only a small percentage of the levels of Smo protein observed in the continuously exposed cells (Fig. 1J). This suggests that the effect does not require extremely high levels of Smo protein.

The most straightforward interpretation of these results is that strong activation of Smo activates Γ_s, either directly or indirectly (e.g. by regulating another GPCR). If this is true, we expected that double-stranded RNA (dsRNA)-mediated depletion of Γ_s would block the increase in cAMP levels. We first confirmed that treatment of Γ_s-transfected cells with dsRNA targeting the gas transcript efficiently blocked production of the protein (Fig. 2A). Consistent with our expectation, the ability of Smo to increase cAMP levels was strictly dependent upon Γ_s. dsRNA-mediated depletion of Γ_s had no significant effect on basal cAMP levels in control cells (Fig. 2B). However, the Smoα-dependent increase in cAMP levels was almost completely inhibited (Fig. 2B). We confirmed that Smoα protein levels were unchanged by Γ_s depletion (Fig. 2C). We conclude that strong activation of Smo activates Γ_s, either directly or indirectly, to stimulate cAMP production in S2 cells.

GRK phosphorylation of SmoCT triggers Γ_s-dependent downstream signaling

Although PKA/CkI phosphorylation is the principal trigger for Smo activation, more than half of the transcriptional response observed in ptc-luc reporter assays depends upon phosphorylation of Smo by Gprk2 (11). To see if Gprk2 affects heterotrimeric G protein–dependent signaling downstream of Smo, we treated S2 cells with a gprk2-specific dsRNA. The ability of Smo to activate Γ_s depended upon Gprk2, as efficient depletion of the kinase strongly impaired the ability of Smoα to stimulate cAMP production (Fig. 3, A and B). To confirm that this is due to a direct effect of Gprk2 phosphorylation on Smo activity, and not to an indirect effect of Gprk2 on CAMP regulation (as described previously in Ref. 36), we targeted the Gprk2 phosphorylation sites in SmoCT rather than the kinase. Consistent with the depletion experiments, mutating the four clusters of Gprk2 phosphorylation sites to Ala (in Smoαc1–4A) prevented Smoα from stimulating cAMP production (Fig. 3C). However, Smoαc1–4A was well-expressed and retained substantial ability to stimulate target gene expression (~20-fold over baseline levels) (Fig. 3, D and E). Although phosphorylation by PKA and CkI is sufficient to stabilize Smo and activate some signaling, we conclude that it is phosphorylation by Gprk2 that specifically triggers Γ_s-dependent downstream regulation of cAMP levels.

Γ_s-dependent signaling is mediated via the conserved core of Smo

We previously showed that a C-terminally–truncated form of Smo that retains only the broadly conserved core of the protein (amino acids 1–663; Smoαcore) is constitutively active and capable of activating Hh target gene expression, although less effectively than Smoα (Fig. 4A) (11). This suggested that Smo proteins from different species share common aspects in their signaling mechanisms (2, 46). We found that Smoαcore possesses all the sequences necessary to promote Γ_s-dependent signaling, in a constitutive manner. In Smoα-expressing cells, cAMP levels increased to a similar extent as in Smoα-expressing cells (Fig. 4, B and C), both throughout cells and more specifically at the membrane (Fig. S1), and in a Γ_s-dependent manner (Fig. 4, D and E). In Smoα-expressing cells, co-expression of Ptc almost completely suppressed both ptc-luc reporter activation and the increase in cAMP production (Fig. 4, A–C). This suggests that the stimulation of cAMP production is a specific, Hh-regulatable signaling activity of Smoαcore.

We tested additional mutants to identify the determinants in Smoαcore required to activate Γ_s-dependent signaling. Unlike full-length Smo, Smoαcore activity is entirely dependent upon Gprk2 phosphorylation (Fig. 4F) (11). Its ability to drive Γ_s-dependent signaling was similarly reliant upon Gprk2 phosphorylation, as stimulation of cAMP production by Smoαcore was strongly impaired by either depletion of Gprk2 (Fig. 4, G and H) or mutation of the Gprk2 phosphorylation sites (Smoαcorec1–3A) (Fig. 4, I and J). We previously showed that the C-terminus of Smoαcore (between amino acid 626 and 663) is required for its activity in ptc-luc reporter assays (11). This same region is also required for Γ_s activation (Fig. 4, K–L). Thus the 7-transmembrane domain region of Smo is not sufficient to activate Γ_s-dependent signaling; sequences in the broadly-conserved membrane-proximal portion of the cytoplasmic tail are also required.

Activation of Γ_s-dependent signaling downstream of Smo is distinct from HSC signaling

Phosphorylation of Smo by Gprk2 affects canonical signaling through the HSC in complex ways. For example, it promotes Smo C-terminal dimerization, which itself promotes Fu activa-
GRK-phosphorylated Drosophila Smo activates G\(\alpha_s\) signaling

Figure 3. Gprk2 phosphorylation of the SmoCT activates G\(\alpha_s\)-dependent signaling. Graphed data represent mean ± S.D. t test: ***, \(p < 0.001\). A, EPAC-BRET assay measuring cAMP levels in mock (−) or Smo\(^{SD}\)-transfected S2-R+ cells treated with dsRNA targeting β-gal (control) or gprk2. Blot was probed with anti-GFP antibody to reveal Smo\(^{SD}\)-GFP expression, anti-Gprk2 to show efficient depletion of Gprk2 protein, and anti-α-tubulin as a loading control. B, C, and D, EPAC-BRET assay measuring cAMP levels (C) and ptc-luc reporter assay (D) in control (−), Smo\(^{SD}\)-GFP, and Smo\(^{SDc1–4A}\)-GFP-transfected cells. E, immunoblot analysis of cells treated as in C. Blot was probed with anti-GFP antibody to reveal Smo\(^{SD}\)-GFP expression and anti-α-tubulin as a loading control.

Activation of signaling through the HSC depends upon interaction of activated Smo with Cos2 (50, 51). To test if Cos2 also directly participates in \(G\alpha_s\)-dependent signaling downstream of Smo, we made use of a dominant-negative form of Cos2 consisting of just the cargo domain, termed the C-terminal Smo-binding domain (CSBD). This protein targets the interaction between Smo and Cos2 and thereby attenuates Hh signaling (40). As expected, CSBD expression almost completely inhibited ptc-luc reporter activation downstream of Smo\(^{SD}\) (Fig. 5G), and this was associated with a strong reduction in Smo protein levels (as others have seen) (40) (Fig. 5H). Interestingly, however, CSBD had no significant effect on the ability of Smo\(^{SD}\) to stimulate cAMP production despite the decrease in Smo\(^{SD}\) protein levels (Fig. 5J). This suggests that the pool of Smo that signals to \(G\alpha_s\) may be different from the Cos2-associated pool signaling through the HSC. Together, these results suggest that \(G\alpha_s\)-dependent signaling downstream of Smo is separable and distinct from signaling through the HSC components Cos2 and Fu.

Our analysis to this point suggested that \(G\alpha_s\) may act in parallel to the HSC downstream of Smo, with both cooperating to promote Hh target gene expression. If so, then the loss of \(G\alpha_s\)-mediated signaling might explain the decrease in target gene expression we observe when Gprk2 phosphorylation of Smo is blocked. If this were true, then increasing cAMP levels should rescue target gene expression downstream of the Gprk2 non-phosphorylatable Smo variant. We used the activated \(G\alpha_s^{Q215L}\) mutant to test this. Expression of either \(G\alpha_s^{Q215L}\) or Smo\(^{SD}\) increased cellular cAMP levels (Fig. 5F), but only Smo\(^{SD}\) drove ptc-reporter expression as expected (Fig. 5K). Both effects depended upon Gprk2 phosphorylation of the SmoCT, as expected (Fig. 5, J and K). Although \(G\alpha_s^{Q215L}\) restored the increase in cAMP levels in Smo\(^{SDc1–4A}\)-expressing cells (Fig. 5F), it did not rescue ptc-reporter activation (Fig. 5K). These results suggest that phosphorylation of Smo by Gprk2 does something else to downstream signaling besides promoting \(G\alpha_s\) activity.

\(G\alpha_s\) enhances the response to low levels of Hh

Having not seen any obvious role for heterotrimeric G protein signaling in the endogenous response of S2 cells to Hh\(^N\)-conditioned medium, we turned to an \textit{in vivo} system to see if \(G\alpha_s\) plays any physiological role in Hh signaling. First, we generated clones of cells homozygous for a null allele of \textit{gsp} (\textit{gsp}\(^{R60}\)) in wing discs using the FLP-FRT system (52). These clones were small when generated in an otherwise WT background. Even when generating them \textit{in vivo} in a Minute heterozygous background to give them a growth advantage (53), \textit{gsp}\(^{R60}\) clones were only about half the size of WT clones generated in parallel (Fig. 6, A−C). We did not observe changes in intermediate or high-threshold Hh responses (expression of Ptc and Engrailed, respectively) in \textit{gsp}\(^{R60}\) clones at the anterior/posterior (A/P) boundary (not shown). However, we did observe an effect on expression of the low threshold target gene \textit{dpp} (assessed using a \textit{dpp}-LacZ enhancer trap line). Normally, \textit{dpp}-LacZ staining is fairly symmetrical in dorsal and ventral compartments of the wing pouch (see below) (Fig. 6D). However, in some larger \textit{gsp}\(^{R60}\) clones located away from the A/P boundary, \textit{dpp}-LacZ
expression was reduced (Fig. 6, E and F). As the concentration of Hh is thought to decline with increased distance from the P compartment where it is produced, this suggests that Gαs may play a role in the normal response to Hh where ligand levels are low.

We were concerned that this approach might underestimate the role of Gαs because of the potential for nonautonomous rescue in mosaic discs. Wing discs cells have been demonstrated to be highly connected through gap junctions, with small dyes able to diffuse over many cell diameters at late third instar stage (54). cAMP has a lower molecular weight than these dyes, suggesting that it too may be able to diffuse in discs. Diffusion of cAMP from neighboring WT cells might limit the cell-autonomous effects in gαs R60 clones.

To circumvent this potential complication, we used expression of a dsRNA transgene to deplete Gαs throughout a much larger territory in the disc. Expression of Gαs dsRNA throughout the developing wing pouch (using nubbin-GAL4) caused a failure in wing inflation (Fig. 7, A and B), a phenotype that has been linked to a failure in Gαs activation downstream of the GPCR Rickets (55). This suggests that the dsRNA transgene does in fact deplete Gαs.

Consistent with the clonal analysis, depletion of Gαs selectively impaired low threshold dpp expression. We used apterous (ap)-GALA4 to drive expression of Gαs dsRNA throughout the dorsal compartment of the wing disc, leaving the ventral compartment as an internal WT control. In control ap-GALA4/+ wing discs, low threshold Hh responses (such
as stabilization of full-length Ci (Ci155) and expression of dpp
and intermediate threshold responses (expression of Ptc) appeared similar in the GAL4-expressing dorsal and WT ventral compartments (Fig. 7E). Quantification and averaging of the relative fluorescence intensities from several discs confirmed that both compartments show virtually identical Hh responses both in terms of intensity and distance from the A/P boundary (Fig. 7F).

ap-GAL4-driven expression of Gαs dsRNA had little effect on Ci stabilization or Ptc expression (Fig. 7, G and H). The most striking effect was a strong and statistically significant reduction in dpp expression (Fig. 7, G and H). Most notably, the A-P distance over which dpp was expressed was substantially less in the Gαs-depleted dorsal compartment, indicating that cells exposed to low levels of Hh were no longer able to mount an effective transcriptional response. This fits well with our observations of gαsΔ60 mutant clones, and suggests that Gαs plays a positive signaling role in situations where Hh levels are low and limiting for a response.

Consistent with this interpretation, we observed a Hh concentration-dependent requirement for Gαs in Smo-transfected S2 cells. In a HhN dose-response test, we found that the standard conditions we used for testing Hh induction of the pathway (100 ng of transfected HhN plasmid) produced approximately a 60% maximal response in ptc-luc reporter assays (Fig. 8A). Under these conditions, we did not observe a significant effect of Gαs depletion on ptc-luc reporter expression (Fig. 8B). However, at a lower level of Hh (20 ng of HhN plasmid), which was sufficient for ~25% maximal response in ptc reporter assays (Fig. 8A) and for stimulating cAMP production (Fig. 8C), depletion of Gαs decreased Hh-dependent ptc-luc reporter activation by Smo-GFP (Fig. 8D). The effect was modest (~25% decrease), suggesting that signaling through Gαs is not essential
for the response. Rather, this result together with our in vivo analysis suggest that Gαi enhances responsiveness to low levels of Hh in vivo.

Gαi depletion reveals an inhibitory role for this protein in the Hh response

Our analysis of Gαi function appears to contradict previous studies in several systems showing that inhibition (rather than stimulation) of cAMP production, through Gαi, promotes Hh target gene expression (21, 22). In particular, gai mutant clones in wing discs, which appeared fairly small, failed to express dpp (22). We tested whether depletion of Gαi over a larger territory would produce a similar effect. Expression of a dsRNA targeting Gαi throughout the developing wing pouch (using the nubbin-GAL4 driver) impaired growth, causing the resulting adult wings to be undergrown, similar to those of gai hypomorphic mutants (Fig. 7C) (40). This suggests that the dsRNA did target Gαi. Interestingly, the wings were not uniformly smaller. Instead, the size of the central region bounded by longitudinal wing veins 3 and 4 (L3 and L4) as a proportion of total wing area was significantly increased upon Gαi depletion (Fig. 7D). This is a characteristic feature of increased Hh signaling in the wing disc. Consistent with this interpretation, Gαi depletion throughout the dorsal compartment significantly increased the level and extent of dorsal CI155 stabilization and expression of dpp and Ptc (Fig. 7I and J). Compared with control discs, cells further from the A/P boundary (and thus exposed to lower levels of ligand) in the Gαi-depleted discs were able to activate robust target gene transcription. This suggests that Gαi depletion enhanced sensitivity of cells to low levels of Hh, which is the opposite of the effect of Gαs depletion. Our analyses of Gαi and of Gαs function in wing discs are thus consistent in revealing a positive effect of cAMP on sensitivity to Hh in vivo.

Discussion

Despite conflicting evidence about the ability and necessity of Smo itself activating Gαi signaling, heterotrimeric G proteins have increasingly been linked to Hh signaling under normal and pathological circumstances (e.g.Refs. 29 and 56). The emerging model (57), based largely on observations in mammalian cells, suggests that cAMP plays primarily an inhibitory role in the pathway. In the absence of Hh, a Gαi-coupled GPCR (like Gpr161 in mammals) signals to maintain cAMP at high levels, thereby ensuring efficient PKA phosphorylation and processing of GLI proteins to their repressor forms. In response to Hh ligands, decreased Gαi signaling and/or increased Gαs signaling by Smo or certain other Gαi-coupled GPCRs lowers cAMP levels, allowing GLI proteins to avoid PKA phosphorylation and accumulate in their full-length activator forms. However, the situation must be more complex, as CAMP/PKA cannot only inhibit but also promote Hh signaling in both flies and mammals (8, 33, 34, 36, 38), most directly in the case of *Drosophila* by phosphorylating and activating Smo. Consistent with this, we have observed a Gαs-dependent increase in cellular CAMP levels downstream of Smo activation, and identified a positive role for Gαs in Hh signaling in vivo.

We expected to see Gαi activation and a decrease in CAMP levels in Hh-treated S2 cells, similar to what was previously observed in other insect cell lines (21, 22). However, we observed no consistent effect on total CAMP levels in S2 cells exposed to HhN. Studies in mouse cerebellar granule cell progenitors suggested that Hh signaling is controlled by a relatively small pool of cAMP that is restricted in its localization, likely near the cilium (58). Hh-dependent changes in CAMP levels may similarly be restricted to a smaller pool in S2 cells such that they do not significantly impact the total CAMP pool; in fact, using a membrane-anchored, myristoylated FRET biosensor of PKA activity in S2 cells, Li et al. (45) observed an ~2-fold increase in PKA activity in response to Hh. However, we saw no change in membrane CAMP levels with a comparable myristoylated CAMP biosensor. It may be that the EPAC-BRET biosensor is not sensitive enough to detect relatively small changes in CAMP levels in response to activation of endogenous signaling, where negative feedback may also limit the magnitude of the response. Alternatively, these cells may differ in some other way from the other cell lines previously tested (discussed below). Nevertheless, hyperactivation of the pathway at the level of Smo produced a substantial CAMP response. The fact that Gαs depletion blocked the increase in CAMP levels strongly suggests that it is due to increased CAMP production rather than a decreased rate of degradation by phosphodiesterases. The relatively slow accumulation of CAMP over several hours is somewhat unusual, as GPCRs typically activate heterotrimeric G protein signaling on a time scale of seconds to minutes. However, it fits with the previously characterized prolonged time frame for Smo activation (59), which involves phosphorylation by PKA and Cki as well as trafficking to the plasma membrane.
At the level of Smo, we identified several features required for this response. The ability of Smo to trigger Go\alpha-dependent cAMP production lies within its highly conserved core. The seven-transmembrane domain is not sufficient, as the C-terminal 26 amino acids of Smo\textsubscript{core} (between amino acids 626 and 651), situated at the end of its cytoplasmic tail, are required for the effect. This same region is required for Smo\textsubscript{core} to interact with Cos2 and to promote expression of Hh target genes (11). However, we did not observe a link between HSC-dependent signaling and the cAMP response. In fact the ability of CSBD, which interferes with the interaction between Smo and Cos2 (50), to destabilize Smo\textsubscript{SD} and block target gene expression and yet not affect the cAMP response suggests that the two responses may be mediated by separate pools of Smo protein. Interestingly, mutation of the N-linked glycosylation sites in mouse Smo impaired its ability to signal through Go\alpha without affecting canonical signaling, pointing to the possible existence of a specific Go\alpha-signaling state of Smo in mammalian cells (60). Like signaling through the HSC, the cAMP response is Hh-activated and inhibited by Ptc, suggesting that activation of
Smo by PKA and CkI is required. Crucially, however, whereas PKA/CkI phosphorylation is sufficient for activation of Hh target gene expression, the cAMP response is strictly dependent upon SmoCT phosphorylation by Gprk2. This is reminiscent of the phenomenon of phosphorylation barcoding that has been described for some GPCRs, where phosphorylation at different sets of sites in the receptor tail by different kinases dictates distinct signaling responses (61).

Given these constraints, how could Smo activity lead to signaling through Gαs? The most straightforward model would be that Smo directly couples to Gαs like a typical GPCR. If so, then we could explain the difference between our observations and others’ demonstration of Smo–Gαi coupling as a cell-type or context-dependent ability of Smo to couple to different Gα proteins, as observed for many GPCRs (62). However, we have been unable to obtain compelling evidence for a direct interaction between Smo and Gαi. We favor the alternative explanation that Smo regulates a GPCR that couples to Gαs in S2 cells. Gpr161 provides a precedent for this in mammalian cells. The ability of Gpr161 to localize to the cilium where it can couple to Gαs is determined by the activity of Smo in the cilium (63), thus providing an indirect link between Smo and Gαs. Interestingly, there is some evidence that Smo is trafficked to the cilium in response to phosphorylation by GRK2 in mammalian cells (15) (although this has been disputed) (16). In Drosophila, Gprk2 is required for internalization of Smo from the plasma membrane in response to Hh (64). Thus it could be that the regulation of Smo–Gαs signaling by Gprk2 that we observe in S2 cells reflects GRK-dependent trafficking of Smo to a subcellular location where it regulates a Gαs-coupled GPCR, perhaps on endosomes (from which mammalian GPCRs have increasingly been shown to signal through heterotrimeric G proteins after GRK-dependent internalization) (65). If this is the case, the difference in Gαs signaling between S2 cells and other insect cell lines could reflect differences in the GPCRs they express.

Regardless of whether Smo directly or indirectly regulates Gαs in S2 cells, we find that Gαs does play a role in the endogenous Hh response. Because Smo activation leads to localized PKA activity at the plasma membrane (45), we imagined that a localized burst of cAMP production might be required to enhance Smo phosphorylation to allow high-threshold target gene expression. However, our results suggest that such a mechanism is not required for high-threshold signaling. Instead, we consistently see selective impairment of low-threshold responses when Gαs is depleted or mutated in S2 cells, in wing disc clones, and most clearly, throughout an entire compartment. The narrowing of the domain of dpp expression in response to gas-depletion suggests that the sensitivity of cells to low levels of Hh was reduced, consistent with the impairment of ptc-luc reporter activation we observed in S2 cells in response to low but not high levels of Hh. Thus, rather than boosting Smo activity toward its maximum, Gαs-driven cAMP production may be most important for enhancing Smo activation above a signaling threshold under limiting ligand conditions. Interestingly, while this manuscript was under review, Pusapati et al. (66) reported similar findings in vertebrates. They showed that GPCR signaling through Gαs, downstream of both Smo and GRKs, regulates the sensitivity of responding cells to Sonic Hedgehog. The parallel between these findings and ours indicates that regulation of cAMP in target cells is an evolutionarily conserved mechanism for fine-tuning Hh responsiveness.

Finally, in contrast to previously published work, we observe an inhibitory rather than stimulatory role for Gαi in the Hh response. Specifically, Gαi depletion led to ectopic expression of Hh target genes in cells located away from the A/P boundary, where ligand levels are lower. This difference from previous work may be due to a difference in the extent of signaling impairment in Gαi-depleted cells versus gai mutant clones, similar to the way that PKA inhibition can suppress the Hh response (8), whereas complete elimination of the catalytic subunit leads to constitutive target gene expression (31). In any case, these results are consistent with our Gαi depletion experiments and other work showing a positive role for Gαi/cAMP in the Hh response (36, 67, 68). Together they clearly suggest a positive role for regulated cAMP production in controlling the sensitivity of cells to Hh.

Experimental procedures

Expression constructs

Expression plasmids encoding C-terminally–tagged GFP Smo mutants and Smo truncations under control of the metallothionein promoter (in pRmHa3.puro) were previously described (11). The expression construct for Smo^ΔC (lacking the C-terminal-most 52 amino acids containing a Fu-binding domain) (49) was generated by PCR amplification of a portion of the Smo coding sequence spanning the EcoRI site at codon 797–798 to the Leu-984 codon. Primers were designed to introduce a 3’ stop codon and NotI site immediately following codon 984. The resulting EcoRI-NotI fragment was used to replace the corresponding C-terminus–encoding fragment in a pRmHa3.puro backbone containing the Smo^SD coding sequence fused to C-terminal GFP (engineered as a cassette flanked by NotI and KpnI restriction sites). To create the Cos2 Smo-binding domain (CSBD) expression construct (40), sequences encoding amino acids 1001–1201 of Cos2 were PCR amplified, introducing a 5’ EcoRI and 3’ KpnI site. The resulting EcoRI-KpnI restriction fragment was cloned into a modified pRmHa3.puro plasmid encoding an in-frame N-terminal Myc epitope tag. For expressing Ptc, an EcoRI-KpnI fragment encoding full-length Ptc fused to a C-terminal GFP tag (obtained from Stephen Cohen) was cloned into pRmHa3.puro. The plasmids encoding the EPAC-BRET biosensor or the same protein lacking the GFP10 moiety (used as a control for background emission), as well as plasmids encoding constitutively active GαsQ215L and GαiQ202I, were prepared as described (36). pRmHa3.puro/HhN, which encodes an active N-terminal fragment of Drosophila Hh plasmid (59), was used in the preparation of HhN-conditioned media and for co-transfection of cells transfected with Smo expression plasmids in some experiments. An empty pRmHa3.puro vector (−) was used for transfection as a control.

BRET and ptc-luciferase reporter assays, dsRNA treatment

EPAC-BRET assays were performed essentially as described (36). Briefly, for BRET experiments not involving dsRNA treat-
GRK-phosphorylated Drosophila Smo activates Gαs signaling

For time course experiments, Smo-expressing S2-R+ cells were treated with medium conditioned by either control cells or cells expressing HhN as previously described (64). Cells were transfected with 150 ng each of pMT.puro/GFP10-EPAC-RLucII/T781A,F782A, pMT.puro/SmoWT-GFP, and (in the control cells) pMT.puro/HhN and processed as above. On day 4, growth medium was gently removed and 0.1 ml of either control or HhN-conditioned media was added to each well at the appropriate time. Cells treated at different intervals were processed simultaneously by adding DeepBlueC directly to the conditioned media and BRET values were determined as above. Time-dependent changes in SmoWT phosphorylation following exposure to control- or HhN-conditioned media were determined by immunoblotting with rabbit α-GFP antibody (Torres Pines Scientific) as described (11). In other experiments, immunoblotting was performed with mouse monoclonal anti-myc (9E10; Santa Cruz Biotechnology), mouse monoclonal anti-α-tubulin (12G10; obtained from the Developmental Studies Hybridoma Bank (DSHB)), guinea pig anti-Gprk2 (64), or guinea pig anti-Smo.

Drosophila crosses, immunostainings, and image analysis

For generating gas mutant clones, we used the gas^{R60A} mutant allele (stock obtained from the Bloomington Drosophila Stock Centre). This allele contains a mutation that converts Tyr-231 to a stop codon, deleting the C-terminal one-third of the protein, and should be a null allele. To make gas clones in a Minute background, winf^{10638},FRT42D,gas^{R60A}/CyO,Kr-GAL4, UAS-GFP males were crossed at 25 °C to w,hsFLP; FRT42D, Ub::GFP,M(2R)S3'/CyO virgins. For WT clones, winf^{10638}, FRT42D males were used. Offspring from the two crosses were heat shocked at 37.5 °C and dissected in parallel. For no clones control, the heat shock was omitted. Wing disc-bearing anterior halves were dissected from wandering third instar larvae and processed for immunofluorescence staining with rabbit anti-β-gal antibody (Santa Cruz Biotechnology). To quantify clonal growth, the total area of the wing pouch and of the GFP-negative regions contained in the wing pouch for 10 discs were measured using the Histogram function of Photoshop. Clone size was expressed as the total GFP-negative clonal area over total wing pouch area.

For Gαs and Gαi depletion experiments w;UAS-Dcrp-GAL4,dpp^{10638}/CyO or w;UAS-Dcrp-nub-GAL4,dpp^{10638}/CyO females were crossed at 27 °C to w,UAS-GFP males (control), w;UAS-Gas.dsRNA males (from Vienna Drosophila Resource Centre; stock number v24958), or w;UAS-Gai.dsRNA males (69) (kindly provided by J. Knoblich). Wandering larvae were dissected and anterior and anterior halves processed for immunofluorescence with rabbit anti-β-gal, rat anti-Ci (2A1 from DSHB), and mouse anti-βtubulin (12G10; obtained from a monoclonal anticytokeratin mouse antibody (64)). Discs were viewed using confocal microscopy as described (11). To quantify fluorescence, boxes of equal size spanning the A/P boundary were drawn in the dorsal and ventral regions of each wing disc image and fluorescence values along the anterior-posterior axis were calculated using the Plot Profile function of ImageJ. Dorsal and ventral data were normalized by dividing each data point by the average maximum intensity value from the ventral compartment of that disc (defined as the average of the 10 highest values), effectively converting them to % maximum WT response. Data were then arranged to align the A/P boundaries and pixel-by-pixel data from four discs was averaged to yield a mean intensity plot.

Author contributions—S. D. P., D. M., and D. R. H. conceptualization; S. D. P., F. S., and D. M. formal analysis; S. D. P., F. S., D. M., and P. I. investigation; S. D. P. and D. R. H. visualization; S. D. P. and D. R. H. writing-review and editing; D. R. H. supervision; D. R. H. funding acquisition; D. R. H. writing—original draft.
Acknowledgments—We thank Karen Oh for expert technical assistance and Stephen Cohen (University of Copenhagen, Denmark), Jurgen Knoblich (Institute of Molecular Biotechnology, Austria), and Michel Bouvier (Université de Montréal, Canada) for generously providing reagents. Fly stocks obtained from the Bloomington Drosophila Stock Center (NIH P400D018537) were used in this study, as were antibodies from the Developmental Studies Hybridoma Bank (created by the NICHD, National Institutes of Health, and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242).

References
1. Jiang, J., and Hui, C. C. (2008) Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 CrossRef Medline
2. Briscoe, J., and Thérond, P. P. (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 CrossRef Medline
3. Pak, E., and Segal, R. A. (2016) Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy. Dev. Cell 38, 333–344 CrossRef Medline
4. Li, S., Chen, Y., Shi, Q., Yue, T., Wang, B., and Jiang, J. (2012) Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol. 10, e1001239 CrossRef Medline
5. Xia, R., Jia, H., Fan, J., Liu, Y., and Jia, J. (2012) USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol. 10, e1001238 CrossRef Medline
6. Ma, G., Li, S., Han, Y., Li, S., Yue, T., Wang, B., and Jiang, J. (2016) Regulation of smoothened trafficking and Hedgehog signaling by the SUMO pathway. Dev. Cell 39, 438–451 CrossRef Medline
7. Qi, Y., Liu, H., and Lin, X. (2016) Sumoylation stabilizes smoothened to promote Hedgehog signaling. Dev. Cell 39, 385–387 CrossRef Medline
8. Jia, J., Tong, C., Wang, B., Luo, L., and Jiang, J. (2004) Hedgehog signaling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432, 1045–1050 CrossRef Medline
9. Zhang, C., Williams, E. H., Guo, Y., Lum, L., and Beachy, P. A. (2004) Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc. Natl. Acad. Sci. U.S.A. 101, 17900–17907 CrossRef Medline
10. Apionishev, S., Katanayeva, N. M., Marks, S. A., Kalderon, D., and Tomlinson, A. (2005) Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat. Cell Biol. 7, 86–92 CrossRef Medline
11. Maier, D., Cheng, S., Faubert, D., and Hifnner, D. R. (2014) A broadly conserved G-protein-coupled receptor kinase phosphorylation mechanism controls Drosophila smoothened activity. PLoS Genet. 10, e1004399 CrossRef Medline
12. Li, S., Li, S., Han, Y., Tong, C., Wang, B., Chen, Y., and Jiang, J. (2016) Regulation of smoothened phosphorylation and high-level Hedgehog signaling activity by a plasma membrane associated kinase. PLoS Biol. 14, e1002481 CrossRef Medline
13. Sanaia, M., Bécam, I., Hofmann, L., Behague, J., Argüelles, C., Gourhand, V., Bruzzzone, L., Holmgre, R. A., and Plessis, A. (2017) Dose-dependent transduction of Hedgehog relies on phosphorylation-based feedback between the G-protein-coupled receptor Smoothened and the kinase Fused. Development 144, 1841–1850 CrossRef Medline
14. Zhao, Y., Tong, C., and Jiang, J. (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252–258 CrossRef Medline
15. Chen, Y., Sasai, N., Ma, G., Yue, T., Jia, J., Briscoe, I., and Jiang, J. (2011) Sonic Hedgehog dependent phosphorylation by CK1α and GSK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol. 9, e1000183 CrossRef Medline
16. Zhao, Z., Lee, R. T., Pusapati, G. V., Jyu, A., Rohatgi, R., and Ingham, P. W. (2016) An essential role for GSK2 in Hedgehog signalling downstream of Smoothened. EMBO Rep. 17, 739–752 CrossRef Medline
17. Chen, Y., Li, S., Tong, C., Zhao, Y., Wang, B., Liu, Y., Jia, J., and Jiang, J. (2010) G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in Drosophila. Genes Dev. 24, 2054–2067 CrossRef Medline
18. Preat, T., Thérond, P., Limbourg-Bouchon, B., Pham, A., Tricoire, H., Busson, D., and Lamour-Iansad, C. (1993) Segmental polarity in Drosophila melanogaster: genetic dissection of fused in a Suppressor of fused background reveals interaction with costal-2. Genetics 135, 1047–1062 Medline
19. Wilson, C. W., Nguyen, C. T., Chen, M. H., Yang, J. H., Gacayan, R., Huang, J., Chen, J. N., and Chuang, P. T. (2009) Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459, 98–102 CrossRef Medline
20. Ayers, K. L., and Thérond, P. P. (2010) Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol. 20, 287–298 CrossRef Medline
21. Riobo, N. A., Saucy, B., Dilizio, C., and Manning, D. R. (2006) Activation of heterotrimeric G proteins by Smoothened. Proc. Natl. Acad. Sci. U.S.A. 103, 12607–12612 CrossRef Medline
22. Ogden, S. K., Fei, D. L., Schilling, N. S., Ahmed, Y. F., Hwa, J., and Robbins, D. J. (2008) G protein Goi functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456, 967–970 CrossRef Medline
23. Chen, F., Cheng, L., Douglas, A. E., Riobo, N. A., and Manning, D. R. (2013) Smoothened is a fundamentally competent activator of the heterotrimeric G protein Goi. Mol. Pharmacol. 83, 691–697 CrossRef Medline
24. Carbe, C. J., Cheng, L., Addya, S., Gold, J. I., Gao, E., Koch, W. J., and Riobo, N. A. (2014) G proteins mediate activation of the canonical hedgehog pathway in the myocardium. Am. J. Physiol. Heart Circ. Physiol. 307, H66–72 CrossRef Medline
25. Chinchilla, P., Xiao, L., Kazanietz, M. G., and Riobo, N. A. (2010) Hedgehog proteins promote pro-angiogenic responses in endothelial cells through non-canonical signalling pathways. Cell Cycle 9, 570–579 CrossRef Medline
26. Belgacem, Y. H., and Borodinsky, L. N. (2011) Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc. Natl. Acad. Sci. U.S.A. 108, 4482–4487 CrossRef Medline
27. Polizio, A. H., Chinchilla, P., Chen, X., Manning, D. R., and Riobo, N. A. (2011) Sonic Hedgehog activates the GTPases Rac1 and RhoA in a G1-independent manner through coupling of smoothened to G proteins. Sci. Signal. 4, pt7 Medline
28. Villanueva, H., Visbal, A. P., Obeid, N. F., Tsai, A. Q., Faruki, A. A., Wu, M. F., Hilsenberg, S. G., Shaw, C. A., Yu, P., Plummer, N. W., Birnbaumer, L., and Lewis, M. T. (2015) An essential role for GNa2(2) in Smoothened-stimulated epithelial cell proliferation in the mammary gland. Sci. Signal. 8, ra92 CrossRef Medline
29. Mukhopadhyay, S., Wen, X., Ratti, N., Loktev, A., Rangell, L., Scales, S. J., and Jackson, P. K. (2013) The ciliary G protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 CrossRef Medline
30. Singh, J., Wen, X., and Scales, S. J. (2015) The Orphan G protein-coupled receptor Gpr175 (Tprp40) enhances Hedgehog signaling by modulating cAMP levels. J. Biol. Chem. 290, 29663–29675 CrossRef Medline
31. Li, W., Ohlmeyer, J. T., Lane, M. E., and Kalderon, D. (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80, 553–562 CrossRef Medline
32. Briscoe, J., Chen, Y., Jessell, T. M., and Struhl, G. (2001) A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 CrossRef Medline
33. Tiecke, E., Turner, R., Sanz-Esquerra, J. I., Warner, A., and Tickle, C. (2007) Manipulations of PKA in chick limb development reveal roles in digit patterning including a positive role in Sonic Hedgehog signaling. Dev. Biol. 305, 312–324 CrossRef Medline
34. Milenkovic, L., Scott, M. P., and Rohatgi, R. (2009) Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J. Cell Biol. 187, 365–374 CrossRef Medline
35. Jiang, J., and Struhl, G. (1995) Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80, 563–572 CrossRef Medline
GRK-phosphorylated Drosophila Smo activates Go\textsubscript{3} signaling

36. Cheng, S., Maier, D., and Hipfner, D. R. (2012) Drosophila G-protein-coupled receptor kinase 2 regulates cAMP-dependent Hedgehog signaling. Development 139, 85–94 CrossRef Medline
37. Zhou, Q., Apionishev, S., and Kalderon, D. (2006) The contributions of protein kinase A and smoothened phosphorylation to hedgehog signal transduction in Drosophila melanogaster. Genetics 173, 2049–2062 CrossRef Medline
38. Ohlmeyer, J. T., and Kalderon, D. (1997) Dual pathways for induction of wingless expression by protein kinase A and Hedgehog in Drosophila embryos. Genes Dev. 11, 2250–2258 CrossRef Medline
39. Maier, D., Cheng, S., and Hipfner, D. R. (2012) The complexities of G-protein-coupled receptor kinase function in Hedgehog signaling. Fly (Austin) 6, 135–141 Medline
40. Ogden, S. K., Casso, D. J., Ascano, M., Jr., Yore, M. M., Kornberg, T. B., and Robbins, D. J. (2006) Smoothened regulates activator and repressor functions of Hedgehog signaling via two distinct mechanisms. J. Biol. Chem. 281, 7237–7243 CrossRef Medline
41. Jiang, L., Collins, J., Davis, R., Lin, K. M., DeCamp, D., Roach, T., Huhe, R., Rebres, R. A., Ross, E. M., Taussig, R., Fraser, I., and Sternweis, P. C. (2007) Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J. Biol. Chem. 282, 10576–10584 CrossRef Medline
42. Quan, F., Thomas, J., and Forte, M. (1991) Drosophila stimulatory G protein \(\alpha\) subunit activates mammalian adenylyl cyclase but interacts poorly with mammalian receptors: implications for receptor-G protein interaction. Proc. Natl. Acad. Sci. U.S.A. 88, 1898–1902 CrossRef Medline
43. Porter, J. A., von Kessler, D. P., Ekker, S. C., Young, K. E., Lee, J. J., Moses, P. A., Beachy, P. A. (1999) Nuclear trafficking of Cubitus interruptus are regulated by Hedgehog. Dev. Genet. 2250–2258 CrossRef Medline
44. Li, S., Ma, G., Wang, B., and Jiang, J. (2014) Hedgehog induces formation of patched and smoothened. J. Biol. Chem. 290, 2222–2230 CrossRef Medline
45. Fraser, S. E., and Bryant, P. J. (1985) Patterns of dye coupling in the imaginal wing disk of Drosophila melanogaster. Nature 317, 533–536 CrossRef Medline
46. Baker, J. D., and Truman, J. W. (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tuning and selectively block a stereotyped behavioral program. J. Exp. Biol. 205, 2555–2565 Medline
47. He, X., Zhang, L., Chen, Y., Remke, M., Shih, D., Lu, F., Wang, H., Deng, Y., Yu, Y., Xia, Y., Wu, X., Ramaswamy, V., Hu, T., Wang, F., Zhou, W., et al. (2014) The G protein \(\alpha\) subunit Go is a tumor suppressor in Sonic hedgehog-driven medulloblastoma. Nat. Med. 20, 1035–1042 CrossRef Medline
48. Mukhopadhyay, S., and Rohatgi, R. (2014) G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin. Cell Dev. Biol. 33, 63–72 CrossRef Medline
49. Niewiadomski, P., Zhujiang, A., Youssef, M., and Waschek, J. A. (2013) Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal 25, 2222–2230 CrossRef Medline
50. Denef, N., Neubüser, D., Perez, L., and Cohen, S. M. (2000) Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 CrossRef Medline
51. Marada, S., Navarro, G., Truong, A., Stewart, D. P., Arentsrod, A. M., Nachtergaele, S., Angelats, E., Opferman, J. T., Rohatgi, R., McCormick, P. J., and Ogden, S. K. (2015) Functional divergence in the role of N-linked glycosylation in Smoothened signaling. PLoS Genet. 11, e1005473 CrossRef Medline
52. Nobels, K. N., Xiao, K., Ahn, S., Shukla, A. K., Lam, C. M., Rajagopal, S., Strachan, R. T., Huang, T. Y., Bressler, E. A., Hara, M. R., Shenoy, S. K., Gygi, S. P., and Lefkowizt, R. J. (2011) Distinct phosphorylation sites on the \(\beta_2\)-adrenergic receptor establish a barcode that encodes differential functions of \(\beta\)-arrestin. Sci. Signal. 4, ra51 Medline
53. Masuho, I., Ostrovskaya, O., Kramer, G. M., Jones, C. D., Xie, K., and Martemyanov, K. A. (2015) Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci. Signal. 8, ra123 CrossRef Medline
54. Pal, K., Hwang, S. H., Somatilaka, B., Badgandi, H., Jackson, P. K., DeFea, K., and Mukhopadhyay, S. (2016) Smoothened determines \(\beta\)-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J. Cell Biol. 212, 861–875 CrossRef Medline
55. Cheng, S., Maier, D., Neubüser, D., and Hipfner, D. R. (2010) Regulation of Smoothened by Drosophila G-protein-coupled receptor kinases. Dev. Biol. 337, 99–106 CrossRef Medline
56. Vilardaga, J. P., Jean-Alphonse, F. G., and gardella, T. J. (2014) Endosomal generation of cAMP in GPCR signaling. Nat. Chem. Biol. 10, 700–706 CrossRef Medline
57. Pusapati, G. V., Gong, J. H., Patel, B. B., Gouti, M., Sagner, A., Sircar, R., Luchetti, G., Ingham, P. W., Briscoe, J., and Rohatgi, R. (2018) G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Sci. Signal. 11, eaao5749 CrossRef Medline
58. Nybakken, K., Vokes, A. S., Lin, T. Y., Mcmahon, A. P., and Perrimon, N. (2005) Genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat. Genet. 37, 1323–1332 CrossRef Medline
59. DasGupta, R., Nybakken, K., Bookler, M., Mathey-Prevot, B., Gonsalves, F., Changkakoty, B., and Perrimon, N. (2007) A genome-wide RNA interference screen reveals functional discrimination among Hedgehog target genes. Genes Dev. 21, 1297–1307 CrossRef Medline
60. Dang, T. D., and Perrimon, N. (1992) Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. Dev. Genet. 13, 367–375 CrossRef Medline
61. Blair, S. S. (2003) Genetic mosaic techniques for studying Drosophila development. Development 130, 5065–5072 CrossRef Medline