One cutting plane algorithm using auxiliary functions

I Ya Zabotin and K E Kazaeva
Kazan (Volga Region) Federal University, 18, Kremlyovskaya st., Kazan, 420008, tel.: (843)233-71-56
E-mail: iyazabotin@mail.ru

Abstract. We propose an algorithm for solving a convex programming problem from the class of cutting methods. The algorithm is characterized by the construction of approximations using some auxiliary functions, instead of the objective function. Each auxiliary function bases on the exterior penalty function. In proposed algorithm the admissible set and the epigraph of each auxiliary function are embedded into polyhedral sets. In connection with the above, the iteration points are found by solving linear programming problems. We discuss the implementation of the algorithm and prove its convergence.

1. Introduction
In the projecting of complex technical systems solving one-criterion and multi-criteria optimization problems is often a necessity. Some examples of the optimization problem statements related to the synthesis of electronic systems and their individual subsystems can be found in [1, 2]. Often such problem statements have the form of mathematical programming problems.

Cutting plane methods form a well-known class of mathematical programming problem solving methods (e.g., [3 - 6]). Part of this class of methods uses the polyhedral approximation of the epigraph of the objective function (e.g., [3, 6 - 9]). Proposed cutting algorithm precisely refers to this group. This algorithm differs from the known ones in using approximation of the auxiliary function’s epigraphs. These auxiliary functions are constructed in the form of the sum of the objective function and external penalties for the constraint region of the original problem.

2. Problem setting.
We solve the problem

\[\min \{ f(x) : x \in D \} \]

where \(D \) – a convex bounded closed set in the n-dimensional Euclidean space \(R^n \), \(f(x) \) – a convex function in \(R^n \).

We set \(f^* = \min \{ f(x) : x \in D \} \), \(X^* = \{ x \in D : f(x) = f^* \} \), \(\text{epi}(g, G) = \{ (x, \gamma) : x \in G, \gamma \geq g(x) \} \), where \(G \subset R^n \), \(g(x) \) – the function defined in \(R^n \). Denote by \(W(z, Q) = \{ a \in R^n : <a, u - z> \leq 0 \ \forall u \in Q \} \) the bunch of normalized generally support vectors for the set \(Q \subset R^{n+1} \) at the point \(z \in R^{n+1} \), \(\text{int} Q \) – interior of the set \(Q \) and \(K = \{ 0, 1, \ldots \} \).

3. The cutting algorithm and discussion
The proposed solution algorithm for the problem (1) generates a sequence of approximations \(\{ x_k \} \), \(k \in K \), by the following rule.

\[\]
The proof of the following criterion of optimality (from step 1) is based on this inequality.

Choose point

\[v \in \text{int } \text{epi}(f, D). \]

Set a convex penalty function \(P_0(x) \) with the conditions \(P_0(x) = 0 \) for all \(x \in D \) and \(P_0(x) > 0 \) for all \(x \notin D \). Put

\[F_0(x) = f(x) + P_0(x). \]

Construct a convex bounded closed set \(D_0 \subset R_n \) and convex closed set \(M_0 \subset R_{n+1} \) such that

\[D \subset D_0, \text{epi}(F_0, R_n) \subset M_0. \]

Fix a number

\[\gamma \leq \min \{ f(x) : x \in D_0 \} = f_0^* \]

and a positive numerical sequence \(\{\Delta_k\} \), \(k \in K \). Set \(i = 0, k = 0 \).

1. Find a solution \(u_i = (y_i, \gamma_i) \), where \(y_i \in R_n, \gamma_i \in R_1 \), of the following problem

\[\min \{ \gamma : (x, \gamma) \in M_n, x \in D_0, \gamma \geq \gamma \}. \]

(2)

If \(u_i \in \text{epi}(f, D) \), then \(y_i \in X^\circ \) - a solution of problem (1), and the process is over.

2. If

\[F_i(y_i) - \gamma_i > \Delta_i, \]

(3)

then put

\[P_{i+1}(x) = P_i(x), \quad F_{i+1}(x) = F_i(x), \]

and go to step 4. Otherwise set a convex penalty function \(P_{i+1}(x) \) such that \(P_{i+1}(x) = 0 \) for all \(x \in D \) and \(P_{i+1}(x) > P_i(x) \) for all \(x \notin D \). Put

\[F_{i+1}(x) = f(x) + P_{i+1}(x), \]

and go to step 3.

3. Let \(i_k = i \),

\[x_k = y_{i_k}, \quad \sigma_k = \gamma_{i_k}, \]

(4)

increase the value of \(k \) by one.

4. Find a point \(v_i \in R_{n+1} \) as the intersection point of the segment \([v, u_i] \) and the boundary of the set \(\text{epi}(F_i, R_n) \), choose a vector \(a_i \in W(v_i, \text{epi}(F_i, R_n)) \).

5. Let

\[M_{i+1} = M_i \cap \{u \in R_{n+1} : \langle a_i, u - v_i \rangle \leq 0\}. \]

(5)

Increase the value of \(i \) by one and go to step 1.

Let us make some remarks concerning the algorithm.

If the sets \(D_0 \) and \(M_0 \) are polyhedral, then the problems of constructing approximations \(u_i \) (2) are linear programming problems, for all \(i \in K \). If put \(M_0 = R_{n+1} \) then the pair \((y_0, \gamma_0) \), where \(y_0 \in D_0 \), can be a solution of problem (2) for \(i = 0 \).

Let \(x^* \in X^\circ \). As \(x^* \in D_0 \) and the choice of number \(\gamma \) can be made by the inequalities \(f^* \geq f_0^* \geq \gamma \), it is easy to prove that \((x^*, f^*) \in M_0 \), \(i \in K \), i.e. the admissible set of the problem (2) is not empty. The last inclusion implies the inequality

\[\gamma_i \leq f^*, \quad i \in K. \]

The proof of the following criterion of optimality (from step 1) is based on this inequality.

Theorem 1. If the inclusion \(u_i \in \text{epi}(f, D) \) occurs for some \(i \in K \), then \(y_i \in X^\circ \).

Notice that some methods of specifying penalty functions can be found, for example, in [10, 11].
We move on to the investigation of the convergence of the algorithm. Firstly note the boundness of the sequences \{u_i\} and \{v_i\} constructed by the algorithm, because the inclusions \(y_i \in D_0\) and the inequalities (5) are implemented for the points \((y_i, \gamma_i)\).

Show that with a sequence \{u_i\}, \(i \in K\), the algorithm constructs sequences \{x_k\}, \{\sigma_k\}, \(k \in K\), too.

Lemma 1. If the sequence \{u_i\}, \(i \in K\) is constructed by the described algorithm, there is an index \(i_k \in K\) which satisfies (4) for every \(k \in K\).

Proof. Fix an index \(k \in K\) and show the existence of such index \(i_k \in K\) for which the inequality \(F_i(y_{i_k}) - y_{i_k} \leq \Delta_k\) holds. Thereby the equalities (4) will be proved for the selected \(k \in K\).

Assume the contrary, i.e. (3) is executed for the fixed \(\Delta_k\) and for all \(i \in K\). Then, according to the step 2 of the algorithm, we have the equalities \(F_i(x) = P_i(x), F_i(x) = F_i(x)\) for all \(i > 0\). It means that \(F_i(y_i) - \gamma_i > \Delta_k \forall \ i \in K\).

From the sequence \{\(u_i\)\}, \(i \in K\), distinguish a convergent subsequence \{\(u_i\)\}, \(i \in K' \subset K\), and let \(u' = (v', \gamma')\) be its limit point. Then referring to inequalities (6) we have the inequality \(F_i(y_i) - \gamma' \geq \Delta_k\). (7)

Prove that the following equality holds for this subsequence:

\[
\lim_{i \in K'} || v_i - u_i || = 0
\]

(8)

By the choice of the points \(v_i\), there is such \(\mathcal{J}_i \in [0, 1)\) for each \(i \in K\) that

\[
v_i = u_i + \mathcal{J}_i(v - u_i).
\]

(9)

Fix \(i', i'' \in K\) so that \(i'' > i\). By the construction \(M_{i'', v} \subset M_{i', v}\) and consequently \(a_{i'} \in W(v_{i'}, M_{i', v})\). In view of inclusion \(u_{i''} \in M_{i, v}\) we have the inequality \(a_{i'}, u_{i''} - v_{i'} \leq 0\). Hence from (9) there is the inequality

\[
< a_{i'}, u_{i''} - v_{i'} > \geq \mathcal{J}_{i'}< a_{i'}, u_{i''} - v >.
\]

(10)

As \(v \in \text{int epi}(f, D)\) and \(v_i \notin \text{epi}(f, D), i \in K\), by lemma 1 from [12] there is a number \(\delta > 0\) such that \(\gamma_i, v - v_{i'} \leq -\delta\) for all \(i \in K\). By the equality (9) and the inequality 0 \(\leq \mathcal{J}_i < 1\), \(i \in K\), we have the inequality \(a_{i'}, v - u_{i'} \leq -\delta\), \(i \in K\). Then, from (10) we obtain \(a_{i'}, u_{i''} - v_{i'} \geq \mathcal{J}_{i'}\delta\) or \(|| u_{i''} - v_{i'} || \geq \mathcal{J}_{i'}\delta\). Due to convergence of the sequence \(\{u_i\}, i \in K\), the limit relation \(\mathcal{J}_i \to 0\), \(i \in K\), follows from the last inequality. By the boundness of \(\{ || v - u_i || \}, i \in K\), using (9), we obtain the required equality (8).

Then, by equality (8) and by the inclusion \(v_i \in \text{epi}(F_0, R_0), i \in K\), there is the inclusion \(u' \in \text{epi}(F_0, R_0)\), i.e.

\[
F_i(y') \leq \gamma'.
\]

(11)

Contrariwise, \(\text{epi}(F_0, R_0) \subset M_i, i \in K\). It means that the point \((y_i, F_i(y_i)), i \in K\), is a permissible solution of the problem (2) for each \(i \in K\). Then the inequality \(\gamma_i \leq F_i(y_i)\) holds for the solution \((y_i, \gamma_i)\) of the problem (2) for each \(i \in K\). Passing in this inequality to the limit \(i \in K\) we get \(\gamma \leq F_i(y_i)\). Adding (11) we obtain equality \(F_i(y) = \gamma\) which contradicts (7). QED

Theorem 2. Let the functions \(P_i(x), i \in K\), are chosen in the algorithm on condition

\[
\lim_{i \in K} P_i(x) = +\infty \ \forall \ x \notin D,
\]

(12)

\(\{ (x_i, \sigma_i) \}, k \in K' \subset K\), is a convergent subsequence of the sequence \(\{ (x_i, \sigma_i) \}, k \in K, \) and \(\overline{u} = (\overline{x}, \overline{\sigma})\) is its limit point. Then \(\overline{x} \in X, \overline{\sigma} \in f'\).
But according to (5) proved. Hence, of equality (8) it is proved that

\[\lim_{k \to \infty} \| v_{i_k} - u_{i_k} \| = 0 \]

(13)

Distinguish a convergent subsequence \(\{v_{i_k}\}, k \in K' \subset K' \) of the sequence \(\{v_{i_k}\}, k \in K' \). Let \(\bar{v} = (\bar{w}, \bar{\alpha}) \), where \(\bar{w} \in R_n \) and \(\bar{\alpha} \in R_1 \) is its limit point. It is not difficult to check the validity of inequality \(f(\bar{w}) \leq \bar{\alpha} \) for this point. Moreover, considering the terms of (12) the inclusion \(w \in D \) is proved. Hence, \(v \in \text{epi}(f, D) \). Then from (13) we have the inclusion \(u \in \text{epi}(f, D) \), i.e. \(\bar{x} \in D \) and \(f(\bar{x}) \leq \bar{\alpha} \).

But according to (5) \(\sigma \leq f^0 \). Consequently, we get the inequalities \(f(\bar{x}) \leq \bar{\alpha} \leq f^0 \leq f(\bar{x}) \) from which the assertion of theorem follows.

Remark that the convergence theorem of the algorithm is proved without any additional requirements for the choice of the sequence \(\{\Delta_k\}, k \in K \). In particular it is permitted to put \(\Delta_k = \Delta > 0 \) for all \(k \in K \). If \(\Delta \) is arbitrarily large, the inequality \(F(\gamma_i) - \gamma_i \leq \Delta \) holds for all \(i \in K \). In this case the functions \(P_{i+1}(\gamma) \) differ from \(P_i(\gamma) \) and \(\gamma_i = \gamma_i, k \in K \).

If we set the sequence \(\{\Delta_k\} \) with the condition \(\Delta_k \to 0, k \to \infty \), algorithm can be considered as the implementation of the penalty function method, where iteration points are found on the set of auxiliary functions \(D_0 \) from the condition of the approximate minimum ([10], c. 380).

References

[1] Zabotin I Ya and Kobchikov A V 1990 On the Choice of the Optimal Ratio between the Masses of the Electronic System Blocks (in Russian) Kazan university vol 18 pp 64 – 70

[2] Zabotin I Ya and Kobchikov A V 1991 On the Realization of Some Methods Applied to Design Optimization Problems Avtomat. i Telemekh. no 1 pp 169 – 172

[3] Bulatov V P 1977 Embedding methods in optimization problems (in Russian) (Novosibirsk Nauka) 161 p.

[4] Zabotin I Ya and Yarullun R S 2013 One approach to constructing cutting algorithms with dropping of cutting planes Russian Math. Iz. VUZ Allerton Press Inc. vol 57 no 3 pp 60 – 64

[5] Zabotin I Ya and Yarullun R S 2013 A Cutting Method for Finding Discrete Minimax with Dropping of Cutting Planes Lobachevskii Journal of Mathematics vol 35 no 2 pp 157 - 163

[6] Nesterov Yu E 2010 Introduction to convex optimization (in Russian). (Moscow: MCCME) p 274

[7] Zabotin I Ya, Shulgina O N and Yarullun R S 2014 A Cutting Method and Construction of Mixed Minimization Algorithms on Its Basis (in Russian) Uchenye Zapiski Kazanskogo Universiteta Ser. Fiz.-Matem. Nauki vol 156 no 4 pp 14 – 24.

[8] Zabotin I Ya and Yarullun R S 2015 A Cutting-Plane Method Based on Epigraph Approximation with Discarding the Cutting Planes Automation and Remote Control vol 76 no 11 pp 1966 – 1975

[9] Polyak B T 1983 Vvedenie v optimizatsiyyu (Introduction to Optimization) (Moscow: Nauka) p 384

[10] Vasil’ev F P 2011 Optimization methods (in Russian) (Moscow: MCCME) p 620

[11] Konnov I V 2013 Nonlinear optimization and variational inequalities (in Russian) (Kazan: Kazan university) p 508

Zabotin I Ya 2011 Some embedding-cutting algorithms for mathematical programming problems (in Russian) Izv. Irkutsk. Gos. Univ. Ser. Matem. vol 4 no 2 pp 91 – 101