Research article

Association between an 8q24 locus and the risk of colorectal cancer in Japanese

Keitaro Matsuo*1,6, Takeshi Suzuki7, Hidemi Ito1, Satoyo Hosono1, Takakazu Kawase1, Miki Watanabe1, Kohei Shitara3, Koji Komori4, Yukihide Kanemitsu4, Takashi Hirai4, Yasushi Yatabe5, Hideo Tanaka1,6 and Kazuo Tajima2

Abstract

Background: A genome-wide association study (GWAS), which assessed multiple ethnicities, reported an association between single nucleotide polymorphisms in the 8q24 region and colorectal cancer risk. Although the association with the identified loci was strong, information on its impact in combination with lifestyle factors is limited.

Methods: We conducted a case-control study in 481 patients with colorectal cancer (CRC) and 962 sex-age matched non-cancer controls. Data on lifestyle factors, including diet, were obtained by self-administered questionnaire. Two 8q24 loci, rs6983267 and rs10090154, were assessed by the TaqMan method. Associations were then assessed by multivariate logistic regression models that considered potential confounders.

Results: We found an increased risk of CRC with rs6983267 but not with rs10090154. An allelic OR was 1.22 (1.04-1.44, p for trend = 0.014), which remained significant after adjustment for confounders (OR = 1.25). No statistically significant interaction with potential confounding factors was observed.

Conclusion: The polymorphism rs6983267 showed a significant association with CRC in a Japanese population. Further investigation of the biological mechanism of this association is warranted.

Background

Colorectal cancer (CRC) remains major cancer worldwide [1]. Although numerous epidemiological and biological-studies have revealed risk/protective factors for CRC, present knowledge is still insufficient to allow the disease to be overcome, and the struggle to elucidate mechanisms is ongoing.
Recently, several a number of genome-wide association studies (GWAS) have revealed an association between variants on chromosome 8q24 and several sites of cancer, including CRC [2-11]. Each study showed that rs6983267 resides in 128.47-128.54 MB on Chromosome 8, denoted as ‘region 3,’ [7] and consistently associated with CRC [6,9,12]. This association was confirmed in a subsequent large-scale replication study in Caucasians [13-18]. Most of these CRC GWASs were conducted in Caucasian populations, however, and the data available for Asian populations is limited especially about possible gene-environment interaction [6,19].

The aim of the present case-control study was to clarify the impact of rs6983267 on CRC risk in a Japanese population. In addition, we explored the gene-environment interaction between potential confounders and rs6983267.

Methods
Subjects
Cases were 481 patients who were histologically diagnosed with CRC (245 with colon cancer, 231 with rectum cancer) between January 2001 and November 2005 at Aichi Cancer Center Hospital (ACCH) and who had no prior history of cancer. Controls were first-visit outpatients at ACCH during the same periods who were confirmed to have no cancer or a prior history of neoplasm. Controls were randomly selected and matched for sex and age (± 4 years) with a 1:2 case-control ratio (n = 962). The subjects were selected from the database of the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC). The framework of HERPACC has been described elsewhere [20,21]. Briefly, all outpatients aged 20-79 years were asked at first visit to fill out a questionnaire regarding their lifestyle and provided 7 ml of blood. A trained interviewer checked the completion of each questionnaire. Approximately 95% of eligible subjects completed the questionnaire and 55% provided blood samples. Some 30% of first-visit outpatients were diagnosed at ACCH as having cancer. Under the assumption that the non-cancer population within HERPACC will visit ACCH if they develop cancer in the future, we defined non-cancer first-visit outpatients as those from among whom such cases may arise. Our previous study confirmed that the lifestyle patterns of first-visit outpatients matched the profile of a group randomly selected from the general population of Nagoya City, conferring external validity on the study [22]. Written informed consent was obtained from all subjects and the ethics committee of ACC approved the study.

Determination of the 8q24 loci genotype
DNA of each subject was extracted from the buffy coat fraction with a Blood Mini Kit (Qiagen K.K., Tokyo, Japan) and assessed using the polymerase chain reaction (PCR) TaqMan method [23] with the 7500 Fast Real-time PCR system (Applied Biosystems, Foster City, CA, USA). The probes used were specifically designed for rs6983267 and rs10090154 in 8q24. rs10090154 in the 8q24 ‘region 1’ [7] was chosen because it showed a significant association for a Japanese population in Hawaii [6]. The quality of genotyping was assessed by duplicate analysis of 5% of random samples, with an agreement rate of 100%.

Exposure data
Cumulative smoking dose was evaluated as pack-years, the product of the number of packs consumed per day and years of smoking. Smoking habit was classified into the three categories of never, pack-years < 20 (low-moderate) and ≥ 20 pack years (heavy). Consumption of types of alcoholic beverages (Japanese sake, beer, shochu, whiskey and wine) per occasion was determined with reference to the average number of drinks per day, which was then converted into a Japanese sake (rice wine) equivalent (one unit sake = 23 g ethanol) [24]. Daily ethanol consumption was estimated as the product of the frequency of alcohol beverage and average ethanol consumption occasion, and drinking habit was classified into the four categories of non-drinker, low (< 5 g/day), moderate (< 23 g/day) and heavy (≥ 23 g/day). Consumption of folate was determined using a semi-quantitative food frequency questionnaire (SQFFQ) as described in detail elsewhere [25]. Briefly, the SQFFQ consisted of 47 single food items with frequencies in the eight categories of never or seldom, 1-3 times/month, 1-2 times/week, 3-4 times/week, 5-6 times/week, once/day, twice/day, and 3+ times/day. Average daily intake of nutrients was estimated by multiplying the food intake (in grams) or serving size by the nutrient content per 100 grams of food as listed in the Standard Tables of Food Composition in Japan, 5th edition. Consumption of supplemental folate was not considered in total consumption because the questionnaire for multi-vitamins was not quantitative. Energy-adjusted intake of nutrients was calculated by the residual method [26]. The SQFFQ was validated by reference to a 3-day weighted dietary record as a standard, which showed the reproducibility and validity to be acceptable [27,28]. The de-attenuated correlation coefficients for energy-adjusted intakes of folate were 0.36 in men and 0.38 in women. Body mass index (BMI) was calculated as the self-reported weight (kilograms) divided by the square of self-reported height (meters). A family history of CRC in first-degree relatives was based on self-reporting, as described elsewhere [29]. The questionnaire also covered the regularity of physical exercise: subjects were asked to report the frequency and intensity of recreational exercise, with average daily exercise hours in any intensity calculated and categorized into the three levels of none, and < 0.5 and ≥ 0.5 hours/day.
Statistical analysis

Odds ratios (ORs) and 95% confidence intervals (CIs) for assessment of the impact of each 8q24 locus, included in the model as an ordinal score (1 to 3), were calculated using multivariable conditional logistic regression models. We explored two models: model 1 was a crude model; model 2 included age and sex plus potential confounders as indicator variables. Confounders considered in model 2 were smoking status (never, former, current moderate, and heavy), drinking habit (non, low, moderate, and heavy), folate consumption by tertile (T1-3), BMI (< 22.5, 22.5 - 24.9, 25.0-27.4 and ≥ 27.5 kg/m²), family history of colorectal cancer (yes or no), and regular exercise (none, < 0.5 hour/day, and ≥ 0.5 hour/day). Interactions between rs6983267 assuming linear effect of allele and potential confounders similarly assuming linear effect were assessed in multi-variable unconditional logistic regression models to avoid the dropping of subjects in conditional logistic regression models. To assess possible discrepancies between expected and observed haplotypes, accordance with the Hardy-Weinberg equilibrium (HWE) was checked for controls with the χ^2 test. Statistical analyses were performed using STATA version 10 (Stata, College Station, TX), with P-values < 0.05 considered statistically significant.

Results

Table 1 shows baseline characteristics of the 481 CRC cases, with an average age of 60 years, and the 962

Variables	Cases	Controls	p-values
Total	481	962	1.00
Sex			
Male	300	600	62.4%
Female	181	362	37.6%
Age (years)			0.803
< 40	20	39	4.2%
40-49	50	105	10.4%
50-59	169	328	35.1%
60-69	164	353	34.1%
70-	78	137	16.2%
Mean age (SD)	60 (10.2)	60 (9.86)	
Site of Cancer			
Colon	245	493	50.9%
Rectum	236	397	49.1%
Smoking			0.102
None	215	493	44.7%
Low-moderate (< 20 pack-years)	59	116	12.3%
Heavy (≥ 20 pack-years)	203	345	42.2%
Unknown	4	8	0.8%
Drinking			0.695
None	190	383	39.5%
Low (< 5 g ethanol/day)	64	125	13.3%
Moderate (5 ≤ and < 23 g ethanol/day)	85	196	17.7%
High (≥ 23 g ethanol/day)	135	243	28.1%
Unknown	7	15	1.5%
Daily folate consumption			0.857
T1 (≤ 262.0 μg/day)	153	286	31.8%
T2 (≤ 346.6 μg/day)	158	318	32.9%
T3 (> 346.6 μg/day)	162	341	33.7%
Unknown	8	17	1.7%
Body-Mass Index (BMI) kg/m²			0.923
< 22.5	206	397	42.8%
22.5 ≤ and < 25	157	314	32.6%
25 ≤ and < 27.5	73	162	15.2%
≥ 27.5	41	79	8.5%
Unknown	4	10	0.8%
Family history of colorectal cancer in the first degree relatives			0.014
No	453	932	94.2%
Yes	28	30	5.8%
Average recreational exercise			0.329
None	192	349	39.9%
< 0.5 hour/day	194	398	40.3%
0.5 ≤ hour/day	95	215	19.8%
controls matched for sex and age. Males accounted for 62.4% of subjects. Apart from a family history of CRC in a first-degree relative, potential confounders showed no clear difference between cases and controls. A family history of CRC was significantly more frequent among CRC cases.

Genotype distributions for 8q24 rs6983267 and rs10090154 are shown in Table 2. Among controls, both genotypes were accordant with the HWE. The minor allele frequency for rs6983267 was 0.338 (G-allele). The age-and sex-adjusted in the allelic model showed an OR of 1.22 (1.04-1.44, p = 0.0144) and the confounder-adjusted model an OR of 1.25 (1.06-1.48, p = 0.0071). Genotypic model showed a significant association only with rs6983267 GG genotype (OR = 1.64, 1.15-2.35, p = 0.0063). In contrast, rs10090154 showed no association with CRC risk. Table 3 shows stratified analyses conducted to explore possible interactions between potential confounders although point estimates for ORs were not static; no significant interactions were seen between the factors examined and rs6983267. The lack of association in those with a positive family history was of interest vis a vis the significant association in those without it, albeit that the number of subjects with a family history was limited.

Discussion
In this study, we found that the G allele in rs6983267 was associated with a significantly increased risk of CRC in a Japanese population. This finding is consistent with those from previous GWASs [6,9,11] and a pooled analysis [19], supporting significant association between the rs6983267 in CRC in Japanese. Recent advances in genetic analysis have enabled a comprehensive approach to identifying disease susceptibility loci. The consistency of findings in this and the previous studies warrants the usefulness of the GWAS approach across ethnicities. We also evaluated potential interactions between common background factors and rs6983267, but found no significant interaction between them. Berndt et al. also reported a lack of interaction between rs6983267 and age, sex, smoking, family history of CRC and cancer site [12]. The consistency of this finding indicates that rs6983267 is associated with CRC risk independently of common risk factors.

Rs6983267 was originally identified using a non-hypothesis-based approach, and evidence has suggested a possible biological mechanism behind this observed association. The rs6983267 polymorphism resides 15 kb upstream of a processed pseudogene (POU5F1P1) of the POU-domain factor gene, POU5F1, which encodes transcription factor OCT4, with 97.5% shared identity [30]. OCT4, a transcript of POU5F1, plays a role in maintaining stem cell pluripotency, self-renewal and chromatin structure in stem cells [31], and promotes tumor growth in a dose-dependent manner [32]. A conserved POU5F1-binding site I at the 5' promoter

Table 2: Genotypes distribution of 8q24 polymorphisms and odds ratios for the minor alleles and genotypes

8q24 locus (Minor allele: G, MAF*1 in controls = 0.338)	Allelic model	Genotype model				
	OR 95% CI p-value	OR* 95% CI p-value				
rs6983267	Model 1 *1	Model 2 *2	Heterozygote	Minor homozygote		
case/	181/222/79/107	3/1	1.22 1.04-1.44 0.0144	1.25 1.06-1.48 0.0071	1.19 0.93-1.52 1.665	1.64 1.15-2.35 0.0063
control	418/436					
rs10090154	(Minor allele: T, MAF in controls = 0.153)					
case/	355/112/11/23	3/3	0.90 0.72-1.12 0.3443	0.87 0.69-1.09 0.2140	0.83 0.63-1.08 0.1690	0.90 0.43-1.89 0.7854
control	689/247					

*1 Crude conditional logistic regression model.
*2 Adjusted for age as continuous variable, drinking (non, low, moderate, heavy, and unknown), smoking (non, moderate, heavy, unknown), BMI (< 22.5, < 25, < 27.5, 27.5+, unknown), folate in tertile (T1, T2, T3, and unknown), total energy intake, family history of colorectal cancer, average recreational exercise (none, < 0.5 hour/day, 0.5-hour/day) in conditional logistic regression.
*3 MAF indicates minor allele frequency.
*4 UK indicates the subjects whose genotyping was unsuccessful.
region of the WNT-signaling gene, FZD5, has been reported [33]. Tomlinson et al. reported the expression of either POU5F1 or POU5F1P1 in cell lines and primary CRCs [9], while Suo et al. similarly reported the expression of these genes in cancer cell lines and cancer tissues [30]. Given that OCT4 pseudogenes in mice are reported to mediate stem cell regulatory function [34], it is possible to hypothesize that OCT4 pseudogenes, including POU5F1P1, might play a role in stem cell proliferation. However, no difference in expression according to rs6983267 status was observed [9]. Brem et al. discussed the potential contribution of MYC, which is located > 300 KB distant to rs6983267[12]. Recently, Pomerantz et al. reported rs6983267 displays a difference in binding of transcription factor 7-like 2 (TCF7L2) leading to a different physical interaction with MYC [35]; however, Tuupanen et al. failed to find clear association between rs6983267 genotype and MYC expression. There still remains controversy between MYC and rs6983267 requiring further studies. Moreover, Tuupanen et al. reported rs6983267 affects a binding site for the Wnt-regulated transcription factor (TCF4), with the risk allele G showing stronger binding in vivo and in vitro. Overall, these findings indicate that the possible

Table 3: Stratified analysis according to potential confounding factors for 8q24 rs6983267 genotype

Exposure	Number of controls with each genotype (TT/TG/GG)	Number of cases with each genotype (TT/TG/GG)	OR*1	95% CI	p-value	OR*2	95% CI	p-value	Interaction P
Sex									
Male	122/133/43	259/270/70	1.11	0.91-1.37	0.295	1.14	0.93-1.41	0.212	
Female	61/89/30	159/166/37	1.44	1.10-1.88	0.007	1.34	1.01-1.78	0.040	
Smoking									
None	73/106/35	206/232/55	1.34	1.05-1.70	0.018	1.29	1.01-1.65	0.042	
Low-moderate	19/31/9	52/52/12	1.51	0.93-2.43	0.094	1.49	0.89-2.49	0.130	
(< 20 pack-years)									
Heavy (≥ 20 pack-years)	88/84/29	158/147/39	1.11	0.86-1.43	0.423	1.12	0.86-1.44	0.407	
Drinking									
None	69/92/30	166/179/38	1.36	1.04-1.76	0.023	1.35	1.03-1.77	0.028	
Low (< 5 g ethanol/day)	23/29/12	51/58/16	1.25	0.81-1.93	0.308	1.44	0.91-2.28	0.124	
Moderate (5c and < 23 g ethanol/day)	34/41/9	85/83/27	0.98	0.67-1.43	0.918	0.99	0.67-1.46	0.941	
Daily folate consumption									
T1 (≤ 262.0 μg/day)	54/73/25	112/137/37	1.14	0.85-1.53	0.375	1.22	0.90-1.66	0.197	
T2 (≤ 346.6 μg/day)	59/75/22	104/141/36	1.21	0.91-1.61	0.191	1.25	0.93-1.67	0.141	
T3 (≥ 346.6 μg/day)	66/72/24	157/152/32	1.24	0.94-1.64	0.135	1.30	0.97-1.73	0.080	
Body-Mass Index (BMI) kg/m²									
< 22.5	73/100/32	177/176/44	1.34	1.05-1.72	0.020	1.43	1.10-1.85	0.007	
22.5 ≤ and < 25	69/69/19	128/148/37	0.93	0.70-1.25	0.663	0.93	0.69-1.25	0.637	
25 ≤ and < 27.5	23/34/16	74/69/19	1.58	1.06-2.36	0.024	1.67	1.09-2.55	0.018	
≥ 27.5	18/17/5	31/41/7	0.98	0.54-1.79	0.944	1.06	0.54-2.10	0.863	
Family history of colorectal cancer in the first degree relatives									
No	169/212/69	404/422/105	1.24	1.05-1.46	0.011	1.26	1.06-1.48	0.008	
Yes	14/10/4	14/14/2	1.09	0.50-2.38	0.833	0.84	0.29-2.43	0.741	
Average recreational exercise									
None	77/90/24	161/140/48	1.10	0.85-1.42	0.462	1.13	0.87-1.47	0.356	
< 0.5 hour/day	73/89/31	158/199/40	1.10	0.93-1.56	0.163	1.20	0.92-1.57	0.174	
0.5 ≤ hour/day	33/43/18	99/97/19	1.59	1.11-2.28	0.012	1.70	1.15-2.50	0.008	

*1 Odds ratios were adjusted for age and sex in unconditional logistic regression models. Conditional logistic models were not applied because keeping matching in stratiﬁcation gave unstabel estimation.

*2 Odds ratio adjusted for age, sex and all variables in this examination except variable used for stratiﬁcation.

*3 Interaction term between rs6983267 genotype in score and stratiﬁying factor in score was added in model 2.

*4 Subjects were excluded from analysis because of lack of information, smoking (4 cases and 8 controls), drinking (7 cases and 15 controls), folate (8 cases and 17 controls), and BMI (3 cases and 10 controls).
biological mechanism behind the effect of rs6983267 polymorphism on CRC carcinogenesis requires further study.

We did not observe any association with rs10090154 (OR = 0.90) on the contrary to the results from Multi-ethnic cohort study [6]. The point estimate for minor allele in the previous study was 1.41 (95%CI: 1.14-1.75). Following case-control study for Japanese American in Hawaii showed lack of association (OR = 1.07, 95%CI: 0.78-1.48)[6]. Inconsistency across studies might come from the finding in the original GWAS was by chance although threshold in statistical significance was high enough. Or, statistical power in following studies including ours was not good enough. By all means, more evidence is needed to clarify significance of the locus.

Several potential limitations of the present study require consideration. First, use of hospital-based control in this study for potential cause of selection bias. We used non-cancer patients at our hospital as controls, given the likelihood that our cases arose within this population base. Moreover, we previously showed that individuals selected randomly from our control population were similar to the general population in terms of baseline characteristics [22]. Given the similarity in minor allele frequency between our controls and that in the HapMap database for Japanese, it is reasonable to assume the external validity of our study results to the general

Table 4: Review of results of 8q24 rs6983267 for colorectal cancer in allelic model

Author	Year	Case/Control	Country	Study subjects	Per allele OR (95%CI)	Adjustment
Haiman et al.	2007	1,807/5,511	USA	Pooled	1.25 (1.12-1.38)	Sex
		217/1,049			1.37 (0.98-1.91)	Sex
		381/1,197			1.13 (0.96-1.34)	Sex
		61/347			1.59 (1.02-2.47)	Sex
		251/1,007			1.26 (1.02-1.55)	Sex
		214/973			1.28 (1.03-1.58)	Sex
Tomlinson et al.	2007	7,954/6,206	UK	CRC pooled	1.21 (1.15-1.27)	Crude
		620/960			1.38 (1.19-1.59)	Crude
		4,361/3,752			1.19 (1.12-1.26)	Crude
		1,901/1,079			1.21 (1.09-1.35)	Crude
		1,072/415			1.13 (0.96-1.33)	Crude
		1,425/2,255		Adenoma pooled	1.22 (1.10-1.34)	Crude
		407/1,027			1.53 (1.29-1.81)	Crude
Poynter et al.	2007	1,339/2,191	USA	Population – based	1.11 (0.96-1.29)	Age and sex
Tuupanen et al.	2008	996/1,012	Finland	Population-based	1.22 (1.08-1.38)	Crude
Berndt et al.	2008	3,134/4,454	USA	Colorectal neoplasms pooled	1.16 (1.07-1.25)	Age, sex, and study
		547/1,656		PLCO	1.17 (1.01-1.35)	Age and sex
		1,174/1,293		PLCO adenoma	1.24 (1.11-1.39)	Age and sex
		364/363		PLCO II	0.93 (0.75-1.16)	Age and sex
		544/542		NHS	1.10 (0.93-1.30)	Age and sex
		505/600		Minnesota	1.21 (1.01-1.44)	Age and sex
Ghousaini et al.	2008	2,299/2,284	UK	Cases from prospective study at East Anglia	1.27 (1.16-1.37)	Crude
Lie et al.	2008	561/721	USA	Colon cancer cases from SEER Kentucky	1.69 (1.19-2.40)	Age, sex, BMI, and NSAID use.
					1.61 (1.36-2.30)	Age, sex, BMI, and NSAID use.
Schafmayer	2009	2,713/2,718	Germany	Colorectal cancer cases with German ancestry	1.22 (1.13-1.31)	Crude
Curtin et al.	2009	1,069/1,040	USA/UK	Colorectal cancer cases from USA/UK	1.17 (1.03-1.32)	Crude
Our study		481/962	Japan	HERPACC II participants (Japanese)	1.22 (1.04-1.44)	Age and sex
					1.26 (1.06-1.48)	Age and sex, drinking, smoking, BMI, folate consumption, energy, physical exercise, and family history of CRC
population. Second, as with other case-control studies, this study may have suffered from information bias: although the questionnaires were completed before the diagnosis in our hospital, some patients referred from other institutions might have known their diagnosis. Lack of interaction needs careful interpretation because confounders assessed in this study showed no association with CRC risk by themselves.

Conclusion
Our present investigation showed that rs6983267 in 8q24 is an independent risk factor of CRC in a Japanese population. Further studies to clarify the biological mechanisms of this association are warranted.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MW carried out the molecular genetic studies. JY carried out the immunoassays. MT participated in the sequence alignment. TS, TK, HT, and KT participated in the design of the study and helped to draft the manuscript. KS, KK, YK, TH and YY participated in the enrollment and conduct of the study. KM conceived of the study, and helped to draft the manuscript. The authors are grateful to the many doctors, nurses, and technical and administrative staff of the HERPACC study.

Acknowledgements
The authors are grateful to the many doctors, nurses, and technical and administrative staff of Aichi Cancer Center Hospital for the daily administration of the HERPACC study.

This study was supported by a Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan, for Cancer Research from the Ministry of Health, Labour and Welfare of Japan, and for the Third Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan.

Financial disclosure: The authors declare that they have nothing to disclose regarding financial issues.

References
1. Parkin DM, Whelan SL, Ferlay J, Teppo L and Thomas DB: Cancer Incidence in Five Continents. IARC Sci Publ, Lyon, 2003.
2. Amundsdottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, Sigurdsson A, Benediktsson KR, Cazier JB, Sainz J, drifting.
3. Freedman ML, Hafler CA, Patterson N, McDonald GJ, Tandon A, Walszewska A, Penney K, Steen RG, Ardile K, John EM, Oaldey-Girvan I, Whitemore AS, Cooney KA, Ingles SA, Altschuler D, Henderson BE and Reich D: Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA 2006, 103:10468–73.
4. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struwe J, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LN, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johansson N, Seal S, Stenstrom MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelson KK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eeola H, Kang D, Yao KY, Nah D, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wdren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tolllenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdsson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MV, Couch FJ, Goode EL, Olson JE, Meier-Hennbo K, Ouwehand van den A, Uitterlinden A, Rudaveneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Rivard J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamman U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannerviita A, Kosma V, Kataja V, Hartikainen J and Day NE, et al: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447:1087–93.
5. Gudmundsson J, Sulem P, Manolescu A, Amundsdottir LT, Gudbjartsson D, Helgason A, Rafnar T, Berghorston JT, Agnarsson BA, Baker A, Sigurdsson A, Benediktsson KR, Jakobsdottir M, Xu J, Blodland T, Kostic J, Sun G, Ghosh S, Stacey SN, Mouy M, Saemundsdottir J, Bakkman VM, Kristjansson K, Tres A, Partin AW, Albers-Akik MT, Godino-Ivan Marcos J, Walsh PC, Swinkels DW, Navarrate S, Isaacs SD, Alberts Kc, Grill T, Muir J, Ruiz-Echarr M, Wiley KE, Suarez BK, Witjes JA, Fregia M, Ober C, Jonsson E, Einavion GV, Mayordomo JI, Kiemeney L, Isaacs WB, Catalona WJ, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A and Stefansson K: Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007, 39:631–7.
6. Haiman CA, Le Marchand L, Yamamoto J, Strom DO, Sheng X, Kolonel LN, Wu AH, Reich D and Henderson BE: A common genetic risk factor for colorectal and prostate cancer. Nat Genet 2007, 39:954–6.
7. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Walszewska A, Neubauer J, Tandon A, Schirmer C, McDonald GJ, Greenway SC, Strom DO, Le Marchand L, Kolonel LN, Frasco M, Wong D, Pooler LC, Ardile K, Oakley-Girvan I, Whitemore AS, Cooney KA, John EM, Ingles SA, Altschuler D, Henderson BE and Reich D: Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007, 39:638–44.
8. Schumacher FR, Feigelson HS, Cox DG, Haiman CA, Albanes D, Catalona WJ, Einarsson GV, Barkardottir RB, Gulcher JR, Kristjansson K, Tres A, Partin AW, Albers-Akik MT, Godino-Ivan Marcos J, Walsh PC, Swinkels DW, Navarrate S, Isaacs SD, Alberts Kc, Grill T, Muir J, Ruiz-Echarr M, Wiley KE, Suarez BK, Witjes JA, Fregia M, Ober C, Jonsson E, Einavion GV, Mayordomo JI, Kiemeney L, Isaacs WB, Catalona WJ, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A and Stefansson K: Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007, 39:631–7.
9. Tomlinson I, Webb E, Carvaljal-Carmo L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W, Barclay E, Lubbe S, Martin L, Sellick G, Jaeger E, Hubner R, Wild R, Rowan A, Fielding S, Howarth K, Silver A, Atkin W, Muir K, Logan R, Kerr D, Johnstone E, Sieber O, Gray R, Thomas H, Peto J, Cazier JB and Houlston R: A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer. Cancer Res 2007, 67:2951–6.
10. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Michielli MJ, Fearnhead P, Yu K, Chatterjee N, Wang Z, Welch R, Staats B, Calle EE, Thun MJ, Rodriguez C, Hankin BE, Hoover RN, Kaaks R, Key T, Kolonel LN, Kraft P, Le Marchand L, Ma J, Pike MC, Riboli E, Stampfer MJ, Strom DO, Thomas G, Thun MJ, Travis R, Virtamo J, Andriole G, Gelmann E, Willett WC and Hunter DJ: A common 8q24 variant in prostate and breast cancer from a large nested case-control study. Cancer Res 2007, 67:2951–6.
Allelic discrimination using fluorogenic probes and nuclease assay.

Genet Anal 1999, 14:1–7.

Genetic variation at chromosome 8q24 and colorectal neoplasia risk.

Hum Mutat 2008, 19:2665–72.

19. Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, McLaughlan J, Campbell H, Blanche H, Sahbatou M, Tubach E, Gionannucci E, Chan AT, D’Amico A, Tominaga S, Semple C, Clark AJ, Reid FJ, Smith LA, Kavoussanakis K, Koessler T, Fodstad AO, Fisker S, Rinnan P, Ruutu M, Kujala P, Alatalo R, Puig P, Barjon C, Carneiro J, Campo E, de Andrade M, Merkel CO, Pirinen M, Gyllensten U, Eriksson N, Tanigawa N, Håkkinen T, Sonninen T, Schermer B, Tarkkanen A, Savolainen H, Betts-Orchard T, Loeb L, Sahlberg P, Alatalo VK, Buccheri B, Riboli E, Kury S, Chanock SJ, Potter J, Thomas G, Challacombe B, Risch N, Chanock SJ, Peters U, Hunter DJ and Hayes RB: Meta association analysis of genetic variation at chromosome 8q24 and colorectal cancer risk.

Nat Genet 2009, 41:1047–51.

20. Tajima K, Hirose K, Hamajima N and Takezaki T: A common 8q24 variant and the risk of colorectal cancer: a population-based case-control study.

Cancer Epidemiol Biomarkers Prev 2009, 18:339–42.

21. Hamajima N, Matsuo K, Saito T, Hirose K, Suzuki T, Kato T, Hirai K, Kanemitsu Y, Hamajima N and Tajima K: One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan.

Carcinogenesis 2005, 26:1214–7.

22. Inoue M, Tajima K, Hirose K, Hamajima N, Takezaki T, Kuroishi T: Reproducibility of a short food frequency questionnaire for assessing nutrient intake versus three-day weighed diet records in middle-aged Japanese.

J Epidemiol 2007, 17:1–8.

23. Suzuki T, Matsuo K, Waki K, Hiraki K, Hirose K, Sato S, Ueda R and Tajima K: Effect of familial history and smoking on colorectal cancer risks in Japan.

Cancer 2009, 107:2116–23.

24. Matsuoka K, Waki K, Hirose K, Ito H, Saito T and Tajima K: Alcohol dehydrogenase 2 His47Arg polymorphism influences drinking habit independently of aldehyde dehydrogenase 2 Glu487Lys polymorphism: analysis of 2,299 Japanese subjects.

Cancer Epidemiol Biomarkers Prev 2006, 15:1009–13.

25. Matsuoka K, Ito H, Waki K, Hirose K, Saito T, Suzuki T, Kato T, Hirai K, Kanemitsu Y, Hamajima N and Tajima K: One-carbon metabolism related gene polymorphisms interact with alcohol drinking to influence the risk of colorectal cancer in Japan.

Carcinogenesis 2005, 26:1214–7.

26. Willett W and Stampfer MJ: Total energy intake: implications for epidemiologic analyses.

Am J Epidemiol 1986, 124:17–27.

27. Imaeda N, Goto C, Tokudome Y, Hirose K, Tajima K and Tokudome S: Relative validity of a short food frequency questionnaire for assessing nutrient intake versus three-day weighed diet records in middle-aged Japanese.

J Epidemiol 2005, 15:135–45.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1417-2407/9/379/pre-pub

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp