Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations

Hong Qi1, Linxi Li1 & Jianwei Shuai1,2,3

1Department of Physics, Xiamen University, Xiamen 361005, China, 2State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, Xiamen University, Xiamen 361005, China, 3Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China.

A Ca2+ signaling model is proposed to consider the crosstalk of Ca2+ ions between endoplasmic reticulum (ER) and mitochondria within microdomains around inositol 1, 4, 5-trisphosphate receptors (IP\textsubscript{3}R) and the mitochondrial Ca2+ uniporter (MCU). Our model predicts that there is a critical IP\textsubscript{3}R-MCU distance at which 50\% of the ER-released Ca2+ is taken up by mitochondria and that mitochondria modulate Ca2+ signals differently when outside of this critical distance. This study highlights the importance of the IP\textsubscript{3}R-MCU distance on Ca2+ signaling dynamics. The model predicts that when MCU are too closely associated with IP\textsubscript{3}Rs, the enhanced mitochondrial Ca2+ uptake will produce an increase of cytosolic Ca2+ spike amplitude. Notably, the model demonstrates the existence of an optimal IP\textsubscript{3}R-MCU distance (30–85 nm) for effective Ca2+ transfer and the successful generation of Ca2+ signals in healthy cells. We suggest that the space between the inner and outer mitochondria membranes provides a defense mechanism against occurrences of high [Ca2+]\textsubscript{Cyt}. Our results also hint at a possible pathological mechanism in which abnormally high [Ca2+]\textsubscript{Cyt} arises when the IP\textsubscript{3}R-MCU distance is in excess of the optimal range.

The calcium ion (Ca2+) is a ubiquitous intracellular signal controlling diverse cellular functions, such as muscle cell contraction, neurotransmitter release from neurons and astrocytes, metabolic processes, egg activation, and cell maturation, differentiation and death4. Ca2+ signals commonly appear as repetitive spikes of cytosolic Ca2+ concentration ([Ca2+]\textsubscript{Cyt}), with signaling information encoded in the frequency, amplitude and duration of these oscillations5. The complex spatial-temporal profiles of [Ca2+]\textsubscript{Cyt} depend heavily on the endoplasmic reticulum (ER) and mitochondria6 which act as the two major intracellular Ca2+ stores.

While it has been widely accepted that the inositol 1, 4, 5-trisphosphate receptors (IP\textsubscript{3}R) function as Ca2+ release channels on the ER membrane1, mitochondria were previously considered only to function as Ca2+-sinks under pathological conditions when there is an abnormally high cellular Ca2+. This view on mitochondria began to change in the 1990s with two landmark studies demonstrating that non-pathological elevations of [Ca2+]\textsubscript{Cyt} are accompanied by a marked rise of mitochondrial matrix Ca2+ concentrations ([Ca2+]\textsubscript{Mt})7 and that [Ca2+]\textsubscript{Mt} responds dynamically to physiological oscillations of [Ca2+]\textsubscript{Cyt}8. Experimental observations indicated that mitochondria can accumulate Ca2+ through the mitochondrial Ca2+ uniporter (MCU) which is located on the inner mitochondrial membrane (IMM).9 In despite of its low Ca2+ affinity, the MCU is exposed to a high [Ca2+]\textsubscript{Cyt} generated in microdomain around the channel pore of open IP\textsubscript{3}Rs, thus even when global [Ca2+]\textsubscript{Cyt} is low a high value of [Ca2+]\textsubscript{Mt} may be observed. As a result, mitochondria can serve as buffers of cytoplasmic Ca2+ under both pathological and non-pathological conditions.

Although it is now generally believed that mitochondria function as a dynamic Ca2+ sequestration system to shape cytosolic Ca2+ oscillations, and therefore regulate many physiological processes10, the detailed mechanism underlying how mitochondria influence global Ca2+ signals remains elusive. Contradictory mechanisms have been suggested on how mitochondrial Ca2+ uptake regulates IP\textsubscript{3}R activity, including up-regulation11–13 and complete independence14. Furthermore, although mitochondrial Ca2+ uptake via MCU depends primarily on the spacing between the ER and mitochondria15, the working distance between the two organelles remains unclear due to the complexity of the intracellular environment and the lack of spatial resolution in the experimental observations. Indeed, the existing estimates of the distances between the ER and mitochondria vary hugely, from less than 10 nm to more than 200 nm16. A recent paper published in...
PNAS even argued that the mitochondria may not act as a significant dynamic buffer of cytosolic Ca"²⁺ under physiological conditions.

Computational models provide a valuable tool for understanding the mechanisms underlying Ca"²⁺ signal transduction" and the dynamics of Ca"²⁺ release from the ER has been extensively modeled. Some models only focused on mitochondrial Ca"²⁺ dynamics. Dash and co-workers developed a detailed kinetic model for MCU to match published data sets on mitochondrial Ca"²⁺ uptake. However, the involvement of both the ER and mitochondria in Ca"²⁺ dynamics has only been considered in a limited number of models. In the earlier models, it was postulated that the MCU substantially sequesters Ca"²⁺ when [Ca"²⁺]ₘ₄ < 1 μM, in contrast to experimental evidence that the MCU actually sequesters Ca"²⁺ in the range of 10–20 μM. Dupont et al. modeled the effect of Hint2, a mitochondrial protein, on cytosolic Ca"²⁺ dynamics in hepatocytes. However, in these models the maximum value of ER luminal [Ca"²⁺] ([Ca"²⁺]ₐ₅) is in the order of several to several tens of μM, deviating drastically from most of the measured figures of 100–900 μM²⁴, and the value of [Ca"²⁺]ₐ₅ was also significantly underestimated. More importantly, except the model proposed by Szopa et al.²⁵, none of them take into account the high [Ca"²⁺] in mitochondria, which is critical for mitochondrial Ca"²⁺ signaling. The model considered by Szopa et al. is a modification of the model from ref. 26, analyzing the influence of microdomain on the period and shape of calcium oscillations. They supposed that MCU sense elevated Ca"²⁺ concentration which is directly equal to that in ER. This assumption is incoherent with the experimental observation that [Ca"²⁺] in microdomain is about several tens of μM, which is about 10-fold higher than that in the bulk cytosol and about 10-fold lower than that in ER. Thus, there is a lack of model to quantitatively investigate how the crosstalk between the ER and mitochondria controls Ca"²⁺ signaling.

Here we consider a more realistic model to investigate the role of mitochondria in Ca"²⁺ signaling to couple the ER and mitochondria based on the Ca"²⁺ microdomain. A cytosolic microdomain is specifically considered in order to discuss the MCU dynamics and so each MCU specifically responds to the local high Ca"²⁺ concentration in microdomain generated by a cluster of IP₃Rs. Our results demonstrate the critical role of mitochondrial Ca"²⁺ uptake in modulating IP₃ₕ-released Ca"²⁺ signaling. We show that the location of the MCU relative to IP₃ₕ is a key determinant for modulating Ca"²⁺ signals. There is a critical IP₃ₕ-MCU distance at which 50% of the ER-released Ca"²⁺ is taken up by mitochondria and that mitochondria modulate Ca"²⁺ signals differently when outside of this critical distance. When the IP₃ₕ-MCU distance is greater than the critical distance mitochondrial Ca"²⁺ uptake stimulates ER-Ca"²⁺ release by rapidly reducing the amplitude of the [Ca"²⁺] signal within the microdomain and suppressing the inhibition dynamics of high [Ca"²⁺] in IP₃ₕ. However, when the distance is less than the critical distance, mitochondrial Ca"²⁺ uptake demonstrates a different effect on IP₃ₕ dynamics. Initially strong mitochondrial uptake forces [Ca"²⁺] in to a low level, thus preventing the strong activation dynamics of [Ca"²⁺] in IP₃ₕ. This leads to strong IP₃ₕ inhibition on the decay of subsequent [Ca"²⁺] spikes. Thus, our model predicts that when MCU are too closely associated with IP₃ₕ, the enhanced mitochondrial Ca"²⁺ uptake will produce an increase of cytosolic Ca"²⁺ spike amplitude. As a result, there is an optimal spacing about 30–85 nm between the ER and mitochondria for generation of experimentally observed Ca"²⁺ oscillations in living cells.

Modelling coupled ER and mitochondria Ca"²⁺ dynamics

A "closed" cell model, which does not include Ca"²⁺ exchange between cytosol and external medium through the plasma membrane, is considered to investigate the coupling effects between the ER and mitochondria on Ca"²⁺ signaling (Fig. 1(a)). As a result, the model has three compartments: cytosol (Cyt), ER and mitochondria (Mt). As shown in Fig. 1(a), the dynamics of the free [Ca"²⁺] in these compartments is determined by the Ca"²⁺ fluxes from various channels and pumps and by buffering processes with various Ca"²⁺ binding proteins (BP), given by,

\[
\frac{d[Ca^{2+}]_{Cyt}}{dt} = j_{ER} - j_{ER}^{in} + j_{out}^{in} - j_{out}^{in} + j_{Ca_{Cyt}}
\]

\[
\frac{d[Ca^{2+}]_{ER}}{dt} = V_{Cyt}/V_{ER} (j_{out}^{in} - j_{out}^{in}) + j_{Ca_{ER}}
\]

\[
\frac{d[Ca^{2+}]_{Mt}}{dt} = V_{Cyt}/V_{Mt} (j_{out}^{in} - j_{out}^{in}) + j_{Ca_{Mt}}
\]

Here [Ca"²⁺] represents the free [Ca"²⁺], V the volume of three compartments, j"²⁺ the Ca"²⁺ flux from outside to inside, and j"²⁺ the opposite flux. The three terms j"²⁺ represent Ca"²⁺ dissociated from the BP.

In each compartment, Ca"²⁺ can be buffered by various BPs. The kinetics between free Ca"²⁺ and BP is described by a simple chemical reaction

\[Ca_i + BP \overset{k_{off}}{\underset{k_{on}}{\rightleftharpoons}} CaBP_i, \ i = Cyt, ER or Mt, \]

giving

\[j_{Ca} = k_{off} [CaBP]_i - k_{on} [Ca^{2+}] [BP]_{tot} - [CaBP]_i \]

where [BP]_{tot} and [CaBP]_i represent the total concentration of BP and the concentration of Ca"²⁺-bound BP in each compartment, k_{on} and k_{off} denote the on and off rate constants of Ca"²⁺ with the BP, respectively.

Ca"²⁺ fluxes in ER component. The Ca"²⁺ effluxes from the ER to cytosol are given by the IP₃ᵢₕ release and a passive leakage with the concentration gradient across the ER membrane as their driving force, i.e.,

\[j_{ER} = (V_{IP₃ᵢₕ} P(IP₃ᵢₕ + C_{leak}))/([Ca^{2+}]_{ER} - [Ca^{2+}]_{Cyt}) \]

with V_{IP₃ᵢₕ} being the maximal efflux from the IP₃ᵢₕ in the ER membrane, P(IP₃ᵢₕ) the open fraction of IP₃ᵢₕ, and C_{leak} the Ca"²⁺ leak constant.

The IP₃ᵢₕ channel is an assembly of four equivalent subunits, each of which is mutually gated by IP₃ᵢₕ and Ca"²⁺. The gating dynamics of each IP₃ᵢₕ subunit is described by the Li-Rinzel model and we assumed that the channel is open if at least three of its subunits are in the active state. Thus, we get the following expression for P(IP₃ᵢₕ):

\[P(IP₃ᵢₕ) = s_{act}^4 + 4s_{act}^3 (1-s_{act}), \ s_{act} = \frac{[IP₃ᵢₕ]}{[IP₃ᵢₕ] + d₁ [Ca^{2+}]_{Cyt} + d₂ h} \]

Here s_{act} is the probability in the active state of the subunit, [IP₃ᵢₕ] is the IP₃ concentration, and the slowly gating variable h is given by

\[\frac{dh}{dt} = aₕ (1 - h) - bₕ h, \ aₕ = aₕ d₁, \ bₕ = bₕ d₁, \]

where aₕ and d₁ are constants.

The cytosolic Ca"²⁺ can be pumped back into ER by active SERCA which is given by,

\[dh_{SERCA} = \frac{dh}{dt} \]

www.nature.com/scientificreports
With the assumption of constant uptake does not appear to alter description of MCU. MCU flux is also regulated by MICU. For simplicity, in our analysis across IMM. Besides the IMM voltage, it has been shown that mitochondrial Ca$^{2+}$ uptake into mitochondria through MCUs. Ca$^{2+}$ is extruded from mitochondria back into the cytosol by NCX. The influx rate of MCU can be given by

$$v_{MCU} = \frac{[Ca^{2+}]_{mic}}{k_{MCU} + [Ca^{2+}]_{mic}},$$

where $[Ca^{2+}]_{mic}$ is the microdomain $[Ca^{2+}]_{Cyt}$ that MCU is exposed to, which will be discussed later.

Whereas MICU1 acts as a regulator, MCU represents the core pore-forming component responsible for mitochondrial Ca$^{2+}$ uptake. Recent experimental and bioinformatic analysis reveals that MCU is an oligomer and most likely a tetramer. Considering the biphasic dependence of MCU on $[Ca^{2+}]_{Cyt}$, i.e., fast Ca$^{2+}$-dependent activation and slow Ca$^{2+}$-dependent inactivation of the MCU$,^1$ we simply propose that each monomer has two Ca$^{2+}$ binding sites, one for activation and another for inhibition. Therefore a monomer can exist in 4 states of s_{00}, s_{10}, s_{01} and s_{11} with the first index for activation binding site and the second index for inhibition binding site and with 1 for binding and 0 unbinding (Fig. 1(c)).

Similar as the IP-R, we posit that the MCU is open if either 3 or 4 of the 4 monomers are in the active state (s_{10}). Thus, the MCU open fraction is given by

$$Po_{MCU} = (x_{10})^3 + 4(x_{10})^2(1-x_{10}),$$

where x_i denotes the probability of a monomer in states s_i. The dynamical equations governing the state of a monomer are

$$\frac{dx_{00}}{dt} = (c_2 x_{01} - b_1 [Ca^{2+}]_{mic} x_{00}) - (b_1 [Ca^{2+}]_{mic} x_{00} - c_1 x_{10}),$$

$$\frac{dx_{10}}{dt} = (b_1 [Ca^{2+}]_{mic} x_{00} - c_1 x_{10}) - (b_2 [Ca^{2+}]_{mic} x_{10} - c_2 x_{11}),$$

$$\frac{dx_{01}}{dt} = (c_1 x_{11} - b_2 [Ca^{2+}]_{mic} x_{01}) - (c_2 x_{10} - b_2 [Ca^{2+}]_{mic} x_{00}),$$

with $x_{00} + x_{01} + x_{10} + x_{11} = 1$.

Ca$^{2+}$ is extruded from mitochondria primarily by NCX which swaps 3 Na$^{+}$ ions with 1 Ca$^{2+}$ ion during each exchange cycle. Thus, the kinetic of outward calcium flux can be described as

$$j_{out}^{NCX} = \frac{[Na^{+}]_{Cyt}}{k_{Na} + [Na^{+}]_{Cyt}} \frac{[Ca^{2+}]_{Mt}}{[Ca^{2+}]_{Mt} + [Na^{+}]_{Mt}},$$

where $[Na^{+}]_{Cyt}$ is Na$^{+}$ concentration in the cytosol, v_{NCX} is maximal NCX activity, both k_{Na} and k_{NCX} are activation constants for NCX.

Microdomain crosstalk between the ER and mitochondria. Now we describe a microdomain model that represents the crosstalk occurring between closely situated ER and mitochondria...
Considering MCUs located on IMM, here we also simply assume the Ca²⁺ concentration within a microdomain becomes the cellular average [Ca²⁺]_{Cyto} within a typical cluster with nIP3R. Here we make a specific assumption that MCU senses the local high [Ca²⁺]_{Mic} generated by the opening of clustered IP₃Rs, but other Ca²⁺ handling components, such as IP₃Rs, SERCA, NCX, etc., are determined by the global averaged [Ca²⁺]_{Cyto}. The pros and cons of our method will be discussed in the last section of the paper.

It has been suggested that each mitochondrial Ca²⁺ uptake site must face multiple IP₃Rs for effective mitochondrial Ca²⁺ uptake. Recent experimental data indicate that IP₃Rs are typically distributed in clusters on the ER membrane, with each cluster containing a handful of IP₃Rs. Patch clamp experiments also show that the Ca²⁺ current (I_{IP3R}) passing through a single open IP₃R is linearly correlated with the concentration gradient ([Ca²⁺]_{ER} - [Ca²⁺]_{Cyto}) across the ER membrane with a slope of S_{IP3R} = 0.3 pA/mM. Considering the closely distributed IP₃Rs, we treat the Ca²⁺ influx from clustered IP₃Rs as a point source at cluster center. As a result, an effective Ca²⁺ current from clustered IP₃Rs is expressed as

\[\delta = n_{IP3R} I_{IP3R} \left([Ca^{2+}]_{ER} - [Ca^{2+}]_{Cyto} \right). \]

Here, \(n_{IP3R} \) is the IP₃R number in a cluster. According to Ref. 41, we consider a typical cluster with \(n_{IP3R} = 4 \). These 4 IP₃Rs are in tight association, organized in a square pattern.

Around the center of IP₃R cluster, the open IP₃Rs will generate a very sharp distribution of [Ca²⁺]_{Cyto} due to rapid Ca²⁺ diffusion producing a microdomain of high [Ca²⁺]_{Cyto}. Here we also assume that the ER membrane acts as a flat boundary to limit the Ca²⁺ diffusion in a half 3-dimensional space, i.e. the cytosolic microdomain (Fig. 1(b)). Using hemispherical symmetry of Ca²⁺ diffusion from a point release source, the sharp distribution around the release point can be established with a signal equation analogous to the linear cable equation. As a solution of the linearized reaction-diffusion equation, the microdomain [Ca²⁺] is given by

\[[Ca^{2+}]_{Mic} = \frac{\delta}{4\pi rtD_c} e^{-r^2/(4D_c t)} + [Ca^{2+}]_{Cyto}, \]

with

\[\lambda = \sqrt{D_c / (k_{on,Cyto} [B]_{Mic} K_d / ([K_d + [Ca^{2+}]_{Cyto}]))}. \]

Here, \(D_c \) is the diffusion coefficient for free Ca²⁺. The parameter \(\lambda \) is an important factor that determines the sharp decay of [Ca²⁺] within a microdomain, which accounts for the Ca²⁺ diffusion and binding to BPs. \([B]_{Mic}\) is the total concentration of BP in the microdomain and \(K_d \) is its dissociation constant. One can see that the [Ca²⁺]_{Mic} within a microdomain becomes the cellular average [Ca²⁺]_{Cyto} when there are no open IP₃Rs.

Eq. 16 describes the [Ca²⁺] distribution at distance \(r \) around the point source, i.e., the IP₃R cluster center. In our model the parameter \(r \) is the distance between the MCU and the IP₃R cluster center, which we will call the IP₃R-MCU distance in the paper. Thus, [Ca²⁺]_{Mic} is the mitochondrial Ca²⁺ concentration that the MCU sees. Considering MCUs located on IMM, here we also simply assume that the outer mitochondrial membrane (OMM) has little effect on the Ca²⁺ diffusion as it has high permeability to Ca²⁺. If we suppose the IMM and ER membrane are parallel, parameter \(r \) also represents the distance between IMM and ER membrane. As a result, Eq. 16 represents the microdomain coupling between the ER and mitochondria in our model.

Parameter values. The parameters used in this model are listed in Table 1 (see supplementary material). They are categorized on the basis of their source to: (a) those extracted directly from experimental data; (b) those obtained from previously published models; or (c) the free parameters which were fit to experimental results. The model presented in this study permits simultaneous calculation of [Ca²⁺] changes in the 3 compartments. Currently, it is difficult to measure experimentally Ca²⁺ concentrations in the cytosol and ER or mitochondria simultaneously because of the highly dynamic nature of the Ca²⁺ signals that occur within organelles. Only a few existing experimental data sets consist of measurements from all 3 compartments. The free parameters used in our model were extrapolated from fits to these data sets.

Results

The Ca²⁺ oscillations. Our first priority was to determine whether the model realistically simulated cellular Ca²⁺ dynamics. As shown in Fig. 2a, when setting \([IP_3] = 0.5 \mu M\) our model generates baseline Ca²⁺ oscillations occurring as a series of discrete spikes. The values for basal and stimulated [Ca²⁺] for the cytosol, mitochondria and ER in the model are in close accord with experimental data. The oscillations period is in the order of several ten seconds, as seen in many experimental observations with non-excitable cells. The Ca²⁺ spikes show relatively rapid rising phases and slow falling phases, mimicking those seen in experimental recordings. The cytosolic and mitochondrial [Ca²⁺] oscillate almost in phase, with [Ca²⁺]_{Cyto} as the leader, while the ER [Ca²⁺] is in anti-phase with them, also as observed experimentally.

Having established that the salient features of the Ca²⁺ dynamics of our model are in good agreement with existing experimental observations, we examined the effect of manipulating the mechanisms modulated by the crosstalk of the ER and mitochondria. Thus, we also performed simulations in which mitochondria were absent from the model (Fig. 2b). The minimal values of [Ca²⁺]_{ER} are 311 μM and 276 μM in the absence and in the presence of mitochondria, respectively (Fig. 2), indicating that more Ca²⁺ ions are released from the ER during each spiking cycle in the presence of mitochondria. The maximal values of [Ca²⁺]_{Cyto} are 5.6 μM and 2.5 μM in the absence and in the presence of mitochondria, respectively (Fig. 2), showing that mitochondria can significantly decrease [Ca²⁺]_{Cyto} oscillation amplitude.

Ca²⁺ oscillation modulated by IP₃R-MCU distance. Next we looked at the effect of IP₃R-MCU distance on Ca²⁺ oscillation in detail. Fig. 3 compares oscillating [Ca²⁺] trajectories in microdomain, ER, mitochondria, and cytosol during a single cycle at varying IP₃R-MCU distances. By decreasing the IP₃R-MCU distance from infinity (we used simulations in which mitochondria were absent from the model as the infinite IP₃R-MCU distance), the [Ca²⁺]_{Mic} in microdomain increases according to Eq. 16 against distance (Fig. 3a), giving an increase in mitochondrial Ca²⁺ uptake. As a result, the minimal [Ca²⁺]_{ER} steadily decreases (Fig. 3b) and the [Ca²⁺]_{Mt} spike amplitude steadily increases until saturating at about 65 μM (Fig. 3c). However, an unexpected finding is that the [Ca²⁺]_{Cyto} spike amplitude first decreases but then increases as the distance decreases (Fig. 3d).

The critical IP₃R-MCU distance. The amplitudes of [Ca²⁺]_{Mic}, [Ca²⁺]_{Mt} and [Ca²⁺]_{Cyto} are plotted in detail as a function of distance from 10 to 150 nm at [IP₃] = 0.5 μM in Fig. 4a and 4b. A sharp increase is observed for [Ca²⁺]_{Mic} and [Ca²⁺]_{Cyto} at r < 30 nm, and [Ca²⁺]_{Cyto} reaches its minimum at r = 30 nm. Fig. 4b also shows that the [Ca²⁺]_{Cyto} spiking period increases monotonically from 30 to
50 sec, following the increased ability of mitochondria to take up Ca2+ as the IP\textsubscript{3}R-MCU distance diminishes. The [Ca2+]\textsubscript{Cyt} spiking amplitude is determined by the number of Ca2+ ions that diffuse into the cytosol, which is related to the total amount of Ca2+ ions released from ER through IP\textsubscript{3}Rs and the fraction which are taken by mitochondria. In the model, the total amount of Ca2+ released from the ER through IP\textsubscript{3}R and the fraction accumulated by mitochondria through MCU during each oscillating cycle are plotted in Fig. 4c as a function of IP\textsubscript{3}R-MCU distance. The fraction of mitochondrial Ca2+ uptake increases monotonically with decreasing distance indicating an increase in the ability of the mitochondria to take up Ca2+ at closer distances. Our simulation shows that at 30 nm distance, about 50% of the ER-released Ca2+ ions are taken up by mitochondria (see green line with stars in Fig. 4c). As a consequence, r\textsubscript{crit} = 30 nm acts as a critical distance for mitochondria to modulate cytosolic Ca2+ signaling: At r > r\textsubscript{crit}, more ER-released Ca2+ ions will diffuse into the cytosol than be taken up by mitochondria; whilst at r < r\textsubscript{crit} mitochondria will capture the majority of Ca2+ ions released from ER.

Ca2+ dynamics modulated by IP\textsubscript{3}R-MCU distance. Surprisingly, Fig. 4c also shows another unexpected finding that the total amount of Ca2+ released from the ER first increases with distance down to r = 20 nm and then decreases at smaller distance (see black line with squares in Fig. 4c). This raises a critical question: with decreasing distance at r < 20 nm, how can [Ca2+]\textsubscript{Cyt} spiking amplitudes increase (violet line with diamonds in Fig. 4b), while the total amount of Ca2+ released from the ER decreases (black line with squares in Fig. 4c) but mitochondrial Ca2+ uptake fraction increases (green line with stars in Fig. 4c)? In order to further examine this conflicting effect of distance on [Ca2+]\textsubscript{Cyt} spike amplitude and the amount of ER-released Ca2+, we investigated how mitochondrial Ca2+ uptake modulates the spike width, the spike rising time and decay time of [Ca2+]\textsubscript{Cyt} at varying IP\textsubscript{3}R-MCU distance. Here the spike width is defined as the duration at half maximum of [Ca2+]\textsubscript{Cyt} spike amplitude, the rising time is defined as the duration from twice of the minimal [Ca2+]\textsubscript{Cyt} to the peak of the response, and the decay time as the duration from the peak of the response to twice of the minimal [Ca2+]\textsubscript{Cyt}. An example of definition of these parameters is marked in Fig. 2a for spike curve at distance r = 35 nm.

We first discuss the simple situation at r > r\textsubscript{crit}. As shown in Fig. 4d when r > r\textsubscript{crit}, the spike width increases with decreasing distance, which primarily arises from an increase in the duration of the decay time, whereas the rising time is rapid and shows little change with distance. As r decreases, the ability of mitochondrial Ca2+ uptake increases, leading to a decrease in [Ca2+]\textsubscript{Cyt} amplitude. The decrease in [Ca2+]\textsubscript{Cyt} amplitude in turn leads to a weakening of the Ca2+ inhibitory effect of IP\textsubscript{3}R dynamics, resulting in the prolonged spike decay time with decreasing distance.

Differently, at r < r\textsubscript{crit}, as the IP\textsubscript{3}R-MCU distance decreases, even though the rising time increases (black line in Fig. 4d), the spike width actually becomes smaller due to a decrease in the decay time (blue and red lines in Fig. 4d). At this small distance, the rising time consists of both a slow rising phase and an abrupt rising phase. As an example, the slow rising and abrupt rising phases for a spike at distance r = 10 nm are indicated by arrows in Fig. 3a,b. The mitochondrial Ca2+ uptake is so strong that, at the beginning of each oscillating cycle, most of the ER-released Ca2+ ions are directly driven into mitochondria, leading to a rapid increase of [Ca2+]\textsubscript{Mt} (Fig. 3c), but a very slow increase of [Ca2+]\textsubscript{Cyt} (Fig. 3d). With low [Ca2+]\textsubscript{Cyt} there are a small fraction of activating IP\textsubscript{3}Rs which remain open for a long time, resulting in a slow rise phase for [Ca2+]\textsubscript{Cyt} (e.g. the gray dash line for r = 10 nm in Fig. 3d with time from 0 to 30 sec). Such a long duration with low [Ca2+]\textsubscript{Cyt} actually contributes little to the spike width. When [Ca2+]\textsubscript{Mt} increases to approach to its saturation state, most of the ER-released Ca2+ ions will then diffuse into cytosol. Because of the Ca2+ induced Ca2+ release, there occurs an abrupt increase in the numbers of open IP\textsubscript{3}Rs, generating a spike (e.g. the gray dash line for r = 10 nm in Fig. 3d with time from 30 to 35 sec).

With shorter IP\textsubscript{3}R-MCU distance, the mitochondria become more saturated prior to the abrupt rising phase, and thus during the abrupt rising phase the Ca2+ ions released from the ER diffuse more into cytosol, generating a higher amplitude spike in [Ca2+]\textsubscript{Cyt} (violet line with diamonds in Fig. 4b at r < 30 nm). In turn, the elevated [Ca2+]\textsubscript{Cyt} peak induces a strong inhibitory effect on IP\textsubscript{3}R dynamics, such that spikes decay faster as the IP\textsubscript{3}R-MCU distance decreases (red line with circles in Fig. 4d).

The changes with distance seen in the amount of Ca2+ ions released from the ER during the rise and decay phases can then explain why the total amount of ER-released Ca2+ reaches a maximum around r = 20 nm. At r > r\textsubscript{crit} as the rising time is fast and little affected by distance (close to 6 s as shown in Fig. 4d), the elevation in the total amount of ER-released Ca2+ ions with decreasing distance mainly related to the increase of the decay phase. By decreasing r at r > r > 20 nm, although the amount of ER-released Ca2+ ions during the decay phase decreases because of the shortened decay duration (red line in Fig. 4d), the amount of ER-released Ca2+ ions during the rising phase increases because of the prolonged rising duration (black line in Fig. 4d). As a result, the total amount of Ca2+ ions were released from the ER.
released by ER keeps increasing with decreasing \(r \) for \(r_{\text{crit}} > r > 20 \text{ nm} \). However, at very short distance of \(r < 20 \text{ nm} \), during the rising phase the ER-released \(\text{Ca}^{2+} \) ions almost saturate both mitochondria and the cytosol, giving a maximal \(\text{Ca}^{2+} \) amount released by ER during the rising phase (see the open circles in Fig. 4c at \(r < 20 \text{ nm} \)). Then, the change of the total amount of ER-released \(\text{Ca}^{2+} \) is typically determined by the change of decay time, leading to a decrease in the total amount of ER-released \(\text{Ca}^{2+} \) with decreasing distance at \(r < 20 \text{ nm} \).

Thus we can see how the apparently paradoxical relationship between \(\text{Ca}^{2+} \) spike amplitude and total amount of ER-released \(\text{Ca}^{2+} \) at IP3-R-MCU distances \(<20 \text{ nm} \) develops. At \(r < 20 \text{ nm} \), the \([\text{Ca}^{2+}]_{\text{Cyt}}\) spike amplitude is mainly determined by the amount of \(\text{Ca}^{2+} \) released during the abrupt rising phase of a \(\text{Ca}^{2+} \) response, giving an increasing relationship with decreasing distance. In contrast to this, the change in the total amount of ER-released \(\text{Ca}^{2+} \) mainly follows the behavior of the spike decay time, giving a decreasing relationship with decreasing distance at \(r < 20 \text{ nm} \).

The synchronization of the oscillation phases between \([\text{Ca}^{2+}]_{\text{Cyt}}\), \([\text{Ca}^{2+}]_{\text{ER}}\), and \([\text{Ca}^{2+}]_{\text{Mt}}\) is also modulated by the IP3-R-MCU distance. Our data (not shown here) indicate that at \(r > r_{\text{crit}} \), \([\text{Ca}^{2+}]_{\text{Cyt}}\) peaks first, followed by \([\text{Ca}^{2+}]_{\text{ER}}\) minimum and then \([\text{Ca}^{2+}]_{\text{Mt}}\) peak, due to an increase of the amount of ER-released \(\text{Ca}^{2+} \) ions diffusing into the cytosol at greater distances. However, when \(r < r_{\text{crit}} \), more ER-

Figure 3 The time evolution of \([\text{Ca}^{2+}]_{\text{Mic}}\) (a), \([\text{Ca}^{2+}]_{\text{ER}}\) (b), \([\text{Ca}^{2+}]_{\text{Mt}}\) (c) and \([\text{Ca}^{2+}]_{\text{Cyt}}\) (d) in an oscillating cycle at distance \(r = 200 \) (green), 100 (purple), 40 (red), 20 (dark) and 10 nm (grey). The brown lines in (b) and (d) are in the absence of mitochondria. In (a) and (b) the duration of an abrupt increase in \(\text{Ca}^{2+} \) release is marked by arrows for \(r = 10 \text{ nm} \). \([\text{IP3}] = 0.5 \mu\text{M}\).

Figure 4 \(\text{Ca}^{2+} \) dynamics modulated by the IP3-R-MCU distance. (a) The spike amplitudes of \([\text{Ca}^{2+}]_{\text{Mic}}\) (triangles) and \([\text{Ca}^{2+}]_{\text{Mt}}\) (circles). (b) The spike amplitudes of \([\text{Ca}^{2+}]_{\text{Cyt}}\) (diamonds) and spike period (spheres). (c) The total amount of \(\text{Ca}^{2+} \) released from the ER through IP3-Rs during each cycle (squares), the amount of \(\text{Ca}^{2+} \) released from the ER through IP3-Rs during the rising time (circles), and the fraction delivered to mitochondria through MCU (stars). (d) The spike width (triangles), the rising time (squares) and the decay time (circles) of \([\text{Ca}^{2+}]_{\text{Cyt}}\) oscillations. \([\text{IP3}] = 0.5 \mu\text{M}\).
Such a bifurcation diagram for a range of distances, evolving into a stable steady state at higher levels of [IP3]. One can see that a rapid elevation in [Ca2+]_Cyt amplitude is observed at IP3R-MCU distances around 10 nm. A global [Ca2+]_Cyt which is smaller than 4.0 or 5.0 μM (i.e. dashed or dotted line in Fig. 5c) is typically obtained with IP3R-MCU distances of 20 to 85 nm or distances of 15 to 150 nm, respectively.

Robustness with varying clustered IP3R number. In above study, we only consider a cluster in which nIP3R = 4 IP3Rs correspond to a single MCU. Experimental evidence suggests that IP3R clusters typically contain a handful (~4) of IP3Rs. Next we discuss the robustness of the model’s behavior upon slight changes in nIP3R (from 4 to 3, and 5). By calculating the fraction of Ca2+ ions accumulated by mitochondria compared to the total amount of Ca2+ released from the ER, we see that the critical distance is changed to 20 nm for nIP3R = 3 and 35 nm for nIP3R = 5 (Fig. 6(a)). Fig. 6(b) gives the value of [IP3] at the right bifurcation point against distance with varying nIP3R. A common region to find the right bifurcation [IP3] is obtained with distances of 33 to 93 nm. Fig. 6(c) shows the maximal [Ca2+]_Cyt plotted against IP3R-MCU distances for varying nIP3R. A global [Ca2+]_Cyt which is smaller than 4.0 or 5.0 μM (i.e. dashed or dotted line in Fig. 6(c)) is

released Ca2+ ions are sequestered into mitochondria, so [Ca2+]_mit peaks first, followed by [Ca2+]_ER minimum and then [Ca2+]_Cyt peak.

Ca2+ dynamics modulated by [IP3]. In the following discussion, we investigate how [IP3] controlled [Ca2+]_Cyt oscillations can be modulated by the IP3R-MCU distance. The bifurcation diagram for [Ca2+]_Cyt oscillation (i.e. the steady state of [Ca2+]_Cyt or the maximum and minimum of [Ca2+]_Cyt oscillation) with [IP3] as the bifurcation parameter is plotted at different IP3R-MCU distances in Fig. 5a. When IP3 levels are low, [Ca2+]_Cyt can be seen to remain in a low stable steady state. Beyond a certain threshold value of [IP3], [Ca2+]_Cyt undergoes periodical oscillations. We also found that, at distance range of 27–122 nm, the system only demonstrates sustained Ca2+ oscillations when [IP3] values are in an intermediate range, evolving into a stable steady state at higher [IP3] (Fig. 5b). Such a bifurcation diagram for r = 60 nm is depicted in the inset of Fig. 5b. Similar bifurcation behavior has been observed in the experimental Ca2+ waves in Xenopus laevis oocytes. In oocytes it has been shown that repetitive Ca2+ waves occur only at intermediate [IP3] between 0.1 and 1 μM. Thus, as shown in the inset of Fig. 5b, r = 60 nm is the optimum IP3R-MCU distance in which our model replicates these experimental observations. According to the experiment, for a biologically meaningful Ca2+ oscillation model there should be a right bifurcation point for high [IP3], beyond which there occurs no Ca2+ oscillation. As plotted in Fig. 5b, only in the range of r of 27–122 nm the model can produce Ca2+ oscillations in an intermediate [IP3] range. Outside of such distance range the Ca2+ oscillations always occur at infinitely high [IP3] (Fig. 5b).

[Ca2+]_Cyt oscillations with limited amplitudes regulate a host of vital cell functions. A global [Ca2+]_Cyt less than 3.5 μM is usually observed in living cell. However, high [Ca2+]_Cyt will trigger and modulate apoptosis. Fig. 5c shows the maximal [Ca2+]_Cyt values seen in our model plotted against IP3R-MCU distance for different [IP3]. One can see that a rapid elevation in [Ca2+]_Cyt amplitude is observed at IP3R-MCU distances around 10 nm. A global [Ca2+]_Cyt which is smaller than 4.0 or 5.0 μM (i.e. dashed or dotted line in Fig. 5c) is typically obtained with IP3R-MCU distances of 20 to 85 nm or distances of 15 to 150 nm, respectively.

Robustness of Ca2+ dynamics on nIP3R. (a) The fraction of Ca2+ accumulated by mitochondria of the total amount of Ca2+ released from the ER during each oscillating cycle plotted against IP3R-MCU distance. (b) The value of [IP3] at the right bifurcation point against distance. (c) The maximal [Ca2+]_Cyt against the IP3R-MCU distance at saturating [IP3] = 5.0 μM. The dashed and dotted lines represent [Ca2+]_Cyt = 4 and 5 μM, respectively. Here nIP3R = 3 (stars), 4 (circles) and 5 (triangles).
typically obtained with IP₃-R-MCU distances of 25 to 85 nm or distances of 20 to 110 nm, respectively.

Taken together, compared with experimental observations⁵⁸,⁵⁹,⁶⁰,⁶¹, the simulation results shown in Fig. 5 and Fig. 6 suggest that the optimal IP₃-R-MCU distance for physiological Ca²⁺ signaling should be around 30 to 85 nm. When the IP₃-R-MCU distance is between 30 and 85 nm, as illustrated in Fig. 6(a) approximately 15–55% of ER-released Ca²⁺ ions can be taken up by mitochondria, compatible with experimental measurements made in various cells.⁶²,⁶³. Our model thus suggests that mitochondria, typically working at a short distance from the ER (but larger than r₁₉), serve as Ca²⁺ sinks, sequestering Ca²⁺ ions released from the ER.

Discussion

Since the 1990s, the manner in which mitochondrial Ca²⁺ uptake through MCU shapes intracellular Ca²⁺ signaling has attracted much attention. The key questions presently debated are: to what extent mitochondria acquire Ca²⁺; what impact mitochondria have on cytosolic Ca²⁺ signals; and what dimensions the ER/mitochondria Ca²⁺ microdomain might have. To address these questions, we constructed a Ca²⁺ signaling model to consider the Ca²⁺ crosstalk within microdomains between IP₃Rs and MCU. A 4-states MCU model has been suggested based on the latest experimental results.⁶⁴,⁶⁵–⁶⁷. The MCU is exposed to the microdomain Ca²⁺ concentration which is released from the nearby clustered IP₃Rs⁶⁸,⁶⁹, rather than the bulk cytosolic Ca²⁺ concentration. As a result, the model replicates the shape, amplitude, period, and kinetics of the Ca²⁺ spikes observed in experimental data, allowing us to examine the effects of mitochondrial Ca²⁺ uptake on cytosolic Ca²⁺ signals.

From experimental observations, it has been suggested that mitochondrial Ca²⁺ uptake contributes significantly to the physiological regulation of cytosolic Ca²⁺ signals. Regarding the recent controversy whether mitochondria act as significant buffers to cytosolic Ca²⁺ under physiological conditions⁷⁰–⁷⁲, our model indicates that mitochondria can accumulate large quantities of Ca²⁺ under physiological conditions (about 15–55% of the total released from the ER) at IP₃-R-MCU distances of 30–85 nm. Furthermore, our model indicates that the distance between the ER and mitochondria appears to be an important factor in modulating Ca²⁺ signaling, especially considering that mitochondria can be highly mobile organelles.⁷³. There is a critical IP₃-R-MCU distance r₁₉ (around 20 to 35 nm depending on nIP₃R) at which half of the Ca²⁺ released by the ER is taken up by mitochondria. At distances smaller than r₁₉, mitochondria can take up more Ca²⁺, while at distances larger than r₁₉, more Ca²⁺ ions diffuse from the ER into the cytosol. This leads to mitochondria displaying different kinds of Ca²⁺ signal modulation depending on their distance from the ER. The effects of mitochondria on the spike amplitude, spike width, and rising and decay time of [Ca²⁺]Cyt spikes, the synchronization phase among [Ca²⁺]Cyt, [Ca²⁺]ER and [Ca²⁺]Mit, and the total amount of Ca²⁺ released from the ER are all substantially modulated by how the IP₃-R-MCU distance deviates from this critical value.

To explore experimentally the consequences of mitochondrial Ca²⁺ uptake on global Ca²⁺ signals, mitochondrial Ca²⁺ uptake is often prevented directly by applying an MCU inhibitor⁷⁴ or modulated by using agents which either depolarize or hyperpolarize the mitochondrial membrane potential and thus dissipate or increase the driving force for Ca²⁺ uptake into the organelle.⁷⁵,⁷⁶. How mitochondrial Ca²⁺ uptake affects IP₃-R release mechanism is still under investigation. Some researchers have argued that mitochondrial Ca²⁺ uptake may provide a positive modulation of Ca²⁺ release by suppressing the negative feedback of high [Ca²⁺]Cyt on IP₃-R⁷⁷–⁷⁹. Others have suggested that mitochondrial Ca²⁺ uptake exerts a negative control on [Ca²⁺]Cyt by preventing the positive feedback of Ca²⁺ on IP₃-R⁸⁰,⁸¹.

In our simulations, the ability of mitochondria to take up Ca²⁺ is changed by varying the IP₃-R-MCU distance and so the mitochondrial modulation on IP₃-R dynamics has been examined. Our model indicates that altering mitochondrial Ca²⁺ uptake induces a nontrivial change on [Ca²⁺]Cyt amplitude, which can reconcile the conflicting results of the change of [Ca²⁺]Cyt amplitude observed in various experiments.⁸²–⁸⁴. When IP₃-R-MCU distance is larger than the critical distance r₁₉, mitochondrial Ca²⁺ uptake is weak and more Ca²⁺ ions diffuse into cytosol, the enhancement of mitochondrial Ca²⁺ uptake causes a decreasing [Ca²⁺]Cyt spike peak, exerting a weakened inhibitory effect on IP₃-R dynamics, resulting in a prolonged decay time of spikes. Thus, at this region, mitochondrial Ca²⁺ uptake offers a positive modulation of Ca²⁺ release by reducing [Ca²⁺]Cyt amplitude to suppress the inhibition dynamics (i.e. the negative feedback) of high [Ca²⁺]Cyt on IP₃-R during decay time of spikes (Fig. 7), similar as suggested in refs ⁹, ¹⁰, ¹¹. While, when IP₃-R-MCU distance is smaller than the critical distance, mitochondria take more Ca²⁺ ions than those diffusing into cytosol, the strong mitochondrial Ca²⁺ uptake will force [Ca²⁺]Cyt at a small value to prevent the strong activation

Figure 7 | Schematic representation of how mitochondria modulate [Ca²⁺]Cyt. IP₃-R channel is regulated by Ca²⁺ in a biphasic manner: a lower [Ca²⁺]Cyt promotes Ca²⁺ release and causes its elevation whereas higher [Ca²⁺]Cyt inhibits Ca²⁺ release. There is a critical distance at which 50% of the IP₃-R-released Ca²⁺ ions are taken up by mitochondria. When r < r₁₉, mitochondrial Ca²⁺ uptake inhibits IP₃-R-released Ca²⁺ by preventing the positive effect of low [Ca²⁺]Cyt on IP₃-R; whilst when r > r₁₉, mitochondrial Ca²⁺ uptake provides a positive modulation on IP₃-R-released Ca²⁺ by suppressing the negative effect of high [Ca²⁺]Cyt on IP₃-R. Ca²⁺ oscillations merely occur for moderate values of [IP₃] (orange range) with physiological amplitude (gray range), so the optimal distance of IP₃-R-MCU should be within the intersection zone between the gray and orange range.
The importance of the IP3R-MCU distance and suggests that potential spikes, resulting in a decrease in the total Ca$^{2+}$ values of IP3-Ca$^{2+}$ phase of spikes. At shorter IP3R-MCU distances, the mitochondria SCIENTIFIC dynamics (i.e. the positive feedback) of [Ca$^{2+}$]$_{Cyt}$ on IP$_3$R (Fig. 7), similar as proposed in refs 12, 13. Thus, our model shows that this weak activation effect causes a small Ca$^{2+}$ release from ER, giving a slow rising phase. When mitochondria approach to saturation and [Ca$^{2+}$]$_{Cyt}$ increases beyond the threshold of excitable dynamics, an abrupt rising phase occurs to generate a [Ca$^{2+}$]$_{Cyt}$ spike, giving a high [Ca$^{2+}$]$_{Cyt}$ amplitude and then inducing a strong inhibitory effect on IP$_3$R dynamics to shorten the decay time of spikes.

An unexpected prediction with the model is that when the IP$_3$R-MCU distance is less than the critical distance, even though mitochondrial Ca$^{2+}$ uptake keeps increasing with decreasing distance, the total amount of Ca$^{2+}$ released from the ER decreases while the cytosolic Ca$^{2+}$ spike amplitude increases. The [Ca$^{2+}$]$_{Cyt}$ peak is mainly determined by the amount of Ca$^{2+}$ released during the abrupt rising phase of spikes. At shorter IP$_3$R-MCU distances, the mitochondria become almost saturated before the abrupt rising phase, and thus during the abrupt rising phase more of the Ca$^{2+}$ ions released from the ER diffuse more into cytosol, generating a higher amplitude of [Ca$^{2+}$]$_{Cyt}$. However, the change in the total amount of Ca$^{2+}$ release from the ER seen with decreasing distance is mainly determined by the release of Ca$^{2+}$ occurring during the decay phase of spike. The enhanced inhibitory effect of higher amplitude [Ca$^{2+}$]$_{Cyt}$ spikes on IP$_3$R dynamics in turn leads to a shortening of the decay time of the spikes, resulting in a decrease in the total Ca$^{2+}$ amount released from ER with decreased IP$_3$R-MCU distance.

The existence of high [Ca$^{2+}$]$_{Mic}$ in microdomains has been put forward as one way to resolve the apparent paradox that even though the Ca$^{2+}$ affinity of the MCU is low (K_D of 10–20 μM) highly efficient mitochondrial Ca$^{2+}$ uptake still occurs under physiological conditions with low micromolar global [Ca$^{2+}$]$_{Cyt}$. However, an intriguing question related to the role of the microdomain is the distance between the ER and mitochondria that would be required to control distinct cellular processes. The distance from the ER membrane to OMM was originally estimated to be in excess of 100 nm, recently it has been suggested that this distance could be in the order of 30 nm$^{38-40}$. A key prediction of our model is that the optimal distance between the IP$_3$R and MCU is about 30–85 nm. This arises when parameters for [IP$_3$] and [Ca$^{2+}$] are derived from the experimental observations that Ca$^{2+}$ oscillations generally occur for intermediate values of IP$_3$ and that physiological [Ca$^{2+}$]$_{Cyt}$ amplitudes seldom exceed 3.5 μM in living cells41,42, which are illustrated in Fig. 7. Considering that the thickness of OMM and IMM is around 20 nm, our model predicts that the optimal gap between the ER membrane and OMM should be approximately 10–65 nm, which is in good agreement with measurements obtained via electron microscopy and tomography43,44.

Interestingly, our simulation also provides a reason for why MCUs need to be located ~20 nm away from the OMM. In experiment, elevations in the magnitude of [Ca$^{2+}$]$_{Cyt}$ during typical agonist induced responses could lead to a triggering of [Ca$^{2+}$]$_{Cyt}$-induced apoptosis45. Maintaining a distance between IMM and OMM of 20 nm may present a defense mechanism to keep the global [Ca$^{2+}$]$_{Cyt}$ at a small physiological range. Our model highlights the importance of the IP$_3$R-MCU distance and suggests that potential pathological mechanisms for generating elevated [Ca$^{2+}$]$_{Cyt}$ and leading to possibly [Ca$^{2+}$]$_{Cyt}$-induced apoptosis45 would be found in disorders in which the optimal distance between the ER and mitochondria is disturbed. Considering that when un tethered to the ER, mitochondria can be highly mobile organelles46 and that little is known of the physiological stimuli governing the distance between the ER and mitochondria, or how the tethers between the ER and mitochondria function or are disrupted during pathology, future research elucidating how the IP$_3$R-MCU distance is maintained and controlled is essential.

Finally, we discuss the advantages and limitations of our model. First, the previous published models typically simulated MCU either by a simple Hill equation26,29 or by the Monod-Wyman-Changeux type allosteric regulation24,27,28. In contrast to these models, we introduced a mechanistic kinetic model to discuss in detail the binding and unbinding processes of Ca$^{2+}$ to MCU. Second, the numerical simulation about the peak values of [Ca$^{2+}$]$_{Mic}$ and [Ca$^{2+}$]$_{M}$ were usually underestimated in most of the models$^{24,26-30}$. For example, the concentration of free Ca$^{2+}$ in the ER is typically in the range of a few hundred micromolars. Our model is capable of reproducing the observed magnitudes of [Ca$^{2+}$]$_{Cyt}$, [Ca$^{2+}$]$_{ER}$ and [Ca$^{2+}$]$_{Mit}$. In 2013, Szopa et al. suggested a model to explicitly take into account the existence of Ca$^{2+}$ microdomain between the ER and mitochondria to discuss the mitochondrial Ca$^{2+}$ uptake29. However, the assumption in the model that MCU directly senses the [Ca$^{2+}$]$_{ER}$ may be not very appropriate, particularly in view of the existing sharp Ca$^{2+}$ gradients in the microdomain against the distance between the IP$_3$R and MCU. Previously, there are mainly two basic ways to handle Ca$^{2+}$ microdomain in the whole-cell models. The first approach involved the separation of a specified small region from the cell. But this subspace is simply treated as another well-mixed compartment38,48, and thus this approach cannot capture the effect of sharp Ca$^{2+}$ concentration gradients in the microdomain41,44. Sneyd et al. used an alternative approach to divide the cell into a few separate domains, connected by many boundary fluxes49,50. Although this is a powerful approach, it greatly increases the complexity of the model, leading to extreme computational difficulties.

Different from these methods, a new approach has been suggested in the present paper. For simplicity, all the IP$_3$Rs dynamics and SERCA are determined by the bulk [Ca$^{2+}$]$_{Cyt}$. As a result, the bulk Ca$^{2+}$ concentrations in cytosol, ER and mitochondria can be examined in deterministic ODE which actually assume that the cytosolic, ER and mitochondrial compartments are mixed homogeneously. Upon such well mixed compartments, a microdomain is specifically considered to discuss the MCU dynamics which is crucial for mitochondrial Ca$^{2+}$ uptake. The microdomain consists of a cluster of IP$_3$Rs and a MCU separated at a short distance. Treated as a point release source for the clustered IP$_3$Rs which dynamics is controlled by bulk [Ca$^{2+}$]$_{Cyt}$, a sharp distribution of [Ca$^{2+}$]$_{Mic}$ can be built up in the microdomain. Each MCU responds to the local high [Ca$^{2+}$]$_{Mic}$ generated by the clustered IP$_3$Rs, rather than the bulk [Ca$^{2+}$]$_{Cyt}$. As a result, this method avoids the simulation of the Ca$^{2+}$ diffusion in microdomain between the ER membrane and IMM.

Peglow et al.30 discussed a three-dimensional model to analyze the influence of the distance between mitochondria and the CRAC channel on the plasma membrane, which is responsible for Ca$^{2+}$ influx from the outside of the cell, on global Ca$^{2+}$ oscillation. They confirmed that the relative position between mitochondria and the CRAC channels controls the global Ca$^{2+}$ signal. Their simulation results showed that close mitochondria will lower the microdomain [Ca$^{2+}$] right at the CRAC channels and prevent the Ca$^{2+}$-dependent inactivation of CRAC channels, leading to higher Ca$^{2+}$ influx and thereby increasing global [Ca$^{2+}$]$_{Cyt}$. They found that the global [Ca$^{2+}$]$_{Cyt}$ monotonously changes with the mitochondria-CRAC distance from 0.1 to 2 μm. A similar result is obtained in our model at r > r$_{crit}$.

As a fact, our model does not realistically consider the spatial structure and so many important factors of Ca$^{2+}$ signaling have been ignored. In the model the microdomain is modeled as a radially symmetric hemisphere and so the linearized reaction-diffusion equation has been applied to obtain a simple expression for [Ca$^{2+}$]$_{Mic}$. The mitochondrial boundary is actually ignored. One may expect that the mitochondrial boundary effect may modulate the sharp [Ca$^{2+}$]$_{Mic}$ distribution. The Ca$^{2+}$ release from the clustered IP$_3$Rs are treated as the point release source, which is correct for far away MCU. But if MCU is too close to IP$_3$Rs, a better treatment is to consider the spatial distribution of IP$_3$Rs. The model also assumes that OMM has no effect on the Ca$^{2+}$ diffusion as it has high permeability to Ca$^{2+}$. A
better MCU model should also consider the regulation effect of MICU2 on the MCU channel activity. Our model is primarily designed for non-excitable cells, i.e. a ‘closed’ cell model, ignoring the Ca2+ exchange between cytosol and extracellular medium through the plasma membrane. Thus, a more realistic Ca2+ dynamics should be considered in the future. However, despite oversimplification in some details, we believe that the present model is useful and may provide us some insights on how the crosstalk between the ER and mitochondria modulates Ca2+ signals in living cells.

1. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. *Nat. Rev. Mol. Cell Biol.* 4, 517–529 (2003).
2. Parekh, A. B. Decoding cytosolic Ca2+ oscillations. *Trends Biochem. Sci.* 36, 78–87 (2011).
3. Contreras, L., Drago, I., Zampese, E. & Pozzan, T. Mitochondria: the calcium connection. *BBA-Bioenergetics* 1797, 607–618 (2010).
4. Rizzuto, R., Brini, M., Muruga, M. & Pozzan, T. Micromodells with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. *Science* 262, 744–747 (1993).
5. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. *Cell* 82, 415–424 (1995).
6. Rizzuto, R., De Stefani, D., Raffaello, A. & Mannmucci, C. Mitochondria as sensors and regulators of calcium signalling. *Nat. Rev. Mol. Cell Biol.* 13, 566–578 (2012).
7. Giajotto, M. et al. Hot Spots on the Mitochondrial Surface Are Generated by Ca2+ Mobilization from Stores, but Not by Activation of Store-Operated Ca2+ Channels. *Mol. Cell. Biol.* 38, 280–290 (2010).
8. Costraints, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. *Mol. Cell* 39, 131–132 (2010).
9. Jouvet, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P. & Lechleiter, J. D. Synchronization of calcium waves by mitochondrial substrates in *Xenopus laevis* oocytes. *Nature* 377, 438–441 (1995).
10. Vay, L. et al. Modulation of Ca2+ release and Ca2+ oscillations in HeLa cells and fibroblasts by mitochondrial Ca2+ uniporter stimulation. *J. Physiol.* 580, 39–49 (2007).
11. Olson, M. L., Chalmers, S. & McCarron, J. G. Mitochondrial Ca2+ uptake increases Ca2+ release from inositol 1, 4, 5-trisphosphate receptor clusters in smooth muscle cells. *J. Biol. Chem.* 285, 2040–2050 (2010).
12. Bottier, E., Rea, R. & Duchen, M. R. Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. *J. Cell. Biol.* 145, 795–808 (1999).
13. Hajnoczky, G., Hager, R. & Thomas, A. P. Mitochondria suppress local feedback activation of inositol 1, 4, 5-trisphosphate receptors by Ca2+. *J. Biol. Chem.* 274, 14157–14162 (1999).
14. Olzén, M. L., Chalmers, S. & McCarron, J. G. Mitochondrial organization and Ca2+ uptake. *Biochem. Soc. Trans.* 40, 158–167 (2012).
15. Costraints, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. *J. Cell. Biol.* 174, 915–921 (2006).
16. de Brito, O. M. & Scorrano, L. An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship. *EMBO J.* 29, 2715–2723 (2010).
17. Williams, G. S., Boyman, L., Chikando, A. C., Khairallah, R. J. & Lederer, W. J. Mitochondrial calcium uptake. *Proceedings of the National Academy of Sciences* 110, 10479–10486 (2013).
18. Meyer, T. & Stryer, L. Molecular model for receptor-stimulated calcium spiking. *Phys. Biol.* 10, 035004 (2013).
19. Williams, G. S. & Lederer, W. J. Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. *Proc. Nat. Acad. Sci. USA* 108, 16265–16270 (2011).
20. Costraints, G. et al. MICU1 Controls Both the Threshold and Cooperative Activation of the Mitochondrial Ca2+ Uniporter. *Cell Metab.* 17, 976–987 (2013).
21. Shuai, J. W. & Jung, P. Stochastic Properties of Ca2+ Signaling. *J. Theor. Biol.* 210, 151–165 (2001).
22. Ndiaye, D. et al. Characterization of the Effect of the Mitochondrial Protein Hint2 on Intracellular Ca2+ dynamics. *Biophys. J.* 105, 1268–1275 (2013).
60. Means, S. A. & Sneyd, J. Spatio-temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. J. Theor. Biol. 267, 137–152 (2010).

Acknowledgments
We would like to acknowledge many useful conversations with George Dickinson, Ian Parker and Jeffery Lock in University of California, Irvine. We also thank Ke Jiang and Yu Jiang in Xiamen University for help with numerical simulations. This work was supported by the China National Funds for Distinguished Young Scholars under grant 11125419, the National Natural Science Foundation of China under grant 31370830, the Fujian Province Funds for Leading Scientist in Universities and ICAM branches cost sharing fund.

Author contributions
H.Q. and J.S. conceived and designed the model. H.Q. performed the numerical simulations. L.L. contributed to the writing of the programs. H.Q. and J.S. wrote the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Qi, H., Li, L. & Shuai, J. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca^{2+} oscillations. Sci. Rep. 5, 7984; DOI:10.1038/srep07984 (2015).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/