Long non-coding RNA HULC exerts oncogenic activity on papillary thyroid cancer in vitro and in vivo

Zhijia Yang, Guoqing Li, Chao Ding, Wencong Sun and Ji Zhang

ABSTRACT
Thyroid cancer is a frequently occurring malignancy in the human endocrine system. Papillary thyroid cancer (PTC) presents 70–80% of all thyroid cancer cases. Herein, we probed the possible oncogenic function of long non-coding RNA (lncRNA) highly up-regulated in liver cancer (HULC) in PTC. First, the HULC and microRNA-106a (miR-106a) expressions in PTC tissues and cells were tested. Plasmids or miRNAs transfections were done for altering HULC and miR-106a expressions. Then, cells viability and apoptosis, along with cell proliferative, migratory and invasive abilities, were tested, respectively. The PI3K/AKT and Wnt/β-catenin pathways activities were measured. Finally, the animal model of PTC was constructed and the tumour volumes and weights were gauged. We discovered that HULC and miR-106a had relative high expression levels in PTC tissues and cells. HULC overexpression enhanced TPC-1 cells viability and cell proliferative, migratory and invasive abilities. Silencing HULC induced TPC-1 cell apoptosis. miR-106a engaged in the oncogenic impacts of HULC. Moreover, HULC overexpression boosted PI3K/AKT and Wnt/β-catenin pathways activities via raising miR-106a expression. Besides, HULC overexpression enhanced the volumes and weights of PTC tumours. To sum up, HULC exhibited oncogenic function on PTC in vitro and in vivo.

Introduction
Thyroid cancer is a frequently occurring malignancy in the human endocrine system [1]. Papillary thyroid cancer (PTC) is a well-differentiated type of thyroid cancer that accounts for 70–80% of all thyroid cancer cases [2]. Epidemiological study reports that the incidence of thyroid cancer, particularly PTC, has noticeably raised in the last few years [3]. The molecular mechanism regarding the onset and development of PTC is very complex, which even includes epigenetic changes [4,5]. Efforts to understand the relationship between epigenetic changes and onset of PTC are considered to be useful for offering diagnostic biomarkers and therapeutic targets for PTC.

As regulatory RNA molecules taking part in epigenetic modification, long non-coding RNAs (lncRNAs) are discovered to attend to the modulation of lots of cell functions [6]. Aberrant expression of lncRNAs is reported to be happened in many human diseases, including cancers [7]. Highly up-regulated in liver cancer (HULC), a newly discovered lncRNA, has been found to exert oncogenic effects on hepatic cancer [8], breast cancer [9], gastric cancer [10], colorectal cancer [11], pancreatic cancer [12] and osteosarcoma [13]. Li et al. reported that HULC boosted epithelial-mesenchymal transition (EMT) of hepatocellular carcinoma [14]. Wang et al. reported that HULC conferred bladder cancer cell proliferation but suppressed cell apoptosis by regulating ZIC2 and PI3K/AKT pathway [15]. However, no literature can be found regarding the impacts of HULC on PTC.

Similarly to lncRNAs, miRNAs and another non-coding regulatory RNAs, also take part in the modulation of cells functions [16]. Many lncRNAs, including HULC, can present oncogenic impacts in cancer cells by regulating miRNAs levels [8,17]. miRNA-106a (miR-106a) was reported to be up-regulated and presented oncogenic activity in multiple cancer cells [18,19]. Shen et al. demonstrated that miR-106a enhanced the viability of PTC cells by modulating MEK/ERK pathway and inhibited apoptosis of PTC cells by modulating p38 MAPK pathway [20].

Herein, the potential oncogenic functions of HULC in PTC in vitro and in vivo were probed. Whether miR-106a took part in the oncogenic function of HULC was also explored.

Material and methods
Clinical specimens
From October 2016 to December 2017, 36 patients with PTC (10 male and 26 female, mean age 50.2 years) were recruited at Henan Provincial People’s Hospital (Zhengzhou, China).
Before surgery, all patients did not get any therapy. Tumour tissues and normal tissues were gathered in the process of surgery. Written informed consents were signed by every patient. Our experiment was approved by the Ethics Committee of our hospital.

Cell culture

Human thyroid follicular cell line Nthy-ori3-1 and human PTC cell lines, BCPAP and TPC-1, were supplied by American Type Culture Collection (ATCC, Manassas, VA); TPC-1 and BCPAP cells were grown in RPMI-1640 medium (Gibco, Carlsbad, CA), while Nthy-ori3-1 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Carlsbad, CA) at 37°C with 5% CO₂. Both RPMI-1640 medium and DMEM were added 10% (v/v) foetal bovine serum (FBS, Gibco Carlsbad, CA).

Plasmids or miRNAs transfection

pcDNA3.1 plasmid (Addgene, Cambridge, MA) inserting with HULC sequence was applied to overexpress HULC and named as pc-HULC. The oligonucleotides sequence of sh-HULC was: 5’-GCCTTTACAAGGGAATGAAAGA-3’. The oligonucleotides sequence of sh-negative control (sh-NC) was: 5’-GGTACTGACGTGCTAATCCGTAG-3’. miR-106a inhibitor (5’-UCACAA-3’) and its NC (5’-UCACAA-3’) were supplied by Life Technologies Corporation (Carlsbad, CA). Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA) was conducted for plasmids or miRNAs transfection.

qRT-PCR

Total RNAs was separated with the help of TRIzol Purification kit (Invitrogen, Carlsbad, CA). cDNA was synthesised by SuperScript™ IV First-Strand Syntheses System (Invitrogen). Then, TaqMan™ Real-time PCR Mater Mix (Applied Biosystems, Foster City, CA) was applied to measure HULC and β-actin expressions. TaqMan™ OpenArray™ Real-Time PCR Master Mix (Applied Biosystems, Foster City, CA) was applied to measure miR-106a and U6 snRNA expressions. Sequences of primers were listed in Table 1. Data were analysed by 2⁻ΔΔCt method [21].

Names	Sequences	
HULC	Forward: 5’-ACCTCCGAACACTGTCCAAAATG-3’	Reverse: 5’-TCTTGGCTTGCTCTTGCTG-3’
β-actin	Forward: 5’-GAGAGGGGAATCTGCTGAG-3’	Reverse: 5’-CATCTGCTGGAAGTTGAC-3’
miR-106a	Forward: 5’-TGCCCAAGGAGTCTAACAGT-3’	Reverse: 5’-GCTCGAGGTCCAGGAGG-3’
U6 snRNA	Forward: 5’-CAGAATTCGTAGAGGAGTT-3’	Reverse: 5’-TGGGTGTGAGGATTCG-3’

Cell viability assay

Cell viability was assessed by cell counting kit-8 (CCK-8) assay (Beyotime Biotechnology, Shanghai, China) as earlier reported [22]. Results were shown as the percentage of control.

Cell apoptosis assay

Cell apoptosis was tested by Guava Nexin assay (Guava Technologies, Hayward, CA) as previously described [23]. Guava EasyCyte flow cytometer (Guava Technologies, Hayward, CA) was utilised for recording results.

Cell migration and invasion assay

Cell migratory and invasive abilities were evaluated using a modified two-chamber transwell assay (Corning Incorporated, New York, NY) similarly with the earlier literature reported [24]. Results were shown as percentage of control.

Western blotting

Western blotting was done similarly with the previous reported [24]. All primary antibodies, including Cyclin D1 (ab226977), p53 (ab131442), p16 (ab151303), Pro-caspase 3 (ab32499), Cleaved-caspase 3 (ab2302), Pro-caspase 9 (ab138412), Cleaved-caspase 9 (ab2324), Matrix metalloprotein 9 (MMP-9, ab73734), Tissue inhibitor of metalloproteinases 1 (TIMP-1 and ab61224), TIMP-2 (ab1828), Vimentin (ab20346), p-Pi3K (ab182651), t-Pi3K (ab86714), p-AKT (ab183758), t-AKT (ab8805), Wnt3α (ab116222), β-catenin (ab32572) and β-actin (ab8226) were purchased from Abcam Biotechnology (Cambridge, MA).

Animal experiment

Twenty-one nude mice (8 male and 13 female, 8–9 weeks old, 20.2–24.6g body weight) were supplied by Beijing Huafukang Bioscience Co., Ltd. (Beijing, China) and randomly divided into control, pc-HULC and sh-HULC group (seven mice/group). For mice in pc-HULC or sh-HULC group, 1 × 10⁶ stably transfected pc-HULC (or sh-HULC) TPC-1 cells were subcutaneously injected into the right flank. The tumour volumes were gauged every week by formula long diameter (a)×short diameters (b)²/2. After 6 weeks, the mice were sacrificed by intraperitoneally injecting 2% pentobarbital sodium (40 mg/kg body weight, Sigma-Aldrich, St Louis, MO). Tumour samples were removed and weighed. All experiments using mice were approved by our hospital.

Statistical analysis

The data from three repeated experiments were shown as mean ± standard deviation (SD). Graphpad version 6.0 statistical software (Graphpad, San Diego, CA) was done for statistical analysis. p-values were computed by one-way ANOVA with Tukey’s post-hoc test. p < .05 was thought to be a significant difference.
Results

HULC and miR-106a had relative high expression levels in PTC tissues and cells

Figure 1(A,B) showed that both HULC and miR-106a had relatively high expression levels in PTC tumour tissues, in contrast with corresponding normal tissues ($p < .01$). Data in Figure 1(C,D) displayed that relative to human thyroid follicular Nthy-ori3-1 cells, both HULC and miR-106a had higher expression levels in human PTC TPC-1 and BCPAP cells ($p < .01$). These outcomes illustrated that HULC and miR-106a might present oncogenic function in PTC. TPC-1 cells were chosen for further experiments.

HULC presented oncogenic function in TPC-1 cells

Figure 2(A) showed that the HULC expression in TPC-1 cells was boosted by pc-HULC transfection and declined by sh-HULC transfection ($p < .05$). Figure 2(B) presented that pc-HULC transfection obviously enhanced TPC-1 cells viability ($p < .05$), while sh-HULC transfection notably lowered TPC-1 cells viability ($p < .05$). The results of Figure 2(C) displayed that the Cyclin D1 level was boosted ($p < .01$), while the p53 and p16 levels were reduced ($p < .05$) in TPC-1 cells by pc-HULC transfection. sh-HULC transfection had opposite impacts ($p < .05$). Moreover, Figure 2(D) indicated that TPC-1 cells apoptosis was potentiated by sh-HULC transfection ($p < .01$). The Cleaved-caspase 3 and Cleaved-caspase 9 levels were raised in TPC-1 cells by sh-HULC transfection (Figure 2(E)). Besides, data in Figure 3(A,B) presented that the TPC-1 cell migratory and invasive abilities were promoted by pc-HULC transfection ($p < .05$), but repressed by sh-HULC transfection ($p < .05$). Figure 3(C,D) displayed that the MMP-9 and Vimentin levels were boosted by pc-HULC transfection ($p < .01$) and declined by sh-HULC transfection ($p < .05$). On the contrary, the TIMP-1 and TIMP-2 levels were reduced by pc-HULC transfection ($p < .05$) and enhanced by sh-HULC transfection ($p < .01$). These above outcomes illustrated that HULC presented oncogenic functions in TPC-1 cells via promoting cell proliferative, migratory and invasive abilities.

HULC overexpression raised miR-106a expression in TPC-1 cells

Previous study proved that miR-106a enhanced the viability of PTC cells [20]. Moreover, HULC and miR-106a were both highly expressed in hepatocellular cancer [25]. Herein, data in Figure 4 displayed that, pc-HULC transfection remarkably raised the miR-106a expression in TPC-1 cells ($p < .05$), which hinted that miR-106a might attend to the functions HULC on TPC-1 cells.

miR-106a attended to the functions of HULC overexpression on TPC-1 cells

miR-106a inhibitor was applied to reduce miR-106a expression in TPC-1 cells (Figure 5(A), $p < .01$). Figure 5(B) displayed that the HULC overexpression-aroused TPC-1 increase of cells viability was mitigated by miR-106a inhibitor transfection ($p < .05$). The Cyclin D1 level was lowered, but the p53 and p16 levels were enhanced in pc-HULC + miR-106a inhibitor group (Figure 5(C), $p < .05$ or $p < .01$). Figure 6(A,B) showed...
that the HULC overexpression-aroused increases of TPC-1 cell migratory and invasive abilities were also weakened by miR-106a inhibitor transfection \((p < .05) \). The MMP-9 and Vimentin levels were lowered, but the TIMP-1 and TIMP-2 levels were raised in pc-HULC + miR-106a inhibitor group (Figure 6(C,D), \(p < .05 \) or \(p < .01 \)). These above outcomes illustrated that miR-106a attended to the oncogenic functions of HULC on TPC-1 cells.

HULC overexpression boosted PI3K/AKT and Wnt/β-catenin pathways activities in TPC-1 cells by raising miR-106a expression

As displayed in Figure 7(A,B), pc-HULC single transfection notably boosted PI3K/AKT and Wnt/β-catenin pathways activities in TPC-1 cells through enhancing p/t-PI3K, p/t-AKT, Wnt3K and β-catenin expressions \((p < .05 \) or \(p < .01 \)). However, pc-HULC transfection-aroused activation of these
two pathways was notably relieved by miR-106 inhibitor transfection (*p < .05). These outcomes illustrated that HULC overexpression boosted these two pathways activities in TPC-1 cells could be via raising miR-106a expression.

HULC exerted oncogenic activity on PTC in vivo

Figure 8(A) showed that the tumour volume in pc-HULC group was noticeably increased with a time-dependent...
manner after 3 weeks injection ($p < .05$, $p < .01$ or $p < .001$). In sh-HULC group, the tumour volume was distinctly decreased in a time-dependent manner after 3 weeks injection ($p < .05$ or $p < .01$). Figure 8(B) pointed out that by contrast with control group, the tumour weight was notably enhanced in pc-HULC group and noticeably reduced in sh-HULC group ($p < .01$). These outcomes illustrated that HULC also presented oncogenic function on PTC in vivo.

Discussion

As a key regulator of epigenetic modification, lncRNAs and miRNAs are reported to present oncogenic or tumour suppressive functions roles in multiple cancers, including PTC [26]. Herein, we discovered that both HULC and miR-106a had higher expression levels in PTC tissues and cells. HULC overexpression remarkably enhanced TPC-1 cell proliferative, migratory and invasive abilities, while HULC suppression obviously aroused cell apoptosis. Further results found that HULC overexpression raised the miR-106a expression in TPC-1 cells and miR-106a took part in the impacts of HULC on TPC-1 cells. Moreover, HULC overexpression boosted PI3K/AKT and Wnt/β-catenin pathways activities through raising miR-106 expression. Besides, HULC overexpression also enhanced the volume and weight of PTC tumours in vivo. HULC suppression had opposite effects.

In recent years, more and more efforts are made by researchers to probe the impacts lncRNAs and miRNAs in the onset and development of cancers [27]. HULC was demonstrated to exhibit oncogenic functions in a variety of cancers by promoting cell proliferation [8,11,28]. Herein, we discovered that HULC overexpression enhanced TPC-1 cell viability and proliferation, which further confirmed the oncogenic impact of HULC on PTC. Moreover, considering that many lncRNAs, such as thyroid carcinoma susceptibility candidate 3 (PTCSC3), bladder cancer-associated transcript 1 (BLACAT1),

![Figure 4.](image)

HULC overexpression raised the miR-106a expression in TPC-1 cells. TPC-1 cells underwent pc-HULC transfection, the miR-106a expression was detected. *$p < .05$.

![Figure 5.](image)

miR-106a attended to the function of HULC on TPC-1 cell viability and proliferation. (A) TPC-1 cells underwent miR-106a inhibitor transfection, the miR-106a expression was tested. TPC-1 cells underwent different transfection, (B) cell viability and (C) the Cyclin D1, p53 and p16 expressions were determined, respectively. *$p < .05$; **$p < .01$.

![Figure 6.](image)
LOC100507661 and taurine up-regulated gene 1 (TUG1), were also associated with the pathogenesis of PTC [29–32], we could get conclusion that multiple lncRNAs collectively engaged in the development of PTC.

Tumour metastasis is a very complicated physiological process, which accompanied by the changing expression of multiple molecules in cancer cells and increasing cancer cell migratory and invasive abilities [5,31]. In this study, we discovered that the TPC-1 cell migratory and invasive abilities were boosted by HULC overexpression and declined by HULC suppression. MMP-9 and Vimentin, which take part in the process of cell migration and invasion, respectively [33], were both up-regulated by HULC overexpression and down-regulated by HULC suppression. Moreover, TIMP-1 and TIMP-2, two inhibitors of MMP-9 [34], were both down-regulated by HULC overexpression and up-regulated by HULC suppression. These findings confirmed that HULC presented oncogenic function in TPC-1 cells also by modulating cell metastasis.

Previous researches indicated that HULC exerted oncogenic impacts by modulating miRNAs expression [8,14]. miR-106a has been reported to present oncogenic function in a

Figure 6. miR-106a attended to the function of HULC on TPC-1 cell migration and invasion. TPC-1 cells underwent different transfection, (A and B) cell migratory and invasive abilities and (C and D) the MMP-9, TIMP-1, TIMP-2 and Vimentin expressions were measured, respectively. *p < .05; **p < .01.
number of cancer cells, including PTC cells [18,20]. In this research, we discovered that HULC overexpression remarkably raised the miR-106a expression in TPC-1 cells. Knockdown of miR-106a obviously weakened the oncogenic functions of HULC overexpression on TPC-1 cells, which illustrated that HULC presented oncogenic functions in PTC could be realised by up-regulating miR-106a expression. Braconi and Patel also reported that HULC and miR-106a were both up-regulated in hepatocellular cancer [25]. However, until now, no evidence has been reported to sustain the directly targeted relationship between HULC and miR-106a. Some reports provide evidence that lncRNAs may be the precursor of miRNAs and can be cleaved to generate pre-miRNAs [35,36]. Besides, some researchers provide a hypothesis that due to miRNAs genes are located throughout the genome and very small, it may be transcripted when other genes transcription, including lncRNAs [37,38]. Thus, we proposed that HULC influence the miR-106a expression in TPC-1 cells might be through serving as the precursor of miR-106a or enhancing the transcription of miR-106a. Further investigations are still needed to analyse the regulatory roles of HULC in miR-106a expression in the future. Furthermore, considering that there are also other miRNAs, such as miR-148a, miR-146b, miR-451a and miR-654-3p, that also be reported to take part in the regulation of PTC growth and metastasis [39–42]. Whether HULC can regulate these miRNAs expressions in PTC cells is not clear. If HULC also can regulate other miRNAs expressions in PTC cells, we can propose that there

Figure 7. HULC overexpression boosted PI3K/AKT and Wnt/β-catenin pathways activities through raising miR-106a expression. TPC-1 cells were underwent different transfection, (A and B) the p-PI3K, t-PI3K, p-AKT, t-AKT, Wnt3α and β-catenin expressions in TPC-1 cells were tested. *p < .05; **p < .01.

Figure 8. HULC presented oncogenic function on PTC in vivo. Animal model of PTC was established to assess the oncogenic function of HULC in vivo. (A) Tumour volume and (B) tumour weight were tested. *p<.05; **p<.01; ***p<.001.
might have a very intricate modulatory network regarding many lncRNAs and miRNAs in PTC cells. More investigations are still needed in the future.

Increasing numbers of reports provide evidence that the aberrant activation of PI3K/AKT and Wnt/β-catenin pathways took part in the onset of PTC [43,44]. Zhu et al. proved that HULC silencing inhibited the angiogenesis of human glioma via inactivating PI3K/AKT signalling pathway [45]. Li et al. presented that HULC overexpression activated Wnt/β-catenin signalling pathway in adipose-derived stem cells [46]. Herein, we found that HULC overexpression dramatically boosted PI3K/AKT and Wnt/β-catenin pathways activities in TPC-1 cells. Moreover, knockdown of miR-106a obviously weakened the HULC overexpression-aroused these two pathways activation. These outcomes illustrated that HULC might present oncogenic functions on TPC-1 cells via raising miR-106a expression and thereby boosting PI3K/AKT and Wnt/β-catenin pathways activities. Until now, there is no literature can be searched concerning the direct regulatory functions of miR-106 on PI3K/AKT and Wnt/beta-catenin pathways. However, bioinformatics analysis using TargetScanHuman version 7.1 (http://www.targetscan.org/vert_71/) found that phosphatase with tensin homology (PTEN), an upstream negative regulatory molecule of PI3K/AKT pathway, and secreted frizzled-related protein 4 (SFRP4), an upstream negative regulatory molecule of Wnt/beta-catenin pathway, were the target genes of miR-106. So, we proposed that miR-106 regulated PI3K/AKT and Wnt/beta-catenin pathways in TPC-1 cells might be through targeting PTEN and SFRP4. More investigations are demanded to verify our proposal.

Considering that an animal model of PTC is helpful for further verifying the oncogenic activity of HULC, we also established an animal model of PTC to further investigating the oncogenic activity of HULC in vivo. We discovered that HULC overexpression also enhanced the volume and weight of PTC tumours in vivo. On the contrary, HULC suppression reduced the volume and weight of PTC tumours in vivo. In conclusion, the oncogenic impact of HULC on PTC was verified in our experiments. In vitro, HULC overexpression enhanced TPC-1 cell proliferative, migratory and invasive abilities via raising miR-106a expression and thereby boosting PI3K/AKT and Wnt/β-catenin pathways activities.

Disclosure statement
No potential conflict of interest was reported by the authors.

ORCID
Zhijia Yang http://orcid.org/0000-0002-2986-0931
Guoqing Li http://orcid.org/0000-0002-2986-0931

References
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. Cancer J Clin. 2017;67(1):7–30.
[2] Villagelin DG, Santos RB, Romaldini JH. Is diffuse and peritumoral lymphocyte infiltration in papillary thyroid cancer a marker of good prognosis? J Endocrinol Invest. 2011;34(11):e403–e408.
[3] Cramer JD, Fu P, Harth KC, et al. Analysis of the rising incidence of thyroid cancer using the surveillance, epidemiology and end results national cancer data registry. Surgery. 2010;148(6):1147–1152.
[4] Li JY, Shi J, Sang JF, et al. Role of survivin in the pathogenesis of papillary thyroid carcinoma. Genet Mol Res. 2015;14(4):15102–15111.
[5] Liebner DA, Shah MH. Thyroid cancer: pathogenesis and targeted therapy. Ther Adv Endocrinol Endocrinol. 2011;2(5):173–195.
[6] Johnsson P, Lipovich L, Grander D, et al. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 2014;1840(3):1063–1071.
[7] Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(3):257–277.
[8] Wang Y, Chen F, Zhao M, et al. The long noncoding RNA HULC promotes liver cancer by increasing the expression of the HMGAA2 oncogene via sequestration of the microRNA-186. J Biol Chem. 2017;292(37):15395–15407.
[9] Shi F, Xiao F, Ding P, et al. Long noncoding RNA highly up-regulated in liver cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Arch Med Res. 2016;47(6):446–453.
[10] Jin C, Shi W, Wang F, et al. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget. 2016;7(32):51763–51772.
[11] Yang XJ, Huang CQ, Peng CW, et al. Long noncoding RNA HULC promotes colorectal carcinoma progression through epigenetically repressing NKD2 expression. Gene. 2016;592(1):172–178.
[12] Peng W, Gao W, Feng J. Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol. 2014;31(12):346.
[13] Sun XH, Yang LB, Geng XL, et al. Increased expression of IncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int J Clin Exp Pathol. 2015;8(3):2994–3000.
[14] Li SP, Xu HX, Yu Y, et al. IncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget. 2016;7(27):42431–42446.
[15] Wang J, Ma W, Liu Y. Long non-coding RNA HULC promotes bladder cancer cells proliferation but inhibits apoptosis via regulation of ZIC2 and PI3K/AKT signaling pathway. Cancer Biomark. 2017;20(4):425–434.
[16] Rathinasamy B, Velmurugan BK. Role of IncRNAs in the cancer development and progression and their regulation by various phytochemicals. Biomed Pharmacother. 2018;102:242–248.
[17] Yang BF, Cai W, Chen B. LncRNA SNHG12 regulated the proliferation of gastric carcinoma cell BGC-823 by targeting microRNA-199a/b-5p. Eur Rev Med Pharmacol Sci. 2018;22(5):1297–1306.
[18] Tang W, Li J, Liu H, et al. miR-106a promotes tumor growth, migration, and invasion by targeting BCL2L11 in human endometrial adenocarcinoma. Am J Transl Res. 2017;9(11):4984–4993.
[19] Luo B, Kang N, Chen Y, et al. Oncogene miR-106a promotes proliferation and metastasis of prostate cancer cells by directly targeting PTEN in vivo and in vitro. Minerva Med. 2018;109(1):24–30.
[20] Shen CT, Qiu ZL, Song HJ, et al. miR-106a directly targeting RARB associates with the expression of Na(+)/H(–) symporter in thyroid cancer by regulating MAPK signaling pathway. J Exp Clin Cancer Res. 2016;35(1):101.
[21] Ish-Shalom S, Lichter A. Analysis of fungal gene expression by real time quantitative PCR. Methods Mol Biol. 2010;638:103–114.
[22] Wang Y, Kong D. MicroRNA-136 promotes lipopolysaccharide-induced ATDC5 cell injury and inflammatory cytokine expression by targeting myeloid cell leukemia 1. J Cell Biochem. 2018;119(11):9316–9326.
[23] Kong L, Wang X, Zhang K, et al. Gypenosides synergistically enhances the anti-tumor effect of 5-fluorouracil on colorectal cancer in vitro and in vivo: a role for oxidative stress-mediated DNA damage and p53 activation. PLOS One. 2015;10(9):e0137888.
[24] Wang X, Xie Y, Wang J. Overexpression of microRNA-34a-5p inhibits proliferation and promotes apoptosis of human cervical cancer cells by downregulation of Bcl-2. Oncol Res. 2018;26(6):977–985.
[25] Braconi C, Patel T. Non-coding RNAs as therapeutic targets in hepatocellular cancer. Curr Cancer Drug Targets. 2012;12(9):1073–1080.

[26] Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.

[27] Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474(24):4219–4251.

[28] Chen S, Wu DD, Sang KB, et al. The IncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death Dis. 2017;8(10):e3118.

[29] Jendrzejewski J, Thomas A, Liyanarachchi S, et al. PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab. 2015;100(10):E1370–E1377.

[30] Kim D, Lee WK, Jeong S, et al. Upregulation of long noncoding RNA LOC100507661 promotes tumor aggressiveness in thyroid cancer. Mol Cell Endocrinol. 2016;431:36–45.

[31] Lei H, Gao Y, Xu X. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin. 2017;49(7):588–597.

[32] Liao D, Lv G, Wang T, et al. Prognostic value of long non-coding RNA BLACAT1 in patients with papillary thyroid carcinoma. Cancer Cell Int. 2018;18:47.

[33] Mortensen JH, Godskesen LE, Jensen MD, et al. Fragments of citrullinated and MMP-degraded vimentin and MMP-degraded type III collagen are novel serological biomarkers to differentiate Crohn’s disease from ulcerative colitis. J Crohns Colitis. 2015;9(10):863–872.

[34] Di Gregoli K, George SJ, Jackson CL, et al. Differential effects of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 on atherosclerosis and monocyte/macrophage invasion. Cardiovasc Res. 2016;109(2):318–330.

[35] Angrand PO, Vennin C, Le Bourhis X, et al. The role of long non-coding RNAs in genome formatting and expression. Front Genet. 2015;6:165.

[36] Shumayla Sharma S, Taneja M, et al. Survey of high throughput RNA-Seq data reveals potential roles for IncRNAs during development and stress response in bread wheat. Front Plant Sci. 2017;8:1019.

[37] Guo L, Zhao Y, Yang S, et al. An integrated analysis of miRNA, IncRNA, and mRNA expression profiles. BioMed Res Int. 2014;2014:345605.

[38] Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.

[39] Xu Y, Han YF, Zhu SJ, et al. miRNA148a inhibits cell growth of papillary thyroid cancer through STAT3 and PI3K/AKT signaling pathways. Oncol Rep. 2017;38(5):3085–3093.

[40] Chou CK, Liu RT, Kang HY. MicroRNA-146b: a novel biomarker and therapeutic target for human papillary thyroid cancer. Int J Mol Sci. 2017;18(3):636.

[41] Minna E, Romeo P, Dugo M, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2017;7:12731–12747.

[42] Geraldo MV, Nakaya HI, Kimura ET. Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget. 2016;7(8):9597–9607.

[43] Matson DR, Hardin H, Buehler D, et al. AKT activity is elevated in aggressive thyroid neoplasms where it promotes proliferation and invasion. Exp Mol Pathol. 2017;103(3):288–293.

[44] Zhou Z, Liu Y, Ma M, et al. Knockdown of TRIM44 inhibits the proliferation and invasion in papillary thyroid cancer cells through suppressing the Wnt/beta-catenin signaling pathway. Biomed Pharmacother. 2017;96:99–103.

[45] Zhu Y, Zhang X, Qi L, et al. HULC long noncoding RNA silencing suppresses angiogenesis by regulating ESM-1 via the PI3K/Akt/mTOR signaling pathway in human gliomas. Oncotarget. 2016;7(12):14429–14440.

[46] Zhou Z, Shu B, Xu Y, et al. microRNA-203 modulates wound healing and scar formation via suppressing HES1 expression in epidermal stem cells. Cell Physiol Biochem. 2018;49(6):2333–2347.