Forcing Brushes

D. Meierling D. Rautenbach

Institut für Optimierung und Operations Research, Universität Ulm, Germany,
{dirk.meierling,dieter.rautenbach}@uni-ulm.de

Abstract

We give short and simple proofs of the inequalities \(B(G) \leq Z(L(G)) \) and \(Z(G) \leq Z(L(G)) \) first established by Erzurumluoğlu, Meagher, and Pike, where \(G \) is a graph without isolated vertices, \(B(G) \) is the brushing number of \(G \), \(Z(G) \) is the zero forcing number of \(G \), and \(L(G) \) is the line graph of \(G \).

Keywords: zero forcing; brushing; line graph

1 Introduction

Erzurumluoğlu, Meagher, and Pike [4] recently discovered an inequality between the brushing number of a graph and the zero forcing number of its line graph; thereby linking two graph parameters whose connections have not been studied so far. Our goal in this note is to provide short and simple proofs for two of their main results.

Let \(G \) be a non-empty, simple, finite, and undirected graph. For an integer \(k \), let \([k]\) denote the set of positive integers at most \(k \). The zero forcing number \(Z(G) \) of \(G \) [1] is the minimum positive integer \(k \) for which there are \(k \) vertices \(u_1, \ldots, u_k \) of \(G \), and a linear order \(u_{k+1}, \ldots, u_n \) of the remaining vertices of \(G \) such that, for every \(j \) in \([n] \setminus [k] = \{k+1, \ldots, n\} \), there is some \(i \) in \([j-1] \) such that \(u_j \) is the unique neighbor of \(u_i \) in \(G \) that is contained in \(\{u_j, u_{j+1}, \ldots, u_n\} \); in which case we say that \(u_i \) forces \(u_j \). The brushing number \(B(G) \) of \(G \) [2,5] is the minimum positive integer \(k \) for which there is some acyclic orientation \(\vec{G} \) of \(G \) and \(k \) directed paths in \(\vec{G} \) such that each directed edge of \(\vec{G} \) belongs to at least one of these paths. Let \(L(G) \) denote the line graph of \(G \) whose vertex set \(V(L(G)) \) is the edge set \(E(G) \) of \(G \), and in which two vertices \(e \) and \(f \) are adjacent if and only if \(e \) and \(f \) are incident as edges of \(G \).

The following are two of the main results of Erzurumluoğlu et al. (cf. Theorem 3.1 and 4.1 in [4]), and the second result actually confirmed a conjecture of Eroh, Kang, and Yi [3].

Theorem 1.1. If \(G \) is a graph without isolated vertices, then \(B(G) \leq Z(L(G)) \).

Theorem 1.2. If \(G \) is a graph without isolated vertices, then \(Z(G) \leq Z(L(G)) \).
2 Proofs Theorems [1.1] and [1.2]

Since the brushing number and the zero forcing number are additive with respect to the components of a graph, it suffices to consider a connected graph G with $n \geq 2$ vertices and m edges. Let $Z = \{e_1, \ldots, e_k\}$ be a zero forcing set of $L(G)$ of order $k = Z(L(G))$. Let the linear order e_{k+1}, \ldots, e_m of the remaining vertices of $L(G)$ be as in the definition of the zero forcing number, that is, for every j in $[m] \setminus [k]$, there is some i in $[j - 1]$ such that e_i forces e_j. It follows that there are k paths P_1, \ldots, P_k in $L(G)$, where $P_i : e_1^i \ldots e_{m_i}^i$ for each i in $[k]$ is such that $e_1^i = e_i$, and e_j^i forces e_{j+1}^i for every j in $[m_i - 1]$. The paths P_1, \ldots, P_k are usually referred to as forcing chains, and it is easy to see that each P_i is an induced path in $L(G)$.

We order the forcing chains such that $m_1, \ldots, m_k \geq 2$, and $m_{k+1}, \ldots, m_k = 1$ for some non-negative $\ell \leq k$. Let H be the subgraph of G with vertex set $V(G)$, and edge set $\bigcup_{i=1}^\ell V(P_i)$. Let \tilde{H} be the orientation of H, where the edge $e_i^j = uv$ of G for some i in $[k]$ and j in $[m_i]$ is oriented from u towards v, that is, uv is replaced by (u, v), if and only if

- $j \geq 2$, and the edges e_i^{j-1} and e_i^j of G share the vertex u, or
- $j \leq m_i - 1$, and the edges e_i^j and e_i^{j+1} of G share the vertex v.

Since each P_i is an induced path in $L(G)$, the orientation \tilde{H} is well-defined.

The following lemma contains our key observation.

Lemma 2.1. \tilde{H} is acyclic.

Proof. Suppose, for a contradiction, that \tilde{H} contains a directed cycle \tilde{C}. By construction, some vertex w of \tilde{C} has an outgoing directed edge (w, x) such that the edge wx does not belong to Z, that is, wx equals e_t for some t in $[m] \setminus [k]$. Note that the directed edge (w, x) is not required to belong to \tilde{C}. We assume that w and e_t are chosen such that t is as small as possible.

Let (v, w) be the directed edge of \tilde{C} entering w. The choice of w and (w, x) imply that the edge vw belongs to Z, that is, vw equals e_s for some s in $[\ell]$. The minimality of t implies that e_t is the successor of e_s on the forcing chain starting in e_s, that is, $e_t = e_s^2$. Let (u, v) be the directed edge of \tilde{C} entering v. The choice of w and (w, x) imply that the edge uv belongs to Z, that is, uv equals e_r for some r in $[\ell] \setminus [s]$. Since the successor e_r^2 of e_r on the forcing chain starting in e_r is incident — as an edge of G — with e_s, it follows that e_r^2 is forced before $e_t = e_s^2$, contradicting the choice of w and (w, x). This completes the proof. \qed

Let u_1, \ldots, u_n be a topological ordering of \tilde{H}. Orienting every edge $e_i = u_r u_s$ with i in $[k] \setminus [\ell]$ from u_r towards u_s extends the acyclic orientation \tilde{H} of the spanning subgraph H of G to an acyclic orientation \tilde{G} of G. Clearly, u_1, \ldots, u_n is also a topological ordering of \tilde{G}.

2
Proof of Theorem 1.1. Since the forcing chains P_1, \ldots, P_k are induced paths in $L(G)$, there are paths Q_1, \ldots, Q_k in G with $E(Q_i) = V(P_i)$ for every i in $[k]$. Since each vertex of $L(G)$ belongs to some forcing chain P_i, each edge of G belongs to some path Q_i. By the definition of the acyclic orientation \vec{G}, there are directed paths $\vec{Q}_1, \ldots, \vec{Q}_k$ in \vec{G} such that \vec{Q}_i is an orientation of Q_i for every i in $[k]$. In view of the characterization of the brushing number given in the introduction, this completes the proof.

The following properties of the orientation \vec{G} follow immediately from its construction. Let u be a vertex of G.

- If \vec{G} contains no directed edge entering u, then $uv \in Z$ for every directed edge (u, v) in \vec{G} leaving u.
- If \vec{G} contains at least one directed edge entering u, then $uv \in Z$ for all but at most one directed edge (u, v) in \vec{G} leaving u.

Proof of Theorem 1.2. Let Y be a set of vertices of G such that, for every vertex u of G,

- if \vec{G} contains no directed edge entering u, then Y contains u as well as all but one of its outneighbors in \vec{G}, and
- if \vec{G} contains at least one directed edge entering u, then Y contains all outneighbors v of u in \vec{G} with $uv \in Z$.

The properties of \vec{G} mentioned above immediately imply that $|Y| \leq |Z|$. If u_1, \ldots, u_n is a topological ordering of \vec{G}, and j is in $[n]$, then either $u_j \in Y$, or there is some i in $[j - 1]$ such that u_j is the only outneighbor of u_i not in Y. This easily implies that Y is a zero forcing set of G, completing the proof.

References

[1] AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications 428 (2008) 1628-1648.

[2] D. Bryant, N. Francetić, P. Gordinowicz, D.A. Pike, P. Prałat, Brushing without capacity restrictions, Discrete Applied Mathematics 170 (2014) 33-45.

[3] L. Eroh, C.X. Kang, E. Yi, Metric dimension and zero forcing number of two families of line graphs, Mathematica Bohemica 139 (2014) 467-483.

[4] A. Erzurumluoğlu, K. Meagher, D.A. Pike, Brushing Number and Zero-Forcing Number of Graphs and their Line Graphs, arXiv:1609.05854.

[5] L.D. Penso, D. Rautenbach, A. Ribeiro de Almeida. Brush your trees!, Discrete Applied Mathematics 194 (2015) 167-170.