Large Deviations for Intersections of Random Walks

AMINE ASSELAH
LAMA, Univ Paris Est Creteil, Univ Gustave Eiffel, UPEM, CNRS

BRUNO SCHAPIRA
Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373

Abstract
We prove a large deviations principle for the number of intersections of two independent infinite-time ranges in dimension 5 and greater, improving upon the moment bounds of Khanin, Mazel, Shlosman, and Sinai [9]. This settles, in the discrete setting, a conjecture of van den Berg, Bolthausen, and den Hollander [15], who analyzed this question for the Wiener sausage in the finite-time horizon. The proof builds on their result (which was adapted in the discrete setting by Phetpradap [12]), and combines it with a series of tools that were developed in recent works of the authors [2, 3, 5]. Moreover, we show that most of the intersection occurs in a single box where both walks realize an occupation density of order 1. © 2022 Wiley Periodicals, Inc.

1 Introduction

1.1 Overview and results
In 1921, Pólya [13] presents his recurrence theorem, inspired by some counterintuitive observation on the large number of intersections two random walkers in a park would make. A hundred years later, the study of intersections of random walks is still active, and produces perplexing problems. This paper is devoted to estimating deviations for the number of sites two infinite trajectories both visit when dimension is 5 or greater.

It is known since the work of Erdős and Taylor [8] that the number of intersections of two independent random walk ranges on \(\mathbb{Z}^d \) is almost surely infinite if \(d \leq 4 \) and finite if \(d \geq 5 \). In 1994, Khanin, Mazel, Shlosman, and Sinai [9] obtain the following bounds in dimension \(d \geq 5 \): for any \(\varepsilon > 0 \), and all \(t \) large enough,

\[
\exp(-t^{1-\frac{2}{d}+\varepsilon}) \leq \mathbb{P}(|\mathcal{R}_\infty \cap \tilde{\mathcal{R}}_\infty| > t) \leq \exp(-t^{1-\frac{2}{d}-\varepsilon}),
\]

where \(\mathcal{R}_\infty \) and \(\tilde{\mathcal{R}}_\infty \) denote two independent ranges, and \(|\Lambda| \) is the number of sites of \(\Lambda \subset \mathbb{Z}^d \). About ten years later, van den Berg, Bolthausen, and den Hollander [15] prove a large deviations principle for the Wiener sausage (the continuous counterpart of the range), in a finite-time horizon. Their result was adapted to the discrete setting by Phetpradap [12] and reads as follows: for any \(b > 0 \), there exists
a positive constant $\mathcal{J}(b)$ such that
\begin{equation}
\lim_{t \to \infty} \frac{1}{t^{1-\frac{1}{d}}} \log \mathbb{P}(\mathcal{R}_{bt} \cap \mathcal{R}_{bt}^c > t) = -\mathcal{J}(b),
\end{equation}
where \mathcal{R}_{bt} and \mathcal{R}_{bt}^c denote the ranges of two independent walks up to time t. Furthermore, through an analysis of the variational formula of the rate function, the authors of [15] show that $\mathcal{J}(b)$ reaches a plateau and conjecture that the rate function for the infinite-time problem coincides with the value of \mathcal{J} at the plateau. Our first result confirms this conjecture. The ranges of two independent simple random walks is denoted $\{\mathcal{R}_n, n \in \mathbb{N} \cup \{\infty\}\}$ and $\{\mathcal{R}_n^c, n \in \mathbb{N} \cup \{\infty\}\}$.

Theorem 1.1. Assume $d \geq 5$. The following limit exists and is positive:
\begin{equation}
\mathcal{J}_\infty := \lim_{t \to \infty} \frac{1}{t^{1-\frac{1}{d}}} \log \mathbb{P}(\mathcal{R}_{t} \cap \mathcal{R}_t^c > t).
\end{equation}
Moreover, there exists $b_* > 0$ such that for all $b > b_*$,
\begin{equation}
\mathcal{J}_\infty = \mathcal{J}(b) = \lim_{t \to \infty} \frac{1}{t^{1-\frac{1}{d}}} \log \mathbb{P}(\mathcal{R}_{bt} \cap \mathcal{R}_{bt}^c > t).
\end{equation}

For \mathcal{J}_∞ and b_*, [15] presents variational formulas whose thorough study leads to a rich and precise phenomenology; namely, that the two walks adopt the same strategy, the so-called Swiss cheese, during a time $b_* t$, in a ball-like region whose volume should be of order t, leaving holes everywhere of size order 1. After time $b_* t$, the two walks would roam as typical random walks.

Our second result shows that a fraction arbitrarily close to 1 of the desired number of intersections occurs in a box with volume of order t. To state the result, define $Q(x, r) := [x - r/2, x + r/2]^d$ for $x \in \mathbb{Z}^d$ and $r > 0$.

Theorem 1.2. For any $\varepsilon > 0$, there exists a constant $L = L(\varepsilon) > 0$, such that
\begin{equation}
\lim_{t \to \infty} \mathbb{P}(\exists x \in \mathbb{Z}^d : |\mathcal{R}_\infty \cap \mathcal{R}_\infty^c \cap Q(x, Lt^{1/d})| > (1 - \varepsilon)t \mid |\mathcal{R}_\infty \cap \mathcal{R}_\infty^c| > t) = 1.
\end{equation}

Our proof provides some bound on $L(\varepsilon)$, which is (stretched) exponential in $1/\varepsilon$. We note that it is expected that L should depend on ε, since the Swiss cheese is delocalized; see [15]. Concerning the (random) site $X(t, \varepsilon)$, realizing the centering of the box appearing in the statement of Theorem 1.2, not much is known. Our proof yields tightness of $X(t, \varepsilon)/t^{1/d}$.

Sznitman in [14] formalized precisely the picture of Swiss cheese using a tilted version of the random interlacements, but so far no rigorous link has been established with the large deviations for the volume of the range nor for the intersection of two ranges.

Our techniques are robust enough to consider other natural functionals of two ranges that do not seem to be tractable by moment methods, as in [9]. In particular,
in [4] we consider the functional $\chi_{\ell}(\cdot, \cdot)$ defined for finite subsets $A, B \subseteq \mathbb{Z}^d$ by

$$\chi_{\ell}(A, B) = \text{cap}(A) + \text{cap}(B) - \text{cap}(A \cup B),$$

where $\text{cap}(A) := \sum_{\ell \in A} \mathbb{P}_\ell(\mathcal{R}[1, \infty) \cap A = \varnothing)$, denotes the capacity of A. It turns out that this definition may be extended to infinite subsets. Indeed, one has for any finite $A, B \subseteq \mathbb{Z}^d$, $\chi_{\ell}(A, B) \leq \chi(A, B)$ with

$$\chi(A, B) := 2 \sum_{\ell \in A} \sum_{y \in B} \mathbb{P}_\ell(\mathcal{R}[1, \infty) \cap A = \varnothing) \cdot G(y - \ell) \cdot \mathbb{P}_y(\mathcal{R}[1, \infty) \cap B = \varnothing),$$

and it makes sense to consider $\chi(\mathcal{R}_{\infty}, \mathcal{R}_{\infty})$. In [4], we show using similar arguments as here that in dimension $d \geq 7$, for some positive constants c_1, c_2 and all t large enough,

$$\exp(-c_1 t^{1-\frac{d}{2}}) \leq \mathbb{P}(\chi(\mathcal{R}_{\infty}, \mathcal{R}_{\infty}) > t) \leq \exp(-c_2 t^{1-\frac{d}{2}}).$$

These bounds are used in turn to derive a moderate deviations principle for the capacity of the range in the Gaussian regime.

Interestingly, a related object, the mutual intersection local time defined by

$$J_{\infty} := \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} 1\{S_i = \tilde{S}_j\},$$

has a stretched exponential tail with a different exponent. Indeed, Khanin et al. in [9] also show that for some positive constants c and c', for all t large enough,

$$\exp(-c \sqrt{t}) \leq \mathbb{P}(J_{\infty} > t) \leq \exp(-c' \sqrt{t}).$$

Chen and Mörters [7] then prove that the limit of $t^{-1/2} \cdot \log \mathbb{P}(J_{\infty} > t)$ exists and has a nice variational representation. Our proofs allow us to consider some intermediate quantity, the time spent by one walk on the range of the other walk, and show that its tail distribution has the same speed of decay as the intersection of two ranges. More precisely, consider two independent walks \mathcal{S} and $\tilde{\mathcal{S}}$, and denote by $\tilde{\ell}_{\infty}$ the local times associated to $\tilde{\mathcal{S}}$ (see below for a definition).

Proposition 1.3. There exists two positive constants c_1 and c_2 such that for any $t > 0$,

$$\exp(-c_1 t^{1-\frac{d}{2}}) \leq \mathbb{P}(\tilde{\ell}_{\infty}(\mathcal{R}_{\infty}) > t) \leq \exp(-c_2 t^{1-\frac{d}{2}}).$$

Furthermore, for any $\varepsilon > 0$, there exists an integer $N = N(\varepsilon)$ such that

$$\lim_{t \to \infty} \mathbb{P}\left(\exists x_1, \ldots, x_N \in \mathbb{Z}^d : \tilde{\ell}_{\infty}\left(\mathcal{R}_{\infty} \cap \bigcup_{i=1}^{N} Q(x_i, t^{1/d})\right) > (1 - \varepsilon)t \mid \tilde{\ell}_{\infty}(\mathcal{R}_{\infty}) > t\right) = 1.$$
Analogous results such as Theorems 1.1 and 1.2 would hold for $\ell_\infty(\mathcal{R}_\infty)$, conditionally on obtaining first an analogue of (1.2) for $\ell_{bt}(\mathcal{R}_{bt})$, which is presumably true but not available at the moment.

Let us remark also that the problem we address here has a flavor of a much studied problem of random walk in random landscape, where the random landscape is produced here by another independent walk. Here also, it appears interesting to study a quenched regime, where one walk is frozen in a typical realization, whereas the second tries to hit t sites of the first range. This problem is still untouched, and we believe that our techniques will shed some light on it.

1.2 Proof strategy

While the proof in [9] used a moment method and some ingenious computations, our proof is based on more geometric arguments.

There are two parts. In the first one, we show that conditionally on the intersection event, with probability going to one, the whole intersection takes place in a finite number of boxes (as in Proposition 1.3 above). In the second part we use the full power of the LDP (1.2) and the concavity of the speed $t \mapsto t^{1-\frac{2}{d}}$ to show how the energy gain in reducing the number of boxes wins over the entropy loss associated to reducing the volume where the two walks meet. This leads to Theorem 1.2, which in turns leads to Theorem 1.1.

The first part is itself obtained in three steps. First we reduce the time window to a finite time interval, using that it is unlikely for one walk to intersect the range of the other walk after a time of order $\exp(\beta \cdot t^{1-(2/d)})$ for some large β. This leaves, however, a lot of room for the places where the action could take place (since we recall it holds in a box with volume of order t only). In particular, decomposing space into boxes and using a union-bound-type argument would not work, at least not directly. Our main idea to overcome this difficulty is to divide space according to the occupation density of the range, which we do at different space scales depending on the density we are considering, in a similar fashion as in [3, 4]. Then we use a fundamental tool from [3], which gives a priori bounds on the size of these regions, with the conclusion that it is only in those with high density (of order 1) that the intersection occurs. Finally, we use another recent result from [5], which bounds the probability to cover a positive fraction of any fixed union of distant boxes. When we further impose that these boxes are visited by another independent walk, one can sum over all possible centers of the boxes, and this yields some bound on the number of boxes, with volume of the right order, that are needed to cover the region where the intersection occurs.

For the second part of the proof, we decompose the journeys between a finite number of boxes into excursions either within one box or joining two boxes. Then some surgery is applied. We cut the excursions between different boxes and replace them by excursions drawn independently with starting points sampled according to the harmonic measure. This allows us to compare the probability of the event when the walk realizes the intersection in N different boxes, to the product of the
probabilities of realizing (smaller) intersection in each of these boxes, and one can then use (1.2) to bound these probabilities. This is also where the concavity is used, to quantify how much one box is better than many. The surgery arguments are used again to restore the journeys and yield Theorem 1.1.

1.3 Organization

The paper is organized as follows. In the next section we recall the main notation and the tools that will be used in the proofs, which for the most part appeared in our previous works [2–5]. In Section 3 we give a detailed plan of the proofs of our main results. The latter are then proved in the remaining sections, 4, 5, and 6.

2 Notation and Main Tools

2.1 Notation and basic results

Let \(\{S_n\}_{n \geq 0} \) be a simple random walk on \(\mathbb{Z}^d \). We denote by \(\mathbb{P}_x \) its law starting from \(x \), which we abbreviate as \(\mathbb{P} \) when \(x = 0 \). We mainly assume here that \(d \geq 5 \), yet some results hold for all \(d \geq 3 \), in which case we shall mention it explicitly. For \(n \in \mathbb{N} \cup \{\infty\} \), we write the range of the walk up to time \(n \) as \(R_n := \{S_0, \ldots, S_n\} \). More generally, for \(n \leq m \) two (possibly infinite) integers, we consider the range between times \(n \) and \(m \), defined as \(R[n, m] := \{S_n, \ldots, S_m\} \). For \(\Lambda \subseteq \mathbb{Z}^d \) and \(n \in \mathbb{N} \cup \{\infty\} \), we define the time spent in \(\Lambda \) as

\[
\ell_n(\Lambda) := \sum_{k=0}^{n} \mathbb{1}\{S_k \in \Lambda\},
\]

and simply let \(\ell_n(z) \) be the time spent on a site \(z \in \mathbb{Z}^d \). The Green’s function is defined by

\[
G(x, z) := \sum_{k=0}^{\infty} \mathbb{P}_x(S_k = z) = \mathbb{E}_x[\ell_\infty(z)].
\]

By translation invariance one has for any \(x, z \in \mathbb{Z}^d \), \(G(x, z) = G(0, z - x) = G(z, -x) \). Thus for any \(\Lambda \subseteq \mathbb{Z}^d \) and any \(x \in \mathbb{Z}^d \),

\[
\mathbb{E}_x[\ell_\infty(\Lambda)] = \sum_{z \in \Lambda} G(x, z) = \sum_{z \in \Lambda - x} G(z) =: G(\Lambda - x).
\]

The asymptotics of Green’s function are well-known (see theorem 4.3.1 of [11]). If \(\|\cdot\| \) denotes the Euclidean norm, there exists \(C > 0 \), such that

\[
\forall z \in \mathbb{Z}^d \quad G(z) \leq \frac{C}{1 + \|z\|^{d-2}}.
\]

Finally, recall a basic hitting time estimate (proposition 6.5.1 of [11]). For all \(r > 0 \) and \(z \in \mathbb{Z}^d \), with \(\|z\| > r \),

\[
\mathbb{P}(\|R_\infty \cap Q(z, r)\| > 0) \leq C \left(\frac{r}{\|z\|}\right)^{d-2}.
\]
2.2 Preliminaries

We recall and discuss here a series of known results on which our proof relies. Most of them come from our recent works [2–5].

In fact, the first one is older and shows that the tail distribution of the time spent in a region is controlled simply by its mean value when starting from the worst point. We recall its short proof for completeness.

Lemma 2.1 ([1]). Let \(\Lambda \subseteq \mathbb{Z}^d \) be a (not necessarily finite) subset of \(\mathbb{Z}^d \), \(d \geq 3 \). Then for any \(t > 0 \),

\[
\mathbb{P}(\ell_\infty(\Lambda) > t) \leq 2 \exp\left(-\frac{t \cdot \log 2}{2 \sup_{x \in \Lambda} G(\Lambda - x)}\right).
\]

Proof. The result simply follows from the fact that by Markov’s inequality (and the Markov property), the random variable

\[
\frac{\ell_\infty(\Lambda)}{2 \sup_{x \in \Lambda} \mathbb{E}_x[\ell_\infty(\Lambda)]} = \frac{\ell_\infty(\Lambda)}{2 \sup_{x \in \Lambda} G(\Lambda - x)}
\]

is stochastically bounded by a geometric random variable with parameter \(\frac{1}{2} \). \(\square \)

We also need to estimate the expected time spent (or equivalently the sum of the Green’s function) on the range of an independent random walk. For this we use several facts. The first one is the following well-known simple lemma.

Lemma 2.2. There exists \(C > 0 \) such that for any finite subset \(\Lambda \subseteq \mathbb{Z}^d \), \(d \geq 3 \), one has

\[
G(\Lambda) = \sum_{z \in \Lambda} G(z) \leq C |\Lambda|^{2/d}.
\]

Proof. The result follows from the bound (2.1) and from observing that the resulting sum is maximized (at least up to a constant) when points of \(\Lambda \) are all contained in a ball of side length of order \(|\Lambda|^{1/d} \). \(\square \)

Now we decompose the points of the range in several subsets according to the occupation density in some neighborhoods of these points, and use that Green’s function is additive in the sense that for any disjoints subsets \(\Lambda, \Lambda' \subseteq \mathbb{Z}^d \), \(G(\Lambda \cup \Lambda') = G(\Lambda) + G(\Lambda') \). Thus we need to estimate the Green’s function of regions with some prescribed density, which is the content of Lemma 2.3 below. Recall that for \(r \geq 1 \) and \(x \in \mathbb{Z}^d \), the cube centered at \(x \) of side \(r \) is

\[
Q(x, r) := [x - r/2, x + r/2]^d.
\]

The next result is Lemma 4.3 from [4]. Its proof is similar to the proof of Lemma 2.2.

Lemma 2.3 ([4]). Assume \(d \geq 3 \). There exists a constant \(C > 0 \), such that the following holds. For any integer \(r \geq 1 \), any \(\rho > 0 \), and any finite subset \(\Lambda \subseteq \mathbb{Z}^d \), satisfying

\[
|\Lambda \cap Q(z, r)| \leq \rho \cdot r^d \quad \text{for all } z \in r \mathbb{Z}^d,
\]

...
one has

\[G(\Lambda \cap Q(0, r)^c) \leq C \rho^{1 - \frac{2}{d}} |\Lambda|^{2/d}. \]

We now turn to estimating the number of points in the range of a random walk, around which the walk realizes a certain occupation density. For \(n \in \mathbb{N}, r \geq 1, \) and \(\rho > 0, \) we define

\[\mathcal{R}_n(r, \rho) = \{ x \in \mathcal{R}_n : |\mathcal{R}_n \cap Q(x, r)| > \rho \cdot r^d \}. \]

Theorem 2.4 ([3]). Assume \(d \geq 3. \) There are positive constants \(\kappa \) and \(C_0 \) such that for any \(n, r, \) and \(L \) positive integers and \(\rho > 0 \) satisfying

\[\rho r^{d-2} \geq C_0 \cdot \log n, \]

one has

\[\mathbb{P}(|\mathcal{R}_n(r, \rho)| > L) \leq \exp(-\kappa \cdot \rho^{2/d} \cdot L^{1-2/d}). \]

A weaker version of this result first appeared in [2], with the stronger condition \(\rho r^{d-2} \geq C_0 (\frac{L}{\rho r^d})^{2/d} \log n, \) and the elimination of the \(L \) dependence is fundamental here.

Finally, the following result is used to reduce the number of boxes where most of the intersection occurs. For \(r \geq 1 \) some integer, we denote by \(\mathcal{X}_r \) the collection of finite subsets of \(\mathbb{Z}^d \) whose points are at distance at least \(r \) from each other. For \(\mathcal{C} \subseteq \mathbb{Z}^d, \) we let \(Q_r(\mathcal{C}) := \bigcup_{x \in \mathcal{C}} Q(x, r). \)

Theorem 2.5 ([5]). Assume \(d \geq 3. \) There exist positive constants \(\kappa \) and \(C \) such that for any \(\rho > 0, r \geq 1, \) and \(\mathcal{C} \in \mathcal{X}_4r \) satisfying

\[\rho r^{d-2} > C, \]

one has

\[\mathbb{P}(\ell_\infty(Q(x, r)) > \rho r^d \ \forall x \in \mathcal{C}) \leq C \exp(-\kappa \rho \cdot \text{cap}(Q_r(\mathcal{C}))). \]

Remark 2.6. Using the well-known bound \(\text{cap}(\Lambda) > c|\Lambda|^{1-2/d} \) for any finite \(\Lambda \subseteq \mathbb{Z}^d \) and some universal constant \(c > 0, \) we have \(\text{cap}(Q_r(\mathcal{C})) \geq c r^{d-2}|\mathcal{C}|^{1-2/d}. \)

This latter bound is used later.

3 Plan of the Proof

Recall that we consider two independent walks \(\{S_n\}_{n \geq 0} \) and \(\{\tilde{S}_n\}_{n \geq 0}. \) All quantities associated to the second walk will be decorated with a tilde. With a slight abuse of notation we still denote by \(\mathbb{P} \) the law of the two walks.

The first step is to reduce the problem to a finite-time horizon. For this we simply use a first-moment bound and the well-known fact that for any \(n \geq 1 \) (see [10, prop. 3.2.3]) for some constant \(C > 0, \)

\[\mathbb{E}[\ell_\infty(\mathcal{R}[n, \infty))] = \sum_{z \in \mathbb{Z}^d} G(z) \cdot \mathbb{P}(z \in \mathcal{R}[n, \infty]) \leq C n^{\frac{d-2}{2}}. \]
Using next Markov’s inequality, we deduce (see also [8, lemma 9] for a similar statement)

\[P(\mathcal{R}_\infty \cap \mathcal{R}[n, \infty) \neq \emptyset) \]
\[\leq P(\tilde{\ell}_\infty(\mathcal{R}[n, \infty)) \geq 1) \leq E[\tilde{\ell}_\infty(\mathcal{R}[n, \infty))] \leq C n^{\frac{4-d}{2}}. \]

Thanks to this inequality, it suffices in fact to consider only the intersection of the two walks up to a time \(n \) of order \(\exp(\beta t^{1-2/d}) \), with \(\beta \) some appropriate constant.

The second step is the following proposition. Recall the definition (2.3).

Proposition 3.1. For any \(\beta \geq 1 \), there exist positive constants \(c \) and \(C \) such that for any \(t > 0 \), one has with \(n := \exp(\beta t^{1-2/d}) \),

\[P\left(\sup_{x \in \mathbb{Z}^d} G(\mathcal{R}_n - x) > C t^{2/d} \right) \leq C \exp(-c t^{1-\frac{2}{d}}). \]

Furthermore, for any \(\epsilon > 0 \) and \(K > 0 \), there exists \(\rho = \rho(\epsilon, K, \beta) \) and \(A = A(\epsilon, K, \beta) \) such that for \(t \) large enough

\[P\left(\sup_{x \in \mathbb{Z}^d} G\left(\mathcal{R}_n \setminus \mathcal{R}_n(At^{1/d}, \rho) - x \right) > \epsilon t^{2/d} \right) \leq C \exp(-K t^{1-\frac{2}{d}}). \]

One can moreover choose \(\rho \) and \(A \) such that \(\frac{\log(1/\rho)}{\log(1/\epsilon)} \) and \(\frac{\log A}{\log(1/\epsilon)} \) remain bounded as \(\epsilon \to 0 \).

The third step is to obtain that most of the intersection, up to an arbitrary fraction \(\epsilon \cdot t \), occurs in a finite number of boxes, say \(N(\epsilon) \), each of radius \(L(\epsilon) \cdot t^{1/d} \) and at distances \(L(\epsilon) \cdot t^{1/d} \) from each other. The dependence on \(\epsilon \) of \(N(\epsilon) \) and \(L(\epsilon) \) turns out to play a crucial role through the bound (6.2). That leads to Proposition 1.3, as well as its analogue for the mutual intersection, which we state as a separate proposition.

Proposition 3.2. There exist two positive constants \(c_1 \) and \(c_2 \) such that for any \(t > 0 \),

\[\exp(-c_1 t^{1-\frac{2}{d}}) \leq P(|\mathcal{R}_\infty \cap \mathcal{R}_\infty| > t) \leq \exp(-c_2 t^{1-\frac{2}{d}}). \]

Furthermore, for any \(\epsilon > 0 \), there exists an integer \(N = N(\epsilon) \) such that if \(\mathcal{V} := \mathcal{R}_\infty \cap \mathcal{R}_\infty \)

\[\lim_{t \to \infty} P\left(\exists x_1, \ldots, x_N \in \mathbb{Z}^d : \mathcal{V} \cap \left(\bigcup_{i=1}^{N} Q(x_i, t^{1/d}) \right) > (1 - \epsilon) t \mid |\mathcal{V}| > t \right) = 1. \]

One can moreover choose \(N(\epsilon) \) such that \(\frac{\log N(\epsilon)}{\log(1/\epsilon)} \) remains bounded as \(\epsilon \to 0 \).
The lower bound in (3.4) follows of course from (1.2), but for the sake of completeness, we provide another independent argument based on [2], which makes the proof of Propositions 1.3 and 3.2 independent of [15]. The upper bound in (3.4) on the other hand simply follows from Lemma 2.1, together with (3.1) and (3.2). Now concerning (3.5), note that it would follow as well from (3.1), (3.3), and Lemma 2.1 if we could combine it with Theorem 2.4, since we just need to show that the set \(\mathcal{R}_n(A t^{1/d}, \rho) \) can be covered by a finite number of cubes. This would be fine indeed if we could choose the constants \(A \) and \(\rho \) given by (3.3) so as to satisfy the condition (2.4).

However, since in fact they may be small, we use instead Theorem 2.5.

The rest of the proof relies on the results of [12, 15] and (1.2). We first reduce the region where most of the intersection occurs from an arbitrary finite number of boxes to a unique, possibly enlarged one; in other words, we prove Theorem 1.2. This part is based on the concavity of the map \(t \mapsto t^{1-2/d} \), which implies that distributing the total intersection \(t \) on more than one box increases the cost of the deviations. Note that it is crucial here to know the exact constant in the exponential, which is why we need (1.2). We also use some surgery on the trajectories of the two walks; that is, first a decomposition into excursions between the various boxes, and then a cutting/gluing argument to ensure that intersections inside each box occur in time windows of order \(t \) so as to make (1.2) applicable. Finally, the same operation of surgery also allows us to deduce Theorem 1.1 from Theorem 1.2 and (1.2).

Now the end of the proof is organized as follows. We first prove Proposition 3.1 in Section 4. We then prove Propositions 1.3 and 3.2 in Section 5, and finally we conclude the proofs of Theorems 1.1 and 1.2 in Section 6.

4 Proof of Proposition 3.1

We first introduce a decomposition of the range into subsets according to the occupation density of their neighborhoods at different scales and bound the cardinality of each subset using Theorem 2.4. Then we prove (3.2) and (3.3) separately in Sections 4.2 and 4.3, respectively.

4.1 Multiscale decomposition of the range

Our approach relies on a simple multiscale analysis of the occupation densities where space and density are scaled together. More precisely, we introduce a sequence of densities \(\{\rho_i\}_{i \geq 0} \) and associated space scales \(\{r_i\}_{i \geq 0} \) defined, respectively, for any integer \(i \geq 0 \), by

\[
\rho_i := 2^{-i} \quad \text{and} \quad \rho_i \cdot r_i^{d-2} = C_0 \log n,
\]

with \(C_0 \) the constant appearing in (2.4).

It might be that on small scales, say \(r_j \) for \(j < i \), the density around some site of the range remains small, whereas it overcomes \(\rho_i \) at scale \(r_i \). To encapsulate this idea we define for \(i \geq 1 \) (recall (2.3) and note that by definition \(\mathcal{R}_n(r_0, \rho_0) \) is...
empty),

\[(4.2) \Lambda_i := \mathcal{R}(r_i, \rho_i) \setminus \bigcup_{1 \leq j < i} \mathcal{R}(r_j, \rho_j) \quad \text{and} \quad \Lambda_i^* = \mathcal{R}(r_i, \rho_i) \setminus \bigcup_{1 \leq j < i} \mathcal{R}(r_j, \rho_j).\]

When dealing with these sets we will use two facts: on one hand for each \(i \geq 1\), \(\Lambda_i\) is a subset of \(\mathcal{R}(r_i, \rho_i)\), and thus Theorem 2.4 will provide some control on its volume. On the other hand, using that \(\Lambda_i^* \subseteq \mathcal{R}(r_i, \rho_i)\), and by cutting a box into \(2^d\) disjoint subboxes of side length half the size, we can see that

\[(4.3) \quad |\Lambda_i^* \cap Q(z, r_{i-1})| \leq 2^d \rho_{i-1} r_{i-1}^d \quad \text{for all } z \in \mathbb{Z}^d, \text{ and all } i > 0.\]

Note also that since \(\Lambda_i \subseteq \Lambda_i^*\), the same bounds hold for \(\Lambda_i\).

By Theorem 2.4, we have for some constant \(\kappa > 0\), for any \(\lambda \geq 1\), and any \(i \geq 1\),

\[(4.4) \quad \mathbb{P}(|\Lambda_i| > \lambda) \leq \exp(-\kappa \rho_i^{2/d} \cdot \lambda^{1-2/d}).\]

Note also that since \(|\mathcal{R}(n)| \leq n + 1\), the set \(\Lambda_i\) is empty when \(\rho_i r_i^d > n + 1\), or equivalently when \(C_0 r_i^2 \log n > n + 1\). In particular, for \(n\) large enough,

\[(4.5) \quad \Lambda_i = \emptyset \quad \text{for all } i > (d - 2) \log_2(n).\]

Now for \(L\) a positive integer, define the good event

\[\mathcal{E}_L := \left\{ |\Lambda_i| \leq \rho_i^{-d/2} \cdot Lt \text{ for all } i \geq 1 \right\}.
\]

Then (4.4) and (4.5) show that for some constant \(C > 0\) (and \(n = \exp(\beta_i^{1-2/d})\)),

\[(4.6) \quad \mathbb{P}(\mathcal{E}_L^c) \leq C \log_2(n) \exp(-\kappa (Lt)^{1-2/d}) \leq C \exp\left(-\frac{\kappa}{2} \cdot (Lt)^{1-2/d} \right).\]

4.2 Proof of (3.2)

We claim that for some constant \(C > 0\),

\[(4.7) \quad \mathcal{E}_1 = \left\{ |\Lambda_i| \leq \frac{t}{\rho_i^{2/(d-2)}}, \forall i \geq 1 \right\} \subseteq \left\{ \sup_{x \in \mathbb{Z}^d} G(\mathcal{R}_n - x) \leq Ct^{2/d} \right\}.
\]

By (4.6), this would imply the desired result, so let us start proving (4.7).

Assume that the event \(\mathcal{E}_1^c\) holds, and let us bound \(\sup_{x \in \mathbb{Z}^d} G(\mathcal{R}_n - x)\).

We fix some \(x \in \mathbb{Z}^d\) and divide space into concentric shells as follows: for integers \(k \geq 1\), set

\[\mathcal{I}_k := Q(x, r_k) \setminus Q(x, r_{k-1})\]

and \(\mathcal{I}_0 = Q(x, r_0)\). Then, by additivity

\[G(\mathcal{R}_n - x) = \sum_{k \geq 0} G(\mathcal{I}_k \cap \mathcal{R}_n).\]

By Lemma 2.2 and (2.1), one has on \(\mathcal{E}_1^c\),

\[(4.8) \quad G(\mathcal{R}_n \cap \mathcal{I}_0) \leq G(\mathcal{I}_0) \leq C r_0^2 \leq C(\log n)^\frac{2}{d-2} \leq Ct^{2/d},\]
with C some positive constant, whose value might change from line to line. Furthermore, for any $k \geq 1$, recalling (4.2),

$$G(\mathcal{S}_k \cap \mathcal{R}_n) = \sum_{j=1}^{k} G(\mathcal{S}_k \cap \Lambda_j) + G(\mathcal{S}_k \cap \Lambda_{k+1}^*).$$

By (2.1) and (4.3), one has for any $k \geq 1$,

$$G(\mathcal{S}_k \cap \Lambda_{k+1}^*) \leq C \cdot \frac{|\mathcal{S}_k \cap \Lambda_{k+1}^*|}{r_{k-1}^{d-2}} \leq C \cdot \rho_k r_k^d \leq C \cdot \frac{\log n}{r_k^{d-4}},$$

using also (4.1) for the last inequality. Summing over k gives

$$\sum_{k \geq 1} G(\mathcal{S}_k \cap \Lambda_{k+1}^*) \leq C \frac{\log n}{r_0^{d-4}} \leq C(\log n)^{1-\frac{d-4}{d-2}} \leq C(\log n)^{\frac{2}{d-2}} \leq C t^{2/d}.$$

On the other hand, by Lemma 2.3, for any $j \geq 1$, on \mathcal{E}_1,

$$\sum_{k \geq j} G(\mathcal{S}_k \cap \Lambda_j) = G(\Lambda_j \cap Q(x, r_{j-1}^2) \cup \Lambda_j^c) \leq C \rho_j^{1-\frac{d}{2}} |\Lambda_j|^{2/d} \leq C \rho_j^{1-\frac{d}{2}} (1 + \frac{2}{d-2}) t^{2/d} \leq C \rho_j^{\frac{d-4}{d-2}} t^{2/d}.$$

Summing over $j \geq 1$ gives

$$\sum_{j \geq 1} \sum_{k \geq j} G(\mathcal{S}_k \cap \Lambda_j) \leq C t^{2/d},$$

which concludes the proof of (4.7) and (3.2).

4.3 Proof of (3.3)

Let us give some ε and K, and then fix L such that $\mathbb{P}(\mathcal{E}_L^c) \leq C \exp(-K t^{1-2/d})$, which is always possible by (4.6).

Next, for $\delta > 0$ and I an integer, define

$$\mathcal{R}_n(I, \delta) := \bigcup_{i \leq I} \mathcal{R}_n(r_i, \delta \rho_i).$$

We claim that one can find $\delta \in (0, 1)$ and $I \geq 0$, such that

$$\mathcal{E}_L \subseteq \{ \sup_{x \in \mathbb{Z}^d} G(\mathcal{R}_n \cap \mathcal{R}_n(I, \delta) - x) \leq \varepsilon t^{2/d} \}. \quad (4.9)$$

This would conclude the proof, since for any fixed I and δ, one can find A and ρ such that

$$\mathcal{R}_n(I, \delta) \subseteq \mathcal{R}_n(A t^{1/d}, \rho),$$

So let us prove (4.9) now. Fix some $\chi \in \mathbb{Z}^d$ and consider the decomposition of space into concentric shells $(\mathcal{S}_k)_{k \geq 0}$ as in the previous subsection. By Lemma 2.2, one has

$$G((\mathcal{R}_n \cap \mathcal{R}_n(I, \delta)) \cap \mathcal{S}_0) \leq C \delta^{2/d} r_0^2 \leq C \delta^{2/d} t^{2/d},$$
and for any $1 \leq k \leq I$, by (2.1),
\[G((\mathcal{R}_n \setminus \mathcal{R}_n(I, \delta)) \cap \mathcal{I}_k) \leq \frac{C \delta r^d_k}{r^{d-2}_{k-1}} \leq C \delta \frac{\log n}{r^d_k}. \]
Thus, summing over $1 \leq k \leq I$, yields
\[\sum_{1 \leq k \leq I} G((\mathcal{R}_n \setminus \mathcal{R}_n(I, \delta)) \cap \mathcal{I}_k) \leq C \delta \frac{\log n}{r^{d-4}_0} \leq C \delta I^{2/d}. \]
On the other hand, since for any $\delta \leq 1$, $\bigcup_{i \leq I} \Lambda_i \subseteq \mathcal{R}_n(I, \delta)$, one has for any $k > I$,
\[G((\mathcal{R}_n \setminus \mathcal{R}_n(I, \delta)) \cap \mathcal{I}_k) \leq \sum_{j=I+1}^{k} G(\Lambda_j \cap \mathcal{I}_k) + G(\Lambda^*_k \cap \mathcal{I}_k), \]
and the same bounds as in the previous subsection give on δ_L,
\[\sum_{k \geq I+1} G((\mathcal{R}_n \setminus \mathcal{R}_n(I, \delta)) \cap \mathcal{I}_k) \leq C I^{2/d} \sum_{j \geq I+1} \rho_j^{d-4} + C \sum_{k \geq I+1} \frac{\log n}{r^{d-4}_k} \leq C I^{2/d} \cdot t^{2/d}. \]
Moreover, the proof shows that $1/\rho$ and A can be chosen so that they grow at most polynomially in $1/\varepsilon$.

5 Proof of Propositions 1.3 and 3.2

5.1 Proof of (1.6) and (3.4)

We start with the lower bounds. Note that it suffices to do it for the intersection of two ranges, that is, for (3.4) and for a finite time horizon. For this we use proposition 4.1 from [2], which entails the following fact:

Proposition 5.1 ([2]). Assume $d \geq 3$. There are positive constants ρ, κ, and C such that for n large enough for any subset $\Lambda \subseteq Q(0, n^{1/d})$, with $|\Lambda| > C$, one has
\[\mathbb{P}(|\mathcal{R}_n \cap \Lambda| > \rho |\Lambda|) \geq \exp(-\kappa \cdot n^{1-2/d}). \]

Note that proposition 4.1 in [2] is stated for dimension 3 only, but its proof applies mutatis mutandis in higher dimensions.

Now for $\alpha = 1/\rho^2$ we force, at a cost given by Proposition 5.1, the range \mathcal{R}_{at} to cover a fraction ρ of $Q(0, r)$ with $r = (\alpha t)^{1/d}$, and in turn force \mathcal{R}_{at} to cover a fraction ρ of $\mathcal{R}_{at} \cap Q(0, r)$. Observe that one has the inclusion
\[\{|\mathcal{R}_{at} \cap Q(0, r)| > \rho r^d\} \cap \{|\mathcal{R}_{at} \cap \mathcal{R}_{at} \cap Q(0, r)| > \rho |\mathcal{R}_{at} \cap Q(0, r)|\} \subseteq \{|\mathcal{R}_{at} \cap \mathcal{R}_{at}| > \rho^2 r^d = t\}, \]
which concludes the proof of the lower bounds.
Concerning the upper bounds, as was already mentioned, they simply follow from (3.1), (3.2) (say with $\beta = 1$), together with Lemma 2.1.

5.2 Proof of (1.7) and (3.5)

We first state and prove a corollary of Theorem 2.5 (and Remark 2.6), which might be of general interest. Recall that \mathcal{X}_r is the collection of finite subsets of \mathbb{Z}^d, whose points are at distance at least r from each other, and for N a positive integer, let $\mathcal{X}_{r,N}$ be the subset of \mathcal{X}_r formed by subsets of cardinality N.

Proposition 5.2. Let $\{S_n\}_{n \geq 0}$ and $\{\tilde{S}_n\}_{n \geq 0}$ be two independent simple random walks on \mathbb{Z}^d, $d \geq 5$. There exist positive constants κ and C such that for any integers r and N, and any $\rho > 0$ satisfying

$$\rho r^{d-2} > CN^{2/d} \log N,$$

one has

$$\mathbb{P}(\exists C \in \mathcal{X}_{r,N} : \ell_\infty(Q(x,r)) > \rho r^d, \mathcal{A}_\infty \cap Q(x,r) \neq \emptyset \forall x \in C)$$

$$\leq Ce^{-\kappa \rho r^{d-2} N^{1-\frac{2}{d}}}.$$

Remark 5.3. An important difference here with the statement of Theorem 2.5 is that the set C is not fixed, and this is compensated by the fact that we impose another independent walk to visit all the cubes centered at points of C. Also, the condition (5.1) could be further weakened to $\rho r^{d-2} > C \log N$ by using the proof of Theorem 2.5. However, since the number of boxes N will not depend on t, in the sequel it is useless to improve on (5.1).

Before proving Proposition 5.2, let us assume Proposition 5.2 for a while, and conclude the proofs of (1.7) and (3.5).

Proof of (1.7) and (3.5). First we choose β large enough, so that the probability of the event $\{\ell_\infty(\mathcal{A}[n,\infty)) \geq 1\}$ is negligible, when we take

$$n = \exp(\beta t^{1-2/d}),$$

which is always possible by (3.1) and the lower bound in (3.4).

Next, by Lemma 2.1 and (3.3), it suffices to show that for any fixed $A > 0$ and $\rho \in (0,1)$, the set $\mathcal{R}_n(At^{1/d}, \rho) \cap \mathcal{A}_\infty$ can be covered by at most N disjoint cubes of side length $At^{1/d}$ for some well-chosen constant $N \in \mathbb{N}$. To see this, we first fix the constant N large enough such that the bound obtained in (5.2), with $r = At^{1/d}$ and t large enough, is negligible when compared to the lower bound in (3.4). Then we define inductively a sequence of boxes as follows. First if the set $\mathcal{R}_n(At^{1/d}, \rho) \cap \mathcal{A}_\infty$ is nonempty, pick some point x_1 in it. Then, if the set $\mathcal{R}_n(At^{1/d}, \rho) \cap \mathcal{A}_\infty \cap Q(x_1, 4At^{1/d})^c$ is empty, stop the procedure. Otherwise pick some x_2 in it, and continue like this until we exhaust all points of $\mathcal{R}_n(At^{1/d}, \rho) \cap \mathcal{A}_\infty$. Note that the points we define by this procedure x_1, x_2, \ldots are all at a distance at least $4At^{1/d}$ from each other by definition. Furthermore, for
each i, one has by definition $|Q(x_i, A(t^{1/d}) \cap \mathcal{R}_n| \geq \rho A^d t$. Thus by Proposition 5.2, the probability that we end up with more than N cubes is negligible. Finally, this means that with (conditional) probability going to 1 as $t \to \infty$, we can cover $\mathcal{R}_n(A(t^{1/d}, \rho) \cap \mathcal{R}_\infty$ by at most N cubes of side length $4A(t^{1/d}$, which concludes the proofs of (1.7) and (3.5) (since each such cube is in turn the union of only a fixed number of cubes of side length $t^{1/d}$).

Remark 5.4. In the previous proof, note that if A and $1/\rho$ grow at most polynomially in $1/\varepsilon$, so does N by construction.

Proof of Proposition 5.2. By replacing r by $2r$, ρ by $\rho/2^d$, and N by $\lceil N/2 \rceil$ if necessary, one restricts to subsets \mathcal{C} whose points belong to $2r\mathbb{Z}^d \setminus \{0\}$. Fix now such a set $\mathcal{C} \subset \mathcal{P}_{2r, N}$ and denote by x_1, \ldots, x_N its elements. Note first that for any r and ρ satisfying (5.1), with C large enough, Theorem 2.5 (and Remark 2.6) yield for some constant κ,

$$\mathbb{P}(\ell_\infty(Q(x, r)) > \rho r^d \forall x \in \mathcal{C}) \leq C \exp(-\kappa \rho r^d - 2N^{1-2/d}). \tag{5.3}$$

On the other hand, by (2.2) one has

$$\mathbb{P}(\mathcal{R}_\infty \cap Q(x, r) \neq \emptyset, \forall x \in \mathcal{C}) \leq (C r^{-d})^N \cdot G(x_1, \ldots, x_N), \tag{5.4}$$

where we denote by \mathcal{S}_N the set of permutations of $\{1, \ldots, N\}$ and

$$G(x_1, \ldots, x_N) := \sum_{\sigma \in \mathcal{S}_N} G(x_{\sigma_1}) \prod_{i=1}^{N-1} G(x_{\sigma_{i+1}} - x_{\sigma_i}).$$

For any $q \in (1, 2)$, using Hölder’s inequality (with all sums over the x_i running over $2r\mathbb{Z}^d \setminus \{0\}$)

$$\sum_{x_1} \cdots \sum_{x_N} G^q(x_1, \ldots, x_N) \leq \sum_{x_1} \cdots \sum_{x_N} (N!)^{q-1} \sum_{\sigma \in \mathcal{S}_N} G^q(x_{\sigma_1}) \prod_{i=1}^{N-1} G^q(x_{\sigma_{i+1}} - x_{\sigma_i})$$

$$\leq (N!)^q \left(\sum_{z \in 2r\mathbb{Z}^d \setminus \{0\}} G^q(z) \right)^N. \tag{5.5}$$

Now fix some $q \in (d-2, 2)$, and note that by (2.1), one has (with a possibly larger constant C),

$$\sum_{z \in 2r\mathbb{Z}^d \setminus \{0\}} G^q(z) \leq C r^{q(2-d)},$$

so that (5.4) and (5.5) give

$$\mathbb{P}^q(\mathcal{R}_\infty \cap Q(x, r) \neq \emptyset, \forall x \in \mathcal{C}) \leq C^{2N} \cdot (N!)^q. \tag{5.6}$$
Then (5.3) and (5.6) yield
\[
\mathbb{P}(\exists \mathcal{C} \in \mathcal{X}_{4r,N} : \ell_\infty(Q(x,r)) > \rho r^d \cdot R_\infty \cap Q(x,r) \neq \emptyset, \ \forall x \in \mathcal{C}) \\
\leq \sum_{\mathcal{C} \in \mathcal{X}_{4r,N}} \mathbb{P}(\ell_\infty(Q(x,r)) \rho r^d, \ \forall x \in \mathcal{C}) \\
\times \mathbb{P}(R_\infty \cap Q(x,r) \neq \emptyset, \ \forall x \in \mathcal{C}) \\
\leq \sum_{\mathcal{C} \in \mathcal{X}_{4r,N}} \mathbb{P}^{2-q}(\ell_\infty(Q(x,r)) > \rho r^d, \ \forall x \in \mathcal{C}) \\
\times \mathbb{P}^q(R_\infty \cap Q(x,r) \neq \emptyset, \ \forall x \in \mathcal{C}) \\
\leq C^{2N} (N!)^q \cdot \exp(-\kappa (2-q) \rho r^{d-2} N^{1-\frac{2}{d}}),
\]
and we conclude the proof using hypothesis (5.1).

\[\blacksquare\]

6 Proof of Theorems 1.1 and 1.2

Let us define \(\mathcal{I}_\infty := \lim_{b \to \infty} \mathcal{I}(b)\), with \(\mathcal{I}(b)\) as in (1.2). Since it is easier to realize a large intersection in infinite time, rather than in any finite time, we already know that
\[
(6.1) \quad \liminf_{t \to \infty} \frac{1}{t^{1-\frac{2}{d}}} \log \mathbb{P}(|R_\infty \cap \widetilde{R}_\infty| \geq t) \geq -\mathcal{I}_\infty.
\]
The proofs of Theorems 1.1 and 1.2 are now based on the following result, which uses the following notation. For \(k, L,\) and \(t\) some positive integers, and \(\delta \in (0, 1)\), define the event (where the \(k\) centers of our cubes are in \(\mathbb{Z}^d\)).
\[
\mathcal{A}(k, L, \delta, t) := \left\{ \begin{array}{l}
\|x_i - x_j\| \geq L^2 t^{1/d}, \ \forall i \neq j \\
\exists x_1, \ldots, x_k : |R_\infty \cap \widetilde{R}_\infty \cap \bigcap_{i=1}^k \widetilde{Q}(x_i, L t^{1/d})| \geq \delta t \ \forall 1 \leq i \leq k \\
|R_\infty \cap \widetilde{R}_\infty \cap \bigcup_{i=1}^k Q(x_i, L t^{1/d})| \geq t
\end{array} \right\}.
\]

Proposition 6.1. There exist \(C > 0\) and \(L_0 \geq 1\) such that for any \(L \geq L_0, k \leq L,\) and \(\delta \in (0, 1)\),
\[
\limsup_{t \to \infty} \frac{1}{t^{1-\frac{2}{d}}} \log \mathbb{P}(\mathcal{A}(k, L, \delta, t)) \\
\leq -\mathcal{I}_\infty \left(1 + (1 - \frac{1}{22/d})[(k - 1)\delta]^{1-2/d} \right) + \frac{C \log k}{\log L}.
\]

Note that Theorem 1.1 follows from Theorem 1.2 and Proposition 6.1, applied with \(k = 1\).

Remark 6.2. The bound (6.2) is the key large deviation estimate behind our localisation result. It quantifies the trade off between the number of boxes, say \(k \leq N(\varepsilon)\), and the parameter \(L(\varepsilon)\) which fixes the radius of the boxes (in a scale \(t^{1/d}\)), and the
spacing of their centers. The concavity of the rate function gives a cost for having k boxes of the order $k^{1-2/d}$, whereas the entropy gain in having the opportunity to travel through k boxes at distance L^2 (in a scale $t^{1/d}$) is of order $\log(k)/\log(L)$. Thus, (6.2) is efficient if L is an exponential in $1/\varepsilon$, since we know from Remark 5.4 that $N(\varepsilon)$, which bounds the number of boxes, grows like a polynomial in $1/\varepsilon$.

Before we prove Proposition 6.1, let us see how it allows to prove Theorem 1.2.

Proof of Theorem 1.2. For $N \geq 1$ some integer and $t > 0$, define the event

$$\mathcal{B}_{N,t} := \left\{ \exists x_1, \ldots, x_N \in \mathbb{Z}^d : |\mathcal{R}_\infty \cap \mathcal{T}_\infty \cap \left(\bigcup_{i=1}^N Q(x_i, t^{1/d}) \right) | \geq t \right\},$$

and for $L \geq 1$ another integer, set

$$\mathcal{B}_{N,L,t} := \left\{ \exists x_1, \ldots, x_N \in \mathbb{Z}^d : \|x_i - x_j\| \geq L^2 t^{1/d} \quad \forall i \neq j \right\}.$$

First, it is a simple (deterministic) observation that for any $N \geq 1$, $L_0 \geq 1$, and $t > 0$, one has

$$\mathcal{B}_{N,t} \subseteq \bigcup_{k=0}^N B_{N, L_k, t}$$

with $L_k = (2L_{k-1})^2 \forall k \geq 1$.

Indeed, assume $\mathcal{B}_{N,t}$ holds, and consider x_1, \ldots, x_N realizing this event. Let also $I_0 := \{1, \ldots, N\}$. If the $(x_i)_{i \in I_0}$ are all at distance at least $L_0^2 t^{1/d}$ one from each other, we stop and $\mathcal{B}_{N, L_0, t}$ holds. If not, consider the first index i such that x_i is at distance smaller than $L_0^2 t^{1/d}$ from one of the x_j, with $j < i$, and set $I_1 = I_0 \setminus \{i\}$. Set also $L_1 = (2L_0)^2$, and restart the algorithm with I_1 and L_1 in place of I_0 and L_0, respectively. Since this procedure stops in at most N steps, we deduce (6.4). Note that we may end up with less than N points, but since we do not impose the intersection of the ranges with all cubes to be nonempty, we may always add some distant points at the end of the construction.

Next, let $K > 0$ be some fixed constant. We claim that for any reals $\varepsilon \in (0, 1)$, $t > 0$, and any integers $N \leq \varepsilon^{-K}$, $L \geq 1$, one has

$$\mathcal{B}_{N,L,t} \subseteq \bigcup_{k=1}^N \mathcal{A} \left(k, L, \frac{\varepsilon^{d-1}}{2(d-1)K^k}, (1-\varepsilon)t \right).$$

To see this, assume that the event $\mathcal{B}_{N,L,t}$ holds, and consider x_1, \ldots, x_N realizing it. Set $k_0 = N$ and $J_0 = \{1, \ldots, N\}$, and then let

$$J_1 := \left\{ i \in J_0 : |\mathcal{R}_\infty \cap \mathcal{T}_\infty \cap Q(x_i, L^2 t^{1/d}) | \geq \frac{\varepsilon}{2k_0} \right\}.$$
Note that by definition of $\mathcal{B}_{N,L,t}$ and J_1,
\[|\mathcal{B}_\infty \cap \widetilde{\mathcal{H}}_\infty \cap \left(\bigcup_{i \in J_1} Q(x_i, Lt^{1/d}) \right) | \geq \left(1 - \frac{\varepsilon}{2} \right) t. \]

Thus if $|J_1| \geq \varepsilon^{\frac{1}{d-1}} k_0$, we are done, since in this case
\[\mathcal{B}_{N,L,t} \subseteq \mathcal{A} \left(k_1, L, \frac{\varepsilon^{\frac{d}{d-1}}}{2k_1}, \left(1 - \frac{\varepsilon}{2} \right) t \right) \text{ with } k_1 := |J_1|. \]

If not, define $J_2 := \left\{ i \in J_1 : |\mathcal{B}_\infty \cap \widetilde{\mathcal{H}}_\infty \cap Q(x_i, Lt^{1/d})| \geq \frac{\varepsilon}{4k_1} \right\}.$

One has, by definition,
\[|\mathcal{B}_\infty \cap \widetilde{\mathcal{H}}_\infty \cap \left(\bigcup_{i \in J_2} Q(x_i, Lt^{1/d}) \right) | \geq \left(1 - \frac{\varepsilon}{2} - \frac{\varepsilon}{4} \right) t. \]

Thus if $|J_2| \geq \varepsilon^{\frac{1}{d-1}} k_1$, we are done as well, and if not we continue defining inductively $(J_i)_{i \geq 1}$ and $(k_i)_{i \geq 1}$ as above, until either $|J_i| \geq \varepsilon^{1/(d-1)} k_{i-1}$ or $|J_i| = 1$ for some i. Note that in the latter case one has
\[\mathcal{B}_{N,L,t} \subseteq \mathcal{A} \left(1, L, 1 - \varepsilon, (1 - \varepsilon)t \right). \]

Since on the other hand at each step we reduce the cardinality of the set of points by a factor at least $\varepsilon^{1/(d-1)}$, and by hypothesis $N \leq \varepsilon^{-K}$, this algorithm must stop in at most $(d - 1) K$ steps, and this proves well (6.5).

Recall next that Proposition 3.2 says that for any ε, there exists some integer $N = N(\varepsilon)$ such that
\[\lim_{t \to \infty} \mathbb{P}(\mathcal{B}_N(1-\varepsilon)t \cap |\mathcal{B}_\infty \cap \widetilde{\mathcal{H}}_\infty| \geq t) = 1, \]

and furthermore, by Remark 5.4, that one can find a constant K such that $N(\varepsilon) \leq \varepsilon^{-K}$, at least for ε small enough. Moreover, the constant K being fixed, Proposition 6.1 and the lower bound (6.1) also show that for any ε small enough, any $L \geq \exp(1/\varepsilon)$, and $2 \leq k \leq N(\varepsilon)$,
\[\lim_{t \to \infty} \mathbb{P} \left(\mathcal{A} \left(k, L, \frac{\varepsilon^{\frac{d}{d-1}}}{2(d-1)Kk}, (1 - \varepsilon)^2 t \right) \cap |\mathcal{B}_\infty \cap \widetilde{\mathcal{H}}_\infty| \geq t \right) = 0. \]

Thus Theorem 1.2 follows from (6.4) and (6.5), taking $L_0 \geq \exp(1/\varepsilon)$, and noting that for any $L \leq L'$ and $\delta \leq 1$, one has the inclusion $\mathcal{A} \left(1, L, \delta, t \right) \subseteq \mathcal{B}_{L',t}$. \(\square \)

It remains now to prove Proposition 6.1. For this we need the following lemma.
LEMMA 6.3. Assume $q \in (0, 1)$. For any integer $k \geq 1$, and t_1, \ldots, t_k positive numbers, we have

$$(6.6) \quad t_1^q + \cdots + t_k^q \geq \left(\sum_{i=1}^{k} t_i \right)^q + \left(1 - \frac{1}{2^{1-q}} \right) \left((k-1) \min_{i \leq k} (t_i) \right)^q.$$

PROOF. The proof is by induction. For $k = 2$, assume $t_1 \geq t_2 > 0$. Then (6.6) reduces to seeing that

$$t_1^q + \frac{1}{2^{1-q}} t_2^q \geq (t_1 + t_2)^q.$$

If we set $x = t_2/t_1$, we need to show that for $0 \leq x \leq 1$,

$$1 + \frac{x^q}{2^{1-q}} \geq (1 + x)^q.$$

By taking derivatives of the two terms, the problem reduces to checking that $2x < 1 + x$ for $0 \leq x \leq 1$, which is indeed true. The induction follows: set $\alpha = 1 - \frac{1}{2^{1-q}}$ and write

$$t_k^q + \sum_{i=1}^{k-1} t_i^q \geq t_k^q + \left(\sum_{i=1}^{k-1} t_i \right)^q + \alpha \left((k-2) \min_{i \leq k-1} (t_i) \right)^q$$

$$\geq \left(\sum_{i=1}^{k} t_i \right)^q + \alpha \left\{ \min_{i \leq k-1} \left(t_k, \sum_{i=1}^{k-1} t_i \right) \right\} + \left((k-2) \min_{i \leq k-1} (t_i) \right)^q$$

$$\geq \left(\sum_{i=1}^{k} t_i \right)^q + \alpha \left\{ \min_{i \leq k} (t_i)^q + \left((k-2) \min_{i \leq k-1} (t_i) \right)^q \right\}$$

$$\geq \left(\sum_{i=1}^{k} t_i \right)^q + \alpha \left((k-1) \min_{i \leq k} (t_i) \right)^q,$$

using the inequality $a^q + b^q \geq (a + b)^q$ at the last line. \hfill \Box

PROOF OF PROPOSITION 6.1. The idea is to cut the two trajectories $(S_n)_{n \geq 0}$ and $(\tilde{S}_n)_{n \geq 0}$, realizing the event $\mathcal{A}(k, L, \delta, t)$ into excursions in a natural way, and then realizing some surgery to compare the probability of the event to the product of the probabilities of realizing a certain intersection inside k different cubes.

Now let us proceed with the details. Fix $x_1, \ldots, x_k \in \mathbb{Z}^d$, with $\|x_i - x_j\| \geq L^2 t^{1/d}$, for all $i \neq j$. For $1 \leq i \leq k$, set $Q_i := Q(x_i, L t^{1/d})$, and $\overline{Q_i} := Q(x_i, L^2 t^{1/d})$. We denote by ∂Q the boundary of Q, that is, the sites not in Q but at graph distance 1 from Q. Assume to simplify notation that all the x_i belong to $[L^2 t^{1/d}] \mathbb{Z}^d$ (if not, one can always replace them by the closest points on this lattice and increase the side length of the cubes Q_i, and reduce the one of the $\overline{Q_i}$, both by an innocuous factor 2). Finally, to simplify also the discussion below, we further assume that the origin does not belong to any of the cubes $\overline{Q_i}$ (minor modifications of the argument would be required otherwise, which we safely leave
to the reader). Then define two sequences of stopping times \((s_\ell)_{\ell \geq 0}\) and \((\tau_\ell)_{\ell \geq 0}\) as follows. First \(s_0 = \tau_0 = 0\), and for \(\ell \geq 1\),

\[
\tau_\ell := \inf \left\{ n \geq s_{\ell-1} : S_n \in \bigcup_{i=1}^{k} Q_i \right\} \quad \text{and} \quad s_\ell := \inf \left\{ n \geq \tau_\ell : S_n \not\in \bigcup_{i=1}^{k} \overline{Q}_i \right\}.
\]

Let \(N := \sum_{\ell=1}^{\infty} 1\{\tau_\ell < \infty\}\) be the total number of excursions. Let \(\tau(\Lambda) := \inf \{ n : S_n \in \Lambda \}\), for the hitting time of a subset \(\Lambda \subseteq \mathbb{Z}^d\). It follows from (2.1) and (2.2), that for any \(\ell \geq 1\),

\[
\mathbb{P}(\tau_{\ell+1} < \infty \mid \tau_\ell < \infty) \leq \sup_{1 \leq i \leq k} \sup_{y \in \partial Q_i} \mathbb{P}_y \left(\tau \left(\bigcup_{i=1}^{k} Q_i \right) < \infty \right) \leq \sup_{1 \leq i \leq k} \sup_{y \in \partial \overline{Q}_i} \sum_{j=1}^{k} \mathbb{P}_y (\tau(Q_j) < \infty) \leq C \cdot k \frac{L}{L^{d-2}}
\]

for some constant \(C > 0\). Recalling that \(k \leq L\), we deduce that for some constant \(C_0 > 0\) and all \(t\) large enough,

\[
\mathbb{P} \left(N \geq \frac{C_0 t^{1-\frac{2}{d}}}{\log L} \right) \leq \exp \left(-2 \cdot \frac{t^{1-\frac{2}{d}}}{\log L} \right).
\]

(6.7)

Now, let \(i(\ell)\) be the index of the cube to which \(S(\tau_\ell)\) belongs when \(\tau_\ell\) is finite: that is, \(S(\tau_\ell) \in Q_{i(\ell)}\). Define further \(\ell_1, \ldots, \ell_k\) inductively by \(\ell_1 = 1\), and for \(j \geq 1\),

\[
\ell_{j+1} = \inf \left\{ \ell > \ell_j : i(\ell) \not\in \{i(\ell_1), \ldots, i(\ell_j)\} \right\}.
\]

This induces a permutation \(\sigma \in \mathfrak{S}_k\), defined by \(\sigma(j) := i(\ell_j)\), which represents the order of first visits of the cubes by the walk. Now, the harmonic probability measure \(\mu_i\) of \(Q_i\) reads as follows:

\[
\mu_i(z) := \frac{\mathbb{P}_z (R[1, \infty) \cap Q_i = \emptyset)}{\operatorname{cap}(Q_i)} \quad \forall z \in Q_i.
\]

The harmonic measure is related to the hitting distribution (see proposition 6.5.4 in [11]).

(6.8) \(\forall y \not\in \overline{Q}_i, \forall z \in Q_i\),

\[
\mathbb{P}_y(S_{\tau(Q_i)} = z \mid \tau(Q_i) < \infty) = \mu_i(z) \left[1 + \mathcal{O} \left(\frac{L t^{1/d}}{|y - x_i|} \right) \right].
\]

Combining it with (2.1) and (2.2), this yields for some constant \(c_1 > 0\), for any \(1 \leq i, j \leq k\), and any \(z \in Q_j\),

(6.9) \(\sup_{y \not\in \overline{Q}_j} \mathbb{P}_y(\tau(Q_j) < \infty, S_{\tau(Q_j)} = z) \leq \frac{c_1}{L^{d-2}} \mu_j(z)\),
and when $i \neq j$, we also get for $z \in Q_j$

$$\sup_{y \in \partial Q_i} \mathbb{P}_y(\tau(Q_j) < \infty, S_\tau(Q_j) = z)$$

(6.10)

$$\leq \frac{c_1}{L^{d-2}} \mu_j(z) \cdot (L^2 t^{1/d})^{d-2} G(x_j - x_i).$$

Define analogously $\tau_\ell, \tilde{\tau}_\ell, \tilde{\tau}(\cdot), \ldots$, for the walk \tilde{S}. Then for $1 \leq j \leq k$, set

$$\mathcal{J}_j := \left| \left(\bigcup_{\ell : i(\ell) = j} \mathcal{R}[\tau_\ell, s_\ell] \right) \cap \left(\bigcup_{\ell : \tilde{\tau}(\ell) = j} \mathcal{R}[\tilde{\tau}_\ell, \tilde{s}_\ell] \right) \right|,$$

the number of intersections of the two walks inside the Q_j. Note that by construction,

$$\mathcal{J}_j = |\mathcal{R}_\infty \cap \tilde{\mathcal{R}}_\infty \cap Q_j| \quad \text{for all } 1 \leq j \leq k.$$

Let now t_1, \ldots, t_k, and n, m be some fixed positive integers. Then consider two fixed sequences of indices (i_1, \ldots, i_n) and $(\tilde{i}_1, \ldots, \tilde{i}_m)$, taking values in $\{1, \ldots, k\}$, such that all $j \in \{1, \ldots, k\}$ appear at least once in the two sequences. This induces two permutations $\sigma, \tilde{\sigma} \in \mathcal{S}_k$, as defined above (one for each sequence). Then set

$$G_\sigma(x_1, \ldots, x_k) := (L^2 t^{1/d})^{k(d-2)} G(x_{\sigma(1)}) \prod_{j=1}^{k-1} G(x_{\sigma(j+1)} - x_{\sigma(j)}).$$

Let also for $1 \leq j \leq k$,

$$n_j := \sum_{\ell=1}^n 1\{i_\ell = j\} \quad \text{and} \quad m_j := \sum_{\ell=1}^m 1\{\tilde{i}_\ell = j\}.$$

Then applying (6.9) and (6.10) at indices $\{i_\ell, \tilde{i}_\ell, \ell = 1, \ldots, n, \tilde{\ell} = 1, \ldots, m\}$ shows that

$$\mathbb{P}_y\left(N = n, \mathcal{S} = m, \mathcal{J}_j \geq t_j \quad \forall j = 1, \ldots, k \right) \leq \left(\frac{c_1}{L^{d-2}} \right)^{n+m} \left(\prod_{j=1}^k \mathbb{P}_{\mu_j, n_j, m_j}(\mathcal{J}_j \geq t_j) \right) G_\sigma(x_1, \ldots, x_k) G_{\tilde{\sigma}}(x_1, \ldots, x_k),$$

(6.11)

where for all $1 \leq j \leq k$, $\mathbb{P}_{\mu_j, n_j, m_j}(\mathcal{J}_j \geq t_j)$ denotes the law of the walk conditionally on $(S(\tau_\ell))_{\ell:i_\ell = j}$ and $(\tilde{S}(\tilde{\tau}_\ell))_{\ell:\tilde{i}_\ell = j}$, being independent and identically distributed with joint law μ_j, or equivalently the law of $n_j + m_j$ independent excursions starting from law μ_j.

Our next task is to bound the probabilities $\mathbb{P}_{\mu_j, n_j, m_j}(\mathcal{J}_j \geq t_j)$, using (1.2). Proposition 6.5.1 in [11] shows that for some constant $c > 0$, for any $1 \leq j \leq k$, and $y \not\in \mathcal{D}_j$,

$$\mathbb{P}_y(\tau(Q_j) < \infty) = c \frac{\text{cap}(Q_j)}{\|y - x_j\|^{d-2}} \left[1 + \mathcal{O}\left(\frac{L t^{1/d}}{\|y - x_j\|} \right) \right],$$

$$\mathcal{J}_j \leq |\mathcal{R}_\infty \cap \tilde{\mathcal{R}}_\infty \cap Q_j| \quad \text{for all } 1 \leq j \leq k.$$
where \(\text{cap}(Q_j) \) denotes the capacity of the box \(Q_j \), for which all we need to know is that it is of order \(L^{d-2}t^{1-2/d} \). When combined with (6.8) this yields the existence of a constant \(c_2 > 0 \) such that for all \(1 \leq j \leq k \) and all \(z \in Q_j \),

\[
(6.12) \quad \inf_{y \in \partial Q_j} \mathbb{P}_y(\tau(Q_j) < \tau(Q(x_j, L^3t^{1/d})), S_{\tau(Q_j)} = z) \geq \frac{c_2}{L^{d-2}} \mu_j(z).
\]

Now let \(\chi \in \mathbb{Z}^d \) be such that the origin belongs to \(\partial Q(\chi, L^2t^{1/d}) \). The above inequality (6.12) shows that for any \(1 \leq j \leq k \) and any integers \(n_j, m_j \),

\[
(6.13) \quad \mathbb{P}(\tau(Q(\chi, L^3t^{1/d}) \cap \mathcal{R}_j \tau(Q(\chi, L^3t^{1/d}) \cap Q(\chi, L^1/d)) \geq t_j) \geq \left(\frac{c_2}{L^{d-2}} \right)^{n_j+m_j} \mathbb{P}_{\mu_j,n_j,m_j}(J_j \geq t_j).
\]

On the other hand, Lemmas 2.1 and 2.2 show that for some constant \(b > 0 \),

\[\mathbb{P}(\tau(Q(x, L^3t^{1/d})) > bt) \leq \exp(-2.\mathcal{I}_\infty t^{1-\frac{2}{d}}) \]

at least for \(t \) large enough. Thus if \(t_j \geq \delta t \), we get with (1.2) that at least for \(t \) large enough, the left-hand side of (6.13) is bounded above by \(2\mathbb{P}(\mathcal{R}_b t \cap \mathcal{R}_{bt} | \geq t_j) \).

When combined with (6.11), this shows that for some constant \(b > 0 \), for all \(t_j \geq \delta t \),

\[
(6.14) \quad \mathbb{P}\left(N = n, \tilde{N} = m, J_j \geq t_j, \forall j = 1, \ldots, k \right) \leq 2^k \left(\frac{c_1}{c_2} \right)^{n+m} \prod_{j=1}^{k} \mathbb{P}(\mathcal{R}_{bt} \cap \mathcal{R}_{bt} | \geq t_j) \mathcal{G}_{\sigma}(x_1, \ldots, x_k) \mathcal{G}_{\sigma}(x_1, \ldots, x_k) \mathcal{G}_{\sigma}(x_1, \ldots, x_k) \leq 2^k \left(\frac{c_1}{c_2} \right)^{n+m} \prod_{j=1}^{k} \mathbb{P}(\mathcal{R}_{bt} \cap \mathcal{R}_{bt} | \geq t_j) \max_{\sigma \in \sigma_k} \mathcal{G}_{\sigma}(x_1, \ldots, x_k)^2.
\]

with \(b' = b/\delta \). The number of possible sequences \((i_\ell)_{\ell \leq n} \) and \((\tilde{i}_\ell)_{\ell \leq m} \) is bounded, respectively, by \(k^n \) and \(k^m \) (where \(k \) is the number of boxes), so that as we sum (6.14) over them, we get

\[
\mathbb{P}\left(N = n, \tilde{N} = m, J_j \geq t_j, \forall j = 1, \ldots, k \right) \leq 2^k \left(\frac{k c_1}{c_2} \right)^{n+m} \prod_{j=1}^{k} \mathbb{P}(\mathcal{R}_{bt} \cap \mathcal{R}_{bt} | \geq t_j) \max_{\sigma \in \sigma_k} \mathcal{G}_{\sigma}(x_1, \ldots, x_k)^2.
\]

Summing then over all

\[n, m \leq N_0 := \left\lfloor \frac{C_0 t^{1-\frac{2}{d}}}{\log L} \right\rfloor \]
with C_0 as in (6.7), we get
\begin{equation}
\mathbb{P}(N \leq N_0, \mathcal{N} \leq N_0, \mathcal{S}_j \geq t_j, \forall j = 1, \ldots, k) \\
\leq 2^k N_0^2 \left(\frac{k c_1}{c_2} \right)^{2N_0} \left(\prod_{j=1}^k \mathbb{P}(|\mathcal{S}_j| \geq t_j) \right) \max_{\sigma \in \mathcal{S}_k} G_{\sigma}(x_1, \ldots, x_k)^2.
\end{equation}
(6.15)

Now letting $r := \lfloor L^2t^{1/d} \rfloor$, we get using (2.1),
\begin{align*}
\sum_{x_1, \ldots, x_k \in r\mathbb{Z}^d} \max_{\sigma \in \mathcal{S}_k} G_{\sigma}(x_1, \ldots, x_k)^2 \\
\leq \sum_{\sigma \in \mathcal{S}_k} \sum_{x_1, \ldots, x_k \in r\mathbb{Z}^d} G_{\sigma}(x_1, \ldots, x_k)^2 \leq C^k k!.
\end{align*}

Thus summing over all $x_1, \ldots, x_k \in r\mathbb{Z}^d$ in (6.15) and using (6.7), we get
\begin{align*}
\sum_{x_1, \ldots, x_k \in r\mathbb{Z}^d} & \mathbb{P}(\mathcal{S}_j \geq t_j \forall j = 1, \ldots, k) \\
\leq & \left(2C \right)^k (k!)^2 N_0^2 \left(\frac{k c_1}{c_2} \right)^{2N_0} \prod_{j=1}^k \mathbb{P}(|\mathcal{S}_j| \geq t_j) \\
& + \exp(-2\mathcal{S}_\infty t^{1-\frac{\gamma}{d}}).
\end{align*}

Finally, by using (1.2) and Lemma 6.3 (with $q = 1 - \frac{\gamma}{d}$), and then summing over all possible $t_1, \ldots, t_k \geq \delta t$, satisfying $t_1 + \cdots + t_k = t$, we conclude the proof of the proposition. \hfill \Box

Acknowledgment. This research was supported by public grants overseen by the French National Research Agency, ANR SWiWS (ANR-17-CE40-0032-02) and ANR MALIN (ANR-16-CE93-0003).

Bibliography

[1] Asselah A.; Castell F. A note on random walk in random scenery. *Ann. Inst. H. Poincaré Probab. Statist.* 43 (2007), no. 2, 163–173. doi:10.1016/j.anihpb.2006.01.004

[2] Asselah A.; Schapira B. Moderate deviations for the range of a transient random walk: path concentration. *Ann. Sci. Éc. Norm. Supér. (4)* 50 (2017), no. 3, 755–786. doi:10.24033/asens.2331

[3] Asselah A.; Schapira B. The two regimes of moderate deviations for the range of a transient random walk. Preprint, 2019. arXiv:1909.01925 [math.PR]

[4] Asselah A.; Schapira B. Deviations for the capacity of the range of a random walk. *Electron. J. Probab.* 25 (2020), Paper No. 154, 28 pp. doi:10.1214/20-ejp560

[5] Asselah A.; Schapira B. Extracting subsets maximizing capacity and folding of random walks. Preprint, 2020. arXiv:2003.03073 [math.PR]

[6] Asselah A.; Schapira B. On the nature of the Swiss cheese in dimension 3. *Ann. Probab.* 48 (2020), no. 2, 1002–1013. doi:10.1214/19-AOP1380

[7] Chen X.; Mörters P. Upper tails for intersection local times of random walks in supercritical dimensions. *J. Lond. Math. Soc. (2)* 79 (2009), no. 1, 186–210. doi:10.1112/jlms/jdn074
[8] Erdös, P.; Taylor, S. J. Some intersection properties of random walk paths. *Acta Math. Acad. Sci. Hungar.* **11** (1960), 231–248. doi:10.1007/BF02020942

[9] Khanin K. M.; Mazel A. E.; Shlosman S. B.; Sinai Y. G. Loop condensation effects in the behavior of random walks. *The Dynkin Festschrift*, 167–184. Progr. Probab., 34. Birkhäuser Boston, Boston, 1994.

[10] Lawler, G. F. *Intersections of random walks*. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2013. doi:10.1007/978-1-4614-5972-9

[11] Lawler, G. F.; Limic, V. *Random walk: a modern introduction*. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge, 2010. doi:10.1017/CBO9780511750854

[12] Phetpradap, P. Ph.D. thesis, University of Bath, (2012).

[13] Pólya, G. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. *Math. Ann.* **84** (1921), no. 1-2, 149–160. doi:10.1007/BF01458701

[14] Sznitman, A.-S. Disconnection, random walks, and random interlacements. *Probab. Theory Related Fields* **167** (2017), no. 1-2, 1–44. doi:10.1007/s00440-015-0676-y

[15] van den Berg M.; Bolthausen E.; den Hollander F. On the volume of the intersection of two Wiener sausages. *Ann. of Math. (2)* **159** (2004), no. 2, 741–782. doi:10.4007/annals.2004.159.741

ASSELAH ASSELAH

LAMA

Université Paris-Est Créteil

61 Av. Général de Gaulle 94010

Créteil Cedex

FRANCE

BRUNO SCHAPIRA

CMI

Aix-Marseille Université

Technopôle Château-Gombert

39 rue F. Joliot Curie

13453 Marseille

Cedex 13

FRANCE

E-mail: bruno.schapira@univ-amu.fr

Received September 2020.