An empirical study on the relationship between foreign trade of agricultural products and the development of cold chain logistics in Sichuan Province

Shilei Lin¹, Chong Wang²*
¹School of Management, Sichuan Agriculture University, P.R.China
²School of Business, Sichuan Agriculture University, P.R.China
¹739446590@qq.com, ²wc000500@163.com

Corresponding author and e-mail: Chong Wang, wc000500@163.com

Abstract. This paper selects the data of Sichuan Province from 2001 to 2018 as the sample, which is the total trade volume of agricultural products (TA), the cold chain logistics volume of agricultural products (CD), and the cold chain logistics volume of agricultural products (CS). Through the time series of three variables, the stationary, co-integration and vector error correction models are used to study the long-term equilibrium and short-term fluctuations between the agricultural product foreign trade and agricultural product cold chain logistics development level, in order to provide suggestions for the common development of both. The results show that: First, the level of agricultural trade and the level of cold chain logistics of agricultural products continue to increase, but the overall level of the two is still insufficient. Secondly, the time series of the both are smooth sequences through the first-order difference. Through the cointegration test, there is a long-term equilibrium relationship, and the short-term relationship between the two is greater than the long-term relationship. Thirdly, the demand and supply of cold chain logistics of agricultural products is a one-way causal relationship between the trade volume of agricultural products. In the future, we must give full play to the advantages of Sichuan's characteristic agricultural products and strengthen the construction of logistics facilities and the connection between logistics nodes.

1. Introduction
Sichuan Province has rich agricultural resources and has strong comparative advantages and international market competitiveness. Strengthening agricultural foreign trade at the moment, promoting agricultural efficiency and increasing farmers' income with agricultural products exports has become an important path to transform agricultural development methods and extend industrial chains, and is also an important way to explore the development of Sichuan's export-oriented agriculture. Under the background of the “One Belt and One Road”, the establishment of the Sichuan Free Trade Zone and the three major strategies for the development of the western region, Sichuan agricultural trade has ushered in tremendous development opportunities. How to seize the opportunity to more quickly make the “going out” of Sichuan's characteristic agricultural products and the introduction of high-quality agricultural products is the top priority of Sichuan's agricultural trade. In the process of agricultural product trade circulation, it will inevitably involve the issue of logistics and transportation of agricultural products. With the continuous development of agricultural products trade in Sichuan Province, the trade methods of different agricultural products are changing, the requirements for the quality of agricultural products are higher, the fresh agricultural products themselves are perishable, and the demand for cold chain logistics will be expanded, so the trade of agricultural products and There is a negligible link between the cold chain logistics of agricultural products. In recent years, the relationship and development between the two have also received increasing attention from the government and industry. "Sichuan Province's "13th Five-Year" Agricultural Products Cold Chain Logistics Development Plan" proposes to vigorously develop international cold chain logistics such as warehousing and distribution of agricultural products, improve the level of service trade facilitation, and continuously
To expand the international market of agricultural products cold chain logistics in Sichuan Province. The development space to realize the internationalization of Sichuan's characteristic agricultural products. No. 1 document of the central government in 2019, it was mentioned that it accelerated the promotion and supported agriculture to go global, strengthened the “One Belt, One Road” agricultural international cooperation, actively expanded the domestic shortage of agricultural products, expanded diversified import channels, and strengthened the agricultural product logistics backbone network and cold chain logistics system construction. It can be seen from the policies issued by the government and the planning of the industry that there is a very close relationship between agricultural products trade and agricultural products cold chain logistics. However, due to the late start of the construction of the cold chain logistics system in Sichuan Province, there are many defects in the construction of cold chain logistics infrastructure. The logistics information construction and technology application are not popular in Sichuan logistics enterprises. The export of agricultural products in Sichuan Province is dominated by traditional primary products. The value and technical content are lower, and the industrial chain is short. In the foreign trade of agricultural products and cold chain logistics, there is no effective integration between the two, which hinders the common development of the two. Studying the relationship between the two and exploring the path of stable and efficient development between the two will help the development of agricultural trade in Sichuan Province, so as to better build the open land of the western inland and the improvement of the level of opening up. At the same time, it also promotes the development of agricultural cold chain logistics and logistics enterprises in Sichuan Province, and achieves the goal of reducing trade time and economic cost, and enhances the competitiveness of Sichuan agricultural products in the international market. This article will use the collected yearbook data and existing research results to explore the relationship between the two, and provide countermeasures for the common development between the two.

2. Literature review and hypothetical reasoning

2.1. Literature review

By consulting relevant literature, domestic and foreign scholars have achieved more results in the study of foreign trade and logistics. Foreign scholars have studied this aspect earlier. Krugman (1991) invented the distance trade model. He quantitatively analyzed the influence of distance on international trade. His theory opened the first place for quantitative research on the relationship between logistics and international trade. The research in this area has had a profound impact. Boylan (1991) pointed out that the improvement of the current logistics system can make regional economic trade more competitive and improve its position in the international market. Egger (2005) selects more than one hundred countries to evaluate the logistics efficiency of each country based on the variables of cargo transportation time. After regression analysis, it is found that when the time of transporting goods is reduced, the logistics efficiency can be significantly improved, thus promoting each National import and export trade. In recent years, foreign scholars have focused on the impact of logistics performance on export trade. XiaoBo (2012) believes that the development of cold chain logistics in China is relatively lagging, which makes the loss of agricultural products in circulation seriously, which hinders the further development of agricultural trade between the two sides. And based on the supply chain integration of cold-chain logistics resources on both sides of the strait to build a cold chain logistics model and establish a cold chain logistics system, build a cross-strait cold chain logistics information platform, develop cold chain logistics technology, and train cold chain logistics talents. Gani and Azmat (2017) explored the role of logistics performance in international trade. The results show that overall logistics performance is significantly positively correlated with imports and exports. Martí and Luisa (2017) studied the importance of logistics performance in international trade and its trade costs, while using the gravity model to determine the importance of logistics in the export of these countries, and their findings indicate an improvement in the country. The logistics infrastructure is not only to promote their trade, but also to increase export competitiveness. Munim and Schramm (2018) used the structural equation model to empirically analyze the significant economic impacts of port infrastructure quality and logistics performance. The results show that port infrastructure can help improve logistics performance, promote maritime trade, and bring higher economic growth.

Chinese scholars have also made great achievements in the study of foreign trade and logistics in recent years. Some scholars analyzed the relationship between the two through a time series model. Yu (2012) used the time series model to empirically analyze the relationship between modern logistics and foreign trade in Zhejiang Province. The study found that the cointegration test showed a long-term equilibrium relationship between the two, and the Granger causality test showed a one-way causal relationship between cargo
throughput and total import and export. Zhao (2014) used the unit root and cointegration method to analyze the relationship between logistics industry efficiency and foreign trade dependence. The result is a long-term equilibrium relationship between logistics industry efficiency and foreign trade dependence. Development is conducive to the development of foreign trade, but in turn the development of foreign trade cannot significantly promote the development of logistics. Tang (2014) conducted an empirical analysis of the relationship between Sichuan's foreign trade and modern logistics. His research found that Sichuan's foreign trade and logistics industry have a significant relationship. Zhang and Chen (2015) combined the cointegration test, vector error correction model and Granger causality test to study the external economy of logistics facilities, and found that the completion of logistics facilities can promote the development of foreign trade.

Some scholars use the trade gravity model to analyze the relationship between the two. Wang, Dong et al. (2018) empirically analyzed the logistics performance level of China's foreign trade potential by expanding the trade gravity model based on the collected logistics performance index and its sub-indices in 51 countries and regions along the "Belt and Road", influences. Their research found that logistics performance significantly positively affected the bilateral trade volume between China and countries along the route. Wang and Wang (2018) used the gravity model to empirically analyze the impact of logistics level and export trade in Guangdong Province. The results of the study show that the improvement of logistics level can reduce the impact of distance on exports and deal with port efficiency and road transport efficiency. Increase the conclusion that the export value will increase accordingly. Through the above research, it can be found that the development of logistics development level and the improvement of infrastructure are conducive to the development of foreign trade. Sichuan Province is China's major agricultural province, and cold chain logistics is an integral part of logistics. Among them, fresh agricultural products have a greater demand for cold chain logistics. The import and export trade of agricultural products plays an important role in the economic development of Sichuan Province. Therefore, it is of theoretical and practical significance to study the relationship between the import and export trade of agricultural products and the development level of agricultural cold chain logistics.

2.2. Hypothetical reasoning

Ma (2018)'s research shows that 70%~80% of China's urban agricultural product consumption is still circulating agricultural products through the wholesale market, and from the domestic and international environment, the application of cold chain logistics in the future agricultural product wholesale market is strengthened. And circulation is an important part of cold chain logistics. Therefore, this paper selects the circulation of agricultural products cold chain logistics as an indicator to measure the development level of cold chain logistics. Liu and Ci (2017) mentioned that China has more than 400 million tons of fresh agricultural products entering the circulation field every year, and its loss rate in logistics is as high as 25%-30%. In the current fierce competition in international trade in agricultural products, Dong and Huang (2016) believe that the quality of agricultural products is related to the competitiveness of Chinese agricultural products and the interests of 700 million farmers. Therefore, in the process of circulation of fresh agricultural products, it is necessary to ensure quality efficiently, reduce the rate of corrosion during transportation, effectively increase the circulation of cold chain logistics of agricultural products, enhance the international competitiveness of China's agricultural products and protect the interests of farmers. Based on the above analysis and the content of this study, this paper assumes that:

H1: Increasing the circulation of cold chain logistics of agricultural products has a positive impact on the import and export of agricultural products.

Fresh agricultural products are one of the main sources of nutrients needed by people in daily life. The research by Yuan and Wang (2017) shows that 70%~80% of imported fresh agricultural products are circulated in the domestic market through the agricultural product wholesale market. Fresh agricultural products basically need cold chain transportation to ensure quality and safety. Therefore, the importance of cold chain logistics is self-evident. However, the current level of cold chain logistics in Sichuan Province is still low, the cost of cold chain logistics is high, the number of refrigerated trucks and cold storage is insufficient, and the construction of cold chain infrastructure is imperfect. This also makes the development of cold chain transportation of fresh agricultural products encounter obstacles. At present, the comprehensive cold storage rate of agricultural products in Sichuan Province has only reached 50%, which has resulted in the agricultural products not being effectively protected during the import and export transportation. The quality of agricultural products has been greatly reduced, and quality and safety incidents have occurred frequently. Therefore, in the face of the short-board problem of cold chain logistics, Liu and Wang believe that (2016) should take measures to deal with cold chain logistics in a targeted manner, reduce the logistics...
cost of agricultural products, and promote the development of cold chain logistics, in order to improve the transportation rate of cold chain of agricultural products. It will help to better carry out the import and export trade of agricultural products. Therefore, this article assumes that:

H2: The cold chain logistics transportation volume of agricultural products has a positive impact on the import and export of agricultural products.

3. Data selection and variable setting

3.1. Data selection

Since the development of Sichuan cold chain logistics started late and China joined the World Trade Organization in 2001, the agricultural trade in Sichuan Province has been growing rapidly., this paper selects Sichuan Province 2001 by referring to the existing literature and considering the availability of Data of agricultural product import and export trade and agricultural product output in 2018 were analyzed as samples. At the same time, in the selection of agricultural product output data, the agricultural products, such as potatoes and eggs, which are not required for The total output of meat, aquatic products, fruits and vegetables, tea and milk in Sichuan Province was selected. The class does the raw data. The data is derived from the China Statistical Yearbook, the Sichuan Statistical Almanac, the Sichuan Provincial Bureau of Statistics and the data queried on the Internet.

3.2. Variable setting

TA is the total import and export trade of agricultural products in Sichuan Province, in order to represent the development level of Sichuan agricultural products import and export trade over the years. The development level of cold chain logistics of agricultural products, through consulting the literature and Drawing on the research results of predecessors, selects the evaluation indicators from the two perspectives of demand (CD) and supply (CS) to measure the development of cold chain logistics in Sichuan Province.

The circulation of agricultural products is an economic activity that realizes the transfer from agricultural production to consumption through the form of buying and selling. Of the products of Sichuan Province. According to the contents of the "13th Five-Year" Agricultural Products Cold Chain Logistics Development Plan of Sichuan Province, the cold chain circulation rate of agricultural products such as meat, fruits and vegetables, aquatic products, milk And tea is 40%, 25%, 40%, 50%, 70%, after the five types of agricultural products are processed accordingly, the circulation of agricultural products in Sichuan Province is calculated.

The supply of cold chain logistics of agricultural products. The total amount of agricultural products transported by cold chain logistics is used to indicate the supply of cold chain logistics. At the same time, the planning also mentioned that the refrigerated transport rate of agricultural products is 55%, 40%, 65%, 55%, 60%, respectively. The output of the five types of agricultural products is also treated accordingly, and the transportation of cold chain logistics of agricultural products in Sichuan Province is obtained. Amount.

In order to eliminate the possible heteroscedasticity, the processed data are taken logarithmically, and LNTA, LNCD, and LNCS respectively represent the total agricultural trade volume of Sichuan Province, the demand for cold chain logistics in Sichuan Province, and the natural logarithm of supply.

4. Empirical part

4.1. Unit root test:

In order to prevent the occurrence of pseudo-regression, the unit root test is performed on all time series data. Because the selected sample size is small, for the reliability of the test, ADF test methods are used to test the unit root, and the AIC criterion is used. Judging the criteria to determine the stationarity of each variable sequence.

It can be seen from Table 1 that in the ADF test, the agricultural product trade volume in Sichuan Province and the original sequence of supply and demand of agricultural cold chain logistics in Sichuan Province are all unstable sequences. After the first-order difference is made to each variable sequence, ADF test is a stationary sequence. In the ADF test, the agricultural product trade volume in Sichuan Province is stable at 1%, and the supply and demand sequence of agricultural cold chain logistics in Sichuan Province is stable at 5 percent.
model constructed in this paper is as follows: the modified error model is constructed to study the short-term relationship among the three. The modified error variable sequences, but because of other factors, there will be deviations in the short term. Therefore, a

According to the above unit root test, the sequence of the three variables is a first-order stationary sequence, regression, and the following regression equation is obtained.

agricultural cold chain logistics in Sichuan Province is used as the explanatory variable to model the agricultural product trade volume in Sichuan Province is used as the explanatory variable, and the criteria select the appropriate lag order.

of agricultural products in Sichuan Province, in order to ensure the reliability of the test, two test EG Sichuan Province and the co-integration relationship between the development level of cold chain logistics of agricultural products in Sichuan Province, in order to ensure the reliability of the test, two test EG two-step method and Johanse cointegration test are used for inspection, based on AIC. The criteria and SC criteria select the appropriate lag order.

(1) E-G two-step method. Firstly, the OLS regression is carried out on the three variables. The agricultural product trade volume in Sichuan Province is used as the explanatory variable to model the regression, and the following regression equation is obtained.

Then, the residual equation E is extracted from the regression equation (1), and the stationarity of the residual E is tested by ADF. According to Table 2, the residual sequence is stable at the level of one percent, thus indicating the trade volume of agricultural products in Sichuan Province. There is a cointegration relationship between the development level of cold chain logistics of agricultural products in Sichuan Province.

4.2. Cointegration test
Co-integration test can test whether there is a long-term equilibrium relationship between sequences. According to the above unit root test, the sequence of the three variables is a first-order stationary sequence, so co-integration analysis can be performed. In order to verify the trade volume of agricultural products in Sichuan Province and the co-integration relationship between the development level of cold chain logistics of agricultural products in Sichuan Province, in order to ensure the reliability of the test, two test EG two-step method and Johanse cointegration test are used for inspection, based on AIC. The criteria and SC criteria select the appropriate lag order.

(1) E-G two-step method. Firstly, the OLS regression is carried out on the three variables. The agricultural product trade volume in Sichuan Province is used as the explanatory variable, and the agricultural cold chain logistics in Sichuan Province is used as the explanatory variable to model the regression, and the following regression equation is obtained.

$$LNTA = -2.474 + 6.473LNCD - 4.178LNCS$$ \hspace{1cm} (1)

$$R^2=0.865 \hspace{1cm} A-R^2=0.847$$

Then, the residual equation E is extracted from the regression equation (1), and the stationarity of the residual E is tested by ADF. According to Table 2, the residual sequence is stable at the level of one percent, thus indicating the trade volume of agricultural products in Sichuan Province. There is a cointegration relationship between the development level of cold chain logistics of agricultural products in Sichuan Province.

Variable	Coefficient	T statistic	Threshold 1%	Threshold 5%	Threshold 10%	P value
LNCD	-3.887	-3.052	-2.667	0.647		
LNCS	-3.887	-3.052	-2.667	0.654		
DLNCD	-3.920	-3.066	-2.673	0.039		
DLNCS	-3.920	-3.065	-2.673	0.045		

Table 2. Residual unit root test

Variable	Coefficient	T statistic	Threshold 1%	Threshold 5%	Threshold 10%	P value	Test results
E	-2.575	-2.741	-1.968	-1.604	0.014		Stable

E = -2.575C - T - K

From the E-G two-step test, it is known that there is a cointegration relationship between the three sequences. Through the above cointegration test, the amount of agricultural products traded in Sichuan Province can be obtained, and there is a long-term equilibrium relationship between the supply and demand of agricultural cold chain logistics in Sichuan Province.

Error Correction Model Construction
According to the cointegration test, there is a long-term equilibrium relationship between the three variable sequences, but because of other factors, there will be deviations in the short term. Therefore, a modified error model is constructed to study the short-term relationship among the three. The modified error model constructed in this paper is as follows:

$$EC_1_{t-1} = LNTA_{t-1} + 15.897 - 3.688LNCS_{t-1}$$ \hspace{1cm} (2)

$$EC_2_{t-1} = LNCD_{t-1} + 0.415 - 0.990LNCS_{t-1}$$ \hspace{1cm} (3)

$$LNTA_t = 0.342EC_1_{t-1} - 34.307EC_2_{t-1} - 0.395LNTA_{t-1} - 0.588LNTA_{t-2} - 39.532LNCD_{t-1} - 18.398LNCD_{t-2} + 34.952LNCS_{t-1} + 22.813LNCS_{t-2} + 0.182$$ \hspace{1cm} (4)

R2=0.681 AIC=-1.389 SC=-0.964
According to the regression coefficient R value is 0.681, so the overall model is more significant. The AIC is -1.389 and the SC is -0.964. The values of AIC and SC are both small, which indicates that the lag length of the model is reasonable. According to Figure 3, all estimated points are within the circle, so the estimated VEC model is stable. The coefficient of $EC_{1,-1}$ is 0.342. When the model deviates from the long-term equilibrium with short-term fluctuation, the non-equilibrium state will be pulled back to the equilibrium state with the adjustment force of 0.342. It can be seen from the comparison of the coefficient coefficients. The impact of short-term relationships is greater than the impact of long-term relationships.

4.3. **Impulse response analysis**

Pulse analysis is used to describe the trend of influence between agricultural trade and agricultural cold chain logistics, as shown in the following figure. It can be seen that the short-term demand impact of agricultural cold chain logistics has a small initial value and a second lag. As time goes by, its contribution to agricultural trade volume begins to rise. When the demand for the second phase of cold chain logistics, that is, the circulation of cold chain logistics, increased, the trade volume of agricultural products in the third phase also increased, and the rate of increase was very fast. Then the speed began to slow down, but the trade in agricultural products was still rising slowly. the trend of. Therefore, the results of the impulse response are consistent with our hypothesis, and the assumption is true. Compared with the cold chain demand of agricultural products, agricultural trade has a greater response to the supply of agricultural products. The supply of cold chain logistics of agricultural products in the initial stage has little impact on the trade volume of agricultural products. However, as the supply of cold chain logistics of agricultural products increases in the second period, the force of agricultural products trade increases in the third period, and the effect continues. Strong sex, when the supply of agricultural products is weakened, the positive impact on the trade volume of agricultural products is still large, indicating that the increase in the supply of cold chain logistics of agricultural products can promote the increase of agricultural trade volume and its role has a sustained strong effect, the result of impulse response and Our hypothesis 2 is consistent, and hypothesis 2 is established.

Figure 1. VEC model AR feature polynomial inverse root map

Figure 2. Pulse analysis of agricultural product cold chain logistics demand for agricultural product trade volume
Figure 3. Pulse analysis of the supply of agricultural cold chain logistics to the trade volume of agricultural products

4.4. Granger causality test
The above test shows that there is a cointegration relationship between the variables, and both are first-order differential stationary sequences, so the Granger causality test is further carried out. As can be seen from Table 4, the demand for cold chain logistics is the Granger cause of agricultural trade, and the P value is 0.071, which is significant at the level of 10%. The supply of cold chain logistics is the Granger cause of agricultural trade, with a P value of 0.096, which is significant at the level of 10%. At the same time, the supply and demand of cold chain logistics are the Granger reasons of the other party. The P value is 0.000, which is significant at the level of one percent. Therefore, the results of the Granger causality test indicate that the increase in the demand and supply of cold chain logistics in Sichuan Province will increase the trade volume of agricultural products in Sichuan Province. The results of the causal test are consistent with our hypothesis 1 and 2. The growth of demand and supply reflects the development of cold chain logistics in Sichuan Province on the other hand. Therefore, the development of cold chain logistics in Sichuan Province can accelerate the development of agricultural trade in Sichuan Province.

Table 3. Inspection of Granger causality test results

Null hypothesis	F Statistics	P value	conclusion
Cold chain logistics demand is not Granger causality of agricultural trade	3.472	0.071	Refuse
Agricultural trade is not cold chain logistics demand	0.076	0.928	accept
Granger causality			
Cold chain logistics supply is not agricultural trade	2.985	0.096	Refuse
Granger causality			
The trade volume of agricultural products is not for cold chain logistics .Granger causality	0.065	0.938	accept

5. Conclusions and recommendations
Based on the above empirical analysis results, the relevant conclusions are as follows: (1) In the long run, there is a long-term equilibrium relationship between agricultural products trade in Sichuan Province and cold chain logistics of agricultural products. Although the total trade volume of agricultural products in Sichuan Province, the demand for cold chain logistics of agricultural products and the supply of cold chain logistics of agricultural products are all unstable sequences, and are all single-stage single sequence. (2) The improvement of Sichuan cold chain logistics level can continue to promote the development of agricultural products trade in Sichuan Province, but there is a certain lag, indicating that when the logistics level is improved, the trade volume of agricultural products will increase after a certain period of time, and agricultural products will be increased. Trade responds to cold chain logistics supply more than cold chain logistics demand. (3) From the result of Granger causality test, it is concluded that the demand and supply of cold chain logistics in Sichuan Province is a one-way causal relationship with the agricultural product trade in Sichuan Province. Even though Granger causality is not equal to the actual causal relationship, it also has reference value, which explains to some extent the continuous improvement of the cold chain logistics level of agricultural products in Sichuan Province, and will promote the development of agricultural trade in Sichuan Province in the long run. However, the development of agricultural trade in Sichuan Province is not necessarily due to the improvement of the level of cold chain logistics of agricultural products in Sichuan Province.
According to the analysis, it is known that there is a strong sustained impact between the two. Therefore, the following suggestions are proposed for the joint development of the agricultural trade in Sichuan Province and the cold chain logistics of agricultural products in Sichuan Province:

First of all, Sichuan pork, vegetables, tobacco and products have strong trade competitiveness, but there are very few deep-processed agricultural products. Therefore, we should actively promote Sichuan's high-quality agricultural products, such as tea, seeds, fruit and vegetables, and other quality products. At the same time, we should coordinate and integrate with logistics, standardize service standards, improve circulation efficiency, ensure the freshness and safety of perishable agricultural products, promote the development of agricultural trade and better coordinate domestic and international markets.

Secondly, for the cold chain logistics of agricultural products in Sichuan Province, we should vigorously develop third-party cold chain logistics, improve logistics technology, strengthen the infrastructure construction of cold chain logistics, and increase the number of refrigerated trucks and the number of cold storages. At the same time, it reduces the circulation of agricultural products and accelerates the connection between logistics nodes. Based on Chengdu and the surrounding cities of Chengdu, we will build a large-scale comprehensive multi-functional cold storage logistics center integrating meat, aquatic products, vegetables and fruits. At the same time, we must play the role of the Qing bai jiang railway transportation hub and achieve better coordination with Asia's largest railway container center, docking Rong Ou fast rail. This will establish a cross-regional agricultural product circulation base and an international commodity trading platform and it can directly connect with the Central Asian and European markets and increase the speed of the construction of port bonded logistics centers and international logistics parks. Relying on the Cheng Kun man International Channel, the market in Yunnan and Xinjiang can be connected to Europe, Central Asia and Southeast Asia, and a direct export system for transnational land transport will be built. The Tianfu big market relies on the three-dimensional transportation system to realize the circulation of agricultural products in the province for 24 hours. The construction of the transit corridor for land and sea transport promotes the smooth cross-border circulation of agricultural products.

Acknowledgment
The authors are supported by the National Natural Science Foundation of China (No. 71972136, 71602134, 71702156), Humanities and Social Sciences of Ministry of Education of China (No. 19YJC630063, 17YJC630098), and Sichuan Mineral Resources Research Center (No. SCKCZY2019-YB006).

References
[1] Krugman, Paul. Increasing Returns and Economic Geography[J]. Journal of Political Economy, 1991, 99(3):483-499.
[2] Boylan J. Logistics: Where Ends Have to Meet [J]. Journal of the Operational Research Society.
[3] Egger P. On the Impact of Transportation Costs on Trade in a Multilateral World[J]. Southern Economic Journal, 2005, 71(3):592-606.
[4] XiaoBo C. Construction of Cross-strait Cold-chain Logistics System and Development of Agricultural Products Trade [J]. Taiwan Agricultural Research, 2012.
[5] Gani, Azmat. The Logistics Performance Effect in International Trade[J]. The Asian Journal of Shipping and Logistics, 2017, 33(4):279-288.
[6] Marti, Luisa, Puertas R. The importance of export logistics and trade costs in emerging economies[J]. Maritime Economics & Logistics, 2017, 19(2):315-333.
[7] Munim Z H, Schramm H J. The impacts of port infrastructure and logistics performance on economic growth: the mediating role of seaborne trade [J]. Journal of Shipping and Trade, 2018, 3(1):1.
[8] Yazhen Yu. Empirical Research on the Relationship between Modern Logistics and Foreign Trade—Based on the Data of Zhejiang Province from 1986 to 2009[J]. International Trade Problem, 2012(01):99-107.
[9] Zhao Zhang. Research on the Dynamic Relationship between Logistics Industry Efficiency and Foreign Trade Dependence[J]. Statistics and Decision, 2014(22): 139-142.
[10] Xinzhi Tang. Research on the Relationship between Modern Logistics and Foreign Trade—An Empirical Analysis Based on Data from 2001 to 2013 in Sichuan Province[J]. Logistics Technology, 2014,33(23):245-246+259.
[11] Jin Zhang, Yiheng Chen. External Economic Research and Empirical Analysis of Logistics Facilities[J]. China Circulation Economy, 2015,29(12):46-53.
[12] Dongfang Wang, Qianli Dong, Lixin Yu. Logistics Performance of China and Foreign Countries along the Belt and Road Initiative and China's Foreign Trade Potential[J]. China Circulation Economy,
2018, 32(02): 17-27.

[13] Aihu Wang, Mengyao Wang, Yuyan He. The Influence of Guangdong Province's Logistics Level on Its Export Trade under the Background of “Belt and Road”——An Empirical Study Based on Gravity Model [J]. Industrial Engineering, 2018, 21(02): 1-8.

[14] Zengjun Ma. Review and Prospect of China's Agricultural Products Wholesale Market Development in the Past 30 Years[J]. China Circulation Economy, 2015,29(05):5-10.

[15] Genrong Liu, Yu Ci. Research on China's Agricultural Product Circulation Innovation and Its Impact on Farmers' Income[J]. China Economic Issues, 2017(03): 113-122.

[16] Yinguo Dong, Junwen Huang. Quality Measurement of China's Exported Agricultural Products—Based on Nested Logit Model[J]. China Rural Economy, 2016(11): 30-43.

[17] Lingling Yuan, Beibei Wang. Analysis on the Causes and Trends of the Growth of Import Trade of Fresh Agricultural Products in China[J]. China Circulation Economy, 2017,31(12):56-64.

[18] Jianxin Liu, Keshan Wang, Chunlin Zhang. Main Problems and Countermeasures of Ecommerce Development of Fresh Agricultural Products[J]. China Circulation Economy, 2016,30(12):57-64.