Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune condition that commonly causes kidney impairment and can be fatal. The key participation of B-lymphocytes as ANCA producers and neutrophils as target of these antibodies is widely described as the mechanism of endothelial damage in this disease. There has been a rising interest in the role of T-lymphocytes in AAV in recent years. Evidence is strong from animal models, and T-lymphocytes can be found infiltrating kidney tissue and other tissue sites in AAV patients. Furthermore, the different subsets of T-lymphocytes are also key players in the aberrant immune response observed in AAV. Polarization towards a predominant Th1 and Th17 response in the acute phase of the disease has been described, along with a decline in the number of T-regulatory lymphocytes, which, in turn, show functional impairment. Interactions between different T-cell subsets, and between T-cells and neutrophils and B-cells, also enhance the inflammatory response, constituting a complex network. Novel therapies targeting T-cell immunity are emerging in this scenario and may constitute an interesting alternative to conventional therapy in selected patients. This review aims to summarize the available evidence regarding T-cell imbalances and functional impairment, especially focusing on renal involvement of AAV.

Keywords: ANCA, crescentic glomerulonephritis, cytokine, glomerulonephritis, immunology, T-lymphocyte
absence of different T-cell subsets, and a 20-amino acid region (MPO 409–428) was identified as an immunodominant T-cell epitope by Ooi et al. in a murine model of myeloperoxidase (MPO)-induced glomerulonephritis [3]. Finally, amelioration of the disease after T-cell-directed therapies suggests a role for T-cells in the pathogenesis [4].

Here, we aim to review the recent evidence regarding the imbalance of T-cells, their related functional impairment and their therapeutic implication in AAV.

T-LYMPHOCYTES: IMBALANCES AND DYSFUNCTION IN AAV

Cytotoxic T-lymphocytes

CD8+ T-cells, classically named cytotoxic, are important in the defence against intracellular pathogens and cancer. After recognition of peptides presented by major histocompatibility complex (MHC) class I, they cause cellular death by cytotoxicity via induction of apoptosis and secretion of the pro-inflammatory cytokines tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) [5]. Available data from preclinical models, and also in human AAV, point to CD8+ T-cells as playing a direct role in tissue damage in AAV, at least in part, together with other innate immunity cells [6].

In a murine model of anti-MPO glomerulonephritis, Chang et al. showed that CD8+ T-cell blockade diminished the extent of histological lesions and renal impairment. They also proved that CD8+ T-cells selectively caused glomerulonephritis when transferred to mice with kidney-plantted MPO antigen [7].

In human AAV, the proportion of activated CD8+ T-cells is elevated, according to various authors [6, 8, 9]. McKinney et al. explored blood CD8+ T-cell gene expression profile in AAV. They found that the higher expression of a particular subgroup of genes related to T-cell survival and expansion of memory CD8+ T-cells was strongly associated with a shorter time to relapse after induction of remission treatment. Those upregulated genes were specifically implicated in interleukin (IL)-7 and T-cell receptor (TCR) signalling pathways. If these findings are validated in prospective studies and can be adapted into a clinically viable test, then this could help to identify those patients with a greater propensity to relapse, thus enabling therapy customization [10]. Kidder et al., in a T-cell marker validation study including 38 renal biopsies from AAV patients, found an increased number of CD8+ T-cells in the periglomerular area and interstitium in kidneys with crescentic histology, and a significant correlation between the number of CD8+ T-cells and the glomerular filtration rate. Despite the low number of T-lymphocytes infiltrating the glomeruli, CD8+ T-cells predominated over CD4+ T-cells [11].

Mechanistically, the importance of the CD8+ T-cell subset may reside in their capability to activate polymorphonuclear (PMN) cells [6]. PMN cell activation is a key event in the pathogenesis of AAV that leads to exposure of protease 3 and MPO on their surface, allowing their recognition by ANCA [1]. IFN-γ secreted by CD8+ T-cells during the acute phase of AAV is a potent activator of PMN cells, thus explaining the contribution of the CD8+ T-cell subset to disease pathogenesis.

Helper T-lymphocytes

CD4+ T-cells, classically named T-helper cells, orchestrate the adaptive immune response. They activate B-cells, macrophages and cytotoxic T-cells via a wide range of cytokines that, in turn, constitute the signature of every T-helper cell subset [12]. As ANCA production is T-cell-dependent, B-cells require stimulation from previously activated T-helper lymphocytes to produce antibodies. After CD4+ T-cells recognize antigens exposed by antigen-presenting cells and become activated, they are able to activate, in turn, B-cells that bind the same antigen on their B-cell receptor [13] (Figure 1). B-cell activation leads to proliferation, isotype switch and antibody secretion.

In the MPO-induced glomerulonephritis murine model, CD4+ T-cell depletion diminished the extent of the disease [14]. In vitro proliferation and ANCA production [15] of peripheral blood mononuclear cells (PBMCs) from AAV patients in response to MPO stimulation disappeared after CD4+ T-cell depletion. The beneficial effects of the use of anti-thymocyte globulin (ATG) in patients with AAV for induction of remission also constitute proof of concept [16].

Next we will further discuss the reported evidence of imbalances and functional disturbances in the different subsets of T-helper cells in AAV. Controversial results have been found in this setting, with a changing predominance of the different subsets, depending on the AAV phenotype and disease activity.

Th1/Th2 subset imbalance

Th1 cells release IL-2, IFN-γ and TNF-α after activation, trigger macrophages and cytotoxic T-cells, as part of the intracellular pathogen defence, and stimulate immunoglobulin G (IgG) class switch by B-cells [10]. On the other hand, Th2 cells release IL-4, IL-5, IL-10 and IL-13 after activation and stimulate B-cells, constituting the main defence against extracellular pathogens.

Available data point to a predominance of the Th1 immune response in AAV, especially during the acute phase. Masutani et al. found a higher peripheral Th1/Th2 ratio in AAV acute patients compared with controls, that significantly decreased in remission, and a higher tissue expression of IFN-γ in kidney biopsies [17]. Abdulahad et al. described a predominance of the Th1 subset during the acute and remission phases of the disease, but in particular they observed a polarization towards Th2 response in remission in the memory cell population [18]. Popa et al. stimulated PBMCs from AAV remission patients with proteinase 3 and found a predominance of Th2 ILs in the supernatant, with very low IFN-γ levels [19]. Szczeklik et al. also found higher peripheral Th2 cell counts during remission in AAV patients [20], in line with the higher plasma levels of CCL22 produced by this subset, as observed by Eriksson et al. [21].

Th1 polarization in the acute phase is related to an altered co-stimulation pattern. CD28 co-stimulation promotes the differentiation of naive T-cells to a Th2 profile, whereas the absence of this co-stimulatory signal and an increased B7 (CD80/86) expression, both features present in AAV, as will be later discussed, should lead to differentiation to a Th1 profile [22]. Interestingly, IgG3 is the strongest immunoglobulin subclass inducing neutrophil activation, and the IgG switch to IgG3 mainly depends on Th1 induction [23]. On the other hand, authors hypothesize that polarization to a Th2 response in the remission phase represents an imbalance recovery [20] or a poorer susceptibility to immunosuppressive therapy of this T-cell subset [24].

Additionally, differences in Th1/Th2 imbalance have been described, depending on the clinical phenotype or extent of the disease. Müller et al. suggested that in granulomatosis with polyangiitis (GPA), a predominant Th1 response is found in patients with localized disease, based on the findings of higher IFN-γ expression both in nasal biopsies and in PBMCs in patients with localized disease compared with those with...
generalized disease [25]. The authors hypothesized that in generalized GPA, a delayed-type hypersensitivity response related to Th2 is of greater importance [26], even though these findings have not been reproduced in other GPA cohorts [18]. Regarding eosinophilic GPA (EGPA), predominance of the Th2 response has been documented, which may indicate underlying aetiopathogenic differences with a major role of allergic response [27].

In summary, the bulk of the evidence points to a predominance of Th1 response, which probably enhances neutrophil activation that occurs early in the development of the disease. Meanwhile, in the remission phase, this polarization reverts, such that Th2 is the main participating T-cell subset.

Th17 subset

The Th17 T-helper subset is involved in defence against extracellular bacteria and fungi, and is implicated in autoimmune diseases [28]. Th17 cells express the transcription factor RORγt and produce IL-17A–F, mainly IL-17A. IL-23 is required by the Th17 subset to expand and mature [29]. In turn, Th17 cells are inhibited by Th1 and Th2 cytokines.

Various authors proved the role of IL-17-producing cells in a murine model of crescentic glomerulonephritis. IL-17 induces the renal expression of C-X-C Motif Chemokine Ligand 5 (CXCL5) by the tubular epithelium that is responsible for neutrophil attraction [30]. Gan et al. compared the histological lesions and kidney function parameters in IL-17- and IL-17 receptor knock-out mice with wild-type specimens in an MPO-induced glomerulonephritis model. Knock-out animals showed less histological damage and better renal function compared with wild-type mice, suggesting a pivotal role of Th17 cells in the disease [31].

Given that neutrophils have a prominent role in AAV, the Th17 cell subset has also been a focus of attention in recent years because of the interplay between these two cell types. Expansion of the Th17 subset has been described in the setting of the acute phase of AAV, with a decline in early remission. Nogueira et al. demonstrated significantly higher levels of serum IL-17A in a cohort of 28 AAV acute patients and 65 AAV convalescent patients compared with healthy controls, with serum IL-23 levels following the same pattern [32]. Szczeklik et al. found higher proportions of circulating Th17 cells in AAV patients compared with healthy controls, by flow cytometry [20]. Specificity of this Th17 response against proteinase 3 was evaluated by Abdulahad et al., who found a higher percentage of activated Th17 cells after stimulation with proteinase 3 in a cohort of 29 AAV patients in remission compared with healthy controls, as well as higher levels of IL-17 in the supernatant of stimulated AAV lymphocytes [33]. Additional results from Nogueira et al. were in agreement with these studies, describing higher percentages of IL-17-producing cells after stimulation with proteinase 3 or MPO, using the ELISPOT method, in a group of 17 AAV patients compared with healthy controls [32]. By contrast, other authors did not find evidence of this expanded Th17 response in AAV [20, 21, 34]. It may be hypothesized this is due to a high susceptibility of this cellular subset to steroids, as a
possible explanation [35], or due to the variety of cytokines in the IL-17 family. For instance, Krohn et al. found no differences in serum IL-17A levels from 70 AAV patients compared with healthy controls, but interestingly they found a significant elevation in IL-17C levels [36].

Whether the Th17 subset is the main source of production of IL-17 in AAV is also controversial. Velden et al. demonstrated the presence of IL-17 in an immunohistochemistry study including 22 AAV diagnostic kidney biopsies. Co-localization of the cytokine with other cellular markers identified neutrophils as the main source of IL-17, followed by mast cells and lastly by Th17 lymphocytes [37].

Under certain circumstances and in certain cytokine milieus, Th17 cells undergo epigenetic modifications, thus showing high plasticity and a capability of altering their phenotype and function. Under stimulation by IL-12 or IL-1β (produced by antigen-presenting cells in the presence of danger molecules), Th17 cells express IFN-γ and acquire a Th1-like phenotype. If stimulated by IL-4, they convert into cells with a Th2-like phenotype. Along the same line, under IL-1β and IL-6 stimulation, T-regulatory lymphocytes (Tregs) (see T-regulatory subset section) can acquire a Th17-like phenotype and produce IL-17 [38]. However, it seems that in immune-mediated kidney diseases, Th17 cells display minimum plasticity compared with other autoimmune conditions [39]. In AAV, the proportion of Th1-like Th17 cells is higher in the acute phase of the disease or in the remission phase of the disease with no treatment compared with healthy controls, but the significance of this subset needs to be further studied [40].

Knowledge of the existence of the Th17 subset is relatively recent. The role of Th17 cells in the development of AAV and their interaction with other immune cells remain to be fully elucidated, although knock-out murine models prove that this role certainly exists. Linking with the pathogenesis of AAV, what is clear at the moment is that by induction of a variety of chemokines, the Th17 subset enhances the recruitment of neutrophils to the inflammation site and contributes to organ damage in AAV. This cross-talk is reciprocal, and neutrophils also are able to induce chemotaxis of Th17 cells, which makes this cellular axis even more interesting as a possible target in the treatment of AAV, similar to other inflammatory conditions [41].

T-regulatory subset
Tregs inhibit T-effector cells and are responsible for antigen-specific peripheral tolerance and autoimmunity prevention [5]. Tregs are defined as CD4+CD8−CD25 (IL-2R)+FOX3+ T-cells. FOXP3 is a transcription factor indispensable for Treg development and function. The role of Treg disturbances in the pathogenesis of crescentic glomerulonephritis has been proven in animal models. Tan et al. reduced the Treg population in a murine model of MPO-induced glomerulonephritis by the administration of an anti-CD25 antibody. They found a higher proportion of MPO-specific Th1 and Th17 cells, higher kidney functional impairment and more severe histological lesions compared with vehicle-treated animals [42]. Along the same line, Paust et al. generated mice lacking CXCR3 specifically in Tregs, which is crucial for Tregs to migrate to inflammation sites. These mice showed enhanced kidney impairment and more severe histological lesions with lower Treg infiltration compared with wild-type mice, after induction of nephrotoxic nephritis [43].

Various authors described a higher proportion of Tregs in patients during the acute phase of AAV, with a decrease when remission was reached [34, 44]. In addition, Morgan et al. found that patients with a higher Treg count at presentation entered into earlier remission compared with those with a lower Treg count, as well as a negative correlation between Tregs and disease relapse rate, suggesting that higher numbers of Tregs suppress AAV activity [45]. Opposite results have been reported by other authors, who observed a depletion of Tregs in the acute phase and progressive expansion in the remission phase, together with a negative correlation between Tregs and activity markers [20]. At tissue level, Yoshimura et al. correlated a lower FOX3 expression by immunostaining of AAV renal biopsies with the requirement for maintenance dialysis, suggesting that lower Treg infiltration translates into higher disease activity [46].

Various proliferation studies proved diminished suppressor function of Tregs in AAV patients compared with healthy controls [34, 45, 47], although with occasional increase in the proliferation of T-effector cells after interaction with Tregs [47]. Morgan et al. found that Treg function was impaired, particularly in patients who remained persistently ANCA-positive over time compared with those who became ANCA-negative [45], consistent with a higher degree of activity of the disease. The mechanistic explanation for Treg impairment lies in the higher resistance of T-effector cells to Tregs and Treg hypofunctionality, associated with the expression of a FOX3 isoform lacking exon 2, which contains a crucial domain for its suppressive properties [44].

In summary, probably both population imbalances and functional impairment of Tregs in AAV lead to an uncontrolled inflammatory state that relieves and stabilizes in the remission phase of the disease. Controversy regarding the number and functionality of Tregs in AAV is, in part, due to the changing gating strategies used to identify those cells, the heterogeneity of the disease stages and the differences in treatment of the patients included in the studies [34], so conclusions should be drawn cautiously.

Memory T subset
Memory T-cells are a subset of T-cells that previously encountered their specific antigens, and thus they are also called ‘antigen-experienced T-cells’. They have the capability of quickly expanding in number and activating after re-exposure to the antigen. They are CD4+ or CD8+, and usually express CD45RO [48].

Of interest is the finding of an increased population of effector memory T-cells with a parallel decrease in the naive T-cell population, reflecting hyperactivation in the setting of continuous exposure to auto-antigens in AAV [33]. During the remission phase of the disease, persistent expansion of CD4+ T-cells with an effector memory phenotype has been described, together with a decrement in the amount of circulating CD4+ naive cells. Strikingly, during a disease flare-up, a decrease in CD4+ effector memory T-cells has been observed [49, 50]. In line with this finding, Abdulahad et al. hypothesized that this phenomenon is due to migration of those cells to sites of tissue damage. They observed the presence of infiltrating CD4+ effector memory T-cells in renal biopsies and also in urinary sediments from patients who had experienced a disease flare-up, which disappeared when remission was reached again [51].

In summary, regarding T-cell subsets, virtually all have been found to be expanded. Various authors have reported an expansion of Th1 and Th17 effector memory T-cells in GPA and microscopic polyangiitis, and an expansion of Th2 and Th17 effector
memory T-cells in patients with EGPA [52]. Aberrant expression of Natural Killer Group 2D (NKG2D) in a subgroup of these effector memory T-cells has been described, conferring a natural killer (NK) cell-like cytotoxicity against endothelial cells, and thus contributing to tissue damage [53].

Follicular T-helper subset

Follicular T-helper (Tfh) cells are required for the development of the germinal centre where B-lymphocyte antigenic affinity undergoes maturation. The role of these cells is being investigated in autoimmunity and seems to be more prominent in diseases with a higher participation of autoantibodies. Altered Tfh cells may lead to the generation of aberrant autoantibodies and the formation of ectopic follicles [54].

Abouladah et al. identified increased circulating Tfh cells, identified as BCL6+ IL-21-producing cells, compared with healthy controls. The percentage of these cells was significantly higher in ANCA-positive, compared with ANCA-negative, patients. Moreover, IL-21 enhanced spontaneous ANCA production in cultures of PBMCs from ANCA-positive patients compared with ANCA-negative patients [55]. This way, the expanded population of circulating Tfh cells may be collaborating in the production of ANCA autoantibodies, which constitutes the trigger for the initiation of an inflammatory response in AAV.

ALTERATIONS IN T-LYMPHOCYTE ACTIVATION IN AAV

T-lymphocytes express TCR. Ninety-five per cent of lymphocytes express $\alpha\beta$-chain TCR, and 5% express a variant $\gamma\delta$-chain TCR [5]. The first signal for T-cell activation consists of TCR recognition of peptides presented by MHC molecules. The second signal for activation of effector T-cells consists of the binding of CD28 to B7. By contrast, CTLA-4 binding to B7 inhibits this activation.

Differential expression of TCR genes in the variable domain of the α and β chains has been found in AAV patients [56], with an increased expression of the V2.1 gene in the β chain compared with healthy controls [57]. T-cells carrying $\gamma\delta$-chain TCR are involved in innate host defence and can produce IL-17. The role of these IL-17-producing, $\gamma\delta$-chain TCR-expressing T-cells in AAV has been addressed in murine models [58, 59]. In γ and δ chain knock-out murine models, structural and glomerular injury is attenuated. Limited evidence exists on the role of the $\gamma\delta$ T-cell subset, but interestingly the presence of infiltrating $\gamma\delta$ T-cells in biopsies from AAV patients has been observed, in contrast to healthy controls [60], and the authors hypothesized this could lead to disturbances in antigen recognition. In the case of IL-17-producing, $\gamma\delta$-chain TCR-expressing T-cells, it may be related to the neutrophil attraction function of this IL.

CD28 expression decreases in AAV patients, thus resulting in resistance to anergy [6, 61]. A negative correlation of the percentage of CD28+ cells with disease activity has been established [61]. CD4+CD28− T-cell infiltrate is present in the nasal tissue of AAV patients with upper respiratory tract involvement [62]. CTLA-4 is overexpressed in AAV patients compared with healthy controls [63], and certain CTLA-4 polymorphisms have been correlated with a higher susceptibility to the development of AAV [64]. Whether it also preserves inhibitory functions remains to be elucidated [65].

By contrast, IL-2 binding to IL-2R is the second signal for activation of Tregs [5] and is critical to their survival and functionality. Wilde et al. showed a lower expression of the β subunit of IL-2R (CD122) compared with Tregs from healthy controls [66]. Altogether, altered co-stimulation of T-cells in AAV promotes effector T-cell anergy and causes impaired activation of Tregs, which, in turn, contributes to a more pronounced pro-inflammatory state.

T-LYMPHOCYTES AS A THERAPEUTICAL TARGET IN AAV

T-lymphocytes constitute an interesting therapeutic target, given their prominent role in the pathogenesis of the disease. Reported therapies along this line are directed to abolish the T-cell response, either by cell depletion or by targeting their cytokines. Classical therapies such as use of cyclophosphamide or corticosteroids affect T-lymphocytes. Cyclophosphamide causes decreased B- and T-helper lymphocyte counts, and consequently an increased CD4/CD8 ratio that can persist for years [67]. Naïve T-lymphocytes are especially sensitive to cyclophosphamide [68]. Similarly, prednisone decreases the circulating T-cell count, particularly CD4+ T-cells, with a minor effect on B-cell count [69].

Lymphocyte-depleting antibodies

The humanized anti-CD52 monoclonal antibody alemtuzumab selectively depletes lymphocytes and has been shown to be effective in other systemic vasculitides such as Behçet’s disease [70]. Incomplete recovery of the CD4+ population and predominance of Tregs occur in remission and may benefit disease control [71]. Walsh et al. treated 71 patients with refractory or relapsing AAV with alemtuzumab and found it useful to achieve remission with a lower relapse rate [72].

ATG is a mix of polyclonal antibodies against lymphocytes. ATG is useful in the setting of refractory or relapsing AAV [16, 73]. The largest cohort described showed 13 partial or complete disease responses among 15 AAV patients [73]. Thus, ATG may be considered in non-responders to conventional therapies despite its side effects.

Cytapheresis

Cytapheresis removes specific leucocytes from blood, using special columns that precisely deplete these cells [74], and is effective in AAV [75, 76]. Hasegawa et al. compared cytapheresis plus low-dose corticosteroid treatment in AAV with kidney involvement against treatment with corticosteroid pulses, and they found a similar renal recovery rate with lower 1-year mortality in the cytapheresis group [77]. In a Japanese study, 53 out of 715 AAV patients were treated with cytapheresis. Survival benefit was observed in those with pulmonary renal syndrome and higher C-reactive protein (CRP) levels, as well as a faster ANCA titre decline [78]. Reduction in pro-inflammatory cytokines is the underlying mechanism for the usefulness of cytapheresis [79].

Haematopoietic stem cell transplantation

Haematopoietic stem cell transplantation (HSCT) is an emerging therapy in low-responding patients with autoimmune diseases. Low mortality and high efficacy have been reported. This therapy alters the disease course and leads to de novo T-cell reconstitution. Four refractory AAV patients achieved partial or complete response after HSCT, without treatment-related mortality, as reported by Daikeler et al. [80].
Rituximab

Rituximab is an anti-CD20 monoclonal antibody that causes B-cell depletion and consequently acts on the pathophysiology of the disease, leading to a dramatic fall in ANCA titre. The efficacy and safety of this therapy in the induction of disease remission have been assessed in the RITUXVAS (Rituximab versus cyclophosphamide in ANCA-associated vasculitis) and RAVE (Rituximab in ANCA-Associated Vasculitis) trials [81, 82].

Rituximab leads also to T-cell impairment. B-cell depletion causes a reduction in T-cell-stimulating cytokines produced by B-cells, and consequently a reduction in peripheral circulating T-cells [83]. Moreover, a small population of T-cells also express CD20, constituting a direct target for this therapy [84]. Neel et al. found that rituximab inhibited CD8+ memory T-cell expansion in a group of AAV patients, in contrast to conventional immunosuppressive therapy, with no effects on the CD4+ T-cell population [85]. Regarding Tregs, Zhao et al. demonstrated a repopulation of this subset in patients treated with rituximab compared with AAV patients treated with conventional therapy, which may also contribute to remission [86].

Abatacept

Abatacept contains the extracellular domain of CTLA-4, which blocks CD28–B7 interaction, given CTLA-4 affinity for B7. This co-stimulation blockade inhibits T-cell activation.

Abatacept was administered to 20 patients with non-severe relapsing AAV, showing a low relapse incidence rate during follow-up [87]. A randomized controlled trial is currently ongoing, evaluating the efficacy of abatacept in sustaining AAV relapse in a steroid-free regimen compared with conventional therapy [88].

Etanercept

TNF-α is involved in the pathogenesis of AAV. The WGET (Wegener’s Granulomatosis Etanercept Trial) trial evaluated the efficacy of etanercept in maintaining disease remission. Etanercept was not useful as maintenance therapy and showed a worse adverse effect profile [89], particularly neoplasms [90].

Th17 blockade

Antibodies directed against IL-17 and IL-23 (secukinumab and ustekinumab, respectively) are effectively used in other autoimmune conditions such as psoriasis [91], but no current studies are being conducted in vasculitis yet, despite the existence of a clear rationale, as described above.

Immunomodulatory therapy

Induction of tolerance by nasal inhalation of MPO at low doses increases Treg response and attenuates kidney damage in a murine model of MPO glomerulonephritis. Although no evidence exists in human vasculitis, an immunomodulatory therapy may be effective, based on the high homology between mouse and human MPO protein [92].

CONCLUSIONS

Characterization of the role of T-cells in AAV has helped to further clarify the pathogenesis of AAV. Although multiple inflammatory pathways are involved, auto-reactive T-cells are implicated both in the initiation and in the organization of the immune response, with population imbalances, as well as functional impairment. T-cells constitute an attractive therapeutic target for the treatment of AAV.

FUNDING

This study was supported by Programa Comité de Recerca-HUB de Formació Post-Residencia en Recerca, Convocatòria d’Ajuds per la Recerca Clínica 2016 (IDIBELL Biomedical Research Institute) and European Regional Development Funds ISCIII, Red Temática de Investigación Cooperativa en Salud Red de Investigación Renal, RD16/0009/0003.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Jarrot P-A, Kaplanski G. Pathogenesis of ANCA-associated vasculitis: an update. Autoimmun Rev 2016; 15: 704–713
2. Salvadori M, Tsalouchos A. Antineutrophil cytoplasmic antibody associated vasculitides with renal involvement: open challenges in the remission induction therapy. World J Nephrol 2018; 7: 71–83
3. Ooi JD, Chang J, Hickey MJ et al. The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antmyeloperoxidase glomerulonephritis. Proc Natl Acad Sci USA 2012; 109: E2615–E2624
4. Wilde B, Thewissen M, Damoiseaux J et al. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther 2010; 12: 204
5. Hall BM. T cells: soldiers and spies–the surveillance and control of effector T cells by regulatory T cells. Clin J Am Soc Nephrol 2015; 10: 2050–2064
6. Ikering-Konert C, Vogl T, Prior B et al. T lymphocytes in patients with primary vasculitis: expansion of CD8+ T cells with the propensity to activate polymorphonuclear neutrophils. Rheumatology 2008; 47: 609–616
7. Chang J, Eggenhuizen P, O’Sullivan KM et al. CD8+ T cells effect glomerular injury in experimental anti-myeloperoxidase GN. J Am Soc Nephrol 2017; 28: 47–55
8. Ikeda M, Tsuru S, Watanabe Y et al. Reduced CD4–CD8 T cell ratios in patients with Wegener’s granulomatosis. J Clin Immunol 1992; 38: 103–109
9. Schlesier M, Kaspar T, Gutfeisch J et al. Activated CD4+ and CD8+ T-cell subsets in Wegener’s granulomatosis. Rheumatol Int 1995; 14: 213–219
10. McKinney EF, Lyons PA, Carr EF et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med 2010; 16: 586–591
11. Kidder D, Bray SE, Fleming S. Differences in the frequency of macrophage and T cell markers between focal and crescentic classes of anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. J Nephropathol 2016; 6: 97–102
12. Alberts B, Johnson A, Lewis J et al. Molecular Biology of the Cell. New York, NY: Garland Science, 2002
13. Janeway CA, Travers P, Walport M et al. B-cell activation by armed helper T cells. In: Lawrence E, Austin P (eds). Immunobiology: The Immune System in Health and Disease, 5th edn. New York, NY: Garland Science, 2001, 343–381
14. Ruth A-J, Kitching AR, Kwan RYQ et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play...
nonredundant roles in anti-myoeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol 2006; 17: 1940–1949

15. Yoshida M, Iwashori T, Nakabayashi I et al. In vitro production of myeloperoxidase anti-neutrophil cytoplasmic antibody and establishment of Th1-type T cell lines from peripheral blood lymphocytes of patients. Clin Exp Rheumatol 2005; 23: 227–230

16. Hagen EC, de Keizer RJ, Andrassy K et al. Compassionate treatment of Wegener’s granulomatosis with rabbit anti-thymocyte globulin. Clin Nephrol 1995; 43: 351–359

17. Masutani K, Tomimoto M, Nakashima H et al. Strong polarization toward Th1 immune response in ANCA-associated glomerulonephritis. Clin Nephrol 2003; 59: 395–405

18. Abdulahad WH, van der Geld YM, Stegeman CA et al. Persistent expansion of CD4+ effector memory T cells in Wegener’s granulomatosis. Kidney Int 2006; 70: 938–947

19. Popa ER, Franssen CFM, Limburg PC et al. In vitro cytokine production and proliferation of T cells from patients with anti-proteinase 3- and antineutrophil cytoplasmic-associate vasculitis, in response to proteinase 3 and myeloperoxidase. Arthritis Rheum 2002; 46: 1894–1904

20. Szczeklik W, Jakieła B, Wawrzycka-Adamczyk K et al. Skewing toward Treg and Th2 responses is a characteristic feature of sustained remission in ANCA-positive granulomatosis with polyangiitis. Eur J Immunol 2017; 47: 724–733

21. Eriksson P, Andersson C, Cassel P et al. Increase in Th17-associated CCL20 and decrease in Th2-associated CCL22 plasma chemokines in active ANCA-associated vasculitis. Scand J Rheumatol 2015; 44: 80–83

22. Clayton AR, Savage CO. What you should know about FR3-ANCA. Evidence for the role of T cells in the pathogenesis of systemic vasculitis. Arthritis Res 2000; 2: 260–262

23. Mulder AH, Stegeman CA, Kallenberg CG. Activation of granulocytes by anti-neutrophil cytoplasmic antibodies (ANCA) in Wegener’s granulomatosis: a predominant role for the IgG3 subclass of ANCA. Clin Exp Immunol 1995; 101: 227–232

24. Cosmi L. Th17 and Treg lymphocytes as cellular biomarkers of disease activity in granulomatosis with polyangiitis. Eur J Immunol 2017; 47: 633–636

25. Müller A, Trabandt A, Gloeckner-Hofmann K et al. Localized Wegener’s granulomatosis: predominance of CD26 and IFN-γ expression. J Pathol 2000; 192: 113–120

26. Balding CE, Howie AJ, Drake-Lee AB et al. Th2 dominance in nasal mucosa in patients with Wegener’s granulomatosis. Clin Exp Immunol 2001; 125: 332–339

27. Kiene M, Csernok E, Müller A et al. Elevated interleukin-4 and interleukin-13 production by T cell lines from patients with Churg-Strauss syndrome. Arthritis Rheum 2001; 44: 469–473

28. Tabarkiewicz J, Pogoda K, Karczmarczyk A et al. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2015; 63: 435–449

29. Kuwabara T, Ishikawa F, Kondo M et al. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm 2017; 2017: 1–11

30. Disteldorf EM, Krebs CF, Paust H-J et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J Am Soc Nephrol 2015; 26: 55–66

31. Gan PY, Steinmetz OM, Tan DSY et al. Th17 cells promote autoimmune anti-myoeloperoxidase glomerulonephritis. J Am Soc Nephrol 2010; 21: 925–931

32. Nogueira E, Hamour S, Sawant D et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transplant 2010; 25: 2209–2217

33. Abdulahad WH, Stegeman CA, Limburg PC et al. Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 2008; 58: 2196–2205

34. Rimbert M, Hamidou M, Braudeau C et al. Decreased numbers of blood dendritic cells and defective function of regulatory T cells in antineutrophil cytoplasmic antibody-associated vasculitis. PLoS One 2011; 6: e18734

35. He Y, Luo Y, Lao X et al. Cytokine signatures of human whole blood for monitoring immunosuppression. Cent Eur J Immunol 2014; 39: 271–278

36. Krohn S, Nies FJ, Kapffer S et al. IL-17C/IL-17 receptor E signaling in CD4+ T cells promotes TH17 cell-driven glomerular inflammation. J Am Soc Nephrol 2018; 29: 1210–1222

37. Velden J, Paust H-J, Hoixa E et al. Renal IL-17 expression in human ANCA-associated glomerulonephritis. Am J Physiol Renal Physiol 2012; 302: F1663–F1673

38. Kleinewietfeld M, Hafer DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 2013; 25: 305–312

39. Krebs CF, Panzer U. Plasticity and heterogeneity of Th17 in immune-mediated kidney diseases. J Autoimmun 2018; 87: 61–68

40. Kerstein A, Müller A, Kabelitz D et al. Effector memory T-cells in the pathogenesis of ANCA-associated vasculitides. Z Rheumatol 2017; 76: 14–17

41. Pelletier M, Maggi L, Micheletti A et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010; 115: 335–343

42. Tan DSY, Gan PY, O’Sullivan KM et al. Thymic deletion and regulatory T cells prevent antineutrophilic GN. J Am Soc Nephrol 2013; 24: 573–585

43. Paust H-J, Riedel J-H, Krebs CF et al. CXCR3+ regulatory T cells control TH1 responses in crescentic GN. J Am Soc Nephrol 2016; 27: 1919–1925

44. Free ME, Bunch D, McGregor JA et al. Patients with antineutrophil cytoplasmic antibody-associated vasculitis have defective treg cell function exacerbated by the presence of a suppression-resistant effector cell population. Arthritis Rheum 2013; 65: 1922–1933

45. Morgan MD, Day CJ, Piper KP et al. Patients with Wegener’s granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. Immunology 2010; 130: 64–73

46. Yoshimura J, Fukami K, Koike K et al. Interstitial Foxp3-positive T cells may predict renal survival in patients with myeloperoxidase anti-neutrophil cytoplasmic antibody-associated glomerulonephritis. Clin Exp Immunol 2010; 17: 879–883

47. Abdulahad WH, Stegeman CA, van der Geld YM et al. Functional defect of circulating regulatory CD4+ T cells in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 2007; 56: 2080–2091

48. Clark RA. Resident memory T cells in human health and disease. Trans Med 2015; 7: 269rv1

49. Berden A, Cocolis E, Jayne D et al. Diagnosis and management of ANCA associated vasculitis. BMJ 2012; 344: e26

50. Berden AE, Kallenberg CGM, Savage CO et al. Cellular immunity in Wegener’s granulomatosis: characterizing T lymphocytes. Arthritis Rheum 2009; 60:1578–1587
51. Abdulahad WH, Stegeman CA, Kallenberg CGM. Review article: the role of CD4+ T cells in ANCA-associated systemic vasculitis. Nephrology (Carlton) 2009; 14: 26–32
52. Linterners LL, Rutgers A, Stegeman CA et al. Chemokine receptor co-expression reveals aberrantly distributed TH effector memory cells in GPA patients. Arthritis Res Ther 2017; 19: 136
53. Capraru D, Müller A, Csernok E et al. Expansion of circulating NKG2D+ effector memory T-cells and expression of NKG2D-ligand MIC in granulomatous lesions in Wegener’s granulomatosis. Clin Immunol 2008; 127: 144–150
54. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014; 41: 529–542
55. Abdulahad WH, Lepse N, Stegeman CA et al. Increased frequency of circulating IL-21 producing Th-cells in patients with granulomatosis with polyangiitis (GPA). Arthritis Res Ther 2013; 15: R70
56. Gicombe R, Grunewald J, Nityanand S et al. T cell receptor (TCR) V gene usage in patients with systemic necrotizing vasculitis. Clin Exp Immunol 1995; 101: 213–219
57. Simpson JJ, Skinner MA, Geursen A et al. Peripheral blood T lymphocytes in systemic vasculitis: increased T cell receptor V beta 2 gene usage in microscopic polyarteritis. Clin Exp Immunol 1995; 101: 220–226
58. Turner J-E, Krebs C, Tittel AP et al. IL-17A production by renal γδ T cells promotes kidney injury in crescentic GN. J Am Soc Nephrol 2012; 23: 1486–1495
59. Gan P-Y, Fujita T, Ooi JD. Pathogenic role for γδ T cells in autoimmune anti-myeloperoxidase glomerulonephritis. J Immunol 2017; 199: 3042–3050
60. Holmen C, Elsheikh E, Christensson M et al. Anti endothelial cell autoantibodies selectively activate SAPK/JNK signalling in Wegener’s granulomatosis. J Am Soc Nephrol 2007; 18: 2497–2508
61. Gicombe R, Wang XB, Csernok E et al. Characterization of the expanded T-cell populations in patients with Wegener’s granulomatosis. J Intern Med 2006; 260: 224–230
62. Komosci A, Lamplecht P, Csernok E et al. Peripheral blood and granuloma CD4(+)CD28(-) T cells are a major source of interferon-gamma and tumor necrosis factor-alpha in Wegener’s granulomatosis. Am J Pathol 2002; 160: 1717–1724
63. Gicombe R, Wang XB, Kakoulidou P et al. Increased expression of CD63 in myeloperoxidase? Antineutrophil cytoplasmic antibody-associated vasculitis. Ann Rheum Dis 2005; 64: 443–449
64. Kamesh L, Heward JM, Williams JM. Characterization of circulating human lymphocyte subsets. Int Immunopharmacol 2005; 9: 297–302
65. Hashem L, Moore A, Toal A et al. Apheresis for myeloperoxidase associated autoimmune vasculitis in patients with immune disorders. N Engl J Med 2007; 356: 2121–2132
66. Slade JD, Hepburn B. Prednisone-induced alterations of circulating human lymphocyte subsets. J Lab Clin Med 1983; 101: 479–487
67. Mohammad AJ, Smith RM, Chow YW et al. Alemtuzumab as remission induction therapy in Behcet disease: a 20-year experience. J Rheumatol 2015; 42: 1906–1913
68. Walsh M, Chaudhry A, Jayne D. Long-term follow-up of relapsing/refractory anti-neutrophil cytoplasm antibody associated vasculitis treated with the lymphocyte depleting antibody alemtuzumab (CAMPATH-1H). Ann Rheum Dis 2007; 67: 1322–1327
69. Schmitt WH, Hagen EC, Neumann I et al. Treatment of refractory Wegener’s granulomatosis with antithymocyte globulin (ATG): an open study in 15 patients. Kidney Int 2004; 65: 1440–1448
70. Kanekura T. Clinical and immunological effects of adsorptive myeloid lineage leukocyte apheresis in patients with immune disorders. J Dermatol 2018; 45: 943–950
71. Hashem M, Ohashi A, Kabutan N et al. Cytapheresis for the treatment of myeloperoxidase associated autoimmune vasculitis: a pilot study of 21 patients. Ther Apher Dial 2006; 10: 412–418
72. Hashem M, Kawamura M, Kasugai M et al. Cytapheresis for the treatment of myeloperoxidase associated autoimmune vasculitis: report of five cases. Ther Apher 2002; 6: 443–449
73. Hashem M, Watanabe A, Takahashi H et al. Treatment with cytapheresis for antineutrophil cytoplasmic antibody-associated renal vasculitis and its effect on anti-inflammatory factors. Ther Apher Dial 2005; 9: 297–302
74. Hashem M, Watanabe A, Takahashi H et al. Cytapheresis for antisynthetase LEUKOCYTE APHERESIS in patients with rheumatoid arthritis: a retrospective analysis of patients recorded in the European Bone Marrow Transplantation and European League Against Rheumatism databases and a review of the literature. Ann Rheum Dis 2007; 66: 202–207
75. Hashem M, Nishii C, Kabutan N et al. Effects of cytapheresis on tumor necrosis factor receptor and on expression of CD63 in myeloperoxidase? Antineutrophil cytoplasmic autoimmune vasculitis. J Am Soc Nephrol 2015; 26: 224–230
76. Hashem M, Nishii C, Kabutan N et al. Effects of cytapheresis on tumor necrosis factor receptor and on expression of CD63 in myeloperoxidase-associated systemic vasculitis. Clin Immunol 2017; 187: 151–158
77. Hashem M, Nishii C, Kabutan N et al. Effects of cytapheresis on tumor necrosis factor receptor and on expression of CD63 in myeloperoxidase-associated systemi...
84. Wilk E, Witte T, Marquardt N et al. Depletion of functionally active CD20+ T cells by rituximab treatment. *Arthritis Rheum* 2009; 60: 3563–3571
85. Néel A, Bucchia M, Néel M et al. SAT0029 B cell depletion affects CD8 T cells in ANCA-associated vasculitis. In: Poster Presentations [Internet]. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017, 778. Available from: http://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2017-eular.6894
86. Zhao Y, Lutalo PMK, Thomas JE et al. Circulating T follicular helper cell and regulatory T cell frequencies are influenced by B cell depletion in patients with granulomatosis with polyangiitis. *Rheumatology* 2014; 53: 621–630
87. Langford CA, Monach FA, Specks U et al. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener’s) for the Vasculitis Clinical Research Consortium. *Ann Rheum Dis* 2014; 73: 1376–1379
88. ClinicalTrials.gov. Abatacept for the Treatment of Relapsing, Non-severe, Granulomatosis with Polyangiitis (Wegener’s). https://clinicaltrials.gov/ct2/show/NCT02108860? term=abatacept&cond=Vasculitis&rank=2 (2 July 2018, date last accessed)
89. Wegener’s Granulomatosis Etaentcept Trial (WGET) Research Group. Etanercept plus standard therapy for Wegener’s granulomatosis. *N Engl J Med* 2005; 352: 351–361
90. Silva F, Seo P, Schroeder DR et al. Solid malignancies among etanercept-treated patients with granulomatosis with polyangiitis (Wegener’s): long-term followup of a multicenter longitudinal cohort. *Arthritis Rheum* 2011; 63: 2495–2503
91. Langley RG, Elewski BE, Lebwohl M et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. *N Engl J Med* 2014; 371: 326–338
92. Gan P-Y, Tan DSY, Ooi JD et al. Myeloperoxidase peptide-based nasal tolerance in experimental ANCA-associated GN. *J Am Soc Nephrol* 2016; 27: 385–391