A study on drought and wet conditions in different basins and climates

Mohammad Valipour

Received: date; Accepted: date; Published: date

Abstract: The Surface Water Supply Index (SWSI) may be considered for studying hydrologic conditions and agricultural water management. By using this indicator, water resources conditions of Colorado and Oregon basins were investigated from extremely wet to extreme drought. The SWSI values can also be plotted as a time series graph while critical years were specified. This allows the user to graphically visualize the values from year to year and to see how the current year’s values change from year to year. Managers can then refer to records from critical years in determining strategies for dealing with the current years’ water supply. Also evident is whether the streamflow component or the reservoir component is the predominant driving force at any given time. SWSI’s can be an excellent water management tool in determining overall risk and management strategies. It gives the water user and manager more information than simply streamflow or reservoir level alone. According to the results, obtained categories based of SWSI values are indicated hydrologic conditions for Colorado and Oregon States with two different climates. Although decisions only based on geographic and climatic information due to the insufficient and sometimes contradictory results than the SWSI can cause water loss or increase the risk of drought.

Keywords: Colorado; Oregon; water

PACS: J0101

1. Introduction

Scrutiny of hydrologic parameters especially SWSI for water resources management and estimating of flood and drought periods for prevent of their damages has always been concern of hydrologists. Garen [1] revised SWSI for Western United States. He suggested that indexes for individual hydrologic components be developed to provide supporting information to the SWSI. Shafer and Dezman [3] developed SWSI to assess the severity of drought conditions in snowpack runoff areas. Hoekema and Sridhar [2] using surface water supply and soil moisture indices related climatic attributes and water resources allocation in the Snake River basin, Idaho. The results indicate that the decline in midseason and late season diversions is mostly caused by decreasing supply in the study period, while a comparison of diversions to Palmer index and the standardized precipitation index indicates that early season diversions are highly correlated to early season moisture anomalies. Unfortunately, much research has not been done on SWSI and role of surface water supply index has not been considered in other studies about water resources management [4-16]. Therefore, necessity of this study is specified.

2. Materials and Methods

The surface water supply index (SWSI) is a predictive indicator of total surface water availability within a watershed for the spring and summer water use seasons as follows:

The SWSI may be considered for studying hydrologic conditions and agricultural water management.
SWSI= (aPNsnow+bPNprec+cPNstrm+dPNresv−50)/12 (1)

Where a, b, c, and d are weights for each component and must meet the condition a+b+c+d=1.

Each basin has a unique a, b, c, and. PN shows probability of non-exceedance (%) and snow, prec,
strm, and resv refer to snowpack, precipitation, streamflow, and reservoir components, respectively.

The revised formulation of the SWSI as follows:
SWSI= (PNfcst+resv−50)/12 (2)

Where fcst refer to streamflow forecast.

SWSI values are scaled from +4.2 (abundant supply) to -4.2 (extremely dry) with a value of zero
(0) indicating media water supply as compared to historical analysis. SWSI used especially where
palmer drought index does not adequately reflect conditions in snow-dominated regions.

Colorado is the U.S. state that encompasses most of the Mountains as well as the northeastern
portion of the Colorado Plateau and the western edge of the Great Plains. Abundant sunshine and
low humidity typify Colorado’s highland continental climate. Winters are generally cold and snowy,
especially in the higher elevations of the Rocky Mountains. Summers are characterized by warm,
dry days and cool nights. The climate of Colorado is more complex than states outside of the
Mountain States region. Unlike most other states, southern Colorado is not always warmer than
northern Colorado. Most of Colorado is made up of mountains, foothills, high plains, and desert
lands. Mountains and surrounding valleys greatly affect local climate.

Oregon is a state in the Pacific Northwest region of the United States. It is located on the Pacific
coast, with Washington to the north, California to the south, Nevada on the southeast and Idaho to
the east. Oregon’s climate can mostly be classified as mild. Two major geographic features dominate
the climate in the state: the Pacific Ocean and the Cascade Range.

Figure 1 shows Colorado and Oregon States with their basins.

3. Results and Discussion

In order to study the hydrologic condition of Colorado and Oregon basins, the SWSI values
were divided into the 11 different categories (Table 1). The average SWSI values of Colorado states
shows that this state is wet, of hydrologic conditions (only one basin has the SWSI less than zero).

Unlike this state, the Oregon state hydrologic conditions can be evaluated as dry according to the
average SWSI values (only one basin has the SWSI more than zero). Due to the mild climate of
Oregon, extremely wet and extreme drought hydrologic conditions not observed in any of this
state’s basins. Even percent of very wet and severe drought hydrologic conditions were very lower
than other hydrologic conditions. But in Colorado state due to the continental climate role of very
wet and severe drought categories were significant. To better assess of the hydrologic conditions can
be used from Figures 2 and 3.

In Gunnison basin, mild drought condition is dominant. In Colorado, Arkansas, San Juan,
Animas, Dolores, and San Miguel basins hydrologic condition is near normal. Hydrologic condition
in Yampa, White, and North Platte is moderate drought. This basin has the lowest average SWSI
among Colorado basins (Table 1). Thus, Gunnison, Yampa, White, and North Platte basins due to
the more probability of drought exceedance should be in priority of water resource allocation, terms
of the management. Finally, in South Platte and Rio Grande basins hydrologic condition is very wet
and slightly wet, respectively. So, preventive measures are necessary to prevent flooding in South
Platte basin. In particular, it has the largest catchment area among of Colorado basins along
Arkansas basin (Figure 1). It is noteworthy amount of average SWSI in South Platte basin is
maximum (Table 1) whereas climate of the eastern Colorado (South Platte and Arkansas basins) is
semi-arid with low humidity and moderate precipitation, usually from 380 to 630 mm annually.

Therefore, the climate alone cannot reveal the hydrologic conditions. As geographic information
alone is not a criterion for hydrologic judgment:

Northeast, east, and southeast Colorado (South Platte and Arkansas basins) are mostly the high
plains, while northern Colorado (North Platte basin) is a mix of high plains, foothills, and
mountains. Northwest and west Colorado (Yampa, White, and Colorado basins) are predominantly
mountainous, with some desert lands mixed in. Southwest and southern Colorado (Gunnison, Rio
Grande, San Juan, Animas, Dolores, and San Miguel) are a complex mixture of desert and mountain areas.

According to the Figure 3 in North Coast, South Coast, Willamette, Lower Deschutes, Umatilla, Upper John Day, Harney, Grande Ronde, Rogue, and Umpqua basins hydrologic condition is near normal. In Klamath, Lake, Owyhee, Malheur basins hydrologic condition is mild drought. These basins have the lowest average SWSI among Oregon basins (Table 1). Thus, these basins due to the more probability of drought exceedance should be in priority of water resource allocation, terms of the management. Finally, in Upper Deschutes basin hydrologic condition is slightly wet. It is noteworthy amount of average SWSI in this basin is maximum among Oregon basins (Table 1).

The effect of geographic condition on climate is very more than hydrology in this state. The mountains of the Cascade Range act as a divide between the western and eastern sides of the state. The Cascade Range separates the state into two broad climatic zones: the western third (North coast, Willamette, South Coast, Rogue, and Umpqua basins), with relatively heavy precipitation and moderate temperatures, and the eastern two thirds (Other basins), with relatively little precipitation and more extreme temperatures. Within these general regions, climate depends largely on elevation and land configuration. West of the Cascade Range, winters are relatively mild and wet, with precipitation usually falling as rain in the lower elevations. The area’s proximity to the Pacific Ocean means that temperatures are moderated and significant moisture comes from the Ocean. Areas along the coast and in the Coast Range can receive upwards of 500 cm of rain annually, most of which falls from October to March. The Willamette Valley, home to about 70% of the state’s population, receives about 100-130 cm of precipitation annually. East of the Cascade Range, temperature is less moderated by the Pacific Ocean. Central Oregon is kept dry year-round by the rain shadow created by the Cascade Range, though most of the light precipitation that it does receive also falls between October and March. Temperatures vary more substantially in the central and eastern side of the state. The abundance of clear and calm nights allows the temperature to drop significantly at night, but temperatures can climb to well over 40 °C in the daytime.

According to the mentioned cases, obtained categories based of SWSI values are indicated hydrologic conditions for Colorado and Oregon States with two different climates. Although decisions only based on geographic and climatic information due to the insufficient and sometimes contradictory results than the SWSI can cause water loss or increase the risk of drought.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage. Paper no. 56. FAO, Rome.

2. Khoshravesh, M., Gholami Sefidkouhi, M.A., Valipour, M., 2015. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. In Press. Applied Water Science. http://dx.doi.org/10.1007/s13201-015-0368-x

3. Valipour, M., Singh, V.P., 2016. Global Experiences on Wastewater Irrigation: Challenges and Prospects. Balanced Urban Development: Options and Strategies for Liveable Cities. Basant Maheshwari, Vijay P. Singh, Bhadranie Thoradeniya, (Eds.). AG: Springer. Switzerland. 289-327.

4. Valipour, M., Gholami Sefidkouhi, M.A., Raeini-Sarjaz, M., 2017a. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management. In Press. http://dx.doi.org/10.1016/j.agwat.2016.08.025

5. Valipour, M., Gholami Sefidkouhi, M.A., Khoshravesh, M., 2017b. Estimation and trend evaluation of reference evapotranspiration in a humid region. Italian Journal of Agrometeorology. In Press.

6. Valipour, M., 2015a. Future of agricultural water management in Africa. Archives of Agronomy and Soil Science. 61 (7), 907-927.

7. Valipour, M., 2015b. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Applied Water Science. In Press. http://dx.doi.org/10.1007/s13201-015-0274-2

8. Valipour, M., 2015c. Analysis of potential evapotranspiration using limited weather data. Applied Water Science. In Press. http://dx.doi.org/10.1007/s13201-014-0234-2

9. Valipour, M., 2015d. Handbook of Environmental Engineering Problems. Foster City, CA: OMICS Press. USA. http://esciencecentral.org/ebooks/handbook-of-environmental-engineering-problems/

10. Valipour, M., 2013a. INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION. ARPN Journal of Agricultural and Biological Science. 8 (1), 35-43.

11. Valipour, M., 2013b. Necessity of Irrigated and Rainfed Agriculture in the World. Irrigation & Drainage Systems Engineering. 2 (1), e114. http://dx.doi.org/10.4172/2168-9768.1000e114

12. Valipour, M., 2013c. Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas. Irrigation & Drainage Systems Engineering. 2 (1), e114. http://dx.doi.org/10.4172/2168-9768.1000e114

13. Valipour, M., 2013d. USE OF SURFACE WATER SUPPLY INDEX TO ASSESSING OF WATER RESOURCES MANAGEMENT IN COLORADO AND OREGON, US. Advances in Agriculture, Sciences and Engineering Research. 3 (2), 631-640. http://vali-pour.webs.com/13.pdf

14. Valipour, M., 2012a. HYDRO-MODULE DETERMINATION FOR VANAEI VILLAGE IN ESLAM GHARB, IRAN. ARPN Journal of Agricultural and Biological Science. 7 (12), 968-976.

15. Valipour, M., 2012b. Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 1 (5), 1-11. http://dx.doi.org/10.9790/2380-0150111

16. Valipour, M., 2012c. A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch Drainage, and Pumped Wells) in Anisotropic Soils. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). 4 (1), 7-12. http://dx.doi.org/10.9790/1684-0410712

17. Valipour, M., 2014. Application of new mass transfer formulae for computation of evapotranspiration. Journal of Applied Water Engineering and Research. 2 (1), 33-46.

18. Jakimavicius, D., Kriauciuniene, J., Gailiusis, B., Sarauskiene, D., 2013. Assessment of uncertainty in estimating the evaporation from the Curonian Lagoon. BALTICA, 26 (2), 177-186.

19. Ley, T., Straw, D., Hill, R., 2009. ASCE Standardized Penman-Monteith Alfalfa Reference ET and Crop ET Estimates for Arkansas River Compact Compliance in Colorado. World Environmental and Water Resources Congress 1-14.

20. Pirnia, M. K., Memarian, G. H., 2008. Ranjbar Kermani A. M., (Ed.) Stylistics of Iranian architecture, Sorush Danesh, Tehran, Iran. ISBN: 964–96113–2–0 Assessed date: 12 June 2008.
21. Hamzeh Nezhad, M., Rabbani, M., Torabi, T., 2015. The role of wind in human health in Islamic medicine and its effect in layout and structure of Iranian classic towns. Naghsh Jahan, 5 (1), 43–57. (In Persian)

22. Amiraslani, F. Dragovich, D. 2010. Cross-sectoral and participatory approaches to combating desertification: The Iranian experience. Natur. Resour. Forum 34 (2), 140–154.

23. Moeletsi, M.E., Walker, S., Hamandawana, H., 2013. Comparison of the Hargreaves and Samani equation and the Thornthwaite equation for estimating dekadal evapotranspiration in the Free State Province, South Africa. Phys. Chem. Earth 66, 4-15.

24. Rim, C.S., 2000. A comparison of approaches for evapotranspiration estimation. KSCE J. Civil Eng. 4 (1), 47-52.

25. Sahoo, B., Walling, I., Deka, B., Bhatt, B., 2012. Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. J. Irrig. Drain. Eng. 138 (10), 880–895.

26. Singh, V.P., Xu, C.Y., 1997b. Sensitivity of mass transfer-based evaporation equations to errors in daily and monthly input data. Hydrol. Process. 11 (11), 1465-1473.

27. Sepaskhah, A.R., 1999. A review on methods for calculating crop evapotranspiration. In Proceeding of the 7th National Conference on Irrigation and Evapotranspiration. Shahid Bahonar University, Kerman, Islamic Republic of Iran. 1-10.
Table 1. Average SWSI values and role of each category (percent) in Colorado and Oregon basins

Colorado Basins	Average	Extremely Wet	Very Wet	Moderately Wet	Slightly Wet	Incipient Wet	Near Normal	Incipient Dry Spell	Mild Drought	Moderate Drought	Severe Drought	Extremely Drought
	SWSI	3<SW	2<SW	1<SW	0.5<SW	-0.5<SW	-1<SWS	-2<SW	-3<SW	-4<SW	-5<SW	
Gunnison	0.4	0.0	11.7	14.4	15.0	9.4	11.9	6.9	18.3	9.7	2.5	0.0
Colorado	0.4	0.0	11.7	15.8	14.2	5.6	17.2	7.8	13.9	11.1	1.7	0.0
South Platte	1.5	0.0	23.9	21.4	21.1	9.4	11.1	6.7	5.0	0.8	0.6	0.0
Yampa, White, and North Platte	-0.1	1.1	12.5	11.1	8.3	6.4	13.3	6.4	14.4	16.4	9.7	0.0
Arkansas	0.5	0.3	9.4	17.2	13.1	8.9	21.4	8.3	15.0	6.1	0.3	0.0
Rio Grande	0.4	0.3	9.4	15.6	18.9	8.9	16.7	6.7	10.3	6.7	6.7	0.0
San Juan, Animas, Dolores, San Miguel	0.3	0.0	10.3	15.0	15.8	7.2	17.5	6.1	14.4	8.9	3.6	0.0
Oregon Basins												
North Coast	-0.2	0.0	0.0	0.0	1.7	16.4	9.7	31.1	15.6	18.1	6.7	0.8
South Coast	-0.1	0.0	0.0	0.0	4.2	18.6	9.4	27.5	16.1	16.9	6.4	0.8
Willamette	-0.1	0.0	0.0	0.0	4.7	18.9	14.2	26.4	10.6	16.1	9.2	0.0
Rogue and Umpqua	0.0	0.0	0.0	0.0	5.3	22.8	11.9	26.4	8.6	14.4	6.1	4.4
Lower Deschutes	-0.1	0.0	0.8	1.9	19.7	15.8	23.3	8.9	18.1	9.7	1.7	0.0
Upper Deschutes	0.1	0.0	0.0	9.2	19.4	15.6	19.2	8.6	19.2	8.6	0.3	0.0
Klamath	-0.4	0.0	1.1	6.7	15.8	9.7	15.3	8.1	25.3	15.6	2.5	0.0
Lake	-0.2	0.0	0.0	5.8	20.3	11.1	17.5	10.6	22.2	11.7	0.8	0.0
Umatilla	-0.3	0.0	0.0	3.9	16.9	11.1	25.6	11.4	16.1	14.7	0.3	0.0
Upper John Day	-0.1	0.0	0.0	2.5	21.4	12.8	24.7	11.1	20.6	6.7	0.3	0.0
Harney	-0.2	0.0	0.0	7.2	17.2	8.1	22.8	12.8	22.2	9.2	0.6	0.0
Grande Ronde	-0.3	0.0	0.0	6.1	17.5	9.4	20.6	11.9	18.3	15.3	0.8	0.0
Owyhee	-0.4	0.0	0.0	2.5	17.5	12.5	16.9	10.6	27.8	10.3	1.9	0.0
Malheur	-0.4	0.0	0.0	3.3	17.8	11.7	20.8	7.2	23.6	14.7	0.8	0.0
Figure 1. Location of Colorado and Oregon states and their basins in United States
Figure 2. Hydrologic conditions of Colorado basins based on contribution of each category (percent) calculated by dividing number of the SWSI in each category to all data.
Figure 3. Hydrologic conditions of Oregon basins based on contribution of each category (percent) calculated by dividing number of the SWSI in each category to all data.