Is the Regge Trajectory Quasi-linear or Square-root Form?
Zhen Li1, and Ke-Wei Wei 2,3
1 College of Physical Science and Technology, Yili Normal University, Yining 835000, China
2 College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
3 Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
Correspondence should be addressed to Ke-Wei Wei; kewei_wei@163.com

Abstract

There are many orbital excited mesons discovered in recent years. In this work we attempt to study whether the Regge trajectory is quasi-linear or square-root form. In the framework of the quasi-linear Regge trajectory and square-root Regge trajectory, the masses of the states lying on the well established \(1^1S_0\), \(1^3S_1\), and \(1^3P_2\) trajectories are estimated. Comparison of the results given by the two trajectories with the existing experimental data illustrates that both of them can give a reasonable description for the ground mesons. For the orbital excited states, the quasi-linear trajectory describes the existing meson spectrum to be more reasonable.

PACS number: 11.55.Jy, 12.40.Nn, 14.40.-n
Key words: Regge trajectory, meson, mass spectrum

1. Introduction

The Regge theory descends from the analysis of the scattering amplitude properties in the complex orbital momentum plane \([1]\), which is concerned with the particle spectrum, the forces between particles and the high energy behavior of scattering amplitudes \([2]\). Currently, the Regge trajectory is a simple and effective phenomenological model to study the hadron spectrum. A series of papers \([3-14]\) show that meson states fit to quasi-linear Regge trajectories with sufficiently good accuracy. However, in Refs. \([15-20]\), it was suggested that the realistic Regge trajectories could be non-linear. Among them, a most typical non-linear form-square-root trajectory was proposed in Ref. \([20]\). Then, it is a puzzle that the Regge trajectory is quasi-linear or square-root form.

In the recent issue of Review of Particle Physics \([21]\), there are many orbital excited mesons have been established well, e.g., the orbital excited states \(\rho_1(2350)\)
and \(K_0^*(2380) \) are assigned to \(n\bar{n} \) and \(n\bar{s} \) of \(1^1G_s(5^-) \), \(a_0(2450) \) is assigned to \(n\bar{n} \) of \(1^3H_s(6^{++}) \), and \(D_1^*(2860) \) is assigned to \(c\bar{s} \) of \(1^3D_1(3^-) \). In the presence of these assignments, according to the newest experimental data from the Particle Data Group (PDG) [21], we respectively calculate the masses of orbital excitations by the quasi-linear trajectory and square-root trajectory. Comparing the results given by the quasi-linear trajectory and square-root trajectory with the experimental data, we examine whether Regge trajectory is quasi-linear or square-root form.

In the present work, we only calculate the mass spectrum of the \(1^1S_0 \), \(1^3S_1 \), and \(1^3P_2 \) trajectories, since these trajectories are of the rich available experimental data. The difference between the total spins of hadrons lying on the same Regge trajectory is \(2n \) (\(n = 1, 2, 3, \ldots \)). Mesons with the quantum numbers \(N^{2S+1}L_j \), \(N^{2S+1}(L+2)_{j+2} \), \(N^{2S+1}(L+4)_{j+4} \), \(N^{2S+1}(L+6)_{j+6} \), \ldots \) (where \(N, L \) and \(S \) denote the radial excited quantum number, the orbital excited quantum number and the intrinsic spin, respectively) lying on the same Regge trajectory [1, 5, 6, 22].

2. The Quasi-linear Regge Trajectory

By assuming the existence of the quasi-linear trajectories for a meson multiplet, one can have

\[
J = \alpha_\pi(0) + \alpha_\pi'(M_\pi^2),
\]

where \(i \) (\(\bar{i} \)) refers to the quark (anti-quark) flavor, \(J \) and \(M_\pi \) are respectively the spin and mass of the \(i\bar{i} \) meson, \(\alpha_\pi(0) \) and \(\alpha_\pi' \) are respectively the intercept and slope of the trajectory on which the \(i\bar{i} \) meson lies. The intercept and slope parameters for different flavors can be related by the following relations:

1) additivity of intercepts [5, 23-26],
\[
\alpha_\pi(0) + \alpha_{\bar{i}\bar{j}}(0) = 2\alpha_{i\bar{j}}(0),
\]

2) additivity of inverse slopes [5, 23],
\[
\frac{1}{\alpha_\pi'} + \frac{1}{\alpha_{\bar{i}\bar{j}}'} = \frac{2}{\alpha_{i\bar{j}}'}. \tag{3}
\]

These two additivity requirements are independent of which specific form is assumed for the trajectories [20].
3. The Square-root Regge Trajectory

In the analysis of Ref. [20], the specific square-root Regge trajectory which contacts with the spin J and mass M of a meson has been proposed as follows:

$$J = \beta_{i\overline{j}}(0) + \gamma(\sqrt{T_{i\overline{j}}} - \sqrt{T_{i\overline{j}} - M_{i\overline{j}}^2}),$$ (4)

where $i(\overline{j})$ refers to the quark (anti-quark) flavor, J and $M_{i\overline{j}}$ are respectively the spin and mass of the $i\overline{j}$ meson, γ is a constant independent of meson flavor. $\beta_{i\overline{j}}(0)$ is the intercept of the Regge trajectory. When $M_{i\overline{j}}$ reaches $\sqrt{T_{i\overline{j}}}$, the real part of the square-root trajectory stops growing, and there are no states with a higher spin quantum number than $J_{\text{max}} = [J(T_{i\overline{j}})]$. The parameter $T_{i\overline{j}}$ is therefore the trajectories termination point and $\sqrt{T_{i\overline{j}}}$ is the threshold parameter of meson trajectories.

Note that for $M << T$, according to the Taylor series expansion, Eq. (4) reduces to the quasi-linear form

$$J \approx \beta_{i\overline{j}}(0) + \frac{\gamma}{2\sqrt{T_{i\overline{j}}}}M_{i\overline{j}}^2 = \beta_{i\overline{j}}(0) + \beta'_{i\overline{j}}(0)M_{i\overline{j}}^2.$$ (5)

For a meson multiplet, the parameters for different flavors can be related by the following relations:

1) additivity of intercepts,

$$\beta_i(0) + \beta_{\overline{j}}(0) = 2\beta_{i\overline{j}}(0).$$ (6)

2) On the basis of additivity of inverse slopes near the origin of the square-root trajectory, with the help of the relation (5), one can get the following relation

$$\sqrt{T_{i\overline{j}}} + \sqrt{T_{\overline{i}j}} = 2\sqrt{T_{i\overline{j}}}.$$ (7)

4. The Meson Spectrum

4.1 The Meson Spectrum of the 1^3S_1 Trajectories

According to PDG, the states ρ, $K^*(892)$, D^*, J/ψ, B^* and Y^1 belong to the members of the 1^3S_1 meson multiplet, $\rho_3(1690)$ and $K^*_3(1780)$ belong to the 1^3D_3 meson multiplet, inserting the masses of these mesons into the following equations

$${M_{K^*(892)}} = (M_{K^*(892)^+} + M_{K^*(892)^0})/2, {M_{D^*}} = (M_{D^*(2010)^+} + M_{D^*(2007)^0})/2.$$ Here and below, all masses of the well-established states used as input are taken from PDG [21].
with the help of the relations (2) and (3), one can reckon the Regge intercept and Regge slope of the 1^3S_1 trajectories. These parameters are summarized in Table 1.

Table 1: Parameters of the 1^3S_1 trajectories of the form (1).

	$n\bar{n}$	$\bar{n}n$	$\bar{s}s$	$c\bar{c}$	$c\bar{n}$
$\alpha(0)$	0.4660	0.3218	0.1776	-3.1998	-1.3669
α'/GeV^{-2}	0.8885	0.8491	0.8130	0.4379	0.5867
$c\bar{s}$					
$b\bar{b}$					
$\alpha(0)$	-1.5110	-17.4107	-8.4724	-8.6166	-10.3052
α'/GeV^{-2}	0.5692	0.2057	0.3341	0.3283	0.2799

Using the parameters shown in Table 1, with the help of the relation (1), we calculate masses of the spin-1, spin-3, spin-5, and spin-7 mesons lying on these trajectories. The results obtained by the quasi-linear trajectory are shown in Table 3. In Table 3 and subsequent Table 6 and Table 9, the values used as input for our analysis are shown in boldface. The results extracted by the quasi-linear trajectory and square-root trajectory are compared with the experimental data in Table 3.

In the framework of the square-root trajectory, we start with the ρ trajectory. The intercept $\beta_{\rho}(0)$ of this trajectory is well established. The intercept value was taken to be 0.55 in Ref. [20], which is consistent with the values extracted from the behavior of the differential cross section of the process $\pi^- p \rightarrow \pi^0 n$ [27-29] and inferred from the difference of the total cross sections of $\pi^+ p$ and $\pi^- p$ scattering [30-31]. In addition, the intercept $\beta_{\rho}(0)$ was extracted to be 0.55 from the analysis...
of \(pp \) and \(\bar{p}p \) scattering data in a simple pole exchange model [32]. So we take the value of the intercept of \(\rho \) trajectory to be 0.55. According to PDG, \(\rho(770) \) and \(\rho_3(1690) \) belong to the states lying on the \(\rho \) trajectory. Resorting to the relation (4), one can have

\[
1 = \beta_\rho(0) + \gamma(\sqrt{T_\rho} - \sqrt{T_\rho - M^2_\rho}), \tag{16}
\]

\[
3 = \beta_\rho(0) + \gamma(\sqrt{T_\rho} - \sqrt{T_\rho - M^2_{\rho_3}}). \tag{17}
\]

Inserting the masses of \(\rho \) and \(\rho_3 \) into the relations (16) and (17), one can extract the parameters \(\gamma \) and \(\sqrt{T_\rho} \):

\[
\gamma = 3.4148 \ \text{GeV}^{-1}, \quad \sqrt{T_\rho} = 2.3463 \ \text{GeV}. \tag{18}
\]

Resorting to the value of the constant \(\gamma \) in Eq. (18), inserting the masses of \(K'(892), \ D' , \ J/\psi , \ B' , \ Y , \) and \(K'_+(1780) \) into the following equations

\[
1 = \beta_{\sigma\sigma}(0) + \gamma(\sqrt{T_{\sigma\sigma}} - \sqrt{T_{\sigma\sigma} - M^2_{K'-(892)}}), \tag{19}
\]

\[
3 = \beta_{\sigma\sigma}(0) + \gamma(\sqrt{T_{\sigma\sigma}} - \sqrt{T_{\sigma\sigma} - M^2_{K'_+(1780)}}), \tag{20}
\]

\[
1 = \beta_{\sigma\tau}(0) + \gamma(\sqrt{T_{\sigma\tau}} - \sqrt{T_{\sigma\tau} - M^2_{J/\psi}}), \tag{21}
\]

\[
1 = \beta_{\sigma\sigma}(0) + \gamma(\sqrt{T_{\sigma\sigma}} - \sqrt{T_{\sigma\sigma} - M^2_{D'}}), \tag{22}
\]

\[
1 = \beta_{\sigma\tau}(0) + \gamma(\sqrt{T_{\sigma\tau}} - \sqrt{T_{\sigma\tau} - M^2_{B'}}), \tag{23}
\]

\[
1 = \beta_{\sigma\tau}(0) + \gamma(\sqrt{T_{\sigma\tau}} - \sqrt{T_{\sigma\tau} - M^2_{Y}}), \tag{24}
\]

and by means of the relations (6) and (7), one can extract the intercept and threshold parameters of the \(1^3S_1 \) trajectories, these parameters are summarized in Table 2.

\(n\bar{n} \)	\(n\bar{s} \)	\(s\bar{s} \)	\(c\bar{c} \)	\(c\bar{n} \)	
\(\beta(0) \)	0.55	0.4287	0.3074	-2.5391	-0.9945
\(\sqrt{T} / \text{GeV} \)	2.3463	2.4710	2.5957	5.1452	3.7458
\(c\bar{s} \)	\(b\bar{b} \)	\(n\bar{b} \)	\(s\bar{b} \)	\(c\bar{b} \)	
\(\beta(0) \)	-1.1159	-14.5144	-6.9822	-7.1035	-8.5268
\(\sqrt{T} / \text{GeV} \)	3.8705	12.1211	7.2337	7.3584	8.6332
Using the parameters shown in Table 2, resorting to the relation (4), we can obtain masses of the spin-1, spin-3, spin-5, and spin-7 states lying on these trajectories. The results extracted by the square-root trajectory are also shown in Table 3.

TABLE 3: Comparison of the masses of the $J = 1, 3, 5, 7$ mesons lying on the 1^3S_1 trajectories with the experimental data. (All in MeV.) The numbers in boldface are the experimental values taken as the input.

$J = 1$	$J = 3$	$J = 5$	$J = 7$									
Quasi-linear	Square-root	Exp.[21]										
M_{π}	775.26	775.26	775.26	1688.8	1688.8	1688.8	2259	2102	2330	2712	2301	2747
M_{η}	893.74	893.74	893.74	1776	1776	1776	2347	2196	2382	2804	2410	
M_{ρ}	2008.62	2008.62	2008.62	2728	2719	2728	3294	3173	3382	3776	3472	
M_{ω}	2100	2101	2112.1	2815	2807	2863.2	3382	3294	3747	4224		
M_{ϕ}	3096.916	3096.916	3096.916	3763	3750	3763	4327	4224	4327	4826	4576	
M_{π}	5324.83	5324.83	5324.83	5860	5898	5860	6440	6293	6440	6897	6612	
M_{η}	5412	5412	5415.4	5949	5898	5949	6440	6293	6440	6897	6612	
M_{ρ}	6355	6355	6355	6895	6848	6895	7395	7260	7395	7863	7605	
M_{ω}	9460.30	9460.30	9460.30	9961	9901	9961	10438	10290	10438	10894	10632	

4.2 The Meson Spectrum of the 1^1S_0 Trajectories
The states π, K, η_c(1S), D, η_b(1S) and B^+ belong to the members of the 1^1S_0 meson multiplet, π_c(1670) and K_c(1770) belong to the 1^1D_2 meson multiplet [21], inserting the masses and spins of these mesons into the relation (1), with the help of the relations (2) and (3), one can extract the intercept and slope parameters of 1^1S_0 trajectories by the quasi-linear trajectory. The parameters are shown in Table 4.

TABLE 4: Parameters of 1^1S_0 trajectories of the form (1).

	$n\bar{n}$	$n\bar{\pi}$	$s\bar{s}$	$c\bar{c}$	$c\bar{n}$
$\alpha(0)$	-0.01357	-0.1695	-0.3254	-3.5947	-1.8041
α'/GeV^{-2}	0.7201	0.6902	0.6627	0.4038	0.5174
$c\bar{s}$	$b\bar{b}$	$n\bar{b}$	$s\bar{b}$	$c\bar{b}$	
$\alpha(0)$	-1.9601	-16.6177	-8.3157	-8.4716	-10.1062
α'/GeV^{-2}	0.5018	0.1881	0.2983	0.2930	0.2566

$M_x = (M_{\pi} + M_{\rho})/2$, $M_K = (M_K + M_{\eta_c})/2$, $M_{\rho} = (M_{\rho} + M_{\eta_c})/2$, $M_{\eta} = (M_{\eta_c} + M_{\eta_c})/2$
Using the parameters shown in Table 4, we calculate masses of the spin-0, spin-2, spin-4, and spin-6 mesons lying on these trajectories. The results extracted by the quasi-linear trajectory are shown in Table 6.

Inserting the masses and spins of π, K, $\eta_c(1S)$, D, $\eta_b(1S)$, B, $\pi_2(1670)$, and $K_2(1770)$ into the relation (4), resorting to the relations (5) and (6), one can extract the intercept and threshold parameters of 1^1S_0 trajectories by the square-root trajectory. The parameters are summarized in Table 5. As demonstrated in Ref. [20], the constant γ is the same as 1^3S_1 trajectories, since the constant γ is independent of meson flavor.

Table 5: Parameters of 1^1S_0 trajectories of the form (4).

	$n\bar{n}$	$n\bar{s}$	$s\bar{s}$	$c\bar{c}$	$c\bar{n}$
$\beta(0)$	-0.01207	-0.1504	-0.2887	-3.1973	-1.6047
\sqrt{T} / GeV	2.6675	2.8108	2.9541	5.2219	3.9447
$\beta(0)$	-1.7430	-14.7808	-7.3964	-7.5348	-8.9891
\sqrt{T} / GeV	4.0880	12.3668	7.5171	7.6605	8.7944

Using the parameters shown in Table 5, resorting to the relation (4), one can obtain masses of the spin-0, spin-2, spin-4, and spin-6 states lying on these trajectories. The results given by the square-root trajectory are shown in Table 6.

Table 6: Comparison of the masses of the $J = 0, 2, 4, 6$ mesons lying on the 1^1S_0 trajectories with the experimental data. (All in MeV.)

	$J = 0$	$J = 2$	$J = 4$	$J = 6$						
	Quasi-linear	Square-root	Exp.[21]							
$M_{n\bar{n}}$	137.273	137.273	137.273	1672.2	1672.2	1672.2	2361	2211	2890	2509
$M_{n\bar{s}}$	495.644	495.644	495.644	1773	1773	1773	2458	2314	2990	2623
$M_{s\bar{s}}$	1867.23	1867.23	1867.23	2712	2686	3349	3202	3884	3551	
$M_{c\bar{c}}$	1976	1978	1968.30	2809	2786	3446	3305	3983	3660	
$M_{n\bar{n}}$	2983.6	2983.6	2983.6	3722	3685	4337	4192	4875	4569	
$M_{n\bar{s}}$	5279.45	5279.45	5279.45	5881	5814	6425	6248	6928	6602	
$M_{s\bar{s}}$	5377	5379	5366.79	5978	5915	6524	6352	7028	6709	
$M_{c\bar{c}}$	6276	6275	6275.1	6869	6800	7414	7241	7923	7612	
$M_{n\bar{n}}$	9398.0	9398.0	9398.0	9949	9869	10470	10285	10966	10653	
4.3 The Meson Spectrum of the 1^3P_2 Trajectories

The states $a_s(1320), K_s^+(1430), \chi_{c2}(1P), D_s^+(2460), \chi_{b2}(1P)$ and $B_s^+(5747)$ belong to the members of the 1^3P_2 meson multiplet, $a_s(2040)$ and $K_s^+(2045)$ belong to the 1^3F_4 meson multiplet [21], inserting the masses and spins of these mesons into the relation (1), together with the relations (2) and (3), one can extract the intercept and slope parameters of 1^3P_2 meson trajectories by the quasi-linear trajectory. The parameters are shown in Table 7.

| TABLE 7: Parameters of 1^3P_2 trajectories of the form (1). |
|-----------------|----------------|----------------|----------------|----------------|
| | $n\bar{n}$ | $n\bar{s}$ | $s\bar{s}$ | $c\bar{c}$ |
| $\alpha(0)$ | 0.4498 | 0.09154 | -0.2667 | -3.8158 |
| α'/GeV^2| 0.8920 | 0.9346 | 0.9815 | 0.4599 |
| $\alpha(0)$ | -2.0413 | -20.1508 | -9.8505 | -10.2088 |
| α'/GeV^2| 0.6263 | 0.2254 | 0.3599 | 0.3666 |

Using the parameters shown in Table 7, we calculate masses of the spin-2, spin-4, spin-6, and spin-8 mesons lying on these trajectories. The results given by the quasi-linear trajectory are shown in Table 9.

Inserting the masses and spins of $a_s(1320), K_s^+(1430), \chi_{c2}(1P), D_s^+(2460), \chi_{b2}(1P), B_s^+(5747), a_s(2040)$ and $K_s^+(2045)$ into the relation (4), resorting to the relations (5) and (6), one can extract the intercept and threshold parameters of 1^3P_2 trajectories by the square-root trajectory. The parameters are summarized in Table 8.

| TABLE 8: Parameters of 1^3P_2 trajectories of the form (4). |
|-----------------|----------------|----------------|----------------|----------------|
| | $n\bar{n}$ | $n\bar{s}$ | $s\bar{s}$ | $c\bar{c}$ |
| $\beta(0)$ | 0.7578 | 0.5088 | 0.2598 | -2.6598 |
| \sqrt{T}/GeV | 2.5707 | 2.5564 | 2.5421 | 5.3161 |
| $\beta(0)$ | -1.2000 | -15.7488 | -7.4955 | -7.7445 |
| \sqrt{T}/GeV | 3.9291 | 12.0504 | 7.3106 | 7.2963 |

\[M_x = (M_{\pi^+} + M_{\pi^0})/2, \quad M_K = (M_{K^+} + M_{K^0})/2, \quad M_D = (M_{D^+} + M_{D^0})/2, \quad M_B = (M_{B^+} + M_{B^0})/2. \]
Using the parameters shown in Table 8, resorting to the relation (4), one can obtain masses of the spin-2, spin-4, spin-6, and spin-8 states lying on these trajectories. The results extracted by the square-root trajectory are shown in Table 9.

TABLE 9: Comparison of the masses of the $J = 2, 4, 6, 8$ mesons lying on the 1^3P_2 trajectories with the experimental data. (All in MeV.)

	Quasi-linear	Square-root	Exp.[21]								
$M_{s\pi}$	1318.3	1318.3	1318.3	1995	1995	1995	2494	2353	2450	2909	2531
$M_{s\pi}$	1429.0	1429.0	1429.0	2045	2045	2045	2514	2374	2353		
$M_{s\pi}$	2463.5	2463.5	2463.5	3060	3055	3055	3558	3451	3451	3994	3715
$M_{s\pi}$	2540	2547	2571.9	3106	3106	3106	3583	3482	3482	4004	3730
$M_{s\pi}$	3556.20	3556.20	3556.20	4122	4115	4115	4620	4531	4531	5069	4842
$M_{s\pi}$	5738	5738	5738	6204	6155	6155	6636	6493	6493	7043	6764
$M_{s\pi}$	5771	5788	5839.83	6226	6194	6194	6649	6522	6522	7048	6784
$M_{s\pi}$	6799	6798	6798	7269	7225	7225	7710	7583	7583	8128	7881
$M_{s\pi}$	9912.21	9912.21	9912.21	10351	10293	10293	10771	10627	10627	11176	10920

5. Discussions and Summary

In this work, in the framework of quasi-linear Regge trajectory and square-root Regge trajectory, the parameters of the 1^1S_0, 1^3S_1, and 1^3P_2 trajectories are extracted. Based on these parameters, the masses of the orbital excited states lying on these trajectories mentioned above are estimated and shown in Table 3, Table 6, and Table 9, respectively. In the analysis of Ref. [5], the masses of mesons were estimated by the quasi-linear Regge trajectory with the assumption that the slopes of the parity partners trajectories coincide. In the analysis of Ref. [20], the masses of mesons were calculated by the square-root Regge trajectory with the assumption that the threshold parameter of the parity partners trajectories coincide. In our consideration, we do not adopt the above assumption, but resort to the experimental data.

In Table 3, we can see that the masses of the ground states $c\bar{s}$, $b\bar{s}$, and $b\bar{c}$ extracted by the quasi-linear trajectory and square-root trajectory are almost equal. Furthermore, based on the assignment from PDG, D_s^* and B_s^* are assigned to the candidates of the ground states $c\bar{s}$ and $b\bar{s}$. Comparison of their masses given by the two trajectories with the experimental data illustrates that there is a good agreement between the results of the two trajectories and the experimental data. In the
2016 updated Meson Summary Table [21], $D_{3}^{+}(2860)$ is assigned to the candidate of $c\bar{s}$ of $1^{3}D_{3}$ meson multiplet, i.e. the candidate of $c\bar{s}$ of $J=3$. The predictions given by the quasi-linear trajectory and square-root trajectory for the mass of the above candidate are 2815 MeV and 2807 MeV, which is consistent with the experimental value 2863.2 MeV. According to PDG, the orbital excited states $\rho_{5}(2350)$ and $K'_{3}(2380)$ are assigned to the candidates of $n\bar{p}$ and $n\bar{\sigma}$ of $J=5$. The masses given by the quasi-linear trajectory and square-root trajectory for the state $n\bar{p}$ of $J=5$ are 2259 MeV and 2102 MeV, respectively. Comparison with the experimental value 2330 MeV implies that the result extracted by the quasi-linear trajectory is of better agreement. The assignment of $K'_{3}(2380)$ (2382 MeV), strongly suggest that the result of the quasi-linear trajectory (2347 MeV) is in better agreement than the square-root trajectory (2196 MeV). $X(2750)$ was observed at SLAC with mass $M=2747\pm32$ MeV, isospin $I=1$, spin-parity $J^{P}=7^{-}$, and suggested to be the isovector member of $1^{3}{l}_{7}$ meson multiplet [33]. This assignment was supported in Refs. [34-36]. In the presence of this assignment of high-spin state $X(2750)$, the result estimated by the quasi-linear trajectory (2712 MeV) is of better agreement than the result of the square-root trajectory (2301 MeV).

In Table 6, we can see that the results given by the two trajectories for the ground states $c\bar{s}$, $b\bar{s}$ and $b\bar{s}$ are almost equal and accord well with the experimental data. In Table 9, for the ground states $c\bar{s}$, $b\bar{s}$ and $b\bar{s}$, consistently suggest that the results of the two trajectories are very close and accord well with the experimental data. Moreover, in Table 9, the orbital excited state $a_{6}(2450)$ is assigned to the candidate of $n\bar{p}$ of $J=6$ [21]. The masses given by the quasi-linear trajectory and square-root trajectory for the candidate are 2494 MeV and 2353 MeV, respectively. Obviously the result given by the quasi-linear trajectory is more close to the experimental value 2450 MeV.

In addition, the square-root trajectory has a limit for higher spins, i.e. $J_{\text{max}}=[J(T_{17})]$ [20], while the quasi-linear Regge trajectory does not have the above limit. According to the relation (4), we calculate the J_{max} of the $1^{1}S_{0}$, $1^{3}S_{1}$, and $1^{3}P_{2}$ trajectories, the results are shown in Table 10-12. So the discovery of the high spin states $J > J_{\text{max}}$ on experiment, would test whether the square-root trajectory is right or not.
| TABLE 10: J_{max} of 1^3S_1 square-root Regge trajectories. |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $n\bar{n}$ | $n\bar{s}$ | $c\bar{n}$ | $c\bar{s}$ | $c\bar{c}$ | $n\bar{b}$ | $s\bar{b}$ | $c\bar{b}$ | $b\bar{b}$ |
| J_{max} | | | | | | | | |
| 8 | 8 | 11 | 12 | 15 | 17 | 18 | 20 | 26 |

| TABLE 11: J_{max} of 1^1S_0 square-root Regge trajectories. |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $n\bar{n}$ | $n\bar{s}$ | $c\bar{n}$ | $c\bar{s}$ | $c\bar{c}$ | $n\bar{b}$ | $s\bar{b}$ | $c\bar{b}$ | $b\bar{b}$ |
| J_{max} | | | | | | | | |
| 9 | 9 | 11 | 12 | 14 | 18 | 18 | 21 | 27 |

| TABLE 12: J_{max} of 1^3P_2 square-root Regge trajectories. |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $n\bar{n}$ | $n\bar{s}$ | $c\bar{n}$ | $c\bar{s}$ | $c\bar{c}$ | $n\bar{b}$ | $s\bar{b}$ | $c\bar{b}$ | $b\bar{b}$ |
| J_{max} | | | | | | | | |
| 9 | 9 | 12 | 12 | 15 | 17 | 17 | 20 | 25 |

Based on the above discussions, for the ground states, the results given by the quasi-linear trajectory and square-root trajectory are very close, which accord well with the experimental data. For the orbital excited states, with the J quantum number increases, the meson masses given by the quasi-linear trajectory are higher than the square-root trajectory. Comparison of the masses of orbital excited states $\rho_5(2350)$, $K_2^*(2380)$, $a_6(2450)$, and $X(2750)$ with those given by the quasi-linear trajectory and square-root trajectory implies that the quasi-linear trajectory describe the existing meson spectrum to be more reasonable. Searching for highly orbital excited mesons (especially for $J > J_{\text{max}}$ mesons) is very important to identify whether Regge trajectory is quasi-linear or square-root form. We suggest more efforts should be given to search highly orbital excited mesons experimentally.

Acknowledgments

We are grateful to Yao-Feng Zhang (Beijing Normal U.) for valuable discussions. This work was supported in part by the National Natural Science Foundation of China (Grant no. U1204115 and no. 11605009), the Yili Normal University Foundation of China (Grant no. 2016YSYB08), the Xinjiang Natural Science Foundation of China (Grant no. 2016D01C384).
References
[1] T. Regge, “Introduction to complex orbital momenta,” Nuovo Cimento, vol. 14, no. 5, pp. 951-976, 1959.
[2] P. D. Collins, “An introduction to Regge theory and high energy scattering,” Cambridge University Press, Cambridge, 1977.
[3] A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, “Systematics of $q\bar{q}$ states in the (n, M^2) and (J, M^2) planes,” Physical Review D, vol. 62, no. 5, Article ID 051502, 3 pages, 2000.
[4] V. V. Anisovich, “Systematics of q anti-q states, scalar mesons and glueball,” AIP Conference Proceedings, vol. 619, pp. 197-207, 2002; V. V. Anisovich, “Systematics of quark-antiquark states and scalar exotic mesons,” Physics Uspekhi vol. 47, pp. 45-67, 2004; V. V. Anisovich, “Systematics of quark-antiquark states: where are the lightest glueballs?,” AIP Conference Proceedings, vol. 717, pp. 441-450, 2004.
[5] D. M. Li, B. Ma, Y. X. Li, Q. K. Yao, and H. Yu, “Meson spectrum in Regge phenomenology,” The European Physics Journal C, vol. 37, no. 3, pp. 323-333, 2004.
[6] X. H. Guo, K. W. Wei, and X. H. Wu, “Some mass relations for mesons and baryons in Regge phenomenology,” Physical Review D, vol. 78, no. 5, Article ID 056005, 2008.
[7] X. C. Feng, K. K. Wei, J. Wu et al., “Mass spectrum of 1^1P_1 meson state and mixing angle of strange axial-vector mesons,” Advances in High Energy Physics, vol. 2013, Article ID 704529, 5 pages, 2013.
[8] X. C. Feng, P. Chen, and J. M. Shang, “Towards the assignment for the ground scalar meson,” Advances in High Energy Physics, vol. 2013, Article ID 219456, 7 pages, 2013.
[9] K. W. Wei and X. H. Guo, “Mass spectra of doubly heavy mesons in Regge phenomenology,” Physical Review D, vol. 81, no. 7, Article ID 076005, 2010.
[10] K. W. Wei, X. P. Dong, and G. Lv, “Masses of s anti-s states and nonet mixing angles,” International Journal of Modern Physics A, vol. 26, no. 12, pp. 2065-2074, 2011.
[11] D. Ebert, R. N. Faustov, and V. O. Galkin, “Spectroscopy and Regge trajectories of heavy quarkonia in the relativistic quark model,” Physics of Atomic Nuclei, vol. 76, no. 12, pp. 1554-1562, 2013.
[12] D. Ebert, R. N. Faustov, and V. O. Galkin “Mass spectra and Regge trajectories of light mesons in the relativistic quark model,” Physical Review D, vol. 79, no. 11, Article ID 114029, 2009.
[13] D. Ebert, R. N. Faustov, and V. O. Galkin, “Heavy-light meson spectroscopy and Regge trajectories in the relativistic quark model,” The European Physics Journal C, vol. 66, no. 1, pp. 197-206, 2010.
[14] D. Ebert, R. N. Faustov, and V. O. Galkin, “Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons,” The European Physics Journal C, vol. 71, Article 1825, 2011.
[15] W. K. Tang, “High-energy quark-antiquark elastic scattering with mesonic exchange,” Physical Review D, vol. 48, no. 5, Article 2019, 1993.
[16] S. S. Afonin, A. A. Andrianov, V. A. Andrianov et al., “Matching Regge Theory to the OPE,” Journal of High Energy Physics, vol. 0404, Article 039, 2004.
[17] M. M. Brisudova, L. Burakovskyy, and T. Goldmann, “Effect of color screening on heavy quarkonia Regge trajectories,” Physics Letters B, vol. 460, no. 1-2, Article ID 007327, 7 pages, 1999.
[18] A. Tang and J. W. Norbury, “Properties of Regge trajectories,” Physical Review D, vol. 62, no. 1, Article ID 016006, 2000.
[19] L. P. Zayas, J. Sonnenschein, and D. Vaman, “Regge Trajectories revisited in the gauge / string correspondence,” Nuclear Physics B, vol. 682, no. 1-2, pp. 3-44, 2004.
[20] M. M. Brisudova, L. Burakovsky, and T. Goldman, “Effective functional form of Regge trajectories,” Physical Review D, vol. 61, no. 5, Article ID 054013, 2000.
[21] C. Patrignani, K. Agashe, G. Aielli et al. (Particle Data Group), “The review of particle physics,” Chinese Physics C, vol. 40, Article ID 100001, 2016.
[22] G. F. Chew and S. C. Frautschi, “Regge trajectories and the principle of maximum strength for strong interactions,” Physical Review Letters, vol. 8, no. 1, Article 41, 1962.
[23] L. Burakovsky and T. Goldman, “On the Regge slopes intramultiplet relation,” Physics Letters B, vol. 434, no. 3-4, pp. 251-256, 1998.
[24] K. Kawarabayashi, S. Kitakado, and H. Yabuki, “Veneziano’s model and nonet scheme for 1’ and 2’ mesons,” Physics Letters B, vol. 28, no. 6, pp. 432-435, 1969.
[25] R. C. Brower, J. Ellis, M. G. Schmidt, and J. H. Weis, “Hadron scattering in two-dimensional QCD: (II). Second-order calculations, multi-Regge and inclusive reactions,” Nuclear Physics B, vol. 128, no. 1, pp. 175-203, 1977.
[26] K. Igi and S. Yazaki, “Bounds for Regge slopes and intercepts for ordinary and new hadrons,” Physics Letters B, vol. 71, no. 1, pp. 158-160, 1977.
[27] R. K. Logan and L. Sertorio, “Regge-pole analysis of πp charge-exchange polarization,” Physical Review Letters, vol. 17, no. 15, Article 834, 1966.
[28] F. Arbab and C. B. Chiu, “Association between the dip in the $\pi^- p \rightarrow \pi^0 n$ high-energy angular distribution and the zero of the ρ Trajectory,” Physical Review, vol. 147, no. 4, Article 1045, 1966.
[29] V. N. Bolotov, V. V. Isakov, V. A. Kachanov et al., “Negative pion charge exchange scattering on protons in the momentum range 20–50 GeV/c,” Nuclear Physics B, vol. 73, no. 3, pp. 365-386, 1974.
[30] R. E. Hendrick, P. Langacker, B. E. Lautrup et al., “Phenomenological analysis of total cross-section measurements at the Fermi National Accelerator Laboratory,” Physical Review D, vol. 11, no. 3, Article 536, 1975.
[31] A. S. Carroll, I. H. Chiang, T. F. Kycia et al., “Total cross sections of π^\pm, K^\pm, p and p on protons and deuterons between 23 and 280 GeV/c,” Physics Letters B, vol. 61, no. 3, pp. 303-308, 1976.
[32] A. Donnachie and P. V. Landshoff, “Total cross sections,” Physics Letters B, vol. 296, no. 1-2, pp. 227-232, 1992.
[33] D. L. Denney, H. B. Crawley, A. Firestone et al., “Study of $K^+ K^-$ production in $\pi^+ d$ interactions at 10 GeV/c, and evidence for a $J^P = 7^-$ resonance $M(2750)$ decaying into $K^+ K^- \pi^+$,” Physical Review D, vol. 28, no. 11, Article 2726, 1983.
[34] S. Godfrey, “High-spin mesons in the quark model,” Physical Review D, vol. 31, no. 9, Article 2375, 1985.
[35] S. Ishida and K. Yamada, “Light-quark meson spectrum in the covariant oscillator quark model with one-gluon-exchange effects,” Physical Review D, vol. 35, no. 1, Article 265, 1987.
[36] V. I. Borodulin, M. S. Plyushchay, and G. P. Pron’ko, “Relativistic string model of light mesons with massless quarks,” Zeitschrift für Physik C, vol. 41, pp. 293-302, 1988.