Forces on wheels and fuel consumption in cars

J Gúémez\(^1\) and M Fiolhais\(^2\)

\(^1\) Departamento de Física Aplicada, Universidad de Cantabria, E-39005 Santander, Spain
\(^2\) Departamento de Física and Centro de Física Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal

E-mail: guemezj@unican.es and tmanuel@teor.fis.uc.pt

Received 12 March 2013, in final form 3 May 2013
Published 17 May 2013
Online at stacks.iop.org/EJP/34/1005

Abstract
Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car’s motion with the dragging forces taken into account is also discussed.

1. Introduction

It is not clear when mankind first used the wheel. It is even less clear whether the wheel was invented or discovered. In any case, the wheel has been rediscovered (or reinvented) on several occasions. The rediscovery of the wheel, \textit{sensu lato}, also happens in the classroom sometimes.

Wheels are present everywhere but their most common and evident use is probably in vehicles. Inevitably, when we teach physics, in particular mechanics, sooner or later we refer to cars, trucks, trains, etc. In fact, reference to common objects always stimulates the attention of students and helps in communicating the idea that what one learns at school is closely related to everyday life.

However, problems may arise when we analyze some examples more closely. A funny situation may occur when the motion of a car is considered. The acceleration of a car is the result of forces exerted by the ground on the tires. Usually, this is recognized by the students, but some of them may become slightly confused when the teacher classifies one of these forces as a ‘friction force’ or, more precisely, as a ‘static friction force’.

0143-0807/13/041005+09$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1005
'Is it not true that the friction force direction is opposite to that of the motion?' one asks. 'That is true for the kinetic friction force acting, for instance, on a point-like object or in a body in pure translation, but here the wheels are in rotation,' answers the instructor. And he/she continues 'In the case of a wheel, the static friction force can be in either the forward or backward direction with respect to the velocity of the center-of-mass.'

Another student enters the discussion: 'Fine, but for a car, there should not be any doubt. The static friction forces on the wheels are definitely in the forward direction if the car is increasing its speed, are they not? Otherwise the car would not accelerate in the forward direction.' The instructor replies 'Well, that really depends on the price of the car...'

The discussion becomes as amusing as it is intriguing and the instructor has to explain the point better. He/she certainly will think about his/her very old car as a concrete example to help in making a clear statement. 'In the case of my car, forward forces are only present on the front wheels when the car accelerates; on the rear wheels the forces point backwards.' And the instructor adds, 'This is because I didn’t have enough money to buy a car with traction for all four wheels. Such cars are much more expensive and we physics teachers cannot easily afford them.'

In the course of the dialogue the students have already become acquainted with a number of interesting points (besides realizing that physics teachers do not own expensive cars): the static friction forces on moving wheels can be in either the direction of the motion or in the opposite direction. They can probably also vanish (and they do). In fact, in cars, one finds friction forces for all tastes.

A rolling cylinder on a horizontal plane, acted upon by a constant horizontal force, \vec{F}, provides a pedagogical example of a system for which the static friction force can be in either direction, depending on the torque produced by \vec{F}. The problem of the identification of the direction of the friction force on rolling objects is well known and [1] is about this topic. Many other works touch on this or similar problems [2, 3].

Though some textbooks address the problem of the forces on car wheels [4–7], they just do it as a side comment without really solving the problem. On the other hand, according to our experience as physics teachers, the fact that static friction forces do not produce any work [8] is also intriguing, in general, for students. Therefore, we also devote some attention to this point. Actually, since the static friction forces do not produce any work, the energy required for the car to move does not come from the road, it obviously comes from the fuel and the oxygen in the air. Still using the car as an example, we analyze the dynamical and energy equations, including the first law of thermodynamics. This allows us to formally include in the equations the amount of fuel consumed by the car. We come to the conclusion that it is the free Gibbs energy and not simply the internal energy that matters for the discussion. Moreover, we explore the Galilean principle of relativity applied to both the dynamical and energetic equations. Not very surprisingly, the amount of fuel used by the car turns out to be a Galilean invariant.

The motivation for this paper, intended for an undergraduate-level readership, is, in addition to its usefulness for classroom dialogue, the fact that not enough attention is paid to forces acting on cars, even though cars are constantly used as common examples of moving objects.

In the following section we consider the dynamics of an accelerating car, representing the forces on the tractive and on the non-tractive wheels. To simplify the discussion we neglect the effects of the air resistance. In section 3 we address some interesting energy aspects related to a car in motion, using a simplified model to describe the car as a thermodynamical system. In the same section we also explore the Galilean invariance of the equations describing the
processes. In section 4 we introduce the air resistance and relate the fuel consumption with the distance traveled by the car at constant speed. Section 5 is devoted to our conclusions.

2. The accelerating car

A front-wheel-drive car of mass m moves with acceleration a (not necessarily constant) on a straight horizontal road. The engine produces a torque M_0, which is transmitted to each front wheel by means of a drive shaft (the gearbox function does not need to be considered in our discussion, which concerns physics, not mechanical engineering). Each wheel drive is acted by a torque $M_0/2$. The front wheels are also acted upon by other forces that the rest of the car exerts on them, similar and opposite to the forces that the wheels themselves exert on the rest of the car. These are all internal forces as far as the whole car is concerned. Moreover, the resultant of the vertical forces acting on the car by the ground equals the weight of the car, and both weight and normal forces can be ignored in the present discussion of horizontal motion. For the sake of clarity we are simplifying the real problem by neglecting air resistance, assuming that the contact of the wheels with the ground is along a line (and not a surface), etc. In a real classroom context students should be warned about these simplifications. Neglecting air resistance is a crude approximation, it is only valid when the car starts. However, the simplified situation allows for a clearer discussion. Later, in section 4, we include the effects of the air resistance.

The horizontal forces exerted by the ground on the tires are static friction forces whose magnitude, according to the Amontons–Coulomb law of solid friction cannot exceed $\mu_s N$, where μ_s is the coefficient of static friction and N the vertical normal force exerted by the ground on the tire [9]. The direction of these static friction forces depends on the type of wheel (tractive or passive) and on whether the acceleration of the car is positive or negative. Let us consider one front tractive wheel in accelerated rotation, as shown in figure 1. The contact point with the ground, P, tends to move backwards due to the torque applied to the wheel, so that the static friction force is in the forward direction. If we denote this friction force by F, the rotation equation for the front wheel with respect to the rotation axis is (the normal force exerted by the ground and the weight of the wheel have zero torque and the rest of the car exerts a force at the center of the wheel, also yielding a vanishing torque)

$$\frac{M_0}{2} - FR = I \alpha,$$

where I is the moment of inertia of the wheel, R its radius and $\alpha = a/R$ (no slipping or smooth rotation condition) is the angular acceleration.

On the other hand, on the rear wheels only the static friction force, denoted by f, produces a non-vanishing torque with respect to the center of the wheel. For a wheel to accelerate
clockwise, as the rear wheel represented in figure 1 does, that force must point backwards. The equation for the rear wheel is, therefore,

\[f_R = I \alpha. \] (2)

Finally, the translation of the car as a whole is governed by the equation

\[F_R = 2F - 2f = ma, \] (3)

where \(F_R \) is the resultant external force. Altogether, there are three equations, hence three quantities \(a, F \) and \(f \) can be determined. From the above equations (1)–(3), one readily obtains

\[
\begin{align*}
 a &= \frac{R}{4I + mR^2} M_0 \\
 F &= \frac{2I + mR^2}{2R(4I + mR^2)} M_0 \\
 f &= \frac{I}{R(4I + mR^2)} M_0.
\end{align*}
\] (4)

These equations are similar to those given in [2], for the case of a bicycle. In the case of an accelerating bicycle the tractive wheel is the rear one. On that wheel the static friction force points forward (our \(F \) in the car), whereas in the front wheel the static force points in the backward direction (our \(f \) in the car). The example of the car and the example of the bicycle, studied in [2], are good and equivalent pedagogical examples to discuss the static friction forces on wheels.

If we write \(I = \frac{1}{2}m' R^2 \) (assuming a cylindrical wheel), where \(m' \) is the ‘effective’ wheel mass (actually not the real mass because the wheel is not homogeneous), the previous equations reduce to

\[
\begin{align*}
 a &= \frac{1}{R(2m' + m)} M_0 \\
 F &= \frac{m' + m}{2R(2m' + m)} M_0 \\
 f &= \frac{m'}{2R(2m' + m)} M_0,
\end{align*}
\] (5)

and the resultant force to

\[F_R = \frac{m}{(2m' + m)R} M_0. \] (6)

The effective mass of each wheel is always much smaller than the total mass of the car, \(m' \ll m \). From the above equations one concludes that the friction forces on the rear wheels are much smaller than the friction forces on the front wheels, essentially responsible for the acceleration of the car. From equation (5) one obtains, for typical masses of cars and wheels,

\[\frac{f}{F} = \frac{m'}{m' + m} \sim 1\%. \] (7)

Note that the acceleration and the friction forces are driven by \(M_0 \)—see (5). In particular, if \(M_0 = 0 \), the acceleration and all friction forces also vanish. Of course, we are neglecting the effects of the air resistance and of the kinetic friction forces always present and, hence, in practice, most torque communicated by the engine to the tractive wheels is necessary to keep the car at a constant velocity. This will be discussed in detail in section 4.
So far, we have considered an accelerating car. In the braking process, there is a torque applied to the wheels opposite to the torque communicated by the engine. In that case the static friction forces F and f reverse their directions, forcing the center-of-mass velocity to decrease. If the car is four-wheel drive, the torque produced by the engine is distributed by the four wheels and all four static friction forces are in the direction of the velocity of the center-of-mass of the accelerating car.

3. Energetic issues

So far we have analyzed forces on the wheels and the acceleration of the car. It is also interesting to study some energetic aspects [10] related to the motion of the car. To keep the discussion at the simplest level, let us assume a constant M_0. Therefore, the acceleration and the friction forces, given by (4), are all constants. From Newton’s second law one obtains the relation between the linear momentum variation of the car and the impulse of the resultant force:

$$mv_{cm} = (2F - 2f)t_0,$$

where v_{cm} is the center-of-mass velocity of the car, initially at rest, after the time t_0. Although the static friction forces, F and f, do not produce any work, the ‘pseudo-work–kinetic energy’ theorem [11] holds and it is expressed, in the present case, by the equation

$$\frac{1}{2}mv_{cm}^2 = (2F - 2f)\Delta x_{cm},$$

where Δx_{cm} is the center-of-mass displacement. We stress that the second member of (9) is not real work, but rather pseudo-work.

For the rotation of each wheel (front or rear), one has the following (equivalent) equations [12]

$$I\omega_f = fRt_0, \quad \frac{1}{2}I\omega_f^2 = fR\theta_0,$$

where ω_f is the final angular velocity of the wheels, $\omega_f = v_{cm}/R$ and $\theta_0 = \Delta x_{cm}/R$ (no slipping condition).

Of course, the first law of thermodynamics also applies and it can be expressed by the equation [13, 14]

$$\Delta K_{cm} + \Delta U = \sum_j \int \vec{F}_{ext,j} \cdot d\vec{r}_j + Q.$$

This equation is more general than a center-of-mass equation such as (9), but both are valid [15]. Each term in the sum on the right-hand side of equation (11) is work associated with each external force, $\vec{F}_{ext,j}$, and $d\vec{r}_j$ is the infinitesimal displacement of that force (the displacement of the center-of-mass does not enter explicitly in equation (11)). Still on the right-hand side of (11), Q denotes the heat. On the left-hand side, ΔK_{cm} denotes the variation of the center-of-mass kinetic energy and ΔU stands for the sum of all variations of the internal energy, including rotational energies or any kinetic energy with respect to the center-of-mass (besides temperature variation dependences, work of some internal forces and other possible contributions to the internal energy variations) [16]. In [17] an interesting analysis of a car minus the wheels can be found.

In the present case, the variation of the internal energy, ΔU, is considered as the sum of just two terms: $\Delta U = \Delta U_{rot} + \Delta U_{\xi}$ (we omit any internal energy variation from the temperature variation, and all other possible internal energy variations). The first contribution, $\Delta U_{rot} = 4\frac{1}{2}I\omega_f^2$, refers to the four rotating wheels, all with the same angular velocity. The second contribution is the internal energy variation resulting from the chemical reaction ξ.
associated with the combustion of the fuel in the engine. This variation of the internal energy is expressed by
\[\Delta U = n \Delta u \xi \]
where \(u \xi \) is the molar internal energy variation (\(\Delta u \xi \) can, in principle, be obtained from tabulated binding energies, computing the number of broken bonds and the number of formed bonds in the fuel combustion reaction) and \(n \) is the number of moles of fuel burned during the time \(t_0 \). Regarding the right-hand side of equation (11), the work of the external forces is zero for the static friction forces but part of the energy liberated by the chemical reaction \(\xi \) is the work, \(W_P \), done against the atmospheric pressure, \(P \). This work can be expressed as
\[W_P = -P \Delta V \xi = -nP \Delta v_\xi \]
where \(P \) is the temperature of the air (the heat reservoir) and \(\Delta x_\xi \) the molar entropy variation for the reaction \(\xi \). Of course, we are oversimplifying the real problem, assuming that the car is just a body with four rotating wheels acted on by an engine where there is a certain chemical reaction. Our approximation to the thermodynamical description of the car also does not take into account most of the energy losses to the air and, additionally, we remember that we are not considering the air resistance in the motion of the car. Obviously the car is a much more complicated system, but the present model is enough for the pertinent physical discussion of the car in acceleration. The bottom line is that equation (11) leads us to the following energy balance equation (no work term related with external forces):

\[\frac{1}{2}m v_{\text{cm}}^2 + 4 \frac{1}{2} I \omega_f^2 + n \Delta u_\xi = -nP \Delta v_\xi + nT \Delta x_\xi. \] (12)

Using the smooth rotation condition and the definition of the Gibbs function variation, at constant pressure and temperature, \(\Delta g = \Delta u + P \Delta v - T \Delta s \), equation (12) can still be written as

\[\frac{1}{2} \left(m + \frac{4I}{R^2} \right) v_{\text{cm}}^2 = -n \Delta g_\xi, \] (13)

relating the final velocity of the car to the fuel consumption and the variation of the fuel combustion reaction molar Gibbs free energy, \(\Delta g_\xi < 0 \) (and not the molar internal energy). Using now \(v_{\text{cm}} = \omega_f R \), the second equation (10) and the expression for \(f \) in (4), the equation (13) can equivalently be written as

\[M_0 \theta_0 = -n \Delta g_\xi. \] (14)

Using equations (3) and (9) in (13) the previous two equations may still be written in the form

\[\left(1 + \frac{4I}{nR^2} \right) F_\xi \Delta x_{\text{cm}} = -n \Delta g_\xi. \] (15)

This equation shows that (the major) part of the Gibbs free energy variation equals the energy-like (pseudo-work) \(F_\xi \Delta x_{\text{cm}} \) required to make the car move forward. In the present model of the car, the other (much smaller) part is used for the rotation of the wheels.

This simplified model of an accelerating car is a good example of an articulated body with internal sources of energy—fuel, oxygen and a thermal engine—that displaces its center-of-mass using internal forces \((M_0 \theta_0 \text{ in (14)} \) is internal forces work), though the process is intermediated by external forces that do no work, and which result from the contact of the car with an infinite mass body—the ground—that remains at rest [18].

3.1. Principle of relativity

All the above equations are valid in the reference frame \(S \) of an observer at rest on the road. Both Newton’s second law and the first law of thermodynamics are Galilean invariant, hence there are similar equations for a reference frame \(S’ \) in standard configuration with respect to \(S \), i.e. moving with velocity \(V \) with respect to \(S \) along the common \(xx’ \) axes. In \(S’ \), the
initial center-of-mass velocity is \(-V\) and the final center-of-mass velocity is \(v_{cm}\). The center-of-mass displacement at instant \(t_0\) is \(\Delta x_{cm} = \Delta v_{cm} - V t_0\). Therefore, the equivalent of equations (8) and (9) in reference frame \(S'\) are

\[
m(v_{cm} - V) - m(-V) = (2F - 2f)t_0
\]

and

\[
\frac{1}{2}m(v_{cm} - V)^2 - \frac{1}{2}mV^2 = (2F - 2f)(\Delta x_{cm} - V t_0),
\]

respectively. Both equations reduce to the very same equations (8) and (9), as expected, according to the Galileo’s principle of relativity: all inertial reference frames provide exactly the same information—one cannot obtain more information in one inertial reference frame with respect to another. The use of one inertial reference frame or any other one is usually a matter of technical advantage. It is important to stress that the rotational equations (10) are reference-frame invariant.

Regarding equation (11) in \(S'\), one should note that the ‘static’ friction forces now displace their application points by \(-V t_0\): the ground moves with velocity \(-V\) in \(S'\) and, therefore, they have associated a ‘force–displacement’ product [19] (work) given by \(-(2F - 2f) V t_0\). Hence, equation (11) in \(S'\) leads to

\[
\frac{1}{2}m(v_{cm} - V)^2 - \frac{1}{2}mV^2 + 4\frac{1}{2}I \omega \omega = -n' \Delta \rho - (2F - 2f) V t_0,
\]

where \(n'\) is the number of moles of fuel as measured in \(S'\). To write (18) we used the fact that temperature and pressure are Galilean invariants, and all variations of thermodynamical molar quantities, \(\Delta u\), \(\Delta v\), and \(\Delta s\), are also invariants. Moreover, the rotational energy is invariant as well (the rotational equations (10) are Galilean invariant). Using the result expressed by (16) in equation (18), the resulting equation is identical to (13), as it should be, provided \(n = n'\). The conclusion is clear: all observers, in any inertial reference frame, agree with the amount of fuel used by the car: \(n\) is Galilean invariant. This is an expected result, however it is interesting to obtain it formally as a consequence of the application of basic physics laws.

4. Air resistance

The model described so far provides a good physical description of the car during its acceleration period, if the air resistance is ignored, which is a reasonable approximation only for very low velocities. Hence, in order to obtain a picture closer to reality, we have to take into account air resistance effects by including the dragging force applied to the car, \(F_D\).

The dragging force is a function of the density and/or viscosity of the air, of the geometric characteristics of the car, i.e. of its aerodynamics and, most importantly, of the velocity of the car. The detailed form of the dragging force depends crucially on the velocity [6]: if the speed is such that there is turbulence behind the car, the dragging force goes as \(v^2\); for lower velocities the force depends solely on \(v_{cm}\) (Stokes’ law). We can accommodate these and other regimes in a single expression, by assuming a dragging force of the type

\[
F_D = C \left(\frac{v_{cm}}{v_0} \right)^\alpha,
\]

where the exponent also depends on the centre-of-mass velocity, \(\alpha = \alpha(v_{cm})\). In (19) the parameter \(v_0\) is introduced only for dimension purposes and \(C\) accounts for the rest of the effects (geometry/aerodynamics, density or viscosity, etc.).

Since the force (19) points backwards, the resultant force on the car is now given by \(F_R = F_D\), where \(F_R\) is the resultant of the static friction forces introduced in section 2. The
equations of motion for the car are now more difficult to derive because of the velocity dependence on \(v^{\alpha} \) of the force due to the air resistance. Regarding the energetic issues discussed in section 3, the work associated with the dragging force is a negative dissipative work, \(-W_D\) (hence, \(W_D > 0 \)) that contributes to the right-hand side of equation (11). The inclusion of this term changes equation (13), that now assumes the form

\[
\frac{1}{2} \left(m + \frac{4I}{R^2} \right) v_{cm}^2 + W_D = -\frac{n}{\Delta g\xi},
\]

and the conclusion is clear: the fuel consumption in the car or, in more accurate terms, the variation of the Gibbs energy during the acceleration period, is partly used to displace the car (a part of which goes to the rotations of the wheels) and another part is ‘lost’ as dissipative work of the dragging force.

So far we have discussed the acceleration of the car. However, most of the time the car is traveling in a steady state, at an approximately constant and sufficiently high speed to make the air resistance a major effect. If the car’s velocity is constant, the resultant horizontal force vanishes, \(F_R - F_D = 0 \), and the forces on the wheels just compensate the dragging force. Let us apply equation (11) in this case. Since the car is in uniform motion, there is no variation of the centre-of-mass kinetic energy, \(\Delta K_{cm} = 0 \), and there is also no internal energy variation associated with the kinetic energy of the wheels, \(\Delta U_{rot} = 0 \). To the internal energy variation associated with the fuel combustion, together with the other aspects related to that chemical reaction, the same discussion presented in section 3 is still applicable here and, altogether, this leads to the term \(-n\Delta g\xi > 0\) on the right-hand side of the energy balance equation. On the right-hand side of (11) one now has to include the dissipative work of the dragging force, which is easily computable since the velocity is constant: \(-W_D = -F_D \Delta x_{cm}\). Then, the equation (11) simply reduces to

\[
\frac{C}{v_{cm}^{\alpha}} v_{cm}^{\alpha} = n|\Delta g\xi|.
\]

This is an interesting equation that relates the fuel consumption to the distance traveled and the (constant) velocity of the trip. It shows that, in the steady regime, the energy coming from the fuel is all dissipated in the air—if there were no dragging forces, \(C = 0 \), there would be no fuel consumption, \(n = 0 \). It also shows that the fuel consumption, expressed by \(n/\Delta x_{cm}^3 \), depends strongly on the speed of the car. It is worth noting that the time does not enter explicitly in (21). This means that, if one has to travel a distance \(\Delta x_{cm} \), driving slowly is surely the best option to save money. Driving faster always means greater fuel consumption (also because the exponent \(\alpha \) in (21) increases with velocity). Even though shortening the driving time by increasing the speed means decreasing the time during which fuel is consumed, the consumption is inescapably higher if a given distance is traveled at a higher velocity. Therefore, if it happens that the reader is almost out of gas in the tank, it is advisable not to drive too quickly to the next filling station, to arrive earlier, but instead to drive slowly...and eventually arrive.

5. Conclusions

In conclusion, a moving car provides examples of friction forces in the direction of the motion and in the opposite direction. This should not confuse the student. On the contrary, the situation should be explored and regarded as a great opportunity to clarify the role of friction forces in rolling (non-slipping) objects.

\[
A\text{ quantity equivalent to } n/\Delta x_{cm}\text{ is commonly referred to, in Europe, as ‘liters of gas per hundred kilometers’; in South America a common expression is ‘kilometers per liter of gas’; in other regions there are other popular ways to express fuel consumption in cars.}
\]
An analysis of energetic aspects led us to formally introduce the amount of fuel consumed by the car during the acceleration and relate that amount of fuel to the applied forces and the distance traveled in every frame. That amount of fuel is reference-frame invariant. Finally, for a car in steady state motion we related the amount of fuel consumed to the dissipative work of the dragging forces.

Acknowledgments

MF would like to acknowledge lively and inspiring discussions with his biomedical engineering students, 2012–2013, during the ‘Física I’ (Physics I) lectures. JG is grateful to Vidal C Fernández for an earlier discussion on Galilean invariance in thermodynamics.

References

[1] Pinto A and Fiolhais M 2001 Rolling cylinder on a horizontal plane Phys. Educ. 36 250–4
[2] Carvalho P S and Sousa A S 2005 Rotation in secondary school: teaching the effects of frictional force Phys. Educ. 40 257–65
[3] Caldas H and Salvi E 2000 Les étudiants et les forces de frottement solide: le modèle de la brosse Le BUP 822 471–485
Besson U, Borghi L, Ambrosis A and Mascheretti P 2010 A three-dimensional approach and open source structure for the design and experimentation of teaching–learning sequences: the case of friction Int. J. Sci. Educ. 32 1289–313
[4] Halliday D, Resnick R and Walker J 2001 Fundamentals of Physics 6th edn (New York: Wiley)
[5] Walker J, Halliday D and Resnick R 2001 Principles of Physics. International Student Version 9th edn (New York: Wiley)
[6] Benson H 1996 University Physics Revised edn (New York: Wiley)
[7] Tipler P A and Mosca G 2004 Physics for Scientists and Engineers 5th edn (New York: W H Freeman)
[8] Left H S and Mallinckrodt A J 1993 Stopping objects with zero external work: mechanics meets thermodynamics Am. J. Phys. 61 121–7
Besson U, Borghi L, De Ambrosis A and Mascheretti P 2007 How to teach friction: experiments and models Am. J. Phys. 75 1106–13
Sousa C A and Pina E P 1997 Aspects of mechanics and thermodynamics in introductory physics: an illustration in the context of friction and rolling Eur. J. Phys. 19 334–7
[9] Penchina C M 1978 Pseudowork-energy principle Am. J. Phys. 46 295–6
Serway R A and Jewett J W Jr 2002 Principles of Physics. A Calculus-Based Text 3rd edn (Fort Worth, TX: Harcourt College Publishers)
[10] Erlichson H 1984 Internal energy in the first law of thermodynamics Am. J. Phys. 52 623–5
[11] Besson U 2001 Work and energy in the presence of friction: the need for a mesoscopic analysis Eur. J. Phys. 22 613–22
[12] Gürmez J and Fiolhais M 2013 From mechanics to thermodynamics: analysis of selected examples Eur. J. Phys. 34 345–57
[13] Mallinckrodt A J and Left H S 1992 All about work Am. J. Phys. 60 356–65
Mallinckrodt A J and Left H S 2002 Work, energy, and kinematic car data Phys. Teach. 40 516–7
[14] Sherwood B 2012 Work and energy for an accelerating car http://matterandinteractions.wordpress.com/2012/01/09/work-and-energy-for-an-accelerating-car/
[15] McClelland J A G 2011 A very persistent mistake Phys. Educ. 46 469–71