Case Report

Bilateral Madelung Wrist Deformity in a 13-Year-Old Girl: Surgical Correction With the Taylor Spatial Frame External Fixation System

Abstract

Madelung deformity is a complex malformation of the wrist, due to growth disturbance in the volar and ulnar part of the distal radial physis. We report a bilateral idiopathic Madelung wrist deformity, in a 13-year-old girl, corrected surgically with the Taylor spatial frame external fixation system plus osteotomy. The Taylor spatial frame, a hexapod system of external fixation, has the ability, by distraction histogenesis, to simultaneously correct all components of this multiplanar three-dimensional wrist deformity, restoring gradually the distal radius morphology and radiocarpal alignment. Furthermore, the hexapod system, assisted with a web-based software program, allowed for, any time during the correction procedure, all proper modifications of the prescription needed, for the deformity correction. With this surgical technique, we achieved a full correction of the bilateral Madelung deformity and restored good function.
Vickers ligament is a ligamentous structure, connecting the lunate bone and triangular fibrocartilage complex to the distal radius, and is seen in the vast majority of patients with Madelung deformity.

If the deformity has progressed in an older child, and the remaining growth is insufficient, a surgical procedure aiming to correct the malposition of the distal radiocarpal joint alignment can be used. The surgical procedure generally consists of a biplane osteotomy to the distal end of radius, in an attempt to correct the malposition of the distal radial articular surface and to restore a normal radiocarpal articulation. If a positive ulnar variance remains, and increased radial length with the radius osteotomy is insufficient, ulna-shortening procedure can be done.

Ulnar variance (also known as Hulten variance) refers to the relative lengths of the distal articular surfaces of the radius and ulna. The ulnar variance may be neutral (both the ulnar and radial articular surfaces are at the same level), positive (ulna projects more distally), or negative (ulna projects more proximally). In a positive ulnar variance, the ulnar and radial articular surfaces are not at the same level, and the distal articular surface of the ulna projects more distally than the articular surface of the radius. In such a case, a positive ulnar variance plays an important role in wrist pathology, such as ulnar impaction syndrome and thinning of the triangular fibrocartilage complex.

The use of a biplane osteotomy with immediate correction and fixation, in an attempt to correct this triplane deformity (distal end of the radius is in pronation, and increased palmar and ulnar tilting), requires surgical experience. In addition, there is always a risk of neurovascular damage, after the acute correction of this multiplanar wrist deformity.

A less commonly used method to correct Madelung deformity is distraction histogenesis, with the Ilizarov technique. Children treated

Figure 1

Photograph of Madelung deformity of the right wrist. **A**, Volar translation of the wrist and hand, relative to the longitudinal axis of the forearm. **B**, Dorsally prominent distal ulna.

Figure 2

Radiographic findings of Madelung deformity of the left wrist. **A**, Frontal view. Focal osteopenia in the ulnar portion of the distal radius. Fusion of the ulnar half of the distal radial physis. Exostoses of the ulnar border of the distal radius. **B**, Frontal view. 38° ulnar tilting of the distal articular surface of the radius. **C**, Frontal view. Carpal wedging. 5-mm lunate proximal subsidence. **D**, Sagittal view. 28° volar tilting of the distal articular surface of the radius.

Figure 3

Madelung deformity of the right wrist. Radiographic findings in a 1-year time span. **A**, Sagittal view. 25° volar tilting of the distal articular surface of the right radius. **B**, Sagittal view. One year later, 30° volar tilting of the distal articular surface of the right radius. **C**, Frontal view. 36° ulnar tilting of the distal articular surface of the right radius. **D**, Frontal view. One year later, 40° ulnar tilting of the distal articular surface of the right radius. **E**, Frontal view. 5-mm lunate proximal subsidence of the right wrist. **F**, Frontal view. One year later, a 12-mm lunate proximal subsidence of the right wrist.

Figure 4

MRI of both wrists. Vickers ligament. **A**, Frontal plane. Vickers ligament of the left wrist. **B**, Sagittal plane. Vickers ligament of the left wrist. **C**, Frontal plane. Vickers ligament of the right wrist. **D**, Sagittal plane. Vickers ligament of the right wrist.

Figure 5

Distal radial osteotomy for Madelung deformity correction. **A**, Distal radial osteotomy of the left wrist. **B**, Distal radial osteotomy of the right wrist.
with this method are either skeletally mature or nearly mature. Three or four rings are used. With the Ilizarov technique, several separate steps are needed to correct this multiplanar wrist deformity. In the first step, a period of over 3 weeks is usually needed, for the gradual correction of the triplane deformity of the distal end of the radius. In the next stage, an approximately 1.5-cm distal radius lengthening is necessary. A period of 2 weeks is usually needed for the radial lengthening, to bring both the ulnar and radial articular surfaces at the same level. Finally, a period of 4 to 6 weeks normally is required for the consolidation of the corrected and lengthened radius. The entire process to correct the wrist deformity takes over 9 weeks.

The Taylor spatial frame (TSF) system allows for the simultaneous correction of all components of a multiplanar limb malformation, such as the Madelung deformity, thus minimizing the time required for deformity correction. Furthermore, this hexapod system, assisted with a web-based software program, allows for all necessary modifications for deformity correction to be implemented at any time during the correction process. By contrast, the Ilizarov technique lacking the assistance of a web-based software program and the ability to simultaneously correct all the components of the wrist deformity demands more time for deformity correction and the availability of all the proper accessories to correct this complex, multiplanar wrist deformity.

To the best of our knowledge, only two reported post-traumatic Madelung-like deformities, treated with the TSF external fixation system, are found.6

Case Report

We report the correction of bilateral idiopathic Madelung deformity, in a 13-year-old girl, by callus distraction osteogenesis technique using the TSF external fixation system for the gradual restoration of the normal orientation of the radial articular surface and the simultaneous lengthening of the shortened radius.

This patient presented to our institution with distinctive the clinical features of Madelung deformity bilaterally with a volar translation of the carpus and hand and apex dorsal ulnar angulation of the distal radius (Figure 1). In addition, the dorsally prominent distal ulna was obvious, due to its relative dorsal subluxation (Figure 1), the estimated clinically 10° pronation of the distal end of the radius, and the restriction of wrist dorsiflexion and supination.

At the first clinical examination, there were distinctive radiological findings characteristic of a severe wrist deformity bilaterally, both on the P/A and lateral view (Figure 2). The P/A wrist view demonstrated characteristic features such as premature fusion of the ulnar half of the radial distal physis, focal osteopenia in the ulnar portion of the distal radius, indicative of the occupation of the ulnar corner of the radius by the fibrocartilaginous Vickers ligament, the exostoses of the ulnar border of the distal radius, and carpal wedging, forcing the lunate gradually to move proximally at the apex of the wedge (Figure 2). The lunate proximal subsidence (Figure 2) was found to be 5 mm in both wrists (lunate subsidence is the vertical distance between the most proximal point of the lunate and a line perpendicular to the longitudinal axis of the ulna, passing through its articular surface). Increased ulnar tilting of the distal articular surface of the radius was found. The distal articular surface of the radius had an ulnar tilting of 38° in the left wrist (Figure 2) and 36° in the right wrist (Figure 3), with a normal range of tilting (21° to 23°). On the lateral wrist image, an increased palmar tilting of the distal articular surface of the radius bilaterally was found. The distal articular surface of the radius had a palmar tilting of 28° in the left wrist (Figure 2) and 25° in the right wrist (Figure 3), with a normal range of palmar tilting (10° to 15°). On MRI of both wrists, the Vickers ligament was clearly seen (Figure 4). The

Table 1

Factor	Preoperative	Postop. ROM	Frame
Left wrist			
S, mm	5	10	26
AU	38°	10°	26
AV	28°	10°	56
TV mm	10	5°	
LUN SUB, mm	5	75°/40°	
PR	10°	85°/40°	
RAD/ULN		5°/35°	
FL/EXT			
PR/SUP			
Distraction, d	5	58	
In Frame, d	28		

AU = angulation ulnar; AV = angulation volar; FL/EXT = flexion/extension; LUN SUB = lunate subsidence; PR/SUP = pronation/supination; R.PR = rotation, pronation; RAD/ULN = radial/ulnar deviation; S = shortening; TV = translation volar

Note: Continued
calculated distraction lengthening of the distal radius needed for the restoration of a normal-oriented distal radial articular surface was 5 mm for both wrists that time. In addition, for the restoration of a normal-oriented distal radial articular surface in both wrists, the 10°/C176 pronation of the distal radius needed correction.

The surgical correction of the left wrist Madelung deformity was executed first because the left wrist Madelung deformity was clinically and radiologically worse than the right. The distal radial osteotomy was done as close as possible to the CORA deformity (Apex of the deformity), at the intersection of the proximal and distal anatomical axes of the radius. The ideal osteotomy was at the transverse bisector line (Figure 5). The radial osteotomy (1 cm proximal to the open growth insufficient physis) was combined with Vickers ligament release at the time of the procedure.

At 1-year follow-up, the left wrist demonstrated good alignment of the forearm/hand relationship, with increased supination and dorsiflexion (Table 1). The 1-year follow-up also showed worsening of the right wrist Madelung deformity, with its distal articular surface volar and ulnar tilting increased to 30° and 40°, respectively (Figure 3). In addition, the lunate proximal subsidence was increased to 12 mm (Figure 3). The calculated distraction lengthening of the distal radius needed for the restoration of a normal-oriented right distal radial articular surface was 12 mm. The surgical correction of the right wrist Madelung deformity with the use of the TSF was executed then.

Complex limb deformity correction with external unilateral or circular Ilizarov ring fixators, using the callus distraction osteogenesis technique, is used in children but requires frequent, time-consuming frame modifications. The TSF system, allowing for the progressive, simultaneous correction of all the components of a multiplanar malformation of a limb, such as the Madelung deformity of the wrist, minimizes the required time of deformity correction. Furthermore,

Table 1

Deformity Postoperative	Postop. ROM.							
S	A.U.	A.V.	T.V.	LUN. SUB	R.PR	FL/EXT	PR/SUP	RAD/ULN
0	20°	12°	0	0	0	75/70°	85/80°	20/35°
0	20°	11°	0	0	0	75/70°	85/80°	20/35°

AU = angulation ulnar; AV = angulation volar; FL/EXT = flexion/extension; LUN SUB = lunate subsidence; PR/SUP = pronation/supination; R.PR = rotation, pronation; RAD/ULN = radial/ulnar deviation; S = shortening; TV = translation volar
this hexapod system, assisted with a web-based software program, allowed the proper modifications of the prescription needed and more precise correction of the deformity. The TSF system was assembled with six fast FX struts and with two 105-mm full rings for the left wrist (Figure 6) and with two 130-mm full rings for the right wrist (Figure 7), selecting the proximal ring as the reference ring for the left wrist (Figures 6 and 8) and the distal ring as the reference ring for the right one (Figures 7 and 8). The reference ring was placed orthogonal to the reference fragment (proximal or distal radius). For the distal ring fixation, two 1.5-mm smooth wires were inserted to the distal radius (Figures 6 and 7). For the proximal ring fixation, two rancho cubes (Figure 6) were used for the insertion of two 3.0-mm half-pins to the proximal right radius. On the contrary, one rancho cube was used for the insertion of one 3.0-mm half pin to the proximal right ulna (Figure 7). The incorporation to the distal ring, bilaterally, of two 3.0-mm half pins, inserted to the second and fifth metacarpal, was necessary to stabilize the wrist joint and to prevent its collapse (Figures 6 and 7).

Precise A/P and lateral images are absolutely necessary to define the six deformity parameters (Figure 8). The web software gave us the calculated minimum correction time of 26 days for the left wrist and 28 for the right wrist, and the schedule the patient was expected to follow for struts adjustments every day. This calculation was based on the six deformity measurements, the four settings of the reference ring, the initial six struts settings, the defined structures at risk, and the entered maximum safe distraction rate of 0.5 mm/d. The initiation of correction was started at the seventh postoperative day. The multiplanar deformity of the distal radius was corrected anatomically at the end of the scheduled prescription. The web-based planning program was adjusted twice until total deformity correction was achieved. The frame was removed, when callus formation was achieved (Figure 9). A further immobilization of the wrist with a fiberglass cast for 3 weeks was required (Figure 9) after frame removal. The 1-year follow-up for the right wrist and the 2-year follow-up for the left wrist showed a good aligned forearm/hand relation (Figure 10) with increased wrist supination, radial deviation, and dorsiflexion (Table 1), compared with the preoperative range of motion.

Discussion

Complex limb deformity correction with external unilateral or circular Ilizarov ring fixators, using the callus distraction osteogenesis technique, is used in children but requires frequent, time-consuming frame modifications. The TSF system, allowing for the simultaneous correction of all the components of a multiplanar malformation of a limb, such as the Madelung deformity of the wrist, minimizes the required time of deformity correction. Furthermore, this hexapod
system, assisted with a web-based software program, allowed the proper modifications of the prescription needed and more precise correction of the deformity.

Conclusion

The TSF system of external fixation permits gradual correction of the rotational and translational components of the multiplanar Madelung wrist deformity without any need for frame modifications, which are necessary with the standard Ilizarov system.

References

1. Bader B, Grill F: Ulnar lengthening in osteochondroma (multiple cartilaginous exostoses) of the forearm. Hand-Chir Mikrochir Plast Chir 2000;32:321-327.

2. Houshian S, Schroder HA, Weeth R: Correction of Madelung’s deformity by the Ilizarov technique. J Bone Joint Surg Br 2004;86:536-540.

3. Villa A, Paley D, Catagni MA, Bell D, Cattaneo R: Lengthening of the forearm by the Ilizarov technique. Clin Orthop 1990; 250:125-137.

4. Matsuno T, Ishida O, Sunagawa T, Suzuki O, Ikuta Y, Ochi M: Radius lengthening for the treatment of Bayne and Klug type II and type III radial longitudinal deficiency. J Hand Surg Am 2006;31:822-829.

5. Paley D. Principles of deformity correction. Berlin, Heidelberg, New York, Springer, 2002.

6. Seybold D, Gessmann J, Muhr G, Graf M: Deformity correction with the taylor spatial frame after growth arrest of the distal radius: A technical note on 2 cases. Acta Orthopaedica 2008;79: 571-575.