The effect of Titanium dioxide precursors variation to morphology of TiO$_2$/ ZSM-5 composite

A Iryani1,2, R Kurniawati1, S Jovita1, F A Pramesti1, H Nur3,a and M Santoso1,b

1Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
2Departement of Chemistry, Pakuan University, Bogor, Indonesia.
3Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

ahadi@kimia.fs.utm.my, btsv09@chem.its.ac.id

Abstract. TiO$_2$ photocatalyst is one of the Advanced Oxidation Processes (AOPs) methods which is very potential to be applied to treat wastewater. Modification of TiO$_2$ with the addition of ZSM-5 as supporting material can increase the adsorption capacity and conductivity of water molecules. Those properties enable TiO$_2$/ ZSM5 composites to conduct photodegradation process within dye waste. TiO$_2$/ ZSM5 composites were prepared by sol gel method. The synthesized materials were characterized by X-ray diffraction (XRD), Energy Dispersive X-Ray Scanning Electron Microscopy (SEM-EDX), and Brunauer-Emmett-Teller (BET). The effect of 2-Propanol to TiO$_2$/ZSM-5 Composite Morphology was studied. The results from X-Ray Diffraction analysis revealed that the peak indicating the presence of anatase TiO$_2$ on sample 2.5;5; and 10% TiO$_2$/ZSM-5 composite. The increasing effect of Titanium precursors to TiO$_2$/ ZSM-5 composite carried out agglomerates on external surface of ZSM-5 as seen in SEM which was supported by surface area data from BET.

Keyword : Photocatalyst, Sol-gel, TiO$_2$, ZSM-5

1. Introduction
At present, the development of Indonesia's textile industries is growing rapidly. The use of dyes in the textile industry causes problems, namely, waste produced is still coloured and difficult to degrade [1]. Dyes waste contains aromatic complex compounds which are difficult to decompose by microorganisms [2]. Due to these problems, it becomes very important to process dyes waste before it discharges into the water bodies. This treatment process is expected to reduce the negative impacts of dye waste.

Several methods have been developed to process and reduce dye waste. Those methods are adsorption, coagulation, and membrane filtration. However, adsorption and coagulation methods produce several secondary contaminants that require further processing, while the membrane filtration method is very expensive [3]. Currently, a new method is being developed to treat dyes waste, namely the AOPs method. This method employs several processes which involve hydrogen peroxide (H$_2$O$_2$), UV light, photocatalyst titanium dioxide, and several other processes to produce hydroxyl radical. This method produces far fewer residues compared to conventional methods [4]. Due to this property, the AOPs method has attracted the attention of many researchers. The photocatalyst method using a TiO$_2$ semiconductor illuminated with UV light or visible light is one of the AOPs methods which is very...
potential to be applied to treat wastewater [5]. It is known that TiO$_2$ has high chemical stability, cheap, non-toxic and sufficient availability. The presence of those properties makes TiO$_2$ a very suitable material for the AOPs method. However, it is figured out that TiO$_2$ still has a deficiency, the band gap of TiO$_2$ is quite wide (3.2 eV). The wide band gap makes TiO$_2$ only active in the UV light region, thus limiting its usage and efficiency in its application process [6]. To overcome these shortcomings, such as hexagonal mesoporous silica (HMS) or zeolite are applied as additional porous support materials on TiO$_2$ [7] [8].

Zeolites as porous materials can increase surface area, hydrophilic or hydrophobic properties and expected to improve adsorption capacity and facilitating the process of substance diffusion [9]. One of materials which can be applied for high specification TiO$_2$ modification is ZSM-5. ZSM-5 has a pore size (5.3 Å), particle size, and it is easily synthesized according to research which has been conducted by Hartanto [10][11][12]. Modification of TiO$_2$ with the addition of ZSM-5 as supporting material can increase the adsorption capacity and conductivity of water molecules so that TiO$_2$/ZSM-5 composites possess high hydrophilic properties [13]. Those properties enable TiO$_2$/ZSM5 composites to conduct the photodegradation process within dye waste [14] [15]. When TiO$_2$ with particle size 30 Å is added to ZSM-5 with pore size 5.3 Å, TiO$_2$ will not be dispersed equivalently over the pores and will only affect the external surface, pore volume and mesopore volume becomes bigger [16][17]. This study focused on morphology and external surface area of TiO$_2$/ ZSM-5 composite materials after the addition of the various 2-Propanol.

2. Experimental

2.1. Materials

The materials used were commercial ZSM-5 with Si/Al = 50 from Acros Organic, titanium(IV) isopropoxide (TiIP) (97%, Aldrich), titanium dioxide (TiO$_2$) (98%, Acros Organic), aluminum oxide (Sigma-Aldrich), and 2-propanol (97%, Merck).

2.2. Methods

Synthesis TiO$_2$/ZSM-5 was carried out using sol-gel method. TiO$_2$ precursors, which is Titanium isopropoxide (TiIP) and 2-propanol was mixed under constant stirring for 5 minutes. Then ZSM-5 powder was added into the resulting solution. The amount of ZSM-5 was fixed while the amount of TiO$_2$ precursors was varied to analyze its effect to composite morphology. Variation of TiO$_2$ precursors used is 2.5; 5; and 10 percent weight of ZSM-5. Then the mixture of TiO$_2$ precursors and ZSM-5 was stirred for another minutes until a gel formed. The gel then dried for 12 hours in oven to form a white powder that further being calcined in 550 °C furnace for 3 hours. The resulting powder then characterized using XRD to identify phase and crystallinity of the resulting composite. SEM measurements was carried out to analyse morphological structure.

3. Result and Discussion

3.1. X-Ray Diffraction (XRD) Analysis

X-Ray Diffraction analysis was carried out to characterize the crystal structure of the material. Sample TiO$_2$/ZSM-5 composite with the variation of TiO$_2$ 2.5; 5; and 10% weight was characterized by XRD, as shown in Figure 1.
Figure 1. XRD patterns of TiO$_2$/ZSM-5 composite with variation of TiO$_2$ percent weight

From this diffractogram, all composite samples are indicating the presence of MFI structure (2θ = 7-10° and 22-35°) and the anatase phase of TiO$_2$ (2θ = 25.3°). The peak of anatase TiO$_2$ on sample 2.5;5; and 10% TiO$_2$/ZSM-5 composite is broader than the peak of TiO$_2$ pure because this peak merged with ZSM-5's peak around 25°. The addition of TiO$_2$ does not affect the crystal structure of ZSM-5. It caused by ZSM-5 suppresses the growth of TiO$_2$ during the synthesis process [8]

3.2. Scanning Electron Microscope – Electron Dispersion X Ray (SEM-EDX)
SEM-EDX is used to analyze the morphology and distribution of elements in a material. Commercial ZSM-5 was characterized by SEM, as shown in figure 2a. From this image, ZSM-5 has a hexagonal shape that indicates the sample has a high crystallinity [18]. Some sphere like shape around the hexagonal is impurities, likely to come from unreacted reactant during ZSM-5 synthesis. The addition of TiO$_2$ on the ZSM-5 surface retains the morphology of its forming material, namely hexagonal. The existence of this impurities makes it difficult to detect TiO$_2$ existence on the SEM image of the resulting composite, as shown in figure 2 c,d and e, so EDX analysis is needed.

Sample	Si	Al	O	Ti
2.5% TiO$_2$/ZSM-5	52.51	3.10	43.57	0.83
5% TiO$_2$/ZSM-5	45.31	2.69	49.95	2.04
10% TiO$_2$/ZSM-5	51.37	2.48	41.06	5.10

EDX analysis results are shown in table 1. Some amount of titanium elements in the composite sample is detected. When 2.5% weight of titanium precursor added, 0.83% weight of titanium element found in the composite sample. If the amount of titanium precursor doubled, the amount of titanium element in the composite sample also doubled. From table 1, it can conclude that the higher amount of titanium precursor added, the higher amount of titanium elements found in the composite sample.
Figure 2. SEM image of a) commercial ZSM-5 b) commercial TiO$_2$ c) 2.5% TiO$_2$/ZSM-5 composite sample d) 5% TiO$_2$/ZSM-5 composite sample and e) 10% TiO$_2$/ZSM-5 composite sample

3.3. Nitrogen adsorption-desorption isotherms

Addition TiO$_2$ on the ZSM-5 surface increases the surface area of the composite than ZSM-5 pure. However, increasing in TiO$_2$ content resulting in a decrease in the specific surface area of TiO$_2$/ZSM-5 composites, as presented in Table 2. It is possible that the solids of TiO$_2$ formed outside the zeolite micropore allow some parts to cover the zeolite pore thereby reducing the surface area and zeolite porosity [8].
Table 2. Specific surface area of ZSM-5 and TiO$_2$/ZSM-5 composites (2.5; 5 and 10%)

Sample	S_{BET} (m2/g)
ZSM-5	324.76
2.5% TiO$_2$/ZSM-5	336.31
5% TiO$_2$/ZSM-5	332.76
10% TiO$_2$/ZSM-5	327.23

4. Conclusion
TiO$_2$/ ZSM-5 composite have been successfully synthesized from Titanium (IV) Isopropoxide and ZSM-5 precursors via the sol-gel method. The results from X-Ray Diffraction analysis revealed that the peak showed the presence of TiO$_2$ anatase in sample 2.5; 5; and 10% TiO$_2$/ZSM-5 composite. The increasing effect of Titanium precursors to TiO$_2$/ ZSM-5 composite carried out agglomerates on external surface of ZSM-5 as seen in SEM which was supported by surface area data from BET.

Acknowledgments
This work was financially supported by the ITS Local Grand Program 2018.

References
[1] Naimah S, Silvie A A, Jati B N, Aidha N N, and Agustina A C 2014 Color Degradation in Textile Industrial Wastewater With Photocatalytic Method Using Nanocomposite TiO$_2$-Zeolite J.Kimia Kemasan 36 225-236
[2] Jain R and Sikarwar S 2008 Removal of hazardous dye congo red from waste material J. Hazard. Mater 152 942-8
[3] Hameed B, Mahmoud D and Ahmad A 2008 Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste J. Hazard. Mater 158 499-506.
[4] Rauf M A, Meetani M A, and Hisaindee S 2011 An overview on the photocatalytic degradation of azo dyes in the presence of TiO$_2$ doped with selective transition metals Desalination 276 13-27
[5] N.F. Khusnun, A.A. Jalil, S. Triwahyono, C.N.C. Hitam, N.S. Hassan, F. Jamian, W. Nabgan, T.A.T. Abdullah, M.J. Kamaruddin, D. Hartanto 2018 Directing the amount of CNTs in CuO-CNT catalysts for enhanced adsorption-oriented visible-light-responsive photodegradation of p-chloroaniline Powder Technology 327 170-178
[6] Fagan R, McCormack D E, Dionysiou D D, and Pillai S C 2015 A review of solar and visible light active TiO$_2$ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern Materials Science in Semiconductor Processing 42 2-14
[7] Tawari A, Einicke and Glaeser R 2016 Photocatalytic oxidation of NO over composites of titanium dioxide and zeolit ZSM-5 Catalysts 316
[8] Zhuang Y, Song H, Li G and Xu Y 2010 Ti-HMS as a single-site photocatalyst for the gas phase degradation of benzene Materials Letters 64 2491-3
[9] Zhang J, Minagawa M, Yamasita H and Anpo M 2000 Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts Catal Lett 66 241-3
[10] Hartanto D, Saputro, O, Utomo, W, Rosyidah, A, Sugiarso, D and Ersam, T 2016 Synthesis of ZSM-5 directly from kaolin without organic template: part-1 : effect of crystallization time Asian Journal of Chemistry 28(1) 211-5

[11] Subandrio, Dahani W, and Purwiyono T T 2017 Optimization of Gravity Chromite Processing with Shaking Table Jurnal Petro 6 2

[12] Azizi M A, Marwanza I, Amala S A dan Hartanti N A 2018 Three dimensional slope stability analysis of open pit limestone mine in Rembang District, Central Java IOP Conf. Series : Earth and Environmental Science 212

[13] Lakhane M, Khairnar R, Ryota K and Mahabole M 2016 Metal oxide blended ZSM-5 nanocomposites as ethanol sensors Bull. Mater Sci 39 1438-92

[14] Takeuchi M, Kimura T, Hidaka M, Rakhmawaty D and Anpo M 2007 Photocatalytic oxidation of acetaldehyde with oxygen on TiO$_2$/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites Journal of Catalysis 246 235-40

[15] Zhou K, Hu Xin-Yan, Hsueh Chung-chung, Zhang Q, Wang J, Lin Yu-Jung and Chang Chang-Tang 2016 Synthesized TiO$_2$/ZSM-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity Applied Surface Science 383 300-9

[16] Li X, Shen B and Xu C 2010 Interaction of titanium and iron oxide with ZSM-5 to tune catalytic cracking of hydrocarbons Applied Catalysis A: General 375 222-9

[17] Kurniawati R, Iryani A and Hartanto D 2018 The effect of 2-propanol on the shifting band gap of ZSM-5/TiO$_2$ Composite Prepared Via Sol-Gel Method AIP Proceeding 2049 020089

[18] Hartanto D, Iqbal R M, Shabahi W E, Santos E, Fansuri H, and Iryani A 2017 Effect of H$_2$O/SiO$_2$ molar ratio on direct synthesis of ZSM-5 from Bangka’s kaolin without pretreatment Malaysian Journal of Fundamental and Applied Sciences 13(4) 817-20