GABA_B receptor attenuation of GABA_A currents in neurons of the mammalian central nervous system

Wen Shen¹, Changlong Nan¹, Peter T Nelson^{2,3}, Harris Ripps^{4,5} & Malcolm M Slaughter⁶

¹ Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
² Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky
³ Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky
⁴ Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois
⁵ Whitman Investigator, Marine Biological Laboratory, Woods Hole, Massachusetts
⁶ Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York

Keywords
GABA_B receptors, GABA_A receptors, human amygdala, mouse retina, α-subunit GABA_A receptors.

Correspondence
Wen Shen, Department of Biomedical Science, CES College of Medicine, Florida Atlantic University, Boca Raton, FL 33431. Tel: (561)297 0628 Fax: (561)297 2221 E-mail:wshen@fau.edu

Abstract
Ionotrophic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron’s plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABA_B receptor can suppress the ionotropic GABA_A receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in *Xenopus* oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABA_A receptors had properties of α-subunit containing receptors, with ~5% having ρ-subunit properties. Only GABA_A receptors with α-subunit-like properties were regulated by GABA_B receptors. In mouse retinal ganglion cells, where only α-subunit-containing GABA_A receptors are expressed, GABA_B receptors suppressed GABA_A receptor currents. This suppression was blocked by GABA_B receptor antagonists, G-protein inhibitors, and GABA_B receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition.

Introduction
GABA, the major inhibitory transmitter in brain, binds fast-acting ionotropic GABA_ARs that function as Cl⁻-permeable heteropentameric ion channels. Additionally, GABA activates slower, metabotropic GABA_B G-protein-coupled receptors (GPCRs) that regulate voltage-gated K⁺ and Ca²⁺ channels (Bowery et al. 1980; Kaupmann et al. 1998). As their activity influences many neural systems and behavioral states, the GABA_BR is a major target of therapeutic drugs for mental disorders and drugs of abuse (Bettler et al. 2004).

Both retina and amygdala express high levels of ionotropic and metabotropic GABA receptors (Li et al. 1996). Retinal ganglion cells possess both GABA_ARs and GABA_BRs (Friedman and Redburn 1990; Koulen et al. 1998), and GABAergic neurons are essential for image processing in ganglion cells (Fried et al. 2005). GABAergic transmission is also crucial for the low firing rate and strong inhibitory tone in amygdala and projection neurons that target the thalamus and hypothalamus (Barnard et al. 1998; Lang and Pare 1998; Quirk and Gehlert 2003) and have been linked to emotional behavior, such as anxiety (Lehner et al. 2010).
GABABRs participate in this action by inhibiting glutamatergic cortical input to lateral amygdala, selectively suppressing excitation of principle neurons (Yamada et al. 1999; Pan et al. 2009). The GABABRs also suppress projection neurons postsynaptically by activating inward rectifying potassium channels (Huttmann et al. 2006).

The α-subunit containing GABAR possesses consensus sequence phosphorylation sites for PKA, PKC, tyrosine, and calmodulin kinases (Song and Messing 2005). Notably, PKC reduces the GABAR current and this is associated with various serine sites on β- and γ-subunits (Kellenberger et al. 1992; Krishek et al. 1994). An example is serotonin suppression of GABA currents in prefrontal cortex through PKC activation (Feng et al. 2001). PKA can either enhance or suppress GABAR currents, depending on the β-subunit of the receptor (McDonald et al. 1998).

The GABAR reduces adenylate cyclase activity (Dutar and Nicoll 1988; Kamatchi and Ticku 1990; Knight and Bowery 1996) and modulates PKC (Dutar and Nicoll 1988; Taniyama et al. 1992; Kubota et al. 2003). Consequently, the GABAR can act through a variety of second messenger cascades to modulate the GABAR current. In GABA receptors that contain the δ subunit, the GABAR can increase the tonic current of the GABAR and promote inhibition, likely acting by suppressing PKA activity (Connelly et al. 2013; Tao et al. 2013). This has been found in dentate gyrus, thalamus, and cerebellum.

A report on the interaction between GABAA and GABA B receptors in bullfrog dorsal root ganglion neurons was described in 1997 (Xi et al. 1997), but to our knowledge there has been no further exploration of this phenomenon. The purpose of this study was to explore GABA receptor interactions in two mammalian tissues: native mouse retinal neurons and in tissue derived from human amygdala. The latter was accomplished by microtransplantation of plasma membrane from human amygdala into Xenopus oocytes (Miledi et al. 2006). The in vitro retina preparation demonstrates this crosstalk between GABA and GABA receptors in the mammalian nervous system; the oocyte preparation demonstrates the utility of the microtransplantation technique in examining multireceptor activation in an inaccessible part of the human nervous system. In combination, these experiments indicate that GABABRs may have a widespread and unanticipated net disinhibitory action in the mammalian central nervous system.

Materials and Methods

Microtransplantation of membrane fractions

The microtransplantation method of incorporating transmitter receptors from native tissue into Xenopus oocytes was employed. This is an alternative approach for studying ion channel and receptor properties (Miledi et al. 2002, 2004, 2006). The method is designed to insert into the oocytes with already assembled receptors and ion channels in their native membrane fraction, bypassing the oocyte’s protein processing machinery elicited by foreign RNA transfection.

Human amygdala tissue was obtained from four males and two females autopsied at the University of Kentucky Alzheimer’s Disease (AD) Center biobank, under the purview of the University of Kentucky IRB (Schmitt et al. 2012), but who had no AD pathology. The postmortem intervals were all <4 h, and tissues were snap-frozen at the time of autopsy in liquid nitrogen and then stored at −80°C until use. Membrane fractions were collected following the published protocol (Eusebi et al. 2009). Briefly, a 500- to 600-mg piece of frozen human amygdala tissue was homogenized in a glass tube containing a high glucose solution. The homogenized solution was centrifuged for 15 min at 9400 g (Eppendorf Centrifugal 5418) in a cold room, and the supernatant was collected and ultracentrifuged at 100,000 g (Beckman Coulter Optima L-90K) for 2 h at 4°C. The pellets (membrane proteins and lipids) were resuspended in a cold glycine buffer solution and stored at −80°C.

Freshly harvested *Xenopus* oocytes were purchased from the Ecocyte Bioscientific US LLC (Austin, TX). The oocytes were injected with 41–82 nl of membrane fraction samples, in which the protein concentrations were calibrated at 0.5–1 mg/mL, using an autonanoliter injector – Nanoject II (Drummond Scientific Company). After 1–2 days, the native membrane proteins embedded in their natural lipid environment readily incorporated into surface membranes of the injected oocytes. A sham control was performed by injection of a glycine buffer solution.

Electrophysiological recording

The oocytes were placed in the recording chamber and superfused with modified Barth’s solution containing (mmol/L): NaCl (115), KCl (2), CaCl₂ (1.8), N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES, 5), pH 7.4, at room temperature. GABA currents were recorded from individual oocytes using a double-electrode voltage-clamp amplifier (GeneClamp 500B, Axon Instruments, Inc.). Microelectrodes were pulled to resistances between 0.7 and 1.5 MΩ when filled with 3.0 mol/L KCl for voltage and current recordings. Data acquisition and analysis were performed using Powerlab-LabChat V7 (AD Instruments). Where applicable, drug–receptor interaction curves were determined by fitting the experimental data to a Hill equation:
where I is the current response to a drug concentration $[C]$, I_{max} is the current elicited at a saturating drug concentration, n is the Hill coefficient, and EC_{50} (or $1/IC_{50}$, where the reciprocal replaces EC_{50} in the above equation) is the concentration at which a half-maximal drug response is obtained. Average peak current was measured and presented as mean ± SEM of 4–18 sets of data from different oocyte batches. Significant differences were determined by unpaired Student’s t-test using Microsoft Excel. The receptor agonists and antagonists were prepared in the modified Barth’s solution and were superfused by a gravity-feed perfusion system.

Whole-cell recording from mouse retinal ganglion cells was performed with an EPC-10 amplifier and HEKA software (HEKA). Briefly, the retina was isolated from 4- to 8-week-old mice and flat mounted on filter paper with photoreceptors down. The retinal tissue and filter paper were vertically sectioned in 250-300 μm slices in cold HEPES-buffered oxygenated MEM solution (Corning). All procedures were performed in accordance with the provisions of the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and approved by the University’s Animal Care Committee.

A single slice was moved to a recording chamber and superfused constantly with the MEM solution. Voltage-clamp recordings were made on ganglion cells in the retinal slices. The recording electrodes were filled with an intracellular solution containing (mmol/L): K-gluconate 120, MgCl$_2$ 1, CaCl$_2$ 0.5, HEPES 10, EGTA 5, GTP 1, ATP 5, GABA$_A$ and GABA$_B$ receptor agonists were briefly puffed on ganglion cells with a DAD-VM 12 valve manifold superfusion system (ALA Scientific Instruments). All the chemicals were purchased from Sigma or Tocris.

Immunohistochemistry labeling

After voltage or current recording, the oocytes were washed twice with the modified Barth’s solution and fixed in a 4% paraformaldehyde solution for 45 min at room temperature followed by washing with the Barth’s solution. The oocytes were treated in 1% Triton-X100 contained Barth’s solution for 20 min, immersed in the blocking solution containing 5% goat serum for 2 h, then incubated overnight at 4°C in solution containing rabbit monoclonal anti-GBRII (GABA B receptor II, Abcam, ab75838, 1:1000) and 5% goat serum. After washing with the Triton-X100 solution the oocytes were incubated with goat-anti-rabbit Cy-3-conjugated secondary antibody (1:600) for 1 h in darkness. Immunostained oocytes were visualized in a Zeiss LSM 700 confocal microscope system (Munich, Germany).

Results

Characterizing ionotropic GABA receptors from the human amygdala

GABA responses in human amygdala have not been reported, so initial experiments were performed to characterize the ionotropic GABA receptor currents. Oocytes were studied 2–3 days after injection of amygdala membrane fractions. As illustrated in Figure 1A, currents were elicited by various concentrations of GABA (5–1000 μmol/L) in transplanted oocytes held at −70 mV. The threshold concentration for GABA was around 5 μmol/L and maximum GABA currents were elicited by 500 μmol/L GABA. The current response to 1000 μmol/L GABA was reduced, probably due to fast desensitization (darkest trace in Fig. 1A). Also, a noticeable GABA current decay appeared when the concentration exceeded 20 μmol/L GABA, indicative of receptor desensitization. A similar pattern of dose-dependent currents was induced by muscimol, a selective α-subunit GABA$_A$R agonist (Fig. 1B). The dose-response curves of GABA and muscimol are plotted in Figure 1C; the calculated mean EC$_{50}$ of GABA and muscimol were 69 μmol/L ($n = 9$) and 45 μmol/L ($n = 9$), respectively. On average, the maximum current amplitudes generated by saturating concentrations (500 μmol/L) of GABA and muscimol were 134 ± 21 nA ($n = 9$) and 189 ± 32 nA ($n = 5$), respectively, representing a statistically significant difference ($P < 0.01$) in the responses to these agonists.

GABA-elicited currents were recorded at various voltages as designated in Figure 1D. The peak current amplitudes at each voltage are plotted in Figure 1E, showing that the voltage–current relationship of GABA receptors was approximately linear with the reversal potential around −20 mV, corresponding to the Cl$^-$ equilibrium potential in *Xenopus* oocytes (Kusano et al. 1982). In a negative control, GABA currents were recorded from oocytes injected with a sham solution, showing that no endogenous GABA response (Fig. 1F).

Ionotropic GABA$_A$Rs can be broadly divided into α-subunit containing receptors (the classical GABA$_A$Rs) and the more recently discovered β-subunit containing GABA$_A$Rs (often called GABA$_B$Rs). Pharmacological properties of α-containing GABA$_A$Rs from human amygdala were studied using SR95531 (gabazine) and bicuculline, selective antagonists. These agents were tested against 50 μmol/L GABA, the approximate EC$_{50}$ concentration (see Fig. 1C). The GABA currents were antagonized by either SR95531 or bicuculline in a dose-dependent manner (Fig. 2A and B). Picrotoxin, a nonselective blocker of Cl$^-$ permeable receptors, was also an effective dose-dependent inhibitor (data not shown). The antagonist dose–response curves shown...
in Figure 2C indicate that the IC\textsubscript{50} of SR95531, bicuculline, and picrotoxin were 0.6 µmol/L (\(n = 6\)), 8 µmol/L (\(n = 5\)), and 10 µmol/L (\(n = 5\)), respectively. The concentrations needed for maximal inhibition (IC\textsubscript{max}) were approximately 10 µmol/L for SR95531 and 100 µmol/L for both bicuculline and picrotoxin (Fig. 2C). However, none of the antagonists fully blocked the GABA-induced current, generally 10% of the current remained (Fig. 2D). Amygdala is reported to express \(\beta\)-subunit GABA ARs (Li et al. 1996; Cunha et al. 2010; Flores-Gracia et al. 2010). CACA (cis 4-aminocrotonic acid) is a \(\beta\)-subunit GABA AR agonist (Johnston 1996; Cherubini and Strata 1997). CACA at 100 µmol/L produced a maximal current that was approximately 9% of the EC\textsubscript{50} current produced by 50 µmol/L GABA, indicating it contributes about 5% of the total GABA current (Fig 2D).

TPMPA (1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid) is a \(\beta\)-subunit GABA AR antagonist. In experiments in which the \(\alpha\)-subunit GABA\(_\text{A}\)R current was blocked by 200 µmol/L bicuculline, then 100 µmol/L TPMPA, could partially block the remaining current produced by 50 µmol/L GABA (Fig. 2E). The current elicited by 100 µmol/L CACA was partially blocked by TPMPA (Fig. 2F). Collectively, these data identify a small but significant functional \(\beta\)-subunit GABA AR response in human amygdala. Even 200 µmol/L picrotoxin does not fully block 50 µmol/L GABA (Fig. 2G), suggesting that the transplanted human \(\beta\)-subunit GABA\(_\text{A}\)Rs are picrotoxin insensitive. Picrotoxin block of \(\beta\)-subunit GABA\(_\text{A}\)Rs is species specific and ineffective in rat, although heterologous expression of human \(\beta\)-subunit GABA\(_\text{A}\)Rs are picrotoxin sensitive (Zhang et al. 1995).

The histogram in Figure 2D summarizes results obtained from oocytes, indicating that 50 µmol/L GABA-elicited currents were largely blocked by each of the \(\alpha\)-subunit GABA\(_\text{A}\)R antagonists: bicuculline, SR95531 and picrotoxin (tested at the IC\textsubscript{max} values). Only small percentage of the GABA currents were insensitive to these antagonists, averaging 9.8 ± 2% (\(n = 18\)), 7.2 ± 2% (\(n = 16\)), and 12 ± 4% (\(n = 18\)), respectively. This remaining current was very similar to the average current produced by 100 µmol/L CACA, 9.3 ± 3% (\(n = 12\)). These results indicate that the \(\alpha\)-subunit GABA\(_\text{A}\)R is a major inhibitory receptor in human...
amygdala and the GABA_A receptor constitutes a minor component of the inhibitory input in human amygdala. With this information we could evaluate the interactions between metabotropic and the two types of ionotropic GABA receptors.

The evidence of GABA_BR and its inhibitory action

Both GABA_ARs and GABA_BRs are present in amygdala (Li et al. 1996) and the relative effectiveness of muscimol and GABA (see Fig. 1) suggested an interaction between the two receptor pathways. Since muscimol does not activate GABA_ARs, we examined the current produced by muscimol alone or in the presence of baclofen, a selective GABA_BR agonist. Muscimol (10 µmol/L) elicited currents were robustly suppressed by both 10 µmol/L and 100 µmol/L baclofen in a dose-dependent manner (Fig 3A). The suppressive effect of baclofen could be fully suppressed by 20 µmol/L CGP52432, a GABA_BR antagonist (Fig 3B). However, 10 µmol/L baclofen, with or without CGP52432, produced no effect on the resting
membrane currents prior to application of muscimol (Fig. 3B, asterisk), indicating that activation of GABA _B_ Rs alone did not produce membrane currents in the oocytes. The effect of baclofen on _α_ -subunit GABA _A_ Rs was also tested in the transplanted oocytes. A typical example, shown in Figure 3C, indicates that 10 µmol/L baclofen did not suppress the CACA-activated current. On average, 10 µmol/L baclofen (BAC) reduced 48 ± 3% (n = 12) of 10 µmol/L muscimol-generated peak current, but had insignificant effects on 100 µmol/L CACA-generated currents. (E) Western blotting indicates that anti-GBR2 antibody detected a single protein band at 107 kDa from a sample of the membrane fraction (left), and the anti-GBR2 detection of GABA _B_ Rs on the membrane surface of oocytes injected with either the membrane fraction or sham control. The inserts show magnified views of oocyte membrane. (F, G) Baclofen (10 µmol/L) had small effects on the oocytes injected with the anti-GBR2 applied membrane fractions. (H) Internal perfusion of GDP-β-S blocked 10 µmol/L baclofen-produced inhibition.

Figure 3. Activation of GABA _B_ Rs suppresses GABA _A_ Rs currents. (A) 10 µmol/L and 100 µmol/L baclofen inhibit muscimol (10 µmol/L)-evoked currents. (B) The suppressive effect of baclofen was blocked by 20 µmol/L CGP52432, a GABA _B_ Rs inhibitor; note that the baclofen with and without CGP52432 have no effect on the resting membrane current (see asterisk). (C) Baclofen (10 µmol/L) did not suppress the CACA-activated current. (D) Summary of the effects of 10 µmol/L baclofen on the currents produced by muscimol or CACA. On average, 10 µmol/L baclofen (BAC) reduced 48 ± 3% (n = 12) of 10 µmol/L muscimol-generated peak current, but had insignificant effects on 100 µmol/L CACA-generated currents. (E) Western blotting indicates that anti-GBR2 antibody detected a single protein band at 107 kDa from a sample of the membrane fraction (left), and the anti-GBR2 detection of GABA _B_ Rs on the membrane surface of oocytes injected with either the membrane fraction or sham control. The inserts show magnified views of oocyte membrane. (F, G) Baclofen (10 µmol/L) had small effects on the oocytes injected with the anti-GBR2 applied membrane fractions. (H) Internal perfusion of GDP-β-S blocked 10 µmol/L baclofen-produced inhibition.

membrane currents prior to application of muscimol (Fig. 3B, asterisk), indicating that activation of GABA _B_ Rs alone did not produce membrane currents in the oocytes.

The effect of baclofen on _ρ_ -subunit GABA _A_ Rs was also tested in the transplanted oocytes. A typical example, shown in Figure 3C, indicates that 10 µmol/L baclofen had no detectable effect on CACA-elicited currents. On average, 10 µmol/L baclofen suppressed 48 ± 3% (n = 12) of currents produced by 10 µmol/L muscimol, but had no significant effect on 100 µmol/L CACA-elicited currents (n = 8, Fig. 3D).

To verify the membrane expression of transplanted GABA _B_ Rs, immunolabeling of the oocytes was performed using the specific antibody against the residues near the C-terminus of GBR2 (anti-GBR2). The specificity of the antibody for human amygdala fractions was tested in Western blot assays. The anti-GBR2 clearly recognized a single band of proteins with a molecular mass of 107
Fig. 3E, left), consistent with the molecular mass of GABABRs II subunit. The anti-GBR2 labeling results indicate that GABABRs were transported to the surface of the *Xenopus* oocytes after injecting membrane fractions from the human amgydala, but absent on the surface of oocytes injected with a sham control (Fig. 3E), demonstrating that GABABRs are not endogenously expressed in *Xenopus* oocytes.

In another approach to test the suppressive effect of baclofen on GABAAR currents, the anti-GBR2 antibody was used to selectively disrupt GABA BR function. Functional GABAARs are heterodimers composed of GBR1 and GBR2 (Geng et al. 2013). The anti-GBR2 antibody was applied in the membrane fraction sample with a volume ratio of 1:10,000 (antibody vs. membrane fraction sample), then injected into *Xenopus* oocytes. After 24 h, the effect of baclofen was tested on the oocytes with the standard protocol: application of 10 μmol/L muscimol with and without 100 μmol/L baclofen. In the presence of the anti-GBR2, baclofen had a comparatively small effect on the muscimol-elicited currents (Fig. 3F). On average, with anti-GBR2 application, muscimol with and without baclofen generated about 97.2 ± 5.7% (n = 7) and 88.1 ± 6% (n = 7) of the control muscimol-elicited currents, respectively. Application of anti-GBR2 had a minor action on muscimol-activated GABAARs, but disrupted the actions of GABABRs (Fig. 3G).

To confirm that baclofen’s effect was mediated by a G-protein cascade, the nonhydrolyzable analog of guanosine-5’-diphosphate (GDP), guanosine-5’-O-(2-thiodiphosphate) trilithium salt (GDP-β-S), was injected into the oocyte. GDP-β-S (100 μmol/L) injection suppressed the effect of baclofen on the GABAAR currents (Fig. 3H). This was also consistent with the previous report that baclofen does not act as a competitive antagonist at the GABAARs (Xi et al. 1997).

Increasing GABAAR response by inhibition of GABABRs

To test the prediction that the response to GABA would be enhanced if GABABRs were not activated, the potent GABABR antagonists, CGP55845 and CGP52432, were used to block GABABRs when GABA was applied. The sample recordings shown in Figure 4A indicate that 10 μmol/L CGP55845 or 20 μmol/L CGP52432 increased GABA (50 μmol/L)-elicited currents. This effect was present in 11 of 19 transplanted oocytes obtained from different batches. Histograms from those 11 cells show that average GABA currents in the presence of CGP55845 or CGP52432 were increased to 142.5 ± 13.2% (n = 11) or 131 ± 6.2% (n = 11), respectively (Fig. 4B). In contrast, when only GABAARs were activated with 10 μmol/L muscimol, CGP52432 had no effect on muscimol-elicited currents (Fig. 4C), indicating that the GABABR antagonist has no direct action on GABAARs.

Interaction between GABA receptors in retinal ganglion cells

The effects of GABABRs on GABAAR currents were also tested on neurons in the in vitro rodent retina slice preparation. Neurons were recorded in the ganglion cell layer using the whole-cell voltage-clamp technique and were characterized by large voltage-activated sodium currents, typical of ganglion cells (Fig. 5A). Neurons were held at various potentials between −90 and −10 mV and either 30 μmol/L muscimol or muscimol plus 10 μmol/L baclofen was focally applied. A typical experiment is shown in Figure 5B, the averaged I–V curve from
recordings in seven neurons is shown in Figure 5C. Baclofen suppressed muscimol-elicited inward and outward currents \((n = 7, \text{Fig. } 5B)\). When GDP-\(\beta\)-S (100 \(\mu\)mol/L) was added to the pipette solution to block activation of the G-protein cascade, the effect of baclofen became negligible (Fig 5D, \(n = 5\)), which is consistent with the results in Figure 3H. Because application of GDP-\(\beta\)-S through a recording electrode could only inhibit G-proteins in the local cells, it is possibly that the effect of baclofen is via direct action on GABA_
\text{BR}\s in the local ganglion cells, not from network inputs.

Discussion

Interactions between GABA receptor subtypes

The findings, from both in vitro retina and transplanted amygdala membrane, are that the GABA_
\text{BR}\ can suppress the inhibitory action of GABA_
\text{AR}\s. The results extend the original observation in bullfrog dorsal root ganglion (Xi et al. 1997) to the mammalian central nervous system and indicate that this regulation may be a common feature at GABA synapses. These results contrast with findings in thalamus and dentate gyrus, where the GABA_
\text{AR}\ current was enhanced (Connelly et al. 2013; Tao et al. 2013). This enhancement was dependent on the presence of \(\delta\) subunits in the GABA_
\text{AR}, a subunit that apparently is not present in amygdala (Wisden et al. 1992). It suggests that feed-forward crosstalk between GABA receptor subtypes may be prevalent in the nervous system, but the outcome may depend on the subunit composition of the GABA_
\text{AR}.

The main mechanism of action of GABA_
\text{BR}\s in CNS is to suppress voltage-dependent Ca\(^{2+}\) channels or to activate inward rectifying K\(^+\) channels. Both actions are inhibitory, reducing transmitter release or causing membrane hyperpolarization, respectively. The interesting finding

Figure 5. Activation of GABA_
\text{BR}\s suppressed GABA_
\text{AR}\ currents in mouse retinal ganglion cells. (A) Example of the current–voltage relationship of ganglion cells in whole-cell recording. (B) Baclofen suppressed muscimol-elicited currents in a ganglion cell clamped at various voltages. (C) Average current–voltage relationship of muscimol-elicited currents with and without baclofen. (D) The effects of baclofen were blocked by intracellular application of GDP-\(\beta\)-S (100 \(\mu\)mol/L).
here is that activation of GABA_B Rs suppressed GABA_A responses and this disinhibition occurs when both receptors are present on the same cell.

The cross-talk between receptors that we observed would have a net effect of increasing excitation. Although this seems paradoxical for an inhibitory transmitter, it has been repeatedly observed in retina. In rat retinal ganglion cells, the GABA_B R acts to suppress an N-type calcium channel that is linked to a BK channel. Thus, the effect of GABA_B R stimulation is to reduce an outward potassium current, thereby promoting excitation (Garay-cochea and Slaughter 2016). In salamander retina, GABA_B Rs promote excitatory synaptic input to ganglion cells (Song and Slaughter 2010) and enhance L-type calcium currents (Shen and Slaughter 1999). The present results provide a third GABA_B R mechanism that can promote excitation.

The concept that GABA_B Rs can counteract GABA_A R inhibition is not surprising since one frequent action of metabotropic receptors is to reduce presynaptic release of GABA (Deisz and Prince 1989; Chen and van den Pol 1998; Kobayashi et al. 2012). Furthermore, the GABA_A R activation of inward rectifying potassium channels (GIRKs) is a voltage-dependent inhibition that diminishes activation of inward rectifying potassium channels (Garay-cochea and Slaughter 2016). Therefore, the experiments highlight the potential diversity of control mechanisms produced by crosstalk between GABA_A R subtypes.

Conflict of Interest

The authors declare that they have no competing interests.

References

Barnard, E. A., P. Skolnick, R. W. Olsen, H. Mohler, W. Sieghart, G. Biggio, et al., 1998. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50:291–313.

Bettler, B., K. Kaufmann, J. Mosbacher, and M. Gassmann, 2004. Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84:835–867.

Bowery, N. G., D. R. Hill, A. L. Hudson, A. Doble, D. N. Middlemiss, J. Shaw, et al., 1980. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94.

Chalifoux, J. R., and A. G. Carter. 2011. GABA(B) receptor modulation of synaptic function. Curr. Opin. Neurobiol. 21:339–344.

Chen, G., and A. N. van den Pol. 1998. Presynaptic GABA(B) autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons. J. Neurosci. 18:1913–1922.

Cherubini, E., and F. Strata. 1997. GABA(C) receptors: A novel receptor family with unusual pharmacology. News Physiol. Sci. 12:136–141.
Connelly, W. M., S. J. Fyson, A. C. Errington, C. P. McCafferty, D. W. Cope, G. Di Giovanni, et al. 2013. GABA (B) Receptors Regulate Extrasynaptic GABA(A) Receptors. J. Neurosci. 33:3780–3785.

Cunha, C., M. H. Monfils, and J. E. LeDoux. 2010. GABA\textsubscript{C} receptors in the lateral amygdala: a possible novel target for the treatment of fear and anxiety disorders. Front. Behav. Neurosci. 4:46.

Deisz, R. A., and D. A. Prince. 1989. Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABA(B) receptor feed-back on GABA release. J. Physiol. 412:513–541.

Delaney, A. J., and P. Sah. 2001. Pathway-specific targeting of GABA(A) receptor subtypes to somatic and dendritic synapses in the central amygdala. J. Neurophysiol. 86:717–723.

Dutat, P., and R. A. Nicoll. 1988. Pre- and postynaptic GABA (B) receptors in the hippocampus have different pharmacological properties. Neuron 1:585–591.

Eusebi, F., E. Palma, M. Amici, and R. Miledi. 2009. Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into Xenopus oocytes: a potent tool for expanding functional information. Prog. Neurobiol. 88:32–40.

Feng, J., X. Cai, J. Zhao, and Z. Yan. 2001. Serotonin receptors modulate GABA(A) receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J. Neurosci. 21:6502–6511.

Flores-Gracia, C., A. Nuche-Bricaire, M. Crespo-Ramírez, R. Miledi, K. Fuxe, and M. Pérez de la Mora. 2010. GABA\textsubscript{A} receptor mechanisms in the rat amygdala and its role in the modulation of fear and anxiety. Psychopharmacology 212:475–484.

Fried, S. I., T. A. Munch, and F. S. Werblin. 2005. Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46:117–127.

Friedman, D. L., and D. A. Redburn. 1990. Evidence for functionally distinct subclasses of gamma-aminobutyric acid receptors in rabbit retina. J. Neurochem. 55:1189–1199.

Garaycochea, J., and M. M. Slaughter. 2016. GABA\textsubscript{A} receptors enhance excitatory responses in isolated rat retinal ganglion cells. J. Physiol. 594:5543–5554.

Geng, Y., M. Bush, L. Mosyak, F. Wang, and Q. R. Fan. 2013. Structural mechanism of ligand activation in human GABA\textsubscript{B} receptor. Nature. 504:254–259.

Huttmann, K., D. Yilmazer-Hanke, G. Seifert, J. Schramm, H. C. Pape, and C. Steinhauser. 2006. Molecular and functional properties of neurons in the human lateral amygdala. Mol. Cell Neurosci. 31:210–217.

Johnston, G. A. 1996. GABA\textsubscript{C} receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol. Sci. 17:319–323.

Kamatchi, G. L., and M. K. Ticku. 1990. Functional coupling of presynaptic GABA\textsubscript{B} receptors with voltage-gated Ca2+ channel: regulation by protein kinases A and C in cultured spinal cord neurons. Mol. Pharmacol. 38:342–347.

Karlsson, G., K. Klebs, T. Hafner, M. Schmutz, and H. R. Olpe. 1992. Blockade of GABA\textsubscript{B} receptors accelerates amygdala kindling development. Exp.eriencia 48:748–751.

Kaupmann, K., V. Schuler, J. Mosbacher, S. Bischoff, H. Bittiger, J. Heid, et al. 1998. Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc. Natl Acad. Sci. USA 95:14991–14996.

Kellenberger, S., P. Malherbe, and E. Sigel. 1992. Function of the alpha 1 beta 2 gamma 2S gamma-aminobutyric acid type A receptor is modulated by protein kinase C via multiple phosphorylation sites. J. Biol. Chem. 267:25660–25663.

Knight, A. R., and N. G. Bowery. 1996. The pharmacology of adenylyl cyclase modulation by GABA\textsubscript{B} receptors in rat brain slices. Neuropharmacology 35:703–712.

Kobayashi, M., H. Takei, K. Yamamoto, H. Hatanaka, and N. Koshikawa. 2012. Kinetics of GABA\textsubscript{B} autoreceptor-mediated suppression of GABA release in rat insular cortex. J. Neurophysiol. 107:1431–1442.

Koulou, B., P. Malitschek, R. Kuhn, B. Bettler, H. Wassle, and J. H. Brandstatter. 1998. Presynaptic and postsynaptic localization of GABA(B) receptors in neurons of the rat retina. Eur. J. Neurosci. 10:1446–1456.

Krishek, B. J., X. Xie, C. Blackstone, R. L. Huganir, S. J. Moss, and T. G. Smart. 1994. Regulation of GABA\textsubscript{B} receptor function by protein kinase C phosphorylation. Neuron 12:1081–1095.

Kubota, H., S. Katsurabayashi, A. J. Moorhouse, N. Murakami, H. Koga, and N. Akaike. 2003. GABA\textsubscript{B} receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. J. Physiol. 551:263–276.

Kusano, K., R. Miledi, and J. Stinnakre. 1982. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J. Physiol. 328:143–170.

Lang, E. J., and D. Pare. 1998. Synaptic responsiveness of interneurons of the cat lateral amygdaloid nucleus. Neuroscience 83:877–889.

Lehner, M., A. Wistowska-Stanek, A. Skorzewska, P. Maciejak, J. Szyndler, D. Turzyńska, et al. 2010. Differences in the density of GABA-A receptor alpha-2 subunits and gephyrin in brain structures of rats selected for low and high anxiety in basal and fear-stimulated conditions, in a model of contextual fear conditioning. Neurobiol. Learn. Mem. 94:499–508.

Li, X. F., J. L. Armony, and J. E. LeDoux. 1996. GABA\textsubscript{A} and GABA\textsubscript{B} receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an
in vivo microiontophoretic study and a model. Synapse 24:115–124.
Liu, Z. P., C. Song, M. Wang, Y. He, X. B. Xu, H. Q. Pan, et al. 2014. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Mol. Brain 7:32. doi:10.1186/1756-6606-7-32.
McDonald, B. J., A. Amato, C. N. Connolly, D. Benke, S. J. Moss, and T. G. Smart. 1998. Adjacent phosphorylation sites on GABA_A receptor beta subunits determine regulation by cAMP-dependent protein kinase. Nat. Neurosci. 1:23–28.
Miledi, R., F. Eusebi, A. Martinez-Torres, E. Palma, and F. Trettel. 2002. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc. Natl Acad. Sci. USA 99:13238–13242.
Miledi, R., Z. Duenas, A. Martinez-Torres, C. H. Kawas, and F. Eusebi. 2004. Microtransplantation of functional receptors and channels from the Alzheimer’s brain to frog oocytes. PNAS 101:1760–1763.
Miledi, R., E. Palma, and F. Eusebi. 2006. Microtransplantation of neurotransmitter receptors from cells to Xenopus oocyte membranes: new procedure for ion channel studies. Methods Mol. Biol. 322:347–355.
Pan, B. X., Y. Dong, W. Ito, Y. Yanagawa, R. Shigemoto, and A. Morozov. 2009. Selective gating of glutamatergic inputs to excitatory neurons of amygdala by presynaptic GABA_B receptor. Neuron 61:917–929.
Quirk, G. J., and D. R. Gehlert. 2003. Inhibition of the amygdala: key to pathological states? Ann. N. Y. Acad. Sci. 985:263–272.
Rainnie, D. G., E. K. Asprodini, and P. Shinnick-Gallagher. 1991. Inhibitory transmission in the basolateral amygdala. J. Neurophysiol. 66:999–1009.
Schmitt, F. A., P. T. Nelson, E. Ahner, S. Scheff, G. A. Jicha, C. Smith, et al. 2012. University of Kentucky Sanders-Brown healthy brain aging volunteers: donor characteristics, procedures and neuropathology. Curr. Alzheimer Res. 9:724–733.
Shen, W., and M. M. Slaughter. 1999. Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J. Physiol. 516(Pt 3):711–718.
Song, M., and R. O. Messing. 2005. Protein kinase C regulation of GABA_A receptors. Cell. Mol. Life Sci. 62:119–127.
Song, Y., and M. M. Slaughter. 2010. GABA(B) receptor feedback regulation of bipolar cell transmitter release. J. Physiol. 588:4937–4949.
Taniyama, K., M. Niwa, Y. Kataoka, and K. Yamashita. 1992. Activation of protein kinase C suppresses the gamma-aminobutyric acid B receptor-mediated inhibition of the vesicular release of noradrenaline and acetylcholine. J. Neurochem. 58:1239–1245.
Tao, W., M. H. Higgs, W. J. Spain, and C. B. Ransom. 2013. Postsynaptic GABA_B receptors enhance extrasynaptic GABA_A receptor function in dentate gyrus granule cells. J. Neurosci. 33:3738–3743.
Wisden, W., D. J. Laurie, H. Monyer, and P. H. Seeburg. 1992. The distribution of 13 GABA_A receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12:1040–1062.
Xi, Z. X., K. Yamada, M. Tsurusaki, and T. Akasu. 1997. Baclofen reduces GABA_A receptor responses in acutely dissociated neurons of bullfrog dorsal root ganglia. Synapse 26:165–174.
Yamada, J., F. Saitow, S. Satake, T. Kiyohara, and S. Konishi. 1999. GABA(B) receptor-mediated presynaptic inhibition of glutamatergic and GABAergic transmission in the basolateral amygdala. Neuropharmacology 38:1743–1753.
Zhang, D., Z. H. Pan, X. Zhang, A. D. Brideau, and S. A. Lipton. 1995. Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proc. Natl Acad. Sci. USA 92:11756–11760.