Off-policy Recommendation System without Exploration

Chengwei Wang, Tengfei Zhou, Chen Chen, Tianlei Hu, Gang Chen
Recommendation as Reinforcement Learning Problem

Markov Decision Process (MDP)

- **State Space**: The state contains chronological clicked items of user u, i.e., $s_t^u = \{i_1, \ldots, i_n\}$

- **Action space** \mathcal{A}: The action space is the item set

- **Transition probability** $P(s_{t+1}^u | s_t^u, a_t^u)$:

$$s_{t+1}^u = \begin{cases} s_t^u \cup \{a_t^u\} & \text{if user } u \text{ clicks item } a_t^u \\ s_2^u & \text{otherwise} \end{cases} \quad (1)$$

- **Reward** $r(s_t^u, a_t^u)$:

$$r(s_t^u, a_t^u) = \begin{cases} 1 & \text{if user } u \text{ clicks item } a_t^u \\ 0 & \text{otherwise} \end{cases} \quad (2)$$
Q-Learning

Optimal Strategy

- The Recommender aims to construct a optimal policy \(\pi: S \rightarrow \mathcal{A} \) which optimize cumulative rewards

- The optimal policy is the maximizer of optimization problem:

\[
\max_\pi \sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t))
\]

where \(\gamma \in [0, 1] \) controls the balance between immediate and long term reward

Bellman Equation

- According to MDP, the solution of problem (1) is:

\[
\pi(s) = \arg \max_{a \in \mathcal{A}} Q(s, a)
\]

where \(Q(\cdot, \cdot) \) is the Q-function satisfying Bellman Equation:

\[
Q(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \max_{a'} Q(s', a')
\]

Q-Learning

- Bellman Equation (3) can be solved by the following occurrence

\[
Q^{k+1}(s, a) = r(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a} Q^k(s', a)
\]

- Let \(B = \{(s^u_t, a^u_t, s^u_{t+1}, r^u_t)\} \) be the interaction dataset between recommender and environment

- By Monte Carlo method, iteration (4) can be approximated via:

\[
Q^{k+1}(s_t, a_t) = r_t + \gamma \max_{a} Q^k(s_{t+1}, a)
\]

where \((s_t, a_t, s'_{t+1}, r_t) \in B\). The above update is often dumbed as Q-learning

Shortcomings of Q-Learning

- Q-learning may have unrealistic estimate on unobserved state-action pairs, which lead to over optimistic or pessimistic decision and makes the performance of an recommender unstable

- To fix such instability, the recommender has to interaction with online users continually.
Kumar et al. (2019) propose the Batch Constrained Q-Learning (BCQ) method. BCQ avoids exploration error by explicitly constraining an agent’s candidate actions in the training set which result in learning process:

$$Q^{k+1}(s_t, a_t) = r_t + \gamma \max_{(s_{t+1}, a) \in B} Q^k(s_{t+1}, a)$$

(1)

Due to the sparsity of recommendation dataset, BCQ update (4) can usually be simplified to

$$Q^{k+1}(s_t, a_t) = r_t + \gamma Q^k(s_{t+1}, a_{t+1})$$

(2)

Such iteration implicitly assumes that the observed action $$a_{t+1}$$ optimal for state $$s_{t+1}$$, which is impractical.

GCQ utilizes a neural generator $$g_\theta(a|s)$$ to recover the distribution of observed dataset.

Then, the Q-function is updated on a candidate set sampled from the generator.

the main iteration of GCQ

$$\begin{align*}
A^k &= \{a_i \sim g_\theta(a|s_{t+1})\}_{i=1}^c \\
Q^{k+1}(s_t, a_t) &= r_t + \gamma \max \{Q^k(s_{t+1}, a) | a \in A^k\}
\end{align*}$$

(3)

Deep-GCQ: One can use a deep neural network $$Q_\theta(s, a)$$ to approximate the unknown Q-function.
Architecture of State Encoder

The Encoder

- The embedding layer maps a user or an item into correspondent semantic vector
- The Recurrent layer transforms the click sequence into hidden states
- The Attention layer aggregate hidden states into a feature vector

The Q-Net

- Considering that the optimal action shall have close correlations with the current state, we use the inner product of the two object’s feature vectors to model the Q-function:
 \[Q_\theta(s, a) = (e)^T q_a \]
- where \(q_a \) is item \(a \)'s embedding vector
The Huffman tree is built according to the popularity of items.

- We assign Huffman code to each node of the tree by the following rules:
 - Encode the root by $b_0 = 0$
 - For a node with code $b_0 b_1 ... b_j$, encode its left child by $b_0 b_1 ... b_{j-1} 0$
 - And right child by $b_0 b_1 ... b_{j-1} 1$

- For node $b_0 b_1 ... b_j$ (abbreviated by $b_{0:j}$), let $z_{b_{0:j}} \in \mathbb{R}^d$ be its embedding vector.

- Suppose item a is encoded by $b_{0:j}$, its generating probability is modeled by:

$$ g_\theta(a|s) = \prod_{k=0}^{j-1} \frac{(\sigma(z_{b_{0:k}}^T e))^{b_{k+1}} (1 - \sigma(z_{b_{0:k}}^T e))^{1-b_{k+1}}}{\sigma^{(k)}(z_{b_{0:k}}^T e)} $$

(1)

where $\sigma(\cdot)$ is the sigmoid function, e is the feature vector of state s.

- Sampling an item a involves calculating j sigmoid units which takes $O(jd)$ flops, where $j = O(\log |A|)$ is the height of the Huffman Tree.
Training Algorithm

- Loss function of the Generator

\[nll(\theta) = -\frac{1}{|B|} \sum_{(s,a) \in B} \log g_\theta(a|s). \]

- Loss function of the Q-net

\[qloss(\theta) = (Q_\theta(s,a) - r + \gamma \max \{ Q_\theta(s', a) | a \in A \})^2 \]

- Joint Loss

\[\min_{\theta} qloss(\theta) + \lambda nll(\theta) \quad (1) \]

Algorithm 1: Generator Constrained Deep Q-Learning

```
input: Replay Buffer B, size of candidate set c,
regularizer \( \lambda \), number of iterations \( K \),
discount rate \( \gamma \), learning rate \( \eta \)

// Build tree and Initialize Networks
1 tree = BuildHoffmanTree( B )
2 \( \theta_0 \) = InitializeParameters( tree )

3 for ( \( k = 0; k < K; k++ \) ) do
   // sample a tuple from dataset
   4 (s, a, s', r) = GetRandomSample( B )
   // estimate current Q value
   5 \( A = \{ a_i | a_i \sim g_\theta(a|s), i \leq c \} \)
   6 \( \hat{Q} = r + \gamma \max \{ Q_\theta(a_i, s') | a_i \in A \} \)
   // compute stochastic joint loss
   7 qloss = \( \frac{1}{2} (\hat{Q} - Q_\theta(s, a))^2 \)
   8 nll = \( -\log g_\theta(a|s) \)
   9 jointloss = qloss + \lambda nll
   // update parameters
   10 d\( \theta_k \) = \( (Q_\theta(s, a) - \hat{Q}) \nabla Q_\theta(s, a) - \frac{\lambda}{g_\theta(a|s)} \nabla g_\theta(a|s) \)
   11 \( \theta_{k+1} = \theta_k - \eta d\theta_k \)
4 end
```
Experiments: Offline Evaluation

Offline recall@k

	M1M	M10M	AMZ						
	Reca@1	Reca@5	Reca@10	Reca@1	Reca@10	Reca@1	Reca@5	Reca@10	
DQN	0.0088	0.0314	0.0770	0.0052	0.0248	0.0429	0.0445	0.1877	0.3091
GRU4Rec	0.0079	0.0308	0.0540	0.0054	0.0235	0.0373	0.2735	0.4568	0.543
MF	0.0086	0.0324	0.0561	0.0074	0.0262	0.0439	0.2517	0.4359	0.5224
W&D	0.0069	0.0313	0.0519	0.0055	0.0238	0.0389	0.3734	0.5405	0.5982
DEERS	0.0048	0.0257	0.0461	0.0037	0.0193	0.0373	0.2926	0.6013	0.7176
DDPG	0.0083	0.0353	0.0596	0.0045	0.0210	0.0344	0.2359	0.4160	0.4743
GCQ	**0.0110**	**0.0495**	**0.0897**	0.0054	**0.0270**	**0.0539**	**0.3764**	**0.6015**	**0.6747**

Offline precision@k

	M1M	M10M	AMZ						
	Prec@1	Prec@5	Prec@10	Prec@1	Prec@5	Prec@10			
DQN	0.1543	0.1462	0.1396	0.0734	0.0754	0.0722	0.0523	0.0489	0.0432
GRU4Rec	0.1223	0.1043	0.0910	0.0922	0.0732	0.0588	0.3309	0.1263	0.0798
MF	0.1187	0.0920	0.0807	**0.1207**	0.0907	0.0695	0.3133	0.1220	0.0779
W&D	0.0992	0.0862	0.0740	0.1074	0.0836	0.0641	0.4539	0.1559	0.0920
DEERS	0.0770	0.0789	0.0757	0.0539	0.0582	0.0585	0.3414	0.1680	0.1110
DDPG	0.1598	0.1313	0.1155	0.0727	0.0679	0.0580	0.3016	0.1277	0.0791
GCQ	**0.1789**	**0.1658**	**0.1547**	0.0930	**0.0931**	**0.0930**	**0.4703**	**0.1829**	**0.1092**

Computational time

	M1M	M10M	AWZ
DQN	116.2 (s)	1175.7	139.9
DDPG	120.5	1219.2	145.2
DEER	129.1	1306.3	155.5
GCQ	**86.10**	**870.9**	**103.7**
Experiments: Online Simulation

Cumulative rewards in simulated online environment
Conclusion

• We proposed a novel Generator Constrained Q-learning technique for recommendation tasks

• GCQ stably learns recommendation policy from offline dataset without further interaction with online environment

• We devise a novel generator based on Huffman Tree to reduce decision time complexity

• Empirical results show that GCQ outperforms state-of-the-art methods
Thank you for your listening