I present the results of searches for B meson decays into two charmless mesons. I take into account final states made up of two pseudo-scalar (PP) or one pseudo-scalar and one vector (PV). The measurements use the data samples collected and analysed by the B-factory experiments at the $\Upsilon(4S)$ resonance energy: BABAR, Belle and CLEO.

1 Introduction

Charmless hadronic final states play an important role in the study of CP-violation. In the Standard Model, all CP-violating phenomena are a consequence of a single complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1].

Charmless decays of B mesons may proceed by $b \to u$, $b \to s$, or $b \to d$ transitions. The latter two mechanisms require flavor changing neutral currents which are not present at tree level in the Standard Model, and therefore must occur through suppressed processes such as the penguin mechanism. Such processes involve loops, which can get contributions from physics beyond the Standard Model. Even in the absence of such new physics, interference among competing amplitudes for a given decay mode can be exploited to measure CKM phases.

These charmless B decays in which CKM favored amplitudes are suppressed or forbidden are rare decays and they typically have branching fractions (\mathcal{B}) of less than 10^{-4}. Even if the branching fraction for these modes is expected to be so low, the present data samples available to BABAR and Belle Collaborations together with the new analysis effort by CLEO allow for measurements or stringent limits on many such modes.

In these years, the BABAR and Belle collaborations have reached solid results [2] on measurements of CP-violating asymmetries in B decays into final states containing charmonium, leading to strict constraints on the angle β of the CKM Unitarity Triangle.

In the Standard Model picture, the angle α can be related to time-dependent CP-violating asymmetries in the analysis of the decay $B^0 \to \pi^+\pi^-$ as well as in the case of three body $\pi^+\pi^-\pi^0$ decays in which such measurement would exploit interference between the $B^0 \to \rho^\pm\pi^\mp$ modes and the color-suppressed $B^0 \to \rho^0\pi^0$.
Ratios of branching fractions for various $\pi\pi$ and $K\pi$ decay modes are in principle sensitive to the angle γ \cite{3}, even if the measured branching fractions of all the $K\pi$ modes show a clear path which seems to suggest the dominance of the penguin amplitude over the others \cite{4}. As a matter of fact the $K\pi$ modes (together with the relative PV modes like $K^*\pi$, ρK, ωK) are sensitive to γ through the Cabibbo-suppressed amplitude term which is proportional to $V_{ub}V_{us}^*$ but an interference between the latter and the Cabibbo-allowed amplitude term is needed in order to extract γ\footnote{For an example on this amplitude formalism see \cite{5}}.

The extraction of α from measurements of the time-dependent asymmetry in $B^0 \rightarrow \pi^+\pi^-$ is complicated by the interference of tree and penguin amplitudes with different weak phases. The $B \rightarrow KK$ decays are characterized by similar penguin processes and, hence, can be used to isolate the tree and penguin contributions to $B^0 \rightarrow \pi^+\pi^-$. For example $K^0\bar{K}^0$ is a pure $b \rightarrow d$ penguin. The fact that no tree amplitude is possible, strongly reduces the expected branching terms. Moreover, the entire $K\pi\pi$ path which seems to suggest the dominance of the penguin amplitude over the others \cite{4}. As to the angle γ is sensitive to γ.

To extract α but an interference between the latter and the Cabibbo-allowed amplitude term is needed in order to

\footnotesize
\begin{tabular}{l}
\hline
1 & For an example on this amplitude formalism see \cite{5} \\
\hline
\end{tabular}
Also measurements of the charge asymmetries in the decay rates are reported according to the definition:

$$A_{CP} = \frac{\Gamma (B \to \overline{f}) - \Gamma (B \to f)}{\Gamma (B \to \overline{f}) + \Gamma (B \to f)}.$$

Here and throughout this paper charge conjugate modes are implied. We also make use of the notation h^\pm to represent a charged hadron that may be either a kaon or pion.

2 Analyses

The measurements presented in this paper are mainly based on the following data samples. The analyses of BABAR are based on $(87.9 \pm 1.0) \times 10^6 B\overline{B}$ pairs collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. This corresponds to an integrated luminosity of approximately 81 fb^{-1} at the $\Upsilon(4S)$ resonance. The results from Belle are based on 78 fb^{-1} data sample which corresponds to $85 \times 10^6 B\overline{B}$ pairs. The Belle detector [11] is a large-solid-angle general purpose spectrometer at the KEKB asymmetric-energy e^+e^- storage ring. The current CLEO data set is made up from the full CLEO II and CLEO III data samples totaling 15.3 fb^{-1}. CLEO [12] is a general purpose solenoidal magnet detector operated at the Cornell Electron Storage Ring (CESR), a symmetric-energy storage ring tuned to provide center of mass energies near the $\Upsilon(4S)$ resonance.

Hadronic events are selected based on track multiplicity and event topology. Tracks are identified as pions or kaons using the various Particle Identification (PID) techniques described below. Candidate K^0_S mesons are reconstructed from pairs of oppositely charged tracks that form a well-measured vertex and have an invariant mass within a defined window around the nominal K^0_S mass [16]. The candidate must have a displaced vertex and flight direction consistent with a K^0_S originating from the interaction point. Candidate π^0 mesons are formed from pairs of photons with an invariant mass within a defined window around the nominal π^0 mass. The π^0 candidates are then kinematically fitted with their mass constrained to the nominal π^0 mass [16].

Reconstructed B candidates are identified using two kinematic variables: the beam-energy substituted mass (or beam-energy constrained mass) $m_{ES} = \sqrt{(E_{CM}^{beam})^2 - (p_B^{CM})^2}$ and the energy difference $\Delta E = E_B^{CM} - E_{beam}^{CM}$, where E_{beam}^{CM} is the beam energy, p_B^{CM} and E_B^{CM} are the momentum and the energy of the reconstructed B meson in the center-of-mass system (CM).

In these charmless modes, the largest source of background comes from random combinations of tracks and neutrals produced in the $e^+e^- \to q\overline{q}$ continuum (where $q = u, d, s$ or c). These backgrounds are suppressed using the event topology. In the CM frame this background typically exhibits a two-jet structure that can produce two high momentum, nearly back-to-back particles, in contrast to the spherically symmetric nature of the low momentum $\Upsilon(4S) \to b\overline{b}$ events. This topology difference is exploited by making use of event-shape quantities. Various techniques and variables are used.

In the BABAR analyses, a preliminary requirement is applied on the angle θ_{sph} [15] between the sphericity axes, evaluated in the CM frame, of the B candidate and the remaining tracks.
and photons in the event. The distribution of the absolute value of \(\cos \theta_{\text{sph}} \) is strongly peaked near 1 for continuum events and is approximately uniform for \(B\bar{B} \) events.

Another similarly powerful variable is the flight direction of the \(B \) candidate given by \(\cos \theta_B = \hat{p} \cdot \hat{z} \) where \(\hat{p} \) is the vector sum of the daughter momenta and \(\hat{z} \) is the beam axis. Since the vector \(\Upsilon(4S) \) is produced in \(e^+e^- \) annihilation it has a polarization \(J_z = \pm 1 \), and the subsequent flight direction of the pseudo-scalar \(B \) mesons is distributed as \(|Y_{1}^{\pm 1}(\theta, \phi)|^2 \sim \sin^2 \theta = 1 - \cos^2 \theta \). Background events are flat in this variable.

Another quantity largely used in the charmless analyses is a Fisher discriminant \(F \) which consists of an optimized linear combination of variables that distinguish signal from background \[17\].

\(\text{BABAR} \) analyses use a two-variable Fisher discriminant with \(\sum_i p_i \) and \(\sum_i p_i |\cos \theta_i|^2 \) where \(p_i \) is the momentum and \(\theta_i \) is the angle with respect to the thrust axis of the \(B \) candidate, both in the CM frame, for all tracks and neutral clusters not used to reconstruct the \(B \) meson.

Belle’s technique consists of forming signal and background likelihood functions, \(\mathcal{L}_S \) and \(\mathcal{L}_{BG} \), from two variables. One is a Fisher discriminant determined from six modified Fox-Wolfram moments \[14\] and the other is \(\cos \theta_B \). Requirements are imposed on the likelihood ratio \(LR = \mathcal{L}_S/(\mathcal{L}_S + \mathcal{L}_{BG}) \) for candidate events.

CLEO builds its Fisher discriminant as a linear combination of fourteen variables including the direction of the thrust axis of the candidate with respect to the beam axis, \(\cos \theta_{\text{thr}} \), and

Figure 1: Examples of plots from the various two-body analyses and techniques. See text in Sect. 3 for details.
the nine conical bins of a “Virtual Calorimeter”. They are the scalar sum of the momenta of all tracks and photons (excluding the B candidate daughters) flowing into nine concentric cones centered on the thrust axis of the B candidate, in the CM frame. Each cone subtends an angle of 10° and is folded to combine the forward and backward intervals. In addition, the momentum of the highest momentum electron, muon, kaon, and proton are used as inputs to the Fisher discriminant taking advantage of the high quality particle identification in CLEO III.

In the case of a candidate mode involving one or more charged pions or kaons, such as \(B \rightarrow K\pi \) or \(B \rightarrow \pi\pi^0 \), each charged track must be positively identified as \(K \) or \(\pi \).

PID in BABAR analyses is accomplished with the Cherenkov angle measurement from a detector of internally reflected Cherenkov light (DIRC). The final fit to the data includes the normalized Cherenkov residuals \((\theta_c - \theta_c^\pi)/\sigma_{\theta_c} \) and \((\theta_c - \theta_c^K)/\sigma_{\theta_c} \), where \(\theta_c \) is the measured Cherenkov angle of the charged primary daughter, \(\sigma_{\theta_c} \) is its error, and \(\theta_c^\pi \) (\(\theta_c^K \)) is the expected value for a pion (kaon). The latter two quantities are measured separately for negatively and positively charged pions and kaons, from a sample of \(D^0 \rightarrow K^-\pi^+ \) originating from \(D^{*+} \) decays.

PID in Belle experiment is based on the light yield in the aerogel Cherenkov counter (ACC) and \(dE/dx \) measurements on the central drift chamber. For each hypothesis (\(K \) or \(\pi \)), the \(dE/dx \) and ACC probability density functions are combined to form likelihoods, \(\mathcal{L}_K \) and \(\mathcal{L}_\pi \). \(K \) or \(\pi \) mesons are distinguished by requirements on the likelihood ratio \(\mathcal{L}_K/(\mathcal{L}_K + \mathcal{L}_\pi) \).

The \(K/\pi \) identification in CLEO relies on the pattern of Cherenkov photon hits in the RICH detector fitted to both a kaon and pion hypothesis, each with its own likelihood \(\mathcal{L}_K \) and \(\mathcal{L}_\pi \). Calibrated \(dE/dx \) information from the drift chamber is used to compute a \(\chi^2 \) for kaon and pion hypotheses. The RICH and \(dE/dx \) results are combined to form an effective \(\chi^2 \) difference, \(\Delta_{K/\pi} = -2\ln \mathcal{L}_K + 2\ln \mathcal{L}_\pi + \chi^2_K - \chi^2_\pi \). Kaons are identified by \(\Delta_{K/\pi} < \delta_K \) and pions by \(-\Delta_{K/\pi} < \delta_\pi \), with values of \(\delta_K \) and \(\delta_\pi \) chosen to yield (90 \(\pm \) 3)% efficiency as determined in an independent study of tagged kaons and pions obtained from the decay

Table 1: Branching Fraction results for PP charmless modes: \(\pi\pi \), \(K\pi \) and \(KK \) with all charge combinations [18]. Also the world averages are given.
\(D^{*+} \rightarrow \pi^+ D^0 \ (D^0 \rightarrow K^- \pi^+)\).

Finally PV modes allow for the use of the vector particle helicity angle \(\theta_h\) defined as the angle between the direction of one of \(h\) daughters in the \(h\) rest frame and the direction of \(h\) in the \(B\) rest frame.

3 Results

In general the charmless decay modes taken into account here have contributions from (a) signal, (b) continuum \(q\bar{q}\) background and (c) cross-feed from other \(B\) modes.

In order to extract the signal yields, \(B_{ABAB}\) and CLEO use unbinned extended maximum likelihood fit. The input variables to the fit are in general \(m_{ES}\), \(\Delta E\), Fisher discriminant \(F\). Some \(B_{ABAB}\) analyses take advantage of a Neural Network to fight the continuum background instead of the Fisher discriminant. In CLEO analyses, the flight direction of the \(B\) candidate \(\cos \theta_B\) is added to the fit inputs. Moreover most of the charmless decay analyses in \(B_{ABAB}\) include also the Cherenkov angle in the fit to distinguish when necessary among differences in the \(K/\pi\) content of the final states.

In Belle analyses, the signal yields are extracted by a binned maximum likelihood fit to the \(\Delta E\) distribution in the \(m_{ES}\) signal window (5.271 GeV/c\(^2\) < \(m_{ES}\) < 5.289 GeV/c\(^2\), the lower limit being 5.270 GeV/c\(^2\) in case of a \(\pi^0\) in the final state). The \(m_{ES}\) distributions are fitted as a consistency check.

Tables 1, 2 and 3 show the Branching Fraction results of respectively the charmless two-body hadronic \(B\) decays [18], the modes with a \(\rho\) in the final states [19], the modes with a \(K^*,\) a \(\phi\) or an \(\omega\) in the final states [20]. The results shown are from all the three experiments and also the relative world averages are reported.

In Figure 1 plots are shown from the various two-body analyses and techniques. The top right left are two examples from \(B_{ABAB}\) analyses and represent the projections of the \(m_{ES}\) distributions from the unbinned maximum likelihood fit for events that satisfy optimized requirements on probability ratios for signal to background based on all variables except \(m_{ES}\)
provide exciting results in the physics of charmless decay.

The bottom left plots show the distributions of $-2 \ln(\mathcal{L}/\mathcal{L}_{\text{max}})$ for CLEO II and CLEO III combined for the $K\pi$ and $\pi\pi$ modes with non-zero yields. The remaining right plots are two examples from Belle and show the ΔE distributions in the m_{ES} signal region for $\pi^+\pi^-$ and $K^+\pi^-$ respectively. The results of the fits used to extract the signal yields are also shown.

In Table 4 the asymmetry results are shown from all three collaborations. All the results are compatible with zero and still statistical dominated.

The additional statistics that will be collected in the next years by BABAR and Belle will provide exciting results in the physics of charmless decay.

mode	CLEO	BABAR	Belle	WA	
$B^+ \rightarrow K^{+0}\pi^+$	$7.6^{+4.8}_{-3.0} \pm 1.6$	$15.5 \pm 3.4 \pm 1.8$	$19.4^{+1.2}_{-3.9} \pm 7.1$	12.3 ± 2.6	
$B^+ \rightarrow K^{++}\pi^0$	<31	$-$	$-$	<31	
$B^0 \rightarrow K^{++}\pi^-$	16^{+8}_{-5}	2	<30	16 ± 6	
$B^0 \rightarrow K^{+0}\pi^0$	<3.6	$-$	<7	<3.6	
$B^+ \rightarrow \phi K^+$	$5.5^{+2.1}_{-1.8}$	± 0.6	$10.0^{+0.9}_{-0.8}$	$9.4 \pm 1.1 \pm 0.7$	9.3 ± 0.8
$B^0 \rightarrow \phi K^0$	$5.4^{+3.7}_{-2.7}$	± 0.7	$7.6^{+1.3}_{-1.2}$	$9.0 \pm 2.2 \pm 0.7$	7.7 ± 1.1
$B^+ \rightarrow \phi K^{++}$	$10.6^{+6.4}_{-4.9}$	± 1.6	$12.1^{+2.4}_{-1.9}$	$6.7^{+2.1}_{-1.9}$	9.4 ± 1.6
$B^+ \rightarrow \omega K^+$	$3.2^{+2.3}_{-1.9}$	± 0.8	$5.0 \pm 1.0 \pm 0.4$	$6.7^{+1.3}_{-1.1}$	5.4 ± 0.8
$B^+ \rightarrow \omega\pi^+$	$1.3^{+3.4}_{-2.0}$	± 1.4	$5.4 \pm 1.0 \pm 0.5$	$5.9^{+1.3}_{-1.0}$	5.3 ± 0.9
$B^0 \rightarrow \omega K^0$	$10.0^{+3.9}_{-4.2}$	± 1.4	$5.3^{+1.3}_{-1.2}$	<7.6	5.6 ± 1.4

Table 3: Branching Fraction results for PV final states including K^*, ϕ or ω.

mode	CLEO	BABAR	Belle	WA
$B^0 \rightarrow K^+\pi^-$	$-0.04 \pm 0.16 \pm 0.02$	$-0.10 \pm 0.04 \pm 0.01$	$-0.07 \pm 0.06 \pm 0.01$	-0.09 ± 0.03
$B^+ \rightarrow K^+\pi^0$	$-0.29 \pm 0.23 \pm 0.02$	$-0.09 \pm 0.09 \pm 0.01$	$0.23 \pm 0.11^{+0.04}_{-0.03}$	0.00 ± 0.07
$B^0 \rightarrow K^0\pi^+$	$0.18 \pm 0.24 \pm 0.02$	$-0.05 \pm 0.08 \pm 0.01$	$0.07^{+0.04}_{-0.05}^{+0.04}_{-0.03}$	0.01 ± 0.06
$B^+ \rightarrow K^0\pi^0$	$-$	$0.03 \pm 0.36 \pm 0.09$	$-$	0.03 ± 0.37
$B^+ \rightarrow \pi^+\pi^-$	$-$	$0.30 \pm 0.25 \pm 0.04$	$0.77 \pm 0.27 \pm 0.08$	0.51 ± 0.19
$B^+ \rightarrow \pi^+\pi^0$	$-$	$-0.03^{+0.18}_{-0.17}$	$-0.14 \pm 0.24^{+0.04}_{-0.03}$	-0.07 ± 0.15
$B^+ \rightarrow \rho^-\pi^+$	$-$	$-0.11^{+0.06}_{-0.17}$	$-$	-0.11 ± 0.17
$B^+ \rightarrow \rho^+\pi^-$	$-$	$-0.62^{+0.24}_{-0.28}$	$-$	-0.62 ± 0.29
$B^+ \rightarrow K^+\rho^-$	$-$	$0.28 \pm 0.17 \pm 0.08$	$-$	0.28 ± 0.19

Table 4: Direct CP asymmetry results for $K\pi$, $\pi\pi$, $\rho\pi$ and ρK modes.
References

[1] N. Cabbibo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002); Belle Collaboration, K. Abe et al., Phys. Rev. D 66, 071102 (2002).

[3] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606 245 (2001); Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63 054008 (2001).

[4] M. Ciuchini et al., Phys. Lett. B 515 33 (2001).

[5] A. J. Buras and L. Silvestrini, Nucl. Phys. B 569, 3 (2000).

[6] A.E. Snyder and H.R. Quinn, Phys. Rev. D 48, 2139 (1993).

[7] BABAR Collaboration, “The BABAR Physics Book”, (P. Harrison and H. Quinn eds.), SLAC-R-504 (1998).

[8] I. Bediaga et al., Phys. Rev. Lett. 81, 4067 (1998).

[9] H.J. Lipkin, Y. Nir, H.R. Quinn and A. Snyder, Phys. Rev. D 44, 1454 (1991).

[10] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. and Methods A 479, 1 (2002).

[11] Belle Collaboration, A. Abashian et al., Nucl. Instr. and Meth. A 479, 117 (2002).

[12] CLEO Collaboration, (CLEO II), CLNS-94-1277; D. Peterson et al., Nucl. Instr. and Meth. 478, 142 (2002); Y. Kubota et al., (CLEO Collaboration), (CLEO III), Nucl. Instr. and Meth. A 320, 66 (1992); T.S. Hill, Nucl. Instr. and Meth. A 418, 32 (1998).

[13] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).

[14] Belle Collaboration, K. Abe et al., hep-ex/0207090 (2002).

[15] S. L. Wu, Phys. Rep. C 107, 59 (1984).

[16] Particle Data Group, Phys. Rev. D 66, 010001 (2002).

[17] R.A. Fisher, The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 7, (1936) 179; CLEO Collaboration, D.M. Asner et al., Phys. Rev. D 53, 1039 (1996).

[18] CLEO Collaboration, A. Bornheim et al., Phys. Rev. D 68, 052002 (2003); BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 021801 (2003), BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002); (for Belle Collaboration) T. Tomura, arXiv:hep-ex/0305036.
[19] CLEO Collaboration, C. P. Jessop et al., Phys. Rev. Lett. 85, 2881 (2000); Belle Collaboration, A. Gordon et al., Phys. Lett. B 542, 183 (2002).

[20] Heavy Flavor Averaging Group for rare decays for Winter 2003 Conferences, http://www.slac.stanford.edu/xorg/hfag/rare/.