ENDOMORPHISMS OF POSITIVE CHARACTERISTIC TORI: ENTROPY AND ZETA FUNCTION

KEIRA GUNN, KHOA D. NGUYEN, AND J. C. SAUNDERS

Abstract. Let \(F \) be a finite field of order \(q \) and characteristic \(p \). Let \(\mathbb{Z}_F = F[t] \), \(\mathbb{Q}_F = F(t) \), \(\mathbb{R}_F = F((1/t)) \) equipped with the discrete valuation for which \(1/t \) is a uniformizer, and let \(\mathbb{T}_F = \mathbb{R}_F/\mathbb{Z}_F \) which has the structure of a compact abelian group. Let \(d \) be a positive integer and let \(A \) be a \(d \times d \)-matrix with entries in \(\mathbb{Z}_F \) and non-zero determinant. The multiplication-by-\(A \) map is a surjective endomorphism on \(\mathbb{T}_d \). First, we compute the entropy of this endomorphism; the result and arguments are analogous to those for the classical case \(\mathbb{T}_d = \mathbb{R}_d/\mathbb{Z}_d \). Second and most importantly, we resolve the algebraicity problem for the Artin-Mazur zeta function of all such endomorphisms. As a consequence of our main result, we provide a complete characterization and an explicit formula related to the entropy when the zeta function is algebraic.

1. Positive characteristic tori and statements of the main results

The tori \(\mathbb{T}^d := \mathbb{R}^d/\mathbb{Z}^d \) where \(d \) is a positive integer play an important role in number theory, dynamical systems, and many other areas of mathematics. In this paper, we study the entropy and algebraicity of the Artin-Mazur zeta function of a surjective endomorphism on the so-called positive characteristic tori.

Throughout this paper, let \(F \) be the finite field of order \(q \) and characteristic \(p \). Let \(\mathbb{Z}_F = F[t] \) be the polynomial ring over \(F \), \(\mathbb{Q}_F = F(t) \), and

\[
\mathbb{R}_F = F((1/t)) = \left\{ \sum_{i \leq m} a_i t^i : m \in \mathbb{Z}, a_i \in F \text{ for } i \leq m \right\}.
\]

The field \(\mathbb{R}_F \) is equipped with the discrete valuation

\[
v : \mathbb{R}_F \to \mathbb{Z} \cup \{\infty\}
\]
given by \(v(0) = \infty \) and \(v(x) = -m \) where \(x = \sum_{i \leq m} a_i t^i \) with \(a_m \neq 0 \); in fact \(\mathbb{R}_F \) is the completion of \(\mathbb{Q}_F \) with respect to this valuation. Let \(| \cdot | \) denote the non-archimedean absolute value \(|x| = q^{-v(x)} \) for \(x \in \mathbb{R}_F \). We fix an algebraic closure of \(\mathbb{R}_F \) and the absolute value \(| \cdot | \) can be extended uniquely to the algebraic closure (see Proposition 2.1). Let \(\mathbb{T}_F = \mathbb{R}_F/\mathbb{Z}_F \) and let \(\pi : \mathbb{R}_F \to \mathbb{T}_F \) be the quotient map. Every element \(\alpha \in \mathbb{T}_F \) has the unique preimage \(\tilde{\alpha} \in \mathbb{R}_F \) of the form

\[
\tilde{\alpha} = \sum_{i \leq -1} a_i t^i.
\]

Date: May 2022.

2010 Mathematics Subject Classification. Primary: 37A35, 37P20. Secondary: 11T99.

Key words and phrases. Positive characteristic tori, entropy, Artin-Mazur zeta function.
This yields a homeomorphism $\mathbb{T}_F \cong \prod_{i \leq -1} F$ of compact abelian groups. Let μ be the probability Haar measure on \mathbb{T}_F and let ρ be the metric on \mathbb{T}_F given by $\rho(\alpha, \beta) := |\tilde{\alpha} - \tilde{\beta}|$. We fix a positive integer d and let μ^d be the product measure on \mathbb{T}^d_F.

The analytic number theory, more specifically the theory of characters and L-functions, on \mathbb{T}_F has been studied since at least 1965 in work of Hayes [Hay65]. Some relatively recent results include work of Liu-Wooley [LW10] on Waring’s problem and the circle method in function fields and work of Porritt [Por18] and Bienvenu-Lê [BL19] on correlation between the Möbius function and a character over \mathbb{Z}_F. For a recent work in the ergodic theory side, we refer the reader to the paper by Bergelson-Leibman [BL16] and its reference in which the authors establish a Weyl-type equidistribution theorem.

Let $A \in M_d(\mathbb{Z}_F)$ having non-zero discriminant. The multiplication-by-A map yields a surjective endomorphism of \mathbb{T}^d_F for which μ^d is an invariant measure, we abuse the notation by using A to denote this endomorphism. Our first result is the following:

Theorem 1.1. Let $h(\mu^d, A)$ denote the entropy of A with respect to μ^d and let $h(A)$ denote the topological entropy of A. Let $\lambda_1, \ldots, \lambda_d$ denote the eigenvalues of A. We have:

$$h(A) = h(\mu^d, A) = \sum_{i=1}^d \log \max\{|\lambda_i|, 1\}.$$

Remark 1.2. This is the same formula as the entropy of surjective endomorphisms of \mathbb{T}^d. The proof is not surprising either: we use similar arguments to the classical ones presented in the books by Walters [Wal82] and Viana-Oliveira [VO16] together with several adaptations to the non-archimedean setting of \mathbb{R}^d_F and \mathbb{T}^d_F. What is important is the relationship between the entropy and the Artin-Mazur zeta function in the next main result.

Let $f : X \to X$ be a map from a topological space X to itself. For each $k \geq 1$, let $N_k(f)$ denote the number of isolated fixed points of f^k. Assume that $N_k(f)$ is finite for every k, then one can define the Artin-Mazur zeta function [AM65]:

$$\zeta_f(z) = \exp \left(\sum_{k=1}^{\infty} \frac{N_k(f)}{k} z^k \right).$$

When X is a compact differentiable manifold and f is a smooth map such that $N_k(f)$ grows at most exponentially in k, the question of whether $\zeta_f(z)$ is algebraic is stated in [AM65]. The rationality of $\zeta_f(z)$ when f is an Axiom A diffeomorphism is established by Manning [Man71] after earlier work by Guckenheimer [Guc70]. On the other hand, when X is an algebraic variety defined over a finite field and f is the Frobenius morphism, the function $\zeta_f(z)$ is precisely the classical zeta function of the variety X and its rationality is conjectured by Weil [Wei49] and first established by Dwork [Dwo60]. For the dynamics of a univariate rational function, rationality of $\zeta_f(z)$ is established by Hinkkanen in characteristic zero [Hin94] while Bridy [Bri12, Bri16] obtains both rationality and transcendence results over positive characteristic when f belongs to certain special families of rational functions. As before, let $A \in M_d(\mathbb{Z}_F)$ and we use A to denote the induced endomorphism on \mathbb{T}^d_F. We will show that $N_k(A) < \infty$ for every n and hence one can define the zeta function $\zeta_A(z)$.
As a consequence of our next main result, we resolve the algebraicity problem for \(\zeta_A(z) \): we provide a complete characterization and an explicit formula when \(\zeta_A(z) \) is algebraic. We need a couple of definitions before stating our result.

Let \(K \) be a finite extension of \(\mathbb{R}_F \). Let

\[
\mathcal{O}_K := \{ \alpha \in K : |\alpha| \leq 1 \},
\]

\[
\mathcal{O}'_K = \{ \alpha \in K : |\alpha| = 1 \}, \quad \text{and}
\]

\[
p_K := \{ \alpha \in K : |\alpha| < 1 \}
\]

respectively denote the valuation ring, unit group, and maximal ideal. In particular:

\[
\mathcal{O} := \mathcal{O}_{\mathbb{R}_F} = F[[1/t]] \quad \text{and} \quad \mathfrak{p} := \mathfrak{p}_{\mathbb{R}_F} = \left\{ \sum_{i \geq -1} a_i t^i : a_i \in F \ \forall i \right\}.
\]

Note that \(\mathfrak{p} \) is the compact open subset of \(\mathbb{R}_F \) that is both the open ball of radius 1 and closed ball of radius \(1/q \) centered at 0. The field \(\mathcal{O}_K/p_K \) is a finite extension of \(\mathcal{O}/\mathfrak{p} = F \) and the degree of this extension is called the inertia degree of \(K/\mathbb{R}_F \) \cite[p. 150]{Neu99}. Let \(\delta \) be this inertia degree, then \(\mathcal{O}_K/p_K \) is isomorphic to the finite field \(GF(q^\delta) \). By applying Hensel’s lemma \cite[pp. 129–131]{Neu99} for the polynomial \(X^{q^\delta-1} - 1 \), we have that \(K \) contains all the roots of \(X^{q^\delta-1} - 1 \). These roots together with 0 form a unique copy of \(GF(q^\delta) \) in \(K \) called the Teichmüller representatives. This allows us to regard \(GF(q^\delta) \) as a subfield of \(K \); in fact \(GF(q^\delta) \) is exactly the set of all the roots of unity in \(K \) together with 0. For every \(\alpha \in \mathcal{O}_K \), we can express uniquely:

\[
\alpha = \alpha(0) + \alpha(1)
\]

where \(\alpha(0) \in GF(q^\delta) \) and \(\alpha(1) \in p_K \).

Definition 1.3. Let \(\alpha \) be algebraic over \(\mathbb{R}_F \) such that \(|\alpha| \leq 1 \). Let \(K \) be a finite extension of \(\mathbb{R}_F \) containing \(\alpha \). We call \(\alpha(0) \) and \(\alpha(1) \) in \(\mathbb{R}_F \) respectively the constant term and \(p \)-term of \(\alpha \); they are independent of the choice of \(K \). When \(|\alpha| = 1 \), the order of \(\alpha \) modulo \(\mathfrak{p} \) means the order of \(\alpha(0) \) in the multiplicative group \(GF(q^\delta) \) where \(\delta \) is the inertia degree of \(K/\mathbb{R}_F \); this is independent of the choice of \(K \) as well. In fact, this order is the smallest positive integer \(n \) such that \(|\alpha^n - 1| < 1 \).

We identify the rational functions in \(\mathbb{C}(z) \) to the corresponding Laurent series in \(\mathbb{C}((z)) \).

Definition 1.4. A series \(f(z) \in \mathbb{C}((z)) \) is called D-finite if all of its formal derivatives \(f^{(n)}(z) \) for \(n = 0, 1, \ldots \) span a finite dimensional vectors space over \(\mathbb{C}(z) \). Equivalently, there exist an integer \(n \geq 0 \) and \(a_0(z), \ldots, a_n(z) \in \mathbb{C}[z] \) with \(a_n \neq 0 \) such that:

\[
a_n(z)f^{(n)}(z) + a_{n-1}f^{(n-1)}(z) + \ldots + a_0(z)f(z) = 0.
\]

Remark 1.5. Suppose that \(f(z) \in \mathbb{C}[[z]] \) is algebraic then \(f \) is D-finite, see [Sta80] Theorem 2.1.

Our next main result is the following:

Theorem 1.6. Let \(A \in M_d(\mathbb{Z}_F) \) and put \(r(A) = \prod_{\lambda} \max\{1, |\lambda|\} \) where \(\lambda \) ranges over all the \(d \) eigenvalues of \(A \); we have \(r(A) = e^{h(A)} \) when \(\det(A) \neq 0 \) thanks to Theorem \([\text{[L]}] \). Among the \(d \) eigenvalues of \(A \), let \(\mu_1, \ldots, \mu_M \) be all the eigenvalues
that are roots of unity and let \(\eta_1, \ldots, \eta_N \) be all the eigenvalues that have absolute value 1 and are not roots of unity. For \(1 \leq i \leq M \), let \(m_i \) denote the order of \(\mu_i \) modulo \(p \). For \(1 \leq i \leq N \), let \(n_i \) denote the order of \(\eta_i \) modulo \(p \). We have:

(a) Suppose that for every \(j \in \{1, \ldots, N\} \), there exists \(i \in \{1, \ldots, M\} \) such that \(m_i | n_j \). Then \(\zeta_A(z) \) is algebraic and

\[
\zeta_A(z) = (1 - r(A)z)^{-1} \prod_{1 \leq i \leq M} \prod_{1 \leq i_1 < i_2 < \ldots < i_\ell \leq M} R_{A,i_1,\ldots,i_\ell}(z)
\]

where \(R_{A,i_1,\ldots,i_\ell}(z) := \left(1 - (r(A)z)^{\gcd(m_{i_1}, \ldots, m_{i_\ell})}\right)^{(-1)^{\ell+1}/\gcd(m_{i_1}, \ldots, m_{i_\ell})} \).

(b) Otherwise suppose there exists \(j \in \{1, \ldots, N\} \) such that for every \(i \in \{1, \ldots, M\} \), we have \(m_i \nmid n_j \). Then the series \(\sum_{k=1}^\infty N_k(A)z^k \) converges in the open disk \(\{ z \in \mathbb{C} : |z| < 1/r(A) \} \) and it is not \(D \)-finite. Consequently, the function \(\zeta_A(z) \) is transcendental.

Remark 1.7. We allow the possibility that any (or even both) of \(M \) and \(N \) to be 0. When \(N = 0 \), the condition in (a) is vacuously true and \(\zeta_A(z) \) is algebraic in this case. When \(N = 0 \) and \(M = 0 \) meaning that none of the eigenvalues of \(A \) has absolute value 1, the product in (a) is the empty product and

\[
\zeta_A(z) = \frac{1}{1 - r(A)z}.
\]

When \(M = 0 \) and \(N > 0 \), the condition in (b) is vacuously true and \(\zeta_A(z) \) is transcendental in this case.

Our results are quite different from results in work of Baake-Lau-Paskunas \[BLP10\]. In \[BLP10\], the authors prove that the zeta function of endomorphisms of the classical tori \(T^d \) are always rational. In our setting, we have cases when the zeta function is rational, transcendental, or algebraic irrational:

Example 1.8. Let \(F = \text{GF}(7) \) and let \(A \) be the diagonal matrix with diagonal entries \(\alpha, \beta \in \text{GF}(7)^* \) where \(\alpha \) has order 2 and \(\beta \) has order 3. Then

\[
\zeta_A(z) = \frac{(1 - z^2)^{1/2}(1 - z^3)^{1/3}}{(1 - z)(1 - z^6)^{1/6}}
\]

is algebraic irrational.

In work of Bell-Miles-Ward \[BMW14\], the authors conjecture and obtain some partial results concerning the following Pólya-Carlson type dichotomy \[Car21, Pöy28\] for a slightly different zeta function: it is either rational or admits a natural boundary at its radius of convergence.

Conjecture 1.9 (Bell-Miles-Ward, 2014). Let \(\theta : X \to X \) be an automorphism of a compact metric abelian group with the property that \(\tilde{N}_k(\theta) < \infty \) for every \(k \geq 1 \) where \(\tilde{N}_k(\theta) \) denotes the number of fixed points of \(\theta^k \). Then

\[
\tilde{\zeta}_\theta(z) := \exp\left(\sum_{k=1}^\infty \frac{\tilde{N}_k(\theta)}{k} z^k\right)
\]

is either a rational function or admits a natural boundary.
Remark 1.10. The difference between \(\tilde{\zeta} \) in \(1.9\) and the Artin-Mazur zeta function \(\zeta_f \) is that the latter involves the number of isolate fixed points. Example 1.8 is not included in Conjecture 1.9 since \(A_6 \) is the identity matrix and hence \(N_6(A) = \infty \) while we have \(N_6(A) = 0 \) (see Lemma 4.1). When \(A \in M_d(\mathbb{Z}) \) has the property that none of its eigenvalues is a root of unity, one can show that \(N_k(A) = \tilde{N}_k(A) \) and hence \(\zeta_A(z) = \tilde{\zeta}_A(z) \). Conjecture 1.9 predicts that when \(M = 0 \) and \(N > 0 \) in Theorem 1.6, the zeta function \(\zeta_A(z) = \tilde{\zeta}_A(z) \) admits the circle of radius \(1/r(A) \) as a natural boundary. We can only prove this in some special cases and leave it for future work.

For the proof of Theorem 1.6, we first derive a formula for \(N_k(A) \) and it turns out that one needs to study \(|\lambda^k - 1| \) where \(\lambda \) is an eigenvalue of \(A \). When \(|\lambda| \neq 1 \), one immediately has \(|\lambda^k - 1| = \max\{1, |\lambda|^k\} \). However, when \(|\lambda| = 1 \) (i.e. \(\lambda \) is among the \(\mu_i \)'s and \(\eta_j \)'s), a more refined analysis is necessary to study \(|\lambda^k - 1| \).

Acknowledgements. The first author is partially supported by a Vanier Canada Graduate Scholarship. The second and third authors are partially supported by an NSERC Discovery Grant and a CRC Research Stipend. We are grateful to Professors Jason Bell, Michael Singer, and Tom Ward for useful comments that help improve the paper.

Notes added in May 2022. This paper is superseded by \[BGNS\] by Bell and the authors and no longer intended for publication. Inspired by the earlier work \[BNZ20, BNZ\], the paper \[BGNS\] establishes a general Pólya-Carlson criterion and applies this to confirm that the zeta function \(\zeta_A(z) \) admits the circle of radius \(1/r(A) \) as a natural boundary in the transcendence case (see Remark 1.10).

2. Normed vector spaces and linear maps

Throughout this section, let \(K \) be a field that is complete with respect to a nontrivial absolute value \(| \cdot | \); nontriviality means that there exists \(x \in K^* \) such that \(|x| \neq 1 \). We have:

Proposition 2.1. Let \(E/K \) be a finite extension of degree \(n \). Then \(| \cdot | \) can be extended in a unique way to an absolute value on \(E \) and this extension is given by the formula:

\[
|\alpha| = |N_{E/K}(\alpha)|^{1/n} \text{ for every } \alpha \in E.
\]

The field \(E \) is complete with respect to this extended absolute value.

Proof. See \[Neu99\] pp. 131–132].

We now fix an algebraic closure of \(K \) and extend \(| \cdot | \) to an absolute value on this algebraic closure thanks to Proposition 2.1. For a vector space \(V \) over \(K \), a norm on \(V \) is a function \(\| \cdot \| : V \to \mathbb{R}_{\geq 0} \) such that:

- \(\|x\| = 0 \text{ iff } x = 0. \)
- \(\|cx\| = |c| \cdot \|x\| \text{ for every } c \in K \text{ and } v \in V. \)
- \(\|x + y\| \leq \|x\| + \|y\| \text{ for every } x, y \in V. \)
Two norms $\| \cdot \|$ and $\| \cdot \|'$ on V are said to be equivalent if there exists a positive constant C such that
\[
\frac{1}{C}\|x\| \leq \|x\|' \leq C\|x\|
\]
for every $x \in V$. It is well-known that any two norms on a finite dimensional vector space V are equivalent to each other and V is complete with respect to any norm, see [Neu99] pp. 132–133.

Proposition 2.2. Let V be a vector space over K of finite dimension $d > 0$. Let $\ell : V \to V$ be an invertible K-linear map such that there exist $\lambda \in K^*$ and a basis x_1, \ldots, x_d of V over K with:
\[
\ell(x_1) = \lambda x_1 \text{ and } \ell(x_i) = \lambda x_i + x_{i-1} \text{ for } 2 \leq i \leq d;
\]
in other words, the matrix of ℓ with respect to x_1, \ldots, x_d is one single Jordan block with eigenvalue λ. Let $\delta > 0$. Then there exists a norm $\| \cdot \|$ on V such that:
\[
(1 - \delta)|\lambda| \cdot \|x\| \leq \|\ell(x)\| \leq (1 + \delta)|\lambda| \cdot \|x\|
\]
for every $x \in V$.

Proof. We proceed by induction on d. The case $d = 1$ is obvious since we can take $\| \cdot \|$ to be any norm and we have $\|\ell(x_1)\| = |\lambda|\|x_1\|$. Let $d \geq 2$ and suppose the proposition holds for any vector space of dimension at most $d - 1$. Let $V' = \text{Span}(x_1, \ldots, x_{d-1})$. By the induction hypothesis, there exists a norm $\| \cdot \|'$ on V' such that:
\[
(1 - \delta)|\lambda| \cdot \|x'\|' \leq \|\ell(x')\|' \leq (1 + \delta)|\lambda| \cdot \|x'\|'
\]
for every $x' \in V'$.

Let M be a positive number such that:
\[
\delta|\lambda|M \geq \|x_{d-1}\|'.
\]
Every $x \in V$ can be written uniquely as $x = ax_d + x'$ where $a \in K$ and $x' \in V'$, then we define the norm $\| \cdot \|$ on V by the formula:
\[
\|x\| = |a|M + \|x'\|'.
\]
Note that $\ell(x) = a\lambda x_d + ax_{d-1} + \ell(x')$ and $\|\ell(x)\| = |\lambda|a|M + \|\ell(x') + ax_{d-1}\|'$. Therefore:
\[
\|\ell(x)\| \geq |\lambda|a|M + \|\ell(x')\|' - |a| \cdot \|x_{d-1}\|'
\]
\[
\geq (1 - \delta)|\lambda|a|M + (1 - \delta)|\lambda| \cdot \|x'\|' = (1 - \delta)|\lambda| \cdot \|x\|
\]
where the last inequality follows from (3) and (4). The desired upper bound on $\|\ell(x)\|$ is obtained in a similar way:
\[
\|\ell(x)\| \leq |\lambda|a|M + \|\ell(x')\|' + |a| \cdot \|x_{d-1}\|'
\]
\[
\leq (1 + \delta)|\lambda|a|M + (1 + \delta)|\lambda| \cdot \|x'\|' = (1 + \delta)|\lambda| \cdot \|x\|
\]
and we finish the proof. \qed

Proposition 2.3. Let V be a vector space over K of finite dimension $d > 0$. Let $\ell : V \to V$ be an invertible K-linear map such that the characteristic polynomial $P(X)$ of ℓ is the power of an irreducible polynomial in $K[X]$. By Proposition 2.2.
all the roots of P have the same absolute value denoted by θ. Let $\delta > 0$. Then there exists a norm $\| \cdot \|$ on V such that $$ (1 - \delta)\|x\| \leq \|\ell(x)\| \leq (1 + \delta)\|x\| $$ for every $x \in V$.

Proof. Let E be the splitting field of $P(X)$ over K. Let $V_E = E \otimes_K V$ and we still use ℓ to denote the induced linear operator on V_E. In the Jordan canonical form of ℓ, let s denote the number of Jordan blocks. Then we have a basis $x_{1,1}, \ldots, x_{1,d_1}, \ldots, x_{s,1}, \ldots, x_{s,d_s}$ of V_E over E such that for each $1 \leq i \leq s$, the map ℓ maps $V_{E,i} := \text{Span}_E(x_{i,1}, \ldots, x_{i,d_i})$ to itself and the matrix representation of ℓ with respect to $x_{i,1}, \ldots, x_{i,d_i}$ is the i-th Jordan block. By Proposition 2.2 there exists a norm $\| \cdot \|_i$ on $V_{E,i}$ such that $$ (1 - \delta)\|x\|_i \leq \|\ell(x)\|_i \leq (1 + \delta)\|x\|_i $$ for every $x \in V_{E,i}$. We can now define $\| \cdot \|$ on $V_E = V_{E,1} \oplus \cdots \oplus V_{E,s}$ as $\| \cdot \|_1 + \cdots + \| \cdot \|_s$. Then the restriction of $\| \cdot \|$ on V is the desired norm. \square

Corollary 2.4. Let V be a vector space over K of finite dimension $d > 0$. Let $\ell : V \to V$ be an invertible K-linear map. Then there exist a positive integer s, subspaces V_1, \ldots, V_s of V, and positive numbers $\theta_1, \ldots, \theta_s$ with the following properties:

(i) $\ell(V_i) \subseteq V_i$ for $1 \leq i \leq s$ and $V = V_1 \oplus \cdots \oplus V_s$.

(ii) The multiset $$ \{ |\lambda| : \text{eigenvalues } \lambda \text{ of } V \text{ counted with multiplicities} \} $$ of order d is equal to the multiset $$ \{ \theta_1, \ldots, \theta_1, \theta_2, \ldots, \theta_2, \ldots, \theta_s, \ldots, \theta_s \} $$ in which the number of times θ_i appears is $\dim(V_i)$ for $1 \leq i \leq s$.

(iii) For every $\delta > 0$, for $1 \leq i \leq s$, there exists a norm $\| \cdot \|_i$ on V_i such that $$ (1 - \delta)\theta_i\|x\|_i \leq \|\ell(x)\|_i \leq (1 + \delta)\theta_i\|x\|_i $$ for every $x \in V_i$.

Proof. By [DF04, p. 424], there exist ℓ-invariant subspaces V_1, \ldots, V_s of V such that $V = V_1 \oplus \cdots \oplus V_s$ and for $1 \leq i \leq s$, the characteristic polynomial P_i of the restriction of ℓ to V_i is a power of an irreducible factor over K of the characteristic polynomial of ℓ. Let θ_i denote the common absolute value of the roots of P_i. Then we apply Proposition 2.2 and finish the proof. \square

3. The proof of Theorem 1.1

Recall from Section [1] that $\pi : \mathbb{R}_F \to \mathbb{P}_F$ denotes the quotient map,

$$ \mathfrak{p} := \mathfrak{p}_{\mathbb{R}_F} = \frac{1}{t}F[[1/t]] = \left\{ \sum_{i \leq -1} a_i t^i : a_i \in F \forall i \right\}, $$

every element $\alpha \in \mathbb{P}_F$ has the unique preimage $\tilde{\alpha} \in \mathbb{R}_F$ of the form

$$ \tilde{\alpha} = \sum_{i \leq -1} a_i t^i \in \mathfrak{p}, $$
µ denotes the probability Haar measure on \(T_F \), and \(\rho \) is the metric on \(T_F \) given by
\[
\rho(\alpha, \beta) = |\tilde{\alpha} - \tilde{\beta}|.
\]
Let \(\tilde{\mu} \) be the Haar measure on \(\mathbb{R}_F \) normalized so that \(\tilde{\mu}(\mathbb{D}_F) = 1 \). Therefore, we have that \(\mathbb{D}_F \) and \(T_F \) are isometric as metric spaces and isomorphic as probability spaces.

Let \(d \) be a positive integer. On \(T_F^d \) and \(\mathbb{R}_F^d \) we have the respective product measures \(\mu^d \) and \(\tilde{\mu}^d \). Let \(\| \cdot \|_{(d)} \) be the norm on \(\mathbb{R}_F^d \) given by:
\[
|(x_1, \ldots, x_d)|_{(d)} = \max_{1 \leq i \leq d} |x_i|.
\]
Then the induced metric \(\rho_{(d)} \) on \(T_F^d \) is:
\[
\rho_{(d)}((\alpha_1, \ldots, \alpha_d), (\beta_1, \ldots, \beta_d)) = \max_{1 \leq i \leq d} |\tilde{\alpha}_i - \tilde{\beta}_i|.
\]

Proposition 3.1. Let \(V \) be a vector space over \(\mathbb{R}_F \) of dimension \(d \). Let \(\| \cdot \| \) be a norm on \(V \) and let \(\eta \) be a Haar measure on \(V \). There exist positive constants \(C_1 \) and \(C_2 \) such that the open ball
\[
B(r^-) := \{x \in V : \|x\| < r\}
\]
and the closed ball
\[
B(r) := \{x \in V : \|x\| \leq r\}
\]
satisfy
\[
C_1 r^d < \eta(B(r^-)), \eta(B(r)) < C_2 r^d
\]
for every \(r > 0 \).

Proof. After choosing a basis, we may identify \(V \) as \(\mathbb{R}_F^d \); recall the norm \(\| \cdot \|_{(d)} \) above. By uniqueness up to scaling of Haar measures, we may assume that \(\eta \) is the Haar measure normalized so that the set
\[
B' := \{(x_1, \ldots, x_d) \in \mathbb{R}_F^d : |(x_1, \ldots, x_d)|_{(d)} = \max_{1 \leq i \leq d} |x_i| \leq 1\}
\]
has \(\eta(B') = 1 \).

Since \(\| \cdot \| \) and \(\| \cdot \|_{(d)} \) are equivalent to each other, there exist positive \(C_3 \) and \(C_4 \) such that both \(B(r^-) \) and \(B(r) \) contain
\[
B'(C_3 r) := \{(x_1, \ldots, x_d) \in \mathbb{R}_F^d : |(x_1, \ldots, x_d)|_{(d)} = \max_{1 \leq i \leq d} |x_i| \leq C_3 r\}
\]
and are contained in
\[
B'(C_4 r) = \{(x_1, \ldots, x_d) \in \mathbb{R}_F^d : |(x_1, \ldots, x_d)|_{(d)} = \max_{1 \leq i \leq d} |x_i| \leq C_4 r\}.
\]

Let \(q^m \) (respectively \(q^n \)) be the largest (respectively smallest) power of \(q \) that is smaller than \(C_3 r \) (respectively larger than \(C_4 r \)). Then we have:
\[
\eta(B'(C_3 r)) \geq q^m d > (C_3 r/q)^d \quad \text{and} \quad \eta(B'(C_4 r)) \leq q^n d < (C_4 qr)^d.
\]
This finishes the proof. \(\Box \)

We apply Corollary 2.3 for the vector space \(\mathbb{R}_F^d \) and the multiplication-by-\(A \) map to get the invariant subspaces \(V_1, \ldots, V_s \) and positive numbers \(\theta_1, \ldots, \theta_s \). Fix a Haar measure \(\eta_S \) on \(V_i \) and let \(\eta := \eta_1 \times \cdots \times \eta_s \) which is a Haar measure on \(\mathbb{R}_F^d \). Let \(c > 0 \) such that \(\tilde{\mu}_d^c = c\eta \).

Fix \(\delta > 0 \), we assume that \(\delta \) is sufficiently small so that \((1 + \delta)\theta_i < 1 \) whenever \(\theta_i < 1 \). For \(1 \leq i \leq s \), let \(\| \cdot \|_i \) be a norm on \(V_i \) as given in Corollary 2.3. Every
We aim to obtain an upper bound on ρ independent of ϵ thanks to equivalence of these norms. Hence for part (i), we can characterize the set $\| \cdot \|$ by:

Let C be a positive constant for every non-zero $z \in \mathbb{Z}_d^d$ we define the norm $\| \cdot \|$ of the form $\| \cdot \|_{\beta}$ for some $\beta \in \mathbb{Z}_d^d$, let $d = (\tilde{\alpha} \cdot \tilde{A} \cdot y) = \|Ax - Ay\|$.

Lemma 3.2. We still use π to denote the quotient map $\mathbb{R}_d^d \to \mathbb{T}_d^d$. There exists a positive constant α such that the following hold:

(i) For any $x \in \mathbb{P}^d$ and $y \in \mathbb{R}_d^d$, if $\|x - y\| \leq \alpha$ then $y \in \mathbb{P}^d$.

(ii) For any $x, y \in \mathbb{P}_d^d$ such that $\|x - y\| \leq \alpha$ and $\tau(\pi(\alpha x), \pi(\alpha y)) \leq \alpha$, we have $\tau(\pi(\alpha X), \pi(\alpha Y)) = \|Ax - Ay\|$.

Proof. For part (i), we can characterize the set \mathbb{P}^d as the set of $x \in \mathbb{R}_d^d$ such that $\|x\| \leq 1/q$. Hence when $\|x - y\|$ is sufficiently small, we have that $\|x - y\| \leq 1/q$ thanks to equivalence of these norms. Hence $x - y \in \mathbb{P}^d$ and we have $y \in \mathbb{P}^d$.

We now consider part (ii). Since $\|z\| \geq 1$ for every non-zero $z \in \mathbb{Z}_d^d$ and since $\| \cdot \|$ and $\| \cdot \|_{\beta}$ are equivalent, there exists a positive constant α such that $\|z\| \geq \alpha$ for every non-zero $z \in \mathbb{Z}_d^d$.

There exists α such that $\|w\| \leq \alpha \|w\|$ for every $w \in \mathbb{R}_d^d$; for instance we may take $\alpha = (1 + \delta) \max_{1 \leq i \leq s} \theta_i$ thanks to the definition of $\| \cdot \|$ and properties of the $\| \cdot \|_{\beta}$s in Corollary 2.4.

We now choose α to be any positive constant such that $\alpha < \frac{\alpha}{\alpha + 1}$. Let $x, y \in \mathbb{R}_d^d$ satisfying conditions in the statement of the lemma. We have $\alpha \geq \tau(\pi(\alpha x), \pi(\alpha y)) = \|Ax - Ay\|$.

for some $z \in \mathbb{Z}_d^d$. If $z \neq 0$ then we have

$$\alpha \geq \tau(\pi(\alpha x), \pi(\alpha y)) = \|Ax - Ay\| \geq \|z\| - \|Ax - Ay\| + \|z\| \geq \alpha - \alpha,$$

contradicting the choice of α. Hence $z = 0$ and we are done.

Proof of Theorem 1.1. Let $\alpha = (\alpha_1, \ldots, \alpha_\alpha) \in \mathbb{Z}_d^d$ and let $x = (\alpha_1, \ldots, \alpha_\alpha)$ which is the preimage of α in \mathbb{P}^d. Let $\epsilon > 0$ and $n \geq 1$. All the implicit constants below might depend on the choice of the norms $\| \cdot \|_{\beta}$s hence depending on δ but they are independent of ϵ and n.

Let $B(\alpha, \epsilon, n) := \{ \beta = (\beta_1, \ldots, \beta_\alpha) \in \mathbb{T}_d^d : \rho_{\beta}(A^j \alpha, A^j \beta) < \epsilon \text{ for } j = 0, 1, \ldots, n - 1 \}.$

We aim to obtain an upper bound on $\mu^d(B(\alpha, \epsilon, n))$. Thanks to equivalence between ρ_{β} and τ, there exists a positive constant α such that $B(\alpha, \epsilon, n)$ is contained in

$B'(\alpha, \epsilon, n) := \{ \beta = (\beta_1, \ldots, \beta_\alpha) \in \mathbb{T}_d^d : \tau(A^j \alpha, A^j \beta) < \epsilon \text{ for } j = 0, 1, \ldots, n - 1 \}.$

For $\beta = (\beta_1, \ldots, \beta_\alpha) \in B'(\alpha, \epsilon, n)$, let $y = (\tilde{\beta}_1, \ldots, \tilde{\beta}_\alpha)$ and we have $\|x - y\| = \tau(\alpha, A^j \beta) = \epsilon$. When ϵ is sufficiently small so that ϵ is smaller than the constant α in Lemma 3.2. we can apply this lemma repeatedly to get

$B'(\alpha, \epsilon, n) = \{ \pi(y) : y \in \mathbb{P}^d \text{ and } \|A^j x - A^j y\| < \epsilon \text{ for } j = 0, 1, \ldots, n - 1 \}.$
By Lemma [3.2], the condition \(y \in \mathbb{R}^d \) is automatic once we have \(\|x - y\| < C_8 \epsilon < C_5 \) and \(x \in \mathbb{R}^d \). Let

\[
\tilde{B}'(x, \epsilon, n) := \{ y \in \mathbb{R}^d : \| A^j x - A^j y \| < C_8 \epsilon \text{ for } j = 0, 1, \ldots, n - 1 \},
\]

we have \(\mu^d(\tilde{B}'(x, \epsilon, n)) = \mu^d(\tilde{B}'(x, \epsilon, n)) = c_\eta(\tilde{B}'(x, \epsilon, n)) \).

We express \(x = x_1 + \ldots + x_s \) and \(y = y_1 + \ldots + y_s \) where each \(x_i, y_i \in V_i \). The condition in the description of \(\tilde{B}'(x, \epsilon, n) \) is equivalent to \(\|x_i - y_i\| < C_8 \epsilon \) and \(\|A^j x_i - A^j y_i\| < C_8 \epsilon \) for every \(1 \leq i \leq s \) and \(1 \leq j \leq n - 1 \). We use Corollary [2.3] to have:

\[
(1 - \delta)\theta_i^2 \|x_i - y_i\| < \|A^j x_i - A^j y_i\| \leq ((1 + \delta)\theta_i)^2 \|x_i - y_i\|.
\]

Let \(I = \{ i \in \{1, \ldots, s\} : \theta_i \geq 1 \} \) and since we choose \(\delta \) sufficiently small so that \((1 + \delta)\theta_i < 1 \) whenever \(\theta_i < 1 \), inequality (5) implies that the set \(\tilde{B}'(x, \epsilon, n) \) is contained in the set:

\[
\{ y = y_1 + \ldots + y_s : \|x_i - y_i\| < C_8 \epsilon((1 - \delta)\theta_i)^{-1} \text{ for } i \in I \\
\quad \quad \text{and } \|x_i - y_i\| < C_8 \epsilon \text{ for } i \notin I \}.
\]

Let \(d_i = \dim(V_i) \) for \(1 \leq i \leq s \). By Proposition [3.1] there exists a constant \(C_9 \) such that:

\[
\mu^d(B'(\alpha, \epsilon, n)) = c_\eta(\tilde{B}'(x, \epsilon, n)) < C_9 \prod_{i \in I} (C_8 \epsilon)^{d_i}((1 - \delta)\theta_i)^{-d_i(n-1)}.
\]

Put \(h^+(\mu^d, A, x, \epsilon) = \limsup_{n \to \infty} -\log(\mu^d(B(\alpha, \epsilon, n))) \), then (6) implies:

\[
\sum_{i \in I} d_i \log(1 - \delta) + \sum_{i \in I} d_i \log \theta_i \leq h^+(\mu, A, x, \epsilon).
\]

Recall that our only assumption on \(\epsilon \) is that it is sufficiently small so that \(C_8 \epsilon < C_5 \).

For the other inequality, we argue in a similar way. There exists a constant \(C_{10} \) such that set \(B(\alpha, \epsilon, n) \) contains the set:

\[
B''(\alpha, \epsilon, n) := \{ \beta = (\beta_1, \ldots, \beta_d) \in \mathbb{T}_d^d : \tau(A^j \alpha, A^j \beta) < C_{10} \epsilon \text{ for } 0 \leq j \leq n - 1 \}.
\]

And when \(\epsilon \) is sufficiently small so that \(C_{10} \epsilon < C_5 \), we apply Lemma [3.2] repeatedly to get

\[
B''(\alpha, \epsilon, n) = \{ \pi(y) : y \in \mathbb{R}^d \text{ and } \|A^j x - A^j y\| < C_{10} \epsilon \text{ for } j = 0, 1, \ldots, n - 1 \}.
\]

Then consider

\[
\tilde{B}''(x, \epsilon, n) := \{ y \in \mathbb{R}^d : \| A^j x - A^j y \| < C_{10} \epsilon \text{ for } j = 0, 1, \ldots, n - 1 \},
\]

we have \(\mu^d(B''(\alpha, \epsilon, n)) = \tilde{\mu}^d(\tilde{B}''(x, \epsilon, n)) = c_\eta(\tilde{B}''(x, \epsilon, n)) \). Arguing as before, the set \(\tilde{B}''(x, \epsilon, n) \) contains the set:

\[
\{ y = y_1 + \ldots + y_s : \|x_i - y_i\| < C_{10} \epsilon((1 + \delta)\theta_i)^{-1} \text{ for } i \in I \\
\quad \quad \text{and } \|x_i - y_i\| < C_{10} \epsilon \text{ for } i \notin I \}.
\]

Then we can use Proposition [3.1] to get a constant \(C_{11} \) such that:

\[
C_{11} \prod_{i \in I} ((C_{10} \epsilon)^{d_i}((1 + \delta)\theta_i)^{-d_i(n-1)} < \eta(\tilde{B}''(x, \epsilon, n)).
\]
This implies

\[h^+(\mu, A, x, \epsilon) \leq \sum_{i \in I} d_i \log(1 + \delta) + \sum_{i \in I} d_i \log \theta_i \]

when \(\epsilon \) is sufficiently small.

Therefore

\[\sum_{i \in I} d_i \log(1 - \delta) + \sum_{i \in I} d_i \log \theta_i \leq \lim_{\epsilon \to 0^+} h^+(\mu, A, x, \epsilon) \leq \sum_{i \in I} d_i \log(1 + \delta) + \sum_{i \in I} d_i \log \theta_i. \]

Since \(\delta \) can be arbitrarily small, we conclude that

\[\lim_{\epsilon \to 0^+} h^+(\mu, A, x, \epsilon) = \sum_{i \in I} d_i \log \theta_i = d \sum_{i=1} d_i \log \max \{|\lambda_i|, 1\} \]

where the last equality follows from Property (ii) in Corollary 2.4. By the Brin-Katok theorem (see [BK83] and [VO16, pp. 262–263]), we have:

\[h(\mu^d, A) = d \sum_{i=1} d_i \log \max \{|\lambda_i|, 1\}. \]

It is well-known that \(h(\mu^d, A) = h(\mu^d, A) \) [Wal82, p. 197] and this finishes the proof. \(\square \)

4. The proof of Theorem 1.6

Throughout this section, we assume the notation in the statement of Theorem 1.6. Let \(I \) denote the identity matrix in \(M_d(\mathbb{Z}_F) \). The below formula for \(N_1(B) \) in the classical case is well-known [BLP10]:

Lemma 4.1. Let \(B \in M_d(\mathbb{Z}_F) \). The number of isolated fixed points \(N_1(B) \) of the multiplication-by-\(B \) map

\[B: \mathbb{T}_F^d \to \mathbb{T}_F^d. \]

is \(|\det(B - I)| \). Consequently \(N_k(A) = |\det(A^k - I)| \) for every \(k \geq 1 \).

Proof. When \(\det(B - I) = 0 \), there is a non-zero \(x \in \mathbb{R}_F^d \) such that \(Bx = x \). Then for any fixed point \(y \in \mathbb{T}_F^d \), the points \(y + cx \) for \(c \in \mathbb{R}_F \) are fixed. By choosing \(c \) to be in an arbitrarily small neighborhood of 0, we have that \(y \) is not isolated. Hence \(N_1(B) = 0 \).

Suppose \(\det(B - I) \neq 0 \). There is a 1-1 correspondence between the set of fixed points of \(B \) and the set \(\mathbb{Z}_F^d/(B - I)\mathbb{Z}_F^d \). Since \(\mathbb{Z}_F \) is a PID, we obtain the Smith Normal Form of \(B - I \) that is a diagonal matrix with entries \(b_1, \ldots, b_d \in \mathbb{Z}_F \setminus \{0\} \) and a \(\mathbb{Z}_F \)-basis \(x_1, \ldots, x_d \) of \(\mathbb{Z}_F^d \) so that \(b_1x_1, \ldots, b_dx_d \) is a \(\mathbb{Z}_F \)-basis of \((B - I)\mathbb{Z}_F \). Therefore the number of fixed points of \(B \) is:

\[\prod_{i=1} d \text{card}(\mathbb{Z}_F/b_i\mathbb{Z}_F) = \prod_{i=1} d |b_i| = |\det(B - I)|. \]

\(\square \)

We fix once and for all a finite extension \(K \) of \(\mathbb{R}_F \) containing all the eigenvalues of \(A \) and let \(\delta \) be the inertia degree of \(K/\mathbb{R}_F \). For each \(\mu_i \) in the (possibly empty) multiset \(\{\mu_1, \ldots, \mu_M\} \) of eigenvalues of \(A \) that are roots of unity, we have the decomposition:

\[\mu_i = \mu_i^{(0)} + \mu_i^{(1)} \]
with \(\mu_{i,(0)} \in \text{GF}(q^k)^* \) and \(\mu_{i,(1)} \in \mathfrak{p}_K \) as in (1); in fact \(\mu_{i,(1)} = 0 \) since \(\mu_i \) is a root of unity. Likewise, for each \(\eta_i \) in the (possibly empty) multiset \(\{\eta_1, \ldots, \eta_N\} \), we have:

\[
\eta_i = \eta_{i,(0)} + \eta_{i,(1)}
\]

with \(\eta_{i,(0)} \in \text{GF}(q^k)^* \) and \(\eta_{i,(1)} \in \mathfrak{p}_K \setminus \{0\} \).

Proposition 4.2. Let \(v_p \) denote the \(p \)-adic valuation on \(\mathbb{Z} \). Recall that the orders of \(\mu_{i,(0)} \) and \(\eta_{j,(0)} \) in \(\text{GF}(q^k)^* \) are respectively denoted \(m_i \) and \(n_j \) for \(1 \leq i \leq M \) and \(1 \leq j \leq N \); each of the \(m_i \)'s and \(n_j \)'s is coprime to \(p \). Let \(k \) be a positive integer, we have:

(i) For \(1 \leq i \leq M \), \(|\mu_i^k - 1| = \begin{cases} 0 & \text{if } k \equiv 0 \mod m_i \\ 1 & \text{otherwise} \end{cases} \).

(ii) For \(1 \leq j \leq N \), \(|\eta_j^k - 1| = \begin{cases} |\eta_{j,(1)}|^{|p^{v_p(k)}} & \text{if } k \equiv 0 \mod n_j \\ 1 & \text{otherwise} \end{cases} \).

(iii) \(N_k(A) = |\det(A^k - I)| = r(A)^k \left(\prod_{i=1}^{M} a_{i,k} \prod_{j=1}^{N} b_{j,k} \right)^{p^{v_p(k)}} \) where \(a_{i,k} = \begin{cases} 0 & \text{if } k \equiv 0 \mod m_i \\ 1 & \text{otherwise} \end{cases} \) and \(b_{j,k} = \begin{cases} |\eta_{j,(1)}| & \text{if } k \equiv 0 \mod n_j \\ 1 & \text{otherwise} \end{cases} \) for \(1 \leq i \leq M \) and \(1 \leq j \leq N \).

Proof. Part (i) is easy: \(\mu_i^k - 1 = \mu_{i,(0)}^k - 1 \) is an element of \(\text{GF}(q^k) \) and it is 0 exactly when \(k \equiv 0 \mod m_i \). For part (ii), when \(k \not\equiv 0 \mod n_j \), we have:

\[
\eta_j^k - 1 \equiv \eta_{j,(0)}^k - 1 \neq 0 \mod \mathfrak{p}_K,
\]

hence \(|\eta_j^k - 1| = 1 \). Now suppose \(k \equiv 0 \mod n_j \) but \(k \not\equiv 0 \mod p \), we have:

\[
\eta_j^k - 1 = (\eta_{j,(0)} + \eta_{j,(1)})^k - 1 = k\eta_{j,(0)}^{k-1}\eta_{j,(1)} + \sum_{\ell=2}^{k} \binom{k}{\ell} \eta_{j,(0)}^{k-\ell}\eta_{j,(1)}^\ell
\]

and since \(|k\eta_{j,(0)}^{k-1}\eta_{j,(1)}| = |\eta_{j,(1)}| \) is strictly larger than the absolute value of each of the remaining terms, we have:

\[
|\eta_j^k - 1| = |\eta_{j,(1)}|.
\]

Finally, suppose \(k \equiv 0 \mod n_j \). Since \(\gcd(n_j, p) = 1 \), we can write \(k = k_0 p^{v_p(k)} \) where \(k_0 \equiv 0 \mod n_j \) and \(k_0 \neq 0 \mod p \). We have:

\[
|\eta_j^k - 1| = |\eta_j^{k_0} - 1|^{p^{v_p(k)}} = |\eta_{j,(1)}|^{p^{v_p(k)}}
\]

and this finishes the proof of part (ii). Part (iii) follows from parts (i), (ii), and the definition of \(r(A) \). \(\square \)

Proof of Theorem 1.6. First, we prove part (a). We are given that for every \(j \in \{1, \ldots, N\} \), there exists \(i \in \{1, \ldots, M\} \) such that \(m_i \mid n_j \).

Let \(k \geq 1 \). If \(m_i \mid k \) for some \(i \) then \(N_k(A) = 0 \) by part (c) of Proposition 4.2.

If \(m_i \mid k \) for every \(i \in \{1, \ldots, M\} \) then \(n_j \mid k \) for every \(j \in \{1, \ldots, N\} \) thanks to
the above assumption, then we have \(N_k(A) = r(A)^k \) by Proposition 4.2. Therefore

\[
\sum_{k=1}^{\infty} \frac{N_k(A)}{k} z^k
\]
is equal to:

\[
\sum_{k \geq 1} \frac{r(A)^k}{k} z^k - \sum_{k \geq 1} \frac{r(A)^k}{k} z^k - \sum_{\ell=1}^{M} \sum_{1 \leq i_1 < \ldots < i_{\ell} \leq M} (-1)^{\ell-1} \sum_{k \geq 1} \frac{r(A)^k}{k} z^k
\]

where the third “=” follows from the inclusion-exclusion principle. This finishes the proof of part (a).

For part (b), without loss of generality, we assume that \(m_i \nmid n_1 \) for \(1 \leq i \leq M \). Put

\[
f(z) := \sum_{k=1}^{\infty} N_k(A) z^k.
\]

Proposition 4.2 gives that \(|N_k(A)| \leq r(A)^k \), hence \(f \) is convergent in the disk of radius \(1/r(A) \). Assume that \(f \) is D-finite and we arrive at a contradiction. Consider

\[
c_k := \frac{N_k(A)}{r(A)^k} \quad \text{for } k = 1, 2, \ldots
\]

then the series

\[
\sum_{k=1}^{\infty} c_k z^k = f(z/r(A))
\]
is D-finite. Let \(\tau \) denote the ramification index of \(K/F \), then each \(|\eta_j|_1 \) has the form \(1/q^{d_j/\tau} \) where \(d_j \) is a positive integer [Neu99, p. 150]. Combining this with (7) and Proposition 4.2, we have that the \(c_k \)'s belong to the number field \(E := \mathbb{Q}(p^{1/\tau}) \). Let \(| \cdot |_p \) denote the \(p \)-adic absolute value on \(\mathbb{Q} \), then \(| \cdot |_p \) extends uniquely to an absolute value on \(E \) since there is only one prime ideal of the ring of integers of \(E \) lying above \(p \). Put:

\[
Q = \prod_{1 \leq j \leq N} |\eta_j|_1 \quad \text{and} \quad Q_1 = \prod_{1 \leq j \leq N \atop n_j | n_1} |\eta_j|_1.
\]
Since both \(Q \) and \(Q_1 \) are powers of \(1/q^{1/\tau} \) with positive integer exponents, we have:

\[
|Q|_p, |Q_1|_p > 1. \tag{8}
\]

Since \(m_i \nmid n_i \) for every \(i \), Proposition 4.2 and (7) yield:

\[
c_{n_1p^\ell} = Q_1^{p^\ell} \quad \text{for every integer } \ell \geq 0. \tag{9}
\]

On the other hand, Proposition 4.2 and (7) also yield:

\[
|c_k|_p \leq |Q|_p^{p^p(k)} \quad \text{for every integer } k > 1. \tag{10}
\]

The idea to finish the proof is as follows. D-finiteness of the series \(\sum_{k=1}^{\infty} c_k z^k \) implies a strong restriction on the “growth” of the coefficients \(c_k \)'s at least through a recurrence relation satisfied by the \(c_k \)'s. This growth could be in terms of local data such as absolute values of the \(c_k \)'s or global data such as Weil heights of the \(c_k \)'s [BNZ20]. It is indeed the \(|c_k|_p \)'s that will give us the desired contradiction.

The key observation is that when \(\ell \) is large \(|c_{n_1p^\ell}|_p = |Q_1|_p^{p^\ell} \) is exponential in \(p^\ell \) thanks to (8) and (9) while the “nearby” coefficients \(c_{n_1p^\ell-n} \) for a bounded positive integer \(n \) have small \(p \)-adic absolute values thanks to (10) since \(v_p(n_1p^\ell-n) \) is small compared to \(\ell \).

Since \(\sum_{k=1}^{\infty} c_k z^k \in E[[z]] \) is D-finite, there exist a positive integer \(s \) and polynomials \(P_0(z), \ldots, P_s(z) \in E[z] \) such that \(P_0 \neq 0 \) and

\[
P_0(k)c_k + P_1(k)c_{k-1} + \ldots + P_s(k)c_{k-s} = 0 \tag{11}
\]

for all sufficiently large \(k \) [Sta80]. In the following \(\ell \) denotes a large positive integer and the implied constants in the various estimates are independent of \(\ell \). Consider \(k = n_1p^\ell \), then the highest power of \(p \) dividing any of the \(k-i = n_1p^\ell-i \) for \(1 \leq i \leq s \) is at most the largest power of \(p \) in \(\{1, 2, \ldots, s\} \). Combining this with (10), we have:

\[
|P_1(n_1p^\ell)c_{n_1p^\ell-i}|_p \ll 1 \quad \text{for } 1 \leq i \leq s. \tag{12}
\]

Now (9), (11), and (12) imply:

\[
|P_0(n_1p^\ell)|_p \ll |Q_1|_p^{-p^\ell}. \tag{13}
\]

This means for the infinitely many positive integers \(k \) of the form \(n_1p^\ell \), we have that \(|P_0(k)|_p \) is exponentially small in \(k \). This implies that \(k \) is unusually close to a root of \(P_0 \) with respect to the \(p \)-adic absolute value. One can use the product formula to arrive at a contradiction, as follows.

Let \(M_E = M_E^f \cup M_E^{\infty} \) be the set of all places of \(E \) where \(M_E^f \) consists of the finite places and \(M_E^{\infty} \) denotes the set of all the infinite places [BG06, Chapter 1]. For every \(w \in M_E \), we normalize \(\cdot \mid_w \) as in [BG06, Chapter 1] and the product formula holds. We still use \(p \) to denote the only place of \(E \) lying above \(p \) and the above \(\cdot \mid_p \) has already been normalized according to [BG06, Chapter 1]. We have:

\[
\prod_{w \in M_E^f} |P_0(n_1p^\ell)|_w \ll (n_1p^\ell)^\deg(P_0) \quad \text{and} \quad \prod_{w \in M_E^{\infty} \setminus \{p\}} |P_0(n_1p^\ell)|_w \ll 1. \tag{14}
\]
When ℓ is sufficiently large and $P_0(n_1 p^\ell) \neq 0$, we have that (8), (13) and (14) contradict the product formula:

$$\prod_{w \in M_K} |P_0(n_1 p^\ell)|_w = 1$$

and this finishes the proof that $f(z) = \sum_{k=1}^{\infty} N_k(A) z^k$ is not D-finite. The transcendence of $\zeta_A(z)$ follows immediately: if $\zeta_A(z)$ were algebraic then $f(z) = z \frac{\zeta_A'(z)}{\zeta_A(z)}$ would be algebraic and hence D-finite, see Remark 1.5.

\[\Box \]

References

[AM65] M. Artin and B. Mazur, *On periodic points*, Ann. of Math. (2) 81 (1965), 82–99.

[BG06] E. Bombieri and W. Gubler, *Heights in Diophantine geometry*, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006.

[BGNS] J. P. Bell, K. Gunn, K. D. Nguyen, and J. C. Saunders, *A general criterion for the Pólya-Carlson dichotomy and application*, available on the arXiv, 2022.

[BK83] M. Brin and A. Katok, *On local entropy*, Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., no. 1007, Springer-Verlag, 1983, pp. 30–38.

[BL16] V. Bergelson and A. Leibman, *A Weyl-type equidistribution theorem in finite characteristic*, Adv. Math. 289 (2016), 928–950.

[BL19] P.-Y. Bienvenu and T.-H. Le, *Linear and quadratic uniformity of the Möbius function over $\mathbb{F}_q[t]$*, Mathematika 65 (2019), 505–529.

[BLP10] M. Baake, E. Lau, and V. Paskunas, *A note on the dynamical zeta function of general toral endomorphisms*, Monatsh. Math. 161 (2010), 33–42.

[BMW14] J. Bell, R. Miles, and T. Ward, *Towards a Pólya–Carlson dichotomy for algebraic dynamics*, Indag. Math. (N.S.) 25 (2014), 652–668.

[BNZ] J. P. Bell, K. D. Nguyen, and U. Zannier, *D-finiteness, rationality, and height II: lower bounds over a set of positive density*, arXiv:2205.02145.

[BNZ20] D-finiteness, rationality, and height, Trans. Amer. Math. Soc. 373 (2020), 4889–4906.

[Bri12] A. Bridy, *Transcendence of the Artin-Mazur zeta function for polynomial maps of $A^1(F_p)$*, Acta Arith. 156 (2012), 293–300.

[Bri16] *The Artin-Mazur zeta function of a dynamically affine rational map in positive characteristic*, J. Théor. Nombres Bordeaux 28 (2016), no. 2, 301–324.

[Car21] F. Carlson, *Über ganzzahlige Funktionen*, Math. Z. 11 (1921), 1–23.

[DF04] D. S. Dummit and R. M. Foote, *Abstract algebra*, third ed., Wiley, 2004.

[Dwo60] B. Dwork, *On the rationality of the zeta function of an algebraic variety*, Amer. J. Math. 82 (1960), 631–648.

[Guc70] J. Guckheimer, *Axiom A + No Cycles $\Rightarrow \zeta_f(t)$ Rational*, Bull. Amer. Math. Soc. 76 (1970), 592–594.

[Hay65] D. R. Hayes, *The distribution of irreducibles in $GF(q,x)$*, Trans. Amer. Math. Soc. 117 (1965), 101–127.

[Hin94] A. Hinkkanen, *Zeta functions of rational functions are rational*, Ann. Acad. Sci. Fenn. Ser. A1 Math. 19 (1994), 3–10.

[LW10] Y.-R. Liu and T. Wooley, *Waring’s problem in function fields*, J. reine angew. Math. 638 (2010), 1–67.

[Man71] A. Manning, *Axiom A diffeomorphisms have rational zeta functions*, Bull. Lond. Math. Soc. 3 (1971), 215–220.

[Neu99] J. Neukirch, *Algebraic Number Theory*, Grundlehren der mathematischen Wissenschaften, vol. 322, Springer-Verlag, 1999, Translated from the German by N. Schwappacher.

[Por18] S. Porritt, *A note on exponential-Möbius sums over $\mathbb{F}_q[t]$*, Finite Fields Appl. 51 (2018), 298–305.
G. Pólya, "Über gewisse notwendige Determinantenkriterien für Fortsetzbarkeit einer Potenzreihe," Math. Ann. 99 (1928), 687–706.

R. Stanley, "Differentiably finite power series," European J. Combin. 1 (1980), 175–188.

M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge studies in advanced mathematics, vol. 151, Cambridge University Press, Cambridge, 2016.

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982.

A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508.

Keira Gunn, Department of Mathematics and Statistics, University of Calgary, AB T2N 1N4, Canada
Email address: keira.gunn1@ucalgary.ca

Khoa D. Nguyen, Department of Mathematics and Statistics, University of Calgary, AB T2N 1N4, Canada
Email address: dangkhoa.nguyen@ucalgary.ca

J. C. Saunders, Department of Mathematics and Statistics, University of Calgary, AB T2N 1N4, Canada
Email address: john.saunders1@ucalgary.ca