Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with Systemic Lupus Erythematosus in Thai population

Pattarin Tangtanatakul
Chulalongkorn University College of Public Health Sciences
https://orcid.org/0000-0001-8978-6916

Chisanu Thumarat
Mahidol University

Nusara Satproedprai
Ministry of Public Health

Punna Kunhapan
Ministry of Public Health

Tassamonwan Chaiyasung
Ministry of Public Health

Sirawan Klinchanhom
Center of Excellent in Immunology and Immune-mediated diseases

Yong-Fei Wang
University of Hong Kong

Wei Wei
Lupus Research Institution

Jeerapat Wongshinsri
Nopparat Rajathanee Hospital

Direkrit Chiewchengchol
Chulalongkorn University

Pongsawat Rodsaward
Chulalongkorn University

Pintip Ngamjanyapom
Mahidol University Faculty of Medicine Ramathibodi Hospital

Thanitta Suangtamai
Mahidol University Faculty of Medicine Ramathibodi Hospital

Surakameth Mahasirimongkol
Ministry of Public Health

Prapaporn Pisitkun
Mahidol University Faculty of Medicine Ramathibodi Hospital

Nattiya Hirankam (✉ Nattiya.H@chula.ac.th)
https://orcid.org/0000-0003-2224-6856

Research article

Keywords: Genome-wide association study, Thai Population, Systemic Lupus Erythematosus, Genetic Susceptibility, Single Nucleotide Polymorphisms, Polygenic Risk Score

DOI: https://doi.org/10.21203/rs.3.rs-33445/v2

License: ☒ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Page 1/17
Abstract

Background: Differences in the expression of variants across ethnic groups in the Systemic Lupus Erythematosus (SLE) patients have been well documented. However, the genetic architecture in the Thai population has not been thoroughly examined. In this study, we carried out genome-wide association study (GWAS) in the Thai population.

Methods: Two GWAS cohorts were independently collected and genotyped: discovery dataset (487 SLE cases and 1,606 healthy controls) and replication dataset (405 SLE cases and 1,590 unrelated-disease controls). Data were imputed to the density of the 1,000 Genomes Project Phase 3. Association studies were performed based on different genetic models, and pathway enrichment analysis was further examined. In addition, the performance of disease risk estimation for individuals in Thai GWAS was assessed based on the polygenic risk score (PRS) model trained by other Asian populations.

Results: Previous findings on SLE susceptible alleles were well replicated in the two GWAS. The SNPs on HLA-class II (rs9270970, A>G, OR=1.82, p-value = 3.61E-26), STAT4 (rs7582694, C>G, OR=1.57, p-value = 8.21E-16), GTF2I (rs73366469, A>G, OR=1.73, p-value = 2.42E-11) and FAM167A-BLK allele (rs13277113, A>G, OR=0.68, p-value = 1.58E-09) were significantly associated with SLE in Thai population. Meta-analysis of the two GWAS identified a novel locus at the FBN2 that was specifically associated with SLE in the Thai population (rs74989671, A>G, OR=1.54, p-value = 1.61E-08). Functional analysis showed that rs74989671 resided in a peak of H3K36me3 derived from CD14+ monocytes and H3K4me1 from T-lymphocytes. In addition, we showed that the PRS model trained from the Chinese population could be applied in individuals of Thai ancestry, with the area under the receiver-operator curve (AUC) achieving 0.76 for this predictor.

Conclusions: We demonstrated the genetic architecture of SLE in the Thai population and identified a novel locus associated with SLE. Also, our study suggested a potential use of the PRS model from the Chinese population to estimate the disease risk for individuals of Thai ancestry.

Background

The systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by loss of tolerance to self-antigens, inappropriate immune activation, and inflammation [1]. The severity is various depending on affected organs [2]. Genetic susceptibility has been widely accepted as one of the critical factors driving disease development [2]. Recently, the genetic architecture of SLE has been examined worldwide [3]. Using GWAS, more than 90 loci have been found associated with SLE across at least four ethnic groups, including Han Chinese, European, North America, and Africa [4, 5]. The strongest signal was identified at the HLA-class II allele, which replicated in all of the different populations [4]. These findings indicate critical biological mechanisms underlying the disease, which will be the candidate in further functional studies [6].

However, heterogeneity of disease between different ethnicities drives a question of whether genetic background in different ancestries could affect the clinical manifestations. It is known that Asian SLE patients have higher disease severity compared to Europeans [2]. However, only a few studies on SLE associations, that were based on candidate genes were performed in the Thai population [7-11]. In this study, we conducted GWAS using the SLE samples collected from two tertiary referral hospitals in Thailand. We aim to replicate known SLE-associated variants in the Thai population and identify novel SNPs associated with SLE.

Methods

Sample collection & Preparation

We calculated the power of our study by using an online tool called Genetic association study (GAS) Power Calculator [12]. With 800 cases and 1,600 controls at 5E-08 significant level, we obtained 0.934 expected power for the study. The EDTA blood samples from SLE patients (n=487) were collected at King Chulalongkorn Memorial Hospital as cases for the discovery phase. All procedures were approved by the ethical committee from the Faculty of Medicine, Chulalongkorn University (COA no.923/2017). For the replication cohort, the samples (n=405) were collected from the Rheumatology clinic, Ramathibodi hospital, with ethical approval from the Faculty of Medicine, Mahidol University (MURA no. 2015/731, EC no. 590223, Protocol-ID 12-58-12). All patients were carefully recruited regarding the criteria from the American College of Rheumatology (ACR) [13]. Patients’ demographic data from both datasets have been summarized in Table 1. Healthy controls (n=1,606) and unrelated disease controls including breast cancer,
periodontitis, tuberculosis, drug-induced liver injury, epileptic encephalopathy, dengue haemorrhagic fever, thalassemia, and cardiomyopathy (n=1,590), data were provided from the Department of Medical Science, Ministry of Public Health, Thailand.

DNA extraction

Buffy coats were extracted using the QIAGEN® EZ1® DNA blood kit (QIAGEN GmbH, Hilden, Germany). We used 200 μL of a buffy coat as recommended by the manufacturer's instruction. Buffy coat samples were transferred into tube or sample cartridge for EZ1 Advanced XL (QIAGEN GmbH, Hilden, Germany) and extracted using EZ1® Advanced XL DNA Buffy coat protocol. From this protocol, DNA was eluted at 200 ul. DNA was diluted and quantitated using Qubit™ dsDNA BR Assay Kit according to manufacturing protocol (Invitrogen, Thermo Fisher Scientific, MA, USA).

Genotyping and quality control

Genotyping was performed using Infinium Asian Screening Array-24 v1.0 BeadChip with 659,184 SNPs (Illumina, San Diego, CA, USA) at the Department of Medical Sciences (DMSC, Ministry of Public Health, Thailand) based on the protocol recommended by the manufacturer. The Genome Studio data analysis software v2011.1 (Illumina, San Diego, CA, USA) was used for calling genotypes. Samples and SNP markers were tested for quality control (QC) using PLINK genomic analysis software (v1.90b5.4) [14]. Individuals with autosomal genotype call rate ≤ 0.98, gender inconsistency based on heterozygosity rate of X chromosome (maleTh = 0.8, femaleTh = 0.2) and genome-wide estimates of identity-by-descent (pihat) ≥ 0.185 (3rd generation) were excluded from analysis. SNPs with more than 5% missing genotyping rate or significant deviation of Hardy-Weinberg equilibrium (p-value ≤ 1 x 10^{-8}) were also removed. After quality control (QC), we obtained a dataset of 2,041 individuals with 421,909 variants for the discovery phase and 1,955 individuals with 446,139 variants for replication. The flow diagram of the analysis process was shown in Figure 1A.

GWAS data imputation

Pre-phasing was performed using SHAPEIT [15]. After that, genotype data for individuals was imputed to the density of the 1,000 Genomes Project Phase 3 reference using IMPUTE2 [16]. After all the QC processing, 6,657,806 were left for further analysis. The processed data were publicly available at http://2anp.2.vu/GWAS_SLE_Thailand.

Association study, meta-analysis, and statistical analysis

The association studies were conducted by using SNPTEST [17], and the factored spectrally transformed linear mixed models (FaST-LMM v.0.2.32) program [18]. The results from FaST-LMM were analysed and visualized by RStudio to obtain genomic inflation factor (λ), quantile-quantile plot, and Manhattan plot [19]. The SNPs with p-value ≤ 1x10^{-5} were plotted to obtain the regional plot by using LocusZoom [20]. Haplotype block and linkage disequilibrium structure were analysed by Haploview software version 4.2 [21]. The characterized SLE susceptible loci were downloaded from a previous study [22] and GWAS catalogue (The NHGRI-EBI catalogue of published genome-wide association studies). Meta-analysis was studied based on the inverse variant strategy in the METAL program [23]. The genetic inheritance pattern was calculated from the frequency of different genotyping on risk alleles using R-Bioconductor. Simultaneously, functional annotation was predicted by using SNP-nexus, which applied data from the Reactome database [24]. The histone markers and transcription factor binding sites were predicted from an online tool called HaploReg V4.1 [25].

Polygenic risk score calculation

Lassosum [26] was used to calculated PRS for individuals. The summary statistics for SLE association in East Asians [27], involving 2,618 cases and 7,446 controls with Chinese ancestry, were used to train the model. The area under the ROC curve (AUC) was calculated using R package pROC [28].

Results

Known SLE associations found in the Thai population
In the discovery dataset, the association studies were initially performed using healthy controls (n = 1,606) and SLE patients (n = 487) collected from King Chulalongkorn Memorial Hospital. Regarding the result, we found that variants at the HLA class II regions were strongly associated with SLE (p-value < 5E-08). Similarly, GWAS from 405 SLE cases and 1,590 non-immune mediated disease controls found variants at the HLA class II regions reached the genome-wide significant threshold (p-value < 5E-08). Our findings were consistent with previous reports in other ethnic groups [29]. Inflation factors from both datasets were calculated as reported in Supplementary figure 1.

Subsequently, a meta-analysis of the two Thai GWAS was carried out, and we systematically examined associations across the 90 known SLE-associated loci, which were collected from the GWAS Catalogue (https://www.ebi.ac.uk/gwas/) and previous review articles [22]. Of these loci, the HLA-DQA1, HLA-DRB1, STAT4, FAM167A-BLK, and GTF2I loci have reached the genome-wide significant threshold (p-value < 5E-08; Figure 1B, Table 2) in Thai population, and the variants at the PROS1C1, NOTCH4, HCP5, C6orf10, TAP2, TNFSF4, RasGRP3, TERT, TNPO3-IRF5, CXCR5, GPR19, SLC15A4, and ITGAM loci showed suggestive evidence of associations with SLE (p-value < 5E-05, Supplementary Table 1). These loci have been found in several ancestries, including Han Chinese, Korean, North American, European, African, and Hispanic populations [30, 31].

We noticed that some of the previously characterized nonsynonymous polymorphisms also showed certain evidence of association (p-value < 0.05) in Thai population, such as rs11235604 (ATG16L2, R58W), rs13306575 (NCF2, R395W), rs1990760 (IFIH1, A946T), rs3734266 (UHRF1BP1, Q454L), rs2841280 (PLD4, E27Q) and rs2230926 (TNFAIP3, F127S). Details of these associations were summarized in Table 3. All significant variants were calculated for Hardy-Weinberg equilibrium, as reported in Supplementary Table 2.

Identification of novel loci associated with SLE

Excluding the variants at the known SLE-associated loci, we discovered a novel variant on FNB2 (rs74989671, OR=1.54, p-value=1.61E-08) specifically associated with SLE in Thai population (Figure 1B and Figure 2A, Table 2) when comparing the association in Europeans (OR=0.998, p-value=0.979) and in Chinese populations (OR=0.982, p-value=0.692) [27]. Further analyses based on different genetic inheritance models suggested that the disease risk was associated with the copy number of risk alleles that the individuals carried (additive model) (Table 4). Three SNPs on FBN2 loci (rs74989671, rs3598344, rs6595836) showed linkage disequilibrium (LD r^2 = 0.82) (Figure 2B, Supplementary Table 1). Of these variants, rs74989671 was found to locate within the peak of H3K36me3 derived from CD14 positive monocytes and H3K4me1 (associated with active enhancers) derived from the primary T cells (Figure 2C).

In addition, we found variants at the ATP6V1B1, MIR4472-2, MYO5C, ADCY5, and DGKG, showing suggestive evidence of associations with SLE in Thai population (p-value < 5E-05) (Supplementary Figure 2, Supplementary Table 1). Though these polymorphisms are likely to associate with Thai SLE patients, an independent GWAS dataset of SLE patients with Thai background is needed for further validation.

In silico functional annotation of SLE-associated variants in Thai population

To understand the biological meaning underlying the SLE-associated loci in the Thai population, we performed the pathway analysis using the SNP-nexus program [24]. Variants with p-value < 5E-05 were involved in this study. Notably, we found that 50% of all-variants were located within the coding region, by which 10% is non-synonymous polymorphisms. Pathway analysis results revealed that SLE-associated variants were highly enriched in the regulation of interferon signalling, PD-1 signalling, MHC-class II antigen presentation, TCR/BCR signalling, cytokine signalling, TNF-signalling, NOTCH4 signalling, calcium-activated potassium channels, and cell-cell junction organization pathways. Furthermore, we found that extracellular matrix organization was significant in our results (Figure 3). It indicated that Thai SLE patients might have a higher risk of fibrosis-associated inflammation.

Polygenic risk score prediction for the individuals

To apply the GWAS result to predict the Thai SLE outcome, we also tested the hypothesis of whether the PRS models trained by individuals with Chinese ancestry could be applied for Thai SLE patients. We calculated PRS for individuals in the Thai GWAS, based on the training data from the Chinese population (2,618 cases and 7,446 controls) [27]. Significantly, the PRS for SLE cases were higher than controls (mean difference = 0.89; p-value = 2.2E-16; Figure 4A), and the area under the receiver-operator curve
patients. Although we did not recognize polymorphisms on chromosome 11q23.3 (rs11603023 on association with Japanese and Korean background [59]. Thus, this implies the specificity of these variants to the Thai SLE background was a pivotal factor driving a severe LN among Thai SLE patients. Taken together, these pieces of evidence could justify the link between genetic variants and clinical involvement in Thai SLE patients.

Our analysis found several LN-susceptible loci such as IRF5 [37, 38], ITGAM [9, 39], IKZF1 [40], and TNFSF4 [41]. While IKZF1 is a co-transcription factor with STAT4 mediated Th1 lymphocyte differentiation and interferon pathways [42], the TNFSF4 locus, also called OX40L, encoded for the TNF superfamily ligand, which actively stimulates CD4+ T-cells activation [41]. Study in the Finnish and Swedish SLE patients found the correlation of ITGAM with cutaneous discoid lupus erythematosus (DLE) and LN as well as Ro/SSA auto-antibody positive [43]. Not only LN, but we also found several loci that have been verified in the specific sub-phenotype of SLE patients. For example, our result found a variant on ETS1, which previously showed association with juvenile SLE, as well as a variant on RasGRP3, which was involved in malar rash or discoid rash [40]. The recent SLE susceptible loci identified in the cardiac manifestation of neonatal lupus, NOTCH4, was found in our results [44].

Note that we found some of the known SNPs which are nonsynonymous variants such as NCF2 [45], IFIH1 [46], TNFAIP3 [47], UHRF1BP1[48], ATG16L2 [49], and PLD4 [50]. A few pieces of evidence have revealed the impact of those variants on various pathways including, neutrophil extracellular traps (NETs) formation [51], sensor molecule to detect viral genome inside cells [52], a negative regulator for NF-kB transcription factors [53], a negative regulator of cell growth [54]. These pathways resembled with our functional enrichment pathways analysis. Interestingly, our results found extracellular matrix organization (ECM) pathways associated with Thai SLE patients. Previously, single-cell transcriptome analysis in non-responder LN patients highlighted the upregulated genes in the ECM pathway correlated with treatment failure [55]. The ECM reflected the active fibrotic process, which was a marker of poor prognosis LN [56]. Remarkably, the prevalence of severe LN was high in the South East Asian ethnic included Thai [57]. Regards to our SLE patients' demographic data, we found that the frequency of clinical phenotype was roughly similar to other ethnic [58]. The LN was the highest abundance found among Thai SLE patients. Thus, our results supported that genetic background was a pivotal factor driving a severe LN among Thai SLE patients. Taken together, these pieces of evidence could justify the link between genetic variants and clinical involvement in Thai SLE patients.

The study of known SNPs showed most of the polymorphisms resembled with previous reports in Thais, such as ARID5B, TNFSF4, BANK1, TNFAIP3, CXCR5 SLC15A, ITGAM, WDFY4, ETS1, and BLK [7-11]. It confirmed that our analysis processes were reliable. Noticeably, The allele frequency of ITGAM was higher among Thai SLE when compared to Chinese Hong Kong [9], but has no association with Japanese and Korean background [59]. Thus, this implies the specificity of these variants to the Thai SLE patients. Although we did not recognize polymorphisms on chromosome 11q23.3 (rs11603023 on PHLD1 and rs638893 on
DDX6), which has been identified in the Thais’ SLE, our meta-analysis enhanced signal from rs10845606 on GPR19 allele which does not correlate with Thai SLE patients previously [8].

It is noteworthy that meta-analysis in the Thai population discovered novel SLE susceptible variants on FBN2. The FBN2 allele is located on a chromosome 5 encoded protein called fibrillin-2 [60]. Fibrillins-2 is one of the glycoprotein components incorporated extracellularly on microfibrils and is essential in bone, muscle, and extracellular matrix formation [61]. It is well known that mutation of FBN2 leads to dominant heritable connective tissue disorders [62]. Importantly, a recent review article has gained insight on fibrillin-2 as a critical mediator that binds to transforming growth factor-beta (TGF-β) during extracellular matrix formation [63]. The TLR9/TGF-β1/PDGF-β pathway was excessively activated in peripheral mononuclear cells isolated from LN patients [64]. Besides, the upregulation of FBN2 correlated with fibrosis prevalence in the spontaneous LN developed mouse model (SWR X NZB1 F1) [65]. Although the function of FBN2 in SLE is unclear, collective evidence led us to hypothesize that this variant might drive either fibrosis-associated inflammation or inflammatory induction during disease pathogenesis. Due to whole-genome sequencing data in the Thai population is lacking, further study using FBN2 target sequencing, whole-genome sequencing, and variant functional characterization in a large cohort is needed. This knowledge could be useful to identify rare coding variants and genetic propensity eliciting SLE pathogenesis in Thais.

Note that some of the variants were previously characterized in other autoimmune diseases, including rheumatoid arthritis and primary Sjögren Syndrome (pSS). It, therefore, indicates the sharing of underlying genetic factors between autoimmune disease. However, predisposing factors which could affect clinical manifestation driving different autoimmune disease outcome has not been elucidated yet. Recently, the GRS (genetic risk score) has been widely adopted to predict disease outcomes from genetic variants [66]. The previous studies in SLE showed that overall mortality was higher in the striking GRS SLE patients; also, the high cumulative genetic risk could predict the specific organ damages such as proliferative nephritis and cardiovascular disease [67]. Our study showed a high sensitivity for using polygenic risk scored as a marker for SLE disease development in the Thai population. It is exciting for further study to calculate the genetics risk score and specific clinical manifestation among Thai SLE patients.

Conclusions

In conclusion, our study reported susceptible loci of SLE patients in Thai ancestry, which were variants on the HLA class II allele, STAT4, GTF2I, and BLK. Additionally, we confirmed those variants which had been reported previously in the Thai populations, which were ARID5B, TNFSF4, BANK1, TNFAIP3, CXCR5 SLC15A, ITGAM, WDFY4, and ETS1. Interestingly, we identified novel variants associated with the Thai SLE patients, which were on the FNB2 allele. Summary loci associated with the Thai SLE were seen in Figure 4B. Functional annotation analysis highlighted extracellular matrix organization pathways specific to the Thai population. The PRS using GWAS data is useful for SLE prediction with sensitivity and specificity of more than 70%. Further whole-genome sequencing study with a large sample size might help to validate our results. Finally, our finding provides the necessary genetic background susceptible to SLE disease, expanding the number of molecular targets for treatment options.

Abbreviations

GWAS
Genome-wide association study
SLE
Systemic lupus erythematosus
SNP
Single nucleotide polymorphism
HLA
Human leukocyte antigen
MHC
Major Histocompatibility
CHR
Chromosome
MAF
Minor allele frequency
OR
Odds ratio
CI
Confidence interval
bp
Base pair
BCR
B cell receptor
TCR
T cell receptor
IL
interleukin
PD
Program cell death
MDA
Melanoma differentiation-associated gene 5

Declarations

Ethics and approval and consent to participate
All the procedures were followed in compliance with the principles of the Declaration of Helsinki, and informed consent was obtained from all participants. The study and the consent procedures were reviewed and approved by the local institutional review board including the ethical committee from the Faculty of Medicine, Chulalongkorn University (COA no.923/2017), and the Faculty of Medicine, Mahidol University (MURA no. 2015/731, EC no. 590223, Protocol-ID 12-58-12).

Consent for publication
Not applicable

Availability of data and materials
The complete results from the two Thai GWAS datasets and the GWAS meta-analysis are publicly available for download at http://2anp.2.vu/GWAS_SLE_Thailand.

Competing interests
The authors declare that they have no competing interests.

Funding
This study was supported by International Network for Lupus Research (grant no. IRN59W0004), Faculty of Allied Health Sciences, Chulalongkorn University, Fiscal Year 2020 (AHS-CU 63002), Grants for Development of New Faculty Staff, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University (DNS 63_015_37_002_1), the Faculty of Medicine, Ramathibodi Hospital (CF_61004) and Genomic Thailand funding, Department of Medical Science, Ministry of Public Health. This work was kindly supported by the National Natural Science Foundation of China (Grant No. 81801636).

Authors' contributions
NH, PP, and SM conceived the study. WYF and WW performed genetic data imputation. PT CT and PK performed the statistical analysis and function annotation with all figures. NH, PP, JW, SM, DC, and PR provided Thai SLE samples. TS, TC, SK, and NS
carried out DNA extraction and genotyping. PT, CT, WYF, and NH wrote the first draft of the manuscript. All authors contributed to the revision of the manuscript and approved the final manuscript.

Acknowledgments

The technical support group from the Department of Medical Sciences is gratefully acknowledged. We would like to thank the valuable suggestion from Associate Professor Wanling Yang from the Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong.

References

1. Rahman A, Isenberg DA: Systemic lupus erythematosus. N Engl J Med 2008, 358(9):929-939.
2. Ceccarelli F, Perricone C, Borigiani P, Cicciacci C, Rufini S, Cipriano E, Alessandri C, Spinelli FR, Sili Scavalli A, Novelli G et al. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype. J Immunol Res 2015, 2015:745647.
3. Goulielmos GN, Zervou MI, Vazgiourakis VM, Ghodke-Puranik Y, Garyfallos A, Niewold TB: The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018, 668:59-72.
4. Kwon YC, Chun S, Kim K, Mak A: Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019, 8(10).
5. Julia A, Lopez-Longo FJ, Perez Venegas JJ, Bonas-Guarch S, Olive A, Andreu JL, Aguirre-Zamorano MA, Vela P, Nolla JM, de la Fuente JLM et al. Genomewide association study meta-analysis identifies five new loci for systemic lupus erythematosus. Arthritis Res Ther 2018, 20(1):100.
6. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG: Genomewide pathway analysis of genomewide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 2012, 39(12):10627-10635.
7. Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, Hirankarn N, Ying D, Pan HF, Mok CC et al. Genomewide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 2010, 6(2):e1000841.
8. Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, Hirankarn N et al: Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet 2013, 92(1):41-51.
9. Yang W, Zhao M, Hirankarn N, Lau CS, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum Mol Genet 2009, 18(11):2063-2070.
10. Zhang H, Zhang Y, Wang YF, Morris D, Hirankarn N, Sheng Y, Shen J, Pan HF, Yang J, Yang S et al. Meta-analysis of GWAS on both Chinese and European populations identifies GPR173 as a novel X chromosome susceptibility gene for SLE. Arthritis Res Ther 2018, 20(1):92.
11. Zhang J, Zhang Y, Yang J, Zhang L, Sun L, Pan HF, Hirankarn N, Ying D, Zeng S, Lee TL et al. Three SNPs in chromosome 11q23.3 are independently associated with systemic lupus erythematosus in Asians. Hum Mol Genet 2014, 23(2):524-533.
12. Skol AD, Scott LJ, Abecasis GR, Boehnke M: Joint analysis is more efficient than replication-based analysis for two-stage genomewide association studies. Nat Genet 2006, 38(2):209-213.
13. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, Smolen JS, Wofsy D, Boumpas DT, Kamen DL et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis 2019, 78(9):1151-1159.
14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
15. Delaneau O, Marchini J, Genomes Project C, Genomes Project C: Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun 2014, 5:3934.
16. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR: Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012, 44(8):955-959.

17. Marchini J, Howie B: Genotype imputation for genome-wide association studies. Nat Rev Genet 2010, 11(7):499-511.

18. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RJ, Heckerman D: FaST linear mixed models for genome-wide association studies. Nat Methods 2011, 8(10):833-835.

19. Turner SD: qtlmania: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv 2014:005165.

20. Pruij RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ: LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010, 26(18):2336-2337.

21. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.

22. Chen L, Morris DL, Vyse TJ: Genetic advances in systemic lupus erythematosus: an update. Curr Opin Rheumatol 2017, 29(5):423-433.

23. Willer CJ, Li Y, Abecasis GR: METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010, 26(17):2190-2191.

24. Dayem Ullah AZ, Oscanoa J, Wang J, Nagano A, Lemoine NR, Chelala C: SNPhexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine. Nucleic Acids Res 2018, 46(W1):W109-W113.

25. Ward LD, Kellis M: HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 2016, 44(D1):D877-881.

26. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC: Polygenic scores via penalized regression on summary statistics. Genet Epidemiol 2017, 41(6):469-480.

27. Wang Y-F, Zhang Y, Lin Z, Zhang H, Wang T-Y, Cao Y, Morris DL, Sheng Y, Yin X, Zhong S-L et al: Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity that may underly population disparities in this disease. 2020:2020.2013.07622.

28. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M: pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011, 12:77.

29. Armstrong DL, Zidovetzki R, Alarcón-Riquelme ME, Tsao BP Criswell LA, Kimberly RP, Harle YB, Sivils KL, Vyse TJ, Gaffney PM et al: GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 2014, 15(6):347-354.

30. Meng Y, He Y, Zhang J, Xie Q, Yang M, Chen Y, Wu Y: Association of GTF2I gene polymorphisms with renal involvement of systemic lupus erythematosus in a Chinese population. Medicine (Baltimore) 2019, 98(31):e16716.

31. Oparina N, Martinez-Bueno M, Alarcón-Riquelme ME: An update on the genetics of systemic lupus erythematosus. Curr Opin Rheumatol 2019, 31(6):659-668.

32. Louthrenoo N, Kasitanoon N, Wichainun R, Wangkaew S, Sukitawut W, Ohnogi Y, Hong GH, Kuwata S, Takeuchi F: The genetic contribution of HLA-DRB1*01:01 to systemic lupus erythematosus in Thailand. Int J Immunogenet 2013, 40(2):126-130.

33. Sirikong M, Tsuchiya N, Chandanayingyong D, Bejreachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Siriboornit U, Tokunaga K: Association of HLA-DRB1*1502-DQB1*0501 haplotype with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 2002, 59(2):113-117.

34. Castillejo-Lopez C, Delgado-Vega AM, Wojcik J, Kozyrev SV, Thavathiru E, Wu YY, Sanchez E, Pollmann D, Lopez-Egido JR, Fineschi S et al: Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK. Ann Rheum Dis 2012, 71(1):136-142.

35. Castillejo-Lopez C, Delgado-Vega AM, Wojcik J, Kozyrev SV, Thavathiru E, Wu YY, Sanchez E, Pollmann D, Lopez-Egido JR, Fineschi S et al: Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK. Ann Rheum Dis 2012, 71(1):136-142.

36. Li Y, Li P, Chen S, Wu Z, Li J, Zhang S, Cao C, Wang L, Liu B, Zhang F et al: Association of GTF2I and GTF2IRD1 polymorphisms with systemic lupus erythematosus in a Chinese Han population. Curr Opin Rheumatol 2015, 33(5):632-638.

37. Qin L, Lv J, Zhou X, Hou P, Yang H, Zhang H: Association of iIRF5 gene polymorphisms and lupus nephritis in a Chinese population. Nephrology (Carlton) 2010, 15(7):710-713.
38. Watkins AA, Yasuda K, Wilson GE, Aprahamian T, Xie Y, Maganto-Garcia E, Shukla P, Oberlander L, Laskow B, Menn-Josephy H \textit{et al.} IRF5 deficiency ameliorates lupus but promotes atherosclerosis and metabolic dysfunction in a mouse model of lupus-associated atherosclerosis. *J Immunol* 2015, 194(4):1467-1479.

39. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PV \textit{et al.} Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. *N Engl J Med* 2008, 358(9):900-909.

40. He CF, Liu YS, Cheng YL, Gao JP, Pan TM, Han JW, Quan C, Sun LD, Zheng HF, Zuo XB \textit{et al.} TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. *Lupus* 2010, 19(10):1181-1186.

41. Farres MN, Al-Zifzaf DS, Aly AA, Abd Raboh NM: \textit{OX40/OX40L in systemic lupus erythematosus: association with disease activity and lupus nephritis.} *Ann Saud Med* 2011, 31(1):29-34.

42. Hu SJ, Wen LL, Hu X, Yin XY, Cui Y, Yang S, Zhang XJ: \textit{IKZF1: a critical role in the pathogenesis of systemic lupus erythematosus?} *Mod Rheumatol* 2013, 23(2):205-209.

43. Jarvinen TM, Hellquist A, Koskenmies S, Einarsdottir E, Panelius J, Hasan T, Julkunen H, Padyukov L, Kvarnstrom M, Wahren-Herlenius M \textit{et al.} Polymorphisms of the ITGAM gene confer higher risk of discoid cutaneous than of systemic lupus erythematosus. *PLoS One* 2010, 5(12):e14212.

44. Clancy RM, Marion MC, Kaufman KM, Ramos PS, Adler A, International Consortium on Systemic Lupus Erythematosus G, Harley JB, Langefeld CD, Buyon JP: \textit{Identification of candidate loci at 6p21 and 21q22 in a genome-wide association study of cardiac manifestations of neonatal lupus.} *Arthritis Rheumatol* 2010, 62(11):3415-3424.

45. Kim-Howard X, Sun C, Molineros JE, Maiti AK, Chandru H, Adler A, Wiley GB, Kaufman KM, Kotykan L, Guthridge JM \textit{et al.} Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. *Hum Mol Genet* 2014, 23(6):1656-1668.

46. Zhang J, Liu X, Meng Y, Wu H, Wu Y, Yang B, Wang L: \textit{Autoimmune disease associated IFIH1 single nucleotide polymorphism related with IL-18 serum levels in Chinese systemic lupus erythematosus patients.} *Sci Rep* 2018, 8(1):9442.

47. Liu X, Qin H, Wu J, Xu J: \textit{Association of TNFAIP3 and TNIP1 polymorphisms with systemic lupus erythematosus risk: A meta-analysis.} *Gene* 2018, 668:155-165.

48. Zhang Y, Yang W, Mok CC, Chan TM, Wong RW, Mok MY, Lee KW, Wong SN, Leung AM, Lee TL \textit{et al.} \textit{Two missense variants in UHRF1BP1 are independently associated with systemic lupus erythematosus in Hong Kong Chinese.} *Genes Immun* 2011, 12(3):231-234.

49. Ishibashi K, Fujita N, Kanno E, Omori H, Yoshimori T, Itoh T, Fukuda M: \textit{Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex.} *Autophagy* 2011, 7(12):1500-1513.

50. Akizuki S, Ishigaki K, Kochi Y, Law SM, Matsuo K, Ohmura K, Suzuki A, Nakayama M, Iizuka Y, Koseki H \textit{et al.} \textit{PLD4 is a genetic determinant to systemic lupus erythematosus and involved in murine autoimmune phenotypes.} *Ann Rheum Dis* 2019, 78(4):509-518.

51. Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q, John S, Quismorio FP, Jr., Reiff A, Myones BL, Kaufman KM \textit{et al.} \textit{Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase.} *Proc Natl Acad Sci U S A* 2012, 109(2):E59-67.

52. Robinson T, Kariuki SN, Franek BS, Kumabe M, Kumar AA, Badaracco M, Mikolaitis RA, Guerrero G, Utset TO, Drevlow BE \textit{et al.} \textit{Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients.} *J Immunol* 2011, 187(3):1298-1303.

53. Das T, Chen Z, Hendriks RW, Kool M: \textit{A20/Tumor Necrosis Factor alpha-Induced Protein 3 in Immune Cells Controls Development of Autoinflammation and Autoimmunity: Lessons from Mouse Models.} *Front Immunol* 2018, 9:104.

54. Unoki M, Nishidate T, Nakamura Y: \textit{ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain.} *Oncogene* 2004, 23(46):7601-7610.

55. Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B, Ranabothu S, Izmirly P, Clancy R, Belmont HM, Koenigsberg M \textit{et al.} \textit{Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways.} *Nat Immunol* 2019, 20(7):915-927.
56. Hsieh C, Chang A, Brandt D, Guttikonda R, Utset TO, Clark MR: Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. *Arthritis Care Res (Hoboken)* 2011, 63(6):865-874.

57. Avihingsanon Y, Hirankarn N: Major lupus organ involvement: severe lupus nephritis. *Lupus* 2010, 19(12):1391-1398.

58. Osio-Salido E, Manapat-Reyes H: Epidemiology of systemic lupus erythematosus in Asia. *Lupus* 2010, 19(12):1365-1373.

59. Han S, Kim-Howard X, Deshmukh H, Kamatani Y, Viswanathan P, Guthridge JM, Thomas K, Kaufman KM, Ojwang J, Rojas-Villarraga A et al: Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). *Hum Mol Genet* 2009, 18(6):1171-1180.

60. Deng H, Lu Q, Xu H, Deng X, Yuan L, Yang Z, Guo Y, Lin Q, Xiao J, Guan L et al: Identification of a Novel Missense FBN2 Mutation in a Chinese Family with Congenital Contractural Arachnodactyly Using Exome Sequencing. *PLoS One* 2016, 11(5):e0155908.

61. Sengle G, Carlberg V, Tufa SF, Charbonneau NL, Smaldone S, Carlson EJ, Ramirez F, Keene DR, Sakai LY: Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice. *PLoS Genet* 2015, 11(6):e1005340.

62. Zhou S, Wang F, Hou Y, Zhou J, Hao G, Xu C, Wang QK, Wang H, Wang P: A novel FBN2 mutation cosegregates with congenital contractual arachnodactyly in a five-generation Chinese family. *Clin Case Rep* 2018, 6(8):1612-1617.

63. van Loon K, Yemelyanenko-Lyalenko J, Margadant C, Griffioen AW, Huijbers EJM: Role of fibrillin-2 in the control of TGF-beta activation in tumor angiogenesis and connective tissue disorders. *Biochim Biophys Acta Rev Cancer* 2020, 1873(2):188354.

64. Yuan Y, Yang M, Wang K, Sun J, Song L, Diao X, Jiang Z, Cheng G, Wang X: Excessive activation of the TLR9/TGF-beta1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus. *Arthritis Res Ther* 2017, 19(1):70.

65. Gardet A, Chou WC, Reynolds TL, Velez DB, Fu K, Czerkowicz JM, Bajko J, Ranger AM, Allaire N, Kerns HM et al: Pristane-Accelerated Autoimmune Disease in (SWR X NZB) F1 Mice Leads to Prominent Tubulointerstitial Inflammation and Human Lupus Nephritis-Like Fibrosis. *PLoS One* 2016, 11(10):e0164423.

66. Che R, Motsinger-Reif AA: Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium. *Front Genet* 2013, 4:138.

67. Reid S, Alexssson A, Frodlund M, Morris D, Sandling JK, Bolin K, Svenungsson E, Jonsen A, Bengtsson C, Gunnarsson I et al: High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus. *Ann Rheum Dis* 2020, 79(3):363-369.

68. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009, 6(7):e100097.

69. Zhang H, Meltzer P, Davis S: RCircos: an R package for Circos 2D track plots. *BMC Bioinformatics* 2013, 14:244.

Tables

Table 1 SLE patients’ characteristics of both observatory and replication datasets
Patients’ characteristics

Clinical cases	Observatory cohort n = 455	Replication cohort n = 371
	a (%)	n (%)

Ages of onset (mean ± SD)

- **Observatory cohort**: 30.38 ± 13.68
- **Replication cohort**: 30.39 ± 11.43

Sex

	Observatory cohort	Replication cohort
Female	425 (93.41%)	337 (90.84%)
Male	26 (5.71%)	27 (7.28%)

Clinical aspects

	Observatory cohort	Replication cohort
Hematologic disorders	243 (53.41%)	136 (36.66%)
Neurological disorders	62 (13.63%)	33 (8.89%)
Ulcer	115 (25.27%)	52 (14.02%)
Discoid rash	161 (35.38%)	49 (13.21%)
Malar rash	142 (31.21%)	82 (22%)
Arthritis	133 (29.23%)	148 (39.89%)
Renal disorders	284 (62.42%)	149 (40.16%)
ANA	350 (76.92%)	214 (57.68%)

Table 2 List of significant variants at individual locus from the meta-analysis

The percentages of unknown clinical data (n/a) in the observatory dataset are listed here.

- **Sex = 0.88%**, Hematologic disorder = 1.76%, Neurological disorder = 2.20%, Ulcer = 4.18%, Discoid rash = 3.96%, Malar rash = 5.71%, Arthritis = 4.18%, Renal disorders = 1.76%, and ANA = 9.89%

The percentages of unknown clinical data (n/a) in the replication dataset are listed here.

- **Sex = 0.00%**, Hematologic disorder = 36.93%, Neurological disorder = 37.2%, Ulcer = 37.4%, Discoid rash = 37.2%, Malar rash = 37.47%, Arthritis = 37.2%, Renal disorders = 37.74%, and ANA = 36.93%
| HAP | dbSNP | CHR | BP | RA | MAP affected | MAP unaffected | Locus upstream | Locus downstream | Discovery dataset | Replication dataset | Meta-analysis | \(P_{het} \) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| q32.3| rs7574965 | 2 | 191099907 | A | 0.47 | 0.36 | STAT4 | 1.54 (1.33-1.79) | 1.45E-08 | 1.61 (1.37-1.89) | 7.45E-09 | 1.57 | 8.21E-16 |
| q23.3| rs74989671 | 5 | 128396268 | G | 0.16 | 0.11 | FBN2 | 1.52 (1.24-1.86) | 4.31E-05 | 1.58 (1.26-1.98) | 7.61E-05 | 1.54 | 1.61E-08 |
| p21.32| rs9270970 | 6 | 32605797 | G | 0.42 | 0.30 | HLA-DRB1, HLA-DQA1 | 2.02 (1.73-2.35) | 8.71E-20 | 1.63 (1.39-1.93) | 4.15E-09 | 1.83 | 3.61E-07 |
| q11.23| rs73666469 | 7 | 74619286 | G | 0.14 | 0.09 | RP5-1186P10.2, GTF2I | 1.8 (1.45-2.24) | 1.09E-07 | 1.65 (1.3-2.1) | 2.84E-05 | 1.73 | 2.42E-11 |
| p23.1 | rs13277113 | 8 | 11491677 | G | 0.26 | 0.32 | FAM167A, BLK | 0.64 (0.54-0.76) | 2.16E-07 | 0.74 (0.61-0.88) | 8.76E-04 | 0.68 | 1.58E-09 |
| q24.33| rs1385374 | 12 | 128816149 | A | 0.20 | 0.15 | SLC15A4 | 1.54 (1.28-1.85) | 5.76E-06 | 1.37 (1.12-1.69) | 2.36E-03 | 1.46 | 7.62E-08 |
| p11.2 | rs1143679 | 16 | 31265490 | A | 0.07 | 0.03 | ITGAM | 1.67 (1.21-2.28) | 1.39E-03 | 2.27 (1.6-3.23) | 2.55E-06 | 1.91 | 5.81E-08 |

Footnote:
A Haplotype,
B dbSNP from single nucleotides polymorphisms database (NCBI),
C chromosome,
D position,
E risk alleles,
F \(p \) value of heterogeneity

Table 3 List of known SLE susceptible SNPs in Thai SLE patients
rs	CHR	BP	RA	Locus	Annotation	MAF affected	MAF unaffected	OR	SE	P
rs5426045	1	161648724	A	FCGR2B	intergenic	0.80	0.75	1.38	0.09	1.83E-04
rs1234315	1	173203324	A	TNFSF4	intergenic	0.53	0.46	1.27	0.07	1.02E-06
rs205980	1	173191475	T	TNFSF4	intergenic	0.27	0.22	1.26	0.08	2.37E-03
rs46895541	1	196851932	A	ATP6V1G3	intergenic	0.10	0.13	0.75	0.11	7.66E-03
rs1416190	1	173616979	T	LOC100506023	ncRNA_intronic	0.59	0.56	1.18	0.07	1.55E-02
rs13365775	1	183563302	A	NCF2	nonsynonymous	0.11	0.08	1.48	0.09	1.73E-02
rs13385731	2	33701890	C	RASGRP3	intronic	0.13	0.17	0.70	0.09	1.71E-05
rs6705628	2	74208362	T	DGUOK:AS1	ncRNA_exonic	0.11	0.13	0.79	0.10	1.83E-02
rs1990760	2	163124051	I	IFIH1	missense	0.23	0.21	1.17	0.08	4.93E-02
rs10936599	3	169492101	T	MYNN	synonymous SNV	0.52	0.56	0.84	0.07	6.95E-03
rs564799	3	159728987	T	IL12A	ncRNA_intronic	0.12	0.14	0.80	0.10	1.97E-02
rs10028805	4	102737250	A	BANK1	intronic	0.45	0.49	0.87	0.07	4.08E-02
rs7726159	5	1282319	A	TERT	intron	0.43	0.40	1.25	0.07	5.00E-05
rs2736100	5	1286401	C	TERT	intron	0.51	0.43	1.25	0.07	4.67E-05
rs10036748	5	150458146	T	TNIP1	intergenic	0.66	0.61	1.16	0.07	3.04E-02
rs5431697	5	15879978	C	PTTG1: MIR146A	intergenic	0.07	0.09	0.77	0.13	3.36E-02
rs546234	6	10658034	T	PRDM1: ATG5	intergenic	0.67	0.72	0.81	0.07	2.21E-03
rs220926	6	138166066	G	TNFAIP3	missense	0.04	0.03	1.49	0.18	2.92E-02
rs5748266	6	34823187	C	UHRF1BP1	intronic	0.21	0.19	1.18	0.08	4.68E-02
rs4726142	7	128573967	A	KCP: IRF5	intergenic	0.19	0.13	1.61	0.09	1.34E-07
rs729302	7	128568960	C	KCP: IRF5	intergenic	0.25	0.30	0.77	0.07	3.32E-04
rs12531718	7	128617466	G	IRF5: TNPO3	interon	0.03	0.01	2.03	0.25	4.27E-03
rs4917014	7	50305863	G	C7orf72: IKZF1	intergenic	0.15	0.17	0.81	0.09	1.84E-02
rs7097397	10	50025396	A	WDFY4	missense	0.59	0.64	0.78	0.07	3.84E-04
rs4948496	10	63805617	C	ARID5B	intronic	0.66	0.62	1.17	0.07	2.19E-02
rs1128334	11	128328959	T	ETS1	UTR3	0.35	0.28	1.36	0.07	1.50E-05
rs2732552	11	35084592	C	PDHX	intergenic	0.78	0.75	1.18	0.08	3.04E-02
rs11235604	11	72533536	T	ATG16L2	missense	0.04	0.05	0.70	0.17	3.93E-02
rs1385374	12	129300694	T	SLC15A4	intronic	0.21	0.15	1.46	0.09	7.62E-08
rs10845606	12	12834819	A	GPR19	interonic	0.32	0.37	0.75	0.07	3.19E-06
rs2612280	14	10539556	C	PLD4	nonsynonymous	0.52	0.45	1.01	0.07	5.81E-08
rs1143679	16	31276811	A	ITGAM	missense	0.07	0.04	1.71	0.14	6.18E-08
rs11860650	16	31315385	A	ITGAM	intronic	0.09	0.07	1.74	0.10	4.64E-03
rs1170426	16	68603798	T	ZFP90	intronic	0.69	0.73	0.82	0.07	5.91E-03
rs74644	22	21976393	C	UBE2L3	UTR3	0.64	0.60	1.17	0.07	1.81E-02
rs463426	22	21809185	C	HIC2: TMEM191C	intergenic	0.38	0.40	0.85	0.08	4.50E-02

Footnote: A dbSNP from single nucleotides polymorphisms database (NCBI), B chromosome, C position, D alleles

Table 4: Analyses based on different inheritance models on the P2N2 locus
Locus	Model	Genotypes or Alleles	SLE n	Control n	OR	95% CI	P
FBN2	Codominant	GG	21	26	1.75	0.93-3.27	7.96E-02
		AG	235	334	1.53	1.25-1.86	2.38E-05
		AA	562	1219	ref	ref	ref
	Dominant	AG+GG	256	360	1.54	1.27-1.87	8.83E-06
		AA	562	1219	ref	ref	ref
	Recessive	GG	21	26	1.57	0.84-2.93	0.161
	Allelic	AG + AA	797	1553	ref	ref	ref
	Allelic	A	277	386	ref	ref	ref
	Allelic	G	1359	2772	1.38	1.17-1.64	1.31E-04
FBN2	Codominant	GG	655	1366	0.72	0.23-2.47	5.80E-01
		AG	162	212	1.15	0.36-4.36	1.00
		AA	6	9	ref	ref	ref
	Dominant	GG+GA	817	1578	0.78	0.25-2.66	0.60
		AA	6	9	ref	ref	ref
	Recessive	GG	655	1366	0.63	0.38-0.97	5.43E-05
	Allelic	AA+GA	168	221	ref	ref	ref
	Allelic	A	174	230	ref	ref	ref
	Allelic	G	1472	2944	12.34	10.6-14.4	2.20E-16

Figures
Figure 1

Quality control and datasets preparation flow diagram of both discovery and validation dataset. The flow diagram was modified from PRISMA Flow Diagram [68] (A). Manhattan plot on the meta-analysis result of the two SLE GWAS datasets in the Thai population using R-Bioconductor package qqman (B).
Figure 2

Regional plot of novel SLE susceptible variants on FBN2 locus with their relative variants around FBN2 locus (A). Haplotype block of significant variants on FBN2 locus with their correlation to show linkage disequilibrium between SNPs (B). Picture illustrated histone markers overlapped with FBN2 SNPs site (C).

Figure 3

Diagram plot showed enrichment pathway from functional annotation analysis of significant variants (p-value < 5E-05) using SNPnexus.

Figure 4

The graph shows the polygenic risk scored calculation and the mean difference between SLE and healthy controls (A). The circular plot showed loci which identified in this study at individual chromosomes using package Rcircos [69] (B).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionaltable1.xlsx
- Additionaltable2.xlsx
- Supplementaryfigure2.tif
- Supplementaryfigure1.tif