Machine Learning the 6th Dimension: Stellar Radial Velocities from 5D Phase-Space Correlations

A. Dropulic¹, B. Ostdiek²,³, L.J. Chang¹, H. Liu¹,⁴, T. Cohen⁵, M. Lisanti¹

¹Department of Physics, Princeton University
²Department of Physics, Harvard University
³The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
⁴Center for Cosmology & Particle Physics, Department of Physics, New York University
⁵Institute for Fundamental Science, Department of Physics, University of Oregon
Direct Detection & Dark Matter Velocity Distribution $f(v)$

Recoil energy of nucleus

DM velocity distribution \rightarrow needs to be determined astrophysically

$\frac{dR}{dE_R} = \frac{\rho_{\chi} v_{\text{esc}}}{m_{\chi} m_N} \int_{v_{\text{min}}}^{v_{\text{esc}}} vf(v) \frac{d\sigma}{dE_R} d^3v$

Depends on properties of DM particle and mediator of interaction

$\frac{d\sigma}{dE_R} = \frac{2m_N}{\pi v^2} \langle |M_{NR}|^2 \rangle$

$q \sim m_{\chi} v_{DM}$

$R = n\sigma(v_{DM})/m_N$

After

$\vec{p} - \vec{q}$

Adriana Dropulic - May 24, 2021
Dark Matter Velocity Distribution $f(v)$

& The Standard Halo Model

Treat the dark matter as a collision-less fluid with phase space $f(x, p, t)$

Assumes DM is fully virialized!

Can there be substructure?

Maxwell-Boltzmann

$$f(v) \sim e^{-v^2/2\sigma^2}$$

Ostriker, Peebles, and Yahil (1974); Bahcall and Soneira (1980); Caldwell and Ostriker (1981); Drukier, Freese, and Spergel

Adriana Dropulic - May 24, 2021
Quick Guide to Stars in the Galaxy

Disk stars: younger, high in heavy elements
Halo stars: older, low in heavy elements, primarily from accreted satellite mergers

Adriana Dropulic - May 24, 2021
Merger History of the Milky Way

- Single merger dragged in the majority of the local accreted stars

How does Gaia-Enceladus affect $f(v)$?

Belokurov et al. (2018); Helmi et al. (2018)

Video Credit: H. Koppelman, A. Villalobos, A. Helmi

Adriana Dropulic - May 24, 2021
Effect of Gaia-Enceladus on $f(v)$

- DM velocities should track that of Gaia-Enceladus (subs) stars
- ~ 40% of local DM is in Gaia-Enceladus
- We want to study the properties of these stars (but first we need to find more of them)!

L. Necib, M. Lisanti, and V. Belokurov, ApJ (2019)

Adriana Dropulic - May 24, 2021
The Gaia Mission
Gaia Collaboration (2018)

- Astrometric survey, goal to observe positions and velocities of ~1 billion Milky Way stars
- But, only a small number of these (~7 million) have full velocity information
- → Machine learning! (on a mock Gaia catalog)
- Neural network can predict accurate velocity distributions
Machine Learning the 6th Dimension

6th dimension = velocity along the line-of-sight

Network Inputs

- 5D astrometric coordinates

Network Outputs

- line-of-sight velocity
- uncertainty on line-of-sight velocity prediction

\[\mathcal{L} = \sum_{i=1}^{N} \frac{w_i}{N} \left[\frac{(v_{\text{los},i} - v_{\text{pred,los},i})^2}{(\sqrt{2\pi} \sigma_{\text{pred,los},i})^2} - \log \left(\frac{1}{\sqrt{2\pi} \sigma_{\text{pred,los},i}} \right) \right] \]

AD, Ostdiek, Chang, Liu, Cohen, and Lisanti [2103.14039]

Adriana Dropulic - May 24, 2021

supported by the Schmidt DataX Fund
Results on Mock Gaia Data

• Network is trained on subset of mock catalog with full 6D information (+ Enceladus-like stars) and tested on the rest of the catalog

We can already see Enceladus in the extended radial velocity distribution (that the network can correctly identify)!
Current and Future Work

- Apply the network to real Gaia data
- Identify more Enceladus stars
- Dark matter - stellar correspondence
- Improve empirical halo model

Adriana Dropulic - May 24, 2021
Chemical Abundance

• Low metallicity of the halo: majority of gas was expelled from the halo before significant supernova-induced enrichment could occur.

• Merging galaxies typically only experience a brief period of star formation

• Their interstellar medium is dominated by explosions of core-collapse supernova, suppressing Fe abundances

• This gas may have formed much of the Galaxy's bulge.

\[
[\text{Fe/H}] = \log_{10} \left(\frac{N_{\text{Fe}}}{N_{\text{H}}} \right) - \log_{10} \left(\frac{N_{\text{Fe}}}{N_{\text{H}}} \right)_{\odot}
\]

Thermonuclear Supernova
Large amounts of Fe relative to α-elements
Act on longer timescales

Core-collapse Supernova
Large amounts of α-elements relative to Fe
Act on shorter timescales

Adriana Dropulic - May 24, 2021
How well can we identify Gaia-Enceladus?

AD, Ostdiek, Chang, Liu, Cohen, and Lisanti [2103.14039]
Figure A2. The lines depicted in this figure are the same as those in Fig. 1. However, this figure specifically focuses on the Galactocentric radial velocity v_r, to show that the distribution is unbiased as more restrictive cuts on σ_r^{pred} are made.

AD, Ostdiek, Chang, Liu, Cohen, and Lisanti [2103.14039]