Medication Error Detection Using Contextual Language Models

Yu Jiang\(^1\) and Christian Poellabauer\(^2\)

\(^1\) University of Notre Dame, Notre Dame, IN, USA \(^2\) Florida International University, Miami, FL, USA

yjiang7@nd.edu, cpoellab@fiu.edu

Abstract

Medication errors most commonly occur at the ordering or prescribing stage, potentially leading to medical complications and poor health outcomes. While it is possible to catch these errors using different techniques; the focus of this work is on textual and contextual analysis of prescription information to detect and prevent potential medication errors. In this paper, we demonstrate how to use BERT-based contextual language models to detect anomalies in written or spoken text based on a data set extracted from real-world medical data of thousands of patient records. The proposed models are able to learn patterns of text dependency and predict erroneous output based on contextual information such as patient data. The experimental results yield accuracy up to 96.63% for text input and up to 79.55% for speech input, which is satisfactory for most real-world applications.

1 Introduction

Over 6,800 prescription medication types are available in the U.S. alone; each year hundreds of thousands of patients experience adverse reactions or complications and between 7,000 and 9,000 people die each year due to medication error (Tariq RA, Vashisht R, Sinha A, et al. 2021). The leading type of error is dosing error, followed by omissions and wrong drug types (Mulac et al. 2021) and most of these errors occur at the ordering or prescribing stages. Once a prescription has been recorded, e.g., in the electronic health records (EHR) of a patient, textual analysis can be used to detect such errors and prevent their consequences. Physicians are also increasingly rely on automatic speech recognition (ASR) systems to communicate with medical or computing equipment, including to order drugs (Latif et al. 2021). Given that ASRs cannot provide perfect transcriptions at all times, they become another source of prescription errors. These erroneous prescriptions could have severe consequences on patient treatment (Oura 2021), e.g., by administering the wrong type or amount of drug (Rodziewicz, Houseman, and Hippskind 2020).

In this paper, we propose to detect invalid prescriptions by verifying that it is an appropriate choice given the status (or context) of the patient receiving the medication. Toward this end, we already have a lot of relevant information available, e.g., using a hospital’s digital systems that contain diagnoses, health history, medication history, etc., of patients. In this paper, we leverage such contextual knowledge to detect potential prescription (from textual information provided by a physician) or transcription errors (from an ASR). This is demonstrated by the examples shown in Table 1. Human error could lead to an invalid prescription which will be stored in an EHR together with other patient-specific data. The first row of the table shows a valid prescription, i.e., the drug type, usage, etc., is typical for the patient’s diagnosis. In the second row of the table, Lisinopril is not an appropriate drug for Bacteremia Endocarditis and this should be flagged as invalid. Finally, the third row shows the transcription output of an ASR where the drug name is misinterpreted by the system (“blood pressure” instead of “Lopressor”), making this entry again invalid. In order to detect erroneous entries, we propose to use a contextual language model (CLM) that utilizes context information about a patient to determine whether a prescription is valid or not. The basic idea is to analyze the correlation between prescription and the context. If they are highly correlated, our system will accept it. On the other hand, the system will trigger an alert to the user, allowing the user to review and correct the prescription. In this work, the proposed CLM is a neural network based on two pre-trained word representations: BERT (Devlin et al. 2019) and BioBERT (Lee et al. 2020), which are described in the remainder of this paper.

Type	Content	Valid?
EHR	Diagnosis: Cholecystitis	
Prescription: Aspirin eighty one milligrams daily	Yes	
EHR	Diagnosis: Bacteremia endocarditis	
Prescription: Lisinopril five milligrams oral administration once a day	No	
ASR	Diagnosis: Peripheral vascular disease	
Prescription: Blood pressure (Lopressor) seventy five milligrams orally administration | No |

Table 1: Examples of prescriptions from EHR and ASR.
2 Proposed Methodology

The goal of our work is to prevent medical errors from happening with the help of contextual information, i.e., detecting incorrect prescriptions using the proposed contextual language model. We can consider two types of sources for the prescription. First, a medical professional types a prescription into a system and any errors at this point are true human errors, e.g., the physician misjudging the patient’s situation or not having access to all required information (e.g., patient’s health history or allergies, etc.). Second, a physician dictates the drug information and an ASR system translates the recording into text. In the latter case, errors can also be due to transcription errors by the ASR. These two scenarios are demonstrated in Figure 1.

2.1 Problem Formalization

We define the set of medical inputs as H, and the set of contextual knowledge as C. Each element h_i in H has its corresponding contextual knowledge c_i, where $h_i \in H$ and $c_i \in C$. Both h_i and c_i are text, consisting of a sequence of words. The problem we intend to solve here is to determine whether h_i is correct or not based on its corresponding context c_i. The proposed method is to calculate the likelihood of h_i under the condition of c_i $P(h_i|c_i)$, and then make a decision according to that value. The likelihood is calculated by the CLM, where the CLM is trained using labeled pairs (h_i, c_i). A label represents the correlation between h_i and c_i; if they are correlated, the label would be positive, and negative if uncorrelated. Therefore, the trained CLM could output the likelihood $P(h_i|c_i)$, measuring the correlation between h_i and c_i, which approaches “1” when correlation is high and “0” when correlation is low.

When an ASR system is used, the spoken form of h_i is the input to the ASR system, which produces the transcription h'_i. Then, the pair of text (h'_i, c_i) is the input to the CLM. Note that h'_i could be erroneous compared to h_i. In this situation, the performance of CLM will decrease, because CLM is trained using (h_i, c_i), and h'_i is likely to follow different patterns from h_i.

2.2 Contextual Language Models

The CLM takes text as input, i.e., we need to convert the sequence of words into vectors. There are several methods of learning word representations from a large amount of un-annotated text, such as Word2vec (Mikolov et al. 2013), ELMo (Peters et al. 2018), and CoVe (McCann et al. 2017). In the proposed approach, we build the CLM using BERT (Devlin et al. 2019) and BioBERT (Lee et al. 2020), because BERT achieves state-of-the-art performance for most NLP tasks and BioBERT is a model (based on BERT) specifically for the biomedical field. They share the same structure of bidirectional Transformer encoder (Vaswani et al. 2017), but are trained using different corpora. The model architecture is a stack of 6 identical layers and each layer has two sub-layers. One is a multi-head self-attention mechanism, the other is a simple fully connected feed-forward network. There are also residual connection and layer normalization steps after each sub-layer. The BERT model is pre-trained using two unsupervised tasks, i.e., Masked Language Model (MLM) and Next Sentence Prediction (NSP), using English Wikipedia of 2.5 billion words and BooksCorpus of 0.8 billion words. BioBERT is further
3 Experimentation

We perform experiments using two types of data: speech and text. When the data type is text, the medical prescription would be directly input to the CLM. And when the input is speech, the experimental framework is shown in Figure 3. First we input the utterance to the ASR (which is constructed using a pre-trained model for normal language such as ASPIRE, and medical corpora, which provide domain-specific information, such as the medical dictionary and the medical language model), and obtain the decoding results. Then the CLM will determine whether the medical input is correct or not based on the contextual information.

Table 2: Performance of different models for text input.

Model	Accuracy	Precision	Recall	F1
BERT	0.9625	0.9354	0.9928	0.9633
BERT$_{mlp}$	0.9647	0.9404	0.9916	0.9653
CLM	0.9663	0.9425	0.9924	0.9668
CLM$_{lstm}$	0.9645	0.9395	0.9922	0.9651
CLM$_{bio}$	0.9633	0.9374	0.9921	0.9640
CLM$_{biolstm}$	0.9633	0.9397	0.9935	0.9659

Table 2: Performance of different models for text input.

3.1 Dataset Generation

We use the dataset of the 2019 National NLP Clinical Challenges (n2c2) on Medication, provided by the i2b2 Center. The original set includes about 2,000 patients’ hospitalization records, which provides information such as diagnosis, illness history, laboratory data, hospital course, and discharge medications. We extract the contents of diagnosis and discharge medications in each record, and divide the whole paragraph of medications into different items. Each item of medication has its corresponding diagnosis, and we believe they are highly correlated. The number of this kind of correlated pairs is 8,621. Then we further clean the pairs by removing serial numbers and punctuation, deleting out-of-domain items, handling special symbols, and replacing abbreviations with full names. The final number of pairs is then 6,901.

For a binary classification task, we not only need correlated pairs, but also uncorrelated pairs. Therefore, we create a dataset of uncorrelated pairs by randomly combining diagnoses and medications into different pairs. Many medications can be used for different disorders; therefore, we design an algorithm to calculate a distance between diagnoses. If the distance is greater than a threshold, we just discard this pair. The number of generated uncorrelated pairs is 70,000. To balance the data with correlated and uncorrelated items, we further duplicate the correlated pairs 10 times to obtain 69,010 pairs.

The data for CLM is prepared by splitting the entire set into training, validation, and testing sets in the proportion of 6:2:2. The correlated pairs have positive labels and uncorrelated pairs have negative labels.

The dataset only includes text data; the speech input is processed using Google’s Text-to-Speech (TTS) API. The medical inputs H in the test set are converted from speech to text and then used as input to the ASR system for decoding.

3.2 ASR Implementation

The ASR system is implemented using the Kaldi Speech Recognition Toolkit (Povey et al. 2011). It is hard to train a good ASR model from scratch, because large amounts of speech and text data for the specific domain will be required. Instead, we adapt the ASPIRE model to the medical domain by simply combining the ASPIRE language model and the medical language model trained from our i2b2 dataset. The decoding utility in Kaldi used in this work is “online2-wavnet3-latgen-faster”, which provides fast and accurate decoding.
3.3 Results and Analysis

We conduct experiments on the following models: BERT, BERT with a multilayer perceptron (MLP) head ($BERT_{mlp}$), BERT-based CLM (CLM), BERT-based CLM with Bi-LSTM (CLM$_{bilstm}$), BioBERT-based CLM (CLM$_{bio}$), and BioBERT-based CLM with Bi-LSTM (CLM$_{biobilstm}$). All models are initialized the same way and are trained to their best states. For a binary classification task, the metrics are accuracy, precision, recall, and F1 score. We take 0.5 as the threshold. For text input, the results on the test set are shown in Table 2. These results show that the BERT-based CLM achieves the best performance with 96.63% accuracy of the test set, and 0.4% absolute increment compared to the baseline. We have a large test set of nearly 30 thousand, so about a thousand wrong predictions made by BERT become correct using our best model.

We further explore the performance of different models for speech input. The input to the CLM becomes the hypotheses output from the ASR. In this case, we need to note that the ASR sometimes makes mistakes, and in our experiments, the word error rate (WER) is 28.69%. Therefore, the medical commands, which at first are correlated with the context, might become uncorrelated after ASR decoding, and the labels of test set have to be modified. We determine the labels through comparing the text before and after ASR. If some essential entities, such as the medication name, dosage, or usage are incorrect, we change the label from “1” to “0”. In the test set, we have 13,755 correlated pairs at the beginning, and 10,092 correlated pairs left after processing. The threshold is still 0.5. The results are shown in Figure 3. From the results we see that when there is an ASR system involved, the BioBERT-based CLM performs the best with an accuracy of 79.55% and a 2.96% absolute increment compared to the baseline. The erroneous transcriptions by ASR negatively impact the models, but applying BioBERT can minimize these impacts. Moreover, adding the Bi-LSTM layer and making the network deeper does not improve the performance.

4 Conclusions

This paper proposes a solution to detecting prescription errors with the help of contextual language models (CLM). This kind of models are effective in dealing with text data, and are able to make validity predictions based on the correlations. We achieve the best accuracy of 96.63% using the BERT based CLM when the physicians type prescription data directly into the EHR, and 79.55% using the BioBERT based CLM when the physicians dictate the prescriptions using an ASR. Future work might include integrating more diverse contextual knowledge, i.e., in addition to patient data, we can also consider physician preferences, databases that describe adverse reactions, clinical workflows and recommender outputs, etc.

References

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL.

Latif, S.; Qadir, J.; Qayyum, A.; Usama, M.; and Younis, S. 2021. Speech Technology for Healthcare: Opportunities, Challenges, and State of the Art. IEEE Reviews in Biomedical Engineering 14: 342–356.

Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C. H.; and Kang, J. 2020. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4): 1234–1240.

McCann, B.; Bradbury, J.; Xiong, C.; and Socher, R. 2017. Learned in Translation: Contextualized Word Vectors. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 6297–6308.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed Representations of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems, volume 26.

Mulac, A.; Taxis, K.; Hagesaether, E.; and Gerd Granas, A. 2021. Severe and fatal medication errors in hospitals: findings from the Norwegian Incident Reporting System 28(Suppl 2): s56–s61. doi:10.1136/eurjpharm-2020-002298.

Oura, P. 2021. Medical adverse events in the US 2018 mortality data. Preventive Medicine Reports 24: 101574.

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. New Orleans, Louisiana. doi:10.18653/v1/N18-1202.

Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannemann, M.; Motlicek, P.; Qian, Y.; Schwarz, P.; Silovsky, J.; Steimer, G.; and Vesely, K. 2011. The Kaldi Speech Recognition Toolkit.

Rodziewicz, T. L.; Houseman, B.; and Hipskind, J. E. 2020. Medical Error Prevention. StatPearls Publishing, Treasure Island (FL).

Tariq RA, Vashisht R, Sinha A, et al. 2021. Medication Dispensing Errors And Prevention. https://www.ncbi.nlm.nih.gov/books/NBK519065/ Updated 2021 Jul 25.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017. Attention is all you Need. In Advances in Neural Information Processing Systems, volume 30.

Wu, Y.; Schuster, M.; Chen, Z.; and et al. 2016. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144.

References

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL.

Latif, S.; Qadir, J.; Qayyum, A.; Usama, M.; and Younis, S. 2021. Speech Technology for Healthcare: Opportunities,
Challenges, and State of the Art. *IEEE Reviews in Biomedical Engineering* 14: 342–356.

Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C. H.; and Kang, J. 2020. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. *Bioinformatics* 36(4): 1234–1240.

McCann, B.; Bradbury, J.; Xiong, C.; and Socher, R. 2017. Learned in Translation: Contextualized Word Vectors. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS’17, 6297–6308.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed Representations of Words and Phrases and their Compositionality. In *Advances in Neural Information Processing Systems*, volume 26.

Mulac, A.; Taxis, K.; Hagesaether, E.; and Gerd Granas, A. 2021. Severe and fatal medication errors in hospitals: findings from the Norwegian Incident Reporting System 28(Suppl 2): s56–s61. doi:10.1136/ehjpharm-2020-002298.

Oura, P. 2021. Medical adverse events in the US 2018 mortality data. *Preventive Medicine Reports* 24: 101574.

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized Word Representations. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, 2227–2237. New Orleans, Louisiana. doi:10.18653/v1/N18-1202.

Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannemann, M.; Motlicek, P.; Qian, Y.; Schwarz, F.; Silovsky, J.; Stemmer, G.; and Vesely, K. 2011. The Kaldi Speech Recognition Toolkit.

Rodziewicz, T. L.; Houseman, B.; and Hipskind, J. E. 2020. *Medical Error Prevention*. StatPearls Publishing, Treasure Island (FL).

Tariq RA, Vashisht R, Sinha A, et al. 2021. Medication Dispensing Errors And Prevention. https://www.ncbi.nlm.nih.gov/books/NBK519065/, Updated 2021 Jul 25.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017. Attention is All you Need. In *Advances in Neural Information Processing Systems*, volume 30.

Wu, Y.; Schuster, M.; Chen, Z.; and et al. 2016. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. *arXiv preprint arXiv:1609.08144*.

