Draft Whole-Genome Sequences of 14 *Vibrio parahaemolyticus* Clinical Isolates with an Ambiguous K Serogroup

J. Ronholm, a N. Petronella, b R. Kenwell, a S. Banerjee a

Microbiology Research Division, Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada; Biostatistics and Modelling Division, Bureau of Food Surveillance and Science Integration, Health Canada, Ottawa, Ontario, Canada b

Vibrio parahaemolyticus is a bacterial pathogen responsible for mild to severe gastroenteritis, wound infections, and septicemia resulting from the ingestion or handling of raw or undercooked contaminated seafood. Here, we report the draft whole-genome sequences and annotations of 14 Canadian *V. parahaemolyticus* clinical isolates that were serologically identified as K group II using polyvalent antisera but were not specifically K serogrouped using monovalent antisera.

Received 13 February 2015 Accepted 23 February 2015 Published 2 April 2015

Citation Ronholm J, Petronella N, Kenwell R, Banerjee S. 2015. Draft whole-genome sequences of 14 *Vibrio parahaemolyticus* clinical isolates with an ambiguous K serogroup. Genome Announc 3(2):e00217-15. doi:10.1128/genomeA.00217-15.

Copyright © 2015 Ronholm et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to J. Ronholm, jennifer.ronholm@hc-sc.gc.ca.

Vibrio parahaemolyticus is a halophilic marine bacterium that is widely distributed in temperate estuaries and is one of several etiological agents of human vibriosis. Since 2000, there has been an increasing prevalence of *V. parahaemolyticus* infections in Canada (1). However, the true incidence of infection is likely underestimated, due to a lack of awareness of the disease and its self-limiting nature. For effective *V. parahaemolyticus* epidemiological surveillance, including source attribution, strain delineation is necessary. Serology, the classic method of *V. parahaemolyticus* surveillance, has been unreliable in tracking the spread of outbreak-associated clonal complexes (CC), since several serovariants can simultaneously be associated with illness (2). In particular, two serotypes (O4:K12 and O12:K12) of CC36 are responsible for outbreaks associated with the consumption of raw oysters harvested on the North American Pacific coast; the two serotypes are descended from a common sequence type 36 (ST36) ancestor (3). So far, the genomic sequence of only one strain belonging to the *V. parahaemolyticus* CC36 (serotype O4:K12) has been published (3).

Between 2000 and 2009, several *V. parahaemolyticus* clinical isolates originating from provincial public health laboratories along the Pacific coast were submitted to the National Microbiology Laboratory (Public Health Agency of Canada), British Columbia Centre for Disease Control (BCCDC), and the Bureau of Microbial Hazards (BMH) (Health Canada). Twenty-six of these isolates were identified as ST36 and O4, indicating inclusion in CC36, but only weakly agglutinated with the polyvalent antiserum K group II and failed to agglutinate with any of the seven associated monovalent antisera (K agglutinins 9, 10, 11, 12, 13, 15, and 17) (4). Each of these 26 isolates was positive for both the *tdh* and *tdi* genes.

TABLE 1 Sequencing and annotation results of 14 *V. parahaemolyticus* KII clinical isolates

Strain identification no.	Biosample	Accession no.	Genomic coverage (%)	Genome size (bp)	No. of nonoverlapping contigs	No. of ORFs b	No. of tRNAs	No. of rRNAs
04-1290	SAMN03287716	JXVK000000000	111.05	5,143,304	97	4,767	122	27
09-3216	SAMN03287714	JXVI000000000	99.81	5,100,021	78	4,715	125	37
10-4293	SAMN03287764	JXYA000000000	50.09	5,202,165	58	4,841	123	30
10-4303	SAMN03287766	JXYU000000000	55.97	5,106,734	52	4,708	117	29
10-7197	SAMN03287767	JXUX000000000	30.68	5,091,435	56	4,684	116	26
10-4298	SAMN03287765	JXUZ000000000	44.87	5,233,510	76	4,829	118	29
10-4288	SAMN03287763	JXV0000000000	70.12	5,109,523	61	4,717	128	28
10-4274	SAMN03287762	JXVC000000000	73.38	5,115,101	96	4,751	120	26
10-4241	SAMN03287715	JXVI000000000	43.68	5,104,503	57	4,719	128	28
10-4242	SAMN03287757	JXH0000000000	54.82	5,126,748	74	4,758	124	29
10-4245	SAMN03287758	JXVG000000000	66.30	5,097,053	70	4,697	121	28
10-4246	SAMN03287759	JXVF000000000	79.87	5,098,357	74	4,704	124	27
10-4247	SAMN03287760	JXVE000000000	106.56	5,124,180	84	4,745	124	29
10-4248	SAMN03287761	JXVD000000000	101.56	5,112,922	117	4,737	122	37

b ORFs, open reading frames.
trh virulence markers (4). Since K group II isolates are a prevalent cause of Canadian illness, genome sequencing was undertaken as an approach to further investigate the genetics underlying ambiguous serological classification.

Briefly, sequencing was performed as described by Petronella et al. (5) and Pightling and Pagotto (6). Sequencing libraries were prepared from DNA extracted using the Maxwell 16 SEV cell DNA purification kit (Promega, Madison, WI). The short-read sequence data were generated by preparing a paired-end library with the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA) and sequencing the library on a MiSeq benchtop sequencer (Illumina) for 500 cycles. The reads were assembled de novo into high-quality draft genomes with SPAdes version 3.1.1 (7), utilizing the MismatchCorrector tool, and error correction was performed with BayesHammer (8). This resulted in nonoverlapping contiguous sequences for each genome (Table 1), each of which had a total G+C content of 45%. The gene predictions and annotations were performed by the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (PGAP) (9).

Nucleotide sequence accession numbers. These nucleotide sequences have been deposited at DDBJ/EMBL/GenBank as Bio-Project PRJNA272927 under the accession numbers provided in Table 1.

ACKNOWLEDGMENTS

This work was funded (A-base) by Health Canada to support Canada’s Food Safety Programs. J.R. is supported by the Visiting Fellow in a Government Laboratory Program.

We thank Franco Pagotto and Arthur Pightling of the BMH research division of Health Canada for peer reviewing the manuscript and offering useful comments.

REFERENCES

1. Public Health Agency of Canada. 2014. National Enteric Surveillance Program (NSEP). Public Health Agency of Canada, Winnipeg, Manitoba, Canada. https://www.nml-lnm.gc.ca/NESP-PNSME/index-eng.htm.
2. Paranjpye R, Hamel OS, Stojanowski A, Liermann M. 2012. Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl Environ Microbiol 78:8631–8638. http://dx.doi.org/10.1128/AEM.01531-12.
3. Gonzalez-Escalona N, Strain EA, De Jesús AJ, Jones JL, DePaola A. 2011. Genome sequence of the clinical O4:K12 serotype Vibrio parahaemolyticus strain 10329. J Bacteriol 193:3405–3406. http://dx.doi.org/10.1128/JB.05044-11.
4. Banerjee SK, Kearney AK, Nadon CA, Peterson C-L, Tyler K, Bakouche L, Clark CG, Hoang L, Gilmore MW, Farber JM. 2014. Phenotypic and genotypic characterization of Canadian clinical isolates of Vibrio parahaemolyticus collected from 2000 to 2009. J Clin Microbiol 52:1081–1088. http://dx.doi.org/10.1128/JCM.05044-14.
5. Petronella N, Kenwell R, Pagotto F, Pightling AW. 2014. Draft genome sequences of two Clostridium botulinum group II (nonproteolytic) type B strains (DB-2 and (KAPB-3). Genome Announc 2(6):e01111-14. http://dx.doi.org/10.1128/genomeA.01111-14.
6. Pightling AW, Pagotto F. 2014. Draft genome sequence of Cronobacter sakazakii clonal complex 45 strain HP5174, isolated from a powdered infant formula facility in Ireland. Genome Announc 2(4):e00778-14. http://dx.doi.org/10.1128/genomeA.00778-14.
7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol http://dx.doi.org/10.1089/cmb.2012.0021.
8. Nikolenko SI, Korobeynikov AI, Alekseyev MA. 2013. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14(Suppl 1):S7. http://dx.doi.org/10.1186/1471-2164-14-S1-S7.
9. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyripides N, Madupu R, Markowitz V, Tatusova T, Thompson N, White O. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. Omics 12:137–141. http://dx.doi.org/10.1089/omi.2008.0017.