Antioxidant and antimicrobial capacities of *Ganoderma lucidum*

Abstract

The present study aimed to determine the total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) and antimicrobial activities of *Ganoderma lucidum* mushroom collected in Oguzeli region (Gaziantep province, Turkey). Rel Assay Diagnostics kits were used to determine TAS, TOS and OSI levels. Antimicrobial activity was determined using 9 different bacteria and fungi (*Staphylococcus aureus*, *S. aureus* MRSA, *Enterococcus faecalis*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, *Candida albicans*, *Candida kruiset* and *Candida glabrata*) using modified agar dilution method. The study findings demonstrated that *G. lucidum* had high antioxidant potential. Antimicrobial activity of the mushroom was also found to be normal. Thus, the consumption of *G. lucidum* as a natural source of antioxidants and an antimicrobial resource could be suggested.

Keywords: *Ganoderma lucidum*, medicinal mushroom, antioxidant, oxidant, antimicrobial

Introduction

Mushrooms, one of the functional nutrients consumed for centuries, were always among the natural material rich in fiber, proteins, vitamins and minerals. In addition to their property as functional nutrients, several mushroom species possess natural pharmacological potential. Only a few studies were conducted on important pharmaceutical mushrooms even today, despite the fact that these studies reported ant proliferative, antimicrobial, and antioxidant, antitumor, antiallergic, hypoglycemic, anti-inflammatory and immune-enhancing properties of the investigated mushroom species. Thus, it is not surprising that the interest in investigating the medicinal properties of wild mushrooms has increased over time.

Ganoderma lucidum, a cosmopolitan mushroom species, is a polypore rack mushroom that changes its color during growth until maturity from orange-white to bright red. There are both historical and contemporary research that supported the use of *G. lucidum* in various conditions including chronic inflammation and cancer. Its potent anti-oxidant and liver protective properties help slow the aging process, thus it is known as the “mushroom of immortality”. The anti-cancer properties act as a powerful supplement in several malignancies, especially breast cancer and lymphoma, and recent studies demonstrated surprising safety profile in these cases.

The present study aimed to determine the total antioxidant status, total oxidant status and oxidative stress index of *Ganoderma lucidum* (Curtis) P. Karst mushroom collected in Gaziantep province Oguzeli region (Turkey) in order to identify the antioxidant capacity of the mushroom.

Material and Method

G. lucidum mushrooms were collected in Gaziantep province (Oguzeli region) in Turkey (Figure 1). The samples were transported to the laboratory environment under adequate conditions and extracted with methanol (MeOH) and dichloromethane (DCM) in Soxhlet extractor (Gerhardt EV14). The extracts were concentrated in a rotary evaporator (Heidolph Laborota 4000 Rotary Evaporator). The identified 5g samples were extracted in Soxhlet extractor for about 6hours at 50°C with methanol (MeOH) and dichloromethane (DCM) (Gerhardt EV14). The obtained extracts were concentrated with a rotary evaporator (Heidolph Laborota 4000Rotary Evaporator).

TAS, TOS and OSI tests

Rel Assay brand commercial kits were used to determine *G. lucidum* mushroom TAS, TOS and OSI levels. Trolox was used as the calibrator in the TAS tests and hydrogen peroxide was used as the calibrator in TOS tests. When calculating the OSI value, TAS and TOS units were equalized and the proportion of the two values was calculated. Thus, the OSI percentage value was calculated.11

Antimicrobial Activity Tests

Antimicrobial activity assays on mushroom MeOH and DCM extracts were conducted with the agar dilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Minimal inhibitory concentrations (MIC) for
Antioxidant and antimicrobial capacities of *Ganoderma lucidum* and *G. lucidum* - ATCC 10231, 22 - 100 and *C. glabrata* 1.56 - 100 and *E. coli* - 100 - 200 and ATCC 27853, 3.12 100 and C. krusei 1.56 1.56 - 100 200 - OSI 3.12 3.12 10.177±0.116 50 aqueous *E. faecalis* 3.12 1.56 - - - - 3.12 3.12 200, 3.12 50 *C. krusei* 1.56 and 3.12 *C. albicans* 3.12 3.12 100 3.12 100 1.56 - - - - - - - 1.230μmol/L, respectively, and TOs values were 23.910, 17.760, 24.357, 10.797, 21.109 and 7.533μmol/L and OSI values were reported as 2.367, 2.166, 1.103, 0.130, 0.488 and 0.613, respectively.4,18-21 Compared to the above-mentioned studies, it was determined that the TAS value of *G. lucidum* was lower when compared to *L*. leucothites mushroom and higher when compared to that of *A. auricula, T. versicolor, L. cristata, C. cylindracea* and *P. involutus* mushrooms. It was determined that the TAS value of *G. lucidum* was a lower when compared to *L*. leucothites, *A*. auricula, *T*. versicolor, *L*. crista, *C*. cylindracea and *P*. involutus mushrooms. It was determined that the OSI value of *G. lucidum* was higher when compared to *L*. leucothites mushroom and lower when compared to that of *A. auricula, T. versicolor, L. crista, C. cylindracea* and *P. involutus* mushrooms.

It was suggested that the above-mentioned differences in TAS, TOs and OSI values were due to differences among mushroom species and environmental and inherent factors such as differences between the habitats and the substrates the mushrooms utilize. Thus, it was determined that *G. lucidum* has a high antioxidant potential and can be consumed as a natural antioxidant source.

Antimicrobial Activity Tests

In the present study, the lowest extract concentrations that prevented the proliferation of test microorganisms were determined and the findings are presented in Table 2.

Table 1. *G. lucidum* TAS, TOs and OSI values

	TAS	TOs	OSI
G. lucidum	5.509±0.198	10.177±0.116	0.185±0.008

No data are available in the literature for the TAS, TOs and OSI values of *S. aureus* MRSA, *E. faecalis*, *E. coli*, *P. aeruginosa*, *A. baumannii*, *C. albicans*, *C. glabrata* and *C. krusei*. However, in studies conducted on the TAS, TOs and OSI values with different mushroom species, it was determined that the TAS values of *Auricularia auricula, Trametes versicolor, Leptota cristata, Leucoagaricus leucothites*, *Cyclopye cylindracea* and *Paxillus involutus* mushrooms were 1.010, 0.820, 2.210, 8.291, 4.325 and 1.230μmol/L, respectively, and TOs values were 23.910, 17.760, 24.357, 10.797, 21.109 and 7.533μmol/L and OSI values were reported as 2.367, 2.166, 1.103, 0.130, 0.488 and 0.613, respectively.4,18-21 Compared to the above-mentioned studies, it was determined that the TAS value of *G. lucidum* was lower when compared to *L*. leucothites mushroom and higher when compared to that of *A. auricula, T. versicolor, L. cristata, C. cylindracea* and *P. involutus* mushrooms. It was determined that the TAS value of *G. lucidum* was a lower when compared to *L*. leucothites, *A*. auricula, *T*. versicolor, *L*. cristata, *C. cylindracea* and *P. involutus* mushrooms. It was determined that the OSI value of *G. lucidum* was higher when compared to *L*. leucothites mushroom and lower when compared to that of *A. auricula, T. versicolor, L. crista, C. cylindracea* and *P. involutus* mushrooms.

It was suggested that the above-mentioned differences in TAS, TOs and OSI values were due to differences among mushroom species and environmental and inherent factors such as differences between the habitats and the substrates the mushrooms utilize. Thus, it was determined that *G. lucidum* has a high antioxidant potential and can be consumed as a natural antioxidant source.

Antimicrobial Activity Tests

In the present study, the lowest extract concentrations that prevented the proliferation of test microorganisms were determined and the findings are presented in Table 2.

S. aureus	S. aureus MRSA	E. faecalis	E. coli	P. aeruginosa	A. baumannii	C. albicans	C. glabrata	C. krusei
DCM	200	200	100	200	100	100	100	100
MeOH	200	200	100	100	200	100	50	100
Amoxiciln	1.56	3.12	1.56	3.12	-	-	-	-
Amikacin	-	-	1.56	3.12	3.12	-	-	-
Ciprifloxacin	1.56	3.12	1.56	3.12	3.12	-	-	-
Flunokzole	-	-	-	-	-	-	3.12	3.12
Amphiotecin	-	-	-	-	-	3.12	3.12	3.12

It was determined that mushroom MeOH extracts were effective on test microorganisms at 50-200μg/mL concentrations. Furthermore, it was found that mushroom DCM extracts were effective on test microorganisms at concentrations of 100-200μg/mL. Previous studies demonstrated that different concentrations of *G. lucidum* aqueous extracts were effective on *Bacillus anthracis, B. cereus, B. subtilis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella oxytoca, K. pneumoniae, Proteus vulgaris, Salmonella tomson, S. typhi*, *S. typhimurium* and *Serratia marcescens*.22 It was reported that different concentrations of *G. lucidum* MeOH extracts were effective on *S. aureus, B. cereus, Listeria monocytogenes, Micrococcus flavus, P. aeruginosa, E. coli, S. typhimurium* and *Enterobacter cloacae*. In the present study, MeOH and DCM extracts of *G. lucidum* were used. It was determined that the extracts exhibited antimicrobial effects in different concentrations on *S. aureus, S. aureus MRSA, E. faecalis, E. coli, P. aeruginosa, A. baumannii, C. albicans, C. glabrata* and *C. krusei* test microorganisms. Thus, it was concluded that *G. lucidum* was a natural antimicrobial agent against tested microorganisms.

Conclusion

In the present study, antioxidant and antimicrobial activities of wild *G. lucidum* mushroom were determined. In conclusion, it was determined that the mushroom exhibited high antioxidant activity. It could also be consumed as a good antimicrobial agent against tested microorganisms.

Acknowledgments

I would like to express our gratitude to Dr. Omer F. COLAK and Dr. Hasan AKGUL for their contributions to the present study.
Conflicts of Interest
No conflict of interest was declared by the authors.

References
1. Quereshi S, Pandey AK, & Sandhu SS. Evaluation of antibacterial activity of different Ganoderma lucidum extracts. J Sci Res. 2010;3:9–13.
2. Rezaeian S, Saadati S, Sattari TN, et al. Antioxidant potential and other medicinal properties of edible mushrooms naturally grown in Iran. Bio Medical Research. 2016;27(1):240–247.
3. Yılmaz A, Yıldız S, Kılıç C, et al. Total phenolics, flavonoids, tannins, and antioxidant properties of Pleurotus ostreatus cultivated on different wastes and sawdust. International Journal of Secondary Metabolites. 2016;4(1):1–9.
4. Akgül H, M Sevindik, C Coban, et al. New Approaches in Traditional and Complementary Alternative Medicine Practices: Auricularia auricula and Trametes versicolor. J Tradit Med Clin Natur. 2017;6(239):2.
5. Sevindik M. Investigation of Antioxidant/Oxidant Status and Antimicrobial Activities of Lentinus tigrinus. Advances in Pharmacological Sciences. 2018:1–4.
6. Guler G, Himmetoglu C, Jimenez RE, et al. Aberrant expression of DNA damage response proteins is associated with breast cancer subtype and clinical features. Breast cancer research and treatment, 2011;129(2):421–432.
7. Wachtel GS, Yuen J, Buswell JA, et al. Ganoderma lucidum (Lingzhi or Reishi). Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. 2011.
8. Jin X, Ruiz BJ, Sze DM, et al. Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev. 2012;6:1–37.
9. Barbieri A, Quagliariello V, Del VV, et al. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients. 2017;9(3):210.
10. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37(4):277–285.
11. Erel O. A new automated colorimetric method for measuring total antioxidant status. Clinical biochemistry. 2005;38(12):1103–1111.
12. Bauer AW, Kirby WMM, Sherris JC, et al. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966;45(4):493–496.
13. Hindler J, Hochstein L, Howell A. Preparation of routine media and reagents used in antimicrobial susceptibility testing. American Society for Microbiology. 1992:5–14.
14. David WH, Diane MC, Joanne D, et al. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard 8th ed. CLSI. 2012;32(5):8–11.
15. Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection. 2014;20(4):255–266.
16. Christian Giske. Breakpoint Tables for Bacteria Interpretation of MICs and Zone Diameters, EUCAST. European Committee on Antimicrobial Susceptibility Testing. 2018–12–24.
17. Sevindik M. Heavy metals content and the role of Leptota cris-tata as antioxidant in oxidative stress. J Bacteriol Mycol. Open Access. 2018;6(4):237–239.
18. Sevindik M, Akgul H, Dogan M, et al. Determination of antioxidant, antimicrobial, DNA protective activity and heavy metals content of Lactiporus sulphureus. Presentus Environmental Bulletin. 2018;27(3):1946–1952.
19. Sevindik M, Rasul A, Hussain G, et al. Determination of anti-oxidative, anti-microbial activity and heavy metal contents of Leucoagaricus leucothites. Pak J Pharm Sci. 2018;31(5):2163–2168.
20. Çolak OF, Rasul A, Sevindik M. A study on Paxillus involutus: total antioxidant and oxidant potential. Turkish Journal of Life Sciences. 2018;3(2):244–247.
21. Yoon SY, Eo SK, Kim YS, et al. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Archives of pharmacal research, 1994;17(6):438–442.
22. Heleno SA, Ferreira IC, Esteves AP, et al. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and chemical toxicology. 2013;58:95–100.