In Vitro Evaluation of Effect of Different Essential Oils in Management of Post-Harvest Fruit Rot of Banana (Musa Paradisiaca) Caused by Colletotrichum spp

Pramod Gairhe1*, Sandesh Bhandari2*, Hom Prasad Sitaula2*, Beautina Karki1*, Hira Kaji Manandhar1,3

1Agriculture and Forestry University, Rampur, Nepal
2Nepal Plant Disease and Agro-Associates (NPDA), Nepal

Abstract

A study was conducted to evaluate the in vitro efficacy of different essential oils in the management of post-harvest fruit rot of banana. It was carried out in completely randomized design (CRD) with three replications and six treatments at Nepal Plant Diseases and Agro Associates (NPDA). The each of six treatments: cinnamon oil (Cinnamomum verum), mustard oil (Brassica oleracea), castor oil (Ricinus communis), neem oil (Azadirachta indica), coconut oil (Cocos nucifera) and control were used at concentrations 200ppm, 500ppm and 1000ppm respectively. The radial growth of mycelium (mm) and percent growth inhibition (%) of Colletotrichum spp. was recorded. The decrease in the radial growth and increase in the percent growth inhibition was found in all the treatments except control as their concentration was increased, in which the lowest radial growth and the highest percent growth inhibition was found at 1000 ppm concentration. At 1000 ppm concentration, cinnamon oil shows the lowest radial growth and the highest percent growth inhibition (1.67mm and 98.15%) followed by mustard oil (54.00mm and 40.00%), neem oil (55.17mm and 38.70%), castor oil (55.83mm and 37.96%), coconut oil (61.17mm and 32.04%) and control (90mm and 0.00%) respectively. Thus, cinnamon oil is considered as a good essential oil in regards to a management of post-harvest disease of banana.

Keywords: Castor oil; Cinnamon oil; Coconut oil; Colletotrichum spp; Mustard oil, Neem oil.

Introduction

Banana is a popular fruit crop grown widely in tropical countries and has a high consumer demand worldwide due to its flavor, texture, nutritional value and eating convenience. The wide consumption of banana is due to its sensory characteristics and the caloric contribution of vitamins and minerals, mainly potassium (Idris et al., 2015). India, China, Indonesia, Brazil, Ecuador, Philippines, Guatemala, Angola, Tanzania and Colombia are major banana producing countries in the world. It is cultivated on an area of 51, 58, 582 ha with an average production of 11, 67, 81, 658 tonnes in the world (FAOSTAT, 2019).

Post-harvest losses are often more severe due to inadequate storage and transportation facilities in developing countries (Rashad et al., 2011). Major economic part of the banana...
plant is the fruit, suffers from many post-harvest diseases. This disease has considerable influence on different aspects of cultivation, nutritive value, harvesting, transit and transshipment, storage of fruits. During post-harvest handling it is estimated that 20 to 25 per cent of harvested fruits are decayed by pathogens even in developed countries (Zhu & Ma, 2007). The microorganisms associated with post-harvest spoilage of fruits have engaged the attention of mycologists for many years (Okigbo, 2001). Anthracnose in banana fruit is caused by Colletotrichum musae (Berk and Curt) and is confined to mature fruits (Wallar, 1992). The phytopathogenic fungus Colletotrichum musae is responsible for highly destructive anthracnose fruit rot in many Sri Lankan cultivars of banana that cause high post-harvest losses (Perera et al., 1999). Infection on banana usually starts during the month after flowering when conidia contaminate the banana fruits (Chillet et al., 2000). It is a widely distributed and causes significant damage to crops in tropical, subtropical and temperate regions.

In the morphological characters of C. gloeosporioides, the acervuli were usually setose or glabrous, round to elongate or irregular in shape. The microscopic view of Colletotrichum spp with setae is shown in Fig. 1. Numerous acervuli having hyaline, one celled oblong to cylindrical conidia measured 13-17 × 5-7 μm on rotted fruits of pomegranate by C. gloeosporioideis (Singh & Chohan, 1972).

The use of different kinds of inorganic chemicals are increasing in the present situation due to their easy availability, cheapness and instant result in the management of postharvest disease and pests. But these types of chemicals have negative impact in the environment and health of the living organism. The use of the different botanical extracts, their oil, pastes, etc. can be used in the substitution of the inorganic chemical in order to control the various postharvest diseases and pests. The use botanical extracts and essential oils are eco-friendly and safe to the health of living organism.

Materials and Methodology
Experimental Site and Design
The experiment was carried out in completely randomized design (CRD) with three replications and six treatments at Nepal Plant Diseases and Agro Associates (NPDA), Balaju, Kathmandu, Nepal. The list of treatment is listed in Table 1.

Table 1: List of treatments

Treatment number	Treatments	Extracted From
T1	Cinnamon oil (essential)	Cinnamomum verum
T2	Mustard oil	Brassica oleracea
T3	Castor oil	Ricinus communis
T4	Neem oil	Azadirachta indica
T5	Coconut oil	Cocos nucifera
T6	Untreated control	-

Note: Above oil and essential oils reported to possess antimicrobial and therapeutic properties and they were collected from local market and Herbs Products and Processing Co. Ltd, Koteshwor, Kathmandu.

Isolation and Identification of Pathogen
Protocol of Tuite (1969) was adopted for identification of pathogens. Rotted diseased fruits of banana collected from various locations were subjected to tissue isolation. For the purpose, the diseased specimens were washed gently in running tap water; blot dried and cut with sharp sterilized blade into small bits (5 mm), keeping half healthy and half diseased portion intact. Such leaf and fruit bits were surface sterilized with 0.2% aqueous solution of sodium hypochlorite in glass Petri-plates for two minutes and washed by giving three sequential changes with sterile distilled water to remove traces of sodium hypochlorite. Those sample pieces were then blot dried and inoculated aseptically on autoclaved and cooled potato dextrose agar (PDA) medium in Petri-plates under laminar-air-flow cabinet and incubated in incubator at 25±2°C temperature. Within a week of incubation, profuse fungal mycelial growth was obtained. Applying hyphal-tip technique, the test isolates of the test pathogen was aseptically sub-cultured, purified and maintained the pure cultures separately on agar slant tubes in refrigerator for further studies. On the basis of symptomatology, cultural, morphological and microscopic characters, the pathogen were identified as Colletotrichum spp.
In-vitro evaluation of Essential oils

Essential oils were evaluated (each @ 200, 500 and 1000 ppm) in vitro against the test pathogen applying poisoned food technique using PDA as a base medium. Twenty ml of PDA was poured into sterilized petri plate of 9 cm diameter (inner) and measured amount of essential oil after sterilizing in water bath for 20 minutes, was added in each treatment, allowed them to mix homogeneously and to be solidified. Fungal disks of 5 mm in diameter from 7 days old pure culture was placed in the center of the petri-plate containing medium under aseptic condition, incubated at 25°C ± 2°C for 7 days.

Observation
Observations on radial mycelial growth were recorded in all the replicated treatments. Percent inhibition of the growth was calculated by using the formula comparing with the control. The data obtained was averaged and analyzed statistically (Vincent, 1947).

\[
\text{Percent inhibition (I)} = \frac{C - T}{C} \times 100
\]

Where,

\(C = \) Diametric growth in control (mm)

\(T = \) Diametric growth in treatment (mm)

Table 2: In-vitro evaluation of effect of different oils at their various concentrations against Colletotrichum sp.in radial growth and percent growth inhibition at 7 Days After Inoculation (DAI).

Treatment	Radial growth (mm) and Percent growth inhibition (%)		
	200 ppm	500 ppm	1000 ppm
Cinnamon oil(T1)	23.17\(^b\)(74.26%)	13.00\(^e\)(85.56%)	1.67\(^d\)(98.15%)
Mustard oil (T2)	58.83\(^c\)(34.63%)	56.50\(^d\)(37.22%)	54.00\(^b\)(40.00%)
Castor oil (T3)	67.50\(^b\)(25.19%)	64.50\(^b\)(28.33%)	55.83\(^c\)(37.96%)
Neem oil (T4)	66.00\(^b\)(26.67%)	61.50\(^c\)(31.67%)	55.17\(^c\)(38.70%)
Coconut oil (T5)	66.17\(^b\)(26.48%)	63.50\(^c\)(29.44%)	61.17\(^b\)(32.04%)
Control (T6)	90.00\(^a\)(0.00%)	90.00\(^a\)(0.00%)	90.00\(^a\)(0.00%)
LSD (0.05)	1.62	2.18	2.87
Grand mean	61.9	58.2	53.0
SEM (±)	4.82	5.55	6.34
CV (%)	1.47	2.11	3.04

Note.CV: Coefficient of Variation; LSD: Least Significance Difference; GM: Grand mean; Means followed by the same letters within in each column are not significantly different at 5 % level of probability. All treatment effects were highly significant at p<0.01 (DMRT –Test)

Result and Discussion
The significant difference was found among the treatments at 200, 500 and 1000 ppm. The decrease in the radial growth and increase in the percent growth inhibition was found in all the treatments except control (T6) with increasing in their concentration. The lowest radial growth and the highest percent growth inhibition were found at 1000 ppm concentration. At 1000 ppm concentration, cinnamon oil shows the lowest radial growth and the highest percent growth inhibition (1.67mm and 98.15%) followed by mustard oil (54.00mm and 40.00%), neem oil (55.17 mm and 38.70%), castor oil (55.83mm and 37.96%), coconut oil (61.17mm and 32.04%) and control (90mm and 0.00%) respectively (Table 2 and Fig. 2).

Thus, these results clearly indicated that of the five essential oils tested, the most effective was cinnamon essential oil followed by mustard oil, neem oil, castor oil and coconut oil against the test isolate of Colletotrichum sp and was shown in Fig. 3.
Fig. 2: Effect of different oils at their various concentration in percent growth inhibition against Colletotrichum sp. at 7 DAI

Fig. 3: In-vitro evaluation of effect of different essential oils against Colletotrichum spp.

The cinnamon oil was reported to cause maximum mycelial growth inhibition in many Colletotrichum spp. The present results observed are in conformity to the findings of several earlier workers Ranasinghe et al. (2002), Singh and Tripathi (2015) and Sefu et al. (2015). Maqbool et al. (2010) reported the suppressing of mycelial growth and conidial germination inhibition (83.3%) when cinnamon oil is applied at concentration 0.4%. Kowalska et al.,(2020) also reported the antifungal property of cinnamon water filtrates against Botrytis cinerea and inhibit the mycelium growth (81.4%) at 1% concentration. The cinnamon oil results 100% antifungal activities against different postharvest
pathogens Aspergillus niger, Alternaria alternata, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phomopsis viticola (Sukkatta et al., 2008). The important constituents present in cinnamon essential oil is Cinnamaldehyde, which acts as antifungal agent and is effective against the different fungi. (Copping, 2004; Wang & Chen, 2005). Cheng et al. (2008) reported the antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi.

Similarly, mustard oil, neem oil, castor oil and coconut oil also shows the inhibition of mycelium growth of Colletotrichum spp. respectively, which was similar to the result reported by Burgute et al. (2019) Colletotrichum gloeosporioides. The seeds of mustard contain allyl isothiocyanate which acts as antifungal agent and inhibits the growth of fungus (Chung et al., 2002). The effect of neem oil against the growth of Colletotrichum sp. was also reported by Musakhan et al. (2017) and Vi & Ao (2017). Propyl disulfide that was present in Neem has ability to inhibit the growth of Colletotrichum sp (Khan et al. 2021).

Conclusion

Colletotrichum spp. is the most predominant fungus of banana responsible for post-harvest infection that causes considerable loss in storage. From the in vitro experiments, it is concluded that different essential oils can be used on banana fruits as alternatives to synthetic fungicides for reducing post-harvest loss caused by Colletotrichum sp. and enhancing storage life considerably. However, for the most effective method of control, cinnamon oil is preferred.

Acknowledgement

Authors heartfelt regards to NPDA executive and former senior scientist of Nepal Agricultural Research Council, Ram Devi Timila, Ph.D. and Prof. Sundar Man Shrestha, Ph.D. of Department of Plant Pathology, Agriculture and Forestry University for their constant guidance and valuable suggestion as well as to entire Nepal Plant Disease and Agro Associates (NPDA), Kathmandu for facilitating technical, laboratory and partial fund support in my research.

Conflict of Interest

There is no any conflict of interest among the authors for the present study.

Authors’ Contribution

Pramod Gairhe: Experimental design, conduction, data analysis, interpretation and paper writing.

Sandesh Bhandari: Data recording, data analysis and interpretation.

Hom Prasad Sitaula: Data recording, data analysis and interpretation.

Beautina Karki: Data recording, data analysis and interpretation.

Hira Kaji Manandhar: Supervision, suggestion and recommendation during experiment.

References

Burgute KA, Magar SJ, Patil AC, Navale MD & Bajad AR (2019) In vitro bioefficacy of essential oils against Colletotrichum gloeosporioides causing fungal fruit rot in pomegranate. *Journal of Pharmacognosy and Phytochemistry* 8(6): 1605–1607. DOI: 10.20546/jpcmas.2019.808.051

Cheng SS, Liu JY, Chang EH & Chang ST (2008) Antifungal activity of cinnamonaldehyde and eugenol congeners against wood-rot fungi. *Bioresource Technol* 99: 5145–5149. DOI: 10.1016/j.biortech.2007.09.013

Chillet M, Hubert O & Ballestre DL (2000) Evidence for variation in susceptibility of banana to wound anthracnose due to Colletotrichum musae and the influence of edaphic conditions. *Sci Hort* 86: 33-47. DOI: 10.1016/S0304-4238(00)00138-2

Chung WC, Huang JW, Huang HC & Jen JF (2002) Effect of ground Brassica seed meal on control of Rhizoctonia damping-off of cabbage. *Canadian Journal of Plant Pathology* 24(2): 211–218. DOI: https://doi.org/10.1080/07060660309506998

Copping LG (2004) The Manual of Biocontrol Agents. Alton Hants, UK: BCPC Publications.

FAOSTAT (2019). http://www.fao.org/faostat/en/#data/QC/visualize

Idris FM, Ibrahim M & Forsido SF (2015) Essential oils to control Colletotrichum musae in vitro and in vivo on Banana Fruits. *American Eurasian J Agric Environ Sci* 15(3): 291-302. DOI: https://doi.org/10.5829/idosi.aejaes.2015.15.3.12551

Khan MR, Chonhenchob V, Huang C & Suwanamornlert P (2021) Antifungal activity of propyl disulfide from neem (Azadirachta indica) in vapor and agar diffusion assays against anthracnose pathogens (colletotrichum gloeosporioides and colletotrichum acutatum) in mango fruit. *Microorganisms* 9(4): 839. DOI: https://doi.org/10.3390/microorganisms9040839

Kowalska J, Tyburski J, Krzymińska J & Jakubowska M (2020) Cinnamon powder: an in vitro and in vivo evaluation of antifungal and plant growth promoting activity. *European Journal of Plant Pathology* 156(1): 237-243. DOI: 10.1007/s10658-019-01882-0

Maqbool MA & Alderson PG (2010) Effect of cinnamon oil on incidence of anthracnose disease and post harvest quality of bananas during storage. *Int J Agric Biol* 12: 516-520.

Musakhan P and S ZJ (2017) Effect of neem based plant products and plant extracts against anthracnose of chilli (Capsicum annum L.). *Phytojournal.Com* 6(5): 171–174.

Okihoro RN (2001) Occurrence, pathogenicity and survival of Macrophoma mangiferae in leaves, branches and stems of mango (Mangifera indica L.). *Plant Protoc Sci* 37: 138-144. DOI: https://doi.org/10.17221/8377-PSS

Perera O, Basnayake B & Karunaratne M (1999) Physicochemical characteristics, popularity and susceptibility to anthracnose of some local banana cultivars. *J Nat Sci
Ranasinghe L, Jayawardena B, & Abeywickrama K (2002) Fungicidal activity of essential oils of (Cinnamomum zeylanicum L.) and Syzygium aromaticum against crown rot and anthracnose pathogens isolated from banana. Lett in App Microbiol 35: 208-211. DOI: 10.1046/j.1472-765x.2002.01165.x

Rashad RA, Al-Najada AR, & Saleh AM (2011) Isolation and identification of some fruit spoilage fungi: Screening of plant cell wall degrading enzymes., African Journal of Microbiology Research 5(4): 443-448. DOI: 10.5897/AJMR10.896

Singh R & Tripathi P (2015) Cinnamomum zeylanicum essential oil in the management of anthracnose of banana fruits. Journal of Innovations in Pharmaceutical and Biological Sciences 2(3): 290-299.

Singh RS & Chohan JS (1972) A new fruit rot disease of pomegranate. Curriculum Science 41: 651.

Sukatta U, Haruthaihansan V & Chantaranapont W (2008). Antifungal activity of cinnamon oil and their synergistic against postharvest decay fungi of grape in vitro. Antifungal Activity of Clove and Cinnamon Oil and Their Synergistic Against Postharvest Decay Fungi of Grape in vitro. Agriculture and Natural Resources 42(5): 169-174.

Tuite J (1969) Plant Pathological methods: Fungi and Bacteria. Minneapolis, Minnesota. USA. Burgess Publishing Company, 239 pp.

Vi G & Ao N (2017) Efficacy of Some Plant Extracts in In Vitro Control of Colletotrichum Species, Causal Agent of Yam (Dioscorea rotundata Poir) Tuber Rot. Pelagia Research Library Asian Journal of Plant Science and Research 7(2): 8–16. DOI: 10.19080/AIBM.2017.07.555703

Vincent JM (1947). Distortion of fungal hyphae in presence of certain inhibitors. Nature 150: 850. DOI: 10.1038/159850b0

Waller JM (1992) Colletotrichum Disease of Perennial and other cash Crops. In: Colletotrichum: Biology, Pathology and Control. Bailey, JA and MJ Jeger (Eds). CAB International, Wallingford, U.K, pp. 167-186.

Wang SY & Chen PF (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technol 96: 813-818. DOI: 10.1016/j.biortech.2004.07.010

Zhu S & Ma B (2007) Benzothiadiazole or methyl jasmonate induced resistance to Colletotrichum musae in harvested banana fruit related to elevated defense activities. J Hort Sci Biotech 82(4): 500-506. DOI: 10.1080/14620316.2007.11512265

This paper can be downloaded online at http://ijasbt.org & http://nepjol.info/index.php/IJASBT