Dirichlet-Poincaré profiles of graphs and groups

David Hume

Mathematical Institute, University of Oxford, OX2 6GG, UK

October 16, 2019

Abstract

We define Poincaré profiles of Dirichlet type for graphs of bounded degree, in analogy with the Poincaré profiles (of Neumann type) defined in [HMT19]. The obvious first definition yields nothing of interest, but an alternative definition yields a spectrum of profiles which are quasi–isometry invariants and monotone with respect to subgroup inclusion. Moreover, in the extremal cases $p = 1$ and $p = \infty$, they detect the Følner function and the growth function respectively.

1 Introduction

In [HMT19], a spectrum of monotone coarse invariants for bounded degree graphs were introduced: these were called L^p-Poincaré profiles and are defined for $p \in [1, \infty]$. At the extremes $p = 1$ and $p = \infty$, the profiles detect the separation profile (see [BST12]) and the growth function of the graph respectively.

A more accurate name is L^p-Neumann–Poincaré profiles, since they are built from Poincaré constants of Neumann type.

The goal of this paper is to provide both a short and a long answer to the following question pointed out to us by Laurent Saloff–Coste:

Question 1. What happens if you replace Poincaré constants of Neumann type by Poincaré constants of Dirichlet type?

Let us fix some notation. Let Γ be a finite graph and let $f : V\Gamma \to \mathbb{R}$. We define $\nabla f : V\Gamma \to \mathbb{R}$ by $\nabla f(v) = \max \{|f(v) - f(w)| : vw \in E\Gamma\}$.

Given a graph X and a finite subgraph $\Gamma \leq X$ we define the L^p-Dirichlet–Poincaré constant of Γ as follows:

$$Dh^p_X(\Gamma) = \inf \left\{ \frac{\|\nabla f\|_p}{\|f\|_p} : f : V\Gamma \to \mathbb{R}, f|_{\partial X\Gamma} \equiv 0, f \neq 0 \right\},$$

The author was supported by a Titchmarsh Fellowship of the University of Oxford
where $\partial_X\Gamma = \{ v \in V \Gamma \mid d_X(v, VX \setminus V\Gamma) = 1 \}$. We make the convention that $Dh^p_X(\Gamma) = +\infty$ whenever $\Gamma = \partial_X\Gamma$. Notice that replacing f by $|f|$ does not change the norm, preserves the property $f|_{\partial_X\Gamma} \equiv 0$ and does not increase $\|\nabla f\|_p$. Therefore we may always assume that all functions we consider are non-negative.

When the ambient graph X is clear we will simply write $Dh^p(\Gamma)$ for $Dh^p_X(\Gamma)$.

Following [HMT19] we could define the L^p-Dirichlet-Poincaré profile of X by

$$D^*\Lambda^p_X(n) = \sup \{ |\Gamma| Dh^p_X(\Gamma) \mid \Gamma \leq X, \partial_X\Gamma \neq VT, |VT| \leq n \}.$$

While $D^*\Lambda^p$ defines a monotone coarse invariant, it is sadly not a very interesting one, providing the short answer to the question.

Proposition 2. Let X be a connected infinite graph with maximal vertex degree d. Then

$$D^*\Lambda^p_X(n) = \begin{cases} (d + 1)^{\frac{1}{p}}n & \text{if } p < \infty, \\ n & \text{if } p = \infty. \end{cases}$$

Instead, let us make the following alternative definition. Let X be a graph of bounded degree. The L^p-Dirichlet-Poincaré profile of X is given by

$$D\Lambda^p_X(n) = \inf \{ |\Gamma| Dh^p_X(\Gamma) : \Gamma \leq X, |VT| \geq n \}.$$

In general, these profiles are not monotone coarse invariants (nor even monotone under quasi-isometric embeddings), but they are quasi-isometry invariants.

Theorem 3. Let X, Y be quasi-isometric graphs of bounded degree. Then, for every $p \in [1, \infty]$,

$$D\Lambda^p_X(n) \simeq D\Lambda^p_Y(n).$$

We consider functions using a standard partial order: given two functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \lesssim g$ if there exists a constant C such that $f(n) \leq Cg(Cn) + C$ for all $n \in \mathbb{N}$, and $f \simeq g$ if $f \lesssim g$ and $g \lesssim f$. We write $f \lesssim_{u,v,\ldots} g$ to indicate that the constant C depends on u, v, \ldots. Hence, Dirichlet-Poincaré profiles are well-defined for finitely generated groups. Moreover, they behave monotonically with respect to subgroups.

Theorem 4. Let H be a finitely generated subgroup of a finitely generated group G. Then, for every $p \in [1, \infty]$,

$$D\Lambda^p_H(n) \lesssim D\Lambda^p_G(n).$$

The remainder of the paper is devoted to initial properties of these quasi-isometry invariants organised in direct analogy with the corresponding theory of Neumann-Poincaré profiles. We begin with the extremal cases $p = 1$ and $p = \infty$.

For $p = \infty$ the Dirichlet-Poincaré profile also depends only on growth.
Proposition 5. Let X be a bounded degree graph.

\[D \Lambda_{\infty}^X(n) \simeq \min \left\{ \frac{m}{\kappa(m)} \mid m \geq n \right\} \]

where $\kappa(m) = \max \{ k \mid \exists x : |B(x,k)| \leq m \}$ is the (lower) inverse growth function.

In the same way that Λ^1 can be expressed in terms of the Cheeger constants of finite graphs, $D \Lambda^1$ is related to the Cheeger constants of infinite graphs.

We recall that the Cheeger constant of an infinite graph is given by

\[h(X) = \inf \left\{ \frac{|\partial X A|}{|A|} \mid A \subset V X, |A| < \infty \right\} \]

Theorem 6. Let X be a connected graph of bounded degree. Then the following are equivalent

- $h(X) > 0$,
- $D \Lambda_{X}^1(n) \simeq n$,
- $D \Lambda_{X}^p(n) \simeq n$ for every $p \in [1, \infty)$.

When X is the Cayley graph of a finitely generated group G, $h(X) > 0$ if and only if G is non-amenable (this is commonly known as Følner’s criterion). From this we may easily deduce that $D \Lambda_{X}^1$ is not monotone under quasi-isometric embeddings, since solvable groups of exponential growth admit undistorted free sub-semigroups [CT08], so there is a quasi-isometric embedding of a 4-regular tree (a Cayley graph of the non-amenable free group on two generators) into a solvable (and hence amenable) group.

Moreover, one can completely express $D \Lambda_{X}^1$ in terms of the Følner function of X:

\[F_X(n) = \min \left\{ |\Gamma| : \Gamma \leq X, \frac{|\partial X \Gamma|}{|\Gamma|} \leq \frac{1}{n} \right\}. \]

Theorem 7. Let X be a bounded degree graph. Then, for $p \in (1, \infty)$,

\[D \Lambda_{X}^p(n) \lesssim \min \left\{ \frac{m}{(F_X(m))^{\frac{1}{p}}} \mid m \geq n \right\} \]

where $F_X(n)$ is the inverse Følner function $F_X(n) = \max \{ k \mid F(k) \leq n \}$. In the case $p = 1$ we have the stronger result

\[D \Lambda_{X}^{p}(n) \simeq \min \left\{ \frac{m}{F_X(m)} \mid m \geq n \right\}. \]

Since Følner functions of amenable groups have been extensively studied there are a number of immediate consequences of this result, some of which we list in §3.3.1. Grigorchuk and Pansu conjecture that the Følner function grows either polynomially, or at least exponentially [Gri14 Conjecture 5(ii)]. Reinterpreted in terms of Dirichlet-Poincaré profiles this is equivalent to the following:
Conjecture 8. Let G be a finitely generated group. Either there is some d such that $DA_G^p(n) \asymp n^{1-\frac{1}{d}}$ for all $p \in [1, \infty)$, or $DA_G^p(n) \gtrsim \frac{n}{\log(n)}$ for all $p \in [1, \infty)$.

Continuing the comparison with Neumann-Poincaré profiles, we see that Dirichlet-Poincaré profiles are also monotonic with respect to $p \in [1, \infty)$, however the relationship with DA^∞ is very different:

Theorem 9. Let X be a connected graph of bounded degree. Then for all $1 \leq p \leq q < \infty$:

$$D\Lambda_X^p(n) \lesssim D\Lambda_X^q(n).$$

Theorem 10. Let G be a finitely generated group. Then

$$DA_G^\infty(n) \lesssim DA_G^1(n).$$

Theorem 10 is a direct consequence of Varopoulos’ inequality (cf. [CSC93, Théorème 1]).

We finish with some upper bounds coming from geometric properties of groups. From [HMT19 Proposition 9.5] we see that groups with finite linearly-controlled asymptotic dimension (cf. [As82]) satisfy $\Lambda_G^p(n) \lesssim \Lambda_G^\infty(n)$ for all $p \in [1, \infty)$. For Dirichlet-Poincaré profiles this follows from Theorem 7 in the case $p = 1$ via work of Nowak.

Corollary 11. [Now07, Theorem 7.1] Let G be a finitely generated amenable group with finite linearly-controlled asymptotic dimension. Then

$$DA_G^1(n) \asymp \frac{n}{\kappa(n)}$$

where $\kappa(n)$ is the inverse growth function $\kappa(n) = \min \{ |k| \mid |B(1,k)| > n \}$.

The key examples of groups satisfying the above hypotheses are polycyclic groups and wreath products $F \wr \mathbb{Z}$ with F finite. These groups also have controlled Følner pairs in the sense of [Tes11]. For these groups we have the following:

Theorem 12. Let G be a finitely generated amenable group with controlled Følner pairs. Then, for all $p \in [1, \infty)$

$$DA_G^p(n) \asymp \frac{n}{\kappa(n)}$$

where $\kappa(n)$ is the inverse growth function $\kappa(n) = \min \{ k \mid |B(1,k)| > n \}$.

1.1 Questions

It is natural to ask for which groups $\Lambda_G^p \simeq DA_G^p$. For non-amenable groups this will be exceptionally rare, as $\Lambda_G^p(n) \simeq n$ if and only if G contains an expander $(\Gamma_n)_n$ where the $|\Gamma_n|$ grow at most exponentially in n.

Amongst amenable groups this equality appears to be much more common. We know from Theorem 12 [HMT19] and [HMT] that these profiles are equal for all virtually polycyclic groups.

However, it is certainly not the case that \(\Lambda^1_G(n) \simeq D\Lambda^1_G(n) \) holds for amenable groups. By [HM19] there are elementary amenable groups \(G_d \) such that

\[
\Lambda^1_{G_d}(n) \lesssim \log^d(n) \lesssim \frac{n}{\log(n)} \lesssim D\Lambda^1_{G}(n).
\]

where \(\log^d \) denotes the \(d \)th iterate of \(\log \). Both of the following questions appear to be open.

Question 1.1. Does \(\Lambda^p_{G}(n) \lesssim D\Lambda^p_{G}(n) \) hold for every \(p \in [1, \infty] \) and every finitely generated group \(G \)?

Question 1.2. Does there exist a finitely generated group \(G \) and \(1 \leq p < q < \infty \) such that \(D\Lambda^p_{G}(n) \not\simeq D\Lambda^q_{G}(n) \)?

1.2 Disclaimer

Some results in this note are likely to be well-known to experts in the area. The goal here is to represent them as profiles in the style of [HMT19], and hopefully to provoke new questions.

2 The short answer

We recall that

\[
D^*\Lambda^p_X(n) := \sup \{ |\Gamma| D h^p_X(\Gamma) : \Gamma \leq X, \partial_X \Gamma \neq VT, |VT| \leq n \}.
\]

Proposition 2.1. Let \(X \) be an infinite graph of maximal degree \(d \). Then, for all \(n \geq d + 1 \),

\[
D^*\Lambda^p_X(n) = \begin{cases}
(d + 1)^{\frac{p}{p}} n & \text{if } p < \infty, \\
n & \text{if } p = \infty.
\end{cases}
\]

Proof. Let \(v \in VX \) have degree exactly \(d \) and let \(\Gamma_n \leq X \) satisfy \(|\Gamma| = n \) and \(\partial_X \Gamma = \{v\} \). Let \(f : \Gamma_n \to \mathbb{R} \) be a function such that \(f|_{\partial_X \Gamma_n} = 0 \). Firstly suppose \(p < \infty \).

\[
\|f\|_p = |f(v)| \quad \text{and} \quad \|\nabla f\|_p = (d + 1)^{\frac{p}{p}} |f(v)|. \tag{1}
\]

Hence \(Dh^p(\Gamma_n) \geq (d + 1)^{\frac{p}{p}} \). Next we prove an upper bound on \(Dh^p_X(\Gamma) \) for any finite \(\Gamma \leq X \) with \(VT \setminus \partial_X \Gamma \neq \emptyset \). Fix a vertex \(v \in VT \setminus \partial_X \Gamma \) and define \(f = 1_{\{v\}} \). Then

\[
Dh^p_X(\Gamma) \leq \frac{\|\nabla f\|_p}{\|f\|_p} \leq (d + 1)^{\frac{p}{p}} \leq d + 1. \tag{2}
\]

If \(p = \infty \), then following the above strategy \(\Box \) can be replaced by \(\|f\|_\infty = |f(v)| = \|\nabla f\|_\infty \). Hence \(Dh^\infty_X(\Gamma_n) \geq 1 \). Moreover, taking the same function \(f = 1_{\{v\}} \) \(\Box \) can be replaced with \(Dh^\infty_X(\Gamma) \leq 1 \) and thus the result holds when \(p = \infty \). \(\Box \)
3 The long answer

We now pass to the definition of Dirichlet-Poincaré profile we will consider for the remainder of the paper.

Definition 3.1. Let X be a graph of bounded degree. The L^p-Dirichlet-Poincaré profile of X is given by

$$D\Lambda_X^p(n) = \inf \{ |\Gamma| \, D\h_x^p(\Gamma) : \Gamma \leq X, |V\Gamma| \geq n \}.$$

3.1 Elementary observations

We begin with two elementary but useful observations.

Lemma 3.2. Let X be a graph, let B be a finite subgraph of X and A a subgraph of B. Then for all p, $D\h^p(B) \leq D\h^p(A)$.

Proof. For each $f : V A \to [0, \infty)$ satisfying $f|_{\partial X A} \equiv 0$, define $f'(b) = \begin{cases} f(b) & \text{if } b \in V A, \\ 0 & \text{otherwise.} \end{cases}$ It is clear that for every p, $\|f\|_p = \|f\|_p$ and $\|\nabla f\|_p = \|\nabla f\|_p$. The result follows. \hfill \Box

Given a finite subgraph $\Gamma \leq X$ and some $a \geq 1$, we define

$$D\h^p_a(\Gamma) = \inf \left\{ \frac{\|\nabla a f\|}{\|f\|} : f|_{\partial X \Gamma} \equiv 0 \right\},$$

where $\nabla a f(x) = \sup \{ |f(y) - f(y')| : y, y' \in B_\Gamma(x, a) \}$.

Lemma 3.3. Let Γ be a finite graph with maximal degree d, let $a \geq 1$. There exists a constant $c = c(a, d) > 0$ such that

$$cD\h^p_a(\Gamma) \leq D\h^p(\Gamma) \leq D\h^p_a(\Gamma).$$

Proof. The right-hand inequality is obvious. Fix $a \geq 1$ and let B_a be the maximal cardinality of a closed ball of radius a in Γ. For every $x \in \{ \nabla a f \geq t \}$ choose $y, y' \in B_\Gamma(x, a)$ such that $|f(y) - f(y')| \geq t$. Consider geodesics from y to x and from x to y'. By the triangle inequality there is an edge uv on one of these geodesics such that $|f(u) - f(v)| \geq \frac{t}{2a}$. It follows that there is some $u \in B_\Gamma(x, a)$ contained in $\{ \nabla f \geq \frac{t}{2a} \}$. Hence

$$|\{ \nabla f \geq t \}| \leq B_a \left(\frac{t}{2a} \right) \leq d^{a+1} \left| \{ \nabla f \geq \frac{t}{2a} \} \right|.$$

Using the co-area formula:

$$\sum_{x \in V\Gamma} |g(x)| = \int_{\mathbb{R}^+} \{ g \geq t \} \, dt$$
and \(4\) we have
\[
\sum_{x \in V} |\nabla_a f(x)|^p \leq d^{a+1} \sum_{x \in V} |2a \nabla f(x)|^p \leq (2a)^p d^{a+1} \sum_{x \in V} |\nabla f(x)|^p.
\]
Hence \(\|\nabla_a f\|_p \leq 2ad^{a+1} \|\nabla f\|_p\), and \(4\) follows. \(\square\)

3.2 Quasi-isometry invariance

These Dirichlet-Poincaré profiles are quasi-isometry invariants.

Theorem 3.4. Let \(X, Y\) be infinite connected bounded degree graphs and let \(q : X \to Y\) be a quasi-isometry. Then for any \(p \in [1, \infty)\), \(DA^p_X(n) \simeq DA^p_Y(n)\).

Proof of Theorem 3.4. Let \(q : X \to Y\) be a \((K, C)\)-quasi-isometry, so for all \(x, x' \in VX\),
\[
K^{-1} d_X(x, x') - C \leq d_Y(q(x), q(x')) \leq K d_X(x, x') + C,
\]
and for every \(y \in VY\) there is some \(x\) so that \(d_Y(q(x), y) \leq C\). Let \(d, d'\) be the maximal vertex degrees of \(X, Y\) respectively. We will prove \(DA^p_X(n) \simeq DA^p_Y(n)\) by constructing for each finite \(\Gamma \leq X\) a graph \(\Gamma' \leq Y\) with a comparable number of vertices and \(Dh^p_{\Gamma}(\Gamma')\) bounded from above by a fixed multiple of \(Dh^p_{\Gamma}(\Gamma)\).

For each finite \(\Gamma \leq X\) we define \(\Gamma'\) to be the full subgraph of \(Y\) whose vertex set is the closed \(C\)-neighbourhood of \(q(\Gamma)\). Given any \(f : VT \to [0, \infty)\) with \(f|_{\partial_X \Gamma} \equiv 0\) we define a comparison function \(f' : \Gamma' \to [0, \infty)\). If \(y \in \partial_Y \Gamma'\) define \(f'(y) = 0\), otherwise define \(f'(y) = \max\{|f(x)| : d_Y(y, q(x)) \leq C\}\).

We first find a lower bound for \(\|f'\|_p\) in terms of \(\|f\|_p\). For every \(x \in V\), \(f'(q(x)) \geq f(x)\), and the pre-image of a vertex in \(Y\) has diameter at most \(KC\). Hence
\[
\|f'\|_p^p = \sum_{y \in \Gamma'} f'(y)^p \geq (d + 1)^{-KC} \sum_{x \in \Gamma} f(x)^p = (d + 1)^{-KC} \|f\|_p^p. \tag{5}
\]

We next find an upper bound for \(\|\nabla f\|_p\) in terms of \(\|\nabla f\|_p\). For \(a \geq 1\) define \(\Gamma_a\) to be the full subgraph of \(X\) whose vertex set is the closed \(a\)-neighbourhood of \(VT\) in \(X\). Define \(f_a : VT_a \to [0, \infty)\) by \(f_a(x) = f(x)\) if \(x \in VT\) and \(0\) otherwise. By direct calculation, \(\|\nabla f_a\|_p = \|\nabla f\|_p\), so by Lemma 2.3 for any \(a\) there is a constant \(L = L(a, d) > 0\) such that
\[
\|\nabla_a f_a\|_p \leq L \|\nabla f\|_p.
\]

Let \(y_0 \in \Gamma'\) and choose \(y_1\) so that \(y_0 y_1 \in E\Gamma'\) and \(\nabla f'(y_0) = |f'(y_0) - f'(y_1)|\). Now we may choose \(x_0, x_1 \in V\) such that \(f'(y_j) = f(x_j)\) and \(d_Y(q(x_j), y_j) \leq C\). We have \(d_Y(q(x_0), q(x_1)) \leq 2C + 1\) so
\[
d_X(x_0, x_1) \leq Kd_Y(q(x_0), q(x_1)) + KC = 3KC + K.
\]
Choosing \(a \geq 3KC + K \) we see that
\[
\nabla_a f_a(x_0) \geq |f_a(x_0) - f_a(x_1)| = |f'(y_0) - f'(y_1)| = \nabla f'(y_0).
\]
Now the set of \(y_0 \in VT' \) for which we may choose a fixed \(x_0 \in VT \) is contained in the closed ball of radius \(C \) around \(q(x_0) \). Thus
\[
\|\nabla f'\|_p \leq (d' + 1)^C \|\nabla_a f_a\|_p \leq L(d' + 1)^C \|\nabla f\|_p.
\]
Combining this with (5), we have \(Dh^p(\Gamma') \leq (d + 1)^{2KC} L(d' + 1)^C Dh^p(\Gamma) \). If \(|\Gamma| \geq n \), then \(|\Gamma'| \geq (d + 1)^{-KC} n \), hence
\[
DA^n_X(p(n) \leq (d + 1)^{KC} L(d' + 1)^C DA^p_X((d + 1)^{KC} n),
\]
so \(DA^n_X(p(n) \lesssim_{K,C,d,d'} DA^p_X(n) \). The opposite inequality is obtained by considering a quasi-inverse \(r : Y \to X \) of \(q \).

3.3 The extremal cases \(p = 1 \) and \(p = \infty \)

We next explore the extremal cases, starting with \(p = \infty \).

Proposition 3.5. Let \(X \) be an infinite graph and let \(\Gamma \) be a subgraph of \(X \). Define \(l_\Gamma \) to be the radius of the largest ball in \(X \) which is contained in \(\Gamma \). Then \(Dh^\infty(\Gamma) = l_\Gamma^{-1} \) and

\[
DA^\infty_X(n) \simeq \inf \left\{ \frac{m}{\underline{\kappa}(m)} \mid m \geq n \right\}
\]

where \(\underline{\kappa}(m) \) is the maximal \(k \) such that there is a ball of radius \(k \) in \(X \) containing at most \(m \) vertices.

Proof. Let \(\Gamma \) be a finite subgraph of \(X \) with \(VT \neq \partial X \Gamma \) and let \(f : VT \to [0, \infty) \) satisfy \(f|_{\partial X \Gamma} \equiv 0 \). Pick \(x \in VT \) such that \(f(x) = \|f\|_\infty \). Let \(P \) be a path from \(x \) to a vertex in \(\partial X \Gamma \) which has length at most \(l_\Gamma \geq 1 \). It follows from the triangle inequality that \(\|\nabla f\|_\infty \geq \frac{1}{l_\Gamma} \|f\|_\infty \), hence
\[
Dh^\infty(\Gamma) \geq \frac{1}{l_\Gamma}.
\]

Now fix \(x \) so that \(B_X(x, l_\Gamma) \subseteq \Gamma \) and define \(f : VT \to [0, \infty) \) by \(f(y) = \max \{0, l_\Gamma - d_X(x, y)\} \). It is clear that \(\|f\|_\infty = l_\Gamma \) and \(\|\nabla f\|_\infty \leq 1 \). Hence \(Dh^\infty(\Gamma) \leq \frac{1}{l_\Gamma} \). By definition
\[
DA^\infty_X(n) \simeq \inf \left\{ \frac{\Gamma}{l_\Gamma} \mid \Gamma \leq X, l_\Gamma \geq 1, |\Gamma| \geq n \right\} \simeq \inf \left\{ \frac{m}{\underline{\kappa}(m)} \mid m \geq n \right\}.
\]

Recall that \(\Lambda^\infty_X(n) \simeq \sup \left\{ \frac{m}{\bar{\kappa}(m)} \mid m \leq n \right\} \) where \(\bar{\kappa} \) is the (upper) inverse growth function \(\bar{\kappa}(m) = \max \{k \mid \forall x \ B(x; k) \leq m \} \). For most groups (certainly those with polynomial or exponential growth), \(DA^\infty_X(n) \simeq \Lambda^\infty_X(n) \).
As with Poincaré profiles of Neumann type, the L^1-Dirichlet-Poincaré profile is determined by a combinatorial connectivity constant. We recall that the Cheeger constant of an infinite graph with bounded degree is given by

$$h(X) = \inf \left\{ \frac{|\partial X A|}{|A|} \mid A \subset V X, |A| < \infty \right\}$$

Theorem 3.6. Let X be a connected graph of bounded degree. The following are equivalent

1. $\Lambda^p_X(n) \not\simeq n$ for every $p \in [1, \infty)$,
2. $\Lambda^1_X(n) \not\simeq n$,
3. $h(X) = 0$.

Proof. $(i) \Rightarrow (ii)$ is immediate. Fix d to be the maximal degree of a vertex in X. We start with $(ii) \Rightarrow (iii)$. Suppose $\Lambda^1_X(n) \not\simeq n$. From (2) we have $Dh^1(\Gamma) \leq d + 1$ for every finite subgraph Γ of X. Therefore, there must be a sequence of finite subgraphs Γ_n of X such that $Dh^1(\Gamma_n) \leq \frac{1}{n}$.

For each n, let $f : V \Gamma_n \to \mathbb{R}$ satisfy $f|\partial X \Gamma_n \equiv 0$, $f \geq 0$, and $\|\nabla f\|_1 \leq 2n$. Using the co-area formula (cf. [HMT19, Proposition 6.6])

$$\|\nabla f\|_1 = \int_{\mathbb{R}^+} |\partial X \{ f > t \}| dt,$$

and $\|f\|_1 = \int_{\mathbb{R}^+} |\{ f > t \}| dt$, we see that there is some $t > 0$ such that $S_t = \{ f > t \} \subset V \Gamma$ satisfies

$$\frac{|\partial X S_t|}{|S_t|} \leq \frac{2}{n}.$$

Thus $h(X) = 0$.

Finally, we show $(iii) \Rightarrow (i)$. Suppose $h(X) = 0$. If X is finite there is nothing to prove, so assume it is infinite. There is a family of finite subgraphs Γ_n ($n \geq 2$) of X such that

$$\frac{|\partial X \Gamma_n|}{|\Gamma_n|} \leq \frac{1}{n}. \quad (6)$$

Since X is infinite and connected, $|\partial X \Gamma_n| \geq 1$, so $|\Gamma_n| \geq n$. Let f_n be the characteristic function of the set $V \Gamma_n \setminus \partial X \Gamma_n$. By construction

$$\|f_n\|_p = (|V \Gamma_n \setminus \partial X \Gamma_n|)^\frac{1}{p} \geq \left(\frac{n - 1}{n} \frac{1}{|\Gamma_n|} \right)^\frac{1}{p},$$

and ∇f_n is the characteristic function of the set of vertices in Γ_n at distance ≤ 1 from $\partial X \Gamma_n$. Hence

$$Dh^p(\Gamma_n) \leq \frac{\|\nabla f_n\|_p^p}{\|f_n\|_p^p} \leq \left((d + 1) \frac{n}{n - 1} \frac{1}{|\Gamma_n|} \right)^\frac{1}{p} \leq \left(\frac{d + 1}{n - 1} \right)^\frac{1}{p}.$$
where the last step uses (6). It follows that \(DA_X^1(n) \not\equiv n \), since for every \(n \),

\[
DA_X^p(\Gamma_n) \leq |\Gamma_n| Dh^p(\Gamma_n) \leq |\Gamma_n| \left(\frac{d + 1}{n - 1} \right)^{\frac{1}{p}}.
\]

(7)

\[\square \]

Corollary 3.7. Let \(X \) be a graph of bounded degree. Then \(DA_X^p(n) \not\equiv n \) for every \(p \in [1, \infty) \) if and only if \(h(X) > 0 \).

Proof. The forward implication is immediate from Theorem 3.6, the reverse implication follows from monotonicity (Proposition 3.12) and Theorem 3.6. \(\square \)

Recall that for a graph \(X \) satisfying \(h(X) = 0 \) the **Følner function** is:

\[
F(n) = \min \left\{ k \mid \frac{|\partial X \Gamma|}{|\Gamma|} \leq \frac{1}{n} \text{ for some } \Gamma \leq X \text{ with } |\Gamma| = k \right\}.
\]

Corollary 3.8. Let \(X \) be a graph of bounded degree such that \(h(X) = 0 \). Then for \(p \in (1, \infty) \)

\[
DA_X^p(n) \lesssim \inf \left\{ \frac{m}{F_X(m)} \mid m \geq n \right\}
\]

where \(F_X(m) = \max \{ k \mid F(k) \leq m \} \). In the case \(p = 1 \) we have

\[
DA_X^1(n) \simeq \inf \left\{ \frac{m}{F_X(m)} \mid m \geq n \right\}.
\]

Proof. For the upper bound fix \(m \), and let \(\Gamma' \) be a subgraph of \(X \) satisfying

\[
|\Gamma'| \leq m \quad \text{and} \quad \frac{1}{F_X(m) + 1} < \frac{|\partial X \Gamma|}{|\Gamma|} \leq \frac{1}{F_X(m)}
\]

From the proof of Theorem 3.6 (iii) \(\Rightarrow (i) \), we have that

\[
Dh_X^p(\Gamma') \leq \left(\frac{d + 1}{F_X(m) - 1} \right)^{\frac{1}{p}}
\]

Hence, for any \(m \)-vertex subgraph \(\Gamma \) of \(X \) containing \(\Gamma \) we have

\[
Dh_X^p(\Gamma) \leq \left(\frac{d + 1}{F_X(m) - 1} \right)^{\frac{1}{p}}
\]

by Lemma 3.2. Thus

\[
DA_X^p(m) \leq m \left(\frac{d + 1}{F_X(m) - 1} \right)^{\frac{1}{p}}
\]

10
as required. For the lower bound, let Γ be a finite subgraph of X. Fix k maximal such that $Dh^1(\Gamma) \leq \frac{1}{k}$, so $|\Gamma| \geq F(k)$. If $F(k) < n$ there is nothing to prove. If $F(k) \geq n$, then by assumption

$$|\Gamma| Dh^1(\Gamma) \geq \frac{F(k)}{k+1} \geq \frac{F(k)}{2k} \geq \inf \left\{ \frac{m}{F_X(m)} \mid m \geq n \right\},$$

as required.

3.3.1 Consequences for the Følner function

We give three consequences of Corollary 3.8 for finitely generated groups.

Theorem 3.9. [Now07, Theorem 7.1] Let G be a finitely generated amenable group with finite linearly controlled asymptotic dimension. Then

$$DA^1_G(n) \approx \inf \left\{ \frac{m}{\kappa(m)} \mid m \geq n \right\},$$

where κ is the inverse growth function of G.

Theorem 3.10. [Ers03] We have the following:

1. For $G = \mathbb{Z} \wr \mathbb{Z}$, $DA^1_G(n) \approx \frac{n \log \log n}{\log n}$.
2. For $G = \mathbb{Z}_2 \wr \mathbb{Z}^d$, $DA^1_G(n) \approx \frac{n}{\log n^{1/d}}$.
3. For $G = \mathbb{Z} \wr (\mathbb{Z} \wr (\mathbb{Z} \wr \ldots \wr \mathbb{Z})))$ where \mathbb{Z} occurs k times, we have $DA^1_G(n) \approx n \left(\frac{\log \log n}{\log n} \right)^{1/k}$.
4. For $G = ((\ldots ((\mathbb{Z} \wr \mathbb{Z}) \wr \ldots \wr \mathbb{Z})))$ where \mathbb{Z} occurs k times, we have $DA^1_G(n) \approx \frac{n}{\phi^k n}$, where ϕ is the k-1-fold iteration of log divided by the k-fold iteration of log.

Theorem 3.11. [Ers06] For every function $f : \mathbb{N} \to \mathbb{N}$ such that $\lim_{n \to \infty} \frac{f(n)}{n} = 0$, there is a finitely generated group of intermediate growth such that $DA^1_G(n) \gtrsim f(n)$.

3.4 Dependence on p

Dirichlet-Poincaré profiles satisfy many of the same properties as the Poincaré profile A^p_X such as monotonicity:

Proposition 3.12. Let X be a graph of bounded degree. For every $1 \leq p \leq q < \infty$ there is a constant $C = C(p, q)$ such that

$$DA^p_X(n) \leq CDA^q_X(n).$$
Proof. Let d be the maximal vertex degree of X. Choose $\Gamma \leq X$ with $n \leq |\Gamma| < \infty$ and $g : VT \to [0, \infty)$ such that $g|_{\partial X \Gamma} = 0$ and

$$|\Gamma| \frac{\|\nabla g\|_q}{\|g\|_q} \leq 2DA_X^\infty(n).$$

Define $f : VT \to [0, \infty)$ by $f(v) = g(v)^{q/p}$. Now $\|f\|^p_p = \|g\|^q_q$. By \star we need only consider functions g such that $\|\nabla_a g\|_q \leq (d + 1)^{\frac{q}{p}} \|g\|_q$.

By the mean value theorem (see e.g. Matoušek [Mat97, Lemma 4]), for every $s, t \in \mathbb{R}$ and $\alpha \geq 1,$

$$\{|s|^\alpha - |t|^\alpha\} \leq \alpha(|s|^{\alpha-1} + |t|^{\alpha-1})|s - t|.$$

For each $v \in VT$ we apply this to $s = g(v)$, $t = g(u)$, $\alpha = \frac{q}{p}$ for each edge $vw \in E\Gamma$ to see that

$$\nabla f(v) \leq \left(\frac{2q}{p}\right)^p g_1(v)^{-\frac{q}{p}} \nabla g(v)$$

where $g_1(v) = \max \{ |g(u)| : d_{\Gamma}(v, u) \leq 1 \}$. By definition $g_1(v) \leq g(v) + \nabla g(v)$.

Now

$$\|g\|^q_q Dh^p_a(\Gamma)^p = \|f\|^p_p Dh^p_a(\Gamma)^p$$

$$\leq \sum_{v \in VT} \nabla f(v)^p$$

$$\leq \left(\frac{2q}{p}\right)^p \sum_{v \in VT} (|g(v)| + \nabla g(v))^{q-p} \nabla g(v)^p$$

$$\leq \left(\frac{2q}{p}\right)^p \sum_{v \in VT} |g(v)|^{q-p} \nabla g(v)^p + \|\nabla g\|^q_q$$

$$\leq \left(\frac{2q}{p}\right)^p \left(\|g\|^{q-p}_q \|\nabla g\|_q^p + (d + 1)^{\frac{q}{p}} \|g\|^{q-p}_q \|\nabla g\|^q_q\right)$$

$$\leq_{p, q} \|g\|^{q-p}_q \|\nabla g\|_q^p,$$

where (\star) follows from $(s + t)^{\alpha} \leq 2^{\alpha}(s^{\alpha} + t^{\alpha})$ for any $s, t, \alpha > 0$, and (\dagger) follows from Hölder’s inequality and $\|\nabla_a g\|_q \leq (d + 1)^{\frac{q}{p}} \|g\|_q$. Rearranging and taking pth roots, we see that

$$Dh^p(\Gamma) \leq_{p, q} \frac{\|\nabla g\|_q}{\|g\|_q}.$$

The relationship between DA^∞ and DA^1 is a well-known inequality.

Proposition 3.13. [CSC93, Théorème 1] Let X be a graph of bounded degree satisfying the pseudo-Poincaré inequality (for example Cayley graphs of finitely generated groups)

$$\|f - f_r\|_1 \leq Cr \|\nabla f\|_1$$

where $f_r(x) = |B(x, r)|^{-1} \sum_{v \in B(x, r)} f(v)$. Then $DA_X^\infty(n) \lesssim DA_X^1(n)$.

12
3.5 Monotonicity with respect to subgroups

Theorem 3.14. Let H be a finitely generated subgroup of a finitely generated group G. Then, for every $p \in [1, \infty]$,

$$D\Lambda^p_H(n) \lesssim D\Lambda^p_G(n).$$

Proof. For $p = \infty$, this follows from Proposition 3.5. The rest of the proof is adapted from [DK18, Theorem 18.100].

Let $S \subset T$ be finite symmetric generating sets for H and G respectively. Let $X = \text{Cay}(H, S)$ and $Y = \text{Cay}(G, T)$.

Let Γ be a finite subgraph of Y with m vertices. Now Γ intersects finitely many cosets of H which we label $g_1 H, \ldots, g_k H$ (note k will depend on Γ). Denote $\Gamma_i = g_i^{-1}(\Gamma \cap g_i Y)$ considered as a subgraph of Y. For each function $f : \Gamma \to [0, \infty)$ let $f_i : \Gamma_i \to [0, \infty)$ be defined by $f_i(x) = f(g_i(x))$. Now

$$\sum_{i=1}^{k} \|\nabla^Y f_i\|_p \leq \|\nabla^X f\|_p = \epsilon_{f,p} \|f\|_p = \epsilon_{f,p} \sum_{i=1}^{k} \|f_i\|_p,$$

for some $\epsilon_{f,p}$. Therefore, there is some i such that

$$\|\nabla^Y f_i\|_p \leq \epsilon_{f,p} \|f_i\|_p.$$

Now if $f|_{\partial \Gamma} \equiv 0$ then $f_i|_{\partial \Gamma} \equiv 0$, so $Dh^p_X(\Gamma_i) \leq \epsilon_{f,p}$. It is immediate that $|\Gamma_i| \leq m$, by Lemma 3.2 we see that $Dh^p_X(\Gamma') \leq \epsilon_{f,p}$ for any $\Gamma' \leq Y$ which contains Γ_i.

Since, by definition, $Dh^p_Y(\Gamma) = \inf \{ \epsilon_{f,p} : f : V \Gamma \to [0, \infty), f|_{\partial \Gamma} \equiv 0 \}$ we have that for every $\Gamma \leq Y$ with $|\Gamma| = m$ there is some $\Gamma' \leq X$ with $|\Gamma'| = m$ and $Dh^p_X(\Gamma') \leq Dh^p_Y(\Gamma)$. Thus

$$D\Lambda^p_X(n) \leq D\Lambda^p_Y(n). \qedhere$$

3.6 Controlled Følner pairs

Let us recall the definition.

Definition 3.15. [Tes11, Definition 4.8] Let X be a graph of bounded degree. We say a family of pairs of finite subsets of VX $(H_m, H'_m)_{m \in \mathbb{N}}$ is a controlled sequence of Følner pairs if there exists a constant $C \geq 1$ such that

- $N_m(H_m) = \{ x \in VX : d(x, H_m) \leq m \} \subseteq H'_m$,
- $|H'_m| \leq C |H_m|$,
- $\text{diam}(H'_m) \leq C m$.

Proposition 3.16. Let G be a finitely generated group which admits a controlled sequence of Følner pairs. Then for all $p \in [1, \infty]$,

$$D\Lambda^p_G(n) \lesssim \frac{n}{\kappa(n)}.$$ (8)
Proof. For each m consider the function $f : H_m' \to [0, \infty)$ given by $f(v) = \max \{0, m - d_X(v, H_m)\}$. It is clear that $f|_{\partial X H_m} \equiv 0$, and (for $p \in [1, \infty)$)

$$Dh_p(H_m') \leq \frac{\|\nabla f\|_p}{\|f\|_p} \leq \frac{2 \|H_m'\|^\frac{1}{p}}{\|H_m\|^\frac{1}{p} m} \leq \frac{2C_1^\frac{1}{p}}{m},$$

while for $p = \infty$ we immediately have $Dh_\infty(H_m') \leq \frac{2}{m}$.

Now for each n choose m maximal so that $|H_m'| \leq n$ and let Γ be any n-vertex subgraph of X such that $H_m' \subseteq \text{VT}$. By Lemma 3.2 $Dh_p(\Gamma) \leq \frac{2C_1^\frac{1}{p}}{m}$, hence

$$D\Lambda^p_X(n) \leq \frac{2C_1^\frac{1}{p} n}{m} \lesssim \frac{n}{\kappa(n)}.$$

Let us justify the final inequality. Define $b_m = |B(1, m)|$. Now $b_m \leq |H_m'| \leq n < |H_{m+1}'| \leq b_{C(m+1)}$. Hence $m \leq \kappa(n) \leq C(m+1)$.

References

[As82] Patrice Assouad. Sur la distance de Nagata. C. R. Acad. Sci. Paris Sér. I Math., 294(1):31–34, 1982.

[BST12] Itai Benjamini, Oded Schramm, and Ádám Timár. On the separation profile of infinite graphs. Groups Geom. Dyn., 6(4):639–658, 2012.

[dCT08] Yves de Cornulier and Romain Tessera. Quasi-isometrically embedded free sub-semigroups. Geom. Topol., 12(1):461–473, 2008.

[Cou00] Thierry Coulhon. Random walks and geometry on infinite graphs. Lecture notes on analysis in metric spaces (Trento, 1999):5–36, 2000.

[CSC93] Thierry Coulhon and Laurent Saloff-Coste. Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoam. 9(2):293–314, 1993.

[DK18] Cornelia Drutu and Michael Kapovich. Geometric Group Theory. American Mathematical Society Colloquium Publications, 63, 2018.

[Ers03] Anna Erschler. On isoperimetric profiles of finitely generated groups. Geom. Dedicata, 100:157–171, 2003.

[Ers06] Anna Erschler. Piecewise automatic groups. Duke Math. J., 134(3):591–613, 2006.

[Gri14] Rostislav Grigorchuk. Milnor’s problem on the growth of groups and its consequences. Frontiers in complex dynamics (Princeton Math. Ser. 51):705–773, 2014.

[HM19] David Hume and John M. Mackay. Poorly connected groups. Preprint available from arXiv:1904.04639.
[HMT19] David Hume, John M. Mackay, and Romain Tessera. Poincaré profiles of groups and spaces. To appear in Rev. Mat. Iberoam. Preprint available from arXiv:1707.02151.

[HMT] David Hume, John M. Mackay, and Romain Tessera. Coarse geometry of unimodular Lie groups. In preparation, provisional title.

[Mat97] J. Matoušek. On embedding expanders into l_p spaces. Israel J. Math., 102:189–197, 1997.

[Now07] Piotr W. Nowak. On exactness and isoperimetric profiles of discrete groups. J. Funct. Anal., 243(1):323–344, 2007.

[Tes11] Romain Tessera. Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Comment. Math. Helv., 86(3):499–535, 2011.

[Ver82] Anatoly M. Vershik. Amenability and approximation of infinite groups. Selecta Math. Soviet. 2(4):331–330, 1982.