High prevalence and low awareness of hyperuricemia in hypertensive patients among adults aged 50–79 years in Southwest China

Yang Zhang1, Feng-Qin Nie2†, Xiao-Bo Huang1†, Weiwei Tang3, Rong Hu4, Wen-Qiang Zhang5, Jian-Xiong Liu1, Rong-Hua Xu6, Ya Liu7, Dong Wei8*, Tzung-Dau Wang9* and Xu Fan10*

Abstract

Introduction: This study was aimed to assess the prevalence of hyperuricemia and its associated risk factors among hypertensive patients in Southwest China.

Methods: From September 2013 to March 2014, a multistage, stratified sampling was conducted on 3505 hypertensive people aged 50–79 years who lived in urban communities within Chengdu and Chongqing, using a questionnaire and performing physical and biochemical measurements.

Results: In the study population, approximately 18.2% of all hypertensive participants had hyperuricemia (638/3505), with a prevalence rate of 21.5% in men and 16.2% in women (p < 0.05). Multivariate logistic regression analysis showed that aging, without spouse, current drinking, preferring hotpot, hypertriglyceridemia, BMI ≥ 25 kg/m², and central obesity were all positively correlated with hyperuricemia, whereas female gender was negatively correlated with hyperuricemia. The prevalence of hyperuricemia among hypertensive patients in urban adults aged 50–79 years in southwestern China was high, while levels of awareness were extremely low.

Discussion: Improved hyperuricemia health knowledge should be delivered to improve public awareness of the disease and it may need aggressive strategies aiming at the prevention and treatment of hyperuricemia. It is may necessary to encourage people to check blood uric acid levels when they first time to be diagnosed with hypertension, especially in the elderly.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
national cross-sectional survey among Chinese adults in
2009–2010, the prevalence of hyperuricemia was 8.4%
[8]. One latest meta-analysis indicated that the pooled
prevalence of hyperuricemia was 13.3% in Mainland
China from 2000 to 2014 [7]. Hyperuricemia plays a role
in the development of hypertension [9, 10], and they
often occur together. For the largest developing country-
China, rapid ageing and urbanization are underway [11–
13]. Rapid city development in Chongqing and Chengdu,
their GDP grow up to 1774.1 billion and 1217 billion in
2016, compared to 390.7 billion and 275 billion in 2006
respectively, according to the data revealed in 2106 from
the national bureau of statistics. These are causing the
prevalence of hypertension and hyperuricemia increasing
at an alarming rate in China [7, 8, 14, 15]. Contrary to the
rapid increase in prevalence, the awareness of hyperten-
sion and hyperuricemia remained low. Hyperuricemia
is often asymptomatic and less than one in ten patients
with hyperuricemia presents with gout [7]. Most of
hypertensive patients are asymptomatic. A study investi-
gated urban adults in southwestern China in 2013–2014
showed that the prevalence of hypertension was 38.4%,
of which only 47.9% were aware of their hypertension,
40.1% were undergoing antihypertensive treatment, and
just 10.3% achieved BP control [16]. Both hypertension
and hyperuricemia are independent risk factors for car-
diovascular diseases, and when combined there was an
escalation of risk. China is the world’s largest developing
country, with a vast territory and many different ethnic
groups, the economic development varies greatly among
different regions. However, epidemiological investiga-
tions of the prevalence of hyperuricemia in hypertensive
patients in the southwestern region are lacking. In this
study, we aimed to assess the prevalence of hyperurice-
mia among hypertensive patients, aged 50–79 years, in
Southwest China and its associated risk factors.

Materials and methods
Study population
From September 2013 to March 2014, a multistage,
stratified sampling was conducted on 3505 people aged
50–79 years who lived in urban communities within
Chengdu and Chongqing, using a questionnaire and per-
forming physical and biochemical measurements. During
the first phase of this study, the Yubei and Jiangbei dis-
tricts were randomly selected for Chongqing, and the Jin-
jiang, Longquan and Chenghua districts were randomly
selected from the urban area of Chengdu. During the sec-
dond phase, a random subdistrict was selected from each
major district, and during the third stage, one commu-
nity was randomly selected from each subdistrict, result-
ing in a sample consisting of five random communities.

Inclusions and exclusions
Residents aged 50–79 years who had lived in the
selected communities for more than five years and
whose SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg, and/
or being diagnosed with hypertension and currently
under antihypertensive drug treatment, were included
in the study. People with a history of mental illness,
malignancies, renal failure requiring dialysis, or who
refused to participate in this inquiry were excluded.
From September 2013 to March 2014, 3505 patients
were included in the final analysis.

Data collection
More than 30 investigators were trained for data col-
lection. All subjects filled out the same onsite ques-
tionnaire, according to the cardiovascular survey
methods set out by the World Health Organization,
which included demographic characteristics; lifestyle
risk factors; personal and family histories; height,
weight, WC, and blood pressure measurements [17].
The questionnaire also included the level of aware-
ness of hyperuricemia; and type of treatment. BMI was
calculated as weight (kg) divided by height (meters)
squared, and when measuring height and weight, sub-
jects were required to be barefoot and to be wearing
only lightweight clothing. Investigators measured the
minimum circumference between the inferior margin
of the ribcage and the crest of the iliac to obtain WC
measurements [18]. Patients should be seated comfort-
ably in a quiet environment for 15 min before begin-
ning BP measurements, subjects were told not to drink
coffee, tea, or alcohol and to refrain from smoking or
exercising. Two BP measurements were made on the
right arm with participants in a seated position by
using an automated BP monitoring device (Omron),
10 min apart, and additional measurements only if the
two readings differ by > 10 mmHg. BP is recorded as the
average of the two BP readings.

Blood sample collection and laboratory tests
Venous blood was drawn after 12 h of fasting. Blood
glucose, lipids, and uric acid (UA) levels were assessed
in all blood samples. Patients were tested using the oral
glucose tolerance test (OGTT), wherein 75 g of glucose
was dissolved in 300 ml of warm water and was admin-
istered orally within five minutes, and venous blood was
drawn two hours later. The total cholesterol (TC), tri-
glycerides (TG), and blood glucose levels were detected
by enzymatic methods. High-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-
C) levels were measured using a homogeneous method.
Serum UA was measured by the phosphotungstic acid method.

Diagnostic standards

According to the recommendations from 2018 European Society of Cardiology (ESC) and the European Society of Hypertension (ESH) Guidelines, high blood pressure was defined as an SBP \(\geq 140 \) mm Hg and/or a DBP \(\geq 90 \) mm Hg and/or a diagnosis of hypertension currently treated by antihypertensive drugs [1]. Hyperuricemia was defined as serum level of uric acid > 420 μmol/L (7.0 mg/dL) for men and > 360 μmol/L (6.0 mg/dL) for women [19, 20]. DM was defined as a fasting plasma glucose (FPG) level \(\geq 7.0 \) mmol/L, 2-h postprandial glucose (2-hPG) level \(\geq 11.1 \) mmol/L, or a previous clinical diagnosis [21]. According to the criteria of the NCEP Adult Treatment Panel III report, hypertriglyceridemia was defined as a TG level \(\geq 1.7 \) mmol/L, high LDL-cholesterolemia was defined as a LDL-C level \(\geq 3.4 \) mmol/L, hypercholesterolemia was defined as a TC level \(\geq 5.2 \) mmol/L [22]. Overweight was defined as a BMI of 25.0–29.9 kg/m², and obesity was defined as a BMI of 30.0 kg/m² or more [23]. Central obesity was defined as a WC of 90 cm or more in men and of 80 cm or more in women [24]. A history of smoking was defined as smoking at least once per day for more than a year, and currently having smoked or quit smoking for less than 3 years. A history of drinking was defined as drinking at least once a week over a year, and currently having drunk or quit drinking for less than 3 years. The family history of hypertension was defined as immediate family members having hypertension. The family history of DM was defined as immediate family members having DM. Physical exercise was defined as having at least one exercise session per week.

Statistical analysis

EpiData 3.02 database software was used to record data from the questionnaires. Data input was completed by two researchers, who also performed data checking and correction, and data processing and analysis were carried out using the SAS 9.3 software (Institute Inc. SAS, Cary, NC, USA). Qualitative data were compared using Chi-square test. Quantitative data were compared using the t-test. The Chi-square linear trend test was used to detect the trend in the prevalence of hypertension with hyperuricemia in individuals in association with their age and BMI. Logistic regression was used to explore the potential risk factors for hypertension with hyperuricemia. A \(P < 0.05 \) was considered as significant.

Results

The basic characteristics of the study population are shown in Table 1. In this study, 3505 hypertensive patients aged 50–79 years in Southwest were included, among whom 1338 were men and 2167 were women, with a mean age of 62.8 ± 7.6 years, and the mean serum

Table 1	Baseline characteristics of the hypertensive population			
Groups	**Overall** (n = 3505)	**Male** (n = 1338)	**Female** (n = 2167)	**P values**
Age, mean (SD)	62.8 (7.6)	63.7 (7.4)	62.3 (7.8)	0.000
Current smoking (%)	21.1	49.6	3.5	0.000
Current drinking (%)	17.0	37.9	4.0	0.000
Education level high school or above (%)	17.7	29.8	10.2	0.000
Income 2000 Yuan/month or above (%)	18.6	24.4	14.9	0.000
Physical exercise (%)	62.8	64.8	61.6	0.06
Family history of hypertension (%)	24.1	25.6	23.1	0.084
Systolic pressure, mmHg, mean (SD)	170 (21.3)	171.3 (21.7)	169.5 (21.1)	0.102
Diastolic pressure/mmHg, mean (SD)	97.3 (18.6)	100.3 (21.9)	96 (16.7)	0.000
Heart rate/min, mean (SD)	82.1 (31.4)	81.8 (34.7)	82.3 (29.2)	0.639
TC, mmol/L, mean (SD)	4.7 (0.9)	4.6 (0.9)	4.9 (0.9)	0.000
HDL-C, mmol/L, mean (SD)	1.4 (0.3)	1.3 (0.3)	1.4 (0.3)	0.000
LDL-C, mmol/L, mean (SD)	2.6 (0.8)	2.5 (0.8)	2.7 (0.8)	0.000
TG, mmol/L, mean (SD)	1.8 (1.4)	1.7 (1.3)	1.9 (1.5)	0.000
FPG, mmol/L, mean (SD)	6 (2)	5.9 (1.9)	6.1 (2)	0.022
2hPG, mmol/L, mean (SD)	9 (4.1)	8.7 (3.8)	9.2 (4.2)	0.001
Uric acid, mmol/L, mean (SD)	309.3 (84.4)	352.4 (81.4)	283.2 (75)	0.000
Waist circumference, cm, mean (SD)	85.9 (27.8)	87.8 (43.1)	84.7 (9.9)	0.009
BMI, kg/m², mean (SD)	25.1 (8.5)	24.7 (7.5)	25.3 (8.6)	0.022
Uric acid (UA) were 309.3 ± 84.4 μmol/L. Compared to women, men had higher values of UA, age, WC, and DBP, had higher rates of drinking and smoking, and had higher personal monthly incomes and higher education levels (all \(p < 0.05 \)). However, women had higher BMI, TC, TG, HDL-C, LDL-C, FPG, 2-hPG (all \(p < 0.05 \)). There were no differences in SBP, heart rate, physical exercise and family history of hypertension (all \(p > 0.05 \)).

The characteristics of the prevalence of hyperuricemia among hypertensive patients are shown in Figs. 1, 2 and 3. As shown in Fig. 1, approximately 18.2% of all participants had hyperuricemia (638/3505), with a prevalence rate of 21.5% in men and 16.2% in women (\(p < 0.05 \)). As shown in Fig. 2, the prevalence of hyperuricemia increased significant with increasing age in women (\(p \) for trend < 0.05), but not in men. For women in the age ranges of 50–59, 60–69, 70–79, the prevalence of hyperuricemia in hypertensive patients were 12.9%, 16.9% and 21.3% (\(p \) for trend < 0.05), respectively. As shown in Fig. 3, the prevalence of hyperuricemia increased with BMI in both sexes (\(p \) for trend < 0.05). In the BMI ranges of < 25, 25–29.9, \(\geq 30 \text{ kg/m}^2 \), the prevalence of hyperuricemia in hypertensive patients were 19.9%, 24.7%, 29.9% in men, and 13.8%, 17.8%, 23.5% in women, respectively (\(p < 0.05 \)).

The awareness of hyperuricemia in different groups are shown in Table 2. Among the 638 (18.2%) hyperuricemia participants, 138 (3.9%) patients were previously diagnosed, and 500 (14.3%) were newly diagnosed. This means that 78.4% (500/638) of hyperuricemia patients didn’t aware of their illness. The unawareness rate was higher among women compared to men (81.4% versus 74.7%, \(p < 0.05 \)). The unawareness rate was 84.5% in 50–59 years subgroup, then the rate decreased. In 60–69 years subgroup the unawareness rate was 74.6%, and in 70–79 years subgroup it was 76.0%.

A multivariate logistic regression analysis was performed to identify significant determinants of hyperuricemia among hypertensive population, and the results are shown in Table 3. Multivariate logistic regression analysis showed that aging, without spouse, current drinking, like hotpot, hypertriglyceridemia, BMI \(\geq 25 \), and central obesity were all positively correlated with hyperuricemia, whereas female was negatively correlated with hyperuricemia.
The prevalence of hyperuricemia was lower than that among Chinese adults in 2009–2010, the prevalence of hyperuricemia was 18.2% among hypertensive patients. In a national cross-sectional survey of China from September 2013 to March 2014, the prevalence of hyperuricemia was 8.4% [8], and a latest meta-analysis indicated that the pooled prevalence of hyperuricemia was 13.3% in Mainland China from 2000 to 2014 [7].

The prevalence of hyperuricemia was lower than that in our study, which may be caused by factors like subjects included in this study were urban residents with hypertension and had higher mean age. Both hyperuricemia and hypertension have similar risk factors, such as age, obesity, hypertriglyceridemia and so on [8, 16]. Hence, hypertensive patients may be more likely to have hyperuricemia. Besides, as hyperuricemia was a positive risk factor for the development of hypertension [9, 10], perhaps the prevalence of hyperuricemia was higher in hypertensive patients than in the general population. Among the 638 (18.2%) hyperuricemia participants, only 138 (3.9%) patients were previously diagnosed, and 500 (14.3%) were newly diagnosed. That means 78.4% (500/638) of hyperuricemia patients had not been diagnosed and were not aware of the disease. The 78.4% unawareness rate means extremely low treatment and control rates. It is may necessary to encourage people to check blood uric acid levels when they first time to be diagnosed with hypertension, especially in the elderly.

In accordance with previous studies [5, 7], men had higher prevalence of hyperuricemia than women (21.5% vs 16.2%). Men had much higher rates of current drinking, which had already been identified as a risk factor for hyperuricemia [25, 26]. In our study, the odd ratio of current drinking was 1.34 (P < 0.05). In our study, female was a protective factor of hyperuricemia, this may be explained by the protective effect of estrogen [26]. In accordance with previous studies, age was confirmed as an independent risk factor for hyperuricemia in our study. However, the effect of advanced age on hyperuricemia was different between sexes. The prevalence of hyperuricemia increased significant with increasing age (p < 0.05) in women, but it was not observed in men. This disparity may be largely related to the loss of the uricosuric action of estrogen following menopause [26, 27]. The disparity of hyperuricemia prevalence between sexes seems to narrow with advanced age. But even so, hyperuricemia was still a male-dominant disease as indicated in our study.

Many studies have reported that hypertriglyceridemia, BMI ≥ 25, central obesity were independently risk factors for hyperuricemia [25, 26, 28–31]. In this study, multivariate logistic regression results have further confirmed the association between these metabolic abnormalities and hyperuricemia.

Hotpot is one of the representative cuisines in Chengdu and Chongqing, which is one kind of purine-rich diet, that may account for why it was an independent risk factor for hyperuricemia. The data disclosed that people without spouse was a risk factor for hyperuricemia in hypertensive patients. In geriatric patients with chronic illnesses, many studies stated that people with spouse could improve their medication compliance and quality of life [32–34]. These phenomena may explain that most of the elderly population who have a spouse eat more healthily and exercise more regularly.

Rapidly increasing prevalence in hyperuricemia, with an extremely low awareness and treatment rates, might lead to high incidences of renal failure, stroke and other cardiovascular diseases. It is may necessary to encourage people to check blood uric acid levels when they first time to be diagnosed with hypertension, especially in the elderly.

Several limitations remain. First, this is a cross-sectional study, the results cannot be used to establish a conclusive cause-and-effect relationship between risk factors and hyperuricemia in hypertensive patients. Second, the study was conducted in urban areas of Chongqing and Chengdu; hence, the results may not be representative of the prevalence of hyperuricemia in

Table 3 Logistics regression for hyperuricemia among the hypertensive populations

Variable	Odds ratios (95% CI)	P value
Gender (male)	0.756 (0.602,0.949)	0.016
Female		
Age group (50–59)		
60–69	1.122 (0.911,1.383)	0.278
70–79	1.501 (1.185,1.901)	0.001
Marriage		
Without spouse	1.789 (1.383,2.316)	0.000
Drinking (no)		
Yes	1.342 (1.046,1.721)	0.021
Preferring hotpot (no)		
Yes	1.375 (1.099,1.721)	0.005
Hypertriglyceridemia (no)		
Yes	1.732 (1.409,2.129)	0.000
BMI ≥ 25 (no)		
Yes	1.243 (1.022,1.511)	0.029
Center obesity (no)		
Yes	1.481 (1.162,1.888)	0.002

Discussion

This study assessed the prevalence of and factors related to hyperuricemia among hypertensive population aged 50–79 years, who lived in urban Chengdu and Chongqing, from September 2013 to March 2014. Overall, the prevalence of hyperuricemia was 18.2% among hypertensive population. In a national cross-sectional survey among Chinese adults in 2009–2010, the prevalence of hyperuricemia was 8.4% [8], and a latest meta-analysis indicated that the pooled prevalence of hyperuricemia was 13.3% in Mainland China from 2000 to 2014 [7].

The prevalence of hyperuricemia was lower than that in our study, which may be caused by factors like subjects included in this study were urban residents with hypertension and had higher mean age. Both hyperuricemia and hypertension have similar risk factors, such as age, obesity, hypertriglyceridemia and so on [8, 16]. Hence, hypertensive patients may be more likely to have hyperuricemia. Besides, as hyperuricemia was a positive risk factor for the development of hypertension [9, 10], perhaps the prevalence of hyperuricemia was higher in hypertensive patients than in the general population. Among the 638 (18.2%) hyperuricemia participants, only 138 (3.9%) patients were previously diagnosed, and 500 (14.3%) were newly diagnosed. That means 78.4% (500/638) of hyperuricemia patients had not been diagnosed and were not aware of the disease. The 78.4% unawareness rate means extremely low treatment and control rates. It is may necessary to encourage people to check blood uric acid levels when they first time to be diagnosed with hypertension, especially in the elderly.

In accordance with previous studies [5, 7], men had higher prevalence of hyperuricemia than women (21.5% vs 16.2%). Men had much higher rates of current drinking, which had already been identified as a risk factor for hyperuricemia [25, 26]. In our study, the odd ratio of current drinking was 1.34 (P < 0.05). In our study, female was a protective factor of hyperuricemia, this may be explained by the protective effect of estrogen [26]. In accordance with previous studies, age was confirmed as an independent risk factor for hyperuricemia in our study. However, the effect of advanced age on hyperuricemia was different between sexes. The prevalence of hyperuricemia increased significant with increasing age (p < 0.05) in women, but it was not observed in men. This disparity may be largely related to the loss of the uricosuric action of estrogen following menopause [26, 27]. The disparity of hyperuricemia prevalence between sexes seems to narrow with advanced age. But even so, hyperuricemia was still a male-dominant disease as indicated in our study.

Many studies have reported that hypertriglyceridemia, BMI ≥ 25, central obesity were independently risk factors for hyperuricemia [25, 26, 28–31]. In this study, multivariate logistic regression results have further confirmed the association between these metabolic abnormalities and hyperuricemia.

Hotpot is one of the representative cuisines in Chengdu and Chongqing, which is one kind of purine-rich diet, that may account for why it was an independent risk factor for hyperuricemia. The data disclosed that people without spouse was a risk factor for hyperuricemia in hypertensive patients. In geriatric patients with chronic illnesses, many studies stated that people with spouse could improve their medication compliance and quality of life [32–34]. These phenomena may explain that most of the elderly population who have a spouse eat more healthily and exercise more regularly.

Rapidly increasing prevalence in hyperuricemia, with an extremely low awareness and treatment rates, might lead to high incidences of renal failure, stroke and other cardiovascular diseases. It is may necessary to encourage people to check blood uric acid levels when they first time to be diagnosed with hypertension, especially in the elderly.

Several limitations remain. First, this is a cross-sectional study, the results cannot be used to establish a conclusive cause-and-effect relationship between risk factors and hyperuricemia in hypertensive patients. Second, the study was conducted in urban areas of Chongqing and Chengdu; hence, the results may not be representative of the prevalence of hyperuricemia in
hypertensive patients among rural residents in southwestern China.

Conclusion
The high prevalence of hyperuricemia among hypertensive patients in urban adults aged 50–79 years in southwestern China, but low levels of awareness. Strengthen the public’s understanding of the harm of high uric acid and it is may necessary encourage people to check blood uric acid levels when they first time to be diagnosed hypertension, especially in the elderly. To prevention hyperuricemia, life style should be changed, such as limiting intake purine-rich diet, taking regular physical exercise, limiting alcohol and weight loss.

Acknowledgements
We thanks our logistic support team and all participants involved this study.

Authors contributions
ZY, FQN and XBH collected the raw data, WWT, RH, WQZ, JXL, RHX performed the data analysis, LY, DW, TZW and XF design the study, LY and WD provided the logistic support for this study. All authors read and approved the final manuscript.

Funding
Not available.

Availability of data and materials
The datasets generated and/or analysed during the current study are not publicly available due to the general data accuracy control, but are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The observational study involving human subjects was in accord with the Helsinki Declaration. And all investigations in this study were approved by the ethics committee of Second People’s Hospital of Chengdu, China (No. 2013015).

Consent for publication
The informed consents were obtained from all subjects.

Competing interests
The authors have no conflicts of interest to declare.

Author details
1 Department of Cardiology, Second People’s Hospital of Chengdu, Chengdu, China. 2Department of Endocrinology, The People’s Hospital of Wenjiang, Chengdu, China. 3School of Health Policy and Management, Nanjing Medical University, Nanjing, Jiangsu, China. 4Division of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. 5Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China. 6Stroke Center, Second People’s Hospital of Chengdu, Chengdu, China. 7Department of Geriatrics, Second People’s Hospital of Chengdu, Chengdu, China. 8Department of Endocrinology and Metabolism, Second People’s Hospital of Chengdu, No. 10, Qingyuan South Street, Chengdu 610017, Sichuan Province, China. 9Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhong-Shan South Road, Taipei City 10002, Taiwan, China. 10Department of Public Health, CHENGDU Medical College, Sichuan 610500, China.

References
1. Williams B, Mancia G, Spiering W, Agabiti R, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F; Redon J, Ruijlope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip G, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsoulfis C, Aboyans V, Desormais I. 2018 ESC/ESH Guidelines for the management of arterial hypertension. EUR HEART J. 2018;39(33):3021–104.
2. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(8):441–50.
3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.
4. Wu Y, Hudley R, Li L, Anna V, Xie G, Yao C, Woodward M, Li X, Chalmers J, Gao R, Kong L, Yang X. Prevalence, awareness, treatment, and control of hypertension in China: data from the China National Nutrition and Health Survey 2002. Circulation. 2008;118(25):2679–86.
5. Wang J, Zhang L, Wang F, Liu L, Wang G. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens. 2014;27(11):1355–61.
6. Borghi C, Tykarski A, Widedeka K, Filipiak KJ, Domienik-Karwicz K, Jostka-Jezzorny K, Varga A, Jaguszewski M, Narkiewicz K, Mancia G. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk. Cardiol J. 2018;25(3):545–63.
7. Liu R, Han C, Wu D, Xia X, Gu J, Guan H, Shan Z, Teng W. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:762820.
8. Liu H, Zhang XM, Wang YL, Liu BC. Prevalence of hyperuricemia among Chinese adults: a national cross-sectional survey using multistage, stratified sampling. J Nephrol. 2014;27(6):653–8.
9. Huang Y, Deng Z, Se Z, Bai Y, Yan C, Zhan Q, Zeng Q, Ouyang P, Dai M, Xu D. Combined impact of risk factors on the subsequent development of hypertension. J Hypertens. 2018.
10. Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, Li J. Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS ONE. 2014;9(12):e114259.
11. Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Voeds W, Teng H, Lopez AD, Murray CJ. Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2013;381(9882):1987–2015.
12. Gong P, Liang S, Carlton EJ, Jiang Q, Wu J, Wang L, Reimais JV. Urbanisation and health in China. Lancet. 2012;379(9818):843–52.
13. Yang G, Kong L, Zhao W, Wan X, Zhai Y, Chen LC, Koplan JP. Emergence of chronic non-communicable diseases in China. Lancet. 2008;372(9650):1697–705.
14. He J, Gui D, Wu X, Reynolds K, Duan X, Yao C, Wang J, Chen CS, Chen J, Wildman RP, Klag MJ, Whelton PK. Major causes of death among men and women in China. N Engl J Med. 2005;353(11):1124–34.
15. Hak AE, Choi HK. Lifestyle and gout. Curr Opin Rheumatol. 2008;20(2):179–86.
16. Huang XB, Zhang Y, Wang TD, Liu JX, Yi Y, Liu Y, Xu RH, Hu YM, Chen M. Prevalence, awareness, treatment, and control of hypertension in south-western China. Sci Rep. 2019;9(1):19098.
17. Rose GA, Blackburn H. Cardiovascular survey methods. Monogr Ser World Health Organ. 1968;56:1–188.
18. Zhang S, Liu X, Yu Y, Hong X, Christoffel KK, Wang B, Tsai HJ, Li Z, Liu X, Tang G, Xing H, Brickman WJ, Zimmerman D, Xu X, Wang X. Genetic and environmental contributions to phenotypic components of metabolic syndrome: a population-based twin study. Obesity (Silver Spring). 2009;17(8):1581–7.
19. Chen J, Chen H, Feng J, Zhang L, Li J, Li R, Wang S, Wilson I, Jones A, Tan Y, Yang F, Huang XF. Association between hyperuricemia and metabolic syndrome in patients suffering from bipolar disorder. BMC Psychiatry. 2018;18(1):390.
20. Oh J, Won HY, Kang SM. Uric acid and cardiovascular risk. N Engl J Med. 2009;360(5):539–40.
21. L’Heveder R, Nolan T. International diabetes federation. Diabetes Res Clin Pract. 2013;101(3):349–51.
22. Expert Panel on Detection, Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–2497.
23. National Institutes of Health. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. Executive Summary of the Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–2497.
24. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.
25. Zhang X, Meng Q, Feng J, Liao H, Shi R, Shi D, Renqian L, Langtai Z, Diao Y, Chen X. The prevalence of hyperuricemia and its correlates in Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China. Lipids Health Dis. 2018;17(1):253.
26. Qiu L, Cheng XQ, Wu J, Liu JT, Xu T, Ding HT, Liu YH, Ge ZM, Wang YJ, Han HJ, Liu J, Zhu GJ. Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces. BMC Public Health. 2013;13:664.
27. Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–62.
28. Shen Y, Wang Y, Chang C, Li S, Li W, Ni B. Prevalence and risk factors associated with hyperuricemia among working population at high altitudes: a cross-sectional study in Western China. Clin Rheumatol. 2019;38(5):1375–84.
29. Wu J, Qiu L, Cheng XQ, Xu T, Wu W, Zeng XJ, Ye YC, Guo XZ, Cheng Q, Liu Q, Liu L, Xu CL, Zhu GJ. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Sci Rep. 2017;7(1):5456.
30. Teng F, Zhu R, Zou C, Xue Y, Yang M, Song H, Liang J. Interaction between serum uric acid and triglycerides in relation to blood pressure. J Hum Hypertens. 2011;25(11):686–91.
31. Kaplan NM, Opie LH. Controversies in hypertension. Lancet. 2006;367(9505):168–76.
32. Shah VR, Christian DS, Prajapati AC, Patel MM, Sonaliya KN. Quality of life among elderly population residing in urban field practice area of a tertiary care institute of Ahmedabad city, Gujarat. J Family Med Prim Care. 2017;6(1):101–5.
33. Shruthi R, Jyothi R, Pundarikaksha HP, Nagesh GN, Tushar TJ. A study of medication compliance in geriatric patients with chronic illnesses at a tertiary care hospital. J Clin Diagn Res. 2016;10(12):C40–3.
34. Han MA, Ryu SY, Park J, Kang MG, Park JK, Kim KS. Health-related quality of life assessment by the EuroQol-5D in some rural adults. J Prev Med Public Health. 2008;41(3):173–80.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.