New insights on the Dynamic Cellular Metabolism

Ildefonso M. De la Fuente 1,2

1 Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain.
2 Department of Mathematics, University of the Basque Country, UPV/EHU, Leioa. Spain.

Keywords: Systems biology, metabolic networks, systemic metabolism, Hopfield dynamics, dissipative processes, self-organization.

Corresponding Author:
Ildefonso Mtz. de la Fuente Mtz.
Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC,
Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento s/n.
18016 Granada. ESPAÑA.
E-Mail: mtpmadei@ehu.es
Tel.: +34- 958-18-16-21; Fax: +34- 958-18-16-32.
Abstract

A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes) and the enzymatic covalent modifications of determined molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
1. Enzymatic self-organizations

1.1 Multienzymatic complexes
Living cells are essentially highly evolved dynamic metabolic reactors, in which the more complex known molecules are synthesized and destroyed by means of interrelated enzymatic processes, densely integrated in modular networks that shape one of the most complex dynamic systems in nature [De la Fuente, 2014]. From a functional point of view, the enzymes are the main molecules of this amazing biochemical reactor. They are responsible for almost all the biomolecular transformations, which, when globally considered, are called cellular metabolism. Most enzymes are proteins, but a few RNA molecules called ribozymes, also manifest catalytic activity. How the enzymes are organized under the complex conditions prevailing inside the cell is a crucial issue for the understanding of the fundamental functional architecture of cellular life. For many years, it has been assumed that enzymes work in an isolated way. However, intensive studies of protein-protein interactions have shown that the internal cellular medium is an assembly of supra-molecular protein complexes [Gavin and Superti-Furga, 2003; Segura et al., 2010; Völkel et al., 2010; Ramisetty and Washburn, 2011], where homologous or heterologous protein-protein interactions are the rule [Pang et al., 2008]. Concretely, analyses of the proteome of *Saccharomyces cerevisiae* have shown that at least 83% of proteins form complexes comprised by two to eighty-three proteins [Gavin et al., 2002]. This kind of associative organization occurs in all sorts of cells, both eukaryotes and prokaryotes [Bobik, 2006; Ho et al., 2002; Ito et al., 2001; Sutter et al., 2008; Uetz et al., 2000; Yeates et al., 2008]. Multienzymatic associations forming complexes may allow for substrate channelling, i.e. direct transfer of intermediate metabolites from the active site of one enzyme to the next without prior diffusion into the bulk medium. Metabolic channelling decreases the transit time of reaction substrates, thus increasing the speed and efficiency of catalysis by preventing delays due to diffusion of reaction intermediates and their eventual loss [Clegg and Jackson, 1990; Ovadi and Srere, 2000; Jorgensen et al., 2005; Jovanović et al., 2007]. Substrate channelling may also occur within channels or on the electrostatic surface of enzymes belonging to complexes [Milani et al., 2003; Ishikawa et al., 2004; Beg et al., 2007].
Additionally, reversible interactions between multienzyme complexes and structural proteins or membranes occur frequently in eukaryotic cells leading to the emergence of metabolic microcompartments [Verkman, 2002; Lunn, 2007; Monge et al., 2008; Monge et al., 2009; Saks et al., 2009]. For instance, the nuclear processes such as DNA replication, DNA repair and transcription of RNAs are organized in dynamic microenvironments that are functionally connected to the ubiquitin–proteasome system [Zhao et al., 2009]. Microcompartmentation also happen in prokaryotes but in this case they consist of protein “shells” composed of thousands of protein subunits [Yeates et al., 2007; Fan et al., 2010]. The dynamics of molecular processes that intervene in microcompartmentation and its maintenance remain unclear.

The concept of multienzymatic associations was first conceived in 1970 by A. M. Kuzin [Kuzin, 1970] and adopted in 1972 by P. A. Srere [Srere, 1972; Srere, 1985] who suggested the use of the term metabolon to refer to an organized multienzyme complex belonging to a metabolic sequence.

A wide variety of studies point to the importance of multienzymatic associations in almost all processes occurring in cells [Veliky et al., 2007; Pflieger et al., 2011] e.g., the purinosome [Zhao et al., 2013], the aminoacyl-tRNA synthetase complex [Bhaskaran and Perona, 2011], the urea cycle [Cheung et al., 1989], the ATP synthasome [Clémençon, 2012], respiratory chain supercomplex [Schägger, 2002; Stuart, 2008; Bultema et al., 2009], the Benson-Calvin cycle [Suss et al., 1993; Graciet et al., 2004], the replisome [Murthy and Pasupathy, 1994], the amino acid catabolism complex [Islam et al., 2007], the cellulosome [Bayer et al., 2004], the sporopollenin biosynthesis complex [Lallemand et al., 2013], the spliceosome [Will and Lührmann, 2011], the 21 S complex of enzymes for DNA synthesis [Li et al., 1993], the TRAMP complex [Jia et al., 2012], the glycogen biosynthesis complex [Wilson et al., 2010], the degradosome [Carpousis, 2002], the vault ribonucleoprotein complex [Zheng et al., 2005], the proteasome [Murata et al., 2009], the fatty acid oxidation complex [Binstock and Schulz, 1981; Parker and Engel, 2000], the ribosome [Lin et al., 2013], the glycolytic enzymes associate [Waingeh et al., 2006; Graham et al., 2007; Forlemu et al., 2011], the protein kinase complexes [Rohila et al., 2009], the photosystem I [Fromme and Mathis, 2004], the Krebs cycle [Barnes and Weitzman, 1986; Beeckmans et al., 1990; Mitchell, 1996], the COP9 signalosome complex [Schwechheimer, 2004], the ski complex [Halbach et al., 2013], the exosome [Makino et al., 2013], the dystrophin-associated protein complex [Ehmsen et al., 2002], the arginine biosynthesis complex [Abadjieva et al., 2001], and the mitotic and cytokinetic protein complexes [D'Avino et al., 2009].
Recently, analysis of conserved sequences in biochemical reactions has shown that the cellular metabolism contains basic functional units which tend to correspond to traditional metabolic pathways. These functional multi-enzymatic units seem to be catalytic building blocks of the cellular metabolism [Kanehisa, 2013; Muto et al., 2013].

Another kind of functional catalytic association is the interactome which refers to protein–protein interaction networks (unlike metabolic pathways, that represent a sequence of molecular interactions leading to a final product) [Van Leene et al., 2007; Bonetta, 2010; Gautam et al., 2012; Sharma et al., 2013].

1.2 Temporal self-organization of multienzymatic processes

The enzymatic organization at the molecular level presents another relevant characteristic: the emergence of dissipative catalytic structures. Experimental observations have shown that the enzymes shape functional catalytic associations in which molecular rhythms and quasi-steady states may spontaneously emerge far from thermodynamic equilibrium. In fact, under cellular conditions, the time evolution of practically all metabolite concentrations is subjected to marked variations, presenting transitions between quasi-steady states and oscillatory behaviors [De la Fuente, 2014]. In the quasi-stationary states the concentration of any given metabolite drifts over time in a non-oscillatory way. Not long ago, the use of nanobiosensors has contributed with real-time measurements of determinate intracellular metabolites in intact cells, which show complex oscillations and quasi-steady states, but importantly, these patterns are never constant [Ozalp et al., 2010].

Metabolic rhythms constitute a genuine manifestation of the dissipative self-organization in the enzymatic activities of cell. In general terms, self-organization can be defined as the spontaneous emergence of macroscopic non-equilibrium dynamic structures, as a result of collective behavior of elements, interacting nonlinearly with each other, to generate a system that increases its structural and functional complexity driven by energy dissipation [Halley and Winkler, 2008; Misteli, 2009; De la Fuente, 2014]. An important ingredient of metabolic self-organization is given by nonlinear interaction between metabolites and enzymes, involving autocatalysis, feed-back processes, and allosteric regulation among others.

It is well established that non-equilibrium states can be a source of order in the sense that the irreversible processes may lead to a new type of dynamic state in which the system becomes ordered in space and time. In fact, the non-linearity associated to the irreversible enzymatic
reactions seems to be an essential mechanism which may allow the dissipative metabolic organization far from thermodynamic equilibrium [Goldbeter, 2002; Goldbeter, 2007]. Self-organization is based on the concept of dissipative structures, and its theoretical roots can be traced back to the Nobel Prize in Chemistry Ilya Prigogine [Nicolis and Prigogine, 1977].

There exist different kinds of metabolic dissipative structures in cellular conditions, mainly oscillations in the metabolite concentrations, molecular circadian rhythms and spatial biochemical waves.

During the last four decades, extensive studies of biochemical dynamics both in prokaryotic and eukaryotic cells have revealed that oscillations (temporal self-organizations) exist in most of the fundamental metabolic processes. For instance, specific molecular oscillations were reported to occur in: free fatty acids [Getty-Kaushik et al., 2005], NAD(P)H concentration [Rosenspire et al., 2001], biosynthesis of phospholipids [Marquez et al., 2004], cyclic AMP concentration [Holz et al., 2008], ATP [Ainscow et al., 2002] and other adenine nucleotide levels [Zhaojun et al., 2004], intracellular glutathione concentration [Lloyd and Murray, 2005], actin polymerization [Rengan and Omann, 1999], ERK/MAPK metabolism [Shankaran et al., 2009], mRNA levels [Zhaojun et al., 2004], intracellular free amino acid pools [Hans et al., 2003], cytokinins [Hartig and Beck, 2005], cyclins [Hungerbuehler et al., 2007], transcription of cyclins [Shaul et al., 1996], gene expression [Chabot et al., 2007; Tian et al., 2005; Tonozuka et al., 2001; Klevecz et al., 2004], microtubule polymerization [Lange et al., 1988], membrane receptor activities [Placantonakis and Welsh, 2001], membrane potential [De Forest and Wheeler, 1999], intracellular pH [Sánchez-Armáss et al., 2006], respiratory metabolism [Lloyd et al., 2002], glycolysis [Dano et al., 1999], intracellular calcium concentration [Ishii et al., 2006], metabolism of carbohydrates [Jules et al., 2005], beta-oxidation of fatty acids [Getty et al., 2000], metabolism of mRNA [Klevecz and Murray, 2001], tRNA [Brodsky et al., 1992], proteolysis [Kindzelskii et al., 1998], urea cycle [Fuentes et al., 1994], Krebs cycle [Wittmann et al., 2005], mitochondrial metabolic processes [Aon et al., 2008], nuclear translocation of the transcription factor [Garmendia-Torres et al., 2007], amino acid transports [Barril and Potter, 1968], peroxidase-oxidase reactions [Møller et al., 1998], protein kinase activities [Chiam and Rajagopal, 2007] and photosynthetic reactions [Smrcinová et al., 1998].

Experimental observations performed in S. cerevisae during continuous culture have shown that most of transcriptome and the metabolome exhibit oscillatory dynamics [Klevecz et al.,
2004; Murray et al., 2007]. In some studies, it has been observed that at least 60% of all
gene expression exhibit oscillations with an approximate period of 300 min [Tu et al., 2005].
Moreover, other studies have shown that the entire transcriptome exhibits low-amplitude
oscillatory behavior [Lloyd and Murray, 2006] and this phenomenon has been described as a
genome-wide oscillation [Klevecz et al., 2004, Lloyd and Murray, 2005; Oliva et al., 2005;
Tu et al., 2005; Lloyd and Murray; 2006, Murray et al., 2007].
Evidence that cells exhibit multi-oscillatory metabolic processes with fractal properties has
also been reported. This dynamic behavior appears to be consistent with scale-free dynamics
spanning a wide range of frequencies of at least three orders of magnitude [Aon et al., 2008].
The temporal organization of the metabolic processes in terms of rhythmic phenomena spans
periods ranging from milliseconds [Aon et al., 2006], to seconds [Roussel et al., 2006],
minutes [Berridge and Galione, 1988; Chance et al., 1973] and hours [Brodsky, 2006].
Oscillatory behavior from simple patterns to complex temporal structures [MacDonald et al.,
2003], including bursting oscillations, with one large spike and series of secondary
oscillations [Dekhuijzen and Bagust, 1996], have often been observed.
Multiple autonomous oscillatory behaviors emerge simultaneously in the cell, so that the
whole metabolism resembles a complex multi-oscillator super-system [Lloyd and Murray,
2005; Lloyd and Murray, 2006; Murray et al., 2007; Aon et al., 2008; Sasidharan et al.,
2012; Amariei et al., 2014; De la Fuente et al., 2014].
Numerous mathematical studies on temporal metabolic rhythms have contributed to a better
understanding of the self-organized enzymatic functionality in cellular conditions [Boiteux
et al., 1980; Tyson, 1991; De la Fuente et al., 1996; Heinrich and Schuster 1996; De la
Fuente et al., 1999; Novak et al., 2007; Zhou et al., 2009; Goldbeter, 2013].
The dissipative self-organization at the enzymatic level presents other kinds of emergent
dynamic structures as, for instance, circadian rhythms [Schibler and Sassone-Corsi, 2002;
Cardone et al., 2005; De la Fuente, 2010] and spatial biochemical waves [Petty and
Kindzelskii, 2001; Bernardinelli et al., 2004; Asano et al., 2008; De la Fuente, 2010].
Metabolic rhythms constitute one of the most genuine properties of multienzymatic
dynamics. The conditions required for the emergence and sustainability of these rhythms,
and how they are regulated, represent a biological problem of the highest significance.
However, in spite of its physiological importance, many aspects of the cellular dissipative
structures are still poorly understood and thus deserve further attention.
1.3 Dissipative multienzymatic complexes: Metabolic Subsystems

Self-organized multienzymatic complexes can be viewed as dissipative structures in which molecular rhythms and functional integrative processes can emerge, increasing the efficiency and control of the biochemical reactions involved [De la Fuente, 2010; De la Fuente and Cortes, 2012]. This concept was conceived in 1999, being suggested the use of the term *Metabolic Subsystem* to refer to a dissipatively structured enzymatic set in which molecular oscillations and steady state patterns may emerge spontaneously [De la Fuente et al., 1999].

Thermodynamically, metabolic subsystems represent advantageous biochemical organizations, forming unique, well-defined autonomous dynamic systems, in which the catalytic activity is autonomous with respect to the other enzymatic associations. Therefore, each self-organized enzymatic set shapes a catalytic entity as a whole and carry out its activities relatively independently of others [De la Fuente, 2010; De la Fuente, 2014].

The presence of some regulatory proteins (enzymes of both allosteric and covalent modulation) in each metabolic subsystem makes possible the sophisticated interconnections among them. As a result of the variable combinations in the different input conditions (substrate fluxes, allosteric signals, specific post-translational modulations, etc.) a rich variety of dynamic patterns emerge in each metabolic subsystem, which correspond to distinct catalytic activity regimes [De la Fuente et al., 2013; De la Fuente, 2014]. This huge variety of catalytic patterns is a sine qua non condition for the complex information properties (with capacity to store functional catalytic patterns) that can emerge in the cellular metabolic networks (see Section Three for more details).

Metabolic subsystems represent highly efficient nanomachines that can perform autonomous and discrete biological functions, allowing the structural and functional dynamic organization of the cell.

Associations between metabolic subsystems can form higher level complex molecular organizations, as for example it occurs with Intracellular Energetic Units (ICEU) [Saks et al., 2006] and synaptosomes [Monge et al., 2008].

In essence, metabolic subsystems are self-organized biochemical machines which seem to constitute a fundamental and elemental catalytic unit of the cellular biochemical reactor [De la Fuente, 2014].
2. Functional organization of enzymes in metabolic networks

2.1 Metabolic functionality
All physiological processes rely on metabolic functionality, which is a key element to understanding the dynamic principles of cellular life at all levels of its biochemical organization [Noble et al., 2014].
Enzymatic activity depends on different factors, mainly substrate concentration, temperature, pH, enzyme concentration and the presence of any inhibitors or activators. When an enzymatic system operates sufficiently far from equilibrium, oscillatory catalytic patterns can emerge. Such dynamic behaviors find their roots in the non-linear regulatory processes, e.g., feedback loops, cooperativity and stoichiometric autocatalysis [Goldbeter, 2002].
In addition, due to the collective interactions under cellular conditions, substrate fluxes and regulatory signals shape complex topological structures in which the metabolite concentration is continuously changing over time because of the dynamics that emerge in the catalytic networks [De la Fuente, 2014]. These collective enzymatic connectivities make the rate at which enzymatic reactions proceed highly complex. As a consequence, the functional architecture of the cell is the result of all these different factors, particularly of the complex dynamic interactions between enzymatic processes integrated in the biochemical networks.
In brief, metabolic functionality at a systemic level prominently depends on the collective architecture (structural and functional) of the catalytic reactions, which is defined by the two essential principles that link the different modes of enzymatic connectivity: the metabolic segregation and the metabolic integration.

2.2 Metabolic segregation
The separation of metabolic tasks and catalytic roles demands that the enzymes with correlated biochemical activities are grouped together. As a consequence, the entire metabolism is functionally segregated at multiple levels of specialization (e.g., the signal transduction, the oxidative phosphorylation, the lysosomal metabolic activity, etc.), originating different kinds of specific modular structures.
A metabolic module can be considered as a discrete functional entity, which performs relatively autonomous processes with specific and coherent dynamic activities [Hartwell et al., 1999].

A wide variety of studies have shown that the cellular metabolic networks are organized in a specialized modular fashion, which constitutes a defining characteristic of the metabolic organization in the cell [Ravasz et al., 2002; Ravasz, 2009; Nurse, 2008; Hao et al., 2012; Kaltenbach and Stelling, 2012; Geryk and Slanina, 2013].

Modular segregations have been observed in all main physiological processes, e.g., the enzymatic organization of metabolic pathways [Muto et al., 2013], the chaperone activities [Korcsmáros et al., 2007], the chemotaxis [Postma et al., 2004; Shimizu et al., 2010], the apoptosis processes [Harrington et al., 2008], the cell cycle [Boruc et al., 2010; Hsu et al., 2011], the Golgi apparatus [Nakamura et al., 2012], and the kinetochore organization [Petrovic et al., 2014]. Specific modular metabolic networks also participate in the transcriptional system such as the miRNA regulatory networks [Gennarino et al., 2012], the transcription factors networks [Neph et al., 2012], the RNA polymerase complexes [Schubert, 2014], and the mRNA dynamics [Vlasova-St Louis and Bohjanen, 2011]. Metabolic subsystems, i.e., self-organized multienzymatic associations, can be considered as elemental catalytic modules of the cell [De la Fuente et al., 2008, De la Fuente, 2010; De la Fuente, 2014].

Metabolic networks may also contain canonical motifs, which represent recurrent and statistically significant sub-graphs or patterns [Milo et al., 2002; Kashtan and Alon, 2005; Alon, 2007; Masoudi-Nejad et al., 2012]. These sub-graphs that repeat themselves in a specific network are defined by a determinate pattern of interactions, which may reflect particular functional properties but, in contrast with the modules, motifs do not function in isolation [Lacroix et al., 2006].

The functional role played by the specialized metabolic networks has been defined largely by its structural connections. However, at least three main kinds of metabolic connectivity must be considered: the structural connectivity, which is formed by structural molecular links such as substrate fluxes and regulatory signals, the functional connectivity, which describes statistical dependencies (non-causal) between the activity patterns, and the effective connectivity, which rests on the causal effects between different biochemical activities [De la Fuente et al., 2011; De la Fuente et al., 2013].

A number of information-based dynamic tools for the functionality and correlations between biochemical processes have been proposed. However, functional correlations
(functional connectivity) do not imply effective connectivity because most synchronization measures do not distinguish between causal and non-causal interactions. In recent studies, Transfer Entropy (TE) has been proposed to be a rigorous, robust and self-consistent method for the causal quantification of the functional information flow between nonlinear processes (effective connectivity). In fact, TE allows to quantify the reduction in uncertainty that one variable has on its own future when adding another, allowing for a calculation of the functional influence in terms of effective connectivity between two variables [Schreiber, 2000].

The quantitative study of the enzymatic effective connectivity can be considered at different biochemical organization levels, e.g., in a biochemical pathway [De la Fuente and Cortes, 2012] and in a metabolic network [De la Fuente et al., 2011]. For example, in order to investigate the functional structure (both functional and effective connectivity) in a large number of self-organized enzymes, the effective connectivity has been analyzed by means of TE in dissipative metabolic networks (DMNs) under different external conditions [De la Fuente et al., 2011].

Essentially, a DMN is a set of interconnected nodes, each one correspond to a specific metabolic subsystem, which can be considered as elemental self-organized catalytic modules of the cell (see Section One for more details). The DMN’s nodes are interconnected through a complex topological structure (structural connectivity) of substrate fluxes and different regulatory mechanisms: activatory and inhibitory allosteric modulations, and post-translational modulations (PTM or covalent modulation in short). In agreement with experimental observations, the emergent output activity of each enzymatic subsystem in the DMN’s can be either oscillatory or steady state and comprises an infinite number of distinct activity regimes [De la Fuente et al., 2008; De la Fuente et al., 2010; De la Fuente and Cortes, 2013].

The TE analysis in the DMN showed that in addition to the network’s topological structure, characterized by the specific location of enzymatic subsystems, molecular substrate fluxes and regulatory signals, there is another functional structure of biomolecular information flows which is modular, dynamical and able to modify the catalytic activities of all the enzymatic sets. Specifically, certain self-organized enzymatic sets are spontaneously clustered forming functional metabolic sub-networks. Some modules are preserved under different external conditions while others are preserved but with the inverted fluxes and yet other modules emerge only under specific external perturbations. These modules work efficiently: very concrete enzymatic subsystems are
connected with others by means of effective information flows allowing high coordination and precise catalytic regulations. The dynamic changes between the functional modules correspond to metabolic switches, which allow for critical transitions in the enzymatic activities. The coordinated modules by effective connectivity and the functional switches seem to be important regulatory mechanisms that are able to modify the catalytic activity of all the enzymatic sets [De la Fuente et al., 2011].

2.3 Metabolic integration

In addition to the functional segregation, the cellular enzymatic processes exhibit another fundamental principle of metabolic connectivity: the functional integration. Catalytic systems organized into distinct modular networks seem to be integrated, emerging systemic responses from the concerted actions of the specialized metabolic processes [Almaas et al., 2004; Almaas et al., 2005; Yoon et al., 2007; Buescher et al., 2012; San Roman et al., 2014].

Whilst functional segregation expresses the relative autonomy of specialized biochemical networks, metabolic integration is a complementary principle that refers to significant deviations from autonomy of the modular networks, so that the collective catalytic behavior generates coherent global patterns and molecular information that is simultaneously highly diversified and highly integrated [De la Fuente et al., 2011].

Different mechanisms are responsible for establishing functional metabolic integration. Studies with TE in DMNs have shown that the integration of specialized biochemical areas is mediated by effective connectivity processes which lead to the emergence of a systemic functional structure that encompasses the whole metabolic system. This global structure is characterized by a small set of different enzymatic processes always locked into active states (metabolic core) while the rest of the catalytic reactions present on-off dynamics [De la Fuente et al., 2011].

Already in 1999, in an exhaustive analysis with several millions of different DMNs, the emergence of this functional structure at global level was observed for the first time [De la Fuente et al., 1999]. Afterwards, different studies implementing flux balance analysis in experimental data added new evidence of this systemic metabolic structure in the cell by which a small set of enzymatic reactions belonging to different metabolic processes remain active under all investigated growth conditions (metabolic core), and the remaining enzymatic reactions stay only intermittently active. The emergence of the global catalytic structure was verified for *E. coli*, *H. pylori*, and *S. cerevisiae* [Almaas et
al., 2004; Almaas et al., 2005]. In these studies, the reactions present in the metabolic core were also characterized, which seemed to be essential for biomass formation and for ensuring optimal metabolic performance. Likewise, the percentage of enzymatic reactions belonging to the core turned out to be small: 36.2% of all different reactions in *H. pylori*, 11.9% in *E. coli* and 2.8% in *S. cerevisiae*.

Similar results about the size of the metabolic cores have been obtained in extensive numerical studies with DMNs, in which the sizes ranged between 44.6% and 0.7% and their distribution is skewed toward low values since 71% of the studied networks show sizes that range between 7.6% and 0.7%, with a mean of 2% [De la Fuente et al., 2009].

In addition to the emergence of a global metabolic structure [De la Fuente et al., 2008], metabolic analysis implementing flux balance analysis and other studies on effective connectivity in DMNs have shown that two main dynamic mechanisms are involved in the systemic metabolic self-regulation: *flux plasticity* and *structural plasticity* [Almaas et al., 2004, Almaas et al., 2005; De la Fuente et al., 2011]. Flux plasticity represents changes in the intensity of the substrate fluxes. Structural plasticity results in persistent changes in the dynamic structure conformed by the catalytic processes that present on-off and on changing states.

Another mechanism involved in the functional metabolic integration is the energy. Living cells require a permanent generation of energy flow to keep the functionality of their complex metabolic structures, which integrate a large ensemble of modular networks. Practically all bioenergetic processes are coupled with each other via adenosine nucleotides, which are consumed or regenerated by different enzymatic reactions. Moreover, the adenosine nucleotides also act as an allosteric control of numerous regulatory enzymes allowing changes in ATP, ADP and AMP levels to regulate the functional activity of those metabolic subsystems that exhibit this allosteric mechanism.

At a systemic level, the temporal dynamics for the concentrations of adenosine nucleotides seem to be determined by the Adenylate Energy System which represents the synthesis of ATP coupled to energy-consumption processes through a complex network of enzymatic reactions which interconvert ATP, ADP and AMP [De la Fuente et al., 2014].

Experimental studies have shown that the adenosine nucleotide dynamics present complex transitions across time, e.g., the use of nanobiosensors has shown real-time-resolved measurements of intracellular ATP in intact cells. In these experimental observations, the ATP concentration showed a rhythmic behavior and complex quasi
steady-state dynamics with large variations over time but, importantly, the ATP concentration is never constant [Ozalp et al., 2010; Ytting et al., 2012].

The concentration levels of ATP, ADP and AMP roughly reflect the energetic status of the cell, and a determined systemic ratio between them was proposed by Atkinson as the adenylate energy charge (AEC) [Atkinson and Walton, 1967] which is a scalar index ranging between 0 and 1. When all adenine nucleotide pool is in form of AMP, the energy charge is zero, and the system is completely discharged (zero concentrations of ATP and ADP). With only ADP, the energy charge is 0.5. If all adenine nucleotide pool is in form of ATP, the AEC is 1.

Under growth conditions, the organisms seem to maintain their AEC within narrow physiological values (AEC values between 0.7 and 0.95), despite of extremely large fluctuations in the adenine nucleotide concentrations. This systemic physiological phenomenon, constitute a key property of the functional integration of metabolic processes in the cell [De la Fuente et al., 2014].

The main biological significance of the maintained AEC level appears to be the necessity of having the adenylate pool highly phosphorylated keeping the rate of adenylate energy production similar to the rate of adenylate energy expenditure [De la Fuente et al., 2014]. Intensive experimental studies have shown that the physiological AEC ratio is practically preserved in all unicellular organisms, both eukaryotes and prokaryotes. Besides, the ratio is also strictly fulfilled during all the metabolic transformations that occur during the cell cycle, which seems to be a manifestation of the integrative processes of the systemic metabolism [De la Fuente et al., 2014].

Functional specialization and integration are not exclusive; they are two dynamic complementary principles, and the interplay between them seems to be an essential element for the functional collective architecture of the cell systemic metabolism.
3. Metabolic networks and information properties

3.1 Experimental findings of biomolecular information processing in unicellular organisms

A large number of experimental studies have shown that unicellular organisms possess complex behavior only possible if some kind of biomolecular information is stored and processed.

One of the most studied examples of complex systemic behavior in a single cell is *Physarum polycephalum*. This unicellular species, belonging to the *Amoebozoa* phylum, is an important branch of eukaryote evolution, characterized by a large cytoplasm with many nuclei that remain suspended in a single contiguous protoplasmic volume called plasmodium. The body of the plasmodium contains a complex dynamic network of tubular structures by means of which nutrients and biomolecular elements circulate in an effective manner [Shirakawa and Gunji, 2007].

The movement of the plasmodium is termed shuttle streaming, characterized by the rhythmic back-and-forth flow of biomolecular substances. The dynamically reconfiguring network of tubular structures can redirect the flow of protoplasm towards the plasmatic membrane causing the movement of a mass of flowing pseudopods, and as a result, the organism can crawl over the ground at a speed of approximately 1-5cm/h [Kessler, 1982].

The complex protoplasm exhibits rich spatio-temporal oscillatory behavior, and rhythmically synchronized streams with intracellular oscillatory patterns such as the oscillations in ATP concentration, the plasmagel/plasmasol exchange rhythm and the oscillations in the cytoplasmic free calcium level [Ueda et al., 1986].

In the last several years, a number of studies in *Physarum polycephalum* have shown that this cell is able to store information, learn and recall past events. For example:

- This unicellular organism has the ability to find the minimum-length solution between two points in a maze, which is considered cellular information processing [Nakagaki et al., 2000; Nakagaki et al., 2001]; and it has also been verified that the shortest path problem in the maze is a mathematically rigorous solution [Miyaji and Ohnishi, 2008].
- The *Physarum* constructs appropriate networks for maximizing nutrient uptakes, achieving better network configurations than those based on the shortest connections of Steiner’s minimum tree [Nakagaki et al., 2004a; Nakagaki et al., 2004b].
- In particular, high quality solutions for the 8-city travelling salesman problem (TSP), which is known to be NP-hard and hence computationally difficult, have been found by using Physarum Polycephalum [Aono et al., 2011a; Aono et al., 2011b; Zhu et al., 2011].

- Other direct experimental studies evidenced that this kind of amoeba can memorize sequences of periodic environmental changes and recall past events during the adaptation to different stimuli (it can even anticipate a previously applied 1 hour cold-dry pattern) [Saigusa et al., 2008].

- Despite being a single multinucleate cell, the plasmodium can be used to control autonomous robots [Tsuda et al., 2007; Gough et al., 2009].

- This cell is able to form an optimized network closely approaching the purposely designed Tokyo railway system [Tero et al., 2010].

- Furthermore, it has also been verified that the plasmodium can solve complex multiobjective foraging problems [Dussutour et al., 2010; Bonner, 2010; Latty and Beekman, 2011].

- Self-organization, self-optimization and resolution of complex optimization problems by means of adaptive network development also occur in the Physarum Polycephalum [Marwan, 2010].

All these experimental results push forward the need for an intrinsic memory storage mechanism [Marwan, 2010] and a “primitive intelligence” [Nakagaki et al., 2000; Saigusa et al., 2008; Pershin et al., 2009; Nakagaki, 2001; Nakagaki and Guy, 2008]. Many other experimental examples show that other different unicellular organisms have sophisticated behavior including information storage. A pioneer scientist in revealing such behavior was H. S. Jennings, who showed many years ago that a single cell such as Paramecium could have a primitive kind of learning and memory [Jennings, 1905]. Neutrophils also exhibit a rudimentary memory system by which they are able to “recall” past directions [Albrecht and Petty, 1998]. Dictyostelium and Polysphondylium amoebae seem to have a rudimentary memory and they can show long directional persistence (~10 min), being able to remember the last direction in which they turned [Li et al., 2008]. Even individual neurons seem to display short-term memory, and permanent information can be stored when nerve cells in the brain reorganize and strengthen the connections with one another [Sidiropoulou, 2009].

At a molecular level, information processing [Ausländer et al., 2012; Daniel et al., 2013] has been observed in numerous examples, such as the reversible phosphorylation of
proteins [Thomson and Gunawardena, 2009]; the microtubule dynamics [Faber et al., 2006]; the enzymatic processes [Baron et al., 2006; Katz and Privman, 2010]; the redox regulation [Dwivedi and Kemp, 2012]; the transcription processes [Mooney et al., 1998]; the genetic regulatory networks [Qi et al., 2013]; the input signal transductions [Roper, 2007]; the biochemical networks [Bowsher, 2011]; the NF-kappaB dynamics [Tay et al., 2010]; the intracellular signaling reactions [Purvis and Lahav, 2013; Kamimura and Kobayashi, 2012]; the metabolic switches [Ramakrishnan and Bhalla, 2008]; the chemotaxis pathway [Shimizu et al., 2010]; the network motifs [Alon, 2007], and other cellular processes [Ben-Jacob, 2009].

3.2 Quantitative studies for molecular information processing in self-organized enzymatic sets and in dissipative metabolic networks

Metabolic patterns may have information which can be captured by the Transfer Entropy (TE) which allows quantifying biomolecular information flows in bits [Schreiber, 2000]. In 2012, the molecular informative properties of a single self-organized multienzymatic set (a metabolic subsystem) were analyzed \textit{in silico} by using Transfer Entropy for the first time [De la Fuente and Cortes, 2012]. According to this analysis, the information patterns contained in the different substrate fluxes are continually integrated and transformed by the set of enzymes that form part of the metabolic subsystem. The TE analysis showed that in the integrative catalytic processes, a dynamic functional structure for molecular information processing emerges, characterized by changing the informative flows that reflect the modulation of the enzymatic kinetic activities. The level of functional influence in terms of causal interaction between the enzymes is not always the same, but varies depending on the information fluxes and the particular dynamic regime of the catalytic system. The multienzymatic set shapes a functional dynamic structure, able to permanently send biomolecular information between its different enzymatic parts, in such a way that the activity of each enzyme could be considered an information event.

As a result of the overall catalytic process, the enzymatic activities are functionally coordinated, and the metabolic subsystem operates as an information processing system, which at each moment, redefines sets of biochemical instructions that make each enzyme evolve in a particular and precise catalytic pattern.
In terms of information theory, the metabolic subsystem performs three simultaneous functions: signal reception, signal integration, and generation of new molecular information.

In light of this research, the self-organized enzymatic sets seem to represent the most basic units for information processing in the cells [De la Fuente and Cortes, 2012]. On the other hand, when considering the activity of an interrelated set of different metabolic subsystems, a highly parallel, super-complex structure of molecular information processing emerges in the network. This was evidenced in a numerical study of dissipative metabolic networks in which the biomolecular information flows were quantified in bits between the metabolic subsystems by using Transfer Entropy [De la Fuente et al., 2011].

Specifically, the results showed that the network as a whole integrates and transforms the molecular information coming from both the external environment and the individually assembled metabolic subsystems. The basic units of information processing (each self-organized multienzymatic set) work in parallel and coupled with each other, and as a consequence of these collective processes, functional modules, metabolic switches, highly dynamical metabolic synapses and an information processing super-system emerge in the network.

In addition to the topological network structure, characterized by the specific location of each multienzymatic set, molecular substrate fluxes and regulatory signals (mainly allosteric and covalent modulations), a functional network structure of effective connectivity emerges which is dynamic and characterized by having significant variations of biomolecular information flows between the metabolic subsystems.

The dissipative network behaves as a very complex decentralized information processing super-system which generates molecular information flows between the self-organized enzymatic sets, and forces them to be functionally interlocked, i.e., each catalytic set is conditioned to cooperate with others at a precise and specific activity regime in concordance to the activity system as a whole. As a result of the overall functional process, the network defines sets of biochemical instructions at each moment that make every metabolic subsystem evolve with a particular and precise dynamic change of catalytic patterns.

The quantitative analysis also showed that the functional network is able to self-regulate against external perturbations by means of this information processing super-system [De la Fuente et al., 2011].
3.3.1 Dynamic metabolic memories

Memory is a fundamental element for the efficient information processing. Recently, catalytic network dynamics has been numerically analyzed using statistical mechanics tools; in concrete, an equivalent Hopfield network has been obtained using a Boltzmann machine, showing that the enzymatic activities are governed by systemic attractors with the capacity to store functional metabolic patterns. This stored molecular information can be correctly recovered from specific input stimuli [De la Fuente et al., 2013].

In short, the main conclusions of the statistical mechanic analysis were the following:
I. The catalytic dynamics of the dissipative metabolic network are dependent on the Lyapunov function i.e., the energy function of the biochemical system, which is a fundamental element in the regulation of the enzymatic activities.
Starting in any initial state after an external stimulus, and due to the collective enzymatic dynamics, the metabolic network evolves trying to reduce the energy function, which in the absence of noise will decrease in a monotone way until achieving a final system state that is a local minimum of the Lyapunov function. When the biochemical system state reaches a local minimum, it becomes a (locally) stable state for the enzymatic network.
The dissipative metabolic network has multiple stable states, each of which corresponds to a specific global enzymatic pattern of the biochemical system.
II. The enzymatic activities of the metabolic network are governed by systemic attractors, which are locally stable states where all the enzymatic dynamics are stabilized.
The minima of the Lyapunov function corresponds to these emergent systemic attractors, which regulate the metabolic patterns of the subsystems and determine the enzymatic network to operate as an individual, completely integrated system.
The energy function, on which the dynamics of the metabolic network depend, has a complex landscape with multiple attractors (local minima).
III. The emerging systemic attractors correspond with Hopfield-like attractors in which metabolic information patterns can be stored [Hopfield, 1982].
The biochemical information contained in the attractors behaves as a functional metabolic memory i.e., enzymatic activity patterns stored as stable states, which regulate both the permanent catalytic changes in the internal medium, as well as the metabolic responses originated to properly integrate the perturbations coming from the external environment.
When an external stimulus pattern is presented to the system, the network states are driven by the intrinsic enzymatic dynamics towards a determined systemic attractor which corresponds to a set of memorized biochemical patterns.

The formation of the attractor landscape is achieved by metabolic synaptic modifications, i.e., the functional and molecular connections between enzymatic sets, essentially through substrate fluxes, covalent modulations (PTM) and allosteric regulations. These connectivity patterns can be oscillatory or steady states and comprises an infinite number of distinct activity behaviors.

Each biochemical synapse is involved in the storage of the metabolic memory, and the metabolic synaptic plasticity seems to be the basis of the memories stored in the metabolic network.

IV. A key attribute of the analyzed systemic attractors is the presence of “associative memory”. When the metabolic network is stimulated by an input pattern, the enzymatic activities converge to the stored pattern, which most closely resembles the input, i.e. the attractors have associative memory.

The metabolic network attractors seem to store functional enzymatic patterns which can be correctly recovered from specific input patterns. The results explicitly show that there are indeed memory attractors and capacity to retrieve information patterns (from the weights) which are local minima of the catalytic activity in the network.

Thus, if the initial condition of the network dynamics starts within the basin of attraction of such a pattern, the dynamics will converge to the originally stored pattern. As it is well known, this class of “pattern-completion” dynamics has been addressed in Hopfield network studies for years, and it is generally named “associative memory” [Amit, 1989].

3.3.2 The mean field approximation

In the metabolic memory analysis [De la Fuente et al., 2013], a mean field assumption to describe the equivalent-Hopfield network depicting the metabolic dynamics was computed. The results indicate that by the local minima of the metabolic network energy the information can be stored and eventually retrieved; this is what researchers in neural networks studies described as “having associative memory” [Amit, 1989]. Notice that the original dissipative metabolic network can have much more complicated energy landscapes than the ones approached using the mean field solution.

For more details about information encoding and retrieving (associative memory) and the capacity for pattern storage of a metabolic network see Supplementary Material 01.
3.4 Post-translational modifications and metabolic memories

The dynamic of the metabolic synaptic plasticity governed by Hopfield-type attractors is the fundamental element indispensable to store functional metabolic memories in the enzymatic networks.

However, from a bioenergetic point of view, the Hopfield-like metabolic memory is expensive since it requires a permanent activity to maintain the network functionality, expending significant amounts of energy mainly in the form of ATP.

Recent investigations have shown that certain enzymes responsible for post-translational modulation act on multimeric proteins which undergo different modification states that could have slow-relaxation dynamics under specific conditions. The activity of such PTM enzymes depends, in a crucial manner, on the temporal history of the molecular information input they receive, and this information can be stored as a slow relaxation process in which slowness enables long-term maintenance of an embedded state [Hatakeyama and Kaneko, 2014].

This property makes possible an efficient information transfer from the Hopfield-like metabolic dynamics to the enzymes involved in covalent post-translational modulation so that the functional memory can be embedded in multiple stable molecular marks.

The molecular information transfer from the functional metabolic memories to the covalent marks requires a lot less energy than the maintenance of the emergent attractor dynamics in the metabolic networks. Thus, the post-translational modification of proteins seems to represent an essential mechanism for the maintenance of Hopfield-like memories in a structural and energetically efficient way.

PTM is a highly dynamic, essential enzymatic process, which modifies the proteic functionality, reversibly transforming its structure by adding biochemical marks. Consequently, a single protein subjected to PTM may show a broad range of molecular functions and provoke profound physiological effects in cells [Cohen, 2000; Impens et al., 2014].

In fact, PTM is a metabolic mechanism present in all cell types, which can affect the protein structures involved in most cellular processes, e.g., the regulation of the microtubule cytoskeleton [Janke and Bulinski, 2011]; the signal integration [Deribe et al., 2010]; the chromatin regulation [Bannister and Kouzarides, 2011]; the modifications of RNA silencing factors [Heo and Kim, 2009]; the modulation of mitochondrial membrane activities [Distler et al., 2009]; the regulation of different metabolic processes in the
nucleus [Gloire and Piette, 2009]; the changes of cytochrome activity [Aguiar et al., 2005]; the regulation of the mitochondrial translation machinery [Koc and Koc, 2012]; and other modulations of metabolic processes [Running, 2014].

There are different types of PTMs, e.g., phosphorylation, methylation, glycosylation, acetylation, ubiquitination, SUMOylation, etc., and the number and abundance of these modifications is constantly being updated [Khoury et al., 2011].

Protein phosphorylation is the most extensively studied PTM, and the phosphorylation-dephosphorylation mechanism is assumed to take place on a fast time scale in comparison to the protein half-lives. Different sites on the same protein can be consecutively phosphorylated-dephosphorylated: these events are not distributed along the whole protein structure but are instead constrained to sites of high accessibility and structural flexibility [Gnad et al., 2007], which allows molecular information encoding, adding or removing molecular marks [Thomson and Gunawardena, 2009].

While bare DNA encodes 2 bits of information per nucleotide, even in a single protein, reversible chemical modifications occur at multiple sites, allowing the encoding of a potentially large amount of information. A protein with n phosphorylated sites has an exponential number (2^n) of phospho-forms; the number of phosphorylated sites on a protein shows a significant increase from prokaryotes (with $n \leq 7$ sites) to eukaryotes, with examples having $n \geq 150$ sites, implying that a protein can encode a large amount of molecular information as a function of a varying number of covalent phospo-marks [Thomson and Gunawardena, 2009].

The reversible structural changes in regulatory networks of proteins through PTM allow molecular information encoding and complex information processing, which can originate flexibility and adaptive metabolic responses in the cell [Sims and Reinberg, 2008; Sunyer et al., 2008; Thomson and Gunawardena, 2009].

Attractor network dynamics followed by structural modifications of proteins would represent the two stages of the dynamic memory of cellular metabolism. In accordance with both processes, the metabolic memories are derived from continuous changes in the functionality of the network dynamic (due to metabolic synaptic plasticity) linked to structural molecular modifications (covalent marks).
3.5 Examples of post-translational modifications and molecular information storage in the cell

Escherichia coli chemotaxis network represents one of the best studied examples of a biochemical dynamic system with the capacity to store functional information using molecular information processing linked to post-translational modification dynamics [Greenfield et al., 2009; Li and Stock 2009; Tu et al., 2008; Shimizu et al., 2010; Stock and Zhang, 2013].

Bacterial cell swimmers integrate environmental information accurately in order to make proper decisions for their own survival, in such a way that they can move towards favorable sites and away from unfavorable environments by changing their swimming patterns. As a result of the chemotaxis system, the signal transduction process translates information into appropriate motor responses and the bacterial cells traverse gradients of chemical attractants displaying directional sensing and moving in an efficient manner by performing temporal comparisons of ligand concentrations. Thus, the cell detects extracellular chemical gradients and senses very small fractional changes, even at nanomolar concentrations [Sourjik and Berg, 2002; Sourjik and Berg, 2004].

Since the pioneering works by Julius Adler in the 1960’s [Adler, 1966; Adler and Dahl, 1967; Adler and Templeton, 1967] the biochemical mechanisms that underlie sensory-motor regulation in *E. coli* have been extensively investigated and their principal characteristics have been detailed [Baker et al., 2006; Hazelbauer and Falke, 2008]. Membrane receptors responsible for signal transduction assemble into large clusters of interacting proteins, shaping a complex modular network [Greenfield et al., 2009; Hamadeh et al., 2011; Shimizu et al., 2010] with one main feedback loop [Emonet and Cluzel, 2008; Wadhams and Armitage, 2004]. The network consists of several thousands of alpha-helical transmembrane protein fibers that interact with one another forming a cortical structure below the cytoplasmic membrane. The fiber ends that pass through the cytoplasmic membrane interact with a complex layer of sensory receptor domains.

E. coli sensory–motor is functionality regulated by two reversible protein modification processes: phosphorylation and carboxyl methylation. The phosphorylation processes provide a direct connection between sensory receptor complexes and motor responses. The transmembrane protein fibers shape a four-helix bundle with at least eight potentially anionic glutamate side chains that can be either exposed as a minus charge or neutralized by methylation. Each fiber can potentially be in any one of 2^{8} different states of...
modification, and the increments or decrements in attractant concentration produce behavioral responses that lead to changes in the methylation dynamics [Stock and Zhang, 2013].

The dynamic changes in the chemotaxis network functionality provoke specific molecular information processing and, as a consequence, structural molecular modifications in form of methylations, and they are carried out in such a way that the cell can record recent chemical past by using these reversible methylation in determined glutamic acid residues [Li and Stock, 2009].

The dynamic methylation-demethylation patterns linked to information processing serve as a structural functional memory allowing the detection of attractant gradients by comparing current concentrations to those encountered in the past. The carboxyl methylation mechanism stores information concerning the environmental conditions that the bacterium has experienced, and these dynamic patterns of glutamyl modifications act as a structural dynamic memory which allows cells to respond efficiently to continual changes in attractant concentrations [Greenfield et al., 2009; Li and Stock, 2009; Stock and Zhang, 2013].

E. coli chemotaxis network exhibits a rich variety of behavior and dynamic properties such as robustness [Kollmann et al., 2005; Alon et al., 1999; von Dassow et al., 2000], signal amplification [Tu, 2013], molecular information processing [Shimizu et al., 2010], fast response and ultra-sensitive adaptation [Bray et al., 1998; Kollmann et al., 2005; Wadhams and Armitage, 2004; Sourjik, 2004].

The essential components of the *E. coli* chemotaxis system are highly conserved among all motile prokaryotes [Wuichet et al., 2007]. However, many species have chemotaxis networks that are much more complex than that of *E. coli* [Hamadeh et al., 2011]. Although the chemistry of signal transduction in bacterial and vertebrate cells differs substantially, there are numerous fundamental similarities [Stock et al., 2002]. As in prokaryotes, signal transduction in eukaryotic cells generally involves phosphotransfer mechanisms and other post-translational modifications that couple metabolic energy to information processing [Li and Stock, 2009].

In particular, the biochemical systems of molecular information processing linked to post-translational modification dynamics are highly evolved in neuronal cells. Neurons are connected through synapses that undergo long-lasting activity dependent alterations in their transmission efficacy, permitting learning and response to experience. One of the principal means to control synaptic transmission is regulation of
neurotransmitter receptors, especially the AMPA-type glutamate receptors (AMPARs) that represent the main excitatory neurotransmitter receptors in the neurons. The number of AMPA receptors at the synapse is extremely dynamic and strictly regulated through the addition or removal of receptors resulting in long-term synaptic potentiation or depression (LTP or LTD, respectively) [Anggono and Huganir, 2012]. These synaptic plasticity events are thought to underlie information storage. In particular, reversible post-translational modifications of AMPARs, including phosphorylation [Wang et al. 2005], palmitoylation [Hayashi et al., 2005], ubiquitination [Schwarz et al., 2010], SUMOylation [Luo et al., 2013], N-glycosylation [Tucholski et al., 2014] and O-GlcNAcylation [Taylor et al., 2014] are important regulatory mechanisms of synaptic AMPA receptor expression and function.

By controlling the expression and function of AMPARs, these multiple forms of post-translational modifications of AMPA receptors vigorously regulate plasticity events and many important functions linked to molecular information processing, including learning and memory [Takeuchi et al., 2014].

While prevailing models of long-lasting information storage identify mRNA translation as essential for learning and memory in neural cells, there is evidence that memory storage at PTM level can occur in the absence of protein synthesis [Routtenberg and Rekart, 2005; Routtenberg, 2008].

3.6 Long-term and short-term memory

Since the beginning of the neuronal network modeling of associative memory, the connectivity matrix in Hopfield network was assumed to result from a long-term memory learning process, occurring in a much slower time scale than the neuronal dynamics [Willshaw et al., 1969; Willshaw et al., 1970; Amari, 1975; Hopfield, 1982; Amit 1989; Hertz et al., 1991]. Therefore, it is well accepted that the attractors emerging in the neuronal dynamics described by Hopfield networks are the result of a long-term memory process.

Besides, long physiological recordings of neuronal processes exhibit some type of memory structure. Among others, there are at least two commonly used indicators for this kind of memory: the Hurst exponent [Das et al., 2003; De la Fuente et al., 2006] and the presence of long range correlations in the plasticity dynamics for synaptic weights—measured, for instance, with long tails in the synaptic distribution of weights [Barbour et al., 2007]. Several phenomenological models have shown that this persistence in the
dynamics of weights underlying short-term memory, eventually might be translated into a stable long-term memory after memory consolidation [Fusi et al 2005; Mongillo et al., 2008; Itskov et al., 2011; Romani et al., 2013], but the precise mechanisms making this transition possible are not yet well understood.

Long-term correlations (mimicking short-term memory in neuronal systems) have also been analyzed in different metabolic processes not belonging to neuronal cells. One of the most studied is the calcium-activated potassium channels which has been observed in Leydig cells [Varanda et al., 2000; Bandeira et al., 2008], kidney Vero cells [Kazachenko et al., 2007], and human bronchial epithelial cells [Wawrzkiewicz et al., 2012]; moreover, other biochemical processes also present long-term correlation, for instance, the intracellular transport pathway of *Chlamydomonas reinhardtii* [Ludington et al., 2013], the NADPH series of mouse liver cells [Ramanujan et al., 2006], the mitochondrial membrane potential of cardiomyocytes [Aon et al., 2008], and different biochemical numerical studies on enzymatic pathways and dissipative metabolic networks [De la Fuente et al., 1998a; De la Fuente et al., 1998b; De la Fuente et al., 1999].

These studies support that, at the molecular level, metabolic memories seem to exhibit both long-term and short-term memory, but this issue requires further research.
4. The System CMS-DNA

4.1 Elements of the Cellular Metabolic Structure

Metabolism is the largest known source of complexity in nature. The cellular enzymatic processes shape a highly structured dynamic super-system with different levels of organization, which have a large number of adaptive molecular mechanisms acquired throughout biological evolution.

On the way to structural and functional complexity, metabolic evolution has given rise to a great diversity of biochemical organizational forms, ranging from the sophisticated bacterial metabolisms, through the complex enzymatic networks belonging to protists, to the extraordinary structures and processes derived from multicellular eukaryotic organizations such as embryogenesis or the neural networks of higher mammals. The millions of living metabolic species represent the inexhaustible source of complexity developed by the dynamic forces that structure the metabolic systems.

Enzymes are the fundamental molecules for metabolic life. At a basic level, they can shape functional associations dissipatively structured (metabolic subsystems), which seem to constitute elemental catalytic units of the cell reactor (Section One).

A rich variety of dynamic catalytic patterns emerge in each metabolic subsystem (including oscillatory and quasi-steady states), which correspond to distinct activity regimes (Section One). Catalytic changes allow the metabolic synapses, i.e., the structural and functional dynamic connections between enzymatic sets. As a result of the flexible activity regimes, flux plasticity and structural plasticity also appear in the cell (Section Two).

At a superior level, enzymatic processes are organized into distinct modular metabolic networks, which work with relative independence of the global system. In turn, the whole metabolism seems to be functionally integrated, generating systemic responses from the concerted actions of modular networks, shaping a complex dynamic super-system: the Cellular Metabolic Structure (CMS in short). Therefore, the two principles that link the main modes of metabolic connectivity in the cell are functional segregation and functional systemic integration (Section Two).

The CMS is an integrated catalytic entity that acts as an information processing system capable of storing functional biochemical patterns. The metabolic synaptic dynamics...
governed by Hopfield-type attractors and the structural covalent modifications represent the two stages of the dynamic memory of cellular metabolism. Plasticity seems to be the key essential property for the emergence of metabolic memory (Section Three). All these properties constitute some of the main elemental principles of the CMS, which allow the self-organization, self-regulation and adaptation of the cell to the external medium.

4.2 Self-regulation of the Cellular Metabolic Structure
Unicellular organisms are open metabolic systems. To maintain the self-organized biochemical functionally, the CMS needs a permanent exchange of energy and matter with the external medium. As a consequence, metabolic life would not be possible without it having the capacity to adequately respond to the large possible combinations of external variables to which it is exposed. The CMS is a sophisticated, sensitive system, whose enzymatic processes change immediately in response to any variations in the environmental conditions [Almaas et al., 2004; Almaas et al., 2005; Papp et al., 2004; Wang and Zhang 2009].

When the external perturbations are small, the CMS changes accordingly, and slowly reverts back to the pre-stimulus dynamic by reorganizing and adjusting the catalytic patterns and metabolic fluxes [Inoue and Kaneko 2013]. If the external perturbations are stronger, i.e., the replacement of a major source of nutrients for another, the CMS computes the various possible ways to efficiently process the molecular substrates, turning off certain metabolic activities (even completely eliminating specific enzymatic sets), and adding new reactive processes and alternative routes. As a result, the metabolism shows extensive reorganization in the metabolic functionality resulting in a rewiring of the global network fluxes [Storlien et al., 2004; Buescher et al., 2012; San Román et al., 2014; Zhang et al., 2014].

When the metabolic system undergoes extreme external conditions as, for instance, nutrient deprivation, the CME generates very complex enzymatic reorganization comprising the entire system. In general, the autophagy interaction network is activated in response to starvation [Behrends et al., 2010], and as a consequence, proteins, organelles and other cellular substructures are sequestered in autophagosomal vesicles to be later degraded. This is one of the major mechanisms by which a starving cell reallocates nutrients from unnecessary metabolic pathways to more-essential processes [Shintani and Klionsky, 2004].
Under starvation conditions, the CMS computes the efficient rates of molecular turnover, modulates the systemic enzymatic processes with extreme precision, and adjusts the number of different organelles to match the available resources, e.g., the metabolic system drastically regulates different mechanisms such as the ribosome biosynthesis and degradation [Pestov and Shcherbik, 2012], the nucleolar proteome dynamics [Andersen et al., 2005], the protein turnover [Neher et al., 2003]; the lipid degradation [Holdsworth and Ratledge 1988], the peroxisomal number [Mijaljica et al., 2006], and the global cellular energy [Boender et al., 2011] among others.

There are endless possible combinations of environmental variables (physical, chemical, nutritional and biological) to which the cell must give an answer. The CMS has the properties to self-adapt against these numberless external variables, displaying an impressive capacity to regulate thousands of metabolic processes simultaneously, computing the appropriate regulatory responses at each time through complex and specific catalytic dynamic patterns that must properly correspond to each set of external perturbations.

Furthermore, these self-regulations occur very quickly, for instance, the metabolic dynamics of the Escherichia coli were studied under cultures in which the glucose concentration was constantly changing, following an up-and-down pattern. These studies show that the systemic energetic state of the cell (measured by the adenylate energy charge) self-adjusts as a whole in only 2 min after the external perturbations [Weber et al., 2005].

In addition, the metabolism also exhibits complex and continuous cycles of molecular turnover which includes the complete proteome, glycome, lipidome, metabolome and transcriptome of the cell. More specifically, enzymes, the essential molecular actors for cell functionality, are continually synthesized and destroyed in a dynamic turnover process in which all proteins are broken down partially, into peptides, or completely, into amino acids for later being regenerated de novo [Doherty et al., 2009; Li, 2010]. Even when a cell is not undergoing growth, the protein pool is dynamic and the proteolytic machinery continues its relentless process of molecular turnover, requiring for it significant energy [Doherty and Beynon, 2006; Doherty et al., 2009].

As a result of the whole metabolic dynamic that encompasses reactive molecular transformations including protein turnover, determined polypeptides must be suitably synthetized when the physiological conditions require it. Therefore an adequate
molecular information flow from the CMS to the DNA is essential for ensuring the adequate polypeptide replacement.

4.3 Nexus between the CMS and the DNA

Just over 40 years ago, the Nobel Prize John Gurdon showed the existence of a molecular flow from the cytoplasm into the nucleus involved in the differential expression of certain genes during early embryonic development [Gurdon, 1971]. The experiments were realized transplanting the nucleus of a cell, which was carrying out one specific dynamic activity, into an enucleated cytoplasm whose metabolic activity was quite another. These studies were an extension of Briggs and King’s works on transplanting nuclei from embryonic blastula cells [Briggs and King, 1959].

In the aforementioned Gurdon’s experiments, a fundamental conclusion was reached: some cytoplasmic molecules control the expression of certain genes (or their repression) in an independent way. In all hybrid cells, the transplanted nucleus did not continue with its previous activity, but changed their function conforming to that of the host cytoplasmic metabolism to which it had been exposed.

For instance: the mid-blastula nucleus synthesizes DNA but not RNA, and when it is implanted into the cytoplasm of a growing oocyte whose nucleus does not synthesize DNA, but RNA, the new hybrid cell stops synthesizing DNA and starts synthesizing RNA; if this same mid-blastula nucleus is injected into the cytoplasm of a mature oocyte which did not synthesize any nucleic acid and whose chromosomes are placed in spindle phase, the implanted nucleus ends up synthesizing DNA and the chromosomes arrange in the spindle of cell division; and when an adult neuron nucleus, which synthesizes RNA but rarely synthesizes DNA, is injected into an unfertilized but activated cytoplasm egg whose nucleus would normally synthesize DNA but not RNA, the transplanted nucleus stops the RNA synthesis and begins DNA synthesis [Gurdon, 1971].

Another one of Gurdon’s experimental series proved that certain cytoplasmic components select which genes will be activated and/or repressed at any one time; and consequently, it was observed that major changes in different kinds of gene activity respond by molecular signals came from the cytoplasmic metabolism [Gurdon, 1971].

Analogous experiments have been conducted in protozoans, amphibians, plants and in different mammalians such as cats, mice, monkeys rabbits, horses, donkeys, pigs, goats and cows; even a mouse was cloned using the nucleus of an olfactory neuron [Eggan et al., 2004]. Of all these, the most popular example is Dolly, that was the result of an
experiment in which a single nucleus come from a differenced mammary cell was successfully fused to an enucleated unfertilized egg from another adult sheep [Wilmut et al., 1997].

According to the current vision, the DNA should have all the essential information for the maintenance and development of the cell, and therefore the mammary nucleus should modify the metabolic activity of the cytoplasm in which it has been injected, so that the new hybrid organism should act as a mammary cell. But what happens is just the opposite. It is the transferred nucleus that undergoes a radical transformation, so that the molecular information flux originated from the host cytoplasmic metabolism reprograms the genetic expression of the implanted nucleus expressing transcription patterns completely different from the previous non-transplanted conditions, and this new program of molecular instructions comes from the metabolic structure of the host cytoplasm.

The gene expression patterns are regulated by the cytoplasmic metabolic structure in which the mammary nucleus was injected, and no longer behaves like in a mammary cell but starts dividing according to the new molecular program (sequence of instructions to perform a specified biochemical task) executed by the cytoplasmic metabolism. During the first three divisions the new cell replicates its DNA without expressing any of the genes, and it is followed by successive cell divisions and progressive differentiation, first into the early embryo and subsequently into all of the cell types that characterize the animal.

Cellular Metabolic Structure (the cytoplasm and nucleoplasm metabolism as a whole) is able to reprogram the gene expression of mammary DNA, and both the CMS and the DNA coordinate together the development of an entire organism.

In eukaryotic cells, there is a long history of experimental observations about the molecular flow from the cytoplasmic metabolism to the nucleus, dating back to 60s of the last century [Zetterberg, 1966; Arns, 1968; Merriam, 1969; Gurdon and Weir, 1969] to the present [Cook et al., 2007; Wimmer et al., 2013; Tamura and Hara-Nishimura, 2014]. A great variety of experimental studies have shown that the molecular flow from the cytoplasmic metabolism to the nucleoplasm consists of ordinary components of the cellular metabolism. Thousands of proteins, metabolites, cofactors and ions are transferred to the nucleoplasm with remarkable efficiency and specificity [Kuersten et al., 2001; Cook et al., 2007; Gerhäuser, 2012], and the different molecular combinations
(with precise concentrations) allows for modulation of the DNA-associated metabolism (essentially integrated in the transcriptional system), which regulates the gene activity. Extensive experimental studies both in prokaryotes and eukaryotes have shown the same fundamental process: genes exhibiting transcriptional induction in response to metabolic changes, originated during self-adaptation to a wide range of external factors such as nutrient deprivation, chemical agents (the hormones, the pH, the ionic strength, and others) and physical fluctuations (including temperature shock, drought, high-intensity light etc.) [Causton et al., 2001; Gasch and Werner-Washburne, 2002; Kreps et al., 2002; Hazen et al., 2003; Liu et al., 2005; Deutscher et al., 2006; Stern et al., 2007; Swindell et al., 2007; Wilson and Nierhaus, 2007; Angers et al., 2010; Mirouze and Paszkowski, 2011]. For instance, under glucose starvation, the stringent reduction of ATP turnover at the metabolic level was accompanied by a strong down-regulation of genes involved in protein synthesis [Boender et al., 2011].

The traffic from the CMS to the DNA-associated metabolism ensures the intimate subordination of the transcriptional system to the needs of the metabolic activity, at each time.

The transcriptional system seems to be one the most complex dynamic structures of the cell. It is formed by different, highly coordinated metabolic networks which integrate a great variety of signals and process molecular information from both the DNA and the CMS.

Unfortunately, most of the dynamic regulatory aspects of the metabolic transcriptional system are still poorly understood.

A surprising variety of biochemical mechanisms participate in the control of gene expression, including the topoisomerases, the transcription factors, the RNA polymerases, the small RNAs, the translation system, the turnover rate of proteins, the dynamic levels of the adenylate energy charge, etc. These metabolic processes are in turn modulated by complex molecular networks [Balázsi et al., 2005; Missiuro et al., 2009], already described in the miRNAs [Dong et al., 2010; Gennarino et al., 2012; Schulz et al., 2013], the transcription factors [Walhout, 2006; Neph et al., 2012], the RNA polymerase complexes [Coulombe et al., 2006; Schubert, 2014], and the mRNA dynamics [Maquat and Gong, 2009; Schott and Stoecklin, 2010; Vlasova-St Louis and Bohjanen, 2011] among others.

Chromosome packaging is another essential biochemical control process for gene expression, common to all living organisms. In eukaryotes, the nucleosome-based DNA
organization allows reversible access of different metabolic regulatory mechanisms in order to modulate determined DNA sequences. In fact, the tails of the four core histones are subject to a variety of enzyme-catalyzed, post-translational modifications [Turner, 2005]. Networks of biochemical factors that functionally interact with the nucleosome, reversibly remodeling it, have also been observed [Burgio et al., 2008].

Prokaryotic cells, despite exhibiting a very different DNA organization than that of the eukaryotes, also present a protein collectivity referred to as nucleoid-associated proteins, which contribute to the compaction and regulation of the genome [Rimsky and Travers, 2011; Takeda et al., 2011].

In addition, gene expression can also be modulated through the methylation-demethylation dynamics on the DNA nucleotides, mostly at CpG sites to convert cytosine to 5-methylcytosine. The enzymatic systems for these covalent marks are also integrated in the DNA-associated metabolism, and seem to be directly involved in maintaining the dynamic metabolic memories in the transcriptional system.

In brief, both eukaryotes and prokaryotes appear to have a common mechanism to coordinate the two information storage systems in the cell: the CMS and the DNA (Figure 1b). The CMS integrates and process the stimuli coming from the environment, generating self-regulatory metabolic responses and a molecular information traffic to the DNA-associated metabolism. This information flux ensures the intimate integration and subordination of the transcriptional system to the rest of metabolic activity of the cell. The molecular flow allows the appropriate orchestration of the whole transcriptional system and, as a consequence, determined parts of the genome are activated and deactivated at strategic times; so that, in accordance to the requirements of the adaptive maintenance of the cellular metabolism at each moment, gene expression is accurately regulated and only specific polypeptides are synthesized.

Other important implications of the CMS in the regulation of DNA-associated metabolism such as the generation of new polypeptidic information by means of alternative splicing or directed mutations are beyond the scope of the present work.

4.4 Duality of the cellular hereditary information.

In addition to the molecular DNA-based inheritance, a wide variety of experimental evidences have shown that determined functional metabolic processes codified via covalent mark patterns, not encoded in the DNA sequence (epigenetic changes), can be preserved when cells divide and thus can be transferred to the next generation.
For instance, epigenetic changes originated by environmental impacts on the cellular metabolism have been observed to extend over the offspring in different kinds of cells [Pembrey et al., 2006; Gluckman et al., 2007; Nadeau, 2009; Jiminez-Chirallon et al., 2009; Carone et al., 2010; Grossniklaus et al., 2011].

Nutrition also may induce specific metabolic processes that seem to be transmitted to the next generation by means of covalent marks that do not involve changes in the underlying DNA sequence of the cell [Kaati et al., 2007; Waterland et al., 2007].

Besides, experimental findings in cells under stress shed new light on transgenerational inheritance of metabolic memory processes [Seong et al., 2011; Crews et al., 2012; Pecinka and Mittelsten Scheid, 2012].

Likewise, persistent and stable transmission of epigenetic molecular information across generations has been described. For instance, it was reported in *Arabidopsis thaliana* that environmental stress leads to a raise in genomic flexibility (increasing the hyper-recombination state), which persisted in a stable way for up to four untreated generations [Molinier et al., 2006].

Another example of stably inherited DNA methylation pattern occurs in a variant of *Linaria vulgaris* originally described more than 260 years ago by Linnaeus [Linnaeus, 1749], in which the fundamental symmetry of the flower is changed from bilateral to radial as a result of extensive methylation of the *Lcyc* gene that controls the formation of dorsal petals [Cubas et al., 1999].

The complex reprogramming of the metabolic information marks in primordial germ cells according to their parental origin is another example of notable relevance of heritable biochemical patterns not caused by changes in the DNA sequence [Seisenberger et al., 2012; Hanna and Kelsey, 2014].

Moreover, the transmission across generations of epigenetic metabolic information has been observed in bacteria [Casadesús and Low, 2013; Gonzalez et al., 2014].

Epigenetic processes seem to be the manifestation of cellular metabolic memory. The covalent modification of histones and the methylation-demethylation dynamics on specific DNA nucleotides appear to represent the storage of determined functional biochemical memories in a structural way and these marks could only emerge due to the Hopfield-type metabolic dynamics.

There is enough evidence supporting that the unicellular organisms can exhibit two storage information systems capable of transmitting determined information to next
generations: the CMS and the DNA. The molecular information of both systems seems to coordinate the physiological development of the whole cell.

5. Concluding remarks

The observations and consequent reflections I have made concerning numerous cellular processes and different quantitative biomolecular studies, both presumably interrelated, have led me to consider, without underestimating the enormous importance of DNA, that the elements responsible for the organization and regulation of the fundamental biological processes can be found in determined properties and characteristics of the cellular metabolism.

As far as I have been able to ascertain, I find it probable that the essential attributes upon which cellular functionality lies have their basis in the as yet insufficiently understood Cellular Metabolic Structure.

Throughout these lines I have tried, in a conceptual manner, to present the basic elements of a dualist framework concerning the information stored in the cell, according to which the dynamic metabolic memory and the genetic memory seem to be the manifestation of two systems of information storage in the cell. From this perspective, rather than a genoteque in evolution, the cell could be considered, a singular metabolic entity, able to permanently self-organize and self-regulate as well as adapt to the outside medium.

The work presented is necessarily and predominantly an exercise of multidisciplinary integration, where concepts from different branches of biological knowledge –mainly Biochemistry, Physiology, Cellular Biology and Molecular Biology– are addressed within the approach of Systems Biology. Moreover, during the development and completion of the quantitative investigations, it has been necessary to study many experimental and numerical data through the use of different analytic systems such as differential calculus, statistical mechanics, discrete mathematics, computing techniques and artificial intelligence, as well as other physico-mathematical tools.

However, in this manuscript, any physico-mathematical formulation has been omitted in order to favour the didactic character of the text. That being said, it is necessary to stress that, in my opinion, without mathematics –the language of nature– it would not be possible to understand precisely the metabolic dynamics and the catalytic functionality that sustain them.
Fortunately, today the necessary application of mathematics to all fields of human knowledge, biology in particular, is widely accepted. In the autobiographical recollections that Charles Darwin wrote in 1876 for his children, he expressed the importance of understanding “something of the great leading principles of mathematics, for men thus endowed seem to have an extra sense” [Darwin, 1905].

This novel dualist framework of functional and structural information stored in the cell could open new perspectives on the comprehension of subjects of notable interest as yet not well understood, such as cellular differentiation, to name but one. Thus, cells with a different *Cellular Metabolic Structure* and, therefore, different catalytic activity programs, but with the same genetic heritage, can express different genes and manifest different physiological behaviour. Something along these lines could be said about the Theory of Evolution, in terms of how it was presented by the endearing Charles Darwin, and the possibility that the cells themselves are able to self-adapt to the medium permanently through the dynamic properties of cellular metabolism and the dualist character of cellular hereditary information.

Within the synopsis presented in these pages, no doubt some of opinions may appear rushed and the reflections I have presented, insufficient.

Frankly, I have to admit that dealing with these overwhelmingly complex issues of systemic cell biology with the desired clarity and precision is extraordinarily difficult. In addition, at this time our comprehension of the dynamic biological phenomena in its most elemental aspects is still very incomplete and insufficient.

It is truly extraordinary that in such a reduced space, of merely a few microns, millions of biochemical processes form a metabolic entity that is sensitive, self-organized and self-regulated, able to process and store information, perpetuating itself in time.

A minute place in the cosmos, where millions upon millions of atoms, formed at the very origin of the initial singularity and in the stars, self-organize to give birth to the molecules of highest complexity and information value in all the known universe.
(a) Hopfield-like attractor dynamics can emerge in the metabolic networks. They have the capacity to store functional catalytic patterns which can be correctly recovered by specific input stimuli. These metabolic dynamics are stable and can be maintained as long-term memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that specific functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes) and the enzymatic covalent modifications of determined molecules (structural dynamic processes) seem to represent the two stages of the dynamic memory of cellular metabolism.

(b) Between the extracellular environment and the DNA, there appears to exist a cellular metabolic structure (CMS) that behaves as a very complex decentralized information processing system with the capacity to store metabolic memory (Figure 1a). The CMS generates sets of biochemical instructions that make each enzymatic activity evolve with a particular and precise dynamic of change, allowing self-regulation and adaptation to the external medium. In addition, the CMS permanently sends a flow of molecular signals to the DNA-associated metabolism, which shapes the complex transcriptional system. The molecular flows allow accurate regulation of gene expression, so that only specific polypeptides that are required for adaptive maintenance of the CMS are synthesized. Together, both informative systems (CMS and DNA) coordinate the physiological development of the cell. I: determinative molecular flux for the regulation of the transcriptional system. II: polypeptidic reposition. TS: transcriptional system. The CMS is represented by a network. Red circles: metabolic core. Green circles: on-off metabolic processes.
References

Abadjieva, A., Pauwels, K., Hilven, P., and Crabeel, M. (2001). A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. *J. Biol. Chem.* 276(46):42869-42880. doi: 10.1074/jbc.M103732200.

Adler, J. (1966). Chemotaxis in Bacteria. *Science.* 153, 708-716.

Adler, J., and Dahl M.M. (1967). A method for measuring the motility of bacteria and for comparing random and non-random motility. *J. Gen. Microbiol.* 46, 161-173.

Adler, J., and Templeton, B. (1967). The effect of environmental conditions on the motility of Escherichia coli. *J. Gen. Microbiol.* 46, 175-184.

Aguiar, M., Masse, R., and Gibbs, B.F. (2005). Regulation of cytochrome P450 by post-translational modification. *Drug. Metab. Rev.* 37(2):379-404. doi: 10.1081/DMR-200046136.

Ainscow, E.K., Mirsham, S., Tang, T., Ashford, M.L.J., and Rutter, G.A. (2002). Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP independent control of ATP-sensitive K+ channels. *J. Physiol.* 544(Pt 2):429-445. doi: 10.1113/jphysiol.2002.022434.

Albrecht, E., and Petty, R.H. (1998). Cellular memory: neutrophil orientation reverses during temporally decreasing chemoattractant concentrations. *Proc. Natl. Acad. Sci. USA.* 95:5039-5044. doi: 10.1073/pnas.95.9.5039.

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N., and Barabási, A.L. (2004). Global organization of metabolic fluxes in the bacterium Escherichia coli. *Nature.* 427(6977):839-843. doi: 10.1038/nature02289.

Almaas, E., Oltvai, Z.N., and Barabási, A.L. (2005). The activity reaction core and plasticity of metabolic networks. *PLoS Comput. Biol.* 1(7):e68. doi: 10.1371/journal.pcbi.0010068.

Alon, U., Surette, M.G., Barkai, N. and Leibler, S. (1999). Robustness in bacterial chemotaxis. *Nature.* 397, 168-117. doi:10.1038/16483.

Alon, U. (2007). Network motifs: theory and experimental approaches. *Nat. Rev. Genet.* 8(6):450-461. doi: 10.1038/nrg2102.

Amari, S. (1975). Homogeneous nets of neuron-like elements. *Biol. Cybern.* 17:211-220. doi: 10.1007/BF00339367.

Amariei, C., Tomita, M. and Murray, D.B. (2014). Quantifying periodicity in omics data. *Front. Cell Dev. Biol.* 2:40. doi: 10.3389/fcell.2014.00040.

Amit, D. (1989). *Modeling Brain Function.* New York: Cambridge University Press.
Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I., et al. (2005). Nucleolar proteome dynamics. *Nature*. 433(7021):77-83. doi: 10.1038/nature03207.

Angers, B., Castonguay, E., and Massicotte, R. (2010). Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. *Mol. Ecol*. 19(7):1283-1295. doi: 10.1111/j.1365-294X.2010.04580.x.

Anggono, V., and Huganir R.L. (2012). Regulation of AMPA receptor trafficking and synaptic plasticity. *Curr. Opin. Neurobiol*. 22(3):461-469. doi: 10.1016/j.conb.2011.12.006.

Aon, M.A., Cortassa, S., and O’Rourke, B. (2006). The fundamental organization of cardiac mitochondria as a network of coupled oscillators. *Biophys. J*. 91(11):4317-4327. doi: 10.1529/biophysj.106.087817.

Aon, M.A., Roussel, M.R., Cortassa, S., O’Rourke, B., Murray, D.B., Beckmann, M., et al. (2008). The scale-free dynamics of eukaryotic cells. *Plos One*. 3(11):e3624. doi: 10.1371/journal.pone.0003624.

Aono, M., Zhu, L., and Hara, M., (2011a). Amoeba-based neurocomputing for 8-city traveling salesman problem. *Int. J. Unconv. Comput*. 7(6):463-480.

Aono, M., Zhu, L., Kim, S.J., and Hara, M. (2011b). Performance enhancement of amoeba-based neurocomputer for 8-city traveling salesman problem. *Proc. NOLTA*. 104-107.

Arms, K. (1968). Cytonucleoproteins in cleaving eggs of Xenopuslaevis. *J. Embryol. Exp. Morphol*. 20(3):367-374.

Asano,Y., Nagasaki,A., and Uyeda, T.Q.P. (2008). Correlated waves of actin filaments and PIP3 in Dictyostelium cells. *Cell Mot. Cytosk*. 65(12):923-934. doi: 10.1002/cm.20314.

Atkinson, D.E., and Walton, G.M. (1967). Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. *J. Biol. Chem*. 242(13):3239-3241.

Ausländer, S., Ausländer, D., Müller, M., Wieland, M., and Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. *Nature*. 487(7405):123-127. doi: 10.1038/nature11149.

Baker, M.D., Wolanin, P.M., and Stock, J.B. (2006). Signal transduction in bacterial chemotaxis. *Bioessays*. 28:9-22.

Balázsi, G., Barabási, A.L., and Oltvai, Z.N. (2005). Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. *Proc. Natl. Acad. Sci. USA*. 102(22):7841-7846. doi: 10.1073/pnas.0500365102.
Bandeira, H.T., Barbosa, C.T., De Oliveira, R.A., Aguiar, J.F., and Nogueira, R.A. (2008). Chaotic model and memory in single calcium-activated potassium channel kinetics. *Chaos*. 18(3):033136. doi: 10.1063/1.2944980.

Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. *Cell. Res*. 21(3):381-395. doi: 10.1038/cr.2011.22.

Barbour, B., Brunel, N., Hakim, V. and Nadal, J.P. (2007). What can we learn from synaptic weight distributions?. *Trends Neurosci*. 30(12):622-629. doi: 10.1016/j.tins.2007.09.005.

Barnes, S.J., and Weitzman, P.D. (1986). Organization of citric acid cycle enzymes into a multienzyme cluster. *FEBS Lett*. 201 (2): 267-270. doi:10.1016/0014-5793(86)80621-4.

Baron, R., Lioubashevski, O., Katz, E., Niazov, T., and Willner, I. (2006). Logic gates and elementary computing by enzymes. *J. Phys. Chem. A*. 110:8548-8553. doi: 10.1021/jp0568327.

Barril, E.F., and Potter, A.R. (1968). Systematic oscillations of amino acid transport in liver from rats adapted to controlled feeding schedules. *J. Nutr*. 95: 228-237.

Bayer, E.A., Belaich, J.P., Shoham, Y., and Lamed, R. (2004). The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. *Annu. Rev. Microbiol*. 58:521-554. doi: 10.1146/annurev.micro.57.030502.09102.

Beeckmans, S., Van Driessche, E., and Kanarek, L. (1990). Clustering of sequential enzymes in the glycolytic pathway and the citric acid cycle. *J. Cell. Biochem*. 43(4):297-306. doi: 10.1002/jcb.2404304022.

Beg, Q.K., Vazquez, A., Ernst, J., de Menezes, M.A., Bar-Joseph, Z., Barabási, A.L., et al. (2007). Intracellular crowding defines the mode and sequence of substrate uptake by escherichia coli and constrains its metabolic activity. *Proc. Natl. Acad. Sci. USA*. 104(31):12663-12668. doi: 10.1073/pnas.0609845104.

Behrends, C., Sowa, M.E., Gygi, S.P., and Harper, J.W. (2010). Network organization of the human autophagy system. *Nature*. 466(7302):68-76. doi: 10.1038/nature09204.

Ben-Jacob, E. (2009). Learning from bacteria about natural information processing. *Ann. N.Y. Acad. Sci*. 1178:78-90. doi: 10.1111/j.1749-6632.2009.05022.x.

Bernardinelli, Y., Magistretti, P.J., and Chatton, J.Y. (2004). Astrocytes generate Na+-mediated metabolic waves. *Proc. Natl. Acad. Sci. USA*. 101(41):14937-14942. doi: 10.1073/pnas.0405315101.

Berridge, M.J., and Galione, A. (1988). Cytosolic calcium oscillators. *FASEB J*. 2(15):3074–3082.

Bhaskaran, H., and Perona, J.J. (2011). Two-step aminoacylation of tRNA without channeling in Archaea. *J. Mol. Biol*. 411(4):854-869. doi: 10.1016/j.jmb.2011.06.039.
Binstock, J.F., and Schulz, H. (1981). Fatty acid oxidation complex from Escherichia coli. *Methods Enzymol.* 71 Pt C:403-411.

Bobik, T.A. (2006). Polyhedral organelles compartmenting bacterial metabolic processes. *Appl. Microbiol. Biotechnol.* 70(5):517-525. doi: 10.1007/s00253-005-0295-0.

Boender, L.G., Almering, M.J., Dijk, M., van Maris, A.J., de Winde, J.H., Pronk, J.T., et al. (2011). Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states. *Biochim. Biophys. Acta.* 1813(12):2133-2144. doi: 10.1016/j.bbamcr.2011.07.008.

Boiteux, A., Hess, B., Sel'kov, E. E. (1980). Creative Functions of Instability and Oscillations in Metabolic Systems. *Curr. Top. Cell. Reg.* 17, 171-203.

Bonetta L. (2010). Protein-protein interactions: Interactome under construction. *Nature.* 468(7325):851-854. doi: 10.1038/468851a.

Bonner, J.T. (2010). Brainless behavior: a myxomycete chooses a balanced diet. *Proc. Natl. Acad. Sci.* 107(12):5267-5268. doi: 10.1073/pnas.1000861107.

Boruc, J., Van den Daele, H., Hollunder, J., Rombauts, S., Mylle, E., Hilson, P., et al. (2010). Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network. *Plant Cell.* 22(4):1264-1280. doi: 10.1105/tpc.109.073635.

Bowsher, C.G. (2011). Information processing by biochemical networks: a dynamic approach. *J. R. Soc. Interface.* 8(55):186-200. doi: 10.1098/rsif.2010.0287.

Bray, D., Levin, M.D. and Morton-Firth, C.J. (1998). Receptor clustering as a cellular mechanism to control sensitivity. *Nature.* 393:85-88. doi: 10.1038/30018.

Briggs, B. and King. T.J. (1959). “Nucleocytoplasmic interactions in egg and embryos” in *The cell*, ed. J. Brachet and A.E. Mirsky (Acad. Press N. York), 1:537-617.

Brodsky, V., Boikov, P.Y., Nechaeva, N.V., Yurovitsky, Y.G., Novikova, T.E., Fateeva, V.I. et al. (1992). The rhythm of protein synthesis does not depend on oscillations of ATP level. *J. Cell Sci.* 103(Pt 2):363-370.

Brodsky, V.Y. (2006). Direct cell-cell communication: A new approach derived from recent data on the nature and self-organisation of ultradian (circahoralian) intracellular rhythms. *Biol. Rev. Camb. Philos. Soc.* 81(1):143-162. doi: 10.1017/S1464793105006937.

Buescher, J.M., Liebermeister, W., Jules, M., Uhr, M., Muntel, J., Botella, E., et al. (2012). Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. *Science.* 335(6072):1099-1103. doi: 10.1126/science.1206871.

Bultema, J.B., Braun, H.P., Boekema, E.J., and Kouril, R. (2009). Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. *Biochim. Biophys. Acta.* 1787(1):60-67. doi: 10.1016/j.bbapap.2008.10.010.
Burgio, G., La Rocca, G., Sala, A., Arancio, W., Di Gesù, D., Collesano, M., et al. (2008). Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI. *PLoS Genet.* 4(6):e1000089. doi:10.1371/journal.pgen.1000089.

Cardone, L., Hirayama, J., Giordano, F., Tamaru, T., Palvimo, J.J., and Sassone-Corsi, P. (2005). Circadian clock control by SUMOylation of BMAL1. *Science.* 309(5739):1390-1394. doi: 10.1126/science.1110689.

Carone, B.R., Fauquier, L., Habib, N., Shea, J.M., Hart, C.E., Li, R., et al. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. *Cell.* 143(7):1084-1096. doi: 10.1016/j.cell.2010.12.008.

Carpousis, A.J. (2002). The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolyticmultienzyme complexes. *Biochem. Soc. Trans.* 30(2):150-155. doi:10.1042/BST0300150.

Casadesús, J., and Low, D.A. (2013). Programmed heterogeneity: epigenetic mechanisms in bacteria. *J. Biol. Chem.* 288(20):13929-13935. doi: 10.1074/jbc.R113.472274.

Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., et al. (2001). Remodeling of yeast genome expression in response to environmental changes. *Mol. Biol. Cell.* 12(2):323-337. doi: 10.1091/mbc.12.2.323.

Chabot, J.R., Pedraza, J.M., Luitel, P., and van Oudenaarden, A. (2007). A Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. *Nature.* 450(7173):1249-1252. doi: 10.1038/nature06395.

Chance, B., Pye, E.K., Ghosh, A.D., and Hess, B. (Eds.) (1973). *Biological and Biochemical Oscillations.* New York. Academic Press.

Cheung, C.W., Cohen, N.S. and Rajimman, L. (1989). Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. *J. Biol. Chem.* 264(7):4038-4044.

Chiam, H.K., and Rajagopal, G. (2007). Oscillations in intracellular signaling cascades. *Phys. Rev. E.* 75(6 Pt 1):061901. doi: 10.1103/PhysRevE.75.061901.

Clegg, J.S., and Jackson, S.A. (1990). Glucose metabolism and the channelling of glycolytic intermediates in permeabilized L-929 cells. *Arch. Biochem. Biophys.* 1;278(2):452-460. doi: 10.1016/0003-9861(90)90284-6.

Clémençon, B. (2012). Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. *Int. J. Mol. Sci.* 13(2):1858-1885. doi: 10.3390/ijms13021858.

Cohen, P. (2000). The regulation of protein function by multisite phosphorylation - a 25 year update. *Trends Bioche. Sci.* 25:596-601. doi: 10.1016/S0968-0004(00)01712-6.
Cook, A., Bono, F., Jinek, M., and Conti, E. (2007). Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 76:647-671. doi: 10.1146/annurev.biochem.76.052705.161529.

Coulombe, B., Jeronimo, C., Bouchard, A., Thérien, C., Gordon Chua, G., Bergeron, D., et al. (2006). A network of protein complexes signaling to the RNA polymerase II transcription apparatus in human cells. FASEB J. 20:A945.

Crews, D., Gillette, R., Scarpino, S.V., Manikkam, M., Savenkova, M.I., and Skinner, M.K. (2012). Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl. Acad. Sci. USA. 109(23):9143-9148. doi: 10.1073/pnas.1118514109.

Cubas, P., Vincent, C., Coen, E. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 401(6749):157-161. doi: 10.1038/43657.

Daniel, R., Rubens, J.R., Sarapeshkar, R., and Lu, T.K. (2013). Synthetic analog computation in living cells. Nature. 497(7451):619-623. doi: 10.1038/nature12148.

Dano, S., Sorensen, P., and Hynne, F. (1999). Sustained oscillations in living cells. Nature. 402(6759):320-322. doi: 10.1038/46329.

Das, M., Gebber, G.L., Barman, S.M., Lewis, C.D. (2003). Fractal properties of sympathetic nerve discharge. J Neurophysiol. 89(2):833-40.

D'Avino, P.P., Archambault, V., Przewloka, M.R., Zhang, W., Laue, E.D., and Glover, D.M. (2009). Isolation of protein complexes involved in mitosis and cytokinesis from Drosophila cultured cells. Methods Mol. Biol. 545:99-112. doi: 10.1007/978-1-60327-993-2_6.

De Forest, M., and Wheeler, C.J. (1999). Coherent oscillations in membrane potential synchronize impulse bursts in central olfactory neurons of the crayfish. J. Neurophysiol. 81(3):1231-1241.

De la Fuente, M.I., Martínez, L., Veguillas, J., Aguirregabiria, J.M. (1996). Quasiperiodicity Route to Chaos in a Biochemical System. Biophys J. 71:2375–2379. doi: 10.1016/S0006-3495(96)79431-6.

De la Fuente, I.M., Martínez, L., Aguirregabiria, J.M., and Veguillas, J. (1998a). R/S analysis in strange attractors. Fractals. 6(2):95-100.

De la Fuente, I.M., Martínez, L., Benítez, N., Véguillas, J., and Aguirregabiria, J.M. (1998b). Persistent behavior in a phase-shift sequence of periodical biochemical oscillations. Bull. Mathemat. Biol. 60(4):689-702.

De la Fuente, M.I. (1999). Diversity of temporal self-organized behaviors in a biochemical system. BioSystems 50: 83–97. doi:10.1016/S0303-2647(98)00094-X.

De la Fuente, I.M., Benítez, N., Santamaría, A., Véguillas, J., and Aguirregabiria J.M. (1999). Persistence in metabolic nets. Bull. Mathemat. Biol. 61(3):573-595.
De la Fuente, I.M., Pérez-Samartín, A., Martínez, L., García, M.A., and Vera-López A. (2006). Long-range correlations in rabbit brain neural activity. *Ann. Biomed. Eng.* 34: 295-299.

De la Fuente, I.M., Martínez, L., Pérez-Samartín, A.L., Ormaetxea, L., Amezaga, C., and Vera-López, A. (2008). Global self-organization of the cellular metabolic structure. *PLoS One.* 3(8):e3100. doi: 10.1371/journal.pone.0003100.

De la Fuente, I.M., Vadillo, F., Pérez-Pinilla, M.B., Vera-López, A., and Véguiillas J. (2009). The number of catalytic elements is crucial for the emergence of metabolic cores. *PLoS One.* 4(10):e7510. doi: 10.1371/journal.pone.0007510.

De la Fuente, I.M. (2010). Quantitative analysis of cellular metabolic dissipative, self-organized structures. *Int. J. Mol. Sci.* 11(9):3540-3599. doi: 10.3390/ijms11093540.

De La Fuente, I.M., Vadillo, F., Pérez-Samartín, A.L., Pérez-Pinilla, M-B., Bidaurrazaga, J. (2010) Global self-regulations of the cellular metabolic structure. *PLoS One.* 5, e9484:1–e9484:15. doi:10.1371/journal.pone.0009484.

De la Fuente, I.M., Cortés, J., Pérez-Pinilla, M., Ruiz-Rodríguez, V., and Véguiillas, J. (2011). The metabolic core and catalytic switches are fundamental elements in the self-regulation of the systemic metabolic structure of cells. *PLoS One.* 6:e2722. doi:10.1371/journal.pone.0027224.

De la Fuente, I.M., and Cortés, J.M. (2012). Quantitative analysis of the effective functional structure in yeast glycolysis. *PLoS One.* 7(2):e30162. doi: 10.1371/journal.pone.0030162.

De la Fuente, I.M., Cortés, J.M., Pelta, D.A., and Véguiillas, J. (2013). Attractor metabolic networks. *PLoS One.* 8(3):e58284. doi: 10.1371/journal.pone.0058284.

De la Fuente, I.M. (2014). “Metabolic Dissipative Structures”, in *Systems Biology of Metabolic and signaling Networks: Energy, Mass and Information Transfer*, eds. M.A. Aon, V. Saks & U. Schlattner (Springer Books, New York), 179-212.

De la Fuente, I.M., Cortés, J.M., Valero, E., Desroches, M., Rodrigues, S., Malaina I., et al. (2014). On the dynamics of the adenylate energy system: homeorhesis vs homeostasis. *PLoS One.* 9(10):e108676. doi:10.1371/journal.pone.0108676.

Dekhuijzen, A., and Bagust, J. (1996). Analysis of neural bursting: Nonrhythmic and rhythmic activity in isolated spinal cord. *J. Neurosci. Methods.* 67(2):141-147. doi: 10.1016/S0165-0270(96)00033-7.

Deribe, Y.L., Pawson, T., and Dikic, I. (2010). Post-translational modifications in signal integration. *Nat. Struct. Mol. Biol.* 17(6):666-672. doi: 10.1038/nsmb.1842.

Deutscher, J., Francke, C., and Postma, P.W. (2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. *Microbiol. Mol. Biol. Rev.* 70(4):939-1031. doi: 10.1128/mmbrr.00024-06.
Distler, A.M., Kerner J., Lee, K., and Hoppel, C.L. (2009). Post-translational modifications of mitochondrial outer membrane proteins. Methods Enzymol. 457:97-115. doi: 10.1016/S0076-6879(09)05006-X.

Doherty, M.K., and Beynon, R.J. (2006). Protein turnover on the scale of the proteome. Expert Rev. Proteomics. 3(1):97-110. doi: 10.1586/14789450.3.1.97.

Doherty, M.K., Hammond, D.E., Clague, M.J., Gaskell, S.J., and Beynon, R.J. (2009). Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res. 8(1):104-12. doi: 10.1021/pr800641v.

Dong, J., Jiang, G., Asmann, Y.W., Tomaszek, S., Jen, J., Kislinger, T., et al. (2010). MicroRNA networks in mouse lung organogenesis. PLoS One. 5(5):e10854. doi: 10.1371/journal.pone.0010854.

Dussutour, A., Latty, T., Beekman, M., and Simpson, S.J. (2010). Amoeboid organism solves complex nutritional challenges. Proc. Natl. Acad. Sci. 107(10):4607-4611. doi: 10.1073/pnas.0912198107.

Dwivedi, G., and Kemp, M.L. (2012). Systemic redox regulation of cellular information processing. Antioxidant. Redox Signal. 16(4):374. doi: 10.1089/ars.2011.403.

Eggan, K., Baldwin, K., Tackett, M., Osborne, J., Gogos, J., Chess, A., et al. (2004). Mice cloned from olfactory sensory neurons. Nature. 428(6978):44-49. doi: 10.1038/nature02375.

Ehmsen, J., Poon, E., and Davies, K. (2002). The dystrophin-associated protein complex. J. Cell. Sci. 115(Pt 14): 2801-2803.

Emonet, T., and Cluzel, P. (2008). Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA. 105:3304-3309. doi: 10.1073/pnas.0705463105.

Faber, J., Portugal, R., and Rosa, L.P. (2006). Information processing in brain microtubules. Biosystems. 83(1):1-9.

Fan, C., Cheng, S., Liu, Y., Escobar, C.M., and Crowley, C.S. (2010). Short N-terminal sequences package proteins into bacterial microcompartments. Proc. Natl. Acad. Sci. USA. 107(16):7509-7514. doi: 10.1073/pnas.0913199107.

Forlemu, N.Y., Njabon, E.N., Carlsson, K.L., Schmidt, E.S., Waingeh, V.F., and Thomasson, K.A. (2011). Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach. Proteins. 79(10):2813-2827. doi: 10.1002/prot.23107.

Fromme, P., and Mathis, P. (2004). Unraveling the photosystem I reaction center: a history, or the sum of many efforts. Photosyn. Res. 80(1-3):109-124. doi:10.1023/B:PRES.0000030657.88242.e1.
Fuentes, J.M., Pascual, M.R., Salido, G., and Soler, J.A. (1994). Oscillations in rat liver cytosolic enzyme activities of the urea cycle. *Arch. Int. Physiol. Biochim Biophys.* 102(5):237-241.

Fusi, S., Drew, P.J. and Abbott L.F. (2005). Cascade models of synaptically stored memories. *Neuron.* 45:599-611. doi: 10.1016/j.neuron.2005.02.001.

Garmendia-Torres, C., Goldbeter, A., and Jacquet, M. (2007). Nucleocytoplasmic Oscillations of the Yeast Transcription Factor Msn2: Evidence for Periodic PKA Activation. *Curr. Biol.* 17(12):1044-1049. doi: 10.1016/j.cub.2007.05.032.

Gasch, A.P., and Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. *Funct. Integr. Genomics.* 2(4-5):181-192. doi: 10.1007/s10142-002-0058-2.

Gautam, V.K., Costantini, S., Paladino, A. and Colonna, G. (2012). Interactomic and pharmacological insights on human Sirt-1. *Front. Pharmacol.* 3:40. doi:10.3389/fphar.2012.00040.

Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch., M., Bauer, A., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. *Nature* 415: 141–147. doi:10.1038/415141a.

Gavin, A.C., and Superti-Furga, G. (2003). Protein complexes and proteome organization from yeast to man. *Curr. Opin. Chem. Biol.* 7(1):21-27. doi: 10.1016/S1367-5931(02)00007-8.

Gennarino, V.A., D'Angelo, G., Dharmalingam, G., Fernandez, S., Russolillo, G., Sanges, R., et al. (2012). Identification of microRNA-regulated gene networks by expression analysis of target genes. *Genome Res.* 22(6):1163-1172. doi: 10.1101/gr.130435.111.

Gerhäuser, C. (2012). Cancer cell metabolism, epigenetics and the potential influence of dietary components - A perspective. *Biomed. Res.* 23(1):1-21.

Geryk, J., and Slanina, F. (2013). Modules in the metabolic network of E. coli with regulatory interactions. *Int. J. Data Min. Bioinform.* 8(2):188-202. doi: 10.1504/IJDMB.2013.055500.

Getty, L., Panteleon, A.E., Mittelman, S.D., Dea, M.K., and Bergman, R.N. (2000). Rapid oscillations in omental lipolysis are independent of changing insulin levels in vivo. *J. Clin. Invest.* 106(3):421-430. doi: 10.1172/JCI7815.

Getty-Kaushik, L., Richard, A.M., and Corkey, B.E. (2005). Free fatty acid regulation of glucose-dependent intrinsic oscillatory lipolysis in perfused isolated rat adipocytes. *Diabetes.* 54(3):629-637. doi: 10.2337/diabetes.54.3.629.

Gloire, G., and Piette, J. (2009). Redox regulation of nuclear post-translational modifications during NF-kappaB activation. *Antioxid. Redox. Signal.* 11(9):2209-22. doi: 10.1089/ARS.2009.2463.
Gluckman, P.D., Hanson, M.A. and Beedle, A.S. (2007). Non-genomic transgenerational inheritance of disease risk. *Bioessays*. 29(2):145-154. doi: 10.1002/bies.20522.

Gnad, F., Ren, S., Cox, J., Olsen, J.V., Macek, B., Oroshi, M., et al. (2007). PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. *Genome Biol*. 8(11):R250. doi: 10.1186/gb-2007-8-11-r250.

Goldbeter, A. (2002). Computational approaches to cellular rhythms. *Nature*. 420(6912):238-245. doi:10.1038/nature01259.

Goldbeter, A. (2007). Biological rhythms as temporal dissipative structures. *Adv. Chem. Phys*. 135:253-295. doi: 10.1002/9780470121917.ch8.

Goldbeter, A. (2013). Oscillatory enzyme reactions and Michaelis-Menten kinetics. *FEBS Lett*. 587, 2778-2784. doi: 10.1016/j.febslet.2013.07.031.

Gonzalez, D., Kozdon, J.B., McAdams, H.H., Shapiro, L., and Collier, J. (2014). The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. *Nucleic Acids Res*. 42(6):3720-3735. doi: 10.1093/nar/gkt1352.

Gough, J., Jones, G., Lovell, C., Macey, P., Morgan, H., Revilla, F.D., et al. (2009). Integration of cellular biological structures into robotic systems. *Acta Futura*. 3:43-49.

Graciet, E., Lebreton, S., and Gontero, B. (2004). Emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex. *J. Exp. Bot*. 55(400):1245-1254. doi: 10.1093/jxb/erh107.

Graham, J. W., Williams, T. C., Morgan, M., Fernie, A. R., Ratcliffe, R.G., and Sweetlove L.J. (2007). Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. *Plant Cell*. 19(11):3723-3738. doi: 10.1105/tpc.107.053371.

Greenfield, D., McEvoy, A.L., Shroff, H., Crooks, G.E., Wingreen, N.S., Betzig E., et al. (2009). Self-organization of the escherichia colichemotaxis network imaged with super-resolution light microscopy. *PLoS Biol*. 7(6):e1000137. doi:10.1371/journal.pbio.1000137.

Grossniklaus, U. (2011). Plant germline development: a tale of cross-talk, signaling, and cellular interactions. *Sex. Plant Reprod*. 24(2):91-95. doi: 10.1007/s00497-011-0170-3.

Gurdon, J.B., and Weir, R.S. (1969). Cytoplasmic proteins and the control of nuclear activity in early amphibian development. *Biochem. J*. 114(4):52-53.

Gurdon, J.B. (1971). *Transplant of nuclei and cell differentiation*. Moscow: Znanie, Series 10 (Biology).
Halbach, F., Reichelt, P., Rode, M., and Conti, E. (2013). The yeast ski complex: crystal structure and RNA channeling to the exosome complex. *Cell*. 154(4):814-826. doi: 10.1016/j.cell.2013.07.017.

Halley, J.D., and Winkler, D.A. (2008). Consistent concepts of self-organization and self-assembly. *Complexity*. 14(2): 10-17. doi: 10.1002/cplx.20235.

Hamadeh, A., Roberts, M.A.J, August, E., McSharry, P.E., Maini, P.K., Armitage, J.P., et al. (2011). Feedback control architecture and the bacterial chemotaxis network. *PLoS Comput. Biol*. 7(5):e1001130. doi:10.1371/journal.pcbi.1001130.

Hanna, C.W., and Kelsey, G. (2014). The specification of imprints in mammals. *Heredity (Edinb)*. 113(2):176-83. doi: 10.1038/hdy.2014.54.

Hans, M.A., Heinzle, E., and Wittmann, C. (2003). Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae. *Biotechnol. Bioeng*. 82(2):143-151. doi: 10.1002/bit.10553.

Hao, D., Ren, C., and Li, C. (2012). Revisiting the variation of clustering coefficient of biological networks suggests new modular structure. *BMC Syst. Biol*. 6:34. doi: 10.1186/1752-0509-6-34.

Harrington, H.A., Ho, K.L., Ghosh, S., and Tung, K.C. (2008). Construction and analysis of a modular model of caspase activation in apoptosis. *Theor. Biol. Med. Model*. 5:26. doi: 10.1186/1742-4682-5-26.

Hartig, K., and Beck, E. (2005). Endogenous cytokinin oscillations control cell cycle progression of tobacco BY-2 cells. *Plant. Biology*. 7(1):33-40. doi: 10.1055/s-2004-830474.

Hartwell, L.H., Hopfield, J.J., Leibler, S., and Murray, A.W. (1999). From molecular to modular cell biology. *Nature*. 402(6761 Suppl):C47-52.

Hatakeyama. T.S., Kaneko, K. (2014). Kinetic Memory Based on the Enzyme-Limited Competition. *PLoS Comput Biol* 10(8): e1003784. doi:10.1371/journal.pcbi.1003784

Hayashi, T., G. Rumbaugh, et al. (2005). Differential Regulation of AMPA Receptor Subunit Trafficking by Palmitoylation of Two Distinct Sites. *Neuron* 47(5): 709-723.

Hazelbauer, G.L., Falke, J.J., and Parkinson, J.S. (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. *Trends Biochem. Sci*. 33:9-19. doi: 10.1016/j.tibs.2007.09.014.

Hazen, S.P., Wu, Y., and Kreps, J.A. (2003). Gene expression profiling of plant responses to abiotic stress. *Funct. Integr. Genomics*. 3(3):105-111.

Heinrich, R., Schuster, S. (1996). *The Regulation of Cellular Systems*. New York: Chapman and Hall.
Heo, I., and Kim, V.N. (2009). Regulating the regulators: post-translational modifications of RNA silencing factors. *Cell*. 139(1):28-31. doi: 10.1016/j.cell.2009.09.013.

Hertz, J., Krogh, A. and Palmer, R.G. (1991). *Introduction to the theory of neural computation*. Boston: Addison-Wesley Longman Publishing Co.

Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. *Nature*. 415(6868):180-183. doi: 10.1038/415180a.

Holdsworth, J.E., and Ratledge, C. (1988). Lipid turnover in oleaginous yeasts. *J. Gen. Microbiol.* 134(2):339-346. doi: 10.1099/00221287-134-2-339.

Holz, G.G., Heart, E., and Leech, C.A. (2008). Synchronizing Ca2+ and cAMP oscillations in pancreatic beta cells: a role for glucose metabolism and GLP-1 receptors? Focus on “Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic β-cell: a computational approach”. *Am. J. Physiol. Cell Physiol.* 294(1):C4-6. doi: 10.1152/ajpcell.00522.2007.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. *Proc. Nat. Acad. Sci. USA*. 79(8):2554-2558. doi: 10.1073/pnas.79.8.2554.

Hsu, J.T., Peng, C.H., Hsieh, W.P., Lan, C.Y., and Tang, C.Y. (2011). A novel method to identify cooperative functional modules: study of module coordination in the Saccharomyces cerevisiae cell cycle. *BMC Bioinformatics*. 12:281. doi: 10.1186/1471-2105-12-281.

Hungerbuehler, A.K., Philippsen, P., and Gladfelter, A.S. (2007). Limited functional redundancy and oscillation of cyclins in multinucleated ashbyagossypii fungal cells. *Eukaryot. Cell*. 6(3):473-486. doi: 10.1128/EC.00273-06.

Impens, F., Radoshevich, L., Cossart, P., and Ribet, D. (2014). Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. *Proc. Natl. Acad. Sci. USA*. 111(34):12432-12437. doi: 10.1073/pnas.1413825111.

Inoue M, and Kaneko, K. (2013). Cooperative adaptive responses in gene regulatory networks with many degrees of freedom. *PLoS Comput. Biol*. 9(4): e1003001. doi:10.1371/journal.pcbi.1003001.

Ishii, K., Hirose, K., and Iino, M. (2006). Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. *EMBO Rep.* 7(4):390-396. doi: 10.1038/sj.embor.7400620.

Ishikawa, M., Tsuchiya, D., Oyama, T., Tsunaka, Y., and Morikawa, K. (2004). Structural basis for channelling mechanism of a fatty acid bold beta-oxidation multienzyme complex. *EMBO J*. 23(14):2745-2754. doi: 10.1038/sj.emboj.7600298.

Islam, M.M., Wallin, R., Wynn, R.M., Conway, M., Fujii, H., Mobley, J.A., et al. (2007). A novel branched-chain amino acid metabolon. Protein-protein interactions in a
supramolecular complex. J. Biol. Chem. 282(16):11893-11903. doi: 10.1074/jbc.M700198200.

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA. 98(8):4569-4574. doi: 10.1073/pnas.061034498.

Itskov, V., Hansel, D., and Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Front. Comp. Neurosci. 5:40. doi: 10.3389/fncom.2011.00040.

Janke, C., and Bulinski J.C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 12(12):773-786. doi: 10.1038/nrm3227.

Jennings, H.S. (1905). Behavior of Lower Organisms. Bloomington: Indiana University Press, Reprint Edition.

Jia, H., Wang, X., Anderson, J.T., and Jankowsky, E. (2012). RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex. Proc. Natl. Acad. Sci. USA. 109(19):7292-7297. doi: 10.1073/pnas.1201085109.

Jimenez-Chirallon, J.C., Isganaitis, E., Charalambous, M., Gesta, S., Pentinat-Pelegrin, T., Faucette, R.R., et al. (2009). Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. 58(2):460-468. doi: 10.2337/db08-0490.

Jorgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., and Zagrobelny, M. (2005). Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant. Biol. 8(3):280-291. doi: 10.1016/j.pbi.2005.03.014.

Jovanović, S., Jovanović, A., and Crawford, M.R. (2007). M-ldh serves as a regulatory subunit of the cytosolic substrate-channelling complex in vivo. J. Mol. Biol. 371(2):349-361. doi: 10.1016/j.jmb.2007.05.081.

Jules, M., Francois, J., and Parrou, J.L. (2005). Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J. 272(6):1490-1500. doi: 10.1111/j.1742-4658.2005.04588.x.

Kaati, G., Bygren, L.O., Pembrey, M., and Sjöström, M. (2007). Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15(7):784-790. doi: 10.1038/sj.ejhg.5201832.

Kaltenbach, H.M., and Stelling, J. (2012). Modular analysis of biological networks. Adv. Exp. Med. Biol. 736:3-17. doi: 10.1007/978-1-4419-7210-1_1.

Kamimura, A., and Kobayashi, T.J. (2012). Information processing and integration with intracellular dynamics near critical point. Front. Physiol. 3:203. doi: 10.3389/fphys.2012.00203.
Kanehisa, M. (2013). Chemical and genomic evolution of enzyme-catalyzed reaction networks. *FEBS Lett.* 587(17):2731-2737. doi: 10.1016/j.febslet.2013.06.026.

Kashtan, N., and Alon, U. (2005). Spontaneous evolution of modularity and network motifs. *Proc. Natl. Acad. Sci. USA.* 102(39):13773-13778. doi: 10.1073/pnas.0503610102.

Katz, E., and Privman, V. (2010). Enzyme-based logic systems for information processing. *Chem. Soc. Rev.* 39(5):1835-1857. doi: 10.1039/b806038j.

Kazachenko, V.N., Astashev, M.E., and Grinevic, A.A. (2007). Multifractal analysis of K+ channel activity. *Biochemistry.* 2:169-175.

Kessler, D. (1982). Plasmodial structure and motility, in *Cell biology of Physarum and Didymium*, eds. H. C. Aldrich and J. W. Daniel. Australia: Academic Press. Sydney.

Khoury, G.A., Baliban, R.C., and Floudas, C.A. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. *Sci. Rep.* 1(90). doi:10.1038/srep00090.

Kindzelskii, A.L., Zhou, M.J., Haugland, P.R., Boxer, A.L., and Petty, R.H. (1998). Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion. *Biophys. J.* 74(1):90-97. doi: 10.1016/S0006-3495(98)77770-7.

Klevecz, R.R., and Murray, D.B. (2001). Genome wide oscillations in expression – Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype. *Mol. Biol. Rep.* 28(2):73-82. doi: 10.1023/A:1017909012215.

Klevecz, R.R., Bolen, J., Forrest, G., and Murray, D.B. (2004). A genomewide oscillation in transcription gates DNA replication and cell cycle. *Proc. Natl. Acad. Sci. USA.* 101(5):1200-1205. doi: 10.1073/pnas.0306490101.

Koc, E.C., and Koc, H. (2012). Regulation of mammalian mitochondrial translation by post-translational modifications. *Biochim. Biophys. Acta.* 1819(9-10):1055-1066. doi: 10.1016/j.bbabmb.2012.03.003.

Kollmann, M., Løvdok, L., Bartholomé, K., Timmer J. and Sourjik V. (2005). Design principles of a bacterial signalling network. *Nature.* 438(7067):504-507. doi:10.1038/nature04228.

Korcsmáros, T., Kovács, I.A., Szalay, M.S., and Csermely, P. (2007). Molecular chaperones: the modular evolution of cellular networks. *J. Biosci.* 32(3):441-446. doi: 10.1007/s12038-007-0043-y.

Kreps, J.A., Wu, Y., Hur-Song, C., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptomic changes for Arabidopsis in response to salt, osmotic, and cold stress. *Plant Phys.* 130(4):2129-2141. doi: 10.1104/pp.008532.

Kuersten, S., Ohno, M., and Mattaj, I.W. (2001). Nucleocytoplasmic transport: Ran, beta and beyond. *Trends Cell Biol.* 11(12):497-503. doi: 10.1016/S0962-8924(01)02144-4.
Kuzin, A.M. (1970). *Structural – metabolic hypothesis in radiobiology*. Moscow: Nauka.

Lacroix, V., Fernandes, C.G., and Sagot, M.F. (2006). Motif search in graphs: application to metabolic networks. *IEEE/ACM Trans. Comput. Biol. Bioinform.* 3(4):360-368. doi: 10.1109/TCBB.2006.55.

Lallemand, B., Erhardt, M., Heitz, T., and Legrand M. (2013). Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. *Plant Physiol.* 162(2):616-625. doi: 10.1104/pp.112.213124.

Lange, G., Mandelkow, E.M., Jagla, A., and Mandelklow, E. (1988). Tubulin oligomers and microtubule oscillations Antagonistic role of microtubule stabilizers and destabilizers. *Eur. J. Biochem.* 178(1):61-69. doi: 10.1111/j.1432-1033.1988.tb14429.x.

Latty, T., and Beekman, M. (2011). Speed-accuracy trade-offs during foraging decisions in the acellular slime mould *Physarum polycephalum*. *Proc. Biol. Sci.* 278(1705):539-545. doi: 10.1098/rspb.2010.1624.

Li, C., Cao, L.G., Wang, Y.L., and Baril, E.F. (1993). Further purification and characterization of a multienzyme complex for DNA synthesis in human cells. *J. Cell. Biochem.* 53(4):405-419. doi: 10.1002/jcb.240530418.

Li, L., Norrelykke, S.F., and Cox, E.C. (2008). Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. *PLoS One.* 3(5):e2093. doi: 10.1371/journal.pone.0002093.

Li, Q. (2010). Advances in protein turnover analysis at the global level and biological insights. *Mass Spectrom. Rev.* 29 (5):717-736. doi: 10.1002/mas.20261.

Li, Z., and Stock, J.B. (2009). Protein carboxyl methylation and the biochemistry of memory. *Biol. Chem.* 390(11):1087-1096. doi: 10.1515/BC.2009.133.

Lin J., Lu, J., Feng, Y., Sun, M., and Ye, K. (2013). An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme. *PLoS Biol.* 11(10): e1001669. doi:10.1371/journal.pbio.1001669.

Linnaeus, C. (1749). De Peloria, Diss. Ac. Amoenitates Academicae III, Uppsala.

Liu, F., VanToai, T., Moy, L.P., Bock, G., Linford, L.D., and Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insight into hypoxic response in Arabidopsis. *Plant Phys.* 137(3):1115-1129. doi: 10.1104/pp.104.055475.

Lloyd, D., Eshantha, L., Salgado, J., Turner, M.P., and Murray, D.B. (2002). Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. *FEBS Lett.* 519(1-3):41-44. doi: 10.1016/S0014-5793(02)02704-7.

Lloyd, D. and Murray, D.B. (2005). Ultradian metronome: timekeeper for orchestration of cellular coherence. *Trends Biochem. Sci.* 30(7):373-377. doi: 10.1016/j.tibs.2005.05.005.
Lloyd, D., and Murray, D.B. (2006). The temporal architecture of eukaryotic growth. *FEBS Lett.* 580(12):2830-2835. doi: 10.1016/j.febslet.2006.02.066.

Ludington, W.B., Wemmer, K.A., Lechtreck, K.F., Witman, G.B., and Marshall, W.F. (2013). Avalanche-like behavior in ciliary import. *Proc. Natl. Acad. Sci. USA.* 110(10):3925-3930. doi: 10.1073/pnas.1217354110.

Lunn, E.J. (2007). Compartmentation in plant metabolism. *J. Exp. Bot.* 58(1):35-47. doi: 10.1093/jxb/erl134.

Luo, J., Ashikaga E., Rubin, P.P., Heimann, M.J., Hildick, K.L., Bishop, P., et al. (2013). Receptor trafficking and the regulation of synaptic plasticity by SUMO. *Neuromolecular Medicine.* 15(4):692-706. doi: 10.1007/s12017-013-8253-y.

MacDonald, M.J., Fahien, L.A., Buss, J.D., Hasan, N.M., Fallon, M.J., Kendrick, M.A., et al. (2003). Citrate oscillates in liver and pancreatic beta cell mitochondria and in INS-1 insulinoma cells. *J. Biol. Chem.* 278(51):51894-51900. doi: 10.1074/jbc.M309038200.

Makino, D.L., Baumgärtner, M., and Conti, E. (2013). Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. *Nature.* 495(7439):70-75. doi: 10.1038/nature11870.

Maquat, L.E., and Gong C. (2009). Gene expression networks: competing mRNA decay pathways in mammalian cells. *Biochem. Soc. Trans.* 37(Pt 6):1287-92. doi: 10.1042/BST0371287.

Marquez, S., Crespo, P., Carlini, V., Garbarino-Pico, E., Baler, R., Caputto, B.L., et al. (2004). The metabolism of phospholipids oscillates rhythmically in cultures of fibroblasts and is regulated by the clock protein PERIOD 1. *FASEB J.* 18(3):519-521. doi: 10.1096/fj.03-0417fje.

Marwan, W. (2010). Systems biology. Amoeba-inspired network design. *Science.* 327(5964):419-420. doi: 10.1126/science.1185570.

Masoudi-Nejad, A., Schreiber, F., and Kashani, Z.R. (2012). Building blocks of biological networks: a review on major network motif discovery algorithms. *IET Syst. Biol.* 6(5):164-174. doi: 10.1049/iet-syb.2011.0011.

Merriam, R.W. (1969). Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. *J. Cell Sci.* 5(2):333-349.

Mijaljica, D., Prescott, M., and Devenish, R.J. (2006). Endoplasmic reticulum and Golgi complex: Contributions to, and turnover by, autophagy. *Traffic.* 7(12):1590-1595. doi: 10.1111/j.1600-0854.2006.00495.x.

Milani, M., Pesce, A., Bolognesi, M., Bocedi, A., and Ascenzi, P. (2003). Substrate channeling: Molecular bases. *Biochem. Mol. Biol. Educ.* 31:228-233. doi: 10.1002/bmb.2003.494031040239.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: simple building blocks of complex networks. *Science*. 298(5594):824-827. doi: 10.1126/science.298.5594.824.

Mirouze, M., and Paszkowski, J. (2011). Epigenetic contribution to stress adaptation in plants. *Curr. Opin. Plant Biol*. 14(3):267-274. doi: 10.1016/j.pbi.2011.03.004.

Missiuro, P.V., Liu, K., Zou, L., Ross, B.C., Zhao, G., Liu, J.S., et al. (2009). Information flow analysis of interactome networks. *PLoS Comput. Biol*. 5(4):e1000350. doi:10.1371/journal.pcbi.1000350.

Misteli, T. (2009). Self-organization in the genome. *PNAS*. 106(17):6885-6886. doi:10.1073/pnas.0902010106.

Mitchell, C.G. (1996). Identification of a multienzyme complex of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes from Pseudomonas aeruginosa. *Biochem. J*. 313(Pt 3):769-774.

Miyaji, T., and Ohnishi, I. (2008). Physarum can solve the shortest path problem on riemannian surface mathematically rigourously. *Int. J. Pure App. Math*. 47(3):353-369.

Molinier, J., Ries, G., Zipfel, C., and Hohn, B. (2006). Transngeneration memory of stress in plants. *Nature*. 442:1046-1049. doi:10.1038/nature05022.

Møller, A.C., Hauser, M.J.B., and Olsen, L.F. (1998). Oscillations in peroxidase-catalyzed reactions and their potential function in vivo. *Biophys. Chem*. 72(1-2):63-72. doi: 10.1016/S0301-4622(98)00123-9.

Monge, C., Beraud, N., Kuznetsov, A.V., Rostovtseva, T., and Sackett, D. (2008). Regulation of respiration in brain mitochondria and synaptosomes: Restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase. *Mol. Cell. Biochem*. 318(1-2):147-165. doi: 10.1007/s11010-008-9865-7.

Monge, C., Grichine, A., Rostovtseva, T., Sackett, P., and Saks, V.A. (2009). Compartmentation of ATP in cardiomyocytes and mitochondria. Kinetic studies and direct measurements. *Biophys. J*. 96:241a. doi: 10.1016/j.bpj.2009.03.024.

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working memory. *Science*. 319:1543-1546. doi: 10.1126/science.1150769.

Mooney, R.A., Artsimovitch, I., and Landick, R. (1998). Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. *J. Bacteriol*. 180(13):3265-3275.

Murata, S., Yashiroda, H., and Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. *Nat. Rev. Mol. Cell. Biol*. 10(2):104-115. doi: 10.1038/nrm2630.

Murray, D., Beckmann, M., and Kitano, H. (2007). Regulation of yeast oscillatory dynamics. *Proc. Natl. Acad. Sci. USA*. 104(7):2241-2246. doi: 10.1073/pnas.0606677104.
Murthy, V., and Pasupathy, K. (1994). Isolation and characterization of a multienzyme complex containing DNA replicative enzymes from mitochondria of S. cerevisiae. Multienzyme complex from yeast mitochondria. *Mol. Biol. Rep.* 20(3):135-141. doi: 10.1007/BF00990545.

Muto, A., Kotera, M., Tokimatsu, T., Nakagawa, Z., Goto, S., and Kanehisa, M. (2013). Modular architecture of metabolic pathways revealed by conserved sequences of reactions. *J. Chem. Inf. Model.* 53(3):613-622. doi: 10.1021/ci3005379.

Nadeau, J.H. (2009). Transgenerational genetic effects on phenotypic variation and disease risk. *Hum. Mol. Genet.* 18(R2):R202-R210. doi: 10.1093/hmg/ddp366.

Nakagaki, T., Yamada, H., and Toth, A. (2000). Maze-solving by an amoeboid organism. *Nature.* 407:470-470.

Nakagaki, T. (2001). Smart behavior of true slime mold in a labyrinth. *Res. Microbiol.* 152(9):767-770. doi: 10.1016/S0923-2508(01)01259-1.

Nakagaki, T., Yamada, H., and Toth, A. (2001). Path-finding by tube morphogenesis in an amoeboid organism. *Biophys. Chem.* 92:47-52.

Nakagaki, T., Kobayashi, R., Ueda, T., and Nishiura, Y. (2004). Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. *Proc. Biol. Sci.* 271:2305-2310. doi: 10.1098/rspb.2004.2856.

Nakagaki, T., Yamada, H., and Hara, M. (2004). Smart network solutions in an amoeboid organism. *Biophys. Chem.* 107(1):1-5. doi: 10.1016/S0301-4622(03)00189-3.

Nakagaki, T., and Guy, R.D. (2008). Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. *Soft Matter.* 4:57-67. doi: 10.1039/b706317m.

Nakamura, N., Wei, J.H., and Seemann, J. (2012). Modular organization of the mammalian Golgi apparatus. *Curr. Opin. Cell. Biol.* 24(4):467-474. doi: 10.1016/jceb.2012.05.009.

Neher, S.B., Sauer, R.T., and Baker, T.A. (2003). Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD′D′ mediate tethering and substrate processing by the ClpXP protease. *Proc. Natl. Acad. Sci. USA.* 100(23):13219-13224. doi: 10.1073/pnas.2235804100.

Nep, S., Stergachis, A.B., Reynolds, A., Sandstrom, R., Borenstein, E., and Stamatoyannopoulos, J.A. (2012). Circuitry and dynamics of human transcription factor regulatory networks. *Cell.* 150(6):1274-1286. doi: 10.1016/j.cell.2012.04.040.

Nicolis, G., and Prigogine, I. (1977). *Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations.* Wiley. New York.
Noble, D., Jablonka, E., Joyner, M.J., Müller, G.B., and Omholt, S.W. (2014). Evolution evolves: physiology returns to centre stage. *J. Physiol.* 592(Pt 11):2237-2244. doi: 10.1113/jphysiol.2014.273151.

Novak, B., Tyson, J.J., Gyorffy, B., Csikasz-Nagy, A. (2007). Irreversible cell-cycle transitions are due to systems-level feedback. *Nat Cell Biol.* 9(7):724-8. doi:10.1038/ncb0707-724.

Nurse, P. (2008). Life, logic and information. *Nature.* 454:424-426. doi: 10.1038/454424a.

Oliva, A., Rosebrock, A., Ferrezuelo, F., Pyne, S., Chen, H., Skiena, S., et al. (2005). The cell cycle-regulated genes of Schizosaccharomyces pombe. *PLoS Biol.* 3(7):e225. doi: 10.1371/journal.pbio.0030225.

Ovadi, J., and Srere, P.A. (2000). Macromolecular compartmentation and channeling. *Int. Rev. Cytol.* 192:255-280.

Ozalp, V.C., Pedersen, T.R., Nielsen, L.J., and Olsen, L.F. (2010). Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. *J. Biol. Chem.* 285(48):37579-37588. doi: 10.1074/jbc.M110.155119.

Pang, C.N., Krycer, J.R., Lek, A., and Wilkins, M.R. (2008). Are protein complexes made of cores, modules and attachments? *Proteomics.* 8(3):425-434. doi: 10.1002/pmic.200700801.

Papp, B., Pál, C., and Hurst, L.D. (2004). Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. *Nature.* 429(6992):661-664. doi: 10.1038/nature02636.

Parker, A., and Engel, P.C. (2000). Preliminary evidence for the existence of specific functional assemblies between enzymes of the beta-oxidation pathway and the respiratory chain. *Biochem. J.* 345(Pt 3):429-435. doi: 10.1042/0264-6021:3450429.

Petrovic, A., Mosalaganti, S., Keller, J., Mattiuzzo, M., Overlack, K., Krenn, V. (2014). Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. *Mol Cell.* 53(4):591-605. doi: 10.1016/j.molcel.2014.01.019.

Pecinka, A., and Mittelsten Scheid, O. (2012). Stress-induced chromatin changes: a critical view on their heritability. *Plant Cell Physiol.* 53(5):801-808. doi: 10.1093/pcp/pcs044.

Pembrey, M.E., Bygren, L.O., Kaati, G., Edvinsson, S., Northstone, K., and Sjöström, M., et al. (2006). Sex-specific, male-line transgenerational responses in humans. *Eur. J. Hum. Genet.* 14(2):159-66. doi:10.1038/sj.ejhg.5201538.

Pershin, Y.V., La Fontaine, S., and Di Ventra, M. (2009). Memristive model of amoeba learning. *Phy. Rev. E. Stat. Nonlin. Soft Matter Phys.* 80:021926. doi: 10.1103/PhysRevE.80.021926.
Pestov, D.G., and Shcherbik, N. (2012). Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR. *Mol. Cell. Biol.* 32(11):2135-2144. doi: 10.1128/MCB.06763-11.

Petty, H.R., and Kindzelskii, A.L. (2001). Dissipative metabolic patterns respond during neutrophil transmembrane signaling. *Proc. Natl. Acad. Sci. USA.* 98(6):3145-3149. doi: 10.1073/pnas.061014298.

Pflieger, D., Bigeard, J., and Hirt, H. (2011). Isolation and characterization of plant protein complexes by mass spectrometry. *Proteomics.* 11(9):1824-1833. doi: 10.1002/pmic.201000635.

Placantonakis, D.G, and Welsh, J.P. (2001). Two distinct oscillatory states determined by the NMDA receptor in rat inferior olive. *J. Physiol.* 534(Pt 1):123-140. doi: 10.1111/j.1469-7793.2001.t01-1-00123.x.

Postma, M., Bosgraaf, L., Loovers, H.M., and Van Haastert, P.J. (2004). Chemotaxis: signalling modules join hands at front and tail. *EMBO Rep.* 5(1):35-40. doi: 10.1038/sj.embor.7400051.

Purvis, J.E., and Lahav, G. (2013). Encoding and decoding cellular information through signaling dynamics. *Cell.* 152(5):945-956. doi: 10.1016/j.cell.2013.02.005.

Qi, H., Blanchard, A., and Lu, T. (2013). Engineered genetic information processing circuits. *Wiley Interdiscip. Rev. Syst. Biol. Med.* 5(3):273-287. doi: 10.1002/wsbm.1216.

Ramakrishnan, N., and Bhalla, U.S. (2008). Memory Switches in Chemical Reaction Space. *PLoS Comput. Biol.* 4(7):e1000122. doi:10.1371/journal.pcbi.1000122.

Ramanujan, V.K., Biener, G., and Herman, B. (2006). Scaling behavior in mitochondrial redox fluctuations. *Biophys. J.* 90:L70-L72. doi: 10.1529/biophysj.106.083501.

Ramisetty, S.R., and Washburn, M.P. (2011). Unraveling the dynamics of protein interactions with quantitative mass spectrometry. *Crit. Rev. Biochem. Mol. Biol.* 46(3):216-228. doi: 10.3109/10409238.2011.567244.

Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., and Barabási, A.L. (2002). Hierarchical organization of modularity in metabolic networks. *Science.* 297(5586):1551-1555. doi: 10.1126/science.1073374.

Ravasz, E. (2009). Detecting hierarchical modularity in biological networks. *Methods Mol. Biol.* 541:145-160. doi: 10.1007/978-1-59745-243-4_7.

Rengan, R., and Omann, G.M. (1999). Regulation of Oscillations in Filamentous Actin Content in Polymorphonuclear Leukocytes Stimulated with Leukotriene B4 and Platelet-Activating Factor. *Biochem. Biophys. Res. Commun.* 262(2):479-486. doi: 10.1006/bbrc.1999.1222.
Rimsky, S., and Travers, A. (2011). Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. *Curr. Opin. Microbiol*. 14(2):136-141. doi: 10.1016/j.mib.2011.01.003.

Rohila, J. S., Chen, M., Chen, S., Chen, J., Cerny R.L., Dardick, C., et al. (2009). Protein-protein interactions of tandem affinity purified protein kinases from rice. *PLoS One*. 4(8):e6685. doi: 10.1371/journal.pone.0006685.

Romani, S., Pinkoviezky, I., Rubin, A., and Tsodyks, M. (2013). Scaling laws of associative memory retrieval. *Neural Comput*. 25:2523-2544. doi: 10.1162/NECO_a_00499.

Roper, S.D. (2007). Signal transduction and information processing in mammalian taste buds. *Pflugers Arch*. 454(5):759-776. doi: 10.1007/s00424-007-0247-x.

Rosenspire, A.J., Kindzelskii, A.L., and Petty, H. (2001). Pulsed DC electric fields couple to natural NAD(P)H oscillations in HT-1080 fibrosarcoma cells. *J. Cell. Sci*. 114(Pt 8):1515-1520.

Roussel, M.R., Ivlev, A.A., and Igamberdiev, A.U. (2006). Oscillations of the internal CO2 concentration in tobacco leaves transferred to low CO2. *J. Plant Physiol*. 34(9):1188-1196. doi:10.1016/j.jplph.2006.08.004.

Routtenberg, A., and Rekart, J.L. (2005). Post-translational protein modification as the substrate for long-lasting memory. *Trends Neurosci*. 28(1):12-9. doi: 10.1016/j.tins.2004.11.006.

Routtenberg, A. (2008). The substrate for long-lasting memory: if not protein synthesis, then what?. *Neurobiol. Learn. Mem*. 89(3):225-233. doi: 10.1016/j.nlm.2007.10.012.

Running, M.P. (2014). The role of lipid post-translational modification in plant developmental processes. *Front. Plant Sci*. 5:50. doi: 10.3389/fpls.2014.00050.

Saigusa, T., Tero, A., Nakagaki, T., and Kuramoto, Y. (2008). Amoebae anticipate periodic events. *Phys. Rev. Lett*. 100(1):018101. doi: 10.1103/PhysRevLett.100.01810.

Saks, V., Dzeja, P., Schlattner, U., Vendelin, M., Terzic, A., and Wallimann, T. (2006). Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. *J. Physiol*. 571(Pt 2):253-273. doi: 10.1113/jphysiol.2005.101444.

Saks, V., Monge, C., and Guzun, R. (2009). Philosophical basis and some historical aspects of systems biology: From hegel to noble - Applications for bioenergetic research. *Int. J. Mol. Sci*. 10(3):1161-1192. doi: 10.3390/ijms10031161.

San Román, M., Cancela, H., and Acerenza, L. (2014). Source and regulation of flux variability in Escherichia coli. *BMC Syst. Biol*. 8:67. doi: 10.1186/1752-0509-8-67.

Sánchez-Armáss, S., Sennoune, S.R., Maiti, D., Ortega, F., and Martínez-Zaguila, R. (2006). Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells. *Am. J. Physiol. Cell Physiol*. 290(2):C524-538. doi: 10.1152/ajpcell.00290.2005.
Sasidharan, K., Tomita, M., Aon, M., Lloyd, D., and Murray, D.B. (2012). Time-structure of the yeast metabolism in vivo. Adv. Exp. Med. Biol. 736:359-379. doi:10.1007/978-1-4419-7210-1_21.

Schägger, H. (2002). Respiratory chain supercomplexes of mitochondria and bacteria. Biochim. Biophys. Acta. 1555(1-3):154-159. doi: 10.1016/S0005-2728(02)00271-2.

Schibler, U. and Sassone-Corsi, P. (2002). A web of circadian pacemakers. Cell. 111(7):919-922. doi: 10.1016/S0092-8674(02)01225-4.

Schott, J., and Stoecklin, G. (2010). Networks controlling mRNA decay in the immune system. Wiley Interdiscip. Rev. RNA. 1(3):432-456. doi: 10.1002/wrna.13.

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85(2):461-464.

Schubert, V. (2014). RNA polymerase II forms transcription networks in rye and arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet. Genome Res. 143(1-3):69-77. doi: 10.1159/000365233.

Schulz, M.H., Pandit, K.V., Lino Cardenas, C.L., Ambalavanan, N., Kaminski, N., and Bar-Joseph, Z. (2013). Reconstructing dynamic microRNA-regulated interaction networks. Proc. Natl. Acad. Sci. USA. 110(39):15686-15691. doi: 10.1073/pnas.1303236110.

Schwarz, L.A., Hall B.J., and Patrick, G.N. (2010). Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J. Neurosci. 30(49):16718-16729. doi: 10.1523/JNEUROSCI.3686-10.2010.

Schwechheimer, C. (2004). The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim. Biophys. Acta. 1695(1-3):45-54. doi:10.1016/j.bbamcr.2004.09.023.

Segura, M.P., Lilley, K.S., and Dupree, P. (2010). Proteomic complex detection using sedimentation (ProCoDeS): screening for proteins in stable complexes and their candidate interaction partners. Biochem. Soc. Trans. 38(4):923-927. doi: 10.1042/BST0380923.

Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., et al. (2012). The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell. 48(6):849-62. doi: 10.1016/j.molcel.2012.11.001.

Seong, K.H., Li, D., Shimizu, H., Nakamura, R., and Ishii, S. (2011). Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell. 145(7):1049-1061. doi: 10.1016/j.cell.2011.05.029.

Shankaran, H., Ippolito, D.L., Christer, W.B., Resat, H., Bollinger, N., Opresko, L.K., et al. (2009). Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor. Mol. Syst. Biol. 5:332. doi: 10.1038/msb.2009.90.
Sharma, A., Costantini, S., and Colonna, G. (2013). The protein-protein interaction network of the human Sirtuin family. *Biochim. Biophys. Acta*. 1834(10):1998-2009. doi: 10.1016/j.bbabio.2013.06.012.

Shaul, O., Mironov, V., Bursens, S., Van Montagu, M., and Inze, D. (1996). Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells. *Proc. Natl. Acad. Sci. USA*. 93(10):4868-4872. doi: 10.1073/pnas.93.10.4868.

Shimizu, T.S, Tu, Y., and Berg, H.C. (2010). A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. *Mol. Syst. Biol*. 6:382. doi:10.1038/msb.2010.37.

Shintani, T., and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. *Science*. 306(5698):990-995.

Shirakawa, T., and Gunji Y.P. (2007). Emergence of morphological order in the network formation of Physarumpolycephalum. *Biophys. Chem*. 128(2-3):253-260.

Sidiropoulou, K., Lu, F.M., Fowler, M.A., Xiao, R., Phillips, C., Ozkan, E.D, et al. (2009). Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. *Nat. Neurosci*. 12(2):190-199. doi: 10.1038/nn.2245.

Sims, R. J., and Reinberg, D. (2008). Is there a code embedded in proteins that is based on post-translational modification?. *Nat. Rev. Mol. Cell. Biol*. 9:815-820. doi: 10.1038/nrm2502.

Smrcinová, M., Sørensen, P.G., Krempasky, J., and Ballo, P. (1998). Chaotic oscillations in a chloroplast system under constant illumination. *Inter. J. Bifurcation Chaos*. 8:2467-2470.

Sourjik, V., and Berg, H. (2002). Receptor sensitivity in bacterial chemotaxis. *Proc. Natl. Acad. Sci. USA*. 99:123-127. doi: 10.1073/pnas.011589998.

Sourjik, V., and Berg, H. (2004). Functional interactions between receptors in bacterial chemotaxis. *Nature*. 428:437-441. doi: 10.1038/nature02406.

Srere, P.A. (1972). “Is there an organization of Krebs cycle enzymes in the mitochondrial matrix?”, in *Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria*, eds. R.W. Hanson and W.A. Mehlman, (New York: Academic Press), 79-91.

Srere, P.A. (1985). The metabolon. *Trends. Biochem. Sci*. 10:109-110. doi:10.1016/0968-0004(85)90266-X.

Stern, S., Dror, T., Stolovicki, E., Brenner, N., and Braun, E. (2007). Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge. *Mol. Syst. Biol*. 3:106. doi: 10.1038/msb4100147.
Stock, J.B., Levit, M.N., and Wolanin, P.M. (2002). Information processing in bacterial chemotaxis. *Sci. STKE*. 2002(132):pe25. doi: 10.1126/stke.2002.132.pe25.

Stock, J.B., and Zhang, S. (2013). The biochemistry of memory. *Curr. Biol*. 23(17):R741-5. doi: 10.1016/j.cub.2013.08.011.

Storlien, L., Oakes, N.D., and Kelley, D.E. (2004). Metabolic flexibility. *Proc. Nutr. Soc*. 63(2):363-368.

Stuart, R.A. (2008). Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. *J. Bioenerg. Biomembr*. 40(5):411-417. doi: 10.1007/s10863-008-9168-4.

Sunyer, B., Diao, W., and Lubec, G. (2008). The role of post-translational modifications for learning and memory formation. *Electrophoresis*. 29(12):2593-2602. doi: 10.1002/elps.200700791.

Suss K.H., Arkona, C., Manteuffel, R., and Adler, K. (1993). Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. *Proc. Natl. Acad. Sci. USA*. 90(12):5514-5518. doi: 10.1073/pnas.90.12.5514.

Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M.J., et al. (2008). Structural basis of enzyme encapsulation into a bacterial nanocompartment. *Nat. Struct. Mol. Biol*. 15(9): 939-947. doi: 10.1038/nsmb.1473.

Swindell, W.R., Huebner, M., and Weber, A.P. (2007). Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana. Heredity (Edinb). 99(2):143-150. doi: 10.1038/sj.hdy.6800975.

Takeda, T., Yun, C.-S., Shintani, M., Yamane, H., and Nojiri, H. (2011). Distribution of genes encoding nucleoid-associated protein homologs in plasmids. *Int. J. Evol. Biol*. 2011:685015. doi: 10.4061/2011/685015.

Takeuchi, T., Duszkiewicz, A.J., and Morris, R.G. (2014). The synaptic plasticity and memory hypothesis: encoding, storage and persistence. *Philos. Trans. R. Soc. Lond. B. Biol. Sci*. 369(1633):20130288. doi: 10.1098/rstb.2013.0288.

Tamura, K., and Hara-Nishimura, I. (2014). Functional insights of nucleocytoplasmic transport in plants. *Front. Plant Sci*. 5:118. doi: 10.3389/fpls.2014.00118.

Tay, S., Hughey, J.J., Lee, T.K., Lipniacki, T., Quake, S.R., and Covert, M.W. (2010). Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. *Nature*. 466(7303):267-71. doi: 10.1038/nature09145.

Taylor, E. W., K. Wang K, Nelson, A.R., Bredemann, T.M., Fraser, K.B., Clinton, S.M., et al. (2014). O-GlcNAcylation of AMPA Receptor GluA2 Is Associated with a Novel Form of Long-Term Depression at Hippocampal Synapses. The Journal of Neuroscience 34(1): 10-21. doi: 10.1523/JNEUROSCI.4761-12.2014.
Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., et al. (2010). Rules for biologically inspired adaptive network design. Science. 327:439-442. doi: 10.1126/science.1177894.

Thomson, M., and Gunawardena, J. (2009). Unlimited multistability in multisite phosphorylation systems. Nature. 460(7252):274-277. doi: 10.1038/nature08102.

Tian, B., Nowak, D.E., and Brasier, A.R. (2005). A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genomics. 6:137. doi:10.1186/1471-2164-6-137.

Tonozuka, H., Wang, J., Mitsui, K., Saito, T., Hamada, and Tsurugi, K. (2001). Analysis of the upstream regulatory region of the GTS1 gene required for its oscillatory expression. J. Biochem. 130(5):589-595. doi: 10.1093/oxfordjournals.jbchem.a003023.

Tsuda, S., Zauner, K.P., and Gunji, Y.P. (2007). Robot control with biological cells. Biosystems. 87(2-3):215-223.

Tu, B.P., Kudlicki, A., Rowicka, M., and McKnight, S.L. (2005). Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science. 310(5751):1152-1158. doi: 10.1126/science.1120499.

Tu, Y., Shimizu, T.S., and Berg, H.C. (2008). Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. USA. 105(39):14855-14860. doi: 10.1073/pnas.0807569105.

Tu, Y. (2013). Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu Rev Biophys. 42:337-59. doi: 10.1146/annurev-biophys-083012-130358.

Tucholski, J., Pinner, A.L., Simmons, M.S., and Meador-Woodruff, J.H. (2014). Evolutionarily conserved pattern of AMPA receptor subunit glycosylation in mammalian frontal cortex. PLoS One. 9(4):e94255. doi: 10.1371/journal.pone.0094255.

Turner, B.M. (2005). Reading signals on the nucleosome with a new nomenclature for modified histones. Nat. Struct. Mol. Biol. 12(2):110-112. doi: 10.1038/nsmb0205-110.

Tyson, J.J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. PNAS 88: 7328–7332. doi: 10.1073/pnas.88.16.7328.

Ueda, T., Matsumoto, K., and Kobatake, Y. (1986). Spatial and temporal organization of intracellular adenine nucleotides and cyclic nucleotides in relation to rhythmic motility in physarum plasmodium. Exp. Cell. Res. 162(2):486-494. doi: 10.1016/0014-4827(86)90352-6.

Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 403(6770):623-627. doi:10.1038/35001009.
Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijk, E., Van Isterdael, G., et al. (2007). A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. *Mol. Cell. Proteomics*. 6(7):1226-1238. doi: 10.1074/mcp.M700078-MCP200.

Varanda, W.A., Liebovitch, L.S., Figueiroa, J.N., and Nogueira, R.A. (2000). Hurst analysis applied to the study of single calcium-activated potassium channel kinetics. *J. Theor. Biol*. 206(3):343-353. doi: 10.1006/jtbi.2000.2131.

Veliky, M.M., Starikovich, L.S., Klimishin, N.I., and ChaykaYa, P. (2007). Molecular mechanisms in the integration of metabolism, ed. Lviv National University, (Lviv, Ukraine), 229.

Verkman, A.S. (2002). Solute and macromolecule diffusion in cellular aqueous compartments. *Trends Biochem. Sci*. 27(1):27-33. doi: 10.1016/S0968-0004(01)02003-5.

Vlasova-St Louis, I., and Bohjanen, P.R. (2011). Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1. *Curr. Opin. Genet. Dev*. 21(4):444-451. doi: 10.1016/j.gde.2011.03.002.

Völkel, P., Le Faou, P., and Angrand, P.O. (2010). Interaction proteomics: characterization of protein complexes using tandem affinity purification-mass spectrometry. *Biochem. Soc. Trans*. 38(4):883-887. doi: 10.1042/BST0380883.

von Dassow, G., Meir, E., Munro, E.M., and Ordell, G.M. (2000). The segment polarity network is a robust developmental module. *Nature*. 406:188-191. doi: 10.1038/35018085.

Wadhams, G.H., and Armitage, J.P. (2004). Making sense of it all: bacterial chemotaxis. *Nat. Rev. Mol. Cell. Biol*. 5(12):1024-1037. doi: 10.1038/nrm1524.

Wang, Z., and Zhang, J. (2009). Abundant indispensable redundancies in cellular metabolic networks. *Genome Biol. Evol*. 1:23-33. doi: 10.1093/gbe/evp002.

Waterland, R.A., Travisano, M., and Tahilianim K.G. (2007). Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. *FASEB J*. 21(12):3380-3385. doi: 10.1096/fj.07-8229com.
Wawrzkiewicz, A., Pawelek, K., Borys, P., Dworakowska, B., and Grzywna, Z.J. (2012). On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory. *Eur. Biophys. J.* 41(6):505-526. doi: 10.1007/s00249-012-0806-8.

Weber, J., Kayser, A., and Rinas, U. (2005). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. *Microbiology.* 151(pt 3):707-716. doi: 10.1099/mic.0.27482-0.

Will, C.L., and Lührmann, R. (2011). Spliceosome structure and function. *Cold Spring Harb. Perspect. Biol.* 3(7). doi: 10.1101/cshperspect.a003707.

Willshaw, D.J., Buneman, O.P., and Longuet-Higgins, H.C. (1969). Non-holographic associative memory. *Nature.* 222:960-962. doi: 10.1038/222960a0.

Willshaw, D.J, Longuet-Higgins, H.C., and Buneman, O.P. (1970). Models for the brain. *Nature.* 225:177-178. doi:10.1038/225177a0.

Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. *Nature.* 385(6619):810-3.

Wilson, D.N., and Nierhaus, K.H. (2007). The weird and wonderful world of bacterial ribosome regulation. *Crit. Rev. Biochem. Mol. Biol.* 42(3):187-219. doi:10.1080/10409230701360843.

Wilson, W.A., Roach, P.J., Montero, M., Baroja-Fernández, E., Muñoz F.J., and Eydallin, G. (2010). Regulation of glycogen metabolism in yeast and bacteria. *FEMS Microbiol. Rev.* 34(6):952-985. doi: 10.1111/j.1574-6976.2010.00220.x.

Wimmer, C., Platzer, S., Hillen, W., and Klotzsche, M. (2013). A novel method to analyze nucleocytoplasmic transport in vivo by using short peptide tags. *J. Mol. Biol.* 425(10):1839-1845. doi: 10.1016/j.jmb.2013.02.007.

Wittmann, C., Hans, M., Van Winden, A.W., Ras, C., and Heijnen, J.J. (2005). Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation in Saccharomyces cerevisiae. *Biotechnol. Bioeng.* 89(7):839-847. doi: 10.1002/bit.20408.

Wuichet, K., Alexander, R.P., and Zhulin, I.B. (2007). Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol. 422:1-31. doi:10.1016/S0076-6879(06)22001-9.

Yeates, T.O., Tsai, Y., Tanaka, S., Sawaya, M.R., and Kerfeld, C.A. (2007). Self-assembly in the carboxysome: A viral capsid-like protein shell in bacterial cells. *Biochem. Soc. Trans.* 35(Pt 3):508-511. doi: 10.1042/BST0350508.

Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C., and Shively, J.M. (2008). Protein-based organelles in bacteria: Carboxysomes and related microcompartments. *Nat. Rev. Microbiol.* 6(9):681-691. doi: 10.1038/nrmicro1913.
Yoon, J., Si, Y., Nolan, R., and Lee, K. (2007). Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection. *Bioinformatics*. 23(18):2433-2440. doi: 10.1093/bioinformatics/btm374.

Ytting, C.K., Fuglsang, A.T., Hiltunen, J.K., Kastaniotis, A.J., Özalp, V.C., Nielsen, L.J., et al. (2012). Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast *Saccharomyces cerevisiae*. *Integr. Biol. (Camb)*. 4(1):99-107. doi: 10.1039/c1ib00108f.

Zetterberg, A. (1966). Protein migration between cytoplasm and cell nucleus during interphase in mouse fibroblasts in vitro. *Exp. Cell Res.* 43(3), 526-536. doi: 10.1016/0014-4827(66)90023-1.

Zhang, S., Hulver, M.W., McMillan, R.P., Cline, M.A., and Gilbert, E.R. (2014). The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. *Nutr. Metab. (Lond)*. 11(1):10. doi: 10.1186/1743-7075-11-10.

Zhao, H., French, J.B., Fang, Y., and Benkovic, S.J. (2013). The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. *Chem. Commun (Camb)*. 49(40):4444-4452. doi: 10.1039/c3cc41437j.

Zhao, R., Bodnar, M.S. and Spector, D.L. (2009). Nuclear neighborhoods and gene expression. *Curr. Opin. Genet. Dev*. 19(2):172-919. doi: 10.1016/j.gde.2009.02.007.

Zhaojun, X.U., So-ichi, Y., and Kunio, T. (2004). Gts1p stabilizes oscillations in energy metabolism by activating the transcription of TPS1 encoding trehalose-6-phosphate synthase 1 in the yeast *Saccharomyces cerevisiae*. *Biochem. J*. 383(Pt 1):171-178. doi: 10.1042/BJ20040967.

Zheng, C.L., Sumizawa, T., Che, X.F., Tsuyama, S., Furukawa, T., and Haraguchi M. (2005). Characterization of MVP and VPARP assembly into vault ribonucleoprotein complexes. *Biochem. Biophys. Res. Commun*. 326(1):100-107. doi: 10.1016/j.bbrc.2004.11.006.

Zhou, L., Cortassa, S., Wei, A.C., Aon, M.A., Winslow, R.L., O'Rourke, B. (2009). Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. *Biophys J.* 7;97(7):1843-52. doi: 10.1016/j.bpj.2009.07.029.

Zhu, L., Aono, M., Kim, S.-J., and Hara, M. (2011). Problem-sizes calability of amoeba-based neurocomputer for traveling salesman problem. *Proc. NOLTA*. 108-11.