History and significance of the trauma resuscitation flow sheet

Julie A Dunn,1 Thomas J Schroeppe1, Michael Metzler,1 Chris Cribari,1,2 Katherine Corey,1 David R Boyd3

ABSTRACT
There is little to no written information in the literature regarding the origin of the trauma flow sheet. This vital document allows programs to evaluate initial processes of trauma care. This information populates the trauma registry and is reviewed in nearly every Trauma Process Improvement and Patient Safety conference when discerning the course of patient care. It is so vital, a scribe is assigned to complete this documentation task for all trauma resuscitations, and there are continual process improvement efforts in trauma centers across the nation to ensure complete and accurate data collection. Indeed, it is the single most important document reviewed by the verification committee when evaluating processes of care at site visits. Trauma surgeons often overlook its importance during resuscitation, as recording remains the domain of the trauma scribe. Yet it is the first document scrutinized when the outcome is less than what is expected. The development of the flow sheet is not a result of any consensus statement, expert work group, or mandate, but a result of organic evolution due to the need for relevant and better data. The purpose of this review is to outline the origin, importance, and critical utility of the trauma flow sheet.

There is little to no written information in the literature regarding the origin of the trauma flow sheet. This vital document allows programs to evaluate initial processes of trauma care. This information populates the trauma registry and is reviewed in nearly every Trauma Process Improvement and Patient Safety conference when discerning the course of patient care. It is so vital, a scribe is assigned to complete this documentation task for all trauma resuscitations, and there are continual process improvement efforts in trauma centers across the nation to ensure complete and accurate data collection. Indeed, it is the single most important document reviewed by the verification committee when evaluating processes of care at site visits. Trauma surgeons often overlook its importance during resuscitation, as recording remains the domain of the trauma scribe. Yet it is the first document scrutinized when the outcome is less than what is expected. The development of the flow sheet is not a result of any consensus statement, expert work group, or mandate, but a result of organic evolution due to the need for relevant and better data. The purpose of this review is to outline the origin, importance, and critical utility of the trauma flow sheet.

...there is a great waste of life; ... In attempting to arrive at the truth, I [have not] been able to find hospital records fit for any purpose of comparison. If they could be obtained, they would enable us to decide many questions ... these improved statistics would tell us more of the value of particular operations and modes of treatment than we have any means of obtaining at present... [T]ruth thus ascertained would enable us to save life and suffering, and to improve the treatment and management of the sick ... Florence Nightingale.

This prescient statement was made 150 years ago, yet until the 1950s charting remained negligible when Harriet Werley3 compiled a minimum set of standardized nursing data for all patients. In 1966, the National Academy of Sciences-National Research Council published Accidental Death and Disability: The Neglected Disease of Modern Society,3 ushering in modern trauma care and the first civilian trauma units in the USA.

Very few in our population can be considered immune to a possible major traumatic injury. The satisfactory outcome of such an injury depends upon the quality of medical care and the time interval in which it is provided. At present there is no unified plan available ... for the distribution and intensive management of the critically injured. This is in part due to the lack of “hard core” information about the problem. One partial solution to this major health problem may be the development of a trauma registry.4

Given this data deficit, a fledgling trauma registry was created at the Cook County Trauma Unit. Almost immediately impediments were encountered:

I was anxious to mine the gold field of clinical material on the TU (Trauma Unit). I quickly found my first set of obstacles: (1) the Cook County Hospital patient record, (2) the Cook County Hospital record room, and (3) the inconsistent and inadequate chart recording of the period.1

To have a functional trauma registry, with “hard core information,” vital data were required. The solution: paper data sheets taped to the Trauma Unit walls at Cook County (Dr D Boyd, personal communication, 2016). Data included demographics, time from injury to initial care, mechanisms, injury patterns, interventions, response to therapies, transfer times, and outcomes. From the outset, charting was quickly assumed by the nursing personnel. Until that time, the quality and intensity of trauma care for civilians had never been defined.4 Data input into rapidly advancing computer systems allowed precise outputs and ability to identify high-risk highway locations, work injuries, environmental injury patterns and vital information for trauma center development, health manpower needs, cost-effectiveness, processes of care, cost analyses, and effectiveness of prehospital systems.

This environment was the birthplace and testing ground for the trauma resuscitation flow sheet. As trauma centers and systems matured, the flow sheet began to take form. Although the origins can be traced to the Trauma Unit at Cook County Hospital, flow sheet maturation was an organic process, based on the evolving needs of teams, patients, and registries. Despite widespread use, scarcely are flow sheets mentioned in key publications of the time. Resources for optimal care of the injured patient make no reference nor provide any examples.7 Advanced trauma life support manuals reference the critical nature of recording events during resuscitation, but not until the eighth edition8 was a flow sheet mentioned and appended. Since then, the flow sheet has evolved into a multipage collection of many variables.

Given the origin, one would expect divergent forms. A review of a large number of trauma flow sheets reveals the organization of the data is scattered, and at a glance, dissimilar. However,
iterative appraisal of flow sheets with side-by-side comparisons for commonalities and unique attributes demonstrates near universal agreement on collected data (figure 1). This is a result of interactions at the national society level. Form sharing was rampant, and dissemination of information via the Society of Trauma Nurses (STN) and other societies resulted in a form with high congruency (E Whalen, personal communication, 2016). In essence, form followed function. Extensive literature search did not reveal any specific papers on flow sheet development, and a search of the archives at the American College of Surgeons failed to unearth any copies of flow sheets from inception to the current time, necessitating reliance on oral history.

A evaluation of a representative sample of flow sheets (>30) from level I and II trauma centers across the USA, including the Armed Services, was undertaken. These were obtained directly from trauma centers or through an online search. All trauma flow sheets contained up to 1000 discrete data points. The large volume of information collected has resulted in multiple-paged flow sheets that vary in style and organization. Styles include four pages printed on two sides, to six-page trifold documents. All contain patient-related inputs and physiologic outputs, but vary with the addition of tables, diagrams, and commonly used guidelines. Variability is also evident in how data are collected: checklist versus pictures versus free text. Consistently, all flow sheets are organized into nine discrete areas of information but variably arranged. Beyond style and organization however, the content approaches 90% to 95% data congruence, a Darwinian phenomenon. Less than 5% to 10% of the data are unique and are either hospital-specific or needed in certain locations, such as combat zones (table 1). With neither a mandate nor consensus paper, the review reveals a universal set of categories. Each category contains essential data elements that allow expedient review of patient care and care processes. These nine categories are the following:

1. Prehospital information.
2. Trauma team response.
3. Medical history.
4. Patient assessment: primary and secondary surveys.
5. Procedural interventions.
6. Diagnostics.
7. Fluid, blood, and drugs.
8. Narrative and vital signs.
9. Disposition.

PREHOSPITAL INFORMATION
Most data are collected prior to patient arrival. Prehospital physiologic data direct appropriate triage and steer guideline improvements.9–12 “Readiness” and advance preparation are requirements of good trauma care. These are costly and accurate data critical to refine the essential resources for immediate patient care. Trama25–28 Provider response data enable determination of resource utilization and costs of initial trauma care.

TRAUMA TEAM RESPONSE TIMES
Timely team arrival is critical. Verification hinges on team availability and composition: full teams, partial teams, or even no team. The data support critical information needs: Was the team leader, critical for smooth resuscitation, present from the beginning? Was the correct complement of providers available? A wealth of studies regarding composition and team arrival times have been performed to validate and confirm the value of trauma teams.16–18 Provider response data enable determination of resource utilization and costs of initial trauma care.

MEDICAL HISTORY
Comorbid conditions such as coagulopathies, organ insufficiency, concurrent use of medications, and degenerative diseases directly impact patient care. Resuscitation and interventions are applied or altered based on this information. Physiologic data gathered during initial care allow the development of condition-specific algorithms to improve outcomes. Examples include rapid reversal of coagulopathy29–31 and the use of prehospital beta blockers to improve brain injury outcomes.32
PATIENT ASSESSMENT: PRIMARY AND SECONDARY SURVEYS

Resuscitation hinges on physical examination and physiologic response. Optimal resuscitation and orderly interventions are evidence-based. For civilians, the primary survey follows the ABCDE tenets of advanced trauma life support. In combat zones, exsanguination, rather than loss of airway, is the most immediate cause of death, resulting in reordering the primary survey with circulation as first priority. Validation of the Glasgow Coma Scale score provides clear guidelines for treatment and transfer. The utility, reliability, and safety of the elements of physical examination (prostate palpation, pelvic girdle manipulation) have been studied and amended. The survey, when done well, guides priorities and the provision of safe care.

PROCEDURAL INTERVENTIONS

Interventions are captured with times and impact on physiologic response. These can be evaluated for appropriateness, timeliness, and impact. Failure to consider interventions in the correct order or time frame can have dire consequences. Interventions can be assessed and judged for usefulness, deployment, and retention within the armamentarium of initial trauma care. Rapid sequence intubation continues to be refined and anatomic positioning for needle decompression has been altered. The utility, timing, and usefulness of diagnostic peritoneal lavage, CT, ultrasound, pericardiocentesis, emergency thoracotomy, and balloon occlusion of the aorta continue to be evaluated. Many interventions, once globally popular, are now parsed into utility based on data-driven local and regional resources.

DIAGNOSTICS

Blood is drawn based on standing orders or specialty labs ordered as circumstances or patient condition warrants. At times, samples may not be collected quickly, are congealed, inadequate, or misplaced. Individualized orders can be missed during chaotic resuscitations. Thus, critical information is delayed. With appropriate documentation, this is evaluable and strategies to correct deficits possible. New and old tests can be evaluated for utility, such as thromboelastogram, point-of-care lactate, and lateral cervical spine plain films. Likewise,

Table 1 Common and unique data elements contained in trauma flow sheets by category

Common Variables	Medical History & Patient Assessment (3,4)	Procedural Interventions, Diagnostics (5,6)	Fluids Blood Drugs (7)	Narrative and Vital Signs (8)	Disposition (9)
Activation level	Arrival vitals	Airway	Crystalloids	Time	Admit
Upgrade/downgrade	Primary survey	Needle decompression	Packed cells	Temperature	Room number
Activity time	Adult GCS	Chest tube	Plasma	Blood pressure	Location
Transport mode	Pediatric GCS	FAST	Platelets	Pulse	AMA
Agency	Secondary Assessment	Pericardioc tesis	Cryoprecipitate	Respiration	Transferred
Team response and times	Assessment History	Thoracotomy	Medications	End-tidal CO2	Time out of ED
Mechanism of Injury	History	Cross clamp time	Amount infused	O2 saturations	Report given
Safety devices	Allergies	Arterial line	Dose	Pupil size (R/L)	Died
Cervical collar	Medications	IV access	Route	O2 saturations	Time
Immobilization	Pastillness	Central access	Time	Throat	Coroner information
Oxygen	Pregnancy	Foley			Organs services called
PH arrest	Lastmeal	Gastric tube			Valuables
LOC documented	Events	Peritoneal Lavage			
Field vital signs	Height and weight	Splints			
IV sites	Injury diagram	REBOA			
Fluid infused – type	Broselow Color	Cervical collar			
Fluid infused – amount		CPR			
Medications		Tourniquet			
EtOH evident		Spine board			
		Traction			
		Films:Cspine, Chest, Pelvis			
		CT: Head, Spine, Chest, Pelvis			
		Cystogram, IVP			

AMA, against medical advice; CPR, cardiopulmonary resuscitation; CT, Chest tube; ED, emergency department; EVM, eyes verbal motor; EtOH, alcohol; FAST, focused abdominal sonogram for trauma; GCS, Glasgow Coma Score; IV, intravenous; LOC, Loss of consciousness; PH, Prehospital; REBOA, resuscitative endovascular balloon of the aorta; RTD, return to duty.
decision algorithms such as those for unstable pelvic fractures and treatment of great vessel injury are grounded in data from the trauma flow sheet.44-50

FLUID, BLOOD, AND DRUGS
Timing, amount, and types of resuscitative fluid are crucial to good outcomes. Aggressive crystalloids increase the risk of respiratory distress syndrome. Delays in blood product administration can cause organ dysfunction, and improper ratios promote coagulopathy, increased product use, and risk of death. Early blood product use algorithms are being continually refined.51 52 Timing and dosages of medications are recorded and correlated with physiologic impact: hypotension during rapid sequence intubation,43 tranexamic acid to prevent further bleeding, and the role of etomidate in adrenal suppression.53 54

NARRATIVE AND VITAL SIGNS
Every trauma has a story and every resuscitation should have a narrative. Narrative gives meaning to the data points, and when properly captured is rich in detailing successes and failures. Narrative provides insight into our Herculean resuscitative efforts. It adds meaning to the compilation of data points for a richer understanding of the interplay between patient physiology, response, and inputs melded into the sum total of team effort and patient outcome. Narrative lends insight into team leadership, clarifies reasons for points of departure from accepted guidelines, and allows a better understanding of unfolding events. Data give us the “what,” narratives provide the “why.” Without narratives, decisions and judgments would be made on incomplete data.55 56 Narrative allows the studious reviewer a means to identify common areas of struggle that can serve as learning points or lend themselves to further study or automation to avoid future pitfalls.57

DISPOSITION
The course of resuscitation culminates here. How long did it take? Did they live? Was the operating room ready? Will a waiting patient get viable organs? Was throughput timely or delayed? Utilization of resources, costs, and impact on outcomes are obtained from this portion of the data set and essential to those in charge of conscientious, adequate, and appropriate use of resources.44 45

It is a credit to those that diligently developed and shared these data forms during the last 40 years. Thanks goes to the STN and the Committee on Trauma of the American College of Surgeons. Data congruence that approaches 95% is a testament to the functional value and validity of flow sheet. The same cannot be said about a form which remains highly variable. Given the critical nature of the information, data commonality, and unanimous use, the trauma flow sheet begs for a common standardization would minimize charting variations, improve data collection, reduce errors of omission, enhance evaluation of care processes, simplify training, augment data collection for research across institutions, and improve patient safety.

This is an era of tremendous technologic advance. There are myriad innovative ways to collect, store, transmit, and use data. As a risk-averse profession mired in “too much to do with too little time,” these technologic advances have not been fully realized, welcomed, or designed for our complex workflow and have added to the burden of our task without the realization of increased efficiencies, improved patient care, or safety. Dr Boyd stated that “as the profession becomes more knowledgeable of [the] … ramifications of modern informational resources, more effective change will be possible.”44 The time is ripe for the development of a unified minimum common data set and the migration to a real-time electronic data capture system.

The trauma flow sheet is an irreplaceable document that supports our quest for superlative trauma care; a goldmine of initial processes of care, a critical aid to decision support, the backbone of appropriate triage, fundamental to our understanding of subtle and inconsistent physiologic responses, and vital to research endeavors. Informatics tools, such as the trauma flow sheet, support our translation of knowledge into practice and have changed the behavior of people, organizations, and systems.58 Future modifications and acceptance of a universal form that serves the needs of trauma teams, data registries, training, and scientific endeavors will ease the way to automation and ongoing growth of knowledge. In summary, no single entity can be credited with the development of the trauma flow sheet. It has been an organic evolution with input from a wide cohort of stakeholders—nurses, physicians, epidemiologists, and support of dedicated members of our national trauma societies. The value of the trauma flow sheet has gone unheralded and cannot be overstated, advancing trauma care in ways too numerous to count.

Acknowledgements The authors thank Eileen Whalen, MHA, RN, and Lori McDonald, MS, RN, TCRN, NE-BC, who agreed to be interviewed for this project.

Contributors JAD and TJS contributed to the literature search, writing, and critical revisions. MM contributed to critical revisions. KC assisted with the literature search and critical revisions.DRB is to be commended for his groundbreaking and visionary work on the development of our national trauma system. Additionally, he provided invaluable historical context to assist with completion of the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Nightingale F. Notes on Hospitals. Enlarged and for the most part rewritten. 3rd edn. London: Longman, Green, Longman, Roberts, and Green, 1863.
2. Werley HH, Lang NM. Preface. Identification of the nursing minimum data set. New York, NY: Springer, 1987.
3. National Academy of Sciences-National Research Council (NAS-NRC). Accidental death and disability: the neglected disease of modern society. Division of Medical Sciences, Washington: NAS-NRC, 1966.
4. Boyd DR, Lowe RJ, Baker RJ, Nyhus LM, Registry T. Trauma registry: a new computer method for multivariable evaluation of a major health problem. JAMA 1973;223:422–9.
5. Boyd DR. A trauma surgeon’s journey. J Trauma Acute Care Surg 2015;79:497–514.
6. Boyd DR, Rappaport DM, Marberger JP, Baker RJ, Nyhus LM. Computerized trauma registry: a new method for categorizing physical injuries. Aerosp Med 1971;42:607–15.
7. American College of Surgeons. Hospital and prehospital resources for optimal care of the injured patient. Chicago, IL, 1987.
8. American College of Surgeons. Advanced trauma life support. Chicago, IL, 1978.
9. Morris JA, Auerbach PS, Marshall GA, Bluth RF, Johnson LG, Trunkey DD. The Trauma Score as a triage tool in the prehospital setting. JAMA 1986;256:1319–25.
10. Esposito TJ, Offner PE, Jurkovich GJ, Griffith J, Maier RV. Do prehospital trauma center triage criteria identify major trauma victims? Arch Surg 1995;130:171–6.
11. Haas B, Gomez D, Zagorski B, Stukel TA, Rubinfeld GD, Nathens AB. Survival of the fittest: the hidden cost of undertriage of major trauma. J Am Coll Surg 2010;211:804–11.

Dunn JA, et al. Trauma Surg Acute Care Open 2018;3:e000145. doi:10.1136/tsaco-2017-000145

Trauma Surg Acute Care Open: first published as 10.1136/tsaco-2017-000145 on 9 October 2018. Downloaded from http://tsaco.bmj.com/ on September 13, 2023 by guest. Protected by
12. Claridge JA, Golob JF, Leukhardt WH, Kan JA, Como JJ, Malangoni MA, Wowler CJ. Trauma team activation can be tailored by prehospital criteria. *Am Surg* 2010;76:1401–7.

13. Taheri PA, Butz DA, Lottenberg L, Clawson A, Flint LM. The cost of trauma center readiness. *Am Surg* 2004;68:7–13.

14. Davis JS, Gragopol J, Augenstein J, Schulman CI. Prehospital information for optimal patient care. *Am Surg* 2013;79:441–3.

15. Fakhry SM, Scanlon JM, Robinson L, Askari R, Waterpaugh RL, Fata P, Haude WA, Trask A. Prehospital rapid sequence intubation for head trauma: conditions for a successful program. *J Trauma* 2006;60:997–1001.

16. Davis DF, Peay J, Sise MJ, Villeme GV, Kennedy F, Eastman AB, Velky T, Hoyt DB. The impact of prehospital endotracheal intubation on outcome in moderate to severe traumatic brain injury. *J Trauma* 2005;58:933–9.

17. Murray JA, DeMatrideas D, Berie TV, Stratton SJ, Cayer HG, Bongard F, Fleming A, Gaspard D. Prehospital intubation in patients with severe head injury. *J Trauma* 2010;69:595–9.

18. Ivatury RR, Nallathambi MN, Roberge RJ, Roshman M, Stahl W. Penetrating thoracic injuries: in-field stabilization vs. prompt transport. *J Trauma* 1987;27:1066–73.

19. McSwain NE. Pneumatic anti-shock garment: state of the art 1988. *Ann Emerg Med* 1988;17:506–25.

20. Lateef F, Kelvin T. Military anti-shock garment: historical relic or a device with unrealized potential? *J Emerg Trauma Shock* 2008;16:1–39.

21. Passos E, Dingley B, Smith A, Engels PT, Ball CG, Faidi S, Nathens A, Tien H, Canadian Trauma Trials Collaborative. Tourniquet use for peripheral vascular injuries in the civilian setting. *Injury* 2014;45:573–7.

22. Cotton BA, Jerome R, Collier BR, Khetarpal S, McSwain NE, Kamel RI, Koprowski JS, Luchette FA, Sears BW, Santanelli JM, Davis KA, Poulakidas SJ, Gamelli RL. Reasons to omit digital rectal exam in trauma patients: no fingers, no rectum, no useful additional information. *J Trauma* 2005;59:1314–9.

23. Ball CG, Jafri SM, Kirkpatrick AW, Rajani RR, Rozyczki GS, Feliciano DV, Wyrzykowski AD. Traumatic urethral injuries: does the digital rectal exam really help us? *Injury* 2009;40:984–6.

24. Sauerland S, Bouillon B, Rixen D, Ruetz MR, Koy T, Neugebauer EAM. The reliability of clinical examination in detecting pelvic fractures in blunt trauma patients: a meta-analysis. *Arch Orthop Trauma Surg* 2004;124:123–8.

25. Clarke JR, Speijers B, Gertner AS, Wever BL, Hayward CZ, Santora TA, Wagener DK, Baker CC, Champion HR, Fabian TC, et al. An objective analysis of process errors in trauma resuscitations. *Academic Emergency Medicine* 2000;7:1303–10.

26. Upchurch CP, Grijalva CG, Russ S, Collins SP, Semler MW, Rice TW, Liu D, Ehrenfeld JM, High K, Barnett TW, et al. Comparison of etomidate and ketamine for induction during rapid sequence intubation of adult trauma patients. *Ann Emerg Med* 2017;69:24–33.

27. McSwain NE. The McSwain Dart: device for relief of tension pneumothorax. *MedInstrum* 1982;16:249–50.

28. Root HD, Hauser CW, McKinley CR, Lafave JW, Mendolia RP. Diagnostic peritoneal lavage. *Surgery* 1965;57:633–7.

29. Frame SB, Browder NV, Lang EK, McSwain NE. Computed tomography versus diagnostic peritoneal lavage: usefulness in immediate diagnosis of blunt abdominal trauma. *Ann Emerg Med* 1989;18:513–6.

30. Rozyczki GS, Ballard RB, Feliciano DV, Schmidt JA, Pennington SD. Surgeon-performed ultrasound for the assessment of truncal injuries: lessons learned from 1540 patients. *Ann Surg* 1998;228:557–67.

31. Lee TH, Ouellet JE, Cook M, Schreiber MA, Kortke JB. Periarterioedentia in trauma: a systematic review. *J Trauma Acute Care Surg* 2013;75:543–9.

32. American College of Surgeons. *Chapter 4 thoracic trauma advanced trauma life support.* 10th edn. Chicago, IL, 1978.

33. DuBois JJ, Scalea TM, Brenner M, Sklada D, Inaba K, Cannon J, Moore L, Holcomb J, Turay D, Arbabi CN, et al. The AAST prospective aortic occlusion for resuscitation in trauma and acute care surgery (AORTA) registry: data on contemporary utilization and outcomes of aortic occlusion and resuscitative balloon occlusion of the aorta (REBOA). *J Trauma Acute Care Surg* 2016;81:409–19.

34. Fabian TC, Davis KA, Gavant ML, Croce MA, Melton JT, Patton JW, Haan CK, Weiman DS, Pate JW. Prospective study of blunt aortic injury: helical CT is diagnostic and antihypertensive therapy reduces rupture. *Ann Surg* 1998;227:666–76.

35. Croce MA, Magnotti LJ, Savage SA, Wood GW, Fabian TC. Emergent pelvic fixation in patients with exanguinating pelvic fractures. *J Am Coll Surg* 2007;204:935–9.

36. Burtle CW, Moore EE, Smith WR, Johnson JL, Billi WL, Barnett CC, Stahel PF. Preperitoneal pelvic packing/external fixation with secondary angiembolization: optimal care for life-threatening hemorrhage from unstable pelvic fractures. *J Am Coll Surg* 2011;212:628–35.

37. Stein DM, Dutton RP, Kramer ME, Scalea TM. Reversal of coagulopathy in critically ill patients with traumatic brain injury: recombinant factor VIIa is more cost-effective than plasma. *J Trauma* 2009;66:63–75.

38. Holcomb JB, Tilley BC, Baranisk S, Fox EE, Wade CE, Podbielinski JM, del Junco DJ, Basel KJ, Bulmer EM, Callcut RA, et al. Transfer of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. *JAMA* 2013;310:471–82.

39. Fusatei AE, Weinkopf RB, Bebarta V, Butler F, Cestero RF, Chaudry IH, Deal V, Dorlac WC, Gerhardt RT, Given MB, et al. Tranexamic acid and trauma: current status and knowledge gaps with recommended research priorities. *Shock* 2013;39:121–6.

40. Hildreth AN, Meija VA, Maxwell RA, Smith PW, Dant BW, Barker DE. Adrenal suppression following a single dose of etomidate for rapid sequence induction: a prospective randomized study. *J Trauma* 2008;65:573–9.

41. Hjortdal M, Ringen AH, Naess A-C, Wesborg T. Leadership is the essential non-technical skill in the trauma team - results of a qualitative study. *Scand J Trauma Resusc Emerg Med* 2009;17:48.

42. Wilson KA, Salas E, Priest HA, Andrews D. Errors in the heat of battle: taking a closer look at shared cognition breakdowns through teamwork. *Hum Factors* 2007;49:243–36.

43. Panini N, Hu PF, Mackenzie CF, Yang S, Bartlett ST, Scalea TM, Stein DM. Automated continuous vital signs predict use of uncrossed matched blood and massive transfusion following trauma. *J Trauma Acute Care Surg* 2016;80:897–906.

44. Ozbotl JG, Saba VK. A brief history of nursing informatics in the United States of America. *Nurs Outlook* 2008;56:199–205.