KOSZUL COMPLEXES AND FULLY FAITHFUL INTEGRAL FUNCTORS

FERNANDO SANCHO DE SALAS

ABSTRACT. We characterise those objects in the derived category of a scheme which are a sheaf supported on a closed subscheme in terms of Koszul complexes. This is applied to generalise to arbitrary schemes the fully faithfulness criteria of an integral functor.

Contents

Introduction 1
Acknowledgements 2
1. Koszul complexes, depth and support 2
1.1. System of parameters. Koszul complex 2
1.2. Depth. Singularity set 2
2. Fully faithful Integral functors 6
References 8

Introduction

Let X, Y be two proper schemes over a field k and let

$$\Phi : D^b_c(X) \rightarrow D^b_c(Y)$$

be an integral functor between their derived categories of complexes of quasi-coherent modules with bounded and coherent cohomology. Let $K^\bullet \in D^b_c(X \times Y)$ be the kernel of Φ. We want to characterise those kernels K^\bullet such that Φ is a fully faithful. This was solved in [1] for smooth projective schemes over a field of zero characteristic. For Gorenstein schemes and zero characteristic it was solved in [3]. For Cohen-Macaulay schemes and arbitrary characteristic it was solved in [2]. Here we remove the Cohen-Macaulay hypothesis and reproduce the fully faithfulness criteria of [2] for arbitrary schemes. The point is to replace the locally complete intersection zero-cycles of [2] by Koszul complexes associated to a system of parameters. These Koszul complexes allow to characterise, for an arbitrary scheme X, those objects in $D^b_c(X)$ consisting of a sheaf supported on a closed subscheme (Propositions 1.7 and 1.9). This is the main ingredient for the fully faithfulness criteria.

Date: February 2, 2008.

2000 Mathematics Subject Classification. Primary: 18E30; Secondary: 14F05, 14J27, 14E30, 13D22, 14M05.

Key words and phrases. Geometric integral functors, Fourier-Mukai, fully faithful, equivalence of categories.

Work supported by research projects MTM2006-04779 (MEC) and SA001A07 (JCYL).
Acknowledgements. I would like to thank Leovigildo Alonso, who suggested to me the use of Koszul complexes to deal with the general (non Cohen-Macaulay) case.

1. Koszul complexes, depth and support

We introduce Koszul complexes and use them to characterize those objects in the derived category consisting of a sheaf supported on a closed subscheme.

1.1. System of parameters. Koszul complex. Let \mathcal{O} be a noetherian local ring of dimension n and maximal ideal m. Let x be the closed point.

Definition 1.1. A sequence $f = \{f_1, \ldots, f_n\}$ of n elements in m is called a system of parameters of \mathcal{O} if $\mathcal{O}/(f_1, \ldots, f_n)$ is a zero dimensional ring. In other words, (f_1, \ldots, f_n) is a m-primary ideal. We shall also denote $\mathcal{O}/f = \mathcal{O}/(f_1, \ldots, f_n)$.

It is a basic fact of dimension theory that there always exists a system of parameters. In fact, for any m-primary ideal I, there exist f_1, \ldots, f_n in I which are a system of parameters of \mathcal{O}.

We shall denote by $\text{Kos}^*(f)$ the Koszul complex associated to a system of parameters f. That is, if we denote $L = \mathcal{O}^{\oplus n}$ and $\omega: L \to \mathcal{O}$ the morphism given by f_1, \ldots, f_n, then the Koszul complex is $\wedge^i L$ in degree $-i$ and the differential $\wedge^i L \to \wedge^{i-1} L$ is the inner contraction with ω. It is immediate to see that $\text{Hom}^*(\text{Kos}^*(f), \mathcal{O}) \simeq \text{Kos}^*(f)[-n]$.

The cohomology modules $H^i(\text{Kos}^*(f))$ are supported at x (indeed they are annihilated by (f_1, \ldots, f_n)). Moreover $H^0(\text{Kos}^*(f)) = \mathcal{O}/f$ and $H^i(\text{Kos}^*(f)) = 0$ for $i > 0$ and $i < -n$.

For any complex \mathcal{M}^* of \mathcal{O}-modules, we shall denote

$$\text{Tor}^0_\mathcal{O}(\text{Kos}^*(f), \mathcal{M}^*) = H^{-i}(\text{Kos}^*(f) \otimes \mathcal{M}^*)$$

$$\text{Ext}^0_\mathcal{O}(\text{Kos}^*(f), \mathcal{M}^*) = H^i(\text{Hom}^\mathcal{O}_\mathcal{O}(\text{Kos}^*(f), \mathcal{M}^*))$$

From the isomorphism $\text{Hom}^*(\text{Kos}^*(f), \mathcal{O}) \simeq \text{Kos}^*(f)[-n]$ it follows easily that

(1.1) $$\text{Ext}^0_\mathcal{O}(\text{Kos}^*(f), \mathcal{M}^*) \simeq \text{Tor}^0_{n-i}(\text{Kos}^*(f), \mathcal{M}^*)$$

1.2. Depth. Singularity set. The depth of an \mathcal{O}-module M, $\text{depth}(M)$, is the first integer i such that either:

- $\text{Ext}^i(\mathcal{O}/m, M) \neq 0$ or
- $H^i_x(\text{Spec} \mathcal{O}, M) \neq 0$ or
- $\text{Ext}^i_{\mathcal{O}}(N, M) \neq 0$ for some non zero finite \mathcal{O}-module N supported at x or
- $\text{Ext}^i_{\mathcal{O}}(N, M) \neq 0$ for any non zero finite \mathcal{O}-module N supported at x.

Lemma 1.2. The depth of M is the first integer i such that either:

- $\text{Ext}^i_{\mathcal{O}}(\text{Kos}^*(f), M) \neq 0$ for some system of parameters f of \mathcal{O} or
- $\text{Ext}^i_{\mathcal{O}}(\text{Kos}^*(f), M) \neq 0$ for every system of parameters f of \mathcal{O}.

Proof. It is an easy consequence of the spectral sequence

$$E_{2}^{p,q} = \text{Ext}^{p}(H^{-q}(\text{Kos}^*(f), M)) \implies E_{\infty}^{p+q} = \text{Ext}^{p+q}(\text{Kos}^*(f), M)$$

Indeed, let $d = \text{depth}(M)$, f a system of parameters of \mathcal{O} and r the first integer such that $\text{Ext}^i_{\mathcal{O}}(\text{Kos}^*(f), M) \neq 0$. Let us see that $d = r$. Since $\text{Ext}^d_{\mathcal{O}}(H^0(\text{Kos}^*(f)), M) \neq 0$, one obtains, by the spectral sequence, that $\text{Ext}^d_{\mathcal{O}}(\text{Kos}^*(f), M) \neq 0$. Hence $d \geq r$.\[\square\]
Assume that \(r \neq d \). Then \(\text{Hom}^{r-i}(H^{-i}(\text{Kos}^*(f)), M) = 0 \) for any \(i \geq 0 \), because \(H^{-i}(\text{Kos}^*(f)) \) is supported at \(x \) and \(r - i < d \). From the exact triangles

\[
\text{Kos}^*(f)_{\leq -i} \rightarrow \text{Kos}^*(f)_{\leq -i} \rightarrow H^{-i}(\text{Kos}^*(f)[i])
\]

and taking into account that \(\text{Hom}^r(\text{Kos}^*(f)_{\leq 0}, M) = \text{Hom}^r(\text{Kos}^*(f), M) \neq 0 \) one obtains that \(\text{Hom}^r(\text{Kos}^*(f)_{\leq -i}, M) = 0 \) for any \(i \geq 0 \). This is absurd because \(\text{Kos}^*(f)_{\leq -i} = 0 \) for \(i >> 0 \).

\[
\square
\]

Let \(\mathcal{F} \) be a coherent sheaf on a scheme \(X \) of dimension \(n \). We write \(n_x \) for the dimension of the local ring \(\mathcal{O}_x \) of \(X \) at a point \(x \in X \), \(\mathcal{F}_x \) for the stalk of \(\mathcal{F} \) at \(x \) and \(k(x) \) for the residual field of \(x \). \(\mathcal{F}_x \) is a \(\mathcal{O}_x \)-module. The integer number \(\text{codepth}(\mathcal{F}_x) = n_x - \text{depth}(\mathcal{F}_x) \) is called the codepth of \(\mathcal{F} \) at \(x \). For any integer \(m \in \mathbb{Z} \), the \(m \)-th singularity set of \(\mathcal{F} \) is defined to be

\[
S_m(\mathcal{F}) = \{ x \in X \mid \text{codepth}(\mathcal{F}_x) \geq n - m \}.
\]

Then, if \(X \) is equidimensional, a closed point \(x \) is in \(S_m(\mathcal{F}) \) if and only if \(\text{depth}(\mathcal{F}_x) \leq m \).

Since \(\text{depth}(\mathcal{F}_x) \) is the first integer \(i \) such that either

- \(\text{Ext}^i_{\mathcal{O}_x}(k(x), \mathcal{F}_x) \neq 0 \) or
- \(H^i_x(\mathcal{F}_x) \neq 0 \) or
- \(\text{Ext}^i_{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) \neq 0 \) for some system of parameters \(f_x \) of \(\mathcal{O}_x \) or
- \(\text{Ext}^i_{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) \neq 0 \) for every system of parameters \(f_x \) of \(\mathcal{O}_x \)

we have alternative descriptions of \(S_m(\mathcal{F}) \):

\[
S_m(\mathcal{F}) = \{ x \in X \mid H^i_x(\text{Spec} \mathcal{O}_{X,x}, \mathcal{F}_x) \neq 0 \text{ for some } i \leq m + n_x - n \}
\]

\[
= \{ x \in X \mid \text{Ext}^i_{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) \neq 0 \text{ for some } i \leq m + n_x - n \}
\]

and some system of parameters \(f_x \) of \(\mathcal{O}_{X,x} \)

\[
= \{ x \in X \mid \text{Ext}^i_{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) \neq 0 \text{ for some } i \leq m + n_x - n \}
\]

and any system of parameters \(f_x \) of \(\mathcal{O}_{X,x} \)

(1.2)

Lemma 1.3. [3 Lemma 1.10]. If \(X \) is smooth, then the \(m \)-th singularity set of \(\mathcal{F} \) can be described as

\[
S_m(\mathcal{F}) = \bigcup_{p \geq n - m} \{ x \in X \mid \text{Tor}^p_{\mathcal{O}_x}(k(x), \mathcal{F}_x) \neq 0 \},
\]

where \(k(x) \) is the residue field of \(\mathcal{O}_x \).

In the singular case, this characterization of \(S_m(\mathcal{F}) \) is not true. There is a similar interpretation for Cohen-Macaulay schemes replacing \(k(x) \) by \(\mathcal{O}_{Z_x} \) where \(Z_x \) is a locally complete intersection zero cycle supported on \(x \) (see [2 Lemma 3.5]). Now, for arbitrary schemes, the analogous interpretation is the following.

Lemma 1.4. The \(m \)-th singularity set \(S_m(\mathcal{F}) \) can be described as

\[
S_m(\mathcal{F}) = \{ x \in X \mid \text{there is an integer } i \geq n - m \text{ with } \text{Tor}^i_{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) \neq 0 \}
\]

for any system of parameters \(f_x \) of \(\mathcal{O}_{X,x} \).

Proof. It follows from (1.1) and (1.2). \(\square \)

Proposition 1.5. [3 Prop 1.13]. Let \(X \) be an equidimensional scheme of dimension \(n \) and \(\mathcal{F} \) a coherent sheaf on \(X \).
(1) $S_m(\mathcal{F})$ is a closed subscheme of X and codim $S_m(\mathcal{F}) \geq n - m$.
(2) If Z is an irreducible component of the support of \mathcal{F} and c is the codimension of Z in X, then codim $S_{n-c}(\mathcal{F}) = c$ and Z is also an irreducible component of $S_{n-c}(\mathcal{F})$.

Corollary 1.6. [3 Cor. 1.14]. Let X be a scheme and let \mathcal{F} be a coherent \mathcal{O}_X-module. Let $h: Y \hookrightarrow X$ be an irreducible component of the support of \mathcal{F} and c the codimension of Y in X. There is a non-empty open subset U of Y such that for any $x \in U$ and any system of parameters f_x of $\mathcal{O}_{X,x}$, one has

$$\text{Tor}_{i}^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) \neq 0$$

$$\text{Tor}_{i+1}^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{F}_x) = 0,$$

for every $i > 0$.

Proof. By Lemma [1.3] the locus of the points that verify the conditions is $U = Y \cap (S_{n-c}(\mathcal{F}) - S_{n-c-1}(\mathcal{F}))$, which is open in Y by Proposition [1.5]. Proving that U is not empty is a local question, and we can then assume that Y is the support of \mathcal{F}. Now $Y = S_{n-c}(\mathcal{F})$ by (2) of Proposition [1.5] and $U = S_{n-c}(\mathcal{F}) - S_{n-c-1}(\mathcal{F})$ is non-empty because the codimension of $S_{n-c-1}(\mathcal{F})$ in X is greater or equal than $c + 1$ again by Proposition [1.5].

For any scheme X we denote by $D(X)$ the derived category of complexes of quasi-coherent \mathcal{O}_X-modules and by $D_c^b(X)$ the faithful subcategory consisting of those complexes with bounded and coherent cohomology sheaves.

The following proposition characterises objects of the derived category supported on a closed subscheme.

Proposition 1.7. [1 Prop. 1.5][3 Prop. 1.15]. Let $j: Y \hookrightarrow X$ be a closed immersion of codimension d of irreducible schemes and \mathcal{K}^\bullet an object of $D_c^b(X)$. Assume that

1. If $x \in X - Y$ is a closed point, then there exists a system of parameters f_x of \mathcal{O}_x such that $\text{Tor}_i^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{K}^\bullet_x) = 0$ for every i.
2. If $x \in Y$ is a closed point, then there exists a system of parameters f_x of \mathcal{O}_x such that $\text{Tor}_i^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{K}^\bullet_x) = 0$ when either $i < 0$ or $i > d$.

Then there is a sheaf \mathcal{K} on X whose topological support is contained in Y and such that $\mathcal{K}^\bullet \simeq \mathcal{K}$ in $D_c^b(X)$. Moreover, this topological support coincides with Y unless $\mathcal{K}^\bullet = 0$.

Proof. We just reproduce the proof of [3 Prop. 1.15], with the corresponding changes. Let us write $\mathcal{H}^q = \mathcal{H}^q(\mathcal{K}^\bullet)$. For every system of parameters f_x of \mathcal{O}_x there is a spectral sequence

$$E_2^{p,q} = \text{Tor}_p^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{H}^q_x) \implies E_\infty^{p,q} = \text{Tor}_p^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{K}^\bullet_x)$$

Let q_0 be the maximum of the q's with $\mathcal{H}^q \neq 0$. If $x \in \text{supp}(\mathcal{H}^{q_0})$, one has that $\text{Tor}_p^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{H}^{q_0}_x) \simeq \mathcal{H}^0(\text{Kos}^*(f_x)) \otimes_{\mathcal{O}_x} \mathcal{H}^{q_0}_x \neq 0$ for every system of parameters f_x of \mathcal{O}_x. A nonzero element in $\text{Tor}_p^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{H}^{q_0}_x)$ survives up to infinity in the spectral sequence. Since there is a system of parameters f_x of \mathcal{O}_x such that $E_\infty^{q} = \text{Tor}_p^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{K}^\bullet) = 0$ for every $q > 0$ by hypothesis, one has $q_0 \leq 0$. A similar argument shows that the topological support of all the sheaves \mathcal{H}^q is contained in Y; assume that this is not true and let us consider the maximum q_1 of the q's such that $\mathcal{H}^{q_1}_x \neq 0$ for a certain point $x \in X - Y$; then $\text{Tor}_p^{\mathcal{O}_x}(\text{Kos}^*(f_x), \mathcal{H}^{q_1}_x) \neq 0$ and a nonzero
element in $\text{Tor}_0^{O_x}(\text{Kos}^i(f_x), \mathcal{H}_x^{q_{i+1}})$ survives up to infinity in the spectral sequence, which is impossible since $\text{Tor}_0^{O_x}(\text{Kos}^i(f_x), \mathcal{K}^i) = 0$ for every i.

Let $q_2 \leq q_0$ be the minimum of the q’s with $\mathcal{H}_x^{q} \neq 0$. We know that $\mathcal{H}_x^{q_2}$ is topologically supported on a closed subset of Y. Take a component $Y' \subseteq Y$ of the support. If $c \geq d$ is the codimension of Y', then there is a non-empty open subset U of Y' such that $\text{Tor}_c^{O_x}(\text{Kos}^i(f_x), \mathcal{H}_x^{q_{i+1}}) \neq 0$ for any closed point $x \in U$ and any system of parameters f_x of \mathcal{O}_x, by Corollary 1.6. Elements in $\text{Tor}_c^{O_x}(\text{Kos}^i(f_x), \mathcal{H}_x^{q_{i+1}})$ would be killed in the spectral sequence by $\text{Tor}_p^{O_x}(\text{Kos}^i(f_x), \mathcal{H}_x^{q_{i+1}})$ with $p \geq c + 2$. By Lemma 1.8, the set
\[
\{ x \in X \mid \text{Tor}_c^{O_x}(\text{Kos}^i(f_x), \mathcal{H}_x^{q_{i+1}}) \neq 0 \text{ for some } i \geq c + 2 \text{ and any parameters } f_x \text{ of } \mathcal{O}_x \}
\]
is equal to $S_{n-(c+2)}(\mathcal{H}_x^{q_{i+1}})$ and then has codimension greater or equal than $c + 2$ by Proposition 1.8. Thus there is a point $x \in Y'$ such that any nonzero element in $\text{Tor}_c^{O_x}(\text{Kos}^i(f_x), \mathcal{H}_x^{q_{i+1}})$ survives up to the infinity in the spectral sequence. Therefore, $\text{Tor}_c^{O_x}(\text{Kos}^i(f_x), \mathcal{K}^i) \neq 0$ for any system of parameters f_x of \mathcal{O}_x. Thus $c - q_2 \leq d$ which leads to $q_2 \geq c - d \geq 0$ and then $q_2 = q_0 = 0$. So $\mathcal{K}^i = \mathcal{H}_x^0$ in $D^b(\mathcal{X})$ and the topological support of $\mathcal{K} = \mathcal{H}_x^0$ is contained in Y. Actually, if $\mathcal{K}^i \neq 0$, then this support is the whole of Y: if this was not true, since Y is irreducible, the support would have a component $Y' \subseteq Y$ of codimension $c > d$ and one could find, reasoning as above, a non-empty subset U of Y' such that $\text{Tor}_c^{O_x}(\text{Kos}^i(f_x), \mathcal{K}^i) \neq 0$ for all $x \in U$ and any system of parameters f_x of \mathcal{O}_x. This would imply that $c \leq d$, which is impossible.

Assume now that X is separated. Let x be a closed point of X and $\phi_x : \text{Spec } \mathcal{O}_x \to X$ the natural morphism. Let f_x be a system of parameters of \mathcal{O}_x. We shall still denote by $\text{Kos}^i(f_x)$ the direct image by ϕ_x of the Koszul complex $\text{Kos}^i(f_x)$. Let U be an affine open subset containing x. Then ϕ_x is the composition of $\phi_x' : \text{Spec } \mathcal{O}_x \to U$ with the open embedding $i_U : U \hookrightarrow X$. Since X is separated, i_U is an affine morphism, and then $\phi_{x*} \simeq R\phi_{x*}$.

One has that

Lemma 1.8. For any $\mathcal{K}^i \in D(X)$ one has
\[
\text{Hom}_{D(X)}^i(\text{Kos}^i(f_x), \mathcal{K}^i) \simeq \text{Ext}_{\mathcal{O}_x}^i(\text{Kos}^i(f_x), \mathcal{K}^i)
\]

Proof. Let C be the cone of $\phi_x^* \phi_{x*}^i \mathcal{K}^i$. It is clear that $x \notin \text{supp}(C)$. On the other hand $\phi_{x*}^i \text{Kos}^i(f_x)$ is supported at x. Then $\text{Hom}^i(\phi_{x*} \text{Kos}^i(f_x), C) = 0$ and
\[
\text{Hom}_{D(X)}^i(\phi_{x*} \text{Kos}^i(f_x), \mathcal{K}^i) \simeq \text{Hom}_{D(X)}^i(\phi_{x*} \text{Kos}^i(f_x), \phi_x^* \phi_{x*}^i \mathcal{K}^i)
\]
and one concludes because $\phi_x^* \phi_{x*} \text{Kos}^i(f_x) \simeq \text{Kos}^i(f_x)$.

Taking into account the equation (1.10), Proposition 1.7 may be reformulated as follows:

Proposition 1.9. Let $j : Y \hookrightarrow X$ be a closed immersion of codimension d of irreducible schemes of dimensions m and n respectively, and let \mathcal{K}^i be an object of $D^b_0(X)$. Assume that for any closed point $x \in X$ there is a system of parameters f_x of \mathcal{O}_x such that
\[
\text{Hom}_{D(X)}^i(\text{Kos}^i(f_x), \mathcal{K}^i) = 0,
\]
unless $x \in Y$ and $m \leq i \leq n$. Then there is a sheaf \mathcal{K} on X whose topological support is contained in Y and such that $\mathcal{K}^i \simeq \mathcal{K}$ in $D^b_0(X)$. Moreover, the topological support is Y unless $\mathcal{K}^i = 0$. \qed
1.2.1. Spanning classes.

Lemma 1.10. For each closed point \(x \in X \) choose a system of parameters \(f_x \) of \(\mathcal{O}_x \). The set

\[
\Omega = \{ \text{Kos}(f_x) \text{ for all closed points } x \in X \}
\]

is a spanning class for \(D^b_c(X) \).

Proof. Take a non-zero object \(\mathcal{E}^\bullet \) in \(D^b_c(X) \). Let \(q_0 \) be the maximum of the \(q \)'s such that \(\mathcal{H}^p(\mathcal{E}^\bullet) \neq 0 \), \(x \) a closed point of the support of \(\mathcal{H}^p(\mathcal{E}^\bullet) \) and \(-l \) the minimum of the \(p \)'s such that \(\mathcal{H}^p(\text{Kos}(f_x)) \neq 0 \).

Then

\[
\text{Hom}_{D(X)}^{-(l-q_0)}(\mathcal{E}^\bullet, \text{Kos}(f_x)) \simeq \text{Hom}_{\mathcal{O}_X}(\mathcal{H}^{q_0}(\mathcal{E}^\bullet), \mathcal{H}^{-l}(\text{Kos}(f_x)))
\]

\[
\simeq \text{Hom}_{\mathcal{O}_Y}(\mathcal{H}^{q_0}(\mathcal{E}^\bullet)_x, \mathcal{H}^{-l}(\text{Kos}(f_x))) \neq 0.
\]

On the other hand, by Proposition 1.9 with \(Y = \emptyset \), if \(\text{Hom}_{D(X)}^i(\text{Kos}(f_x), \mathcal{E}^\bullet) = 0 \) for every \(i \) and every \(x \), then \(\mathcal{E}^\bullet = 0 \). \(\square \)

2. Fully faithful Integral functors

In this section scheme means a separated scheme of finite type over an algebraically closed field \(k \).

Let \(X \) and \(Y \) be proper schemes, \(\mathcal{K}^\bullet \) an object in \(D^b_c(X \times Y) \) and

\[
\Phi_{X \rightarrow Y}^\mathcal{K}^\bullet: D(X) \rightarrow D(Y)
\]

the integral functor associated to \(\mathcal{K}^\bullet \). If \(X \) is projective and \(\mathcal{K}^\bullet \) has finite homological dimension over both \(X \) and \(Y \), then \(\Phi_{X \rightarrow Y}^\mathcal{K}^\bullet \) maps \(D^b_c(X) \) to \(D^b_c(Y) \) and it has an integral right adjoint (see [2, Def. 2.1], [2, Prop. 2.7] and [2, Prop. 2.9]).

The notion of strong simplicity is the following.

Definition 2.1. An object \(\mathcal{K}^\bullet \) in \(D^b_c(X \times Y) \) is strongly simple over \(X \) if it satisfies the following conditions:

1. For every closed point \(x \in X \) there is a system of parameters \(f_x \) of \(\mathcal{O}_x \) such that

\[
\text{Hom}^i_{D(Y)}(\Phi_{X \rightarrow Y}^{\mathcal{K}^\bullet}(\text{Kos}(f_x), \Phi_{X \rightarrow Y}^\mathcal{K}^\bullet(\mathcal{K}(x)_x)), 0) = 0
\]

unless \(x_1 = x_2 \) and \(0 \leq i \leq \dim X \).

2. \(\text{Hom}_{D(Y)}^0(\Phi_{X \rightarrow Y}^{\mathcal{K}^\bullet}(\mathcal{K}(x)), \Phi_{X \rightarrow Y}^{\mathcal{K}^\bullet}(\mathcal{K}(x))) = k \) for every closed point \(x \in X \).

\(\triangle \)

Theorem 2.2. Let \(X \) and \(Y \) be proper schemes over an algebraically closed field of characteristic zero, and let \(\mathcal{K}^\bullet \) be an object in \(D^b_c(X \times Y) \) of finite homological dimension over both \(X \) and \(Y \). Assume also that \(X \) is projective and integral. Then the functor \(\Phi_{X \rightarrow Y}^\mathcal{K}^\bullet: D^b_c(X) \rightarrow D^b_c(Y) \) is fully faithful if and only if the kernel \(\mathcal{K}^\bullet \) is strongly simple over \(X \).

Proof. The same proof as [2, Thm. 3.6] works, replacing the use of Proposition 3.1 of [2] by its analogous result (Proposition 1.9). \(\square \)

Definition 2.3. An object \(\mathcal{K}^\bullet \) of \(D^b_c(X \times Y) \) satisfies the orthonormality conditions over \(X \) if it has the following properties:
(1) For every closed point \(x \in X \) there is a system of parameters \(f_x \) of \(\mathcal{O}_x \) such that
\[
\text{Hom}^i_{D(Y)}(\Phi^{K^*}_{X-Y}(\text{Kos}(f_x), \Phi^{K^*}_{X-Y}(\mathbb{k}(x_2))) = 0
\]
unless \(x_1 = x_2 \) and \(0 \leq i \leq \dim X \).

(2) There exists a closed point \(x \) such that at least one of the following conditions is fulfilled:
\[
(2.1) \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\mathcal{O}_X), \Phi^{K^*}_{X-Y}(\mathbb{k}(x))) \simeq k.
\]
\[
(2.2) \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\text{Kos}(f_x)), \Phi^{K^*}_{X-Y}(\mathbb{k}(x))) \simeq k \text{ for any system of parameters } f_x \text{ of } \mathcal{O}_x.
\]
\[
(2.2^*) \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\mathcal{O}_x/f_x), \Phi^{K^*}_{X-Y}(\mathbb{k}(x))) \simeq k \text{ for any system of parameters } f_x \text{ of } \mathcal{O}_x.
\]
\[
(2.3) 1 \leq \dim \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\text{Kos}(f_x)), \Phi^{K^*}_{X-Y}(\mathcal{O}_x/f_x)) \leq l(\mathcal{O}_x/f_x) \text{ for any system of parameters } f_x \text{ of } \mathcal{O}_x, \text{ where } l(\mathcal{O}_x/f_x) \text{ is the length of } \mathcal{O}_x/f_x.
\]
\[
(2.3^*) 1 \leq \dim \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\mathcal{O}_x/f_x), \Phi^{K^*}_{X-Y}(\mathcal{O}_x/f_x)) \leq l(\mathcal{O}_x/f_x) \text{ for any system of parameters } f_x \text{ of } \mathcal{O}_x.
\]

\[\square\]

Theorem 2.4. Let \(X \) and \(Y \) be proper schemes over an algebraically closed field of arbitrary characteristic, and let \(K^* \) be an object in \(D_c^b(X \times Y) \) of finite homological dimension over both \(X \) and \(Y \). Assume also that \(X \) is projective, Cohen-Macaulay, equidimensional and connected. Then the functor \(\Phi^{K^*}_{X-Y} : D_c^b(X) \to D_c^b(Y) \) is fully faithful if and only if the kernel \(K^* \) satisfy the orthonormality conditions over \(X \) (Definition 2.3).

Proof. The proof is essentially the same as [2, Thm. 3.8]. We give the details.

The direct is immediate. Let us see the converse. Let us denote \(\Phi = \Phi^{K^*}_{X-Y} \). One knows that \(\Phi \) has a right adjoint \(H \) and that \(H \circ \Phi \simeq \Phi^M_{X-Y} \). Using condition (1) of Definition 2.3 one sees that \(\mathcal{M} \) is a sheaf whose support is contained in the diagonal and \(\pi_{1*} \mathcal{M} \) is locally free. Since \(X \) is connected, we can consider the rank \(r \) of \(\pi_{1*} \mathcal{M} \), which is nonzero by condition (2) of Definition 2.3, thus the support of \(\mathcal{M} \) is the diagonal. To conclude, we have only to prove that \(r = 1 \).

Since \(\mathcal{M} \) is a sheaf topologically supported on the diagonal and \(\pi_{1*} \mathcal{M} \) is locally free, it follows that if \(\mathcal{F} \) is a sheaf, then \(\Phi^M_{X-Y}(\mathcal{F}) \) is also a sheaf.

Now assume that \(K^* \) satisfies (2.1) of Definition 2.3. Then
\[
\text{Hom}^0_{D(X)}(\mathcal{O}_X, \Phi^M_{X-Y}(\mathbb{k}(x))) \simeq \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\mathcal{O}_X), \Phi^{K^*}_{X-Y}(\mathbb{k}(x))) \simeq k.
\]

Hence \(\Phi^M_{X-Y}(\mathbb{k}(x)) \simeq \mathbb{k}(x) \); that is, \(j_x^* \mathcal{M} \simeq \mathbb{k}(x) \), where \(j_x : \{x\} \hookrightarrow X \) is the inclusion, and \(r = 1 \).

If \(K^* \) satisfies (2.2) of Definition 2.3 then
\[
\text{Hom}_{\mathcal{O}_Y}(\mathcal{O}_x/f_x, j_x^* \mathcal{M}) \simeq \text{Hom}^0_{D(X)}(\text{Kos}(f_x), j_x^* \mathcal{M})
\]
\[
\simeq \text{Hom}^0_{D(X)}(\text{Kos}(f_x), \Phi^M_{X-Y}(\mathbb{k}(x)))
\]
\[
\simeq \text{Hom}^0_{D(Y)}(\Phi^{K^*}_{X-Y}(\text{Kos}(f_x)), \Phi^{K^*}_{X-Y}(\mathbb{k}(x))) \simeq k
\]

for any system of parameters \(f_x \) of \(\mathcal{O}_x \). Hence \(j_x^* \mathcal{M} \simeq \mathbb{k}(x) \) and \(r = 1 \).
(2.2*) is equivalent to (2.2), because
\[\text{Hom}_D^0(\Phi^*_{X,Y}(\text{Kos}^*(f_x)), \Phi^*_{X,Y}(k(x))) \simeq \text{Hom}_D^0(X,\Phi^*_M(k(x))) \]
\[\simeq \text{Hom}_D^0(O_x/f_x, \Phi^*_M(k(x))) \]
\[\simeq \text{Hom}_D^0(D(Y), (\Phi^*_{X,Y}(O_x/f_x), (\Phi^*_{X,Y}(k(x)))) \]
where the second isomorphism is due to the fact that $\Phi^*_M(k(x))$ is a sheaf and to $H^0(\text{Kos}^*(f_x)) = 0$.

Finally, assume that K^* satisfies (2.3) of Definition 2.3 (which is equivalent to (2.3*) by similar arguments), and let us prove that then condition (2.2*) of Definition 2.3 holds as well.

We already know that if F is a sheaf supported at a point x, then $\phi(F) = \Phi^*_M(F)$ is also a sheaf supported at x. Moreover ϕ is exact and it has a left adjoint G^0 (see the proof of [2, Thm. 3.8]). Let us denote $B = O_x/f_x$.

First notice that
\[\text{Hom}_D^0(D(Y), (\Phi^*_{X,Y}(B), \Phi^*_M(B))) \simeq \text{Hom}_{O_X}(B, \Phi^*_M(B)) \simeq \text{Hom}_{O_X}(G^0(B), B) \]
Hence, condition (2.3*) means that
\[(*) \quad 1 \leq \text{dim}\text{Hom}_{O_X}(G^0(B), B) \leq l(B). \]

Analogously, condition (2.2*) means that $\text{Hom}_{O_X}(G^0(B), k(x)) \simeq k$.

Using the exactness of ϕ, one proves by induction on the length $l(F)$ that the unit map $F \rightarrow \phi(F)$ is injective for any sheaf F supported on x. It follows easily (see the proof of [2, Thm. 3.8]) for details) that the morphism $G^0(F) \rightarrow F$ is an epimorphism.

In particular $\eta: G^0(B) \rightarrow B$ is surjective, and $\dim \text{Hom}_{O_X}(G^0(B), B) \geq l(B)$. By $(*)$, $\dim \text{Hom}_{O_X}(G^0(B), B) = l(B)$. Now the proof follows as in [2, Thm. 3.8]: Let $j: \text{Spec } B \hookrightarrow X$ be the inclusion. The exact sequence of B-modules
\[0 \rightarrow N \rightarrow j^*G^0(B) \xrightarrow{j^*(\eta)} B \rightarrow 0 \]
splits, so that
\[0 \rightarrow \text{Hom}_B(B, B) \rightarrow \text{Hom}_B(j^*G^0(B), B) \rightarrow \text{Hom}_B(N, B) \rightarrow 0 \]
is an exact sequence. Then, $\text{Hom}_B(N, B) = 0$ because the two first terms have the same dimension. Let us see that this implies $N = 0$. If $k(x) \rightarrow B$ is a nonzero, and then injective, morphism, we have $\text{Hom}_B(N, k(x)) = 0$ so that $N = 0$ by Nakayama’s lemma. In conclusion, $j^*G^0(B) \simeq B$, and then $\text{Hom}_{O_X}(G^0(B), k(x)) \simeq k$.

\begin{thebibliography}{9}

[1] A. I. Bondal and D. O. Orlov, Semi orthogonal decomposition for algebraic varieties. MPIM Preprint 95/15 (1995), math.AG/9506012.

[2] D. Hernández Ruipérez, A. C. López Martín, and F. Sancho de Salas, Relative integral functors for singular fibrations and singular partners, Journal of the European Mathematical Society (to appear). Also available in arXiv: math.AG/0610319v2.

[3] ———, Fourier-Mukai transforms for Gorenstein schemes, Adv. in Math., 211 (2007), pp. 594–620.

E-mail address: fsancho@usal.es

Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain

