Evaluating and improving syntactic lexica by plugging them within a parser

Elsa Tolone¹, Benoît Sagot², Éric Villemonte de La Clergerie²

1. FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, Córdoba, Argentina
2. Alpage, INRIA Paris-Rocquencourt & Université Paris 7, 175 rue du Chevaleret, 75013 Paris, France
elsa.tolone@univ-paris-est.fr, {benoit.sagot, eric.de_la_clergerie}@inria.fr

Abstract

We present some evaluation results for four French syntactic lexica, obtained through their conversion to the Alexina format used by the Leff parser (Sagot, 2010), and their integration within the large-coverage TAG-based FRMG parser (de La Clergerie, 2005). The evaluations are run on two test corpora, annotated with two distinct annotation formats, namely EASY/Passage chunks and relations and CoNLL dependencies. The information provided by the evaluation results provide valuable feedback about the four lexica. Moreover, when coupled with error mining techniques, they allow us to identify how these lexica might be improved.

Keywords: syntactic lexica, parsing, error mining

1. Introduction

The development of a large-scale symbolic parsing system is generally achieved by co-developing its various components in a consistent way, in order to ensure good integration and consistency. This is the case, for example, concerning the development of the French syntactic lexicon Leff (Sagot, 2010) together with that of the FRMG grammar and parser for French (de La Clergerie, 2005). However, several syntactic lexica have been developed for French, sometimes for decades. An example thereof are Lexicon-Grammar tables (Gross, 1975; Boons et al., 1976b), although they were built with no or poor integration in large-scale NLP systems. Such a resource contains rich and valuable information, but its usefulness for real NLP applications has never been thoroughly assessed. This is also the case for the valency lexicon DICOVALENCE (van den Eynde and Mertens, 2006), although to a lesser extent. Therefore, after converting these resources in the same lexical model as the Leff, we performed a preliminary integration of these resources within FRMG. We also evaluated NewLeff, a new experimental version of the Leff that benefits, among other things, from its merging with DICOVALENCE (Sagot and Danlos, 2012). Following previous preliminary results (Tolone et al., 2011), we were able to evaluate these lexica on two reference corpora based on two different annotation schemes, namely the EasyDev corpus (Paroubek et al., 2009) and on the CONLL dependency version of the French TreeBank (Candido et al., 2010). As a side effect, these experiments also show that it is possible to switch lexica in a lexicalized parser like FRMG, at the cost of a relatively small decrease in performances.

2. Lexica

2.1. The Leff

Our reference and baseline lexicon is Leff (Sagot, 2010), a large coverage morphosyntactic and syntactic lexicon for French.¹ As mentioned before, Leff was specifically developed for NLP tasks, and in particular to be used in conjunction with the FRMG parser. The Leff parser. The Leff parser.

The current version of the Leff (version 3.1)² contains only one entry for the lemma vérifier ‘verify’, ‘validate’. Here is a simplified version of this entry:

vérifier 1

Lemma: v;

Obj: cla|gcompl|scompl|sinf|sn|>
@CtrlSubjObj, @CompSubj cat=v;
%ppp_employé, %commu_adj, %actif, %passif,
%se_moyen, %passif

It describes a transitive verb entry whose arguments have the syntactic functions Suj and Obj listed between angle brackets.³ The subject might be realized as a nominative clitic (cln) or a noun phrase (sn), whereas the direct object can be realized as an accusative clitic (cla), a noun phrase (sn), an infinitive (sinf), with a control phenomenon expressed by @CtrlSubjObj, a finite clause (scompl), in the subjunctive mood because of @CompSubj or an indirect

¹Freely available at http://gforge.inria.fr/projects/alexina/
²The Leff 3.1 package includes v_new files that are not considered as being part of the Leff yet. In fact, replacing v and v-phd files by v_new files leads to what is called NewLeff in this paper. See below for more details.
³The different syntactic functions used in the Leff are: Suj (subject), Obj (direct object), ObjInd (indirect object canonicaly introduced by preposition “à”), Objide (indirect object canonically introduced by preposition “de”), Loc (locative), Doc (locative), Att (attribute), Ob1 or Ob12 (other oblique arguments).
interrogative clause (qcompl). Finally, this verb entry allows for the functional redistributions past participle used as an adjective, active (the default distribution), impersonal middle-voice “se” construction, impersonal passive, and passive.

The Leffe 3.1 contains 7,108 verbal entries corresponding to 6,827 distinct lemmas, and 112,118 entries covering all other categories. Detailed figures are given in Table 1.4

2.2. Other syntactic lexica

Besides Leffe, we have considered three other lexica, whose verbal entries are combined with the non-verbal Leffe entries:

- **LGLex**:5 this lexicon results from a two-step conversion of the Lexicon-Grammar tables (Gross, 1975; Boons et al., 1976b), a rich syntactic lexical resource developed over several decades although not with an NLP orientation. A first conversion was made to get a fully electronic version of this lexicon into the LGLex format (Constant and Tolone, 2010), opening the way to a second conversion to the Alexina format (Tolone and Sagot, 2011). The result is a wide-coverage lexicon with, often, many entries for each verbal lemma, associated to several meanings and valency frames. LGLex contains 13,867 verbal entries corresponding to 5,738 distinct lemmas, as well 12,696 entries for predicative nouns corresponding to 8,531 distinct nominal lemmas;

- **DICOVALENCE**:6 this lexicon (van den Eynde and Mertens, 2006) follows the Pronominal Approach (Blanche-Benveniste et al., 1984) for characterizing verb valency frames and for defining fine-grained entries (several entries per lemma). This medium-coverage resource contains 8,313 verbal entries corresponding to 3,738 distinct lemmas;

- **NewLeffe**:7 this experimental new version of Leffe targets more semantically-oriented finer-grained entries, while still preserving Leffe’s wide coverage. This lexicon is the result of two extension steps: (1) the automatic extraction, interpretation, conversion and integration or merging of denominal and deadjectival verbal entries in -iser and -isser from the LVF lexicon (Sagot and Fort, 2009); (2) the automatic merging of Leffe entries and DICOVALENCE entries through the comparison of their valency frames (Sagot and Danlos, 2012), then completed by a phase of manual validation on the 100 most frequent lemmas and on all dubious lemma8 (those lemma who got more entries than originally in both input lexica). NewLeffe contains 12,613 verbal entries corresponding to 7,933 distinct lemmas.

Table 2 provides some figures about the coverage and granularity of each lexicon for verbal entries, showing that our four lexicona actually cover an diverse spectrum of configurations (medium to large coverage, small to large granularity). For the experiments, all lexica use the non-verbal entries of Leffe in addition of their own verbal entries. In consequence, the differences between the lexica arise from the verbal entries.

Lexica	#Entries	#Lemmas	Ratio
Leffe	7,108	6,827	1.04
LGLex	13,867	5,738	2.41
DICOVALENCE	8,313	3,738	2.22
NewLeffe	12,613	7,933	1.58

Table 2: All lexica at a glance (verbal entries)

3. FRMG

FRMG9 (de La Clergerie, 2005) is a large-coverage symbolic grammar and parser for French. In fact, the acronym FRMG denotes resources that cover several representation levels. The most abstract level corresponds to a linguistically motivated modular and hierarchical meta-grammar. This meta-grammar is used to generate a compact (feature-based) Tree Adjoining Grammar (TAG) (Joshi et al., 1975) containing around 300 factorized elementary trees, including only 35 trees anchored by verbs. Despite its compactness, the grammar exhibits a wide coverage, thanks to factorization operators, such as disjunction and guards, used in the trees to allow many possible tree traversals. The grammar is compiled into an efficient chart-based parser, also named FRMG, which is able to return both full parses (whenever possible) or sequences of partial parses (otherwise) as shared dependency forests. The forests may then be disambiguated using heuristic-based rules to get the best dependency trees. Finally, these trees may be converted to various output formats, including the EASY format and the CONLL format.

FRMG benefits from the extended domain of locality provided by TAG trees, with, for instance, the possibility to capture all the components of a verb valency frame through the nodes of a single elementary tree. However, it also implies that a TAG grammar like FRMG works best when coupled with a lexicon that provides such rich lexical information. There is also the need to propagate this information from the words to the trees. Concretely, each tree of FRMG is associated with an hypertag (Kinyon, 2000), a feature-structure resuming (in the case of a verbal tree) the various frames and argument realizations covered by the tree. Similarly, each verbal entry (but this is also true for other categories) has an hypertag derived from its lexical information. Anchoring a verbal tree by a verbal entry involves the unification of both hypertags. Figure 1 shows the

4 The category “other” includes all kinds of conjunctions, determiners, interjections, punctuation marks, pronouns, prefixes and suffixes, as well as special entries for named entities and unknown words.

5 Freely available at http://infolingu.univ-mlv.fr/english/ > Language Resources > Lexicon-Grammar > Download

6 Freely available at http://bach.arts.kuleuven.be/dicovalence/

7 Freely available at http://gforge.inria.fr/projects/alexia/.

For obtaining NewLeffe, v_new files in the Leffe 3.1 package must be compiled and used instead of v and v-phd files.

8 505 verbal lemmas, corresponding to 986 entries.

9 Freely available at http://imgkit.gforge.inria.fr/
Figure 1: Hypertag for *promettre* 'promise'

4. **EASy Evaluation**

Our first evaluation was conducted on the EasyDev corpus, a small corpus of around 4000 sentences used during the first EASY French parsing evaluation campaign and covering various document styles (journalistic, literacy, medical, mail, speech, etc.). The corpus is annotated with the EASY format (Paroubek et al., 2006; Paroubek et al., 2009), a mix of 6 kinds of chunks and 14 kinds of dependencies between forms or chunks, as illustrated by Figure 2 (with ovals for chunks and diamonds for dependencies). Table 3 shows the performances of the various lexica, on this EasyDev corpus. The coverage column indicates the rate of full parses, keeping in mind that the almost all remaining sentences get partial parses, and shows a clear decrease for parses (keeping in mind that the almost all remaining sentences get partial parses), and shows a clear decrease for parses (keeping in mind that the almost all remaining sentences get partial parses). Table 3 also provides data for the first tried Alexina version of DICOVALENCE (dubbed "Old DICOVALENCE"). We can observe a much weaker coverage and very poor performances for the ATB-SO relation. Because of these figures, we were led to investigate and correct the conversion script that generates the Alexina version of DICOVALENCE, resulting in much better results parsing results.

Table 3: Overall performances on EasyDev

Lexicon	Cover. (%)	Chunks (%)	Rel. (%)	Time (s)
Lefff	83.45	89.03	66.76	0.35
NewLefff	82.19	88.74	66.09	0.55
LGLex	80.61	87.89	63.19	1.10
DICOVALENCE	71.44	88.08	64.49	0.38
Old DICOVALENCE	65.69	87.06	62.72	0.42

5. **CoNLL Evaluation**

For our second evaluation, we used the version of the French TreeBank (journalistic style) (Abeillé et al., 2003) converted by Candito et al. (2010) into the CoNLL dependency format, a format now largely used in international parsing evaluation campaigns (Nivre et al., 2007). This version of the French TreeBank has already been used to train and compare several statistical parsers (Candito et al., 2010), thus providing us baselines to evaluate FRMG and the various lexica. Note however that our results are still preliminary.

The CoNLL format relies on a fine-grained set of verbal dependencies, with in particular for verbal dependencies:

- the distinction between several kinds of auxiliaries: aux-tps (temporal auxiliaries), aux-pass (passive constructions), aux-caus (causative constructions);
Since a few weeks, relations between the two sides are deteriorating.

- **suj** and **obj** for the subjects and objects (but noting that the **obj** relation is also used in non-verbal cases);
- relations for the prepositional objects, with **a_obj** for those introduced by *a* (*to*), **de_obj** for those introduced by *de* (*of*), and **p_obj** for the remaining ones;
- relations for the attributes, with **ato** for the attributes of objects and **ats** for those of subjects;
- **aff** for affixes, actually verb clitics not covered by the above-mentioned relations;
- **mod** for verb modifiers such as adverbs (noting that again this relation is also used for non verbal cases).

Table 4 shows that all lexica got very good full parse coverage (on journalistic style) and emphasizes again the speed problems for **LGLex** (on relatively long and complex sentences, with a mean length average of 27 words vs 19.3 for EasyDev). Again, we note a slight decrease for the alternative lexica in terms of **Labeled Attachment Score** (LAS). We also note that all FRMG versions are still a few points below state-of-the-art statistical parsers, for instance MST (Candito et al., 2010). A finer analysis in terms of recall and precision at the dependency level shows a contrasted landscape (Figure 4), with **LGLex** or more specifically **NewLeff** being sometimes better either in recall (**aff,a_obj**) or precision (**ato,aux_caus**). More generally, recall is relatively good but we observe precision problems. We conjecture that the finer granularity of **LGLex** and also of **NewLeff** tends to wrongly select rare valency frames for some medium to high frequency verbs, frames that are strongly favored by the heuristic-based FRMG disambiguation algorithm, leading to confusion between verb arguments (**obj,a_obj,de_obj,p_obj**) and modifiers (**mod, dep**).
6. Error Mining

The evaluation already provides interesting feedback to identify the strong and weak points of a lexicon (as illustrated by DICOVALENCE with the ATB–S0 relation). However, to get information at the level of a verb or of an entry, we rely on error mining techniques (Sagot and Villemonte de La Clergerie, 2006). More precisely, the basic idea is to identify suspect lexical entries by mining the full parse failures on a large corpus, based on the following intuition:

A form is suspect if it occurs more often than expected in non-full-parsable sentences, in co-occurrence with non-suspect forms.

The mathematical formulation of this intuition leads to a fix-point iterative algorithm, close to EM (Expectation-Maximization), which may be used to also return, for each suspect \(w \), a set of sentences in which \(w \) is suspected to be the cause of failure for a full parse. Suspects, their lexical entries, as well as associated sentences may then be browsed in a web interface to quickly identify the errors or lacks in the lexical entries.

This idea and its implementation may be directly used to track the errors in any new lexicon \(L \). However, it is also interesting to contrast \(L \) with Lefff, considered as reference, which may be achieved through a slight rephrasing, as follows:

A verb is suspect for lexicon \(L \) if it occurs more often than expected in sentences not full-parsable when using \(L \) but that received a full parse when using Lefff, in co-occurrence with non-suspect verbs.

The modified algorithm was then used on a larger corpus of 100K sentences (1.6M words), named CPJ (Corpus Passage Jouet), and comprising various style of documents (encyclopedic with Wikipedia, literacy with Wikisource, news with AFP, and discourse with Europarl). We have started exploiting the results for (former versions of) LGLex and, to a lesser extent, NewLefff, and have identified several kinds of errors for some entries. The interest of this approach is that it can be applied to very large corpora, and we plan to do it, to overcome lexical data sparseness. Here, we provide some analysis of the data provided by the algorithm, with an emphasis on LGLex.

6.1. LGLex

We analyzed the first 15 suspicous verbs in LGLex in order to determine where the errors come from. We indicate the number of failed sentences for each verb between parentheses and we give one example. In total, there are 212 failed sentences for this selection of verbs:

- mixer ’mix’ (7) in Mixé par Jimi Hazel, assisté de Bruce Calder, enregistré chez Jimi à l’ “Electric Lady Studios” à New York; this entry is encoded in table 36S but with the meaning ’blend’ (Max mixe les carottes (et+avec) les navets dans un mixeur). We added this entry to table 32PL (Max a mixé les sons), which has the defining feature \(<N0 \ V \ N1> \), with an encoding similar to the entry mélanger ’blend’ (Max a mélangé les (étiquettes+cartes+couleurs));
- zapper ’omit’ (4) in Elle a également ”déploré” la mémoire de ”plus en plus sélective” de la jeune femme, ”qui zappe les détails qui font désordre” : this entry appear in table 35L but with the meaning ’channel hop’ (Max zappe de la 1ère et la 2ème chaîne). We added this entry to table 32R2 (Max a zappé un (repas+paragraphe)), which has the defining feature \(<N0 \ V \ N1> \), with an encoding similar to the entry sauter ’skip’, ’miss’ (Max a sauté (un repas+une étape+une ligne));
- réaffirmer ’reaffirm’ (28) in Nous réaffirmons la nécessité de consulter les sans-abri et leurs or-
ganisations sur les programmes européens perti-
nents. We can add the feature $<\text{re-V}>$ for the
entry affirmer ‘affirm’ of table 9 (Max a affirmé
à Luc qu’il viendrait)10, with the defining fea-
ture $<\text{N0 V N1 à N1}>$, which accepts the con-
struction $<\text{N0 V N1}>$, in order to recognize the
entry réaffirmer;

– réécrire ‘reelect’ (10) in Helmut Kohl est réélu au
poste de Chancelier fédéral. We can add the
feature $<\text{re-V}>$ for the entry élire ‘elect’ of ta-le 39 (On a élu Mac (E+comme) député), with
the defining feature $<\text{N0 V N1 N2}>$, in order
to recognize the entry réécrire;

– the pronominal form se réimplanter ‘re-establish
itself’ (5) in Celles-ci cherchent toujours à se
réimplanter dans la zone”, a relevé M. Besson.
The pronominal form s’implanter ‘establish it-
self’ does not appear either in the tables. We
can add the feature $<\text{re-V}>$ for the entry
implanter ‘establish’ in table 38LD (On a implanté une
usine dans cette région), with the defining feature
$<\text{N0 V N1 Loc N2 destination}>$, in order
to recognize the entry réimplanter;

– the pronominal form se réécrire ‘re-establish
itself’ (10) in Paul a affirmé (la nécessité
cept the intrinsic completive as here (\text{position+r
ésolution}) sa (position+r éolution)

\text{cept the pronominal forms
s’implanter (or more precisely,
implanter(s) and
implanter) (Une usine s’est implantée dans la
zone)11.

• Some entries appear in the tables but are not encoded
(～) or have been corrected:

– susciter ‘spark off’ (41) in A d’autres niveaux, les
propositions sur la table suscitent de sérieuses
objections et recruter ‘recruit’ (14) in 80
intérimaires ont déjà été recrutés, pour assurer
les commandes: these two entries appear in table
38R (Ceci a suscité une (vive réplique+réaction)
chez Luc and Max a recruté Luc (comme+sur
un poste de) lecteur), which has the defining
feature $<\text{N0 V N1 Loc N2}>$, but are not en-
coded. This implies that no other construction are
accepted, whereas the construction $<\text{N0 V N1}>$
appear in the table and allows the erasure of the
second complement. We encoded this construc-
tion as +;

– réprouver ‘reprove’, ‘reprobate’ (11) in Dieu ne
réprouve donc personne: this entry is encoded
in table 12 (Max réprouve qu’Ida boive), which
has the defining feature $<\text{N0 V N1 de N2}>$.
When we modified the defining features (Tolone,
2011), we replaced it by $<\text{N0 V N1}>$.

• Other entries are encoded in the tables but with oblig-
atory complements which do not appear in the
sentences of the corpus:

– délocaliser ‘relocate’ (9) in Ils ont fait le choix
de délocaliser en Tunisie: this entry appear
in table 38L (On a délocalisé ce service de
Paris à Dax), which has the defining fea-
ture $<\text{N0 V N1 Loc N2 source Noc N3}
destination>$, but the entry is not encoded.
We encoded the construction $<\text{N0 V N1 Loc
N3 destination}>$ as +, but no other construc-
tion allow the erasure of the first comple-
ment;

– kidnapper ‘kidnap’ (12) and revendre ‘retail’ (5)
in sentences without second complement, such as
Les deux Italiens ont été kidnappés le 18
décembre et Charles mangeait l’avoine des
deuex, doublant les fournitures, revendant par
une porte de derrière ce qui entrait par la grande
porte: these two entries are encoded in table
36DT (On a kidnappé son fils à Max and Max
a revendu à Luc la télé gagnée au jeu), which
has the defining feature $<\text{N0 V N1 Prep N2}>$,
without allowing the erasure of the second com-
plement introduced by the preposition à;

– écrouer ‘put behind bars’ (5) in Le lycéen de
18 ans soupçonné d’avoir poignardé vendredi un
camarade, Hakim, dans leur lycée du Kremlin-
Bicêtre (Val-de-Marne), a été mis en examen et
écroué hier, alors que lycées et collèges sont
invités à observer une minute de silence au-
jourd’hui à la mémoire de la victime: this entry
is encoded in table 38LHD (On a écroué Luc dans
un pénitentifiant), which has the defining feature
$<\text{N0 V N1 Loc N2 destination}>$,
without allowing the erasure of the locative comple-
ment;

– camper ‘camp’ (5) in Les troupes campent en-
tre Harlem et Nimègue: this entry is encoded in
table 38LHR (Le roi campe ses troupes dans la
plaine), which has the defining feature $<\text{N0 V
N1 Loc N2}>$, and it accepts the construction
$<\text{N1 V W}>$. This means that an object N1 can
become the subject of a sentence with conserv-
vation of its other objects. Therefore, this cor-
responds to the construction $<\text{N1 V Loc N2}>
(Ses troupes campent dans la plaine), without
allowing the erasure of the locative complement.

• Last, some specific cases:

– rediriger ‘redirect’ (50) in wrong sentences, such as
deux cent cinquante-troisredirige ici;12

10The entry affirmer appears also in table 32R3 Max a affirmé
sa (position+résolution) but the difference is that it doesn’t ac-
cept the intrinsic completive as here (Paul a affirmé (la nécessité
de+qu’il était nécessaire de) venir).

11We could add the entry s’implanter to table 35L but we don’t
because it shares exactly the same meaning with the entry
implanter in table 38LD. This case is different between the entry
fixer ‘screw’ in table 38LD (Max a fixé le tableau au mur (E+avec
des vis)) and the entry se fixer ‘settle’ in table 35ST (Paul s’est
fixé dans le midi), which have different meanings. We don’t add
the entry fixer to table 38LD with the meaning ‘settle’ because
the transitive construction is not accepted (?On+ceci) a fixé Paul
dans le midi).
– consoler 'comfort' (6) in sentences with clitic pronominalization of the object, such as Elle essayait de le consoler: this entry is encoded in table 32R1 (Max console le chagrin de Luc), which has the defining feature \(<N0 V N1>\), without allowing the clitic pronominalization of the first complement (we can add the feature like \(<N1 = \text{Ppv} = \text{le}>\).

The previous examples show (a) that some entries appear in the tables but are not encoded and therefore we have to encode them, and (b) that some other entries are missing, with several cases to be distinguished:

1. the entry should be added as a new entry. It can be a new verb or a different meaning of an existing verb (cf. mixer and zapper);

2. the entry re-V (or ré-V) has a meaning which can be derived by a "simple" use of the verb V (cf. réaffirmer and réélire): we should add a column \(<\text{re-V}>\) to all tables and encode it for all entries. Indeed, those without a derivable meaning have been added as another entry (entries re-V which they do not mean faire une deuxième fois 'do twice'), such as revendre 'retail' that does not mean vendre une deuxième fois 'sell twice' or retomber 'come down' (La balle retombe) which is not tomber une deuxième fois 'fall twice';

3. the entry se V has a meaning which can be derived by a transitive use of the verb V (cf. s’implanter): we have at least 5 different cases (Boons et al., 1976a) (p.120-163), so we should add 5 columns \(<\text{se V}>\) to all tables and encode it for all entries: for instance, se regarder 'look at oneself' (Paul se regarde dans la glace), se mentir 'lie to one another' (Paul et Marie se mentent), s’étonner 'be surprised' (Paul s’étonne de mon silence), se laver 'wash' (Paul se lave les pieds), se manger 'eat' 'be served' (Le roti se mange froid). Indeed, only the intrinsic pronominals, which are not linked by a transitive use, have been added as a new entry: for instance, s’évanouir 'faint' (Paul s’est évanoui);

4. the entry se V and re-V is a combination of the two previous cases (cf. se réimplanter);

5. the entry dé-V has a meaning which can be derived by a verb V (no example in this selection of verbs): we should add a column \(<\text{dé-V}>\) to all tables and encode it for all entries. Indeed, only the uses different from faire l’action inverse ‘do the opposite action’ have been added like another entry. For instance, dévisser has an entry for the meaning ‘fall’ (L’alpiniste a dévisssé), but not for the meaning ‘unscrew’ (dévisser une vis), which is the opposite action of ‘screw on’ (visser une vis).

As we show, some features are also missing, including some that encode the erasure or the clitic pronominalization of certain complements. Indeed, we can allow as erasures the complements that are in the defining features, and we should add these features to the appropriate tables and encode them for all entries in all tables. For instance, the entry donner ‘give’ in table 36DT can accept the erasure of all complements if the context allows it:

- \(<\text{N0 V N1 Prep N2}>\): Paul donne du fri du aux associations
- \(<\text{N0 V N1}>\): Paul donne du fri
- \(<\text{N0 V Prep N2}>\): Paul donne aux associations
- \(<\text{N0 V}>\): Paul donne souvent

In conclusion, error mining enables us to detect and correct many errors in LGLex but we should manually analyze all 613 suspicious verbs in all 2,623 concerned sentences and all corrections have to be done manually, which represents an important (but rewarding) effort.

6.2. NewLeff

Error mining results on parses produced by FRMG with NewLeff on the large CPI corpus were also investigated, although less thoroughly than for LGLex. It turned out that one verbal lemma was ranked by far the highest among all dubious lemmas, namely estimer ‘consider’. Out of 569 sentences containing a form of this verb, as many as 200 could not receive a full parse. By looking at some of these failed sentences, we were able to quickly identify the following problem: the entry for estimer ‘consider’

- lacked clausal realizations for the direct object (finite clause and infinitive clause).

We also spotted a few other errors concerning s’attendre à ‘expect’ (missing control information), the attributive entry for savoir ‘know’ (missing clausal realizations for the object), inciter ‘encourage, prompt’ (missing infinitive realization for the subject), réitérer when meaning ‘repeat’ (missing clausal realization for the object), se résoudre à ‘resolve to’ (missing clitic and finite clause realizations for the indirect object), and others.

7. Conclusion

We have presented some preliminary but promising evaluation results for several lexica, obtained through their integration within a lexicalized deep TAG parser. Clearly, even if good, the results show that some efforts of adaptation remain to be done to improve the integration and to better exploit the richness of these lexica. Error mining techniques should help us to achieve this objective, and should also help us to identify the strong and weak points of each lexicon, which should lead to a new generation of better quality lexica, freely available and ready to use in large scale NLP systems.

We would like also to mention very recent results showing that partially supervised learning techniques may be used to boost the performance of FRMG disambiguation to reach a LAS of 85.1% when using Leff, to be compared with the 82.2% presented in this paper — and much closer to MST, a stochastic parser specifically trained on the French Treebank. It remains to be tested whether this improved disambiguator leads as such to similar gains when using the other lexica, or whether the learning phase has to be done for each of them.

\[12\] In NewLeff, estimer has three entries, that corresponds to the meanings ‘consider’, ‘estimate’ and ‘esteem’.
8. References

Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a treebank for French. In Anne Abeillé, editor, Treebanks. Kluwer, Dordrecht.

Claire Blanche-Benveniste, José Delofeu, Jean Stefanini, and Karel van den Eynde. 1984. Pronom et syntaxe. L’approche pronominale et son application au français. SELAF, Paris.

Jean-Paul Boons, Alain Guillet, and Christian Leclère. 1976a. La structure des phrases simples en français : Constructions intransitives. Droz, Genève, Suisse.

Jean-Paul Boons, Alain Guillet, and Christian Leclère. 1976b. La structure des phrases simples en français, classes de constructions transitives. Technical report, LADL, CNRS, Paris 7.

Marie Candito, Benoît Crabbé, and Pascal Denis. 2010. Statistical french dependency parsing: treebank conversion and first results. In Proceedings of the 7th Language Resources and Evaluation Conference (LREC’10), Valletta, Malta.

Matthieu Constant and Elsa Tolone. 2010. A generic tool to generate a lexicon for NLP from Lexicon-Grammar tables. In Michele De Gioia, editor, Actes du 27e Colloque international sur le lexique et la grammaire (L’Aquila, 10-13 septembre 2008), Seconde partie, volume 1 of Lingue d’Europa e del Mediterraneo, Grammatica comparata, pages 79–193. Aracne, Rome, Italie.

Éric de La Clergerie. 2005. From metagrammars to factorized TAG/TIG parsers. In Proceedings of IWPT’05 (poster), pages 190–191, Vancouver, Canada.

Maurice Gross. 1975. Méthodes en syntaxe : Régimes des constructions complétives. Hermann, Paris, France.

Aravind K. Joshi, Leon Levy, and Makoto Takahashi. 1975. Tree Adjunct Grammars. Journal of Computer and System Science 10, 10(1):136–163.

Alexandra Kinyon. 2000. Hypertags. In Proc. of COLING, pages 446–452.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007 shared task on dependency parsing. In The CoNLL 2007 shared task on dependency parsing.

Patrick Paroubeck, Isabelle Robba, Anne Vilnat, and Christelle Ayache. 2006. Data, Annotations and Measures in EASY, the Evaluation Campaign for Parsers of French. In Proceedings of the 5th international conference on Language Resources and Evaluation (LREC’06), Gênes, Italie.

Patrick Paroubeck, Éric Villemonte de la Clergerie, Sylvain Loiseau, Anne Vilnat, and Gil Francopoulo. 2009. The PASSAGE syntactic representation. In 7th International Workshop on Treebanks and Linguistic Theories (TLT7), Groningen, January.

Benoît Sagot and Laurence Danlos. 2012. Merging syntactic lexica: the case for French verbs. In Proceedings of the LREC 2012 workshop on Merging Language Resources, Istanbul, Turkey. Submitted.

Benoît Sagot and Karén Fort. 2009. Description et analyse des verbes désadjectivaux et dénominaux en -ifier et -iser. Arena Romanistica, Journal of Romance Studies, 4:102–110. ISSN 1473-3536.

Benoît Sagot and Éric Villemonte de la Clergerie. 2006. Error mining in parsing results. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 329–336, Sydney, Australia, July.

Benoît Sagot. 2010. The Leff, a freely available and large-coverage morphological and syntactic lexicon for French. In Proceedings of the 7th Language Resources and Evaluation Conference (LREC’10), Valletta, Malta.

Elsa Tolone and Benoît Sagot. 2011. Using Lexicon-Grammar tables for French verbs in a large-coverage parser. In Zygmunt Vetulani, editor, Human Language Technology, Forth Language and Technology Conference, LTC 2009, Poznań, Poland, November 2009. Revised Selected Papers, Lecture Notes in Artificial Intelligence (LNAI). Springer Verlag.

Elsa Tolone, Éric de La Clergerie, and Benoît Sagot. 2011. Évaluation de lexiques syntaxiques par leur intégration dans l’analyseur syntaxique FRMG. In Colloque Lexique et grammaire 2011, Nicosia, Cyprus, October.

Elsa Tolone. 2011. Analyse syntaxique à l’aide des tables du Lexique-Grammaire du français. Ph.D. thesis, LIGM, Université Paris-Est, France. (340 pp.).

Karel van den Eynde and Piet Mertens. 2006. Le dictionnaire de valence DICOVALENCE : manuel d’utilisation. http://bach.arts.kuleuven.be/dicovalence/manuel_061117.pdf.