The review of geohazards in Xiaolongtan Lignite Deposite

Shuran Yang1,2, Qianrui Huang1, Xianfeng Cheng1, Wufu Qi1, Xiangqun Zhang1, Yungang Xiang1, Jiansheng Zhang1

1Yunnan Land and Resources Vocational College, 652501, Yangzonghai Scenic Area, Kunming, Yunnan Province, P.R of China
2VSB-Technical University of Ostrava, Faculty of Mining and Geology, Department of Geological Engineering, 17. listopadu 15,70833, Ostrava-Poruba, Czech Republic

Yangshuran1988@foxmail.com

Abstract. This paper reviews the various aspects of the Xiaolongtan Lignite deposit mine and summarizes the geological disasters of Buzaoba pit, Xiaolongtan pit and Xindenger dump, including landslides, floods, bench erosion, the physical-mechanical changes caused by spring water and lignite spontaneous combustion.

1. Introduction

The studied locality (GPS: E 103°11′52″, N23°48′45″) is the Xiaolongtan Lignite Deposit in Xiaolongtan Town which besides Gejiu City in Yunnan Province, south-west of China, where two enormous open-pits (No1: Buzaoba open-pit and No2: Xiaolongtan open-pit) could be seen in satellite images (Figure 1 and Figure 2). The Lignite deposit belongs to the largest lignite mines in China. It annually produces 14.9 million tons of Lignite, while 13 million tons from Buzaoba open-pit and 1.9 million from Xiaolongtan open-pit.

Figure 1. The location of Xiaolongtan lignite deposit mine
The lignite comes under Xiaolongtan Mining Bureau, which is a state-owned enterprise. The deposit plays a crucial role in the fossil fuel industry in Yunnan Province. The deposit began to produce from September 1954, after decades, the surface mining and 5 stages extension, two great open-pits appeared. The biggest open-pits in China: Buzaoba open-pit and Xiaolongtan open-pit. Buzaoba open-pit was determined of surface area 5.2 km2 and depth 226m, which is bigger and deeper than Xiaolongtan open-pit's 2.2845 km2 and 160m. The 10m bench height makes the bench slope angle approximately 60° in both pits.

The designed exploitation capacity of studied open-pits is 3420×10^6 m3 in Buzaoba pit and 930×10^6 m3 in Xiaolongtan pit. Until now, the total extracted capacity of Buzaoba pit is reaching 1180×10^6 m3 and Xiaolongtan pit is 370×10^6 m3, illustrated the reserved capacity of Buzaoba open-pit is 2240×10^6 m3 and Xiaolongtan open-pit is 560×10^6 m3.

The total lignite capacity of Buzaoba open-pit is 730×10^6 m3 and Xiaolongtan open-pit is 180×10^6 m3. Until now, the extracted lignite capacity in Buzaoba open-pit is 280×10^6 m3 and in Xiaolongtan open-pit is 107×10^6 m3, thus the reserved capacity of lignite of Buzaoba open-pit is 450×10^6 m3 and Xiaolongtan open-pit is 73×10^6 m3 (see Figure 3).
The waste-rock excavated from Buzaoba open-pit is externally dumped in Longqiao Waste-rock Dump and Xindenger Waste-rock Dump, the former one is located in 1km away from the west border of Buzaoba open-pit and the latter one is located in 3km away from south-west border of the pit.

What’s more, the designed capacity of Longqiao Dump is 631×10^6 m3, elevation designed from 1225m to 1525m, now the height is reaching 1465m. While, the designed capacity of Xindenger Dump is 176.02×10^6 m3, elevation designed from 1225m to 1530m, now the height is reaching 1410m. The waste-rock excavated from Xiaolongtan open-pit is externally dumped in Beipingba Waste-rock Dump, which is located in 1.4km from the north border of Xiaolongtan open-pit. The designed capacity of Beipingba Dump is 53.09×10^6 m3, the designed elevation is from 1140m to 1290m, now the height is reaching 1275m.

The paper deals with a series of geohazards that occurred in research locality Xiaolongtan Lignite Deposit due to the complex geological condition, climate condition, technological method and so on. To study the relationship between the geohazards and engineering geological condition would attribute to discovering potential hazards and giving pieces of advice to further mining.

2. Literature review

In order to collect essential information about research open-pits Buzaoba open-pit and Xiaolongtan open-pit, the studies of Xiaolongtan Lignite Deposit are all carefully reviewed, for instance: Li et al. (2015) did a research of magnetostratigraphic on Xiaolongtan Formation to constrain the initiation time of the southern segment of Xianshuihe-Xiaojiang fault. The rock magnetic experiment results indicated the age of Xiaolongtan Formation ranges from ~ 10 Ma to 12.7 Ma. [1] While, Shui et al. (2009) was interested in the liquefaction properties of Xiaolongtan Lignite under different atmospheres (H$_2$, THN, N$_2$ and CO), the results indicated that using water as solvent under CO atmosphere was the best solution. [2] Also, Donglai et al. (2010) analysed the different production conditions under different mining technique, the results showed a semi-continuous stripping and mining technique – hammer-roller crusher was the best choice. [3] Moreover, Qing et al. (2007) focused on the stability of the west slope of Buzaoba open-pit, Xiaolongtan lignite deposit, the numerical simulation was used and result in solutions for slopes designing and repairing. [4] What is more, Huang et al. (2011) studies the middle-lower part of Xiaolongtan Formation, and seismites were initially found by authors, the discovery could provide data to further research of palaeoseismic activity of the research filed. [5] Further Han et al. (2015) analysed the influence of vibration load on rock mass structure and slope stability of the west slope of Xiaolongtan deposit, the anti-sliding force and sliding force were obtained, the results showed that the difference of blasting time and slope stability negatively related to each other. [6] In addition, Guo et al. (2011) was interested in the energy and exergy analysis for 300 MW thermal system of Xiaolongtan power plant, the results showed the energy loss mainly occurred in the condenser. [7] Also, Li et al. (2010) analysed SEM and XRD of the residual clinker of Xiaolongtan lignite in a different method, try to explore the compositions, surface morphologies and crystals under different conditions. The results indicated that XLT clinker formation during fluidized-bed gasification is mainly caused by anorthite, gehlenite and hedenbergite under 950℃. [8]

Due to the location of Xiaolongtan Lignite Deposit is special from the tectonic geological point of view, thus, the studies of petrology, magnetostratigraphy and stratigraphy are highly developed. In
addition, the research of maximization utilization of the lignite is highly developed too. As for engineering geology, the researches of the influence of vibration load on rock mass structure, the slope stability of the west slope of Buzaoba open-pit and the liquefaction properties of Xiaolongtan Lignite under different atmospheres (H2, THN, N2 and CO) are limited.

3. The geohazards in Xiaolongtan lignite deposit mine

3.1 Landslides
The multiple rotation genetic landslide in Xiaolongtan Lignite Deposit was widely investigated and analysed by Chinese researchers. [8-13] The most dangerous documentary landslide occurred in the west slope of Buzaoba pit, which was formed by mixed materials \((Q_4^{ml})\), diluvial \((Q_4^{dl+pl})\), marl \((N_1-2X^4)\), main lignite seam \((N_1-2X^3)\) and clay \((N_1-2X^{1-2})\). The physical and mechanical properties of the formation are shown in Table 1. [9]

Strata	Density t/m³	Cohesion kPa	Friction angle φ°	Modulus of Elasticity Gpa	Poisson Ratio
Mixed materials \((Q_4^{ml})\)	18.62	13.9	18.26	0.014	0.42
Main lignite seam \((N_1-2X^3)\)	13	28	17.5	0.168	0.33
Clay \((N_1-2X^{1-2})\)	20.5	31	11.83	0.035	0.39
Marl \((N_1-2X^4)\)	21.4	210.4	28.91	6.597	0.24

The data is monitoring by GPS, and the main slide direction was considered as 105°-110°, the deformation information can be seen in Figure 4 and Figure 5.

Figure 4. The duration curve of horizontal displacement from 3 different locations in Buzaoba pit [9]

Figure 5. The duration curve of vertical displacement from 2 different locations in western slope of Buzaoba pit [9]
Combined with the duration curve of the horizontal and vertical displacement from the west slope, the most dangerous displacement from May to June 2010 can be seen.

What’s more, a documentary landslide also has been found in the north side of Buzaoba pit, which was formed by the mixed materials (Q₄m), the main lignite seam (N₁₂x³), clay (N₁₂x₁²) and limestone (T₂g), which contained many weak planes. The landslide occurred on November 11, 2011, the displacement curve in the northern slope of Buzaoba pit is shown in Figure 6. The whole duration of the landslide was 5 hours, the total area covered 1.9×10⁴ m², the total volume reached 3.52×10⁶ m³.

![Figure 6. The displacement curve from 2 different locations in the northern slope of Buzaoba pit [12]](image)

Also, there is a potential landslide in the north slope of Xiaolongtan pit, the duration curve of horizontal displacement from the north and southeast slope could be seen in Figure 7. The potential sliding surface was considered in clay (N₁₂x₁²) and main lignite seam (N₁₂x³), which was distributed in a zigzag pattern. Through the analysis of monitoring data, the north slope of Xiaolongtan pit was considered in the creep deformation period.

![Figure 7. The duration curve of horizontal displacement from the north and southeast slope of Xiaolongtan pit [12]](image)

3.2 Floods and bench erosion
Two open pits are separated by Nanpan River. The hydrological condition of Xiaolongtan Lignite deposit could be seen in Figure 8 in details. Because the two pits are at low water levels and below the erosion base level, ground water and precipitation can cause pit water discharge and bench erosion. The bench erosion can cause the slope to collapse (Figure 9).
Figure 8. The hydrological condition in Xiaolongtan deposit mine [15]

3.3 Changes in physical mechanic properties caused by springs

The Xindenger dump located in the dissolution featured middle-mountain. The location also refers to the basin arc discharge zone of the Southwest Basin, which we can see from Figure 3 and Figure 8. Many springs were found and recorded in the discharge zone. The most dangerous one is a seasonal spring, which is recharged by runoff and influenced by precipitation. On August 31, 2013,
groundwater oozes from the ground, creating a severe regional reservoir in Xindenger dump (see Figure 10). The process changes the physical mechanic properties of the mixed materials, leading to the instability of the slopes in Xindenger dump.

Figure 10. The flowslide in Xindenger dump

3.4 Spontaneous combustion of lignite
The characteristics of spontaneous combustion in open pit lignite seams are that the fire source comes from the inside of the lignite seam, and most of the spontaneous combustion occurs in the range of 0.5 m to 3m from the surface. Oxygen oxidation of low temperature and oxygen may occur in the loose lignite seams, and the air may be self-supplied by the thermal circulation. It has the characteristics of the hidden fire source, and the loose lignite layer is easy to store heat and is not easy to dissipate heat. Once discovered, it has been burned down in large areas. As can be seen from Figure 11, spontaneous combustion can be seen in both pits, especially during the summer months.

Figure 11. The spontaneous combustion of lignite

4. Conclusions
The geological disasters of Xiaolongtan Lignite Deposit Mine (Buzaoba pit, Xiaolongtan pit and Xindenger dump), including landslides, floods, bench erosion, the physical mechanics changes caused by spring water and lignite spontaneous combustion cause threats to the safety of mining activities. This paper describe the disasters in details to provide support for further research and mining.
Reference

[1] S. Li, C. Deng, W. Dong, L. Sun, S. Liu, H. Qin and R. Zhu, “Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: Constraint on the initiation time of the southern segment of the Xianshuihe–Xiaojiang fault.” Tectonophysics, vol. 655, pp: 213-226, 2015.

[2] H. F. Shui, J. L. Liu, Z. C. Wang and D. X. Zhang, “Preliminary study on liquefaction properties of Xiaolongtan lignite under different atmospheres.” Journal of Fuel Chemistry and Technology, vol. 37 (3), pp: 257-261, 2009.

[3] D. L. Wang, Q. X. Cheng, T. W. Zhang, S. Z. Cheng and Y. L. Cheng, “Selection of Semi-continuous crusher for Stripping and mining in Buzhaoba Open-cast Coal Mine.” China Coal, vol. 36 (3), pp: 56-58, 2010.

[4] Q. X. Cai and L. Shu, “Application Research of Numerical simulation in the Slope Stability of Bu-zhao-ba Open-pit.” China Mining Magazine, vol.6, 2007.

[5] Y. Huang, J. Y. Hao, G. B. Deng, L. Bai and G. X. Zhang, “Discovery and significance of the seismites in the Neogene Xiaolongtan Formation in Maguan, Yunnan.” Sedimentary Geology and Tethyan Geology, vol. 12 (4), 2011.

[6] L. Han, J. S. Shu, N. R. Hanif, W. J. Xi, X. Li, H. W. Jing and L. Ma, “Influence law of multipoint vibration load on slope stability in Xiaolongtan open-pit mine in Yunnan, China.” Journal of Central South University, vol. 22 (12), pp:4819-4827, 2015.

[7] G. Q. Li, H. Wang, W. H. Meng and C. W. Yang, “Energy and exergy analysis for 300MW thermal system of Xiaolongtan power plant.” In 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. IEEE, pp: 180-184, 2011.

[8] F. H. Li, J. J. Huang, Y. T. Fang and Y. Wang, “Behavior of Xiaolongtan lignite ash clinkering during fluid-bed gasification.” Chemical Engineering (China), vol. 38 (10), pp: 127-131, 2010.

[9] M. Ma, L. L. Chen and J. Ma, “Stability analysis of Buzhaoba open coal west slope.” Coal Technology, vol. 34 (1), pp: 227-230, 2015.

[10] D. J. Luo, J. Y. Peng and W. Luo, “Effect of vibration load on west slope stability in Buzhaoba open-pit mine.” Opencast mining technology, vol. 32 (9), pp: 31-43, 2017.

[11] D. J. Luo, X. Lu and L. Han, “Feasibility study on south slope descending in Buzhaoba open-pit mine.” Opencast mining technology, vol. 32 (10), pp: 11-13, 2017.

[12] G. Z. Li, Y. G. Miao and W. Z. Wang, “Application of GPS technology in deformation inspection of side slope in Xiaolongtan mine.” Yunnan metallurgy, vol. 34 (5), pp: 5-6, 2005.

[13] H. G. Peng, Q. X. Cai and J. S. Shu and L. Zhang, “Application research of numerical simulation in the slope stability of Buzhaoba open pit.” China mining magazine, vol. 16 (6), pp: 60-63, 2007.

[14] L. Shen, Y. S. Ji, J. J. Xie, G. Z. Li and T. W. Zhang, “The stability analysis on the east slope of Xiaolongtan open pit.” Safety technology innovation, pp: 338-342.

[15] J. H. Song, J. H. Wang, J. L. Hou and X. Li, “Spring yielding water treatment measures at Xindenger dump in Buzhaoba open-pit mine.” Opencast mining technology, vol. 9, pp: 22-27, 2014.