Analysis and Design of a Micro-Strip Antenna operating at a Frequency of 6.5 GHz focusing on Cowl’s Research

Hammad Afridi¹, Nasru Minallah², Sheeraz Ahmed³, Khalid Zaman⁴, Sozan Sulaiman Maghdid⁵, Atif Sardar Khan⁶, Alamgir Khan⁷

¹Department of Computing and Technology, Abasyn University Peshawar, Pakistan
³,⁷Faculty of Electrical Engineering, Gomal University, D.I.Khan, Pakistan
⁴Department of Computer Engineering, Near East University, Cyprus
⁵College of Health Sciences, Hawler Medical University, Erbil, Kurdistan, Iraq
²,⁶Department of Computer System Engineering, University of Engineering and Technology, Peshawar, Pakistan

Corresponding Author: Dr. Sheeraz Ahmed
Email:sheerazahmed306@gmail.com

http://doi.org/10.26782/jmcms.2019.10.00016

Abstract

Micro-strip patch antenna has penetrated deep in the market due to its advantages. After studying micro patch antennas, there are some draws backs of it. One of the drawbacks includes the narrowband performance. The primary reason for this is its resonant nature. An E-shaped micro strip patch antenna is used for the broadband applications. This E-shaped antenna is used for the purpose of improving antenna shrinking and information measurement to name a few. This paper shows the detail study of Cowl’s research by using 2 different aspects of micro strip patch antenna. The antenna operated at a frequency of 5GHz. Antennas used were single part narrow band rectangular micro strip patch antenna and slot cut E-shaped micro strip patch antenna. Simulation method included high frequency structure machine (HFSS). Different properties such as Cable loss, information measurement and VSWR were studied using both types of antennas. These properties were then compared between each other.

Keywords : Micro-Strip, Antenna, Frequency, 6.5 GHz, Rectangular patch
I. Introduction

The concept of micro strip patch antennas was developed in the 1970’s when the electronic circuits became smaller with the advancements in science. Micro-strip patch antenna has a patch of conduct material. This patch is attached on the top of a grounded plane dielectric substrate. Some of the authors have explained the ground plane and its radiations for many configurations by using a dielectric substrate. Micro-strip patch antenna was developed by in 1975 by hammer trad [VIII]. His early work on it was used only for low profile applications such as its use in rockets and missiles having flush mounted antennas. This application showed that the concept is not valid for papers but it was meant for the practical life. With the passage of time many mathematical models were designed and developed for the antennas having patches to be called as patch antennas later. This type of patch antennas was then used for many different types of applications and it spread out into various fields. The importance of patch antennas can be checked by reading many papers, articles published in the last decade. Today designers prefer the use of micro-strip patch antennas for their various purposes. They are preferred due to its maximum radiations and low dielectric constant substrates[VII]. The most common shape of this micro strip patch can be rectangular and circular configurations. The conducting patch can take any shape to emit radiations. Configurations other than rectangular and circular are complex due to their heavy numerical computations. A patch antenna can be identified through its Length, width, radiations, gain and input. Impedances etc. Figure 1 shows the structure of a micro strip patch antenna.

Fig 1: Structure of Micro-strip patch antenna
A plane surface is on the other side. The most common of all micro strip patch antennas is the one with rectangular configuration. The patch of antenna is made up of copper which is a conducting metal. Another metal can also be used such as Gold for the purpose of conduction. The patch antennas can be in different shapes like circular, rectangular, elliptical, triangular etc. The basic antenna component includes Length (L) and Width (W) of the strip conductor. The length of the patch depends upon the height, width of dielectric substrate.

II. Parameters

There are three main specifications of the micro-strip patch antennas, which depends upon the whole system. The parameters are resonant frequency, the stature of the substrate and the dielectric steady [XIII]. This paper shows the three parameters in which the resonant frequency is taken to be 6.5 GHz. A dielectric constant of 4.3 has been used. The height of the substrate is taken to be 1.50 mm. CST microwave studio software has been used for the purpose of designing this type of patch antenna. Micro strip patch antenna contains three layers namely the Patch, Substrate and the earth level surface[XIV]. The design is show in the fig 2.

A. Patch

It is the top mainly layer of the micro-strip patch antenna. It is usually made up of Copper or Gold. Electromagnetic radiations actually emit from here. To determine the operating frequency we use the length and the width of the antenna. The magnitude of the antenna decreases with the increase in the frequency. Similarly, the decrease in the frequency results in the increase in the size of the antenna[III].
Substrate

The selection of a suitable substrate for micro strip patch antenna is critical. The substrate depends on the thickness and appropriate loss tangent. For a thicker substrate the radiation increases, decreased conductor loss and enhanced impedance bandwidth. This thicker substrate must be mechanically strong. There are things that needed to be note down during these characteristics. They are di-electric loss, surface wave loss, the weight and unrelated radiation emission[II]. When the substrate gets thicker from 0.11λo, the rectangular patch antenna stops resonating. The primary reason for this is the inductive reactance of the feed.

Di-electric Constant

Dielectric constant plays an important role in fringing field[I]. Its role is somehow similar to that of the width in the substrate. A substrate with low di-electric steady results in the increased fringing fields. This results in the increase of power radiation.

Basic Parameters

The three basic parameters of the patch antenna include the operating frequency, di-electric constant used and the height of the substrate.

A. Operating Frequency

The frequency range in accordance with the ISM guidance ranges from 2400 to 2483MHz. This range of frequencies is used normally for the wireless networks, Bluetooth[X] and other such applications[VI]. The resonant frequency selected in this paper is to be 6.5 GHz.

B. Di-electric substrate

The constant of substrate used in the current design is selected to be 4.3. A high valued dielectric substrate is selected in this current design [V]. This is done because of the fact that the antenna dimensions will get smaller by doing so.

C. Height of Substrate

The antenna should not be sizeable while using it in the small devices such as cellular phones etc[X]. This leads us to the fact that the height of the dielectric substrate used should be small in size. This paper discusses with its current design shows the use of the dielectric substrate with a height of 1.6mm.

III. Antenna Design

Before designing a micro strip patch antenna, we need to choose the specific dielectric constant and the height of the substrate. The parameters depend upon the designed frequency. The current design chosen here has frequency of 6.5 GHz. FR4 is the dielectric material selected for this purpose. The dielectric constant has value of 4.5 in the current design. The height of the substrate is chosen to be 1.5 mm. To reduce the dimension of the antenna, we need to choose a substrate with a high di-electric constant.
The important parameters for the design are following.

- \(f_r = 6.5 \text{GHz} \)
- \(\varepsilon_r = 4.5 \)
- \(h = 1.5 \text{mm} \)

The parameters to be calculated are as given below.

Step1: Calculation of the width (W):

Width (W):

The width of the patch can be calculated by the following equation

\[
W = \frac{c_0}{2f_r} \sqrt{\frac{2}{\varepsilon_r+1}}
\]

Where,

- \(W \) is the Width of the patch
- \(c_0 \) is the Speed of light
- \(\varepsilon_r \) is the value of the dielectric substrate

Where \(c \) is the speed of light, \(f_r \) is the Resonant Frequency and \(\varepsilon_r \) is the Relative Dielectric Constant, obviously, different widths might be picked yet for widths littler than those chosen by width condition,[XIV] radiator effectiveness is lower while for bigger widths, the impacts are more noteworthy however for higher modes may result, causing field contortion.

\[
W = \frac{3 \times 10^8 \times 10^3}{2 \times 6.5 \times 10^9} \sqrt{\frac{2}{4.3 + 1}}
\]

\[
W = \frac{3 \times 10^{11} \times 10^{-9}}{13} \sqrt{\frac{2}{5.3}}
\]

\[
W = \frac{3 \times 10^{11} \times 10^{-9}}{13} \sqrt{0.3773}
\]

\[
W = 3 \times 10^2 \times 0.614
\]

\[
W = 14.17
\]

Substituting \(c = 3.0 \times 10^8 \text{(11)} \text{mm/s} \),

\(\varepsilon_r = 4.3 \)

and

\(f_r = 6.5 \text{ GHz} \),

we get:

\(W = 14.17 \text{mm} \)
Step 2: Calculation of effective dielectric constant ($\varepsilon_{\text{reff}}$):

Effective refractive index:

The successful refractive record estimation of a fix is an essential parameter in the structuring methodology of a microstrip fix receiving the wire. The radiations going from the fix towards the ground go through the air and some through the substrate (called as bordering). Both the air and the substrates have diverse dielectric values, therefore so as to account this, we discover the estimation of successful dielectric steady. The estimation of the viable dielectric ($\varepsilon_{\text{reff}}$) steady is determined to utilize the accompanying condition.

$$\varepsilon_{\text{reff}} = \frac{(\varepsilon_r+1)}{2} + \left(\frac{(\varepsilon_r-1)}{2}\right) \left[1 + 12\left(\frac{h}{W}\right)^2\right]$$

$$\varepsilon_{\text{reff}} = \frac{(4.5+1)}{2} + \left(\frac{4.5-1}{2}\right) \left[1 + 12\left(\frac{1.5}{38.3}\right)^2\right]$$

$$\varepsilon_{\text{reff}} = 2.75 + 1.75 \left[1 + 12\left(\frac{0.039164}{0.039164}\right)^2\right]$$

$$\varepsilon_{\text{reff}} = 2.75 + 1.75 \left[1 + 0.46997\right]$$

$$\varepsilon_{\text{reff}} = 2.75 + 1.75 \left[1.46997\right]$$

$$\varepsilon_{\text{reff}} = 2.75 + 1.75 \left(0.82479\right)$$

$$\varepsilon_{\text{reff}} = 2.75 + 1.4433$$

$$\varepsilon_{\text{reff}} = 3.744$$

Substituting $\varepsilon_r=4.3$, $W=38.3\text{mm}$, and $h=1.5\text{mm}$, we get:

$$\varepsilon_{\text{reff}} = 3.744$$

In which "h" could be the breadth in the substrate along with ε_r could be the dielectric frequent in the substrate. Due to fringing discipline about the periphery in the area, electrically the antenna appears bigger than its actual size. Δl requires this influence throughout consideration which enable it to possibly be indicated since.
wherever L is usually the length of this area, N would be the size in the area, f, is usually concentrate on resonance regularity, c would be the rate regarding gentle inside a cleaner plus the powerful dielectric regular can end up being computed by the equation:

Step3: Calculation of the resonant length of patch (L):

The length (L) of the patch can be calculated by using the follow equation.

\[L = \frac{c_0}{2f} \sqrt{\varepsilon_{eff}} - 2\Delta L \]

L = \text{Leff} - 2\Delta L

L= 9.772mm

Substituting \text{Leff}=9.47927mm and
\Delta L=0.7439mm, we get,

L=9.772mm

Step4: Calculation of ground plane dimensions (Lg and Wg)

Earth plane is equal to the distance end to end and width of the substrate. The following equations are using to calculate the distance end to end of a ground plane (Lg) and the width of an earth plane (Wg).

Lg= 6h + L

Lg = 6(1.5) + 7.9914

Lg = 9 + 7.9914

Lg = 16.0014

Wg = 6h + W

Wg = 6(1.5) + 13.9159

Wg = 9 + 13.9159

Wg = (22.9159)mm

Substituting h=1.5mm,

L=9.772mm and W=13.9159, we get Lg=16.0014mm

And

Wg=22.9159mm
V. Results

The Micro-Strip Rectangular patch antennas simulation is perform by CST software. The parameters evaluated were VSWR, Radiation pattern, Return loss, Directivity, Gain, 3D polar plot.

Figure 3 demonstrates the recreated return loss of the rectangular opened fix receiving wire. It is discovered that the proposed radio wire gives a bandwidth 6.0 GHz. (CST) and 4.8 to 6.5 GHz (CST), which covers the whole band. The great assertion is acquired among HFSS and CST results.

![Figure 3: Radiation Pattern for Rectangular patch antenna](image)

Fig 4 plot shows the simulated radiation pattern 6.5 GHz. Also to the regular monopole receiving wire, the radiation examples of the proposed reception apparatus are almost unidirectional over the working transfer speed.
Figure 4: Radiation Pattern for Rectangular patch antenna

In fig 5 shows the 3d polar plot for rectangular patch it gain the different Values of return loss and gain of frequencies and it’s also show the directivity of 6.5GHZ that antenna of intensity of over all directions.

Figure 5: 3D polar plot for Rectangular patch antenna

Fig 6 shows gain for rectangular patch antenna. It show the radiation of intensity of gains in 6.5 for all directions the gain of 5.90db.
Fig 7 shows S parameter it show the magnitude of 6.5GHZ which show the frequency of parameters of rectangular patch antenna to 6.5GHZ.

Figure 6: Gain for Rectangular patch antenna.

Fig 8 shows the simulation result of VSWR. The value of VSWR at 6.5 is resonant frequency it show the gain db in figure 5:3d.

Figure 7: S parameters for rectangular patch antenna
In fig 9 it show the directivity for rectangular patch antenna for 6.5GHZ and its measure the gain 6.87db to gain of directivity.

![Directivity for rectangular patch antenna](image)

Figure 9: directivity for rectangular patch antenna

The directivity was defined from the radiation intensity in the beam direction of total beam power it expect total radiated power In this figure show the gain of rectangular of patch antenna 6.5 Ghzdbof bandwidth increase.
Table 1. Parameters of simulations

Parameters	Rectangular patch
Resonant frequency	6.5GHZ
Bandwidth	140MHZ
Return loss(dB)	-16.70
VSWR	1.34
Gain(dB)	5.90
Directivity(dB)	6.87

VI. Conclusion

The design and simulation of Micro strip rectangular patch antenna 6.5GHZ was successfully designed and analyzed using CST. The performance parameters were achieved with Return loss -16.70dB, gain 5.90 dB, directivity 6.87dB and bandwidth 140 MHz for rectangular patch antenna. The use of rectangular patch antenna patch reduces the size of antenna (pitch) then we get higher bandwidth, and minimum loss which is the area that can be improved with the proposed design and it will be more advantage for our future to get higher bandwidth.

References

I. Ahamed, M. M., Bhowmik, K., & Al Suman, A. (2012). Analysis and design of rectangular microstrip patch antenna on different resonant frequencies for pervasive wireless communication. *International Journal of Scientific & Technology Research, 1*(5), 108-111.

II. Danideh, A., SadeghiFakhr, R., & Hassani, H. R. (2008). Wideband co-planar microstrip patch antenna. *Progress In Electromagnetics Research, 4*, 81-89.

III. Divya, R., & Priya, M. (2013). Design and characterization of E-shape microstrip patch antenna for wireless communication. *ICTACT journal on communication technology, 4*(01).

IV. Hammers tad, E. O. (1975)."Equations for micro strip circuit design," *Proc. Fifth European Microwave Conf.*, 268-272.
V. Jan, J. Y., & Tseng, L. C. (2004). Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4-, 5.2-, and 5.8-GHz bands. IEEE Transactions on Antennas and Propagation, 52(7), 1903-1905.

VI. Kumar, S., & Gupta, H. (2013). Design and study of compact and wideband microstrip u-slot patch antenna for Wi-Max application. IOSR-JECE, 5(2), 45-48.

VII. Prashanth, K. V., Pavani, T., Srivatsav, N. L., Kumar, C. P., Raja, R., Fields, G., &Vaddeswaram, G. D. (2017). DESIGN OF INSET FEED RECTANGULAR PATCH ANTENNA FOR WLAN/WI-FI APPLICATIONS. International Journal of Pure and Applied Mathematics, 116(6), 43-48.

VIII. Raj, R. K., Joseph, M., Aanandan, C. K., Vasudevan, K., &Mohanan, P. (2006). A new compact microstrip-fed dual-band coplanar antenna for WLAN applications. IEEE transactions on antennas and propagation, 54(12), 3755-3762

IX. Ramma, A. S. S. (2013). Design of rectangular microstrip patch antenna using particle swarm optimization. International Journal of Advanced Research in Computer and Communication EngineeringVol, 2.

X. Rop, K. V., &Konditi, D. B. O. (2012). Performance analysis of a rectangular microstrip patch antenna on different dielectric substrates. Innovative Systems Design and Engineering, 3(8), 1727-1729.

XI. Roy, A. A., Mom, J. M., &Igwue, G. A. (2013). Enhancing the bandwidth of a microstrip patch antenna using slots shaped patch. American Journal of Engineering Research (AJER), 2(9), 23-30.

XII. Singh, D., Gupta, K. A., & Prasad, R. K. (2013). Design and analysis of C-shaped microstrip patch antenna for wideband application. VSRD Int. J. Electr.Electron.Commun.Eng, 3(1).

XIII. Singh, J., Tiwari, M., & Neha, P. (2014). Design and simulation of microstrip E-shaped patch antenna for improved bandwidth and directive gain. Int. J. Eng. Trends Technol, 9(9), 23-30.

XIV. Wu, J. W., Hsiao, H. M., Lu, J. H., & Chang, S. H. (2004). Dual broadband design of rectangular slot antenna for 2.4 and 5 GHz wireless communication. Electronics Letters, 40(23), 1461-1463.