Single-stage treatment of chronic localized tibial osteomyelitis with local debridement and antibiotic-loaded calcium sulfate implantation: a retrospective study of 42 patients.

CURRENT STATUS: UNDER REVIEW

Chun-Hao Zhou
Southern Medical University Nanfang Hospital

Ying Ren
Southern Medical University Nanfang Hospital

Abdulnassir Adem
Southern Medical University Nanfang Hospital

Xiang-Qing Meng
Guangdong Second Provincial General Hospital

Hong-An Zhang
Guangdong Second Provincial General Hospital

Jia Fang
Guangdong Second Provincial General Hospital

Cheng-He Qin ⟨ orthoqin@163.com ⟩
Guangdong Second Provincial General Hospital

Corresponding Author
ORCiD: 0000-0002-5472-7964

DOI: 10.21203/rs.2.19919/v1

SUBJECT AREAS Orthopedic Surgery

KEYWORDS
chronic localized tibial osteomyelitis, local debridement, antibiotic-loaded calcium sulfate implantation
Abstract

Background: The management of chronic tibial osteomyelitis is still a challenge, even with various methods have been introduced. This study aims to assess a combined treatment method, local debridement combined with antibiotic-loaded calcium sulfate implantation, for the management of the local (Cierny-Mader type III) tibial osteomyelitis.

Methods: 42 patients (43 limbs) with type III tibial osteomyelitis, from January 2012 to December 2018, who received above mentioned treatment method were included in the study. The infection remission rate, recurrence rate, complication rate and bone healing rate were respectively analyzed.

Results: With a mean follow-up of 42.8 months, 38 limbs (37 patients) (88.4%, 38/43) achieved infection remission without recurrence. Among those patients, pain, limitation of movement, sinus tracts, topical redness and swelling were generally eliminated. Only 4 patients felt slight pain after a long-distance walk, while another 6 patients showed slight but acceptable discomfort in affected limbs. 5 patients (11.6%) suffered from osteomyelitis recurrence that required secondary surgical and medical treatment, but no amputation was necessary to eliminate the infection. Prolonged postoperative drainage was the most frequent complication that was seen in 13 patients (30.0%). They were successfully managed by appropriate wound caring in 10 patients and by re-debridement, months later, in 3 patients. According to the final X-rays examination, bone losses caused by local debridement were generally repaired, though the shape of tibia was not well restored to its initial form. No fracture was recorded during follow-up.

Conclusion: Local debridement combined with antibiotic-loaded calcium sulfate
implantation is effective and safe in a single-stage treatment of chronic Cierny-Mader III tibial osteomyelitis.

**Background**

Chronic tibial osteomyelitis is defined as long-term infection of tibia and characterized by low-grade inflammation with sequestrum or fistulous tract[1]. Secondary to the increased trauma, inappropriate application of implants or prolonged haematogenous infection, it has become a less rare disease the orthopedists have to face. Once established chronic tibial osteomelitis, the risk of leading to a variety of disastrous complications, such as pathological fracture, delayed healing or nonunion or even major amputation, significantly reducing the quality of life. Therefore, immediate and appropriate management is vital for patients with chronic tibial osteomyelitis. Unfortunately, even standard treatment protocols have been strictly carried out, chronic tibial osteomyelitis remains a refractory disease with noticeable recurrent rate of 20–30%[2].

In order to help planning the surgical strategy and improving the effects of treatment, a physiology and anatomy-based osteomyelitis classification system was introduced by Cierny and Mader in 1985[3], which now has been widely accepted as the standard classification for chronic long bone osteomyelitis. According to anatomic osseous involvement, Cierny et al firstly divided chronic osteomyelitis into four types: medullary (type I), superficial (type II), localised (type III) and diffused (type IV), and further classified patients into three groups: healthy patients (group A), compromised patients (group B) and patients who were too weak to receive surgery (group C), based on the physiologic status of patients. Attributing to the limited involvement, localized tibial (C-M type III) osteomyelitis is not as
complicated as the diffused one (type IV), but still owning its characteristics. Since the extent of infection is comparatively limited, the clinical symptoms and presentations might not be as severe as the diffused osteomyelitis, which means a better outcomes could be achieved if treated immediately and appropriately. In the aspect of surgical management, local debridement without segmental bone resection as the standard surgical management allows the restoration of enough healthy bones, which avoids the massive bone loss and tedious secondary reconstruction to restore the length of tibia[5, 6].

With regard to the dead space, second-staged muscle flaps or autogenous cancellous bone grafts after weeks of systemic antibiotics administration, are traditional but effective treatment methods[5, 6]. However, their drawbacks lies in the necessity of multiple staged and complicated surgical management, long-term systemic antibiotics application, sometimes even accompanied with severe donor sites complications, all of which inevitably increases burdens on both doctors and patients. To overcome those drawbacks, topical antibiotics carrier is a promising method. Since Buchholz successfully applied it in joint prosthesis, polymethyl-methacrylate cement (PMMA) has acted as an antibiotic carrier to fill the defects caused by debridement [8]. It limited the long-term systemic antibiotics application and eliminates more residual bacteria by its higher local antibiotic concentrations. However, its drawback was that it required second procedure for removal and autogenous tissue grafts. Moreover, the high temperature it produces limits the application of temperature sensitive antibiotics to some extent. Its surface also provide a place for pathogens implantation if not removed in a timely manner, increasing the possibility of infection recurrence or a new infection. Therefore, a substitute biodegradable material is imperative. Highly purified calcium sulfate as
the most common biodegradable antibiotic-impregnated materials is widely used on the treatment of osteomyelitis in latest decades, and the overall results were good[9, 10]. After implantation, it is associated with the advantages of more accurate positioning, higher local concentration, less side effects, longer treatment duration as well as its potential osteoconductivity[11, 12], while overcoming the shortcomings of non-biodegradable antibiotic carriers.

Statistically, tibia is the most common sites for chronic osteomyelitis taking place[7, 13], partially because of its poor blood supply (especially inferior third of tibia), only skin coverage in medial surface, higher risk of injuries and of course, the inappropriate surgical managements. C-M Type III chronic tibial osteomyelitis as the less severe type has not yet received much attentions as C-M type IV, thus is not frequently illustrated by a single study. Separate studies on localized tibial osteomyelitis alone are still not substantiated. Our study is designed to assess the outcomes of local debridement combined with a substitute of autologous bone, the antibiotic-loaded calcium sulphate, for single-stage treatment of localized chronic tibial osteomyelitis.

Patients and Methods

Patients and preoperative management

From January 2012 to December 2018, hundreds of patients with chronic tibia osteomyelitis were treated in our center, but only those meeting the following criteria were included in this study. 1) Diagnosed with C-M type III chronic tibial osteomyelitis and treated in our department. 2) Completed follow-up of a minimum of 12 months. 3) The surgery performed was fenestration and debridement combined with placement of antibiotic-loaded calcium sulphate. On the contrary,
patients with host-C class or received other treatment methods were excluded from the study.

Totally, 42 patients with 43 limbs [24 men and 18 women (19 limbs); average age: 43.7 years (range, 23–74 years)] met the criteria were included for analysis. There were 24 (55.8%) infection focal on the left tibia, and 19 (44.2%) on the right tibia. At least 2 patients were recorded as a smoker and the other 2 patients were diagnosed with hypertension. Regarding physiologic status of patients, 35 patients (36 limbs) were defined as C-M type IIIA compared to 7 patients as C-M type IIIB (6 cases with type IIIB\(^5\) and 1 with type IIIB\(^1\)). While majority of patients were accompanied with pain, draining sinus, swelling and slight movement limitation, 14 patients were presented with pain or swelling only. The osteomyelitis of those cases were primitively suspected by recurrent pain or arisen temperature on topical sites, and eventually diagnosed by active MRI results and arisen inflammation markers. According to etiology, trauma was the number one cause for infection with (31 limbs), which was further divided into open tibial fracture (12 limbs) and closed fracture with ORIF (19 limbs). Hematogenous infection as the second common causes of infection was generally recorded in 10 limbs. Followed by penetration from soft tissues infection in third place (2 limbs). The details of all patients were presented in table 1.

Once admitting to the department, all patients were suggested to receive physical examinations, X-rays, and laboratory tests. Preoperative Magnetic resonance imaging (MRI) examination was accomplished in the following days for determining the extent of infection. To avoid the interference of biopsy culture, empirical antibiotic administration was not started until samples had been obtained for culture during surgery. Preoperative laboratory results showed, mean erythrocyte
sedimentation rate (ESR) 23.22 mm/h, mean C-reactive protein (CRP) level 3.41 mg/L, and mean white blood cell (WBC) $6.71 \times 10^9$/L. Intra-operative antibiotics of those cases included vancomycin and gentamicin in order to cover both Gram-positive and negative bacteria.

**Figure 1.** Preoperative MRI examination significantly assisted to define the diagnosis of C-M type III osteomyelitis and determine the extent of debridement.

**Table 1.** Preoperative characteristics and follow-up outcomes of 42 patients (43 limbs).

**Surgical technique**

Surgical procedures were carried out by experienced surgeons after spinal or nerve block anesthesia. Removal of sinus or ulcer was performed first, followed by extensive debridement of necrotic soft tissues and fibrotic scar tissues surrounding the bone area, to sufficiently expose the infected cortex. Any adjacent internal fixations on tibia must be removed before debriding. Local fenestration was then carried out with the help of the high-speed burr and osteotome. The size of cortical bone fenestration was dependent on the extent of infection bone area, which was determined by the pre-operative MRI examination and intra-operative presentations, such as the “Paprika sign”. Conventionally, debridement was suggested to contain the whole infected area as well as at least 5mm healthy bone tissues[14], or exposing the focus adequately and preventing the infection recurrence as possible. Following fenestration, aggressive intramedullary debridement was started by removal of infected cancellous bones and sequestrums with a rongeur. The samples were collected for bacterial culture and histological examination. After initial debridement, intramedullary reaming and irrigation were employed to remove the residual necrotic tissues. Eventually, a trough-like dead space on tibia was created.
Antibiotic-loaded calcium sulfate was prepared with a recommended ratio: 0.5 g vancomycin powder and 2 ml gentamicin were blended into 5 ml calcium sulphate (Stimulan, Biocomposite Ltd., UK), which then dissolved in 0.5ml sterile saline and immediately embedded into the bony cavity. The incision was sutured primarily if soft tissues was enough, or a random flap would be employed for the one-stage coverage. A external fixation was adopted in case with large bony defect, according to surgeon’s experience.

**Figure 2.** Intra-operative views of local debridement and antibiotic-loaded calcium sulfate implantation.

**Postoperative management**

After operation, broad-spectrum antibiotics were applied empirically in the first several days, and exchanged to sensitive antibiotics according to results of culture for no more than 2 weeks. Conventional prolonged systemic antibiotics (2 weeks for parental route and another 4 weeks for oral, usually) was not recommended in our study, since the high topical concentration reached by degrading of antibiotic-loaded calcium sulfate. Wound dressings were changed every 2 days, unless excessive drainage was noted in the interval. As most of the cortical bone was preserved, full weight-bearing was encouraged once pain of incision was eased.

**Figure 3.** A patient with C-M type III tibial osteomyelitis received internal fixation removal and infected bone debridement, followed by implantation of antibiotic-loaded calcium sulfate. X-ray examination during the follow up showed dead space was generally substituted by new bone tissues.

**Outcomes evaluation**

Normally postoperative assessment included subjective reports of patients and the objective results such as, clinical examination, X-ray and inflammatory markers. The
main outcomes we focused on were infection remission, bone union, infection recurrence and post-operative complications during the follow-up. We defined infection remission as the absence of any signs of osteomyelitis and a completely healed wound. Bone union proved by elimination of bony cavity with the formation of new bone tissues. Osteomyelitis recurrence was defined by the presence of clinical symptoms, positive radiographic findings and elevated inflammatory markers. In this study, we defined wound drainage for more than 1 month as prolonged postoperative drainage.

Results

During a mean follow-up of 42.8 months (12.8 to 77.5 months), we found 88.4% (38/43) limbs achieved complete infection remission without any recurrence. Only 11.6% (5/43) limbs suffered from infection recurrence within first three years after operation. The management of those 5 cases were segmental bone resection and bone transport on 4 limbs and re-debridement plus flap coverage on 1 limb. Postoperative complications of those cases mainly included prolonged drainage (30%, 13/43), slight pain after long-distance walk (10.5%, 4/38), limb weakness or discomfort (7.9%, 4/38), fibrous scar formation (5.2%, 2/38), joint stiffness (2.6%, 1/38) and slight claudication (2.6%, 1/38). For patients with prolonged drainage, the most acceptable and effective management was by frequently changing wound dressing, which was successfully applied to 10 limbs. The rest 3 wounds (limbs) were stubborn to the regular dressings. Therefore, a surgical debridement to remove the lump of calcium sulfate was the eventual treatment. External fixation was adopted in 13 limbs with large bone loss, aiming to maintain the stability and avoid postoperative fracture, thus no fracture was recorded during our follow-up.
The latest X-ray examination showed a generally satisfying bone formation in all healed limbs, although the shape of tibia was not restored to the initial in some cases.

In total, 22 bacterial spices were isolated from 43 samples, with a positive rate of 51.2%. Staphylococcus aureus (50.0%, 11/22) is the most common pathogen isolated by culture, followed by Pseudomonas aeruginosa (13.6%, 3/22). One case was polymicrobial infections and the bacteria spices of which were Enterococcus faecalis and Pseudomonas aeruginosa, respectively. The details of patients were presented in table1.

Discussion

C-M Type III chronic tibial osteomyelitis as a localized infection involves full-thickness cortical bone as well as the medullary tissue, which may develop to a diffused infection if not well managed. However, impaired local vessels condition on bone sclerosis and sequestrum make it difficult for parental antimicrobial therapy alone to achieve satisfying local effects, even with a prolonged course of application. Besides, Staphylococcus aureus as the most frequent detected pathogen of osteomyelitis prone to produce a biofilm, which irreversibly binds to the surface of the bone and the internal plant, causing the infection stubborn and hard to be eliminated [14]. To address this embarrassing situation, surgical intervention is the cornerstone for the treatment of osteomyelitis, since it not only removes the necrotic tissues but destroys the biofilms caused by pathogens, therefore stimulating the local blood supply and enhancing the antimicrobial effects of antibiotics.

For localized tibial osteomyelitis, surgical principles may be interpreted as the
combination of “radicalization” and “limitation”. The principle of “radicalization” requires thorough removal of necrotic tissues and some adjacent healthy bone, to create a relatively clean wound for following reconstructive steps, while the principle of “limitation” requires to preserve as much healthy bone as possible (under the premise of thorough debridement, of course), to prevent complication of postoperative fractures or deformities. Therefore, conventional aggressive debridement technique for diffused tibial osteomyelitis, segmental bone resection, is unsuitable for the treatment of localized tibial osteomyelitis. To match the demands mentioned above, local debridement (deroofing associated with the intramedullary debridement) is introduced as the treatment of localized tibial osteomyelitis, and the effects is satisfying. In a former study, Rodney K. Beals et al reported 30 consecutive cases with tibial osteomyelitis, which included 1 case with Cierny-Mader type IIIA and the other 8 cases with type IIIB. The treatment methods of localized osteomyelitis included local debridement only in 5 cases, local debridement and muscle flaps coverage in 2 cases, and multiple debridement and posterior lateral bone graft in 1 case. All cases achieved good outcomes at the end of follow-up[16]. Hakan Kinik et al treated 26 cases with chronic localized osteomyelitis in his work. Those patients were treated with deroofing and local debridement, irrigation, vancomycin-impregnated PMMA beads implantation at first stage, followed by re-debridement and PMMA beads removal 6 to 8 weeks later. Within a mean follow-up of 3.6 years, all patients received infection remission with normal clinical parameters, even though 3 patients suffered from re-debridement in the interval.

In our study, this classical local debridement technique was also introduced for the removal of necrotic tissues. The main difference lies in the replacement of
temporary antibiotic-impregnated PMMA beads or autologous tissues grafts with biodegradable antibiotic-impregnated calcium sulfate, which undoubtedly owns its unique advantages. Primarily, the predictable high local antibiotic concentration (hundreds to thousands times higher than MIC in first 24 h to 48 h) and comparatively long therapeutic duration (several weeks to months) [5, 17, 18] produced by the degrading antibiotic-loaded calcium sulfate undoubtedly eliminates more residual pathogens while significantly shortens the conventional duration of systemic antibiotics administration. Moreover, similar to PMMA, the well-reported osteo-conductivity of calcium sulfate provides a crystalline structure for the osteoblasts perivascular mesenchymal tissues and osteoprogenitor, along which osteoblasts and the others crawl easily and eventually achieve the self-repair without autogenous bone grafts[19, 20]. While combined with the biodegradation characteristic of calcium sulfate, it allows orthopedists to accomplish debridement and reconstruction within one operation only, significantly avoiding the redundant reconstructive procedures.

With application of antibiotic-loaded calcium sulfate implantation, generally satisfying outcomes were achieved in our study at the end of follow-up. This was well illustrated by the fact that 88.4% of our patients achieved infection remission after first operation. Even for patients with recurrence, a chance for re-debridement could be preserved and managed accordingly. This extremely high remission rates were similar to previous study of J. Y. Ferguson et al, who managed 144 cases with type III chronic osteomyelitis (195 cases, totally) using local debridement and implantation of tobramycin-contained calcium sulfate beads. Their records showed only 11 cases (7.6%) of type III chronic osteomyelitis recurred within a mean follow-up of 3.7 years, while most of cases were successfully managed by re-debridement.
and antibiotics usage[21]. However, although the samples of their study were relatively large, it contained a variety of infection sites (femur, tibia, humerus, radius, ulnar, pelvic and even calcaneus) and four types of Cierny-Mader classification. Thus, their study ineluctably lacked of the in-depth discussion on a single type and site of chronic osteomyelitis.

While infection elimination was effective, associated complications were also of concern. Prolonged drainage was the most frequent recorded complication in our study, with a relatively high rate of 30.0%. This incidence was various from person to person, primarily depending on the volume of implanted calcium sulfate and the abundance of soft tissues coverage. To our study, poor soft tissues coverage in the medial surface of tibia and large volume implantation of calcium sulfate might interpret the high incidence of postoperative drainage. Kallala R et al previously concluded a 4.2% incidence of prolonged drainage after calcium sulfate implantation[9], compared to higher incidence of 15.4%[21], 33%[22], 27%[23] respectively in other studies. Though the liquid is sterile, immediate management of this postoperative drainage is of great necessity, or a soggy gauze is prone to cause wound infection. Generally, its methods included good suture and placement of drainage tubes during operation, frequent dressing change or even the assistance of VAC device. For cases with continuous draining, we deemed that a re-debridement to remove the lump was available, as long as the ease of presentations of inflammation had been achieved for weeks. Another complication needing attention is the, not very satisfying, self-restored shape of tibia during the follow-up, which was illustrated on X-rays. We suspect this situation might be attributed to the unconfirmed relation between degradation of calcium sulfate and growth of osteoblasts, yet there are no evidence in former studies was detected to support
our hypothesis. Fortunately, no case of operation-related fracture was recorded. To our best knowledge, separate study for evaluating C-M type III tibial osteomyelitis is still rare. Our study might be the first to assess the outcomes of this technique for single-stage treatment of chronic localized tibial osteomyelitis, with a larger number of patients. The drawbacks of our study were also obvious. To begin with, its retrospective characteristic means only limited information was available, thus, inevitably reduces the credibility of our study. In addition, outcomes of this study were not compared with those of other surgical methods, a comparative study is necessary to be carried out.

Conclusion

Local debridement combined with antibiotic-loaded calcium sulfate as a single-stage treatment is effective on treating chronic localized tibial osteomyelitis.

Abbreviations

C-M: Cierny-Mader; PMMA: Polymethylmethacrylate; MIC: Minimum Inhibitory Concentration; VAC: Vacuum Assisted Closure; ESR: Erythrocyte Sedimentation Rate; CRP: C-reactive protein; WBC: White Blood Cell; MRI: Magnetic Resonance Imaging.

Declarations

Acknowledgements

The authors thank all patients and staffs who made this study possible.

Funding

This study was not externally founded
**Availability of data and materials**

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

**Authors’ contributions**

CHZ, YR, AA contributed equally to this work. Scientific idea: CHQ, CHZ; Project planning: CHQ, CHZ, YR, JF; Manuscript writing: CHQ, CHZ, AA; Manuscript revision: CHZ, AA, YR; All authors read and approved the final manuscript.

**Ethics approval and consent to participate**

Medical Ethical Committee of Nanfang Hospital of Southern Medical University has approved the Research ethics approval. All included patients consented to participate in this study and a signed consent form was obtained from each subject before testing. All procedures were conducted according to the Declaration of Helsinki.

**Consent for publication**

Not applicable.

**Competing interests**

The authors declare that they have no competing interests.

**References**

1. Jiang N, Ma Y, Jiang Y, Zhao X, Xie G, Hu Y, Qin C, Yu B: Clinical Characteristics and Treatment of Extremity Chronic Osteomyelitis in Southern China. *MEDICINE* 2015, 94(42):e1874.

2. Bhattacharya R, Kundu B, Nandi SK, Basu D: Systematic approach to treat chronic osteomyelitis through localized drug delivery system: Bench to bed side. *Materials Science and Engineering: C* 2013, 33(7):3986-3993.
3. Cierny GR, Mader JT, Penninck JJ: A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res 2003(414):7-24.

4. Parsons B, Strauss E: Surgical management of chronic osteomyelitis. The American Journal of Surgery 2004, 188(1):57-66.

5. Wahl P, Guidi M, Benninger E, Ronn K, Gautier E, Buclin T, Magnin JL, Livio F: The levels of vancomycin in the blood and the wound after the local treatment of bone and soft-tissue infection with antibiotic-loaded calcium sulphate as carrier material. BONE JOINT J 2017, 99-B(11):1537-1544.

6. Kinik H, Karaduman M: Cierny-Mader Type III chronic osteomyelitis: the results of patients treated with debridement, irrigation, vancomycin beads and systemic antibiotics. INT ORTHOP 2008, 32(4):551-558.

7. Zumiotti AV, Teng HW, Ferreira MC: Treatment of post-traumatic tibial osteomyelitis using microsurgical flaps. J RECONSTR MICROSURG 2003, 19(3):163.

8. Buchholz HW, Engelbrecht H: [Depot effects of various antibiotics mixed with Palacos resins]. CHIRURG 1970, 41(11):511-515.

9. Kallala R, Harris WE, Ibrahim M, Dipane M, McPherson E: Use of Stimulan absorbable calcium sulphate beads in revision lower limb arthroplasty: Safety profile and complication rates. BONE JOINT RES 2018, 7(10):570-579.

10. Qin CH, Zhang HA, Chee YH, Pitarini A, Adem AA: Comparison of the use of antibiotic-loaded calcium sulphate and wound irrigation-suction in the treatment of lower limb chronic osteomyelitis. INJURY 2019, 50(2):508-514.
11. Beuerlein MJ, McKee MD: *Calcium sulfates: what is the evidence?* *J Orthop Trauma* 2010, 24 Suppl 1:S46-S51.

12. De Long WJ, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T: *Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis.* *J Bone Joint Surg Am* 2007, 89(3):649-658.

13. Yikemu X, Tuxun A, Nuermaimaiti M, Abudukeyimu A, Shayiti A: *Effects of Vacuum Sealing Drainage Combined with Ilizarov Bone Transport Technique in the Treatment of Tibial Traumatic Osteomyelitis.* *Med Sci Monitor* 2019, 25:6864-6871.

14. Simpson AH, Deakin M, Latham JM: *Chronic osteomyelitis. The effect of the extent of surgical resection on infection-free survival.* *J Bone Joint Surg Br* 2001, 83(3):403-407.

15. Donlan RM: *Biofilms: microbial life on surfaces.* *Emerg Infect Dis* 2002, 8(9):881-890.

16. Beals RK, Bryant RE: *The Treatment of Chronic Open Osteomyelitis of the Tibia in Adults.* *Clin Orthop Relat Res* 2005, 433(433):212-217.

17. Miclau T, Dahners LE, Lindsey RW: *In vitro pharmacokinetics of antibiotic release from locally implantable materials.* *J Orthop Res* 1993, 11(5):627-632.

18. Cooper JJ, Florance H, McKinnon JL, Laycock PA, Aiken SS: *Elution profiles of tobramycin and vancomycin from high-purity calcium sulphate beads incubated in a range of simulated body fluids.* *J Biomater Appl* 2016, 31(3):357-365.

19. Beuerlein MJ, McKee MD: *Calcium sulfates: what is the evidence?* *J Orthop Trauma* 2010, 24 Suppl 1:S46-S51.
20. Turner TM, Urban RM, Hall DJ, Chye PC, Segreti J, Gitelis S: **Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets.** *Clin Orthop Relat Res* 2005(437):97-104.

21. Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA: **The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases.** *BONE JOINT J* 2014, **96-B**(6):829-836.

22. Badie AA, Arafa MS: **One-stage surgery for adult chronic osteomyelitis: concomitant use of antibiotic-loaded calcium sulphate and bone marrow aspirate.** *INT ORTHOP* 2019, **43**(5):1061-1070.

23. Romano CL, Logoluso N, Meani E, Romano D, De Vecchi E, Vassena C, Drago L: **A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study.** *BONE JOINT J* 2014, **96-B**(6):845-850.

### Table

Table 1. Preoperative characteristics and follow-up outcomes of 42 patients (43 limbs).

| No. | Age/Sex | Side | Infected by | Cigarette/Alcohol abuse | Systemic disease | Positive inflammatory markers | C-M classification | Organisms | Flap External fixation |
|-----|---------|------|-------------|-------------------------|-----------------|-------------------------------|-------------------|-----------|-----------------------|
| 1   | 46/F    | L    | Trauma      | -                       | -               | ESR                           | III A             |           | -                     |
| 2   | 44/M    | L    | Trauma      | -                       | -               | -                             | III A             | *S. aureus* | -                     |
| 3   | 24/M    | R    | Trauma      | -                       | -               | -                             | IIIA              |           | -                     |
| 4   | 63/M    | R    | Trauma      | -                       | -               | -                             | III A             |           | -                     |
| 5   | 40/F    | L    | Trauma      | -                       | -               | ESR                           | IIIA              |           | -                     |
| 6   | 32/F    | L    | Trauma      | -                       | -               | -                             | IIIA              |           | -                     |
| 7   | 45/M    | L    | Trauma      | -                       | -               | -                             | IIIA              | *S. aureus* | Yes                   |
| 8   | 58/M    | L    | Haematogenous Cigarette | WBC,ESR              | IIIB               | S. aureus                      | -                 |           | -                     |
| 9   | 25/F    | L    | Haematogenous | -                     | ESR              | III A             |           |           | -                     |
| No. | Age | Gender | Diagnosis | WBC | ESR Level | Pathogen | AMP | Pre-emptive AMP |
|-----|-----|--------|-----------|-----|-----------|----------|-----|----------------|
| 10  | 40/F | R      | Trauma    |     | ESR       | III A    |     |                |
| 11  | 43/M | R      | Trauma    |     | IIIIA     | S. aureus|     | Yes            |
| 12  | 31/F | R      | Haematogenous |   | III A     | P. aeruginosa | Yes | Yes |
| 13  | 60/F | L      | Trauma    |     | ESR       | III A    |     |                |
| 14  | 61/M | L      | Trauma    |     | ESR       | III A    |     |                |
| 15  | 16/F | R      | Trauma    |     | IIIA      | S. aureus|     |                |
| 16  | 74/F | L      | Trauma    |     | IIIA      | E. faecalis|     |                |
| 17  | 24/F | R      | Trauma    |     | III B^5   | S. aureus|     | Yes            |
| 18  | 53/M | L      | Trauma    |     | ESR       | III A    |     | A. baumannii   |
| 19  | 26/F | R      | Trauma    |     | III A     | S. aureus|     |                |
| 20  | 57/F | R      | Trauma    |     | Hypertension | III A |     | K. pneumonia    |
| 21  | 46/M | R      | Haematogenous |   | III A     | E. cloacae|     |                |
| 22  | 59/F | L      | Penetration|   | ESR       | III B^L  |     | E. coli        |
| 23  | 23/M | R      | Trauma    |     | III A     | S. aureus|     |                |
| 24  | 25/M | L      | Haematogenous |   | III A     | E. faecalis|     |                |
| 25  | 46/M | L      | Trauma    |     | Diabetes  | III B^5  |     | P. aeruginosa  |
| 26  | 44/M | L      | Trauma    |     | III A     | S. haemolyticus|     | Yes            |
| 27  | 42M  | L      | Trauma    |     | III A     | S. aureus|     |                |
| 28  | 30/M | R      | Trauma    |     | III B^5   | S. aureus|     | Yes            |
| 29  | 54/M | R      | Trauma    |     | III A     | S. haemolyticus|     | Yes            |
| 30  | 39/F | R      | Haematogenous |   | III A     | -        |     |                |
| 31  | 40/F | L      | Haematogenous |   | III A     | -        |     |                |
| 32  | 26/M | L      | Haematogenous |   | III A     | -        |     |                |
| 33  | 63/F | L      | Haematogenous |   | III A     | S. aureus|     |                |
| 34  | 39/F | L      | Penetration|   | ESR       | III A    |     |                |
| 35  | 64/M | R      | Penetration|   | ESR       | III B^5  |     | E. coli        |
| 36  | 30/M | R      | Trauma    |     | III A     | S. aureus|     |                |
| 37  | 48/M | R      | Trauma    |     | ESR       | III A    |     | S. aureus      |
| 38  | 41/F | R      | Trauma    |     | ESR       | III A    |     |                |
| 39  | 64/M | L      | Trauma    |     | ESR       | III A    |     | A. hydrophila  |
| 40  | 61/M | L      | Trauma    |     | ESR       | III A    |     |                |
| 41  | 43/F | L      | Haematogenous |   | III A     | -        |     |                |
| 42  | 27/F | R      | Trauma    |     | ESR       | III A    |     | P. aeruginosa  |
| 43  | 64/F | L      | Trauma    |     | ESR       | III A    |     |                |

**Abbreviations:** M, Male; F, Female; L, Left; R, Right; WBC, White Blood Cell; ESR, Erythrocyte Sedimentation Rate; CM, Calcium Sulfate; S. Aureus = Staphylococcus Aureus; S. Haemolyticus = Staphylococcus Haemolyticus; P. Aeruginosa = Pseudomonas Aeruginosa; K. Pneumoniae = Klebsiella Pneumoniae; E. Faecalis = Enterococcus Faecalis; E. coli = Escherichia Coli; A. Hydrophila = Aeromonas
Figures

Figure 1

Preoperative MRI examination significantly assisted to define the diagnosis of C-M
Figure 2

Intra-operative views of local debridement and antibiotic-loaded calcium sulfate implantation.

Figure 3

A patient with C-M type III tibial osteomyelitis received internal fixation removal.
A patient received local debridement and calcium sulfate implantation. The X-ray