Metabolite Profiling of Endophytic *Streptomyces* spp. and its Antiplasmodial Potential

Siti Junaidah Ahmad Corresp., 1, 2, Noraziah Mohamad Zin Corresp., 2, Noor Wini Mazlan 3, Syarul Nataqain Baharum 4, Mohd Shukri Baba 5, Yee Ling Lau 6

1 Faculty of Health Sciences, University of Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia
2 Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
3 Analytical and Environmental Chemistry, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
4 Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
5 Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University, Kuantan, Pahang, Malaysia
6 Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Kuala Lumpur, Malaysia

Corresponding Authors: Siti Junaidah Ahmad, Noraziah Mohamad Zin
Email address: junaidahahmad@unisza.edu.my, noraziah.zin@ukm.edu.my

Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of *Streptomyces* spp. against *Plasmodium falciparum* 3D7 by using a metabolomics approach. **Methods:** *Streptomyces* strains’ growth curves, namely SUK 12 and SUK 48, were measured and *P. falciparum* 3D7 IC$_{50}$ values were calculated. Metabolomics analysis was conducted on both strains’ mid-exponential and stationary phase extracts. **Results:** The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC$_{50}$ values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC$_{50}$ value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44, and 3 metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis (OPLS-DA), and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.
Metabolite Profiling of Endophytic *Streptomyces* spp. and its Antiplasmodial Potential

Siti Junaidah Ahmad\(^1,2\), Noraziah Mohamad Zin\(^1\), Noor Wini Mazlan\(^3\), Syarul Nataqain, Baharum\(^4\), Mohd Shukri Baba\(^5\), and Lau Yee Ling\(^6\)

\(^1\)Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia.

\(^2\)Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Kuala Nerus, Terengganu, Malaysia.

\(^3\)Analytical and Environmental Chemistry, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

\(^4\)Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

\(^5\)Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, 25200 Kuantan, Pahang, Malaysia.

\(^6\)Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.

Corresponding Authors:
Professor Dr. Noraziah Mohamad Zin

Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia.
Abstract

Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of *Streptomyces* spp. against *Plasmodium falciparum* 3D7 by using a metabolomics approach. Methods: *Streptomyces* strains’ growth curves, namely SUK 12 and SUK 48, were measured and *P. falciparum* 3D7 IC\(_{50}\) values were calculated. Metabolomics analysis was conducted on both strains’ mid-exponential and stationary phase extracts. Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC\(_{50}\) values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC\(_{50}\) value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44, and 3 metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis (OPLS-DA), and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to
rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

Introduction

A large number of imported malaria cases from Europe and the Mediterranean have recently been reported. The increasing number of foreign travelers linked to the hefty inflow of malaria-endemic immigrants. For instance, anopheline vectors, which act as the parasite reservoir and are present in Mediterranean regions, can infect the travelers returning from tropical countries (Dominguez Garcia et al. 2019; Silvia Odolini 2012). In 2017, World Health Organization (WHO) documented that the most malaria cases during that year were reported in Africa (with 92% or 200 million), and followed by Southeast Asia (with 5% or 10.8 million) (WHO 2018).

Endophytic Streptomyces are bacteria within ethnomedicinal plants that have symbiotic relationships with the host plants. Streptomyces is the biggest genus of actinomycetes, consisting of aerobic Gram-positive bacteria that are capable of generating filamentous branches called mycelia (Gottlieb 1966). The mycelia secrete antibiotics, that may be anti-fungal, antibacterial, and anti-viral, when they sporulate in the dormant phase (Alam et al. 2010; Gramajo et al. 1993; Roszak & Colwell 1987).

Previous studies reported that trioxacarcin A and D, produced by marine Streptomyces sp., were more effective in producing antiplasmodial activity than artemisinin (Maskey et al. 2004; Tomita et al. 1981). Furthermore, coronamycin, a novel antiplasmodial agent from Streptomyces sp., reportedly possessed antiplasmodial activity against Plasmodium falciparum (Ezra et al. 2004). Strobel and co-researchers discovered that munumbicin D also had antiplasmodial activity (Castillo et al. 2002). Kakadumycin A, also identified by the same team, isolated from
Streptomyces sp. NRRL 30566 compound demonstrated promising antiplasmodial activity on Plasmodium falciparum (Castillo et al. 2003). Furthermore, the isolated gancidin W of Streptomyces sp. SUK 10 inhibited the growth of Plasmodium berghei (Zin et al. 2017).

This study aims to determine the antiplasmodial activity on metabolites produced from Streptomyces spp. against Plasmodium falciparum 3D7 using a metabolomics approach. Metabolomics is a high throughput method utilized to screen the metabolites in organisms or tissues by chromatography techniques coupled with mass spectrometry (Rochfort 2005). Then the metabolites are depicted into a two-dimensional distribution using multivariate analysis, including Principal Component Analysis (PCA) and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA), and further putatively identified using Dictionary of Natural Products (DNP). The metabolites include amino acids, carbohydrates, organic acids, vitamins, antibiotics, and phytochemicals (Wishart 2008). The metabolomics approach uses high analytical techniques to determine metabolites in the biological samples. In this study, a hybrid chemical profile using liquid chromatography and mass spectrometry (LC-MS) with multivariate data analysis (MVA) was used to determine the metabolites present in Streptomyces kebangsaanensis SUK 12 and SUK 48. Moreover, mass spectrometry (MS)-based metabolomics helped to fast-track the identification of targeted and untargeted metabolites present in complex extracts during screening.

Materials & Methods

Culture

Plasmodium falciparum 3D7 was obtained from the culture collection of the Parasitological Department, Faculty of Medicine, Universiti Malaya (UM) while Streptomyces kebangsaanensis
SUK 12 and SUK 48 were acquired from the Novel Antibiotics Laboratory, Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM). *Streptomyces kebangsaanensis* SUK 12 was isolated from an ethnomedicinal plant, *Portulaca oleracea* L., which was collected from the Nenasi Reserve Forest, Pahang, Malaysia (Sarmin et al. 2013). *Streptomyces* sp. SUK 48 was isolated from the fruit of *Brasilia* sp. (Zin 2015).

Streptomyces spp. growth condition

The SUK 12 and SUK 48 strains were grown in nutrient broth (pH 7.0) on an orbital shaker at 160 rpm, 28°C for 21 days. The dry weight was collected daily by centrifugation at 4000 rpm for 15 mins at 25°C and dried at 70°C. The growth curves of both strains were plotted using Microsoft Excel. The growth rate and generation time were estimated by the following calculation:

\[
\text{Growth rate, } k = \frac{\log(\text{Higher dry weight}, X_1) - \log(\text{lower dry weight}, X_0)}{0.301 (\text{time between two intervals})}
\]

\[
\text{Generation time} = \frac{1}{k}
\]

Streptomyces spp. extracts preparation

The crude extracts prepared in the 14-day culture of both strains’ blocks (1 cm²) were used to inoculate in nutrient broth for 5, 12, and 14 days for SUK 12, and 7, 14, and 21 days for SUK 48. The broth cultures were also incubated on an orbital shaker (Protech, Malaysia) at 160 rpm, 28°C. Both strains’ cultures were extracted using 3-fold ½ volume of ethyl acetate. The organic layer (ethyl acetate) was discarded and dried under vacuum using a rotary evaporator (Buchii, Switzerland).
In vitro antimalarial assay

The 96-well plate in vitro antimalarial activity includes a series of extracts dilution (complete media or CM and extracts), positive drug control (CM and CQ), positive control (CM plus iRBC, infected red blood cells), and negative control (CM plus fresh RBC). The positive control was the maximum parasite lactate dehydrogenase (pLDH) enzyme absorbed in cells, and the negative control was a blank (Lambros & Vanderberg, 1979).

Plasmodium falciparum 3D7 culture

The volume of iRBC was calculated then a complete media (containing RPMI 1640, 2.3 g/L sodium bicarbonate, 4 g/L dextrose, 5.957 g/L HEPES, 0.05 g/L hypoxanthine, 5 g/L Albumax II, 0.025 g/L gentamycin sulfate, 0.292 g/L L-glutamine) and fresh red blood cells (RBC) were added into the culture to make the final values of 1% parasitaemia and 2% hematocrit. The parasitaemia level was measured using a thin blood film (TBS) that was stained with 10% Giemsa and observed under a light microscope with 1000x magnification. Next, when the parasitaemia level reached within 5-7%, iRBC was synchronized with 5% sorbitol to obtain the ring stage of the parasite (Amir et al. 2016; Lambros & Vanderberg, 1979).

Dilution of Streptomyces spp. extracts

Streptomyces spp. extracts stock solution was prepared using 10 mg/mL dimethyl sulfoxide (DMSO) and complete medium (CM). The final concentration of the prepared DMSO was less than 1% to prevent its toxic effect on the parasite. Next, the stock solution of Streptomyces spp. extracts was serially tenfold-diluted eight times (starting at 1000 µg/mL and ending at 0.0001 µg/mL). For the control, the drug chloroquine diphosphate (CQ) was used in various dilutions.
ranging from 10 µg/mL to 10⁻⁶ µg/mL. Next, 100 µL of the diluted extracts and CQ were transferred into a sterile 96-wells plate. For negative and positive control wells, 100 µL of CM was transferred into this 96-well plate.

Incubation of Streptomyces spp. extracts with parasite

Parasite culture (iRBC) with 10% parasitaemia was selected and centrifuged at 1800 rpm for 5 mins to obtain the cell pellets. The cell pellets were diluted to 2% parasitaemia with fresh RBC. Approximately 2 µL iRBC was transferred into every well of diluted extracts, control drug, CQ, and positive control. Then, 2 µL of fresh RBC was added into negative control, and the 96-well was incubated at 37°C, 5% carbon dioxide (CO₂) for 48 hs. The plate was then frozen overnight at -20°C prior the pLDH assay started (Makler et al. 1993).

Parasite lactate dehydrogenase (pLDH assay)

Upon overnight freezing at -20°C, the 96-well plate was defrosted at 37°C for 20 mins and re-frozen at -20°C for 30 mins. This step was repeated 3 times to break the parasite cells. At the same time, Malstat reagent and NBT-PES (nitroblue tetrazolium-phenazine ethosulfate) were also prepared in the dark. About 100 µL of Malstat reagent and 25 µL of NBT-PES were added to a new 96-well plate. After the freezing and defrosting processes finished, 15 µL of each defrost culture well plate was transferred into the wells of a new plate that contained Malstat reagent and NBT-PES. The 96-well plate was then incubated for 1 h at room temperature in the dark. Absorbance readings at the wavelength of 650 nm (A₆₅₀) were measured for the 96-well plate using a spectrophotometer (Tecan M200, Switzerland). The positive control was assumed to be the
maximum level of lactate dehydrogenase enzyme production. The negative control was the blank (Makler et al. 1993; Trager & Jensen 1976). Inhibition of parasite (%) was calculated as follows:

\[
\frac{(\text{A650 average for diluted sample} - \text{A650 average negative control})}{(\text{A650 average positive control} - \text{A650 average negative control})} \times 100
\]

A sigmoid graph was plotted using Graphpad PRISM version 7. The value of parasite inhibition 50% (IC₅₀) was determined from the graph.

Liquid Chromatography-Mass Spectrometry (LC-MS) analysis

Approximately 3 mg/mL extracts of S12D5 (SUK 12 day to harvest fermented broth is 5), S12D12, S48D7, and S48D14 were sent for LC-MS analysis (Rosli et al. 2017). Scientific C-18 column Thermo was chromatographically separated by an UltiMate 3000 UHPLC (Dionex) system (AcclaimTM Polar Advantage II, 3 mm to 150 mm, 3 μm particle size). A flow rate of 0.4 mL/min at 40°C was maintained with water that contained 0.1% formic acid and 100% acetonitrile with a total operating time of 22 mins. The gradient started for 3 mins at 5% of solvent B, then grew to 80% of solvent B for 7 mins and stayed at 80% of solvent B for 5, or 10-15 mins. At last, the gradient turned to 5% of solvent B in 7 mins (15-22 mins). The ESI-positive ionization was performed with the use of MicrOTOF-Q III (Bruker Deltonic) with the settings: capillary voltage 4500 V; pressure of 1.2 bar, and dry gas flow 8 L/min at 200°C; 50-1000 Da m/z, respectively.

Mass spectrometry data handling

Raw material in “d format” was supplied to Bruker Compass Data Analysis Viewer version 4.2 (Bruker Daltonics, Germany) and imported into the Profile Analysis 2.0 data bucketing software (Bruker Daltonics, Germany) (Mamat et al. 2018; Veeramohan et al. 2018). The parameters for
compound detecting were: signal/noise threshold: 5; correlation coefficient: 0.7; minimum
compound length: 8; smoothing width: 2. Compound detection was done using Find Molecular
Features (FMF). The composite bucket table was calculated using advanced bucketing features as
time alignment parameters. The time interval was between 0.00 mins and 22.04 mins, and the mass
range was between 49 m/z and 1001 m/z. For standardized settings, the data was uploaded to the
MetaboAnalyst 3.0 server (www.metaboanalyst.ca). The normalizing features used were: internal
standard caffeine: 195.088 m/z, RT: 7.98 mins; transformation: log; scaling: pareto. (Xia et al.
2015). Normalized and validated data tables were exported to SIMCA P+ version 15 from
Umetrics AB, Umea, Sweden. The PCA, the examination of fundamental variations in samples,
and the presentation of outliers were conducted prior to the sample classification of Model OPLS-
DA. With 100 random permutations using cross-validations and responsive permutation tests, the
robustness of OPLS-DA was validated. The two-way ANOVA type was "ANOVA" in subjects.
The significance threshold was set as the p-value of correction lower than 0.05. The false discovery
rate was less than 0.05.

Metabolite identification
The search and manual verification of secondary metabolites in the LC–MS analyses were done.
Online databases, namely METLIN and Dictionary of Natural Products (DNP), were examined for
the value of a molecular ion of interest (Mazlan et al. 2019; Smith et al. 2005). The databases were
used to identify molecular weight metabolites within a specified m/z value query tolerance range.

DNA extraction
First, neutral lysis of genome DNA was done for isolation, followed by extraction, then precipitation of phenol chloroforms and isopropanol. The protocol was used to extract the DNA (Kieser 1984). For several changes, *Streptomyces* mycelium, in a 1.5 mL of Eppendorf tube was interrupted by vortexing with 500 μL of lysozyme. The samples were then added with 25 μL of 50 mg/mL of lysozyme and 3 μL of 10 mg/mL of RNase. Finally, the purity and concentration of the DNA were determined on a Thermo Scientific nano-drop 2000C machine. SUK 12 DNA sequence was obtained from the previous study (Sarmin et al. 2013).

16S rRNA molecular identification and phylogenetic tree analysis

Polymerase chain reaction (PCR) amplified the 16S rRNA gene sequence using universal 16SrRNA bacterial gene primers as described earlier (Coombs & Franco, 2003). For SUK 12 and SUK 48, 1416 and 1463 nucleotides respectively, were near full-length 16S rRNA gene sequences. The sequences were compared using BLAST and EzTaxon e-databases with the GenBank database (Altschul et al. 1997). The comprehensive sequence similarity calculation was based on the EzTaxon server's global alignment algorithm (Kim et al. 2012). The sequence was also matched several times with 16S rRNA gene sequences, which are available in GenBank/EMBL with the CLUSTAL W programme, for closely related species of *Streptomyces* (Thompson et al. 1994). The neighbour-joining (NJ) approach (Saitou & Nei 1987), available in MEGA software package 7 version, used the reconstructions of the phylogenetic trees (Tamura et al. 2013). In accordance with the two-parameter Kimura model, the matrices of distance were calculated (Kimura 1980). Moreover, the tree was made with the maximum likelihood (ML) (Kimura 1980). By conducting a bootstrap analysis-based of 1000 replicates, the topology of the trees was evaluated (Felsenstein 1985).
Results

Growth curve and effectiveness of antiplasmodial activity of *Streptomyces* spp.

The growth curve showed that the generation time of *Streptomyces* sp. SUK 12 was faster than SUK 48’s with 1.16 h/generation and 4.56 h/generation, respectively (Figure 1 A and B). Meanwhile, the antiplasmodial activity revealed that the crude extract of *Streptomyces* sp. SUK 48 on day 14 was more potent (with an IC$_{50}$ value of 0.1963 ng/mL) than that of SUK 48 on day 7 and SUK 12 on day 5 and day 10 (Table 1).

Metabolomics approach

The metabolite profiles in extracts using two-way ANOVA (univariate analysis) were compared to those using PCA, OPLS-DA, and S-Plot (multivariate analysis). Two-way ANOVA summarizes and simplifies each sample metabolites (Figure 2). Approximately, 96 metabolites were common in the type of strain, fermentation time, and interaction between both (time and strain type). While 44 metabolites were significant in strain type, 14 metabolites were significant in fermentation time, and three metabolites were significant in the interaction between both (Supplementary Table 1). The variation and diversity of the extracts were examined in a PCA model (Figure 3A). The PCA model, however, gave a low Q2 = 0.271 preview. *Streptomyces* sp. extracts cannot be distinguished by any significant variation. The OPLS-DA scores scatter plot of the crude extracts SUK 48 showed distinct separation between day 7 and day 14 (Figure 3B). Nevertheless, the crude extract of SUK 12 on day 5 and day 12 was not well distributed. Meanwhile, the OPLS-DA scores scatter plot (Figure 3C) and S-loadings plot (Figure 3D) of SUK 48 crude extracts between day 7
and day 14 gave a good distribution. Overall, the metabolites separation from SUK 48 day 14 extracts could be seen as in Figure 4. The secondary metabolite at m/z 195.092 was putatively identified as 1-Vinyl-β-carboline (pavettine) whereas metabolites at m/z 225.163 and 225.153 were putatively identified as 4-butyldiphenylmethane. Metabolites presence at m/z 227.135, 227.145, and 227.153 were putatively identified as aurantioclavine; (-)-form. All the outliers in the crude extracts of SUK 48 day 14 mentioned as above are known metabolites in Table 2. Then, metabolites at m/z 211.135 and 211.123 were putatively identified as 2,5-Dimethyl-3-(2-phenylethenyl)pyrazine, while metabolites at m/z 245.117 and 245.137 were 3,3-Bis(4-hydroxyphenyl)-1-propanol. The secondary metabolite at m/z 195.149 was represented as 6-(1-Methylethyl)-3-(2-methylpropyl)-2(1H)-pyrazinone, while at m/z 155.078 was trifluoromethyl piperazine. These metabolites were the outliers in SUK 48 day 7 (Table 3).

Streptomyces spp. identification using molecular analysis.

Phylogenetic tree analysis of both SUKs showed that SUK 48 and SUK 12, using the NJ tree, belonged to different clades (Figure 5) where the bootstrap value was 98%. Moreover, the ML tree (supplement Figure 1) supported this report with a bootstrap value of 95%.

Discussion

There are four stages of bacteria growth: lag, log, stationary, and death. The crucial phase for producing antibiotics is the stationary phase in *Streptomyces* spp. (Chandrakar & Gupta 2019; Chen et al. 2020). *Streptomyces lactamdurans* that produces the antibiotic cephamycin C has a generation time of 7.5 hs (Ginther 1979). Furthermore, faster growth is potentially essential in the
enzyme production of actinomycetes. The effective mycelial fragmentation by the enhanced expression SsgA has significant consequences for antibiotic production, with increasing undecylprodigiosin, but a complete block in the production of actinorhodin (van Wezel et al. 2009). SUK 48 could therefore be a potential antibiotic producer as its ability as slow-growing capacity. The stationary phase of bacterial growth is the survival phase in which they actively secrete secondary metabolites to combat oxidative stress and malnutrition for survival purposes (Banchio & Gramajo 2002; Undabarrena et al. 2017).

Chemometrics is a chemical discipline that uses mathematical and statistical logic-based methods to design optimal measurement procedures and tests, and provide maximum chemical information through the analysis of chemical data (Massart & Buydens 1988). From a metabolomics perspective, the univariate analysis is a statistical test used to independently measure metabolites that have significantly increased or decreased between different groups. This test is important for significance testing of the tens to hundreds of metabolites to reduce the probability of false positives caused by multiple tests. Of the 854 metabolites analyzed in two-way ANOVA, 14 were significant in the fermentation time (mid-exponential and stationary phase), whereas, 44 and 14 metabolites were significant in strain and time respectively, and interaction between the both were three metabolites were significant. In addition, there were 96 metabolites significant in strain, time, and interaction of both. There were two antimalarials identified in the list of 96 metabolites, gancidin W, antimycin and hydroquinine. Gancidin W has been reported isolated from *Streptomyces gancidicus* and poses antimalarial agent against *Plasmodium berghei* (Aiso K 1956; Wakaki et al. 1958; Zin et al. 2017). Besides, antimycin had been reported was isolated from *Streptomyces blastmyceticus* and antiplasmodial activity against *Plasmodium falciparum* K1 (Gomez-Lorenzo et al. 2018; Nakayama et al. 1956). While hydroquinine was first isolated from...
the reduction of quinine and was determined as an antimalarial agent (Buttle et al. 1938; Griffin et al. 2012). Pavettine is an alkaloid compound which found in SUK 48 on day 14, was reported to have anti-cancer where IC$_{50}$ was 100 ng/mL against leukemic cell lines (Figuerola & Avila 2019). Furthermore, the antimicrobial activity of pavettine against Bacillus subtilis and Candida albicans reported minimum inhibitory concentration (MIC) values from 1.9 µg/disc to 3.8 µg/disc (Sudha & Masilamani 2012). Pavettine was previously mainly found in Pavetta lanceolata, Cribricellina cribraria, Costaticella hastata, and Soulamea raxinifolia (Blackman & Walls 1995; Jordaan 1968). Further isolation and purification of putative metabolites and identification and elucidation of molecule structure is required by using MS/MS, 1D- and 2D-NMR.

Phylogenetic tree analysis of both SUKs showed that SUK 48 and SUK 12 belonged to different clades. The reliability test was over 70%, which was 98% at nodes between SUK 12 and SUK 48. This result suggested that both SUKs were different subspecies. Distance matrices of the neighbouring tree construction were calculated using Kimura, the two-parameter correction model (Kimura 1980), and a bootstrap analysis based on 1000 replications was performed to evaluate the topology of the neighbouring joining trees (Felsenstein 1985). SUK 12 was a novel species (Sarmin et al. 2013) with the antiplasmodial agent (Remali 2016). We believe SUK 48 is presumably a novel species (data not published). The selected outgroup, Kitasatospora setae KM-6054T was used based on the previous study (Sarmin et al. 2013).

Conclusion

SUK 48 at the stationary phase produced more metabolites with antimicrobial and anticancer properties than SUK 48 at the mid-exponential phase. Therefore, SUK 48 at the stationary phase was the potential antimalarial extract candidate for the further purification
process. The metabolomics approach is a rapid tool that dereplicated known antimalarial metabolites and determined those at specific fermentation time. Further study will focus on the fractionation and purification of possible antimalarial compounds from *Streptomyces* spp. SUK 48. Meanwhile, an *in silico* study using molecular docking (MD) will be conducted to verify the potential interaction between complex protein-ligands in developing a potential new antiplasmodial agent.

Acknowledgments

This work received financial support from the Ministry of Higher Education via FRGS/1/2016/STG05/UKM/02/5 grant. The authors would like to acknowledge the Centre for Research and Instrumentation Management (CRIM) of Universiti Kebangsaan Malaysia (UKM) for Research Instrumentation Development Grants awarded in 2010 and 2013 (PIP-CRIM) and Dana Modal Insan (MI-2018-004). The authors would like to thank Jonathan Wee Kent Liew for supplying the *Plasmodium falciparum* 3D7 culture and providing coaching and guidance, and Dr. RuAngelie Edrada-Ebel for granting permission to access the Dictionary of Natural Products (DNP) database library.

References

Aiso K AT, Suzuki M, Takamizawa T. 1956. Gancidin, an antitumor substance derived from *Streptomyces* sp. *Journal of Antibiotic* 9:97-101.

Alam MT, Merlo ME, Consortium S, Hodgson DA, Wellington EM, Takano E, and Breitling R. 2010. Metabolic modeling and analysis of the metabolic switch in *Streptomyces coelicolor*. *BMC Genomics* 11:202. 10.1186/1471-2164-11-202.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and
Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. 10.1093/nar/25.17.3389

Amir A, Russell B, Liew JW, Moon RW, Fong MY, Vythilingam I, Subramaniam V, Snounou G, and Lau YL. 2016. Invasion characteristics of a Plasmodium knowlesi line newly isolated from a human. Sci Rep 6:24623. 10.1038/srep24623

Banchio C, and Gramajo H. 2002. A stationary-phase acyl-coenzyme A synthetase of Streptomyces coelicolor A3(2) is necessary for the normal onset of antibiotic production. Appl Environ Microbiol 68:4240-4246. 10.1128/aem.68.9.4240-4246.2002

Blackman & Walls. 1995. Bryozoan Secondary Metabolites and their Chemical Ecology. Attar-Rahman (Ed) Studies in Natural Products Chemistry 17:73-112.

Buttle GA, Henry TA, Solomon W, Trevan JW, and Gibbs EM. 1938. The action of the cinchona and certain other alkaloids in bird malaria. III. Biochem J 32:47-58. 10.1042/bj0320047

Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condon M, and Teplow D. 2003. Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224:183-190. 10.1016/S0378-1097(03)00426-9

Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condon MA, Teplow DB, Stevens D, and Yaver D. 2002. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675-2685. 10.1099/00221287-148-9-2675

Chandrakar S, and Gupta AK. 2019. Actinomycin-Producing Endophytic Streptomyces parvulus Associated with Root of Aloe vera and Optimization of Conditions for Antibiotic Production. Probiotics Antimicrob Proteins 11:1055-1069. 10.1007/s12602-018-9451-6

Chen Y, Metz J, Miller-Xavier RK, and Wang G. 2020. Unlocking a new target for streptomycetes strain improvement. Synth Syst Biotechnol 5:33-34. 10.1016/j.synbio.2020.02.001

Dominguez Garcia M, Feja Solana C, Vergara Ugarriza A, Bartolome Moreno C, Melus Palazon E, and Magallon Botaya R. 2019. Imported malaria cases: the connection with the European ex-colonies. Malar J 18:397. 10.1186/s12936-019-3042-1

Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condon MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, and Yaver D. 2004. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785-793. 10.1099/mic.0.26645-0

Felsenstein J. 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39:783-791. 10.1111/j.1558-5646.1985.tb00420.x

Figuerola B, and Avila C. 2019. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 17. 10.3390/md17080477

Ginther CL. 1979. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob Agents Chemother 15:522-526. 10.1128/aac.15.4.522

Gomez-Lorenzo MG, Rodriguez-Alejandro A, Moliner-Cubel S, Martinez-Hoyos M, Bahamontes-Rosa N, Gonzalez Del Rio R, Rodenas C, Fuente J, Lavandera JL, Garcia-Bustos JF, and Mendoza-Losana A. 2018. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist 8:295-303. 10.1016/j.ijpddr.2018.04.007

Gottlieb EBSaD. 1966. Methods For Characterization Of Streptomyces Species. International Journal Of Systematic Bacteriology 16:313-340.

Gramajo HC, Takano E, and Bibb MJ. 1993. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837-845. 10.1111/j.1365-2958.1993.tb01174.x
Griffin CE, Hoke JM, Samarakoon U, Duan J, Mu J, Ferdig MT, Warhurst DC, and Cooper RA. 2012. Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial cinchona alkaloids. *Antimicrob Agents Chemother* 56:5356-5364. 10.1128/AAC.05667-11

Jordaan PA. 1968. The Structure and Synthesis of Pavettine, An Alkaloid from *Pavetta Lanceolata* Eckl. Rubiaceae. *Journal Van Die Suid-Afrikaanse Chemiese Instituut* 21:22-25.

Kieser T. 1984. Factors affecting the isolation of CCC DNA from Streptomyces lividans and *Escherichia coli*. *Plasmid* 12:19-36. 10.1016/0147-619x(84)90063-5

Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, and Chun J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. *Int J Syst Evol Microbiol* 62:716-721. 10.1099/ijs.0.038075-0

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J Mol Evol* 16:111-120. 10.1007/bf01731581

Rosli MAF, Azizan KA, Baharum SN, and Goh HH. 2017. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers. *Data Brief* 14:295-297. 10.1016/j.dib.2017.07.068

Mazlan NW, Tate R, Yusoff YM, Clements C, and Edrada-Ebel R. 2019. Metabolomics-Guided Isolation of Anti-Trypanosomal Compounds from Endophytic Fungi of the Mangrove plant Avicennia Lanata 27.

Nakayama K, Okamoto F, and Harada Y. 1956. Antimycin A: isolation from a new Streptomyces and activity against rice plant blast fungi. *J Antibiot (Tokyo)* 9:63-66.

Remali J. 2016. Kajian Genomik dan Metabolomik *Streptomyces kebangsaanensis* serta tapak jalan biosintesis fenazin Master Master Dissertation. Universiti Kebangsaan Malaysia.

Rochfort S. 2005. Metabolomics reviewed: a new "omics" platform technology for systems biology and implications for natural products research. *J Nat Prod* 68:1813-1820. 10.1021/np050255w

Roszak DB, and Colwell RR. 1987. Survival strategies of bacteria in the natural environment. *Microbiol Rev* 51:365-379.

Saitou N, and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* 4:406-425. 10.1093/oxfordjournals.molbev.a040454
Sarmin NI, Tan GY, Franco CM, Edrada-Ebel R, Latip J, and Zin NM. 2013. Streptomyces kebangsaanensis sp. nov., an endophytic actinomycete isolated from an ethnomedicinal plant, which produces phenazine-1-carboxylic acid. *Int J Syst Evol Microbiol* 63:3733-3738. 10.1099/ijs.0.047878-0

Silvia Odolini PGaPP. 2012. Epidemiology of Imported Malaria in the Mediterranean Region. *Mediterr J Hematol Infect Dis*.

Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, and Siuzdak G. 2005. METLIN: A metabolite mass spectral database. 10.1097/01.ftd.0000179845.53213.39

Sudha S, and Masilamani SM. 2012. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4. *Asian Pac J Trop Biomed* 2:770-773. 10.1016/S2221-1691(12)60227-5

Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol* 30:2725-2729. 10.1093/molbev/mst197

Thompson JD, Higgins DG, and Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22:4673-4680. 10.1093/nar/22.22.4673

Tomita F, Tamaoki T, Morimoto M, and Fujimoto K. 1981. Trioxacarcins, novel antitumor antibiotics. I. Producing organism, fermentation and biological activities. *J Antibiot (Tokyo)* 34:1519-1524. 10.7164/antibiotics.34.1519

Trager W, and Jensen JB. 1976. Human malaria parasites in continuous culture. *Science* 193:673-675. 10.1126/science.781840

Undabarrena A, Ugalde JA, Seeger M, and Camara B. 2017. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. *PeerJ* 5:e2912. 10.7717/peerj.2912

van Wezel GP, McKenzie NL, and Nodwell JR. 2009. Chapter 5. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. *Methods Enzymol* 458:117-141. 10.1016/S0076-6879(09)04805-8

Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, Baharum SN, and Ng CL. 2018. Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS. *Data Brief* 18:1212-1216. 10.1016/j.dib.2018.04.001

Wakaki S, Marumo H, Tomioka K, Shimizu M, Kato E, Kamada H, Kudo S, and Fujimoto Y. 1958. Purification and isolation study on gancidins. *J Antibiot (Tokyo)* 11:150-155.

WHO. 2018. WHO | World malaria report 2017. http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/

Wishart DS. 2008. Applications of metabolomics in drug discovery and development. *Drugs R D* 9:307-322. 10.2165/00126839-200809050-00002

Xia J, Sinelnikov IV, Han B, and Wishart DS. 2015. MetaboAnalyst 3.0--making metabolomics more meaningful. *Nucleic Acids Res* 43:W251-257. 10.1093/nar/gkv380
Zin N, Nur Faizah AB, Aishah I, Baba MS, and Sidik NM. 2015. Pencirian dan aktiviti antibakteria endofit streptomyces sp. dari hutan simpan penyelidikan UKM Bangi. *Malaysian Applied Biology* 44:107-114.

Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, and Edrada-Ebel R. 2017. Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK10. *Drug Des Devel Ther* 11:351-363. 10.2147/DDDT.S121283
Figure 1

Growth curve of Streptomyces spp.

Figure 1. (A) The growth curve of *Streptomyces* sp. SUK 12 and (B) SUK 48.
Figure 2

Two-way ANOVA (Analysis of Variance)

Two-way ANOVA (Analysis of Variance). The red circle with 155 metabolites represents type of strain, SUK 12 and SUK 48, whereas blue circle with 125 metabolites represents fermentation time and green circle with 103 metabolites represents interaction between both (time and strain type).
Figure 3

Principal component analysis

(A) PCA scores scatter plot of SUK 12 (day 5 and 12) and SUK 48 (day 7 and 14) crude extracts (R² = 0.47; and Q² = 0.271)
Figure 4

OPLS-DA scores scatter plot

(B) OPLS-DA scores scatter plot between SUK 12 and SUK 48 crude extracts (R2(Y) = 0.651; Q2 = 0.395)
Figure 5

OPLS-DA scores scatter plot

OPLS-DA scores scatter plot between S48D7 and S48D14, (R²(Y) = 0.996; Q² = 0.61
Figure 6

S-Plot

S-plot of SUK48 day 7 vs day 14 metabolites.
Figure 7

Total ion chromatogram

Total ion chromatogram of the crude extract of SUK48 on day 14 with labelled of significant peaks of outliers (1-6).
Figure 8

Phylogenetic tree

Phylogenetic tree of full length 16S rRNA nucleotide sequences using Neighbour Joining method showing the relationship of strain SUK12 and SUK 48 with closely related members of the genus *Streptomyces* and *Kitasatospora setae* KM-6054T as the outgroup. Numbers at the nodes indicate levels of bootstrap support based on 1000 replication. Bar, 0.005 changes per nucleotide.
Table 1 (on next page)

Anti-plasmodial activity

Anti-plasmodial activity of *Streptomyces* spp. extracts
Table 1: Anti-plasmodial activity of *Streptomyces* spp. extracts

Sample	Inhibitory concentration (IC$_{50}$ in ng/mL ± SEM)
S12D5 (mid exponential phase)	18.62 ± 0.00
S12D12 (stationary phase)	0.8168 ± 0.174
S12D14 (death phase)	62.29 ± 0.00
S48D7 (mid exponential phase)	0.1980 ± 0.099
S48D14 (stationary phase)	0.1963 ± 0.17
S48D21 (death phase)	527.4 ± 0.00
Chloroquine diphosphate (control drug)	0.2821 ± 0.00
Table 2 (on next page)

Identification of significant metabolites of SUK48 day 14 extracts

Putatively identified metabolites using DNP and METLIN that presence in the crude extracts of SUK48 day 14 highlighted S-Plot.
Table 2: Putatively identified metabolites using DNP and METLIN that presence in the crude extracts of SUK48 day 14 highlighted S-Plot.

No	m/z value	Retention time (minutes)	Molecular Weight	Monoisotopic mass	Compound Name	Tolerance (ppm)	Chemical Formula	Sources
1	227.154	7.91	226.1457	226.1470	Aurantioclavine; (-)-form	-0.3401	C_{15}H_{18}N_{2}	Penicillium aurantiuvirens
2	227.145	7.91	226.1377	226.1470	Aurantioclavine; (-)-form	-0.3401	C_{15}H_{18}N_{2}	Penicillium aurantiuvirens
3	227.135	7.91	226.1277	226.1470	Aurantioclavine; (-)-form	-0.3401	C_{15}H_{18}N_{2}	Penicillium aurantiuvirens Pavetta lanceolata, Cribricellina cribraria, Costaticella hastata and Soulamea raxinifolia
4	195.092	7.94	194.0844	194.0844	1-Vinyl-β-carboline (pavettine)	0.02	C_{13}H_{10}N_{2}	Pavetta lanceolata, Cribricellina cribraria, Costaticella hastata and Soulamea raxinifolia
5	225.163	11.60	224.1565	224.1565	4-Butyldiphenylmethane	3	C_{17}H_{20}	Chemically synthesized
6	225.153	11.60	224.1460	224.1460	4-Butyldiphenylmethane	3	C_{17}H_{20}	Chemically synthesized
Table 3 (on next page)

Identification of significant outliers from SUK48 day 7 extracts

Putatively identified metabolites using DNP and METLIN that presence in the crude extracts of SUK48 day 7 highlighted S-Plot
Table 3: Putatively identified metabolites using DNP and METLIN that presence in the crude extracts of SUK48 day 7 highlighted S-Plot

No	m/z value	Retention time	Molecular Weight	Monoisotopic mass	Compound Name	Tolerance (ppm)	Chemical Formula	Sources
1.	211.135	8.68	210.1353	210.1157	2,5-Dimethyl-3-(2-phenylethenyl)pyrazine	-1.7585	C_{14}H_{14}N_{2}	Iridomyrmex humilis
2.	211.123	8.68	210.1153	210.1157	2,5-Dimethyl-3-(2-phenylethenyl)pyrazine	-1.7585	C_{14}H_{14}N_{2}	Iridomyrmex humilis
3.	245.117	8.98	244.1099	244.1099	3,3-Bis(4-hydroxyphenyl)-1-propanol	-0.1998	C_{15}H_{16}O_{3}	Streptomyces albospinus 15-4-2
4.	245.137	8.98	244.1298	244.1099	3,3-Bis(4-hydroxyphenyl)-1-propanol	-0.1998	C_{15}H_{16}O_{3}	Streptomyces albospinus 15-4-2
5.	195.149	10.47	194.1415	194.1419	6-(1-Methylethyl)-3-(2-methylpropyl)-2(1H)-pyrazinone	-2.1236	C_{11}H_{18}N_{2}O	Aspergillus flavus
6.	155.078	3.20	154.0718	154.0718	(Trifluoromethyl)piperazine	6	C_{5}H_{9}F_{3}N_{2}	Chemically synthesized