A New Type of Complex Neutrino Mass Texture and μ-τ Symmetry

Ichiro Aizawa and Masaki Yasue

Department of Physics, Tokai University,
1117 Kitakaname, Hiratsuka,
Kanagawa 259-1292, Japan

(Dated: October, 2005)

Relying upon the usefulness of the μ-τ symmetry, we find a new type of neutrino mass texture with a single phase parameter δ that describes maximal atmospheric neutrino mixing and Dirac CP violation due to the presence of δ. The Majorana phase associated with the third massive neutrino turns out to be identical to the Dirac phase while other Majorana phases vanish. The nonvanishing reactor neutrino mixing angle θ_{13} is induced by a μ-τ symmetry breaking effect. Flavor neutrino masses that supply the μ-τ symmetry breaking terms become pure imaginary for $\delta = \pm \pi/2$, leading to maximal CP violation. There is a parameter denoted by η, which is either $\mathcal{O}(\sqrt{\Delta m^2_{\odot}}/\Delta m^2_{\text{atm}})$ in the normal mass hierarchy, or $\mathcal{O}(\Delta m^2_{\odot}/\Delta m^2_{\text{atm}})$ in the inverted mass hierarchy. In the inverted mass hierarchy, the contribution of $\mathcal{O}(\sin^2 \theta_{13})$ is found to be significant and cannot be neglected. Our texture also leads to quasi degenerate neutrinos with masses of $\mathcal{O}(\sqrt{\Delta m^2_{\text{atm}}})$, which serves as the scale for the effective neutrino mass in $\beta\beta_{00}$-decay. This texture does not include η and Δm^2_{\odot} naturally arises from contributions of $\mathcal{O}(\sin^2 \theta_{13})$ to give $\Delta m^2_{\odot}/\Delta m^2_{\text{atm}} \sim \sin^2 \theta_{13}$, yielding the prediction of $\sin^2 \theta_{13} = \mathcal{O}(10^{-2})$.

PACS numbers: 12.60.-i, 13.15.+g, 14.60.Pq, 14.60.St

I. INTRODUCTION

There have been growing theoretical interest in determining the structure of the complex neutrino mass matrix \[U^{PDG}_{PMNS} = U_{\nu}K \] that induces leptonic CP violation \[\mathcal{O}(10^{-2}) \]. The leptonic CP violation has two sources: one from a CP violating Dirac phase and the other from two CP violating Majorana phases \[\mathcal{O}(10^{-2}) \] if neutrinos are Majorana particles. It is then argued that the μ-τ symmetry \[\mathcal{O}(10^{-2}) \] plays a crucial role in the physics of leptonic CP violation \[\mathcal{O}(10^{-2}) \]. In the standard parameterization of CP violation used by PDG \[\mathcal{O}(10^{-2}) \], the PMNS unitary matrix \[\mathcal{O}(10^{-2}) \] is given as

\[
U_{\nu} = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
 -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\
 -s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & c_{23}s_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix},
\]

\[
K = \text{diag}(e^{i\beta_1}, e^{i\beta_2}, e^{i\beta_3}),
\]

for \(c_{ij} = \cos \theta_{ij} \) and \(s_{ij} = \sin \theta_{ij} \) \(i,j=1,2,3 \), where \(\theta_{ij} \) stands for the three neutrino mixing angles. The three flavor neutrinos \(\nu_{e,\mu,\tau} \) are converted by the action of \(U^{PDG}_{PMNS} \) into three massive neutrinos \(\nu_{1,2,3} \). The CP violating Dirac phase is denoted by \(\delta \), while the Majorana CP violation phases are determined by two combinations of \(\beta_{1,2,3} \) such as \(\beta_1 - \beta_3 \) \(i=1,2,3 \). In this parameterization, the Dirac phase \(\delta \) drops out if \(s_{13} = 0 \), which is the solution required by the μ-τ symmetry. Therefore, Dirac CP violation depends on the presence of the μ-τ symmetry breaking part. These mixing angles are constrained by various experiments \[\mathcal{O}(10^{-2}) \] and are currently summarized as

\[
\sin^2 \theta_{12} = 0.314 \left(1.018 - 0.15 \right), \quad \sin^2 \theta_{23} = 0.44 \left(1.041 - 0.22 \right), \quad \sin^2 \theta_{13} = 0.9 \times 10^{-2}.
\]

Neutrino masses enter in the solar and atmospheric neutrino mass squared differences defined by \(\Delta m^2_{\odot} = m_2^2 - m_1^2 \) \((> 0) \) \[\mathcal{O}(10^{-5}) \] and \(\Delta m^2_{\text{atm}} = |m_3^2 - (m_2^2 + m_1^2)/2| \), which are observed to be:

\[
\Delta m^2_{\odot} = 7.92 \times 10^{-5} \text{ eV}^2, \quad \Delta m^2_{\text{atm}} = 2.4 \times 10^{-3} \text{ eV}^2.
\]
Let us introduce a neutrino mass matrix M_ν parameterized by

$$M_\nu = \begin{pmatrix} M_{ee} & M_{e\mu} & M_{e\tau} \\ M_{e\mu} & M_{\mu\mu} & M_{\mu\tau} \\ M_{e\tau} & M_{\mu\tau} & M_{\tau\tau} \end{pmatrix}.$$ (4)

It is then convenient to divide M_ν into the μ-τ symmetric part M_{sym} and symmetry breaking part M_b expressed in terms of $M_{\pm\mu} = (M_{e\mu} \pm (\sigma M_{e\tau}))/2$ and $M_{\pm\mu} = (M_{\mu\mu} \pm M_{\tau\tau})/2$ for $\sigma = \pm 1$:

$$M_\nu = M_{sym} + M_b$$ (5)

with

$$M_{sym} = \begin{pmatrix} M_{ee} & M_{e\mu}^{(+)} & -\sigma M_{e\mu}^{(+)} \\ M_{e\mu}^{(+)} & M_{\mu\mu}^{(+)} & M_{\mu\tau}^{(+)} \\ -\sigma M_{e\mu}^{(+)} & M_{\mu\tau}^{(+)} & M_{\tau\tau}^{(+)} \end{pmatrix}, \quad M_b = \begin{pmatrix} 0 & M_{e\mu}^{(-)} & \sigma M_{e\mu}^{(-)} \\ M_{e\mu}^{(-)} & M_{\mu\mu}^{(-)} & 0 \\ \sigma M_{e\mu}^{(-)} & 0 & -M_{\mu\mu}^{(-)} \end{pmatrix},$$ (6)

where the obvious relations $M_{\pm\mu} = M_{\pm\mu}^{(+)} + M_{\pm\mu}^{(-)}$, $M_{\pm\tau} = -\sigma(M_{\pm\mu}^{(+)} - M_{\pm\mu}^{(-)})$, $M_{\pm\mu} = M_{\pm\mu}^{(+)} + M_{\pm\mu}^{(-)}$ and $M_{\pm\tau} = M_{\pm\mu}^{(+)} - M_{\pm\mu}^{(-)}$ are used. It is the μ-τ symmetry, where the lagrangian for M_{sym}: $-\mathcal{L}_{mass} = \bar{\psi}M_{sym}\psi/2$ with $\psi = (\nu_\ell, \nu_\mu, \nu_\tau)^T$ turns out to be invariant under the exchange of $\nu_\mu \leftrightarrow -\nu_\tau$. From M_{sym}, it is easy to see that the eigenvector corresponding to ν_3 is given by $(0, \sigma, 1)^T/\sqrt{2}$ with the eigenvalue $M_{\mu\mu}^{(+)} + \sigma M_{\mu\tau}$, leading to $s_{23} = 0$ and $c_{23} = \sigma s_{23} = 1/\sqrt{2}$ in U_ν of Eq. (4), where the sign of σ defines the sign of s_{23}. Therefore, Dirac CP violation is absent in M_{sym} as was announced above. In other words, Dirac CP violation is sensitive to how the μ-τ symmetry is broken.

If the μ-τ symmetry is broken by pure imaginary flavor neutrino masses, the corresponding texture can be shown to exhibit maximal Dirac CP violation as well as maximal atmospheric neutrino mixing. This texture has the following form:

$$\begin{pmatrix} a & b_0 & -\sigma b_0 \\ b_0 & d_0 & e \\ -\sigma b_0 & e & d_0 \end{pmatrix} + i \begin{pmatrix} 0 & b'_0 & \sigma b'_0 \\ b'_0 & d'_0 & 0 \\ \sigma b'_0 & 0 & -d'_0 \end{pmatrix}.$$ (7)

where all mass parameters, a, b_0, d_0, b'_0, d'_0 and e, are taken to be real. There is a more general form that depends on the phase of a complex number z with $|z| = 1$, which is obtained by replacing $\text{Re}(\omega) \to (\omega + z\omega^*)/2$ and $\text{Im}(\omega) \to (\omega - z\omega^*)/2$, where ω represents a flavor neutrino mass in Eq. (7). There are useful relations to estimate θ_{23} and δ:

$$\tan \theta_{23} = \frac{\text{Im}(M_{e\mu})}{\text{Im}(M_{e\tau})};$$ (8)

and

$$s_{23}M_{e\mu} + c_{23}M_{e\tau} = |s_{23}M_{e\mu} + c_{23}M_{e\tau}|e^{-i\delta};$$ (9)

where M is a Hermitian matrix defined by $M = M_{ij}^\dagger M_{ij}$ and M_{ij} stands for the ij element of M. Applying these constraints to Eq. (4) yields $\tan \theta_{23} = \sigma$ and $\delta = \pm \pi/2$.

To depart from the texture giving maximal Dirac CP violation and maximal atmospheric neutrino mixing is likely to give a deviation of the PMNS unitary matrix from its standard parameterization of U_{PMNS}^{DG}. For a given M_ν, the PMNS unitary matrix is completely determined by three eigenvectors associated with M_ν, more precisely, with the Hermitian matrix of M. Namely, the form of the PMNS unitary matrix cannot be a priori assumed, but determined from M_ν. Therefore, the phases present in three eigenvectors are not necessarily coincident with those in three columns of U_{PMNS}^{DG}. In general, there are three phases including δ associated with three rotations (except for K). Of course, two of them can be rotated away by appropriate redefinition of phases of the neutrinos, which includes a redefinition of flavor neutrinos. However, this redefinition yields a modification of M_ν so that the modified form of

1 It is understood that the charged leptons and neutrinos are rotated, if necessary, to give diagonal charged-current interactions and to define the flavor neutrinos of ν_e, ν_μ and ν_τ.

M_ν can be diagonalized by U^{PDG}_{PMNS}. It is this modified M_ν whose three eigenvectors match with U^{PDG}_{PMNS}. To obtain the modified M_ν, we have to know the amount of required rotations, which add phases to relevant elements of M_ν and are precisely determined once the original M_ν is given. Therefore, if M_ν can be diagonalized by U^{PDG}_{PMNS} without any rotations, its phase structure is not arbitrary but restricted. In other words, if we impose additional constraints on the flavor neutrino masses, a given M_ν can be diagonalized by U^{PDG}_{PMNS} without any rotations.\(^2\) The appearance of such extra constraints implies that the three eigenvectors associated with M_ν contain other phases than δ. It turns out that the required constraints are dictated by a set of equations for M_ν which are shown in the Appendix A.

In this article, we examine a complex neutrino mass texture which can be diagonalized by U^{PDG}_{PMNS} without requiring any additional constraints among the flavor neutrino masses and present four typical mass textures to be consistent with the observation of neutrino oscillations. In Sec.II, the outline of our derivation of texture is described. Our texture is found to provide the maximal atmospheric neutrino mixing and shows the Dirac CP violation for any value of δ. Section III deals with four textures that yield the normal and inverted mass hierarchies to realize $\Delta m^2_{atm} \gg \Delta m^2_{\odot}$. We present a new texture for quasi degenerate neutrinos with their masses of $\mathcal{O}(1)$, which can exhibit either $|m_1| < |m_2| < |m_3|$ or $|m_3| < |m_1| < |m_2|$ depending on size of a flavor neutrino mass proportional to $e^{-2i\delta}$. The final section is devoted to summary and discussions.

II. TEXTURE WITH CP VIOLATING DIRAC PHASE

To find the appropriate texture describing CP violations for any value of δ, we are basing our discussion on the two properties of complex flavor neutrino masses discussed in the previous section, which indicate the usefulness of the separation of M_ν into the μ-τ symmetric and symmetry breaking part and the unique form of Eq. (7). This form serves as a reference point, where the μ-τ symmetry breaking part is given by pure imaginary flavor neutrino masses. It is, thus, reasonable to presume that, for $\delta = \pm \pi/2$, the real part of M_ν, which is μ-τ symmetric, consists of 1 and $e^{-2i\delta}$ and the pure imaginary part, which serves as a μ-τ symmetry breaking term, consists of $e^{-i\delta}$. These two properties suggest us to employ the following texture:

$$M_\nu = \begin{pmatrix} a_0 & b_0 & -\sigma b_0 \\ b_0 & d_0 + d_1 e^{-2i\delta} & \sigma (-d_0 + d_1 e^{-2i\delta}) \\ -\sigma b_0 & \sigma (-d_0 + d_1 e^{-2i\delta}) & d_0 + d_1 e^{-2i\delta} \end{pmatrix} + e^{-i\delta} \begin{pmatrix} 0 & b'_0 & \sigma b'_0 \\ b'_0 & d'_0 & 0 \\ \sigma b'_0 & 0 & -d'_0 \end{pmatrix},$$

(10)

where d_1 is an additional real mass parameter. The suppression of b'_0 and d'_0 compared to the scale of M_ν is presumably of $\mathcal{O}(\sqrt{\Delta m^2_{atm}})$ and induces a tiny nonvanishing $\sin \theta_{23}$.

In Eq. (10), the phase in the μ-τ symmetry breaking sector is common to b'_0 and d'_0. The appearance of the common phase may be traced back to a single μ-τ symmetry breaking source in underlying dynamics such as the seesaw mechanism.\(^2\) The underlying dynamics must not supply phases for the charged leptons, whose interactions certainly induce μ-τ symmetry breaking terms for neutrinos. This scenario is easily realized if this single phase is given by μ-τ symmetry breaking contributions to right-handed neutrino masses.\(^1\) If this is the case, the $e^{-i\delta}$-term appears as a common factor to specify the μ-τ symmetry breaking. Another reason to assume one phase is that if the phase varies with b'_0 and d'_0, U^{PDG}_{PMNS} cannot be derived from M_ν of Eq. (10) unless we demand extra constraints on the flavor neutrino masses. The same phase δ of the terms proportional to $e^{-2i\delta}$ also controls the phase in the μ-τ symmetric part, and these terms are also required because of this reason. However, the physical reason for the appearance of this phase is unclear at the moment and we will show in the next section textures for the inverted mass hierarchy that do not include these terms. In the Appendix A we give another derivation of Eq. (10) by using a solution to equations that allow us to introduce no artificial constraints.

It is remarkable that Eq. (10) is identically satisfied so that it consistently describes Dirac CP violation with δ embedded in this texture. The texture Eq. (10) predicts the maximal atmospheric neutrino mixing because $\tan \theta_{23} = \sigma$ is obtained from Eq. (8). The convenient way to see this is to rewrite Eq. (8) referring to the μ-τ symmetry, and it can be readily found that

$$\tan \theta_{23} = \sigma \frac{\text{Im}(M_{\mu\mu}^{(-)}) + \text{Im}(M_{\mu\mu}^{(+))})}{\text{Im}(M_{\mu\mu}^{(-)}) - \text{Im}(M_{\mu\mu}^{(+))})},$$

(11)

\(^2\) It is always true that, for a given unitary matrix U, any hermitian matrix H can be diagonalized by U if we impose artificial relations on some of elements of H. The correct solution is well known: Find eigenvectors for H then construct U. Instead, if the most general form of U is used, we can also reach the correct solution, which tells us that some of the phases vanish.
where
\[
\begin{align*}
M^{(+)}_{\mu e} &= M^{(+)}_{e\mu} + M^{(+)}_{\mu\mu} (M^{(+)}_{\mu\mu} - \sigma M^{+}_{\mu\tau}) + M^{(-)}_{\mu\mu} M^{(-)}_{\mu\mu}, \\
M^{(-)}_{\mu e} &= M^{(-)}_{e\mu} + M^{(-)}_{\mu\mu} (M^{(-)}_{\mu\mu} + \sigma M^{+}_{\mu\tau}) + M^{(+)}_{\mu\mu} M^{(-)}_{\mu\mu}.
\end{align*}
\] (12)

Our texture Eq. (11) has real flavor neutrino masses of M_{ee}, $M^{(+)}_{\mu\mu}$ and $M^{(+)}_{\mu\mu} - \sigma M^{+}_{\mu\tau}$ while $M^{(-)}_{\mu\mu}$ have the common phase. We then have $\text{Im} (M^{(+)}_{\mu\tau}) = 0$, which gives $\tan \theta_{23} = \sigma$ and the maximal atmospheric neutrino mixing shows up.

From Eq. (A.10) in Appendix A the mixing angles $\theta_{12,13}$ are expressed as
\[
\begin{align*}
\tan 2\theta_{12} &= 2\sqrt{2} \frac{1}{c_{13} \lambda_2 - \lambda_1} M^{(+)}_{\mu\mu}, \quad \tan 2\theta_{13} = 2\sqrt{2} \frac{\sigma M^{(-)}_{\mu\mu} e^{\pm i\delta}}{\lambda_3 e^{\pm i\delta} - a_0},
\end{align*}
\] (13)

which reproduce Eq. (A.10). The phase completely disappears to yield real values of $\tan 2\theta_{12}$ and $\tan 2\theta_{13}$. This is because our texture gives the following mass parameters:
\[
\begin{align*}
M^{(+)}_{\mu\mu} &= b_0, \quad M^{(-)}_{\mu\mu} = \sigma e^{-i\delta} b_0', \\
\lambda_1 &= \frac{c_{13}^2 a_0 - 2 s_{13}^2 d_1}{c_{13}^2 - s_{13}^2}, \quad \lambda_2 = 2d_0, \quad \lambda_3 = 2e^{-2i\delta} d_1.
\end{align*}
\] (14)

We then find that $\lambda_1, \lambda_3 e^{2i\delta}, M^{(+)}_{\mu\mu}$, and $M^{(-)}_{\mu\mu} e^{i\delta}$ become real so that $\tan 2\theta_{12}$ and $\tan 2\theta_{13}$ become real. If the phase differs in b_0' and d_0', λ_1 ceases to be real and the phase of $M^{(-)}_{\mu\mu}$ is not δ. The imaginary parts of $\tan 2\theta_{12}$ and $\tan 2\theta_{13}$ should vanish, and this gives extra constraints among the flavor neutrino masses.3

We can examine Majorana phases predicted in Eq. (A.4). Since $\lambda_{1,2}$ and $X(=\sqrt{2} M^{(+)}_{\mu\mu}/c_{13})$ turn out to be real, the Majorana phases of $\beta_{1,2}$ vanish in Eq. (A.10). On the other hand, we find that
\[
m_3 e^{-2i\beta_3} = \frac{2 c_{13}^2 d_1 - s_{13}^2 a_0}{c_{13}^2 - s_{13}^2} e^{-2i\delta},
\] (15)

which yields $\beta_3 = \delta$. The Majorana phase associated with the third massive neutrino is identical to the CP violating Dirac phase.

III. NEUTRINO MASS HIERARCHIES

In this section, we discuss how the observed properties of neutrino oscillations such as $\sin^2 \theta_{13} \ll 1$ and $\Delta m^2_{\text{atm}} \gg \Delta m^2_{\odot}$ are explained in our proposed texture. For $\sin^2 \theta_{13} \ll 1$, we know that any effect from the μ-τ symmetry breaking to be denoted by ε should be tiny and characterizes b_0' and d_0'. For $\Delta m^2_{\text{atm}} \gg \Delta m^2_{\odot}$, we present explicit forms of textures in the normal and inverted mass hierarchies because the degenerate neutrino mass pattern cannot provide $\Delta m^2_{\text{atm}} \gg \Delta m^2_{\odot}$. Three Majorana phases are fixed to be $\beta_{1,2} = 0$ and $\beta_3 = \delta$. Neutrino masses are then calculated from
\[
\begin{align*}
m_1 &\approx a_0 + 2d_0 + (a_0 - 2d_1) t^2_{13} - \frac{\sqrt{2} b_0}{\sin 2\theta_{12}} \left(1 + \frac{1}{2} t^2_{13} \right), \\
m_2 &\approx a_0 + 2d_0 + (a_0 - 2d_1) t^2_{13} + \frac{\sqrt{2} b_0}{\sin 2\theta_{12}} \left(1 + \frac{1}{2} t^2_{13} \right), \\
m_3 &\approx 2d_1 - (a_0 - 2d_1) t^2_{13},
\end{align*}
\] (16)

where the terms of $\mathcal{O}(\sin^2 \theta_{13})$ are properly taken into account. The effect of these terms is not significant in the normal mass hierarchy but comparable to the effect from the other terms in the inverted mass hierarchy. Furthermore, it will be shown that their effect can provide $\Delta m^2_{\text{atm}}/\Delta m^2_{\odot} \sim \sin^2 \theta_{13}$ in a new type of texture for quasi degenerate neutrinos with masses of $\mathcal{O}(\sqrt{\Delta m^2_{\text{atm}}})$. We denote parameters used in M_{ee} to be p, in $M_{e\mu}$ to be q, in $M_{\mu\mu}$ to be r.3

3 These constraints turn out to be fictitious if additional phases are introduced, and these phases are the correct ingredients for the PMNS unitary matrix in this case.23.
A. Normal Mass Hierarchy

Our texture can be parameterized by $b_0 = \eta_1 d_1$, $b'_0 = \varepsilon d_1$, $a_0 = \rho d_1$, $d_0 = r \eta d_1$ and $d'_0 = x \varepsilon d_1$, which results in

$$M_\nu = d_1 \begin{pmatrix} p \eta & \eta + \varepsilon e^{-i\delta} & -\sigma (\eta - \varepsilon e^{-i\delta}) \\ \eta + \varepsilon e^{-i\delta} & r \eta + x \varepsilon e^{-i\delta} + e^{-2i\delta} & -\sigma (r \eta - e^{-2i\delta}) \\ -\sigma (\eta - \varepsilon e^{-i\delta}) & -\sigma (r \eta - e^{-2i\delta}) & r \eta - x \varepsilon e^{-i\delta} + e^{-2i\delta} \end{pmatrix},$$

(17)

where η satisfies $|\eta| \ll 1$ and x is determined so as to satisfy Eqs. (A16) and (A17) for θ_{13}. This texture has often been discussed in the literatures \[24\]. The mixing angles and masses are then calculated to be:

$$\tan 2\theta_{12} \approx \frac{2\sqrt{2}\eta}{(2r - p) \eta + 2t^2_{13}}, \quad \tan 2\theta_{13} \approx \sqrt{2}\varepsilon, \quad m_1 \approx \left(\frac{p + 2r}{2}\eta - 2t^2_{13} - \sqrt{2}\eta \sin 2\theta_{12}\right) d_1, \quad m_2 \approx \left(\frac{p + 2r}{2}\eta - 2t^2_{13} + \sqrt{2}\eta \sin 2\theta_{12}\right) d_1,$$

$$m_3 \approx 2d_1,$$

$$\Delta m^2_\odot \approx \frac{2\sqrt{2}}{\sin 2\theta_{12}} \left(\frac{p + 2r}{2}\eta - 2t^2_{13}\right) \eta d^2_1, \quad \Delta m^2_{\text{atm}} \approx 4d^2_1.$$

(19)

Since we numerically know that $t^2_{13} \lesssim \Delta m^2_\odot / \Delta m^2_{\text{atm}}$, t^2_{13} gives a minor contribution to Δm^2_\odot. Then, we obtain

$$\tan 2\theta_{13} = \mathcal{O}(\varepsilon), \quad \eta = \mathcal{O}\left(\sqrt{\Delta m^2_\odot / \Delta m^2_{\text{atm}}}\right).$$

(21)

Form these results, we find that either p or r can be set to zero. In this texture, it is well known that $|M_{ij}| \gg |M_{ei}| (i, j = \mu, \tau)$ can be ascribed to the tiny violation of the electron number conservation in leptonic interactions \[25\]. In this case, $p \sim \eta$ is anticipated and can be neglected.

There is a new texture with $m_1 \approx -m_2$, which yields $\Delta m^2_\odot \sim \sin^2 \theta_{13} \Delta m^2_{\text{atm}}$. The texture is characterized by $a_0 = -2d_0$, $b_0 = q d_0$, $b'_0 = \varepsilon d_0$, $d_1 = -rd_0$ and $d'_0 = x \varepsilon d_0$, which gives

$$M_\nu = d_0 \begin{pmatrix} -2 & q + \varepsilon e^{-i\delta} & -\sigma (q - \varepsilon e^{-i\delta}) \\ q + \varepsilon e^{-i\delta} & 1 + x \varepsilon e^{-i\delta} & -\sigma (1 + re^{-2i\delta}) \\ -\sigma (q - \varepsilon e^{-i\delta}) & -\sigma (1 + re^{-2i\delta}) & 1 - x \varepsilon e^{-i\delta} - re^{-2i\delta} \end{pmatrix},$$

(22)

The mixing angles and masses are then calculated to be:

$$\tan 2\theta_{12} \approx \frac{q}{\sqrt{2}}, \quad \tan 2\theta_{13} \approx -\frac{\sqrt{2}}{r - 1}\varepsilon,$$

$$m_1 \approx \left(\frac{2}{\cos 2\theta_{12}} - (r - 1) t^2_{13}\right) d_0, \quad m_2 \approx \left(\frac{2}{\cos 2\theta_{12}} + (r - 1) t^2_{13}\right) d_0,$$

$$m_3 \approx -2rd_0,$$

$$\Delta m^2_\odot \approx \frac{8(r - 1)}{\cos 2\theta_{12}} t^2_{13} d^2_0, \quad \Delta m^2_{\text{atm}} \approx 4 \varepsilon^2 \frac{1}{\cos^2 2\theta_{12}} d^2_0,$$

(24)

(25)

where $r > 1$ for $\Delta m^2_\odot > 0$ and q appearing in $m_{1,2}$ is replaced by $\tan 2\theta_{12}$ in Eq. (23). We obtain that

$$\tan 2\theta_{13} = \mathcal{O}(\varepsilon) = \mathcal{O}\left(\sqrt{\Delta m^2_\odot / \Delta m^2_{\text{atm}}}\right),$$

(26)

which indicates that

$$\Delta m^2_\odot \sim \sin^2 \theta_{13} \Delta m^2_{\text{atm}}.$$

(27)

\[4\] This case corresponds to quasi degenerate mass pattern with $m^2_1, m^2_2, m^2_3 \gg \Delta m^2_\odot$ but not to the one with $m^2_1, m^2_2, m^2_3 \gg \Delta m^2_{\text{atm}}$. We list this pattern as the normal mass hierarchy.
This prediction lies in the right range of $\Delta m^2_{\odot} / \sin^2 \theta_{13} = O(10^{-2})$ since $\sin^2 \theta_{13} \leq 0.03$.

Illustrated in FIG.1 for $1.5 \leq r \leq 2$ and in FIG.2 for $2 \leq r \leq 2.5$ are our predictions of $\sin^2 \theta_{13}$ and masses including the effective neutrino mass $m_{\beta\beta}$ used in the detection of the absolute neutrino mass, which is equal to $|M_{ee}|$. The parameter η is fixed to be $\eta = 3$ giving $\sin^2 \theta_{12} = 9/11$. Although this texture seems to describe the normal mass hierarchy, these two ranges of r give different mass orderings: $|m_3| < |m_1| < |m_2|$ for $1.5 \leq r \leq 2$ and $|m_1| < |m_2| < |m_3|$ for $2.5 \leq r \leq 3$. The turning point is $r \approx 1/\cos 2\theta_{12}$, which is about 2.35. These figures indicate the following features of the texture:

- The prediction of $\sin^2 \theta_{13}$ is obtained for the experimentally allowed values of $\Delta m^2_{\odot} / \Delta m^2_{\text{atm}}$ and shows that $0.010 \leq \sin^2 \theta_{13} \leq 0.032$ for $|m_3| < |m_1| < |m_2|$ and $0.005 \leq \sin^2 \theta_{13} \leq 0.015$ for $|m_3| > |m_1| < |m_2|$.
- The degeneracy of $|m_{1,2,3}|$ shows up. Although the two types of the mass ordering satisfy either $|m_1| < |m_2| < |m_3|$ or $|m_3| < |m_1| < |m_2|$, the mass ordering does not correspond to either the normal or inverted mass hierarchies in a strict sense because quasi degenerate neutrinos have masses of $O(\sqrt{\Delta m^2_{\text{atm}}})$.
- The effective neutrino mass $m_{\beta\beta}$ is also estimated to be: $m_{\beta\beta} = O(\sqrt{\Delta m^2_{\text{atm}}})$ even for the normal mass hierarchy. It should be noted that most of existing textures predict $m_{\beta\beta} \ll O(\sqrt{\Delta m^2_{\text{atm}}})$ for the normal mass hierarchy because M_{ee} is suppressed as in Eq. (17). In this texture, we predict that $m_{\beta\beta} \sim \text{a few} \times 10^{-2}$ (eV),

$$m_{\beta\beta} \sim \text{a few} \times 10^{-2} \text{ (eV)},$$

for $\sqrt{\Delta m^2_{\text{atm}}} \sim 5 \times 10^{-2}$ eV, even for the case $|m_1| < |m_2| < |m_3|$.

These features are specific to this texture, including both $|m_1| < |m_2| < |m_3|$ and $|m_3| < |m_1| < |m_2|$ depending on the size of r. It should be stressed that $r e^{-2 i \delta}$ is a new term for CP-violation.

B. Inverted Mass Hierarchy

There are two different textures depending on the relative sign of m_1 and m_2: $m_1 \sim m_2$ or $m_1 \sim -m_2$. Our texture with $m_1 \sim m_2$ can be parameterized by $a_0 = 2d_0(1 - p\eta)$, $b_0 = \eta d_0$, $b_0' = \varepsilon d_0$, $d_1 = 0$ and $d_0' = x\varepsilon d_0$, which gives

$$M_\nu = d_0 \begin{pmatrix} 2(1-p\eta) & \eta + e^{-i\delta} & -\sigma (\eta - e^{-i\delta}) \\ \eta + e^{-i\delta} & 1 + x\varepsilon e^{-i\delta} & -\sigma \\ -\sigma (\eta - e^{-i\delta}) & -\sigma & 1 - x\varepsilon e^{-i\delta} \end{pmatrix}.$$

The mixing angles and masses are then calculated to be:

$$\tan 2\theta_{12} \approx \frac{\sqrt{2}/\eta}{p\eta - t^2_{13}}, \quad \tan 2\theta_{13} \approx -\sqrt{2}/\sigma \varepsilon,$$

$$m_1 \approx \left(2 - \frac{\sqrt{2} \cos 2\theta_{12} + 1}{\sin 2\theta_{12}}\eta\right)d_0, \quad m_2 \approx \left(2 - \frac{\sqrt{2} \cos 2\theta_{12} - 1}{\sin 2\theta_{12}}\eta\right)d_0,$$

$$m_3 \approx -2t^2_{13}d_0,$$

$$\Delta m^2_{\odot} \approx \frac{8\sqrt{2}}{\sin 2\theta_{12}} p\eta d_0^2, \quad \Delta m^2_{\text{atm}} \approx 4d_0^2,$$

where the term $p\eta - t^2_{13}$ appearing in $m_{1,2}$ has been replaced by $\tan 2\theta_{12}$. Then, we obtain

$$\tan 2\theta_{13} = O(\varepsilon), \quad \eta = O\left(\Delta m^2_{\odot} / \Delta m^2_{\text{atm}}\right).$$

This estimation of η shows that the t^2_{13}-term in $\tan 2\theta_{12}$ may be comparable to η and cannot be neglected.

Another texture, which shows $m_1 \sim -m_2$, has $a_0 = -2d_0(1 - \eta)$. $b_0 = qd_0$, $b_0' = \varepsilon d_0$, $d_1 = 0$ and $d_0' = x\varepsilon d_0$ and is given by

$$M_\nu = d_0 \begin{pmatrix} -2(1-\eta) & q + e^{-i\delta} & -\sigma (q - e^{-i\delta}) \\ q + e^{-i\delta} & 1 + x\varepsilon e^{-i\delta} & -\sigma \\ -\sigma (q - e^{-i\delta}) & -\sigma & 1 - x\varepsilon e^{-i\delta} \end{pmatrix}.$$

$$\tan 2\theta_{12} \approx \frac{\sqrt{2}/\eta}{p\eta - t^2_{13}}, \quad \tan 2\theta_{13} \approx -\sqrt{2}/\sigma \varepsilon,$$
The mixing angles and masses are then calculated to be:

\[\tan 2\theta_{12} \approx \frac{q}{\sqrt{2}}, \quad \tan 2\theta_{13} \approx \sqrt{2} \tilde{\varepsilon}, \]

\[m_1 \approx -\left(\frac{2}{\cos 2\theta_{12}} - \eta + t_{13}^2 \right) d_0, \quad m_2 \approx \left(\frac{2}{\cos 2\theta_{12}} + \eta - t_{13}^2 \right) d_0, \]

\[m_3 \approx 2t_{13}^2 d_0, \]

\[\Delta m_{\odot}^2 \approx \frac{8(\eta - t_{13}^2)}{\cos 2\theta_{12}} d_0^2, \quad \Delta m_{\text{atm}}^2 \approx \frac{4}{\cos^2 2\theta_{12}} d_0^2, \]

where \(q \) in \(m_{1,2} \) is replaced by \(\tan 2\theta_{12} \) because of Eq. (35). As in the previous cases, we obtain

\[\tan 2\theta_{13} = O(\varepsilon). \]

Because \(\tan^2 \theta_{13} / \Delta m^2_{\text{atm}} \)، we cannot neglect the terms proportional to \(\tan^2 \theta_{13} \) in Eq. (37) for \(\Delta m^2_{\odot} \) as long as \(\tan^2 \theta_{13} \approx 10^{-2} \).

We, therefore, expect that

\[\eta = O(\Delta m^2_{\odot} / \Delta m^2_{\text{atm}}), \]

with \(\eta > \tan^2 \theta_{13} \) to satisfy \(\Delta m^2_{\odot} > 0 \).

In these four textures, the feature of \(\tan 2\theta_{13} = O(\varepsilon) \) appears as a direct consequence of Eq. (A3), giving \(\tan 2\theta_{13} \propto M_{e\mu}^{(+)} \) because of \(\Delta_{23} = \sigma_{23} \approx 1/\sqrt{2} \). The similar feature also appears in the predictions of \(\tan 2\theta_{12} \propto M_{e\mu}^{(+)} \) from the textures Eqs. (17) and (28), where another small parameter \(\eta \) apparently gives \(\tan 2\theta_{12} = O(\eta) \). However, the contribution from \(O(\eta) \) in the numerator is cancelled by the same factor in the denominator as in Eq. (18), to give \(\tan 2\theta_{12} \) of order one. If we demand that \(\eta \approx \varepsilon \), we can find \(\Delta m^2_{\odot} \approx t_{13}^2 \Delta m^2_{\text{atm}} \) in the normal mass hierarchy of Eq. (17) or \(\Delta m^2_{\odot} \sim t_{13}^2 \Delta m^2_{\text{atm}} \) for the inverted mass hierarchy of Eqs. (28) and (33) [28]. However, there is no a priori theoretical reason to suppose \(\eta \approx \varepsilon \), although the present experimental data suggest it. It should be emphasized that the generic prediction of \(\Delta m^2_{\odot} \approx \sin^2 \theta_{13} \Delta m^2_{\text{atm}} \), produced by the terms of \(O(\sin^2 \theta_{13}) \) is specific to the new type of the texture Eq. (22).

IV. SUMMARY AND DISCUSSIONS

We have successively demonstrated that the proposed texture of Eq. (10) describes the maximal atmospheric neutrino mixing with arbitrary CP violating Dirac phase \(\delta \), as well as the observed properties of neutrino oscillations such as \(\Delta m^2_{\text{atm}} \gg \Delta m^2_{\odot} \). The general and simple formula to estimate the deviation from the maximal atmospheric neutrino mixing has been given in Eq. (11), which utilizes the classification of \(M_{\nu}^{(\pm)} \) due to the \(\mu\tau \) symmetry. The source giving the deviation is the imaginary part of \(M_{e\mu} \equiv M_{e\mu}^{(+)} + M_{e\mu}^{(-)} \). The present texture gives \(\text{Im}(M_{e\mu}^{(\pm)}) = 0 \) and so \(\tan \theta_{23} = \sigma \) is derived. In addition to the CP violating Dirac phase, the Majorana phase associated with the third neutrino becomes \(\delta \), and other Majorana phases vanish. Our texture, thus, yields Majorana CP violation. To reach this texture, we have relied upon the usefulness of the \(\mu\tau \) symmetry, which allows us to divide a given texture into the symmetric part and the symmetric breaking part. Since the effect of Dirac CP violation arises from the symmetric breaking part, we characterize this part to be proportional to \(\varepsilon e^{-i\delta} \). One may wonder what happens if \(\varepsilon = 0 \) in Eq. (10), which still exhibits the phase \(\delta \). Since the \(\mu\tau \) symmetric texture gives \(\sin \theta_{13} = 0 \), there is no Dirac CP violation phase \(\delta \) in \(U_{PMNS}^{DG} \). In terms of the flavor neutrino masses, we see that \(\text{Im}(M_{e\mu}) = \text{Im}(M_{e\tau}) = 0 \), which jeopardizes the validity of Eq. (9) to indicate no Dirac CP violation, and Eq. (8) is replaced by \(\tan \theta_{23} = -\text{Re}(M_{e\tau}) / \text{Re}(M_{e\mu}) \). The phase \(\delta \) embedded in our \(\mu\tau \) symmetric part of the texture is transferred to the Majorana phase, which is identical to \(\delta \) as can be seen from Eq. (15).

As stated in Sec. II it is our main assumption that the single phase \(\delta \) controls the \(\mu\tau \) symmetry breaking part. The theoretical reason is to confine ourselves within the textures that precisely have \(U_{PMNS}^{DG} \) as the PMNS unitary matrix without entailing further rotations due to the redefinition of flavor neutrinos. However, the inclusion of the additional phase \(\alpha \) defined in Eq. (A11) as a free parameter \((\alpha \neq -\delta) \) practically does not alter most of our main conclusions since the \(\mu\tau \) symmetry breaking causes very tiny effects. One direct consequence is that the atmospheric neutrino mixing ceases to be maximal as expected. In our case, it is determined by Eq. (A2), which provides \(\cos 2\theta_{23} \approx t_{13} \sim \varepsilon \) because of the mismatch of the phase of \(X \) with \(\delta \), as can be seen from Eq. (A3).\(^5\)

\(^5\) In fact, we can find that \(\cos 2\theta_{23} \propto |d_0(c_\delta - c_\alpha) + d_1(c_\delta - c_{2\delta - \alpha})|d_0^* \).
It is recognized that

- the μ-τ symmetric part gives $\tan 2\theta_{12} \propto M_{1\mu}^{(+)}$, and
- the μ-τ symmetry breaking part gives $\tan 2\theta_{13} \propto M_{1\mu}^{(-)}$.

To obtain this contrasted result shows the usefulness of the classification due to the μ-τ symmetry. Furthermore, we note that the relation $M_{1\mu}^{(-)} = -\sqrt{2}m_{\tau}e^{-i\delta}M_{1\mu}^{(+)}$ as in Eq. (A3) gives a definite correlation between the μ-τ symmetric part $M_{1\mu}^{(+)}$ and its symmetry breaking part $M_{1\mu}^{(-)}$. This relation can be viewed as a main constraint to have the maximal atmospheric neutrino mixing.

Four types of realization of $\Delta m_{atm}^2 \gg \Delta m_{sol}^2$ are explicitly given by specific textures. Among others, we have found a new type of realization, which uses terms of δ-violation is described by an arbitrary phase δ. As discussed in Sec.II, it is likely that underlying neutrino mass textures, a specific type of the μ-τ symmetry provides a single μ-τ symmetry breaking source with the phase δ, which can induce the terms proportional to $e^{-2i\delta}$.

$$\Delta m_{\odot}^2 \sim \sin^2 \theta_{13} \Delta m_{atm}^2,$$

which shows the right order of the observed hierarchy because $\sin^2 \theta_{13} \lesssim 0.03$. Namely, $\sin^2 \theta_{13} = O(10^{-2})$ is predicted in this case. It is the only case, where $\Delta m_{\odot}^2/\Delta m_{atm}^2$ is induced by the effect from the terms of Δm_{\odot}^2. The explicit form for $\varepsilon \to 0$ is given by

$$M_\nu = d_0 \begin{pmatrix} -2/q & q & -\sigma q \\ q & 1 - re^{-2i\delta} & -\sigma (1 + re^{-2i\delta}) \\ -\sigma q & -\sigma (1 + re^{-2i\delta}) & 1 - re^{-2i\delta} \end{pmatrix}.$$

This texture is found to have the following features:

- Neutrinos are quasi degenerate ones with masses of $\mathcal{O}(\sqrt{\Delta m_{atm}^2})$.
- Depending on the size of r, the mass ordering becomes either $|m_1| < |m_2| < |m_3|$ or $|m_3| < |m_1| < |m_2|$.
- The effective neutrino mass $m_{\beta\beta}$ is a few $\times 10^{-2}$ eV.

It should be noted that the textures with $\delta = 0$ also give the right answers to describe the observed neutrino oscillations because the phases do not contribute in the estimation of the masses and the mixing angles. However, the atmospheric neutrino mixing is not maximal because $\sin^2 \theta_{13} = \mathcal{O}(10^{-2})$ is not satisfied. This is due to the lack of the constraint from the imaginary part of Eq. (A2). The mixing angle θ_{23} is determined by Eq. (A2) with $\delta = 0$ corresponding to the real part of Eq. (A2), which implies that $M_{\mu\mu} - M_{\tau\tau} \propto s_{13} \cos 2\theta_{23} \propto s_{13}$.

The complex flavor neutrino mass matrix with its elements satisfying Eq. (A7) is the unique form of the matrix describing the maximal atmospheric neutrino mixing that can be diagonalized by U_{PMNS}^{PDG} without requiring other constraints among the flavor neutrino masses. A typical example is the texture discussed here, where the Dirac CP violation is described by an arbitrary phase δ embedded in the mass matrix. To find phenomenologically viable neutrino mass textures, a specific type of the μ-τ symmetry breaking Eq. (A9) is chosen and four types of textures are shown to consistently describe the neutrino mass hierarchy. As discussed in Sec.II it is likely that underlying dynamics provides a single μ-τ symmetry breaking source with the phase δ, which can induce the terms proportional to $e^{-2i\delta}$. In this case, Eqs. (24) and (44) for the inverted mass hierarchy match this scenario because the additional terms proportional to $e^{-2i\delta}$ are absent. One can construct other types of mass matrices than Eq. (10) if one chooses other types of the μ-τ symmetry breaking because the CP violation is controlled by the part of the textures which is not μ-τ symmetric. Other useful patterns of the μ-τ symmetry breaking part will be discussed elsewhere.

ACKNOWLEDGMENTS

The authors are grateful to T. Kitabayashi for enlightening discussions and to W. Bentz for reading the manuscript and for useful comments. The work of M.Y. is supported by the Grants-in-Aid for Scientific Research on Priority Areas (No 13135219) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

6 The generic use of the μ-τ symmetry reveals that the μ-τ symmetric texture does not necessarily lead to $\sin \theta_{13} = 0$ but to $\sin \theta_{12} = 0$ depending on the mass ordering of three eigenvalues for M_ν. Namely, the eigenvector corresponding to ν_2 proportional to $(u, 1, -\sigma)^T$ yields $\sin \theta_{13} \propto u$ and $\sin \theta_{12} = 0$, while $(0, \sigma, 1)^T$ gives $\sin \theta_{13} = 0$. The detailed discussions will be presented elsewhere.
A set of constraints to have U_{PMNS} as the PMNS unitary matrix, which determines masses and mixing angles, is given by

$$\sin 2\theta_{12} (\lambda_1 - \lambda_2) + 2 \cos 2\theta_{12} X = 0, $$

(A1)

$$(M_{\mu\tau} - M_{\mu\mu}) \sin 2\theta_{23} - 2 M_{\mu\tau} \cos 2\theta_{23} = 2 s_{13} e^{-i\delta} X, $$

(A2)

$$\sin 2\theta_{13} (M_{ee} e^{-i\delta} - \lambda_3 e^{i\delta}) + 2 \cos 2\theta_{13} Y = 0, $$

(A3)

and

$$m_1 e^{-2i\beta_1} = c_{12}^2 \lambda_1 + s_{12}^2 \lambda_2 - 2 c_{12} s_{12} X, \quad m_2 e^{-2i\beta_2} = c_{12}^2 \lambda_1 + s_{12}^2 \lambda_2 + 2 c_{12} s_{12} X, $$

$$m_3 e^{-2i\beta_3} = \frac{c_{13}^2 \lambda_3 - s_{13}^2 e^{-2i\delta} M_{ee}}{c_{13}^2 - s_{13}^2}. $$

(A4)

The mass parameters of $\lambda_{1,2,3}, X$ and Y are given by

$$\lambda_1 = c_{23}^2 M_{ee} - 2 c_{13} s_{13} e^{i\delta} Y + s_{13}^2 e^{2i\delta} \lambda_3, \quad \lambda_2 = c_{23}^2 M_{\mu\mu} + s_{23}^2 M_{\tau\tau} - 2 s_{23} c_{23} M_{\mu\tau}, $$

$$\lambda_3 = s_{23}^2 M_{\mu\mu} + c_{23}^2 M_{\tau\tau} + 2 s_{23} c_{23} M_{\mu\tau}, $$

$$X = \frac{c_{23} M_{ee} - s_{23} M_{\tau\tau}}{c_{13}}, \quad Y = s_{23} M_{\mu\mu} + c_{23} M_{\tau\tau}. $$

(A5)

To have a diagonalized $U_{PMNS}^T M_i U_{PMNS}$ yields six constraints. Three constraints on the diagonal parts give Eq. (A4) and other three supply Eqs. (A1)-(A3) for three mixing angles. It should be noted that each mixing angle is determined twofold by the real part of the equation and its imaginary part, which should be compatible with each other unless the phase is automatically cancelled in both sides of Eqs. (A1)-(A3).

The solution to Eq. (A3) for $c_{23} = s_{23} = 1/\sqrt{2}$ is found to be:

$$M_{\mu\mu} = \frac{1}{c_{13} \tan 2\theta_{12} - \sigma t_{13} e^{-i\delta}} \sqrt{2} M_{e\mu}^{(+)} + \left(\frac{e^{-i\delta}}{\tan 2\theta_{13}} - \frac{t_{13} e^{i\delta}}{2}\right) \sqrt{2} \sigma M_{e\mu}^{(-)} + \frac{1}{2} M_{ee}, $$

$$M_{\tau\tau} = \frac{1}{c_{13} \tan 2\theta_{12} + \sigma t_{13} e^{-i\delta}} \sqrt{2} M_{e\mu}^{(+)} + \left(\frac{e^{-i\delta}}{\tan 2\theta_{13}} - \frac{t_{13} e^{i\delta}}{2}\right) \sqrt{2} \sigma M_{e\mu}^{(-)} + \frac{1}{2} M_{ee}, $$

$$\sigma M_{\mu\tau} = -\frac{1}{c_{13} \tan 2\theta_{12}} \sqrt{2} M_{e\mu}^{(+)} + \left(\frac{e^{-i\delta}}{\tan 2\theta_{13}} + \frac{t_{13} e^{i\delta}}{2}\right) \sqrt{2} \sigma M_{e\mu}^{(-)} + \frac{e^{-2i\delta} - 1}{2} M_{ee}, $$

(A7)

from which we have

$$M_{\mu\mu}^{(-)} = -\sqrt{2} \sigma t_{13} e^{-i\delta} M_{e\mu}^{(+)}.$$

(A8)

This is nothing but Eq. (A2). These flavor neutrino masses become identical to those found in Ref. 29 if CP violation becomes maximal. Since we know that the $\mu-\tau$ symmetric texture is consistent with the present observation of neutrino oscillations, let us assume that

$$M_{ee} = a_0, \quad M_{e\mu} = b_0 + e^{i\alpha} b_0', \quad M_{e\tau} = -\sigma \left(b_0 - e^{i\alpha} b_0'\right), $$

(A9)

where b_0' stands for the minor deviation from the $\mu-\tau$ symmetric texture and α is a phase parameter, which gives

$$M_{e\mu}^{(+)} = b_0, \quad M_{e\mu}^{(-)} = e^{i\alpha} b_0'. $$

(A10)

From Eq. (A8), we find that

$$M_{\mu\mu}^{(-)} = -\sqrt{2} \sigma t_{13} e^{-i\delta} b_0. $$

(A11)

If the $\mu-\tau$ symmetry breaking has a common source, it is expected that the phases in $M_{e\mu}^{(-)}$ and $M_{\mu\mu}^{(-)}$ are the same:

$$\alpha = -\delta. $$

(A12)
and that their strength takes the similar magnitude:
\[b'_0 \sim t_{13} b_0, \]
\hspace{1cm} (A13)

as well.

Collecting these results, we find that Eq.\text{(A7)} becomes
\[M_{\mu\mu} = \left(\frac{1}{c_{13} \tan 2\theta_{12}} - \sigma t_{13} e^{-i\delta} \right) \sqrt{2} b_0 + \left(\frac{e^{-2i\delta}}{\tan 2\theta_{13}} - \frac{t_{13}}{2} \right) \sqrt{2} \sigma b'_0 + \frac{e^{-2i\delta} + 1}{2} a_0, \]
\[M_{\tau\tau} = \left(\frac{1}{c_{13} \tan 2\theta_{12}} + \sigma t_{13} e^{-i\delta} \right) \sqrt{2} b_0 + \left(\frac{e^{-2i\delta}}{\tan 2\theta_{13}} - \frac{t_{13}}{2} \right) \sqrt{2} \sigma b'_0 + \frac{e^{-2i\delta} + 1}{2} a_0, \]
\[\sigma M_{\mu\tau} = -\frac{1}{c_{13} \tan 2\theta_{12}} \sqrt{2} b_0 + \left(\frac{e^{-2i\delta}}{\tan 2\theta_{13}} + \frac{t_{13}}{2} \right) \sqrt{2} \sigma b'_0 + \frac{e^{-2i\delta} - 1}{2} a_0. \]
\hspace{1cm} (A14)

From these expressions, we finally reach the following parameterization:
\[M_{\mu\mu} = d_0 + e^{-i\delta} d'_0 + e^{-2i\delta} d_1, \quad M_{\tau\tau} = d_0 - e^{-i\delta} d'_0 + e^{-2i\delta} d_1, \quad M_{\mu\tau} = \sigma \left(-d_0 + e^{-2i\delta} d_1 \right), \]
\hspace{1cm} (A15)

which is the mass texture of Eq.\text{(10)}. By comparing Eq.\text{(A15)} with Eq.\text{(A14)}, we also find that
\[\tan 2\theta_{12} \approx 2\sqrt{2} \frac{b_0}{2d_0 - a_0}, \quad \tan 2\theta_{13} = 2\sqrt{2} \sigma \frac{b'_0}{2d_1 - a_0}, \]
\hspace{1cm} (A16)

where the approximation of \(\sin^2 \theta_{13} \approx 0 \) is used to show \(\tan 2\theta_{12} \) and
\[t_{13} = -\sigma \frac{d'_0}{\sqrt{2} b_0}, \]
\hspace{1cm} (A17)

from Eq.\text{(A14)}. The mass parameter \(d'_0 \) is so determined that two expressions for \(\theta_{13} \) are consistent with each other. From Eqs.\text{(A16)} and \text{(A17)}, we find that the \(\mu-\tau \) symmetry breaking masses of \(b'_0 \) and \(d'_0 \) can be parameterized by a common parameter \(\varepsilon \) satisfying \(|\varepsilon| \ll 1 \) to be \(b'_0 \propto \varepsilon \) and \(d'_0 \propto \varepsilon \).

[1] See for example, H. Fritzsch and Z.Z. Xing, Phys. Rev. D 61 (2000) 073016; C. Giunti and M. Tanimoto, Phys. Rev. D 66 (2002) 113006; M. Frigerio and A.Y. Smirnov, Nucl. Phys. B 640 (2002) 233; Phys. Rev. D 67 (2003) 013007; S.F. King, in Proceedings of 10th International Workshop on Neutrino Telescopes edited by M. Baldo-Ceolin (U. of Padua Publica, Italy, 2003), “Neutrino Mass, Flavor and CP Violation”, [arXive:hep-ph/0306095]; Z.Z. Xing, Int. J. Mod. Phys. A 19 (2004) 1; O.L.G. Peres and A.Y. Smirnov, Nucl. Phys. B 680 (2004) 479; C.H. Albright, Phys. Lett. B 599 (2004) 285; J. Ferrandis and S. Pakvasa, Phys. Lett. B 603 (2004) 184; S. Zhou and Z.Z. Xing, Euro. Phys. J. C 38 (2005) 495; S.T. Petcov and W. Rodejohann, Phys. Rev. D 71 (2005) 073002; G.C. Branco and M.N. Rebelo, New. J. Phys. 7 (2005) 86; S.S. Masood, S. Nasri and J. Schechter, Phys. Rev. D 71 (2005) 093005; R. Derišek and S. Raby, Phys. Lett. B 622 (2005) 327; F. Plentinger and W. Rodejohann, Phys. Lett. B 625 (2005) 264; S. Pascoli, S.T. Petcov and T. Schwetz, “The Absolute Neutrino Mass Scale, Neutrino Mass Spectrum, Majorana CP-Violation and Neutrinoless Double-Beta Decay” (to be published in Nucl. Phys. B), [arXive:hep-ph/0505220]; I. Masina, “A Maximal Atmospheric Mixing from a Maximal CP Violating Phase”, [arXive:hep-ph/0508031]; S. Antusch and S.F. King, Phys. Lett. B 631 (2005) 42.
[2] P.F. Harrison and W.G. Scott, Phys. Lett. B 547 (2002) 219; Phys. Lett. B 594 (2004) 324; E. Ma, Mod. Phys. Lett. A 17 (2002) 2361; Phys. Rev. D 66 (2002) 117301; K.S. Babu, E. Ma and J.W.F. Valle, Phys. Lett. B 552 (2003) 207; W. Grimus and L. Lavoura, Phys. Lett. B 579 (2004) 113; JHEP 0508 (2005) 013.
[3] K. Matsuda and H. Nishiura, Phys. Rev. D 69 (2004) 117302; Phys. Rev. D 71 (2005) 073001; Phys. Rev. D 72 (2005) 033011.
[4] I. Aizawa and M. Yasuè, Phys. Lett. B 607 (2005) 267; I. Aizawa, T. Kitabayashi and M. Yasuè, Phys. Rev. D 72 (2005) 055014; Nucl. Phys. B 728 (2005) 220.
[5] T. Kitabayashi and M. Yasuè, Phys. Lett. B 621 (2005) 133; R.N. Mohapatra and W. Rodejohann, Phys. Rev. D 72 (2005) 053001; K. Matsuda and H. Nishiura, Talk presented at the 2005 JPS Fall Meeting, Osaka City University, Osaka, Japan (September 12-15, 2005).
[6] See for example, O. Mena, Mod. Phys. Lett. A 20 (2005) 1; S.T. Petcov, Nucl. Phys. Proc. Suppl. 143 (2005) 159.
[7] S.M. Bilenky, J. Hosek and S.T. Petcov, Phys. Lett. 94B (1980) 495; J. Schechter and J.W.F. Valle, Phys. Rev. D 22 (1980) 2227; M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Phys. Lett. 102B (1981) 323.
See for example, R.N. Mohapatra, et al.

See for example, T. Kitabayashi and M. Yasuè, Phys. Lett. B 524 (2002) 308; Int. J. Mod. Phys. A 17 (2002) 2519; Phys. Rev. D 67 (2003) 015006; I. Aizawa, M. Ishiguro, T. Kitabayashi and M. Yasuè, Phys. Rev. D 70 (2004) 015011; I. Aizawa, T. Kitabayashi and M. Yasuè, Phys. Rev. D 71 (2005) 075011.

W. Grimus and L. Lavoura, JHEP 0107 (2001) 045; Euro. Phys. J. C 28 (2003) 123; J. Phys. G 30 (2004) 1073; in Ref.\[2\]; W. Grimus, A.S. Joshipura, S. Kanelo, L. Lavoura and M. Tanimoto, JHEP 0407 (2004) 078; W. Grimus, A.S. Joshipura, S. Kanelo, L. Lavoura, H. Sawanaka and M. Tanimoto, Nucl. Phys. B 713 (2005) 151; M. Tanimoto, “Prediction of Δm_{32}^2 and θ_{23} from Discrete Symmetry”, to be published in *Proceedings of XXXXth Rencontres de Moriond: Electroweak Interactions and Unified Theories*, La Thuile, Italy (March 5-12, 2005), [arXiv:hep-ph/0505031].

R.N. Mohapatra, JHEP 0410 (2004) 027; R.N. Mohapatra and S. Nasri, Phys. Rev. D 71 (2005) 033001; R.N. Mohapatra, S. Nasri and Hai-Bo Yu, Phys. Lett. B 615 (2005) 231; Phys. Rev. D 72 (2005) 033007.

S. Elidelman et al. (Particle Data Group), Phys. Lett. B 592 (2004) 149.

B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1958) 247]; Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.

Y. Fukuda et al., [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1158; [Erratum-ibid 81 (1998) 4279]; Phys. Rev. Lett. 81 (1998) 1562; Phys. Rev. Lett. 82 (1999) 2430. See also, T. Kajita and Y. Totsuka, Rev. Mod. Phys. 73 (2001) 85.

Q.A. Ahmed et al., [SNO Collaboration], Phys. Rev. Lett. 87 (2001) 071301; Phys. Rev. Lett. 89 (2002) 011301; S. H. Ahn et al., [K2K Collaboration], Phys. Lett. B 511 (2001) 178; Phys. Rev. Lett. 90 (2003) 041801; K. Eguchi, et al., [KamLAND collaboration], Phys. Rev. Lett. 90 (2003) 021802; M. Apollonio, et al., [CHOOZ Collaboration], Euro. Phys. J. C 27 (2003) 331; K. Inoue, [KamLAND collaboration], New. J. Phys. 6 (2004) 147; Y. Suzuki, “Accelerator and Atmospheric Neutrinos”, Talk given at XXII International Symposium on Lepton-Photon Interactions at High Energy, Uppsala, Sweden (June 30-July 5, 2005); A. Poon, “Solar and Reactor Neutrinos”, Talk given at XXII International Symposium on Lepton-Photon Interactions at High Energy, Uppsala, Sweden (June 30-July 5, 2005).

G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, “Global Analysis of Three-Flavor Neutrino Masses and Mixings” (to be published in Prog. in Part. and Nucl. Phys.), [arXiv:hep-ph/0506083]. See also, R.N. Mohapatra, et al., “Theory of Neutrinos: A White Paper”, [arXiv:hep-ph/0511021]; S. Goswami, A. Bandyopadhyay and S. Choubey, Nucl. Phys. Proc. Suppl. 143 (2005) 121; G. Altarelli, Nucl. Phys. Proc. Suppl. 143 (2005) 470; A. Bandyopadhyay, Phys. Lett. B 608 (2005) 115.

O. Mena and S. Parke, Phys. Rev. D 69 (2004) 117301.

T. Kitabayashi and M. Yasuè, in Ref.\[2\].

I. Aizawa and M. Yasuè, in Ref.\[2\].

Y. Koide, Phys. Lett. B 607 (2005) 123.

P. Minkowski, Phys. Lett. B67 (1977) 421; T. Yanagida, in *Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe* edited by A. Sawada and A. Sugamoto (KEK Report No.79-18, Tsukuba, 1979), p.95; Prog. Theor. Phys. 64 (1980) 1103; M. Gell-Mann, P. Ramond and R. Slansky, in *Supergravity* edited by P. van Nieuwenhuizen and D.Z. Freedmann (North-Holland, Amsterdam 1979), p.315; R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44 (1980) 912. See also, P. Minkowski, “Neutrino oscillations, a historical overview and its projection”, [arXiv:hep-ph/0505049].

K. Fuki and M. Yasuè, a paper in preparation.

R.N. Mohapatra, in Ref.\[11\]; A. de Gouvêa, Phys. Rev. D 69 (2004) 093007; W. Grimus, A.S. Joshipura, S. Kanelo, L. Lavoura, H. Sawanaka and M. Tanimoto, in Ref.\[10\]; R.N. Mohapatra and W. Rodejohann, in Ref.\[3\]; F. Plentinger and W. Rodejohann, in Ref.\[2\].

See for example, R.N. Mohapatra, et al., in Ref.\[11\].

See for example, T. Kitabayashi and M. Yasuè, Phys. Lett. B 524 (2002) 308 in Ref.\[3\]; M. Frigerio and A.Y. Smirnov, Nucl. Phys. B 640 (2002) 233 in Ref.\[3\]; I. Aizawa, M. Ishiguro, T. Kitabayashi and M. Yasuè, in Ref.\[7\]; R.N. Mohapatra and W. Rodejohann, in Ref.\[2\].

See for example, S. Pascoli and S.T. Petcov, Nucl. Phys. Proc. Suppl. 138 (2005) 233; S. Pascoli, S.T. Petcov and T. Schwetz, in Ref.\[1\]; M. Hirsch, E. Ma, J.W.F. Valle and A.V. del Moral, Phys. Rev. D 72 (2005) 091301.

See for example, C. Giunti, “Phenomenology of Absolute Neutrino Masses”, talk given at *NOW-2004, Neutrino Oscillation Workshop*, Conca Specchiulla, Otranto, Italy (Sep. 11-17, 2004), [arXiv: hep-ph/0412143] and references therein.

Riazuddin, JHEP 0310 (2003) 009.

I. Aizawa, T. Kitabayashi and M. Yasuè, in Ref.\[2\].
FIG. 1: The predictions of $\sin^2 \theta_{13}$ (black curves) and $|m_{1,2,3}|, m_{\beta\beta}$ in unit of $\sqrt{\Delta m^2_{ atm}}$ (grey curves) as functions of r (≤ 2) and $\Delta m^2_{ atm}/\Delta m^2_{ sol} (= R)$ for $|m_3| < |m_{1,2}|$, where the solid, dotted and dashed curves, respectively, correspond to the lower bound of R, the center value of R and the upper bound of R, and the upper, middle and lower grey curves, respectively, stand for the cases of $|m_3| \approx |m_2|$, $|m_3|$ and $m_{\beta\beta}$. The upper bound on $\sin^2 \theta_{13}$ is indicated by the horizontal line marked as “max”. The parameter q is fixed to be 3 giving $\sin^2 \theta_{12} = 9/11$.

FIG. 2: The same as in FIG.1 but for $r \geq 2.5$ and $|m_3| > |m_{1,2}|$, where the upper and middle grey curves, respectively, stand for the cases of $|m_3|$ and $|m_3| \approx |m_2|$.