DETECTION OF PROTEIN STOICHIOMETRIC PHOSPHORYLATION USING Phos-\textit{tag} SDS-PAGE

Doan Minh Thu1, Nguyen Thi Minh Viet2, Pham Thi Kim Lien1,3

1VNUK Institute for Research and Executive Education, The University of Danang
2Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan

3To whom correspondence should be addressed. E-mail: lien.pham@vnuk.edu.vn

Received: 27.4.2019
Accepted: 25.11.2019

SUMMARY

Protein phosphorylation plays an important role in many cellular signalings which are relating to many diseases. Therefore, a variety of biochemical techniques has been developed to study protein phosphorylation in cells. Protein phosphorylation has traditionally been detected by radioisotope phosphate labeling of proteins with radioactive ATP. Phosphorylation site-specific antibodies are now available for the analysis of phosphorylation status at target sites. However, these antibodies cannot be used to detect unidentified phosphorylation sites. Recently, the Phos-\textit{tag} technology has been developed to overcome the disadvantages and limitations of these methods. Phos-\textit{tag} and its derivatives conjugated to biotin, acrylamide, or agarose, and can capture phosphate monoester dianions bound to serine, threonine, and tyrosine residues, in an amino acid sequence-independent manner. The grouping of the Phos-\textit{tag} will alter the mobility of protein on the gel depending on the amount of serine, threonine or tyrosine which are phosphorylated. Here, we describe the method to detect the phosphorylation of Pop2 protein, one of the exonucleases in the Ccr4-Not complex regulating the shortening of poly(A) tail of mRNAs using phosphate affinity Phos-\textit{tag} SDS-PAGE. We observed clear electrophoretic shift bands of Pop2-3XFlag under unstressed conditions. This is the first study which observes Pop2 phosphorylation in normal culture conditions. This study showed the convenience and advantages of Phos-\textit{tag} SDS-PAGE for research on molecular mechanisms regulating the function of protein.

Keywords: protein phosphorylation, Phos-\textit{tag}, Western blotting, phosphate monoester and serine

INTRODUCTION

Phosphorylation is one of important post-translational modifications that regulate protein functions, locations and interactions in eukaryotes (Hunter, 1995; Hunter 2000). This process is catalyzed by protein kinases and is the process of attaching phosphate groups to serine (Ser), threonine (Thr) or tyrosine (Tyr) on proteins (Takahiro \textit{et al.}, 2016). Phosphorylation is involved in controlling many cellular activities such as apoptosis, gene expression regulation, cell cycle and energy metabolism. Abnormal phosphorylation may be the cause of diseases such as cancer or neurodegeneration (Newman \textit{et al.}, 2014). The development of methods to verify protein phosphorylation is an important approach for analyzing biological and pathological processes (Eiji Kinoshita \textit{et al.}, 2006).

There are different analytical methods to check protein phosphorylation, such as radioisotope ([\textit{\gamma}32P] -ATP), hybridization with specific antibodies, microarray and mass spectrometry (Newman \textit{et al.}, 2014). Each method has its own advantages and limitations. The method of radioisotope is limited by the number of samples, safety, waste handling obstacles and it is not suitable for \textit{in vivo} analysis. Using antibodies is currently popular but it can only be used when it is known about the location and sequence of phosphorylated amino acids. Other methods such as microarray or mass spectra require high equipment, materials and procedures. Recently, the Phos-\textit{tag} technique has
been developed to improve the limitations of the above-mentioned methods. Phos-tags and its derivatives are combined with biotin. The Phos-tag has a hole in two metal ions suitable for mounting the phosphomonoester dianion root (Asunori et al., 2015). Therefore, Phos-tag technique can detect monoester phosphate group which associated with serine, threonine and tyrosine residues in a manner independent on amino acid sequence. In principle, an acrylamide-pendant Mn\(^{2+}\)-Phos-tag is used as a novel additive in a separating gel for normal SDS-PAGE. In a separating gel containing co-polymerized Phos-tag, the degrees of migration of phosphoproteins are less than those of their nonphosphorylated counterparts because the tags molecules trap phosphoproteins reversibly during electrophoresis. On the basis of this principle, a novel type of gel electrophoresis has recently been established, Mn\(^{2+}\)-Phos-tag SDS-PAGE, for the separation of phosphoproteins from their corresponding nonphosphorylated analogs (Eiji Kinoshita et al., 2006). The advantages of this approach compared to other methods is: (1) simultaneously detecting multiple phosphorylated forms, (2) safe and low cost, (3) very simple method and not requiring many techniques or equipment.

Here, we describe an approach to detect the phosphorylation of Pop2 protein, a subunit of the Ccr4-Not complex, involved in regulating the expression of many genes in the cell. A previous study showed that Pop2 was phosphorylated when cells were starved (A. Sakai et al, 1995). However, using the Phos-tag TM technique, we discovered that Pop2 is phosphorylated in multiple forms even in normal culture conditions. At the same time, we also optimized the process to clearly observe Pop2 phosphorylation. Using this procedure, we found that Pop2 is highly phosphorylated under normal culture conditions, this phosphorylation may play an important role in Pop2 function in cell.

MATERIALS AND METHODS

Strains, plasmids, media and general methods

Escherichia coli DH5α was used in DNA and plasmids manipulation. *Saccharomyces cerevisiae* 10B [MATA ade2 bp1 can1 leu2 his3 ura3 GAL psi + HO4-AD2-HO 3′ UTR] was used for protein expression. Plasmid pFA6a-kanMX6 [kanMX6] was used to take 3XFLAG fragment, plasmid YCplac33 [URA3, CEN-ARS] was used to express protein in yeast. The media used in the study include: LB (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl), LB-Amp (LB medium supplemented with ampicilnine 50 µg/mL), YPD (10 g/L yeast extract, 20 g/L peptone, 0,2% glucose), SC (6.7 g/L Bacto-yeast nitrogen base w/o amino acids, 2 g/L glucose, 2 g/L Dropout mix). Basic methods in cell culture are performed as described in "In yeast genetics Methods" (Adam et al., 1997).

Construction of YCplac33/POP2-3XFLAG

PCR with L1/L2 specific primers to amplify POP2 gene from *S. cerevisiae* 10B strain. The 3XFLAG tag was taken from the plasmid pFA6a-kanMX6 with the L2/L3 primers. Plasmid YCplac33-POP2-3XFLAG is constructed using the In-Fusion® HD Cloning Plus kit (Takara, Japan). The product of the fusion reaction was transformed into *E. coli* DH5α cell. Transformation mixture was spread on LB-Amp, incubated 37°C, for 16-18 hours. *E. coli* DH5α cell carrying recombinant plasmids grew on LB-Amp and formed white colonies. Recombinant plasmids was isolated and checked by PCR and sequencing.

Plasmid Ycplac33 and YCplac33-POP2-3XFLAG are independently transformed into *S. cerevisiae* 10B cells. Transformation mixture is spread on SC-URA medium, incubated at 30°C, for 2-5 days. The transformants were collected and checked by PCR method and named as *S. cerevisiae* 10B/YCplac33 and _1OB/ YCplac33-POP2-3XFLAG strains.

SDS-PAGE and Western blotting analysis

10B/YCplac33-POP2-3XFLAG strain was pre-cultured and transferred into 10 mL of SC-URA medium, 250 rpm at 30°C (OD\(_{600}\) ~ 0.2). Cells grown to exponential phase were subjected to a mild alkali treatment-based protein extraction method (Kushnirnov VV et al., 2000). Samples were loaded onto SDS-PAGE gel. Phos-tagTM (Wako, USA) was added in mix of SDS-PAGE gel when analyzing protein phosphorylation. The final concentration of Phos-tagTM was 5 mmol/L. SDS-PAGE gel was then electroblotted onto Immobilon polyvinylidene difluoridemembranes (MerckMillipore, USA). Blots were blocked for 1 h at room temperature with TBS-M buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 5% non-fat dry milk, and then incubated with 1:1,000-diluted primary antibodies in TBS-M buffer overnight at 4°C. After three final washes with TBS buffer containing 20 mM Tris-HCl (pH 7.5) and 150 mM NaCl, blots were incubated.
with secondary antibodies, and were developed using enhanced chemiluminescence detection kits (Merck Millipore, USA). Signal intensities were quantified by Image Studio software (LI-COR).

RESULTS AND DISCUSSION

The expression of Pop2-3XFlag protein

Transformants 10B/YCplac33-POP2-3XFLAG were grown to exponential phase and then subjected to a mild alkali treatment-based protein extraction method and analyzed by SDS-PAGE and Western blotting. Blots was analyzed by anti-Flag antibody. As shown in Figure 1, we observed a band in sample of cell extracts of 10B/YCplac33-POP2-3XFLAG apropriate for the molecular weight of Pop2-3Xflag (~52 KDa). There are no bands observed in sample of 10B cell carying YCplac33 (10B/YCplac33). Plasmids and strains used for expression of Pop2-3XFlag were shown in Table 1.

Table 1. List of plasmids and strains constructed and used in this study.

Strains	Genotype	Source or reference
10B	MATa ade2 trp1 can1 leu2 his3 GAL psi+ HOp-ADE2-HO 3' UTR	Hata et al., 1998
10B/YCplac33	MATa/MATa ade2/ade2 trp1/trp1 can1/can1 leu2/leu2 his3/his3 ura3/ura3 YCplac33	This study
10B/Ycplac33-POP2-3XFLAG	MATa/MATa ade2/ade2 trp1/trp1 can1/can1 leu2/leu2 his3/his3 ura3/ura3 YCplac33-POP2-3XFLAG	This study

Table 2. List of plasmids

Name	Relevant markers	Source or reference
YCplac33	URA3, CEN-ARS	Gietz et al., 1988
YCplac33-POP2-3XFLAG	URA3, CEN-ARS, POP2FLAG	This study
pFA6a-kanMX6	kanMX6	Longtine et al., 1998

Analysis of Pop2 phosphorylation using Phos-tagTM SDS-PAGE

Understanding the post-translational modification plays an important approach in the functional analysis of a protein. There have been only a few studies of post-translational regulation of the Ccr4/Not complex. Pop2, a subunit of Ccr4/Not complex was reported that is phosphorylated by protein kinase Yak1 under starved condition, the phosphorylation was not observed under normal growth conditions (Sakai et al., 1992). We examined the patterns of Pop2 protein using Phos-tagTM SDS-PAGE under normal growth condition. We observed multiple shifted bands Pop2-3XFlag (Figure 3). These shifted bands are probably corresponding to the phosphorylated forms of Pop2-3XFlag protein which was not able to observed in previous study by another method (Sakai et al., 1992). Basing on the result of this method, we have analyzed the characteristic and physiological roles of those phosphorylation forms of Pop2. Our results suggested that Pop2 is phosphorylated at S39 in a Pho85-dependent manner upon glucose availability. Moreover, this post-transcriptional modification of Pop2 specifically contributes to the glucose
Perturbations in the equilibrium fundamentally affect opposing activities of protein kinase and phosphatase. Protein is determined by the spectrometry. Activities such as gel staining, Western blotting, for a lot of methods for further analysis protein method could be used as preceding general method radioisotopes, Phos system and an additive, acrylamide. This dephosphorylated proteins in an SDS PAGE gel. By means of the Phos-Tag technology and existing methods using high quality antibodies (Kaufmann et al., 2001) and convenient mass spectrometers (Nakanishi et al., 2005, Takeda et al., 2003).

CONCLUSION

In summary, we describe here a modification of the technique of Phos-tag SDS-PAGE that allows the separation of multiple phosphorylated forms of Pop2, enabling identification of the number of phosphorylated sites and the overall phosphorylation stoichiometry under defined conditions. Further experiments also need to be done to determine the protein kinase that catalyzes the phosphorylation of Pop2 and the phosphorylated amino acid sites. When used in conjunction with Western blotting using well-characterized phospho-specific antibodies, this approach can yield important information regarding sequential and hierarchical phosphorylation events in the regulation of Pop2 function. Here we showed the superiority of Phos-tag SDS-PAGE in analysis of protein physiological activities.

Acknowledgement: We thanks to Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan for supporting us about equipments and materials to conduct the experiments. We thanks Prof. Irie Kenji and Irie lab’s members for their supports to optimization of Phos-tag SDS-PAGE and Ms. Trang Le for her support in English editing. This work was supported by VN-UK Science and Technology Grant.

REFERENCES

Adams A, Gottschling DE, Kaiser C (1997) Methods in yeast genetics. Cold Spring Harbor Labora- tory Press, Cold Spring Harbor, NY.

Asunori Sugiyama, Syouichi Katayama, Isamu Kameshita, Keiko Morisawa, Takuma Higuchi, Hiroshi Todaka, Eiji Kinoshita, Emiko Kinoshita-Kikuta, Tohru Koike,
Taketoshi Taniguchi, Shuji Sakamoto (2015) Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE. MethodsX 2 (2015) 469–474.

Eiji Kinoshita, Emiko Kinoshita-Kikut, Kei Takiyama, and Tohru Koike (2006) Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins. Mol Cell Proteomics 5(4):749–57.

H Takeda, A Kawasaki, M Takahashi, A Yamada, T Koike (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture molecule, Rapid Communications in Mass Spectrometry, 17: 2075-2081.

Hunter (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236.

Hunter (2000) Signaling-2000 and beyond. Cell 100: 113–127.

Kaufmann, H., Bailey, J. E., and Fussenegger, M. (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 1: 194–199

Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16(9):857–60.

Lien PT, Viet NTM, Mizuno T, Suda Y, Irie K (2019) Pop2 phosphorylation at S39 contributes to the glucose repression of stress response genes, HSP12 and HSP26. PLOS ONE 14(4): e0215064.

Sakai A, Chibazakura T, Shimizu Y, Hishinuma F (1992) Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae. Nucleic Acids Research. 1992; 20(23):6227–33.

Nakanishi T, Ohtsu I, Furuta M, Ando E, Nishimura O (2005) Direct MS/MS analysis of proteins blotted on membranes by a matrix-assisted laser desorption/ionization-quadrupole ion trap-time-of-flight tandem mass spectrometer. J Proteome Res 4: 743–747

Newman RH, Zhang J, Zhu H (2014) Toward a systems-level view of dynamic phosphorylation networks. Front Genet 5:263.

Takahiro Horinouchi, Koji Terada, Tsunehito Higashi, and Soichi Miwa (2016) Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation. Methods Mol Biol Vol. 1397.

Yasunori Sugiyama, Syouichi Katayama, Isamu Kameshita, Keiko Morisawa, Takuma Higuchi, Hiroshi Todaka, Eiji Kinoshita, Emiko Kinoshita-Kikut, Tohru Koike, Taketoshi Taniguchi, Shuji Sakamoto (2015) Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE. MethodsX : 2215-0161.

PHÁT HIỆN SỰ PHOSPHORYL HOÁ CỦA PROTEIN SỨ DỤNG PHOS-TAG SDS-PAGE

Doàn Minh Thu1, Nguyễn Thị Minh Việt2, Phạm Thị Kim Liên1

1Viện Nghiên cứu và Đào tạo Việtn – Anh, Đại học Đà Nẵng
2Đại học Tsukuba, Nhật Bản

TÔM TẮT

Sự phosphoryl hóa động vai trò quan trọng đối với việc kiểm soát nhiều con đường truyền tín hiệu trong tế bào. Sự rối loạn của quá trình phosphoryl hóa protein là nguyên nhân của nhiều bệnh. Do vậy, rất nhiều phương pháp được phát triển để kiểm tra sự phosphoryl hóa của protein trong tế bào. Sự phosphoryl hóa của protein trước đây được phát hiện bằng cách sử dụng dán đ发现了 protein và广场 x quá khó để찰 của protein. Nhiều nghiên cứu sử dụng kháng thể đặc hiệu cho gốc amino acid được phosphoryl hóa. Tuy nhiên các kháng thể này chỉ được sử dụng khi đã xác định gốc amino acid được phosphoryl hóa và trình tự amino acid có vị trí phosphoryl hóa. Gần đây, kỹ thuật Phos-tag được phát triển, có những ưu điểm vượt bậc và khắc phục được những hạn chế của phương pháp sử dụng kháng thể và đồng vị phóng xạ. Phos-tag và những đánh xuât của nó được gắn với biotin, acrylamide hay agarose để có thể bắt nhóm phosphate monoester ở serine, threonine và tyrosine mà không phụ thuộc vào trình tự amino acid. Việc gắn nhóm Phos-tag sẽ làm thay đổi sự phân tích của protein trên gel tùy thuộc vào số lượng serine, threonine hay tyrosine được phosphoryl hóa. Ở đây chúng tôi mô tả kỹ thuật Phos-tag, quy trình để phát hiện sự phosphoryl hóa của protein Phos2, là protein tham gia điều hòa quá trình làm ngắn điều poly(A) của mRNA. Đây là nghiên cứu đầu tiên quan sát được sự phosphoryl hóa của Pop2 ở điều kiện nuôi cấy bình thường. Kết quả này chứng minh cho sự tồn tại và những ưu điểm của Phos-tag SDS PAGE trong phân tích hoat tính sinh lý của protein trong tế bào.

Từ khóa: phosphoryl hóa protein, Phos-tag, lát Western, phosphate monoester, serine