Comparative Proteomics and Secretomics Revealed Virulence and Antibiotic Resistance-Associated Factors in Vibrio parahaemolyticus Recovered From Commonly Consumed Aquatic Products

Zhu, Zhuoying; Yang, Lianzhi; Yu, Pan; Wang, Yongjie; Peng, Xu; Chen, Lanming

Published in:
Frontiers in Microbiology

DOI:
10.3389/fmicb.2020.01453

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Zhu, Z., Yang, L., Yu, P., Wang, Y., Peng, X., & Chen, L. (2020). Comparative Proteomics and Secretomics Revealed Virulence and Antibiotic Resistance-Associated Factors in Vibrio parahaemolyticus Recovered From Commonly Consumed Aquatic Products. Frontiers in Microbiology, 11, [1453]. https://doi.org/10.3389/fmicb.2020.01453
Comparative Proteomics and Secretomics Revealed Virulence and Antibiotic Resistance-Associated Factors in *Vibrio parahaemolyticus* Recovered From Commonly Consumed Aquatic Products

Zhuoying Zhu¹, Lianzhi Yang¹, Pan Yu¹, Yongjie Wang¹, Xu Peng² and Lanming Chen¹*

¹ Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. ² Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark

*Correspondence: Lanming Chen
lmchen@shou.edu.cn

Specialty section:
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

Received: 23 January 2020
Accepted: 04 June 2020
Published: 14 July 2020

Citation: Zhu Z, Yang L, Yu P, Wang Y, Peng X and Chen L (2020) Comparative Proteomics and Secretomics Revealed Virulence and Antibiotic Resistance-Associated Factors in *Vibrio parahaemolyticus* Recovered From Commonly Consumed Aquatic Products. *Front. Microbiol.* 11:1453. doi: 10.3389/fmicb.2020.01453

Vibrio parahaemolyticus is a seafoodborne pathogen that can cause severe gastroenteritis and septicemia diseases in humans and even death. The emergence of multidrug-resistant *V. parahaemolyticus* leads to difficulties and rising costs of medical treatment. The bacterium of environmental origins containing no major virulence genes (*tdh* and *trh*) has been reported to be associated with infectious diarrhea disease as well. Identification of risk factors in *V. parahaemolyticus* is imperative for assuming food safety. In this study, we obtained secretomic and proteomic profiles of *V. parahaemolyticus* isolated from 12 species of commonly consumed aquatic products and identified candidate protein spots by using two-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry techniques. A total of 11 common and 28 differential extracellular proteins were found from distinct secretomic profiles, including eight virulence-associated proteins: outer membrane channel TolC, maltoporin, elongation factor Tu, enolase, transaldolase, flagellin C, polar flagellin B/D, and superoxide dismutase, as well as five antimicrobial and/or heavy metal resistance-associated ABC transporter proteins. Comparison of proteomic profiles derived from the 12 *V. parahaemolyticus* isolates also revealed five intracellular virulence-related proteins, including aldehyde-alcohol dehydrogenase, outer membrane protein A, alkyl hydroperoxide reductase C, phosphoenolpyruvate-protein phosphotransferase, and phosphoglycerate kinase. Additionally, our data indicated that aquatic product matrices significantly altered proteomic profiles of the *V. parahaemolyticus* isolates with a number of differentially expressed proteins identified. The results in this study meet the increasing need for novel diagnosis candidates of the leading seafoodborne pathogen worldwide.

Keywords: *Vibrio parahaemolyticus*, secretome, proteome, virulence, resistance, aquatic products
INTRODUCTION

Vibrio parahaemolyticus is a gram-negative bacterium that thrives in marine, estuarine, and aquaculture environments worldwide (Ghenem et al., 2017). The bacterium is frequently detected from seafood such as shellfish, shrimp, and fish. Consumption of raw or inadequately cooked seafood, primarily oysters, can cause acute gastroenteritis in humans (Ghenem et al., 2017). *Vibrio parahaemolyticus* was initially identified in an outbreak of infectious diarrhea disease in 1950 in Osaka, Japan, caused by contaminated semidried juvenile sardines, which sickened 272 and killed 20 people (Fujino et al., 1965). Henceforth, outbreaks and prevalence of the infectious disease are reported in many countries in the world (Ghenem et al., 2017; Baker-Austin et al., 2018). In the United States, there were approximately 35,000 cases of acute gastroenteritis infected by *V. parahaemolyticus* per year from 2000 to 2008 (Baker-Austin et al., 2018). Data from foodborne disease outbreak reporting system in China showed that 42.3% of biohazard cases reported were attributed to *V. parahaemolyticus* from 2011 to 2016 (Liu et al., 2018). *Vibrio parahaemolyticus* has been the leading cause of infectious diarrhea disease, especially among adults in coastal regions in China (Yang C. et al., 2019). Recently, *V. parahaemolyticus* was reported to be associated with acute hepatopancreatic necrosis disease, a newly emerging shrimp disease, which severely damaged the global shrimp industry (Li et al., 2017). The global spread of *V. parahaemolyticus* underscores the need for a better understanding of virulence traits of the bacterium.

Most pathogenic *V. parahaemolyticus* strains have two major virulence genes (*tdh* and *trh*) encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin. The former is a heat-resistant and pore-forming toxin composed of 156 amino acids, whereas the latter contains 189 amino acids and shares 54.8–68.8% identify in nucleotide level with the TDH (Zhang and Orth, 2013). Both these toxins have hemolytic activity, enterotoxin activity, cardiotoxicity, and cytotoxicity (Li et al., 2019). Nevertheless, approximately 90–99% of *V. parahaemolyticus* isolates of environmental origins were detected negative for the toxic factors (Raszl et al., 2016; Park et al., 2018). Previous studies have revealed some other cytotoxic factors to human gastrointestinal cells secreted by type III and type VI secretion systems (T3SS and T6SS) in *V. parahaemolyticus* (Makino et al., 2003). Two types of T3SSs (T3SS1 and T3SS2) were identified, of which T3SS1 located in chromosome I is necessary for the bacterial survival in the environment (Makino et al., 2003; De Nisco et al., 2017). Recent studies indicated that T3SS1 appeared to inject effectors, for example, VopQ, VopR, VopS, and VPA0450, directly into human gastrointestinal cells, which lead to the induction of rapid autophagy followed by cell rounding, eventually cell lysis (Osorio, 2018). The T3SS2 located on chromosome II plays a critical role in the enteropathogenicity of the bacterium (Makino et al., 2003). The effectors of T3SS2 can cause enterotoxicity by destroying the cell cytoskeleton, for example, VopC, VopL, VopV, and VopO, or manipulating cell signaling transduction, for example, VopA, VopT, VopZ, and VPA1380 (De Souza Santos et al., 2017; Osorio, 2018; Luo et al., 2019). Additionally, T6SS is a complex secretory device capable of secreting effectors into host mammalian cells as well as target bacterial cells (Li et al., 2019). It consists of a series of components including structural proteins, translocators, secreted proteins, and some other proteins with auxiliary function, for example, DotU, IcmF, ClpV, Hcp, VgrG, and PAAR (Salomon et al., 2014). Similar to T3SS, *V. parahaemolyticus* encodes two T6SSs (T6SS1 and T6SS2) located on chromosomes I and II, respectively. T6SS1 is active under warm marine-like conditions (3% NaCl, 30°C), whereas T6SS2 is active under low salinity and low temperature (1% NaCl, 23°C) (Salomon et al., 2013). Recent studies have indicated that T6SSs are tightly regulated in pathogenic bacteria, for example, *Vibrio cholerae, Pseudomonas aeruginosa*, and *V. parahaemolyticus*, and induced by external conditions and cues such as quorum sensing, salinity, temperature, mucin, chitin, surface sensing, and cell membrane damage (Ben-Yaakov and Salomon, 2019).

There is growing evidence to support that *V. parahaemolyticus* isolates lacking the virulence factors can cause infectious diarrhea disease in humans (Castillo et al., 2018). For example, Thongjun et al. (2013) reported that 9–10% of clinical isolates recovered from diarrhea patients were identified as non-toxigenic *V. parahaemolyticus* in South Thailand between 2001 and 2010. On the other hand, non-toxigenic *V. parahaemolyticus* isolates of environmental origins may possess additional pathogenicity mechanisms. The emergence of multidrug-resistant (MDR) *V. parahaemolyticus* increases the difficulty and cost of clinical treatment (Elmahdi et al., 2016). For instance, Hu and Chen (2016) reported that 74.5% of the *V. parahaemolyticus* strains (n = 208) isolated from 10 species of commonly consumed aquatic products in Shanghai, China, were resistant to more than three antimicrobial agents. Yang et al. (2017) isolated 98 *V. parahaemolyticus* strains from 504 seafood samples in 11 provinces of China and found that 68.38% of the isolates showed MDR phenotypes. Recently, Lopatek et al. (2018) reported that 55.8% of the *V. parahaemolyticus* isolates (n = 104) recovered from 595 samples collected from Denmark, France, Germany, Italy, the Netherlands, Norway, Poland, Spain, Sri Lanka, and Turkey had resistance to ampicillin and streptomycin and one isolate resistant to ampicillin, streptomycin, and ciprofloxacin. Therefore, identification of virulence and resistance-associated factors in *V. parahaemolyticus* is imperative for food safety systems, particularly in developing countries.

The combination of two-dimensional gel electrophoresis (2D-GE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques is widely used in current proteomics researches (Kim and Cho, 2019). The 2D-GE couples isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, which separate proteins according to isoelectric points and molecular masses, respectively. Several hundreds of individual protein abundances separated by 2D-GE can be quantified in the cell population or sample tissues. The LC-MS/MS is also a powerful tool that can efficiently separate and identify constituents in protein mixtures with high sensitivity and specificity (Aslam et al., 2017). For instance, based on the LC-MS/MS technique, Zhong et al. (2019) compared *V. parahaemolyticus* proteomes between the resuscitation state...
and viable but non-culturable state and found a total of 429 differentially expressed proteins mainly involved in cellular process, establishment of localization, and metabolic process. Pang et al. (2020) analyzed 102 acetylation modified proteins of *Vibrio alginolyticus* HY9901 by LC-MS/MS and identified five virulence factors, including HemL, FabB, FabD, FabF-3, and PhoR.

The People’s Republic of China is the world’s largest producer, consumer, and exporter of aquatic products, including fish, crustaceans, and shellfish (Hu and Chen, 2016). Data from China Fishery Statistical Yearbook (2018) showed that shellfish production (14,371,304 tons) is an important part of maricultural production in China, and the main species include *Ostrea gigas thunberg* (known as oyster) (34.0%), *Ruditapes philippinarum*, *Mactra undulate* (known as clam) (29.1%), *Placopecten magellanicus* (known as scallop) (14.0%), *Perna viridis* (known as mussel) (6.5%), and *Solen strictus* (known as razor clam) (6.0%). Additionally, *Aristichthys nobilis* (known as bighead carp) and *Ctenopharyngodon idellus* (known as grass carp) are commonly consumed freshwater fish in China, accounting for 18.4% (5,345,641 tons) and 10.7% (3,097,952 tons) of the total freshwater aquaculture production (29,052,930 tons), respectively. The production of *Litopenaeus vannamei* (known as white-leg shrimp) was 1,672,287 tons, which was the most predominant among the crustaceans in 2017 (Zhang et al., 2018). Continuous monitoring of food contaminants and identification of risk factors are crucial to safeguard the food supply chain (Chen and Alali, 2018). In our prior researches, *V. parahaemolyticus* contamination in 10 species of aquatic products was surveyed (He et al., 2016; Hu and Chen, 2016). Secretomic profiles of seven *V. parahaemolyticus* strains of two clinical and five aquatic product origins (*Haliotis asinina*, *Sinonovacula konnoi*, *Ostrea gigas thunberg*, *Ruditapes philippinarum*, *Mactra undulate*, and *Paphia undulate*

MATERIALS AND METHODS

V. parahaemolyticus Strains and Culture Conditions

Vibrio parahaemolyticus strains used in this study are listed in Table 1, and their genotypes and phenotypes were characterized by Su et al. (under review). *Vibrio parahaemolyticus* strains were individually inoculated from −80°C stock in our laboratory in Shanghai Ocean University and incubated in tryptic soy broth (TSB) medium (pH 8.5, 3.0% NaCl; Beijing Land Bridge Technology Co., Ltd., Beijing, China) at 37°C. Bacterial cell cultures grown at mid-logarithmic phase with OD_{600nm} values ranging from 0.5 to 0.6 without shaking were collected for extracellular protein extraction, whereas those at late-logarithmic phase with OD_{600nm} values ranging from 0.8 to 1.0 with shaking at 180 revolutions/min (rpm) were used for intracellular protein extraction (He et al., 2015). *Vibrio parahaemolyticus* ATCC33847 (tdh\(^+\) trh\(^-\)) and ATCC17802 (tdh\(^-\) trh\(^+\)) were used as standard strains (Table 1).

Enterobacterial Repetitive Intergenic Consensus—Polymerase Chain Reaction Assay

Bacterial genomic DNA was extracted by a thermal lysis method as previously described (Xu et al., 2019). The Enterobacterial Repetitive Intergenic Consensus (ERIC) primers ERIC-F (5’-ATGTAAGCTCTGGGGATTCC-3’) and ERIC-R (5’-AAGTAAGTGAACGCGGAG-3’) (Rivera et al., 1995) were synthesized by Sangon Biotech Co., Ltd., Shanghai, China. A 20 µL of ERIC−polymerase chain reaction (PCR) reaction solution contained 6 µL sterile DNase/RNase-free deionized H_{2}O (Tiangen Biotech Co., Ltd., Beijing, China), 1 µL of each primer (0.25 mM), 10 µL 2 × Taq PCR master mix (Novoprotein Scientific Inc., Shanghai, China), and 2 µL DNA template. The ERIC-PCRs were performed using Mastercycler™ pro PCR thermal cycler (Eppendorf Corporate, Hamburg, Germany) under the following conditions: denaturation at 95°C for 8 min, 32 cycles of 95°C for 30 s, 52°C for 1 min, and 65°C for 8 min and a final extension of 65°C for 16 min. The amplified products were analyzed by electrophoresis with 1.0% (wt/vol) agarose gels (Biowest Agarose, Spain (Origin), distributed by Shanghai Fushen Bio-Technology Co., LTD., Shanghai, China), and imaged using UVP EC3 Imaging system (UVP LLC, Upland, CA, United States). Fingerprint patterns were analyzed using BioNumerics 7.6 software, and the clustering was deduced based on the unweighted pair group with arithmetic average (UPGMA) algorithm (Xu et al., 2019).
TABLE 1 | The genotypes and phenotypes of the *V. parahaemolyticus* isolates used in this study.

V. parahaemolyticus strain	Source	Year of isolation	*th*	*tdh*	*trh*	Resistance to antibiotics	Tolerance to heavy metals
CHN-B2-28	Ruditapes philippinarum, China	2017	+	−	−	RIF, STR, AMP	Hg, Zn
CHN-B6-29	Paphia undulate, China	2017	+	−	−	RIF, KAN, STR, AMP	Hg, Zn
CHN-B6-62	Sinonovacula constricta, China	2017	+	−	−	RIF, KAN, STR, AMP	Hg, Cr, Pb
CHN-B8-26	Perna viridis, China	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Cd, Zn
CHN-N4-18	Mactra veneriformis, China	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
CHN-B8-26	Ostrea gigas thunberg, China	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Cd, Zn
CHN-N1-56	Litopenaeus vannamei, China	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
CHN-N2-5	Oratosquilla oratoria, China	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
CHN-L7-40	Pecten magellanicus, China	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
CHN-N10-18	Veneroniidae, United States	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
CHN-Q5-1	Veneroniidae, United States	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
ATCC33847*	Veneroniidae, United States	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn
ATCC17802*	Veneroniidae, United States	2017	+	−	−	RIF, KAN, STR, AMP	Cu, Hg, Zn

RIF, rifampin; AMP, ampicillin; STR, streptomycin; TET, tetracycline; copper, CuCl₂; mercury, HgCl₂; cadmium, CdCl₂; lead, PbCl₂; zinc, ZnCl₂; chromium, CrCl₃; +, present; −, absence. *Baumann et al. (1973); **Fujino et al. (1968).

Extraction of Extracellular and Intracellular Proteins of *V. parahaemolyticus* Isolates

Extracellular proteins of *V. parahaemolyticus* isolates were extracted according to the method described previously (He et al., 2015) with minor modifications. Briefly, growth curves of *V. parahaemolyticus* isolates incubated in the TSB medium (pH 8.5, 3% NaCl) at 37°C were determined using Bioscreen Automatic Growth Curve Analyzer (BioTek Instruments, Inc., Winooski, VT, United States). A 20 μL of Bacterial Protease Inhibitors Complex (Sangon) was added to each 100 mL of bacterial cell culture at midlogarithmic phase, which was then centrifuged at 6,000 rpm for 10 min at room temperature to remove undissolved residues. Isoelectric focusing was performed with the ready immobilized pH gradient gel (IPG) strips (Bio-Rad) and then centrifuged at 12,000 rpm for 10 min at room temperature to remove undissolved residues. Isoelectric focusing was performed with the ready immobilized pH gradient gel (IPG) strips (Bio-Rad). Approximately 20 μg of extracellular proteins was diluted with 100 μL of lysis buffer [8 M urea (Sangon), 4% (wt/vol) 3-[3-cholamidopropyl]dimethylammonio-1-propanesulfonate (CHAPS; Sangon), 65 mM dithiothreitol (DTT; Sangon), 0.0001% (wt/vol) bromophenol blue (Sangon)] to a final volume of 200 μL per sample. The mixture of each sample was applied to the strips (pH 4–7, 7 cm; Bio-Rad) and passive rehydrated for 16 h at 17°C. After rehydration, IEF was run with a 6-step program: 100 V for 3 h with slow ramping; 250 V for 1 h with slow ramping; 500 V for 1 h with linear ramping; 4,000 V for 3 h with linear ramping; and 4,000 V with rapid ramping until 20,000 V-hour was reached. Following the electrophoresis in the first dimension, the strips were first equilibrated for 15 min inhibitors, according to the manufacturer’s instructions. Protein concentration was measured using Bradford Protein Assay Kit (Sangon) with bovine serum albumin as the standard protein.

The 2D-GE Assay

The 2D-GE was performed according to the method described previously (He et al., 2015) with minor modifications. Briefly, extracellular protein pellet was dissolved with 100 μL of lysis buffer [8 M urea (Sangon), 4% (wt/vol) 3-[3-cholamidopropyl]dimethylammonio-1-propanesulfonate (CHAPS; Sangon), 65 mM dithiothreitol (DTT; Sangon), 0.0001% (wt/vol) bromophenol blue (Sangon)] to a final volume of 200 μL. The resulting protein pellet was washed with ice-cold acetone (Sangon) for three times, air-dried and stored at −80°C for further analysis.
in equilibration buffer I [6 M urea, 37.5 mM Tris-HCl (pH 8.8, Sangon), 20% glycerol (Sangon), 2% SDS (Sangon), and 2% DTT] and then washed for another 15 min with equilibration buffer II [6 M urea, 37.5 mM Tris-HCl at pH 8.8, 2% SDS, 20% glycerol, 2.5% (wt/vol) iodoacetamide (Sangon)]. The second-dimension separation was performed by SDS-PAGE. The strips were individually transferred onto 12.5% separation gel using a Mini-PROTEAN electrophoresis cell (Bio-Rad) with a 2-step program: 5 mA for 20 min, and 15 mA for 85 min.

For intracellular proteins, an aliquot of each 400 μL of protein sample was individually applied to the strips (pH 4–7, 17 cm) (Bio-Rad) and passive rehydrated for 17 h at 17°C.

After rehydration, IEF was run with a 9-step program: 50, 100, 500, and 1,000 V for 1 h with slow ramping, respectively; 2,000 and 4,000 V for 1 h with linear ramping, respectively; 6,000 and 8,000 V for 1 h with rapid ramping, respectively; and 10,000 V with rapid ramping until 80,000 V-hour was reached. The strips were individually transferred onto 12.5% separation gel using PROTEAN II XL electrophoresis cell (Bio-Rad) with a 2-step program: 5 mA for 5 h and 15 mA for 6 h.

After electrophoresis, the gels were stained using Protein Stains K (Sangon), according to the manufacturer’s instructions. Silver-stained gels were scanned using GenoSens 1800 Series Gel Documentation and Analysis System (Clinx Science Instruments Co. Ltd., Shanghai, China). Protein spot detection, spot matching, and quantitative intensity analysis were performed using PDQuest Advanced-8.0.1 software (Bio-Rad).

LC-MS/MS Analysis

The LC-MS/MS analysis was carried out at HooGen Biotech, Shanghai, China. The visible and discriminative protein spots were individually excised from 2D-GE gels, and gel pieces were dried under vacuum. A 15 μL of digestion solution (25 mM ammonium bicarbonate) containing trypsin (12.5 ng/mL; Promega, Madison, WI, United States) was added to each protein spot sample tube and incubated with gentle shaking at 37°C for 16 h. The resulting peptides were identified by Q Exactive Mass Spectrometer [Thermo Fisher Scientific (TFS), Waltham, MA, United States] coupled with Easy nLC 1200 Chromatography System (TFS). The peptide mixture was loaded onto C18-reversed phase column (15 cm long, 75-μm inner diameter) packed in-house with RP-C18 5 μm resin in buffer A (0.1% formic acid (Sigma-Aldrich, St. Louis, MO, United States) in high-performance liquid chromatography–grade water) and separated with a linear gradient of buffer B [0.1% formic acid in 84% acetonitrile (Sigma-Aldrich, United States)] at a flow rate of 250 nL/min over 60 min. The collected LC-MS/MS data files were converted to Mascot generic format (mgf) and then imported into Mascot version 2.2 server (Matrix Science, London, United Kingdom) for automated peptide identification using UniProt *Vibrio parahaemolyticus* database (download in September 2019; 89189 sequences). The criteria for peptide matching and protein calls included enzyme: trypsin; max missed cleavage: 2; fixed modifications: carbamidomethyl (C); variable modification: oxidation (M); peptide mass tolerance: ± 20 ppm; fragment MS/MS tolerance: 0.1 Da; Mascot score: ≥ 20; ion score: > 20; and false discovery rate: < 0.01 at peptide and protein level.

Common protein spots on secretomic profiles were marked with blue circles, whereas differential protein spots on secretomic and proteomic profiles were marked in red numbers. The identified proteins were subjected to Generic Gene Ontology (GO) Term Finder1 for GO analysis (Yang et al., 2015).

Preparation of Aquatic Product Matrix Media

Aquatic product matrices were prepared according to the method described by Chaitiemwong et al. (2010) with minor modifications. Briefly, 12 species of fresh aquatic products were collected in two local fish markets [Guzong road fish market (30°53′11.34″N, 121°55′3.09″E) and Luchaogang seafood market (30°51′34.47″N, 121°51′3.15″E)] in Shanghai and transferred in sterile sealed plastic bags (Nanjing Maojie Microbial Technology Co., Ltd., Nanjing, China) in an ice box (700 × 440 × 390 mm) to the laboratory in Shanghai Ocean University for analysis immediately. A 10 g (wt) fresh meat of each sample was aseptically placed in a homogenous bag (Sangon) with 40 mL sterile water and homogenized for 3 min using a laboratory blender BagMixer (Shanghai Jingxin Industry Development Co., Ltd., Shanghai, China). The mixture was centrifuged at 8,000 g for 20 min, and the supernatant was filtered through 0.22-μm-pore-size membrane filters (Millipore). The filtrate of each aquatic product sample was supplemented into the TSB medium (pH 8.5, 3% NaCl) to produce corresponding aquatic product matrix medium with a final concentration of 1% (vol/vol).

Measurement of Compositions of Aquatic Product Matrices

Total protein content was measured using Bradford Protein Assay Kit (Sangon) according to the manufacturer’s instructions. Crude fat content was determined by the automated Soxhlet method described by Shin et al. (2013) with minor modifications. Briefly, a 5 mL of aquatic product matrix was individually weighed and dried in a Petri dish at 104°C for 3 h. In the dried products were wiped with cotton balls moistened with petroleum ether (Shanghai Titan Scientific Co., Ltd., Shanghai, China). Crude fat on cotton balls was extracted by an automated Soxtherm Fat Extraction System (Gerhardt, Bonn, Germany) according to the manufacturer’s instructions. The extracted products remaining in a weighed beaker were dried at 104°C for 30 min and cooled in a dessicator to room temperature. Crude fat in the beakers was weighed and calculated. Carbohydrate (saccharides) content was measured by the phenol–sulfuric acid method described by Albalasmeh et al. (2013) with minor modifications. A 1 mL of each sample was mixed with 1 mL of 5% (wt/wt) aqueous solution of redistilled phenol (Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) in a glass tube (Φ15 mm, 150 mm). A 5 mL of sulfuric acid (95–98%; Shanghai Kuling Fine Chemical Co., Ltd., Shanghai, China) was added into the mixture and then incubated in a boiling water bath for 20 min. After cooling in ice for 2 min and at room temperature for 15 min, the absorption of the reaction mixture at 490 nm was measured using a spectrophotometer.

1 http://go.princeton.edu/cgi-bin/GOTermFinder
measured using BioTek Synergy 2. Carbohydrate concentration was calculated according to a standard curve prepared with glucose (Sinopharm).

Reverse Transcription–PCR Assay

The reverse transcription (RT)–PCR assay was performed according to the method described by Zhu et al. (2017). Briefly, total RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. The DNA was removed from the samples with the RNase-Free DNase Set (Qiagen). The RT reactions were performed using PrimeScriptTM RT reagent Kit with gDNA Eraser [Takara Biomedical Technology (Beijing) Co., Ltd., Beijing, China]. Relative quantitative PCRs were performed using TB Green[®] Premix Ex TaqTM II kit (Tli RNaseH Plus, Beijing, China) according to the manufacturer’s instructions. All RT-PCRs were carried out in a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, United States) under the following conditions: initial denaturation at 50°C for 2 min and at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 15 s and primer annealing at 60°C for 1 min. The 16S RNA was used as the internal reference gene as described previously. The primers (Supplementary Table S1) were designed by Premier 5.0 software² and synthesized by Sangon (Shanghai, China). In a 20 µL of RT-PCR solution, 1,000, 200, 20, 2, 0.2, and 0.0 ng of cDNA template was individually added for standard curve preparation. The PCR efficiency was 90.0–100.0%, and $r^2 > 0.980$ for the primers. All tests were performed in triplicate in this study.

RESULTS

Genetic Diversity of the *V. parahaemolyticus* Isolates Recovered From 12 Species of Aquatic Products

The *V. parahaemolyticus* isolates used in this study were recovered from 12 species of commonly consumed aquatic products, including eight shellfish, two crustaceans, and two fish (Table 1). All the isolates were negative for the toxin genes (*tdh* and *trh*), but resistant to three antimicrobial agents, including rifampin (RIF), ampicillin (AMP), and streptomycin (STR). Approximately 75% (9/12) and 42% (5/12) of the *V. parahaemolyticus* isolates were also resistant to kanamycin (KAN) and tetracycline (TET), respectively. Additionally, different heavy metal tolerance profiles of the *V. parahaemolyticus* isolates were observed. Remarkably, *V. parahaemolyticus* CHN-N3-2 isolate recovered from the shellfish *P. undulate* had tolerance to five heavy metals Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺, and Zn²⁺. The heavy metal tolerance trend of the 12 *V. parahaemolyticus* isolates was Hg²⁺ > Zn²⁺ > Cd²⁺ > Cu²⁺ > Cr³⁺ > Pb²⁺ (Table 1).

Evolutionary relatedness of the *V. parahaemolyticus* strains was examined by the ERIC-PCR assay. This analysis revealed that all the tested strains were classified into 14 different ERIC genotypes, and the UPGMA algorithm grouped the ERIC genotypes into five distinct clusters (Clusters A–E) (Figure 1). *Vibrio parahaemolyticus* ATCC33847 (*tdh*⁺ *trh*[−]) and ATCC17802 (*tdh*[−] *trh*⁺) strains of clinical origin fell into Cluster B, whereas the remaining of aquatic product origins fell into Clusters A, C, D, and E. *Vibrio parahaemolyticus* isolates discovered from three shellfish (O. gigas thunberg, *P. undulate*, and *S. consticta*), two crustaceans (*L. vannamei* and *O. oratoria*), and two fish (*A. nobilis* and *C. idellus*) were grouped into the largest Cluster D with 7 ERIC genotypes, whereas Cluster A contained only the *V. parahaemolyticus* CHN-N3-2 isolate that had tolerance to 4 antimicrobial agents and 5 heavy metals. The Hg and AMP/KAN/RIF/STR resistance profile was the most predominant among the strains tested (Figure 1). These results demonstrated genetic diversity of the *V. parahaemolyticus* isolates recovered from the 12 species of commonly consumed aquatic products.

Distinct Secretomic Profiles of the *V. parahaemolyticus* Isolates

The supernatant of the *V. parahaemolyticus* cultures at midlogarithmic phases was collected, and extracellular proteins were extracted and analyzed by 2D-GE. This analysis uncovered distinct secretomic profiles of the 12 *V. parahaemolyticus* isolates of various aquatic product origins (Figure 2). The patterns yielded from three independent 2D-GE gels of each isolate were consistent (figures not shown). Based on the consensus patterns, 11 extracellular protein spots (marked with blue circles, Figure 2) were observed at similar locations on all the 2D-GE patterns derived from the 12 *V. parahaemolyticus* isolates. Notably, the *V. parahaemolyticus* CHN-B2-28 isolate recovered from *R. philippinarum* appeared to secret more extracellular proteins (35) than the other isolates (17–30). Additionally, a total of 28 differential extracellular proteins (marked with different numbers in red, Figure 2) were found from the distinct secretomic profiles. All common protein spots and the remaining differential protein spots among the 12 *V. parahaemolyticus* isolates were excised from the 2D-GE gels and digested with the trypsin. The resulting peptides were further identified by the LC-MS/MS analysis.

Identification of Common and Differential Extracellular Proteins of the *V. parahaemolyticus* Isolates

In this study, the LC-MS/MS technique was used to identify all common and differential extracellular proteins of the *V. parahaemolyticus* isolates. Based on the secretomic profiles, 11 common extracellular proteins shared among the 12 isolates were successfully obtained (Table 2). Of these proteins, the majority (*n = 7*) were cell membrane and periplasm components, including TolC protein (Spot a), maltoporin (Spot b), maldextrin-binding protein (Spot d), putrescine-binding periplasmic protein (Spot f), gram-negative porin family protein (Spot h), outer membrane protein W (OmpW, Spot j), and basal-body rod modification protein FlgD (Spot i). For the others

²http://www.premierbiosoft.com/
(n = 4), the Spot c was identified as elongation factor Tu (EF-Tu). Spot e was phosphoglucomutase (PNGM) involved in carbohydrate metabolism and peptidoglycan biosynthetic pathway, whereas Spot g was fructose-bisphosphate aldolase that also acts as a transcriptional regulator in pathogenic Francisella (Ziveri et al., 2017). Additionally, the Spot k matched an uncharacterized protein encoded by the H320_01320 gene of V. parahaemolyticus 49 strain (GenBank: AONA000000000.1) with currently unknown function in public databases (Table 2).

A total of 28 differential extracellular proteins were also successfully identified and listed in Table 3. The metabolism-related proteins (n = 7) constituted the largest proportion of the identified proteins, including three glycolysis-related proteins: enolase (Spot S2), phosphofructokinase (PFK) (Spot S6), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Spot S13); one carbohydrate metabolism-related protein: transaldolase (Spot S5); one protein catabolism-related protein: ATP-dependent zinc metalloprotease (FtsH, Spot S10); one tricarboxylic acid cycle-related protein: succinate dehydrogenase iron–sulfur subunit (SDISS, Spot S17); and one polyphosphate metabolism-related protein: inorganic pyrophosphatase (PPase, Spot S25). Moreover, five differential extracellular proteins were involved in amino acid and nucleotide biosynthesis. For example, Spots S3, S11, and S22 were identified as 4-hydroxy-tetrahydrodipicolinate synthase (DHDPS), aspartate-semialdehyde dehydrogenase (AdSS) and elongation factor Ts (EF-Ts) in amino acid biosynthesis, respectively, whereas Spots S1 and S9 were adenylosuccinate synthetase (AdSS) and ribose-phosphate pyrophosphokinase in nucleotide biosynthesis, respectively. Notably, two bacterial flagellin
TABLE 2 | Identification of the common protein spots on the secretomic profiles of the 12 V. parahaemolyticus isolates by LC-MS/MS analysis.

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function
a	A6B7J5	TolC protein	A79_3452	47,982.46	4.72	32.13	Efflux transmembrane transporter activity, outer membrane
b	A0A2R9VS999	Maltoporin	lamB	46,237.27	4.54	29.55	Maltodextrin transmembrane transporter activity, maltose transporting porin activity, ion transport, cell outer membrane
c	A0A0M9CAT1	Elongation factor Tu	tuf	43,151.54	4.8	11.17	GTPase activity, GTP binding, translation elongation factor activity, cytoplasm
d	S5J784	Outer membrane lipoprotein	malE	42,126.25	4.84	41.07	Carbohydrate transmembrane transporter activity, periplasm
e	Z2EVN8	Phosphoglucosamine mutase	glmM	39,259.29	4.74	14.17	Magnesium ion binding, phosphoglucosamine mutase activity, carbohydrate metabolic process
f	A0A0D1FMZ9	Putrescine-binding periplasmic protein	potD	39,016.78	4.83	29.57	Polyamine binding, polyamine transport, periplasm
g	S6SY4	Fructose-bisphosphate aldolase	M634_15410	38,880.23	4.7	11.45	Fructose-bisphosphate aldolase activity, zinc ion binding, glycolytic process
h	Z2EPJ8	Gram-negative porin family protein	D046_2206	36,284.98	4.25	18.69	Porin activity, membrane
i	Q79Y19	Basal-body rod modification protein	VP0777	24,895.75	4.75	54.47	Bacterial-type flagellum organization, cell projection, cilium, flagellum
j	S5J784	Outer membrane protein W	M634_15860	23,467.38	4.98	14.02	Outer membrane
k	A0A0D1ER15	Uncharacterized protein	H320_01320	19,780.83	4.93	29.83	—*

a—, not detected.

Structural proteins were identified, including flagellin C (Spot S7) and polar flagellin B/D (Spot S8). In addition, Spot S27 matched an uncharacterized protein encoded by the EAP16_05165 gene of V. parahaemolyticus MAVP-R strain (GenBank: CP022553.2).

Interestingly, five differential extracellular proteins were identified as ATP-binding cassette (ABC) transporters that constitute one of the largest families of membrane proteins (Theodoulou and Kerr, 2015), including glycine/betaine ABC transporter substrate-binding protein (TSBP) (Spot S12), choline ABC TSBP (Spot S14), d-ribose ABC TSBP (Spot S15), arginine ABC TSBP (Spot S18), and peptide ABC transporter periplasmic peptide-binding protein (TTPBP) (Spot S24). Moreover, the Spot S16 was d-ribose-binding periplasmic protein that has ATPase-coupled monosaccharide transmembrane transporter activity, whereas Spot S23 matched outer membrane lipoprotein carrier protein.

Remarkably, in this study, several identified extracellular proteins of the V. parahaemolyticus isolates have been reported to be involved in bacterial pathogenesis, including Spots a, b, c, S2, S5, S7, S8, and S26. The former three proteins TolC (Spot a), maltoporin (Spot b), and EF-Tu (Spot c) were secreted by all the isolates, and more than half of the isolates also secreted the enolase (Spot S2) and transaldolase (Spot S5). In contrast, only a few isolates secreted the flagellin C (Spot S7), polar flagellin B/D (Spot S8), and superoxide dismutase (Spot S26). For instance, the latter was only observed on the secretomic profiles of the V. parahaemolyticus isolates from the CHN-B5-29 and CHN-B6-62 isolates recovered from P. magellanicus and S. constricta, respectively. Among all the V. parahaemolyticus isolates of aquatic product origins, the CHN-B2-28 isolate from R. philippinarum appeared to secrete most of the extracellular virulence-associated proteins compared to the other isolates.

Secretomic Comparison of the V. parahaemolyticus Isolates From Three Kinds of Aquatic Products

The secretomic profiles derived from the V. parahaemolyticus isolates of the shellfish, crustaceans, and fish origins were different. For instance, there were 14 common and 14 differential extracellular proteins identified from the secretomic profiles of the V. parahaemolyticus CHN-B2-28, CHN-B5-29, CHN-B6-62, CHN-B8-26, CHN-N3-2, CHN-N4-18, CHN-N8-5, and CHN-N10-18 isolates recovered from the eight species of shellfish (Figures 2A–H). Significantly, there were six extracellular proteins appeared only on the secretomic profile of the shellfish origin, including the polar flagellin B/D (Spot S8), glycine/betaine ABC TSBP (Spot S12), GAPDH (Spot S13), d-ribose-binding periplasmic protein (Spot S16), superoxide dismutase (Spot S26), and an uncharacterized protein (Spot S27) (Table 3).

Comparison of the secretomic profiles of the V. parahaemolyticus isolates from two crustaceans revealed that the V. parahaemolyticus CHN-N2-5 isolate recovered from L. vannamei secreted more abundant proteins than the CHN-N1-56 isolate from O. oratoria (Figures 2I,J). A total of 16 common and 12 differential extracellular proteins on the secretomic profiles of these two isolates were identified. Spots S1, S2, S4, and S25, identified as AdSS, enolase, thioredoxin,
TABLE 3

Identification of the differential protein spots on the secretomic profiles of the 12 *V. parahaemolyticus* isolates by LC-MS/MS analysis.

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function
S1	A0A0D8WTD1	Adenylosuccinate synthetase	purA	45,652.88	4.83	12.44	Adenylosuccinate synthase activity, GTP binding, magnesium ion binding, AMP biosynthetic process, cytoplasm
S2	Z2ECU7	Enolase	eno	45,561.11	4.84	25.64	Magnesium ion binding, phosphopyruvate hydratase activity, glycolytic process, cytoplasm, secreted, cell surface, extracellular region, phosphopyruvate hydratase complex
S3	A0A0M9Q0M8	4-Hydroxy-tetrahydrodipicolinate synthase	dapA	31,256.2	4.71	22.26	4-Hydroxy-tetrahydrodipicolinate synthase activity, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate, cytoplasm
S4	A0A0D1E7V7	Thioredoxin reductase	H520_01355	34,458.4	4.8	19.75	Thioredoxin-disulfide reductase activity, removal of superoxide radicals, cytoplasm
S5	A0A0D1EJC9	Transaldolase	tal	34,805.45	4.86	17.09	Sedoheptulose-7-phosphate: D-glycereraldehyde-3-phosphate glyceronetransferase activity, carbohydrate metabolic process, pentose-phosphate shunt, cytoplasm
S6	S5ITG7	Phosphofructokinase	fruK	34,822.23	4.99	9.88	1-Phosphofructokinase activity, ATP binding
S7	A0A0D1EZB6	Flagellin C	H534_00575	39,848.5	4.86	39.63	Structural molecule activity, bacterial-type flagellum-dependent cell motility
S8	Q56702	Polar flagellin B/D	flaB	40,172.91	4.89	43.12	Structural molecule activity, bacterial-type flagellum-dependent cell motility
S9	A0A0M9CAE5	Ribose-phosphate pyrophosphokinase	prs	33,916.46	5.16	12.74	ATP binding, kinase activity, magnesium ion binding, ribose phosphate diphosphokinase activity, 5-phosphoribose 1-diphosphate biosynthetic process, nucleoside metabolic process, nucleotide biosynthetic process, ribonucleoside monophosphate biosynthetic process
S10	A0A0D1UWT7	ATP-dependent zinc metalloprotease FtsH	hflB	72,648.12	5.11	5.61	ATPase activity, ATP binding, metalloendopeptidase activity, zinc ion binding, protein catabolic process
S11	A0A072K96	Aspartate-semialdehyde dehydrogenase	asd	40,210.86	5.29	4.58	Aspartate-semialdehyde dehydrogenase activity, NADP binding, de novo L-methionine biosynthetic process, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate, theanine biosynthetic process
S12	A0A0L8RX82	Glycine/betaine ABC TSBP	WR32_14495	34,236.49	5.6	24.36	Choline binding, transmembrane transporter activity, choline transport, ATP-binding cassette (ABC) transporter complex, periplasmic space
S13	Z2F2I8	Glyceraldehyde-3-phosphate dehydrogenase	D046_0544	35,225.62	5.26	25.38	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor
S14	A0A4Q0JZC8	Choline ABC TSBP	D5E78_23820	34,357.45	5.06	33.33	Choline binding, transmembrane transporter activity, periplasm
S15	A0A0D1FHL7	d-Ribose ABC TSBP	H323_16900	30,690.84	4.98	65.07	ATPase-coupled monosaccharide transmembrane transporter activity, hydrolase activity
S16	A6AZB7	d-Ribose-binding periplasmic protein	A79_4530	30,676.77	4.91	65.07	Hydrolase activity, kinase activity
S17	A0A0D1F2I1	Succinate dehydrogenase iron–sulfur subunit	H323_04040	27,500.27	4.94	31.30	2 iron, 2 sulfur cluster binding, 3 iron, 4 sulfur cluster binding, 4 iron, 4 sulfur cluster binding, electron transfer activity, metal ion binding, succinate dehydrogenase (ubiquinone) activity, tricarboxylic acid cycle
S18	A0A0L7Z6L0	Arginine ABC TSBP	ACS91_16450	27,341.39	4.82	10.93	Ligand-gated ion channel activity, nitrogen compound transport, membrane, outer membrane-bounded periplasmic space
S19	A0A0L7Y2R8	Cytochrome C	ACS91_10120	14,421.19	4.57	25.55	Electron transfer activity, heme binding, iron ion binding

(Continued)
TABLE 3 | Continued

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pl	Sequence coverage (%)	Putative function
S21	A0AD1G7K7	l-ectoine synthase	ectC	14,752.49	4.94	18.75	Ectoine synthase activity
S22	Q87MD9	Elongation factor Ts	tsf	29,773.89	5.18	13.17	Translation elongation factor activity, cytoplasm
S23	A0A2R9KF8	Outer membrane lipoprotein carrier protein	loIA	23,437.09	5.37	22.60	Lipoprotein localization to outer membrane, lipoprotein transport, periplasmic
S24	Q877M1	Peptide ABC TPPBP	VP0048	57,448.81	5.96	4.45	Transmembrane transport
S25	Z2ED9	Inorganic pyrophosphatase	ppa	19,644.14	4.82	48.30	Inorganic diphosphatase activity, magnesium ion binding, phosphate-containing compound metabolic process, cytoplasm
S26	A0A072IV06	Superoxide dismutase	sodB	21,540.77	4.95	13.40	Metal ion binding, superoxide dismutase activity
S27	A0A4S3TGP2	Uncharacterized protein	E4P16_05165	31,030.6	4.65	16.28	—*
S28	A0A072LHX1	Nitrogen regulatory protein P-II	ACS91_04985	12,471.24	4.87	42.86	Enzyme regulator activity, regulation of nitrogen utilization

*—, not detected.

reductase (TrxR), and PPase, respectively, were secreted only by the CHN-N1-56 isolate, whereas eight proteins were secreted by the CHN-N2-5 isolate, including the DHDPS (Spot S3), d-ribose ABC TSBP (Spot S15), SDISS (Spot S17), cytochrome C (Spot S19), l-ectoine synthase (Spot S20), DNA starvation/stationary phase protection protein (Spot S21), peptide ABC TPPBP (Spot S24), and nitrogen regulatory protein P-II (Spot S28).

The numbers of extracellular proteins secreted by the *V. parahaemolyticus* CHN-L7-40 and CHN-Q5-1 isolates of the fish origin were similar. A total of 26 common and five differential extracellular proteins on the secretomic profiles of these two isolates were identified. For instance, Spots S9 and S18, identified as ribose-phosphate pyrophosphokinase and arginine ABC TSBP, respectively, were shown only on the secretomic profile of the CHN-L7-40 isolate from *A. nobilis* (Figure 2K), whereas Spots S2, S10, and S25, identified as enolase, ATP-dependent zinc metalloprotease FtsH, and PPase, respectively, were secreted only by the CHN-Q5-1 isolate from *C. idellus* (Figure 2I).

Secretomic Comparison of the V. parahaemolyticus Isolates With Pathogenic Reference Strains

The secretomic profiles of the *V. parahaemolyticus* ATCC33847 and ATCC17802 strains of clinical origin were also obtained for comparative secretomic analysis, although they have been reported in our prior research (He et al., 2015). One interesting observation was that the toxic ATCC33847 and ATCC17802 strains appeared to secrete more extracellular proteins (59–62) than the *V. parahaemolyticus* isolates recovered from the 12 species of aquatic products (17–35), consistent with our prior results (He et al., 2015). Comparative secretomic analysis revealed that approximately 36.4% (4/11) of the common and 42.9% (12/28) of the differential extracellular proteins secreted by the 12 *V. parahaemolyticus* isolates were observed at similar locations on the secretomic profiles of the ATCC33847 and the ATCC17802 strains (Supplementary Figure S1). For instance, four extracellular proteins secreted by all the *V. parahaemolyticus* strains of aquatic product and clinical origins included the maltoporin (Spot b), EF-Tu (Spot c), maltodextrin-binding protein (Spot d), and PNGM (Spot e).

Distinct Proteomic Profiles of the V. parahaemolyticus Isolates

The 2D-GE and LC-MS/MS techniques were also used to analyze proteomics of the *V. parahaemolyticus* isolates recovered from the 12 species of aquatic products, and the obtained proteomic profiles are presented in Figure 3. The patterns yielded from three independent 2D-GE gels of each isolate were consistent (figures not shown). This analysis also revealed distinct proteomic profiles showing various visible differential protein spots (343–312) among the 12 *V. parahaemolyticus* isolates (Figures 3A–L). The *V. parahaemolyticus* CHN-N4-18 isolate recovered from *P. viridis* appeared to express the highest number of intracellular proteins (343) among all the isolates (Figure 3F). In contrast, approximately 312 intracellular proteins were observed from the proteomic profile of the CHN-B8-26 isolate from *S. strictus* (Figure 3D). Notably, for the crustaceans origin, the CHN-N1-56 isolate from *L. vannamei* expressed much more intracellular proteins (342, Figure 3I) than the CHN-N2-5 isolate from *O. oratoria* (314, Figure 3J).

Identification of Differential Intracellular Proteins of the V. parahaemolyticus Isolates

Differential intracellular proteins of the 12 *V. parahaemolyticus* isolates were identified by LC-MS/MS analysis and summarized in Table 4. A total of 97 protein sequences were obtained and classified into three major GO categories in the GO
FIGURE 3 | The proteomic profiles of the 12 V. parahaemolyticus isolates by the 2D-GE analysis. (A–L) V. parahaemolyticus CHN-B2-28, CHN-B5-29, CHN-B6-62, CHN-B8-26, CHN-N3-2, CHN-N4-18, CHN-N8-5, CHN-N10-18, CHN-N1-56, CHN-N2-5, CHN-L7-40, and CHN-Q5-1, respectively. The differential intracellular protein spots marked with red numbers were characterized by the LC-MS/MS analysis. pI, isoelectric point.
TABLE 4
Identification of the differential protein spots on the proteomic profiles of the 12 V. parahaemolyticus isolates by LC-MS/MS analysis.

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function
P1	Q87MW0	Aldehyde-alcohol dehydrogenase	VP2121	97,121.96	5.73	26.78	Acetaldehyde dehydrogenase (acytylating) activity, alcohol dehydrogenase (NAD+) activity, metal ion binding, alcohol metabolic process, carbon utilization
P2	S5J2K3	Peptide ABC TSBP	M634_12650	63,520.87	5.35	3.70	Transmembrane transport, ATP-binding cassette (ABC) transporter complex
P3	A0A249W792	Urocanate hydratase	hutU	61,866.37	5.36	16.28	Urocanate hydratase activity, histidine catabolic process to glutamate and formamide, cytoplasm
P4	S5J1K8	Acetylornithine aminotransferase	argD	43,361.13	5.54	22.08	N2-acetyl-L-ornithine:2-oxoglutarate 5-aminotransferase activity, pyridoxal phosphate binding, arginine biosynthetic process, cytoplasm
P5	A0A0D1EDK5	Maltose/maltodextrin import ATP-binding protein MalK	malK	41,156.69	5.54	7.53	ATPase activity, ATPase-coupled maltose transmembrane transporter activity, ATP binding, cell membrane
P6	S5JWV0	3-Ketoacyl-CoA thiolase	M634_20530	41,688.1	5.2	33.25	Transferrase activity, transferring acyl groups other than amino-acyl groups
P7	A0A4Q9K4T4	Aspartate-semialdehyde dehydrogenase	asd	40,284.89	5.2	29.11	Aspartate-semialdehyde dehydrogenase activity, NADP binding, de novo L-methionine biosynthetic process, lysine biosynthetic process via diaminopimelate, threonine biosynthetic process
P8	A0A249W988	Fructose-1,6-bisphosphatase	gplX	35,981.09	4.95	12.84	Fructose 1,6-bisphosphatase activity, metal ion binding, gluconeogenesis, glycerol metabolic process
P9	Q87L48	Putative malate oxidoreductase	VP2767	46,163.47	4.92	26.82	Malate dehydrogenase (decarboxylating) (NAD+) activity, metal ion binding, NAD binding
P10	A6B3V5	Phosphopentomutase	dedB	44,096.96	4.85	25.62	Magnesium ion binding, manganese ion binding, phosphopentomutase activity, 5-phosphoribose 1-diphosphate biosynthetic process, cellular metabolic compound salvage, deoxyribonucleotide catabolic process, cytoplasm
P11	S5J1H6	Elongation factor Tu	tuf	43,151.54	4.8	45.43	GTPase activity, GTP binding, translation elongation factor activity, cytoplasm
P12	A0A242LUZ1	Glycerol dehydrogenase	gldA	38,468.69	5.05	30.56	Metal ion binding, oxidoreductase activity, acting on CH-OH group of donors
P13	A0A0M9C662	Delta-aminolevulinic acid dehydratase	ACX03_14425	39,275.34	5.07	16.43	Metal ion binding, porphobilinogen synthase activity, porphyrin-containing compound biosynthetic process
P14	A0A0D1DR13	Membrane protein	H323_04870	35,567.09	4.42	19.38	Integral component of membrane, cell outer membrane
P15	A0A4S3T4K4	OmpA family protein	E4P16_23225	34,100.43	4.48	21.63	Membrane
P16	S5ITG7	Phosphofructokinase-aseompa	fruK	34,822.23	4.99	10.80	1-phosphofructokinase activity, ATP binding
P17	A0A4V2JS07	Succinylglutamate desuccinylase	D5E78_01560	38,764.47	5.39	16.37	Hydrolase activity, acting on ester bonds, succinylglutamate desuccinylase activity, zinc ion binding, arginine catabolic process to glutamate, arginine catabolic process to succinate
P18	Q87J46	Dihydroorotase	pycC	37,828.45	5.56	2.63	Dihydroorotase activity, zinc ion binding, pyrimidine nucleobase biosynthetic process, de novo UMP biosynthetic process
P19	A0A2R9VMU2	Iron-sulfur cluster carrier protein	C1S91_13180	38,959.17	5.76	3.07	ATPase activity, ATP binding, iron-sulfur cluster binding, metal ion binding
P20	Q87MD9	Elongation factor Ts	tuf	29,773.89	5.18	14.23	Translation elongation factor activity, cytoplasm
P21	A0A0D1E4M2	5′-Nucleotidase SurE	surE	28,160.44	5.15	20.54	5′-nucleotidase activity, metal ion binding, nucleotide binding, cytoplasm
P22	S5J2A5	FMN reductase	tre	26,423.66	5.09	8.86	Aquacobalamin reductase activity

(Continued)
TABLE 4 | Continued

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function
P23	Q87S44	Antioxidant, AhpC/Tsa family	VP0580	22,236.94	5.03	18.72	Peroxiredoxin activity, cell redox homeostasis, cell defense
P24	SSJ412	Endonuclease L-PSP	M634_15815	13,800.57	4.83	33.33	—*
P25	A6B8W0	Autonomous glycy radical cofactor	grcA	13,928.45	4.71	37.60	Catalytic activity
P26	A0A75BN0D0	Membrane protein	ompW	23,226.04	4.85	17.76	Outer membrane
P27	Z2E3N3	Peptidyl-prolyl cis-trans isomerase	fkpA	28,267.52	4.74	33.08	Peptidyl-prolyl cis-trans isomerase activity, protein folding
P28	A6B9Y8	Triosephosphate isomerase	tpA	26,990.12	4.68	10.16	Triose-phosphate isomerase activity, gluconeogenesis, glycolytic process, cytoplasm
P29	A0A2R9WI74	Ribokinase	rbsK	32,241.19	4.58	17.38	ATP binding, metal ion binding, ribokinase activity, 6-ribose catabolic process, cytoplasm
P30	Q87SM3	Putative glucose-6-phosphate 1-epimerase	VP2158	32,318.19	4.65	12.59	Carbohydrate binding, glucose-6-phosphate 1-epimerase activity, carbohydrate metabolic process
P31	A0A0NCCK1	Glucose-6-phosphate isomerase	pgl	60,971.03	5.25	12.00	Glucose-6-phosphate isomerase activity, gluconeogenesis, glycolytic process, cytoplasm
P32	A0A0D1F327	Glycerol-3-phosphate dehydrogenase	gldO	59,074.41	6.1	3.24	Sn-glycerol-3-phosphate:ubiquinone-8 oxidoreductase activity, glycerol-3-phosphate metabolic process, glycerol-3-phosphate dehydrogenase complex
P33	Z2EV38	Periplasmic serine endopeptidase DegP-like	D046_1401	43,894.46	6.2	22.28	Serine-type endopeptidase activity, periplasm
P34	Q87H06	GMP reductase	guaC	37,288.16	6.16	15.80	GMP reductase activity, metal ion binding, purine nucleotide metabolic process, GMP reductase complex
P35	A6BA54	Tyrosine-tRNA ligase	tyrS	44,069.21	5.44	11.39	ATP binding, RNA binding, tyrosine-tRNA ligase activity, tyrosyl-tRNA aminoacylation, cytoplasm
P36	Q87RK0	Phosphoenolpyruvate-protein phosphotransferase	VP0794	63,191.46	4.65	16.03	Kinase activity, metal ion binding, phosphoenolpyruvate-protein phosphotransferase activity, phosphoenolpyruvate-dependent sugar phosphotransferase system, cytoplasm
P37	A0A0M9C888	Fructose-biphosphatase aldolase	ACX03_06815	38,717.1	4.75	25.98	Fructose-biphosphatase aldolase activity, zinc ion binding, glycolytic process
P38	Q87M6	Succinyl-diaminopimelate desuccinylase	dapr	41,037.76	4.75	4.76	Cobalt ion binding, metalloepitidase activity, succinyl-diaminopimelate desuccinylase activity, zinc ion binding, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate
P39	A0A072KPG4	Succinate-CoA ligase [ADP-forming] subunit	sucC	41,569.02	4.9	12.37	ATP binding, magnesium ion binding, succinate-CoA ligase (ADP-forming) activity, tricarboxylic acid cycle
P40	A0A072H844	Glyceraldehyde-3-phosphate dehydrogenase	gap	35,225.62	5.26	22.36	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor, glucose metabolic process
P41	A0A0L6T664	YicC family protein	C15S91_15255	33,216.67	5.31	12.15	—*
P42	A0A0D1FV70	Oxidoreductase	H320_23485	33,964.2	5.43	25.17	—*
P43	A0A0L8TW88	Threonine aldolase	WR32_14980	36,107.79	5.33	11.08	Lysase activity, cellular amino acid metabolic process
P44	A0A072K606	DNA-binding response regulator	arcA	27,034.39	5.4	12.61	DNA binding, phosphorelay signal transduction system, regulation of transcription, DNA-templated
P45	A0A0D1FP64	OmpR protein	ompR	27,362.26	5.79	7.95	DNA binding, phosphorelay signal transduction system, regulation of transcription, DNA-templated

(Continued)
Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pl	Sequence coverage (%)	Putative function
P46	A6B711	Cytochrome c oxidase, Cbb3-type, subunit II	ccoO	23,607.48	5.41	14.56	Cytochrome-c oxidase activity, heme binding, metal ion binding, integral component of membrane
P47	A0A2S1MIM9	Azurin	azu	15,858.76	5.21	24.00	Copper ion binding, electron transfer activity, periplasmic space
P48	Q87RS3	Lipoprotein	VP0704	29,069.66	4.83	11.90	—*
P49	Z2EMT8	Proline dehydrogenase domain protein	putA	25,474.35	4.91	5.11	Oxidoreductase activity
P50	A0A0D1GLI3	Cytidine kinase	cmk	24,486.65	4.94	30.97	ATP binding, cytidylate kinase activity, pyrimidine nucleotide metabolic process, cytoplasm
P51	Q87LS4	S-ribosylhomocysteine lyase	luxS	19,033.54	4.97	37.21	Iron ion binding, S-ribosylhomocysteine lyase activity, quorum sensing
P52	A0A242V2G1	tRNA-binding protein	BA740_07020	12,307.12	4.91	25.45	tRNA binding
P53	Q87Q72	Putative SpoOM-related protein	VP1278	27,288.79	4.88	17.41	ATP binding, metalloendopeptidase activity
P54	A6B9V7	ATP-dependent metallopeptidase HflB	hflB	28,787.85	4.86	5.86	Lyase activity
P55	A0A0L7YPB2	Dihydrodipicolinate synthase	ACS91_24330	33,972.53	4.73	5.26	Diaminopimelate decarboxylase activity, pyridoxal phosphate binding, transaminase activity, biosynthetic process, cellular amino acid metabolic process
P56	A0A0D1EQH0	Diaminopimelate decarboxylase	lysA	45,889.47	5.01	7.91	Biological process
P57	A0A0F2CT7	Cysteine desulfurase IscS	iscS	44,994.75	5.59	18.81	2 iron, 2 sulfur cluster binding, cysteine desulfurase activity, metal ion binding, pyridoxal phosphate binding, [2Fe–2S] cluster assembly, cytoplasm
P58	S5IT22	Aminotransferase	M634_11710	43,311.68	5.1	20.20	Pyridoxal phosphate binding, transaminase activity, biosynthetic process, cellular amino acid metabolic process
P59	A0A4S3T6U8	Phosphoenolpyruvate carboxylase	E4P16_18525	99,302.21	5.42	14.03	Magnesium ion binding, phosphoenolpyruvate carboxylase activity, carbon fixation, oxaloacetate metabolic process
P60	A0A072JV5B	Chaperone protein CipB	cipB	95,871.32	5.31	32.44	ATP binding, protein metabolic process, protein refolding, response to heat, cytoplasm
P61	A0A249V7T3	Formate acetyltransferase	pfIB	84,535.06	5.25	19.26	Formate C-acetyltransferase activity, carbohydrate metabolic process, cytoplasm
P62	SSJB5	4-Alpha-glucanotransferase	M634_17555	81,840.77	5.33	12.40	4-Alpha-glucanotransferase activity, C-terminus, 4-alpha-glucanotransferase activity
P63	A0ADD1EM30	S-adenosymethionine synthase	metK	41,990.15	5	20.57	ATP binding, magnesium ion binding, methionine biosynthetic process, one-carbon metabolic process, S-adenosymethionine biosynthetic process, cytoplasm
P64	A6B6D3	d-Erythrose-4-phosphate dehydrogenase	epd	38,248.9	5.91	8.41	Erythrose-4-phosphate dehydrogenase activity, NAD binding, pyridoxal phosphate biosynthetic process, cytoplasm
P65	A0ADD1GED2	Fructose-bisphosphatase aldolase	H334_10810	38,880.23	4.7	32.96	Fructose-bisphosphatase aldolase activity, zinc ion binding, glycolytic process
P66	A6B2R4	Thiamin pyrophosphate-binding protein	thiB	36,582.97	4.88	5.45	Thiamine binding, thiamine transport, outer membrane-bounded periplasmic space
P67	A0A072I475	3-Oxoacyl-ACP synthase	ACS91_26270	42,617.75	4.95	14.14	3-Oxoacyl-[acyl-carrier-protein] synthase activity
P68	A0ADD1D1P9	DNA-directed RNA polymerase subunit alpha	rpoA	36,472.05	4.78	5.15	DNA binding, DNA-directed 5′-3′ RNA polymerase activity, protein dimerization activity, transcription, DNA-templated, DNA-directed RNA polymerase
P69	Z2EY3	Outer membrane β-barrel domain protein	D046_2887	25,508.96	4.51	10.00	Cell outer membrane, integral component of membrane

(Continued)
Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function
P70	A0A0D1GU29	OmpW	H334_14550	23,240.1	4.85	17.76	Outer membrane
P71	Q87SD2	Putative 4-hydroxy-4-methyl-2-oxogluturate aldolase	VP0492	17,708.02	4.96	21.88	4-Hydroxy-4-methyl-2-oxoglutarate aldolase activity, metal ion binding, oxaloacetate decarboxylase activity, ribonuclease inhibitor activity, regulation of RNA metabolic process
P72	A0A0L7ZQ3Q	Chaperone protein DnaK	dnaK	69,064.13	4.69	22.45	ATP binding, unfolded protein binding, protein folding
P73	A0A0L7VQ51	Uncharacterized protein	BA740_07860	62,820.77	4.61	14.81	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor, glucose metabolic process
P74	A0A0M3ECS2	Glyceraldehyde-3-phosphate dehydrogenase	AAY51_01480	35,968.15	4.59	9.37	Cell outer membrane, integral component of membrane, Translational termination, cytoplasm
P75	Q87KA1	ParB family protein	VP3077	32,304.73	6.49	6.14	DNA binding
P76	S52Z22	Membrane protein	M634_20630	36,013.43	4.28	17.02	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor, glucose metabolic process
P77	A0A0D1GIY4	Porin	H334_23665	35,968.15	4.59	9.37	Porin activity, ion transmembrane transport, cell outer membrane
P78	A0A3E1HFF1	OmpA-like domain-containing protein	BS585_10140	35,983.41	4.28	22.49	Cell outer membrane, integral component of membrane
P79	Z2ETQ8	Carbamoyl-phosphate synthase small chain	carA	23,039.6	4.81	15.64	Carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity
P80	A6AZG0	Outer membrane protein K	A79_4270	30,299.56	5.11	3.31	Cell outer membrane
P81	S5IU05	UraC phosphoribosyltransferase	upp	22,640.07	5.13	33.65	Cell outer membrane
P82	A0A0D1F5C1	Ribosome-recycling factor	frf	20,602.51	6.04	37.84	Translational termination, cytoplasm
P83	A6BCF0	Succinate dehydrogenase flavoprotein subunit	A79_2135	22,392.42	6.08	13.27	Succinate dehydrogenase activity
P84	Q87FQ1	Uncharacterized protein	VPA1627	18,996.89	6.11	4.65	(3R)-hydroxymyristyl-[acyl-carrier-protein] dehydratase activity, 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase activity, trans-2-decenoyl-acyl-carrier-protein isomerase activity, fatty acid biosynthetic process, cytoplasm
P85	A0A0D1E294	3-Hydroxydecanoyl-[acyl-carrier-protein] dehydratase	fabA	18,996.89	6.11	4.65	FMN binding, lactate dehydrogenase activity, lactate oxidation, cell inner membrane, Peripheral membrane protein, plasma membrane
P86	Q87G18	L-Lactate dehydrogenase	lldD	41,399.35	6.04	9.50	Sn-glycerol-3-phosphate:ubiquinone-8 oxidoreductase activity, glycerol-3-phosphate metabolic process, glycerol-3-phosphate dehydrogenase complex
P87	A0ADD1GKR8	Glycerol-3-phosphate dehydrogenase	glpD	58,536.82	6.09	18.88	Metal ion binding, oxidoreductase activity
P88	SSJ0E5	Alcohol dehydrogenase	M634_23710	40,190.77	5.06	24.87	Pyruvate dehydrogenase (acetyl-transferring) activity, glycolytic process
P89	A0A0D1F363	Pyruvate dehydrogenase E1 component subunit alpha	pdhA	40,238.89	5.1	12.64	Metal ion binding, pyrophosphatase activity, cytoplasm
P90	A6B1F6	Inorganic diphosphatase	A79_0160	33,028.53	4.59	13.95	Metal ion binding, pyrophosphatase activity, cytoplasm
P91	SS6600	Acetyltransferase	M634_19235	20,444.06	5.27	28.26	Acetyltransferase activity
P92	Z2EFM2	Single-stranded DNA binding protein	ssb	19,563.39	5.18	31.25	Single-stranded DNA binding, DNA recombination, DNA repair, DNA replication

(Continued)
but absent from the crustaceans and fish. Of these proteins, isolates from the eight species of shellfish, proteins only appeared on the proteomic profiles of the approximately 28.9% (28/97) of the differential Intracellular Figure 3 fish origins were also different (Supplementary Figure S2A). Interestingly, approximately 28.9% (28/97) of the differential Intracellular proteins only appeared on the proteomic profiles of the V. parahaemolyticus isolates from the eight species of shellfish, but absent from the crustaceans and fish. Of these proteins, the glycerol dehydrogenase (GldA, Spot P12), S'-nucleotidase surE (Spot P21), and putative glucose-6-phosphate 1-epimerase (G6PE, Spot P30) were shown only on the proteomic profile of the CHN-B2-28 isolate from R. philippinarum. The GldA (Spot P12) is required to catalyze the first step in fermentative glycerol metabolism, and its product is then funneled into the glycolytic pathway for further degradation. The S'-nucleotidase surE (Spot P21) has nucleotidase activity and is involved in nucleotide metabolism in Escherichia coli (Proudfoot et al., 2004). The G6PE (Spot P30) catalyzes glucose-6-phosphate to fructose-6-phosphate that converted to fructose-1,6-bisphosphate under the catalysis of PFK (Spot P16). In this study, seven intracellular proteins were found only on the proteomic profile of the CHN-B5-29 isolate from P. magellanicus, including the periplasmic serine endoprotease DegP-like (Spot P33), GAPDH (Spot P40), oxidoreductase (Spot P42), threonine aldolase (Spot P43), azurin (Spot P47), s-ribosylhomocysteine lyase (LuxS, Spot P51), and tRNA-binding protein (Spot P52). Among these proteins, for instance, the oxidoreductase (Spot P42) facilitates the detoxification of xenobiotic organic compounds by various microorganisms (Khatoon et al., 2017). The threonine aldolase (Spot P43) catalyzes the cleavage of threonine into glycine and acetaldehyde and involves in threonine decomposition and glycine synthesis (Liu et al., 2015). Azurin (Spot P47) is necessary for bacterial protection from oxidative stress (electron donor to nitrate reductase) and copper toxicity in P. aeruginosa (Mohammadi-Barzelighi et al., 2019). Additionally, the CHN-N4-18 isolate from P. viridis expressed the outer membrane β-barrel domain protein (Spot P69), OmpW (Spot P70), and putative 4-hydroxy-4-methyl-2-oxoglutarate aldolase (Spot P71) (Table 4). For the V. parahaemolyticus isolates of the crustaceans origin, six differential intracellular proteins appeared only on the proteomic profile of the CHN-N1-56 isolate from L. vannamei, including the ParB family protein (Spot P75), porin (Spot P77), outer membrane protein A (OmpA)–like domain-containing protein (Spot P78), uracil phosphoribosyltransferase (UPRT, Spot P81), ribosome-recycling factor (Spot P82), and an
uncharacterized protein (Spot P84) encoded by the VPA1627 gene of *V. parahaemolyticus* RIMD 2210633 strain (Table 4). Recent research has indicated that the UPRT (Spot P81) converts uracil to uridine monophosphate in the pyrimidine salvage pathway in the presence of phosphoribosyl pyrophosphate (Silva et al., 2019). Additionally, the carbamoyl-phosphate synthase small chain (Spot 79) was only expressed by the CHN-N1-56 and CHN-N2-5 isolates from *L. vannamei* and *O. oratoria*, respectively (Table 4).

For the *V. parahaemolyticus* isolates of the fish origin, six differential intracellular proteins were expressed only by the CHN-Q5-1 isolate from *C. idellus*, including the OmpK (Spot P80), alcohol dehydrogenase (Spot P88), pyruvate dehydrogenase E1 component subunit alpha (Spot P89), inorganic diphosphatase (Spot P90), acetyltransferase (Spot P91), and single-stranded DNA-binding protein (SSB, Spot P92). The acetyltransferase (Spot P91) acts on acetylation of amino acids, which determines vital regulatory processes (Christensen et al., 2019). In addition, three intracellular proteins were only expressed by the CHN-L7-40 isolate from *A. nobilis*, including the tRNA-specific 2-thiouridylate MnmA (Spot P93), S-(hydroxymethyl) glutathione dehydrogenase (Spot P94), 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase (Spot P96), and transaldolase (Spot P97) (Table 4).

Proteomic Comparison of the *V. parahaemolyticus* Isolates With Pathogenic Reference Strains

The proteomic profiles of the *V. parahaemolyticus* ATCC33847 and ATCC17802 strains were also obtained (Supplementary Figure S3). These toxic strains of clinical origin appeared to express more intracellular proteins (459–462) than the 12 *V. parahaemolyticus* isolates of aquatic product origins (312–343). Comparative proteomic analysis revealed that approximately 23.7% (23/97) of the differential intracellular proteins expressed by the 12 *V. parahaemolyticus* isolates (Table 4) were observed at similar locations on the proteomic profiles of the ATCC33847 and the ATCC17802 strains (Supplementary Figure S3), including three membrane-related proteins: OmpA family protein (Spot P15), cytochrome c oxidase (Spot P46), and lipoprotein (Spot P48); 10 metabolism-related proteins: aldehyde-alcohol dehydrogenase (AdhE) (Spot P1), PFK (Spot P16), succinylglutamate desuccinylase (Spot P17), FMN reductase (Spot P22), autonomous glycol radical cofactor (Spot P25), triosephosphate isomerase (Spot P28), glucose-6-phosphate isomerase (Spot P31), glyceral-3-phosphate dehydrogenase (Spot P32), GAPDH (Spot P40), and cytidylate kinase (Spot P50); three biosynthesis-related proteins: ASD (Spot P7), endoribonuclease 1-PSP (Spot P24), and tRNA-binding protein (Spot P52); two translation-associated proteins: EF-Tu (Spot P11) and EF-Ts (Spot P20); one transport protein [phosphoenolpyruvate-protein phosphotransferase (PtsA), Spot P36]; and four bacterial cell protection factors: antioxidant, alkyl hydroperoxide reductase C (AhpC)/Tsa family (AhpC) (Spot P23), periplasmic serine endoprotease DegP-like (Spot P33), cytidylate kinase (Spot P50), and ATP-dependent metalloprotease HflB (Spot P54) (Table 4).

Notably, among the differential intracellular proteins identified in this study, some were reported to be involved in the virulence of pathogenic bacteria, including the AdhE (Spot P1), OmpAs (Spots P15 and P78), AhpC (Spot P23), PtsA (Spot P36), and phosphoglycerate kinase (PGK) (Spot P95). The latter catalyzes the transfer of a phosphate group from 1,3-diphosphoglycerate to ADP to produce 3-phosphoglycerate and ATP (Smith et al., 2011).

Effects of Aquatic Product Matrix on Proteomic Profiles of the *V. parahaemolyticus* Isolates

To get insights into implications of aquatic product matrices on the proteomes of the 12 *V. parahaemolyticus* isolates, we incubated these isolates in their corresponding matrix media and identified a total of 71 differential intracellular proteins by the 2D-GE and LC-MS/MS analysis (Figures 4–6 and Table 5). These proteins were classified into three major GO categories, in which the most abundant GO term was catalytic activity (62.0%, 44/71), followed by cell (50.7%, 36/71) and binding (49.3%, 35/71). The opposite patterns were biological regulation (1.4%, 1/71), organelle (1.4%, 1/71), and structural molecule activity (1.4%, 1/71) (Supplementary Figure S2B).

The shellfish matrix media obviously changed the proteomic profiles of the 8 *V. parahaemolyticus* isolates of the shellfish origin (Figures 4A2–H2). For instance, approximately 319 and 326 intracellular protein spots were observed on the proteomic profiles of the CHN-N10-28 isolate grown in the TSB and *O. gigas thunberg* matrix media, respectively (Figures 4H1–H2). Among these, eight intracellular proteins were expressed by the CHN-N10-28 isolate grown in the *O. gigas thunberg* matrix medium (Figure 4H2), including the OmpA family protein (Spot H2-1), putative glucose-6-phosphate 1-epimerase (Spot H2-2), ribokinase (Spot H2-3), peptidyl-prolyl cis-trans isomerase (Spot H2-4), triosephosphate isomerase (Spot H2-5), autonomous glycol radical cofactor (Spot H2-6), GAPDH (Spot H2-8), and an uncharacterized protein (Spot H2-7) encoded by the VPA1627 gene of *V. parahaemolyticus* RIMD 2210633 strain with currently unknown functions in public databases (Table 5).

For the crustacean matrix media, for example, approximately 314 and 325 intracellular proteins were produced by the CHN-N2-5 isolate grown in the TSB and *O. oratoria* matrix media, respectively (Figures 5J1,J2). Two differential intracellular proteins were expressed by the CHN-N2-5 isolate grown in the former medium (Figure 5J1), including the glycine betaine-binding protein OpuAC (Spot J1-1), and DNA polymerase sliding clamp subunit (Spot J1-2). Remarkably, approximately 12 differential intracellular proteins were expressed by the CHN-N2-5 isolate grown in the *O. oratoria* matrix medium (Figure 5J2), including the deoxyribose-phosphate aldolase (Spot J2-1), phosphoribosyltransferase (Spot J2-2), outer membrane β-barrel domain protein (Spot J2-3), GrpE (Spot J2-4), lipoprotein (Spot...
FIGURE 4 | Effects of aquatic product matrices on proteomic profiles of the *V. parahaemolyticus* isolates of the shellfish origin. (A1–H1) *V. parahaemolyticus* CHN-2-28, CHN-B5-29, CHN-B6-62, CHN-B8-26, CHN-N3-2, CHN-N4-18, CHN-N8-5, and CHN-N10-18 isolates incubated in the TSB medium (pH 8.5, 3% NaCl) at 37°C, respectively. (A2–H2) The *V. parahaemolyticus* isolates were incubated in the *R. philippinarum*, *P. magellanicus*, *S. constricta*, *S. strictus*, *P. undulate*, *P. viridis*, *M. veneriformis*, and *O. gigas thunberg* matrices media at 37°C, respectively.
J2-5), azurin (Spot J2-6), 6,7-dimethyl-8-ribityllumazine synthase (Spot J2-7), histidine triad nucleotide-binding protein (Spot J2-8), 3-hydroxydecanoyl-(acyl-carrier-protein) dehydratase (Spot J2-10), succinate dehydrogenase flavoprotein subunit (Spot J2-11), glycerol-3-phosphate dehydrogenase (Spot J2-12), and an uncharacterized protein (Spot J2-9) encoded by the \textit{VPA1627} gene of \textit{V. parahaemolyticus} \textit{RIMD 2210633} strain (Table 5).

Likewise, for the fish matrix media, for instance, approximately 329 and 333 intracellular protein spots were observed on the proteomic profiles derived from the CHN-Q5-1 isolate grown in the TSB and \textit{C. idellus} matrix media, respectively (Figures 6L1, L2). The aspartate carbamoyltransferase (Spot L1-1) was expressed by the CHN-Q5-1 isolate grown in the former medium (Figure 6L1), whereas four were produced in the \textit{C. idellus} matrix medium (Figure 6L2), including the 3-chlorobenzoate-3,4-dioxygenase dehydrogenase (Spot L2-1), OmpA family protein (Spot L2-2), GrpE (Spot L2-3), and 50S ribosomal protein L9 (Spot L2-4) (Table 5). Additionally, to validate the differential proteins induced by the aquatic product matrices, we examined gene expression of several representative proteins by the quantitative RT-PCR assay. The resulting data were generally consistent with the proteomic analysis (Supplementary Figure S4).

Aquatic Product Matrix Composition

As shown in Supplementary Figure S5, the protein (3.73%–0.43%), carbohydrate (1.23%–0.01%), and crude fat (1.00%–0.01%) contents of the 12 types of aquatic product matrices were remarkably different. The protein concentration in the

![Figure 5](image1.png)

FIGURE 5 | Effects of aquatic product matrix on proteomic profiles of the \textit{V. parahaemolyticus} isolates of the crustaceans origin. (I1, J1) \textit{V. parahaemolyticus} CHN-N1-56 and N2-5 isolates incubated in the TSB medium (pH 8.5, 3% NaCl) at 37°C, respectively. (I2, J2) the CHN-N1-56 and N2-5 isolates incubated in the \textit{L. vannamei} and \textit{O. oratoria} matrices media at 37°C, respectively.

![Figure 6](image2.png)

FIGURE 6 | Effects of aquatic product matrix on proteomic profiles of the \textit{V. parahaemolyticus} isolates of the fish origin. (K1, L1) \textit{V. parahaemolyticus} CHN-L7-40 and Q5-1 isolates incubated in the TSB medium (pH 8.5, 3% NaCl) at 37°C, respectively. (K2, L2) the CHN-L7-40 and Q5-1 isolates incubated in the \textit{A. nobilis} and \textit{C. idellus} matrices media at 37°C, respectively.
TABLE 5: Identification of the differential proteins of the 12 *V. parahaemolyticus* isolates incubated between in the TSB and aquatic product matrix media.

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate/matrix medium
A2-1	A0A242UZI1	Glycerol dehydrogenase	gldA	38,468.69	5.05	30.56	Metal ion binding, xidoreductase activity, acting on CH-OH group of donors	CHN-B2-28/R. philippinarum
A2-2	A0A249W9I8	Fructose-1,6-bisphosphatase	gpxX	35,981.09	4.95	12.84	Fructose 1,6-bisphosphate 1-phosphatase activity, metal ion binding, gluconeogenesis, glycerol metabolic process	CHN-B2-28/R. philippinarum
A2-3	Q87M78	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase	dapD	35,639.98	4.99	7.00	2,3,4,5-Tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase activity, magnesium ion binding, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate, cytoplasm	CHN-B2-28/R. philippinarum
A2-4	A0A0D1EXH8	Choline ABC TSBP	H334_11605	34,297.4	5.06	15.71	Choline binding, transmembrane transporter activity, choline transport, ATP-binding cassette (ABC) transporter complex, periplasmic space	CHN-B2-28/R. philippinarum
A2-5	A6B711	Cytochrome c oxidase, Cbb3-type, subunit II	ccoO	23,607.48	5.41	14.56	Cytochrome-c oxidase activity, heme binding, metal ion binding, integral component of membrane	CHN-B2-28/R. philippinarum
B1-1	Q87MN7	3-oxoacyl-[acyl-carrier-protein] synthase I	VP2194	42,617.75	4.95	30.02	Transferase activity	CHN-B5-29/TSB medium
B1-2	A0A0D1EM30	S-adenosylmethionine synthase	metK	41,990.15	5	20.57	ATP binding, magnesium ion binding, methionine adenosyltransferase activity, one-carbon metabolic process, S-adenosylmethionine biosynthetic process, cytoplasm	CHN-B5-29/TSB medium
B1-3	A0A2S1MIM9	Azurin	azu	15,858.76	5.21	24.00	Copper ion binding, electron transfer activity, periplasmic space	CHN-B5-29/TSB medium
B1-4	S51D9	Universal stress protein	M634_02380	15,681.81	5.19	29.79	Cytoplasm	CHN-B5-29/TSB medium
D2-1	S5Z22	Outer membrane protein A (OmpA) family	M634_20630	36,013.43	4.28	17.02	Cell outer membrane, integral component of membrane	CHN-B8-26/S. strictus
D2-2	A0A072JT35	OmpA family protein	ACS91_20150	35,567.09	4.42	7.08	Cell outer membrane, integral component of membrane	CHN-B8-26/S. strictus
TABLE 5

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pl	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate/ matrix medium
D2-3	A0A4S3T4K4	OmpA family protein	E4P16_23225	34,100.43	4.48	21.63	Membrane	CHN-B8-26/S. strictus
D2-4	A6B9V7	ATP-dependent metalloendopeptidase HfIB	hflB	28,787.85	4.86	5.86	ATP binding, metalloendopeptidase activity	CHN-B8-26/S. strictus
D2-5	A0A0D1F327	Glycerol-3-phosphate dehydrogenase	glpD	59,074.41	6.1	3.24	Sn-glycerol-3-phosphate:ubiquinone-8 oxidoreductase activity, glycerol-3-phosphate metabolic process, glycerol-3-phosphate dehydrogenase complex	CHN-B8-26/S. strictus
E1-1	A0A0L7ZQQ3	Chaperone protein DnaK	dnaK	69,064.13	4.69	22.45	ATP binding, unfolded protein binding, protein folding	CHN-N3-2/TSB medium
E1-2	Q87RK0	Phosphoenolpyruvate-protein phosphotransferase	VP0794	63,191.46	4.65	16.03	Kinase activity, metal ion binding, phosphoenolpyruvate-protein phosphotransferase activity, phosphoenolpyruvate-dependent sugar phosphotransferase system, cytoplasm	CHN-N3-2/TSB medium
E1-3	A0A242UZU9	Triosephosphate isomerase	tpiA	26,989.18	4.78	21.88	Triose-phosphate isomerase activity, gluconeogenesis, glycolytic process, cytoplasm	CHN-N3-2/TSB medium
E1-4	A0A075BND0	Outer membrane protein W	ompW	23,224.04	4.85	17.76	Outer membrane	CHN-N3-2/TSB medium
E1-5	A6B8W0	Autonomous glycyl radical cofactor	grcA	13,928.45	4.71	37.60	Catalytic activity	CHN-N3-2/TSB medium
F1-1	Q87S20	DNA-directed RNA polymerase subunit alpha	rpoA	36,472.05	4.78	11.21	DNA binding, DNA-directed 5′-3′ RNA polymerase activity, protein dimerization activity, transcription, DNA-templated, DNA-directed RNA polymerase activity, protein biosynthesis process, lipopolysaccharide core region biosynthetic process	CHN-N4-18/TSB medium
F1-2	Q87T56	ADP-L-glycero-δ-manno-heptose-6-epimerase	hldD	35,215.99	4.86	6.71	ADP-glycero-mannono-heptose 6-epimerase activity; NADP binding; ADP-L-glycero-γ-manno-heptose biosynthetic process; lipopolysaccharide core region biosynthetic process	CHN-N4-18/TSB medium
F1-3	A0A0D1GU29	Outer membrane protein W	H334_14550	23,240.1	4.85	17.76	Outer membrane	CHN-N4-18/TSB medium

(Continued)
Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pl	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate/matrix medium
F1-4	A0A2S1MAR5	tRNA-specific 2-thiouridylase MnmA	mnmA	42,212.27	5.11	14.17	ATP binding, methyltransferase activity, sulfur transferase activity, tRNA binding, tRNA modification, cytoplasm	CHN-N4-18/TSB medium
G2-1	Q87MW0	Aldehyde-alcohol dehydrogenase	VP2121	97,121.96	5.73	26.78	Acetaldehyde dehydrogenase (acyetylating) activity, alcohol dehydrogenase (NAD+) activity, metal ion binding, alcohol metabolic process, carbon utilization	CHN-N8-5/M. veneriformis
G2-2	A0A0N0CBA6	Uncharacterized protein	ACX03_16865	33,357.07	4.39	6.35	—	CHN-N8-5/M. veneriformis
G2-3	A0A2R9V7474	Ribokinase	rbsK	32,241.19	4.58	17.38	ATP binding, metal ion binding, ribokinase activity, D-ribose catabolic process, cytoplasm	CHN-N8-5/M. veneriformis
G2-4	A0A07SBND0	Outer membrane protein W	ompW	23,224.04	4.85	17.76	Outer membrane	CHN-N8-5/M. veneriformis
G2-5	Z2EBMT8	Glyceraldehyde-3-phosphate dehydrogenase	AAY51_01480	35,526.09	7.01	10.88	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor, glucose metabolic process	CHN-N8-5/M. veneriformis
G2-6	A0A0M5ECS2	Glyceraldehyde-3-phosphate dehydrogenase	AAY51_01480	35,526.09	7.01	10.88	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor, glucose metabolic process	CHN-N8-5/M. veneriformis
H2-1	A0A4S3T4K4	OmpA family protein	E4P16_23225	34,100.43	4.48	21.63	Membrane	CHN-N10-18/O. gigas thunberg
H2-2	Q87MS3	Putative glucose-6-phosphate 1-epimerase	VP2158	32,318.19	4.65	12.59	Carbohydrate binding, glucose-6-phosphate 1-epimerase activity, carbohydrate metabolic process	CHN-N10-18/O. gigas thunberg
H2-3	A0A2R9V7474	Ribokinase	rbsK	32,241.19	4.58	17.38	ATP binding, metal ion binding, ribokinase activity, D-ribose catabolic process, cytoplasm	CHN-N10-18/O. gigas thunberg
H2-4	Z2E3N3	Peptidyl-prolyl cis-trans isomerase	fkpA	28,267.52	4.74	33.08	Peptidyl-prolyl cis-trans isomerase activity, protein folding	CHN-N10-18/O. gigas thunberg
H2-5	A0A242UZU9	Triosephosphate isomerase	tpiA	26,989.18	4.78	21.88	Triose-phosphate isomerase activity, gluconeogenesis, glycolytic process, cytoplasm	CHN-N10-18/O. gigas thunberg
H2-6	A6B8W0	Autonomous glycol radical cofactor	groA	13,928.45	4.71	37.60	Catalytic activity	CHN-N10-18/O. gigas thunberg
H2-7	Q87FQ1	Uncharacterized protein	VPA1627	16,587.02	6.51	11.11	—	CHN-N10-18/O. gigas thunberg

(Continued)
Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pl	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate/matrix medium
H2-8	A0A0M3ECS2	Glyceraldehyde-3-phosphate dehydrogenase	AAYS1_01480	35,526.09	7.01	19.03	NAD binding, NADP binding, oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor	CHN-N10-18/C. gigas thunberg
I1-1	A0A0D1EXL2	Inosine-5’-monophosphate dehydrogenase	guaB	51,685.5	6.06	38.52	IMP dehydrogenase activity, metal ion binding, nucleotide binding, GMP biosynthetic process	CHN-N1-56/TSB medium
I1-2	A0A0L7Z783	Formate transporter	ACS91_T7705	52,146.53	6.09	6.83	Integral component of membrane, formate transmembrane transporter activity	CHN-N1-56/TSB medium
I1-3	A6B6D3	D-Erythrose-4-phosphate dehydrogenase	epd	38,248.9	5.91	8.41	Erythrose-4-phosphate dehydrogenase activity, NAD binding, pyridoxal phosphate biosynthetic process, cytoplasm	CHN-N1-56/TSB medium
I1-4	Q87H06	GMP reductase	guaC	37,288.16	6.16	15.80	GMP reductase activity, metal ion binding, purine nucleotide metabolic process, GMP reductase complex	CHN-N1-56/TSB medium
I1-5	A0A0D1DUY5	2,3,4,5-Tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase	dapD	35,626	4.99	17.20	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase activity, magnesium ion binding, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate, cytoplasm	CHN-N1-56/L. vannamei
I1-6	Q87KA1	ParB family protein	VP3077	32,304.73	6.49	6.14	DNA binding	CHN-N1-56/TSB medium
I1-7	S5IZ22	OmpA family protein	M634_20630	36,013.43	4.28	17.02	Cell outer membrane, integral component of membrane,	CHN-N1-56/TSB medium
I2-1	A0A242V2H0	2,3,4,5-Tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase		36,013.43	4.28	17.02	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase activity, magnesium ion binding, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate, cytoplasm	CHN-N1-56/L. vannamei
I2-2	S5IZ25	Transaldolase	tal	34,805.45	4.86	10.76	Sedoheptulose-7-phosphate:b-glyceraldehyde-3-phosphate glyceraldehyde-3-phosphate dehydratase activity, carbohydrate metabolic process, pentose-phosphate shunt, cytoplasm	CHN-N1-56/L. vannamei

(Continued)
TABLE 5 | Continued

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate/matrix medium
I2-3	A6B3V3	Deoxyribose-phosphate aldolase	deoC	27,744.45	4.68	13.18	Deoxyribose-phosphate aldolase activity, carbohydrate catabolic process, deoxyribonucleotide catabolic process, deoxyribose phosphate catabolic process, cytoplasm	CHN-N1-56/L. vannamei
I2-4	A0A075BDN0	Out membrane protein W	ompW	23,224.04	4.85	17.76	Outer membrane	CHN-N1-56/L. vannamei
I2-5	Q87RS3	Lipoprotein	VPO704	29,069.66	4.83	11.90	—*	CHN-N1-56/L. vannamei
J1-1	A0A0D1EXH8	Glycine betaine-binding protein OpuAC	H334_11605	34,297.4	5.06	15.71	Choline binding, transmembrane transporter activity, choline transport, ATP-binding cassette (ABC) transporter complex, periplasmic space	CHN-N2-5/TSB medium
J1-2	A0A0D1V969	DNA polymerase sliding clamp subunit	ACS91_16100	18,275.43	5.07	18.24	Ferric iron binding, oxidoreductase activity, oxidizing metal ions, cellular iron ion homeostasis, cell	CHN-N2-5/TSB medium
J2-1	A6B3V3	Deoxyribose-phosphate aldolase	deoC	27,744.45	4.68	13.18	Deoxyribose-phosphate aldolase activity, carbohydrate catabolic process, deoxyribonucleotide catabolic process, deoxyribose phosphate catabolic process, cytoplasm	CHN-N2-5/O. oratoria
J2-2	Z2EUM4	Phosphoribosyl-transferase	hisG	24,091.48	4.66	19.46	ATP phosphoribosyl-transferase activity, magnesium ion binding, histidine biosynthetic process, cytoplasm	CHN-N2-5/O. oratoria
J2-3	Z2ESY3	Outer membrane β-barrel domain protein	D046_2887	25,508.96	4.51	10.00	Cell outer membrane, integral component of membrane	CHN-N2-5/O. oratoria
J2-4	A0A0D1EJ66	Protein GrpE	grpE	22,368.9	4.54	13.64	Adenyl-nucleotide exchange factor activity, chaperone binding, protein homodimerization activity, protein folding, cytoplasm	CHN-N2-5/O. oratoria
J2-5	Q87RS3	Lipoprotein	VPO704	29,069.66	4.83	11.90	—*	CHN-N2-5/O. oratoria
J2-6	A0A2S1MM9	Azurin	azu	15,885.76	5.21	24.00	Copper ion binding, electron transfer activity, periplasmic space	CHN-N2-5/O. oratoria
J2-7	Q87RU4	6,7-Dimethyl-8-ribityllumazine synthase	ribH	16,431.67	5.37	38.46	6,7-dimethyl-8-ribityllumazine synthase activity, riboflavin biosynthetic process	CHN-N2-5/O. oratoria
Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pI	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate/ matrix medium
-----------------	------------	--	------------	---------	------	------------------------	--	--
J2-8	A0A0D1F6F7	Histidine triad nucleotide-binding protein	H334_15790	12,987.93	5.45	45.69	Catalytic activity	CHN-N2-5/O. oratoria
J2-9	Q87FQ1	Uncharacterized protein	VPA1627	16,587.02	6.51	11.11	—	CHN-N2-5/O. oratoria
J2-10	A0A0D1E294	3-Hydroxydecanoyl-[acyl-carrier-protein] dehydratase	fabA	18,996.89	6.11	4.65	(3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase activity, 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase activity, trans-2-decenoyl-acyl-carrier-protein isomerase activity, fatty acid biosynthetic process, cytoplasm	CHN-N2-5/O. oratoria
J2-11	A6BCF0	Succinate dehydrogenase flavoprotein subunit	A79_2135	22,392.42	6.08	13.27	Succinate dehydrogenase activity	CHN-N2-5/O. oratoria
J2-12	A0A0D1F327	Glycerol-3-phosphate dehydrogenase	glpD	59,074.41	6.1	3.24	Sn-glycerol-3-phosphate:ubiquinone-8 oxidoreductase activity, glycerol-3-phosphate metabolic process, glycerol-3-phosphate dehydrogenase complex	CHN-N2-5/O. oratoria
K1-1	A6B9W7	ATP-dependent metallopeptidase	hflB	28,787.85	4.86	5.86	ATP binding, metalloendopeptidase activity	CHN-L7-40/TSB medium
K2-1	A0A0D1EM30	S-adenosylmethionine synthase	metK	41,990.15	5	20.57	ATP binding, magnesium ion binding, methionine adenosyltransferase activity, one-carbon metabolic process, S-adenosylmethionine biosynthetic process, cytoplasm	CHN-L7-40/A. nobilis
K2-2	Q87M66	Succinyl-diaminopimelate desuccinylase	dapE	41,037.76	4.75	4.76	Cobalt ion binding, metallopeptidase activity, succinyl-diaminopimelate desuccinylase activity, zinc ion binding, diaminopimelate biosynthetic process, lysine biosynthetic process via diaminopimelate	CHN-L7-40/A. nobilis
L1-1	A0A0NOUKW5	Aspartate carbamoyltransferase	pyrB	34,363.55	5.03	6.47	Amino acid binding, aspartate carbamoyltransferase activity, de novo pyrimidine nucleobase biosynthetic process, de novo UMP biosynthetic process, cellular amino acid metabolic process	CHN-Q5-1/TSB medium

(Continued)
isolates in this study. The EF-Tu (Spot c) V. parahaemolyticus identified by the comparative secretomic analysis of the 12 dehydrogenase, transaldolase, and PGK. Among these proteins, σ phosphate synthase, ′ pathogenicity of bacteria, such as EF-Tu, pyridoxine 5
isolated from five species of aquatic products and identified V. parahaemolyticus secretomic profiles derived from bacterial infection of host cells. He et al. (2015) investigated for bacterial attachment onto a host cell (Zhang and Orth, 2019). Adhesions are present at the bacterial cell surface or released into extracellular space to form a contact platform for bacterial attachment onto a host cell (Zhang and Orth, 2013). In this study, our secretomic data derived from the 12 V. parahaemolyticus isolates revealed such proteins involved in the adhesions of pathogenic bacteria. For example, the TolC (Spot a), secreted by all the V. parahaemolyticus isolates was reported to be exposed on the cell surface of Streptococcus, Neisseria, and Mycoplasma and under certain conditions on E. coli (Mikalchik et al., 2019). The transaldolase (Spot S5) was secreted by the V. parahaemolyticus CHN-B2-28, CHN-B6-62, CHN-B8-26, CHN-N4-18, CHN-N10-18, CHN-L7-40, and CHN-Q5-1 isolates. Gonzalez-Rodriguez et al. reported that the transaldolase (Spot S5) recruited on the cell surface via a non-classical secretion mechanism or an uncharacterized translocation pathway and acted as an important colonization factor for the survival of Bifidobacterium bifidum in host intestinal tract (Gonzalez-Rodriguez et al., 2012). In this study, some other extracellular proteins involved in bacterial virulence were also identified. For instance, the superoxide dismutase (Spot S26) secreted by the V. parahaemolyticus CHN-B5-29 and CHN-B6-62 isolates is an important virulence factor of Vibrio alginolyticus and contributes to the antioxidative stress with potential application for live attenuated vaccine (Chen et al., 2019).

DISCUSSION

Vibrio parahaemolyticus is the leading seafoodborne pathogenic bacterium worldwide. Nevertheless, the information in V. parahaemolyticus proteomics is minimally available to date (Fu et al., 2014; He et al., 2015; Perez-Acosta et al., 2018; Tang et al., 2018; Zhong et al., 2019). Based on our prior studies, in this study, we obtained and compared the secretomic and proteomic profiles of the V. parahaemolyticus isolates recovered from 12 species of commonly consumed aquatic products by 2D-GE and LC-MS/MS analysis.

Secreted proteins have a major role in the pathogenesis of bacterial infection of host cells. He et al. (2015) investigated secretomic profiles derived from V. parahaemolyticus strains isolated from five species of aquatic products and identified six extracellular virulence-associated proteins involved in the pathogenicity of bacteria, such as EF-Tu, pyridoxine 5'-phosphate synthase, σ54 modulation protein, dihydrolipoyl dehydrogenase, transaldolase, and PGK. Among these proteins, the EF-Tu (Spot c) and transaldolase (Spot S5) were also identified by the comparative secretomic analysis of the 12 V. parahaemolyticus isolates in this study. The EF-Tu (Spot c) secreted by all the V. parahaemolyticus isolates was reported to be exposed on the cell surface of Streptococcus, Neisseria, and Mycoplasma and under certain conditions on E. coli (Mikalchik et al., 2019). The transaldolase (Spot S5) was secreted by the V. parahaemolyticus CHN-B2-28, CHN-B6-62, CHN-B8-26, CHN-N4-18, CHN-N10-18, CHN-L7-40, and CHN-Q5-1 isolates. Gonzalez-Rodriguez et al. reported that the transaldolase (Spot S5) recruited on the cell surface via a non-classical secretion mechanism or an uncharacterized translocation pathway and acted as an important colonization factor for the survival of Bifidobacterium bifidum in host intestinal tract (Gonzalez-Rodriguez et al., 2012). In this study, some other extracellular proteins involved in bacterial virulence were also identified. For instance, the superoxide dismutase (Spot S26) secreted by the V. parahaemolyticus CHN-B5-29 and CHN-B6-62 isolates is an important virulence factor of Vibrio alginolyticus and contributes to the antioxidative stress with potential application for live attenuated vaccine (Chen et al., 2019).

The initial contact and anchoring of bacteria to a host cell are essential during the process of infection (Li et al., 2019). Adhesions are present at the bacterial cell surface or released into extracellular space to form a contact platform for bacterial attachment onto a host cell (Zhang and Orth, 2013). In this study, our secretomic data derived from the 12 V. parahaemolyticus isolates revealed such proteins involved in the adhesions of pathogenic bacteria. For example, the TolC (Spot a), secreted by all the V. parahaemolyticus isolates, is a major adhesin in V. harveyi (Zhu et al., 2019).

The enolase (Spot S2), secreted by the V. parahaemolyticus CHN-B2-28, CHN-B5-29, CHN-B6-62, CHN-N1-56, CHN-N3-2, CHN-N4-18, CHN-N8-5, and CHN-Q5-1 isolates, is an adhesion-related factor that binds plasminogen and allows bacteria to acquire surface-associated proteolytic activity that facilitates invasion and dissemination in the infected host.

TABLE 5 | Continued

Protein spot no.	Uniprot no.	Protein	Gene	MW (Da)	pl	Sequence coverage (%)	Putative function	V. parahaemolyticus isolate(matrix medium)
L2-1	A0A0L7YIN7	3-Chlorobenzate-3,4-dioxygenase dehydrogenase	WR32_06855	38,032.68	4.62	7.96	Dioxygenase activity	CHN-Q5-1/C. idellus
L2-2	A0A4SST4K4	OmpA family protein	E4P16_22225	34,100.43	4.48	21.63	Cell outer membrane; integral component of membrane	CHN-Q5-1/C. idellus
L2-3	S5JL9	Protein GrpE	grpE	22,368.9	4.54	50.51	Adeny1-nucleotide exchange factor activity; chaperone binding; protein homodimerization activity; protein folding; cytoplasm	CHN-Q5-1/C. idellus
L2-4	A0A0D1ESD7	50S ribosomal protein L9	rpl	15,708.8	5.19	66.00	Ribosome; rRNA binding; structural constituent of ribosome; translation	CHN-Q5-1/C. idellus

*—, not detected.

P. undulate matrix was the highest (3.73%), followed by 3.44% in the P. viridis, and 3.25% in the L. vannamei matrices, whereas the opposite patterns were observed in the P. magellanicus (1.50%), S. strictus (1.36%), and O. gigas thunberg (0.43%) matrices. The fat contents of the aquatic product matrices were much higher in the L. vannamei (1.01%), O. oratoria (0.85%), and P. magellanicus (0.84%) than those in the P. undulate (0.36%), S. strictus (0.31%), and S. constricta (0.01%) matrices. The carbohydrate content of the P. viridis (1.23%) matrix was the highest, whereas that of the O. gigas thunberg (0.01%) matrix was the lowest (Supplementary Figure S5).
Bacterial membrane proteins can act as adhesion factors or adhesion enhancers (Gordon et al., 2015). For example, the GAPDH (Spot S13), like many housekeeping proteins, has been presumed to exist only in the cytoplasm to involve in glycolysis. However, it has been reported that GAPDH can be recruited on the cell surface and secreted via a non-classical secretion mechanism, and therefore it is a suitable vaccine candidate for protection against bacterial and parasitic diseases (Perez-Casal and Potter, 2016). The nitrogen regulatory protein P-II (Spot S28) is one of the most widely distributed families of signal transduction proteins widespread among bacteria, archaea, and plants (Radchenko and Merrick, 2011) and control the activities of a very diverse range of enzymes, transcription factors and some membrane transport proteins by direct interaction with their target hosts (Merrick, 2014). The maltoporin (Spot b), secreted by all the V. parahaemolyticus isolates, belongs to the outer membrane porin family of Gram-negative bacteria (Thoma et al., 2017) and is a versatile vaccine candidate in Vibrio species (Lun et al., 2014). Recently, Yang B. et al. (2019) reported that the maltoporin (Spot b) also contributed to the adhesion and invasion ability of Aeromonas veronii TH0426 to epithelioma papulosum cyprini cells. Additionally, bacterial flagellins, potent immunomodulatory agents, contribute to bacterial adhesion and invasion of host cells as well (Hajam et al., 2017). In this study, the flagellin C (Spot S7) was secreted by the V. parahaemolyticus CHN-B2-28, CHN-B8-26, CHN-N4-18, CHN-L7-40, and CHN-Q5-1 isolates, whereas the polar flagellin B/D (Spot S8) was secreted by the CHN-B2-28 and CHN-B8-26 isolates. These identified extracellular proteins could be the main targets of vaccine development because of their exposed epitopes on the cell surface.

In this study, comparative proteomic analysis also revealed several intracellular proteins related to bacterial virulence, including the AdhE (Spot P1), OmpAs (Spot P15 and Spot P78), AhpC (Spot P23), PtsA (Spot P36), and PGK (Spot P95). For instance, the AdhE (Spot P1) was expressed by the majority of V. parahaemolyticus strains (except the CHN-B8-26, N2-5, N8-5, and L7-40 isolates). Luong et al. (2015) reported that AdhE mutant strain decreased pneumolysin (Ply) under ethanol stress condition when compared to wild-type strain and implied that AdhE was a pneumococcal virulence factor in Streptococcus pneumoniae. The OmpAs (Spot P15 and Spot P78), expressed by the V. parahaemolyticus CHN-B2-28, CHN-B5-29, CHN-N1-56, CHN-N4-18, and CHN-Q5-1 isolates, belong to a group of surface-exposed porins associated with bacterial pathogenesis in V. parahaemolyticus (Cheng et al., 2018). In this study, the AhpC (Spot P23) was expressed by the CHN-B2-28, CHN-N1-56, CHN-N3-2, CHN-N4-18, CHN-N10-23, and CHN-Q5-1 isolates. It has been reported that AhpC in highly virulent Franciscella tularensis serves as a key antioxidant enzyme and contributes to its robust oxidative and nitrosative stress resistance and intramacrophage survival and consequently serves as a virulence factor (Alharbi et al., 2019). The PtsA (Spot P36), expressed by the CHN-B5-29, CHN-B6-62, CHN-N2-5, CHN-N3-2, CHN-N4-18, and CHN-L7-40 isolates, is an intracellular protein of the monosaccharide phosphotransferase systems and also localizes to the bacterial cell wall as an adhesin in S. pneumoniae (Mizrachi Nebenzahl et al., 2016). The PGK (Spot P95), expressed by the CHN-Q5-1 isolate from C. idellus, is a key enzyme of glycolysis and also acts as a mediator of DNA replication and repair in the nucleus (Kumar et al., 2019). This protein, also identified in our prior research (He et al., 2015), has been used as an antigen in a neonatal-animal model against Streptococcus agalactiae infection (Wang et al., 2014).

The increase in MDR pathogenic bacteria has raised a serious public health and economic concern (Elmahdi et al., 2016). One common mechanism for bacteria to obtain antibiotic resistance is to actively pump drugs from bacterial cells by employing ABC transporters (Wilson, 2016). The functions of ABC transporters are very diverse, ranging from importing essential nutrients to conferring drugs in bacteria, archaea, and eukaryote (Beis, 2015). In this study, comparative secretomic analysis revealed several ABC transporters of the V. parahaemolyticus isolates with resistance phenotypes. For instance, the maltodextrin-binding protein (Spot d), secreted by all the V. parahaemolyticus isolates, is part of the maltose ABC complex MalEFGK (Machtel et al., 2019). The D-ribose ABC TSBP (Spot S15) and arginine ABC TSBP (Spot S18) were secreted by most of the isolates, except the CHN-B6-62 and CHN-Q5-1, as well as CHN-B6-62 and CHN-N1-56 isolates, respectively. The choline ABC TSBP (Spot S14) was secreted by the CHN-B2-28, CHN-B5-29, CHN-N1-56, CHN-N2-5, and CHN-N8-5 isolates. The glycine/betaine ABC TSBP (Spot S12) was observed only on the secretomic profile derived from the CHN-B2-28 and CHN-B8-26 isolates, whereas the peptide ABC TPPBP (Spot S24) was observed from the CHN-B2-28 and CHN-N2-5 isolates. The other possible mechanism of bacterial resistance is the ribosome protection (Wilson, 2016). Bacterial ribosome, being one of the main antibiotic targets in bacterial cells (Wilson, 2014), is a large protein–RNA complex that consists of two major subunits (a small 30S subunit and a large 50S subunit), each of which is composed of a variety of proteins. In this study, two translation-associated proteins EF-Tu (Spot c) and EF-Ts (Spot S22) were identified by the secretomic and proteomic analysis. The former existed in all the V. parahaemolyticus isolates, whereas the latter was secreted by the CHN-B2-28, CHN-B8-26, CHN-N3-2, CHN-N4-18, CHN-N10-18, CHN-L7-40, and CHN-Q5-1 isolates. The EF-Ts is a guanosine nucleotide exchange factor for EF-Tu (He et al., 2015), and the EF-Tu catalyzes the binding of aminoacyl-tRNA (aa-tRNA) to a site of the ribosome during protein synthesis (Daviter et al., 2003). Agarwal and O’Connor (2014) reported that a ribosomal protein S12 binding the EF-Tu contributed to streptomycin resistance in E. coli MC323. Overall, these identified proteins may serve as an explanation for the resistance phenotypes of the V. parahaemolyticus isolates with aquatic product origins.

In this study, all the V. parahaemolyticus isolates (except the CHN-B6-62 isolate) produced more intracellular protein spots on their proteomic profiles responding to aquatic product matrices. A total of 71 differential intracellular proteins were identified by the LC-MS/MS analysis, most of which were involved in
biosynthesis process (e.g., diaminopimelate, lysine, ADP-β-L-glycerol-δ,D-manno-heptose, S-adenosylmethionine, GMP, riboflavin, and fatty acid biosynthesis), metabolic processes (e.g., gluconeogenesis, glycerol, one-carbon, glycerol-3-phosphate, alcohol, carbohydrate, D-ribose, deoxyribonucleotide, and amino acid metabolism), and cell membrane composition. The growth of microorganism may vary with the available carbon and nitrogen sources (Chiang and Chou, 2008). In this study, our comparative proteomic analysis showed that the crustacean matrices changed the proteomes of the V. parahaemolyticus CHN-N1-56 and CHN-N2-5 isolates, recovered from L. vannnamei and O. oratoria, respectively, more than the other 10 types of aquatic product matrices. Wang et al. (2018) evaluated the influence of food matrices (shrimp, oyster, freshwater fish, pork, chicken, and egg fried rice) on extracellular products of V. parahaemolyticus and found that V. parahaemolyticus expressed significantly higher activity (p < 0.05) of gelatinase, caseinase, urease, DNase, and amylase in shrimp matrix than freshwater fish. In this study, our data also showed that the crude fat contents of the crustacean species were approximately 101- to 85-fold higher than those of the fish and shellfish matrices. Lipases expressed by Vibrio species can hydrolyze fats into glycerol and fatty acids (Beshiru and Igbinosa, 2018). Moravec et al. (2017) reported the Vibrio’s ability to acquire fatty acids from environmental sources. Exogenous fatty acids can affect bacterial metabolism, modification of membrane lipids, alteration of protein function, regulation of gene expression, and stress responses (Moravec et al., 2017; Yao and Rock, 2017). In this study, our comparative proteomic data highlighted the significance of monitoring V. parahaemolyticus contamination in fat-rich aquatic products in the future research.

In this study, the other interesting finding was that some V. parahaemolyticus isolates produced virulence-associated proteins when incubated only in aquatic product matrices media. For instance, the OmpA family proteins (Spots D2-1, D2-2, D2-3, H2-1, and L2-2) were expressed by the V. parahaemolyticus CHN-B8-26 and CHN-N10-18 isolates when grown in the S. strictus and O. gigas thunberg matrices media, respectively. Recent research has indicated that proteins and lipids can form complexes (called lipotides) that assist in folding of outer membrane proteins, for example, OmpA, especially optimal folding at pH 8–9 (Nørgaard Pedersen et al., 2018). Protein folding is the essential process by which a polypeptide chain acquires its functional, native 3D structure. In this study, our data suggested that the aquatic product matrices with higher contents of protein and fat may facilitate the expression of virulence-associated factors (e.g., the OmpA family proteins) in the V. parahaemolyticus isolates.

Although gel-based proteomes are laboring and time-consuming, images of 2D-GE gels can be compared so as to quantify each protein spot from different samples, and these protein spots can subsequently be excised, sequenced, and identified with MS, especially LC-MS/MS (Lee et al., 2019). Each protein has multiple forms as a result of genetic variations, splicing, truncation, degradation, and posttranslational modifications; therefore, innovated proteomic technologies such as MS-based shotgun proteomics (Lee et al., 2018) should be employed to explore more virulence and resistance-associated factors in V. parahaemolyticus. Also, new proteins during culture handing/extraction processing should be prevented by adding a compound (e.g., chloramphenicol), and the function of the virulence and resistance-related proteins identified in the V. parahaemolyticus isolates should be further pursued by cell and animal infection mode analysis in the future research.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available request on the corresponding author.

AUTHOR CONTRIBUTIONS

ZZ, LY, PY, YW, XP, and LC participated in the design and discussion of the study. ZZ carried out the experiments. LY performed the qRT-PCR assay. ZZ and LC wrote the manuscript. All the authors read and approved the final version to be published.

FUNDING

This study was supported by the grants from the Shanghai Municipal Science and Technology Commission (No. 17050502200) and the National Natural Science Foundation of China (No. 31671946).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01453/full#supplementary-material

FIGURE S1 | The secretomic profiles of the V. parahaemolyticus ATCC33847 and ATCC17802 strains by the 2D-GE analysis. (A) ATCC33847. (B) ATCC17802. The protein spots marked with blue circles and the numbers in red were the same at similar locations on the secretomic profiles of the 12 V. parahaemolyticus isolates, pl, isoelectric point.

FIGURE S2 | The GO functional classification of the differential intracellular proteins. (A) The differential intracellular proteins of 12 V. parahaemolyticus isolates. (B) The differential intracellular proteins of the 12 V. parahaemolyticus isolates incubated between in the TSB and aquatic product matrix media.

FIGURE S3 | The proteomic profiles of the V. parahaemolyticus ATCC33847 and ATCC17802 strains. (A) ATCC33847. (B) ATCC17802. The intracellular protein spots marked with the numbers in red were the same at similar locations on the proteomic profiles of the 12 V. parahaemolyticus isolates.

FIGURE S4 | The expression of several representative genes encoding differential proteins by the RT-PCR assay.

FIGURE S5 | The protein, carbohydrate and fat contents of the 12 types of aquatic product matrices.

TABLE S1 | Oligonucleotide primers used for the RT-PCR assay in this study.
Liu, J., Bai, L., Li, W., Han, H., Fu, P., Ma, X., et al. (2018). Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Front. Microbiol. 12, 48–57. doi: 10.3389/fmicb.2011.00484

Lopatek, M., Wieczorek, K., and Osék, J. (2018). Antimicrobial resistance, virulence factors, and genetic profiles of Vibrio parahaemolyticus from seafood. Appl. Environ. Microbiol. 84, 3053–3057. doi: 10.1128/AEM.01837-17

Lun, J., Xia, C., Yuan, C., Zhang, Y., Zhong, M., Huang, T., et al. (2014). The outer membrane protein, LamB (maltoolipin), is a versatile vaccine candidate among the Vibrio species. Vaccine 32, 809–815. doi: 10.1016/j.vaccine.2013.12.035

Luo, L., Matthews, J. D., Robinson, B. S., and Jones, R. M. (2019). Vibrio parahaemolyticus VopA is a potent inhibitor of cell migration and apoptosis in the intestinal epithelium of Drosophila melanogaster. Infect. Immun. 87, e00669-18. doi: 10.1128/iai.iia00669-18

Luong, T. T., Kim, E. H., Bak, J. P., Nguyen, C. T., Choi, S., Briles, D. E., et al. (2015). Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Strepococcus pneumoniae. Infect. Immun. 83, 108–119. doi: 10.1128/IAI.02434-14

Machtel, R., Narducci, A., Griffith, D. A., Cordes, T., and Orelle, C. (2019). An assist in folding of outer membrane proteins. Protein. Sci. 5:763. doi: 10.1002/pro.3337

Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., et al. (2014). Post-translational modification of P II signal transduction proteins. Front. Microbiol. 5:763. doi: 10.3389/fmicb.2014.00763

Mikhaldik, E., Balabushевич, N., Vakhirшeva, T., Sokolov, A., Baykova, J., Rakitina, D., et al. (2019). Mucin adsorbed by e. coli can affect neutrophil activation in vitro. FEBS. Open. Bio. 10, 180–196. doi: 10.1002/2211-5463.12770

Mizrachi Nebenzahl, Y., Blau, K., Kushnir, T., Shagan, M., Portnoi, M., Mikhalchik, E., Balabushevich, N., Vakhrusheva, T., Sokolov, A., Baykova, J., Rakitina, D., et al. (2019). Mucin adsorbed by e. coli can affect neutrophil activity in vitro. FEBS. Open. Bio. 10, 180–196. doi: 10.1002/2211-5463.12770

Moravec, A. R., Siv, A. W., Hobby, C. R., Lindsay, E. N., Norbash, L. V., Shults, D. J., et al. (2017). ExoP of Salmonella typhimurium: identification of its target molecules and evaluation of its potential as a vaccine. PLoS One 11:e0153020. doi: 10.1371/journal.pone.0153020

Mohanmadi-Barzelighi, H., Nasr-Esfahani, B., Bakhshi, R., Daraei, B., Moghim, S., and Fazeli, H. (2019). Analysis of antibacterial and antibiofilm activity of purified recombinant Azurin from Pseudomonas aeruginosa. Iran. J. Microbiol. 11, 166–176. doi: 10.18502/jm.v11i2.1083

Moravec, A. R., Siv, A. W., Hobby, C. R., Lindsay, E. N., Norbash, L. V., Shults, D. J., et al. (2017). ExoP of Salmonella typhimurium: identification of its target molecules and evaluation of its potential as a vaccine. PLoS One 11:e0153020. doi: 10.1371/journal.pone.0153020

Osorio, C. R. (2018). T3SS effectors in Vibrios: homology in sequence, diversity in biological functions? Virulence 9, 721–723. doi: 10.1080/21505594.2018.1435965

Pang, H., Li, W., Zhang, W., Zhou, S., Hoare, R., Monaghan, S. J., et al. (2020). Acetylome profiling of Vibrio alginolyticus reveals its role in bacterial virulence. J. Proteomics 211:103543. doi: 10.1016/j.jprot.2020.103543

Park, K., Mok, J. S., Robinson, B. S., and Jones, R. M. (2019). Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to remodel the host cell. Infect. Immun. 2019.09.004

Shin, J. M., Hwang, Y. O., Tu, O. J., Ho, H. B., Kim, J. H., Chae, Y. Z., et al. (2013). Comparison of different methods to quantify fat classes in bakery products. Food Chem. 136, 703–709. doi: 10.1016/j.foodchem.2012.08.033

Silva, R., Aguair, T. Q., Oliveira, C., and Domingues, L. (2019). Physiological characterization of a pyrimidine auxotroph exposes link between uracil phosphoribosyltransferase regulation and riboflavin production in Ashbya gossypii. Nat. Biotechnol. 50, 1–8. doi: 10.1038/s41556-019-05287-8

Smith, C. D., Chattopadhyay, D., and Pal, B. (2011). Crystal structure of Plasmodium falciparum phosphoglycerate kinase: evidence for amino binding in the basic patch. Biochem. Biophys. Res. Commun. 412, 203–206. doi: 10.1016/j.bbrc.2011.07.045

Tang, J., Jia, C., Chen, Y., Huang, X., Zhang, X., Zhao, L., et al. (2018). Proteomic analysis of Vibrio parahaemolyticus under cold stress. Curr. Microbiol. 75, 20–26. doi: 10.1007/s00284-017-1345-4

Theodoulou, F. L., and Kerr, I. D. (2015). ABC transporter research: going strong 40 years on. Biochem. Soc. Trans. 43, 1033–1040. doi: 10.1042/bst20150139

Thoma, J., Ritzmann, N., Wolf, D., Mulvihill, E., Hiller, S., and Muller, D. J. (2017). MaltolmB unfolds beta hairpins along mechanical stress-dependent unfolding pathways. Structure 25, 1139–1144. doi: 10.1016/j.str.2017.05.010

Thongjun, J., Mittraparp-Arthorn, P., Yingkajorn, M., Kongreung, J., Nishibuchi, M., and Vuddhakul, V. (2013). The trend of Vibrio parahaemolyticus infections in Southern Thailand from 2006 to 2010. Trop. Med. Health. 41, 151–156. doi: 10.2121/tmh.2013-06

Wilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48. doi: 10.1038/nrmicro.3155

Wilson, D. N. (2016). The ABC of ribosome-related antibiotic resistance. mBio 7:e0598-16. doi: 10.1128/mBio.00598-16

Xu, M., Wu, J., and Chen, L. (2019). Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish. Environ. Sci. Pollut. Res. Int. 26, 27338–27352. doi: 10.1007/s11356-019-05287-8

Yang, C., Zhang, X., Fan, H., Li, Y., Hu, Q., Yang, R., et al. (2019). Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiol. 84:103270. doi: 10.1016/j.fm.2019.103270

Yung, B., Zhang, D., Wu, T., Zhang, Z., Raza, S. H. A., Schreurs, N., et al. (2019). MaltoB (LamB protein) contributes to the virulence and adhesion
Comparative Secretomics and Proteomics of Vibrio parahaemolyticus

of Aeromonas veronii TH0426. J. Fish Dis. 42, 379–389. doi: 10.1111/jfd.12941

Yang, W., Ding, D., Zhang, C., Zhou, J., and Su, X. (2015). iTRAQ-based proteomic profiling of Vibrio parahaemolyticus under various culture conditions. Proteome Sci. 13:19. doi: 10.1186/s12953-015-0075-4

Yang, Y., Xie, J., Li, H., Tan, S., Chen, Y., and Yu, H. (2017). Prevalence, antibiotic susceptibility and diversity of Vibrio parahaemolyticus isolates in seafood from south China. Front. Microbiol. 8:2566. doi: 10.3389/fmicb.2017.02566

Yao, J., and Rock, C. O. (2017). Exogenous fatty acid metabolism in bacteria. Biochimie 141, 30–39. doi: 10.1016/j.biochi.2017.06.015

Zhang, L., and Orth, K. (2013). Virulence determinants for Vibrio parahaemolyticus infection. Curr. Opin. Microbiol. 16, 70–77. doi: 10.1016/j.mib.2013.02.002

Zhang, X., Xiao, F., and Li, S. (2018). China Fishery Statistical Yearbook 2018. Beijing: China Agriculture Press.

Zhong, Q., Wang, B., Wang, J., Liu, Y., Fang, X., and Liao, Z. (2019). Global proteomic analysis of the resuscitation state of Vibrio parahaemolyticus compared with the normal and viable but non-culturable state. Front. Microbiol. 10:1045. doi: 10.3389/fmicb.2019.01045

Zhu, C., Sun, B., Liu, T., Zheng, H., Gu, W., He, W., et al. (2017). Genomic and transcriptomic analyses reveal distinct biological functions for cold shock proteins (VpaCspA and VpaCspD) in Vibrio parahaemolyticus CHN25 during low-temperature survival. BMC Genomics 18:436. doi: 10.1186/s12864-017-3784-5

Zhu, Z., Dong, C., Weng, S., and He, J. (2019). Identification of outer membrane protein ToIC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid groupers, Epinephelus fuscoguttatus (female symbol) x E. lanceolatus (male symbol). Fish Shellf Immunol. 86, 143–151. doi: 10.1016/j.ffi.2018.11.037

Ziveri, J., Tros, F., Guerrera, I. C., Chhuon, C., Audry, M., Dupuis, M., et al. (2017). The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella. Nat. Commun. 8:853. doi: 10.1038/s41467-017-00889-7

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zhu, Yang, Yu, Wang, Peng and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.