Status of nuclear PDFs after the first LHC p-Pb run

H. Paukkunen

University of Jyväskylä, Finland
Helsinki Institute of Physics, Finland
Universidade de Santiago de Compostela, Spain

Quark Matter 2017, February 10th
Outline

Introduction

Analysis procedures

The use of experimental data is not unambiguous

Comparison of the current global fits

Effects of nuclear PDFs in LHC p-Pb observables

The way forward

Summary
Introduction
Theoretical Foundations: Collinear factorization

- Factorization

\[d\sigma = \sum_{i,j} f_i(Q_f^2) \otimes d\sigma_{ij}(Q_f^2, Q_r^2) \otimes f_j(Q_f^2) + \mathcal{O}(Q_f^{-2n}) \]
Theoretical Foundations: Collinear factorization

- Factorization

\[d\sigma = \sum_{i,j} f_i(Q_f^2) \otimes d\sigma_{ij}(Q_f^2, Q_r^2) \otimes f_j(Q_f^2) + O(Q_f^{-2n}) \]

Parton distribution functions (PDFs)

Coefficient functions (calculable by perturbative methods)
Theoretical Foundations: Collinear factorization

- Factorization

\[d\sigma = \sum_{i,j} f_i(Q_f^2) \otimes d\sigma_{ij}(Q_f^2, Q_r^2) \otimes f_j(Q_f^2) + \mathcal{O}(Q_f^{-2n}) \]

Parton distribution functions (PDFs)

Coefficient functions (calculable by perturbative methods)

- PDFs obey the DGLAP equations

\[Q^2 \frac{\partial f_i(x, Q^2)}{\partial Q^2} = \sum_j P_{ij}(Q^2) \otimes f_j(x, Q^2) \]

Splitting functions (calculable by perturbative methods)
Theoretical Foundations: Collinear factorization

- Factorization

\[d\sigma = \sum_{i,j} f_i(Q_f) \otimes d\sigma_{ij}(Q_f^2, Q_r^2) \otimes f_j(Q_f) + O(Q_f^{-2n}) \]

- Non-linear power corrections predicted to be important even at perturbative scales, particularly for large \(A \).

- Often supplemented with external models for hadronization (e.g. PYTHIA).

- Also used in computing the initial conditions for fluid dynamical description of heavy-ion collisions [PRC93 (2016) NO.2, 024907].
Current global analyses: Situation 2 months ago

Feature	EPS09	DSSZ12	KA15	NCTEQ15
Order in α_s	LO & NLO	NLO	NNLO	NLO
Neutral current DIS $\ell+A/\ell+d$	✓	✓	✓	✓
Drell-Yan dilepton $p+A/p+d$	✓	✓	✓	✓
RHIC pions $d+Au/p+p$	✓	✓	✓	✓
Neutrino-nucleus DIS				
Q cut in DIS	1.3 GeV	1 GeV	1 GeV	2 GeV
datapoints	929	1579	1479	708
free parameters	15	25	16	17
error analysis Hessian	Hessian	Hessian	Hessian N.N	Hessian 35
error tolerance $\Delta \chi^2$	50	30	N.N	CTEQ6M-like
Free proton baseline PDFs	CTEQ6.1	MSTW2008	JR09	
Heavy-quark effects	none	✓	none	✓
Flavour separation				some
Reference	[JHEP 0904 065]	[PR D85 074028]	[PRD 93, 014026]	[PR D93 085037]
Current global analyses: Situation now

	EPPS16	DSSZ12	KA15	NCTEQ15
Order in α_s	NLO	NLO	NNLO	NLO
Neutral current DIS $\ell+A/\ell+d$	✓	✓	✓	✓
Drell-Yan dilepton $p+A/p+d$	✓	✓	✓	✓
RHIC pions $d+Au/p+p$	✓	✓	✓	✓
Neutrino-nucleus DIS	✓	✓	✓	✓
Drell-Yan dilepton $\pi+A^1$	✓	✓	✓	✓
LHC $p+Pb$ jet data	✓	✓	✓	✓
LHC $p+Pb$ W, Z data	✓	✓	✓	✓
Q cut in DIS datapoints	1.3 GeV	1 GeV	1 GeV	2 GeV
	1811	1579	1479	708
	20	25	16	17
Free proton baseline PDFs	CT14NLO	MSTW2008	JR09	CTEQ6M-like
Heavy-quark effects	✓	✓	✓	✓
Flavour separation	full	none	none	some
Reference	[arXiv:1612.05741]	[PR D85 074028]	[PRD 93, 014026]	[PR D93 085037]

1 Poster by P. Paakkinen
Analysis procedures
What is actually parametrized?

- The standard definition of nuclear PDFs

\[
\frac{f_i^{p/A}(x, Q^2)}{f_i^{p}(x, Q^2)} \equiv R_i^A(x, Q^2)
\]

Nuclear modifications

- Why the two components?
- Much of the data are ratios of the form

\[
\frac{F_2^A(x, Q^2)}{F_2^p(x, Q^2)}
\]

⇒ In a global analysis \(f_i^p \) must always be supplied.
⇒ Nuclear PDFs are always relative to the free-proton PDFs.
What is actually parametrized?

- The standard definition of nuclear PDFs

\[f_i^p/A(x,Q^2) \equiv R_i^A(x,Q^2) \]

Free proton baseline

Nuclear modifications

- Most (EPS09, DSSZ,...) impose the flavour independence (FI) at \(Q^2 = Q_{0}^2 \):

\[R_{uv}^{}(x,Q_{0}^2) = R_{dv}^{}(x,Q_{0}^2) \]

\[R_{\bar{u}}^{}(x,Q_{0}^2) = R_{\bar{d}}(x,Q_{0}^2) = R_{s}^{}(x,Q_{0}^2) \]

- The FI immediately destroyed by the DGLAP at \(Q^2 > Q_{0}^2 \)

\[\rightarrow \text{No reason to assume FI in the first place.} \]

- nCTEQ15: flavour variation for the valence quarks.

- EPPS16: flavour dependent valence & sea quarks.
The standard analysis procedure

- Based on considering χ^2 figure-of-merit function

$$\chi^2_{\text{global}} \equiv \sum_{i,j} [T_i(\vec{a}) - D_i] C_{ij}^{-1} [T_j(\vec{a}) - D_j]$$

- Solve the DGLAP
- Compute the cross sections
- Update $f\{a\}$
- Evaluate χ^2
- Uncertainty analysis

Parametrize $f\{a\}$ at the initial scale Q_0^2

If $\chi^2_{\text{new}} < \chi^2_{\text{previous}}$ and no more improvement, then \Rightarrow Best fit.
Uncertainty analysis: the Hessian method

- Expand the global χ^2 around the minimum

$$\chi^2_{\text{global}} \approx \chi^2_0 + \sum_{i,j} (a_i - a_i^0) H_{ij} (a_j - a_j^0) = \chi^2_0 + \sum_i z_i^2$$

Hessian matrix

Parameter variations
Uncertainty analysis: the Hessian method

- Expand the global χ^2 around the minimum

$$\chi^2_{\text{global}} \approx \chi^2_0 + \sum_{i,j} (a_i - a^0_i) H_{ij} (a_j - a^0_j) = \chi^2_0 + \sum_i z_i^2$$

- The z_i coordinates (linear combinations of a_i) are \sim uncorrelated and one can use the standard law of error propagation

$$\left(\delta X\right)^2 = \sum_i \left(\frac{\partial X}{\partial z_i} \times \delta z_i\right)^2, \quad \delta z_i = \frac{\delta z_i^+ + \delta z_i^-}{2}$$
Uncertainty analysis: the Hessian method

- Expand the global χ^2 around the minimum

$$\chi^2_{\text{global}} \approx \chi^2_0 + \sum_{i,j} (a_i - a_i^0) H_{ij} (a_j - a_j^0) = \chi^2_0 + \sum_i z_i^2$$

- The z_i coordinates (linear combinations of a_i) are \sim uncorrelated and one can use the standard law of error propagation

$$\langle (\delta X)^2 \rangle = \sum_i \left(\frac{\partial X}{\partial z_i} \times \delta z_i \right)^2, \quad \delta z_i = \frac{\delta z_i^+ + \delta z_i^-}{2}$$

- Define the PDF uncertainty sets S_i^{\pm}

$$S_1^{\pm} \equiv \pm \delta z_1^{\pm} (1, 0, \ldots, 0)$$

$$\vdots$$

$$S_N^{\pm} \equiv \pm \delta z_N^{\pm} (0, 0, \ldots, 1)$$

$$\implies (\delta X)^2 = \frac{1}{4} \sum_i \left[X(S_i^+) - X(S_i^-) \right]^2$$
Uncertainty analysis: the Hessian method

- The current fits define δz_i^{\pm} such that they correspond to fixed $\Delta \chi^2_{\text{global}}$.
- Ideally, $\Delta \chi^2_{\text{global}} = 1$.
- For the parametrization bias, the global fits take $\Delta \chi^2_{\text{global}} \gg 1$.

	EPPS16	DSSZ12	nCTEQ15
$\Delta \chi^2$	52	30	35

- The $\Delta \chi^2$ determination in EPS09, EPPS16, nCTEQ15:
 - Based on dynamical tolerance determination [EPJ C63 189] (90% confidence limits)
- The $\Delta \chi^2$ determination in DSSZ
 - Not exactly specified.
The use of experimental data is not unambiguous
The kinematic reach of the experimental input

- The data in global fits in a \((x, Q^2)\) plane.
- The LHC data opens a previously unexplored kinematic region.
Experimental input: The LHC data — how should it be used?

- How to use the LHC data (p-Pb & Pb-Pb) to extract information on $R_A^i(x, Q^2)$?

Answer #1: Measured absolute distributions

\[\text{Data} \]

CMS (pPb 5.02 TeV)
-134.6 nb

Data
MCFM + CT10
MCFM + CT10 + EPS09
MCFM + CT10 + DSSZ

ll → Z → pPb

l lab η > 20 GeV/c,	l T p
Luminosity uncertainty: 3.5%	

\[d\sigma = \sum_{i,j} f_{p_i}(Q^2 f_i) \otimes d\sigma_{ij}(Q^2 f_i, Q^2 r) \otimes f_{Pb_j}(Q^2 f_i) \]

\[f_{p_i}(x, Q^2) \equiv R_A^i(x, Q^2) \]

⇒ Cannot disentangle the effects of proton PDF $f_{p_i}(\sim 90\%)$ and nuclear modifications $R_{Pb}^i(\sim 10\%)$.

⇒ Interpretation ambiguous.

This approach was nevertheless used in a recent PDF-reweighting study by nCTEQ [ARX:1610.02925].
Experimental input: The LHC data — how should it be used?

- How to use the LHC data (p-Pb & Pb-Pb) to extract information on $R_i^A (x, Q^2)$?
- Answer #1: Measured absolute distributions

\[d\sigma = \sum_{i,j} f^p_i (Q^2_f) \otimes d\sigma_{ij} (Q^2_f, Q^2_r) \otimes f^{Pb}_j (Q^2_f) \]

\[f^{P/A}_i (x, Q^2) \equiv R_i^A (x, Q^2) \otimes f^p_i (x, Q^2) \]

\[\rightarrow \text{Cannot disentangle the effects of proton PDF } f^p_i (\sim 90\%) \text{ and nuclear modifications } R_i^{Pb} (\sim 10\%). \]

\[\rightarrow \text{Interpretation ambiguous.} \]

- This approach was nevertheless used in a recent PDF-reweighting study by nCTEQ [ARXIV:1610.02925].
Experimental input: The LHC data — how should it be used?

- How to use the LHC data (p-Pb & Pb-Pb) to extract information on $R_i^A(x, Q^2)$?
- Answer #2: Distributions normalized to the integrated one

- Part of the dependence of the proton PDF f_i^p cancels. How much?
- CMS dijets:

PDF + nPDF	dijets_{CMS} (15)
CT10 + DSSZ	94.441
CT10 + EPS09	10.526
CT10 only	116.187
MSTW2008 + DSSZ	56.365
MSTW2008 + EPS09	5.522
MSTW2008 only	67.763

⇒ Still significant dependence on the baseline $f_i^p(x, Q^2)$.
How to use the LHC data (p-Pb & Pb-Pb) to extract information on $R_i^A(x, Q^2)$?

- Answer #3: Forward-to-backward ratios R_{FB}

$$R_{FB} = \frac{d\sigma(\eta > 0)}{d\sigma(\eta < 0)}$$

- As much as possible of the dependence on the proton PDF f_i^P cancels.
- Cancel also experimental uncertainties (especially if the correlations are known) but lose some information also.
- Cannot use the Pb-Pb data in this way.
- $R_{FB} \neq 1$ for: nuclear mods in PDFs + isospin + phase-space effects.
Experimental input: The story of neutrino-nucleus DIS

- Several measurements (NuTeV, CCFR, CHORUS, CDHSW, Minerva) on high-energy neutrino-nucleus DIS (ν-A and $\bar{\nu}$-A).

- Data available only as absolute cross sections $d\sigma_{\nu,\bar{\nu}}^{i,\text{exp}}(xdy)$.

 \implies Sensitive to both the free proton baseline & nuclear corrections.

- The works of nCTEQ & DSSZ use directly the extracted structure functions.

 \implies nCTEQ found tension with the ℓ^--A DIS data:

 [Phys. Rev. Lett. 106 (2011) 122301]

 > A fit with no ν-A data

 > Selected ν-A (NuTeV) data points with a computed baseline
Experimental input: The story of neutrino-nucleus DIS

- To reduce the theoretical bias & experimental uncertainties a following observable was suggested [PRL 110 (2013) 212301]

\[
\frac{d\sigma_{i,\text{exp}}^{\nu,\bar{\nu}}}{dxdy} \equiv \frac{d\sigma_{i,\text{exp}}^{\nu,\bar{\nu}}}{dxdy} / \sigma_{\text{exp}}^{\nu,\bar{\nu}}(E_i),
\]

\[
\sigma_{\text{exp}}^{\nu,\bar{\nu}}(E_i) = \sum_i d\sigma_{i,\text{exp}}^{\nu,\bar{\nu}} \Delta x_y \delta E_i, E_i
\approx \text{integrated xsec at fixed } E
\]

- A typical pattern of antishadowing + EMC effect clearly visible.

- The CHORUS ν-Pb and $\bar{\nu}$-Pb data included in the EPPS16 analysis in this way — accounting for the correlated systematics.
Experimental input: Rethink the old $\ell^- A$ DIS data

- Ambiguities in the use of old NMC, EMC, SLAC $\ell^- A$ DIS data:

 “Isoscalarized” structure functions reported by the experiments (used e.g. in EPS09, DSSZ, nCTEQ15 analyses):

 \[
 \hat{F}_2^A = \frac{1}{2} F_2^{p,A} + \frac{1}{2} F_2^{n,A}
 \]
Experimental input: Rethink the old $\ell^- A$ DIS data

- Ambiguities in the use of old NMC, EMC, SLAC $\ell^- A$ DIS data:

 “Isoscalarized” structure functions reported by the experiments (used e.g. in EPS09, DSSZ, nCTEQ15 analyses):

 \[
 \hat{F}_2^A = \frac{1}{2} F_2^{p,A} + \frac{1}{2} F_2^{n,A}
 \]

 The true structure functions (used now in EPPS16):

 \[
 F_2^A = \frac{Z}{A} F_2^{p,A} + \frac{N}{A} F_2^{n,A}
 \]
Experimental input: Rethink the old $\ell^- A$ DIS data

- Ambiguities in the use of old NMC, EMC, SLAC $\ell^- A$ DIS data:

 “Isoscalarized” structure functions reported by the experiments (used e.g. in EPS09, DSSZ, nCTEQ15 analyses):

$$\hat{F}_2^A = \frac{1}{2} F_{p,A}^p + \frac{1}{2} F_{n,A}^n$$

The true structure functions (used now in EPPS16):

$$F_2^A = \frac{Z}{A} F_{p,A}^p + \frac{N}{A} F_{n,A}^n$$

- Both ways have been used — the latter one less sensitive to experimental assumptions.
Comparison of the current global fits
The EPPS16 nuclear modification for ^{208}Pb at $Q^2 = m_{\text{charm}}^2$.

- Total uncertainties shown as blue bands, individual error sets in green.
The EPPS16 nuclear modification for 208Pb at $Q^2 = m_{\text{charm}}^2$

- Total uncertainties shown as blue bands, individual error sets in green
The EPPS16 nuclear modification for 208Pb at $Q^2 = m_{\text{charm}}^2$

- Total uncertainties shown as blue bands, individual error sets in green
The EPPS16 nuclear modification for ^{208}Pb at $Q^2 = m_{\text{charm}}^2$

- Total uncertainties shown as blue bands, individual error sets in green
The EPPS16 nuclear modification for ^{208}Pb at $Q^2 = m_{\text{charm}}^2$

- Total uncertainties shown as blue bands, individual error sets in green
The EPPS16 nuclear modification for ^{208}Pb at $Q^2 = m_{\text{charm}}^2$

- Total uncertainties shown as blue bands, individual error sets in green
The EPPS16 nuclear modification for ^{208}Pb at $Q^2 = 10 \text{ GeV}^2$

- Total uncertainties shown as blue bands, individual error sets in green
The EPPS16 nuclear modification for 208Pb at $Q^2 = 10000$ GeV2

- Total uncertainties shown as blue bands, individual error sets in green
Comparison between nCTEQ15 and EPPS16, $Q^2 = 10 \text{ GeV}^2$

- Typically smaller uncertainties in nCTEQ15 ⇐ more restrictive parametrization
- Larger high-x gluon uncertainties in nCTEQ15 ⇐ looser cuts and no LHC data
- Behaviour of the nCTEQ15 valence sector ⇐ isospin-symmetric DIS data + no $\nu-A$ DIS

[ARXIV:1612.05741]
Comparison between EPS09, DSSZ and EPPS16

- No flavour freedom in EPS09 nor DSSZ.
 \[R_{\text{valence}} \equiv \frac{u_{V}^{p/Pb} + d_{V}^{p/Pb}}{u_{V}^{p} + d_{V}^{p}} \]

- All three consistent (modulo the large-\(x\) valence quarks of DSSZ).

- Typically larger uncertainties in EPPS16 (more degrees of freedom).

\[R_{\text{light sea}} \equiv \frac{\bar{u}^{p/Pb} + \bar{d}^{p/Pb} + \bar{s}^{p/Pb}}{\bar{u}^{p} + \bar{d}^{p} + \bar{s}^{p}} \]
Effects of nuclear PDFs in LHC p-Pb observables
More net shadowing for $y_Z > 0$ than for $y_Z < 0$

\Rightarrow suppression in R_{FB}

The CMS data deviates significantly from unity for non-symmetric acceptance in the c.m. frame.
Effects of nuclear PDFs in the p-Pb data: W production

- More net shadowing for $y_{\ell^\pm} > 0$ than for $y_{\ell^\pm} < 0$
 \Rightarrow suppression in R_{FB}

- A large isospin effect present in W production [JHEP 1103 (2011) 071]
 \Rightarrow The data deviates significantly from unity
An EMC effect for $\eta_{\text{dijet}} < 0$, antishadowing for $\eta_{\text{dijet}} > 0$

\implies an enhancement in R_{FB}

The data deviates significantly from unity for non-symmetric acceptance [JHEP 1310 (2013) 213].
Effects of nuclear PDFs in the p-Pb data: dijet production

nCTEQ15: larger high-\(x\) gluon uncertainty ⇒ a wider uncertainty band for dijets.

The mild nuclear effects of DSSZ gluons lead to a result similar with no effects.

Dijets constitute currently the most stringent probe of large-\(x\) gluons.
The way forward
The way forward... just a part of it
Near-future prospects

- For the new p-p baseline at $\sqrt{s} = 5$ TeV direct measurements of nuclear modification R_{pPb} are now possible (more or less also at $\sqrt{s} = 8$ TeV).

[CMS-HIN-16-003]

- Provide theoretically a cleaner sensitivity to $R_A(x, Q^2)$ but....
Near-future prospects

- For the new p-p baseline at $\sqrt{s} = 5$ TeV direct measurements of nuclear modification R_{pPb} are now possible (more or less also at $\sqrt{s} = 8$ TeV).

![Graph showing CMS Preliminary results for R_{pPb} with different p_T ranges](image)

- Provide theoretically a cleaner sensitivity to $R^A_i(x, Q^2)$ but....
- It is important that in such measurements the correlated systematics between p-p and p-Pb are accounted for.
- Preferably in a common fiducial phase space.
Near-future prospects: The importance of symmetric phase space

- An example of the importance of common fiducial phase space: R_{BF} with a symmetric acceptance in lab frame vs. symmetric acceptance in c.m. frame

$\sqrt{s} = 5.02 \text{ TeV}$

- $-3 < \eta_{\text{leading}}$, $\eta_{\text{subleading}} < 3$
- $p_T^{\text{leading}} > 120 \text{ GeV}$
- $p_T^{\text{subleading}} > 30 \text{ GeV}$

\Rightarrow Theoretical uncertainties can be made smaller by experimental cuts.
Near-future prospects: The Drell-Yan process

- Intermediate-mass Drell-Yan process at forward direction would provide a nice probe of small-\(x \) sea quarks [Arleo et al., Phys. Rev. D95 (2017) 011502].

![Graph showing Drell-Yan cross-section](image)

- Within the possibilities of e.g. LHCb with the Run-II luminosity [LHCb-PUB-2016-011].
- New low-mass Drell-Yan measurements expected from Fermilab SeaQuest experiment [FERMILAB-THESIS-2016-13].
Prospects for other probes — J/ψ (+ other quarkonia)

- The theoretical description of J/ψ in $p-A$ collisions not yet fully understood — could involve nuclear absorption etc...

- Fresh idea [LANSBERG ET.AL, EUR.PHYS.J. C77 (2017) NO.1, 1]:

$$d\sigma^{J/\psi} = f_g(Q_f^2) \otimes d\sigma_{gg}^{J/\psi}(Q_f^2, Q_r^2) \otimes f_g(Q_f^2)$$

Fit the coefficient functions to $p-p$ data

- Neglects all but the gluon-gluon channel

- A consistent description of the data with only effects from nuclear PDFs.
Prospects for other probes — open heavy flavour

- The potential of D (and B) meson production has been demonstrated in p-p
 \[\text{[ARXIV:1610.09373 & EUR.PHYS.J. C75 (2015) NO.8, 396]}\]

- Different theoretical treatments e.g.
 - NLL parton-level calculation + PYTHIA
 - NLO GM-VFNS + fragmentation functions

- Can be done also in p-Pb collisions (e.g. ALICE, LHCb)

\[xg(x,Q^2) = 4 \text{GeV}^2\]
Prospects for other probes — ultra peripheral collisions (UPC)

- It has been argued that UPC vector meson (e.g. J/ψ) production in Pb-Pb collisions is particularly sensitive to nuclear gluon

\[\sigma^{\gamma^A \to V} \propto \left[g^A(x, Q^2) \right]^2 \]

[ARXIV:1603.01919]

- Exact relation to inclusive NLO (and beyond) PDFs?

H. Paukkunen (Jyväskylä Univ.)
Status of nuclear PDFs after the first LHC p-Pb run
Quark Matter 2017, February 10th
Overviewed the recent progress on the global analysis of nuclear PDFs

The most important developments new ingredients in the latest global analysis:

- LHC Run I data \(\Rightarrow\) completely novel constraints
- Neutrino DIS data \(\Rightarrow R_{uV} \sim R_{dV}\)
- Full flavour dependence \(\Rightarrow\) significantly less bias but larger uncertainties

The universality of nuclear PDFs now verified up to the electroweak scale.

More (much!) data expected in the near future — e.g. the p-Pb run at \(\sqrt{s} = 8\) TeV

- The availability of correlated systematics would be advantageous.
- Symmetric acceptance in the c.m. frame would reduce theoretical uncertainties.