Comment on “Phase Reduction of Stochastic Limit Cycle Oscillators”

Hiroya Nakao
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Jun-nosuke Teramae
Brain Science Institute, RIKEN, Wako 351-0198, Japan

G. Bard Ermentrout
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Dated: February 3, 2022)

PACS numbers: 05.45.Xt, 02.50.Ey

In a recent Letter, Yoshimura and Arai [1] claimed that the conventional phase stochastic differential equation (SDE) used in [2, 3, 4] does not give a proper approximation to limit-cycle oscillators driven by noise, and proposed a modified phase SDE. Here we argue that their claim is not always correct; both SDEs are valid depending on the situation.

Since physical noise has an associated time scale and all oscillators have a characteristic rate of attraction, which of the two SDEs is appropriate depends on the relative sizes of these two scales. As a simple example, let us consider the Stuart-Landau (SL) model used in [1, 2] driven by a colored noise generated by the Ornstein-Uhlenbeck process (OUP) [5], which is rescaled such that the amplitude relaxation time explicitly appears while keeping the limit cycle and its isochrons invariant,

\[W(t) = \{T^{-1}(1 + ic) + i\omega\}W - T^{-1}(1 + ic)|W|^2W + \sqrt{2\varepsilon}\xi(t), \]

where \(W \) is a complex variable representing the oscillator state, \(T \) is the relaxation time of the amplitude, \(c \) and \(\omega \) are parameters, \(\varepsilon \) is the noise intensity, and \(\xi(t) \) is OUP noise that is applied only to the real component of \(W \) for simplicity. \(\xi(t) \) is Gaussian-distributed, and its correlation function is given by \(\langle \xi(t)\xi(s) \rangle = \exp(-|t-s|/\tau)/(2\tau) \), which converges to \(\delta(t) \) as \(\tau \to 0 \). Thus, \(\xi(t) \) gives a colored-noise approximation to the Wiener process [5].

Introducing the amplitude \(R = |W| \) and the isochron phase \(\phi = \arg(W - c\ln|W|) \) [1, 2], Eq. (1) can be written as

\[\dot{R}(t) = T^{-1}(R - R^3) + \sqrt{2\varepsilon} \cos(\phi + c\ln R) \xi(t), \]

\[\dot{\phi}(t) = \omega - \sqrt{2\varepsilon}R^{-1}\{\sin(\phi + c\ln R) + c\cos(\phi + c\ln R)\} \xi(t). \]

It is now clear that \(T \) actually determines the relaxation time of the amplitude \(R \). The limit cycle in the absence of the noise (\(\varepsilon = 0 \)) is simply \(\dot{R}(t) \equiv 1 \) and \(\dot{\phi}(t) = \omega t + \text{const} \).

Two different SDEs have been previously derived describing this and other noisy oscillators. The non-agreement is due to the order in which the white-noise limit and the phase limit are taken [6]. The “conventional” model obtained by taking the phase limit in the first has the form:

\[d\phi(t) = [\omega + \varepsilon Z(\phi)Z'(\phi)] dt + \sqrt{2\varepsilon}Z(\phi)dw(t), \]

where the phase sensitivity (or response) function \(Z(\phi) = -\sin\phi - c\cos\phi \) in the present example. Yoshimura and Arai’s modified phase model obtained by taking the white-noise limit first is given by

\[d\phi(t) = [\omega + \varepsilon \{Z(\phi)Z'(\phi) + Y(\phi)\}] dt + \sqrt{2\varepsilon}Z(\phi)dw(t), \]

where the extra term \(Y(\phi) = (1 + c^2)\sin(2\phi)/2 \) [1].

To see which of the two reduced phase SDEs [1, 5] approximates the original noisy SL model Eqs. (2) [3] better, we compare the stationary phase probability density functions (PDFs) obtained by direct Langevin simulations of Eqs. (2) [3] for different pairs of \((\tau, T) \) with the PDFs obtained from the two phase SDEs [1, 5] by numerically solving the corresponding Fokker-Planck equations. We fix \(\omega = 1 \), \(c = 2 \), \(\varepsilon = 0.01 \), and vary \(\tau \) and \(T \) keeping \(\tau T = 0.001 \) constant.

Figure 1(a) shows the stationary phase PDFs obtained for two typical cases, \(T = 0.01 \ll \tau = 0.1 \) and \(\tau = 0.01 \ll T = 0.1 \). The conventional phase SDE [1] nicely fits the original model when \(T \ll \tau \), whereas the modified phase SDE [5] is better when \(\tau \ll T \). Figure 1(b) shows mean-square errors of the approximate PDFs yielded by...
FIG. 1: (a) Comparison of stationary phase PDFs obtained directly from Eqs. (2, 3) with those obtained from the phase SDEs (4, 5) for \((T, \tau) = (0.1, 0.01)\) and \((0.01, 0.1)\). (b) Mean-square errors of the approximate phase PDFs of SDEs (4, 5) from the original PDFs of Eqs. (2, 3) plotted as functions of the amplitude relaxation time \(T (= 0.001/\tau)\).