Urokinase Receptor (CD87) Regulates Leukocyte Recruitment via β2 Integrins In Vivo

By Andreas E. May,* Sandip M. Kanse,* Leif R. Lund,‡ Roland H. Gisler,§ Beat A. Imhof,∥ and Klaus T. Preisner*

Summary
The urokinase receptor (CD87; uPAR) is found in close association with β2 integrins on leukocytes. We studied the functional consequence of this association for leukocyte adhesion and migration. In vivo, the β2 integrin-dependent recruitment of leukocytes to the inflamed peritoneum of uPAR-deficient mice was significantly reduced as compared with wild-type animals. In vitro, β2 integrin-mediated adhesion of leukocytes to endothelium was lost upon removal of uPAR from the leukocyte surface by phosphatidyl-inositol-specific phospholipase C. Leukocyte adhesion was reconstituted when soluble intact uPAR, but not a truncated form lacking the uPA-binding domain, was allowed to reassociate with the cell surface. uPAR ligation with a monoclonal antibody induced adhesion of monocytic cells and neutrophils to vascular endothelium by six- to eightfold, whereas ligation with inactivated uPA significantly reduced cell-to-cell adhesion irrespective of the β2 integrin-stimulating pathway. These data indicate that β2 integrin-mediated leukocyte-endothelial cell interactions and recruitment to inflamed areas require the presence of uPAR and define a new phenotype for uPAR-deficient mice. Moreover, uPAR ligation differentially modulates leukocyte adhesion to endothelium and provides novel targets for therapeutic strategies in inflammation-related vascular pathologies.

Key words: leukocyte • endothelial cells • urokinase receptor • β2 integrin • inflammation

Leukocyte activation and adhesion to the endothelium and the subsequent transendothelial migration are pivotal steps in the recruitment of cells to inflamed tissue. This highly coordinated multistep process requires tight regulation (1, 2). This includes the induction of genes coding for adhesion molecules and the modification of ligand-binding affinities of adhesion receptors on leukocytes as well as their change in avidity due to adhesion receptor clustering of leukocytes. Uncontrolled activation of leukocytes or endothelial cells leads to pathological chronic inflammation causing atherosclerosis, rheumatoid arthritis, and other disease states.

The β2 integrin family of adhesion receptors consists of the four members, LFA-1 (αLβ2, CD11a/CD18), M ac-1 (αMβ2, CD11b/CD18, CR3), p150,95 (αXβ2, CD11c/CD18), and αDβ2 (CD11d/CD18) (3, 4). In acute inflammation, LFA-1 and M ac-1 are the predominant β2 integrins mediating leukocyte adhesion to vascular endothelium. M ac-1 is constitutively expressed on neutrophils and monocytes, whereas LFA-1 is predominantly expressed on lymphocytes, but recent data underline its important contribution in neutrophil recruitment (5, 6). Leukocyte activation via cytokines, chemoattractants, or PMA induces both conformational changes in β2 integrins necessary for enhanced ligand recognition and translocation of M ac-1 to the cell surface (2, 7). Likewise, integrin activation is achieved extracellularly in vitro by the divalent cation Mn2+ (8). After activation, M ac-1 and LFA-1 firmly bind to intercellular adhesion molecule (ICAM)-1 (CD54) expressed on vascular endothelial (1) and smooth muscle cells (9). β2 integrins have been reported to form complexes with other plasma membrane proteins such as CD63 (10), the immunoglobulin receptor FcγR IIIB (CD16b) (11) and the urokinase receptor (uPAR, CD87) (12, 13) suggesting possible functional interaction.

uPAR consists of three homologous domains and is anchored to the plasma membrane by a glycolipid moiety that

1Abbreviations used in this paper: HUVEC, human umbilical vein endothelial cells; HVMC, human vascular smooth muscle cells; ICAM-1, intercellular adhesion molecule 1; LFA-1, αLβ2 integrin (CD11a/CD18); M ac-1, αMβ2 integrin (CD11b/CD18); ns, not significant; piPLC, phosphatidylinositol-specific phospholipase C; uPA, urokinase (urinary-type plasminogen activator); uPAR, urokinase receptor.
is susceptible to dissociation by phosphatidylinositol-specific phospholipase C (PIPLC) (14). Intact uPAR binds the protease uPA (urinary-type plasminogen activator) as well as the adhesive protein vitronectin with high affinity (15), and thereby plays a critical role in pericellular proteolysis and modulation of cellular contacts in adhesion and migration (16, 17). Although uPAR lacks its own transmembrane and cytoplasmic domain, uPA binding has been reported to transduce signals to the cell interior in leukocytes resulting in calcium mobilization (18), protein kinase phosphorylation (12, 19–21), and other cellular effects (18, 21, 22). For some of these functions, it has been suggested that uPAR uses related transmembrane integrins as signal transduction devices (23). In fact, uPAR has been localized together with different integrins in focal adhesion areas (24), and increased uPAR expression and localization of the receptor to the leading edge of migrating monocytes appears to be essential for locomotion or invasiveness of cells independent of uPA activity (20, 25). It has been shown in vitro that uPAR crucially influences integrin function (26): the presence of uPAR inhibited β_2 integrin-mediated cell binding to fibronectin, whereas uPAR favored β_2 integrin-dependent monocyte adhesion to fibrinogen, one of the adhesive ligands of Mac-1. Moreover, using uPA antisense or ligation with uPA inhibited Mac-1 binding to and degradation of fibrinogen (27, 28). Based on these studies, uPAR has been proposed to form a functional unit with integrins on the cell surface.

These relationships prompted us to investigate the contribution of uPAR in β_2 integrin-mediated cell-to-cell interactions in vivo using uPAR knockout mice, as well as in vitro, to elute the mechanism of receptor cross-talk. Evidence is provided that uPAR is required for β_2 integrin-dependent leukocyte adhesion and recruitment.

Materials and Methods

Materials

Manganese chloride was obtained from Sigma Chemical Co. (St. Louis, Missouri) and PM A from GIBCO BRL (Pailey, Scotland). PIPLC was from Oxford Glyco-Systems (Abingdon, UK). Intact recombinant soluble uPAR as well as the chymotrypsincleaved truncated form lacking domain 1 were produced as previously described (29, 30) and were provided by Dr. Nils Behrendt (Finsen Laboratory, Copenhagen, Denmark). uPA (Medac, Hamburg, Germany) was inactivated by diisopropyl-fluorophosphate (Serva, Heidelberg, Germany) as previously described (31).

Antibodies

The following mouse anti-human uPAR mAbs were used in vitro. mAb no. 3936 (IgG2a-type), provided by Dr. R. Richard Hart (American Diagnostica, Greenwich, CT), is known to block uPA binding by recognizing an epitope of uPAR that has not been clearly identified yet (32). (Fab')2 fragments were generated using digestion by immobilized pepsin followed by protein A-Sepharose affinity chromatography (Pierce Chemical Co., Rockford, IL). Purity was controlled by polyacrylamide gel-electrophoretic analysis. mAbs R3 and R9, which recognize domain 1 and interfere with uPA binding, and mAbs R2, R4 and R8, which recognize domain 2 and 3 without influencing uPA binding, were provided by Dr. Gunilla Hoyer-Hansen (Finsen Laboratory, Copenhagen, Denmark). The characteristics of mAbs R2, R3, R4, R8, and R9 have been described previously (33). Mouse anti-human β_1 chain (CD18) mAb 60.3 (IgG2a-type) blocks β_1 integrin-mediated leukocyte adhesion to endothelium (34) and was provided by Dr. John Harlan (Harborview Medical Center, Seattle, WA). Mouse anti-human IgG2a (Sigma Chemical Co.) was used as isotype-matched control antibody. When necessary, fluorescein-conjugated mouse mAbs anti-CD11a (no. 25.3), anti-CD11b (Bear 1), and anti-CD18 (no. 7E4) (Immunotech, Hamburg, Germany) were used for flow cytometry.

The following reagents were used in animal experiments. R-PE-labeled streptavidin (Southern Biotechnology Associates, Inc., Birmingham, AL) and biotin-conjugated rat anti-mouse CD11b (M1/70), Ly-6G (Gr-1) (R6-6G), and CD3e (145-2C11) (all from PharMingen, San Diego, CA). Anti-CD11b (FD 441.8) (35) and YN1.1P (36) (American Type Culture Collection, Rockville, MD) were affinity purified and dialyzed under endotoxin-free conditions.

Cells

Human myelomonocytic HL60 and U 937 cell lines (German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) were cultured in RPMI 1640 supplemented with 10% (vol/vol) fetal calf serum, 1% sodium pyruvate, 1 mM L-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin (all from GIBCO BRL). 24 h before experiments, monocytes were differentiated by addition of 50 ng/ml IL-4, 25-dihydroxyvitamin D3 and 1 ng/ml transforming growth factor β1 (Biomol, Hamburg, Germany). Peripheral blood PMNs were isolated by discontinuous density gradient centrifugation using Histopaque-1119 and -1077 (Sigma Chemical Co.) as described by the manufacturer. An enrichment of at least 95% neutrophils was obtained as controlled by flow cytometry using forward and side scatter analysis and staining for CD15. Human umbilical vein endothelial cells (HUVEC), provided by Dr. Bernd Poetzsch (Kreukhoff-Klinik), were isolated as previously described (37) and cultured (for 2–4 passages) in low serum endothelial cell growth medium (PromoCell, Heidelberg, Germany) on gelatin-coated tissue-culture plastic. Human vascular smooth muscle cells (H VSMCs) were isolated from aorta or saphenous vein by the explant method and characterized as previously described (38). Early passage cells were cultured in smooth muscle cell medium (PromoCell).

Peritonitis Assay

Peritonitis was induced in female uPAR−/− (39) or wild-type mice by intraperitoneal injection of a solution of 4% (wt/vol) in Bacto Fluid Thioglycollate Medium (Difco Labs, Detroit, MI). Endotoxin-free stock solutions were prepared at 100°C and subsequently heat-sterilized. Mice obtained by shipping were generally kept (at the Basel Institute for Immunology) for at least 2 wk before the start of experiments to relieve stress. PBS alone or antibodies against ICAM-1, LFA-1 (200 μl of a 1 mg/ml solution each) were injected intravenously into the tail vein 30 min before induction of peritonitis. All reagents were endotoxin-free. After 4 or 24 h, respectively, mice were killed and peritoneal cells were suspended by injection of 5 ml PBS containing 2 mM EDTA and 50 μg/ml heparin into the peritoneum. The loaded mouse was then massaged and 4 ml of this lavage were collected and leukocytes were
counted on a Coulter counter ZM equipped with a channelizer 256 (Coulter Corp., M I ami, FL). Animal studies were approved by the Institutional Review Board.

Adhesion Assays

HUVECs were seeded in gelatin-coated 48-well plates (Costar, Badhoevedorp, The Netherlands) 48 h before the experiment. Confluency was confirmed by microscopic inspection before each experiment. HLEo or U937 cells were radiolabeled with 1 μCI/ml methyl-[3H]thymidine (N ycomed Amersham, Little Chalfont, Buckinghamshire, UK) for 24 h and differentiated to monocyctic cells (see above) for another 24 h. These monocyctic cells or freshly isolated neutrophils were washed twice in adhesion medium (serum-free RPMI 1640) and 25 mm vol), followed by different pretreatments (see figure legends for details), and were added (7 × 106/ml adhesion medium) to the prewashed HUVEC monolayers in the presence or absence of the blocking mAb anti-β2 integrin or isotype IgG (final concentration 10 μg/ml). After 30 min of coincubation (37°C, 5% CO2, 90% humidity), the plates were gently washed twice with adhesion buffer to remove nonadherent cells. Remaining adherent cells were lysed with 1 M NaOH and quantitated in a beta counter. When flow cytometry was performed in parallel to neutrophil adhesion, the number of adherent cells in 10 high power fields was counted using light microscopy. At least triplicate wells were run per test substance, and results are expressed as mean values ± SEM. The experimental protocol for cell adhesion to HVS M C s, which were seeded 7–9 d before the assay, was identical.

Flow Cytometry

Animal Model. The mouse leukocyte subpopulations were further analyzed by flow cytometry (Becton Dickinson, Heidelberg, Germany) using the biotin-coupled anti-mouse CD11b (integrin αM chain, Mac-1), anti-Gr-1 (anti-myeloid differentiation antigen Gr-1), or anti–CD3 (anti-CD3 TCR-associated complex). Fc receptors of leukocytes were blocked by preincubation of the cells for 30 min with 5% (vol/vol) rat and 5% (vol/vol) mouse serum in PBS. The secondary reagent PE-coupled mouse IgG (Dianova, Hamburg, Germany) using the biotin-coupled anti–mouse CD11b mAb anti–mouse ICAM-1–2/2 integrin or isotype IgG (final concentration 10 μg/ml). After 30 min of coincubation (37°C, 5% CO2, 90% humidity), the plates were gently washed twice with adhesion buffer to remove nonadherent cells. Remaining adherent cells were lysed with 1 M NaOH and quantitated in a beta counter. When flow cytometry was performed in parallel to neutrophil adhesion, the number of adherent cells in 10 high power fields was counted using light microscopy. At least triplicate wells were run per test substance, and results are expressed as mean values ± SEM. The experimental protocol for cell adhesion to HVS M C s, which were seeded 7–9 d before the assay, was identical.

Statistical Analysis

Comparisons between group means were performed using multivariate analysis (ANOVA). Data represent mean ± SEM; P < 0.05 was regarded as significant.

Results

Leukocyte Migration in uPAR−/− Mice. Transendothelial migration of leukocytes to inflamed tissue depends on the interaction of the leukocyte with the vascular endothelium by β2 integrins and ICAM-1. Thioglycollate-induced peritonitis is a reliable model to test leukocyte emigration into sites of acute inflammation. Disruption of the mouse ICAM-1−/− integrin interactions resulted in reduced leukocyte emigration in this model when compared with wild-type animals (40). Both uPAR-deficient and wild-type animals of the identical genotype (129 × C57/BL6 F1) were compared for leukocyte emigration in the peritonitis model. The number and types of leukocytes in the peripheral blood were identical in both sets of mice (data not shown). Lavages performed 4 (Fig. 1) and 24 h (data not shown) after induction of peritonitis showed ~50% reduction in counts of the total leukocyte population in uPAR−/− deficient mice when compared with wild-type animals (Fig. 1). When animals were treated with anti–ICAM-1 or anti–LFA-1 antibodies at the time of induction of peritonitis, the number of emigrating leukocytes was further reduced by 50% in wild-type mice, but by only 30% in uPAR−/− deficient animals, suggesting that a major part of the initial lack of emigration was due to a perturbed β2 integrin/ICAM-1 function. Analysis of the leukocyte subpopulations by flow cytometry using specific markers as indicated in Materials and Methods revealed that in uPAR−/− deficient mice granulocytes almost totally lost their ability to migrate into the peritoneum after 4 and 24 h of inflammation (Fig. 2). Myeloid lineage cells showed significant reduction in recruitment after 4 h (~55%) and 24 h (~70%), whereas T lineage cells were hardly affected by the absence of uPAR after 4 h, but showed significant inhibition in emigration (~60%) after 24 h (Fig. 2). Consistently, administration of mAbs demonstrated that lymphocyte recruitment after 4 h was largely independent of LFA-1–ICAM-1 interactions in contrast to recruitment after 24 h of inflammation.

To further specify those granulocytic subpopulations that were mostly affected, a differential cell staining (May-Grünwald-Giemsa) was performed (Fig. 3). In uPAR−/− deficient mice, after 4 h, neutrophil and eosinophil recruitment was inhibited by >70% or 90%, respectively, and residual emigration was marginally affected by the administration of mAbs against ICAM-1 or LFA-1, respectively. In contrast, in wild-type mice the recruitment of these two cell types was effectively blocked by these antibodies down to the level of emigrated cells in uPAR−/− mice, suggesting that...
leukocyte recruitment in uPAR-deficient mice is diminished through impaired function of the β_2 integrin/ICAM-1 system. Basophil emigration into the inflamed peritoneum was not significantly affected in uPAR-deficient mice but was comparable to that in wild-type mice receiving anti-ICAM-1 or anti-LFA-1 mAb, respectively. Thus, the definitive role of uPAR for basophil recruitment is not yet clear and requires further investigation. Comparable findings for granulocyte subpopulations were noted after 24 h of inflammation (data not shown). These data provide in vivo evidence for a functional consequence of the uPAR/β_2 integrin system in leukocyte adhesion/migration and present a new phenotype for uPAR-deficient mice.

Requirement of uPAR for Leukocyte Adhesion to Endothelium In Vitro. uPAR is expressed on circulating human blood cells, such as granulocytes, monocytes, and activated T cells. The human myelo-monocytic cell lines HL60 and U937 differentiate into mononuclear phagocyte-like cells after treatment with vitamin D3 and transforming growth factor β_1 (β_1). This in vitro differentiation induced the expression of a monocyte-specific antigen pattern including the molecules CD14, CD11b, CD18, and CD87 (uPAR) as measured by flow cytometry (data not shown). Adhesion of these differentiated monocytic cells to endothelial cell monolayers was induced six- to eightfold by PMA or Mn^{2+}, both reagents known for their activation of β_2 integrins. The mAb 60.3 directed against the β_2 integrin chain blocked adhesion by 75–85% in both cases, indicating that leukocyte adhesion to endothelium was β_2 integrin dependent (Fig. 4).

Pretreatment of leukocytes with piPLC removed ~80% of uPAR from the cell surface as assessed by flow cytometry (data not shown). This resulted in a 70–80% reduction of PMA-induced or a 65–70% reduction of Mn^{2+}-induced leukocyte adhesion (Fig. 4). Reconstitution of the uPAR-depleted cells with intact soluble uPAR for 10 min restored adhesion to the level as observed with untreated cells. This restoration of uPAR-induced adhesion was abrogated by anti-CD18 antibody, indicating that the β_2 integrin-dependent adhesion was inducible by uPAR.

In a dose-dependent manner, intact soluble uPAR increased adhesion of piPLC-treated leukocytes to endothelium to maximal levels, whereas addition of the truncated form of uPAR, lacking the uPA binding domain D1 did not, indicating a specific structural requirement for β_2 integrin activation (Fig. 5). In contrast to PMA, which induces both increased surface expression and activation of β_2 integrins, flow cytometric analysis revealed no change in inte-
that a functional conformational change of the adhesion receptor is responsible for the proadhesive effect.

Analogous to PMA- or M n2+ -induced β2 integrin-dependent cell adhesion, mAb 60.3 could abrogate mAb no. 3936-induced leukocyte adhesion to cultured endothelial and smooth muscle cells, indicating β2 integrin dependency (Fig. 8). In addition, vitamin D3/transforming growth factor β1 differentiated U 937 cells and freshly isolated peripheral blood neutrophils responded to mAb no. 3936 in an identical manner, emphasizing that this functional interaction of uPAR with β2 integrins occurs in different cell populations such as monocytes and neutrophils.

Occupyng of uPAR by uPA reduces β2 Integrin Activation–dependent leukocyte adhesion to Endothelium. Although the addition of exogenous uPA, the natural ligand of uPAR, had no effect on background adhesion, uPA significantly inhibited β2 integrin–mediated adhesion in response to any of the three described stimulating pathways (Fig. 9); adhesion of leukocytes to endothelium achieved by cell activation
Figure 8. Induction of leukocyte adhesion to endothelial and smooth muscle cells by anti-uPAR mAb no. 3936. Muyo-monocytic HLE60 cells (black bars), monocytic U937 cells (hatched bars) and freshly isolated neutrophils (white bars) were pretreated with anti-uPAR mAb no. 3936 (20 μg/ml) for 30 min. After washing, the adhesion assay was performed in the absence or presence of anti-β2 integrin mAb 60.3 or isotype control mAb (10 μg/ml) as indicated. Values (mean ± SEM, n = 3) are displayed as percentage of control (no antibody added), and one representative experiment out of three is shown. *P < 0.001 as compared with anti-uPAR-induced adhesion.

Discussion

The major contribution of β2 integrins in immune defense and inflammatory processes relates to their pivotal role in mediating cellular contacts between leukocytes and endothelium as a prerequisite for subsequent transmigration towards a chemotactic stimulus. Previous in vitro studies have demonstrated that uPAR forms complexes with integrins (12, 13) and thereby modulates integrin-mediated binding to extracellular matrix proteins (26–28).

This study demonstrates that uPAR is needed for β2 integrin-dependent leukocyte recruitment into sites of acute inflammation. Migration of neutrophils and monocytes into the inflamed peritoneum was drastically reduced after 4 h in uPAR-deficient mice. Consistently, β2 integrin-dependent cell adhesion of leukocytes to endothelial cells was abrogated after depletion of uPAR from the cell surface, whereas reconstitution with soluble intact, but not truncated, uPAR could totally rescue β2 integrin-mediated adhesion. Regulation of β2 integrin activity probably involves uPAR domain 1, since occupancy by a mAb that blocks uPAR-binding to this domain strongly induced leukocyte adhesion to vascular endothelial cells, whereas uPA itself inhibited β2 integrin-dependent adhesion.

The adhesion of leukocytes to inflamed vascular endothelium and the transendothelial migration largely depend on the activation of β2 integrins and binding to its counter-

Figure 9. Interference of uPA with leukocyte adhesion to endothelium. Muyo-monocytic HLE60 cells were incubated in the absence (hatched bars) or the presence (black bars) of inactivated uPA (50 nM) for 30 min (37°C, 5% CO2) before addition of medium, PMA (10 ng/ml), Mn2+ (1.0 mM), or anti-uPAR mAb no. 3936 (10 μg/ml) for another 30 min, as indicated. After washing, the adhesion assay was performed. Values are displayed as percent of untreated control (medium) and represent the mean ± SEM of three independent experiments. *P < 0.01.

via PMA, direct extracellular integrin activation via Mn2+, or uPA ligation by the activating mAb no. 3936 was inhibited by active (data not shown) as well as by enzymatically inactive uPA. Thus, uPA binding to uPAR independent of its catalytic activity appears to control β2 integrin activation irrespective of the integrin-activating stimulus. Since uPA or its inactivated isoform did not alter the surface expression of the integrin αL, αM, or β2 chain in either resting or stimulated cells (data not shown), we propose that the binding of uPA to uPAR prevents the induction of conformational change(s) leading to β2 integrin activation.
domain 1 of uPAR is predominantly involved in significantly inhibited cell-to-cell adhesion, suggesting that demonstrated in an isolated system for Mac-1 (26). In contrast, the interactions between these two receptors as was demon-
strated leukocyte adhesion to endothelial cells, whereas uPA greatly inhibits cell-to-cell interactions independent of the stimulatory pathway.

uPAR regardless of the stimulatory pathway. Moreover, the intact (soluble) uPAR appears to be crucial in the cross-talk with β2 integrins (Fig. 10), implying direct binding inter-
actions between these two receptors as was demonstrated in an isolated system for Mac-1 (26). In contrast, the truncated form of uPAR was ineffective, and uPA itself significantly inhibited cell-to-cell adhesion, suggesting that domain 1 of uPAR is predominantly involved in β2 integrin activation. A similar inhibitory effect of uPA on β2 integrin function has previously been proposed with regard to Mac-1-mediated fibrinogen binding and degradation (27, 28).

Although uPAR-dependent proteolytic activity did not seem to be critical for leukocyte recruitment (47), the focalized proteolytic activity of the uPAR-uPA complex is tightly correlated with the migratory or invasive potential of cells in a variety of biological systems (48). On the other hand, active uPA has been found to support cell migration in vitro via proteolysis or cell-activating processes and was required for adequate leukocyte recruitment into the lungs and a subsequent inflammatory response after 3 wk of fungal infection (49). Collectively, our combined in vivo and in vitro studies together with previous reports strongly indi-
cate that proteolysis-independent cross-talk of uPAR with β2 integrins occurs in the initial phase of leukocyte in-
teraction with the vessel wall, whereas subsequent recruit-
ment into inflamed tissue may require proteolysis-dependent mechanisms including plasmin action.

uPAR appeared to induce and facilitate β2 integrin activation on its own when stimulated by the specific anti-

uPAR mAb no. 3936 or its (Fab')2 fragment. Although cross-linking of uPAR cannot be ruled out, this antibody provides an additional stimulatory pathway for β2 integrin engagement. In accordance with this concept, uPA was found to interfere with either competing for mAb no. 3936 binding or by not allowing integrin activation to occur as pointed out before. Since removal of cell surface-associated uPA by acidic wash (data not shown) and the use of other antibodies that also block uPA binding to uPAR (such as R 3) did not affect cell adhesion, we attribute the proadhe-
sive capability of mAb no. 3936 to its specific ligation of uPAR rather than to competition with endogenous uPA.

In contrast to our findings that the mAb no. 3936 induces β2 integrin-dependent cell-cell adhesion, Mac-1-mediated leukocyte adhesion to fibrinogen has been shown to be inhibited by the anti-uPAR mAb 3B10 (27). These di-
verse findings may be due to differences in the experimental systems used and/or to the different integrins or ligands involved. Although vitronectin and PAI-1 are known to regulate uPAR as well as αv integrin-dependent cell-substrate ad-
hesion (50–52), both factors did not interfere with β2 integrin-dependent cell-cell adhesion (data not shown), underlining the specificity of the uPAR system in this regard.

Our findings indicate that uPAR plays a major role for leukocyte adhesion. Nevertheless, patients with paroxysmal nocturnal hemoglobinuria (PNH) lacking cell-bound uPAR and other cell surface proteins due to a defective production of glycolipid anchors do not necessarily show an enhanced susceptibility for infections, whereas isolated neutrophils from these patients are impaired in their transendothelial migration in vitro (53). Possible explanations might be that (a) in PNH, which is an acquired clonal disease, a portion of the cells remains unaffected and may therefore be sufficient for host defense as demonstrated in the experiments with uPAR-deficient mice; or (b) circulating soluble uPAR is enhanced three- to fourfold in PNH patients (54) and might be sufficient for β2 integrin function in vivo in these patients, as documented here in vitro. The present observa-
tions indicate that uPAR controls integrin-mediated inter-
actions in vitro as well as in vivo, and these findings might have therapeutic consequences for the treatment of hyper-
inflammatory or invasive processes related to vascular or immune diseases.

Figure 10. Hypothetical model for the uPAR-β2 integrin cross-talk. The presence of uPAR on leukocyte subpopulations is required for their adhesion to endothelium and their subsequent recruitment into the inflamed tissue as documented here for a peritonitis model. In vitro, ligation of uPAR by a specific mAb no. 3936 induces leukocyte adhesion to endothelial cells, whereas uPA greatly inhibits cell-to-cell interactions independent of the stimulatory pathway.
References

1. Springer, T.A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 76:301–314.
2. Carlos T.M., and J.M. Harlan. 1994. Leukocyte-endothelial adhesion molecules. Blood. 84:2068–2101.
3. Larson, R.S., and T.A. Springer. 1990. Structure and function of leukocyte integrins. Immunol. Rev. 114:181–217.
4. Van der Vieren, M., H. Le Trong, C.L. Wood, P.F. Moore, T. St. John, D.E. Staunton, and W.M. Gallatin. 1995. A novel leukointegrin, αβ2, binds preferentially to ICAM-3. Immunity. 3:683–690.
5. Smith, C.W., S.D. Marlin, R. Rothlein, C. Toman, and D.C. Anderson. 1989. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83:2008–2017.
6. Lu, H., C.W. Smith, J. Perrard, D. Bullard, L.P. Tang, S.B. Shapell, M.L. Entman, A.L. Beaudet, and C.M. Ballantyne. 1997. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J. Clin. Invest. 99:1340–1350.
7. Miller, L.J., D.F. Bainton, N. Borregaard, and T.A. Springer. 1987. Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J. Clin. Invest. 80:535–544.
8. Altieri, D.C. 1991. Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion. J. Immunol. 147:1891–1898.
9. Couffinhal, T., C. Duplaa, C. Moreau, J.-M.D. Lamaziere, and J. Bonnet. 1994. Regulation of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular smooth muscle cells. Circ. Res. 74:225–234.
10. Skubitz, K.M., K.D. Campbell, J. Iida, and A.P.N. Skubitz. 1996. CD63 associates with tyrosine kinase activity and transmembrane adhesion molecules. J. Biol. Chem. 271:18224–18229.
11. Chapman, H.A. 1997. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr. Opin. Cell Biol. 9:714–724.
12. Cao, D., I.F. M izukami, B.A. Garni-Wagner, A.L. Kindzelskii, R.F. Todd III, L.A. Boxer, and H.R. Petty. 1995. Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J. Immunol. 154:1817–1829.
13.发改委, T. St. John, D.E. Staunton, and W.M. Gallatin. 1995. A novel leukointegrin, αβ2, binds preferentially to ICAM-3. Immunity. 3:683–690.
14. Ploug, M., E. Ronne, N. Behrendt, A.L. Jensen, F. Blasi, and K. Dano. 1991. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J. Biol. Chem. 266:1926–1933.
15. Hoyer-Hansen, G., E. R onne, H. Solberg, N. Behrendt, M. Ploug, L.R. Lund, V. Ellis, and K. Dano. 1992. Urokinase plasminogen activatorcleaves its cell surface receptor releasing the ligand-binding domain. J. Biol. Chem. 267:18224–18229.
16. Kanse, S.M., C. Kost, O.G. Wilhelm, P.A. Andreassen, and K.T. Preissner. 1996. The urokinase receptor is a major vitronectin binding protein on endothelial cells. Exp. Cell Res. 224:344–353.
17. Chapman, H.A. 1997. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr. Opin. Cell Biol. 9:714–724.
18. Cao, D., I.F. Mizukami, B.A. Garni-Wagner, A.L. Kindzelskii, R.F. Todd III, L.A. Boxer, and H.R. Petty. 1995. Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J. Immunol. 154:1817–1829.
19. Dumlur, I., T. Petri, and W.-D. Schleuning. 1993. Interaction of urokinase-type plasminogen activator (u-PA) with its cellular receptor (u-PAR) induces phosphorylation on tyrosine of a 38 kDA protein. FEBS Lett. 322:37–40.
20. Busso, N., S.K. Masur, D. Lazega, S. Waxman, and L. Olsowski. 1994. Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J. Cell Biol. 126:259–270.
21. Rees, M., M. Guttinger, S. Valacmonica, N. Sidenius, F. Blasi, and F. Fazioli. 1996. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO (Eur. Mol. Biol. Org.) J. 15:1572–1582.
22. Rao, N.K., G.-P. Shi, and H.A. Chapman. 1995. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression. J. Clin. Invest. 96:465–474.
23. Petty, H.R., and R.F. Todd III. 1996. Integrins as promiscuous signal transduction devices. Immunol. Today. 17:209–212.
24. Pöllänen, J., R.W. Stephens, and A. Vaheri. 1991. Directed plasminogen activation at the surface of normal and malignant cells. Adv. Cancer Res. 57:273–328.
25. Gyetko, M.R., R.F. Todd III, C.C. Wilkinson, and R.G. Sitrin. 1994. The urokinase receptor is required for human monocyte chemotaxis in vitro. J. Clin. Invest. 93:1380–1387.
26. Wei, Y., M. Lukashev, D.I. Simon, S.C. Bodary, S. Rosenblum, M.V. Doyle, and H.A. Chapman. 1996. Regulation of integrin function by the urokinase receptor. Science. 273:1551–1555.
27. Sitrin, R.G., R.F. Todd III, H.R. Petty, T.G. Brock, S.B. Shollenberger, E. Albrecht, and M.R. Gyetko. 1996. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J. Clin. Invest. 97:1942–1951.
28. Simon, D.I., N.K. Rao, H. Xu, Y. Wei, O. Majdic, O.
Ronne, E., Kobzik, and H.A. Chapman. 1996. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocyte cells. Blood. 88:3185–3194.

Behrendt, N., E. Ronne, M. Ploug, T. Petri, D. Lober, L.S. Nielsen, W.-D. Schleuning, F. Blasi, E. Appella, and K. Dano. 1990. The human receptor for urokinase plasminogen activator. N. H. 2-terminal amino acid sequence and glycosylation variants. J. Biol. Chem. 265:6453–6460.

Behrendt, N., M. Ploug, L. Pathy, G. Hrouen, F. Blasi, and K. Dano. 1991. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator. J. Biol. Chem. 266:7842–7847.

Waltz, D.A., L.Z. Sailor, and H.A. Chapman. 1993. Cyto-kines induce urokinase-dependent adhesion of human myeloid cells. A regulatory role for plasminogen activator inhibitors. J. Clin. Invest. 91:1541–1552.

Mizukami, I.F., S.D. Vinjamuri, R.D. Trochelman, and R.F. Todd III. 1990. A structural characterization of the uPA-R activation antigen expressed on the plasma membrane of human mononuclear phagocytes. J. Immunol. 146:1841–1848.

Ronne, E., N. Behrendt, V. Ellis, M. Ploug, K. Dano, and G. Hoyer-Hansen. 1991. Cell-induced potentiation of the activation antigen expressed on the plasma membrane of human neutrophils. Blood. 78:8529–8533.

Romer, H. Solberg, V. Ellis, K. Dano, and J.L. Degen. 1995. Impaired migration in vitro of Mac-1, LFA-1, and p150/95 glycoprotein in fneurom. Annu. Rev. Med. 36:175–194.

Kuijpers, T.W., and J.M. Haarlan. 1993. Monocyte-endothe-lial interactions: insights and questions. J. Lab. Clin. Med. 122:641–651.

Mizgerd, J.P., H. Kubo, G.J. Kutkosi, S.D. Bhagwan, K. Scharfetter-Kochan, A.L. Beaudet, and C.M. Doerschuk. 1997. Neutrophil emigration in the skin, lungs, and peritoneum: different requirements for CD11/CD18 revealed by CD18-deficient mice. J. Exp. Med. 186:1357–1364.

Schmids, R., T.M. Kündig, D.M. Baker, G. Shumaker, J.L. Simard, G. Duncan, A. Wakeham, A. Shaininian, A. van der Heiden, M.F. Bachmann, et al. 1996. LFA-1–deficient mice show normal CTL responses to virus but fail to reject immu-nogenic tumor. J. Exp. Med. 183:1415–1426.

Dewerchin, M., A. Van Nufelen, G. Wallays, A. Bouche, L. Moons, P. Carmeliet, R.C. Mulligan, and D. Collen. 1996. Generation and characterization of urokinase receptor-defici-ent mice. J. Clin. Invest. 97:870–878.

Kirchheier, J.C., and H.G. Remold. 1989. Endogenous recep-tor-bound urokinase mediates tissue invasion of human monocytes. J. Immunol. 143:2634–2639.

Gyetko, M.R., G.H. Chen, R.A. McDonald, R. Goodman, G.B. Huffman, C.C. Wilkinson, J.A. Fuller, and G.B. Toews. 1996. Urokinase is required for the pulmonary in-flammatory response to C. neoformans neofomans. J. Clin. Invest. 97:1818–1826.

Stefansson, S., and D.A. Lawrence. 1996. The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin. Nature. 383:441–443.

Deng, G., S.A. Curriden, S. Wang, S. Rosenberg, and D.J. Laskoff. 1996. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J. Cell Biol. 134:1563–1571.

Kjoller, L., S.M. Kanse, T. Kierkegaard, K.W. Rodenburg, E. Ronne, S.L. Goodman, K.T. Preisner, L. Osofsky, and P.A. Andreassen. 1997. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp. Cell Res. 232:420–429.

Pedersen, T.L., K. Yong, J.O. Pedersen, N.E. Hansen, K. Dano, and T. Plesner. 1996. Impaired migration in vitro of neutrophils from patients with paroxysmal nocturnal haemo-globinuria. Brit. J. Hematol. 95:45–51.

Poston, R.N., D.O. Haskard, J.R. Coucher, N.P. Gall, and R.R. Johnson-Tidye. 1992. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am. J. Pathol. 140:665–673.