Semaphorin 3A
A new player in bone remodeling

Ren Xu1,2

1Department of Orthopedic Surgery; Graduate School; Tokyo Medical and Dental University; Yushima, Bunkyo-ku, Tokyo, Japan; 2Global Center of Excellence (GCOE) Program; International Research Center for Molecular Science in Tooth and Bone Diseases; Tokyo Medical and Dental University, Tokyo, Japan

Keywords: Semaphorin 3A, bone remodeling, sensory innervation, osteoclast, osteoblast

Semaphorin 3A (Sema3A) is a protein identified originally as a diffusible axonal chemorepellent. Sema3A has multifunctional roles in embryonic development, immune regulation, vascularization, and oncogenesis. Bone remodeling consists of two phases: the removal of mineralized bone by osteoclasts and the formation of new bone by osteoblasts, and plays an essential role in skeletal diseases such as osteoporosis. Recent studies have shown that Sema3A is implicated in the regulation of osteoblastogenesis and osteoclastogenesis. Moreover, low bone mass in mice with specific knockout of Sema3A in the neurons indicates that Sema3A regulates bone remodeling indirectly. This review highlights recent advances on our understanding of the role of sema3A as a new player in the regulation of bone remodeling and proposes the potential of sema3A in the diagnosis and therapy of bone diseases.

Introduction

With the accelerated rate of population aging around the world, bone diseases, especially osteoporosis, have been a serious concern and cause an increase in the number of elderly people with sport disability and a reduction in the working population. In healthy adults, the continuous bone remodeling at a steady-state is mediated by osteoblastogenesis and osteoclastogenesis. An imbalance of bone remodeling can cause skeletal disorders such as osteoporosis. Therefore, it is important to elucidate molecular mechanisms of bone remodeling to develop better approaches for the prevention and treatment of skeletal diseases

Notably, increasing evidence suggests that bone remodeling is regulated by a variety of factors. Sema3A is a prototype of axonal guidance molecule in semaphorin family, and recent studies have demonstrated the implication of Sema3A in skeletal system. Furthermore, Sema3A-deficient mice have abnormal structures of bones and cartilaginous. In this review, we summarize recent advance on the investigation of the role of Sema3A in the modulation of bone remodeling.

Semaphorin signaling
Semaphorin family and the receptors

Semaphorin family proteins were originally identified in grasshopper as secreted or membrane-bound glycoproteins characterized by an N-terminal Sema domain followed by a short plexin–semaphorin–integrin (PSI) domain. Based on their C-terminal structure and similarity of amino acid, semaphorin family members are divided into eight subclasses (Fig. 1A). Classes 3–7 are present in vertebrates, whereas classes 1–2 are only found in the invertebrate so far. Classes V are encoded by viruses. In addition, different semaphorins contain different domains, such as an immunoglobulin-like domain (Ig domain) and a thrombospondin-like domain in all classes 5 and glycosylphosphatidylinositol (GPI) linkage in class 7.

The two major receptors of semaphorins are plexins family and neuropilins (Nrp1 and Nrp2). Nine plexins have been identified in the vertebrate so far and grouped into four subfamilies (A, B, C, and D), which show high structural homology with semaphorins. Moreover, the cytoplasmic domain of plexins contains two GTPase-activating protein (GAP) domains. Neuropilins contain two complement binding (CUB) domains, two coagulation factor domains (FV/VIII), and a Meprin, A5, Mu (MAM) domain. Most membrane-bound semaphorins can bind plexins directly, whereas some secreted Sema class 3 group such as Sema3A requires neuropilins to obligate as co-receptors, which function as the ligand-binding partner in complexes (Fig. 1B). In addition, several other molecules such as intergrins have been shown to participate in the formation of the receptor complex.

It is known that semaphorins play an important role as axonal guidance proteins in nervous system development; however, accumulated evidence has indicated that semaphorins have functions in a variety of tissues. Especially, several semaphorin family members are implicated in the regulation of key physiological processes, such as bone formation. For instance, Sema4D is secreted by osteoclasts and mediates communication between osteoclasts and osteoblasts. Sema7A regulates bone homeostasis. Interestingly, our recent study showed that Sema3A could regulate bone remodeling indirectly by modulating sensory nerve development. Therefore, in this review, we will focus on Sema3A as a example to highlight the key role of semaphorins in the regulation of bone remodeling.

Sema3A

Sema3A is the first semaphorin identified in the vertebrate and acts to induce the retraction and collapse of the structure on
Sema3A participates in the development of major structure of nervous system such as the brain, spinal cord, and peripheral nerves, and the regulation of the function of adult nervous system such as axon regeneration and neural repair. Sema3A has been implicated in additional physiological function such as immune responses, organogenesis, and oncogenesis. For example, Sema3A regulates the timing of tooth innervations and dental axon navigation and patterning. Since all three bones cell lineages (osteoclast, osteoblast, and osteocyte) express Sema3A and its receptors, Sema3A seems to be involved in bone development and bone homeostasis. Indeed, Behar et al. reported that sema3A-deficient mice displayed fusion of cervical bones, partial duplication of ribs, and poor alignment of the rib-sternum junctions.

Direct regulation of bone remodeling by Sema3A
Bone remodeling is a dynamic and continuous process in which osteoblast and osteoclast reshape and replace bone during growth and after injury such as a fracture. In addition to the interaction with humoral factors, osteoclasts break down calcified bone and the osteoblasts lay down new matrix.

In healthy adults, bone formation and bone resorption are maintained at a steady-state under mechanical and homeostatic regulation. As an imbalance of bone remodeling results in skeletal disorders such as osteoporosis in women after menopause, it is important to address the precise molecular mechanisms that regulate the balance of bone remodeling from a therapeutic view.

So far, most drugs target osteoclastogenesis by reducing the rate of bone resorption such as RANKL inhibitor. However, these drugs often cause the reduction in new bone formation because of the consequent disruption of the linkage between osteoclast and osteoblast activity. Recently, Hayashi et al. found that Sema3A plays a dual role in osteoclasts and osteoblasts and is a potential therapeutic agent in bone diseases.

Sema3A signaling in osteoclastogenesis
Osteoclasts, originated from the monocyte/macrophage lineage of hematopoietic stem cells, are large and multinucleated cells, which destroy the bone extracellular matrix. The discovery of receptor activator of nuclear factor κ-B ligand (RANKL)/receptor activator of nuclear factor κ-B (RANK)/osteoprotegerin (OPG) system led to major advances in our understanding the molecular mechanism of bone resorption. OPG is an important osteoclastogenesis inhibitor secreted from osteoblasts. Sema3A was contained in conditioned medium from OPG-deficient mouse calvarial cells and could inhibit osteoclast formation. Interestingly, Sema3A-deficient mice have a severe osteopenic phenotype. The discovery of receptor activator of nuclear factor κ-B ligand (RANKL)/receptor activator of nuclear factor κ-B (RANK)/osteoprotegerin (OPG) system led to major advances in our understanding the molecular mechanism of bone resorption. OPG is an important osteoclastogenesis inhibitor secreted from osteoblasts. Sema3A was contained in conditioned medium from OPG-deficient mouse calvarial cells and could inhibit osteoclast formation. Interestingly, Sema3A-deficient mice have a severe osteoporosis phenotype. In addition, the mutant Nrp1 knockin mice (Nrp1^{sem} mice), which lacked the Sema-binding ability, exhibited a similar phenotype to Sema3A-deficient mice. These in vivo data suggest that Nrp1 is the functional receptor of Sema3A in bone cells.

PlexinA family is the primary receptor of Sema3A and they form receptor complex with Nrp1. Takegahara et al. found that in response to Sema6D, plexinA1 associated with the triggering receptor expressed on myeloid cells-2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12) to enhance osteoclastogenesis by activating the immunoreceptor tyrosine-based activation motif (ITAM) signaling.
signaling is known to regulate cytoskeletal rearrangement and the Rho family of small GTPases. Interestingly, Sema3A-Nrp1 axis repelled osteoclast precursor cells through affecting small GTPase RhoA activation but not Rac activation. Our preliminary experiments confirmed that Rac activation was not involved in Sema3A-dependent inhibition of osteoclast differentiation by using dominant-negative Rac1 constructs (unpublished data).

Sema3A signaling in osteoblastogenesis

Osteoblasts originated from mesenchymal stem cells, they can differentiate into chondrocytes, adipocytes, and myoblasts, and are responsible for synthesis of bone matrix. In addition to the severe osteoclastic phenotype, both Sema3A-deficient and Nrp1 mice had decreased amounts of the factors of bone formation based on histomorphometric analyses. In accord with the osteoblastic phenotype in vivo, primary osteoblasts from Sema-deficient mice had a defect in differentiation with decreased expression of osteoblast markers, such as Runx2 and Bglap. We found that Sema3A accelerated osteoblastic differentiation. In contrast, the knockdown of Sema3A in osteoblasts hampered the differentiation, and treatment with Sema3A restored the defective differentiation in Sema3A-knockdown osteoblasts. In addition, Sema3A expression is very high in osteoblasts (unpublished data). Taken together, these findings suggest that Sema3A is a positive regulator in osteoblastogenesis in an autocrine manner.

Intriguingly, using primary osteoblasts from sema-deficient mice, it was shown that Wnt signaling is involved in the molecular pathway by which Sema3A regulates osteoblastogenesis. Canonical Wnt signaling is well-known to regulate the differentiation of osteobalsts and adipocytes. Rac1, which promotes β-catenin localization in the nucleus in response to Wnt ligands, is required for the action of Sema3A on the collapse of the growth cone. Indeed, treatment of osteoblasts with recombinant Sema3A activated Rac1 via FERM, RhoGEF, and pleckstrin domain-containing protein 2 (FARP2), leading to nuclear accumulation of β-catenin induced by Wnt3a (Fig. 2B). These results are consistent with our recent report that ectopic expression of a dominant-negative form of Rac1 inhibited Sema3A-dependent osteoblast differentiation.

Indirect regulation of skeletal sensory nerves by Sema3A

Historically, most bone biologists believe that bone remodeling is regulated in an endocrine manner. However, the discovery that leptin regulates bone mass through a hypothalamic relay shed new light on the mechanism underlying bone remodeling. The sympathetic nervous system (SNS) has been shown to mediate the regulation of bone remodeling by β-adrenergic receptor-2 (Adrb2). Thanks to the use of excited fluorescent nerve-specific markers and genetic mutant mice models, great advances have been achieved in the field of neuroskeletal biology.

Skeleton innervations

More than 50 years ago, bone innervations were shown to affect bone homeostasis in peroneal denervation experiments. Later it was found that sympathetic nerves exist in the bone marrow and they are positive for dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), and neuropeptide Y (NPY) by immunofluorescence staining. On the other hand, sensory fibers are detected in vertebral bones, long bones, and bone marrow. In particular, an extremely dense distribution of calcitonin gene-related peptide (CGRP) and substance P (SP) is observed primarily in periosteal innervations. In addition, rapid neural growth of CGRP-positive nerves occurs during bone regeneration in the periosteum of adult rodents. However, so far, the molecular mechanism by which skeletal innervations regulate bone remodeling is elusive.

Recent evidence suggests that both central and peripheral nervous systems regulate bone remodeling. Sema3A is a well-known axon guidance molecule and functions as a chemorepellent in nervous systems. Indeed, Sema3A-deficient mice have multiple phenotypes due to abnormal neuronal innervations. Moreover, Sema3A exhibits temporal and spatial expression patterns in parallel with the establishment of innervations. Therefore, we speculate that Sema3A may modulate bone remodeling indirectly via regulating nervous systems.
The link between bone remodeling and sensory innervations by Sema3A

Sema3A is ubiquitously expressed in a variety of tissues, including the bone. To specifically dissect the role of Sema3A in nervous systems without the disruption from other organs, we generated neuro-specific Sema3a-deficient mice (Sema3A neuron−/− mice) based on synapsin I-cre mice or nestin-cre mice. These Sema3A neuron−/− mice exhibited similar phenotype to Sema3A−/− mice, such as low bone mass. In contrast, osteoblast-specific Sema3A-deficient mice (Sema3A osb−/− mice) did not develop any bone abnormalities. These results indicate that Sema3A in osteoblasts is not the sole cause of bone phenotype in Sema3A−/− mice in vivo.

Surprisingly, skeleton innervations are significantly decreased in both Sema3A−/− mice and Sema3A neuron−/− mice, but not in wild-type mice and Sema3A osb−/− mice. Furthermore, sensory-positive nerves makers such as CGRP were decreased in bones of Sema3A−/− mice and Sema3A neuron−/− mice. In contrast, DBH-positive sympathetic nerve fibers, which inhibit bone formation, were not affected significantly in Sema3A−/− mice and Sema3A neuron−/− mice. Therefore, low sensory innervations we observed are consistent with low bone mass in Sema3A neuron−/− mice in vivo.

Clinical potential of Sema3A in bone diseases

To investigate the therapeutic potential of Sema3A, Hayashi et al. performed three experiments. First, intravenous injection of recombinant Sema3A led to increased osteoblastic parameters and decreased osteoclastic parameters in wild-type mice. Second, Sema3A treatment enhanced bone regeneration in a mouse model of cortical bone defect. Third, Sema3A treatment rescued bone loss in ovariecctomized mice. Moreover, in Sema3A neuron−/− mice bone regeneration was reduced with defective nerve innervations after bone marrow ablation. These data suggest that sema3A has the potential to be used for the treatment of bone diseases.

Notably, Sema3A expression is proposed as a marker for systemic lupus erythematosus and rheumatoid arthritis. Similarly, Sema3A may be a marker for skeleton disorders such as osteoporosis. In fact, familial dysautonomia patients who have loss of sensory nerves suffer from osteoporosis.

In conclusion, Sema3A regulates bone remodeling directly by regulating the activities of osteoclasts and osteoblasts, and indirectly by engaging in sensory nerve innervations. These findings provide new insight into the role of sema3A in bone biology. Consequently, sema3A represents a novel target for the diagnosis and therapy of skeletal disorders.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
osteocatobic

Adrb2

Bone remodeling

osteocatobic

??

Sympathetic nerve system

Interactions

Sensory nerve system

References

1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17:1726-33; PMID:16983459; http://dx.doi.org/10.1007/s00198-006-0172-4

2. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000; 289:1580-14; PMID:10966781; http://dx.doi.org/10.1126/science.289.5484.1580

3. Takeda S, Kasenye G. Molecular bases of the sympathetic regulation of bone mass. Bone 2008; 42:837-40; PMID:18295563; http://dx.doi.org/10.1016/j.bone.2008.01.005

4. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7:292-304; PMID:17380158; http://dx.doi.org/10.1038/nri2062

5. Roth L, Koncina E, Satakovskas S, Creml G, Aunis D, Bagnard D. The many faces of semaphorins: from development to pathology. Cell Mol Life Sci 2009; 66:649-66; PMID:18953684; http://dx.doi.org/10.1007/s00018-008-8518-x

6. Gomez C, Burt-Pichat B, Mallein-Gerin F, Merle B, Delmas PD, Skerry TM, Vico L, Malaval L, Chenu C. Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation. Dev Dyn 2005; 234:393-403; PMID:16145665; http://dx.doi.org/10.1002/dvdy.20512

7. Behar O, Golden JA, Mashimo H, Schoen FJ, Fushan MC. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 1996; 383:525-8; PMID:8849723; http://dx.doi.org/10.1038/383525a0

8. Semaphorin Nomenclature Committee. Unified nomenclature for the semaphorins/collapsins. Cell 1999; 97:551-2; PMID:10367884; http://dx.doi.org/10.1016/S0092-8674(00)80766-7

9. Janssen BJ, Robinson RA, Pérez-Branguil F, Bell CH, Mitchell KJ, Siebold C, Jones EY. Structural basis of semaphorin-plexin signalling. Nature 2010; 467:1118-22; PMID:20877289; http://dx.doi.org/10.1038/nature09468

10. Tamagnone L, Comoglio PM. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol 2000; 10:377-83; PMID:10932095; http://dx.doi.org/10.1016/S0962-8924(00)01816-X

11. Puschel AW. The function of neuropilin/plexin complexes. Adv Exp Med Biol 2002; 515:71-80; PMID:12613544; http://dx.doi.org/10.1007/978-1-4615-0119-0_6

12. Kumanogoh A, Marukawa S, Suzuki K, Takegahara N, Watanabe C, Ch’ng E, Ishida I, Fujimura H, Sakoda S, Yoshida K, et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 2002; 419:629-33; PMID:12374982; http://dx.doi.org/10.1038/nature01037

13. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kodama T, Friedel RH, Takayanagi H. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 2011; 17:1473-80; PMID:22098888; http://dx.doi.org/10.1038/nn.2489

14. Jongbloets BC, Ramakers GM, Pasterkamp RJ. Semaphorin7A and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Semin Cell Dev Biol 2013; 24:129-38; PMID:23333407; http://dx.doi.org/10.1016/j.semcdb.2013.01.002

15. Fukushima T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, Shibata S, Yoshida Y, Gu Z, Kimura A, et al. SemA3A regulates bone-mass accrual through sensory innervations. Nature 2013; 497:490-3; PMID:23644455; http://dx.doi.org/10.1038/nature12195

16. Luos Y, Raldbil R, Raperia J. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75:217-27; PMID:8409208; http://dx.doi.org/10.1006/cell.1993.1052

17. He Z, Wang KC, Kopricina V, Ming G, Song HJ. Knowing how to navigate: mechanisms of semaphorin signaling in the nervous system. Sci STKE 2002; 2002:re1; PMID:11842242

18. Potiron V, Nasarre P, Roche J, Healy C, Bousell LM. Semaphorin signaling in the immune system. Adv Exp Med Biol 2007; 600:132-44; PMID:17607952; http://dx.doi.org/10.1007/978-0-387-70956-7_11

19. Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2010; 2:a001875; PMID:20452960; http://dx.doi.org/10.1101/cshperspect.a001875

Figure 4. The hypothetical balance between osteo-anabolic afferent sensory nerves and osteo-catabolic efferent sympathetic nerves. The sympathetic nervous system regulates osteo-catabolic (bone resorbing) response via β-adrenergic receptor-2 (Adrb2) in the bone cells, while sensory nerve system regulates osteo-anabolic (bone forming) response via unidentified receptors. The balance of these actions modulate bone remodeling.
25. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25: 629-48; PMID:19575648; http://dx.doi.org/10.1146/annurev.cellbio.042308.113308

26. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4: 638-49; PMID:12897775; http://dx.doi.org/10.1038/nrg1122

27. Reid IR, Miller PD, Brown JP, Kendler DL, Fahreinther-Pammer A, Valter I, Maasalu K, Bolognese MA, Woodeson G, Bone H, et al., Denosumab Phase 3 Bone Histology Study Group. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res 2010; 25:2256-65; PMID:20553525; http://dx.doi.org/10.1002/jbmr.149

28. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gortschak FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 2005; 90:1294-301; PMID:15598694; http://dx.doi.org/10.1210/jc.2004-0952

29. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A. Severely suppressed bone mineral density and metabolism in PPARgamma signaling in osteoblastogenesis and function in bone. J Bone Joint Surg Br 2004; 86:284-91; PMID:15221217; http://dx.doi.org/10.1302/0301-620X.86B3.14181

30. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 483:314-20; PMID:22258610; http://dx.doi.org/10.1038/nature10765

31. Takekawa S, Eferiepour F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Dady P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002; 111:305-17; PMID:12419242; http://dx.doi.org/10.1016/S0092-8674(02)01494-8

32. King PA. The influence of the nervous system upon the growth of bones. J Bone Joint Surg Br 1961; 43:121-40

33. Duncan CP, Shy SSJ. J. Edouard Samson Address: the autonomic nerve supply of bone. An experimental study of the intraosseous adrenergic nerve vasculature in the rabbit. J Bone Joint Surg Br 1979; 61:32-30; PMID:19482

34. Castracasa- Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The myelination and unmyelination of sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 2011; 178:196-207; PMID:21277945; http://dx.doi.org/10.1016/j.neuroscience.2011.01.039

35. Bjorholm A, Kreibergs A, Terenius L, Goldstein M, Schulzberg M, Neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 1988; 25:119-25; PMID:2906951; http://dx.doi.org/10.1016/0168-8252(88)90016-1

36. Ohno R, Inoue G, Kushi T, Ito T, Watanabe T, Yamashita M, Yamakoshi M, Suzuki M, Doya H, Moriya H, et al. Sensory innervation of lumbar vertebral bodies in rats. Spine (Phila Pa 1976) 2007; 32:1498-502; PMID:17792618; http://dx.doi.org/10.1097/BRS.0b013e31806f8d8

37. Mach DB, Rogers SD, Sabino MC, Lugner NM, Schwei MJ, Ponomis JD, Keyser CP, Chiozzi DR, Adams DJF, O’Leary P, et al. Origins of skeletal pain: specific sensory and sympathetic innervation of the mouse femur. Neuroscience 2002; 113:155-66; PMID:12123694; http://dx.doi.org/10.1016/S0361-9230(02)00165-3

38. Mahn DA, Ivanovic JS, Sahai V, Rowe MJ. An intact peripheral nerve preparation for monitoring the activity of sensory and peripheral afferent nerve fibers. J Neurosci Methods 2006; 156:140-4; PMID:16574241; http://dx.doi.org/10.1016/j.jneumeth.2006.02.019

39. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu KH, Terenius L, Polak JM. Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibia fracture suggests neural involvement in bone growth and remodelling. Neuroscience 1993; 54:969-79; PMID:8541427; http://dx.doi.org/10.1016/0306-4522(93)90097-M

40. Tanguchi T, Kuzumaki K, Matsumura A, Tsubo M, Yagita S, Gomma SD, Tsubo M, Takashima S, Yagi T, et al. Plexin-A4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci 2005; 25:3268-37; PMID:15814794; http://dx.doi.org/10.1523/JNEUROSCI.4480-04.2005

41. Kessler JA, Bell EO, Black IB. Interactions between the sympathetic and sensory innervation of the iris. J Neurosci 1983; 3:1301-7; PMID:6189983

42. Xie W, Strong JA, Mao J, Zhang JHM. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse. Mol Pain 2011; 7:53; PMID:21794129; http://dx.doi.org/10.1186/1744-8069-7-53

43. Vadass Z, Haj T, Halasz K, Rosner I, Slobodin G, Attias D, Kessel A, Kessler O, Neufeld G, Touhba E. Semaphorin 3A is a marker for disease activity and a potential immunoregulator in systemic lupus erythematosus. Arthritis Res Ther 2012; 14:R146; PMID:22697500; http://dx.doi.org/10.1186/ar3881

44. Takagawa S, Nakamura F, Kumagai K, Nagashima Y, Gishima Y, Saito T. Decreased semaphorin 3A expression correlates with disease activity and histological features of rheumatoid arthritis. BMC Musculoskelet Disord 2013; 14:204; PMID:23345369; http://dx.doi.org/10.1186/1471-2474-14-204

45. Maayan C, Bar-On E, Foldes AJ, Gesundheit B, Pollak RD. Bone mineral density and metabolism in familial dysautonomia. Osteopetros Int 2002; 13:429-33; PMID:12086355; http://dx.doi.org/10.1007/s001980200505