Development and analysis of an *in vivo*-compatible metabolic network of *Mycobacterium tuberculosis*

Xin Fang, Anders Wallqvist, Jaques Reifman*

Abstract

Background: During infection, *Mycobacterium tuberculosis* confronts a generally hostile and nutrient-poor *in vivo* host environment. Existing models and analyses of *M. tuberculosis* metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different *in vitro* media. However, these models, under *in vitro* conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host.

Results: To better account for the metabolic activity of *M. tuberculosis* in the host environment, we developed a set of procedures to systematically modify an existing *in vitro* metabolic network by enhancing the agreement between calculated and *in vivo*-measured gene essentiality data. After our modifications, the new *in vivo* network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81) in predicted gene essentiality than the *in vitro* network (0.31). We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under *in vivo* conditions. Moreover, we used the developed *in vivo* network to predict the effects of double-gene deletions on *M. tuberculosis* growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection.

Conclusions: The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by *M. tuberculosis* during host infection compared with *in vitro* growth. Likewise, the double-gene deletion calculations highlight the importance of specific metabolic pathways used by the pathogen in the host environment. The newly constructed network provides a quantitative model to study the metabolism and associated drug targets of *M. tuberculosis* under *in vivo* conditions.

Background

Tuberculosis (TB) continues to be a major health threat, with 9.2 million new cases and 1.7 million deaths reported worldwide in 2006 [1,2]. It has been estimated that one-third of the human population is infected with *Mycobacterium tuberculosis*, the causative agent of TB [3]. Worldwide efforts to treat and eliminate TB are confronting many obstacles, including drug-resistant bacterial strains, lack of compliance with the complicated drug regimens, and an increased patient population with compromised immune systems associated with acquired immunodeficiency syndrome [3,4].

In general, bacterial metabolism is an attractive drug target for two main reasons: 1) metabolism is required for the bacterium to sustain itself and 2) many bacterial metabolic targets are absent in humans. Novel efforts in developing drugs that target the intracellular metabolism of *M. tuberculosis* often focus on metabolic pathways that are specific to *M. tuberculosis* [5,6]. However, TB is a complex disease caused by bacterial populations...
located in discrete microenvironments of the host with access to a varying availability of nutrients [7]. This, coupled with the differences in bacterial metabolism under in vivo and in vitro conditions [8-10], creates a challenge in modeling and understanding the metabolic requirements of M. tuberculosis inside a host.

Recently, genome-scale metabolic network reconstructions for different organisms have enabled systematic analyses of metabolic functions and predictions of metabolism-related phenotypes [11,12]. By collecting all possible biochemical reactions for specific organisms, different groups have reconstructed metabolic networks for bacteria (e.g., for Escherichia coli [13], Helicobacter pylori [14], and M. tuberculosis [15,16]), eukaryotic microorganisms [17-19], mice [20], and even humans [21]. The Web site of the Systems Biology Research Group at the University of California, San Diego, provides a continuously updated list of genome-scale metabolic network reconstructions [22]. Analysis of metabolic networks can provide insights into an organism’s ability to grow under specific conditions. For example, given a specific set of nutrient conditions, flux balance analysis (FBA) of metabolic networks can accurately predict microbial cellular growth rates [13,15-17,23]. In a recent work, Raghnathan et al. [24] used an approximate representation of in-host nutrient availability inferred from the literature to simulate the in-host metabolism of Salmonella typhimurium. Moreover, metabolic network analyses can then be used to identify organism-specific essential genes by predicting the attenuation of microbial growth specific deletion mutants [13-17,19]. Metabolic genes that are essential for pathogen growth but are not present in humans constitute actual and potential drug targets [6,19].

Using the sequenced genome of M. tuberculosis [25] together with literature data on known metabolic reactions, extensive metabolic network reconstructions have been carried out for this organism [15,16]. Analyses of these networks based on FBA revealed that they contain sufficient information to predict growth rates and identify genes that are essential for the growth of M. tuberculosis in select media [15,16]. We have also used the in vitro network to model the drug-induced growth inhibition of M. tuberculosis when grown on defined media [26]. However, simulation of M. tuberculosis growth in an in vivo host environment based on an in vitro model is hindered by a lack of understanding of the pathogen’s metabolism in the often poorly defined in vivo environment [7,27]. To experimentally explore the cellular activities of this pathogen in hosts, several methodologies have been developed. High-throughput gene expression experiments have been performed for M. tuberculosis in murine macrophage cells [28] and cells from mouse lung tissue [29]. Gene expression data have been interpreted, using the metabolic network of M. tuberculosis, to predict the production of mycolic acid [30]. Gene deletion experiments on M. tuberculosis, including individual [31-33] and high-throughput gene deletion studies [34], have identified genes that are essential in the murine host environment. In particular, Sassetti et al. developed the transposon site hybridization (TraSH) technique to identify genes required for M. tuberculosis growth in an in vitro medium [35] and genes specifically required for survival during in vivo infection [34]. This assay tested 2,979 genes, including a large fraction of genes known to be involved in metabolism.

For modeling, gene essentiality data per se are typically used to verify that a genome-scale metabolic network reconstruction is accurate; however, these data can also be used in the refinement process itself, either for specific pathways [36] or for the entire network [37-39], in which gene annotations, reactions, and biomass objective functions are adjusted based on gene essentiality data [37-39]. Moving away from these more or less ad hoc corrections, Kumar and Maranas [39] explored an automated and systematic way of reconciling in silico/in vivo growth predictions in large-scale metabolic networks. Here, we build on and extend these refinement methodologies to develop an enhanced set of systematic procedures to modify the in vitro metabolic network model of M. tuberculosis iNJ661 [15] and develop a network model that is more consistent with in vivo metabolism during the initial eight-week post-infection period. Importantly, the resultant network modifications provide indirect insights into nutrient availability and metabolic states of M. tuberculosis in the mouse host environment. Furthermore, we used the newly developed in vivo network to predict the growth of double-deletion mutants to identify drug targets that are either specific for the host environment or common to both in vivo and in vitro conditions.

Methods
To develop a M. tuberculosis metabolic network model commensurate with an in vivo cellular environment, we modified an existing network in two separate steps. First, we corrected an existing in vitro network model to account for missing or inconsistent chemical reactions and metabolites, and then, through a systematic set of procedures, we modified this network to be compatible with gene essentiality data generated under in vivo conditions.

Modified in vitro network iNJ661m
We used the iNJ661 metabolic network model of M. tuberculosis H37Rv [15], which reproduces in vitro experimentally observed growth rates in different media,
as the starting point for our work. Our modified in vitro network, iNJ661 m, models cellular growth in Middlebrook 7H9 medium supplemented with glucose and glycerol. We then used the GSMN-TB metabolic network of M. tuberculosis [16] to supplement reactions and metabolites in the modified network. We corrected the network with respect to biotin synthesis, fumarate and succinate synthesis, added the methylcitrate cycle, added a redundant annotation for the β-hydroxybutyryl-CoA dehydrogenase enzyme, and made minor changes to the biomass function (see Supplemental Section S1 in Additional file 1 for details). These modifications did not change the previously reported growth rates [15]. The resulting iNJ661m network model contained 663 genes, 838 metabolites, and 1,049 reactions. The developed network is provided in the Additional files in both Systems Biology Markup Language (Additional file 2) and Excel formats (Additional file 3).

Prediction of essentiality of single genes and gene pairs

We used FBA of the metabolic networks to predict the essentiality of single genes. Using linear programming, FBA can maximize the cellular growth rate subject to the steady-state mass balance of all the intracellular metabolites and the stoichiometric constraints defined by the reactions [40-42]. For the metabolic network models, we performed FBA to calculate the growth rate of wild-type M. tuberculosis and the growth rates of all single-gene deletion mutants. If the ratio of a single-gene deletion mutant growth rate to wild-type growth rate was less than a threshold (0.2), we labeled the gene as essential; otherwise, it was deemed as non-essential. Since the growth rate ratios obtained from FBA were either <10⁻⁴ or >0.2, the chosen threshold value of 0.2 differentiated growth rate ratios close to zero from those significantly higher than zero.

We compared the predicted gene essentiality with experimentally determined in vivo essentiality in mice [34,36] and defined four categories of predictions: true positives (TP), denoting genes that were predicted to be essential and were also essential in the experiment; true negatives (TN), denoting genes that were both predicted and experimentally determined to be non-essential; false negatives (FN), representing genes that were predicted to be non-essential but were experimentally essential; and false positives (FP), denoting genes that were predicted to be essential but were experimentally non-essential.

We predicted the synthetic essentiality of gene pairs in M. tuberculosis by calculating the growth rates of all possible double-gene deletion mutants in the metabolic network models. Two genes were classified as synthetically essential if each single individual gene deletion did not affect the growth of the organism, whereas the double-gene deletion impaired growth. Similar to the predictions for single-gene deletion mutants, we classified a deleted gene pair as synthetically essential if the ratio of the growth rate of the double-gene deletion mutant to that of the wild-type bacterium was smaller than the threshold (0.2) and the ratios for the two single-gene deletions were greater than the threshold.

Modifications used to construct the in vivo network iNJ661v

We developed a systematic set of procedures to optimally modify an existing metabolic network based on discrepancies in gene essentiality between computational predictions and experimental data. We applied the procedures to modify the original in vitro network, iNJ661 m, to optimally reproduce gene essentiality under an in vivo condition and create an in vivo network, iNJ661v. Figure 1 shows an overview of the five main steps of the procedure set, each of which is discussed in detail below. In Step I, we compared the gene essentiality of iNJ661m with experimental in vivo data and identified the set of FP and FN predictions. In Step II, for each incorrect prediction, we attempted to obtain a set of possible modifications to correct the predictions, commensurate with a minimum number of adjustments to iNJ661 m. In Step III, we combined all obtained modifications for each of the incorrect predictions and screened the sets of combined modifications to identify rational and consistent sets of metabolic modifications. In Step IV, we analyzed the availability and blockage of nutrient uptakes based on the original iNJ661m network and attempted to use small, chemically uncomplicated molecules as nutrient sources and to reduce the number of uptakes. Finally, in Step V, we reviewed the relevant literature to verify the biochemical and biological veracity of the introduced modifications. This set of procedure generated a number of different resultant networks, each representing a “minimal” adjustment that can optimally reproduce the given gene essentiality data. Because it is desirable to create a single unique network representation suitable for modeling and computational analysis, and because we do not have enough information to a priori discriminate against any particular network representation, we combined all networks as long as the combination did not generate any new incorrect predictions. Thus, the resultant network description iNJ661v corresponds to an unbiased assembly of minimal adjustments compatible with the experimental data.

Step I: Collation of the FP and FN predictions

The wrongly predicted FP and FN genes were collated as identified from the gene essentiality predictions described above.
Step II: FP correction procedure

Figure 2 shows the two types of network modifications we used to remove FP predictions. For each FP prediction, we first attempted to correct it by removing metabolites from the biomass objective function of the original \textit{iNJ661m} network. In the original \textit{iNJ661} network, 16 vitamins and cofactors were included as part of the biomass based on \textit{in vitro} gene essentiality data but without any experimental verification [15], suggesting that these metabolites might not be part of the biomass when \textit{M. tuberculosis} grows in a different nutritional environment. Therefore, we systematically investigated the removal of one or more of these 16 metabolites. Initially, we removed one metabolite at a time from the biomass objective function and recorded the removals that corrected the FP prediction and caused no original TP prediction to become FN. If the single-metabolite removal did not correct the FP prediction, we expanded the removal to include all pairwise removals, and so on, until exhaustion or until the prediction was corrected. The second set of attempts to correct FP predictions introduced new nutrient uptakes.

Figure 1 Main steps for the development of the \textit{iNJ661v} network

In Step I, we compared the gene essentiality of \textit{iNJ661m} with experimental \textit{in vivo} data and identified the set of false positive (FP) and false negative (FN) predictions. In Step II, for each incorrect prediction, we attempted to obtain a set of possible modifications. In Step III, we combined all the suggested modifications for each different incorrect prediction and screened the network realizations to obtain adequate and consistent metabolic modifications. In Step IV, we analyzed the availability and blockage of nutrient uptakes. In Step V, we reviewed the relevant literature to verify the biochemical and biological veracity of the introduced modifications. TN, true negative; TP, true positive.
and/or changed irreversible reactions to reversible. This procedure is based on the optimization model that Kumar and Maranas [39] developed to resolve FP inconsistencies in the E. coli metabolic network by adding a minimum number of reactions from a pool of reactions collected from multi-organism databases (MetaCyc [43] and KEGG [44]). We used the same optimization model, where the pool of potentially added reactions consisted of 1) all uptake reactions blocked in the original iNJ661m network and 2) all irreversible reactions in iNJ661m with their directions reversed. We used this model to obtain the modification(s) that changed the minimum number of irreversible reactions, and accepted the modification(s) if the changed irreversible reaction(s) was (were) reported as thermodynamically reversible in either the metabolic network of E. coli [13] or that of Bacillus subtilis [45]. These two networks include thermodynamic reversibility data. All attempts to correct for the FP predictions by removal of metabolites from the biomass objective function and addition of reactions were performed in parallel. Each modification used the same iNJ661m network as the starting point. The set of identified modifications was then analyzed together in Step III: analysis of combined modifications.

Step II: FN correction procedure

Figure 3 shows the more complex procedures we used to correct the FN predictions. We initially listed all reactions catalyzed by the product of FN genes. For each reaction, we first examined whether the reaction required the presence of both a FN gene and one or more TN genes. If this were the case, no correction of the FN prediction was possible because a correction would have caused the predicted TN genes to become FP. If this were not the case, we attempted to correct the FN prediction by blocking the ability of isozyme(s) of the FN gene product to catalyze the reaction. Next, we examined whether the reaction was in a dead-end pathway, i.e., a pathway containing metabolites that cannot be produced, metabolites that cannot be consumed, or both. If a metabolite could not be produced, we added this metabolite to the biomass objective function with a coefficient of 10^{-6} mmol/gDW, that is, mmol per gram dry weight of M. tuberculosis. This coefficient was used in the biomass objective function of the original iNJ661 network to include metabolites for which quantitative biomass composition data were not available [15]. Finally, if the above analysis of the dead-end pathway did not correct the FN prediction or the reaction was not in a dead-end pathway, we attempted to correct the FN prediction by suppressing one or more reactions in iNJ661 m. For this procedure, we used the optimization...
model developed by Kumar and Maranas [39] for resolving FN inconsistencies and selected the modification(s) that suppressed the minimum number of reactions.

Note that, to correct for FP and FN predictions in the Step II procedures, we needed to assess whether a modification was adequate. Figure 4 shows the criteria we used to determine this. A modification was adequate if, after applying the modification to \(iNJ661 \), the following three criteria were satisfied: 1) the calculated wild-type growth rate was greater than the minimal rate (taken to be 0.027 \(h^{-1} \), according to the growth rate of \(M. tuberculosis \) in mouse macrophages [32]), 2) the FP or FN prediction was corrected, and 3) no TP(TN) prediction became FN(FP).

Step III: Analysis of combined modifications

After the completion of Step II, there might be more than one modification used to correct for each of the FP or FN predictions, and we needed to analyze the consequences of combining these modifications into a single network description. Figure 5 summarizes these analyses. We first listed all possible network realizations, where each realization represented a set of combined modifications. Thus, if there were two possible modifications that correct for the prediction of gene A, three possible modifications that correct for the prediction of gene B, etc., then there would be \(2^3 \) possible network realizations, where each realization includes one modification for each incorrect prediction. Next, for each
network realization, we checked whether the network contained contradictory modifications, e.g., one modification in the network blocked a reaction flux, whereas another modification allowed for the same reaction flux, or one modification added a metabolite to the biomass objective function, whereas another modification removed it. If contradictory modifications were not detected, then we applied the modifications to iNJ661m and verified that 1) the wild-type growth rate (calculated from FBA) was greater than the minimal rate, 2) incorrect predictions were corrected, and 3) no true positive (TP) or true negative (TN) prediction became FN or FP, respectively. Y, yes; N, no.

Step IV: Nutrient uptake analysis

In Step II, we allowed for the addition and removal of a fixed set of nutrient uptakes, leaving other nutrient uptakes (blocked or unblocked) of iNJ661m unexamined. Here, we re-examined these uptakes in light of the altered nutritional environment under in vivo conditions. The harsh nutritional environment that *M. tuberculosis* confronts when the bacterium infects a mouse suggests that nutrient uptake is limited and restricted to generally available small molecules as possible metabolite sources. Thus, we implemented a nutrient uptake-based analysis procedure to eliminate uptakes of complex nutrients as much as possible while minimizing the number of additional small-molecule uptakes and maintaining the compatibility with the in vivo gene essentiality data. The primary location of *M. tuberculosis* in a recently infected animal is the phagosomal compartments of macrophages.

Figure 4 Criteria to judge whether a modification for an incorrect prediction is adequate. A modification was deemed to be adequate if, after applying the modification to iNJ661m, the following criteria were met: 1) the calculated wild-type growth rate was greater than the minimal rate (taken to be 0.027 h⁻¹, according the growth rate of *M. tuberculosis* in mouse macrophages [32]), 2) the false positive (FP) or false negative (FN) prediction was corrected, and 3) no true positive (TP) or true negative (TN) prediction became FN or FP, respectively. Y, yes; N, no.
In this environment, large molecules are typically broken down into smaller ones. For example, macrophages decompose proteins into amino acids [46], which in turn are decomposed into smaller molecules, such as nitrite and nitrate [47]. Therefore, we assumed that the in vivo nutrient environment did not contain a significant abundance of all large molecules, such as amino acids, but rather was primarily composed of small molecules, such as nitrite, nitrate, ammonia, phosphate, and so on. However, as some large molecules may not be broken down, we still kept the uptakes for these molecules in two cases: 1) if their uptakes was added during the correction of a false gene essentiality prediction (for example, fatty acids); and 2) if deletions of these uptakes caused a growth rate lower than the defined threshold or generated new false gene essentiality predictions.
Before doing any calculation, we first assembled a set of available small-molecular-weight metabolites that 1) contained the necessary atomic elements found among the biomass molecules, i.e., carbon, nitrogen, oxygen, phosphorus, sulphur, iron, potassium, and sodium; 2) had a recorded uptake reaction in iNJ661m; and 3) contained a minimum number of other elements. Based on the elements, these small-molecule metabolites were then grouped accordingly: carbon monoxide (CO) and carbon dioxide (CO$_2$) for carbon; ammonium (NH$_4^+$), nitrite (NO$_2^-$), and nitrate (NO$_3^-$) for nitrogen; O$_2$ for oxygen; phosphate (HPO$_4^{2-}$) for phosphorus; sulphate (SO$_4^{2-}$) for sulphur; ferrous (Fe$^{2+}$) and ferric (Fe$^{3+}$) ions for iron; K$^+$ for potassium; and Na$^+$ for sodium. Note that nitric oxide (NO) is a small nitrogen-containing molecule that was not included in the analysis as it is generated as part of the host defense system rather than acting as a nitrogen source [48]. Commensurately, we also blocked the reaction catalyzed by cytochrome c oxidase because experiments have suggested that NO prevents the function of this enzyme [48]. Note that this is the only literature source we used before proceeding to the literature analysis and verification in Step V.

For each network realization from Step III, we divided all uptake reactions into the following two sets: 1) a “minimal” uptake set comprising the uptakes of H$_2$O and H$^+$, all uptakes added in Step II, and the uptakes of the small molecules defined above (minimal set); and 2) an “extended” uptake set comprising all other defined uptake reactions in iNJ661m (extended set). Initially, we allowed uptake reactions from the minimal set and blocked all reactions from the extended set. As expected, this resulted in a non-biological network displaying an overall growth rate of zero. We then used the minimization procedure adopted from Kumar and Maranas [39] to determine the smallest set of uptake reactions in the extended set that restored a minimal growth rate and introduced no new FP or FN predictions.

Next, we fixed this set of uptake reactions and investigated which small-molecule uptake reactions from the minimal set were dispensable, i.e., we tried to find a minimal set of uptakes that was still compatible with growth. To do this, we allowed metabolite uptakes for all members of the small-molecule set and investigated removal of specific uptakes based on each element group as defined above. We did this by systematically removing, for each element group, all combinations of small-molecule uptakes and recording which combinations resulted in a wild-type growth rate that was greater than the minimal rate and where each of the TP and TN predictions were preserved. For example, for the carbon group, we investigated the possibilities of 1) removing both the CO and CO$_2$ uptakes, 2) removing only the CO uptake, and 3) removing only the CO$_2$ uptake. When investigating the next element group, all other small-molecule metabolite uptakes were restored.

Finally, we selected the minimal number of small-molecule uptakes for each element that was compatible with maintaining wild-type growth and preserving the true gene essentiality predictions.

All the computational correction procedures above (Steps II-IV) were fully automated and attempted to capture all feasible minimal modifications to the network that optimized compatibility with the gene essentiality data. Supplemental Section S2 in Additional file 1 shows a more detailed description of these procedures. Since all feasible corrections for each false prediction were collected, it was possible to obtain more than one resultant network. To generate the single in vivo network iNJ661v, we included all feasible modifications, as long as no new incorrect predictions or contradictory nutrient uptakes were generated.

Step V: Literature analysis and verification

We reviewed the available literature on *M. tuberculosis* to examine the biological rationale of our modifications. The presence of supporting data from the literature suggested that our systematic procedures could provide insights into in vivo metabolism. The absence of literature citations for specific modifications indicated the need for possible future experimental work to link metabolism and gene essentiality data.

Statistic analyses of metabolic networks

We used statistical methods to compare the ability of the three metabolic network models (iNJ661, iNJ661 m, and iNJ661v) to predict experimental in vivo gene essentiality [34]. For each of the three networks, we obtained the total numbers of TP, TN, FN, and FP genes and compared the corresponding sensitivity and specificity. We also calculated Matthews correlation coefficients (MCCs) to evaluate the ability of the networks to predict and classify gene essentiality [49]. The MCC measures the correlation between observed and predicted binary classifications and ranges in values from +1 to -1, with +1 indicating a perfect prediction, 0 indicating a random prediction, and -1 indicating an inverse prediction. The calculated sensitivity, specificity, and MCCs depend on the value chosen for the growth rate ratio threshold to determine gene essentiality. To gauge the overall performance of the designed metabolic network model, we calculated receiver operating characteristic (ROC) curves for the studied networks. The ROC curve provides sensitivity as a function of 1 minus specificity across all possible thresholds [50], and, by estimating the 95% confidence interval of the area under the ROC curve (AUC), we can quantitatively assess and compare...
the global performance of each metabolic network model [51].

Results
Development of the modified in vivo network iNJ661v
Sassetti et al. [35] experimentally identified the genes essential for *M. tuberculosis* growth within an *in vitro* medium. We used the data from this *in vitro* experiment to verify the ability of iNJ661 and iNJ661m to predict *in vitro* gene essentiality. In addition, Sassetti and Rubin [34] adapted the TraSH technique to test for genes specifically required for the survival of *M. tuberculosis* during infection of the pathogen in mice [34]. Although this technique cannot positively identify *in vivo* essential genes whose deletion mutants are highly attenuated within the *in vitro* medium, the differentially identified set provides unique insights into the changed metabolic state of the pathogen [34]. In addition, Murphy et al. [36] showed that the *otsB2* gene is essential for *M. tuberculosis* under *in vivo* conditions. We used the data from these two *in vivo* experiments [34,36] as the basis for our manipulations of metabolic reactions and metabolites to obtain a metabolic network (iNJ661v) that was compatible with pathogen growth under *in vivo* conditions.

Table 1 shows the predicted gene essentiality data based on FBA of iNJ661 [15], iNJ661 m, and GSMN-TB [16] as well as a comparison of the results with *in vitro* experimental datasets [35]. To verify our ability to correctly analyze the metabolic networks, we first repeated the original work of Jamshidi and Palsson [15] using the criterion that any gene whose deletion mutant had a growth rate less than that of the wild type, i.e., the mutant growth rate ratio was <1, was considered to be essential for growth. Our analysis of iNJ661 yielded 153 TP genes and 84 FN genes using a growth rate ratio threshold of 1.0. Due to minor numerical differences in cutoffs and constraint values in the FBA, these numbers were slightly different from the published results (154 TP and 83 FN) [15]. When the growth rate ratio threshold was lowered to 0.2, the sensitivity decreased from 0.65 to 0.57, whereas the specificity increased from 0.77 to 0.81. In addition, iNJ661 gave MCC values ranging from 0.39 to 0.42 depending on the specific threshold. We also performed the same calculations for iNJ661m and GSMN-TB. We obtained very similar results for iNJ661 m, suggesting that iNJ661m had the same ability to predict *in vitro* gene essentiality. The agreement between the GSMN-TB-predicted essentiality and the *in vitro* experimental data was slightly better than that for the other two networks, with MCC values for GSMN-TB ranging from 0.49-0.52.

In contrast to the *in vitro* results, the *in vivo*-predicted essentiality of iNJ661, iNJ661 m, and GSMN-TB was less satisfactory. Using the designated *in vivo* biomass composition formulation in the GSMN-TB network (indicated as GSMN-TBv) provided a slightly larger sensitivity in the essentiality prediction, but the improvement was only modest. The sensitivity for the predicted essentiality of these networks ranged from 0.23 to 0.44 depending on the threshold used. MCC values also decreased to 0.03-0.11 when we used these networks to predict *in vivo* essentiality. The relatively poor match between these predictions and the *in vivo* experimental data suggests that iNJ661, iNJ661m, and GSMN-TBv are inappropriate to describe the metabolic activity of *M. tuberculosis* under *in vivo* conditions.

Therefore, we attempted to obtain the new network by modifying an existing metabolic network of *M. tuberculosis*. Among the two available networks [15,16], we selected iNJ661 as the starting point because it is based on the H37Rv strain of *M. tuberculosis* used in the *in vivo* gene essentiality experiments [34,36]. In contrast, the GSMN-TB construct is meant to be a general, non-strain specific model of *M. tuberculosis* metabolism. iNJ661 also successfully predicts the growth rate of *M. tuberculosis* H37Rv in two different media: Youmans and the “chemically defined rich culture media,” while the growth rates predicted from GSMN-TB are only compared with experimental data for *M. bovis* BCG. Since the key aim of our work is to mimic as faithfully as possible the H37Rv strain, we choose not to use the GSMN-TB network as our starting point, although we used reactions relevant to the H37Rv strain from the GSMN-TB network to augment our construction.

We used iNJ661 m, the slightly improved version of iNJ661, as a starting point and performed the systematic procedures shown in Figure 1 to develop a modified metabolic network (iNJ661v) to better describe the *in vivo* metabolic activity of *M. tuberculosis*. Table 1 shows that the comparison between the *in vitro* experimental essentiality and the predicted essentiality of iNJ661m at the end of Step I yielded 76 FP and 25 FN predictions with a threshold of ≤0.2. All 25 FN and 76 FP genes were taken as input to Step II. The automated FP and FN correction procedures shown in Figures 2 and 3 were able to correct 24 of the 76 FP predictions and 18 of the 25 FN predictions, respectively. Additional file 1, Table S1 shows all the possible minimal corrective modifications for each of 42 (24 + 18) predictions.

Since there were multiple ways in which we could combine the different modifications, it became necessary to try to reduce the number of possible network realizations, as outlined in Step III. As shown in Additional file 1, Table S1, we had 35 groups of genes whose products each catalyze the same reaction and whose predictions can be corrected by creating the necessary conditions that makes the reaction essential for FN predictions or
non-essential for FP predictions. For 30 groups there is only one possible modification, for two groups there are five possible modifications each, and for three groups there are two possible modifications each, resulting in a total of $130 \times 5^2 \times 2^3 = 200$ possible network realizations. Next, we examined each one of these using the criteria shown in Figure 5 to weed out inadequate networks. Table 2 shows the modifications that survived this analysis, resulting in 31 groups with only one possible modification and four groups with two possible modifications each, resulting in a total of $131 \times 2^4 = 16$ plausible network realizations.

In Step IV, we re-examined the assigned nutrient uptakes in the networks as outlined in the Methods Section. This analysis was performed for each of the 16 network realizations from Step III, each yielding the same set of uptakes. Table 3 shows that this set of uptakes comprises the default uptakes of H_2O and H^+ (these two metabolites are always considered to be available), a minimum number of uptakes of small molecules, uptakes added based on the Step II analysis, and glycerol. We further decreased the upper limit of glycerol input to 0.06 mmol·h$^{-1}$·gram dry weight$^{-1}$ until lower values of the glycerol input caused the *fum* gene to be incorrectly predicted as essential under *in vivo* conditions. Each of the resultant 16 networks contained the same set of uptakes and yielded the same number of correct predictions. Since we had no prior information to discriminate among these networks, we applied all modifications to *iNJ661* m. Because this combination did not generate any new incorrect gene essentiality predictions, we designated this network as the "optimal" unbiased construction of the *in vivo* network *iNJ661v*. The *iNJ661v* network contained 663 genes, 838 metabolites, and 1,049 reactions and is provided in the Additional files in both Systems Biology Markup Language (Additional file 4) and Excel formats (Additional file 5). Based on this network, we re-calculated gene essentiality through FBA and compared the predictions with the experimental essentiality data in mice [34,36]. Table 1 shows the results from the comparison of the *in vivo* gene essentiality predictions of *iNJ661v* with those

Network	Experiment Condition	Threshold	Number of Gene Essentiality Predictions	Sensitivity	Specificity	Matthews Correlation Coefficient			
			TP	FN	FP	TN			
iNJ661	*in vitro*	<1.0	153	84	71	236	0.65	0.77	0.42
iNJ661m	*in vitro*	<1.0	153	85	71	237	0.64	0.77	0.42
GSMN-TB	*in vitro*	<1.0	156	85	58	294	0.65	0.84	0.49
GSMN-TBv	*in vitro*	<1.0	160	81	75	277	0.66	0.79	0.45
iNJ661v	*in vitro*	≤0.2	140	98	80	228	0.59	0.74	0.33
iNJ661	*in vitro*	≤0.2	156	85	65	287	0.65	0.82	0.47
GSMN-TB	*in vitro*	≤0.2	156	85	65	287	0.65	0.82	0.47
GSMN-TBv	*in vitro*	≤0.2	156	85	65	287	0.65	0.82	0.47

A true positive (TP) prediction refers to a gene correctly predicted to be essential, whereas a false negative (FN) prediction refers to a gene incorrectly predicted to be non-essential. A false positive (FP) prediction refers to a gene incorrectly predicted to be essential, whereas a true negative (TN) prediction refers to a gene correctly predicted to be non-essential. Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP). Matthews correlation coefficient = (TP × TN - FP × FN)/[(TP + FP)(TP + FN)(TN + FP)(TN + FN)]$^{1/2}$. GSMN-TBv indicates the GSMN-TB network with its *in vivo* biomass objective function.
Gene Group No.	Gene No.	Gene Locus	Gene Name	FP/ FN	Pathway	Function/Reaction	Modification to Correct the False Gene Essentiality Prediction	Supporting Literature (References)
1	1	Rv1099c	Rv1099c	FN	Glycolysis/ gluconeogenesis	Convert fructose-1,6-bisphosphate into fructose-6-phosphate	(1) Blocked the uptake of glucose from environment	[8,28,32,52-57]
2	2	Rv2702	ppgK	FN	Glycolysis/ gluconeogenesis	Conversion between glucose-6-phosphate and glucose	(1) Blocked the conversion from maltose to glucose and blocked the uptake of glucose (2) Blocked the conversion between maltose and trehalose and blocked the uptake of glucose	[8,28,32,52-57]
3	3	Rv1350	fabG2	FP	Fatty acid metabolism	Synthesis of fatty acids	(1) Allowed the uptakes of the following fatty acids: hexadecanoate, octadecanoate, octanoate, dodecan, arachidic acid, and hexacosanoate	[8,28,32,52-57]
	4	Rv1483	inhA	FP	Fatty acid metabolism	Functions as 3-oxoacid CoA- transferase	(1) Let the reaction catalyzed by acetyl-CoA:acetoacetyl-CoA transferase be reversible	
	5	Rv2947c	pks15	FP	Fatty acid metabolism	Synthesis of 1,2-diacyl-sn-glycerol 3-phosphate (a phospholipid)	(1) Blocked the ability of Rv2182c to catalyze the same reaction	
4	6	Rv2503c	sdcB	FP	Fatty acid metabolism	Synthesis of riboflavin (1) Removed riboflavin and flavin mononucleotide (FMN) from the biomass objective function		
5	7	Rv2229c	desA3	FN	Fatty acid metabolism	Synthesis of isochorismate (1) Removed menaquinol 8 from the biomass objective function		
6	8	Rv1185c	fadD21	FN	Fatty acid metabolism	Synthesis of deamino-NAD^+ (1) Removed nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) from the biomass objective function		
7	9	Rv0098	Rv0098	FN	Fatty acid metabolism	Synthesis of riboflavin precursor	(1) Removed riboflavin and FMN from the biomass objective function	
8	10	Rv2483c	plsC	FN	Fatty acid metabolism	Synthesis of deamino-NAD^+ (1) Removed nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) from the biomass objective function		
9	11	Rv1416	nbbH	FP	Fatty acid metabolism	Synthesis of riboflavin precursor	(1) Removed riboflavin and FMN from the biomass objective function	
10	12	Rv1412	nbc	FP	Fatty acid metabolism	Synthesis of riboflavin precursor	(1) Removed riboflavin and FMN from the biomass objective function	
11	13	Rv2671	nbD	FP	Fatty acid metabolism	Synthesis of riboflavin precursor	(1) Removed riboflavin and FMN from the biomass objective function	
12	14	Rv2786c	nbF	FP	Fatty acid metabolism	Synthesis of riboflavin precursor	(1) Removed riboflavin and FMN from the biomass objective function	
13	15	Rv2421c	Rv2421c	FP	Fatty acid metabolism	Synthesis of deamino-NAD^+ (1) Removed nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) from the biomass objective function		
14	16	Rv1596	nadC	FP	Fatty acid metabolism	Synthesis of deamino-NAD^+ (1) Removed nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) from the biomass objective function		
15	17	Rv3215	entC	FP	Fatty acid metabolism	Synthesis of deamino-NAD^+ (1) Removed nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) from the biomass objective function		
16	18	Rv1568	bioA	FN	Fatty acid metabolism	Synthesis of a precursor of biotin (1) Added biotinyl-S'-AMP to the biomass objective function		
17	19	Rv1569	bioF	FN	Fatty acid metabolism	Synthesis of a precursor of biotin (1) Added biotinyl-S'-AMP to the biomass objective function and blocked the ability of bioF2 (Rv0032) to catalyze the same reaction		
18	20	Rv1589	bioB	FN	Fatty acid metabolism	Synthesis of a precursor of biotin (1) Added biotinyl-S'-AMP to the biomass objective function		
Gene	Function	Reaction	Notes					
------------	-----------------------------------	---	---					
Rv2211c	Vitamin and cofactor metabolism	Conversion between 5-formyltetrahydrofolate and 5,10-methenyltetrahydrofolate	(1) Added the metabolite 5-formyltetrahydrofolate to the biomass objective function					
Rv3001c	Amino acid metabolism	Synthesis of 2,3-dihydroxy-3-methylbutanoate and 2,3-dihydroxy-3-methylpentanoate	(1) Allowed the uptakes of isoleucine and valine					
Rv3002c	Amino acid metabolism	Synthesis of acetylacetate	(1) Allowed the uptake of valine					
Rv3020c	Amino acid metabolism	Functions as prephenate dehydrogenase	(1) Allowed the uptake of tyrosine					
Rv3754	Amino acid metabolism	Remove a phosphate group from phosphoserine to produce serine	(1) Blocked the ability of serB (Rv0505c) to catalyze the same reaction					
Rv2220c	Amino acid metabolism	Convert glutamate into histidinol-phosphate	(1) Blocked the ability of hisC2 (Rv3772) and hisC (Rv1600) to catalyze the conversion					
Rv2231c	Amino acid metabolism	Transport phthiocerol dimycocerosate A and phenol phthiocerol dimycocerosate out of the cell	(1) Added extracellular phthiocerol dimycocerosate A to the biomass objective function					
Rv2945c	Transport	Transport of glucose, maltose, ribose, trehalose, and xylose into cell	(1) Allowed xylose uptake and added xylose to the biomass objective function					
Rv1236	Transport	Transport of K+ and Na+ into the cell	(1) Blocked the function of potassium ABC transporter (2) Blocked the function of the Na+ antipporter					
Rv1699	Nucleotide metabolism	Synthesis of CTP from UTP	(1) Allowed the uptake of cytidine					
Rv3393	Nucleotide metabolism	Functions as dihydroorotic acid dehydrogenase	(1) Allowed the uptake of cytidine					
Rv2465c	Pentose phosphate pathway	Functions as ribose-5-phosphate isomerase	(1) Allowed the secretion of D-arabinose					
Rv3628	Multiple pathways	Functions as inorganic diphosphatase	(1) Let the reaction catalyzed by nucleoside triphosphate triphosphatase of deoxy-GTP (dGTP) to be reversible					
Rv3588c	Multiple pathways	Conversion between carboxylic acid and carbon dioxide	(1) Blocked the ability of Rv3273 to catalyze the same reaction					

Of the 25 genes that were incorrectly predicted to be non-essential (FN) under in vivo conditions, 18 genes were corrected and became essential in the iNJ661v network. Of the 76 genes that were incorrectly predicted to be essential (FP) under in vivo conditions, 24 genes were corrected and became non-essential in the iNJ661v network. We classified the overall 42 (18 + 24) genes into 35 gene groups, defined as a group of genes whose products catalyze the same reaction(s).
obtained using the in vitro networks. The sensitivity and specificity of the iNJ661v network model were substantially larger than those of the other two networks regardless of the threshold used to determine essentiality. When iNJ661v was used to predict in vivo essentiality, we gained in our ability to classify essentiality (MCC values of ~0.41-0.47) compared with using the in vitro networks (MCC values of ~0.06-0.11). Thus, a significant correlation between experimental gene essentiality in mice and calculated mutant growth rates was only present in iNJ661v.

We further applied threshold-independent statistical tests to compare the abilities of iNJ661, iNJ661 m, and iNJ661v to predict experimental gene essentiality under in vivo conditions. Figure 6 shows the ROC curves of the three networks. For each curve, we obtained the 95% confidence interval of the AUC (iNJ661: 0.57 ± 0.09, iNJ661m: 0.57 ± 0.09, and iNJ661v: 0.84 ± 0.06). The AUCs of the in vitro models iNJ661m and iNJ661 were not significantly larger than those of random predictions (0.50), indicating the inability of these networks to predict in vivo essentiality. Conversely, the AUC of iNJ661v was significantly larger than those of the other two networks, demonstrating that iNJ661v was better able to predict experimental gene essentiality in mice.

After Step IV, the iNJ661v network still contained several incorrect gene essentiality predictions. Table 4 shows the seven FN predictions that we were unable to correct. We failed to correct the predictions for the atpB, nirA, proV, accD1, and cobL genes because each one of them is required together with one or more TN genes. For example, the FN gene proV is required together with the TN genes proW, proX, and proZ for the transport of choline, carnitine, glycine betaine, and proline into the cell [15]. Any “correction” of proV would change the TN predictions for proW, proX, and proZ into FP. It is likely that the gene products of proV

Uptake type	Nutrients	Supporting Literature (References)
Default uptakes	H₂O, H⁺	Oxygen, O₂ [7,31]
Uptakes of small molecules	Phosphorus, HPO₄²⁻	Phosphorus, HPO₄²⁻ [64]
	Sulphur, SO₄²⁻	Sulphur, SO₄²⁻
	Iron, Fe³⁺	Iron, Fe³⁺
	Potassium, K⁺	Potassium, K⁺
	Sodium, Na⁺	Sodium, Na⁺
	Nitrogen, NO₃⁻, NH₄⁺	Nitrogen, NO₃⁻, NH₄⁺ [63]
Uptakes added in Step II	Hexadecanoate, octadecanoate, octanoate, dodecanoate, arachidic acid, and hexacosanoate	[8,28,32,52-57]
	Isoleucine and valine	[61]
	Cytidine and xylose	Cytidine and xylose
Other necessary uptakes	Glycerol	Glycerol [8,28,32,57-57]

Figure 6 Receiver operating characteristic (ROC) curves for gene essentiality predictions of Mycobacterium tuberculosis
Sensitivity [TP/(TP + FN)] and 1 minus specificity [1 - TN/(TN + FP)] (where TP: true positive, FN: false negative, TN: true negative, and FP: false positive) were calculated as a function of the growth ratio thresholds used to determine gene essentiality in three different network models: iNJ661 (dotted curve), iNJ661m (dashed curve), and iNJ661v (solid curve).
Table 4 False negative (FN) predictions that could not be corrected by our network modifications

Gene Locus	Gene Name	Pathway	Function/Reaction	Reasons Why Network Modification Could Not Be Made
Rv1304	atpB	Purine metabolism	Synthesis of ATP	The product of this gene catalyzes the reaction together with that of the TN gene atpH
Rv2391	nitA	Vitamin and cofactor metabolism	Reduction of nitrite	The product of this gene catalyzes the reaction together with that of the TN gene nitB
Rv578c	proV	Transport	Transport of choline, L-carnitine, glycine betaine, and proline	The product of this gene catalyzes the transport of choline, L-carnitine, glycine betaine, and proline together with the TN genes proZ, proW, and proX
Rv2502c	accD1	Sugar metabolism	Convert propionyl-CoA into S-methylmalonyl-CoA	The product of this gene catalyzes the reaction together with the TN gene accA2
Rv2072c	cobL	Porphyrin metabolism	Production of 5-adenosyl-L-homocysteine	The product of this gene catalyzes the synthesis of cobalamin together with the TN genes cobK, cobM, cobH, cobN, cobI, and cobG
Rv5334c	Rv3334c	Pyruvate metabolism	Convert 4-hydroxy-2-oxopentanate into pyruvate	In a pathway without any synthesis or uptake reaction for the metabolite 4-hydroxy-2-oxopentanate
Rv2241	aceE	Glycolysis/glucogenesis	Convert pyruvate into acetyl-CoA	Unable to determine the reason

A false negative (FN) prediction refers to a gene incorrectly predicted to be non-essential.

have other essential functions that may or may not be related to metabolic functions and were not accounted for in the current network description. Conversely, we failed to correct the prediction for the Rv3534c gene because it belongs to a pathway containing a metabolite without a source. Thus, further studies are necessary to discover how this metabolite is synthesized and how this information can be incorporated into the network.

Literature Analysis and Verification

By design, our automated and systematic analysis of the in silico/in vivo growth inconsistencies generated by the original iNj661m metabolic network created a network (iNj661v) that was more compatible with in vivo growth. The metabolic modifications reflected how the pathogen adjusts its metabolism to adapt to the environment that M. tuberculosis confronts during infection in the mouse. Here, we discuss the performed modifications vis-a-vis the available relevant literature within the context of the affected metabolic pathways. Table 2 shows the reviewed literature associated with each of the performed modifications ordered by the affected pathway.

In the “glycolysis/gluconeogenesis” pathways, we deleted the uptake of glucose from the environment and blocked the synthesis of glucose from maltose and trehalose to correct the FN predictions of the Rv1099c and ppgk genes. This modification suggested that the host environment may lack glucose and, thus, forces M. tuberculosis to generate glucose through gluconeogenesis (the pathway to synthesize glucose from the citric acid cycle). In the “fatty acid metabolism” pathways, to correct the FP prediction of the fabG2, inhA, and pks15 genes and the FN prediction of the desA3 gene, we added the uptakes of several fatty acids from the host environment and blocked the synthesis of a fatty acid, hexadecenoate. This modification suggested that fatty acids were available in the host environment and that M. tuberculosis stopped synthesizing them under in vivo conditions. In summary, the modifications in these two groups of pathways, along with the retention of glycerol uptake (see Table 3), suggested that the survival of M. tuberculosis during infection in the mouse required lipids (composed of fatty acids and glycerol) instead of glucose as its primary source of carbon. The important role of lipids as carbon sources is evident from the observed up-regulation of genes involved in fatty acid catabolism during M. tuberculosis in vivo growth [8,28,52-55], M. tuberculosis growth in dipalmitoyl phosphatidylcholine (a lipid present in the mammalian lung) medium [32], the ability of the bacterium to hydrolyze lecithin into fatty acids [8,56], and the potential role of human serum as a highly effective fatty acid source [57].

In the pathways associated with “vitamin and cofactor metabolism,” we removed riboflavin from the biomass objective function to correct the FP prediction of the ribH, ribC, and ribD genes. The removal suggested that riboflavin was not required for the survival of M. tuberculosis under in vivo conditions, which is supported by the observation that riboflavin is used for glycolysis (the pathway of glucose catabolism) in M. tuberculosis [58] and that glucose is not a carbon source for the pathogen in the host environment [8]. In the same pathways, we also corrected the FN predictions associated with the bioA, bioF, and bioB genes by adapting the biomass objective function to include biotinyl-5'-adenosine monophosphate (AMP) and blocked the ability of the gene product of the bioE2 gene to catalyze the synthesis of the precursor of biotin. Because biotinyl-5'-AMP is...
the activated form of biotin [59], the inclusion of biotinyl-5′-AMP suggests that biotin is required for the survival of \textit{M. tuberculosis} under \textit{in vivo} conditions. This observation is compatible with biotin playing a role in gluconeogenesis [60] and that \textit{M. tuberculosis} obtains glucose through gluconeogenesis under \textit{in vivo} conditions [8]. The blockade of BioF2 indicated that the enzyme may be inhibited under \textit{in vivo} conditions, which is commensurate with the observed down-regulation of \textit{bioF2} in the presence of hydrogen peroxide (H$_2$O$_2$) [28], a reactive oxygen species that would be encountered in an intra-phagosomal environment.

In the “amino acid metabolism” pathways, we added uptakes of isoleucine and valine to correct the FP predictions of the \textit{ilvC} and \textit{ilvN} genes, suggesting that \textit{M. tuberculosis} might be able to absorb these amino acids from the host environment. Although we could not directly verify these uptakes in \textit{M. tuberculosis}, experiments have shown that a \textit{M. tuberculosis} strain that lacks the ability to synthesize three amino acids (valine, isoleucine, and leucine) could persist in mice for four weeks [61]. This suggests that these amino acids might be available, although in limited amounts, in the host environment to compensate for the organism’s inability to synthesize these amino acids.

We also examined the modifications with respect to genes and reactions involved in “transport pathways.” In this group of pathways, we added two extracellular lipids, phthiocerol dimycocerosate A and phenol phthiocerol dimycocerosate, to the biomass objective function to correct the FN prediction of the \textit{lppX} gene. The biomass objective function of \textit{iNJ661} and the \textit{in vivo} biomass objective function of GMST-TB include intracellular phthiocerol dimycocerosate A. In fact, these lipids are known to be secreted by \textit{M. tuberculosis} into the environment and subsequently are associated with the pathogen envelope, where they aid in avoiding host immune attacks [62]. It is somewhat unusual to add extracellular metabolites to the biomass objective function; however, given the localization of the two lipids to the pathogen’s envelope, they can be considered as integral to the pathogen and, hence, to the biomass. Moreover, our additions of the uptakes of NO$_3^-$, O$_2$, and Fe$^{3+}$ (see Table 3) were supported by the existence of NO$_3^-$ in infected tissue [63], the detection of O$_2$ in mouse lung granulomas [7,31], and the ability of \textit{M. tuberculosis} to synthesize mycobactin, a chemical with a very high affinity for iron, to obtain iron from the host environment [64].

The lack of detailed experimental evidence for many modifications, as shown in Table 2, indicates that there are currently gaps of knowledge associated with \textit{M. tuberculosis} metabolism. For example, in the transport pathways, we corrected the FN predictions of the \textit{sugA}, \textit{sugB}, and \textit{sugC} genes by adding xylose uptake and including xylose in the biomass objective function. These modifications suggest that \textit{M. tuberculosis} should have a xylose utilization pathway, although this is absent in current metabolic network descriptions of \textit{M. tuberculosis}. The existence of such a pathway is indicated by the experimental observation that \textit{M. tuberculosis} is able to use xylose under the presence of glycerol [65]. Conversely, although sequence analysis has suggested that the \textit{sugABC} operon encodes a sugar-transporting system, it is unclear what sugar molecules the system transports [66], suggesting that there might be other possible reasons for the \textit{sugABC} transport system to be essential.

Growth prediction of double-deletion mutants

Double-gene deletion experiments provide insights into redundant pathways, non-obvious coupling of metabolite flows, and potential new drug targets. For example, although neither the \textit{ERG11A} gene nor the \textit{ERG11B} gene in \textit{Aspergillus fumigatus} is individually essential, the deletion mutant of these two genes is not viable in immune-compromised mice, suggesting the pair of genes as a combined drug target [67]. Large-scale experimental double-gene deletion requires substantial efforts, whereas the corresponding \textit{in silico} simulations of deleted gene pairs are readily available. Comparative studies for yeast (\textit{Saccharomyces cerevisiae}) have shown that 49% of the predicted synthetically lethal double-deletion mutants are correct [68-70]. \textit{In silico} studies of the growth of double-deletion mutants of metabolic genes have also been performed for \textit{E. coli} [71], \textit{Helicobacter pylori} [14], and \textit{Leishmania major} [19], although the bulk of these predictions could not be verified due to the paucity of experimental data.

We initially examined the capability of \textit{iNJ661m} and \textit{iNJ661v} to model the growth of two experimentally examined double-gene deletion mutants. In the first case, experimental work showed that the growth of the \textit{ΔpanCD} mutant (deletion of \textit{Rv3602c} and \textit{Rv3601c}) is highly attenuated in mice [72]. FBA of both \textit{iNJ661m} and \textit{iNJ661v} predicted that \textit{ΔpanCD} mutants have a growth rate of zero, consistent with the experimental observation. Although not confirmed experimentally, our analysis of \textit{iNJ661m} indicated that the growth attenuation may also take place within an \textit{in vitro} medium. In the second case, experimental work has indicated that the mutant \textit{Δicl1Δicl2} (deletion of \textit{Rv0467} and \textit{Rv1915}) of \textit{M. tuberculosis} cannot survive in mice but can grow under certain \textit{in vitro} conditions [32]. FBA of \textit{iNJ661m} predicted that the growth rate of \textit{Δicl1Δicl2} was equal to that of wild-type \textit{M. tuberculosis}, whereas analysis of \textit{iNJ661v} predicted that the growth rate of \textit{Δicl1Δicl2} was only 26% of the wild-type rate,
suggesting that \textit{iN/661v} was a better predictor for \textit{in vivo} growth.

We then performed a comprehensive FBA of \textit{iN/661m} and \textit{iN/661v} to simulate the growth of \textit{M. tuberculosis} double-gene deletion mutants under an \textit{in vitro} condition and an \textit{in vivo} condition, respectively, and predicted synthetic lethality. Additional file 1, Table S2 shows the complete results of these calculations, and Additional file 1, Figure S1 shows the mapping of synthetic essential gene pairs in \textit{iN/661v} to carbon metabolism-related pathways. Figure 7 shows the number of essential gene pairs that were uniquely and commonly predicted by these two networks (\textit{iN/661m} and \textit{iN/661v}). The \textit{iN/661v} network predicted a substantially larger number of synthetically lethal genes under \textit{in vivo} conditions than the \textit{iN/661m} network under \textit{in vitro} conditions. This was partly due to the more constrained nutritional environment faced by \textit{iN/661v} with respect to carbon metabolism. Although drugs effective under \textit{in vitro} conditions may not be effective under \textit{in vivo} conditions, the converse may also be true [9]. The additional 131 gene pairs identified in \textit{iN/661v} indicate novel potential drug targets under \textit{in vivo} conditions. Likewise, the 35 gene pairs that were predicted to be essential under both conditions may represent more robust drug targets based on their insensitivity to environmental conditions.

The bulk of the 131 gene pairs uniquely predicted to be essential for bacterial growth using \textit{iN/661v} were related to carbon and energy metabolism. This reflects the modifications that we implemented in \textit{iN/661v} to reproduce the \textit{in vivo} gene essentiality data in these parts of the metabolic network. Synthetic lethality in carbon metabolism was primarily located in the two different pathways that can be used to synthesize glucose precursors from glycerol and fatty acids (as shown by the red color in Additional file 1, Figure S1 and Table S2). Other enzyme pairs that exhibited synthetic essentiality in \textit{iN/661v} were those who catalyzed the same reaction, i.e., each enzyme by itself was not essential, but if they were both deleted at the same time, the reaction could not proceed and the organism would stop growing. Additional file 1, Table S2 shows that this group includes \textit{Rv2476c}, \textit{gltB}, and \textit{gltD}, whose gene products were necessary for converting \(\alpha\)-ketoglutarate into glutamate. An additional 76 synthetically essential gene pairs were involved in energy metabolism. We also analyzed the 35 synthetically essential gene pairs that were common to both \textit{iN/661m} and \textit{iN/661v}. This set was enriched in gene pairs that were involved in amino acid and nucleotide metabolism, supporting the suggestion that these metabolic processes could be common drug targets under both \textit{in vitro} and \textit{in vivo} conditions [34].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Number of essential gene pairs predicted using \textit{iN/661m} and \textit{iN/661v}. Flux balance analysis of \textit{iN/661m} under \textit{in vivo} conditions predicted 78 essential gene pairs, whereas \textit{iN/661v} predicted 166 essential gene pairs. There were 35 gene pairs predicted to be essential by both network descriptions; 131 gene pairs were only predicted to be essential using \textit{iN/661v}, whereas 43 gene pairs were only predicted to be essential using \textit{iN/661 m}. Most of the jointly predicted gene pairs were involved in amino acid and nucleotide metabolism.}
\end{figure}
Exploration of the metabolism of *M. tuberculosis* using the *in vivo iNJ661v* network

The gene essentiality data used to help construct the *in vivo* network produced non-obvious changes in the flow of metabolites and uptakes of nutrients from the environment. Analyses of this *in vivo*-compatible metabolic network of *M. tuberculosis* allow us to probe the metabolic state and metabolic adaptation of the pathogen to the host environment, opening-up new avenues for targeting specific enzymes or pathways that cannot be observed under *in vitro* conditions. Here, we briefly explored the *M. tuberculosis* metabolism as related to its adaptation to living in an acidic environment, the importance of the tricarboxylic acid (TCA)-cycle under different limiting nutrient conditions, the effects of inhibiting multiple reactions, and the modes of cellular respiration during infection.

The macrophage phagosome presents a generally hostile environment with an acidic pH ranging from 6.2 to 4.5 [73]. The specific mechanism by which *M. tuberculosis* adapts to this acidic condition has not been fully elucidated [74]. One well-known protective feature is the waxy (primarily mycolic acid) cell envelope that forms a barrier against unwanted H⁺ entry [74]. In the context of metabolism, it is speculated that the urease reaction presents another acid adaptation mechanism by converting H⁺ and urea into NH₄⁺ and CO₂ [75,76]. The produced NH₄⁺ also contributes to the *M. tuberculosis* survival by preventing the maturation of the phagosome [77]. We used the iNJ661v network to explore additional acid adaptation mechanisms based on the metabolic flow of H⁺. We used flux variability analysis (FVA) to estimate the ranges of reaction fluxes in the metabolic network at the optimal growth rate. This allowed us to estimate the range of the overall H⁺ exchange between the environment and the *M. tuberculosis* cells at the optimal growth rate for wild type iNJ661v. The protonation state of the metabolites is chosen to correspond to pH 7.2 [78]. Because we only considered the steady state H⁺ flux in both *in vitro* and *in vivo* metabolic network models, the protonation states of the metabolites were not changed in this calculation. Table 5 shows that the overall H⁺ exchange was within a narrow range of negative values, suggesting that the *in vivo* metabolism consumed H⁺ as a whole, contributing to the relief of acidic stress. The primary reaction important for this H⁺ consumption was the nitrite reductase (NR) reaction that uses H⁺ and reduces NO₂⁻ into NH₄⁺. Table 5 shows that the fluxes through NR of wild type iNJ661v were positive but did not vary, suggesting that there must be flux through this reaction at the optimal growth of wild type cells. Conversely, for mutants whose NR was removed (denoted as ΔNR in Table 5), the overall H⁺ exchange could only be positive. Given the neutralization as well as the protective effect of creating NH₄⁺ [77], NR is a strong candidate for playing an important function in the *in vivo* adaptation of *M. tuberculosis* in acidic environments.

In order to more comprehensively study acid adaptation/resistance we examined the role of NR in the presence of urease [75,76]. Because the iNJ661 (and the GSMN-TB) network does not include a complete urea synthesis pathway, we added a urea uptake in order to create a flux through the urease reaction. Table 5 shows the estimated ranges of the H⁺ exchange and the reaction fluxes for iNJ661v with urea uptake. Overall, H⁺ is consumed to relieve acid stress. In the wild type strain, the flux through the NR reaction was greater than zero, suggesting that NR still contributes to H⁺ consumption in the presence of urease. Removal of the NR reaction (ΔNR mutant) diminished H⁺ consumption, but did not abolish the overall H⁺ exchange. Importantly, we performed the same analysis for the *in vitro* iNJ661m network and found that the NR reaction was always inactive, suggesting that NR does not play a role in acid adaptation in the *in vitro* medium (Table 5, last two rows). In conclusion, NR contributes to the acid adaptation under *in vivo* conditions even in the presence of other acid adaptation mechanisms. The importance of NR in acid resistance might be experimentally tested by inactivating the NR reaction and examining cellular growth under *in vivo* conditions or *in vitro* low-pH environments with freely available nitrite or nitrate.

Persistence and slow growth are clinically important states of the *M. tuberculosis* pathogen. Metabolic network models can be used to study the metabolic states associated with these conditions under a variety of conditions that mimic slow growth. In the development of the GSMN-TB model, Beste and co-workers induced slow growth by limiting the uptake of glycerol and highlighted the corresponding changes in reaction fluxes in the glyoxylate shunt pathway [16]. Considering that fatty acids are the major carbon sources for in-host *M. tuberculosis* [32], here we simulated nutrient limitation to probe slow *in vivo* growth by reducing fatty acid uptake. We performed FVA to estimate the ranges of the fluxes through the reactions in the TCA cycle and the glyoxylate shunt pathway under slow (reduced nutrient availability) and fast (normal nutrient availability) growth. We simulated the slow *in vivo* growth by constraining fatty acid uptake of iNJ661v until the growth rate was one third of its original value [16], and fast growth by keeping the constraints unchanged. For each reaction we calculated the ratio of the midpoint of the flux range for slow growth to that for fast growth, where each flux was normalized to the corresponding total growth rate. This ratio represents a relative value of the fluxes and
can be used to compare the relative importance of specific reactions.

Figure 8 shows the relevant metabolites and enzymes and highlights the significantly decreased ratios in the glyoxylate shunt pathway and increased reaction fluxes in parts of the TCA cycle. The increased reaction fluxes in \(iNJ661v \) included the 2-oxoglutarate decarboxylase (OXGDC) and succinate-semialdehyde dehydrogenase (SSAL) reactions, suggesting that these reactions were likely to be important in fatty-acid-limited slow growth. The previously suggested increased flux and importance of isocitrate lyase (ICL) under slow-growth conditions is a direct consequence of the glycerol limitation [16]. In fatty-acid-limited slow growth, which is consistent with the \textit{in vivo} metabolic state, the OXGDC and SSAL reactions took on a heightened function and importance in slow-growth maintenance. The suggested metabolic responses to fatty-acid-limited growth rate could be experimentally tested by measuring the activities of the enzymes in the TCA cycle of \textit{M. tuberculosis} during slow and normal growth in host environment or in an \textit{in vitro} condition infused with fatty acids as carbon sources.

Given the ability of the metabolic network to provide different reaction fluxes under different metabolic conditions, we can explore combinations of mechanisms to inhibit multiple reactions to derive optimal \textit{in vivo} growth-reduction strategies. Drug combinations that achieve optimal therapeutic response and avoid side effects caused by high doses of single drugs [79,80] can rapidly be examined using these modeling techniques.

To illustrate this concept, we constructed an example to investigate double-reaction inhibition using metabolic network modeling. Given that the primary \textit{in vivo}

Network	Strain	Overall H+ exchange (mmol/h/gDW)	Nitrite reductase flux (mmol/h/gDW)	Urease flux (mmol/h/gDW)			
		Min	Max	Min	Max	Min	Max
\(iNJ661v \)	Wild type	-1.99	-1.93	1.00	1.00	0.00	0.00
	\(\Delta NR \)	0.04	0.07	0.00	0.00	0.00	0.00
\(iNJ661v \)	Wild type	-3.96	-3.90	1.00	1.00	0.99	1.00
with urea uptake	\(\Delta NR \)	-1.94	-1.90	0.00	0.00	0.99	1.00
\(iNJ661m \)	Wild type	2.36	3.09	0.00	0.00	0.00	0.00
	\(\Delta NR \)	2.36	3.09	0.00	0.00	0.00	0.00
\(iNJ661m \)	Wild type	0.43	0.91	0.00	0.00	0.99	1.00
with urea uptake	\(\Delta NR \)	0.43	0.91	0.00	0.00	0.99	1.00

Overall hydrogen ion [H+] exchange indicates the total H+ exchange between the environment and the \textit{Mycobacterium tuberculosis} cells. A negative value of the exchange indicates that \textit{M. tuberculosis} consumes H+ as a whole, while a positive value indicates that the metabolism generate a H+ surplus, i.e., increases acidification of the environment. The minimum (Min) and maximum (Max) fluxes reflected the ranges of the fluxes at the optimal growth and were obtained through flux variability analyses of \(iNJ661v \) and \(iNJ661m \). \(\Delta NR \) represents the strain in which nitrite reductase (NR) was blocked. The unit of mmol/h/gDW represents mmol per hour per gram dry weight of \textit{M. tuberculosis}.

Figure 8 Metabolic responses of the \(iNJ661v \) network to fatty-acid-limited growth. Metabolite flow was characterized for enzymes in the tricarboxylic acid cycle and the glyoxylate shunt pathway. The numbers in the graph indicate ratios of normalized flux-range midpoints. These were calculated based on flux variability analysis for slow and fast growth conditions, where the fluxes were normalized by dividing by the corresponding total growth rates. This normalization removes artifacts introduced by the lower absolute reaction fluxes associated with induced slow growth [16]. CS, citrate synthase; ACON, aconitase; ICDH, isocitrate dehydrogenase; OXGDC, 2-oxoglutarate decarboxylase; SSAL, succinate-semialdehyde dehydrogenase; FRD, fumarate reductase; SUCD, succinate dehydrogenase; FUM, fumarase; MDH, malate dehydrogenase; MALS, malate synthase.
nutrients are lipids, we focused on two reactions that are required to process these metabolites, i.e., the glycerol-3-phosphate dehydrogenase (G3PD) reaction, which is necessary for the utilization of glycerol, and the ICL reaction, which is a known potential drug target and is required for the conversion of fatty acids into other metabolites, such as pyruvate [32]. To study the effect of this combined inhibition, we calculated growth rates under a set of upper limits of the fluxes through the ICL and G3PD reactions. Figure 9 shows the calculated growth rates under different upper limits for the two reactions for both the in vivo iNJ661v (panel A) and in vitro iNJ661m (panel B) networks.

In these graphs, the lower left hand corner corresponds to the most stringent blockage of both reactions, i.e., where the fluxes for each reaction was constrained to be $\leq 10^{-3}$ mmol/h/gDW. Figure 9A, illustrating the in vivo results, shows that these flux limits effectively blocked growth of the organism as indicated by the blue color designating strongly retarded growth rates. One can also see that whereas the ICL reaction is essential, i.e., the organism cannot effectively grow if this reaction is sufficiently inhibited, single blockage of the G3PD reaction would not prevent growth if the ICL reaction was left unconstrained (top portion of Figure 9A). It was also clear that limiting the G3PD flux (i.e., going from right to left in Figure 9A) further decreased the growth rate at virtually all ICL flux values. This indicates that for a given desired growth-rate reduction, one could use a combination of ICL and G3PD inhibitions to achieve the same effect as those possible with a stringent single ICL inhibition. If these fluxes can be inhibited by drugs, reducing the dose of the most toxic drug to achieve the same therapeutic response would decrease risk of potential side effects. Moreover, we performed the same calculation for iNJ661m and observed no combinatorial effect of the inhibition. Figure 9B shows that when we constrained the fluxes through the ICL and G3PD reactions to zero, the growth rate was still close to that of unconstraint growth. It is clear that the iNJ661v network is instrumental in delineating combinatorial inhibition strategies while the in vitro iNJ661m network is not.

Finally, we examined the results of the iNJ661v double deletion mutants with respect to cellular respiration during infection. Additional file 1, Table S2 shows that the genes corresponding to the cytochrome bd oxidase (cydB-cyD and appC) and the nitrate reductase (narG-narJ) enzymes were synthetically essential. Because these two enzymatic groups are associated with aerobic and anaerobic respiration, respectively, synthetic essentiality indicates that therapy targeting cellular respiration needs to simultaneously inhibit both aerobic and anaerobic respiration. This conclusion is not evident from gene expression data, which instead indicates that seven

Figure 9 Predicted effects of a double-reaction inhibition on the in vivo growth of *Mycobacterium tuberculosis*. The two inhibited reactions were isocitrate lyase (ICL) and glycerol-3-phosphate dehydrogenase (G3PD). The growth rates (in units of h$^{-1}$) were calculated based on flux balance analysis with different upper limits of the fluxes through the two reactions. The upper limits are in unit of mmol/h/gDW, i.e., mmol per hour per gram dry weight of *M. tuberculosis*. Panel A shows the results of the combinational inhibition using the iNJ661v network; panel B shows the in vitro iNJ661m results.
weeks post-infection the pathogen only employs nitrate reductase enzymes for anaerobic respiration [81]. However, gene essentiality data indicate that all genes corresponding to these enzymes (narG-narJ) are non-essential in mice, even after seven weeks [34], indicating that anaerobic respiration is not the only available option to the pathogen and that O2 is available to the bacterium in the host environment [31]. Therefore, dual inhibition of aerobic and anaerobic is necessary to fully arrest bacterial respiration. This hypothesis can be experimentally tested by simultaneously deleting both gene groups and testing for differential growth of *M. tuberculosis* under *in vivo* and *in vitro* conditions.

In summary, we used the developed iNJ661v network to explore metabolism-based *M. tuberculosis* acid adaptation mechanisms, study metabolic responses to *in vivo* slow growth, estimate the effects of different levels of inhibitions of multiple reactions, and gain insights into respiration-targeting therapy.

Discussion

Although the existing metabolic network of *M. tuberculosis* iNJ661 [15] reproduces experimentally observed growth rates in different media and predicts gene essentiality under *in vitro* conditions, it lacks predictive power for *in vivo* gene essentiality. We developed a set of automated procedures that systematically examined possible metabolic modifications to the original iNJ661 network and optimized predictions of experimental *in vivo* essentiality. By design, the newly developed *in vivo* network iNJ661v provided significantly better agreement (sensitivity increased from 0.31-0.44 to 0.81-0.86; Table 1) between predicted and experimental *in vivo* gene essentiality.

Indirectly, the systematic reconstruction of iNJ661v also provided a means to use high-throughput *in vivo* gene essentiality data to gain insights into the *in vivo* metabolism of *M. tuberculosis*. For example, we added fatty acids as inputs from the host environment and removed the ability of the network to take up glucose, indicating that *M. tuberculosis* uses lipids as the major carbon source for metabolism. This is compatible with the experimentally observed upregulation of genes involved in fatty acid catabolism [8,28,52-55]. Commensurate with the aerobic nature of the organism, our calculations indicated that O2 uptake must be retained under *in vivo* conditions [7,31,82]. Another example is our inclusion of two extracellular lipids, phthiocerol dimycocerosate A and phenol phthiocerol dimycocerosate, in the biomass objective function. This is appropriate since the two secreted lipids actually associate with the pathogen envelope to help the organism avoid host immune attacks [62] and are thus intimately associated with the organism/cell itself.

In addition to providing experimentally confirmed insights, the iNJ661v network allowed us to predict a different and putative much larger set of synthetic double-gene deletion mutants than those obtained under *in vitro* conditions. Furthermore, using iNJ661v as a model for *in vivo* metabolism, we proposed that nitrite reductase might play an important role in the metabolic adaptation of *M. tuberculosis* to an acidic environment, we found specific enzymes in the TCA-cycle that might be important under the fatty-acid-limiting slow-growth condition prevailing in macrophages, we investigated combinatory inhibition of the ICL and G3PD reactions as an effective drug-combination strategy under *in vivo* nutrient conditions, and found that inhibition of both aerobic and anaerobic respiration were required to fully arrest cellular respiration of *M. tuberculosis* during infection.

The developed methodology can provide systematic corrections based primarily on discrepancies between predicted and experimental gene essentiality data, which can be used to fine-tune initial metabolic network reconstructions. Here, we built on and expanded the previously developed "GrowMatch" techniques of Kumar and Maranas [39] by extending and enhancing the possible correction steps. This was partly necessitated by the more incomplete state of the *M. tuberculosis* network compared with that of *E. coli*, as used by Kumar and Maranas, and the more extensive nature of the required corrections to switch from an *in vitro* to an *in vivo* metabolic environment. One major difference was that our procedures included an analysis of the combined modifications (Step III in Figure 1, with details shown in Figure 5) to systematically eliminate undesirable effects, e.g., very small growth rates or new incorrect predictions of gene essentiality.

Although the gene deletion mutant growth measurements used by Sassetti and Rubin [34] to experimentally determine gene essentiality provide time-specific information, the developed iNJ661v network did not include a time-dependent component. In the development of our network, a gene was considered experimentally essential as long as it was deemed to be essential at any time point during the entire eight-week time course spanned by the experiments [34]. We examined this approximation by comparing gene essentiality predictions at the reported time points of one, two, four, and eight weeks post-infection. Additional file 1, Table S3 shows a comparison of the predicted and experimental gene essentiality at different time points, basically showing that there was an overall small, non-time-specific difference between the MCC values for the individual time points and the time-independent value (0.47) shown in Table 1. The sparse nature of the experimental data did not warrant the additional complexity of
constructing time-dependent in vivo metabolic networks. However, as both the pathogen and host dynamically change their responses during infection, future work using additional datasets and modeling methodologies will be required to adequately capture this aspect of the in vivo metabolism of M. tuberculosis.

The existence of inaccurate essentiality predictions based on iNJ661v (FN and FP; Table 1) indicate that there is room for further additions and corrections to the network to better capture in vivo metabolism. The modifications that we made to the original in vitro iNJ661 network were relatively minor, as iNJ661v only shows a slightly diminished capability to predict in vitro essentiality data compared with iNJ661 m. The development of the modified in vivo network iNJ661v was ultimately based on the growth of the bacterium under different in vitro conditions (iNJ661) and modifications to better model experimental in vivo gene essentiality. These conditions capture part of the pathogen’s metabolic processes, but large knowledge gaps still exist. An analysis of the M. tuberculosis genome indicated that while 1,286 genes are directly associated with metabolic processes (C. Yu, personal communication), only 663 genes were explicitly included in the developed network. This highlights the need for further systematic theoretical analyses to improve the network description and, more importantly, the need for experimental data under a variety of different in vivo and in vitro growth conditions that could be used to guide and validate model development.

Higher fidelity in silico modeling of organisms provides the foundation for the eventual integration of metabolic information with gene regulation and signaling networks to model biological phenomena. Ultimately, the model development presented here can be extended to answer additional questions as they relate to the metabolic status of the pathogen population before, during, and after infection: What nutrients are present in different in vivo compartments, how do they change as infection progresses, and how do they relate to cellular growth rates and population sizes? What is the appropriate objective function to use for the persistent dormant phase of M. tuberculosis infection? What processes does M. tuberculosis use to handle nutrient deficiencies and antagonistic conditions found in macrophages? These are the questions that we can now begin to address using the developed iNJ661v as a more sophisticated in vivo representation of the metabolic network for M. tuberculosis.

Conclusion

M. tuberculosis, the causative agent of TB, continues to pose a major health threat worldwide, with nearly two million deaths annually. Modeling of and accounting for the varying metabolic requirements of M. tuberculosis during host infection can help identify the metabolic enzymes suitable for therapeutic intervention. To this end, we developed procedures to construct an in vivo metabolic network model of M. tuberculosis that maximizes the agreement between predicted and measured gene essentiality determined from infection experiments in the mouse. We verified the modifications obtained computationally by reviewing the available relevant literature. For example, lipids are major carbon sources for M. tuberculosis in the host environment. The network provided a metabolic description of the pathogen consistent with the generally hostile and nutrient-poor in vivo conditions in the host that can be exploited in evaluation, selection, and modeling of novel potential drug targets.

Additional material

Additional file 1: Supplementary materials. It provides the detailed steps for constructing the iNJ661m and iNJ661v networks, and all supplemental tables and figure.

Additional file 2: The iNJ661m metabolic network. It describes the iNJ661m metabolic network, using the Systems Biology Markup Language format.

Additional file 3: The iNJ661v metabolic network. It describes the iNJ661v metabolic network, using Microsoft Excel 2003.

Additional file 4: The iNJ661v metabolic network. It describes the iNJ661v metabolic network, using the Systems Biology Markup Language format.

Additional file 5: The iNJ661v metabolic network. It describes the iNJ661v metabolic network, using Microsoft Excel 2003.

Acknowledgements

We thank Dr. Chenggang Yu for his providing comprehensive analysis on gene annotation of M. tuberculosis to obtain genes directly associated with metabolic processes. This project was funded in part by a competitive In-house Laboratory Independent Research (iLR) grant by the U.S. Army Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA/ALT). The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the U.S. Army or the U.S. Department of Defense. This paper has been approved for public release with unlimited distribution.

Authors’ contributions

All authors contributed to the design and coordination of the study. XF performed the computational implementations, and XF and AW prepared the original draft, which was revised by JR. All authors read and approved the final manuscript.

Received: 12 March 2010 Accepted: 23 November 2010 Published: 23 November 2010

References

1. Gillespie SH: Tuberculosis: evolution in millennia and minutes. Biochem Soc Trans 2007, 35:1317-1320.
2. WHO: WHO Report 2008: Global tuberculosis control - surveillance, planning, financing. 2008.
3. van den Boogaard J, Kibiki GS, Kisanga ER, Boeree MJ, Aarnoutse RE: New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob Agents Chemother 2009, 53:849-862.
4. Young DB, Perkins MD, Duncan K, Barry CE: Confronting the scientific obstacles to global control of tuberculosis. *J Clin Invest* 2008, 118:1253-1265.

5. Anishetty S, Pulimi M, Pennathur G: Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. *Comput Biol Chem* 2005, 29:368-378.

6. Midluli K, Spigelman M: Novel targets for tuberculosis drug discovery, *Curr Opin Pharmacol* 2006, 6:459-467.

7. Bosshoff HI, Barry CE: Tuberculosis - metabolism and respiration in the absence of growth. *Nat Rev Microbiol* 2005, 3:70-80.

8. Munoz-Elias EJ, McKinney JD: Carbon metabolism of intracellular bacteria. *Cell Microbiol* 2006, 8:10-22.

9. Scortti M, Lacharme-Lora L, Wagner M, Chico-Calero I, Losito P, Vazquez-Boland JA: Coexpression of virulence and fosfomycin susceptibility in *Listeria*: molecular basis of an antimicrobial in vitro–in vivo paradox. *Nat Med* 2006, 12:515-517.

10. Smith H: Questions about the behaviour of bacterial pathogens in vivo. *Philos Trans R Soc Lond B Biol Sci* 2000, 355:551-564.

11. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. *Nat Rev Microbiol* 2009, 7:129-143.

12. Breitling R, Vinkop D, Barrett MP: New surveyor tools for charting microbial metabolic maps. *Nat Rev Microbiol* 2008, 6:156-161.

13. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for *Escherichia coli* K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. *Mol Syst Biol* 2007, 3:121.

14. Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of *Helicobacter pylori* (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. *J Bacteriol* 2005, 187:5818-5830.

15. Jamshidi N, Palsson BO: Investigating the metabolic capabilities of *Mycobacterium tuberculosis* H37Rv using the in silico strain INJ661 and proposing alternative drug targets. *BMC Syst Biol* 2007, 1:26.

16. Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J: *GSMN-TB*: a web-based genome-scale network model of *Mycobacterium tuberculosis* metabolism. *Genome Biol* 2007, 8:R89.

17. Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of *Saccharomyces cerevisiae* iND750, a fully compartmentalized genome-scale metabolic model. *Genome Res* 2004, 14:1298-1309.

18. Yeh J, Hanekamp T, Tiso S, Karp PD, Altman RB: Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. *Genome Res* 2004, 14:917-924.

19. Chavali AK, Whitemore JD, Eddy JA, Williams KT, Papin JA: Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. *Mol Syst Biol* 2008, 4:177.

20. Shiekhi K, Forster I, Nielsen UK: Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of *Mus musculus*. *Biotechnol Prog* 2005, 21:112-121.

21. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srinivas R, Palsson BO: Global reconstruction of the human metabolic network based on genomic and biobinary data. *Proc Natl Acad Sci USA* 2007, 104:1777-1782.

22. Systems Biology Research Group, University of California, San Diego:http://cgcrg.ucsd.edu/In_Silico_Organisms/Other_Organisms.

23. Famili I, Forster I, Nielsen J, Palsson BO: Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. *Proc Natl Acad Sci USA* 2003, 100:13134-13139.

24. Raghunathan A, Reed J, Shin S, Palsson B, Daefler S: Constraint-based analysis of metabolic activity of *Salmonella typhimurium* during host-pathogen interaction. *BMC Syst Biol* 2009, 3:38.

25. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eigeleimer K, Gas S, Barry CE, et al: Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature* 1998, 393:537-544.

26. Fang X, Wallqvist A, Reifman J: A systems biology framework for modeling metabolic enzyme inhibition of *Mycobacterium tuberculosis*. *BMC Syst Biol* 2009, 3:92.
49. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000, 16:412-424.

50. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993, 39:561-577.

51. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44:837-845.

52. Timm J, Post FA, Bekker LG, Walther GB, Wathwaith HC, Manganelli R, Chan WT, Tsiuova L, Gold B, Smith I, et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 2003, 100:14321-14326.

53. Dubrunau E, Chan J, Mohan VP, Smith I. response of mycobacteria to tuberculosis in the growth in the mouse lung. Infect Immun 2005, 73:3754-3757.

54. Kendall SL, Rison SC, Mavahedzadeh F, Rifa R, Stoker NG. What do microarrays really tell us about M. tuberculosis? Trends Microbial 2004, 12:537-544.

55. Jansen A, Yu J. Differential gene expression of pathogens inside infected hosts. Curr Opin Microbial 2006, 9:18-142.

56. Tordo E, Suzuki K, Kanai K, Yasuda T. Liposomes-mycobacteria incubation systems as a partial model of host-parasite interaction at cell membrane level. Jpn J Med Sci Biol 1985, 38:169-180.

57. Brinster S, Lamberton G, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Hu W, et al. Biotin: a timeless challenge for total synthesis. BMC Microbiol 2007, 7:38.

58. De Clercq PJ, Bion: a timelessness challenge for total synthesis. EMBO J 1999, 18:2673-2682.

59. Le Roux XW, Borreani O, Bertoncello I, Capron A, Christodoulou D, et al. Development and analysis of an integrative transcriptome database for Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2005, 102:11711-11714.

60. MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 2003, 302:654-659.

61. Vandal OH, Nathan CF, Ehrlich S. Acid resistance in Mycobacterium tuberculosis. J Bacteriol 2000, 182:4714-4721.

62. Neyrat JM, Berthet FX, Gicquel B. The urogenital locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Gueuin. Proc Natl Acad Sci USA 1995, 92:8768-8772.

63. Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, Horst S, Kondo E, Suzuki K, Kanai K, Yasuda T, Achtervasser T, Fischer M, Ladenstein R. arms in multifunctional enzymes. EMBO J 1999, 18:3754-3757.

64. De Long ER, DeLong DM, Clarke-Pearson DL. The use of the area under the receiver-operating characteristic (ROC) curve in the evaluation of diagnostic tests and predictive models. Biometrics 1988, 44:837-845.

65. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993, 39:561-577.

66. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44:837-845.

67. Hu W, Sillaots S, Lemerue S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 2007, 3:e24.

68. Harrison R, Papp B, Pal C, Oliver SG, Delmerl D. Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci USA 2007, 104:2307-2312.

69. Deutscher D, Meiljison I, Kupiec M, Ruppin E. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 2006, 38:993-998.

70. Le Meur N, Gentleman R. Modeling synthetic lethality. Genome Biol 2008, 9:R135.

71. Suthers PF, Zomorrodii A, Maranas CD. Genome-scale gene/reactor essentiality and synthetic lethality analysis. Mol Syst Biol 2009, 5:301.

72. Sambandamurthy VK, Wang X, Chen B, Russell RG, Dempick S, Collins FM, Morris SL, Jacobs WR Jr. A panthothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 2002, 8:1171-1174.

73. Gordon AH, Hart PD, Young MR. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 1980, 286:79-80.

74. Becker SA, Palsson BO. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 2005, 5:8.

75. Lehar J, Krujeck AE, Avery W, Heilbut AM, Johansson LM, Price ER, Rickles RJ, Short GF, Stauton JE, Lin Y, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 2009, 27:659-666.

76. Lehar J, Zimmermann GR, Krujeck AE, Molnar RA, Ledell JT, Heilbut AM, Short GF, Guisti LC, Nolan GP, Magid O, et al. Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 2007, 3:80.

77. Shi L, Sosheesky CD, Kana BD, Davies S, North RJ, Mizrahy V, Gennaro ML, Chang H. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 2005, 102:15629-15634.

78. Wayne LG, Sosheesky CD. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 2001, 55:139-163.

Cite this article as: Fang et al. Development and analysis of an in vivo compatible metabolic network of Mycobacterium tuberculosis. BMC Systems Biology 2010:4:160.