Prevalence of Hypertension in Chinese Cities: A Meta-Analysis of Published Studies

Yu-Quan Ma, Wen-Hua Mei, Ping Yin, Xiao-Hui Yang, Sana Kiani Rastegar, Jian-Dong Yan

Zhuhai People's Hospital, Affiliated Zhuhai Hospital of Jinan University, Zhuhai, Guangdong Province, China, 1

Analysis of Published Studies

Introduction

Hypertension is the most common risk factor for cardiovascular diseases (CVD) [1]. Hypertension has been recognized as a global, chronic, non-communicable disease and as a “silent killer” due to its high mortality rates and lack of early symptoms. One-quarter of the world’s adult population is hypertensive and this figure is likely to increase to 29% by 2025 [2]. The absolute prevalence of hypertension in developing countries is 22.9% compared to 37.3% in developed countries [2]. Unfortunately, the prevalence of hypertension is growing rapidly in developing countries which are undergoing epidemiological transitions, economic improvement, urbanization and longer life expectancy [3]. Kearney et al. [1] estimated that by 2025, the number of individuals with hypertension in developing countries will be approximately 1.17 billion, representing almost three-fourths of the world’s hypertensive population. A cross-sectional study from 2002 estimated that nearly 18% of Chinese people age 15 years and older, corresponding to 177 million people, were hypertensive [4].

As a result of policy reform many people’s lifestyle in many parts of China has become more westernized. In cities, individuals consume a diet high in salt, calories, saturated fat and low in fruits and vegetables. Several studies have hypothesized that these changes may contribute to a higher prevalence of hypertension in urban populations when compared to rural populations [5–8].

“Prevention first,” is the best and most important strategy for China. This strategy requires a sensible plan of action for prevention and improving current policies against hypertension. However, there are no current nationwide studies on the prevalence of hypertension in Chinese cities; the latest nationwide investigation is now ten years old [9]. Therefore, we performed this meta-analysis to systematically review the findings of all current studies and estimate the overall prevalence of hypertension in Chinese cities.

Materials and Methods

Literature Search Strategy

We searched all published articles for epidemiologic studies on the prevalence of hypertension between January 2002 and June 2012 in three electronic databases: CNKI, WANGFANG and
Statistical Analysis

Data Extraction

A standardized data abstraction form was designed to capture and code all relevant study-level information required for analysis. Two investigators selected the studies, extracted the data independently, cross-checked them and resolved disagreements by consensus. For all included studies, we recorded the following information: author, year of publication, year of investigation, city, sampling method, data collection method, diagnostic criteria of hypertension, age of subjects, number of subjects, number of people with hypertension, and age-specific prevalence of hypertension.

Statistical Analysis

To estimate pooled age-standard prevalence of hypertension, all raw prevalence data was age adjusted to the 2010 China standard population [11]. According to the expected heterogeneity across studies, a random-effects model was used to calculate pooled age-standard prevalence and calculate 95% confidence intervals (CIs). Statistical heterogeneity was evaluated with the Cochran chi-square (χ^2) and quantified with the I2 statistic (low is <25%, moderate 25-50%, high >50%) [12]. In order to deal with heterogeneity and perform secondary analysis, subgroup analysis was necessary. Subgroups were defined as differences in sex, year range of investigation (every two years), and geographical region differences (south and north). Publication bias was evaluated by testing for funnel plot asymmetry, Begg’s Test and Egger’s test. Significance was set at a P value of less than 0.05. All statistical calculations were made using the Stata® Statistical Software Package, Version 11.0 (StataCorp LP, College Station, Texas, USA) and RevMan 5.1 Software (Cochrane Collaboration, London, UK).

Results

After an initial search identified 8,289 studies, application of inclusion and exclusion criteria, 27 studies were selected [13–39]. These 27 studies contained a total of 195,027 subjects determined to be suitable for meta-analysis (Figure 1; Table 1). Most excluded studies focused on a specific population. Furthermore, many studies from the initial search duplicated existing results. Of the 27 identified studies, nine studies [13,14,17,19,22,29,30,36,38] did not report age-specific data according to sex, but had no effect on overall analysis. In summary, age was limited to 15 years old, and age range was 15-74 years. Twenty-two studies [14-24,26-29,31-35,37,39] were from cities in southern China and five [13,25,30,36,38] were from cities in northern China. Seven studies [13,14,27,34,35,37,39] were from large cities, nine were from medium-sized cities [15,16,20,23,36,29,39,36,38], and 13 [17–19, 21–24, 39–33] were from small cities. Nineteen studies enrolled participants between 2002 and 2006 [13–31] and eight studies enrolled participants between 2007 and 2011 [32–39].

Table 1 and Figure 2 show detailed information from the 27 studies selected. The pooled age-standardized prevalence of hypertension was 21.5% (19.4%, 23.6%). Pooled age-standardized prevalence of all subgroups, according to geographical areas, sex, city size and study years are presented in Table 2. The summarized prevalence of northern and southern China were found to be 25.8% (21.6%, 30.0%) and 20.4% (18.6%, 22.2%) respectively. Male and female subgroups were 22.2% (19.3%, 25.1%) and 19.9% (17.6%, 22.1%) respectively. Prevalence in large cities, medium-sized cities and small cities were 18.9% (15.7%, 22.1%), 24.6% (19.9%, 29.4%) and 20.6% (17.5%, 23.7%), respectively. For the first half and last half of the decade covered in this meta-analysis, pooled age-standardized prevalences were 21.9% (18.9%, 24.8%) and 20.6% (17.3%, 23.9%) respectively. Results showed that the pooled age-standard prevalence in northern cities in China was higher than southern cities in China. The prevalence of hypertension in the male population was higher than in females. In addition, the prevalence in medium-sized cities was the highest of the three city size categories. Small city prevalence was the lowest. The prevalence was lower in studies conducted between 2007 and 2011 when compared with studies conducted in the first five years.

Table 2 shows information regarding heterogeneity and publication bias. We noted significant heterogeneity within studies and subgroups (P<0.000, I2 = (99.2–99.7)).

Discussion

In our systematic review and meta-analyses of hypertension prevalence, 27 epidemiological studies from 22 cities were selected. These studies covered nine provinces and municipalities in China. All data was collected between 2002 and 2011. At present, there is a lack of nationwide data regarding hypertension prevalence in Chinese cities. Domestic and international literature searches found only one recent review, which focused on prehypertension in China [40]. Additionally, the latest nationwide investigation of hypertension in China is now ten years old [9]. Therefore, our meta-analysis is relevant to current healthcare needs and is based on a large number of subjects, providing a reliable estimate.

This meta-analysis indicates that >1 in 5 (21.5% (19.4%, 23.6%)) Chinese city residents older than 15 years is hypertensive. Prevalence of hypertension has been on the rise in recent decades, national sampling studies from 1958–1959, 1979–1980, 1991 and 2011.
2002 [41–43] reported prevalences of 5.1%, 7.7%, 13.7% and 17.6% respectively. Although varying methodologies make comparisons complex, the values from our study exceeded these previous national surveys. Possible explanations for this increase in hypertension prevalence may include economic development, urbanization, aging, lifestyle changes, changing eating habits and deterioration of ecological environments. Furthermore, there has been an increase in overweight and obese individuals. Dyslipidemia, high salt diets, smoking, excessive drinking and sedentary lifestyles all increase risk for hypertension [44–52]. It was reported that the percentage of the Chinese population living in urban areas increased from 27% in 1990 to 40% in 2005 [53]. Given this trend, the urban proportion of the population will continue to increase. Effective treatment and prevention measures focusing on the high-risk urban populations will have a profound and favorable impact on public health.

The Factor of the Geographic Areas

An epidemiological study of 14 provinces reported that hypertension prevalence was higher in northern China than Southern China [54]; our study confirmed this result. The pooled prevalence of hypertension in northern cities is higher than in southern cities, 25.8% and 20.4%, respectively.

The Factor of Sex

Previous studies have found rates of hypertension to be higher in men than in women at younger ages, while the reverse was true in older participants [55,56]. Although our study cannot show any information about age groups, it showed that the prevalence of hypertension is higher in men than in women in general, 22.2% and 19.9% respectively. Frank H. Fu and Lena Fung found that female subjects generally have fewer CHD risk factors and thus better health than male subjects [57]. XJ Meng found that urban adults males in China had higher prehypertension, with a prevalence of 47.7% and 33.6% in men and women, respectively [58].

The Factor of City Sizes

City-size-specific estimates indicate that medium-sized cities have the highest prevalence of hypertension (24.6%), followed by small cities (20.6%), and large cities having the lowest prevalence (18.9%). A cohort study found that hypertension was more prevalent in the more urbanized areas, and inequalities across areas at different stages of urbanization have narrowed [59].

The Factor of Study Years

The pooled age-standardized prevalence of hypertension is slightly lower among studies performed in 2007–2011 than 2002–2006, 20.6% and 21.9% respectively. Due to the heterogeneity in
Table 1. Summarized information of the studies included in meta-analysis.

First author & year published	Study year	Study city (city size\(^a\) geographic areas\(^b\))	Population\(^c\)	Age	BP measurement frequency	Sample size (male/female)	Prevalence (male/female) (%)	Age-standard prevalence (male/female) (%)
Jiao SF, et al. (2005)	2002	Beijing (A/N)	NR\(^d\)	≥15	2	24725 (12018/12707)	26.4(27.0/25.8)	24.5(NA/NA)
Wu WQ, et al. (2006)	2002	Shanghai (A/S)	5 years PP	15–74	3	8793 (3273/5520)	29.4(32.1/27.9)	18.2(NA/NA)
Liu XF, et al. (2007)	2002	Chongqing (B/S)	NR\(^d\)	≥15	2	4260 (1787/2473)	20.7(21.5/20.2)	14.9(15.6/16.3)
Fang SY, et al. (2004)	2003	Hangzhou (B/S)	GP	≥15	3	1070 (476/594)	37.53 (39.1/36.2)	24.9 (25.7/24.1)
Cui MY, et al. (2004)	2003	Huizhou (C/S)	PP	≥15	3	1028 (457/571)	32.2 (33.0/31.5)	24.3 (NA/NA)
Gu WL, et al. (2004)	2003	Jiaxing (C/S)	GP	≥15	3	1277 (513/754)	29.8 (33.3/37.7)	23.0 (25.6/21.3)
Xu ZX, et al. (2004)	2003	Jinhua (C/S)	GP	≥15	NR\(^d\)	939 (NR/NR)	31.0 (NR/NR)	24.3 (NA/NA)
Zhang LY, et al. (2004)	2003	Ningbo (B/S)	NR\(^d\)	≥15	3	1162 (530/632)	34.8 (37.5/32.4)	24.9 (28.3/22.1)
Jiang PZ, et al. (2004)	2003	Quzhou (C/S)	GP	≥15	3	1061 (391/670)	45.2 (50.4/42.4)	25.7 (28.7/24.4)
Zhang YF, et al. (2004)	2003	Shaoxing (C/S)	GP	≥15	NR\(^d\)	1038 (475/563)	27.3 (30.1/24.9)	23.2 (NA/NA)
Chen LJ, et al. (2006)	2003	Taizhou (C/S)	PP	≥15	3	1058 (478/580)	36.0 (32.6/38.8)	23.8 (22.7/24.7)
Zhang JH, et al. (2004)	2003	Huzhou (C/S)	GP	≥15	3	1747 (710/1037)	29.8 (33.3/37.7)	23.0 (25.6/21.3)
Li SP, et al. (2007)	2003	Qingdao (B/N)	NR\(^d\)	≥15	NR\(^d\)	10080 (4088/5992)	39.9 (44.0/37.1)	30.0 (31.6/28.2)
Hong Y, et al. (2007)	2003	Wenzhou (B/S)	GP	≥15	3	1034 (402/632)	39.0 (47.8/33.4)	28.4 (36.8/22.9)
Liu WJ, et al. (2007)	2004	Guangzhou (A/S)	NR\(^d\)	≥15	2	23485 (1131/12354)	17.2 (16.9/17.5)	15.3 (14.7/16.0)
Li L, et al. (2007)	2005	Hangzhou (B/S)	NR\(^d\)	≥15	2	1452 (591/861)	29.1 (30.1/28.5)	25.7 (26.6/25.1)
Huang XB, et al. (2009)	2005	Chongqing (B/S)	NR\(^d\)	≥15	NR\(^d\)	5246 (243/2803)	18.5 (18.8/18.2)	15.9 (NA/NA)
Liu ST, et al. (2007)	2006	Fuzhou (B/N)	2 years PP	15–74	3	5875 (2553/3320)	29.0 (32.3/26.1)	17.6 (NA/NA)
Tang XR, et al. (2008)	2006	Shenzhen (B/S)	6 months PP	15–69	3	15018 (6457/8561)	13.7 (13.3/13.9)	10.0 (9.7/10.1)
Chen B, et al. (2010)	2011	Zhuhai (C/S)	6 months PP	15–69	3	9611 (4365/5255)	23.1 (23.9/22.5)	17.7 (19.1/16.9)
Li CL, et al. (2008)	2008	Yibin (C/S)	NR\(^d\)	≥15	NR\(^d\)	26143 (13179/12964)	17.4 (18.1/15.5)	16.2 (17.0/15.3)
Zhou Q, et al. (2010)	2008	Guangzhou (A/S)	6 months PP	15–69	3	6987 (3264/3723)	25.5 (25.5/25.4)	20.2 (20.2/20.0)
Li XJ, et al. (2010)	2008	Shanghai (A/S)	6 months PP	15–69	3	17174 (8072/9102)	23.6 (24.0/23.3)	15.4 (16.3/14.5)
Yan YY, et al. (2010)	2008	Shijiazhuang (B/N)	PP	15–69	NR\(^d\)	7668 (3588/4080)	27.1 (26.3/27.8)	28.7 (NA/NA)
Peng ZR, et al. (2011)	2009	Shenzhen (A/S)	5 years PP	≥15	3	8782 (383/4949)	14.3 (16.7/12.4)	15.2 (17.4/13.3)
Wang GX, et al. (2010)	2010	Hohhot (B/N)	5 years PP	15–74	NR\(^d\)	1874 (758/1116)	32.9 (33.2/33.3)	28.3 (NA/NA)
Cheng MN, et al. (2012)	2010	Shanghai (A/S)	6 months PP	≥15	3	15663 (7889/7774)	31.1 (32.0/30.3)	23.2 (25.0/21.6)

\(^a\)According to the universally agreed standard (population size, GDP, et al.), China cities is divided into three categories, including level A cities (large cities), level B cities (medium-sized cities) and level C cities (small cities).

\(^b\)Geographic areas refers to geographic location of China cities, including southern (S: southern) cities and northern (N: northern) cities.

\(^c\)GP: General population; PP: Permanent population.

\(^d\)NR: not reported in original paper; NA: not available.

doi:10.1371/journal.pone.0058302.t001
these studies, a national epidemiology survey should be conducted to confirm if the prevalence of hypertension is truly declining.

Limitations

While we tried our best to adhere to the guidelines for reporting meta-analysis of observational studies [60], there were several limitations that merit attention.

Heterogeneity

Meta-regression was not performed, because our study was only designed to report the pooled prevalence in general and in each subgroup. Within each subgroup the heterogeneity of prevalence was high, as such, we assumed that there were other factors likely influencing heterogeneity, including genetic factors, environment, smoking, physical activity and salt intake [61–66]. Unfortunately, due to insufficient data in most studies of hypertension prevalence, it is not possible to deduce the effect of these variations on pooled prevalence.

Measurement Errors

Although strict inclusion and exclusion criteria were used to identify studies in the literature, both inter- and intra-study measurement errors in the ascertainment of BP, classification of subjects and other indices will have occurred. For example, the number of BP measurements can influence the classification of patients as hypertensive [67]. However, in our selected studies, eleven (40.7%) did not report the time of day that BP measurements were taken or were taken less than three times.

Representativeness

Because there were great disparities in the distribution of healthcare resources between cities, rural areas, coastal regions and inland regions in China [68], many low-income cities lacked resources to conduct a survey. Although we restrict sampling methods in inclusion criteria, the investigation bias may still affect the meta-analysis outcomes.

In sum, as our study did not identify all variations present in the pooled prevalence. Therefore, we should be careful in prescribing direct policy recommendations from this meta-analysis alone.

Table: Prevalence of Hypertension in Chinese Cities

Study	ES (95% CI)	Weight
Jiao SF, et al. Beijing (2002)	0.24 (0.24, 0.25)	3.80
Wu WQ, et al. Shanghai (2002)	0.18 (0.17, 0.19)	3.78
Liu XF, et al. Chongqing (2002)	0.15 (0.14, 0.16)	3.77
Fang SY, et al. Hangzhou (2003)	0.25 (0.23, 0.29)	3.60
Cui MY, et al. Huzhou (2003)	0.24 (0.22, 0.27)	3.60
Gu YN, et al. Jiading (2003)	0.23 (0.21, 0.25)	3.94
Xu ZH, et al. Jinhu (2003)	0.24 (0.22, 0.27)	3.58
Zhang LY, et al. Ningbo (2003)	0.25 (0.22, 0.27)	3.82
Jiang PZ, et al. Quzhou (2003)	0.26 (0.23, 0.29)	3.60
Zhang YF, et al. Shaoging (2003)	0.23 (0.21, 0.26)	3.60
Chen LJ, et al. Taizhou (2003)	0.24 (0.21, 0.26)	3.60
Zhang JH, et al. Zhoushan (2003)	0.22 (0.20, 0.24)	3.63
Li SP, et al. Qingdao (2003)	0.30 (0.28, 0.31)	3.78
Hong Y, et al. Wenzhou (2003)	0.28 (0.26, 0.31)	3.58
Liu YJ, et al. Guangzhou (2004)	0.15 (0.15, 0.16)	3.90
Li L, et al. Hangzhou (2005)	0.16 (0.15, 0.17)	3.77
Huang XB, et al. Chongqing (2005)	0.16 (0.17, 0.19)	3.78
Liu ST, et al. Mianyang (2006)	0.10 (0.10, 0.11)	3.80
Tang XR, et al. Jiangmen (2006)	0.16 (0.16, 0.17)	3.80
Chen B, et al. Zuhai (2007)	0.20 (0.18, 0.21)	3.78
Li CL, et al. Yibin (2008)	0.16 (0.15, 0.17)	3.80
Zhou Q, et al. Guangzhou (2008)	0.20 (0.18, 0.21)	3.78
Li XJ, et al. Shanghai (2008)	0.15 (0.15, 0.16)	3.90
Yan Y, et al. Shijiazhuang (2008)	0.29 (0.28, 0.30)	3.77
Peng ZF, et al. Shenzhen (2009)	0.15 (0.14, 0.16)	3.79
Wang HX, et al. Hohhot (2010)	0.26 (0.26, 0.30)	3.68
Cheng MN, et al. Shanghai (2010)	0.23 (0.23, 0.24)	3.79
Overall (I-squared = 99.3%, p = 0.000)	0.21 (0.19, 0.24)	100.00

NOTE: Weights are from random effects analysis
Table 2. Hypertension prevalence according to geographic areas, sex, city size and study years.

Study or Subgroup	No. of Studies	Prevalence* (95% CI) (%)	N	Heterogeneity Test	Publication Bias Test		
				I² (%)	P	P (Begg’s Test)	P (Egger’s Test)
Total	27	21.5(19.4, 23.6)	195027	99.3	0.0031	0.868	0.943
Geographic areas (north)	5	25.8(21.6, 30.0)	50222	99.0	0.0022	0.806	0.819
Geographic areas (south)	22	20.4(18.6, 22.2)	144805	98.8	0.0018	0.215	0.099
Sex (Male)	18	22.1(19.3, 25.1)	63924	98.9	0.0038	0.762	0.767
Sex (Female)	18	19.1(17.6, 21.1)	73907	98.4	0.0022	0.762	0.624
City size (large cities)	7	18.9(15.7, 22.1)	105609	99.4	0.0019	0.548	0.144
City size (medium-sized cities)	9	24.6(19.9, 29.4)	33846	99.0	0.0052	0.348	0.192
City size (small cities)	11	20.6(17.5, 23.7)	55572	98.7	0.0026	0.213	0.058
Study years (2002–2006)	19	21.9(18.9, 24.8)	109775	99.4	0.0043	0.889	0.806
Study years (2007–2011)	8	20.6(17.3, 23.9)	85252	99.3	0.0022	0.711	0.882

Abbreviation: N, total number of subjects from the included studies. *before the pooled prevalence was estimated, all raw prevalence data was age adjusted to the 2010 China standard population.

doi:10.1371/journal.pone.0058302.t002

However, our findings do reveal an important current healthcare issue which deserves the attention of policy makers.

Acknowledgments

We appreciate Mrs. Sana Kiani Rastegar for her great help and assistance with the manuscript.

References

1. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJL. (2002) Selected major risk factors and global and regional burden of disease. Lancet 360: 1347–1376.
2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, et al. (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365: 217–223.
3. Yang G, Kong L, Zhao W, Wan X, Zhai Y, et al. (2008) Emergence of chronic non-communicable diseases in China. Lancet 372: 1697–1705.
4. Department of Disease Control and Prevention, Ministry of Health. (2006) Report on chronic diseases in China. Beijing: Chinese Centre for Disease Control and Prevention.
5. Wang Z, Wu Y, Zhao L, Li Y, Yang J, et al. (2004) Trends in prevalence, awareness, treatment and control of hypertension in the middle-aged population of China, 1992–1998. Hypertens Res 27: 703–709.
6. Yan S, Li J, Li S, Zhang B, Du S, et al. (2012) The expanding burden of cardiovascular disease in China: the China Health and Nutrition Survey. Obes Rev 13: 810–821.
7. Ma WJ, Tang JH, Zhang YH, Xu YJ, Lin JY, et al. (2012) Hypertension prevalence, awareness, treatment, control, and associated factors in adults in southern China. Am J Hypertens 25: 590–596.
8. Gu D, Gupta A, Munnur P, Hu S, Duox X, et al. (2005) Prevalence of cardiovascular disease risk factor clustering among the adult population of China: results from the International Collaborative Study of Cardiovascular Disease in Asia (InterAsia). Circulation 112: 658–665.
9. Wu Y, Hudsey R, Li L, Anna Y, Xie G, et al. (2002) Prevalence, awareness, treatment, and control of hypertension in China: data from the China National Nutrition and Health Survey 2002. Circulation 118: 2679–2686.
10. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, et al. (2003) Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42: 1206–1252.
11. Population Census Office under the State Council Department of Population and Employment Statistics National Bureau of Statistics. (2012) Tabulation on the 2010 population on the 2010 population census of people’s republic of China. China Statistics Press. Beijing. 32–54.
12. J. P. T Higgins, S. G Thompson. (2002) Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21: 1539–1558.
13. Jiao SF, Wang Y, Pang XH, Yin XJ, Xie J, et al. (2005) Analysis on prevalence and epidemiological trend of hypertension in Beijing. Chin J Public Health 21: 1491–1492.
14. Wu WQ, Li R, Lu W (2006) Investigation on status of hypertension in urban and rural residents of Shanghai city. Chin J Public Health 22: 858–859.
15. Liu XF, Liu DW, Yang XL, Jiang BQ, Zhang HD, et al. (2007) Analysis on prevalence of hypertension and influencing factors related to hypertension in Chongqing. Modern Preventive Medicine 34: 3444–3446.
16. Fang SY, Zhu XX, Jin DF, Liu QM, Jiang HR, et al. (2004) Analysis on prevalence of hypertension in Hangzhou in 2003. Prevention and Treatment of Cardio-Cerebral-Vascular Disease 4: 40–42.
17. Cui MY, Jin KL, Xia DM, Pang QQ (2004) Analysis on hypertension sampling investigation in Huzhou city. Prevention and Treatment of Cardio-Cerebral-Vascular Disease 4: 44–44.
18. Gu WL, Zhou AF, Li XG, Cao JS, Wang JR (2004) Epidemiological investigation of tendency and influence factors for hypertension in Jiaxing city. Chin J Chronic Diseases 5: 39–41.
19. Xu ZX, Wang HP, Wang WF, Zhang LP (2004) Epidemiological survey on hypertension in urban and rural of Jinhua city. Prevention and Treatment of Cardio-Cerebral-Vascular Disease 4: 14–19.
20. Zhang HY, Xia ZY, Du WP, Xu KH, Cao JF, et al. (2004) A Survey of 1162 People’s Blood Pressure in Ningbo. Prevention and Treatment of Cardio-Cerebral-Vascular Disease 4: 20–25.
21. Yang PZ, Jiang YM, Hu YG (2004) Prevention and Treatment of Cardio-Cerebral-Vascular Disease 4: 52–54.
22. Zhang JY, Xia ZY, Du WP, Xu KH, Cao JF, et al. (2004) A Survey of 1162 People’s Blood Pressure in Ningbo. Prevention and Treatment of Cardio-Cerebral-Vascular Disease 4: 20–25.
23. Chen J, Shen X, Li P, Sun X, Wu Y (2003) Prevalence and Treatment of Cardio-Cerebral-Vascular Disease 4: 52–54.
24. Chen J, Shen X, Li P, Sun X, Wu Y (2003) Prevalence and Treatment of Cardio-Cerebral-Vascular Disease 4: 52–54.
25. Li SP (2007) Prevalence of hypertension in Qingdao’s residents. Chin J Health Education 23: 593–597.
26. Hong Y, Hang LY, JI XJ, Wang EM, Xiang JL (2007) The Current situation of hypertension prevalent rate and the rates of illness-awareness, medication and blood pressure control in Wenzhou. Chin J Prev Contr Chron Non-commun Dis 15: 536–538.

Author Contributions

Screened and reviewed the articles: YQM WHM. Searched all published articles: XHY JDY. Copyedited the manuscript: SKR. Conceived and designed the experiments: YQM. Analyzed the data: YQM PY. Wrote the paper: YQM.
Prevalence of Hypertension in Chinese Cities

27. Liu VJ, Chen WQ, Luo BF, Pan BY, Chen J, et al. (2007) Analysis on epidemiological characteristics and control status of hypertension in residents aged 15 and above in Guangzhou. Chin J Prev Contr Chron Non-commun Dis 15: 110–112.

28. Li L, Liu QM, Fang SY, Chen RH, Shi WY, et al. (2007) Epidemiological survey on prevalence of hypertension in urban and rural of Hangzhou in 2005. Chin Prev Med 8: 234–237.

29. Huang XB, Hu R, Le QK, Hou YL, Luo KL, et al. (2009) Epidemiological study of hypertension in Chongqing area of China. Chin J Public Health 25: 27–29.

30. Liu ST, Jiang T, Zhang DY, Wang QX, Tang HJ, et al. (2007) Investigation on status of hypertension in urban and rural residents of Miyun city. Sichuan Medical Journal 26: 1311–1313.

31. Tang XR, Wu LP (2008) Investigation on prevalence and TCM syndrome differentiation of hypertension in Jiangmen city, Guangdong province. J New Chin Med 40: 39–41.

32. Chen B, Li DY, Liang XD, Li YR (2011) Prevalence of hypertension and its influence factors among inhabitants aged 15-69 years in Zhejiang city. Chin J Public Health 27: 619–621.

33. Li CL, Chen AF, Pu YY, Yang QC, Jiang RL, et al. (2008) An epidemiological study on essential hypertension in Yibin city. Med J West China 29: 117–120.

34. Zhou Q, Pan BY, Lin GZ, Wu XJ, Liang BH, et al. (2010) Prevalence, awareness, treatment and control of hypertension in 15-69 years old residents in Guangzhou. Chin J Prev Chron Disease 18: 307–309.

35. Li XJ, Xu JY, Yao HH, Lu W (2010) Epidemiological status of hypertension in residents aged between 15 and 69 in Shanghai. Chin J Prev Chron Disease 18: 233–235.

36. Yan Y (2010) Study on the hypertension prevalence and control strategies in Shijiazhuang. Modern Preventive Medicine 37: 2906–2910.

37. Peng ZR, Wang BG, Zhou HB, Ma YQ, Lei L, et al. (2011) Prevalence of metabolic syndrome among permanent residents aged 15 years and above in Shenzhen city. China Tropical Med 11: 852–854.

38. Wang HX, Bo FB, Gao XY, Yang L, Yang JM, et al. (2010) Study on the prevalence status and influencing factors of hypertension in Hohhot urban and rural residents. Inner Mongolia Med 42: 1234–1237.

39. Cheng MN, Xu JY, Yao HH, Yan QH, Li XJ, et al. (2012) Prevalence of Hypertension in Residents Aged over 15 Years in Shanghai, 2010. J Environ Occup Med 29: 339–342.

40. Guo XF, Zhou LL, Zhang XG, Li J, Zheng LQ, et al. (2011) Prehypertension: a meta-analysis of the epidemiology, risk factors, and predictors of progression. Tex Heart Inst J 38: 645–652.

41. Yuan S, Reddy S, Oumpa S, Anand S (2001) Global burden of cardiovascular disease: part I: general considerations, the epidemicologic transition, risk factors, and impact of urbanization. Circulation 104: 2746–2753.

42. The national hypertension sampling investigation group (1995) China’s population hypertension prevalence rate and the change trend. J Hypertens 3: 7–13.

43. Li LM, Rao KQ, Kong LZ, Yao CH, Xiang HD, et al. (2005) A description on the Chinese national nutrition and health survey in 2002. Chin J Epidemiol 26: 478–484.

44. Van de Poel E, O'Donnell O, Van Doorslaer E (2009) Urbanization and the spread of diseases of affluence in China. Econ Hum Biol 7: 209–215. 45. Diez Roux AV (2003) Residential Environments and Cardiovascular Risk. J Urban Health 80: 569–589.

46. Bell AC, Ge K, Popkin BM (2002) The road to obesity or the path to prevention: motorized transportation and obesity in China. Obst Res 10: 277–283.

47. Guo ZR, Hu XS, Wu M, Zhou MH, Zhou ZY (2009) A prospective study on the association between dyslipidemia and hypertension. Chin J Epidemiol 30: 554–558.

48. Popkin BM (2003) Dynamics of the nutrition transition in the developing world. Am J Clin Nutr 76: 526–534.

49. Coulin PR. (2007) Eat your fruits and vegetables but hold the salt. Circulation 116: 1530–1531.

50. Zhang J, Guo YM, Zhang YY, Wu Y, Wang LJ, et al. (2006) A meta analysis on the association between smoking and hypertension according to Chinese residents. Chin J Public Health 22: 1344–1345.

51. Malinski MK, Sesso HD, Lopez-Jimenez F, Buring JE, Gaziano JM (2004) Alcohol consumption and cardiovascular disease mortality in hypertensive men. Arch Intern Med 164: 625–628.

52. Beunza JJ, Martinez-Gonzalez MA, Ebrahim S, Bes-Rastrollo M, Núñez J, et al. (2007) Sedentary behaviors and the risk of incident hypertension: the SUN Cohort. Am J Hypertens 20: 1156–1162.

53. United Nations (UN) (2007) Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2007 Revision. Available at: http://esa.un.org/unup.

54. Zhao XL, Chen J, Cui YL, Wu F, Hu DY (2006) Current status of primary hypertension in China: an epidemiological study of 14 provinces, 1 autonomous regions and 1 municipality. Natl Med J China 86: 1148–1152.

55. Wu X, Duan X, Gu D, Hao J, Tao S, et al. (1995) Prevalence of hypertension and its trends in Chinese populations. International Journal of Cardiology 52: 39–44.

56. Hou X (2008) Urban-rural disparity of overweight, hypertension, undiagnosed hypertension and untreated hypertension in China. Asia-Pacific Journal of Public Health 20: 159–169.

57. Frank HF, Lena F (2004) The cardiovascular health of residents in selected metropolitan cities in China. Prev Med 38: 438–467.

58. Meng XJ, Dong GH, Wang D, Liu MM, Liu YQ, et al. (2012) Epidemiology of prehypertension and associated risk factors in urban adults from 33 communities in China-the CHPSNE study. Circ J 76: 900–906.

59. Ellen VP, Owen OD, Eddy R, Jowell S, McManus R, et al. (2000) Prevalence and distribution of hypertension in the adult population of England. BMJ 320: 1301–1305.

60. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283: 2008–2012.

61. Colhoun HM, Hemingway H, Poulter NR. (1998) Socio-economic status and blood pressure: an overview analysis. J Hum Hypertens 12: 91–110.

62. Kovesyi J, Zicha J (2006) Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist’s view. Clin Sci (Lond) 111: 295–305.

63. Marteau JB, Ziaou M, Sest G, Viskvik-Siest S. (2005) Genetic determinants of blood pressure regulation. J Hypertens 23: 2127–2143.

64. Virdis A, Giannarelli C, Neves MF, Taddei S, Ghidoni L. (2010) Cigarette smoking and hypertension. Curr Pharm Des 16: 2518–2525.

65. Schmidt-Bruckwasser A, Weisser B. (2011) Vascular aging, arterial hypertension and physical activity. Dtsch Med Wochenschr 136: 2367–2371.

66. Frisoli T, Schneider RE, Grodzicki T, Messeri TH. (2012) Salt and hypertension: is salt dietary reduction worth the effort? Am J Med 125: 433–439.

67. Birkett NJ. (1997) The effect of alternative criteria for hypertension on estimates of prevalence and control. J Hypertens 15: 237–244.

68. Lee L. (2004) The current state of public health in China. Anna Rev Public Health 25: 327–339.