Prosthetic valve endocarditis by *Trichosporon mucoides*

A case report and review of literature

Tae Hoon Oh, MD\(^a\), Sung Un Shin, MD\(^b\), Soo Sung Kim, MD\(^a\), Seong Eun Kim, MD\(^a\), Uh Jin Kim, MD\(^{a,b}\), Seung-Ji Kang, PhD\(^{a,b}\), Hee-Chang Jang, PhD\(^{a,b}\), Sook In Jung, PhD\(^{a,b}\), Jong-Hee Shin, PhD\(^c\), Kyung-Hwa Park, PhD\(^{a,b,c}\)

Abstract

Nationalale: *Trichosporon* species are widely distributed in nature and are emerging opportunistic human pathogens. *Trichosporon* infections are associated with superficial cutaneous involvement in immunocompetent individuals to severe systemic disease in immunocompromised patients. Until now, there is no report in infective endocarditis by *Trichosporon mucoides* confirmed by molecular diagnostics.

Patient concerns: A 66-year-old man presented with a fever that had occurred for a period of 6 months. He had undergone aortic valve replacement 10 years prior. Transthoracic echocardiography showed vegetations on the prosthetic aortic valve and native mitral valve. *T mucoides* was detected in the cultures of blood and vegetations.

Diagnosis: DNA sequencing using D/D2 region of rRNA and internal transcribed spacer were performed.

Interventions: Infections were successfully controlled with valve replacement and voriconazole plus liposomal amphotericin B therapy.

Outcomes: There has been no sign of recurrence for 18-months after treatment completion.

Lessons: This is the first reported case of infective endocarditis due to *T mucoides*. Clinicians should consider *Trichosporon* species as causative agents of endocarditis in patients who have undergone cardiac surgery.

Abbreviations: ITS = internal transcribed spacer, MALDI-TOF = matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

Keywords: infective endocarditis, prosthetic valve, *Trichosporon mucoides*

1. Introduction

The genus *Trichosporon* is phenotypically characterized by the development of hyaline, septate hyphae that fragment into oval or rectangular arthroconidia.[1] *Trichosporon* species are soil inhabitants, as well as members of the normal flora of the human mouth, gastrointestinal tract, respiratory tract, vagina, skin, and urinary tract.[2] Clinical isolates primarily cause the superficial hair infection, and rarely cause the systemic disease referred to as trichosporonosis.[3] The former *Trichosporon beigelii* (synonym, *Trichosporon cutaneum*), the major pathogen of the genus, refers to 6 species of medical importance in the new nomenclature (*Trichosporon asahii*, *Trichosporon asteroides*, *T cutaneum*, *Trichosporon inkin*, *Trichosporon mucoides*, and *Trichosporon ovoides*) established in 1994.[4] Following recent molecular studies, the genus has undergone major revision and 50 species of *Trichosporon* have been described from different regions of the globe, including 17 with clinical relevance.[5]

T asahii, *T asteroides*, and *T mucoides* cause deep invasive infection in the immunocompromised host; *T cutaneum* causes superficial skin infection; *T ovoides* causes superficial infection of the scalp hair; and *T inkin* causes superficial infection of the pubic hair.[1] Invasive infections by *T mucoides* are rare in immunocompetent hosts.[5–7]

Here, we describe the first patient with infective endocarditis caused by *T mucoides* and discuss previous reports in which patients were diagnosed with endocarditis due to *Trichosporon* species.
2. Case report

In August 2018, a 66-year-old man visited the outpatient clinic for febrile sensations and chills that had been present for 6 months; he also complained of myalgia and dyspnea. The patient had undergone aortic valve replacement and central annuloplasty 10 years prior, due to severe aortic valve stenosis and moderate mitral valve regurgitation. On admission, he had a blood pressure of 100/60 mm Hg, pulse rate of 54 beats/min, respiratory rate of 18 breaths/min, and body temperature of 36.7°C. Physical examination revealed conjunctival hemorrhage in the left eye and petechial eruption on both lower extremities. Laboratory examinations revealed a white blood cell count of 4700/mm³ (44.6% neutrophils and 1.1% eosinophils), a hemoglobin level of 13.0 g/dL, and a platelet count of 96,000/mm³. Measurement of inflammatory markers showed a C-reactive protein level of 1.55 mg/dL, erythrocyte sedimentation rate of 40 mm/h, and a procalcitonin level of 0.273 ng/mL. Liver function tests showed an alkaline phosphatase level of 102 U/L, lactate dehydrogenase level of 687 U/L, total bilirubin level of 0.78 mg/dL, and serum albumin level of 3.5 mg/dL. Renal function tests showed a blood urea nitrogen level of 16.5 mg/dL and a serum creatinine level of 1.68 mg/dL. The serum procalcitonin level was 0.273 ng/mL, and a serum alanine transaminase level of 18 U/L, aspartate transaminase level of 533 U/L, gamma-glutamyl transpeptidase level of 1.57 cm² at the prosthetic aortic valve and a hypermobile mass-like lesion (0.96 cm) at the mitral valve. Thus, the patient was treated with injections of ceftriaxone and gentamycin. On day 3 of hospitalization, yeast-forming fungi were detected in blood culture; therefore, fluconazole was administered. The yeast-forming fungi were analyzed by sequencing of the internal transcribed spacer (ITS) (including the 5.8S rRNA gene) and D1/D2 regions of the 26S ribosomal RNA. rRNA genes were amplified using the primers pITS-F (5'-GTGCTTAAACAGGTAACTCCGG-3') and pITS-R (5'-TCCTCCGCTATGTATACGC-3') and NL1 (5'-GCATATGTAATAGACAG-3') and NL4 (5'-GGTCCGTGTTCGACACAGG-3'), respectively; BLAST search results indicated a 100% match (450/450 bp for ITS, 533/533 bp for D1/D2) with T mucoides (GenBank accession nos. KY107341 and KY103030). Commercial matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) systems, the VITEK MS (bioMérieux, Marcy l’Etoile, France) with Knowledge Base version 3.0, and the MALDI-TOF Biotyper (Bruker Daltonics, Billerica, MA) identified the isolate as T mucoides. In vitro studies of susceptibility to amphotericin B, fluconazole, voriconazole, caspofungin, and micafungin were performed by the Clinical and Laboratory Standards Institute document M27-A3 broth microdilution method.[9] The minimal inhibitory concentrations were as follows: amphotericin B, 1 mg/mL; fluconazole, 16 mg/mL; voriconazole, 0.25 µg/mL; caspofungin, >8 µg/mL; and micafungin, >8 µg/mL. On day 7 after admission, the patient’s regimen was changed to intravenous voriconazole plus liposomal amphotericin B, due to continuous fever and new conjunctival hemorrhage.

On day 11 of hospitalization, repeat aortic valve replacement, mitral commissurotomy, and removal of the prosthetic ring and pannus were performed. The same fungus (T mucoides) was grown from pus from abscesses around the ring. Histopathology of the anterior petechial skin lesions on both lower extremities on day 4 showed mild dermal perivascular chronic inflammation with red cell extravasation, indicative of vasculitis. From suspected onychomycosis on the left big toe on day 5 after admission, a potassium hydroxide preparation was positive, but no causative fungus was isolated.

Liposomal amphotericin B treatment (3 mg/kg) was maintained for 22 days and voriconazole monotherapy was maintained for 3 months. More than 1.5 year after the end of treatment, the patient has shown no evidence of relapse.

3. Discussion

Invasive infection due to Trichosporon species is rare in immunocompetent hosts, but more common in immunocompromised hosts and shows unfavorable outcome. The optimal therapy for patients with invasive trichosporonosis, such as endocarditis, is unknown. There have been reports of endocarditis caused by T asahii, T inkin, and former T beigeli (T cutaneum), although the Trichosporon species were not clearly identified previously.[10-24] Some mycologists continue to designate T beigeli as the etiologic agent responsible for clinical disease caused by the Trichosporon yeasts because differentiating between species can be problematic. Here, we have described a first case of successfully treated prosthetic valve endocarditis caused by T mucoides in the immunocompetent patient. We also reviewed prior reports of invasive endocarditis caused by Trichosporon species (Table 1). In the 12 patients who developed prosthetic valve endocarditis among 16 cases (Table 1), clinical symptoms occurred 2 weeks to 10 years after cardiac valve surgery; 1 patient developed endocarditis related to a pacemaker lead, while 3 patients developed native valve endocarditis. The risk factors for Trichosporon endocarditis are heart surgery, medical device placement in the heart, and intravenous drug use.

In literature of Trichosporon species endocarditis, species identification was mostly dependent on direct examination of mycelia from specimens. For our patient, the VITEK 2 Yeast identification card system, MALDI-TOF MS, and DNA sequencing were performed and yielded consistent results. However, the VITEK 2 system may be unreliable for the identification of Trichosporon species other than T asahii.[25] Therefore, MALDI-TOF may enable rapid identification of fungal species, as an alternative to polymerase chain reaction-based molecular methods.[26]

The prognosis is generally poor in patients with infective endocarditis caused by Trichosporon species, with a 56% (9/16) mortality rate; 3 patients died before diagnosis (Table 1). Embolic complications were observed in 75% (12/16) of patients and recurrent infection was common. In patients with fungal endocarditis, valve replacement is necessary; however, optimal therapy for patients with invasive trichosporonosis is unknown. The levels of biofilm formation by Trichosporon species were greater than those of Candida.[27] However, echinocandins, which have a robust anti-Candida biofilm effect, are inadequate for Trichosporon endocarditis because of intrinsic resistance, as observed in our patient.[28] We applied liposomal amphotericin B plus voriconazole for 3 weeks, followed by voriconazole monotherapy for 3 months with surgery. T mucoides is more resistant to fluconazole in vitro, compared to other species.[29] Voriconazole showed the strongest in vitro activity against all
Table 1

Summary of cases of *Trichosporon* species endocarditis (including the present case).

Pathogen	Age	Sex	Comorbid conditions	Valves involved	Predisposing factors	Sites of culture	Embolic events	Mode of treatment	Outcome	Reference	
T. mucoides	66	M	AS	Prosthetic AV & Native MV	Cardiac surgery	Blood, vegetations	Conjunctival hemorrhage	L-AMB + Voriconazole, Valve replacement	Survived	Present case	
T. species	57	F	Diabetes mellitus	Tip of lead in RV	Pacemaker tip infection	Blood,	–	–	Voriconazole	Survived	[10]
T. asahii	58	M	None	Native AV & Native MV	None	Blood	Cerebral hemorrhagic infarction, renal infarction	Fluconazole, Valve replacement	Survived	[11]	
T. inkin	52	M	AR	Prosthetic AV	Cardiac surgery	Blood	Splinter hemorrhage in the nail bed, cerebral hemorrhage	–	Expired	[12]	
T. beigelii	62	M	None	Prosthetic AV	Cardiac surgery	Blood, vegetations (negative blood)	–	–	Expired	[13]	
T. inkin	46	F	RHD	Prosthetic MV	Cardiac surgery	Emboli, vegetations (negative blood)	–	–	Survived	[14]	
T. beigelii	44	M	RHD	Prosthetic MV	Cardiac surgery	Blood, emboli & vegetations	Popliteal artery emboli	AMB, Valve replacement	Expired after relapse	[15]	
T. beigelii	47	M	Diabetes mellitus	Prosthetic AV	Cardiac surgery	Blood, splenic tissue	Cerebral hemorrhagic infarction, splenic infarction	AMB + rifampicin, Valve replacement	Survived, but died 8 months later at home	[16]	
T. beigelii	49	M	RHD	Prosthetic AV	Cardiac surgery	Emboli, vegetations (negative blood)	Popliteal artery emboli, brain, kidney	AMB, Valve replacement	Expired after relapse	[17]	
T. beigelii	31	M	Staphylococcal endocarditis 4 yr prior	Prosthetic AV & MV	Intravenous drug abuse, Cardiac surgery	Blood, vegetations & embolic tissue	Dorsalis artery and posterior tibial artery emboli	AMB + rifampicin, Valve replacement	Expired	[18]	
T. beigelii	58	F	RHD, AF, old CVA	Prosthetic MV	Cardiac surgery	Vegetations (negative blood)	Brain, eye, spleen, left femoral artery emboli	AMB, Valve replacement	Expired	[19]	
T. beigelii	50	M	Liver cirrhosis with ascites	Native TV	Peritoneal-venous shunt fungemia	Blood, vegetations of autopsy (negative blood)	–	–	Expired	[20]	
T. beigelii	58	F	MS, AF	Prosthetic MV	Cardiac surgery	Blood, vegetations	Femoral artery emboli	Ketoconazole, Valve replacement	Expired after relapse	[21]	
T. beigelii	42	M	None	Native AV	Intravenous drug abuse	Vegetations (negative blood)	Femoral artery emboli, myocardial infarction	AMB + 5-FC, Valve replacement	Survived, but died 1 yr later due to ICH	[22]	
T. beigelii	61	M	RHD	Cardiac surgery	Blood, vegetations	Conjunctival hemorrhage, brain	–	AMB	Expired	[23]	
T. beigelii	55	F	MS	Prosthetic MV	Cardiac surgery	Blood	–	AMB	Survived	[24]	

- Not mentioned. 5-FC = 5-flucytosine, AF = atrial fibrillation, AMB = amphotericin B deoxycholate, AS = aortic stenosis, AV = aortic valve, CVA = cerebrovascular accident, ICH = intracerebral hemorrhage, L-AMB = liposomal amphotericin B, MS = mitral stenosis, MV = mitral valve, RHD = rheumatic heart disease, TV = tricuspid valve.
Trichosporon species. In a study of 55 patients with hematological disease who developed disseminated trichosporonosis and were treated with amphotericin B, only 24% showed a clinical response. Amphotericin B treatment without azoles did not result in favorable outcomes for patients with endocarditis in our literature review (Table 1).

4. Conclusions
We reported the first case of patient with infective endocarditis due to T mucoides. Clinicians should consider Trichosporon species as causative agents of endocarditis in immunocompetent patients who have undergone cardiac surgery. The combination of voriconazole plus amphotericin B may be effective for the treatment of Trichosporon endocarditis.

Author contributions
Conceptualization: Kyung-Hwa Park.
Data curation: Tae Hoon Oh.
Investigation: Kyung-Hwa Park, Tae Hoon Oh, Sung Un Shin, Soo Sung Kim, Seong Eun Kim, Uh Jin Kim, Seung-Ji Kang, Hee-Chang Jang, Soo In Jung, Jong-Hee Shin.
Supervision: Kyung-Hwa Park, Soo In Jung, Jong-Hee Shin.
Writing – original draft: Tae Hoon Oh.
Writing – review & editing: Kyung-Hwa Park, Soo In Jung.

References
[1] Colombo AL, Padovan AC, Chaves GM. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev 2011; 24:682–700.
[2] Haupt HM, Merz WG, Beschorner WE, et al. Colonization and infection with Trichosporon species in the immunosuppressed host. J Infect Dis 1983;147:199–203.
[3] de Almeida Junior JN, Hennqueun C. Invasive trichosporon infection: a systematic review on a re-emerging fungal pathogen. Front Microbiol 2016;7:1629.
[4] Guzzo E, Improvisi L, de Hoog GS, et al. Trichosporon on humans: a practical account. Mycoses 1994;37:3–10.
[5] Padhi S, Dash M, Pattanaik S, et al. Fungemia due to Trichosporon mucoides in a diabetes mellitus patient: a rare case report. Indian J Med Microbiol 2014;32:72–4.
[6] Capoor MR, Agarwal S, Yadav S, et al. Trichosporon mucoides causing onychomycosis in an immunocompetent patient. Int J Dermatol 2013;54:704–7.
[7] Guo LN, Yu SY, Hsuw PB, et al. Invasive infections due to trichosporon: species distribution, genotyping, and antifungal susceptibilities from a multicenter study in China. J Clin Microbiol 2019;57:e01505–18.
[8] Kim MN, Shin JH, Sung H, et al. Candida haemulonii and closely related species at 3 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin Infect Dis 2009;48:e57–61.
[9] Clinical Laboratory Standards InstituteCLSI Standard M27. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts 4th ed.Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
[10] Rath PC, Purohit BV, Agrawal R, et al. Pacemaker lead endocarditis due to Trichosporon species. J Assoc Physicians India 2015;63:66–8.
[11] Izumi K, Hisata Y, Hazama S. A rare case of infective endocarditis complicated by Trichosporon asahii fungemia treated by surgery. Ann Thorac Cardiovasc Surg 2009;15:350–3.
[12] Ramos JM, Cuenca-Estrella M, Gutierrez F, et al. Clinical case of endocarditis due to Trichosporon inkin and antifungal susceptibility profile of the organism. J Clin Microbiol 2004;42:2341–4.
[13] Mooty MY, Kanj SS, Obied MY, et al. A case of Trichosporon beigelii endocarditis. Eur J Clin Microbiol Infect Dis 2001;20:139–42.
[14] Chaumentin G, Boixeux A, Piens M, et al. Trichosporon inkin endocarditis: short-term evolution and clinical report. Clin Infect Dis 1996;23:396–7.
[15] Miralles A, Quiraga J, Farinola T, et al. Recurrent Trichosporon beigelii endocarditis after aortic valve replacement. Cardiovasc Surg 1994; 2:119–23.
[16] Sidarous MG, O’Reilly MV, Cherubin CE. A case of Trichosporon beigelii endocarditis 8 years after aortic valve replacement. Clin Cardiol 1994;17:215–9.
[17] Martinez-Lacasa J, Mana J, Niuvo R, et al. Long-term survival of a patient with prosthetic valve endocarditis due to Trichosporon beigelii. Eur J Clin Microbiol Infect Dis 1999;18:756–8.
[18] Keay S, Denning DW, Stevens DA. Endocarditis due to Trichosporon beigelii: in vitro susceptibility of isolates and review. Rev Infect Dis 1991;13:383–6.
[19] Reinhart HH, Urbanski DM, Harrington SD, et al. Prosthetic valve endocarditis caused by Trichosporon beigelii. Am J Med 1988;84:355–8.
[20] Reyes CV, Stanley MM, Rippon JW. Trichosporon beigelii endocarditis as a complication of peritoneovenous shunt. Hum Pathol 1985;16:857–9.
[21] Thomas D, Mogahed A, Leclerc JP, et al. Prosthetic valve endocarditis caused by Trichosporon cutaneum. Int J Cardiol 1984;5:83–7.
[22] Brahn E, Leonard PA. Trichosporon cutaneum endocarditis: a sequela of intravenous drug abuse. Am J Clin Pathol 1982;78:792–4.
[23] Marier R, Zakhireh B, Downs J, et al. Trichosporon cutaneum endocarditis. Scand J Infect Dis 1978;10:255–6.
[24] Madhavan T, Esses J, Quinn EL. Infections due to Trichosporon cutaneum, an uncommon systemic pathogen. Henry Ford Hosp Med J 1976;24:27–30.
[25] de Figueiredo DS, de Almeida JNJr, Motta AL, et al. Evaluation of VITEK 2 for discriminating Trichosporon species: misidentification of Trichosporon non-T. asahii. Diagn Microbiol Infect Dis 2014;80:59–61.
[26] Sub S-O, Houseknecht JL, Grosso KM, et al. Characterization of the medically important yeast Trichosporon mucoides and its close sister Trichosporon dermatis by traditional and advanced technologies. J Med Microbiol 2015;64:1135–43.
[27] Iturrieta-Gonzalez IA, Padovan AC, Bizerra FC, et al. Multiple species of Trichosporon produce biofilms highly resistant to triazoles and amphotericin B. PLoS One 2014;9:e109553.
[28] Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, et al. Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother 2005;49:4026–34.
[29] Francisco EC, de Almeida Junior JN, de Queiroz Telles F, et al. Species distribution and antifungal susceptibility of 358 Trichosporon clinical isolates collected in 24 medical centres. Clin Microbiol Infect 2019;25:909.e1–5.
[30] Gimenez C, Pagano L, Martino B, et al. Invasive infections caused by Trichosporon species and Geotrichum capitatum in patients with hematological malignancies: a retrospective multicenter study from Italy and review of the literature. J Clin Microbiol 2005;43:1818–28.