Expression of Tau40 Induces Activation of Cultured Rat Microglial Cells

Lu Wang¹,², Qian Jiang¹, Jiang Chu¹, Li Lin¹, Xiao-Guang Li¹, Gao-Shang Chai¹, Qun Wang¹, Jian-Zhi Wang¹*, Qing Tian¹*
¹Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ²Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China

Abstract
Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau) into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.

Introduction
The ubiquitously distributed microglia are the representative of immune cells in the relatively immune-privileged central nervous system (CNS) and account for about 10% of the total glial population in the brain [1]. They are recognized to be involved in innate immunity and surveillance of the parenchyma [2,3]. Microglia are sensitive to brain injury and disease, altering their morphology and phenotype to adopt a so-called activated state in response to brain insults. Activated microglia phagocytose the dying cells and debris and/or release some cytokines to maintain the homeostasis of microenvironment for supporting the injured neurons [4]. Thus as an active sensor and monitor in the brain, activation of microglia is beneficial for the neuronal survival. However, lots of reports also implicated the neurotoxic roles of microglia in neurodegenerative diseases, such as Alzheimer’s disease (AD) [5,6], in which aging is the most important risk factor.

AD is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles (NFTs) and neuroinflammation [7,8,9]. Microglia are found in a highly activated state in close anatomical proximity to senile plaques in AD brains, where they secrete numerous pro-inflammatory cytokines and chemokines [9]. Thus it is thought that amyloid β (Aβ) deposits, the major component of senile plaques, constitute a chronic inflammatory stimulus triggering long-lasting activation of microglia that results in the production of neurotoxic substances, which contribute to the onset of neurodegeneration [10]. However, the cognitive impairment of AD does not correlate with Aβ load but with presence of neurofibrillar pathology evident as tau-positive structures such as neurofibril plaques, neurofibrillary tangles and neuritic plaques [11,12,13,14].

Tau, as the major microtubule-associated protein promoting the assembly and stabilization of microtubule, reduces its ability of stabilizing microtubule and leads to the disruption of the cytoskeletal arrangement when hyperphosphorylated [15,16]. Increased tau accumulation was reported in the brains of aging and several tauopathies including AD [17,18,19,20,21,22]. Tau pathology was found exacerbated by lipopolysaccharide (LPS)-induced inflammation [23,24].

In the adult human brains, alternative splicing results in the appearance of six tau isoforms, which contain, respectively, 0, 1 or 2 amino-terminal inserts and 3 or 4 microtubule-binding repeats (0N/3R, 0N/4R, 1N/3R, 1N/4R, 2N/3R and 2N/4R). Tau was first found localized in neurons, specifically to axons [25], and later studies showed its presence in the somatodendritic compartment [26]. Tau was subsequently found in glia [26,27], and since then numerous studies have revealed abnormal accumulations of glial tau in various neurodegenerative diseases. In microglia tau assumes a particular conformation that is more readily identified by conformation-sensitive tau antibodies like Tau-66 and Tau-2 and is overlooked by tau antibodies such as Tau-5 [28,29,30]. Furthermore, since not all microglia stain with Tau-66, it is likely that this conformation of tau is a marker for a particular
pathological state. Tau-2 shows reactive microglia and Tau-66 shows from the seemingly non-reactive to fully reactive microglia and suggests that this change in tau conformation occurs early in the microglial activation process [29]. These studies indicated the special role of tau in microglia, but no more research furtherly explains the effects of tau in microglia and its features, including the difference between microglial tau and that in neuron, astrocytes or oligodendrocytes, and the relations between the conformation and modification of microglial tau with the morphous and function of microglia.

In this study, we observed that microglia were activated in rats and mice during aging by immunofluorescence staining and the fractal dimension value assay. To explore the role of tau in microglia, we observed the immunoreactivities to total tau and the phosphorylated tau were significantly enhanced in activated microglia. As 4R tau is increased in the NFTs isolated from AD patients [31,32], and the human tau40 (2N/4R, the longest isoform of human tau) transgenic mice recapitulate features of known neurodegenerative diseases, including AD and other tauopathies [33], we expressed tau40 in cultured rat microglial cells by transient transfection to study the role of tau in microglia during aging in vitro and demonstrated that expression of tau40 induced increasing of Iba1, indicating microglial activation. Furthermore, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A (PP2A), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase-3β (GSK-3β). It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And the secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α (TNF-α) and nitric oxide (NO), were enhanced after tau40 expression. We have previously reported that expression of tau renders the cells more resistant to the chemically induced cell apoptosis [34], proving the new role of tau in cellular signal transduction rather than cytoskeleton. As both tau and activated microglia are increased in the brain during aging, the current data disclose the role of increased tau in microglial activation, which has not been reported previously.

Materials and Methods

Ethics Statement

All experimental procedures were approved by the Animal Care and Use Committee of Huazhong University of Science and Technology and were performed in compliance with National Institutes of Health guidelines for the ethical use of animals.

Antibodies, chemicals and plasmids

All primary antibodies employed in the study are listed in Table 1. The antibodies of tau used in this study (R134d, Tau46, AT8, pS396 and pT231) recognize tau from rat, human and mouse. Anti-rabbit, anti-mouse IgG conjugated to IRDye (800 CW) were purchased from LI-COR Biosciences (Lincoln, NE, USA). Oregon Green 488-conjugated goat anti-rabbit IgG and Rhodamine Red-X-conjugated goat anti-rabbit/mouse IgG were purchased from Molecular Probes (Eugene, OR, USA). Bicinchoninic acid (BCA) protein detection kit was purchased from Pierce Chemical Company (Rockford, IL, USA). ELISA kits were purchased from R&D Systems (Minneapolis, MN, USA). Lipo-lectamine 2000, carboxylate-modified 1 μm yellow-green fluorescent microspheres were purchased from Invitrogen (San Diego, CA, USA). Cell culture media were purchased from Gibico (Grand Island, NY, USA). NO assay kit, membrane and cytosol protein extraction kit were purchased from Beyotime Institute of Biotechnology (Nantong, Jiangsu, China). The enhanced green fluorescent protein (EGFP) labeled human tau40 (441 amino acids) was a kind gift from Dr. Fei Liu from Jiangsu Key Laboratory of Neuroregeneration (Nantong, Jiangsu, China). The red fluorescent protein (RFP) DsRed labeled human tau40 (441 amino acids) was constructed by ourselves. All of the other chemicals were the highest purity available commercially.

Animals and treatments

SD rats (male, 4 months old and 14 months old) were obtained from the Experimental Animal Center of Tongji Medical College, Huazhong University of Science and Technology. C57BL/6 mice (male, 3 months old and 12 months old) were purchased from the Experimental Animal Center of Wuhan University. All the animals were kept under standard laboratory conditions (24±1 °C, 12 h light/12 h dark cycle, light cycle begins at 06:00) with unrestricted access to food. For immunohistochemical studies, rats and mice were deeply anesthetized with intraperitoneal injection of chloral hydrate (360 mg/kg) and perfused through the aorta with 100 ml 0.9% NaCl followed by 400 ml phosphate buffer saline (PBS) containing 4% paraformaldehyde (pH 7.2, 4 °C).

Cell culture and plasmids transfection

Rat microglia were purchased from Sciencell Research Laboratory, California, USA. They were grown at 37 °C in 5% CO2 in DMEM (high glucose) supplemented with 10% FBS, penicillin at 100 units/ml and streptomycin at 100 μg/ml. Media were changed every 2 to 3 days after plating. The adherent cells were digested by D-Hank’s containing 0.25% trypsogen, plated in cell plates at suitable densities, and incubated at 37 °C in 5% CO2 until treatment. Vector and tau40 plasmids were transfected into microglia using Lipofectamine 2000 according to the protocol of the manufacturer (Invitrogen). At 24 h after transfection, cells were collected and used for further studies. By counting of the plated cells, the transfection efficiencies of the plasmids (vector and tau40) in this study were about 40%.

Immunofluorescence

Brains of rats or mice were removed and postfixed in perfusate overnight and then cut into sections (25 μm) by vibratome (Leica, VT1000S, Germany). The sections were collected consecutively in phosphate buffer (PB) for immunofluorescence. They were incubated overnight at 4 °C with primary antibodies.

For cell studies, cells were cultured on coverslips and fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.5% Triton X-100, and then incubated with primary antibodies overnight at 4 °C.

After washing with PBS, brain sections or cells were subsequently incubated with Rhodamine Red-X- or Oregon Green 488-conjugated secondary antibodies (1:1000) for 1 h at 37 °C. The images were observed by laser confocal microscope (LSM710, Zeiss, Germany) and the fluorescence intensity was analyzed by the software affiliated. The fractal dimension value of microglia was analyzed by Image Pro Plus 6.0 (Media Cybernetics, Silver Spring, MD, USA).

Western blotting

We harvested the cells and lysed them with sample buffer containing 50 mM Tris·HCl (pH 7.6), 2% sodium dodecyl sulfate (SDS), 10% glycerol, 3 mM PMSF and 0.2% bromophenol blue. After they had been boiled for 10 min, the cell lysates were...
ultrasonic processed for 15 s. The protein concentration of the cell lysates was estimated by BCA kit. The proteins were separated by 10% SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose (NC) membrane, blocked in TBS (50 mM Tris-HCl, pH 7.6, 150 mM NaCl) containing 5% skimmed milk for 40 min. After they had been washed with distilled water, the blots were incubated with primary antibodies at 4°C overnight. After they had been washed 3 times with TBS containing Tween-20 (0.2%), the blots were probed by using IRDye 800CW-conjugated secondary antibodies (1:10000) for 1 h. The blots were visualized using infrared fluorescence imaging and the intensity of them was quantified by Odyssey infrared imaging system (Li-Cor Bioscience, USA). The levels of the proteins were expressed as relative optical density against controls.

Membranous and cytosolic protein extraction

Rat microglia were resuspended in solution A contained 1 mM PMSF and mechanically dissociated by trituration. They were centrifuged at 700 g for 10 min at 4°C to remove unbroken cells and nuclei. Supernatant were centrifuged at 14000 g for 30 min at 4°C to precipitate membrane fragments. Supernatant were collected as cytosolic protein, sediment were centrifuged at 14000 g for 10 s at 4°C and added 1/3 (v/v) of solution B with 1% Triton X-100 and 10% glycerol to precipitate membrane fragments. Supernatant were collected as membrane protein.

In vitro scratch assay

Rat microglia were cultured as confluent monolayers in culture dishes and transfected with vector/tau40-encoding EGFP fusion protein for 24 h, and then scratched with a 100 μl pipette tip. The scratched monolayers were washed twice to remove non-adherent cells and media were changed with DMEM [35,36]. Then the cells were observed by laser confocal microscope (LSM510, Zeiss, Germany) and analyzed of the cell migration at 0 h, 6 h, 12 h, and 24 h separately. Phase contrast and fluorescence images were taken at the different time points until the wound closed. The wounded area was defined in each image by positioning lines in correspondence to the original scratch and the following data were analyzed by Image Pro Plus 6.0.

Phagocytosis assay

Rat microglia were collected and plated in cell plates and then transfected with vector/tau40-encoding RFP fusion protein. At 24 h after transfection, media were changed with DMEM. The cells were then treated at 37°C for 30 min with 1 μM yellow-green fluorescent microspheres. After incubation, microspheres were washed with PBS and then fixed with 4% paraformaldehyde for 20 min. The fluorescent microspheres were excited very efficiently using the 488 nm spectral line of the argon-ion laser and had exceptionally intense fluorescence. Analysis of phagocytized particles had been carried out by fluorescence microscope (Zeiss, Germany) and quantitative flow cytometer (BD Biosciences, USA).

ELISA and NO assay

For ELISA assay, supernatant of rat microglial cells were collected as sample. 50 μl of diluted 1 x and 50 μl of standard or sample were added to each well. After being incubated at 37°C for 30 min, each well were aspirated and washed for 30 s ×5 with wash solution (400 μl). After the last wash, any remaining wash buffer was removed by aspirating or decanting. Then 100 μl of rat IL-1β/IL-6/TNF-α/IL-10 conjugate was added to each well. After being incubated at 37°C for 30 min, aspiration and washing were repeated. 100 μl of substrate solution was added to each well. After being incubated at 37°C for 10 min (protect from light), 100 μl of stop solution was added to each well. The color in the wells should change from blue to yellow. We used a microplate reader (Biotek, Winooski, VT, USA) set to 450 nm to determine the optical density of each well within 30 min. A standard curve was prepared from standard dilutions of cytokines in duplicate. The cytokine concentration in each sample was determined from the standard curve.
The level of NO was measured according to the protocol of the manufacturer (Beyotime). We used a microplate reader set to 540 nm to determine the optical density of each well within 30 min. A standard curve was prepared from standard dilutions of NO in duplicate. The concentration of NO in each sample was determined from the standard curve.

Dot blot

At 24 h after transfection, the medium of rat microglial cells was collected and centrifuged at 300 g for 5 min. 5 μl of supernatant was applied to the marked circle on NC membrane and dried before being blocked. Then the NC membranes were incubated with antibodies as introduced in Western blotting.

Statistical analysis

Data were analyzed by using SPSS 12.0 statistical software (SPSS, Chicago, IL, USA). All data were expressed as means ± S.D.. Statistical significance was determined by Student’s two-tailed t-test with 95% confidence.

Results

Microglia are activated during aging and tau accumulates in activated microglia

Microglial activation has been observed in the brains of aging [37,38] and AD patients [39]. By using the antibody of Iba1, a specific marker of microglia [40], we stained the brain slices of rats and mice at different ages (Figure 1A, D). Normally, ramified microglia with small soma and arborescent processes are resting microglia. Ameboid microglia with larger soma and less processes are regarded as activated microglia [41,42,43]. By fractal dimension value analysis for evaluation of microglial activation [44,45], we found more microglia with lower fractal dimension value in elder rats and mice (Figure 1B, C, E, F), indicating microglial activation in the brains of the elder animals.

Previous studies demonstrated that level of tau protein was increased in the aged brain and the increase was more significant in the brain of AD [46,47,48,49]. To measure the level of tau in microglia, we double-stained the brain slices with the antibody recognizing total tau (Tau46) or phosphorylated tau (AT8) and the antibody recognizing microglia (Iba1). Positive immunoreactions to Tau46 and AT8 were observed in different types of microglia (Figure 2A, C, E, G). From Figure 1B, E and Figure 2B, D, F, H, we found the level of total tau (recognized by Tau46) in microglia of the 14 months old rats is 1.18 times of that in 4 months old rats, and the phosphorylated tau (recognized by AT8) is 1.15 times. The level of total tau of microglia in 12 months old C57BL/6 mice is 1.19 times of that in 3 months old mice, and the phosphorylated tau is 1.21 times. However, the levels of total tau and phosphorylated tau in microglia with lowest fractal dimension value were highest (Figure 2B, D, F, H).

Expression of tau40 activates microglia with membranous accumulation of phosphorylated tau

To verify the effects of tau on microglial activation, we measured the level of Iba1 after transient expression of tau40 or the vector (as control) in the cultured rat microglia. The level of Iba1 was significantly increased at 24 h after transfection (Figure 3), indicating the activation of microglia. By immunofluorescence staining, we noticed that the endogenous tau phosphorylated at Ser396 was uniformly distributed in the cytoplasm of the vector-transfected and un-transfected microglia, while expression of exogenous tau resulted in membranous accumulation of phosphorylated tau at Ser396 (Figure 4A). To further verify the distribution of tau in microglia, we isolated membranous fraction from cytosolic fraction after transfection of tau40 or vector and measured the level of tau in different fractions. DM1A and pan-Cadherin were used as markers of cytoplasm and membrane, respectively. Expression of tau40 significantly increased the phosphorylation of tau at Ser396 in membrane fraction (Figure 4B, C). To investigate the possible mechanism, we measured the activity-related phosphorylation levels of PP2A, ERK and GSK-3β, which are highly involved enzymes in tau phosphorylation (Figure 4D). The levels of phosphorylated PP2A phosphorylated tau at Ser396 (Figure 4A). To further verify the distribution of tau in microglia, we isolated membranous fraction from cytosolic fraction after transfection of tau40 or vector and measured the level of tau in different fractions. DM1A and pan-Cadherin were used as markers of cytoplasm and membrane, respectively. Expression of tau40 significantly increased the phosphorylation of tau at Ser396 in membrane fraction (Figure 4B, C). To investigate the possible mechanism, we measured the activity-related phosphorylation levels of PP2A, ERK and GSK-3β, which are highly involved enzymes in tau phosphorylation (Figure 4D). The levels of phosphorylated PP2A...
catalytic subunit (PP2Ac) at Thr307 and phosphorylated ERK at Thr202/Tyr204 were significantly increased, while the phosphor-
ylated GSK-3\(_b\) at Ser9 was decreased, indicating inhibition of
PP2A and activation of ERK and GSK-3\(_b\) (Figure 4E). These data
together suggested that tau40 activated microglia and caused
membranous accumulation of phosphorylated tau possibly by a
mechanism involving PP2A, ERK and GSK-3\(_b\).

Expression of tau40 promotes migration, phagocytosis
and secretion of microglia

Activated microglial cell presents high ability of migration,
phagocytosis and secretion [3]. To explore the role of tau40 in
microglial migration, we used the in vitro scratch assay as reported
and calculated the average migration rate in different time
intervals and the total migration distance within 24 h [50]. We
observed that expression of tau40 accelerated microglial migration
toward the center of the wound and the average speeds were
1.6-fold in 0–6 h, 2.0-fold in 6–12 h and 12–24 h of the
control (vector transfected) microglia. In 24 h, the control
microglia moved about 277 m, while the microglia with
expression of tau40 moved about 543 m (Figure 5). By cell
counting, no difference in proliferation was seen between two
groups (not shown). These data indicated that tau40 accelerated
microglial migration in culture.

Microglial cells are recognized phagocytes in CNS and this
function is important for the normal brain during the develop-
ment, pathology and regeneration of brain [51,52]. To explore the
effect of tau40 on phagocytosis of microglia, we constructed the
plasmid of vector/tau40-encoding RFP fusion protein and transfected the plasmids into the cultured rat microglial cells for 24 h, and then 1 μM yellow-green fluorescent microspheres were added and incubated at 37°C for 30 min. It was observed that microglia expressing tau40 phagocytized more microspheres than vector-transfected and un-transfected cells (Figure 6A, B). We furtherly used quantitative

Figure 4. Expression of tau40 induces membranous accumulation of phosphorylated tau, simultaneously with inhibition of PP2A and activation of ERK and GSK-3β. In cultured rat microglial cells, the plasmid of human tau40-EGFP (T) or vector-EGFP (V) was transfected. 24 h later, triple immunofluorescence imaging was performed. The nucleus was stained with Hoechst (blue) and the phosphorylated tau was probed by pS396 (an antibody recognizing phosphorylated tau at Ser396) (red). Then cells were observed by confocal microscope (A) (Scale bar = 20 μm). The membranous (m) and cytoplasma (p) fractions were isolated as described in the method and the level of pS396 in the two fractions was analyzed by Western blotting (B) and quantitative analysis (C). The levels of PP2Ac, p-PP2Ac (Y307), ERK, p-ERK, GSK-3β and p-GSK-3β (S9) were probed and measured by Western blotting (D) and quantitative analysis (E). The data were representative of three independent experiments and were presented as means ± S.D.. * p<0.05 versus vector-transfected cells.

doi:10.1371/journal.pone.0076057.g004
flow cytometry to analyze the percentage and the index of phagocytosis (Figure 6C, D). The results showed that single tau40-expressing cell phagocytized more fluorescent beads than the vector-transfected cell. However, there was no significant difference in the percentage of the cells phagocytized beads between two groups (Figure 6E, F). These data suggested that expression of tau40 enhanced the phagocytic capacity of microglia.

Actived microglia could release cytokines, which have been classified based on their actions in peripheral tissues as either anti-inflammatory cytokines, such as IL-4, IL-10, or pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α and NO [53]. We measured the levels of inflammatory cytokines in the medium at 24 h after transfection of tau40 or the vector. Obvious increased levels of IL-1β, IL-6, TNF-α, IL-10 and NO were detected in the medium after tau40 transfection (Figure 7A–E). Recent studies suggested that tau could be released from viable cells [54,55,56]. To verify if tau could be released from microglia, we measured the levels of total tau (recognized by R134d) and phosphorylated tau (recognized by pS396 and pT231) in the medium by dot blot (Figure 7F). It was shown that both vector and tau40 transfected cells released tau, and the later released more tau. By calculating the ratio of phosphorylated tau, the levels of released tau phosphorylated at Ser396 and Thr231 epitopes were lower in tau40 expressing cells (Figure 7G). Taken together with previous data (Figure 4A, B, C), it is possible that tau40 transfected cells released unphosphorylated tau and kept more phosphorylated tau in themselves.
Discussion

In present study, we found that microglia were activated in the brains of rats and mice with aging, simultaneously the increase of tau was shown in the activated microglia. Further studies in the cultured rat microglia demonstrated that expression of tau40 induced activation of microglia with accelerated migration, increased phagocytosis, increased secretion of inflammatory cytokines and unphosphorylated tau, and the activation of ERK and GSK-3β. Our data suggest that tau40 may serve as an upstream factor to trigger microglial activation during aging and AD.

Tau is often detected in the axon and dendrite of neuron [57,58]. It has recently been identified on the plasma membrane [59,60,61]. Here, our data showed that tau40 in microglia induced increased phosphorylation of tau at Ser396, which is predominantly located on the plasma membrane.

Some kinases in microglia could phosphorylate tau proteins, such as ERK1/2 and GSK-3β [62]. ERK is a mitogen-activated protein kinase (MAPK) and phosphorylation of ERK is an early event in the activation of microglia [63,64]. GSK-3β is an important serine/threonine protein kinase phosphorylating tau at the majority of AD-related sites [65]. The role of GSK-3β in inflammation was reported firstly in 2005 [66]. Activation of GSK-3β modulates the nuclear translocation of nuclear factor-κB (NF-κB) and cAMP-response element binding protein (CREB) by enabling CREB binding protein (CBP) to bind both transcriptional factors, which facilitates nuclear translocation and increases the production and transcription of pro-inflammatory cytokines [67]. PP2A is the main protein phosphatase involved in tau phosphorylation, and the activity of PP2A is decreased in AD [68,69,70]. In present study, the activation of ERK and GSK-3β and inhibition of PP2A were detected in tau40 transfected microglial cells, which might contribute to the increased phosphorylation of tau at Ser 396. The mechanism involved in activation of ERK and GSK-3β and inhibition of PP2A in microglia requests further studies.

After activation, microglial cell will migrate to the site of injury or inflammation [71]. Cell motility is a dynamic process driven by structurally and functionally coordinated reorganization of the actin cytoskeleton [72,73]. Many of the pro-migratory factors are members of the chemokine family. Therefore, we tested whether tau40 could regulate the migration of the cultured microglia and found that tau40 remarkably accelerated the migration. It is reported that tau may act to facilitate neuronal migration synergistically [74]. Phagocytosis is another important function of microglia. In the AD brain, microglia increased and clustered in and around Aβ deposits [75,76]. In a P301S tauopathy mouse model, exhibiting certain aspects of neurofibrillary tangle formation of AD, early microglial activation was associated with loss of synapses [77]. There were also evidences indicating that accumulation of microglia in AD might be protective and promote Aβ clearance [39,78,79]. In our current study, we found tau40 transfected microglia showed stronger phagocytosis. It is currently not understood how tau40 enhances phagocytosis of microglial cells.

Gene array studies have shown that various cytokines are elevated in aged rodent brains [80,81], and the protein levels of both anti-inflammatory cytokines (e.g. IL-10) and pro-inflammatory cytokines (e.g. IL-1β, TNF-α and IL-6) are elevated during aging [82]. In the present study tau40 increased the levels of both anti-inflammatory cytokines (IL-10) and pro-inflammatory cytokines (IL-1β, TNF-α, IL-6 and NO). IL-1β has been recognized as a key mediator of immune and inflammatory responses during infection. In the CNS, IL-1β is mainly expressed and released by microglia, although astrocytes and neurons may also contribute to production of IL-1β, particularly in the late phase after excitotoxicity [83]. In the early phase of CNS injury,
microglia release IL-6 [84], a multifunctional cytokine with diverse actions including the regulation of inflammation, immune responses and cell differentiation. TNF-α could be produced by neurons, astrocytes, and microglia in the CNS [85], and low level of TNF-α has neuroprotective consequences [86]. NO is generated by inducible nitric oxide synthase (iNOS) in microglia, and a wide variety of neurologic injuries or diseases are associated with the induction of iNOS and the generation of NO by microglia [87,88]. Compared with LPS treatment, a classical activator of microglia, the magnitudes of changes in inflammatory factors induced by tau40 in this study were relatively modest. We have reported that overexpression of tau can protect the cells from an acute apoptosis [34]. It will be interesting in further studies to investigate whether and how the tau-induced cytokines release from microglia affect the viability of neurons or other types of glial cells or microglia itself.

In the AD mechanism involved in the spreading of tau pathology is unknown. It is speculated that tau, the primary component of NFTs, is released following neuronal death, allowing it to be taken up by neighbouring cells including microglia [89]. Tau released from healthy neurons could be a physiological process that might be disrupted in diseased brain. Total tau and hyperphosphorylated tau in cerebrospinal fluid (CSF) have been shown to correlate with neurofibrillary pathology in AD [90,91]. Thus it is possible that microglia can phagocytize tau released by neuron and/or glia, which leading to the activation of microglia during aging.

It was reported that tau assumes a particular conformation that is more readily identified by conformation-sensitive tau antibodies like Tau-66 and Tau-2 and is overlooked by tau antibodies such as Tau-5 in microglia [28,29,30]. Tau-2 shows reactive microglia and Tau-66 shows from the seemingly non-reactive to fully reactive microglia, which suggests that this change in tau conformation occurs early in the microglial activation process [29]. As Tau-2 positive microglia-like cells (TPMCs) do not react with conventional anti-tau antibodies and is devoid of fibrils composed of hyperphosphorylated tau, TPMCs are also thought to represent a conformational state that can be reversibly diminished upon exposure to a detergent and may instead represent a secondary event shared with ischemic/inflammatory loci. Thus, it is highly debatable whether tau proteins are the principal constituents of these TPMCs. Here, we found more total tau and phosphorylated tau in activated microglia with lower fractal dimension value. As we did not have human brain sample or human microglia cell line, we expressed tau40 in cultured rat microglial cells by transient transfection and observed increasing of Iba1 level and increased microglial migration, phagocytosis and secretion, indicating the activation of microglia after tau40 transfection. If human microglia cell cultures were used, the results may be more persuasive. Totally, all these data of this research indicate tau is important for microglial activation in aging and AD, which have not been substantially replicated in the previous literature. But the role of phosphorylated tau in microglial activation needs further investigation.

Acknowledgments

We thank Dr. Iqbal (New York State Institute for Basic Research in Developmental Disabilities, USA) for the antibody R134d.

Author Contributions

Conceived and designed the experiments: JZW QT. Performed the experiments: LW QJ LC LL QW XGL GSC QT. Analyzed the data: LW QT. Wrote the paper: LW JZW QT.

References

1. Vaughan DW, Peters A (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J Neurocytol 3: 405–429.
2. Becher B, Prat A, Antel JP (2000) Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29: 293–304.
3. Abous F (2001) Immune function of microglia. Glia 36: 165–179.
4. Koozumi S, Shigemoto-Mogami Y, Nau-Tadu K, Shinohaki Y, Ohkawa S, et al. (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446: 1091–1093.
5. McGee PL, Rogers J, McGee EG (2006) Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J Alzheimers Dis 9: 271–276.
6. Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38: 333–347.
7. Terry RD, Kattman R (1983) Senile dementia of the Alzheimer type. Ann Neurol 14: 497–506.
8. Grunkle-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, et al. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83: 4913–4917.
9. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12: 1005–1015.
10. Meda L, Casatella MA, Szendrei GI, Otvos LJ, Baron P, et al. (1997) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374: 647–650.
11. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82: 239–259.
12. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blass AD, et al. (1992) Identification of normal and pathological aging in progressively studied nondemented elderly humans. Neurobiol Aging 13: 179–189.
13. Riley KP, Snowdon DA, Marksberry WR (2002) Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 51: 562–577.
14. Grober E, Dickson D, Slivinski MJ, Buschle H, Katz M, et al. (1999) Memory and mental status correlates of modified Braak staging. Neurobiol Aging 20: 573–579.
15. Bittner JM, Goettl M, Jones R, Merrick SE, Trojanowski JQ, et al. (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10: 1089–1099.
16. Goedert M, Spillantini MG, Jones R, Crouchler RA, Vanmechelen E, et al. (1995) Molecular dissection of the paired helical filament. Neurobiol Aging 16: 325–334.
17. Maeda S, Sahara N, Saito Y, Murayama S, Ibai A, et al. (2006) Increased levels of tau-positive neurons: an early sign of brain aging and Alzheimer’s disease. Neurosci Res 54: 197–201.
18. Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, et al. (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27: 3650–3662.
19. Shin RW, Ogomori K, Kitamoto T, Tateishi J (1989) Increased tau accumulation in senile plaques as a hallmark in Alzheimer’s disease. Am J Pathol 134: 1353–1371.
20. Mitchel TW, Muñoz EJ, Schneider JA, Cochran EJ, Nussanov J, et al. (2002) Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann Neurol 51: 182–189.
21. Krock KS, Joachim CL, Selkor EJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83: 4044–4048.
22. Spjrogen M, Davidson P, Tullberg M, Minthon L, Wallin A, et al. (2001) Both total and phosphorylated tau are increased in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 70: 624–630.
23. Kitazawa M, Onod S, Yamashita TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclooxygenase-2-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25: 8843–8853.
24. Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, et al. (2010) Lipopolysaccharide-induced inflammation exacerbates tau pathology in rTg4510 mice. J Neuroinflammation 7: 56.
25. Binder LJ, Frankfurter A, Rehburn LI (1983) The distribution of tau in the mammalian central nervous system. J Cell Biol 101: 1371–1378.
26. Papassozomenos SG, Binder LJ (1987) Phosphorylation determines two distinct species of Tau in the central nervous system. Cell Motil Cytoskeleton 8: 210–220.
27. Lo Presti P, Szachet S, Papassozomenos SG, Zinkowski RP, Binder LI (1987) Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci U S A 92: 10309–10313.
28. Odawara T, Iseki E, Kosaka K, Akiyama H, Ikeda K, et al. (1995) Investigation of tau-2 positive microglia-like cells in the subcortical nuclei of human neurodegenerative disorders. Neurosci Lett 192: 145–148.
57. Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y (1996) Selective
56. Saman S, Kim W, Raya M, Visnick Y, Miro S, et al. (2012) Exosome-associated
54. Simon D, Garcia-Garcia E, Royo F, Falcon-Perez JM, Avila J (2012) Proteostasis
53. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines
52. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an
49. Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, et al. (2002) Levels of
48. Sjogren M, Vanderstichele H, Agren H, Zachrisson O, Edsbagge M, et al. (2001) Enhanced
47. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, et al. (2001) Enhanced
46. Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Bruynseels K, Vanderveen K, et al. (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155: 2153–2165.
45. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, et al. (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104: 3591–3596.
44. Soltys Z, Ziaja M, Pawlinski R, Setkowicz Z, Janeczko K (2001) Morphology of tau overexpression results in its secretion via membrane vesicles. FEBS Lett 519: 29–33.
43. Iseki E, Yamamoto R, Murayama N, Minegishi M, Togo T, et al. (2006) Evidence for a novel tau conformation in Alzheimer’s disease. J Neurochem 95: 951–964.
42. Chin SH, Katzman R, Graham M, Kish S, Osburn J, et al. (1984) cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287: 3842–3849. tau is secreted in tauopathy models and is selectively phosphorylated in in vivo models. J Neurochem 25: 328–332.
41. Maas T, Eidenmüller J, Brandt R (2000) Interaction of tau with the neural microtubule. J B Cell Biol 151: 1327–1330.
40. Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by mature neurons antagonizes degeneration and regeneration. Brain 132: 288–295.
39. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. Nature Med 7: 13–21.
38. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, et al. (2001) Enhanced tau overexpression results in its secretion via membrane vesicles. FEBS Lett 519: 29–33.
37. Iseki E, Yamamoto R, Murayama N, Minegishi M, Togo T, et al. (2006) Evidence for a novel tau conformation in Alzheimer’s disease. J Neurochem 95: 951–964.
36. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, et al. (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositide-3 kinase and kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 87: 1333–1344.
35. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and effective method for analysis of cell migration in vitro. Nat Protoc 2: 329–333.
34. Babu S, Veda H, Zheng C, Cooper LA, Zhao J, et al. (2002) Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol B Cell 13: 3189–3191.
33. Spittaels K, Van den Haute C, Bruynseels K, Vanderveen K, et al. (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155: 2153–2165.
32. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, et al. (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104: 3591–3596.
31. Iseki E, Yamamoto R, Murayama N, Minegishi M, Togo T, et al. (2006) Evidence for a novel tau conformation in Alzheimer’s disease. J Neurochem 95: 951–964.
30. Uchihara T, Tsuchiya K, Nakamura A, Ikeda K (2000) Appearance of tau-2 antigen in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 160: 1269–1278.
29. Ghoshal N, Garcia-Sierra F, Fu Y, Beckett LA, Mufson EJ, et al. (2001) Tau-66: cerebrospinal fluid in early Alzheimer disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 160: 1269–1278.
28. Cakman I, Rohwer J, Schutz RM, Kirchner H, Rink L (1996) Dysregulation of intracellular tau isoforms in brains of limbic neurofibrillary tangle dementia. Neurosci Lett 286: 99–102.
27. Scharfman KE, Van der Haute C, Van Dorpe J, Bruynseels K, Vanderveen K, et al. (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155: 2153–2165.
26. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, et al. (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104: 3591–3596.
25. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, et al. (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 104: 3591–3596.
24. Simon D, Garcia-Garcia E, Royo F, Falcon-Perez JM, Avila J (2012) Proteostasis of tau pathology in the neurodegenerative disease. J B Cell Biol 151: 1327–1330.
Production of Nitric Oxide and Proinflammatory Cytokines Via the NF-κB Pathway in Lipopolysaccharide-Activated Microglia Cells. Neurochem Res.

88. Bashir A, Haq E (2011) Effect of psychosine on inducible nitric-oxide synthase expression under different culture conditions: implications for Krabbe disease. Eur Rev Med Pharmacol Sci 15: 1282–1287.

89. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284: 12845–12852.

90. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, et al. (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129: 3035–3041.

91. Tapiola T, Overmyer M, Lehtovirta M, Helisalmi S, Ramberg J, et al. (1997) The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer’s disease. Neuroreport 8: 3961–3963.