Trends in maternal mortality in Suriname: 3 confidential enquiries in 3 decades

Lachmi R. Kodan, MD, MSc, PhD; Kim J.C. Verschueren, MD, PhD; Raez Paidin, MD; Rubinah Paidin, MD; Joyce L. Browne, MD, MSc, PhD; Kitty W.M. Bloemenkamp, MD, PhD; Marcus J. Rijken, MD, PhD; On behalf of the Committee Maternal Mortality Suriname (MaMS)

BACKGROUND: The Sustainable Development Goal target 3.1 aims to reduce the global maternal mortality ratio to less than 70 per 100,000 live births. Great disparities reported in maternal mortality ratio between and within countries make this target unachievable. To gain more insight into such disparities and to monitor and describe trends, confidential enquiries into maternal deaths are crucial.

OBJECTIVE: We aimed to study the trend in maternal mortality ratio, causes, delay in access and quality of care, and “lessons learned” in Suriname, over almost 3 decades with 3 confidential enquiries into maternal deaths and provide recommendations to prevent maternal deaths.

STUDY DESIGN: The third national confidential enquiry into maternal deaths was conducted between 2015 and 2019 in Suriname by prospective, population-based surveillance and multidisciplinary systematic maternal death review. Subsequently, a comparative analysis with previous confidential enquiry into maternal deaths was performed: confidential enquiry into maternal deaths I (a prospective study, 1991–1993) and confidential enquiry into maternal deaths II (a retrospective study, 2010–2014).

RESULTS: We identified 62 maternal deaths and recorded 48,881 live births (maternal mortality ratio, 127/100,000 live births) between 2015-2019. Of the women who died, 14 of 62 (23%) were in poor condition when entering a health facility, whereas 11 of 62 (18%) died at home or during transportation. The maternal mortality ratio decreased over the years, (226 [n=64]; 130 [n=65]; and 127 [n=62]), with underreporting rates of 62%, 26%, and 24%, respectively in confidential enquiry into maternal deaths I, II and III. Of the women deceased, 36 (56%), 37 (57%), and 40 (63%) were of African descent; 46 (72%), 45 (69%), and 47 (76%) died after birth; and 47 (73%), 55 (84%), and 48 (77%) died in the hospital, respectively, in confidential enquiries into maternal deaths I, II, and III. Significantly more women were uninsured in confidential enquiry into maternal deaths III (15 of 59 [25%]) than in confidential enquiry into maternal deaths II (0%) and I (6 of 64 [9%]). Obstetrical hemorrhage was less often the underlying cause of death over the years (19 of 64 [30%], vs 13 of 65 [20%], vs 7 of 62 [11%]), whereas all other obstetrical causes occurred more often in confidential enquiry into maternal deaths III (eg, suicide [0; 1 of 65 (2%); 5 of 62 (8%)]) and unspecified deaths (1 of 64 [2%]; 3 of 65 [5%]; and 11 of 62 [18%] in confidential enquiry into maternal deaths I, II and III respectively). Maternal deaths were preventable in nearly half of the cases in confidential enquiry into maternal deaths II (28 of 65) and III (29 of 62). Delay in quality of care occurred in at least two-thirds of cases (41 of 62 [65%], 47 of 59 [80%], and 47 of 61 [77%]) over the years.

CONCLUSION: Suriname’s maternal mortality rate has decreased throughout the past 3 decades, yet the trend is too slow to achieve the Sustainable Development Goal 3.1. Preventable maternal deaths can be reduced by ensuring high-quality facility-based obstetrical and postpartum care, universal access to care especially for vulnerable women (of African descent and low socioeconomic class), and by addressing specific underlying causes of maternal deaths.

Key words: confidential enquiries into maternal deaths, ethnic disparity, maternal suicide, phases of delay, quality of care, Suriname, trends, unspecified deaths

Introduction

Ending preventable maternal death remains at the top of the global health agenda. \(^1,2\) The Sustainable Development Goals (SDG) target 3.1 aims to achieve a global reduction of the maternal mortality ratio (MMR) of less than 70 by 2030.\(^3\) The MMR varies between and within countries and relates to the progression of the country’s socioeconomic development and improvement in healthcare resulting in health inequity.
Why was this study conducted?
The maternal mortality ratio (MMR) in Suriname is one of the highest in the Latin American Caribbean region. This study aimed to analyze the trend in MMR, causes, and quality of care and provided recommendations to prevent maternal deaths.

Key findings
MMR in Suriname decreased by 44% in 28 years. Between 2015 and 2019, women who died were more frequently uninsured, and almost half of the women were already in a deplorable state when reaching a facility. Most late maternal deaths were because of cardiomyopathy, with the onset originating earlier in pregnancy or puerperium. Maternal deaths from outcomes of abortion, “other obstetrical causes” (suicide), unspecified deaths, and late maternal deaths increased. Almost half of the maternal deaths were preventable.

What does this add to what is known?
In Suriname, preventable maternal deaths can be reduced by ensuring universal access to higher-quality obstetrical care. Focusing on specific underlying causes of death is essential.

Data collection
In CEMD-I, the data collection was performed prospectively from 1991 to 1993, and the methods used were: (1) a hospital-based Reproductive Age Mortality Survey (RAMoS), which included the screening of all women of reproductive age for pregnancy (recent) who died; and (2) a RAMoS of the national Register of Causes of Death, located at the Bureau of Public Health (BOG, its Dutch acronym). A maternal mortality expert committee (7 obstetricians and 1 midwife) confidentially reviewed all case summaries. In 2015, maternal deaths from 2010 to 2014 were retrospectively collected (CEMD-II) by: (1) conducting a RAMoS in the hospitals and primary care; (2) cross-linking of data with the Central Bureau for Civil Affairs (CBB) and vital registration (BOG); and (3) performing a mortuary inventory. Maternal deaths were reviewed by an expert committee in which obstetricians, midwives, internal medicine specialists, or anesthesiologists participated, and cases were classified using the World Health Organization (WHO) International Classification of Diseases-Maternal Mortality (ICD-MM). Until 2014, the insurance system in Suriname was either private (13%) or public (21%) insured at the State Health Foundation, primarily intended for civil servants and 6% at “Medical Mission,” for those living in the rural interior. In addition, people who are poor and disadvantaged would receive social insurance coverage (44%) from the Ministry of Social Affairs. The remaining population (16%) had an unknown insurance status. In 2014, steps toward universal health coverage and equity in healthcare were made by enforcing the Basic Health Law for everyone.

Methods
Study design
Firstly, we conducted a population-based prospective confidential enquiry (CEMD-III) from January 2015 to December 2019. Pregnancy-related deaths were reviewed by the Committee MaMS. Subsequently, a comparative analysis with 2 previous CEMD (1991–1993 [prospective] and 2010–2014 [retrospective]) was performed.

Study setting
Suriname is a middle-income country in South America. Each year, 10,000 births take place: 86% in hospitals, 6% at primary care clinics (3% in the rural interior and 3% rural coastal), 4% at homes, and 4% not registered. Women with complicated pregnancies and deliveries in primary care clinics are referred to hospitals. The health system in Suriname is a public-private mix, with different financing modalities and service-providing facilities. Until 2014, the insurance system in Suriname was either private (13%) or public (21%) insured at the State Health Foundation, primarily intended for civil servants and 6% at “Medical Mission,” for those living in the rural interior. In addition, people who are poor and disadvantaged would receive social insurance coverage (44%) from the Ministry of Social Affairs. The remaining population (16%) had an unknown insurance status. In 2014, steps toward universal health coverage and equity in healthcare were made by enforcing the Basic Health Law for everyone.

Results
In CEMD-I, the data collection was performed prospectively from 1991 to 1993, and the methods used were: (1) a hospital-based Reproductive Age Mortality Survey (RAMoS), which included the screening of all women of reproductive age for pregnancy (recent) who died; and (2) a RAMoS of the national Register of Causes of Death, located at the Bureau of Public Health (BOG, its Dutch acronym). A maternal mortality expert committee (7 obstetricians and 1 midwife) confidentially reviewed all case summaries.

In 2015, maternal deaths from 2010 to 2014 were retrospectively collected (CEMD-II) by: (1) conducting a RAMoS in the hospitals and primary care; (2) cross-linking of data with the Central Bureau for Civil Affairs (CBB) and vital registration (BOG); and (3) performing a mortuary inventory. Maternal deaths were reviewed by an expert committee in which obstetricians, midwives, internal medicine specialists, or anesthesiologists participated, and cases were classified using the World Health Organization (WHO) International Classification of Diseases-Maternal Mortality (ICD-MM). Until 2014, the insurance system in Suriname was either private (13%) or public (21%) insured at the State Health Foundation, primarily intended for civil servants and 6% at “Medical Mission,” for those living in the rural interior. In addition, people who are poor and disadvantaged would receive social insurance coverage (44%) from the Ministry of Social Affairs. The remaining population (16%) had an unknown insurance status. In 2014, steps toward universal health coverage and equity in healthcare were made by enforcing the Basic Health Law for everyone.
1 year after giving birth; and (2) a hospital-based RAMoS was performed where medical files could be retrieved. The Committee MaMS, installed in 2015, reviews any possible maternal death systematically and consists of 4 gynecologists or obstetricians, 1 midwife, 1 internal medicine specialist, 1 BOG representative, 2 medical students, and several external consultants. Similar to the previous enquiries, classification of maternal deaths were conforming to the WHO ICD-MM.19

Definitions
A pregnancy-related death was the death of a woman while pregnant or within 42 days of termination of pregnancy, irrespective of the cause of death.19 Maternal death was a pregnancy-related death from any cause related to or aggravated by the pregnancy or its management but not from accidental or incidental causes.19 The MMR was the ratio of maternal deaths to live births (calculated per 100,000 live births).19 A direct maternal death was caused by direct obstetrical causes. An indirect death resulted from a previous existing disease or a disease that developed during pregnancy and that was not because of direct obstetrical causes but aggravated by the physiological effects of pregnancy.19,21 Maternal deaths were classified as “unspecified” when the underlying cause was unknown or not determined.19 Late maternal deaths occurred after 42 days but within 1 year following delivery from causes directly related to pregnancy or indirectly precipitated by the effects of pregnancy on underlying diseases; coincidental deaths were not included.19,22 Advanced maternal age was defined as 35 years or older.23 Substandard care was defined as a deviation from standard practice according to local clinicians and international guidelines.

Data analysis
Data on demographics, general and obstetrical history, and committee consensus classification were manually entered in the International Business Machines Corporation (IBM) Statistical Package for the Social Sciences (version 24.0; IBM, Armonk, NY). Descriptive analysis was used to calculate frequencies and proportions. The significance of the differences between the categorical variables (characteristics) was calculated using the chi-square test, with a significance level below 0.05. Substandard care analysis was according to the 3 delay models: (1) phase I delay, delay in the decision to seek care; (2) phase II delay, delay in reaching a healthcare facility; and (3) phase III delay, delay in receiving adequate and appropriate care at the facility.24 In all 3 CEMD, preventability was judged by consensus between the members of the review committee based on their knowledge and experience. Cases were only considered preventable if all members of the committee reviewing the case unanimously agreed that the case was preventable.

This study was approved by the ethical review board of the Surinamese Committee on Research Involving Human Subjects on April 23, 2020 (DVG 146). The data are anonymous and in aggregated form, and individual informed consent of the family was waived.

Results
There were 107 pregnancy-related deaths between 2015 and 2019, of which 62 were maternal deaths. Of 36 late pregnancy-related deaths, no information was available in 20 cases (Figure 1). In the same time frame, 48,881 live births were recorded, yielding an MMR of 127. The underreporting rate was 24% as the vital registration reported 47 maternal deaths. Figure 2 gives an overview of the MMR reported by vital registration and CEMD from 1990 to 2019. Underreporting decreased significantly (P<.001) from 62% in CEMD-I to 26% in CEMD-II and 24% in CEMD-III.

In all 3 CEMD, women who died were more often of African descent (56%, 57%, 63%), died after delivery (72%, 69%, 76%), and died in the hospitals (73%, 84%, 77%) (Table 1).

In CEMD-III, 11 of 62 women (18%) died at home or during transportation, and 14 of 62 women (23%) were already in poor medical condition (in a coma or need for resuscitation) on arrival at a health facility (11 of 62 [18%] at a hospital and 3 of 62 [5%] at a primary care center). In addition, in CEMD-III, significantly more women were uninsured (25% [15 of 59] vs 0 CEMD-II vs 9% [6 of 64] CEMD-I; P<.001) than in the previous CEMD.

Although deaths were predominantly from direct causes over the years, the
incidence of unspecified deaths increased significantly (CEMD-I, 1 of 64 [2%]; CEMD-II, 3 of 65 [5%]; CEMD-III, 11 of 62 [18%]; \(P=.002\)) (Figure 3). The unspecified deaths of CEMD-III (n=11) occurred at home, at primary care clinics, or shortly after hospital admittance in 9 cases. In 2 cases, multiple comorbidities (diabetes, sepsis, HIV, severe anemia) were diagnosed. In Table 2, the maternal deaths of CEMD-III are categorized following the WHO ICD-MM groups of underlying causes.19 The incidence and underlying cause of the abortion-related maternal deaths changed: the 2 cases (2 of 64 [3%]) in CEMD-I were from ectopic pregnancies; in CEMD-II, death was due to hemorrhage from an ectopic pregnancy and sepsis following an induced abortion (2 of 65 [3%]), and in CEMD-III, death was from hemorrhage due to an ectopic pregnancy and 3 induced abortions (4 of 62 [6%]). There was a significant decrease in obstetrical hemorrhage as the underlying cause of death over time (CEMD-I, 30% [19 of 64], vs CEMD-II, 20% [13 of 65], vs CEMD-III, 11% [7 of 62]; \(P=.04\)). The group “all other obstetrical causes” included the most frequent underlying causes in CEMD-III (18 of 62 [29%]), much higher than in the 2 previous CEMD (CEMD-I, 14% [9 of 64], and CEMD-II, 17% [11 of 65], \(P=.08\)) (Figure 4). Although there was no case of maternal suicide reported in CEMD-I, there was 1 case (1 of 65 [2%]) in CEMD-II and 5 cases in CEMD-III (5 of 62 [8%]) (Figure 4). CEMD-III reported more late maternal related deaths (n=12) than CEMD-I (n=3) and CEMD-II (n=8). In 8 of 12 late maternal deaths (67%) of CEMD-III, complications started already during pregnancy or within 42 days after delivery. Of these maternal deaths, 6 of 8 (75%) were due to complications of postpartum cardiomyopathy (Supplemental File 3).

In Table 3, an overview of the substandard care analysis is provided by the review committee conforming to the 3 delays model. Maternal deaths were preventable in 47% in both CEMD-II (28 of 65) and CEMD-III (29 of 62). Patient delay did not differ significantly (36 of 62 [58%], 17 of 59 [29%], 23 of 61 [38%]) in CEMD-I, CEMD-II, CEMD-III, respectively. However, phase III delay predominated in all 3 CEMD (CEMD-I, 65% [41 of 62], vs CEMD-II, 80% [47 of 59], vs CEMD-III, 77% [47 of 61]).
Characteristics	1991–1993^a CEMD-I (n=64 [100%])	2010–2015^b CEMD-II (n=65 [100%])	2015–2019^c CEMD-III (n=62 [100%])	P value
Age, y				<.01^d
≥20	11 (17)	11 (17)	6 (10)	
20−35	30 (47)	42 (64)	43 (69)	
>35	23 (36)	12 (18)	13 (21)	
Ethnicity				.46
Maroon	22 (34)	24 (37)	26 (41)	
Creole	14 (22)	13 (20)	14 (22)	
Hindustani	18 (28)	12 (18)	7 (11)	
Javanese	5 (8)	8 (12)	3 (5)	
Mixed	n/a	5 (8)	4 (6)	
Indigenous	5 (8)	3 (5)	5 (8)	
Other	n/a	n/a	2 (3)	
Insurance				n=63
Social	46 (72)	45 (71)	—	
State	12 (19)	10 (16)	28 (47)	
Private	—	8 (13)	16 (27)	
None	6 (9)	0	15 (25)	
Residency				.19
Area 1 (urban, Par‘bo-Wanica)	35 (55)	40 (62)	34 (61)	
Area 2 (urban, Nickerie)	9 (14)	4 (6)	2 (4)	
Area 3 (rural coastal, Coronie, Saramacca, Para, Commewijne, Marowijne)	6 (9)	10 (15)	12 (21)	
Area 4 (rural interior, Brokopondo, Sipaliwini)	14 (22)	11 (17)	8 (14)	
Parity at time of death				.06
Nullipara	16 (25)	5 (8)	11 (19)	
1−2	19 (30)	31 (50)	20 (35)	
≥3	28 (45)	26 (42)	26 (46)	
Mode of delivery				.44
Vaginal delivery	31 (67)	25 (61)	23 (49)	
Ventouse delivery	2 (4)	3 (7)	3 (6)	
Cesarean delivery	13 (28)	13 (32)	21 (45)	
Time of death				.23
Abortion (<20 wk)	2 (3)	5 (8)	7 (11)	
Antepartum	16 (25)	15 (23)	8 (13)	
Postpartum	46 (72)	45 (69)	47 (76)	
Location of death				.26
Hospital	47 (73)	55 (84)	48 (77)	
Primary care clinic	8 (13)	5 (8)	3 (5)	

^a 1991–1993: Characteristics of the maternal deaths in Suriname from 1991 to 1993.
^b 2010–2015: Characteristics of the maternal deaths in Suriname from 2010 to 2015.
^c 2015–2019: Characteristics of the maternal deaths in Suriname from 2015 to 2019.
^d P value for comparison between 1991–1993 and 2010–2015.

Kadan. Trends in maternal mortality in Suriname. Am J Obstet Gynecol Glob Rep 2021. (continued)
Comment
Principal findings
Here, 3 CEMD in Suriname showed an overall declining trend in the MMR, with a reduction of 44% in 28 years. In all 3 CEMD, women who died were more often of African descent, died after delivery, and died in hospitals. Almost half of the maternal deaths in CEMD-III occurred at home, at the primary health clinic, or soon after reaching a health facility. The percentage of uninsured women was the highest in CEMD-III. The incidence of maternal deaths in pregnancies with abortive outcomes, from “other obstetrical causes” (especially maternal suicide), unspecified deaths, and late maternal deaths increased over time. In two-thirds of the late maternal deaths in CEMD-III, the onset of the complications resulting in death started earlier in pregnancy and puerperium and were due to cardiomyopathy. Substandard care analysis showed similar trends over the years, with predominantly phase III delay and no significant change in phase I delay. Almost half of the maternal deaths were preventable.

Results in context
The 44% decrease in MMR was in line with the global trend but insufficient to reach the Millennium Development Goal (MDG) of 75% reduction in 2015. The average MMR (130) was almost the same in the recent 10 years in Suriname. This trend questions if the SDG target (MMR, 70) will be reached in 2030. The strong focus on the coronavirus disease 2019 (COVID-19) pandemic has led to reduced attention for maternal healthcare and a subsequent decrease in the access and quality of care worldwide. However, the increase in pregnancy-related suicide was not only from increased reporting. Perinatal (antepartum and postnatal) depression is a major risk factor for suicide and highly prevalent in low- and middle-income countries. The WHO developed a mental health action plan in 2012 to highlight the importance of mental health in achieving health for all people and placed the focus on prevention strategies. In Suriname, 25% of all women suffer from depression and anxiety disorders, and the number of suicide cases has increased steadily over the years. Pregnant or postpartum women with mental health problems might not seek help because of fear of stigmatization and discrimination.

TABLE 1
Characteristics of the maternal deaths of the 3 CEMD (continued)

Characteristics	1991—1993^a CEMD-I (n=64 [100%])	2010—2015^b CEMD-II (n=65 [100%])	2015—2019^c CEMD-III (n=62 [100%])	P value
At home or during transport	9 (14)	5 (8)	11 (18)	n=56 <.01^d
Geographic location of death				
Area 1 (urban, Par’bo-Wanica)	35 (55)	56 (86)	46 (82)	
Area 2 (urban, Nickerie)	9 (14)	2 (3)	2 (4)	
Area 3 (rural coastal, Coronie, Saracmacca, Para, Commewijne, Marowijne)	6 (9)	3 (5)	4 (7)	
Area 4 (rural interior, Brokopondo, Sipaliwini)	14 (22)	4 (6)	4 (7)	
Perinatal death	n=57	36 (64)	18 (33)	n=55 <.01^d
Postmortem autopsy	n/a	2 (3)	3 (5)	

Data are presented as number (percentage).
Adapted from Verschueren et al.¹⁵
CEMD, confidential enquiry into maternal deaths; n/a, not available.
^a CEMD-I, 1991—1993, adapted from Mungra et al.¹²; ^b CEMD-II, 2010—2014, adapted from Kodan et al.¹¹; ^c CEMD-III, 2015—2019; ^d Level of significance P<.05.
Kodan. Trends in maternal mortality in Suriname. Am J Obstet Gynecol Glob Rep 2021.
The percentage of unspecified maternal deaths increased over the years in Suriname. Underlying cause attribution is difficult, either because of the complexity of the case or the deplorable medical conditions, which left no time for additional diagnostic investigations. In complex cases, involving several comorbidities or the co-occurrence of direct and indirect conditions, determination of the initiating event leading eventually to death is challenging. In both situations, postmortem autopsy is the gold standard to clarify most of the uncertain causes. However, it is seldom performed in Suriname because of financial and cultural reasons.

The incidence of late maternal deaths was the highest in CEMD-III. In two-thirds of these cases, the initiating event developed during pregnancy or puerperium, but ultimately, the death occurred later than 42 days after delivery. Improved and more specialized health systems in Suriname prolonged the survival of women experiencing complications in the puerperium. Most of these deaths were caused by postpartum cardiomyopathy. The contribution of cardiac diseases becomes more relevant as MMR lowers and as countries undergo “obstetrical transition” toward more indirect causes and noncommunicable diseases. Because of the classification of late maternal death, most of these cases were often neither counted in the MMR nor reviewed, missing opportunities to evaluate the “lesson learned.”

We agree with the proposition by the ICD-MM workgroup to incorporate these late deaths under a new group “comprehensive maternal death” in the ICD-11.

Substandard care analysis of the maternal deaths in all 3 studies showed that delay in care occurred predominantly in the hospitals and that almost half of the deaths were preventable, according to the evaluation of the review committees. Although the healthcare infrastructure in Suriname improved nationwide and the National Basic Health Insurance Law was passed in 2014, patient delay was not significantly different over the years. Several gaps in the new insurance system and concomitant deteriorating financial position of the country since 2015 left people uninsured, delaying their decision to seek healthcare and their access to care. This delay could probably explain the increase in

The incidence of late maternal deaths was the highest in CEMD-III. In two-thirds of these cases, the initiating event developed during pregnancy or puerperium, but ultimately, the death occurred later than 42 days after delivery. Improved and more specialized health systems in Suriname prolonged the survival of women experiencing complications in the puerperium. Most of these deaths were caused by postpartum cardiomyopathy. The contribution of cardiac diseases becomes more relevant as MMR lowers and as countries undergo “obstetrical transition” toward more indirect causes and noncommunicable diseases. Because of the classification of late maternal death, most of these cases were often neither counted in the MMR nor reviewed, missing opportunities to evaluate the “lesson learned.”

We agree with the proposition by the ICD-MM workgroup to incorporate these late deaths under a new group “comprehensive maternal death” in the ICD-11.

Substandard care analysis of the maternal deaths in all 3 studies showed that delay in care occurred predominantly in the hospitals and that almost half of the deaths were preventable, according to the evaluation of the review committees. Although the healthcare infrastructure in Suriname improved nationwide and the National Basic Health Insurance Law was passed in 2014, patient delay was not significantly different over the years. Several gaps in the new insurance system and concomitant deteriorating financial position of the country since 2015 left people uninsured, delaying their decision to seek healthcare and their access to care. This delay could probably explain the increase in
unspecified death and death on arrival at a facility in CEMD-III.

Research implications
Recommendations to reduce preventable maternal deaths in Suriname.

1. Improvement of the continuum of care (quality of clinical care, outpatient antenatal and postnatal care and family or community care). To address the quality of care, the national guidelines should be revised and implemented, and actions should follow on the recommendations from the MDR. For improvement of outpatient antenatal and postnatal care, referral pathways should be revised, and practical national guidelines developed. Development of tailor-made (prevention) programs (eg, contraception, anemia prevention, antenatal care coverage) should focus on the vulnerable groups. Family or community care needs to address the persisting inequity among different social classes and ethnicities by improving educational opportunities, employment, housing and nutrition.

2. Ensure universal access to healthcare without financial hardships. We request policymakers to assess the gaps and practicability of the basic National Basic Health Insurance Law.

3. Postmortem autopsy in deaths of unknown cause in (recent) pregnant women for reliable underlying cause attribution.

4. Raise awareness and offer psychosocial support for mental health disorders during pregnancy and after delivery.
5. Discuss the legalization of abortion and postabortion care. To prevent unplanned and unwanted pregnancies, contraception should be promoted, accessible, and affordable.

6. Review and report late maternal deaths as valuable lessons can be learned.22,35 Create awareness and prevent and accurately diagnose cardiac diseases in pregnancy and puerperium and establish close collaboration among cardiologists and obstetricians.

7. Continue quality-of-care improvements and systematic review of maternal deaths despite COVID-19.

Strengths and limitations

This study compared 3 CEMD, and the timing of the first 2 CEMD coincides with the MDG start point and endpoint. Various extensive methods were used to identify pregnancy-related deaths and gaps, and issues could be addressed in depth. As systematic maternal death reviews are not yet implemented in many countries globally, it is praiseworthy that it was possible in Suriname and supported by several stakeholders.44 Policymakers can use this study for advocacy to prioritize maternal healthcare on the agenda of decision-makers.

Our study has several limitations. The study design of the 3 studies compared differed; CEMD-I and CEMD-III were prospective studies, whereas CEMD-II was retrospective. Because of the small population in Suriname, the absolute number of maternal deaths was low. In addition, in 2 hospitals, there was no comprehensive digital database for persons who died; therefore, the RAMoS could not be completed. The BOG did not provide information from the death certificates, resulting in unavailability of the cause of death information, and data cross-check was not possible. However, despite these limitations, a vast amount of data were captured to substantially contribute to important recommendations to reduce preventable maternal deaths in Suriname.

Conclusions

Review of all maternal deaths was prospectively implemented in Suriname in 2015. Based on the data collected in 3 CEMD, MMR almost halved in 28 years. However, this progress is insufficient to achieve the SDG target in 2030. Socioeconomic determinants influence maternal death reduction in Suriname. Quality-of-care improvement, better accessible and equitable healthcare for specific groups, enhanced mental and abortion-related care, and early detection or therapy of cardiac diseases are key elements to eliminate preventable maternal deaths.

ACKNOWLEDGMENTS

The authors would like to thank the former members of the Committee MaMS, the Surinamese College of Gynecologists and Obstetricians, and the confederation of midwives in Suriname. We are grateful that the medical directors and the registries of the 5 hospitals facilitated the compilation of the case summaries. V. Jaim, G. Kirpal, I. Tempico, I. Matai, and J. Mahabier made it possible that the medical files were available. The Central Bureau of Civil Affairs is thanked for their cooperation and willingness to assist in the study, especially Michael Kromodimedjo. We thank the medical students who voluntarily contributed to data acquisition and RAMoS, C. Moehamadjalil, P. Latfa, R. Budel, R. Gajadin, M. Bharos, and C. Rommy, and midwife, S. Amandavae. In addition, we thank the consultants who volunteered to contribute to the audit with their valued expertise: Drs J. Pengel (neuroradiologist), W. Jap Tjon Soen (cardiologist), E. Linschmeer (anesthesiologist), M. Tjon Sie Fat (anesthesiologist), and W. Koendan (neurologist).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.xagrr.2021.100004.

REFERENCES

1. Mahler H. The safe motherhood initiative: a call to action. Lancet 1987;1:666–70.
2. Stanton ME, Kwast BE, Shaver T, McCollan B, Koblinsky M. Beyond the safe motherhood initiative: accelerated action urgently needed to end preventable maternal mortality. Glob Health Sci Pract 2016;6:408–12.
3. World Health Organization. Strategies toward ending preventable maternal mortality (EPMM). Available at: https://apps.who.int/iris/bitstream/handle/10665/153544/9789241508483_eng.pdf?sequence=1. Accessed Jun. 2, 2020.
4. Barros AJ, Ronsmans C, Axelson H, et al. Equity in maternal, newborn, and child health...
interventions in countdown to 2015: a retrospective review of survey data from 54 countries. Lancet 2012;379:1225–33.

5. World Health Organization. Maternal Death Surveillance and Response. Technical Guidance. Information for action to prevent maternal death. Available at: https://apps.who.int/iris/bitstream/handle/10665/37420/9789241505083_eng.pdf;jsessionid=446BDBB7F35704515493956B20226B8A?sequence=1. Accessed Aug. 28, 2020.

6. Lewis G. Beyond the numbers: reviewing maternal deaths and complications to make pregnancy safer. Br Med Bull 2005;67:27–37.

7. Debrouwere V, Zinnen V, Delvaux T. How to conduct Maternal Death Reviews (MDRs). Guidelines and tools for health professionals 2013. Available at: https://www.researchgate.net/publication/259157072_How_to_conduct_Maternal_Death_Reviews_MDR_Guidelines_and_tools_for_health_professionals. Accessed Jul. 22, 2020.

8. Pan American Health Organization. Latin American Centre of Perinatology Women and Reproductive Health. Best practices can save pregnant women’s lives. Available at: https://www.paho.org/clar/index.php?option=com_content&view=article&id=585:las-buenas-practicas-salvan-la-vida-de-las-embarazadas-construyendo-presentes-y-futuros-saludables&Itemid=215&lang=en. Accessed Jul. 20, 2020.

9. World Health Organization. United Nations International Children’s Emergency Fund, United Nations Population Fund, World Bank Group, United Nations Population Division. Maternal mortality: levels and trends 2000 to 2017; 2019. Available at: https://www.who.int/reproductivehealth/publications/maternal-mortality-2000-2017/en/. Accessed Jul. 15, 2020.

10. Kodan LR, Verschueren KJC, Boerstra GE, et al. From passive surveillance to response: Suriname’s steady efforts to implement Maternal Death Surveillance and Response (MDSR). Available at: https://www.researchsquare.com/article/rs-35174/v1. Accessed Jul. 22, 2020.

11. Kodan LR, Verschueren KJC, Van Roosmalen J, Kanhai HH, Bloemenkamp KWM. Maternal mortality audit in Suriname between 2010 and 2014, a reproductive age mortality survey. BMC Pregnancy Childbirth 2017;17:275.

12. Mungua A, van Kanten RW, Kanhai HH, van Roosmalen J. Nationwide maternal mortality in Suriname, Br J Obstet Gynaecol 1999;106:55–9.

13. Verschueren KJC, Kodan LR, Brinkman TK, et al. Bottom-up development of national obstetric guidelines in middle-income country Suriname. BMC Health Serv Res 2019;19:651.

14. General Bureau of Statistics. Demographic data 2015-2018. Available at: https://statistics-suriname.org/wp-content/uploads/2019/09/DEMografische-DATA-2015-2018-web-site info.pdf. Accessed Aug. 2, 2020.

15. Verschueren KJC, Prust RD, Padin RR, et al. Childbirth outcomes and ethnic disparities in Suriname: a nationwide registry-based study in a middle-income country. Reprod Health 2020;17:62.

16. Goede H. Mapping and analysis of primary health care models in South American countries. Mapping of PHC in Guyana; 2014. Available at: http://www.reddepesquisasapps.org.br/wp-content/uploads/2014/10/mapaGuianais.png. Accessed Aug. 2, 2020.

17. Crape B. Health information systems assessment of Suriname. 2007. Available at: http://kennisbanksu.com/wp-content/uploads/2017/05/Health-information-Systems-Assessment-of-Suriname-Byron-Crape-Ph.D.2007.pdf. Accessed Jul. 22, 2020.

18. Pan American Health Organization. Health in the Americas. Suriname. Available at: https://www.paho.org/salud-en-las-americas-2017/?p=4307. Accessed Jul. 6, 2020.

19. World Health Organization. The WHO application of ICD-10 to deaths during pregnancy, childbirth and the puerperium: ICD-MM. Available at: https://apps.who.int/iris/bitstream/handle/10665/70299/9789241514845_eng.pdf?sequence=1. Accessed Mar. 25, 2020.

20. Kodan L, Padin R, Omltak L, et al. Committee MM&MS. Obstetrics in Suriname; 2018. Available at: https://www.verloskundesuriname.org/commissierams.html. Accessed Jul. 25, 2020.

21. Nair M, Nelson-Piercy C, Knight M. Indirect maternal deaths: UK and global perspectives. Obstet Med 2017;10:10–5.

22. Siwa K, Anthony J. Late maternal deaths: a neglected responsibility. Lancet 2016;387:2072–3.

23. Kahveci B, Melekoglu R, Evruke IC, Cetin C. The effect of advanced maternal age on perinatal outcomes in nulliparous singleton pregnancies. BMC Pregnancy Childbirth 2018;18:343.

24. Thaddeus S, Maine D. Too far to walk: maternal mortality in context. Soc Sci Med 1994;38:1091–110.

25. Phillips DE, Bhutta ZA, Binagwaho A, et al. Learning from Exemplars in Global Health: a case study of maternal healthcare in South Africa. PLoS Med 2008;5:e48.

26. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2014;2:e32–33.

27. Hassegawa J, Katsuragi S, Tanaka H, et al. How should maternal death due to suicide be classified? Discrepancy between ICD-10 and ICD-MM. BJOG 2020;127:665–7.

28. Fuhr DC, Calvert C, Ronismons C, et al. Contribution of suicide and injuries to pregnancy-related mortality in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Psychiatry 2014;1:213–25.

29. Ameh CA, Adegoke A, Pattinson RC, van den Broek N. Using the new ICD-11 classification system for attribution of cause of maternal death—a pilot study. BJOG 2014;121 (Suppl 4):32–40.

30. World Health Organization. Mortal death action plan 2013-2020. Available at: https://www.who.int/publications/i/item/9789241506021. Accessed Aug. 2, 2020.

31. Purnwasi W. Death causes in Suriname 2010-2011. Available at: https://www.verloskundesuriname.org/uploads/7/5/45/5/75459511/deathcauses_in_suriname_2010-2011.pdf. Accessed Jul. 30, 2020.

32. Kodan L, Verschueren K, McCaw-Binns A, et al. Classifying maternal deaths in Suriname using WHO ICD-MM: different interpretation by physicians, national and international maternal death review committees. Reprod Health 2020. [Epub ahead of print].

33. Castillo P, Martinez MU, Usane E, et al. Validity of a minimally invasive autopsy for cause of death determination in adults in Mozambique: an observational study. PLoS Med 2016;13:e1002171.

34. Lucas S. Maternal death, autopsy studies, and lessons from path. PLoS Med 2008;5:e48.

35. De Cosio FG, Jivani SS, Sanhueza A, Soliz PN, Becerra-Posada F, Espinal MA. Late maternal deaths and deaths from sequelae of obstetric causes in the Americas from 1999 to 2013: a trend analysis. PLoS One 2016;11:e0160642.

36. Heemelaar S, Petrus A, Knight M, van den Akker T. Maternal mortality due to cardiac disease in low- and middle-income countries. Trop Med Int Health 2020;25:673–86.

37. International Labour Organization. NATLEX: database of national labour, social security and related human rights legislation. Available at: http://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=&p_isn=96938&p_classification=15. Accessed Jul. 26, 2020.

38. Caffe I. Evaluation of safe motherhood and neonatal health plan of action 2013–2016. Available at: https://www.who.int/medium-term-plans/2013-2016/en. Accessed Jul. 30, 2020.

39. Kerber KJ, de Graft-Johnson JE, Bhutta ZA, Okong P, Starks A, Lawn JE. Continuum of care for maternal, newborn, and child health: from slogan to service delivery, Lancet 2007;370:1358–69.

40. Iqbal S, Maqsood S, Zakar R, Zakar MZ, Fischer F. Continuum of care in maternal, newborn and child health in Pakistan: analysis of trends and determinants from 2006 to 2012. BMC Health Serv Res 2017;17:189.

41. Souza JP, Gümezoglu AM, Vogel J, et al. Moving beyond essential interventions for reduction of maternal mortality (the WHO Multi-country Survey on Maternal and Newborn Health): a cross-sectional study. Lancet 2013;385:1747–55.

42. Moyer MA, Moyer CA, Calvert C, et al. Quality maternity care for every woman, everywhere: a call to action. Lancet 2016;388:2307–20.

43. Alves MM, Alves SV, Antunes MB, Santos DL. External causes and maternal mortality: proposal for classification. Rev Saude Publ 2013;47:283–91.

44. World Health Organization. Time to respond: a report on the global implementation of Maternal Death Surveillance and Response. Available at: https://apps.who.int/iris/bitstream/handle/10665/249524/9789241511230-english.pdf?sequence=1. Accessed Jul. 22, 2020.