Comparison theorems and some of their applications

V. F. Babenko, O. V. Kovalenko

Oles Gonchar Dnipropetrovsk National University
E-mail: babenko.vladislav@gmail.com E-mail: olegkovalenko90@gmail.com

Abstract

Analogues of Kolmogorov comparison theorems and some of their applications were established.

1 Notations. Statement of the problem. Known results.

Let $L_\infty(\mathbb{R})$ denote the space of all measurable and essentially bounded functions $x: \mathbb{R} \to \mathbb{R}$ with the norm

$$
\|x\| = \|x\|_{L_\infty(\mathbb{R})} = \text{ess sup} \{|x(t)| : t \in \mathbb{R}\}.
$$

For natural r let $L_r^\infty(\mathbb{R})$ denote the space of functions $x: \mathbb{R} \to \mathbb{R}$ such that the derivative $x^{(r-1)}$, $x^{(0)} = x$, is locally absolute continuous and $x^{(r)} \in L_\infty(\mathbb{R})$. Set $L_r^{\infty,\infty}(\mathbb{R}) := L_r^\infty(\mathbb{R}) \cap L_\infty(\mathbb{R})$.

For $r \in \mathbb{N}$ by $\varphi_r(t)$ we will denote the Euler perfect spline of the order r (i.e. r-th periodic integral of the functions signum t with zero mean value on the period).

To prove his outstanding inequality (see [1–3]) Kolmogorov proved a statement, known as a comparison theorem.

Theorem A. Let $r \in \mathbb{N}$ and a function $x \in L_r^{\infty,\infty}(\mathbb{R})$ are given. Let numbers $a \in \mathbb{R}$ and $\lambda > 0$ be such, that

$$
\|x\| \leq \|a\varphi_{\lambda,r}^{(k)}\|, \quad k \in \{0, r\}.
$$

If points $\xi, \eta \in \mathbb{R}$ are such, that $x(\xi) = a\varphi_{\lambda,r}(\eta)$, then

$$
|x'|(\xi) \leq |a| \cdot |\varphi'_{\lambda,r}(\eta)|.
$$

Both the Kolmogorov comparison theorem and its proof played important role in exact solutions of many extremal problems in approximation theory (see. [4, 5, 6, 7]).

The goal of this paper is to prove several analogues of Kolmogorov comparison theorems.

In the next paragraph we will introduce a family of splines, which will play the same role, as Euler perfect splines play in the theorem A, and study some of their properties. In § 3 we will prove 3 analogues of Kolmogorov comparison theorem for the cases when the norms of a function and its derivatives of orders $r-1$ and r are given; the norms of a function and its derivatives of orders $r-2$ and r are given; the norms of a function and its derivatives of orders $r-2$, $r-1$ and r are given. In § 4 we will give several applications of the obtained comparison theorems.

2 Comparison functions and their properties.

Let $a_1, a_2 \geq 0$. Set $T := a_1 + a_2 + 2$. Define a function $\psi_1(a_1, a_2; t)$ in the following way. On the segment $[0, T]$ set

$$
\psi_1(a_1, a_2; t) := \begin{cases}
0, & t \in [0, a_1], \\
t - a_1, & t \in [a_1, a_1 + 1], \\
1, & t \in [a_1 + 1, a_1 + a_2 + 1], \\
2 + a_1 + a_2 - t, & t \in [a_1 + a_2 + 1, T].
\end{cases}
$$

Continue function $\psi_1(a_1, a_2; t)$ to the segment $[T, 2 \cdot T]$ by the equality

$$
\psi_1(a_1, a_2; t) = -\psi_1(a_1, a_2; t - T), \quad t \in [T, 2 \cdot T]
$$

and then periodically with period $2 \cdot T$ to the whole real line.

Note, that $\psi_1(a_1, a_2; t) \in L_\infty^{1,\infty}(\mathbb{R})$.
For \(r \in \mathbb{N} \) denote by \(\psi_r(a_1, a_2; t) \) \((r-1)\)-th \(2 \cdot T\) - periodic integral of the function \(\psi_1(a_1, a_2; t) \) with zero mean on the period (so that, particularly, \(\psi'_r(a_1, a_2; t) = \psi_{r-1}(a_1, a_2; t) \)). Rodov \[8\] was the first, who considered the functions \(\psi_r(a_1, a_2; t) \).

We will list several properties of the function \(\psi_r(a_1, a_2; t) \), \(r \in \mathbb{N} \), which can easily be proved either directly from definition, or similar to the corresponding properties of Euler splines \(\varphi_r \) (see, for example, \[4\] Chapter 5, \[5\] Chapter 3). Note, that the function \(\psi_r \) is \(2 \cdot T\)-periodic and for all \(r \geq 1 \)

\[
\psi_r(a_1, a_2; t) = -\psi_r(a_1, a_2; t-T), \ t \in [T, 2 \cdot T].
\]

Moreover, the function \(\psi_2(a_1, a_2; t) \) has exactly two zeroes on the period — the points \(a_1 + \frac{a_2}{2} + 1 \) and \(2a_1 + \frac{3a_2}{2} + 3 \). Hence the functions \(\psi_r(a_1, a_2; t) \) for \(r \geq 2 \) also have exactly two zeroes on the period: for any \(k \in \mathbb{N} \)

\[
\psi_{2k+1}(a_1, a_2; 0) = \psi_{2k+1}(a_1, a_2; a_1 + a_2 + 2) = 0, \quad (2)
\]

\[
\psi_{2k}(a_1, a_2; a_1 + \frac{a_2}{2} + 1) = \psi_{2k}(a_1, a_2; 2a_1 + \frac{3a_2}{2} + 3) = 0. \quad (3)
\]

Note, that for \(a_1 = 0 \) the equality \((2)\) is true for \(k = 0 \) too.

Hence, in turn, we have that for \(r \geq 3 \) (in the case \(a_1 = 0 \) for \(r \geq 2 \)) the function \(\psi_r(a_1, a_2; t) \) is strictly monotone between zeroes of its derivative and the plot of the function \(\psi_r(a_1, a_2; t) \) is strictly convex at the intervals of constant sign. Moreover, it is easy to see, that the plot of the function \(\psi_r(a_1, a_2; t) \) is symmetrical with respect to its zeroes and the lines \(t = t_0 \), where \(t_0 \) is the zero of \(\psi'_r(a_1, a_2; t) \). At last note, that

\(\psi_r(0, 0; t) = \varphi_{2r}(t) \).

For \(r \in \mathbb{N} \), \(a_1, a_2 \geq 0 \), \(\lambda > 0 \) and \(b \in \mathbb{R} \) set

\[
\Psi_{a_1, a_2, b, \lambda}(t) = \Psi_{r, a_1, a_2, b, \lambda}(t) := b \left(\frac{\lambda}{2a_1 + 2a_2 + 4} \right)^{r} \psi_r \left(a_1, a_2; \frac{2a_1 + 2a_2 + 4}{\lambda} \right) t.
\]

Note, that the function \(\Psi_{a_1, a_2, b, \lambda}(t) \) is \(\lambda \) - periodic.

Theorem 1 Let \(r \in \mathbb{N} \) and \(x \in L^r_{\infty, \infty}(\mathbb{R}) \) be given. Then

a) there exist \(a_2 \geq 0 \), \(\lambda > 0 \) and \(b \in \mathbb{R} \) such, that

\[
\left\| \Psi_{0, a_2, b, \lambda}^{(s)} \right\| = \left\| x^{(s)} \right\|, \ s \in \{0, r-1, r\}.
\]

b) there exist \(a_1 \geq 0 \), \(\lambda > 0 \) and \(b \in \mathbb{R} \) such, that

\[
\left\| \Psi_{a_1, 0, b, \lambda}^{(s)} \right\| = \left\| x^{(s)} \right\|, \ s \in \{0, r-2, r\}.
\]

c) there exist \(a_1, a_2 \geq 0 \), \(\lambda > 0 \) and \(b \in \mathbb{R} \) such, that

\[
\left\| \Psi_{a_1, a_2, b, \lambda}^{(s)} \right\| = \left\| x^{(s)} \right\|, \ s \in \{0, r-1, r-2, r\}.
\]

The truth of the theorem \[4\] actually, follows from Kolmogorov comparison theorem. We will prove the statement a), the rest of the statements can be proved analogously.

It is clear, that \(\Psi_{0, 0, b, \lambda}(t) = b \left(\frac{1}{4} \right)^{r} \varphi_{2r}(\frac{1}{4} t) \). Hence the parameters \(b \) and \(\lambda \) can be chosen in such way, that \(\left\| \Psi_{0, 0, b, \lambda}^{(s)} \right\| = \left\| x^{(s)} \right\|, \ s = r-1, r \). Then theorem A implies that \(\left\| \Psi_{0, 0, b, \lambda} \right\| \leq \left\| x \right\| \). When the parameter \(a_2 \) increases \(\left\| \Psi_{0, a_2, b, \lambda} \right\| \) continuously increases from \(\left\| \Psi_{0, 0, b, \lambda} \right\| \) to \(\infty \), and \(\left\| \Psi_{0, a_2, b, \lambda}^{(s)} \right\| , \ s = r-1, r \) remain unchanged. Hence we can choose the parameter \(a_2 \) such, that \(\left\| \Psi_{0, a_2, b, \lambda}^{(s)} \right\| = \left\| x^{(s)} \right\|, \ s = 0, r-1, r \).
3 Comparison theorems.

The next theorem contains three analogues of Kolmogorov comparison theorem.

Theorem 2 Let \(r \in \mathbb{N} \) and \(x \in L^r_{\infty, \infty}(\mathbb{R}) \) be given. Let one of the following conditions hold.

(a) The numbers \(a_1 = 0, a_2 \geq 0, \lambda > 0 \) and \(b \neq 0 \) are such, that

\[
\|x^{(k)}\| \leq \|\Psi^{(k)}_{a_1, a_2, b, \lambda}\|, \quad k \in \{0, r - 1, r\}. \tag{4}
\]

(b) The numbers \(a_1 \geq 0, a_2 = 0, \lambda > 0 \) and \(b \neq 0 \) are such, that

\[
\|x^{(k)}\| \leq \|\Psi^{(k)}_{a_1, a_2, b, \lambda}\|, \quad k \in \{0, r - 2, r\}. \tag{5}
\]

c) The numbers \(a_1 \geq 0, a_2 \geq 0, \lambda > 0 \) and \(b \neq 0 \) are such, that

\[
\|x^{(k)}\| \leq \|\Psi^{(k)}_{a_1, a_2, b, \lambda}\|, \quad k \in \{0, r - 1, r - 2, r\}. \tag{6}
\]

If points \(\tau \) and \(\xi \) are such that \(x(\tau) = \Psi_{a_1, a_2, b, \lambda}(\xi) \), then

\[
|x'(\tau)| \leq |\Psi'_{a_1, a_2, b, \lambda}(\xi)|. \tag{7}
\]

Proof. For brevity we will write \(\Psi(t) \) instead of \(\Psi_{a_1, a_2, b, \lambda}(t) \) in the proof of this theorem. Considering, if necessary, the function \(-x(t)\) instead of \(x(t)\) and function \(-\Psi(t)\) instead of \(\Psi(t)\), we can count that \(x'(\tau) > 0\) and

\[
\Psi'(\tau) > 0. \tag{8}
\]

Moreover, considering appropriate shift \(\Psi(\cdot + \alpha) \) of the function \(\Psi\), we can count that \(\tau = \xi \), i.e.

\[
x(\tau) = \Psi(\tau). \tag{9}
\]

Assume, that (8) holds, but instead the inequality (7) (with \(\xi = \tau \)) the inequality

\[
|x'(\tau)| > |\Psi'(\tau)|
\]

holds. Denote by \((\tau_1, \tau_2)\) the smallest interval which contains \(\tau\) on which the function \(\Psi\) is monotone and such that \(\Psi'(\tau_1) = \Psi'(\tau_2) = 0\). In virtue of the assumption there exists a number \(\delta > 0\) such that \(x'(t) > \Psi'(t)\) for all \(t \in (\tau - \delta, \tau + \delta)\), and hence in virtue of (8) \(x(\tau + \delta) > \Psi(\tau + \delta)\) and \(x(\tau - \delta) < \Psi(\tau - \delta)\).

Choose \(\varepsilon > 0\) so small, that for a function \(x_\varepsilon(t) := (1 - \varepsilon)x(t)\) the following inequalities hold: \(x_\varepsilon(\tau + \delta) > \Psi(\tau + \delta)\) and \(x_\varepsilon(\tau - \delta) < \Psi(\tau - \delta)\). In virtue of the conditions (4) - (6) and condition (3) we have

\[
x_\varepsilon(\tau_1) > \Psi(\tau_1), \quad x_\varepsilon(\tau_2) < \Psi(\tau_2).
\]

Hence on the interval \((\tau_1, \tau_2)\) the difference \(\Delta_\varepsilon(t) := x_\varepsilon(t) - \Psi(t)\) has at least 3 sign changes.

It is easy to see, that there exist a sequence of functions \(\mu_N \in C^\infty(\mathbb{R}), N \in \mathbb{N}\) with the following properties:

1. \(\mu_N(t) = 1\) on interval \([\tau_1, \tau_2]\); \(\|\mu_N\| = 1\);

2. \(\mu_N(t) = 0\) for all \(t\) outside the interval \([\tau_1 - N \cdot \frac{\lambda}{2}; \tau_1 + N \cdot \frac{\lambda}{2}]\) (where, as before, \(T = a_1 + a_2 + 2\));

3. for all \(k = 1, 2, \ldots, r\)

\[
\max_{j = 1, k} \|\mu_N^{(j)}\| < \varepsilon \|x_\varepsilon^{(k)}\| \left(\sum_{i=1}^{k} C_i \|x_\varepsilon^{(k-i)}\| \right)^{-1},
\]

if \(N\) is enough big.
Hence, in virtue of property 3 of the function μ, sign change. Hence on the interval $[t_1, t_2]$,
\[\Delta_N(t) := \Psi(t) - x_N(t). \]
Then
\[x_N(t) = x_\varepsilon(t), \text{ if } t \in [t_1, t_2], \]
\[\Delta_N(t) = \Psi(t), \text{ if } |t - t_1| \geq N \cdot \frac{\lambda}{2} \]
and
\[\|x_N\| \leq \|x_\varepsilon\| = (1 - \varepsilon)\|x\| \leq (1 - \varepsilon)\|\Psi\|. \]
Moreover, for $k = 1, \ldots, r$
\[|x_N^{(k)}(t)| = |x_\varepsilon(t)\mu_N(t)^{(k)}| = \sum_{i=0}^{k} C_k^i x_\varepsilon^{(k-i)}(t)\mu_N^{(i)}(t) \leq \]
\[\leq \|x_\varepsilon^{(k)}\| + \sum_{i=1}^{k} C_k^i \|x_\varepsilon^{(k-i)}\|\|\mu_N^{(i)}\|. \]
Hence, in virtue of property 3 of the function μ_N and the choice of the number N, we get
\[\|x_N^{(k)}\| \leq \|x_\varepsilon^{(k)}\| = (1 - \varepsilon)\|x^{(k)}\| + \varepsilon\|x^{(k)}\| = \|x^{(k)}\|. \]
For $t \in [t_1, t_2]$ we have $\Delta_N(t) = \Psi(t) - x_\varepsilon(t)$, and hence the function $\Delta_N(t)$ has at least three sign changes on the interval $[t_1, t_2]$. At each of the rest monotonicity intervals of the function Ψ the function $\Delta_N(t)$ has at least one sign change. Hence on the interval $[t_1 - N \cdot \frac{\lambda}{2}, t_1 + N \cdot \frac{\lambda}{2}]$ the function $\Delta_N(t)$ has at least $2N + 2$ sign changes. Moreover, in virtue of (2), (3) and (10) for all $i = 1, 2, \ldots, \left\lfloor \frac{2\varepsilon}{\lambda} \right\rfloor$ the following equalities hold
\[\Delta_N^{(2i-1)}(t_1 - N \cdot \frac{\lambda}{2}) = \Delta_N^{(2i-1)}(t_1 + N \cdot \frac{\lambda}{2}) = 0. \] (11)

All of the arguments above are true if any of the condition $a) - c)$ hold. Let now condition $a)$ of the theorem holds.

Applying Rolle’s theorem and counting (11) we have that the function $\Delta_N^{(r-1)}(t)$ has at least $2N + 2$ zeroes on the interval $[t_1 - N \cdot \frac{\lambda}{2}, t_1 + N \cdot \frac{\lambda}{2}]$.

Hence on some monotonicity interval
\[[\alpha, \alpha + \frac{\lambda}{2}] \subset \left[t_1 - N \cdot \frac{\lambda}{2}, t_1 + N \cdot \frac{\lambda}{2} \right] \]
of the function $\Psi^{(r-1)}(t) = \Psi^{(r-1)}_{0, a, b, \lambda}(t)$ the function $\Delta_N^{(r-1)}(t)$ changes sign at least three times. But then the difference
\[\Psi^{(r-1)}_{0, a, b, \lambda}(t) - x_N^{(r-1)}(t) \]
changes the sign at least three times on some monotonicity interval of the function $\Psi^{(r-1)}_{0, a, b, \lambda}(t)$ too. However this contradicts to the Kolmogorov comparison theorem (see theorem A and, for example, [5, Statement 5.5.3]) because the Euler spline $\Psi^{(r-1)}_{0, 0, b, \lambda}(t)$ is comparison function for the function $x_N^{(r-1)}(t)$.

If the condition $b)$ of the theorem holds, then applying similar arguments we will get contradiction with Kolmogorov comparison theorem.

If the condition $c)$ of the theorem holds, then applying similar arguments we will get contradiction with already proved case when condition $a)$ holds. The theorem is proved.
4 Some applications.

From the theorem 2 we immediately get

Lemma 1 Let \(r \in \mathbb{N}, \; x \in L^r_{\infty, \infty}(\mathbb{R}) \) and one of the conditions a) – c) of the theorem 2 holds. Then on each monotonicity interval of the function \(\Psi_{a_1, a_2, b, \lambda}(t) \) the difference \(\Psi_{a_1, a_2, b, \lambda}(t) - x(t) \) has at most one sign change.

For 1-periodic non-negative integrable on period function \(x(\cdot) \) denote by \(r(x, \cdot) \) the decreasing rearrangement of the function \(x \) (see, for example [4, Chapter 6]).

As a corollary of the theorem 2 and the results of the Chapter 3 of the monograph [5] we get the following analogue of the Ligun inequality [9] (see also [7], Chapter 6).

Lemma 2 Let \(x : \mathbb{R} \to \mathbb{R} \) be a constant of the best uniform approximation of \(x \) on \([a, b] \). Assume the contrary, let \(\mu(x(t)) = 0 \). Then \(\| x^{(k)} \|_{L^p(0, 1)} \leq \lambda^{r-k-1} \| x^{(k)} \|_{L^p(0, 1)} \), where \(\lambda = 1 \) one of the following conditions holds.

a) Numbers \(a_1 = 0, \; a_2 \geq 0 \) and \(b \neq 0 \) are such that

\[
\| x^{(k)} \| \leq \left\| \Psi_{a_1, a_2, b, \lambda}^{(k)} \right\|, \; k \in \{r-1, r\}.
\]

b) Numbers \(a_1 \geq 0, \; a_2 = 0 \) and \(b \neq 0 \) are such that

\[
\| x^{(k)} \| \leq \left\| \Psi_{a_1, a_2, b, \lambda}^{(k)} \right\|, \; k \in \{r-1, r\}.
\]

c) Numbers \(a_1 \geq 0, \; a_2 \geq 0 \) and \(b \neq 0 \) are such that

\[
\| x^{(k)} \| \leq \left\| \Psi_{a_1, a_2, b, \lambda}^{(k)} \right\|, \; k \in \{r-1, r-2, r\}.
\]

Then

\[
E_0(x) := \inf_{c \in \mathbb{R}} \| x - c \| \leq \| \Psi_{a_1, a_2, b, 1} \|.
\]

We will proceed by induction on \(r \). The basis of the induction easily follows. We will dwell on the induction step. Assume the contrary, let \(E_0(x) > \| \Psi_{a_1, a_2, b, 1} \| \). Let \(c \) be a constant of the best uniform approximation of the function \(x \). We can count that \(\max_{t \in [0,1]} |x(t) - c| \) is attained in the point \(t = 0, \min_{t \in [0,1]} |x(t) - c| \) in the point \(m \) and

\[
m < \frac{1}{2}.
\]
This means that \(x'(0) = x'(m) = 0 \). Moreover
\[
- \int_{0}^{m} x'(t) dt = x(0) - x(m) = 2E_{0}(x) > 2 \| \Psi_{a_{1},a_{2},b,1} \| = - \int_{0}^{m} \Psi'_{a_{1},a_{2},b,1}(t) dt.
\]

However the last inequality together with the induction hypothesis and \([12]\) contradicts the lemma \([1]\).

Using the theorem \([2]\) lemma \([2]\) and ideas from \([11]\) (see also § 6.4 of the monograph \([7]\)) we get the following analogue of Babenko, Kofanov and Pichugov inequality.

Theorem 5 Let \(r \in \mathbb{N} \) and 1–periodic function \(x \in L_{r,\infty}^{\ast}(\mathbb{R}) \) are given. Let for some \(\lambda > 0 \) one of the conditions \(a) \) \(-\) \(c) \) of the lemma \([2]\) holds and \(E_{0}(x) = \| \Psi_{a_{1},a_{2},b,\lambda} \| \). Then
\[
\| x \|_{L_{p}(0,1)} \geq \| \Psi_{a_{1},a_{2},b,\lambda} \|_{L_{p}(0,\lambda)}.
\]

For a function \(x \in L_{\infty}(\mathbb{R}) \) let \(c(x) \) denote the constant of the best approximation for the function \(x \) in \(L_{\infty}(\mathbb{R}) \).

From theorem \([5]\) theorem \([2]\) and ideas from \([12]\) (see also § 6.7 of the monograph \([7]\)) we get the following analogue of Nagy type inequality (see \([13]\)), that was obtained by Babenko, Kofanov and Pichugov.

Theorem 6 Let \(r \in \mathbb{N} \), 1–periodic function \(x \in L_{r,\infty}^{\ast}(\mathbb{R}) \), and numbers \(p, q \in (0, \infty), q > p \) be given. Let for some \(\lambda > 0 \) one of the conditions \(a) \) \(-\) \(c) \) of the lemma \([2]\) hold and \(\| \Psi_{a_{1},a_{2},b,\lambda} \|_{L_{p}(0,\lambda)} = \| x - c(x) \|_{L_{p}(0,1)} \). Then
\[
\| \Psi_{a_{1},a_{2},b,\lambda} \|_{L_{q}(0,\lambda)} \geq \| x - c(x) \|_{L_{q}(0,1)}.
\]

References

[1] Kolmogorov A. N. Une generalization de l’inegalite de M. J. Hadamard entre les bornes superieures des derivees successives d’une function. // C. r. Acad. sci. Paris. — 1938. - 207. p. — 764–765.

[2] Kolmogorov A. N. On inequalities between upper bounds of consecutive derivatives of arbitrary function on the infinite interval, Uchenye zapiski MGU. — 1939. - 30. P. 3–16 (in Russian).

[3] Kolmogorov A. N. Selected works of A. N. Kolmogorov. Vol. I. Mathematics and mechanics. Translation: Mathematics and its Applications (Soviet Series), 25. Kluwer Academic Publishers Group, Dordrecht, 1991.

[4] Korneichuk N. P. Extremal problems of approximation theory – Moskow: Nauka, 1976, — 320 p (in Russian).

[5] Korneichuk N. P. Exact constants in approximation theory – Moskow: Nauka, 1987, — 423 p (in Russian).

[6] Korneichuk N. P., Babenko V. F., Ligun A. A. Extremal properties of polynomials and splines. – Kyiv. Nauk. dumka, 1992, — 304 p (in Russian).

[7] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A. Inequalities for derivatives and their applications // Ibid. /emdash.cyr N 3. /emdash.cyr P . 251–376.

[8] Rodov, A. M. Dependencies between upper bounds of derivatives of real functions. // Izv. AN USSR. Ser. Math.– 1946. 10. P 257–270 (in Russian).

[9] Ligun A.A. Inequalities for upper bounds of functionals // Analysis Math. — 1976. — 2, N 1. — P. 11–40.

[10] Korneichuk N. P., Ligun A. A., Doronin V. G. Approximation with constrains // Kyiv. Nauk. dumka, 1982, — 250 p (in Russian).

[11] Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for norms of intermediate derivatives of periodic functions and their applications // Ibid. — N 3. — P. 251–376.

[12] Babenko V.F., Kofanov V.A., Pichugov S.A. Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions // Approximation theory: A volume dedicated to Blagovest Sendov (B. Bojanov, Ed.). — Darba, Sofia, 2002. — P. 24–53.

[13] Sz.-Nagy B. Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung // Acta. Sci. Math. — 1941. — 10, — P. 64–74.
517.5

Теоремы сравнения производных и некоторые их приложения

В. Ф. Бабенко, О. В. Коваленко

Днепропетровский национальный университет им. Олеся Гончара,
Днепропетровск 49050.
E-mail: babenko.vladislav@gmail.com E-mail: olegkovalenko90@gmail.com

Аннотация

Получены аналгии теорем сравнения Колмогорова и указаны их некоторые приложения.

1 Обозначения. Постановка задачи. Известные результаты.

Через $L_\infty(\mathbb{R})$ будем обозначать пространство измеримых и существенно ограниченных функций $x: \mathbb{R} \to \mathbb{R}$ с нормой

$$
\|x\| = \|x\|_{L_\infty(\mathbb{R})} = \text{ess sup}\{ |x(t)| : t \in \mathbb{R} \}.
$$

Для натурального r через $L^r_\infty(\mathbb{R})$ обозначим пространство функций $x: \mathbb{R} \to \mathbb{R}$ таких, что производная $x^{(r-1)}, x^{(0)} = x$, локально абсолютно непрерывна, и $x^{(r)} \in L_\infty(\mathbb{R})$. Пусть также $L^r_{\infty,\infty}(\mathbb{R}) := L^r_\infty(\mathbb{R}) \cap L_\infty(\mathbb{R})$.

Для $r \in \mathbb{N}$ через $\varphi_r(t)$ будем обозначать сплайны Эйлера порядка r (т.е. r-ю периодическую первообразную функции $\text{sgn}\sin t$ со средним значением ноль на периоде). Для $\lambda > 0$ положим $\varphi_{\lambda,r}(t) := \lambda^{-r}\varphi_r(\lambda t)$.

Для доказательства своего знаменитого неравенства (см. [1–3]) Колмогоровым было доказано утверждение, известное как теорема сравнения.

Теорема A. Пусть $r \in \mathbb{N}$ и задана функция $x \in L^5_{\infty,\infty}(\mathbb{R})$. Пусть числа $a \in \mathbb{R}$ и $\lambda > 0$ таковы, что

$$
\|x^{(k)}\| \leq a\varphi_{\lambda,r}^{(k)}(t), \quad k \in \{0, r\}.
$$

Если точки $\xi, \eta \in \mathbb{R}$ таковы, что $x(\xi) = a\varphi_{\lambda,r}(\eta)$, то

$$
\|x'(\xi)\| \leq |a| \cdot |\varphi_{\lambda,r}'(\eta)|.
$$

Как сама теорема сравнения Колмогорова, так и метод её доказательства сыграли большую роль при точном решении многих экстремальных задач теории приближений (см. [1–3]).

Цель данной статьи – доказательство некоторых аналогов теоремы сравнения Колмогорова.

В следующем параграфе мы введем семейство сплайнов, которые в дальнейшем будут играть роль, которую в теореме A играли сплайны Эйлера, и изучим некоторые их свойства. В параграфе 3 мы докажем три аналгос теоремы сравнения Колмогорова для случаев, когда задачи нормы функции и нормы её производных порядков $r - 1$ и r; норма функции и нормы её произвольных порядков $r - 2$ и $r - 1$ и r. В параграфе 4 мы приведем некоторые приложения полученных теорем сравнения.

2 Функции сравнения и их свойства.

Пусть $a_1, a_2 > 0$. Положим $T := a_1 + a_2 + 2$. Определим функцию $\psi_1(a_1, a_2; t)$ следующим образом. На отрезке $[0, T]$ положим

$$
\psi_1(a_1, a_2; t) := \begin{cases}
0, & t \in [0, a_1], \\
-1, & t \in [a_1, a_1 + 1], \\
1, & t \in [a_1 + 1, a_1 + a_2 + 1], \\
2 + a_1 + a_2 - t, & t \in [a_1 + a_2 + 1, T].
\end{cases}
$$

Продолжим функцию $\psi_1(a_1, a_2; t)$ на отрезок $[T, 2 \cdot T]$ равенством

$$
\psi_1(a_1, a_2; t) = -\psi_1(a_1, a_2; t-T), \quad t \in [T, 2 \cdot T]
$$

(1)
а затем периодически с периодом $2 \cdot T$ на всю ось.

Заметим, что $\psi_1(a_1, a_2; t) \in L^r_{-\infty, \infty}([\alpha, \beta])$. Для $r \in \mathbb{N}$ обозначим через $\psi_r(a_1, a_2; t)$ $(r - 1)$-ю $2 \cdot T$ - периодическую первообразную функции $\psi_1(a_1, a_2; t)$ с нулевым средним на периоде (так что, в частности, $\psi'_1(a_1, a_2; t) = \psi_{r-1}(a_1, a_2; t)$). Функции $\psi_r(a_1, a_2; t)$ впервые рассматривал Родов [3].

Приведем некоторые свойства функции $\psi_r(a_1, a_2; t)$, $r \in \mathbb{N}$, которые нетрудно установить либо непосредственно, либо по аналогии со свойствами эйлеровых идеальных спайнов φ_r (см., например, [4 гл. 5], [5 гл. 3]). Отметим, что функция ψ_r имеет период $2 \cdot T$ и для всех $r \geq 1$

$$\psi_r(a_1, a_2; t) = \psi_r(a_1, a_2; t - T), \ t \in [T, 2 \cdot T].$$

Кроме того функция $\psi_2(a_1, a_2; t)$ имеет ровно два нуля на периоде – точки $a_1 + \frac{a_2}{2} + 1$ и $2a_1 + \frac{3a_2}{2} + 3$. Следовательно функция $\psi_r(a_1, a_2; t)$ при $r \geq 2$ также имеет ровно два нуля на периоде: для любого $k \in \mathbb{N}$

$$\psi_{2k+1}(a_1, a_2; 0) = \psi_{2k+1}(a_1, a_2; a_1 + a_2 + 2) = 0,$$

$$\psi_{2k}(a_1, a_2; a_1 + \frac{a_2}{2} + 1) = \psi_{2k}(a_1, a_2; 2a_1 + \frac{3a_2}{2} + 3) = 0.$$ \hspace{1cm} (2)

(3)

Отметим, что при $a_1 = 0$ равенство (2) справедливо и для $k = 0$.

Отсюда, в свою очередь, следует, что при $r \geq 3$ (а в случае, когда $a_1 = 0$ для $r \geq 2$) функция $\psi_r(a_1, a_2; t)$ строго монотонна между нулями своей производной, а график функции $\psi_r(a_1, a_2; t)$ является выпуклым на каждом промежутке знакопостоянства. Кроме того, как легко видеть, график $\psi_r(a_1, a_2; t)$ симметричен относительно оси y и однородно относительно прямых вида $t = t_0$, где t_0 – нуль $\psi'_r(a_1, a_2; t)$. Наконец, отметим, что $\psi_r(0, 0; t) = \varphi_{r/2}(t)$.

Для $r \in \mathbb{N}$, $a_1, a_2 \geq 0$, $\lambda > 0$ и $b \in \mathbb{R}$ положим

$$\Psi_{a_1, a_2, b, \lambda}(t) = \Psi_{\gamma; a_1, a_2, b, \lambda}(t) =$$

$$= b \left(\frac{\lambda}{2a_1 + 2a_2 + 4} \right)^r \psi_r \left(a_1, a_2; \frac{2a_1 + 2a_2 + 4}{\lambda} \right).$$

Отметим, что функция $\Psi_{a_1, a_2, b, \lambda}(t)$ является λ – периодической.

Теорема 1 Пусть $r \in \mathbb{N}$ и $x \in L^r_{-\infty, \infty}([\alpha, \beta])$. Тогда

a) существует $a_2 \geq 0$, $\lambda > 0$ и $b \in \mathbb{R}$ такие, что

$$\left\| \Psi^{(s)}_{0, a_2, b, \lambda} \right\| = \left\| x^{(s)} \right\|, \ s \in \{0, r - 1, r\}.$$

b) существует $a_1 \geq 0$, $\lambda > 0$ и $b \in \mathbb{R}$ такие, что

$$\left\| \Psi^{(s)}_{a_1, 0, b, \lambda} \right\| = \left\| x^{(s)} \right\|, \ s \in \{0, r - 2, r\}.$$

c) существует $a_1, a_2 \geq 0$, $\lambda > 0$ и $b \in \mathbb{R}$ такие, что

$$\left\| \Psi^{(s)}_{a_1, a_2, b, \lambda} \right\| = \left\| x^{(s)} \right\|, \ s \in \{0, r - 1, r - 2, r\}.$$

Справедливость теоремы на сущи следует из теоремы сравнения Колмогорова. Докажем утверждение a), остальные утверждения доказываются аналогично.

Ясно, что $\Psi^{(s)}_{0, a_2, b, \lambda}(t) = b \left(\frac{t}{4} \right)^r \varphi_{r/2}(\frac{4}{t}).$ Следовательно, параметры b и λ можно выбрать так, чтобы

$$\left\| \Psi^{(s)}_{0, a_2, b, \lambda} \right\| = \left\| x^{(s)} \right\|, \ s = r - 1, r.$$ Тогда из теоремы A будет следовать, что $\left\| \Psi_{0, a_2, b, \lambda} \right\| \leq \left\| x \right\|.$ При возрастании параметра a_2 $\left\| \Psi_{0, a_2, b, \lambda} \right\|$ будет неупорядоченно изменяться возрастать от $\left\| \Psi_{0, a_2, b, \lambda} \right\|$ до ∞, а $\left\| \Psi^{(s)}_{0, a_2, b, \lambda} \right\|, \ s = r - 1, r$ будут оставаться неизменными. Поэтому можно выбрать параметр a_2 так, чтобы

$$\left\| \Psi^{(s)}_{0, a_2, b, \lambda} \right\| = \left\| x^{(s)} \right\|, \ s = 0, r - 1, r.$$
3 Теоремы сравнения.

Следующая теорема содержит в себе три аналога теоремы сравнения Колмогорова.

Теорема 2 Пусть \(r \in \mathbb{N} \) и \(x \in L^r_{\infty, \infty} (\mathbb{R}) \). Пусть выполняется одно из следующих условий.

a) Числа \(a_1 = 0, a_2 \geq 0, \lambda > 0 \) и \(b \neq 0 \) таковы, что

\[
\left\| x^{(k)} \right\| \leq \left\| \Psi^{(k)}_{a_1, a_2, b, \lambda} \right\| , \ k \in \{0, r - 1, r\}.
\]

(4)

b) Числа \(a_1 \geq 0, a_2 = 0, \lambda > 0 \) и \(b \neq 0 \) таковы, что

\[
\left\| x^{(k)} \right\| \leq \left\| \Psi^{(k)}_{a_1, a_2, b, \lambda} \right\| , \ k \in \{0, r - 2, r\}.
\]

(5)

c) Числа \(a_1 \geq 0, a_2 \geq 0, \lambda > 0 \) и \(b \neq 0 \) таковы, что

\[
\left\| x^{(k)} \right\| \leq \left\| \Psi^{(k)}_{a_1, a_2, b, \lambda} \right\| , \ k \in \{0, r - 1, r - 2\}.
\]

(6)

Если точки \(\tau \) и \(\xi \) таковы, что \(x(\tau) = \Psi_{a_1, a_2, b, \lambda}(\xi) \), то

\[
\left| x'(\tau) \right| \leq \left| \Psi'_{a_1, a_2, b, \lambda}(\xi) \right|.
\]

(7)

Доказательство. Для сокращения записей в ходе данного доказательства мы будем писать \(\Psi(t) \) вместо \(\Psi_{a_1, a_2, b, \lambda}(t) \). Рассматривая при необходимости функцию \(-x(t) \) вместо функции \(x(t) \) и функцию \(-\Psi(t) \) вместо \(\Psi(t) \), мы можем считать, что \(x'(\tau) > 0 \) и

\[
\Psi'(\tau) > 0.
\]

(8)

Кроме того, рассматривая подходящий сдвиг \(\Psi(\cdot + a) \) функции \(\Psi \) можем считать, что и \(\tau = \xi \), т.е.

\[
x(\tau) = \Psi(\tau).
\]

(9)

Предположим, что (9) имеет место, но при этом вместо неравенства (7) (с \(\xi = \tau \)) имеет место неравенство

\[
\left| x'(\tau) \right| > \left| \Psi'(\tau) \right|.
\]

Обозначим через \((\tau_1, \tau_2) \) наименьший интервал монотонности \(\Psi \), содержащий точку \(\tau \) и такую, что \(\Psi'(\tau_1) = \Psi'(\tau_2) = 0 \). В силу сделанного предположения существует число \(\delta > 0 \) такое, что \(x' (t) > \Psi'(t) \) для всех \(t \in (\tau - \delta, \tau + \delta) \), а значит в силу (9) \(x(\tau + \delta) > \Psi(\tau + \delta) \) и \(x(\tau - \delta) < \Psi(\tau - \delta) \).

Выберем \(\varepsilon > 0 \) настолько малым, чтобы для функции \(x_\varepsilon(t) := (1 - \varepsilon)x(t) \) выполнялись неравенства

\[
x_\varepsilon(\tau + \delta) > \Psi(\tau + \delta) \quad \text{и} \quad x_\varepsilon(\tau - \delta) < \Psi(\tau - \delta).
\]

В силу одного из соотношений (4) – (6) и (8) будет

\[
x_\varepsilon(\tau_1) > \Psi(\tau_1), \quad x_\varepsilon(\tau_2) < \Psi(\tau_2).
\]

Таким образом на промежутке \((\tau_1, \tau_2) \) разность \(\Delta_x(t) := x(s) - \Psi (t) \) будет иметь не менее трёх перемен знака.

Как легко видеть, существует последовательность функций \(\mu_N \in C^\infty (\mathbb{R}) \), \(N \in \mathbb{N} \), со следующими свойствами:

1. \(\mu_N(t) = 1 \) на промежутке \([\tau_1, \tau_2] \); \(\| \mu_N \| = 1 \);

2. \(\mu_N(t) = 0 \) для всех \(t \) вне промежутка \([\tau_1 - N \cdot \frac{A}{2}, \tau_1 + N \cdot \frac{A}{2}] \) (где, как и ранее, \(T = a_1 + a_2 + 2 \));

3. для всех \(k = 1, 2, \ldots, r \)

\[
\max_{j=1, \ldots, k} \left\| \mu_N^{(j)} \right\| \leq \varepsilon \left\| x_\varepsilon^{(k)} \right\| \left(\sum_{l=1}^{k} C_l \left\| x_\varepsilon^{(k-l)} \right\| \right)^{-1},
\]

если \(N \) достаточно велико.
Ниже считаем, что \(N \) выбрано настолько большим, что свойство 3 выполнено. Полагаем

\[
x_N(t) := x_\varepsilon(t) \cdot \mu_N(t),
\]

и

\[
\Delta_N(t) := \Psi(t) - x_N(t).
\]

Тогда

\[
x_N(t) = x_\varepsilon(t), \text{ если } t \in [\tau_1, \tau_2],
\]

\[
\Delta_N(t) = \Psi(t), \text{ если } |t - \tau_1| \geq N \cdot \frac{\lambda}{2}
\]

и

\[
\|x_N\| \leq \|x_\varepsilon\| = (1 - \varepsilon)\|x\| \leq (1 - \varepsilon)\|
\]

Кроме того для \(k = 1, \ldots, r \)

\[
\left| x_N^{(k)}(t) \right| = \left| x_\varepsilon(t)\mu_N(t)^{(k)} \right| \leq \sum_{i=0}^{k} C_k \|x_\varepsilon^{(k-i)}(t)\| \mu_N^{(i)}(t) \leq \left\| x_\varepsilon^{(k)} \right\| + \sum_{i=1}^{k} C_k \left\| x_\varepsilon^{(k-i)} \right\| \| \mu_N^{(i)} \|.
\]

Отсюда, с учетом свойства 3 функции \(\mu_N \) и выбора числа \(N \), получаем

\[
\left\| x_N^{(k)} \right\| < \left\| x_\varepsilon^{(k)} \right\| + \varepsilon \left\| x_\varepsilon^{(k)} \right\| = (1 - \varepsilon) \left\| x^{(k)} \right\| + \varepsilon \left\| x^{(k)} \right\| = \left\| x^{(k)} \right\|.
\]

Для \(t \in [\tau_1, \tau_2] \) имеем \(\Delta_N = \Psi(t) - x_\varepsilon(t) \), а значит функция \(\Delta_N(t) \) имеет не менее трёх перемен знака на отрезке \([\tau_1, \tau_2]\). На каждом из остальных промежутков монотонности функции \(\Psi \) функция \(\Delta_N \) имеет не менее одной переменности знака. Таким образом на промежутке \([\tau_1 - N \cdot \frac{\lambda}{2}, \tau_1 + N \cdot \frac{\lambda}{2}]\) функция \(\Delta_N(t) \) имеет не менее \(2N + 2 \) перемен знака. Кроме того, в силу \([2], [3] \) и \([11] \) для всех \(i = 1, 2, \ldots, \frac{r-1}{2} \) справедливы равенства

\[
\Delta_N^{(2i-1)} \left(\tau_1 - N \cdot \frac{\lambda}{2} \right) = \Delta_N^{(2i-1)} \left(\tau_1 + N \cdot \frac{\lambda}{2} \right) = 0.
\]

Все проведённые выше рассуждения справедливы при выполнении любого из условий \(a) - c) \). Пусть теперь выполняется условие \(a) \) теоремы.

Применяя теорему Ролля и учитывая \([11] \) получаем, что функция \(\Delta_N^{(r-1)}(t) \) имеет не менее \(2N + 2 \) нуля на промежутке

\[
[\tau_1 - N \cdot \frac{\lambda}{2}, \tau_1 + N \cdot \frac{\lambda}{2}].
\]

Отсюда следует, что на некотором промежутке монотонности

\[
[\alpha, \alpha + \frac{\lambda}{2}] \subseteq [\tau_1 - N \cdot \frac{\lambda}{2}, \tau_1 + N \cdot \frac{\lambda}{2}]
\]

функции \(\Psi^{(r-1)}(t) = \Psi_{0, a_2, b, \lambda}^{(r-1)}(t) \) функция \(\Delta_N^{(r-1)}(t) \) меняет знак не менее трёх раз. Но тогда и разность

\[
\Psi_{0, 0, b, \lambda}^{(r-1)}(t) - x_N^{(r-1)}(t)
\]

на некотором промежутке монотонности функции \(\Psi_{0, 0, b, \lambda}^{(r-1)}(t) \) меняет знак не менее трёх раз. Однако это противоречит теореме сравнения Колмогорова (см., теорему A и, например, \([5] \) Предложение 5.5.3) так как эйлеров сплайн \(\Psi_{0, 0, b, \lambda}^{(r-1)}(t) \) является функцией сравнения для функции \(x_N^{(r-1)}(t) \).

Если выполняется условие \(b) \) теоремы, то применим аналогичные рассуждения приём к противоречию с теоремой сравнения Колмогорова.

Если же выполняется условие \(c) \) теоремы, то применим аналогичные рассуждения приём к противоречию с уже доказанным случаем \(a) \). Теорема доказана.
4 Некоторые приложения.
Из теоремы 2 сразу получаем, что справедлива

Лемма 1 Пусть $r \in \mathbb{N}$, $x \in L^r_{\infty, \infty}(\mathbb{R})$ и выполняется одно из условий $a) - c)$ теоремы 2. Тогда на каждом промежутке монотонности функции $\Psi_{a_1, a_2, b, \lambda}(t)$ разность $\Psi_{a_1, a_2, b, \lambda}(t) - x(t)$ имеет не более одной перепендикуляр знака.

Для 1-периодической неотрицательной суммируемой на промежутке функции $x(t)$ через $r(x, \cdot)$ будем обозначать убывающую перестановку функции x (см., например [4], гл. 6).

Как следствие из теоремы 2 и результатов главы 3 монографии [5] получаем следующую теорему.

Теорема 3 Пусть заданы $r \in \mathbb{N}$ и 1-периодическая функция $x \in L^r_{\infty, \infty}(\mathbb{R})$. Пусть выполнено одно из условий $a) - c)$ теоремы 2. Тогда для всех $t > 0$

$$
\int_0^t r(|x'(t)|, u)du \leq \lambda^{-1} \int_0^t r(|\Psi_{a_1, a_2, b, \lambda}'(t), u)|du.
$$

Для $a, b \in \mathbb{R}$, $a < b$, $p \in (0, \infty)$ и непрерывной функции $x \colon \mathbb{R} \to \mathbb{R}$ положим $\|x\|_{L^p(a,b)} := \left(\frac{b}{a} \int_a^b |x(t)|^p dt\right)^{\frac{1}{p}}$.

Из теоремы 3 и общих теорем о сравнении перестановок (см., например, [6], предложение 1.3.10) получаем следующую теорему из теоремы 2 и результатов главы 3 монографии [5] получаем следующую теорему.

Теорема 4 Пусть заданы $r \in \mathbb{N}$ и 1-периодическая функция $x \in L^r_{\infty, \infty}(\mathbb{R})$. Пусть выполнено одно из условий $a) - c)$ теоремы 2. Тогда для любого $1 \leq p < \infty$ и натурального $k < r - 2$ (а если выполняется условие a), то для любого натурального $k < r - 1$

$$
\|x^{(k)}\|_{L^p(0,1)} \leq \lambda^{r-k} \|\Psi_{a_1, a_2, b, \lambda}'\|_{L^p(0,1)}.
$$

Следующая лемма является аналогом неравенства Лигуна [9] (см. также [7], глава 6).

Лемма 2 Пусть заданы $r \in \mathbb{N}$ и 1-периодическая функция $x \in L^r_{\infty, \infty}(\mathbb{R})$. Пусть для $\lambda = 1$ выполняется одно из следующих условий.

a) Числа $a_1 = 0$, $a_2 \geq 0$ и $b \neq 0$ таковы, что

$$
\|x^{(k)}\| \leq \|\Psi_{a_1, a_2, b, \lambda}'\|, \quad k \in \{r-1, r\}.
$$

b) Числа $a_1 \geq 0$, $a_2 = 0$ и $b \neq 0$ таковы, что

$$
\|x^{(k)}\| \leq \|\Psi_{a_1, a_2, b, \lambda}'\|, \quad k \in \{r-2, r\}.
$$

c) Числа $a_1 \geq 0$, $a_2 \geq 0$ и $b \neq 0$ таковы, что

$$
\|x^{(k)}\| \leq \|\Psi_{a_1, a_2, b, \lambda}'\|, \quad k \in \{r-1, r-2, r\}.
$$

Тогда

$$
E_0(x) := \inf_{c \in \mathbb{R}} \|x - c\| \leq \|\Psi_{a_1, a_2, b, \lambda}'\|.
$$

Доказательство проведем индукцией по r. Базис индукции проверяется непосредственно. Остановимся на индуктивном шаге. Предположим противное, пусть $E_0(x) > \|\Psi_{a_1, a_2, b, \lambda}'\|$. Пусть c — константа наилучшего равномерного приближения функции x. Можем считать, что $\max_{t \in [0,1]} |x(t) - c|$ достигается в точке $t = 0$, $\min_{t \in [0,1]} |x(t) - c| — в точке m и при этом

$$
m < \frac{1}{2}.
$$
Это значит, что $x'(0) = x'(m) = 0$. Кроме того

$$-\int_0^m x'(t)dt = x(0) - x(m) = 2E_0(x) > 2\|\Psi_{a_1,a_2,b,1}\| = -\int_0^m x'(a_2,b,1)(t)dt.$$

Однако последнее неравенство вместе с индуктивным предположением и [12] противоречит лемме [1].

Используя теорему [2] лемму [2] и идеи из [11] (см. также параграф 6.4 монографии [7]) получаем следующий аналог неравенства Бабенко, Кофанова и Пичугова.

Теорема 5 Пусть заданы $r \in \mathbb{N}$ и 1-периодическая функция $x \in L_{\infty}^r(\mathbb{R})$. Пусть для некоторого $\lambda > 0$ выполняется одно из условий $a) - c)$ леммы [2] и $E_0(x) = \|\Psi_{a_1,a_2,b,\lambda}\|$. Тогда

$$\|x\|_{L_p(0,1)} \geq \|\Psi_{a_1,a_2,b,\lambda}\|_{L_p(0,\lambda)}.$$

Для функции $x \in L_{\infty}(\mathbb{R})$ через $c(x)$ обозначим константу наилучшего приближения функции x в $L_{\infty}(\mathbb{R})$.

Из теоремы 5 идей из [12] (см. также параграф 6.7 монографии [7]) получаем следующий аналог неравенства типа Надя (см. [13]), полученного Бабенко, Кофановым и Пичуговым.

Теорема 6 Пусть заданы $r \in \mathbb{N}$, 1-периодическая функция $x \in L_{\infty}^r(\mathbb{R})$, и числа $p, q \in (0, \infty)$, $q > p$. Пусть для некоторого $\lambda > 0$ выполняется одно из условий $a) - c)$ леммы [2] и $\|\Psi_{a_1,a_2,b,\lambda}\|_{L_p(0,\lambda)} = \|x - c(x)\|_{L_p(0,1)}$. Тогда

$$\|\Psi_{a_1,a_2,b,\lambda}\|_{L_q(0,\lambda)} \geq \|x - c(x)\|_{L_q(0,1)}.$$

Список литературы

[1] Kolmogorov A. N. Une generalization de l’inegalite de M. J. Hadamard entre les bornes superieures des derivees successives d’une fonction. // C. r. Acad. sci. Paris. — 1938. — 207. p. — 764–765.

[2] Колмогоров А.Н. О неравенствах между верхними гранями последовательных производных произвольной функции на бесконечном интервале. // Ученые записки МГУ. — 1939. — C. 11–40.

[3] Колмогоров А.Н. О неравенствах между верхними гранями последовательных производных произвольной функции на бесконечном интервале. // В кн. А.Н. Колмогоров, Избранные труды, Математика и механика, М. Наука, 1985, с. 252 – 263.

[4] Корнейчук Н.П. Экстремальные задачи теории приближения – Москва: Наука, 1976, — 320 с.

[5] Корнейчук Н.П. Точные постоянные в теории приближения – Москва: Наука, 1987, — 423 с.

[6] Корнейчук Н.П., Бабенко В.Ф., Лигун А.А. Экстремальные свойства полиномов и сплайнов. – Киев. Наук. думка, 1992, — 304 с.

[7] Бабенко В.Ф., Корнейчук Н.П., Кофанов В.А., Пичугов С.А. Неравенства для производных и их приложения — Киев: Наукова думка, 2003, — 590 с.

[8] Родов, А.М. Зависимость между верхними гранями производных функций действительного переменного // Изв. АН СССР. Сер. Мат. — 1946. — 10. с — 257–270.

[9] Ligun A.A. Inequalities for upper bounds of functionals // Analysis Math. — 1976. — 2, N 1. — C. 11–40.

[10] Корнейчук Н.П., Лигун А.А, Доронин В.Г. Аппроксимация с ограничениями — Киев: Наукова думка, 1982, — 250 с.

[11] Babenko V.F., Kofanov V.A., Pichugov S.A. Inequalities for norms of intermediate derivatives of periodic functions and their applications // Ibid. — N 3. — P.251–376.

[12] Babenko V.F., Kofanov V.A., Pichugov S.A. Comparison of rearrangement and Kolmogorov-Nagy type inequalities for periodic functions // Approximation theory: A volume dedicated to Blagovesch Sendov (B. Bojanov, Ed.). — Darba, Sofia, 2002. — P. 24–53.

[13] Sz.-Nagy B. Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung // Acta. Sci. Math. — 1941. — 10, — C. 64–74.