View-Invariant Template Matching Using Homography Constraints

Sina Lotfian and Hassan Foroosh

Abstract

Change in viewpoint is one of the major factors for variation in object appearance across different images. Thus, view-invariant object recognition is a challenging and important image understanding task. In this paper, we propose a method that can match objects in images taken under different viewpoints. Unlike most methods in the literature, no restriction on camera orientations or internal camera parameters are imposed and no prior knowledge of 3D structure of the object is required. We prove that when two cameras take pictures of the same object from two different viewing angels, the relationship between every quadruple of points reduces to the special case of homography with two equal eigenvalues. Based on this property, we formulate the problem as an error function that indicates how likely two sets of 2D points are projections of the same set of 3D points under two different cameras. Comprehensive set of experiments were conducted to prove the robustness of the method to noise, and evaluate its performance on real-world applications, such as face and object recognition.

Index Terms
Object Recognition, View Invariance, Homography, Homology

I. INTRODUCTION

Object recognition from raw images given one or more examples as template(s) is a challenging problem that has important applications in diverse areas of computer vision such as image annotation [139]–[144], self-localization [79], [80], [83], [85]–[87], surveillance [9], [13], [14], [70]–[72], [75]–[78], [84], [133], [135], [136], [138], human action and interaction recognition [8], [10], [12], [15], [16], [35], [124]–[129], [134], [137], target localization and tracking [97]–[99], [122], [131], shape modeling and pattern recognition [1]–[3], [36]–[38], [53], [54], [94], [101], [148], and image-based rendering [4], [5], [22], [28], [44], [47], [48], [65], [100], [130], [145], [146]. The problem is often exacerbated by issues such as image quality, noise, and drastic appearance changes caused by viewpoint variations. Although, preprocessing steps such as image enhancement [32]–[34], [46], [69], [93], [107], [109], [111], [117], [120], [121], [123], and registration [6], [18], [19], [21], [23]–[26], [29], [30], [56]–[61], [63], [64], [110], [118], [119] may help in tackling some of the challenges, viewpoint variations remain by and large challenging.

The variation in pose and viewpoint can cause distortion in the feature space to the extent that many recognition algorithms may fail to recognize objects. The relationship between the rotation and translation of an object in the 3D world and the changes in the coordinates of pixels in the 2D image plane is also not trivial. Algorithms dealing with variation in viewpoint usually make assumptions either about change in feature space caused by relative 3D transformations, or about the position and orientation of the camera or requiring autocalibration to estimate the camera parameters [7], [27], [39]–[41], [41]–[43], [45], [49]–[51], [62], [73], [74], [81], [82], [88]–[91], [96] from the images in order to account for viewpoint and camera parameter changes. Learning viewpoint manifolds [55], [20] and the latent spaces for viewpoints [106] [105] are two popular approaches taken by researchers for this problem, but they require simplifying assumptions in order to solve the problem. In this paper, a geometric approach is taken to address this problem and a solution in the most general case is provided.

We propose a template matching method based on image-domain relations in the projective space that can match objects across any pair of poses as long as the template image and the probe image have enough overlap for keypoint extraction. We prove that for one object seen by two cameras, with arbitrary intrinsic and extrinsic camera parameters, a restriction applies on the eigenvalues of the homography matrices associated with any quadruple of keypoint correspondences. By exploiting this constraint, an error function is introduced that is able to estimate how likely the provided reference and test images belong to the same object under different viewpoints.

The novelty of the paper can be summarized as follow:

• We propose a template matching method that can match the given template with any inquiry image even under a wide baseline and viewpoint changes, as long as they have overlaps.
• Unlike learning-based methods, the proposed approach does not need separate training data for each viewpoint. We also do not make any assumptions on the orientation of the cameras or their intrinsic matrices.

Sina Lotfian and Hassan Foroosh are with the Department of Computer Science, University of Central Florida, Orlando, FL, 32816 USA (e-mail: slotfian@Knights.ucf.edu, foroosh@cs.ucf.edu).
TABLE I

DESIRABLE PROPERTIES OF SOME VIEW-INVARIANT RECOGNITION ALGORITHMS	GUV	OSL	3DFree	IICP
CCA [106]	✓	✓		
GMA [105]	✓	✓		
DPFD [103]	✓	✓	✓	✓
Castillo et al [52]	✓	✓	✓	✓
Schels et al [104]	✓	✓	✓	✓
Ours	✓	✓	✓	✓

One common approach to tackle the variance in pose is to find latent spaces where the correlation between two views are maximized. Canonical correlation analysis (CCA) [106] projects the data from two views into two low dimensional subspace which are highly correlated. Sharma et al. [105] have extended CCA method so that it exploits the labels of training data to find a more discriminative projection direction. Both of the mentioned methods can exploit kernels to model non-linearity. Although methods based on latent spaces have proven to be powerful tools for both multi-view image classification and multi-modal data classification, they require learning a projection direction for every viewpoint and their ability to generalize to unseen viewpoints is limited.

Another set of solutions try to fit the given 2D images to predefined 3D shapes of objects (e.g. a face) from a single view image [147] [92]. In [17] authors propose a 3D pose normalization for face recognition in order to make it robust to variation in pose, [104] exploits 3D CAD models to detect and find the pose of objects such as bikes and cars. The use of these methods are restricted to objects with available predetermined 3D models. A rather interesting solution was proposed by [52] that does not require 3D reconstruction of the face, instead they use the cost of stereo matching as their error function. However, they make the assumption that epipolar lines are horizontal which does not hold true for the object recognition in the general case.

Ideally, we are in search of view-invariant recognition algorithms that require few training data (hopefully one shot learning) (OSL), generalizable to unseen viewpoints (GUV), work on objects without known 3D structure, (3DFree) and invariant to the internal camera parameters (IICP). Table 1 compares the various classes of algorithms described above, in terms of these desired properties.

In this paper, we take a geometric approach to the problem of viewpoint variation. Our work is inspired by Shen et al. [126], who used homography constraints to recognize body pose transitions between two successive frames of two video cameras, observing human actions. Although, we are not dealing with video frames in this work, we show that the concept can be extended also to a pair of still images of a rigid object (i.e. instead of dealing with moving points in space viewed by two pairs of frames (4 images), we can extend the idea to recognizing a rigid object from two images. The key to achieve this extension is to consider quadruple of points in each camera image, instead of triplets of points in two frames of each camera. The result is a rigid object recognition method that can handle unknown viewpoints and internal camera parameters.

III. PROPOSED METHOD

Given a reference image (I_r) and a query image (I_q), our goal is to determine if they belong to the same 3D object under two different viewpoints or not. First, point correspondences are extracted between I_r and I_q, and represented as $S = \{(p_{r1}, p_{q1}), (p_{r2}, p_{q2}), ..., (p_{rn}, p_{qn})\}$. Such correspondences can be obtained from any keypoint extraction and matching algorithm such as SIFT [95], SURF [31] or Harris [68]. For more clarity, we use upper case letters for 3D coordinates and lower case for 2D coordinates on the image plane. We introduce an error function that in the ideal case vanishes, when there
exist a unique 3D configuration of points which map to the extracted 2D keypoint correspondences. Conversely, the value of the error function increases, if such 3D configuration is not possible. Furthermore, the proposed error function is fully projective (i.e. fully defined in the image domain) and hence is invariant to camera positions and its internal parameters.

Consider the object shown in Figure 1 which consist of four 3D points \{P_1, P_2, P_3, P_4\} in general positions. Two cameras (C1 and C2) that are located in two different coordinates are imaging this object as \(I_1\) and \(I_2\). In the most general case, the two cameras would be projective with 11 degrees of freedom (i.e. different intrinsic parameters and arbitrary orientations in the 3D space). Two key observations that lead to the proposed solution are: (1) Any three of the quadruple of points define a plane in the 3D space that induces a homography between the two cameras; (2) With a quadruple of points one can obtain 4 such planes, i.e. two pairs of homographies. Each pair of homographies plays a similar role as a moving plane considered in \([126]\), except that in our case instead of a single plane moving in time, we are considering the dual case of two planes in a rigid body. Since this case is dual to the problem considered by \([126]\), the construct remains the same. We illustrate this using the example of Figure 1.

Let two planes \(\pi_1\) (orange) in Figure 1(a) and \(\pi_2\) (blue) in Figure 1(b) correspond to the triplets of 3D points \(\{P_1, P_2, P_3\}\) and \(\{P_1, P_2, P_4\}\), respectively. Let the corresponding image points be \(p_r = \{p_{r1}, p_{r2}, p_{r3}, p_{r4}\}\) and \(p_q = \{p_{q1}, p_{q2}, p_{q3}, p_{q4}\}\). We assume that no three projected points are co-linear in either views. Let also \(e_1\) and \(e_2\) denote the epipoles in the two images. Since epipoles are mapped across two images by the homography induced by any plane in the scene, we have

\[
H_1 p_{ri} = p_{qi}, \quad i = 1, 2, 3 \quad (1)
\]

\[
H_1 e_1 = e_2 \quad (2)
\]

\[
H_2 p_{ri} = p_{qi}, \quad i = 1, 2, 4 \quad (3)
\]

\[
H_2 e_1 = e_2 \quad (4)
\]

These equations yield a pair of homographies through which we can define \(H = H_1 H_2^{-1}\).

Proposition 1: \(H\) will reduce to a homology if and only if the presumed point correspondences \(p_r\) and \(p_q\) are images of the same 3D point configuration.

The immediate consequence of this observation is that two of the eigenvalues of \(H\) must be equal if the presumed point correspondences \(p_r\) and \(p_q\) are images of the same 3D point configuration. This allows us to define a cost function that would make it possible to determine if a set of image points and their matching correspondences from a template image are originated from the same 3D object. Suppose we have \(m\) such template images and we establish \(n\) putative point correspondences between the query image and each reference template. One can then define \(K = \binom{n}{4}\) quadruples of point correspondences, yielding a total of \(2K\) matrices, \(H_{km}, k = 1, ..., 2K\), for each template \(m \in \{1, ..., M\}\). Let \(\epsilon_1(H_{km})\) and \(\epsilon_2(H_{km})\) be the two closest eigenvalues of the matrix \(H_{km}\). Finding the optimal matching template \(\hat{m}\) is then a labeling process that would be given by:

\[
\hat{m} = \arg \min_{m \in \{1, ..., M\}} \sum_{k=1}^{2K} \left| \frac{\epsilon_1(H_{km}) - \epsilon_2(H_{km})}{\epsilon_1(H_{km}) + \epsilon_2(H_{km})} \right| \quad (5)
\]

IV. Experimental Results

In this section, the performance of the proposed method on both synthetic and real-world datasets is demonstrated with wide applications such as object and face recognition.

A. Synthetic Data

In order to understand the behavior of the error function in equation \(\ref{error_function}\) in the presence of noise in key point localization, the process of projection of 3D points on the image plane is simulated using the pinhole camera model. The point clouds used for generating the synthetic objects are obtained from the BigBIRD \([132]\) dataset, which consist of RGBD images of objects sampled on the the viewing hemisphere. Object 'Advil' is chosen as the positive example and the object 'Syrup' is chosen as negative example. It is expected that the error measure for 'Advil-Advil' pair will be lower that 'Advil-Syrup' pair.

Two cameras are used to generate synthetic images on the image plane. The first camera which is the reference camera is fixed at the world origin and is looking at the Z axis. The second camera or the test camera is moving on the viewing hemisphere. This is achieved by rotating the reference camera around Y and Z axis. Since the number of points in the cloud is over one thousand, we randomly choose 8 points as the keypoints and project only these 8 points on the image plane. The focal lengths for both cameras change randomly in the range 1000 ± 100. Then by adding Gaussian noise to the position of keypoints on the image plane, we measure the robustness of the algorithm.

In figure 2 the matching score for different viewing angles are plotted for both the matching query-template pair (the surface below) and the non-matching query-template pair (surface above). It can be observed that for the matching pair the error is
almost zero, while for non-matching pairs the error is high. To find out the extent of separation between these (i.e. ability to distinguish between a correct and incorrect match), we added Gaussian noise to the position of the keypoints in the image planes. It can be observed that as the noise variance increases, the two error surfaces get closer and the distinction between true match and a false match becomes harder. Our experiments show that we can handle noise strength of up to about $\sigma = 12$ which roughly equates the correspondences being 24 pixels off.

V. CONCLUSION

In this paper, a new view-invariant template-matching method is introduced that imposes no restrictions on external or internal camera parameters. The robustness of the algorithm has been tested by adding Gaussian noise to the coordinates of the keypoints on the image to simulate the behavior of error in keypoint localization. Finally, the accuracy of the method on object and face recognition was tested, producing remarkable good results.

REFERENCES

[1] Muhamad Ali and Hassan Foroosh. Natural scene character recognition without dependency on specific features. In *Proc. International Conference on Computer Vision Theory and Applications*, 2015.

[2] Muhamad Ali and Hassan Foroosh. A holistic method to recognize characters in natural scenes. In *Proc. International Conference on Computer Vision Theory and Applications*, 2016.

[3] Muhammad Ali and Hassan Foroosh. Character recognition in natural scene images using rank-1 tensor decomposition. In *Proc. of International Conference on Image Processing (ICIP)*, pages 2891–2895, 2016.

[4] Mais Alnasser and Hassan Foroosh. Image-based rendering of synthetic diffuse objects in natural scenes. In *Proc. IAPR Int. Conference on Pattern Recognition*, volume 4, pages 787–790, 2006.
[5] Mais Alnasser and Hassan Foroosh. Rendering synthetic objects in natural scenes. In Proc. of IEEE International Conference on Image Processing (ICIP), pages 493–496, 2006.

[6] Mais Alnasser and Hassan Foroosh. Phase shifting for non-separable 2d haar wavelets. IEEE Transactions on Image Processing, 16:1061–1068, 2008.

[7] Nazim Ashraf and Hassan Foroosh. Robust auto-calibration of a ptz camera with non-overlapping fov. In Proc. International Conference on Pattern Recognition (ICPR), 2008.

[8] Nazim Ashraf and Hassan Foroosh. Human action recognition in video data using invariant characteristic vectors. In Proc. of IEEE Int. Conf. on Image Processing (ICIP), pages 1385–1388, 2012.

[9] Nazim Ashraf and Hassan Foroosh. Motion retrieval using consistency of epipolar geometry. In Proceedings of IEEE International Conference on Image Processing (ICIP), pages 4219–4223, 2015.

[10] Nazim Ashraf, Yuping Shen, Xiaochun Cao, and Hassan Foroosh. View-invariant action recognition using weighted fundamental ratios. Journal of Computer Vision and Image Understanding (CVIU), 117:587–602, 2013.

[11] Nazim Ashraf, Yuping Shen, Xiaochun Cao, and Hassan Foroosh. View invariant action recognition using weighted fundamental ratios. Computer Vision and Image Understanding, 117(6):587–602, 2013.

[12] Nazim Ashraf, Yuping Shen, and Hassan Foroosh. View-invariant action recognition using rank constraint. In Proc. of IAPR Int. Conf. Pattern Recognition (ICPR), pages 3611–3614, 2010.

[13] Nazim Ashraf, Chuan Sun, and Hassan Foroosh. Motion retrieval using low-rank decomposition of fundamental ratios. In Proc. IEEE International Conference on Image Processing (ICIP), pages 1905–1908, 2012.

[14] Nazim Ashraf, Chuan Sun, and Hassan Foroosh. Motion retrieval using low-rank decomposition of fundamental ratios. In Image Processing (ICIP), 2012 19th IEEE International Conference on, pages 1905–1908, 2012.

[15] Nazim Ashraf, Chuan Sun, and Hassan Foroosh. View-invariant action recognition using projective depth. Journal of Computer Vision and Image Understanding (CVIU), 123:41–52, 2014.

[16] Nazim Ashraf, Chuan Sun, and Hassan Foroosh. View invariant action recognition using projective depth. Computer Vision and Image Understanding, 123:41–52, 2014.

[17] Akshay Asthana, Tim K Marks, Michael J Jones, Kinh H Tieu, and M Rohith. Fully automatic pose-invariant face recognition via 3d pose normalization. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 937–944. IEEE, 2011.

[18] Vildan Atalay and Hassan Foroosh. In-band sub-pixel registration of wavelet-encoded images from sparse coefficients. Signal, Image and Video Processing, 2017.

[19] Vildan A. Aydin and Hassan Foroosh. Motion compensation using critically sampled dwt subbands for low-bitrate video coding. In Proc. IEEE International Conference on Image Processing (ICIP), 2017.

[20] Amr Bakry and Ahmed Elgammal. Untangling object-view manifold for multiview recognition and pose estimation. In Computer Vision--ECCV 2014, pages 434–449. Springer, 2014.

[21] Murat Balci, Mais Alnasser, and Hassan Foroosh. Alignment of maxillofacial ct scans to stone-cast models using 3d symmetry for backscattering artifact reduction. In Proceedings of Medical Image Understanding and Analysis Conference, 2006.

[22] Murat Balci, Mais Alnasser, and Hassan Foroosh. Image-based simulation of gaseous material. In Proc. of IEEE International Conference on Image Processing (ICIP), pages 489–492, 2006.

[23] Murat Balci, Mais Alnasser, and Hassan Foroosh. Subpixel alignment of mri data under cartesian and log-polar sampling. In Proc. of IAPR Int. Conf. Pattern Recognition, volume 3, pages 607–610, 2006.

[24] Murat Balci and Hassan Foroosh. Estimating sub-pixel shifts directly from phase difference. In Proc. of IEEE International Conference on Image Processing (ICIP), pages 1057–1060, 2005.

[25] Murat Balci and Hassan Foroosh. Estimating sub-pixel shifts directly from the phase difference. In Proc. of IEEE Int. Conf. Image Processing (ICIP), volume 1, pages 1–1057, 2005.

[26] Murat Balci and Hassan Foroosh. Inferring motion from the rank constraint of the phase matrix. In Proc. IEEE Conf. on Acoustics, Speech, and Signal Processing, volume 2, pages ii–925, 2005.

[27] Murat Balci and Hassan Foroosh. Metrology in uncalibrated images given one vanishing point. In Proc. of IEEE International Conference on Image Processing (ICIP), pages 361–364, 2005.

[28] Murat Balci and Hassan Foroosh. Real-time 3d fire simulation using a spring-mass model. In Proc. of Int. Multi-Media Modelling Conference, pages 8–pp, 2006.

[29] Murat Balci and Hassan Foroosh. Sub-pixel estimation of shifts directly in the fourier domain. IEEE Trans. on Image Processing, 15(7):1965–1972, 2006.

[30] Murat Balci and Hassan Foroosh. Sub-pixel registration directly from phase difference. Journal of Applied Signal Processing-special issue on Super-resolution Imaging, 2006:1–11, 2006.

[31] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In European conference on computer vision, pages 404–417. Springer, 2006.

[32] M Berthod, H Shekarforoush, and Zerubia. Refining depth and luminance information using super-resolution. In Proc. of IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pages 654–657, 1994.

[33] Marc Berthod, Hassan Shekarforoush, Michael Werman, and Josiane Zerubia. Reconstruction of high resolution 3d visual information. In IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pages 654–657, 1994.

[34] Adeel Bhutta and Hassan Foroosh. Blind blur estimation using low rank approximation of cepstrum. Image Analysis and Recognition, pages 94–103, 2006.

[35] Hakan Boyraz, Syed Zain Masood, Baoyuan Liu, Marshall Tappen, and Hassan Foroosh. Action recognition by weakly-supervised discriminative region localization.

[36] Ozan Cakmakci, Gregory E. Fasshauer, Hassan Foroosh, Kevin P. Thompson, and Jannick P. Rolland. Meshfree approximation methods for free-form surface representation in optical design with applications to head-worn displays. In Proc. SPIE Conf. on Novel Optical Systems Design and Optimization XI, volume 7061, 2008.

[37] Ozan Cakmakci, Brendan Moore, Hassan Foroosh, and Jannick Rolland. Optimal local shape description for rotationally non-symmetric optical surface design and analysis. Optics Express, 16(3):1583–1589, 2008.

[38] Ozan Cakmakci, Sophie Vo, Hassan Foroosh, and Jannick Rolland. Application of radial basis functions to shape description in a dual-element off-axis magnifier. Optics Letters, 33(11):1237–1239, 2008.

[39] X Cao and H Foroosh. Metrology from vertical objects. In Proc. SPIE Conf. on Novel Optical Systems Design and Optimization XI, volume 7061, 2008.

[40] Xiaochun Cao and Hassan Foroosh. Simple calibration without metric information using an isoseles trapezoid. In Proc. of IAPR Int. Conf. Pattern Recognition (ICPR), volume 1, pages 104–107, 2004.

[41] Xiaochun Cao and Hassan Foroosh. Camera calibration using symmetric objects. IEEE Transactions on Image Processing, 15(11):3614–3619, 2006.
Yuping Shen and Hassan Foroosh. View invariant action recognition using fundamental ratios. In Proc. International Conference on Computer Vision (ICCV), pages 1–7, 2007.

Yuping Shen and Hassan Foroosh. Estimating geo-temporal location of stationary cameras using shadow trajectories. In Proc. European Conference on Computer Vision (ECCV), 2008.

Yuping Shen and Hassan Foroosh. Gps coordinate estimation from calibrated cameras. In Proc. International Conference on Pattern Recognition (ICPR), 2008.

Yuping Shen and Hassan Foroosh. Gps coordinate estimation from calibrated cameras. In Proc. International Conference on Pattern Recognition (ICPR), pages 1–4, 2008.

Yuping Shen and Hassan Foroosh. Practical ptz camera calibration using givens rotations. In Proc. IEEE International Conference on Image Processing (ICIP), 2008.

Yuping Shen and Hassan Foroosh. Practical pure pan and pure tilt camera calibration. In Proc. International Conference on Pattern Recognition (ICPR), 2008.

Yuping Shen and Hassan Foroosh. Refining ptz camera calibration. In Proc. International Conference on Pattern Recognition (ICPR), 2008.

Yuping Shen and Hassan Foroosh. Using solar shadow trajectories for camera calibration. In Proc. IEEE International Conference on Image Processing (ICIP), 2008.

Ammi Li, Shiguang Shan, Xilin Chen, and Wen Gao. Maximizing intra-individual correlations for face recognition across pose differences. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 605–611. IEEE, 2009.

Ame Lorette, Hassan Shekarforoush, and Josiane Zerubia. Super-resolution with adaptive regularization. In Proc. International Conf. on Image Processing (ICIP), volume 1, pages 169–172, 1997.

Sina Lotfian and Hassan Foroosh. View-invariant object recognition using homography constraints. In Proc. IEEE International Conference on Image Processing (ICIP), 2017.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91–110, 2004.

Fei Lu, Xiaochan Cao, Yuping Shen, and Hassan Foroosh. Camera calibration from two shadow trajectories. In Proc. IEEE International Conference on Advanced Video and Signal-based Surveillance, volume 2.

Brian Millikan, Aritra Dutta, Qiyu Sun, and Hassan Foroosh. Compressed infrared target detection using stochastically trained least squares. IEEE Transactions on Aerospace and Electronics Systems, page accepted, 2017.

Brian Millikan, Aritra Dutta, Nazanin Rahnavard, Qiyu Sun, and Hassan Foroosh. Initialized iterative reweighted least squares for automatic target recognition. In Military Communications Conference, MILCOM, IEEE, pages 506–510, 2015.

Brian A. Millikan, Aritra Dutta, Nazanin Rahnavard, Qiyu Sun, and Hassan Foroosh. Initialized iterative reweighted least squares for automatic target recognition. In Proc. of MILCOM, 2015.

Brendan Moore, Marshall Taggren, and Hassan Foroosh. Learning face appearance under different lighting conditions. In Proc. IEEE Int. Conf. on Biometrics: Theory, Applications and Systems, pages 1–8, 2008.

Dustin Morley and Hassan Foroosh. Improving ransac-based segmentation through cnn encapsulation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-20).

Soubhik Sanyal, Sivaram Prasad Mudunuri, and Soma Biswas. Discriminative pose-free descriptors for face and object matching. In Proceedings of the IEEE International Conference on Computer Vision, pages 3837–3845, 2015.

Johannes Schels, Joerg Liebelt, and Rainer Lienhart. Learning an object class representation on a continuous viewsphere. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3170–3177. IEEE, 2012.

Abhishek Sharma, Abhishek Kumar, Hal Daume III, and David W Jacobs. Generalized multiview analysis: A discriminative latent space. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2160–2167. IEEE, 2012.

Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis, 2004. Cambridge University Press, New York, NY, USA.

H Shekarforoush. Super-Resolution in Computer Vision. PhD thesis, PhD Thesis, University of Nice, 1996.

H Shekarforoush, M Berthod, and J Zerubia. Sub-pixel reconstruction of a variable albedo lambertian surface. In Proceedings of the British Machine Vision Conference (BMVC), volume 1, pages 307–316.

H Shekarforoush and R Chellappa. adaptive super-resolution for predator video sequences.

H Shekarforoush and R Chellappa. A multifractal formalism for stabilization and activity detection in fingerprint sequences. In Proceedings, ARL Federated Laboratory 4th Annual Symposium, pages 305–309, 2000.

H Shekarforoush, R Chellappa, H Niemann, H Seidel, and B Girod. Multi-channel superresolution for images sequences with applications to airborne video data. Proc. of IEEE Image and Multidimensional Digital Signal Processing, pages 207–210, 1998.

Hassan Shekarforoush. Conditioning bounds for multi-frame super-resolution algorithms. Computer Vision Laboratory, Center for Automation Research, University of Maryland, 1999.

Hassan Shekarforoush. Noise suppression by removing singularities. IEEE Trans. Signal Processing, 48(7):2175–2179, 2000.

Hassan Shekarforoush. Noise suppression by removing singularities. IEEE transactions on signal processing, 48(7):2175–2179, 2000.

Hassan Shekarforoush, Amit Banerjee, and Rama Chellappa. Super resolution for fopen sar data. In Proc. AeroSense, pages 123–129. International Society for Optics and Photonics, 1999.

Hassan Shekarforoush, Marc Berthod, Michael Werman, and Josiane Zerubia. Subpixel bayesian estimation of albedo and height. International Journal of Computer Vision, 19(3):289–300, 1996.

Hassan Shekarforoush, Marc Berthod, and Josiane Zerubia. 3d super-resolution using generalized sampling expansion. In Proc. International Conf. on Image Processing (ICIP), volume 2, pages 300–303, 1995.

Hassan Shekarforoush, Marc Berthod, and Josiane Zerubia. Subpixel image registration by estimating the polyphase decomposition of the cross power spectrum. PhD thesis, INRIA-Technical Report, 1995.

Hassan Shekarforoush, Marc Berthod, and Josiane Zerubia. Subpixel image registration by estimating the polyphase decomposition of cross power spectrum. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pages 532–537, 1996.

Hassan Shekarforoush and Rama Chellappa. Blind estimation of psf for out of focus video data. In Image Processing, 1998. ICP 98. Proceedings. 1998 International Conference on, pages 742–745, 1998.

Hassan Shekarforoush and Rama Chellappa. Data-driven multi-channel super-resolution with application to video sequences. Journal of Optical Society of America-A, 16(3):481–492, 1999.

Hassan Shekarforoush and Rama Chellappa. A multi-fractal formalism for stabilization, object detection and tracking in firl sequences. In Proc. of International Conference on Image Processing (ICIP), volume 3, pages 78–81, 2000.

Hassan Shekarforoush, Josiane Zerubia, and Marc Berthod. Denoising by extracting fractional order singularities. In Proc. of IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP), volume 5, pages 2889–2892, 1998.

Yuping Shen, Nazim Ashraf, and Hassan Foroosh. Action recognition based on homography constraints. In Proc. of IAPR Int. Conf. Pattern Recognition (ICPR), pages 1–4, 2008.

Yuping Shen and Hassan Foroosh. View invariant action recognition using fundamental ratios. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
[126] Yuping Shen and Hassan Foroosh. View-invariant recognition of body pose from space-time templates. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–6. IEEE, 2008.

[127] Yuping Shen and Hassan Foroosh. View-invariant recognition of body pose from space-time templates. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pages 1–6, 2008.

[128] Yuping Shen and Hassan Foroosh. View invariant recognition of body pose from space-time templates. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[129] Yuping Shen and Hassan Foroosh. View-invariant action recognition from point triplets. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(10):1898–1905, 2009.

[130] Yuping Shen, Fei Lu, Xiaochun Cao, and Hassan Foroosh. Video completion for perspective camera under constrained motion. In Proc. of IAPR Int. Conf. Pattern Recognition (ICPR), volume 3, pages 63–66, 2006.

[131] Chen Shu, Luming Liang, Wenzhang Liang, and Hassan Foroosh. 3d pose tracking with multitemplate warping and sift correspondences. IEEE Trans. on Circuits and Systems for Video Technology, 26(11):2043–2055, 2016.

[132] Arjun Singh, James Sha, Karthik S Narayanan, Tudor Achim, and Pieter Abbeel. Bigbird: A large-scale 3d database of object instances. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 509–516. IEEE, 2014.

[133] Chuan Sun and Hassan Foroosh. Should we discard sparse or incomplete videos? In Proceedings of IEEE International Conference on Image Processing (ICIP), pages 2502–2506, 2014.

[134] Chuan Sun, Imran Junejo, and Hassan Foroosh. Action recognition using rank-1 approximation of joint self-similarity volume. In Proc. IEEE International Conference on Computer Vision (ICCV), pages 1007–1012, 2011.

[135] Chuan Sun, Imran Junejo, and Hassan Foroosh. Motion retrieval using low-rank subspace decomposition of motion volume. In Computer Graphics Forum, volume 30, pages 1953–1962. Wiley, 2011.

[136] Chuan Sun, Imran Junejo, and Hassan Foroosh. Motion sequence volume based retrieval for 3d captured data. Computer Graphics Forum, 30(7):1953–1962, 2012.

[137] Chuan Sun, Imran Junejo, Marshall Tappen, and Hassan Foroosh. Exploring sparseness and self-similarity for action recognition. IEEE Transactions on Image Processing, 24(8):2488–2501, 2015.

[138] Chuan Sun, Marshall Tappen, and Hassan Foroosh. Feature-independent action spotting without human localization, segmentation or frame-wise tracking. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2689–2696, 2014.

[139] Amara Tariq and Hassan Foroosh. Scene-based automatic image annotation. In Proc. of IEEE International Conference on Image Processing (ICIP), pages 3047–3051, 2014.

[140] Amara Tariq and Hassan Foroosh. Feature-independent context estimation for automatic image annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1958–1965, 2015.

[141] Amara Tariq and Hassan Foroosh. T-clustering: Image clustering by tensor decomposition. In Proc. of International Conference on Image Processing (ICIP), pages 4803–4807, 2015.

[142] Amara Tariq, Asim Karim, and Hassan Foroosh. A context-driven extractive framework for generating realistic image descriptions. IEEE Transactions on Image Processing, 26(2):619–632, 2002.

[143] Amara Tariq, Asim Karim, and Hassan Foroosh. Nelasso: Building named entity relationship networks using sparse structured learning. IEEE Trans. on on Pattern Analysis and Machine Intelligence, 2017.

[144] Amara Tariq, Asim Karim, Fernando Gomez, and Hassan Foroosh. Exploiting topical perceptions over multi-lingual text for hashtag suggestion on twitter. In The Twenty-Sixth International FLAIRS Conference, 2013.

[145] Jiangjian Xiao, Xiaochun Cao, and Hassan Foroosh. 3d object transfer between non-overlapping videos. In Proc. of IEEE Virtual Reality Conference, pages 127–134, 2006.

[146] Jiangjian Xiao, Xiaochun Cao, and Hassan Foroosh. A new framework for video cut and paste. In Proc. of Int. Conf. on Multi-Media Modelling Conference Proceedings, pages 8–pp, 2006.

[147] Dong Yi, Zhen Lei, and Stan Li. Towards pose robust face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3539–3545, 2013.

[148] Changqing Zhang, Xiaochun Cao, and Hassan Foroosh. Constrained multi-view video face clustering. IEEE Transactions on Image Processing, 24(11):4381–4393, 2015.