Economic Impact Assessment of Mini Micro Hydel Power Projects in Khyber Pakhtunkhwa

Ijaz ur Rahman1, Maoz1, Tanvir Ahmad1
1United States Pakistan Center for Advanced Studies in Energy UET Peshawar, Pakistan

Received: 17 October, Revised: 25 October, Accepted: 31 October

Abstract—The exhaustion of the fossil fuel supply of the world is an understood eventuality, considering the pace at which these resources are being exploited the world over. More so when the global energy requirements are increasing without much interruption; suffice to say the current state of operations in the energy arena is not going to last long. Alternative energy resources, in this worldview, provide an auspicious avenue of fulfilling the burgeoning human thirst for energy. The impact of these alternative energy resources utilization will be twofold: the satiation of the energy demand, and the culmination of the global warming resulting from the incessant use of the fossil fuels. The urge for alternative resources of energy is key to survival and demand of future. In comparison to all the alternative resources of energy, Hydro power present better results in terms of efficiency and long term viability. The viability of Hydro Power is subject to its high initial cost and major construction with no return in the initial phase of construction. This work is aimed at presenting the technical and financial aspects of Micro-Hydro power. The financial assessment is based on the Net Present Value (NPV), Internal Rate of Return and Benefit to Cost Ratio (B/C). Apart from the social benefits to the residents and improving the quality of life, the financial feasibility is tested on the basis the above parameters and results show the micro hydro are feasible in the lights of mentioned parameters. The proposition is tested and implemented on three different case studies, i.e., Ajmera Hydro power plant, Bersa Payen and Sheri Dumrai HPP. The data shows successful results in all the mentioned cases.

Keywords—Biogas, Social impact, Livelihoods, rural development, Environment

I. INTRODUCTION

The exhaustion of the fossil fuel supply of the world is an understood eventuality, considering the pace at which these resources are being exploited the world over. More so when the global energy requirements are increasing without much interruption; suffice to say the current state of operations in the energy arena is not going to last long. Alternative energy resources, in this worldview, provide an auspicious avenue of fulfilling the burgeoning human thirst for energy. The impact of these alternative energy resources utilization will be twofold: the satiation of the energy demand, and the culmination of the global warming resulting from the incessant use of the fossil fuels. The global consensus on keeping the world temperature hike post industrialization below 2 degrees is ushering in a new era of increasing dependency on renewable energy harvesting techniques at the expanse of shunning away the centuries long use of conventional fuels. Resultantly a drop in the installation of power generating facilities operating on the conventional fuels can be seen from reports delineating the energy outlook of the yesteryears [1]. Another trend noticeable in the recent years is the shifting of global energy usage patterns where the developing countries of Asia and Africa are increasingly using more and more energy and slated to leave the developed western economies for the first time in 2020 in terms of energy usage [2].

Renewable energy installation as evident from the graph above has been at the forefront of energy growth endeavors for the past decade. The increased demand has inevitably lead to slashing of prices as per Swanson’s law which predicts decrease of 20% in a technology’s price for every doubling of demand[3]. International Energy Agency report for the outlook of world energy installation puts renewable growth at a higher pace than the conventional energy resources with 167 GW of new installation against a 57 GW coal power plants installations and a 29 GW gas power plants. Furthermore, the forecasts paint an even greener picture prognosticating upwards of 920 GW installations of renewable energy extraction facilities by 2022 as shown in the figure. This, fortuitously, has been an improvement on the previous forecasts and if true will put renewable energy at 30% of world energy applications by 2022 as shown in figure 1[1].

Figure 1. World renewable energy capacity addition by resource since 2011

© Authors retain all copyrights 2019 IJBEMW. This is an open access article distributed under the CC-BY License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In Pakistan the electricity mix is heavily tilted towards non-renewable thermal power plants making up 35.2% of total energy pie. Renewable energy, albeit a less time consuming and cleaner option, is not prevalent in the country[4]. The country has been able to achieve 80% electrification for the last twenty years and the energy consumption in TOE has reached 79 million in comparison to the 34 million TOE in 1994-95 but the overall makeup of the energy mix and the non-availability of much of the generation potential has pushed the country towards the incessant load shedding which severely disrupts the everyday lives and economic activities of the country[5]. Moreover the abundance of renewable energy potential in the country also make it an obvious low cost tool for handling the energy shortage and price hike[6]. The potential of the country as shown in the table below gives ample opportunity for cheap energy generation at the doorsteps of the consumers to bypass the transmission and distribution charges over larger distances[7]. Only one resource coastal wind power has the potential to generate 50000 MW electricity, with northern areas also have some wind potential and so does the Sindh Gharo sector[8]. The renewable past and future shown in figure 2.

Sooner than later the policy formulators would have to start thinking on the lines of sustainable renewable energy options for a self-reliant durable economic growth[10]. In addition to the expensive kWh produced using imported fuels another big concern for Pakistan’s power sector is the remote unelectrified communities which stands over 25% of the population[11]. Owing to the remote and diasporic nature of this disenfranchised population the grid access would be too costly to be worth the economic output promised[6]. Renewable energy technologies owing to their prevalence and ease of adoption are a ray of hope for these communities[12]. The Figure 3 is shown Pakistan renewable energy generation projections 2010-2050.

The energy demands have remained elusive from the capacity growth for the past decade in the country with the demand growing at an astounding rate of 8% compared to economy growth, on average, of 3-4%[6]. The contemporary power generation scenario is heavily dependent on imported fuels, 36%, and indigenous depleting natural gas resources, 27% [9] as shown in the Figure 4. Albeit the energy crisis has to some extent been curtailed, the cost on economy of the imported hydrocarbons is telling and diminishing the growth rate[9].

The province of Khyber Pakhtunkhwa has vast resources of Hydropower generation and the provincial government has been leaving no stones unturned for tapping its potential through its mini/micro hydropower projects, first step towards which was the provincial power policy of 2016, the first of its kind after the 18th amendment[17].

Energy and Power Department of the province of Khyber Pakhtunkhwa and Pakhtunkhwa Energy Development Organization (PEDO) has initiated various projects of off grid
The project aims to provide electricity access to 240000 household[19] across the province in remote areas by 2021[16][5 prop]. The details of the project are given in the table 1 and 2 below.

TABLE 1 BREAKDOWN OF THE 356 MHPP PROJECTS BY GOVERNMENT OF KHYBER PAKHTUNKHWA (PHASE 1)

S. No.	No. of MHPPs	Capacity (MW)	Stream	Estimated No of House holds	Start	Planned Completion
1.	310	29.04	Stream	104,000	20-2-2015	2018
2.	46	5.67	Stream		1-2-2017	
Total	356	34.69				

TABLE 2 MHPP PROJECTS PHASE II BY KP GOVERNMENT

Sr. No.	No. of MHPPs	Capacity (MW)	Stream/Orifice	Estimated No of House holds	Planned Completion
1.	512	37.41	Stream	159,000	2021-22
2.	160	15.72	Canal		2021-22
Total	672	53.13			
Total	1028	87.82			

The 356 MHPPs are distributed among various districts of KP with an estimated cost of PKR. 5501.66 million PKR detailed in the table 3.

The projects, albeit a commendable initiative, would require a thorough consideration to the impact aspect of the project for achieving far reaching impact[12]. Energy in itself is not a goal but rather an alleyway to the fulfillment of national prosperity objectives. That is why the socioeconomic, specifically economic, impact of electrification is a key focus in modern power projects. The figure 5 below gives ample evidence to support this claim where the energy usage per capita of a number of countries around the world are plotted against their human development index (HDI)[11].

TABLE 3 SCOPE AND LOCATIONS OF THE 356 MHPP PROJECTS

Name of Scheme	Districts	Capacity (MW)	Cost (M.Rs)
Construction of 356 Mini/Micro	Swat, Buner, Shangla, Lower Dir.	35.6	550

It is obvious that the provision of energy in sufficient amounts is directly correlated to the national prosperity[20]. That however is not the full picture as some countries, as seen from the figure, have achieved more human development for relatively same per capita energy consumption. This puts the need of energy projects’ economic impact study into perspective [21].

In the contemporary world struggle with poverty alleviation, energy access projects need to take in to account the social and economic impact that stem from these projects. Countries world overachieve disproportionate social and economic development from similar energy consumption per capita[22]. From the figure 5, Denmark for instance, achieves similar HDI from half the energy consumption as Canada [19].

In this context the MHPP projects attain even more importance as they are targeted at the remote, economically and socially disadvantaged communities of the world and in Pakistan[23]. These projects provide a golden opportunity for leapfrogging these disadvantaged communities out of their economic destitution. The objectives of this thesis, given in the next section, are a first of its kind endeavor in Pakistan for successfully evaluating the economic progress that the installed MHP projects have brought about in the lives of the benefiting communities[24]. This thesis will provide basic primary knowledge of the ways in which the economic impact can be furthered and will prove a precious resource for the energy policy and power projects implementing agencies to better plan these projects for elevated benefit to the society[25].
II. METHODOLOGY

The study was carried out in the Battagram District of Khyber Pakhtunkhwa province of Pakistan. The district shown in the figure 6 lies mostly in the northern mountainous region. Three MHPPs were chosen for the study from within the district’s premises. There are tens of MHPPs installed but these three were chosen because of their easier accessibility and data availability. The three MHPPs are listed in the following.

1. Ajmera Hydro power plant
2. Bersa Payen
3. Sheri Dumrai HPP

The main point of this analysis was presenting the technical and financial aspects of Micro-Hydro power. The financial assessment is based on the Net Present Value (NPV), Internal Rate of Return and Benefit to Cost Ratio (B/C). Apart from the social benefits to the residents and improving the quality of life, the financial feasibility is tested on the basis the above parameters and results. The technical work is based on evaluating the soundness of the civil works, equipment, and distribution network designs and the ensuing implementation on ground.

III. RESULTS AND DISCUSSIONS

1) Techno-Economic Impact Analysis of Ajmera Micro Hydro Power Station

a) Stream Hydrology

The Ajmera power project is located on the right bank of Ajmera Stream which is one of the two main source streams of the Nandhar Khwarr. Discharge of the stream has been calculated on four years hydrological data by using catchment area method. For this purpose, daily discharge data of four years recorded at the Batli Ajmera Gauge station has been used of the Pakistan. As the Hydrological study and analysis given below shows that for three months (November, December and January) discharge in the Khwarr have chances to be reduced below the design discharge. Hence, imported Francis Turbine of 400 kW is proposed to be installed at Ajmera MHP. So, the unit will remain operational throughout the year in case of low discharge without any remarkable decrease in power generation.

This Power Project (Ajmera) is located on the bank of Ajmera Khwarr and an important of the two stream in Batagram. The optimum flow rate of the stream is calculated on the basis of five years of hydrological data by deploying catchment area technique. The data is constantly collected and monitored through gauge station at Batli Ajmera. The hydrological data suggest variation in flow rate from the months November, December to January. The flow data from the tables below shows that the flow falls below designed flow in some months. The head vs flow rate suggests the installation of Francis turbine as shown in the figure 7 below.

b) Design Flow by Catchment Area Method

The design flow is calculated from the gauge station data installed at Ajmera. The daily discharge values are computed in the hydrograph to find the optimal flow as shown in figure 8.

The catchment area is found from the high points of the contour map. The area of 442 km2 is selected for this purpose.

Technical terms and parameters

Capital Cost

Capital cost of any small hydro project entails the following

Direct cost
Which includes the following

Civil works
Electromechanical equipment
Other direct cost, like laborer etc.

Indirect Cost
Indirect cost includes

(i) Land establishment
(ii) Financing cost
(iii) Local area development charges
(iv) Interest during construction for commissioning the project
(v) It also contains initial capitalized spares
The catchment area is shown in the diagram below.

The design discharge is found from the above data as shown in the Hydro-graph in figure 19, 20.

The design flow rate for this project is thus comes out to be 159 cusecs.

c) Power Calculation (Energy Production)

The power potential of a scheme is theoretically calculated by the following given formula shown in equation (A). The design flow calculation in figure 9 and flow duration curve for Ajmeera shown in figure 10.

The energy (kW) is calculated using the famous equation;

\[P = \eta \times g \times Q \times H \]

Where
\[\eta = \text{Overall efficiency coefficient} \]
\[P = \text{Power in (kW)} \]
\[H = \text{Net head (m)} \]
\[Q = \text{Design discharge (m}^3/\text{sec)} \]
\[g = \text{Acceleration due to gravity} \]

d) Energy Calculation

The energy generated by HPP station in each year depends strictly on the flow rate, which fluctuates round the year. The energy calculated by using the above equation gives only the theoretical value for better understanding. The daily production is given by

\[ED = Pa \times h \]

Where
\[Pa = \text{Average power daily (MW)} \]
\[ED = \text{Energy output, Daily (MWh)} \]
\[h = \text{Hours in a day} \]

the annual energy production is

\[EA = ED \times d \]

Where as
\[ED = \text{Daily average output (MWh)} \]
\[EA = \text{Annual Daily energy output (MWh)} \]
\[d = \text{Nos. of days in a year} \]

e) Number of Units
On the basis of average daily production and maximum flow availability a total of 500 kW is calculated for Ajmera power station.

f) Efficiency of Electromechanical Equipment

As per design Francis Turbine (Imported) is suited for this site. Normal efficiency of the turbines is 86% and based on the site parameters the peak efficiency may reach 92% (Highest). Therefore, the overall efficiency of the scheme for the Ajmera site is approximately 80%. Efficiencies of major electromechanical equipment are given in the following table 4 and 5.

Francis turbine is proposed for the Ajmera site based on the turbine selection chart. The efficiencies are high for Francis unit and vary between 85-93%. The generator have has comparative efficiency, thus the overall efficiency of the station is about 80%.

S.no	Component (Type)	Efficiency (%)
1	Turbine (Francis)	90
2	Generator (Brushless)	91

TABLE 4: EFFICIENCIES OF E & M EQUIPMENT

Energy production
\[
\text{Energy production per year} = \frac{\text{Plant capacity} \times \text{Plant factor} \times \text{hours in a year}}{500 \text{ kW}}
\]
c) Project Location

The location of the proposed project is 34°48′38.11″N & 73°06′57.10″E. The proposed project is located at 58 km via main Allai road, from Batagram town. This site a very suitable choice for the installation of Hydro Power scheme. The water enters the headrace tunnel to the forebay on the bank of Nulla/Stream. The water at tail race discharges directly into open atmosphere into the Bersa Khwarr/Stream.

d) Hydro Power Potential

Hydro-Power potential is calculated by considering maximum flow availability in the stream throughout the year. This energy produced from the project is utilized by mostly households and some commercial uses. The energy from the project is a step for better prospects of the community. The site is capable of producing 15 kW power (theoretical basis). The available head for energy production is 33 feet, while the design discharge is 9.5 cusecs. The project suitability can also be confirmed from the fact that this area has no grid connectivity and the demand for electricity is maximum for the community. The supply demand balance suggests that the project should be installed on priority basis.

e) Stream Hydrology

The project is located on the right bank of the mainstream (Bersa stream) and is one the important tributary stream of Allai Khwarr. Flow rate (Discharge) is calculated on the basis of 6 years hydrological data using the famous catchment area technique. The gauge station for data collection used was Banna Allai installed on the stream of Barsa Payeen. The unit is operational round the year with no significant decrease in power generation.

f) Flow rate using Catchment Area Method

The annual flow pattern at Barsa Payen, recorded at Banna gauge station is used for the design of electromechanical equipment. The flow rate could also be determined using the float method.

The total catchment area at the gauge station at Allai Khwarr was 280 km2. The map presented below taken from google map and the red circle shows the bounds of the catchment area. It is about 10% of the total catchment area.
The design discharge is thus 20.11 Cusecs for the proposed project at Bersa Payeen.

Cross Flow turbine is proposed for the Bursa Payeen site based on the turbine selection chart. The efficiencies are high for Francis unit and vary between 85-93%. The generator has comparative efficiency; thus, the overall efficiency of the station is about 80% as shown in table 7 and table 8.

S.no	Component (Type)	Efficiency (%)
1	Turbine (Single unit Cross flow)	88
2	Generator (Brushless)	91

Pre-Feasibility Economic Analysis:

TABLE 8. DETAILS OF BERSA PAYEEN HPP

Head	32 feet	Penstock Length	50 feet	Overall Efficiency	Economic life	25 Years
Yearly generation	88.08 Mr	Selling Price	9/unit	15 kW		
Capacity	15 kW					

Table 9. Cost Breakdown of Ajmera HPP

Investment Cost	Price in Million PKR
Turbine, Generator and Civil Station, Equipment (Multi-unit)	
Penstock	0.4
Transmission Line	0.7
Others (access, miscellaneous site construction)	1.6
Contingencies at 11% - 20%	2
Indirect at 20%	2
Cross Flow Turbine	0.6
Generator (Brushless)	0.7
Total Investment Cost (IC)	6.9

Table 10. Some Features of Sheri Dumrai HPP

Village:	Sheri Dumrai
Union Council:	Bateela
District:	Batagram
Cropping Zone:	Khafir & Rabbi Crops
Distance from Batagram:	54 Km
Households:	20 Nos.
Total Capacity:	15 kW
No of Units:	01
Plant factor:	75 percent
Length of power Channel (R/f):	20 Round feet
Size of Power Channel:	2,33 x 2,00 Ft
Length of Penstock Pipe (R/f):	28 Ft
Annual Mean Discharge:	30 cusecs
Minimum Discharge:	20 cusecs
Design Discharge:	15.5 cusecs
Gross Head:	17 Ft
Net Head:	16.1 Ft
Diameter and thickness of penstock:	20 inches, 4 mm
Crossflow Turbine:	15 kW
Generator (brushless):	15 kW
Total Annual Energy Production:	87,60 MWh
a) Environmental Impacts

The project is much suited one opt to its environmental friendliness and posing no harm to natural habitat and horticulture, flora and fauna. Deforestation is avoided to major extent in pulling out this project.

The economy of Batagram depends on natural resources and agricultural subsistence to a major extent. Despite this fact, no proper irrigation system is developed in this area. The forest also is hub to medicinal plants. Livestock; goat, cattle, sheep and poultry contribute to the livelihood of community. Literacy rate is poor and cheap labor also contribute to the livelihood of community.

b) Hydro Power Potential

Hydropower potential and tapping the energy from this resource can studied in an area on the basis of maximum availability water and head for major portion of the year. Batagram has both, and the energy obtained from hydro would serve two purposes; electrifying the village and encouraging small startup and established businesses. The data collected from the Sheri Dumrai site suggests a hydropower potential of 15 Kilowatt. The available head is 17 feet, while the optimum flow rate is 15.5 cusecs. The important factor for electrifying this area is, most of the area has no or poor grid connectivity and the community faces long hours of load shedding, thus there is a demanded need of hydropower in this area.

Design Flow by Catchment Area Method

The design flow is calculated from the gauge station data installed at Sheri Dumrai. The daily discharge values are computed in the hydrograph to find the optimal flow.

The catchment area is found from the high points of the contour map. The area of 442 km2 is selected for this purpose. The catchment area is shown in the diagram below.

Years	Annual Mean Discharge (Gauge Station) CMS	Annual Mean Discharge (Design Station) CMS Calc. Adj. Qg x Ag
2000	4.975	0.714
2001	4.531	0.599
2002	5.147	0.742
2006	5.364	0.766
2007	5.447	0.777
2008	5.264	0.752
c) Determining Economic Feasibility

A project is said to be economically viable when the benefits streams exceeds the costs streams. The Internal Rate of Return (IRR) method is also a reasonable approach, and it is the discount rate at which the costs and benefits becomes equal. IRR compares the return rate from the project with the opportunity cost of alternatives. If the IRR is greater than the interest rate/ opportunity rate, the project is economically viable. The Ajmera project analysis is performed the all the installed capacities under study.

d) Pre-Feasibility Economic Analysis:

The detail of Ajmera micro hydro project and its cost breakdown is given in table 11 and table 12.

Head	32 feet	Penstock Length	50 feet
Overall Efficiency	80%	Economic life	25 Years
Yearly generation	87.60 MWh	Selling Price	5/unit

Table 11. Details of Ajmera Micro Hydro Project

Table 12. Cost Breakdown of Ajmera Micro Hydro Project

Investment Cost	Price in Million PKR
Turbine, Generator and Civil Additional Station, Equipment (Multi-unit)	
Penstock	0.4
Transmission Line	0.7
Others (access, miscellaneous site construction)	1.6
Contingencies at 11% - 20%	3
Indirect at 20%	2
Cross Flow Turbine	0.65
Generator (Brushless)	0.7
Total Investment Cost (IC)	7.95

CONCLUSION

The exhaustion of the fossil fuel supply of the world is an understood eventuality, considering the pace at which these resources are being exploited the world over. More so when the global energy requirements are increasing without much interruption; suffice to say the current state of operations in the energy arena is not going to last long. Alternative energy resources, in this worldview, provide an auspicious avenue of fulfilling the burgeoning human thirst for energy. The impact of these alternative energy resources utilization will be twofold: the satiation of the energy demand, and the culmination of the global warming resulting from the incessant use of the fossil fuels. The urge for alternative resources of energy is key to survival and demand of future. In comparison to all the alternative resources of energy, Hydro power present better results in terms of efficiency and long term viability. The viability of Hydro Power is subject to its high initial cost and major construction with no return in the initial phase of construction. This work is aimed at presenting the technical and financial aspects of Micro-Hydro power. The financial assessment is based on the Net Present Value (NPV), Internal Rate of Return and Benefit to Cost Ratio (B/C). Apart from the social benefits to the residents and improving the quality of life, the financial feasibility is tested on the basis the above parameters and results shows the micro hydro are feasible in the lights of mentioned parameters. The proposition is tested and implemented on three different case studies, i.e. Ajmera Hydro power plant, Bersa Payen and Sheri Dumrai HPP. The data shows successful results in the all the mentioned cases.

Firstly, a broad and comprehensive study of the technical and economic aspects of hydropower, installed in the north part of Khyber Pakhtunkhwa e.g. Bersa Payen, Sheri Dumrai etc.
District Batagram. The key technical aspects are presented, like the flow pattern from catchment area and the anticipated hydropower that could be tapped from the HPP. The next phase is the proper selection of hydropower unit, in this case was cross flow unit. The cost of all the major units including construction and repair and maintenance is introduced in the thesis. After commissioning the power production and the revenue streams generated thus have been computed. The future streams of benefits against all the cost have been taken in the calculation to find out the key parameters for financial viability of the project, such as: Benefit to Cost Ratio, Internal Rate of Return, Net Present Value etc. The results depict a clear and vivid picture of financial viability in terms of all the parameters mentioned above.

The case studies of Berra Payen and Sheri Dumrai have also been assessed in the similar fashion; showing successful results in terms of the parameters defined to assess financial viability. The implementation of HPP apart from its successful viability, also draws impeccable impact on the wellbeing of society and uplifting the social status of community.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest in the execution and publication of this research.

REFERENCES

[1] N. E. F. Bloomberg, "New energy outlook 2018," ed: Informs BNEF). Disponible en: http://about. bnef. com/content/uploads/sites …, 2016.

[2] L. Yang, H. Yan, and J. C. Lam, "Thermal comfort and building energy consumption implications—a review," Applied energy, vol. 115, pp. 164-173, 2014.

[3] A. Amin, N. Muhammad, S. A. Maoz, A. Basit, and T. Ahmad, "A Socio-Technical Survey of Micro Hydro Power Projects in District Shangla, Pakistan," 2018.

[4] N. Qureshi, "Exploring the energy consumption environmental impacts and economic consequences of," 2018.

[5] M. A. Sheikh, "Energy and renewable energy scenario of Pakistan," Renewable and Sustainable Energy Reviews, vol. 14, pp. 354-363, 2010.

[6] A. Raheem, S. A. Abbasi, A. Memon, S. R. Samo, Y. Tauqif-Yap, M. K. Dauqah, et al., "Renewable energy deployment to combat energy crisis in Pakistan," Energy, Sustainability and Society, vol. 6, p. 16, 2016.

[7] M. K. Farooq and S. Kumar, "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, vol. 20, pp. 240-254, 2013.

[8] M. Shahbaz, N. Loganathan, M. Zeeshan, and K. Zaman, "Does renewable energy consumption add in economic growth? An application of autoregressive distributed lag model in Pakistan," Renewable and Sustainable Energy Reviews, vol. 44, pp. 576-583, 2015

[9] S. Z. Farooqui, "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, vol. 29, pp. 693-700, 2014.

[10] F. Wagner, "The complex story of energy transition—an introduction," in EPJ Web of Conferences, 2018, p. 00002.

[11] W. Uddin, S. Hussain, K. Zeb, M. A. Dildar, Z. Ullah, U. Khalil, et al., "Energy Scenario and Potential of Hydroelectric Power in Pakistan," in 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), 2018, pp. 1-6.

[12] S. Stiebert, "Pakistan Low Carbon Scenario Analysis," 2016.

[13] A. Hussain and Z. Gillani, "Fulfilling environment related international commitments through implementation of multilateral environmental agreements (meas) in pakistan," A scientific journal of COMSATSCience Vision, vol. 18, pp. 1-2, 2014.

[14] O. Paish, "Small hydro power: technology and current status," Renewable and sustainable energy reviews, vol. 6, pp. 537-556, 2002.

[15] M. S. Rahman, I. M. Nabil, and M. M. Alam, "Global analysis of a renewable micro hydro power generation plant," in AIP Conference Proceedings, 2017, p. 020014.

[16] M. Bilal, R. Ullah, A. Ali, M. H. Khan, and Z. Ullah, "Wheeling hybrid energy system for industries," in 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), 2016, pp. 169-174.

[17] M. H. Baloch, S. T. Chauhdary, D. Ishak, G. S. Kalot, M. H. Nadeem, W. A. Wattoo, et al., "Hybrid energy sources status of Pakistan: An optimal technical proposal to solve the power crises issues," Energy Strategy Reviews, vol. 24, pp. 132-153, 2019.

[18] H. A. Sher, A. F. Murtaza, K. E. Addoweesh, and M. Chiaberge, "Pakistan’s progress in solar PV based energy generation," Renewable and Sustainable Energy Reviews, vol. 47, pp. 213-217, 2015.

[19] B. K. Sovacool, "The political economy of energy poverty: A review of key challenges," Energy for Sustainable Development, vol. 16, pp. 272-282, 2012.

[20] W. Uddin, K. Zeb, A. Haider, B. Khan, S. ul Islam, M. Ishfaq et al., "Current and future prospects of small hydro power in Pakistan: A survey," Energy Strategy Reviews, vol. 24, pp. 166-177, 2019.

[21] M. Umar and A. Hussain, "Micro hydro power: a source of sustainable energy in rural communities: economic and environmental perspectives," The Pakistan Development Review, pp. 487-504, 2015.

[22] A. Hussain, G. K. Sarangi, A. Pandit, S. Ishaq, N. Mamnun, B. Ahmad, et al., "Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities," Renewable and Sustainable Energy Reviews, vol. 107, pp. 446-461, 2019.

[23] M. A. Khan, "Policy review and recommendations on the promotion of renewable energy and energy efficiency," 2016.

[24] D. Moulick, B. Choward, and S. K. Panda, "Agroecotoxicological Aspect of Arsenic (As) and Cadmium (Cd) on Field Crops and its Mitigation: Current Status and Future Prospect," in Plant-Metal Interactions, ed: Springer, 2019, pp. 217-246.

[25] P. Purohit, "Small hydro power projects under clean development mechanism in India: A preliminary assessment," Energy Policy, vol. 36, pp. 2000-2015, 2008

Ijaz ur Rahman is a postgraduate researcher at United States Pakistan Center for Advanced Studies in Energy at University of Engineering and Technology Peshawar, Pakistan. He is studying Energy Management and Sustainability at MS level after doing his undergraduate degree in Mechanical Engineering. His research interest include finding ways to maximize the social and economic benefits of the distributed energy systems with an end goal of poverty alleviation through sociotechnical models. This paper is a part of his Masters degree research studies.