A GENERAL SOLUTION OF THE WRIGHT-FISHER MODEL OF RANDOM GENETIC DRIFT

TAT DAT TRAN, JULIAN HOFRICTER, JÜRGEN JOST

Abstract. We develop a general solution for the Fokker-Planck (Kolomogorov) equation representing the diffusion limit of the Wright-Fisher model of random genetic drift for an arbitrary number of alleles at a single locus. From this solution, we can readily deduce information about the evolution of a Wright-Fisher population.

1. Introduction

The random genetic drift model developed implicitly by Fisher in [3] and explicitly by Wright in [11], and henceforth called the Wright-Fisher model is one of the most popular stochastic models in population genetics ([2, 1]). In its simplest form, it is concerned with the evolution of the probabilities between non-overlapping generations in a population of fixed size of two alleles at a single diploid locus that are obtained from random sampling in the parental generation, without additional biological mechanisms like mutation, selection, or a spatial population structure. Generalizations to multiple alleles, several loci, inclusion of mutations and selection etc. then constituted an important part of mathematical population genetics. It is our aim to develop a general mathematical perspective on the Wright-Fisher model and its generalizations. In the present paper, we treat the case of multiple alleles at a single site. In a companion paper [10], we discuss the simplest case of 2 alleles in more detail. Generalizations will be addressed in subsequent papers.

Let us first describe the basic mathematical contributions of Wright and Kimura. In 1945, Wright approximated the discrete process by a diffusion process that is continuous in space and time (continuous process, for short) and that can be described by a Fokker-Planck equation. In 1955, by solving this Fokker-Planck equation derived from the Wright-Fisher model, Kimura obtained an exact solution for the Wright-Fisher model in the case of 2 alleles (see [4]). Kimura ([5]) also developed an approximation for the solution of the Wright-Fisher model in the multi-allele case, and in 1956, he obtained ([6]) an exact solution of this model for 3 alleles and concluded that this can be generalized to arbitrarily many alleles. This yields more information about the Wright-Fisher model as well as the corresponding continuous process. Kimura’s solution, however, is not entirely satisfactory. For one thing,
it depends on very clever algebraic manipulations so that the general mathematical structure is not very transparent, and this makes generalizations very difficult. Also, Kimura’s approach is local in the sense that it does not naturally incorporate the transitions resulting from the (irreversible) loss of one or more alleles in the population. Therefore, for instance the integral of his probability density function on its defined domain is not equal to 1.

In this paper, we derive the formalism for a general solution that naturally includes the transitions resulting from the disappearance of alleles. The key are evolution equations for the moments of the probability density. We show that there exists a unique global solution of the Fokker-Planck equation. We then utilize this solution to derive properties of the underlying process, like the expected transition times.

2. The global solution of the Wright-Fisher model

In this section, we will establish some notations, and then prove some propositions as well as the main theorem of this paper.

2.1. Notations. \(\Delta_n := \{(x^1, x^2, \ldots, x^{n+1}) : \sum_{i=1}^{n+1} x^i = 1\} \) is the standard \(n \)-simplex in \(\mathbb{R}^{n+1} \) representing the probabilities or relative frequencies of alleles \(A_1, \ldots, A_{n+1} \) in our population. Often, however, it is advantageous to work in \(\mathbb{R}^n \) instead of \(\mathbb{R}^{n+1} \), and with \(e_0 := (0, \ldots, 0) \in \mathbb{R}^n \), \(e_k := (0, \ldots, 1_{i_k}, \ldots, 0) \in \mathbb{R}^n \), we therefore define

\[
\Omega_n := \text{intco} \{e_0, \ldots, e_n\} := \left\{ \sum_{k=0}^{n} x^k e_k, (x, x^0) = (x^1, \ldots, x^n, 1 - \sum_{k=1}^{n} x^k) \in \text{int} \Delta_n \right\}.
\]

Moreover, we shall need the subsimplices corresponding to subsets of alleles, using the following notations

- \(I_k := \{i_0, \ldots, i_k\}, 0 \leq i_0 < \ldots < i_k \leq n \}, \quad k \in \{1, \ldots, n\}, \)
- \(V_0 := \{e_0, \ldots, e_n\}, \)
 - the domain representing a population of one allele,
- \(V_k^{(i_0, \ldots, i_k)} := \text{intco} \{e_{i_0}, \ldots, e_{i_k}\}, \quad k \in \{1, \ldots, n\}, \)
 - the domain representing a population of alleles \(\{A_{i_0}, \ldots, A_{i_k}\} \),
- \(V_k := \{\text{intco} \{e_{i_0}, \ldots, e_{i_k}\} \) for some \(i_0 < \ldots < i_k \in 0, n \}, \quad k \in \{1, \ldots, n\}, \)
 = \(\bigcup_{(i_0, \ldots, i_k) \in I_k} V_k^{(i_0, \ldots, i_k)}, \)
 - the domain representing a population of \((k + 1) \) alleles,
- \(V_k := \bigcup_{(i_0, \ldots, i_k) \in I_k} V_k^{(i_0, \ldots, i_k)}, \quad k \in \{1, \ldots, n\}, \)
 = \(\bigcup_{i=0}^{k} V_i, \)
 - the domain representing a population of at most \((k + 1) \) alleles.
We shall also need some function spaces:

\[H_k^{(i_0, \ldots, i_k)} := C^\infty \left(V_k^{(i_0, \ldots, i_k)} \right), \]

\[H_k := C^\infty (V_k), \quad k \in \{1, \ldots, n\}, \]

\[H := \{ f : V_n \to [0, \infty) \text{ measurable such that } [f, g]_n < \infty, \forall g \in H_n \}, \]

where \([f, g]_n := \int f(x)g(x)d\mu(x) = \sum_{k=0}^{n} \int f(x)g(x)d\mu_k(x),\]

\[= \sum_{k=0}^{n} \sum_{i_0, \ldots, i_k \in I} \int f(x)g(x)d\mu_k^{(i_0, \ldots, i_k)}(x), \]

with \(\mu_k^{(i_0, \ldots, i_k)}\) a probability measure on \(V_k^{(i_0, \ldots, i_k)}\).

We can now define the differential operators for our Fokker-Planck equation:

\[L_k^{(i_0, \ldots, i_k)} : H_k^{(i_0, \ldots, i_k)} \to H_k^{(i_0, \ldots, i_k)}, \quad L_k^{(i_0, \ldots, i_k)} f(x) = \frac{1}{2} \sum_{i,j \in \{i_1, \ldots, i_k\}} \frac{\partial^2(a_{ij}(x)f(x))}{\partial x^i \partial x^j}, \]

\[(L_k^{(i_0, \ldots, i_k)})^* : H_k^{(i_0, \ldots, i_k)} \to H_k^{(i_0, \ldots, i_k)}, \quad (L_k^{(i_0, \ldots, i_k)})^* g(x) = \frac{1}{2} \sum_{i,j \in \{i_1, \ldots, i_k\}} a_{ij}(x) \frac{\partial^2(g(x))}{\partial x^i \partial x^j}, \]

\[L_k : H_k \to H_k, \quad (L_k)|_{H_k^{(i_0, \ldots, i_k)}} = L_k^{(i_0, \ldots, i_k)}, \]

\[L_k^* : H_k \to H_k, \quad (L_k^*)|_{H_k^{(i_0, \ldots, i_k)}} = (L_k^{(i_0, \ldots, i_k)})^*, \]

where the coefficients are defined by

\[a_{ij}(x) := x^i(\delta_{ij} - x^j), \quad i, j \in \{1, \ldots, n\}. \]

Finally, we shall need

\[w_k^{(i_0, \ldots, i_k)}(x) := \prod_{i \in I_k^{(i_0, \ldots, i_k)}} x^i, \quad k \in \{1, \ldots, n\}. \]

Proposition 2.1. For each \(1 \leq k \leq n, m \geq 0, |\alpha| = \alpha^1 + \cdots + \alpha^k = m\), the polynomial of degree \(m\) in \(k\) variables \(x = (x^1, \ldots, x^k)\) in \(V_k^{(i_0, \ldots, i_k)}\)

\[X_{m, \alpha}^{(k)}(x) = x^\alpha + \sum_{|\beta| < m} a_{m, \beta}^{(k)} x^\beta, \]

where the \(a_{m, \beta}^{(k)}\) are inductively defined by

\[a_{m, \beta}^{(k)} = \frac{\sum_{i=1}^{k} (\beta_i + 2)(\beta_i + 1)a_{m, \beta + e_i}^{(k)}}{(m - |\beta|)(m + \beta + 2k + 1)}, \quad \forall |\beta| < m, \]

is the eigenvector of \(L_k^{(i_0, \ldots, i_k)}\) corresponding to the eigenvalue \(\lambda_m^{(k)} = \frac{(m+k)(m+k+1)}{2} \).
Proof. We have

\[
L^{(i_0, \ldots, i_k)}_{k} X_{m,\alpha}^{(k)}(x) = \frac{1}{2} \sum_{i \in \{i_1, \ldots, i_k\}} \frac{\partial^2}{\partial x^i \partial x^i} \left[x^i (1 - x^i) \left(x^\alpha + \sum_{|\beta| < m} a^{(k)}_{m,\beta} x^\beta \right) \right] \\
- \sum_{i \neq j \in \{i_1, \ldots, i_k\}} \frac{\partial^2}{\partial x^i \partial x^j} \left[x^i x^j \left(x^\alpha + \sum_{|\beta| < m} a^{(k)}_{m,\beta} x^\beta \right) \right]
\]

\[
= \frac{1}{2} \sum_{i \in \{i_1, \ldots, i_k\}} \frac{\partial^2}{\partial x^i \partial x^i} \left[x^{\alpha + e_i} - x^{\alpha + 2e_i} + \sum_{|\beta| < m} a^{(k)}_{m,\beta} x^{\beta + e_i} \right] \\
- \sum_{|\beta| < m} a^{(k)}_{m,\beta} x^{\beta + 2e_i}
\]

\[
- \sum_{i \neq j} \frac{\partial^2}{\partial x^i \partial x^j} \left[x^{\alpha + e_i + e_j} + \sum_{|\beta| < m} a^{(k)}_{m,\beta} x^{\beta + e_i + e_j} \right] = \frac{1}{2} \sum_{i} \left[(\alpha^i + 1) x^\alpha e_i - (\alpha^i + 2)(\alpha^i + 1) x^\alpha e_i \right] \\
+ \sum_{|\beta| < m} a^{(k)}_{m,\beta} (\beta^i + 1) x^{\beta - e_i} - \sum_{|\beta| < m} a^{(k)}_{m,\beta} (\beta^i + 2) x^{\beta}
\]

\[
- \sum_{i \neq j} \left[(\alpha^i + 1)(\alpha^j + 1) x^\alpha + \sum_{|\beta| < m} a^{(k)}_{m,\beta} (\beta^i + 1)(\beta^j + 1) x^\beta \right]
\]

\[
= \left[-\frac{1}{2} \sum_{i} (\alpha^i + 2)(\alpha^i + 1) - \sum_{i \neq j} (\alpha^i + 1)(\alpha^j + 1) \right] x^\alpha \\
+ \text{terms of lower degree}
\]

\[
= \left[-\frac{1}{2} \left(\sum_{i} \alpha^i + k \right) \left(\sum_{i} \alpha^i + k + 1 \right) \right] x^\alpha + \text{terms of lower degree}
\]

\[
= - \frac{\left(m + k \right)(m + k + 1)}{2} x^\alpha + \text{terms of lower degree}.
\]

By equalizing coefficients we obtain

\[
\lambda_{m}^{(k)} = \frac{(m + k)(m + k + 1)}{2}
\]

and

\[
a^{(k)}_{m,\beta} = -\frac{\sum_{i=1}^{k} (\beta_i + 2)(\beta_i + 1) a^{(k)}_{m,\beta + e_i}}{(m - |\beta|)(m + \beta + 2k + 1)}, \quad \forall |\beta| < m.
\]

This completes the proof. \(\square\)

Remark 2.2. When \(k = 1\), \(X^{(1)}_{m,m}(x^1)\) is the \(m\)-th–Gegenbauer polynomial (up to a constant). Thus, the polynomials \(X_{m,\alpha}^{(k)}(x)\) can be understood as a generalization of the Gegenbauer polynomials to higher dimensions.
Proposition 2.3. If \(X \in V_k^{(i_0, \ldots, i_k)} \) is an eigenvector of \(L_k^{(i_0, \ldots, i_k)} \) corresponding to \(\lambda \) then \(w_k^{(i_0, \ldots, i_k)} X \) is an eigenvector of \((L_k^{(i_0, \ldots, i_k)})^* \) corresponding to \(\lambda \).

Proof. If \(X \in V_k^{(i_0, \ldots, i_k)} \) is an eigenvector of \(L_k^{(i_0, \ldots, i_k)} \) corresponding to \(\lambda \), it follows that

\[
-\lambda (w_k^{(i_0, \ldots, i_k)}(x)X) = \frac{1}{2} w_k^{(i_0, \ldots, i_k)}(x) \sum_{i,j \in \{i_1, \ldots, i_k\}} \frac{\partial^2}{\partial x^i \partial x^j} (x^i (\delta_{ij} - x^j)X)
\]

\[
= \frac{1}{2} w_k^{(i_0, \ldots, i_k)}(x) \sum_{i,j \in \{i_1, \ldots, i_k\}} \left(x^i (\delta_{ij} - x^j) \right) \frac{\partial^2 X}{\partial x^i \partial x^j}
\]

\[
+ \frac{1}{2} w_k^{(i_0, \ldots, i_k)}(x) \sum_{i,j = 1}^k \frac{\partial}{\partial x^i} (x^i (\delta_{ij} - x^j)) \frac{\partial X}{\partial x^j}
\]

\[
+ \frac{1}{2} w_k^{(i_0, \ldots, i_k)}(x) \sum_{i,j \in \{i_1, \ldots, i_k\}} \frac{\partial^2}{\partial x^i \partial x^j} (x^i (\delta_{ij} - x^j)) X
\]

\[
= \frac{1}{2} \sum_{i,j = 1}^k \left(x^i (\delta_{ij} - x^j) \right) \left(w_k^{(i_0, \ldots, i_k)}(x) \frac{\partial^2 X}{\partial x^i \partial x^j} \right)
\]

\[
+ \frac{1}{2} \sum_{j \in \{i_1, \ldots, i_k\}} w_k^{(i_0, \ldots, i_k)}(x) (1 - (k - 1)x^j) \frac{\partial X}{\partial x^j}
\]

\[
+ \frac{1}{2} \sum_{i \in \{i_1, \ldots, i_k\}} w_k^{(i_0, \ldots, i_k)}(x) (1 - (k - 1)x^i) \frac{\partial X}{\partial x^i}
\]

\[
- \frac{k(k + 1)}{2} w_k^{(i_0, \ldots, i_k)}(x) X
\]

\[
= \frac{1}{2} \sum_{i,j \in \{i_1, \ldots, i_k\}} \left(x^i (\delta_{ij} - x^j) \right) \left(w_k^{(i_0, \ldots, i_k)}(x) \frac{\partial^2 X}{\partial x^i \partial x^j} \right)
\]

\[
+ \frac{1}{2} \sum_{i,j \in \{i_1, \ldots, i_k\}} \left(x^i (\delta_{ij} - x^j) \right) \frac{\partial w_k^{(i_0, \ldots, i_k)}(x)}{\partial x^j} \frac{\partial X}{\partial x^i}
\]

\[
+ \frac{1}{2} \sum_{i,j \in \{i_1, \ldots, i_k\}} \left(x^i (\delta_{ij} - x^j) \right) \frac{\partial^2 w_k^{(i_0, \ldots, i_k)}(x)}{\partial x^i \partial x^j} X
\]

\[
= \frac{1}{2} \sum_{i,j \in \{i_1, \ldots, i_k\}} \left(x^i (\delta_{ij} - x^j) \right) \frac{\partial^2 (w_k^{(i_0, \ldots, i_k)}(x)X)}{\partial x^i \partial x^j}
\]

\[
=(L_k^{(i_0, \ldots, i_k)})^* (w_k^{(i_0, \ldots, i_k)}(x)X).
\]

This completes the proof. □
Proposition 2.4. Let ν be the exterior unit normal vector of the domain $V_{k}^{(i_0,\ldots,i_k)}$. Then we have

$$\sum_{j \in \{i_1,\ldots,i_k\}} a_{ij} \nu^j = 0 \quad \forall i \in \{i_1,\ldots,i_k\}.$$ \hspace{1cm} (2.2)

Proof. In fact, on the surface ($x^s = 0$), for some $s \in \{i_1,\ldots,i_k\}$ we have $\nu = -e_s$, and hence $\sum_{j \in \{i_1,\ldots,i_k\}} a_{ij} \nu^j = a_{is} = x^s(\delta_{is} - x^i) = 0$. On the surface ($x^{i_0} = 0$) we have $\nu = \frac{1}{\sqrt{k}}(e_{i_1} + \ldots + e_{i_k})$, hence $\sum_{j \in \{i_1,\ldots,i_k\}} a_{ij} \nu^j = \frac{1}{\sqrt{k}} \sum_{j \in \{i_1,\ldots,i_k\}} a_{ij} = \frac{1}{\sqrt{k}} x^{i_0} = 0$. This completes the proof. \hfill \Box

Proposition 2.5. $L_{k}^{(i_0,\ldots,i_k)}$ and $(L_{k}^{(i_0,\ldots,i_k)})^{\ast}$ are weighted adjoints in $H_{k}^{(i_0,\ldots,i_k)}$, i.e.

$$(L_{k}^{(i_0,\ldots,i_k)} X, w_{k}^{(i_0,\ldots,i_k)} Y) = (X, (L_{k}^{(i_0,\ldots,i_k)})^{\ast}(w_{k}^{(i_0,\ldots,i_k)} Y)), \quad \forall X, Y \in H_{k}^{(i_0,\ldots,i_k)}.$$

Proof. We put $F_{i}^{(k)}(x) := \sum_{j \in \{i_1,\ldots,i_k\}} \frac{\partial(a_{ij}(x) X(x))}{\partial x^j}$. Because of $w_{k}^{(i_0,\ldots,i_k)} Y \in C_{(\nu)}^{\infty}(V_{k}^{(i_0,\ldots,i_k)})$, the second Green formula, and Proposition 2.4 we have

$$(L_{k}^{(i_0,\ldots,i_k)} X, w_{k}^{(i_0,\ldots,i_k)} Y) = \frac{1}{2} \sum_{i,j \in \{i_1,\ldots,i_k\}} \int_{V_{k}^{(i_0,\ldots,i_k)}} \frac{\partial^2(a_{ij}(x) X(x))}{\partial x^i \partial x^j} w_{k}^{(i_0,\ldots,i_k)}(x) Y(x) dx$$

$$= \frac{1}{2} \sum_{i \in \{i_1,\ldots,i_k\}} \int_{V_{k}^{(i_0,\ldots,i_k)}} \frac{\partial F_{i}^{(k)}(x)}{\partial x^i} w_{k}^{(i_0,\ldots,i_k)}(x) Y(x) dx$$

$$= \frac{1}{2} \sum_{i \in \{i_1,\ldots,i_k\}} \int_{V_{k}^{(i_0,\ldots,i_k)}} F_{i}^{(k)}(x) \nu_i w_{k}^{(i_0,\ldots,i_k)}(x) Y(x) dx$$

$$= -\frac{1}{2} \sum_{i \in \{i_1,\ldots,i_k\}} \int_{V_{k}^{(i_0,\ldots,i_k)}} F_{i}^{(k)}(x) \frac{\partial(w_{k}^{(i_0,\ldots,i_k)}(x) Y(x))}{\partial x^i} dx$$

$$= -\frac{1}{2} \sum_{i \in \{i_1,\ldots,i_k\}} \int_{V_{k}^{(i_0,\ldots,i_k)}} \frac{\partial(a_{ij}(x) X(x))}{\partial x^j} \frac{\partial(w_{k}^{(i_0,\ldots,i_k)}(x) Y(x))}{\partial x^i} dx$$

$$= -\frac{1}{2} \sum_{i,j \in \{i_1,\ldots,i_k\}} \int_{V_{k}^{(i_0,\ldots,i_k)}} a_{ij}(x) \nu_j X(x) \frac{\partial(w_{k}^{(i_0,\ldots,i_k)}(x) Y(x))}{\partial x^i} do(x)$$

$$= (X, L_{k}^{(i_0,\ldots,i_k)}(w_{k} Y)) = (X, L_{k}^{(i_0,\ldots,i_k)} w_{k} Y).$$ \hfill \Box
Proposition 2.6. In $\nabla^{(i_0, \ldots, i_k)}_k$, \(\{ X^{(k)}_{m,\alpha} \}_{m \geq 0, |\alpha| = m} \) is a basis of $H^{(i_0, \ldots, i_k)}_k$ which is orthogonal with respect to the weights $w^{(i_0, \ldots, i_k)}_k$, i.e.,

\[
\left(X^{(k)}_{m,\alpha}, w^{(i_0, \ldots, i_k)}_k X^{(k)}_{j,\beta} \right) = 0, \quad \forall j \neq m, |\alpha| = m, |\beta| = j.
\]

Proof. \(\{ X^{(k)}_{m,\alpha} \}_{m \geq 0, |\alpha| = m} \) is a basis of $H^{(i_0, \ldots, i_k)}_k$ because \(\{ x^n \}_\alpha \) is a basis of this space. To prove the orthogonality we apply the Propositions 2.1, 2.3, 2.7 as follows

\[
-\lambda^{(k)}_m \left(X^{(k)}_{m,\alpha}, w^{(i_0, \ldots, i_k)}_k X^{(k)}_{j,\beta} \right) = \left(L^{(i_0, \ldots, i_k)}_k X^{(k)}_{m,\alpha}, w^{(i_0, \ldots, i_k)}_k X^{(k)}_{j,\beta} \right) \\
= \left(X^{(k)}_{m,\alpha}, (L^{(i_0, \ldots, i_k)}_k)^* (w^{(i_0, \ldots, i_k)}_k X^{(k)}_{j,\beta}) \right) \\
= -\lambda^{(k)}_j \left(X^{(k)}_{m,\alpha}, w^{(i_0, \ldots, i_k)}_k X^{(k)}_{j,\beta} \right)
\]

Because $\lambda^{(k)}_m \neq \lambda^{(k)}_j$, this finishes the proof. \(\square \)

Proposition 2.7. (i) The spectrum of the operator $L^{(i_0, \ldots, i_k)}_k$ is

\[
\text{Spec}(L^{(i_0, \ldots, i_k)}_k) = \bigcup_{m \geq 0} \left\{ \lambda^{(k)}_m = \frac{(m+k)(m+k+1)}{2} \right\} =: \Lambda_k
\]

and the eigenvectors of $L^{(i_0, \ldots, i_k)}_k$ corresponding to $\lambda^{(k)}_m$ are of the form

\[
X = \sum_{|\alpha| = m} d^{(k)}_{m,\alpha} X^{(k)}_{m,\alpha},
\]

i.e., the eigenspace corresponding to $\lambda^{(k)}_m$ are of dimension $\binom{k+m-1}{k-1}$;

(ii) The spectrum of the operator L_k is the same.

Proof. (i) Proposition 2.1 implies that $\Lambda_k \subseteq \text{Spec}(L^{(i_0, \ldots, i_k)}_k)$. Conversely, for $\lambda \notin \Lambda_k$, we will prove that λ is not an eigenvalue of $L^{(i_0, \ldots, i_k)}_k$. In fact, assume that $X \in H^{(i_0, \ldots, i_k)}_k$ such that $L^{(i_0, \ldots, i_k)}_k X = -\lambda X$ in $H^{(i_0, \ldots, i_k)}_k$. Because $\{ X^{(k)}_{m,\alpha} \}_{m,\alpha}$ is an orthogonal basis of $H^{(i_0, \ldots, i_k)}_k$ with respect to the weights $w^{(i_0, \ldots, i_k)}_k$ (Proposition 2.4), we can represent X by

\[
X = \sum_{m=0}^{\infty} \sum_{|\alpha| = m} d^{(k)}_{m,\alpha} X^{(k)}_{m,\alpha}.
\]

It follows that

\[
\sum_{m=0}^{\infty} \sum_{|\alpha| = m} d^{(k)}_{m,\alpha} (-\lambda^{(k)}_m) X^{(n)}_{m,\alpha} = \sum_{m=0}^{\infty} \sum_{|\alpha| = m} d^{(k)}_{m,\alpha} L^{(i_0, \ldots, i_k)}_k X^{(k)}_{m,\alpha} = L^{(i_0, \ldots, i_k)}_k X = -\lambda \sum_{m=0}^{\infty} \sum_{|\alpha| = m} d^{(k)}_{m,\alpha} X^{(k)}_{m,\alpha}.
\]
For any $j \geq 0$, $|\beta| = j$, multiplying by $w_k X_{j,\beta}^{(k)}$ and then integrating on ∇_n we have

$$
\sum_{|\alpha|=j} d_{j,\alpha}^{(k)} \lambda_j^{(k)} \left(X_{j,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{j,\beta}^{(k)} \right) = \sum_{|\alpha|=j} d_{j,\alpha}^{(k)} \lambda_j^{(k)} \left(X_{j,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{j,\beta}^{(k)} \right), \forall j \geq 0, |\beta| = j,
$$

\Rightarrow

$$
\left(X_{j,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{j,\beta}^{(k)} \right)_{\beta,\alpha} (d_{j,\alpha}^{(k)})^{(k)} = \left(X_{j,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{j,\beta}^{(k)} \right)_{\beta,\alpha} (d_{j,\alpha}^{(k)})^{(k)}, \forall j \geq 0, |\beta| = j,
$$

\Rightarrow

$$
d_{j,\alpha}^{(k)} = d_{j,\alpha}^{(k)} \lambda_j^{(k)}, \quad \forall j \geq 0, |\beta| = j, \text{ because } \det \left(X_{j,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{j,\beta}^{(k)} \right)_{\beta,\alpha} \neq 0
$$

\Rightarrow

$$
d_{j,\alpha}^{(k)} = 0, \quad \forall j \geq 0, |\alpha| = j, \text{ because } \lambda \neq \lambda_j^{(k)}.
$$

It follows that $X = 0$ in $H_k^{(i_0,\ldots,i_k)}$. Therefore

$$
\text{Spec}(L_k^{(i_0,\ldots,i_k)}) = \bigcup_{m \geq 0} \left\{ \lambda_m^{(k)} = \frac{(m+k)(m+k+1)}{2} \right\} = \Lambda_k.
$$

Moreover, assume that $X \in H_k^{(i_0,\ldots,i_k)}$ is an eigenvector of $L_k^{(i_0,\ldots,i_k)}$ corresponding to $\lambda_j^{(k)}$, i.e., $L_k^{(i_0,\ldots,i_k)} X = -\lambda_j X$. We represent X by

$$
X = \sum_{m=0}^{\infty} \sum_{|\alpha|=m} d_{m,\alpha}^{(k)} X_{m,\alpha}^{(k)}.
$$

It follows that

$$
\sum_{m=0}^{\infty} \sum_{|\alpha|=m} d_{m,\alpha}^{(k)} (-\lambda_m^{(k)}) X_{m,\alpha}^{(k)} = \sum_{m=0}^{\infty} \sum_{|\alpha|=m} d_{m,\alpha}^{(k)} L_k^{(i_0,\ldots,i_k)} X_{m,\alpha}^{(k)}
$$

\Rightarrow

$$
= L_k^{(i_0,\ldots,i_k)} X
$$

\Rightarrow

$$
= -\lambda_j^{(k)} \sum_{m=0}^{\infty} \sum_{|\alpha|=m} d_{m,\alpha}^{(k)} X_{m,\alpha}^{(k)}.
$$

For any $i \neq j$, $|\beta| = i$, multiplying by $w_k X_{i,\beta}^{(k)}$ and then integrating on ∇_n we have

$$
\sum_{|\alpha|=i} d_{i,\alpha}^{(k)} \lambda_i^{(k)} \left(X_{i,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{i,\beta}^{(k)} \right) = \sum_{|\alpha|=i} d_{i,\alpha}^{(k)} \lambda_i^{(k)} \left(X_{i,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{i,\beta}^{(k)} \right), \forall i \neq j, |\beta| = i,
$$

\Rightarrow

$$
\left(X_{i,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{i,\beta}^{(k)} \right)_{\beta,\alpha} (d_{i,\alpha}^{(k)})^{(k)} = \left(X_{i,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{i,\beta}^{(k)} \right)_{\beta,\alpha} (d_{i,\alpha}^{(k)})^{(k)}, \forall i \neq j, |\beta| = i,
$$

\Rightarrow

$$
d_{i,\alpha}^{(k)} = d_{i,\alpha}^{(k)} \lambda_i^{(k)}, \quad \forall i \neq j, |\beta| = i, \text{ because } \det \left(X_{i,\alpha}^{(k)}, w_k^{(i_0,\ldots,i_k)} X_{i,\beta}^{(k)} \right)_{\beta,\alpha} \neq 0
$$

\Rightarrow

$$
d_{i,\alpha}^{(k)} = 0, \quad \forall i \neq j, |\alpha| = i, \text{ because } \lambda_i^{(k)} \neq \lambda_j^{(k)}.
$$

It follows that

$$
X = \sum_{|\alpha|=j} d_{j,\alpha}^{(k)} X_{j,\alpha}^{(k)}
$$

This completes the proof.

(ii) is obvious. \(\Box\)
2.2. **Definition of the solution.** We shall now derive the Fokker-Planck equation as the diffusion limit of the Wright-Fisher model and our solution concept for this equation. We consider a diploid population of fixed size N with $n+1$ possible alleles A_1, \ldots, A_{n+1}, at a given locus. Suppose that the individuals in the population are monoecious, that there are no selective differences between these alleles and no mutations. There are $2N$ alleles in the population in any generation, so it is sufficient to focus on the number $Y_m = (Y_1^m, \ldots, Y_n^m)$ of alleles A_1, \ldots, A_n at generation time m. Assume that $Y_0 = i_0 = (i_0^1, \ldots, i_0^n)$ and according to the Wright-Fisher model, the alleles in generation $m+1$ are derived by sampling with replacement from the alleles of generation m. Thus, the transition probability is

$$P(Y_{m+1} = j | Y_m = i) = \frac{(2N)!}{(j^0)! \cdots (j^n)!} \prod_{k=0}^{n} \left(\frac{j^k}{2N} \right)^{i^k},$$

where

$$i, j \in S_n^{2N} = \left\{ i = (i^1, \ldots, i^n) : i^k \in \{0, 1, \ldots, 2N\}, \sum_{k=1}^{n} i^k \leq 2N \right\}$$

and

$$i^0 = 2N - |i| = 2N - i^1 - \ldots - i^n; \quad j^0 = 2N - |j| = 2N - j^1 - \ldots - j^n.$$

After rescaling

$$t = \frac{m}{2N}, \quad X_t = \frac{Y_t}{2N},$$

we have a discrete Markov chain X_t valued in $\{0, \frac{1}{2N}, \ldots, 1\}^n$ with $t = 1$ now corresponding to $2N$ generations. It is easy to see that

$$X_0 = p = \frac{i_0}{2N},$$

$$\mathbb{E}(\delta X^i_t) = 0,$$

$$\mathbb{E}(\delta X^i_t, \delta X^j_t) = (X^i_t)(\delta_{ij} - X^j_t),$$

$$\mathbb{E}((\delta X_t)^\alpha) = (\delta t) \text{ for } |\alpha| \geq 3.$$

We now denote by $m_\alpha(t)$ the α^{th}-moment of the distribution about zero at the t^{th} generation, i.e.,

$$m_\alpha(t) = \mathbb{E}(X_t)^\alpha$$

Then

$$m_\alpha(t+1) = \mathbb{E}(X_t + \delta X_t)^\alpha$$

Expanding the right hand side and noting (2.3) we obtain the following recursion formula, under the assumption that the population number N is sufficiently large to neglect terms of order $\frac{1}{N^2}$ and higher,

$$m_\alpha(t+1) = \left\{ 1 - \frac{|\alpha|(|\alpha| - 1)}{2} \right\} m_\alpha(t) + \sum_{i=1}^{n} \frac{\alpha_i(\alpha_i - 1)}{2} m_{\alpha - e_i}(t)$$

(2.4)

Under this assumption, the moments change very slowly per generation and we can replace this system of difference equations by a system of differential equations:

$$\dot{m}_\alpha(t) = -\frac{|\alpha|(|\alpha| - 1)}{2} m_\alpha(t) + \sum_{i=1}^{n} \frac{\alpha_i(\alpha_i - 1)}{2} m_{\alpha - e_i}(t).$$

(2.5)
With the aim to find a continuous process which is a good approximation for the above discrete process, we should look for a continuous Markov process \(\{ X_t \}_{t \geq 0} \) valued in \([0, 1]^n\) with the same conditions as (2.3) and (2.5). Specially, if we call \(u(x, t) \) the probability density function of this continuous process, the condition (2.3) implies (see for example [2], p. 137) that

\[
\frac{\partial u}{\partial t} = L_n u \text{ in } V_n \times (0, \infty),
\]

and the condition (2.5) implies

\[
[u_t, x^\alpha]_n = [u, L^*(x^\alpha)]_n, \forall \alpha,
\]

i.e.,

\[
[u_t, \phi]_n = [u, L^*_n \phi]_n, \forall \phi \in H_n.
\]

This leads us to the following definition of solutions.

Definition 2.8. We call \(u \in H \) a solution of the Fokker-Planck equation associated with the Wright-Fisher model if

\[
\begin{align*}
\frac{\partial u}{\partial t} &= L_n u \text{ in } V_n \times (0, \infty), \\
u(x, 0) &= \delta_p(x) \text{ in } V_n; \\
[u_t, \phi]_n &= [u, L^*_n \phi]_n, \forall \phi \in H_n.
\end{align*}
\]

2.3. The global solution. In this subsection, we shall construct the solution and prove the existence as well as the uniqueness of the solution. The process of finding the solution is as follows: We firstly find the general solution of the Fokker-Planck equation (2.8) by the separation of variables method. Then we construct a solution depending on certain parameters. We then use the conditions of (2.9, 2.10) to determine the parameters. Finally, we check the solution.

Step 1: Consider on \(V_n \), assume that \(u_n(x, t) = X(x)^T(t) \) is a solution of the Fokker-Planck equation (2.8). Then we have

\[
\frac{T_t}{T} = \frac{L_n X}{X} = -\lambda
\]

Clearly \(\lambda \) is a constant which is independent on \(T, X \). From the Proposition (2.7) we obtain the local solution of the equation (2.8) of the form

\[
u(n, x, t) = \sum_{m=0}^n \sum_{|\alpha|=m} \lambda^{(n)} \lambda^{(n)} X^{(n)}(x) e^{-\lambda^{(n)} t},
\]

where

\[
\lambda^{(n)} = \frac{(n + m)(n + m + 1)}{2}
\]

is the eigenvalue of \(L_n \) and

\[
X^{(n)}(x), \quad |\alpha| = m
\]

are the corresponding eigenvectors of \(L_n \).
For \(m \geq 0, |\beta| = m \), we conclude from Proposition 2.3 that
\[
L^* \left(u_n X^{(n)}_{m,\beta} \right) = -\lambda^{(n)}_m w_n X^{(n)}_{m,\beta}.
\]
It follows that
\[
[u_t, w_n X^{(n)}_{m,\beta}]_n = \left[u, L^* \left(w_n X^{(n)}_{m,\beta} \right) \right]_n \quad \text{(the moment condition)}
\]
\[
= -\lambda^{(n)}_m \left[u, w_n X^{(n)}_{m,\beta} \right]_n.
\]
Therefore
\[
[u, w_n X^{(n)}_{m,\beta}]_n = [u(\cdot, 0), w_n X^{(n)}_{m,\beta}]_n e^{-\lambda^{(n)}_m t}
\]
\[
= w_n(p) X^{(n)}_{m,\beta}(p) e^{-\lambda^{(n)}_m t}.
\]
Thus,
\[
w_n(p) X^{(n)}_{m,\beta}(p) e^{-\lambda^{(n)}_m t} = [u, w_n X^{(n)}_{m,\beta}]_n
\]
\[
= (u_n, w_n X^{(n)}_{m,\beta})_n \quad \text{(because \(w_n \) vanishes on boundary)}
\]
\[
= \sum_{|\alpha|=m} c^{(n)}_{m,\alpha} \left(X^{(n)}_{m,\alpha}, w_n X^{(n)}_{m,\beta} \right) e^{-\lambda^{(n)}_m t}.
\]
It follows that
\[
\left(c^{(n)}_{m,\alpha} \right) = \left[\left(X^{(n)}_{m,\alpha}, w_n X^{(n)}_{m,\beta} \right)_n \right]^{-1} \left(w_n(p) X^{(n)}_{m,\beta}(p) \right)_{\beta}.
\]

Step 2: The solution \(u \in H \) satisfying (2.8) will be found in the following form
\[
(2.11) \quad u(x, t) = \sum_{k=1}^{n} u_k(x, t) \chi_{\kappa} (x) + \sum_{t=0}^{n} u^0_t(x, t) \delta_{c'} (x).
\]

We use the condition (2.10) to obtain gradually values of \(u_k, \ k = n - 1, \ldots , 0 \).

In fact, assume that we want to calculate \(u^{(0, \ldots , n-1)}(x^1, \ldots , x^{n-1}, 0, t) \).

We note that, if we choose
\[
\phi(x) = x^1 \cdots x^n X^{(n-1)}_{k,\beta}(x^1, \ldots , x^{n-1}), \quad |\beta| = k.
\]
then \(\phi(x) \) vanishes on faces of dimension at most \(n - 1 \) except the face \(V^{0, \ldots , n-1} \).

Therefore, the expectation of \(\phi \) will be
\[
[u, \phi]_n = (u_n, \phi)_n + (u_{n-1}^{(0, \ldots , n-1)}, \phi)_{n-1}.
\]

The left hand side can be calculated easily by the condition (2.10)
\[
(2.12) \quad [u_t, \phi]_n = [u, L^* (\phi)]_n = -\lambda^{(n-1)}_k [u, \phi]_n.
\]
It follows that
\[
[u, \phi]_n = \phi(p) e^{-\lambda^{(n-1)}_k t}.
\]

The first part of the right hand side is known as
\[
(u_n, \phi)_n = \sum_{m,\alpha} c^{(n)}_{m,\alpha} \left(\int_{V_n} X^{(n)}_{m,\alpha}(x) \phi(x) dx \right) e^{-\lambda^{(n)}_m t}.
\]
Therefore we can expand \(u_{n-1}^{(0,\ldots,n-1)}(x^1, \ldots, x^{n-1}, 0, t) \) as follows

\[
u_{n-1}^{(0,\ldots,n-1)}(x^1, \ldots, x^{n-1}, 0, t) = \sum_{m \geq 0} c_m^{(n-1)}(x)e^{-\lambda_m^{(n-1)}t} = \sum_{m \geq 0} \sum_{i \geq 0} c_m^{(n-1)}X^{(n-1)}_{i\alpha}(x^1, \ldots, x^{n-1})e^{-\lambda_m^{(n-1)}t}.
\]

Put this formula into Equation (2.12) we will obtain all the coefficients \(c_m^{(n-1)i\alpha} \).

It means that we will obtain \(u_{n-1}^{(0,\ldots,n-1)}(x^1, \ldots, x^{n-1}, 0, t) \). Similarly we will obtain \(u_{n-1} \). And finally we will obtain all \(u_k, k = n - 1, \ldots, 0 \). It means we obtain the global solution in form

\[
\begin{align*}
\sum_{k=1}^{n} u_k \chi_{V_k}(x) + \sum_{i=0}^{n} u_0(x, t) \delta_{\epsilon_i}(x) = \\
\sum_{k=1}^{n} \sum_{i \geq 0} \sum_{\alpha} c_m^{(k)}X^{(k)}_{i\alpha}(x)e^{-\lambda_m^{(k)}t} \chi_{V_k}(x) + \sum_{i=0}^{n} u_0(x, t) \delta_{\epsilon_i}(x).
\end{align*}
\]

(2.13)

It is not difficult to show that \(u \) is a solution of the Fokker-Planck equation associated with WF model.

Step 3: We can easily see that this solution is unique. In fact, assume that \(u_1, u_2 \) are two solutions of the Fokker-Planck equation associated with WF model. Then \(u = u_1 - u_2 \) will satisfy

\[
u_t = L_n u \text{ in } V_n \times (0, \infty),
\]

\[
u(x, 0) = 0 \text{ in } V_n;
\]

\[
[u_t, \phi]_n = [u, L_n^* \phi]_n, \forall \phi \in H_n.
\]

It follows that

\[
[u_t, 1]_n = [u, L_n(1)]_n = 0,
\]

\[
[u_t, x^i]_n = [u, L_n^*(x^i)]_n = 0,
\]

\[
[u_t, w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}}]_n = [u, L_n^*(w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}})]_n
\]

\[
= [u, L_k^*(w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}})]_n
\]

\[
= -\lambda_k^{(k)} [u, w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}}]_n.
\]

Therefore

\[
[u, 1]_n = [u(\cdot, 0), 1]_n = 0,
\]

\[
[u, x^i]_n = [u(\cdot, 0), x^i]_n = 0,
\]

\[
[u, w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}}]_n = [u(\cdot, 0), w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}}]_n e^{-\lambda_k^{(k)}t} = 0.
\]

Since \(\{1, \{x^1\}, \{w_k^{(i_0,\ldots,i_k)}X^{(k)}_{j\alpha}\chi_{V_k^{(i_0,\ldots,i_k)}}\}_{1 \leq k \leq n, (i_0,\ldots,i_k) \in B, \alpha = j} \) is also a basis of \(H_n \) it follows that \(u = 0 \in H \).

In conclusion, we have established
The unique local solution $u(x, t) = u_k \chi_{V_k}(x) + \sum_{i=0}^{n} u_i^k(x, t) \delta_{c_i}(x)$.

(2.14) $\sum_{k=1}^{n} \sum_{m \geq 0} \sum_{\alpha \geq 0} c_{m, l, \alpha}^{(k)} X_{l, \alpha}^{(k)}(x)e^{-\lambda_{m}^{(k)} t} \chi_{V_k}(x) + \sum_{i=0}^{n} u_i^k(x, t) \delta_{c_i}(x).$

Example 2.10. To illustrate this process, we consider the case of three alleles.

We will use the initial condition to define all other coefficients of the form

$$\int_{V_2} u_2(x, 0) \phi(x) \, dx + \int_0^1 u_1^{0,1}(x^1, 0, t) \phi(x^1, 0) \, dx^1 + \int_0^1 u_1^{0,2}(0, x^2, t) \phi(0, x^2) \, dx^2$$

and the product is

$$[u, \phi]_2 = \int_{V_2} u_2 \phi \, dx + \int_0^1 u_1^{0,1}(x^1, 0, t) \phi(x^1, 0) \, dx^1 + \int_0^1 u_1^{0,2}(0, x^2, t) \phi(0, x^2) \, dx^2$$

Step 1: We find out the local solution u_2 as follows

$$u_2(x, t) = \sum_{m \geq 0} \sum_{\alpha = 0}^{\infty} c_{m, \alpha, \alpha}^{(2)} X_{m, \alpha, \alpha}^{(2)}(x)e^{-\lambda_{m}^{(2)} t}.$$

To define coefficients $c_{m, \alpha, \alpha}^{(2)}$, we use the initial condition and the orthogonality of eigenvectors $X_{m, \alpha, \alpha}^{(2)}$

$$w_2(p) X_{m, \beta_1, \beta_2}^{(2)}(p) = \int_{V_2} u_2 \phi \, dx + \int_0^1 u_1^{0,1}(x^1, 0, t) \phi(x^1, 0) \, dx^1 + \int_0^1 u_1^{0,2}(0, x^2, t) \phi(0, x^2) \, dx^2$$

because w_2 vanishes on the boundary

$$= \sum_{\alpha = 0}^{\infty} c_{m, \alpha, \alpha}^{(2)} X_{m, \alpha, \alpha}^{(2)}(x)e^{-\lambda_{m}^{(2)} t}.$$

Because the matrix

$$\left(X_{m, \alpha, \alpha}^{(2)}(x), w_2 X_{m, \beta_1, \beta_2}^{(2)}(x) \right)_{(\alpha, \beta), (\beta_1, \beta_2)}$$

is positive definite then we have unique values of $c_{m, \alpha, \alpha}^{(2)}$. It follows that we have a unique local solution u_2.

Step 2: We will use the moment condition to define all other coefficients of the global solution.
Thus we obtain
\[u^{1,2}_t(x^1, 1 - x^1, t) = \sum_{m \geq 0} c_m(x^1) e^{-\lambda_m^{(1)} t}. \]

We note that
\[\lambda_0^{(1)} = -\lambda_k^{(1)} x^1 x^2 X_k^{(1)}(x^1). \]

It follows that
\[[u_t, x^1 x^2 X_k^{(1)}(x^1)]_2 = -\lambda_k^{(1)} [u, x^1 x^2 X_k^{(1)}(x^1)]_2. \]

It follows that
\[[u, x^1 x^2 X_k^{(1)}(x^1)]_2 = p^1 p^2 X_k^{(1)}(p^1) e^{-\lambda_k^{(1)} t}. \]

Thus we have
\[p^1 p^2 X_k^{(1)}(p^1) e^{-\lambda_k^{(1)} t} = \sum_{m \geq 0} r_m e^{-\lambda_m^{(2)} t} + \sum_{m \geq 0} c_{m,k} e^{-\lambda_m^{(1)} t} \]

By equating of coefficients of \(e^{\alpha t} \) we obtain \(u^{1,2}_1 \). Similarly we obtain \(u_1 \). Then, we define the coefficients of \(u_0 \) from the 1-th moment.

Note that when \(\phi = x^1 \), \(L_2^* (\phi) = 0 \), therefore \([u_t, \phi]_2 = 0 \) or
\[[u, x^1]_2 = [u(0), x^1] = p^1. \]

It follows that
\[p^1 = [u, x^1] = (u_2, x^1)_2 + (u_0^{1,1}, x^1)_1 + (u_1^{1,2}, x^1)_1 + u_0^1(1, 0, t). \]

Thus we obtain \(u_0^1(1, 0, t) \). Similarly we have all \(u_0 \). Therefore we obtain the global solution \(u \).

It is easy to check that \(u \) is a global solution. To prove the uniqueness we proceed as follows Assume that \(u \) is the difference of any two global solutions, i.e. \(u \) satisfies
\[\begin{cases} u_t = L_2 u, & \text{in } V_2 \times (0, \infty), \\ u(x, 0) = 0, & \text{in } V_2 \\ [u_t, \phi] = [u, L_2^* \phi], & \forall \phi \in H_2. \end{cases} \]

We will prove that
\[[u, \phi]_2 = 0 \quad \forall \phi \in H_2. \]
We need only to prove that Eq. (2.17) holds for all

In fact,

(1) If \(n = 0, m \geq 0 \), we see that \(\phi \) can be generated from \(\{1, x^1, w_1(x^1)X_m(x^1)\} \), therefore \([u, \phi]_2 = 0\).

(2) If \(m = 0, n \geq 0 \), we see that \(\phi \) can be generated from \(\{1, x^2, w_1(x^2)X_m(x^2)\} \), therefore \([u, \phi]_2 = 0\).

(3) If \(n = 1, m \geq 1 \), we expand \((x^1)^{m-1}\) by

\[
(x^1)^{m-1} = \sum_{k \geq 0} c_k X_k^{(1)}(x^1).
\]

Note that

\[
L_2^* \left(x^1 x^2 X_k^{(1)}(x^1) \right) = -\lambda_k^{(1)} x^1 x^2 X_k^{(1)}(x^1)
\]

Therefore

\[
[u, x^1 x^2 X_k^{(1)}(x^1)]_2 = [u, L_2^* \left(x^1 x^2 X_k^{(1)}(x^1) \right)]_2 = -\lambda_k^{(1)} [u, x^1 x^2 X_k^{(1)}(x^1)]_2.
\]

It follows that

\[
[u, x^1 x^2 X_k^{(1)}(x^1)]_2 = [u(0), x^1 x^2 X_k^{(1)}(x^1)]_2 e^{-\lambda_k^{(1)}} = 0.
\]

Therefore

\[
[u, \phi]_2 = \sum_{k \geq 0} c_k [u, x^1 x^2 X_k^{(1)}(x^1)]_2 = 0.
\]

(4) If \(n \geq 2, m \geq 1 \) we use the inductive method in \(n \). We have

\[
(x^1)^m (x^2)^n = x^1 x^2 (x^1 + x^2 - 1)(x^1)^{m-1} (x^2)^{n-2} + (x^1)^m (1 - x^1)(x^2)^{n-1}
\]

\[
= -w_2(x^1, x^2)(x^1)^{m-1} (x^2)^{n-2} + (x^1)^m (1 - x^1)(x^2)^{n-1}.
\]

In the assumption of induction, we have

\[
[u, (x^1)^m (1 - x^1)(x^2)^{n-1}]_2 = 0
\]

Then, we expand \((x^1)^{m-1}(x^2)^{n-2}\) by

\[
(x^1)^{m-1}(x^2)^{n-2} = \sum_{m, \alpha} c_{m, \alpha} X_{m, \alpha}^{(2)}(x^1, x^2).
\]

Therefore

\[
[u, w_2(x^1, x^2)(x^1)^{m-1}(x^2)^{n-2}]_2 = \sum_{m, \alpha} c_{m, \alpha} [u, w_2(x^1, x^2)X_{m, \alpha}^{(2)}(x^1, x^2)]_2 = 0.
\]

It follows that \([u, (x^1)^m (x^2)^n]_2 = 0\).

Thus, \(u = 0 \).
3. Applications

In this section, we present some applications of our global solution to the evolution of the process \((X_t)_{t \geq 0}\) such as the expectation and the second moment of the absorption time, the probability distribution of the absorption time for having \(k+1\) alleles, the probability of having exactly \(k+1\) alleles, the \(\alpha^{th}\) moments, the probability of heterogeneity, and the rate of loss of one allele in a population having \(k+1\) alleles. We refer to read [2], [4], [5], [6], [7], [8], etc., which of these results are already known.

3.1. The absorption time for having \((k+1)\) alleles. We denote by \(T^{k+1}_{n+1}(p) = \inf\{t > 0 : X_t \in V_k | X_0 = p\}\) the first time when the population has \((at most)\) \(k+1\) alleles. \(T^{k+1}_{n+1}(p)\) is a continuous random variable valued in \([0, \infty)\) and we denote by \(\phi(t, p)\) its probability density function. It is easy to see that \(V_k\) is invariant under the process \((X_t)_{t \geq 0}\), i.e. if \(X_s \in V_k\) then \(X_t \in V_k\) for all \(t \geq s\) (once an allele is lost from the population, it can never again be recovered). We have the equality

\[
\mathbb{P}(T^{k+1}_{n+1}(p) \leq t) = \mathbb{P}(X_t \in V_k | X_0 = p) = \int_{V_k} u(x, p, t) d\mu(x).
\]

It follows that

\[
\phi(t, p) = \int_{V_k} \frac{\partial}{\partial t} u(x, p, t) d\mu(x)
\]

Therefore the expectation for the absorption time of having \(k+1\) alleles is (see also [2], p. 194)

\[
\mathbb{E}(T^{k+1}_{n+1}(p)) = \int_0^\infty t \phi(t, p) dt
\]

\[
= \int_{V_k} \int_0^\infty t \frac{\partial}{\partial t} u(x, p, t) dt d\mu(x)
\]

\[
= \sum_{j=1}^{k} \sum_{(i_0, \ldots, i_j) \in I_j} \sum_{m \geq 0} \sum_{|\alpha| = m} c_{m, \alpha}^{(j)} \int_{V_j^{(i_0 \ldots i_j)}} X^{(j)}_{m, \alpha}(x) \left(\int_0^\infty t \frac{\partial}{\partial t} e^{-\lambda_m^{(j)} t} dt \right) d\mu_j^{(i_0 \ldots i_j)}(x)
\]

\[
+ \sum_{i=0}^n \sum_{k=1}^m \sum_{m \geq 0} \sum_{|\alpha| = m} c_{m, \alpha}^{(k)} d_{m, \alpha, i} \left(\int_0^\infty t \frac{\partial}{\partial t} e^{-\lambda_m^{(k)} t} dt \right),
\]

\[
= \sum_{j=1}^{k} \sum_{(i_0, \ldots, i_j) \in I_j} \sum_{m \geq 0} \sum_{|\alpha| = m} c_{m, \alpha}^{(j)} \int_{V_j^{(i_0 \ldots i_j)}} X^{(j)}_{m, \alpha}(x) \left(-\frac{1}{\lambda_m^{(j)}} \right) d\mu_j^{(i_0 \ldots i_j)}(x)
\]

\[
+ \sum_{i=0}^n \sum_{k=1}^m \sum_{m \geq 0} \sum_{|\alpha| = m} c_{m, \alpha}^{(k)} d_{m, \alpha, i} \left(-\frac{1}{\lambda_m^{(k)}} \right).
\]
and the second moment of this absorption time is (see also [7])

\[E(T_{n+1}^{k+1}(p))^2 = \int_0^\infty t^2 \phi(t, p) dt \]

\[= \int_V \int_0^\infty t^2 \frac{\partial}{\partial t} u(x, p, t) d\mu(x) \]

\[= \sum_{j=1}^k \sum_{i_1, \ldots, i_j} \sum_{m \geq 0} c_{m, \alpha}^{(j)} \int_{V_j(i_1, \ldots, i_j)} X_{m, \alpha}^{(j)}(x) \left(\int_0^\infty t^2 \frac{\partial}{\partial t} e^{-\lambda_m^{(j)} t} dt \right) d\mu_j^{(i_1, \ldots, i_j)}(x) \]

\[+ \sum_{i=0}^n \sum_{k=1}^m \sum_{m \geq 0} c_{m, \alpha}^{(k)} a_{m, \alpha, i} \left(\int_0^\infty t^2 \frac{\partial}{\partial t} e^{-\lambda_m^{(k)} t} dt \right), \]

\[= \sum_{j=1}^k \sum_{i_1, \ldots, i_j} \sum_{m \geq 0} c_{m, \alpha}^{(j)} \int_{V_j(i_1, \ldots, i_j)} X_{m, \alpha}^{(j)}(x) \left(-\frac{2}{(\lambda_m^{(j)})^2} \right) d\mu_j^{(i_1, \ldots, i_j)}(x) \]

\[+ \sum_{i=0}^n \sum_{k=1}^m \sum_{m \geq 0} c_{m, \alpha}^{(k)} a_{m, \alpha, i} \left(-\frac{2}{(\lambda_m^{(k)})^2} \right). \]

3.2. The probability distribution of the absorption time for having \(k + 1 \) alleles. We note that \(X_{T_{n+1}^{k+1}(p)} \) is a random variable valued in \(V_k \). We consider the probability that this random variable takes its value in \(V_k^{(i_0, \ldots, i_k)} \), i.e., the probability of the population at the first time having at most \(k + 1 \) alleles to consist precisely of the \(k + 1 \) alleles \(\{A_{i_0}, \ldots, A_{i_k}\} \). Let \(g_k \) be a function of \(k \) variables defined inductively by

\[g_1(p^1) = p^1; \]

\[g_2(p^1, p^2) = \frac{p^1}{1 - p^2} g_1(p^2) + \frac{p^2}{1 - p^1} g_1(p^1); \]

\[g_{k+1}(p^1, \ldots, p^{k+1}) = \sum_{i=1}^{k+1} \prod_{j \neq i} \frac{p^j}{1 - p^i} g_k(p^1, \ldots, p^{i-1}, p^{i+1}, \ldots, p^{k+1}) \]

Then we shall have

Theorem 3.1.

\[P \left(X_{T_{n+1}^{k+1}(p)} \in V_k^{(i_0, \ldots, i_k)} \right) = g_{k+1}(p^{i_0}, \ldots, p^{i_k}). \]

Proof. Method 1: By proving that

\[P \left(X_{T_{n+1}^{k+1}(p)} \in V_k^{(i_0, \ldots, i_k)} | X_{T_{n+1}^{k+1}(p)} \in V_k^{(i_1, \ldots, i_k)} \right) = \frac{p^{i_0}}{1 - p^{i_1} - \cdots - p^{i_k}} \]

and elementary combinatorial arguments, we have immediately the result (see also [7])

Method 2: By proving that it is the unique solution of the classical Dirichlet problem

\[
\begin{align*}
\left((L_k^{(i_0, \ldots, i_k)})^* v(p) \right. &= 0 \text{ in } V_k \\
\lim_{p \to q} v(p) &= 1, q \in V_k^{(i_0, \ldots, i_k)} \\
\left. \lim_{p \to q} v(p) \right. &= 0, q \in \partial V_k \setminus V_k^{(i_0, \ldots, i_k)} \setminus V_{k-1}.
\end{align*}
\]
3.3. The probability of having exactly \(k+1 \) alleles. The probability of having only 1 allele \(A_i \) (allele \(A_i \) is fix) is
\[
P(X_t \in \mathcal{V}_0 | X_0 = p) = \int_{\mathcal{V}_0} u_0^{(i)}(x,t) d\mu_0^{(i)}(x)
\]
\[= u_0^{(i)}(e_i, t)
\]
\[= p^i - \sum_{k=1}^{n} \sum_{m(k) \geq t(k) \geq 0} \sum_{[\alpha(k)] \subseteq [l(k)]} \epsilon_{m(k),l(k),\alpha(k)}^{(k)} \left(x^i, X_{t(k),\alpha(k)}^{(k)} \right) e^{-\lambda_{m(k)}^{(k)} t}.
\]

The probability of having exactly \((k+1) \) allele \(\{A_0, \ldots, A_k\} \) (the coexistence probability of alleles \(\{A_0, \ldots, A_k\} \)) is (see also \[3]\)
\[
P(X_t \in \mathcal{V}_{k}^{(i_0,\ldots,i_k)} | X_0 = p) = \int_{\mathcal{V}_{k}^{(i_0,\ldots,i_k)}} u_k^{(i_0,\ldots,i_k)}(x,t) d\mu_k^{(i_0,\ldots,i_k)}(x)
\]
\[= \sum_{m \geq 0} \sum_{l \geq 0} \sum_{[\alpha] \subseteq [l]} \epsilon_{m,l,\alpha}^{(k)} \left(\int_{\mathcal{V}_{k}^{(i_0,\ldots,i_k)}} X_{m,\alpha}^{(k)}(x) d\mu_k^{(i_0,\ldots,i_k)}(x) \right) e^{-\lambda_m^{(k)} t}.
\]

3.4. The \(\alpha^{th} \) moments. The \(\alpha^{th} \)-moments are (see also \[3]\)
\[m_{\alpha}(t) = [u, x^{\alpha}]_n
\]
\[= \int_{\mathcal{V}_n} x^{\alpha} u(x,t) d\mu(x)
\]
\[= \sum_{k=0}^{n} \sum_{(i_0,\ldots,i_k) \in I_k} \int_{\mathcal{V}_{k}^{(i_0,\ldots,i_k)}} x^{\alpha} u_k^{(i_0,\ldots,i_k)}(x,t) d\mu_k^{(i_0,\ldots,i_k)}(x).
\]

3.5. The probability of heterogeneity. The probability of heterogeneity is (see also \[3]\)
\[H_1 = (n+1)! [u, w_n]_n
\]
\[= (n+1)! [u_n, w_n]_n \quad \text{(because } w_n \text{ vanishes on the boundary)}
\]
\[= (n+1)! \left(\sum_{m \geq 0} \sum_{[\alpha] = m} \epsilon_m^{(n)} X_m^{(n)} \right) e^{-\lambda_m^{(n)} t} w_n X_0^{(n)}
\]
\[= (n+1)! \left(c_{m,0}^{(n)} X_0^{(n)} + w_n X_0^{(n)} \right) e^{-\lambda_0^{(n)} t} \quad \text{(because of the orthogonality of the eigenvectors } X_m^{(n)} \text{)}
\]
\[= H_0 e^{-\frac{(n+1)(n+2)}{2} t}.
\]

3.6. The rate of loss of one allele in a population having \(k+1 \) alleles. We have the solution of the form
\[u = \sum_{k=0}^{n} u_k(x,t) \chi_{V_k}(x)
\]
The rate of loss of one allele in a population with \((k+1)\) alleles equals the rate of decrease of
\[
\nu_k(x, t) = \sum_{m \geq 0} \sum_{l \geq 0} \sum_{|\alpha|=l} c_{m,l,\alpha}^{(k)} X_{l,\alpha}^{(k)}(x) \chi_{V_k}(x) e^{-\lambda_{k+1}^{(k)} t}.
\]
which is \(\lambda_{0}^{(k)} = \frac{k(k+1)}{2}\). This means the rate of loss of alleles in the population decreases (see also [5]).

Conclusion

We have developed a new global solution concept for the Fokker-Planck equation associated with the Wright-Fisher model, and we have proved the existence and uniqueness of this solution (Theorem 2.9). From this solution, we can easily read off the properties of the considered process, like the absorption time of having \(k + 1\) alleles, the probability of having exactly \(k + 1\) alleles, the \(\alpha^{th}\) moments, the probability of heterogeneity, and the rate of loss of one allele in a population having \(k + 1\) alleles.
References

1. R. Bürger, The mathematical theory of selection, recombination, and mutation, John Wiley, 2000.
2. Warren J. Ewens, Mathematical Population Genetics I. Theoretical Introduction, Springer-Verlag New York Inc., Interdisciplinary Applied Mathematics, 2nd ed., 2004.
3. Fisher R. A., On the dominance ratio, Proc. Roy. Soc. Edinb., 42 (1922), 321-341.
4. Kimura M., Solution of a Process of Random Genetic Drift with a Continuous Model, PNAS–USA, Vol. 41, No. 3, (1955), 144-150.
5. Kimura M., Random genetic drift in multi-allele locus, Evolution, 9 (1955), 419-435.
6. Kimura M., Random genetic drift in a tri-allelic locus; exact solution with a continuous model, Biometrics, 12 (1956), 57-66.
7. Littler R. A., Good A.J., Ages, Extinction times, and First Passage Probabilities for a Multi-allele Diffusion Model with Irreversible Mutation, Theoretical Population Biology, 13 (1978), 214-225.
8. Littler R.A., Loss of Variability at One Locus in a Finite Population, Mathematical Biosciences, (25) (1975), 151-163.
9. Risken, H., The Fokker-Planck-Equation. Methods of Solution and Applications, 2nd ed., Berlin etc., Springer-Verlag 1989.
10. T.D. Tran, J. Hofrichter, J. Jost, The mathematical structure of the Wright-Fisher model of population genetics
11. S. Wright, Evolution in Mendelian populations, Genetics, 16 (1931), 97-159.
12. S. Wright, The differential equation of the distribution of gene frequencies, Proc. Nat. Acad. Sci., 31 (1945), 382-389.

TAT DAT TRAN, MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, D-04103 LEIPZIG, GERMANY
E-mail address: tran@mis.mpg.de

JULIAN HOFRICHTER, MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, D-04103 LEIPZIG, GERMANY
E-mail address: julian.hofrichter@mis.mpg.de

JÜRGEN JOST, MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, D-04103 LEIPZIG, GERMANY, DEPARTMENT OF MATHEMATICS, LEIPZIG UNIVERSITY, D-04081 LEIPZIG, GERMANY, SANTA FE INSTITUTE FOR THE SCIENCES OF COMPLEXITY, SANTA FE, NM 87501, USA
E-mail address: jost@mis.mpg.de