Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus

Justyna A. Karolak,1 Karolina Kulinska,1,2 Dorota M. Nowak,1 Jose A. Pitarque,3 Andrea Molinari,3 Małgorzata Rydzanicz,4 Bassem A. Bejjani,4 Marzena Gajecka1,2

1Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; 2Basic Medical Sciences Program, WWAMI (Washington, Wyoming, Alaska, Montana, and Idaho), Washington State University, Spokane, WA; 3Department of Ophthalmology, Hospital Metropolitano, Quito, Ecuador; 4Signature Genomics, Spokane, WA

Purpose: Keratoconus (KTCN) is a non-inflammatory, usually bilateral disorder of the eye which results in the conical shape and the progressive thinning of the cornea. Several studies have suggested that genetic factors play a role in the etiology of the disease. Several loci were previously described as possible candidate regions for familial KTCN; however, no causative mutations in any genes have been identified for any of these loci. The purpose of this study was to evaluate role of the collagen genes collagen type IV, alpha-1 (COL4A1) and collagen type IV, alpha-2 (COL4A2) in KTCN in Ecuadorian families.

Methods: COL4A1 and COL4A2 in 15 Ecuadorian KTCN families were examined with polymerase chain reaction amplification, and direct sequencing of all exons, promoter and intron-exon junctions was performed.

Results: Screening of COL4A1 and COL4A2 revealed numerous alterations in coding and non-coding regions of both genes. We detected three missense substitutions in COL4A1: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c.4002A>C (Glu1334His). Five non-synonymous variants were identified in COL4A2: c.574G>T (Val192Phe), c.1550G>A (Arg517Lys), c.2048G>C (Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser). None of the identified sequence variants completely segregated with the affected phenotype. The Glu1334His variant was possibly damaging to protein function and structure.

Conclusions: This is the first mutation screening of COL4A1 and COL4A2 genes in families with KTCN and linkage to a locus close to these genes. Analysis of COL4A1 and COL4A2 revealed no mutations indicating that other genes are involved in KTCN causation in Ecuadorian families.

Keratoconus (KTCN, OMIM 148300) is a non-inflammatory, usually bilateral disorder of the eye, characterized by progressive thinning and protrusion of the central cornea which results in altered refractive powers and loss of visual acuity [1]. The prevalence of the disease is estimated to be 1 in 2,000 individuals, and is the most common ectatic disorder of the cornea [1]. KTCN afflicts males and females in all ethnic groups [1]. Signs and symptoms depend on the stage of disease, with the first signs usually appearing in the third decade of life [1,2]. The cause of KTCN is still unknown; both genetic and environmental factors seem to play a role in its etiology. Although most cases of KTCN are isolated, an association with many syndromes, such as Down syndrome [3], Ehlers-Danlos syndrome [4], and Leber congenital amaurosis [5] has been described. Furthermore, extensive studies have shown an association between KTCN and constant eye rubbing [6], contact lens wear [7], or atopy [8]. Usually, KTCN is a sporadic disorder, but positive family history has been observed in 6%–8% of cases [1]. An autosomal dominant inheritance pattern with reduced penetrance has been suggested in 90% of patients with familial KTCN [9,10].

Genomewide linkage analyses have indicated several loci involved in the etiology of familial KTCN at 1q22.3-q23.1 (KTCN2; OMIM 608932), 3p14-q13 (KTCN3; OMIM 608586), 2p24 (KTCN4; OMIM 609271), 1p36.23–36.21, 5q14.3-q21.1, 5q21.2, 5q23-33, 8q13.1-q21.11, 9q34, 14q11.2, 14q24.3, 15q2.32, 15q22.33-q24.2, 17p13, and 20q12 [10-20]. However, no mutations in any genes at any of these loci have been associated with KTCN.

We have demonstrated an evidence of linkage to a novel locus at 13q32 [21]. Collagen type IV, alpha-1 (COL4A1; OMIM 120130) and collagen type IV, alpha-2 (COL4A2; OMIM 120090) are mapped in close proximity to that locus. The COL4A1 and COL4A2 genes are organized in a head-to-head conformation [22]. These gene pairs share a common promoter, and each gene is transcribed in opposite directions [23]. The COL4A1 gene is placed on the minus strand and consists of 52 exons, while the COL4A2 gene is on the opposite strand and consists of 48 exons. They encode two of six collagen type IV chains – α1 and α2 (1,669 and 1,712 amino acids, respectively) – forming a heterotrimeric protein molecule of collagen type IV (α1α1α2), which is found in the...
structure of the basement membrane (BM) [22,23]. Each chain contains three domains: an NH2-terminal 7S domain, a major collagenous domain with Gly-X-Y repeats (the X position is frequently occupied by proline, whereas the Y position is often occupied by 4-hydroxyproline) and a non-collagenous domain (NC1) at the COOH-terminus. Repetitions of the Gly-X-Y motif determine the formation of the triple-helical structure of collagen [22].

Collagens are the major protein components of the human cornea, and several types of collagen, including collagen type IV, have been identified [24]. Biochemical studies have revealed thinning of corneas from patients with KTCN, which may occur as a result of a reduced amount of total collagen proteins [25] and changes in collagen fibers orientation [26]. Moreover, a cornea affected by KTCN contains defects in BM and alterations in the BM composition [27]. The presence of collagen type IV in normal human cornea has remained unclear [28]. Results from expression arrays have shown an expression of COL4A1 in transplant-quality human donor corneas [29] and a downregulation of COL4A1 in keratoconus corneas [30]. Immunohistochemical studies have found collagen type IV α1/α2 chains in keratoconus corneas in large defect sites [28]. In light of these results, we recognize COL4A1 and COL4A2 as candidate genes for KTCN.

The purpose of this study was to screen COL4A1 and COL4A2 genes and determine whether sequence variants in these genes are involved in the causation of KTCN in Ecuadorian families.

METHODS

Subjects: Twenty-three individuals from family KTCN-014, 25 affected individuals from other Ecuadorian families with KTCN, and 64 Ecuadorian control subjects were included in the study. The pedigrees of these families have been described elsewhere [21]. All individuals were examined in the Hospital Metropolitano in Quito, Ecuador, undergoing a complete ophthalmic evaluation as previously described [21]. The possible consequences of the study were explained and informed consent was obtained from all family members, according to the Declaration of Helsinki. Study protocol was approved by both the Institutional Review Board at Washington State University Spokane, Spokane, WA and Poznan University of Medical Sciences (Poland).

Sequencing analyses: Oligonucleotide primers were designed to amplify all coding sequences and intron-exon junctions, promoter, and UTRs of both COL4A1 and COL4A2 (Table 1). PCR amplifications were performed using Taq DNA Polymerase (Fermentas Inc., Glen Burnie, MD). PCR products were purified with ExoSAP-IT® (USB Corporation, Cleveland, OH) or Montage® PCR Filter Units (Millipore, Jaffrey, NH) and sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Inc. [ABI], Foster City, CA). Sequencing was visualized on an ABI PRISM® 3100 Genetic Analyzer (ABI) and a 3730xl DNA Analyzer (ABI). The DNA sequences of study subjects were compared with the reference sequences of COL4A1 and COL4A2 (GRCh37/hg19, GenBank accession numbers for the mRNA NM_001845.4 and NM_001846.2, respectively) using Sequencher® 4.1.4. Software (Gene Codes Corporation, Ann Arbor, MI).

Haplotypes analysis: PEDSTATS [31] was used to verify the structure of KTCN-014 family and identify potential Mendelian inconsistencies in the inheritance of single nucleotide polymorphisms (SNPs) in COL4A1 and COL4A2. For that region, to determine the full haplotypes inherited along with the substitutions occurring in affected individuals, a reconstruction of observed sequence variants was prepared using SimWalk2 [32,33]. Allele frequencies were set as equal. The location of genetic markers was determined on the basis of the Rutgers combined linkage-physical map of the human genome [34], either directly or by interpolation. Haplotype was generated with HaploPainter [35].

Statistical analysis for Gln1334His substitution: The difference in distribution of Gln1334His substitution between affected and unaffected individuals in family KTCN-014 was analyzed by Fisher's Exact Test for Count Data. Similarly, 25 affected individuals from the remaining KTCN families versus 64 Ecuadorian control individuals were compared using Fisher's Exact Test. The difference between the examined groups was considered significant if the value of probability (p) did not exceed 0.05.

Prediction of effect of amino acid substitutions on protein function: The potential impact of amino acid substitutions on the COL4A1 and COL4A2 proteins was examined using PolyPhen, SIFT, PMUT, PANTHER, and SNAP tools. The PolyPhen tool predicts which missense substitution affects the structure and function of protein, and uses Position-Specific Independent Counts software to assign profile scores. These scores are the likelihood of the occurrence of a given amino acid at a specific position, compared to the likelihood of this amino acid occurring at any position (background frequency) [36].

The SIFT analytic tool, on the basis of gene sequences homology, evaluates conserved positions, and calculates a score for the amino acid change at a particular position. A score of <0.05 is considered as pathogenic and has a phenotypic effect on protein structure [37]. The PMUT calculates the pathological significance of non-synonymous amino acid substitution using neural networks (NN). NN output >0.5 is considered to be deleterious [38]. PANTHER estimates the likelihood of a particular amino acid’s change affecting protein function. On the basis of an alignment of evolutionarily related proteins, it generates the substitution Position-Specific Evolutionary Conservation (subPSEC). The subPSEC could achieve values from 0 (neutral) to about −10 (most likely to be deleterious). The
Name	Forward	Reverse	Annealing Temperature (°C)	Amplicon Size (bp)
COL4A1.1	CACCCCTCCCCCTTTCTACTC	GCCCAGAGAATGCACCTG	59	837
COL4A1.2	TTGGGCTGAGTAACACTTGG	GCCCTTTTGAGCTTCATTG	58	459
COL4A1.3-4	GGCAACAGAAATGAGACTCC	TGTGGAGCTGGAGAGGAGAGAT	66	477
COL4A1.5-6	GGGACAGCTGCTTGGTGTG	ACAAAGCTGTACTGAGGTA	60	698
COL4A1.7-8	CACACTGTGGAGGAAGGTAGG	TGTCCAGTGTCTGACAG	58	578
COL4A1.9-10	CTTTGTCTCCCTGGCCTC	TCACTCTCCCTCTCCCACAG	58	691
COL4A1.11	GGAATGATGTTGGTATGGTG	GACTAAGGGGTGGAGGAAGAGG	58	451
COL4A1.12	GGAGAAGCCATGATGGCTGA	GACATTGATCCAAGGTTGGG	58	239
COL4A1.13	GCAGAGACAGATGAGTACAG	GGAGGCTGCTTATGTAAGGC	58	393
COL4A1.14-15	CTTGCTCCCTGCTTACATT	GTCCTCAGAGCCTCTCTCT	60	505
COL4A1.16-17	TTATGGGAGAGGAGATGGTTG	AAATGGTCTCTGATGACTG	60	725
COL4A1.18	GATGGGACAAAGTACCTGGG	CATCTGCTTCTCTCTCCTC	60	459
COL4A1.19	GCTACCATTTGCTGCTATCTAC	AATAGAAGAGCTGAGGAGAGAG	62	447
COL4A1.20	GTCAACACAGGCTTACAGAG	GCCAGGAGAGACATAGGGGT	60	486
COL4A1.21	CAGTGTGCTTGTGTGGATG	ATGCCAGAGTCTCAGAGG	60	516
COL4A1.22	TGGGGCTGAGTAAGGTCAAGG	GAGAAGGGCGAAAACCTCTCA	60	304
COL4A1.23	TCCACACCATTGAGCAGAGAG	GCAACACACACCAAAGGCGA	60	431
COL4A1.24	GTGGCTCTTGGGATTTTATG	ATTTGGGTCTGTTGGAATC	60	718
COL4A1.25	GTGCCAAAGCCATCTACATA	GTTGCACAGGTTGCCCAATG	60	488
COL4A1.26	CCTGGGAGGAGGATAGAAGT	GAAGGAGGAGCACAAGAGG	62	488
COL4A1.27-28	AAATGGGAGAGGAGATGGTTG	TCTTCCACACACACCTTAC	56	636
COL4A1.29	AGGGTGCTGAGGAAGACAGCA	GCTAGAAGCTGAGAAAACCATC	60	678
COL4A1.30	GCTGGGCTGAGGAAGACAGCA	GGCTTACAGATTTGCTACG	64	315
COL4A1.31	CACAGCCCTACAGCAGTTA	CAGTGTGCGAGGAGAAACATC	61	483
COL4A1.32-33	CTTACAGTTTCTCCAGTGTG	GCCCTTCTGAGTGTCTTCA	60	653
COL4A1.34	CTGATCCAGCCCTGAGGTA	TATGGGAGGACCGATAACCC	60	411
COL4A1.35-36	TGGCCCTTTCTGCTGGTAAT	AATGGCAGGACCTCCAGTAC	64	594
COL4A1.37	GGGAGGGATTACCTCTGTTGTA	TCCCTGCTGGTGTAATGGCTCA	58	364
COL4A1.38-39	TGGCCGTGAGGAGGAGAGAT	TGAAGATGGGAGAGCAGAC	61	641
COL4A1.40	GACCTCAGGAAAACAGGGT	GATGTGCGAGGAGTGCAG	60	359
COL4A1.41	TGGTGCTGTCGTGAGCTGAGG	CATGTGCTGCTGAGCAGC	60	447
COL4A1.42	TAAAGAAGAGGGAGGAGATGG	TCTTCAACGAGACGCAAAGG	62	676
COL4A1.43	CTCGCGCCTGAGTTTCTGGA	TAGTGCGAGGATGAGGGT	60	435
COL4A1.44	CCACAGGCCATCTTGGTGT	TACAAATGGGTGGCTGCAC	60	376
COL4A1.45	GGACCAAGAACAATGCTCTCA	GAGCCTTGGGAAGTCTGTA	60	790
COL4A1.46	CGAAGATGGTGTGGAGAGT	TCTCTGGGTTTCTCTGTG	59	590
COL4A1.47	AAGCCAAAGAACAGGGGGAAGT	GAGCTGGCTTTCACACAAATC	60	591
COL4A1.48	TGGAGAAGGGATGAGCAGG	GCGAAGTGTCTACTGCTAC	60	516
COL4A1.49	GTGTGCTGTAAGACATGCTCC	GCACACGCTTGAACCTTTCATTTA	60	650
COL4A1.50	AAAACCAAGGGGAGGATG	TAAAGCGAGACGAGATAAGGAGA	59	407
COL4A1.51	GGAAGCAGCCATTAGAGGAT	AAATGCCTCTGGTCTACTGCG	60	573
Name	Forward	Reverse		
------------	---------	---------		
COL4A1.52.1	TACCGTGTGAGGCCCTGATG	ACCTCCTAGCAACCTTTTGGT		
COL4A1.52.2	GAAACCACAGGGGTCTAGG	CCGAATGTGCTTTAGCTGTA		
COL4A1.52.3	CCTGGCTTGAAMAACAGCTC	ATCCACCCCCAGCTGTCAG		
COL4A2.1	TCTGGGQAAGACTGAGATAC	AGACAAAGGAGGATGAGAGA		
COL4A2.2	GCTCTGGAAGGGCCTATGC	GGAGAAGGGAGAGAAGAGA		
COL4A2.3	CTCATCTCAAGCTTACCTC	ACATCTTCTCCCTCAGTCA		
COL4A2.4	ATTCAGGGTGGAGAGAC	CGGCCATCTAGTGTGGT		
COL4A2.5–6	TCTTTTTATCCCAACAGCTC	TCCACGTTTTTTATGTC		
COL4A2.7	AGACAGAAGAAACCCCGACA	TCTGGGGTCAACACAGAT		
COL4A2.8	TGCAATAAACCCCTACAGC	AACAGATCGCCCTACAGGAC		
COL4A2.9–10	AGGTGCGTATGGGCTGATCT	TAACTGCGAGAGCCTGAGT		
COL4A2.11	GCACTGAGAAAACCTCCATGC	ACATTGGCCCTCCCCAACA		
COL4A2.12	TGCAATCTCAGCCTCCTCAGA	CCCAGTCTAGTGTGGT		
COL4A2.13	GGAAACAACCCACAGAAAC	GCCAAATGAGAGCAGGAT		
COL4A2.14	GTAAAACATCTGCCTGGAAG	CTATGGAACAGGGGAGT		
COL4A2.15	GTCACTGCTGTCCTCAGA	CCCAGTCTAGTGTGGT		
COL4A2.16	ATTAATTTCCATCCACCTC	GGAGGACCGGTTAATG		
COL4A2.17	CGCAGTGTCCTCAACACACCA	CGTGAAGGCTCAGATTG		
COL4A2.18	AGCAAGCTGCTGCAATTTTC	CTGTAAGGGGTTCCTACG		
COL4A2.19	TTCTGAGCTGTGGAGAGCTC	AGCTGCTAGGAGGAT		
COL4A2.20	ACCCATCGGATTTAGTGGC	AGATCGCCCTACTقات		
COL4A2.21	CCTGCATCTGCTGTCTC	AAGTTGCTCTCCCTTCAC		
COL4A2.22	CTCCTGGTAGATGTGCTCAGT	AAGATGCTGCTTCTTCAT		
COL4A2.23–24	ATGCAAGAAGAATCTCCCTTGG	ATGAGCGCTCCCTCTATG		
COL4A2.25	TGCCACTAGTCTGTTCCTCA	ACAGAGAGGAGGATGTTT		
COL4A2.26	AACATCGACCTCCTGTCTG	TTCTGACAGAGGGGAGT		
COL4A2.27	CGAAGATGTGAGGCCTTCTT	GCAAAGCAAGGATGGTG		
COL4A2.28	TAAAGCCTGGAGGCTGTTT	CGAAACACCTGTCTCCTT		
COL4A2.29	GCCAAGGTGTAGTGGTTCCTA	TGGCAACAGAAAAACAGT		
COL4A2.30	GAAATAGCAAGGGCAGGAGG	CGAAGAGATAGGCCGAT		
COL4A2.31	CACGAGCTCAACTCCCTAGAT	AGCAGAGGAGGATGTTT		
COL4A2.32	TGTCCTCTCTGCTTTCCTT	TGTTGACAGGAGATAGA		
COL4A2.33	TGTCCTCTCTCCACCTGTC	AACCAGGTTACACAGG		
COL4A2.34	AAGCAGCTAGAGCACAAAA	ACATCTGCAATGTCCTAA		
COL4A2.35	GCTATAGAAACGCCCTATG	ACAGAGCTTCCCTACGAG		
COL4A2.36	GGAGTCCCAATACTCAGAGC	GACCCTCTGGCTTTCTGAG		
COL4A2.37	CCCATGCTCTTCTCTCATTG	ATGGCTCTCTCCATCCCTGT		
COL4A2.38	CTGTCGCTCTTTTCTGTTT	CTTGTCGCTATTTTCG		
COL4A2.39	GTGCTGCTCCCCACATGAAA	AGTCCAATTCCCTACG		
COL4A2.40	ATGCGGCTCTGATCCTCTT	AAAACAGCTTCTCTCCG		
COL4A2.41	CCCACCACTAGAGATGTTT	ATGACACAGGGAGGCTCAT		
Name	Forward	Reverse	Annealing Temperature (°C)	Amplicon Size (bp)
------------	-----------------------------------	----------------------------------	---------------------------	--------------------
COL4A2.42–43	AGTCATTCCATGCCACAGAC	TAAGCTCTCCATTCCCCAAG	60	666
COL4A2.44–45	CCCGTTAGTGCTGGCTCAT	AGGTGTCTTGCTGGCATAG	60	744
COL4A2.46	GAAACTGCCCTGCACCTCT	TAGATGGACCTTTCCGTAGC	60	664
COL4A2.47	CACTCCTGCTGGATCCTAACT	CCACTACGCTTTGCTGCA GTG G	60	675
COL4A2.48.1	GGATGCCTCATGTCCGTATTT	TACATGGGTGTGTCGGA G	60	689
COL4A2.48.2	CATCCAGCAGCAGCACTTAAAG	AGGTCTCCACTTCTGCTG A	59	530
COL4A2.48.3	CCTGCTTCTACGCAAATGT	CTGTTCTTTTCTGCTTGT	60	573

In the table, Amplicon Size represents length of the PCR product in base pairs (bp) and Annealing Temperature represents the annealing temperature of the primers used for PCR amplifications.
value −3 is the cutoff point for functional significance, and corresponds to a \(P_{\text{determin}} \) of 0.5. If the substitution occurs at a position not appearing in the multiple sequence alignment, a subPSEC score cannot be calculated and change is not likely to be pathogenic [39,40].

The SNAP tool predicts the functional consequences of exchanging amino acids using evolutionary conservation and structure/function relationships. The SNAP output shows prediction neutral or non-neutral, and the expected accuracy [41].

RESULTS

Forty eight members of 15 Ecuadorian families and 64 Ecuadorian control subjects were included in the study. Twenty-three individuals from family KTCN-014, two affected individuals from each of the families KTCN-011, 015, 019, 020, 021, 024, 025, 030, 031, 034, and 035, and one patient from each of KTCN-05, 013, and 017 were examined.

COL4A1 and COL4A2 sequence analyses: Screening of **COL4A1** (NM_001845.4) coding regions revealed 12 sequence variants, three of which were amino acid substitutions: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c.4002A>C (Gln1334His). We identified one novel synonymous change, c.3693G>A (Thr1213Thr), and eight previously reported sequence variants: c.432T>A (Ala1442Ala), c.1257T>C (Pro419Pro), c.1815T>C (Pro606Pro), c.2130T>A (Pro710Pro), c.3183G>A (Gly1061Gly), c.3189A>T (Arg1063Arg), c.4470C>T (Ala1490Ala), and c.4800C>T (Ser1600Ser). In the 5′ untranslated region (5′ UTR), one novel sequence variant, c.84+124T>A, was identified. In the 3′ untranslated region (3′ UTR), two previously reported variants, c.*587C>A and c.*975A>C, were detected.

Sequencing analyses of **COL4A2** (NM_001846.2) coding regions revealed 13 previously reported sequence variants, including five non-synonymous substitutions: c.574G>T (Val191Phe), c.1550G>A (Arg517Lys), c.2048G>C (Gly683Asp), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser), and eight synonymous substitutions: c.297G>A (Thr99Thr), c.1083C>T (Pro361Pro), c.1095G>A (Pro365Pro), c.1179C>T (Ile393Ile), c.1488G>A (Pro496Pro), c.4089G>A (Ala1363Ala), c.4290T>C (Phe1430Phe), c.4515A>G (Pro1505Pro). In the 5′ UTR, five known nucleotide changes, c.-227A>C, c.-223G>G, c.-215C>T, c.-203T>C, and c.-133A>G, were identified. In the 3′ UTR, eight previously reported sequence variants, c.*767C>T, c.*101*102del2, c.*417C>G, c.*541C>T, c.*557A>G, c.*650T>C, c.*663T>C, and c.*727G>C were detected.

Screening of exon/intron junctions in **COL4A1** and **COL4A2** revealed numerous sequence variants in the surrounding non-coding sequences, 71 and 86, respectively, including single nucleotide changes, insertions, and deletions. All screening results are summarized in Table 2.

The sequencing of the genomic region containing the common promoter of **COL4A1** and **COL4A2** revealed no sequence changes.

Statistical analysis and in silico predictions: PolyPhen analyses of non-synonymous changes in **COL4A1** and **COL4A2** predicted that only the Gln1334His variant in **COL4A1** was possibly damaging for protein function and structure. The multiple sequence alignment of **COL4A1** orthologs shows that the amino acid glutamine at position 1,334 is conserved throughout the analyzed species (Figure 1). Gln1334His substitution was observed more frequently in patients than in healthy individuals in family KTCN-014 (p=0.056). There was no difference in the c.4002A>C allele distribution between the analyzed affected individuals from the remaining KTCN families and the Ecuadorian control subjects (p=0.17).

The SIFT, PMUT, PANTHER, and SNAP analyses defined all missense amino acid substitutions in **COL4A1** and **COL4A2** as neutral/tolerated and lacking any effect on protein function. All prediction results are summarized in Table 3.

Haplotype reconstruction: Haplotypes of sequence variants observed in family KTCN-014 are shown in Figure 2. The coding sequence variants in **COL4A1** are surrounded by markers rs13260 and col4a1_snpl. Exons of **COL4A2** are localized between rs35466678 and rs422733.

KTCN-014 consists of two family branches. Distinct haplotypes in the branches were identified (Figure 2). In the first one, initiated by parents KTCN-93 and KTCN-01, six subjects with KTCN had the same haplotype in the **COL4A1** region, extending from rs13260 to col4a1_snpl. Three unaffected individuals, KTCN-13, KTCN-14, and KTCN-22, share that part of the haplotype with their affected relatives. One of four variants in this region, rs3742207, causes a change in the protein sequence, replacing Gln in position 1334 with His (Gln1334His). That haplotype region, from rs13260 to col4a1_snpl, represents a short fragment of the haplotype which covers the whole **COL4A1** and **COL4A2** sequence in KTCN-03, KTCN-05, KTCN-06, and KTCN-14. In addition, individuals KTCN-07, KTCN-09, KTCN-13, KTCN-22, and KTCN-23 share the rs874203-rs422733 region (Figure 2 – pink bars). For markers rs13260-col4a1_snpl, a different haplotype was observed in the second family branch, initiated by parents KTCN-92 and KTCN-16. This haplotype covered the entire length of the analyzed region, and was identified in all affected individuals and KTCN-21, whose phenotype was unknown. Subject KTCN-17 had the same allele pattern for markers rs13260-col4a1_snpl, as individuals from the first branch of the family. However, in this case, analysis indicated that these markers are inherited from KTCN-92, who is unrelated to KTCN-93 and KTCN-01.

DISCUSSION

To our knowledge, this is the first report describing complete sequence analysis of the coding regions and the exon-intron
Table 2. Sequence variants found in COL4A1 and COL4A2 genes.

Exon	dbSNP refID	Chromosome Position	Allele Change	Residue Change	Affected KTCN-014 (n=10)	Unaffected KTCN-014 (n=11)	Unknown KTCN-014 (n=2)	All KTCN-014 (n=23)	Other KTCN families affected (n=25)	All (n=48)	
1	rs9515185	11095356	c.19G>C	Val7Leu	10 100	11 100.0	2 100	23 100.0	25 100.0	48 100.0	
2	rs1125665	11095290	c.85–196C>T	1 10	0 0	2 18.2	1 50	3 13.0	5 20	8 16.7	
3	rs12475106	11095150	c.85–69C>T	1 10	0 0	4 17.4	3 14	8 16.7			
4	rs9216510	110862625	c.325+123G>A	- 10	0 0	1 50	0 0	3 13.0	5 20	8 16.7	
5	rs737328	110866065	c.279+64G>A	1 50	5 45.5	1 50	11 47.8	10 40	21 43.8		
6	rs522625	110864225	c.432T>A	Ala144Ala	7 70	8 72.7	2 100	17 73.9	14 56	31 64.6	
7		110863956	c.468+5_468+9del5	- 3 30	2 18.2	0 0	5	21.7	4 16	9	18.8
Exon	dbSNP refID	Chromosome	Allele Change	Residue Change	Affected KTCN-014 (n=10)	Unaffected KTCN-014 (n=11)	Unknown KTCN-014 (n=2)	All KTCN-014 (n=23)	Other KTCN families affected (n=25)	All (n=48)	
------	-------------	------------	---------------	----------------	--------------------------	--------------------------	------------------------	-----------------	----------------------------------	-----------	
25	rs556174	110839550	c.1663A>C	Thr555Pro	10 100 11 100.0 2 100 23 100.0 25 100 48 100.0						
26	rs9526138	110839428	c.1728+57T>C	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
27	rs81749673	110838703	c.1831T>C	Pro605Pro	3 30 4 36.4 1 50 8 34.8 4 16 12 25.0						
28	rs2503080	110838646	c.1991–16G>A	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
29	rs61749897	110838519	c.2095+145G>T	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
30	rs874204	110837502	c.2130G>A	Pro710Pro	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
31	rs16975492	110833702	c.2194–69C>T	-	3 30 4 36.4 1 50 0 0.0 0 0 6 34.8						
32	rs1319599	110831866	c.2194–69C>T	-	3 30 4 36.4 1 50 0 0.0 0 0 6 34.8						
33	rs903053	110831451	c.2345–68A>G	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
34	rs350589	110830612	c.2626–34T>C	-	0 0 0 0 0 0 0 0 0 0 2 8.3						
35	rs16975491	110833564	c.2893+57T>C	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
36	rs10492497	110831837	c.2893+57T>C	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
37	rs874203	110837540	c.3183G>A	Gly1061Gly	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
38	rs874201	110837540	c.3389A>T	Arg1063Arg	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
39	rs874204	110837540	c.3439G>A	Thr1231Thr	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
40	rs61749897	110838519	c.3557–90C>T	-	3 30 4 36.4 1 50 8 34.8 6 24 14 29.2						
41	rs874203	110837540	c.3590+136C>T	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
42	rs7151998	110825264	c.3596–147C>A	-	1 10 1 9.1 0 0 2 8.3 4 16 8 12.5						
43	rs2289799	110828497	c.3596–147C>A	-	1 10 1 9.1 0 0 2 8.3 4 16 8 12.5						
44	rs2275845	110822943	c.3693G>A	Thr1231Thr	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
45	rs899865	110819586	c.3771–90C>T	-	7 70 7 63.6 1 50 15 65.2 2 100 23 100.0						
46	rs652572	110819457	c.3949+48T>C	-	2 20 4 36.4 1 50 8 34.8 6 24 14 29.2						
47	rs1213026	110819362	c.4449–143T>C	-	9 90 10 90.9 2 100 21 91.3 24 96 45 93.8						
48	rs1133219	110817097	c.4470C>T	Ala1490Ala	3 30 5 54.5 2 100 14 52.2 12 66 26 54.2						
49	rs2275843	110813573	c.4590+137C<T	-	6 20 4 36.4 1 50 8 34.8 6 24 14 29.2						
50	rs1319599	110813531	c.4620+86A>G	-	6 20 4 36.4 1 50 8 34.8 6 24 14 29.2						
51	rs2275842	110813531	c.4620+86A>G	-	2 10 1 9.1 0 0 2 8.3 4 16 8 12.5						
52	rs2275842	110813531	c.4620+86A>G	-	3 30 4 36.4 1 50 8 34.8 6 24 14 29.2						
53	rs605078	110804899	c.4800C>T	Ser1600Ser	2 20 4 36.4 1 50 8 34.8 6 24 14 29.2						
54	rs13260	110802123	c.587C>A	-	1 10 1 9.1 0 0 2 8.3 4 16 8 12.5						
55	rs28362515	110801735	c.975A>C	-	1 10 1 9.1 0 0 2 8.3 4 16 8 12.5						
Exon	dbSNP refID	Chromosome	Allele Change	Residue Change	Affected KTCN-014 (n=10)	Unaffected KTCN-014 (n=11)	Unknown KTCN-014 (n=2)	All KTCN-014 (n=23)	Other KTCN families affected (n=25)	All (n=48)	
------	-------------	------------	---------------	----------------	--------------------------	--------------------------	------------------------	-----------------	-----------------------------------	-----------	
Ex5	rs74967960	110977274	c.297G>A	Thr99Thr	10 100 11 100.0	2 100 23 100.0	22 88 45 93.8				
Ex9	rs7334986	110977696	c.361–205G>A	Val192Phe	10 100 11 100.0	2 100 23 100.0	22 88 45 93.8				
Ex17	rs4103	110988226	c.1008C>T	Pro336Pro	10 100 11 100.0	2 100 23 100.0	22 88 45 93.8				
Ex19	rs7498905	110990005	c.1339–52G>A	Val1191Pro	10 100 11 100.0	2 100 23 100.0	22 88 45 93.8				
Ex22	rs7990214	110997585	c.1480G>A	Pro496Pro	10 100 11 100.0	2 100 23 100.0	22 88 45 93.8				

Molecular Vision 2011; 17:827-843 http://www.molvis.org/molvis/v17/a94 © 2011 Molecular Vision
TABLE 2. CONTINUED.

| Exon | dSNP | rsno | Allele Change | dbSNP refID | Chromosome | Allele | Residue Change | no. (%) |
|------|------|------|---------------|-------------|------------|--------|----------------|--------|--------|--------|--------|--------|
| Ex27 | rs9559818 | 111130226 | c.2426–124G>A | 8 80 7 63.6 | 1 50 16 69.6 | 21 84 37 77.1 |
| Ex28 | rs9521803 | 111132556 | c.2588–11C>T | 8 80 6 54.5 | 2 100 16 69.6 | 21 84 37 77.1 |
| Ex28 | rs7790301 | 111132763 | c.2588–154C>T | 4 40 2 18.2 | 0 0 5 25.0 | 8 32 12 25.0 |
| Ex31 | rs58124222 | 111132947 | c.2758+210G>A | 0 0 3 27.3 | 0 0 3 13.0 | 8 32 11 22.9 |
| Ex32 | rs3803229 | 111134780 | c.2759–83G>A | 6 60 7 63.6 | 1 50 16 69.6 | 21 84 37 77.1 |
| Ex32 | rs9559817 | 111134858 | c.2759–5T>C | 0 0 3 27.3 | 0 0 3 13.0 | 8 32 11 22.9 |
| Ex32 | rs41315048 | 111137975 | c.3026–27G>T | 1 10 3 27.3 | 0 0 4 16.7 | 6 24 11 22.9 |
| Ex32 | rs2296851 | 111138255 | c.3207+72G>A | 2 20 2 18.2 | 0 0 4 16.7 | 6 24 11 22.9 |
| Ex32 | rs452020 | 111144103 | c.3455–315T>C | 10 100 11 100.0 | 2 100 10 90.9 | 25 100 50 100.0 |
| Ex32 | rs403839 | 111144321 | c.3455–96G>A | 2 20 2 18.2 | 0 0 4 16.7 | 6 24 11 22.9 |
| Ex32 | rs421177 | 111144565 | c.3562+41C>T | 1 10 3 27.3 | 0 0 4 16.7 | 6 24 11 22.9 |
| Ex32 | rs57003582 | 111145456:111145486 | 70del30 | 1 10 3 27.3 | 0 0 4 16.7 | 6 24 11 22.9 |
| Ex32 | rs227454 | 111114217 | c.3799+4G>A | 2 20 2 18.2 | 0 0 4 16.7 | 6 24 11 22.9 |
| Ex32 | rs3803237 | 111114675 | c.3803237+3G>A | 10 100 11 100.0 | 2 100 10 90.9 | 25 100 50 100.0 |

© 2011 Molecular Vision
Table 2. Continued.

Exon	dbSNP ref ID	Chromosome	Allele Change	Residue Change	Affected KTCN-014 (n=10)	Unaffected KTCN-014 (n=11)	Unknown KTCN-014 (n=2)	All KTCN-014 (n=23)	Other KTCN families affected (n=25)	All (n=48)					
					no.	%									
Ex43	rs378601	1111153934	c.3761–81G>A	10	100	11	100.0	2	100	23	100.0	25	100		
	rs380222	1111154159	c.3777+28C>T	8	80	8	72.7	2	100	18	78.3	21	84	39	81.3
	rs2281968	1111154160	c.3777+29G>A	5	50	5	62.7	1	50	14	60.9	18	72	32	66.7
	rs4773198	1111155711	c.4040-19C>T	5	50	5	56.3	1	50	12	52.2	8	32	20	41.7
	rs4773199	1111155779	c.4089G>A	5	50	4	32.2	1	50	10	45.3	8	32	18	37.5
rs69301400	1111156155	c.4139-41G>A	5	50	6	45.5	1	50	12	52.2	8	32	20	41.7	
	rs414881	1111156411	c.4258+71G>A	7	70	8	57.7	1	50	16	69.6	21	84	37	77.1
	Ex46	rs4771683	c.4290T>C	10	100	11	100.0	2	100	23	100.0	25	100		
	rs445346	1111156499	Phc1-430Phe	10	100	11	100.0	2	100	23	100.0	25	100		
	rs2479426	1111164198	c.4882-83T>C	7	70	6	65.5	2	100	15	65.2	20	80	35	72.9
	rs422733	1111164641	c.76T>C	7	70	6	54.5	2	100	15	65.2	20	80	35	72.9
	rs3074455	1111164639,	c.*101_102del2	7	70	6	54.5	2	100	15	65.2	20	80	35	72.9
	rs10599	111114955	c.541C>G	8	80	11	100.0	2	100	21	95.3	25	100		
	rs1049906	1111154179	c.*541C>T	4	40	8	72.7	1	50	13	56.5	18	72	31	64.6
	rs1049931	1111165095	c.*557A>G	6	60	9	81.8	1	50	16	69.6	20	80	36	75.0
	rs1049777	1111165188	c.*691T>C	6	60	9	81.8	1	50	16	69.6	19	76	35	72.9
	rs7711	1111165201	c.*663C>T	6	60	9	81.8	1	50	16	69.6	19	76	35	72.9
	rs15457	1111165265	c.*727G>C	4	40	8	72.7	1	50	13	54.6	17	68	30	62.5

dbSNP ref ID: identity numbers of observed sequence variants; chromosome position (NCBI build 37.1).
Gene	Sequence variant	PolyPhen	SIFT	PMUT	PANTHER	SNAP					
		PSIC score	Prediction	Score	Prediction	NN	Prediction	subPSEC	Pdeleterious	Expected Accuracy	Prediction
COL4A1	Val7Leu	N/A	benign	1	tolerated	0.2367	neutral	-	-	92% neutral	
	Thr555Pro	N/A	benign	0.65	tolerated	0.0250	neutral	-0.52603	0.0777	94% neutral	
	Gln1334His	1.66	possibly damaging	0.12	tolerated	0.1039	neutral	-1.0433	0.12382	69% neutral	
COL4A2	Val192Phe	1.13	benign	64	tolerated	0.1921	neutral	-	-	78% neutral	
	Arg517Lys	0.1	benign	0.96	tolerated	0.0861	neutral	-	-	92% neutral	
	Gly683Ala	N/A	benign	0.96	tolerated	0.4841	neutral	-	-	85% neutral	
	Lys701Arg	N/A	benign	0.97	tolerated	0.0166	neutral	-	-	89% neutral	
	Pro718Ser	N/A	benign	0.98	tolerated	0.2039	neutral	-	-	89% neutral	

The PolyPhen tool predicts which missense substitution affects the structure and function of protein, and uses Position-Specific Independent Counts software to assign profile scores. The SIFT tool evaluates conserved positions, and calculates a score for the amino acid change at a particular position. A score of <0.05 is considered as pathogenic for the protein structure. The PMUT calculates the pathological significance of non-synonymous amino acid substitution using neural networks (NN). NN output >0.5 is considered to be deleterious. PANTHER generates the substitution Position-Specific Evolutionary Conservation score. The value −3 is cutoff point for functional significance and corresponds to a Pdeleterious of 0.5. If the substitution occurs at a position not appearing in the multiple sequence alignment, a subPSEC score cannot be calculated and change is not likely to be pathogenic. The SNAP output shows prediction neutral or non-neutral, and the expected accuracy.
Previous studies have revealed a correlation between KTCN development and histopathological alterations in the structure of the corneal stroma and basement membrane, including a loss of collagen concentration [42] and rearrangement of collagen fibers [26]. Moreover, several types of collagen, including collagen type IV have been identified in the cornea [24], and COL4A1 and COL4A2 expression has been detected in the human cornea [29]. Finally, we have mapped a locus for KTCN to 13q32, in close proximity of which COL4A1 and COL4A2 are localized [21]. Given that information, we hypothesized that COL4A1 and COL4A2 are good candidates for causing KTCN in families with linkage to that locus.

Different studies have revealed several loci and a few candidate genes for familial KTCN. The first gene proposed as playing a significant role in KTCN pathogenesis was the VSX1 (visual system homeobox 1, OMIM 605020) gene. It was suggested that a few disease-causing mutations were present in this gene [43,44], but recent studies have not confirmed these findings [21,45-47]. Next, heterozygous genomic 7-bp deletion in intron 2 of SOD1 (superoxide dismutase 1; OMIM 147450) was identified in two families with KTCN [48,49]. In contrast, other studies have shown that mutations in this gene are not associated with KTCN pathogenesis [21,47]. Genetic analyses of COL4A3,COL4A4,COL8A1, and COL8A2 genes have revealed no pathogenic mutations in patients with KTCN, indicating that other genetic factors cause the disease [50-52].

We identified several single base pair substitutions in the coding regions of COL4A1 and COL4A2, including one novel heterozygous change, c.3693G>A in exon 42 of COL4A1. None of the detected alterations segregated fully with the affected phenotype in the analyzed members of the Ecuadorian KTCN families. Among the identified missense substitutions in COL4A1, one change, c.4002A>C (p. Gln1334His), was observed more frequently in KTCN patients than in healthy individuals in family KTCN-014. However, no significant statistical association of this change with familial disease could be proven (p=0.17). To predict the impact of the substitutions on the structure and function of the protein, we used different tools. All identified missense substitutions in COL4A1 and COL4A2 were predicted by the SIFT, PMUT, PANTHER, and SNAP tools to have no effect, but PolyPhen defined the Gln1334His change in COL4A1 as possibly damaging. Glutamine at this position is highly conserved in different species. Moreover, this change is present in the collagenous domain of the α1(IV) chain with Gly-X-Y repeats, which plays a role in the assembly into a triple-helical structure of the protein [22]. Replacement of the neutral residue (Gln) with the polar amino acid (His) at the Y position is likely to affect the protein structure. Nevertheless, further studies should be performed to determine the functional significance of this substitution.

To the best of our knowledge, no mutations in COL4A1 were associated with corneal disease. The spectrum of COL4A1-related disorders included porencephaly (OMIM 175780) [53-55], Hereditary Angiopathy with Nephropathy, Aneurysm and Muscle Cramps (HANAC; OMIM 611773) [56], and brain small vessel disease with hemorrhage (OMIM 607595) [57]. Recent studies have also revealed an association between mutations in exon 29 of COL4A1 and Axenfeld-Rieger anomaly with leukoencephalopathy and stroke [58]. In our study, none of the previously reported COL4A1 mutations were identified. The absence of these changes in patients with KTCN suggests that they are specific to the above-mentioned disorders only, and are not associated with KTCN in the tested families. To date, no mutations responsible for COL4A2-related human diseases have been reported.

Besides changes identified in the coding regions of COL4A1 and COL4A2, our study revealed numerous alterations in introns and UTRs of both genes, including single base pair substitutions, deletions, and insertions. Fourteen of these were novel and their clinical significance is not known. Each of the changes was observed in affected and healthy individuals in the tested families. Because important functional elements are located in non-coding regions of genes [59] and intronic alterations can result in a deleterious effect on pre-mRNA splicing [60], identification of these sequence variants could be non-accidental. Further research is needed to delineate the role of these sequence variants.

Recent studies have shown that a mouse with a mutation in a splice acceptor site of Col4a1 has ocular dysgenesis. The
mutation results in a lack of exon 40 from mice’s transcripts and leads to the accumulation of mis-folded protein in the lens epithelial cells. Col4a1Δex40 mice show optic nerve hypoplasia and anterior segment dysgenesis (ASD) including pigment
dispersion, cataracts, and corneal opacifications [61]. Splice acceptor sites are highly conserved regions in different species [56]. We detected no alterations in the splice acceptor site in intron 39 of human \textit{COL4A1}.

Extended genetic studies executed in families with KTCN have shown a high level of genetic heterogeneity [62]. The presence of many putative loci supports the hypothesis that KTCN is an oligogenic disease in which accumulation of sequence variants at several loci cause a specific KTCN haplotype and may trigger the phenotypic effect. The absence of mutations in \textit{COL4A1} and \textit{COL4A2} genes indicates that other genes are involved in KTCN pathogenesis in Ecuadorian families.

ACKNOWLEDGMENTS

Supported by the Polish Ministry of Science and Higher Education, Grant NN 402097837. The authors thank Genomed Company (Warsaw, Poland) for support in sequencing service.

REFERENCES

1. Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42:297-319. [PMID: 9493273]
2. Li X, Yang H, Rabinowitz YS. Longitudinal study of keratoconus progression. Exp Eye Res 2007; 85:502-7. [PMID: 17681291]
3. Cullen JF, Butler HG. Mongolism (Down’s syndrome) and keratoconus. Br J Ophthalmol 1963; 47:321-30. [PMID: 14189698]
4. Kuming BS, Joffe L. Ehlers-Danlos syndrome associated with keratoconus. A case report. Afr Med J 1977; 52:403-5. [PMID: 897848]
5. Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus 1994; 31:38-40. [PMID: 8195961]
6. McMonnies CW. Mechanisms of rubbing-related corneal trauma in keratoconus. Cornea 2009; 28:607-15. [PMID: 19512912]
7. Stealy LP. Keratoconus following a contact lens wear. Ann Ophthalmol 1978; 10:1177-9. [PMID: 736404]
8. Rahi A, Davies P, Ruben M, Lobascher D, Menon J. Keratoconus and coexisting atopic disease. Br J Ophthalmol 1977; 61:761-4. [PMID: 603783]
9. Edwards M, McGhee CN, Dean S. The genetics of keratoconus. Clin Experiment Ophthalmol 2001; 29:345-51. [PMID: 11778802]
10. Hughes AE, Dash DP, Jackson AJ, Frazer DG, Silvestri G. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest Ophthalmol Vis Sci 2003; 44:5063-6. [PMID: 14638698]
11. Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A, Latvala T, Alitalo T. A locus for autosomal dominant keratoconus: linkage to 16q22.3-2q23.1 in Finnish families. Invest Ophthalmol Vis Sci 2002; 43:3160-4. [PMID: 12356819]
12. Brancati F, Valente EM, Sarkozy A, Feher J, Castori M, Del Duca P, Mingarelli R, Pizzuti A, Dallapiccola B. A locus for autosomal dominant keratoconus maps to human chromosome 3p14-q13. J Med Genet 2004; 41:188-92. [PMID: 14985379]
13. Hutchings H, Ginisty H, Le Gallo M, Levy D, Stoesser F, Rouland JF, Arne JL, Lalaux MH, Calvas P, Roth MP, Hovnanian A, Maleczafe F. Identification of a new locus for isolated familial keratoconus at 2p24. J Med Genet 2005; 42:88-94. [PMID: 15635082]
14. Burdon KP, Coster DJ, Charlesworth JC, Mills RA, Laurie KJ, Giunta C, Hewitt AW, Latimer P, Craig JE. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum Genet 2008; 124:379-86. [PMID: 18795354]
15. Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, Picornell Y, Yang H. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med 2005; 7:397-405. [PMID: 16024971]
16. Bisceglia L, De Bonis P, Pizzioloc C, Fischetti L, Laborante A, Di Perna M, Giuliani F, Delle Noci B, Buzzonetti L, Zelante L. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci 2009; 50:1081-6. [PMID: 18978346]
17. Li X, Rabinowitz YS, Tang YG, Picornell Y, Taylor KD, Hu M, Yang H. Two-stage genome-wide linkage scan in keratoconus sib pair families. Invest Ophthalmol Vis Sci 2006; 47:3791-5. [PMID: 16936089]
18. Lisikova P, Hysi PG, Waseem N, Ebenezer ND, Bhattacharya SS, Tuft SJ. Evidence for keratoconus susceptibility locus on chromosome 14: a genomewide linkage scan using single-nucleotide polymorphism markers. Arch Ophthalmol 2010; 128:1191-5. [PMID: 20837804]
19. Hameed A, Khalig S, Ismail M, Anwar K, Ebenezer ND, Jordan T, Mehdi SQ, Payne AM, Bhattacharya SS. A novel locus for Leber congenital amaurosis (LCA4) with anterior keratoconus mapping to chromosome 17p13. Invest Ophthalmol Vis Sci 2007; 48:629-33. [PMID: 17911674]
20. Fullerton J, Paprocki F, Foote S, Mackey DA, Williamson R, Forrest S. Identity-by-descent approach to gene localisation in eight individuals affected by keratoconus from north-west Tasmania, Australia. Hum Genet 2002; 110:462-70. [PMID: 12073017]
21. Gajecka M, Radhakrishna U, Winters D, Nath SK, Rydzanicz M, Ratnamala U, Ewing K, Molinari A, Pitarka JA, Lee K, Leal SM, Bejjani BA. Localization of a gene for Keratoconus in a large Australian Caucasian pedigree identifies a novel locus for keratoconus at 2p16. Hum Genet 2002; 110:462-70. [PMID: 12073017]
corneal stroma by image analysis. Cornea 1984; 3:119-24. [PMID: 6536429]

26. Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ. Changes in collagen orientation in distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 2005; 46:1948-56. [PMID: 15914608]

27. Kenney MC, Nesburn AB, Burgeson RE, Butkowski RJ, Ljubimov AV. Abnormalities of the extracellular matrix in keratoconus corneas. Cornea 1997; 16:345-51. [PMID: 9143810]

28. Tuori AJ, Virtanen I, Aine E, Kalluri R, Miner JH, Uusitalo HM. The immunohistochemical composition of corneal basement membrane in keratoconus. Curr Eye Res 1997; 16:792-801. [PMID: 9255508]

29. Jun AS, Liu SH, Koo EH, Do DV, Stark WJ, Gottsch JD. Microarray analysis of gene expression in human donor corneas. Arch Ophthalmol 2001; 119:1629-34. [PMID: 11700013]

30. Stachs O, Bochert A, Gerber T, Koczan D, Thiessen HJ, Guthoff KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ. Changes in collagen orientation in distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 2005; 46:1948-56. [PMID: 15914608]

31. Wigginton JE, Abecasis GR. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21:3445-7. [PMID: 15947021]

32. Weeks DE, Sobel E, O’Connell JR, Lange K. Computer programs for multilocus haplotyping of general pedigrees. Am J Hum Genet 1995; 56:1506-7. [PMID: 7762577]

33. Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotype typing, location scores, and marker-sharing statistics. Am J Hum Genet 1996; 58:1323-37. [PMID: 8651310]

34. Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS, Stewart WC, Buyske S. A second-generation combined linkage physical map of the human genome. Genome Res 2007; 17:1783-6. [PMID: 17989245]

35. Thiele H, Nurnberg P, HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 2005; 21:1730-2. [PMID: 15377505]

36. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30:3894-900. [PMID: 12202775]

37. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31:3812-4. [PMID: 12842254]

38. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 2005; 21:3176-8. [PMID: 15879453]

39. Thomas PD, Campbell MJ, Kejarival A, Mi H, Karlak B, Daverman R, Diemer K, Woruganuaj A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003; 13:2129-41. [PMID: 12952881]

40. Thomas PD, Kejarival A, Guo N, Mi H, Campbell MJ, Munuganjian A, Lazareva-Ulitsky B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res 2006; 34:W645-50. [PMID: 16912992]

41. Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 2007; 35:3823-35. [PMID: 17526529]

42. Sherwin T, Brooks NH. Morphological changes in keratoconus: pathology or pathogenesis. Clin Experiment Ophthalmol 2004; 32:211-7. [PMID: 15068441]

43. Héon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, Priston M, Dorval KM, Chow RL, McInnes RR, Heathcote G, Westall C, Sutphin JE, Semina E, Bremner R, Stone EM. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet 2002; 11:1029-36. [PMID: 11978762]

44. Bisceglia L, Ciaschetti M, De Bonis P, Campo PA, Pizzicoli C, Scala C, Grifà M, Ciavarella P, Dellé Noci N, Vaira F, Macaluso C, Zelante L. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci 2005; 46:39-45. [PMID: 15623752]

45. Aldave AJ, Yellore VS, Salem AK, Yoo GL, Rayner SA, Yang H, Tang GY, Picornell Y, Rabinowitz YS. No VSX1 gene mutations associated with keratoconus. Invest Ophthalmol Vis Sci 2006; 47:2820-2. [PMID: 16799019]

46. Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea 2008; 27:189-92. [PMID: 18216574]

47. Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea 2010; 29:172-6. [PMID: 20023586]

48. Udar N, Atilano SR, Brown DJ, Holguin B, Small K, Nesburn AB, Kenney MC. SOD1: a candidate gene for keratoconus. Invest Ophthalmol Vis Sci 2006; 47:3345-51. [PMID: 16877401]

49. Udar N, Atilano SR, Small K, Nesburn AB, Kenney MC. SOD1 haplotypes in familial keratoconus. Cornea 2009; 28:902-7. [PMID: 19654524]

50. Stabuc-Silih M, Ravnik-Glavac M, Glavac D, Hawlina M, Strazisar M. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus. Mol Vis 2009; 15:2848-60. [PMID: 20029656]

51. Aldave AJ, Bouriha N, Yellore VS, Rayner SA, Khan MA, Salem AK, Sonmez B. Keratoconus is not associated with mutations in COL8A1 and COL8A2. Cornea 2007; 26:963-5. [PMID: 17721297]

52. Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, Hawlina M, Glavac D. Genetics and clinical characteristics of keratoconus. Acta Dermatovenerol Alp Panonica Adriat 2010; 19:3-10. [PMID: 20664914]

53. Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P, Gould DB, John SW, Stone EM. Microarray analysis of gene expression in human donor corneas. Arch Ophthalmol 2001; 119:1629-34. [PMID: 9255508]

54. Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, Aguglia U, van der Knaap MS, Heutink P, John SW. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005; 308:1167-71. [PMID: 15905400]
55. de Vries LS, Koopman C, Groenendaal F, Van Schooneveld M, Verheijen FW, Verbeek E, Witkamp TD, van der Worp HB, Mancini G. COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol 2009; 65:12-8. [PMID: 19194877]

56. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 2007; 357:2687-95. [PMID: 18160688]

57. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006; 354:1489-96. [PMID: 16598045]

58. Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Burgelin I, Calvas P, Orignac I, Doussset V, Lacombe D, Orgogozo JM, Arveiler B, Goizet C. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol 2007; 62:177-84. [PMID: 17696175]

59. Lomelin D, Jorgenson E, Risch N. Human genetic variation recognizes functional elements in noncoding sequence. Genome Res 2010; 20:311-9. [PMID: 20032171]

60. Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet 2005; 42:737-48. [PMID: 16199547]

61. Gould DB, Marchant JK, Savinova OV, Smith RS, John SW. Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum Mol Genet 2007; 16:798-807. [PMID: 17317786]

62. Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am 2003; 16:607-20. [PMID: 14741001]