Numerical assessment of heat and mass transportation in γAl$_2$O$_3$–H$_2$O/C$_2$H$_6$O$_2$ nanofluids influenced by Soret and Dufour effects

Tamour Zubair1, Muhammad Usman2, Kottakkaran Sooppy Nisar3,5, Ilyas Khan4, H. Y. Zahran5,6,7 & Abdulrazak H. Almaliki8

The current flow model is dedicated to capture the role of Dufour and Soret on heat and mass transmission of rotating flow of γAl$_2$O$_3$ – C$_2$H$_6$O$_2$ and γAl$_2$O$_3$–water nanoparticles due to exponential stretching under the action of thermal radiation, magnetic, and Eckert numbers. The problem is modelled in terms if partial differential equations (PDEs) with associated physical conditions. The ordinary differential equations (ODEs) are obtained via suitable transformations. The reduced nonlinear ODEs set is tackled via a new scheme. We suggested significant improvements in the traditional technique and further formulated an extended version of wavelets scheme-based Chebyshev polynomials thoughts. The detailed procedure of the wavelet scheme and flow chart are provided. To validate the numerical outcomes; a comparative study with numerical technique RK (order-4) is also provided. Furthermore; numerical consequences of velocity, concentration and temperature profiles are further examined using several plots. The graphical plots, compared and convergence analyses are endorsing that our proposed modifications are worthy. Velocities profiles in view of γAl$_2$O$_3$ – C$_2$H$_6$O$_2$ nanofluid are lower than the γAl$_2$O$_3$–H$_2$O nanofluid. Temperature and concentration profiles are dominant when γAl$_2$O$_3$–H$_2$O nanofluid is considered.

The rotating flows includes a lot of applications in engineering and geophysics food making, chemical process, magma flow, rotor–stator technology, rotational of machinery, centrifugal filtration, flow circulations (anti-cyclonic), tornadoes and hurricanes. The mentioned situations are endorsing scientists to study the rotational flow phenomena in view of stretching surface. Wang1 did the pioneer contribution in this regard. He provided a perturbation solution for his proposed model and analyzed the velocity. Crane2 captured the study of motion in fluid particles induced by moveable surface. Takhar and Nath3 discussed rotating flow due to rotational movement of sheet. Andersson4 studied the slip flow past a stretching surface. He assumed the Newtonian slip-flow fluid towards stretching surface and used an analytical approach to obtain an exact solution for suggested model. In a revolving fluid, an investigation of rotational flow occurred due to stretching surface is studied by5. El Aziz6 inspected the impact of thermal energy considering Blowing/suction under the action of magnetic field. Kumari et al.7 discussed the simulations of heat in power-law liquid. Govardhan et al.8 scrutinized the impression of rotating flow occurred due to porous surface.

1School of Mathematical Sciences, Peking University, Beijing 100871, China. 2Department of Mathematics, National University of Modern Languages (NUML), Islamabad 44000, Pakistan. 3Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia. 4Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11592, Saudi Arabia. 5Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia. 6Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia. 7Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Metallurgical Lab.1, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt. 8Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. *Email: n.sooppy@psau.edu.sa
The composite study of mass and heat is vital factor in several fields like power generation, air conditioning, space heating and air conditioning called engineering applications. The transportation of species is made vital effects in fields of engineering and industries. The useful applications of mass are food making, drug transport, oil delivery and certain medicines (blood) respectively. Such vital applications are motivated the scientists and engineers to capture phenomenal action of mass and heat in view of experimentally and theoretically. Some latest work related to mass and heat is found. The related work of this field is mention in8,14.

Recent developments in nano-technology have determined a latest area for the enhancement in the performance of heat called nanoparticles. The suspension of nano-structures in base fluids (water, oil, kerosene) provides a better heat transfer and enhanced the convection and conduction coefficients. These machinimas are very useful to improve conductivity of heat energy. The applications of nano-particles for performance of heat are solar heating, refrigerators, cooling process, heat exchange, drag reduction, storage (thermal energy) and drag reduction respectively.

The suspension of various kinds of nanoparticles in base fluid is used by various authors. The iron based nanoparticles inside the fluids (Ferro-fluids) are quite suitable because their thermo-physical characteristics can be controlled by means of magnetic field. An excellent literature related to Ferro-fluids can be find in15–18. Usman et al.19 studied enhancement in motion of fluid particles using nanoparticles towards channel. Mohyud-Din et al.20 examined the motion in nanoparticles considering Marangoni convection and thermal radiation. Mushtaq et al.21 discussed the rotational motion in nanofluids caused by shear.

The domain of nanofluids is gained a vital importance due to its various applications. A noteworthy study related to this domain is available in literature. Many models developed after the Choi22 contribution. The Xue23, Buongiorno24 and Tiwari Das16 models are some major contributions. Sheremet et al.25,26 discussed the Tiwari Das approach in porous square cavity inserted by nanoparticles and the role of thermal dispersion in porous wavy-walled (cavity) with natural convection is discussed. This domain has been studied by many scholars by considering various aspects27–32.

Sheikholeslami et al.27,28 studied the enrichments in heat (energy) with nanoparticles under the action of magnetic number and radiation (thermal). Nazir et al.29 analyzed behavior of Casson liquid inserting nanoparticles considering various aspects27–32. They discussed viscous dissipation (VD) and variable magnetic field (MF) in flow model via FEM approach. Rashidi et al.30 examined the process of entropy production in a particular shape of tube heat transmission via nanofluids. Usman et al.31 analyzed heat in view of unsteady model via analytical approach. Khan et al.32 captured flow situation of second grade liquid including Dufour and Soret influences past melting channel. A detailed review regarding the applications of heating or cooling processes using different types of nanomaterials is given in33.

Motivation of the present analysis is to investigate mass and heat energy including Dufour and Soret influences in rotational flow under nanofluids (γAl\textsubscript{2}O\textsubscript{3}—ethylene glycol and γAl\textsubscript{2}O\textsubscript{3}—water) towards melting surface. The current model is an extension of34 wherein we observed the study of magnetic, Eckert numbers and thermal radiation via melting surface. The modeling and geometry of mathematical model presented. The set of ODEs obtained via suitable transformations whereas ODEs are simulated via new approach called modified Chebyshev wavelets method. Previously, this mentioned technique is operated by several authors but current solution approach is used first time in fluid model. The work related to traditional Chebyshev wavelets method can be find in34–36. A worthy comparison between outcomes obtained also presented37–46. The graphical results are captured with variation in parameters. The graphical plots, comparison and convergence analysis are endorsing that our modification is very worthy.

Formulation of flow model

The physical aspects of mass and heat transmission for rotating nanofluid with an velocity (angular) \(\lambda = \Omega e^{-x/L} \) around \(z \)-axis where \(\Omega \) and \(L \) are average form of velocity and characteristic distance respectively, we ponder a viscous, incompressible, radiative (significant radiations effects) and steady fluid over a common sheet (elastic nature) which is widening exponentially along \(x \)-axis and the fluid is surviving with \(z = 0 \). Water and \(C_w \) are considered as temperature (constant) and concentration (constant) at the surface respectively and in the similar context, \(T_\infty \) and \(C_\infty \) are the temperature (constant) and concentration (constant) of fluid at ambient position respectively. Magnetic field of constant nature is applied and chemical reaction of first order is implemented to the system under the action of Dufour and Soret influences. Due to this context, the magnetic field is induced which is consider negligible owing to small value of Reynolds number. It is very important to nominate that two categories of nano particles i.e. \(γAl\textsubscript{2}O\textsubscript{3} \)—ethylene glycol and \(γAl\textsubscript{2}O\textsubscript{3} \)—water are used for the generated system. Under all the considered assumption, the mathematical form of governing rules is simulated as21,41:

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = 0,
\]

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - 2\Omega u = \frac{\partial^2 u}{\partial z^2} - \frac{\sigma u}{\rho} B^2 u,
\]

\[
\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + 2\Omega v = \frac{\partial^2 v}{\partial z^2} - \frac{\sigma v}{\rho} B^2 v,
\]
\[
\frac{(\rho c_p)_nf}{(\rho c_p)_f} \left(\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right) = k_{nf} \frac{\partial^2 T}{\partial z^2} + \frac{Dk_f}{c_i(\epsilon_f)} \frac{\partial^2 C}{\partial z^2} + \frac{\mu_{nf}}{(\rho c_p)_f} \left(\frac{\partial u}{\partial z} \right)^2 + \frac{\partial v}{\partial z} \right) + \frac{16\sigma^2 T^3}{3k^2(\rho c_p)_f} \frac{\partial^2 T}{\partial z^2},
\]

where \(u, v, w, T, C, \sigma_{nf}, \rho_{nf}, B_0, (\epsilon_f)_nf, (\epsilon_f)_f, D, k_f, k_{nf}, k^\star, T_m, \sigma^\star, k_1, C_1 \) are entitled as \(x, y, z \)-components of velocity, temperature, concentration of solute, kinematics viscosity for nano-fluid, electrical conductivity of nano-fluid, density of nano-fluid, magnetic field component, heat capacity for nano-fluid, heat capacity for fluid, mass diffusion coefficient, thermal diffusion ratio, thermal conductivity for nano-fluid, mean absorption, mean temperature, Steffen Boltzmann constant, rate of chemical reaction and the susceptibility of concentration respectively. The flow configurations is sketched by Fig. 1.

The desired transformations of current work are:

\[
\begin{align*}
\frac{u}{U} &= \tilde{F}(\phi), \\
\frac{v}{U} &= \tilde{\beta}(\phi), \\
\frac{w}{U} &= \tilde{\beta}(\phi), \\
\end{align*}
\]

Using Eqs. (8)–(12) into defined problem Eqs. (1)–(7), once obtained the following:

For \(\gamma \text{Al}_2\text{O}_3 - \text{H}_2\text{O} \):
(1 + 7.3\phi + 123\phi^2)F''(N) + \left(1 - \phi + \frac{\rho_s}{\rho_f}\right) \left(F(N)F''(N) - 2F'^2(N) + 4\lambda G'(N)\right) \\
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi}\right) Ha^2 F'(N) = 0,

(13)

(1 + 7.3\phi + 123\phi^2)G''(N) + \left(1 - \phi + \frac{\rho_s}{\rho_f}\right) \left(F(N)G''(N) - 2F'(N)G'(N) - 4\lambda F'(N)\right) \\
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi}\right) Ha^2 G(N) = 0,

(14)

\left(\frac{(1 + 2.72\phi + 4.97\phi^2) + R}{Pr_f (1 + 3.9\phi + 82.1\phi^2)}\right) \theta''(N) + \left(1 - \phi + \frac{(\rho c_p)_{f}}{(\rho c_p)_{j}}\phi\right) F(N)\theta'(N) \\
+ D_f \beta''(N) + \left(1 + 7.3\phi + 123\phi^2\right) Ec_x \left(F'^2(N) + G'^2(N)\right) = 0,

(15)

\beta''(N) + Sc F(N)\beta'(N) + Sr Sc\theta''(N) - Sc \delta\beta(N)(N) = 0.

(16)

For γAl₂O₃–C₂H₆O₂:

(1 - 0.19\phi + 306\phi^2) F''(N) + \left(1 - \phi + \frac{\rho_s}{\rho_f}\right) \left(F(N)F''(N) - 2F'^2(N) + 4\lambda G'(N)\right) \\
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi}\right) Ha^2 F'(N) = 0,

(17)

(1 - 0.19\phi + 306\phi^2) G''(N) + \left(1 - \phi + \frac{\rho_s}{\rho_f}\right) \left(F(N)G''(N) - 2F'(N)G'(N) - 4\lambda F'(N)\right) \\
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi}\right) Ha^2 G(N) = 0,

(18)

\left(\frac{(1 + 2.8273\phi + 28.905\phi^2) + R}{Pr_f (1 + 3.90\phi + 254.3\phi^2)}\right) \theta''(N) + \left(1 - \phi + \frac{(\rho c_p)_{f}}{(\rho c_p)_{j}}\phi\right) F(N)\theta'(N) + D_f \beta''(N) \\
+ \left(1 - 0.19\phi + 306\phi^2\right) Ec_x \left(F'^2(N) + G'^2(N)\right) = 0,

(19)

Table 1. Tabulation for important symbols and parameters.

Name	Symbol	Unit	Name	Symbols or expression
Velocity components	u, v, w	m/s	Nano fluid	nf
Density	\rho	kg/m³	Solid particle	s
Temperature	T	K/C	Rate of chemical reaction	k_i
Concentration	C	mol/m³	Solid particle	s
Electrical conductivity	\sigma	m/V	Volume fraction	\phi
Heat capacity	C_p	J/K	Ethylene glycol	\gamma Al₂O₃
Thermal conductivity	k	W/mK	Hartmann	Ha² = \frac{2\beta k_i}{\nu} e^{-2}
Current density	J	A/m²	Prandtl	j
Viscosity	\mu	P	Diffusion	D_f = \frac{\rho c_p}{\nu} e^{-2}
Magnetic field	B	Tesla (T)	Eckert	Ec_x = \frac{1}{\nu} \frac{U_s}{J_{str}}
Electric field	E	N/C	Radiation	R = \frac{\rho c_p}{\nu}
Gravitational Acceleration	g	m/s²	Schmidt	Sc = \frac{1}{\nu}
Kinematics viscosity	v	m²/s	Soret	Sr = \frac{\rho c_p}{\nu}
Transformed variable	\delta	Chemical reaction numbers	\delta = \frac{2\beta k_i}{\nu} e^{-2}	
\(\beta^{''}(N) + ScF(N)\beta^{'}(N) + SrSc\theta^{''}(N) - Sc\delta\beta(N) = 0. \) \hspace{1cm} (20)

All the parameters involved in the model is explained in Table 1. Furthermore, the dimensionless from of boundary conditions related to problem are given as under:

for \(N = 0, \quad F(N) = G(N) = 0, \quad F'(N) = \theta(N) = \beta(N) = 1, \)

as \(N \to \infty, \quad F'(N) = G(N) = \theta(N) = \beta(N) = 0. \)

Wavelets and Chebyshev wavelets

Chebyshev wavelets of third kind having four influences \(k, i, j, M \) defined in the interval \([0, 1]\) is delivered as\(^{36,37}\):

\[
\mathcal{B}_{ij}(N) = \begin{cases}
\frac{(2)^{\frac{1}{2}}}{\sqrt{\pi}} V_{j}(2^{k}N + (2i + 1)), & \frac{i-1}{2} \leq N \leq \frac{i}{2}, \\
0 & \text{else},
\end{cases}
\]

In above expression \(V_{j}(N) = \frac{1}{\sqrt{\pi}} V_{j}(N), j = 0, 1, \ldots, M - 1, i = 0, 1, \ldots, 2^{k-1}; V_{j}(N) \) signifies the \(j \)-th order of third kind (Chebyshev polynomials) is:

\(V_{1}(N) = -1 + 2N, \quad V_{j}(N) = 2N V_{j-1}(N) - V_{j-2}(N), j \geq 2, \quad V_{0}(N) = 1. \)

and further;

\[
\Psi_{ij}(N) = \Psi_{ij}(N)|_{N=2^{k}N-(2i-1)}
\]

Furthermore; we assumed a special form of function \(F(N) \) as:

\[
F(N) = \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} \xi_{ij} \mathcal{B}_{ij}(N),
\]

where \(\xi_{ij} = \int_{0}^{1} F(N) \mathcal{B}_{ij}(N) \Psi_{i} dN = \langle F(N), \mathcal{B}_{ij}(N) \rangle \xi_{ij}. \) Further, with the truncation, we obtained:

\[
F(N) = \sum_{i=1}^{2^{k-1}} \sum_{j=0}^{M-1} \xi_{ij} \mathcal{B}_{ij}(N) = \mathcal{G}^{T} \mathcal{B}(N),
\]

The detail discussion regarding matrices \(\mathcal{G} \) and \(\mathcal{B}(N) \) can be perceived in\(^{34-37}\).

Solution technique

In this section, the procedure of solution approach called Chebyshev wavelets scheme is used to find the solution of Eqs. (13–20). The solution steps are listed as:

Step 1. The Eqs. (13–16) are simulated as:

\[
(1 + 7.3\phi + 123\phi^{2}) F''(N) + \left(1 - \phi + \frac{\rho_{x}}{\rho_{f}}\phi\right) \left(F(N)F''(N) - 2F^{2}(N) + 4\lambda G(N) \right)
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi} \right) Ha^{2}F'(N) = 0,
\]

\[
\left(1 + 7.3\phi + 123\phi^{2}\right) G''(N) + \left(1 - \phi + \frac{\rho_{x}}{\rho_{f}}\phi\right) \left(F(N)G''(N) - 2F'(N)G(N) - 4\lambda F'(N) \right)
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi} \right) Ha^{2}G(N) = 0,
\]

\[
\frac{\left(1 + 2.72\phi + 4.97\phi^{2} \right) + R}{Pr_{f} \left(1 + 3.9\phi + 82.1\phi^{2} \right)} \theta''(N) + \left(1 - \phi + \frac{\rho_{e}}{\rho_{f}}\phi \right) \left(F(N)\theta''(N) + D_{f} \beta^{''}(N) \right)
+ (1 + 7.3\phi + 123\phi^{2}) Ec_{x} \left(F''(N) + G''(N) \right) = 0,
\]

\[
\beta^{''}(N) + ScF(N)\beta^{'}(N) + SrSc\theta^{''}(N) - Sc\delta\beta(N) = 0.
\]

Step 2. The generalized form of trial solution is:

\[
\tilde{T}(N) = C_{f}^{T} \mathcal{B}(N).
\]
where \(\sum_{i=1}^{2k-1} \sum_{j=0}^{M-1} \Delta^q_{ji}(N) = C_i^T B(N), q = l = 1, 2, 3, 4 \) for \(T(N) = (\tilde{F}(N), \tilde{G}(N), \tilde{\theta}(N), \tilde{\beta}(N)) \) respectively. The column matrices \(C_i \) and \(B(N) \) in Eq. (25) associated as:

\[
C_i = [\Delta_{1,k}^i]^T, \quad k = 0, 1, 2, \ldots,
\]

Trial solutions Eq. (25) can be rewritten as:

\[
\tilde{T}(N) = A_i^T \chi(N), \quad \chi(N) = [1, N, N^2, N^3, \ldots]^T
\]

In above the matrices \(A_i \) can be observe in34–36. The above trial solutions following as:

\[
\tilde{T}(N) = \sum_{n=0}^{M} d_n N^n.
\]

(26)

Step 3. Residuals of equations (temperature, velocities and concentration) are achieved:

\[
R_F = (1 + 7.3\phi + 123\phi^2)\tilde{F}''(N) + \left(1 - \phi + \frac{\rho_c}{\rho_f} \phi \right) \left(\tilde{F}(N)\tilde{F}''(N) - 2\tilde{F}'(N) + 4\lambda \tilde{G}(N)\right)
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi}\right) \text{Ha}^2 \tilde{F}'(N),
\]

\[
R_G = (1 + 7.3\phi + 123\phi^2)\tilde{G}''(N) + \left(1 - \phi + \frac{\rho_c}{\rho_f} \phi \right) \left(\tilde{F}(N)\tilde{G}''(N) - 2\tilde{F}'(N)\tilde{G}(N) - 4\lambda \tilde{G}(N)\right)
- \left(1 + \frac{3(\sigma - 1)\phi}{(\sigma + 2) - (\sigma - 1)\phi}\right) \text{Ha}^2 \tilde{G}'(N),
\]

\[
R_\theta = \frac{\left((1 + 2.72\phi + 4.97\phi^2) + R\right)}{\text{Pr}_f (1 + 3.9\phi + 82.1\phi^2)} \tilde{\theta}''(N) + \left(1 - \phi + \frac{(\rho_c)}{(\rho_f)} \phi \right) \tilde{F}(N)\tilde{\theta}''(N) + \text{Df} \tilde{\theta}'(N)
+ \left(1 + 7.3\phi + 123\phi^2\right) \text{Ec}_c \left(\tilde{F}''(N) + \tilde{G}''(N)\right),
\]

\[
R_\beta = \tilde{\beta}''(N) + \text{Sc}\tilde{F}(N)\tilde{\beta}'(N) + \text{SrSc}\tilde{\theta}''(N) - \text{Sc}\delta \tilde{\beta}(N).
\]

Step 4. In order to explore the unknown constants \(\tilde{\Lambda} \)'s apply the Galerkin concept. We got the following system of nonlinear equations in generalized form as:
Figure 3. Behavior of $F'(\eta)$ due to the variation in λ.

Figure 4. Character of $F'(\eta)$ as varying Ha.

Figure 5. Character of $F'(\eta)$ as varying ϕ.
\[K^b_{b^n} = \int_{0}^{\infty} R_b \frac{d}{d\eta} \hat{p}(\eta) d\eta, n = 1, 2, \ldots, 2^{l-1} M - 3, \]

where \(b = (F, G, \theta, \beta) \), \(K^b_{b^n} = (E^b_F, E^b_G, E^b_{\theta}, E^b_{\beta}) \), \(R_b = (R_F, R_G, R_{\theta}, R_{\beta}) \) and \(l = 1, 2, 3, 4 \) for \(F, G, \theta, \) and \(\beta \) respectively.

Figure 6. Character of \(\theta(\eta) \) due to the variation in \(R \).

Figure 7. Character of \(\theta(\eta) \) due to the variation in \(Ec \).

Figure 8. Character of \(\beta(\eta) \) due to the variation in \(Sr \).
Step 5. The values of \(\tilde{\Delta} \)'s (unknowns) is achieved. Consequently, the values of \(\Delta \)'s accomplished by inserting the unknowns \(\tilde{\Delta} \)'s. There is complete flow chart of the numerical strategy is given in Fig. 2.

Results and discussion

Effects of Dufour and Soret on heat and mass transmission of rotating flow of \(\gamma Al_2O_3 - C_2H_6O_2 \) and \(\gamma Al_2O_3 - water \) nanofluids with MHD and thermal radiation, and Eckert numbers. The problem is modelled in terms if partial differential equations (PDEs) with associated physical conditions which is then transformed into ODEs, in Eqs. (13)–(20) along with BCs and solved by proposed approach and parametric studies relevant to physics of problem are presented in this portion of paper. Plotted Figs. 3, 4, 5, 6, 7, 8 and 9 shows the enhancement of various parameters for flow, thermal mechanism and concentration of solute in nano-fluid. It has already been deliberated in the earlier section that two categories of nano fluid i.e. \(\gamma Al_2O_3 - H_2O \) and \(\gamma Al_2O_3 - C_2H_6O_2 \) is incorporated to study the modelled situation of the problem. In this section, we use \(\alpha = \eta \) just for simplicity.

![Figure 9. Character of \(\beta(\eta) \) due to the variation in \(Sc \).](image)

\(\eta \)	Error with \(^41^{th} \)	Error with \(^43^{rd} \)	Error with RK
0.2	\(10^{-4} \)	\(10^{-6} \)	\(10^{-6} \)
0.5	\(10^{-5} \)	\(10^{-6} \)	\(10^{-6} \)
2	\(10^{-4} \)	\(10^{-6} \)	\(10^{-6} \)
5	\(10^{-4} \)	\(10^{-6} \)	\(10^{-6} \)
10	\(10^{-4} \)	\(10^{-5} \)	\(10^{-5} \)
50	\(10^{-3} \)	\(10^{-4} \)	\(10^{-6} \)

Table 3. Assessment of the numerical values of \(-F''(0)\) achieved by means of modified Chebyshev wavelets method with already existing results\(^{41,46}\) when \(M = 0 \).

Step 5. The values of \(\tilde{\Delta} \)'s (unknowns) is achieved. Consequently, the values of \(\Delta \)'s accomplished by inserting the unknowns \(\tilde{\Delta} \)'s. There is complete flow chart of the numerical strategy is given in Fig. 2.

Results and discussion

Effects of Dufour and Soret on heat and mass transmission of rotating flow of \(\gamma Al_2O_3 - C_2H_6O_2 \) and \(\gamma Al_2O_3 - water \) nanofluids with MHD and thermal radiation, and Eckert numbers. The problem is modelled in terms if partial differential equations (PDEs) with associated physical conditions which is then transformed into ODEs, in Eqs. (13)–(20) along with BCs and solved by proposed approach and parametric studies relevant to physics of problem are presented in this portion of paper. Plotted Figs. 3, 4, 5, 6, 7, 8 and 9 shows the enhancement of various parameters for flow, thermal mechanism and concentration of solute in nano-fluid. It has already been deliberated in the earlier section that two categories of nano fluid i.e. \(\gamma Al_2O_3 - H_2O \) and \(\gamma Al_2O_3 - C_2H_6O_2 \) is incorporated to study the modelled situation of the problem. In this section, we use \(\alpha = \eta \) just for simplicity.

Figures 3, 4 and 5 are sketched performance of dimensionless \(x \) and \(y \) components of velocity for different parameters like \(Ha \) (Hartmann number), \(\phi \) (volume fraction) and \(\lambda \) (rotation number). Attitude of \(x \)–component flow in nano-fluid (\(\gamma Al_2O_3 - H_2O \) and \(\gamma Al_2O_3 - C_2H_6O_2 \)) for varied values of \(\lambda \) is explained in Fig. 3. The observations display that the velocity of nano-fluid is decreasing gradually between \(0 \geq \eta \leq 3 \) and \(\gamma Al_2O_3 - C_2H_6O_2 \) has higher velocity as compared \(\gamma Al_2O_3 - H_2O \), this is because of boundary layer thickness become thinner with increasing values of \(\lambda \) which promote the decreasing behavior of velocity of nano-fluid. However, it just can be observed between \(0 \geq \eta \leq 3 \) and after this no variation can be perceived for growing values of \(\lambda \). On the other hand the velocity of the system is monotonically declining for lesser values of \(\lambda \) and this approach become non-monotonic for \(\lambda = 1.5, 3, 5 \) and \(0 \geq \eta \leq 3 \). Actually, owing to rotation effects oscillatory motion of the fluid close to the wall is acted and for \(\lambda \geq 1.5 \) the rotation properties become dominant.
as associated to extending effects. From this we can conclude that for minor values of \(\lambda (=1.5) \) the velocity is monotonically falling and higher values of \(\lambda (=1.5, 3.0, 5.0) \) area adjacent to wall show oscillatory design. In the next behavior of \(x - \) components flow for \((Ha) \) is illustrated in Fig. 4. Increasing behavior of \(f'(\eta) \) for increasing values of solid volume fraction is studied by Fig. 5. In all these figures, (Figs. 3, 4, and 5), it is very important to note that the velocity profiles for \(\gamma Al_2O_3 - H_2O \) is higher than \(\gamma Al_2O_3 - C_2H_6O_2 \), indeed it is due to the fact that \(\gamma Al_2O_3 - C_2H_6O_2 \) is more viscous than \(\gamma Al_2O_3 - H_2O \) nanofluid, and hence, due to high viscosity, the velocity profiles is lower.

Special effects of temperature in dimensionless form are represented in Figs. 6 and 7 for various parameters like radiation and Eckert number. The effects of \(R \) on heat energy are explained in Fig. 6. Figure 6 is clarifying that graph of heat energy is increasing because the applied radiations provide more energy to nanoparticles which become the reason of growing temperature. The thickness of TBL of \(\gamma Al_2O_3 - C_2H_6O_2 \) is lesser than that of \(\gamma Al_2O_3 - H_2O \). Rising manners of the thermal mechanism are perceived for altered values of Eckert number in Fig. 7. It is clear from the mathematical form of the physical model that Eckert number has direct relation versus viscous dissipation and growing values of Eckert number become the cause to boost up the viscous dissipation and finally fluid temperature is enhanced.

Graphical analysis of concentration of solute with varied values of different parameter like Schmidt and Soret number which are elaborated in the considered model of earlier section of this paper. Soret number and diffusion process have directly proportional relation between them. Due to this relation, increasing attitude can be seen in Fig. 8 for concentration of solute with growing values of Soret number. In Figs. 6, 7, 8 and 9, it is noted that \(\gamma Al_2O_3 - C_2H_6O_2 \) temperature and concentration profiles are lower than \(\gamma Al_2O_3 - H_2O \). It is due to the fact that the structure of ethylene glycol (\(C_2H_6O_2 \)) has more sites for hydrogen bonding than water. For this reason, ethylene glycol has stronger intermolecular forces of attraction and much more viscous than water.

Decaling attitude of concentration of solute for changed prices of Schmidt number is elaborated in Fig. 9. It is clear from the relation of the Schmidt number epitomized in the former segment that Schmidt number is engaged with diffusion property of solute by inversely proportional relation. So that is why, diffusion procedure is displayed opposite behavior with developing values of Schmidt number. From all these figures, it is noted that the asymptotic convergence of all boundary layer profiles is appreciated but free stream length is varying for these figures, indeed, it depends on the specific values of the selected parameters, and in particular the effect of that parameter to which the variation is given. In general, the asymptotic convergence for each figure is different.

Table 2 demonstrates thermal (properties) of ethylene, pure water and Alumina. Tables 3 and 4 are created to validate the assessment of the attained outcomes of \(F''(0) \) and \(G'(0) \) obtain by means of the proposed method. These tables are evidenced that the proposed approach is accurate and useful to solve desired problem (Eqs. 13–20).

Conclusion

The aspects of Dufour, Soret, viscous dissipation and thermal radiation in the flow of \(\gamma Al_2O_3 - H_2O \) and \(\gamma Al_2O_3 - C_2H_6O_2 \) over an exponential moveable surface are captured. The current model in view of mass and heat phenomena are simulated by new scheme called Chebyshev wavelets method. The key findings are simulated below:

- Results demonstrated that the proposed approach is excellent, accurate and useful to capture the numerical results.
- Velocity profiles in view of \(\gamma Al_2O_3 - C_2H_6O_2 \) nanofluid are lower than the \(\gamma Al_2O_3 - H_2O \) nanofluid.
- Temperature and concentration profiles are dominant when \(\gamma Al_2O_3 - H_2O \) nanofluid is considered.
- The viscosity of \(\gamma Al_2O_3 - C_2H_6O_2 \) is higher than \(\gamma Al_2O_3 - H_2O \).

Future scope of the study

In this work, we have considered viscous fluid model of nanofluid with two types of base fluids (\(C_2H_6O_2 \) and \(H_2O \)). In future, this work can be extended for other non-Newtonian fluids, such as rate types fluid, differential type fluids etc. As for numerical simulations we have used an extended version of wavelets scheme-based Chebyshev polynomials, therefore, in future one may develop a stronger and faster technique for numerical simulations.

\(\lambda \)	Error with RK	Error with RK	Error with RK
0.2	10^{-6}	10^{-7}	10^{-6}
0.5	10^{-6}	10^{-7}	10^{-6}
2	10^{-5}	10^{-6}	10^{-5}
5	10^{-5}	10^{-6}	10^{-5}
10	10^{-4}	10^{-5}	10^{-4}
50	10^{-3}	10^{-5}	10^{-3}

Table 4. Validation of the numerical outcomes of \(- R'(0) \) shear stress achieved by means of modified Chebyshev wavelets method with already existing results when \(M = 0 \).
References

1. Wang, C. Y. Stretching a surface in a rotating fluid. Z. Angew. Math. Phys. (ZAMP) 39(2), 177–185 (1988).
2. Crane, L. J. Flow past a stretching plate. Z. Angew. Math. Phys. (ZAMP) 21(4), 645–647 (1970).
3. Takhar, H. S. & Nath, G. Unsteady flow over a stretching surface with a magnetic field in a rotating fluid. Z. Angew. Math. Phys. (ZAMP) 49(6), 989–1001 (1998).
4. Andersson, H. I. Slip flow past a stretching surface. Acta Mech. 158(1–2), 121–125 (2002).
5. Nazar, R., Aman, N. & Pop, I. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech. Res. Commun. 31(1), 121–128 (2004).
6. Abo-Eldahab, E. M. & El Aziz, M. A. Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int. J. Therm. Sci. 43(7), 709–719 (2004).
7. Kumari, M., Grosan, T. & Pop, I. Rotating flow of power-law fluids over a stretching surface. J. Taiwan Inst. Chem. Eng. 26, 11–19 (2006).
8. Govardhan, K., Balaswamy, B. & Kishan, N. Unsteady boundary layer flow due to a stretching porous surface in a rotating fluid. Eng. Mech. 21(4), 269–277 (2014).
9. Mansour, M. A., El-Anssary, N. F. & Aly, A. M. Effects of chemical reaction and thermal stratification on MHD free convective heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers. Chem. Eng. J. 145(2), 340–345 (2008).
10. Noor, N. F., Abbasbandy, S. & Hashim, I. Heat and mass transfer of thermophoretic MHD flow over an inclined radiative isothermal permeable surface in the presence of heat source/sink. Int. J. Heat Mass Transf. 55(7), 2122–2128 (2012).
11. Defraeye, T., Blocken, B. & Carmeliet, J. Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling. Int. J. Heat Mass Transf. 55(1), 112–124 (2012).
12. Rashidi, M. M., Rostami, B., Freidoonimehr, N. & Abbasbandy, S. Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J. 5(3), 901–912 (2014).
13. Saleem, M. & Haider, A. Heat and mass transfer on the peristaltic transport of non-Newtonian fluid with creeping flow. Int. J. Heat Mass Transf. 68, 514–526 (2014).
14. Mohyud-Din, S. T., Usman, M., Wang, W. & Hamid, M. A study of heat transfer analysis for squeezing flow of a Casson fluid via differential transform method. Neural Comput. Appl. 2017, 1–2 (2017).
15. Khan, W. A., Khan, Z. H. & Haq, R. U. Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux. Eur. Phys. J. Plus 130(4), 86 (2015).
16. Tiwari, R. K. & Das, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9), 2002–2008 (2007).
17. Sheikholeslami, M. & Ganji, D. D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75, 400–410 (2014).
18. Sheikholeslami, M. & Gorji-Bandpy, M. Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol. 256, 490–498 (2014).
19. Usman, M., Haq, R. U., Hamid, M. & Wang, W. Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856 (2017).
20. Mohyud-Din, S. T., Usman, M., Altaf, K., Hamid, M. & Wang, W. Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. (2017).
21. Mushtaq, A., Mustafa, M., Hayat, T. & Alsaeedi, A. Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Adv. Powder Technol. 27(5), 2223–2231 (2016).
22. Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ.-Fed. 231, 99–106 (1995).
23. Xue, Q. Z. Model for thermal conductivity of carbon nanotube-based composites. Physica B 368(1), 302–307 (2005).
24. Buongiorno, J. Convective transport in nanofluids. Int. J. Heat Transf. 128(3), 240–250 (2006).
25. Seremet, M. A., Grosan, T. & Pop, I. Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transp. Porous Med. 106(3), 595–610 (2015).
26. Seremet, M. A., Pop, I. & Bachok, N. Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Int. J. Heat Mass Transf. 92, 1053–1060 (2016).
27. Sheikholeslami, M., Ganji, D. D., Javed, M. Y. & Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 374, 36–43 (2015).
28. Sheikholeslami, M., Ganji, D. D. & Rashidi, M. M. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J. Magn. Magn. Mater. 416, 164–173 (2016).
29. Nazir, U., Nawaz, M., Alqarni, M. M. & Saleem, S. Finite element study of flow of partially ionized fluid containing nanoparticles. Arab. J. Sci. Eng. 44(12), 10257–10268 (2019).
30. Rashidi, M. M., Nasiri, M., Shadloo, M. S. & Yang, Z. Entropy generation in a circular tube heat exchanger using nanofluids: Effects of different modeling approaches. Heat Transf. Eng. 38(9), 853–866 (2017).
31. Usman, M. et al. Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867 (2017).
32. Khan, F. Ahmad, N. & Mohyud-Din, S. T. Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls. Results Phys. 7, 361–372 (2017).
33. Yang, L. et al. A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants. Int. J. Heat Mass Transf. 153, 119611 (2020).
34. Mason, J. C. & Handscomb, D. C. Chebyshev Polynomials (CRC Press, 2002).
35. Gupta, A. K. & Ray, S. S. Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method. Appl. Math. Model. 39(17), 5121–5130 (2015).
36. Wattanassakulpong, N. & Chai Kittirattanakorn, A. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50(5), 1331–1342 (2015).
37. Nasab, A. K., Kiliman, A., Atabakan, Z. P. & Leong, W. J. A numerical approach for solving singular nonlinear lane–Emden type equations arising in astrophysics. New Astron. 34, 178–186 (2015).
38. Nawaz, M. & Zubair, M. Finite element study of radiative nano-plasma flow subjected to Hall and ion slip current. Results Phys. 7, 4111–4122 (2017).
39. Rashidi, M., Ganesh, V., Abdul, H., Ganga, B. & Lorenzini, G. Effects of an effective Prandtl number model on nano boundary layer flow of YAl2O3–H2O and YAl2O3–C2H6O2 over a vertical stretching sheet. Int. J. Heat Mass Transf. 98, 616–623 (2016).
40. Khan Adnan, U., Ahmad, N. & Tauseef, S. 3D squeezed flow of and nanofluid: A numerical study. Int. J. Hydrogen Energy 2017, 1–14 (2017).
41. Javed, T., Sajid, M., Abbas, Z. & Ali, N. Non-similar solution for rotating flow over an exponentially stretching surface. Int. J. Numer. Meth. Heat Fluid Flow 21(7), 903–908 (2011).
42. Wakif, A., Animasaun, J. L., Khan, U., Shah, N. A. & Thumm, T. Dynamics of radiative-reactive Walters-b fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force. *Phys. Scr.* **96**, 125239 (2021).

43. Ali, B., Thumma, T., Habib, D., Salamat, N. & Riaz, S. Finite element analysis on transient MHD 3D rotating flow of Maxwell and tangent hyperbolic nanofluid past a bidirectional stretching sheet with Cattaneo Christov heat flux model. *Therm. Sci. Eng. Prog.* **2021**, 101089. https://doi.org/10.1016/j.tsep.2021.101089 (2012).

44. Thumma, T. & Satya Narayana, P. V. Innovations in Eyring-Powell radiative nanofluid flow due to nonlinear stretching sheet with convective heat and mass conditions: Numerical study. *Aust. J. Mech. Eng.* https://doi.org/10.1080/14484846.2020.1842158 (2020).

45. Alghamdi, M. *et al.* Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface. *Case Stud. Therm. Eng.* **28**, 101428 (2021).

46. Wakif, A. *et al.* Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. *J. Therm. Anal. Calorim.* **143**, 1201–1220. https://doi.org/10.1007/s10973-020-09488-z (2021).

Acknowledgements

The authors express their appreciation to the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia, for funding this work under the grant number KKU/RCAMS/G013-21. The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, for funding this research work through the project number: (IFP-KKU-2020/9). This work was supported by Taif University Researchers Supporting Project number TURSP-2020/252, Taif University, Taif, Saudi Arabia.

Author contributions

Conceptualization: T.Z., M.U.; Writing Original Draft: T.Z., M.U., K.S.N.; Software: I.K., T.Z., M.U., K.S.N.; Methodology: I.K., T.Z., M.U.; Validation: K.S.N.; Writing review, revision and editing: T.Z., K.S.N., I.K., H.Y.Z., A.H.A.; Formal Analysis: M.U., I.K., H.Y.Z., A.H.A.; Funding acquisition: K.S.N., H.Y.Z., A.H.A.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to K.S.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022