Non-existence of points rational over number fields on Shimura curves

Keisuke Arai

Abstract

Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no points rational over imaginary quadratic fields under a certain assumption. In this article, we expand their results to the case of number fields of higher degree. We also give counterexamples to the Hasse principle on Shimura curves.

1 Introduction

Let B be an indefinite quaternion division algebra over \mathbb{Q}, and $d(B)$ its discriminant. Fix a maximal order \mathcal{O} of B. A QM-abelian surface by \mathcal{O} over a field F is a pair (A, i) where A is a 2-dimensional abelian variety over F, and $i : \mathcal{O} \hookrightarrow \text{End}_F(A)$ is an injective ring homomorphism satisfying $i(1) = id$ (cf. [2, p.591]). Here, $\text{End}_F(A)$ is the ring of endomorphisms of A defined over F. We assume that A has a left \mathcal{O}-action. Let M^B be the Shimura curve over \mathbb{Q} associated to B, which parameterizes isomorphism classes of QM-abelian surfaces by \mathcal{O} (cf. [3, p.93]). We know that M^B is a proper smooth curve over \mathbb{Q}. For an imaginary quadratic field k, we have $M^B(k) = \emptyset$ under a certain assumption ([3, Theorem 6.3], [5, Theorem 1.1]). We expand this result to the case of number fields of higher degree in this article. The method of the proof is based on the strategy in [3], and the key is to control the field of definition of the QM-abelian surface corresponding to a rational point on M^B.

We also give counterexamples to the Hasse principle on M^B over number fields. We will discuss the relevance to the Manin obstruction in a forthcoming article.

For a prime number q, let $\mathcal{B}(q)$ be the set of isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that

$$
\begin{cases}
B \otimes_{\mathbb{Q}} \mathbb{Q}((\sqrt{-q})) \neq M_2(\mathbb{Q}((\sqrt{-q}))) & \text{if } q \neq 2, \\
B \otimes_{\mathbb{Q}} \mathbb{Q}((\sqrt{-1})) \neq M_2(\mathbb{Q}((\sqrt{-1}))) \text{ and } B \otimes_{\mathbb{Q}} \mathbb{Q}((\sqrt{-2})) \neq M_2(\mathbb{Q}((\sqrt{-2}))) & \text{if } q = 2.
\end{cases}
$$

For positive integers N and e, let

$$
\mathcal{C}(N, e) := \left\{ \alpha^e + \overline{\alpha}^e \in \mathbb{Z} \mid \alpha \in \mathbb{C} \text{ is a root of } T^2 + sT + N \text{ for some } s \in \mathbb{Z}, s^2 \leq 4N \right\},
$$

$$
\mathcal{D}(N, e) := \left\{ a, a \pm N^\frac{e}{2}, a \pm 2N^\frac{e}{2}, a^2 - 3N^e \in \mathbb{R} \mid a \in \mathcal{C}(N, e) \right\}.
$$
Here, $\overline{\alpha}$ is the complex conjugate of α. If e is even, then $D(N, e) \subseteq \mathbb{Z}$. For a subset $D \subseteq \mathbb{Z}$, let

$$\mathcal{P}(D) := \{ \text{prime divisors of some of the integers in } D \setminus \{0\} \}.$$

For a number field k and a prime q of k of residue characteristic q, let

- $\kappa(q)$: the residue field of q,
- N_q: the cardinality of $\kappa(q)$,
- e_q: the ramification index of q in k/\mathbb{Q},
- f_q: the degree of the extension $\kappa(q)/\mathbb{F}_q$,
- $S(k, q)$: the set of isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that any prime divisor of $d(B)$ belongs to

$$\begin{cases} \mathcal{P}(D(N_q, e_q)) \cup \{q\} & \text{if } B \otimes_{\mathbb{Q}} k \cong M_2(k) \text{ and } e_q \text{ is even}, \\ \mathcal{P}(D(N_q, 2e_q)) \cup \{q\} & \text{if } B \otimes_{\mathbb{Q}} k \not\cong M_2(k). \end{cases}$$

Note that $S(k, q)$ is a finite set. The main result of this article is:

Theorem 1.1. Let k be a number field of even degree, and q a prime number such that

- there is a unique prime q of k above q,
- f_q is odd (and so e_q is even), and
- $B \in \mathcal{B}(q) \setminus S(k, q)$.

Then $M^B(k) = \emptyset$.

Remark 1.2. (1) By [7, Theorem 0], we have $M^B(\mathbb{R}) = \emptyset$.

(2) If k is of odd degree, then k has a real place, and so $M^B(k) = \emptyset$.

2 Canonical isogeny characters

In this section, we review canonical isogeny characters associated to QM-abelian surfaces, which were introduced in [3, §4]. Let K be a number field, \overline{K} an algebraic closure of K, $G_K = \text{Gal}(\overline{K}/K)$ the absolute Galois group of K, \mathcal{O}_K the ring of integers of K, (A, i) a QM-abelian surface by \mathcal{O} over K, and p a prime divisor of $d(B)$. Then the p-torsion subgroup $A[p](\overline{K})$ of A has exactly one non-zero proper left \mathcal{O}-submodule, which we shall denote by C_p. Then C_p has order p^2, and is stable under the action of G_K. Let $\mathfrak{P}_\mathcal{O} \subseteq \mathcal{O}$ be the unique left ideal of reduced norm $p\mathbb{Z}$.

2
In fact, \mathcal{P}_O is a two-sided ideal of O. Then C_p is free of rank 1 over O/\mathcal{P}_O. Fix an isomorphism $O/\mathcal{P}_O \cong \mathbb{F}_{p^2}$. The action of G_K on C_p yields a character
\[\varrho_p : G_K \rightarrow \text{Aut}_O(C_p) \cong \mathbb{F}_{p^2}^\times. \]
Here, $\text{Aut}_O(C_p)$ is the group of O-linear automorphisms of C_p. The character ϱ_p depends on the choice of the isomorphism $O/\mathcal{P}_O \cong \mathbb{F}_{p^2}$, but the pair $\{ \varrho_p, (\varrho_p)^p \}$ is independent of this choice. Either of the characters $\varrho_p, (\varrho_p)^p$ is called a canonical isogeny character at p. We have an induced character
\[\varrho^{ab}_p : G^{ab}_K \rightarrow \mathbb{F}_{p^2}^\times, \]
where G^{ab}_K is the Galois group of the maximal abelian extension K^{ab}/K.

For a prime ℓ of K, let $\mathcal{O}_{K,\ell}$ be the completion of \mathcal{O}_K at ℓ, and
\[r_p(\ell) : \mathcal{O}_K^\times \rightarrow \mathbb{F}_{p^2}^\times \]
the composition
\[\mathcal{O}_{K,\ell}^\times \xrightarrow{\omega_{\ell}} G^{ab}_K \xrightarrow{\varrho^{ab}_p} \mathbb{F}_{p^2}^\times. \]
Here ω_{ℓ} is the Artin map.

Proposition 2.1 ([3 Proposition 4.7 (2)]). If $\ell \nmid p$, then $r_p(\ell)^{12} = 1$.

Fix a prime \mathcal{P} of K above p. Then we have an isomorphism $\kappa(\mathcal{P}) \cong \mathbb{F}_{p^2}$ of finite fields. Let $\ell_{\mathcal{P}} := \gcd(2, f_{\mathcal{P}}) \in \{1, 2\}$.

Proposition 2.2 ([3 Proposition 4.8]).

1. There is a unique element $c_{\mathcal{P}} \in \mathbb{Z}/(p^{\ell_{\mathcal{P}}} - 1)\mathbb{Z}$ satisfying $r_p(\mathcal{P})(u) = \text{Norm}_{\kappa(\mathcal{P})/\mathbb{F}_{p^2}}(\tilde{u})^{-c_{\mathcal{P}}}$ for any $u \in \mathcal{O}_{K,\mathcal{P}}^\times$. Here, $\tilde{u} \in \kappa(\mathcal{P})$ is the reduction of u modulo \mathcal{P}.

2. \[\frac{2c_{\mathcal{P}}}{\ell_{\mathcal{P}}} \equiv c_{\mathcal{P}} \mod (p - 1). \]

Corollary 2.3. For any prime number $l \neq p$, we have $r_p(\mathcal{P})(l^{-1})^2 = l^{c_{\mathcal{P}}f_{\mathcal{P}}}$ mod p.

Proof.
\[r_p(\mathcal{P})(l^{-1})^2 = (\text{Norm}_{\kappa(\mathcal{P})/\mathbb{F}_{p^2}}(l^{-1})^{c_{\mathcal{P}}})^2 = \text{Norm}_{\mathbb{F}_{p^2}/\mathbb{F}_{p_{\mathcal{P}}}}(l)^{2c_{\mathcal{P}}} = l^{\frac{2c_{\mathcal{P}}}{\ell_{\mathcal{P}}}} \equiv l^{c_{\mathcal{P}}f_{\mathcal{P}}} \mod p. \]

For a prime number l, the action of G_K on the l-adic Tate module $T_l A$ yields a representation
\[R_l : G_K \rightarrow \text{Aut}_O(T_l A) \cong \mathcal{O}_l^\times \subseteq B_l^\times, \]
where $\text{Aut}_O(T_l A)$ is the group of automorphisms of $T_l A$ commuting with the action of O, and $\mathcal{O}_l = O \otimes \mathbb{Z}_l$, $B_l = B \otimes \mathbb{Q}_l$. Let $\text{Nrd}_{B_l/\mathbb{Q}_l}$ be the reduced norm on B_l. Let \mathfrak{M} be a prime of K, and $F_{\mathfrak{M}} \in G_K$ a Frobenius element at \mathfrak{M}. For each $e \geq 1$, there is an integer $a(F_{\mathfrak{M}}^e) \in \mathbb{Z}$ satisfying
\[\text{Nrd}_{B_l/\mathbb{Q}_l}(T - R_l(F_{\mathfrak{M}}^e)) = T^2 - a(F_{\mathfrak{M}}^e)T + (N_{\mathfrak{M}})^e \in \mathbb{Z}[T] \]
for any l prime to \mathfrak{M}.

3
Proposition 2.4 ([3, Proposition 5.3]). (1) We have $a(F_{2M}^e)^2 \leq 4(N_{2M})^e$ for any positive integer e.

(2) Assume $M \nmid p$. Then

$$a(F_{2M}^e) \equiv q_p(F_{2M}^e) + (N_{2M})^e q_p(F_{2M}^e)^{-1} \mod p$$

for any positive integer e.

Let $\alpha_{2M}, \overline{\alpha}_{2M} \in \mathbb{C}$ be the roots of $T^2 - a(F_{2M})T + N_{2M}$. Then $\alpha_{2M} + \overline{\alpha}_{2M} = a(F_{2M})$ and $\alpha_{2M}\overline{\alpha}_{2M} = N_{2M}$. We see that the roots of $T^2 - a(F_{2M}^e)T + (N_{2M})^e$ are $\alpha_{2M}^e, \overline{\alpha}_{2M}^e$. Then $\alpha_{2M}^e + \overline{\alpha}_{2M}^e = a(F_{2M}^e)$. We have the following corollary to Proposition 2.4(1) (for $e = 1$):

Corollary 2.5. We have $a(F_{2M}) \in \mathcal{C}(N_{2M})$ for any positive integer e.

For a later use, we give the following lemma:

Lemma 2.6. Let m be the residue characteristic of M. The the following conditions are equivalent:

(i) $m \mid a(F_{2M})$.
(ii) $m \mid a(F_{2M}^e)$ for a positive integer e.
(iii) $m \mid a(F_{2M}^e)$ for any positive integer e.

Proof. For each $e \geq 1$, there is a polynomial $P_e(S, T) \in \mathbb{Z}[S, T]$ such that $(S + T)^e = S^e + T^e + STP_e(S + T, ST)$. Then $a(F_{2M})^e = a(F_{2M})^e + N_{2M}P_e(a(F_{2M}), N_{2M})$. Since $m \mid N_{2M}$, we have $m \mid a(F_{2M})$ if and only if $m \mid a(F_{2M}^e)$.

\[\square\]

3 Proof of the main result

Now we prove Theorem 1.1. Suppose that the assumption of Theorem 1.1 holds. Assume that there is a point $x \in M^B(k)$. When $B \otimes_k k \not\cong M_2(k)$, let K_0 be a quadratic extension of k satisfying $B \otimes_k K_0 \cong M_2(K_0)$. Let

$$K := \begin{cases} k & \text{if } B \otimes_k k \cong M_2(k), \\ K_0 & \text{if } B \otimes_k k \not\cong M_2(k). \end{cases}$$

Note that the degree $[K : \mathbb{Q}]$ is even. Then x is represented by a QM-abelian surface (A, i) by O over K (see [3, Theorem 1.1]). Since $B \not\in S(k, q)$, there is a prime divisor p of $d(B)$ such that $p \not= q$ and p does not belong to

$$\begin{cases} \mathcal{P}(\mathcal{D}(N_q, e_q)) & \text{if } B \otimes_k k \cong M_2(k), \\ \mathcal{P}(\mathcal{D}(N_q, 2e_q)) & \text{if } B \otimes_k k \not\cong M_2(k). \end{cases}$$

Fix such p, and let

$$q_p : G_K \longrightarrow \mathbb{F}_p^\times$$

be a canonical isogeny character at p associated to (A, i).
By Proposition 2.1, the character φ_p^{12} is unramified outside p. Then it is identified with a character $3_k(p) \rightarrow \mathbb{F}_p^{\times}$, where $3_k(p)$ is the group of fractional ideals of K prime to p. When $B \otimes Q k \not\cong M_2(k)$, we may assume that q is ramified in K/k by replacing K_0 if necessary. In any case, let Q be the unique prime of K above q. Note that Q is the unique prime of K above q, and so $qO_K = Q^{e_Q}, (N_Q)^{e_Q} = (qJ_Q)^{e_Q} = q^{[K:Q]}$. Then by Corollary 2.3, we have

$$\varphi_p^{12}(P_Q) = \varphi_p^{12}(Q^{e_Q}) = \varphi_p^{12}(qO_K) = \varphi_p^{12}(1, \ldots, 1, q, \ldots, q, \ldots) = \varphi_p^{12}(q^{-1}, \ldots, q^{-1}, 1, \ldots, 1, \ldots) = \prod_{\psi \mid p} r_p(\psi)^{12}(q^{-1}) \equiv \prod_{\psi \mid p} q^{6e_Q} \psi = q^{6[K:Q]} \mod p.$$

Here, $(1, \ldots, 1, q, \ldots, q, \ldots)$ (resp. $(q^{-1}, \ldots, q^{-1}, 1, \ldots, 1, \ldots)$) is the idèle of K whose components above p are 1 and the others q (resp. whose components above p are q^{-1} and the others 1), and \mathcal{P} runs through the primes of K above p. On the other hand, we have

$$a(F_Q^{e_Q}) \equiv \varphi_p(F_Q^{e_Q}) + (N_Q)^{e_Q} \varphi_p(F_Q^{e_Q})^{-1} = \varphi_p(F_Q^{e_Q}) + q^{[K:Q]} \varphi_p(F_Q^{e_Q})^{-1} \mod p.$$

by Proposition 2.4(2). Let $\varepsilon := q^{-\frac{[K:Q]}{2}} \varphi_p(F_Q^{e_Q}) \in \mathbb{F}_p^\times$. Then

$$\varepsilon^{12} = 1 \quad \text{and} \quad a(F_Q^{e_Q}) \equiv (\varepsilon + \varepsilon^{-1})q^{\frac{[K:Q]}{2}} \mod p.$$

Therefore

$$a(F_Q^{e_Q}) \equiv 0, \pm q^{\frac{[K:Q]}{2}}, \pm 2q^{\frac{[K:Q]}{2}} \mod p \quad \text{or} \quad a(F_Q^{e_Q})^2 \equiv 3q^{[K:Q]} \mod p.$$

By Corollary 2.5, we have $a(F_Q^{e_Q}) \in C(N_Q, e_Q)$. We also have

$$N_Q = N_q \quad \text{and} \quad e_Q = \begin{cases} e_q & \text{if } B \otimes Q k \cong M_2(k), \\ 2e_q & \text{if } B \otimes Q k \not\cong M_2(k). \end{cases}$$

Then

$$a(F_Q^{e_Q}), a(F_Q^{e_Q}) \pm q^{\frac{[K:Q]}{2}}, a(F_Q^{e_Q}) \pm 2q^{\frac{[K:Q]}{2}}, a(F_Q^{e_Q})^2 - 3q^{[K:Q]} \in D(N_Q, e_Q).$$

Since $p \not\in \mathcal{P}(D(N_q, e_Q))$, we have

(1) $a(F_Q^{e_Q}) = 0, \pm q^{\frac{[K:Q]}{2}}, \pm 2q^{\frac{[K:Q]}{2}}$, or

(2) $a(F_Q^{e_Q})^2 = 3q^{[K:Q]}$.

[Case (1)]. In this case, we have $q \mid a(F_Q^{e_Q})$. Then by Lemma 2.6 we have $q \mid a(F_Q)$. Since $f_Q(= f_q)$ is odd, we obtain $B \otimes Q \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$ or $q = 2$ and $B \otimes Q \mathbb{Q}(\sqrt{-1}) \cong M_2(\mathbb{Q}(\sqrt{-1}))$ (see [3, Theorem 2.1, Propositions 2.3 and 5.1 (1)]). This contradicts $B \in B(q)$.

[Case (2)]. In this case, $q = 3$ and $[K : \mathbb{Q}]$ is odd, which is a contradiction.

Therefore we conclude $M^B(k) = \emptyset$. □
(N, e)	$\mathcal{C}(N, e)$	$\mathcal{D}(N, e)$	$\mathcal{P}(\mathcal{D}(N, e))$
$(2, 2)$	$0, -3, -4$	$0, \pm 1, \pm 2, -3, \pm 4, -5, -6, -7, -8, -12$	$2, 3, 5, 7$
$(2, 4)$	$1, \pm 8$	$0, 1, -3, \pm 4, 5, -7, \pm 8, 9, \pm 12, \pm 16, -47$	$2, 3, 5, 7, 47$
$(2, 6)$	$0, 9, -16$	$0, 1, -7, \pm 8, 9, \pm 16, 17, -24, 25, -32, 64, -111, -192$	$2, 3, 5, 7, 17, 37$
$(2, 8)$	$-31, 32$	$0, 1, -15, 16, -31, 32, -47, 48, -63, 64, 193, 256$	$2, 3, 5, 7, 19, 47, 193$
$(2, 10)$	$0, 57, -64$	$0, -7, 25, \pm 32, 57, \pm 64, 89, -96, 121, -128, 177, 1024, -3072$	$2, 3, 5, 7, 11, 19, 59, 89$
$(2, 12)$	$-47, \pm 128$	$0, 17, -47, \pm 64, 81, -111, \pm 128, -175, \pm 192, \pm 256, 4096, -10079$	$2, 3, 5, 7, 17, 37, 47, 10079$
$(2, 14)$	$0, -87, -256$	$0, 41, -87, \pm 128, 169, -215, \pm 256, -343, -384, -512, 16384, -41583, -49152$	$2, 3, 5, 7, 13, 29, 41, 43, 83, 167$
$(2, 16)$	$449, 512$	$0, -63, 193, 256, 449, 512, 705, 768, 961, 1024, 4993, 65536$	$2, 3, 5, 7, 19, 47, 193, 449, 4993$
$(3, 2)$	$-2, 3, -5, -6$	$0, 1, 2, \pm 3, 4, -5, \pm 6, -8, \pm 9, -11, -12, -18, -23$	$2, 3, 5, 11, 23$
$(3, 4)$	$7, -9, -14, 18$	$0, -2, 4, -5, 7, \pm 9, -11, -14, 16, \pm 18, -23, 25, \pm 27, -32, 36, -47, 81, -162, -194$	$2, 3, 5, 7, 11, 23, 47, 97$
$(3, 6)$	$10, 46, -54$	$0, -8, 10, -17, 19, -27, 37, -44, 46, -54, 64, -71, 73, -81, 100, -108, 729, -2087$	$2, 3, 5, 7, 11, 19, 23, 37, 71, 73, 2087$
$(3, 8)$	$34, -81, -113, 162$	$0, -32, 34, -47, 49, \pm 81, -113, 115, -128, \pm 162, -194, 196, \pm 243, -275, 324, 6561, -6914, -13122, -18527$	$2, 3, 5, 7, 11, 17, 23, 47, 97, 113, 191, 3457$
$(3, 10)$	$243, 475, -482, -486$	$0, 4, -11, 232, -239, \pm 243, 475, \pm 482, \pm 486, 718, -725, \pm 729, 961, -968, -972, 48478, 55177, 59049, -118098$	$2, 3, 5, 7, 11, 19, 23, 31, 239, 241, 359, 2399, 24239$
$(3, 12)$	$658, -1358, 1458$	$0, -71, 100, -629, 658, 729, -800, -1358, 1387, 1458, -2087, 2116, 2187, -2816, 2916, 249841, 531441, -1161359$	$2, 3, 5, 7, 11, 17, 19, 23, 37, 47, 71, 73, 97, 433, 577, 1009, 1151, 2087$
$(3, 14)$	$2187, 2515, 3022, -4374$	$0, 328, 835, -1352, -1859, \pm 2187, 2515, 3022, \pm 4374, 4702, 5209, \pm 6561, 6889, 7396, -8748, 4782969, -5216423, -8023682, -9565938$	$2, 3, 5, 7, 11, 13, 23, 41, 43, 83, 167, 337, 503, 673, 1511, 2351, 5209, 24023$
$(3, 16)$	$-353, -6561, -11966, 13122$	$0, -353, 1156, -5405, 6208, \pm 6561, -6914, -11966, 12769, \pm 13122, -13475, -18527, \pm 19683, -25088, 26244, 14044993, 43046721, -86093442, -129015554$	$2, 3, 5, 7, 11, 17, 23, 31, 47, 97, 113, 191, 193, 353, 383, 2113, 3457, 30529, 36671$
4 Counterexamples to the Hasse principle

We have computed the sets \(\mathcal{C}(N,e), \mathcal{D}(N,e), \mathcal{P}(\mathcal{D}(N,e)) \) in several cases as seen in Table II. Then we obtain the following counterexamples to the Hasse principle on \(M^B \) over number fields:

Proposition 4.1. (1) Let \(d(B) = 39 \), and let \(k = \mathbb{Q}(\sqrt{2}, \sqrt{-13}) \) or \(\mathbb{Q}(\sqrt{-2}, \sqrt{13}) \). Then \(B \otimes_{\mathbb{Q}} k \cong M_2(k) \), \(M^B(k) = \emptyset \) and \(M^B(k_v) \neq \emptyset \) for any place \(v \) of \(k \). Here, \(k_v \) is the completion of \(k \) at \(v \).

(2) Let \(L \) be the subfield of \(\mathbb{Q}(\zeta_9) \) satisfying \([L : \mathbb{Q}] = 3 \), and let \((d(B), k) = (62, L(\sqrt{-39})) \) or \((86, L(\sqrt{-15})) \). Then \(B \otimes_{\mathbb{Q}} k \not\cong M_2(k) \), \(M^B(k) = \emptyset \) and \(M^B(k_v) \neq \emptyset \) for any place \(v \) of \(k \).

Proof. (1) The prime number 3 (resp. 13) is inert (resp. ramified) in \(\mathbb{Q}(\sqrt{-13}) \). Then \(B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-13}) \cong M_2(\mathbb{Q}(\sqrt{-13})) \), and so \(B \otimes_{\mathbb{Q}} k \cong M_2(k) \).

Applying Theorem 1.1 to \(q = 2 \), we obtain \(M^B(k) = \emptyset \). In fact, \((e_q, f_q) = (4, 1)\) where \(q \) is the unique prime of \(k \) above \(q = 2 \), and the prime divisor 13 of \(d(B) \) does not belong to \(\mathcal{P}(\mathcal{D}(2,4)) \cup \{2\} \) (see Table I). Since 3 (resp. 13) splits in \(\mathbb{Q}(\sqrt{-2}) \) (resp. \(\mathbb{Q}(\sqrt{-1}) \)), we have \(B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not\cong M_2(\mathbb{Q}(\sqrt{-2})) \) (resp. \(B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not\cong M_2(\mathbb{Q}(\sqrt{-1})) \)).

By [3, p.94], we have \(M^B(\mathbb{Q}(\sqrt{-13})_w) = \emptyset \) for any place \(w \) of \(\mathbb{Q}(\sqrt{-13}) \) (cf. [4]). Therefore \(M^B(k_v) \neq \emptyset \) for any place \(v \) of \(k \).

(2) For a field \(F \) of characteristic \(\neq 2 \) and two elements \(a, b \in F^\times \), let

\[
\left(\frac{a,b}{F} \right) = F + F e + F f + F e f
\]

be the quaternion algebra over \(F \) defined by

\[
e^2 = a, \quad f^2 = b, \quad e f = - f e.
\]

For a prime number \(p \), let \(e_p, f_p, g_p \) be the ramification index of \(p \) in \(k/\mathbb{Q} \), the degree of the residue field extension above \(p \) in \(k/\mathbb{Q} \), and the number of primes of \(k \) above \(p \) respectively.

Let \((d(B), k) = (62, L(\sqrt{-39})) \) (resp. \((86, L(\sqrt{-15})) \)). First, we prove \(B \otimes_{\mathbb{Q}} k \not\cong M_2(k) \). We see \(B \cong \left(\frac{62,13}{\mathbb{Q}} \right) \) (resp. \(\left(\frac{86,5}{\mathbb{Q}} \right) \)) by [6, §3.6 g]). We have \((e_2, f_2, g_2) = (1,3,2)\). Let \(v \) be place of \(k \) above 2. By the same argument as in the proof of [1, Proposition 8.1], we have \(B \otimes_{\mathbb{Q}} k_v \not\cong M_2(k_v) \). Therefore \(B \otimes_{\mathbb{Q}} k \not\cong M_2(k) \).

Applying Theorem 1.1 to \(q = 3 \), we obtain \(M^B(k) = \emptyset \). In fact, \((e_q, f_q) = (6, 1)\) where \(q \) is the unique prime of \(k \) above \(q = 3 \), and the prime divisor 31 (resp. 43) of \(d(B) \) does not belong to \(\mathcal{P}(\mathcal{D}(3,12)) \cup \{3\} \). Since 31 (resp. 43) splits in \(\mathbb{Q}(\sqrt{-3}) \), we have \(B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-3}) \not\cong M_2(\mathbb{Q}(\sqrt{-3})) \).

By [5, Table 1], we have \(M^B(\mathbb{Q}(\sqrt{-39})_w) \neq \emptyset \) (resp. \(M^B(\mathbb{Q}(\sqrt{-15})_w) \neq \emptyset \)) for any place \(w \) of \(\mathbb{Q}(\sqrt{-39}) \) (resp. \(\mathbb{Q}(\sqrt{-15}) \)). Therefore \(M^B(k_v) \neq \emptyset \) for any place \(v \) of \(k \).

\[\square\]
References

[1] K. Arai, Algebraic points on Shimura curves of $\Gamma_0(p)$-type (III), preprint, available at the web page [http://arxiv.org/pdf/1303.5270.pdf].

[2] K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), no. 3, 591–612.

[3] B. Jordan, Points on Shimura curves rational over number fields, J. Reine Angew. Math. 371 (1986), 92–114.

[4] B. Jordan, R. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), no. 2, 235–248.

[5] V. Rotger, C. de Vera-Piquero, Galois representations over fields of moduli and rational points on Shimura curves, Canad. J. Math. 66 (2014), 1167–1200.

[6] H. Shimizu, Hokei kansū. I–III (Japanese) [Automorphic functions. I–III] Second edition. Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], 8. Daisū [Algebra], vii. Iwanami Shoten, Tokyo, 1984.

[7] G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135–164.

(Keisuke Arai) Department of Mathematics, School of Engineering, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
E-mail address: araik@mail.dendai.ac.jp