1 Transition probabilities in the hull dynamics of the majority vote model (Eq. 3–5 in main text)

Let the hull be parameterized as \((x_1, y_1), \ldots, (x_l, y_l)\) by the left-turning walk described in the main text. Figure 1c of the main text shows that the hull in \(\text{MV}_{0.8}\) separates a predominantly white region on the left from a similarly dense black region on the right. This observation justifies a “solid-on-solid” approximation \([1]\) where we ignore

- any overhangs in the interface (i.e., parts of the left-turning walk that move towards smaller \(y\)-coordinates),
- any isolated islands of the minority color to the left and right of the hull.

In this approximation, the hull at time step \(t\) is completely characterized by

\[
h(t, y) = \min \{ x_k | y_k = y, k = 1, \ldots, l \} - \frac{1}{2} \tag{1}
\]

because every site \((x, y)\) with \(x < h(t, y)\) will be white and every site with \(x > h(t, y)\) black. We now have to distinguish three cases.

1.1 Case 1: \(h(t, y)\) is neither a strict local minimum nor maximum

In this case, one of the following four conditions must be met

- \(h(t, y - 1) = h(t, y)\),
- \(h(t, y) = h(t, y + 1)\),
- \(h(t, y - 1) < h(t, y) < h(t, y + 1)\), or
- \(h(t, y - 1) > h(t, y) > h(t, y + 1)\).

Let \(A\) be the white site in the \(y\)-th row with \(x\)-coordinate \(h(t, y) - \frac{1}{2}\) and \(B\) the black site at \(h(t, y) + \frac{1}{2}\) (see Fig. 1). In all cases listed above, both \(A\) and \(B\) have at least two neighbors of their own color, namely one in the \(y\)-th row and one in a neighboring row. Including their own vote, the local majority supports their current opinion. As a consequence, in the deterministic majority vote model \(\text{MV}_1\) neither \(A\) nor \(B\) will change color and thus \(h(t + 1, y) = h(t, y)\). In the stochastic model \(\text{MV}_{1-r}\) with \(r > 0\), the probability that \(A\) becomes black is

\[
\Pr[A \text{ black at } t + 1 | h(t, y) = x] = r \left[g \left(x - \frac{1}{2} \right) + p_c \right], \tag{2}
\]

and the probability that \(B\) becomes white

\[
\Pr[B \text{ white at } t + 1 | h(t, y) = x] = r \left[1 - g \left(x + \frac{1}{2} \right) - p_c \right]. \tag{3}
\]
Figure 1: Examples where \(h(t, y) \) is neither a strict local minimum nor maximum. In each case, the white and black sites at the interface, \(A \) and \(B \), have at least two neighbors of their own color so that in MV\(_1\) there is no change of the hull position (i.e., \(h(t, y) = h(t+1, y) \)). In MV\(_{1-r}\), there is a \(O(r) \) probability that the hull moves one site to the left or right. All other probabilities are \(O(r^2) \).

Figure 2: Examples where \(h(t, y) \) is a strict local (a) minimum or (b) maximum. The minimal or maximal site of the protruding opinion is in a local minority, but all other sites in row \(y \) will have at least two neighbors of the same opinion. Thus, in MV\(_1\) only the front site will change opinion between time steps \(t \) and \(t + 1 \). In MV\(_{1-r}\) the probability of the hull shifting one step towards the (a) right, (b) left is \(1 - O(r) \). The probability of no change or two steps to the (a) right, (b) left is \(O(r) \). All other transitions have probabilities \(O(r^2) \).

In the solid-on-solid approximation, the hull can shift exactly one step to the left only if \(A \) turns black, while all other sites keep their colors with a probability \(1 - O(r) \). Because the probabilities are independent, we can multiply them and obtain

\[
\Pr[h(t+1, y) = x - 1 \mid h(t, y) = x] = r \left[g \left(x - \frac{1}{2} \right) + p_c \right] + O(r^2).
\]

(4)

Similarly,

\[
\Pr[h(t+1, y) = x + 1 \mid h(t, y) = x] = r \left[1 - g \left(x + \frac{1}{2} \right) - p_c \right] + O(r^2).
\]

(5)

Because shifts of more than one step to either side have probabilities \(O(r^2) \) and the sum of the probabilities must equal one,

\[
\Pr[h(t+1, y) = x \mid h(t, y) = x] = 1 + r(g-1) + O(r^2).
\]

(6)

1.2 Case 2: \(h(t, y) \) is a strict local minimum

Here the leftmost black site \(A \) in row \(y \) is in a local minority (see Fig. 2a). It stays black with probability

\[
\Pr[A \text{ black at } t+1 \mid h(t, y) = x] = r \left[g \left(x + \frac{1}{2} \right) + p_c \right].
\]

(7)
Its right neighbor B is black, which is the local majority because at least its two neighbors in row i are black. Hence, it becomes white with probability

$$\Pr[B \text{ white at } t + 1 \mid h(t, y) = x] = r \left[1 - g \left(x + \frac{3}{2} \right) - p_c \right].$$

(8)

In the solid-on-solid approximation, the hull can only stay at the same position if none of the sites in row i changes its color. With the only exception of A, an individual opinion change has probability $1 - O(r)$ for all sites so that

$$\Pr[h(t, y) = x \mid h(t, y) = x] = r \left[g \left(x + \frac{1}{2} \right) + p_c \right] + O(r^2).$$

(9)

The hull can only shift two sites to the right if A and B become white. The former has probability $1 - O(r)$, the latter is given by Eq. 8, and all other probabilities are $1 - O(r)$. Therefore,

$$\Pr[h(t + 1, y) = x + 2 \mid h(t, y) = x] = r \left[1 - g \left(x + \frac{3}{2} \right) - p_c \right] + O(r^2).$$

(10)

All other shifts further to the left and right are $O(r^2)$, so that the only remaining transition of one step to the right has probability

$$\Pr[h(t + 1, y) = x + 1 \mid h(t, y) = x] = 1 + r(g - 1) + O(r^2).$$

(11)

1.3 Case 3: $h(t, y)$ is a strict local maximum

In analogy to case 2, we find

$$\Pr[h(t + 1, y) = x \mid h(t, y) = x] = r \left[1 - g \left(x - \frac{1}{2} \right) - p_c \right] + O(r^2),$$

(12)

$$\Pr[h(t + 1, y) = x - 2 \mid h(t, y) = x] = r \left[g \left(x - \frac{3}{2} \right) + p_c \right] + O(r^2),$$

(13)

$$\Pr[h(t + 1, y) = x - 1 \mid h(t, y) = x] = 1 + r(g - 1) + O(r^2).$$

(14)

1.4 Summary

We can summarize the results so far with the notation

$$K_y = \begin{cases}
+1 & \text{if } h(t, y) \text{ is a strict minimum,} \\
-1 & \text{if } h(t, y) \text{ is a strict maximum,} \\
0 & \text{otherwise.}
\end{cases}$$

(15)

Neglecting terms $O(r^2)$,

$$\Pr[h(t + 1, y) = x - 1 + K_y \mid h(t, y) = x] = r \left[g \left(x - \frac{1}{2} \right) + p_c \right] + rgK_y,$$

(16)

$$\Pr[h(t + 1, y) = x + K_y \mid h(t, y) = x] = 1 + r(g - 1),$$

(17)

$$\Pr[h(t + 1, y) = x + 1 + K_y \mid h(t, y) = x] = r \left[1 - g \left(x + \frac{1}{2} \right) - p_c \right] - rgK_y.$$

(18)

Because there are no isolated clusters in the solid-on-solid approximation and the dynamics is symmetric under interchange of black and white, p_c equals $\frac{1}{2}$. This assumption is consistent with our numerical results for the full model $p_c = 0.5000(4)$. Equations 16–18 with $p_c = \frac{1}{2}$ yield Eq. 3–5 in the main text.

2 The stochastic differential equation for the hull evolution (Eq. 6 in main text)

An alternative formulation of Eq. 16–18 is

$$h(t + 1, y) = h(t, y) + K_y + \zeta_y,$$

(19)
where

\[
\begin{align*}
\Pr(\zeta_y = -1) &= r \left[\frac{1}{2} + g \left(h(t, y) - \frac{1}{2} + K_y \right) \right], \\
\Pr(\zeta_y = 0) &= 1 + r(g - 1), \\
\Pr(\zeta_y = 1) &= r \left[\frac{1}{2} - g \left(h(t, y) + \frac{1}{2} + K_y \right) \right].
\end{align*}
\]

(20)

The expectation value of \(\zeta_y\) is

\[
\langle \zeta_y \rangle = -2gr(h + K_y),
\]

(23)

so that we can rephrase Eq. 19 as

\[
h(t + 1, y) - h(t, y) = K_y - 2gr(h + K_y) + \zeta_y - \langle \zeta_y \rangle.
\]

(24)

Our objective is to take the continuum limit of Eq. 24 in the following manner. With the notation

\[
\begin{align*}
\Delta_+ &= h(t, y + 1) - h(t, y), \\
\Delta_- &= h(t, y) - h(t, y - 1),
\end{align*}
\]

(25)

(26)

we can express \(K_y\) of Eq. 15 using the Heaviside step function

\[
\theta(x) = \begin{cases} 1 & \text{if } x \geq 0, \\ 0 & \text{otherwise} \end{cases}
\]

(27)

as

\[
K_y = [1 - \theta(-\Delta_+)] [1 - \theta(\Delta_-)] - [1 - \theta(\Delta_+)] [1 - \theta(-\Delta_-)].
\]

(28)

The discontinuous Heaviside function can be written as the limit \(\epsilon \to 0\) of the differentiable function [2]

\[
\theta_\epsilon(x) = \epsilon \ln \left(\frac{\exp \left(\frac{x + 1}{\epsilon} \right) + 1}{\exp \left(\frac{x}{\epsilon} \right) + 1} \right).
\]

(29)

Simultaneously with the limit of the Heaviside function, we take the continuum limit of the space and time variables,

\[
\begin{align*}
\tilde{t} &= \epsilon^k t, \\
\tilde{y} &= \epsilon^l y, \\
\tilde{h}(\tilde{t}, \tilde{y}) &= \epsilon^m h(t, y),
\end{align*}
\]

(30)

(31)

(32)

with \(k, l, m > 0\) and let \(g\) approach zero as

\[
g = \epsilon^n \tilde{g}
\]

(33)

with \(n > 0\). We will now determine the leading terms in the individual parts of Eq. 24, which will give us conditions for these exponents.

2.1 The discrete time derivative \(A\) in Eq. 24

Assuming that \(h\) is a smooth function, we can expand \(A\) as

\[
A = \epsilon^{-m} \left(\tilde{h}(\tilde{t} + \epsilon^k) + \tilde{h}(\tilde{t}) \right) = \epsilon^{k-m} \frac{\partial \tilde{h}}{\partial \tilde{t}} + O(\epsilon^{2k-m}).
\]

(34)
2.2 The variable K_y encoding a strict minimum or maximum

For the derivatives of θ, of Eq. 29, we find

$$\theta_i(0) = 1 - \epsilon \ln(2) + O \left(\epsilon e^{-1/\epsilon} \right),$$

$$\frac{d\theta_i(0)}{dx} = \frac{1}{2} + O \left(\epsilon^{-1/\epsilon} \right),$$

$$\frac{d^2\theta_i(0)}{dx^2} = \frac{1}{4\epsilon} + O \left(\epsilon^{-1/\epsilon} \right),$$

$$\frac{d^3\theta_i(0)}{dx^3} = O \left(\epsilon^{-2} e^{-1/\epsilon} \right).$$

Inserting these derivatives into Eq. 28 we obtain

$$K_{y,\epsilon} = \left[\epsilon \ln(2) + \frac{1}{2}\Delta_+ - \frac{1}{8\epsilon}\Delta_+^2 + O \left(\epsilon^{-3}\Delta_+^4 \right) \right] \left[\epsilon \ln(2) - \frac{1}{2}\Delta_- - \frac{1}{8\epsilon}\Delta_-^2 + O \left(\epsilon^{-3}\Delta_-^4 \right) \right]$$

$$= \epsilon \ln(2) \left(\Delta_+ - \Delta_- \right) + \frac{1}{8\epsilon}\Delta_+ \Delta_- \left(\Delta_+ - \Delta_- \right) + O \left(\epsilon^{-3}\Delta_+ \Delta_-^5 \right).$$

From the Taylor expansions of \tilde{h} we obtain

$$\Delta_+ - \Delta_- = \epsilon^{2l-m} \frac{\partial^2 \tilde{h}}{\partial y^2} + O \left(\epsilon^{4l-m} \right),$$

$$\Delta_+ \Delta_- (\Delta_+ - \Delta_-) = \epsilon^{4l-3m} \left(\frac{\partial \tilde{h}}{\partial y} \right)^2 \frac{\partial^2 \tilde{h}}{\partial y^2} + O \left(\epsilon^{6l-3m} \right),$$

so that

$$K_{y,\epsilon} = \epsilon^{2l-m+1} \ln(2) \frac{\partial^2 \tilde{h}}{\partial y^2} + O \left(\epsilon^{4l-3m-1} \right),$$

where the expansion converges only if

$$l - m > 1.$$

2.3 The gradient term B in Eq. 24

From Eq. 32, 33 and 42, we obtain

$$B = 2\epsilon^n \tilde{g} \left[\epsilon^{-m} \tilde{h}(\tilde{t}, \tilde{y}) + O \left(\epsilon^{2l-m+1} \right) \right] = 2\epsilon^n \tilde{g} \tilde{r} \tilde{h}(\tilde{t}, \tilde{y}) + O \left(\epsilon^{2l-m+n+1} \right).$$

2.4 The noise term C in Eq. 24

The covariance of the noise is

$$\langle [\zeta_y(t) - \langle \zeta_y(t) \rangle] \times [\zeta_y'(t') - \langle \zeta_y'(t') \rangle] \rangle = [r(1-g) + O(r^2)] \delta_{t,t'} \delta_{y,y'}.$$

In the continuum limit, the Kronecker deltas transform as

$$\delta_{t,t'} = \epsilon^k \delta(\tilde{t} - \tilde{t}'),$$

$$\delta_{y,y'} = \epsilon^l \delta(\tilde{y} - \tilde{y}').$$

Dropping terms of order $O(r^2)$,

$$\langle \mathcal{C}(\tilde{t}, \tilde{y}) \mathcal{C}(\tilde{t}', \tilde{y}') \rangle = \epsilon^{k+l} \delta(\tilde{t} - \tilde{t}') \delta(\tilde{y} - \tilde{y}') + O \left(\epsilon^{k+l+n} \right).$$
where $C(\tilde{t}, \tilde{y}) = \zeta(\tilde{t}) - \langle \zeta(\tilde{t}) \rangle$ is defined as in Eq. 24. If we introduce the rescaled noise
\[
\eta(\tilde{t}, \tilde{y}) = \frac{\epsilon^{-(k+1)/2}}{\sqrt{\tau}} C(\tilde{t}, \tilde{y}),
\] (49)
then the covariance
\[
\langle \eta(\tilde{t}, \tilde{y}) \eta(\tilde{t}', \tilde{y}') \rangle = \delta(\tilde{t} - \tilde{t}') \delta(\tilde{y} - \tilde{y}') + O(\epsilon^n)
\] (50)
is to highest order independent of ϵ.

2.5 Summary

Including only the leading terms, Eq. 24 becomes
\[
\epsilon^{k-m} \frac{\partial h}{\partial t} = \epsilon^{2l-m+1} \ln(2) \frac{\partial^2 h}{\partial y^2} - 2\epsilon^{n-m} g \tau \eta(\tilde{t}, \tilde{y}) + \sqrt{\tau} \epsilon^{(k+1)/2} \eta(\tilde{t}, \tilde{y}).
\] (51)
The four different terms scale with the same power of ϵ if
\[
l = \frac{1}{2} (k - 1),
\] (52)
\[
m = \frac{1}{4} (k + 1),
\] (53)
\[
n = k.
\] (54)
The inequality of Eq. 43 can be satisfied by $k > 7$. Dividing Eq. 51 by $\epsilon^{k-m} = \epsilon^{2l-m+1} = \epsilon^{n-m} = \epsilon^{(k+1)/2}$ yields Eq. 6 in the main text.

3 The derivation of the hull width (Eq. 7 in main text)

We consider Eq. 6 in the main text
\[
\frac{\partial h}{\partial t} = D \frac{\partial^2 h}{\partial y^2} - Eg h + F \eta(t, y)
\] (55)
with periodic boundaries at $y = 0$ and $y = L$. The solution $G(t, y)$ of the deterministic equation
\[
\frac{\partial G}{\partial t} = D \frac{\partial^2 G}{\partial y^2} - Eg G
\] (56)
with initial condition $\lim_{t \to 0} G(t, y) = \delta(y - y_0)$ is
\[
G(t, y; y_0) = \frac{1}{L} \sum_{n=-\infty}^{\infty} \exp \left[-(Dk_n^2 + Eg) t + ik_n (y - y_0) \right],
\] (57)
where $k_n = 2\pi n / L$. The hull position can be expressed in terms of G as
\[
h(t, y) = F \int_0^t dt' \int_0^y dy' G(t - t', y; y_0) \eta(t', y_0).
\] (58)
Combining the last two expression, we can derive
\[
\langle h(t, y) h(t, y') \rangle = \frac{F^2}{2L} \sum_{n=-\infty}^{\infty} \frac{1 - \exp \left(-2 \left(Dk_n^2 + Eg \right) t \right)}{Dk_n^2 + Eg} \exp \left[ik_n (y' - y) \right]
\] (59)
The hull width is

\[
 w^2(L) = \lim_{t \to \infty} \left(\frac{1}{L} \int_0^L dy h^2(t, y) - \left(\frac{1}{L} \int_0^L dy h(t, y) \right)^2 \right)
\]

\[
 = \frac{F^2}{L} \sum_{n=1}^{\infty} \left(Dk_n^2 + Eg \right)^{-1}
\]

\[
 = \frac{F^2}{2} \left(\coth \left(\frac{L}{2 \sqrt{DEg}} \right) - \frac{1}{EgL} \right).
\]

In the limit of large system size,

\[
 \lim_{L \to \infty} w^2(L) = \frac{F^2}{4\sqrt{DEg}},
\]

which is Eq. 7 in the main text.

4 UR and UR are in the IP universality class

In the main text, we show collapse plots for the maximum cluster size \(s_{\text{max}}\) (Fig. 3a and 3b) and the cluster size distribution \(p_{cs}\) (Fig. 4a and 4b) for IP and MV. In these cases, the data points lie on a single curve when we plot \(s_{\text{max}}L^{d_f} \) versus \(L^{\nu/(\nu+1)}\) and \(p_{cs}s^{-\tau} \) versus \(sg^{1/(\nu+1)}\). The crucial observation is that the collapse occurs when inserting the IP critical exponents \(d_f = 91/48, \nu = 4/3, \tau = 187/91\) and \(\sigma = 36/91\) in these expressions, a telltale sign that MV is indeed in the IP universality class.

In Fig. 3 of this supplement we make the equivalent plots for UR and UR with the same exponents. The data again fall on a single curve in each case. Moreover, we have already seen in Fig. 2 of the main text that for both of these models \(w \propto g^{-\nu/(\nu+1)}\) and \(b \propto g^{-1/\nu}\) as in IP. Thus, all numerical evidence points to both UR and UR (unlike MV) belonging to the IP universality class.
References

[1] D. M. Kroll, Z. Phys. B 41, 345 (1981).

[2] D. D. Vvedensky, Phys. Rev. E 67, 025102(R) (2003).