ON THE EXPONENT OF THE SCHUR MULTIPLIER OF A PAIR OF FINITE p-GROUPS

FAHIMEH MOHAMMADZADEH* and AZAM HOKMABADI†

Department of Mathematics, Faculty of Sciences
Payame Noor University, Iran
*F.mohamadzade@gmail.com
†ahokmabadi@pnu.ac.ir

BEHROOZ MASHAYEKHY

Department of Pure Mathematics
Center of Excellence in Analysis on Algebraic Structures
Ferdowsi University of Mashhad
P. O. Box 1159-91775, Mashhad, Iran
bmashf@um.ac.ir

Received 23 May 2012
Accepted 8 February 2013
Published 16 July 2013

Communicated by I. M. Isaacs

In this paper, we find an upper bound for the exponent of the Schur multiplier of a pair (G, N) of finite p-groups, when N admits a complement in G. As a consequence, we show that the exponent of the Schur multiplier of a pair (G, N) divides $\exp(N)$ if (G, N) is a pair of finite p-groups of class at most $p-1$. We also prove that if N is powerfully embedded in G, then the exponent of the Schur multiplier of a pair (G, N) divides $\exp(N)$.

Keywords: Pair of groups; Schur multiplier of a pair; finite p-groups.

Mathematics Subject Classification: 20C25, 20D15

1. Introduction and Motivation

In 1998, Ellis [2] extended the theory of the Schur multiplier for a pair of groups. By a pair of groups (G, N) we mean a group G with a normal subgroup N of G. The Schur multiplier of a pair (G, N) of groups is a functorial abelian group $M(G, N)$ whose principal feature is a natural exact sequence

$$H_3(G) \to H_3(G/N) \to M(G, N) \to M(G) \to M(G/N)$$

$$\to N/[N, G] \to (G)^{ab} \to (G/N)^{ab} \to 0$$
in which $H_3(G)$ is the third homology group of G with integer coefficients. In particular, if $N = G$, then $M(G, G)$ is the usual Schur multiplier $M(G)$.

It has been a considerable question that when $\exp(M(G))$ divides $\exp(G)$, in which $\exp(G)$ denotes the exponent of G. Macdonald and Wamsley (see [1]) constructed an example of a group of exponent 4, whereas its Schur multiplier has exponent 8, hence the conjecture is not true in general. In 1973, Jones [4] proved that the exponent of the Schur multiplier of a finite p-group of exponent 8, hence the conjecture is not true in general. In 1973, Jones [4] proved that the exponent of the Schur multiplier of a finite p-group of class $c \geq 2$ and exponent p^e is at most $p^{c(c-1)}$ and hence $\exp(M(G))$ divides $\exp(G)$ when G is a p-group of class 2. In 1987, Lubotzky and Mann [6] proved that $\exp(M(G))$ divides $\exp(G)$ when G is a powerful p-group. A result of Ellis [3] shows that if G is a p-group of class $k \geq 2$ and exponent p^e, then $\exp(M(G)) \leq p^{\lceil k/2 \rceil}$, where $\lceil k/2 \rceil$ denotes the smallest integer n such that $n \geq k/2$. Moravec [8] showed that $\lceil k/2 \rceil$ can be replaced by $2 \log_2 k$ which is an improvement if $k \geq 11$. He [8] also proved that if G is a metabelian group of exponent p, then $\exp(M(G))$ divides p. Kayvanfar and Sanati [5] proved that if G is a p-group, then $\exp(M(G))$ divides $\exp(G)$ when G is a finite p-group of class 3, 4 or 5 with some conditions. The authors [7] extended the result and proved that $\exp(M(G))$ divides $\exp(G)$ when G is a finite p-group of class at most $p - 1$.

On the other hand, Ellis [2] proved that $\exp(M(G, N))$ divides $|N|$ for any pair (G, N) of finite groups, in which $|N|$ denotes the order of N. Now a question that can naturally arise, is whether $\exp(M(G, N))$ divides $\exp(N)$ when N is a proper normal subgroup of G. In this paper, first we present an example to give a negative answer to the question. Second, we give some conditions under which the exponent of $M(G, N)$ divides the exponent of N.

In Sec. 2, we give an upper bound for $\exp(M(G, N))$ in terms of $\exp(N)$, when (G, N) is a pair of finite p-groups such that N admits a complement in G, and apply it to prove that if (G, N) is a pair of finite p-groups of class at most $p - 1$ (i.e. $|N, p-1G| = 1$), then $\exp(M(G, N))$ divides $\exp(N)$. Finally in Sec. 3, we show that if (G, N) is a pair of finite p-groups and N is powerfully embedded in G, then $\exp(M(G, N))$ divides $\exp(N)$.

2. Nilpotent Pairs of p-Groups

Macdonald and Wamsley [1] gave an example which shows that $\exp(M(G, G))$ does not divide $\exp(G)$, in general. The following example shows that $\exp(M(G, N))$ does not divide $\exp(N)$ when N is a proper normal subgroup of G.

Example 1. Let $D = A >\triangleleft \langle x_1 \rangle$, where $A = \langle x_2 \rangle \times \langle x_3 \rangle \times \langle x_4 \rangle \times \langle x_5 \rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_2$ and x_1 is an automorphism of order 2 of A acting in the following way:

$[x_2, x_1] = x_2^2, \quad [x_3, x_1] = x_3^2, \quad [x_4, x_1] = x_4^2, \quad [x_5, x_1] = 1$.

There exists an automorphism a of D of order 4 acting on D as follows:

$[x_1, a] = x_3, \quad [x_2, a] = x_2^2x_3^2x_4^2, \quad [x_3, a] = x_5, \quad [x_4, a] = x_2^2, \quad [x_5, a] = x_3^2$.

1350053-2
Form $N = D > \langle a \rangle$ and put $G = N > \langle b \rangle$, where $b^2 = 1$ and $[x_1, b] = x_2$, $[x_2, b] = x_2^2x_4x_5$, $[x_3, b] = x_4$, $[x_4, b] = x_2^2x_4^2$, $[x_5, b] = x_2^3x_4^2$, $[a, b] = x_1$. Moravec [8] showed that the group G is a nilpotent group of class 6 and exponent 4 and $M(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Ellis [2] proved that if $G = K > \langle q \rangle$, then $M(G) \cong M(G, K) \oplus M(Q)$. This implies that $M(G, N) \cong M(G)$ which does not divide $\exp(M(G, N)) = 8$. Therefore $\exp(M(G, N)) = 4$.

Here we first give an upper bound for the exponent of $M(G, N)$ in terms of the exponent of N, when (G, N) is a pair of finite p-groups such that N admits a complement in G. Since our proof relies on commutator calculations, we need to state the following lemmas.

Lemma 2.1 ([9]). Let x_1, x_2, \ldots, x_r be any elements of a group and α be a non-negative integer. Then

$$\left(x_1x_2 \ldots x_r \right)^\alpha = x_1^\alpha x_2^\alpha \cdots x_r^\alpha f_1(\alpha)^{f_2(\alpha)} \cdots,$$

where $\{i_1, i_2, \ldots, i_r\} = \{1, 2, \ldots, r\}$ and v_1, v_2, \ldots are commutators of weight at least two in the letters x_i’s in ascending order and

$$f_i(\alpha) = a_1 \left(\frac{\alpha}{1} \right) + a_2 \left(\frac{\alpha}{2} \right) + \cdots + a_w \left(\frac{\alpha}{w} \right), \quad (2.1)$$

with $a_1, \ldots, a_w \in \mathbb{Z}$ and w_i is the weight of v_i in elements x_1, \ldots, x_r.

Lemma 2.2 ([9]). Let α be a fixed integer and G be a nilpotent group of class at most k. If $b_1, \ldots, b_r \in G$ and $r < k$, then

$$[b_1, \ldots, b_{i-1}, b_i^\alpha, b_{i+1}, \ldots, b_r] = [b_1, \ldots, b_r]^\alpha v_1^{f_1(\alpha)} v_2^{f_2(\alpha)} \cdots,$$

where v_1, v_2, \ldots are commutators in b_1, \ldots, b_r of weight strictly greater than r, and every b_j, $1 \leq j \leq r$, appears in each commutator v_i. The $f_i(\alpha)$ are of the form (2.1), with $a_1, \ldots, a_w \in \mathbb{Z}$ and w_i is the weight of v_i (in b_1, \ldots, b_r) minus $(r - 1)$.

It is noted by Struik [9] that the above lemma can be proved similarly if $[b_1, \ldots, b_{i-1}, b_i^\alpha, b_{i+1}, \ldots, b_r]$ and $[b_1, \ldots, b_r]$ are replaced by arbitrary commutators (that is monomial commutators with parentheses arranged arbitrarily).

To prove the main results we require the following notions.

Definition 2.3. A relative central extension of a pair (G, N) of groups consists of a group homomorphism $\sigma : M \to G$ together with an action of G on M such that

(i) $\sigma(M) = N$;

(ii) $\sigma(m^g) = g^{-1}\sigma(m)g$, for all $m \in M, g \in G$;

(iii) $m^{\sigma(m)} = m_1^{-1}mm_1$, for all $m \in M, g \in G$;

(iv) G acts trivially on ker σ.

Let (G, N) be a pair of groups and $\sigma : M \to G$ be a relative central extension of (G, N). The G-commutator subgroup of M is defined the subgroup $[M, G]$ generated
by all the G-commutators $[m, g] = m^{-1}m^g$, where m^g is the action of g on m, for all $g \in G$, $m \in M$. Also for all positive integer n, we define

$$Z_n(M, G) = \{m \in M \mid [m, g_1, g_2, \ldots, g_n] = 1, \text{ for all } g_1, g_2, \ldots, g_n \in G\},$$

in which $[m, g_1, g_2, \ldots, g_n]$ denotes $\cdots[[m, g_1], g_2], \ldots, g_n]$. It is easy to see that $Z_n(M, G) \subseteq Z_{n+1}(M, G)$.

Let (G, N) be a pair of groups and k be a positive integer. We define $\gamma_k(N, G) = [N, kG]$ in which $[N, kG] = \cdots[[N, G], G], \ldots, G]$. A pair (G, N) of groups is called nilpotent of class k if $\gamma_k(N, G) = 1$ and $\gamma_k(N, G) \neq 1$. It is clear that any pair of finite p-groups is nilpotent.

Definition 2.4. A relative central extension $\sigma : N^* \rightarrow G$ of a pair (G, N) is called a covering pair if there exists a subgroup A of N^* such that

(i) $A \leq Z(N^*, G) \cap [N^*, G]$;

(ii) $A \cong M(G, N)$;

(iii) $N \cong N^*/A$.

Ellis proved that any pair of finite groups has at least one covering pair [2, Theorem 5.4].

Hereafter in this section, we suppose that (G, N) is a pair of finite groups and K is the complement of N in G. Also, suppose that $\sigma : N^* \rightarrow G$ is a covering pair of (G, N) with a subgroup of A of N^* such that $A \leq Z(N^*, G) \cap [N^*, G]$, $A \cong M(G, N)$ and $N \equiv N^*/A$. Then for all $k \in K$, the homomorphism $\psi_k : N^* \rightarrow N^*$ defined by $n^k \rightarrow n_k^k$ is an automorphism of N^* in which n_k^k is induced by the action of G on N^*. Considering the homomorphism $\psi : K \rightarrow \text{Aut}(N^*)$ given by $\psi(k) = \psi_k$ for all $k \in K$, we form the semidirect product of N^* by K and denote it by $G^* = N^*K$. Then it is easy to check that the subgroups $[N^*, G]$ and $Z(N^*, G)$ are contained in $[N^*, G^*]$ and $Z(N^*, G^*)$, respectively. If $\delta : G^* \rightarrow G$ is the map given by $\delta(n^k) = \sigma(n^k)$, for all $n^k \in N^*$ and $k \in K$, then δ is an epimorphism with $\ker\delta = \ker\sigma$.

Lemma 2.5. By the above notation, let (G, N) be a nilpotent pair of finite groups of class k and $\exp(N) = p^e$. Then every commutator of weight w ($w \geq 2$) in $[N^*, w\cdot 1_G^*]$ has an order dividing $p^{e+m(k+1-w)}$, where $m = \lfloor\log_p k\rfloor$.

Proof. We use reverse induction on w to prove the lemma. Since (G, N) is nilpotent of class k and $N \cong N^*/A$, $G \cong G^*/A$ and $A \leq Z(N^*, G^*)$, we have $[N^*, k+1G^*] = 1$. On the other hand, $\exp(N) = p^e$ implies that $[N^*, p^eG^*] = 1$. Hence the result follows for $w \geq k + 1$ by Lemma 2.2. Now assume that $l < k + 1$ and the result is true for all $w > l$. We will prove the result for l. Put $\alpha = p^{e+m(k+1-l)}$ with...
Exponent of the Schur Multiplier of a Pair of Finite p-Groups

$m = \lfloor \log_p k \rfloor$ and let $u = [n, x_2, \ldots, x_l]$ be a commutator of weight l, where $n \in N^*$ and $x_2, \ldots, x_l \in G^*$. Then by Lemma 2.2, we have

$$[n^n, x_2, \ldots, x_l] = [n, x_2, \ldots, x_l]^n v_1^{f_1(\alpha)} v_2^{f_2(\alpha)} \cdots,$$

where v_i is a commutator on n, x_2, \ldots, x_l of weight w_i such that $l < w_i \leq k + 1$, and $f_i(\alpha) = a_1(i_1) + a_2(i_2) + \cdots + a_k(i_k)$, where $k_i = w_i - l + 1 \leq k$, for all $i \geq 1$.

One can easily check that p^l divides (p^{e_m}) with $m = \lfloor \log_p k \rfloor$, for any prime p and any positive integers t, s with $s \leq k$. This implies that $p^{e+m(k-l)}$ divides the $f_i(\alpha)$'s and so by induction hypothesis $v_i^{f_i(\alpha)} = 1$, for all $i \geq 1$. On the other hand, it is clear that $[n^n, x_2, \ldots, x_l] = 1$. Therefore $w^\alpha = 1$ and this completes the proof. \square

Theorem 2.6. If (G, N) is a nilpotent pair of finite groups of class k and N is a p-group of exponent p^e, then exp($[N^*, G^*]$) divides $p^{e+m(k-1)}$, where $m = \lfloor \log_p k \rfloor$.

Proof. Every element $g \in [N^*, G^*]$ can be expressed as $g = y_1 y_2 \cdots y_n$, where $y_i = [n_i, g_i]$ for $n_i \in N^*, g_i \in G^*$. Put $\alpha = p^{e+m(k-1)}$. By Lemma 2.1, we have

$$g^\alpha = y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_n^{\alpha_n} v_1^{f_1(\alpha)} v_2^{f_2(\alpha)} \cdots,$$

where $\{i_1, i_2, \ldots, i_n\} = \{1, 2, \ldots, n\}$ and v_i is a basic commutator of weight w_i in y_1, y_2, \ldots, y_n, with $2 \leq w_i \leq k$, for all $i \geq 1$, and also $f_i(\alpha)$ is of the form (2.1). Hence by an argument similar to the proof of Lemma 2.5 $p^{e+m(k-2)}$ divides $f_i(\alpha)$. Then applying Lemma 2.5, we have $v_i^{f_i(\alpha)} = 1$, for all $i \geq 1$, and $y_j^{\alpha} = 1$, for all j, $1 \leq j \leq n$. We therefore have $g^\alpha = 1$ and the desired result follows. \square

An upper bound for the exponent of the Schur multiplier of some pairs of finite groups is given in the following theorem.

Theorem 2.7. Let (G, N) be a nilpotent pair of finite groups of class k such that exp(N) = p^e. Then exp($M(G, N)$) is a divisor of $p^{e+m(k-1)}$, where $m = \lfloor \log_p k \rfloor$.

Proof. The result follows by Theorem 2.6 and the fact that $M(G, N) \cong A \leq [N^*, G] \leq [N^*, G^*]$. \square

The following corollary gives a condition under which the exponent of the Schur multiplier of a pair (G, N) divides the exponent of N.

Corollary 2.8. Let (G, N) be a pair of finite p-groups of class at most $p - 1$. Then exp($M(G, N)$) divides exp(N).

Remark 2.9. Let G be a finite p-group of class k with exp(G) = p^e. Since $M(G, G) = M(G)$, Theorem 2.7 implies that exp($M(G)$) divides $p^{e+\lfloor \log_p k \rfloor(k-1)}$. It is easy to see that this bound improves the bound $p^{(2e+\lfloor \log_p k \rfloor))}$ given by Moravcev [8]. For example for any p-group G of class k, $2 \leq k \leq p - 1$ with exp(G) = p^e, we have $p^{e+\lfloor \log_p k \rfloor(k-1)} \leq p^{(2e+\lfloor \log_p k \rfloor)}$. 1350053-5
Remark 2.10. Let \((G, N)\) be a pair of finite nilpotent groups of class at most \(k\). Let \(S_1, S_2, \ldots, S_n\) be all the Sylow subgroups of \(G\). By [2, Corollary 1.2], we have
\[
M(G, N) = M(S_1, S_1 \cap N) \times \cdots \times M(S_n, S_n \cap N).
\]
Put \(m_i = \lfloor \log_p k \rfloor\), for all \(i\), \(1 \leq i \leq n\). Then by Theorem 2.7, we have
\[
\exp(M(G, N)) \bigg| \prod_{i=1}^{n} p_i^{e_i + m_i(k-1)},
\]
where \(p_i^{e_i} = \exp(S_i)\).

3. Pairs of Powerful \(p\)-Groups

In 1987, Lubotzky and Mann [6] defined powerful \(p\)-groups which are used for studying \(p\)-groups. They gave some bounds for the order, the exponent and the number of generators of the Schur multiplier of a powerful \(p\)-group. Also, they showed that \(\exp(M(G))\) divides \(\exp(G)\) when \(G\) is a powerful \(p\)-group. The purpose of this section is to show that if \((G, N)\) is a pair of finite \(p\)-groups and \(N\) is powerfully embedded in \(G\), then the exponent of \(M(G, N)\) divides the exponent of \(N\). Throughout this section \(\Omega_i(G)\) denotes the subgroup of \(G\) generated by all \(p^i\)th powers of elements of \(G\). It is easy to see that \(\Omega_i+j(G) \subseteq \Omega_i(\Omega_j(G))\), for all positive integers \(i, j\).

Definition 3.1. (i) A \(p\)-group \(G\) is called powerful if \(p\) is odd and \(G' \leq \Omega_1(G)\), or \(p = 2\) and \(G' \leq \Omega_2(G)\).

(ii) Let \(G\) is a \(p\)-group and \(N \leq G\). Then \(N\) is powerfully embedded in \(G\) if \(p\) is odd and \([N, G] \leq \Omega_1(N)\), or \(p = 2\) and \([N, G] \leq \Omega_2(N)\).

Any powerfully embedded subgroup is itself a powerful \(p\)-group and must be normal in the whole group. Also a \(p\)-group is powerful exactly when it is powerfully embedded in itself. While it is obvious that factor groups and direct products of powerful \(p\)-groups are powerful, this property is not subgroup-inherited [6]. The following lemma gives some properties of powerful \(p\)-groups.

Lemma 3.2 ([6]). The following statements hold for a powerful \(p\)-group \(G\).

(i) \(\gamma_i(G), G', \Omega_i(G), \Phi(G)\) are powerfully embedded in \(G\).

(ii) \(\Omega_i(\Omega_j(G)) = \Omega_{i+j}(G)\).

(iii) Each element of \(\Omega_i(G)\) can be written as \(a^{p^i}\), for some \(a \in G\) and hence \(\Omega_i(G) = \{g^{p^i} : g \in G\}\).

(iv) If \(G = \langle a_1, a_2, \ldots, a_d \rangle\), then \(\Omega_i(G) = \langle a_1^{p^i}, a_2^{p^i}, \ldots, a_d^{p^i} \rangle\).

Lemma 3.3 ([6]). Let \(N\) be powerfully embedded in \(G\). Then \(\Omega_i(N)\) is powerfully embedded in \(G\).

The proof of the following lemma is straightforward.
Lemma 3.4. Let M and G be two groups with an action of G on M. Then for all $m, n \in M$, $g, h \in G$, and any integer k we have the following equalities:

(i) $[mn, g] = [m, g]^n[n, g]$;
(ii) $[m, gh] = [m, h][m, g]^h$;
(iii) $[m^{-1}, g]^{-1} = [m, g]^{-1}$;
(iv) $[m, g^{-1}]^{-1} = [m, g]^{-1}$;
(v) $[m^{-1}, h]g[m, [g, h^{-1}]]h^{-1}[m^{-1}, h^{-1}, g]m = 1$;
(vi) $[m^{k}, g] = [m, g]^k[m, g, m]^{k(k-1)/2} \pmod{[M, 3G]}$.

Lemma 3.5. Let (G, N) be a pair of finite p-groups and $\sigma : N^* \to G$ be a relative central extension of (G, N). Suppose that M and K are two normal subgroups of N^*. Then $M \leq K$ if $M \leq K[M, G]$.

Proof. Applying Lemma 3.4 we have

$$M \leq K[M, G] \leq K[K[M, G], G] \leq K[K, G][M, G, G] \leq \cdots \leq K[M, G]_i,$$

for all $i \geq 1$. On the other hand, since G is a finite p-group, there exists an integer l such that $[N, lG] = 1$. Hence $[N^*, lG] = 1$ and the result follows.

Lemma 3.6. Let (G, N) be a pair of finite p-groups and $\sigma : N^* \to G$ be a relative central extension of (G, N). Let M be a normal subgroup of H. Then the following statements hold.

(i) If $p > 2$, then $\mathcal{U}_1(M, G) \subseteq \mathcal{U}_1([M, G])[M, 3G]$.
(ii) If $p = 2$, then $\mathcal{U}_2(M, G) \subseteq \mathcal{U}_2([M, G])\mathcal{U}_1([M, 2G])[M, 3G]$.

Proof. (i) It is enough to show that $[m^p, g] \in \mathcal{U}_1([M, G])[M, 3G]$, for all $m \in M, g \in G$. By Lemma 3.4 $[m^p, g] = [m, g]^p[m, g, m]^{p(p-1)/2} \pmod{[M, 3G]}$.

Since p is odd and $p \equiv 1 \pmod{2}$ we have $[m, g]^p[m, g, m]^{p(p-1)/2} \in \mathcal{U}_1([M, G])$.

Now the result holds.

(ii) The proof is similar to (i).

Lemma 3.7. Let (G, N) be a pair of finite p-groups and $\sigma : N^* \to G$ be a relative central extension of (G, N). Suppose that $K \leq N^*$. Then the following statements hold.

(i) If $p > 2$, then $[K, G] \leq \mathcal{U}_1(K)$ if and only if $[K/[K, 2G], G] \leq \mathcal{U}_1(K/[K, 2G])$.
(ii) If $p = 2$, then $[K, G] \leq \mathcal{U}_2(K)$ if and only if $[K/[K, 2G], G] \leq \mathcal{U}_2(K/[K, 2G])$.
(iii) If $p = 2$, then $[K, G] \leq \mathcal{U}_2(K)$ if and only if $[K/\mathcal{U}_1([K, G]), G] \leq \mathcal{U}_2(K/\mathcal{U}_1([K, G]))$.

Proof. (i) Let $[K, G] \leq \mathcal{U}_1(K)$ and put $H = [K, 2G]$. Then

$$\left[\frac{K}{H}, G \right] \leq \mathcal{U}_1(K)H \leq \mathcal{U}_1(K) = \mathcal{U}_1 \left(\frac{K}{H} \right),$$

as desired. Sufficiency follows by Lemma 3.5.
(ii) The proof is similar to (i).

(iii) Necessity follows as for (i). Let \([K/\mathcal{U}_1([K, G]), G] \leq \mathcal{U}_2(K/\mathcal{U}_1([K, G])). Then \([K, G] \leq \mathcal{U}_2(K/\mathcal{U}_1([K, G]))\). On the other hand, \(\mathcal{U}_1([K/\mathcal{U}_1([K, G]), G])\). Thus \([K/\mathcal{U}_1([K, G]), G]\) is abelian and so \(\Phi([K/\mathcal{U}_1([K, G]), G]) = 1\). This implies that \(\Phi([K, G]) = \mathcal{U}_1([K, G]).\) Therefore \([K, G] \leq \mathcal{U}_2(K)\). □

The following useful remark is a consequence of Lemma 3.7.

Remark 3.8. Let \((G, N)\) be a pair of finite \(p\)-groups and \(\sigma : N^* \to G\) be a relative central extension of \((G, N)\). Let \(K \leq N^*\). Then to prove that \([K, G] \leq \mathcal{U}_1(K)\) \(([K, G] \leq \mathcal{U}_2(K)\) for \(p = 2\)) we can assume that

(i) \([K, 2G] = 1\);

(ii) \(\mathcal{U}_1(K) = 1 \) \((\mathcal{U}_2(K) = 1 \) for \(p = 2\)) and try to show that \([K, G] = 1\);

(iii) \(\mathcal{U}_1([K, G]) = 1\) whenever \(p = 2\).

Lemma 3.9. Let \((G, N)\) be a pair of finite \(p\)-groups and \(\sigma : N^* \to G\) be a covering pair of \((G, N)\). Let \(N\) be powerfully embedded in \(G\).

(i) If \(p > 2\), then \([\mathcal{U}_n([N^*, G]), G] \leq \mathcal{U}_1(\mathcal{U}_n([N^*, G]))\).

(ii) If \(p = 2\), then \([\mathcal{U}_n([N^*, G]), G] \leq \mathcal{U}_2(\mathcal{U}_n([N^*, G]))\).

Proof. \(N^*\) has a subgroup \(A\) such that \(A \leq Z(N^*, G) \cap [N^*, G], A \cong M(G, N)\) and \(N \cong N^*/A\).

(i) Let \(p > 2\). We use induction on \(n\). If \(n = 0\), then by Remark 3.8 we may assume that \([N^*, G], G, G] = 1, \mathcal{U}_1([N^*, G]) = 1\) and we should show that \([N^*, G], G] = 1\). Since \(N\) is powerfully embedded in \(G\), we have \([N, G] \leq \mathcal{U}_1(N)\), and therefore \([N^*, G] \leq \mathcal{U}_1(N^*)A\). Now we claim that \(\mathcal{U}_1(N^*) \leq Z(N^*, G)\). To prove the claim, let \(a \in N^*\) and \(b \in G\). Since \(\gamma_3((a, [N^*, G])) = 1\), we have \(c((a, a^p)) \leq c((a, [N^*, G])) \leq 2 \) \((c(H)\) denotes the nilpotency class of \(H)\). On the other hand, Lemma 3.4 implies that

\[(a^p)^b = a^p[a^p, b] \equiv a^p[a, b]^p[a, b, a]^{p(p-1)/2} \mod ([a, b]G].\]

Therefore \((a^p)^b = a^p\) since \([N^*, G], G, G] = 1\) and \(\mathcal{U}_1([N^*, G]) = 1\). Hence \(\mathcal{U}_1(N^*) \leq Z(N^*, G)\) as desired. Thus \([N^*, G] \leq \mathcal{U}_1(N^*)A \leq Z(N^*, G)\) and the result follows for \(n = 0\).

Now suppose that the induction hypothesis is true for \(n = k\). The first step of induction implies that \([N^*, G]\) is powerful. Using Lemmas 3.5 and 3.6, one can see that if \(H\) is a subgroup of \(N^*\) and \([H, G] \leq \mathcal{U}_1(H)\), then \([\mathcal{U}_1(H), G] \leq \mathcal{U}_1(\mathcal{U}_1(H))\). Hence by Lemma 3.2 and induction hypothesis we have

\([\mathcal{U}_{k+1}([N^*, G]), G] = [\mathcal{U}_1(\mathcal{U}_k([N^*, G])), G] \leq \mathcal{U}_1(\mathcal{U}_1(\mathcal{U}_k([N^*, G])))\]

which completes the proof.
Exponent of the Schur Multiplier of a Pair of Finite p-Groups

(ii) Let $p = 2$. The proof is similar to (i), but we need to prove that if H is a subgroup of N^* and $[H,G] \leq \mathcal{U}_2(H)$, then $[\mathcal{U}_1(H),G] \leq \mathcal{U}_2(\mathcal{U}_1(H))$. By Remark 3.8, for $a \in H, b \in G$ we have $[a^4, b] = [a^2, b]^2 = 1$. So $a^4 \in Z(H,G)$ and $\mathcal{U}_2(H) \leq Z(H,G)$. Then $[H,G] \leq \mathcal{U}_2(H) \leq Z(H,G)$. Therefore $[a^2, b] = [a, b]^2$ and

$$[\mathcal{U}_1(H),G] = \mathcal{U}_1([H,G]).$$

(3.1)

On the other hand, since $\mathcal{U}_2(H) \leq Z(H,G)$, we have

$$\mathcal{U}_1(\mathcal{U}_2(H)) = \langle (a_1^4 \cdots a_k^4) | a_i \in H \rangle = \langle a_1^8 \cdots a_k^8 \rangle = \mathcal{U}_3(H) \leq \mathcal{U}_2(\mathcal{U}_1(H)).$$

Hence (3.1) implies that $[\mathcal{U}_1(H),G] \leq \mathcal{U}_2(\mathcal{U}_1(H))$ which completes the proof of the above claim. \hfill \Box

Lemma 3.10. Let H and G be two arbitrary groups with an action of G on N. If $x \in H$ and $g \in G$, then

$$[x^n,g] = [x,g]^n c,$$

where $M = \langle x, [x,g] \rangle$ and $c \in \gamma_2(M)$.

Proof. Applying Lemma 2.1, we have

$$[x^n,g] = (x^n)^{-1} (x^n)^g = (x)^{-n} (x^g)^n = (x)^{-n} (x[g]^n c),$$

where $M = \langle x, [x,g] \rangle$, $c \in \gamma_2(M)$. \hfill \Box

Now we can state the main result of this section.

Theorem 3.11. Let (G,N) be a pair of finite p-groups in which N is powerfully embedded in G. Then $\exp(M(G,N))$ divides $\exp(N)$.

Proof. Let $p > 2$ and $\sigma : N^* \to G$ be a covering pair of (G,N) with a subgroup A such that $A \leq Z(N^*,G) \cap [N^*,G]$, $A \cong M(G,N)$ and $N \cong N^*/A$. It is enough to show that $\exp([N^*,G]) = \exp(N^*/Z(N^*,G))$. For this we use induction on k and show that

$$\mathcal{U}_k([N^*,G]) = \mathcal{U}_k(N^*,G).$$

(3.2)

If $k = 0$, then (3.2) holds. Now assume that (3.2) holds, for $k = n$. Working in powerful p-group N^*/A we get $\mathcal{U}_{n+1}(N^*/A) = \mathcal{U}_1(\mathcal{U}_n(N^*/A))$ by Lemma 3.2. Hence

$$\frac{\mathcal{U}_{n+1}(N^*) A}{A} = \frac{\mathcal{U}_1(\mathcal{U}_n(N^*) A)}{A} = \frac{\mathcal{U}_1(\mathcal{U}_n(N^*) A) A}{A}.$$
Then Lemmas 3.6 and 3.9 and induction hypothesis imply that

$$[U_{n+1}(N^*), G] = [U_1(U_n(N^*)A), G] \leq U_1([U_n(N^*)A], G)$$

$$\leq U_1([U_n(N^*)A], 2G)$$

$$\leq U_1([U_n([N^*, G]), G]) = U_{n+1}([N^*, G]).$$

For the reverse inclusion, we show that

$$U_{n+1}([N^*, G]) \equiv 1 \pmod{U_{n+1}(N^*, G)}.$$

Since by (3.4), $$[U_{n+1}(N^*), G] = U_1(U_n(N^*)A, G) = U_1(U_n(N^*)A, G),$$ it follows that $$U_1(U_n(N^*)A) \leq Z(N^*, G) \pmod{U_{n+1}(N^*, G)}.$$

On the other hand, since $$N$$ is powerfully embedded in $$G$$, we have

$$[U_n(N^*), G] = [U_n(N^*)A, G] \leq U_1(U_n(N^*)A)$$

$$\leq Z(N^*, G) \pmod{U_{n+1}(N^*, G)}.$$

Therefore $$[U_n(N^*), G] \equiv 1 \pmod{U_{n+1}(N^*, G)}.$$

Moreover, by Lemma 3.10 we have

$$[U_1(U_n(N^*)A), G][U_n(N^*), G, G] = U_1([U_n(N^*), G][U_n(N^*), G, G]).$$

It follows that $$U_1([U_n(N^*), G]) \equiv 1 \pmod{U_{n+1}(N^*, G)}.$$ Then by induction hypothesis, we have

$$U_{n+1}([N^*, G]) = U_1(U_n[N^*, G]) = U_1([U_n(N^*), G]) \equiv 1 \pmod{U_{n+1}(N^*, G)}.$$

This completes the proof for odd primes $$p$$. The proof for the case $$p = 2$$ is similar.

Acknowledgments

The authors would like to thank the referee for the valuable comments and useful suggestions to improve the present paper. This research was supported by a grant from Ferdowsi University of Mashhad (No. MP90259MSH).

References

[1] A. J. Bayes, J. Kautsky and J. W. Wamsley, Computation in nilpotent groups (application), in Proc. 2nd Int. Conf. Theory of Groups, Lecture Notes in Mathematics, Vol. 372 (Springer-Verlag, 1974), pp. 82–89.
[2] G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures 6 (1998) 355–371.
[3] G. Ellis, On the relation between upper central quotients and lower central series of a group, Trans. Amer. Math. Soc. 353 (2001) 4219–4234.
[4] M. R. Jones, Some inequalities for the multiplicator of a finite group II, Proc. Amer. Math. Soc. 45 (1974) 167–172.
Exponent of the Schur Multiplier of a Pair of Finite p-Groups

[5] S. Kayvanfar and M. A. Sanati, A bound for the exponent of the Schur multiplier of some finite p-groups, Bull. Iranian Math. Soc. 26(2) (2000) 89–95.

[6] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra 105 (1987) 484–505.

[7] B. Mashayekhy, A. Hokmabadi and F. Mohammadzadeh, On a conjecture of a bound for the exponent of the Schur multiplier of a finite p-group, Bull. Iranian Math. Soc. 37(4) (2011) 235–242.

[8] P. Moravec, Schur multipliers and power endomorphisms of groups, J. Algebra 308 (2007) 12–25.

[9] R. R. Struik, On nilpotent product of cyclic groups, Canad. J. Math. 12 (1960) 447–462.