Including distorted specimens in allometric studies: linear mixed models account for deformation

Brenen M. Wynd*1, Josef C. Uyeda2, and Sterling J. Nesbitt1

1Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, U. S. A., bmwynd@vt.edu

2Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, U. S. A.,

* Corresponding Author Brenen M. Wynd (bmwynd@vt.edu)

Running title: Modeling distortion in allometry

Keywords: allometry, taphonomy, paleontology, mixed effects, regression

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Allometry—patterns of relative change in body parts—is a staple for examining how clades exhibit scaling patterns representative of evolutionary constraint on phenotype, or quantifying patterns of ontogenetic growth within a species. Reconstructing allometries from ontogenetic series is one of the few methods available to reconstruct growth in fossil specimens. However, many fossil specimens are deformed (twisted, flattened, displaced bones) during fossilization, changing their original morphology in unpredictable and sometimes undecipherable ways. To mitigate against post burial changes, paleontologists typically remove clearly distorted measurements from analyses. However, this can potentially remove evidence of individual variation and limits the number of samples amenable to study, which can negatively impact allometric reconstructions. Ordinary least squares regression (OLS) and major axis regression are common methods for estimating allometry, but they assume constant levels of residual variation across specimens, which is unlikely to be true when including both distorted and undistorted specimens. Alternatively, a generalized linear mixed model (GLMM) can attribute additional variation in a model (e.g., fixed or random effects). We performed a simulation study based on an empirical analysis of the extinct cynodont, *Exaeretodon argentinus*, to test the efficacy of a GLMM on allometric data. We found that GLMMs estimate the allometry using a full dataset better than simply using only non-distorted data. We apply our approach on two empirical datasets, cranial measurements of actual specimens of *E. argentinus* (n = 16) and femoral measurements of the dinosaur *Tawa hallae* (n = 26). Taken together, our study suggests that a GLMM is better able to reconstruct patterns of allometry over an OLS in datasets comprised of extinct forms and should be standard protocol for anyone using distorted specimens.
INTRODUCTION

All living multicellular organisms grow and change through time, whether solely in absolute size or with changing proportions of individual features (Thompson 1917; Huxley 1932; Gould 1968, 1977; Gatsuk et al. 1980; Hochuli 2001; Rowe 2004; Tanner et al. 2010; Chagnon et al. 2013; Griffin et al. 2020). These patterns of growth can also influence evolutionary trajectories and allometries among species, as they can reflect constraints on the variation available to evolutionary change (Gould 1966; Cheverud 1982; Alexander 1985; Klingenberg 1996a; Marroig and Cheverud 2005; Voje et al. 2014; Andrea 2019; Krone et al. 2019). Changes in the patterns of growth, or the study of allometry, has been explored extensively across the tree of Life (see Gould 1966), including extinct animals (e.g., Abdala and Giannini 2002; Kilbourne and Makovicky 2010; Jasinoski et al. 2015; Griffin and Nesbitt 2016; Krone et al. 2019). Allometric studies tend to focus on either identifying scaling patterns present in entire clades or reconstructing allometric patterns of a single population or species (Cheverud 1982; Pélabon et al. 2014; Klingenberg 2016).

Measuring allometric relationships is commonly used to characterize the likely evolutionary constraints of extant groups (Newell 1949; Marshall and Corruccini 1978; Radinsky 1984; Niklas 1994; Ungar 1998; Pyenson and Sponberg 2011; Boyer et al. 2013), as well as reconstructing patterns of growth in extinct species to better interpret their growth, taxonomy, and function (e.g., Abdala and Giannini 2000; Kilbourne and Makovicky 2010; Zhao et al. 2013; Foth et al. 2016; Chapelle et al. 2020). However, most fossils have been buried, undergoing post burial distortion which can cause bones to be compressed, twisted, and broken—which complicates their use in allometric studies (Behresmeyer et al. 2000). Frequently, paleontologists are left with a mixture of well-preserved and distorted specimens.
Post-burial distortion is common, particularly in terrestrial fossils, where any deformation to the surrounding geologic environment has direct consequences on the fossil material. Post-burial deformation has often been grouped into one, or some combination, of crushing, shearing, breakage, displacement (via faulting), sub-burial abrasion, and erosion (e.g., Webster and Hughes 1999). Each of these modes of deformation may introduce variation into fossils through different means. Crushing, or compaction, may elongate gracile elements, while compacting and shortening more robust elements, or in the case of complexes of elements (e.g., a skull), crushing will often obscure surfaces from view entirely. Shearing will often introduce twisting, or sliding, of elements out of position, often represented as introducing a degree of asymmetry into bilaterally symmetrical elements (e.g., vertebrae or skulls). Displacement is often a consequence of compaction, wherein articulated elements are disarticulated and repositioned, but can also be caused via faulting, in which entire regions of a fossil will be shifted, and likely broken, to align with the degree of faulting in the surrounding rock unit. Finally, sub-burial abrasion and erosion produce similar results, with the destruction of fossil material, though erosion operates on a more extreme scale than sub-burial abrasion. Though, not an exhaustive list of taphonomic processes, each of these types of deformation introduce variation either in altering the shape, angle, or position of elements, or in removing information from a fossil that is otherwise necessary for analyses aimed at recovering biologic patterns.

For the cases in which the fossil material is left fully intact (e.g., shearing and light to moderate crushing), paleontologists have turned to retrodeformation analyses, in an attempt to return biological results from taphonomically altered materials. Largely utilized with geometric morphometrics (see Angielczyk and Sheets 2007; Schlager et al. 2018), these methods use either bilateral symmetry or morphology of a reference point (e.g, the orbit in Arbour and Currie 2012),
to assign initial landmarks that are then retrodeformed to better reflect the original morphology in question and allow for comparison between specimens or species (Schlager et al. 2018). When complete skeletal models are necessary for analyses (e.g., Finite Element Analysis), 3D processing software can be used to manipulate elements back into original biologic positions, given comparisons to exemplar specimens/modern correlates (Rayfield 2007; Arbour and Currie 2012; Cuff and Rayfield 2015; Lautenschlager 2016). These methods can be challenging to implement and may have biases (see Kammerer et al. 2020), but are extremely promising for the future of paleontological studies. However, such methods are not readily accessible and challenging to implement for the majority of current practitioners. In this contribution, we suggest that readily available statistical approaches are simple and straigthforward alternatives that can allow for usage of distorted data and can be widely-adopted to improve allometric coefficients from fossil data.

Measuring allometry will naturally depend on the definitions, assumptions and mathematical models used (Alexander 1985). Herein, we focus on a regression-based approaches that focus on the covariation among different traits (Huxley 1934, Jolicoeur 1963), as opposed to focusing on the covariation between size and shape (Mosimann 1970). The most often used methods to estimate the scaling of different features are the ordinary least squares regression (hereafter called ‘linear regression’), and the reduced major axis analysis, which both aim to summarize linear relationships between variables (Gould 1966; Smith 2009). An alternative method is the multivariate allometry method (e.g., eigen analysis), which summarizes the greatest variation in variances and covariances between all variables simultaneously, using principal component analysis (Klingenberg 1996a, Klingenberg 2016). However, it is common practice to use models that assume the measurement data that have identically distributed
residual variation (i.e. the assumption of homoscedasticity). However, paleontological data often challenges researchers with specimens subject to additional sources of non-biologic variation (e.g., deformation), which violate this assumption by introducing an additional source of error for only a subset of observations. Consequently, while retrodeformation analyses is a promising solution (see above), the high demands of these approaches mean that more commonly researchers resort to removing perceived distorted measurements from analyses entirely, or including them despite the known uncertainty in their measurement (e.g., Abdala and Giannini 2000, 2002; Brown and Vavrek 2015). The former solution complicates the results of the analysis by removing potentially informative and hard to obtain data, while the latter adds variation unrepresentative of the sample as a whole. Given the often limited nature of fossil material, neither of these solutions are ideal. Ideally, our statistical tools should be able to incorporate additional sources of variation, so individual measurements and whole specimens do not have to be eliminated and maximal information can be extracted from our limited datasets.

In this paper, we demonstrate the utility of a generalized linear mixed model (GLMM) in estimating allometry in fossil samples with clear distortion. We chose GLMMs because they follow the assumptions of linear models and can incorporate additional variation based on previously made observations as random effects (distortion) in the model (Bolker et al. 2009). We use measurements of fossilized specimens to simulate realistic datasets, adding additional variation in half the samples, and testing three different models: 1) linear regression of sample with no added variation, 2) linear regression of sample with added variation, and 3) GLMM of sample with added variation. We apply the approach on two fossil datasets, the crania of the Late Triassic cynodont, *Exaeretodon argentinus* (Cabrera 1943), and the femora of the Late Triassic
dinosaur, *Tawa hallae* (Nesbitt et al. 2009), to demonstrate the effect of including both undistorted and distorted specimens analyzed with GLMMs.

METHODS

Simulation study

To assess the ability of GLMMs to recover allometric relationships, we built a simulation study based on cranial measurements from 16 specimens of the Late Triassic cynodont, *Exaeretodon argentinus* (Fig. 1), 11 of which are accessioned at the Harvard Museum of Comparative Zoology ([MCZ] Supplemental Table 1) and the rest are accessioned at the Colección de Paleontología de Vertebrados del Instituto Miguel Lillo ([PVL] Supplemental Table 1). A linear regression model of skull length against snout length was performed on 15 of the 16 specimen sample (snout length is often robust and undistorted in *E. argentinus*, pers. obs.)—wherein eight measurements were scored as distorted *a priori*—using the lm command in the base R statistical environment (v. 3.6, R Core Team 2018), to recover starting values of coefficient of allometry (= slope), y-intercept, and residual variation to be used in our simulation. We chose to use snout length for our empirical dataset because a GLMM of snout length returns no additional variation due to the random effect, fossilization (see below). As such, a regression of snout length reflects constant levels of variation across sample sizes (homoscedasticity) and is the most suitable measurement to assess how additional variation is modeled. The variance for the undistorted and distorted measurements of snout length are 0.021 and 0.019, respectively. Because the allometric equation is a power law equation, we log transform all measurements to fit them into a simple regression equation (Alexander 1985). We then built a normal distribution
from the skull length measurements of our sample (logarithmic mean = 2.39, standard deviation = 0.14).

(1) \[Y = \alpha X + \beta + \epsilon \]

We used the coefficient of allometry (\(\alpha=0.91\)), y-intercept (\(\beta=-0.37\)), and normally-distributed residual variation (\(\epsilon, \text{mean} = 0.3, \text{standard deviation} = 0.1\)) from the regression analysis with the estimated skull lengths to generate four datasets consisting of 10, 15, 25, and 50 specimens. For each dataset, values of skull length (X) were sampled (n = 10, 15, 25, or 50) from our normal distribution and then were used in equation (1) along with values for y-intercept and residual variation to generate estimated values for snout length (Y).

To include additional variation due to random effects (e.g., fossilization) we sampled a normal distribution (\(\gamma\)) with mean 0, and standard deviation 0.4 (on average, 1.5 times \(\epsilon\) to simulate high variation due to fossilization). To ensure that the additional variation was not applied to all simulated measurements, we sampled a binomial distribution (C), with peaks at 0 (undistorted) and 1 (distorted), with a 50% sampling rate. Because mixed effects models require at least 5–6 blocks (i.e., individuals) per treatment (0 or 1; Bolker et al. 2009)), the binomial distribution is unable to consistently produce sufficient analyzable samples at 10 specimens; to overcome this, we generated a vector with five observations of 0 and 1 each to ensure that the model will appropriately reconstruct allometry at sample sizes of 10 specimens. For the 15 specimen sample, we also generated a vector with five observations of 0 and 10 observations of 1, to test model efficacy with a largely distorted sample. We include this additional variation to equation (1) to generate equation (2):

(2) \[Y = \alpha X + \beta + \epsilon + C\gamma. \]
We implement this model in the R package *lme4* (Bates et al. 2007), such that C is coded as 0 or 1, and corresponds to distorted (1) or undistorted (0). This route allows us to sample a broad range of ‘distorted’ specimens. When $\gamma \sim 0$ and/or $C=0$ (the specimen is undistorted), then the last term in equation (2) adds no additional variation for that specimen.

To validate our estimated data, we ran a linear regression on the simulated data with no added variation, the results of which should closely match the input parameters. We then tested a simple linear regression model on the dataset that included the both original measurements and ~50% that included additional variation (γ), the results of which should not closely match the input parameters. Finally, we tested a GLMM with one random effect on the dataset that includes additional variation. For each of the three models, we recovered coefficient of allometry (slope) and y-intercept values. We repeated simulations for each model 2,000 times, and generated probability density curves for the estimated results to evaluate model performance. To assess the effect of sample size on model performance, we performed our simulation with four different sample sizes (10, 15, 25, and 50 specimens with ~50% distorted specimens in each sample; Fig 1). To evaluate differences between the coefficients of allometry returned for the linear regression on distorted and undistorted data versus the GLMM, we performed a paired t-test, which assesses overlap between two different distributions. To test the effects of the common practice of excluding distorted specimens relative to including them in our model, we compared how including all specimens (distorted and undistorted) in equation (2) to only undistorted specimens in equation (1). For each sample, any simulated measurements where $C=1$, were not included and the remaining samples ($C=0$) were tested using equation (1). With this, we were able to compare the same data with and without the inclusion of additional variation due to fossilization, effectively testing the method that paleontologists have been using.
We only compared the GLMM to ordinary linear models, and did not compare to reduced major axis analysis or multivariate allometry (Klingenberg 1996a; Kilmer and Rodríguez 2017), which account for variation in both the X and Y parameters. More importantly, a reduced major axis analysis assumes that the X and Y parameters are independent of one another (symmetrical), such that the variation in X is not influenced by the variation in Y and vice versa (Smith 2009; Kilmer and Rodríguez 2017). Reduced major axis and linear regression are both useful methods, but they measure different things, and in regards to questions of allometry a linear regression is often more appropriate (see Hansen and Bartoszek 2012). Although incorporating our method in a multivariate allometry would be beneficial for studies including variance covariance matrices, it would require a priori estimations of the variation due to deformation and a novel method to incorporate that variation into the covariances, which is beyond the scope of this work.

Empirical applications to Exaeretodon argentinus and Tawa hallae

We tested two separate datasets, the crania of *Exaeretodon argentinus* (n = 16, with 17 different cranial measurements), and the femora of *Tawa hallae* (n = 26, with 5 different femoral measurements). Specimens of *T. hallae* are accessioned at the Ruth Hall Museum of Paleontology ([GR] Supplemental Table 1). For each measurement (e.g., snout length or femoral head width), we scored them as either distorted (C=1) or undistorted (C=0). We scored each measurement rather than individuals because the fossilization process does not uniformly distort specimens, and some regions of fossils can retain more morphological integrity than others. For example, the snout region of *E. argentinus* is a complex of thick, tightly sutured bones forming a strong, dense, integrated structure, whereas the braincase is made up of thin bony walls and few supporting structures, resulting in many skulls with intact snouts but distorted braincases. No measurements were taken for features that were broken or those where the features were not
visible; for example, many skulls of *E. argentinus* are still encased in plaster, such that the dorsal
surface of the skulls are not presently available. Importantly, total length is often not greatly
distorted in either *E. argentinus* or *T. hallae*, such that we expect low additional variation due to
fossilization in estimations of X (see Table 1).

We performed a Shapiro-Wilk test on each measurement for each taxon to evaluate
whether or not the input data were normally distributed. For *E. argentinus*, the palate length and
upper postcanine length were marginally significant (p < 0.1), whereas orbit length and diastema
length were significant (p < 0.05), suggesting that these data are non-normally distributed. For *T.
hallae* only the minimum midshaft diameter was significant (p = 0.047) indicating a non-normal
distribution for these data. We performed a Shapiro-Wilk test on all of the distorted-only
measurements and found that all follow normal distributions, with the exception of skull width
and transverse process width in *E. argentinus* which were marginally significant (p < 0.1), and
basicranial length and diastema length in *E. argentinus* which were significantly different from
normality (p < 0.05). The distorted measurements for upper postcanine length and zygoma height
in *E. argentinus* lacked the necessary sample size to perform a Shapiro-Wilk test. We focus
herein on snout length in *E. argentinus* and femoral head length in *T. hallae* (see supplement for
analyses of additional measurements; Table S2), which have 15 specimens with 8 distorted
measurements and 26 specimens and 10 distorted measurements, respectively.

To further assess model performance on specimen data given possible non-normality, we
performed a non-parametric bootstrap analysis using two fossil datasets (Fig. 2). A non-
parametric bootstrap resamples the data with replacement to assess model error, effectively
testing how the model would respond if some of the data were left out. We chose a non-
parametric bootstrap to assess model error and the effect of sample size on results. We ran the
non-parametric bootstrap analyses on the two datasets using three different models: linear regression on only undistorted specimens (C=0), linear regression on the full sample (distorted and undistorted specimens), and GLMM on the full sample (distorted and undistorted specimens); just as in the simulation study, to compare the effects of model and data on estimation of model parameters. For 5,000 bootstrap iterations, we examined density distributions of coefficient of allometry and compare the 95% confidence intervals across models. We also compared intercept, but primarily focus on the coefficient of allometry as it is the most meaningful parameter for most allometric studies. Following the bootstrap analysis, we performed a likelihood ratio test with a chi-squared test (Stram and Lee 1994), to compare equation (2) to a GLMM where variation is allowed in both X and Y, testing whether or not variation in slope has significant effects on reconstructed patterns.

For the GLMM, we follow equation (2), where \(\varepsilon \) is random variation that is interpreted here as being produced by the fossilization process. We estimate fossilization as a random effect, because across all of our samples, we don’t expect fossilization to consistently produce the same amount of variation across samples. However, if deformation is expected to have a consistent effect, it could be investigated as a fixed effect or be fit in a multiple linear regression. With this, \(C\gamma \) represents random error that only applies to distorted specimens, where C=1. An important caveat to this model is that it requires at least five individual blocks (specimens) in each of the two categories to reliably reconstruct the random effects (Bolker et al. 2009). Because of this, the GLMM is not suitable for small datasets (n < 10). However, the model is conservative, and when the model finds no random variation, even with regions coded as distorted, it returns a linear model with \(\sim 0 \) variance allocated to the additional parameter \(C\gamma \) (see Table S3), indicating that the model will not underestimate the residuals when distorted measurements are included as
random effects. This allows researchers to be cautious in scoring their specimens and still recover results representative of the biology.

RESULTS

Simulation study

For each of the sample sizes, the linear regression on the undistorted sample (with no added variation) consistently performed best, based on the most frequent outcome at a mean coefficient of allometry of 0.91 (= true mean for simulation) and the lowest 95% confidence intervals (Fig 3). This is to be expected, as the linear regression on the undistorted set acts as our benchmark for parameter estimation under an idealized dataset. For each sample size, the mixed effects model consistently estimated the slope closer to the expected mean (=0.91), than a linear regression that included distorted specimens. To test if the results were biased, we performed a paired t-test between the GLMM and the linear regression on the undistorted dataset across all simulated sample sizes, and found no significant difference (n = 10, t = 0.92, p = 0.36; n = 15, t = -0.96, p = 0.33; n = 25, t = 0.17, p = 0.86; n = 50, t = -0.02, p = 0.99). To assess how well the GLMM model compared to a control, we compared the distorted GLMM to the linear regression of only undistorted data at differing sample sizes. We found that a sample of 25 specimens—approximately 50% of which are scored as distorted—in the GLMM model closely overlapped with the kernel density plot of a linear regression of 15 undistorted specimens (Fig. 4A). The overlap was less profound in comparing kernel density plots of 15 distorted specimens (GLMM) to 10 undistorted specimens (linear regression), but they still share a clear peak at the expected mean value (Fig. 4B). Looking at the entire distribution of data (Fig. 4C), the distorted datasets always perform worse than the undistorted data, as expected. However, the GLMM consistently
outperforms the linear regression on the same full dataset (both distorted and undistorted measurements).

Non-parametric bootstrap

For both the *Exaeretodon argentinus* and *Tawa hallae* datasets, across all features, the linear regression on the undistorted data produced density peaks with the narrowest 95% confidence intervals (Fig. 5). For the majority of *T. hallae* and *E. argentinus* measurements, the density distribution for coefficient of allometry closely followed the patterns of the linear regression on the undistorted sample (see Fig S1-6). The bootstrap analysis using the GLMM on both undistorted and distorted specimens frequently recovered coefficients of allometry that were distinct from the other two models. Our chi-squared test between GLMMs both with and without variation in Y found no significant difference (chi-squared = 0.86, p > 0.95), which indicates that accounting for variation in Y is not necessary for these studies. A bootstrap of femoral midshaft diameter against total length in *T. hallae* shows that the regression of undistorted specimens and the GLMM closely mirror one another around isometry to slightly positive allometry, whereas the linear model on the full dataset recovers a pattern of distinctly negative allometry (Fig. 6A). Similar results are reported for the recovered y-intercept values (Fig. 6B); however, the GLMM and regression on undistorted data do not converge on the median intercept (regression = -1.26; GLMM = -1.34) which can have downstream consequences for extrapolating data from these models (log 10 difference = 0.072; retrotransformed difference = 0.0082 mm; (see Fig. 6C). These reconstructed y-intercepts produce minor differences in estimating feature sizes (with slope constant) when the independent variable (femur length here), is relatively small; for
example, estimating midshaft diameter on a 100 mm femur produces a minimum midshaft
diameter of 5.82 and 6.89 mm for the linear regression and GLMM y-intercepts, respectively. In
this example the y-intercept from the linear regression reconstructs femur length at 84.8% the
size of the y-intercept from the GLMM, which can lead to distinct estimations of feature size
when femur length is large (e.g., >200 mm). A logarithmic plot of femur length against midshaft
diameter reveals a cluster of six specimens that are distinctly offset from the regression line and
were coded as distorted a prior (Fig. 6C), indicating strong deformation that is accounted for in
the GLMM. We sample basicranial length and palate length in *E. argentinus* (see Fig S2, and
S4), neither of which have a distorted sample that meets minimum block size (n ≥ 5). Together,
they illustrate that the GLMM will default to an ordinary least squares regression when
confronted with small datasets (Fig. S2), or, if there is considerable variance in the undistorted
sample, both the GLMM and ordinary least squares regression will struggle to optimize a single
peak for either coefficient of allometry or y-intercept (Fig. S4). Although the GLMM always has
slightly greater model error than the linear regression on undistorted data, we find support for its
efficacy in reconstructing allometry in specimens that exhibit deformation.

DISCUSSION

Simulations appropriately incorporates additional variation

Our simulations of datasets with distorted fossils suggest that a generalized linear mixed
model (GLMM) is able to account for additional sources of variation when reconstructing
allometric relationships. As expected, a sample of only undistorted data (i.e., no additional
variation) consistently produced density distributions closest to the true value and acted as a benchmark for each of our selected sample sizes. The GLMM consistently produced density distributions that more closely followed the sample of only undistorted data than the linear regression on the dataset with undistorted and distorted measurements (i.e., with additional variation), such that trials returned lower overall variance in the allometric parameters (slope, intercept, and residuals) and higher density around the input parameters. These results suggest that a GLMM can account for unknown sources of variation in a sample, making such a test amenable to fossil samples that include considerable variation in preservation state (Abdala and Giannini 2000; Kammerer et al. 2012; Wang et al. 2017). However, a GLMM should not be used with small sample sizes (n < 10) or those that have few distorted or undistorted measurements, as GLMM’s fail to infer random effects where there are fewer than 5-6 specimens for the random effects to understand the distinction between distorted and undistorted in the sample (Bolker et al. 2009). Though this is a challenge for many datasets (particularly paleontological datasets), the lme4 package is forgiving to the cautious observer, such that it will not attribute variation to external samples when there is none (see Table S3). If the GLMM finds that all of the datapoints lie within the residuals of the regression, then it will assign no additional variation to the random effect and will simply return the results of a linear regression. Our simulation results indicate that a GLMM is a viable replacement for a linear regression model when there are sources of unknown variation throughout a sample that would otherwise preclude those specimens from study. Furthermore, including the full dataset can give better approximations of the parameters of interest, and the individual variation that is representative of the full sample (see Brown and Vavrek 2015).
Linear mixed effects models can estimate allometric parameters

We tested the GLMM with allometric data to estimate its efficacy as a replacement for ordinary least squares regression given fossil datasets. The results of our simulation suggest that the GLMM closely approximates the input parameters, and has peak densities lower than, but close to our control of a linear regression on undistorted data (Figs. 3 and 4). This suggests that while not as consistent as the undistorted dataset, the GLMM has an overall variance and precision similar to the linear regression on undistorted data, and has considerably lower variance in returned parameter estimates than the linear regression on the distorted dataset, indicating that it can accurately reconstruct allometric parameters. For any studies that would include marginally distorted measurements or estimations of measurements an ordinary least squares approach with few specimens could greatly affect any returned parameters. Therefore, it is important to use a GLMM on samples that would have otherwise been forced into an ordinary least squares model and treated as if they were undistorted. Furthermore, the deviation from the input parameters are relatively small in observing allometric patterns, such that one would not expect to see a negative allometric signal with the linear regression versus a positive allometric signal with the GLMM. One may see deviations from isometry based on model choice; however, this would likely occur when sample sizes are low (> 5) for undistorted specimens, and the residual variation would indicate that neither model is significantly different from isometry (see Figs. S1–S7). Although this simulation suggests that GLMMs can be used in estimating allometric and isometric patterns given additional sources of variation, it does not address model efficacy when confronted with actual data.

Our bootstrap analysis tests efficacy between distinct models by estimating the error present in the data, which is largely reflective of sample size, and comparing the overlap in the...
The bootstrap analyses on the *Tawa hallae* samples (see Fig. 5) suggest that the GLMM results have clear overlap with the results from the linear regression on only undistorted measurements (i.e., control), but their peaks do not directly overlap one another. This is to be expected, as many of the distorted specimens in the *T. hallae* sample are clustered near our smallest and largest samples, and thus including these specimens will influence the slope and as a result, the intercept value for these parameters. Furthermore, the GLMM consistently produces results with narrower 95% confidence intervals than the linear regression on the complete dataset, suggesting that it is appropriately accounting for additional sources of variation, given real data. The results of the *Exaeretodon argentinus* sample share consistencies with the *T. hallae* dataset, but also show greater variance in how much overlap exists between the GLMM and the linear regression on undistorted measurements. This is due to sample size and preservation in *E. argentinus*, where we only have access to measurements from 16 specimens, and many of them show clear deformation or breakage in and around the braincase. Because of this, bootstrap replicates have high variance in regression parameters. However, even with this, multiple features (see supplemental Figs S2, S5, and S6) with closely overlapping parameter distributions between the GLMM and the linear regression on undistorted datasets, suggesting that given enough samples (10 – 15 specimens), the GLMM is a suitable substitution for a linear regression. Taken together, the results of our analyses suggest that a GLMM can reconstruct allometric relationships in cases where distorted specimens result in heteroscedasticity. Given any deformation in a sample, the GLMM is an appropriate model to estimate additional variance without removing specimens or introducing individual biases (Bolker et al. 2009).
These analyses carry a simple assumption, that variation during fossilization is non-directional, with no discernable pattern between specimens. This suggests, variation should not consistently bias a sample towards one end of the distribution. This assumption is clearly violated in the case for minimum midshaft diameter in *Tawa hallae* (see Fig. 6B), where variation consistently results in underestimating the midshaft diameter of the femur. Importantly, this can be modeled into a GLMM as a fixed effect (Bolker et al. 2009), indicating that these specimens should produce a consistent directional effect on parameter estimations. The degree of distortion, and consistency in the types of distortion, must be addressed *a priori* to assess whether the patterns appear to be directional or random. GLMMs are versatile models that can be tailored to the data, using prior information, to most appropriately estimate allometric patterns given differing forms of distortion (see Bolker et al. 2009), and thus should be further explored by the paleontological community.

Individual variation, post-burial distortion, growth trends, and their importance

Allometric relationships have been used extensively to study the how patterns of divergence in trait-scaling relationships (i.e. the evolutionary allometry) can be related to variation at the individual (ontogenetic) or population level (Cock 1966; Lande 1979; Klingenberg 1996b; Klingenberg et al. 2001; Marroig and Cheverud 2005; Griffin and Nesbitt 2016b; Cardini 2019). These distributions can only be understood when sampling a wide breadth of individuals, where each individual defines a distinct point on any plot (Brown and Vavrek 2015), which is often a challenge for paleontological studies. For studies of allometry or any linear relationship within a species or population, every specimen for an analysis is informative.
and useful, and while not a major issue for many easily-obtained extant species, this is often
insurmountable for those working with fossil specimens. Not only are the number of individuals
limited, but they are often incomplete, broken, or misshapen, making any measurements
nonreflective of the morphology of the organism during life. The remedies to this have been to
estimate the distorted measurements or to simply leave them out of the analysis, sacrificing
individual variation in the process. We show here that no specimens need to be removed in these
analyses, and furthermore, our simulations reveal that a mix of 15 distorted and undistorted
specimens is often a stronger sample than 10 undistorted specimens, when the right model is
employed. We find that a generalized linear mixed model is able to estimate additional variation,
reconstruct allometric relationships, and retain the critical individual variation in studies of
allometry in specimens showing any degree of distortion. We recommend that either
retrodeformation or statistical techniques that account for distortion should be used, rather than
sacrificing the precious data that we have.

Acknowledgments

We thank Stephanie J. Pierce and Jessica Cundiff at the Harvard Museum of Comparative
Zoology for allowing access to specimens. We thank Fernando Abdala for providing
measurements for specimens in San Miguel de Tucumán, Argentina. We acknowledge that all
Exaeretodon from the Harvard Museum of Comparative Zoology were collected from Argentina
in the 1960s and rightfully belong to the province of San Juan, Argentina, following amendments
to the Argentine constitution in 1994, and the subsequent Archaeological and Paleontological
Heritage Act in 2003. We thank Gretchen Gürtler with the Ruth Hall Museum of Paleontology at
Ghost Ranch for loaning the *Tawa hallae* specimens. SJN was supported by NSF EAR 1349667. We thank William A. Reyes for translating our abstract into Spanish. We thank Joel McGlothlin, Douglas M. Boyer, Korin R. Jones, the Uyeda Lab, and the Virginia Tech Paleobiology group for helpful discussion. We thank our handling editor, as well as Dr. Andrea Cardini and two anonymous reviewers whose comments greatly improved the manuscript.

Conflicts of interest: The authors declare no competing interests.

Author’s contributions

BMW, JCU, and SJN conceived and directed the study. BMW collected data and performed analyses. BMW wrote the first draft of the manuscript. BMW, JCU, and SJN edited the manuscript.

References

Abdala F, Giannini NP. 2000. Gomphodont cynodonts of the Chañares Formation: the analysis of an ontogenetic sequence. J Vertebr Paleontol 20:501–6.

Abdala F, Giannini NP. 2002. Chiniquodontid cynodonts: Systematic and morphometric considerations. Palaeontology 45:1151–70.

Alexander RM. 1985. Body support, scaling, and allometry. Funct Vertebr Morphol 38:57.

Angielczyk KD, Sheets HD. 2007. Investigation of simulated tectonic deformation in fossils
Arbour VM, Currie PJ. 2012. Analyzing taphonomic deformation of ankylosaur skulls using retrodeformation and finite element analysis. PLoS one 7:e39323.

Bates D, Sarkar D, Bates MD, Matrix L. 2007. The lme4 package. R Package version 2:74.

Behrensmeyer AK, Kidwell SM, Gastaldo RA. Taphonomy and paleobiology. Paleobiology 26:103–147.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–35.

Boyer DM, Seiffert ER, Gladman JT, Bloch JI. 2013. Evolution and allometry of calcaneal elongation in living and extinct primates. PLoS One 8:e67792.

Brown CM, Vavrek MJ. 2015. Small sample sizes in the study of ontogenetic allometry; implications for palaeobiology. PeerJ 3:e818.

Cardini A. 2019. Craniofacial Allometry is a Rule in Evolutionary Radiations of Placentals. Evol Biol 46:239–48.

Cabrera A. 1943. El primer hallazgo de terápsidos en la Argentina Instituto del Museo de la Universidad Nacional de La Plata.

Chapelle KEJ, Benson RBJ, Stiegler J, Otero A, Zhao Q, Choiniere JN. 2020. A quantitative method for inferring locomotory shifts in amniotes during ontogeny, its application to dinosaurs and its bearing on the evolution of posture. Palaeontology 63:229–42.
Cheverud JM. 1982. Relationships among ontogenetic, static, and evolutionary allometry. Am J Phys Anthropol 59:139–49.

Cock AG. 1966. Genetical aspects of metrical growth and form in animals. Q Rev Biol 41:131–90.

Cuff AR, Rayfield EJ. 2015. Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania. PeerJ 3:e1093.

Evans KM, Waltz B, Tagliacollo V, Chakrabarty P, Albert JS. 2017. Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes. Ecology and evolution 7:1783–1801.

Foth C, Hedrick BP, Ezcurra MD. 2016. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4:e1589.

Gould SJ. 1966. Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc 41:587–640.

Gould SJ. 1968. Ontogeny and the explanation of form: an allometric analysis. Memoir (The Paleontological Society):81–98.

Gould SJ. 1977. Ontogeny and phylogeny. Harvard University Press.

Griffin CT, Nesbitt SJ. 2016a. The femoral ontogeny and long bone histology of the Middle Triassic (? late Anisian) dinosauriform Asilisaurus kongwe and implications for the growth of early dinosaurs. J Vertebr Paleontol 36:e1111224.

Griffin CT, Nesbitt SJ. 2016b. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds. Proc Natl Acad Sci 113:14757–62.
Griffin CT, Stocker MR, Colleary C, Lessner EJ, Riegler M, Formoso K, Koeller K, Nesbitt SJ. 2020. Assessing ontogenetic maturity in extinct saurian reptiles. Biological Reviews. DOI: 10.1111/brv.12666.

Hansen TF, Bartoszek K. 2012. Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. Systematic Biology 61:413–425.

Hinkley DV. 1988. Bootstrap methods. J R Stat Soc Ser B 50:321–37.

Huxley JS. 1932. Problems of Relative Growth. Methuen, London (reprinted Dover, New York, 1972).

Jasinoski SC, Abdala F, Fernandez V. 2015. Ontogeny of the Early Triassic Cynodont Thrinaxodon liorhinus (Therapsida): Cranial Morphology. Anat Rec 298:1440–64.

Jolicoeur P. 1963. Note: the multivariate generalization of the allometry equation. Biometrics 19:497–499.

Kammerer CF, Flynn JJ, Ranivoharimanana L, Wyss AR. 2012. Ontogeny in the Malagasy traversodontid Dadadon isaloi and a reconsideration of its phylogenetic relationships. Fieldiana Life Earth Sci 112–25.

Kammerer CF, Deutsch M, Lungmus JK, Angielczyk KD. 2020. Effects of taphonomic deformation on geometric morphometric analysis of fossils: a studying using the dicynodont Diictodon feliceps (Therapsida, Anomodontia). PeerJ 8:e9925.

Kilbourne BM, Makovicky PJ. 2010. Limb bone allometry during postnatal ontogeny in non-avian dinosaurs. J Anat 217:135–52.
Kilmer JT, Rodríguez RL. 2017. Ordinary least squares regression is indicated for studies of allometry. J Evol Biol 30:4–12.

Klingenberg CP. 1996a. Multivariate Allometry. Adv Morphometrics 23–49.

Klingenberg CP. 1996b. Individual variation of ontogenies: a longitudinal study of growth and timing. Evolution (N Y) 50:2412–28.

Klingenberg CP, Badyaev A V, Sowry SM, Beckwith NJ. 2001. Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am Nat 157:11–23.

Klingenberg CP. 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226:113–137.

Krone IW, Kammerer CF, Angielczyk KD. 2019. The many faces of synapsid cranial allometry. Paleobiology 1–15.

Lande R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution (N Y) 40:2–16.

Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution (N Y) 12:10–26.

Lautenschlager S. 2016. Reconstructing the past: methods and techniques for the digital restoration of fossils. Royal Society Open Science 3:160342.

Marroig G, Cheverud JM. 2005. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution (N Y) 59:1128–42.
Marshall LG, Corruccini RS. 1978. Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology 101–19.

Mosimann JE. 1970. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65:930–945.

Muñoz MM, Stimola MA, Algar AC, Conover A, Rodriguez AJ, Landestoy MA, Bakken GS, Losos JB. 2014. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society B: Biological Sciences 281:20132433.

Nesbitt SJ, Smith ND, Irmis RB, Turner AH, Downs A, Norell MA. 2009. A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs. Science (80-) 326:1530–33.

Newell ND. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution (N Y) 103–24.

Niklas KJ. 1994. Predicting the height of fossil plant remains: an allometric approach to an old problem. Am J Bot 81:1235–42.

Pélabon C, Firmat CJP, Bolstad GH, Voje KL, Houle D, Cassara J, Le Rouzic A, Hansen T. 2014. Evolution of morphological allometry. Annals of the New York Academy of Sciences 1320:58–75.

Pyenson ND, Sponberg SN. 2011. Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J Mamm Evol 18:269.
Radinsky L. 1984. Ontogeny and phylogeny in horse skull evolution. Evolution (N Y) 1–15.

Rayfield EJ. 2007. Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annu. Rev. Earth Planet. Sci. 35:541–576.

Schlager S, Profico A, Di Vincenzo F, Manzi G. 2018. Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package "Morpho." PloS one 13:e0194073.

Smith RJ. 2009. Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol Off Publ Am Assoc Phys Anthropol 140:476–86.

Stram DO, Lee JW. 1994. Variance components testing in the longitudinal mixed effects model. Biometrics:1171–1177.

Tanner JB, Zelditch ML, Lundrigan BL, Holekamp KE. 2010. Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta). J Morphol 271:353–65.

Thompson D'AW. 1917. On growth and form. Cambridge University Press, Cambridge, U.K.

Ungar P. 1998. Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol Anthropol Issues, News, Rev Issues, News, Rev 6:205–17.

Voje KL, Hansen TF, Egset CK, Bolstad GH, Pelabon C. 2014. Allometric constraints and the evolution of allometry. Evolution (N Y) 68:866–85.

Wang S, Stiegler J, Amiot R, Wang X, Du G hao, Clark JM, Xu X. 2017. Extreme Ontogenetic Changes in a Ceratosaurian Theropod. Curr Biol 27:144–48.
Webster M, Hughes NC. 1999. Compaction-related deformation in Cambrian olenellloid trilobites and its implications for fossil morphometry. Journal of Paleontology:355–371.

Zhao, Q, Benton MJ, Sullivan C, Sander PM, Xu X. 2013. Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis. Nature communications 4:1–8.
Table 1: Sample size and variance for fossil datasets.

Taxon	Feature	# distorted	Variance distorted	# undistorted	Variance undistorted	# total
Exaeretodon	Skull length	0	0	16	0.019	16
Exaeretodon	Snout length	8	0.019	7	0.021	15
Tawa	Femur length	0	0	26	0.009	26
Tawa	Femoral head length	10	0.016	16	0.01	26
Growth series

Obtain testable parameters

 linear regression

Linear mixed model

Calculate α and β (repeat 2000x)

Compare distributions

Input coefficient of allometry (α)

95% Confidence Interval

Density

Coefficient of Allometry
Figure 1: Flowchart depicting simulation methodology. Colors depicted here are reflected throughout the manuscript for the three different models. Distributions and scatterplots throughout the flowchart are not based on real data but visualization tools. The kernel density plot on the bottom is based on muzzle length in *Exaeretodon argentinus*.
Figure 2: Varying degrees of deformation in samples of A) *Exaeretodon argentinus* (top row MCZ VPRA-4470 and MCZ VPRA-4472; middle row MCZ VPRA-4472 and MCZ VPRA-4493; bottom row MCZ VPRA-4505 and MCZ VPRA-4486) and, B) *Tawa hallae* (top row GR 244; middle row GR 578 and GR 226; bottom row GR 1050 and GR 1043). Specimen numbers follow left to right. Scale bars equal 5 cm.
Simulation results from four samples

A

10 Specimens

B

15 Specimens

C

25 Specimens

D

50 Specimens
Figure 3: Simulation results of four different sample sizes where the linear regression on undistorted data consistently performs best, followed by the generalized linear mixed model. Generalized linear mixed model is tested on a dataset with ~50% of each dataset having additional variation. Dotted lines represent the upper and lower 95% confidence intervals for each model. A) 10 specimens; B) 15 specimens, C) 25 specimens, and D) 50 specimens.
Comparing simulation results across sample sizes

A

10 GLMM vs 5 OLS (undistorted)

15 GLMM vs 7 OLS (undistorted)

B

15 GLMM vs 10 OLS

25 GLMM vs 15 OLS

C

Coefficient of Allometry

Sample size

Linear regression – undistorted data
Linear regression – distorted data
Generalized Linear Mixed Model
Figure 4: Simulation results comparing across different sample sizes, showing close similarity between generalized linear mixed model and linear regression. Generalized linear mixed model is tested on a dataset with ~50% of each dataset having additional variation. Dotted lines represent the upper and lower 95% confidence intervals for each model. A) 15 specimens under a GLMM compared to 10 specimens from a linear regression; B) 25 specimens under a GLMM compared to 15 specimens from a linear regression; C) box plot representing all of the returned distributions for the three different models. GLMM, generalized linear mixed model; OLS, ordinary least squares regression.
Figure 5: Bootstrap results for samples from A) *Exaeretodon argentinus* muzzle vs skull length, and B) *Tawa hallae* femoral head length vs femoral length. Each plot shows strong overlap between the returned distributions suggesting overall similarity in error. Dotted lines represent the upper and lower 95% confidence intervals for each model. Coefficient of allometry is more similar in the *T. hallae* sample than the *E. argentinus* sample, which is to be expected given the difference in sample size (*E. argentinus* n=11; *T. hallae* n=26). Skull is specimen MCZ VPRA-4470 and femur is specimen GR 244.
Bootstrap results given clear deformation

A

B

C

- Linear regression – undistorted data
- Linear regression – distorted data
- Generalized linear mixed model

\[\log(\text{TEMD}) \quad \log(\text{dFL}) \]
Figure 6: Generalized linear mixed model closely approximates the truth when significant deformation is introduced into the model for a sample of *Tawa hallae*. A) slope, and B) y-intercept suggest high similarity between the results of the linear regression on undistorted data and the GLMM. However, C) shows that the inclusion of undistorted specimens (black dots) with a linear regression on only these undistorted specimens (blue line), distinctly crushed specimens (red circles) in a linear regression (red line), and the generalized linear mixed model has a significant effect on recovering the intercept. Dotted lines represent the upper and lower 95% confidence intervals for each model. The y-intercepts between the linear regression on undistorted data and the GLMM suggest that one should not heavily weigh interpretations based on y-intercept returned from a GLMM. Femur is specimen GR 244.