Solar and Atmospheric Neutrino Oscillations from Bilinear R-Parity Violation

D. Elazzar Kaplan and Ann E. Nelson

Department of Physics 1560, University of Washington, Seattle, WA 98195-1560

Abstract

We discuss general predictions for neutrino masses and mixing angles from R parity violation in the Minimal Supersymmetric Standard Model. If the soft supersymmetry breaking terms are flavor blind at short distance, then the leptonic analogue of the CKM matrix depends on only two real parameters, which are completely determined by fits to solar and atmospheric neutrino oscillations. Either the small angle MSW, large angle MSW, or “just-so” solutions to the solar neutrino problem are allowed, although the large angle MSW solution requires substantial fine-tuning. The latter two cases require significant $\nu_\mu \rightarrow \nu_e$ oscillations of atmospheric neutrinos. We present a model which could explain bilinear R parity violation as a consequence of spontaneous symmetry violation by a dynamical supersymmetry breaking sector. The decay length and branching ratios of the LSP are estimated.
1 Evidence for neutrino oscillations and neutrino mass

Recently Super-Kamiokande has reported an energy dependent and zenith angle dependent deficit of atmospheric muon neutrino events compared with theoretical expectations, which is strong evidence for oscillations of muon neutrinos [1]. The hypothesis of neutrino oscillations will soon be further tested through long baseline neutrino oscillation searches [2]. In addition, the solar electron neutrino flux observed by 5 different experiments is much less than expected, suggesting oscillations of electron neutrinos as well [3]. The simplest explanation for either anomaly is to modify the Standard Model to provide neutrinos with mass. The atmospheric neutrino data can be explained well by a large mixing angle for the muon and tau neutrinos and a neutrino mass squared difference between $\sim 5 \times 10^{-4}$ and $\sim 6 \times 10^{-3}$ eV2. The solar neutrino flux deficits can be explained by the MSW [5] effect for either a large or a small electron neutrino mixing angle and a mass squared difference of order 10^{-5} eV2 [6], or by “just-so” [7] vacuum oscillations with large electron neutrino mixing and a mass squared difference of $\sim 10^{-10}$ eV2. If one relaxes the constraints coming from the standard solar model or from one or more of the solar neutrino experiments then other mass squared differences and mixing angles are possible [8].

Oscillations amongst all three neutrinos can explain all solar and atmospheric data, provided one mass squared difference is in the atmospheric range and another in either the MSW or “just-so” solar ranges. Some models invoke oscillations to new neutrino states which are “sterile” under the weak interactions in order to also account for the $\nu_\mu \rightarrow \nu_e$ oscillation evidence reported by the LSND collaboration [9]. Several future experiments on solar and terrestrially produced neutrinos are expected to further constrain the possibilities [10].

In this note we will assume that there are only three neutrino states and will only explain the solar and atmospheric neutrino anomalies. We neglect the results of LSND as these have not been confirmed by any independent experiment [9]. We will show that a class of renormalizable supersymmetric theories with lepton number violation can account for these anomalies and examine the consequent predictions.

2 Bilinear R parity violation

Unlike the minimal Standard Model, the Minimal Supersymmetric Standard Model (MSSM) allows renormalizable baryon and lepton number violation. If neutrinos are massive Majorana particles, then lepton number is violated by nature, and there is no compelling reason to assume that lepton number violating terms are absent from the superpotential [8].

1The KARMEN [11] and mini-BooNE [12] experiments have the capability to check this result.
2It is however trivial to find discrete symmetries which forbid renormalizable lepton number violating terms but allow dimension five terms which give Majorana neutrino masses.
In the MSSM, the most general renormalizable superpotential contains the terms\(^1\)

\[
\frac{1}{2} \lambda_{ijk} \ell_i \ell_j \ell_k + \lambda'_{ijk} q_j d_k + \frac{1}{2} \lambda''_{ijk} \bar{u}_i \bar{d}_j d_k.
\]

(1)

Another possible term is\(^2\)

\[
\epsilon_i H_u \ell_i
\]

(2)

but this is conventionally eliminated by performing a redefinition of the \(H_d\) and lepton superfields

\[
\begin{pmatrix}
\ell_e \\
\ell_\mu \\
\ell_\tau \\
H_d
\end{pmatrix}
\rightarrow
U
\begin{pmatrix}
\ell'_e \\
\ell'_\mu \\
\ell'_\tau \\
H'_d
\end{pmatrix}
\]

(3)

where \(U\) is a unitary \(4 \times 4\) matrix.

To avoid proton decay, all such terms are usually forbidden by imposing a discrete symmetry, known as R parity, under which the quark and lepton superfields change sign. However, avoiding proton decay only requires that either the baryon number violating terms or the lepton number violating terms vanish\(^3\). Supersymmetric models with either baryon or lepton number violation are known as R parity violating models \(^{13, 14}\). A special case of R parity violation, known as the bilinear R parity violating model (BRPVM), only contains the R parity violating terms which can be written in the form \(^2\). This restricted model is more predictive and theoretically more attractive than more general models. The BRPVM arises naturally from a large class of theories in which R parity violation is spontaneous, such as many grand unified models \(^{13}\), and, unlike general R parity violating model, has few potential phenomenological difficulties with flavor changing neutral currents and lepton flavor violation \(^{15}\).

2.1 Superpotential and soft supersymmetry breaking terms

Although the BRPVM is defined by assuming the superpotential can be written in the form \(^2\), it is more convenient to use the transformation \(^3\) to write the superpotential in the canonical form of \(^1\). The lepton number violating terms in the superpotential can then be written in terms of only 3 new parameters \(\theta_i, i = 1, 2, 3\) with

\[
s_i, c_i \equiv \sin \theta_i, \cos \theta_i
\]

and

\[
s_1 \equiv \frac{\epsilon_e}{\sqrt{\epsilon^2_\mu + \epsilon^2_e}}, \quad s_2 \equiv \sqrt{\frac{\epsilon^2_\mu + \epsilon^2_e}{\epsilon^2_\tau + \epsilon^2_\mu + \epsilon^2_e}}, \quad s_3 \equiv \frac{\sqrt{\epsilon^2_\tau + \epsilon^2_\mu + \epsilon^2_e}}{\sqrt{\mu^2 + \epsilon^2_\tau + \epsilon^2_\mu + \epsilon^2_e}};
\]

(5)

where \(\mu\) is the coefficient of the superpotential term \(H_u H_d\). Neglecting the Yukawa couplings of the first two generations, the superpotential lepton number violating terms

\(^3\)This holds unless the model has a light non-leptonic fermion such as an axino or light gravitino.
can be written
\[\lambda_b q_3 \{ s_3 [c_2 \ell_\tau + s_2 (c_1 \ell_\mu + s_1 \ell_\tau)] \} + \lambda_\tau \bar{\ell}_\tau \{ s_3 [c_2 (c_1 \ell_\mu + s_1 \ell_\tau)] \} , \]
(6)

where \(q_3 \equiv (t', b)_L \), \(t' \) is the electroweak partner of the \(b \) quark, and \(\lambda_{b, \tau} \) are respectively the bottom and tau Yukawa couplings.

In general there will also be the soft supersymmetry breaking lepton number violating terms in the scalar potential
\[B_i \epsilon_i H_u \tilde{\ell}_i + \tilde{m}_H^2 \ell_i H_d^* \tilde{\ell}_i + A_i^{\lambda} \lambda_{ijk} d_i \tilde{q}_j \tilde{\ell}_k + A_i^{\lambda'} \lambda'_{ijk} \tilde{e}_i \bar{\ell}_j \tilde{\ell}_k + h.c. \]
(7)

We assume lepton universality for the supersymmetry breaking terms, i.e. the messenger of supersymmetry breaking is blind to lepton flavor. This assumption allows us to simplify (7) to
\[B_i \epsilon_i H_u \tilde{\ell}_i + \tilde{m}_H^2 \ell_i H_d^* \tilde{\ell}_i + A_i^{\lambda} \lambda_{ij} \epsilon_i (\epsilon_j / \mu) \tilde{d}_i \tilde{q}_j \tilde{\ell}_k + A_i^{\lambda'} \lambda'_{i} (\epsilon_i / \mu) \tilde{e}_i \bar{\ell}_j \tilde{\ell}_k + h.c. \]
(8)

at the “messenger scale” \(\Lambda \) at which supersymmetry breaking is communicated, although at another scale all the terms in (7) will be generated by renormalization.

Lepton number violation allows neutrinos to obtain Majorana masses. One linear combination of neutrinos can gain a mass at tree level from the diagram in Figure 1a and at one loop from Figure 1b, while the loop diagrams of Figure 2 can give the other neutrinos mass. The computations of sneutrino vevs contributing to these masses may be found in the appendix.

Generally this model produces an enormous hierarchy in the neutrino mass spectrum, with the ratio of the heaviest and second heaviest neutrino masses at least \(10^3 \). In order to reduce this hierarchy, we can assume that the communication of supersymmetry breaking is also blind to the difference between a lepton and \(H_d \), as would naturally occur with Gauge Mediated Supersymmetry Breaking \[16\] in which all soft supersymmetry breaking terms including those of (7) are generated by gauge interactions \[17\]. In such models, one can choose a basis where the bilinear lepton number violating soft supersymmetry breaking terms vanish at the messenger scale \(\Lambda \), and loop effects are needed to generate a sneutrino vev.

2.2 The lepton mixing matrix

In the BRPVM, a very general argument shows that the lepton analogue of the CKM matrix can be predicted in terms of 2 mixing angles and is CP conserving\[4\]. This is most easily seen in the basis where all R parity violation is bilinear. Note that in the excellent approximation of neglecting the electron and muon Yukawa couplings, there is a \(U(3) \)

\[\text{\footnotesize Several recent papers} [18] \text{\footnotesize have analyzed neutrino masses in versions of the BRPVM, but have not noted this general prediction.} \]
flavor symmetry acting on the neutrinos which is broken by only two terms—the R parity violating term

\[\sum_{i=e, \mu, \tau} \epsilon_i H_u \ell_i \]

and the tau Yukawa coupling

\[\lambda_\tau \ell_\tau \bar{\tau_3} H_d \]

(recall that we are assuming no flavor violation from supersymmetry breaking). The linear combination

\[(c_1 \ell_e - s_1 \ell_\mu) \]

is invariant under a chiral \(U(1) \) symmetry, which is broken only by tiny Yukawa couplings, and prevents this linear combination from gaining a mass. Thus one neutrino, which is purely a linear combination of \(\nu_e \) and \(\nu_\mu \), is always automatically very light compared with the other two. This argument is true for any of the possible mechanisms for generating the neutrino masses, provided only that the supersymmetry breaking terms respect lepton universality. The heaviest neutrino mass has no suppression factor due to the tau Yukawa coupling. This neutrino mass can result at tree level from sneutrino vevs, as well as from the one loop graph in Figure II. Hence the heaviest neutrino, up to corrections involving \(\lambda_\tau \), is the linear combination

\[\sum_{i=e, \mu, \tau} \epsilon_i \ell_i / \sqrt{\epsilon_\tau^2 + \epsilon_\mu^2 + \epsilon_e^2} = c_2 \nu_\tau + s_2 (c_1 \nu_\mu + s_1 \nu_e) . \]

The mass of the second heaviest neutrino is proportional to both the R parity violating terms and the tau Yukawa coupling.

The preceding argument shows that in a basis where \(j = 1, 2, 3 \) labels neutrino mass
eigenstates in ascending order of mass, the neutrino CKM matrix has the simple form

\[
V^\nu = \begin{pmatrix}
V_{e1} & V_{e2} & V_{e3} \\
V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\
V_{\tau 1} & V_{\tau 2} & V_{\tau 3}
\end{pmatrix}
= \begin{pmatrix}
c_1 & s_1c_2 & s_1s_2 \\
-s_1 & c_1c_2 & c_1s_2 \\
0 & -s_2 & c_2
\end{pmatrix}.
\] (13)

This is one of the main results of this paper.

For vacuum neutrino oscillations we predict

\[
P_{e\leftrightarrow\mu} = \sin^2 2\theta_1 \left[\left(c_2^2 \sin^2 \frac{\Delta m_{12}^2 L}{4E} + s_2^2 \sin^2 \frac{\Delta m_{13}^2 L}{4E} \right) - \frac{1}{4} \sin^2 2\theta_2 \sin^2 \frac{\Delta m_{23}^2 L}{4E} \right]
\]

\[
P_{e\leftrightarrow\tau} = s_1^2 \sin^2 2\theta_2 \sin \frac{\Delta m_{23}^2 L}{4E}
\]

\[
P_{\mu\leftrightarrow\tau} = c_1^2 \sin^2 2\theta_2 \sin \frac{\Delta m_{23}^2 L}{4E}.
\] (14)

Note in the limit where \(\Delta m_{12}^2\) can be neglected (relevant for atmospheric and terrestrial neutrino oscillations) that \(P_{e\leftrightarrow\mu}\) simplifies to

\[
P_{e\leftrightarrow\mu} \approx s_1^4 \sin^2 2\theta_1 \sin^2 \frac{\Delta m_{23}^2 L}{4E},
\] (15)

while in the limit where \(\Delta m_{23}^2\) is large enough so that many oscillation lengths are averaged over (relevant for “just-so” solar neutrino oscillations)

\[
P_{e\leftrightarrow\mu} \approx \sin^2 2\theta_1 c_2^2 \sin^2 \frac{\Delta m_{12}^2 L}{4E} + 2s_1^2 s_2^2(c_2^2 + c_1^2 s_2^2).
\] (16)

In general, matter effects significantly change these results for both solar and atmospheric neutrinos [5]. Several groups [13, 20, 21] have derived constraints on neutrino oscillation parameters, under the assumption that all 3 neutrino flavors mix. Using the results of Fogli et al. on atmospheric [20] and MSW solar [19] neutrino oscillations and the results of ref. [22] on “just-so” solar neutrino oscillations, we find three regions of parameter space which can give a good fit to the SuperKamiokande data and all the solar neutrino experiments:

1. The angle \(\theta_2\) is large \((\sin^2(2\theta_2) > 0.8)\) and \(\theta_1\) is small \((s_1 \sim 0.07)\). In this case the atmospheric neutrino oscillations are almost purely \(\nu_\mu \leftrightarrow \nu_\tau\) and \(m_3\) lies between \(\sim 3 \times 10^{-2}\) and \(\sim 10^{-1}\) eV. The solar neutrino problem is solved by the small angle MSW effect and \(m_2 \sim 3 \times 10^{-3}\) eV.

2. Both \(\theta_2\) and \(\theta_1\) are large, with \(s_1 \sim 0.7\) and \(s_2 \sim 0.8\), and the solar neutrino problem is solved by the large angle MSW effect. In this case \(m_3 \sim 3 \times 10^{-2}\) eV and \(m_2 \sim 10^{-2}\) eV. Since the ratio \(m_2/m_3\) is always rather small unless there are finely tuned accidental cancellations, this solution seems rather unlikely.
3. A small region of parameter space is within the 90% confidence limits for both atmospheric neutrinos and “just-so” solar neutrinos with \(s_1 \sim 0.5, s_2 \sim 0.8, m_2 \sim 10^{-5} \text{eV} \) and \(m_3 \sim 3 \times 10^{-2} \text{eV} \). This large ratio \(m_3/m_2 \) is easily produced in a generic model of supersymmetry breaking.

The long baseline reactor search for electron neutrino disappearance, KamLAND [23], will definitively distinguish these three possibilities, being sensitive to \(\Delta m^2 \) larger than \(\sim 10^{-5} \text{eV}^2 \). In the small angle MSW case there is a negligible possibility of \(\nu_e \) disappearance, the large angle case will give (averaging over both oscillation lengths) \(P_{e \leftrightarrow e} \sim 0.6 \) (note that an average disappearance probability greater than 1/2 is possible when the electron neutrino is a linear combination of more than two mass eigenstates) and in the just-so case, where only one \(\Delta m^2 \) is large enough to be observable in a terrestrial experiment, \(P_{e \rightarrow e} \sim 0.3 \).

Note that in all cases, the ratio \(m_2/m_3 \) must lie between \(\sim 3 \) and \(\sim 3 \times 10^{-4} \). As we will discuss in the next section, \(m_2 \) is always proportional to a loop factor suppressed by powers of \(\lambda_\tau \), and so models which can give a large enough value for this ratio are quite constrained.

2.3 Predictions for neutrino mass

The possible dominant contributions to the heaviest neutrino mass \(m_3 \) are from the tree diagram, Figure 1a, and the one loop diagram, Figure 1b, while \(m_2 \) can only arise from the one loop diagrams of Figure 2 and is always suppressed by \(\lambda_\tau \). Typically the tree diagram is much larger than any loop diagrams, and gives a contribution to \(m_3 \) of

\[
m_3 = \left(\frac{g^2}{4M_2} + \frac{g'^2}{4M_1} \right) \langle \tilde{\nu} \rangle^2,
\]

where \(g, g' \) are Standard Model gauge couplings, \(M_{1,2} \) are Majorana gaugino masses and we have neglected mixing in the neutralino mass matrix (reasonable for \(m_z \ll M_{1,2} \) or \(m_z \ll \mu \)). However, the sneutrino vevs are naturally suppressed relative the the parameters \(\epsilon_i \), when universal soft supersymmetry breaking terms are generated at a low scale. Note that small sneutrino vevs are necessary if \(m_2/m_3 \) is large enough to allow the MSW solution to the solar neutrino problem and are most natural when \(\langle H_u \rangle/\langle H_d \rangle \equiv \tan \beta \) is large, the soft supersymmetry breaking terms are completely universal, and the messenger scale is low, as in a gauge mediated scenario. In the appendix we compute the sneutrino vevs and find that a large value for \(\tan \beta \), a messenger scale of 50 TeV, and an accidental cancellation of order 10% between two independent contributions to the sneutrino vev will allow the loop contributions to be within a factor of five of the tree contribution to \(m_3 \). Thus we expect the tree contribution to dominate. The contribution

\[5\] The diagrams in Figure 2 have been effectively taken into account in [24], but in the basis where the neutrino vev vanishes. See also [25].
of the one loop diagram to m_3 is

$$m_3 = \frac{\lambda_b^4 s_3^2}{16\pi^2 \tan \beta} \frac{\mu \langle H_u \rangle^2 \log(\tilde{m}_{b_1}^2)}{\tilde{m}_{b_1}^2 - \tilde{m}_{b_2}^2},$$ \quad (18)

where

$$\tilde{m}_{b_{1,2}}^2 = \frac{1}{2} \left(\tilde{m}_{b_L}^2 + \tilde{m}_{b_R}^2 \right) \pm \sqrt{(\tilde{m}_{b_L}^2 - \tilde{m}_{b_R}^2)^2 + 4\lambda_b^2 \mu^2 \langle H_u \rangle^2}. \quad (19)$$

There are several possible contributions6 to m_2—which one is largest depends on the size of s_3. For large s_3, the diagram of Figure 2a dominates, giving

$$m_2 = \frac{\lambda_\tau^4 s_3^2 s_2^2 c_2^2}{16\pi^2 \tan \beta} \frac{\mu \langle H_u \rangle^2 \log(\tilde{m}_{\tau_1}^2)}{\tilde{m}_{\tau_1}^2 - \tilde{m}_{\tau_2}^2},$$ \quad (20)

where $\tilde{m}_{\tau_{1,2}}$ are defined analogously to $\tilde{m}_{b_{1,2}}$.

For moderate s_3 and large $\tan \beta$, the dominant contribution to m_2 would come from the diagram of Figure 2b, giving

$$m_2 = \frac{\lambda_\tau^4 s_3^2 s_2^2 c_2^2}{16\pi^2 \mu^2} \frac{\langle \tilde{\nu} \rangle (\langle H_u \rangle^2)}{\tilde{m}_{\tau_1}^2} \cdot f\left(\frac{\tilde{m}_{\tau_1}^2}{\mu^2}, \frac{\tilde{m}_{\tau_2}^2}{\mu^2} \right),$$ \quad (21)

where

$$f(x, y) = \frac{x \log(x) - y \log(y) - xy \log(\frac{x}{y})}{(1 - x)(1 - y)(y - x)}. \quad (22)$$

6These contributions are not strictly to m_2 but to a linear combination of m_2 and m_3. For $s_3^2 \sim \frac{1}{2}$ (approximately true in all cases), there is an additional contribution to the second heaviest neutrino’s mass of order m_2^2/m_3, and to the mixing of order m_2/m_3. These contributions are only non-negligible in the MSW scenario where $m_2/m_3 \sim \frac{1}{10} - \frac{1}{30}$.

\(\text{(a)}\) \(\text{(b)}\) \(\text{(c)}\)

Figure 2: One loop contributions to the second neutrino mass.
When this diagram dominates the ratio m_2/m_3 is always too small for an MSW solution to the solar neutrino problem, however a "just-so" solution is possible for large $\tan \beta$.

Finally, for small s_3, the dominant contribution to m_2 comes from the diagram of Figure 2c, which gives

$$m_2 = \frac{\lambda_\tau^4}{16\pi^2} \frac{A_\tau \langle \tilde{\nu} \rangle^2}{\mu^2} \left[f\left(\frac{m_{h_1}^2}{\mu^2}, \frac{m_{\tau_2}^2}{\mu^2}\right)s_{\theta_\tau}^2 + f\left(\frac{m_{h_1}^2}{\mu^2}, \frac{m_{\tau_3}^2}{\mu^2}\right)c_{\theta_\tau}^2 \right],$$

where θ_τ is the mixing angle between the left and right handed tau sleptons. Note that this contribution is very small unless λ_τ is large, which requires large $\tan \beta$. Large $\tan \beta$ is possible only if either h_d is heavy or the soft supersymmetry breaking bilinear $h_u h_d$ term is small. Known mechanisms for suppressing such a bilinear term suppress the trilinear A_τ term as well. Thus for this case, for any known predictive theory, m_2/m_3 is too small to allow a simultaneous fit to atmospheric and solar neutrino data.

Note that the ratio m_2/m_3 is proportional to λ_τ^4 in all cases. Thus obtaining a large enough value of m_2/m_3 to account for both solar and atmospheric neutrino anomalies always requires large (~ 50) $\tan \beta$.

One additional way in which in may be possible to produce a viable hierarchy of neutrino masses is through gravitational effects. In the case of a large vev compared to $\epsilon \equiv \sqrt{\epsilon_\tau^2 + \epsilon_\mu^2 + \epsilon_e^2}$, m_2 is too small even for the "just-so" solution. However, m_2 may receive an interesting contribution from a nonrenormalizable operator in the superpotential:

$$W \supset \lambda_\nu^{ij} \frac{H_u \ell_i H_u \ell_j}{M_p},$$

where $M_p \sim 2 \times 10^{18}$ is the reduced Planck mass. With λ_ν of order one, this produces a neutrino mass $m_\nu \sim \langle H_u \rangle^2/M_p \sim 10^{-5}$ eV, precisely what is needed for "just-so" solar neutrino oscillations. However, there is no definite prediction for the leptonic CKM mixing matrix in this case.

3 Models of bilinear R parity violation

Supersymmetric models which generate only bilinear R parity violation are quite natural. One way to produce such terms is via a spontaneously broken R symmetry. For example, a $U(1)_R$ symmetry exists in the MSSM with the following charge assignment:

Superfield	q	u^c	d^c	ℓ	e^c	H_u	H_d
$U(1)_R$	$\frac{1}{2} + a$	$\frac{1}{2} - a$	$\frac{1}{2} - a$	$\frac{1}{2} + b$	$\frac{1}{2} - b$	+1	+1

A continuous $U(1)_R$ symmetry has $SU(2) \times U(1)$ anomalies. However, R parity is an anomaly free discrete subgroup. The anomalies could always be cancelled by another sector, such as a messenger sector.
For $a = -\frac{b}{\frac{2}{3}}$, all renormalizable R parity violating terms have R charge $\left(\frac{2}{3} + b\right)$.

Now, at a scale M, we introduce a new sector of particles which does not couple to the observable sector via contact or gauge interactions, and in which the $U(1)_R$ symmetry is broken spontaneously. Thus the R symmetry breaking can only be communicated via gravitational effects. Assume there exists a gauge invariant operator \mathcal{O} of mass dimension n and R charge $\left(\frac{1}{2} - b\right)$. If \mathcal{O} has an expectation value $\langle \mathcal{O} \rangle = M^n$, then the following term in the superpotential of the low energy effective theory

$$\frac{\mathcal{O}}{M_{p}^{n-1}} \ell H_u,$$

(25)

produces a bilinear R parity violating term with coupling $\epsilon \sim M^n/M_{p}^{n-1}$. Trilinear R parity violating terms would in general also be produced with couplings of order M^n/M_{p}^n, and therefore would be greatly suppressed compared to the bilinear term.

An interesting possibility is to have the operator \mathcal{O} come from the supersymmetry breaking sector. However, in order to produce a neutrino spectrum from the R parity violating term which is consistent with both solar and atmospheric anomalies, we have seen that the parameter ϵ must not be much smaller than the sneutrino vev $\langle \tilde{\nu} \rangle$. This naturally occurs if all lepton violating soft breaking terms in (7) have coefficients no larger than $B\epsilon$, with B of order the weak scale. However, if \mathcal{O} is in the supersymmetry breaking sector, it would generally also have an F-term expectation value leading to a scalar bilinear of order

$$\frac{F M_{p}^{n-1}}{M_{p}^{n-1}} \ell H_u.$$

(26)

Generically, the coefficient of this term is much too large. For example, if $F/M \sim 10^5\text{ GeV}$ (as is typical in models of gauge mediated supersymmetry breaking) then $\langle \tilde{\nu} \rangle / \epsilon \sim 10^2$. Therefore, if R symmetry breaking and supersymmetry breaking come from the same sector, then the heaviest neutrino’s mass m_3 comes from R parity violation, while m_2 comes from Planck slop, as described at the end of Section 2.3.

4 Predictions for the decays of the (N)LSP

In the BRPVM, with parameters chosen to fit the atmospheric and solar neutrino data, most effects of the lepton number violating couplings are too small too be observed. The main evidence for R parity violation will only come when supersymmetry is discovered. The Lightest Supersymmetric Particle (LSP) decays via the R parity violating couplings. In some models, the LSP is the an ultralight gravitino, however the lifetime for the decay of the next lightest supersymmetric particle (NLSP) into the gravitino is very long, and so the NLSP will primarily decay via R parity violating couplings.

8In general, there will be a number of gauge invariant operators which fit this description. Here we consider the operator with the lowest mass dimension n. Those operators with mass dimension greater than n will have contributions suppressed by powers of the Planck mass.
How the (N)LSP decays depends on whether neutrinos oscillate according to the MSW solution or the “just-so” solution. The MSW case requires a small sneutrino vev compared to the R parity violating parameters, \(\langle \tilde{\nu} \rangle \lesssim \frac{\epsilon}{100} \), in order for (17) to give a mass which satisfies atmospheric neutrino data. Decays which depend on couplings proportional to \(s_3 \simeq \frac{\epsilon}{\mu} \) dominate. The “just-so” solution requires \(\langle \tilde{\nu} \rangle > \sim \epsilon \) to give a large mass ratio \(m_3/m_2 \). In this case, the dominant decays of the (N)LSP are due primarily to the mixing of leptons with neutralinos and charginos (except in decays to top quarks as mentioned below). With the R parity violating couplings fixed to explain neutrino masses and mixing, we can make definite predictions for the dominant decay mode of the (N)LSP, which depends only on which superpartner it is and its mass. In some cases, we can also predict the lifetime.

For instance, in the MSW case, if the (N)LSP is the lightest tau slepton \(\tilde{\tau}_1 \) (and \(\tilde{m}_{\tau_1} < m_{\text{top}} \)) it will decay into a charged lepton and neutrino with a lifetime between \(10^{-15} \) and \(10^{-16} \) seconds. The \(\tilde{\tau}_1 \) could decay somewhat less often into \(b\bar{c} \) quark jets. The branching ratios of \(\tau\nu, \mu\nu, e\nu \) and \(b\bar{c} \) are proportional to \((\lambda_\tau s_2)^2 \), \((\lambda_\tau s_2 c_1 s_{\theta_e})^2 \), \((\lambda_\tau s_2 s_1 s_{\theta_e})^2 \), and \(3(\lambda_b V_{cb} c_2 c_{\theta_e})^2 \) respectively. In the case of the “just-so” solution, the \(\tilde{\tau}_1 \) decays nearly exclusively into \(\ell\nu \) (mostly \(\tau\nu \)) with a lifetime of about \(10^{-13} \) seconds. However, if \(\tilde{m}_{\tau_1} \to b\bar{t} \) is kinematically allowed, it will be the dominant decay mode in the MSW scenario and may be comparable to the leading decay mode in the “just-so” case.

Another likely possibility for the (N)LSP is the lightest neutralino \(N_1 \), which has a small neutrino component. In the MSW scenario, the \(N_1 \) will decay predominantly into \(bb \) quark jets and a neutrino (or \(b\bar{t}\bar{\ell} \) if energetically allowed). The lifetime in this case is proportional to four powers of the mass \(\tilde{m}_\ell \) of the exchanged slepton when \(\tilde{m}_\ell^2 \gg M_{N_1}^2 \). In the case of the “just-so” solution, the dominant decay will be a charged lepton and a \(W^\pm \), with an interesting decay length of 0.1-10 mm \([26]\). The branching ratios for \(N_1 \) decays into \(e, \mu \) and \(\tau \) are respectively proportional to \(s_2^2 s_1^2, s_2^2 c_1^2 \), and \(c_2^2 \). Also possible are decays into a neutrino and a \(Z \), with a branching fraction approaching 25% when the \(N_1 \) is very heavy and mostly Bino \([26]\). There can also be a significant branching ratio for the mode \(h^0\nu \) if kinematically allowed.

5 Summary

The Bilinear R parity Violating Model is a well motivated and predictive theory of neutrino masses. The BRPVM can account for both the atmospheric and solar neutrino anomalies, and restricts the form of the leptonic charged current mixing matrix, which can depend only on two independent angles. A large electron neutrino mixing angle solution to the solar neutrino problem is possible if and only if the atmospheric oscillations involve a significant \(\nu_e \) component. The hierarchy between neutrino masses is generically very large, and the MSW solution to the solar neutrino problem is reasonably natural only if \(\tan\beta \) is large, soft supersymmetry breaking terms for the leptons and Higgses are universal, and the scale of transmission of supersymmetry breaking is low, suggesting gauge mediated generation of the soft supersymmetry breaking terms. With the typical
neutrino mass ratio, vacuum oscillations can solve the solar neutrino problem. Definitive
tests of this theory will be provided by KamLAND which can distinguish the MSW from
“just-so” solutions, and by observation of the pattern of (N)LSP decays.

Acknowledgements

This work was supported in part by the Department of Energy Grant No. DE-FG03-
96ER40956. DEK thanks J. Gray and AN and DEK thank the UCSC particle theory
group for their hospitality during the completion of this work.

Appendix: on sneutrino vev diagrams

Some suppression of sneutrino vevs is necessary if the heaviest neutrino is not to be too
much heavier than the next heaviest. Here we examine the sneutrino vevs assuming
that at some scale \(\Lambda \) there is no supersymmetry breaking mixing term between Higgs
scalars and sneutrinos. Motivated by gauge mediated models, we also assume the \(A \)
terms vanish at \(\Lambda \). We assume that \(\Lambda \) is small enough so that we do not need to use the
renormalization group, since when \(\Lambda \) is large so will be the sneutrino vev.

At one loop, there are contributions to \(\tilde{\nu} - H_d \) mixing:

\[
m_{\mu_d}^2 \epsilon_i = \frac{m_{\mu_d}^2}{\mu} \frac{\epsilon_i}{16\pi^2} = \frac{N_{\epsilon} \lambda_6^2 \epsilon_i}{16\pi^2 \mu} \left(\frac{m_{\mu_1}^2 \log \frac{\Lambda^2}{m_{\mu_1}^2} + m_{\mu_2}^2 \log \frac{\Lambda^2}{m_{\mu_2}^2}}{m_{\mu_1}^2} \right). \tag{27}\]

There is also a one loop contribution to the \(A \) terms at scale \(k \):

\[
A_b(k^2) = \left(\frac{4}{3} \right) \frac{\alpha_s}{2\pi} \lambda_b \tan \beta \left(\int_0^1 \frac{\log \frac{\Lambda^2}{x \left((1-x)k^2 + M_3^2 \right)}}{(1-x)k^2 + M_3^2} \, dx \right) \tag{28}\]

where \(M_3 \) is the gluino mass. The graphs with winos/binos are somewhat smaller,
for example the wino contribution will be suppressed compared to the above by only
\(\sim \left(\frac{3}{4} \alpha_2 M_2 \right) / \left(\frac{3}{4} \alpha_3 M_3 \right) \sim \frac{1}{10} \). The one loop contribution to \(\tilde{\nu} - H_u \) mixing is

\[
B_{\epsilon_i} \epsilon_i = B_\epsilon \epsilon_i = \left(\frac{4}{3} \right) \frac{\alpha_s}{2\pi} \lambda_b \tan \beta \left(\frac{N_{\epsilon} \lambda_6 M_3}{16\pi^2 \mu} \left[-\frac{1}{2} \left(\log \frac{\Lambda^2}{m_{\mu_1}^2} \right)^2 - \log \frac{\Lambda^2}{m_{\mu_2}^2} \right] \right), \tag{29}\]

where we’ve assumed small chargino mixing. For simplicity, the result shown is to zeroth
order in \((m_{\mu_2}^2 - m_{\mu_1}^2) \).

The higgs vevs give us terms in the potential which are linear in the sneutrinos with
a coefficient

\[
C_\nu = \left(B_\epsilon \mu + \frac{m_{\mu_d}^2}{\tan \beta} \right) \tan \beta \langle H_u \rangle, \tag{30}\]

and thus give non-zero sneutrino vevs. For degenerate sneutrino masses, the vev is
\(\langle \tilde{\nu}_3 \rangle = \frac{C_\nu}{m_{\tilde{\nu}_3}^2} \), where \(\tilde{\nu}_3 \) is the partner of \(\nu_3 \), the heaviest neutrino in our basis. The sneutrinos
are not exactly degenerate since $\tilde{m}_{\nu_e}^2$ will get an additional contribution from one-loop diagrams proportional to λ^2, but this effect is small.

References

[1] Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Lett. B433, 9 (1998); Phys. Lett. B436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998).

[2] Y. Oyama for the K2K Collaboration, Proceeding of the YITP workshop on Flavor Physics, Kyoto, Japan, 1998, [hep-ex/9803014]; David S. Ayres for the MINOS collaboration, Talk given at the 4th KEK Topical Conference on Flavor Physics, Tsukuba, Japan, 29-31 Oct 1996, Nucl. Phys. Proc. Suppl. 59, (1997).

[3] For a review see J. N. Bahcall and M. H. Pinsonneault, Rev. Mod. Phys. 67, 781 (1995).

[4] B.T. Cleveland et al., Nucl. Phys. B38, 47 (1995) (proc. suppl); Kamiokande collaboration, Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996); Gallex Collaboration, W. Hampel et al., Phys. Lett. B388, 384 (1996); SAGE Collaboration, J.N. Abdurashitov et al., Phys. Rev. Lett. 77, 4708 (1996); J.N. Bahcall and M.H. Pinsonneault, Rev. Mod. Phys. 67, 781 (1995); J.N. Bahcall, S. Basu, and M.H. Pinsonneault, Phys. Lett. B433, 1 (1998).

[5] L Wolfenstein, Phys. Rev. D17, 2369 (1978); S. P. Mikheyev and A. Yu. Smirnov, Yad. Fiz. 42, 1441 (1985); Nuovo Cimento C9, 17 (1986).

[6] G. L. Fogli, E. Lisi, and D. Montanino, Phys. Rev. D49, 3426 (1994); [hep-ph/9709473]; N. Hata and P. Langacker, Phys. Rev. D56, 6107 (1997); J.N. Bahcall, P.L. Krastev and A. Yu. Smirnov, [hep-ph/9807216].

[7] V. Barger, R.J.N. Phillips and K. Whisnant, Phys. Rev. D24, 538 (1981); S.L. Glashow and L.M. Krauss, Phys. Lett. B190, 199 (1987); A. Acker, S. Pakvasa, and J. Pantaleone, Phys. Rev. D43, 1754 (1991); V. Barger, R.J.N. Phillips and K. Whisnant, Phys. Rev. Lett. 69, 3135 (1992); P.I. Krastev and S.T. Petcov, Phys. Lett. B285, 85 (1992); Phys. Rev. Lett. 72, 1960 (1994); Phys. Rev. D53, 1665 (1996); S.L. Glashow, P. J. Kernan and L.M. Krauss, report CWRU-P27-98, e-Print Archive: [hep-ph/9808470].

[8] R. Barbieri, L.J. Hall, D. Smith, A. Strumia, N. Weiner, report no. IFUP-TH-25-98, e-Print Archive: [hep-ph/9807235].

[9] Liquid scintillator Neutrino detector collaboration, C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1994); ibid. 77, 3082 (1996); ibid. 81, 1774 (1998)
[10] for a review see J.M. Conrad, talk given at ICHEP-98, Vancouver, Canada, July 1998, [hep-ex/9811009].

[11] Karmen Collaboration, K. Eitel and B. Zeitnitz, talk given at Neutrino-98, Takayama, Japan, June 1998, [hep-ex/9809007].

[12] E. Church et al., [nucl-ex/9706011].

[13] Lawrence J. Hall and Mahiko Suzuki, Nucl. Phys. B231, 419 (1984).

[14] For recent reviews and bounds see Herbi Dreiner, e-Print Archive: [hep-ph/9707435].

Gautam Bhattacharyya, e-Print Archive: [hep-ph/9709395].

R. Barbieri et al., e-Print Archive: [hep-ph/9810232].

[15] M. Nowakowski and A. Pilaftsis, “W and Z boson interactions in supersymmetric models with explicit R parity violation,” Nucl. Phys. B461, 19 (1996), [hep-ph/9508271].

[16] Michael Dine and Ann E. Nelson Phys. Rev. D48, 1277 (1993); Michael Dine, Ann E. Nelson and Yuri Shirman Phys. Rev. D51, 1362 (1995); Michael Dine, Ann E. Nelson, Yosef Nir and Yuri Shirman Phys. Rev. D53, 2659 (1996). For a complete review, see G.F. Giudice and R. Rattazzi, [hep-ph/9801271].

[17] K.S. Babu, Chris Kolda, and Frank Wilczek, Phys. Rev. Lett. 77, 3070 (1996);

[18] Ralf Hempfling, Nucl. Phys. B478, 3 (1996); Tai-fu Feng, e-Print Archive: [hep-ph/9806505].

Anjan S. Joshipura and Sudhir K. Vempati, report no. PRL-TH-98-008, e-Print Archive: [hep-ph/9808232], E.J. Chun, S.K. Kang, C.W. Kim and U.W. Lee, report no. KIAS-P98014, e-Print Archive: [hep-ph/9807327], Eung Jin Chun and Jae Sik Lee, report no. KIAS-P98039, e-Print Archive: [hep-ph/9811201].

[19] G.L. Fogli, E. Lisi, D. Montanino Phys.Rev.D54:2048-2062,1996

[20] G.L. Fogli, E. Lisi, A. Marrone, G. Scioscia, report no.BARI-TH-309-98, e-Print Archive: [hep-ph/9808205]

[21] S. P. Mikheyev and A. Yu. Smirnov, Phys. Lett. B200, 560 (1988); A. Acker, A.B. Balantekin and F. Loreti, Phys. Rev. D49, 328 (1994); S. Bilenky, C. Giunti and C. Kim, Astrop. Phys 4,241 (1996); Mohan Narayan, G. Rajasekaran and S.Uma Sankar, Phys. Rev. D56, 437 (1997); G.L. Fogli, E. Lisi , D. Montanino and G. Scioscia, Phys. Rev. D55, 4385 (1997); Q.Y. Liu, S.T. Petcov, Phys. Rev. D56, 7392 (1997); Osamu Yasuda, report no. TMUP-HEL-9706, e-Print Archive: [hep-ph/9706546].

Phys. Rev. D58, 2091 (1998); Q.Y. Liu and S.T. Petcov Phys.Rev.D56:7392-7411,1997; C. Giunti, C.W. Kim and M. Monteno, Nucl. Phys. B521, 3 (1998); G.L. Fogli, E. Lisi and A. Marrone, Phys. Rev. D57, 5893 (1998); G.L. Fogli, E. Lisi, A. Marrone, and D. Montanino, Phys. Lett. B425,
341 (1998); T. Teshima, T. Sakai and O. Inagaki, report no. CU-TP-98-01, e-Print Archive: hep-ph/9801276; T. Teshima and T. Sakai, report no. CU-TP-98-05, e-Print Archive: hep-ph/9805386; V. Barger, T.J. Weiler, K. Whisnant, report no. MADPH-98-1070, e-Print Archive: hep-ph/9807319; V. Barger and K. Whisnant, report no. FERMILAB-PUB-98-385-T, e-Print Archive: hep-ph/9812273

[22] P. Osland and G. Vigdel, report no.CERN-TH/98-200, e-Print arhive: hep-ph/9806339

[23] Yi Fang Wang for the KamLAND Collaboration, Talk given at 29th International Conference on High-Energy Physics (ICHEP 98), Vancouver, Canada, 23-29 Jul 1998, report no. STANFORD-HEP-98-04.

[24] T. Banks, Y. Grossman, E. Nardi and Y. Nir, “Supersymmetry without R parity and without lepton number,” Phys. Rev. D52, 5319 (1995), hep-ph/9505248

[25] K. Choi, K. Hwang and E.J. Chun, “Atmospheric and solar neutrino masses from horizontal U(1) symmetry,” hep-ph/9811363

[26] Biswarup Mukhopadhyaya, Sourov Roy and Francesco Vissani, report no. MRI-PHY-P980857, e-Print Archive: hep-ph/9808265