Critical Aspects in the Development and Integration of Encapsulated Healing Agents in Cement and Concrete

Stamatoula Papaioannou1*,2, Maria Amenta3, Vassilis Kilikoglou4, Dimitrios Gournis5 and Ioannis Karatasiou4

Received 25 January 2021, accepted 8 April 2021 doi:10.3151/jact.19.301

Abstract

Self-healing cement composites are considered to be an effective solution towards the enhancement of sustainability and service-life of cement and concrete structures, as well as the reduction of repair and maintenance cost. Among the several self-healing technologies, encapsulated healing agents present benefits that include healing of larger cracks and timeless healing potential upon damage. This paper presents a critical overview of the progress made in the development of encapsulated healing agents, along with the main achievements related to their integration in the cement mixtures. Encapsulated healing agents were classified according to their size in two main categories: (i) spherical microcapsules up to 1 mm, and (ii) macrocapsules that include larger spherical capsules (>1 mm) and/or tubular capsules up to 100 millimeters long. The review emphasizes on the performance characteristics of the shell material and the capsule system that are necessary in order to protect the different types of healing agents in the long-term, to provide even distribution and survivability and finally, to ensure efficient triggering and release of the healing agent during crack propagation. The relevant literature is analyzed and discussed according to the above thematic priorities, aiming to locate research gaps and best practices and thus, to enable and facilitate the development of effective encapsulated healing agents that could be scaled-up. To this end, particular emphasis is given on the effect of capsules integration on the properties of both fresh mixtures and hardened cement specimens.

1. Introduction

The development of self-healing cements has been proposed as an innovative approach for enhancing the durability of conventional cement and prolonging the service life of critical concrete structures (Van Tittelboom and De Belie 2013; Huang et al. 2016; De Belie et al. 2018; Danish et al. 2020; Zhang et al. 2020). To this direction, encapsulated healing agents have attracted the interest of research community and industry, due to the long-term protection of the healing agent, until crack formation. During crack propagation, the shell is triggered, and the healing agent is released, activating the healing process.

The long-term protection of the healing agent, the timeless healing ability of capsule-based cement composites and their ability for healing cracks larger than those addressed by the autogenous mechanism (Amenta et al. 2016) have led to several different approaches on the topic (Mihashi and Nishiwaki 2012; De Belie et al. 2018; Ferrara et al. 2018; Painel et al. 2019). This work is focused on the capsule-based self-healing additives for cement, the evolution and the achievements in this topic. The increasing interest of the research community in capsule-based self-healing additives is reflected on the number of experimental papers reported in Fig. 1. The autogenous self-healing (Amenta et al. 2020a) and all other approaches of autonomic self-healing, such as the use of mineral and expansive admixtures (Ahn and Kishi 2010; Roig-flores et al. 2015), superabsorbent polymers (Mignon et al. 2017; Mechtcherine et al. 2021), vascular systems (Li et al. 2020b; De Nardi et al. 2020) and bacteria (Tzivoglou et al. 2016; Chen et al. 2019) were excluded from this review, as well as from the papers used in Fig. 1. Therefore, the first paper considered in Fig. 1 is dated in 1994 while the number of papers until 2010 is limited. However, during that period, the research in self-healing materials in general was vivid, resulting much more research papers in the field, as can be seen in the graph presented by Van Tittelboom and De Belie (2013).

Although several different capsules have been proposed for enhancing the autogenous healing capacity, there is no clear-cut answer for the efficiency of each
type. There are several methodological and technical aspects that need to be further examined, in order to facilitate the establishment of the most suitable technologies and their scale-up for testing in large-scale applications.

The main factors that affect the performance and healing efficiency of encapsulated healing agents and cement composites include:
- The type and reaction mechanism of the healing agent
- The survivability of capsules during the mixing process
- The protection of healing agent in the long-term (watertight and chemically durable shell)
- The triggering efficiency of capsules during crack propagation
- The size, shape and concentration of capsules

This paper aims to present the progress made, as well as the research gaps in the different design and development aspects of capsule-based self-healing cement composites, along with the challenges that need further examination in order to move from the laboratory scale to the market. Particular emphasis is given on the properties of the shell, as well as on issues related to the integration of different capsules in the cement matrix and their effect on the initial performance of cement specimens.

2. Performance of capsules

In order to promote the healing capacity and maintain the original performance characteristics of cementitious material, there are several parameters that need to be considered during the design process of the self-healing system. Besides the physical and chemical properties of the healing agent, emphasis should be given on the stability of the system over time, and thus on the watertightness and durability of the shell that will ensure the long-term reactivity of the healing agent and allow activation of the healing mechanism upon damage. Moreover, the efficient integration of capsules in the cement matrix is a critical subject for research. Due to the variety of the encapsulation methods, further research is required, concerning the effect of capsules’ size distribution, their adhesion strength to the matrix, as well as their concentration on the fresh properties of the mixtures and the mechanical performance of the hardened specimens. Simulation can be a useful tool in this stage for studying the multivariate effect of size, geometry and concentration. In the following sections, the main characteristics of the capsules’ shell used so far in self-healing studies are described, along with the scientific progress and the main findings in this field.

2.1 Protective shell

The development of the shell is a crucial stage of capsules’ preparation, as it has a dual role: to protect the healing agent from early reaction in the long-term, and ensure the efficient release during damage and crack propagation. To meet these requirements, a set of properties should be optimized, including: (i) size, (ii) water tightness (microstructure), (iii) morphology, (iv) mechanical strength and (v) chemical affinity with the matrix. The potential to control and adjust the surface properties and morphological characteristics of capsules has been proved to be significant for enhancing crucial performance characteristics, such as the adhesion of the shell with the matrix, survivability of capsules during mixing and efficiency of the triggering mechanism. So far, several types of capsules with different shell compositions, healing agents, sizes and other properties have been prepared using traditional and innovative encapsulation techniques. In Table 1, the main encapsulation techniques, the corresponding shell materials, as well as the resulted geometry and size of the capsules are categorized according to the type of encapsulation method.

Capsule-based healing agents are classified according to their size in two main categories: (i) microcapsules that concern spherical capsules with diameters up to 1 mm, and (ii) macrocapsules that include larger spherical capsules (>1 mm) and/or tubular capsules up to 100 millimeters long (De Belie et al. 2018). Spherical microcapsules have been extensively studied for self-healing cement applications and have been produced both by chemical and physicochemical techniques. Polymerization techniques, such as interfacial and in situ polymerization and sol-gel reaction are some of the main chemical techniques that have been studied so far. Typical shell materials of this type of capsules include urea formaldehyde, polyurethane, polyurea and silica. Among various physicochemical techniques, complex coacervation and microfluidic encapsulation have been used in order to produce spherical microcapsules. Using complex coacervation, spherical polymeric microcapsules in the range of 300-700 μm, with switchable mechanical properties have been developed, while the use of microfluidic devices allowed the development of acrylic microcapsules with adjustable shell properties.
Table 1 Reported encapsulation techniques for self-healing concrete applications.

Preparation method	Chemical	Physical	Physicochemical	Commercial
Publications merit (%) per category	41.7	22.0	7.1	29.1
Technique	Polymerization, sol-gel reaction	Extrusion, 3D printing, pan coating, spray drying	Complex coacervation, microfluidic fabrication	Injection
Geometry	Spherical	Spherical or tubular	Spherical	Tubular
Size range	5-600 μm	Spherical: 0.6-4 mm diameter, Tubular: up to 100 mm long, 10 mm diameter	70-700 μm	Up to 100 mm long
Shell materials	UF, PU, PUre, poly(phenol-formaldehyde), silica	Polymer modified cement, PMMA, PS, PLA, PVA, SS-PS-L-S, cement	Gelatin, acacia gum, polyacrylate	Glass, ceramic
References	(Yang et al. 2009, 2011; Ge et al. 2011; Dong et al. 2012, 2016, 2017; Li et al. 2013, 2016a, 2016b, 2017, 2020a; Wang et al. 2013, 2015, 2017b, 2018, 2019a, 2020; Song et al. 2013; Gilford et al. 2014; Litina et al. 2014; Perez et al. 2015a, 2015b; Mostavi et al. 2015; Zhou et al. 2015; Giannaros et al. 2016; Tan et al. 2016; Lv et al. 2016a, 2016b, 2020b; Van Stappen et al. 2016; Arce et al. 2017; Al-Ansari et al. 2017, 2019; Kim et al. 2017; Milla et al. 2017; De Nardi et al. 2017; Garcia Calvo et al. 2017; Souza and Al-Tabbaa 2018; Kim et al. 2018; Liu et al. 2018; Mao et al. 2018; Beglarigale et al. 2018; Milla et al. 2019; Sun et al. 2019; Han et al. 2020; Ren et al. 2020, 2020; Sidiq et al. 2020; Xu et al. 2020; Du et al. 2020a)	(Formia et al. 2015b, 2016; Sisomphon et al. 2011; Van Tittelboom et al. 2012; Dong et al. 2018a, 2018b, 2014, 2015; Formia and Irico 2015; Hilloulin et al. 2015; Gruyaert et al. 2016; De Nardi and Irico 2016; De Nardi et al. 2017; Aratijo et al. 2017, 2018; Choi et al. 2017a, 2017b; Alghamri et al. 2018; Fang et al. 2018; Anglani et al. 2019, 2020a, 2020b; Du et al. 2019, 2020b; Oh et al. 2019; Rodriguez et al. 2020; Wu et al. 2020)	(Li et al. 1998; Van Tittelboom et al. 2011a, 2011b, 2013, 2014, 2015, 2016, 2018; Escobar et al. 2013; Tsangouri et al. 2013a, 2013b, 2013c, 2014, 2015, 2019; Maes et al. 2014; Feiteira et al. 2014, 2016a, 2016b; Van Belleghem et al. 2015, 2016a, 2016b, 2018a, 2018b, 2018c, 2019; Kanellopoulos et al. 2015; Qureshi et al. 2016; Heede et al. 2016; Karaiskos et al. 2016; Anbarlouie et al. 2018; Van Mullerm et al. 2018; Hu et al. 2018; Wu et al. 2019; Lv et al. 2020a; Mao et al. 2020)	
Macro-scale capsules include larger capsules that could be either spherical with solid healing agent or tubular, typically used for liquid healing agents. Pan coating is among the most commonly used techniques for spherical macro-capsules. It is the oldest industrial encapsulation process for the production of coated particles, usually larger than 0.5 mm. Polyvinyl alcohol (PVA), polystyrene (PS) and cement (OPC) are some of the materials most commonly used for the formation of spherical macro-capsules’ shell. Regarding the tubular capsules, they are usually made of commercial glass capsules, as well as of polymeric containers produced by 3D printing or extrusion techniques. Except from polymers, polymer modified cement has also been used to produce tubular macrocapsules by extrusion.

In Fig. 2 and Table 2 the occurrence of the different shell materials as well as the relevant literature are summarized, while in the next sections, the performance characteristics of the protective shell are described and discussed according to the published data for both types of capsules (micro- and macro-scale capsules)

2.1.1 Water-tightness and chemical durability

The primary purpose of encapsulation is to avoid the early-stage consumption of the healing agent and ensure the long-term protection, inside a water impermeable shell with enhanced chemical durability. In case of a water-permeable shell, the healing agent may react with moisture, dissolved CO₂, or with unreacted cement and form secondary healing products, with no healing capacity. Therefore, discontinuities, cracks and defects that allow the penetration of moisture or water solutions inside the capsules, have to be eliminated. In some cases, premature consumption of the healing agents has been reported in the literature. For instance, the examination of fractured specimens with embedded PU microcap-

Table 2 Classification of the shell materials tested in self-healing cement applications.

Shell material	Number of papers	Geometry	References
Glass	35	Tubular	(Van Tittelboom et al. 2011a, 2011b, 2013, 2015, 2016, 2018; Escobar et al. 2013; Tsangouri et al. 2013a, 2013b, 2014, 2015, 2019; Maes et al. 2014; Van Tittelboom et al. 2014; Feiteira et al. 2014, 2016a, 2016b; Van Belleghem et al. 2015, 2016a, 2016b, 2018a, 2018b, 2018c, 2019; Kanellopoulos et al. 2015; Qureshi et al. 2016; Heede et al. 2016; Karaiskos et al. 2016; Restuccia et al. 2017; Anbarlouie et al. 2018; Van Mullern et al. 2018; Hu et al. 2018; Wu et al. 2019; Mao et al. 2020)
UF-PU-PUrea	29	Spherical	(Dong et al. 2012, 2016, 2017; Wang et al. 2013, 2017, 2018, 2019, 2020; Song et al. 2013; Litina et al. 2014; Gilford et al. 2014; Mostavi et al. 2015; Zhou et al. 2015; Li et al. 2016b, 2017, 2020a; Tan et al. 2016; Al-Amari et al. 2017; Arecz et al. 2017; Kim et al. 2018, 2017; Liu et al. 2018; Mao et al. 2018; Beglarigale et al. 2018; Bonilla et al. 2018; Milla et al. 2019; Sidiq et al. 2020; Xu et al. 2020; Han et al. 2020)
Silica-based	10	Spherical	(Yang et al. 2011; Litina et al. 2014; Perez et al. 2015a, 2015b, 2017; Choi et al. 2017; Garcia Calvo et al. 2017; Wang et al. 2017; Oh et al. 2019; Ren et al. 2020a)
Gelatin-gum Arabic	7	Spherical	(Giannaros et al. 2016a, 2016b; Kanellopoulos et al. 2016, 2017; Al-Tabbaa et al. 2019; Litina and Al-Tabbaa 2019, 2020)
Cementitious	8	Spherical or tubular	(Sisomphon et al. 2011; Formia and Irico 2015; Formia et al. 2015a, 2016; Anglani et al. 2020a, 2020b; Ren et al. 2020b; Lv et al. 2020a)
PMMA, PLA, PS	8	Tubular	(Hilloulin et al. 2015; Araujo et al. 2017, 2018; Choi et al. 2017a, 2017b; Anglani et al. 2019; Rodriguez et al. 2020; Wu et al. 2020)
PVA	2	Spherical	(Aljahmari et al. 2018; Kim et al. 2019)
Paraffin	3	Spherical	(Peng et al. 2019; Du et al. 2020a, 2020b)
Ethyl cellulose	4	Spherical or tubular	(Gruyaert et al. 2016; Wang et al. 2016; Dong et al. 2018a, 2018b)
Other	11	Spherical or tubular	(Ge et al. 2011; Van Tittelboom et al. 2012; Li et al. 2013, 2016a; Dong et al. 2015; Xiong et al. 2015; De Nardi et al. 2017; Fang et al. 2018; Souza and Al-Tabbaa 2018; Wang et al. 2019a; Lv et al. 2020b)

![Fig. 2 Overview of shell materials tested in self-healing cement applications.](image-url)
sules (29 μm average diameter) under SEM (Beglarigale et al. 2018), showed that the encapsulated sodium silicate was in the form of spherical solid particles inside the capsules. It was concluded that sodium silicate was consumed due to cracks on the surface of the capsules that allowed an air-drying process to take place. Additionally, tubular macrocapsules prepared by extrusion and 3D-printing usually present issues of waterproofing (Anglani et al. 2019, 2020a). According to the procedure followed in these methods, the containers are initially prepared, filled with a liquid healing agent, and subsequently sealed, creating weak points between the interfaces of the containers and the lids. Sand and polymeric coatings are used to overcome issues of watertightness observed in this type of capsules and enhance the bonding with the cement matrix (Anglani et al. 2019, 2020b).

Looking at the effect of the shell properties on water permeability of the capsules, for a given shell material, a correlation between water permeability and shell thickness was observed (Souza and Al-Tabbaa 2018). EDS analysis of the core material from ruptured acrylic microcapsules indicated that shells with thickness below 10 μm were water permeable. More specifically, the water used as dispersion medium of the healing agent had been evaporated and only portlandite and PVA were detected in the core of the capsules. As the shell thickness of the capsules was increased, the water permeability of the shell was decreased.

So far, there is no specific methodology developed for the evaluation of the water tightness of the shell. In tubular macrocapsules with liquid healing agents, the water tightness of the shell is usually evaluated by macroscopical observation of the specimens during controlled damage. If during fracture, fresh liquid healing agent is observed, it is assumed that the shell efficiently protected the core material (Van Belleghem et al. 2018c). On the contrary, in case of microcapsules, the evaluation of water tightness cannot be directly assessed and the availability of active healing agent in the long-term is unknown. This presents an additional difficulty on the comparison and interpretation of the healing capacity results from different research projects, since the load of comparison and interpretation of the healing capacity is unknown. This presents an additional difficulty on the availability of active healing agent over time (Souza and Al-Tabbaa 2018).

Another parameter related to the protection of the healing agent is the chemical durability of the protective shell. During early hydration of cement, a highly alkaline solution (pH values between 12.5 and 13.8) is created inside the pores for prolonged time. During this period, where elevated humidity and pH values occur, the integrity of the shell needs to be verified. In most studies, the capsules are integrated in the cement mixtures without prior evaluation of shell’s chemical durability. The integrity of the capsules is studied a posteriori through examination of the shell morphology, in fractured specimens, by scanning electron microscopy. However, a simple test has been proposed for evaluating the chemical durability of PVA used for the encapsulation of mineral pellets in the range of 0.6-4 mm (Alghamri et al. 2018). According to this, PVA films are immersed in a high alkaline solution and their mass change is calculated after 24 h. It was observed that the films retained their integrity, while according to the weight measurements they were slightly soluble (4% weight loss) in alkaline environment. Although this is an easy, fast and low-cost procedure, it should be noted that for smaller capsules (≤ 1 mm) the feasibility of the above methodology has to be examined.

It is clear that there is no specific methodology to directly evaluate the water-tightness of the shell. The shell can be characterized indirectly by SEM as to its thickness, microstructural defects and morphology of the healing agent. Additionally, the chemical durability of the shell for capsules with diameter ≥ 0.5 mm can be evaluated by immersion of capsules in alkaline solution and mass change examination. The feasibility of this methodology should be evaluated for capsules in the micro-scale.

2.1.2 Mechanical durability - Survivability during mixing

For the successful incorporation of capsules in large-scale cement mixtures, that involve the use of aggregates, their survivability during the mixing process should be guaranteed. The shell of the capsules should exhibit sufficient strength in order to withstand the friction and the stress forces applied during the mixing process, but simultaneously, it should be ruptured during crack propagation in order to activate the healing mechanism. Therefore, an optimum balance between survivability and triggering efficiency should be defined, through the control of the mechanical properties of the shell (De Nardi et al. 2017). The mechanical properties of the shell depend mainly on: i) the material used for the fabrication of the shell, ii) the size and geometry of the capsules, and iii) the shell thickness.

The shell material is the key parameter that determines the behavior of the capsules during the mixing process. This can be easily understood in the case of tubular glass capsules, that have been widely used as containers for liquid healing agents. The brittleness of the glass ensures the efficient damage of the capsules during crack propagation, however the fragility of glass is considered as a serious weakness in the mixing process. In order to increase the resistance of the glass shell during the mixing process, the application of an external sand coating has been proposed (Restuccia et al. 2017). Nevertheless, the effect of this coating on the survivability of the glass capsules has not been evaluated, since the capsules were manually added in the cement mixture at the end of the mixing process.
Tubular polymeric capsules are expected to exhibit better robustness during mixing. PLA, PS, and P(MMA/n-BMA) have been examined as shell materials due to the low glass transition temperature (59, 102, and 59°C respectively) that make them brittle at room temperature and rubbery at elevated temperature (Hilloulin et al. 2015). To take advantage of this property, the capsules can be heated before the mixing process to transit to the rubbery state. It has been found that this is beneficial since almost all the preheated capsules survived the mixing procedure, in contrast to the reference capsules, that only a small portion resisted.

Another approach for enhancing the mechanical performance of the shell is the modification of the capsules’ size, geometry and shell thickness. The parameters that affect the size and shell thickness of capsules prepared by different encapsulation methods, have been studied in several papers. In physical methods, the adjustment of the size, geometry and shell thickness is possible, by modifying the production procedure. For instance, in capsules produced by extrusion this can be achieved by the modification of the conveyor speed of the extruder, which results in capsules of varying shell thickness (Araújo et al. 2017). Similarly, in chemical methods, such as in situ polymerization, the size and shell thickness can be controlled, by modifying the synthetic conditions (agitation rate, reaction temperature, etc.) (Lv et al. 2016b).

Generally, when tubular macrocapsules are used, in most cases, the cement paste is prepared according to the standard procedure and the capsules are placed in a specific point of the mould/specimen during casting (Hu et al. 2018; Van Belleghem et al. 2018a, 2018b; Tsangouri et al. 2019; Anglani et al. 2020b; Lv et al. 2020a). A simple procedure for the calculation of the survivability ratio of macrocapsules has been proposed (Hilloulin et al. 2015; Choi et al. 2017). According to this procedure, the capsules are separated from the mixture by performing a washing test, immediately after the mixing process, and the number of intact capsules is related to the original number of capsules added in the mixture. For larger mixtures, containing a high number of capsules, a testing procedure, based on the setting behavior of concrete, has been proposed (Araújo et al. 2018).

Concerning the survivability of microcapsules, several mixing procedures have been used for their incorporation into a cementitious matrix. The microcapsules can be either added inside the mixer during the mixing process (Du et al. 2019; Tsangouri et al. 2019), or dispersed in the water, prior to mixing (Kanellopoulos et al. 2017). Also, in some cases, the microcapsules are manually added to the mortar mixture, after the mixing process, to avoid their damage. Up to now, the only method to estimate the survivability of microcapsules during the mixing process is the examination of the capsules’ condition in fractured sections of the specimens under SEM. If no fragments of the shell are observed, it is assumed that the microcapsules were successfully integrated into the matrix (Kanellopoulos et al. 2017).

2.2 Triggering mechanism

To ensure the activation of the autonomous healing process, capsules should be efficiently ruptured during crack propagation in order to release the active compounds. The adhesion of the shell to the cement matrix, as well as its mechanical strength are the major properties that determine the triggering efficiency. As discussed in the previous section, the mechanical properties of the shell depend mainly on: i) the material used for the shell fabrication, ii) the size and geometry of the capsules, and iii) the shell thickness. The adhesion strength between the cement matrix and the shell depends on the surface properties of capsules (e.g. wetting behavior and roughness), the material used for the shell and therefore, the resulted chemical affinity of the cement/shell interface. Lack of chemical affinity and adhesion strength may cause insufficient triggering of the healing process.

Figure 3 summarizes and describes the possible scenarios that may result during crack propagation in a self-healing composite (Kanellopoulos et al. 2016; Lv et al. 2020a) and highlights the equilibrium that should be achieved between adhesion and strength of the shell for efficient triggering.

In the case of low adhesion between the shell and the cement matrix, the crack goes around the capsule without affecting their integrity (**Fig. 3a**). For instance, the lack of adhesion between cement matrix and poly(phenol-formaldehyde) (PPF) microcapsules revealed that when cracks came across the capsules, only a small portion was damaged. In most microcapsules, the shell was peeled off from the matrix and the crack

![Fig. 3 Possible scenarios during crack propagation: a) debonding of shell, b) crack deflection, and c) mechanical triggering of the shell.](image-url)
passed around the capsules without activating the healing agent (Lv et al. 2020b). The examination of the fractured specimens under SEM, revealed the presence of small voids in the shell-matrix interface, which caused debonding of the microcapsules from the matrix. By improving the bond between the shell and the matrix in the above example, the probability of efficient activation of the shell is increased, while almost all the capsules in the fractured surface were found ruptured. The surface modification of the PPF microcapsules with phenolic resin [3-(2-Aminoethylamino) propyl] trimethoxysilane (KH-792), resulted in enhanced interfacial adhesion with the cementitious matrix (Lv et al. 2020a) and thus enhancement of the triggering mechanism efficiency.

The extensive knowledge on in situ polymerization facilitated the study of several organic compounds for the development of a protective shell. Polyurea, urea-formaldehyde, and polyurethane is a group of polymers that have been studied as shell materials, providing an extensive feedback on the triggering mechanism and the adhesion strength with cement matrix. Due to the high thermal stability, polyurea was used for the preparation of microcapsules for oil well cement (Mao et al. 2020). The examination of specimens with embedded microcapsules in SEM indicated that the microcapsules were broken, and the shells were not detached from the matrix, suggesting good bonding. Urea-formaldehyde microcapsules exhibited similar fracture behavior. During crack propagation, they were mechanically damaged, releasing effectively the epoxy resin-based agent (Wang et al. 2019). A modification of the above process, using sulfonic acid as polymerization catalyst (Al-Ansari et al. 2017) reduced the adhesion strength at the shell interface, due to the non-hydrated cement particles that agglomerated on the shell surface. Finally, the use of polyurethane capsules embedded in cement substrate (Yang et al. 2009; Beglarigale et al. 2018; Siddiq et al. 2020) demonstrated sufficient interfacial bonding with the matrix, while the majority of capsules were damaged during crack propagation. However, small areas of the shell debonded from the matrix were detected.

Inorganic silica-based shells have been proposed for encapsulating a healing agent, as a more compatible option that could support elevated adhesion strength. Indeed, the examination of silica capsules embedded in cement paste under electron microscope, in conjunction with elemental analysis (EDS), demonstrated a reaction zone confirming the pozzolanic reaction of the silica microcapsules and the cement matrix (Garcia Calvo et al. 2017).

The performance of commercial tubular glass capsules used for liquid healing agents introduces another parameter that controls the triggering mechanism, that of brittleness or brittle behavior. For commercial glass capsules, even if the adhesion of the capsules’ surface to the cement matrix is reduced, the mechanical triggering is achieved due to the brittleness of the glass. As an alternative option for tubular capsules, polymeric (PMMA, PLA, PS) tubes have been proposed and evaluated as containers for liquid healing agents (Hilloulin et al. 2015; Araújo et al. 2017, 2018; Anglani et al. 2019). For enhancing their adhesion to the cement matrix and avoid slipping during crack propagation, an external sand layer is usually added (Araújo et al. 2018; Anglani et al. 2019).

Along with the adhesion strength of the shell, its mechanical performance is an important factor that influences the triggering mechanism. It has been noticed that when a strong shell is formed around the healing agents and high adhesion strength is appeared as well, the elevated toughness of the composite may result in deflection of the crack path and formation of secondary cracks in the opposite side of the crack front (Fig. 3b) (Kanellopoulos et al. 2016). Consequently, to ensure the successful activation of the healing agents, the mechanical performance of the shell, in conjunction with the adhesion strength, have to be optimized and adjusted according to the expected level of damage.

As already mentioned in the previous section, the mechanical performance of the capsules can be controlled by modifying the shell material, size of the capsules and shell thickness. Based on this approach, Lv et al. (2016a) suggested the development of capsules with different levels of load sensitivity, that will be activated depending on the level of damage and the crack width (Lv et al. 2016a). Thus, by producing a batch of capsules of varying size and shell thickness, it is possible to develop a self-healing composite of multi-scale triggering mechanism.

An alternative mechanism to the mechanical triggering is the development of capsules with pH sensitive shell, which is activated by the reduction of the pH inside the cement matrix (Wang et al. 2015, 2016). Compared to the traditional mechanical triggering, this approach lies on the activation by the weathering solutions, assuming that even when nano-cracks are created, the pH of the solution that penetrates will break all the capsules. However, a significant restriction of this approach is the assumption that the weathering solution will have lower pH values of the cement and that this pH will not alter during penetration and diffusion within the cement matrix. Another alternative suggests the use of chloride ions responsive capsules (Xiong et al. 2015), especially for applications in marine environments. The triggering efficiency of Ag-alginate capsules has been studied and the results indicated total disintegration of the shell and release of the healing agent, in the presence of chloride ions (Xiong et al. 2015).

Therefore, for efficient mechanical triggering of capsules during crack propagation, balanced adhesion and mechanical strength of the shell is needed. Adhesion strength of the surface of capsules to the cement matrix is the major factor that determines the triggering mechanism. In cases of chemical bonding of the shell with the cement matrix, elevated adhesion is created,
resulting in efficient triggering. Simultaneously, the mechanical properties of the shell should enable their survivability during mixing and fracture during crack propagation. Finally, chemical triggering has been proposed as an alternative mechanism for the release of the healing agent in cement mixtures made for specific applications, such as marine environment.

2.3 Integration of capsules in the cement matrix

The addition and integration of capsules in a cementitious mixture is expected to modify the initial performance of the matrix in terms of rheological properties of the mixture and mechanical properties of the hardened specimens. The effect of capsules addition on the initial properties of the cement mixture depends mainly on: i) the loading of capsules, ii) the size and distribution of capsules, iii) the interfacial bonding between the capsules and the cement matrix, and iv) the mechanical properties of capsules. Therefore, during the development of a self-healing cement composite the enhancement of the healing potential is studied, aiming to the minimum alteration of the initial performance characteristics of the cement.

The papers published so far that discuss the effect of capsules addition on the rheology and mechanical properties of cement mixtures, concern mainly spherical microcapsules, since this is the only type of capsules that is mixed together with the cement mixture. In contrast, when tubular macrocapsules are used, they are manually integrated in the casted cement mixtures and placed in specific positions, in the middle of the specimens, in order to ensure their integrity and activation during controlled damage. Usually, one or two tubular macrocapsules are placed in each specimen, since they are able to provide large volume of healing agent. So far, the studies related to tubular macrocapsules are mainly focused on the development and optimization of capsules properties and the assessment of their healing efficiency, while the effect of their integration on the cement properties has not been investigated.

2.3.1 Rheology of wet-cement mixtures

The incorporation of microcapsules into a cement mixture is expected to modify the rheological properties of the mixture, since it affects the grain size distribution and the packing density of the mixture. Rheological properties can be monitored either by viscosity measurements (Kanellopoulos et al. 2016) or by the flow table test (Alghamri et al. 2018).

The viscosity of a suspension depends not only on the volume fraction of the added particles, but also on the particle size distribution. According to the Einstein’s viscosity theory, for dilute dispersions of small spherical particles, the viscosity of the suspension is linearly correlated with the volume fraction of the added particles (Equation 1).

\[
\eta = \eta_{\text{medium}} \cdot (1 + 2.5\varphi)
\]

where \(\eta\) is the viscosity of the suspension, \(\eta_{\text{medium}}\) is the viscosity of the medium and \(\varphi\) is the volume fraction of the spherical particles in the suspension.

However, as the volume fraction of the capsules increases, a more inhibited flow field is created, resulting in higher values of viscosity and greater sensitivity to changes in particles’ loading (Faroughi and Hube 2014). A representative study of how the amount of capsules (average diameter of 300 \(\mu m\)) affects the viscosity of the cement mixture is provided in the work of Kanellopoulos et al. (2016). It was found that for loadings up to 12%, there was a slight increase of the viscosity up to 36%. For higher loadings (up to 32%), the viscosity increased more than 200% in comparison to the reference mixture.

Moreover, depending on the size distribution of the added particles, an amount of the matrix, called dead fluid, is trapped between them. As the dead fluid increases, the flowability of the suspension significantly decreases (Fig. 4).

An alternative approach, in order to minimize the effect of the capsules on the rheology of the mixture, is to add the capsules as partial replacement of sand. According to this approach, different amounts of polymeric capsules in the range of 0.6-4 mm diameter were added in cement mixtures, by replacing equal mass of the aggregates (Alghamri et al. 2018). The flow table test was used for studying the workability and consistency of the mixture.
mixtures. By increasing the loading of the capsules, the flow values decreased, since due to the lower density of the capsules in comparison to the sand, the same weight percentage corresponded to higher volume. Subsequently, the increased volume fraction of capsules has inhibited the flowability of the mixture, resulting in lower flow values.

Depending on the type of the shell, the ability of some capsules to absorb water during the mixing process may result in elevated viscosity values. For instance, the use of water permeable shells, such as gelatin/gum Arabic and polyurea may increase the viscosity of the mixture up to 50%, (Giannaros et al. 2016), even for very small amounts of microcapsules (4%). Simultaneously, the rheology of the mixtures may be affected by the damage of the capsules and the uncontrolled release of the healing agent during the mixing process (Alghamri et al. 2018). In this case, part of the initial mixing water is consumed due to reaction with the healing agent and therefore, additional water is required for achieving the same consistency.

Generally, the packing density of the cement mixture, and therefore its rheological properties, are modified by the addition of capsules. The effect of capsules addition on the rheology of the cement mainly depends on the size distribution and concentration of capsules. Moreover, the consumption of part of setting water from the healing agent of the capsules should be considered, as the shell of the capsules usually presents issues of water tightness and low survivability. Therefore, an effective approach in order to avoid the modification of the packing density is to replace part of the sand volume by equal volume of encapsulated healing agents.

Table 3: An overview of the effect of microcapsules on the compressive strength of the cement matrix.

Shell material	Microcapsule size (μm)	Loading of microcapsules	Effect on compressive strength	Reference
Gelatin/gum Arabic	~ 300	1, 2, 3, 4, 8, 16 and 32 % by volume of cement	Negligible effect for 4 and 8% of microcapsules. Up to 24% reduction of compressive strength for higher microcapsules loadings.	(Giannaros et al. 2016a; Kanellopoulos et al. 2016; Litina and Al-Tabbaa 2019)
	500	1, 2, 3 and 4 % by volume of cement	~ 11 % decrease for 1% of microcapsules. Up to 16% decrease for higher microcapsules loadings.	(Giannaros et al. 2016b)
Urea/ formaldehyde	70	0.5, 0.75, 1.0 and 1.25 % by weight of cement	Less than 10% decrease.	(Al-Ansari et al. 2017)
	166	3, 6 and 9 % by weight of cement	Increase of 9% with 3% of microcapsules. Decrease of 35% with 9% of microcapsules.	(Wang et al. 2013)
	132, 180 and 230	2, 4, 6 and 8 % by weight of binder	Decrease of 3.7, 5.6 and 5.9% for 2% of microcapsules and 23.0, 24.9 and 27.6% for 8% of microcapsules.	(Dong et al. 2017)
Polyurea	~ 120	1, 2, 3, 4, 5 and 7.5 % by weight of cement	Up to 12% decrease for 1% microcapsules and 26 and 40% decrease for 7.5% microcapsules, depending on the shell properties (rigid or rubbery).	(Giannaros et al. 2016b; Mao et al. 2020)
Silica	~ 4	1.5 % by weight of cement	Increase of compressive strength	(Yang et al. 2009)
	5-180	5 and 10 % by weight	Decrease of 15% and 30% for 5 and 10% of microcapsules respectively.	(Garcia Calvo et al. 2017)
Polyphenol formaldehyde	250-500	3 % by weight of cement	82.5% of the reference samples. For capsules with surface modification the compressive strength is decreased up to 60.7% of the reference.	(Lv et al. 2020b)
Cement	150	2, 4, 8, 16, 32 % of the total volume	75% of the reference samples for 32% capsules.	(Ren et al. 2020b)
Paraffin	20-700	1.5, 3, 4.5, 6 % by mass ratio	By 1.5 and 3% of microcapsules, the compressive strength is increased.	(Du et al. 2019)
2.3.2 Mechanical properties of cement mixtures

Table 3 summarizes the effect of various types of microcapsules on the compressive strength of the cementitious matrix. So far, the effect of microcapsules in the range of 4-700 μm has been examined. The relevant papers are focused either on the preparation procedure of the macro-scale capsules, or on the assessment of the self-healing efficiency.

In most cases, the addition of microcapsules results in the decrease of compressive strength, except some cases where a slight increase is observed. The alteration of the mechanical properties is attributed to the modification of the packing density of the mixture and the (micro-) filler effect of the capsules. Depending on the size of microcapsules and the grain size distribution of the solid particles in different cement mixtures, there is an optimum amount - at low concentrations - where microcapsules act as filler and fill the empty space within the solids. Thus, the packing density of the matrix is enhanced and the compressive strength of the hardened specimens is increased (Wang et al. 2013; Du et al. 2019). Above that optimum amount, the packing density decreases again, and the matrix of the mixture becomes looser (Giannaros et al. 2016a, 2016b; Dong et al. 2017). The loose microstructure results in the formation of larger pores (Dong et al. 2017) and thus, the compressive strength of the matrix is decreased.

Another parameter that affects the compressive strength of the cement matrix is the mixtures’ viscosity. As the content of microcapsules increases, the mixture’s viscosity is also increased and this may result in the decrease of compressive strength, since higher w/c ratio is required for the same rheology (Giannaros et al. 2016a; Amenta et al. 2017).

The good chemical bonding between the shell and the cement matrix is a parameter that can reduce the negative effect of elevated capsule loading and benefit the overall performance of the composite mixture. For instance, the addition of both types of cement and urea/formaldehyde microcapsules, decreased the compressive strength of the mortar. However, this negative effect was more intense when only urea/formaldehyde microcapsules have been used (Ren et al. 2020b).

During the evaluation of such experimental results, it should be taken into consideration that any compounds released from the capsules which are damaged during the mixing process may modify the hydration process of the composite material, and therefore affect the development of the mechanical strength. For instance, the release of sodium silicate from broken microcapsules resulted in the formation of C-S-H that enhanced the compressive strength of the mixture (Sidiq et al. 2020). Therefore, during the evaluation of the mechanical properties of self-healing cements, the contribution of accidentally released healing agent has to be considered.

Therefore, the mechanical properties of the composite self-healing cement depend on: i) the packing density of the mixture, ii) the viscosity of the fresh mixture, iii) the chemical bonding between the shell of the capsules and the matrix, and iv) the accidental release of healing agent due to fracture of capsules during mixing. The effect of different types of microcapsules in the range of 4-700 μm has been examined, while the effect of macro-scale capsules has not been investigated so far.

2.3.3 Distribution of capsules in the cement matrix

The possibility of a crack to hit a capsule is maximized when a uniform distribution of capsules in the cement matrix is achieved. Although this is a critical parameter for self-healing, there are limited papers dealing with this subject.

Modeling of the distribution, size and amount of capsules could constitute one of the most important tools for designing mixtures with optimum healing capacity. Computational studies have been used in order to investigate the optimum size and percentage of capsules added to cement. Two analytical models have been developed to calculate the probability of a crack to cross a capsule during crack propagation (Zemskov et al. 2011). Depending on the distribution of capsules into the matrix, the optimum loading and size of capsules can be calculated and used as a reference value for further experimental investigation. Moreover, the geometry of capsules is an important parameter that affects the healing efficiency. In a recent study (Fang et al. 2021), the effect of capsules’ size and shell thickness on the healing efficiency has been studied through analytical models developed for this purpose, concerning three common capsule shapes: spherical, tubular, and tubular with spherical tips. The results showed that the self-healing efficiency is proportional to the diameter of the capsules and increases approximately linearly by increasing the aspect ratio of the tubular capsules.

So far, limited experimental results are available about the distribution of capsules in the matrix. X-ray micro-tomography has been used to estimate the distribution of tubular PMMA and glass capsules into concrete specimens (Araújo et al. 2018). According to the 3D rendering of the specimens, the PMMA capsules were not homogeneously dispersed inside the matrix and it was found that due to their floating behavior, they accumulated in the top surface of the specimens. This observation highlights the critical role of surface wetting properties and density on the dispersion of self-healing capsules inside the cement matrix.

Alghamri et al. (2018) followed another methodology to evaluate the distribution of spherical capsules with diameter of 1.2 mm inside the hardened concrete specimens. Cylindrical specimens with embedded capsules were prepared and sawn into equal discs, and the distribution of the capsules was determined and quantified. The dispersion coefficient α was calculated as an exponent of −φ(x) according to the following equation (Torigoe et al. 2003; Oh et al. 2019):

\[\alpha = \frac{1}{\phi(x)} \]
where α is the dispersion coefficient, n is the number of examined regions, x_i the amount of capsules in the arbitrary region and \bar{x} the average amount of capsules in each region.

The dispersibility of the capsules is considered satisfactory when the coefficient value is above 0.5. In the specific research, when 10% of capsules was incorporated in a standard cement mixture, the distribution coefficient was 0.27, while when a high fluidity mixture was used, the value of the coefficient was above the target (>0.5). This method can be facilitated by image analysis software, especially when a high number of capsules is used.

3. Large-scale tests

The existing large-scale tests on self-healing cement composites concern field application of technologies that are close to the market exit, such as microencapsulation of bacterial-based healing systems (i.e., Basilisk) or feasibility studies, such as performance evaluation of vascular systems, which are ideal for tests in large-scale. Evaluation of capsule-based self-healing cement composites in the field is limited, since they are still at laboratory stage.

In the context of M4L research project (2013-2016), a 1.8 m high panel with gelatin-acacia gum capsules (diameters of 300-700 μm) was cast in the UK, aiming to replicate a conventional field application (Davies et al. 2018; Al-Tabbaa et al. 2019). The microcapsules had switchable mechanical properties, and more specifically ‘rubbery’ behaviour when hydrated and brittle when dried, in order to survive during concrete mixing and then get fractured during crack propagation in hardened concrete. Although the development of microcapsules had been investigated by the University of Cambridge, their large-scale production required the collaboration with Lambson chemical manufacturer company, indicating the necessity of up-scaling the capsules production before moving into large-scale trials. According to laboratory experiments, the content of microcapsules was set to 8% of cement volume. Besides the improved healing potential that was reported in terms of crack depth closing, water permeability and strength recovery, the authors have also commented on the condition of the healing agent, in the time of investigation. Microstructural analysis showed that liquid sodium silicate, used as healing agent, may had partially solidified, since the core material was in a solid/crystalline form (Al-Tabbaa et al. 2019). This indicates the importance of controlling the water tightness of the shell in order to maintain the original state and properties of the healing agent and avoid reduced efficiency. Moreover, analytical data on the condition of the healing agent will allow better discrimination between autogenous and autonomic mechanisms, which in many cases act simultaneously.

Furthermore, the large-scale application of encapsulated polyurethane was evaluated by Magnel Laboratory (Belgium), through the construction of reference and self-healing concrete beams (150 mm x 250 mm x 3000 mm), which were controlled damaged under four-point bending test (Van Tittelboom et al. 2016). In this case, 350 glass tubular capsules (50 mm long) were manually filled with polyurethane and positioned with a network of wires in specific points of the mould. In this field trial it became evident that the use of glass capsules has a demanding and time-consuming preparation process, which is not possible to be applied yet in real scale constructions. The main reason is the brittleness of glass that does not allow mixing of capsules with cement, water and aggregates without them been damaged. Further research is conducted in this area, in order to improve the mixing behavior of glass capsules and consequently decrease the preparation time.

The limited number of field applications and large-scale trials indicates the difficulties of scaling-up the different technologies studied at laboratory scale. Among other challenges that are faced in large-scale trials, is the survivability of capsules during the mixing process with gravel for concrete production. The development of capsules with shell properties that withstand the mechanical stresses applied during mixing, is a critical step necessary to avoid crushing of the capsules’ shell and uncontrolled release of the healing agent. The damage of capsules should be eliminated, since apart from useless consumption of the active components, it causes modification of mortar’s composition and properties (Sidiq et al. 2020).

The efficient protection of the healing agent is the primary purpose of capsule-based healing agents and therefore it is considered an essential feature of the capsules. However, so far only a limited number of papers deal with this issue. This raises doubts about the long-term reactivity and efficiency of encapsulated healing agents and also creates an additional difficulty in the comparison of the various capsule-based systems, since the actual content of the active healing agent inside the capsules remains unknown, due to water penetration through the shell and early consumption of the healing agent. As a consequence, before moving to large scale applications, the validation of the efficient protection of the healing agent would be useful and could contribute to the production of more valuable and accurate results.

The number of large-scale self-healing projects is also limited by the lack of standard methodologies for evaluating the healing efficiency of the composite material. Flourishing research in the last decade has led to the development of numerous healing technologies and methodologies for assessing the healing efficiency. However, the large variety of methodologies proposed to assess the efficiency of the various self-healing tech-
nologies makes it necessary to provide a unified framework for the validation and comparative evaluation of the several self-healing technologies. To this direction the members of the RILEM Technical Committee TC 221-SHC has undertaken the initiative in order to summarize the knowledge generated by the international research community, define a common terminology and provide information on the different experimental techniques that have been used to evaluate the healing efficiency (De Rooij et al. 2013).

Among the several techniques used to characterize the healing efficiency of a cementitious material, the recovery of the compressive strength, recovery of stiffness and the characterization of water absorption, water permeability and resistance to chloride penetration are the most widely studied (Huang et al. 2016; Ferrara et al. 2018; Xue et al. 2019; Amenta et al. 2020b, 2021; Van Mullem et al. 2020). For maximizing the reliability of the results, microstructural analysis of the healing products formed inside the crack is considered useful. Regardless of the examined property for evaluating the healing efficiency, a preliminary stage of controlled damage of the specimen is required. The level and type of damage, the age of cracking, the healing duration and the curing conditions are the main variables that affect the healing efficiency. Therefore, for accurate, representative and comparable results, all these parameters should be taken into account. In this context, six inter-laboratory tests have been conducted under the framework of the EU COST Action 15202 SARCOS focused on different self-healing technologies: (i) concrete with mineral additions, (ii) concrete with the addition of magnesium oxide (Amenta et al. 2021), (iii) concrete with crystalline admixtures, (iv) high performance fibre reinforced concrete with crystalline admixtures, (v) concrete with macro-capsules containing a polymeric healing agent (Van Mullem et al. 2020), and (vi) concrete with encapsulated bacteria. The scope of this program was to evaluate the feasibility and repeatability of several healing assessment methodologies, as well as to identify the main challenges for quantifying the healing efficiency in concrete specimens, instead of cement paste or mortar, typically used in laboratory experiments.

4. Concluding remarks

The development of capsule-based self-healing cement composites is a complex and multiparametric research topic that requires comprehensive research in several stages of capsules’ design and development, in order to ensure reproducible performance at different application scales. This has resulted in examination of many different encapsulation approaches.

According to the literature reviewed, capsule-based healing agents can be classified in spherical microcapsules (<1 mm) and macro-capsules.

Microcapsules are produced by chemical (polymerization, sol-gel reaction) and physicochemical techniques, such as complex coacervation and microfluidic encapsulation. Typical shell materials of this type of capsules include urea formaldehyde, polyurethane, polyurea and silica.

Macro-scale capsules are either spherical (>1 mm) or tubular of several millimeters. Pan coating is among the most commonly used techniques for spherical macro-capsules, while tubular capsules are usually made of commercial glass and polymeric containers, produced by 3D printing or extrusion techniques. Polyvinyl alcohol (PVA), polystyrene (PS), cement (OPC) and polymer modified cement (PMC) are some of the materials most commonly used for macro-capsules’ shell.

Although there are both theoretical and experimental data for the different proposed encapsulated healing agents, further research is required before transitioning from laboratory experiments to the market.

The limited field applications conducted so far, confirmed the premature stage of this technology and revealed the main challenges that need to be addressed, regarding both the performance characteristics of the capsules, and the up-scaling of the encapsulation methodology. Simultaneously, the lack of standard methodologies for evaluating the healing efficiency creates an additional difficulty on the exploitation of this technology as the comparison of the several self-healing approaches remains unclear.

The main areas that require further research before moving to large-scale applications can be summarized below as follows:

(1) Water tightness of individual capsules is the main parameter that affects the long-term reactivity of the healing agent. In the majority of the papers cited in this work, the evaluation of water tightness is not directly assessed, while the reactivity, availability and amount of the healing agent in the long-term are unknown. This presents an additional difficulty on the comparison and interpretation of the healing capacity results from different research projects, since the load of active components inside the capsules is not comparable. The development of appropriate characterization techniques for the evaluation of the capsules’ performance is hereby of utmost importance.

(2) For efficient mechanical triggering of capsules during crack propagation, balanced mechanical strength of the shell and adhesion with the cement matrix is needed. Adhesion strength of the surface of the capsules to the cement matrix is the major factor that determines the triggering mechanism. In cases of chemical bonding of the shell with the cement matrix, elevated adhesion is created, resulting in efficient triggering of capsules. Simultaneously, the mechanical properties of the shell should enable their survivability during mixing and fracture during crack propagation.

(3) Survivability of capsules during mixing is of critical importance for the effective use of capsules in large-scale applications. Strength properties of the shell af-
fect the survivability of capsules during mixing and effective triggering mechanism of the healing agent upon damage. However, relevant studies that investigate the behavior of capsules in this stage are limited. Especially for microcapsules, there is no reported methodology for the quantification of the survivability ratio, while the only reported way to estimate their survivability is to examine fractured areas of specimens under SEM.

(4) The incorporation of capsules into the cement matrix affects the rheological properties of the fresh cement and mechanical strength of the hardened mixture. Thus, an optimum combination of capsules’ properties and concentration should be found. Computational studies would be useful in this stage to study the effect of size, geometry, surface properties and percentage of capsules on both healing efficiency and final performance characteristics of the composite material.

It should be noted that besides chemical, mineralogical and mechanical properties, the development of encapsulated healing agents should include further issues, such as complexity of the production process, production cost, environmental impact, as well as health and safety aspects. The above issues have not been addressed in any paper, indicating the premature stage of the capsule-based systems.

Overall, capsule-based self-healing additives offer an easy and reliable solution with several modification alternatives, for the development of self-healing cement and concrete composites. In contrast to other self-healing approaches, such as the vascular system, capsule-based additives do not require any alteration of the traditional building or casting process, and offer a great potential for fast technological growth and exit to large-scale projects in the near future.

Acknowledgements
This work was supported by the project “AKEISTHAI-Self-healing and self-sensing nano-composite conservation mortars” - MIS 5031866, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

References
Ahn, T. and Kishi, T., (2010). “Crack self-healing behavior of cementitious composites incorporating various mineral admixtures.” Journal of Advanced Concrete Technology, 8(2), 171-186.
Al-Ansari, M., Abu-Taqa, A. G., Hassan, M. M., Senouci, A. and Milla, J., (2017). “Performance of modified self-healing concrete with calcium nitrate microencapsulation.” Construction and Building Materials, 149, 525-534.
Al-Ansari, M., Abu-Taqa, A. G., Senouci, A., Hassan, M. M. and Shaat, A., (2019). “Effect of calcium nitrate healing microcapsules on concrete strength and air permeability.” Magazine of Concrete Research, 71(4), 195-206.
Al-Tabbaa, A., Litina, C., Giannaros, P., Kanellopoulos, A. and Souza, L., (2019). “First UK field application and performance of microcapsule-based self-healing concrete.” Construction and Building Materials, 208, 669-685.
Alghamri, R., Kanellopoulos, A., Litina, C. and Al-Tabbaa, A., (2018). “Preparation and polymeric encapsulation of powder mineral pellets for self-healing cement based materials.” Construction and Building Materials, 186, 247-262.
Amenta, M., Karatasios, I., Maravelaki-Kalaitzaki, P. and Kilikoglou, V., (2017). “The role of aggregate characteristics on the performance optimization of high hydraulicity restoration mortars.” Applied Physics A, 122(5), 1-8.
Amenta, M., Karatasios, I., Maravelaki, P., Kilikoglou, V., Maravelaki-Kalaitzaki, P. and Kilikoglou, V., (2016). “Monitoring of self-healing phenomena towards enhanced sustainability of historic mortars.” Journal of Cultural Heritage, 46, 1-10.
Amenta, M., Metaxa, Z. S., Papaioannou, S., Katsiotis, M. S., Kilikoglou, V., Kourkoulis, S. K. and Karatasios, I., (2020b). “Quantitative evaluation of self-healing capacity in cementitious materials.” Material Design & Processing Communications, e152.
Amenta, M., Papaioannou, S., Kilikoglou, V. and Karatasios, I., (2021). “Morphological and chemical characterization of self-healing products in MgO concrete.” In: 3rd RILEM Spring Convention and Conference.
Anbarlouie, M., Mahdikhani, M. and Maleki, A., (2018). “The contribution of encapsulated polyurethane adhesive in improving the static torsional resistances of self-healing concrete beam comparing bonded FRP technique.” Construction and Building Materials, 191, 904-911.
Anglani, G., Antonaci, P., Susana, G., Giorgia, P. and Jean-Marc, T., (2019). “3D printed capsules for self-healing concrete applications.” In: 10th International Conference on Fracture Mechanics of Concrete and Concrete.
Anglani, G., Van Mullem, T., Zhu, X., Wang, J., Antonaci, P., De Belie, N., Tulliani, J.-M. and Van Tittelboom, K., (2020a). “Sealing efficiency of cement-based materials containing extruded cementitious capsules.” Construction and Building Materials, 251, 119039.
Anglani, G., Tulliani, J.-M. and Antonaci, P., (2020b). “Behaviour of pre-cracked self-healing cementitious materials under static and cyclic loading.” Materials, 13(5), 1149.
Araújo, M., Chatrabhuti, S., Gurdebeke, S., Alderete, N., Van Tittelboom, K., Raquez, J.-M., Cnudde, V., Van Vlierberge, S., De Belie, N. and Gruyaert, E., (2018). “Poly(methyl methacrylate) capsules as an alternative to the “proof-of-concept” glass capsules used in self-healing concrete.” Cement and Concrete Composites, 89, 260-271.

Araújo, M., Van Tittelboom, K., Feiteira, J., Gruyaert, E., Chatrabhuti, S., Raquez, J.-M., Šavija, B., Alderete, N., Schlangen, E. and De Belie, N., (2017). “Design and testing of tubular polymeric capsules for self-healing of concrete.” IOP Conference Series: Materials Science and Engineering, 251(1), 012003.

Arce, G. A., Hassan, M. M., Mohammad, L. N. and Rupnow, T., (2017). “Characterization of self-healing processes induced by calcium nitrate microcapsules in cement mortar.” Journal of Materials in Civil Engineering, 29(1), 04016189.

Beglarigale, A., Seki, Y., Demir, N. Y. and Yazuci, H., (2018). “Sodium silicate/polyurethane microcapsules used for self-healing in cementitious materials: Monomer optimization, characterization, and fracture behavior.” Construction and Building Materials, 162, 57-64.

Bonilla, L., Hassan, M. M., Noorvand, H., Rupnow, T. and Okeil, A., (2018). “Dual self-healing mechanisms with microcapsules and shape memory alloys in reinforced concrete.” Journal of Materials in Civil Engineering, 30(2).

Chen, Xin, Yuan, J. and Alazhari, M., (2019). “Effect of microbiological growth components for bacteria-based self-healing on the performance of cement mortar.” Materials, 12, 1303.

Choi, Y.-W., Oh, S.-R. and Choi, B.-K., (2017a). “A study on the manufacturing properties of crack self-healing capsules using cement powder for addition to cement composites.” Advances in Materials Science and Engineering, 2017, 5187543.

Choi, Y. W., Oh, S. R. and Choi, B. K., (2017b). “An experimental study on the manufacturing properties of solid capsules for mixing cementitious composite materials for self-healing of crack.” MATEC Web of Conferences, 138.

Danish, A., Mosaberpanah, M. A. and Salim, M. U., (2020). “Past and present techniques of self-healing in cementitious materials: A critical review on efficiency of implemented treatments.” Journal of Materials Research and Technology, 9(3), 6883-6899.

Davies, R., Teall, O., Pilegis, M., Kanellopoulos, A., Sharma, T. and Davies, R., (2018). “Large scale application of self-healing concrete: Design, construction, and testing.” Frontiers in Materials, 5, 1-12.

De Belie, N., Gruyaert, E., Al-Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., Litina, C., Miljevic, B., Otlawska, A., Ranogajec, J., Roig-Flores, M., Paine, K., Lukowski, P., Serna, P., Tulliani, J. M., Vucetic, S., Wang, J. and Jonkers, H. M., (2018). “A review of self-healing concrete for damage management of structures.” Advanced Materials Interfaces, 5(17), 1-28.

De Nardi, C., Bullo, S., Ferrara, L., Ronchin, L. and Vavasori, A., (2017). “Effectiveness of crystalline admixtures and lime / cement microcapsules in engineered self-healing capacity of lime mortars.” Materials and Structures/Materiaux et Constructions, 50(4), 191.

De Nardi, C., Gardner, D. and Jefferson, D. A., (2020). “Development of 3D printed networks in self-healing concrete.” Materials, 13(6), 1328.

De Rooij, M., Van Tittelboom, K., De Belie, N. and Schlangen, E., (2013). “Self-healing phenomena in cement-based materials.” RILEM State-of-the-art reports, Vol. 11, Technical committee 221-SHC: Self-Healing Phenomena, Dordrecht: Springer.

Dong, B., Ding, W., Qin, S., Fang, G., Liu, Y., Dong, P., Han, S., Xing, F. and Hong, S., (2018a). “3D visualized tracing of rebar corrosion-inhibiting features in concrete with a novel chemical self-healing system.” Construction and Building Materials, 168, 11-20.

Dong, B., Ding, W., Qin, S., Han, N., Fang, G., Liu, Y., Xing, F. and Hong, S., (2018b). “Chemical self-healing system with novel microcapsules for corrosion inhibition of rebar in concrete.” Cement and Concrete Composites, 85(September), 83-91.

Dong, B., Fang, G., Ding, W., Liu, Y., Zhang, J., Han, N. and Xing, F., (2016). “Self-healing features in cementitious material with urea-formaldehyde/epoxy microcapsules.” Construction and Building Materials, 106, 608-617.

Dong, B., Fang, G., Wang, Y., Liu, Y., Hong, S., Zhang, J., Lin, S. and Xing, F., (2017). “Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system.” Cement and Concrete Composites, 78, 84-96.

Dong, B., Han, N., Zhang, M., Wang, X., Cui, H. and Xing, F., (2012). “The study of a self-healing cementitious composite using urea formaldehyde/epoxy resin microcapsule.” In: Proceedings of the 12th International Symposium on Structural Engineering, ISSE 2012, 176-182.

Dong, B., Wang, Y., Ding, W., Li, S., Han, N., Xing, F. and Lu, Y., (2014). “Electrochemical impedance study on steel corrosion in the simulated concrete system with a novel self-healing microcapsule.” Construction and Building Materials, 56, 1-6.

Dong, B., Wang, Y., Fang, G., Han, N., Xing, F. and Lu, Y., (2015). “Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution.” Cement and Concrete Composites, 56, 46-50.

Du, W., Yu, J., Gu, S., Wang, R., Li, J., Han, X. and Liu, Q., (2020a). “Effect of temperatures on self-healing capabilities of concrete with different shell composition microcapsules containing toluene-di-isocyanate.” Construction and Building Materials, 247, 118575.
Du, W., Yu, J., Gu, Y. Y., Li, Y., Han, X. and Liu, Q., (2019). “Preparation and application of microcapsules containing toluene-di-isocyanate for self-healing of concrete.” Construction and Building Materials, 202, 762-769.

Du, W., Yu, J., He, B., He, Y., He, P., Li, Y. and Liu, Q., (2020b). “Preparation and characterization of nano-SiO2/paraffin/PE wax composite shell microcapsules containing TDI for self-healing of cementitious materials.” Construction and Building Materials, 231, 117060.

Escobar, M. M., Vago, S. and Vázquez, A. (2013). “Self-healing mortars based on hollow glass tubes and epoxy-amine systems.” Composites Part B: Engineering, 55, 203-207.

Fang, G., Liu, Y., Qin, S., Ding, W., Zhang, J., Hong, S., Xing, F. and Dong, B., (2018). “Visualized tracing of crack self-healing features in cement/microcapsule system with X-ray microcomputed tomography.” Construction and Building Materials, 179, 336-347.

Fang, X., Pan, Z. and Chen, A., (2021). “Analytical models to estimate efficiency of capsule-based self-healing cementitious materials considering effect of capsule shell thickness.” Construction and Building Materials, 274, 121999.

Faroughi, S. A. and Huber, C., (2014). “Crowding-based rheological model for suspensions of rigid bimodal-sized particles with interfering size ratios.” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(5), 052303.

Feiteira, J., Couvreur, V., Gruyaert, E. and De Belie, N., (2016a). “Resistance to fatigue of self-healed concrete based on encapsulated polymer precursors.” In: Proceedings of Concrete Solutions, 6th International Conference on Concrete Repair, 585-590.

Feiteira, J., Gruyaert, E. and De Belie, N., (2014). “Self-healing of dynamic concrete cracks using polymer precursors as encapsulated healing agents.” In: Proceedings of Concrete Solutions, 5th International Conference on Concrete Repair, 65-69.

Feiteira, J., Gruyaert, E. and De Belie, N., (2016b). “Self-healing of moving cracks in concrete by means of encapsulated polymer precursors.” Construction and Building Materials, 102, 671-678.

Ferrara, L., Van Müllem, T., Alonso, C. M., Antonaci, P., Borg, P. R., Cuenca, E., Jefferson, A., Ng, P.-L., Peled, A., Roig-flores, M., Sanchez, M., Schroefl, C., Serna, P., Snoeck, D., Tulliani, J. M. and De Belie, N., (2018). “Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2.” Construction and Building Materials, 167, 115-142.

Formia, A., Antonaci, P., Irico, S., Canonico, F. and Tulliani, J.-M., (2015a). “Extruded Cementitious Hollow Tubes For Healing Agent Delivery.” ACI Symposium Publication, 305, 14.1-14.10.

Formia, A. and Irico, S., (2015). “The DualCem project: Evaluation of healing agents and development of encapsulation technologies for self-healing concrete.” Cement International, 13, 70-77.

Formia, A., Irico, S., Bertola, F., Canonico, F., Antonaci, P., Pugno, N. M. and Tulliani, J.-M., (2016). “Experimental analysis of self-healing cement-based materials incorporating extruded cementitious hollow tubes.” Journal of Intelligent Material Systems and Structures, 27(19), 2633-2652.

Formia, A., Terranova, S., Antonaci, P., Pugno, N. M. and Tulliani, J.-M. M., (2015b). “Setup of extruded cementitious hollow tubes as containing/releasing devices in self-healing systems.” Materials, 8(4), 1897-1923.

Garcia Calvo, J. L., Perez, G. Carballosa, P., Erkizia, E., Gaitero, J. J. and Guerrero, A., (2017). “Development of ultra-high performance concretes with self-healing micro/nano-additions.” Construction and Building Materials, 138, 306-315.

Ge, S., Wan, F., Lu, J. and Yu, J., (2011). “Molecular self-assembled microcapsules prepared by in situ polymerization technology for self-healing cement materials.” Journal of Inorganic and Organometallic Polymers and Materials, 21(4), 841-845.

Giannaros, P., Kanellopoulos, A. and Al-Tabbaa, A., (2016a). “Assessment of microencapsulated sodium silicate for self-healing of cementitious materials.” International PhD symposium in civil engineering (August), 631-638.

Giannaros, P., Kanellopoulos, A. and Al-Tabbaa, A., (2016b). “Sealing of cracks in cement using microencapsulated sodium silicate.” Smart Materials and Structures, 25(8), 1-12.

Gilford, J., Hassan, M. M., Rupnow, T., Barbato, M., Okeil, A. and Asadi, S., (2014). “Dicyclopentadiene and sodium silicate microencapsulation for self-healing of concrete.” Journal of Materials in Civil Engineering, 26(5), 886-896.

Gruyaert, E., Van Titelboom, K., Suaet, J., Anrijs, J., Van Vlierberge, S., Dubruel, P., De Geest, B. G., Remon, J. P. and De Belie, N., (2016). “Capsules with evolving brittleness to resist the preparation of self-healing concrete.” Materiales de Construccio, 66(323).

Han, T., Wang, X., Li, D., Li, D., Xing, F., Ren, J. and Han, N., (2020). “Stress-strain behaviour and pore structure of microcapsule-based self-healing cementitious composite under triaxial tests.” Construction and Building Materials, 241, 118009.

Heede, P., Van Belleghem, B., Alderete, N., Titelboom, K. and De Belie, N., (2016). “Neutron radiography based visualization and profiling of water uptake in (un)cracked and autonomously healed cementitious materials.” Materials, 9, 311.

Hilloulou, B., Van Titelboom, K., Gruyaert, E., De Belie, N. and Loukili, A., (2015). “Design of polymeric capsules for self-healing concrete.” Cement and Concrete Composites, 55, 298-307.

Hu, Z. X., Hu, X. M., Cheng, W. M., Zhao, Y. Y. and...
Wu, M. Y., (2018). “Performance optimization of one-component polyurethane healing agent for self-healing concrete.” Construction and Building Materials, 179, 151-159.

Huang, H., Ye, G., Qian, C. and Schlangen, E., (2016). “Self-healing in cementitious materials: Materials, methods and service conditions.” Materials and Design, 92, 499-511.

Kanellopoulos, A., Giannaros, P. and Al-Tabbaa, A., (2016). “The effect of varying volume fraction of microcapsules on fresh, mechanical and self-healing properties of mortars.” Construction and Building Materials, 122, 577-593.

Kanellopoulos, A., Giannaros, P., Palmer, D., Kerr, A. and Al-Tabbaa, A., (2017). “Polymeric microcapsules with switchable mechanical properties for self-healing concrete: Synthesis, characterisation and proof of concept.” Smart Materials and Structures, 26(4), 045025.

Kanellopoulos, A., Qureshi, T. S. S. and Al-Tabbaa, A., (2015). “Glass encapsulated minerals for self-healing in cement based composites.” Construction and Building Materials, 98, 780-791.

Karaiskos, G., Tsangouri, E., Aggelis, D. G., Van Tittelboom, K., De Belie, N. and Van Hemelrijck, D., (2016). “Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods.” Smart Materials and Structures, 25(5), 055003.

Kim, D. M., Song, I. H., Choi, J. Y., Jin, S.-W., Nam, K. N. and Chung, C. M., (2018). “Self-healing coatings based on linseed-oil-loaded microcapsules for protection of cementitious materials.” Coatings, 8(11), 404.

Kim, D. M., Yu, H. C., Yang, H. I., Cho, Y. J., Lee, K. M. and Chung, C. M., (2017). “Microcapsule-type self-healing protective coating for cementitious composites with secondary crack preventing ability.” Materials, 10(2), 114.

Kim, J., Ryu, J.-S., Kim, H.-G., Ahn, T., Lee, Y.-S. and Qudoos, A., (2019). “Self-healing phenomena using PVA coated granules for sustainable construction.” Journal of Ceramic Processing Research, 20, 70-76.

Li, V. C., Lim, Y. M. and Chan, Y.-W., (1998). “Feasibility study of a passive smart self-healing cementitious composite.” Composites Part B: Engineering, 29(6), 819-827.

Li, W., Jiang, Z. and Yang, Z., (2017). “Acoustic characterization of damage and healing of microencapsulation-based self-healing cement matrices.” Cement and Concrete Composites, 84, 48-61.

Li, W., Jiang, Z., Yang, Z. and Yu, H., (2016a). “Effective mechanical properties of self-healing cement matrices with microcapsules.” Materials and Design, 95, 422-430.

Li, W., Jiang, Z., Yang, Z., Zhao, N. and Yuan, W., (2013). “Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: Mechanical restoration and healing process monitored by water absorption.” PLoS ONE, 8(11), 1-18.

Li, W., Jiang, Z. and Yu, Q., (2020a). “Multiple damaging and self-healing properties of cement paste incorporating microcapsules.” Construction and Building Materials, 255, 119302.

Li, W., Zhu, X., Zhao, N. and Jiang, Z., (2016b). “Preparation and properties of melamine urea-formaldehyde microcapsules for self-healing of cementitious materials.” Materials, 9(3), 152.

Li, Z., de Souza, L. R., Litina, C., Markaki, A. E. and Al-Tabbaa, A., (2020b). “A novel biomimetic design of a 3D vascular structure for self-healing in cementitious materials using Murray’s law.” Materials & Design, 190, 108572.

Litina, C. and Al-Tabbaa, A., (2019). “Development of sustainable concrete repair materials via microencapsulated agents.” MATEC Web of Conferences, 289, 11002.

Litina, C. and Al-Tabbaa, A., (2020). “First generation microcapsule-based self-healing cementitious construction repair materials.” Construction and Building Materials, 255, 119389.

Litina, C., Kanellopoulos, A. and Al-Tabbaa, A., (2014). “Alternative repair system for concrete using microencapsulated healing agents.” In: Proceedings of Concrete Solutions, 5th International Conference on Concrete Repair, 97-103.

Liu, Y. L., Wang, Y. S., Fang, G., Alrefaei, Y., Dong, B. and Xing, F., (2018). “A preliminary study on capsule-based self-healing grouting materials for grouted splice sleeve connection.” Construction and Building Materials, 170, 418-423.

Lv, L., Guo, P., Liu, G., Han, N. and Xing, F., (2020a). “Light induced self-healing in concrete using novel cementitious capsules containing UV curable adhesive.” Cement and Concrete Composites, 105, 103445.

Lv, L., Guo, P., Xing, F. and Han, N., (2020b). “Trigger efficiency enhancement of polymeric microcapsules for self-healing cementitious materials.” Construction and Building Materials, 235, 117443.

Lv, L., Schlangen, E., Yang, Z. and Xing, F., (2016a). “Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials.” Materials, 9(12), 1-16.

Lv, L., Yang, Z., Chen, G., Zhu, G., Han, N., Schlangen, E. and Xing, F., (2016b). “Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials.” Construction and Building Materials, 105, 487-495.

Maes, M., Van Tittelboom, K. and De Belie, N., (2014). “The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments.” Construction and Building Materials, 71, 528-537.

Mao, Q., Feng, X., Liang, P., Wang, R., Wang, Z., Cui, S. and Lan, M., (2018). “Characteristics of self-healing methods and service conditions.” Materials, 289, 11002.
microcapsules for cementitious composites.” *Journal of Wuhan University of Technology, Materials Science Edition*, 33(5), 1108-1112.

Mao, W., Litina, C. and Al-Tabbaa, A., (2020). “Development and application of novel sodium silicate microcapsule-based self-healing oil well cement.” *Materials*, 13(2), 456.

Mechtcherine, V., Wyrzykowski, M., Schröfl, C., Snoeck, D., Lura, P., De Belie, N., Mignon, A., Van Vlierberge, S., Klemm, A. J., Almeida, F. C. R., Filho, J. R. T., Boshoff, W. P., Reinhardt, H.-W. and Igarashi, S., (2021). “Application of super absorbent polymers (SAP) in concrete construction — update of RILEM state-of-the-art report.” *Materials and Structures*, 54, 80.

Mignon, A., Snoeck, D., Dubrueil, P. and Van Vlierberge, S., (2017). “Crack mitigation in concrete: Superabsorbent polymers as key to success?” *Materials*, 10(3), 237.

Mihashi, H. and Nishiwaki, T., (2012). “Development of engineered self-healing and self-repairing concrete report development of engineered self-healing and self-repairing concrete-state-of-the-art report.” *Journal of Advanced Concrete Technology*, 7, 171-186.

Milla, J., Hassan, M. M., Rupnow, T. and Daly, W. H., (2019). “Measuring the crack-repair efficiency of steel fiber reinforced concrete beams with microcapsulated calcium nitrate.” *Construction and Building Materials*, 201, 526-538.

Milla, J., Hassan, M. M. and Rupnow, T., (2017). “Evaluation of self-healing concrete with microcapsulated calcium nitrate.” *Journal of Materials in Civil Engineering*, 29(12), 1-12.

Mostavi, E., Asadi, S., Hassan, M. M. and Alansari, M., (2015). “Evaluation of self-healing mechanisms in concrete with double-walled sodium silicate microcapsules.” *Journal of Materials in Civil Engineering*, 27(12), 1-8.

Oh, S.-R., Choi, Y. W. and Kim, Y. J., (2019). “Effect of cement powder based self-healing solid capsule on the quality of mortar.” *Construction and Building Materials*, 214, 574-580.

Paine, K., Al-Tabbaa, A., Gardner, D. and Jefferson, T., (2019). “Resilient materials for life: Biomimetic self-healing and self-diagnosing concretes.” In: *Proc. of UKIERI Concrete Congress: The Global Builder*, Jalandhar Punjab India 5-8 March 2019.

Peng, Z., Yu, C., Feng, Q., Zheng, Y., Huo, J. and Liu, X., (2019). “Preparation and application of microcapsule containing sodium potassium tartrate for self-healing of cement.” *Energy Sources, Part A: Recovery, Utilization and Environmental Effects*, 41(21).

Perez, G., Calvo, J., de Miguel, P., Tian, R., Allegro, V., Erkizia, E., Gaitero, J. and Bustos, A., (2017). “Durability of self-healing ultra-high-strength reinforced micro-concrete under freeze-thaw or chloride attack.” *Magazine of Concrete Research*, 69, 1-12.

Perez, G., Erkizia, E., Gaitero, J. J., Kaltzakorta, I., Jiménez, I. and Guerrero, A., (2015a). “Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete.” *Materials Chemistry and Physics*, 165, 39-48.

Perez, G., Gaitero, J. J., Erkizia, E., Jimenez, I. and Guerrero, A., (2015b). “Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive.” *Cement and Concrete Composites*, 60, 55-64.

Qureshi, T. S., Kanellopoulos, A. and Al-Tabbaa, A., (2016). “Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete.” *Construction and Building Materials*, 121, 629-643.

Ren, Y., Abbas, N., Zhu, G. and Tang, J., (2020a). “Synthesis and mechanical properties of large size silica shell microcapsules for self-healing cementitious materials.” *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 587.

Ren, Y., Zhu, G. and Tang, J., (2020b). “Synthesis of cement shell microcapsules via W/O Pickering emulsions.” *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 584 (August 2019), 124073.

Restuccia, L., Reggio, A., Ferro, G. A. and Tulliani, J. M., (2017). “New self-healing techniques for cement-based materials.” *Procedia Structural Integrity*, 3, 253-260.

Rodriguez, C. R., de Mendonça Filho, F. F., Mercuri, L., Gan, Y., Rossi, E., Anglani, G., Antonaci, P., Schlangen, E. and Savija, B., (2020). “Chemo-physico-mechanical properties of the interface zone between bacterial PLA self-healing capsules and cement paste.” *Cement and Concrete Research*, 138, 106228.

Roig-flores, M., Moscati, S., Serna, P. and Ferrara, L., (2015). “Self-healing capability of concrete with crystalline admixtures in different environments.” *Construction and Building Materials*, 86, 1-11.

Sidiq, A., Setunge, S., Gravina, R. J. and Giustozzi, F., (2020). “Self-repairing cement mortars with microcapsules: A microstructural evaluation approach.” *Construction and Building Materials*, 232, 117239.

Sisomphon, K., Copuroglu, O. and Fraaij, A., (2011). “Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar.” *Heron* 56(1-2), 17-36.

Song, Y. K., Jo, Y.-H., Lim, Y.-J., Cho, S.-Y., Yu, H.-C., Ryu, B.-C., Lee, S.-I. and Chung, C.-M., (2013). “Sunlight-Induced self-healing of a microcapsule-type protective coating.” *ACS applied materials & interfaces* 5.

Souza, L. and Al-Tabbaa, A., (2018). “Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials.” *Construction and Building Materials*, 184, 713-722.

Souza, L., Kanellopoulos, A. and Al-Tabbaa, A., (2015). “Synthesis and characterization of acrylate microcapsules for development of cementitious composites.” *Journal of Wuhan University of Technology, Materials Science Edition*, 33(5), 1108-1112.
using microfluidics for self-healing in cementitious material.” 5th International Conference on Self-Healing Materials.

Sun, D., Zhang, H., Zhang, X. and Yang, J., (2019). “Robust metallic microcapsules: A direct path to new multifunctional materials.” ACS Applied Materials and Interfaces, 11(9), 9621-9628.

Tan, N. P. B., Keung, L. H., Choi, W. H., Lam, W.C. and Leung, H. N., (2016). “Silica-based self-healing microcapsules for self-repair in concrete.” Journal of Applied Polymer Science, 133(12), 1-12.

Torigoe, S., Horikoshi, T., Ogawa, A., Saito, T. and Hamada, T., (2003). “Study on evaluation method for PVA fiber distribution in engineered cementitious composite.” Journal of Advanced Concrete Technology, 1(3), 265-268.

Tsangouri, E., Aggelis, D., Tittelboom, K., De Belie, N. and Hemelrijck, D., (2013a). “Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.” The Scientific World Journal, 2013, 424560.

Tsangouri, E., Gilabert, F. A., De Belie, N., Van Hemelrijck, D., Zhu, X. and Aggelis, D. G., (2019). “Concrete fracture toughness increase by embedding self-healing capsules using an integrated experimental approach.” Construction and Building Materials, 218(May), 424-433.

Tsangouri, E., Karaiskos, G., Aggelis, D., Hemelrijck, D. and Deraemaeker, A., (2014). “Healing performance on concrete under mode I fracture by ultrasonic testing using embedded transducers, acoustic emission and digital image correlation method.” 9th International Conference on Structural Dynamics.

Tsangouri, E., Karaiskos, G., Deraemaeker, A., Hemelrijck, D. and Aggelis, D., (2015). “Crack sealing and damage recovery monitoring of a concrete healing system using embedded piezoelectric transducers.” Structural Health Monitoring.

Tsangouri, E., Tittelboom, K., De Belie, N., Aggelis, D. and Hemelrijck, D., (2013b). “Monitoring of autonomous healing process of concrete by acoustic emission and digital image correlation.” 12th International Conference on the Application of Contemporary Non-Destructive Testing in Engineering.

Tsangouri, E., Tittelboom, K., Hemelrijck, D. and De Belie, N., (2013c). “Visualization of the healing process on reinforced concrete beams by application of Digital Image Correlation (DIC).” Materials Characterization, 77, 283-294.

Tzivoglou, E., Wiktor, V., Jonkers, H. M. and Schlangen, E., (2016). “Bacteria-based self-healing concrete to increase liquid tightness of cracks.” Construction and Building Materials, 122, 118-125.

Van Belleghem, B., De Belie, N., Dewancke, J. and Cnudde, V., (2015). “Analysis and visualization of water uptake in cracked and healed mortar by water absorption tests and X-ray radiography.” In: Dehn, F., Beushausen, H.-D., Alexander, M. G. and Moyo, P., Eds. Concrete repair, rehabilitation and retrofitting IV. Proc. of 4th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCCR-4), 5-7 October 2015 Leipzig Germany. London: CRC Press, 45-53.

Van Belleghem, B., Van den Heede, P., Van Tittelboom, K. and De Belie, N., (2016a). “Quantification of the service life extension and environmental benefit of chloride exposed self-healing concrete.” Materials (Basel), 10(1), 5.

Van Belleghem, B., Van Den Heede, P., Van Tittelboom, K. and De Belie, N., (2018a). “Perpendicular-to-crack chloride ingress in cracked and autonomously healed concrete.” MATEC Web of Conferences, 199, 1-5.

Van Belleghem, B., Van den Heedeand, P. and De Belie, N., (2016b). “Resistance to chloride penetration of self-healing concrete with encapsulated polyurethane.” In: N. Ghafoori, P. Claisse, E. Ganjian, Eds. Proc. of 4th International Conference on Sustainable Construction Materials and Technologies, Las Vagas USA 7-11 August 2016, Vol. 3, 1291-1300.

Van Belleghem, B., Kessler, S., Van den Heede, P., Van Tittelboom, K. and De Belie, N., (2018b). “Chloride induced reinforcement corrosion behavior in self-healing concrete with encapsulated polyurethane.” Cement and Concrete Research, 113, 130-139.

Van Belleghem, B., Van Tittelboom, K. and De Belie, N., (2018c). “Efficiency of self-healing cementitious materials with encapsulated polyurethane to reduce water ingress through cracks.” Materiales de Construcción, 68(330), e159.

Van Belleghem, B., Villagrán Zaccardi, Y., Van den Heede, P., Van Tittelboom, K. and De Belie, N., (2019). “Evaluation and comparison of traditional methods and Electron Probe Micro Analysis (EPMA) to determine the chloride ingress perpendicular to cracks in self-healing concrete.” Construction and Building Materials, 227, 116789.

Van Mullem, T., Anglani, G., Dudek, M., Vanoutrive, H., Litina, C., Kwiecień, A., Al-tabbaa, A., Stryszewska, T., Caspeele, R., Van Tittelboom, K., Gruyaert, E., Antonaci, P., De Belie, N., Van Mullem, T., Anglani, G., Dudek, M., Vanoutrive, H., Bumanis, G., Litina, C., Kwiecień, A., Al-tabbaa, A., Bajare, D., Caspeele, R., Van Tittelboom, K., Jean-marc, T. and Gruyaert, E., (2020). “Addressing the need for standardization of test methods for self-healing concrete: an interlaboratory study on concrete with macrocapsules.” Science and Technology of Advanced Materials, 21(1), 661-682.

Van Mullem, T., Van Tittelboom, K., Gruyaert, E., Caspeele, R. and De Belie, N., (2018). “Development of an improved cracking method to reduce the variability in testing the healing efficiency of self-healing mortar containing encapsulated polymers.” MATEC Web of Conferences, 199.

Van Stappen, J., Bultreys, T., Gilabert, F. A., Hillewaere, X. K. D., Gómez, D. G., Van Tittelboom, K., Dhaene,
J., De Belie, N., Van Paepgem, W., Du Prez, F. E. and Cnudde, V., (2016). “The microstructure of capsule containing self-healing materials: A micro-computed tomography study.” Materials Characterization, 119, 99-109.

Van Tittelboom, K., Adesanya, K., Dubruel, P., Van Puyvelde, P., De Belie, N., Van Tittelboom, K., Adesanya, K., Dubruel, P., Van Puyvelde, P. and De Belie, N., (2011a). “Methyl methacrylate as a healing agent for self-healing cementitious materials.” Smart Materials and Structures, 20(12), 125016.

Van Tittelboom, K. and De Belie, N. (2013). “Self-healing in cementitious materials-a review.” Materials, 6, 2182-2217.

Van Tittelboom, K., De Belie, N., Lehmann, F., Grosse, C. U., Van Tittelboom, K., De Belie, N., Lehmann, F. and Grosse, C. U. (2012). “Acoustic emission analysis for the quantification of autonomous crack healing in concrete.” Construction and Building Materials, 28(1), 333-341.

Van Tittelboom, K., De Belie, N., Van Loo, D. and Jacobs, P., (2011b). “Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent.” Cement and Concrete Composites, 33(4), 497-505.

Van Tittelboom, K., Gruyaert, E., Backer, P., Moerman, W. and De Belie, N., (2014). “Self-repair of thermal cracks in concrete sandwich panels.” Structural Concrete, 16.

Van Tittelboom, K., Snoeck, D., Gruyaert, E., Debombat, B., De Belie, N., Wang, J. and De Araújo, A., (2016). “Real-scale testing of the efficiency of self-healing concrete.” In: Proceedings of the 4th International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR 2015, 96-97.

Van Tittelboom, K., Snoeck, D., Vontobel, P., Wittmann, F. H. and De Belie, N., (2013). “Use of neutron radiography and tomography to visualize the autonomous crack sealing efficiency in cementitious materials.” Materials and Structures, 46(1-2), 105-121.

Van Tittelboom, K., Tsangouri, E., Van Hemelrijck, D. and De Belie, N., (2015). “The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns.” Cement and Concrete Composites, 57, 142-152.

Van Tittelboom, K., Van Belleghem, B., Boone, M. N., Van Hoorebeke, L. and De Belie, N., (2018). “X-ray radiography to visualize the rebar-cementitious matrix interface and judge the delay in corrosion through self-repair by encapsulated polyurethane.” Advanced Materials Interfaces, 5(3), 1-10.

Wang, C., Bu, Y., Liu, H. and Guo, S., (2017a). “Preparation and characterization of core-shell oil absorption materials stabilized by modified fumed silica.” Journal of Polymer Engineering, 37(4), 391-399.

Wang, X., Chen, Z., Xu, W. and Wang, X., (2020). “Fluorescence labelling and self-healing microcapsules for detection and repair of surface microcracks in cement matrix.” Composites Part B: Engineering, 184, 107744.

Wang, X., Huang, Y. Y., Huang, Y. Y., Zhang, J., Fang, C., Yu, K., Chen, Q., Li, T., Han, R., Yang, Z., Han, N., Xing, F., Xu, P., Liang, G., Su, D., Ding, X., Li, D., Han, N. and Xing, F., (2019a). “Laboratory and field study on the performance of microcapsule-based self-healing concrete in tunnel engineering.” Construction and Building Materials, 220, 90-101.

Wang, X., Sun, P., Han, N. and Xing, F., (2017b). “Experimental study on mechanical properties and porosity of organic microcapsules based self-healing cementitious composite.” Materials, 10(1), 20.

Wang, X., Xing, F., Zhang, M., Han, N. and Qian, Z., (2013). “Experimental study on cementitious composites embedded with organic microcapsules.” Materials, 6(9), 4064-4081.

Wang, X., Yuan, Y., Huang, Y., Han, T., Wang, W., Liu, J. and Xing, F., (2019b). “Effect of lead sulfate on chloride ion transport properties in cementitious materials.” Journal of Ceramic Processing Research, 20(Special Issue 1), 36-45.

Wang, X., Zhang, M., Xing, F. and Han, N., (2018). “Effect of a healing agent on the curing reaction kinetics and its mechanism in a self-healing system.” Applied Sciences (Switzerland), 8(11), 2241.

Wang, Y., Ding, W., Fang, G., Liu, Y., Xing, F. and Dong, B., (2016). “Feasibility study on corrosion protection of steel bar in a self-immunity system based on increasing OH− content.” Construction and Building Materials, 125, 742-748.

Wang, Y., Fang, G., Ding, W., Han, N., Xing, F. and Dong, B., (2015). “Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete.” Scientific Reports, 5(May), 1-8.

Wu, M., Hu, X., Hu, Z., Zhao, Y., Cheng, W. and Lu, W., (2019). “Two-component polyurethane healing system, Effect of different accelerators and capsules on the healing efficiency of dynamic concrete cracks.” Construction and Building Materials, 227, 116700.

Wu, X., Huang, H., Liu, H., Zeng, Z., Li, H., Hu, J., Wei, J. and Yu, Q., (2020). “Artificial aggregates for self-healing of cement paste and chemical binding of aggressive ions from sea water.” Composites Part B: Engineering, 182, 107605.

Xiong, W., Tang, J., Zhu, G., Han, N., Schlangen, E., Dong, B., Wang, X. and Xing, F., (2015). “A novel capsule-based self-recovery system with a chloride ion trigger.” Scientific Reports, 5, 1-6.

Xu, D., Chen, W. and Fan, X., (2020). “Experimental investigation of particle size effect on the self-healing performance of microcapsule for cemented coral sand.” Construction and Building Materials, 256, 119343.

Xue, C., Li, W., Li, J., Tam, V. W. Y. and Ye, G., (2019). “A review study on encapsulation-based self-healing for cementitious materials.” Structural Concrete, 20(1),
Yang, Z., Hollar, J., He, X. and Shi, X., (2009). “Feasibility investigation of self-healing cementitious composite using oil core/silica gel shell passive smart microcapsules.” In: Proc. of Second International Conference on Smart Materials and Nanotechnology in Engineering, 7493(July), 74934L.

Yang, Z., Hollar, J., He, X. and Shi, X., (2011). “A self-healing cementitious composite using oil core/silica gel shell microcapsules.” Cement and Concrete Composites, 33(4), 506-512.

Zemskov, S. V., Jonkers, H. M. and Vermolen, F. J., (2011). “Two analytical models for the probability characteristics of a crack hitting encapsulated particles: Application to self-healing materials.” Computational Materials Science, 50(12), 3323-3333.

Zhang, W., Zheng, Q., Ashour, A. and Han, B., (2020). “Self-healing cement concrete composites for resilient infrastructures: A review.” Composites Part B: Engineering, 189, 107892.

Zhou, S., Zhu, H., Yan, Z., Ju, J.-W., Chen, Q. and Dong, Z., (2015). “Evaluation of self-healing properties of mortar containing microencapsulated epoxy resin.” International Symposium on Systematic Approaches to Environmental Sustainability in Transportation, 108-118.