Virulence genome analysis of *Pseudomonas aeruginosa* VRFPA10 recovered from patient with scleritis

Nandagopal Murugan a,c, Jambulingam Malathi a,⁎, Vetivel Umashankar b, Hajib Narahari Rao Madhavan a

a Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India
b Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India
c Scholar, School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India

A B S T R A C T

Infectious keratitis is a major cause of blindness, next to cataract and majority of cases are mainly caused by gram negative bacterium *Pseudomonas aeruginosa* (*P. aeruginosa*). In this study, we investigated a *P. aeruginosa* VRFPA10 genome which exhibited susceptibility to commonly used drugs in vitro but the patient had poor prognosis due to its hyper virulent nature. Genomic analysis of VRFPA10 deciphered multiple virulence factors and *P. aeruginosa* Genomic Islands (PAGIs) VRFPA10 genome which correlated with hyper virulence nature of the organism. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers LFMZ01000001-LFMZ01000044.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Pseudomonas aeruginosa
Virulence
Drug resistance
Genomics
Next generation sequencing
Scleritis
Ocular infection

2. Background

Paeruginosa is the predominant gram negative bacterium often associated with ocular infections such as keratitis and scleritis. Scleritis is a severe painful condition caused by inflammatory process in the sclera, which may involve cornea, adjacent episclera and underlying uvea may turn into blindness condition [1]. In the current study, we investigated a 38 years old male patient with history of injury caused by foreign body and he was initially diagnosed and treated for perforated corneal ulcer. But, the patient subsequently developed into scleritis condition, despite appropriate medical management.

3. Materials and methods

The specimen was collected by an ophthalmologist as per standard method [2]. In brief, edge of the ulcer was firmly scraped using Bard Parker blade No. 15 after removal of debris or discharge in the vicinity. Several scrapings were collected and used in a sequence to inoculate culture media. Wherein, “C” curve on blood agar, MacConkey agar and inoculated on Brain Heart Infusion Broth (BHB) initially. Upon confirmation of *Paeruginosa* by biochemical methods, it was subcultured on Mueller Hinton agar plates to assess pigment production and was incubated at 37°C for 24 h.

After 24 h colonies greenish pigmented colonies morphologically resembling *P. aeruginosa* had grown in all the culture plates and identification was using a combination of colonial morphology with bluish
green pigmentation on MHA plate, non lactose fermenting colonies in MacConkey agar, presence of motility, positive reaction for oxidase, catalase, simmon’s citrate medium, nitrate reduction and mannitol sugar test and negative reaction for urease, indole, Methyl Red, Vogues Prosker test, sucrose, lactose and maltose sugar tests were observed [3, 4].

Further the organism was genotypically confirmed up to species level using 16s ribosomal RNA gene based sequencing result against blast tool available at NCBI database revealed 99% homology to all the existing P. aeruginosa strains in the database inclusive of our previously reported strains VRFPAP01-VRFPAP09 [5–10], hence the strain isolated from scleritis was designated as P. aeruginosa VRFPAP10. Irrespective of the fact that P. aeruginosa VRFPAP10 was phenotypically susceptible but the patient finally underwent Therapeutic Penetrating Keratoplasty (TPK). Whole genome study was undertaken by utilizing Ion Torrent (PGM) sequencer with 400-bp read chemistry (Life Technologies) accordace with manufacturer’s instructions. In brief, genomic DNA from VRFPAP10 was isolated from the overnight cultures with DNeasy miniprep kit (Qiagen, Hilden, Germany) and the sequencing protocol was followed as per previous study [5–10].

4. Genomic analysis

It is to be noted that there are no or scanty study available on Virulence factor and molecular mechanism of pathogenesis in P. aeruginosa mediated scleritis [11–14]. Henceforth, we undertook this study to analyze VRFPAP10 whole genome to unveil the genomic nature of virulence mechanism and drug resistance genes which may be involved in drug resistance in in vitro condition but may show susceptibility in in vi tro tests.

Data of 56× coverage was produced after initial quality analysis and reference based assembly with P. aeruginosa VRFPAP04 (CP0008739.2) yielded 44 contigs with 7,728,786 bp (7.7 Mb genome size). The VRFPAP10 genome was published in NCBI under the accession number LFMZ00000000.1. The genes were annotated by NCBI Prokaryotic Genome Reference guide assembly with manufacturer’s instructions. In brief, genomic DNA from VRFPAP10 was isolated from the overnight cultures with DNeasy miniprep kit (Qiagen, Hilden, Germany) and the sequencing protocol was followed as per previous study [5–10].

| Table 1
| Genomic Features of P. aeruginosa VRFPAP10 |
Features	VRFPAP10
Specimen	Scleral scraping
NCBI accession no	LFMZ00000000.1
Genome size	7,728,786 bp
No of contigs	44
No of proteins	5252
No of genes	6431
CRISPR arrays	0
Ribosomal RNA	73
rRNA	80
Noncoding RNA	51
Pseudo genes	501
Frameshifted genes	555
Genome coverage	56×
Reference guided assembly	CP0008739.2
NCBI Accession WGS ID	LFMZ00000000.1
MLST Type	ST-313
Beta lactamas	blaTem
Gene	Ctx-M-15
Total no of phages	ND
Aminoglycoside genes	ahp(3)fol
Fusfomycin	fosA
Phenicol	CatB7
Tetracycline	ND
Trimethoprine	ND
Genomic Island	PAGI-1-2,9 (partial)
Integron	ND
Pathogenic island	ND

ND - Not detected.

We thank the Indian Council of Medical Research (ICMR), the funding agency, for having financially supported for the research work (project code AMR/2011-11-ECD-I).

References:

[1] Narciss Okhravi, Bola Odufowora, Peter McCluskey, Susan Lightman, Scleritis. Surv. Ophthalmol. 4 (2005) 351–363.
[2] Noopur Gupta, Radhika Tandon, Investigative modalities in infectious keratitis. Indi. J. Ophthalmol. (2008) 56–209.
[3] S. Paranjothi, R. Dheepa, Screening for multidrug resistance bacteria Pseudomonas aeruginosa in hospitalized patients in Housr, Krishnagiri (dt). Int J Pharm. Bio. Sci (2010) 1.
[4] J. Malathi, N. Murugan, V. Umashankar, R. Bagyalakshmi, H.N. Madhavan, Draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain from bloodstream infection. Braz. J. Microbiol. (2015). 363.
[5] J. Malathi, N. Murugan, V. Umashankar, R. Bagyalakshmi, H.N. Madhavan, Draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain VRFPAP02, isolated from a septicemic patient in India. Genome Announc. 1 (2013) 13, e00425. .
[6] N. Murugan, J. Malathi, V. Umashankar, H.N. Madhavan, Comparative genomic analysis of multidrug-resistant Pseudomonas aeruginosa clinical isolates VRFPAP06 and VRFPAP07 with VRFPAP01. Genome Announc. 2 (2014) 14, e00410. .
[7] N. Murugan, J. Malathi, V. Umashankar, H.N. Madhavan, Draft genome sequence of blaVeb-1, blaOxa-10 producing multi-drug resistant (MDR) Pseudomonas aeruginosa strain VRFPAP09 recovered from bloodstream infection. Braz. J. Microbiol. (2015).
[8] N. Murugan, J. Malathi, V. Umashankar, H.N. Madhavan, First complete genome sequence of ocular isolate carrying blaVim-2 mediated multi drug resistant (MDR) Pseudomonas aeruginosa VRFPAP04 from India and two draft genome sequence of ocular isolates Pseudomonas aeruginosa VRFPAP03 and VRFPAP05 harboring novel blaDal-m1 and blaGes-9 respectively. Int J Pharm Pharm Sci 12 (2015).

Acknowledgments
[9] N. Murugan, J. Malathi, V. Umashankar, H.N. Madhavan, Resistome and pathogenomics of multidrug resistant (MDR) Pseudomonas aeruginosa VRFPA03, VRFPA05 recovered from alkaline chemical keratitis and post-operative endophthalmitis patient. Gene 578 (2016) 105–111.

[10] N. Murugan, J. Malathi, V. Umashankar, H.N. Madhavan, Unraveling genomic and phenotypic nature of multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04 isolated from keratitis patient. Microbiol. Res. 193 (2016) 140–149.

[11] François Codère, Seymour Brownstein, W. Bruce Jackson, Pseudomonas aeruginosa scleritis. Am J. Ophthalmol. 91 (6) (1981) 706–710.

[12] V. Jain, P. Garg, S. Sharma, Microbial scleritis—experience from a developing country. Eye 23 (2) (2009) 255–261.

[13] Samuel C.M. Huang, Hui-Chun Lai, Chou Lai, The treatment of Pseudomonas keratoscleritis after pterygium excision. Cornea 18 (5) (1999) 608–611.

[14] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, M.V. Larsen, Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67 (2012) 2640–2644.

[15] X.L. Yin, T.W. Hou, S.B. Xu, C.Q. Ma, Z.Y. Yao, W. Li, L. Wei, Detection of drug resistance-associated genes of multidrug-resistant Acinetobacter baumannii. Microb. Drug Resist. 14 (2008) 145–150.

[16] X. Jiang, Z. Zhang, M. Li, D. Zhou, F. Ruan, Y. Lu, Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 50 (2006) 2990–2995.

[17] A.A. Gawish, N.A. Mohammed, G.A. El-Shennawy, H.A. Mohammed, An investigation of type 3 secretion toxins encoding-genes of Pseudomonas aeruginosa isolates in a University Hospital in Egypt. J. Microbiol. Infect. Dis. 3 (2013).