Clinical significance of exosomes as potential biomarkers in cancer

Chi-Hin Wong, Yang-Chao Chen

ORCID number: Chi-Hin Wong (0000-0002-9070-191X); Yang-Chao Chen (0000-0002-0249-3414).

Author contributions: Chen YC and Wong CH wrote the paper.

Conflict-of-interest statement: All the authors declare that they have no competing interests.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: October 25, 2018
Peer-review started: October 25, 2018
First decision: November 28, 2018
Revised: December 27, 2018
Accepted: January 3, 2019
Article in press: January 3, 2019
Published online: January 26, 2019

Abstract

BACKGROUND
Exosomes are microvesicles, measuring 30-100 nm in diameter. They are widely distributed in body fluids, including blood, bile, urine and saliva. Cancer-derived exosomes carry a wide variety of DNA, RNA, proteins and lipids, and may serve as novel biomarkers in cancer.

AIM
To summarize the performance of exosomal biomarkers in cancer diagnosis and prognosis.

METHODS
Relevant publications in the literature were identified by search of the “PubMed” database up to September 11, 2018. The quality of the included studies was assessed by QUADAS-2 and REMARK. For assessment of diagnostic biomarkers, 47 biomarkers and 2240 patients from 30 studies were included. For assessment of prognostic markers, 50 biomarkers and 4797 patients from 42 studies were included.

RESULTS
Our results suggested that these exosomal biomarkers had excellent diagnostic ability in various types of cancer, with good sensitivity and specificity. For assessment of prognostic markers, 50 biomarkers and 4797 patients from 42 studies were included. We observed that exosomal biomarkers had prognostic values in overall survival, disease-free survival and recurrence-free survival.

CONCLUSION
Exosomes can function as potential biomarkers in cancer diagnosis and prognosis.

Key words: Exosome; Biomarker; Cancer; Diagnosis; Prognosis
Core tip: Cancer-derived exosomes carry a wide variety of DNA, RNA, proteins and lipids, which may serve as novel biomarkers in cancer. The current systematic review and meta-analysis summarized the performance of exosomal biomarkers in cancer diagnosis and prognosis. We analyzed 47 diagnostic markers and 50 prognostic markers from 56 studies with various type of cancer. We found that exosomal biomarkers had both diagnostic and prognostic power in many cancers.

Citation: Wong CH, Chen YC. Clinical significance of exosomes as potential biomarkers in cancer. *World J Clin Cases* 2019; 7(2): 171-190

URL: https://www.wjgnet.com/2307-8960/full/v7/i2/171.htm

DOI: https://dx.doi.org/10.12998/wjcc.v7.i2.171

INTRODUCTION

Cancer is the uncontrolled growth of cells and eventually leads to death. Cancer is the second cause of death, contributing to more than 8.8 million deaths every year[1,2]. Among various types of cancer, lung cancer, gastrointestinal cancers (GI cancer), including liver cancer, pancreatic cancer and colorectal cancer, and breast cancer are the most common cause of cancer-related death[3-4]. Although chemotherapy, targeted therapy, surgical recession and radiotherapy can effectively prolong survival of patients, the survival rate of cancer is still very low, especially in GI cancer, being less than 20%[5]. One of the major reasons is the late diagnosis of cancer, in which patients are already with advanced and metastatic tumors. As a result, no therapies can effectively kill the cancer cells. The situation is even worse in pancreatic cancers at distant stage, with 5-year survival rate of only 3%[6].

Since more than half of the patients present with locally advanced or metastatic stage, early diagnosis and early treatment are fundamentally important for better prognosis. Therefore, many tumor makers have been developed, aiming at accurately detecting various types of cancer and monitoring the disease progression. Blood test of the tumor antigens carcinoembryonic antigen, carbohydrate antigen 19-9, and carbohydrate antigen 125 (known as CEA, CA19-9 and CA125 respectively) are commonly used for detection of many cancers, such as GI cancers, ovarian cancer and breast cancer[5-8]. However, the sensitivity of these cancer biomarkers is unsatisfactory[9-12]. Also, the fecal occult blood test of colorectal cancer and the invasion endoscopic detection of gastric and colon cancer represent a great inconvenience to the patients. Therefore, highly sensitive and non-invasive diagnostic markers are urgently needed for early detection of cancer.

Exosomes are microvesicles of 30-100 nm diameter, which are secreted by both normal cells and cancer cells. They are distributed in many body fluids such as blood, saliva and urine, and carry various types of biomolecules, including RNA, proteins and lipids, for inter-cellular communication[13-15]. During cancer development, cancer cells secrete more exosomes, with significant changes in composition[16-18]. These facilitate communication within the tumor environment, acquisition of drug resistance, and metastasis to distant organs[19-21]. Although many potential non-invasive biomarkers have been developed using liquid biopsy, such as serum and urine, studies have found that these biomarkers are commonly located in the exosomes[22-23]. Enriching these exosomal biomarkers could achieve a higher diagnostic and prognostic efficiency[24-25]. Thus, exosomal biomarkers can be novel targets in cancer diagnosis and prognosis.

The objective of this systemic review and meta-analysis is to evaluate the diagnostic and prognostic potential of exosomes in patients with various types of cancer, based on current available data. This information will help in the development of novel non-invasive biomarkers for sensitive and specific diagnosis and prognosis of cancer.

MATERIALS AND METHODS

Search strategy

Electronic literature search was performed using the PubMed database, without any language restriction. Articles related to exosomes in cancer from 2010 to September 11, 2018 were identified using the following key words: “exosome” and “cancer” and...
“diagnosis” or “prognosis”.

Inclusion and exclusion criteria
Articles were reviewed by their titles, key words, abstracts and full text to identify eligible studies. Eligible studies were included based on the following inclusion criteria: (1) The original article was related to exosomal diagnostic or prognostic markers in cancer; (2) At least 10 patients and 10 matched controls were enrolled in the study; (3) For diagnostic markers, enough information, such as specificity and sensitivity, was provided to construct a 2 × 2 table [true positive (TP), true negative (TN), false positive (FP), false negative (FN)]; and (4) For prognostic markers, enough information was provided to estimate the hazard ratios (HRs) and confidence intervals (CIs). The exclusion criteria were as follows: (1) Duplicate articles; (2) Review articles, abstracts, comments, letters, case-report; (3) Fundamental research or animal study; (4) Diagnostic or prognostic marker that was not specific to exosome; (5) Sample size was less than 10; (6) Performance of the biomarker was not statistically significant; or (7) Incomplete information to estimate diagnostic or prognostic accuracy.

Data extraction
Two reviewers (Chi-Hin Wong and Yang-Chao Chen) independently reviewed and extracted the data from the eligible studies according to the listed criteria. Any disagreement was resolved by consensus among the authors. The following data from included studies were extracted: first author’s name, year of publication, sample size, cancer type, country of origin, source of exosome, isolation method of exosome, and detection method of biomarkers. For diagnostic studies, data for the cut-off value of tested targets, sensitivity, specificity, and area under the receiver operating characteristics curve (ROC) were also extracted. For prognostic studies, data for survival analysis, cut-off value, multivariable HR and its 95%CI were extracted. If OR was reported, OR was converted to relative risk using the formula introduced by Zhang and Yu[27]. If either OR or HR was not reported, the method introduced by Tierney et al[28] was used to estimate the HR and its 95%CI from a Kaplan-Meier plot.

Quality assessment
For diagnostic studies, the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the quality of studies for the meta-analysis[29]. Briefly, 14 questions covering the patient selection, patient flow, index test and reference standard test were applied to each study and an answer of “Yes”, “No” or “Unclear” was given to each study. Only answers of “Yes” were given a score. For prognostic study, the quality of studies was assessed according to reporting recommendations for tumor marker prognostic studies (REMARK)[30]. Briefly, a checklist of 20 items was generated, covering patients’ characteristics, samples’ source and storage, assay methods, statistical analysis, and data interpretation. A score was given when the study fulfilled the requirement of each item.

Statistical analysis
The statistical analysis of the diagnostic performance of biomarkers was performed using Meta-DiSc 1.4[31]. The 2 × 2 table of each study was used to assess the pooled sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR). Also, the summary receiver operating characteristic (SROC) curve was plotted; the area under the curve (AUC) was calculated and Q* index was estimated to assess the overall performance in cancer diagnosis. An AUC of 0.5 suggested no diagnostic ability; 0.7-0.8 suggested acceptable diagnostic performance; 0.8-0.9 was considered excellent, and 0.9-1.0 suggested outstanding performance[32]. Q* was defined at a point in which sensitivity and specificity are equal. For statistical analysis of the prognostic performance of biomarkers, forest plots were constructed using the HR and its 95%CI of each biomarker to assess the overall prognostic performance of biomarkers on overall survival (OS), disease-free survival (DFS) and recurrence-free survival (RFS). Graphpad Prism 6 was used in constructing the forest plots. To elevate the heterogeneity between studies, Cochran-Q test and inconsistency index (I²) statistics were calculated[33,34]. P-value of < 0.05 for Cochran-Q test or I² >50% suggested the presence of heterogeneity.

RESULTS

Literature search
Initially, 1233 articles were identified based on the search strategies. Based on title and
Abstract biomarkers could effectively discriminate cancer patients from healthy people respectively (Figure 7). The high sensitivity, specificity and Q* demonstrated that the pooled biomarkers also had a good sensitivity of 0.77 and specificity of 0.79 in detecting prostate cancer (4 studies with 7 biomarkers (Figures 3-7). We observed that the diagnostic OR was 20.35 (Figure 3E). Importantly, many studies did not provide enough information on how the patients were selected and classified. Patients excluded from the 2 × 2 table were often observed in some studies.

The REMARK system was used to assess the quality of prognostic studies (Figure 2B). Most of the studies (> 90%) clearly stated the objective, biomarkers examined, source of exosomes, and methodology of isolation and detection. Also, most of the studies clearly defined the clinical endpoints and the period of the follow-up time. However, details in patient’s characteristics during the follow-up period, such as the use of post-operative adjuvant therapy which significantly affects the OS and DFS, were lacking in most of the studies. Important, some studies did not clearly report the clinicopathological characteristics of the patients enrolled. Also, some studies did not show the relationship of the tested biomarkers to prognostic variables, including tumor stages and tumor differentiation. Twelve prognostic marker studies did not perform univariable or multivariable analysis. Twenty-eight of the enrolled studies reported multivariable analysis in prognostic markers, but only five studies clearly stated the adjustment factors.

Diagnostic markers
Diagnostic markers from 30 studies were included in the meta-analysis (Table 1). More than a half of these studies were related to GI cancers (4 studies were about colon cancer; 5 studies were related to liver cancer; 4 studies were about pancreatic or pancreatobiliary tract cancer; and 4 studies were related to gastric cancer). A total of 2240 patients were included in the meta-analysis, with 12 studies having enrolled < 50 patients, 16 studies having enrolled 50-100 patients, and 6 studies having enrolled > 100 patients. There were 47 diagnostic biomarkers analyzed in the meta-analysis. There were 42.6% of the biomarkers as miRNAs, followed by lncRNAs (36.2%) and proteins (19.1%). Notably, 6 studies analyzed the diagnostic performance of exosomal miR-21 in various types of cancer. Also, 61.3%, 16.1%, 12.9%, 3.2% and 3.2% of the biomarkers were detected in serum, plasma, urine, saliva and bile respectively.

Since a wide range of cancers was studied by different groups, we separated the diagnostic biomarkers according to cancer types and meta-analyzed cancer types with more than three biomarkers studied. Therefore, we focused on colorectal cancer (4 studies with 11 biomarkers), gastric cancer (4 studies with 5 biomarkers), pancreatic cancer (4 studies with 8 biomarkers), liver cancer (4 studies with 7 biomarkers), and prostate cancer (4 studies with 7 biomarkers (Figures 3-7). We observed that the pooled biomarkers had a good specificity of 0.87 but poor sensitivity of 0.57 in colorectal cancer diagnosis (Figure 3A and B). The PLR and NLR were 2.02 and 0.21 respectively (Figure 3C and D). The diagnostic OR was 20.35 (Figure 3E). Importantly, the AUC of the SROC curve was 0.89 and the Q* was 0.82 (Figure 3F). In diagnosis of gastric cancer, we observed that the pooled biomarkers had a good sensitivity of 0.77 and specificity of 0.73 with PLR, NLR, AUC of the SROC curve and Q* of 2.94, 0.32, 9.88, 0.84 and 0.77 respectively (Figure 4). For diagnosis of pancreatic cancer, we also observed the pooled biomarkers had an excellent sensitivity of 0.91 and specificity of 0.90 with PLR, NLR, AUC of the SROC curve and Q* of 6.35, 0.19, 40.71, 0.94 and 0.88 respectively (Figure 5). In liver cancer, the pooled biomarkers had a good diagnostic sensitivity of 0.76 and specificity of 0.80 with PLR, NLR, AUC of the SROC curve and Q* of 3.51, 0.32, 12.45, 0.85 and 0.78 respectively (Figure 6). The pooled biomarkers also had a good sensitivity of 0.77 and specificity of 0.79 in detecting prostate cancer with PLR, NLR, AUC of the SROC curve and Q* of 3.84, 0.28, 17.88, 0.88 and 0.80 respectively (Figure 7). The high sensitivity, specificity and Q* demonstrated that the pooled biomarkers could effectively discriminate cancer patients from healthy people or non-cancer patients.
Figure 1 Literature search process to select studies which evaluated the diagnostic or prognostic performance of exosomal biomarkers in cancer.

Prognostic markers
Prognostic biomarkers from 42 studies were included in the systematic review (Table 2). In total, 4797 patients were represented among the studies, with 7 studies having enrolled < 50 patients, 15 studies having enrolled 50-100 patients, and 20 studies having enrolled > 100 patients. There were 50 prognostic biomarkers analyzed in the systematic review, with 60% of the biomarkers being miRNAs, followed by lncRNAs (18%) and proteins (16%). Also, 50%, 43%, 2.4%, 2.4% and 2.4% of the biomarkers were detected in serum, plasma, bile, ascetic fluid and cell-free effusion supernatant respectively. For the included studies, 92.9%, 26.2% and 9.5% used OS, DFS and RFS respectively as the primary endpoints. In addition, a wide range of cancers was studied by the different groups. More than one-half of the included studies were related to GI cancers (11 studies were about colorectal or colon cancer, 5 studies were related to liver cancer, 5 studies were about pancreatic cancer, and 4 studies were related to gastric cancer). In this meta-analysis, we separated studies according to clinical endpoints and focused on cancer types with more than three biomarkers studied.

For 13 biomarkers with OS reported in colon cancer, the pooled HR was 1.833 with I2 of 62.14% and $P = 0.002$ (Figure 8A). Also, for 5 biomarkers with DFS reported in colon cancer, the pooled HR was 3.035 with I2 of 0.00% and $P = 0.536$ (Figure 8B). Furthermore, for 4 biomarkers with RFS reported in colon cancer, the pooled HR was 1.645 with I2 of 89.61% and $P = 0.000$ (Figure 8C). Apart from colon cancer, for the 4 biomarkers with OS reported in gastric cancer, the pooled HR was 1.836 with I2 of 96.71 and $P = 0.000$ (Figure 9). In addition, for the 4 biomarkers with OS reported in pancreatic cancer, the pooled HR was 1.537 with I2 of 81.50 and $P = 0.001$ (Figure 10). For 5 biomarkers, the pooled HR was 1.828, I2 of 84.48% and $P = 0.000$ for prognosing OS in liver cancer (Figure 11). Also, 9 biomarkers with the pooled HR of 0.895, I2 of 89.50% and $P = 0.000$ were reported to function as prognostic biomarkers of OS in lung cancer (Figure 12). These results demonstrated that exosomes were associated with OS, DFS and RFS in various types of cancer.

DISCUSSION
Exosomes play important roles in cancer development via intercellular communication, promoting cell metastasis and developing drug resistance[19-21]. Importantly, exosomes are frequently secreted by the cancers and are widely distributed in many body fluids. Therefore, they can be detected in blood, saliva and urine. Exosomal biomarkers have better performance in cancer diagnosis and prognosis than liquid biopsy used alone[24-26]. However, the methods of isolating exosomes from liquid biopsy varies between studies. Ultracentrifugation or the use of commercial isolation kits are common methods in extracting exosomes. Ultracentrifugation gives highly pure exosomes but the isolation efficiency is relatively low; whereas, the use of commercial kits maximizes the efficiency with the
loss of purity\(^[95,96]\). Therefore, a standardized protocol of detecting exosomal biomarkers is greatly needed.

There are some limitations of our meta-analysis. We excluded studies that utilized combined biomarkers because this cannot tell the performance of individual biomarkers\(^[97,98]\). For example, a six-microRNA panel was developed for diagnosis of lung cancer but miR-409-3p, miR-425-5p and miR-584-5p were not significantly dysregulated in patients’ exosomes\(^[98]\). This may reduce the diagnostic performance of other biomarkers in the same panel. Since many of the individual biomarkers in the panel were significantly differentially expressed in cancer exosomes, further studies may be needed to explore the correlation of these potential biomarkers with patients’ characteristics and their performances in cancer diagnosis and prognosis.

A further limitation is that we focused on exosomal markers only in cancer diagnosis and prognosis and excluded tissue-based biomarkers from this meta-analysis. In fact, many studies have reported that expression levels in exosomes and in tissues are highly associated\(^[35,66]\). This suggests that many exosomal markers can reflect the situation in cancer cells, and this notion has been developed for potential biomarkers in various cancers. Importantly, this strong association may also suggest that many tissue-based biomarkers can be developed into non-invasive exosomal biomarkers in cancer diagnosis.

Notably, most of the included studies are retrospective, having been performed on stored samples. However, the main disadvantage of the retrospective study is its lack of complete clinicopathological information\(^[30]\), which lowers the quality of study. Despite the above limitations, our meta-analysis indicates that exosomes can be potential biomarkers in cancer diagnosis and prognosis. Further large prospective studies are greatly needed to clarify the performance of exosomal biomarkers in cancer diagnosis and prognosis.
Ref.	Country	Cancer type	Stage	Control Type	Num of Control	Num of patients	Sample Type	Isolation method of exosome	Marker	Detection method	Cut-off	TP	TN	FP	FN
Sun et al [39]	China	Colorectal	All	Healthy	32	92	Plasma	UC	CPNE3	ELISA	0.143	62	27	5	30
Ogata-Kawata et al [34]	Japan	Colorectal	All	Healthy	11	88	Serum	UC	miR-1246	qRT-PCR	1.45	84	10	4	1
Liu et al [37]	China	Colorectal	All	Healthy and benign	320	148	Serum	ExoQuick	CRNDE-h	qRT-PCR	0.02	104	302	18	44
Uratani et al [38]	Japan	Colorectal	All	Healthy	47	26	Serum	ExoQuick	miR-21	qRT-PCR	Youden index	18	38	9	8
Lin et al [40]	China	Gastric	All	Healthy	60	51	Plasma	UC	IncUEG C1	qRT-PCR	NR	45	50	10	6
Zhao et al [41]	China	Gastric	All	Healthy	120	126	Serum	NR	HOTTIP	qRT-PCR	1.72	88	102	18	38
Pang et al [42]	China	Gastric	All	Healthy	37	40	Serum	ExoQuick	ZFAS1	qRT-PCR	NR	32	28	9	8
Yang et al [43]	China	Gastric	All	Healthy	80	80	Serum	ExoQuick	miR-423-5p	qRT-PCR	NR	65	46	34	15
Goto et al [45]	Japan	Pancreatic	All	Healthy and advanced pancreatic cancer	22	23	Serum	ExoQuick	miR-191	qRT-PCR	Distanc e = (1- sensitivit y2) * (1- specificit y2) in ROC curve	18	17	5	5
Melo et al [46]	German y	Pancreatic	All	Healthy	100	190	Serum	UC	GPC1	Flow cytometry	Youden index	190	100	0	0
Que et al [47]	China	Pancreatic	All	Non-PDAC	27	22	Serum	UC	miR-17-5p	qRT-PCR	6.826	20	20	7	2
Machida et al [48]	Japan	Pancreatic	II-IV	Healthy	13	12	Saliva	Total exosome isolation kit	miR-21	qRT-PCR	7.693	18	26	1	4
Xu et al [49]	China	Liver	All	Chronic hepatitis B	68	88	Serum	Total exosome isolation kit	hnRNP H1	qRT-PCR	13.77	8	13	0	4
											5.205	9	10	3	3
									0.67	75	52	16	13		
Authors	Country	Tissue	Stage/Type	Sample Size	Exosome Source	miRNA	PCR Method	Result	R U						
---------	---------	--------	------------	-------------	----------------	--------	-------------	--------	------						
San et al.	China	Liver	All Healthy	56 56	Serum	Total extracellular exosome iso	LINCO0161	NR	42	41	15	14			
Xu et al.	China	Liver	All Chronic hepatitis B	96 60	Serum	Total extracellular exosome iso	ENSGO0002583-32.1	1.345	43	80	16	17			
				60 55			ENSGO0002583-32.1	1.366	40	48	12	15			
				96 60			LINCO0635	1.69	46	75	21	14			
				60 55			LINCO0635	1.532	44	45	15	11			
Goldyasser et al.	Israel	Pan-cancer (not include liver)	Healthy	45 98	Serum	Total extracellular exosome iso	hTERT	NR	61	45	0	37			
Zhang et al.	China	Lung	All Healthy	45 35	Serum		ExoQuick	MALAT-1	NR	21	45	0	14		
				30 77			UC 14-3-3ζ	NR	62	21	9	15			
				15 15	Plasma	UC		ELISA	9	12	3	6			
Li et al.	NR	Ovarian	Benign	21 50	Serum		ephrinA2	ELISA	20.4	ng/L	44	17	4	6	
Meng et al.	NR	Ovarian	All Benign	20 163	Serum	Total extracellular exosome iso	miR-20a	PCR+	Youden index	135	18	2	28		
						miR-20b	qRT-PCR			86	20	0	77		
						miR-100				51	20	0	112		
Pan et al.	German	Ovarian	Healthy	29 106	Plasma		ExoQuick	MALAT-1	NR	21	45	0	14		
						MALAT-1	NR	62	21	9	15				
						UC 14-3-3ζ	ELISA	9	12	3	6				
Bryzgunova et al.	Russia	Prostate	All Healthy	20 14	Urine		UC			12	13	7	2		
Wang et al.	China	Prostate	II-IV Healthy	30 34	Plasma	Total extracellular exosome iso	SAP30L-AS1	qRT-PCR	Youden index	65	24	5	41		
						SCHLAP1			66	21	8	40			
									68	25	4	38			
									59	20	9	47			
Øverbøye et al.	NR	Prostate	All Healthy	15 16	Urine		UC			12	16	0	3		
									14	16	0	1			
Işın et al.	NR	Prostate	All BPH	49 30	Urine	Urine extracellular exosome RNA isolation kit	LincRNA-p21	qRT-PCR	Youden index	0.181	20	31	18	10	
Wang et al.	China	Laryngeal	All Vocal cord polyps	49 52	Serum		ExoQuick	malTAIR	qRT-PCR	0.043	36	40	9	16	
							HOTAIR			0.032	48	28	21	4	
Alegre et al.	NR	Melanoma	NR Healthy	25 53	Serum		ExoQuick	exosomal	ELISA	1.4	μg/L	42	20	5	11
							RNA	ELISA	0.015	μg/L	42	20	5	11	
Manterola et al.	France	GBM	NR Healthy	30 50	Serum		ExoQuick	RNU6E	qRT-PCR	0.372	33	20	10	17	
Chen et al.	Taiwan	Bladder	All hernia	81 140	Urine		UC	TACPST	ELISA	2.47	ng/mL	103	62	19	37
UC: Ultracentrifugation; NR: Not reported.

Table 2 Studies included for meta-analysis of exosomal biomarkers in cancer prognosis

Ref.	Period	Country	Sample Size	Cancer Type	Stage	Sample	Isolation method of exosome	Marker	Detection method	Cut-off value	Survival analysis	HR (95%CI)
Peng et al[c]	2008-2014	China	108	Colorectal	All	Serum	Total exosome isolation kit	miR-548c-5p	qRT-PCR	NR	OS	3.40 (1.02-11.27)
Sun et al[c]	2012-2017	China	92	Colorectal	All	Plasma	UC CPNE3	≥ 0.143 PR/PR exosome	ELISA	OS	DFS	3.0 (1.0-8.9)
Tsukamoto et al[c]	2002-2012	Japan	326	Colorectal	II-IV	Plasma	UC miR-21	qRT-PCR	≥ median	OS	DFS	2.28 (1.81-5.74)
Liu et al[c]	2007-2010	China	148	Colorectal	All	Serum	ExoQuick CRNDE-h	miR-4772-3p	qRT-PCR	> 0.02	OS	2.00 (1.269-3.154)
Liu et al[c]	2006-2011	United States	84	Colorectal	II-III	Serum	ExoQuick	miR-21	qRT-PCR	≥ 27.88	OS	6.19 (1.50-25.5)
Liu et al[c]	2013-2014	China	158	Colorectal	All	Plasma	UC lncRNA GASS	qRT-PCR	≥ median	OS	DFS	5.48 (2.49-12.1)
Gao et al[c]	2011-2014	China	108	Colorectal	All	Serum	ExoQuick	91H	qRT-PCR	≥ 0.85	RFS	7.14 (1.23-21.35)
Yan et al[c]	NR	NR	168	Colorectal	All	Serum	Total Exosome Isolation kit	miR-6803	qRT-PCR	NR	OS	2.93 (1.35-6.37)
Li et al[c]	2013-2015	China	85	Colorectal	III	Plasma	ExoCapTM GPC1	Flow cytometry	> mean	OS	1.89 (1.23-2.89)	
Silva et al[c]	2003-2009	Spain	91	Colorectal	All	Plasma	UC Exosome	Flow cytometry of EpCAM	High	OS	0.87 (0.57-1.32)	
Matsumura et al[c]	1992-2007	Japan	209	Colorectal	All	Serum	UC miR-19	qRT-PCR	> mean	O	DFS	2.49 (1.12-6.61)
Yan et al[c]	2012-2015	China	142	Colorectal	All	Serum	Total Exosome Isolation kit	miR-6869-5p	qRT-PCR	< mean	OS	2.32 (1.08-4.99)

[1] Biliary obstruction
Authors	Year	Country	Type	Tissue	Fluid	Methods	Target(s)	p-Value	Stage	Follow-up	N	OS	Hazard Ratio	CI	DFS	
Santaus and al	2009-2013	Spain	Colon	I-III	Plasma	UC, miR-141, qRT-PCR	High	1.89 (0.93-3.83)								
Zhao et al	2011-2012	China	Gastric	All	Serum	HOTTIP, qRT-PCR	> 1.72	OS	2.037 (1.085-3.823)							
Liu et al	2012-2017	China	Gastric	All	Serum	Total Exosome Isolation kit, miR-451, qRT-PCR	> median, 5yr-OS	4.344 (2.685-5.721)								
Yang et al	NR	China	Gastric	All	Serum	ExoQuick, miR-423-5p, qRT-PCR	> median	DFS	1.93 (1.25-2.99)							
Kumata et al	2006-2013	Japan	Gastric	All	Plasma	UC, miR23b, qRT-PCR	> 0.78	OS	0.57 (0.370-0.78)							
Zhou et al	2010-2014	China	Pancreatic	All	Plasma	ExoQuick, miR-125b-5p, qRT-PCR	< median	OS	0.285 (0.108-0.75)							
Li et al	2012-2016	China	Pancreatic	All	Plasma	circPDE8A, qRT-PCR	> median	OS	1.764 (1.064-2.925)							
Goto et al	2013-2015	Japan	Pancreatic	All	Serum	ExoQuick, miR-21, qRT-PCR	> median	OS	4.071 (1.832-9.996)							
Takahashi et al	2013-2017	Japan	Pancreatic	I-II	Plasma	UC, miR-451a, qRT-PCR	< 1.75	OS	3.20 (1.07-11.94)							
Xu et al	2012-2016	China	Liver	All	Serum	Total Exosome Isolation kit, ENSG00000258332.1 LINC00635, miR-638, qRT-PCR	> 1.845	OS	2.22 (1.34-3.68)							
Shi et al	2008-2011	China	Liver	All	Serum	Total Exosome Isolation kit, miR-638, qRT-PCR	NR, 3yr-OS	3.52 (1.37-6.02)								
Liu et al	2012	China	Liver	All	Serum	ExoQuick, miR-125b, qRT-PCR	< median	RFS	0.14 (0.07-0.29)							
Xue et al	2015-2017	China	Liver	All	Serum	Total Exosome Isolation kit, miR-93, qRT-PCR	NR, OS	1.47 (0.96-2.25)								
Liu et al	2008-2013	China	Hepatoblastoma (children)	All	Serum	ExoQuick, miR-21, qRT-PCR	NR, EFS	1.434 (1.257-2.766)								
Matsumoto et al	2011-2012	Japan	Esophageal	All	Plasma	Total Exosome Isolation kit, exosome AChE activity	< 600 x 108/mL	OS	2.177 (1.085-3.605)							
Lu et al	2007-2015	China	Nasopharyngeal	All	Plasma	UC, miR-9, qRT-PCR	NR, OS	1.5 (1.03-2.18)								
Ye et al	2011-2013	China	Nasopharyngeal	II-IV	Serum	protein concentration BCA assay	> 11 μg/mL	DFS	214.22 (139.27-329.49)							
Huang et al	NR	NR	Prostate	All	Plasma	ExoQuick, miR-1290, qRT-PCR	> mean	OS	1.79 (1.30-2.48)							
Tang et al	NR	NR	Ovarian	All	Ascitic fluid	UC, E-cadherin	> 10 μg/mL	OS	1.82 (0.53-3.58)							
Vaksman et al	1998-2003	Ovarian	III-IV	Effusion supernatant	UC, Exosome	miR-21, qRT-PCR	> mean	OS	1.70 (1.1-2.59)							
Study	Years	Location	Tissue	Method	miRNA	Assay	Cut-off	OS (95% CI)	DFS (95% CI)							
---------------------	-----------	----------	--------	--------	-------	-------------	---------	-------------	--------------							
Kanaoka et al.	2012-2017	Japan	Lung I-III	Plasma	UC	miR-451a	qRT-PCR	> 1.45	6.06 (2.61-15.94)							
									2.55 (1.44-4.65)							
Liu et al.	2012-2014	China	Lung	All	Plasma	miR-23b-3p	qRT-PCR	High	2.42 (1.45-4.04)							
						miR-21-5p	qRT-PCR	OS	2.12 (1.28-3.49)							
						miR-10b-5p	qRT-PCR	OS	2.22 (1.18-4.16)							
Liu et al.	2012-2014	China	Lung	All	Plasma	miR-23b-3p	qRT-PCR	OS	2.12 (1.45-4.04)							
						miR-21-5p	qRT-PCR	OS	2.12 (1.28-3.49)							
						miR-10b-5p	qRT-PCR	OS	2.22 (1.18-4.16)							
Sandfeld et al.	2011-2014	Denmark	Lung	All	Plasma	/	CD171	Exosome AChE activity	1.72 (1.05-2.83)							
Manier et al.	2006-2008	France	Multiple	All	Plasma	let-7b	let-7b	< median	2.83 (1.07-7.50)							
			myeloma						1.90 (1.22-2.94)							
									2.01 (1.30-3.11)							
									2.34 (1.52-3.61)							
									3.54 (2.21-5.68)							
									2.41 (1.06-6.03)							
									1.76 (1.15-2.69)							
									2.21 (1.41-3.47)							
									2.29 (1.48-3.55)							
									4.52 (1.57-12.98)							
									2.76 (1.79-4.26)							
									3.11 (1.52-3.36)							
Alegre et al.	NR	NR	53	Melanoma	Serum	MIA	ELISA	2.5 μg/L	1.28 (0.65-2.51)							
									4.4 (3.1-9.6)							
Lan et al.	2011-2012	China	60	Glioma	All	miR-301a	qRT-PCR	> median	2.40 (1.24-4.66)							
						qRT-PCR		OS	1.55 (0.80-3.01)							
Ge et al.	NR	China	35	Cholangio carcinoma	Bile	ENST0000588480.1	qRT-PCR	> median	9.1 (1.8-166.1)							
Fujii et al.	2005-2014	Japan	108	Renal cell	I-III	miR-224	qRT-PCR	> median	9.1 (1.8-166.1)							

UC: Ultracentrifugation; OS: Overall survival; DFS: Disease-free survival; RFS: Recurrence free survival; EFC: Event-free survival; NR: Not reported.
Figure 3 Forest plot of pooled (A) sensitivity, (B) specificity, (C) positive likelihood ratio, (D) negative likelihood ratio, (E) diagnostic odds ratio and (F) SROC curve of exosomal biomarkers in diagnosis of colon cancer. SROC: Summary receiver operating characteristic.

Figure 4 Forest plot of pooled (A) sensitivity, (B) specificity, (C) positive likelihood ratio, (D) negative likelihood ratio, (E) diagnostic odds ratio, and (F) WJCC
Figure 5 Forest plot of pooled (A) sensitivity, (B) specificity, (C) positive likelihood ratio, (D) negative likelihood ratio, (E) diagnostic odds ratio and (F) SROC curve of exosomal biomarkers in diagnosis of pancreatic cancer. SROC: Summary receiver operating characteristic.
Figure 6 Forest plot of pooled (A) sensitivity, (B) specificity, (C) positive likelihood ratio, (D) negative likelihood ratio, (E) diagnostic odds ratio, and (F) SROC curve of exosomal biomarkers in diagnosis of liver cancers. SROC: Summary receiver operating characteristic.

Figure 7 Forest plot of pooled (A) sensitivity, (B) specificity, (C) positive likelihood ratio, (D) negative likelihood ratio, (E) diagnostic odds ratio, and (F) SROC curve of exosomal biomarkers in diagnosis of prostate cancers. SROC: Summary receiver operating characteristic.
Figure 8 Forest plot evaluating the effect of exosomal markers on overall survival (A), disease-free survival (B), and (C) recurrence-free survival of patients with colon cancer.

Model	Study name	Statistics for each study	Hazard ratio and 95%CI						
		Hazard ratio	Upper limit	Lower limit	0.01	0.10	1.00	10.00	100.00
Peng miR-548c-5p	3.400	11.304	1.023						
Sun CNP63	3.000	8.950	1.606						
Tsukamoto miR-21	2.863	5.740	1.306						
Liu DORR-h	2.009	3.533	1.269						
Liu miR-4772-3p	6.190	25.320	1.510						
Liu IncRNA GAS5	0.265	0.855	0.083						
Liu miR-221	2.141	3.054	1.501						
Yan miR-8003	2.930	6.368	1.349						
Li GFC1	1.960	3.930	0.233						
Silva Exosoma	0.870	3.124	0.572						
Matsumura miR-19	2.490	6.610	0.938						
Yan miR-6869-3p	1.320	4.067	1.079						
Sentaussaqui miR-141	1.980	3.835	0.931						

Figure 9 Forest plot evaluating the effect of exosomal markers on overall survival of patients with gastric cancer.

Model	Study name	Statistics for each study	Hazard ratio and 95%CI						
		Hazard ratio	Upper limit	Lower limit	0.01	0.10	1.00	10.00	100.00
Sun CNP63	2.500	5.590	1.118						
Tsukamoto miR-21	2.340	4.680	1.130						
Liu miR-4772-3p	5.480	12.090	2.486						
Yan miR-8003	3.260	6.811	1.560						
Matsumura miR-19	2.490	6.610	0.938						

Figure 10 Forest plot evaluating the effect of exosomal markers on overall survival of patients with pancreatic cancer.

Model	Study name	Statistics for each study	Hazard ratio and 95%CI						
		Hazard ratio	Upper limit	Lower limit	0.01	0.10	1.00	10.00	100.00
Zhao HOTTIP	2.037	3.824	1.085						
Liu miR-451	4.344	5.721	3.298						
Yang miR-433-5p	1.930	2.985	1.248						
Kurnata miR-23b	0.570	0.780	0.417						

Wong CH et al. Clinical significance of exosomes

WJCC | https://www.wjgnet.com
January 26, 2019 | Volume 7 | Issue 2 | 185
ARTICLE HIGHLIGHTS

Research background
Exosomes, which are widely distributed in body fluids, including blood, bile, urine and saliva, are microvesicles of 30-100 nm diameter in size. Cancer-derived exosomes carry a wide variety of DNA, RNA, proteins and lipids, and may serve as novel biomarkers in cancer.

Research motivation
Exosomes may function as exosomal biomarkers in cancer diagnosis and prognosis.

Research objectives
To summarize the performance of exosomal biomarkers in cancer diagnosis and prognosis.

Research methods
Relevant studies in the literature were identified using the PubMed database. QUADAS-2 and REMARK were used to assess the quality of the included studies. For diagnostic biomarkers, 47 biomarkers and 2240 patients from 30 studies were included.

Research results
These exosomal biomarkers had excellent diagnostic ability in various types of cancer, with good sensitivity and specificity. A total of 50 biomarkers and 4797 patients from 42 studies were included for the prognostic markers. We observed that exosomal biomarkers had prognostic values in overall survival, disease-free survival and recurrence-free survival.

Research conclusions
Exosomes could be potential biomarkers in cancer diagnosis and prognosis.

Research perspectives
Further large prospective studies are needed to clarify the performance of exosomal biomarkers in cancer diagnosis and prognosis, through exosomes can be potential biomarkers in cancer diagnosis and prognosis.

ACKNOWLEDGEMENTS

The work described in this paper was supported by grants from the General Research Fund, Research Grants Council of Hong Kong (CUHK462713, 14102714, 14136416 and 14171217), National Natural Science Foundation of China (8142730 and 81672323) and Direct Grant from CUHK to YC.

REFERENCES

1 Bernard WS, Christopher PW. World Cancer Report. Geneva: World Health Organization 2014;
2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68: 7-30 [PMID: 29313949 DOI: 10.3322/caac.21442]
3 Chen W, Sun K, Zheng R, Zhang H, Zhang S, Xia C, Yang Z, Li H, Zou X, He J. Cancer incidence and mortality in China, 2014. Chin J Cancer Res 2018; 30: 1-12 [PMID: 29545714 DOI: 10.21147/j.issn.1000-9604.2018.01.01]
4 Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F.
Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. *Eur J Cancer* 2013; 49: 1374-1403 [PMID: 23485231 DOI: 10.1016/j.ejca.2012.12.027]

Duffy MJ. Tumor markers in clinical practice: a review focusing on common solid cancers. *Med Princ Pract* 2013; 22: 4-11 [PMID: 23584782 DOI: 10.1159/000338393]

Locke GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. *J Clin Oncol* 2006; 24: 5313-5327 [PMID: 17666767 DOI: 10.1200/JCO.2006.08.2644]

He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH. Combined use of AFP, CEA, CA125 and CA19-9 improves the sensitivity for the diagnosis of gastric cancer. *BMJ Gastroenterol* 2013; 13: 87 [PMID: 23672279 DOI: 10.1186/1471-230X-13-87]

Gupta D, Lis CG. Role of CA125 in predicting ovarian cancer survival - a review of the epidemiological literature. *J Ovarian Res* 2009; 2: 13 [PMID: 19818123 DOI: 10.1186/1757-2215-2-13]

Acharya A, Markar SR, Matar M, Ni M, Hanna GB. Use of Tumor Markers in Gastrointestinal Surgeon Perceptions and Cost-Benefit Trade-Off Analysis. *Ann Surg Oncol* 2017; 24: 1165-1173 [PMID: 28080574 DOI: 10.1245/s10434-016-5717-y]

Sørensen CG, Karlsson WK, Pomeragga HC, Burcharth J, Rosenberg J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence - A systematic review. *Int J Surg* 2016; 25: 134-144 [PMID: 26700203 DOI: 10.1016/j.ijsu.2015.11.065]

Shinkins B, Nicholson BD, Primrose J, Perera R, James T, Pugh S, Mant D. The diagnostic accuracy of a single CEA blood test in detecting colorectal cancer recurrence: Results from the FACS trial. *PLoS One* 2017; 12: e0171810 [PMID: 2828238 DOI: 10.1371/journal.pone.0171810]

Chang CY, Huang SP, Chiu HM, Lee YC, Chen MF, Lin JT. Low efficacy of serum levels of CA 19-9 in prediction of malignant diseases in asymptomatic population in Taiwan. *Hepatogastroenterology* 2006; 53: 1-4 [PMID: 16506366]

Beach A, Zhang HG, Ratrajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. *J Ovarian Res* 2014; 7: 14 [PMID: 24468016 DOI: 10.1186/1757-2215-7-14]

Li M, Zerringer E, Barti T, Schagemann J, Cheng A, Vlassov AV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. *Philos Trans R Soc Lond B Biol Sci* 2014; 369 [PMID: 25135963 DOI: 10.1098/rstb.2013.0502]

Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. *PLoS One* 2015; 6: e5877 [PMID: 20052414 DOI: 10.1371/journal.pone.005877]

Riches A, Campbell E, Boeger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells - a new regulatory pathway. *Eur J Cancer* 2014; 50: 1025-1034 [PMID: 24462375 DOI: 10.1016/j.ejca.2013.12.019]

Palazzolo G, Albanese NN, DI Cara G, Gygas D, Vittorelli ML, Pucci-Minafra I. Proteomic analysis of exosome-like vesicles derived from breast cancer cells. *Anticancer Res* 2012; 32: 847-860 [PMID: 22396603]

Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. *Biochem Biophys Res Commun* 2014; 445: 694-701 [PMID: 24434149 DOI: 10.1016/j.bbrc.2013.12.070]

Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. *J Control Release* 2015; 219: 278-294 [PMID: 26143224 DOI: 10.1016/j.jconrel.2015.06.029]

Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. *Int J Cancer* 2018 [PMID: 30155891 DOI: 10.1002/ijc.31774]

Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, Zhong SL, Tang JH, Zhao JH. Exosomes in development, metastasis and drug resistance of breast cancer. *Cancer Sci* 2015; 106: 959-964 [PMID: 26052865 DOI: 10.1111/cas.12751]

Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. *PLoS One* 2012; 7: e30679 [PMID: 22427800 DOI: 10.1371/journal.pone.0030679]

Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. *Cell Res* 2015; 25: 981-984 [PMID: 26138677 DOI: 10.1038/cr.2015.82]

Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B, Ge L, Wang HJ. Prognostic and predictive value of long non-coding RNA GAS5 and microRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. *Cancer Biomark* 2018; 22: 283-299 [PMID: 29605252 DOI: 10.2133/cbm.171011]

Santassaruga S, Moreno J, Navarro A, Martinez Rodenas F, Hernandez R, Castellano JJ, Muñoz C, Monzo M. Prognostic Impact of miR-200 Family Members in Plasma and Exosomes from Tumor-Draining versus Peripheral Veins of Colon Cancer Patients. *Oncof 2018; 95: 309-318 [PMID: 30138915 DOI: 10.1159/000409726]

Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, Dai Z, Cao Y, Fan J, Zhou J. Serum exosomal miR-125b is a novel prognostic marker for hepaticcellular carcinoma. *Onco Targets Ther* 2017; 10: 3843-3851 [PMID: 28814483 DOI: 10.2147/OTT.S140062]

Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. *JAMA* 1998; 280: 1690-1691 [PMID: 9832001]

Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials* 2007; 8: 16 [PMID: 17555582 DOI: 10.1186/1745-6215-8-16]

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Sterne JA, Bossuyt PM; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med* 2011; 155: 529-536 [PMID: 22007046 DOI: 10.7326/0003-4819-155-8-201110080-00009]

Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): explanation and elaboration. *PLoS Med* 2012; 9: e1001216 [PMID: 22652723 DOI: 10.1371/journal.pmed.1001216]

Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. MetaDisco: a software for meta-analysis of test accuracy data. *BMJ Med Res Methodol* 2006; 6: 31 [PMID: 16836745 DOI: 10.1186/1471-2288-6-31]
Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. *J Thorac Oncol* 2010; 5: 1315-1316 [PMID: 20736804 DOI: 10.1097/JTO.0b013e3181e1713d]

Huang-Medina TB, Sánchez-Meca J, Martín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? *Psychol Methods* 2006; 11: 193-206 [PMID: 16784338 DOI: 10.1037/1082-989X.11.2.193]

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003; 327: 557-560 [PMID: 12981210 DOI: 10.1136/bmj.327.7414.557]

Sun B, Li Y, Zhou Y, Ng TK, Zhao C, Gan Q, Gu X, Xiang J. Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. *J Cell Physiol* 2019; 234: 1416-1425 [PMID: 30078189 DOI: 10.1002/jcp.29696]

Ogata-Kawata H, Izuimi M, Kurioka D, Homma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, Watanabe M, Nakagama H, Yokota J, Kohno T, Tsuichya N. Circulating exosomal microRNAs as biomarkers of colon cancer. *PLoS One* 2014; 9: e92921 [PMID: 24705249 DOI: 10.1371/journal.pone.0092921]

Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, Zheng G, Li P, Li C, Wang C. Exosomal long noncoding RNA CRNDE as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. *Oncotarget* 2016; 7: 85551-85563 [PMID: 27888303 DOI: 10.18632/oncotarget.13465]

Uratani R, Toyazuma Y, Kitajima T, Kawamura M, Hiro J, Kobayashi M, Takes K, Inoue Y, Mohri Y, Mori T, Kato T, Goel A, Kusunoki M. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. *PLoS One* 2016; 11: e0160722 [PMID: 27769147 DOI: 10.1371/journal.pone.0160722]

Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, Ye GD, Loo QC, Lv PY, Guo QW, Li BA, Cai SC, Cai WY. Tumor-originated exosomal IncUEG1 as a circulatory biomarker for early-stage gastric cancer. *Mol Cancer* 2018; 17: 84 [PMID: 29609888 DOI: 10.1186/s12953-018-0834-9]

Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, Liu Y, Zhang Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. *Mol Cancer* 2018; 17: 68 [PMID: 29486794 DOI: 10.1186/s12953-018-0817-z]

Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, Qian H, Jiang PC, Xu WR, Zhang X. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. *J Cancer Res Clin Oncol* 2017; 143: 991-1004 [PMID: 28285404 DOI: 10.1007/s00432-017-2361-2]

Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H, Xu W. Exosomal miR-423-5p targets TFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. *Mol Cancer* 2018; 17: 123-136 [PMID: 29749066 DOI: 10.1186/s12885-018-4006-5]

Goto T, Fujiyama M, Konishi H, Sasaumi J, Fujibayashi S, Hayashi A, Usumi T, Sato H, Iwama T, Ijiri M, Sakatani A, Tanaka K, Nomura Y, Ueno N, Kashima S, Morichi K, Mizukami Y, Kohyo K, Okumura T. An elevated expression of serum exosomal microRNA-191-1, -21, -45a of gastric neoplasm is considered to be efficient diagnostic marker. *Mol Cancer* 2018; 17: 116 [PMID: 29385987 DOI: 10.1186/s12885-018-0406-5]

Melo SA, Luceeck LB, Kahler C, Fernandez AF, Gammon ST, Kaye J, LeBlieu VS, Mittendorf EA, Weitz J, Rahbahi N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early gastric cancer. *Nature* 2015; 523: 177-182 [PMID: 26106858 DOI: 10.1038/nature14551]

Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathological features of patients with pancreatic adenocarcinoma. *World J Surg Oncol* 2013; 11: 219 [PMID: 24007214 DOI: 10.1186/1477-7819-11-219]

Machida T, Tomofuji T, Munsaya T, Yoneda T, Ekuni D, Arzama T, Miyai H, Mizuno H, Kato H, Tsutsumi K, Uchida D, Takaki A, Okabata H, Morita M, Imaoka T, Okada H, Hori K, Ohtani K, Igarashi H, Kamata N, Takada S, Nakamura S. Characterisation of blood-derived exosomal hTERT mRNA secretion in cancer patients: a potential pan-cancer marker. *Br J Cancer* 2017; 117: 353-357 [PMID: 2864311 DOI: 10.1038/s41416-017-1660]

Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming H. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small lung cancer cell line. *Biochem Biophys Res Commun* 2017; 490: 406-414 [PMID: 28623135 DOI: 10.1016/j.bbrc.2017.06.055]

Sun N, Sun SG, Lu ZL, He J. Diagnostic value of protein markers in plasma exosomes of lung squamous cell carcinoma. *Zhonghua Zheng Xing Fu Zhe Zong Bing Za Zhi* 2018; 40: 416-421 [PMID: 29387626]

Li S, Zhao Y, Chen W, Yin L, Zhu J, Zhang H, Cai C, Li P, Huang L, Ma P. Exosomal ephrin-A2 derived from serum as a potential biomarker for prostate cancer. *J Cancer* 2018; 9: 2659-2665 [PMID: 30087706 DOI: 10.7150/jca.25201]

Meng X, Müller V, Milde-Langosch K, Trillbach F, Pantel K, Schwarzenbach H. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200c and miR-200b in patients with epithelial ovarian cancer. *Oncotarget* 2016; 7: 16923-16935 [PMID: 26943577 DOI: 10.18632/oncotarget.7850]

Pan C, Stević I, Müller V, Ni Q, Oliveira-Ferrer L, Pantel K, Schwarzenbach H. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. *Mol Oncol* 2018; 12: 1935-1948 [PMID: 30107868 DOI: 10.1016/j.molonc.2018.02.017]

Bryszynska OE, Zaripov MM, Skvortsova TE, Lelchewka EA, Grigor’eva AE, Zaporoţchenko IA, Morozkin ES, Ryabchikova EI, Yurchenko YB, Voitsitskiy VE, Laktionov PP. Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients. *PLoS One* 2016; 11: e0157566 [PMID: 27305142 DOI: 10.1371/journal.pone.0157566]

Wang YH, Ji J, Wang BC, Chen H, Yang ZH, Wang K, Luo CL, Zhang WW, Wang FB, Zhang XL. Tumor-Derived Exosomal Long Noncoding RNAs as Promising Diagnostic Biomarkers for Prostate
Wong CH et al. Clinical significance of exosomes

Cancer. Cell Physiol Biochem 2018; 46: 532-545 [PMID: 29614511 DOI: 10.1159/000488620]

Overbye A, Skotland T, Koehler CJ, Thiede B, Seierstad T, Berge V, Sandvig K, Llorente A. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 2015; 6: 3035-3037 [PMID: 26196985 DOI: 10.18632/oncotarget.4851]

Işın M, UysalEr, Özgür E, Köseoglu H, Şanlı Ö, Yiçel ÖB, Gezer U, Dalay N. Exosomal InRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet 2015; 6: 168 [PMID: 25999983 DOI: 10.3389/fgene.2015.00168]

Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, Tian L. Combined detection of serum exosomal miR-21 and HO-TAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol 2014; 31: 148 [PMID: 25097664 DOI: 10.1007/s12032-014-0418-8]

Alegre E, Zubiri L, Perez-Gracia JL, González-Cao M, Soria L, Martín-Algarra S, González A. Circulating melanoma exosomes as diagnostic and prognosis biomarkers. Clin Chim Acta 2016; 454: 28-32 [PMID: 26724367 DOI: 10.1016/j.cca.2015.12.031]

Manterola I, Guruceta E, Gállego Pérez-Larraga J, González-Huarriz M, Jauregui P, Tejada S, Díez-Valle R, Segura V, Samprón N, Barrena C, Ruiz I, Agirre A, Ayuso A, Rodriguez J, González A, Xipell E, Matheu A, López de Munain A, Tuñón T, Zazpe I, García-Fonciillas J, Paris S, Delattre JY, Alonso MM. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol 2014; 16: 520-527 [PMID: 24435980 DOI: 10.1093/neuonc/nox218]

Chen CL, Lai YF, Tang P, Chien KY, Yu JS, Tsai CH, Chen HW, Wu CC, Chang T, Hsu CW, Chen CD, Chang YS, Chang PL, Chen YT. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res 2012; 11: 5611-5629 [PMID: 23082778 DOI: 10.1021/pr3008732]

Ge X, Wang Y, Nie J, Li Q, Tang L, Deng X, Wang F, Xu B, Wu X, Zhang X, You Q, Mao L. The diagnostic/prognostic potential and molecular functions of long non-coding RNAs in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget 2017; 8: 69995-70005 [PMID: 2905258 DOI: 10.18632/oncotarget.19547]

Peng ZY, Gu RH, Yan B. Downregulation of exosome-encapsulated miR-584-5p is associated with poor prognosis in colorectal cancer. J Cell Biochem 2018; 119: 2729-2731 [PMID: 30171732 DOI: 10.1002/jcb.27291]

Tsuchimoto M, Inuma H, Yagi T, Matsuoka S, Hashiguchi Y. Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology 2017; 92: 360-370 [PMID: 28376502 DOI: 10.1159/000486338]

Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A, Chang GJ, Rodriguez-Bigas MA, Li Y, Chang P, Mao Y, Hassan MM, Wang F, Li D. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget 2016; 7: 76250-76260 [PMID: 2778848 DOI: 10.18632/oncotarget.12841]

Gao T, Liu X, He B, Nie Z, Zhu C, Zhang P, Wang S. Exosomal InRNA-91 is associated with poor development in colorectal cancer by modifying HNRPK expression. Cancer Cell Int 2018; 18: 11 [PMID: 29406064 DOI: 10.1186/s12935-018-0506-2]

Yan S, Jiang Y, Liang C, Cheng M, Jin C, Duan Q, Xu D, Yang L, Zhang X, Ren B, Jin P. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J Cell Biochem 2018; 119: 4113-4119 [PMID: 29240249 DOI: 10.1002/jcb.26609]

Li J, Li B, Ren C, Chen Y, Guo X, Zhou L, Peng Z, Tang Y, Chen Y, Liu W, Zhu B, Wang L, Liu X, Shi X, Peng Z. The clinical significance of circulating GPC1 positive exosomes and its regulative miRNAs in colon cancer patients. Oncotarget 2017; 8: 101189-101202 [PMID: 29254156 DOI: 10.18632/oncotarget.20516]

Silva J, Garcia V, Rodriguez M, Compáte M, Cisneros E, Véguillas P, García JM, Domínguez G, Campos-Martín Y, Cueva I, Peña C, Herrera M, Díaz R, Mohamed N, Bonilla F. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 2012; 51: 409-418 [PMID: 22420532]

Matsumura T, Sugimachi K, Inuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, Shinoda Y, Eguchi H, Yamamoto H, Doki Y, Mori M, Ochiya T, Mimori K. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 2015; 113: 275-281 [PMID: 26057451 DOI: 10.1038/bjc.2015.201]

Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J, Xu D. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol 2018; 233: 6660-6668 [PMID: 2926292 DOI: 10.1002/jcp.26316]

Liu F, Bu Z, Zhao F, Xiao D. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci 2018; 109: 65-73 [PMID: 2905496 DOI: 10.1111/cas.13429]

Kumata Y, Inuma H, Suzuki Y, Tsukahara D, Midorikawa H, Igarashi Y, Soeda N, Kiyoikawa T, Horikawa M, Fukushima R. Exosomes-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep 2018; 40: 319-330 [PMID: 29749537 DOI: 10.3892/or.2018.6418]

Zhou X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y. Plasma miRNAs in diagnosis and prognostics of pancreatic cancer: A miRNA expression analysis. Gene 2018; 673: 181-193 [PMID: 29913239 DOI: 10.1016/j.gene.2018.06.037]

Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, Zhao X, Zhang Y, Zhen P, Zhu J, Li X. Tumor releasing exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett 2018; 432: 237-250 [PMID: 2979702 DOI: 10.1016/j.canlet.2018.04.035]

Takahashi K, Inuma H, Wada K, Minezaki S, Kawamura S, Kainuma M, Ikeda Y, Shibuya M, Misura F, Sano K. Usefulness of exosome-encapsulated microRNA-453 as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci 2018; 25: 155-161 [PMID: 29130611 DOI: 10.1002/jhhb.524]

Shi M, Jiang Y, Yang L, Yan S, Wang YG, Lu JX. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J Cell Biochem 2018; 119: 4711-4716 [PMID: 29278659 DOI: 10.1002/jcb.26609]

Xue X, Wang X, Zhao Y, Hu R, Qin L. Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A. Biochem Biophys Res Commun 2018; 502: 515-521 [PMID: 29859935 DOI: 10.1016/j.bbrc.2018.05.208]

Liu W, Chen S, Liu B. Diagnostic and prognostic values of serum exosomal microRNA-21 in children with hepatoblastoma: a Chinese population-based study. Pediatr Surg Int 2016; 32: 1059-1065 [PMID: 27574368]
Wong CH et al. Clinical significance of exosomes

27601233 DOI: 10.1007/s00383-016-3960-8

82 Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, Usai A, Suito H, Takahashi M, Otsuka R, Xin H, Komatsu A, Iida K, Matsubara H. Quantification of plasma exosome as a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36: 2535-2543 [PMID: 27599779 DOI: 10.3829/or.2016.5066]

83 Lu J, Liu QH, Wang F, Tan JI, Deng YQ, Peng XH, Liu X, Zhang B, Xu X, Li XP. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2018; 37: 147 [PMID: 30091734 DOI: 10.1186/s13046-018-0814-3]

84 Ye SB, Li ZL, Luo DH, Huang RJ, Chen YS, Zhang XS, Cui J, Zhi YL, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014; 5: 5439-5452 [PMID: 24978137 DOI: 10.18632/oncotarget.2118]

85 Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo T, Fan W, Nandy D, Blevin GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 2015; 67: 33-41 [PMID: 25129854 DOI: 10.1016/j.eururo.2014.07.035]

86 Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ngan HYS, Wong AST. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun 2018; 9: 2270 [PMID: 29891938 DOI: 10.1038/s41467-018-04695-7]

87 Vaksman O, Tropé C, Davidson B, Reich R. Exosome-derived microRNAs and ovarian carcinoma progression. Carcinogenesis 2014, 35: 2113-2120 [PMID: 24925027 DOI: 10.1093/carcin/bgu130]

88 Kanaoka R, Imura H, Dejima H, Sakai T, Uehara H, Matsutani N, Kawamura M. Usefulness of Plasma Exosomal MicroRNA-451a as a Noninvasive Biomarker for Early Prediction of Recurrence and Prognosis of Non-Small Cell Lung Cancer. Oncology 2018; 94: 311-323 [PMID: 29533963 DOI: 10.1159/000487006]

89 Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, Xiang Y, Wu N, Wu L, Bai L, Li Y. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017; 8: 13048-13058 [PMID: 28055056 DOI: 10.18632/oncotarget.14369]

90 Liu Q, Xiang Y, Yuan S, Xie W, Li C, Hu Z, Wu N, Wu L, Yu Z, Bai L, Li Y. Plasma exosome levels in non-small-cell lung cancer: Correlation with clinicopathological features and prognostic implications. Cancer Biomark 2018; 22: 267-274 [PMID: 29660899 DOI: 10.3233/CBM-170955]

91 Sandfeldt-Pausten B, Aggerholm-Pedersen N, Bær K, Jakobsen KR, Mildgaard P, Folkers BH, Rasmussen TR, Varming K, Jørgensen MM, Sorensen BS. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 2016; 10: 1595-1602 [PMID: 27856179 DOI: 10.1016/j.molonc.2016.10.003]

92 Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huyynh D, Glavey SV, Rivottio B, Saccà A, Roccaro AM, Bouyoucos J, Minvielle S, Moreau P, Facon T, Leleu X, Weiler E, Trippa L, Ghobrial IM. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017; 129: 2429-2436 [PMID: 28213378 DOI: 10.1182/blood-2016-09-742296]

93 Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol (Dordr) 2018; 41: 25-33 [PMID: 29076027 DOI: 10.1007/s13402-017-0355-3]

94 Fuji N, Hirate U, Hino K, Mori O, Oka S, Shimizuma K, Kawai Y, Inoue R, Yamamoto Y, Matsuhito H, Shimabukuro T, Udo K, Hoshi Y, Dahiya R, Matsumiya H. Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 2017; 8: 109877-109888 [PMID: 29299115 DOI: 10.18632/oncotarget.22436]

95 Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, Serenwe M, Dismuke WM, Biehlerich E, Stamper WD, Hamrick MW, Liu Y. A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS One 2017; 12: e0170628 [PMID: 28114422 DOI: 10.1371/journal.pone.0170628]

96 Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH, Wang Q. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2010; 40: 834-844 [PMID: 28737826 DOI: 10.3892/ijmm.2017.3080]

97 Zhou X, Wen W, Zhu J, Huang Z, Zhang L, Zhang H, Qi LW, Shan X, Wang T, Cheng W, Zhu D, Yin Y, Chen Y, Zhu W, Shu Y, Liu P. A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget 2017; 8: 34468-34480 [PMID: 28380431 DOI: 10.18632/oncotarget.16519]

98 Zhou X, Wen W, Shan X, Zhu W, Xu J, Guo R, Cheng W, Wang F, Qi LW, Chen Y, Huang Z, Wang T, Zhu D, Liu P, Shu Y. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2017; 8: 6513-6525 [PMID: 28036284 DOI: 10.18632/oncotarget.14311]

P-Reviewer: Balaban YH, Teeraprasertsuk S

S-Editor: Cui LJ L-Editor: Filipodia E-Editor: Wu YYJ
