1. INTRODUCTION

Most of the early X-ray afterglows detected by Swift (Gehrels et al. 2004) show a steep decay phase around 100–1000 seconds after the burst trigger (Tagliaferri et al. 2005). The main characteristics of this steep decay phase include the following. (1) It connects smoothly to the prompt γ-ray lightcurve extrapolated to the X-ray band, suggesting that it is the “tail” of the prompt emission (Barthelmy et al. 2005; O’Brien et al. 2006; Liang et al. 2006). (2) The decay slope is typically 3–5 when choosing the gamma-ray burst (GRB) trigger time as the zero time point (Tagliaferri et al. 2005; Nousek et al. 2006; Zhang et al. 2006). (3) The time-averaged spectral index of the steep decay phase is very different from that of the later shallow decay phase, indicating that it is a distinct new component that exists in about one-third of the bursts that have a steep decay phase (Zhang et al. 2007, hereafter ZLZ07; Butler & Kocevski 2004) show a steep decay phase around 100–1000 sec-

2. CURVATURE EFFECT OF A NON–POWER-LAW SPECTRUM

We consider a general non–power-law spectrum in the form

\[F_\nu (\nu) = F_{\nu, c} G(\nu), \]

where \(G(\nu) \) is the function form of the spectrum with a characteristic frequency \(\nu_c \) so that \(G(\nu_c) = 1 \), and \(F_{\nu, c} = F_{\nu}(\nu_c) \) is the normalization of the spectrum at \(\nu = \nu_c \).

The curvature effect states that given the same spectrum at different latitudes with respect to the line of sight, one has \(F_{\nu, c} \propto D^2 \) and \(\nu_c \propto D \), where \(D \) is the Doppler factor. If the high-latitude angle \(\theta \gg \Gamma \), the Dopper factor \(D \propto t^{-1} \), so that \(F_{\nu, c} \propto t^{-2}, \nu_c \propto t^{-1} \) (Kumar & Panaiteescu 2000). Considering the \(t_0 \) effect (Zhang et al. 2006; Liang et al. 2006), this can be

Note that this structured jet model is different from the traditional one that invokes an angle-dependent energy/Lorentz factor, but not the spectral index (Zhang & Mészáros 2002; Rossi et al. 2002).
written as
\[F_{\nu,\epsilon}(t) = F_{\nu,c,p}(t) - t_0 - t_p - t_0 \] (3)

and
\[\nu_c(t) = \nu_{c,p}(t) - t_0 - t_p - t_0 \] (4)

for \(t \gg t_p \), where \(t_0 \) refers to the time origin of the last pulse in the prompt emission and \(t_p \) is the epoch when the curvature effect decay starts (or the “peak” time of the lightcurve). \(F_{\nu,c,p} = F_{\nu,c}(t_p) \) and \(\nu_{c,p} = \nu_{c}(t_p) \). Notice that in the case of \(G(\nu) = (\nu/\nu_c)^{-\beta} \) (a pure power-law spectrum), one derives \(F_{\nu} \propto (t - t_0)^{-\beta - 2} \). This is the relation given by Equation (1).

We consider several physically motivated non–power-law spectra with a characteristic frequency \(\nu_c \), including the cut-off power-law spectrum and the Band function (Band et al. 1993). To explore the compatibility with the data, we also investigate different forms of the cut offs with varying sharpness. In all cases, \(F_{\nu,c}(t) \) and \(\nu_{c}(t) \) follow Equations (3) and (4). When \(\nu_{c}(t) \) drops across an observational narrow energy band, e.g., the Swift/XRT band, it introduces an apparent spectral softening with time, which, if fitted by a power law, shows an increase of photon index with time. In the meantime, the flux within the observing band drops down rapidly, leading to an apparent steep decay phase in the lightcurve (Figure 1).

3. DATA REDUCTION AND SIMULATION METHOD

We consider a time-dependent cut-off power-law photon spectrum taking the form
\[N(E, t) = N_0(t) \left(\frac{E}{1\text{keV}} \right)^{-\Gamma} \exp \left[-\left(\frac{E}{E_c(t)} \right)^k \right] \] (5)

where \(\Gamma = \beta + 1 \) is the power-law photon index, and \(k \) is a parameter to define the sharpness of the high energy cut off in the spectrum, \(E_c(t) \) is the time-dependent characteristic photon energy, and \(N_0(t) \) is a time-dependent photon flux (in units of photons keV\(^{-1}\)cm\(^{-2}\)s\(^{-1}\)) at 1 keV (Arnaud 1996). The choice of this function was encouraged by the fact that the spectral evolution of some GRB tails can be fitted by such an empirical model (Campana et al. 2006; ZLZ07; Yonetoku et al. 2008).

According to Equations (3) and (4), and noticing the conversion between the photon flux and the emission flux density, i.e., \(F_{\nu} \propto EN(E) \), we get
\[E_c(t) = E_{c,p} \left(\frac{t - t_0}{t_p - t_0} \right)^{-1} \] (6)

and \(N(E_c,t) = N_{c,p}(t - t_0)/(t_p - t_0) \)^{-1}, where \(N_{c,p} = N(E_c,t_p) \), and \(E_{c,p} = E_c(t_p) \). This gives
\[N_0(t) = N_{0,p} \left(\frac{t - t_0}{t_p - t_0} \right)^{-1+\Gamma} \] (7)

Notice that \(t_p \) is the beginning of the steep decay, which is a parameter that can be directly constrained by the data. For a complete lightcurve, we read \(t_p \) off from the lightcurve. In the case of an observational gap, usually \(t_p \) can be reasonably fixed to the end of the prompt emission. We therefore do not include this parameter into the fits, and derive the other five parameters, namely \(N_{0,p}, E_{c,p}, \Gamma, t_0 \), and \(k \), from the data. At any time \(t \), the model spectrum can be determined once these parameters are given. One can then confront the model with the real GRB data.

The procedure includes the following steps. (1) For a given burst, we extract its Swift/XRT lightcurve and \(n \) slices of time-dependent spectra using the standard HEASoft/Swift Package. The details of the data reduction method were described in ZLZ07. (2) Given a trial set of parameters in the theoretical...
spectra\(^{5}\) \(\{N_{0,p}, E_{c,p}, \Gamma, t_0\}\), using Equations (5)–(6) we model \(n\) time-dependent theoretical spectra that correspond to the time bins that are used to derive the time-dependent observed spectra. (3) Based on the theoretical spectra of each time slice, we simulate the corresponding \textit{model spectra} by taking account of the observational effects, including the \textit{Swift}/XRT response matrix, the absorption column densities (\(N_H\)) of both the Milky Way (extracted from the observations from step 1) and the host galaxy of the burst (a free parameter), the redshift (if applicable), and a Poisson noise background. Note that \(n_{H,host}\) is another parameter introduced in the model spectra (besides the other parameters introduced in the theoretical spectra). All these faked spectra can be obtained using HEASoft (Version 6.4) and Xspec (Version 12.4). (4) We fit the faked model spectra with a simple power-law model, i.e. \textit{wabs * wabs * powerlaw} (or \textit{wabs * zwabs * powerlaw} if the redshift is available) in XSPEC\(^{5}\) and get the simulated fluxes and spectral indices of the \(n\) slices. Here the column densities of both the Milky Way and the host galaxy are fixed to the observed values as in step 1. (5) We compare the simulated fluxes and spectral indices with the observed ones and access the goodness of the fits using \(\chi^2\) statistics. (6) We refine the trial set of parameters based on the comparison and repeat steps (2)–(5) when necessary. We test whether we can reach a set of best-fit parameters that can reproduce both the lightcurve and the apparent spectral evolution as observed.

4. AN EXAMPLE: GRB050814

We apply the method to GRB050814, a typical burst with a well observed X-ray tail with strong spectral evolution. As seen in Figure 2, the tail has a steep decay index of \(\sim 3.2\), and a strong spectral evolution is apparent at \(t < 600\) s. These features are common in most of the GRB X-ray tails. We first fix \(k = 1\) in Equation (5), which corresponds to the simplest cut-off power-law model. The initial trial parameters we choose are \((\Gamma, N_{0,p}, t_0, E_{p,0}, n_{H,host}) = (1.2, 0.4, 72.0, 30.0, 0.05)\). The peak time \(t_p\) is fixed to 143.6 s, which corresponds to the end of the prompt emission. Some IDL scripts are developed to follow the procedure described in Section 3 to automatically search for the best-fit parameters to match both the observed lightcurve and the time-dependent spectral index. The final best-fit parameters are shown in Table 1. The corresponding simulated lightcurve (black curve) and spectral indices (green curve) are shown in Figure 2. Figure 2 suggests that the sharp decay and the spectral evolution in the tail of GRB 050814 can indeed be explained by the curvature effect with a cut-off power-law spectrum. In Figure 3 we present the comparison between the simulated and observed spectra in the time steps 1 and 6 (as examples) that show reasonable consistency.

\(^{5}\) Note that \(k\) is fixed to a certain value for a particular model, and is varied when different models are explored.
Our model predicts that the prompt emission spectrum at $t_p \sim 144$ s should be a cut-off power-law spectrum with the parameters in Table 1. In order to confirm this, we subtract the BAT-band spectrum in the time interval (141.5 – 146.5) s, and compare the data with the model prediction. As shown in Figure 4, the BAT data are roughly consistent with the model prediction, suggesting the validity of the model.

Some physical parameters can be constrained according to our model. The time interval from t_p to the beginning of the steep decay phase $t_{\text{tail},0}$ may be related to the angular spreading timescale $\tau_{\text{ang}} = (\Gamma(t_{\text{tail},0} - t_p))/(1 + z)$. Noting $z \sim 5.3$ for GRB050814 (Jakobsson et al. 2005), we can estimate the Lorentz factor of the fireball as $\Gamma = (R/(2c\tau_{\text{ang}}))^{1/2} \sim 69 R_{15}^{1/2}$, where $R_{15} = R/(10^{15}\text{cm})$ is the normalized emission radius. Since we know the spectral peak energy E_p at t_p, we can also estimate the corresponding electrons’ Lorentz factor for synchrotron emission by $\gamma_{e,p} = \left[E_p/\left(\Gamma^2 mc^2\right)\right]^{1/2} \sim 2.4 \times 10^7 R_{15}^{-1/2} B_{3}^{-1/2}$. From the rest-frame duration of the X-ray tail we are analyzing, $\tau_{\text{tail}} = (\Gamma(t_{\text{tail},e} - t_{\text{tail},0}))/(1 + z) \sim (378 - 165)/6.3 = 33.8$ s, one can constrain the minimum jet opening angle as $\theta_j > (2c\tau_{\text{tail}}/R)^{1/2} = 2.6 \times R_{15}^{-1/2}$. These values are generally consistent with those derived from various other methods.

We find that the abruptness parameter k cannot be very different from unity. A Band-function spectrum introduces a less significant spectral evolution and it cannot reproduce the data (see Qin 2008b).

5. DISCUSSIONS AND CONCLUSIONS

We have successfully modeled the lightcurve and spectral evolution of the X-ray tail of GRB050814 using the curvature effect model of a cut-off power-law spectrum with an exponential cut off ($k = 1$). It has been discussed in the literature (e.g., Fan & Wei 2005; Barniol-Duran & Kumar 2008) that the GRB central engine may not die abruptly, and that the observed X-ray tails may reflect the dying history of the central engine. If this is indeed the case, the strong spectral evolution in the X-ray tails would demand a time-dependent particle acceleration mechanism that gives a progressively soft particle spectrum. Such a behavior has not been predicted by particle acceleration theories. Our results suggest that, at least for some tails, the spectral evolution is simply a consequence of the curvature effect: the observer views emission from the progressively higher latitudes from the line of sight, so that the XRT band is sampling the different segments of a curved spectrum. This is a simpler interpretation.

The phenomenology of the X-ray tails is different from case to case (ZLZ07). We have applied our model to some other clean X-ray tails, such as GRB050724 and GRB080523, and find that they can be also interpreted by this model. Some other tails have superposed X-ray flares, making a robust test of the model difficult. A systematic survey of all the data sample is needed to address what fraction of the bursts can be interpreted in this way or demand other physically distinct models (e.g., Barniol-Duran & Kumar 2008; Dado et al. 2008). This is beyond the scope of this Letter.

We thank Pawan Kumar for stimulating discussions and comments and Paul O’Brien and Yiping Qin for helpful comments. This work is supported by NASA NNG05GB67G, NNX07AJ64G, NNX08AN24G, and NNX8AE57A (B.-B.Z. & B.Z.), by the National Natural Science Foundation of China under Grant 10873002 (E.-W.L.) and 10221001 (X.-Y.W.), and by the National “973” Program of China under Grant 2009CB824800 (E.-W.L. & X.-Y.W.). B.-B.Z. & B.Z. also acknowledge the President’s Infrastructure Award from UNLV.

REFERENCES

Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. Jacoby & J. Barnes (San Francisco, CA: ASP), 17

Barniol Duran, R., & Kumar, P. 2008, arXiv:0806.1226

Band, D., et al. 1993, ApJ, 413, 281

Barthelmy, S., et al. 2005, Nature, 438, 994

Butler, N. R., & Kocevski, D. 2007, ApJ, 668, 400

Campana, S., et al. 2006, Nature, 442, 1008

Dado, S., Dar, A., & De Rujula, A. 2008, ApJ, 681, 1408

Dermer, C. D. 2004, ApJ, 614, 284

Dyks, J., Zhang, B., & Fan, Y. Z. 2005, arXiv:astro-ph/0511699

Fan, Y. Z., & Wei, D. M. 2005, MNRAS, 364, L42

Fenimore, E. E., Madras, C. D., & Nayakshin, S. 1996, ApJ, 473, 998

Gehrels, N., et al. 2004, ApJ, 611, 1005

Jakobsson, P., et al. 2005, A&A, 447, 897

Kumar, P., & Panaiteescu, A. 2000, ApJ, 541, L51

Li, E.-W., Zhang, B.-B., & Zhang, B. 2007, ApJ, 670, 565

Liang, E. W., et al. 2006, ApJ, 646, 351

Mészáros, P. 2006, Rep. Prog. Phys., 69, 2259

Nousek, J. A., et al. 2006, ApJ, 642, 389

O’Brien, P. T., et al. 2006, ApJ, 647, 1213

Qin, Y.-P. 2008a, ApJ, 683, 900

Qin, Y.-P. 2008b, ApJ, in press (arXiv:0806.3339)

Rossi, E., Lazatti, D., & Rees, M. J. 2002, MNRAS, 323, 945

Starling, R. L. C., et al. 2008, MNRAS, 384, 504

Tagliaferri, G., et al. 2005, Nature, 436, 985

Wu, X. F., et al. 2006, 36th COSPAR Sci. Ass. #731 (arXiv:astro-ph/0512555)

Yamazaki, R., Toma, K., Ioka, K., & Nakamura, T. 2006, MNRAS, 369, 311

Yonetoku, D., et al. 2008, PASJ, 60, S352

Zhang, B., 2007, ChJAA, 7, 1

Zhang, B., & Meszáros, P. 2002, ApJ, 571, 876

Zhang, B.-B., et al. 2006, ApJ, 642, 354

Zhang, B.-B., Liang, E.-W., & Zhang, B. 2007, ApJ, 666, 1002