Altered plasma cytokines in dogs with atopic dermatitis

Hamutal Mazrier*, Linda J. Vogelnest*, Rosanne M. Taylor* and Peter Williamson*†

*Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW 2006, Australia
†School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia

Correspondence: Hamutal Mazrier, The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, NSW 2006, Australia. E-mail: hamutal.mazrier@sydney.edu.au

Background – Canine (Canis lupus familiaris) atopic dermatitis (AD) shares similar clinical signs to human AD. The abnormal immune response of AD is orchestrated by T lymphocytes, and may include variable involvement of cytokines, regulatory T (Treg) cells, eosinophils, mast cells and other immune components. Helper T (Th)2 cytokines often predominate initially, followed by Th1 cytokines in more chronic phases.

Hypothesis/Objectives – Pro-inflammatory and Treg cytokines have been shown to play a role in human AD, yet their importance is not clear in canine AD. Hence, this study aimed to measure the concentrations of cytokines not traditionally associated with Th1/Th2 response.

Animals – Canine AD patients (n = 27), compared to control dogs (n = 11).

Methods and materials – A total of 19 plasma cytokines were assayed using canine specific multiplex immunoassays.

Results – The plasma concentrations of CXC Motif Chemokine Ligand 8 (CXCL8), interleukin (IL)-7 and IL-15 cytokines were elevated in canine AD patients, compared to control dogs. In addition, stem-cell factor (SCF) concentrations were reduced in the plasma of canine AD patients compared to control dogs. Distinct cytokine profiles were found in dogs belonging to the Staffordshire breeds, a group with increased risk of AD. In particular, granulocyte-macrophage colony-stimulating factor (GM-CSF) had significantly elevated concentrations.

Conclusions and clinical relevance – Some of the plasma cytokine alterations in canine AD described here, particularly of IL-7, have not been reported previously. Monitoring these distinctive cytokine alterations could be useful for diagnosis and monitoring of canine AD in dogs.

Introduction

Atopic diseases are hypersensitivity responses that include allergic asthma, allergic rhinitis and atopic dermatitis (AD). The pathogenesis of AD appears most complex, potentially involving variable contributions from skin barrier defects, environmental allergens and immune system dysregulation.

Attempting to better characterise and clarify the role of immune dysfunction, former research explored cytokine alterations in AD (briefly summarised below). In human AD, the focus was initially on the potential role of helper T (Th)1 and Th2 cytokines.1,2 Elevated mRNA expression levels of interleukin (IL)-4 and IL-5 in skin lesions3–5 and IL-13 in pCLA+ T cells6 are documented in humans with AD. Correlation between elevated serum and plasma IL-31 and severity of AD, and between IL-31 levels in skin lesions and concomitant pruritus is reported.7,8 A model of disease pathogenesis arising from dysregulation of Th2 cytokines has been proposed (see review).9 Subsequent analysis of a broader range of cytokines has led to a more refined model in which Th2 cytokine responses predominate in the initial phase of AD, followed by Th1 cytokines in the chronic phase, with elevated interferon gamma (IFNγ), tumour necrosis factor alpha (TNFα) and IL-2, and reduced IL-12 associated with disease.9,10 Some studies support suppression of regulatory T (Treg) function associated with the impaired skin barrier and AD, reflected by elevated IL-10.11 Th17 and Th22 cytokines have more recently been implicated,11 with initial Th17 (IL-17) secretion in the acute phase of AD, shifting to Th22 involvement (IL-22) in the chronic stage of the disease.11–14 Some evidence for the role of chemokine and chemokine receptors in human AD has also been documented. This showed that CCL2 (MCP-1), a CC chemokine ligand (CCL), is expressed by keratinocytes and recruits dendritic cells, while CXCL8 (IL-8), a CXC chemokine ligand (CXCL), is secreted during the chronic phase of AD (see review).15 Naturally occurring AD in dogs (Canis lupus familiaris) (OMIA ID: 000269-9615)16 provides a useful model of human AD due to comparable clinical signs, environmental triggers and immunological changes.6,17 Alterations to Th1 and Th2 cytokines in canine AD (cAD) (see review)18 are similar to those reported in human AD. However, the investigation of Treg cytokines, and especially Th17 and
Th22 cytokines in cAD remains limited.19,20 The majority of studies have focused on analysis of individual cytokine gene expression profiles from skin lesions,4,5,21–24 and to a much lesser extent, reflected mRNA expression and/or changes in disease states in circulating leukocytes.25,26 Elevated concentrations of serum IL-31, secreted by activated Th2 cells, have been reported in dogs with AD27 and IL-31 confirmed to produce pruritus in a majority of dogs with AD.28 Plasma concentrations of IL-13 and TGF\textsubscript{x} were increased, IL-10 was decreased in both plasma29,30 and serum of AD dogs,30 and tumour growth factor (TGF) \textbeta\ results were inconclusive when comparing these two studies. In experimental cAD, exposure to allergen resulted in increased mRNA expression of IL-4, IL-10, IL-13 and TGF\textbeta in circulating mononuclear cells.28 Likewise, mRNA expression from Th1-cytokines and Th2-cytokines were increased in the skin of dogs with AD, along with relative decreases in TGF\beta and IL-12p40.4,5,9,20–22 By contrast, no cytokine or chemokine mRNA was differentially expressed in peripheral blood from dogs with spontaneous AD.29 One study investigating the phenotypes of Th17 and Th22 cells, reported IL-22 production in skin lesions from atopic dogs, but no detectable IL-17.19 Collectively, the significance of these findings and the potential role of cytokines other than Th1 and Th2 cytokines to the pathogenesis of cAD, along with any value for diagnosis and/or monitoring response to treatment, remain to be explored.

A comprehensive analysis of cytokines not traditionally associated with human AD facilitated a more detailed understanding of the complexity of responses in AD and highlighted the potential of using circulating cytokines as biomarkers for AD.31–36 However, there are few comparable studies of cAD. While the knowledge on the role of circulating cytokines that are not directly associated with Th1 or Th2 responses is limited in dogs, we hypothesised that they may play a role in cAD pathogenesis, as they do in humans. The availability of multiplex immunoassays, a modified enzyme-linked immunosorbent assay (ELISA) method which allows cost-effective simultaneous measurement of multiple cytokine/chemokine levels in one sample well, recently has been utilised to study several other inflammatory canine diseases.37 To reveal the potential role of circulating cytokines not traditionally associated with cAD, in this study we aimed to measure a broad panel of plasma cytokine and chemokine concentrations in dogs with AD, using canine-specific multiplex immunoassays.

Methods and materials

Dog population

Blood samples were collected from dogs diagnosed with AD by a referral clinician at the University of Sydney Veterinary Teaching Hospital. Inclusion and exclusion criteria for this study are previously described.38 Treatments that may alter immune responses, such as glucocorticoid therapy or immunosuppressive agents (e.g. ciclosporin), were ceased three to six weeks before sampling as recommended.39,40 Signalment and clinical data recorded for each dog included breed, sex, age of onset, date when sample taken, exclusion of other relevant potential diagnoses and intradermal allergen test (IDT) results. Data on breed (purebred or cross-bred) also was recorded, based on the patient details in the computerised file. In general, a dog was considered “purebred” if it qualified for a pedigree certificate that confirmed it as a purebred dog, while the other dogs were considered “cross-bred”.

The control samples were collected from healthy dogs that were free from AD, and had no history of skin disease or apparent skin lesions during physical examination at the day the blood sample was taken. As onset of clinical signs before three years of age is correlated with AD,41,42 inclusion in this group was limited to >6-year-old dogs. All samples were recruited with a written informed owner consent and approved by the University of Sydney Animal Ethics Committee (AEC protocol 4949).

Plasma sample collection and preparation

Blood samples were collected from dogs before an IDT or serum immunoglobulin (IgE) blood test. Blood samples were separated by gradient centrifugation immediately, or otherwise either stored in 4\textdegree C or shipped on ice, and then separated within 4 h of collection. Plasma samples were stored at –80\textdegree C before analysis. Before assay, plasma samples were thawed on ice and diluted with either a water-soluble protease inhibitor cocktail (Sigma-Aldrich; St Louis, MO, USA) or proprietary diluents according to the manufacturer’s instructions. Plasma samples for the single-plex TGF\beta immunoassay were acid-treated, then neutralised, clarified by centrifugation (20,000g; 10 min), and filtered using spin filters (0.22 \textmu m; Sigma-Aldrich). The filtrates were stored short-term at –20\textdegree C before assay.

Cytokine and chemokine immunoassays

Three immunoassays were used to measure a total of 19 cytokines and chemokines. Duplicate samples (75 \mu L per replicate) were used for each dog. A panel of 14 cytokines and chemokines were measured using a single canine multiplex immuno-assay (Millipore Multi-plex MAP canine cytokine/chemokine assay, Abacus ALS; Meadowbrook, QLD, Australia). This assay measured CCL2 (MCP-1), CXCL8 (IL-8), CXCL10 (IP-10), GM-CSF, IFN\gamma, IL-2, IL-4, IL-6, IL-7, IL-10, IL-15, IL-18, CXCL1 (KC) and TGF\beta. A panel of four additional cytokines – beta nerve growth factor (\beta-NGF), IL-12p40, stem cell factor (SCF), and vascular endothelial growth factor A (VEGF-A) – were measured using a second canine multiplex immuno-assay and TGF beta 1 (TGF\beta) was measured using a canine single-plex immunoassay (Procarta Immunoassays, Thermo-Fisher Scientific; North Ryde, NSW, Australia).

The multiplex immunoassays use microbeads, each labelled with a different dye and coated with a different antigen antibody. After incubation with the sample, the microbeads are scanned with a laser, which determines both the bead colour and signal intensity. In this way, a large number of different cytokines can be measured simultaneously on a single sample well. All samples underwent semi-automated analysis (Bio-Plex Luminex 100 IS system, Bio-Rad; Gladesville, NSW, Australia). Cytokine and chemokine concentrations were extracted from standard curve plots using the five parameter logistic (5-PL) nonlinear regression curve-fitting model (LUNIMEX 100 IS 2.3 software; Luminex Corporation, Austin, TX, USA). Multiplex immunoassay concentrations were processed using the Luminex console services provided by the core facility (Australian Proteome Analysis Facility Ltd, Sydney, Australia).

Cytokine and chemokine concentrations from dogs with AD were compared to those of the healthy control dogs. A comparison of cAD immunophenotypes within the atopic patient groups also was performed, including sex (males versus females), pedigree dogs versus cross-bred dogs, age of onset and age at sample collection date. Further, the results of the dogs with weak and moderate responses (score 1 or 2 of 4) were compared to those of the atopic dogs with strong IDT response (score 3 or 4).43

Statistical analysis

All statistical analysis was performed using Wilcoxon–Mann-Whitney U-test (two sample nonparametric tests) (GenStat, VSN International Ltd; Hemel Hempstead, UK). The accepted minimal power to conduct a comparison using the U-test in a small sample population in GenStat is eight. Values out of range below the standard curve.
were assigned a nominal value of 0.01. A P-value threshold of 0.05 was considered significant.

Results

Characteristics of cAD cases

Clinical characteristics of the cAD cases and the controls are detailed in Table 1. There were 20 pedigree dogs (74%) and seven cross-bred dogs (26%) with AD, and eight pedigree (73%) and three cross-bred (27%) control dogs. Females were over-represented in both the control dogs (two males, nine females) and the dogs with AD (11 males, 16 females). Most affected dogs (58%) were from breeds that have been reported previously to have a high risk of developing cAD (five Staffordshire terrier and three Staffordshire terrier crosses; two Labrador retrievers; two Boxer crosses; one French bulldog; one West Highland white terrier; and one great Dane). The mean age of onset was 20 months; less than three years for 22 cases, with the remainder between three and six years. Approximately half of the dogs (56%) with AD had strong responses on IDT (i.e. score of 3 or 4).

Plasma cytokine concentrations

Of the 19 cytokines and chemokines measured, nine median concentrations were higher in the plasma of dogs with AD compared to controls, yet only three of these were statistically significant, including IL-7 (P < 0.01), IL-15 (P = 0.05) and CXCL8 (P < 0.01) (Table 2, Figure 1). While the values measured for IL-7 in 10 of the 11 controls were below the detectable range, half of the AD cases (13 of 26) had detectable levels (range 2.26 to 7.310 pg/mL), with six samples of >50 pg/mL. Nineteen of the AD and control samples had detectable values for IL-15, and all had detectable values for CXCL8. However, the median values of IL-15 (30.5 pg/mL; range <1.02 to 16,811 pg/mL) and CXCL8 (785 pg/mL; range 52.6 to 6,710 pg/mL) were five-fold higher in the AD cases when compared to the control dogs (IL-15: 6.4 pg/mL; range <1.02 to 129 pg/mL; CXCL8: 161 pg/mL; range 96.0 to 2,254 pg/mL) (Table 2, Figure 1). GM-CSF concentrations were not significantly different between AD dogs and controls (P = 0.06), although there was a significant difference when considering only the Staffordshire terrier subgroup (see a comparison of cytokine alterations in dogs that belong to the Staffordshire breeds section below).

Comparison of a subset of atopic dogs aged 6–10 years old at the sample collection date (n = 9) with control dogs in the same age group (n = 11) revealed similar differences in cytokine concentrations (IL-7: P < 0.01, IL-15: P < 0.05 and CXCL8: P = 0.001).

Stem cell factor median concentrations were significantly lower (P = 0.03) in cAD (30.5 pg/mL; range <1.22 to 284 pg/mL) compared to the control group (41.2 pg/mL; range 22.9 to 92.3 pg/mL), while β-NGF showed a non-significant (P = 0.06) decrease in canine AD (0.54 pg/mL; range 0.28 to 1.59 pg/mL) compared to controls (0.57 pg/mL; range 0.43 to 1.13 pg/mL) (Table 2, Figure 1).

A comparison of cytokines within dogs with AD

Cytokine concentrations in atopic pedigree dogs (n = 20) were compared with those of crossbred dogs with AD (n = 7). IL-7 was the only cytokine to be significantly elevated (P = 0.03) in the pedigree dogs with AD (7.08 pg/mL; range <2.26 to 7,310 pg/mL) when compared to atopic cross-bred dogs (<2.26 pg/mL; range <2.26 to 73.9 pg/mL). In fact, while 68% of the pedigree dogs with AD had measurable IL-7 concentrations (n = 13), only one cross-bred dog with AD had detectable IL-7 (73.9 pg/mL). Other differences were found for IL-12p40 (P < 0.01), β-NGF (P < 0.01), TGFβ (P < 0.01) and SCF (P = 0.04) in the plasma of pedigree dogs with AD, where the median value of all four cytokines was lower in the cross-bred dogs compared to the pedigree dogs.

A comparison of cytokine alterations in dogs that belong to the Staffordshire breeds

Within the AD group, there were eight atopic dogs that belonged to the Staffordshire terrier-related breeds. IL-7 (P = 0.01), CXCL8 (P = 0.02), GM-CSF (P = 0.05) and IL-15 (P = 0.03) were significantly elevated in plasma of these Staffordshire terrier-related dogs when compared to the control dogs (n = 11) (Tables 2 and 3, Figure 2). The results from the AD cases that belonged to the Staffordshire dog breeds were compared to the rest of the cAD cases (Table 3). While the median values of IFNγ and TNFα in these two groups of atopic dogs were similar, both cytokines were found to be significantly elevated.

Table 1. Clinical characteristics of the canine atopic dermatitis (AD) cases and the control dogs

Characteristic	AD cases (%)	Controls (%)
Dogs in study [n (%)]		
Females	16 (59)	9 (81)
Males	11 (41)	2 (19)
All	27	11
Age [mean m (range)]	50 (10–95)	86 (74–110)
Age of onset [n (%)]		
<6m	8 (30)	
6m to <1y	6 (22)	
1y to <3y	8 (30)	
3 to 6y	5 (18)	
All [mean m, range]	27 (20, 2–72)	
IDT response [n (%)]		
Strong reactions	15 (55.6)	
Moderate reactions	10 (37.0)	
Weak reaction	1 (3.7)	
Serum IgE test	1 (3.7)	
AFR status [n (%)]		
Concurrent AD and AFR	1 (3.7)	
Exclusion of AFR	18 (66.7)	
Elimination dietary trial not completed	8 (29.6)	
FBH status [n (%)]		
Concurrent AD and FBH	1 (3.7)	

m, month; y, year; AFR, adverse food reaction; FBH, flea bite hypersensitivity; IDT, intradermal testing; IGE, immunoglobulin E.

1 Only 26 dogs were used for the Millipore cytokine/chemokine immunoassay and all 27 dogs participated in the Procarta immunoassays.

2 Allercept, HESKA, Gribbles Veterinary, VIC, Australia.

3 Elimination dietary trials to exclude AFR (a minimum six week trial).38

4 All of these dogs had distinctly seasonal signs for >12 months, excluding the possibility of AFR as the sole diagnosis.
Mazier et al.

Table 2. Quantification of 19 cytokines and chemokines in canine atopic dermatitis (AD) cases compared to control dogs

Cytokine/chemokine (pg/mL)	Confirmed AD (n = 26/27)‡	Controls (n = 11)
	Median Range	Median Range
CCL2 (MCP-1)	94.9	99.2
	53.7–2,995	54.1–251
CXCL8 (IL-8)	785**	161
	52.6–8,710	96.0–2,254
CXCL10 (IP-10)	<0.61	<0.61
	<0.61–45.6	<0.61–30.4
GM-CSF	21.9†	7.34
	<1.13–81.051	<1.13–51.2
IFN-γ	<0.93	<0.93
	<0.93–35.6	all <0.93
IL-2	7.71	2.96
	<0.46–14.894	<0.46–26.6
IL-4	<3.42	<3.42
	<3.42–244	all <3.42
IL-6	<2.35	<2.35
	all <2.35	all <2.35
IL-7	2.26**	<2.26
	<2.26–7.310	all <2.26
IL-10	<3.38	<3.38
	<3.38–652	all <3.38
IL-15	30.5*	6.40
	<1.02–16.811	<1.02–129
IL-18	18.6	15.8
	1.41–10.111	2.76–156
CXCL1	67.2	30.4
	1.74–393	2.11–236
TNF-α	<0.04	<0.04
	<0.04–0.91	all <0.04
IL-12p40	0.54	0.57
	0.28–1.59	0.43–1.13
SCF	30.5*	41.2
	<1.22–284	22.9–92.3
VEGF-A	<1.01	3.10
	<1.01–772	<1.01–36.8
TGF-β	22.9	11.6
	<1.35–253	<1.35–130

CCL, CC chemokine ligand; CXCL, CXC Motif Chemokine Ligand; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; TNF, tumour necrosis factor; NGF, nerve growth factor; SCF, stem cell factor; VEGF, vascular endothelial growth factor; TGF, tumour growth factor.

‡ indicates that either the samples or the lowest standard measured had this value. Samples that had values lower than this were reported as out of range results.

Cytoeukine and chemokine immunoassay concentrations were measured in picogram per millilitre (pg/mL) units.

*P < 0.05.

**P < 0.01.

† n = 26 for the first 14 cytokines/chemokines listed in the table (using Millipore multiplex immunoassay); n = 27 for the last five cytokines/chemokines listed (using Procarta multiplex immunoassay).

(Table 3, Figure 3) in the Staffordshire dog breeds (P = 0.04 for both).

Cytokine concentrations and IDT

The results of the cytokine/chemokine immunoassays of the dogs with AD that had IDT test results (96% of the affected dogs in this study) were compared between the strong IDT response dogs group (n = 15) and dogs with moderate or weak responses (n = 11). The only cytokine that was significantly different between these groups was IL-10 (P < 0.001). However, upon closer inspection, this resulted from two dogs with AD and moderate IDT responses that had detectable IL-10 (3.38 and 651.72 pg/mL), while the remaining dogs had undetectable levels. Notably, of the 13 AD dogs with detectable IL-7 levels, six had strong IDT response and seven had a moderate response. No correlation was found between cytokines and either allergen response groups, sex or age of onset (data not shown).

Discussion

This study identified altered levels of five plasma cytokines and chemokines in dogs with cAD relative to healthy controls. The findings indicate that IL-7, IL-15 and SCF, all cytokines that are not necessarily associated with TH1 and TH2 responses, were either elevated (IL-7 and IL-15) or decreased (SCF) in affected dogs. Increased levels of CXCL8 and some evidence for elevated GM-CSF also were found. While a disturbance in the balance between TH1 and TH2 cytokines together with TH17 and TH22 imbalances are established in current models of AD pathogenesis in both dogs and human, the altered concentrations of IL-7, IL-15 and SCF in plasma identified in this study implicate roles for other immunological regulatory factors. These cytokines are unlikely to be specific indicators of AD, yet the role of these identified pleiotropic cytokines in regard to TH1/TH2/TH17/TH22 dysregulation in cAD is intriguing.

IL-7 is the key cytokine highlighted in this study. It has a role in cell proliferation, promoting B- and T-cell production, and is critical for the survival of mature T cells. Elevated circulating IL-7 concentrations are reported and often correlated with changes to other cytokines in some human immune-related diseases. Together with TGFβ and IL-12p40, IL-7 also was elevated in the remission phase of Crohn’s disease when compared with the active disease phase. A previous study suggested that IL-7 suppresses TH1 cells through inhibition of Treg cells, yet does not suppress TH2 cell development. This may be relevant to the imbalance of TH1 and TH2 cells described previously in AD. The crucial role of IL-7 in T-cell homeostasis, and the putative correlation between elevated IL-7 and other changes in Treg cytokines, are consistent with a model of AD pathogenesis in which IL-7 has an influential role on T-cell imbalance. While our data might indicate some association between high IL-7 levels and IDT response, the correlation between high levels of IL-7 and disease severity was beyond the limitations of the study.
scope of this study, and will be interesting to address in future studies. From the scattered canine research using multiplex immunoassays, IL-7 levels were mostly nonsignificant in a range of nine non-skin-related diseases. Cytokines in dogs with other dermatological disease need to be investigated.

Figure 1. Cytokine and chemokine concentrations in plasma of dogs with atopic dermatitis (AD) compared to control dogs. Box plots of plasma cytokine concentrations for normal controls (C; n = 11) and atopic dogs (AD; n = 26 or 27). (a) Interleukin (IL)-7: controls (< 2.26 pg/mL) versus AD (median 2.26 pg/mL; range < 2.26 to 7,310 pg/mL) (P = 0.003). (b) IL-15: the median value for the AD cases (30.5 pg/mL) was five-fold higher than the median value for controls (6.4 pg/mL) (P = 0.052). (c) CXC motif chemokine ligand (CXCL8)/IL-8: median value for the AD cases (785 pg/mL) was five-fold higher than the median value for control dogs (161 pg/mL) (P = 0.003). (d) Granulocyte-macrophage colony-stimulating factor (GM-CSF): median value for controls (7.34 pg/mL) was three-fold lower than that of the dogs with AD (21.9 pg/mL) (P = 0.058). (e) Stem cell factor (SCF): median value of SCF for AD cases (30.5 pg/mL) was lower than the median value for the control dogs (41.2 pg/mL) (P = 0.028). (f) β-nerve growth factor (NGF): shows nonsignificant (P = 0.06) decreased concentrations in canine AD (median 0.54 pg/mL) compared to controls (median 0.57 pg/mL). *, P ≤ 0.05. For scaling reasons, the two top values for IL-7, IL-15 and GM-CSF are not shown in these figures.
One of the hallmarks of atopy is allergen-induced eosinophilia and high serum IgE concentrations. IL-7 influences immunoglobulin class switching in favour of IgE and IgG4. Elevated IgE and IgG4 levels are part of the minor diagnostic criteria for cAD and serum IgE concentrations are reduced following immunotherapy in dogs. IL-7 is elevated in human psoriasis patients, and serum IL-10 levels, 30 again not supporting a Treg role. The early onset of the disease in the set of the affected dogs studied here is consistent with the observation of lower plasma levels reflect the recruitment of Treg cell function has been proposed as a contributing factor to human atopy. Together with subsequent TSLP input, both IL-7 and IL-15 signals may have crucial role in melanogenesis (see review). SCF binds to the c-kit receptor, which is expressed on mast cells, and effects mast cell development and differentiation. SCF in skin lesions of atopic dogs has been linked to histamine release from dermal mast cells, and it is possible that lower plasma levels reflect the recruitment of SCF to the lesion.
previous reports. Considering that often it takes time to exclude other differential diagnosis in order to confirm cAD, it is likely that most cases were at the chronic phase when the blood sample was taken. This correlates with the changes in SCF and CXCL8 levels (see above in Discussion). Hence, profiling cytokine levels in early acute stages of the disease may be indicated as well. Although many of the AD dogs were younger, while all the controls were older (to rule out early cases of AD), we showed that in the subset of older dogs (aged 6–10 years) the changes in IL-7, IL-15 and CXCL8 levels are significant, compared to reported nonsignificant levels of these three cytokines when age-related changes were measured in healthy dogs, ruling-out age-related changes of the cytokines.

Differences in concentrations of five cytokine and chemokines between cross-bred and pedigree affected dogs were demonstrated here (IL-7, IL-12p40, β-NGF, TGFβ and SCF). Pedigree dogs affected with AD share similar genetic backgrounds that may influence clinical presentation and/or genetic associations of cytokine concentrations, justifying further research into breed-specific profiles of cytokines and chemokines in cAD. Dogs that belong to the Staffordshire breeds have an increased risk of developing AD. In addition to elevated IL-7, IL-15 and CXCL8 concentrations in Staffordshire breed dogs with AD, we observed an elevated concentration of GM-CSF. In humans, GM-CSF may be linked to eosinophilia in allergic patients, and is overproduced in keratinocytes from human AD patients. In the CPEK

Figure 2. Cytokine concentrations in plasma of Staffordshire breeds with atopic dermatitis (AD) compared to control dogs
Box plots of plasma cytokine for normal controls (C; n=11) and atopic dogs belonging to the Staffordshire breed group (AD-S; n = 8). (a) Interleukin (IL)-7: controls (<2.26 pg/mL) versus Staffordshire breed dogs with AD (median 8.34 pg/mL; range <2.26 to 7,310 pg/mL) (P = 0.01). (b) IL-15: median value was seven-fold higher in AD cases (47.6 pg/mL) versus control dogs (6.4 pg/mL) (P = 0.031). (c) CXC motif chemokine ligand (CXCL)8/IL-8: median value for AD cases (1,393 pg/mL) was nine-fold higher than the median value in control dogs (161 pg/mL) (P = 0.016). (d) Granulocyte-macrophage colony-stimulating factor (GM-CSF): median value in controls (7.34 pg/mL) was five-fold lower than in dogs with AD (33.9 pg/mL) (P = 0.048). For scaling reasons, the top values for IL-7, IL-15 and GM-CSF are not shown in these figures. *, P ≤ 0.05; **, P ≤ 0.01.
keratinocyte cell line, a model used for cAD research, overexpression of GM-CSF was induced by allergen (see reviewed72 and by IL-17.73 In addition to the aforementioned discussion on possible roles of IL-7 in AD, in the presence of GM-CSF, IL-7 supports survival of eosinophils in combination with IL-4.61 However, IL-4 concentrations did not differ between atopic and control dogs in our study and also in others.29,30 Another effect of IL-7 is increased secretion of GM-CSF from eosinophil granules of asthmatic patients, enhancing the allergic response in atopic diseases. Interestingly, the highest cytokine concentrations of all samples tested were detected in two dogs with AD from the Staffordshire breed group which had confirmed diagnosis of AD with either concurrent adverse food reaction (AFR) or concurrent flea bite hypersensitivity, suggesting a greater effect on cytokine levels when the immune system is combating multiple allergens. However, a breed-specific reaction also is possible.

IFNγ and TNFα were significantly elevated in the atopic Staffordshire breed group compared to the rest of the atopic dogs. Interestingly, the levels of these cytokines were not significantly different when comparing our all atopic dogs group to controls. Previous similar studies that compared atopic to control dogs were inconclusive, with increased TNFα in plasma and increased IFNγ in serum, and nonsignificant results about plasma IFNγ and serum TNFα.29,30 Our atopic Staffordshire results may reflect a chronic phase of the disease or a breed-specific effect. It also may indicate a breed-related correlation between elevated IL-7 and IFNγ in Staffordshire breeds, in a similar way to human Vogt–Koyanagi–Harada disease, a multisystem autoimmune disease in which serum IL-7 is increased and promotes in vivo expression of IFNγ.48

The lack of directly comparable studies in the canine model limits interpretation of the present results. It also is difficult to compare direct measurement of cytokines to mRNA assays. Comparisons were further restricted by the lengthy and detailed inclusion criteria for cAD which limited the number of animals available for study. This may have been reflected in the finding that the level of some of the cytokines was different among different dog breeds. Recruitment of controls for this study was based on the rare availability of >6-year-old dogs with no historical or current skin problems. Therefore, it was not possible to breed-match healthy dogs to the affected AD cases. A follow-up study including only mastoid clade dogs may further validate our results. AD is an early onset disease and thus we could not include young controls that may develop the disease in the future. However, when we compared the results between the small (age-matched) subset of >6-year-old AD dogs (n = 9) to the controls (n = 11) there was similar pattern of significantly altered IL-7, CXCL-8 and IL-15, suggesting that age does not influence cytokine concentrations. At the time of this study, canine-specific multiplex reagent availability also was not complete. Some studies have reported varied concentrations of IL-5, IL-13, IL-22 and IL-31 in cAD,19,22,26,27 so it will be valuable to consider measurement of an extended panel of cytokines as reagents become available.

Finally, as cytokines are produced and act locally, their plasma concentrations do not necessarily reflect their importance in the pathogenesis of the disease from the standpoint of local tissue response. Hence, while plasma cytokine concentrations may serve as an indicator to aid diagnosis, they may or may not be associated with disease severity or clinical presentation of AD. Therefore, the implication of the identified altered cytokines on disease pathogenesis, especially in relation to skin-related diseases, will need to be further explored.

Figure 3. Interferon (IFNγ) and tumour necrosis factor (TNFα) concentrations in plasma of atopic dermatitis (AD) cases belongs to the Staffordshire breeds compared to AD cases from other breeds. Box plot of IFNγ (a) and TNFα (b) plasma cytokine concentrations for atopic dogs from the Staffordshire breeds (AD-S; n = 8) and the AD cases from other breeds (AD-O; n = 18). (a) IFNγ: Staffordshire dogs with AD (median <0.93 pg/mL; range <0.93–35.6 pg/mL) versus dogs with AD from other breeds (median <0.93 pg/mL; range <0.93–8.86 pg/mL) (P = 0.043). (b) TNFα: Staffordshire dogs with AD (median <0.04 pg/mL; range <0.04–0.91 pg/mL) versus dogs with AD from other breeds (median <0.04 pg/mL; range <0.04–0.04 pg/mL) (P = 0.043). * P ≤ 0.05.
Conclusion

This study identified an association between cAD and altered plasma concentrations of cytokines. Of significance were elevated plasma concentrations of CXCL8, IL-7 and IL-15, with some evidence of increased GM-CSF, especially in atopic dogs belonging to the Staffordshire breeds. The results provide potential insights into cAD pathogenesis and may provide an opportunity to explore the use of a cytokine biomarker panel to aid in the diagnosis of cAD. One model that has been suggested to account for AD pathogenesis involves dysregulation of Treg cell responses, and although this model is consistent with the elevated levels of IL-7, and with the reduced concentrations of IL-10 and TGFβ in the present study, a mechanism linking altered cytokine profiles and Treg in cAD will require further exploration. Finally, as this study identified several differences in cytokine values of Staffordshire dogs, investigations into cytokine levels in other breeds that belong to the reported susceptible dog breed clade are warranted.

Acknowledgements

We thank Philippa Ravens for contributing to some case details and Jessica Fletcher who helped with sample preparation, both from the University of Sydney, Faculty of Science, Sydney School of Veterinary Science. We express thanks to the dog owners who allowed their dogs to participate in this study.

Author contribution

Hamutal Maznier: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Visualization; Writing-original draft; Writing-review & editing. Linda J Vogelnest: Conceptualization; Investigation; Resources; Supervision; Writing-review & editing. Rosanne M Taylor: Conceptualization; Supervision; Writing-review & editing. Peter Williamson: Conceptualization; Funding acquisition; Investigation; Project administration; Resources; Supervision; Writing-review & editing.

References

1. Vakirlis E, Lazaridou E, Tzellos TG, et al. Investigation of cytokine levels and their association with SCORAD index in adults with acute atopic dermatitis. J Eur Acad Dermatol Venereol 2011; 25: 409–416.
2. Drannik GN, Kurchenko AI, Omelchuk VI, et al. Correlation of serum levels of Th1 and Th2 cytokines with disease activity in patients with atopic dermatitis. J Allergy Clin Immunol 2010; 125: AB31.
3. Hamid O, Boguniewicz M, Leung DY. Differential in situ cytokine gene-expression in acute versus chronic atopic dermatitis. J Clin Invest 1994; 94: 870–876.
4. Olviry T, Dean GA, Tompkins MB, et al. Toward a canine model of atopic dermatitis: amplification of cytokine-gene transcripts in the skin of atopic dogs. Exp Dermatol 1999; 8: 204–211.
5. Piager DA, Torres SMF, Koch SN, et al. Gene transcription abnormalities in canine atopic dermatitis and related human eosinophilic allergic diseases. Vet Immunol Immunopathol 2012; 149: 136–142.
6. Akdis M, Akdis CA, Weil L, et al. Skin-homing, CLA+ memory T cells are activated in atopic dermatitis and regulate IgE by an IL-13-dominated cytokine pattern: IgG4 counter-regulation by CLA-memory T cells. J Immunol 1997; 159: 4,611–4,619.
7. Szegedi K, Kremer AE, Keiz S, et al. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol 2012; 21: 431–436.
8. Ezzat MHH, Hasan ZE, Shaheen KYA. Serum measurement of interleukin-31 (IL-31) in paediatic atopic dermatitis: elevated levels correlate with severity scoring. J Eur Acad Dermatol Venereol 2011; 25: 334–339.
9. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2011; 2: 110.
10. Mameissier E, Magnan A. Cytokines in atopic diseases: revisiting the Th2 dogma. Eur J Dermatol 2008; 18: 103–113.
11. Gittler JK, Krueger JG, Gutman-Yassky E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: Implications for contact dermatitis. J Allergy Clin Immunol 2013; 131: 300–313.
12. Verhagen J, Akdis M, Traidl-Hoffmann C, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006; 117: 176–183.
13. Koga C, Kabashima K, Shiraiishi N, et al. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol 2009; 128: 2,625–2,630.
14. Niognales KE, Zaba LC, Shemer A, et al. IL-22–producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17–producing TH17 T cells. J Allergy Clin Immunol 2009; 123: 1,244–1,252 e2.
15. Niedoszytko B, Sokolowska-Wejdryl M, Ruckemann-Dziurzbiszka K, et al. Review paper: Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Postepy Dermatol Alerzog 2014; 31: 84–91.
16. Online Mendelian Inheritance in Animals (OMIA). Sydney School of Veterinary Science, University of Sydney. MIA Number: (000269-9615). [WWW document] URL: http://omia.org/ [accessed 12/10/2020].
17. Marsella R, Girolomoni G. Canine models of atopic dermatitis: a useful tool with untapped potential. J Invest Dermatol 2009; 129: 2,351–2,357.
18. Pucheu-Haston CM, Bizikova P, Marsella R, et al. Review: Lymphocytes, cytokines, chemokines and the Th-helper 1–Th-helper 2 balance in canine atopic dermatitis. Vet Dermatol 2015; 26: 124–132.
19. Jassies-van der Lee A, Rutten VPMG, Buijn J, et al. CD4+ and CD8+ skin-associated T lymphocytes in canine atopic dermatitis produce interleukin-13, interleukin-22 and interferon-gamma and contain a CD25+ FoxP3+ subset. Vet Dermatol 2014; 25: 456–467.
20. Keppel KE, Campbell KL, Zuckermann FA, et al. Quantitation of canine regulatory T cell populations, serum interleukin-10 and allergen-specific IgE concentrations in healthy control dogs and canine atopic dermatitis patients receiving allergen-specific immunotherapy. Vet Immunol Immunopathol 2008; 123: 337–344.
21. Nuttall TJ, Knight PA, McAleese SM, et al. Th1 helper 1, Th2 helper 2 and immunosuppressive cytokines in canine atopic dermatitis. Vet Immunol Immunopathol 2002; 87: 379–384.
22. Marsella R, Olviry T, Maeda S. Cellular and cytokine kinetics after epicutaneous allergen challenge (atopic patch testing) with house dust mites in high-IgE beagles. Vet Dermatol 2006; 17: 111–120.
23. Schlottzer YM, Rutten VPMG, Riemers FM, et al. Lesional skin in atopic dogs shows a mixed Type-1 and Type-2 immune responsiveness. Vet Immunol Immunopathol 2011; 143: 20–26.
24. Maeda S, Fujiwara S, Oomori K, et al. Lesional expression of thymus and activation-regulated chemokine in canine atopic dermatitis. Vet Immunol Immunopathol 2002; 88: 79–87.
25. Maeda S, Omori K, Yasuda N, et al. Increase of CC chemokine receptor 4-positive cells in the peripheral CD4+ T cells in dogs with atopic dermatitis as experimentally sensitized to Japanese cedar pollen. Clin Exp Allergy 2004; 34: 1,467–1,473.
26. Maeda S, Tsuchida H, Marsella R. Allergen challenge decreases mRNP expression of regulatory cytokines in whole blood of high-IgE beagles. Vet Dermatol 2007; 18: 422–426.

27. Gonzalez AJ, Humphrey WR, Messamore JE, et al. Interleukin-31: its role in canine pruritus and normally occurring canine atopic dermatitis. Vet Dermatol 2013; 24: 48–53.e11-2.

28. Gonzalez AJ, Fleck TJ, Humphrey WR, et al. IL-31-induced pruritus in dogs: a novel experimental model to evaluate anti-pruritic effects of canine therapeutic agents. Vet Dermatol 2016; 27: 34-e10.

29. Majewska A, Gajewska M, Dembele K, et al. Lymphocytic, cyto- and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res 2016; 12: 174.

30. Koury J, Ramirez A, Xie C, et al. Phosphodiesterase 4D, miR-305 and selected cytokines in the peripheral blood are associated with canine atopic dermatitis. PLoS One 2019; 14: e0218670.

31. Neaville WA, Tisler C, Bhattacharya A, et al. Developmental control of late-stage thymocyte development and maturation of CD4-CD8- double negative thymocytes. Stem Cell Reports 2013; 1: 197–198.

32. Frezzolini A, Paradisi M, Zaffiro A, et al. Circulating Interleukin 16 and selected cytokines in the peripheral blood are associated with canine atopic dermatitis. Vet Dermatol 2016; 27: 34-e10.

33. Mazrier H, Vogelnest LJ, Thomson PC, et al. Canine atopic dermatitis gene associations in a canine peripheral blood microarray analysis. Vet Dermatol 2013; 24: 287-9.

34. Deboer DJ, Hillier A. The ACVD task force on canine atopic dermatitis. J Small Anim Pract 2004; 45: 131–e38.

35. Richter KR, Nasr AN, Mexas AM. Cytokine expression of atopy during the first year of life. J Allergy Clin Immunol 2003; 112: 740–746.

36. Lee EB, Kim KW, Hong JY, et al. Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatr Allergy Immunol 2010; 21: e457-e460.

37. Richter KR, Nasr AN, Mexas AM. Cytokine concentrations measured by multiplex assays in canine peripheral blood samples. Vet Pathol 2018; 55: 53-67.

38. Mazrier H, Vogelnest LJ, Thomson PC, et al. Canine atopic dermatitis: breed risk in Australia and evidence for a susceptible locus. Vet Dermatol 2018; 29: 167-142.

39. DeBoer DJ, Hiller A. The ACVD task force on canine atopic dermatitis (XVI): laboratory evaluation of dogs with atopic dermatitis with serum-based “allergy” tests. Vet Immunol Immunopathol 2001; 81: 277-287.

40. Olivy T, Saridomichelakis M; International Committee on Atopic Diseases of Animals (ICADA). Evidence-based guidelines for anti-allergic drug withdrawal times before allergen-specific intra-sensitization in dogs. Vet Dermatol 2013; 24: 225-49.

41. Willemsen T. Atopic skin disease: a review and a reconsideration of diagnostic criteria (BSAVA Education Committee commissioned article). J Small Anim Pract 1986; 27: 771–778.

42. Faverot C, Steffan J, Seewald W, et al. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet Dermatol 2010; 21: 23-31.

43. Hillier A, DeBoer DJ. The ACVD task force on canine atopic dermatitis (XVII): intradermal testing. Vet Immunol Immunopathol 2001; 81: 289-304.

44. Carrette F, Surh CD. IL-7 signalling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 2012; 24: 209-217.

45. Tani-ichi S, Shiba A, Wagatsuma K, et al. Interleukin-7 receptor controls development and maturation of late stages of thymocyte subpopulations. Proc Natl Acad Sci USA 2013; 110: 612–617.

46. Xiong J, Parker BL, Dalheimer SL, et al. IL-7 supports survival of TCRβ-expressing CD4-CD8- double negative thymocytes. Immunology 2013; 138: 382-391.

47. De Benedetti F, Massa M, Pignatt P, et al. Elevated circulating interleukin-7 levels in patients with systemic juvenile rheumatoid arthritis. J Rheumatol 1995; 22: 1,581–1,585.

48. Yang Y, Xiao X, Li F, et al. Increased IL-7 expression in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 2012; 53: 1,012–1,017.

49. Kader HA, Tcheurny VT, Satyara J, et al. Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12/40 levels in Crohn’s disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol 2005; 100: 414–423.

50. Chen L, Martinez O, Overbergh L, et al. Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol 2004; 138: 375–387.

51. Roque JB, O’Leary CA, Kyaw-Tanner M, et al. High allergen-specific serum immunoglobulin E levels in nonatopic West Highland white terriers. Vet Dermatol 2011; 22: 257–266.

52. Owczarek-Lipska M, Lauber B, Molitor V, et al. Two loci on chromosome 5 are associated with serum IgE levels in Labrador retrievers. PLoS One 2012; 7: e39176.

53. Werfel T. The role of leukocytes, keratinocytes, and allergen-specific IgE in the development of atopic dermatitis. J Invest Dermatol 2009; 129: 1,878–1,891.

54. Jeannin P, Delneste Y, Lecoanet-Henchoz S, et al. Interleukin-7 (IL-7) enhances class switching to IgE and IgG4 in the presence of T cells via IL-9 and eC223. Blood 1998; 91: 1,355–1,361.

55. Szepeiotowski JC, Bielicka E, Nockowski P, et al. Increased interleukin-7 levels in the sera of psoriatic patients: lack of correlations with interleukin-6 levels and disease intensity. Clin Exp Dermatol 2000; 25: 643–647.

56. Ovcina-Kurtovic N, Kasumagic-Hallivoe E. Serum levels of total immunoglobulin E in patients with psoriasis: relationship with clinical type of disease. Med Arch 2010; 64: 28–29.

57. Plager DA, Leontovich AA, Henke SA, et al. Early cutaneous gene transcription changes in adult atopic dermatitis and potential clinical implications. Exp Dermatol 2007; 16: 28–36.

58. Sonkoly E, Wei T, Janson PCJ, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2007; 2: e610.

59. Chang M, Li Y, Yan C, et al. Variants in the 5q31 cytokine gene cluster are associated with psoriasis. Genes Immun 2006; 9: 176–181.

60. de Guzman Strong C, Conlan S, Denning CB, et al. A milieu of regulatory elements in the epidermal differentiation complex syntenic block: implications for atopic dermatitis and psoriasis. Human Mol Genet 2010; 19: 1,453–1,460.

61. Kelly EAB, Kozoi-White CJ, Clay KJ, et al. Potential contribution of IL-7 to allergen-induced eosinophilic airway inflammation in asthma. J Immunol 2009; 182: 1,404–1,410.

62. Plager DA, Torres SMF, Koch SN, et al. Gene transcription abnormalities in canine atopic dermatitis and related human eosinophilic allergic diseases. Vet Immunol Immunopathol 2012; 149: 136–142.

63. Paul WE. What determines Th2 differentiation, in vitro and in vivo? Immunol Cell Biol 2010; 88: 236–239.

64. Klukowska-Rożniak J, Chervet L, Müller EJ, et al. Expression of thymic stromal lymphopoietin in canine atopic dermatitis. Vet Dermatol 2013; 24: 54-59.e13-4.

65. Wood SH, Ollier WE, Nuttall T, et al. Despite identifying some shared gene associations with human atopic dermatitis the use of multiple dog breeds from various locations limits detection of gene associations in canine atopic dermatitis. Vet Immunol Immunopathol 2010; 138: 193–197.

66. Broudy VC. Stem cell factor and hematopoiesis. Blood 1997; 90: 1,345–1,364.
67. Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63: 213–224.

68. Hammerberg B, Olivry T, Orton SM. Skin mast cell histamine release following stem cell factor and high-affinity immunoglobulin E receptor cross-linking in dogs with atopic dermatitis. Vet Dermatol 2001; 12: 339–346.

69. Barth Med 2001; 12: 339–346.

70. Moqbel R, Hamid Q, Ying S, et al. Expression of messenger-RNA and immunoreactivity for the granulocyte macrophage colony-stimulating factor in activated human eosinophils. J Exp Med 1991; 174: 749–752.

71. Pastore S, Fanales-Belasio E, Albanesi C, et al. Granulocyte macrophage colony-stimulating factor is overproduced by keratinocytes in atopic dermatitis. Implications for sustained dendritic cell activation in the skin. J Clin Invest 1997; 99: 3,009–3,017.

72. Asahina R, Maeda S. A review of the roles of keratinocyte-derived cytokines and chemokines in the pathogenesis of atopic dermatitis in humans and dogs. Vet Dermatol 2016; 28: 16 e5.

73. Asahina R, Kamishina H, Kamishina H, et al. Gene transcription of pro-inflammatory cytokines and chemokines induced by IL-17A in canine keratinocytes. Vet Dermatol 2015; 26: 426–431, e100.

Plasma cytokines in canine atopic dermatitis

Resumen
Introducción – La dermatitis atópica (DA) canina (Canis lupus familiaris) comparte signos clínicos similares a la DA humana. La respuesta inmunitaria anormal de la DA está orchestrada por los linfocitos T y puede incluir una implicación variable de las citoquinas, de las células T reguladoras (Treg), de los eosinófilos, de las mastocitos y de otros componentes inmunitarios. Las citoquinas Helper Th2 predominan a menudo en el DA canino, mientras que las citoquinas pro-inflamatorias y las Treg juegan un papel limitado en la DA humana. Por consiguiente, este estudio fue diseñado para medir las concentraciones de citoquinas/quinmokinas no asociadas tradicionalmente con la respuesta Th1/Th2.

Métodos y materiales – Se evaluaron un total de 19 citoquinas plasmáticas en el plasma de pacientes caninos con DA (n = 23) y en el plasma de perros normales (n = 10).

Resultados – Las concentraciones de las citoquinas de CXC (CXCL8), interleukinas (IL)-7 y IL-15 estaban elevadas en la DA canina, en comparación con los perros normales. Las concentraciones de factor de células madre (SCF) se redujeron en el plasma de los pacientes caninos con DA en comparación con los perros normales. Se encontraron perfiles de citoquinas distintos en perros pertenecientes a las razas Staffordshire, un grupo con mayor riesgo de AD. En particular, el factor estimulante de colonias de granulocitos y macrófagos (GM-CSF) tenía concentraciones significativamente elevadas.

Conclusiones y relevancia clínica – Algunas de las citoquinas del plasma en la AD canina descritas aquí, en particular de IL-7, no se han publicado previamente. El seguimiento de estas alteraciones clínicas podría ser útil para el diagnóstico y el seguimiento de la AD canina en perros.

© 2021 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of ESVD and ACVD. 33, 131–e38.
Zusammenfassung

Hintergrund – Die atopische Dermatitis (AD) des Hundes (Canis lupus familiaris) zeigt ähnliche klinische Zeichen wie die AD des Menschen. Die abnormale Immunantwort der AD wird durch die T-Lymphozyten verursacht und kann eine unterschiedliche Beteiligung von Zytokinen, regulatorischen T (Treg) Zellen, Eosinophilen, Mastzellen und andere Immunkomponenten zeigen. Helfer T (Th)2 Zytokine sind anfangs oft dominant, gefolgt von Th1 Zytokinen in den mehr chronischen Phasen.

Hypothesen/Ziele – Es konnte gezeigt werden, dass pro-entzündliche und Treg Zytokine eine wichtige Rolle bei der AD des Menschen spielen, ihre Bedeutung bei der AD des Hundes ist jedoch unklar. Daher war das Ziel dieser Studie die Messung der Konzentrationen von Zytokinen/Chemokinen, die traditionellerweise nicht mit einer Th1/Th2 Antwort im Zusammenhang stehen.

Tiere – Canine AD Patienten (n = 27) im Vergleich zu Kontrollhunden (n = 11).

Methoden und Materialien – Insgesamt wurden 19 Zytokine mittels spezifischen caninen Multiplex Immuno-Assays im Plasma bestimmt.

Ergebnisse – Die Plasmakonzentrationen von CXC Motif Chemokin Ligand 8 (CXCL8) sowie den Zytokinen Interleukin (IL)-7 und IL-15 waren bei den Hunden mit AD im Vergleich zu den Kontrollhunden erhöht. Zusätzlich waren die Konzentrationen des Stammzellythens (SCF) im Plasma von Hunden mit AD im Vergleich zu den Kontrollhunden reduziert. Deutliche Zytokinprofile wurden bei Hunden, die zu den Staffords-hire Rassen gehören, bei denen es sich um eine Gruppe mit einem erhöhten AD Risiko handelt, gefunden. Im Speziellen war der Granulozyten-Makrophagenkolonie-stimulierende Faktor (GM-CSF) signifikant erhöht.

Schlussfolgerungen und klinische Bedeutung – Einige der Veränderungen der Plasmazytokine, die hier bei den Hunden mit AD beschrieben wurden, im Speziellen IL-7, wurden bisher noch nicht publiziert. Eine Überwachung dieser klaren Zytokin Veränderungen könnte bei der Diagnose und beim Monitoring von Hunden mit AD nützlich sein.

要約

背景 – 犬 (Canis lupus familiaris) オートアイ性皮膚炎 (AD) は、ヒトの AD と臨床症状が類似している。オートアイ性皮膚炎の異常な免疫反応は、Tリグニールを障害に、サイトカイン、レギュレートリー T (Treg) 細胞、好酸球、マスト細胞、その他の免疫成分が関与している可能性がある。初期にはヘルパー T (Th)2 サイトカインが優勢で、より慢性な段階では Th1 サイトカインが続くことが多い。

仮説/目的 – 炎症性サイトカインおよび Treg サイトカインは、ヒトの AD において役割を果たしていることが示されているが、AD においてはその重要性は明らかではない。そこで本研究では、従来は Th1/Th2 反応に関与していないかったサイトカインを検討することを目的とした。

検体動物 – AD 症例 (n = 27) および対照犬 (n = 11) を比較した。

材料と方法 – 計 19 種類の血漿サイトカインを、犬特異のマルチプレックス免疫測定法を用いて測定した。

結果 – AD 症例では、CXC モチフ Chemokine Ligand 8 (CXCL8)、インターロイキン (IL)-7、IL-15 サイトカインの血漿濃度が対照犬と比較して上昇していた。また、AD 症例の血漿中の幹細胞因子 (SCF) 濃度は、対照犬に比べて低下していた。AD のリスクが高いとされるスタードフォード型に属する犬では、粒細胞・マクロファージ・コロニー刺激因子 (GM-CSF) の濃度が有意に上昇していた。

結論と臨床的妥当性 – 今回報告された犬 AD における血漿中のサイトカインの変化のうち、特に IL-7 の変化はこれまで報告されていないものである。これらの特徴的なサイトカインの変化をモニタリングすることは、犬 AD 診断やモニタリングに有用であると考えられる。

摘要

背景 – 皮稜性皮疹 (AD) の臨床症状はヒトと類似している。AD の異常免疫反応は、T-Liugh細胞に残存し、可能性大を含む細胞因子 - 蒸発度 (Thre) 細胞、好酸球、マスト細胞、その他の免疫成分に結合によって、補助性 Th2 細胞因子の関与が最も特異的で、慢性段階においては Th1 細胞因子が主となる。

假説/目的 – 皮稜細胞因子と Treg 細胞因子の関連性は、ヒトの AD においては未だ不明確である。そこで、本研究では血漿中 Th1/Th2 反応に関与していないサイトカインの変化について検討した。

検体動物 – AD 患犬 (n = 27) および対照犬 (n = 11) を比較した。

材料と方法 – 約 19 種類の血漿細胞因子を、これら特異のマルチプレックス免疫測定法を用いて測定した。

結果 – AD 患犬の血漿中の血漿因子 18 (CXCL8)、インターロイキン (IL)-7 および IL-15 細胞因子の血漿濃度は、対照犬との差異が認められた。AD 患犬血漿中のサイトカイン (SCF) 濃度は、対照犬のそれに比して低下していた。特に、粒細胞マクロファージコロニー刺激因子 (GM-CSF) の濃度が有意に上昇していた。

結論と臨床的妥当性 – 本文で説明した AD 中の血液細胞因子の変化、特に IL-7 の変化が、これまでの報告されていないものである。これらの特徴的なサイトカインの変化をモニタリングすることは、犬 AD 診断やモニタリングに有用であると考えられる。
Resumo

Contexto – A dermatite atópica (DA) canina (*Canis lupus familiaris*) apresenta sinais clínicos similares à DA humana. A resposta imune anormal da DA é orquestrada por linfócitos T, e pode incluir o envolvimento variável de citocinas, células T regulatórias (Treg), eosinófilos, mastócitos e outros componentes imunes. As citocinas derivadas de linfócitos T helper (Th)2 geralmente predominam na fase inicial, seguidas pelas citocinas Th1 na fase mais crônica.

Hipótese/Objetivos – Citocinas pró-inflamatórias e citocinas Treg tem demonstrado funções na DA humana, mas a sua importância ainda não é clara na DA canina. Desta forma, este estudo teve o objetivo de mensurar as concentrações de citocinas/quimiocinas não tradicionalmente associadas às respostas Th1/Th2.

Animais – pacientes com DA canina (n = 27), comparados a cães controles (n = 11).

Materiais e métodos – Um total de 19 citocinas plasmáticas foram avaliadas utilizando imunoensaios multiplex específicos para cães.

Resultados – As concentrações plasmáticas de *CXC Motif Chemokine Ligand 8* (CXCL8), interleucina (IL)-7 e IL-5 estavam aumentas nos cães com DA, comparado aos cães controle. Além disto, as concentrações do fator de célula tronco (SCF) estavam reduzidas no plasma dos pacientes com DA canina comparada aos cães controle. Foram encontrados perfis de citocinas distintos nos cães pertencentes às raças Staffordshire, um grupo com maior risco de DA. Em particular, o fator estimulador de colônias de macrófagos-granulócitos (GM-CSF) apresentou concentrações significativamente elevadas.

Conclusões e importância clínica – Algumas das alterações nas citocinas plasmáticas na DA canina descritas aqui, particularmente IL-7, não haviam sido descritas anteriormente. O monitoramento dessas alterações distintas de citocinas pode ser útil para o diagnóstico e monitoramento da DA em cães.