Unusual features in the nonlinear microwave surface impedance of YBaCuO thin films

A.P. Kharel¹, A.V. Velichko¹,², J.R. Powell¹, A. Porch¹, M.J. Lancaster¹ and R.G. Humphreys³

¹School of Electronic and Electrical Engineering, The University of Birmingham, B15 2TT, UK
²Institute for Radiophysics and Electronics of NAS, Kharkov, Ukraine
³DERA, St. Andrews Road, Malvern WR14 3PS, UK

(March 24, 2022)

Striking features have been found in the nonlinear microwave (8.0 GHz) surface impedance $Z_s = R_s + jX_s$ of high-quality YBaCuO thin films with comparable low power characteristics ($R_{res} \sim 35-60 \mu \Omega$ and $\lambda_5(15 \text{ K}) \sim 130-260 \text{ nm}$). The surface resistance R_s is found to increase, decrease, or remain independent of the microwave field H_{rf} (up to 60 mT) at different temperatures and for different samples. However, the surface reactance X_s always follows the same functional form. Mechanisms which may be responsible for the observed variations in R_s and X_s are briefly discussed.

Measurements of the nonlinear microwave surface impedance, Z_s, of high-temperature superconductors (HTS) is a powerful tool for studying non-equilibrium processes in these materials. Nonlinear impedance measurements allow one to investigate peculiarities of the rf-vortex nucleation, and to study the vortex dynamics at elevated microwave fields. Such measurements may also discriminate between d-wave and s-wave mechanisms of pairing symmetry in HTS, and indicate the presence of magnetic impurities in the material.

In the present paper, we report observations of non-monotonous behavior of R_s and the penetration depth, λ (or, equivalently, the surface reactance $X_s = \omega \mu_0 \lambda$), of high-quality epitaxial YBaCuO thin films, in microwave fields up to 60 kA/m ($\sim 700 \text{ Oe}$) using the coplanar resonator technique at 8 GHz. For all samples, depending on temperature T, R_s demonstrates completely different behavior, whereas λ always preserves the same H_{rf}-dependence, irrespective of sample and T. Measurements are presented for very high quality samples over a wide temperature range (12–75 K) which at first time reveal non-monotonous and uncorrelated behavior in R_s and X_s as a function of H_{rf}. Such a behavior does not agree with any of the existing models for the nonlinear microwave impedance. In the following we discuss several mechanisms relevant to these observations.

The films are deposited by e-beam co-evaporation onto polished (001)-orientated MgO single crystal substrates $10 \times 10 \text{ mm}^2$. The films are 350 nm thick. The c-axis misalignment of the films are typically less than 1%, and the dc critical current density J_c at 77 K is around $2 \times 10^6 \text{ A/cm}^2$. More detailed information on the growth technique can be found in Ref.[8]. The values of R_s and λ at 15 K are 60, 35, 50 $\mu \Omega$ and 260, 210, 135 nm for samples TF1, TF2 and TF3, respectively.

Changes in R_s and X_s with H_{rf}, $\Delta R_s = R_s(H_{rf}) - R_s(0)$ and $\Delta X_s = X_s(H_{rf}) - X_s(0)$, are plotted in fig. 1 and fig. 2 for all three samples. For sample TF1 for all T and in the whole field range $\Delta R_s \sim H_{rf}^3$, whereas for samples TF2 and TF3 the behavior of $\Delta R_s(H_{rf})$ changes dramatically with T. For sample TF2 R_s changes from decreasing at 15 K to almost H_{rf}-independent behavior at 35 K, and to a rapidly increasing function of H_{rf} between 40–75 K. At 15 K ΔR_s diminishes noticeably only at $H_{rf} > 10 \text{ kA/m}$ showing no features of saturation up to the highest available H_{rf} of $\sim 40 \text{ kA/m}$. At higher T (70 K) a transition to a characteristic sublinear field dependence ($\sim H_{rf}^n$, $n < 1$) occurs. A similar behavior is also observed for sample TF3 at 15 and 35 K over the whole field range, whereas at $T > 70 \text{ K}$ (see fig. 2) a minimum in $\Delta R_s(H_{rf})$ at low fields appears, after which the usual sublinear H_{rf}-dependence is recovered. As regards to $\Delta X_s(H_{rf})$, it is always a sublinear function of H_{rf} at low fields with a characteristic kink and super-linear H_{rf}-dependence ($\sim H_{rf}^n$, $n > 1$) at higher fields (see fig. 2). This dependence of ΔX_s on H_{rf} persists for all samples and for almost all temperatures, and in general no correlation is observed between $\Delta X_s(H_{rf})$ and $\Delta R_s(H_{rf})$. The only exception is sample TF3 for which $\Delta X_s(H_{rf})$ qualitatively correlates with $\Delta R_s(H_{rf})$ at all T, and even the minimum at low fields is reproduced in both dependences at 75 K (see fig. 2b,c). In fig. 3a and fig. 3b some of ΔR_s and ΔX_s data are fitted to the function $\sim H_{rf}^n$ which is predicted by Halbritter’s model of Josephson vortex motion in weak links (WL) ($0.5 < n < 2$) and the Ginzburg-Landau theory for the pair breaking mechanism ($n = 2$).

In fig. 3, we plot the temperature dependence of the r-parameter ($r = R_s(X_s)$) for all the samples at three microwave power levels. These data are often used to distinguish between various nonlinear mechanisms. The general trend of $r(T)$ for all the samples is a decrease in the absolute value of r with increasing T, gradually saturating at high T. For samples TF2 and TF3 the most pronounced change in r occurs at low T, where it has a large negative value of about -1 and rapidly levels off with temperature approaching a value of $0.01–0.06$ (see fig. 3b,c). One can see that the initial negative value of r is reduced with enhanced power. Unlike other samples, TF1 in the high field regime ($H_{rf} \sim 7600 \text{ A/m}$) displays an increase in the r-parameter at high temperatures ($T > 45 \text{ K}$) and reaches a value of ~ 0.15. In addition, the initial low-T r-value for sample TF1 depends non-monotonously on the microwave field (see fig. 3b). For explanation of the observed non-monotonous field
FIG. 1. Microwave field H_{rf} dependences of the change in the surface resistance ΔR_s for three samples TF1, TF2 and TF3 at different temperatures T. The dashed lines are fitting curves using a function $\sim H_{rf}$, which is discussed in the text. T- and n-values are given in the figure. The solid line in a) is a fit using the modified model of Gallop et al ref[14]. The parameters of the fit are as follows: normal resistance $R_n = 1.83$ Ω, zero field critical current density $J_c = 10^{10}$ A/cm2, grain size $\alpha = 6.4 \cdot 10^{-7}$ m, grain penetration depth $\lambda_{\alpha 0} = 2.51 \cdot 10^{-7}$ m. The insert shows the data at 75 K on an expanded scale.

dependences of ΔR_s and ΔX_s we involve three different mechanisms. Each mechanism is capable of describing only particular features in H_{rf}-dependences of ΔR_s and ΔX_s. First, the modified weakly-coupled grain model[11] proposed by Gallop et al[14] assumes that for high-quality HTS films a WL between two superconducting grains is shunted by another third grain, which serves as an additional path for both dc and rf currents. This model presents a highly simplified picture (not least, because it makes no distinction between the Meissner and the mixed states). Nevertheless it enables one to reproduce a reduction of R_s, such as we observe, given a certain set of the material parameters. However, it is unable to describe two important features observed by us: sublinear $\Delta X_s(H_{rf})$ dependence at low fields with a characteristic change in curvature at higher H_{rf}, and the decrease of ΔX_s with H_{rf} (see fig. 2a). We have managed to overcome in part the first drawback of the model by introducing an effective local flux density B_{eff}, which interacts with the rf current. When both the junction and grains are in the Meissner or mixed state, the magnetic flux is quasi-homogeneously distributed throughout the region to which it penetrates, and $B_{eff} = B$. However, in the mixed state of the WL only, the flux will be concentrated inside the junctions due to screening currents in the grains, and hence, in the WL $B_{eff} > B$. The ratio B_{eff}/B should increase with B and reach a maximum at $B_{eff} = \mu_0 H_{c1}$ (H_{c1} is the lower critical field of the grains) after which it should decrease rapidly. Adopting a simple function for B_{eff}/B which possesses the properties specified above (we took the Gaussian function) we have managed to get an excellent fit to our $\Delta X_s(H_{rf})$ data (see fig. 2a), but we failed to reproduce the ΔR_s field dependence (see fig. 2b). Moreover, such a model cannot reproduce the decrease in ΔX_s with H_{rf} observed for TF3 sample at high temperatures (see fig. 2c).

Another model applicable to our results is the model of Eliashberg[2] for superconductivity stimulated by high power microwave irradiation. As shown by Eliashberg[2] in a superconductor with a homogeneous order parameter distribution, microwave radiation of a certain power can induce a new quasiparticle distribution function with an increased gap, which in turns leads to an enhancement in superconducting properties. A similar effect is predicted by the Aslamazov-Larkin (AL) theory[12] for in-

FIG. 2. The change in the surface reactance ΔX_s as a function of H_{rf} for three samples TF1, TF2 and TF3 at different temperatures. The fits are the same as those plotted in fig.1. The insert shows the data at 75 K on an expanded scale.
FIG. 3. Temperature dependences of the r-parameter ($\Delta R_s/\Delta X_s$) for samples TF1, TF2 and TF3 at different H_{rf} (specified in the figure).

homogeneous WL, due to the radiation-induced diffusion of quasiparticles out of the junction region which occurs for a certain level of microwave power. Since the AL theory, contrary to the Eliashberg model, predicts a suppression of the order parameter at low rf fields, we can exclude this mechanism immediately, since we observe a reduction of R_s at the lowest fields (see fig. 1b,c). As regards to the Eliashberg theory, it predicts a decrease of the stimulation effect with lowered temperature, and a suppression of superconductivity by a static magnetic field. In fact, for sample TF2 we see that the decrease in R_s with H_{rf} is reduced with increasing temperature and completely disappears at high T, whereas for sample TF3 the decrease in R_s is observed only at high T (see fig. 1f). Moreover, additional experiments performed by us in low dc magnetic fields $H_{dc} \leq 12$ mT (to be published elsewhere), showed that while for sample TF2 H_{dc} causes an even more pronounced decrease in R_s, for sample TF3 the dc field always leads to an enhanced R_c. However, in accordance with Ref. [13], stimulation of superconductivity is expected only in highly uniform narrow and thin superconducting channels with a homogeneous order parameter and microwave field distribution, which is hardly the case for our wide and “quasi-bulk” samples.

Finally, the third mechanism which may account for our results is the recovery of superconductivity due to the field-induced spin alignment of magnetic impurities which are likely to be present in most HTS (particularly in YBaCuO). Magnetic impurities are a source of Cooper pair breaking due to the spin-flip scattering process. However, at low temperatures the decrease in thermal motion leads to the appearance of spin-spin correlation of the impurity atoms which becomes strong and may frustrate the spin-flip scattering. An external magnetic field also leads to ordering via alignment of the magnetic field, and hence, can also lead to a reduction of pair breaking.

Recently Hein et al. observed a correlated reduction of R_s and λ in both dc and rf fields of the same order of magnitude (≤ 20 mT). They performed an analysis of the function $\Delta R_s/R_c(\Delta X_s/R_c)$ (where $R_c = \sqrt{\omega \mu_0/2\sigma_n}$, and σ_n is the normal electron conductivity) in terms of the two-fluid model (TFM) and found that their data collapsed onto a single TFM curve. In addition, the conductivity ratio $y = \sigma_1/\sigma_2$ (where σ_1 and σ_2 are quasiparticle and superfluid conductivities, respectively) was found to decrease with increased magnetic field, which was attributed to the field-induced reduction of pair breaking. The major difference between our results and those of Hein et al. is that they did not observe a reduction of R_s with H_{rf} without an accompanying reduction of λ; but at the same time they observed a reduction of λ with H_{dc} being almost independent of H_{rf}. In contrast, we observed a reduction of R_s for a monotonously increasing λ, and moreover, only in rare cases did we observe a decrease in R_s correlated with a decrease in λ (see fig. 1c and fig. 2c). In addition, a similar analysis based on the TFM was performed by us which showed rather poor scaling of our $\Delta R_s/R_c(\Delta X_s/R_c)$ data, as plotted in fig. 4. One further distinctive feature of our data compared to those of Hein et al. is the significant discrepancy (up to several times) in the R_c values extracted from the ΔR_s and ΔX_s data (see table 1). Besides, our conductivity ratio $y = \sigma_1/\sigma_2$, extracted from the fitting to the TFM curve, was found to increase with H_{rf}, rather than decrease, as expected for the mechanism of the impurity spins alignment. Nevertheless, our preliminary measurements in weak dc magnetic fields (≤ 12 mT) in field cooled regime at constant H_{rf} showed a decrease of R_s and λ with H_{dc} for samples TF1 and TF2 (to be published elsewhere). This suggests that magnetic impurities may play a significant role in our samples and might also affect our nonlinear measurements.

We proceed with an analysis of our high-temperature data for increasing $\Delta R_s(H_{rf})$ and $\Delta X_s(H_{rf})$ in terms of the r-parameter. It is essential to consider not only the r-value, but also the power dependence of the impedance. A mechanism, such as the response of Josephson vortices, for which $\Delta R_s, \Delta X_s \sim H_{rf}^n (0.5 < n < 2)$ and the r-value is about unity, can be excluded immediately, since for our experiments r never exceeds 0.15. Moreover, the fit of our rf field dependences with a function $\sim H_{rf}^n$ (see fig. 1b,c and fig. 2b,c) has revealed uncorrelated values of n for ΔR_s and ΔX_s data.
the samples over a broad temperature range (35 < T < λ of the penetration depth X may also come into play. However, universal of superconductivity by microwave irradiation and vortex mechanisms may arise due to the effect of the magnetic impurity spins at low temperatures. The observed reduction in ∆T increase with Rdependence is generally not observed for our samples. For some of the samples particularly TF1, absence of correlation between ∆R, and ∆X, for some of the samples particularly TF1, implies that microstructure of the samples may interfere with the intrinsic behavior in the nonlinear response.

(while from the theory they should be the same), saying nothing about an apparent departure of the Hff fit from ∆X, (Hff) data at high fields (fig. 4a, c). The same conclusion is valid for the heating of weak links (rHE < 1, ∆Rs, ∆Xs ∼ H2) and the RSJ model (rRSJ < 1, ∆Rs increasing and ∆Xs oscillating with Hff). A value of the r-parameter consistent with our data could follow from either uniform heating or intrinsic Ginzburg-Landau nonlinearity (for both mechanisms r < 10−2), but the rf dependence ∼ H2 ff is generally not observed for our samples (except sample TF1, for which ∆Rs ∼ H2 ff, but ∆Xs is not ∼ H2 ff, see fig. 4b). Moreover, the r-value should increase with T for the above two mechanisms, while we see almost T-independent behavior at high temperatures (fig. 4a, c). Thus, our high-temperature data which shows an increase in ∆Rs and ∆Xs with Hff are apparently not explained by any of the known theoretical models.

In conclusion, in our experiments we appear to observe a complicated interplay of several nonlinear mechanisms. At low temperatures, the observed reduction in Rs may arise due to the effect of the magnetic impurity spins alignment by the rf-field, while at higher T stimulation of superconductivity by microwave irradiation and vortex mechanisms may also come into play. However, universal temperature- and sample-independent Hff-dependence of the penetration depth λ (or, equivalently, the surface reactance Xs) and similar values of r ∼0.01–0.06 for all the samples over a broad temperature range (35 < T < 75 K) do not rule out the possibility that all the observed features may arise due to one and the same mechanism, the origin of which is not known at the moment. At the same time, absence of correlation between ∆R(Hff) and ∆X(Hff), for some of the samples particularly TF1, implies that microstructure of the samples may interfere with the intrinsic behavior in the nonlinear response.

TABLE I. Two fluid model fitting parameters of ∆Rs/Rc vs. ∆Xs/Rc dependences for various samples at different temperatures. Here y(Hff = 0) and y(Hff=0) are the conductivity ratios (y = σ1/σ2) at low and high microwave powers, and Rc,∆Rs and Rs,∆Xs are the Rc, values extracted from ∆R,(Hff) and ∆X,(Hff) data, respectively.

Sample	y(Hff = 0)	y(Hff=0)	Rs, (∆Rs), mΩ	Rs, (∆Xs), mΩ
TF1, 15 K	0.183	0.173	0.103	0.046
TF1, 35 K	0.028	0.123	0.215	0.084
TF1, 60 K	0.050	0.111	0.700	0.352
TF2, 70 K	0.008	0.012	0.021	0.004
TF3, 75 K	0.010	0.022	0.0008	0.0003

1 Yu.N. Ovchinnikov and V.Z. Kresin, Phys. Rev. B 54, 1251 (1996) and references therein.
2 M.A. Hein et al., J. Supercond. 10, 485 (1997).
3 A. Porch, M.J. Lancaster, R.G. Humphreys, IEEE Trans. MTT 43, 306 (1995).
4 P.P. Nguyen et al., Phys. Rev. B 48, 6400 (1993); D.E. Oates et al., Appl. Phys. Lett. 68, 705 (1996).
5 A.M. Golosovsky, H.J. Snortland, M.R. Beasley Phys. Rev. B 51, 6462 (1995).
6 S. Sridhar, Appl. Phys. Lett. 65, 1054 (1994).
7 J.S. Herd, D.E. Oates, J. Halbritter, IEEE Trans. Appl. Supercond. 7, 1299 (1997).
8 J. Halbritter, J. Supercond. 10, 91 (1997); J. Supercond. 8, 691 (1995); J. Appl. Phys. 68, 6315 (1990).
9 N. Belk et al., Phys. Rev. B 53, 3459 (1996); and Phys. Rev. B 56, 11966 (1997).
10 N.G. Chew et al., Appl. Phys. Lett. 57, 2016 (1990).
11 T.L. Hylton, A. Kapitulnik, and M.R. Beasley, Appl. Phys. Lett. 53, 1343 (1988).
12 J.C. Gallop, A.L. Cowie and L.F. Cohen, Proc. EUCAS, The Netherlands, 1, 65 (1997).
13 G.M. Ellisberg, Sov. JETP Lett. 11, 186 (1970).
14 L.G. Aslamazov and A.I. Larkin, Sov. JETP 74, 2184 (1978).
15 V.M. Dmitriev and E.V. Khristenko, Sov. Low Temp. Phys. 4, 822 (1978).
16 This suggests that the mechanisms of Rc reduction may be different for these samples.
17 A.V. Velichko et al., Supercond. Sci. Technol. to be published (1998); Physica C 277, 101 (1997).