Trends in Islanded Microgrid Frequency Regulation – A Review
Amandeep Singh and Sathans Suhag
Department of Electrical Engineering, National Institute of Technology, Kurukshetra, India

ABSTRACT
With the growing concern for the environment and increasing power demand, utilizing renewable energy sources (RESs) in the form of microgrid clusters has become critically important and essential. However, there are associated challenges due to the intermittent nature of RESs from the viewpoint of reliable operation and control of the microgrids. Frequency control is one such most significant control issue. This paper has attempted a review of various methodologies and strategies for frequency control in microgrids and presented their classifications into different categories as per the available literature. The scope of this review includes exploration of many strategies for frequency control in microgrids such as demand response (DR) schemes, different control concepts, energy storage, optimization approaches/algorithms, effect of prosumers, smart homes, shiftable loads, emergency DR programs, electrical vehicle charging and discharging, heating ventilation and air conditioning systems, etc. The novelty of this review is in the categorization, the comprehensiveness, and outlining of future research directions for frequency control in microgrids.

ARTICLE HISTORY
Received 11 May 2018
Accepted 22 October 2018

KEYWORDS
Microgrid; frequency control; battery energy storage system; electrical vehicle; prosumers; smart homes

1. Introduction

Autonomic grids, at very microlevels, have been in existence for many decades in far flung areas, where the interconnection with the main power grid was not possible due to technical, geographical, and/or economic reasons. Therefore, owing to the scalability, cost competitiveness, and operational flexibility, conventional fossil fuel-based power generation has remained the only choice for supplying electricity to such locations. However, due to the adverse impact of the conventional power generation technologies on the environment, the world is moving toward greener generation technologies using renewable sources of energy. So, power generation using primarily the wind, solar, hydrogen, and small hydro plants and its integration with the existing grids/microgrids is a focus area research globally. However, there are many associated challenges that are yet to be addressed in order to successfully integrate renewable distributed energy resources (DERs). Some of these issues include [1-2]

(1) Scheduling the power generation units as per demand during uncertainties,
(2) Cost-effective and reliable operation of microgrids in the islanding mode during penetration of renewable generation,
(3) Designing of suitable demand side management (DSM) strategies,
(4) Proposition of new business models with emerging electricity market,
(5) Designing and development of improved voltage and frequency regulation techniques, and
(6) The design of control and marketing mechanisms in view of the evolving plug-and-play feature so as to facilitate for easy and flexible integration at any time.

The concept of microgrid [3] has emerged as one of the alternatives to utilize DER and facilitate their integration into integrated power systems. However, the research efforts are being made to address the issues therein with an objective of ensuring reliable, safe, and cost-effective operation of microgrids. Frequency control remains one of the significant control issues, which has drawn the attention of the researchers globally and hence, a lot of work has been reported in the literature and is being pursued as an active research area.

In the light of the above, this paper has attempted to present a comprehensive literature review on the frequency control issue in microgrids based on the available literature up to date. The review gives the recent perspective and is presented under different categories, probably not presented so far. The paper classifies the reported works for the frequency control in a systematic way and provides the volume of...
information in a very lucid manner. This paper, whose layout and flow can be understood from Figure 1, is structured into five major categories.

2. Concept of Microgrid

Microgrid concept came into being [4,5] as a reliable solution for the integration of DER along with energy storage systems (ESSs) and controllable loads. Such microgrid works as a single element for the main grid and responds as per appropriate control signals of the main grid. In technical forums, the microgrid definitions are still under discussion/research that define microgrid as a collection of small number of distributed generation units (DGU) with a coordination of ESS to produce reliable electricity to feed the controllable loads and interconnected with main grid through a static switch called point of common coupling (PCC).

Consortium for Electric Reliability Technology Solutions defines the microgrid concept as a forge-ahead way for the interconnection of unlimited DERs with main grid. Actually, the following two fundamental principles drive the microgrid concept:

- To derive the full advantage of integrated DER, in the form of a cluster – the microgrid, a system’s perspective is a must for utilities, society, and customers.
- The cost aspect is important from the business viewpoint and viability; therefore, these forge ahead concepts would become popular and widely acceptable only if these are cost-effective and meaningful [6].

Microgrid conceptual architecture is presented in Figure 2 [6]. Basically, it is a group of radial feeders that constitutes this architecture which further becomes a part of distribution system or electrical system network. For utility purpose, a single point of connection is used that is known as a PCC. As there are always some sensitive loads on the Feeders – A to C, as shown in the Figure 2, therefore, there is the need of local generation. None of the local generation is required for noncritical feeders. The PCC is used to disintegrate feeders A to C from the main grid within less than one cycle time, if required. In this architecture, four microsources are connected at nodes 8, 11, 16, and 22 that control the operation of the microgrid, utilizing the local current and voltage measurements.

In the case of any utility supply problem, a PCC opens and separates the sensitive loads from main grid while nonsensitive loads are still connected to target
load’s demand. During grid-connected mode, power generated from local generation is directly connected to nonsensitive loads. So, microgrid has an operating capability in both modes: grid-connected and islanding mode or keeping a transition in both modes [7,8]. In the grid-connected operational mode, power generated by microgrid is traded to main grid for maintaining power level while in islanding operational mode, reactive and real power generated are temporarily transferred to a storage unit that maintains proper balance with a local load. IEEE Standard 1547 defines guidelines for DER unit interconnections [9]. Microgrid islanding from the main grid can either be intentional in the case of scheduled maintenance/power quality degradation or unintentional in the case of contingencies/microgrid unscheduled events regarding safety of personnel/control strategy implementation changes. Microgrids without a PCC are known as isolated microgrids and implemented in remote areas, where main grid interconnection is not possible. As microgrid is a collaboration of renewable energy generation sources, control systems, demand response (DR) level, ESS that create a new requirement for automation and smart grid technology, so, for the proper management and control, an end-to-end control system must be in place to manage real-life assets [10].

3. Microgrid Frequency Regulation

It is the mismatch between the supply and demand of energy in microgrid that generates a deviation in frequency. In islanded mode of operation, generation (having an intermittent nature) and loads (demand based) are varying continuously, so frequency control plays an important role for system stability. The frequency and the rate of change of frequency, whose magnitude depends upon the imbalance size, provide instantaneous supply–demand gap information. Various control strategies have been put forth by many researchers that have attempted to minimize this deviation with the implementation of the battery ESS (BESS), superconducting magnetic energy storage (SMES), flywheel, priority load switching, dump load in the system, etc. [11].

3.1. Demand Response Algorithms/Methods

3.1.1. Demand Response Methods

In the implementation of microgrid, ancillary services play an important role for proper operation. The deep penetration of renewable energy source (RES) in power system makes the voltage/frequency regulation a challenging task that focused much attention on DR. It acts as an effective tool to make the balance between
demand and supply in real time as bidirectional communication and customer play an important role. DR provides low-cost, reliable, and system compatible alternative for a conventional spinning reserve that supports ancillary services [12]. A randomized DR algorithm, as proposed in Ref. [13], utilized frequency recovery time, smart appliances response, and frequency overshoot time, as the key factors in designing the algorithm to stabilize the system frequency. A microgrid is a cluster of DER with loads that provide an efficient DSM that has drawn the attention of the researchers worldwide [14]. In Ref. [15], agent-dependent new energy management system (EMS) is presented that provides power trading and customers’ participation in microgrid DR. Using Java agent development framework, the DR is made multiagent-based which suppresses the system peak and increases cost benefits to the customer. Developments of advanced Microgrid load management functionalities are presented in Ref. [16] which increase the microgrid resilience in standby microgrid mode, while considering microgrid energy storage (ES) capacity and frequency response. A demand management system is proposed in Ref. [17] that manages all consumers’ storage units, based on system and climate conditions, and also the controllable loads. It categorized the loads as critical, deferrable, and priority loads and considered environmental conditions like temperature, lumens, and water level to maintain the system frequency. A DR based on customer reward scheme was proposed in Ref. [18] for household consumers that deployed hierarchical control method at two levels having a primary controller for voltage regulation and a secondary controller that prevents the transformer from overloading. A new mechanism of DR is proposed in Ref. [19] for controlling thermostatic devices called Grid Explicit Congestion Notification that provides ancillary services to the grid without affecting the end users and supports in case of grid disturbances, while also controlling the voltage deviation of distribution networks. An active controller is proposed in Ref. [20] that improves the reliability of microgrid and minimizes the overall cost of simulated microgrid by managing its power consumption, minimizing purchased power quantity from distributed grid, increasing distributed grid sold power, increasing renewable generator size, and making a reduction in nonlinearity load. Combination of power electronics devices and optimization techniques is used in Ref. [21] that develops optimization-based DR for DC distribution networks that provide maximum efficiency of distributed and renewable resources. A cooperatively distributed algorithm incremental welfare consensus is proposed in Ref. [22] that solves the energy management issues in a smart grid having a number of distributed generation (DG) sources and critical load. It does not require central management unit for its operation and does not consider voltage deviations, line losses, and power flow dynamics of physical networks. To access the behavioral regularity of domestic loads, an algorithm is proposed in Ref. [23] in which an automatic meter reading is used in conjunction with detection algorithm. As wind power integrated power system is suffering from uncertainties, a new DR scheme of a forward market is proposed in Ref. [24] that permits any DR program to reach its full energy potential that improves the load profile and also balances the error in wind power forecast. A narrative DR model with built in centralized cost minimization is proposed in Ref. [25] that requires only consumer daily consumption information and avoids the investigation of price elasticity of demand forecast. A constraint satisfaction problem-based power flow management control method is presented in Ref. [26] that manages DG and DR at the same time and also presents a hybrid approach for maintaining network thermal limits and also has a capability to benefit distributed network operator planning and operational events for smart grid development. A stochastic differential game model is developed in Ref. [27] for autonomous DR, when price range of electricity changes for day hours and explains how end users can decrease their electricity bill as per load economics equations. Comparative analysis of the merits and demerits of DR algorithms/methods is given in Table 1.

3.1.2. Prosumers

In the evolving scenario of smart grid, participation of the user in the production of renewable energy that is further shared with other users connected to the grid has made the consumer a prosumer [28]. Therefore, prosumers not only consume energy but also play active role in sharing generated energy with another connected user in a grid thus, contributing to meeting the energy demand and thereby contributing in the frequency regulation [29]. Many researchers have put forth prosumer-based models addressing different issues including frequency regulation [28,30–37]. These propositions are around the concepts of energy management, DR, knowledge base management, community management, etc.

3.1.3. Smart Home

In a smart home, all the connected digital devices and mechanical elements are linked with an interconnected network so that all the devices can communicate with each other and interactive space is also created for the consumer [38]. Nowadays, modern smart technologies
monitor energy usage at the household level and a consumer can control home appliances with communication technologies either in direct or bidirectional modes. So, this results in lower disturbances in the load, minimum line losses, reduced network dynamics, good stability, and low operational cost besides meeting the demand quickly [39] and thereby positively impacting the frequency regulation as well. Different propositions and works have been reported in literature around the concept of smart homes [40–48]. Some of the integrated software of application and technological devices that make better interaction between home appliances and customers are (1) home EMS [44,49–51], (2) home automation [52,53], (3) integrated wireless technology [54–57], and (4) smart home microcomputers [58].

3.1.4. Demand Response

As proposed in Ref. [59], the energy should be saved by its rationalization to its consumptions, and this is possible only with a combination of DR program and advanced DG technologies in which management of resources becomes important with the developed framework perspective. From a research perspective, some of the authors have proposed new works considering various aspects including frequency regulation [60–89]. Different categories of consumers have been considered in some of these propositions of DR programs such as Residential User [70,71]; Commercial Users [68,69]; Services like Electric vehicle recharge [61,72,83], System reliability [60,87], Photovoltaic energy quality [86]; Market associated with DR programs [84,85,89]; and Distributed Generation associated with DR programs [73–82,88].

3.1.5. Emergency Demand Response Programs

Emergency demand response programs (EDRPs) are the widespread programs which are voluntary in nature and provide economic benefits to the participants by incentivizing the consumption of electricity through linking it with the variable prices w.r.t. the time of use and/or when the reliability of the system is at risk. The end users are classified in various categories and made a part of the grid management by way of EDRPs. Many researchers have investigated on the impact of EDRPs on frequency regulation besides other ancillary services and lot of work has been reported in this area [90–101] to counter the adverse impact of intermittency of RESs.

3.1.6. EDRP with Smart Home

The EDRP comes in effect when power generation is in shortfall. The EDR programs’ participants include data center, building, and energy consumers. Energy management for both the building and data center has attracted considerable attention in recent years. A lot of approaches have been developed and implemented around the idea of simple ON/OFF of the servers for energy proportionality to brown energy reduction to

Table 1. Comparison of different demand response algorithms/methods.

Reference	Advantages	Limitations
[12]	Provides frequency as well as voltage regulation with the minimization of manipulated responsive load amount during absence/presence of wind power generation	Regulates the system frequency to delay of 300 ms and becomes unstable beyond this time
[13]	Considers all frequency dynamics such as frequency overshoot time, smart appliances response, frequency recovery time for designing the control algorithm	Its analytical results are validated only for IEEE 9-Bus test system Its economic viability needs more investigation
[14]	Provides an efficient demand-side management	It offers the best price to maximize the benefits, but if customer offers high price, their DR contracts may not be scheduled by the microgrid aggregator
[16]	Increases the microgrid resilience Mitigation of responsive loads as per frequency regulation	Supports the islanding operation only for shorter duration
[17]	Manages all consumers’ storage units based on system and climate conditions	Environmental condition-based system
[18]	Hierarchical control at two levels is used in which primary controller maintains the voltage regulation and a secondary controller prevents the transformer from overloading	Requirement of decision matrix for load adjustment
[20]	Minimize the overall cost of simulated microgrid by managing its power consumption Minimize purchased power quantity from distributed grid Increases distributed grid sold power Increases renewable generator size	Minimization of overall cost depends upon heating and cooling system
[22]	Solves energy management issues in smart grid Central management unit is not required for its operation	Power flow dynamics, voltage deviation, and line losses are not considered
[24]	Permits the demand response program to use its energy potential to improve load profile Error balancing in wind power forecasting	Time frame and prices of the forward market are optimized in two stages and need to be updated in midterm and every round
[27]	Described the load economics equations to reduce end user electricity bill	Shows a variation of both battery level and indoor temperature that are correlated to the changes in price values

DR: Demand response.
cooling-aware scheduling to geographic load balancing aiming at exploiting location diversities for cost saving [102–121] and all these focused on energy management of the buildings/smart homes with a larger objective of frequency regulation.

3.1.7. EDRP with Electric Vehicle

Implementation of the EDRP at demand side is a good alternative solution for restoring grid frequency at the nominal level. For the realization of the DR, a commonly adopted approach is to control the discharging/charging rates of electrical vehicles (EVs) connected with the grid, which facilitates the grid operators for achieving various targeted objectives. Many investigations have been carried out by researchers on the use of EDRPs for EVs charging/discharging, scheduling, and other issues with one of the objectives as frequency regulation under varying operating conditions including any emergent contingency [122–137].

3.2. Control Strategies/Schemes/Methods/Techniques

3.2.1. Conventional Control Strategies

As the interconnection of power system expands over the large geographical region, purely centralized or decentralized control approaches are not possible due to some computational and communication reasons. A compromise is reached that result in the emergence of hierarchical control scheme which is having three control levels: primary level, secondary level, and tertiary level and all these levels differ w.r.t. infrastructure, response time, and time intervals. Hierarchical control scheme is much beneficial for microgrid due to its controllable resources/loads and from the performance perspective also [138–141]. Microgrid has deep integration of DER unit that increases the number of operational challenges from the protection point of view and reliability perspective. For the past some decades, researchers are continuously trying to design a load frequency controller that is compatible with these challenges [142]. A novel control scheme is proposed in Ref. [143] that is fully capable of maintaining the balance of active power in voltage source converter (VSC)-based microgrid in islanding mode that regulates the DC voltage of distributed generators based on VSC within a permissible range without using communication link in an ESS and also maintains the microgrid small signal stability (SSS). A unified control strategy is proposed in Ref. [144] that enables the DER with microgrid, without considering its mode of operation, by taking the advantage of droop method and active feedback compensation, as it becomes a part of dispatchable system. A reliable control scheme with modified stability for both modes of operation of microgrid is presented in Ref. [145] with the help of Adaptive Backstepping method in which converter controller is augmented with microgrid stabilizer for system stability for the whole time duration without the need of communication and has suppressed transients. An improved control scheme is presented in Ref. [146] that makes the photovoltaic (PV) capable to adjust the active power for frequency regulation in case of faulty events and similarly, it works like a synchronous generator. A disseminate secondary control method is proposed in Ref. [147] which works on voltage restoration that also converges all distributed agent voltages into a single finite time reference value and considers some control input constraints for consensus-based frequency restoration that restores the frequency reference values and voltage with sufficient spacing of real power during load stability condition. An islanded inverter-based microgrid frequency regulation scheme is proposed in Ref. [148] that restores the frequency by using multistep load shedding scheme, besides secondary control limitations, as sensitive loads require high power quality. A coordinated operation of fast-responding inverter-based DERs with the slow-acting gensets is proposed in Ref. [149] in which load burden is redistributed between the different DERs for the frequency regulation. Doubly-Fed Induction Generator power control method is proposed in Ref. [150] that makes a participation in frequency regulation of microgrid which makes considerable reduction in frequency deviation dynamics and provides a rapid response with frequency variation. A hierarchical frequency control scheme is proposed in Ref. [151] for microgrid islanded mode that keeps the frequency stability of the islanded microgrid while having a good performance and robustness even considering the communication delays. In [152], an algebraic-type virtual synchronous generator is used to investigate the voltage/frequency deviation impact in microgrids which reduces the minimal number of parameters to reduce the voltage and frequency deviation autonomously. A sensor-based fault tolerant control scheme is proposed in Ref. [153] for electronically coupled DER units in grid connected mode of microgrid and develops a fault-dependent dynamical model for the DERs unit. Cyber attack is also shown in this scheme with a combination of sliding mode observer that behaves inherent robustness. A frequency-sensitive-based virtual inertia control techniques are discussed in Ref. [154] that extract the kinetic energy of the wind turbine and stored energy from the DC-link capacitor for short-term frequency regulation. Two control schemes are also proposed on the basis of modulating the inertia gains, one is a dynamic equation-based scheme and another is an
adaptive fuzzy-based scheme. It modulates the gains of inertia controls dynamically for a wide range of wind speeds on the perspectives of wind turbine stability and frequency security. It explores the analysis of frequency-sensitive-based virtual inertia controls (i.e. kinetic energy and DC-link capacitor) of variable speed wind turbine generators (WTGs).

3.2.2. Intelligent Control Strategies

Due to the limitations of conventional control strategies, artificial intelligent systems are used as alternatives to improve the power system capability [155]. The expert system or knowledge-based systems perform very well and its application in the electrical systems became an emerging trend [156]. A nonlinear artificial neural network controller was proposed in Ref. [157] that is based on the rate of change of frequency for electric load perturbation. Fuzzy logic control is much convenient system than classical control system and deals with nonlinearities by changing its parameters that work closely like human thinking and implements linguistic results into real value by fuzzy logic rules [158]. To mitigate power quality disturbance completely, a fast performance-based neural scheme is proposed in Ref. [159] for the extraction of voltage and a current component that uses instantaneous power theory and its results are further learned by an adaptive neural network. A combination of radial basis function network and multilayer perceptron with back propagation learning algorithm designs a new pitch controller in Ref. [160] for a variable speed wind turbine (VSWT) that adjusts performance coefficient (Cp) and tip speed ratio (Tsr) and also presents a blade pitch position control for the rated wind speed. A modified adaptive controller, with an enhanced feedback error learning approaches, is presented in Ref. [161] that has a supervised controller for asymptotic stability of the system and radial basis function neural network that are implemented in feedforward path to resist the power system variations on stability for making an improvement in system performance to a greater extent. A new online intelligent approach is presented in Ref. [162] that uses the combination of particle swarm optimization (PSO) and fuzzy logic for the optimal tuning of proportional integral derivative (PID) controller in the event of abrupt load changes, in the presence of nonlinearities and disturbance in which PSO improves the fuzzy membership function to make PID controller optimal. A generalized droop control (GDC) synthesis with adaptive neural fuzzy infrastructure system combination is presented in Ref. [163] for islanded microgrid that mitigates the dependency of microgrid on the online parameter and regulates the dynamic behavior of GDC that performs well in load variation. Neural network (NN)-based schemes are reviewed in Ref. [164] that are applied for control and monitoring of power system and it was proved that NN is best among these schemes. A new reconstruction algorithm is presented in Ref. [165] that is having an extraction of time-frequency components in which autoregressive model is used for low-frequency components while the back propagation neural network is used for high-frequency components that makes it much effective and promising. An interval type-2 fuzzy PID (IT2FPID) controller is presented in Ref. [166] for power system load frequency control in combination with Big Bang–Big Crunch algorithm that further optimizes membership functions of fuzzy and provides less overshoot, good settling time, and robustness during load disturbance. An isolated hybrid DG power system is studied in Ref. [167] that uses fuzzy PID controller with SMES to minimize the frequency and power deviation and also used Quasi Opposition Harmony Search algorithm that finds the global optimal solution of power optimization task. The fundamentals of the fuzzy potential function are used in Ref. [168] to define the potential function of every DER that is further minimized by gradient decent method for the determination of each DER unit set point at microgrid secondary level control. A robust energy management system (REMS) was proposed in Ref. [169] inside the model predictive controller (MPC) framework, in which an fuzzy prediction interval model is used as an available non-conventional energy sources prediction model in microgrid, so, resulting REMS is used as a real microgrid implementation for wind-diesel microgrid that works as a main source of uncertainty. A power electronics interface, that is having inverter and ES module, is presented in Ref. [170] for the distributed resources coupling with microgrid and regulates the micro source power rate, surge module power, maintaining power quality performances that regulate the output generator power. A novel synthesized control method is presented in Ref. [171] using a radial basis function fuzzy neural network for nonlinear systems that makes a parameter adjustment mechanism for frequency error detection and performs well during system parameter disturbances. A communication-based directional overcurrent relays with the dual setting is proposed in Ref. [172] for the microgrid protection in both modes either in islanded or grid connected and solves the infeasibility problem without current limiters, reduces operating time of relay, and maintains the proper protection coordination in between the relays. The EMS is proposed in Ref. [173] that considers the fuzzy-based control for selecting the better operational mode, unit commitment oriented microgrid, demand management actions considering the renewable power, and loads for the short-term forecasting. Comparative analysis of the merits and
demerits of control strategies/schemes/methods/techniques is given in Table 2.

Table 2. Comparison of different control strategies/schemes/methods/techniques.

Reference	Advantages	Limitations
[149]	(i) Unequal transient load sharing between inverters and inverter-based DERS are redistributed to prevent the system collapse and achieve better frequency regulation	(i) Due to large transient loading DER susceptible to be collapsed that bring down the entire system
[150]	(i) For the power sag problem, it reserves (doubly-fed induction generator/DFIG power margin up to 10%) that makes a support to microgrid frequency	(i) During disturbance, occurrence guarantees are not provided for the optimality of wind turbine on frequency regulation
[152]	(i) Provides an appropriate way for the penetration of number of renewable energy sources to power grids	(i) Introduction rate of smart grid should be limited to maintain their operational efficiency
[153]	(i) Reduces the impact of cyber attack and fault on the sensors of grid-connected DER units	(i) Sensor-based approach, if sensor fails all control and data information is to be lost
[154]	(i) Adaptive fuzzy-based scheme provides better frequency regulation (i.e., fewer peaks/dips, faster settling time) as compared to dynamic equation-based scheme	(i) Modulates the gains of inertia control for a wide range speed of wind turbine stability
[159]	(i) For the extraction of voltage and current component, the IPT is used for good power quality	(i) Rejection of complementary currents makes the calculation complex
[160]	(i) A new pitch controller for a VSWT is proposed that adjusts tip speed ratio \(\dot{T_{so}}\) and performance coefficient \(C_{p}\) for the rated wind speed	(i) During wind speed changing, small oscillations come in low frequencies
[161]	(i) Resists the power system variations on stability for making an improvement in system performance	(i) Limitation of application domain because of its feedforward network structure
[162]	(i) Optimal tuning of PID controller during abrupt load changes, presence of nonlinearities	(i) Applicable only to secondary frequency control
[163]	(i) Mitigates the dependency of microgrid on the online parameter (ii) Regulates the dynamic behavior of gradient droop control that performs well in load variation	(i) Applicable for a wide range of microgrids
[164]	(i) For control and monitoring of power system, neural network-based schemes are presented	(i) Neural network training time is increased in tandem with the dimensions of the power system
[165]	(i) Provides less overshoot, good settling time, and robustness during load disturbance	(ii) For the (BB–BC) optimization, it is necessary to limit the population to the prescribed search space boundaries and this restricts the candidate solution into search space boundaries
[166]	(i) Minimizes the frequency and power deviation and also finds the global optimal solution of power optimization task	(i) Considers only the performance parameters (like settling time, maximum overshoot) without consideration of other parameters
[167]	(i) Determines each distributed energy resource unit set point at microgrid secondary level control	(i) If \(K\) is increased, the eigenvalues move toward the unstable region that makes oscillation in system and leads to instability
[168]	(i) Immersed infeasibility problem without fault current limiters	(i) Primary operation is independent of the availability of the communication signal
[169]	(i) Methodology is particularly useful, as microgrid supplies its own load and employs its renewable sources, dispatchable units, and energy storage systems	(i) Main grid unavailability time is unknown

IPD: Instantaneous power theory; PID: proportional integral derivative; BB–BC: Big Bang–Big Crunch; DER: distributed energy resource.

3.3. ESS/Energy Storage Devices

3.3.1. ESS

Energy storage works as an energy backup to maintain the balance between demand and supply side. Initially, ES devices were used in nineteenth century for DC power transmission and further, it is used for lamp lighting as generators de-energize at night time [174]. Some of the ES technologies and its contribution in microgrid frequency regulation are discussed as below.

- **Battery**

The energy is stored in batteries in electrochemical form and batteries are available in different capacities from few watts to megawatts. Sodium–sulfur (NaS) batteries are good ES techniques that provide much energy density and higher power and this is an active research area [174].

- **Flywheel Energy Storage**

Flywheel ESS stores electrical energy in kinetic energy rotational form. Besides, it suffers from the drawbacks of higher standby losses, lowest energy density, and difficulty in storage expansion [174].

- **Supercapacitor**

Supercapacitor or an electric double layer capacitor is used for ES that separates two electrodes and electrolytic ions, having an energy density that is much larger than electrolytic capacitor but lower than a lead acid battery and also has a faster discharging and charging capability than batteries [174].

- **SMES**

Another form of ES is SMES in which energy is stored in the magnetic field that is created by DC flow in a superconducting coil and has a good efficiency, shorter
A PSO-based optimal sizing of a BESS is developed in Ref. [175] that enhances the system frequency during islanded mode and enables the BESS for frequency support at a reduced cost. A control system is proposed in Ref. [176] for a microgrid that has a resistive load and permanent magnet AC machine in which wind energy is used for frequency regulation and optimization technique is used in place of a control method for frequency regulation to restore it to desired values. A new active power decoupling circuit, combined with the BESS, is presented in Ref. [177] that restricts the flow of current ripples from inverter DC side to the battery but nonlinear load produces the current harmonics and still it makes the smooth operation of battery current with current ripple factor less than 5%. Software for the FESS modeling and simulation, in microgrid environment, is presented in Ref. [178] that is associated with a generator to provide resilient and secure power at utility outage. A novel method for the deployment of wind power with ESS in microgrid is presented in Ref. [179] and implemented with droop method that compels the generator for load sharing as per wind power availability. For the improvement in ripple control, a narrative technique is proposed in Ref. [180] that uses the concept of droop control based on ripple voltage injection that makes a bidirectional connection of the distributed devices for maintaining power sharing. Droop control based on battery storage system is presented in Ref. [181] for primary and secondary regulations that improve transient frequency response and recover the new steady states of frequency. During large load fluctuation, the diesel engine generator (DEG) is associated with proportional-integral (PI) controller for no error frequency regulation and it balances the active power between consumption and generation. A novel hybrid voltage/frequency droop control and active/reactive power droop control for the multi-ESS in an autonomous microgrid is proposed in Ref. [182] wherein amplitude and voltage angles are controlled by active/reactive power and ESS, controlled by real power/reactive power (PQ) droop control, actually controls reactive/active power according to voltage/frequency deviations and also controls line impedance uncertainties to make the system stable. An active power control is presented in Ref. [183] in which energy storage system (ESS)-state-of-charge(SOC) is kept in safe limits by load consumption and generated PV system power that makes the system stable. An enhanced control scheme for BESS is presented in Ref. [184] to maintain the power quality of microgrid. With the combination of virtual inertia and conventional droop control, a new frequency controller is designed that immediately mitigates the microgrid frequency oscillations. In fixed pitch-type 2 wind turbine, with the addition of power droop (P) and frequency droop (F), control is discussed in Ref. [185] which makes slope between rotor resistance and grid frequency that selects the value of rotor resistance as per grid frequency and helps in injected power reductions. A novel concept of a self-tuning virtual synchronous machine is presented in Ref. [186] that uses optimization algorithm for finding an optimal parameter to reduce cost function that is used in frequency deviations and ES power low. This strategy permits the virtual synchronous machine to control damping and inertia for frequency stability. A coordinated control method is presented in Ref. [187] that combines the ES and WTG for interim frequency support and mitigates the wind farm inertia. A new technique is presented in Ref. [188] for PV-based utility connected system in which Li-ion batteries, connected with grid through three phase inverter, fulfill the demand of grid and provide an auxiliary resource. The strategy for controlling the VSWT to implement inertial response is presented in Ref. [189] in which kinetic energy used for frequency support depending on wind speed and operational states of wind turbine (WT) and enabled the energy stored inside wind turbine to support frequency regulation. A centralized and heuristic approach is presented in Ref. [190] that shows microgrid control and management with DG sources, when connected to the single bus using master-slave strategy. During microgrid standalone mode, battery bank inverter works as a master converter that sets operating frequency and the reference voltage for remaining sources that works as a slave converter. During grid connected mode, utility grid works as a master for providing frequency and voltage to PCC. A narrative Guaranteed convergence Particle Swarm Optimization with Gaussian Mutation (GPSO-GM) algorithm is presented in Ref. [191] for the islanded microgrid mode power flow analysis problem in which for the power flow variables, steady state frequency is to be considered. A new modified power flow equation was derived for modeling the different DG’s control modes, like PQ, droop, and PV in microgrid islanded mode. PSO is used to reduce the total mismatch between active and reactive powers. Both Guaranteed convergence and mutation operators are added to PSO algorithm to find optimal solution that increases proposed algorithm speed and accuracy of results. A modified decentralized control architecture is presented in Ref. [192] for microgrid that has an inverter interface DER with conventional droop controller that controls steady-state frequency synchronization, active and reactive power sharing among inverters. Controller area network communication technique for grid synchronization is presented in Ref. [193] that synchronizes all micro sources with main grid
simultaneously and provides the robust mechanism for fault tolerant smooth operation of microgrid. The novel coordinated control algorithm is proposed in Ref. [194] in which main control center sends charging and discharging operational signals to each BESS for mitigating voltage/frequency deviations and improves the power quality of power system. ES hybridization with varying ramp rates provides minimum bus voltage variations and extends the life of ES in DC microgrid, so, a multilevel EMS for the control of hybrid ESS is proposed in Ref. [195] in which secondary control reduces steady-state deviation of bus voltage and error in power tracking, while tertiary control prevents from the high ramp rate of ES state of charge violations and bus voltage deviation. A narrative control scheme is proposed in Ref. [196] that is based on microgrid voltage and frequency output regulations theory with BESSs response. It also tracks the frequency and voltage set points while reduces the system transients during disturbance events and also control droop method key weaknesses like voltage deviations, large steady-state frequency and improves system dynamic performances. Comparative analysis of the merits and demerits of control techniques, as applied for ESSs/energy storage devices, is given in Table 3.

3.3.2. Contribution of EVs

Due to intermittent nature of the RESs, there is a requirement of ESS in a microgrid to maintain the power balancing during islanded mode of operation [197], that is where EVs, that behave like loads and storage also when they are connected with the grid, come to our rescue. EVs are basically both the

| Table 3. Comparison of different control techniques, as applied for energy storage systems/devices. |
|---|---------------------------------|---------------------------------|
| Reference | Advantages | Limitations |
| [176] | (i) Optimization technique is used in place of a control method for frequency restoration | (i) Overshoot comes in system frequency during wind speed variations |
| [177] | (i) Restricts the flow of current ripples from inverter DC side to the battery | (i) Both linear and nonlinear loads obtain battery current ripple factor near about 5% |
| [178] | (i) Provides resilient and secure power at utility outage | (i) Only up to a level of 0.2% of the normal frequency, it deviates the system frequency |
| [179] | (i) Compels the generator for load sharing as per wind power availability | (i) System stability may be affected |
| [180] | (i) Makes a bidirectional connection of the distributed devices for maintaining power-sharing | (i) Makes the distribution system complex and requires a number of power electronics devices as active load |
| [181] | (i) Improves transient frequency response (ii) Recovers the new steady states of frequency | (i) For big load fluctuation, the battery storage control system cannot control the frequency deviations |
| [182] | (i) Balances the active power in between the consumption and generation (ii) Controls the line impedance uncertainties (iii) Actually controls reactive/active power according to voltage/frequency deviations | (i) Load voltage continuously increases with the reduction in power because of bias-based droop control |
| [183] | (i) ESS-SOC is kept in safe limits by consumed load (ii) Generated PV system power makes the system stable | (i) Power generation is supported for short duration with active power controller that limits ESS charging power |
| [184] | (i) Immediately mitigates the microgrid frequency oscillations | (i) During operation mode, the security of load supply depends upon BESS remaining capacity after disconnection from grid |
| [185] | (i) Makes slope in between rotor resistance and grid frequency that selects the value of rotor resistance as per grid frequency (ii) Helps in injected power reductions | (i) If wind rotor level becomes unbalanced, the proposed strategy fails |
| [186] | (i) Reduces the cost function that is used in frequency deviations and energy storage power low (ii) Mitigates the wind farm inertia (iii) Provides an auxiliary resource | (i) ESS charging/discharging is not up to control level |
| [187] | (i) Kinetic energy used for frequency support (ii) Enables the energy stored inside wind turbine to support frequency regulation (iii) Provides a microgrid control and management with DG sources | (i) Additional spinning reserve is required for the safe operation of the system |
| [188] | (i) Fulfills the demand of grid (ii) Provides an auxiliary resource | (i) Battery size depends on the size of the feeder |
| [189] | (i) Controllers are not adaptable for higher order harmonic load, unbalanced and nonlinear loads | (i) Requirement of extra power for limited time period |
| [190] | (i) Controls the steady-state frequency synchronization, active and reactive power sharing among inverters (ii) Utility grid works as a master in grid connected mode for providing frequency and voltage to PCC | (i) System response is not so much satisfactory regarding both power quality and transient issue |
| [191] | (i) Synchronizes all micro-sources with main grid (ii) Provides the robust mechanism for fault tolerant microgrid smooth operation | (i) Controller is not adaptable for higher order harmonic load, unbalanced and nonlinear loads |
| [192] | (i) Overcomes the key weaknesses such as steady-state frequency & voltage deviations, and weak transient response of droop-based method | (i) Control accuracy is degraded in case of communication failures |

PV: Photovoltaic; ESS: energy storage system; BESS: battery energy storage system; DG: distributed generation; PCC: point of common coupling.
distributed ESS and controllable load. Vehicle-to-grid (V2G) system may work as an active power support to provide the services of frequency regulation by maintaining the load–power balance in the grid. With the implementation of good EMS, EVs have become capable of dealing with intermittent nature of RESs. Lot of work has been reported in literature on EVs and their use in microgrid for ancillary services, primarily like frequency regulation with larger objectives of achieving improved reliability, efficiency, and stability in grid operation, employing different control concepts [197–221]. As per the energy consumption and driving force of EVs, there are mainly three different types of EVs: (1) battery EV – using battery as a source of energy; (2) hybrid EV – using battery and fuel as a driving force; and (3) fuel cell EV – using fuel cell for electricity production.

3.3.3. Contribution of PV Inverters
The PV system does not have any inertia characteristic from kinetic energy stored and hence no direct support for frequency regulation that way. However, the PV generator has a DC-link capacitor for ES, mounted on the DC–AC inverter side that absorbs or releases the energy. If these stored energies are controlled and consumed properly by way of suitable inverter control strategy, then PV system can also be partner in frequency regulation. Many authors have proposed new strategies around these concepts which facilitate in frequency regulation [146,222–238]. The maximum power point tracking and droop controls find their mention in most of these works.

3.3.4. ESS Charging/Discharging
Due to the intermittent nature of RESs, the power supply availability is variable and in such situations, ESSs provide flexible support to the microgrid [239] in compensating for the shortfall and extracting the power in case of excess generation. So, ESSs work as emergency power buffer for the users. The rate of charging/discharging of the ESSs plays a crucial role in responding to the intermittent disturbance of the RESs. Lot of work has been reported on the use of ESS in mitigation of negative impact of the intermittency of RESs in a microgrid [174,197,239–259].

3.3.5. EV Charging/Discharging
Charging of EVs acts as a new load to the power system and hence becomes the key parameter that affects the system frequency to some extent. Many researchers have carried out focused work around the issues related to charging of EVs [133,260–262] whereas some of them focused on discharging aspects. So, V2G and G2V infrastructure and the control algorithms thereof [260–292] play a very crucial role in dealing with the intermittent nature of RESs by adjusting the EVs charging and discharging rate as per frequency deviation that measures the power imbalance [127,215].

3.4. Optimization Techniques/Approaches/Methods
DGU location and its operations affect the performance of the microgrid. Optimization methods, analytical methods, meta-heuristic methods, and computational techniques are used to solve problems like optimal DG kinds, DG capacities, DG operations, and location of DG in a microgrid. A narrative optimization method in which location and operation of DG sources are controlled by optimizing droop control parameters that enhance voltage stability and improve the voltage profiles and provide a sharing of reactive/active power in microgrid among DGU was proposed [293]. To measure/control SSS in VSC-based microgrid, a multistage fuel consumption minimization method is presented in Ref. [294] to reduce the optimization cost while considering all constraints like voltage/frequency regulation, reactive power, and stability margin that make it difficult. A virtual and adaptive virtual impedance loop based on real-time voltage and frequency control is proposed in Ref. [295] that rapidly suppresses fluctuations without consideration of communication bus and delay time. Biogeography-based optimization algorithm is implemented in Ref. [296] that tunes Q & R matrices of Linear Quadratic Regulator (LQR) controller in which Kalman filtering is used for parameter states’ estimation and based on these states, LQR generates the control signals for frequency excursions in the microgrid. The optimal power control strategy is proposed in Ref. [297] for the case when microgrid switches to island condition. In this strategy, PSO algorithm is used to control voltage/frequency that makes this method real-time self-tunable and to investigate the steady state-response, dynamic response and also drives inverter harmonic current. A control scheme is presented in Ref. [298] for bio-diesel engine-based microgrid in which additional signals from automatic generation control (AGC) loop are chosen to reduce power mismatch after load change which modifies generator mechanical input. An optimal state-feedback method is presented in Ref. [299] that uses PSO to select Q&R values with an aqua electrolyzer, hydrogen storage, fuel cell, and DEG which performs well under cyber intrusion attack by optimizing the measured frequency signal sending rate to microgrid central controller. A new time-varying controller based on General Type II Fuzzy Logic for the load frequency control of islanding
Table 4. Comparison of different optimization techniques/approaches/methods.

Reference	Advantages	Limitations
[294]	(i) Reduces the optimization cost while considering all constraints like voltage/frequency regulation, reactive power, and stability margin	(i) Increases the objective function computation time
[295]	(i) Rapidly suppresses fluctuations without consideration of communication bus and delay time	(i) Applicable only for PV-based microgrid system
[296]	(i) Kalman filtering is used for parameter states’ estimation (ii) LQR generates the control signals for microgrid frequency excursions	(i) As wind energy conversion system (WECS) participating in frequency control, it decreases the capacity of battery
[297]	(i) Controls the voltage/frequency control mode (ii) Investigates the steady-state response, dynamic response and also drives inverter harmonic current (iii) Investigates the system parameter variation and load variations with higher accuracy	(i) Transients are not removed completely, it will come for shorter duration
[298]	(i) Performs well under cyber intrusion attack	(i) When the system is in transient time, then controller acts upon at the very first moment and creates frequency oscillations
[300]	(i) Used for grid topologies, renewable sources, and different loads	(i) It does not provide stability to the system for longer duration
[301]	(i) Ensure a capacity of maintaining generation load balance during system parameter variation and load variations with higher accuracy	(i) Provides microgrid system stability for shorter duration only
[302]	(i) Restores voltage/frequency of the system during load variations (ii) Optimizes ITAE, real-time, settling time objective function that provides a good response	(i) Reactive large load change has more oscillation than other disturbances
[303]	(i) Recovers frequency and resolves frequency oscillations caused by measurement errors even in presence of fairly large communication delay time (ii) Gives a robust performance when communication delay with large variation values is unknown	(i) Processing delays in performances will come with communication delays
[304]	(i) Makes the optimal allocation of power among DG sources without microgrid central controller	(i) Microgrid central controller is not cooperated in its control functions
[305]	(i) Minimal load curtailment and minimizes the generation cost during microgrid islanded mode	(i) Large number of constraints exist in both operational modes of microgrid that make formulation complex
[306]	(i) The interests of all participants are considered so that the coordination and regulation of the micro-DGs in the microgrid system can be realized	(i) Applicable only to decentralized control method
[307]	(i) Preserves the weighted geometric means of the voltages	(i) Creates a power flow equations set, whose solvability further investigated

LQR: Linear Quadratic Regulator; DG: distributed generation.
solved simultaneously at different computing nodes. The linear quadratic differential game theory is adopted in Ref. [308], to control the frequency of microgrid that has a multiple DGs which also considers the coordination and regulation of multiple DGs in an islanded microgrid system. A narrative power consensus algorithm is presented in Ref. [309] for DC microgrids that has a feature of second graph which represents the communication network for the information exchange regarding instan-
taneous powers and adjusts the injected current and also creates a nonlinear consensus system that is composition of differential-algebraic equations which are further analyzed via Lyapunov functions inspired by the physics of the system. Comparative analysis of the merits and demerits of optimization techniques/approaches/methods is given in Table 4.

3.5. Shiftable/Controllable Load

3.5.1. Shiftable Loads
Managing the shiftable loads like heat pumps, water heaters, air conditioners, refrigerators and freezers, washing machines, etc. is an active research area. The user can participate in managing the loads during peak hours by possible shifts of its consumption, keeping in view the load curve optimization, for managing the peaks. The shiftable load strategies have been proposed in the recent past by many researchers to address the issue of frequency regulation [310–333] wherein interruptible load management and direct load control are the most commonly used load management approaches employing a number of control concepts. Therefore, the shiftable loads are definitely advantageous and can play an active role in addressing the negative impact of intermittency of RESs and thereby help in frequency regulation.

3.5.2. Heating, Ventilation, and Air Conditioning
Demand response techniques such as reducing peak demand, reducing reserve margins, etc. are adopted to deal with the issues and challenges arising out of the intermittency of RESs connected in a MG so as to maintain grid stability and reliability and improve energy efficiency. So, the electric load’s inherent flexibility without disturbing the customer comfort becomes a reasonable way to support ancillary services. Therefore, implementation of control strategies for the loads to provide system services becomes a key technical issue [334]. Building loads play a very important role in the electric power system as they consume major chunk of total electricity and there too half of the total energy consumptions goes to the Heating, Ventilation, and Air-Conditioning (HVAC) loads. Therefore, control over HVAC loads of the building by using suitable strategy can facilitate the ancillary services in the system. Commercial building HVAC systems have been investigated by many researchers in respect of used to providing ancillary services like frequency regulation [335–350]. For the purpose of frequency regulation, control frameworks utilizing various strategies/algorithms have been proposed for HVAC loads of residential buildings as well [351–362].

4. Conclusions

A recent perspective on the frequency control issues in microgrids has been presented in this paper. Due attention has been paid to recent developments such as the use of intelligent control with the Fuzzy logic concept and other evolutionary algorithms. Special attention has been drawn on the categorization of different frequency control schemes, as reported in the literature, for microgrids that highlight their salient features. The categories include DR schemes including the new trends in EDRPs; control strategies; ESSs including the new trends like EV charging and discharging; optimization approaches; loads; especially the controllable ones like prosumers, smart homes, and shiftable loads, heating ventilation and air conditioning systems, etc. Although the authors have sincerely attempted to present the most comprehensive review on frequency control issues, however, still some valuable papers might have been missed. Authors would like to apologize for exclusion of some such papers on frequency control issues of microgrids, if any.

Disclosure statement
No potential conflict of interest was reported by the authors.

References

[1] Dondi P, Bayoymi D, Haederli C, et al. Network integration of distributed power generation. J Power Sources. 2002;106:1–9.
[2] Lopes JAP, Hatziargyriou N, Mutale J, et al. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Syst Res. 2007;77:1189–1203.
[3] Hatziargyriou N, Asano H, Iravani R, et al. An overview of ongoing research. Dev Demon Projects. 2007;78:94.
[4] Lasseter B. Microgrids [distributed power generation]. 2001 IEEE Power Eng Soc Winter Meeting Conf Proceed (Cat No01CH37194). 2001;1:146–149.
[5] Lasseter RH. MicroGrids. 2002 IEEE Power Eng Soc Winter Meeting Conf Proc (Cat No02CH37309). 2002;1:305–308.

[6] Piagi P, Lasseter RH. Autonomous control of microgrids. 2006 IEEE Power Eng Soc Gen Meet. 2006;8. DOI: 10.1109/PES.2006.1708993

[7] Karimi H, Nikhkhajoei H, Iravani R. Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans Power Deliv. 2008;23:493–501.

[8] Katariai F, Iravani MR, Lehn PW. Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans Power Deliv. 2005;20:248–257.

[9] IEEE Standards Coordinating Committee. IEEE Standard for interconnecting Distributed Resources with Electric Power Systems. IEEE Std 1547–2003. 2009.

[10] Mohn T. Campus microgrids: opportunities and challenges. IEEE Power Energy Soc Gen Meet. 2012;1–4. DOI:10.1109/PESGM.2012.6344610

[11] Doolla S, Priolkar J. Analysis of frequency control in isolated microgrids. 2011 IEEE PES Int Conf Innovative Smart Grid Technol-India, ISGT India 2011. 2011;167–172. DOI:10.1109/ISGT-India.2011.6145376

[12] Pourrousavi SA, Nehrir MH. Real-time central demand for primary frequency regulation in microgrids. IEEE Trans Smart Grid. 2012;3:1988–1996. doi:10.1109/TSG.2012.2201964

[13] Vedady Moghadam MR, Ma RTB, Zhang R. Distributed frequency control in smart grids via randomized demand response. IEEE Trans Smart Grid. 2014;5:2798–2809.

[14] Nguyen DT, Le LB. Risk-constrained profit maximization for microgrid aggregators with demand response. IEEE Trans Smart Grid. 2015;6:135–146.

[15] Nunna HSVSK, Doolla S. Demand response in smart distribution system with multiple microgrids. IEEE Trans Smart Grid. 2012;3:1641–1649.

[16] Gouveia C, Moreira J, Moreira CL, et al. Coordinating storage and demand response for microgrid emergency operation. IEEE Trans Smart Grid. 2013;4:1898–1908.

[17] Lekshmi RR, Krishna G. Frequency based demand management system in residential context. Bonfring Int J Ind Eng Manag Sci. 2014;4:57–61.

[18] Vivekanathan C, Mishra Y, Ledwich G, et al. Demand response for residential appliances via. IEEE Trans Smart Grid. 2014;5:809–820.

[19] Christakou K, Tomozei D, Le BJ, et al. GECN : primary voltage control for active distribution networks via. IEEE Trans Smart Grids. 2013;5:1–10.

[20] Hakimi SM, Moghaddas-Tafreshi SM. Optimal planning of a smart microgrid including demand response and intermittent renewable energy resources. IEEE Trans Smart Grid. 2014;5:2889–2900.

[21] Mohsenian-Rad H, Davoudi A. Towards building an optimal demand response framework for DC distribution networks. IEEE Trans Smart Grid. 2014;5:2626–2634.

[22] Rahbari-Astr N, Ojha U, Zhang Z, et al. Incremental welfare consensus algorithm for cooperative distributed generation/demand response in smart grid. IEEE Trans Smart Grid. 2014;5:2836–2845.

[23] Stephen B, Isleifsson FR, Galloway S, et al. Online AMR domestic load profile characteristic change monitor to support ancillary demand services. IEEE Trans Smart Grid. 2014;5:888–895.

[24] Wang J, Kennedy SW, Kirtley JL. Optimization of forward electricity markets considering wind generation and demand response. IEEE Trans Smart Grid. 2014;5:1254–1261.

[25] Mnatsakanyan A, Kennedy S. A novel demand response model with an application for a virtual power plant. ieeeexploreieeeOrg. 2014;6:1–8.

[26] Luo T, Dolan MJ, Davidson EM, et al. Assessment of a new constraint satisfaction-based hybrid distributed control technique for power flow management in distribution networks with generation and demand response. IEEE Trans Smart Grid. 2015;6:271–278.

[27] Forouzandehmehr N, Esmalifalak M, Member S. Autonomous demand response using stochastic differential games. IEEE Trans Smart Grid. 2015;6:291–300.

[28] Ciuciu IG, Meersman R, Dillon T Social network of communities in smart grids using a secure social networking layer. Proceedings – International Computer Software and Applications Conference 2012:557–566. doi:10.1109/COMPSAC.2012.75.

[29] Lukovic S, Kovac EB. Adapting multi-agent systems approach for integration of prosumers in smart grids. 2013. 1485–1491. doi:10.1109/EUROCON.2013.6625174

[30] Bennitti D, Pinnarelli A, Sorrentino N, et al. Demand response program implementation in an energy district of domestic prosumers. IEEE AFRICON Conference 2013. doi:10.1109/AFRCON.2013.6757761.

[31] Monnier O. A smarter grid with the internet of things. Texas Instruments. 2013. pp. 1–11.

[32] Rathnayaka AJD, Potdar VM, Dillon TS, et al. A methodology to find influential prosumers in prosumer community groups. IEEE Trans Ind Inform. 2014;10:706–713.

[33] Rathnayaka AJD, Potdar VM, Hussain O, et al. Identifying prosumer’s energy sharing behaviours for forming optimal prosumer-communities. Proceedings – 2011 International Conference on Cloud and Service Computing, CSC 2011 2011:199–206. doi:10.1109/CSC.2011.6138520.

[34] Rathnayaka AJD, Potdar VM, Kuruppu SJ. An innovative approach to manage prosumers in Smart Grid. In: 2011 World Congress on Sustainable Technologies (WCST). 2011. p. 141–146. DOI:10.1109/HICSS.2015.319.

[35] Luna AC, Díaz NL, Graells M, et al. Cooperative management for a cluster of residential prosumers. 2016 IEEE International Conference on Consumer Electronics, ICCE 2016:593–594. doi:10.1109/ICCE.2016.7430742.

[36] Cerquides J, Picard G, Rodriguez-Aguilar JA. Designing a marketplace for the trading and distribution of energy in the smart grid. Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems 2015:1285–1293.

[38] Satpathy L. Smart housing: technology to aid aging in place. New opportunities and challenges. ProQuest Dissert Theses. 2006;144072:192–192 p.

[39] Costanzo GT, Zhu G, Anjos MF, et al. A system architecture for autonomous demand side load management in smart buildings. IEEE Trans Smart Grid. 2012;3:2157–2165.

[40] Khan I, Mahmood A, Javaid N, et al. Home energy management systems in future smart grids. ArXiv Preprint ArXiv. 2013;1224–1231.

[41] Han J, Choi C-S, Park W-K, et al. Green home energy management system through comparison of energy usage between the same kinds of home appliances. 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE) 2011:1–4. doi:10.1109/ISCE.2011.5973168.

[42] Siano P, Graditi G, Atrigna M, et al. Designing and testing decision support and energy management systems for smart homes. J Ambient Intell Humaniz Comput. 2013;4:651–661.

[43] Javaid N, Khan I, Ullah MN, et al. A survey of home energy management systems in future smart grid communications. Proceedings – 2013 8th International Conference on Broadband, Wireless Computing, Communication and Applications, BWCCA 2013:459–464. doi:10.1109/BWCCA.2013.80.

[44] Erol-Kantarci M, Mouftah HT. Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans Smart Grid. 2011;2:314–325.

[45] Darby S. The effectiveness of feedback on energy consumption a review for defra of the literature on metering, billing. Environ Change Inst Univ Oxford. 2006;22:1–21.

[46] Mohsenian-Rad AH, Leon-Garcia A. Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans Smart Grid. 2010;1:120–133.

[47] Kailas A, Cecchi V, Mukherjee A. A survey of communications and networking technologies for energy management in buildings and home automation. J Comput Netw Commun. 2012;2012. DOI:10.1155/2012/932181

[48] Lien CH, Bai YW, Lin MB. Remote-controllable power outlet system for home power management. IEEE Trans Consum Electron. 2007;53:1634–1641.

[49] Aman S, Simmhan Y, Prasanna VK Energy management systems: state of the art and emerging trends. IEEE Communications Magazine 2013;51:114–119.

[50] Beaudin M, Zareipour H. Home energy management systems: A review of modelling and complexity. Renewable Sustainable Energy Rev. 2015;45:318–335.

[51] LaMarche J, Cheney K, Christian S, et al. Home energy management products & trends. Fraunhofer Center Sustainable Energy Syst. 2011; 1-11.

[52] Carlucci S, Causone F, De Rosa F, et al. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable Sustainable Energy Rev. 2015;47:1016–1033.

[53] Rosslin JR, Tai-Hoon K. Applications, systems and methods in smart home technology : a review. Int J Advanced Sci Technol. 2010;15:37–48.

[54] Rafei M, Elmi SM, Zare A Wireless communication protocols for smart metering applications in power distribution networks. Proceedings of 17th Conference on Electrical Power Distribution Networks (EPDC) 2012:2–6.

[55] Lee J, Su Y, Shen C A comparative study of wireless protocols: IECON Proceedings (Industrial Electronics Conference) 2007:46–51. doi:10.1109/IECON.2007.460126.

[56] Parikh PP, Kanabar MG, Sidhu TS. Opportunities and challenges of wireless communication technologies for smart grid applications. IEEE PES Gen Meet. 2010;1–7. DOI:10.1109/PES.2010.5589988.

[57] Güngör VC, Sahin D, Kocak T, et al. Smart grid technologies: communication technologies and standards. IEEE Trans Ind Inform. 2011;7:529–539.

[58] Rao PB, Uma SK. Raspberry Pi home automation with wireless sensors using smart phone. Int J ComputSci Mob Comput. 2015;4:797–803. Programs: A Meta-Review for Household Electricity-Saving Opportunities; American Council for an Energy-Efficient Economy; Washington, DC, USA, 2010.

[59] United National Economic Commission for Europe (UNECE). Investments unece energy series reforms to promotes energy efficiency. In: Technical report. Geneva, Switzerland: Publisher; 2013.

[60] Syrri ALA, Mancarella P. Reliability and risk assessment of post-contingency demand response in smart distribution networks. Sustainable Energy, Grids Netw. 2016;7:1–12.

[61] Wang Z, Paranjape R An evaluation of electric vehicle penetration under demand response in a multi-agent based simulation. Proceedings – 2014 Electrical Power and Energy Conference, EPEC 2014:220–225. doi:10.1109/EPEC.2014.14.

[62] Mohamed YAI. New control algorithms for the distributed generation interface in grid-connected and micro-grid systems. University of Waterloo. Doctor of Philosophy in Electrical and Computer Engineering. Waterloo, Ontario, Canada. 2008; 1–165.

[63] Procter RJ. Integrating time-differentiated rates, demand response, and smart grid to manage power system costs. Electricity Journal. 2013;26:50–60.

[64] Wang Q, Zhang C, Ding Y, et al. Review of real-time electricity markets for integrating distributed energy resources and demand response. Appl Energy. 2015;138:695–706.

[65] Hussain I, Mohsin S, Basit A, et al. A review on demand response: pricing, optimization, and appliance scheduling. Procedia Comput Sci. 2015;52:843–850.

[66] Yingdan F, Xin A The review of load scheduling model research based on demand response method. 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) 2013:1–5. doi:10.1109/ APPEEC.2013.6837244.

[67] Kakran S, Chanana S. Smart operations of smart grids integrated with distributed generation: a review. Renewable Sustainable Energy Rev. 2018;81:524–535.
[68] Ma K, Hu G, Spanos CJ Cooperative demand response using repeated game for price-anticipating buildings in smart grid. 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014;565–570. doi:10.1109/ICARCV.2014.7064366.

[69] Goy S, Finn D. Estimating demand response potential in building clusters. Energy Procedia. 2015;78:3391–3396.

[70] Rohman A, Kobayashi H. Estimation on possibility and capacity of residential peak electricity demand reduction by demand response scenario in rural areas of Japan. Energy Procedia. 2014;61:887–890.

[71] Klaassen EAM, Kobus CBA, Frunt J, et al. Responsiveness of residential electricity demand to dynamic tariffs: experiences from a large field test in the Netherlands. Appl Energy. 2016;183:1065–1074.

[72] Zhao L, Aravithan V Strategies of residential peak shaving with integration of demand response and V2H. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2013. doi:10.1109/APPEEC.2013.6837260.

[73] Murthy N Energy-agile laptops: demand response of mobile plug loads using sensor/actuator networks. 2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012;581–586. doi:10.1109/SmarGridComm.2012.6480648.

[74] Alharbi W, Bhattacharya K Demand response and energy storage in MV islanded microgrids for high penetration of renewables. 2013 IEEE Electrical Power & Energy Conference 2013;1–6. doi:10.1109/EPEEC.2013.6802928.

[75] Lee YM, Horesh R, Liberti L. Optimal HVAC control as demand response with on-site energy storage and generation system. Energy Procedia. 2015;78:2106–2111.

[76] Son J, Hara R, Kita H, et al. Energy management considering demand response resource in commercial building with chiller system and energy storage systems. Proceedings – ICERPE 2014: 2nd IEEE Conference on Power Engineering and Renewable Energy 2014;96–101. doi:10.1109/ICERPE.2014.7067239.

[77] Kokos I, Lamprinos I. Demand response strategy for optimal formulation of flexibility services. Mediterranean Conf Power Gener, Trans Distrib Energy Conver (Medpower 2016). 2016;19(6). DOI:10.1049/cp.2016.1008

[78] Chen H, Wang Z, Yan H, et al. Integrated planning of distribution systems with distributed generation and demand side response. Energy Procedia. 2015;75:981–986.

[79] Arora M, Chanana S Residential demand response from PV panel and energy storage device. Power Electronics (IICPE), 2014 IEEE 6th India International Conference On 2014. doi:10.1109/IICPE.2014.7115731.

[80] Pazouki S, Hajighafem M-R Comparison between demand response programs in multiple carrier energy infrastructures in presence of wind and energy storage technologies BT – 2014 Smart Grid Conference, SGC 2014, December 9. :Iranian Society of Smart Grid. doi:10.1109/SGC.2014.7090862.

[81] Wu J, Ai X, Zhao Y, et al. Research on modeling and appliance of a new price mechanism demand response. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2013. doi:10.1109/APPEEC.2013.6837216.

[82] Lindberg CF, Zahedian K, Solgi M, et al. Potential and limitations for industrial demand side management. Energy Procedia. 2014;61:415–418.

[83] Kumar KN, Tseng KJ. Impact of demand response management on chargeability of electric vehicles. Energy. 2016;111:190–196.

[84] Xia X, Sethnaolo D, Zhang J Residential demand response strategies for South Africa. IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica) 2012;1–6. doi:10.1109/PowerAfrica.2012.6498654.

[85] Gu C, Liu L, Zhang T, et al. Demand response model and impact studies based on bidirectional interactive of information and electrical energy. 2012 China International Conference on Electricity Distribution 2012;1–6. doi:10.1109/CICED.2012.6508575.

[86] Rahman MM, Aref A, Shafullah GM, et al. Penetration maximisation of residential rooftop photovoltaic using demand response. 2016 International Conference on Smart Green Technology in Electrical and Information Systems: Advancing Smart and Green Technology to Build Smart Society, ICSGTIEIS 2016;21–26. doi:10.1109/ICSGTIEIS.2016.7885760.

[87] Eid C, Koliou E, Valles M, et al. Time-priced electricity demand response: existing barriers and next steps. Utilities Policy. 2016;40:15–25.

[88] Zhang C, Xu Y, Dong ZY, et al. Robust coordination of distributed generation and price-based demand response in microgrids. IEEE Trans Smart Grid. 2017;9:1–1.

[89] Mukhopadhyay P, Chawla HK Approach to make smart grid a reality. Proceedings of the 2014 International Conference on Advances in Energy Conversion Technologies – Intelligent Energy Management: Technologies and Challenges, ICAECT 2014;77–82. doi:10.1109/ICAECT.2014.6757065.

[90] Koltsakis NE, Liu P, Georgiadis MC. An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response. Energy. 2015;82:865–888.

[91] Papadaskalopoulos D, Strbac G. Decentralized participation of flexible demand in electricity markets – Part I: market mechanism. IEEE Trans Power Syst. 2013;28:3658–3666.

[92] Conejo AJ, Morales JM, Baringo L. Real-time demand response model. IEEE Trans Smart Grid. 2010;1:236–242.

[93] Fotouhi Ghavzini MA, Faria P, Ramos S, et al. Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market. Energy. 2015;82:786–799.

[94] Safamehr H, Rahimi-Kian A. A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program. Energy. 2015;91:283–293.

[95] Ma O, Alkadi N, Cappers P, et al. Demand response for ancillary services. IEEE Trans Smart Grid. 2013;4:1988–1995.
[96] Nihan Cicek H, Delic. Demand response management for smart grids with wind power. IEEE Trans Sustainable Energy. 2015;6:625–634.

[97] Lee MP Assessment of demand response & advanced metering, assessment of demand response & advanced today’s presentation will discuss: Purpose of FERC’s Annual Assessment Results 2012.

[98] Cecati C, Citro C, Siano P. Combined operations of renewable energy systems and responsive demand in a smart grid. IEEE Trans Sustainable Energy. 2011;2:468–476.

[99] Mazidi M, Zakariazadeh A, Jadid S, et al. Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers Manage. 2014;86:1118–1127.

[100] Critz DK, Busche S, Connors S. Power systems balancing with high penetration renewables: the potential of demand response in Hawaii. Energy Convers Manage. 2013;7:609–619.

[101] Degfa MZ, Safdarian A, Fotuhi-Firuzabad M, et al. Distribution network reliability improvements in presence of demand response. IET Gener Trans Distrib. 2014;8:2027–2035.

[102] Irwin D, Wu A, Barker S, et al. Exploiting home automation protocols for load monitoring in smart buildings. In BuildSys. 2011;7–12. DOI:10.1145/2434020.2434023.

[103] Mishra A, Irwin D, Shenoy P, et al. GreenCharge: managing renewable energy in smart buildings. IEEE J Selected Areas Commun. 2013;31:1281–1293.

[104] Jazizadeh F. A human-building interaction framework for personalized thermal comfort driven systems in office buildings. J Comput Civ Eng. 2013;28:2–16.

[105] Goiri I, Le K, Nguyen TD, et al. GreenHadoop: leveraging green energy in data-processing frameworks. Proceedings of the 7th ACM European Conference on Computer Systems – EuroSys ’12 2012:57. doi:10.1145/2168836.2168843.

[106] EnerNOC. Ensuring U.S. grid security and reliability: U.S. In: EPA’s proposed emergency backup generator rule. 2013. 1861.

[107] Lin M, Wierman A, Andrew LLH. Dynamic rightsizing for power-proportional data centers. 2011. 1098–1106. DOI:10.1109/INFCON.2011.5934885.

[108] Wei T, Zhu Q, Maasoumy M Co-scheduling of HVAC control, EV charging and battery usage for building energy efficiency. 2014 Ieee/Acm International Conference on Computer-Aided Design (Iccad) 2014:191–196.

[109] Maasoumy Haghhighi M, Sangiovanni-Vincentelli AL. Modeling and optimal control algorithm design for HVAC systems in energy-efficient buildings. Electrical Eng. 2011. p. 69.

[110] Wei T, Kim T, Park S, et al. Battery management and application for energy-efficient buildings. Proceedings of the The 51st Annual Design Automation Conference on Design Automation Conference – DAC ’14 2014:1–6. doi:10.1145/2593069.2596670.

[111] Shaikh PH, Nor NBM, Nallagowdend P, et al. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renewable Sustainable Energy Rev. 2014;34:409–429.

[112] Berkeley L Centers : Ghatikar G. Demand response opportunities and enabling technologies for data centers: Findings from field studies 2012.

[113] Hurtado LA, Nguyen PH, Kling WL, et al. Building energy management systems — optimization of comfort and energy use. 2013 48th International Universities’ Power Engineering Conference (UPEC) 2013:1–6. doi:10.1109/UPEC.2013.6714910.

[114] Zhang L, Ren S, Wu C, et al. A truthful incentive mechanism for emergency demand response in coloration data centers. Proc – IEEE INFOCOM. 2015;26:2632–2640.

[115] Tran NH, Pham C, Ren S, et al. Coordinated energy management for emergency demand response in mixed-use buildings. 2015 IEEE International Conference on Ubiquitous Wireless Broadband, ICUWB 2015. doi:10.1109/ICUWB.2015.7324431.

[116] Chen N, Ren X, Ren S, et al. Greening multi-tenant data center demand response. Perform Eval. 2015;91:229–254.

[117] Liu Z, Liu I, Low S, et al. Pricing data center demand response. The 2014 ACM International Conference on Measurement and Modeling of Computer Systems – SIGMETRICS ’14 2014:111–123. doi:10.1145/2591971.2592004.

[118] Tang Q, Gupta SKS, Varsamopoulos G Thermal-aware task scheduling for data centers through minimizing heat recirculation. Proceedings – IEEE International Conference on Cluster Computing, ICCCC 2007:129–138. doi:10.1109/CLUSTR.2007.4629225.

[119] Deng N, Stewart C, Gmach D, et al. Adaptive green hosting categories and subject descriptors. Proceedings of the 9th international conference on Autonomic computing 2012:135–144.

[120] Rao L, Liu X, Xie L, et al. Minimizing electricity cost: optimization of distributed internet data centers in a multi-electricity-market environment. Proc – IEEE INFOCOM. 2010. DOI:10.1109/INFCOM.2010.5461933.

[121] Qureshi A, Weber R, Balakrishnan H, et al. Cutting the electric bill for internet-scale systems. ACM SIGCOMM Comput Commun Rev. 2009;39:123.

[122] Nguyen DT, Le LB. Joint optimization of electric vehicle and home energy scheduling considering user comfort preference. IEEE Trans Smart Grid. 2014;5:188–199.

[123] Donadee J, Ilić MD. Stochastic optimization of grid to vehicle frequency regulation capacity bids. IEEE Trans Smart Grid. 2014;5:1061–1069.

[124] Vivekananthan C, Mishra Y, Ledwich G, et al. Demand response for residential appliances via customer reward scheme. IEEE Trans Smart Grid. 2014;5:809–820.

[125] Qian LP, Zhang YJA, Huang J, et al. Demand response management via real-time electricity price control in smart grids. Selected Areas Commun IEEE J On. 2013;31:1268–1280.

[126] Karfopoulos EL, Hatzigiorgiou ND. A multi-agent system for controlling charging of a large population of electric vehicles. IEEE Trans Power Syst. 2013;28:1196–1204.

[127] Ota Y, Taniguchi H, Nakajima T, et al. Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging. IEEE Trans Smart Grid. 2012;3:559–564.
[128] Yang H, Chung ZJ. Application of plug-in electric vehicles to frequency regulation based on distributed signal acquisition via delayed communication. IEEE Trans Power Syst. 2013;28:1017–1026.

[129] Gkatzikis L, Koutroupos I, Salomidou T. The role of aggregators in smart grid demand response markets. IEEE J Selected Areas Commun. 2013;31:1247–1257.

[130] Moghadam MRV, Zhang R, Ma RTB Demand response for contingency management via real-time pricing in Smart Grids. 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm) 2014:632–637. doi:10.1109/SmartGridComm.2014.7007718.

[131] Hu W, Su C, Chen Z, et al. Optimal operation of plug-in electric vehicles in power systems with high wind power penetrations. IEEE Trans Sustainable Energy. 2013;4:577–585.

[132] Rassaei F, Soh WS, Chua KC. Demand response for residential electric vehicles with random usage patterns in smart grids. IEEE Trans Sustainable Energy. 2015;6:1367–1376.

[133] Deilami S, Member SS, Masoum AS, et al. Paper presentation—real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans Smart Grid. 2011;2:456–467.

[134] Ortega-Vazquez MA, Bouffard F, Silva V. Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement. IEEE Trans Power Syst. 2013;28:1806–1815.

[135] Kim BG, Ren S, Van Der Schaar M, et al. Bidirectional energy trading for residential load scheduling and electric vehicles. Proc – IEEE INFOCOM. 2013;31:595–599.

[136] Papavasiliou A, Oren SS. Large-scale integration of deferrable demand and renewable energy sources in power systems. IEEE Trans Power Syst. 2013;29:489–499.

[137] Mets K, D’Hulst R, Develder C. Comparison of Intelligent charging algorithms for electric vehicles to reduce peak load and demand variability in a distribution grid. J Commun Netw. 2012;14:672–681.

[138] Guerrero JM, Vasquez JC, Matas J, et al. A1 – Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron. 2011;58:158–172.

[139] Mohamed YARI, Radwan AA. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems. IEEE Trans Smart Grid. 2011;2:352–362.

[140] Modes G, Mehrizi-Sani A, Member GS, et al. Potential-function based control of a microgrid in. IEEE Trans Power Syst. 2010;25:1883–1891.

[141] More Microgrids Project. Advanced Architectures and Control Concepts for Deliverable DD4: Definition of Ancillary Services and Short-Term Energy Markets WPD 2009:248.

[142] Ibraheem A, Kumar P, Kothari DP. Recent philosophies of automatic generation control strategies in power systems. IEEE Trans Power Syst. 2005;20:346–357.

[143] Divshali PH, Alimardani A, Hosseinian SH, et al. Decentralized cooperative control strategy of microsources for stabilizing autonomous VSC-based microgrids. IEEE Trans Power Syst. 2012;27:1949–1959.

[144] Delghavi MB, Yazdani A. A unified control strategy for electronically interfaced distributed energy resources. IEEE Trans Power Deliv. 2012;27:803–812.

[145] Ashabani SM, Mohamed YARI. A flexible control strategy for grid-connected and islanded microgrids with enhanced stability using nonlinear microgrid stabilizer. IEEE Trans Smart Grid. 2012;3:1291–1301.

[146] Xin H, Liu Y, Wang Z, et al. A new frequency regulation strategy for photovoltaic systems without energy storage. IEEE Trans Sustainable Energy. 2013;4:985–993.

[147] Guo F, Wen C, Mao J, et al. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Trans Ind Electron. 2015;62:4355–4364.

[148] Systems D, Raghami A, Mt A, et al. Primary and secondary frequency control in an autonomous microgrid supported by a load-shedding strategy. In: IEEE 4th annual international power electronics, drive systems and technologies conference. 2013. p. 282–287.

[149] Mondal A, Illindala MS. Improved frequency regulation in an islanded mixed source microgrid through coordinated operation of DERs and smart loads. IEEE Trans Ind Appl. 2018;54:112–120.

[150] Zhao J, Lyu X, Fu Y, et al. Coordinated frequency regulation strategy of wind/pvgrid-based microgrid on DFIG variable coefficient combined virtual inertia and primary frequency control. IEEE Trans Energy Conver. 2016;8969:1–1.

[151] Chen M, Xiao X. Hierarchical frequency control strategy of hybrid droop/VSG-based islanded microgrids. Electric Power Systems Research. 2018;155:131–143.

[152] Hirase Y, Abe K, Sugimoto K, et al. A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids. Appl Energy. 2018;210:699–710.

[153] Gholami S, Saha S, Aldeen M. Fault tolerant control of electronically coupled distributed energy resources in microgrid systems. Int J Electrical Power Energy Syst. 2018;95:327–340.

[154] Pradhan C, Bhende CN, Samanta AK. Adaptive virtual inertia-based frequency regulation in wind power systems. Renewable Energy. 2018;115:558–574.

[155] Ekwue AO, Macqueen JF. Development of artificial intelligence techniques for voltage control. IEE Colloquium on Artificial Intelligence Applications in Power Systems, 1995:2/1–2/6.

[156] Madan S, Bollinger KE. Applications of artificial intelligence in power systems. Electric Power Syst Res. 1997;41:117–131.

[157] Chaturvedi DK, Satsangi PS, Kalra PK. Load frequency control: a generalised neural network approach. Int J Electrical Power Energy Syst 1999;21:405–415.

[158] Çam E. Application of fuzzy logic for load frequency control of hydroelectric power plants. Energy Conver Manage. 2007;48:1281–1288.

[159] Flieller D, Ould Abdelsam D, Wira P, et al. Distortions identification and compensation based on artificial neural networks using symmetrical components of
the voltages and the currents. Electric Power Syst. Res. 2009;79:1145–1154.

[160] Yilmaz AS, Özer Z. Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst Appl. 2009;36:9767–9775.

[161] Sabahi K, Teshnehlab M, Shoorhedeli MA. Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system. Energy Convers Manage. 2009;50:938–946.

[162] Bevrani H, Habibi F, Babahajyani P, et al. Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans Smart Grid. 2012;3:1935–1944.

[163] Ahmadi S, Shokoohi S, Bevrani H. A fuzzy logic-based droop control for simultaneous voltage and frequency regulation in an AC microgrid. Int J Electrical Power Energy Syst. 2015;64:148–155.

[164] Hassan LH, Moghavvemi M, Almurib HAF, et al. Current state of neural networks applications in power system monitoring and control. Int J Electrical Power Energy Syst. 2013;51:134–144.

[165] Jiang D, Zhao Z, Xu Z, et al. How to reconstruct end-to-end traffic based on time-frequency analysis and artificial neural network. AEU – Int J Electron Commun. 2014;68:915–925.

[166] Yesil E. Interval type-2 fuzzy PID load frequency controller using Big Bang-Big Crunch optimization. Appl Soft Comput J. 2014;15:100–112.

[167] Tarkeshwar MV. A novel quasi-oppositional harmony search algorithm and fuzzy logic controller for frequency stabilization of an isolated hybrid power system. Int J Electrical Power Energy Syst. 2015;66:247–261.

[168] Sanjari MJ, Gharehpetchian GB. Small signal stability based fuzzy potential function proposal for secondary frequency and voltage control of islanded microgrid. Electr Power Compon Sys. 2013;41:485–499.

[169] Valencia F, Collado J, Sáez D, et al. Robust energy management system for a microgrid based on a fuzzy prediction interval model. IEEE Trans Smart Grid. 2016;7:1486–1494.

[170] Nikkhajoei H, Lasseter RH. Distributed generation interface to the CERTS microgrid. IEEE Trans Power Deliv. 2009;24:1598–1608.

[171] Wang Y, Fu Y, Li D. Synthesized power and frequency control strategies based on fuzzy neural networks for wind power generation systems. 2009 Int Conf on Energy Environ Technol. ICEET. 2009;1:869–872.

[172] Sharaf HM, Member S, Zeineldin HH, et al. Protection coordination for microgrids with grid-connected and Islanded capabilities using communication assisted dual setting directional overcurrent relays. IEEE Trans Smart Grid. 2018;9:143–151.

[173] Oliveira DQ, Zambroni de Souza AC, Santos MV, et al. A fuzzy-based approach for microgrids islanded operation. Electric Power Syst Res. 2017;149:178–189.

[174] Tan X, Li Q, Wang H. Advances and trends of energy storage technology in Microgrid. Int J Electrical Power Energy Syst. 2013;44:179–191.

[175] Kerdphol T, Qudaih Y, Mitani Y. Battery energy storage system size optimization in microgrid using particle swarm optimization. IEEE PES Innovative Smart Grid Technol Europe. 2014;1–6. DOI:10.1109/ISGTEurope.2014.7028895

[176] Bunker KJ, Member S, Weaver WW, et al. Microgrid frequency regulation using wind turbine controls. IEEE Power Energy Conference. 2014; 1–6

[177] Serban I, Marinescu C. Active power decoupling circuit for a single-phase battery energy storage system dedicated to autonomous microgrids BT – 2010. IEEE Int Symp Ind Electronics. 2010 July 4:2717–2722.

[178] Arg Henderson R, Pipattanasomporn M, Rahman S. Flywheel energy storage systems for ride-through applications in a facility microgrid. IEEE Trans Smart Grid. 2012;3:1955–1962.

[179] Fazeli M, Asher GM, Klumpner C, et al. Novel integration of wind generator-energy storage systems within microgrids. Trans Smart Grid. 2012;3:728–737.

[180] Fregosi D, Bhattacharya S. A novel method for control of distributed storage devices in distribution: ripple voltage injection with frequency droop. IEEE Power Energy Soc Gen Meet. 2013;1–5. DOI:10.1109/PESMG.2013.6672278

[181] Ma Y, Yang P, Wang Y, et al. Frequency control of islanded microgrid based on wind-PV-diesel-battery hybrid energy sources. 2014 17th Int Conf Electr Mach Sys (ICEMS). 2014;10:290–294.

[182] Tang X, Hu X, Li N, et al. A novel frequency and voltage control method for Islanded microgrid based on multienergy storages. IEEE Transactions on Smart Grid. 2016;7:410–419.

[183] Wu D, Tang F, Dragicevic T, et al. Autonomous active power control for islanded ac microgrids with photovoltaic generation and energy storage system. IEEE Trans Energy Conver. 2014;29:882–892.

[184] Serban I, Marinescu C. Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads. IEEE Trans Power Electron. 2014;29:5010–5020.

[185] Mipoung OD, Lopes LAC, Pillay P. Frequency support from a fixed-pitch type-2 wind turbine in a diesel hybrid mini-grid. IEEE Trans Sustainable Energy. 2014;5:110–118.

[186] Mat L, Lopes LAC, Member S, et al. Self-tuning virtual synchronous machine : A control strategy for energy storage systems to support dynamic frequency control. IEEE Trans Energy Conversion. 2014;29:833–840.

[187] Miao L, Wen J, Xie H, et al. Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support. IEEE Trans Ind Appl. 2015;51:2732–2742.

[188] Bhatt R, Chowdhury B Grid frequency and voltage support using PV systems with energy storage. 2011 North American Power Symposium 2011:1–6. doi:10.1109/NAPSS.2011.6025112

[189] Lie X, Xu G, Morrow J. System frequency support using wind turbine kinetic energy and energy storage system. 2nd IET Renewable Power Gener Conference (RPG 2013). 2013;67;3.05.

[190] Almada JB, Rps L, Sampaio RF, et al. A centralized and heuristic approach for energy management of an AC microgrid. Renewable Sustainable Energy Rev. 2016;60:1396–1404.
[191] Esmaeili A, Abedini M, Moradi MH. A novel power flow analysis in an islanded renewable microgrid. Renewable Energy. 2016;110:914–927.

[192] Chang CY, Zhang W. Distributed control of inverter-based lossy microgrids for power sharing and frequency regulation under voltage constraints. Automatica. 2016;66:85–95.

[193] Thale SS, Agarwal V. Synchronization of a microgrid with renewable energy sources and storage. IEEE Trans Smart Grid. 2016;7:1–11.

[194] Lee S J, Kim J H, Kim C H, et al. Coordinated control algorithm for distributed battery energy storage systems for mitigating voltage and frequency deviations. IEEE Trans Smart Grid. 2016;7:1713–1722.

[195] Xiao J, Wang P, Setyawan L. Multilevel energy management system for hybridization of energy storage in DC microgrids. IEEE Trans Smart Grid. 2016;7:847–856.

[196] Zhao H, Hong M, Lin W, et al. Voltage and frequency regulation of microgrid with battery energy storage systems. IEEE Trans Smart Grid. 2017;9:1–12.

[197] Mercier P, Cherkaoui R, Oudalov A. Optimizing a battery energy storage system for frequency control application in an isolated power system. IEEE Trans Power Syst. 2009;24:1469–1477.

[198] Vahedipour-Dahraie M, Najafi H, Anvari-Moghaddam A, et al. Study of the effect of time-based rate demand response programs on stochastic day-ahead energy and reserve scheduling in Islanded residential microgrids. Appl Sci. 2017;7:378.

[199] Almeida PMR, Lopes JAP, Soares FJ, et al. Electric vehicles participating in frequency control: operating islanded systems with large penetration of renewable power sources. 2011 IEEE PES trondheim power tech: the power of technology for a sustainable society. Powertech. 2011;1:5–10.

[200] O’Connell N, Wu Q, Østergaard J, et al. Day-ahead tariffs for the alleviation of distribution grid congestion from electric vehicles. Electric Power Syst Res. 2012;92:106–114.

[201] Galus MD, Koch S, Andersson G. Provision of load frequency control by PHEVs, controllable loads, and a cogeneration unit. IEEE Trans Ind Electron. 2011;58:4568–4582.

[202] Ahmed AH, Aldurze FA Multi-area power systems H<\textsubscript>\infty>\mu robust load frequency control. IS’2012-2012 6th IEEE International Conference Intelligent Systems, Proceedings 2012:380–387. doi:10.1109/ IS.2012.6335246.

[203] Elnozahy MS, Salama MMA. Studying the feasibility of charging plug-in hybrid electric vehicles using photovoltaic electricity in residential distribution systems. Electric Power Syst Res. 2014;110:133–143.

[204] Bremermann LE, Matos M, Lopes JAP, et al. Electric vehicle models for evaluating the security of supply. Electric Power Syst Res. 2014;111:32–39.

[205] Singh M, Kumar P, Kar I. Implementation of vehicle to grid infrastructure using fuzzy logic controller. IEEE Trans Smart Grid. 2012;3:565–577.

[206] Sadeh J, Rakhshani E Multi-area load frequency control in a deregulated power system using optimal output feedback method. 5th International Conference on the European Electricity Market 2008;1:6 doi:10.1109/EEM.2008.4579110

[207] Pahasa J, Ngamroo I. Coordinated control of wind turbine blade pitch angle and PHEVs using MPCCs for load frequency control of microgrid. IEEE Syst J. 2016;10:97–105.

[208] Pillai JR, Bak-Jensen B. Integration of vehicle-to-grid in the Western Danish power system. IEEE Trans Sustainable Energy. 2011;2:12–19.

[209] Chukwu UC, Mahajan SM. Real-time management of power systems with V2G facility for smart-grid applications. IEEE Trans Sustainable Energy. 2014;5:558–566.

[210] Lopes JAP, Soares FJ, Almeida PMR. Integration of electric vehicles in the electric power system. Proc IEEE. 2011;99:168–183.

[211] Kempton W, Tomić J. Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J Power Sources. 2005;144:268–279.

[212] Kempton W, Tomić J, Letendre S, et al. Vehicle-to-grid power: battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California. University of California, Davis, CA 2001: 1–77. http://escholarship.org/uc/item/5cc9g0jp

[213] Brooks AN Final report grid regulation ancillary service. Regulation 2002:61.

[214] Kempton W, Letendre SE. Electric vehicles as a new power source for electric utilities. Transp Res D. 1997;2:157–175.

[215] Mu Y, Wu J, Ekanayake J, et al. Primary frequency response from electric vehicles in the Great Britain power system. IEEE Trans Smart Grid. 2013;4:1142–1150.

[216] Rotering N, Ilic M. Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets. IEEE Trans Power Syst. 2011;26:1021–1029.

[217] Ghofrani M, Arabali A, Etezadi-Amoli M, et al. Smart scheduling and cost-benefit analysis of grid-enabled electric vehicles for wind power integration. IEEE Trans Smart Grid. 2014;5:2306–2313.

[218] Izadkhast S, García-Gonzalez P, Frias P. An Aggregate model of plug-in electric vehicles for primary frequency control. IEEE Trans Power Syst. 2015;30:1475–1482.

[219] Nienhueser IA, Qiu Y. Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study. Appl Energy. 2016;180:256–268.

[220] Gao S, Member S, Chau KT, et al. Integrated energy management of plug-in electric vehicles in power grid with renewables. IEEE Trans Vehicular Technol. 2014;63:3019–3027.

[221] Wu G, Mohsenian-Rad H, Huang J. Vehicle-to-aggregator interaction game. IEEE Trans Smart Grid. 2012;3:434–442.

[222] Adhikari S, Member S, Li F, et al. Coordinated V-f and P-Q control of solar photovoltaic generators with MPPT and battery storage in microgrids. IEEE Trans Smart Grid. 2014;5:1270–1281.

[223] Caldognetto T, Tenti P. Microgrids operation based on master – slave. IEEE J Emerging Selected Topics Power Electron. 2014;2:1081–1088.
[224] Hara R, Kita H, Tanabe T, et al. Testing the technologies: demonstration grid-connected photovoltaic projects in Japan. IEEE Power and Energy Mag. 2009;7:77–85.

[225] Shaﬁee Q, Guerrero JM, Vasquez JC. Distributed secondary control for islanded microgrids—a novel approach. IEEE Trans Power Electron. 2014;29:1018–1031.

[226] Du W, Jiang Q, Erickson MJ, et al. Voltage-source control of PV inverter in a CERTS microgrid. IEEE Trans Power Deliv. 2014;29:1726–1734.

[227] Kim JY, Jeon JH, Kim SK, et al. Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation. IEEE Trans Power Electron. 2010;25:3037–3048.

[228] Michael ER Similarities between vehicle-to-grid interfaces and photovoltaic systems. 5th IEEE Vehicle Power and Propulsion Conference, VPPC ’09 2009:1221–1225. doi:10.1109/VPPC.2009.5289711.

[229] Tomić J, Kempton W. Using fleets of electric-drive vehicles for grid support. J Power Sources. 2007;168:459–468.

[230] Troester E New German grid codes for connecting PV systems to the medium voltage power grid. 2nd International Workshop on Concentrating Photovoltaic Power Plants: Optical Design, Production, Grid Connection 2009:9–10.

[231] Moutis P, Vassilakis A, Sampani A, et al. DC switch driven active power output control of photovoltaic inverters for the provision of frequency regulation. IEEE Trans Sustainable Energy. 2015;6:1485–1493.

[232] Arani MF, El-Saadany EF. Implementing virtual inertia in DFIG-based wind power generation. IEEE Trans Power Syst. 2013;28:1373–1384.

[233] Pappu VAK, Chowdhury B, Bhatt R. Implementing frequency regulation capability in a solar photovoltaic power plant. North American Power Symposium 2010, NAPS 2010:1–6. doi:10.1109/NAPS.2010.5618965.

[234] Guerrero JM, Chandorkar M, Lee T, et al. Advanced control architectures for intelligent microgrids; Part I: decentralized and hierarchical control. IEEE Trans Ind Electron. 2013;60:1254–1262.

[235] Mazumder SK, Tahir M, Acharya K. Master-slave current-sharing control of a parallel dc-dc converter system over an RF communication interface. IEEE Trans Ind Electron. 2008;55:59–66.

[236] Savaghebi M, Jalilian A, Vasquez JC, et al. Secondary control for voltage quality enhancement in microgrids. IEEE Trans Smart Grid. 2012;3:1893–1902.

[237] Adhikari S, Li F, P-Q LH, P-V control of photovoltaic generators in distribution systems. IEEE Trans Smart Grid. 2015;6:2929–2941.

[238] Mahmood H, Michaelson D, Jiang J. A power management strategy for PV/battery hybrid systems in islanded microgrids. IEEE J Emerging Selected Topics Power Electron. 2014;2:870–882.

[239] Si W, Li Y. Modeling and implementation of incentive interruptible load contracts in electricity markets. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010. doi:10.1109/APPEEC.2010.5448556.

[240] Carrasco JM, Franquelou LG, Bialasiewicz JT, et al. Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Electronics. 2006;53:1002–1016.

[241] Hatzigiorgiou N, Kariniotakis G, Jenkins N, et al. Modelling of micro-sources for security studies. 2004. p. C6–203.

[242] Soﬁa MA, Gharahpetian GB. Dynamic performance enhancement of microgrids by advanced sliding mode controller. Int J Electrical Power Energy Syst. 2011;33:1–7.

[243] Sebastián R, Alzola RP. Simulation of an isolated wind diesel system with battery storage. Electric Power Syst Res. 2011;81:677–686.

[244] Wang MQ, Gooi HB. Spinning reserve estimation in microgrids. IEEE Trans Power Syst. 2011;26:1164–1174.

[245] Ge B, Wang W, Bi D, et al. Energy storage system-based power control for grid-connected wind power farm. Int J Electrical Power Energy Syst. 2013;44:115–122.

[246] Vasquez JC, Guerrero JM, Savaghebi M, et al. Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters. IEEE Trans Ind Electron. 2013;60:1271–1280.

[247] Shayeghi H, Shayanfar HA, Jalili A. Load frequency control strategies: A state-of-the-art survey for the researcher. Energy Convers Manage. 2009;50:344–353.

[248] Howlader AM, Izumi Y, Uehara A, et al. A minimal order observer based frequency control strategy for an integrated wind–battery–diesel power system. Energy. 2012;46:168–178.

[249] Kulkarni P, Sayer JH, Boyes JD, et al. The United States of storage [electric energy storage]. IEEE Power and Energy Mag. 2005;3:31–39.

[250] Styczynski ZA, Lombardi P, Seethapathy R, et al. Electric energy storage and its tasks in the integration of wide-scale renewable resources. 2009 CIGRE/IEEE PES Joint Symposium, Integration of Wide-Scale Renewable Resources Into the Power Delivery System 2009:1–11.

[251] El-Khattam W, Salama MMA. Distributed generation technologies, deﬁnitions and beneﬁts. Electric Power Syst Res. 2004;71:119–128.

[252] Wei HWH, Xin WXW, Jiahuan GJG, et al. Discussion on application of super capacitor energy storage system in microgrid. International Conference on Sustainable Power Generation and Supply 2009:1–4. doi:10.1109/SUPERGEN.2009.5348079.

[253] Voller S, Al-Awaa AR, Verstege JF. Wind farms with energy storages integrated at the control power market. Integration of Wide-Scale Renewable Resources into the Power Delivery System. CIGRE/IEEE PES Joint Symposium 2009;29:1–13.

[254] U.S. Department of Energy. SMART GRID. Commun. 2010;99:48.

[255] Bando S, Sasaki Y, Asano H, et al. Balancing control method of a microgrid with intermittent renewable energy generators and small battery storage. IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the
21st Century, PES 2008: 3–8. doi:10.1109/PES.2008.4596074.

[256] Dell R, Rand DA. Energy storage—a key technology for global energy sustainability. J Power Sources. 2001;100:2–17.

[257] Jiayi H, Chuanwen J, Rong X. A review on distributed energy resources and MicroGrid. Renewable Sustainable Energy Rev. 2008:12:2465–2476.

[258] Sulzerberger VT, Zemkoski J. The potential for application of energy storage capacity on electric utility systems in the United States-part I. IEEE Trans Power Apparatus Sys. 1976;95:1872–1881.

[259] Oudalov A, Chartouni D, Ohler C, et al. Value analysis of battery energy storage applications in power systems. 2006 IEEE PES Power Systems Conference and Exposition 2006:2206–2211. doi:10.1109/PSCCE.2006.296284.

[260] Richardson P, Flynn D, Keane A. Optimal charging of electric vehicles in low-voltage distribution systems. IEEE Trans Power Syst. 2012;27:268–279.

[261] Sortomme E, El-Sharkawi MA. Optimal charging strategies for unidirectional vehicle-to-grid. IEEE Trans Smart Grid. 2011;2:119–126.

[262] Jian L, Xue H, Xu G, et al. Regulated charging of plug-in hybrid electric vehicles for minimizing load variance in household smart microgrid. IEEE Trans Ind Electron. 2013;60:3218–3226.

[263] Sharma I, Canizares C, Bhattacharya K. Smart charging of PEVs penetrating into residential distribution systems. IEEE Trans Smart Grid. 2014;5:1196–1209.

[264] Datta M, Senjyu T. Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system. IEEE Trans Smart Grid. 2013;4:479–488.

[265] Masuta T, Yokoyama A. Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters. IEEE Trans Smart Grid. 2012;3:1253–1262.

[266] Khodayar ME, Wu L, Shahidehpour M. Hourly coordination of electric vehicle operation and volatile wind power generation in SCUC. IEEE Trans Smart Grid. 2012;3:1271–1279.

[267] Green RC, Wang L, Alam M. The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook. Renewable Sustainable Energy Rev. 2011;15:544–553.

[268] Jiang T, Putrus G, Gao Z, et al. Development of a decentralized smart charge controller for electric vehicles. Int J Electrical Power Energy Syst. 2014;61:355–370.

[269] Vaya MG, Andersson G. Centralized and decentralized approaches to smart charging of plug-in Vehicles. IEEE Power Energy Soc Gen. 2012;1–8. doi:10.1109/PESGM.2012.6344902.

[270] Yu X Impacts assessment of PHEV charge profiles on generation expansion using national energy modeling system. 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century 2008:1–5. doi:10.1109/PES.2008.4596189.

[271] Li G, Zhang X-P. Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations. IEEE Trans Smart Grid. 2012;3:492–499.

[272] Kempton W, Udo V, Huber K, et al. A test of vehicle-to-grid (V2G) for energy storage and frequency regulation in the PJM system. Example J. 2009:1–3–4.

[273] Sortomme E, El-Sharkawi MA. Optimal combined bidding of vehicle-to-grid ancillary services. IEEE Trans Smart Grid. 2012;3:70–79.

[274] Sortomme E, El-Sharkawi MA. Optimal scheduling of vehicle-to-grid energy and ancillary services. IEEE Trans Smart Grid. 2012;3:351–359.

[275] Brooks A, Lu E, Reicher D, et al. Demand dispatch. IEEE Power and Energy Mag. 2010:8:20–29.

[276] Kempton W, Tomić J. Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J Power Sources. 2005;144:280–294.

[277] Han S, Han S, Sezaki K. Estimation of achievable power capacity from plug-in electric vehicles for V2G frequency regulation: case studies for market participation. IEEE Trans Smart Grid. 2011;2:632–641.

[278] Ota Y, Taniguchi H, Nakajima T, et al. Autonomous distributed vehicle-to-grid for ubiquitous power grid and its effect as a spinning reserve. J Int Counc Electrical Eng. 2011;1:214–221.

[279] Ota Y, Taniguchi H, Nakajima T, et al. Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition. IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe 2010:1–6. doi:10.1109/ISGT-EUROPE.2010.5683913.

[280] Lopes JAP, Almeida PMR, Soares FJ Using vehicle-to-grid to maximize the integration of intermittent renewable energy resources in islanded electric grids. 2009 International Conference on Clean Electrical Power, ICCEP 2009:290–295. doi:10.1109/ICCEP.2009.5212041.

[281] Saber AT, Venayagamoorthy GK. Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles. IEEE Syst J. 2012;6:103–109.

[282] García-Valle R, Lopes JA, editors. Electric vehicle integration into modern power networks. Springer Science & Business Media; 2012 Nov. 29.

[283] Molina-García A, Bouffard F, Kirschen DS. Decentralized demand-side contribution to primary frequency control. IEEE Trans Power Syst. 2011;26:411–419.

[284] Kempton W, Letendre SE. Electric vehicles as a new power source for electric utilities. Trans Res Part D Transp Environ. 1997;2:157–175.

[285] Liu H, Hu Z, Song Y, et al. Vehicle-to-grid control for supplementary frequency regulation considering charging demands. IEEE Trans Power Syst. 2015;30:3110–3119.

[286] Han S, Han SH, Sezaki K. Design of an optimal aggregator for vehicle-to-grid regulation service. IEEE Innovative Smart Grid Technol. 2010;2010:1–8.

[287] Jiang H, Lin J, Song Y, et al. Demand side frequency control scheme in an isolated wind power system for industrial aluminum smelting production. IEEE Trans Power Syst. 2014;29:844–853.

[288] García-Valle R, Pecas Lopes JA. Electric vehicle integration into modern power networks. Springer Sciences and Business Media, New York 2013.
[289] Pillai JR Electric vehicle based battery storages for large scale wind power integration in Denmark. PhD thesis Aalborg University, 2010 December.

[290] Vachirasricirkul S, Ngamroo I. Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller. IEEE Trans Smart Grid. 2014;5:371–380.

[291] Molina-Garcia A, Munoz-Benavente I, Hansen AD, et al. Demand-side participation to primary frequency control with wind farm auxiliary control. IEEE Trans Power Syst. 2014;29:2391–2399.

[292] Hilshey AD, Hines PDH, Rezaei P, et al. Estimating the impact of electric vehicle smart charging on distribution transformer aging. IEEE Trans Smart Grid. 2013;4:905–913.

[293] Moradi MH, Abedini M, Hosseinian SM. Optimal operation of autonomous microgrid using HS-GA. Int J Electrical Power Energy Syst. 2016;77:210–220.

[294] Divshali PH, Hosseinian SH, Abedi M. A novel multi-stage fuel cost minimization in a VSC-based microgrid considering stability, frequency, and voltage constraints. IEEE Trans Power Syst. 2013;28:931–939.

[295] Shi H, Zhuo F, Yi H, et al. A novel real-time voltage and frequency compensation strategy for photovoltaic-based microgrid. IEEE Trans Ind Electron. 2015;62:3545–3556.

[296] Mishra S, Mallesham G, Sekhar PC. Biogeography based optimal state feedback controller for frequency regulation of a smart microgrid. IEEE Trans Smart Grid. 2013;4:628–637.

[297] Al-Saedi W, Lachowicz SW, Habibi D, et al. Voltage and frequency regulation based DG unit in an autonomous microgrid operation using particle swarm optimization. Int J Electrical Power Energy Syst. 2013;53:742–751.

[298] Mishra S, Sathiyanarayanan T. Improving the frequency response of a microgrid using an auxiliary signal in the AGC loop. IFAC-PapersOnLine. 2015;48:300–305.

[299] Keshkar H, Mohammadi FD, Ghorbani J, et al. Proposing an improved optimal LQR controller for frequency regulation of a smart microgrid in case of cyber intrusions. Canadian Conference on Electrical and Computer Engineering 2014:1–6. doi:10.1109/CCECE.2014.6901017.

[300] Khooban MH, Niknam T, Blaabjerg F, et al. A robust adaptive load frequency control for micro-grids. ISA Trans. 2016;65:220–229.

[301] Khalghani MR, Khooban MH, Mahboubi-Moghaddam E, et al. A self-tuning load frequency control strategy for microgrids: human brain emotional learning. Int J Electrical Power Energy Syst. 2016;75:311–319.

[302] Sedighizadeh M, Esmaili M, Eisapour-Moarref A. Voltage and frequency regulation in autonomous microgrids using hybrid Big Bang-Big Crunch algorithm. Appl Soft Comput J. 2017;52:176–189.

[303] Solanki A, Nasiri A, Bhavaraju V, et al. A new framework for microgrid management: virtual droop control. IEEE Trans Smart Grid. 2016;7:554–566.

[304] Wang Z, Wu W, Zhang B. A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids. IEEE Trans Smart Grid. 2016;7:19–31.

[305] Ahumada C, Cárdenas R, Sáez D, et al. Secondary control strategies for frequency restoration in Islanded microgrids with consideration of communication delays. IEEE Trans Smart Grid. 2016;7:1430–1441.

[306] Xin H, Zhao R, Zhang L, et al. A decentralized hierarchical control structure and self-optimizing control strategy for F-P type DGs in islanded microgrids. IEEE Trans Smart Grid. 2016;7:3–5.

[307] Nguyen HK, Khodaei A, Han Z. A big data scale algorithm for optimal scheduling of integrated microgrids. IEEE Trans Smart Grid. 2018;9:274–282.

[308] Zhang J, Gao Y, Yu P, et al. Coordination control of multiple micro sources in islanded microgrid based on differential games theory. Int J Electrical Power Energy Syst. 2018;97:11–16.

[309] De Persis C, Weitenberg ERA, Dörfler F. A power consensus algorithm for DC microgrids. Automatica. 2018;89:364–375.

[310] Graditi G, Di Silvestre ML, Gallea R, et al. Heuristic-based shiftable loads optimal management in smart micro-grids. IEEE Trans Ind Inform. 2015;11:271–280.

[311] Chi-Min C, Tai-Lang J. A novel direct air-conditioning load control method. IEEE Trans Power Syst. 2008;23:1356–1363.

[312] Kondoh J Direct load control for wind power integration. 2011 IEEE Power and Energy Society General Meeting 2011:1–8. doi:10.1109/PES.2011.6039480.

[313] Hsu Y, Member S. Dispatch of direct load control using dynamic programming. Trans Power Syst. 1991;6:1056–1061.

[314] Ramanathan B, Vittal V. A framework for evaluation of advanced direct load control with minimum disruption. IEEE Trans Power Syst. 2008;23:1681–1688.

[315] Tanaka K, Uchida K, Ogiimi K, et al. Optimal operation by controllable loads based on smart grid topology considering insolation forecasted error. IEEE Trans Smart Grid. 2011;2:438–444.

[316] Chen J, Lee FN, Breipohl AM, et al. Scheduling direct load control method. IEEE Trans Power Syst. IEEE Trans Power Syst. 1995;10:1994–2001.

[317] Leterme W, Ruellens F, Claessens B, et al. A flexible stochastic optimization method for wind power balancing with PHEVs. IEEE Trans Smart Grid. 2014;5:1238–1245.

[318] Salinas S, Li M, Li P, et al. Dynamic energy management for the smart grid with distributed energy resources. Smart Grid, IEEE Trans On. 2013;4:2139–2151.

[319] Lee TF, Wu HY, Hsiao YC, et al. Relaxed dynamic programming for constrained economic direct loads control scheduling. 2007 International Conference on Intelligent Systems Applications to Power Systems, ISAP 2007. doi:10.1109/ISAP.2007.441691.

[320] Caprino D, Della Vedova ML, Facchinetti T. Peak shaving through real-time scheduling of household appliances. Energy Build. 2014;75:133–148.

[321] Araújo A, Ghofrani M, Etezadi-Amoli M, et al. Genetic algorithm-based optimization approach for energy management. IEEE Trans Power Deliv. 2013;28:162–170.
[322] Asano H, Takahashi M, Ymaguchi N. Market potential and development of automated demand response system. IEEE Power Energy Soc Gen Meet. 2011;1–4. DOI:10.1109/PESS.2011.6039001

[323] Lu N, Zhang Y. Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves. IEEE Trans Smart Grid. 2013;4:914–921.

[324] Zakariazadeh A, Alinezhad L, Jadid S. Optimum simultaneous clearing of energy and spinning reserve markets with high penetration of wind power. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010:1–4. doi:10.1109/APPEEC.2010.5449287.

[325] Masuta T, Yokoyama A, Tada Y. System frequency control by Heat Pump Water Heaters (HPWHs) on customer side based on statistical HPWH model in power system with a large penetration of renewable energy sources. International Conference on Power System Technology: Technological Innovations Making Power Grid Smarter, POWERCON 2010. doi:10.1109/POWERCON.2010.5666067.

[326] Mathiesen BV, Lund H. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources. 2005 IEEE Russia Power Tech, PowerTech 2005:1–7. doi:10.1109/PTC.2005.4524828.

[327] Han J, Solanki SK, Solanki J. Coordinated predictive control of a wind/battery microgrid system. IEEE J Emerging Selected Topics Power Electron. 2013;1:296–305.

[328] Shao S, Pipattanasomporn M, Rahman S. Development of physical-based demand response-enabled residential load models. IEEE Trans Power Syst. 2013;28:607–614.

[329] Malik O, Havel P. Active demand-side management system to facilitate integration of RES in low-voltage distribution networks. IEEE Trans Sustainable Energy. 2014;5:673–681.

[330] Jebaselvi GDA, Paramasivam S. Analysis on renewable energy systems. Renewable Sustainable Energy Rev. 2013;28:625–634.

[331] Salehfar H, Patton AD. A production cost methodolgy for evaluation of direct load control. Power Syst IEEE Trans On. 1991;6:278–284.

[332] Huang KY, Huang YC. Integrating direct load control with interruptible load management to provide instantaneous reserves for ancillary services. IEEE Trans Power Syst. 2004;19:1626–1634.

[333] Koutitas G, Tassiulas L. Periodic flexible demand: optimization and phase management in the smart grid. IEEE Trans Smart Grid. 2013;4:1305–1313.

[334] Woo CK, Kollman E, Orans R, et al. Now that California has AMI, what can the state do with it? Energy Policy. 2008;36:1366–1374.

[335] Pavlak GS, Henze GP, Cushing VJ. Optimizing commercial building participation in energy and ancillary service markets. Energy Build. 2014;81:115–126.

[336] Zhao P, Henze GP, Plamp S, et al. Evaluation of commercial building HVAC systems as frequency regulation providers. Energy Build. 2013;67:225–235.

[337] Lin Y, Barooah P, Meyn S, et al. Experimental evaluation of frequency regulation from commercial building HVAC systems. Am Control Conf (ACC). 2015;6:3019–3024.

[338] Short JA, Infield DG, Freris LL. Stabilization of grid frequency through dynamic demand control. IEEE Trans Power Syst. 2007;22:1284–1293.

[339] Vrettos E, Kara EC, MacDonald J, et al. Experimental demonstration of frequency regulation by commercial buildings – part II: results and performance evaluation. IEEE Trans Smart Grid. 2016;9:1–1.

[340] Vrettos E, Kara EC, MacDonald J, et al. Experimental demonstration of frequency regulation by commercial buildings-part I: modeling and hierarchical control design. IEEE Trans Smart Grid. 2018;9:3213–3223.

[341] Koch S, Mathieu JL, Callaway DS. Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. Proceedings of the 17th Power Systems Computation Conference 2011. doi:10.1109/DICTA.2007.79.

[342] Lin Y, Barooah P, Meyn SP. Low-frequency power-grid ancillary services from commercial building HVAC systems. IEEE International Conference on Smart Grid Communications, SmartGridComm 2013:169–174. doi:10.1109/SmartGridComm.2013.6687952.

[343] Hao H, Lin Y, Kowli AS, et al. Ancillary Service to the grid through control of fans in commercial building HVAC systems. IEEE Trans Smart Grid. 2014;5:2066–2074.

[344] Vrettos E, Oldewurtel F, Zhu F, et al. Robust provision of frequency reserves by office building aggregations. IFAC Proc Volumes (IFAC-Papersonline). 2014;19:12068–12073.

[345] Rui X, Liu X, Meng J. Dynamic frequency regulation method based on thermostatically controlled appliances in the power system. Energy Procedia. 2016;88:382–388.

[346] Maasoumy M, Sanandaji BM, Sangiovanni-Vincentelli A, et al. Model predictive control of regulation services from commercial buildings to the smart grid. American Control Conference 2014:2226–2233. doi:10.1109/ACC.2014.6859332.

[347] Maasoumy S, Sanandaji M, Sangiovanni-Vincentelli BM, et al. Model predictive control of regulation services from commercial buildings to the smart grid. In: Proceedings of the American control Conference. Portland 2014. 2226–2233.

[348] Oldewurtel F, Ulbig A, Parisio A, et al. Reducing peak electricity demand in building climate control using real-time pricing and model predictive control. Cdc. 2010;1927–1932. DOI:10.1109/CDC.2010.5717458

[349] Maasoumy M, Sangiovanni-Vincentelli A. Total and peak energy consumption minimization of building HVAC systems using model predictive control. IEEE Design Test Comp. 2012;29:26–35.

[350] Kiliccote S, Piette MA, Hansen D. Advanced controls and communications for demand response and energy efficiency in commercial buildings. Proceedings of Second Carnegie Mellon Conference in Electric Power Systems: Monitoring, Sensing, Software and Its Valuation for the Changing Electric Power Industry 2006.

[351] Weckx S, D’Hulst R, Driesen J. Primary and secondary frequency support by a multi-agent demand
control system. IEEE Trans Power Syst. 2015;30:1394–1404.

[352] Samarakoon K, Ekanayake J Demand side primary frequency response support through smart meter control. Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th International 2009:0–4.

[353] David S, Ann M, Watson DS, et al. Strategies for demand response in commercial buildings. In: 2006 ACEEE summer study on energy efficiency in buildings. 2006. p. 287–299.

[354] Kiliccote S, Price P, Piette MA, et al. “Field testing of automated demand response for integration of renewable resources in california’s ancillary services market for regulation products,” Tech. Rep. LBNL-5557E, 2012.

[355] Kundu S, Sinitsyn N, Backhaus S, et al. Modeling and control of thermostatically controlled loads. arXiv preprint arXiv. 2011. DOI:10.3929/ethz-a-010056685

[356] Callaway DS. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Convers Manage. 2009;50:1389–1400.

[357] Hao H, Sanandaji BM, Poolla K, et al. A generalized battery model of a collection of Thermostatically Controlled Loads for providing ancillary service. 51st Annual Allerton Conference on Communication, Control, and Computing, Allerton 2013:551–558. doi:10.1109/Allerton.2013.6736573.

[358] Samarakoon K, Ekanayake J, Jenkins N. Investigation of domestic load control to provide primary frequency response using smart meters. IEEE Trans Smart Grid. 2012;3:282–292.

[359] Biegel B, Hansen LH, Andersen P, et al. Primary control by ON/OFF demand-side devices. IEEE Trans Smart Grid. 2013;4:2061–2071.

[360] Zhang W, Lian J, Chang C-Y, et al. Aggregated modeling and control of air conditioning loads for demand response. IEEE Trans Power Syst. 2013;28:4655–4664.

[361] Braun J. Reducing energy costs and peak electrical demand through optimal control of building thermal storage. ASHRAE Trans. 1990;96:876–888.

[362] Ilic SM, Bullard CW, Hrnjak PS, et al. Effect of shorter compressor on/off cycle times on A/C system performance general motors corporation. 2001. p. 61801.