Rhodnius micki, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia

Yisheng Zhao¹, Cleber Galvão², Wanzhi Cai¹

¹ Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China ² Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, LNIRTT/IOC/FIOCRUZ, Pavilhão Rocha Lima, 5º andar, Avenida Brasil, 4365, Manguinhos, RJ, Brazil

Corresponding author: Wanzhi Cai (caiwz@cau.edu.cn)

Academic editor: L. Livermore | Received 27 May 2020 | Accepted 2 December 2020 | Published 26 January 2021

http://zoobank.org/8CE02949-01D3-4409-8BEB-CCB9EACDC068

Citation: Zhao Y, Galvão C, Cai W (2021) Rhodnius micki, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. ZooKeys 1012: 71–93. https://doi.org/10.3897/zookeys.1012.54779

Abstract

Rhodnius Stål, 1859 is the second largest genus of Triatominae after Triatoma Laporte, 1832, and includes several important Chagas vectors. Genitalia in Reduviidae are frequently used for species identification, but the current use of terminology for it is inconsistent in Triatominae. Here, Rhodnius micki sp. nov., is described from Bolivia and considered as belonging to the pictipes group based on its morphological characters and distribution. Detailed documentation of the genitalia of Rhodnius micki sp. nov., is provided with emphasis on its everted phallus, especially the endosomal sclerites, which are potentially useful as species-level diagnostic features in Rhodnius. To further verify the validity of this species, the head shapes and wing venation patterns of five species in Rhodnius are compared with morphometric analysis. After reviewing taxonomic and comparative morphology papers of assassin bugs, a vocabulary with a terminology of morphological characters, especially of external male genital characters, is assembled with the preferred terms and the synonyms listed. Establishing a consistent terminological framework will greatly facilitate future research on the homology of these structures across Triatominae and will ultimately contribute to our understanding of the evolution of these groups.

Keywords

Comparative terminology, genitalia, geometric morphology, kissing bug, taxonomy
Introduction

Triatominae are a subfamily within Reduviidae that is known for its hematophagous feeding habit (Jansen and Roque 2010). Currently, there are 151 extant and three known fossil species assigned to 18 genera and five tribes in Triatominae (Lent and Wygodzinsky 1979; Justi and Galvão et al. 2017; Rosa et al. 2017a; Oliveira et al. 2018; Lima-Cordón et al. 2019; Nascimento et al. 2019; Poinar Jr 2019). All Triatominae possess a nearly straight labium with a flexible membranous connection between the second and third visible segments that allows upward pointing when feeding (Lent and Wygodzinsky 1979). Many species are competent vectors of Chagas disease transmitting Trypanosoma cruzi (Chagas, 1909) in their feces (Lent and Wygodzinsky 1979; Bern et al. 2011). Chagas disease is one of the ten most seriously neglected tropical diseases, which are currently estimated to affect nine million people, with more than 70 million people living under a serious risk of infection (Justi and Galvão 2017; WHO 2019).

The tribe Rhodniini currently contains two genera, Rhodnius Stål, 1859 (with 20 species) and Psammolestes Bergroth, 1911 (with three species) (Justi and Galvão et al. 2017; Rosa et al. 2017a; Nascimento et al. 2019). The main characters which distinguish Rhodnius and Psammolestes from the other genera of Triatominae are that their antenniferous tubercles do not close to eyes and the presence of callosities behind their eyes (Lent and Wygodzinsky 1979). Rhodnius is widely distributed in the Neotropical Region, and some species are the key vectors of Chagas disease in their respective ranges. Rhodnius ecuadoriensis Lent & León, 1958, for example, is one of the most important vector species of Chagas disease in Ecuador (Grijalva et al. 2015); R. robustus Larrousse, 1927 and R. pictipes Stål, 1872 are the vectors that cause public health problem in French Guiana (Barnabé et al. 2018). Most species of Rhodnius are arboreal, and their microhabitat preference patterns range from species that appear to inhabit a single species of palms (e.g., R. brethesi Matta, 1919 in Leopoldinia piassaba) to species that are found across several genera of palms (e.g., R. pictipes in Attalea butyracea and Oenocarpus bataua) (Lent and Wygodzinsky 1979; Barrett 1991; Carcavallo et al. 1998; Abad-Franch et al. 2005). Rhodnius is usually divided into three species groups, namely the pictipes, prolixus, and pallescens groups. Pictipes group includes six species, i.e., R. amazonicus Almeida, Santos & Sposina, 1973, R. brethesi, R. paraensis Sherlock, Guitton & Miles, 1977, R. pictipes Stål, 1872, R. stali Lent, Jurberg & Galvão,1993 and R. zeledoni Jurberg, Rocha & Galvão, 2009. Prolixus group includes eleven species, i.e., R. barretti Abad-Franch, Palomeque & Monteiro, 2013, R. dalessandroi Carcavallo & Barreto, 1976, R. domesticus Neiva & Pinto, 1923, R. milesi Carcavallo, Rocha, Galvão & Jurberg, 2001, R. marabaensis Souza et al., 2016, R. montenegrensis Rosa et al., 2012, R. nasutus Stål, 1859, R. neglectus Lent, 1954, R. neivai Lent, 1953, R. prolixus Stål, 1859, and R. robustus. Pallescens group includes three species, i.e., R. colombiensis Moreno Mejía, Galvão & Jurberg, 1999, R. ecuadoriensis, R. pallescens (Justi and Galvão 2017). These three species groups are currently recognized based on molecular data, distribution patterns, and morphometric analysis, and but not on qualitative
Rhodnius micki sp. nov., is described from Bolivia morphological characters in the published literature (Dujardin et al. 1999; Lyman et al. 1999; Schofield and Dujardin 1999; Justi and Galvão 2017). The *pallescens* group is distributed to west of the Andes, whereas the *pictipes* and *prolixus* groups are mainly recorded to the east of the Andes (Abad-Franch and Monteiro 2007; Abad-Franch et al. 2009; Hernández et al. 2020).

The latest taxonomic revision of the entire genus was published approximately 40 years ago in the monograph on Triatominae by Lent and Wygodzinsky (1979) and contained descriptions of 11 of the 13 known species at that time. They regarded *R. amazonicus* as a synonym of *R. pictipes*, omitting *R. dalessandroi* because they were unable to examine specimens of this species. Bérenger and Pluot-Sigwalt (2002) and Rosa et al. (2017) made comparative studies between *R. pictipes* and *R. amazonicus* to prove the validity of *R. amazonicus*. The remaining seven species now included in *Rhodnius* were described after Lent and Wygodzinsky’s (1979) monograph (Lent et al. 1993a; Mejia et al. 1999; Valente et al. 2001; Jurberg et al. 2009; Rosa et al. 2012; Abad-Franch et al. 2013; Souza et al. 2016). *Rhodnius taquarussuensis* Rosa et al., 2017a was described as a new species but is now considered a phenotypic form of *R. neglectus* instead of a distinct species (Nascimento et al. 2019). Bérenger and Pluot-Sigwalt (2002) published a key for the *pictipes* group and Galvão (2014) released a key in Portuguese which included 12 *Rhodnius* species.

Rhodnius is relatively easy to distinguish from other Triatominae genera because of its long head and coloration pattern but shows low non-genitalic morphological variability between species in the genus, which may account for the difficulties in species identification. The female external genitalia was described for most species of the subfamily (Lent 1948; Abalos and Wygodzinsky 1951; Sherlock and Serafim 1967), but their diagnostic importance was dismissed in papers published by Lent and Jurberg (1968, 1969, 1975) which considered them uniform and, not useful for specific identification. The resurrection of female genitalia, as an important taxonomic tool, was attributed to Rosa et al. (2010) through a detailed study by scanning electron microscopy. Subsequently, several studies corroborate the diagnostic value of female genitalia (Rosa et al. 2012, 2014, 2017b; Rodrigues et al. 2018). The male external genitalia are usually used for generic and specific differentiation in assassin bugs. All published species except *R. barretti* had been documented with the external male genitalia. However, most of these descriptions were restricted to describing or comparing the shapes of the median process of pygophore (Lent and Wygodzinsky 1979; Harry 1993; Lent et al. 1993a; Mejia et al. 1999; Valente et al. 2001; Rosa et al. 2012, 2017a, b; Souza et al. 2016). Six species (*R. zeledoni, R. marabaensis, R. milesi, R. montenegrensis, R. stali,* and *R. Colombiensis*) had only detailed illustrations of non-everted phalli, thus restricting the possibility of comparison various structures on the phallosoma and endosoma, which may be helpful in species-level identifications (Lent et al. 1993a; Mejia et al. 1999; Valente et al. 2001; Rosa et al. 2012, 2017b; Zhao et al. 2015; Souza et al. 2016). Drawings of endosomal structures that show the individual sclerites rather than the complete everted endosoma were published for only three species, *R. stali, R. pictipes,* and *R. milesi* (Lent et al. 1993a; Valente et al. 2001).
When examining the specimens of *Rhodnius*, two specimens from Bolivia were distinctly different from any other species found. In this study, they are named *Rhodnius micki* sp. nov. and described. Male genitalia are important in identifying assassin bugs, especially for *Rhodnius* which has low non-genitalic morphological variability between species. Therefore, special emphasis is put on their everted phallus, allowing for detailed photographic documentation of the phallus, particularly the sclerites of the endosoma. The diagnosis of the new species takes advantage of qualitative morphological features including genitalic features, and of geometric morphometric approaches to better characterize head and forewing shapes. Combining morphometric characters with distribution, we propose that this new species should be classified in the *pictipes* group. We also provide a synopsis of genitalic terminology applied to Triatominae and offer preferred terms to facilitate future investigations into the homology of these structures across Triatominae and even Heteroptera.

Materials and methods

Specimens

Type specimens and an additional male specimen of *R. robustus* Larrousse, 1927 are deposited in The Natural History Museum (NHMUK), London, United Kingdom.

Specimens of *R. stali*, *R. pictipes*, *R. pallescens*, and *R. ecuadoriensis* which were used for the geometric analysis came from colonies reared at Fundação Oswaldo Cruz (FIOCRUZ) in Brazil and were deposited at Fundação Oswaldo Cruz (FIOCRUZ).

Dissections and measurements

After softening the abdomens of dried specimens with wet tissue, the pygophores were removed and soaked in 100% lactic acid overnight (Fig. 1). They were then boiled in 20% lactic acid solution for ~30 minutes to remove muscles (Fig. 2). Dissections were carried out in the lactic acid under a Motic binocular dissection microscope. At this point, the endosoma was gently stretched with a pair of forceps (Ideal-Tek SS.SA) and insect pins (0#). The tip of the pins should be blunt (Fig. 3). At first, we inserted the insect pin along the membrane of the endosoma from the opening where the endosoma is everting out, and then gently agitated the pin along the membrane from one side to the other to make the phallosoma loose and make the endosoma move towards the tip of phallosoma, so that the opening is big enough and the forceps would enable to touch the sclerites of endosoma without breaking the membrane (Figs 4, 5). Forceps were used to grasp the sclerite and to stretch the endosoma (Fig. 6). After taking the photographs and other procedures, the dissected genitalia were preserved in glycerol in plastic tubes which were pinned under the corresponding specimens. Measurements were made using a calibrated micrometer and given in millimeters.
Rhodnius micki sp. nov., is described from Bolivia.

Figures 1–6. Process of dissection 1 soaking genitalia in 100% lactic acid overnight 2 boiling genitalia in 20% lactic acid solution for ~30 minutes 3–6 dissecting genitalia under microscope with forceps and blunted insect pin 4, 5 inserting the insect pin along the membrane of the endosoma and agitate the pin 6 using forceps to stretch the endosoma.

Terminology

Because of the inconsistent use of terminology in Triatominae, after reviewing many taxonomic and comparative morphology papers of assassin bugs, the terminology adopted in this paper are listed in Table 1. It includes the preferred terms, definition of terms, previously used terms, and references.

Images and image processing

Habitus images were obtained using a Canon EOS 7D and 60mm macro lens. Detail images of heads, pronota, and wings were obtained using a Microscope (Nikon SMZ18) with a Canon EOS 600D. Genital images were taken using an Olympus BX51 with a Canon EOS 450D. Images were stacked using the EOS Utility 2, and Helicon focus 5.3. Photographs were edited with Adobe Photoshop CS4, including adjustment of background color and cropping without modifying any characters. All the images were taken in the laboratory by the authors. The plate of male genitalia is that of the paratype.
Table 1. Terminology used in this study with synonyms from the literature.

Preferred term (abbreviation)	Definition	Previously used terms	References
Articulatory apparatus (AA)	System of plates and apodemes for suspension of phallus and attachment of its motor muscles	Articulatory apparatus (Apb) (apt)	Lent and Wygodzinsky 1979; Lent and Jurberg 1984; Lent and Jurberg 1987; Lent et al. 1996; Mejia et al. 1999; Carcavallo et al. 2001; Valente et al. 2001; Sandoval et al. 2007; Jurberg et al. 2009; Forero et al. 2010; Berniker et al. 2011; Forero and Weirauch 2012; Gil-Santana and Galvão 2013; Jurberg et al. 2013; Castro-Huertas and Forero 2014; Gil-Santana 2017; Chłond et al. 2018
Basal plate (BP)	Paired major plates of articulatory apparatus	Basal plate (Plb)	Lent and Wygodzinsky 1979; Lent and Jurberg 1984; Lent et al. 1996; Mejia et al. 1999; Carcavallo et al. 2001; Valente et al. 2001; Cai and Tomokuni 2003; Weirauch 2008; Sandoval et al. 2007; Jurberg et al. 2009; Frías-Lasserre 2010; Forero et al. 2010; Berniker et al. 2011; Forero and Weirauch 2012; Rosa et al. 2012; Gonçalves et al. 2013; Jurberg et al. 2013; Zhao et al. 2015; Ishikawa and Naka 2016; Souza et al. 2016; Rosa et al. 2017; Chłond et al. 2018; Oliveira et al. 2018
Basal plate extension (BPE)	Ventral sclerite arising from the basal plate	Basal plate extension (bpe)	Cai and Tomokuni 2003; Gil-Santana and Galvão 2013; Castro-Huertas and Forero 2014; Zhao et al. 2015; Gil-Santana 2017
Distal dorsal sclerite of endosoma (DDSEn)	Paired or single sclerite on the tip of endosoma which is on the dorsal side of the distal ventral sclerite	Process of endosoma 1 (PrEn 1)	Jurberg et al. 2009
Distal ventral sclerite of endosoma (DVSEn)	A single sclerite on the tip of endosoma which is on the ventral side of the distal ventral sclerite	Processes of endosoma 2 (PrEn 2)	Jurberg et al. 2009
Dorsal phallothecal sclerite (DPS)	Sclerotized proximal part of phallo soma	Dorsal phallothecal sclerite (dps)	Cai and Tomokuni 2003; Weirauch 2008; Forero et al. 2010; Berniker et al. 2011; Forero and Weirauch 2012; Castro-Huertas and Forero 2014; Zhao et al. 2015; Ishikawa and Naka 2016; Gil-Santana 2017; Chłond et al. 2018; Lapischies et al. 2019
Phallosoma (Ph)		Phallosoma (Ph)	Lent and Wygodzinsky 1979; Lent and Jurberg 1984; Lent et al. 1996; Mejia et al. 1999; Carcavallo et al. 2001; Valente et al. 2001; Sandoval et al. 2007; Jurberg et al. 2009; Rosa et al. 2012; Gonçalves et al. 2013; Jurberg et al. 2013; Souza et al. 2016; Rosa et al. 2017; Oliveira et al. 2018
Dorsal phallotheca plate		Dorsal phallotheca plate	Lent and Wygodzinsky 1979; Gil-Santana and Galvão 2013
Phallotheca plate		Phallotheca plate	Frias-Lasserre 2010
Preferred term (abbreviation)	Definition	Previously used terms	References
-------------------------------	------------	-----------------------	------------
Dorsal sclerites of pygophore (DSP)	Posterior dorsal sclerotization of genital opening, tergite 9	Forero and Weirauch 2012	
Endosoma (En)	Distal portion of phallus which can be reverted	Endosoma	Lent and Wygodzinsky 1979; Lent and Jurberg 1984; Lent and Jurberg 1987; Lent et al. 1993a, b; Mejia et al. 1999; Carcavallo et al. 2001; Valente et al. 2001; Cai and Tomokuni 2003; Jurberg et al. 2009; Frias-Lasserre 2010; Forero and Weirauch 2012; Jurberg et al. 2013; Castro-Huertas and Forero 2014; Zhao et al. 2015; Ishikawa and Naka 2016; Souza et al. 2016; Rosa et al. 2017a; Oliveira et al. 2018; Lapischies et al. 2019
Lateral flap-like prolongation of phallosoma (LFPh)	Paired of sclerite on the lateral side of phallosoma	Lateral flat-like prolongation of the phallosoma	Forero and Weirauch 2012
Mandibular plate	Laterad of clypeus and dorsad of maxillary plate	Mandibular plate	Weirauch 2008; Berniker et al. 2011; Ishikawa and Naka 2016
Maxillary plate	Ventral to mandibular plate	Maxillary plate	Lent and Wygodzinsky 1979; Lent et al. 1993a; Carcavallo et al. 2001; Gonçalves et al. 2013; Souza et al. 2016
Medial basal sclerite of phallosoma (MBSPh)	Basal part of a phallosoma, often sclerotized	Vesica (V)	Lent and Wygodzinsky 1979; Lent and Jurberg 1987; Carcavallo et al. 2001; Cai and Tomokuni 2003; Sandoval et al. 2007; Rosa et al. 2013; Gonçalves et al. 2013; Jurberg et al. 2013
Median process of pygophore (MPP)	Median process of (the) pygophore (PrP)	Lent and Wygodzinsky 1979; Lent and Jurberg 1984; Lent et al. 1993a, b; Mejia et al. 1999; Carcavallo et al. 2001; Valente et al. 2001; Sandoval et al. 2007; Jurberg et al. 2009; Forero et al. 2010; Rosa et al. 2012; Gil-Santana and Galvão 2013; Castro-Huertas and Forero 2014; Souza et al. 2016; Rosa et al. 2017a; Oliveira et al. 2018	
Phallosoma (Ph)	Proximal portion of phallus, between basal plate and endosoma.	Phallosoma	Lent and Wygodzinsky 1979; Forero and Weirauch 2012; Castro-Huertas and Forero 2014; Zhao et al. 2015

| Processes of the conjunctivae 1 (Pcj 1) | Processes of the conjunctivae 2 | Processes of conjunctive 2 | |
Preferred term (abbreviation)	Definition	Previously used terms	References
Phallus (P)	Intromittent organ inside the pygophore	Phallus (Ph) (P)	Lent and Jurberg 1984; Lent and Jurberg 1987; Lent et al. 1993a, b; Mejia et al. 1999; Carcavallo et al. 2001; Valente et al. 2001; Cai and Tomokuni 2003; Ishikawa et al. 2007; Sandoval et al. 2007; Weirauch 2008; Jurberg et al. 2009; Frias-Lasserre 2010; Forero et al. 2010; Forero and Weirauch 2012; Rosa et al. 2012; Gonçalves et al. 2013; Gil-Santana and Galvão 2013; Jurberg et al. 2013; Castro-Huertas and Forero 2014; Zhao et al. 2015; Ishikawa and Naka 2016; Souza et al. 2016; Rosa et al. 2017a; Gil-Santana 2017; Oliveira et al. 2018; Lapischies et al. 2019
Struts	Paired sclerites on the ventral side of dorsal phallothecal sclerite	Struts (str)	Lent and Wygodzinsky 1979; Cai and Tomokuni 2003; Forero et al. 2010; Gonçalves et al. 2013; Gil-Santana and Galvão 2013; Zhao et al. 2015
Synthlipsis	Minimum interocular distance	Synthlipsis	Lent and Wygodzinsky 1979; Valente et al. 2001; Sandoval et al. 2007; Jurberg et al. 2013; Zhao et al. 2015
Transverse bridge of basal plate (TBBP)	Connection between two basal plate	Basal plate; Bridge (bpb)	Lent and Wygodzinsky 1979; Cai and Tomokuni 2003; Berniker et al. 2011; Castro-Huertas and Forero 2014; Ishikawa and Naka 2016; Gil-Santana 2017
Transverse bridge of pygophore (TBPy)	Anterior dorsal sclerotization of pygophore	Transverse bridge of the pygophore (be)	Forero and Weirauch 2012; Castro-Huertas and Forero 2014
Ventral sclerite of phallosoma (VSPh)	Paired of sclerites on the ventral side of phallosoma	Processes of the conjunctiva 2 (PrCj 2)	Valente et al. 2001
		Processes of the conjunctiva (PrCj)	Lent et al. 1993b
		Processes of the conjunctiva 3 (PrCj 3)	Mejia et al. 1999

Morphometrics

In total, 42 specimens of five species, *R. ecuadoriensis* (ten specimens), *R. pallescens* (ten specimens), *R. pictipes* (ten specimens), *R. stali* (ten specimens), and *R. micki* sp. nov. (two specimens), were used in the analysis. and nine anatomical landmarks were extracted respectively on the heads and forewings. Thirteen landmarks of head (type II points, which combine geometric and biological or histological descriptions) (Gurgel-Gonçalves et al. 2008; Oliveira et al. 2017), and nine landmarks of wings (type I points, which homology comes from unique patterns in biological form) (Gurgel-Gonçalves et al. 2008; Feliciangeli et al. 2007; Costa et al. 2009; Oliveira et al. 2017) were extracted based on the landmarks used in previous works. These landmarks were digitized with tpsUtil 1.46 (Rohlf 2010) and tpsdig2 v.2.16 (Rohlf 2008). To quantify the shape variation related with the shape dimensions, the digitized data were analyzed using morphoJ 1.06d (Klingenberg 2011). Variability in the shape space was assessed
Rhodnius micki sp. nov., is described from Bolivia using a Principal Component Analysis (PCA). To better visualize the shape variation, thin plate spline visualization was used to get the average shapes of these characters.

Taxonomy

Reduviidae Latreille, 1807
Triatominae Jeannel, 1919

Rhodnius Stål, 1859

Type of genus. Rhodnius prolixus Stål, 1859.

Rhodnius micki sp. nov.
http://zoobank.org/226A56E5-FDF8-4850-9426-80B3C4D79FC5

Type materials. Bolivia: Santa Cruz, Saavedra, C.J. Pruett [leg.], 1 male holotype, 10.v.1989, 1 male paratype, 1.iii.1989 (NMHUK).

Diagnosis. General coloration dark brown. Head relatively short, only slightly longer than the pronotum. Eyes small, width of the eye shorter than the synthlipsis. Central area of the anterior lobe of the pronotum conspicuously dark and its humeral angle of the posterior lobe relatively sharply curved. Legs brown. The median process of the pygophore long and bifid on the tip. The medial basal sclerite of the phallosoma with two straight and flat projections. One distal dorsal sclerite of the endosoma bifurcated, and its tip rounded and curved slightly inward.

Description. Coloration. Body generally dark brown. Head with light median longitudinal stripe extending from the apex of clypeus to the posterior portion of ocelli; eyes blackish; middle of third segment and posterior half of forth segment yellow; a pair of black stripes on the dorsal surface of neck, half of lateral side and ventral side dark. Pronotum with a pair of submedian carinae and lateral margin yellow; concave areas on anterior lobe, especially the central area darkened; posterior lobe dark with scattered irregular small yellow spots. Scutellum dark with a yellow “Y”-shaped ridge; the tip of scutellar process white. Hemelytra generally brown and mottled; corium with small lightly colored spots; membrane with narrowly rimmed pale-yellow veins, area between veins with scattered light color spots. Legs mottled with yellow spots; tarsi yellowish (Fig. 7). Connexivum dark and mottled with yellow spots, posterior one fourth of every segment almost yellow; ventral surface of the abdomen yellowish with scattered irregular dark brown spot; sternites light brown to black, with irregular dark brown spots, center of sternite II and a pair of sublateral elliptical spots of each segment dark (Fig. 9); spiracles with a brown narrowly margin (Fig. 8).

Structure. Head. Elongated and granulose, almost 2.5 × as long as width across eyes (1:2.6–2.59), slightly longer than length of pronotum (1:1.17–1.21); apex of
maxillary plate surpassing clypeus; anteocular region ~ 3 × as long as postocular region in length (1: 2.84–3.15); eyes small, width of eye in dorsal view shorter than synthlipsis (1:0.60); in lateral view, eyes far away from upper surface of head and approaching to lower surface; ratio of antennal segments 1:5.11–6.29:4.66–5.14:3.55–4.43; first labial segment proceeding toward antenniferous tubercle and second labial segment approaching to posterior margin of head. Ratio of labial segments 1:2.78–3.13:0.61–0.83. **Thorax.** Anterolateral angles triangle-like. Surface of pronotum granulose, length of posterior pronotal lobe ~ 2 × as that of anterior lobe (1:1.89–1.93); posterior pronotal lobe ~ 1.5 × as wide as anterior lobe (1:1.52–1.74); median longitudinal furrow of anterior lobe deep on the median transverse furrow; humeral angles sharply curved relatively to other species of *Rhodnius* (Fig. 10). Scutellum triangular with a yellow Y-shaped ridge; subapical portion with a cone-shaped process. Pleura of meso- and metathoraxes winkled. Legs long and slender. Hemelytra approaching tip of abdomen. **Male genitalia** (Figs 12–26). Pygophore (Figs 12–14) globular with a tubercle on the bottom of the ventral surface (Fig. 13); transverse bridge of pygophore (TBPy) strongly sclerotized and narrow; a pair of dorsal sclerites of genital opening (DSPr) large; median process of pygophore (MPPy) long, bifid at apical portion and tilting 45 degrees to the dorsal side in lateral view. Parameres (Figs 15, 16) strongly curved.

Figures 7–11. 7–9 holotype of *Rhodnius micki* sp. nov. 11 *Rhodnius stali* Lent, Jurberg & Galvão, 1993 7 dorsal side 8 lateral side 9 ventral side 10, 11 pronotum. Scale bars: 5.00 mm (7–9); 1.00 mm (10, 11)
Rhodnius micki sp. nov., is described from Bolivia at apex and with a denticile. Basal plate (BP) hexagonal in dorsal view, diameter of the arms similar to that of the transverse bridge of basal plate (TBBP) (Fig. 17); basal plate extension (BPE) short and approximately half shorter to arms of basal plate in length (Figs 18, 21); dorsal phallothecal sclerite (DPS) flat, as a subrectangular with round angles; medial basal sclerite of phallosoma (MBSPh) bifid with two straight and flat projections (Figs 17, 18, 20, 21), and both of them slightly swelled at base; lateral flap-like prolongation of phallosoma (LFPPh) large (Figs 17–22); two ventral sclerites of phallosoma (VSPh) elongated ovoid (Figs 17–22); the tip of non-everted phallus slightly sclerotized on the dorsal and lateral surface, and the surface of the phallosoma with indistinct stripes (Figs 17, 18); distal dorsal sclerite of endosoma (DDSEn) bifurcated, tips rounded, and curved inward lightly (Figs 20, 21, 24); distal ventral sclerite of the endosoma (DVSEn) smaller than the dorsal sclerite and bifurcated with two projections set far apart (Figs 21–23). The membrane of endosoma on the dorsal surface wrinkled and a bit thicker than other part of membrane.

Etymology. The species epithet is named in honor of Mr. Mick Webb (NHMUK), who had helped us in many ways in the study of Hemiptera.

Measurements. [in mm, ♂ (n = 2)] Total length to tip of abdomen 17.20–17.33. Length of head (exclude neck) 3.21–3.55; width of head 1.40–1.43; length of anteocular 2.27–2.30; length of postocular 0.73–0.80; width of eye 0.40–
Figures 17–26. Pallus 17–24 *Rhodnius micki* sp. nov. 25, 26 *Rhodnius robustus* 17–19 non-everted phallus 20–26 everted phallus 17, 20 dorsal side 18, 21 lateral side 19, 22 ventral side 23, 25 distal ventral sclerite of endosoma 24, 26 distal dorsal sclerite of endosoma. Scale bars: 1.00 mm (11–16); 0.50 mm (17–20). Abbreviations: BP basal plate TBBP transverse bridge of basal plate DPS dorsal phallothecal sclerite MBSPh medial basal sclerite of phallosoma LFPPh lateral flat-like prolongation of phallosoma VSPh ventral sclerite of phallosoma BPE basal plate extension DDSEn distal dorsal sclerite of endosoma DVSEn distal ventral sclerite of the endosoma AA articulatory apparatus Ph phallosoma En endosoma.

0.44; length of synthlipsis 0.67–0.73. Length of antennal segments I–IV=0.35–0.45/2.20–2.30/1.80–2.10/1.55–1.60; length of visible labial segments I–III=0.80–0.90/2.50/0.60. Length of anterior lobe of pronotum 0.90–0.93; length of posterior pronotal lobe 1.70–1.93; width of anterior pronotal lobe 2.30–2.33; width of posterior pronotal lobe 4.00–4.15. Length of scutellum 1.70–1.75; width of scutellum 1.80–1.90; length of hemelytron 10.40–10.50. Width of abdomen 5.35–5.40. (all
Rhodnius micki sp. nov., is described from Bolivia.

The former numbers are for holotype, except length of total, anteocular, second and fourth segment, and width of abdomen).

Additional material. Rhodnius robustus Larrousse, 1927 (1♂, Brazil: Belém, Instituto Evandro Chagas, reared in lab, 20.II.1992) (NHMUK).

Geometric morphometrics (Figs 27, 28) On the one hand, R. pictipes and R. stali appear to be the most morphologically similar species to R. micki sp. nov. having rela-

Figures 27, 28. Morphological variations of five Rhodnius species based on Principal Component Analysis. The 90% equal frequency ellipses containing approximately 90% of the data points are shown. The thin-plate splines show the average shape for each species, corresponding to the deformation of the landmarks compared with the origin (the average shape of all species) 27 head 28 fore wing.
tively short head, only slightly longer than the pronotum, and a defined transverse sulcus on their pronotum. On the other hand, *Rhodnius ecuadoriensis*, *R. pallescens*, and *R. micki* sp. nov. do not have dark rings on the tibiae which is a significant diagnostic character of *Rhodnius*. Based on the morphometrics of the head and the particular coloration of the legs, we compared before mentioned four species to *R. micki* sp. nov. For head shape analysis (Fig. 27), the contribution of the first principal (PC1) component accounted for 81.79% of the total variation, whereas the second principal component (PC2) accounted for 6.26%. In the factorial map, five species were separated. The type specimens of *R. micki* sp. nov. were far away from the others. The thin plate spline visualization showed that the fifth and tenth landmarks located on the anterior margin of eye contributed most to the shape difference among these species. The size of the eye and the length of the anteocular and postocular regions might be the most significant differences among them. For wing vein analysis (Fig. 28), the contribution of the first principal (PC1) component accounted for 58.46% of the total variation and the second principal component (PC2) accounted for 22.21%. The points of *R. micki* sp. nov. were also distinct from those of the other four species, and these four species were separated from each other too. The thin plate spline visualization showed that the seventh landmark contributed most to the shape difference among these species. It implied that the position of the intersection of the Cu and An1 veins may be the most variable among them.

Discussion

Comparison with other species

It is relatively easy to distinguish this species from other *Rhodnius* species because of its relatively sharply curved humeral angles and unique color pattern. *Rhodnius stali* and *R. pictipes* are similar to *R. micki* sp. nov. because their heads are all relatively short, only slightly longer than their pronota, and their pronota have a defined transverse sulcus. However, the tibiae of *R. micki* sp. nov. are uniformly dark brown, the humeral angle is sharply curved (Fig. 10), and the third antennal segment is black, whereas the other two both have a distinct dark ring on each tibia, only the anterior half of the third antennal segment is black, and the humeral angle is broadly rounded (Fig. 11). *Rhodnius ecuadoriensis* and *R. pallescens* do not have any tibial rings. *Rhodnius ecuadoriensis* is smaller than *R. micki* sp. nov., and the head of *R. pallescens* is obviously longer than the pronotum. *Rhodnius micki* sp. nov. is darker and its submedian carinae on the posterior lobe are not obvious; the posterior quarter of every connexival segment on the dorsal side is yellow. Differences between *R. micki* sp. nov. and the other species in the male genitalia are significant. The median processes of the pygophore of *R. micki* sp. nov., *R. stali*, and *R. pictipes* are bifid, but the former one is bifid at its tip, with small projections, whereas the median processes of the pygophores of *R. stali* and *R. pictipes* are bifid (Lent et al. 1993a) at the base with long projections, and those of *R. ecuadoriensis* and *R. pallescens* are not bifid (Lent and Wygodzinsky 1979; Mejia et
Rhodnius micki sp. nov., is described from Bolivia (Chávez 2006; Schofield and Galvão 2009; Justi et al. 2010; Soto-Vivas et al. 2018). Rhodnius stali and R. pictipes, which are the most similar species to R. micki sp. nov. based on the non-genitalic characters mentioned above, both belong to the pictipes group. With respect to genitalic characters, they are also similar because they all have a single distal dorsal sclerite on the endosoma (Lent et al. 1993a). Based on our observations (unpublished), species in the prolixus group, such as R. robustus, have two symmetrical sclerites located in the same position, and the shape of the ventral sclerite of endosoma is triangle (Figs 25, 26). Therefore, we infer that R. micki sp. nov. should be included in the pictipes group based on distribution and genitalic characters.

Species group assignment

Rhodnius micki sp nov. is known from Santa Cruz, Bolivia, where some species of pictipes group and prolixus group, i.e., R. stali, R. pictipes, and R. robustus are distributed. (Lent et al. 1993a). Based on our observations (unpublished), species in the prolixus group, such as R. robustus, have two symmetrical sclerites located in the same position, and the shape of the ventral sclerite of endosoma is triangle (Figs 25, 26). Therefore, we infer that R. micki sp. nov. should be included in the pictipes group based on distribution and genitalic characters.

Terminology of morphological characters

Historically, the terminology of Triatominae, especially male genitalic terms, has developed at least partially in isolation from that of Reduviidae. A plethora of terms have been used for homologous genitalic structures, and in some cases different structures have used the same name. This inconsistency results in incompatible and sometimes misleading terminology for taxonomic descriptions and diagnoses. For example, some researchers have variously used the terms aedeagus, phallus, phallosoma, conjunctiva and phallothecal plate when describing the apical part of the intromittent organ, and the sclerotized plate beneath the basal plate (Lent and Wygodzinsky 1979; Mejía et al. 1999; Valente et al. 2001; Jurberg et al. 2009; Rosa et al. 2012; Gil-Santana and Galvão 2013; Cunha et al. 2016; Oliveira et al. 2018). To avoid ambiguity and achieve consistency with the description of other assassin bugs, we adopt the following terms in this study. Male genitalia consist of pygophore, parameres, and phallus. The articulatory apparatus is composed of basal plate, basal plate bridge, and basal plate extension. The dorsal phallothecal sclerite (DPS) is regarded as the dorsal part of phallosoma. To
clarify each sclerite’s position, we rename these sclerites with adjectives describing their position, while being as consistent as possible with previous terms. We adopt medial basal sclerite of phallosoma to denote the sclerite on the dorsal side of phallosoma. Two pairs of sclerites on the lateral and ventral sides of phallosoma are called lateral flat-like prolongation of phallosoma (LFPPh) and ventral sclerite of phallosoma (VSPh) respectively. Sclerites at the tip of the endosoma are renamed distal dorsal sclerite of endosoma (DDSEn) and distal ventral sclerite of endosoma (DVSEn). All the preferred terms and synonyms are shown in Table 1.

Acknowledgements

We are grateful to Christiane Weirauch, her lab members, and Dimitri Forero for kindly reviewing the manuscript and greatly improving the final version. Special thanks to Carolina Dale for offering photos and kindly reviewing the manuscript. This research is financially supported by the National Natural Science Foundation of China (Nos. 31730086, 31772498).

References

Abad-Franch F, Monteiro FA (2007) Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias do Instituto Oswaldo Cruz 102(1): 57–70. https://doi.org/10.1590/S0074-02762007005000108

Abad-Franch F, Palomeque FS, Aguilar VHM, Miles MA (2005) Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Tropical Medicine and International Health 10(12): 1258–1266. https://doi.org/10.1111/j.1365-3156.2005.01511.x

Abad-Franch F, Monteiro FA, Jaramillo O, Gurgel-Gonçalves R, Dias FBS, Diotaiuti L (2009) Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica 110(2–3): 159–77. https://doi.org/10.1016/j.actatropica.2008.06.005

Abad-Franch F, Pavan MG, Jaramillo O, Palomeque FS, Dale C, Chaverra D, Monteiro FA (2013) Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Memórias do Instituto Oswaldo Cruz 108(1): 92–99. https://doi.org/10.1590/0074-0276130434

Abalos JW, Wygodzinsky P (1951) Las Triatominae Argentinas (Reduviidae, Hemiptera). Instituto Médico Regional de Tucumán. Publicación 601, Monografía 2: 1–179.

Barrett TV (1991) Advances in triatomine bug ecology in relation to Chagas disease. In: Harris KF (Ed) Advances in Disease Vector Research. Springer, New York, 8: 143–176. https://doi.org/10.1007/978-1-4612-3110-3_6

Barnabé C, Brenière SF, Guégan JF, Blanchet D, Aznar C (2018) Molecular characterization of Rhodnius robustus specimens, potential vectors for Chagas disease in French Guiana,
Rhodnius micki sp. nov., is described from Bolivia. Infection, Genetics and Evolution 59: 28–31. https://doi.org/10.1016/j.meegid.2018.01.019

Bern C, Kjos S, Yabsley MJ, Montgomery SP (2011) Trypanosoma cruzi and Chagas’ Disease in the United States. Clinical Microbiology Reviews 24: 655–681. https://doi.org/10.1128/CMR.00005-11

Bérenger JM, Pluot-Sigwalt D (2002) Rhodnius amazonicus Almeida, Santos & Sposina, 1973, bona species, close to R. pictipes Stål, 1872 (Heteroptera, Reduviidae, Triatominae). Memórias do Instituto Oswaldo Cruz 97: 73–77. https://doi.org/10.1590/S0074-02762002000100011

Berniker L, Szerlip S, Forero D, Weirauch C (2011) Revision of the crassipes and pictipes groups of Apiomerus Hahn (Hemiptera: Reduviidae: Harpactorinae). Zootaxa 2949: 1–113. https://doi.org/10.11646/zootaxa.2949.1.1

Cai W, Tomokuni M (2003) Camptibia obscura, gen. and sp. nov. (Heteroptera: Reduviidae: Harpactorinae) from China. European Journal of Entomology 100(1): 181–185. https://doi.org/10.14411/eje.2003.028

Carcavallo RU, Jurberg J, Lent H, Galvão C, Steindel M, Pinto CJC (2001) Nova espécie do complexo oliveirai (nova denominação para o complexo matogrossensis) Hemiptera, Reduviidae, Triatominae) do estado do Rio Grande do Sul, Brasil. Memórias do Instituto Oswaldo Cruz 96: 71–79. https://doi.org/10.1590/S0074-02762001000100008

Carcavallo RU, Rodríguez MEF, Salvatella R, Curto de Casas SI, Sherlock IA, Galvão C, Rocha DS, Gálvez-Girón I, Arocha MAO, Martínez A, Rosa JA, Canale DM, Farr TH, Barata JMS (1998) Habitats and related fauna. In: Carcavallo RU, Girón IG, Jurberg J, Lent H (Eds) Atlas of Chagas’ Disease Vectors in the Americas (Vol. 2). Fiocruz, Rio de Janeiro, 561–600.

Castro-Huertas V, Forero D (2014) First record of the genus Tagalis Stål, 1860 (Hemiptera: Reduviidae: Saicinæ) from Colombia with the description of two new species. Zootaxa 3838(4): 475–485. https://doi.org/10.11646/zootaxa.3838.4.6

Chagas C (1909) Nova tripanozomize humana: estudos sobre a morfolojia e o cicloevolutivo do Schizotrypanum cruzi n. gen, n. sp., ajente etiologico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz 1: 159–218. https://doi.org/10.1590/S0074-02761909000200008

Chávez J (2006) Contribución al estudio de los triatominos del Perú: Distribución geográfica, nomenclatura y notas taxonómicas. Anales de la Facultad de Medicina 67(1): 65–76. https://doi.org/10.15381/anales.v67i1.1296

Chlond D, Guilbert E, Faillé A, Baňař P, Davranoglou L-R (2018) A remarkable new species of cavernicolous Collartidini from Madagascar (Hemiptera: Heteroptera: Reduviidae). Zootaxa 4425(2): 372–384. https://doi.org/10.11646/zootaxa.4425.2.11

Costa J, Peterson AT, Dujardin JP (2009) Morphological evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera, Heteroptera, Reduviidae). Infection, Genetics and Evolution 9: 263–270. https://doi.org/10.1016/j.meegid.2008.12.005

Dujardin JP, Chavez T, Moreno JM, Machane M, Noireau F, Schofield CJ (1999) Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology 36: 653–659. https://doi.org/10.1093/jmedent/36.6.653
Feliciangeli MD, Sanchez-Martin M, Marrero R, Davies C, Dujardin JP (2007) Morphometric evidence for a possible role of *Rhodnius prolixus* from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Tropica 101: 169–177. https://doi.org/10.1016/j.actatropica.2006.12.010

Forero D, Weirauch C (2012) Comparative genitalic morphology in the New World resin bugs Apiomerini (Hemiptera, Heteroptera, Reduviidae, Harpactorinae). Deutsche Entomologische Zeitschrift 59: 5–41.

Forero D, Berniker L, Szerlip S (2010) A polychromatic new species of *Apiomerus* (Hemiptera: Reduviidae: Harpactorinae) from Central America. Zootaxa 2522: 44–60. https://doi.org/10.11646/zootaxa.2522.1.2

Frías-Lasserre D (2010) A new species and karyotype variation in the bordering distribution of *Mepraia spinolai* (Porter) and *Mepraia gajardoi* Frías et al (Hemiptera: Reduviidae: Triatominae) in Chile and its parapatric model of speciation. Neotropical Entomology 39(4): 572–583. https://doi.org/10.1590/S1519-566X2010000400017

Galvão C (2014) Vetores da Doença de Chagas no Brasil. Sociedade Brasileira de Zoologia, Curitiba, 289 pp. https://doi.org/10.7476/9788598203096

Gil-Santana HR (2014) *Pothea berengeri* sp. nov. from Brazil, with taxonomic notes on *Pothea furtadoi* Gil-Santana & Costa and *Pothea jaguaris* (Carpintero) and reinstatement of *Parapothea* Carpintero as junior synonym of *Pothea* Amyot & Serville (Hemiptera: Reduviidae: Ectrichodiinae). Zootaxa 3826(3): 497–516. https://doi.org/10.11646/zootaxa.3826.3.4

Gil-Santana HR (2017) A new species of *Zeraikia* Gil-Santana Costa with taxonomic notes on *Zeraikia novafriburguensis* Gil-Santana & Costa (Hemiptera, Reduviidae, Peiratinae). ZooKeys 716: 105–126. https://doi.org/10.3897/zookeys.716.20843

Gil-Santana HR, Galvão C (2013) Description of the male genitalia of *Belminus rugulosus* Stål and *Belminus corredori* Galvão & Angulo, and comments on the holotype of *Parabelminus yurupucu* Lent & Wygodzinsky (Hemiptera: Heteroptera: Reduviidae: Triatominae: Bolboderini). Zootaxa 3746(4): 587–596. https://doi.org/10.11646/zootaxa.3746.4.6

Gonçalves TCM, Teves-Neves SC, Santos-Mallet JR, Carabajal-de-la-Fuente AL, Lopes CM (2013) *Triatoma jatai* sp. nov. in the state of Tocantins, Brazil (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 108: 429–437. https://doi.org/10.1590/S0074-0276108042013006

Gurgel-Gonçalves R, Abad-Franch F, Ferreira JBC, Santana DB, Cuba CAC (2008) Is *Rhodnius prolixus* (Triatominae) invading houses in central Brazil? Acta Tropica 107: 90–98. https://doi.org/10.1016/j.actatropica.2008.04.020

Grijalva MJ, Villacis AG, Ocana-Mayorga S, Yumiseva CA, Moncayo AL, Baus EG (2015) Comprehensive survey of domiciliary triatomine species capable of transmitting chagas disease in Southern Ecuador. PLoS Neglected Tropical Diseases 9(10): e0004142. https://doi.org/10.1371/journal.pntd.0004142

Harry M (1993) Use of the median process of the pygophore in the identification of *Rhodnius nasutus*, *R. neglectus*, *R. prolixus* and *R. robustus* (Hemiptera: Reduviidae). Annals Tropical Medicine and Parasitology 87: 277–282. https://doi.org/10.1080/00034983.1993.11812767

Hernández C, Aristeu da Rosa J, Vallejo GA, Guhl F, Ramírez JD (2020) Taxonomy, Evolution, and Biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae). Diversity 12(3): e97. https://doi.org/10.3390/d12030097
Rhodnius micki sp. nov., is described from Bolivia.
Lent H, Jurberg J (1987) A genitália externa dos machos de sete espécies de *Triatoma* Laporte, 1832 da região Neártica (Hemiptera, Reduviidae). Memórias do Instituto Oswaldo Cruz 82: 227–246. https://doi.org/10.1590/S0074-02761987000200011

Lent H, Jurberg J, Galvão C (1993a) *Rhodnius stali* n. sp., afim de *Rhodnius pictipes* Stal, 1872 (Hemiptera, Reduviidae, Triatominae). Memórias do Instituto Oswaldo Cruz 88: 605–614. https://doi.org/10.1590/S0074-02761993000400019

Lent H, Jurberg J, Galvão C (1993b) *Triatoma matsunoi* Fernandez-Loayza, 1989 com um estudo sobre a genitália externa masculina (Hemiptera, Reduviidae, Triatominae). Memórias do Instituto Oswaldo Cruz 88: 615–619. https://doi.org/10.1590/S0074-02761993000400020

Lima-Cordon LA, Monroy CM, Stevens L, Rodas A, Rosas GA, Dorn PL, Justi SA (2019) Description of *Triatoma huehuetenanguensis* sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys 820: 51–70. https://doi.org/10.3897/zookeys.820.27258

Lyman DF, Monteiro FA, Escalante AA, Cordon-Rosales C, Wesson DM, Dujardin JP, Beard CB (1999) Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene 60(3): 377–386. https://doi.org/10.4269/ajtmh.1999.60.377

Mejia JM, Galvão C, Jurberg J (1999) *Rhodnius colombiensis* sp. n. da Colômbia, com quadros comparativos entre estruturas fálicas do gênero *Rhodnius* Stal, 1859 (Hemiptera, Reduviidae, Triatominae). Entomología y Vectores 6: 601–617.

Nascimento JD, da Rosa JA, Salgado-Roa FC, Hernández C, Pardo-Diaz C, Alevi KCC, Ravazi A, de Oliveira J, de Azeredo Oliveira MTV, Salazar C, Ramírez JD (2019) Taxonomical over splitting in the *Rhodnius prolixus* (Insecta: Hemiptera: Reduviidae) clade: Are *R. tenuissimus* (da Rosa et al. 2017) and *R. neglectus* (Lent, 1954) the same species? PLoS ONE 14(2): e0211285. https://doi.org/10.1371/journal.pone.0211285

Oliveira J, Marcet PL, Takiya DM, Mendonça VJ, Belintani T, Bargues MD, Mateo L, Chagas V, Folly-Ramos E, Cordeiro-Estrela P, Gurgel-Gonçalves R, Costa J, da Rosa JA, Almeida CE (2017) Combined phylogenetic and morphometric information to delimit and unify the *Triatoma brasiliensis* species complex and the *Brasiliensis* subcomplex. Acta Tropica 170: 140–148. https://doi.org/10.1016/j.actatropica.2017.02.020

Oliveira J, Ayala JM, Justi SA, Rosa JA, Galvão C (2018) Description of a new species of *Neosotriatoma* Usinger, 1944 from Cuba and revalidation of synonymy between *Neoatriatoma bruneri* (Usinger, 1944) and *N. flavida* (Neiva, 1911) (Hemiptera, Reduviidae, Triatominae). Journal of Vector Ecology 43: 148–157. https://doi.org/10.1111/jvec.12294

Poinar Jr G (2019) A primitive triatomine bug, *Paleotriatoma metaxytaxa* gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-Cretaceous amber from northern Myanmar. Cretaceous Research 93: 90–97. https://doi.org/10.1016/j.cretres.2018.09.004

Rodrigues JMS, Rosa JA, Moreira FFF, Galvão C (2018) Morphology of the terminal abdominal segments in females of Triatominae (Insecta: Hemiptera: Reduviidae). Acta Tropica 185: 86–97. https://doi.org/10.1016/j.actatropica.2018.04.021

Rohlf FJ (2008) tpsDig2, v2.16. Morphometrics at suny stony Brook. https://life.bio.sunysb.edu/morph/

Rohlf FJ (2010) tpsUtil, Version 1.46. Morphometrics at suny stony Brook. https://life.bio.sunysb.edu/morph/
Rhodnius micki sp. nov., is described from Bolivia

Rosa JA, Mendonça VJ, Gardim S, Carvalho DB, de Oliveira J, Nascimento JD, Pinotti H, Pinto MC, Cilense M, Galvão C, Barata JM (2014) Study of the external female genitalia of 14 Rhodnius species (Hemiptera, Reduviidae, Triatominae) using scanning electron microscopy. Parasites & Vectors 7: 1–7. https://doi.org/10.1186/1756-3305-7-17

Rosa JA, Mendonça VJ, Rocha CS, Gardim S, Cilense M (2010) Characterization of the external female genitalia of six species of Triatominae (Hemiptera: Reduviidae) by scanning electron microscopy. Memórias do Instituto Oswaldo Cruz 105: 286–292. https://doi.org/10.1590/S0074-02762010000300007

Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, Carvalho DB, Falcone R, Azeredo-Oliveira MTV, Alevi KCC, Oliveira J (2017a) A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 1–25. https://doi.org/10.3897/zookeys.675.12024

Rosa JA, Souza ES, da Costa Teixeira A, Barbosa RR, Souza AJ, Belintani T, Nascimento JD, Gil-Santana HR, Oliveira J (2017b) Third record of Rhodnius amazonicus and comparative study with R. pictipes (Hemiptera, Reduviidae, Triatominae). Acta Tropica 176: 364–372. https://doi.org/10.1016/j.actatropica.2017.09.003

Rosa JA, Rocha CS, Gardim S, Pinto MC, Mendonça VJ, Filho JCRF, Carvalho EOC, Camargo LMA, Oliveira J, Nascimento JD, Cilense M, Almeida CE (2012) Description of Rhodnius montenegrensis sp. nov. (Hemiptera: Reduviidae: Triatominae) from the state of Rondônia, Brazil. Zootaxa 3478: 62–76. https://doi.org/10.11646/zootaxa.3478.1.8

Sandoval CM, Pabón E, Jurberg J, Galvão C (2007) Belminus ferroae n.sp. from the Colombian north-east, with a key to the species of the genus (Hemiptera: Reduviidae: Triatominae). Zootaxa 1443: 55–64. https://doi.org/10.11646/zootaxa.1443.1.5

Schofield CJ, Dujardin JP (1999) Theories on the evolution of Rhodnius. Actualidades Biológicas 70: 183–197.

Schofield CJ, Galvão C (2009) Classification, evolution, and species groups within the Triatominae. Acta Tropica 110: 88–100. https://doi.org/10.1016/j.actatropica.2009.01.010

Sherlock IA, Serafim EM (1967) Triatoma lenti sp.n., Triatoma pessoai sp.n. e Triatoma bahiensis sp.n. do estado da Bahia, Brasil (Hemiptera: Reduviidae). Gazeta Medica. Bahia: 67: 75–92.

Soto-Vivas A, Enríquez S, Villacrés E, Arrivillaga J, Hinojosa M, Liria J (2018) New kissing bug (Hemiptera: Reduviidae: Triatominae) records from Napo and Morona-Santiago provinces with distribution updates in Ecuador. Journal of Threatened Taxa 10(11): 12515–12522. https://doi.org/10.11609/jott.4345.10.11.12523-12530

Souza ES, Von Atzinger NCB, Furtado MB, Oliveira J, Nascimento JD, Vendramini DP, Gardim S, Rosa JA (2016) Description of Rhodnius marabaensis sp. n. (Hemiptera: Reduviidae: Triatominae) from Pará State, Brazil. ZooKeys 621: 45–62. https://doi.org/10.3897/zookeys.621.9662

Valente VC, Valente SAS, Carcavallo RU, Rocha, DS, Galvão C, Jurberg J (2001) Considerações sobre uma nova espécie do gênero Rhodnius Stål, do estado do Pará, Brasil (Hemiptera, Reduviidae, Triatominae). Entomologia y Vectores 8: 65–80.

Weirauch C (2008) Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology 2008 33(2): 229–74. https://doi.org/10.1111/j.1365-3113.2007.00417.x

WHO (2019) Chagas disease (American trypanosomiasis). https://www.who.int/chagas/disease/en/
Zhao P, Ren S, Wang B, Cai W (2015) Cosmosycanus perelegans (Hemiptera: Reduviidae: Harpactorinae), a new record from China, with report of its female genitalia. Zootaxa 3936(4): 567–574. https://doi.org/10.11646/zootaxa.3936.4.6

Supplementary material 1

TPS file of landmarks of *R. ecuadoriensis*
Authors: Yisheng Zhao, Cleber Galvão, Wanzhi Cai
Data type: measurement
Explanation note: This TPS file contains the landmark coordinates of *R. ecuadoriensis.*
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1012.54779.suppl1

Supplementary material 2

TPS file of landmarks of *R. micki*
Authors: Yisheng Zhao, Cleber Galvão, Wanzhi Cai
Data type: measurement
Explanation note: This TPS file contains the landmark coordinates of *R. micki.*
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1012.54779.suppl2

Supplementary material 3

TPS file of landmarks of *R. pallescens*
Authors: Yisheng Zhao, Cleber Galvão, Wanzhi Cai
Data type: measurement
Explanation note: This TPS file contains the landmark coordinates of *R. pallescens*.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1012.54779.suppl3

Supplementary material 4

TPS file of landmarks of *R. pictipes*
Authors: Yisheng Zhao, Cleber Galvão, Wanzhi Cai
Data type: measurement
Explanation note: This TPS file contains the landmark coordinates of *R. pictipes*.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1012.54779.suppl4

Supplementary material 5

TPS file of landmarks of *R. stali*
Authors: Yisheng Zhao, Cleber Galvão, Wanzhi Cai
Data type: measurement
Explanation note: This TPS file contains the landmark coordinates of *R. stali*.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.1012.54779.suppl5