Summary of Practice Considerations for Percutaneous Coronary Intervention of Left Main Bifurcation Disease

Tanveer Rab, J Dawn Abbott, Mir Babar Basir, Azeem Latib, Gautam Kumar, Perwaiz Meraj, Kevin Croce and Rajesh Davé

1, Emory University, Atlanta, GA, USA; 2, Brown University, Providence, RI, USA; 3, Henry Ford Health System, Detroit, MI, USA; 4, Montefiore Medical Center, New York, NY, USA; 5, Northwell Health System, New York, NY, USA; 6, Brigham and Women’s Hospital, Boston, MA, USA; 7, Ortenzio Heart Center, Holy Spirit Hospital, Camp Hill, PA, USA

Left main bifurcation percutaneous coronary intervention is a challenging subset that requires expertise in techniques that are in constant modification. Imaging is important in lesion preparation and optimising outcomes. The interventionalist needs to be highly skilled in the different techniques, as missteps may lead to stent thrombosis and critical in-stent restenosis. Lesion classification between simple and complex identifies those who would best benefit from a two-stent technique. Current technical approaches and practice considerations are summarised in this manuscript.

Keywords
Left main, percutaneous coronary intervention, current practice

Disclosures: J Dawn Abbott has received research grants (institutional, no financial compensation) from Abbott Vascular Inc., Astra Zeneca, Sinomed, CSL Behring and Biosensors Research, and is a consultant for Philips. Mir Babar Basir is a consultant for Abbott Vascular, Abiomed, Cardiovascular Systems, Chiesi and Zoll. Azeem Latib is a consultant, and is on the Advisory Board, for Medtronic, Abbott, Boston Scientific and Philips. Perwaiz Meraj is a consultant for Abiomed. Kevin Croce has received grant/research support from Abbott, Takeda, Teleflex and CSI, and has received consulting fees/honoraria from Abbott, BSCI, Biotronik, Philips, Abiomed, CSI, Takeda and Cordis, and is a major stock shareholder/equity for Dyad Medical. Rajesh Davé is a speaker for Abbott Vascular and is a speaker for, and receives fees from, Proctor. Tanveer Rab and Gautam Kumar have nothing to disclose in relation to this article.

Review Process: Double-blind peer review

Compliance with Ethics: This study involves a review of the literature and did not involve any studies with human or animal subjects performed by any of the authors.

Authorship: All named authors meet the criteria of the International Committee of Medical Journal Editors (ICMJE) for authorship for this manuscript; take responsibility for the integrity of the work as a whole and have given final approval for the version to be published.

Access: This article is freely accessible at touchCARDIO.com © Touch Medical Media 2020.

Received: 5 November 2020
Accepted: 17 December 2020
Published Online: 7 January 2021
Citation: Heart International: 7 January 2021
Corresponding Author: Tanveer Rab, Emory Decatur Hospital, 2701 N. Decatur Road, Decatur, GA 30033, USA. E: srab@emory.edu

Support: No funding was received in the publication of this article.
Key procedural elements

LM PCI can be performed with a 6 Fr guiding catheter either by radial or femoral access.

Aggressive lesion preparation of the MV is required with pre-dilatation of the SB, if the two-stent strategy is planned. This may require coronary athereectomy.\textsuperscript{22,23} With preserved left ventricular function, mechanical circulatory support (MCS) is not typically required. MCS should be considered with depressed left ventricular ejection fraction, the presence of occluded right coronary artery, low cardiac output, the need for atherectomy or decompensated heart failure without an opportunity for medical stabilisation.\textsuperscript{22}

- The SB must be wired.\textsuperscript{23} This is important since the left circumflex (LCx) artery is the most common SB and supplies a large amount of myocardium.
- The stent is always sized to the distal vessel, generally the left anterior descending (LAD) artery.\textsuperscript{24} For lesions with a variation of 0.75 mm or greater in proximal and distal MV diameter, selection of a stent platform with sufficient ability for stent expansion to avoid malapposition is necessary. A 1:1 sizing is recommended using angiography, but it is more precise with intravascular imaging.
- The proximal optimisation technique (POT) is essential with balloon inflation of a short non-compliant (NC) balloon sized to the LM (ideally with intravascular imaging) with a stent length of at least an 8 mm balloon to be safely placed in LM without overlapping the carina. POT is also recommended after kissing balloon inflation (KBI).\textsuperscript{25–28}
- KBI is absolutely necessary after a two-stent technique.\textsuperscript{29–31}
- Intracoronary imaging is needed to optimise post-dilatation of the stent using NC balloons. A mean stent area at the carinal confluence of \(>8\) mm\(^2\) is mandated with improved outcomes associated with a mean stent area \(<10\) mm\(^2\).\textsuperscript{13,15–18}

Stenting techniques

The interventionalist should be familiar with at least four stenting techniques based on lesion complexity.\textsuperscript{17}

**Simple lesion**

- Provisional stenting (PS): bailout strategies with conversion of PS to a two-stent technique;
- T-stenting and with minimal protrusion (also known as the TAP technique); and
- Culotte stenting.

**Complex lesion**

- Double kiss crush stenting or culotte stenting.

An upfront dedicated two-stent strategy in complex LMB lesions is recommended over a provisional strategy based on a series of trials, including the recent DEFINITION II study, and is supported by cardiovascular society guidelines.\textsuperscript{9,16–30}

**Provisional stenting**

The majority of LMB stenosis are simple lesions, and a single stent approach using a provisional technique is used in >70% of cases.

- A single stent is used, generally a crossover from the LAD to the LM and preferably covering the entire LM. This is followed by POT with no SB dilatation, or KBI. The stent is sized to the distal vessel.
- If intervention is required to the SB, either a fresh wire is used or guidewire exchange occurs. The MV wire is pulled back with careful attention to the guiding catheter that is pulled back to prevent deep intubation, which may result in stent distortion or LM injury. The guidewire is inserted into the SB through the most distal cell (closest to the carina). The jailed SB wire is then pulled back and placed in the MV. Alternatively, a fresh wire can be used with a gentle double curve at the tip, crossing the LM into the LAD with the tip pointing upwards. The tip is then gently pulled back with a downward rotation to enter the SB. In select instances, a dual lumen microcatheter can be used to avoid wiring under a proximal strut and to facilitate SB rewiring. POT, KBI and re-POT is then performed. It is important to pay attention to the position of the POT balloon; the distal marker should be proximal to the neoocarina to ensure that the neo-metal carina is not pushed back towards the LCX ostia, causing the re-jailing of the SB ostia.

- An alternative strategy is POT-SB inflation and re-POT (PSP). This optimises the result of PS, maintaining circular geometry, reducing SB ostium strut obstruction and access to the LCX, the risk of SB occlusion and global strut malapposition.\textsuperscript{40}

If the result of the SB is inadequate after MV stenting with residual dissection, high-grade stenosis, thrombolysis in myocardial infarction (TIMI) flow <2 or an fractional flow reserve (FFR) of \(<0.75\) (though not validated in LM PCI, ischaemic thresholds of FFR \(<0.80\) and instantaneous wave-free ratio/resting full-cycle ratio of 0.89 are being used), a second stent can be placed using either a T/TAP or culotte technique after guidewire exchange.\textsuperscript{41–44}

Special care should be taken during LM stenting to avoid longitudinal stent deformation. Pulling back of the jailed wire or a partially deflated balloon may deep seat the guiding catheter and damage the stent. Optimal control of the guide catheter with disengagement from the LM is crucial to avoid this complication.

Kissing balloon inflations in provisional stenting

Routine KBIs in PS is not recommended.\textsuperscript{29–32,35–37} When indicated, the LCX is rewired through a distal cell overlying the SB. A short NC balloon is used in the unstented SB to prevent the occurrence of dissection and to avoid oval distortion in the LM. Balloon diameters for the LM and SB are chosen according to Murray’s law.\textsuperscript{45} The SB is first inflated to 12 atmospheres, then partly deflated back to 4 atmospheres, with subsequent simultaneous inflation of both balloons at 12 atmospheres with simultaneous deflations. Final KBI is mandatory in two-stent techniques, including a PS strategy that converts to a two-stent technique.

Crossover to a two-stent strategy

**T-stenting and the TAP technique**

T-stenting or the TAP technique is used to optimise the SB, when the SB is compromised during PS and the results are suboptimal (occluded vessel, \(<\text{TIMI-3 flow, SB dissection}\) after POT is performed.\textsuperscript{45} The SB is recrossed with another wire through a distal cell (closest to the carina) and the jailed SB branch wire is withdrawn. After placement of the SB stent, a ‘neoocarina’ is created by the SB stent struts protruding inside the LM at the level of the carina. The SB take-off angle and the site of strut crossing are major determinants of neoocarina length. When the SB has a perpendicular take-off (‘T’ shape), minimal SB stent protrusion inside the LM is needed to cover the SB ostium successfully. With acute SB angles (‘Y’ shapes), the SB ostia is longer and oval-shaped. Hence there is wider protrusion of the SB stent inside the LM, resulting in a longer neoocarina. It is critical to limit protrusion while implanting the SB stent to \(<2\) mm. KBI is the final step of the TAP technique. Deflations should be simultaneous or in rapid sequence with the MV balloon first to avoid crushing of the protruding stents, otherwise the protruded stent in the LM will keep the same position as before KBI.\textsuperscript{48}
Culotte stenting

Following PS, POT and distal wire recrossing, SB stent struts are dilated. The second stent is then deployed from the SB into the MV, with the proximal struts just proximal to the edge of the MV stent using a stent diameter based on the SB reference diameter. A second POT is performed followed by a second wire exchange and final KBI.

The main disadvantage of this technique is stent under expansion with three layers of stent at the carina. In a closed-cell design there is a ‘napkin-ring’ restriction of stent expansion. These factors are independent predictors of stent thrombosis and restenosis.

Double kissing crush stenting

There are 11 procedural steps:19,20,21

1. Short (<2 mm) protrusion of SB stent into the LM, with another balloon positioned from the LM to the LAD.

2. Balloon crush: recent data suggest that a short NC balloon sized to the distal LM with the distal tip at the carina may result in a more complete ‘crush’. Intravascular imaging can assist in appropriate balloon sizing, and this balloon can be used later for POT.

3. Rewire the proximal cell (not the distal cell, which is the recommended practice when using PS). This should ideally be performed in the LAO caudal projection to allow operators to see that the wire is away from the carina (CCT can be used to direct the wire through a proximal cell).

4. Alternate balloon inflation of the SB and MV balloon to at least 16 atmospheres, followed by the first KBI.

5. After the first KBI, withdraw the wire and balloon from the SB.

6. Stent the MV, which is sized to the distal reference (i.e. the LAD).

7. Perform the first POT with a short NC balloon sized to the distal LM with the distal tip at the carina (this can be the same NC balloon as in step 2).

8. Rewire the SB from the proximal cell.

9. Alternate balloon inflation of the MV and SB balloon to at least 16 atmospheres.

10. Perform a second KBI.

11. End the procedure with second and final POT.

Duration of dual antiplatelet therapy

For the two-stent technique, the duration of dual antiplatelet therapy is extended for >1-year, as this results in decreased target lesion failure and thrombotic events compared with therapy continued for less than a year. Hence, unless the patient has a high bleeding risk, long-term dual antiplatelet therapy should be considered. For the single stent provisional approach, standard guideline-directed therapy should be considered.

Percutaneous Coronary Intervention of Left Main Bifurcation Disease

1. Jaisi V, Ioan E, Yalamanchili V, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an atherosclerotic left main coronary artery stenosis. Circulation. 2004;110:2831-4.

2. Bing R, Yong ASC, Lowe HC. Percutaneous transathermal assessment of the left main coronary artery. Current status and future directions. JACC. Cardiovasc Interv. 2015;8:1029-39.

3. The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). 2014. ESC/EACTS guidelines on myocardial revascularization: Web addenda. Eur Heart J. 2016;35:2341-49.

4. Fihn SD, Blankenship JS, Antman EM, et al. 2014 ACC/AHA/AATS/PCNA/SCA/SCAI/SST guidelines update of the 2011 ACC/AHA/SCAI guideline for percutaneous coronary intervention with special consideration of the percutaneous coronary intervention in bifurcation lesions. Circ Cardiovasc Interv. 2014;7:10-25.

5. Riley WF, Henry TD, Mahmud E, et al. SCAI position statement on optimal percutaneous coronary interventional therapy for complex coronary artery disease. Cathet Cardiovasc Interv. 2021;96:346-62.

6. Burzotta F, Lassen JF, Louvard Y, et al. European Bifurcation Club: White Paper on stenting techniques for patients with bifurcated coronary artery lesions. Cathet Cardiovasc Interv. 2022;96;1067-79.

7. Lefèvre T, Girasis C, Lassen JF. Differences between the left main and other bifurcations. EuroIntervention. 2011;61:1006-10.

8. Sianos G, Morel MA, Kappetein AP, et al. The SYNTHETIX score: An angiography-based grading the complexity of coronary artery disease. Eurointervention. 2005;1:219-27.

9. Stone GW, Sabik JF, Serruys PW, et al. Everolimus-eluting stents in the treatment of coronary artery disease: the EXCEL trial. JACC Cardiovasc Interv. 2005;1:219-27.

10. Alegría-Barrero E, Foin N, Chan PH, et al. Optical coherence tomography for guidance of final crush balloon re-stenting: the choice right cell matters. Eurointervention. 2012;8:202-6.

11. Habib S, Beyssen B, et al. 2017;69(11 Suppl.):963.

12. Lefèvre T, Girasis C, Lassen JF. Differences between the left main and other bifurcations. EuroIntervention. 2014;7:1664-76.

13. Garcia-Lara J, Pinar E, Valdesuso R, et al. Percutaneous coronary intervention with rotational atherectomy for severely calcified unprotected left main: immediate and two-years follow up results. Cathet Cardiovasc Interv. 2012;80:215-20.

14. Vabulasrahi H, Yehara S, et al. Impact of rotational atherectomy on heavily calcium, unprotected left main disease. Circ J. 2014;78:1863-72.

15. D’Nell W, Kleiman NS, Moses J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high risk percutaneous coronary intervention: the PROJECT I study. Circulation. 2012;126:1717-27.

16. Hahn J, Chun MK, Kim JH, et al. Predictors and outcomes of side branch occlusion after main vessel stenting in coronary bifurcation stenting from the COBIS Registry (Coronary artery bypass grafting stenting). JACC Cardiovasc Interv. 2013;6:1654-9.

17. Lassen JF, Hahn JNR, Blumenthal AP, et al. Percutaneous coronary intervention for coronary bifurcation disease: 11th consensus document from the European Bifurcation Club. EuroIntervention. 2016;12:38-36.

18. Finet G, Gerard S, Perrenot R, et al. Fractal geometry of arterial coronary bifurcations: a quantitative coronary angiography and intravascular ultrasound analysis. EuroIntervention. 2008;3:495-8.

19. Finet G, Demir Y, Mettler P, et al. Comparative analysis of sequential proximal optimal technique versus kissing balloon inflation technique in provisional bifurcation stenting: Fractal coronary bifurcation bench test. JACC Cardiovasc Interv. 2015;8:1308-17.

20. Darmont M, Leymarie A, Lefèvre J, et al. Technical aspects of the provisional side branch stenting strategy. EuroIntervention. 2015;11:suppl-I. VI:186-90.

21. Anthoureas LN, Hohnen M, Webber B, Ormiston JA. Critical aspects of balloon position during final proximal optimal technique (PC) in coronary bifurcation stenting. Cathet Cardiovasc Interv. 2006;63:31-9.

22. Niemeier M, Kervinen K, Engst A, et al. Randomized comparison of final kissing balloon dilatation versus no final kissing balloon dilatation in patients with coronary bifurcation lesions treated with main vessel stenting: the Nordic-Baltic Bifurcation Study III. Circulation. 2011;123:1297-300.

23. Finet G, Hahn J, Koo BK, et al. Final kissing ballooning and long-term clinical outcomes in coronary bifurcation lesions treated with the provisional technique: results from the COBIS registry. Heart. 2012;98:225-31.

24. Yu CY, Yang J, Song YB, et al. Long-term clinical outcomes of final kissing balloon stenting in coronary bifurcation lesions treated with the provisional technique: results of the COBIS registry. Korean Coronary bifurcation stenting registry. JACC Cardiovasc Interv. 2015;8:1297-307.

25. Song YB, Park TK, Hahn JY, et al. Optimal strategy for provisional side branch intervention in coronary bifurcation lesions: 3-year outcomes of the SMART-STATEGY randomized trial. JACC Cardiovasc Interv. 2020;13:317-26.

26. Park SJ, Kim YM, Park DN, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2:167-77.

27. Park S, Joo JM, Kang S-J. Unprotected left main percutaneous coronary intervention: use of fractional flow reserve and intravascular ultrasound. J Am Heart Assoc. 2012;1. doi.org/10.1161/JAHA.112.000558.

28. Stone GW, Kappetein AP, Sack J, et al. Five-year outcomes after PCI or CABG for left main coronary disease. N Engl J Med. 2019;381:1900-10.

29. Chen SL, Xu B, Han YL, et al. Comparison of double kissing crush versus Culotte stenting for unprotected distal left main bifurcation lesions: The 3-year follow-up results of the DCRUSH III study. JACC Cardiovasc Interv. 2015;8:1315-22.

30. Chen SL, Xu B, Han YL, et al. Comparison of double kissing crush versus Culotte stenting for unprotected distal left main bifurcation lesions: results from a multicenter randomized, prospective DCRUSH-II study. JACC Cardiovasc Interv. 2013;6:1482-9.
39. Neumann F-J, Saura-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2018;40:87–165.
40. Foin N, Torri R, Mortier P, et al. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: lessons from micro-computed tomography and computational simulations. JACC Cardiovasc Interv. 2012;5:47–56.
41. Koo BK, Kang HG, Youn TJ, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46:633–7.
42. Burzotta F, Ozavk V, Ferenc M, et al. Technical aspects of the T and small protrusion (TAP) technique. EuroIntervention. 2016;11(Suppl. V):V91–5.
43. Ferenc M, Gick M, Conberg T, et al. Culotte stenting vs. TAP stenting for treatment of de-novo coronary bifurcation lesions with the need for side-branch stenting: the Bifurcations Bad Krozingen (BBK) II angiographic trial. Eur Heart J. 2016;37:3399–405.
44. Chevalier B, Glatt B, Royer T, Gayen P. Placement of coronary stents in bifurcation lesions by the “culotte” technique. Am J Cardiol. 1998;82:943–9.
45. Muraatoo V, Finet G, Foin N. Final kissing balloon inflation: the whole story. EuroIntervention. 2015;11(Suppl. V):V61–6.
46. Park S-I, Ahn J-M, Park H-S, et al. TCI/23 is final kissing balloon mandatory in the treatment of distal left main disease treated by simple cross over stenting? J Am Coll Cardiol. 2014;64(Suppl. 1):II-189.
47. Chen S-L, Santoso T, Zhang J-J, et al. Clinical outcome of double kissing crush versus provisional stenting of coronary artery bifurcation lesions: The 5-year follow-up results from a randomized and multicenter DKCRUSH II study (randomized study on double kissing crush technique versus provisional stenting technique for coronary artery bifurcation lesions). Circ Cardiovasc Interv. 2017;10:e004947.
48. Mylotte D, Routledge H, Harb T, et al. Provisional side branch stenting for coronary bifurcation lesions: evidence of improving procedural and clinical outcomes with contemporary techniques. Cathet Cardiovasc Interv. 2013;82:437–46.
49. Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences of the United States of America. 1956;42:207–14.
50. Zhang J-J, Chen S-L. Classic crush and DK crush stenting techniques. EuroIntervention. 2015;11:V102–V5.
51. Chen SL, Zhang JJ, Han Y, et al. Double kissing crush versus provisional stenting for left main bifurcation lesions: DKCRUSH-V randomized trial. J Am Coll Cardiol. 2017;70:2605–17.
52. Ielasi A, Takagi K, Latib A, et al. Long-term clinical outcomes following drug eluting stent implantation for unprotected distal bifurcation left main disease: the Milan-New Tokyo (MITO) registry. Cathet Cardiovasc Interv. 2014;83:330–8.
53. Shihbami I, Genasimeu A, Bollati M, et al. Early and long-term results of percutaneous coronary intervention for unprotected left main bifurcation disease. Cathet Cardiovasc Interv. 2009;73:25–31.
54. Wees TM, Park KW, Kim CH, et al. Dual antiplatelet therapy duration determines outcome after 2- but not 1-stent strategy in left main bifurcation percutaneous coronary intervention. JACC Cardiovasc Interv. 2018;11:2453–63.