Magneto-hydro dynamic squeezed flow of Williamson fluid transiting a sensor surface

Azad Hussain¹,a, Rabia Zetoon ¹, Shoaib Ali¹, S. Nadeem ²

¹ Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan
² Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan

ARTICLE INFO

Keywords:
Applied mathematics
Mechanical engineering
Thermodynamics
Sensor surface
Squeezed flow
MHD Flow
Variable thermal conductivity

ABSTRACT

The present article reports the combined effects of radiation and heat origination on the electro-kinetically induced hydromagnetic squeezed flow of a pseudoplastic fluid. The fluid is passing over a microcantilever sensor surface positioned in the superficial free stream. Microcantiliver sensor can detect the flow rate and the variance in the temperature of the fluid. The thermal conductivity and fluid viscosity are assumed as a function of temperature. Boundary layer approximations are considered to construct a pseudoplastic fluid flow model. The governing system is then resolved into a non-dimensional form with the assistance of an appropriate set of control parameters. The solution to these non-dimensional equations has calculated with the assistance of numerical techniques i.e. Shooting technique. The results specify that flow of fluid, temperature, and velocity profiles are remarkably influenced by the radiation parameter, fluid parameter, heat generation parameter, thermal relaxation parameter, magnetic parameter, and the squeezing number. A comprehensive graphical and tabular study is conducted to check the convergence of the obtained results. One can detect that the temperature curve is changing slightly for the Christov-Cattaneo heat transfer model as compared to classical Fourier’s law of heat transfer. Further, the physical quantities, i.e. free stream velocity, variable viscosity, thermal conductivity, Weissenberg number, and Prandtl number have strong impacts on the boundary layer flow equations. It is perceived that the fluid velocity profile rises for the growing value of the magnetic parameter, but reduces for squashed flow index β. Also, a positive variation is found in the temperature profile for rising values of β and Q.

1. Introduction

The exploration of boundary layer squeezing liquid flow and heat transference passing through a sensor surface is a most fascinating research topic due to the fact of its broad range utilization in engineering and industry. The most common engineering and scientific applications are manufacturing of polymer, food processing, lubrication system, cooling towers, hydro machines, marine engineering, distillation columns, and so on. M. Usman et al. [1] deliberated the heat and flow characteristics of Cu-nano particles immersed in the water among the two squeezing permeable disks. M. Atlas et al. [2] inspected the sway of thermic radiation on the change of nanoparticle quantity among a squashing channel. M. Khan et al. [3] worked on the transfer of heat during the Williamson nanofluid flow under Lorentz force passing through a stretching surface. The thermic characteristics of nanofluid among two plates have inspected by Ganji and Shielkoleslam [4].

The recent revolution in technology has required advancement in the sensor surfaces. Predominantly, micro-cantilever sensors are distinguished from the others due to their biological, physical, and chemical sensing. They also have a broad range of utilizations in the area of medicine, precisely for the detecting of diseases, blood glucose observing, tracing of chemical, exposure of point mutations, and biomedical warfare agents. These types of sensors have numerous benefits over the conventional methods in terms of minimum cost, simple methods, high sensitivity, non-hazardous techniques, and rapid response. Microcantilever supported sensors are the finest MEMS gadgets that are capable of ensuring a brightening future for the progress of new physical, biological, and chemical sensors. These are the most updated analyst detection systems in the class of most modern systems currently employed. They have significant potential for the exposure of different analytes in a vacuum, gaseous and liquid mediums. They can sense the flow rate of fluid and the variance in temperature to the small range 5–10 K and able to detect the photothermal measurement. Bimetallic
microcantilevers can calculate photothermal spectroscopy with an accuracy of 150 fJ. They are capable of detecting heat transfer with sensitivity in atto joule. Furthermore, in the recent few years, the technology has grown for the usage of nano-cantilevers and fabrication and the sensing applications, thus producing nano-electromechanical systems. This advancement has enhanced the sensitivity to the maximum extent that researchers are now able to visualize the calculation of molecules. With the ability of high ultra-sensitive detection, this technology embraces the remarkable potential for the coming generation extremely sensitive sensors. Haq et al. [3] stated about the squeezed transference behavior of nanofluid over a sensor-based surface subjected to a transverse magnetic field. K. Ganesh Kumar et al. [6] explored the boundary layer squeezing movement of a conducting liquid under the magnetic influence transforming a sensor material. Khan et al. [7] probed numerically the heat transference in the squeezed flow of Carreau type fluid traversing a sensor material with variable thermic conductivity. Rashidi et al. [8] expressed the influence of heat transfer in many applications, many researchers [5,12,13,14,15,16,17] have discovered the diverse technological and physical features about the problems involving the shrinking and stretching of boundaries, heat generation effects, magneto hydrodynamics, transmission of wall mass, radiation effects, diffusion-thermo influences, and thermal-diffusion influences, etc. Most of the investigations [5,12,13,14,15,16,17] executed until now frequently integrate conventional mass and heat transfer theories but by altering the relaxation time parameter for velocity profiles, the temperature profile experience eventual effects, thus the thermal heat transfer must be considered. Cattaneo [18] scrutinized the conduction of heat using the Fourier’s law and analyzed that the modification of Fourier’s law can be done by presenting thermal relaxation time in Fourier’s law. A further modification was made by Christov [19] for achieving the formulation of material invariant by including the upper convective derivative of Oldroyd. Malik et al. [20] deliberated the hydromagnetic transference of blood type fluid with the CCHF model taking temperature varying viscosity. T. Salahuddin et al. [21] reviewed the sway of the magnetic field on Williamson type fluid transference with the CCHF model traversing through a stretching sheet. T. Hayat et al. [22] comprehensively calculated the transport of fluid over a thicker surface with the compliance of the CCHF model. T. Hayat et al. [23] characterized the significance of the CCHF model on the stagnation transport of fluid. Muhammad Ijaz Khan et al. [24] calculated a comparative analysis of blood type fluid in compliance with heterogeneous-homogeneous reactions. Many other efforts regarding the flow analysis of fluids using numerical techniques are accessible in studies [25,26,27,28,29,30]. Zahir Shah et al. [31] inspected the Darcy-Forchheimer streaming of micropolar Ferrofluid by applying the CCHF model. They also made useful studies [32,33,34] for investigating the dynamics of nano-fluids with the assistance of CCHF model.

The determination of this effort is to scrutinize the heat transfer and momentum characteristics to the squeezed flow of pseudo-plastic fluid traversing through a sensor-based surface in the presence of magnetic consequences acting transversely to the flow. The flow is driven by the mutual effects of thermal radiations and heat generation. Moreover, an advanced heat flux model is used to develop the energy equation for the analysis of heat conduction.

2. Mathematical modeling of the problem

We analyze the incompressible squeezed movement of electrically conducting Williamson fluid through a sensor surface closed in a squeezing channel. Electro-kinetically induced MHD flow is driven by heat generation and radiation effects. Fluids with greater conductivity σ (e.g. molten metals and semiconductor melts) (\(\sigma \sim 1065/s\)) can greatly be influenced by ~1 T external magnetic field strength. This is considered while controlling the classical magneto-hydrodynamic flow. But in the case of lightly conducting fluids (e.g. the water of sea having $\sigma \sim 10$ S/m) the superficial magnetic field is unable to induce the current. This problem is tackled by introducing an external electric field.

We presume that the sensor surface is located inside squeezed duct in such a way that height $h(t)$ of the sensor plate is bigger than the width of the boundary layer.

We have transformed the energy, continuity, and momentum equations in the following form with the assistance of boundary layer estimations [16].

$$\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} = 0,$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \mu_0 \frac{\partial^2 u}{\partial y^2} + 1 \frac{\partial \rho_0}{\partial x} \frac{\partial u}{\partial y} + \frac{1}{\sqrt{2}} \mu_0 \frac{\partial \rho_0}{\partial y} \left(\frac{\partial \rho_0}{\partial x} \right)^2$$

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = \frac{1}{\rho} \frac{\partial p}{\partial x} \frac{\partial U}{\partial y} - \sigma B_{z}^{2} U / \rho,$$

Velocity in free stream

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = \frac{1}{\rho} \frac{\partial p}{\partial x} \frac{\partial U}{\partial y} - \sigma B_{z}^{2} U / \rho,$$

From Eqs. (2) and (3) after terminating the pressure gradient the momentum equation takes the form

$$\frac{\partial u}{\partial y} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial U}{\partial x} + \sigma B_{z}^{2} (U - u) / \rho + U \frac{\partial U}{\partial y} + \frac{1}{\sqrt{2}} \frac{\partial \rho_0}{\partial y} \left(\frac{\partial \rho_0}{\partial x} \right)^2 + \frac{1}{\sqrt{2}} \frac{\partial \rho_0}{\partial x} \left(\frac{\partial \rho_0}{\partial y} \right)^2.$$

In literature, other models such as Vogel’s and Reynolds’ models have also been applied, but it is investigated that they provide significant results for a specific temperature range [35]. So, we have used the more accurate viscosity model as compared to Reynolds and Vogel’s models which are capable of comprising a large temperature range. It is more suitable to express the viscosity coefficient μ as a reciprocal function of temperature [36].

$$\frac{1}{\mu} = \frac{1}{\mu_0} + \frac{1}{\mu_0} \left[1 + \gamma (T - T_m) \right]$$

$$\frac{1}{\mu} = c(T - T_r),$$

$$\frac{1}{\mu} = \frac{1}{c} \frac{1}{\gamma}$$

Both the constant c and T_r depend upon the thermal characteristic of the fluid, i.e., γ. Commonly $c > 0$ epitomizes for fluids, while $c < 0$ for
gases. Here, μ characterizes the constant viscosity of fluid at superficially free stream. Using Eq. (5) in Eq. (3) we obtain

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \left(\frac{1}{\rho c(T - T_c)}\right) \frac{\partial^2 u}{\partial y^2} + \frac{1}{\rho} \frac{\partial}{\partial y} \left(\frac{1}{c(T - T_c)}\right) \frac{\partial u}{\partial y} + \frac{\sigma_e B_t^2 (U - u)}{\rho} + \sqrt{2T} \frac{1}{\rho c(T - T_c)} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial y^2}$$

$$+ \frac{1}{\sqrt{2} \rho} \frac{\partial}{\partial y} \left(\frac{1}{c(T - T_c)}\right) \frac{\partial u}{\partial y}$$

(6)

corresponding boundary conditions are as

$$u(x, 0, t) = 0, \quad u(x, 0, t) = U(x, t).$$

(7)

When the sensor surface is penetrable then velocity at the sensor surface is considered as reference velocity $v_0(t)$.

To scrutinize heat transfer characteristics, non-Fourier heat transfer model is applied for evaluating heat transfer during fluid flow. For incompressible fluid, the model changes into

$$q + \delta \left[\nabla \cdot q + \frac{\partial q}{\partial x} - q \cdot \nabla v\right] = -K\nabla T.$$

(8)

Here δ, ν and K represent the thermal relaxation time, fluid velocity and the thermal conductivity.

For the present flow phenomenon, the above equation can be written as

$$\frac{\partial T}{\partial y} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial y} + 2v \frac{\partial T}{\partial x} + 2u \frac{\partial T}{\partial y}$$

(9)

$$a(T) \frac{\partial^2 T}{\partial y^2} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial y}$$

(10)

$\alpha(T)$ is the variable thermic conductivity defined as $a(T) = a_0(1 + e \Theta)$; t signifies time, T indicates temperature, $a = \frac{1}{\rho \alpha}$ symbolizes thermal diffusivity, and C_p illustrates specific heat, q_r characterizes the radiative flux q_r.

The value of Ω specified as

$$\Omega = \frac{\partial^2 T}{\partial y^2} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial y}$$

(11)

$$T(x, \infty, t) = T_m, \quad -k \frac{\partial T(x, 0, t)}{\partial y} = q(x).$$

(12)

Here, $q(x)$ and T_m signify wall heat transfer and ambient temperature, respectively.

Roseland approximation

$$q_t = -4 \frac{\sigma_t}{3 \kappa R_k} \frac{\partial T}{\partial y}$$

(13)

where $v_0(t) = \sqrt{a}, q(x) = q_0 x, s$ is an arbitrary constant, b represents squeezed flow index, k is thermal conductivity, q indicates heat flux and σ depicts squeezing ability parameter. Using Eqs. (12) and (13) in Eq. (9) and by applying transformations to Eqs. (6) and (9) we get

$$(1 + \sqrt{2} \epsilon W_2 f''(f')) - \frac{\Theta}{\Theta - \Theta_0} - \frac{1}{\sqrt{2}} W^2 - \Theta - \Theta_0(f')^2$$

$$+ \frac{\Theta - \Theta_0}{\Theta} (f')^2 + \frac{1}{\sqrt{2} \rho} \frac{\partial}{\partial y} \left(\frac{1}{c(T - T_c)}\right) \frac{\partial u}{\partial y}$$

(15)

and related transformed boundary conditions are

$$f(0) = -f_0, \quad f(\infty) \rightarrow 1, \quad f'(0) = 0, \quad \Theta(0) = -1, \quad \Theta(\infty) = 0,$$

(16)

here, $f_0 = \sqrt{a}$ is permeable velocity, $M = \frac{n_0 M_0}{2} \rho$ is the Hartmann number, $Pr = \frac{a}{\rho c}$ represents Prandtl number, $R = \frac{10^6 \rho q_0^2}{\kappa_0^2}$ shows radiation parameter, $Q = \frac{q_0}{\kappa_0^2}$ indicates heat generation parameter, $\Theta_0 = \frac{1}{\beta (\Theta_0 - \Theta_c)}$, a parameter representing the fluid viscosity, $\beta = \alpha \lambda$ is the dimensionless heat relaxation parameter, r is a small quantity and $W_r = \frac{\nu_0^2 \lambda^2}{\nu}$ is Weissenz number.

The wall shear stress at the surface using boundary approximations is

$$\tau_w = \frac{1}{\sqrt{2}} q_0 \frac{\partial T}{\partial y} + \mu \frac{\partial T}{\partial y}, \quad q_w = -k \frac{\partial T}{\partial y} + q, \quad \text{at} \ y = 0.$$

(17)

Nusselt number and skin friction coefficients are defined as

$$N_u = \frac{\bar{q} a}{k (T_w - T_m)}, \quad C_f = \frac{T_n}{\rho U^2}.$$

(18)

In dimensionless form

$$N_u \sqrt{Re_c} = -[1 + R(\Theta(\xi))]_{\xi=0},$$

(19)

$$\sqrt{Re_c} C_f = \frac{1}{\sqrt{2}} W^2 (f'(f'))^2 + f'(f')_{\xi=0}, \quad Re_c = \frac{\bar{\omega} a}{\nu}.$$

(20)

3. Numerical solution

The existing magnetized fluid flow over the microcantilever sensor-based surfaces generates a highly intricate mathematical nonlinear
system which then distorted into a simplified form by the assistance of similarity transformations. The nonlinear Eqs. (15) and (16) with transformed boundary conditions (17) are then treated numerically to acquire the solutions with the assistance of a well-known efficient RK-4 numerical method integrated with the shooting approach. The descending higher-order differential equations to first ordinary order differential equations. Moreover, the boundary of the flow channel was selected very carefully.

\[x_1 = f, \quad x_2 = f', \quad x_3 = f'', \quad x_4 = \Theta, \quad x_5 = \Theta'. \]

Therefore, the system becomes as

\[x'_1 = x_2, \quad x'_2 = x_3, \quad x'_3 = \frac{1}{(1 + \sqrt{2}bx_2^2)} x_5 - \Theta x_1 + \frac{1}{\sqrt{2}} \frac{W'}{x_4 - \Theta} (x_3) x_1^2 - \frac{x_4 - \Theta x_2}{\Theta} (x_3)^2 \]

\[-\frac{bx_2}{2} (1 - x_2) - b(x_2 - x_1) + m(x_2 - 1 - x_1, x_2), \]

\[x'_4 = x_5, \quad x'_5 = \frac{1 - 1}{(1 + \epsilon x_4 - \beta x_3^2/4 - \beta x_3^3 - \beta Pr x_3)} \]

\[+ 3b\theta x_2 + \frac{b\beta x_3^2}{2} (x_2^2 + Pr x_2 + \frac{bx_3^2}{4} \beta (x_3)^2 + \frac{bx_3^2}{2} + \beta x_3 + Q)x_1. \]

with initial conditions

\[x_1(0) = -f_0, \quad x_2(0) = 0, \quad x_3(0) = -1, \quad x_4(\xi) \rightarrow 1, \quad x_5(\xi) \rightarrow 0 \text{ when } \xi \rightarrow \infty. \]

To develop the solutions of this model total five initial conditions are necessary but only three are specified above. Two initial conditions are required to have \(m_2(\xi) \rightarrow 1, m_4(\xi) \rightarrow 0 \) when \(\xi \rightarrow \infty \). So, it is accepted that \(m_2(0) = s_1 \), and \(m_4(0) = s_2 \) are two other conditions. Moreover, the

Newton-Raphson scheme is effectively used to determine the suitable values of \(s_1 \) and \(s_2 \) by accounting the physical parameters and conditions related to boundary region. The convergence criteria and step length for current investigation are \(10^{-6} \) and \(h = 0.01 \).

4. Results and discussions

The nonlinear system of differential type equations with suitable boundary conditions is computed with the assistance of the numerical technique namely shooting technique. The numerical consequences are attained for diverse values of the emergent controlled parameters, namely, heat generation parameter \(Q \), power-law number \(n \), Weissenberg index \(W_c \), magnetic parameter \(M \), thermal relaxation parameter \(\beta \), the squeeze number \(b \), radiation parameter \(R \), and Prandtl number \(Pr \). To scrutinize the convergence of these consequential parameters over the
temperature and velocity profiles a comprehensive graphical discussion is presented. From Figure 1 the complete flow structure of the phenomenon can be visualized. The sensor-based surface is sited in a locally free stream. Figure 2 clearly depicts that the inverse relation of squashed flow number b and the squeezed power a causes the reduction in the particles's kinetic energy that results in the decreasing of the velocity profile. Moreover, the duel behaviour of velocity is observed due to various variations in the boundary region. As the magnetic effect M stimulates the particles in a single path that prorogates the motion of the particles as an outcome the velocity profile upsurges as revealed in Figure 3, Physically, an escalation in the magnetic parameter upsurges a resistance towards the axial flow channel, since in the present case the upper plate is in squashing condition, so, this physical situation eliminates the influence of exerted strength on the velocity filed which results in enhancing the fluid velocity through the channel. Moreover, the growing magnetic parameter produces a positive impact on the boundary layer. Figure 4 describes the direct association between Θ_0 and velocity profile. For the mounting value of Θ_0, the velocity curve moves upward. The temperature declination can be analyzed for rising values of b in Figure 5. Physically, the parameter b represents the variance between the liquids and solids. The smaller values of parameter b shows the fluid nature while the larger values lead to viscoelastic solids. As b has direct relation to the squeezed strength so for increment in b retards the movement of fluid molecules which consequently decreases the fluid temperature. It is marvelous that same for velocity distribution the temperature diminishes for intensifying values of squashed flow number b as displayed in Figure 6. Physically, greater values b diminishes the squashed force on the fluid velocity which subsequently lessens the fluid temperature. So, it is obvious that the thermal boundary layer width varies inversely to squeezed flow index b. It is perspicuous from Figure 7 that the temperature curve moves.
downward for increasing values of ε. The reason for such behavior is the inverse relation of ε with temperature. Figure 8 delineates the conduct of heat generation on temperature distribution. The profile of temperature is descending for increasing values of Q. Figure 9 shows that reduction in fluid temperature occurs for enlarging values of R. This is due to the reason that the temperature transfer from the upper surface to the environment resulting a reduction in the fluid temperature. Figures 10, 11, and 12 clearly represent the 3-D structure for distinct values of parameter b. For a bigger value of parameter b sudden change in 3-D shape occurs. Figures 13, 14, and 15 delineate the streamlines for the ascending values of index b. It is flawless from the graphs that streamlines are moving away from the axis for rising values of b. Figure 16 clearly depicts the consequences of W_e, and b on the value of skin friction coefficient. The curve of coefficient of skin friction moves upward due to accretion in W_e. For the distinct values of flow index variable b, power number n and Weissenberg index W_e, the corresponding skin friction results can be envisioned from Table 1. It is eminent that for enlarging values of b and presuming W_e and n persistent produces a reduction in the value of skin friction coefficient while its value growing for the variation of Weissenberg number W_e.

5. Validity of numerical code

The accuracy of the current numerical code is tested by validating the contemporary solutions with the solutions of T. Salahuddin and M.Y. Malik [37]. The validation of equations is found for various parameters such as squeezed flow index parameter b and magnetic parameter M. It is found from the comparison of figures that both temperature and velocity fields are moving downwards for increasing the value of parameter b.
6. Concluding remarks

Due to the great importance of microcantilever sensor surfaces, we have presented a magneto hydro-dynamically squashed flow of Williamson fluid across a microcantilever sensor-based surface. Microcantilevers have gained significant potential applications in various sciences ranging from chemical and physical sensing to diagnosing biological diseases. The technology grasps the key to the coming generation of extremely sensitive sensors. The energy equation has constructed with the help of C-CHFM. The solutions to governing equations have been gained by using the numerical techniques. The following are the essential points:

b	W_e	\(C_f \sqrt{Re} \)
0.01	0.09	3.518321
0.02	0.29	3.483602
0.03	0.49	3.449919
0.01	0.69	3.518326
0.13	0.89	3.610309
0.17	1.09	3.739160

Figure 13. Streamlines for \(b = 0.1 \).

Figure 14. Streamlines for \(b = 0.5 \).

Figure 15. Streamlines for \(b = 0.9 \).

Figure 16. The impact of \(b \) and \(W_e \) on skin friction \(C_f \sqrt{Re} \).
1. The kinematics viscosity parameter θ, magnetic parameter M are the factors that cause an increment in the velocity profile while the squeezed flow index b lessens the velocity profile.

2. The temperature curve moves downward for growing values of b, R and e but it can be seen from figs. that temperature curve moves upward for rising values of Q and β.

3. For the distinct values of flow index variable b, power-law number n, and Weissenberg index W_s the corresponding skin friction results can be envisioned from Table 1. It is evident that for intensifying values of b and presuming W_s and n persistent produces a reduction in the value of skin friction coefficient, while skin friction values are emerging for the variation of Weissenberg number W_s.

4. Moreover, the accuracy of the sensor is enhanced by hydromagnetic and wall penetrable velocity effects until the chemical impeding at sensor-based surface is not repressed by upsurges in fluid related to these properties.

Declarations

Author contribution statement

Azad Hussain: Conceived and designed the analysis.
Rabia Zeton: Analyzed and interpreted the data.
Shoaib Ali: Analyzed and interpreted the data; Wrote the paper.
S. Nadeem: Contributed analysis tools or data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] Muhammad Usman, Muhammad Hamid, Rizwan Ul Haq, Wei Wang, Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel porous disks: LSGM approach, Int. J. Heat Mass Tran. 123 (2018) 888–895.

[2] M. Atlas, Rizwan Ul Haq, T. Mekkaoui, Active and zero sectors. Darcy–Forchheimer MHD couple stress 3D nano-flows between parallel plates, Math. Probl. Eng. (2008) 925905.

[3] M. Sheikhholeslami, M.M. Rashdi, Dhafre M. Al Saad, F. Firouz, Houman B. Rokni, Mair Khan, Imad Khan, M.Y. Malik, Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface, Results Phys. 7 (2017) 204–212.

[4] M.Y. Malik, M. Bibi, F. Khan, T. Salahuddin, Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption, AIP Adv. 6 (2016), 055101.

[5] Khalil Ur Rehman, M.Y. Malik, T. Salahuddin, M. Naerz, Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect, AIP Adv. 6 (2016), 075112.

[6] M.Y. Malik, A. Hussain, T. Salahuddin, A. Hussain, S. Bilal, Numerical solution of Sisko fluid over a stretching cylinder and heat transfer with variable thermal conductivity, J. Mech. 32 (2016) 593–601.

[7] M.Y. Malik, T. Salahuddin, A. Hussain, S. Bilal, M. Awais, Homogeneous-heterogeneous reactions in Williamson fluid MHD squeezed flow of Carreau-Yasuda fluid model over a stretching cylinder by using Keller box method 10 (2015) 107277.

[8] A.R.A. Khaled, K. Vafai, Hydromagnetic squeezed flow and heat transfer over a sensor surface, Int. J. Eng. Sci. 42 (2004) 509–519.

[9] T. Salahuddin, M.Y. Malik, A. Hussain, S. Bilal, M. Awais, Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity, AIP Adv. 5 (2015) 127102.

[10] C. Cattaneo, Sulla Conduzione del calore, Atti Semin Mat Fis Univ Modena Reggio Emilia 3 (1948) 83–101.

[11] C.I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mech. Res. Commun. 36 (2009) 481–486.

[12] M.Y. Malik, M. Khan, T. Salahuddin, I. Khan, Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: using Keller box method, Eng. Sci. Technol. Int. J. 19 (2016) 1985–1992.

[13] T. Salahuddin, M.Y. Malik, S. Bilal, A. Hussain, M.Y. Malik, MHD flow of Cattaneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: using numerical approach, J. Magn. Magn Mater. 401 (2016) 991–997.

[14] T. Hayat, I. Khan, A. Alsaedi, M. Waqas, Tabassam Yasmeen, Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thickened surface, Int. J. Heat Mass Tran. 99 (2016) 702–710.

[15] T. Hayat, I. Khan, A. Alsaedi, M. Farooq, Tabassam Yasmeen, Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions, J. Mol. Liq. 220 (2016) 49–55.

[16] T. Hayat, I. Khan, Sumaira Qayyum, Ahmed Alsaedi, Entropy generation in flow with silver and copper nanoparticles, Colloid. Surface. Physicochem. Eng. Aspect. 539 (2015) 335–346.

[17] T. Hayat, I. Khan, Sumaira Qayyum, Ahmed Alsaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluid. 30 (2018), 17101.

[18] M. Waleed Ahmed Khan, T. Hayat, I. Khan, Alsaedi Ahmed, Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation, Phys. B Condens. Matter 534 (2018) 113–119.

[19] T. Hayat, I. Khan, Sumaira Qayyum, Alsaedi Ahmed, Modern developments about statistical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles, Chin. J. Phys. 55 (2017) 2501–2513.

[20] T. Hayat, Mumtaz Khan, Muhammad Ijaz Khan, Ahsan Ahmed, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Coll. Interface Sci. 491 (2017) 85–96.

[21] T. Hayat, I. Khan, Sumaira Qayyum, Ahmed Alsaedi, Entropy generation in flow with variable thickness: using numerical approach, Phys. B Condens. Matter 534 (2018) 320–335.

[22] T. Hayat, I. Khan, Zahir Shah, Ahmad Alzahrani, Dennis Ling, Chaun Ching, Emilia 3 (1948) 83–101.

[23] T. Hayat, I. Khan, Zahir Shah, Abdullah Dawar, Anil Ullah, Bramullah Khan, Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet, Int. Comm. Heat Mass Tran. 110 (2020) 104365.

[24] Muhammad Waleed Ahmad, Poom Kuman, Zahir Shah, Ali Ahmed Farooq, Rashid Nawaz, Abdullah Dawar, Saeed Islam, Phatthip Thonthong, Darcy–Forchheimer MHD couple stress 3D flow over an exponentially stretching sheet through cattaneo-christov convective heat flux with zero nanoparticles mass flux conditions, Entropy 21 (2019) 867.

[25] Zahir Shah, Abdullah Dawar, Ebraheem O. Alzahrani, Abdullah Dawar, Anil Ullah, Bramullah Khan, Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet, Int. Comm. Heat Mass Tran. 110 (2020) 104365.

[26] Muhammad Waleed Ahmad, Poom Kuman, Zahir Shah, Ali Ahmed Farooq, Rashid Nawaz, Abdullah Dawar, Saeed Islam, Phatthip Thonthong, Darcy–Forchheimer MHD couple stress 3D flow over an exponentially stretching sheet through cattaneo-christov convective heat flux with zero nanoparticles mass flux conditions, Entropy 21 (2019) 867.

[27] Zahir Shah, Abdullah Dawar, Ebraheem O. Alzahrani, Abdullah Dawar, Anil Ullah, Bramullah Khan, Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet, Int. Comm. Heat Mass Tran. 110 (2020) 104365.

[28] Zahir Shah, Abdullah Dawar, Ebraheem O. Alzahrani, Abdullah Dawar, Anil Ullah, Bramullah Khan, Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet, Int. Comm. Heat Mass Tran. 110 (2020) 104365.

[29] Zahir Shah, Abdullah Dawar, Ebraheem O. Alzahrani, Abdullah Dawar, Anil Ullah, Bramullah Khan, Influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet, Int. Comm. Heat Mass Tran. 110 (2020) 104365.