BSE-PROPERTY FOR SOME CERTAIN SEGAL AND BANACH ALGEBRAS

M. FOZOUNI AND M. NEMATI

ABSTRACT. For a commutative semi-simple Banach algebra A which is an ideal in its second dual we give a necessary and sufficient condition for an essential abstract Segal algebra in A to be a BSE-algebra. We show that a large class of abstract Segal algebras in the Fourier algebra $A(G)$ of a locally compact group G are BSE-algebra if and only if they have bounded weak approximate identities. Also, in the case that G is discrete we show that $A_{cb}(G)$ is a BSE-algebra if and only if G is weakly amenable. We study the BSE-property of some certain Segal algebras which introduced recently by J. Inoue and S.-E. Takahasi which implemented by local functions. Finally we give a similar construction for the group algebra which implemented by a measurable and sub-multiplicative function.

1. Introduction and Preliminaries

Let G be a locally compact abelian group. A subspace S of $L^1(G)$ is called a (Reiter) Segal algebra if it satisfies the following conditions:

1. S is dense in $L^1(G)$.
2. S is a Banach space under some norm $\| \cdot \|_S$ such that $\|f\|_1 \leq \|f\|_S$ for each $f \in S$.
3. $L_y f$ is in S and $\|f\|_S = \|L_y f\|_S$ for all $f \in S$ and $y \in G$ where $L_y f(x) = f(y^{-1}x)$.
4. For all $f \in S$, the mapping $y \mapsto L_y f$ is continuous.

In [1], J. T. Burnham with changing $L^1(G)$ by an arbitrary Banach algebra A, gave a generalization of Segal algebras and introduced the notion of an abstract Segal algebra.

It is well-known that $L^1(G)$ is a commutative semi-simple regular Banach algebra with a bounded approximate identity with compact support; see [14].

Recently, J. Inoue and S.-E. Takahasi in [10] investigated abstract Segal algebras in a non-unital commutative semi-simple regular Banach algebra A such that A has a bounded approximate identity in A_c where

$$A_c = \{a \in A : \hat{a} \text{ has compact support}\},$$

MSC(2010): Primary: 46H05; Secondary: 46J10, 22D05, 43A25

Keywords: Banach algebra, Segal algebra, BSE-algebra, locally compact group, Fourier algebra.
and \(\hat{a} \) denotes the Gel’fand transform of \(a \). Indeed, they gave the following definition of a Segal algebra in \(A \).

Definition 1.1. An ideal \(S \) in \(A \) is called a Segal algebra in \(A \) if it satisfies the following properties:

(1) \(S \) is dense in \(A \).

(2) \(S \) is a Banach space under some norm \(\| \cdot \|_S \) such that \(\|a\|_A \leq \|a\|_S \) for each \(a \in S \).

(3) \(\|ax\|_S \leq \|a\|_A \|x\|_S \) for each \(a \in A \) and \(x \in S \).

(4) \(S \) has approximate units.

Clearly, an abstract Segal algebra in \(A \) (in the sense of Burnham) is a Segal algebra in \(A \) if and only if it possesses approximate units.

A commutative Banach algebra \(A \) is without order if for \(a \in A \), the condition \(aA = \{0\} \) implies \(a = 0 \) or equivalently \(A \) does not have any non-zero annihilator. For example if \(A \) has an approximate identity, then it is without order. A linear operator \(T \) on \(A \) is called a multiplier if it satisfies \(aT(b) = T(a)b \) for all \(a, b \in A \).

Suppose that \(\mathcal{M}(A) \) denotes the space of all multipliers of the Banach algebra \(A \). If \(\Delta(A) \) denotes the space of all characters of \(A \); that is, non-zero homomorphisms from \(A \) into \(\mathbb{C} \), then for each \(T \in \mathcal{M}(A) \), there exists a unique bounded continuous function \(\widehat{T} \) on \(\Delta(A) \) such that \(\widehat{T}(\phi)(\phi) = \widehat{T}(\phi)(\hat{a})(\phi) \) for all \(a \in A \) and \(\phi \in \Delta(A) \); see [14, Proposition 2.2.16]. Let \(\hat{M}(A) \) denote the space of all \(\hat{T} \) corresponding to \(T \in \mathcal{M}(A) \).

A bounded continuous function \(\sigma \) on \(\Delta(A) \) is called a BSE-function if there exists a constant \(C > 0 \) such that for each \(\phi_1, ..., \phi_n \in \Delta(A) \) and complex numbers \(c_1, ..., c_n \), the inequality

\[
\left| \sum_{i=1}^{n} c_i \sigma(\phi_i) \right| \leq C \left\| \sum_{i=1}^{n} c_i \phi_i \right\|_{A^*}
\]

holds. Let \(C_{\text{BSE}}(\Delta(A)) \) be the set of all BSE-functions.

A without order commutative Banach algebra \(A \) is called a BSE-algebra if \(C_{\text{BSE}}(\Delta(A)) = \hat{M}(A) \).

The theory of BSE-algebras for the first time introduced and investigated by Takahasi and Hatori; see [20] and two other notable works [15, 13]. In [13], the authors answered to a question raised in [20]. Examples of BSE-algebras are the group algebra \(L^1(G) \) of a locally compact abelian group \(G \), the Fourier algebra \(A(G) \) of a locally compact amenable group \(G \), all commutative \(C^* \)-algebras, the disk algebra, and the Hardy algebra on the open unit disk.
A net \(\{a_\alpha\} \) in \(A \) is called a bounded weak approximate identity (BWAI) for \(A \) if \(\{a_\alpha\} \) is bounded in \(A \) and
\[
\lim_{\alpha} \phi(a_\alpha a) = \phi(a) \quad (\phi \in \Delta(A), \ a \in A),
\]
or equivalently, \(\lim_{\alpha} \phi(a_\alpha) = 1 \) for each \(\phi \in \Delta(A) \). Clearly, each BAI of \(A \) is a BWAI and the converse is not valid in general; see [11] and [16]. Note that bounded weak approximate identities are important to decide whether a commutative Banach algebra is a BSE-algebra or not. For example, it was shown in [9] that a Segal algebra \(S(G) \) on a locally compact abelian group \(G \) is a BSE-algebra if and only if it has a bounded weak approximate identity.

For undefined concepts and notations appearing in the sequel, one can consult [2, 14].

The outline of the next sections is as follows:

In §2, for a commutative semi-simple Banach algebra \(A \) which is an ideal in its second dual we give a necessary and sufficient conditions for an essential abstract Segal algebra in \(A \) to be a BSE-algebra. We show that a large class of abstract Segal algebras in the Fourier algebra \(A(G) \) of a locally compact group \(G \) are BSE-algebra if and only if they have bounded weak approximate identities. Also, for discrete groups \(G \), we show that \(A_{cb}(G) \) is a BSE-algebra if and only if \(G \) is weakly amenable.

In §3, we study the BSE-property of the Segal algebra \(A_{\tau(n)} \) in \(A \) which introduced by Inoue and Takahasi and in the case that \((A, \| \cdot \|_X) \) is a BSE-algebra, we show that \(A_{\tau(n)} \) is a BSE-algebra if and only if \(\tau \) is bounded where \(\tau : X \rightarrow C \) is a certain continuous function. Also, we compare the BSE-property between \(A \) and \(A_{\tau(n)} \). In §4, motivated by the definition of \(A_{\tau(n)} \), for an arbitrary locally compact (abelian) group \(G \), and a measurable sub-multiplicative function \(\tau : G \rightarrow C^\times \), we define the Banach algebra \(L^1(G)_{\tau(n)} \). Then we investigate the BSE-property of this algebra.

2. BSE-Abstract Segal Algebras

Recall that a Banach algebra \(B \) is an abstract Segal algebra of a Banach algebra \(A \) if

1. \(B \) is a dense left ideal in \(A \),
2. there exists \(M > 0 \) such that \(\|b\|_A \leq M\|b\|_B \) for each \(b \in B \)
3. there exists \(C > 0 \) such that \(\|ab\|_B \leq C\|a\|_A\|b\|_B \) for each \(a, b \in B \).

Endow \(\Delta(A) \) and \(\Delta(B) \) with the Gel’fand topology, the map \(\varphi \mapsto \varphi|_B \) is a homeomorphism from \(\Delta(A) \) onto \(\Delta(B) \); see [1, Theorem 2.1].
Let B be an abstract Segal algebra with respect to A. We say that B is essential if $\langle AB \rangle$ is $\| \cdot \|_B$-dense in B, where $\langle AB \rangle$ denotes the linear span of $AB = \{ab : a \in A, b \in B\}$.

Theorem 2.1. Let A be a semi-simple commutative Banach algebra which is an ideal in its second dual A^{**}. Suppose that B is an essential abstract Segal algebra in A. Then the following statements are equivalent.

(i) B is a BSE-algebra.

(ii) $B = A$ and A is a BSE-algebra.

Proof. Suppose that B is a BSE-algebra. Then by [20, Corollary 5], B has a BWAI, say $(g_\gamma)_\gamma$. It is clear that $(g_\gamma)_\gamma$ is also a BWAI for A. So, by [15, Theorem 3.1] A is a BSE-algebra and has a bounded approximate identity, say $(e_\alpha)_\alpha$. Since B is essential, $(e_\alpha)_\alpha$ is also a bounded approximate identity for B in A. In fact, for each $b \in B$ and $\varepsilon > 0$, there is $c = \sum_{i=1}^n a_ib_i$ with $1 \leq i \leq n$, $a_i \in A$ and $b_i \in B$ such that $\|b - c\|_B \leq \varepsilon$. Thus for each α we have

$$\|e_\alpha b - b\|_B \leq (1 + K)\varepsilon + C\sum_{i=1}^n \|e_\alpha a_i - a_i\|_A \|b_i\|_B,$$

where $K = \sup \|e_\alpha\|_A$. This shows that $\|e_\alpha b - b\|_B \to 0$ for all $b \in B$. Thus, $B = BA$ by Cohen’s factorization theorem. Now, let $b \in B$ and (b_n) be a bounded sequence in B. Then $b = ca$ for some $c \in B$ and $a \in A$. Since A is an ideal in its second dual, it follows that the operator $\rho_a : A \to A$ defined by $\rho_a(a') = a a'$, $(a' \in A)$ is weakly compact; see [3, Lemma 3]. Therefore, if (b_n) is bounded sequence in A, there exists a subsequence (b_{n_k}) of (b_n) such that $(\rho_a(b_{n_k}))$ is convergent to some a' in the weak topology of A. Now, we observe that $f \cdot c \in A^*$ for all $f \in B^*$, where $(f \cdot c)(a) = f(ca)$ for all $a \in A$. This shows that the sequence $(\rho_{ca}(b_{n_k}))$ is convergent to ca' in the weak topology of B. Therefore, the operator $\rho_b : B \to B$ is weakly compact which implies that B is an ideal in its second dual. Since B is semi-simple, [15, Theorem 3.1] implies that B has a bounded approximate identity. Thus $A = B$ by [1, Theorem 1.2]. That (ii) implies (i) is trivial. \square

Example 2.2. Let G be a locally compact group and let $A(G)$ be the Fourier algebra of G. It was shown in [15, Theorem 5.1] that $A(G)$ is a BSE-algebra if and only if G is amenable. Moreover, $A(G)$ is an ideal in its second dual if and only if G is discrete; see [5, Lemma 3.3]. Therefore, by Theorem 2.1 if G is discrete, then each essential abstract Segal algebra $SA(G)$ in $A(G)$ is a BSE-algebra if and only if $SA(G) = A(G)$ and G is amenable.
Let G be a locally compact group and let $L^r(G)$ be the Lebesgue L^r-space of G, where $1 \leq r < \infty$. Then

$$SA^r(G) := L^r(G) \cap A(G)$$

with the norm $|||f||| = \|f\|_r + \|f\|_{A(G)}$ and the pointwise product is an abstract Segal algebra in $A(G)$.

Corollary 2.3. Let G be a discrete group and let $1 \leq r \leq 2$. Then $SA^r(G)$ is a BSE-algebra if and only if G is finite.

Proof. If G is finite, then $SA^r(G) = A(G)$. So, the result follows from Theorem 2.1.

For the converse, first note that $SA^r(G) = l^r(G)$ and the norms $\| \cdot \|_r$ and $||| \cdot |||$ on $SA^r(G)$ are equivalent by the open mapping theorem. In fact, $l^2(G) \subseteq \delta_e \ast l^2(G) \subseteq A(G)$, where δ_e is the point mass at the identity element e of G. So, if $1 \leq r \leq 2$, then $l^r(G) \subseteq l^2(G)$ and

$$l^r(G) = l^r(G) \cap l^2(G) \subseteq SA^r(G) \subseteq l^r(G).$$

Moreover, it is clear that $l^r(G)$ has an approximate identity and consequently it is an essential abstract Segal algebra in $A(G)$. Therefore, if $SA^r(G) = l^r(G)$ is a BSE-algebra, then $A(G) = l^r(G)$ by Example 2.2. Thus, $A(G) = l^2(G)$, is a reflexive predual of a W^*-algebra. This implies, as is known, that $A(G)$ is finite dimensional; see [18]. Thus G is finite, which completes the proof. \[\square\]

For a locally compact group G, we recall that $A(G)$ is always an ideal in the Fourier-Stieltjes algebra $B(G)$ and note that $M(A(G)) = B(G)$ when G is amenable. The spectrum of $A(G)$ can be canonically identified with G. More precisely, the map $x \mapsto \varphi_x$ where $\varphi_x(u) = u(x)$ for all $u \in A(G)$ is a homeomorphism from G onto $\Delta(A(G))$.

Theorem 2.4. Let G be a locally compact group and let $SA(G)$ be an abstract Segal algebra in $A(G)$ such that $B(G) \subseteq M(SA(G))$, i.e., for each $u \in B(G)$, we have $uSA(G) \subseteq SA(G)$. Then $SA(G)$ is a BSE-algebra if and only if $SA(G)$ has a BWAI.

Proof. Clearly if $SA(G)$ is a BSE-algebra, then it has a BWAI.

Conversely, suppose that $SA(G)$ has a BWAI, say $(e_\gamma)_\gamma$. Then $M(SA(G)) \subseteq \Delta(SA(G))$ by [20, Corollary 5]. Moreover, it is clear that $(e_\gamma)_\gamma$ is also a BWAI for $A(G)$. Consequently, we conclude that G is amenable by [15, Theorem 5.1]. Now, we need to show the reverse inclusion. Since $SA(G)$ is an abstract
Segal algebra in $A(G)$, there exists $M > 0$ such that $\|u\|_{A(G)} \leq M\|u\|_{SA(G)}$ for all $u \in SA(G)$. Thus, for any $x_1, ..., x_n \in G$ and $c_1, ..., c_n \in \mathbb{C}$,

$$\left\| \sum_{j=1}^{n} c_j \varphi_{x_j} \right\|_{SA(G)^*} \leq M \left\| \sum_{j=1}^{n} c_j \varphi_{x_j} \right\|_{A(G)^*}.$$

This implies that

$$C_{BSE}(\Delta(SA(G))) \subseteq C_{BSE}(\Delta(A(G))) = \hat{B}(G) \subseteq \mathcal{M}(SA(G)).$$

Hence, $SA(G)$ is a BSE-algebra. □

Example 2.5. (1) Let G be a locally compact group and let $1 \leq r < \infty$. Now, since $\|u\|_{\infty} \leq \|u\|_{B(G)}$ for all $u \in B(G)$, it follows that $uL^r(G) \subseteq L^r(G)$. This implies that $B(G) \subseteq \mathcal{M}(SA^r(G))$. Thus $SA^r(G)$ is a BSE-algebra if and only if it has a BWAI.

(2) Let $S_0(G)$ be the Feichtinger Segal algebra in $A(G)$. Then $B(G) \subseteq \mathcal{M}(S_0(G))$; see [19, Corollary 5.2]. Thus $S_0(G)$ is a BSE-algebra if and only if it has a BWAI.

Corollary 2.6. Let G be a locally compact group and let $SA(G)$ be an essential abstract Segal algebra in $A(G)$. Then $SA(G)$ is a BSE-algebra if and only if $SA(G)$ has a BWAI.

Proof. Suppose that $SA(G)$ has a BWAI. Then $A(G)$ has a bounded approximate identity. Now, by the same argument as the proof of Theorem 2.1 we can show that $SA(G) = A(G)SA(G)$. Consequently, for each $u \in B(G)$

$$uSA(G) = uA(G)SA(G) \subseteq A(G)SA(G) = SA(G),$$

which implies that $B(G) \subseteq \mathcal{M}(SA(G))$. Hence, $SA(G)$ is a BSE-algebra by Theorem 2.4. □

Suppose that G is a locally compact group and $\mathcal{M}_{cb}A(G)$ denotes the Banach algebra of completely bounded multipliers of $A(G)$, that is, the continuous and bounded functions ν on G such that $\nu A(G) \subseteq A(G)$ and the map L_{ν} defined by $L_{\nu}(u) = \nu u$ is completely bounded; see [4] for a complete course on operator space theory. Note that, by $A(G) = VN(G)$, $\mathcal{M}_{cb}A(G)$ is a completely contractive Banach algebra, where $VN(G)$ is the group von Neumann algebra. It is well-known that $A(G) \subseteq B(G) \subseteq \mathcal{M}_{cb}A(G)$. Now, let

$$A_{cb}(G) = \overline{A(G)}_{\|\cdot\|_{\mathcal{M}_{cb}A(G)}}.$$
This algebra for the first time introduced by Forrest in [6]. See also some recent works [7, 8, 17] for more details and properties.

We end this section with the following result regarding the BSE-property of $A_{cb}(G)$ in the case that G is discrete. Recall that a locally compact group G is said to be weakly amenable if $A(G)$ has an approximate identity which is bounded in $\| \cdot \|_{A_{cb}(G)}$ or equivalently $A_{cb}(G)$ has a bounded approximate identity; see [7, Proposition 1].

Theorem 2.7. Suppose that G is a discrete locally compact group. Then $A_{cb}(G)$ is a BSE-algebra if and only if G is weakly amenable.

Proof. By [17, Lemma 4.1] we know that G is discrete if and only if $A_{cb}(G)$ is a closed ideal in its second dual. Also, it is clear that $A_{cb}(G)$ is commutative and semi-simple. Now the result follows by [15, Theorem 3.1].

3. Segal Algebras Implemented by Local Functions

In this section we focus on a certain Segal algebra which recently introduced by Inoue and Takahasi. Let X be a non-empty locally compact Hausdorff space. A subalgebra A of $C_0(X)$ is called a Banach function algebra if A separates strongly the points of X (that is, for each $x, y \in X$ with $x \neq y$, there exists $f \in A$ such that $f(x) \neq f(y)$ and for each $x \in X$, there exists $f \in A$ such that $f(x) \neq 0$) and with a norm $\| \cdot \|$, $(A, \| \cdot \|)$ is a Banach algebra.

Suppose that $(A, \| \cdot \|)$ is a natural regular Banach function algebra on a locally compact, non-compact Hausdorff space X with a bounded approximate identity $\{e_\alpha\}$ in A_c. We recalling the following definitions from [10].

Definition 3.1. A complex-valued continuous function σ on X is called a local A-function if for all $f \in A_c$, $f \sigma \in A$. The set of all local A-functions is denoted by A_{loc}.

Definition 3.2. For positive integer n and a continuous complex-valued function τ on A, put

$$A_{\tau(n)} = \{ f \in A : f \tau^k \in A \quad (0 \leq k \leq n) \},$$

$$\|f\|_{\tau(n)} = \sum_{k=0}^{n} \|f \tau^k\|.$$

In the sequel of this section, suppose that n is a constant positive integer and $\tau \in A_{loc}$.

By [10, Theorems 5.4], if $\tau \in A_{loc}$, then $(A_{\tau(n)}, \| \cdot \|_{\tau(n)})$ is a Segal algebra in A such that $\Delta(A_{\tau(n)}) = \Delta(A) = X$, that is, $x \rightarrow \phi_x$ is a homeomorphism from X onto $\Delta(A_{\tau(n)})$.

Also, one can see that $A_{\tau(n)}$ is a Banach function algebra, because for each $x, y \in X$ with $x \neq y$, there exists $f \in A_{\tau(n)}$ such that $f(x) = \phi_x(f) \neq \phi_y(f) = f(y)$ and by using the Urysohn lemma for each $x \in X$, there exists $f \in A_{\tau(n)}$ with $f(x) \neq 0$. Note that by [10, Theorem 3.5], $A_{\tau(n)}$ is Tauberian. Recall that a Banach algebra A is Tauberian if A_c is dense in A.

The following theorem is one of our main results in this section.

Theorem 3.3. Suppose that $(A, \| \cdot \|_X)$ is a BSE-algebra where $\| \cdot \|_X$ is the uniform norm. Then the following statements are equivalent.

(i) $A_{\tau(n)}$ is a BSE-algebra.

(ii) τ is bounded.

Proof. (i) \rightarrow (ii). Suppose that $A_{\tau(n)}$ is a BSE-algebra, therefore it has a BWAI. So, there exists a constant $M > 0$ such that

$$\|f_\alpha\|_{\tau(n)} < M, \quad \lim_{\alpha} f_\alpha(x) = 1 \quad (x \in X).$$

On the other hand, $\|f_\alpha\|_{\tau(n)} \leq \|f_\alpha\|_{\tau(n)}$, hence we have

$$|\tau(x)| \leq M \quad (x \in X).$$

Therefore, τ is bounded.

(ii) \rightarrow (i). Let τ be bounded by M, that is, $\|\tau\|_X < M$. Clearly, $A_c \subseteq A_{\tau(n)}$. For each $f \in A$, there exists a net $\{f_\alpha\}$ in A_c such that $\|f_\alpha - f\|_X \rightarrow 0$. Now, $\{f_\alpha\}$ is in A and $f\tau = \lim_{\alpha} f_\alpha\tau$, since

$$\|f\tau - f_\alpha\tau\|_X = \|(f - f_\alpha)\tau\|_X \leq M\|f - f_\alpha\|_X \rightarrow 0.$$

So, $f\tau \in A$. Similarly, one can see that $f\tau^k$ for each $1 < k \leq n$ is in A. Therefore, $A = A_{\tau(n)}$. Hence $A = A_{\tau(n)}$. Finally, for each $f \in A$

$$\|f\|_X \leq \|f\|_{\tau(n)} \leq \|f\|_X \left(\sum_{k=0}^{n} M^k\right).$$

Therefore, $A_{\tau(n)}$ is topologically isomorphic to A, so $A_{\tau(n)}$ is a BSE-algebra. □

Recall that $\tau \in A_{\text{loc}}$ is called a rank ∞ local A-function, if for each $k = 0, 1, 2, \cdots$, the inclusion $A_{\tau(k)} \supsetneq A_{\tau(k+1)}$ holds. By [10, Proposition 8.2 (ii)], if $\|\tau\|_X = \infty$, then τ is a rank ∞ local A-function.

As an application of the above theorem, we give the following result which provide for us examples of Banach algebras without any BWAI.

Corollary 3.4. Let $A = C_0(\mathbb{R})$ and $\tau(x) = x$ for every $x \in \mathbb{R}$. Then

$$A \supsetneq A_{\tau(1)} \supsetneq A_{\tau(2)} \supsetneq \cdots \supsetneq A_{\tau(n)} \supsetneq \cdots.$$ (3.1)

For each $k = 1, 2, 3, \cdots$, $A_{\tau(k)}$ is not a BSE-algebra and has no BWAI.
Proof. By [20, Theorem 3], if $A = C_0(\mathbb{R})$, we know that A is a BSE-algebra. Since for each $x \in \mathbb{R}$, there exists $f \in A$ such that $f = \tau$ on a neighborhood of x, hence by [10, Proposition 7.2], τ is an element of A_{loc}. But τ is not bounded and this implies that $A_{\tau(k)}$ is not a BSE-algebra by Theorem 3.3. Also, since τ is not bounded, τ is a rank ∞ local A-function, hence we have equation 3.1. Finally, if $A_{\tau(k)}$ has a BWAI, then similar to the proof of Theorem 3.3 one has $\|\tau\|_\mathbb{R} < \infty$ which is impossible.

By the above corollary if A is a BSE-algebra, then $A_{\tau(n)}$ is not necessarily a BSE-algebra. For the converse we have the following proposition.

Proposition 3.5. Suppose that $\tau \in A_{\text{loc}}$ and A is an ideal in its second dual. If $A_{\tau(n)}$ is a BSE-algebra, then A is a BSE-algebra.

Proof. If $\{e_\alpha\}$ is a b.a.i for A, then $\{e_\alpha\}$ is an approximate identity for $A_{\tau(n)}$. So, $A_{\tau(n)}$ is an essential abstract Segal algebra with respect to A. Now, using Theorem 2.1 we have the result.

We do not know whether Proposition 3.5 fails if the assumption that A is an ideal in its second dual is dropped.

Remark 3.6. If X is a discrete space, then A is an ideal in its second dual. Since A is a semi-simple commutative and Tauberian Banach algebra, using [15, Remark 3.5], we conclude that A is an ideal in its second dual.

4. A Construction on Group Algebras

Let G be a locally compact group and let $L^1(G)$ be the space of all measurable and integrable complex-valued functions (equivalent classes with respect to the almost everywhere equality relation) on G with respect to the left Haar measure of G. The convolution product of the functions f and g in $L^1(G)$ is defined by

$$f \ast g(x) = \int_G f(y)g(y^{-1}x)dy.$$

For each $f \in L^1(G)$, let $\|f\|_1 = \int_G |f(x)|dx$. It is well-known that $L^1(G)$ endowed with the norm $\| \cdot \|_1$ and the convolution product is a Banach algebra called the group algebra of G; see [2, Section 3.3] for more details.

The following lemma proved by Bochner and Schoenberg for $G = \mathbb{R}$ in (1934) and by Eberlein for general locally compact abelian (LCA) groups in (1955). Here, using a result due to E. Kaniuth and A. ¨Ulger, we give another proof.

Recall that for a LCA group G, the dual group of G, \hat{G} defined as the set of all continuous homomorphisms from G to \mathbb{T} where $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. It is well-known that \hat{G} is a LCA group with the pointwise operation.
Lemma 4.1. Suppose that G is LCA group. Then $L^1(G)$ is a BSE-algebra.

Proof. We know that $L^1(G)$ is isometrically isomorphic to $A(\hat{G})$. But \hat{G} is amenable. Therefore, by [15, Theorem 5.1], $A(\hat{G})$ and so $L^1(G)$ is a BSE-algebra. □

In the sequel, motivated by the construction of $A_{\tau(n)}$ in the preceding section, we introduce a subalgebra of the group algebra $A = L^1(G)$ where G is a locally compact group.

Recall that $\varphi : G \rightarrow \mathbb{C}^\times$ is sub-multiplicative if

$$|\varphi(xy)| \leq |\varphi(x)||\varphi(y)| \quad (x, y \in G),$$

where \mathbb{C}^\times denotes the multiplicative group of non-zero complex numbers.

For a measurable sub-multiplicative function $\tau : G \rightarrow \mathbb{C}^\times$ and each $n \in \mathbb{N}$, put

$$L^1(G)_{\tau(n)} = \{ f \in L^1(G) : f\tau, \ldots, f\tau^n \in L^1(G) \}$$

$$\|f\|_{\tau(n)} = \sum_{k=0}^{n} \|f\tau^k\|_1 \quad (f \in L^1(G)_{\tau(n)}).$$

As the first result in this section, we show that $L^1(G)_{\tau(n)}$ is a Banach algebra as follows.

Proposition 4.2. $L^1(G)_{\tau(n)}$ is a Banach algebra with the convolution product and the norm $\| \cdot \|_{\tau(n)}$.

Proof. For each $f, g \in L^1(G)_{\tau(n)}$ and $1 \leq k \leq n$, we have

$$\|(f \ast g)\tau^k\|_1 \leq \int \int |f(y)||g(y^{-1}x)||\tau^k(x)|dydx$$

$$= \int \int |f(y)||g(y^{-1}x)||\tau^k(x)|dxdy$$

$$= \int \int |f(y)||g(x)||\tau^k(yx)|dxdy$$

$$\leq \|f\tau^k\|_1 \|g\tau^k\|_1.$$
have
\[
\|f \ast g\|_{\tau(n)} = \|f \ast g\|_1 + \sum_{k=1}^{n} \|(f \ast g)\tau^k\|_1
\]
\[
\leq \|f\|_1\|g\|_1 + \sum_{k=1}^{n} \|f\tau^k\|_1\|g\tau^k\|_1
\]
\[
\leq \|f\|_{\tau(n)}\|g\|_{\tau(n)}.
\]

To see the completeness of \(\| \cdot \|_{\tau(n)}\), let \(\{f_i\}\) be a Cauchy sequence in \(L^1(G)_{\tau(n)}\). So, there exist \(f \in L^1(G)\) and \(g_k \in L^1(G)\) for each \(1 \leq k \leq n\) such that
\[
\lim_{i \to \infty} \|f_i - f\|_1 = 0, \quad \lim_{i \to \infty} \|f_i \tau^k - g_k\|_1 = 0.
\]
Since \(\lim_{i \to \infty} \|f_i - f\|_1 = 0\), there exists a subsequence \(\{f_{i_m}\}\) such that
\[
\lim_{i_m} f_{i_m}(x) = f(x) \text{ a.e., for } x \in G.
\]
Also, since \(\lim_{i_m} \|f_{i_m} \tau^k - g_k\|_1 = 0\), there exists a subsequence \(\{f_{i_{m,k}}\}\) of \(\{f_{i_m}\}\) such that
\[
\lim_{i_{m,k}} f_{i_{m,k}}(x) \tau^k(x) = g_k(x) \text{ a.e., for } x \in G.
\]
Therefore, \(f \tau^k = g_k\) a.e., so, \(f\) is an element of \(L^1(G)_{\tau(n)}\) such that
\[
\|f_i - f\|_{\tau(n)} = \|f_i - f\|_1 + \|f_i \tau - f \tau\|_1 + \cdots + \|f_i \tau^n - f \tau^n\|_1
\]
\[
= \|f_i - f\|_1 + \|f_i \tau - g_1\|_1 + \cdots + \|f_i \tau^n - g_n\|_1 \to 0.
\]
Hence, \((L^1(G)_{\tau(n)}; \| \cdot \|_{\tau(n)})\) is complete. \(\square\)

In the sequel, we suppose that \(G\) is a LCA group.

Theorem 4.3. If \(\tau\) is bounded, then \(L^1(G)_{\tau(n)}\) is a BSE-algebra.

Proof. If \(\tau\) is bounded by \(M\), then for each \(f \in L^1(G)\) and \(1 \leq k \leq n\) we have \(f \tau^k \in L^1(G)\) and
\[
\|f\|_1 \leq \|f\|_{\tau(n)} = \sum_{k=0}^{n} \|f \tau^k\|_1 \leq \|f\|_1(\sum_{k=0}^{n} M^k).
\]
So, \(L^1(G)_{\tau(n)}\) is topologically isomorphic to \(L^1(G)\) and hence it is a BSE-algebra by Lemma 4.1. \(\square\)

When \(\tau\) satisfying \(|\tau(x)| \geq 1\) a.e., for \(x \in G\), we show in the sequel that \(L^1(G)_{\tau(n)}\) is indeed a Beurling algebra which we recall its definition as follows:

A weight on \(G\) is a measurable function \(w : G \to (0, \infty)\) such that \(w(xy) \leq w(x)w(y)\) for all \(x, y \in G\). The Beurling algebra \(L^1(G, w)\) defined by the space of all measurable and complex-valued functions \(f\) on \(G\) such that \(\|f\|_{1,w} = \int |f(x)|w(x)\, dx < \infty\). The Beurling algebra with the convolution product and
the norm $\| \cdot \|_{1,w}$ is a Banach algebra with $\Delta(L^1(G, w)) = \hat{G}(w)$, where $\hat{G}(w)$ is the space of all non-zero complex-valued continuous homomorphisms φ on G such that $|\varphi(x)| \leq w(x)$ for each $x \in G$; see [14].

The space $M(G, w)$ of all complex regular Borel measures μ on G such that $\mu w \in M(G)$ with convolution product and norm

$$\|\mu\|_{M(G), w} = \|\mu w\|_{M(G)} = \int w(x) \, d|\mu|(x)$$

is a Banach algebra called the weighted measure algebra, where μw defined by

$$\mu w(B) = \int_B w(x) \, d\mu(x)$$

for each Borel subset B of G.

Proposition 4.4

If $|\tau| \geq 1$ a.e., then $L^1(G, \tau(n))$ and $L^1(G, |\tau^n|)$ are topologically isomorphic.

Proof. Suppose that for almost every $x \in G$, $|\tau(x)| \geq 1$. Clearly if $f \in L^1(G, \tau(n))$, then we have $f \in L^1(G, |\tau^n|)$. On the other hand, if $f \in L^1(G, |\tau^n|)$ by applying $|\tau| \geq 1$ a.e., we conclude that $f \in L^1(G, \tau(n))$, since for all $0 \leq k \leq n$, $|f(x)||\tau^k(x)| \leq |f(x)||\tau^n(x)|$ a.e., therefore, $L^1(G, |\tau^n|) = L^1(G, \tau(n))$ as two sets.

Also, using $|\tau| \geq 1$ a.e., we have

$$\|f\|_{1,w} \leq \|f\|_{\tau(n)} \leq n\|f\|_{1,w},$$

where $w = |\tau^n|$. So, two norms $\| \cdot \|_{1,w}$ and $\| \cdot \|_{\tau(n)}$ are equivalent, which completes the proof. \qed

Remark 4.5

Note that $L^1(G, \tau(n))$ and $L^1(G, |\tau^n|)$ are not equal in general. For example, let $G = R^+$ be the multiplicative group of all positive real numbers, $n = 2$ and $\tau(x) = \frac{1}{x}$ for all $x \in R^+$. Clearly, τ is measurable and sub-multiplicative. Also, it is easily verified that $L^1(G, \tau(2)) \subseteq L^1(G, |\tau^2|)$. Now, take $0 < \alpha < 1$ and put

$$f(x) = \begin{cases}
0, & 0 < x < 1; \\
\alpha x, & 1 \leq x.
\end{cases}$$

One can easily check that f is in $L^1(G, |\tau^2|)$ but it is not in $L^1(G, \tau(2))$. So,

$$L^1(G, |\tau^2|) \neq L^1(G, \tau(2)).$$

Also, if we put $g(x) = \chi_{(0,1]}$, then $g \in L^1(G)$ but $g \notin L^1(G, \tau(2))$. Hence,

$$L^1(G) \neq L^1(G, \tau(2)).$$

Remark 4.6

Although in general $L^1(G, |\tau^k|) \neq L^1(G, \tau(n))$ for every integer k with $0 \leq k \leq n$, but we have

$$\overline{L^1(G, \tau(n))}_{\| \cdot \|_{1,|\tau^n|}} = L^1(G, |\tau^k|), \quad (0 \leq k \leq n).$$
Because \(C_c(G) \) is dense in \(L^1(G, |\tau^k|) \) and similar to [14, Lemma 1.3.5 (i)], one can see that \(C_c(G) \subseteq L^1(G)_{\tau(n)} \).

Remark 4.7. Let \(K \subseteq G \) be a relatively compact neighborhood of \(e \); the identity of \(G \). Put

\[U_K = \{ U \subseteq K : U \text{ is a relatively compact neighborhood of } e \} \]

For each \(U \in U_K \), let \(f_U = \frac{\chi_U}{|U|} \), where \(|U| \) denotes the Haar measure of \(U \). On the other hand, since \(K \) is relatively compact by [14, Lemma 1.3.3], there exists a positive real number \(b \) such that \(|\tau(x)| \leq b \) for all \(x \in K \). So

\[\|f_U\|_{\tau(n)} \leq 1 + b + \ldots + b^n \quad (U \in U_K). \]

Also, similar to the group algebra case, for each \(f \in L^1(G)_{\tau(n)} \) we have \(\|f_U * f - f\|_{\tau(n)} \to 0 \) when \(U \) tends to \{e\}. Therefore, \(\{f_U\}_{U \in U_K} \) is a BAI for \(L^1(G)_{\tau(n)} \).

Remark 4.8. Using the above remarks one can see that in general \(L^1(G)_{\tau(n)} \) is not an abstract Segal algebra with respect to \(L^1(G) \), because \(L^1(G)_{\tau(n)} \) has a b.a.i and in general \(L^1(G) \neq L^1(G)_{\tau(n)} \). But it is well-known that if \(S \) is an abstract Segal algebra with respect to \(L^1(G) \) such that has a BAI, then \(S = L^1(G) \).

Suppose that \(G \) is compact and \(w \) is a weight on \(G \). So, by Lemma 1.3.3 and Corollary 1.3.4 of [14], there exists positive real number \(b \) such that \(1 \leq w(x) \leq b \) for all \(x \in G \). Hence, \(L^1(G, w) \) is topologically isomorphic to \(L^1(G) \). Now, using Proposition 4.4 and the proof of Theorem 4.3, we have the following corollary. Note that " \(\cong \) " means topologically isomorphic.

Corollary 4.9. If \(G \) is a compact group, then \(L^1(G)_{\tau(n)} \) is a BSE-algebra and we have the following relations:

\[L^1(G, |\tau^n|) \cong L^1(G)_{\tau(n)} \cong L^1(G). \]

Remark 4.10. For every integer \(k \) with \(0 \leq k \leq n \), we have,

\[L^1(G)_{\tau(n)} \subseteq L^1(G, |\tau^k|). \]

Therefore,

\[\hat{G} \cup \hat{G}(|\tau|) \cup \ldots \cup \hat{G}(|\tau^n|) \subseteq \Delta(L^1(G)_{\tau(n)}). \]

Now, using Remark 4.6, clearly every \(\varphi \in \Delta(L^1(G)_{\tau(n)}) \) can be extended to a character of \(L^1(G, |\tau^k|) \) for each \(0 \leq k \leq n \). So,

\[\Delta(L^1(G)_{\tau(n)}) = \hat{G} \cup \hat{G}(|\tau|) \cup \ldots \cup \hat{G}(|\tau^n|). \]

Note that by the above relation, we conclude that \(L^1(G)_{\tau(n)} \) is semi-simple.
Remark 4.11. Put $M(G)_{\tau(n)} = \bigcap_{k=1}^{n} M(G, |\tau|^k)$ and define the following norm:
\[\|\mu\|_{\tau(n)} = \sum_{k=0}^{n} \|\mu|\tau|^k\|_{M(G)} \quad (\mu \in M(G)_{\tau(n)}). \]

A direct use of the convolution product shows that $(M(G)_{\tau(n)}, \|\cdot\|_{\tau(n)})$ is a normed algebra such that
\[M(G)_{\tau(n)} \subseteq \mathcal{M}(L^1(G)_{\tau(n)}). \tag{4.1} \]

We do not know whether the converse of the above inequality is hold or not. Clearly, if τ is bounded, then $M(G) \cong M(G)_{\tau(n)}$ and so the converse of the above inequality holds by Wendel’s Theorem.

As it is shown in [12, Remark 3.2], if B is an abstract Segal algebra with respect to A, then $C_{BSE}(\Delta(B)) \subseteq C_{BSE}(\Delta(A))$. If $A = L^1(G)$ and $B = L^1(G)_{\tau(n)}$ although B is not an abstract Segal algebra with respect to A in general, but we have a similar result as follows. We prove it for the sake of completeness and convenience of the reader.

Proposition 4.12. Let $A = L^1(G)$ and $B = L^1(G)_{\tau(n)}$. Then we have
\[\widehat{\mathcal{M}(B)} \subseteq C_{BSE}(\Delta(B)) \subseteq C_{BSE}(\Delta(A)) = \widehat{\mathcal{M}(A)}. \]

Proof. Since B has a BAI, $\widehat{\mathcal{M}(B)} \subseteq C_{BSE}(\Delta(B))$.

To see the second inequality, let $f \in A^*$. In view of the following relation
\[|f(b)| \leq \|f\|_{A^*} \|b\|_A \leq \|f\|_{A^*} \|b\|_{\tau(n)} \quad (b \in B), \]
we have
\[\|f\|_{B^*} \leq \|f\|_{A^*}. \tag{4.2} \]

Now, let $\sigma \in C_{BSE}(\Delta(B))$, so there exists $C > 0$ such that for each $\varphi_1, \ldots, \varphi_n \in \Delta(B)$ and complex numbers c_1, \ldots, c_n
\[\left| \sum_{i=1}^{n} c_i\sigma(\varphi_i) \right| \leq C \left\| \sum_{i=1}^{n} c_i\varphi_i \right\|_{B^*}. \]

If for each $1 \leq i \leq n$ we take $\varphi_i \in \Delta(A) = \widehat{G} \subseteq \Delta(B)$ and using relation 4.2 we conclude that
\[\left| \sum_{i=1}^{n} c_i\sigma(\varphi_i) \right| \leq C \left\| \sum_{i=1}^{n} c_i\varphi_i \right\|_{B^*} \leq C \left\| \sum_{i=1}^{n} c_i\varphi_i \right\|_{A^*}. \]

Hence σ is an element of $C_{BSE}(\Delta(A))$, which completes the proof. \qed

We end this paper with the following questions and conjecture.

Conjecture: We conjecture that Theorem 2.7 is valid for every locally compact group.
Question: Are the converse of Theorem 4.3 and Relation 4.1 hold?

References

1. J. T. Burnham, Closed ideals in subalgebras of Banach algebras I, Proc. Amer. Math. Soc. 32 (1972), 551–555.
2. H. G. Dales, Banach algebras and automatic continuity, Clarendon press, Oxford, 2000.
3. J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. 84 (1979), 309–325.
4. E. G. Effros and Z-J. Ruan, Operator spaces, Clarendon Press, Oxford, 2000.
5. B. Forrest, Arens regularity and discrete groups, Pacific. J. Math. 151 (1991), no. 2, 217–227.
6. , Some Banach algebras without discontinuous derivations, Proc. Amer. Math. Soc. 114 (1992), no. 4, 965–970.
7. B. E. Forrest, Completely bounded multipliers and ideals in A(G) vanishing on closed subgroups, Contemp. Math. 363 (2004), 89–94.
8. B. E. Forrest, V. Runde, and N. Spronk, Operator amenability of the Fourier algebra in the cb-multiplier norm, Can. J. Math. 59 (2007), 966–980.
9. J. Inoue and S.-E. Takahasi, Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math.(Szeged) 66 (2000), 257–271.
10. , Segal algebras in commutative Banach algebras, Rocky Mountain J. Math. 44 (2014), no. 2, 539–589.
11. C. A. Jones and C. D. Lahr, Weak and norm approximate identities are different, Pacific J. Math. 72 (1977), no. 1, 99–104.
12. Z. Kamali and M. L. Bami, Bochner-Schoenberg-Eberlein property for Segal algebras, Proc. Japan Acad. Ser. A 89 (2013), 107–110.
13. , The Bochner-Schoenberg-Eberlein property for L^1(\mathbb{R}^+), J. Fourier Anal. Appl. 20 (2014), no. 2, 225–233.
14. E. Kaniuth, A course in commutative Banach algebras, Springer Verlag, Graduate texts in mathematics, 2009.
15. E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier Stieltjes algebras, Trans. Amer. Math. Soc. 362 (2010), 4331–4356.
16. J. Laali and M. Fozouni, On \Delta\-weak \phi\-amenable Banach algebras, U. P. B. Sci. Bull. Series A 77 (2015), no. 4, 165–176.
17. M. Nemati, On generalized notions of amenability and operator homology of the Fourier algebra, Qua. J. Math. 68 (2017), no. 3, 781–789.
18. S. Sakai, Weakly compact operators on operators algebra, Pacific J. Math. 14 (1964), no. 2, 659–664.
19. E. Samei, N. Spronk, and R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math. 62 (2010), 845–869.
20. S.-E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc. 110 (1990), 149–158.

Mohammad Fozouni
Department of Mathematics, Gonbad Kavous University, P.O.Box 163, Gonbad-e Kavous, Iran.
Email: fozouni@gonbad.ac.ir

Mehdi Nemati
Department of Mathematical Sciences, Isfahan University of Technology
Isfahan 84156-83111, Iran
Email: m.nemati@cc.iut.ac.ir