Dimension of Alexandrov Topologies

Patrick Erik Bradley and Norbert Paul

May 9, 2013

Abstract

We prove that the Krull dimension of an Alexandrov space of finite height can be characterised with the specialisation preorder of its associated T_0-space.

A topological space is called Alexandrov, if the intersection of an arbitrary family of closed subsets is closed. It is well known that an Alexandrov topology on a set X is determined by the specialisation preorder \leq given as:

$$x \leq y :\iff x \in \text{cl}\{y\},$$

and it is well known that the specialisation preorder is a partial order if and only if X is a T_0-space.

A topological space X is irreducible, if it is not the union of two proper, non-empty, closed subsets B, C:

$$X = B \cup C \Rightarrow X = B \text{ or } X = C.$$

For a topological space X, there is the Krull dimension, defined as the supremum of all lengths n of chains

$$X_0 \subset X_1 \subset \cdots \subset X_n$$

with proper inclusions of non-empty closed irreducible subsets. The Krull dimension of the empty space \emptyset is defined as -1. A space is called finite dimensional, if its Krull dimension is a finite number.

For an Alexandrov space X, there is the height, defined as the supremum of all lengths n of chains

$$\text{cl}\{x_0\} \subset \cdots \subset \text{cl}\{x_n\}$$

with proper inclusions. In case X is a T_0-Alexandrov space, then the height coincides with the supremum of all lengths of chains

$$x_0 \leq \cdots \leq x_n$$

where $x_i \neq x_{i+1}$ for $i = 0, \ldots, n-1$. An Alexandrov space is said to be of finite height, if its height is a finite number.

The height and the Krull dimension of an Alexandrov space are related, because of the following Lemma which holds true in any topological space:
Lemma 1. Let X be a topological space. Then $\text{cl} \{x\}$ is irreducible for any $x \in X$.

Proof. Notice that $\text{cl} \{x\}$ is the smallest closed subset of X containing x. Hence, if

$$\text{cl} \{x\} = B \cup C$$

is the union of closed subsets B, C of $\text{cl} \{x\}$ in the subspace topology with $B \not\subseteq C$ and $C \not\subseteq B$, then first of all, B and C are also closed in X, because $\text{cl} \{x\}$ is closed in X, and closedness is transitive: F closed subset of G, and G closed subset of H implies that F is a closed subset of H. Consequently, x cannot lie in both B and C, because $\text{cl} \{x\}$ is the smallest closed subset of X containing a. Hence, we may assume that $x \in B$ and $x \notin C$. But then x is contained in the proper subset B of $\text{cl} \{x\}$ which is closed in X. This cannot be, because $\text{cl} \{x\}$ is the smallest closed subset of X containing a. This proves that $\text{cl} \{x\}$ is irreducible.

If the height of an Alexandrov space is finite, then there is a simple characterisation of irreducible subsets.

Lemma 2. A closed subset A of an Alexandrov space X of finite height is irreducible if and only if

$$A = \text{cl} \{a\},$$

i.e. A is the closure of a point $a \in A$.

Proof. In Lemma 1 it was shown that $\text{cl} \{a\}$ is irreducible.

Let the closed set A be irreducible. If $A \neq \text{cl} \{x\}$ for any $x \in A$, then

$$A = \text{cl} (A \setminus \text{cl} \{x\}) \cup \text{cl} \{x\}$$

is the union of two proper non-empty closed subsets. Hence, for all $x \in A$:

$$A = \text{cl}(A \setminus \text{cl} \{x\}),$$

because $A \neq \text{cl} \{x\}$ and A is irreducible. Since $x \in A$, it follows that the open set $U_x := \{u \in X \mid x \leq u\}$ has a non-empty intersection with $A \setminus \text{cl} \{x\}$. In other words, there exists $y \in A \setminus \text{cl} \{x\}$ such that $y \geq x$. Now $A \setminus \text{cl} \{x\}$ contains a maximal element a such that $a \geq x$. It is maximal in the sense that for all $b \in A \setminus \text{cl} \{x\}$ with $b \geq a$ it holds true that $\text{cl} \{b\} = \text{cl} \{a\}$. Otherwise there would be an infinite ascending chain

$$\text{cl} \{a\} \subset \text{cl} \{b\} \subset \text{cl} \{c\} \subset \ldots$$

with strict inclusions, where $a, b, c, \ldots \in A \setminus \text{cl} \{x\}$. This contradicts the finiteness of the height of X. So, from

$$A = \text{cl}(A \setminus \text{cl} \{a\}),$$

it follows that there is $b \in A \setminus \text{cl} \{a\} \subseteq A \setminus \text{cl} \{x\}$ such that $b \geq a$. Hence, by the maximality property of a, it follows that $\text{cl} \{a\} = \text{cl} \{b\}$ which cannot be, as otherwise $b \in A \setminus \text{cl} \{b\}$.

2
Let X be a topological space which is Alexandrov with specialisation pre-order \leq. There is a natural equivalence relation \sim on X:

$$x \sim y :\Leftrightarrow x \leq y \text{ and } y \leq x,$$

and let $X_0 := X/\sim$ be the Kolmogorov quotient. It is a T_0-space, its induced specialisation preorder is a partial order. There is a canonical map $\pi: X \rightarrow X_0$ which takes each $x \in X$ to its equivalence class. It has the important property:

$$x \leq y \iff \pi(x) \leq \pi(y) \quad (1)$$

Lemma 3. The map $\pi: X \rightarrow X_0$ induces a bijection between sets

$$\{\text{cl}\{x\} \mid x \in X\} \cong \{\text{cl}\{x_0\} \mid x_0 \in X_0\} \quad (2)$$

Proof. First, observe that $\pi(\text{cl}\{x\}) = \text{cl}\{\pi(x)\}$. Namely, $y \in \text{cl}\{x\}$ implies $\pi(y) \in \text{cl}\{\pi(x)\}$ by continuity, and $\pi(y) \in \text{cl}\{\pi(x)\}$ implies $\pi(y) \leq \pi(x)$, from which it follows by (1) that $y \leq x$, i.e. $x \in \text{cl}\{y\}$.

Secondly, observe that $\pi^{-1}(\text{cl}\{\pi(x)\}) = \text{cl}\{x\}$. Here, the inclusion \supseteq is clear, because the left hand side is closed and contains x. For the other inclusion $\subseteq: y \in \pi^{-1}(\text{cl}\{\pi(x)\})$ implies $\pi(y) \leq \pi(x)$, hence $y \leq x$ by (1), i.e. $y \in \text{cl}\{x\}$.

By those two observations, we have established the bijection (2).

Theorem 1. An Alexandrov space X is finite dimensional if and only if it is of finite height. In this case, the Krull dimension and the height of X coincide. Furthermore, this number equals the height and the Krull dimension of the Kolmogorov quotient of X.

Proof. Clearly, if X is of finite dimension, then X is of finite height. The converse assertion is an immediate consequence of Lemma 2 from which it also follows that the Krull dimension and height coincide, if they are finite. The last assertion follows from the fact that the height of X equals the height of X_0, and that the Krull dimension of X equals the Krull dimension of X_0. This latter statement follows from Lemma 3.

\square