Non-cytotoxic systemic treatment in malignant peripheral nerve sheath tumors (MPNST): A systematic review from bench to bedside

Enrico Martin, Nayan Lamba, Uta E. Flucke, C. Verhoef, J. Henk Coert, Yvonne M.H. Versleijen-Jonkers, Ingrid M.E. Desar

Department of Plastic and Reconstructive Surgery, University Medical Center, Utrecht, The Netherlands
Cushing Neurosurgical Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
Department of Pathology, University Medical Center, Utrecht, The Netherlands
Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
Department of Surgical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands

ARTICLE INFO

Keywords:
Malignant peripheral nerve sheath tumors MPNST Systemic treatment Target therapy Checkpoint inhibitors Oncolytic virus Trials Systematic review

ABSTRACT

Background: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Once metastasized, prognosis is poor despite regular treatment with conventional cytotoxic drugs. This study reviews the preclinical and clinical results of non-cytotoxic systemic therapy in MPNST.

Methods: A systematic search was performed in PubMed and Embase databases according to the PRISMA guidelines. Search terms related to ‘MPNST’, ‘targeted therapy’, ‘immunotherapy’, and ‘viral therapy’ were used. Only in vivo studies and clinical trials were included. Clinicaltrials.gov was also searched for any ongoing trials including MPNST patients. Qualitative synthesis was performed on all studies stratifying per target: membrane, cytoplasmic, nuclear, immunotherapy and oncolytic viruses, and other. In vivo studies were assessed for treatment effect on tumour growth (low/intermediate/high), survival, and metastases. Clinical trials were assessed on response rate, progression-free survival, and overall survival.

Results: After full-text screening, 60 in vivo studies and 19 clinical trials were included. A total of 13 trials are ongoing and unpublished. The included trials displayed relatively poor response rates thus far, with patients achieving stable disease at best. Inhibiting cytoplasmic targets most commonly yielded high treatment effect, predominantly after mTOR inhibition. Oncolytic viruses and angiogenesis inhibition also demonstrated intermediate to high effect. Therapies including a combination of drugs were most effective in controlling tumor growth. Several ongoing trials investigate potentially promising pathways, while others have yet to be established.

Conclusion: Targeting the PI3K/Akt/mTOR pathway seems most promising in the treatment of MPNSTs. Oncolytic viruses and angiogenesis inhibition represent emerging therapies that require further study. Combinations of targeted therapies are most likely key to maximize treatment effect.

1. Introduction

Malignant peripheral nerve sheath tumors (MPNSTs) are rare, but aggressive soft tissue sarcomas (STS) with high rates of recurrence and metastasis (Carlit et al., 2005; Stucky et al., 2012; Valentin et al., 2016). Almost half of all cases are related to neurofibromatosis type I (NF1), while others occur sporadically or after radiation exposure (Stucky et al., 2012; Zou et al., 2009). The NF1 gene is commonly affected in MPNSTs causing the loss of neurofibromin, a Ras inhibiting enzyme (Basu et al., 1992). Ras activation results in the downstream activation of Ras pathways, leading to upregulation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) (Endo et al., 2013). However, loss of neurofibromin alone is not enough to cause an MPNST (Rüwe et al., 1999). Research over the last three decades has implicated multiple factors in the pathogenesis of MPNSTs, including loss of function in TP53, CDKN2A, SUZ12, and PTEN genes, as well as amplification of epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), and MET (Beert et al., 2011; De Raedt et al., 2014; Legius et al., 1994; Maslia-Plantchon et al., 2013; Upadhyaya et al., 2012). Despite our increased understanding of the...
complex biology underlying MPNSTs, prognosis has remained poor, with 5-year survival rates ranging from 30 to 60% in patients who have undergone curative surgery of their tumor, and even lower rates in those with advanced and metastatic disease (Carli et al., 2005; Ducatman et al., 1986; Stucky et al., 2012; Valentini et al., 2016).

Surgery with wide negative margins remains the mainstay treatment for MPNST (Stucky et al., 2012; Valentini et al., 2016). Radiotherapy is commonly used either postoperatively or in a neoadjuvant setting as it improves local control, but does not affect overall survival (Bradford and Kim, 2015; Kahn et al., 2014; Stucky et al., 2012). In a study investigating neoadjuvant chemotherapy, histotype-guided treatment of four STS types, including MPNST (this cohort was treated with etoposide-ifosfamide), has not shown any benefit compared to standard anthracycline based chemotherapy (Gronchi et al., 2017). Therefore, there has thus far been no rationale for treating MPNST differently from other STS. Neoadjuvant chemotherapy could be considered for high-grade, large, and deep MPNST (Gronchi et al., 2017; Higham et al., 2017), and may allow initially inoperable patients to become operable (Carli et al., 2005; Kroep et al., 2011). However, over 10% of MPNST patients present with unresectable or metastatic disease (Carli et al., 2005; Valentini et al., 2016; Wong et al., 1998). Additionally, 40–60% of patients receiving treatment with curative intent will develop metastatic disease (Anghileri et al., 2006; Wong et al., 1998; Zehou et al., 2013).

For the whole group of STS, first line palliative chemotherapy consists of an anthracycline (doxorubicin or epirubicin) containing schedule. This might be combined doxorubicin and ifosfamide or doxorubicin monotherapy. Overall, a clinical response rate of approximately 21% has been reported for MPNST treated with combined doxorubicin and ifosfamide (Kroep et al., 2011). Adding ifosfamide to doxorubicin has improved progression-free survival (PFS), but not overall survival (OS), and comes at the cost of increased toxicity (Judson et al., 2014).

The high rates of advanced and metastatic disease and poor response to standard chemotherapy highlight the need for novel therapies in the treatment of MPNST. Targeted therapy and immunotherapy has brought new options to many other cancer types, but is not yet established in STS in general or MPNST specifically. Especially target specific, non-cytotoxic treatments are of interest as they may specifically target tumors and have limited systemic side-effects. As insights in the differences between STS subtypes are growing, more specific testing to identify and subsequent personalization of treatment is necessary; however, given that MPNST represent a rare sarcoma subtype, such personalization has thus far been challenging. To better understand emerging treatment options, we pooled the available literature and performed a systematic review of non-cytotoxic systemic therapies in MPNST, aiming to guide future research efforts by identifying the most relevant targets and combinations.

2. Methods

2.1. Literature search

A systematic search was performed in both PubMed and Embase databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, in order to identify all potentially relevant articles published from 2000 to 2018. The exact search string was built with the help of a professional librarian using search terms related to ‘MPNST’ and non-cytotoxic treatments. The exact search syntaxes for PubMed and Embase are provided in Supplemental Table S1. Preclinical studies were included if they studied non-cytotoxic drugs on MPNSTs in vivo. Clinical studies were included if they presented results of non-cytotoxic systemic therapy specifically in MPNST patients. Articles were excluded if they were retrospective or single case studies, reviews, presented non-specific MPNST data, included data on cytotoxic drugs or drugs that were only tested in vitro, or did not provide data on tumor growth, survival, or metastases. Clinicaltrials.gov was also searched with synonyms of ‘MPNST’ to obtain all ongoing non-cytotoxic drug trials enrolling MPNST patients. Cross-referencing of included papers and registered trials was performed, which identified six additional papers. These studies did not include a synonym of MPNST in either their title or abstract. The initial review was carried out by two independent authors (EM, NL). Disagreements were solved through discussion, in which one additional senior author was involved (ID).

2.2. Data extraction and synthesis

Data extracted from preclinical studies included: animal model used, most effective treatment regimen studied, tissues investigated, and treatment effect on tumor growth, survival, and metastasis. The treatment effect on tumor growth was evaluated according to the mean relative tumor volume (RTV) comparing the latest mean volume measurement of the control group (C) to the mean volume of the treatment group (T) at that time point (Houghton et al., 2007; Plowman et al., 1999): T/C ≤15% represented high effect (black); T/C ≤45% but >15% represented intermediate effect (dark gray); and T/C > 45% represented low effect (light gray, Table 1). Tumor growth was either assessed by tumor volume, weight, or area. Drugs were categorized as membrane targets, cytoplasmic targets, nuclear targets, immunotherapy and oncolytic viruses, or other targets.

Data extracted from clinical trials included: study design, number of patients, age of population, treatment regimen, and treatment effect on response rate, PFS, and OS. Study phase, country, intervention, anticipated accrual, and end date were extracted from registered unpublished trials.

Qualitative synthesis was performed summarizing data from preclinical and clinical studies according to target pathway, immunotherapy and oncolytic viruses, and a rest group.

3. Results

Following removal of duplicates, a total of 1938 articles and registered trials were identified in PubMed and Embase databases. Title/abstract screening resulted in selection of 203 potentially relevant articles, of which sixty-six were selected for qualitative synthesis after full-text screening (Fig. 1). A total of sixty preclinical in vivo studies were found that used numerous genetically engineered mouse models (GEMM), (non)-cultured NF1 and sporadic patient xenografts, allografts from GEMMs, and one zebrafish model (Table 1). Nineteen trials were identified, of which six have already been published (Table 2), and thirteen are ongoing (Table 3). Fig. 2 presents the most important target pathways identified in MPNSTs.

3.1. Membrane targets – in vivo

Eight studies investigated membrane targets in vivo (Table 1). Six used receptor tyrosine kinase (RTK) targeted treatments with intermediate to high effect on tumor growth (Ki et al., 2017; Lock et al., 2016; Mo et al., 2013; Ohishi et al., 2013; Torres et al., 2011; Wu et al., 2018). The addition of verteporfin (TAZ/YAP inhibitor) to sorafenib yielded intermediate effects on tumor growth in an allograft model, while monotherapy of either drugs had significantly worse effects (Wu et al., 2018). The chemokine receptor CXCR4 stimulates cell cycle progression through PI3K and β-catenin signalling. In one in vivo study, inhibition of CXCR4 showed intermediate effect on tumor growth and increased survival of mice (Mo et al., 2013). Two in vivo studies investigated the effect of estrogen receptor blockade; one found a low effect on tumor growth (Byer et al., 2011), and another showed that the addition of a calmodulin inhibitor enhanced the effect on tumor growth (Brosius et al., 2014).
Author, year	Model	Regimen	Pathway	Tissue	Membrane targets	NF1*	Growth†	Survival‡	Metastasis§
Bystr, 2011	OXM	Tamoxifen	ER	STS1-14	NF1	S	X	A	A
Torres, 2011	XM	Cabroabrinib	Multikinase (incl. MET, VEGFR2)	STS117	X	A	X	A	
Mc, 2013	A.A., GEMM	AMD3100	CXCR4	aMPNST	X	X	A	X	
Ohlson, 2013	XM	Imatinib	Multikinase (incl. c-KIT)	HS6Sc2	S	NFX	X	A	
Bresolin, 2014	OXM	Tamoxifen + etbrusaprazine	ER, calmodulin	STS114	S	X	A	X	
Lock, 2016	GEMM	Cabroabrinib + PDD035901	Multikinase (incl. MET, VEGFR2), MEK	NFX	S	X	A	X	
Ki, 2017	ZFM	Sunitinib	Multikinase (incl. VEGFR)	NF1^{III}	X	X	A	X	
Wu, 2018	AA	Sorafenib + verteporfin	Multikinase (incl. VEGFR), TAZ, VAP	Lap1/2^{III}	S	X	A	A	

Cytokinetic targets

Author, year	Model	Regimen	Pathway	Tissue	Membrane targets	NF1*	Growth†	Survival‡	Metastasis§
Hisahara, 2006	XM	Sichuan	PAK1	S462	NF1	S	X	X	X
Johansson, 2008	GEMM	Sorafenib	mTOR, ERK	STS120	S	X	A	X	
De Concetti, 2009	XM	Sta 3 & CAPE	PAK1	S462	X	A	X	X	
Lee, 2009	XM	OSI011	PDK1	HMS-97	S	X	A	X	
Qi, 2009	XM	Sunitinib	Lynasomes	STS120	X	X	X	X	
Shariat, 2010	XM	Cisplatin	STAT3	STS14	X	X	X	X	
Bhote, 2010	XM	Sorafenib	mTOR	NA	X	A	X	X	
De Raedel, 2014	GEMM	Sorafenib + IPI-544	mTOR, Hsp90	NFX	S	X	A	X	
Ghadiri, 2010	XM	Vincristine + L-glutamine	PKC, mTOR, autophagy	STS120	S	X	X	A	
Dond, 2013	GEMM	PDD035901	MEK	NF1^{III}	X	X	X	X	
Jenden, 2013	XM	PDD035901	MEK	S462Y	X	X	X	X	
Brangade, 2014	XM	Everolimus	mTOR	S462Y	X	X	X	X	
De Raedel, 2014	GEMM	PDD035901 + IQ1	MEK, BET	NFX	S	X	A	X	
Malison, 2014	GEMM	Sorafenib + PDD035901	mTOR, MEK	NFX	X	X	A	X	
Patwary, 2014	XM	Sorafenib + pelitinib	mTOR, multikinase (ERK, cKIT)	MPNST	S	X	X	X	
Watson, 2014	GEMM	Everolimus + PDD035901	mTOR, MEK	NF1^{III}, Pel^{III}	X	X	A	X	
Wu, 2014	XM	FLLL32	JAK2/STAT3	S462Y	X	X	A	X	
Yamada, 2015	XM	Everolimus + bortezomib	mTOR, peptase	NF1^{III}	X	X	A	X	
Castlefaghi, 2015	OXM	Sorafenib + doxorubicin + sorafenib	mTOR, multikinase (VEGFR)	NF1^{III}	X	X	A	X	
Soltkin, 2015	XM	Sunitinib + sorafenib	mTOR	MPNST	X	X	X	X	
Kendall, 2016	XM	PDD035901	MEK	S462Y	X	X	X	X	
Sonu, 2016	AA	PDD035901 + PTT	MEK	M2	X	X	A	X	
Malison, 2017	GEMM	Sorafenib + camptothecin	mTOR, HDAC	NFX	X	X	A	X	
Semenenko, 2017	XM	Fra1038 +/- PDD035901	PAK1, MEK	STS120	S	X	A	X	

Nuclear targets

Author, year	Model	Regimen	Pathway	Tissue	Membrane targets	NF1*	Growth†	Survival‡	Metastasis§
Hisahara, 2005	XM	Dacoppeptide	HDAC	Sh01	NF1	S	X	X	X
Lopez, 2011	XM	Ablenastin + chloroquine	HDAC, autophagy	STS120	S	X	X	X	
Panel, 2012	XM	Ablenastin	AURKA	S462Y	NF1	S	X	X	X
Mohan, 2013	XM	Ablenastin	AURKA	NF1-MPNS	S	X	X	X	
Panel, 2014	AA	IQ1	BET	aMPNST	X	X	A	X	
Lopez, 2015	AA	HDAC8	HDAC8	MPNST-SEP91	S	X	X	X	
Nau, 2015	XM	TAK-900	PAK1	MPNST	S	X	X	X	
Perez, 2015	XM	Pulsecitod	C4Dk46	S1A	X	X	X	X	
Zhang, 2015	XM	SP6001	S2H2	MPNST	S	X	X	X	
Kvitin, 2016	XM	Olaparib	PARP	STS120	S	X	X	X	
Nau, 2017	XM	Selinexor + carboplatin	XPO1, proteasome	MPNST	X	X	X	X	
Payne, 2018	OXM	Ablenastin	AURKA	STS120	S	X	X	X	

Immunotherapy and oncologic tissues

Author, year	Model	Regimen	Pathway	Tissue	Membrane targets	NF1*	Growth†	Survival‡	Metastasis§
Liu, 2006	AA	G475-P4	oHSV	M2	X	X	X	X	
Liu, 2006	AA	G475-dePGFR	oHSV	M2	X	X	X	X	
Muller, 2007	XM	sT3	STS120	S	X	X	X	X	
Muller, 2008	XM	sT3	STS120	S	X	X	X	X	
Maldonado, 2010	XM	sHSV-MDK-4.5	oHSV	STS120	S	X	X	X	
Antoszczyk, 2014	OXM, AA	G475-IL12/P4	oHSV	M2	X	X	X	X	
Deyle, 2015	XM	MV-NIS	oMV	STS14	X	X	X	X	
Carter, 2017	XM	HSV1716 + alitretinib	oHSV, AURKA	S462Y	NF1	S	X	X	

Other

Author, year	Model	Regimen	Pathway	Tissue	Membrane targets	NF1*	Growth†	Survival‡	Metastasis§
Mauthner, 2005	AA	DOX	Apoptosis	32-50	S	X	X	X	
Ghadiri, 2012	XM	Sepratrumon brendite	Survivin	MPNST	S	X	X	X	
Wang, 2012	XM	Topisomase	Apoptosis	STS120	S	X	X	X	
Denny, 2013	XM	PDE	Multitarget	S462	S	X	X	X	
Paul, 2013	XM	C3	TAK	STS120	S	X	X	X	
Zeweit, 2016	XM	Vertualpin A	Apoptosis	STS120	S	X	X	X	
Berta, 2017	XM	BE	Hydonan synthesis	STS120	S	X	X	X	

Table 1: Preclinical in vivo studies.

- NF1: NF1 patient cells or sporadic patient cells, b: either volume, weight, or area, low activity (light gray), intermediate activity (dark gray), high activity (black), c: increased survival (black) d: less metastases (black).
3.2. Membrane targets – trials

Four published clinical trials investigating the effect of an RTK inhibitor, of which one (Albritton et al., 2006) specifically examined MPNST patients (Table 2), were identified. None of the trials found an appreciable clinical response in MPNST patients, with only 0–20% of the patients achieving stable disease (Albritton et al., 2006; Chugh et al., 2009; Maki et al., 2009; Schuetze et al., 2016). Four additional trials were still ongoing at the time this review was written, one of which will only include MPNST patients. This study will evaluate the efficacy of the multikinase inhibitor pexidartinib in combination with mTOR inhibitor sirolimus (NCT02584647, Table 3). Multiple other trials were identified that will enroll patients with soft tissue sarcomas (NCT02584309, NCT02180867) and CD56 expressing tumors (NCT02452554) targeting additional membrane targets. One of these trials will investigate the effect of doxorubicin and ifosfamide with the addition of pazopanib, currently the only registered RTK inhibitor for STS, in a neoadjuvant setting including patients with resectable soft tissue sarcomas (NCT02180867).

3.3. Cytoplasmic targets – in vivo

Cytoplasmic targets were investigated in 25 in vivo studies (Table 1). Most studies (n = 22) focused on a target within the MAPK or the PI3K/Akt/mTOR pathway. In those targeting the PI3K/Akt/mTOR pathway, a high effect on tumor growth (14/17 cell lines) and survival was observed (3/3 cell lines). Targeting mTOR in combination with membrane targets (Castellsagué et al., 2015; Johansson et al., 2008; Patwardhan et al., 2014), other cytoplasmic targets (De Raedt et al., 2011; Malone et al., 2014; Watson et al., 2014), or an epigenetic target (Malone et al., 2014).
showed high effect on tumor growth (8/8 cell lines) and survival (3/3 cell lines). One study found a higher effect of pexidartinib compared to imatinib as an addition to mTOR inhibition (Patwardhan et al., 2014). The addition of sorafenib (targets include VEGFR, PDGFR, and Raf) to an mTOR inhibitor showed the best effect on tumor size in NF1-mutated xenografts, while the addition of doxorubicin showed best effects in sporadic patient xenografts (Castellsagué et al., 2015). The addition of a proteasome inhibitor to mTOR inhibition was only effective if radiotherapy was administered as well (Yamashita et al., 2014). The addition of a mitogen-activated protein kinase (MEK) inhibitor to mTOR inhibition did not prolong survival in a murine model, but did decrease toxicity compared to single agent usage (Watson et al., 2014). MEK inhibition itself did not show high effects on tumor growth (Dodd et al., 2013; Jessen et al., 2013; Kendall et al., 2016; Sweeney et al., 2016); however in combination with other target inhibitors the effect on tumor growth improved (5/5 cell lines) (De Raedt et al., 2014; Lock et al., 2016; Semenova et al., 2017a, b). The addition of silmarsertib, an epigenetic modulator of CK2, did not have a superior effect over MEK-inhibiting monotherapy (Kendall et al., 2016). PAK1 influences the MAPK pathway by activating MEK and ERK. In multiple studies, inhibition of PAK1 resulted in intermediate to high effects on tumor growth as a single drug (Demestre et al., 2009; Hirokawa et al., 2006; Semenova et al., 2017a, b). One study showed that the addition of a MEK inhibitor to a PAK1 inhibitor increased its effect in both NF1 and sporadic cell lines (Semenova et al., 2017a, b). Although EGFR inhibitors in MPNST have shown poor results in clinical studies,

Table 2

Clinical trials.

Author, year	Study design	N	Age	Drug	Pathway	Outcome		
Membrane targets								
Albrighton et al. (2006)	Phase II unresectable or metastatic MPNST	20	≥18	Erlotinib	EGFR	1 SD, 19 PD	2 months	4 months
Chuang et al. (2009)	Phase II metastatic or recurrent sarcomas	5	≥10	Imatinib	Multikinase (incl. c-Kit)	1 SD, 4 PD	NA	NA
Maki et al. (2009)	Phase II metastatic or recurrent sarcomas	12	≥18	Sorafenib	Multikinase (incl. VEGFR)	3 SD, 9 PD	1.7 months	4.9 months
Schuetze et al. (2016)	Phase II high-grade, advanced sarcomas	14	≥13	Dasatinib	Multikinase (incl. BCR/ABL)	14 PD	2-month: 14% 4-month: 7%	NA
Cytoplasmic targets								
Widemann et al. (2016)	Phase II recurrent or metastatic MPNST	25	≥18	Everolimus + Bevacizumab	mTOR, VEGF	3 SD, 22 PD	NA	NA
Nuclear targets								
Dickson et al. (2016)	Phase II advanced or metastatic sarcomas	10	≥18	Alisertib	AURKA	No response (SD and PD)	13 weeks, 12-week: 60%	69 weeks

Abbreviations: AURKA: aurora kinase A; CI: confidence interval; CR: complete remission; EGFR: endothelial growth factor receptor; mTOR: mammalian target of rapamycin; N: total MPNST patients included; NA: not available; OS: overall survival; PD: progressive disease; PFS: progression free survival; RR: response rate; SD: stable disease; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor.

Table 3

Current trials in advanced or metastatic MPNST.

NCT number	Country	Phase	Tumor type	N	Age	Drug	Pathway	Completion date
Membrane targets								
NCT02584647	US	I	STS	49	≥18	Pexidartinib + sirolimus	Multikinase, mTOR	10-2021
NCT02452554	US	II	CD56 expressing tumors (MPNST)	114	1–30	Lorvotuzumab mertansine	CD56	03-2020
NCT02584309	US	II	STS (MPNST)	73	≥18	Dasatinib	mTOR, VEGF	09-2021
NCT02180867	US	II/III’	STS (MPNST)	340	≥2	Dasatinib + ifosfamide + pazopanib	Anthracycline, PDGFRα	09-2019
Cytoplasmic targets								
NCT03433183	US	II	MPNST	21	≥18	Vistusertib + selumetinib	mTOR, MEK	09-2021
NCT02060209	US	I	STS	137	≥18	Sapanisertib ± pazopanib	mTOR, multikinase	09-2020
NCT03090201	US	IB	STS (MPNST)	24	≥18	CPI-0610	BET	03-2020
Nuclear targets								
NCT02986919	US	II	MPNST	18	≥18	Pembrolizumab	PD1	12-2014
NCT02983403	US	II	Rare tumors (MPNST)	707	≥18	Nivolumab + ipilimumab	PD1, CTLA4	08-2018
NCT02700230	US	I	MPNST	30	≥18	MV-NIS	oMV	06-2019
NCT0091931	US	I	Non-CNS solid tumors (MPNST)	18	7–30	HSV1716	oHSV	03-2018

Abbreviations: BET: bromo- and extra-terminal domain; CDK: cyclin-dependent kinase; CNS: central nervous system; Hsp90: heat shock protein 90; M: months; MEK: mitogen-activated protein kinase kinase; MPNST: malignant peripheral nerve sheath tumor; mTOR: mammalian target of rapamycin; N: accrual of patients; oHSV: oncolytic herpes simplex virus; oMV: oncolytic measles virus; PD1: programmed cell death protein 1; PDGFRα: platelet-derived growth factor receptor alpha; STS: soft tissue sarcoma; US: United States.

* Neoadjuvant in resectable disease.
downstream inhibition of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) showed intermediate to high effect \textit{in vivo} (Banerjee et al., 2010; Wu et al., 2014).

3.4. Cytoplasmic targets – trials

One trial evaluating the effect of mTOR inhibition in combination with bevacizumab, a VEGF inhibitor, demonstrated stable disease in 3/25 patients (Widemann et al., 2016). A total of three trials that were ongoing at the time of this review were investigating the role of an mTOR inhibitor in combination with a MEK inhibitor (NCT03433183), pazopanib (NCT02601209), or heat shock protein 90 (Hsp90) inhibitor (NCT02008877, Table 3). The latter trial was completed, although its results were not yet published.

3.5. Nuclear targets – \textit{in vivo}

The effect of nuclear target inhibitors was investigated in twelve studies, identifying this class of drugs to have intermediate to high effects on tumor growth (Table 1). Multiple studies found a high effect on survival (4/4 cell lines) or tumor growth (5/15 cell lines) \textit{via in vivo} inhibition of several epigenetic pathways (Hirokawa et al., 2005; Kivlin et al., 2016; Lopez et al., 2015, 2011; Mohan et al., 2013; Nair and Schwartz, 2015; Patel et al., 2014, 2012; Payne et al., 2018). Aurora kinase A (AURKA) is one of these epigenetic regulators, which regulates centrosome maturation and chromosome separation. Alisertib, an AURKA inhibitor was found to have a higher effect on tumor growth and survival compared to a combination of doxorubicin and ifosfamide \textit{in vivo} (Payne et al., 2018).

CDK4/6 and EZH2 act via influence on the cell cycle; \textit{in vivo} studies showed that their inhibition has intermediate effect on tumor growth (Perez et al., 2015; Zhang et al., 2015).

XPO1 is the main nuclear export protein and transports proteins such as survivin. One \textit{in vivo} study found intermediate effect of XPO1 inhibition combined with proteasome inhibitor carfilzomib (Nair et al., 2017).

3.6. Nuclear targets – trials

Although in a preclinical setting alisertib showed positive results, a trial that included ten MPNST patients found no tumor response (Table 2) (Dickson et al., 2016). Median PFS was thirteen weeks, with a median OS of sixty-nine weeks. A trial that was ongoing at time of publication was investigating the effect of a bromo- and extra-terminal
domain (BET) inhibitor in advanced or metastatic MPNST patients (NCT02986919, Table 3). An ongoing phase Ib trial enrolling patients with MPNSTs, among other soft tissue sarcomas, is investigating the effect of ribociclib, a CDK4/6 inhibitor, combined with doxorubicin (NCT03009201).

3.7. Immunotherapy and oncolytic viruses – in vivo

Next to tumor cell specific targeting, immunotherapy may also play a role in MPNST treatment. With an evolving role in other cancer types, no in vivo studies have thus far been published investigating immunotherapy regimens specifically in MPNST. Oncolytic viruses are thought to affect tumors in several ways, one of which involves the upregulation of the immune system. Eight studies investigated the effect of oncolytic viruses in MPNST in vivo (Table 1). Seven studies used an oncolytic herpes simplex virus (oHSV) with mostly intermediate to high effect (10/12 cell lines) on tumor growth (Antoszczyk et al., 2014; Currier et al., 2017; Liu et al., 2006a,b; Mahller et al., 2007, 2008; Maldonado et al., 2010). One study used an oncolytic measles virus (oMV) and showed high efficacy in one xenograft model, but low effect in another (Deyle et al., 2015). Almost all studies looked at survival and showed a statistically significant benefit for treatment with oncolytic viruses compared to a placebo control group. The addition of erlotinib, an EGFR inhibitor, did not significantly improve the efficacy compared to oHSV monotherapy in vivo (Mahller et al., 2007). However, additional AURKA inhibition was found to have a synergistic effect on both tumor growth and survival (Currier et al., 2017).

3.8. Immunotherapy and oncolytic viruses – trials

Two ongoing trials are investigating the role of PD1 checkpoint inhibitors (Table 3): one looks at PD1 inhibitors alone and includes MPNST patients only (NCT02691026), while the other study combines the PD1 inhibitor nivolumab with CTLA-4 inhibitor ipilimumab and includes patients with rare tumors, one of which is MPNST (NCT02834013).

No clinical trial has yet evaluated the effect of oncolytic viruses in MPNSTs. Two trials are registered of which one will use an oMV in MPNST patients only (NCT02700230) and the other, which is complete and whose results are pending, investigated the effect of an oHSV in non-central nervous system (CNS) solid tumors including MPNSTs (NCT00931931, Table 3).

3.9. Other targets – in vivo

Eight studies investigated other types of drugs, targeting different pathways including fatty acid synthase (FAS) (Patel et al., 2015), pigment epithelium-derived factor (PEDF) (Demestre et al., 2013), calcium channels (Semenova et al., 2017a,b), survivin (Ghadimi et al., 2012), hyaluronan synthesis (Ikuta et al., 2017), and other apoptosis-inducing pathways (Table 1) (Mashour et al., 2005; Wang et al., 2012; Zewdu et al., 2016). Most studies found an intermediate effect on tumor growth (6/9 cell lines), and only verticillins A and PDEF were found to have a high effect on tumor growth (Demestre et al., 2013; Zewdu et al., 2016). Docosahexaenoic acid (DHA) showed an intermediate effect on tumor growth, but increased survival significantly (Mashour et al., 2005). None of these drugs has yet been established in a trial setting that includes MPNST patients.

4. Discussion

MPNST still remains a highly aggressive sarcoma subtype with poor outcome despite regular cytotoxic treatment. Novel strategies to target metastatic MPNST and improve its outcomes, both in terms of survival as well as quality of life, are needed. In locally advanced disease, neoadjuvant treatment that can downsize the primary tumor and allow for subsequent surgical resection is also of value.

In this review, we sought to describe new approaches to treat advanced MPNST. Multiple membrane, cytoplasmic, and nuclear actors are potential targets in the therapy of MPNST, of which mTOR inhibition is most commonly investigated in vivo and has frequently resulted in high responses on tumor growth (81.3% of cell lines) and survival (100% of cell lines).

In vivo, RTK inhibitors that include VEGFR inhibition have also shown intermediate to high responses. However, monotherapy with an RTK inhibitor has not shown tumor regression clinically in MPNSTs except for a modest prolongation of median progression free survival in case of pazopanib treatment in all types STS (van der Graaf et al., 2012). Apart from two in vivo studies using cabozantinib, no other study has yet investigated the effect of MET inhibition, although it is a known contributor to malignancy in MPNSTs. RTK inhibitors targeting both the VEGF pathway as well as other pathways, or combinations with other treatment types might therefore be of interest.

Unfortunately, although MPNSTs are Ras-driven tumors, no drug has yet been found to successfully target Ras. Ras inhibitors are difficult to create due to a lack of well-defined druggable pockets and cavities on its surface (Simanshu et al., 2017). Targeting upregulated downstream targets of Ras is nevertheless possible. Besides upregulation of the PI3K/Akt/mTOR pathway, upregulation of the MAPK pathway in NFI tumors has been described several times (Endo et al., 2013). In this review we described the potential of mTOR inhibitors, which might be increased by the current development of more specific inhibitors of elements of the mTOR pathway. Although single agent MEK inhibition has not resulted in tumor suppression (Dodd et al., 2013; Jessen et al., 2013; Kendall et al., 2016), combinations with mTOR inhibitors might prove potent in terms of anti-tumorigenic effects, but at the cost of increased toxicity (Lock et al., 2016; Malone et al., 2014). The, transationally controlled tumour protein (TCTP), a downstream effector of both the MAPK and mTOR, can be successfully inhibited leading to cell death in NFI-associated tumors (Kobayashi et al., 2014), and was found to increase mTOR activity when upregulated, indicating a positive feedback loop. In vivo studies on MPNST models are, however, still warranted. Other targets of interest identified in this review are PAK1 inhibitors (Demestre et al., 2009; Hirokawa et al., 2006; Semenova et al., 2017a,b), as well as PI3K inhibitors. ERK inhibitors are being developed as well, which may have less toxicity, but their effect on MPNST cells is still unknown (Nissan et al., 2013).

While checkpoint inhibitors are gaining interest in other types of tumors, they have yet to be extensively studied in STS. Two ongoing trials will hopefully elucidate the role of these types of drugs in MPNST (NCT02691026, NCT02834013). Oncolytic viruses are showing efficacy without severe toxicity in various cancers including MPNSTs (Chiocca and Rabkin, 2014; Lichty et al., 2014). Moreover, as demonstrated for other tumors, an additional pathway inhibitor may give a synergistic effect when combined with oncolytic viruses (Currier et al., 2017). Overall, while therapies with oncolytic viruses appear promising in MPNST, more in vivo studies are needed to better understand their role as well as the role for any treatment combinations.

The lack of progress in the treatment of MPNST is multi-factorial. First, adequate preclinical models representing both NF1-associated MPNSTs as well as sporadic MPNSTs are lacking. The causal mechanisms behind NF1-associated MPNST may differ from those in sporadic MPNST, resulting in different sensitivity for treatment. This is supported by the fact that in conventional chemotherapy, NF1 patients are known to have a lower response rate (Carl et al., 2005; Ferrari et al., 2011; Higham et al., 2017). However, only few in vivo studies show a difference in response on tumor growth between NF1 and sporadic patient-derived models, while others show no difference. Thus, clinical translation of these differences might be difficult and should ultimately be assessed in clinical trials. Second, the preclinical data have to be robust before performing a clinical trial. For example, Albritton et al. based their trial on evidence found from one in vitro study (Li et al., 2011).
Declarations of interest

Agilent, M., Miceli, R., Fiore, M., Mariani, L., Ferrari, A., Munis, C., Lozza, L., Collini, P., Olmi, P., Casali, P.G., Piltz, S., Gronchi, A. 2006. Malignant peripheral nerve sheath tumors: prognostic factors and survival in a series of patients treated at a single institution. Cancer 107, 1065–1074. https://doi.org/10.1002/cncr.22996.

Antczak, S., Sipera, S., Shamsinoosh, A.O., Martuza, R.L., Rabkin, S.D. 2014. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol. 16, 1057–1066. https://doi.org/10.1093/neuonc/nou037.

Banerjee, S., Byrd, J.N., Gianino, S.M., Hartgrove, S.E., Rodriguez, F.J., Tunk gs, R.K., Reilly, K.M., Pivnicka-Worms, D.R., Gutman, D.H. 2010. The neurofibromatosis type 1 tumor suppressor controls cell growth by regulating signal transducer and activator of transcription-3 activity in vitro and in vivo. Cancer Res. 70, 1356–1366. https://doi.org/10.1158/0008-5472.CAN-09-2178.

Basu, T.N., Gutman, D.H., Fletcher, J.A., Glover, T.W., Collins, F.S., Downward, J. 1992. Ablation regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713–715. https://doi.org/10.1038/356713a0.

Beer, E., Brems, H., Daniels, B., de Wever, I., van Calenbergh, F., Schoenaers, J., Debiec-Rychter, M., Gevaert, O., de Raedt, T., van den Brul, E., de Ravel, T., Cichowski, K., Klueve, L., Mautner, V., Sciot, R., Legius, E. 2011. Atypical neurofibromas in neurofibromatosis. J. Neurooncol. 50, 1021–1032. https://doi.org/10.1007/s11064-011-0230-2.

Bradford, D., Kim, A. 2015. Current treatment options for malignant peripheral nerve sheath tumors. Curr. Treat. Options Oncol. 16, 328. https://doi.org/10.1007/s11864-015-0230-2.

Brosius, S.N., Turk, A.N., Byer, S.J., Longo, J.F., Kappes, J.C., Roth, K.A., Carroll, S.L., 2017. Combinatorial therapy with tamoxifen and trifluoperazine effectively inhibits malignant peripheral nerve sheath tumor growth by targeting complementary signaling cascades. J. Neurooncol. 73, 1078–1090. https://doi.org/10.1007/s11064-014-0230-6.

Byer, S.J., Eckert, J.M., Brossier, N.M., Lodfriemer-Miller, B.J., Albritton, K.H., Rankin, C., Coffin, C.M., Ratner, N., Budd, G.T., Schuetze, S.M., Randall, N.A., 2015. Current treatment options for malignant peripheral nerve sheath tumor growth in estrogen receptor-independent manner. Neuro Oncol. 13, 28–41. https://doi.org/10.1093/neuonc/nou464.

Carli, M., Ferrari, A., Mattie, A., Zanetti, I., Casanova, M., Bisogno, G., Cecchetto, G., Abagio, R., De Sio, L., Koschinski, E., Sotti, G., Treuern, J. 2005. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J. Clin. Oncol. 23, 8422–8430. https://doi.org/10.1200/jco.2005.10.4886.

Castellague, J., Gel, B., Fernández-Rodríguez, J., Llaltó, R., Blanco, I., Benavente, Y., Pérez-Sidónsola, D., García-del Muro, J., Villanueva, A., Cichowski, K. 2015. Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine. J. Med. Mol. Biol. 7, 608–627. https://doi.org/10.15252/emmm.201404430.

Chiozza, E.A., Rabkin, S.D., 2014. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res. 2, 295–300. https://doi.org/10.1158/2166-0262.CIR-14-0015.

Chugh, R., Warthen, J.K., Maki, R.G., Benjamin, R.S., Patel, S.R., Myers, P.A., Priefat, D.A., Reinke, D.K., Thomas, G.D., Keohan, M.L., Samuels, B.L., Baker, L.H. 2009. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a Bayesian hierarchical statistical model. J. Clin. Oncol. 27, 3148–3153. https://doi.org/10.1200/JCO.2008.20.5054.

Currier, M.A., Sprague, L., Rizvi, T.A., Natterk, B., Chen, C.-Y., Wang, P.-Y., Hutzen, B.J., Franzeek, M.R., Patel, A.V., Choueiry, K.E., Stray, K.A., Tannen, J.A., Conner, J., Ratner, N., Coppe, T.P. 2017. Aurora A kinase inhibition enhances oncolytic herpes virus as a novel therapy for malignant peripheral nerve sheath tumors. Oncotarget 8, 17412–17427. https://doi.org/10.18632/oncotarget.14885.

develop cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 20, 400–413. https://doi.org/10.1016/j.cccr.2011.08.014.

Demestre, D., Messerli, S.M., Celli, N., Shahhosseini, M., Klouw, L., Mautner, V., Maruta, H. 2009. CAPE (caffeic acid phenethyl ester)-based propidol extract (Bio 30) suppresses the growth of human neurofibromatosis (NF) tumor xenografts in mice. Phytochem. Res. 23, 226–230. https://doi.org/10.1002/ptr.2594.

Demestre, D., Terzi, M.Y., Mautner, V., Vajkoczy, P., Kurtz, A., Pina, A.L. 2013. Effects of pigment epithelium derived factor (PEDF) on malignant peripheral nerve sheath tumours (MPNSTs). J. Neurooncol. 115, 391–399. https://doi.org/10.1007/s11064-013-1252-x.

Dye, R.R., Escobar, D.Z., Peng, K.-W., Babovic-Vuckovic, D. 2015. Oncolytic measles virus as a novel therapy for malignant peripheral nerve sheath tumors. Gene 565, 140–145. https://doi.org/10.1016/j.gene.2015.04.001.
Stucky, C.-C.H., Johnson, K.N., Gray, R.J., Pockaj, B.A., Ocal, I.T., Rose, P.S., Wasif, N., Perez, M., Munoz-Galvan, S., Jimenez-Garcia, M.P., Marin, J.J., Carnero, A., 2015. RAS proteins and their regulators in Neurofibromatosis type-1. Biochimie 135, 1–5. https://doi.org/10.1016/j.biochi.2015.10.001.

Mohan, P., Castellsague, J., Jiang, J., Allen, K., Chen, H., Nemirovsky, O., Spyra, M., Hu, K., Khoe, L., Pujana, M.A., Villanueva, A., Maiter, V.F., Keats, J.J., Dunn, S.E., Lazar, C., Maxwell, C.A., 2013. Genomic imbalance of HMMR/RHAMM regulates the sensitivity and response of malignant peripheral nerve sheath tumour cells to aurora kinase inhibition. Oncotarget 4, 80–93. https://doi.org/10.18632/oncotarget.799.

Nair, J.S., Musi, E., Schwartz, G.K., 2015. Inhibition of polo like kinase 1 in sarcomas induces apoptosis that is dependent on Mcl-1 suppression. Cell Cycle 14, 3101–3111. https://doi.org/10.1089/cc.2015.07803.

Patwardhan, P.P., Wong, W.W., Hirose, T., Scheithauer, B.W., Schild, S.E., Gunderson, L.L., 1998. Malignant peripheral nerve sheath tumors: the experience of the French SarcomaGroup (GSF-GETO). Eur. J. Cancer 34, 1105–1119. https://doi.org/10.1016/S0959-8049(98)00420-0.

Watson, A.L., Anderson, L.K., Greeley, A.D., Keng, V.W., Rahrmann, E.P., Halfond, A.L., Powell, N.M., Collins, M.H., Rizvi, T., Moertel, C.L., Rainer, N., largespaada, D.A., 2014. Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multicentricity. Oncotarget 5, 1502–1514. https://doi.org/10.18632/oncotarget.1609.

Wang, W., Wu, H., Wu, B., Li, X., Zhang, M., Zhang, L., Lv, G., 2012. Effect of triptolide on malignant peripheral nerve sheath tumors in vitro and in vivo. J. Int. Med. Res. 40, 2284–2294. https://doi.org/10.1111/j.1365-2630.2012.02966.x.

Nair, J.S., Musi, E., Schwartz, G.K., 2015. Inhibition of polo like kinase 1 in sarcomas induces apoptosis that is dependent on Mcl-1 suppression. Cell Cycle 14, 3101–3111. https://doi.org/10.1089/cc.2015.07803.

Patwardhan, P.P., Wong, W.W., Hirose, T., Scheithauer, B.W., Schild, S.E., Gunderson, L.L., 1998. Malignant peripheral nerve sheath tumors: the experience of the French SarcomaGroup (GSF-GETO). Eur. J. Cancer 34, 1105–1119. https://doi.org/10.1016/S0959-8049(98)00420-0.