Detailed measurements of charmonium suppression in PbPb collisions at 2.76 TeV with CMS

Dong Ho Moon
(Korea University)
for the CMS Collaboration

Quark Matter conference, Washington DC
14th August, 2012
J/ψ in heavy-ion collisions

• One of the most powerful tools to understand the QGP
 – Heavy quarks created at the early stage and with a large momentum transfer in gluon-gluon fusion.
 – Sequential melting
 • By Debye screening.
 • Can play a role to quantify medium properties (as thermometer).

State	J/ψ (1S)	χ_c (1P)	ψ′ (2S)
m (GeV/c²)	3.10	3.53	3.68
r₀ (fm)	0.50	0.72	0.90

Υ (1S)	χ_b (1P)	Υ′ (2S)	χ_b′ (2P)	Υ″ (3S)
9.46	9.99	10.02	10.26	10.36
0.28	0.44	0.56	0.68	0.78

A. Mocsy
Eur.Phys.J.C61,2009
J/ψ in heavy-ion collisions

- At lower p_T
 - PHENIX observed less suppression at mid-rapidity than at forward rapidity
 - ALICE observed less suppression than PHENIX

- At higher p_T
 - CMS measured more suppression than STAR

- At LHC
 - CMS measured more suppression at higher p_T than ALICE at lower p_T

Phys. Rev. Lett. 98 (2007) 232301, arXiv:1107.0532, arXiv:1202.1383
J/ψ in heavy-ion collisions

- At lower p_T
 - PHENIX observed less suppression at mid-rapidity than at forward rapidity
 - ALICE observed less suppression than PHENIX

- At higher p_T
 - CMS measured more suppression than STAR

The difference between these results can be explained by various mixes of competing effects:
- Sequential melting
- Shadowing or saturation
- Regeneration

PHB PbPb $\sqrt{s_{NN}} = 2.76$ TeV
- CMS: $6.5 < p_T < 30$ GeV/c, $|y| < 2.4$
- ALICE: $2.5 < y < 4.0$ (Preliminary - HP 2012)

AuAu $\sqrt{s_{NN}} = 200$ GeV
- PHENIX: $|y| < 0.35$
- PHENIX: $1.2 < |y| < 2.2$
- STAR: $p_T > 5$ GeV/c, $|y| < 1.0$ (Preliminary)

Phys. Rev. Lett. 98 (2007) 232301, arXiv:1107.0532, arXiv:1202.1383
CMS detector

Calorimeters (Electromagnetic & Hadron)

Beam Scintillator Counters (BSC)

Hadron Forward Calorimeter (HF)

Muon Chamber (DT, RPC)

Inner Tracker (Silicon Strip & Pixel)

Muon Chamber (CSC, RPC)

Magnetic Field : 3.8 T

Muon

HCAL

|η| < 2.4

|η| < 5.2

ECAL

|η| < 3.0

Tracker

|η| < 2.5
Muon reconstruction

- Excellent muon identification & triggering in muon system.
- Excellent momentum resolution of tracking system.
 - Overall resolution: 1~2 %
Dimuon spectrum in 2011 PbPb

CMS Preliminary

PbPb $\sqrt{s_{NN}} = 2.76$ TeV

$\gamma(1,2,3S)$

$L_{\text{int}} (\text{PbPb}) = 147 \mu b^{-1}$

J/ψ

ρ, ω, ϕ

$\psi(2S)$

$\rho_{T} > 4 \text{ GeV/c}$

$m_{\mu\mu} (\text{GeV/c}^2)$
Dimuon spectrum in 2011 PbPb

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV
$\gamma(1,2,3S)$

Open Bottom: Fri 15:40
(Parallel 6A: Mihee Jo)

Quarkonia: Thu 11:05
(Plenary IVB: Camelia Mironov)

Bottomonia: Tue 16:45
(Parallel 2D: Guillermo B. Rangel)

Z, W: Wed 12:00
(Parallel 4C: Lamia Benhabib)

EWK: Thu 9:45
(Plenary IVA: Raphael de Cassagnac)

J/ψ, ρ, ω, ϕ, $\psi(2S)$

$\rho^\mu > 4$ GeV/c

$E_{T} \mu > 1$ GeV/c

$M_{\mu\mu}$ (GeV/c2)

Events/(GeV/c2)
Prompt/non-prompt J/ψ

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length ($l_{J/ψ}$)

$$l_{J/ψ} = L_{xy} \frac{m_{J/ψ}}{p_T}$$
Prompt/non-prompt J/ψ

Inclusive J/ψ

- Prompt J/ψ
- Non-Prompt J/ψ from B decays

This Talk !!!

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length ($l_{J/\psi}$)

$$l_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$$
Prompt/non-prompt J/ψ

Inclusive J/ψ

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length ($l_{J/ψ}$)

$$l_{J/ψ} = L_{xy} \frac{m_{J/ψ}}{p_T}$$

Open bottom (Fri.)

6A: Mihee Jo

CMS Preliminary

PbPb $\sqrt{s_{NN}} = 2.76$ TeV

- $|y| < 2.4$
- Cent. 0-100%
- $6.5 < p_T < 30$ GeV/c

Data
- total fit
- bkgd + non-prompt background

CMS Preliminary

$N_{J/ψ}$: 8525 ± 177
- $\alpha = 35 \pm 1$ MeV/c²
- $L_{int} = 150 \mu$b⁻¹

PAS CMS-HIN-12-014
2011 prompt J/ψ results
R_{AA} of prompt J/ψ vs N_{part}

$$R_{AA} = \frac{L_{pp}}{T_{AA} N_{MB}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb (cent)}}}$$

CMS PbPb $\sqrt{s_{NN}} = 2.76$ TeV

- Prompt J/ψ

$|y| < 2.4$

$6.5 < p_T < 30$ GeV/c

N_{part}
R_{AA} of prompt J/ψ vs N_{part}

$$R_{AA} = \frac{L_{pp}}{T_{AA}N_{\text{MB}}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb (cent)}}}$$

CMS Preliminary
$\sqrt{s_{NN}} = 2.76$ TeV

$|y| < 2.4$
$6.5 < p_T < 30$ GeV/c

- Suppressed by factor 5 in most central

CMS-HIN-12-014
R_{AA} of prompt J/ψ vs N_{part}

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA} N_{\text{MB}}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb}(\text{cent})}}$$

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV

No strong dependence on rapidity

PAS CMS-HIN-12-014

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV

6.5 < p_T < 30 GeV/c

N_{\text{part}}

• No strong dependence on rapidity
R_{AA} of prompt J/ψ vs N_{part}

$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA} N_{\text{MB}}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb}}(\text{cent})}$

PAS CMS-HIN-12-014

CMS Preliminary
\[\sqrt{s_{NN}} = 2.76 \text{ TeV}\]

2011

- Hint of less suppression at lower p_T

$|y| < 2.4$

$6.5 < p_T < 30 \text{ GeV/c}$

$3 < p_T < 6.5 \text{ GeV/c}$

$6.5 < p_T < 30 \text{ GeV/c}$

$1.6 < |y| < 2.4$
2011 $\psi(2S)$ results
Raw yields ratio ($\psi(2S) / J/\psi$) in PbPb is ~2 times smaller than pp.
$\psi(2S)$ PbPb and pp

1.6 < |y| < 2.4 and 3 < p_T < 30 GeV/c

Raw ratio ($\psi(2S) / J/\psi$) in PbPb is ~5 times larger than pp.
Double ratio of $\psi(2S)$ & J/ψ

For $p_T > 6.5$ GeV/c, $\psi(2S)$ are more suppressed than J/ψ.
Indication that $\psi(2S)$ less suppressed than J/ψ for $p_T > 3$ GeV/c.
(not more than 2σ significance, limited by pp statistics)
Summary

• Prompt J/ψ
 – R_{AA} measured in finer bins than 2010 results
 – Significant suppression observed
 – No strong dependence on p_T and rapidity

• $ψ(2S)$
 – More suppressed than J/ψ at high p_T and mid-rapidity
 – Less suppressed than J/ψ at lower p_T and forward rapidity
 (but not more than 2σ significance)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
Back up