Novel volumetric capnography indices measure ventilation inhomogeneity in cystic fibrosis

Sotirios Fouzas, Anne-Christianne Kentgens, Olga Lagiou, Bettina Sarah Frauchiger, Florian Wyler, Ilias Theodorakopoulos, Sophie Yammine, Philipp Latzin

Please cite this article as: Fouzas S, Kentgens A-C, Lagiou O, et al. Novel volumetric capnography indices measure ventilation inhomogeneity in cystic fibrosis. ERJ Open Res 2021; in press (https://doi.org/10.1183/23120541.00440-2021).

This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©The authors 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
Novel volumetric capnography indices measure ventilation inhomogeneity in cystic fibrosis

Sotirios Fouzas¹, Anne-Christianne Kentgens²*, Olga Lagiou¹, Bettina Sarah Frauchiger², Florian Wyler², Ilias Theodorakopoulos¹, Sophie Yammine², Philipp Latzin²

¹. Paediatric Respiratory Unit, University Hospital of Patras, Patras, Greece
². Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland

*Those authors contributed equally to this work

Corresponding author: Philipp Latzin

Hospital name: Inselspital, University of Bern,

Address: Freiburgstrasse 18, 3010 Bern, Switzerland

Email: Philipp.Latzin@insel.ch

Take home message: Novel volumetric capnography indices are promising markers of ventilation inhomogeneity in patients with cystic fibrosis.
1. Introduction

Volumetric capnography (VCap) is a simple and non-invasive lung function technique that describes the dynamics of carbon dioxide (CO₂) exhalation breath-by-breath [1]. The volume-based capnogram is the plot of CO₂ concentration against the exhaled air volume, and consists of three phases: Phase I, represents the washout of the uppermost conductive airways that contain atmospheric -CO₂-free- air; Phase II, that is characterized by a steep CO₂ rise and reflects the mixing between atmospheric air and CO₂-rich gas from the alveolar compartment, and Phase III, the so-called “alveolar plateau”, that represents the expiration of alveolar gas. Volumetric capnography allows for the assessment of dead space ventilation and ventilation-perfusion abnormalities [2-7], while the slope of phase III (SIII) is considered an index of ventilation inhomogeneity (VI) in obstructive lung disorders, such as cystic fibrosis (CF) [7-11].

Since VCap does not require a complex measurement setup or extensive signal processing, it may be considered a simpler alternative to techniques aiming to detect VI, such as Multiple Breath Washout (MBW) [2, 7, 10]. However, classical VCap indices are considerably dependent on expiratory volume (VE) and respiration dynamics [12-14]. This is particularly important in children, where variable breathing patterns may significantly affect the diagnostic performance of the method [6, 7, 9, 15].

In this paper, we introduce novel VCap indices, called Capnographic Inhomogeneity Indices (CIIs) that may overcome the above limitations. Moreover, they may serve as promising VI indices in clinical settings where advanced MBW setups are not available, or as faster and more attainable markers in obstructive lung disorders that require continuous follow-up. We assess the feasibility and repeatability of these novel CIIs in clinical practice, and we explore their diagnostic performance in a cohort of CF patients.
2. Methods

2.1 Study design and population

In this pilot study, novel VCap indices were validated using existing Nitrogen (N₂) MBW data from 4-18-year-old CF patients and healthy controls. All measurements were obtained at the University Children’s Hospital of Bern, Switzerland, between 2013-2019 (see sample size estimation, below) [16-21]. All subjects were free from pulmonary exacerbations [16-21]. Only subjects with at least two good quality MBW trials were included. Local ethic committees approved all studies, and participants or caregivers provided informed written consent.

2.2 Lung function

MBW trials were performed with the children in sitting position while breathing normally, according to international guidelines [22]. N₂-MBW measurements were obtained as previously described [20], using the Exhalyzer D device (Ecomedics, Duernen, Switzerland) that incorporates an ultrasonic flowmeter and a main-stream CO₂ sensor (Capnostat, infrared single beam, dual-wavelength technology; rise time <60ms) with Spiroware version 3.1.6 or 3.2.1. All data were reloaded and reanalyzed using the updated software provided by the manufacturer Spiroware 3.3.1. MBW quality control was performed by experienced operators, based on established criteria [21, 22].

The following MBW parameters were investigated: functional residual capacity (FRC) lung clearance index (LCI), tidal volume, respiratory rate and minute ventilation [22]. Additional information on age, sex, weight and height were obtained from patient files.
2.3 Volumetric capnography

Volumetric capnograms were obtained from N$_2$-MBW trials after CO$_2$ signals were corrected for setup-dependent signal alignment and sensor-specific delays (Spiroware software). Breath-by-breath volumetric capnograms were obtained by plotting the CO$_2$ fraction against the corresponding VE. The expired CO$_2$ volume (VECO$_2$) was calculated by integrating the CO$_2$ signal over VE. The slope of phase II (S$_{II}$) and the S$_{III}$ were obtained by fitting a linear regression line (least squares method) over the capnogram, between 10 and 60% of the end-tidal CO$_2$ value and 65-95% of VE, respectively [6]. The capnographic index (KPIv) was calculated as the ratio S$_{III}$/S$_{II}$. The slopes were normalized by the corresponding mixed expired CO$_2$ fraction (FECO$_2$), which equals the VECO$_2$ divided by VE [12]. The airway dead space (VD) was calculated using the equal-area method proposed by Fowler [23].

To avoid inclusion of irregular capnograms, MBW breaths were automatically excluded from analysis if: 1. end-tidal CO$_2$ (ETCO$_2$) was <3.5%; 2. their corresponding VE deviated more than two SDs from trial average; 3. VD was <10% or >30% of VE; 4. intersection of S$_{II}$ and S$_{III}$ was not calculable, fell outside the capnogram range (i.e. intersection at VE<0, VE>VE at the end of expiration, CO2>CO2max), or below the CO$_2$ curve; 5. S$_{III}$ was steeper than S$_{II}$; 6. coefficient of determination (R^2) for S$_{III}$ fitting was <0.7. For all acceptable breaths of each MBW trial, we calculated average ETCO$_2$, S$_{II}$, S$_{III}$, normalized S$_{II}$ (nS$_{II}$), normalized S$_{III}$ (nS$_{III}$), KPIv, and VD values. Calculation of VCap indices and quality control were performed using a custom Python script (Python Software Foundation, https://www.python.org/).
2.4 Capnographic Inhomogeneity Indices

2.4.1 Modeling ventilation inhomogeneity

To understand the calculation of novel CIIs, we consider a lung model (Figure 1) in which we define V_A, the volume of the alveolar compartment that contributes to expiration, V_D the volume of the dead space compartment, and V_E the expired volume of air. Let us assume that the alveolar compartment comprises of three equal sub-compartments connected in series, which empty sequentially without air mixing among them (Figure 1). At end-inspiration, the dead space compartment is filled with atmospheric air (with a CO$_2$ concentration of zero). All CO$_2$ is contained in V_A, at a mixed alveolar concentration of F_ACO$_2$, which is the average CO$_2$ concentration of alveolar sub-compartments (i.e., F_{A1}CO$_2$, F_{A2}CO$_2$ and F_{A3}CO$_2$) (Figure 1). As expiration commences, dead space air emerges first, followed by gas from the three alveolar sub-compartments. At end-expiration, the concentration of CO$_2$ in the expired air (F_ECO$_2$) results from the mixing between the CO$_2$-free dead space air and the CO$_2$-rich alveolar air; an amount of CO$_2$ remains in the dead space compartment at a concentration F_DCO$_2$ (Figure 1).

In an ideal lung, F_{A1}CO$_2$, F_{A2}CO$_2$ and F_{A3}CO$_2$ are equal (Figure 1A). Thus, time-dependent inhomogeneities do not exist, the rate of CO$_2$ exhalation is constant, and the phase III of the capnogram is horizontal (Figure 1A). In this case, F_DCO$_2$ at end-expiration equals F_ACO$_2$ (Figure 1A). When time-dependent inhomogeneities exist, due to stratified VI distal to the airway-alveolar interface and delayed emptying of respiratory units with low ventilation-perfusion (V/Q) ratios [24, 25], it applies that F_{A1}CO$_2$ < F_{A2}CO$_2$ < F_{A3}CO$_2$ (Figure 1B). In this case, the rate of exhaled CO$_2$ increases as expiration commences, and the S$_{III}$ rises (Figure 1B). At end-expiration, F_DCO$_2$ equals F_{A3}CO$_2$ (Figure 1B). The magnitude of sequential inhomogeneity in this model is reflected by the difference among F_{A1}CO$_2$, F_{A2}CO$_2$ and F_DCO$_2$
(Figure 1B). However, since neither FACO₂ nor FdCO₂ can be measured \textit{in vivo}, these differences cannot be computed.

2.4.2 Estimating FdCO₂

Let us consider the volumetric capnogram of Figure 2A and analyze it according to the concept of Aitken and Clark-Kennedy [26], as follows: a) The volume of CO₂ that remains in the dead space compartment at end-expiration (VdCO₂) can be obtained by extending the line of phase III to the right (line be) using linear regression until the distance cf becomes equal to Vd, and calculating the area of the trapezoid befc; the FdCO₂ is the area befc divided by Vd. b) The total volume of CO₂ leaving the alveolar compartment (VACO₂) is the area of the trapezoid aefd; FACO₂ can be obtained by dividing this area by Ve (Figure 2A).

The above concept was applied to volumetric capnograms of our study (Figure 2B). After the Vd was calculated by Fowler’s method [23], each capnogram was extended to the “right” (linear extension according to SIII) by Vd. The VeCO₂ was computed as the integral of the CO₂ signal over Ve, and the VdCO₂ as the integral of the extended part of the capnogram over Vd (Figure 1B); the VACO₂ was computed as the sum VeCO₂ and VdCO₂. Then, by dividing VeCO₂ by Ve, VdCO₂ by Vd, and VACO₂ by Ve, the FdCO₂, FACO₂ and FACO₂, respectively, were calculated. In addition, the concentration of CO₂ in the exhaled air coming exclusively from the alveolar compartment (FexCO₂) was calculated by dividing VeCO₂ by the difference Ve – Vd.

2.4.3 Capnographic inhomogeneity indices

Two novel CIIs were calculated:

A. CII₁, which is the relative difference between FdCO₂ and FACO₂ or \(\frac{(FdCO₂ - FACO₂)}{FACO₂}\) and represents a raw estimate of sequential inhomogeneity.
B. CII2, which is the relative difference between FDCO2 and FexCO2 or (FDCO2 – FexCO2) / FexCO2.

Since CII2 reflects the difference of CO2 concentration between the alveolar sub-compartments A1+A2 and A3 (Figure 1B), it should theoretically represent a more precise estimate of sequential VI.

2.5 Statistics

2.5.1 Sample size estimation

Since CIIIs were introduced for the first time in clinical practice, no data were available for a priori sample size estimation. Based on the hypothesis that CIIIs (as markers of VI) would be correlated with the LCI, we estimated that MBW measurements from at least 112 subjects would be required to reveal a significant correlation (P <0.05), with a Pearson’s r ≥0.3 and at least 90% power. By reviewing the database of our laboratory (different independent studies [16-21]), we found that such a sample with at least two acceptable MBW trials could be obtained by including the children measured between January 2013 and December 2019 (N=115; 50 CF and 65 healthy controls). We preferred to include all 115 children (instead of 112) for reasons of consistency. Post-hoc effect size calculation was also performed.

2.5.2 Statistical analyses

VCap indices were assessed both per subject (average of at least two acceptable trials) and per MBW trial (analysis per trial) to allow better physiological appraisal. Per subject data are presented throughout the manuscript, while per trial analyses are presented in the Online supplement (OLS). Between-group comparisons were performed using student’s t test. The percentage of breaths acceptable for VCap analysis was calculated as percentage of all washout breaths. Linear and non-linear regression was applied to assess the relationship between SIII
and $V_ε$, and S_{III} and CIs. Pearson correlation analysis was used to assess the relationship between LCI and VCap outcomes. The intra-trial (i.e. between breaths of the same trial) and inter-trial (between different trials of the same subject) variability was calculated using the coefficient of variation (CV). In presence of only two acceptable MBW, the inter-trial variability was calculated as relative difference between the two trials. Receiver Operation Characteristics analysis was used to estimate the overall diagnostic ability of LCI and VCap indices by means of Area Under the Curve (AUC). Optimal cutoff values for each index were determined using Youden Index analysis. All analyses were performed in Stata (StataCorp, College Station, TX).

3. Results

All 320 MBW-trials from 50 patients with CF (137 trials) and 65 HCs (183 trials) were analyzed. The clinical characteristics and lung function parameters of the two study groups are presented in Table 1. The LCI was significantly higher in CF patients compared to healthy children (mean±SD LCI 7.8±1.7 vs 6.2±0.4, P<0.001).

3.1 VCap indices

Calculation of VCap indices was feasible in all trials of all study participants, independent of disease status. The percentage of breaths within each trial that were acceptable for VCap analysis, was higher in CF patients compared with healthy children (72.4±17.8 (42.7-98.3)% vs 63.5±19.3 (19.7-96.7)%). Further information regarding non-accepted breaths (percentages, stratification per exclusion criteria) is presented in Table S2. Slope III and KPIv were higher in CF patients compared with healthy children (S_{III} 2.3±1.0%/L vs 1.9±0.7%/L, P=0.013; KPIv 3.9±1.3% vs 3.5±1.2%, P=0.07), but only S_{III} was significantly higher. The CIs were also significantly higher in CF patients compared with healthy controls (CII_{1} 5.9±1.4% vs 5.1±1.0%,...
Post-hoc effect-size analysis revealed that these differences yield a study power of 71% and 68%, respectively, for the given level of statistical significance, or 96% and 89.5%, respectively, for a P-value <0.05. VCap parameters and indices are presented in Table 2, Table 3, and Figure 3. AUC values and the corresponding optimal cutoff values of LCI and VCap indices are presented in the OLS (Table S5). Above the cutoff value of LCI were classified 76% (n=38) of patients with CF and 10.8% (n=7) of controls, above the cutoff value of SIII 34% (n=17) of patients with CF and 10.8% (n=7) of controls, above the cutoff value of KPIv 76% (n=38) of patients with CF and 47.7% (n=31) controls, above the cutoff value of CII1 44% (n=22) of patients with CF and 20% (n=13) of controls, and above the cutoff value of CII2 48% (n=24) of patients with CF and 18.5% (n=12) of controls.

3.2 Correlations of VCap indices

There was a strong inverse curvilinear relationship between SIII and VE and a weak linear relationship between CII1 and SIII and CII2 and SIII (Figure 4, Figure S3). The correlations between classical VCap indices and CIIs are shown in the OLS (Table S6). The correlation SIII-LCI and KPIv-LCI was weak (SIII-LCI $R^2=0.03$; KPIv-LCI $R^2=0.08$ in CF patients), while the correlation between CIIs and LCI was stronger (CII1-LCI $R^2=0.47$ and CII2-LCI $R^2=0.44$ in CF patients). Overall (all participants), the Pearson’s correlation coefficient between CII1 and LCI was 0.572 and between CII2 and LCI 0.557; both values yield a study power of 100% (p-value < 0.001). More correlations between VCap parameters and LCI are presented in Table 4 and Table S7. Both CII1 and CII2 were significantly correlated with age ($R^2=0.162$ and $R^2=0.118$, respectively, while age was also significantly correlated with the LCI ($R^2=0.09$). There was no relationship between CIIs and sex in our cohort (data not shown).
3.3 Intra- and inter-trial variability

The intra-trial variability CVs of SIII and KPIv were higher compared with CII1 and CII2 (CV of SIII 37.5±19.2%, KPIv 35.3±15.5% vs CII1 31.1±8.9% and CII2 31.7±9.4%, in all trials). For all these VCap indices, the intra-trial variability was lower in CF patients compared with controls (Table S8). Similarly, the inter-trial (intra-subject) variability of SIII and KPIv was higher compared with CII1 and CII2 in all trials (SIII 16.3±13.5%, KPIv 15.9±12.8% vs CII1 11.1±8.2% and CII2 11.0±8.0%). However, the inter-trial variability was comparable between CF patients and controls (Table S9). The LCI showed lowest inter-trial variability (LCI 5.9±4.2%) (Table S9, Figure S2).

4. Discussion

In this pilot study, we introduced novel capnographic indices of VI and we assessed their diagnostic performance in comparison with classical VCap parameters (i.e. SIII and KPIv) and the LCI. We found that SIII, and the novel CIIIs were higher in CF patients than in controls. However, the novel capnographic indices CII showed better correlation with the LCI and lower intra-trial and inter-trial variability than SIII and KPIv, although their overall diagnostic performance was inferior to the LCI.

4.1 Performance of VCap indices

As expected, SIII and KPIv were increased in CF patients. These findings are in line with previous studies, suggesting that classical VCap indices may be useful VI markers in adults and children with CF [8-11, 27]. In CF, VI results in delayed CO₂ mixing within the conductive airways and, eventually, to non-homogeneous CO₂ exhalation (i.e. steeper phase III) [1, 3, 8] (Figure 1); the KPIv (i.e. the SIII to SII ratio) increases respectively [8]. Thus, increased SIII and KPIv are consistent findings in CF [9-11, 27], albeit their discriminative ability is moderate [11] and, in any case,
inferior to that of the LCI [10]. Of note, the correlation between S_{III} and LCI or KPIv and LCI was rather weak. The latter contrasts the findings of Fuchs et al. [10] who showed a stronger correlation between those indices and LCI. The calculation of S_{II} and S_{III} on an “averaged”, user-defined capnogram in their study [10], as opposed to breath-by-breath calculation of VCap indices using well-defined criteria in ours, might explain these differences.

Conversely, CII1 and CII2 presented better discriminative characteristics than the classical VCap indices. In addition, both CIIs correlated significantly with the LCI - a robust index of VI in CF patients [28, 29], and did so better than the classical VCap parameters (Table 4). Thus, CIIs may be considered valid measures of VI, which may also relate to the severity of the disease.

4.2 Theoretical advantages of CIIs over classical VCap indices

The S_{III} reflects the rate of CO$_2$ exhalation beyond mid-expiration and is an unstandardized index that depends on the dynamics of expiration, especially on VE [12-14]. However, normalization of S_{III} by VE [11] is not justified, because as shown in previous studies [12-14] and confirmed in ours (Figure 4A, Figure S3A), the S_{III}-VE relationship is not linear. S_{III} normalization by the FeCO$_2$ (i.e. the normalized S_{III}) may allow for intra- or inter-subject adjustment for different CO$_2$ concentrations, but does not eliminate the dependency from VE. Therefore, in subjects with variable respiratory patterns and/or changing lung volumes, as it typically is in children, the utility of S_{III} is limited [14]. In our study, this disadvantage is also reflected by the unexpected negative correlation between S_{III} and LCI (Table 4). Higher LCI values are typically seen in older CF patients due to the progression of the disease [21]; but since older children also have larger lung volumes, their S_{III} is lower due to the strong S_{III}-VE relationship (Figure 4A, Figure S3A).
The theoretical background for calculation of CIIs is different: in lung disease, variable gas mixing within the respiratory units (serial inhomogeneities) and/or regional \dot{V}/Q variations (parallel inhomogeneities) result in sequential variations of CO$_2$ concentration distal to the airway-alveolar interface, which are exacerbated further by the delayed emptying of respiratory units with altered mechanical properties and low \dot{V}/Q [23, 24]. Overall, these phenomena result in time-dependent inhomogeneities of CO$_2$ concentration that can be detected at the airway opening [1, 12]. The CIIs, which according to the proposed model (Figure 1) are calculated as differences of CO$_2$ concentrations, reflect these time-dependent inhomogeneities. The CO$_2$ concentrations (i.e. VCO$_2$ - V_E fractions) also include an inherent normalization for V_E and their use may thus overcome the limitations of classical VCap indices. The significant positive correlation between CIIs and LCI and the weak correlation between CIIs and S_{III} further support this hypothesis.

4.3 Feasibility and repeatability of CIIs

CIIs calculation was feasible in all MBW trials, independent of disease status. The percentage of acceptable breaths for VCap analysis was approximately 75% in CF and 65% in control trials. We found lower variability in CIIs compared with S_{III} and KPIv, but higher compared with LCI. The higher percentage of acceptable breaths together with a lower intra-trial variability found in CF patients may be because they were familiar with the MBW procedure and, thus, able to maintain more stable breath patterns during MBW measurement.

4.4 Strengths and limitations

This study presents an innovative method for VI assessment that in principle requires only flow and CO$_2$ signals, thus being potentially more attainable in clinical settings. In our large cohort
of both healthy children and children with CF, with a wide age range and diversity in disease severity, these novel CIIs showed a good association with the more complicated LCI, thus confirming their clinical potential. The use of N₂-MBW files facilitated direct comparison of MBW and VCap outcomes derived from the same files, limiting the effect of possible influencing factors (e.g. related to breathing pattern or testing circumstances). All MBW trials were analyzed with the newest Spiroware version (i.e., 3.3.1), so that our results are not affected by the recently-revealed sensor crosstalk error in the Exhalyzer D device [30]. Overall, Posteriori effect size calculations yielded study power in the range of 68-100% for the differences between CIIs in CF and controls and the Pearson's correlation coefficients between CIIs and LCI.

Inevitably, our study also has some limitations. First, VCap analysis was performed retrospectively using previously collected N₂-MBW data from one center. This implies that the baseline quality control criteria (e.g. those related to breathing pattern and variability) were specific to MBW [21, 22] and not to capnography. This may have affected the intra- and inter-trial variability of CIIs (which was larger than the inter-trial variability of the LCI) and influenced their discriminative ability. Prospective data acquisition for capnographic analysis, including instructions and/or incentives to reduce breathing variability and VCap-specific quality control, may improve the quality of capnograms, decrease the variability of CIIs and increase their diagnostic performance. Second, the effect of 100% O₂ concentration (N₂-MBW technique) on VCap parameters is unknown. However, the effect, if any, would not be different between CF and controls.

Finally, CIIs calculation was based on the extension of capnograms “to the right”. Arguably, the evolution of events that determine phase III cannot be predicted [25]. Yet, if we assume that these events remain stable during the end of expiration, a forward extension of
capnograms may be justified [26]. In fact, this assumption is the basis of the universally accepted Fowler's method to calculate VD [23], where the capnogram is extended “to the left”.

4.5 Clinical implications

Volumetric capnography is a simple non-invasive technique that does not require complex respiratory maneuvers, exogenous gases, extensive signal processing or operator’s expertise [2,5,7]. Current evidence suggests that classical VCap indices, such as S_{III} and KPI_v, may be sensitive markers of early lung changes in patients with CF [11], however their diagnostic performance is limited due to the strong dependence on breathing dynamics [12-14]. Our results indicate that novel CIIs have lower variability compared to classical VCap indices, thus suggesting that they may be less influenced by the breathing pattern; however, further studies are needed to clarify this important issue. Future research should also focus on defining the methodological requirements and the proper quality-control criteria to obtain high-quality capnograms that might reduce variability and increase the performance of these novel indices. The novel CIIs should be assessed using simpler (i.e., non-MBW) setups, ideally on multiple occasions to allow for repeatability assessment, and in large cohorts with a range of obstructive lung disorders (e.g., asthma). Finally, further multicenter research is required to assess the external validity and the potential clinical value of this method.

5. Conclusions

In conclusion, the herein introduced CIIs performed better than the classical VCap parameters in detecting VI in CF patients. The CIIs also correlated well with the LCI and had lower variability compared to classical VCap indices. Their calculation was feasible in all study participants, independently of disease status. Thus, although their overall diagnostic performance was
inferior to the LCI, they may be considered as promising and simpler markers of VI. Further research is required to define the exact methodological requirements, improve the diagnostic performance, and assess the true clinical value of CIIs, especially at the bedside.

Declaration of funding sources:

The work was supported by Swiss National Science Foundation Grants (Yammine 179905; Latzin 182719). Anne-Christianne Kentgens is a recipient of the Swiss Government Excellence Scholarship from The Swiss Confederation.

Conflicts of interest:

Sotirios Fouzas has nothing to disclose.

Anne-Christianne Kentgens repots no other conflicts of interest.

Olga Lagiou has nothing to disclose.

Bettina Sarah Frauchiger has nothing to disclose.

Florian Wyler has nothing to disclose.

Ilias Theodorakopoulos has nothing to disclose.

Sophie Yammine repots no other conflicts of interest.

P. Latzin reports grants from Vertex and Vifor paid to the institution, personal and honoraria paid to the institution from Vertex, Vifor and OM Pharma, and for participation on a Data Safety Monitoring Board or Advisory Board personal from Santhera (DMC) and personal and fees paid to the institution from Polyphor, Vertex, OM pharma and Vifor, all outside the submitted work.
References

1. Fletcher R, Jonson B, Cumming G, Brew J. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 1981; 53: 77-88.

2. Suarez-Sipmann F, Bohm SH, Tusman G. Volumetric capnography: the time has come. Curr Opin Crit Care 2014; 20: 333-339.

3. Fletcher R. Airway deadspace, end-tidal CO₂, and Christian Bohr. Acta Anaesthesiol Scand 1984; 28: 408-411.

4. Tusman G, Suarez-Sipmann F, Bohm SH, Borges JB, Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand 2011; 55: 597-606.

5. Kremeier P, Böhlm SH, Tusman G. Clinical use of volumetric capnography in mechanically ventilated patients. J Clin Monit Comput 2020; 34: 7-16.

6. Fouzas S, Hacki C, Latzin P, Proietti E, Schulzke S, Frey U, Delgado-Eckert E. Volumetric capnography in infants with bronchopulmonary dysplasia. J Pediatr 2014; 164: 283-8.e1-3.

7. Verscheure S, Massion PB, Verschuren F, Damas P, Magder S. Volumetric capnography: lessons from the past and current clinical applications. Crit Care 2016; 20: 184.

8. Krauss B, Deykin A, Lam A, Ryoo JJ, Hampton DR, Schmitt PW, Falk JL. Capnogram shape in obstructive lung disease. Anesth Analg 2005; 100: 884-888.

9. Strömberg NO, Gustafsson PM. Ventilation inhomogeneity assessed by nitrogen washout and ventilation-perfusion mismatch by capnography in stable and induced airway obstruction. Pediatr Pulmonol 2000; 29: 94-102.
10. Fuchs SI, Junge S, Ellemunter H, Ballmann M, Gappa M. Calculation of the capnographic index based on expiratory molar mass-volume-curves--a suitable tool to screen for cystic fibrosis lung disease. J Cyst Fibros 2013; 12: 277-83.

11. Almeida-Junior A, Marson FAL, Almeida CCB, Ribeiro MÂGO, Paschoal IA, Moreira MM, Ribeiro JD. Volumetric capnography versus spirometry for the evaluation of pulmonary function in cystic fibrosis and allergic asthma. J Pediatr (Rio J) 2020; 96: 255-264.

12. Neufeld GR, Schwardt JD, Gobran SR, Baumgardner JE, Schreiner MS, Aukburg SJ, Scherer PW. Modelling steady state pulmonary elimination of He, SF6 and CO2: effect of morphometry. Respir Physiol 1992; 88: 257-75.

13. Schwardt JD, Gobran SR, Neufeld GR, Aukburg SJ, Scherer PW. Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng 1991; 19: 679-97.

14. Ream RS, Schreiner MS, Neff JD, McRae KM, Jawad AF, Scherer PW, Neufeld GR. Volumetric capnography in children. Influence of growth on the alveolar plateau slope. Anesthesiology 1995; 82: 64-73

15. Schmalisch G. Current methodological and technical limitations of time and volumetric capnography in newborns. Biomed Eng Online 2016; 15:104.

16. Korten I, Kieninger E, Yammine S, Regamey N, Nyilas S, Ramsey K, Casaulta C, Latzin P, For The Scild Study Group. The Swiss Cystic Fibrosis Infant Lung Development (SCILD) cohort. Swiss Med Wkly 2018; 148: w14618.

17. Fuchs O, Latzin P, Kuehni CE, Frey U. Cohort profile: the Bern infant lung development cohort. Int J Epidemiol 2012; 41: 366-76.
18. Yammine S, Nyilas S, Casaulta C, Schibli S, Latzin P, Sokollik C. Function and Ventilation of Large and Small Airways in Children and Adolescents with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22: 1915-22.

19. Nyilas S, Bauman G, Pusterla O, Ramsey K, Singer F, Stranzinger E, Yammine S, Casaulta C, Bieri O, Latzin P. Ventilation and perfusion assessed by functional MRI in CF patients: reproducibility in comparison to lung function. J Cyst Fibros 2019; 18: 543-550.

20. Frauchiger BS, Binggeli S, Yammine S, Spycher B, Krüger L, Ramsey KA, Latzin P. Longitudinal Course of Clinical Lung Clearance Index in Children with Cystic Fibrosis. Eur Respir J. 2020; 24: 2002686.

21. Frauchiger BS, Carlens J, Herger A, Moeller A, Latzin P, Ramsey KA. Multiple breath washout quality control in the clinical setting. Pediatr Pulmonol. 2021 Jan; 56: 105-112.

22. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, Thamrin C, Arets HG, Aurora P, Fuchs SJ, King GG, Lum S, Macleod K, Paiva M, Pillow JJ, Ranganathan S, Ratjen F, Singer F, Sonnappa S, Stocks J, Subbarao P, Thompson BR, Gustafsson PM. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J 2013; 41: 507-22.

23. Fowler WS. Lung function studies. II: The respiratory deadspace. Am J Physiol 1948; 154: 405-416.

24. Anthonisen NR, Fleetham JA. Ventilation: total, alveolar and dead space. In: Fishman AP, Farhi LE, Tenney SM, Geiger SR, Eds. Handbook of Physiology: Section 3: The Respiratory System. Volume IV: Gas Exchange. Bethesda/Maryland, American Physiological Society, 1987; pp. 113-129.
25. Piiper J, Scheid P. Diffusion and convection in intrapulmonary gas mixing. In: Fishman AP, Farhi LE, Tenney SM, Geiger SR, Eds. Handbook of Physiology: Section 3: The Respiratory System. Volume IV: Gas Exchange. Bethesda/Maryland, American Physiological Society, 1987; pp. 51-69.

26. Aitken RS, Clark-Kennedy AE. On the fluctuation in the composition of the alveolar air during the respiratory cycle in muscular exercise. J Physiol 1928; 65: 389-411.

27. Veronez L, Moreira MM, Soares ST, Pereira MC, Ribeiro MA, Ribeiro JD, Terzi RG, Martins LC, Paschoal IA. Volumetric capnography for the evaluation of pulmonary disease in adult patients with cystic fibrosis and noncystic fibrosis bronchiectasis. Lung 2010; 188: 263-8.

28. Gustafsson PM, Aurora P, Lindblad A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J 2003; 22: 972-9.

29. Aurora P, Gustafsson P, Bush A, Lindblad A, Oliver C, Wallis CE, Stocks J. Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 2004; 59: 1068-73.

30. Wyler F, Oestreich MH, Frauchiger BS, Ramsey KA, Latzin PT. Correction of sensor crosstalk error in Exhalyzer D multiple-breath washout device significantly impacts outcomes in children with cystic fibrosis. J Appl Physiol (1985) 2021; Online ahead of print.
Table 1. Characteristics and lung function of the study groups

	Cystic Fibrosis (n=50)	Healthy Controls (n=65)
General characteristics		
Male sex, n (%)	54.0 (50.3)	53.8 (50.2)
Age (years)	9.8 (4.1)	10.1 (3.9)
Weight (kg)	32.3 (14.3)	37.8 (17.6)
Weight (z-score)*	-0.1 (0.8)	0.4 (0.8)
Height (cm)	134.4 (19.7)	140.7 (23.0)
Height (z-score)*	-0.1 (0.8)	0.4 (1.0)
Body Mass Index (kg/m²)	17.0 (2.6)	17.9 (3.1)
Body Mass Index (z-score)*	0.0 (0.8)	0.2 (0.8)
N₂-MBW		
Number of trials	137	183
Tidal volume (mL)	402.9 (175.8)	437.4 (199.0)
Tidal volume per kg (mL/kg)	12.7 (2.8)	12.0 (2.7)
Respiratory rate (per minute)	18.7 (4.1)	18.2 (4.8)
Minute ventilation (mL/kg x min)	231.2 (46.0)	215.3 (67.6)
FRC (ml/kg)	40.2 (7.8)	41.4 (8.9)
LCI 2.5%	7.8 (1.7)	6.2 (0.4)*

Data are presented as mean (SD), unless stated otherwise

* Statistically significant difference (P<0.05 using the Student’s T test)

Weight, height and BMI z-scores were calculating according WHO growth charts. Weight z-scores for children older than 10 years of age were calculated according to CDC growth charts.

N₂-MBW: nitrogen multiple breath washout, FRC: functional residual capacity, LCI: lung clearance index, CDC: Centers for Disease Control and Prevention (CDC)
Table 2. VCap parameters and indices

VCap Parameters and Indices	Cystic Fibrosis (n= 50)	Healthy Controls (n=65)	Mean difference (95% confidence interval)
VE (mL)	402.9 (174.6)	438.7 (201.6)	35.7 (-35.2 to 106.7)
VE per kg (mL/kg)	12.7 (3.1)	12.1 (2.7)	-0.7 (-1.8 to 0.4)
VD (mL)	88.6 (27.5)	98.3 (34.3)	9.8 (-2.0 to 21.5)
VD per kg (mL/kg)	2.9 (0.5)	2.8 (0.5)	-0.1 (-0.3 to 0.1)
VD % of VE (%)	23.7 (4.9)	23.9 (4.3)	0.2 (-1.5 to 1.9)
ETCO₂ (%)	5.3 (0.5)	5.3 (0.5)	0.0 (-0.1 to 0.2)
VCO₂ (mL)	16.3 (5.9)	18.2 (7.9)	1.9 (-0.7 to 4.6)
FECO₂ (%)	3.9 (0.4)	4.0 (0.4)	0.0 (-0.1 to 0.2)
SII (%/L)	59.3 (19.2)	54.5 (16.8)	-4.8 (-11.5 to 1.9)
Normalized SII (1/L)	15.0 (4.2)	13.7 (3.9)	-1.2 (-2.7 to 0.3)
SIII (%/L)	2.3 (1.0)	1.9 (0.7)	-0.4 (-0.7 to -0.1)*
Normalized SIII (1/L)	0.6 (0.3)	0.5 (0.2)	-0.1 (-0.2 to 0.0)*
KPIv (%)	3.9 (1.3)	3.5 (1.2)	-0.4 (-0.9 to 0.0)

Data are presented as mean (SD), unless stated otherwise

* Statistically significant difference (P<0.05 using the Student's T test)

VCap: volumetric capnography, VE: expiratory volume, VD: dead space volume, ETCO₂: end-tidal CO₂ fraction, VCO₂: expired CO₂ volume, FECO₂: mixed expired CO₂ fraction, SII: slope of phase II, SIII: slope of phase III, KPIv: capnographic index
Table 3. Novel VCap parameters and CII s

	Cystic Fibrosis (n=50)	Healthy Controls (n=65)	Mean difference (95% confidence interval)
FACO₂ (%)	5.1 (0.5)	5.2 (0.5)	0.1 (-0.1 to 0.2)
FDCO₂ (%)	5.4 (0.5)	5.5 (0.5)	0.0 (-0.1 to 0.2)
FexCO₂ (%)	5.1 (0.5)	5.1 (0.5)	0.1 (-0.1 to 0.2)
CII1 (%)	5.9 (1.4)	5.1 (1.0)	-0.7 (-1.2 to -0.3)*
CII2 (%)	7.7 (1.8)	6.8 (1.4)	-1.0 (-1.5 to -0.3)*

Data are presented as mean (SD), unless stated otherwise

* Statistically significant difference (P<0.05 using the Student’s T test)

VCap: volumetric capnography, FACO₂: CO₂ fraction in alveolar compartment, FDCO₂: CO₂ fraction in dead space compartment, FexCO₂: CO₂ fraction in the air expired from the alveolar compartment, CII: capnographic inhomogeneity index (see text for details)
Table 4. Correlations between VCap parameters and the Lung Clearance Index

	Cystic Fibrosis	Healthy Controls				
	r	R^2	P-value*	r	R^2	P-value*
SII	-0.52	0.27	<0.001	-0.04	0.00	0.764
Normalized SII	-0.44	0.20	0.002	-0.01	0.00	0.912
SIII	-0.18	0.03	0.209	0.04	0.00	0.771
Normalized SIII	-0.07	0.01	0.623	0.06	0.00	0.629
KPIv	0.29	0.08	0.04	0.124	0.02	0.325
CII1	0.68	0.47	<0.001	0.06	0.00	0.620
CII2	0.66	0.44	<0.001	0.11	0.01	0.389

Data are presented as Pearson correlation coefficients (r) and coefficients of determination (R^2).

* Student's T test

VCap: volumetric capnography, LCI: lung clearance index, SII: slope of phase II, SIII: slope of phase III, KPIv: capnographic index, CII: capnographic inhomogeneity index
Novel volumetric capnography indices measure ventilation inhomogeneity in cystic fibrosis

ONLINE SUPPLEMENT

Sotirios Fouzas¹, Anne-Christianne Kentgens², Olga Lagiou¹, Bettina Sarah Frauchiger², Florian Wyler², Ilias Theodorakopoulos¹, Sophie Yammine², Philipp Latzin²

¹. Paediatric Respiratory Unit, University Hospital of Patras, Patras, Greece
². Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland

*Those authors contributed equally to this work

Corresponding author: Philipp Latzin

Hospital name: Inselspital, University of Bern,

Address: Freiburgstrasse 18, 3010 Bern, Switzerland

Email: Philipp.Latzin@insel.ch
	Cystic Fibrosis (n=137)	Healthy Control (n=183)	Mean differences (95% confidence interval)
Tidal volume, mL	390.8 (173.9)	424.8 (203.6)	33.9 (-8.6 to 76.5)
Tidal volume per kg, ml/kg	12.5 (2.8)	12.0 (2.9)	-0.5 (-1.1 to 0.1)
Respiratory rate, per minute	18.9 (4.2)	18.6 (5.1)	-0.4 (-1.4 to 0.7)
Minute ventilation, ml/kg x min	232.0 (46.1)	219.8 (68.7)	-12.1 (-25.5 to 1.2)
FRC, ml/kg	39.9 (8.0)	40.9 (8.8)	1.0 (-0.9 to 2.9)
Mean LCI2.5%	7.8 (1.7)	6.2 (0.5)	-1.6 (-1.8 to -1.3)*

Table S1. Basic Lung function characteristics and the Lung Clearance Index 2.5% in Cystic Fibrosis and healthy control (analysis per trial)

Data are presented as mean (SD), unless stated otherwise

* Statistically significant difference (P<0.05 using the Student’s T test)

FRC: functional residual capacity, LCI: lung clearance index
	Low ETCO₂ outlier	VE outlier	VD outlier	Intersection was not calculable	SII-SIII intersection outside the capnogram range	SII-SIII intersection below CO₂ curve	SIII steeper than SII	R² fit SIII <0.7	All error
Cystic Fibrosis	1.0 (1.7)	4.3 (2.0)	13.5 (14.2)	0.6 (2.0)	0.0 (0.3)	0.3 (1.1)	0.1 (0.5)	4.5 (7.5)	24.4 (16.5)
Healthy Control	1.2 (2.6)	4.4 (2.1)	15.3 (16.3)	0.5 (1.4)	0.1 (0.5)	0.3 (1.2)	0.1 (0.3)	13.0 (17.6)	34.8 (19.2)
All trials	1.1 (2.3)	4.4 (2.0)	14.5 (15.4)	0.5 (1.7)	0.1 (0.4)	0.3 (1.1)	0.1 (0.4)	9.3 (14.8)	30.4 (18.8)

Table S2. N₂-MBW breaths that met one of the exclusion criteria as a proportion of the total breaths within a trial (%) (analysis per trial).

Meeting one exclusion criteria lead to direct exclusion and no further evaluation of other exclusion criteria.

Data are presented as mean (SD), unless stated otherwise.

ETCO₂: end-tidal CO₂ fraction, VE: expiratory volume, VD: dead space volume, SII: slope of phase II, SIII: slope of phase III
	Cystic Fibrosis (n=137)	Healthy Control (n=183)	Mean differences (95% confidence interval)
VE (mL)	390.6 (173.1)	426.0 (206.5)	35.4 (-7.5 to 78.3)
VE per kg (mL/kg)	12.6 (3.0)	12.1 (3.0)	-0.50 (-1.2 to 0.2)
VD (mL)	86.9 (26.0)	95.9 (33.5)	9.0 (2.2 to 15.8)*
VD per kg (mL/kg)	2.9 (0.5)	2.8 (0.5)	-0.1 (-0.2 to 0.0)
VD % of VE (%)	23.9 (5.2)	24.0 (4.9)	0.10 (-1.0 to 1.2)
ETCO\(_2\) (%)	5.3 (0.5)	5.3 (0.5)	0.0 (-0.1 to 0.1)
VCO\(_2\) (mL)	15.9 (5.8)	17.7 (8.1)	1.8 (0.2 to 3.4)*
FECO\(_2\) (%)	3.9 (0.4)	3.9 (0.4)	0.0 (-0.1 to 0.1)
SII (%/L)	60.3 (19.7)	55.4 (16.9)	-4.9 (-8.9 to -0.8)*
Normalized SII (1/L)	15.2 (4.2)	14.1 (3.9)	-1.1 (-2.0 to -0.2)*
SIII (%/L)	2.3 (1.0)	1.9 (0.8)	-0.4 (-0.6 to -0.2)*
Normalized SIII (1/L)	0.6 (0.3)	0.5 (0.2)	-0.1 (-0.2 to 0.0)*
KPI\(_v\) (%)	3.9 (1.4)	3.5 (1.3)	-0.4 (-0.7 to -0.1)

Table S3. Basic classical capnographic lung function characteristics in Cystic Fibrosis and healthy control (analysis per trial)

Data are presented as mean (SD), unless stated otherwise

* Statistically significant difference (P<0.05 using the Student’s T test)

VE: expiratory volume, VD: dead space volume, ETCO\(_2\): end-tidal CO\(_2\) fraction, VCO\(_2\): expired CO\(_2\) volume, FECO\(_2\): mixed expired CO\(_2\) fraction, SII: slope of phase II, SIII: slope of phase III, KPI\(_v\): capnographic index
	Cystic Fibrosis (n=137)	Healthy Control (n=183)	Mean difference (95% confidence interval)
FACO2 (%)	5.2 (0.5)	5.2 (0.5)	0.0 (-0.1 to 0.1)
FDCO2 (%)	5.4 (0.5)	5.4 (0.5)	0.0 (-0.1 to 0.1)
FexCO2 (%)	5.1 (0.5)	5.1 (0.5)	0.0 (-0.1 to 0.1)
CII1 (%)	5.8 (1.5)	5.1 (1.1)	-0.7 (-1.0 to -0.5)*
CII2 (%)	7.7 (1.9)	6.7 (1.5)	-1.0 (-1.3 to -0.6)*

Table S4. Novel capnographic inhomogeneity indices in Cystic Fibrosis and healthy control (analysis per trial)

Data are presented as mean (SD), unless stated otherwise

* Statistically significant difference (P<0.05 using the Student’s T test)

FACO2: CO2 fraction in alveolar compartment, FDCO2: CO2 fraction in dead space compartment,
FexCO2: CO2 fraction in the alveolar expirate, CII: capnographic inhomogeneity index (see text for details)
	AUC (95% confidence Interval)	Optimal Cutoff	Sensitivity at optimal cutoff	Specificity at optimal cutoff
LCI	0.87 (0.80 to 0.94)	6.68	0.76	0.89
SIII	0.62 (0.51 to 0.73)	2.75	0.36	0.89
KPIv	0.61 (0.50 to 0.71)	3.16	0.76	0.52
CII1	0.65 (0.55 to 0.75)	6.02	0.46	0.80
CII2	0.65 (0.55 to 0.75)	7.98	0.48	0.82

Table S5. ROC analysis (analysis per subject)

ROC: Receiver operator characteristic, AUC: area under the curve, LCI: lung clearance index, SIII: slope of phase III, KPIv: capnographic index, CII: capnographic inhomogeneity index. Optimal Cutoffs were determined using the Youden Index analysis.
Table S6. Correlations between classical VCap indices and CII values (analysis per trial)

	Cystic Fibrosis	Healthy Controls				
	SII	SIII	KPIv	SII	SIII	KPIv
CII1	-0.429 (-0.184)	0.142 (0.020)	0.595 (0.354)	-0.515 (-0.265)	0.120 (0.014)	0.555 (0.308)
CII2	-0.385 (0.148)	0.284 (0.081)	0.747 (0.558)	-0.465 (-0.217)	0.282 (0.079)	0.718 (0.516)

Data are Pearson correlation coefficients with R^2 (in parentheses)

SII: slope of phase II, SIII: slope of phase III, KPIv: capnographic index, CII: capnographic inhomogeneity index
Table S7. Correlation between VCap indices and LCI (analysis per trial)

Data are presented as Pearson correlation coefficients (r) and coefficients of determination (R^2).

*Student's T-test

VCap: volumetric capnography, LCI: lung clearance index, SII: slope of phase II, SIII: slope of phase III,

KPIv: capnographic index, CII: capnographic inhomogeneity index
Table S8. Intra-trial variability of VCap indices (analysis per trial)

Data are presented as mean coefficient of variation (SD)%

* Statistically significant difference between Cystic Fibrosis and Healthy Control Trials

(P<0.05 using the Student's T test)

VCap: volumetric capnography, SII: slope of phase II, SIII: slope of phase III, KPIv: capnographic index, CII: capnographic inhomogeneity index

	Cystic Fibrosis Trials (n=137)	Healthy Control Trials (n=183)	All Trials (n=320)
SII	12.6 (16.4)	10.5 (5.5)	11.4 (11.5)
Normalized SII	12.0 (14.0)	10.9 (4.9)	11.4 (9.9)
SIII	34.4 (19.0)*	39.9 (19.0)*	37.5 (19.2)
Normalized SIII	37.0 (21.7)*	43.2 (22.0)*	40.6 (22.0)
KPIv	31.6 (13.0)*	38.1 (16.6)*	35.3 (15.5)
CII1	29.4 (8.4)*	32.4 (9.1)*	31.1 (8.9)
CII2	29.7 (8.7)*	33.2 (9.7)*	31.7 (9.4)
	Cystic Fibrosis Trials (n=137)	Healthy Control Trials (n=183)	All Trials (n=320)
------------------	--------------------------------	--------------------------------	-------------------
SII	8.4 (7.6)	8.6 (6.7)	8.5 (7.1)
Normalized SII	7.0 (7.4)	6.4 (5.3)	6.6 (6.2)
SIII	14.0 (12.3)	18.1 (14.2)	16.3 (13.5)
Normalized SIII	14.7 (12.7)	19.0 (14.8)	17.2 (14.0)
KPIv	14.8 (11.7)	16.8 (13.7)	15.9 (12.8)
CII1	10.5 (7.9)	11.6 (8.5)	11.1 (8.2)
CII2	10.7 (7.4)	11.3 (8.4)	11.0 (8.0)

Table S9. Inter-trial (intra-subject) variability of VCap indices

Data are presented as mean coefficient of variation (SD)%

No statistically significant difference between Cystic Fibrosis and Healthy Control Trials

(P<0.05 using the Student's T test)

VCap: volumetric capnography, SII: slope of phase II, SIII: slope of phase III, KPIv: capnographic index, CII: capnographic inhomogeneity index
Figure S1. Boxplots showing the difference between Cystic Fibrosis and healthy control in mean values of CII I and II, LCI, SIII and KPIv (analysis per trial).

The individual black dots represent mean values per trial.

CII: capnographic inhomogeneity index, LCI: lung clearance index, SIII: slope of phase III, KPIv: capnographic index.
Figure S2. Inter-trial (intra-subject) variability of LCI, CII I and CII II in patients with CF (black dots) and healthy controls (white dots).

The inter-trial (intra-subject) variability was calculated as the coefficient of variation in presence of three MBW trials, or as the relative difference in presence of two MBW trials. The red and green bars symbolize the mean inter-trial (intra-subject) variability for patients with CF and healthy controls respectively.

LCI: lung clearance index, CII: capnographic inhomogeneity index, CF: cystic fibrosis, MBW: Multiple Breath Washout.
Figure S3. Relationship between SIII and VE (A), CII1 and SIII (B) and CII2 and SIII (C) in CF (black dots) and healthy control trials (open dots) (analysis per trial).

CF: cystic fibrosis, SIII: slope of phase III, VE: expiratory volume, CII: capnographic inhomogeneity index.