FRUIT, a Scar-Free System for Targeted Chromosomal Mutagenesis, Epitope Tagging, and Promoter Replacement in Escherichia coli and Salmonella enterica

Anne M. Stringer¹, Navjot Singh¹, Anastasiya Yermakova², Brianna L. Petrone¹, Jayaleka J. Amarasinghe¹, Lucia Reyes-Diaz², Nicholas J. Mantis¹, Joseph T. Wade¹, Joseph T. Wade²

1 Wadsworth Center, New York State Department of Health, Albany, New York, United States of America, 2 Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America, 3 UASRP CSTEP Program, University at Albany, Albany, New York, United States of America

Abstract
Recombineering is a widely-used approach to introduce genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of "scar" DNA into the chromosome. Here, we describe a rapid, efficient, PCR-based recombineering method, FRUIT, that can be used to introduce scar-free point mutations, deletions, epitope tags, and promoters into the genomes of enteric bacteria. The efficiency of FRUIT is far higher than that of the most widely-used recombineering method for Escherichia coli. We have used FRUIT to introduce point mutations and epitope tags into the chromosomes of E. coli K-12, Enterotoxigenic E. coli, and Salmonella enterica. We have also used FRUIT to introduce constitutive and inducible promoters into the chromosome of E. coli K-12. Thus, FRUIT is a versatile, efficient recombineering approach that can be applied in multiple species of enteric bacteria.

Introduction
Chromosomal mutagenesis is a critical genetic tool for the study of bacterial systems. Many bacteria cannot be readily transformed with linear DNA fragments, greatly limiting our ability to introduce chromosomal mutations. Recombineering, a method that involves expression of bacteriophage recombination proteins, has transformed our ability to engineer bacterial chromosomes using linear dsDNA (typically generated by PCR) or ssDNA (oligonucleotides) [1]. Thus, it is now possible to rapidly introduce point mutations, insertions, gene deletions, and epitope tags into the chromosomes of many bacterial species. Existing recombineering methods involve two key components: (i) expression of bacteriophage recombination proteins, and (ii) generation of suitable DNA fragments for recombination. The latter component typically relies on specific DNA templates for PCR-based synthesis of dsDNA. Most described recombineering systems vary only in the DNA templates used, i.e. different selectable markers. Despite the wide variety of recombineering systems now available for enterobacteria such as Escherichia coli and Salmonella enterica, many have important limitations. First, some methods permit only imprecise excision of the selectable marker, leaving a 50–100 bp “scar” that can be problematic for future recombineering in the same strain and can alter expression of neighboring genes. Second, the efficiency of some methods is not sufficiently high to guarantee success with every attempted recombineering experiment. Third, some methods are limited to a single application, e.g. gene deletion. Here, we describe a highly efficient, rapid recombineering method, “Flexible Recombineering Using Integration of thyA-F” (FRUIT), that overcomes all of these limitations. FRUIT uses the thyA gene as both a selectable and counter-selectable marker, allowing for scar-free mutagenesis using a similar framework to previously-described recombineering methods. We have further developed FRUIT to allow for straightforward integration of any DNA sequence by combining recombineering with homologous recombination. Using these approaches, we have successfully introduced point mutations, gene deletions, epitope tags and artificial promoters into the genomes of E. coli K-12, Enterotoxigenic E. coli (ETEC), and S. enterica serovar Typhimurium.

Materials and Methods

Strains and Plasmids
All strains and plasmids used in this work are listed in Table 1. All oligonucleotides used for standard strain construction (i.e. not FRUIT) and plasmid cloning are listed in Table S1. E. coli K-12 MG1655 ΔthyA (AMD052) was constructed by electroporating an oligonucleotide, JW463, which has sequence immediately upstream and downstream of thyA into MG1655 [2] containing pKD46 and grown in LB containing ampicillin and 0.2% arabinose to induce expression of the λ Red genes. Cells were
recovered at 37°C for one hour and plated at 37°C onto M9 minimal medium containing 100 μg/ml thymine and 20 μg/ml trimethoprim. Recombinants were restreaked and then confirmed using colony PCR with primers flanking the expected site of thyA deletion. Colony PCR products were then sequenced. ETEC strain H10407 ΔthyA (AY001) was constructed similarly but using a PCR product containing sequence flanking thyA, amplified from MG1655 ΔthyA (AMD052) with oligonucleotides JW472+JW473, and strain H10407 containing pKD46. *S. enterica* serovar Typhimurium strain 14028s ΔthyA was constructed similarly but using a PCR product with sequence flanking thyA generated by SOEing PCR [3] with oligonucleotides JW1189, JW1190, JW1191+JW1192. All strain construction using FRUIT was as described below.

pAMD001 was constructed by PCR amplifying thyA from *E. coli* K-12 MG1655 using oligonucleotides JW495+JW496, and ligating into pre-cut pGEM-T plasmid (Promega). Oligonucleotide JW495 includes a constitutive promoter [4]. For construction of pAMD134, duplicate sets of 3×FLAG tags were colony PCR amplified from an SPA-tagged strain of *E. coli* [5] with oligonucleotides JW1137+JW1138, and JW1139+JW1140, and cloned as Apa-L-NotI and SalII-SacI fragments upstream and downstream of thyA in pAMD001. pVS006 was constructed similarly except that the oligonucleotides used were JW2476+JW2352 and JW2353+JW2478 (for the pieces cloned upstream and downstream of thyA), the template was a colony of MG1655 *E. coli* K-12, and the restriction sites used were *Not*-SalI and *Spe*-SalI. For construction of pVS003, the strong, constitutive promoter in pAMD001 was amplified by PCR using oligonucleotides JW2344+JW2475, and cloned into pAMD001, downstream of thyA, as a *Sal*-SalI fragment. For construction of pVS004, thyA and its promoter were amplified in a single fragment from pAMD001 but incorporating a single base change in the extended 10 hexamer, using oligonucleotides JW2349+JW2350. This PCR product was ligated into pre-cut pGEM-T. This plasmid served as a template for a PCR with oligonucleotides JW2344+JW2475, which amplified the medium strength, constitutive promoter. This was cloned as a *Sal*-SalI fragment downstream of thyA in the same plasmid. pVS005 was cloned similarly except that oligonucleotide JW2348 was replaced with JW2349.

Table 1. List of strains and plasmids.

| Escherichia coli strains | | |
|-------------------------|------------------------|
| MG1655 | F−, λ−, ΔG−, rfb-50, rph-1 [2] |
| AMD052 | MG1655 ΔthyA | This work |
| AMD0095 | MG1655 lacZ 2017-2019 GAT→TGA | This work |
| AMD225 | MG1655 allR-FLAG3 | This work |
| VS003 | MG1655 ΔthyA PNeo lacZ | This work |
| VS004 | MG1655 ΔthyA PNeo lacZ | This work |
| VS005 | MG1655 ΔthyA PNeo lacZ | This work |
| VS006 | MG1655 ΔthyA PNeo lacZ | This work |
| ETEC strains | | |
| H10407 | Wild-type [13] |
| AY001 | H10407 ΔthyA | This work |
| AY004 | H10407 esLA LexA site mutation | This work |
| AMD248 | H10407 allR-FLAG3 | This work |
| *Salmonella enterica* serovar Typhimurium strains | | |
| 14028s | Wild-type [14] |
| AMD212 | 14028s ΔthyA | This work |
| JJA001 | 14028s Δaaaf | This work |
| BLP006 | 14028s hillD-FLAG3 | This work |
| Plasmids | | |
| pKD46 | Encodes λ recombinase system [10] |
| pKD13 | kan r recombinase template [10] |
| pGEM-T | T-tailed cloning vector |
| pAMD001 | pGEM-T-thyA |
| pAMD135 | pGEM-T-FLAG3-thyA-FLAG3 |
| pVS003 | pGEM-T-Neo-thyA | This work |
| pVS004 | pGEM-T-Med-thyA | This work |
| pVS005 | pGEM-T-Med-thyA | This work |
| pVS006 | pGEM-T-Med-thyA | This work |

doi:10.1371/journal.pone.0044841.t001
FRUIT for Introducing FLAG Tags or Promoter Sequences

\(thyA\) intermediate strains were constructed and validated as described above except that the \(thyA\) cassette was amplified from the relevant tag or promoter plasmid. \(thyA\) intermediate cells were grown to an \(OD_{600}\) of \(\approx 1.0\) in LB containing ampicillin. 100 \(\mu\)L cells were plated at 30°C onto M9 minimal medium containing 100 \(\mug/ml\) thymine, 20 \(\mug/ml\) trimethoprim and ampicillin. Recombinants were restreaked and then confirmed using colony PCR with primers flanking the expected site of mutagenesis. Colony PCR products were then sequenced. When desired, \(thyA\) was reintroduced at its native locus as described above.

\(\beta\)-galactosidase Assay

2–3 mL cells were grown in LB at 37°C to an \(OD_{600}\) of 0.7–0.9 and the \(OD_{600}\) was recorded. Where indicated, 1 \(mM\) Isopropyl \(\beta\)-D-1-thiogalactopyranoside (IPTG) was added to cells during growth. 800 \(\mu\)L cells were pelleted at full speed in a microcentrifuge to pellet the appropriate yellow color. The reaction time was noted. Samples (A600) were centrifuged at full speed in a microcentrifuge to pellet the supernatant was recorded. Assay units were calculated as A420/160 of total time.

Chromatin Immunoprecipitation (ChIP)/qPCR

The ChIP method was based on an earlier study [19], 40 mL E. coli K-12 (MG1655 or AMD225) or ETEC cells (H10407 or AMD248) were grown in LB at 37°C to an \(OD_{600}\) of 0.6–0.8. For Salmonella enterica serovar Typhimurium, 40 mL cells (BLP006 or 14028s) were grown in LB at 37°C to an \(OD_{600}\) of \(\approx 1.0\). Cells were crosslinked for 20 minutes with formaldehyde (1% final concentration), followed by vortexing for 3 seconds. Assays were started by addition of 160 \(\mu\)L ONPG (4 mg/mL in dH2O) and stopped by addition of 400 \(\mu\)L 1 M Na2CO3, upon development of an appropriate yellow color. The reaction time was noted. Samples were centrifuged at full speed in a microcentrifuge to pellet the chloroform and any remaining cell debris. The \(OD_{420}\) and any remaining cell debris. The OD420 of the samples were centrifuged at full speed in a microcentrifuge to pellet the appropriate yellow color. The reaction time was noted. Samples (A600) were centrifuged at full speed in a microcentrifuge to pellet the supernatant was recorded. Assay units were calculated as A420/160 (total time).

Western Blot

For each sample analyzed, 20 \(\mu\)L sonicated, crosslinked cell extract from a ChIP experiment was separated on a 4–20% acrylamide gradient gel (Bio-Rad). Proteins were transferred to PVDF membrane and probed with M2 anti-FLAG antibody (Sigma; 1 in 2,000 dilution) and HRP-conjugated goat anti-mouse antibody (1 in 100,000 dilution). Tagged proteins were visualized using the ImmunStar Western kit (Bio-Rad).

Comparison of FRUIT and pKD13 Recombineering

\(thyA\) was used to replace the \(yacL\) gene in MG1655 (E. coli K-12) using FRUIT. The site of \(thyA\) insertion is identical to that of the site of insertion of the \(kan^R\) cassette from pKD13 that was used to construct the \(yacL\) strain in the Keio deletion collection [9]. Recombineering templates for \(thyA\) and \(kan^R\) were then generated by PCR amplification from the \(yacL\) strains in which \(yacL\) was replaced with \(thyA\) or \(kan^R\), respectively. PCR products were checked by agarose gel electrophoresis and quantified. Equimolar amounts of PCR product for \(thyA\) and \(kan^R\) were mixed and used for recombineering into MG1655 \(\Delta thyA\) expressing \(\lambda\) Red recombineering proteins from the pKD46 plasmid [10]. Colonies were verified for introduction of the \(thyA\) or \(kan^R\) cassette at the correct location using colony PCR with primers flanking the expected site of insertion (oligonucleotides JW3017+ JW3018). At least 8 colonies were tested for every recombineering experiment.

Results

Overview of FRUIT

FRUIT uses \(thyA\) as a selectable and counter-selectable marker, as described previously for BAC mutagenesis in E. coli [11]. \(thyA\) is a widely-conserved bacterial gene, required for the production of thymine, an essential nutrient. In cells otherwise lacking a copy of the \(thyA\) gene, chromosomal recombination of DNA fragments
Introducing Point Mutations and Gene Deletions Using FRUIT

We tested FRUIT in the MG1655 strain of *E. coli K-12*. We first precisely deleted the chromosomal copy of *thyA* using oligonucleotide recombineering [12] with counter-selection on medium containing trimethoprim. We confirmed the deletion of *thyA* by sequencing of a PCR product across the junction generated by deletion. We then cloned *thyA* onto a plasmid under the control of λ Red recombination proteins (Figure 1B) into the chromosomes of *E. coli K-12*, Enterotoxigenic *E. coli*, and *S. enterica* serovar Typhimurium.

Introducing Epitope Tags Using FRUIT

Introduction of point mutations and gene deletions using FRUIT requires two recombineering steps: one to introduce the *thyA* marker and one to remove it. This process is analogous to the delitto perfetto method of chromosomal mutagenesis in the yeast, *Saccharomyces cerevisiae*, that employs *URA3* as a selectable and counter-selectable marker [15]. There are also many systems in yeast for epitope tagging in which the *URA3* marker is introduced and then spontaneously resolved due to homologous recombination of duplicate sets of epitope tags on either side of the marker [16]. Inspired by this approach, we created a plasmid that contains *thyA* under the control of an artificial promoter [4], flanked by identical copies of three FLAG tags (Figure 1B). We reasoned that, following recombineering of the FLAG-*thyA*-FLAG cassette into a bacterial chromosome, homologous recombination of the two sets of FLAG tags would occur spontaneously at a low frequency and could be selected for by growth on medium containing trimethoprim, due to loss of *thyA* (Figure 1B). We used this method to introduce FLAG tags at the C-terminus of the transcriptional factors *AllR* in *E. coli K-12* and ETEC, and *HilD* in *S. Typhimurium* (Figure 3A). In each case, the frequency of successful recombination of the two sets of tags was sufficiently high to isolate tens of recombinants. These were checked by sequencing of a PCR product surrounding the FLAG tags. We then used ChiP/qPCR to measure association of the transcription factors with known target sites in their respective genomes (Figure 3B–D). In each case, we detected robust enrichment of the known target site. For ETEC *AllR* we tested association with two non-target sites (*galE* and *purR*) and detected no significant enrichment (Figure 3C). For *E. coli K-12 AllR* and *S. Typhimurium* containing *thyA* can be selected for by growth on minimal media lacking thymine. Counter-selection of *thyA* requires growth on media containing trimethoprim. Trimethoprim is an inhibitor of dihydrofolate reductase, an enzyme that recycles tetrahydrofolate. Tetrahydrofolate is an essential cofactor that is depleted by ThyA. Hence, ThyA is toxic in cells treated with trimethoprim, due to depletion of tetrahydrofolate. The basic FRUIT method (Figure 1) involves recombination of a *thyA*-containing PCR product into the chromosome of Δ*thyA* cells expressing λ phage Red recombination proteins. Successful recombinants are selected on medium lacking thymine. Clean replacement of the *thyA* marker is achieved either by λ Red recombination of a PCR product that lacks a marker (Figure 1A), or homologous recombination of sequences introduced by the original recombineering step (Figure 1B). In theory, the FRUIT method can be applied to any bacterium with (i) a functional *thyA* gene, and (ii) a described system for expression of bacteriophage recombination proteins. Thus, we have used FRUIT to introduce point mutations, gene deletions (Figure 1A), epitope tags and artificial promoters (Figure 1B) into the chromosomes of *E. coli K-12*, Enterotoxigenic *E. coli*, and *S. enterica* serovar Typhimurium.

FRUIT, a Scar-Free Recombineering System

As a first application of FRUIT, we introduced a three base pair deletion of *thyA* using oligonucleotide recombineering [12] with counter-selection on medium containing trimethoprim. We confirmed the deletion of *thyA* by sequencing of a PCR product across the known target site. For *E. coli K-12 AllR* (Figure 2C). We named this gene *esLA* (ETEC-specific LexA-regulated gene Δ). We demonstrated robust association of LexA with this putative site using ChiP and quantitative real-time PCR (ChiP/qPCR; Figure 2D). We used FRUIT to introduce a four base pair mutation into the putative LexA site, disrupting two of the three bases in the CTG motif that is critical for association of LexA (Figure 2C). Using ChiP/qPCR we demonstrated that this mutation results in a dramatic decrease in association of LexA relative to that at a site upstream of *saLA* (Figure 2D).

We next wished to test FRUIT in an enteric pathogen that is more distantly related to *E. coli K-12* than ETEC. For this, we selected the 14028s strain of *S. enterica* serovar Typhimurium, a clinical isolate [14]. We first precisely deleted the chromosomal copy of *thyA* using recombineering of a PCR product generated by SOEing [3]. Recombinants were isolated by counter-selection of *thyA* on medium containing trimethoprim. We confirmed deletion of *thyA* by sequencing of a PCR product across the junction generated by deletion. In a separate study, we wished to delete the *saLA* gene that encodes encodes an enzyme that modifies the O-antigen. Using FRUIT, we constructed a clean deletion of the *saLA* gene (Figure 2E). Treatment of wild-type *S. Typhimurium* with the Sa4L antibody results in motility arrest due to binding of Sa4l to the O-antigen [8]. *saLA* is required for Sa4l to bind *S. Typhimurium* cells and arrest motility [8]. We tested the motility of the wild-type and Δ*saLA* strains +/− Sa4l, using a soft agar motility assay. As expected, motility of wild-type but not Δ*saLA* cells was significantly reduced by the addition of Sa4l (Figure 2F).
A

Plasmid (P17) → PCR → thyA

PCR product → thyA → Chromosome

Select for thyA+ (growth without thymine)

Chromosome

PCR product → Chromosome

Select for ΔthyA (trimethoprim resistant)

B

Plasmid (p225) → PCR → thyA

PCR product → thyA → Chromosome

Select for thyA+ (growth without thymine)

Chromosome

Select for ΔthyA (trimethoprim resistant)

Chromosome
Figure 1. Schematic of FRUIT method. (A) Schematic of FRUIT for introducing point mutations or deletions. PCR product is amplified from the recombineering template plasmid (pAMD001), incorporating flanking sequence with identity to the desired site of recombination. This PCR product is introduced into cells expressing L.recombinase proteins and recombinants are selected using the thyA marker (growth on media lacking thymine). A mutation can then be introduced by recombineering a second PCR product, selecting for recombinants using counter-selection of thyA (growth in the presence of trimethoprim). (B) Schematic of FRUIT for introducing FLAG tags. As above, except that loss of thyA occurs spontaneously due to homologous recombination of duplicate sets of FLAG tags. doi:10.1371/journal.pone.0044841.g001

Figure 2. FRUIT mutagenesis of MG1655 (E. coli K-12) lacZ, H10407 (ETEC) eslA, and 14028s (S. enterica serovar Typhimurium) oafA. (A) Schematic indicating the mutation within lacZ. (B) β-galactosidase assay in wild-type MG1655 and mutant MG1655 with a stop codon introduced within lacZ. (C) Schematic indicating the mutation in the putative LexA site. (D) ChIP/qPCR assay to measure association of LexA with the region upstream of sulA (known LexA site) and the region upstream of eslA in wild-type and mutant strains. Relative occupancy values represent background-subtracted enrichment relative to that upstream of sulA. (E) Schematic indicating the deletion of oafA. (F) Soft agar motility assay of wild-type or mutant strains in the presence or absence of Sal4 antibody. Values indicate the diameter of the halo of motile cells after the indicated time. doi:10.1371/journal.pone.0044841.g002
ium HilD we did not detect enrichment of known target sites when using an untagged strain (Figure 3B). Lastly, we were able to detect the tagged proteins from all three species by Western blot (Figure 3E).

Promoter Replacement Using FRUIT

We reasoned that any sequence could be introduced into chromosomal DNA using FRUIT using a method equivalent to that described above for epitope tags. We constructed a plasmid containing \(\text{thyA} \) flanked by identical copies of a strong, constitutive promoter. The upstream copy of the promoter was positioned such that it drives transcription of \(\text{thyA} \). We then constructed two derivatives of this plasmid in which the extended −10 sequence in both copies of the constitutive promoter was mutated from TG to either CG or CT (Figure 4A). This promoter is expected to have high, medium or low strength with a TG, CG, or CT respectively at this position [4]. We also constructed a plasmid that contains \(\text{thyD} \) and its promoter flanked by identical copies of the \(\text{rhaBAD} \) promoter whose transcription is induced by the sugar, rhamnose (Figure 4A) [17]. We used FRUIT to introduce all constructs upstream of the \(\text{lacZ} \) operon in \(E. coli \) K-12, simultaneously replacing the natural promoter (Figure 4B). The efficiency was similar to that observed for introducing epitope tags. Strains were checked by sequencing of a PCR product surrounding the new promoters. We then confirmed the effect of these promoters by performing \(\beta \)-galactosidase assays which measure the level of LacZ. As expected, the high, medium and low strength promoters resulted in high, medium and low levels of \(\beta \)-galactosidase activity, respectively (Figure 4C). Furthermore, the \(\text{rhaBAD} \) promoter

Figure 3. FRUIT epitope-tagging of MG1655 (\(E. coli \) K-12) \(\text{allR}, \) H10407 (ETEC) \(\text{allR}, \) and 14028s (\(S. enterica \) serovar Typhimurium) HilD. (A) Schematic indicating C-terminal tagging with three FLAG tags. (B) ChiP/qPCR assay to measure association of MG1655 AllR-FLAG\(_3\) with the region upstream of \(\text{allA} \) (known AllR site in \(E. coli \) K-12) [32]. Values are also shown for a control ChiP with an untagged strain. Occupancy unit values represent background-subtracted enrichment relative to a control region. (C) ChiP/qPCR assay to measure association of H10407 AllR-FLAG\(_3\) with the region upstream of \(\text{allA}, \) or with predicted non-target regions upstream of \(\text{galE} \) and \(\text{purR} \). Occupancy unit values represent background-subtracted enrichment relative to a control region. (D) ChiP/qPCR assay to measure association of 14028s HilD-FLAG\(_3\) with the regions upstream of \(\text{prgH} \) and \(\text{invH} \) (known HilD targets) [33]. Values are also shown for a control ChiP with an untagged strain. Occupancy unit values represent background-subtracted enrichment relative to a control region. (E) Western blot probing extracts from untagged and FLAG-tagged strains for MG1655 (K-12), H10407 (ETEC) and 14028s (\(S. enterica \)). Note that the anti-FLAG antibody cross-reacts with a protein expressed \(E. coli \) K-12.

doi:10.1371/journal.pone.0044841.g003
resulted in rhamnose-dependent β-galactosidase activity (Figure 4D).

Efficiency of FRUIT Compared to Recombineering with Kanamycin Resistance Selection

The most widely used recombineering method involves PCR amplification of a kanamycin resistance or chloramphenicol resistance gene with ~40 nt flanking sequence to direct recombination to the desired location [10]. The antibiotic resistance gene can then be removed by expressing flp recombinase, leaving a ~80 nt scar. We have previously used this approach to delete genes in E. coli K-12 using plasmid pKD13 (contains a kanamycin resistance gene) as a recombineering template [18]. Furthermore, this method was used to construct a near-complete gene deletion collection for E. coli K-12 [9]. Nonetheless, we have found this method to be inefficient, often generating no successful recombinants. We directly compared the efficiency of gene replacement with FRUIT to that with pKD13. We generated PCR products containing the kanamycin resistance gene (from pKD13) or thyA. These PCR products had 43 bp (short), 134 bp (medium), or 210 bp (long) flanking sequence on each side of the selectable marker; the flanking sequence was identical to sequence flanking the E. coli K-12 yacL gene. For each of the short, medium and long PCRs, we mixed equimolar amounts of the pKD13 and thyA products and electroporated the mixture into E. coli K-12 expressing the λ-Red recombinase proteins. After recovering the cells we plated half onto medium containing kanamycin and half onto minimal medium lacking thymine. Eight colonies were selected from each plate and validated using colony PCR with primers flanking the site of insertion. Representative efficiencies of each method are listed in Table 2. Regardless of the length of flanking sequence, FRUIT was at least 30-fold more efficient than pKD13. Furthermore, 100% of recombinants generated by FRUIT were validated by colony PCR whereas recombinants generated using pKD13 were often incorrect, presumably due to recombination of the kanamycin resistance gene with an alternative locus.

Discussion

There are many described methods for recombineering in E. coli and S. enterica. The most commonly used method for gene deletion is that described by Datsenko and Wanner [10]. Although this

Figure 4. FRUIT promoter swaps in MG1655 (E. coli K-12). (A) Schematic indicating the plasmid templates used for FRUIT. (B) Schematic indicating replacement of the lacZYA promoter with P_{high}, P_{med} or P_{low} promoters. (C) β-galactosidase assay in ΔlacZ MG1655 and mutant strains with P_{high}, P_{med} or P_{low} driving expression of lacZYA (cells were grown without IPTG). (D) β-galactosidase assay in ΔlacZ MG1655 and a mutant strain with P_{rha} driving expression of lacZYA. Assays were performed ± rhamnose.

doi:10.1371/journal.pone.0044841.g004
FRUIT, a Scar-Free Recombineering System

Table 2. Comparison of FRUIT to pKD13-mediated recombineering.

Length of Arms (bp)	Number of Colonies	PCR Check Frequencya	Recombineering Frequencyb	Number of Colonies	PCR Check Frequencya	Recombineering Frequencyb	Ratio (FRUIT/pKD13)c
43	1580	1 1.05E−04		26	0.125	2.17E−07	486.15
134	3350	1 2.23E−04		117	0.75	5.85E−06	38.18
210	1990	1 1.33E−04		14	1	9.33E−07	142.14

*Frequency with which candidate colonies were successfully verified.

Number of colonies/number of viable cells.

Relative efficiency of FRUIT as compared to pKD13.

doi:10.1371/journal.pone.0044841.t002

method has been used successfully in a wide range of enterobacterial species, it cannot be used to make point mutations, introduce epitope tags or promoters, and it leaves a ~80 bp scar. Importantly, FRUIT uses the same plasmid (pKD46) to express λ recombinase proteins as that used by Datsenko and Wanner; the key improvement in the use of thyA rather than kanb in the recombineering templates. The use of thyA allows for selection and subsequent counter-selection; hence, FRUIT can be used to make scarless mutations of any type. FRUIT is also >30-times more efficient than the method described by Datsenko and Wanner (Table 2). We have not been able to determine why FRUIT is so much more efficient. Given that the only difference between the two techniques is the marker used for selection, we propose that the choice of marker may have large effects on the efficiency of recombineering.

Recombineering using thyA has been described previously for BAC mutagenesis [11]. Hence, our work is an extension of prior studies using this marker. Similarly, other methods have been described that use recombineering substrates with marker genes or cassettes that can be both selected and counter-selected. These include use of tolC [19] and galK [20] as single-gene markers, and tetAR as a two-gene cassette [21]. Cassettes with separate selectable and counter-selectable markers have also been developed, e.g. chloramphenicol resistance gene and sacB, which can be counter-selected by growth on media containing sucrose [22]. Of particular note, several groups have used restriction of chromosomal DNA by I-SceI meganuclease as a counter-selection [23,24,25,26,27]. I-SceI cuts at a large recognition site that is not typically found in chromosomal DNA. Introducing a restriction site for I-SceI adjacent to a selectable marker creates a cassette that can be counter-selected by expression of I-SceI. Any recombineering method with an efficient counter-selection step could, in principle, be used identically to FRUIT. However, FRUIT is the first such method that has been adapted to allow for introduction of epitope tags or promoters. Only two other methods have been described that are designed specifically for the introduction of epitope tags by recombineering and neither uses a counter-selectable marker [28,29]. Hence, both methods leave a chromosomal scar. There are no methods currently described for introducing heterologous promoters.

FRUIT can be easily adapted to recombineering sequences in addition to FLAG tags or promoters, using an analogous approach (Figure 1B). Equivalent methods are widely used to introduce sequences into yeast chromosomes. These sequences include a wide variety of epitope tags [30], reporter genes [31], and affinity tags [31]. In principle, recombineering templates could be created to allow for integration of any sequence by FRUIT using the method illustrated in Figure 1B.

The flexibility of FRUIT also applies to the bacterial species in which it is applied. We have tested FRUIT in three enterobacterial species. Given the high degree of conservation of thyA, we expect that FRUIT can be applied to many other species. This is especially important for species with low recombineering efficiencies, for which the method described by Datsenko and Wanner is ineffective [23].

In conclusion, we have developed a method for recombineering that combines the strengths of many existing approaches. We anticipate that FRUIT will be a widely-used method for introducing point mutations, deletions, epitope tags, heterologous promoter, and other commonly-used sequences into the chromosomes of a wide range of enterobacterial species.

Supporting Information

Table S1 List of oligonucleotides used for strain and plasmid construction, and for comparison of recombineering methods (excludes oligonucleotides used for FRUIT).

Table S2 List of oligonucleotides used for FRUIT.

Acknowledgments

We thank Keith Derbyshire, Todd Gray, Neil Shearer and Arthur Thompson for comments on the manuscript. We thank members of the Wade lab for helpful discussions. We thank Nick Reppas for initiating mutagenesis studies with thyA. We thank the Wadsworth Center Applied Genomics Technologies Core Facility for DNA sequencing.

Author Contributions

Conceived and designed the experiments: JTW. Performed the experiments: AMS NS AY BLP JJA LRD JTW. Analyzed the data: AMS NS AY BLP JJA NJM JTW. Wrote the paper: JTW.

References

1. Thomason L, Court DL, Babunenko M, Costantino N, Wilson H, et al. (2005) Recombineering: genetic engineering in bacteria using homologous recombination. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al., editors. Current Protocols in Molecular Biology. Hoboken, NJ: John Wiley & Sons, Inc. p. 1.16.11–11.16.21.

2. Blattner FR, Plunkett G III, Bloch GA, Perna NT, Burland V, et al. (1997) The complete genome of Escherichia coli K-12. Science 277: 1453–1474.

3. Horton RM, Cai Z, Ho SN, Pease L (1990) Gene splicing by overlap extension: tailor made genes using the polymerase chain reaction. Biotechniques 8: 528–535.
1. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6644.

9. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 0008.

2. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, extensive functional overlap between Sigma factors in Escherichia coli. Nat Struct Mol Biol 8: 936–941.

10. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6644.

3. Moqtaderi Z, Struhl K (2008) Expanding the repertoire of plasmids for PCR-based recombineering of the chromosome of Salmonella enterica. BMC Biotechnol 7: 59.

11. Wong QN, Ng VC, Lin MC, Kung HF, Chan D, et al. (2005) Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Res 33: e59.

12. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 98: 6742–6746.

13. Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, et al. (2010) Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, et al. (2010) Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 24: 2619–2630.

14. Jarvik T, Smillie C, Groisman EA, Ochman H (2010) Short-term signatures of evolutionary change in the Salmonella enterica serovar Typhimurium chromosome. Nucleic Acids Res 38: e15763.

15. Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19: 775–776.

16. Schneider BL, Seufert W, Steiner B, Yang QH, Futcher AB (1995) Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11: 1265–1274.

17. Moraldejo P, Egan SM, Hidalgo E, Aguilar J (1995) Sequencing and characterization of a gene cluster encoding the enzymes for lehamnose metabolism in Escherichia coli. J Bacteriol 175: 5385–5894.

18. Dornenburg JE, DeVita AM, Palumbo MJ, Wade JT (2010) Widespread antitense transcription in Escherichia coli. mBio 1: e00024–00010.

19. DeVito JA (2008) Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res 36: e14.

20. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33: e36.

21. Gerlach RG, Jackel D, Holzer SU, Hensel M (2009) Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica. Appl Environ Microbiol 75: 1573–1580.

22. Sun W, Wang S, Curtis R (2008) Highly efficient method for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome. Appl Environ Microbiol 74: 4241–4245.

23. Lee DJ, Bingle LE, Heurlier K, Pallen MJ, Penn CW, et al. (2009) Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol 9: 252.

24. Blank K, Hensel M, Gerlach RG (2011) Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One 6: e15763.

25. Yu BJ, Kang KH, Lee JH, Sung BH, Kim MS, et al. (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res 36: e94.

26. Cox MM, Layton SL, Jiang T, Cole K, Hargis BM, et al. (2007) Scarless and site-directed mutagenesis in Salmonella enteritidis chromosome. BMC Biotechnol 7: 59.

27. Tischer BK, Smuth GA, Osterrieder N (2010) En passant mutagenesis: a two step procedure for easy mutagenesis of Salmonella enterica. Nucleic Acids Res 38: e59.

28. Cho BK, Knight EM, Palsson BO (2006) PCR-based tandem epitope tagging system for Escherichia coli genome engineering. Biotechniques 40: 67–72.

29. Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of Saccharomyces cerevisiae. Yeast 17: 287–292.

30. Moqtaderi Z, Struhl K (2008) Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast. Yeast 25: 67–72.

31. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.

32. Rintoul MR, Casa E, Baldomà L, Badia J, Reitzer L, et al. (2002) Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllR. J Mol Biol 324: 599–610.

33. Ellermeier JR, Slauch JM (2007) Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10: 24–29.