Curcuma Contra Cancer? Curcumin and Hodgkin’s Lymphoma

Stefanie Kewitz, Ines Volkmer and Martin S. Staege

Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany. Corresponding author email: martin.staege@medizin.uni-halle.de

Abstract: Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.

Keywords: curcumin, cancer, Hodgkin’s lymphoma, vitamin D receptor, nuclear factor kappa B
Introduction

The name curcumin has been used for different unrelated dyestuffs. Today, the name is used more or less exclusively for 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, the yellow dye from *Curcuma longa* (turmeric) and other curcuma plants.\(^1,2\)

The name curcuma is based on the oriental name of the plant, which refers to its similarity with saffron (see the Hebrew word for saffron: שְׂדֵךְ).\(^3\) Approximately 2000 years ago, Plinius described a plant with similar features which is considered to be turmeric (*est et per se Indica herba, quae cypira vocatur; zingiberis effigie; commanducata croci vim reddit.*\(^4\) [furthermore, an Indian plant exists which is called cypira and which has a similar appearance as ginger; while chewing it constitutes the effect of saffron]).

Hybridization of *C. longa* with other species results in marked differences in the curcumin content between different plants.\(^5\) *C. longa* is a member of the family Zingiberaceae (ginger family). This family contains several plants which are widely used as spices and/or officinal plants, for example *Aframomum* spec. (alligator pepper, false cardamom), *Alpinia officinarum* (Chinese ginger), *Amomum subulatum* (hill cardamom), *Boesenbergia rotunda* (Chinese keys), *C. aromatica* (wild turmeric), *C. xanthorrhiza* (temulawak), *C. zedoaria* (zedoary), *Eletteria cardamomum* (cardamom), *Kaempferia galangal* (galangal), *Zingiber officinale* (ginger), and *Z. mioga* (Japanese ginger).

Recently, the complete transcriptome of *C. longa* rhizomes was analyzed.\(^6\) For a long time, the lipid-soluble yellow compound which can be isolated from the curcuma plants was used for cooking, cosmetics, and textile dying.\(^7\) In the 13th century, turmeric was introduced into Europe by Arab traders.\(^8\) Today, turmeric and the isolated curcumin are used as colorant in many food products. Turmeric is one of the important ingredients of curry powder. The color of curcumin depends on the pH and the presence or absence of other substances like boron (Fig. 1). With boron, curcumin forms rosocyanine, a reddish color (Fig. 1) which can be used for the detection and colorimetric quantification of boron.\(^9\)

Multiple biological effects have been documented for curcumin. Curcumin has direct antibacterial\(^10\) and anti-inflammatory\(^11\) activity. The anti-inflammatory activity might be mediated in part by the strong antioxidant activity of its caffeic acid moiety.\(^12\) Curcumin influences multiple signaling pathways.\(^13,14\) In addition to the anti-cancer related activities described below, curcumin is used for the treatment of a plethora of other diseases including pulmonary, neurological, liver, metabolic, and autoimmune diseases.\(^15\)

Anti-Cancer Related Activities of Curcumin

In the last decades, there has been growing interest in curcumin and curcumin derivatives for treatment or prevention of cancer as indicated by the increasing number of curcumin-related publications in the last years (Fig. 2). The basic biological activities of curcumin has been summarized in an excellent review.\(^16\)

Early observations suggested that curcumin can inhibit growth of tumor cells,\(^17\) can inhibit chemical carcinogenesis,\(^18,19\) and can be used for the treatment of patients with cancer.\(^20\) Since then, few clinical trials suggest that curcumin might be a drug of interest for treatment of cancer\(^21,22\) or for the prevention of different forms of cancer.\(^23,24\)

It has been shown that curcumin and curcumin derivatives alone or in combination with other drugs increase cell death in a wide variety of tumor cells, including brain tumors,\(^25–28\) sarcoma,\(^29–35\) breast cancer,\(^40–46\) ovarian cancer,\(^47–49\) testicular cancer,\(^50\) prostate cancer,\(^51–53\) pancreatic cancer,\(^54,55\) liver cancer,\(^56\) bile cancer,\(^57\) gastric cancer,\(^58,59\) colorectal cancer,\(^60,61\) lung cancer,\(^62–65\) mesothelioma,\(^66\) renal cancer,\(^37\) bladder cancer,\(^67\) esophageal cancer,\(^68–71\) head and neck cancer,\(^72–75\) and lymphoma/leukemia\(^76–86\) (Table 1).

Curcumin induces death of cancer cells by activation of extrinsic and intrinsic apoptosis pathways. Activation of apoptosis by curcumin is accompanied by modulation of multiple signaling pathways (hedgehog pathway, extracellular signal-regulated kinase (ERK) pathway, wingless (WNT) pathway, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, Notch pathway, nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFkB) pathway; Table 1). Depending on the cell type investigated, activation or inhibition of certain signaling pathways can occur. The ERK pathway, for example, is activated by curcumin in monocyctic leukemia cells\(^77\) whereas curcumin down-regulates ERK in breast cancer cells.\(^43\)

In both cases, deregulation of this signaling pathway promotes cell death. Curcumin can up-regulate
Curcumin and Hodgkin’s lymphoma

Figure 1. Curcumin and Curcuma. A) Curcumin is the yellow dyestuff from turmeric (the structure of curcumin was drawn with C-Design 3.0f; http://www.ch.tum.de/oc1/EFontain/C-Design/). B) Curcumin forms colored complexes with boron. Turmeric powder (1 g) was extracted with 96% ethanol (10 mL, 37°C, 2 h), centrifuged and steril filtered. In the presence of 0.1 M NaOH, a 1:20 dilution of this extract in water is colored orange. After addition of 0.05 M boric acid the color turns into deep red. C) Turmeric powder (1.3 g) was extracted with 96% ethanol (18 mL, 37°C, 4 h) in the absence or presence of boric acid (1 g), centrifuged, steril filtered, and dried on filter paper circles. In the presence of boron, the yellow color changed into red.

pro-apoptotic components of the extrinsic apoptosis pathway (FAS, FAS ligand, Tumor necrosis factor (TFR) receptors or TNF-related apoptosis inducing ligand (TRAIL) receptors). On the other hand, curcumin down-regulates anti-apoptotic factors (B cell leukemia/lymphoma 2 (BCL2), BCL2 like 1 (BCL2L1), X-linked inhibitor of apoptosis (XIAP), survivin). In addition, curcumin has been shown to inhibit telomerase which reverses immortalization of cancer cells. It seems that curcumin is able to induce apoptosis in cancer cells without pronounced cytotoxic effects on healthy cells. By inhibition of multi-drug resistance transporters, curcumin can overcome chemotherapy resistance of tumor cells. The inhibition of these transporters can explain the depletion of side populations in tumor cells after treatment with curcumin. If curcumin increases the chemotherapy sensitivity of this putative stem cell population, a combination with conventional chemotherapy might be able to kill the stem cell population. Antagonistic effects of curcumin and cytotoxic drugs have been observed, however. These observations indicate that the combination of curcumin with other drugs should be carefully evaluated in appropriate models in vitro or in vivo before these combinations are tested in patients.

Another interesting activity of curcumin is the inhibition of tumor cell motility, invasion, and metastasis. This activity is mediated in part by the down-regulation of matrix-metalloproteinases. A key step in tumor metastasis is the process of epithelial mesenchymal transition (EMT) usually accompanied by loss of epithelial cadherin (CDH1) expression. Inhibition of EMT and up-regulation of CDH1 in tumor cells by curcumin has been described. One inducer of cell motility in cancer
Figure 2. Increasing number of publications about curcumin and cancer. The PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) was searched with the queries "curcumin" or "curcumin cancer". Presented are the absolute numbers of found publications per publication year.

Table 1. Examples for growth inhibitory activities of curcumin and curcumin derivatives on tumor cells.

Tumor types¹	Substances²	Important observations³	Ref.
brain tumors (glioblastoma, medulloblastoma)	curcumin; curcumin + paclitaxel	cell cycle inhibition; apoptosis; inhibition of telomerase; inhibition of migration; inhibition of hedgehog signaling	25–28
MPNST sarcoma (chondrosarcoma, liposarcoma, osteosarcoma, Ewing sarcoma)	curcumin + TRAIL; curcumin; curcumin + JCTH-4; FLLL32	enhanced TRAIL sensitivity; increased production of ROS; up-regulation of FAS, FAS ligand, and TRAILR2; enhanced JCTH-4 sensitivity; cell cycle inhibition; inhibition of ATP2A2; apoptosis; down-regulation of MMP2	29; 30–35
melanoma	curcumin; FLLL32; FLLL62; DM-1 + dacarbazine; D6	cell cycle inhibition; up-regulation of TNF receptor 1; apoptosis; inhibition of STAT3 signaling	36–39
neuroblastoma	curcumin; D6	apoptosis; inhibition of TNF induced NFκB signaling	39

(Continued)
Curcumin and Hodgkin’s lymphoma

Table 1. (Continued)

Tumor types	Substances	Important observations	Ref.
breast cancer	curcumin; curcumin + fluorouracil; curcumin + tamoxifen; curcumin + vinblastin; RL66; RL71	cell cycle inhibition; inhibition of multiple signaling pathways; apoptosis; inhibition of ERK signaling; down-regulation of EHZ2; inhibition of migration of endothelial cells; depolymerization of microtubules	40–46
ovarian cancer	curcumin + cisplatin; curcumin + oxaliplatin; B19; HO-3867 + cisplatin; FLLL32; FLLL62	inhibition of STAT3 signaling; apoptosis; up-regulation of TP53; increased production of ROS	47–49
testicular cancer	curcumin + bleomycin	apoptosis	50
prostate cancer	curcumin; dimethoxycurcumin	cell cycle inhibition; apoptosis; inhibition of MMP2, inhibition of wingless signaling	51–53
pancreatic cancer	curcumin; curcumin + sulforaphane + aspirin	cell cycle inhibition; apoptosis; inhibition of NFKB signaling	54,55
liver cancer	curcumin + adriamycin	apoptosis	56
biliary cancer	curcumin	apoptosis; inhibition of NFKB signaling; inhibition of STAT3 signaling; up-regulation of TRAIL receptors	57
gastric cancer	curcumin; curcumin + doxorubicin; curcumin + etoposide	apoptosis	58,59
colon cancer	bisdehydroxycurcumin	apoptosis; autophagy	60,61
lung cancer	curcumin; curcumin + cisplatin B63; T63;	cell cycle arrest; apoptosis; enhanced production of ROS; down-regulation of MDR transporters; enhanced degradation of HIF1A	62–65
mesothelioma	curcumin; curcumin + cisplatin	apoptosis	66
renal cell carcinoma	curcumin; curcumin; FLLL32; FLLL62	apoptosis; inhibition of STAT3 signaling	37
bladder cancer	curcumin + BCG	inhibition of NFKB signaling; up-regulation of TRAIL receptors; apoptosis	67
esophageal cancer	curcumin; curcumin + fluorouracil; curcumin + cisplatin	cell cycle inhibition; inhibition of NFKB signaling; apoptosis; non-apoptotic cell death; inhibition of Notch signaling;	68–71
head and neck cancer	curcumin; FLLL32 + cisplatin	cell cycle inhibition; apoptosis; inhibition of STAT3 signaling; increased production of ROS	72–75
leukemia and lymphoma	curcumin; curcumin + daunorubicin; curcumin + IR; CA#12 + bortezomib	cell cycle inhibition; increased production of ROS; apoptosis; inhibition of NFKB signaling; activation of ERK pathway; down-regulation of cyclin D1, down-regulation of MYC	76–85

1MPNST, malignant peripheral nerve sheath tumors.
2B19, (1E, 4E)-1, 5-bis(2-methoxyphenyl)pent-1-4-dien-3-one; B63, 1,5-bis(2-methoxyphenyl)pent-1-4-dien-3-one; DM-1, sodium 4-{5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dien-2-yl}-2-methoxy-phenolate; BCG, Bacillus Calmette-Guerin; CA#12, (1E,6E)-1,7-Bis(4-valinoyl-3-methoxyphenyl)-1,6-diene-3,5-diene; D6, (3E,5E)-4,4’-(5,5’,6,6’-tetramethoxy-1,1’-biphenyl)-3,3’-diylbis(but-3-en-2-one); FLLL32, (2E,2’E)-1,1’-(cyclohexane-1,1-diyl)bis[3-(3,4-dimethoxyphenyl)prop-2-en-1-one]; FLLL62, (2E,2’E)-1,1’-(tetrahydropyran-4,4-diyl)bis[3-(3,4-dimethoxyphenyl)prop-2-en-1-one]; HO-3867, 1-[[1-Oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl]methyl]-(3E,5E)-3,5-Bis(4-fluorobenzylidene)piperidin-4-one; IR, ionizing radiation; JCHT-4, synthetic pancreateatin analog; TRAIL, tumor necrosis factor-related apoptosis inducing ligand; RL66, 1-Methyl-3,5-bis(E)-4-pyridyl methylidene]-4-piperidone; RL71, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidin-4-one; T63, (1E,6E)-1,7-Bis(3,4-dimethoxyphenyl)-4-(4-hydroxy-3-methoxybenzylidene)hepta-1,6-diene-3,5-dione.
3ATP2A2, sarcolemmal/endoplasmic reticulum calcium ATPase; ERK, extracellular signal-regulated kinase; EHZ2, enhancer of zeste homolog 2; HIF1A, hypoxia inducible factor 1, alpha subunit; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells; TGF, tumor necrosis factor; TP53, tumor protein 53; TRAILR2, TRAIL receptor 2 (death receptor 5); MDR, multi-drug resistance; MMP2, matrix metalloproteinase 2; MYC, myelocytomatosis viral oncogene homolog; ROS, reactive oxygen species; STAT3, signal transducer and activator of transcription 3.
cells is lysophosphatidic acid (LPA). LPA receptors are often expressed in tumor cells and co-expression of LPA receptors and LPA-producing phospholipases in tumor cells have been observed. Curcumin can also inhibit LPA-induced cancer cell motility. Taken together, these observations indicate that curcumin does not only inhibit tumor growth but also metastasis formation. However, enhanced metastasis has been described in a Lewis lung carcinoma model.

In addition to the death inducing activities of curcumin on established tumor cells, curcumin and curcumin derivatives can inhibit or delay tumor formation in different tumor models. Curcumin significantly inhibited the formation of preneoplastic lesions in animal models for chemical colon carcinogenesis. The combination with fluorouracil or carniotine enhanced this effect. Curcumin inhibited ultraviolet radiation-induced or chemically induced skin carcinogenesis in mice. Furthermore, curcumin inhibited the development of gastrointestinal tumors, mammary tumors, and hepatocellular tumors in models for chemical carcinogenesis. The anti-inflammatory activity of curcumin seems to be responsible at least partially for such cancer preventive activities. In addition to the direct activities on tumor cells and pre-malignant cells, the inhibition of the growth of carcinogenic microorganisms such as Helicobacter pylori may partially account for tumor prevention by curcumin. Very infrequently, enhanced tumor formation in experimental models has been described. Such observations indicate that the biology of the used experimental models has not been fully elucidated and that further investigations are required in order to understand the effects of curcumin in the different models.

The Nuclear Factor Kappa B (NFκB) Pathway as Target for Curcumin

Avian reticuloendotheliosis defines a group of diseases that are observed in turkeys, broiler chickens, ducks, among other birds. One of the interesting features of reticuloendotheliosis is the development of lymphoid malignancies. The causative agent of reticuloendotheliosis is a gamma-retrovirus that transforms diverse avian cells. Analysis of the T strain of this virus (reticuloendotheliosis virus strain T; REV-T) led to the identification of the REL oncogene.

Thereafter, the human REL homologue was found on chromosome 2. REL is a member of a gene family that includes in the human genome at least 5 members: REL, RELA, RELB, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFκB1), and NFκB2 (Fig. 3). This family can be divided into two sub-families (Fig. 3) and usually one member of the NFκB1/2 subfamily forms a heterodimer with a member of the REL subfamily. The NFκB pathway is a highly conserved signaling pathway in eukaryotes. Members of the NFκB family are involved in chromosomal rearrangements that have been detected in cancer cells and gene fusions involving REL or NFκB2 have been described.

The NFκB pathway is often deregulated in cancer cells. One example is Hodgkin’s lymphoma (HL), one of the most frequent lymphomas in Western countries. The etiology of HL is unclear, but immunological and molecular properties suggest that in most cases HL cells are derived from B cells. HL cells have a characteristic gene expression profile that discriminates these cells from other normal and transformed hematopoietic cells. With the combination of radio- and chemotherapy the majority of patients, with HL can be cured. However, the established therapy is associated with the induction of secondary malignancies, cardiac toxicities, and treatment-related infertility. In addition, up to 10% of patients still cannot be cured with current therapy regimes, which represent a significant number. Thus, there is a clear demand to search for new treatment options and also for optimization of current treatment strategies by identifying potential treatment resistance mechanisms.

An involvement of the NFκB pathway in HL has been suggested by the high expression of NFκB family members in HL. Mutations in the NFκB inhibitors NFκB inhibitor alpha (NFκBIA) and tumor necrosis factor alpha-induced protein 3 (TNFAIP3) have been observed in a high percentage of HL. Curcumin inhibits NFκB activity in different cell types (Table 1) and the inhibition of the NFκB pathway can be seen by decreased expression of NFκB. The activity of NFκB is regulated by inhibitors that can be responsible at least partially for such cancer preventive activities. Such observations indicate that the biology of the used experimental models has not been fully elucidated and that further investigations are required in order to understand the effects of curcumin in the different models.
In addition to constitutive activation of NFKB, in some tumors NFKB expression and activation is induced by treatment with cytotoxic drugs or cytokines. Curcumin and curcumin derivatives can prevent such induced activation. Curcumin derivatives, for example, have been shown to decrease the TFR-induced expression of NFKB in melanoma and neuroblastoma cells. In some cases the anti-NFKB activity of curcumin requires the presence of additional treatment elements. In pancreatic tumor cells, for example, curcumin inhibits DNA binding-activity of NFKB only in combination with aspirin and sulforaphane. As the final consequence of NFKB inhibition, expression of NFKB target genes is suppressed. These target genes include anti-apoptotic factors and the suppression of these factors can increase tumor cell death. In addition, the crosstalk between NFKB and other signaling pathways can lead to complex alterations of the phenotype of tumor cells after inhibition of NFKB.

The activation of the NFKB pathway in HL makes curcumin an interesting drug for the treatment of HL. Indeed, curcumin induces cell death in HL cells. As shown in Figure 4A, incubation with curcumin leads to decreased cell viability in all HL cell lines tested whereas normal peripheral blood mononuclear cells (PBMC) are not affected by the used concentration of curcumin. Similar results were found by Mackenzie et al who showed that curcumin leads to cell cycle arrest in G2-M and reduced cell viability in Hodgkin and Reed-Sternberg cells.
In order to determine whether the combination of curcumin with conventional chemotherapy might have synergistic effects, HL cells were incubated either without curcumin or with a low dose (1.25 µM) of curcumin and varying concentration of cisplatin. The results are shown in Figure 4B. With the used concentration of curcumin, only marginal effects on cell viability were observed. In contrast, the combination of curcumin with cisplatin had a strong cytotoxic effect on the cells. However, inhibition of the Fanconi anemia (FA) pathway might be an important factor for the synergistic effect of cisplatin and curcumin on HL cells. Ubiquitination of the FA complementation group D2 (FANCD2) protein in response to DNA damage is an important step during repair of cross-links in the DNA, caused by cisplatin. Chirmomas et al.144 showed that curcumin inhibits the FA pathway by inhibition of ubiquituation of FANCD2. This inhibition sensitized ovarian and breast tumor cells for cisplatin.144 It remains to be shown whether similar mechanisms are responsible for increased cisplatin sensitivity of curcumin treated HL cells. The HL cell lines used in our study outlined above were established from patients with refractory disease and are not perfect models for the situation in most patients in vivo. However, the increased cell death of these highly chemotherapy resistant cell lines after treatment with curcumin seems to be encouraging.

Curcumin shares the NFκB-inhibitory activity with another interesting dietary phytochemical: capsaicin.145 Curcumin can bind the vaniloid receptor TRPV1 (transient receptor potential cation channel, subfamily V, member 1), the same receptor that is activated by capsaicin.145 However, curcumin binding to TRPV1 did not result in the same signaling. TRPV1 is not the only receptor for curcumin and interestingly, curcumin can bind the aryhydrocarbon receptor AHR.146 Many carcinogenic polycyclic aromatic hydrocarbons are carcinogens only after in vivo activation. Cytochrome P450 family member A1 (CYP1A1) is an enzyme which can catalyze this activation. Expression of CYP1A1 is induced after binding of AHR to polycyclic aromatic hydrocarbons. It was shown that curcumin can inhibit the CYP4A1 inducing activity of the AHR.147 Binding to AHR and competition with ary hydrocarbon derivatives might explain the chemopreventive activity of curcumin.147 Probably more important for the cancer cell death inducing activity of curcumin is the third curcumin receptor, the vitamin D receptor.148,149

Vitamin D Receptors (VDR) and Curcumin

Anti-neoplastic activities of vitamin D have been described, but epidemiological data also suggests that for some cancer types sunlight can reduce cancer risk independent from vitamin D.150 Curcumin increases apoptosis and differentiation of vitamin D-treated tumor cells.151,152 Direct binding of curcumin to the vitamin D receptor (VDR) was demonstrated.148 This binding allows VDRs to heterodimerize with the retinoic X receptor and translocate to the nucleus.
The complex can then activate gene transcription of vitamin D target genes.148

Recently, high expression of the VDR has been observed in HL biopsies.153 HL cell lines also express high levels of VDR (Fig. 5). Lymphoma cells can synthesize vitamin D154 and increased vitamin D levels have been repeatedly reported in HL patients.155 In addition, seasonal fluctuations of the prognosis of HL patients have been observed and discussed as being caused by fluctuations of endogenous vitamin D levels.156 Vitamin D can probably activate the NFKB pathway,157,158 but in most systems, vitamin D inhibits NFKB activation.159–162 In Jurkat cells with constitutive expression of VDR, no inhibition of NFKB by vitamin D was observed,163 suggesting that some tumor cells have inactivated this pathway. Interestingly, NFKB can inhibit VDR signaling.164 This cross-inhibition might explain the simultaneous high constitutive expression of VDR and activated NFKB in lymphoma cells. Stimulation of VDR by curcumin might shift this balance to the inhibitory activity of VDR.

Indirect Effects of Curcumin:

Immunomodulation

Curcumin can reduce the number of myeloid-derived suppressor cells,165 an important immuno-suppressive cell population in tumors. Tumor patients, especially HL patients, often have a tumor-mediated dysfunction of the immune system. Experimental data suggest that curcumin is able to restore the immune function in tumor-bearing hosts.166 On the other hand, induction of regulatory T cells might be increased in the presence of curcumin,167 and the direct induction of apoptosis in activated T cells has been described.168 As an anti-inflammatory agent, curcumin can suppress T cells.169,170

Such effects, however, might negatively affect anti-cancer immune responses. The balance between immunostimulation and -suppression might be dependent on the concentration of curcumin.171 In the case of HL, the immune system is a double-edged sword. On the one hand, cytotoxic T cells can kill HL cells; on the other hand, T cells can provide survival signals for HL cells. The very low number of tumor cells and the presence of a high background of “normal” cells in HL indicate the importance of the interaction between tumor cells and the stroma. Whether curcumin can shift the balance between tumor promoting activities and anti-tumor activities of T cells in HL into the direction of tumor destruction must be analyzed. HL is a disease with features of chronic inflammation and the accumulation of stroma cells by HL derived cytokines is an important factor for HL biology.172,173 The anti-inflammatory activities of curcumin may be able to counteract this inflammatory stimulus.

Other Curcumin Activities Related to HL Biology

Another interesting activity of curcumin is the suppression of histone deacetylases (HDAC).174,175 Reports
describe the inhibition of histon acetyltrasferases by curcumin without HDAC inhibition. In addition, curcumin has DNA methylation inhibiting activity. Epigenetic regulation of gene expression by DNA methylation or histone deacetylation plays an important role in HL biology. Treatment of HL cells with HDAC inhibitors can increase the sensitivity of HL cells to cytotoxic drugs. Treatment of HL cells with DNA methylation inhibitors can increase the expression of tumor antigens which might increase the recognition by the immune system. However, increased expression of factors involved in chemotherapy resistance might also occur after the treatment of HL cells with such drugs.

Interestingly, curcumin has been shown to inhibit transcription initiated by human immunodeficiency virus (HIV) type 1 long terminal repeats (LTR). The activation of LTRs from endogenous retroviruses (ERV) in HL has been demonstrated. This activation can lead to the aberrant expression of oncogenes in HL. Whether curcumin can modulate the activity of ERV promoters in tumor cells is under investigation. If ERV activity is essentially involved in the pathogenesis of HL, such ERV inhibition might reverse the malignant phenotype of the tumor cells.

A high percentage of HL carries copies of the Epstein Barr virus (EBV) in the tumor cells. Activation of the NFKB pathway by EBV seems to be involved in the pathogenesis of EBV positive HL. Curcumin can inhibit B cell immortalization by EBV. EBV-immortalized B cells undergo pronounced apoptosis in the presence of curcumin which may inhibit the outgrowth of cell lines. In addition, it seems that oxidative stress promotes B cell immortalization by EBV. The anti-oxidant activity of curcumin might inhibit this effect in a similar way as it was shown for vitamin E. Whether this activity can interfere with the EBV driven HL pathogenesis requires further investigations.

Additional HL related activities of curcumin have been described. For example, HL cells express the anti-apoptotic BCL-X isoform of the B cell leukemia/lymphoma 2 (BCL2)-like 1 (BCL2L1) oncogene. Recently, a link between expression of BCL-X and survival of HL patients has been suggested. Curcumin can down-regulate BCL-X. Furthermore, curcumin is a topoisomerase II inhibitor with a similar activity as etoposide, a drug which is used for treatment of HL. In addition to the NFKB pathway, curcumin inhibits the STAT pathway (Table 1). This pathway is similarly important for HL cell proliferation and survival as the NFKB pathway and inhibitors of this pathway can induce apoptosis in HL cells. Constitutive activation of the STAT pathway by rearrangements of the JAK2 have been described in HL. Taken together, curcumin targets several pathways in HL cells. The scarcity of the tumor cells in the tumors hampers the analysis of larger numbers of ex vivo isolated living cells. The number of established HL cell lines is very low and these cell lines are not perfectly representative for the tumor cells in vivo. Whether curcumin or curcumin derivatives with better bio-availability can be used for the treatment of HL patients requires further investigation.

A number of microarray experiments of curcumin treated cells and animals have been published (Table 2). These experiments indicate that the specific effects of curcumin on gene expression are dependent on the investigated model. However, a model-independent common schema of curcumin activities can be seen. These activities include the shift from pro-inflammatory to anti-inflammatory gene expression signatures, the shift from anti-apoptotic to pro-apoptotic signatures, cell cycle inhibition, and down-regulation of pro-inflammatory factors (e.g., metalloproteinases). Such experiments might help to identify the relevant pathways which are involved in the biological effects of curcumin in the different models and may lead to the identification of new therapeutic targets.

Future Directions

The bio-availability of curcumin is limited by the rapid metabolism and the low water solubility of this phytoceutical. Curcumin is rapidly conjugated with sulfate or glucuronic acid in the gut and liver. In addition, reduction to tetrahydrocurcumin and hexahydrocurcumin occurs. The resulting curcumin sulfate, curcumin glucuronide, and reduced curcumin derivatives can be found in the feces of curcumin treated patients. The curcumin metabolites have some biologic activities, for example tetrahydrocurcumin can inhibit the activity of multi-drug resistance (MDR) transporters. However, enhanced excretion of curcumin metabolites and the shortening of the half life of curcumin after conjugation are not desired. Inhibition of glucuronidation by piperine...
Table 2. Examples for DNA microarray experiments investigating the gene expression after treatment of cells or animals with curcumin or curcumin derivatives.

Models	Substances	Important observations	Ref.
head and neck cancer cells	curcumin	decreased expression of MMP10	97
colon cancer cells	curcumin	regulation of cell-cycle-related genes; down-regulation of RELA and MMP2	202,203
bladder cancer	curcumin; demethoxycurcumin	regulation of cell-cycle-related genes; decreased expression of MMP9 and other angiogenesis-related genes	205
endothelial cells	curcumin	decreased expression of MMP14 and other invasion-related genes; down-regulation of microRNA-186*; up-regulation of genes related to cellular redox status	207–209
lung cancer cells	curcumin	up-regulation of pro-apoptotic genes, cell adhesion molecules, and anti-inflammatory factors	210
smooth muscle cells, peritoneal phagocytes	curcumin	up-regulation of cell cycle inhibitors; complex regulation of apoptosis-related genes; down-regulation of pro-inflammatory chemokines; down-regulation of EGF pathway	211–214
breast cancer cells	curcumin	up-regulation of pro-apoptotic genes, cell adhesion molecules, and anti-inflammatory factors	210
hepatic stellate cell line	Curcum oil	down-regulation of interleukin 6 and TIMP2	215
colon	curcumin	strain-dependent differences in regulated genes; reduced expression of pro-inflammatory genes	216–218
Ewing sarcoma cells	curcumin	down-regulation of radiation-induced anti-apoptotic factors	220
pancreatic cancer cells	curcumin	regulation of microRNAs and microRNA-target genes	221
liver	curcumin	weak peroxisomal proliferator activity (in rats)	222
leukemia cells	curcumin	down-regulation of cell cycle regulators and JAK/STAT signaling	223
heart	curcumin	down-regulation of pro-inflammatory factors	224
liver cancer cells	curcumin	down-regulation of protein kinase C	225
retinoblastoma cells	curcumin	up-regulation of anti-inflammatory factors	226
blood cells	curcumin	regulation of multiple genes involved in apoptosis, cell cycle regulation, and angiogenesis; regulation of microRNAs and microRNA-target genes	227,228

1 CLEFMA, 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid].
2 In some investigations curcumin or curcumin derivatives were compared with other substances.
3 eGF, epidermal growth factor; JAK/STAT, janus kinase/signal transducer and activator of transcription MMP2, matrix metalloproteinase 2; MMP9, matrix metalloproteinase 9; MMP10, matrix metalloproteinase 10; MMP14, matrix metalloproteinase 14; TIMP2, tissue inhibitor of metalloproteinases 2.
4 In the cited publication the investigated cell line (ECV304) was used as a model for endothelial cells, but there is evidence that this cell line is identical to the bladder cancer cell line T24.
5 In-vivo models for inflammatory bowel diseases.
6 In the cited publication the investigated cell line (SK-N-MC) was used as a model for neuroblastoma, but there is evidence that this cell line is derived from Ewing sarcoma (Askin tumor).219
7 In-vivo toxicity study.
8 In-vivo model for myocardial infarction.
9 In-vivo model for arthritis.

The alkaloid from black pepper has been shown to increase the bio-availability of curcumin.233

In addition to inhibition of glucuronidation, piperine can inhibit the activity of MDR transporters.234 On the other hand, increased expression of these transporters after exposure to piperine has been observed.235 Together with the inhibitory effect of curcumin on MDR transporter expression and function,88 inhibition of MDR transporter function by piperine might counteract the effect of piperine on MDR transporter expression. In order to increase the solubility of curcumin, conjugation of curcumin with proteins or cyclodextrins has been tested.236,237 In addition, different types of nanoparticles, liposomes, and self-assembling polymers have been used for encapsulation of curcumin.238–240 Such formulations might finally overcome the bio-availability problem of curcumin.

Another interesting question that remains to be addressed is whether the effects of turmeric are only
mediated by curcumin or whether additional turmeric ingredients are involved. Early studies suggest that curcumin-free turmeric extracts also have cancer preventing activities.241,242 Indeed, differences between turmeric and curcumin in the regulation of pro-inflammatory genes have been described.243 The characterization of the factors that are responsible for biological activities of curcumin-free turmeric requires further investigations.

Acknowledgements
We thank Vera Marks (communication skills) for critically reading and copy editing the manuscript.

Author Contributions
Conceived and designed the experiments: MSS, SK. Analyzed the data: SK, IV, MSS. Wrote the first draft of the manuscript: SK, MSS. Contributed to the writing of the manuscript: SK, IV, MSS. Agree with manuscript results and conclusions: SK, IV, MSS. Jointly developed the structure and arguments for the paper: SK, IV, MSS. Made critical revisions and approved final version: SK, IV, MSS. All authors reviewed and approved of the final manuscript.

Funding
This work was supported by a fellowship from the Konrad-Adenauer-Stiftung (SK).

Competing Interests
Authors disclose no potential conflicts of interest.

Disclosures and Ethics
As a requirement of publication the authors have provided signed confirmation of their compliance with ethical and legal obligations including but not limited to compliance with ICMJE authorship and competing interests guidelines, that the article is neither under consideration for publication nor published elsewhere, of their compliance with legal and ethical guidelines concerning human and animal research participants (if applicable), and that permission has been obtained for reproduction of any copyrighted material. This article was subject to blind, independent, expert peer review. The reviewers reported no competing interests. Provenance: the authors were invited to submit this paper.

References
1. Lillie RD (ed.). H.J. Com’s biological stains. 9th edition, 2nd reprint. 1991. St. Louis, MO, Sigma Chemical Company, p.474–476.
2. O. Neil M (ed.). The Merck index. 13th edition. 2001. Whitehouse Station, NJ, Merck & Co., p.2707.
3. Buhl F (ed.) Wilhelm Gesenius’ Hebräisches and Aramäisches Handwörterbuch über das Alte Testament. 17th edition, reprint. 1962. Berlin, Springer, p.362.
4. König RC, Winkler G. (ed.). Plini Secundi naturalis historiae libri XXXVII. Vol. XXI/XXII. 1985. Munich, Artemis, p.92.
5. Hayakawa H, Minaiya Y, Ito K, Yamamoto, Fukuda T. Difference of curcumin content in Curcuma longa L. (Zingiberaceae) caused by hybridization with other Curcuma species. Am J Plant Sci. 2011;2(2):111–119.
6. Annadurai RS, Neethiraj R, Jayakumar V, et al. De Novo Transcriptome Assembly (NGS) of Curcuma longa L. Rhizome Reveals Novel Transcripts Related to Anticancer and Antimalarial Terpenoids. PLoS One. 2013;8:e6217.
7. Ammon H, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57(1):1–7.
8. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.
9. Tolk A, Tap WA, Lingérak WA. Direct spectrophotometric method for determination of traces of boron in iron, steels and other compounds. Talanta. 1969;16(1):111–115.
10. Schraufstätter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature. 1949;164(4167):456–452.
11. Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol. 1973;25(6):447–452.
12. Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976;25(15):1811–1812.
13. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–1652.
14. Shehzad A, Lee YS. Molecular mechanisms of curcumin action: Signal transduction. Biofactors. 2013;39(1):27–36.
15. Gupta SC, Kismani G, Aggarwal BB. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors. 2013;39(1):2–13.
16. Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med Chem. 2006;6(3):259–70.
17. Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985;29(2):197–202.
18. Huang MT, Smart RC, Wong CQ, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-0-tetradecanoylphorbol-13-acetate. Cancer Res. 1988;48(21):5941–5946.
19. Polasa K, Sesikaran B, Krishna TP, Krishnaswamy K. Turmeric (Curcuma longa)-induced reduction in urinary mutagens. Food Chem Toxicol. 1991;29(10):699–706.
20. Kuttan R, Sudheeran PC, Joseph CD. Turmeric and curcumin as topical agents in cancer therapy. Tumori. 1987;73(1):29–31.
21. Bayet-Robert M, Kwiatkowski F, Leheurteur M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther. 2010;9(1):8–14.
22. Golombick T, Diamond TH, Manoharan A, Ramakrishna R. Monoclonal gangnomppt of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4 g study and an open-label 8g extension study. Am J Hematol. 2012;87(5):455–460.
23. Carroll RE, Benya RV, Turgeon DK, et al. Phase Ia clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila). 2011;4(3):354–364.
24. Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4B):2895–2900.
Curcumin and Hodkgin’s lymphoma

25. Khaw AK, Hande MP, Kalthur G, Hande MP. Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J Cell Biochem. 2013;114(6):1257–1270.

26. Hossain M, Banik NL, Ray SK. Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells. Neurochem Int. 2012;61(7):1102–1113.

27. Bangaru ML, Chen S, Woodfill J, Kansra S. Curcumin (diferuloyl methane) induces apoptosis and blocks migration of human medulloblastoma cells. Anticancer Res. 2010;30(2):499–504.

28. Elamin MH, Shinwari Z, Hrendayani SF, et al. Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog. 2010;49(3):302–314.

29. Basile V, Belluti S, Ferrari E, et al. bis-dehydroxy-curcumin triggers apoptosis and inhibits telomerase activity of malignant testicular germ cells. Mol Med Rep. 2011;7(3):837–842.

30. Lee HP, Li TM, Tsao JY, Fong YC, Tang CH. Curcumin induces cell apoptosis in human hepatic carcinoma and melanoma cell lines. Br J Cancer. 2010;103(7):1093–1099.

31. Wang L, Wang L, Song R, et al. Targeting sarco/endoplasmic reticulum Ca²⁺-ATPase 2 by curcumin induces ER stress-associated apoptosis for treating human liposarcoma. Mol Cancer Ther. 2011;10(3):461–471.

32. Ma D, Tremblay P, Mahnagar K, Collins J, Hudicky T, Pandey S. Selective cytotoxicity against human osteosarcoma cells by a novel synthetic C-7 analogue of 7-deoxoprepstatin is potentiated by curcumin. PLoS One. 2011;6(12):e28780.

33. Faião-Flores F, Suarez JA, Maria-Engler SS, Soto-Cerrato V, Pérez-Tomás R, Cort A, Timur M, Ozdemir E, Ozben T. Synergistic anti-cancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells. Mol Med Rep. 2012;5(6):1481–1486.

34. Ni X, Zhang A, Zhao Z, Shen Y, Wang S. Demethoxycurcumin inhibits cell proliferation, migration and invasion in prostate cancer cells. Oncol Rep. 2012;28(1):85–90.

35. Teiten MH, Gansch F, Crumauer M, Henry E, DiCato M, Diederich M. Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int J Oncol. 2011;38(3):603–611.

36. Hilchle AL, Furlong SJ, Sutton K, et al. Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutr Cancer. 2010;62(3):379–389.

37. Thakkar A, Sutaria D, Grandhi BK, Wang J, Prabhu S. The molecular mechanism of action of aspirin, curcumin and salforphane combinations in the chemoprevention of pancreatic cancer. Oncol Rep. 2013;29(4):1671–1677.

38. Sahu RP, Batra S, Srivastava SK. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer. 2009;100(9):1425–1433.

39. Qian H, Yang Y, Wang X. Curcumin enhanced adriamycin-induced human liver-derived Hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy. Eur J Pharm Sci. 2011;43(3):125–131.

40. Prakobwong S, Gupta SC, Kim JH, et al. Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis. 2011;32(9):1372–1380.

41. Cai XZ, Huang WY, Qiao Y, et al. Inhibitory effects of curcumin on gastric cancer cells: A proteomic study of molecular targets. Phytomedicine. 2012;20(6):495–505.

42. Yu LL, Wu JG, Dai N, Yu HG, Si JM. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-kB transcription factor. Oncol Rep. 2011;26(5):1197–1203.

43. Basile V, Belluti S, Ferrari E, et al. bis-dehydroxy-curcumin triggers mitochondrial-associated cell death in human colon cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis. 2011;32(9):1372–1380.

44. Vinod BS, Antony J, Nair HH, et al. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 2013;4:e505.

45. Ding M, Huang O, Zhang X, et al. Curcumin inhibits cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules. 2013;18(1):701–720.

46. Banerjee M, Singh P, Panda D. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J. 2010;277(16):3437–3448.

47. Nessa MU, Beale P, Chan C, Yu QJ, Huq F. Studies on combination of platinum drugs cisplatin and oxaliplatin with phytochemicals anethole and curcumin in ovarian tumour models. Anticancer Res. 2012;32(11):4843–4850.
66. Wang Y, Rishi AK, Wu W, et al. Curcumin suppresses growth of mesothelioma cells in vitro and in vivo, in part, by stimulating apoptosis. Mol Cell Biochem. 2011;357(1-2):83–94.
67. Kamat AM, Tharakan ST, Sung B, Aggarwal BB. Curcumin potentiates the antitumor effects of Bacillus Calmette-Guérin against bladder cancer through the downregulation of NF-kappa B and upregulation of TRAIL receptors. Cancer Res. 2009;69(23):8958–8966.
68. Tian F, Fan T, Zhang Y, Jiang Y, Zhang X. Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):847–855.
69. Subramaniam D, Ponnurangam S, Ramamoorthy P, et al. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One. 2012;7(2):e30590.
70. Hartojo W, Silvers AL, Thomas DG, et al. Curcumin promotes apoptosis, increases chemosensitivity, and inhibits nuclear factor kappa B in esophageal adenocarcinoma. Transl Oncol. 2010;3(2):99–108.
71. O’Sullivan-Coyne G, O’Sullivan GC, O’Donovan TR, Piwocka K, McKenna SL. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br J Cancer. 2009;101(9):1585–1595.
72. Ip SW, Wu SY, Yu CC, et al. Induction of apoptotic death by curcumin in human tongue squamous cell carcinoma SCC-4 cells is mediated through endoplasmic reticulum stress and mitochondria-dependent pathways. Cell Biochem Funct. 2011;29(8):641–650.
73. Abuzed WM, Davis S, Tang AL, et al. Sensitization of head and neck cancer to cisplatin through the use of a novel curcumin analog. Arch Otolaryngol Head Neck Surg. 2011;137(5):499–507.
74. Kuo CL, Wu SY, Ip SW, et al. Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int J Oncol. 2011;39(2):319–328.
75. Lin YT, Wang LF, Hsu YC. Curcuminoids suppress the growth of pharynx and nasopharyngeal carcinoma cells through induced apoptosis. J Agirc Food Chem. 2009;57(9):3765–3770.
76. Khan MA, Gahlot S, Majumdar S. Oxidative stress induced by curcumin promotes the death of cutaneous T-cell lymphoma (HuT-78) by disrupting the function of several molecular targets. Mol Cancer Ther. 2012;11(9):1873–1883.
77. Yang CW, Chang CL, Lee HC, Chi CW, Pan JP, Yang WC. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK pathways. BMC Complement Altern Med. 2012;12:22.
78. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukaemic cells. Free Radic Biol Med. 2012;52(9):1854–1864.
79. Qiao Q, Jiang Y, Li G. Curcumin improves the antitumor effect of X-ray irradiation by blocking the NF-κB pathway: an in vitro study of lymphoma. Anticancer Drugs. 2012;23(6):597–605.
80. Mujiba T, Kanwar J, Wan SB, Chan TH, Dou QP. Sensitizing human multiple myeloma cells to the proteasome inhibitor bortezomib by novel curcumin analogs. Int J Mol Med. 2012;29(1):102–106.
81. Singh AT, Ghosh M, Forte TM, Ryan RO, Gordon LL. Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leukemia. 2011;52(8):1537–1543.
82. Rao J, Xu DR, Zheng FM, et al. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. J Transl Med. 2011;9:71.
83. Ng AP, Chng WJ, Khan M. Curcumin sensitizes acute promyelocytic leukemia cells to unfolded protein response-induced apoptosis by blocking the loss of misfolded N-CoR protein. Mol Cancer Res. 2011;9(7):878–888.
84. Kong Y, Ma W, Liu X, et al. Cytotoxic activity of curcumin towards CCRF-CEM leukemia cells and its effect on DNA damage. Molecules. 2009;14(12):5328–5338.
85. Hayun R, Okun E, Berrebi A, et al. Rapamycin and curcumin induce apoptosis in primary resting B chronic lymphocytic leukemia cells. Leuk Lymphoma. 2009;50(4):625–632.
86. Li ZX, Ouyang KQ, Jiang X, Wang D, Hu Y. Curcumin induces apoptosis and inhibits growth of human Burkitt’s lymphoma in xenograft mouse model. Mol Cells. 2009;27(3):283–289.
87. Xu D, Tian W, Shen H. P-gp upregulation may be blocked by natural curcuminoids, a novel class of chemoresistance-preventing agent. Mol Med Rep. 2012 Sep 27. doi: 10.3892/mmr.2012.1106. [Epub ahead of print].
88. Fong D, Yeh A, Naftalovich R, Choi TH, Chan MM. Curcumin inhibits its side population (SP) phenotype of the rat C6 glioma cell line: towards targeting of cancer stem cells with phytochemicals. Cancer Lett. 2010;293(1):65–72.
89. Saleh EM, El-awady RA, Eissa NA, Abdel-Rahman WM. Antagonism between curcumin and the topoisomerase II inhibitor etoposide: a study of DNA damage, cell cycle regulation and death pathways. Cancer Biol Ther. 2012;13(11):1058–1071.
90. Cort A, Timur M, Ozdemir E, Ozben T. Effects of curcumin on bleomycin-induced apoptosis in human malignant testicular germ cells. J Physiol Biochem. 2013;69(2):289–296.
91. Cort A, Ozdemir E, Timur M, Ozben T. Effects of curcumin on bleomycin-induced oxidative stress in malignant testicular germ cells. Mol Med Rep. 2012;6(4):860–866.
92. Srimuangwong K, Tocharus C, Tocharus J, Sukansarn A, Chintana PY. Effects of hexahydrocurcumin in combination with 5-fluorouracil on dimethylhydrazine-induced colon cancer in rats. World J Gastroenterol. 2012;18(47):6951–6959.
93. Mo N, Li ZQ, Li J, Cao YD. Curcumin Inhibits TGF-β1-Induced MMP-9 and Invasion through ERK and Smad Signaling in Breast Cancer MDA-MB-231 Cells. Asian Pac J Cancer Prev. 2012;13(11):5709–5714.
94. Killian PH, Kronski E, Michalik KM, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis. 2013;32(12):2507–2519.
95. Hassan ZK, Daghdestani MH. Curcumin effect on MMPs and TIMPs genes in a breast cancer cell line. Asian Pac J Cancer Prev. 2012;13(7):3259–3264.
96. Kim JM, Noh EM, Kwon KB, et al. Curcumin suppresses the TPA-induced invasion through inhibition of PKCα-dependent MMP-expression in MCF-7 human breast cancer cells. Phytomedicine. 2012;19(12):1085–1092.
97. Tsang RK, Tang WW, Gao W, et al. Curcumin inhibits tongue carcinoma cells migration and invasion through downregulation of matrix metalloproteinase 10. Cancer Invest. 2012;30(7):503–512.
98. Mudduluru G, George-William JN, Mupalla S, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biocai Rep. 2011;3(1):353–360.
99. Seo JH, Jeong J, Oh WJ, et al. Lysophosphaticid acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Lett. 2010;288(1):50–56.
100. Lin SS, Lai KC, Hsu SC, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009;285(2):127–133.
101. Huang T, Chen Z, Fang L. Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-Snail signaling in breast cancer cells. Oncol Rep. 2013;29(1):117–124.
102. Wong TS, Chan WS, Li CH, et al. Curcumin alters the migratory phenotype of nasopharyngeal carcinoma cells through up-regulation of E-cadherin. Anticancer Res. 2010;30(7):2851–2856.
103. Schmiedel BJ, Hutter C, Hesse M, Staeger MS. Expression of multiple membrane-associated phospholipase A1 beta transcript variants and lysophosphaticidic acid receptors in Ewing tumor cells. Mol Biol Rep. 2011;38(7):4609–4623.
104. Van L. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice. Int J Cancer. 2013;132(2):269–275.
105. Roscilli G, Marra E, Mori F, et al. Carnitines slow down tumor development of colon cancer in the DMD-negative carcinogenic mouse model. J Cell Biochem. 2013;114(7):1665–1673.
Cancer Growth and Metastasis 2013:6

106. Phillips J, Moore-Medlin T, Sonavane K, Ekshyyan O, McLarty J, Nathan CA. Curcumin inhibits UV radiation-induced skin cancer in SKH-1 Mice. *Otolaryngol Head Neck Surg.* 2013;148(5):797–803.

107. Limtrakul P, Lipigrumgson S, Namwong O, Apsariyakul A, Dunn FW. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. *Cancer Lett.* 1997;116(2):197–203.

108. Sintara K, Thong-ngam D, Patumraj S, Klaikew N. Curcumin attenuates gastric cancer induced by N-methyl-N-nitrosourea and saturated sodium chloride in rats. *J Biomed Biotechnol.* 2012;2012:915380.

109. Kubota M, Shimizu M, Sakai H, et al. Preventive effects of curcumin on the development of azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db obese mice. *Nutr Cancer.* 2012;64(1):72–79.

110. Carroll CE, Benakanakere K, Besch-Williford C, Ellersieck MR, Hyder SM. Curcumin delays development of medoxyprogestosterone acetate-accelerated 7,12-dimethylbenz[a]anthracene-induced mammary tumors. *Menopause.* 2010;17(1):178–184.

111. Chuang SE, Kuo ML, Hsu CH, Chen CR, Lin JK, Lai GM, Hsieh CY, Cheng AL. Curcumin-containing diet inhibits diethylthioleurosine-induced murine hepatocarcinogenesis. *Carcinogenesis.* 2009;20(2):331–335.

112. Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, et al. Nano-capsulated curcumin: oral chemopreventive formulation against diethylthioleurosine induced hepatocellular carcinoma in rat. *Chem Biol Interact.* 2012;195(3):206–214.

113. Prakobwong S, Khoontawad J, Yongvanit P, et al. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. *Int J Cancer.* 2011;129(1):88–100.

114. Mahady GB, Pandell SL, Yun G, Lu ZZ. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group I carcinogen. *Anticancer Res.* 2002;22(6C):4179–4181.

115. Dance-Barnes ST, Kock ND, Moore JE, et al. Lung tumor promotion by curcumin. *Carcinogenesis.* 2009;30(6):1016–1023.

116. Gonda MA, Rice NR, Gilden R. Avian reticuloendotheliosis virus: characterization of the high-molecular-weight viral RNA in transforming and helper virus populations. *J Virol.* 1980;34(3):743–751.

117. Chen IS, Mak TW, O’Rear JJ, Temin HM. Characterization of reticuloendotheliosis virus strain T DNA and isolation of a novel variant of reticuloendotheliosis virus strain T by molecular cloning. *J Virol.* 1981;40(3):800–811.

118. Chen IS, Temin HM. Substitution of 5′ helper virus sequences into non-repl portion of reticuloendotheliosis virus strain T suppresses transformation of chicken spleen cells. *Cell.* 1982;31(1):111–120.

119. Brownell E, O’Brien SJ, Nash WG, Rice N. Genetic characterization of human c-re1 sequences. *Mol Cell Biol.* 1985;5:2826–2831.

120. Bauerele PA, Baltimore D. A 65-kappa D subunit of active NF-kappa B is required for inhibition of NF-kappa B by I kappa B. *Mol Cell Biol.* 1989;9(31):1669–1698.

121. Deloukas P, Dauwerse JG, van Ommen GJ, van Loon AP. The human c-rel sequences. *Cell.* 1985;5:2826–2831.

122. Surh YJ, Lee JH, Jama RA, et al. Synthesis and biological evaluation of halogenated curcumin analogs as potential nuclear receptor selective agonists. *Drug Chem Biol.* 2008;5(4):952–961.

123. Yeon KY, Kim SA, Kim YH, et al. Curcumin produces an antihyperalgesic effect via inhibition of calcitonin gene-related peptide (CGRP) release and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-kappa B and AP-1. *J Clin Oncol.* 1998;16(2):197–206.

124. Calatrizidzis D, Gilmore TD. Genomic organization and expression of the rearranged REL proto-oncogene in the human B-cell lymphoma cell line RC-K8. *Genes Chromosomes Cancer.* 2002;34(1):129–135.

125. Fracchioni NS, Lombardi L, Salina M, et al. Structural alterations of the NF-kappa B transcription factor lyt-10 in lymphoid malignancies. *Oncogene.* 1993;9(10):2839–2845.
van der Rhee H, Coebergh JW, de Vries E. Is prevention of cancer by sun exposure more than just the effect of vitamin D? A systematic review of epidemiological studies. Eur J Cancer. 2013;49(6):1422–1436.

Sokoloski JA, Shyam K, Sartorelli AC. Induction of the differentiation of HL-60 promyelocytic leukemia cells by curcumin in combination with low levels of vitamin D3. Oncol Res. 1997;9(1):31–39.

Mosieniak G, Sliwińska M, Piwowka K, Sikora E. Curcumin abolishes apoptosis resistance of calcitriol-differentiated HL-60 cells. FEBS Lett. 2006;580(19):4653–4660.

Renné C, Benz AH, Hansmann ML. Vitamin D3 receptor is highly expressed in Hodgkin’s lymphoma. BMC Cancer. 2012;12:215.

Davies M, Hayes ME, Yin JA, Berry JL, Mawer EB. Abnormal synthesis of 1,25-dihydroxyvitamin D in patients with malignant lymphoma. J Clin Endocrinol Metab. 1994;78(5):1202–1207.

Seumour JF, Gageff R. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood. 1993;82(5):1383–1394.

Porojnicu AC, Robsahn TE, Ree AH, Moan J. Season of diagnosis is a prognostic factor in Hodgkin’s lymphoma: a possible role of sun-induced vitamin D. Br J Cancer. 2005;93(5):571–574.

Tse AK, Wan CK, Shen XL, et al. 1,25-dihydroxyvitamin D3 induces biphase NF-kappa B responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of I kappa B. Exp Cell Res. 2007;313(8):1722–1734.

Adams LS, Teegarden D. A 1,25-dihydroxycholecalciferol inhibits apoptosis in CHI1T1/2 murine fibroblast cells through activation of nuclear factor kappa B. J Nutr. 2004;134(11):2948–2952.

Geldmeyer-Hilt K, Heine G, Hartmann B, Baumgrass R, Radbruch A, Kewitz et al. 1,25-dihydroxyvitamin D3 induces histone hypoacetylation and nuclear factor of activated T cells (NFAT) activation. J Invest Dermatol. 2003;121(4):886–896.

Harant H, Wolf B, Lindley U. 1Alpha,25-dihydroxyvitamin D3 decreases DNA binding of nuclear factor-kappa B in human fibroblasts. FEBS Lett. 1998;436(3):329–334.

Yu KP, Belillo T, Manolagas SC. Down-regulation of NF-kappa B protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc Natl Acad U S A. 1995;92(24):10990–10994.

Shifera AS, Leong D, Hardin JA. Vitamin D does not modulate NF-kappa B activity in Jurkat T cells. Immunollett. 2010;131(2):151–158.

Farmer PK, He X, Schmitz ML, Rubin J, Nanes MS. Inhibitory effect of 1,25-dihydroxyvitamin D3 on the growth of human promyelocytic leukemia HL-60 cells. Cancer Res. 2002;62(5):205–215.

Chen Y, Kong J, Sun T, et al. 1,25-Dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-xB activation. Arch Biochem Biochem. 2005;437(2):241–247.

Harant H, Wolf B, Lindley U. 1Alpha,25-dihydroxyvitamin D3 decreases DNA binding of nuclear factor-kappa B in human fibroblasts. FEBS Lett. 1998;436(3):329–334.

Li CI, Zhang JJ, Decruze BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus reverse transcriptase inhibit HSV-1 glycoprotein expression and virus replication. Proc Natl Acad Sci U S A. 1993;90(5):1839–1842.

Lamprecht B, Walter K, Kreher S, et al. Derepression of an endogenous long terminal repeat activates the CSR1 proto-oncogene in human lymphoma. Nat Med. 2010;16(5):571–579.

Ranjan D, Siquijor A, Johnston TD, Wu G, Nagabhaskhan M. The effect of curcumin on human B-cell immortalization by Epstein-Barr virus. Am Surg. 1998;64(1):47–51.

Ranjan D, Johnston TD, Reddy KS, Wu G, Bondada S, Chen C. Enhanced apoptosis mediates inhibition of EBV-transformed lymphoblastoid cell line proliferation by curcumin. J Surg Res. 1999;87(1):1–5.

Chen C, Johnston TD, Reddy KS, Merrick JC, Mastrangelo M, Ranjan D. Cyclopurine directly causes oxidative stress and promotes Epstein-Barr virus transformation of human B cells. J Surg Res. 2001;100(2):166–170.

Bai M, Papoudou-Bai A, Horianopoulos N, Grepi C, Agnantis NJ, Kanavaro P. Expression of BCL-2 family proteins and active caspase 3 in Hodgkin’s lymphoma. Carcinogenesis. 2003;24(1):1–5.

Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Histol Histopathol. 2002;17:4283–4297.

Chen CQ, Yu K, Yan QX, et al. Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis. 2013;34(7):1442–1449.

Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol. 2007;101(6):427–433.

Kang J, Chen J, Shi Y, Jia J, Zhang Y. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol. 2005;69(8):1205–1213.

Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15(2):165–174.

Liu Z, Xie Z, Jones W, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett. 2009;19(3):706–709.

Kewitz S, Bernig T, Staese MG. Histone deacetylase inhibition restores cispilin sensitivity of Hodgkin’s lymphoma cells. Leuk Res. 2012;36(6):773–778.

Winkler C, Steingrube DS, Altermann W, et al. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother. 2012;61(10):1769–1779.

Kewitz S, Staese MG. Knock-Down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLoS One. 2013;8(2):e55897.

Buglio D, Georgakis GV, Hanabuchi S, et al. Vorinostat inhibits STAT6-induced cytokine IL-12 production in human B cells. Biochem Biophys Res Commun. 2011;407(4):699–702.

Ranjan D, Siquijor A, Johnston TD, Wu G, Nagabhaskhan M. The effect of curcumin on human B-cell immortalization by Epstein-Barr virus. Am Surg. 1998;64(1):47–51.

Ranjan D, Johnston TD, Reddy KS, Wu G, Bondada S, Chen C. Enhanced apoptosis mediates inhibition of EBV-transformed lymphoblastoid cell line proliferation by curcumin. J Surg Res. 1999;87(1):1–5.

Chen C, Johnston TD, Reddy KS, Merrick JC, Mastrangelo M, Ranjan D. Cyclopurine directly causes oxidative stress and promotes Epstein-Barr virus transformation of human B cells. J Surg Res. 2001;100(2):166–170.

Bai M, Papoudou-Bai A, Horianopoulos N, Grepi C, Agnantis NJ, Kanavaro P. Expression of BCL-2 family proteins and active caspase 3 in classical Hodgkin’s lymphomas. Hum Pathol. 2007;38(1):103–113.

Staese MG, Banning-Eichenseer U, Weissflog G, et al. Gene expression profiles of Hodgkin’s lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol. 2008;36(7):886–896.

Navarro A, Diaz T, Martinez A, et al. Regulation of Jak2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood. 2009;114(14):2945–2951.

Woo JH, Kim YM, Choi YI, et al. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl- XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis. 2003;24(7):1199–1208.

Martín-Cordero C, López-Lázaro M, Gámez M, Ayuso MJ. Curcumin as a DNA topoisomerase II poison. J Enzyme Inhib Med Chem. 2003;18(6):505–509.

Diaz T, Navarro A, Ferrer G, et al. Lestaurtinib inhibition of the Jak/STAT signaling pathway in hodgkin lymphoma inhibits proliferation and induces apoptosis. PLoS One. 2011;6(4):e18856.

Buglio D, Georgakis GV, Hanabuchi S, et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood. 2008;112(4):1424–1433.
Curcumin and Hodgkin's lymphoma

194. Martini M, Hohaus S, Petrucci G, et al. Phosphorylated STAT5 represents a new possible prognostic marker in Hodgkin lymphoma. *Am J Clin Pathol.* 2008;129(3):472–477.

195. Weniger MA, Melzner I, Menz CK, et al. Mutations of the tumor suppressor gene SOCS-1 in B-cell Hodgkin lymphomas are frequent and associated with nuclear phospho-STAT5 accumulation. *Oncogene.* 2006;25(18):2679–2684.

196. Baus D, Pfitzner E. Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. *Int J Cancer.* 2006;118(6):1404–1413.

197. Cochet O, Frelin C, Peyron JF, Imbert V. Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival. *Cell Signal.* 2006;18(4):449–455.

198. Hine M, Lennard P, Anagnostopoulos I, et al. Nuclear factor kappa B-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. *J Exp Med.* 2002;196(5):605–617.

199. Skinnder BF, Elia AJ, Gascogne RD, et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. *Blood.* 2002;99(2):618–626.

200. Kube D, Holtick U, Vockerodt M, et al. STAT3 is constitutively activated in Hodgkin cell lines. *Blood.* 2001;98(3):762–770.

201. Mariadason JM, Corner GA, Augenlicht LH. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. *Cancer Res.* 2000;60(16):4561–4572.

202. Van Roosbroeck K, Cox L, Tousseyn T, et al. JAK2 rearrangements, including novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. *Blood.* 2011;117(15):4056–4064.

203. Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D, Herman TS. Curcumin inhibits NF kappa B activation mediated by insulin-like growth factor 1 and photoreceptor apoptosis related genes in human neuroblastoma cells. *Cancer Biol Ther.* 2008;7(4):569–576.

204. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrok R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. *Mol Cancer Ther.* 2008;7(3):464–473.

205. Kim H, Limtrakul P, Sunnetci D, Savli H. Effects of curcumin on miRNA expression in human Y79 retinoblastoma cells. *Cancer Res.* 2008;68(20):5691–5697.

206. Baus D, Pfitzner E. Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. *Int J Cancer.* 2006;118(6):1404–1413.

207. Billerey-Larmonier C, Uno JK, Larmorrier N, et al. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. *Inflamm Bowel Dis.* 2008;14(6):780–793.

208. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. *Cancer Res.* 2004;64(22):8213–8221.

209. Cine N, Limtrakul P, Sunnetci D, Nagy B, Savli H. Effects of curcumin on miRNA expression in human Y79 retinoblastoma cells. *Cancer Res.* 2008;68(20):5691–5697.

210. Park MJ, Kim EH, Park IC, et al. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. *Int J Oncol.* 2002;21(2):379–383.

211. Jiang Y, Li ZS, Jiang FS, Deng X, Yao CS, Nie G. Effects of different sulphasate-treated mice. *Blood.* 2008;110(4):519–529.

212. Kao HH, Wu CJ, Won SJ, Shin JW, Liu HS, Su CL. Kinase gene expression and subcellular protein expression pattern of protein kinase C isoforms in curcumin-treated human hepatocellular carcinoma Hep 3B cells. *BMC Cancer.* 2011;11:149.

213. Cine N, Limtrakul P, Sunnetci D, Nagy B, Savli H. Effects of curcumin on global gene expression profiles in the highly invasive human breast carcinoma cell line MDA-MB 231: A gene network-based microarray analysis. *Exp Ther Med.* 2013;5(1):23–27.

214. Ramachandran C, Rodriguez S, Ramachandran R, et al. Nuclear factor kappa B-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. *J Exp Med.* 2002;196(5):605–617.

215. Skirvin KD, D’Souza M, Shi J, et al. Transcriptome analysis provides new insights into liver changes induced in the rat upon dietary administration of the food additives butylated hydroxytoluene, curcumin, propyl gallate and thibendazole. *Food Chem Toxicol.* 2008;46(8):2616–2628.

216. Hine M, Lennard P, Anagnostopoulos I, et al. Nuclear factor kappa B-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. *J Exp Med.* 2002;196(5):605–617.

217. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrok R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. *Mol Cancer Ther.* 2008;7(3):464–473.

218. Stierum R, Conesa A, Heijne W, et al. Transcriptome analysis provides new insights into liver changes induced in the rat upon dietary administration of the food additives butylated hydroxytoluene, curcumin, propyl gallate and thibendazole. *Food Chem Toxicol.* 2008;46(8):2616–2628.

219. Teiten MH, Eifes S, Reuter S, Duvoix A, Dicato M, Diederich M. Gene expression profiling related to anti-inflammatory properties of curcumin in K562 leukemia cells. *Ann N Y Acad Sci.* 2009;1171:391–398.

220. Hong D, Zeng X, Xu W, Ma J, Tong Y, Chen Y. Altered profiles of gene expression in curcumin-treated rats with experimentally induced myocardial infarction. *Pharmacol Res.* 2010;61(2):142–148.

221. Sreenivasan S, Thirumalai K, Krishnakumar S. Expression profile of genes regulated by curcumin in Y79 retinoblastoma cells. *Nat Cancer.* 2012;6(4):607–610.

222. Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S. Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. *Curr Eye Res.* 2012;37(5):421–428.

223. Colitti M, Gaspardo B, Dei Aria C, Scaini C, Stefanon B. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. *J Nutr Biochem.* 2011;22(2):136–142.

224. Karlstetter M, Lippe E, Walczak Y, et al. Curcumin is a potent modulator of microglial gene expression and migration. *J Neuroinflammation.* 2011;8:125.

225. Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D, Herman TS. Curcumin inhibits NF kappa B activation mediated by insulin-like growth factor 1 and photoreceptor apoptosis related genes in human neuroblastoma cells. *Cancer Biol Ther.* 2008;7(4):569–576.

226. Cine N, Limtrakul P, Sunnetci D, Nagy B, Savli H. Effects of curcumin on miRNA expression in human Y79 retinoblastoma cells. *Cancer Res.* 2008;68(20):5691–5697.

227. Sreenivasan S, Thirumalai K, Krishnakumar S. Expression profile of genes regulated by curcumin in Y79 retinoblastoma cells. *Nat Cancer.* 2012;6(4):607–610.

228. Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S. Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. *Curr Eye Res.* 2012;37(5):421–428.

229. Billerey-Larmonier C, Uno JK, Larmorrier N, et al. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. *Inflamm Bowel Dis.* 2008;14(6):780–793.

230. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. *Cancer Res.* 2004;64(22):8213–8221.

231. Billerey-Larmonier C, Uno JK, Larmorrier N, et al. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. *Inflamm Bowel Dis.* 2008;14(6):780–793.
233. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. *Mol Cell Biochem.* 2007;296(1–2):85–95.

234. Singh DV, Godbole MM, Misra K. A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: simulation for next generation of P-gp inhibitors. *J Mol Model.* 2013;19(1):227–238.

235. Qiang F, Kang KW, Han HK. Repeated dosing of piperine induced gene expression of P-glycoprotein via stimulated pregnane-X-receptor activity and altered pharmacokinetics of dihiazem in rats. *Biopharm Drug Dispos.* 2012;33(8):446–454.

236. Derochette S, Franck T, Mouithys-Mickalad A, Deby-Dupont G, Neven P, Serteyn D. Intra- and extracellular antioxidant capacities of the new water-soluble form of curcumin (NDS27) on stimulated neutrophils and HL-60 cells. *Chem Biol Interact.* 2013;201(1–3):49–57.

237. Aziz MT, El Ibrashy IN, Mikhailidis DP, et al. Signaling mechanisms of a water soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy. *Diabetol Metab Syndr.* 2013;5(1):13.

238. Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. *Expert Opin Drug Deliv.* 2012;9(11):1347–1364.

239. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. *Int J Nanomedicine.* 2012;7:5995–6002.

240. Gong C, Deng S, Wu Q, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. *Biomaterials.* 2013;34(4):1413–1432.

241. Deshpande SS, Ingle AD, Maru GB. Chemopreventive efficacy of curcumin-free aqueous turmeric extract in 7,12-dimethylbenz[a]anthracene-induced rat mammary tumorigenesis. *Cancer Lett.* 1998;123(1):35–40.

242. Deshpande SS, Ingle AD, Maru GB. Inhibitory effects of curcumin-free aqueous turmeric extract on benzo[a]pyrene-induced forestomach papilomas in mice. *Cancer Lett.* 1997;118(1):79–85.

243. Martin RC, Aiyer HS, Malik D, Li Y. Effect on pro-inflammatory and antioxidant genes and bioavailable distribution of whole turmeric vs curcumin: Similar root but different effects. *Food Chem Toxicol.* 2012;50(2):227–231.