The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal Yap/Taz signalling in humans may enhance regeneration and hence reduce morbidity.

npj Regenerative Medicine (2022) 7:9; https://doi.org/10.1038/s41536-022-00209-8

INTRODUCTION

Many different organisms have the ability to regenerate, although the robustness, efficiency, and scope of this regeneration is varied. Invertebrates such as planarians and Hydra regenerate their entire body such that, when cut in half, each section forms an entire new body. At the other end of the scale, mammalian regeneration is limited, with adult animals often responding to injury with fibrotic scarring rather than regeneration. Some mammalian tissues do regenerate, including the skin, intestine, liver, peripheral nervous system, and blood, as well as foetal tissues but this capability is impaired in ageing systems, which, along with a general lack of regenerative ability in most tissues, causes high morbidity in humans.

Midway on the scale from complete (invertebrate) to limited (mammalian) regeneration are lower vertebrates, including amphibians and fish. The zebrafish Danio rerio has the potential to completely regenerate multiple adult and embryonic organs, including the heart, fin, and many nervous system components. First explored in the 1980s by Streisinger, the zebrafish is regularly utilised in the study of adult and embryonic regeneration due to their rapid external development, relative low cost, ease of genetic manipulation, scalability, transparent juveniles, and high rate of regeneration, none of which are present in the mouse.

The cellular and molecular drivers of zebrafish regeneration have been the subject of intense research. Effective replacement of lost or damaged cells requires a large pool of available healthy cells. Cell pools can be formed by multiple sources, including the activation of resident stem or progenitor cells (differentiation), the reversion of differentiated cells to a more immature pluripotent state (dedifferentiation), or the conversion of one differentiated cell type into another mature cell type (transdifferentiation). On a molecular level, these can be driven by epigenetic and gene expression changes, such as alterations in DNA methylation, histone modifications, regeneration-responsive enhancers, and the activation of a range of key developmental signalling pathways, including Bmp, Fgf, Notch, RA, Shh, and Wnt/β-catenin (summarised in Table 1). In recent years, it has become evident that Hippo signalling (Fig. 1) plays a critical role in developmental and regenerative processes in both zebrafish and mammals. This is associated with the Hippo pathway’s role in regulating cell proliferation and migration, detecting and responding to changes in tissue tension, extracellular matrix, chemical cues, which consequently alter cell fates.

The core Hippo signalling pathway is comprised of a serine/threonine kinase phosphorylation cascade (Fig. 1), most of which were identified in genetic screens of Drosophila melanogaster for tumour suppressor genes. Activity of this pathway is regulated by a range of stimuli, including mechanical signalling, cell shape, ECM stiffness, cell polarity, metabolism, and cell-cell contacts, which are integrated to stimulate key kinases MST1/2 (the fly Hippo orthologs), STK25, and MAP4Ks when the Hippo pathway is active. These kinases then phosphorylate, and so activate, LATS1/2, which phosphorylate the core Hippo effectors transcriptional co-activator YAP1 and its paralog TAZ on multiple conserved serine residues. YAP1/TAZ phosphorylation triggers their retention in the cytoplasm via binding to protein 14-3-3, or ubiquitin-mediated degradation. When the Hippo pathway is inactive these phosphorylations do not occur, resulting in YAP1/TAZ nuclear localisation, where they outcompete VGLL4 and bind to transcription factors TEAD1–4, which stimulate key kinases LATS1/2, and MAP4Ks when the Hippo pathway is active. These phosphorylations do not occur, resulting in YAP1/TAZ nuclear localisation, where they outcompete VGLL4 and bind to transcription factors TEAD1–4, which stimulate key kinases LATS1/2, and MAP4Ks when the Hippo pathway is active. When the Hippo pathway is inactive these phosphorylations do not occur, resulting in YAP1/TAZ nuclear localisation, where they outcompete VGLL4 and bind to transcription factors TEAD1–4, which stimulate key kinases LATS1/2, and MAP4Ks when the Hippo pathway is active.

Heart regeneration

Cardiovascular diseases are the primary cause of morbidity and mortality globally, with around half of these deaths caused by...
ischaemic heart disease leading to heart failure105. This is due to the limited regeneration capacity of the adult human heart, which responds to heart muscle damage with the limited regeneration capacity of the adult human heart, which
than the reformation of contractile muscle106. A similar response is seen in other mammals (such as the mouse), which also show limited cardiac regeneration after experimental injury paradigms107. An exception is an enhanced heart regeneration potential in neonatal mice, but this is transient and is lost within the first week of life108, coinciding with a decrease in YAP1 transcriptional activity78 and the withdrawal of cardiomyocytes (CMs) from the cell cycle109. However, this regenerative ability in neonatal mice108 highlights that there may be therapeutic potential in reactivating the regenerative capacity in humans.

In contrast to restricted mammalian regeneration, both adult and embryonic zebrafish regenerate their heart fully following injury and even after multiple insults5,6,15,19,110–113 (Fig. 3). This extensive heart regeneration is the result of two key characteristics: a high level of existing CM proliferation (around 3% per week, compared to <1% per year in adult mice114 and humans115), and a permissive extracellular environment that
stimulates it19,116. One major hurdle and pathological driver in mammalian heart regeneration is the formation of a fibrotic scar and non-permissive ECM at the injury area, replacing dead CMs with non-contractile elements such as collagen or fibroblasts rather than new CMs106,117 (Fig. 3B). However, in the zebrafish, although collagen and fibronectin does accumulate and a scar is formed, it is eliminated to allow effective regeneration113,118–120. This scarring is regulated by Hippo signalling, with cav-1, yap1, and ctgfa mutants having disrupted scar formation and hence regeneration121–123 (see Table 2 for a summary of these phenotypes). Heart injury promotes Ctgfa secretion into the ECM from endocardial cells, where it promotes the expression of pro-regenerative ECM genes (such as fibronectins and collagens)121. This expression allows for a transient scar, as shown by ctgfa mutants having a larger and more persistent scar, whilst ctgfa overexpression speeds scar resolution121. Similarly, yap1 mutants have an altered ECM composition at the injury site, resulting in increased scarring and impaired regeneration at early time points122. This alteration of the scar microenvironment by secretion of Hippo pathway transcriptional targets
MST1/2 (mammalian STE20-like kinase1/2) are encoded by TAZ. Phosphorylation of YAP/TAZ redistributes YAP/TAZ to the cytoplasm, blocking TEAD-mediated gene expression. Hippo pathway activation of the Hippo pathway triggers a phosphorylation cascade that leads to the phosphorylation of the Hippo pathway effectors YAP/TAZ and promotes neovascularisation and CM proliferation and consequently severe defects in heart regeneration124. This is due to the macrophage depletion, these macrophage defects cause compromised neovascularisation and CM proliferation and consequently severe defects in heart regeneration124. This is due to the role of macrophages and other immune cell components such as T_reg cells in many areas of cardiac regeneration, including enhancing neovascularisation, CM proliferation, and scar resolution via the production of pro-regenerative factors, with inhibition of inflammation and timely immune cell recruitment inhibiting regeneration124,126–129.

However, this pro-regenerative effect of the immune system is not simple. Yap1-Ctgfa signalling, shown to enhance cardiac regeneration, also negatively regulates the migration and infiltration of macrophages into the injury site124,125, suggesting that inhibiting macrophage infiltration promotes cardiac regeneration. Similarly, yap1 KO fish have increased macrophage infiltration in the scar and increased monocyte chemotactic gene expression126, and ctgfa KO promotes the chemokine receptor gene cxcr3.1 in the heart to increase M1 macrophage polarisation and so enhance inflammatory signalling121, and both KO lines have defective regeneration. This apparent contradiction may be due to differences between experimental paradigms in investigating immune cell function in regeneration—it has been shown that the type of immune cells recruited, and the different regenerative stages alter the functional role of the immune system in regeneration128. An alternative explanation for this apparent discrepancy could be due to the requirement for tight spatio-temporal control of the immune system function during regeneration. This is shown by disruption of reparative regeneration after both immune system hyperactivation121,122 and excessive inhibition124,126,127,129. Another potential reason for the inconsistency is that various immune cell types likely react differently to the injury, and so the Hippo pathway may respond in a range of ways to the same trigger. Therefore, the extent of activation or inhibition in these studies will greatly impact the results. Further in-depth studies are needed in order to fully elucidate the detailed spatiotemporal inflammatory response including revealing the exact immune cell types involved in regeneration and thereby the role of the Hippo pathway in the immune system’s contribution to cardiac regeneration.

Hippo pathway signalling has also been linked to the epicardium, which is activated after heart injury in the zebrafish (Fig. 3C)15,130. The epicardium promotes regeneration, potentially by functioning as a cellular scaffold that generates epicardial-derived cells which differentiate into myofibroblasts and perivascular fibroblasts in the injured myocardium131. This may then act in a paracrine manner to induce CM proliferation and neoangiogenesis131. Epicardial activation has not yet been linked to the Hippo pathway in zebrafish heart regeneration. However, in the developing mouse, Hippo components are expressed in both the proepicardium and epicardium, and deletion of either Yap or Taz in the mouse gives coronary defects and impacts on epicardial cell proliferation, EMT, and specification of cell fate132. Similar developmental cardiac defects can be seen in a range of Hippo pathway component mutants in the zebrafish112,133–155, suggesting that this role of the Hippo pathway may be conserved between mammals and teleosts.

After injury, existing differentiated CMs undergo limited dedifferentiation, upregulate the embryonic cardiogenesis gene gata4, and proliferate134,153–156. These CMs migrate to the injury site along newly-formed coronary vasculature157–162 (Fig. 3E), where they proliferate further and differentiate to replace dead CMs and form new functional heart muscle163 (Fig. 3F). CM proliferation is promoted by a range of signalling pathways, including Nrg, Tgfβ, Igf, and the Hippo pathway (Table 1). Disruption of the Hippo pathway-regulated genes cav-1a and

Fig. 1 Summary of the Hippo pathway signalling cascade and its stimuli.

The Hippo pathway is regulated by the integration of a range of upstream stimuli. This includes mechanotransductive elements (such as caveolae and Piezo signalling), metabolism, extracellular matrix and integrin signalling, transduction of extracellular stimuli via mitogenic growth factor signalling and GPCRs, cell polarity and cell–cell contacts. Activation of the Hippo pathway triggers a phosphorylation cascade that leads to the phosphorylation of the Hippo pathway effectors YAP/TAZ. Phosphorylation of YAP/TAZ redistributes YAP/TAZ to the cytoplasm, blocking TEAD-mediated gene expression. Hippo pathway inactivation prevents YAP/TAZ phosphorylation, allowing their nuclear translocation and hence TEAD-mediated gene expression. Note that MST1/2 (mammalian STE20-like kinase1/2) are encoded by STK4/3, and TAZ by WWTR1. Figure 1 is created in BioRender.com.
Fig. 2 Similarity between selected human and zebrafish Hippo pathway genes.

Direct gene sequence comparison between a sample of human and zebrafish Hippo pathway members and transcriptional targets shows a range of similarity scores, emphasizing a high degree of similarities between fish and human genes, while also highlighting that some Hippo pathway components appear to have no direct orthologs present in both species. *WWTR1* encodes TAZ, *STK4* encodes MST1 and *STK3* encodes MST2 (in accordance with the consensus of the Hippo pathway field). *CYR61* is also known as *CCN1* and *CTGF* as *CCN2*. % gene sequence similarity identified using ensembl.org under orthology tab. *ctgf*, *nf2b*, *map4k2*, and *rhoaa-c* could not be identified as orthologues in this manner, so manual BLAST comparison of genomic sequence (from GRCz11) was performed to give the values indicated.

Human Gene	Zebrafish Gene	Uniprot ID
AMOT	amot	010499373.1
LATS1	lats1	
LATS2	lats2	
MAP4K1	map4k1	
MAP4K2	map4k2	
MAP4K3	map4k3	
MOB1A	mob1a	
MOB1B	mob1b	
STK3	stk3	
STK4	none	
NF2	nf2a	
RHOA	rhoa	
SAV1	sav1	
STK25	stk25a	
TGFβ2	tgf2b	
TEAD1	tead1a	
TEAD2	tead1b	
TEAD3	tead3a	
CTGF	ctf6	
CYR61	cyr61	
IGFBP3	igf3b	
VGLL4	vgl4a	
WWTR1	wvtr1	
YAP1	yap1	
ANKRD1	ankrd1a	
BMP4	bmp4	
CAV1	cav1	
AMOTL2	amotl2a	
CTGF	ctf6	
CAVIN1	cav1n1a	

Fig. 3 Overview of zebrafish heart regeneration. **a** Structure of the uninjured zebrafish adult heart. **b** Injury at the ventricle apex induces collagen and fibronectin deposition and scar formation. *yap1*, *ctgf*, and *cav-1* promote appropriate and transient scar formation. **c** Heart epicardium undergoes EMT and inflammatory cells (blue) infiltrate into the scar. *yap1* and *ctgf* inhibit inflammatory cell infiltration. **d** New coronary vessels form to revascularize the injury site. **e** Mature cardiomyocytes (CMs) (pink) dedifferentiate into progenitor cells (yellow) and migrate along the new coronary vessels into the injury site. *ctgf* promotes CM migration. **f** CM progenitors proliferate to create a progenitor cell pool, which matures back to CMs to reform the heart muscle. *ctgf* and *cav-1* promote cell proliferation.
Gene	Activity level	Disruption method	Allele created	Model	Phenotype
amotl2a	−	MO/TALEN	N/A/fu45, fu46	LL development	Overproliferation in trailing edge of pLLP
					Increased pLLP size and cell number
					Reduced pLLP migration speed
					Increased number of neuromasts
cav-1a	−	TALEN	pd1094, pd1104	Heart regeneration	Impaired recovery after injury, injury-induced CM proliferation, and scar resolution
		MO	N/A	LL development	Reduced number and maturation of hair cells and neuromasts
					Reduced CM proliferation, expression of pro-regenerative ECM genes, and CM migration along the coronary vasculature to repopulate the wound
					Increased collagenous scarring
		TALEN	bns50	Heart regeneration	Reduced functional recovery after injury, gial cell proliferation and bridging, and axon regeneration
				SC regeneration	Enhanced functional recovery after injury, gial bridging, and axon growth
hsp70:ctgfa OE plasmid	+		pd97	Heart regeneration	Increased recovery after injury, CM proliferation, resolution of collagen deposition, and expression of pro-regenerative ECM genes
				SC regeneration	
lats2	−	CRISPR	zf3090	Tail fin regeneration	Increased tissue stiffness, contractility, and ECM deposition
nD2a	−	MO	N/A	Liver development	Hepatomegaly, dilated bile duct, and extrahepatic choledochal cysts
sav1	−	CRISPR	mw95	Liver development	Bilary dysgenesis, altered hepatocyte morphology and polarity, and biliary cell dysplastic morpholoy and increased expansion
stk3	−	TALEN	mw96	Liver development	Bilary dysgenesis, altered hepatocyte morphology and polarity, and biliary cell dysplastic morpholoy and increased expansion
wwr1	−	MO	N/A	Tail fin regeneration	Lack of skeletal ossification
yap1	−	TALEN	mw48	Heart regeneration	
hsp70:DN-Yap plasmid	+		zf621	SC regeneration	Impaired functional recovery after injury, axon growth, and glial bridging
				Tail fin regeneration	Reduced recovery after injury, cell proliferation, and osteoprogenitor differentiation into osteoblasts
5 µM verteporfin	+		N/A	LL regeneration	Defective supporting cell, hair cell and mantle cell proliferation and hair cell maturation
				Liver development	
					Reduced number of neuromasts and hair cells, pLLP size, number of cells in the pLLP, mechananoreceptor differentiation, and Wnt signalling component expression
hsp70:CA-Yap plasmid	+		zf622	Heart regeneration	Increased CM proliferation
CA-Yap1 mRNA injection (in lpar2b MO)	+		N/A	LL development	
					Increased pLLP size, and number of neuromasts and proliferating cells in the pLLP
I-SceI (lf:Yap1)	+		N/A	Liver development	
yam7:3SA-myc yap1	+		N/A	Liver regeneration	
yam7:CA-Yap1	+		N/A	Liver regeneration	
yam7:CA-Yap1	+		N/A	SC regeneration	

This table is non-exhaustive and primarily covers developmental and regenerative phenotypes described in this review. Many other Hippo pathway mutants and morphants exist (e.g. wwr1 alleles bns35, swu46, swu47, va4, mw49, ncv114, and fu55). See individual gene pages on zfin.org for a complete list.
coronary vasculature to in revascularisation, potentially as a result of alterations in cytoskeletal gene expression in a cell autonomous regulation of CM in progenitors extend processes across the injury site to form ERGs, or in vivo122.

Disrupting Hippo signalling in pigs after myocardial infarction165 gives comparable results. In pigs, CM-specific knockdown of Sav (which results in increased YAP activity164,165) increases CM proliferation and improves heart function after myocardial infarction165. Similar outcomes are observed when Yap1 is disrupted in mice, causing heart regeneration defects through decreased CM proliferation166–171, whilst heart regeneration (and CM proliferation) is stimulated after Yap1 activation167–169, potentially due to the Hippo pathway’s link to cytoskeletal and ECM regulation170. However, the opposite effect is observed when Hippo signalling is disrupted in murine cardiac fibroblasts172,173. Deletion of Yap1/Taz in these fibroblasts results in improved cardiac function after myocardial infarction through modulation of the fibrotic and fibroinflammatory response174. Enhanced Yap1/Taz signalling (through either Yap1 overexpression or Lats1/2 deletion) has the opposing effect, with mice displaying elevated fibrotic responses173,172. This apparent contradiction between the role of the Hippo pathway in CMs and cardiac fibroblasts supports a model where the Hippo pathway functions differently in different cell types.

CMs in zebrafish ctgfa mutants also fail to migrate along the coronary vasculature to infiltrate the wound, despite no changes in revascularisation, potentially as a result of alterations in cytoskeletal gene expression in a cell autonomous regulation of CM infiltration121,123. Supporting this, data using in vitro primary rat cultures of cardiac fibroblasts show that Yap1 siRNA-mediated knockdown reduces expression of factors associated with cytoskeletal motility and ECM adhesion, although these results have not been recapitulated in zebrafish, CMs, or in vivo122.

In summary, the Hippo signalling pathway enhances cardiac regeneration by temporal activation of Yap1/Taz and promotes normal cardiovascular development. Yap1/Taz promote appropriate scar formation and potentially prevent overactivation of the immune response, which, when combined, increases scar resolution, spatiotemporal CM proliferation, and thereby cardiac regeneration. Taking advantage of this regenerative capacity may hold therapeutic potential in the treatment of human MI. For example, pharmacological regulation of the Hippo pathway could modulate CM proliferation and fate plasticity156,174, promoting scarless healing in the adult heart and reducing disease burden. Recent work disrupting Hippo signalling in pigs after myocardial infarction165 suggests, in a clinically relevant model system, that this could be possible. However, precise cell type-specific modulation of the Hippo pathway will be vital to realise its full potential, as the Hippo pathway has been shown to have different functions in the cell types involved. For example, heart function is improved after injury in mammals when YAP activity is increased in CMs165 but also when Yap1/Taz is deleted in cardiac fibroblasts172.

Spinal cord regeneration

The Hippo pathway is also associated with regeneration after spinal cord injury (SCI) in the zebrafish. After SCI in humans and other mammals, the affected axons and neurons are destroyed and a non-permissive scar is formed in the place of new cells, commonly resulting in lifelong disability175–177. However, both adult and larval zebrafish robustly and effectively regenerate their spinal cords after injury, with viable axon regrowth over the lesion site and return of full swimming function within weeks after injury18,19,178–182 (Fig. 4).
For functional recovery in the spinal cord, new and existing cells must proliferate, migrate to the injury site, bridge the lesion, and differentiate to reintegrate with existing distal neuronal circuits183. Neurogenesis from tissue-resident progenitors is a vital step for this to occur in zebrasfish, which is promoted by multiple signalling pathways, including Wnt/β-catenin, Fgf, Shh, and is inhibited by Notch signalling (Table 1). The tissue-resident progenitors responsible for cell proliferation and bridging are thought to be the ventral ependymal radial glia (ERG)187,184-186. These cells have general functions during development and adulthood in maintaining spinal cord homeostasis such as sealing the blood-brain barrier and maintaining ionic balance, but also proliferate and differentiate into a range of neuronal cell types after injury181,183,187.

To allow new cell processes to traverse the lesion site, a glial bridge is formed. After injury, ERGs migrate to the lesion and elongate to form an astrogial bridge over the lesion, along which axons can grow to innervate distal targets (Fig. 4C-E). This is driven by pro-regenerative gene expression (e.g. col12a1a/b and tenascin-c), interactions with other cell types such as Schwann cells, and additional environmental cues180,182,184,188-190. Zebrasfish glial bridging shares clear morphological and functional similarities with the bridging observed during mammalian peripheral nerve regeneration (which occurs to a much greater extent than mammalian CNS regeneration)188,191-193, indicating that this common process may be manipulated in the human for therapeutic benefit.

In order to induce glial cells to undergo bridging, ventral ERGs undergo an epithelial-to-mesenchymal transition (EMT)193 (Fig. 4C). EMT is a common feature of many cells activated by injury, and is linked to stem cell activation, increased cellular plasticity, and tissue remodelling94-96. Gial EMT is both necessary and sufficient to induce glial bridging, and is linked to Yap1-Ctgfa signalling93,197, Yap1, wwr1t, (gene encoding Taz), and ctgfa are upregulated following SCI, with yap1 and ctgfa expression localised to bridging glia and ventral ERGs193,197. As well as inducing ctgfa expression in ventral ERGs, Yap1 promotes twist1a expression93, twist1a is an established EMT marker, activation of which directs a mesenchymal transition in Ctgfa+ ERGs, promoting glial bridging and functional spinal cord repair193.

Similar to heart regeneration, one major difference between the zebrasfish and mammalian response to SCI is the formation of a glial scar. SCI causes vascular damage, oedema, and inflammation, resulting in widespread gliosis, necrosis, and apoptosis that eventually forms a glial/fibrotic scar in mammals, stretching beyond the site of the initial trauma and acting to prevent secondary damage but also preventing axon regrowth176,198,199. There is no significant scarring in the zebrasfish, so there is no experimental work linking the Hippo pathway in zebrasfish to scar resolution, however siRNA-mediated knockdown of the YAP1/TAZ-TEAD target gene Ctgf in rats reduces the glial scar and hence improves regeneration after SC200, suggesting that YAP1/TAZ signalling may promote scar formation or impair scar resolution and outlining a potential therapeutic target for SCI treatment in mammals.

Loss of function mutations of yap1, wwr1t, and ctgfa all result in impaired functional recovery after SCI, with ctgfa and yap1 disruption causing a glia-specific cell proliferation reduction, resulting in impaired bridging and axon regeneration across the lesion site93,197. Exogenous administration of human CTGF to these ctgfa mutants reversed this defect197. This finding, and the similar finding that heart scar formation is larger and more persistent in ctgfa, yap1, and cav-1 mutants121-123, appears in contrast to that seen in the rat glial scar200, which found that knockdown of CTGF increased recovery through the clearance of scarring, and the current clinical trials which are targeting CTGF to reduce fibrosis and scarring201. This may be due to species differences in the function of the Hippo pathway, but this is not supported by the relatively high translatability of other studies between rodent and zebrasfish. An alternative explanation might be that Yap/Taz-Ctgfa signalling has opposing effects at different stages of spinal cord regeneration, or that strictly regulated temporal activation/repression of signalling is key, although studies of this in mammals must be performed after the scar has been resolved, which currently presents an experimental challenge.

Yap1 signalling is also associated with the regenerative role of glial cells in other parts of the CNS, such as the retina. In the zebrasfish, retinal damage induces reprogramming events where Müller glia are converted to a highly proliferative progenitor-like state, dividing asymmetrically to replace lost photoreceptors202-204. Yap1 knockdown blocks Müller glial cell proliferation and neurogenesis after light damage of the zebrasfish retina206, suggesting a common role for yap1 in the regenerative functions of glial cells. Mammalian retinas usually do not have a proliferative, pro-regenerative, Müller glia response to injury. However, in the mouse, YAP promotes glial reprogramming, with YAP activation inducing Müller glia reprogramming to a highly proliferative, progenitor-like cell202,204. This suggests that promoting Yap1 signalling therapeutically may also promote CNS regeneration in humans.

These findings propose a model in which Yap1 senses the mechanical stress caused by SCI, enhancing ctgfa and twist1a expression to activate a pro-EMT and pro-proliferative transcriptional programme in ventral ERGs, promoting glial bridging, axon regeneration, and, consequently, functional recovery193. This model suggests that enhancing scar resolution, promoting EMT, enhancing CTGF signalling at later stages of regeneration, and identifying CTGF-responsive spinal cord cells may allow for the identification of a therapeutic target to promote mammalian spinal cord regeneration197. Targeting CTGF has been investigated in a variety of preclinical and clinical trials for multiple conditions, including muscular dystrophy and pancreatic cancer. For example, the monoclonal antibody Pamrevlumab has shown promise in trials for idiopathic pulmonary fibrosis209,210. However, these trials involve the inhibition of CTGF activity, rather than the enhancement that may be required to promote recovery201,211. Consequently, further insights must be obtained before translating these findings into an effective treatment option in humans.

Tail fin regeneration

Zebrasfish and other teleosts regenerate their fins completely after multiple consecutive amputations212, a phenomenon that was studied as early as the 18th century213, and by the regeneration pioneer T. H. Morgan at the turn of the 20th century214-216. Fin regeneration occurs through epimorphic regeneration, a process characterised by the presence of a blastema early in regeneration (Fig. 5). This mass of undifferentiated proliferating progenitor cells at the site of injury is formed by mature cell dedifferentiation, which can then differentiate back into mature cells to generate an actively growing tissue that replaces the lost appendage117.

There is not yet direct evidence for a role for the Hippo pathway in dedifferentiation in the zebrasfish caudal fin blastema, but in other in vivo models, both mammalian and invertebrate, the Hippo pathway maintains stemness, promote proliferation, and prevent differentiated cells to a progenitor cell state81,218-222. In the zebrasfish, dedifferentiated cells proliferate to form a large pool of progenitor cells in the blastema (Fig. 5D).

Blastema formation is enhanced and maintained by a range of developmental signalling pathways, including Hippo, Wnt/β-catenin, IGF, Notch, Shh, TGFβ (Table 1) as well as inflammatory signals such as IL1β and Hsp90c225-227. The concentration gradient of these signalling pathways gives positional information along the proximodistal axis of the injured tissue, ensuring that structures are reformed at the correct location and that the tissue grows at an appropriate rate, halting
when the previous size and shape is reached16,228–231. Hippo signalling is one such signalling pathway with activity changes in proximodistal expression. In the high cell density distal blastema, Yap1 is mainly cytoplasmic (and so inactive), whilst in the low density proximal blastema, it becomes mainly nuclear (active)232. Yap1 is also localised to α-catenin and F-actin when in the cytoplasm232. This suggests that the heterogeneous cell densities within the blastema could be transduced through cell junctions and the cytoskeleton232. These mechanical properties then impact Yap1 localisation, which alters the regenerative capacity of the fin232. For example, yap1 disruption impairs cell proliferation and alters key signalling pathways, including promoting Wnt and reducing Bmp signalling after fin injury232,233. This results in an accumulation of osteoprogenitors and prevention of osteoblast differentiation, and so defective regeneration233. Ctgfa levels are also increased following fin injury, and disruption of its regulatory sequences induces increased tissue stiffness and ECM deposition234.

Tail fin progenitor cells are not multipotent. Instead, cells remain lineage restricted235,236. The osteoblast is one such cell type. After injury, these cells dedifferentiate, proliferate, and mature to only give rise to osteoblasts in the regenerate (Fig. 5)236–238. More specifically, injury induces differentiated mature osteoblasts close to the injury site, which usually form the bony rays of the fin, to lose expression of late and intermediate osteoblast differentiation markers (such as osteocalcin and osterix) and undergo a Wnt/β-catenin-mediated EMT to gain progenitor markers and generate osteoprogenitor cells, which migrate to the blastema and proliferate in a Fgf-dependent manner237,239. These progenitors then undergo Bmp-mediated maturation into osteoblasts238 (Fig. 5D), a process that is associated with the Hippo pathway231,239. This link to osteoblast formation and function is most dramatically illustrated by wnt1 disruption in embryonic zebrafish, which results in a complete lack of skeletal ossification149. Similarly, disruption of yap1 results in major bone defects and impaired fin regeneration, caused by an inhibition of osteoprogenitor cell maturation, giving an increased osteoprogenitor pool with a downregulation of intermediate and mature gene markers231. These defects are mediated by a reduction in Bmp signalling (which usually promotes maturation into osteoblasts239). In wild-type fish, Yap1 promotes Bmp signalling in a cell non-autonomous manner, restricting osteoprogenitors to the distal blastema (where Yap1 is inactive), and promotes osteoblast formation in the proximal blastema (where Yap1 is active)233. Bmp4 is also associated with tail fin regeneration. Bmp4 is expressed in the distal blastema, and its inhibition reduces fin outgrowth after injury due to reduced proliferation of blastema cells260,241. This data suggests that Yap1 functions in the blastema to mechanotransduce tension changes and control the fate and migration of specific cell types in the amputated fin, regulating the precise control of tissue growth, potentially through the expression of ECM factors such as Ctgfa232,234.

The Hippo pathway is also associated with the differentiation of osteoblasts from mesenchymal stem cells (MSCs) during development, which generate neurons, adipocytes, skeletal muscle, and osteoblasts242. In in vitro studies, TAZ promotes osteoblast differentiation from MSCs via activation of Runx2-dependent gene transcription whilst inhibiting adipocyte differentiation via repression of PPARγ signalling149. CTGF also promotes osteoblast differentiation from MSCs in vitro243. Similar data are observed in mice, where YAP1 and TAZ promote bone formation and repair through their regulation of the osteoblast lineage244,245. Osteoblast lineage-specific Yap1 KO mice have reduced osteoblast differentiation and increased adipocyte formation, an effect that is diminished following increased β-catenin expression, demonstrating the importance of Wnt/β-catenin signalling in this process246. However, the role of the Hippo pathway in osteoblast differentiation is contested, with some in vitro studies suggesting that YAP1/TAZ suppress osteoblast differentiation and bone formation, and increase adipogenesis246,247, so more work is required to elucidate this complexity.

Zebrafish tail fin regeneration is most closely associated with limb regeneration, which does not occur in mammals or other higher vertebrates, although the mouse has been found in some instances to regenerate the digit tip in both newborns and adults248. Appendage regeneration does occur in certain amphibians such as salamanders as well as some invertebrates, and the Drosophila yap1 ortholog yki has been shown to promote wing disc regeneration249. Regeneration of an entire limb in mammals appears unlikely, but work in the zebrafish tail fin and other systems suggests that Hippo signalling may play an important role and promoting it could enhance regenerative capacity of specific...
aspects of limb regeneration, such as enhanced bone regeneration after breaks.

Hair cell regeneration in the lateral line

The lateral line is a mechanosensitive organ in fish and other aquatic amphibians that detects motion of the external liquid, aiding feeding and social behaviour as well as orientation in currents. In zebrafish, this rapidly developing organ is formed of sixty small clusters of cells (termed neuromasts) in adulthood (expanded from an initial eight in larvae)\(^{259}\), located along with the head (anterior lateral line) and trunk (posterior lateral line, pLL) in stereotyped positions\(^1\). Neuromasts consist of a group of hair cells with stereocilia projecting out of the skin and into the surrounding water, mechanical movement of which triggers sensation, and surrounding interdigitating supporting cells and mantle cells (Fig. 6A). Hair cells are innervated by ribbon synapses with afferent sensory neurons\(^1\) that project to the hindbrain, where they exhibit a somatotopy similar to the tonotopy seen in mammalian cochlear afferent projections\(^{251}\).

During early zebrafish development, a pLL primordium (pLLP) is generated behind the otic vesicle, forming a mass of cells that migrates along the flank beneath the skin, depositing proto-neuromasts at periodic intervals\(^{252}-255\). The deposition of protoneuromasts and their development into mature neuromasts is mediated by Wnt/β-catenin, Notch, and Fgf signalling pathways, and is reviewed elsewhere\(^{17,256}\). Neurumasts must maintain a cohesive structure through high levels of expression of E-cadherin and tight junctions. In mammalian epithelial cells, E-Cadherin is a key upstream regulator of YAP1/TAZ257,258, indicating a potential role for Hippo signalling in this process. In fact, the Hippo pathway is linked to lateral line development through a range of signalling pathways, many of which are also associated with other developmental processes.

The high regenerative capacity of the amphibian lateral line was first observed in the salamander\(^{271,272}\), but has since been observed in multiple organisms, including the zebrafish\(^{273}\) (Fig. 6). This is in contrast to the limited regeneration of mammalian hair cells, e.g. of the inner ear\(^{256}\). The majority of regenerated lateral line hair cells are formed by symmetric asynchronous division of support cells in the first 20 hours post injury\(^{254,274,275}\), where mitotic division of one support cell gives rise to two hair cells\(^{276}\) (Fig. 6C). The molecular and cellular triggers of this regeneration include pathways involved in lateral line development—Wnt/β-catenin, Notch, and Fgf signalling—as well as novel factors such as the Jak/Stat3 pathway (Table 1), which balance self-renewal, hair cell differentiation, and the risk of overgrowth.

The Hippo pathway links to lateral line regeneration\(^{277}\). The expression pattern of supporting cells during regeneration is reminiscent of expression in the migrating primordium during lateral line development, which is silenced when leading progenitors differentiate into mature supporting cells and hair cells\(^{259,278,279}\). This includes the expression of Hippo components cav-1 and ctgfa, which are upregulated in the support cells of both the zebrafish lateral line and the mouse inner ear\(^{280}\). In addition, after severe hair cell injury, Yap1 is activated in hair cell precursors, and regeneration is impaired in yap1 mutants\(^{277}\). Yap1 activation may occur through cell junction damage and resulting loss of junction-associated proteins such as Amotl2a, which usually
restricts Yap1 activity in the lateral line261,277. Activated Yap1 upregulates lin28a transcription, an RNA-binding protein that regulates the translation of mRNAs involved in developmental timing, pluripotency and metabolism281. This promotes a Yap1-lin28a-let7-Wnt signalling axis that is both necessary and sufficient to promote progenitor cell activation and hence neuromast regeneration. The Yap1-lin28a-let7-Wnt signalling axis has other roles in dedifferentiation, including zebrafish retinal regeneration, mammalian embryonic inner ear development, and in vitro reprogramming of stem cell cultures282–285.

In summary, Yap1/Taz signalling in progenitor support cells is triggered after hair cell injury, promoting their differentiation towards hair cells via a Wnt signalling pathway, and enhancing recovery. Promoting Yap1/Taz signalling may also have therapeutic benefits in humans. The hair cells of the inner ear do not regenerate256 but have high similarity to zebrafish lateral line hair cells. This includes similar expression patterns of mechanosensory ion channel and tip link genes and responses to key signalling pathways and ototoxic insults256,286–290, and so targeting the Hippo pathway to promote the regeneration of inner ear hair cells to combat age-related hearing decline may be a viable approach.

Liver regeneration

Despite limited mammalian regeneration of many organs, both mammals and zebrafish can regenerate their livers efficiently through the proliferation of differentiated hepatocytes, regaining liver function through epimorphic regrowth and compensatory enlargement of liver lobes291,292 (Fig. 7). However, this capacity of hepatocytes to repopulate the liver in humans can be overwhelmed by chronic or severe injury, resulting in liver failure that is only treatable by liver transplantation. There are many functional, cellular, and structural similarities between mammalian and zebrafish liver, both of which can regenerate their liver after more chronic insults292 making the zebrafish a useful model to study the development and regeneration of the liver. However, limited research has been performed investigating the role of the Hippo pathway in zebrafish liver regeneration, although much work on this topic has been performed in the mouse. After experimental murine liver injury, YAP1 protein levels increase, with increased nuclear localisation in the liver and enhanced expression of downstream YAP1/TAZ target genes220,293,294. In a mouse model with Yap deletion in hepatocytes, bile duct ligation results in hepatic necrosis, reduced hepatocyte proliferation, and increased mortality220,295 compared to wild-type mice, suggesting a key role for Hippo signalling in mammalian liver regeneration.

One method posited to promote liver regeneration is the recapitulation of developmental processes to generate progenitor-like cells that repopulate the liver after hepatocyte loss. Supporting this, after severe liver injury biliary cells have been shown to transdifferentiate into hepatocytes via a dedifferentiated progenitor-like state to repopulate the liver291,292. Hippo signalling is implicated in multiple cell fate transitions during liver regeneration in the mouse296,297. This includes YAP signalling activation by the alteration of cholangiocytes’ epigenome and transcriptome to aid their restoration of normal hepatocyte and cholangiocyte number296. YAP also associates with factors such as Arid1a to promote the induction of liver progenitor-like cell-enriched genes297.

The Hippo pathway is linked to liver development in both mammalian and zebrafish livers, and likely regulates cell fate plasticity in this process. In mice, YAP1 overexpression causes
hepatomegaly that is reversible upon cessation of YAP1 signalling, suggesting a function for YAP1 in regulation of cell proliferation and hepatocyte function221,298. Hepatomegaly is also observed in the zebrafish after Yap1 overexpression or n2a disruption299,300, whilst conversely yap1-/- fish have reduced liver size147. Other structural defects observed when disrupting upstream Hippo pathway components in the zebrafish include dilated bile ducts299, biliary dysgenesis301, and extrahepatic choledochal cysts299. Yap1 has also been linked to metabolism in the zebrafish liver, where it stimulates nucleotide biosynthesis to promote tissue growth through increasing glutamine synthetase and glucose transporter glut1 expression147,300,302.

The Hippo pathway’s role in hepatocyte development is thought to be vital in its role in the liver as hepatocytes are the predominant cell type in the liver and are key to liver function292. Much work must be performed to bridge the gaps that are needed to fully understand this role in the liver as hepatocytes are the predominant cell type in the liver and are key to liver function292. Appropriate Hippo pathway function is essential in the maintenance of mature hepatocytes, with hepatocyte-specific N2d loss in mice leading to hepatocyte dedifferentiation into highly renewable progenitors300, and overexpression causing a dysplastic hepatocyte morphology221. YAP1 is also associated with the formation of bile ducts in the developing mouse104, and with the function of the bile ducts (which promote immune cell recruitment and function) in the regenerating adult mouse liver105. Similarly, stk3 and sav1 zebrafish mutants (which both result in increased Yap1 activity) display altered hepatocyte morphology and polarity alongside biliary cell disruption101. Overall, these data suggest a conserved role for the Hippo pathway in structural liver, hepatocyte and biliary cell function between mammals and zebrafish. This implies that the Hippo pathway may also have a role in zebrafish liver regeneration, although this research is still in its infancy and will need further detailed investigation before conclusions can be drawn.

CONCLUSION

The zebrafish is a powerful model system for the study of regeneration due to their rapid external development, relative low cost, transparent juvenile stages and robust regenerative reparative as well as the availability of a range of established genetic tools and other experimental procedures to study these. In this review, the role of the Hippo pathway in zebrafish regeneration is summarised, with the finding that Yap1/Taz signalling often enhances regeneration through the promotion of cell proliferation, progenitor cell dedifferentiation and maturation, EMT, and scar resolution, as well as linking to key developmental pathways. The phenotypes resulting from the disruption of Hippo pathway components is summarised in Table 2.

The positive effect of Yap1/Taz signalling on regeneration in the zebrafish, which appears to be latent in mammals, suggests some therapeutic potential in promoting YAP/TAZ signalling to enhance mammalian regeneration. However, this must be carefully investigated, as many of the processes associated with enhanced regeneration are linked to an increased risk of cancer, such as an elevated cell proliferation rate, cellular heterogeneity, and increased stemness308. In fact, dysregulation of the Hippo pathway and thereby pathological hyperactivation of YAP1/TAZ promotes carcinogenesis in most, if not all, types of solid tumours102,307,308. The zebrafish may therefore be vital in the elucidation of this association between cancer and regeneration, which could allow us to manipulate regenerative potential without impacting carcinogenesis or vice versa. One way to do this could be through the utilisation of zebrafish Hippo pathway-induced cancer models, which recapitulate human findings in that manipulation of Hippo signalling can trigger tumour formation309–311. However, the field of Hippo signalling in the zebrafish is still relatively new, and so much work must be performed to bridge the gaps that are currently preventing its translation to the clinic, particularly the study of the molecular and cellular drivers of the Hippo pathway’s effects on both regeneration and development (Box 1).

References

1. Wittlieb, J., Khalturin, K., Lohmann, J. U., Anton-Erxleben, F. & Bosch, T. C. G. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. USA 103, 6208–6211 (2006).
2. van Wolfswinkel, J. C., Wagner, D. E. & Redden, P. W. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15, 326–339 (2014).
3. Ivanovic, M. et al. Model systems for regeneration: planarians. Development 146, dev167684 (2019).
4. Vogg, M. C., Galliot, B. & Tsiairis, C. D. Model systems for regeneration: Hydra. Development 146, dev177212 (2019).
5. Hao, A., Qin, H. & Fu, X. What determines the regenerative capacity in animals? Biosciences 66, 735–746 (2016).
6. Poss, K. D., Keating, M. T. & Nechiporuk, A. Tales of regeneration in zebrafish. Dev. Dyn. 226, 202–210 (2003).
7. Mao, S. A., Glorioso, J. M. & Nyberg, S. L. Liver regeneration. Transl. Res. 163, 352–362 (2014).
8. Plilku, M. V. et al. Epithelial stem cells and implications for wound repair. Semin. Cell Dev. Biol. 23, 946–953 (2012).
9. Hong, A. W., Meng, Z. & Guan, K-L. The Hippo pathway in intestinal regeneration and disease. Nat. Rev. Gastroenterol. Hepatol. 13, 324–337 (2016).
10. Scheib, J. & Høke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurosci. 9, 668–676 (2013).
11. Flach, J. & Milyavsky, M. Replication stress in hematopoietic stem cells in mouse and man. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 808, 74–82 (2018).
12. Larson, B. J., Longaker, M. T. & Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126, 1172–1180 (2010).
13. Sousounis, K., Baddour, J. A. & Tsints, P. A. Aging and regeneration in vertebrates. Curr. Top. Dev. Biol. 108, 217–246 (2014).
14. Yun, M. H. Changes in regenerative capacity through lifespan. Int. J. Mol. Sci. 16, 25392–25432 (2015).
15. Smith, K. A. & Mommerssteeg, T. M. M. Talkin’ bout regeneration: new advances in cardiac regeneration using the zebrafish. Curr. Opin. Physiol. 14, 48–55 (2020).
16. Sehing, I. M. & Weidinger, G. Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdiscip. Rev. Dev. Biol. 9, e367 (2020).
17. Thomas, E. D., Cruz, I. A., Hailey, D. W. & Raible, D. W. There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdiscip. Rev. Dev. Biol. 4, 1–16 (2015).
18. Cigliola, V., Becker, C. J. & Poss, K. D. Building bridges, not walls: spinal cord regeneration in zebrafish. Dis. Model. Mech. 13, dmm044131 (2020).
19. Gemberling, M., Bailey, T. J., Hyde, D. R. & Poss, K. D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 29, 611 (2013).
20. Marques, I. J., Lupi, E. & Mercader, N. Model systems for regeneration: zebrafish. Development 146, dev167692 (2019).
81. Zhao, B., Tumaneng, K. & Guan, K.-L. Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011).
82. Ardestani, A., Lupse, B. & Maedler, K. Hippo signaling: key emerging pathway in development. Dev. Cell 28, 1737–1746 (1996).
83. Bise, T., Sallin, P., Pfefferli, C. & Jazwinska, A. Multiple cryoinjuries modulate the efficacy of zebrafish heart regeneration. Sci. Rep. 10, 11551 (2020).
84. Davis, J. R. & Tapon, N. Hippo signalling during development. Development 146, dev17106 (2019).
85. Dupont, S. et al. Role of YAP/TAZ in meiotransduction. Nature 474, 179–185 (2011).
86. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).
87. Rausch, V. et al. The Hippo pathway regulates caveolae expression and mediates cell growth. Nat. Commun. 6, 5857 (2015).
88. Zheng, Y. et al. Identiﬁcation of happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev. Cell 34, 642–655 (2015).
89. Lim, S. et al. Identiﬁcation of the kinase STK25 as an upstream activator of Lats signaling. Nat. Commun. 10, 1547 (2019).
90. Zhao, B., Li, L., Tumaneng, K., Wang, C.-Y. & Guan, K.-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 22, 72–85 (2010).
91. Lei, Q.-Y. et al. TAZ Promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell Biol. 28, 2426–2436 (2008).
92. Liu, C.-Y. et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TRCP E3 ligase. J. Biol. Chem. 283, 37159–37169 (2010).
93. Wang, S. et al. YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKe-mediated phosphorylation. Nat. Immunol. 18, 733–743 (2017).
94. Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355–13362 (2009).
95. Ota, M. & Sasaki, H. Mammalian Taz proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059–4069 (2008).
96. Riching, A. S. & Song, K. Hippo signaling: new insights into the frontier of ischemic heart failure therapy. Front. Bioeng. Biotechnol. 8, 637538 (2021).
97. St. John Sutton, M. G. & Sharpe, N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101, 2981–2988 (2000).
98. Engel, F. B., Hsieh, P. C. H., Lee, R. T. & Keating, M. T. FGFlp38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues functions after myocardial infarction. Proc. Natl. Acad. Sci. USA 103, 15446–15551 (2006).
99. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).
100. Li, F., Wang, X., Capasso, J. M. & Gerdes, A. M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28, 1737–1746 (1996).
101. Bise, T., Sallin, P., Pfefferli, C. & Jazwinska, A. Multiple cryoinjuries modulate the efﬁciency of zebrafish heart regeneration. Sci. Rep. 10, 11551 (2020).
102. Sehring, I. M., Jahn, C. & Weidinger, G. Zebrafish ﬁn and heart: what’s special about regeneration? Curr. Opin. Genet. Dev. 40, 48–56 (2016).
103. Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421–3430 (2011).
104. Rausch, V. et al. The Hippo pathway regulates caveolae expression and mediates cell growth and tissue regeneration. Trends Cell Biol. 28, 4059–4069 (2008).
105. Hillmer, R. E. & Link, B. A. The roles of Hippo signaling transducers Yap and Taz in the plasma membrane. Trends Cell Biol. 30, 32–48 (2020).
106. Zhao, B. et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6, 5857 (2015).
107. Zheng, Y. et al. Identiﬁcation of happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev. Cell 34, 642–655 (2015).
108. Lim, S. et al. Identiﬁcation of the kinase STK25 as an upstream activator of Lats signaling. Nat. Commun. 10, 1547 (2019).
109. Zhao, B., Li, L., Tumaneng, K., Wang, C.-Y. & Guan, K.-L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 22, 72–85 (2010).
110. Lei, Q.-Y. et al. TAZ Promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell Biol. 28, 2426–2436 (2008).
111. Liu, C.-Y. et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TRCP E3 ligase. J. Biol. Chem. 283, 37159–37169 (2010).
112. Wang, S. et al. YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKe-mediated phosphorylation. Nat. Immunol. 18, 733–743 (2017).
113. Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355–13362 (2009).
114. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Dev. Cell 28, 1737–1746 (1996).
115. Nakajima, H. et al. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev. Cell 40, 523–536 (2017).
116. Astone, M. et al. Zebrafish mutants and TEAD reporters reveal essential function of Yap and Taz in posterior cardiac vein development. Sci. Rep. 8, 1–15 (2018).
117. Grimm, L. et al. Yap1 promotes sprouting and proliferation of lymphatic progenitors downstream of Vegf in the zebrafish trunk. Elife 8, e42881 (2019).
Dooley, C. M. et al. The gene regulatory basis of genetic compensation during neural crest induction. PLoS Genet. 15, e1008233 (2019).

Cox, A. G. et al. Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J. 37, e100294 (2018).

Pappalardo, A. et al. Thyroid development in zebrafish lacking Taz. Mech. Dev. 138, 268–278 (2015).

Hong, J.-H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Sci. Rep. 3, 1099–1074–1078 (2005).

Xi, J. et al. The effector of Hippo signaling, Taz, is required for formation of the microvole and fibrilization in zebrafish. PLoS Genet. 15, e1007408 (2019).

Lo, H. P. et al. The cavelin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J. Cell Biol. 210, 833–849 (2015).

Kim, M., Kim, M., Lee, M.-S., Kim, C.-H. & Lim, D.-S. The MST1/2-SAV1 complex of the Hippo pathway promotes cilogenesis. Nat. Commun. 5, 1–14 (2014).

Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

Gupta, V. et al. An injury-responsive gata4 program shapes the zebrafish cardiac ventricle. Curr. Biol. 23, 1221–1227 (2013).

Zhang, R. et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498, 497–502 (2013).

Harrison, M. R. M. et al. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev. Cell 33, 442–454 (2015).

Kikuchi, K. et al. tfc2l1– epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011).

Kim, J. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc. Natl Acad. Sci. USA 107, 17206–17210 (2010).

Marín-Juez, R. et al. Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev. Cell 31, 503–515 (2016).

Marín-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 113, 11237–11242 (2016).

Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

Itoh, J. et al. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 139, 4133–4142 (2012).

Tapon, N. et al. Salvador promotes both cell cycle exit and apoptosis in drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

Liu, S. et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci. Transl. Med. 13, eabd6892 (2021).

Del Re, D. P. et al. Yes-associated protein isoform 1 (Yap1) promotes cardiac regeneration in zebrafish. EMBO J. 39, 309–315 (2020).

Kuscha, V. et al. Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J. Comp. Physiol. 520, 3604–3616 (2012).

Goldshmit, Y. et al. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in Zebrafish. J. Neurosci. 32, 7477–7492 (2012).

Yu, Y.-M. et al. The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish. Neuroscience 183, 238–250 (2011).

Wehner, D. et al. Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nat. Commun. 8, 126 (2017).

Gomez-Sanchez, J. A. et al. After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on remyelination. J. Neurosci. 37, 9086–9099 (2017).

Parrinello, S. et al. EPHB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143, 145–155 (2010).

Klatt Shaw, D. et al. Localized EMT reprograms glial progenitors to promote spinal cord repair. Dev. Cell 56, 613–627.e6 (2021).

Wilson, M. M., Weinberg, R. A., Lees, J. A. & Guen, V. J. Emerging mechanisms by which EMT programs control stemness. Trends Cancer 6, 775–780 (2020).

Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

Jessen, K. R. & Arthur-Farrag, P. Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating neurons. Glu 67, 421–437 (2019).

Mokalled, M. H. et al. Injury-induced ctgf directs glial bridging and spinal cord regeneration in zebrafish. Science 354, 630–634 (2016).

Bradbury, E. J. & Burnside E. R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10, 3879 (2019).

Hu, R. et al. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J. Neurosurg. 13, 169–180 (2010).

Wang, Y. et al. Lentivirus-mediated silencing of the CTGF gene suppresses the formation of glial scar tissue in a rat model of spinal cord injury. Spine J. 18, 164–172 (2018).

NHI, U. S. National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ ct2/results?cond=&term=ctgf&recr=&type=&draw=1 (2021).

Hamon, A. et al. Linking YAP to Müller glia quiescence exit in the degenerative retina. Cell Rep. 27, 1712–1723 (2019).

Hamon, A., Roger, J. E., Yang, X.-I., Perron, M. Müller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems. Dev. Dyn. 245, 725–737 (2016).

Rueda, E. M. et al. The Hippo pathway blocks mammalian retinal Müller glial cell reprogramming. Cell Rep. 27, 1637–1649 (2019).

Wan, J. & Goldman, D. Retina regeneration in zebrafish. Curr. Opin. Genet. Dev. 40, 41–47 (2016).

Bernardos, R. L., Barthel, L. K., Meyers, J. R. & Raymond, P. A. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci. 27, 7028–7040 (2007).

Thummler, R., Kassen, S. C., Montgomery, J. E., Enright, J. M. & Hyde, D. R. Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol. 68, 492–408 (2008).
Dijkgraaf, S. The functional and significance of the lateral-line organs. Biol. Rev. 38, 51–105 (1962).

Ma, E. Y., Rubel, E. W. & Raibe, D. W. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 28, 2261–2273 (2008).

Namdaran, P., Reinhart, K. E., Owens, K. N., Raibe, D. W. & Rubel, E. W. Identification of modulators of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 32, 3516–3528 (2012).

López-Schier, H. & Hudspeth, A. J. A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proc. Natl. Acad. Sci. USA 103, 18615–18620 (2006).

Ye, Z. et al. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for liver development, regeneration, and disease from zebrafish. Proc. Natl. Acad. Sci. USA 111, E1383–E1392 (2014). https://doi.org/10.1073/pnas.1402898111.

Giffen, K. P., Liu, H., Kramer, K. L. & He, D. Z. Expression of protein-coding gene orthologs in zebrafish and mouse inner ear non-sensory supporting cells. Front. Neurosci. 13, 117 (2019).

Jin, J. et al. Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes. Nucleic Acids Res. 39, 3724–3734 (2011).

Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Sci. (80-.)- 318, 1917–1920 (2007).

Zhang, J. et al. LIN28 regulates stem cell metabolism and conversion to primed progenitor. Cell Stem Cell 19, 66–80 (2016).

Golden, E. J., Benito-Gonzalez, A. & Doettlinghofer, A. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea. Proc. Natl. Acad. Sci. USA 112, E8364–E8373 (2015).

Ramachandran, R., Fauet, B. V. & Goldman, D. Ascl1 regulates Müller glia dedifferentiation and retinal regeneration through a Lin28-dependent, let-7 microRNA signalling pathway. Nat. Cell Biol. 12, 1101–1107 (2010).

Corey, D. P. et al. TRP1A is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 (2004).

Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004).

Sollier, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428, 955–959 (2004).

Santos, F., Macdonald, G., Rubel, E. W. & Raibe, D. W. Dorsal lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear. Res. 213, 25–33 (2006).

Buck, L. M. J., Winter, M. J., Redfern, W. S. & Whit, T. T. Ototoxin-induced cellular damage in neurornasts disrupts lateral line function in larval zebrafish. Fish. Res. 501, 67–81 (2012).

Forbes, S. J. & Newsome, P. N. Liver regeneration—mechanisms and models to clinical application. Nat. Rev. Gastroenterol. Hepatol. 13, 473–485 (2016).

Wang, S., Miller, S. R., Ober, E. A. & Sadler, K. C. Making it new again: insight into liver development, regeneration, and disease from zebrafish. Curr. Top. Dev. Biol. 124, 161–195 (2017).

Wang, C. et al. Differences in Yes-associated protein and mRNA levels in regenerating liver and hepatocellular carcinoma. Mol. Med. Rep. 5, 410–414 (2012).

Grijalva, J. L. et al. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G196–G204 (2014).

Bai, H. et al. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 56, 1097–1107 (2012).

Aloia, L. et al. Epigenetic remodeling licences adult cholangiocytes for organoid formation and liver regeneration. Nat. Cell Biol. 21, 1321–1333 (2019).

Li, W. et al. A homeostatic arid-a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 25, 54–68 (2019).

Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J. & Hopkins, N. A genetic screen in zebrafish identifies the mutants vps18, r12, and r22 as gain of function. Development 132, 3561–3572 (2005).

Cox, A. G. et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 18, 886–896 (2016).

Brandt, Z. J., Eichert, A. E., Bostrom, J. R., North, P. N. & Link, B. A. Core Hippo pathway components act as a brake on Yap/Taz in the development and maintenance of the biliary network. Development 4, dev.184242 (2020).

Driskill, J. H. & Pan, D. The Hippo pathway in liver homeostasis and pathology. Annu. Rev. Pathol. Mech. Dis. 16, 299–322 (2021).