Relative positions of points on the real line and balanced parentheses

José Manuel Rodríguez Caballero
Université du Québec à Montréal, Montréal, QC, Canada
rodriguez_caballero.josemanuel@uqam.ca

Abstract. Consider a finite set of positive real numbers S. For any real number $\lambda > 1$, a Dyck word denoted $\langle \langle S \rangle \rangle_\lambda \in \{a, b\}^*$, was defined in [1] in order to compute Hooley’s Δ-function and its generalization. The aim of this paper is to prove that, given a real number $\lambda > 1$, any Dyck word can be expressed as $\langle \langle S \rangle \rangle_\lambda$ for some finite set S of positive real numbers.

Keywords: Dyck word, positive real number, order relation.

1 Introduction

Consider the finite 2-letter alphabet $\Sigma = \{a, b\}$. Given a finite set S of positive real numbers and a real parameter $\lambda > 1$, denote $\mu_0, \mu_1, ..., \mu_{k-1}$ the elements of $S \triangle \lambda S$ written in increasing order, i.e.

$$S \triangle \lambda S = \{\mu_0 < \mu_1 < ... < \mu_{k-1}\},$$

where \triangle is the symmetric difference and $\alpha X := \{\alpha x : x \in X\}$ for $X \subseteq \mathbb{R}$ and $\alpha \in \mathbb{R}$. In [1] we defined the word

$$\langle \langle S \rangle \rangle_\lambda = w_0 w_1 ... w_{k-1} \in \Sigma^*,$$

where each letter $w_i \in \Sigma$, with $0 \leq i \leq k - 1$, is given by

$$w_i := \begin{cases} a & \text{if } \mu_i \in S, \\ b & \text{if } \mu_i \in \lambda S. \end{cases}$$

The original motivation to study $\langle \langle S \rangle \rangle_\lambda$ was that, for $\lambda = 2$ and S being the set of divisors of a given integer $n \geq 1$, this word determines the non-zero coefficients of $(1 - q) P_n(q)$, where $P_n(q)$ are the polynomials introduced by Kassel and Reutenauer in order to enumerate the ideals of a given codimension in the group algebra $\mathbb{F}_q [\mathbb{Z} \oplus \mathbb{Z}]$ (see [2], [3] and [?]). If we take $\lambda = \exp(1)$, the word $\langle \langle S \rangle \rangle_\lambda$ can used to compute the Hooley’s Δ-function. For details and generalizations of these results, see [1].

Consider the monoid \mathcal{B}, called the bicyclic semigroup, given by the presentation

$$\mathcal{B} := \langle a, b \mid a b = \varepsilon \rangle,$$
and the canonical projection $\pi : \Sigma^* \rightarrow B$. Recall that the Dyck language, denoted \mathcal{D}, is the kernel of π, i.e. $\mathcal{D} := \text{ker} \pi$. The elements of \mathcal{D} are called Dyck words. If we identify the letters a and b with the parentheses (“” and “”) respectively, then Dyck words are nothing but balanced parentheses and conversely.

Given a real number $\lambda > 1$, define the language $L_\lambda := \{ \langle \langle S \rangle \rangle_\lambda : S \text{ is a finite subset of } [0, +\infty[\} \subseteq \Sigma^*$.

The inclusion $L_\lambda \subseteq \mathcal{D}$ follows by Proposition 12 (i) in [1]. The aim of this paper is to prove following theorem.

Theorem 1. The equality $L_\lambda = \mathcal{D}$ holds for each real number $\lambda > 1$.

2 Irreducible Dyck words

The language of reducible Dyck words is the submonoid

$$\tilde{\mathcal{D}} := \{ \varepsilon \} \cup \{ u v : u, v \in \mathcal{D} \setminus \{ \varepsilon \} \}$$

of \mathcal{D}. The elements of the complement of $\tilde{\mathcal{D}}$ in \mathcal{D}, denoted $\mathcal{P} := \mathcal{D} \setminus \tilde{\mathcal{D}}$

are called irreducible Dyck words.

Lemma 2. Consider an integer $n > 1$. Let $w_0, w_1, \ldots, w_{2^n - 1} \in \Sigma$ be the sequence of letters of

$$w := w_0 w_1 \ldots w_{2^n - 1} \in \Sigma^*.$$

Let $0 \leq i \leq 2^n - 1$ be the largest integer satisfying $w_i = a$. Define the word

$$w' := w_0 w_1 \ldots w_{i-2} w_{i-1} \widehat{w_i} w_{i+1} w_{i+2} \ldots w_{2^n-3} w_{2^n-2} \widehat{w_{2^n-1}},$$

obtained from w deleting the letters w_i and w_{2^n-1}, where the notation $\widehat{w_i}$ means that we exclude the letter w_i from the word. If $w \in \mathcal{P}$ then $w' \in \mathcal{P}$.

Proof. Suppose that $w' \not\in \mathcal{P}$. We have that $w' \neq \varepsilon$, because $|w| \geq 4$ and $|w'| = |w| - 2$. So, $w' = u v$ for some $u, v \in \mathcal{D} \setminus \{ \varepsilon \}$. If u is not a prefix of w, then v only contains the letter b, because $w_j = b$ for all j satisfying $i < j \leq 2^n - 1$. The letters a and b appear the same number of times in v. So, u is a proper prefix of w, i.e. $w \not\in \mathcal{P}$. Therefore $w' \in \mathcal{P}$ provided that $w \in \mathcal{P}$. \qed

Lemma 3. For any real number $\lambda > 1$, we have that $\mathcal{P} \subseteq L_\lambda$.

Proof. Given \(w \in \mathcal{P} \). It easily follows from the definition of \(\mathcal{P} \) that \(|w| = 2n \) for some integer \(n \geq 1 \). We proceed by induction on \(n \geq 1 \) in order to prove that \(w = \langle S \rangle_\lambda \in L_\lambda \) for some finite set \(S \) of positive real numbers satisfying that \(S \) and \(\lambda S \) are disjoint.

For \(n = 1 \), the only possibility is that \(w = ab \). So, \(S = \{1\} \) satisfies \(w = \langle S \rangle_\lambda \in L_\lambda \). Furthermore, \(S \) and \(\lambda S \) are disjoint, because \(\lambda > 1 \).

Given \(n > 1 \), suppose that any \(w \in \mathcal{P} \) satisfies \(w \in L_\lambda \) provided that \(|w| = 2(n-1) \). Consider a word \(w \in \mathcal{P} \) having length \(|w| = 2n \).

Let \(w_0, w_1, \ldots, w_{2n-1} \in \Sigma \) be the sequence of letters of

\[
w = w_0 w_1 \ldots w_{2n-1}.
\]

Define the word

\[
w' := w_0 w_1 \ldots w_{i-2} w_{i-1} \hat{w}_i w_{i+1} w_{i+2} \ldots w_{2n-3} w_{2n-2} \hat{w}_{2n-1},
\]

as in Lemma 2 where \(i \) is the largest integer on the interval \(0 \leq i < 2n \), satisfying \(w_i = a \). Notice that \(|w'| = 2(n-1) \). Furthermore, \(w' \) is an irreducible Dyck word by Lemma 2.

Using the induction hypothesis, \(w' = \langle S' \rangle_\lambda \) for some finite set of real numbers \(S' \) such that \(S' \cap \lambda S' = \emptyset \). Let \(\mu'_0, \mu'_1, \mu'_2, \ldots, \mu'_{2(n-1)-1} \) be the elements of \(S' \cap \lambda S' \) written in increasing order, i.e.

\[
S' \triangle \lambda S' = \left\{ \mu'_0 < \mu'_1 < \mu'_2 < \ldots < \mu'_{2(n-1)-1} \right\}.
\]

The inequality \(0 \leq i \leq 2(n-1) - 1 \) follows from the hypothesis that \(w \) is an irreducible Dyck word, because \(ab \) cannot be a proper suffix of an irreducible Dyck word having length at least \(4 \). So, the geometric mean between \(\mu'_{i-1} \) and \(\mu'_i \), denoted \(m := (\mu'_{i-1} \mu'_i)^{1/2} \), is well-defined. It follows that the set \(S := S' \cup \{m\} \) satisfies \(S \cap \lambda S = \emptyset \). Furthermore, \(S \triangle \lambda S \) can be expressed as

\[
\left\{ \mu'_0 < \mu'_1 < \ldots < \mu'_{i-2} < \mu'_{i-1} < m < \mu'_i < \mu'_{i+1} < \ldots < \mu'_{2n-2} < \lambda m \right\}.
\]

Combining \(w' = \langle S' \rangle_\lambda \) with the facts \(m \in S \) and \(\lambda m \in \lambda S \), the equality \(w = \langle S \rangle_\lambda \in L_\lambda \) follows from the expression above.

Therefore, \(\mathcal{P} \subseteq L_\lambda \). \(\square \)

3 Proof of the main result

Lemma 4. Let \(S \) be a finite set of positive real numbers. Consider a real number \(\lambda > 1 \). For any real number \(\alpha > 0 \), we have that \(\langle S \rangle_\lambda = \langle \alpha S \rangle_\lambda \).

Proof. The identity

\[
(\alpha S) \triangle (\lambda \alpha S) = \alpha (S \triangle \lambda S)
\]

holds for all \(\alpha \in \mathbb{R} \). The function \(\left[0, +\infty\right) \rightarrow [0, +\infty] \), given by \(x \mapsto \alpha x \), is strictly increasing provided that \(\alpha > 0 \). Hence, \(\langle S \rangle_\lambda = \langle \alpha S \rangle_\lambda \) for all \(\alpha \in [0, +\infty] \). \(\square \)
Lemma 5. Let S_1 and S_2 be two nonempty finite sets of positive real numbers. Consider a real number $\lambda > 1$. If $\frac{\min S_2}{\max S_1} > \lambda$ then $\langle (S_1 \cup S_2) \rangle_\lambda = \langle (S_1) \rangle_\lambda \langle (S_2) \rangle_\lambda$.

Proof. On the one hand, the set-theoretical identity

$$(S_1 \cup S_2) \triangle [\lambda (S_1 \cup S_2)] = [S_1 \triangle (\lambda S_1)] \cup [S_2 \triangle (\lambda S_2)]$$

holds, provided that $S_1 \cap S_2 = \emptyset$. On the other hand, $S_1 \cap S_2 = \emptyset$ provided that $\frac{\min S_2}{\max S_1} > \lambda$. Hence, $\langle (S_1 \cup S_2) \rangle_\lambda = \langle (S_1) \rangle_\lambda \langle (S_2) \rangle_\lambda$ if $\frac{\min S_2}{\max S_1} > \lambda$. □

Lemma 6. Given a real number $\lambda > 1$, for all $u, v \in \Sigma^*$, if $u \in L_\lambda$ and $v \in L_\lambda$ then $u v \in L_\lambda$.

Proof. Suppose that $u = \langle (S_1) \rangle_\lambda$ and $v = \langle (S_2) \rangle_\lambda$ for two finite sets of positive real numbers S_1 and S_2. If either $S_1 = \emptyset$ or $S_2 = \emptyset$ then $u v \in L_\lambda$ trivially follows.

Suppose that $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$. By Lemma 4, $\langle (S_2) \rangle_\lambda = \langle (\alpha S_2) \rangle_\lambda$, for any real number $\alpha > 0$. Take an arbitrary $\alpha > 0$ large enough in order to guarantee that $\frac{\min \alpha S_2}{\max S_1} > \lambda$.

It follows by Lemma 5 that $u v = \langle (S_1 \cup \alpha S_2) \rangle_\lambda$. Therefore, $u v \in L_\lambda$. □

We now proceed to prove our main result.

Proof (of Theorem). As it was mentioned in the introduction, the inclusion $L_\lambda \subseteq D$ was already proved in [1].

Notice that L_λ contains the empty word, because $\langle \emptyset \rangle_\lambda = \varepsilon$. By Lemma 3, $\mathcal{P} \subseteq L_\lambda$. By Lemma 6, $\mathcal{P}^* \subseteq L_\lambda$. It is well-known that D is freely generated by \mathcal{P}, i.e. every word in D may be formed in a unique way by concatenating a sequence of words from \mathcal{P}. So, using the equality $D = \mathcal{P}^*$, we conclude that $D \subseteq L_\lambda$.

Therefore, $L_\lambda = D$. □

4 Some computations

Let $\lambda = e = \exp(1)$ be the Euler number. Applying the method used in the proof of Lemma 3, we can compute the sets for the corresponding irreducible Dyck words given in the following table.

S	$\langle (S) \rangle_e$
1	ab
$1, e^{1/2}$	aabb
$1, e^{1/4}$	aaabbb
$1, e^{1/2}, e^{3/4}$	aaabbb
$1, e^{1/4}, e^{3/4}, e^2$	aaabbb
Applying Lemma 5 to the equalities

\[u := aaababbb = \langle \langle 1, e^{1/2}, e^{3/4}, e^{5/4} \rangle \rangle e, \]
\[v := aaababbabb = \langle \langle 1, e^{1/2}, e^{3/4}, e^{5/4}, e^2 \rangle \rangle e, \]

we obtain the set corresponding to the following reducible Dyck word

\[u v = aaababbbbaababb = \langle \langle 1, e^{1/2}, e^{3/4}, e^{5/4}, e^3, e^{7/2}, e^{15/4}, e^{37/4}, e^5 \rangle \rangle e. \]

Acknowledgements

The author would like to thank Srečko Brlek and Christophe Reutenauer for useful comments.

References

1. J. M. R. Caballero, “Symmetric Dyck Paths and Hooley’s Δ-function”, Combinatorics on Words. Springer International Publishing AG, 2017.
2. C. Kassel and C. Reutenauer, “Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables”, https://arxiv.org/abs/1505.07229, 2015.
3. C. Kassel and C. Reutenauer, “Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus”, https://arxiv.org/abs/1610.07793, 2016.