Genotypes of Helicobacter pylori in patients with peptic ulcer bleeding

Chin-Lin Perng, Hwai-Jeng Lin, Wen-Ching Lo, Guan-Ying Tseng, I-Chen Sun, Yueh-Hsing Ou

Chin-Lin Perng, I-Lan Hospital, Division of Gastroenterology, Department of Health, Taiwan, China
Hwai-Jeng Lin, I-Chen Sun, Division of Gastroenterology, Department of Medicine, VGH-TAIPEI, Taiwan, China
Wen-Ching Lo, Zhongxiao Municipal Hospital, Taipei, Taiwan, China
Guan-Ying Tseng, Tong-Yen General Hospital, Hsin-Chu, Taiwan, China
Yueh-Hsing Ou, Institute of Biotechnology in Medicine, School of Medical Technology and Engineering, and School of Medicine, National Yang-Ming University, Taiwan, China

Correspondence to: Professor Hwai-Jeng Lin, Division of Gastroenterology, Department of Medicine, VGH-TAIPEI, Shih-Pai Rd, Sec 2, Taipei, Taiwan, 11217, China. hjlin@vghtpe.gov.tw
Telephone: +886-2-28712121 Ext 2015 Fax: +886-2-28739318
Received: 2003-10-30 Accepted: 2003-12-15

Abstract

AIM: Helicobacter pylori causes chronic gastritis, peptic ulcer, gastric cancer and MALT-lymphoma. Different genotypes of Helicobacter pylori are confirmed from diverse geographic areas. Its association with bleeding peptic ulcer remains controversial. The aim of this study was to investigate the Helicobacter pylori vacA alleles, cagA and iceA in patients with bleeding peptic ulcer.

METHODS: We enrolled patients with bleeding, non-bleeding peptic ulcers and chronic gastritis. Biopsy specimens were obtained from the antrum of the stomach for rapid urease test, bacterial culture and PCR assay. DNA extraction and polymerase chain reaction were used to detect the presence or absence of cagA and to assess the polymorphism of vacA and iceA.

RESULTS: A total of 168 patients (60.4%) (25 patients with chronic gastritis, 26 patients with bleeding gastric ulcer, 51 patients with non-bleeding gastric ulcer, 26 patients with bleeding duodenal ulcer, and 40 patients with non-bleeding duodenal ulcer) were found to have positive PCR results between January 2001 and December 2002. Concerning genotypes, we found cagA (139/278, 50%), vacA s1a (127/278, 45.7%), and iceA (125/278, 45%) predominated in all studied patients. In patients with bleeding peptic ulcers, vacA s1a and m1T were fewer than those in patients with non-bleeding peptic ulcers (37/106 vs 69/135, P=0.017, and 4/106 vs 21/135, P =0.002).

CONCLUSION: In patients with peptic ulcers, H pylori vacA s1a and m1T prevent bleeding complication.

Perng CL, Lin HJ, Lo WC, Tseng GY, Sun IC, Ou YH. Genotypes of Helicobacter pylori in patients with peptic ulcer bleeding. World J Gastroenterol 2004; 10(4): 602-605
http://www.wjgnet.com/1007-9327/10/602.asp

INTRODUCTION

Helicobacter pylori (H pylori) infection has been closely linked to chronic gastritis, peptic ulcer, gastric cancer and MALT-lymphoma[6]. It is one of the most common bacterial infections of humans[8]. It remains to be answered why only a minority of H pylori carriers develop peptic ulcer disease. Host factors, H pylori strain variability, environmental factors, and NSAID play a role in the pathogenesis of peptic ulcer disease[5,6]. The clinical outcome of H pylori infection is supposed to be linked to certain strains, e.g. vacuolating cytotoxin (vacA) and the cytotoxin-associated gene (cagA)[9,10].

In patients with peptic ulcer disease, only a minority of them present with peptic ulcer hemorrhage. The incidence of peptic ulcer hemorrhage in patients with pre-existing peptic ulcer disease is less than 1% per year[15]. Whether H pylori increases the risk of ulcer bleeding is controversial. Wu et al confirmed that H pylori increased the risk of peptic ulcer bleeding[9]. Cullen et al had a similar finding (OR 2.8)10]. In addition, eradication of H pylori infection could decrease the chance of peptic ulcer bleeding[11,12]. The above evidences strongly support the link of H pylori to peptic ulcer bleeding. However, the prevalence of H pylori has been found to be lower in bleeding ulcer patients than in non-bleeders[13]. The most likely explanation is the use of NSAIDs in the absence of H pylori infection in these patients. Another reason may be false negative results in these patients[14,15]. If we excluded the usage of NSAIDs in patients with duodenal ulcer bleeding, the prevalence of H pylori infection was 97%[16].

Controversy exists concerning relationship of genotypes of H pylori with peptic ulcer bleeding. So far, there are only few reports concerning this topic[17,18]. Although H pylori infection is very common, geographic distribution of different subtypes exists[19,20]. Therefore, it is interesting to investigate the genotypes in patients with peptic ulcer bleeding. The aim of this study was to determine the genotypes of H pylori in bleeding ulcer patients in Taiwan.

MATERIALS AND METHODS

Between January 2001 and December 2002, patients with non-bleeding peptic ulcers (gastric ulcer or duodenal ulcer, at least 5 mm in diameter), bleeding peptic ulcers (spurting or oozing hemorrhage, non-bleeding visible vessel, blood clots or pigmented spots at the ulcer base) or chronic gastritis were invited to enter the study. There was no past history of upper gastrointestinal bleeding (hematemesis or melena) in patients with non-bleeding peptic ulcer in this study. Patients with pregnancy, bleeding tendency (platelet count less than 50 000/mm3, prothrombin time less than 30%, or taking anti-coagulants), gastric malignancy, age under 10, or over 90 years, anti- H pylori therapy 4 weeks prior to enrollment, and inability to cooperate were excluded from the study. The study was approved by the Clinical Research Committee of the Veterans General Hospital, Taipei.

Endoscopic examination and biopsy were performed after informed consent was obtained. We took three specimens from the antrum, one for rapid urease test, another for bacterial culture and the third for DNA extraction and PCR assay. Lysates of biopsied gastric mucosa were used for PCR assay. DNA of gastric biopsy specimens was extracted according to the method described by Boom[21]. Briefly, biopsy specimens
were homogenized in guanidinium isothiocyanate, using a sterile micropestle. DNA was extracted, washed and eluted in 100 µl of 10 mM Tris-HCl (pH 8.3). Two µl of the eluted DNA was used for each PCR reaction.

The oligonucleotide primers for PCR amplification of specific segments are shown in Table 1\[5.22-25\]. For \textit{vacA} evaluation, the PCR program comprised 35 cycles of denaturation at 94 °C for 1 min, annealing at 56 °C for 2 min, extension at 72 °C for 1 min, and one final extension at 72 °C for 10 min. For \textit{cagA}, amplification was performed with 35 cycles of denaturation at 94 °C for 1 min, annealing at 56 °C for 2 min, extension at 72 °C for 1 min, and one final extension at 72 °C for 5 min. For \textit{iceA} amplification, amplifications were performed with 40 cycles of denaturation at 95 °C for 30 s, annealing at 50 °C for 45 s, extension at 72 °C for 45 s and one final extension at 72 °C for 10 min.

The association between \textit{H pylori} genotypes and clinical diseases was determined using χ^2 test and Yates’ correction or Fisher’s exact test when appropriate. A P value less than 0.05 was considered statistically significant.

RESULTS

A total of 278 patients with bleeding or non-bleeding peptic ulcers and chronic gastritis (200 males and 78 females, mean age: 62.1 years, 95% CI: 60.1-64.1 years) fulfilling the admission criteria, were included in this study. A total of 168 patients (60.4%) were found to have a positive urease test. A total of 168 patients (60.4%) (25 patients with chronic gastritis, 26 patients with bleeding gastric ulcer, 51 patients with non-bleeding gastric ulcer, 26 patients with bleeding duodenal ulcer, and 40 patients with non-bleeding duodenal ulcer) were found

Table 1

Oligonucleotide primers used for \textit{cagA}, \textit{vacA} and \textit{iceA} genotyping

Region detected	Primer designation	Primer sequence	Size of PCR product (bp)	References
s1 and s2	VA1-F	5’ATGGAAATAAACAAACACACC3’	259	21
	VA1-R	5’CTGCTTTAATGCCCAAAATTTATC3’	286	
s1a	SS1-F	5’GTCAAGCATCACCCCGAC3’	190	9
s1b	SS3-F	5’AGGCCCATACCGGAAGG3’	187	9
s1c	S1C-F	5’CTYGCCTTAGTGGGYTA-3’	213	17
m1	VA3-F	5’GGTGAAATGCGGTACAGG3’	290	9
	VA3-R	5’CCATTGGTACCTGATAAAGC3’	290	9
m1T	m1T-F	5’GGTGAAATGCGGTACAGG3’	290	9
	m1T-R	5’CTTTTATGCCTAAAGGAC3’	352	9
m2	VA4-F	5’GGAGCCCCAGGAAAATATG3’	247	16
	VA4-R	5’CATACTAGCCTGCTGCAAC3’	229	16
iceA1	iceA1F	5’GTGTTTTTACACCGAATTG3’	297	5
	iceA1R	5’CTTATGCCTTACAGGAC3’	297	5
iceA2	iceA2F	5’GTGTTTTTACACCGAATTG3’	297	5
	iceA2R	5’CTTTTATGCCTAAAGGAC3’	297	5

Table 2

Genotypes of \textit{Helicobacter pylori} in patients with chronic gastritis, non-bleeding duodenal ulcers (DU), bleeding DU, non-bleeding gastric ulcers (GU) and bleeding GU

Diagnosis	No. of patients	No. of positive PCR	s1a	s1b	s1c	s2	m1	m1T	m2	\textit{cagA}	iceA1	iceA2
Chronic gastritis	37	25	21(57)	0(0)	14(38)	0(0)	0(0)	8(22)	12(32)	22(59)	22(59)	2(5)
Non-bleeding DU	53	40	30(57)	4(8)	22(42)	0(0)	0(0)	11(21)	15(28)	29(55)	30(57)	3(6)
Bleeding DU	48	26	17(35)	4(8)	15(31)	2(4)	2(4)	3(6)	12(25)	25(52)	19(40)	7(15)
Non-bleeding GU	82	51	39(48)	0(0)	29(35)	0(0)	0(0)	10(12)	30(37)	41(50)	34(41)	13(16)
Bleeding GU	58	26	20(34)	1(2)	13(22)	0(0)	0(0)	1(2)	15(26)	22(38)	20(34)	4(7)

P >0.05 versus variables between non-bleeding DU and bleeding DU, between non-bleeding GU and bleeding GU.

Table 3

Genotypes of \textit{Helicobacter pylori} in patients with non-bleeding peptic ulcers and bleeding peptic ulcers

Diagnosis	No. of patients	No. of positive PCR	s1a	s1b	s1c	s2	m1	m1T	m2	\textit{cagA}	iceA1	iceA2
Non-bleeding PU	135	91	69(51)	4(3)	51(38)	0(0)	0(0)	23(16)	45(33)	70(52)	64(47)	16(12)
Bleeding PU	106	52	37(35)	5(5)	28(26)	2(2)	2(2)	4(4)	27(25)	47(44)	39(37)	11(10)

*P =0.017 between non-bleeding peptic ulcers and bleeding peptic ulcers. *P =0.002 between non-bleeding peptic ulcers and bleeding peptic ulcers.
to have positive PCR results. The ages of patients with bleeding gastric ulcer (mean: 67.8 yr, 95% CI: 62.8-72.8), non-bleeding gastric ulcer (mean: 63.5 yrs, 95% CI: 59.8-67.2), bleeding duodenal ulcer (mean: 65.5 yrs, 95% CI: 59.2-71.8) were greater than those of patients with non-bleeding duodenal ulcer (mean: 54.6 yrs, 95% CI: 49.5-59.7, P<0.01) and chronic gastritis (mean: 51.2 yrs, 95% CI: 42.8-59.6, P<0.01).

In patients with bleeding gastric ulcer, there were blood clots inside the stomach in 8 patients, coffee grounds in 8 patients, and clear fluid in 10 patients. In patients with bleeding duodenal ulcers, there were blood clots inside the stomach in 8 patients, coffee grounds in two patients and clear fluid in 16 patients.

In patients with bleeding peptic ulcer, 52 (49.1%) were found to have positive PCR for \(H. pylori \). It was lower than that in those with non-bleeding peptic ulcers (91/135, 67.4%, \(P=0.006 \)) and chronic gastritis (25/37, 67.6%, \(P=0.008 \)).

The genotypes in patients with chronic gastritis, duodenal ulcers and gastric ulcers are described in Table 2. There was no statistical difference among variables in different groups.

Concerning genotypes, we found \(cagA \) (139/278, 50%) , \(vacA \) s1a (127/278, 45.7%), and \(iceA1 \) (125/278, 45%) predominated in all studied patients. In patients with bleeding peptic ulcers, \(vacA \) s1a and m1T were fewer than those in patients with non-bleeding peptic ulcers (37/106 vs 69/135, \(P=0.017 \), and 4/106 vs 21/135, \(P=0.002 \), Table 3).

The previous Taiwan reports gave no data concerning \(vacA \) s1c. \(VacA \) s1c was frequently found (93/278, 33.5%) in this study. In patients with bleeding peptic ulcers, \(vacA \) s1c was less than that in patients with non-bleeding peptic ulcers (26% vs 38%), but it did not reach statistical significance. The incidence of \(vacA \) s1c in this study was similar to the reports of Hong Kong[25], Korea[31], and Japan[14], but different from those in Western world[28,29]. In contrast, \(vacA \) s1b and s2 were rare. Our findings were compatible with that in mainland China[31].

Concerning the m-region of \(vacA \), m1 strains predominated in most Western reports[19,20,27]. However, there were only 2% m1 subtypes in patients with bleeding peptic ulcers and none in patients with non-bleeding peptic ulcers in this study. We used a modified primer (m1T) [25] and some peptic ulcer patients (bleeding: 3.8%, non-bleeding: 15.6%) with \(H. pylori \) infection contained this genotype. m2 strains predominated (33% in patients with non-bleeding peptic ulcers, 25% in bleeding peptic ulcers) in this study. Our finding was consistent with reports from Taiwan[25,30], Hong Kong[32], and mainland China[31]. In contrast, Japan and Korea had a much lower incidence of m2 strains[24,33]. This indicates a great variation in the \(vacA \) region in Taiwan, particularly in the mid-region locus. \(H. pylori \) may have a different geographic evolution in Taiwan compared with other East Asian countries.

\(IceA1 \) has been suggested to be related to peptic ulcer disease[25,35]. But, this finding was doubted by other authors and us[24,32,33]. In this study, we found \(iceA1 \) was the predominant subtype and showed no difference between patients with bleeding and non-bleeding peptic ulcers. \(IceA1 \) is the predominant subtype of \(ice \) in the East Asia, while \(iceA2 \) is the predominant subtype in the USA and Columbia[24].

Certain genotypes (e.g. \(cagA, vacA \) s1a) have been closely related to severe clinical outcomes and response to anti- \(H. pylori \) therapy[26-38]. However, these findings are not supported by other studies[24,25,32,34]. The association between \(H. pylori \) infection and peptic ulcer bleeding is less clear, but a strong argument for the etiological role is the fact that eradication of \(H. pylori \) decreased recurrence of bleeding[39]. Stack et al recently found that \(cagA \) positive \(H. pylori \) was associated with an increased risk of ulcer bleeding[41]. However, Illies et al found that presence of \(cagA \) antibody was similar both in patients with bleeding and in non-bleeding controls[42]. In this study, there was no difference of \(cagA \) between patients with non-bleeding and those with bleeding peptic ulcer. However, there were fewer \(vacA \) s1a and m1T in patients with bleeding peptic ulcers than in patients with non-bleeding peptic ulcers.

In conclusion, in patients with bleeding peptic ulcers, \(H. pylori \) vacA s1a and m1T are less than those in patients with non-bleeding peptic ulcers.

ACKNOWLEDGEMENT

This study was supported by VGH 92-230, NSC-91-2314-B-075-127. We are in debt to Miss Betty, Tzu-en Lin for their assistance in this study.

REFERENCES

1. Dunn BE, Cohen H, Blaser MJ. Helicobacter pylori. Clin Microbiol Rev 1997; 10: 720-741
2. Blaser MJ. Ecology of Helicobacter pylori in the human stomach. J Clin Invest 1997; 100: 759-762
3. Olbe L, Fandriks L, Hamlet A, Svennerholm AM. Conceivable mechanisms by which Helicobacter pylori provokes duodenal ulcer disease. Baillieres Best Pract Res Clin Gastroenterol 2000; 14: 1-12
4. Dore MP, Graham DY. Pathogenesis of duodenal ulcer disease: the rest of the story. Baillieres Best Pract Res Clin Gastroenterol 2000; 14: 97-107
5. Henriksson AE, Edman AC, Nilsson I, Bergqvist D, Wadstrom T. Helicobacter pylori and the relation to other risk factors in patients with acute bleeding peptic ulcer. Scand J Gastroenterol 1998; 33: 1030-1033
6. Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G, Massone A, Papini E, Xiang E, Figurra N. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci 1993; 90: 5791-5795
7. Cover TL. The vacuolating cytotoxin of Helicobacter pylori. Micromol Biol Rev 1996; 20: 241-246
8. Oehmann C, Thon K, Henrik KJ, Imhof M. Incidence and pattern of peptic ulcer bleeding in a defined geographical area. DUSUK Study Group. Scan J Gastroenterol 1992; 27: 571-581
9. Wu CY, Poos SK, Chen GH, Chang CS, Yeh HZ. Interaction between Helicobacter pylori and non-steroidal anti-inflammatory drugs in peptic ulcer bleeding. Scand J Gastroenterol 1999; 34: 233-237
10. Cullen DJE, Hawkey GM, Greenwood DC, Humphreys H, Shepherd U, Logan RF, Hawkey CJ. Peptic ulcer bleeding in the elderly: relative roles of Helicobacter pylori and non-steroidal anti-inflammatory drugs. Gut 1997; 41: 459-462
11. Roktas T, Karameris A, Mavrogeorgis A, Rallis E, Gianni K, Nos N. Eradication of Helicobacter pylori reduces the possibility of rebleeding in peptic ulcer disease. Gastrointest Endosc 1995; 41: 1-4
12. Jaspersen D, Koenner T, Scarr W, Brennenshtue M, Raschka C,
Hammar CH. Helicobacter pylori eradication reduces the rate of reblooding in ulcer hemorrhage. Gastrointest Endosc 1995; 41: 5-7

13 Vaira D, Menegati M, Giglioli M. What is the role of Helicobacter pylori in complicated ulcer disease? Gastroenterology 1997; 113: 578-84

14 Tu TC, Lee CL, Wu CH, Chen TK, Chan CC, Huang SH, Lee MS SC. Comparison of invasive and noninvasive tests for detecting Helicobacter pylori infection in bleeding peptic ulcers. Gastrointest Endosc 1999; 49(3 Pt 1): 302-306

15 Colin R, Czernichow P, Baty V, Touze E, Bredin F, Berkelmans I, Bartheemy P, Hemet J. Low sensitivity of invasive tests for the detection of Helicobacter pylori infection in patients with bleeding ulcer. Gastroenterol Clin Biol 2000; 24: 31-35

16 Gisbert JP, Gonzalez L, de Pedro A, Valbuena M, Prieto B, Lorca I, Briz R, Khorrani S, Garcia-Gravalo S, Pajares J. Helicobacter pylori and bleeding duodenal ulcer: prevalence of the infection and role of non-steroidal anti-inflammatory drugs. Scand J Gastroenterol 2001; 36: 717-724

17 Stack WA, Atherton JC, Hawkey GM, Logan RF, Hawkey CJ. Interactions between Helicobacter pylori and other risk factors for peptic ulcer bleeding. Aliment Pharmacol Ther 2002; 16: 497-506

18 Illies G, Reincke I, Nilius M, Dominguez-Munoz JE. Helicobacter pylori (HP) antibodies against cagA protein in bleeding and non-bleeding gastric and duodenal ulcer. Gastroenterology 1996; 110: A 141

19 van Doorn LJ, Figueiredo C, Megraud F, Pena S, Midolo P, Queiroz DM, Carneiro F, Vanderborght JF, Berkelmans I, Bartheemy P, Hemet J. Low sensitivity of invasive tests for the detection of Helicobacter pylori infection in patients with bleeding ulcer. Gastroenterol Clin Biol 2000; 24: 31-35

20 van Doorn LJ, Figueiredo C, Sanna R, Pena S, Midolo P, Ng Ek, Atherton J, Blaser MJ, Quint WG. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 1999; 116: 823-830

21 van Doorn LJ, Figueiredo C, Sanna R, Pena S, Midolo P, Ng Ek, Atherton J, Blaser MJ, Quint WG. Expanding allelic diversity of Helicobacter pylori vacA. J Clin Microbiol 1998; 36: 2597-2603

22 Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. J Biol Chem 1995; 270: 17771-17777

23 van Doorn LJ, Figueiredo C, Sanna R, Plaisier A, Schneeberger P, de Boer W, Quint W. Clinical relevance of the cagA, vacA and iceA status of Helicobacter pylori. Gastroenterology 1998; 115: 59-66

24 Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol 1999; 37: 2274-2279

25 Wang HJ, Kuo CH, Yeh AAM, Chang PCL, Wang WC. Vacuolating toxin production in clinical isolates of Helicobacter pylori with different vacA genotypes. J Inf Dis 1998; 178: 207-212

26 Parsonnet J. The incidence of Helicobacter pylori infection. Aliment Pharmacol Ther 1995; 9(Suppl 2): 45-52

27 Pounder RE. The prevalence of Helicobacter pylori in different countries. Aliment Pharmacol Ther 1995; 9(Suppl 2): 33-40

28 Campbell S, Fraser A, Holliss B, Schmid J, O’Toole PW. Evidence for ethnic tropism of Helicobacter pylori. Infect Immun 1997; 65: 3708-3712

29 Malaty HM, Graham DY. Importance of childhood socioeconomic status on the current prevalence of Helicobacter pylori infection. Gut 1994; 35: 742-745

30 Lin CW, Wu SC, Lee SC, Cheng KS. Genetic analysis and clinical evaluation of vacuolating cytotoxin gene A and cytotoxin-associated gene A in Taiwanese Helicobacter pylori isolated from peptic ulcer patients. Scand J Infect Dis 2000; 32: 51-57

31 Pan ZJ, Berg DE, van der Huist RWM, Su WW, Raudonikiene A, Xiao SD, Dankert J, Tytgat GN, van der Ende A. Prevalence of vacuolating cytotoxin production and distribution of distinct vacA alleles in Helicobacter pylori from China. J Infect Dis 1998; 178: 220-226

32 Wong BC, Yin Y, Berg DE, Xia HH, Zhang JZ, Wong WH, Wong WM, Hunaq XR, Tang VS, Lam SK. Distribution of distinct vacA, cagA and iceA alleles in Helicobacter pylori in Hong Kong. Helicobacter pylori 2001; 6: 317-324

33 Kim SM, Woo CW, Lee YM, Son BR, Kim JW, Chae HB, Youn SJ, Park SM. Genotyping cagA, vacA subtype, iceA1 and BabA of Helicobacter pylori isolates from Korean patients, and their association with gastroduodenal diseases. J Korean Med Sci 2001; 16: 579-584

34 Fukuta K, Azuma T, Ito Y, Suto H, Keldy J, Wakabayashi H, Watanabe A, Kuriyama M. Clinical relevance of cagE gene from Helicobacter pylori strains in Japan. Dig Dis Sci 2002; 47: 667-674

35 Figueiredo C, De Gusmão VR, Queiroz DM, Mendes EN, de Magalhães Queiroz DM, Rocha AMC, Ramadan Ashour AA, Teles Carvalho AS. Analysis of cagA genotypes in Helicobacter pylori strains isolated from children with non-ulcer dyspepsia: relevance to histological damage. Gut 1998; 42: 772-778

36 Figeiredo C, Van Doorn LJ, Nogueira C, Soares JM, Pinho C, Figueiredo P. Helicobacter pylori genotypes are associated with clinical outcome in Portuguese patients and show a high prevalence of infections with multiple strains. Scand J Gastroenterol 2001; 36: 128-135

37 De Gusmão VR, Mendes EN, de Magalhães Queiroz DM, Rocha GA, Rocha AMC, Ramadan Ashour AA, Teles Carvalho AS. vacA genotypes in Helicobacter pylori strains isolated from children with and without duodenal ulcer in Brazil. J Clin Microbiol 2000; 38: 2853-2857

38 Rudi J, Kolb C, Mawald M, Kuck D, Sieg A, Galle PR, Stremmel W. Diversity of Helicobacter pylori vacA, and cagA genes and relationship to vacA and cagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol 1998; 36: 949-948

39 van Leerdom ME, Tytgat GN. Review article. Helicobacter pylori infection in peptic ulcer haemorrhage. Aliment Pharmacol Ther 2002; 16: (S1) 66-78

Edited by Wang XL Proofread by Zhu LH