Analiza wpływu temperatury na stan zdrowia ludności Polski

Daniel Rabczenko
NIZP-PZH
Zakład Monitorowania i Analiz Stanu Zdrowia Ludności

Projekt:
Badanie i ocena wpływu klimatu na stan zdrowia oraz wypracowanie działań związanych z adaptacją do jego zmian
(Umowa 6/4/5/NPZ/2018/1094/542)

Zadanie realizowane ze środków Narodowego Programu Zdrowia na lata 2016-2020, finansowane przez Ministra Zdrowia
Plan prezentacji

• Wprowadzenie
 • Badania wpływu temperatury na umieralność

• Badania własne
 • Dane
 • Sformułowanie problemu
 • Metody statystyczne
 • Wyniki
 • Wnioski
Badania wpływu temperatury na dzienną liczbę zgonów

Przykłady literaturowe
Temperature-related mortality in France, a comparison between regions with different climates from the perspective of global warming; Mohamed Laaidi & Karine Laaidi & Jean-Pierre Besancenot
Int J Biometeorol (2006) 51:145–153
An ecological time-series study of heat-related mortality in three European cities
Ai Ishigami, Shakoor Hajat, R Sari Kovats, Luigi Bisanti, Magda Rognoni, Antonio Russo and Anna Paldy
Environmental Health 2008, 7:5
The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland
M Carder, R McNamee, I Beverland, R Elton, G R Cohen, J Boyd, R M Agius
Occup Environ Med 2005;62:702–710
Ambient temperature and mortality: An international study in four capital cities of East Asia
Joo-Youn Chung, Yasushi Honda, Yun-Chul Hong, Xiao-Chuan Pan, Yue-Leon Guo, Ho Kim
Science of the Total Environment 408 (2009) 390–396
Miasta polskie:
75-89,
90-95
99-06

Kuchcik M., 2017, Warunki termiczne w Polsce na przełomie XX i XXI wieku i ich wpływ na umieralność, Prace Geograficzne, 263, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warszawa, 279 s.
Badania wpływu temperatury na dzienną liczbę zgonów

Badania własne
Miasta objęte analizą
Wpływ temperatury na umieralność z powodu ogółu przyczyn z wyłączeniem zewnętrznych
Zagadnienia

• Potencjalnie krzywoliniowa zależność pomiędzy temperaturą a umieralnością

• Czy istnieje efekt dodany bardzo wysokiej temperatury, utrzymującej się przez dłuższy czas
 • Możliwa kumulacja efektu
Ilustracja hipotez dotyczących opóźnionego efektu wybranego czynnika

Czas po narażeniu

Efekt czynnika (β)
Materiał i metody: model statystyczny (1)

• W analizie wykorzystano uogólnione modele addytywne (GAM)

• Model uwzględniał:
 • Ogólny trend umieralności
 • Dzień tygodnia
 • Rok kalendarzowy
 • Ciśnienie atmosferyczne
 • Wilgotność powietrza
Materiał i metody: model statystyczny (2)

- Temperatura reprezentowana była w modelu poprzez:
 - Dwie funkcje liniowe dla zakresów temperatur poniżej i powyżej pewnego punktu O (O= optimum) (metoda hockey stick)
 - Zmienną wskaźnikową oznaczającą wystąpienia fali upałów
 - Zastosowano odpowiednią metodę umożliwiającą uwzględnienie przeniesienia efektu fali upałów na kolejne dni (distributed lag model)
Uogólniony model addytywny

\[
\ln(E(Y_t)) = S_0 + \sum_{i=1}^{p} S_i(X_{it}, \lambda_i) + \sum_{i=p+1}^{k} \beta_i X_{it}
\]

\[Y_t \sim \text{Poiss}\]

\(E(Y_t)\) wartość oczekiwana dziennej liczby zgonów w dniu \(t\)
\(X_{it}\) wartość \(i\)-tej zmiennej opisującej w dniu \(t\)
\(S_i\) funkcja opisująca zależność pomiędzy \(i\)-tą zmienną zależną a dzienną liczbą zgonów
\(\lambda_i\) parametr wygładzający w dużym stopniu wpływający na ostateczny kształt funkcji \(S_i\)
\(\beta_i\) współczynnik w równaniu regresji obrazujący kierunek i siłę wpływu zmiennej \(X_i\) na zmiany umieralności
Ryzyko względne

\[
\ln(E(Y_{t0})) = \text{model bazowy} + \beta X_{t0}
\]
\[
\ln(E(Y_{t1})) = \text{model bazowy} + \beta X_{t1}
\]

\[
\frac{Y_{t1}}{Y_{t0}} = e^{\beta(X_{t1} - X_{t0})}
\]

Wartość \(e^{\beta \cdot (X_{1} - X_{0})}\) – **ryzyko względne** zgonu związane ze wzrostem czynnika o \(X_{1}-X_{0}\) (dzień z falą vs dzień bez fali lub wzrost temperatury o \(1^\circ\)C)
Wartości temperatury optymalnej w rejonach objętych badaniem, w zależności od populacji.
Wpływ wysokiej temperatury na umieralność – populacja ogólna

Ryzyko zgona związane ze wzrostem temperatury o 1°C ponad optymalną

Średnio: 1.015 (1.014 - 1.017)

Ryzyko zgona związane wystąpieniem fali upałów

Średnio: 1.05 (1.02 - 1.08)
Wpływ wysokiej temperatury na umieralność – populacja osób w wieku 0-64 lat

Ryzyko zgonu związane ze wzrostem temperatury o 1oC ponad optymalną

Średnio: 1.02 (0.98 - 1.07)

Ryzyko zgonu związane wystąpieniem fali upałów

Średnio: 1.011 (1.008 - 1.013)
Wpływ wysokiej temperatury na umieralność – populacja osób w wieku 65 lat i więcej

Ryzyko zgonu związane ze wzrostem temperatury o 1°C ponad optymalną

Średnio: 1.018 (1.016 - 1.021)

Ryzyko zgonu związane wystąpieniem fali upałów

Średnio: 1.07 (1.03 - 1.11)
Wpływ wysokiej temperatury na umieralność – populacja kobiet

Ryzyko zgonu związane ze wzrostem temperatury o 1°C ponad optymalną

Średnio: 1.04 (0.996 - 1.08)

Ryzyko zgonu związane wystąpieniem fali upałów

Średnio: 1.016 (1.014 - 1.019)
Wpływ wysokiej temperatury na umieralność – populacja mężczyzn

Ryzyko zgonu związane ze wzrostem temperatury o 1°C ponad optymalną

Średnio: 1.05 (1.01 - 1.10)

Ryzyko zgonu związane wystąpieniem fali upałów

Średnio: 1.015 (1.01 - 1.02)
Podsumowanie

	Wzrost temperatury ponad optymalną	Fala upałów
Ogółem	1.015 (1.014 - 1.017)	1.050 (1.020 - 1.080)
0-64 lat	1.011 (1.008 - 1.013)	1.020 (0.980 - 1.070)
65 lat i więcej	1.018 (1.016 - 1.021)	1.070 (1.030 - 1.110)
Kobiety	1.016 (1.014 - 1.019)	1.040 (0.996 - 1.080)
Mężczyźni	1.015 (1.013 - 1.018)	1.050 (1.001 - 1.100)
Wnioski końcowe

• Wyniki analiz
 • W większości miast objętych analizą zależność pomiędzy temperaturą a umieralnością była krzywoliniowa
 • W miastach objętych badaniem wyznaczona temperatura optymalna miała różną wartość
 • Zaobserwowano istotny statystycznie wzrost liczby zgonów związany ze wzrostem temperatury ponad temperaturę optymalną
 • Zaobserwowano wzrost umieralności w czasie fal upałów istotny statystycznie w populacji ogółem, osób starszych oraz mężczyzn