Towards End-to-End Private Automatic Speaker Recognition

Francisco Teixeira, Alberto Abad, Bhiksha Raj and Isabel Trancoso

francisco.s.teixeira@tecnico.ulisboa.pt
Motivation: Problem setting

Client → Audio pre-processing → Feature extraction → Speaker representation extraction → Speaker verification → ASV vendor
Motivation: State-of-the-art
Motivation: Proposed solution

Secure Multiparty Computation

Client

Audio pre-processing

Feature extraction

Speaker representation extraction

Speaker verification

ASV vendor
Motivation: Proposed solution

- Audio pre-processing
- Feature extraction
- Speaker representation extraction
- Speaker verification
- Secure Multiparty Computation
- ASV vendor

Client

ASV vendor

<Model>
Outline

• Motivation
• Secure Multiparty Computation
• Privacy-preserving speaker embedding extraction: security settings
• Implementation and experimental setup
• Results
• Conclusions and future work
Family of cryptographic protocols that allow two or more parties to interactively (and privately) compute functions, e.g.:

- Arithmetic Secret Sharing
- Boolean Secret Sharing
- Garbled Circuits

Arithmetic Secret Sharing:

\[
\begin{align*}
\text{P1} & \quad \text{Input: } x \\
\langle x \rangle_1 &= r_x \\
\langle x \rangle_2 &= x - r_x \\
\text{P2} & \quad \text{Input: } y \\
\langle y \rangle_1 &= r_y \\
\langle y \rangle_2 &= y - r_y
\end{align*}
\]
Secure Multiparty Computation: Arithmetic Secret Sharing

- n-party setting: the owner of the data generates $n-1$ random values, with each secret share being defined as:

\[
\langle x \rangle_n = x - \sum_{i=1}^{n-1} r_i
\]

\[
x = \sum_{i=1}^{n} \langle x \rangle_i
\]

- It is then possible to perform operations over multiple shared values:
 - Additions can be performed locally;
 - Multiplications require multiplication triples (also called Beaver triples).
Secure Multiparty Computation: *Multiplication Triples*

We want to compute $\langle z \rangle = \langle x \rangle \times \langle y \rangle$

- Assume we have *pre-computed* secret-shared values $\langle a \rangle$, $\langle b \rangle$ and $\langle c \rangle$, such that:

$$\langle c \rangle = \langle a \rangle \times \langle b \rangle$$

- To perform a *multiplication* each party sets local shares $\langle e \rangle_i$, $\langle f \rangle_i$ as:

$$\langle e \rangle_i = \langle x \rangle - \langle a \rangle_i \quad \quad \langle f \rangle_i = \langle y \rangle - \langle b \rangle_i$$

- All parties then interact to reconstruct e and f, and set their share of $\langle z \rangle$ to

$$\langle z \rangle_i = i \cdot e \cdot f + f \cdot \langle a \rangle_i + e \cdot \langle b \rangle_i + \langle c \rangle_i$$
Secure Multiparty Computation: Boolean Secret Sharing

- The previous representation is easily adaptable to binary representations:

\[
\langle x \rangle_n = x \oplus \sum_{i=1}^{n-1} s_i \\
x = \langle x \rangle_1 \oplus \langle x \rangle_2 \oplus \ldots \oplus \langle x \rangle_n
\]

- Similarly to Arithmetic Secret Sharing:
 - XORs can be computed locally;
 - AND operations require multiplication triples.

- We can convert between Arithmetic and Boolean domains using pre-computed values shared in both domains (e.g. daBits, edaBits).
Secure Multiparty Computation: Replicated Secret Sharing

- A (more efficient) variant of the previous secret sharing protocol:
 - Instead of having a single share, each party holds a set of shares per value.

 e.g. consider three parties, and a secret-shared value x:

 \[x = \sum_{i=1}^{3} \langle x \rangle_i \]

 P1 will hold: \(\langle x \rangle_1, \langle x \rangle_2 \)

 P2 will hold: \(\langle x \rangle_2, \langle x \rangle_3 \)

 P3 will hold: \(\langle x \rangle_3, \langle x \rangle_1 \)
Secure Multiparty Computation: Replicated Secret Sharing

- A (more efficient) variant of the vanilla secret sharing protocol:
 - Additions are performed locally by each party.
 - Multiplications no longer require multiplication triples.

E.g. Simple multiplication protocol for three parties ($z = x \times y$):

- Each party multiplies the shares it holds for each value locally and obtains:

 $z_1 = x_1 y_1 + x_1 y_2 + x_2 y_1$
 $z_2 = x_2 y_2 + x_2 y_3 + x_3 y_2$
 $z_3 = x_3 y_3 + x_3 y_1 + x_1 y_3$

- Re-sharing protocol is required.
Secure Multiparty Computation: Security models

• **Honest-but-curious model:**
 – Parties are assumed to follow the protocol, but to try to get as much information as possible.

• **Malicious model:**
 – Parties are assumed to try to thwart the protocol to gain more information.

 – Requires specific protocols to ensure all parties are “behaving” correctly, e.g.:
 • Cut-and-choose methods;
 • Zero-Knowledge (ZK) proofs;
 • Message Authentication Codes (MACs).

• **Honest majority vs dishonest majority**
Privacy-preserving speaker embedding extraction
Privacy-preserving speaker embedding extraction: Security setting

2-party setting

Simplest/most natural setting
- Honest-but-curious security
- Malicious security
Privacy-preserving speaker embedding extraction: Security setting

3-party setting:
- Allows the instantiation of more efficient protocols
Privacy-preserving speaker embedding extraction: Security setting

4-party setting:
- 4-party Replicated Secret Sharing Protocol of Dalskov et al. [1].
- Provides honest-majority security against one malicious party.
Experimental setup

- Pre-trained SpeechBrain x-vector speaker embedding extraction model [2]:
 - 3.2% EER on Voxceleb 1 test set
- MP-SPDZ library [3]:
 - Implements linear and non-linear operations required for the x-vector extraction network.
- Protocols used:
 - Semi$_2^k$: 2-party semi-honest protocol [4]
 - 3-party RSS: semi-honest protocol (Araki et al. [5])
 - 4-party RSS: malicious protocol w/ honest majority (Dalskov et al. [1])
 - SPDZ$_2^k$: 2-party malicious protocol [4]

Table 1: x-vector extractor architecture

#	Layer	Input	Output	Kernel	Dilation
1	TDNN 1	24	512	5	1
2	TDNN 2	512	512	3	2
3	TDNN 3	512	512	3	3
4	TDNN 4	512	512	1	1
5	TDNN 5	512	1500	1	1
6	Statistics Pooling	1500	3000	-	-
7	Linear	3000	512	-	-
Experimental setup: Fixed-point representations

- In neural networks, weights are floating-point numbers.
- Shares in Arithmetic Secret Sharing protocols are integers.
 - It is not possible to compute random real numbers uniformly over an interval.
- In our implementation we use MP-SPDZ’s fixed-point number representation:
 \[x = y \cdot 2^f \]
 - \(f \) represents a fixed precision
 - \(y \) is a secret-shared value
- Additions can be computed without changes.
- Multiplications require an extra division/truncation by \(f \).
 - Implemented as binary left-shift operation or specific probabilistic truncation protocol.
Results

Protocol	Security model	Time (s)	Communication (MB)		
		Pre-processing	Online	Pre-processing	Online
2-party Semi$_2^k$[4]	Semi-honest	>2 hours	≅19	≅1.6 TB	≅12.6 GB
2-party SPDZ$_2^k$[4]	Malicious	>1 day	≅126	≅21 TB	≅27 GB
3-party RSS [5]	Semi-honest w/ honest majority	≅0.18	≅11	15	118
4-party RSS [1]	Malicious w/ honest majority	≅1.2	≅17	27	333

Table 2: Computational and communication costs for the extraction of speaker embeddings from 3-second long speech recordings.
Results

Protocol	Security model	Time (s)	Communication (MB)		
		Pre-processing	Online	Pre-processing	Online
2-party Semi$_2^k$ [4]	Semi-honest	>2 hours	≅19	≅1.6 TB	≅12.6 GB
2-party SPDZ$_2^k$ [4]	Malicious	>1 day	≅126	≅21 TB	≅27 GB
3-party RSS [5]	Semi-honest w/ honest majority	≅0.18	≅11	15	118
4-party RSS [1]	Malicious w/ honest majority	≅1.2	≅17	27	333

Table 2: Computational and communication costs for the extraction of speaker embeddings from 3-second long speech recordings.
Results

Protocol	Security model	Time (s)	Communication (MB)		
		Pre-processing	Online	Pre-processing	Online
2-party Semi$_2^k$ [4]	Semi-honest	>2 hours	≈19	≈1.6 TB	≈12.6 GB
2-party SPDZ$_2^k$ [4]	Malicious	>1 day	≈126	≈21 TB	≈27 GB
3-party RSS [5]	Semi-honest w/ honest majority	≈0.18	≈11	15	118
4-party RSS [1]	Malicious w/ honest majority	≈1.2	≈17	27	333

Table 2: Computational and communication costs for the extraction of speaker embeddings from 3-second long speech recordings.
Conclusions & Future Work

• In this work we have shown that it is possible to extract x-vector speaker embeddings using Secure Multiparty Computation.

• By using SMC we are able to protect both the privacy of the speaker’s voice as well as the ASV vendor’s model.

• As future work it would be important to explore:
 – Techniques to reduce the size of the x-vector extraction network
 – Other security models that better fit real world scenarios (e.g. covert security).

• This work has also been recently applied to Automatic Speaker Diarization in the context of the CMU Portugal project PrivaDia.
Thank you!

francisco.s.teixeira@tecnico.ulisboa.pt
References

[1] Dalskov, A., Escudero, D. and Keller, M. "Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security." 30th USENIX Security Symposium (USENIX Security 21), 2021.

[2] Parcollet, T., et al. "Speechbrain: A general-purpose speech toolkit." (2022).

[3] Keller, M. "MP-SPDZ: A versatile framework for multi-party computation." Proceedings of the 2020 ACM SIGSAC conference on computer and communications security. 2020.

[4] Cramer, R., Damgård, I., Escudero, D., Scholl, P. and Xing C., “SPD Z2k : Efficient MPC mod 2k for dishonest majority,” in Annual International Cryptology Conference. Springer, 2018, pp. 769–798.

[5] Araki, T., Furukawa, J., Lindell, Y., Nof, A. and Ohara, K. “High- throughput semi-honest secure three-party computation with an honest majority,” in SIGSAC. ACM, 2016, p. 805–817.