BKP tau-functions as square roots of KP tau-functions

Johan van de Leur

Mathematical Institute,
Utrecht University,
P.O. Box 80010, 3508 TA Utrecht,
The Netherlands
e-mail: J.W.vandeLeur@uu.nl

Abstract

It is well-known that a BKP tau-function is the square root of a certain KP tau-function, provided one puts the even KP times equal to zero. In this paper we compute for all polynomial BKP tau-function its corresponding KP "square". We also give, in the polynomial case, a representation theoretical proof of a recent result by Alexandrov, viz. that a KdV tau-function becomes a BKP tau-function when one divides all KdV times by 2.

1 Introduction

In the 1980’s Date, Jimbo, Kashiwara and Miwa, inspired by the pioneering work of Sato [19], described many soliton hierarchies of KP and KdV type [3], [4], [5], [9]. In particular they introduced the BKP hierarchy in [5], which is related to the lie algebra b_{∞}. They define the level one spin module of this infinite dimensional orthogonal Lie algebra by action of certain fermionic creation and annihilation operators on a vacuum vector $|0\rangle$. The BKP hierarchy describes the B_{∞}-group orbit of this highest weight vector $|0\rangle$ in this spin module. Elements in this orbit are the BKP tau-functions, which, in the polynomial case, can be describe as certain Pfaffians of vacuum expectation values. Since the Pfaffian of an anti-symmetric matrix is the square root of the determinant of this matrix, these BKP tau-functions are square roots of certain determinants and in fact Date, Jimbo, Kashiwara and Miwa show that it is the square root of a certain KP tau-function, provided one puts the even KP times equal to zero. This fact, was used by the author and A. Yu. Orlov in [16], in another realization of this b_{∞} group orbit, to give a representation theoretical proof of the fact that Pfaff Lattice tau-functions are square roots of 2D Toda lattice tau-functions. J. Harnad and A.Yu. Orlov [6]-[8] also use this observation to express KP and BKP tau-functions as sums over products of pairs of Q Schur functions.

In [12], [13], V.G. Kac and the author gave explicit formulas for all KP and also BKP tau-function. In this paper, we calculate for every polynomial BKP tau-function its corresponding square, i.e. the corresponding KP tau-function.

In section [7] we give a representation theoretical explanation, at least in the polynomial case, of a recent result of A. Alexandrov [1], viz. that a KdV tau-function,
which is a KP tau-function that does not depend on the even times, becomes a BKP tau-function when one divides all KdV times by 2.

2 The fermionic formulation of KP

Consider the infinite matrix group \(GL_∞ \), consisting of all complex matrices \(G = (g_{ij})_{i,j \in \mathbb{Z}} \) which are invertible and all but a finite number of \(g_{ij} - \delta_{ij} \) are 0. We denote its Lie algebra by \(gl_∞ \) consisting of all complex matrices \(g = (g_{ij})_{i,j \in \mathbb{Z}} \) for which all but a finite number of \(g_{ij} \) are 0. Both the group and its Lie algebra act naturally on the vector space \(C^∞ = \bigoplus_{j \in \mathbb{Z}} C e_j \) (via the usual formula \(E_{ij}(e_k) = \delta_{jk} e_i \)).

The semi-infinite wedge representation \([14],[12]\). \(F = \Lambda_{-}^{1,∞} C^∞ \) is the vector space with a basis consisting of all semi-infinite monomials of the form \(e_{i_0} \wedge e_{i_1} \wedge e_{i_2} \ldots \), where \(i_0 > i_1 > i_3 > \ldots \) and \(i_{l+1} = i_l - 1 \) for \(l >> 0 \). One defines the representation \(R \) of \(GL_∞ \) and \(r \) of \(gl_∞ \) on \(F \) by

\[
R(G)(e_{i_1} \wedge e_{i_2} \wedge e_{i_3} \wedge \cdots) = Ge_{i_1} \wedge Ge_{i_2} \wedge Ge_{i_3} \wedge \cdots .
\]

The corresponding representation \(r \) of the Lie algebra \(gl_∞ \) of \(GL_∞ \) can be described in terms of a Clifford algebra. Define the wedging and contracting operators \(\psi^+_j \) and \(\psi^-_j \) \((j \in \mathbb{Z} + \frac{1}{2})\) on \(F \) by

\[
\psi^+_j(e_{i_0} \wedge e_{i_1} \wedge \cdots) = e_{-j+\frac{1}{2}} \wedge e_{i_0} \wedge e_{i_1} \ldots ,
\]

\[
\psi^-_j(e_{i_0} \wedge e_{i_1} \wedge \cdots) = \begin{cases} 0 & \text{if } j + \frac{1}{2} \neq i_s \text{ for all } s \\ (-1)^s e_{i_0} \wedge e_{i_1} \wedge \cdots \wedge e_{i_{s-1}} \wedge e_{i_{s+1}} \wedge \cdots & \text{if } j + \frac{1}{2} = i_s. \end{cases}
\]

These operators satisfy the relations \((i,j \in \mathbb{Z} + \frac{1}{2}, \lambda, \mu = +, -)\):

\[
\psi^\lambda_i \psi^\mu_j + \psi^\mu_j \psi^\lambda_i = \delta_{\lambda,-\mu} \delta_{i,-j},
\]

hence they generate a Clifford algebra, which we denote by \(\mathcal{C} \ell \). Introduce the following elements of \(F \) \((m \in \mathbb{Z})\):

\[
|m\rangle = e_m \wedge e_{m-1} \wedge e_{m-2} \wedge \cdots .
\]

It is clear that \(F \) is an irreducible \(\mathcal{C} \ell \)-module such that

\[
\psi^+_j |0\rangle = 0, \text{ for } j > 0.
\]

It will be convenient to define also the opposite spin module with vacuum vector \(\langle 0 \mid \), here

\[
\langle 0 | \psi^+_j = 0, \text{ for } j < 0,
\]

and for \(m > 0 \) one defines

\[
\langle \pm m \mid = \langle 0 | \psi^+_{\frac{1}{2}} \psi^+_{\frac{3}{2}} \cdots \psi^+_{m-\frac{1}{2}}.
\]
The vacuum expectation value is defined as $\langle a \rangle = \langle 0 | a | 0 \rangle$ and $\langle 0 | 1 | 0 \rangle = 1$. It is straightforward that the representation r of $g\ell_\infty$ is given by the formula $r(E_{ij}) = \psi^+_{i-\frac{1}{2}} \psi^-_{j-\frac{1}{2}}$. Define the charge decomposition

$$F = \bigoplus_{m \in \mathbb{Z}} F^{(m)}, \quad \text{where charge}(|m\rangle) = m \text{ and charge}(w^\pm_j) = \pm 1.$$ \[\]

The space $F^{(m)}$ is an irreducible highest weight $g\ell_\infty$-module, where $|m\rangle$ is its highest weight vector, i.e.

$$r(E_{ij})|m\rangle = 0 \text{ for } i < j, \quad r(E_{ii})|m\rangle = 0 \text{ (resp. } = |m\rangle) \text{ if } i > m \text{ (resp. if } i < m).$$ \]

Let S be the following operator on $F \otimes F$

$$S = \sum_{i \in \mathbb{Z} + \frac{1}{2}} \psi^+_{i} \otimes \psi^-_{i}$$ \]

and let

$$\mathcal{O}_m = R(GL_\infty)|m\rangle \subset F^{(m)}$$ \]

be the GL_∞-orbit of the highest weight vector $|m\rangle$.

Theorem 1 ([14], Theorem 5.1) Let M be an integer and let $f = \oplus_{m \in \mathbb{Z}} f_m \in \oplus_{m \in \mathbb{Z}} F^{(m)}$ be such that all $f_m \neq 0$ and $f_m = |m\rangle$ for $m < M$. Then $f \in \oplus_{m \in \mathbb{Z}} \mathcal{O}_m$ if and only if for all $k, \ell \in \mathbb{Z}$, such that $k \geq \ell$, one has

$$S(f_k \otimes f_\ell) = \sum_{i \in \mathbb{Z} + \frac{1}{2}} \psi^+_{i} f_k \otimes \psi^-_{i} f_\ell = 0. \quad (2)$$ \]

Equation (2) is called the $(k - \ell)$-th modified KP hierarchy in the fermionic picture. The 0-th modified KP is the KP hierarchy. The collection of all such equations $k, \ell \in \mathbb{Z}$ with $k \geq \ell$ is called the (full) MKP hierarchy in the fermionic picture.

3 The fermionic formulation of BKP

The Lie group B_∞ and the corresponding Lie algebra b_∞ can be defined using the following bilinear form on \mathbb{C}_∞, see e.g. [10], section 7.11:

$$(e_i, e_j)_B = (-1)^i \delta_{i, -j}. \quad (3)$$ \]

Then

$$B_\infty = \{ G \in GL_\infty \mid (G(v), G(w)) = (v, w)_B \text{ for all } v, w \in \mathbb{C}_\infty \},$$

$$b_\infty = \{ g \in gl_\infty \mid (g(v), w) + (v, g(w))_B = 0 \text{ for all } v, w \in \mathbb{C}_\infty \},$$ \]

The elements $F_{jk} = E_{-j, k} - (-1)^{j+k} E_{-k, j} = -(-1)^{j+k} F_{kj}$, with $j > k$ form a basis of b_∞. Note that

$$r(F_{jk}) = \psi^+_{j+\frac{1}{2}} \psi^-_{k-\frac{1}{2}} - (-1)^{j+k} \psi^+_{k+\frac{1}{2}} \psi^-_{j-\frac{1}{2}}.$$ \]
This suggests to define linear anti-involutions on the Clifford algebra $C\ell$, which respects the relations (1):

$$
\iota_B(\psi_{j+\frac{1}{2}}) = (-1)^j \psi_{j-\frac{1}{2}}, \quad \iota_B(\psi_{k-\frac{1}{2}}) = (-1)^k \psi_{k+\frac{1}{2}}.
$$

(4)

This induces via r the following anti-involution on gl_∞

$$
\iota_B(E_{jk}) = (-1)^{j+k} E_{-k,-j}
$$

thus

$$
b_\infty = \{ g \in gl_\infty | \iota_B(g) = -g \}.
$$

Instead of ψ^\pm_i, and inspired by [5] (see also [20]), we choose different operators that generate $C\ell$, viz. eigenvectors of ι_B

$$
\phi_i = \frac{\psi_{i+\frac{1}{2}} + (-1)^i \psi_{i-\frac{1}{2}}}{\sqrt{2}}, \quad \hat{\phi}_i = \sqrt{-1} \frac{\psi_{i+\frac{1}{2}} - (-1)^i \psi_{i-\frac{1}{2}}}{\sqrt{2}}, \text{ for } i \in \mathbb{Z},
$$

(5)

related to b_∞. These elements satisfy the following relations:

$$
\phi_i \phi_j + \phi_j \phi_i = (-1)^i \delta_{i,-j}, \quad \phi_i \hat{\phi}_j + \hat{\phi}_j \phi_i = 0, \quad \hat{\phi}_i \phi_j + \hat{\phi}_j \hat{\phi}_i = (-1)^i \delta_{i,-j}, \quad i, j \in \mathbb{Z}.
$$

(6)

Thus, we have the following symmetric bilinear form

$$
(\phi_i, \phi_j)_B = (\hat{\phi}_i, \hat{\phi}_j)_B = (-1)^i \delta_{i,-j}, \quad (\hat{\phi}_i, \phi_j)_B = 0, \text{ for } i, j \in \mathbb{Z}.
$$

(7)

We observe that

$$
r(F_{jk}) = \frac{(-1)^k}{2}(\phi_j \phi_k - \phi_k \phi_j) + \frac{(-1)^k}{2}(\hat{\phi}_j \hat{\phi}_k - \hat{\phi}_k \hat{\phi}_j), \text{ for } i, j \in \mathbb{Z},
$$

(8)

and that in both cases

$$
\phi_j |0\rangle = \hat{\phi}_j |0\rangle = 0, \text{ for } j > 0.
$$

The action of ϕ_0 and $\hat{\phi}_0$ is special and one has

$$
\phi_0 |0\rangle = \frac{1}{\sqrt{2}} |1_B\rangle := \frac{1}{\sqrt{2}} |1\rangle - 1), \quad \hat{\phi}_0 |0\rangle = -\frac{\sqrt{-1}}{\sqrt{2}} |1_B\rangle := -\frac{\sqrt{-1}}{\sqrt{2}} |1\rangle - 1),
$$

\[
\phi_0 | - 1\rangle = \frac{1}{\sqrt{2}} |0\rangle, \quad \hat{\phi}_0 | - 1\rangle = \frac{\sqrt{-1}}{\sqrt{2}} |0\rangle
\]

and

\[
\langle 0 | \phi_0 = \frac{1}{\sqrt{2}} \langle 1_B | := \frac{1}{\sqrt{2}} \langle -1 |, \quad \langle 0 | \hat{\phi}_0 = \frac{\sqrt{-1}}{\sqrt{2}} \langle -1 | := \frac{\sqrt{-1}}{\sqrt{2}} \langle 1_B |
\]

\[
\langle -1 | \phi_0 = \frac{1}{\sqrt{2}} \langle 0 |, \quad \langle -1 | \hat{\phi}_0 = -\frac{\sqrt{-1}}{\sqrt{2}} \langle 0 |
\]

(9)
which gives that $|1_B⟩ = |↑_B⟩$, $⟨1_B| = ⟨↓_B|$ and
\[
⟨0|\hat{ϕ}_0ϕ_0|0⟩ = -⟨0|ϕ_0\hat{ϕ}_0|0⟩ = -1 = -⟨-1|\hat{ϕ}_0ϕ_0|1⟩ = \frac{-1}{2}.
\]
Note that
\[
ψ^+_i = \frac{ϕ_i - \sqrt{-1}\hat{ϕ}_i}{\sqrt{2}}, \quad ψ^-_i = \frac{(-1)^iϕ_i + \sqrt{-1}\hat{ϕ}_i}{\sqrt{2}}, \text{ for } i ∈ \mathbb{Z}, \quad (11)
\]

The $gl_∞$ level one representation r, when restricted to $b_∞$ gives a level two representation of this orthogonal infinite dimensional Lie algebra. The formula's (8) make it possible to define the level one spin representations of this algebra in two ways on F_B, \hat{F}_B:
\[
r_B(F_{jk}) = \frac{(-1)^k}{2}(ϕ_jϕ_k - ϕ_kϕ_j) \quad \text{or} \quad \hat{r}_B(F_{jk}) = \frac{(-1)^k}{2}(\hat{ϕ}_j\hat{ϕ}_k - \hat{ϕ}_k\hat{ϕ}_j).
\]

Each module splits in to two irreducible level one representations $F_B = F_B^0 \oplus F_B^1$, $\hat{F}_B = \hat{F}_B^0 \oplus \hat{F}_B^1$ for r_B, \hat{r}_B, respectively, with highest weight vectors $|0⟩$ and $|1_B⟩$.

The elements $ϕ_{j_1}ϕ_{j_2} \cdots ϕ_{j_p}0⟩$ (resp. $\hat{ϕ}_{j_1}\hat{ϕ}_{j_2} \cdots \hat{ϕ}_{j_p}|0⟩$) with $j_1 < j_2 < \cdots < j_p \leq 0$ form a basis of F_B (resp. \hat{F}_B).

Let S_B, S_B be the following operator on $F_B \otimes F_B, \hat{F}_B \otimes \hat{F}_B$, respectively:
\[
S_B = \sum_{j∈\mathbb{Z}}(-1)^jϕ_j \otimes ϕ_{-j}, \quad S_B = \sum_{j∈\mathbb{Z}}(-1)^j\hat{ϕ}_j \otimes \hat{ϕ}_{-j}.
\]

To define the hierarchies in the B case, we assume that $τ ∈ F^ν_B$ (resp. $τ ∈ \hat{F}^ν_B$), has the form $τ = g|ν⟩$, it is called a τ-function of the BKP hierarchy if,
\[
S_B(g|ν⟩ \otimes g|ν⟩) = gϕ_0|ν⟩ \otimes gϕ_0|ν⟩ \quad \text{(resp. } S_B(g|ν⟩ \otimes g|ν⟩) = g\hat{ϕ}_0|ν⟩ \otimes g\hat{ϕ}_0|ν⟩). \quad (13)
\]

In fact, see e.g. [11] or [13], equation (13) describes the B_∞-orbit of $|ν⟩$, where $ν = 0$ or 1.

4 Vertex operators

In this section, we want to realize the spin module F in two different ways. An indication that these isomorphisms exist is given by the following gradation of our module F. Define
\[
\text{deg}(|0⟩) = 0, \quad \text{deg}(ϕ_{-i}) = \text{deg}(\hat{ϕ}_{-i}) = \text{deg}(ψ^±_{-i ± 1/2}) = i
\]
and let $F_k = \{f ∈ F| \text{deg}(f) = k\}$. The character formula $\dim_q F = \sum_{k∈\mathbb{Z}} \dim(F_k)q^k$, is clearly equal to
\[
2 \prod_{k=1}^{∞}(1 + q^k)^2.
\]
since the elements $\psi^+_1\psi^+_2 \cdots \psi^+_i \psi^-_j \psi^-_j \cdots \psi^-_m |0\rangle$, with $i_1 < i_2 < \cdots < i_m < 0$ and $j_1 < j_2 < \cdots < j_n < 0$, form a basis of F. We can rewrite this character formula in two different ways. The first one is

$$2 \prod_{k=1}^{\infty} (1 + q^k)^2 = 2 \prod_{k=1}^{\infty} \left((1 + q^k) \frac{1 - q^k}{1 - q^k} \right)^2 = 2 \prod_{k=1}^{\infty} \left(\frac{1 - q^{2k}}{1 - q^k} \right)^2 = 2 \prod_{k=1}^{\infty} \left(\frac{1}{1 - q^{2k-1}} \right)^2$$

and for the second one we use the Jacobi triple product identity which gives that

$$2 \prod_{k=1}^{\infty} (1 + q^k)^2 = \sum_{j \in \mathbb{Z}} q^{j(j-1)/2} \prod_{k=1}^{\infty} \frac{1}{1 - q^k}.$$

We define two isomorphisms σ and $\overline{\sigma}$, such that $\sigma(F) = B$ and $\overline{\sigma} = \overline{B}$, where

$$B = \mathbb{C}[q, q^{-1}, t_k | k = 1, 2, \ldots], \quad \overline{B} = \mathbb{C}[\theta, \overline{t}_k, \overline{t}_k | k = 1, 3, 5, \ldots]. \quad (14)$$

Here θ is a Grassmann variable, i.e. $\theta^2 = 0$, which commutes with all the other indeterminates.

The isomorphisms are uniquely determined by the following properties [11]. First, $\sigma(|0\rangle) = \overline{\sigma}(|0\rangle) = 1$. Second,

$$\sigma \psi^\pm(z) \sigma^{-1} = \sum_{k \in \frac{1}{2} + \mathbb{Z}} \sigma \psi^\pm_k \sigma^{-1} z^{-k - \frac{1}{2}} = q^{\pm 1} z^{\pm \overline{t}_k} \frac{\partial}{\partial \overline{t}_k} \exp \left(\pm \sum_{i=1}^{\infty} t_i z^i \right) \exp \left(\mp \sum_{i=1}^{\infty} \frac{\partial}{\partial t_i} \frac{z^i}{i} \right)$$

and

$$\overline{\sigma} \phi(z) \overline{\sigma}^{-1} = \sum_{k \in \mathbb{Z}} \overline{\sigma} \phi_k \overline{\sigma}^{-1} z^{-k} = \frac{\partial \theta}{\partial \overline{t}_k} \left(\sum_{i > 0, \text{odd}} \overline{t}_i z^i \right) \exp \left(-2 \sum_{i > 0, \text{odd}} \frac{\partial}{\partial \overline{t}_i} \frac{z^i}{i} \right),$$

$$\overline{\sigma} \phi(z) \overline{\sigma}^{-1} = \sum_{k \in \mathbb{Z}} \overline{\sigma} \phi_k \overline{\sigma}^{-1} z^{-k} = \sqrt{-1} \frac{\partial \theta}{\partial \overline{t}_k} \left(\sum_{i > 0, \text{odd}} \overline{t}_i z^i \right) \exp \left(-2 \sum_{i > 0, \text{odd}} \frac{\partial}{\partial \overline{t}_i} \frac{z^i}{i} \right).$$

Note that

$$\sigma(|m\rangle) = q^m, \quad \text{and} \quad \overline{\sigma}(|-1\rangle) = \theta.$$

Both isomorphisms make it possible to express an element $f = g|0\rangle \in F$ as function in B or \overline{B}, viz.

$$\sigma(f) = \sum_{k \in \mathbb{Z}} g_k(t) q^k, \quad \overline{\sigma}(f) = \overline{g}_0(\overline{t}, \overline{t}) + \overline{g}_1(\overline{t}, \overline{t}) \theta.$$

To determine these functions it will be convenient to introduce the oscillator algebra associated to the above fermionic fields. Let : $ab := ab - (0|ab|0)$ stand for the normal ordered product of two elements. Define

$$\alpha(z) = \sum_{k \in \mathbb{Z}} \alpha_k z^{-k-1} =: \psi^+(z) \psi^-(z), \quad (17)$$
and
\[
\beta(z) = \sum_{k \in 2Z+1} \beta_k z^{-k-1} =: \phi(z) \frac{\phi(-z)}{z} ::, \quad \hat{\beta}(z) = \sum_{k \in 2Z+1} \hat{\beta}_k z^{-k-1} =: \hat{\phi}(z) \frac{\hat{\phi}(-z)}{z} ::,
\]
then
\[
\sigma(\alpha(z)) = q \frac{\partial}{\partial q} z^{-1} + \sum_{k=1}^{\infty} \left(k t_k z^{k-1} + \frac{\partial}{\partial t_k} z^{-k-1} \right)
\]
and
\[
\sigma(\beta(z)) = \sum_{0 < k \in 2Z+1} \left(k \tilde{t}_k z^{k-1} + 2 \frac{\partial}{\partial \tilde{t}_k} z^{-k-1} \right),
\]
\[
\sigma(\hat{\beta}(z)) = \sum_{0 < k \in 2Z+1} \left(k \hat{t}_k z^{k-1} + 2 \frac{\partial}{\partial \hat{t}_k} z^{-k-1} \right).
\]

We observe that
\[
\beta(z) + \hat{\beta}(z) =: \phi(z) \frac{\phi(-z)}{z} : + : \hat{\phi}(z) \frac{\hat{\phi}(-z)}{z} :
\]
\[
= \sum_{i,j \in \mathbb{Z}} z^{-i-j-1} \left(\psi^+_i \psi^-_{j-\frac{1}{2}} : + (-1)^{i+j} \psi^-_i \psi^+_{j+\frac{1}{2}} : \right)
\]
\[
= \psi^+(z) \psi^-(z) : + : \psi^+(z) \psi^-(z) :
\]
\[
= \alpha(z) + \alpha(-z)
\]
\[
= 2 \sum_{k \in 2Z+1} \alpha_k z^{-k-1}.
\]

Define
\[
H(s) = \sum_{k>0} s_k \alpha_k, \quad \overline{H}(s) = \sum_{k>0, \text{odd}} s_k \beta_k, \quad \text{and} \quad \dot{H}(s) = \sum_{k>0, \text{odd}} \frac{s_k}{2} \hat{\beta}_k,
\]
then
\[
\sigma(H(s)) = \sum_{k>0} s_k \frac{\partial}{\partial t_k}, \quad \sigma(\overline{H}(s)) = \sum_{k>0, \text{odd}} s_k \frac{\partial}{\partial \overline{t}_k}, \quad \sigma(\dot{H}(s)) = \sum_{k>0, \text{odd}} s_k \frac{\partial}{\partial \dot{t}_k}.
\]

One has
\[
H(s_1, 0, s_3, 0, s_5, 0, \ldots) = \overline{H}(s) + \dot{H}(s)
\]
and

Lemma 2 (a)
\[
\exp(H(s))|0\rangle = \exp(\overline{H}(s))|0\rangle = \exp(\dot{H}(s))|0\rangle = |0\rangle,
\]
(b)
\[
\exp(H(s)) \psi^\pm(z) \exp(-H(s)) = \psi^\pm(z) \exp \left(\pm \sum_{k>0} s_k z^k \right).
\]

7
\[
\exp(\overline{H}(s))\phi(z)\exp(-\overline{H}(s)) = \phi(z) \exp \left(\sum_{k>0, odd} s_k z^k \right),
\]
\[
\exp(\hat{H}(s))\hat{\phi}(z)\exp(-\hat{H}(s)) = \hat{\phi}(z) \exp \left(\sum_{k>0, odd} s_k z^k \right),
\]
and
\[
\exp(\overline{H}(s))\hat{\phi}(z)\exp(-\overline{H}(s)) = \hat{\phi}(z),
\]
\[
\exp(\hat{H}(s))\phi(z)\exp(-\hat{H}(s)) = \phi(z).
\]

Proof. (a) follows from the fact that all \(\alpha_k|0\rangle = \beta_k|0\rangle = \hat{\beta}_k|0\rangle = 0 \) for all \(k > 0 \).

(b) (resp. (c)) follows from the fact that \([\alpha^i_k, \psi^{\pm j}(z)] = \pm \delta_{ij} z^k \psi^{\pm j}(z) \) and \([\frac{1}{2} \beta_k, \phi(z)] = z^k \phi(z) \) (resp. \([\frac{1}{2} \hat{\beta}_k, \hat{\phi}(z)] = z^k \hat{\phi}(z) \)). \(\square \)

We deduce from (19) and part (b) and (c) of the above lemma that
\[
\exp(\overline{H}(s) + \hat{H}(s))\psi^{\pm}(z)\exp(-\overline{H}(s) - \hat{H}(s)) = \exp(H(s)\psi^{\pm}(z)\exp(-H(s)|_{alt \ s_{2k}=0})
\]
\[
= \psi^{\pm}(z) \exp \left(\pm \sum_{k>0, odd} s_k z^k \right).
\]

(21)

Now let \(\exp(H(s)) \) act on \(f = g|0\rangle \in F \). Since we can decompose such an element as \(f = \sum_{k \in \mathbb{Z}} f_k \), where each \(f_k \in F^{(k)} \), thus we can write
\[
f = g|0\rangle = \sigma^{-1} \left(\sum_k g_k(t) q^k \right) = \sum_k \sigma^{-1} (g_k(t)) |k\rangle.
\]

This gives
\[
\exp(\overline{H}(s)) f = \exp(\overline{H}(s)) g|0\rangle = \sum_k \sigma^{-1} (g_k(t+s)) |k\rangle.
\]

Now, let \(T_k(s) \) be the coefficient of the highest weight vector \(|k\rangle \) in the above expression, then
\[
T_k(s) = \langle k| \exp(H(s)) f = g_k(s).
\]

Thus
\[
\sigma(f) = \sigma(g|0\rangle) = \sum_{k \in \mathbb{Z}} \langle k| \exp(H(t)) g|0\rangle q^k.
\]

(22)

In a similar way one obtains:
\[
\overline{\sigma}(f) = \overline{\sigma}(g|0\rangle) = (|0\rangle + \theta(-1) \exp(\overline{H}(t) + \hat{H}(t)) g|0\rangle.
\]

(23)
5 The bosonic formulation of MKP and BKP

Under the isomorphism σ we can rewrite (2), using (15), to obtain the MKP hierarchy:

Let $[z] = (z, z^2, z^3, \ldots)$, $y = (y_1, y_2, \ldots)$, and $\text{Res} \sum_i f_i z^i dz = f_{-1}$, then

$$\text{Res} \ z^{k-\ell} \tau_k(t - [z^{-1}]) \tau_\ell(y + [z^{-1}]) \exp \left(\sum_{i=1}^{\infty} (t_i - y_i) z^i \right) dz = 0, \quad k \geq \ell. \quad (24)$$

The equations (24) first appeared in [9], (2.4)l,l. In a similar way, but now using the isomorphism σ and (16) we can reformulate (13), to obtain the BKP hierarchy [5],[9],[11]:

Let $[z]_{\text{odd}} = (z, z^3, \ldots)$, $y = (y_1, y_3, \ldots)$, then

$$\text{Res} \ \tau(t - 2[z^{-1}]_{\text{odd}}) \tau(y + 2[z^{-1}]_{\text{odd}}) \exp \left(\sum_{i=1}^{\infty} (t_{2i-1} - y_{2i-1}) z^{2i-1} \right) \frac{dz}{z} = \tau(t) \tau(y). \quad (25)$$

6 Polynomial tau-functions

A polynomial tau-function of the BKP hierarchy [13] corresponds to an element (cf. [13])

$$f^k = v_1 v_2 \cdots v_k |0\rangle, \quad \text{with} \quad v_i = \sum_{j \in \mathbb{Z}} (-1)^j (v_i, \phi_{-j}) \phi_j \in \mathbb{C}^\infty, \quad \text{or}$$

$$\hat{f}^k = \hat{v}_1 \hat{v}_2 \cdots \hat{v}_k |0\rangle, \quad \text{with} \quad \hat{v}_i = \sum_{j \in \mathbb{Z}} (-1)^j (\hat{v}_i, \hat{\phi}_{-j}) \hat{\phi}_j \in \hat{\mathbb{C}}^\infty, \quad (26)$$

This is obvious from the fact that $v_i \otimes v_i$ commutes with S_B. Indeed, using that an element $v \in \mathbb{C}^\infty$ can be written as $v = \sum_j (-1)^j (v, \phi_{-j}) \phi_j$, $(v, v) = \sum_j (-1)^j (v, \phi_{-j}) (v, \phi_j)$ and that $v^2 = \frac{(v, v)}{2}$, one finds

$$(v \otimes v) S_B = \sum_j (-1)^j v \phi_j \otimes v \phi_{-j}$$

$$= \sum_j ((v, \phi_j) - \phi_j v) \otimes ((-1)^j (v, \phi_{-j}) - (-1)^j \phi_{-j} v)$$

$$= (v, v) 1 \otimes 1 - v^2 \otimes 1 - 1 \otimes v^2 + \sum_j (-1)^j \phi_j v \otimes \phi_{-j} v$$

$$= 0 + \sum_j (-1)^j \phi_j v \otimes \phi_{-j} v$$

$$= S_B(v \otimes v).$$

Thus if f^{k-1} satisfies (13) then vf^{k-1}, again satisfies (13).
In order to express BKP tau-functions as the square root of a certain KP tau-
function, as was shown in [5], we want to calculate

\[g^k = v_1 v_2 \cdots v_k \hat{v}_1 \hat{v}_2 \cdots \hat{v}_k |0\), \] with \(v_i = \sum_j a_{ij} \phi_j, \) \(\hat{v}_i = \sum_j a_{ij} \hat{\phi}_j, \) (27)

where for every \(1 \leq i \leq k \) the coefficients \(a_{ij} \) that appear in \(v_i \) and \(\hat{v}_i \) are equal. Now,

\[g^k = (-1)^{\frac{k(k-1)}{2}} v_1 \hat{v}_1 v_2 \hat{v}_2 \cdots v_k \hat{v}_k |0\]

and

\[v_i \hat{v}_i = \sum_j a_{ij} \phi_j \sum_{\ell} a_{i\ell} \hat{\phi}_{\ell} \]

\[= \sqrt{-1} \sum_{j, \ell} a_{ij} a_{i\ell} \frac{\psi^+_{j+\frac{1}{2}} + (-1)^j \psi^-_{j-\frac{1}{2}} \psi^+_{\ell+\frac{1}{2}} - (-1)^{\ell} \psi^-_{\ell-\frac{1}{2}}}{\sqrt{2}} \]

\[= - \frac{\sqrt{-1}}{2} \sum_{j, \ell} a_{ij} a_{i\ell} \left((-1)^j \psi^+_{j+\frac{1}{2}} \psi^-_{\ell-\frac{1}{2}} - (-1)^{\ell} \psi^-_{j-\frac{1}{2}} \psi^+_{\ell+\frac{1}{2}}\right). \]

Hence the element \(g^k \in F^{(0)} \). Moreover,

Proposition 3 The element \(g^k \in F^{(0)} \) of (27) satisfies the KP hierarchy [2].

Proof. To prove this, it will be sufficient to show that \(v_i \hat{v}_i \otimes v_i \hat{v}_i \) commutes with \(S \).

Note that up to a constant the element \(v_i \hat{v}_i \) is of the form \(w^+ v^- - v^- w^+ \) where

\[w^+ = \sum_j a_{ij} \psi^+_{j+\frac{1}{2}}; \quad v^- = \sum_j (-1)^j a_{ij} \psi^-_{j-\frac{1}{2}}. \]

Now, observe that \(v^- v^- = w^+ w^+ = 0 \), thus

\[S(w^+ v^- - v^- w^+) \otimes (w^+ v^- - v^- w^+) \]

\[= \sum_k \psi^+_k (w^+ v^- - v^- w^+) \otimes \psi^-_k (w^+ v^- - v^- w^+) \]

\[= \sum_k (-2(\psi^+_k, v^-) w^+ + (w^+ v^- - v^- w^+)) \psi^+_k \otimes (2(\psi^-_k, w^+) v^- + (w^+ v^- - v^- w^+)) \psi^-_k) \]

\[= -4(w^+, v^-) w^+ \otimes v^- - 2w^+ \otimes (w^+ v^- - v^- w^+) v^- + 2(w^+ v^- - v^- w^+) w^+ \otimes v^- \]

\[+ (w^+ v^- - v^- w^+) \otimes (w^+ v^- - v^- w^+) S \]

\[= -4(w^+, v^-) w^+ \otimes v^- + 2w^+ \otimes (w^+, v^-) v^- + 2(w^+, v^-) w^+ \otimes v^- \]

\[+ (w^+ v^- - v^- w^+) \otimes (w^+ v^- - v^- w^+) S \]

\[= (w^+ v^- - v^- w^+) \otimes (w^+ v^- - v^- w^+) S \]

Thus \(v_i \hat{v}_i \otimes v_i \hat{v}_i \) commutes with \(S \). \(\square \)
In order to calculate the corresponding tau-functions, we first calculate several vacuum expectation values.

\[
\exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) v_i \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right) = \exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) \sum_{j > -N_i} a_{ij} \phi_j \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right)
\]

\[
= \text{Res} \sum_{j > -N_i} a_{ij} z^j \exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) \phi(z) \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right) \frac{dz}{z}
\]

\[
= \text{Res} z^{-N_i-1} \sum_{j > 0} a_{i,j-N_i} z^j \exp\left(\sum_{k > 0, \text{odd}} \overline{t}_k z^k \right) \phi(z) \frac{dz}{z}.
\]

Here we assume that \(a_{i,-N_i} \neq 0\). We then write

\[
\sum_{j > 0} a_{i,j-N_i} z^j = a_{i,-N_i} \exp\left(\sum_{i=1}^{\infty} c_{ij} z^j \right). \quad (28)
\]

Hence for \(\bar{t} = (\overline{\bar{t}}_1, 0, \overline{\bar{t}}_3, 0, \ldots)\), we find that

\[
\exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) v_i \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right) = a_{i,-N_i} \text{Res} z^{-N_i} \exp\left(\sum_{k > 0} (\overline{t}_k + c_{ik}) z^k \right) \phi(z) \frac{dz}{z}
\]

Thus,

\[
\langle 0 \mid \exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) v_i v_j \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right) \mid 0 \rangle = a_{i,-N_i} a_{j,-N_j} \text{Res} z^{-N_i} w^{-N_j} \exp\left(\sum_{k > 0} (\overline{t}_k + c_{ik}) z^k \right) \exp\left(\sum_{k > 0} (\overline{t}_k + c_{jk}) w^k \right) \langle 0 \mid \phi(z) \phi(w) \mid 0 \rangle \frac{dz}{z} \frac{dw}{w}.
\]

Using that

\[
\langle 0 \mid \phi(z) \phi(w) \mid 0 \rangle = (zw)^{-1} \left(1 + \sum_{i=1}^{\infty} \left(-\frac{w}{z}\right)^i\right)
\]

and

\[
\exp\left(\sum_{k > 0} t_k z^k \right) = \sum_{j = 0}^{\infty} s_j(t) z^j,
\]

we find that

\[
\langle 0 \mid \exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) v_i v_j \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right) \mid 0 \rangle = a_{i,-N_i} a_{j,-N_j} \overline{\chi}_{N_i,N_j}(\bar{t} + c_i, \hat{t} + c_j),
\]

where

\[
\overline{\chi}_{N,M}(s, t) = \frac{1}{2} s_N(t) s_M(s) + \sum_{k=1}^{M} (-1)^k s_{N+k}(t) s_{M-k}(s). \quad (29)
\]

Clearly,

\[
\langle 0 \mid \exp\left(\overline{H}(\bar{t}) + \hat{H}(\hat{t})\right) \hat{v}_i \hat{v}_j \exp\left(-\overline{H}(\bar{t}) - \hat{H}(\hat{t})\right) \mid 0 \rangle = a_{i,-N_i} a_{j,-N_j} \overline{\chi}_{N_i,N_j}(\hat{t} + c_i, \hat{t} + c_j)\]
From which we deduce that

\[\langle 0 | \exp \left(\mathcal{P}(\hat{t}) + \hat{H}(\hat{t}) \right) v_i \hat{v}_j \exp \left(-\mathcal{P}(\hat{t}) - \hat{H}(\hat{t}) \right) | 0 \rangle = -\frac{\sqrt{-1}}{2} a_{i,-N_i} a_{j,-N_j} s_{N_i}(\hat{t} + c_i) s_{N_j}(\hat{t} + c_j). \]

Next, we calculate

\[\exp (H(t)) v_i \exp (-H(t)) = \]

\[= \text{Res} \sum_{j=-N_i}^{\infty} \frac{a_{ij}}{\sqrt{2}} z^j \left(\exp \left(\sum_{k>0} t_k z^k \right) \psi^+(z) + z^{-1} \exp \left(\sum_{k>0} -t_k (-z)^k \right) \psi^-(z) \right) \] \[\times \left(\exp \left(\sum_{k>0} (t_k + c_{ik}) z^k \right) \psi^+(z) + z^{-1} \exp \left(\sum_{k>0} (-1)^{k+1} t_k + c_{ik} \right) \psi^-(z) \right) \] \[d z, \]

and analogously, we find

\[\exp (H(t)) \hat{v}_i \exp (-H(t)) = \frac{a_{i,-N_i} \sqrt{-1}}{\sqrt{2}} \text{Res} \left(z^{-N_i} z_t \right) \]

\[\times \left(\exp \left(\sum_{k>0} (t_k + c_{ik}) z^k \right) \psi^+(z) - z^{-1} \exp \left(\sum_{k>0} (-1)^{k+1} t_k + c_{ik} \right) \psi^-(z) \right) \] \[d z. \]

From which we deduce that

\[\langle 0 | \exp (H(t)) v_i v_j \exp (-H(t)) | 0 \rangle = \langle 0 | \exp (H(t)) \hat{v}_i \hat{v}_j \exp (-H(t)) | 0 \rangle = \]

\[= \frac{a_{i,-N_i} a_{j,-N_j}}{2} \text{Res} \left(z^{-N_i} z_t \right) \left(\sum_{k=0}^{\infty} \left(-\frac{w}{z} \right)^k \exp \left(\sum_{k>0} (t_k + c_{ik}) z^k + (-1)^{k+1} t_k + c_{jk} \right) \right) \]

\[+ \sum_{k=1}^{\infty} \left(-\frac{w}{z} \right)^k \exp \left(\sum_{k>0} (t_k + c_{jk}) w^k + (-1)^{k+1} t_k + c_{ik} \right) \] \[d z \frac{d w}{w} \]

\[= a_{i,-N_i} a_{j,-N_j} \chi_{N_i,N_j}^+(t + c_i, t - \tilde{c}_j, t - \tilde{c}_i, t + c_j). \]

Here \(\tilde{c} = (-c_1, c_2, -c_3, c_4, \ldots) \) and

\[\chi_{N,M}^+(s, t, u, v) = \frac{1}{2} \sum_{k=0}^{M} (-1)^N s_{N+k}(s) s_{M-k}(t) \pm \frac{1}{2} \sum_{k=1}^{M} (-1)^M s_{N+k}(-u) s_{M-k}(v). \]

Finally,

\[\langle 0 | \exp (H(t)) v_i \hat{v}_j \exp (-H(t)) | 0 \rangle = -\frac{\sqrt{-1}}{2} a_{i,-N_i} a_{j,-N_j} \text{Res} \left(z^{-N_i} w^{-N_j} \right) \times \]

\[\left(\sum_{k=0}^{\infty} \left(-\frac{w}{z} \right)^k \exp \left(\sum_{k>0} (t_k + c_{ik}) z^k + (-1)^{k+1} t_k + c_{jk} \right) \right) \] \[- \sum_{k=1}^{\infty} \left(-\frac{w}{z} \right)^k \exp \left(\sum_{k>0} (t_k + c_{jk}) w^k + (-1)^{k+1} t_k + c_{ik} \right) \] \[d z \frac{d w}{w} \]

\[= -\sqrt{-1} a_{i,-N_i} a_{j,-N_j} \chi_{N_i,N_j}^-(t + c_i, t - \tilde{c}_j, t - \tilde{c}_i, t + c_j). \]
The Pfaffian (31) is obtained by applying Wick's theorem. Next, we calculate that, with generality, than is needed here. Denote by \(\text{matrix in a sum of determinants times Pfaffians. We first state the formula in more general form.}

\[\hat{\sigma}(\phi_{v_1v_2\cdots v_{2n}|0})) = \sum_{j>\lambda_i} a_{ij} \phi_j = \phi_{\lambda_i} + \sum_{j>\lambda_i} s_{j-\lambda_i}(c_i) \phi_j.\] (32)

The Pfaffian (31) is obtained by applying Wick's theorem. Next, we calculate \(\hat{\sigma}(\phi_{v_1v_2\cdots v_{2n}|0}) \). Using the above vacuum expectation values, we find that, with

\[
\begin{align*}
A(\bar{t}) &= \left(\bar{\chi}_{\lambda_i,\lambda_j}(\bar{t} + c_i, \bar{t} + c_j) \right)_{1 \leq i,j \leq 2n},
B(\bar{t}, \hat{t}) &= \left(-\frac{\sqrt{-1}}{2} s_{\lambda_i}(\bar{t} + c_i) s_{\lambda_j}(\hat{t} + c_j) \right)_{1 \leq i,j \leq 2n},
\end{align*}
\]

(33)

the vacuum expectation value

\[
\begin{align*}
\bar{\sigma}(\phi_{v_1v_2\cdots v_{2n}|0}) &= Pf \begin{pmatrix} A(\bar{t}) & -B(\bar{t}, \hat{t})^T \\ -B(\bar{t}, \hat{t}) & A(\bar{t}) \end{pmatrix} \\
&= Pf(\bar{A}(\bar{t})) Pf(\bar{A}(\bar{t})) \\
&= Pf(\bar{A}(\bar{t})) Pf(\bar{A}(\bar{t})) \\
&= Pf(\bar{A}(\bar{t})) Pf(\bar{A}(\bar{t})) \\
&= Pf(\bar{A}(\bar{t})) Pf(\bar{A}(\bar{t}))
\end{align*}
\]

(34)

In the second equality of (34), we use a formula, due to E. R. Caianiello [2], for a proof see [18]. This formula expresses the Pfaffian of the \(4n \times 4n \) skew symmetric matrix in a sum of determinants times Pfaffians. We first state the formula in more generality, than is needed here. Denote by \([m] = \{1,2,\ldots,m\} \) for a nonnegative integer \(m \). Let \(I \subset [m] \) and \(J \subset [k] \), denote by \(W(I, J) \) the matrix that we construct out of the \(m \times n \) matrix \(W \) by erasing the rows \(i \) with \(i \in [m]\setminus I \) and the columns \(j \) with \(j \in [k]\setminus J \). If \(J = \{j_1,j_2,\ldots,j_s\} \), we write \(\sum(J) = j_1 + j_2 + \ldots + j_s \). Then

Proposition 6 Let \(m \) and \(k \) be nonnegative integers such that \(m + k \) is even. Let \(X \), respectively \(Y \), be a skew-symmetric \(m \times m \), respectively \(k \times k \) matrix, and \(W \)
Thus we have shown:

\[Pf \left(\begin{array}{cc} X & W \\ -W^T & Y \end{array} \right) = \sum_{I,J} \varepsilon(I, J) Pf(X(I, I)) Pf(Y(J, J)) \det(W([m]\setminus I; [k]\setminus J)), \tag{35} \]

where the sum is taken over all pairs of even-element subsets \((I, J)\) such that \(I \subset [m], J \subset [n]\) and where \(m - |I| = k - |J|\). Here

\[\varepsilon(I, J) = (-1)^{\sum(I) + \sum(J) + (m) + (k) + (m-|I|)}. \]

We use this proposition, to obtain the second equality of (34). In our case \(m = k = 2n\) and the matrix \(W = \overline{B}(\hat{t}, \hat{\tau})\) has rank 1, which means that all the terms on the right-hand side of (35) are zero, except when \(I = J = [2n]\).

To obtain the Main Theorem of this paper, we calculate

\[\sigma(v_1v_2 \cdots v_{2n}\hat{v}_1\hat{v}_2 \cdots \hat{v}_{2n}|0)), \]

From the above vacuum expectation values we deduce using Wick’s theorem that the KP tau-function

\[\tau_{2n,2n}^2(t) = \sigma(v_1v_2 \cdots v_{2n}\hat{v}_1\hat{v}_2 \cdots \hat{v}_{2n}|0)) = Pf \left(\begin{array}{cc} A^+(t) & -\sqrt{-1}A^-(t) \\ \sqrt{-1}A^-(t)^T & A^+(t) \end{array} \right), \tag{36} \]

where (cf. (30))

\[A^\pm(t) = \left(\chi_{\lambda_i, \lambda_j}^\pm (t + c_i, t - \hat{c}_j, t - \hat{c}_i, t + c_j) \right)_{1 \leq i, j \leq 2n}. \tag{37} \]

Thus we have shown:

Theorem 7 Let \(\overline{t} = (\overline{t}_1, 0, \overline{t}_3, 0, \ldots)\), then the BKP tau-function \(\tau_{2n}^2(\overline{t})\) of Theorem 3 is the square root of the KP tau-function \(\tau_{2n,2n}^2(t)\), given in (36), i.e.,

\[\tau_{2n}^2(\overline{t}) = \sqrt{\tau_{2n,2n}^2(t)}. \]

Remark 8 If we put all the constants equal to zero, then the above KP tau-function \(\tau_{2n,2n}^2(t)\) corresponds to the following element \(\Phi F\):

\[\phi_{-\lambda_1} \phi_{-\lambda_2} \cdots \phi_{-\lambda_{2n}} \phi_{-\lambda_1} \phi_{-\lambda_2} \cdots \phi_{-\lambda_{2n}}|0), \]

which is up to a sign equal to

\[
\begin{align*}
\begin{cases}
\psi^+_{-\lambda_1 + \frac{1}{2}} \psi^+_{-\lambda_2 + \frac{1}{2}} \cdots \psi^+_{-\lambda_{2n} + \frac{1}{2}} \psi^-_{-\lambda_1 - \frac{1}{2}} \psi^-_{-\lambda_2 - \frac{1}{2}} \cdots \psi^-_{-\lambda_{2n} - \frac{1}{2}} |0), & \text{if } \lambda_{2n} \neq 0 \text{ and } \\
\psi^+_{-\lambda_1 + \frac{1}{2}} \psi^+_{-\lambda_2 + \frac{1}{2}} \cdots \psi^+_{-\lambda_{2n} - 1 + \frac{1}{2}} \psi^-_{-\lambda_1 - \frac{1}{2}} \psi^-_{-\lambda_2 - \frac{1}{2}} \cdots \psi^-_{-\lambda_{2n} - 1 - \frac{1}{2}} |0), & \text{if } \lambda_{2n} = 0.
\end{cases}
\end{align*}
\]

This element corresponds to \(s_{(\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_{2n} - 1, \lambda_1, \lambda_2, \ldots, \lambda_{2n})}(t)\), where we use the Frobenius notation for a partition, see e.g. [17]. This means that the tau-function \(\tau_{2n,2n}^2(t)\)
is the lowest element (i.e. it generates) the KP Schubert cell (cf. [12]) corresponding to the partition

\[\begin{cases} (\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_{2n} - 1 | \lambda_1, \lambda_2, \ldots, \lambda_{2n}), & \text{if } \lambda_{2n} \neq 0 \text{ and} \\ (\lambda_1 - 1, \lambda_2 - 1, \ldots, \lambda_{2n-1} - 1 | \lambda_1, \lambda_2, \ldots, \lambda_{2n-1}), & \text{if } \lambda_{2n} = 0. \end{cases} \]

While its "square root", the BKP tau-function \(\tau^2_B(\mathcal{I}) \), which is equal up to a multiplicative constant, to the Q-Schur function \(Q_{(\lambda_1, \lambda_2, \ldots, \lambda_{2n})} \left(\frac{1}{2} \right) \), generates the BKP Schubert cell corresponding to the strict partition

\((\lambda_1, \lambda_2, \ldots, \lambda_{2n}), \) respectively \((\lambda_1, \lambda_2, \ldots, \lambda_{2n-1}), \) if \(\lambda_{2n} = 0. \)

7 The relation KdV versus BKP

A. Alexandrov showed in a recent short publication [1], that all KdV tau-functions, i.e., KP tau-functions that are independent of the even times \(t_{2i} \), are BKP tau-functions when one replaces all times \(t_{2i+1} \) by \(\frac{t_{2i+1}}{2} \). In this section, we give a representation theoretical explanation for this.

It is clear from [12], but was proved already in the 80's in [14], that all polynomial KdV tau functions can be obtained as the following vacuum expectation value, for a certain \(k = 0, 1, 2, \ldots \), where the \(c_{2i-1} \) are arbitrary constants.

\[\tau_k(t + c) = \langle 0 | e^{\sum_{i=1}^{\infty} (t_{2i-1} + c_{2i-1}) \alpha_{2i-1} \psi^+_{-k+i\frac{1}{2}} \psi^+_{-k+i\frac{3}{2}} \cdots \psi^+_{-k+i\frac{1}{2}} } | -k \rangle. \quad (38) \]

Note that we can obtain all tau-functions [39], by calculating the above expression with all \(c_{2i-1} = 0 \) and then substituting \(t_{2i-1} + c_{2i-1} \) for \(t_{2i-1} \). Thus from now on we will put all \(c_{2i-1} = 0 \). In fact (cf. [12] or [14]), it is not difficult to show that

\[\tau_k(t) = s_{(k,k-1,...,2,1)}(t_1, t_2, t_3, \ldots) = s_{(k,k-1,...,2,1)}(t_1, 0, t_3, 0, \ldots), \]

the Schur function corresponding to the partition \(\lambda = (k, k - 1, \ldots, 2, 1) \), which is independent of the even times.

\[\tau_k(t) = \langle 0 | e^{\sum_{i=1}^{\infty} t_{2i-1} \alpha_{2i-1} \psi^+_{-k+i\frac{1}{2}} \psi^+_{-k+i\frac{3}{2}} \cdots \psi^+_{-k+i\frac{1}{2}} } | -k \rangle \]

\[= \langle 0 | e^{\sum_{i=1}^{\infty} (t_{2i-1} + c_{2i-1}) \alpha_{2i-1} \psi^+_{-k+i\frac{1}{2}} \psi^+_{-k+i\frac{3}{2}} \cdots \psi^+_{-k+i\frac{1}{2}} } | 0 \rangle \]

\[= \pm \langle 0 | e^{\sum_{i=1}^{\infty} t_{2i-1} \frac{1}{2} \psi^+_{-k+i\frac{1}{2}} \psi^+_{-k+i\frac{3}{2}} \cdots \psi^+_{-k+i\frac{1}{2}} } | 0 \rangle \]

\[= \pm \langle 0 | e^{\sum_{i=1}^{\infty} t_{2i-1} \frac{1}{2} \psi^+_{-k+i\frac{1}{2}} \psi^+_{-k+i\frac{3}{2}} \cdots \psi^+_{-k+i\frac{1}{2}} } | 0 \rangle \quad (39) \]

The above calculation is up to a multiplicative sign. Now using [11], we can rewrite

\[1 \text{One obtains the Q-Schur functions as given in Macdonald's book on symmetric functions [17] by substituting for } t_i = \sum_{j>0} x_j^i \]
(39), again up to a sign, to:

\[
\tau_k(t) = \pm \langle 0| \sum_{i=1}^\infty t_{2i-1} \alpha_{2i-1} \phi_{-k} - \sqrt{-1} \hat{\phi}_{-k} \phi_{-k+1} + \sqrt{-1} \hat{\phi}_{-k+1} \times \\
\phi_{-k+2} - \sqrt{-1} \hat{\phi}_{-k+2} \sqrt{2} \phi_{-1(-1)^k} + \sqrt{-1} \hat{\phi}_{-1(-1)^k} \sqrt{2} |0\rangle.
\]

Instead of this expression, we focus on

\[
\tau_k(s, t) = \pm \langle 0| \sum_{i=1}^\infty s_{2i-1} \beta_{2i-1} + t_{2i-1} \beta_{2i-1} \phi_{-k} - \sqrt{-1} \hat{\phi}_{-k} \phi_{-k+1} + \sqrt{-1} \hat{\phi}_{-k+1} \times \\
\phi_{-k+2} - \sqrt{-1} \hat{\phi}_{-k+2} \sqrt{2} \phi_{-1(-1)^k} + \sqrt{-1} \hat{\phi}_{-1(-1)^k} \sqrt{2} |0\rangle.
\]

Differentiate (31) by \(\frac{\partial}{\partial s_{2j+1}} - \frac{\partial}{\partial t_{2j+1}} \), we thus obtain

\[
\left(\frac{\partial}{\partial s_{2j+1}} - \frac{\partial}{\partial t_{2j+1}} \right) \tau_k(s, t) = \pm \langle 0| \sum_{i=1}^\infty s_{2i-1} \beta_{2i-1} + t_{2i-1} \beta_{2i-1} \left(\frac{\beta_{2j-1}}{2} - \frac{\hat{\beta}_{2j-1}}{2} \right) \phi_{-k} - \sqrt{-1} \hat{\phi}_{-k} \phi_{-k+1} + \sqrt{-1} \hat{\phi}_{-k+1} \times \\
\phi_{-k+2} - \sqrt{-1} \hat{\phi}_{-k+2} \sqrt{2} \phi_{-1(-1)^k} + \sqrt{-1} \hat{\phi}_{-1(-1)^k} \sqrt{2} |0\rangle.
\]

However, since

\[
\left[\frac{\beta_{2j-1}}{2} - \frac{\hat{\beta}_{2j-1}}{2}, \phi_{-k+\ell} - (-1)^\ell \sqrt{-1} \hat{\phi}_{-k+\ell} \right] = \phi_{-k+\ell+2j-1} - (-1)^{\ell+2j-1} \sqrt{-1} \hat{\phi}_{-k+\ell+2j-1},
\]

we conclude that

\[
\left(\frac{\partial}{\partial s_{2j+1}} - \frac{\partial}{\partial s_{2j+1}} \right) \tau_k(s, t) = 0.
\]

Thus \(\tau_k(s, t) \) is a function of \(s + t \). From which we deduce that, up to a multiplicative sign,

\[
\pm \tau_k \left(\frac{t}{2}, \frac{t}{2} \right) = \tau_k \left(t, (1 - \epsilon)t \right) = \tau_k(t, 0).
\]

We now calculate explicitly \(\tau_k(t, 0) \). Note first, that if \(k \) is odd,

\[
\frac{\phi_0 + \sqrt{-1} \hat{\phi}_0}{\sqrt{2}} |0\rangle = \sqrt{2} \phi_0 |0\rangle.
\]

Thus

\[
\tau_k(t, 0) = \pm \langle 0| \sum_{i=1}^\infty t_{2i-1} \phi_{-k} - \sqrt{-1} \hat{\phi}_{-k} \phi_{-k+1} + \sqrt{-1} \hat{\phi}_{-k+1} \times \\
\phi_{-k+2} - \sqrt{-1} \hat{\phi}_{-k+2} \sqrt{2} \phi_{-1(-1)^k} + \sqrt{-1} \hat{\phi}_{-1(-1)^k} \sqrt{2} |0\rangle
\]

\[
= \pm \frac{1}{(\sqrt{2})^k} \langle 0| \sum_{i=1}^\infty t_{2i-1} \phi_{-k} \phi_{-k+1} \phi_{-k+2} \phi_{-1(-1)^k} |0\rangle.
\]

16
which clearly is a BKP tau-function.

More explicitly,

\[\tau_k(t, 0) = \pm \frac{1}{(\sqrt{2})^k} P f \left(\chi_{i,j}(t, t) \right) \prod_{1 \leq i,j \leq k} \frac{1-(-1)^k}{2} \]

Hence, it is (up to a multiplicative constant) the Q-Schur function corresponding to the strict partition \((k, k-1, \ldots, 2, 1)\), and it is, again up to a multiplicative constant, the square root of the Schur function \(s_{(k+1)}(t_1, 0, t_3, 0, \ldots)\). We thus obtain (cf. [1]):

Proposition 9 All polynomial KdV tau-functions \(\tau_k(t+c) = s_{(k,k-1,\ldots,2,1)}(t_1+c_1, t_3+c_3, \ldots)\) become BKP tau-functions, when one replaces \(t_i+c_i\) by \(\frac{t_i+c_i}{2}\). Moreover, up to a multiplicative constant, \(\tau_k\left(\frac{t+c}{2}\right)\) is equal to \(Q_{(k,k-1,\ldots,2,1)}\left(\frac{t+c}{2}\right)\) and to the square root of \(s_{(k+1)}(t_1+c_1, 0, t_3+c_3, 0, \ldots)\), here \((k^{k+1})\) is the partition \((k, k, \ldots, k)\), where \(k\) appears \(k+1\) times.

References

[1] Alexandrov, A. KdV solves BKP (2020). arXiv:2012.10448.

[2] Caianiello, E. R. Regularization and renormalization: I General part, Nuovo Cimento 13 (1959), 637–661.

[3] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. 18 (1982), 1077–1110.

[4] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. Transformation groups for soliton equations, in: Nonlinear integrable systems—classical theory and quantum theory eds M. Jimbo and T. Miwa, World Scientific, (1983), 39–120.

[5] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP type, Physica 4D (1982), 343–365.

[6] Harnad, J.; Orlov, A.Yu. Bilinear expansion of Schur functions in Schur \(Q\)-functions: a fermionic approach. arXiv:2008.13734

[7] Harnad, J.; Orlov, A.Yu. Bilinear expansions of lattices of KP \(\tau\)-functions in BKP \(\tau\)-functions: a fermionic approach. Journal of Mathematical Physics 62, 013508 (2021); https://doi.org/10.1063/5.0032525 arXiv:2010.05055

[8] Harnad, J.; Orlov, A.Yu. Polynomial KP and BKP \(\tau\)-functions and correlators. arXiv:2011.13339
[9] Jimbo, M.; Miwa, T. Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 943–1001.

[10] Kac, V.G. Infinite-Dimensional Lie Algebras (3rd ed.). Cambridge: Cambridge University Press. (1990). doi:10.1017/CBO9780511626234

[11] Kac, V.; van de Leur, J. The geometry of spinors and the multicomponent BKP and DKP hierarchies. The bispectral problem (Montreal, PQ, 1997), 159–202, CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998.

[12] Kac, V.G.; van de Leur, J. W. Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions, Japanese Journal of Mathematics, Vol. 13 (2) (2018), 235–271.

[13] Kac, V.G.; van de Leur, J.W. Polynomial tau-functions of BKP and DKP hierarchies, J. Math. Phys. 60 (2019), no. 7.

[14] Kac, V. G.; Peterson, D. H. “Lectures on the infinite wedge representation and the MKP hierarchy,” Sem. Math. Sup., Vol. 102 (Presses Univ. Montreal, Montreal, 1986), pp. 141–184.

[15] Kac, V.G.; Rozhkovskaya, N.; van de Leur, J. Polynomial tau-functions of the KP, BKP and the s-component KP hierarchies. arXiv:2005.02665

[16] van de Leur, J.W.; Orlov, A.Yu. Pfaffian and Determinantal Tau Functions, Lett Math Phys (2015) 105:1499–1531. DOI 10.1007/s11005-015-0786-6

[17] Macdonald, I.G. Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, (1995).

[18] Okado, S. Pfaffian Formulas and Schur Q-Function Identities, Adv. in Math., Vol. 353 (2019), 446-470

[19] Sato, M. Soliton equations as dynamical systems on a infinite-dimensional Grassmann manifold, RIMS Kokyuroku 439(1981), 30-46.

[20] You, Y. Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, in Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) Adv. Ser. Math. Phys. 7, 1989, pp 449–464, World Sci.