Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: Impacts, challenges, and opportunities

Sean Y Ng, Vladimir Ljubicic*

Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common and relentless form of muscular dystrophy. The pleiotropic effects of dystrophin deficiency include remarkable impacts on neuromuscular junction (NMJ) structure and function. Some of these alterations contribute to the severe muscle wasting and weakness that distinguish DMD, while others attempt to compensate for them. Experimental approaches that correct NMJ biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes, which suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. The objectives of this review are to 1) survey the distinctions in NMJ structure, function, and gene expression in the dystrophic context as compared to the healthy condition, and 2) summarize the efforts, opportunities and challenges to correct NMJ biology in DMD. This information will expand our basic understanding of neuromuscular biology and may be useful for designing novel NMJ-targeted drug or behavioural strategies to mitigate the dystrophic pathology and other disorders of the neuromuscular system.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Dystrophin is a highly abundant protein localized to the inner face of the plasma membrane of muscle fibres. The primary function of this molecule is to serve as a link between the sarclemma and cytoskeletal y-actin, which together provide strong structural support for the myofiber during mechanical stress. The absence of dystrophin protein, due to mutations in its gene, DMD, results in the most common and relentless form of muscular dystrophy, Duchenne muscular dystrophy (DMD). It has been known for over 30 years that dystrophic skeletal muscle is characterized by pathophysiological alterations in pre- and postsynaptic neuromuscular junction (NMJ) structure and function, which contribute to the hallmark muscle wasting and weakness in DMD [1–13]. Experimental approaches that impact skeletal muscle and affect NMJ biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes [14–18]. This evidence suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. Thus, continued examination of the mechanisms that govern NMJ morphology and function in DMD will expand our comprehension of the basic biology of the disorder, as well as identify opportunities for innovative treatment approaches. In the current paper, we begin by reviewing recent progress in DMD research, with particular emphasis on novel salutary modalities. We then discuss NMJ biology in the healthy and dystrophic contexts and follow with a detailed analysis of the effects of normalizing the NMJ in muscular dystrophy. In closing, we highlight the most significant remaining knowledge gaps, as well as opportunities for future pursuit that will advance our understanding of, and therapeutic options for, the NMJ in DMD. This article expands on earlier, excellent reviews of similar themes [19–23].

2. Duchenne muscular dystrophy

DMD is the most common congenital neuromuscular disorder affecting approximately 1 in 6000 live male births [24,25]. The economic burden associated with DMD is significant for patients ($23,000–$54,000 USD) and their families ($58,000–$71,000 USD) all over the world [26]. Natural history studies demonstrate that boys with DMD experience progressive proximal muscle weakness and wasting at approximately 2–5 years of age, which is also accompanied by a delay in motor milestone achievements [25,27]. This gradual loss in limb function typically necessitates ambulatory supports by early adolescence. Other clinical hallmarks that manifest in these patients include the accumulation of intramuscular fatty and fibrotic tissue resulting in excessive enlargement (i.e., pseudohypertrophy), particularly of the gastrocnemius muscle, as well as a positive Gowers’ sign that presents as a predictable difficulty rising from a lying supine position. Respiratory and/or cardiac failure claim most DMD patients in their third or fourth decades.

* Corresponding author.
E-mail address: ljubicic@mcmaster.ca (V. Ljubicic).

https://doi.org/10.1016/ebiom.2020.103032
2352-3964/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
DMD is caused by mutations in the DMD gene and the subsequent absence of its dystrophin protein product. Without dystrophin, its eponymous oligomeric structure termed the dystrophin-associated protein complex (DAPC) cannot be formed [27,28]. Highly localized along the sarcolemma, the DAPC is a critical signalling apparatus between the extracellular matrix and intracellular cytoskeleton that serves to maintain the structural integrity of muscle cells. The lack of dystrophin, and by extension the DAPC, ultimately lead to repetitive cycles of degeneration/regeneration, chronic inflammation, and muscle atrophy [25,29,30]. While dystrophin is certainly important, other members of the DAPC also play critical roles in health and disease. Although often overlooked when discussing the devastating effects of DAPC deficiency, NMJ structure and function are remarkably impacted in muscular dystrophies, DMD in particular (Fig. 1) [1–13]. Veritably, the biology of dystrophic NMJs is significantly compromised in several pre-clinical models, which strongly suggests that this phenomenon contributes to the muscle wasting and weakness apparent in DMD patients. This is not surprising considering the critically important role of the NMJ in regulating skeletal muscle phenotype and contractile activity [31].

There is currently no effective treatment for DMD [32]. Symptomatic patients are prescribed glucocorticoids as a standard of care, which attenuates the decline in muscle strength and function while also delaying the onset of catastrophic respiratory and cardiac dysfunction [25,33]. However, long-term corticosteroid usage results in detrimental side effects such as abnormal behaviour and weight gain. Vamorolone (ReveraGen BioPharma) and Edaslonexent (Catabasis Pharmaceuticals), two anti-inflammatory medications currently in the latter phases of clinical trials, provide similar therapeutic effects of glucocorticoids without the adverse off-target effects [33]. Other emerging therapies include exon-skipping compounds, such as Viltexos (NS Pharma), Exondys 51 and Vyondys 53 (Sarepta Therapeutics), two anti-inflammatory medications currently in the latter phases of clinical trials, provide similar therapeutic effects of glucocorticoids without the adverse off-target effects [33]. Other emerging therapies include exon-skipping compounds, such as Viltexos (NS Pharma), Exondys 51 and Vyondys 53 (Sarepta Therapeutics), two anti-inflammatory medications currently in the latter phases of clinical trials, provide similar therapeutic effects of glucocorticoids without the adverse off-target effects [33].

Agrin was identified as the first neurotrophic factor to regulate NMJ biology [21,22]. The proteoglycan governs the expression and localization of AChRs and is therefore critical for the postnatal development and plasticity of the NMJ. Indeed, although rodents lacking agrin form AChR clusters, they are unstable and exhibit a dispersed organization in the broad middle region of myofibers, resembling an arrangement that is observed during development [22,29,41]. Additionally, recombinant agrin treatment of denervated muscles eliminates ectopic AChR cluster formation, further demonstrating the importance of this neural factor [39,40]. Agrin exerts its effects by initiating the LRP4/MuSK signalling cascade, which is essential for its downstream control of AChR expression. For instance, the agrin/LRP4/MuSK interaction promotes the expression of several synaptic proteins that encourage AChR transcription, stabilization, and turnover. These effector molecules include rapsyn, Dok7, Ab1 tyrosine kinase, geranylgeranyltransferase, Rho GTPases, and P21-activated kinase 1 [22,39]. While many of these factors exhibit functional redundancy and are therefore dispensable for the postnatal development of the NMJ, Dok7 and rapsyn are essential components of the postsynaptic apparatus [22]. Additional evidence for the importance of the agrin/LRP4/MuSK signalling axis is demonstrated by LRP4 and MuSK knockout and knockout (KO) studies [20–22]. For example, LRP4 KO mice exhibit perinatal lethality due to severe impairments in NMJ postsynaptic endplate formation [42]. Thus, the agrin/LRP4/MuSK cascade serves as the regulatory centrepiece for the maturation and remodelling of the NMJ.
3.2. Transcriptional regulators of synaptic genes

The links between agrin/LRP4/MuSK and synaptic gene expression are still being identified. Established players include transcription factors that are part of the E26 transformation-specific (Ets) family of proteins, including GABPa/β and Ets variant 5 (Erm) [20]. These factors are also regulated at the synapse by mitogen activated protein kinase pathways, including c-Jun N-terminal kinases and extracellular signal-regulated kinase (ERK) signalling [40]. An abundance of subsynaptic genes contain a common, conserved sequence in their promoters known as the N-box motif (CCGGAA). Here, in subsynaptic myonuclei (also known as fundamental myonuclei), Ets transcription factors bind and facilitate the transcription of synaptic genes, including AChR subunits (Chrnα and Chrnε), acetylcholinesterase (AChEst), Musk, Rapsh, and utrophin (Utrn). Although Ets factors are dispensable for synapse formation [43–45], these proteins play a remarkable role in NMJ remodelling. For example, rodents lacking GABPa/β exhibit impaired postsynaptic development as a result of attenuated agrin signalling and reduced subsynaptic gene transcription [43,44]. Furthermore, Hippenmeyer and colleagues demonstrate severe impairments in NMJ plasticity and function in animals lacking Erm [45]. This evidence underscores the importance of Ets transcription factors, specifically GABPa/β and Erm, in regulating the NMJ gene expression program and synaptic function.

The transcriptional coactivator PGC-1α is another important modulator of the NMJ [28,46,47]. PGC-1α is regulated through several post-translational modifications that are mediated by upstream molecules such as adenosine monophosphate-activated protein kinase (AMPK), which is critical protein that governs neuromuscular system biology [28]. Mechanistic links have been elegantly established between PGC-1α and synaptic gene regulation via GABPa/β/N-box signalling [15,48]. Further evidence for the role of PGC-1α in the NMJ gene program can be observed in vivo [17,18,49,50]. For instance, in addition to demonstrating slower, and more oxidative muscle characteristics such as mitochondrial biogenesis and type 1 and 2a myosin heavy chain expression, mice overexpressing PGC-1α specifically in skeletal muscle exhibit a strong postsynaptic gene expression signature, as well as a type 1 αMN phenotype [50,51]. Interestingly, the latter alternate indicates that the transcriptional coactivator mediates a retrograde signalling network from myofibers to their innervating αMN. Elaborating on this phenomenon, Mills and colleagues recently showed in cell culture experiments that a PGC-1α isoform directs axon recruitment and NMJ formation through the release of the myokine, neurturin [52]. Thus, interventions that stimulate PGC-1α in skeletal muscle, like exercise for example, may evoke adaptive plasticity throughout the peripheral neuromuscular system. This warrants further research into the therapeutic potential of this protein.

PGC-1α-mediated induction of utrophin via GABPa/β/N-box signalling has been demonstrated in numerous studies [15,48,53]. Utrophin is the key component of the utrophin-associated protein complex (UAPC), an oligomeric structure that is homologous to the DAPC. However, unlike the DAPC, which resides in the troughs of the postsynaptic folds at the NMJ and along the length of the sarcolemma, the UAPC is typically concentrated at the crests of the postsynaptic invaginations, but can also be found to a lesser extent extrasynaptically [54]. In fact, slow-twitch, oxidative muscles possess significantly greater amounts of extrasynaptic utrophin compared to faster, more glycolytic muscles, which is thought to be due, in part, to...
enhanced transcriptional and post-transcriptional processes in slow, oxidative myofibers [53]. Nonetheless, work from Deconinck et al. and Grady et al. demonstrated that the absence of utrophin only modestly affects NMJ biology [55,56]. The true impact of utrophin is revealed in the context of DMD, which will be discussed in greater detail later in our survey.

Another notable target of PGC-1α and GABPα/β/N-box transcriptional activation are the Chrm genes, including the δ and ε subunits [15,20,40]. The density of synaptic AChRs is regulated by processes that synthesize, stabilize, and dismantle the receptors. Invected AChRs typically possess a half-life of ~14 days, after which they are endocytosed from the motor endplate and either stored in intracellular compartments, recycled back to the synapse, or degraded [19]. The fate of AChRs is heavily influenced by their phosphorylation status and stability, which are governed by the cAMP/protein kinase A (PKA) signalling pathway [19,37]. AChR elimination involves autophagic machinery such as autophagy related 7 (ATG7), muscle ring finger 1 (MuRF1), sequestosome 1, E3 ubiquitin-protein ligase TRIM63, and Rab5-GTPase [19,57]. Mechanisms that regulate AChR biology pose as a potential therapy for DMD and will be further discussed below.

4. Synaptic biology in DMD and therapies targeting the NMJ

Early studies in DMD patients and mdx mice revealed that the absence of dystrophin resulted in fragmented NMJs and denuded postsynaptic folds [4,6,7,12,13,58], as well as an accelerated degradation of AChRs [59] (Table 1). These alterations, which are also observed in ageing NMJs, may not necessarily translate into functional impairments in neuromuscular transmission [60], whereas a simplified endplate morphology can contribute to the loss of crucial postsynaptic membrane proteins [61]. These initial observations in postsynaptic alterations have since been reported numerous times in mdx mice [9–11,62–64], golden retriever muscular dystrophy dogs [65], and other animal models of DMD [66,67]. Whether these changes occur independent from dystrophy-induced muscle degeneration/regeneration is debated [68]. The absence of dystrophin also alters the presynaptic apparatus of the NMJ likely due, in part, to fragment-ation of the motor endplate [11]. Specifically, an increase in presynaptic nerve terminal branching, as well as partial denervation have been observed in mdx animals [11], while axonal sprouting occurs in DMD patients and mice [13,69].

Initial electrophysiology experiments revealed modest declines in mEPP and EPP amplitudes and a compensatory increase in quantal content in the diaphragm of mdx mice, which is the muscle that most closely phenocopies the human dystrophic pathology (Table 2) [6,7]. More recently, Van der Pijl et al. demonstrated augmented quantal content, and reductions in mEPP amplitude and the safety factor for neurotransmission in mdx mice, as well as in the more severe dystrophin-utrophin double knockout animals [66]. Additionally, high-strain, low-repetition, eccentric muscle damage in mdx mice results in a loss of force production, as well as exacerbates pre-existing impairments in neuromuscular transmission and fragments the

### Table 1

| Reference                | DMD model | Age   | Muscles studied       | Presynapse                      | Postsynapse                              |
|--------------------------|-----------|-------|-----------------------|----------------------------------|------------------------------------------|
| Torres and Duchen 1987   | mdx       | 4 wk  | Soleus                | Not reported                     | Reduced synaptic fold size (all age groups) |
|                          |           | 7 wk  |                       |                                  | Fragmented (4 mo)                        |
|                          |           | 4 mo  |                       |                                  |                                          |
| Nagel et al., 1990       | mdx       | 2.5 wk| Diaphragm             | Not reported                     | Reduced synaptic fold size (all age groups) |
|                          |           | 8.5 wk|                       |                                  | Increased AChR area (2.5 wk, 37 wk)       |
|                          |           | 37 wk |                       |                                  | Similar AChR area (8.5 wk)               |
| Lyons and Slater 1991    | mdx       | 8 wk  | EPT                   | Not reported                     | Reduced synaptic fold size               |
| Grady et al., 1997       | mdx       | 8 wk  | Sternomastoid          | Not reported                     | Reduced synaptic fold size               |
|                          | mdx:utrn−/−| 8 wk  | Sternomastoid          | Not reported                     | Reduced synaptic fold size               |
| Santa Neto et al., 2003  | mdx       | 5–6 mo| Sternomastoid          | Not reported                     | Fragmented                               |
| Minatel et al., 2003     | mdx:utrn−/−| 1 wk  | Sternomastoid          | Similar innervation (P1, 1 wk)   | Fragmented                               |
|                          |           | 2 wk  |                       | (2 wk, 3 wk)                     |                                          |
|                          |           | 3 wk  |                       |                                  |                                          |
| Personius and Sawyer 2006| mdx       | 6–8 mo| Diaphragm             | Not reported                     | Fragmented                               |
| Marques et al., 2008     | mdx       | 1 mo  | Sternomastoid          | Not reported                     | Fragmented                               |
|                          |           | 6 mo  |                       |                                  | Fragmented (both age groups)             |
| Farrow et al., 2011      | mdx       | 2 mo  | Intrinsic laryngeal, sternomastoid | Not reported                     | Fragmented                               |
| Pratt et al., 2013       | mdx       | 2–3 mo| Quadriceps            | Not reported                     | Fragmented (worsened with damage)        |
| Pratt et al., 2014       | mdx       | 3 mo  | Quadriceps            | Not reported                     | Fragmented (worsened with damage)        |
| Pratt et al., 2015       | mdx       | 3 mo  | Quadriceps            | Increased nerve branching         | Fragmented (worsened with damage)        |
| Van der Pijl et al., 2016| mdx       | 2–6 mo| EPT, diaphragm         | Not reported                     | Fragmented                               |
| Van der Pijl et al., 2018| mdx       | 2–5 mo| EPT, diaphragm         | Not reported                     | Fragmented                               |
| Haddox et al., 2018      | mdx       | 2–5 mo| EPT, diaphragm         | Not reported                     | Fragmented                               |
|                         | GRMD      | 1–6 yr| Cranial tibial         | Similar nerve branching (all age groups) | Fragmented (all age groups) |
|                         |           |      |                       | Fragmentation (worsened with age)  |                                          |

**NMJ morphology in DMD NMJ structure in pre-clinical models of DMD versus healthy littersmates.**

| Reference       | DMD model | Age   | Muscles studied       | Presynapse                      | Postsynapse                              |
|-----------------|-----------|-------|-----------------------|----------------------------------|------------------------------------------|
| Jerusalem 1974  | 3         | 3–6 yr| Peroneus brevis       | Similar terminal size            | Reduced synaptic fold size               |
| Hariman 1976    | 13        | 4–8 yr| Vastus internus, gastrocnemius, deltoid, palmaris longus, peroneus brevis | Increased axonal sprouting (all age groups) | Reduced synaptic fold size               |
| Sakakibara et al., 1977 | 3 | 5–11 yr| Intercostal          | Partial innervation              | Reduced synaptic fold size               |

DMD, Duchenne muscular dystrophy; AChR, acetylcholine receptor; EPT, epitrochleoanconeus; GRMD, golden retriever muscular dystrophy dog; NMJ, neuromuscular junction; wk weeks; mo, months; yr, years; P, postnatal day.
neuronal and muscle impairments contribute to reduced muscle llemma integrity [70]. The loss of the postsynaptic apparatus [9–11] may also be attributed to depressed muscle excitability secondary to the loss of sarcosomal integrity [70–72]. Nonetheless, it is very likely that both neuronal and muscle impairments contribute to reduced muscle activity, and elevated wasting and weakness in the dystrophic condition. Consistent with rodent work, electrophysiological metrics such as impulse transmission, resting membrane potential, and the common muscle action potential, are also affected in DMD patients as impulse transmission, resting membrane potential, and the common muscle action potential, are also affected in DMD patients.

**Table 2**

NMJ electrophysiology in DMD Electrophysiology in pre-clinical models of DMD versus healthy littermates.

| Reference | DMD model | Age | Muscles studied | Electrophysiological characteristics |
|-----------|-----------|-----|-----------------|--------------------------------------|
| Nagel et al., 1990 | mdx | 2.5 wk, 8 wk, 37 wk | Diaphragm | Similar quantal content (2.5 wk) |
| Lyons and Slater 1991 | mdx | 8 wk | EPT | Similar mEPP amplitude |
| Grady et al., 1997 | mdx | 8 wk | Sternomastoid | Similar mEPP amplitude |
| Deconinck et al., 1997 | utrn | 8 wk | EDL and diaphragm | Increased twitch relaxation time |
| Carlson and Roshek 2001 | mdx | 5–7 wk, 6–24 mo | Diaphragm | Reduced mEPP amplitude (both age groups) |
| Personius and Sawyer 2006 | mdx | 6–8 mo | Diaphragm | Reduced mEPP amplitude variance (5–7 wk) |
| Pratt et al., 2013 | mdx | 2–3 mo | Quadriceps | Increased mEPP amplitude |
| Pratt et al., 2014 | mdx | 3 mo | Quadriceps | Reduced mEPP amplitude |
| Van der pijl et al., 2016 | mdx | 2–6 mo | Diaphragm (electrophysiology, force kinetics), EPT, and GSP complex (EMG) | Increased quantal content |
| Van der pijl et al., 2018 | mdx | 2–5 mo | Diaphragm (electrophysiology, force kinetics, IHC), EPT, and GSP complex (EMG) | Increased mEPP amplitude variance (6–24 mo) |
| mdx-XistΔhs | 2–5 mo | Diaphragm (electrophysiology, force kinetics, IHC), EPT, and GSP complex (EMG) | Reduced mEPP amplitude |

**Electrophysiology in DMD patients compared to healthy participants**

| Reference | Cohort | Age | Muscles studied | Electrophysiological characteristics |
|-----------|--------|-----|-----------------|--------------------------------------|
| Panayiotopoulos 1974 | 9 | 3–12 yr | Extensor digitorum brevis | Reduced motor unit action potential |
| Sakakibara 1977 | 3 | 5–11 yr | Intercostal | Similar peak terminal latency |
| Hilton-Brown and Stalberg 1983 | 8 | 8–19 yr | Extensor digitorum communis | Reduced mEPP amplitude |
| Sharma et al., 1995 | 11 | 5–10 yr | Tibialis anterior | Reduced mEPP amplitude |

CMAP, compound muscle action potential; DMD, Duchenne muscular dystrophy; EMG, electromyography; EPC, endplate potential current; EPP, endplate potential; EPT, epirochlearis; GSP, gastrocnemius-soleus-plantaris; mEPC, miniature EPC; mEPP, miniature EPP; hr, hours; mo, months; wk, weeks; yr, years.
(Table 2) [4,73–75]. Collectively, these data indicate that dystrophin is essential for the proper maturation of the synapse and is required for optimal neurotransmission at the NMJ.

4.1. Agrin/LRP4/MuSK signalling in DMD

The fragmented nature of the synapse in dystrophic muscle indicates that the mechanisms controlling NMJ morphology are dysregulated, specifically those that govern the post-synaptic apparatus. The absence of dystrophin dissociates the DAPC and its key agrin signalling machinery important for NMJ maturation [20,76]. For example, the loss of the DAPC component dystroglycan prevents agrin binding and disorganizes AChR clustering [76,77]. Furthermore, reduced MuSK mRNA and protein expression can be observed in the quadriceps muscles of animals lacking dystrophin [9,10]. Partial inactivation of the kinase, through transgenic ablation or MuSK autoantibodies, accelerates the loss of AChRs and impairs neurotransmission [78–80], which are characteristics of dystrophic synapses. This suggests that MuSK content and/or activity is attenuated in DMD, however first-hand data in patients are currently lacking.

Despite its lower expression and function levels in dystrophic muscle, the agrin/LRP4/MuSK signalling cascade may serve as valid candidates for muscular dystrophy therapies. Agrin-derived constructs, known as mini-agrins, ameliorate neuromuscular transmission and AChR clustering in murine models of congenital myasthenic syndrome (CMS) and limb girdle muscular dystrophy [41], as well as increase utrophin expression in cultured myotubes [81]. The use of agrin-based therapies has not yet been evaluated in the context of DMD. Augmenting MuSK expression in mdx animals via an adeno-associated virus (AAV) vector reduced neuromuscular failure from eccentric muscle damage and elevated DAPC/UAPC components [16]. Furthermore, AAV induction of downstream effector proteins rapsyn and DOK7 conferred unique neuromuscular alterations in several disparate models of NMDs, including DMD [16], CMS [82], SMA [83], and Amyotrophic lateral sclerosis [84]. Thus, these pre-clinical data indicate that targeting the agrin/LRP4/MuSK cascade may eventually yield promising therapeutic effects in DMD patients.

4.2. Regulation of the NMJ gene expression program in DMD

Surprisingly, GABPα/β biology has not yet been directly examined in dystrophic muscle. However, we can infer the stimulation of this signalling pathway in DMD since a number of N-box-containing genes are elevated, such as Uttrn and Chrn, which will be discussed in greater detail below. An alternative regulator of the N-box, ERK, may also be partly responsible for this selective increase of synaptic genes, as ERK signalling is upregulated in mdx mouse muscle [85]. The potential regulatory role of PGC-1α in GABPα/β/N-box signalling in dystrophic muscle [15,48], as well as the function of the transcriptional coactivator as a master regulator of neuromuscular phenotype [50,51], has led to an interest in PGC-1α as a possible therapeutic target in DMD. Indeed, several studies have shown that augmenting PGC-1α expression via genetic, pharmacologic, and physiological means, can reduce the dystrophic phenotype in pre-clinical models of DMD (see 28,53 for comprehensive review). The mechanisms by which PGC-1α exerts its beneficial effects in DMD include evoking the NMJ gene expression program, as demonstrated by increased Agrn, Musk, and Chrn expression [15,17,18]. Moreover, PGC-1α also drives the expression of slower, more oxidative characteristics, which endows muscle with a greater degree of protection against the dystrophic phenotype. A notable indicator of the slow, oxidative phenotype is high synaptic and extrasynaptic utrophin expression [53,86], however it is unclear whether utrophin is required for improved molecular and physiological outcomes in mdx mice elicited by, or associated with, PGC-1α induction [18,87].

Regardless of whether utrophin is necessary or not for the effects of PGC-1α, the dystrophin homologue is nevertheless a critically important NMJ molecule when considering potential therapeutic approaches for DMD. An endogenously expressed protein, utrophin content is consistently upregulated in the skeletal muscles of pre-clinical DMD animal models, as well as in DMD patients [88]. This is very likely a compensatory adaptation in an effort to account for the absence of dystrophin. In fact, some data indicate that a positive relationship exists in DMD patients between utrophin protein expression in skeletal muscle and the age of symptom onset [89], while other results indicate no correlation [90]. In mdx mice, further induction of utrophin significantly mitigates the dystrophic phenotype, as well as rescues NMJ morphology and improves synaptic function [27,29,53]. Conversely, the absence of utrophin significantly exacerbates the dystrophic pathology in mdx animals and results in a relatively more accurate phenocopy of the human DMD condition [28]. Therefore, utrophin is clearly an important molecule at the NMJ with substantial therapeutic potential in DMD. Successful translation of utrophin-mediated strategies in patients remains a high priority.

In dystrophic muscle, impaired cAMP/PKA signalling destabilizes and expedites the elimination of AChRs [37,59]. However, this loss is coincidentally offset by the upregulation of Chrn gene expression [11,91] and AChR incorporation at the synapse [59], which therefore maintains net AChR content at the motor endplate at a similar level as compared to the healthy, non-dystrophic condition. Interestingly, attenuating the accelerated loss of AChRs through cAMP signalling also decreases the rate of total protein degradation in skeletal muscle [59]. Several pre-clinical studies with mdx animals have demonstrated the therapeutic applicability of β2 adrenergic receptor agonists, which are potent stimulators of cAMP production and downstream signalling [92]. Specifically, chronic, low doses of β2 agonists, including formoterol and clenbuterol, reduce muscle degeneration and increase force production in mdx animals [92]. Clinical studies investigating the effects of cAMP agonists are limited in number, but have also demonstrated improvements in muscular health in Duchenne and Becker patients [93,94]. These β2 agonist-driven benefits are likely caused, at least in part, through cAMP/PKA signalling at the NMJ, and suggest that regulating AChR biology may provide some therapeutic utility for DMD in the future.

4.3. Activity-induced plasticity of the dystrophic NMJ

Synaptic activity is essential for maintaining the structure and function of the NMJ [23]. Increases or decreases in neural stimulation drives remodelling of the neuromuscular synapse [19,95]. For example, advanced ageing is commonly associated with decreased peripheral nerve activity, NMJ fragmentation and neurotransmission impairments, which are all mitigated by chronic exercise [19,46]. The favourable alterations at the NMJ represent only a tiny fraction of the health benefits provided by habitual physical activity. The underlying molecular mechanisms responsible for exercise-induced NMJ adaptations remain undefined, but likely include MuSK upregulation, AMPK and PGC-1α signalling, and AChR stabilization [46]. To our knowledge, the data on exercise and the NMJ in DMD are limited. For instance, daily, volitional physical activity increased utrophin protein expression in mdx mice [96], and chronic, endurance exercise augmented Uttrn in DMD patients [97]. In the absence of additional primary data, we can reasonably speculate as to what impacts exercise would have on neuromuscular synaptic morphology and function in DMD. For example, given that autophagy is essential for optimal NMJ function in the healthy condition, including AChR turnover [98], and exercise robustly stimulates autophagic processes in healthy and dystrophic skeletal muscle [99], then exercise-induced autophagy may act to rescue dystrophic NMJ morphology and function. Moreover, since low-intensity exercise preserves muscle health and physical function in DMD patients [100], it is likely that, as the interface
between muscles and their motor nerves, the NMJ is also positively affected. Examining physical activity-evoked alterations in the structure and function of the NMJ in the DMD context, as well as the underlying molecular mechanisms driving phenotypic plasticity, will increase our understanding of the biology of the neuromuscular system and may lead to the identification and development of novel therapeutic strategies for this disorder.

4.4. Restoration of dystrophin

Perhaps the ideal resolution for the neuromuscular defects in DMD, including at the NMJ, is to restore dystrophin. Indeed, in mdx mice only 5–15% of normal dystrophin levels is sufficient to augment muscle function and prolong survival [101], whereas a higher requirement, estimated to be 20–50%, is needed to improve synaptic morphology and function [67]. However, translating this solution to the clinic is challenging. This is due, in part, to the exceptionally large size of the DMD gene, which limits the viability of some dystrophin-based gene therapies. On the other hand, delivery to the muscles of truncated variants of dystrophin, for example mini- or micro-dystrophin, leads to the reassembly of the DAPC and significantly attenuates the dystrophic pathology [29]. For instance, treatment of mdx animals with mini-dystrophin rescued postsynaptic fold complexity [2]. As small molecule, viral, and other dystrophin-based gene and cell therapies improve in their efficacy, safety and practicality, we anticipate correction of the NMJ and amelioration of the broader dystrophic pathology.

5. Outstanding questions

The accumulation of synaptic alterations and molecular dysregulation are common in pre-clinical models of DMD. Indeed, the absence of dystrophin significantly impacts NMJ structure, function, and gene expression. This is exemplified, in part, by increased NMJ fragmentation, reduced postsynaptic folding, and elevated neuromuscular transmission variability and fatigue that contribute to the progressive muscle atrophy and weakness that characterize pre-clinical DMD, and to a lesser extent due to the paucity of human studies in this area, DMD patients (Fig. 1, Tables 1 and 2). Molecular mechanisms underlying NMJ adaptations have been identified and include alterations in the agrin/LRP4/MuSK, GABPα/b/N-box, PGC-1α, and cAMP/PKA signalling pathways. Importantly, additional work is necessary to further confirm the importance of these cascades in DMD patients. Several pre-clinical, proof-of-principle studies employing genetic or pharmacological approaches have recently demonstrated that targeting these pathways attenuate NMJ morphological and functional abnormalities.
functional abnormalities, and by extension mitigate disease progression and severity in dystrophic muscle. A summary of these NMJ-modifying gene expression and signalling cascades are presented in Fig. 2. A current challenge is to translate these pre-clinical data into effective treatments for DMD patients. Continued evaluation of neuregulin/Erbb, Wnt/β-catenin, and Hippo/Yes-associated protein pathways may reveal novel mechanisms for therapeutic pursuit in muscular dystrophy. Additionally, low-intensity, rationally-prescribed (e.g., limiting stressful eccentric contractions) exercise-induced synaptic activity is a safe, accessible, and low-cost behavioural strategy well known to enhance NMJ biology in health conditions that mimic in some ways the dystrophic pathology, such as advanced ageing. However, further research is required to resolve the molecular mechanisms of exercise in the DMD context, particularly with respect to the NMJ. As more practical dystrophin-based gene, cell, and small molecule therapies with better efficacy continue to emerge, we anticipate their correction of NMJ biology as part of a broader improvement in the dystrophic pathology.

In conclusion, the continued examination of the NMJ in DMD will expand our basic understanding of neuromuscular biology. This information may be useful for designing NMJ-targeted drug or behavioural strategies to address the dystrophic pathology and other disorders of the neuromuscular system.

6. Search strategy and selection criteria

Data for this review were identified by searches of PubMed and Google scholar using the search terms (“DMD”) AND (“NMJ”, “neurotransmission”, “synaptic genes”, OR “therapies”). References from relevant articles were also manually sought after. All articles referenced are academic and peer reviewed. A preference was given to articles published recently.

Author contributions

SYN and VL conceptualized the paper. SYN wrote the manuscript, constructed the tables, and prepared figures. VL supervised the writing and editing of the manuscript. Both authors have read and approved the final version of the manuscript.

Declaration of Competing Interest

The authors have nothing to disclose.

Acknowledgements

We are grateful to members of the Integrative Neuromuscular Biology Laboratory and to colleagues in the Exercise Metabolism Research Group at McMaster University for rich discussion and culture. Work in the authors’ laboratory is funded by the Canadian Institutes of Health Research, the Canada Research Chairs program, the Natural Science and Engineering Research Council of Canada (NSERC), the Ontario Ministry of Economic Development, Job Creation and Trade (MEDJCT), and Muscular Dystrophy Canada. SYN is a recipient of an NSERC Postgraduate Graduate Scholarship. VL is the Canada Research Chair (Tier 2) in Neuromuscular Plasticity in Health and Disease and is a MEDJCT Early Researcher. All funding organizations did not have a role in the design, interpretation, or writing of this paper.

References

[1] Pilgram GS, Potikkanond S, Baines RA, Fradkin LG, Noordemeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol 2010;41(1):1–21.
[2] Banks GB, Chamberlain JS, Froehner SC. Truncated dystrophins can influence neuromuscular synapse structure. Mol Cell Neurosci 2009;40(4):433–41.
[3] Panayiotopoulos CP, Scarpalezos S, Papapetropoulos T. Electrophysiological estimation of motor units in Duchenne muscular dystrophy. J Neurol Sci 1974;23(1):89–98.
[4] Sakalikara H, Engel AG, Lambeth EB. Duchenne dystrophy: Ultrastructural localization of the acetylcholine receptor and intracellular microelectrode studies of neuromuscular transmission. Neurology 1977;27(8):741–5.
[5] Minatel E, Santo Neto H, Marques MJ. Acetylcholine receptor distribution and synaptic elimination in congenital muscular dystrophy of mdx mice. Muscle Nerve 2003;28(5):561–9.
[6] Nagel A, Lehmann – Horn F, Engel AG. Neuromuscular transmission in the mdx mouse. Muscle Nerve 1990;13(8):742–9.
[7] Lyons PR, Slater CR. Structure and function of the neuromuscular junction in young adult mdx mice. J Neurolingu 1991;20.
[8] Kong J, Anderson JE. Dystrophin is required for organizing large acetylcholine receptor aggregates. Brain Res 1999;839(2):298–304.
[9] Pratt SJ, Shah SB, Ward CW, Kerr JP, Stains JP, Lovering RM. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci 2014;71(1):153–64.
[10] Pratt SJ, Shah SB, Ward CW, Inacio MT, Stains JP, Lovering RM. Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles. J Physiol 2013;591(2):559–70.
[11] Pratt SJ, Valencia AP, Le GK, Shah SB, Lovering RM. Pre-and postsynaptic changes in the neuromuscular junction in dystrophic mice. Front Physiol 2015;6(S1):62.
[12] Jerusalem F, Engel AG, Gomez MR. Duchenne dystrophy: II. Morphometric study of motor end-plate fine structure. Brain 1974;97(1):123–30.
[13] Harriman DGF. A comparison of the fine structure of motor end-plates in duchenne dystrophy and in human neurogenic diseases. J Neurol Sci 1975;28(2):233–47.
[14] Pisani C, Strimpakos G, Babanella F, Di Certo MG, Onori A, Severini C, et al. Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice. Biochim Biophys Acta – Mol Basis Dis 2018;1864(4):1172–82.
[15] Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 2007;21(7):770–83.
[16] Trajanovska S, Ban J, Huang J, Gregorevic P, Morsch M, Allen DG, et al. Muscle Specific Kinase (MuSK) protects dystrophic mdx mouse muscles from eccentric contraction-induced loss of force-producing capacity. J Physiol 2013;577(3):839.
[17] Hollinger K, Gardan-Salmon D, Santana C, Rice D, Snella E, Selbsy JF. Rescue of dystrophic skeletal muscle by PGC-1α involves restored expression of dystrophin-associated protein complex components and satellite cell signaling. Am J Physiol – Regul Integr Comp Physiol 2013;305(1):13–23.
[18] Chan MC, Rowe GC, Raghuram S, Pattten IS, Farrell C, Arany Z. Postnatal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin. Skelet Muscle 2014;4(1).
[19] Rudolf R, Khan MM, Labelt S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci Front 2014;6:99.
[20] Tintignac LA, Brenner HR, Rüegg MA. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev 2015;95(3):809–52.
[21] Burden SJ, Huijbers MG, Remedio L. Fundamental molecules and mechanisms for forming and maintaining neuromuscular synapses. Int J Mol Sci 2018;19(2):1–19.
[22] Li L, Xiong W-C, Mei L. Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol 2018;80:159–88.
[23] Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Publ Gr 2014;15:703–305.
[24] Emery AEH. Population frequencies of inherited neuromuscular diseases-a world survey. Neuromusc Disord 1991;1:19–29.
[25] Birnkrant DJ, Bublisky K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilition, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018;17:251–67 Elsevier.
[26] Landfield E, Lindgren P, Bell CF, Schmitt C, Guglielli M, Straub V, et al. The burden of Duchenne muscular dystrophy an international, cross-sectional study, 2014.
[27] Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen G-JB, Kunkel LM. The pathogenesis and therapy of muscular dystrophies. Annu Rev Genomics Hum Genet 2015;16(1):281–308.
[28] Dial AG, Ng SY, Manta A, Ljubicic V. The role of AMPK in neuromuscular biology and disease. Trends Endocrinol Metab 2018;29(5):300–12.
[29] Guiraud S, Davies KE. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 2017;34:36–48.
[30] Allen DC, Whitehead NP, Froehner SC. Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 2015;95(1):253–305.
[31] Sanes JR, Yamagata M. Many paths to synaptic specificity. Annu Rev Cell Dev Biol 2009;25:161–95.
[32] Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neuro 2019;15:373–86 Nature Publishing Group.
[33] Hofmann EP. Pharmacotherapy of Duchenne muscular dystrophy In: Handb Exp Pharmacol 2019:25–37.
[34] Frank DE, Schnell FJ, Akana C, El-Husayni SH, Desjardins CA, Morgan J, et al. Increased dystrophin production with goldismin in patients with Duchenne muscular dystrophy. Neurology 2020;94(21):e2270–82.
Personius KE, Sawyer RP. Variability and failure of neurotransmission in the diaphragm of mdx mice. Neuromuscul Disord 2006;16(3):168–77.

Haddix SG, Lee Y, Korneyj GN, Thompson WJ. Cycles of myofiber degeneration and regeneration lead to remodeling of the neuromuscular junction in two mammalian models of Duchenne muscular dystrophy. PLoS One 2018;13(10): e0205956.

van der Pijl EM, van Putten N, Nixs EH, Verschueren JGM, Aartus-Ara R, Plomp J. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur J Neurosci 2016;43(2):1623–35.

devan der Pijl EM, van Putten N, Nixs EH, Verschueren JGM, Aartus-Ara R, Plomp J. Low dystrophin levels are insufficient to normalize the neuromuscular synaptic abnormalities of mdx mice. Neuromuscul Disord 2018;28(5):427–42.

Leverging RM, Iyer V, Edwards R. Alterations of neuromuscular junctions in Duchenne muscular dystrophy. Neurosci Lett 2020 [Internet] [cited 2020 Aug 26]; Available from: https://doi.org/10.1016/j.neulet.2020.135304.

Neto HS, Martins AJ, Minatel E, Marques J. Axonal sprouting in mdx mice and its relevance to cell-based therapies for Duchenne muscular dystrophy. Neurosci Lett 2003;341(3):67–9.

Call JA, McKeenhen JN, Novotny SA, Lowe DA. Progressive resistance voluntary wheel running in the mdx mouse. Muscle Nerve 2010;42(6):871–80.

Roy P, Rau F, Ochala J, Messaint J, Fraysse B, Laine J, et al. Dystrophin restoration therapy improves both the reduced excitation and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skelet Muscle 2016;6(1).

Baumann CW, Warren GL, Lowe DA. Plasmalemma function is rapidly restored in Mdx mouse muscles after eccentric contractions. Med Sci Sports Exerc 2020;52(2):354–61.

Hilton-Brown P, Stälberg E. Motor unit size in muscular dystrophy: macro EMG and EMG scanning EMG study. J Neurol Neurosurg Psychiatry 1983;46(3):996–1005.

Sharma RR, Mynhart MA, Miller RG. Muscular fatigue in Duchenne muscular dystrophy. Neurology 1995;45(2):306–10.

Carlson GG, Roshek DM. Adult dystrophic (mdx) endplates exhibit reduced quantal size and enhanced quantal variation. Pfuiigers Arch Eur J Physiol 2001;442(5):369–75.

Belhasan DC, Akaoumbeone M. The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci Lett 2020;722(Febuary).

Cote PD, Mouldes BL, Wenham MB, Carbonetto JC. Dystrophic mdx mice deficient in dystroglycans develop muscular dystrophy and have disrupted myonuclear synapses. Nat Genet 1999;23(3):338–42.

Hesser BA, Henschel G, Wittnymann V. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of Myo. Mol Cell Neurosci 2006;33(1):470–80.

Morsch M, Reddel SW, Ghazanfari N, Toyka K V, Phillips WD. Muscle specific kinase (MuSK) autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Exp Neurol 2012;237(2):286–95.

Ghazanfari N, Morsch M, Reddel SW, Liang SX, Phillips WD. Muscle-specific kinase (MuSK) autombodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction. J Physiol 2014;592(13):2681–97.

Gramolini AO, Burton EA, Tinsley JM, Ferns MJ, Liu C, et al. Muscle-specific monoclonal antibody for MuSK and ACh receptor retention at the mouse neuromuscular junction. J Exp Biol 2005;208:2908–17.

Krell KM, Monjeau D, Silveira WA, Wild F, Straka T, Isop y, et al. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc Natl Acad Sci USA 2016;113(3):746–50.

Chakkalakal J V, Lu J, Haidar BM, Sanes JR. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 2010;137(20):3489–99.

Arnold AS, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, et al. Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat Commun 2014;5:3569.

Mills R, Taylor-Weiner H, Correia JC, Agudelo LZ, Allodi I, Kolenoloe C, et al. Neurontin is a PGC-1α-controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation. Mol Metab 2018;7(November 5):726–40.

Huppener S, Huber RM, Ladle DR, Murphy K, Arber S. ETS transcription factor GABP is required for postsynaptic differentiation. Cell 1997;136(4):883–98.

Kupr B, Handschin C. Complex coordination of cell plasticity by a PGC-1a. Nat Commun 2014;5(3569).

Krushinsky N, Bignami A, Schenone M, Carbonetto JC. Dystrophin deficiency in dystroglycan mouse models. Neuroucral Neurol Sci 2000;19(4):250–68.

Jaworski A, Smith CL, Burden SJ. GA-binding protein is dispensable for neuromuscular synapse formation and is required for the maintenance of the mature synapse. J Neurobiol 2002;50(5):429–42.

Briguet A, Ruegg MA. The Ets transcription factor GABP is required for postsynaptic differentiation in vivo. J Neurobiol 2002;50(5):429–42.
[94] Skura CL, Fowler EG, Wetzel GT, Graves M, Spencer MJ. Albuterol increases lean body mass in ambulatory boys with Duchenne or Becker muscular dystrophy. Neurology 2008;70(2):137–43.

[95] Deschenes MR. Adaptations of the neuromuscular junction to exercise training. Curr Opin Physiol 2019;10:10–6.

[96] Gordon BS, Lowe DA, Kostek MC. Exercise increases utrophin protein expression in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 2014;49(6):515–8.

[97] Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, et al. Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 2005;19(7):750–60.

[98] Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 2014;8(5):1509–21.

[99] Hood DA, Memme JM, Oliveira AN, Trisio M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol 2019;81(1):19–41.

[100] Ng SY, Manta A, Ljubicic V. Exercise biology of neuromuscular disorders. Appl Physiol Nutr Metab 2018:1–44.

[101] van Putten M, Hulsken M, Nadarajah VD, van Heiningen SH, van Huizen E, van Iterson M, et al. The effects of low levels of dystrophin on mouse muscle function and pathology. PLoS One 2012;7(2):31937.