The utility of bispectral index monitoring in flexible bronchoscopy: A single-center, retrospective observational study

Jun Yamada | Daisuke Hazama | Motoko Tachihara | Yuki Kawanami | Aki Kawaguchi | Atsuhi Yatani | Hiroki Sato | Chihiro Mimura | Naoko Katsurada | Masatsugu Yamamoto | Yoshihiro Nishimura | Kazuyuki Kobayashi

1Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
2Department of Clinical Engineering, Kobe University Hospital, Kobe, Japan

Correspondence
Motoko Tachihara, Department of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
Email: mt0318@med.kobe-u.ac.jp

Abstract
Background: The desired depth of sedation during flexible bronchoscopy is one in which verbal contact is possible whenever necessary. Although it is common that the depth of sedation is assessed by validated instruments such as the modified observer’s assessment of alertness and sedation (MOAA/S) score, the repeated stimulation associated with the assessment can affect the sedation. The bispectral index (BIS) has been widely used for general anesthesia due to its objective and noninvasive nature. However, the utility of BIS monitoring and a target BIS value for use during bronchoscopy have not been fully elucidated.

Methods: We performed a retrospective observational study to assess the utility of the BIS value for monitoring conscious sedation during bronchoscopy at Kobe University Hospital from August 2020 to April 2021.

Results: Eighteen patients underwent bronchoscopy with BIS monitoring. The BIS value significantly correlated with the MOAA/S score ($r = 0.2$, $p < 0.01$), and the correlation was stronger in sufficiently sedated patients ($r = 0.486$, $p < 0.01$). The lowest MOAA/S score during the procedure was highly correlated with the BIS value ($r = 0.625$, $p < 0.01$). The BIS monitoring seemed to be more sensitive to changes in the sedation level than the MOAA/S score, heart rate and mean arterial pressure. The median BIS value at an MOAA/S score of 3–4, the desired depth of sedation, was 82.0.

Conclusions: BIS value is useful for monitoring sedation during bronchoscopy. This study suggests that a BIS value of 82 reflects an adequate level of sedation.

KEYWORDS
BIS value, flexible bronchoscopy, MOAA/S score, sedation

INTRODUCTION
Flexible bronchoscopy (FB) is widely used for the diagnosis and treatment of lung and airway diseases. The British Thoracic Society (BTS) guidelines on diagnostic FB recommend intravenous sedation to promote tolerance, ease of procedure and willingness to undergo a re-examination if needed. Sedation is divided into four levels: minimal sedation, moderate sedation, deep sedation, and general anesthesia. The guideline states that the desired depth of sedation is moderate sedation, in which patients can respond purposefully to verbal commands. The depth of sedation during FB is conventionally assessed by the patient response to stimulation using clinical sedation scales such as the Ramsay sedation score (RSS), Richmond agitation-sedation scale (RASS), observer’s assessment of alertness/sedation (OAA/S) score, and modified observer’s assessment of alertness and sedation (MOAA/S) score. However,
and has been reported to be useful in gas-
Quesada et al. showed
Recently, several reports

Depth of sedation with the
transbronchial needle aspiration (EBUS-TBNA).
undergoing sedation for endobronchial ultrasound-guided
reduced complications and the propofol dose in patients
that, compared with the MOAA/S score, BIS monitoring
group and the OAA/S-guided group.
Fruchter et al. reported that complications and propofol
demonstrated that BIS is useful for monitoring sedation in
FB. To clarify these points, we conducted this retrospective
observational study.

METHODS

Study design and subjects

This was a single-center, retrospective, observational study
to assess the utility of BIS monitoring for conscious sedation
during FB at Kobe University Hospital. All patients who
underwent FB with BIS monitoring between August 2020
and April 2021 were reviewed. The study was approved on
September 27, 2021, by the Institutional Ethics Committee
of the Kobe University Hospital. A waiver of consent was
granted due to the retrospective design and the confirmed
minimal risk to the patients. Instead, the research content
was posted on the hospital website. The study conformed
with the Helsinki Declaration.

Procedure

FB was performed by experienced pulmonologists, while
sedation was performed by a nonanesthesiologist. The level
of sedation was assessed using the MOAA/S score, which
ranges from 0 to 6 (Table 1).

Depth of sedation with the
MOAA/S score was defined as follows: ≥5, minimal seda-
tion; 3–4, moderate sedation; ≤2, deep sedation. Before the
procedure, the pharynx was locally anesthetized with a 4%
lidocaine spray (5 ml) after 2% viscous lidocaine solution
(6 ml) was retained in the mouth without swallowing for
5 min. Sedation was started with intravenous injection of
midazolam (2 mg) 3 min before the insertion of the bron-
choscope. Additional midazolam (1 mg) was given at inter-
vals of 4 min or more when the operator determined
necessary based on the MOAA/S score, blood pressure and
heart rate (HR). If the patient was older than 75 years or
weighed less than 45 kg, the initial dose of midazolam was
reduced to 1 mg. For some patients, pethidine (17.5 mg) or
fentanyl (10–20 μg) was administered in combination with
the initial midazolam injection to facilitate the procedure and
promote comfort. When we used fentanyl, additional fenta-
nyl (10 μg) and midazolam (1 mg) with an interval of 4 min
or more were given as needed. After insertion of the bron-
choscope, topical anesthesia of the upper airway with 2%
lidocaine was administered through the working channel.

BIS monitoring

During the procedure, a disposable BIS sensor (BIS Quatro
sensor; Nihon Kohden) was placed on the patient’s forehead
and connected to a BIS monitoring system (Life Scope TR,
BSM-6301; Nihon Kohden) according to the manufacturer’s
instructions. This system converts the EEG parameters into
BIS value, which is shown on the monitor in the bronchoscopy
room with vital signs. BIS values were recorded every 2.5 min.

Data collection and study definitions

We also recorded the following: demographic characteris-
tics, cumulative doses of midazolam, MOAA/S score at any
given time, vital signs every 2.5 min, and procedural compli-
cations. Complications were defined as (1) respiratory fail-
ure requiring intubation, (2) hemoptysis, (3) SpO2 < 88%
despite bag mask ventilation, (4) arrhythmia requiring car-
dioversion or an antiarrhythmic agent, (5) hypotension:
mean arterial pressure (MAP) < 60 mmHg, (6) pneumotho-
rax, (7) intolerance of the procedure or (8) death. Hepatic
impairment was defined as an elevated alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), or total bili-
rubin above upper limit of normal. Renal impairment was
defined as an estimated glomerular filtration rate (eGFR)
below 60 ml/min.

Statistical analysis

The statistical analyses were performed in EZR software,
version 1.51 (Saitama Medical Center, Jichi Medical
Quantitative variables are expressed as the mean and standard deviation (SD) or median and interquartile range as appropriate. We described categoric variables as frequencies and percentages. Spearman’s rank correlation coefficient was used between the MOAA/S score and BIS value at the nearest time. The Wilcoxon rank-sum test was used to compare the BIS value, MOAA/S score, HR and MAP for each three different moments of the procedure (T1; beginning of the procedure, T2; biopsy, T3; end of the procedure). The Mann–Whitney U test was used to compare BIS values for each MOAA/S score, and to compare the lowest BIS value during the procedure for each age, gender, weight, midazolam dosage, hepatic impairment, and renal impairment. Receiver operating characteristic (ROC) curve analysis was used to evaluate the discriminating performance of the BIS. Statistical significance was set at a \(p \)-value of <0.05.

RESULTS

Eighteen patients were enrolled in this study. The baseline characteristics of the patients are shown in Table 2. Of the total patients, seven patients underwent guide sheath-transbronchial biopsy (GS-TBB), eight underwent EBUS-TBNA, and three underwent bronchoalveolar lavage/transbronchial lung biopsy (BAL/TBLB). As sedative and analgesic agents, 11 patients received midazolam alone, four received midazolam and pethidine, and three received midazolam and fentanyl. The mean dosage of midazolam was 3.88 ± 1.45 mg. The lowest BIS value during the procedure was not significantly affected by age, gender, bodyweight, dosage of midazolam, or hepatic or renal impairment (Table 3). There were no complications in this study.

We first evaluated the correlation between the BIS value and the MOAA/S score. The BIS value during the procedure was significantly correlated with the MOAA/S score

TABLE 2 Patient baseline characteristics

N	Age, years (mean ± SD)	58.9 ± 15.0
	Gender	
	Male	11 (61.1%)
	Female	7 (38.9%)
	Bodyweight (kg, median [range])	60 (58–64)
	Hepatic impairment	4 (22.2%)
	Renal impairment	2 (11.1%)
	Procedure	
	GS-TBB	7 (38.9%)
	EBUS-TBNA	8 (44.4%)
	BAL/TBLB	3 (16.7%)
	Sedatives/opioids	
	Midazolam alone	11 (61.1%)
	Midazolam and pethidine combined	4 (22.2%)
	Midazolam and fentanyl combined	3 (16.7%)
	Dosage of midazolam, mg (mean ± SD)	3.88 ± 1.45

TABLE 3 The lowest BIS value during the procedure

N	Lowest BIS value (median [range])	p-value	
	Age		
	<70 years old	12 77 (70–80.25)	0.347
	≥70 years old	6 75 (68.25–75.75)	
	Gender		
	Male	11 75 (69.5–77)	0.413
	Female	7 77 (72.5–80.5)	
	Bodyweight		
	<50 kg	2 78 (76.5–79.5)	0.41
	≥50 kg	15 75 (69.5–77)	
	Dosage of midazolam/bodyweight		
	<0.05 mg/kg	6 72.5 (70–76.5)	0.579
	≥0.05 mg/kg	11 76 (70–78.5)	
	Hepatic impairment		
	Yes	4 79.5 (76.5–82)	0.0609
	No	14 71 (69–77)	
	Renal impairment		
	Yes	2 72.75 (70.5–75)	0.323
	No	16 76.5 (70–80.25)	

Abbreviations: BIS, bispectral index.
(\(r = 0.2, p < 0.01 \); Figure 1(a)) and was significantly better correlated in sufficiently sedated patients (MOAA/S score \(\leq 4 \)) (\(r = 0.486, p < 0.01 \); Figure 1(b)). Moreover, a strong correlation was observed between the lowest MOAA/S score during the procedure and the BIS value (\(r = 0.625, p < 0.01 \); Figure 1(c)). These results indicate that the BIS value reflects the depth of sedation during FB.

We next sought to find the BIS value that corresponds to the adequate level of sedation in FB. The BIS values significantly changed with the increase in the level of sedation across the categorized MOAA/S scores (Figure 2). The median BIS values for MOAA/S scores of \(\leq 2, 3–4, \) and \(\geq 5 \) were 68.0 (65.5–68.5), 82.0 (79.5–87.5) and 89.0 (81.0–96.25), respectively (Table 4). The ROC curve for the BIS in

Table 4 The median BIS value for each MOAA/S score during the procedure

MOAA/S score	2	3, 4	5, 6
BIS value (median [range])	68.0 (65.5–68.5)	82.0 (79.5–87.5)	89.0 (81.0–96.25)
N	3	39	124

Abbreviations: BIS, bispectral index; MOAA/S, modified observer’s assessment of alertness and sedation score.
predicting sufficient sedation (MOAA/S score ≤4) revealed that the area under the curve (AUC) was 0.676 (95% confidence interval [CI]: 0.586 to 0.766; Figure 3).

Finally, we compared the sensitivity of the BIS value and MOAA/S score to assess the depth of sedation during the procedure. A significant difference was detected in the BIS value between T1 and T2 (97 [92.5–98] at T1 vs. 92 [84–93.5] at T2, \(p = 0.0246 \); Figure 4(a)). In contrast, there was no significant difference in MOAA/S score (Figure 4(b)), HR (Figure 4(c)) or MAP (Figure 4(d)) between these two time points (MOAA/S score; 5 [5] at T1 vs. 5 [4.5–6] at T2, \(p = 0.821 \); HR; 73 [61–85] at T1 vs. 91 [84.5–96.5] at T2, \(p = 0.0751 \); MAP; 97 [91.7–113] at T1 vs. 104.3 [97.5–114.5] at T2, \(p = 0.799 \)). These results suggest that BIS monitoring might be a more sensitive indicator than the MOAA/S score, HR and MAP.

DISCUSSION

We demonstrated the utility of BIS monitoring for assessing the level of sedation in patients undergoing FB. In accordance with previous reports, the BIS value correlated with the clinically observed sedation scales. In this study, the correlation was stronger in patients under sufficient sedation (MOAA/S ≤4) than in all patients. Moreover, the lowest MOAA/S score during the procedure was 3.5. Thus, predicting sufficient sedation using the BIS value is more sensitive than using the MOAA/S score alone.

FIGURE 4 Boxplot of the median bispectral index (BIS) value (a), MOAA/S score (b), HR (c) and MAP (d) at each time point during the procedure. \(p \)-values were calculated by the Wilcoxon rank-sum test. A \(p \)-value <0.05 was considered significant.

Abbreviations: T1, beginning of the procedure; T2, biopsy; T3, end of the procedure.
score and vital signs. Several reports have previously compared the changes due to stimulation in these parameters. Andrezewski et al. observed changes in the BIS and MOAA/S score after receiving intravenous epinephrine during general anesthesia. Comparing the values before and after the epinephrine injection, all patients showed an increase in BIS, while 25% of patients showed no increase in MOAA/S scores. In another study, BIS monitoring was reported to be more sensitive to painful stimulation (endotracheal suctioning or repositioning) than vital signs, including HR and MAP, in intubated patients after cardiac surgery. It is very important to maintain an adequate level of sedation since it should be deep enough to improve patient tolerance but not too deep to prevent serious complications. BIS monitoring is thus a valid monitoring tool for assessing the level of sedation in terms of sensitivity.

This study has several limitations. First, it was a retrospective single-center study with a small sample size. Second, sedation was performed by a different nonanesthesiologist, which might have affected the MOAA/S score due to its subjective nature. Third, the MOAA/S scores were not recorded at regular intervals. Therefore, the number of data points differed among patients. To confirm the usefulness of BIS monitoring in FB, in an ongoing prospective phase III study (jRCTs051210131) of the effect of midazolam with fentanyl compared the changes due to stimulation in these parameters.

In conclusion, the BIS value is useful to assess sedation during FB, and sedation with a BIS value of near 82 might be an option for proper sedation.

AUTHOR CONTRIBUTIONS
JY, DH, MT, YK, AK, AY, HS, CM, NK, and MY acquired the data. JY collected the data. JY, DH, and MT designed the study, analyzed the data and wrote the article. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS
The authors would like to express their gratitude to the participating patients for their cooperation in conducting this study.

CONFLICT OF INTEREST
The authors have no conflicts of interest to disclose.

ORCID
Jun Yamada https://orcid.org/0000-0002-7595-5843
Daisuke Hazama https://orcid.org/0000-0002-7854-3692
Motoko Tachihara https://orcid.org/0000-0002-4598-220X
Masatsugu Yamamoto https://orcid.org/0000-0003-0596-555X

REFERENCES
1. Du Rand IA, Blaikley J, Booton R, et al. British thoracic society guideline for diagnostic flexible bronchoscopy in adults. Respiration. 2013;92:166–75.
2. Wahidi MM, Herth F, Yasufuku K, Shepherd RW, Yarmus L, Chawla M, et al. Technical aspects of endobronchial ultrasound-guided transbronchial needle aspiration: CHEST guideline and expert panel report. Chest. 2016;149:816–35.
3. José RJ, Shaefi S, Navani N. Sedation for flexible bronchoscopy: current and emerging evidence. Eur Respir Rev. 2013;22:106–16.
4. Zheng J, Gao Y, Xu X, Kang K, Liu H, Wang H, et al. Correlation of bispectral index and Richmond agitation sedation scale for evaluating sedation depth: a retrospective study. J Thorac Dis. 2018;10:190–5.
5. Fruchter O, Tirosh M, Carmi U, Rosengarten D, Kramer MR. Prospective randomized trial of bispectral index monitoring of sedation depth during flexible bronchoscopy. Respiration. 2014;87:388–93.
6. Quesada N, Jüder D, Martínez Ubieto J, Pascual A, Chacón E, de Pablo F, et al. Bispectral index monitoring reduces the dosage of propofol and adverse events in sedation for endobronchial ultrasound. Respiration. 2016;92:166–75.
7. Johansen JW. Update on bispectral index monitoring. Best Pract Res Clin Anaesthesiol. 2006;20:81–99.
8. Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014;2014:CD003843.
9. Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology. 1997;86:836–47.
10. Bower AL, Rippe A, Dilger J, Boparai N, Brody FJ, Ponsky JL. Bispectral index monitoring of sedation during endoscopy. Gastrointest Endosc. 2000;52:192–6.
11. Wehrmann T, Grotkamp J, Stergiou N, Riphaus A, Kluge A, Lembocke B, et al. Electroencephalogram monitoring facilitates sedation with propofol for routine ERCP: a randomized, controlled trial. Gastrointest Endosc. 2002;56:817–24.
12. Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, et al. Validity and reliability of the Observer’s assessment of alertness/sedation scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244–51.
13. Kanda Y. Investigation of the freely available easy-to-use software ‘EZK’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.
14. Si L, Lai D, Lee W, Cho K, Han Y, Lee J. Verification of the performance of the bispectral index as a hypnotic depth indicator during dexmedetomidine sedation. Anesth Pain Med (Seoul). 2022;17:44–51.
15. Gélinas C, Tousignant-Lafamme Y, Tanguay A, Bourgault P. Exploring the validity of the bispectral index, the critical-care pain observation tool and vital signs for the detection of pain in sedated and mechanically ventilated critically ill adults: a pilot study. Intensive Crit Care Nurs. 2011;27:46–52.
16. Johansen JW, Sebel PS. Development and clinical application of electroencephalographic bispectral monitoring. Anesthesiology. 2000;93:1336–44.
17. Andrezewski J, Sleigh JW, Johnson IA, Sikiotis L. The effect of intravenous epinephrine on the bispectral index and sedation. Anaesthesia. 2000;55:761–3.
18. Faritous Z, Barzanji A, Azarfarin A, Ghadrdoost B, Ziyaeifard M, Aghdaei N, et al. Comparison of bispectral index monitoring with the critical-care pain observation tool in the pain assessment of intubated adult patients after cardiac surgery. Anesth Pain Med. 2016;6:e38334.

How to cite this article: Yamada J, Hazama D, Tachihara M, Kawanami Y, Kawaguchi A, Yatanai A, et al. The utility of bispectral index monitoring in flexible bronchoscopy: A single-center, retrospective observational study. Thorac Cancer. 2022;13(21):3052–7. https://doi.org/10.1111/1759-7714.14658