Active Dendrites and Local Field Potentials (LFPs): Biophysical Mechanisms and Computational Explorations

M. Sinha, R. Narayanan

INTRODUCTION: FROM ALIEN GADGETS TO INTRINSIC MECHANISMS

In the quest to dissect the functions of the intricate evolutionary marvel that is the human brain, researchers and engineers have been devising fascinating tools. In vivo neuroscience research on the role of neural activity in mediating behavior has benefitted tremendously from the works of pioneers like Richard Caton,—who first performed electroencephalography and recorded electrical activity (electroencephalogram or EEG) from exposed brains of cats, rabbits and monkeys using mirror galvanometers (Catton, 1875, 1877),—Adolf Beck,—who observed spontaneous activity and rhythmic fluctuations that ceased after sensory stimulation (Coenen et al., 2014),—Vladimir Vladimirovich Pravdich-Neminsky,—who first reported evoked potentials in dogs (Pravdich-Neminsky, 1912),—and Hans Berger—who improved the sensitivity of the apparatus and reported oscillations in EEG signals at frequencies around 10–25 Hz (Berger, 1929; Gloor, 1969a, b; Collura, 1993). We have come a long way from the days of EEG recordings from meditating monks (Benson et al., 1990) to the present where neurosurgeons can implant minimally invasive micro-electrocorticogram (ECoG) grids in patients to record local field potentials (LFPs) from areas as delicate as the Wernicke’s (Kellis et al., 2010). We can now record even single cell spikes from the cortical surface using flexible and organic transistors, and from deep brain areas using high-density silicon probes (Buzsaki et al., 2015; Khodagholy et al., 2016; Tybrandt et al., 2018). Thanks to such advancements in closed-loop translational neuro-
electronics and biooptics (Khodagholy et al., 2013; Buzsaki et al., 2015; Chang, 2015; Krook-Magnuson et al., 2015; Rivnay et al., 2017; Cea et al., 2020; Jastrzebska-Perfect et al., 2020), what seemed like “alien gadgets” and yesterday’s science fiction are today’s reality and there has been a burgeoning effort to understand the genesis and function of extracellular spikes and LFPs, in both healthy brains and neurological disorders.

Such an effort has progressed in parallel alongside tremendous strides taken in the field of cellular physiology of neurons and glia, both of which are now recognized to contribute to LFPs (Buzsaki et al., 2012) (Fig. 1A). Classically, LFPs were believed to reflect the synaptic inputs that were received by passive dendritic processes, with the soma as the central processing unit of a neuron (Fig. 1B). While synaptic inputs do play a crucial role in shaping LFPs, it is now well established that dendrites are certainly not mere passive recipients of inputs but express a rich repertoire of active conductances (Magee, 2000; Johnston and Narayanan, 2008; Sjostrom et al., 2008; Spruston, 2008; Narayanan and Johnston, 2012; Nusser, 2012; Major et al., 2013; Stuart and Spruston, 2015) that are equally involved in the processing of inputs, and in the genesis and regulation of LFPs (Reimann et al., 2013; Sinha and Narayanan, 2015; Ness et al., 2016, 2018) (Fig. 1C).

In this review, we discuss some recent developments in this space at the circuit, cellular and molecular scales to highlight the complexity involved in the emergence of this gestalt through the presence of active dendrites. We emphasize the need to account for active dendritic properties, gradients in the constitutive components of active dendritic structures, the dynamic nature of these components involving neuromodulation and plasticity, and ubiquitous heterogeneities that span all biological systems in analyzing LFPs. We elucidate the impact of active dendritic structures on LFPs through illustrative examples, both under physiological and pathological conditions. We provide an overview of the different methods currently being employed to address this complexity at various scales and put forward some future directions for making synergistic advances using computational and experimental approaches.

FORMS OF LOCAL FIELD POTENTIALS

The constant flux of ions across the neuronal and glial cell membranes through a diverse set of ion channels, pump, and receptors gives rise to tiny currents and voltage fluctuations which can be recorded from the extracellular matrix. This extracellularly measured voltage signal from the brain has been used to study

Fig. 1. Sources of LFP. (A) A schematic of LFP recording from a population of principal neurons and astrocytes using a single electrode with multiple contact points that serve as recording sites. (B) A single recording electrode with multiple sites and a single pyramidal neuron passive dendrites and voltage-gated ion channels only in the axo-somatic compartments. A small dendritic segment is expanded to highlight various synaptic receptors and passive leak channels that contribute to the transmembrane currents. These currents are in addition to the capacitive current consequent to the two ion-conducting media (the cytosol and the cerebrospinal fluid) separated by a dielectric lipid bilayer. (C) Same as B but with active dendrites. An expanded view of a small dendritic segment highlights the diversity of sub- and supra-threshold ion channels/conductances that also contribute to the transmembrane currents. The morphological reconstructions are modified from neuron n123 in the open-source neuronal morphology database Neuromorpho.org (Ascoli et al., 2007).
distinct features of its ongoing activity. The high frequency
content of this signal contains information about the
spiking activity, reflecting the output from the neurons
surrounding the recording location. The low frequency
content (<300–500 Hz) of the voltage signal, referred
to as the LFP, has been traditionally thought to provide
information about the synaptic inputs that impinge on
the neurons in the form of oscillations and non-rhythmic
sensory-evoked events over which the spikes ride
(Buzsaki et al., 2012). In this section, we highlight some
of the most prominent forms of LFPs observed in the
brain.

Unitary LFPs

Unitary LFPs (uLFPs) are the field potentials generated
from either a single axon or from the spiking activity of a
single unit or presynaptic neuron, typically with a large
number of its axon collaterals impinging on a small
postsynaptic region. The amplitude, duration, and
polarity of uLFPs can vary significantly depending on
the type of presynaptic neuron, the location of its axons
on the postsynaptic target and anatomical connectivity
through postsynaptic receptors (Swadlow et al., 2002;
Bereshpolova et al., 2006; Stoezel et al., 2008;
Glickfeld et al., 2009; Buzsaki et al., 2010). Computational
modeling has been utilized to study the possible mecha-
nisms underlying the uLFP signatures generated by
fast-spiking inhibitory vs regular-spiking excitatory presyn-
aptic single neurons (Hagen et al., 2017; Telenczuk
et al., 2020b). These studies employed anatomically-
constrained virtual slices/neuronal columns comprising
morphologically-realistic post-synaptic neurons with
experimentally determined synapse localization (Hagen
et al., 2017), and trimmed axonal arborization of unitary
presynaptic neuron to match the realistic size of an
in vitro slice (Telenczuk et al., 2020b). They have pro-
vided an explanation for how a disynaptic excitatory uLFP
can sometimes look like an inhibitory uLFP (Buzsaki et al.,
2010), highlighting the latter's dominance when the
recording electrode is located inside a predominantly inhibi-
tory population (Telenczuk et al., 2020b). These studies
also explain why it can often be difficult to separate excita-
tory and inhibitory uLFPs in interconnected circuits and
how spike-triggered averaged LFP signatures can provide
a localized measure of monosynaptic activation (Hagen
et al., 2017; Telenczuk et al., 2020b). Thus, it must be
emphasized that there is a critical role of axonal morphol-
ogy, somato-dendritic synaptic distribution profile,
anatomical connectivity, timing of input arrival, and elec-
trode location in determining the amplitude, duration,
and polarity of uLFPs in particular, and LFPs in general
(Sinha and Narayanan, 2020).

LFP oscillations

One of the most prominent set of analyses of LFPs
pertains to that of its various rhythms, oscillations in
different frequency bands, that have been observed in
almost all regions of the brain and are associated with
distinct behaviors. Brain rhythms are considered to be
one of the key mechanisms for inter-regional
communication, stimulus processing, and memory
formation (Eckhorn et al., 1988; Nicolelis and Shuler,
2001; Buzsaki and Draguhn, 2004; Buzsaki, 2006; Kay
et al., 2009), and are altered in pathological conditions
(Sun et al., 2011; Gandolfo et al., 2012; Yordanova et al.,
2013; Mably and Colgin, 2018; Yin et al., 2021). It has
been argued that these neural oscillations offer distinct
ways of predicting ‘what’ is going to happen ‘when’ in
the sensory environment (Kay et al., 2009; Amal and
Giraud, 2012). In what follows, we briefly touch upon
some of the most prominent and widely studied LFP
oscillations.

Slow Waves: Theta and Alpha Oscillations. Theta
oscillations are large amplitude oscillations observed in
the ~4–10 Hz frequency band of the LFPs in several
limbic regions of the brain including the hippocampus
and entorhinal cortex during awake active exploration,
spatial navigation, and rapid eye movement (REM)
sleep (Buzsaki et al., 1983; Léung, 1984; Buzsaki,
2002; Buzsaki and Draguhn, 2004; Colgin, 2013, 2016).
While they have been well documented in rodent models,
thanks to the development of virtual reality and depth
electrode recording tools, theta oscillations have now
also been recorded and studied in human and non-
human primates (Ekstrom et al., 2005; Watrous et al.,
2011; Jutras et al., 2013; Watrous et al., 2013; Bobbott
et al., 2017; Goyal et al., 2020) and have been reported
to code spatial distance in the absence of sensory cues
(Vass et al., 2016). A recent study in humans has observ-
ations 2 distinct classes of theta oscillations (Goyal et al.,
2020): low-frequency theta oscillations (~3 Hz) that are
prevalent in the anterior hippocampus with their frequency
being invariant to movement speed, and high-frequency
theta oscillations (~8 Hz) that are prevalent in the poste-
rior hippocampus with their precise frequency being cor-
related with the speed of movement. Thus, these two
distinct oscillations may reflect nonspatial cognitive and
spatial processes, respectively. A similar functional dis-
tinction of theta oscillations with reference to spatial vs.
nonspatial information has also been observed in rodents
along the septo-temporal axis and dorso-ventral hip-
 pocampus (Royer et al., 2010; Patel et al., 2012). Theta
rhythms have been linked with path integration, spatial
navigation, spatial/episodic memory formation and mem-
ory consolidation through temporal sequences of cell
assemblies of place and grid cells with cells that are a part
of one assembly showing a common preference for a
specific phase of these oscillations (O’Keefe and
Drostovsky, 1971; O’Keefe and Conway, 1978; O’Keefe
and Nadel, 1978; O’Keefe and Recce, 1993; O’Keefe
et al., 1998; O’Keefe and Burgess, 1999; Buzsaki, 2002;
Harris et al., 2003; Buzsaki, 2005; Harris, 2005;
Hasselmo, 2005; O’Keefe and Burgess, 2005; Huxter
et al., 2008; Buzsaki and Moser, 2013; Hasselmo and
Stern, 2014; Lisman et al., 2017). Loss or disruption
of these rhythms has been reported to result in deficits in
spatial memory and its consolidation during REM sleep
(Winson, 1978; Boyce et al., 2016).

A lot of heterogeneity has been observed in theta
oscillation rhythmenogenesis. One form of theta
oscillations originates due to the interactions between

Please cite this article in press as: Sinha M, Narayanan R. Active Dendrites and Local Field Potentials (LFPs): Biophysical Mechanisms and Computational Explorations. Neuroscience (2021), https://doi.org/10.1016/j.
neuroscience.2021.08.035
the interneurons and excitatory neurons in the medial septum – diagonal band of Broca and supramammillary nucleus (Macadar et al., 1970; Roig et al., 1970; Buzsáki, 2002) with the lateral septum playing a regulatory role (Chee et al., 2015). These oscillations travel and propagate along the septotemporal axis of the hippocampus (Lubenov and Siapas, 2009; Patel et al., 2012) and septal lesions disrupt theta oscillations in the hippocampus and entorhinal cortex (Green and Arduini, 1954; Mitchell et al., 1982). However, there is evidence that theta oscillations could also be generated locally within the hippocampal CA1 via afferents from CA3 and the entorhinal cortex, or even independent of these inputs (in vitro) (Buzsáki, 2002; Goutagny et al., 2009; Colgin, 2013, 2016). In the CA1, dendritic Ca²⁺ spikes have been shown to be associated with the generation of theta oscillations (Kamondi et al., 1998b). Apart from the heterogeneity in theta rhythmogenesis mechanisms, there is also heterogeneity in the modulation of spike timings through theta oscillations. For instance, pyramidal neurons and heterogeneous groups of interneurons found within the CA1 show distinct theta-modulation and phase preference (Csicsvari et al., 1999; Klausberger and Somogyi, 2008; Somogyi et al., 2014). A recent study (Nevas-Olive et al., 2020) has cleverly combined computational and experimental approaches to identify the cell-type-specific intrinsic and synaptic mechanisms, as well as cell morphology, in determining theta-phase preference.

The alpha-band of oscillations (8–14 Hz) overlaps with the theta-band and is observed in the striatum, visual, somatosensory, and pre-motor/motor areas in health and disease (Haegens et al., 2011; Oswal et al., 2013; Halgren et al., 2019; Singh and Papa, 2020). It has been shown that alpha oscillations emerge in humans on closing of the eyes, and hence were thought to be associated with “cortical idling” (Berger, 1929; Pfurtscheller et al., 1996). Alpha waves thus offered new areas for the study of (un)consciousness in physiology and pathology such as locked-in syndrome (Palva and Palva, 2007; Rosburg, 2019). It was found that a progressive drug-induced loss of consciousness is tightly linked to the emergence of a hypersynchronous activity in the alpha band that was widely distributed in the frontal cortex (Supp et al., 2011). Based on the results from the same study involving stimulus-related responses to median nerve stimulation, it was suggested that blocking of intracortical communication by hypersynchronous ongoing activity could be a key mechanism for the loss of consciousness.

In contrast, LFP and spiking-activity recordings in the sensorimotor cortex show that the pulsed inhibition from these oscillations exerts a strong influence on both spike timing and firing rate. In addition, a reduction in alpha power is correlated with better discrimination performance, indicating that alpha oscillations could actively suppress irrelevant or interfering stimuli processing (Haegens et al., 2011). Also, these oscillations increase with increase in workload during retention in a short-term memory task (Jensen et al., 2002). This suggests that the alpha generating system is directly or indirectly linked to the circuits responsible for working memory. And while the thalamocortical circuits have typically been associated with the generation of alpha oscillations in the past, studies employing LFP and spiking-activity recordings have identified intracortical alpha current generators and their potential for alpha pacemaking in the primary visual (V1), auditory (A1), somatosensory (S1), and sensorimotor cortices (Bollimunta et al., 2008; Haegens et al., 2011; Haegens et al., 2015). Thus, apart from the role of alpha oscillations in fundamental functions of attention such as irrelevant/interfering stimulus suppression, selection of salient stimuli and in predicting forthcoming visual stimulus (van Dijk et al., 2008; Romei et al., 2010; Haegens et al., 2011; Jensen et al., 2012; Klimesch, 2012), the presence of alpha-generators across cortical depth in the neocortex suggests the involvement of these rhythms in feedback processes, and is consistent with the view that alpha rhythms may be involved in parsing sensory input streams in a way that facilitates communication across cortical areas (Bollimunta et al., 2008; Haegens et al., 2015).

Fast Waves: Beta and Gamma Oscillations. Beta oscillations (~13–30 Hz) in the motor cortex have been typically believed to be involved in maintaining the “status quo” or a sensorimotor state of akinness (Engel and Fries, 2010; Khanna and Carmen, 2017). However, observations from studies involving working-memory tasks with cues and delays have led to the suggestion that beta oscillations in the prefrontal cortex (PFC) and motor cortex could potentially have 2 functions: (1) protection from interference from irrelevant stimuli during delay periods and (2) “clear out” or a stopping process to indicate the end of the cue presentation/task as beta power increases during delays and the end of a trial when working memory information needs to be erased (Swann et al., 2009; Lundqvist et al., 2011; Lundqvist et al., 2016; Lundqvist et al., 2018; Schmidt et al., 2019). Gamma oscillations (~30–150 Hz) together with beta oscillations have also been implicated to have a role in working memory (Lundqvist et al., 2011; Lundqvist et al., 2016; Lundqvist et al., 2018). A subset of the beta band, the beta2 frequency (20–30 Hz) oscillations have been observed over somatosensory and motor cortices during motor preparation and have been shown to depend on gap junctional coupling, with the oscillation period being determined by the M-type potassium current (Roopun et al., 2006). Computational analysis has helped reveal the neural mechanisms involved in transient neocortical beta oscillations in several species (Sherman et al., 2016). Within the visual cortical areas, it has been suggested that feedforward and feedback signaling use distinct frequency channels involving the slow (theta and alpha) and the fast (beta and gamma) oscillations through task-dependent dynamic (de) synchronization, and they potentially subserve differential communication requirements (van Kerkoerle et al., 2014; Bastos et al., 2015).

In the olfactory bulb (OB), odors evoke beta-gamma oscillations in the LFP (Kay et al., 2009; Martin and Ravel, 2014; Kay, 2015). These oscillations are generated through intrinsic membrane properties and the den-
Gated neuronal messages allowing a target "reader" area have been hypothesized to be involved in sending segregative temporal sequencing, novel-object place pairings, and neurological and psychiatric disorders (Chini et al., 2020). Increased beta-band oscillatory activity in the basal ganglia network due to resonance of intrinsic oscillations with cortical beta oscillations, with a role for the pallido-striatal feedback loop in amplifying beta oscillations, is associated with Parkinsonian motor symptoms (Koelman and Lowery, 2019; Yin et al., 2021). Deep brain stimulation has been useful in reducing these beta oscillations and improving motor function in patients with Parkinson's disease (Kuhn et al., 2006; Kuhn et al., 2008).

Gamma oscillations are aberrant/disrupted in disorders like schizophrenia (Sun et al., 2011; Gandal et al., 2012), Alzheimer's disease and Fragile X syndrome (Mably and Colgin, 2018). Non-invasive transcranial electrical stimulation techniques involving alternating current stimulation may turn out to be useful for resolving such disorders involving rhytmopathies (Beilaeva et al., 2021; Frohlich and Riddle, 2021; Huang et al., 2021; Riddle et al., 2021; Riddle and Frohlich, 2021).

Sharp Wave Ripple Complexes, Delta Waves and Spindles. During quiet wakefulness, slow wave sleep (NREM sleep) and consummatory behaviors, a complex pattern is observed in the LFPs in the CA1, CA2 and CA3 regions of the hippocampus. During these states, afferevnt stimulations on the dendrites of pyramidal neurons lead to their strong depolarization (Kamondi et al., 1998b; Buzsaki, 2015). This leads to the generation of a large sink (i.e., a large negative deflection in the LFP) in the stratum radiatum known as a sharp wave. While sharp waves are slow, they are accompanied by fast oscillations (~100–200 Hz) in the stratum pyramidal as known as ripples. This sharp wave ripple (SPW-R) complex lasts for 50–150 ms and is highly irregular (repeating with an average frequency of ~0.5–3 Hz) (Buzsaki, 1986, 2015). Neuronal spiking and sub-threshold activity during SPW-Rs are controlled by a competition between excitation and inhibition in a sublayer-specific manner (English et al., 2014; Valero et al., 2015; Valero et al., 2017; Valero and de la Prada, 2018). During SPW-Rs, spatial memory associated theta sequences, and emotional/social memory correlates have been observed to be reactivated in a time-compressed manner (Nadasdy et al., 1999; Louie and Wilson, 2001; Cai et al., 2014; Girardeau et al., 2017; Oliva et al., 2020). There is evidence that these ripple-associated replays could be a mechanism for memory consolidation (Girardeau et al., 2009; Carr et al., 2011; Girardeau and Zugaro, 2011; Buzsaki, 2015; Fernandez-Ruiz et al., 2019; Cox et al., 2020; Oliva et al., 2020).

During NREM/slow wave sleep, cortical UP-DOWN states of alternating depolarization and hyperpolarization are observed that are associated with the generation of slow delta waves (~1–4 Hz) and faster spindles (~11–16 Hz) (Steriade and Timofeev, 2003; Fuentealba et al., 2015a; Zheng et al., 2015; Zheng et al., 2016b; Zheng et al., 2016a; Fernandez-Ruiz et al., 2017; Trimmer et al., 2017; Fernandez-Ruiz et al., 2021).
Sleep spindles are generated by the interaction between the GABAergic neurons of the thalamic reticular nucleus and the thalamocortical nuclei, and are coupled to the cortical delta waves (Steriade, 1993c, b; Steriade et al., 1993c; Steriade et al., 1993b; a; Fernandez and Luthi, 2020). There is emerging evidence for a hippocampal-neocortical dialogue during NREM sleep through SPW-Rs, delta waves, and spindles, and for their role in learning, memory consolidation and inter-regional transfer of information (Buzsaki, 1996; Buzsaki and Peyrache, 2013; Buzsaki, 2015; Maingret et al., 2016; Seibt et al., 2016; Antony et al., 2019; Kim et al., 2019; Todorova and Zugaro, 2019; Karimi Abadchi et al., 2020; Peyrache and Seibt, 2020; Dickey et al., 2021).

Epileptiform Activity: Interictal Spikes and Fast Ripples. Epilepsy is a complex set of syndromes with common behavioral correlates like recurrent seizures and convulsions associated with hypersynchronous activity in the epileptic tissue (Wyler et al., 1982; Babb et al., 1987; Cohen et al., 2002; Crunelli and Leresche, 2002; Scharffman, 2007). Different waveforms observed in the EEG in the ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) activity enable clinicians to diagnose the focus and timing of seizure-stages in epileptic patients (Fisher et al., 2014). In the hippocampus and temporal cortex of epileptic humans and rodents, interictal spikes lasting 30–500 ms followed by transient high-frequency oscillations called fast ripples (250–500 Hz) are observed in the epileptogenic regions and are associated with a multitude of mechanisms depending on the form of epilepsy and the affected brain region (Dichter and Spencer, 1969a; b; Traub and Wong, 1983; Cohen et al., 2002; Bragin et al., 2004; Bernard, 2005; Urrestarazu et al., 2006; Ibarz et al., 2010; Kohling and Stanley, 2011; Jefferys et al., 2012; Avoli, 2014; Valero et al., 2017; Levesque and Avoli, 2019; Levesque et al., 2019). Some of these prominent known mechanisms and associated plasticity involve a disruption of the excitation/inhibition balance, synchronous bursting of pyramidal neurons and interneurons, changes in dendritic GABAergic signaling and dendritic channelopathies (Chen et al., 2001; Sanabria et al., 2001; Cohen et al., 2002; Su et al., 2002; Mulley et al., 2003; Whittington and Traub, 2003; Bernard et al., 2004; Shah et al., 2004; Cossart et al., 2005; Jung et al., 2007; Yaari et al., 2007; Ibarz et al., 2010; Valero et al., 2017). Such combined studies have enabled the development of several anti-epileptic drugs (Rogawski and Lesch, 2004). Computational simulations have also been used as tools to aid experiments in tackling the complex problem of epileptogenesis (Lytton et al., 2005; Traub et al., 2005; Lytton, 2006).

ACTIVE DENDRITIC CONDUCTANCES, DENDRITIC MORPHOLOGY, AND LFPS

With the emergence of new techniques for circuit manipulations and large scale LFP recordings, the focus of neuroscience research has shifted towards teasing apart how brain circuits work together to give rise to behavior. Introduction of ‘alien’ ion channels into neurons, such as channelrhodopsin (Boyden et al., 2005), to control the ionic transmembrane currents towards manipulating large populations of neurons synchronously has become commonplace. At the molecular level, this powerful tool is driven by an ensemble current emergent from tiny single-channel ionic currents (single channel conductance is merely ~1 pS (Lin et al., 2009)), and can introduce massive perturbations to even large nervous systems manifesting as large changes in spikes and LFPS (Kim et al., 2017; Oliva et al., 2018; Fernandez-Ruiz et al., 2019; Jun and Cardin, 2020; McKenzie et al., 2021). The power of such ion channels in altering network physiology begs attention to the study of endogenous ion channels that express on neuronal and glial (Verkhratsky and Steinhauser, 2000) membranes in shaping LFPS, apart from their established roles in altering neural activity and behavior.

As the predominant recipients of afferent synaptic information, dendrites are uniquely placed to process afferent information and critically regulate spike generation in a neuron. Although dendrites were historically considered to be passive structures that were merely housing afferent synapses, it is now abundantly clear that dendritic structures express several ion channels, earning them the moniker active dendrites (Johnston et al., 1996; Poirazi and Mel, 2001; Johnston et al., 2003; Johnston and Narayanan, 2008; Major et al., 2013; Stuart and Spruston, 2015). The presence of these active components has endowed dendrites with specialized processing and propagation capabilities that manifest through strong spatio-temporal interactions across the dendritic arbor. If dendrites were not merely housing synapses and carry other transmembrane proteins other than synaptic receptors, shouldn’t field potentials, composite signals that reflect transmembrane currents, be shaped by the presence of these active conductances? Here, we explore this question with reference to the different conductances that express in active dendritic structures.

Suprathreshold dendritic conductances and LFPS

Action potentials or spikes are commonly used as a readout of neuronal responses to stimuli and of information transfer. To understand the role of neurons in generating behavioral outputs and to dissect their function in a neuronal circuit, nowadays, extracellular spike recordings using high-density electrodes and silicon probes are routinely performed from freely moving and head-restrained laboratory animals under awake, asleep, and anesthetized conditions. Most extracellular spikes are of a very short duration (typically < 1–2 ms, > 500 Hz) and therefore are filtered out from the LFP (typically < 350 Hz). Yet, a computational study has highlighted that spike-related currents can impact the LFP even below 50 Hz (Reimann et al., 2013). Further computational and experimental studies have shown that a component of the spikes “bleeds through” or ‘contaminates’ the LFP in the lower frequency harmonics of the population spike frequency, especially in the epsilon band (90–150 Hz) and...
thus a stimulus-triggered spike signature can also be obtained in the LFP (Ray et al., 2008; Reichinnek et al., 2010; Ray and Maunsell, 2011b; Bellusco et al., 2012; Scheffer-Teixeira et al., 2013; Schomburg et al., 2014; Anastassiou and Koch, 2015; Taxidis et al., 2015; Kuokkanen et al., 2018). This is especially useful when multiple electrodes are not available to sort the spikes into individual units and if the focus of the study is to perform a population-level analysis of neuronal activity. However, such population-level analysis can lead to inaccurate conclusions in case the spikes are from a heterogeneous network of neurons, so one must be careful while making assumptions about the homogeneity of the underlying network of neurons (Valero et al., 2015; Valero and de la Prada, 2018). Further, the average of stimulus-triggered LFPs (STA-LFPs), has been used to show that units across several regions can become transiently synchronized specifically during LFP oscillations, even if their spikes are uncorrelated during non-oscillatory periods (Murthy and Fetz, 1996). Using intracellular recordings from the cortex of awake rats, STA-LFP has also been shown to represent the synchrony between the mean synaptic activity of the population and the membrane potential of the single neuron (Okun et al., 2010). But the STA-LFP must be used with caution as highlighted by a detailed analysis of the shape of the STA-LFP from the monkey visual cortex (Ray and Maunsell, 2011b). This study showed that network rhythms can influence the relationship between STA-LFP and functional connectivity, giving a false impression of a traveling LFP wave.

Extracellular spikes reflect the intracellular action potentials that are initiated above a certain membrane voltage threshold. They are a result of a complex interplay between inputs from synaptic receptors, intracellular calcium signaling and various voltage-gated ion channels. Most in vivo studies focus on spikes recorded from the peri-somatic regions that express several suprathreshold-active spiking conductances such as voltage-gated Na+, K+, and Ca2+ channels. But it is now well established that neuronal dendrites are also endowed with a plethora of suprathreshold active conductances that can both initiate spikes and lead to their active (back)propagation in the dendrites (Stuart and Sakmann, 1994; Johnston et al., 1996; Hoffman et al., 1997; Golding and Spruston, 1998; Schiller et al., 2000; Schiller and Schiller, 2001; Gasparini et al., 2004; Polsky et al., 2004; Losonczy and Magee, 2006; Nevian et al., 2007; Johnston and Narayanan, 2008; Losonczy et al., 2008; Larkum et al., 2009; Hay et al., 2011; Narayanan and Johnston, 2012; Major et al., 2013; Smith et al., 2013; Shai et al., 2015; Gidon et al., 2020). Until recently, the study of intracellular calcium signaling and various voltage-gated ion channels. Most intracellular calcium signaling and various voltage-gated ion channels. Most interplay between inputs from synaptic receptors, intracellular calcium signaling and various voltage-gated ion channels. Most intracellular calcium signaling and various voltage-gated ion channels. Most
tufts and basal dendrites respectively. This opens up interesting avenues for future exploration of the role of these various forms of suprathreshold events and suprathreshold conductances in dendritic computation and LFP signatures, both experimentally and computationally. As dendritic calcium spikes, plateau potentials and NMDA spikes are relatively slow events, and are critically reliant on active dendritic components, their contributions to the low-frequency LFPs needs further analyses. This is especially important given the role of dendritic slow calcium spikes and plateau potentials in sensory-motor feedback, learning, perception, and plasticity (Takahashi and Magee, 2009; Lavzin et al., 2012; Xu et al., 2012; Larkum, 2013; Bittner et al., 2015; Manita et al., 2015; Takahashi et al., 2016; Bittner et al., 2017; Ranganathan et al., 2018; Ari et al., 2020; Doron et al., 2020; Magee and Grünberger, 2020; Roome and Kuhn, 2020; Takahashi et al., 2020; Bonnan et al., 2021). Thus, signatures of these slow dendritic events in the LFP could provide useful handles to analyses and interpretation of several physiological and behavioral outcomes, and constitutes an important future area for exploration.

Finally, in many scenarios the contribution of active dendritic conductances to LFPs is driven by afferent synaptic inputs and by the nonlinear somato-dendritic processing of these inputs. However, there are several neurons across different brain regions, including the cerebellum, suprachiasmatic nucleus, vestibular nuclei, and the dopaminergic midbrain structures, that are capable of spontaneously firing action potentials or bursts (Hausser et al., 2004; Welsh et al., 2010; Constantin et al., 2013; Hastings et al., 2018; Harvey et al., 2020; Otomo et al., 2020). Given that the ionic basis for such spontaneous activity is well understood in several of these neurons, LFPs in brain regions endowed with spontaneously firing neurons could manifest signatures that are independent of synaptic inputs, instead driven by ionic currents associated with spontaneous action potentials. Importantly, some of these neurons, including the cerebellar Purkinje cells (Hausser et al., 2004; De Zeeuw et al., 2011; Kitamura and Hausser, 2011; Roome and Kuhn, 2018, 2020), are endowed with elaborate dendritic trees and manifest slow dendritic spikes that are associated with spontaneous burst firing. In these neurons, the active dendritic contributions to relatively low-frequency components of the LFP could again be independent of synaptic inputs and could instead be driven by dendritic ionic currents. Thus, an important lacuna in the field is to assess the impact of active dendrites in spontaneously firing and bursting neurons on LFPs in brain regions endowed with such neurons.

Subthreshold dendritic conductances and LFPs

While spikes inarguably provide immense information about neurophysiology, not all activity in neurons is suprathreshold. The underlying subthreshold membrane potential dynamics can vastly change neuronal output and information transfer. What mechanisms exist for a neuron to contribute to, process and respond to such subthreshold voltage dynamics? The answer lies in the myriad of subthreshold active conductances expressed in the somato-dendritic compartments. In this section, we explore the roles of a few of these mechanisms, with illustrative examples involving different subthreshold ion channels, and argue for a strong impact of subthreshold dendritic conductances on LFPs.

A-type Potassium Channels, Astrocytes, and Calcium Waves

Voltage-gated transient A-type potassium channels, also referred to as “dendritic shock absorbers” (Yuste, 1997) tend to have almost 5-fold higher expression density in the dendrites than in the soma, and despite being subthreshold-active can in fact prevent suprathreshold dendritic spike initiation and propagation, thereby restraining large rapid dendritic depolarization (Hoffman et al., 1997; Migliore et al., 1999). Through morphologically realistic conductance based computational modelling it was shown that these dendritic A-type potassium channels can interact with the endoplasmic reticulum (ER) through inositol triphosphate receptors (InsP3R) and voltage-gated calcium channels, and can regulate the latency and temporal spread of calcium waves in dendrites (Ashhad and Narayanan, 2013). Large scale calcium waves have also been observed travelling through the astrocytic syncytium in vivo (Kuga et al., 2011; Sasaki et al., 2011; Ross, 2012; Ross and Manita, 2012). These astrocyte-mediated calcium waves have a role in synchronizing cortical activity as suggested by the inhibition of spontaneous cortical UP states upon chela-tion of calcium in cortical astrocytes (Poskanzer and Yuste, 2011). Astrocytic “glissandi” (the regenerative propagation of waves from cell to cell) are correlated with reduced infra-slow rhythms (<0.1–0.5 Hz) in the LFP (Hughes et al., 2011; Kuga et al., 2011). There is a strong phase-locking of interictal events and K-complexes to these infra-slow rhythms during sleep (Vanhatalo et al., 2004; Kang et al., 2005). This together with the fact that astrocytes can regulate the extracellular K+ concentration and modulate inhibitory synaptic activity highlights a significant role of astrocytic function and dysfunction in epilepsy and epileptiform activity (Kang et al., 1998; Vanhatalo et al., 2004; Kang et al., 2005; Coulter and Steinhauser, 2015; Nikolic et al., 2020).

Furthermore, astrocytes themselves express several voltage-gated ion channels and receptors, and can release calcium and neurotransmitter molecules (Verkhratsky and Steinhauser, 2000; Halassa and Haydon, 2010; Araque et al., 2014; Bazargani and Attwell, 2016; Ashhad and Narayanan, 2019). Through this gliotransmission, it has also been observed that astrocytes can induce large, long-lasting and slow excitatory potentials (SEPs) or dendritic plateau potentials in CA1 pyramidal neurons (Ashhad and Narayanan, 2016). The kinetics of these SEPs vary based on the location of stimulated astrocytes (close to proximal vs. distal apical dendritic compartments) and distinct NMDA receptor currents. Pharmacological analyses coupled with morphologically realistic conductance-based computational models have demonstrated that dendritically expressed hyperpolarization-activated cyclic-nucleotide–gated (HCN) and transient A-type potassium channels play critical roles in regulating the amplitude, kinetics, and com-
partmentalization of such SEPs (Ashhad and Narayanan, 2016, 2019). These studies highlight that while astroglia do not exhibit suprathreshold activity such as spikes, they can definitely regulate both LFPs and sub/supra-threshold activity through interactions with dendritic subthreshold-active conductances and receptors under physiological and pathological conditions.

T-type Calcium Channels and NREM Sleep Spindles.

T-type calcium channels and cation non-specific HCN channels are two other prominent subthreshold-active conductances that are highly expressed in proximal and distal dendrites of hippocampal and thalamo-cortical neurons, and can modulate intrinsic oscillations (McCormick and Pape, 1990; Leresche et al., 1991; Sotlesz et al., 1991; Destexhe et al., 1993; Magee and Johnston, 1995; Destexhe et al., 1996; Johnston et al., 1996; Luthi and McCormick, 1998b, a; Magee, 1998, 1999; Hutcheon and Yarom, 2000; Santoro et al., 2000; Perez-Reyes, 2003; Crunelli et al., 2006; Narayanan and Johnston, 2012; Simms and Zamponi, 2014). In the thalamus, during the transition from wakefulness to sleep there is a reduction in the depolarizing tone exerted by afferents onto thalamocortical (TC) neurons and the nucleus reticularis thalami (nRt) (Huguenard and McCormick, 1992; McCormick, 1992a, b; McCormick and Huguenard, 1992; McCormick and von Krosigk, 1992; Steriade and Timofeev, 2003). This is associated with a prolonged hyperpolarization of the majority of the recipient neurons into membrane potentials where activation and inactivation of T channels is possible (Roy et al., 1984; Steriade and Timofeev, 2003; Fuentealba et al., 2004). Once de-inactivated by hyperpolarization, T-type calcium channels mediate low-threshold Ca\(^{2+}\) spikes, which in turn trigger a burst of action potentials during different stages of NREM sleep (Deschenes et al., 1982; Llinas and Jahnson, 1982; Deschenes et al., 1984; Jahnson and Llinas, 1984a, c; Steriade and Deschenes, 1984; Domich et al., 1986; Llinas and Steriade, 2006). Owing to this oscillatory property and burst synchronization of the thalamocortical circuit by T-type calcium channels, they are regarded as the major pacemakers responsible for rhythogenesis of thalamocortical sleep spindles during NREM sleep (McCormick and Bal, 1997; Cueni et al., 2008; Astori et al., 2011; Pellegrini et al., 2016).

Further, it has been shown that in the GABAergic nRt neurons, the triad of dendritic small conductance type K\(^+\) (SK2) channels, sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) pumps and T-type calcium channels regulates oscillatory dynamics related to sleep. Specifically, the oscillatory bursting is initiated via selective activation of dendritic SK2 channels while the dampening of the oscillation is mediated through Ca\(^{2+}\) uptake by SERCA pumps and cumulative T-type calcium channel inactivation (Cueni et al., 2008). The relevance of SK2 channels was highlighted through studies on SK2\(^{-/-}\) mice that lack cellular oscillations, show a large (>3 fold) reduction in low-frequency rhythms during NREM sleep, and have disrupted sleep (Cueni et al., 2008). Deletion of CaV3.2 and CaV3.3 T-type Ca\(^{2+}\) channels has also been shown to suppress sleep spindle rhythogenesis in mice (Pellegrini et al., 2016) and the absence of CaV3.3 channels prevents oscillatory bursting in the theta-frequency range in nRt cells (Astori et al., 2011). However, sleep spindles are not altered in CaV3.1\(^{-/-}\) mice during natural NREM sleep (Lee et al., 2013). This highlights the role of specific ion-channel subtypes/isoforms in mediating biological rhythms and perhaps that in knockouts such as these, a compensatory mechanism is employed by the neurons to sustain oscillatory response dynamics. It is possible that this compensatory mechanism could be mediated through upregulation of HCN channels, which have also been shown to regulate sleep spindles (McCormick et al., 2015). In fact, based on observations in humans, a model for coordination between cortical UP-DOWN states and thalamic spindles during NREM sleep has been proposed which involves both T-type Ca\(^{2+}\) channels and HCN channels (Mak-McCully et al., 2017).

HCN Channels and Theta Oscillations. Unlike most ion channels, HCN channels have a unique property, as the name suggests, of activating upon hyperpolarization. In pyramidal neurons, they are active at the resting membrane potential, have slow activation and deactivation kinetics and their expression density increases from soma to dendrites, being highest in the distal apical dendrites (Magee, 1998; Williams and Stuart, 2000; Lorincz et al., 2002; Migliore and Shepherd, 2002; Kole et al., 2006; Narayanan and Johnston, 2007; He et al., 2014). They regulate neuronal excitability by reducing the temporal summation of EPSPs at the soma (Magee, 1998, 1999, 2000; Williams and Stuart, 2000; Narayanan and Johnston, 2007). As a consequence of these properties, they oppose changes to membrane potential, reduce the excitability of dendrites by reducing their input resistance, confer an increasing gradient of dendritic theta-frequency resonance, contribute an inductive component to the input impedance and mediate the location and activity dependence of the intrinsic phase response (Hutcheon and Yarom, 2000; Ulrich, 2002; Narayanan and Johnston, 2008, 2012). Their somatodendritic expression acts as a gradient of inductance which helps resolve the location-dependent temporal differences in dendritic inputs by synchronizing the theta- and gamma-frequency inputs to a common synchronization frequency (transfer resonance frequency) at the soma (Vaidya and Johnston, 2013). This synchronization frequency happens to be in the theta-frequency range, and is invariant to input location. HCN channels can also affect spike initiation dynamics and have the capability of reducing the coincidence detection window to temporal ranges within the low and high gamma frequency ranges at lower and higher conductance values, respectively (Das and Narayanan, 2014, 2015, 2017; Das et al., 2017).

When an oscillating current in the theta-frequency range is injected in neurons expressing HCN channels, it is observed that the intracellular voltage response leads in phase with respect to the current (Ulrich, 2002; Narayanan and Johnston, 2008) (Fig. 2A), a property of an inductor and that this phase lead manifests in the theta-frequency range. A morphologically realistic con-
ductance based experimentally constrained computational model employing a forward modeling scheme for LFPs showed that this phase lead mediated by HCN channels is in fact reflected even in the theta-frequency LFP in the hippocampus (Sinha and Narayanan, 2015). Given that the expression density of HCN channel increases with distance from the soma towards the apical dendrites, it was shown that the phase lead also increases along the somato-apical axis (Fig. 2B). The ability of HCN channels to introduce an inductive phase lead in intracellular voltage responses to theta-modulated synaptic currents played a significant role in altering LFP and spike phases.

CA1 and CA3 pyramidal neurons tend to show phase preference with the maximum firing probability at the trough of a theta cycle (Csicsvari et al., 1999; Klausberger and Somogyi, 2008). (Sinha and Narayanan, 2015) showed that HCN channels can regulate this spike theta-phase preference of individual neurons and at a population level HCN channels enable formation of cell assemblies by enhancing spike theta-phase coherence (Fig. 2D). It was also demonstrated that a single neuron could shift its spike-phase preference through HCN channel plasticity. To our knowledge, this was the first direct evidence of a subthreshold conductance influencing the ongoing LFP and also the spike-
phase response of the neurons in the hippocampus. The study further demonstrated a critical role of the phase of inhibitory input arrival with reference to excitatory inputs in altering both the stratum pyramidale LFP and associated spike phases, but not spike phase coherence. Thus, there exists a critical role of HCN channels and synaptic receptors in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies. Following this modeling study, two other modeling studies demonstrated the strong influence of subthreshold HCN channels, this time, on cortical LFPs (Ness et al., 2016, 2018). They showed that a gradient of HCN channels can induce theta-frequency resonance in the LFP signal (Fig. 2C).

Together, these studies present a clear case for the incorporation of subthreshold-activated ion channels, their distribution across the cell membrane, and their plasticity into the computation of LFPs (Sinha and Narayanan, 2015; Ness et al., 2016, 2018). They also strongly highlight how biophysically and morphologically realistic experimentally-constrained computational models can advance our mechanistic understanding of neuronal function in generating neural codes, LFPs, and behavior.

Morphology of active dendrites and LFPs

Dendritic morphology critically regulates neuronal physiology. Although it was traditionally assumed dendritic arborization provides larger surface area to accommodate more synapses, it is clear that the arborization allows for far more functional specializations than acting as a simple funnel for information through a large number of synaptic inputs (Poirazi and Mel, 2001; Poirazi et al., 2003; London and Hausser, 2005; Johnston and Narayanan, 2008; Narayanan and Johnston, 2012; Poirazi and Papoutsni, 2020). The presence of complex dendritic arborization in conjunction with active-dendritic conductances mediates segregation and compartmentalization of afferent inputs, thereby allowing for location dependence in input processing and filtering, dendritic spike initiation, coincidence detection, and even specialized dendro-dendritic communication in certain synapses (Rall and Shepherd, 1968; Goldberg and Spruston, 1998; Schiller et al., 2000; Schiller and Schiller, 2001; Gasparini et al., 2004; Polsky et al., 2004; Losonczy and Magee, 2006; Narayanan and Johnston, 2007; Nevian et al., 2007; Losonczy et al., 2008; Narayanan and Johnston, 2008; Larkum et al., 2009; Gidon et al., 2020). Dendritic morphology plays a critical role in regulating neural excitability, firing patterns, coincidence detection, and the expression of functional gradients, even in the presence of gradients in ion channel expression (Mainen and Sejnowski, 1996; Vetter et al., 2001; Krichmar et al., 2002; van Ooyen et al., 2002; Cannon et al., 2010; Narayanan and Chattarji, 2010; Ferrante et al., 2013; Dhupia et al., 2015; Ostojic et al., 2015; Das et al., 2017). Changes in any of these functional properties significantly alter the transmembrane currents through ion channels and receptors on the somato-dendritic arbors; thus altering the recorded LFPs at different electrode locations. Thus, the structural organization of the dendritic tree and the arrangement of dendritic arbors of different neurons in the subregion (e.g., open field organization in hippocampus and cerebellum vs. random organization in several other brain regions) should be accounted for as critical regulators of the strength and polarity of field potentials (Johnston and Wu, 1995; Linden et al., 2011; Buzsaki et al., 2012; Einevoll et al., 2013). The arborization of axons and their localization on the dendritic arbor also play essential roles in regulating the spread and shape of unitary LFPs (Glickfeld et al., 2009; Bazekol et al., 2010; Telenczuk et al., 2020b). Databases of neural morphologies (Ascoli et al., 2007; Gouwens et al., 2019) and algorithms for dendritic remodeling (Narayanan et al., 2005; Koene et al., 2009; Cuntz et al., 2010; Narayanan and Chattarji, 2010; Bozio et al., 2015; Dhupia et al., 2015; Beining et al., 2017), coupled with biophysically realistic computational modeling, could be employed to systematically assess the impact of active dendritic morphology on LFPs.

GRADIENTS, HETEROGENEITIES AND DEGENERACY

Gradients and heterogeneities in ion-channel expression and intrinsic properties

Neurons manifest gradients in the spatial expression profiles of active ion-channel conductances. There are systematic lines of evidence for the existence of such gradients within individual neurons (Migliore and Shepherd, 2002; Johnston and Narayanan, 2008; Nusser, 2009; Narayanan and Johnston, 2012), as well as across neurons spanning specific anatomical axes (Giocomo et al., 2007; Igarashi et al., 2014; Lee et al., 2014; Malik et al., 2016; Maroso et al., 2016; Malik and Johnston, 2017; Sun et al., 2017; Valero and de la Prida, 2018; Cembrowski and Spruston, 2019; Navas-Olive et al., 2020; Pastoll et al., 2020). Gradients in ion-channel expression profile within a single neuron, along its somatodendritic axis, yield functional maps of neuronal properties. From the standpoint of LFPs, these gradients imply location-dependent contributions of individual ion channels to extracellular field potentials. For instance, hippocampal CA1 pyramidal neurons manifest a gradient in HCN ion channels, with higher expression at distal dendritic locations (Magee, 1998; Lorincz et al., 2002). A primary implication for the expression of this gradient is as an increase in the amount of HCN-channel mediated transmembrane currents in distal dendritic location. However, as HCN channels reduce the excitability of neurons (Gasparini and DiFrancesco, 1997; Magee, 1998; Narayanan and Johnston, 2007), the HCN-channel gradient also implies that the voltage response to a given synaptic current is lower in distal locations. This reduced voltage deflection, in turn, alters the driving forces for the different ion channels and receptors expressed at that location, thereby altering the transmembrane currents through these distinct ion channels and receptors. In addition, the reduced voltage responses also alter the capacitive current in a distance dependent manner as the rate of change in voltage responses is altered by the slow
kinetics of HCN channels. The impact of the expression of the HCN channel gradient, therefore, is the cumulative and synergistic impact of changes to all currents, and depends on the patterns of synaptic activation, the ultrastructural morphology, and the relative expression profiles of individual receptors and channels (Sinha and Narayanan, 2015; Ness et al., 2016, 2018; Navas-Olive et al., 2020).

If a computational approach is employed to assess the impact of intraneuronal ion-channel gradients on LFP generation, it is essential to account for neuronal morphology and specific ion-channel gradients. Importantly, these ion-channel gradients should be quantitatively matched with signature somato-dendritic functional maps of that specific neuron (Narayanan and Johnston, 2012; Rathour and Narayanan, 2014; Dhupia et al., 2015). For instance, in assessing the impact of HCN-channel gradients on theta-frequency LFPs, (Sinha and Narayanan, 2015) matched functional maps on local resonance, transfer resonance, and input resistance across the somatodendritic axis before employing the model for computing LFP. (Sinha and Narayanan, 2015) found that the impact of HCN channel gradient on theta-frequency LFP was location-dependent, with changes in LFP phase. Without setting ion-channel gradients and conductances to match electrophysiologically determined functional maps and other physiological properties, the outcomes of such analyses will result in conclusions that overestimate or underestimate the role of a specific ion channel (and its gradients) on the LFP. As LFP is an outcome of distance-dependent summation of different ionic currents emanating from different locations, it is essential that the gradients in all ion channel properties are carefully matched with respective experimental outcomes and the specific patterns of synaptic activity (Linde et al., 2011; Leski et al., 2013) are accounted for in assessing the impact of active dendritic gradients on LFP.

Apart from intraneuronal gradients in ion channel properties, there are also systematic gradients in ion channel expression and intrinsic properties across neurons of the same subtype in different parts of the same brain region. For instance, there are gradients in CA1 pyramidal neuron ion-channel expression and intrinsic properties along the dorso-ventral, proximo-distal and deep-superficial axes of the hippocampus (Igarashi et al., 2014; Lee et al., 2014; Malik et al., 2016; Maroso et al., 2016; Malik and Johnston, 2017; Sun et al., 2017; Valero and de la Prida, 2018; Combrowski and Spruston, 2019; Navas-Olive et al., 2020). An important lacuna in the field pertains to the evaluation of the impact of such inter-neuronal gradients in somato-dendritic properties on LFPs for different patterns of synaptic activation. A systematic electrophysiological and computational evaluation spanning each of these distinct anatomical axes, including the somatodendritic axis of neurons in each subregion, is essential for understanding the impact of intra-neuronal and inter-neuronal gradients in active dendritic properties on the location-dependence of LFP emergence.

Finally, even within a given subregion, neurons of the same subtype are not identical in terms of their ion channel distributions or their intrinsic properties. Instead, there is considerable cell-to-cell heterogeneity in ion channels and cellular properties even within the same cell types of the same brain region (Rathour and Narayanan, 2014; Malik et al., 2016; Rathour and Narayanan, 2019; Mishra and Narayanan, 2020; Pastoll et al., 2020). In addition, there is animal-to-animal heterogeneity in how gradients manifest along a specified anatomical axis (Pastoll et al., 2020). It is essential that these heterogeneities are not ignored by assuming networks to be composed of homogeneous neuronal populations, but are explicitly characterized from specific brain regions and are accounted for in experimental analyses and computational simulations. Without such explicit incorporation, the differential ionic contributions from different neurons, despite them receiving identical input patterns of activity (Mishra and Narayanan, 2021) will be neglected.

Degeneracy in the emergence of characteristic neuronal properties and LFPs

It is now well established that neuronal systems such as single neurons and networks of neurons can perform their characteristic functions despite heterogeneities in underlying system parameters and hence can be quite robust to perturbations (Prinz et al., 2004; Marder, 2011; Marder and Taylor, 2011; Rathour and Narayanan, 2012, 2014; Drion et al., 2015; Mishra and Narayanan, 2019; Rathour and Narayanan, 2019; Goaillard and Marder, 2021). This is an example of degeneracy in the biological context where degeneracy is described as the ability of structurally disparate elements to perform the same function (Tononi et al., 1999; Edelman and Gally, 2001; Stelling et al., 2004; Rathour and Narayanan, 2019). While neurons of the same kind (e.g., pyramidal neurons) manifest characteristic functional outcomes, these neurons are typically morphologically heterogeneous with intricate dendritic arbors. Within these delicate arbors, lies another layer of heterogeneity: the diverse expression profiles of intrinsic properties such as ion channels and receptors. Depending on their location, two dendritic branches even of similar length can express completely different sets of ion channels or their expression profiles in terms of their density could be different. There could even be different subunits (main or auxiliary) of the same ion channel expressed at different locations. On top of that, depending on their location in the morphological tree, dendritic branches can receive completely distinct synaptic inputs, leading to a differential expression of and response from synaptic and extra-synaptic receptors. Furthermore, if the study involves looking at the mechanisms underlying changes in LFPs due to incoming synaptic inputs, there exists the additional involvement of not only activity-dependent synaptic plasticity but also potentially concurrent intrinsic and structural plasticity. Thus, it is highly important that any computational study that is trying to model LFPs for gaining mechanistic insights takes care of introducing the appropriate level of abstraction and heterogeneity to incorporate the underlying variability in the system. This will help avoid incorrectly attributing a single cause for an extracellular
phenomenon when there could be multiple underlying causes in a complex neural system generating the LFP. Finally, whereas these analyses point to the expression of parametric degeneracy in the emergence of single-neuron and network functions, there are strong lines of evidence for the manifestation of degeneracy at the level of LFP rhythmogenesis, whereby LFP rhythms can be generated through disparate mechanisms (Rathour and Narayanan, 2019). It is critical that these disparate routes towards generating signature LFP patterns and rhythms are identified, employing experimental and computational techniques, to exercise extreme caution in making one-to-one relationships between underlying parameters and specific characteristics of LFP recordings (Rathour and Narayanan, 2019).

Accounting for gradients, heterogeneities and degeneracy in models of LFP

Multi-Parametric, Multi-Objective Stochastic Search Algorithms. A method that is commonly employed to generate biophysically and physiologically realistic neuron models that account for heterogeneities and degeneracy is the multi-parametric, multi-objective, stochastic search (MIMOSS) (Foster et al., 1993; Taylor et al., 2009; Marder and Taylor, 2011; Rathour and Narayanan, 2012, 2014; Basak and Narayanan, 2018; Mittal and Narayanan, 2018; Mishra and Narayanan, 2019; Jain and Narayanan, 2020; Seenivasan and Narayanan, 2020). The generic algorithm for a specific morphology for a given subtype of neuron in a given subregion involves the following steps (Fig. 3):

1. Multiple Parameters (MP): Identify the crucial parameters of the neuron. Ideally, these parameters span all passive and active properties of the neuron under consideration, because physiology emerges as a consequence of intricate interactions among all these properties. However, this could also be a subset of parameters, depending on the specific question in hand. The crucial parameters span intrinsic passive (e.g., axial resistance, the leak channel conductance and the specific membrane capacitance, and their location dependent gradients), and active (e.g., conductance, gating properties, (de)activation/inactivation kinetics, reversal potential and location-dependent gradients) properties.

2. Define the ranges of these parameters from physiological observations for the specific neuronal subtype. Do not employ average or other summary statistics. Consider the range of individual parameters to encompass the entire span of experimental measurements from individual cells, thereby accounting for cell-to-cell variability.

3. Multiple Objectives (MO): Define the set of objectives that this neuronal model must fulfill based on experimental measurements. For our example, these could be constraints on the resting membrane potential, the input resistance, and the firing rate response to a specific stimulus for this neuronal type. Define lower and upper bounds for each of these measurements from experiments on the specific neuronal subtype. Note that we are not employing summary statistics here as well, but are accounting for the heterogeneities in characteristic neural measurements in that specific region.

4. Stochastic Search (SS):

a. For each parameter defined in step 1, randomly pick one value within its specified range defined in step 2. This set of parametric values will then be used to simulate one model neuron.

b. Perform step 4a multiple times to generate unique combinations of parametric values and thus generate a large number of model neurons.

c. Search for valid models: Perform the search by testing each of these models for their validity by assessing whether they satisfy the multiple objectives in Step 3 or not. Declare models that have all their measurements within the bounds defined in Step 3 to be valid models.

Genetic Algorithms. In a comparative survey of automated parameter-search methods for compartmental neural models, genetic algorithms (GA) outperformed other methods for both simple and complex multicompartmental models (Vanier and Bower, 1999). GA are iterative optimization algorithms inspired from mechanisms of Darwinian evolution. In these, each morphologically realistic multicompartmental model neuron is considered as an individual from a genetically diverse population. Various intrinsic, synaptic and morphological parameters define an individual (Fig. 3). In the first iteration, a random population is usually generated.

To search for optimal parameters (solutions) for a population of such individuals, first target functions are defined based on experimental data. These could be distance-dependent/independent intrinsic properties such as input resistance, resting membrane potential, resonance frequency, and axial resistance and/or synaptic properties such as excitatory/inhibitory postsynaptic potentials. The values of these target functions are computed for each individual. Then errors (square of difference) are computed between the experimentally and computationally obtained target function values for each individual. These help define the fitness of the individuals, towards discerning whether they lie within the experimentally observed variability or not. All individuals are sorted based on their cost function (such as the sum of all the errors of a given individual).

From this list, pairs of individuals are randomly chosen and the individuals with the lower cost function (i.e., they are closer to the experimental observations) are selected for breeding the next generation (iteration). Pairs of these selected individuals act as parents and undergo a crossover (exchange of parameters) to produce pairs of children with genetic diversity. These children may also undergo random mutations (probabilistic changes in the current values of parameters by a small amount that diminishes with each iteration).

This process of evaluation, selection, breeding/crossover, mutation and new solution generation is
continued until either a set bound on the number of iterations has been reached or if a certain criterion for population fitness (such as optimal matches between experimental results and model performance) has been achieved. Several variants of this algorithm have been successfully used in generating a diverse set of model neurons that match experimental observations, and in some cases have been released as open-source software as well (Keren et al., 2005; Druckmann et al., 2007; Menon et al., 2009; Bahl et al., 2012; Friedrich et al., 2014; Van Geit et al., 2016; Neymotin et al., 2017; Gouwens et al., 2018; Navas-Olive et al., 2020).

Analyzing and Utilizing the Valid Model Population. As all models (obtained either through MPMOSS or GA) that are valid manifest signature physiological properties, with biophysically matched parametric ranges, this model population can then be employed to assess parametric dependencies in the single-neuron population (Foster et al., 1993; Taylor et al., 2009; Marder and Taylor, 2011; Rathour and Narayanan, 2012, 2014; Basak and Narayanan, 2018; Mittal and Narayanan, 2018; Mishra and Narayanan, 2019; Jain and Narayanan, 2020; Navas-Olive et al., 2020; Seenivasan and Narayanan, 2020) or to construct heterogeneous network models that are representative of the specific brain region (Prinz et al., 2004; Mishra and Narayanan, 2019, 2021). The same algorithm must be repeated for different morphologies when accounting for heterogeneities in morphologies in the same neuronal subtype (Basak and Narayanan, 2020; Navas-Olive et al., 2020). NeuroMorpho is a great database of neuronal morphologies (Ascoli et al., 2007) and the Allen Cell Types Database (Gouwens et al., 2019) is a very useful database which provides not only neuronal morphologies, with characterization of electrophysiological properties and gene expression in individual neurons, but also a variety of models at different levels of resolution.

The MPMOSS and GA algorithms could be effectively employed for imposing signature intraneuronal functional maps on distinct neuronal morphologies and signature neuronal responses to different patterns of afferent inputs (Rathour and Narayanan, 2014; Basak and Narayanan, 2018, 2020). In addition, these algorithms could be employed to study inter-neuronal gradients (e.g., dorso-ventral), by altering the parametric and objective/target distributions employed in the algorithm to experimentally match specific subregions. Importantly, independent MPMOSS or GA simulations could be performed to generate distinct populations of models for

Fig. 3. Accounting for heterogeneity and degeneracy in computational models. (A) Parameter values \((P_i)\) are picked randomly from their respective experimental ranges. A set of parameters constitutes a model/individual, \(M_i\). (B) MPMOSS algorithm. (C) Genetic algorithm (GA). Note that while MPMOSS is a highly parallelized algorithm, GA is by design iterative and spans several generations. There are several variants of the generic GA depicted here, with slight modifications to each step suited for different purposes.
of the different neuronal subtypes in a given brain region (e.g., principal neurons and interneurons), to explicitly account for characteristic ion-channel properties and intrinsic measurements of each different subtype (Rathour and Narayanan, 2012; 2014; Mittal and Narayanan, 2018; Mishra and Narayanan, 2019; Jain and Narayanan, 2020). Finally, as these algorithms yield models with disparate parametric combinations for matching signature functional outcomes (constituting the manifestation of degeneracy) in any given subregion, they also provide the substrate for accounting for cell-to-cell heterogeneity in network models (Prinz et al., 2004; Mishra and Narayanan, 2019; Navas-Olive et al., 2020; Mishra and Narayanan, 2021). Thus, employing these algorithms for generating a population of models for different subregions constitutes an ideal way to construct heterogeneous networks that account for intra- and inter-neuronal gradients and heterogeneities in ion-channel and intrinsic properties of neuronal subtypes. Such physiologically matched heterogeneous networks should then be employed to assess the impact of active dendritic contributions to LFPs under different synaptic activation patterns.

Within this framework, the impact of individual ion channel subtypes on LFPs could be efficiently analyzed employing the virtual knockout framework (Rathour and Narayanan, 2014; Anirudhan and Narayanan, 2015; Sinha and Narayanan, 2015; Mukunda and Narayanan, 2017; Basak and Narayanan, 2018, 2020; Jain and Narayanan, 2020; Mishra and Narayanan, 2021). In implementing this, the conductance of individual ion channel subtypes in each of the several heterogeneous neurons (of a selected subtype) in the network is set to zero. The LFPs are computed for the two networks, one where the specific ion channel subtype is intact and another where the respective conductance values are set to zero for all neurons of the same subtype, with identical synaptic inputs. Comparison of LFPs in the two networks now provides an estimate of the specific contributions of an ion channel subtype on LFPs (e.g., (Sinha and Narayanan, 2015) for HCN-channel contribution to theta-frequency LFPs). This process could then be repeated for each of the different ion channel subtypes in the different neuronal subtypes to assess their contributions to LFPs at different locations. Together, the MPMOSS and GA algorithms are powerful tools for assessing active dendritic contributions to LFP, while accounting for all physiological constraints including heterogeneities, gradients and degeneracy.

NEUROMODULATION, PLASTICITY AND NEUROLOGICAL DISORDERS

The contributions of active dendritic conductances to LFPs are not static, but change in response to neuromodulation, short- and long-term plasticity and pathological insults.

Neuromodulatory impact on active dendrites and LFP

Neuromodulation offers an ideal substrate for reconfiguring functional connectivity in neural circuits towards achieving behavioral context-dependent processing of sensory stimuli (Getting, 1989; Marder and Thirumalai, 2002; Lee and Dan, 2012; Marder, 2012; Bargmann and Marder, 2013; Marder et al., 2014; McCormick et al., 2020). Neuromodulators typically act through receptors expressed on the cellular surface. They can alter intrinsic properties and synaptic efficacy either directly or through activation of downstream signaling cascades. Within an active dendritic framework, such neuromodulatory action translates to changes in the transmembrane currents through dendritic ion channels and receptors (Hoffman and Johnston, 1999; Heckman et al., 2003; Rosenkranz and Johnston, 2006, 2007; Dembrow et al., 2010; Dembrow and Johnston, 2014; Santello and Nevian, 2015; Labarrera et al., 2018; Payeur et al., 2019; Williams and Fletcher, 2019; Yaeger et al., 2019), thereby pointing to a direct neuromodulatory impact on recorded LFPs. Thus, it is critical that experimental analyses and computational frameworks on LFPs account for neuromodulatory reconfiguration of neural circuits and state-dependent changes to constitutive components of all cell types. Future experimental and computational studies should systematically map the location-dependent impact of different neuromodulatory inputs, impinging on disparate neural circuits with distinct spatiotemporal patterns, on the emergence of LFPs.

Short- and long-term plasticity of intrinsic and synaptic properties

The brain is a highly plastic organ. The continual changes in brain structure and function span all of its components, with a wide variety of time scales over which such changes occur. Whereas changes involving short-term synaptic plasticity (Zucker and Regehr, 2002; Regehr, 2012) and conformational dynamics of molecules, including ion channels and receptors (Johnston and Wu, 1995; Dingledine et al., 1999; Hille, 2001), are on the faster time scale, there are other forms of plasticity that evolve over slower time scales (Kim and Linden, 2007; Gjorgjieva et al., 2016; Turrigiano, 2017; Zenke et al., 2017; Ma et al., 2019). These changes imply that the transmembrane currents through active dendritic receptors and channels would be subjected to long- and short-term changes. For instance, for the same burst of presynaptic activation, a facilitating synapse would manifest progressively increasing postsynaptic responses whereas a depressing synapse would yield progressively reduced responses. Thus, it is important to not treat synapses as linear time invariant structures (Tsodyks and Markram, 1997). Importantly, there are gradients in short-term plasticity profiles across the somato-dendritic axis (Jensen et al., 2021), implying that the profile of transmembrane currents and dendritic voltage responses are critically reliant on the specific short-term profile at individual dendritic locations. Similarly, there are established gradients in ion channel kinetics that regulate different aspects of dendritic physiology. For instance, in CA1 pyramidal neurons, the recovery rate of somatic sodium channels from inactivation is faster for somatic sodium channels compared to their dendritic counterparts. These kinetic differences translate to differences in the amplitudes of dendritic backpropagating action potentials within a train of action.
potentials (Colbert et al., 1997). These observations imply
that the transmembrane currents through the several
currents and their conductances, along with somato-dendritic gradients
in these plasticity profiles should be systematically accounted
for in analyzing the LFP profiles and their
dependencies on active dendritic structures.

Long-term forms of plasticity that are involved in
learning, memory and stability also span all components
of active dendritic structures (Frick and Johnston, 2005;
Magee and Johnston, 2005; Kim and Linden, 2007;
Johnston and Narayanan, 2008; Narayanan and
Johnston, 2012). In addition, synaptic and dendritic intrinsic
properties could be altered in the short- and long-term
by transmitter and messenger molecules released by the
dendrites as well as adjacent glia (Regehr et al., 2009;
Araque et al., 2014; Ashhad and Narayanan, 2016;
Maroso et al., 2016; Ashhad and Narayanan, 2019). It
should be noted that although these forms of plasticity
might specifically target one specific ion channel or recep-
tor, the consequent changes in transmembrane currents
would span a larger swath of molecules owing to struc-
tural or functional interactions. For instance, an increase
in the density of a synaptic receptor molecule would alter
the postsynaptic voltage deflection, which in turn would
change the voltage-dependent opening and driving forces
of all ion channels and receptors that are affected by this
voltage deflection. Thus, in assessing the impact of
behaviorally induced changes on LFPs, changes in all
transmembrane currents introduced by these disparate
forms of plasticity should be systematically accounted
for in a location-dependent manner for the different cells
in the circuit. In assessing the impact of bidirectional
long-term plasticity in HCN channels (Fan et al., 2005;
Brager and Johnston, 2007; Narayanan and Johnston,
2007) on theta-frequency LFPs in hippocampal CA1,
(Sinha and Narayanan, 2015) first quantitatively matched
cellular plasticity in physiological measurements across
the dendritic arbor. Specifically, (Sinha and Narayanan,
2015) matched global changes in input resistance and
resonance frequency obtained from electrophysiological
recordings (Fan et al., 2005; Brager and Johnston,
2007; Narayanan and Johnston, 2007) for bidirectional
HCN-channel plasticity. Employing these models that
underwent biophysically realistic plasticity, (Sinha and
Narayanan, 2015) showed that graded changes in either
HCN conductance or its half-maximal activation voltage
resulted in graded changes in phases of theta-frequency
LFP and associated spike (Fig. 2D).

Neurological disorders, active dendrites, and LFP
Pathological conditions alter active dendritic properties.
Ion channel dysfunction, referred to as channelopathy,
is associated with several neurological disorders.
Careful experimentation assessing ion channels
involved in dendritic information processing has
revealed dramatic pathological changes in their
composition and densities (Kullmann, 2002; Bernard
et al., 2004; Kullmann and Waxman, 2010; Remy et al.,
2010; Terzic and Perez-Terzic, 2010; Emoto, 2011;
Poolos and Johnston, 2012; Lerche et al., 2013; Brager
and Johnston, 2014; Zhang et al., 2014; Johnston et al.,
2016; Cook et al., 2021). These changes have been
shown to be cell-type dependent, with the same ion chan-
nel subtype undergoing changes in opposite directions
in different cell types with reference to the same pathological
condition (Lee et al., 2011; Brager et al., 2012; Lee and
Jan, 2012; Routh et al., 2013; Brager and Johnston,
2014; Zhang et al., 2014; Kalmbach et al., 2015; Routh
et al., 2017; Siegel et al., 2017; Brandalise et al., 2020).
In addition to channelopathies, neurological disorders
alter several aspects of brain structure and function,
including connectivity patterns, dendritic morphology
and glial physiology (Schauswecker and McNeill, 1996;
Maragakis and Rothstein, 2006; McEwen, 2007;
Sofroniew and Vinters, 2010; Chattarji et al., 2015;
Coulter and Steinhauser, 2015; Khakh and Sofroniew,
2015; Phatnani and Maniatis, 2015; Patel et al., 2019).
As active dendritic function, and consequently the trans-
membrane currents across the different ion channels
and receptors are critically regulated by each of these dis-
tinct parameters, it is essential that assessment of the
impact of active dendrites on LFPs account for synergistic
interactions across all these pathological changes. Impor-
tantly, such analyses should account for the cell-type and
location-dependent changes observed in ion channels,
receptors, and connectivity from other cell types.

COMPUTATIONAL METHODS FOR LFP
MODELING
The mechanisms underlying the origins of LFPs are
complex and remain open to exploration (Buzsaki et al.,
2012; Einevoll et al., 2013). They involve specific spa-
tiotemporal structures of synaptic inputs, which could be
either from long-range afferents or from local synapses.
These inputs lead to intra-/inter-cellular spatiotemporal
responses from and interactions among intrinsic proper-
ties of neuronal dendrites and soma. These in turn gener-
ate transmembrane currents that ultimately shape the
LFP. Furthermore, these synaptic inputs and intrinsic
properties vary across different brain regions depending
on varying cell morphologies and topographical arrange-
ments (Buzsaki et al., 2012; Einevoll et al., 2013).
In addition to such regional differences, there are significant
heterogeneities in neural properties in any given brain
region, which can also undergo changes through neuro-
modulation, plasticity, or pathological conditions. The
fundamental question on the specific contributions of the
plethora of active dendritic conductances to LFPs, and
how they change in the face of all the gradients, hetero-
geneities, and dynamics (highlighted in the previous sec-
tions) continues to remain largely unexplored. In the face
of such complexity, biophysically rooted theoretical and
computational modeling tools have become invaluable
for uncovering the mechanisms underlying the generation
of various forms of LFP – fast vs. slow, rhythmic vs. irreg-
ular, unitary vs. population, synchronous vs. asyn-
chronous across multiple locations, highly localized vs.
travelling, etc. These tools are also useful for explaining new findings, and in delineating the relative contributions of different cellular and network elements to field potentials (Rall, 1962; Einevoll et al., 2013; Pesaran et al., 2018; Einevoll et al., 2019; Poirazi and Papoutsi, 2020).

To highlight these tools, in the following subsections we review the 3 most commonly used approximation methods that are used in computational studies for modeling LFPs. We also point to various free and open-source resources that are available for those researchers who are interested in dabbling with LFP modeling.

Point source approximation

In this approximation method, the extracellular potential generated from a neuronal compartment is approximated to originate from a point source (Holt, 1998; Holt and Koch, 1999; Gold et al., 2006). The transmembrane currents are assumed to originate from a point in the center of a neuronal compartment (Fig. 4). Transmembrane currents are recorded from such point sources for each compartment across the three-dimensional space. For n point sources (indexed by i) at a distance r from the recording location with macroscopic conductivity \(\sigma \) (i.e. the whole neuropil is modeled as a homogeneous conductor), the estimated field potential (\(\Phi_{FP} \)) is calculated from the transmembrane current \(I_i \) as:

\[
\Phi_{FP} = \sum_{i=1}^{n} \frac{I_i}{4\pi\sigma l_i} \left(\frac{r_i + h}{r_i^2 + h^2} - \frac{r_i - h}{r_i^2 - h^2} \right)
\]

where \(h \) is the longitudinal distance from the end of the line, \(l = \Delta s + h \) is the distance from the beginning of the line.

Line source approximation

Line source approximation (LSA) is one of the most-commonly used methods for forward modeling of LFPs. In this approach, the extracellular potential generated from a neuronal compartment is approximated to originate from a continuous distribution of transmembrane currents generated from a line that passes through the central axis of the compartment (Fig. 4). Except for distances less than 1 \(\mu m \) away from the recording location (Rosenthal, 1969; Trayanova et al., 1990; Gold et al., 2006), LSA implementations are known to closely approximate the extracellular signal, and have been employed and validated for hippocampal pyramidal neurons (Gold et al., 2006). For n line sources (indexed by i) of length \(\Delta s \), the field potential (\(\Phi_{FP} \)) is computed as a linear sum of the individual field potentials due to each line source as:

\[
\Phi_{FP} = \sum_{i=1}^{n} \frac{I_i}{4\pi\alpha l_s} \log \left(\frac{r_i^2 + h^2}{r_i^2 + h^2} \right)
\]

where \(h \) is the longitudinal distance from the end of the line, \(l = \Delta s + h \) is the distance from the beginning of the line.

There are some important considerations that need to be accounted for while modeling and analyzing LFPs (Buzsaki et al., 2012; Einevoll et al., 2013; Pesaran et al., 2018). First, several models assume homogeneous and isotropic extracellular conductivity, and therefore consider a constant value for \(\sigma \) (typically 0.3–0.4 S/m) in the equations for \(\Phi_{FP} \) above. However, there are lines of evidence for inhomogeneities in extracellular conductivity (Lopez-Aguado et al., 2001; Goto et al., 2010), which can be accounted for in modeling and understanding LFPs (Gold et al., 2006; Pettersen et al., 2006; Einevoll et al., 2007). Second, the use of \(\sigma \) for the conversion from currents to field potentials implicitly assumes that the neuropil is bereft of frequency-dependent reactances. There have been several studies assessing frequency-dependence of the extracellular space, both experimentally and computationally, with debates about the manifestation and the origins of frequency dependence (Bedard et al., 2004; Logothetis et al., 2007; Bedard et al., 2010; Gomes et al., 2016; Barbour, 2017; Bedard and Destexhe, 2017; Miceli et al., 2017; Pesaran et al., 2018). The broad consensus seems to be that the extracellular medium is largely resistive for the physiological range of signal frequencies (Pesaran et al., 2018). Finally, frequency-dependent features of LFPs should account for intrinsic dendritic membrane filtering and for correlations in synaptic inputs (Pettersen and Einevoll, 2008; Linden et al., 2011; Leski et al., 2013). Importantly, membrane filtering should not be assumed to be low-pass in nature (accounting only for the passive time constant), but should also account for location-dependent band-pass filters in neurons that manifest gradients in resonating conductances such as HCN channels (Narayanan and Johnston, 2007; Hu et al., 2009; Kalmbach et al., 2013; Sinha and Narayanan, 2015; Ness et al., 2016, 2018).

Computing a proxy for LFP from point neuronal models

Several studies have used a linear summation of spiking dynamics of a neuronal network as a proxy for its LFP (Hagen et al., 2016; Telenczuk et al., 2020a; Martinez-Canada et al., 2021). A study showed that a specific linear combination of the synaptic currents from leaky integrate-and-fire (LIF) model neurons also provides a reasonable proxy for the LFP (Mazzoni et al., 2015). The spikes from LIF model neurons have also been used to stimulate biophysically realistic neuron models in a hybrid scheme of LFP generation (Hagen et al., 2016; Skaar et al., 2020). The LIF uLFPs and the linear summation of these uLFPs point neurons arranged in space can be convolved with their uLFPs and the linear summation of these uLFPs could be used to provide an imprecise but quick estimation of LFPs from an interconnected network of point neurons (Hagen et al., 2016; Telenczuk et al., 2020b).

However, when it comes to understanding the mechanisms of LFP generation, such point neuron or single compartmental models may not fully account for the intricate spatiotemporal dynamics of synaptic inputs on the morphological details of dendrites. Having said that, there are neurons that are structurally and electronically compact, with the soma being the main site for synaptic inputs with very few dendritic arbors, such as those in the suprachiasmatic nucleus that is crucial for the maintenance of a 24 h circadian rhythm (Welsh et al., 2010; Harvey et al., 2020). For such neurons, the spiking activity of a network of point neurons could potentially be used as good estimate of the LFP as long as the point neurons are...
biophysically realistic and account for the diverse set of ion channels and receptors that these neurons express (Welsh et al., 2010; Harvey et al., 2020).

Resources for modeling LFP

While the computational complexity for simulating LFPs is quite high, there are resources available to quickly get initiated. Extracellular Action Potential (EAP) Simulations (Holt and Koch, 1999; Gold et al., 2006; Gold et al., 2007) written for simulations in NEURON® (Hines and Carnevale, 1997; Carnevale and Hines, 2006) and MATLAB® are available on ModelDB (Hines et al., 2004). While the original code was written to simulate EAPs, it can be easily adapted to model other extracellular phenomena. There are also several relatively new open-source libraries/software packages available to specifically model neuronal networks and LFPs: LFPsim (Parasuram et al., 2016), LFPy (Linden et al., 2014; Hagen et al., 2018), BioNet (Gratry et al., 2018), NetPyNE (Dura-Bernal et al., 2019), Human Neocortical Neurosolver (HNN) (Neymotin et al., 2020) and Brain Modeling ToolKit (BMTK) (Dai et al., 2020).

While spikes inarguably provide immense information about neurophysiology, not all events in the brain are above the spiking threshold of a neuron, especially in the dendrites and astrocytes. In addition, based on the ongoing activity and adaptation, the threshold itself can shift. Therefore, due credit must be given to dendritic subthreshold activity because many neuronal conductances, including ion channels, transporters, and receptors, are active in this subthreshold regime. They contribute to membrane potential dynamics and extracellular field potentials in both health and disease. Further, the brain is highly plastic, with heterogeneity and degeneracy emerging to be common phenomena.

Fig. 4. Approaches to account for active dendrites in LFP computation. **Center:** A single electrode with multiple recording sites in the center of a cylindrical neuropil of a population of morphologically realistic pyramidal neurons. Note, while a single morphology is depicted here for simplicity, a heterogeneous set of morphologies should be employed to account for the underlying structural heterogeneity. **Top Left:** Point source approximation for modeling LFP. **Bottom Right:** Line source approximation for modeling LFP. **Top Right:** A representation of a conductance-based multi-compartmental model depicting how to account for location-dependent expression of passive leak, active (voltage-gated) ionic and synaptic conductances. **Bottom Left:** A representation of a single compartment within the morphology and the transmembrane currents generated through it due to the presence of active and passive conductances. These transmembrane currents are used for computing LFPs. Symbols used: \(r \): radial distance; \(r \): macroscopic extracellular conductivity; \(l \): longitudinal distance from the beginning and end of the line respectively; \(\Delta s \): length of line segment; \(V_m \): intracellular membrane potential; \(I_{\text{m}} \): transmembrane current; \(x/y \): location variables; \(R_a \): axial resistance; \(g \): conductance (subscript represents the type of conductance); \(E \): reversal potential (subscript represents the type of conductance); \(C \): capacitance; \(d \): distance; \(V_e \): extracellular potential.
across scales. Thus, the notion of assigning one-to-one functional mappings between mechanisms and their outcomes should be dealt with extreme caution and wherever applicable be replaced with that of many-to-one or even many-to-many mappings through rigorous computational and experimental analyses. Finally, computational studies should adopt a level of abstraction that is appropriate to answer the question at hand. If a model is being used to obtain a quick proxy for the LFP, point neuron network models with linear approximations may be used. But if the goal is to obtain mechanistic insights about the origins of LFPs, the model should incorporate both linear and non-linear biophysical details, not just at the soma but also in the dendrites, and across all cell types.

Future directions for computational models: inverse meets forward to provide mechanistic insights

The first requirement for future computational models is to recognize the complexity underlying the emergence of LFPs, and not oversimplify LFP computations to be merely reflective of synaptic inputs. It is critical that insights about the complex computational capabilities of active dendritic structures, gained through electrophysiological experiments and computational models over the past few decades (Johnston et al., 1996; Segev and London, 2000; Migliore and Shepherd, 2002; Johnston et al., 2003; Johnston and Narayan, 2008; Major et al., 2013; Grienberger et al., 2015; Stuart and Spruston, 2015; Payeur et al., 2019; Popovits, 2020), find their rightful place in defining network physiology and LFPs. Specifically, it is essential that theoretical frameworks and computational models incorporate the complexity of neurons endowed with active dendritic structures, explicitly accounting for the different sub- and supra-threshold conductances, their inter- and intra-neuronal gradients, different forms of modulation and plasticity, the ubiquitous heterogeneities spanning all neural components, the spatio-temporal interactions between different active dendritic components, and how they together drive network computations and LFPs. Given the expanding roles of glial cells in brain physiology (Araque et al., 2014; Ashhad and Narayan, 2019; Santello et al., 2019; Kol and Goshen, 2020; Nagai et al., 2021), it is equally important to account for glial contributions to network computation and LFPs. To gain a holistic understanding of the origins and roles of LFPs, we recommend the amalgamation of inverse and forward models.

Inverse model. Using some preliminary knowledge about which groups of neurons are present in the circuit under investigation and their anatomical connectivity recurrent neural networks (RNNs), initially using random connectivity matrices, can be trained to match the experimentally obtained LFP data recorded from model animals and humans. Using the predictions from these RNNs mechanistic insights about the anatomical and functional connectivity between the neuronal circuit elements and their dynamics under different behavioral paradigms could be obtained (Rajan et al., 2016; Barak, 2017; Vu et al., 2018; Skaar et al., 2020). Further, where anatomical data is not available forward models can employ the connectivity insights obtained from these RNNs. We envision that such RNNs and other machine learning algorithms will prove to be useful for understanding the role and cellular/network origins of LFPs recorded from human healthy subjects and patients under different behavioral conditions, especially since molecular mechanistic insights may be difficult to obtain in these cases.

Forward model. There are several large-scale models of brain tissue and neuronal databases already available that can prove to be great resources for modeling LFPs (Hines et al., 2004; Ascoli et al., 2007; Markram et al., 2015; Bezaire et al., 2016; Arkin et al., 2018; Gouwens et al., 2019; Billeh et al., 2020). Using morphologically and biophysically realistic models based on experimentally known intrinsic properties of the neurons and glial cells and their connectivity patterns, transmembrane currents could be computed under different input conditions to generate LFPs and gain insights about the collective roles of intrinsic/synaptic/morphological properties and spatio-temporal dynamics of inputs. Further virtually knocking-out individual intrinsic and synaptic mechanisms, introducing intrinsic/synaptic plasticity, synaptic scaling, and dendritic remodeling could help delineate their specific roles in the generation of LFPs under physiological and pathological conditions. From these insights, testable hypotheses can be obtained and experimentally verified using the extensive set of tools available for neuroscience research (Rivnay et al., 2017; Mendrela et al., 2018; Kim et al., 2020; Moreaux et al., 2020; Nectow and Nestler, 2020; Pal and Tian, 2020; Sabatini and Tian, 2020).

Finally, we strongly urge experimental and computational neuroscientists to collaborate extensively. Through such collaborations, elegant models may be obtained to understand the function of active dendrites and LFPs, and eventually their role in mediating behavior.

ACKNOWLEDGMENTS

The authors thank members of the cellular neurophysiology laboratory for helpful comments on a draft version of this manuscript. The authors acknowledge funding support from the Wellcome Trust-DBT India Alliance (Senior fellowship to RN; IA/S/16/2/502727), the Human Frontier Science Program (HFSP) Organization (RN), the Department of Biotechnology through the DBT-IISc partnership program (RN), the Revati & Satya Nadham Atluri Chair at IISc (RN) and the Ministry of Human Resource Development (RN).

REFERENCES

Anastassiou CA, Koch C (2015) Ephaptic coupling to endogenous electric field activity: why bother? Curr Opin Neurobiol 31:95–103.
Anastassiou CA, Perin R, Buzsaki G, Markram H, Koch C (2015) Cell type- and activity-dependent extracellular correlates of intracellular spiking. J Neurophysiol 114:608–623.
Anirudhan A, Narayanan R (2015) Analogous synaptic plasticity profiles emerge from disparate channel combinations. J Neurosci 35:4691–4705.
Antony JW, Schonauer M, Staresina BP, Cairney SA (2019) Sleep spindles and memory reprocessing. Trends Neurosci 42:1–3.
Arague A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739.
Arkhipov A et al (2018) Visual physiology of the layer 4 cortical circuit in silico. PLoS Comput Biol 14 e1006535.
Aral LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16:390–398.
Aru J, Suzuki M, Larkme M (2020) Cellular mechanisms of conscious processing. Trends Cogn Sci 24:814–825.
Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251.
Astrand S, Narayanan R (2013) Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 591:1645–1669.
Astrand S, Narayanan R (2016) Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 113:E3280–3289.
Astrand S, Narayanan R (2019) Stores, channels, glue, and trees: active glial and active dendritic physiology. Mol Neurobiol 56:2278–2299.
Astor S, Wimmer HM, Prosser HM, Corti C, Corsi M, Laidet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The Ca(V)3.3 calcium channel is the major slow spine pacemaker in thalamus. Proc Natl Acad Sci U S A 108:13823–13828.
Avoli M (2014) Mechanisms of epileptiform synchronization in cortical neuronal networks. Curr Med Chem 21:653–662.
Babb TL, Wilson CL, Isokawa-Akesson M (1987) Firing patterns of human limbic neurons during stereoecephalography (SEEG) and clinical temporal lobe seizures. Electroencephalogr Clin Neurophysiol 66:467–482.
Bah A, Stemmler MB, Herz AV, Roth A (2012) Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. J Neurosci Methods 210:22–34.
Barak O (2017) Recurrent neural networks as versatile tools of neuroscience research. Curr Opin Neurobiol 46:1–6.
Barbour B (2017) Analysis of claims that the brain extracellular impedance is high and non-resistive. Biophys J 113:1638–1638.
Barrett C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535.
Bezaire MU, Maikovetz-Petersen J, Sadeghi L, Soltész I (2016) Intraneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 5.
Bier KL, Bobbott KN, Colgin LL (2014) Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 82:670–683.
Billeh NY, Cai B, Gratty SL, Dai K, Iyer R, Gouwen NB, Abbas-Ashraf R, Jia X, Siegle JH, Olsen SR, Koch C, Mihalas S, Arkhipov A (2020) Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron 106. 388–403 e318.
Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC (2017) Behavioral time scale synaptic plasticity underlies CA1 place fields. Neuron 85:670–683.
Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18:1133–1142.
Bobot BD, Copara MS, Gotman J, Ekstrom AD (2017) Low-frequency theta oscillations in the hippocampus during real-world and virtual navigation. Nat Commun 8:14415.
Bollimunta A, Chen Y, Schroeder CE, Ding M (2008) Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J Neurosci 28:9976–9988.
Bonna A, Rowan MM, Baker CA, Bolton MM, Christie JM (2022) Autonomous Purkinje cell activation instructs bidirectional motor learning through evoked dendritic calcium signaling. Nat Commun 12:2153.
Boyer R, Glasgow SD, Williams S, Adamantidis A (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352:812–816.
Brodin ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neuronal activity. Nat Neurosci 8:1263–1268.
Bozelos P, Stefano SS, Bouloukakis G, Melachrinos C, Poizari P (2015) REMOD: A tool for analyzing and remodeling the dendritic architecture of neuronal cells. Front Neuroanat 9:516.
Bragar DH, Johnston D (2007) Plasticity of intrinsic excitability during long-term depression is mediated through mGlur-dependent changes in hippocampal CA1 pyramidal neurons. J Neurosci 27:13026–13037.
Bragar DH, Johnston D (2014) Channelopathies and dendritic dysfunction in fragile X syndrome. Brain Res Bull 103C:11–17.
M. Sinha, R. Narayanan / Neuroscience xxx (2021) xxx–xxx 21

Bragher DH, Akhavan AR, Johnston D (2012) Impaired dendritic expression and plasticity of h-channels in the fmr1(−/−) mouse model of fragile X syndrome. Cell reports 1:225–233.

Bragher A, Wilson CL, Almagno J, Mody I, Engel Jr J (2004) High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia 45:1017–1023.

Bragher A, Jando G, Nadasy Z, Hette J, Wise K, Buzsaki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–49.

Brandalise F, Kalmbach BE, Mehta P, Thornton O, Johnston D, Zemelman BV, Bragher DH (2020) Fragile X mental retardation protein bidirectionally controls dendritic Ih in a cell type-specific manner between mouse hippocampus and prefrontal cortex. J Neurosci 40:5327–5340.

Burns SP, Xing D, Shapley RM (2011) Is gamma-band activity in the local field potential of V1 cortex a “clock” or filtered noise? J Neurosci 31:9658–9666.

Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252.

Buzsaki G (1996) The hippocampo-neocortical dialogue. Cerebral cortex 6:81–92.

Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340.

Buzsaki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:827–840.

Buzsaki G (2006) The hippocampo-neocortical dialogue. Cerebral cortex 16:1073–1188.

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.

Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225.

Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138.

Buzsaki G, Peyrache A (2012) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 15:1364–1375.

Buzsaki G, Schomburg EW (2015a) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:1364–1375.

Buzsaki G, Schomburg EW (2015b) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–49.

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.

Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225.

Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138.

Buzsaki G, Peyrache A (2013) A BOLD statement about the hippocampal-entorhinal system. Curr Opin Neurobiol 23:278–288.

Buzsaki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–1188.

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.

Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225.

Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138.

Buzsaki G, Peyrache A (2013) A BOLD statement about the hippocampal-entorhinal system. Curr Opin Neurobiol 23:278–288.

Buzsaki G, Schomburg EW (2015a) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:1364–1375.

Buzsaki G, Schomburg EW (2015b) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:1364–1375.

Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171.

Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420.

Buzsaki G, Stark E, Benenati A, Khodagholy D, Kipke DR, Mody I, Wise K, Buzsaki G (2012) Impaired dendritic expression and plasticity of h-channels in the fmr1(−/−) mouse model of fragile X syndrome. Cell reports 1:225–233.

Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252.

Buzsaki G (1996) The hippocampo-neocortical dialogue. Cerebral cortex 6:81–92.

Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340.

Buzsaki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:827–840.

Buzsaki G (2006) The hippocampo-neocortical dialogue. Cerebral cortex 16:1073–1188.

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.

Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225.

Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138.

Buzsaki G, Peyrache A (2013) A BOLD statement about the hippocampal-entorhinal system. Curr Opin Neurobiol 23:278–288.

Buzsaki G, Schomburg EW (2015a) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:1364–1375.

Buzsaki G, Schomburg EW (2015b) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:1364–1375.

Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171.

Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420.

Buzsaki G, Stark E, Benenati A, Khodagholy D, Kipke DR, Yoon E, Wise K (2015) Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86:92–105.

Cannon RC, O’Donnell C, Ntalan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.

Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel and seizure genesis. Epilepsia 45:1017–1023.
Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurons. J Physiol 379:421–438.

Doron G, Shin JN, Takahashi N, Druke M, Bocklisch C, Skenderi S, de Mont L, Tournazou M, Ledderose J, Brecht M, Naud R, Larkum ME (2020) Perirhinal input to neocortical layer 1 controls learning. Science 370.

Drion G, O’Leary TD, Marder E (2020) Perirhinal input to neocortical layer 1 controls learning. Science 370.

Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurons. J Physiol 379:421–438.

Doron G, Shin JN, Takahashi N, Druke M, Bocklisch C, Skenderi S, de Mont L, Tournazou M, Ledderose J, Brecht M, Naud R, Larkum ME (2020) Perirhinal input to neocortical layer 1 controls learning. Science 370.
Frack A, Johnston D (2005) Plasticity of dendritic excitability. J Neurobiol 64:100–115.

Fricker D, Miles R (2001) Interneurons, spike timing, and perception. Neuron 32:771–774.

Friedrich P, Vella M, Gulyas AI, Freund TF, Kali S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinf 6:63.

Frohlich F, Riddle J (2021) Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (TACS). Trans Psychiatry 11:284.

Fuentesalpa P, Timofeev I, Steriade M (2004) Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus. Proc Natl Acad Sci U S A 101:9816–9821.

Gandol MJ, Edgar JC, Klock K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62:1504–1518.

Gasparini S, DiFrancesco D (1997) Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons. Pfugers Arch 435:99–106.

Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24:10146–10156.

Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204.

Gidon A, Zolnik TA, Fidzinski P, Bolduan F, Papoutsis A, Poirazi P, Holtkamp M, Vida I, Larkum ME (2020) Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367:83–87.

Giocomi LM, Zilli EA, Fransen E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722.

Girardeau G, Zugaro M (2011) Hippocampal ripples and memory consolidation. Curr Opin Neurobiol 21:452–459.

Girardeau G, Inema I, Buzsaki G (2017) Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci 20:1634–1642.

Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223.

Gjorgjieva J, Drion G, Marder E (2016) Computational implications of biophysical diversity and multiple timescales in neurons and microcircuits. Curr Opin Neurobiol 37:5123–5143.

Glickfeld LL, Roberts JD, Somogyi P, Scanziani M (2009) Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat Neurosci 12:21–23.

Gloor P (1969a) Hans Berger and the discovery of the alpha rhythm in primary visual, auditory, and somatosensory regions of neocortex. J Neurosci 35:14341–14352.

Hagen E, Naess S, Ness TV, Enevoll GT (2018) Multimodal modeling of neural network activity: computing LFP, ECoG, EEG, and MEG signals with LFPy. Front Neurosci 12:92.

Hagen E, Fossom JC, Pettersen KH, Alonso JM, Swadlow HA, Enevoll GT (2017) Focal local field potential signature of the single-axon monosynaptic thalamocortical connection. J Neurosci 37:5123–5143.

Hagen E, Dahmen D, Stavrinou ML, Lindon H, Tetzlafl T, van Albad S, Grun S, Diesmann M, Enevoll GT (2016) Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb Cortex 26:4461–4469.

Halassa MM, Haydon AD (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355.

Halgren M, Uhst J, Bastuji H, Fabo D, Eross L, Reis S, Ray M, Devinsky O, Doyle WK, Mak-McCully R, Halgren E, Wittner L, Chauvel P, Heit G, Castaudek A, Cash SS (2019) The generation and propagation of the human alpha rhythm. Neuroimage 85(Pt 2):656–666.

Hasselmo ME (2005) What is the function of hippocampal theta oscillations? Trends Neurosci 28:552–556.

Hasselmo ME (2005) What is the function of hippocampal theta oscillations? Trends Neurosci 28:552–556.

Hasselmo ME (2000) Theta rhythm?–Linking behavioral data to phasic properties of field potentials with unit recording data. Hippocampus 15:930–949.

Hasselmo ME, Stern CE (2014) Theta rhythm and the encoding and retrieval of space and time. Neuron 85(2 Pt 2):656–666.

Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19:453–469.

Hausser M, Raman JM, Otis T, Smith SL, Nelson A, du Lac S, Loewenstein Y, Mahon S, Perfettini C, Cohen I, Yarom Y (2004) The beat goes on: spontaneous firing in mammalian neuronal microcircuits. J Neurosci 24:9215–9219.

Hay E, Hill S, Schurrman F, Markram H, Segov I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of
dendritic and perisomatic active properties. PLoS Comput Biol 7 e1002107.

He C, Chen F, Li B, Hu Z (2014) Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol 112:1–23.

Heckman CJ, Lee RH, Brownstone RM (2003) Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci 26:688–695.

Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996.

Hillé B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc.

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209.

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A database to support computational neuroscience. J Comput Neurosci 17:7–11.

Hoffman DA, Johnston D (1999) Neuro modulation of dendritic action potentials. J Neurophysiol 81:408–411.

Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875.

Holt GR (1998) A critical reexamination of some assumptions and implications of cable theory in neurobiology.

Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184.

Hu H, Vervaekte K, Graham LJ, Storm JF (2009) Combinatorial theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. J Neurosci 29:14472–14483.

Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey M, Dannhauer M, Doan TT, Hoover AC, Peterchev AV, Radtke-Schieler S, Scherf HH, Schlichting C, Senior TJ, Song H, Srivastava S, Toth J (2013) Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulus waveform. Nat Commun 12:3151.

Hughes SW, Lorincz ML, Parri HR, Crunelli V (2011) Intracellular (<0.1 Hz) oscillations in thalamic relay nucleus basic mechanisms and significance to health and disease states. Prog Brain Res 193:145–162.

Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383.

Hutcheson B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222.

Huxter JR, Senior TJ, Allen K, Csicsvari J (2008) Theta phase-frequency preferences of neurons. Trends Neurosci 23:216–222.

Igarashi KM, Ito HT, Moser EI, Moser MB (2014) Functional diversity along the transverse axis of hippocampal area CA1. FEBS Lett 588:2470–2476.

Jahnsen H, Llinas R (1984a) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122:73–82.

Jahnsen H, Llinas R (1984b) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247.

Jahnsen H, Llinas R (1984c) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226.

Jain A, Narayanan R (2020) Degeneracy in the emergence of spike-triggered average of hippocampal pyramidal neurons. Sci Rep 10:374.

Jastrzebska-Perfect P, Spyropoulos GD, Cea C, Zhao Z, Rahman OJ, Viswanathan A, Sheth SA, Gelinas JN, Khodagholy D (2020) Mixed-conducting particulate composites for soft electronics. Sci Adv 6(eaxa6767).

Jefferys JG, Menendez de la Prada L, Wendling F, Bragin A, Avoli M, Timofeev I, Lopes da Silva FH (2012) Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 98:250–264.

Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324.

Jensen O, Bonnefond M, VanRullen R (2012) An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn Sci 16:200–206.

Jensen O, Gelfand J, Kounios J, Lisanje J (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12:877–882.

Jensen TP, Kopach O, Reynolds JP, Savitchenko LP, Rusakov DA (2021) Release probability increases towards distal dendrites boosting high-frequency signal transfer in the rodent hippocampus. eLife 10.

Johnston D, Wu SM (1995) Foundations of cellular neurophysiology. Cambridge, Massachusetts: The MIT Press.

Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31:309–316.

Johnston D, Frick A, Poolos N (2016) Dendrites and disease. In: Dendrites, 3 Edition (Stuart G, Spruston N, Hausser M, eds). New York, NY: Oxford University Press.

Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186.

Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schenaxnyer JK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358:667–674.

Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27:3244–3251.

Jun NY, Cardin JA (2020) Activation of distinct channelrhodopsin variants engages different patterns of network activity, eNeuro 7.

Jung S, Jones TD, Lugo Jr JN, Sheerin AH, Miller JW, D’Ambrosio R, Anderson AE, Poolos NP (2007) Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J Neurosci 27:13012–13021.

Jutrzas MJ, Fries P, Buffalo EA (2013) Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc Natl Acad Sci U S A 110:13144–13149.

Kalmbach BE, Johnston D, Brager DH (2015) Cell-type specific channelopathies in the prefrontal cortex of the fm1-1j mouse model of Fragile X Syndrome(1,2,3). eNeuro 2.

Kalmbach BE, Chitwood RA, Dembrow NC, Johnston D (2013) Dendritic generation of mGluR-mediated slow afterdepolarization in layer 5 neurons of prefrontal cortex. J Neurosci 33:15318–15332.

Kamondi A, Acsady L, Buzsaki G (1998a) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci 18:3919–3928.

Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998b) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8:244–261.

Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:69–76.

Kang J, Xu J, Xu Q, Nedergaard M, Kang J (2005) Astrocyte-induced glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 94:4121–4130.

Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, Bermudez-Contreras A, Luzzac A, McNaughton BL, Mohajerani MH (2020) Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife 9.

Kay LM (2015) Olfactory system oscillations across phyla. Curr Opin Neurobiol 31:141–147.
2671 Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI, Vandenbergh W, Nuttin B, Brown P (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28:6165–6173.

2673 Kullmann DM (2002) The neuronal channelopathies. Brain 125:165–193.

2674 Kullmann DM, Waxman SG (2010) Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol 588:1823–1827.

2675 Kuokkanen PT, Ashida G, Kraemer A, McColgan T, Funabiki K, Wagner H, Koppl C, Carr CE, Kempert R (2018) Contribution of action potentials to the extracellular field potential in the nucleus laminar of barn owl. J Neurophysiol 119:1422–1436.

2676 Labarrera C, Deitcher Y, Duda A, Weimer B, Kaduri Amichai A, Zylberman N, London M (2018) Adrenergic modulation regulates the dendritic excitability of layer 5 pyramidal neurons in vivo. Cell Rep 23:1034–1044.

2677 Larkum M (2013) A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci 36:141–151.

2678 Larkum M, Zhou J (2005) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 25:9091–9100.

2679 Larkum M, Zhou J, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341.

2680 Larkum M, Nevin T, Sandler M, Polsky A, Schiller J (2009) Symaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760.

2681 Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397–401.

2682 Lee HY, Jan LY (2012) Fragile X syndrome: mechanistic insights and therapeutic avenues regarding the role of potassium channels. Curr Opin Neurol 25:887–894.

2683 Lee HY, Ge WP, Huang W, He Y, Wang GX, Rowson-Baldwin A, Smith SJ, Jan YN, Jan LY (2011) Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron 72:630–642.

2684 Lee J, Song L, Lee K, Hong J, Lee H, Chae S, Cheong E, Shin HS (2013) Sleep spindles are generated in the absence of T-type calcium channel-mediated low-threshold burst firing of thalamocortical neurons. Proc Natl Acad Sci U S A 110:20266–20271.

2685 Lee SH, Dan Y (2012) Neuromodulation of brain states. Neuron 76:209–222.

2686 Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltész I (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129–1144.

2687 Lepousez G, Liedo PM (2013) Odor discrimination requires proper olfactory fast oscillations in awake mice. Neuron 80:1010–1024.

2688 Lerche H, Shah M, Beck H, Noebels J, Johnston D, Vincent A (2013) Ion channels in genetic and acquired forms of epilepsy. J Physiol 591:753–764.

2689 Leresche N, Lightowler S, Soltész I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol 441:155–174.

2690 Leski S, Lindhen H, Tetzlaft T, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9:e1003137.

2691 Leung LS (1984) Theta rhythm during REM sleep and waking: correlations between power, phase and frequency. Electroencephalogr Clin Neurophysiol 58:553–564.

2692 Levesque M, Avoli M (2010) High-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Dis 34:396–407.

2693 Levesque M, Ragsdale D, Avoli M (2019) Evolving mechanistic concepts of epileptiform synchronization and their relevance in...
curing focal epileptic disorders. Curr Neuropsychol 17:830–842.

Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814.

Linden H, Hagen E, Leski S, Norrholm DS, Kettenring KH, Einovell GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7:41.

Linden H, Tetzlaff T, Potjans TC, Kettenring KH, Grun S, Diesmann M, Einovell GT (2011) Modeling the spatial reach of the LFP. Neuron 72:859–872.

Lisman J, Buzsaki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD (2017) Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20:1434–1447.

Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:405–408.

Llinas RR, Steriade M (2006) Bursting of thalamic neurones and states of vigilance. J Neurophysiol 95:3297–3308.

Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823.

London M, Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532.

Lopez-Aguado L, Ibarz JM, Herreras O (2001) Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience 109:249–262.

Lorincz A, Notomi T, Tamas G, Shigemoto R, Nusser Z (2002) Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 5:1185–1193.

Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307.

Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441.

Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156.

Lovett-Barron M, Uziel G, Teacher AL, Leung D, Qin K, Sun KH, Nicou JD, Zemel BM, Sterrson SM, Losonczy A (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(423–430):S421–423.

Lubenov EV, Siapas AG (2009) Hippocampal theta oscillations are critical for the network pacemaker. Neuron 21:9–12.

Lundqvist M, Herman P, Warden MR, Brincat SL, Miller EK (2018) Increases and alpha/beta power decreases with memory load in the CA1 region of the rat. J Neurophysiol 119:2584–2601.

Malik R, Dougherty KA, Parikh K, Byrne C, Johnston D (2016) Mapping the electrophysiological and morphological properties of CA1 pyramidial neurons along the longitudinal hippocampal axis. Hippocampus 26:341–361.

Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME, Murayama M (2015) Top-down cortical circuit for accurate sensory perception. Nature 520:1304–1316.

Maragakis NJ, Rothstein JD (2006) Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 3:394–3955.

Marder E, Johnston D (2017) Dendritic GIRK channels gate the integration window, plateau potentials, and induction of synaptic plasticity in dorsal but not ventral CA1 neurons. J Neurosci 37:3940–3955.

Marder E, Dougherty KA, Parikh K, Byrne C, Johnston D (2016) Mapping the electrophysiological and morphological properties of CA1 pyramidial neurons along the longitudinal hippocampal axis. Hippocampus 26:341–361.

Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME, Murayama M (2015) Top-down cortical circuit for accurate sensory perception. Nature 520:1304–1316.

Maraigslist I (2016) Cannabinoid control of learning and memory functions. Annu Rev Neurosci 39:51–117.

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366.

Maingret G, Girardeau G, Todorova R, Goutiere M, Zugaro M (2016) Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci 19:959–964.

Major G, Larkum ME, Schier J (2013) Active properties of neocortical pyramidial neuron dendrites. Annu Rev Neurosci 36:25–45.

Malik R, Polisky A, Denk W, Schier J, Tank DW (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidial neurons. J Neurophysiol 99:2584–2601.

Malik et al (2015) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 9(9):3940–3955.

Malik R, Johnston D (2017) Dendritic GIRK channels gate the integration window, plateau potentials, and induction of synaptic plasticity in dorsal but not ventral CA1 neurons. J Neurosci 37:3940–3955.

Malik R, Dougherty KA, Parikh K, Byrne C, Johnston D (2016) Mapping the electrophysiological and morphological properties of CA1 pyramidial neurons along the longitudinal hippocampal axis. Hippocampus 26:341–361.

Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME, Murayama M (2015) Top-down cortical circuit for accurate sensory perception. Nature 520:1304–1316.

Maragakis NJ, Rothstein JD (2006) Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 3:394–3955.

Marder E (2011) Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci U S A 108(Suppl 3):15542–15548.

Marder E (2012) Neuronmodulation of neuronal circuits: back to the future. Neuron 76:1–11.

Marder E, Thirumalai V (2002) Cellular, synaptic and network effects of neuronmodulation. Neurol Netw 15:479–493.

Marder E, Taylor AL (2011) Multiple models to capture the variability of neuronal input transformations by tunable dendritic inhibition. Nat Commun 9:394.

Magee JC (2000) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidial neurons. J Neurosci 18:7613–7624.

Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidial neurons. J Neurosci 18:7613–7624.

Magee JC (1999) Dendritic integration of excitatory synaptic input. Nat Neurosci 2:948.

Magee JC (2000) Compartmentalized dendrites have multiple models to capture the variability of neuronal input transformations by tunable dendritic inhibition. Nat Commun 9:394.

Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidial neurons. Science 268:301–304.

Magee JC, Johnston D (2005) Plasticity of dendritic function. Curr Opin Neurobiol 15:334–342.

Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117.

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366.

Malik R, Cravel N (2014) Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks? Front Behav Neurosci 8:218.
Martinez-Canada P, Ness TV, Einovell GT, Fellin T, Panzeri S (2021) Computation of the electroencephalogram (EEG) from network models of point neurons. PLoS Comput Biol 17 e1008893.

Mazzoni A, Linden H, Cuntz H, Lammers A, Panzeri S, Einovell GT (2015) Computing the local field potential (LFP) from integrate-and-fire network models. PLoS Comput Biol 11 e1004584.

McCormick DA (1992a) Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol 9:212–222.

McCormick DA (1992b) Neuronal activities in the thalamus and cerebral cortex and their role in neumodulation of thalamocortical activity. Prog Neurobiol 39:337–388.

McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J Physiol 431:291–318.

McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. Proc Natl Acad Sci U S A 89:2774–2778.

McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400.

McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215.

McCormick DA, McGinley MJ, Salkoff DB (2015) Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol 31:133–140.

McCormick DA, Nestvogel DB, He BJ (2020) Neumodulation of brain state and behavior. Annu Rev Neurosci 43:391–415.

McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904.

McKenzie S, Huszar R, English DF, Kim K, Christensen F, Yoon E, Buszaki G (2021) Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron 109.1040-1054 e1047.

Meinga A, Kim K, English D, McKenzie S, Seymour JP, Buszaki G, Yoon E (2018) A high-resolution opto-electrophysiology system with a miniature integrated headstage. IEEE Trans Biomed Circuits Syst.

Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106:16829–16834.

McCle S, Ness TV, Einovell GT, Schubert D (2017) Impedance spectrum in cortical tissue: implications for propagation of LFP signals on the microsopic level. eNeuro 4.

Migliore M, Shepherd GM (2002) Emerging rules for the distributions of dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. J Comput Neurosci 7:5–15.

Miljkovic BA, Radojcic MS, Antic SD (2005) A strict correlation between dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. J Neurosci 25:3940–3951.

Mishra P, Narayan R (2019) Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: degeneracy and dominance. Hippocampus 29:378–403.

Mishra P, Narayan R (2020) Heterogeneities in intrinsic excitability and frequency-dependent response properties of granule cells across the blades of the rat dentate gyrus. J Neurophysiol 123:755–772.

Mishra P, Narayan R (2021) Ion-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus. Curr Res Neurobiol 2.

Mitchell SJ, Rawlins JN, Steward O, Olton DS (1982) Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2:292–302.

Mitta D, Narayan R (2018) Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations and intrinsic excitability of entorhinal stellate cells. J Neurophysiol 120:576–600.

Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR (2017) Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science:355.

Moreaux LC, Yatsenko D, Sacher WD, Choi J, Lee C, Kabut NJ, Cotton RJ, Boyden ES, Lin MZ, Tian L, Tolias AS, Poon JKS, Shepard KL, Roukes ML (2020) Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity—depth and in real time. Neuron 108:66–92.

Mukunda CM, Cichowicz, Reddy R (2017) Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. J Physiol 595:2611–2637.

Mulley JC, Scheffer IE, Petrov S, Berkovic SF (2003) Channelopathies as a genetic cause of epilepsy. Curr Opin Neurol 16:171–176.

Murthy VN, Felz EE (1996) Synchronization of neurons during local field potential oscillations in sensorymotor cortex of awake monkeys. J Neurophysiol 76:3968–3982.

Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buszaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507.

Nagai J, Yu X, Papouin T, Cheong EJ, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, Khakh BS (2021) Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109:579–596.

Narayan R, Johnstone D (2007) Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56:1061–1075.

Narayan R, Johnstone D (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J Neurosci 28:5846–5860.

Narayan R, Chattarji S (2010) Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J Neurophysiol 103:3070–3083.

Narayan R, Johnstone D (2012) Functional maps within a single neuron. J Neurophysiol 108:2343–2351.

Narayan R, Narayan A, Chattarji S (2005) A probabilistic framework for region-specific remodeling of dendrites in three-dimensional neuronal reconstructions. Neural Comput 17:75–96.

Navas-Olive A, Valero M, Jurado-Parras T, de Salas-Quiroga A, Averkin RG, Gambino G, Cid E, de la Prada LM (2020) Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nat Commun 11:2217.

Nectow AR, Nestler EJ (2020) Viral tools for neuroscience. Nat Rev Neurosci 21:669–681.

Ness TV, Remme MWH, Einovell GT (2016) Active subthreshold dendritic conductances shape the local field potential. J Physiol-London 594:3809–3825.

Ness TV, Remme MWH, Einovell GT (2018) h-Type membrane current shapes the local field potential from populations of pyramidal neurons. J Neurosci 38:6011–6024.

Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendritic current shapes the local field potential from populations of pyramidal neurons. J Neurosci 27:1498–1506.

Neymotin SA, Suter BA, Dura-Bernal S, Shepherd GM, Migliore M, Lytton WW (2017) Optimizing computer models of corticospinal neurons to replicate in vitro dynamics. J Neurophysiol 117:148–162.

Neymotin SA, Daniels DS, Caldwell B, McDoougal RA, Carnevale NT, Jas M, Moore CI, Hines ML, Hamalainen M, Jones SR (2020) Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife 9.

Nicoletis MA, Shuler M (2001) Thalamocortical and corticocortical interactions in the somatosensory system. Prog Brain Res 130:90–110.

Nikolic L, Nobili P, Shen W, Audoit E (2020) Role of astrocytic purinergic signaling in epilepsy. Glia 68:1677–1691.
1. Variability in the subcellular distribution of ion channels increases neuronal diversity. Trends Neurosci 32:267–274.

2. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833.

3. The hippocampus as a cognitive map. Oxford University Press.

4. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature 587:264–269.

5. Variability in the subcellular distribution of ion channels and the diversity of neuronal function. Curr Opin Neurobiol 22:366–371.

6. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175.

7. Imaging voltage and brain chemistry with genetically encoded sensors and modulators. Curr Opin Chem Biol 26:662–670.

8. In vivo patch-clamp recordings reveal distinct subthreshold properties of stellate cells in the medial entorhinal cortex. eLife 9.

9. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife 9.

10. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833.

11. The hippocampus as a cognitive map. Oxford University Press.

12. Imaging voltage and brain chemistry with genetically encoded sensors and modulators. Curr Opin Chem Biol 26:662–670.

13. Active dendrites emerges in the absence of individual active dendrites. Nat Neurosci 21:1583–1590.

14. Active dendritic integration and mixed neuronal activity and connectivity discontinuities. J Neurosci Methods 154:116–133.

15. Origin of gamma frequency power during hippocampal sharp-wave ripples. Cell Rep. 25. 1693-1700 e1694.

16. Hippocampal CA2 sharp-wave ripples reactive and promote social memory. Nature 587:264–269.

17. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833.

18. Pharmacological manipulation of the olfactory bulb modulates beta oscillations: testing model predictions. J Neurophysiol 120:1090–1106.

19. Neuronal morphology generates high-frequency firing resonances. J Neurosci 35:70586–7068.

20. Cognition of cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30:4440–4448.

21. Place cells, navigational accuracy, and the human hippocampus. Philos Trans R Soc Lond B Biol Sci 353:1333–1340.

22. Electrophysiology of a dendritic neuron model. Biophys J 31:573–590.

23. Electrophysiology of a dendritic neuron model. Biophys J 31:573–590.

24. Electrophysiology of a dendritic neuron model. Biophys J 31:573–590.

25. Electrophysiology of a dendritic neuron model. Biophys J 31:573–590.

26. Electrophysiology of a dendritic neuron model. Biophys J 31:573–590.

27. Electrophysiology of a dendritic neuron model. Biophys J 31:573–590.
Rathour RK, Narayanan R (2019) Degeneracy in hippocampal physiology and plasticity. Hippocampus 29:980–1022.

Ray S, Maunsell JH (2011a) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9 e1000610.

Ray S, Maunsell JH (2011b) Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31:12674–12682.

Ray S, Maunsell JH (2015) Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci 19:78–85.

Ray S, Hsiao SS, Crane NE, Franaszczuk PJ, Niebur E (2008) Effect of stimulus intensity on the spike-local field potential relationship in the secondary somatosensory cortex. J Neurosci 28:7334–7343.

Regehr WG (2012) Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 4 a007502.

Regehr WG, Carey MR, Best AR (2009) Activity-dependent regulation of synapses by retrograde messengers. Neuron 63:154–170.

Reichlin H, Menzel T, Druggan A, Both M (2010) Field potential signature of distinct multicellular activity patterns in the mouse hippocampus. J Neurosci 30:15441–15449.

Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–390.

Remy S, Beck H, Yaari Y (2010) Plasticity of voltage-gated ion channels in pyramidal cell dendrites. Curr Opin Neurobiol.

Riddle J, Frohlich F (2021) Targeting neural oscillations with transcranial alternating current stimulation. Brain Res 1765 147491.

Riddle J, Alexander ML, Schiller CE, Rubinow DR, Frohlich F (2021) Reduction in left frontal alpha oscillations by transcranial alternating current stimulation in major depressive disorder is context-dependent in a randomized clinical trial. Biol Psychiatry Cogn Neurosci Neuroimaging.

Rivnay J, Wang H, Fennlo L, Deisseroth K, Malliaras GG (2017) Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 3 e1601649.

Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–564.

Roig JA, Budeli R, Macadar O, Monte JM (1970) Hippocampal theta rhythm in relation with unit discharges in septum and hippocampus. Electroencephalogr Clin Neurophysiol 28:520.

Rojas-Libano D, Frederick DE, Egana JI, Kay LM (2014) The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat. Front Behav Neurosci 8:214.

Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30:8692–8697.

Rooke CJ, Kuhn B (2018) Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice. Nat Commun 9:3388.

Rooke CJ, Kuhn B (2020) Dendritic coincidence detection in Purkinje neurons of awake mice. eLife 9.

Roozbehan AK, Middeton SJ, Cunningham MO, LeBeau FE, Bibbig A, Whitington MA, Traub RD (2006) A beta2-frequency (20–30 Hz) oscillation in entorhinal networks of somatosensory cortex. Proc Natl Acad Sci U S A 103:15646–15650.

Rosburg T (2019) Action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. eLife 9.

Rosenthal R, Johnston D (2006) Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 26:3229–3244.

Rosenthal R, Johnston D (2007) State-dependent modulation of amygdala inputs by dopamine-induced enhancement of sodium currents in layer V entorhinal cortex. J Neurosci 27:7054–7069.

Ross W (2012) Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci 13:157–168.

Ross WN, Mantia S (2012) Imaging calcium waves and sparks in central neurons. Cold Spring Harbor protocols 2012:1087–1091.

Routh BN, Johnston D, Brager DH (2013) Loss of functional A-type potassium channels in the dendrites of CA1 pyramidal neurons from a mouse model of fragile X syndrome. J Neurosci 33:19440–19450.

Routh BN, Rathour RK, Baumgardner ME, Kalmbach BE, Johnston D, Brager DH (2017) Increased transient Na(+) conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1(−/−) mouse. J Physiol 595:4431–4448.

Roy JP, Clercq M, Steriade M, Deschenes M (1984) Electrophyiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. J Neurophysiol 51:1220–1235.

Royer S, Sirot A, Patel J, Buzsaki G (2010) Distinct representations and theta dynamics in dorsal and ventral hippocampus. J Neurosci 30:1777–1787.

Sabatini BL, Tian L (2020) Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108:17–22.

Sacadabia ER, Su H, Yaari Y (2001) Initiation of network bursts by Ca2 (+)-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J Physiol 532:205–216.

Santello M, Newian T (2015) Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 86:233–246.

Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166.

Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, Siegelbaum SA (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5262–5276.

Sasaki T, Kuga N, Namiki S, Matsuki N, Ikegaya Y (2011) Locally synchronized astrocytes. Cerebral cortex 21:1889–1900.

Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348–354.

Schauwecker PE, McNeill TH (1996) Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/limbic forelimb lesion. Exp Neurol 141:145–153.

Scheffer-Teixeira R, Belchior H, Leao RN, Ribeiro S, Tort AB (2013) On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity. J Neurosci 33:1535–1539.

Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 11:343–348.

Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):805–816.

Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289.

Schmidt R, Herrojo Ruiz M, Kilavik BE, Lundqvist M, Starr PA, Aron AR (2019) Beta oscillations in working memory, executive control of movement and thought, and sensorimotor function. J Neurosci 39:8231–8238.

Schomburg EW, Anastassiou CA, Buzsaki G, Koch C (2012) The spiking output of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 32:11798–11811.

Schomburg EW, Fernandez-Ruiz A, Mizuseki K, Berenyi A, Schomburg EW, Anastassiou CA, Buzsaki G, Koch C, Buzsaki G (2014) Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84:470–485.

Sevinavan P, Narayanan R (2020) Efficient phase coding in hippocampal place cells. Phys Rev Res 2 033333.

Segev I, Ramon J (2000) Untangling dendrites with quantitative methods. Science 290:744–750.
Seibt J, Timofeev I, Carrier J, Peyrache A (2016) Role of spindle oscillations across lifespan in health and disease. Neural Plast 2016:103439.

Senzai Y, Fernandez-Ruiz A, Buzsaki G (2019) Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron 100. 501-513.e505.

Shah MM, Anderson AE, Leung V, Lin X, Johnston D (2004) Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44:495–508.

Shai AS, Anastassiou CA, Larkum ME, Koch C (2015) Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput Biol 11 e1004090.

Shirhatti V, Ray S (2018) Long-wavelength (reddish) hues induce unusually large gamma oscillations in the primate primary visual cortex. Proc Natl Acad Sci U S A 115:E4885–E4894.

Singh A, Papa SM (2020) Striatal Oscillations in Parkinsonian Non-Human Primates. Neuroscience 449:116–122.

Singh A, Narayanan R (2020) Unitary sources say: It is inhibition! J Physiol 598:3815–3816.

Sinha M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res 320:1–63.

Steriade M, Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37:563–576.

Steriade M, Nunez A, Amzica F (1993a) Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3252–3265.

Steriade M, Nunez A, Amzica F (1993b) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265.

Steriade M, Contreras D, Curro Dossi R, Nunez A (1993c) The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–3299.

Steriade M (1993a) Sleep oscillations in corticothalamic neuronal networks during sleep and waking. Neuron 13:3252–3265.

Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res 320:1–63.

Steriade M, Contreras D, Curro Dossi R, Nunez A (1993c) The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–3299.

Seth R, Bereshpolova Y, Gusev AG, Swadlov H (2008) The impact of an LGN impulse on the awake visual cortex: synaptic dynamics and the sustained transient distinction. J Neurosci 28:5018–5028.

Seth R, Bhagavan S, Smith BH, Laurens G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74.

Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:89–92.

Stuart GJ, Spruston N (2015) Dendritic integration: 60 years of progress. Nat Neurosci 18:1713–1721.

Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, Beck H (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22:3645–3655.

Sun Q, Sotayo A, Cazzulino AS, Snyder AM, Denny CA, Siegelbaum SA (2017) Proximodistal heterogeneity of hippocampal CA3 pyramidal neuron intrinsic properties, connectivity, and reactivation during memory recall. Neuron 95:656–672.e653.

Sun Y, Farzan F, Barr MS, Kirnaha K, Fitzgerald PB, Light GA, Daskalakis ZJ (2011) gamma oscillations in schizophrenia: mechanisms and clinical significance. Brain Res 1413:98–114.

Supp GG, Siegel M, Hipp JF, Engel AK (2011) Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol: 21:1988–1993.

Suzuki M, Larkum ME (2017) Dendritic calcium spikes are clearly detectable at the cortical surface. Nat Commun 8:276.

Swadlov H, Gusev AG, Bezudnya T (2002) Activation of a cortical column by a thalamocortical impulse. J Neurosci 22:7766–7773.

Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR (2009) Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J Neurosci 29:12675–12685.

Takahashi H, Magee JC (2009) Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62:102–111.

Takahashi N, Oertel TG, Hegemann P, Larkum ME (2016) Active corticodentate modulates perception. Science 354:1587–1590.

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances cooperatively regulate the phase of spikes and LFPs in the hippocampal sharp wave ripples. Neuron 87:590–604.

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances cooperatively regulate the phase of spikes and LFPs in the hippocampal sharp wave ripples. Neuron 87:590–604.

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances cooperatively regulate the phase of spikes and LFPs in the hippocampal sharp wave ripples. Neuron 87:590–604.

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances cooperatively regulate the phase of spikes and LFPs in the hippocampal sharp wave ripples. Neuron 87:590–604.

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances cooperatively regulate the phase of spikes and LFPs in the hippocampal sharp wave ripples. Neuron 87:590–604.

Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances cooperatively regulate the phase of spikes and LFPs in the hippocampal sharp wave ripples. Neuron 87:590–604.
Telenczuk M, Telenczuk B, Destexthe A (2020b) Modeling unitary fields and the single-neuron contribution to local field potentials in the hippocampus. J Physiol 598:3957–3972.

Terzic A, Perez-Terzic C (2010) Channelopathies: decoding disease pathogenesis. Science Transl Med 2:24ps37.

Todorova R, Zugaro M (2019) Isolated cortical computations during delta waves support memory consolidation. Science 366:377–380.

Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci U S A 96:3257–3262.

Traub RD, Wong RK (1983) Synaptic mechanisms underlying interictal spike initiation in a hippocampal network. Neurology 33:257–266.

Traub RD, Contreras D, Whittington MA (2005) Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. J Clin Neurophysiol 22:330–342.

Traub RD, Whittington MA, Colling SB, Buzsaki G, Jefferys JG (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484.

Trayanova N, Henriquez CS, Plonsey R (1990) Extracellular potentials and currents of a single active fiber in a restricted volume conductor. Ann Biomed Eng 18:219–238.

Trimmer JB, Trettel SG, Hwaen E, Colgin LL (2017) Fast gamma rhythms predominate over slow gamma rhythms in superficial layers of medial entorhinal cortex. In: Society for Neuroscience Annual meeting 2017, Washington, DC. Program no. 083.23.

2017 Neuroscience Meeting Planner. http://www.abstractsonline.com/pp8/ No. of Pages 32

Vetter P, Roth A, Hauser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937.

Vu MT, Adali T, Ba D, Buzsaki G, Carlson D, Heller K, Liston C, Rudin C, Sohal VS, Widge AS, Mayberg HS, Sapiro G, Dzirasa K (2019) A shared vision for machine learning in neuroscience. J Neurosci 38:1601–1607.

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413.

Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567.

Watrous AJ, Fried I, Ekstrom AD (2011) Behavioral correlates of human hippocampal delta and theta oscillations during navigation. J Neurophysiol 105:1747–1755.

Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD (2013) A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 23:656–661.

Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577.

Whittington MA, Traub RD (2003) Infraslow oscillations modulate excitability and interictal epileptiform activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101:5053–5057.

Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. Comput Neurosci 7:149–171.

Vass LL, Copara MS, Seyal M, Shahlaie K, Farias ST, Shen PY, Ekstrom AD (2016) Oscillations go the distance: low-frequency human hippocampal oscillations code spatial distance in the absence of sensory cues during teleportation. Neuron 89:1180–1186.

Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412.

Vetter P, Roth A, Hauser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937.

Vu MT, Adali T, Ba D, Buzsaki G, Carlson D, Heller K, Liston C, Rudin C, Sohal VS, Widge AS, Mayberg HS, Sapiro G, Dzirasa K (2019) A shared vision for machine learning in neuroscience. J Neurosci 38:1601–1607.

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413.

Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567.

Watrous AJ, Fried I, Ekstrom AD (2011) Behavioral correlates of human hippocampal delta and theta oscillations during navigation. J Neurophysiol 105:1747–1755.

Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD (2013) A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 23:656–661.

Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577.

Whittington MA, Traub RD (2003) Infraslow oscillations modulate excitability and interictal epileptiform activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101:5053–5057.

Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. Comput Neurosci 7:149–171.

Vass LL, Copara MS, Seyal M, Shahlaie K, Farias ST, Shen PY, Ekstrom AD (2016) Oscillations go the distance: low-frequency human hippocampal oscillations code spatial distance in the absence of sensory cues during teleportation. Neuron 89:1180–1186.

Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412.

Vetter P, Roth A, Hauser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937.

Vu MT, Adali T, Ba D, Buzsaki G, Carlson D, Heller K, Liston C, Rudin C, Sohal VS, Widge AS, Mayberg HS, Sapiro G, Dzirasa K (2019) A shared vision for machine learning in neuroscience. J Neurosci 38:1601–1607.

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413.

Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567.

Watrous AJ, Fried I, Ekstrom AD (2011) Behavioral correlates of human hippocampal delta and theta oscillations during navigation. J Neurophysiol 105:1747–1755.

Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD (2013) A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus 23:656–661.

Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577.

Whittington MA, Traub RD (2003) Infraslow oscillations modulate excitability and interictal epileptiform activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101:5053–5057.

Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. Comput Neurosci 7:149–171.

Vass LL, Copara MS, Seyal M, Shahlaie K, Farias ST, Shen PY, Ekstrom AD (2016) Oscillations go the distance: low-frequency human hippocampal oscillations code spatial distance in the absence of sensory cues during teleportation. Neuron 89:1180–1186.
Yuste R (1997) Potassium channels. Dendritic shock absorbers. Nature 387(851):853.

Zenke F, Gerstner W, Ganguli S (2017) The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol 43:166–176.

Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, Sans N, Rossier J, Oostra B, LeMasson G, Frick A (2014) Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci 17:1701–1709.

Zheng C, Bieri KW, Trettel SG, Colgin LL (2015) The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus 25:924–938.

Zheng C, Bieri KW, Hwaun E, Colgin LL (2016a) Fast gamma rhythms in the hippocampus promote encoding of novel object-place pairings. eNeuro 3.

Zheng C, Bieri KW, Hsiao YT, Colgin LL (2016b) Spatial sequence coding differs during slow and fast gamma rhythms in the hippocampus. Neuron 89:398–408.

Zhou Z, Xiong W, Masurkar AV, Chen WR, Shepherd GM (2006a) Dendritic calcium plateau potentials modulate input-output properties of juxtaglomerular cells in the rat olfactory bulb. J Neurophysiol 96:2354–2363.

Zhou Z, Xiong W, Zeng S, Xia A, Shepherd GM, Greer CA, Chen WR (2006b) Dendritic excitability and calcium signalling in the mitral cell distal glomerular tuft. Eur J Neurosci 24:1623–1632.

Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405.

(Received 27 April 2021, Accepted 31 August 2021)