Engineering the variable region of therapeutic IgG antibodies

Tomoyuki Igawa,* Hiroyuki Tsunoda, Taichi Kuramochi, Zenjiro Sampei, Shinya Ishii and Kunihiro Hattori
Chugai Pharmaceutical Co., Ltd.; Fuji-Gotemba Research Laboratories; Shizuoka, Japan

Key words: antibody therapeutics, variable region, engineering, affinity, pharmacokinetics, stability, immunogenicity

Introduction

Monoclonal antibodies (mAbs) have become an important therapeutic option in numerous diseases and are expected to play a greater role in the future of disease treatment.1,2 Twenty-eight recombinant mAbs are currently approved by the FDA and, with over 200 new candidates entering into clinical trials, the field of mAbs is becoming an extremely competitive field.3 This competition has led researchers to generate so-called second or third generation antibodies with clinical differentiation utilizing various engineering and optimization technologies. Parent IgG antibodies can be engineered to have improved antigen binding properties, effector functions, pharmacokinetics, pharmaceutical properties and safety issues. Although the primary role of the antibody variable region is to bind to the antigen, it is also the main source of antibody diversity and its sequence affects various properties important for developing antibody therapeutics. Here we review recent research activity in variable region engineering to generate superior antibody therapeutics.

Since the first generation of humanized IgG1 antibodies reached the market in the late 1990s, IgG antibody molecules have been extensively engineered. The success of antibody therapeutics has introduced severe competition in developing novel therapeutic monoclonal antibodies, especially for promising or clinically validated targets. Such competition has led researchers to generate so-called second or third generation antibodies with clinical differentiation utilizing various engineering and optimization technologies. Parent IgG antibodies can be engineered to have improved antigen binding properties, effector functions, pharmacokinetics, pharmaceutical properties and safety issues. Although the primary role of the antibody variable region is to bind to the antigen, it is also the main source of antibody diversity and its sequence affects various properties important for developing antibody therapeutics. Here we review recent research activity in variable region engineering to generate superior antibody therapeutics.

Efficient preclinical development of therapeutic antibodies can be facilitated by cross-reactivity of the antibody to rodent or nonhuman primate antigen, since antibody reactive to solely human antigen may require a surrogate antibody for preclinical study, which increases the workload significantly. Difficulty in CMC development largely depends on the pharmaceutical properties of the antibody molecule. Subcutaneous formulation with a long dosing interval, which requires high antibody concentration, could be hampered by either low stability or solubility of the antibody molecule. Formation of heterogeneity during storage, due to deamidation for example, may sometimes require lyophilization to improve the stability during storage, which would be a costly process and inconvenient for the users since it requires reconstitution before use. Therefore, improving such low stability, solubility and chemical stability during the lead antibody optimization step, rather than during the formulation process, would facilitate the development process afterwards. Since the heterogeneity of the antibody molecule needs to be controlled in the manufacturing process, the presence of complex or unexpected heterogeneity may affect the development timeline, so designing the antibody molecule without, or with minimum, heterogeneity would also facilitate CMC development.

Cost of goods (COGs) might also be an important factor for therapeutic antibodies. COGs would be affected by the antibody dosage regimen or durability of the antibody in vivo (which is determined by its pharmacokinetic/pharmacodynamic profile), the expression yields of the antibody and the manufacturing process, such as the number of purification steps and whether the formulation requires lyophilization.

These various drug-related properties of mAbs can be improved by antibody engineering and optimization technologies, which, in the case of whole IgG antibodies, can be classified into two categories: variable region engineering and Fc engineering. Although the variable region is responsible for the antigen binding properties of IgG antibodies, it can also influence their pharmacokinetics, pharmaceutical properties and
immunogenicity. The Fc region is responsible for the effector functions and the pharmacokinetics, and engineering it to optimize the binding to various Fc receptors is reviewed in reference 4. This review focuses on the technologies currently available in variable region engineering of IgG antibodies to improve the antigen binding properties, pharmacokinetics, pharmaceutical properties and immunogenicity (Table 1).

Engineering the Antigen Binding Properties

The primary role of the antibody variable region is to bind to the target antigen. Two important antigen-binding properties are the affinity and the specificity, and engineering these properties has been extensively studied in the past two decades (Table 1).

Approaches to affinity maturation of mAbs. Binding affinity is one of the most important properties of therapeutic antibodies and, generally, binding to the target with high affinity is an indispensable part of their development. Although high-affinity antigen recognition by antibodies can be achieved by in vivo affinity maturation in the mammalian immune system, generating antibodies with low picomolar affinity in vivo might be difficult due to the affinity ceiling effect of the B-cell responses.6 The limitations of in vivo affinity maturation can be overcome by in vitro affinity maturation, achieving up to femtomolar affinity. Currently there are three approaches available for in vitro affinity maturation: random mutagenesis, targeted mutagenesis and the shuffling approach. The random mutagenesis approach utilizes E. coli mutator bacterial strains,7 saturation mutagenesis8,9 or error-prone PCR10 to generate a broad range of variants of the parent antibody. The targeted mutagenesis approach utilizes alanine-scanning or site-directed mutagenesis, such as look-through mutagenesis,11 to generate limited collections of the specific variants of the parent antibody. The shuffling approach includes DNA shuffling,12 light chain shuffling,13 or CDR (complementarity-determining region) shuffling14,15 to generate shuffled variants of the parent antibody.

An antibody with high affinity is selected from these variants of the parent antibody by display panning technologies. The most general display technology for affinity maturation is phage display using pIII fusion protein16 or pIX fusion protein.17 A variety of other display methods have been reported such as ribosome display,18 yeast surface display,19 E. coli surface display and mRNA display.20 These combinatorial approaches to antibody affinity maturation require a large library size; however, the library size is often limited by the transformation steps following assembly and ligation.22 Ribosome display, a cell free system, allows the generation of large libraries up to 10^{14} members,23 and antibodies with picomolar affinity have been identified.24 The advantages of yeast surface display are that the eukaryotic system offers post-translational modification and processing machinery similar to that of mammals, and flow cytometry can be used to discriminate the variants with close affinity. Boder et al. demonstrated that screening the randomly mutagenized library of a parent antibody in the yeast surface display provided a highest-affinity variant with a dissociation constant of 48 fM, which was a 10,000-fold improvement over the parental antibody.25

Recently, in silico approaches for affinity maturation using computational design have been reported. In the first of these, Clark et al. reported on in silico affinity maturation of a therapeutic antibody targeting integrin VLA1.26 Barderas et al. reported that a 454-fold improvement in affinity over the parent antibody was achieved with a structure-based computational method.27 Lippow et al. reported an iterative computational design method that focuses on electrostatic interactions, with which they successfully improved the affinity of multiple antibodies.28

Pharmacological effect of affinity maturation. In the case of an antagonistic antibody, improving the affinity to the target antigen would generally improve the therapeutic efficacy or decrease the minimum concentration at which the antibody is effective in plasma in vivo, therefore enabling the dosage or dosing intervals to be reduced.29-32 Although improving the affinity is effective for antagonist antibody, Rathanaswami et al. mathematically demonstrated that such reduction in the dosage would reach a ceiling at a certain affinity depending on the baseline concentration of the soluble antigen.33 Obviously, due to the stoichiometric binding of the antibody to the antigen, the minimum effective concentration of the antibody cannot be lowered below the equilibrium concentration of the soluble antigen, even if the antibody has infinite affinity. Moreover, since the antigen is continuously produced in vivo, which may be different from the in vitro situation, the antibody-dosage cannot be lowered below the amount of antigen produced between dosings. Therefore, if the equilibrium concentration or turnover of the antigen in vivo is very high, affinity maturation may have a limited effect on reducing the antibody dosage or dosing intervals.

The pharmacological effect of affinity maturation on antibodies targeting a solid tumor is somewhat complicated. Adams et al. reported that antibody-based molecules with extremely high affinity have impaired tumor penetration properties.34 In biodistribution studies examining a series of radio-labeled anti-HER2 single chain Fv (scFv) mutants with affinities ranging from 10^{-7} to 10^{-11} M, quantitative analysis of tumor retention of these antibodies demonstrated that no significant increase of tumor retention was observed beyond the affinity of 10^{-9} M and, moreover, diffusion of the highest affinity scFv was limited to the peripheral tumor space adjacent to the blood vessels while the lowest affinity scFv diffused uniformly throughout the tumor interior. Tang et al. described the relationship between the affinity of IgG antibody and antibody-dependent cellular cytotoxicity (ADCC).35 Studies using a series of anti-HER2 IgG1 antibodies with different affinities demonstrated that antibodies with higher affinity promoted stronger ADCC activity than the lower-affinity variants. Kyriakos et al. described the relationship between the affinity of anti-HER2 antibodies and HER2-dependent internalization after incubating radio-labeled antibodies with the target cells.36 The lowest-affinity antibody exhibited the least catabolism by the target cells, whereas the highest-affinity antibody exhibited the most. Since increasing affinity to the antigen seems to have a negative effect on intratumor penetration and target-mediated clearance, but a positive effect on ADCC activity, it might be difficult to predict in vivo antitumor efficacy of
Table 1. Summary of variable region engineering of therapeutic IgG antibodies

Engineering	Effect	Reference
Antigen binding properties		
Affinity maturation		
Random mutagenesis	Improving therapeutic efficacy[^1]	21
Targeted mutagenesis		11
Shuffling approaches	Decreasing minimum effective plasma antibody concentration[^1]	12
In silico approaches		28
Altering the specificity		
Random mutagenesis	Reducing the cross reactivity to other antigens	38
Targeted mutagenesis	Broadening the specificity to related antigens	44
	Improving the non-human species cross-reactivity	46
	Binding to two different antigen by single binding site	50
Pharmacokinetics		
Isoelectric point engineering		
Lowering isoelectric point	Reducing the non-specific clearance	56
Engineering pH dependency		
Rapid dissociation in acidic condition	Reducing the antigen-mediated clearance[^2]	58
	Binding to multiple antigen by single antibody	58
Pharmaceutical properties		
Thermal stability improvement		
Optimizing hydrophobic core and charge	Retaining biological activity during storage	65, 66
cluster residues		
Optimizing conserved residues	Minimizing aggregation not to increase immunogenicity	65, 66
Removing hydrophobic surface residues	Improving expression yield	65, 66
Optimizing VH/VL interface residues		65, 66
Solubility improvement		
Reducing the surface hydrophobicity	Enabling high concentration formulation	77, 78
Introducing an N-linked carbohydrate		77, 78
Modifying the isoelectric point		78
Chemical stability improvement		
Avoiding deamidation and isomerization	Retaining biological activity during storage	83, 87
Avoiding Met and Trp oxidation	Facilitating quality control in manufacturing	85
Heterogeneity improvement		
Avoiding glycosylation	Facilitating quality control in manufacturing	94
Immunogenicity		
Humanization		
CDR grafting	Reducing immunogenicity	111
SDR grafting		116
Recombinant antibody libraries		121
Deimmunization		
In silico prediction of T-cell epitopes	Reducing immunogenicity	127
In vitro analysis of T-cell epitopes		125
Introducing regulatory T-cell epitope		133

[^1]This may not be always the case for the antibodies targeting solid tumors and agonistic antibodies.
[^2]Antibodies targeting membrane-bound antigen with internalizing property.
an affinity-maturated antibody to solid tumors. It may require case-by-case studies of different antibodies against different antigens to evaluate the effect of affinity on in vivo antitumor efficacy.

With regard to an agonistic antibody, affinity maturation may have a negative impact on both in vitro and in vivo potency. Lacy et al. reported that erythropoietin-mimicking agonistic antibody targeting erythropoietin receptor (EPOR) exhibited an inverse correlation between affinity and potency. For agonistic antibodies, those with faster off-rates may permit continuous receptor stimulation and more efficient activation of the receptor than those with slower off-rates.37

Engineering the specificity of mAbs. Binding specificity is another important factor for therapeutic antibodies. The mutagenesis and display technologies used for affinity maturation may also be applied to engineer the specificity of mAbs. Engineering specificity includes reducing the cross-reactivity to other antigens, broadening the specificity to related antigens and improving the cross-reactivity with nonhuman species.46,47

Dubreuil et al. reported that the cross-reactivity of anti-progesterone antibody to 5β- or 5α-dihydroprogesterone could be reduced by using phage display technology.49 Competitive screening against a large excess of 5β- or 5α-dihydroprogesterone generated variants with reduced cross-reactivity while maintaining the parent antibody’s affinity to progesterone. Garcia-Rodriguez et al. reported that neutralizing antibody directed against botulinum neurotoxin subtype A1 could be engineered, by yeast surface display technology, to also neutralize neurotoxin subtype A2, which shares 90% sequence identity with subtype A1, enhancing the antibody’s potential as an efficient intervention against the botulinum neurotoxin.48

Werther et al. reported reengineering a humanized antibody against human LFA-1 to bind to rhesus LFA-1.50 Farady et al. reported a computational design approach to improving cross-reactivity of an antibody against membrane-type serine protease 1 (MT-SP1/matriptase) to the mouse counterpart.51 In both studies, several mutations in CDR enhanced the binding to nonhuman antigen while maintaining the binding to the human antigen. Such species cross-reactivity engineering would facilitate preclinical studies which otherwise may require surrogate antibodies.

Bispecific antibody represents one of the promising second generation antibody therapeutics. Various formats for bispecific antibodies, such as dual variable domain immunoglobulin (DVD-Ig) and IgG-like bispecific antibody (IgG-scFv), have been reported and whole IgG-type bispecific antibody using a common light chain is one of the promising formats from the standpoint of manufacturability. Nevertheless, the presence of two heavy chains, which require heterodimerization and one light chain, in contrast to the conventional IgG with one heavy chain and one light chain, may still make CMC development challenging. Recently, Bostrom et al. reported the “two-in-one” designer antibody in which the same binding site on an antibody was engineered to recognize two different antigens (HER2 and VEGF).52 random sequence was incorporated into the light chain of trastuzumab to afford binding to VEGF and then phage display technology was used to identify a “two-in-one” antibody which binds to HER2 and VEGF comparably to trastuzumab and bevacizumab. Because such a “two-in-one” antibody consists of one heavy chain and one light chain, it can be manufactured in the same manner as a conventional IgG antibody.

Improving the Pharmacokinetics

IgG antibodies generally have a longer half-life compared to other protein therapeutics due to FcRn-mediated recycling. Nevertheless, further improvement of the pharmacokinetics of IgG antibodies is beneficial especially for chronic diseases. Improving the pharmacokinetics allows the dosage to be lowered, enabling a subcutaneous formulation to be developed and COGs to be reduced, and also prolongs the dosing interval, which is more convenient for the patients. Pharmacokinetics of IgG antibodies has been studied in detail, and it is known that the clearance of IgG antibodies can be classified into two different pathways: non-specific clearance and antigen-mediated clearance. It has been reported that non-specific clearance of IgG could be improved by an Fc engineering approach to increase the Fc/FcRn interaction.52-54 Recently, variable engineering approaches for improving the two clearance pathways have been reported (Table 1).

Reducing the non-specific clearance of IgG antibodies. The first clearance pathway, non-specific clearance, is a non-specific uptake (pinocytosis) of IgG antibodies into the cellular endosomal compartment followed by lysosomal degradation of the nonFcRn-bound antibody.55 Although Fc engineering technologies to increase the binding to FcRn and thereby reduce the non-specific clearance of IgG are well established,56 until recently there were no other technologies available to reduce the non-specific clearance of the IgG antibody.

Igawa et al. reported that non-specific clearance of IgG antibodies with identical Fc sequences but different variable region sequences correlated with the isoelectric point of the antibody, and the antibody with a lower isoelectric point exhibited lower clearance.56 Their findings suggested that electrostatic repulsion between the low isoelectric point antibody and the negatively-charged cell surface contributed to the reduced non-specific uptake of the antibody into the cell. Taking advantage of this, engineering the variable region of the IgG1 antibody to lower the isoelectric point while maintaining the affinity to the antigen, reduced the clearance of the parent antibody by 3.1-fold. Such improvement seems to be comparable to, or even better than, the reported Fc engineering approach.53 Since most human or humanized mAbs obtained by general methodology have a rather high isoelectric point, non-specific clearance of such an antibody could be reduced by engineering the isoelectric point of the variable region.

Reducing the antigen-mediated clearance of IgG antibodies. The other clearance pathway, antigen-mediated clearance, contributes to the total clearance when IgG antibodies target membrane-bound antigen with an internalizing property, in which the antibody bound to the membrane-bound antigen is internalized as an antigen-antibody complex followed by lysosomal degradation of that complex.57 Since antigen-mediated
clearance is the consequence of the antibody binding to the antigen, which is its primary function, antigen-mediated clearance of the antibody would seem to be an inevitable part of its function.

Igawa et al. reported a novel approach to improving the antigen-mediated clearance of the IgG antibody. Anti-IL-6 receptor (IL-6R) antibody tocilizumab, which exhibits membrane IL-6R-mediated clearance, was engineered to rapidly dissociate from IL-6R within the acidic endosome (pH 6.0), while maintaining its binding affinity to IL-6R in the plasma (pH 7.4), so that dissociated antibody within the acidic endosome would be recycled back to the plasma. Engineering pH dependency into tocilizumab, by introducing histidine residues into its antigen-binding site, significantly reduced the antigen-mediated clearance. This pH-dependent binding approach may be generally applicable to reducing antigen-mediated clearance. In addition, the pH-dependent dissociation of the soluble IL-6R from the antibody within the endosome enabled selective lysosomal degradation of the previously antibody-bound soluble IL-6R, and FcRn-mediated recycling of the free antibody back to the plasma. Since the recycled free antibody is capable of binding to another antigen, pH-dependent binding would enable a single antibody molecule to repeatedly bind to multiple antigens. Binding of multiple antigens by a single antibody has the potential to overcome the limitation of conventional high-affinity antibody in which a single antibody can bind to antigen only once (i.e., single antigen per Fab) to reduce the antibody dosage or dosing intervals.

Improving the Pharmaceutical Properties

Although the difference in the constant region sequence (i.e., IgG isotype) has some effect on the pharmaceutical properties of the IgG antibodies, the variable region sequence, which significantly differs among the antibodies but comprises only one-third of the whole IgG molecule, has a significant effect on the pharmaceutical properties, such as thermal stability, solubility, chemical stability and heterogeneity. Since poor pharmaceutical properties may have a significant impact on the manufacturability, various engineering technologies to improve them have been reported (Table 1).

Engineering to improve thermal stability. Poor thermal stability may cause various problems such as aggregation, resulting in reduced biological activity and increased immunogenicity, and low expression yield, resulting in increased COGs. Therefore improving the stability of the antibody therapeutics would be important for poorly-behaving antibodies.

Engineering the stability of the antibody variable region has mainly focused on scFv due to its inherent poor stability. Stability of scFv can be improved by optimizing the hydrophobic core residues, charge cluster residues, residues which determine the framework subclasses, conserved proline and glycine residues, hydrophobic surface residues and VH/VL interface residues using either a rational mutagenesis approach or a library approach. Dong et al. reported that rational optimization based on the structure of anti-IGF-1R scFv improved the melting temperature by 16°C. Miller et al. reported that the focused library approach improved the melting temperature of scFv by 33°C.

In most cases, optimizing the stability results in improved expression yield.

It has been reported that germline families of the heavy chain have a significant effect on the stability and the expression yield of scFv. The heavy chains derived from germline families VH2, 4 and 6 tend to have lower stability and expression yield than VH1, 3 and 5. Especially VH3 germline appears to have favorable properties. Although selecting the VH3 germline framework seems to be a promising approach for generating high stability scFv, CDR grafting of mouse CDRs into VH3 germline does not always result in stable scFv.

This is presumably because the compatibility of CDR with the framework residues is important for the overall stability of scFv.

Although engineering the scFv to improve thermal stability is being extensively studied, stability engineering of the Fab domain in IgG antibodies has not been reported. This seems to be due to the fact that Fab often has acceptable stability for therapeutic development because of the stabilization effect of the CH1/CL domain present in the Fab. Garber et al. studied the melting temperature of 17 different Fab from different human or humanized antibodies and found that the melting temperatures of these antibodies range from 57–82°C. Antibodies with a very low melting temperature were found to aggregate and express poorly. Therefore stability engineering of the variable region of IgG antibodies may be necessary for such poorly behaved IgG antibodies.

Engineering to improve solubility and viscosity. Subcutaneous delivery of antibody therapeutics is preferable for chronic disease. Since the amount of volume for a single subcutaneous injection is generally limited to less than 1.5 mL, subcutaneous injection often requires a formulation with high antibody concentration (i.e., >100 mg/mL). Major difficulties for achieving the necessary concentration are the stability, solubility and viscosity.

The solubility of IgG antibody is generally high (>100 mg/mL), but extremely low solubility has been reported in cryoglobulin IgG antibodies and some therapeutic IgG antibodies. Pepinsky et al. reported anti-LINGO-1 IgG2 antibody with low solubility (<0.3 mg/mL) and described two variable region engineering strategies for improving the solubility. The first strategy, reducing the surface hydrophobicity by rationally mutating the residues exposed at the surface of the variable region, improved the solubility to >7 mg/mL. The second strategy, introducing an N-linked carbohydrate in the variable region, improved the solubility to >50 mg/mL. Wu et al. reported anti-IL13 antibody with low solubility and employed structure-based variable region engineering approaches to improve the solubility. Isoelectric point modification and reducing the surface hydrophobicity showed only moderate improvement in the solubility, whereas introducing an N-linked carbohydrate showed significant improvement. Although these two reports suggest that attaching an N-linked carbohydrate in the variable region seems to be the most effective strategy, this approach would increase heterogeneity derived from the additional carbohydrate in the variable region, requiring more control of the heterogeneity in the manufacturing process. Moreover, N-linked carbohydrate in CDR may also have an effect on the pharmacokinetics.
of the antibody.79 Taking these potential issues into consideration, improving solubility by introducing an N-linked carbohydrate in the variable region might not be a first-line approach for improving the solubility.

High viscosity of therapeutic antibodies impedes the development of high concentration formulations for subcutaneous injection. It has been reported that different IgG1 antibodies have different viscosity which could be derived from the different variable region sequences,80 and electrostatic interaction between Fab seems to play a role in increased viscosity in a certain antibody.81 However, to date, there is no variable region engineering reported for reducing the viscosity of IgG antibodies.

Engineering to improve chemical stability. Chemical degradations such as deamidation,82 isomerization,83 succinimide formation,84 methionine and tryptophan oxidation85 and cysteinylation of unpaired cysteine86 in the CDR region often lead to a reduction in the potency of antibody therapeutics and could be issues needing to be controlled in CMC development. Therefore, antibodies with such tendencies should be avoided as clinical candidate molecules. If such properties are found in the clinical candidate antibody or lead antibody, the degradation site should be identified by structural analysis and removed in the subsequent engineering process or otherwise a back-up antibody without such properties should be selected in its place.

Among various degradation pathways, asparagine deamidation and isomerization87 in the CDRs seems to be the major degradation. A common approach to avoiding asparagine deamidation and isomerization is to substitute the asparagine residue itself with other amino acids that maintain the antigen-binding capability. But in some cases, the asparagine residue in the CDR might be critical for its antigen binding and may not be replaceable. Recently, Nakano et al. reported an engineering approach to overcome such issues in an anti-GPC3 IgG1 antibody, in which an asparagine-glycine sequence, a potential deamidation site, was found in the light chain CDR of the lead antibody.87 Based on the fact that the rate of deamidation is mainly determined by the C-terminal residue next to asparagine and is most rapid when the C-terminal residue is glycine or serine,88 C-terminal glycine residue, not the asparagine residue, was substituted with arginine, to remove the potentially deamidating site from the parent antibody while maintaining the antigen binding.

Methionine or tryptophan oxidation in the CDRs can also be avoided by substituting oxidizing residues with other amino acids which do not undergo oxidative degradation and which maintain the binding capability, although there has been no such report to date.

Engineering to improve heterogeneity. Heterogeneities deriving from post-translational modification, such as glycosylation, N-terminal pyroglutamine cyclization and C-terminal clipping95,96 need to be controlled to maintain the product quality.

Approximately 20% of human IgGs have N-glycosylation motif N-X-(S/T) (Asn-X-Ser/Thr, where X is not proline) within the variable region, in addition to the common glycosylation site in the Fc region.91 The most common N-glycosylation site in the variable region is CDR2 of the heavy chain, but other potential N-glycosylation sites can be generated by somatic mutations.92 The presence of glycosylation in the variable region may have either positive or negative effects on the antigen binding,79,93 and the difference in the carbohydrate structure could also influence the pharmacokinetics.79 Glycosylation in the variable region, in addition to Fc glycosylation, needs to be controlled during the manufacturing process, creating a significant burden for CMC development. Therefore, glycosylation in the variable region should preferably be avoided by selecting or designing an appropriate antibody sequence, and a synthetic library has been reported of sequences designed to avoid the potential appearance of N-glycosylation motif in the HCDR2 repertoire.94 Recently, in addition to consensus glycosylation motif N-X-(S/T), Valliere-Douglass et al. reported a novel N-glycosylation motif, the reverse consensus motif (S/T)-X-N, in the antibody variable region.95 Moreover, cetuximab was reported to have O-glycosylation in the variable region which results in anaphylaxis from IgE specific to galactose-alpha-1,3-galactose, in a subset of patients.96 These forms of glycosylation could be an issue in the later stages of development so it may be better to remove them also by engineering before selecting the clinical candidate.

Reducing the Immunogenicity

Clinical utility and efficacy of the therapeutic antibodies can be limited by the production of anti-drug antibodies (ADAs), since ADA can influence their efficacy and pharmacokinetics and sometimes lead to serious side effects.97-104 Although many factors influence the immunogenicity of therapeutic antibodies,105,106 a number of reports describe the importance of effector T-cell epitopes present in the therapeutic protein.107-110 Various human or humanized antibodies and deimmunization technologies to minimize the number of effector T-cell epitopes have been reported for reducing the immunogenicity of therapeutic antibodies (Table 1).

Humanization and human-antibody-generation technologies. The initial approach to reducing potential immunogenicity of the nonhuman variable region was to humanize variable region derived from nonhuman sources by grafting it into a template human framework,111 and this humanization technology significantly decreased the immunogenicity of therapeutic antibodies.112 Since a template human framework with somatic hypermutations can create effector T-cell epitopes in some individuals, superhumanization or germline humanization, using human germline frameworks as templates for CDR grafting, has been proposed as a superior humanization methodology on the assumption that the germline sequences will not activate effector T-cells in broader populations.113-115 Nevertheless, such antibodies might still contain several effector T-cell epitopes in the nonhuman CDRs and the CDR/framework junction regions. To reduce the potential risk of effector T-cell epitopes being contained in such regions, there is the specificity-determining residue (SDR) grafting approach, in which only the SDRs (not whole CDRs) are grafted onto the germline antibodies. Such SDR-grafted humanized antibodies resulted in lower immunogenic potential compared to CDR-grafted humanized antibodies.116-119
Fully human antibodies can be generated by using display library technologies, genetically modified mice and rational engineering technologies. The advantage of fully human antibodies over humanized antibodies with regard to immunogenicity is controversial. Adalimumab, a fully human antibody, has been reported to induce ADA production in a subset of patients (5–89%) that varies depending on the situation, and a reduction in therapeutic efficacy was observed in the ADA-positive patients. This significant immunogenicity of adalimumab was supported by the presence of effector T-cell epitopes in regions containing a CDR-sequence determined by an in vitro helper CD4+ T-cell assay.

In silico and in vitro deimmunization technologies. Effector T-cell epitopes may be present in the humanized or even in fully human antibody and, moreover, engineering such antibodies’ variable regions to improve various properties, as described in this review, may also introduce additional effector T-cell epitopes.

A number of in silico tools to predict effector T-cell epitopes, such as Epibase (AlgoNomics NV), iTope/TCED (Antitope Ltd.), and EpiMatrix (EpiVax Inc.) have been developed. By using these in silico tools, the presence of effector T-cell epitope in each antibody sequence can be predicted, allowing the potential immunogenicity of the antibody therapeutics to be reduced by selecting a sequence with the minimum number of effector T-cell epitopes (i.e., deimmunization). Although these in silico tools are valuable for their rapid outcomes, it should be noted that they tend to be overpredictive.

On the other hand, an in vitro CD4+ helper T-cell assay also can be used to identify the effector T-cell epitope, and recently Harding et al. demonstrated that modifying the CDR regions to reduce the number of effector T-cell epitope using this in vitro assay could be an effective approach for generating a less immunogenic antibody. Although in vitro tools seem to be more accurate than in silico tools, a significant drawback of the in vitro assay is its low throughput. Therefore, it would be important to use both in silico and/or in vitro tools according to the situation, to maximize their utility. Minimizing the number of effector T-cell epitopes by in silico tools during the lead optimizing step with subsequent confirmation of the potential immunogenicity by in vitro assessments could be a realistic deimmunization procedure, at present.

Recently, De Groot and colleagues reported a novel concept of regulatory T-cell epitope (Tregitope) in the Fc and variable region of the antibody as a suppressor of immune response. They suggested that introducing a Tregitope sequence into the immunogenic antibodies might be an alternative deimmunization strategy.

Conclusion

Despite the fact that it comprises only one-third of the whole IgG molecule, the variable region of the IgG antibody is responsible for various properties of antibody therapeutics including antigen binding properties, pharmacokinetics, pharmaceutical properties and immunogenicity. Although individual improvement of these properties by variable region engineering has been reported, best-in-class strategy may require optimization of all these properties to generate a highly potent, long-acting, stable and non-immunogenic antibody molecule. This could be a significant challenge to antibody engineers since improvement of one property may worsen the other and combining various meaningful mutations may not be additive and may sometimes result in loss of function. Also it is important to set a target antibody profile of the clinical candidate and prioritize the properties to be improved, in case the multiple properties are incompatible with each other.

Due to the significant success of antibody therapeutics over the past two decades, first-in-class or best-in-class strategy for promising targets, and best-in-class strategy aiming at the second or third generation antibodies for clinically validated targets, is extremely competitive. In order to be successful in the market, the best-in-class strategy may require the antibody engineer to generate “the best” antibody molecule against the target by applying extensive engineering technologies. Since the market share of the first-in-class antibody could be easily taken over by a best-in-class antibody (as happened when adalimumab took over the share of infliximab), such engineering technologies may be adopted even for the first-in-class strategy, although it may be important to consider the balance between the extent of optimization and the time required to accomplish it. Variable region engineering technologies, together with Fc engineering technologies, will be essential technologies for developing next generation antibody therapeutics.

References

1. Chan AC, Carter PJ, Therapeutic antibodies for autoimmunity and inflammation. Nature Rev Immunol 2010; 10:301-16.
2. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Rev Immunol 2010; 10:317-27.
3. Strohl WR. Therapeutic monoclonal antibodies—past, present and future. In: An Z, Editor. Therapeutic Monoclonal Antibodies: From Bench to Clinic, John Wiley & Sons, New York 2009; 4-50.
4. Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 2009; 20:685-91.
5. Batista FD, Neuenger MS. Affinity dependence of the B cell response to antigen: a threshold, a ceiling and the importance of off-rate. Immunity 1998; 8:751-9.
6. Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 1995; 92:1254-6.
7. Irving RA, Kortt AA, Hudson PJ. Affinity maturation of recombinant antibodies using E. coli mutator cells. Immunochemistry 1996; 2:127-43.
8. Chowdhury PS, Patan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol 1999; 17:568-72.
9. Yang WP, Green K, Patz-Sweeney S, Beiones AT, Burton DR, Barbas CF. 3rd. CDR walking m uragenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol 1995; 254:392-403.
10. Martinus F. Error-prone polymerase chain reaction for modification of iEps. Methods Mol Biol 2002; 178:287-94.
11. Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhan RR, et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci USA 2005; 102:8466-71.
12. Jeromnus L, Honegger A, Schwesinger F, Hanes J. Plickthun A. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 2001; 98:75-80.
13. Yoshinaga K, Manomoto M, Torikai M, Sugyo K, Kuroki S, Nogami K, et al. Ig L-chain shuffling for affinity maturation of phage library-derived human anti-human MCP-1 antibody blocking its chemotactic activity. J Biochem 2008; 143:593-601.
14. Schier R, Bye J, Appl G, McCall A, Adams GP, Malmeqvist M, et al. Isolation of high-affinity monometric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J Mol Biol 1996; 255:28-43.
15. Marks JD. Antibody affinity maturation by chain shuffling. Methods Mol Biol 2004; 248:327-43.
16. Thie H, Voetsch B, Dutel S, Huet M, Schirmann T. Affinity maturation by phage display. Methods Mol Biol 2009; 525:309-22.
17. Shi L, Wheeler JC, Sweet RW, Lu J, Luo J, Tontemara M, et al. De novo selection of high-affinity antibodies from synthetic fab libraries displayed on phage as pIX fusion proteins. J Mol Biol 2010; 397:385-96.

18. Hanes J, Jermuts L, Weber-Bornhäuser S, Bosshard HR, Plückthun A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci USA 1998; 95:14130-5.

19. Siegel RW. Antibody affinity optimization using yeast cell surface display. Methods Mol Biol 2009; 405:351-83.

20. Daugherty PS, Chen G, Olsen MJ, Iverson BL, Georgiou G. Antibody maturation using bacterial cell surface display. Protein Eng 1998; 11:825-32.

21. Fukuda I, Kojoh K, Tabata N, Ura T, Takashima H, Miyawaki S, et al. In vitro evolution of single-chain antibodies using mRNA display. Nucleic Acids Res 2006; 34:e127.

22. Schaffitzell C, Hanes J, Jermuts L, Plückthun A. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol 2001; 166:2191-9.

23. Rothe A, Hosse RJ, Power BE. Ribosome display for improved therapeutic molecules. Expert Opin Biol Ther 2006; 6:177-87.

24. Hanes J, Schaffitzell C, Knappik A, Plückthun A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000; 18:1287-92.

25. Boder ET, Miodelft KS, Wittrup KD. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 2002; 99:1319-35.

26. Clark LA, Biordio-Saoud PA, Ehrling J, Finch C, Friedman B, Hanf KJ, et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006; 15:940-60.

27. Birders R, Desmet J, Timmerman P, Meloen R, Casaj JI. Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci USA 2008; 10:9029-34.

28. Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007; 25:171-6.

29. Maynard JA, Maassen CB, Leppa SH, Braiky K, Patterson JL, Iverson BL, Georgiou G. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat Biotechnol 2001; 19:579-80.

30. Johnson S, Griego SD, Pfarr DS, Doyle ML, Woods R, Carlin D, et al. A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies: MEPI-493 and RSHZ09. J Infect Dis 2004; 190:1230-7.

31. Wu H, Pfarr DS, Johnson S, Brewah WA, Woods RM, Patel NK, et al. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 2007; 368:592-65.

32. Putnam WS, Li J, Haggstrom J, Ng C, Kadhodayan-Fischer S, Chen M, et al. Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. AAPS J 2008; 10:425-30.

33. Rathananavi P, Roadrad S, Roskos L, Su GJ, Lackie S, Babcock J. Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Biochem Biophys Res Commun 2005; 334:1004-13.

34. Adams GP, Schier R, McCall AM, Simmons HHI, Horak EM, Alpbaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res 2001; 61:4750-5.

35. Tang Y, Lou J, Alpbaugh RK, Robinson MK, Marks JD, Weiner LM. Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. J Immunol 2007; 179:2813-25.

36. Kyriakos R, Shih LB, Ong GL, Patel K, Goldenberg DM, Mattei MJ. The fate of antibodies bound to the surface of tumor cells in vitro. Cancer Res 1992; 52:835-42.

37. Lacy SE, DeVries PJ, Xie N, Fung E, Linsenwiesker RR, Reilly EB. The potency of erythropoietin-mimic antibodies correlates inversely with affinity. J Immunol 2008; 181:1287-9.

38. Dubreuil O, Bossus M, Graille M, Bilius M, Savatier A, Jolivet M, et al. Fine tuning of the specificity of an anti-proteoglycan antibody by first and second residue sphere engineering. J Biol Chem 2005; 280:24480-7.

39. Chames P, Coulon S, Barry D. Improving the affinity and the fine specificity of an anti-cortisol antibody by parameunionic maturation and phage display. J Immunol 1998; 161:54129.

40. McCarthy BJ, Hill AS. Altering the fine specificity of an anti-Legionella single chain antibody by a single amino acid insertion. J Immunol Methods 2001; 251:137-49.

41. Korpimaki T, Rosenberg J, Virtanen P, Karkela T, Lamminmaki U, Tuomola M, et al. Improving broad specificity hapten recognition with protein engineering. J Agric Food Chem 2002; 50:4194-201.

42. Korpimaki T, Rosenberg J, Virtanen P, Lamminmaki U, Tuomola M, Saviranta P. Further improvement of broad specificity hapten recognition with protein engineering. Protein Eng 2003; 16:367-40.

43. Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razi A, Loh YJ, et al. Molecular evolution of antibody cross-reactivity for two subtypes of type A boronulin neurotoxin. Nat Biotechnol 2007; 25:107-15.

44. Fagete S, Ravn U, Guenaeu F, Magistrelli G, Kosco-Vilbois MH, Fischer N. Specificity tuning of antibody fragments to neutralize two human chemokines with a single agent. mAbs 2009; 1:288-96.

45. Werther WA, Gonzalez TN, O’Connor SJ, McCabe W, Vilbois MH, Fischer N. Specificity tuning of antibody fragment and evolution of protein engineering. Methods Mol Biol 2009; 95:14130-5.

46. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004; 93:2645-68.

47. Scharf M, Joerek C, Kind M, Schäufele M, Moller J, et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 2010; 28:203-7.

48. Finney H, Brych SR, Kolvenbach CG, Rajan RS. Increased aggregation propensity of IgG2 subclasses over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Sci 2010; 19:1601-15.

49. Porter S, Human Immune Response to Recombiant Human Proteins. J Pharm Sci 2001; 90:1-11.

50. Rosenberg AS. Effects of protein aggregates: an immunological perspective. AAPS J 2006; 8:501-7.

51. Wang W. Protein aggregation and its inhibition in biopharmaceuticals. Int J Pharm 2005; 289:1-30.

52. Braun A, Kové L, Lőzö MA, Alentje P. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm Res 1997; 14:472-8.

53. Farad SS. Process economics of industrial monoclonal antibody manufacture. J Chromatogr B AnalTech Biomed Life Sci 2007; 848:8-18.

54. Ewert S, Huher T, Honegger A, Plückthun A. Biophysical properties of human antibody variable domains. Mol Biol 2003; 325:531-53.

55. Ewert S, Honegger A, Plückthun A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods Mol Biol 2004; 34:181-99.

56. Chowdhury PS, Vasmatzis G, Beers R, Lee B, Pataud I. Improved stability and yield of a Fv-toxin fusion protein by computer design and protein engineering of the Fv. J Mol Biol 1998; 281:917-28.

57. Caravella JA, Wang D, Glaser SM, Lugovskoy A. Structure-guided design of antibodies. Curr Compil Aided Drug Des 2010; 6:128-38.

58. Dong J, Sereno A, Snyder WB, Miller BR, Tamraz S, Doern A, et al. Stable IgG-like bispecific antibodies directed towards the type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J Biol Chem 2011; 286:4703-17.

59. Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, et al. Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel 2010; 23:549-57.

60. Honegger A, Malebranche AD, Röthlisberger D, Plückthun A. The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng Des Sel 2009; 22:121-34.
72. Rithideveloper, D, Honegger A, Plickthun A. Domain interactions in the Fab fragment: a comparative evalu-
ination of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 2005; 347:777-89.

73. Gerber E, Demarez SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun 2007; 355:751-7.

74. Shire SJ, Shahdokh Z, Liu J. Challenges in the develop-
ment of high protein concentration formulations. J Pharm Sci 2003; 92:490-402.

75. Kaini S, Liu J, Patapoff TW, Shire SJ. Reversible self-
association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci 2008; 97:4219-27.

76. Teleschi A, Baraté C, Minola E, Morra E. Cryoglobulinemia. Blood Rev 2007; 21:183-200.

77. Phipinsky RB, Silvian L, Berkowitz SA, Farrington G, Lugovskoy A, Walus L, et al. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isoelectric switching and targeted mutagenesis. Protein Sci 2006; 15:1010-21.

78. Wu SJ, Luo J, O’Neel KT, Kang J, Lacy ER, Canzian G, et al. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 2010; 23:643-51.

79. Coloma MJ, Trinh RK, Martinez AR, Morrison SL. Physical effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1-6) deoxymannuronic acid. J Immunol 1999; 162:2162-70.

80. Yadav S, Shire SJ, Kolaion DS. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci 2010; 99:4812-29.

81. Kaini S, Liu J, Patapoff PW, Shire SJ. Reversible self-
association of a concentrated anti-glypican 3 antibody by CDR grafting and stability. J Mol Immunol 2000; 37:107-13.

82. Wight A, Tao MH, Kabat EA, Morrison SL. Antibody variable region glycosylation: position affects on anti-
gen binding and carbohydrate structure. EMBO J 1991; 10:27-32.

83. Morphysys. The path to platinum: the evolution of human combinatorial libraries (HuCAL®). IBC’s 19th Annual International Conference on Antibody Engineering 2008; December 8-11, 2008; San Diego, CA, USA. www.morphosys.com/sites/default/files/miscellaneous/HuCAL_ PLATINUM_Antibody-Engineering_08.pdf.

84. Vaille-Douglass JF, Eakin CM, Wallace A, Ketchum RR, Wang W, Treulheit MJ, et al. Glutamin-linked and non-consensus asparagine-linked oligosaccharides present in human recombinant antibodies define novel glycoprotein glycosylation motifs. J Biol Chem 2010; 285:16012-22.

85. Jaquenot S, Monet-Vaunrin DA, Bihain BE. Mammalian meat-induced anaphylactic clinical relevance of anti-galactose-alpha-1,3-galactose IgE confirmed by means of skin tests to cetuximab. J Allergy Clin Immunol 2009; 124:603-5.

86. Ritter G, Cohen LS, Williams C Jr, Richards EC, Old LJ. Weis S. Selenological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal anti-
body A33. Cancer Res 2004; 64:6851-9.

87. Weis S, Ritter G, Williams C Jr, Cohen LS, Jungbluth A, Richards EA, et al. Preliminary report of a phase I study of combination chemotherapy and humanized A33 antibody immunotherapy in patients with advanced colorectal cancer, Clin Cancer Res 2003; 9:1347-53.

88. Barfelds GM, Wolbink GJ, Stapel S, Aarden L, Lems WF, Dijkman BA, et al. High levels of human anti-
human antibodies to adalimumab in a patient not responding to adalimumab treatment. Ann Rheum Dis 2006; 65:1249-50.

89. Barfelds GM, Wijbrands CA, Nurhoomed MT, Stapel S, Lems WF, Aarden L, et al. Clinical response to adalimumab: relationship to anti-adalimumab antib-
odies and serum adalimumab concentrations in rheuma-
toid arthritis. Ann Rheum Dis 2007; 66:921-6.

90. Wirt C, Tschopp S, Buechler M, Rotsch G, Cohen LS, Williams C Jr, Richards EC, Old LJ, Welt S, Ritter G, Cohen LS, Williams C Jr, Richards EA, et al. Preliminary report of a phase I study of combination chemotherapy and humanized A33 antibody immunotherapy in patients with advanced colorectal cancer, Clin Cancer Res 2003; 9:1347-53.

91. Andre CA, Spiegelberg HL, Grey HM. The carbohydrate contents of fragments and polypeptide chains of human gamma-G-myeloma proteins of different heavy-chain subclades. Biochemistry 1968; 7:1271-8.

92. Dunn-Walters D, Bourlier S, Spencer J. Effect of dynamic structural flexibility on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol Immunol 2000; 37:107-13.

93. Yaarchet A, Tao MH, Kabat EA, Morrison SL. Antibody variable region glycosylation: position affects on anti-
gen binding and carbohydrate structure. EMBO J 1991; 10:27-32.

94. Schellekens H, Fields EJ, Wang W, Treulheit MJ, et al. Human monoclonal antibodies improve the immuno-
genicity of therapeutic proteins. Biotechnol Annu Rev 2008; 14:191-202.

95. Holgate GR, Baker MP. Circumventing immunoge-
nicity in the development of therapeutic antibodies. IDrugs 2009; 12:233-7.

96. Tadiog S, LiCalo C, Sidoy J, Sette A. Rationally engi-
neered proteins or antibodies with added or reduced immunogenicity. Curr Med Chem 2002; 9:2191-9.

97. Pendley C, Schanz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther 2005; 7:161-9.

98. Chintiro AJ, Ayl ML, Marshall SA. Minimizing the immunogenicity of protein therapeutics. Drug Discov Today 2004; 9:82-90.

99. Baker MP, Jones TD. Identification and removal of immunogenicity in therapeutic proteins. Curr Opin Drug Deliv 2007; 10:219-27.

100. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321:52-5.

101. Hwang WJ, Foote J. Immunogenicity of engineered antibodies. Methods 2005; 36:5-10.

102. Tan P, Mitchell DA, Buss TN, Holmes MA, Anasetti C, Foote J. “Superhumanized” antibodies: reduc-
tion of immunogenic potential by complementarity-
determining region grafting with human germline sequences: application to an anti-CD28. J Immunol 2002; 169:1119-25.

103. Hwang WY, Almagro JC, Buss TN, Tan P, Foote J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005; 36:5-10.

104. Pitar T, Bedouelle H, Rees AR, Cennelli SJ, Lefranc MP, Thullier P. Germline humanization of a non-
human primate antibody that neutralizes the anthrax toxin, by in vitro and in silico engineering. J Mol Biol 2008; 384:1400-6.

105. Tamura M, Melenic DE, Iwahashi M, Pedlan E, Schlom J, Kallimani SV. Structural correlates of an anti-carcinoaoma antibody_identification of specificity-
determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J Immunol 2000; 164:1432-41.

106. Gonzalez NR, Pedlan EA, De Pascalis R, Schuck P, Schlom J, Kashimir SV. SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Mol Immunol 2004; 41:863-72.

107. Kashimir SV, De Pascalis R, Gonzalez NR, Schlom J. SDR grafting—a new approach to antibody humaniza-
tion. Methods 2005; 36:25-34.

108. Yoon SO, Lee TS, Kim SJ, Jang MH, Kang YJ, Park JH, et al. Construction, affinity maturation, and biological characterization of an anti-tumor associated glycoprotein-72 humanized antibody. J Biol Chem 2006; 281:6985-92.

109. Green LL. Antibody engineering via genetic engineer-
ing of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 1999; 231:113-21.

110. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23:1105-15.

111. Lonberg N. Human antibodies from transgenic ani-
mals. Nat Biotechnol 2005; 23:1117-26.

112. Lonberg N. Fully human antibodies from transgen-
ic mouse and pig disease antibody platforms. Curr Opin Immunol 2008; 20:450-9.

113. Bernttt MK, Karki S, Moore GL, Leung IW, Chen H, Pong E, et al. Engineering fully human monoclonal antibodies from murine variable regions. J Mol Biol 2010; 396:1474-90.

114. Harding FA, Stickler MM, Razo J, Dubridge RB. The immunogenicity of humanized and fully human anti-
bodies: Residual immunogenicity resides in the CDR regions. mAbs 2010; 2:256-65.

115. Facet Biotech. Presentation at Immunogenicity of Biologics 2010 conference; February 8, 2010; Prague, Czech Republic.
127. Van Walle I, Gansemans Y, Parren PW, Stas P, Lasters I. Immunogenicity screening in protein drug development. Expert Opin Biol Ther 2007; 7:405-18.
128. Perry LC, Jones TD, Baker MP. New approaches to prediction of immune responses to therapeutic proteins during preclinical development. Drugs R D 2008; 9:385-96.
129. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 2010; 24:1-8.
130. Koren E, De Groot AS, Jawa V, Beck KD, Boone T, Rivera D, et al. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol 2007; 124:26-32.
131. De Groot AS, McMurry J, Moise L. Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 2008; 8:620-6.
132. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes.” Blood 2008; 112:3303-11.
133. Weber CA, Mehta PJ, Ardito M, Moise L, Martin B, De Groot AS. T cell epitope: friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev 2009; 61:965-76.