Rhodium-Catalyzed Merging of 2-Arylquinazolinone and 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Monofluoroolefin Quinazolinone Derivatives

Ning Wang, Qin Yang, Zhihong Deng, Xuechun Mao, and Yiyuan Peng*

Cite This: ACS Omega 2020, 5, 14635−14644

ABSTRACT: An efficient method for the synthesis of 2-(o-monofluoroalkenylaryl)quinazolinone derivatives was developed. In this context, the quinazolinone ring served as the inherent directing group, 2,2-diﬂuorovinyl tosylate was used as the monofluorooleﬁn synthon, and Rh(III)-catalyzed C−H bond diﬂuorovinylation of 2-arylquinazolins was performed to give the corresponding monofluoroalkene-containing quinazolins in yields of 65−92%. The method is characterized by broad synthetic utility, mild conditions, and high efﬁciency.

INTRODUCTION

In recent decades, organoﬂuorine chemistry has been widely developed in the fields of medicine and pesticides.1 The combination of a ﬂuorine atom or a ﬂuorine-containing compound with a small organic molecule increases the organic molecule’s polarity and lipophilicity and alters its biological activity and physicochemical properties.2 Among ﬂuorine-containing compounds, monofluoroolefins play an important role in organic synthesis, medicinal chemistry, and peptide chemistry.3 Consequently, a growing number of efﬁcient methodologies for the synthesis of monofluoroalkenes have been reported.4

In recent years, transition-metal-catalyzed C−H bond activations have been implemented in order to introduce a monofluoroolefin moiety into small organic molecules.5 Various ﬂuorine-containing reagents, such as gem-diﬂuoroalkenes,5a−i α-ﬂuoracrylic acids,5j and gem-bromofluoroalkenes,5k have been employed as monofluoroolefin synths. Among these reagents, 2,2-diﬂuorovinyl tosylate has seen broad use in recent years (Scheme 1).6a For example, Li and Wang reported the use of 2,2-diﬂuorovinyl tosylate as a coupling reagent in the Rh(III)-catalyzed C−H activation of the N−X bond of benzamides. This allowed for the assembly of a monofluorinated alkene intermediate with retention of the tosylate functionality, allowing for the preparation of the corresponding ﬂuorinated heterocycles under various conditions (Scheme 1a,b).6a,b Li described the Rh(III)-catalyzed α-ﬂuoralkenylation of N-nitrosoanilines with 2,2-diﬂuorovinyl tosylates via C−H bond activation and subsequent β-F elimination to form the desired monofluoroalkene-containing compounds (Scheme 1c).6c
Table 1. Optimization of the Reaction Conditions

entry	catalyst (5 mol %)	solvent	additive	T (°C)	yield (%)
1	RhCp*(MeCN)2(SbF6)2	CF3CH2OH	CsOPiv	60	39
2	RhCp*(MeCN)2(SbF6)2	MeOH	CsOPiv	60	22
3	RhCp*(MeCN)2(SbF6)2	EtOH	CsOPiv	60	19
4	RhCp*(MeCN)2(SbF6)2	1,4-dioxane	CsOPiv	60	trace
5	RhCp*(MeCN)2(SbF6)2	DMF	CsOPiv	60	NR
6	RhCp*(MeCN)2(SbF6)2	DMSO	CsOPiv	60	NR
7	RhCp*(MeCN)2(SbF6)2	THF	CsOPiv	60	trace
8	RhCp*(MeCN)2(SbF6)2	toluene	CsOPiv	60	NR
9	RhCp*(MeCN)2(SbF6)2	benzotrifluoride	CsOPiv	60	NR
10	RhCp*(MeCN)2(SbF6)2	t-BuOH	CsOPiv	60	NR
11	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	60	86
12	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	60	76
13	RhCp*(MeCN)2(SbF6)2	HFIP	Cs2CO3	60	80
14	RhCp*(MeCN)2(SbF6)2	HFIP	CsF	60	41
15	IrCp*Cl2/AgSbF6	HFIP	CsOPiv	60	22
16	RhCp*Cl2/AgSbF6	HFIP	CsOPiv	60	70
17†	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	60	92
18‡	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	80	82
19‡	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	40	72
20‡	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	60	77
21‡	RhCp*(MeCN)2(SbF6)2	HFIP	CsOPiv	60	74
22‡	HFIP		CsOPiv	60	NR

*Yields based on isolated. †Time was 6 h. ‡CsOPiv was added 0.5 equiv.

The quinazolinone skeleton is present in numerous natural products and has a wide range of applications in medicine and biology. So far, tremendous efforts have been devoted to the development of new synthetic methods for the construction of diverse quinazolinone architectures and the evaluation of their bioactivities. In the past few years, our group has focused extensively on the development of methods for the synthesis of quinazolinone cores and the late-stage functionalization of 2-arylquinazolinones with a desire to construct a quinazolinone-based molecular library for bioactivity assays. Despite progress, there is room for improvement with regard to efficiency and selectivity, especially for the introduction of a fluorovinyl moiety into the quinazolinone skeleton to form novel fluorinated quinazolinone derivatives. Monofluoroolefins and the quinazolinone core are important structural motifs in pharmaceuticals and biologically active molecules. Monofluoroolefin-containing quinazolinones may exhibit a wide range of potent applications in the pharmaceutical, agrochemical, and material sciences. Thus, the development of efficient and straightforward protocols to access monofluoroolefin-containing quinazolinones is highly desirable. Thus, we have focused on the preparation of a diverse range of monofluoroolefin-containing quinazolinones (Scheme 1d).

Results and Discussion

We initiated our investigation by screening the coupling reaction conditions between 2-(p-methylphenyl)quinazolinone 1a (0.2 mmol) with 2,2-difluorovinyl tosylate 2a (1.1 equiv) in the presence of RhCp*(MeCN)2(SbF6)2 (4.0 mol %) and CsOPiv (1.0 equiv). Fortunately, the corresponding monofluoroolefin-quinazolinone compound 3a was isolated in a yield of 39% when the reaction was conducted in CF3CH2OH at 60°C (entry 1). The structure of 3a was confirmed unambiguously by X-ray crystal diffraction (see the Supporting Information). The results of solvent screening indicated that carrying out the reaction in HFIP gave the corresponding product in a high yield of 86% (entries 2–11). The fluorinated solvent HFIP not only have acidic properties but also have H-bonding with the substrate, which can enhance the reaction. Next, the additives, such as Cs2CO3, CsOAc, CsF, and so forth were examined, and no better result was obtained (entries 12–14). Lower yields were obtained when other catalysts such as IrCp*Cl2/AgSbF6 or RhCp*Cl2/AgSbF6 were used (entries 15–16). The desired product was obtained in 92% yield when the reaction time was reduced to 6 h (entry 17). Increasing or decreasing the reaction temperature resulted in slightly diminished yields (entries 18–19). Decreasing the loading of CsOPiv gave lower product yields (entries 20–21). Control experiments showed that none of the desired product was obtained in the absence of the RhCp*(MeCN)2(SbF6)2 catalyst (entry 22) (Table 1).

After establishing the optimized conditions, we investigated the generality and the substrate scope of the reaction. The results are presented in Table 2. As shown in Table 2, a number of substrates bearing different substituents were amenable to the reaction conditions, giving the corresponding products in good to excellent yields under the optimal conditions. First, the effects of R1 on the reaction were explored. The results revealed that the electronic nature and...
the position of the R₁ substituent have a significant influence on the reaction. When the substituent R₁ is at the para position of the 2-arylquinazoline and is an electron-donating group, such as methyl, ethyl, i-propyl, methoxy, ethoxy, or an N,N-dimethylamino substituent, the desired products are obtained in excellent yields of 83−92% (entries 3a−3f). When R₁ is at the para position or ortho position of the 2-aryl group and is electron-withdrawing in character (F, Cl, Br, CN, or NO₂), no reaction occurs (3h−3i). When the substituent R₁ is at the ortho position and is an electron-donating group, such as a methyl, methoxy, or ethoxy substituent, the expected products are prepared in good to excellent yields (3j−3l). Substrates with an electron-donating R₁ group at the meta position of the 2-aryl functionality (methyl, methoxy, and ethoxy) were not amenable to the reaction conditions (3m−3n). However, the desired products were obtained in good yields when an electron-withdrawing R₁ group is present at this position (3o−3p).

Subsequently, the effects of the R₂ group on the quinazolinone ring were explored. Surprisingly, electron-withdrawing and electron-donating groups are tolerated, providing the desired products in excellent yields, no matter what the position of the R₂ substituent is (entries 3q−3za).

Table 2. Scope Investigation for the Reaction of 2-Arylquinazolinones 1 and 2,2-Difluorovinyl Tosylate 2

R₁	R₂	Yield (%)
H	Cl	85%
H	NO₂	83%
H	CN	85%
H	F	87%

Yields based on isolated. Reaction conditions: 1 (0.2 mol), 2 (0.22 mol), RhCp*(MeCN)₃(SbF₆)₂ (5.0 mol %), CsOPiv (1.0 equiv), HFIP (1.5 mL), 60 °C, 6 h, under air. NR = no reaction.
To demonstrate the potential synthetic utility of this reaction, we performed a gram-scale reaction with 2-p-methylphenyl-quinazolinone. As shown in Scheme 2, the product (3a) was isolated in a yield of 84%.

On the basis of previous reports, a plausible mechanism is described in Scheme 3. First, an active cation Rh(III) reacts with 2-arylquinazolinone via a key C−H activation to generate the five-membered rhodacycle intermediate A, which coordinates with the difluorolefin to give intermediate B. Next, insertion of the difluorolefin into the C−Rh bond produces a seven-membered Rh(III) complex C, which undergoes selective β-F elimination via the syn-coplanar state to form the product 3a and Rh(III).

CONCLUSIONS

In summary, we have developed an efficient method for the synthesis of 2-(α-monofluoroalkenyl)quinazolinone derivatives. The reaction of 2-arylquinazolinones and 2,2-difluorovinyl tosylate in the presence of a Rh catalyst produces the corresponding products via C−H bond activation and C−F bond cleavage. The methodology is available to a wide range of substrates, and the presence of a double bond provides the possibility for subsequent research.

EXPERIMENTAL SECTION

Unless otherwise noted, all reactions were carried out under air atmosphere unless otherwise stated. Commercial reagents were purchased from Aldrich, Alfa, or other commercial suppliers. Commercial reagents were used without further purification. Reactions were conducted using standard techniques on the vacuum line. Analytical thin-layer chromatography (TLC) was performed using glass plates precoated with 0.25 mm 230−400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Flash column chromatography was performed using silica gel (60 °A pore size, 32−63 μm, standard grade). Organic solutions were concentrated on rotary evaporators at 20 Torr (house vacuum) at 25−35 °C. The 1H NMR spectra were recorded on a 400 MHz NMR spectrometer. The 13C NMR spectra were recorded at 100 MHz. The 19F NMR spectra were recorded at 375 MHz. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million (ppm) from internal standard tetramethylsilane (TMS) on the δ scale.

General Procedures for Synthesis of Compound 3. A mixture of 2-arylquinazolinone 1 (0.2 mmol), 2,2-difluorovinyl tosylate 2 (56.16 mg, 0.24 mmol), RhCp*(MeCN)3(SbF6)2 (8.33 mg, 5 mol%), and CsOPiv (46.80 mg, 0.2 mmol) in HFIP (1.5 mL) was stirred at 60 °C until 1a was completed consumed (detected by TLC). Evaporation of the solvent followed purification by column chromatograph over silica gel (normal ratio: petroleum ether/ethyl acetate = 3/1) provided the corresponding product 3.

2-[2-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-p-methylphenyl]-3H-quinazolin-4-one (3a). The product is obtained as a white solid in 92% yield, 83 mg, mp 205−208 °C,
2-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-p-ethylphenyl-3H-quinazolin-4-one (3b). The product is obtained as a white solid in 88% yield, 82 mg, mp 166–168 °C, R_f = 0.46 (petroleum ether/ethyl acetate = 2/1). 1H NMR (400 MHz, DMSO-d_6): δ 12.56 (s, 1H), 8.17 (d, J = 7.2 Hz, 1H), 7.83 (ddd J = 8.4, 7.2, 1.2 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.59–7.53 (m, 2H), 7.48 (d, J = 8.0 Hz, 1H), 7.46–7.38 (m, 4H), 6.91 (d, J = 29.6 Hz, 1H), 2.40 (s, 6H). 13C NMR (100 MHz, DMSO-d_6): δ 162.1, 153.6, 151.1 (d, J_C-F = 25.30 Hz), 148.9, 146.5, 140.8, 134.9, 131.7, 131.3, 130.8, 130.5, 129.6 (d, J_C-C = 4.0 Hz), 128.2, 127.8, 127.4 (d, J_C-C = 22.0 Hz), 127.3, 126.3, 121.5, 121.2 (d, J_C-C = 13.0 Hz), 121.1, 21.7, 21.1. 19F NMR (376 MHz, DMSO-d_6): δ --117.80. HRMS (ESI) m/z: [M + H]^+ calc for C_{24}H_{20}FN_{2}O_{5}S+ [M + H]^+, 465.1122; found, 465.1117.

2-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-p-N,N-dimethylaminophenyl-3H-quinazolin-4-one (3f). The product is obtained as a white solid in 83% yield, 80 mg, mp 199–201 °C, R_f = 0.44 (petroleum ether/ethyl acetate = 2/1). 1H NMR (400 MHz, DMSO-d_6): δ 12.56 (s, 1H), 8.17 (d, J = 7.2 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.59–7.53 (m, 2H), 7.49–7.45 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 20.0 Hz, 2H), 2.70 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 1.22 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, DMSO-d_6): δ 162.1, 153.6, 151.2 (d, J_C-C = 253.1 Hz), 148.9, 146.9, 146.4, 134.9, 131.7, 130.8, 130.7, 130.6, 130.2, 128.6 (d, J_C-C = 4.2 Hz), 128.2, 127.8, 127.6 (d, J_C-C = 21.5 Hz), 127.3, 126.3, 121.5, 121.2 (d, J_C-C = 12.5 Hz), 28.3, 21.6, 15.73. 19F NMR (376 MHz, DMSO-d_6): δ --117.59. HRMS (ESI) m/z: [M + H]^+ calc for C_{25}H_{22}FN_{2}O_{5}S+ [M + H]^+, 468.1228; found, 481.1223.

ACS Omega http://pubs.acs.org/journal/acsodf

ACS Omega 2020, 5, 14635–14644

14639

https://doi.org/10.1021/acsomega.0c01344
2-[1-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-6-ethyloxylphenyl]-3H-quinazolin-4-one (3I). The product is obtained as a white solid in 86% yield, 83 mg, mp 151–153 °C, Rf = 0.48 (petroleum ether/ethyl acetate = 2/1). 1H NMR (400 MHz, DMSO-d6): δ 12.45 (s, 1H), 8.21 (d, J = 6.7 Hz, 1H), 7.85 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.62–7.49 (m, 3H), 7.35 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 6.88 (d, J = 20.0 Hz, 1H), 4.07 (q, J = 7.0 Hz, 2H), 3.28 (s, 3H), 1.16 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d6): δ 161.1, 157.4, 151.5, 150.4 (d, 3J 2.4 Hz), 149.2, 146.4, 134.8, 131.8, 131.5, 130.7, 128.6 (d, 3J 2.2 Hz), 128.1, 127.8, 127.3, 126.3, 122.7, 121.7, 121.7 (d, 3J 13.0 Hz), 120.2 (d, 13C 5.0 Hz), 115.4, 64.9, 21.6, 14.8. 19F NMR (376 MHz, DMSO-d6): δ −118.71. HRMS (ESI) m/z: [M + H]+ calc for C23H25FN6O8S6 [M + H]+, 481.1228; found, 481.1230.

2-[1-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-5-methylphenyl]-3H-quinazolin-4-one (3m). The product is obtained as a white solid in 30% yield, 27 mg, mp 169–170 °C, Rf = 0.53 (petroleum ether/ethyl acetate = 2/1). 1H NMR (400 MHz, DMSO-d6): δ 12.53 (s, 1H), 8.18 (d, J = 8.0, 1.2 Hz, 1H), 7.85 (d, J = 8.4, 6.8, 1.6 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.0, 6.8, 1.2 Hz, 1H), 7.53–7.48 (m, 3H), 7.34 (s, 1H), 7.39 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 20.0 Hz, 1H), 2.40 (s, 6H). 13C NMR (101 MHz, DMSO-d6): δ 162.0, 153.7, 151.0 (d, 3J 2.2 Hz), 148.9, 146.4, 140.9, 1350.0, 133.2, 131.7, 131.2, 131.1, 130.7, 129.1 (d, 3J 3.0 Hz), 128.2, 127.8, 127.3, 126.3, 124.6 (d, 3J 2.2 Hz), 121.5, 120.9 (d, 3J 13.0 Hz), 21.7, 21.2. 19F NMR (376 MHz, DMSO-d6): δ −117.45. HRMS (ESI) m/z: [M + H]+ calc for C22H23FN6O8S6 [M + H]+, 451.1122; found, 451.1120.

2-[1-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-4-chlorophenyl]-3H-quinazolin-4-one (3o). The product is obtained as a pale yellow solid in 65% yield, 59 mg, mp 191–192 °C, Rf = 0.54 (petroleum ether/ethyl acetate = 2/1). 1H NMR (400 MHz, DMSO-d6): δ 12.65 (s, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.86 (t, J = 7.6 Hz, 1H), 7.66–7.51 (m, 5H), 7.34 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 20.0 Hz, 1H), 3.78 (s, 3H), 2.38 (s, 3H). 13C NMR (101 MHz, DMSO-d6): δ 161.8, 158.0, 151.4, 150.3 (d, 3J 5.0 Hz), 149.1, 146.5, 134.9, 131.8, 131.5, 130.7, 128.6 (d, 3J = 22.0 Hz), 128.0, 127.8, 127.4, 126.3, 122.4, 121.7, 121.6 (d, 3J = 13.0 Hz), 120.2 (d, 3J = 5.0 Hz), 114.3, 56.6, 21.6. 19F NMR (376 MHz, DMSO-d6): δ −118.87. HRMS (ESI) m/z: [M + H]+ calc for C20H17F2N2O5S6 [M + H]+, 476.1072; found, 476.1077.

2-[1-(1-Fluoro-2-p-methylbenzenesulfonyloxyl-vinyl)-5-methylphenyl]-3H-quinazolin-4-one (3n). The product is obtained as a white solid, 82 mg, 88% yield, mp 209–210 °C, Rf = 0.40 (petroleum ether/ethyl acetate = 2/1). 1H NMR (400 MHz, DMSO-d6): δ 12.54 (s, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.68–7.55 (m, 5H), 7.50–7.36 (m, 4H), 6.88 (d, J = 19.6 Hz, 1H), 3.91 (s, 3H), 2.39 (s, 3H). 13C NMR (101 MHz, DMSO-d6): δ 161.8, 158.5, 151.2, 152.0 (d, 3J = 254.0 Hz), 146.4, 143.4, 133.4, 131.6, 130.8, 130.7, 130.6 (d, 3J = 5.0 Hz), 129.5, 129.2 (d, 3J = 5.0 Hz), 128.2, 127.5 (d, 3J = 22.0 Hz), 124.3, 122.4, 121.3 (d, 3J = 12.0 Hz), 106.4, 56.2, 21.6. 19F NMR (376 MHz, DMSO-d6): δ −117.94. HRMS (ESI) m/z: [M + H]+ calc for C22H23FN6O8S6 [M + H]+, 455.0872; found, 455.0879.
The product is obtained as a white solid, 83 mg, 83% yield, mp 204–206 °C.

{\text{1H NMR (400 MHz, DMSO-\text{d}_6):} \delta 12.70 (s, 1H), 8.08 (d, J = 2.0 Hz, 1H), 7.83 (dd, J = 8.4, 2.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.51 (dd, J = 8.4 Hz, 1H), 7.47 (s, 2H), 7.31 (s, 1H), 6.98 (d, J = 19.6 Hz, 1H), 3.87 (s, 3H), 2.46 (s, 3H), 2.17 (d, J = 8.4, 2.0 Hz, 1H), 3.12 (s, 3H), 2.12 (d, J = 12 Hz, 2H).}

{\text{13C NMR (101 MHz, DMSO-\text{d}_6):} \delta 161.3, 160.9, 153.9, 150.7 (d, J_{\text{CF}} = 253.0 Hz), 147.5, 146.5, 135.0, 132.3, 131.6, 131.5, 130.7, 128.2, 128.2, 128.1, 122.5, 121.5 (d, J_{\text{CF}} = 12.0 Hz), 116.1, 114.8 (d, J_{\text{CF}} = 6.0 Hz), 56.2, 21.6.}

{\text{19F NMR (376 MHz, DMSO-\text{d}_6):} \delta −117.45.}

{\text{HRMS (ESI) m/z:} [M + H]^{+} \text{ calc for C}_{24}\text{H}_{17}\text{ClF}_{2}\text{N}_{2}\text{O}_{3}\text{S}^{+} \left[\text{M + H}^{+}\right], 456.1279; \text{found, 456.1286.}}

The product is obtained as a white solid, 83 mg, 83% yield, mp 204–206 °C, R_f = 0.39 (petroleum ether/ethyl acetate = 2/1).

{\text{1H NMR (400 MHz, DMSO-\text{d}_6):} \delta 12.46 (s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.45–7.35 (m, 6H), 6.89 (d, J = 19.6 Hz, 1H), 2.46 (s, 3H), 2.39 (d, J = 6.8 Hz, 6H), 1.3C NMR (101 MHz, DMSO-\text{d}_6):} \delta 162.0, 153.7, 151.1 (d, J_{\text{CF}} = 254.0 Hz), 149.0, 146.4, 145.5, 140.7, 131.7, 131.3, 130.7, 130.6, 129.5 (d, J_{\text{CF}} = 5.0 Hz), 128.7, 128.2, 127.4 (d, J = 21.0 Hz), 127.3, 126.2, 121.2 (d, J_{\text{CF}} = 13.0 Hz), 119.1, 21.8, 21.6, 21.1.}

{\text{19F NMR (376 MHz, DMSO-\text{d}_6):} \delta −117.83.}

{\text{HRMS (ESI) m/z:} [M + H]^{+} \text{ calc for C}_{23}\text{H}_{18}\text{F}_{2}\text{N}_{2}\text{O}_{3}\text{S}^{+} \left[\text{M + H}^{+}\right], 465.1279; \text{found, 465.1286.}}
TABLE OF CONTENTS

Author Information
Corresponding Author: Yiyuan Peng — Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; orcid.org/0000-0003-3471-8566; Email: yypeng@jxnu.edu.cn, yiyuanpeng@yahoo.com

Authors
Ning Wang — Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
Qin Yang — Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
Zhihong Deng — Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
Xuechun Mao — Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Province’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c01344

Notes
The authors declare no competing financial interest.

Acknowledgments
Financial support from the National Natural Science Foundation of China (nos. 21762020 and 21362014), the Jiangxi Provincial Department of Science and Technology (no. 20171BAB200306), and the Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (no. KLFS-KF-201623) is gratefully acknowledged.

References
(1) Review see: (a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next generation of fluoride-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422–518. (b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of fluoride in medicinal chemistry. J. Med. Chem. 2015, 58, 8315–8359. (c) Fujwara, T.; O’Hagan, D. Successful fluoride-containing herbicide agrochemicals. J. Fluorine Chem. 2014, 167, 16–29. (d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. (e) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Organic fluoride compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev. 2011, 40, 3496–3508. (f) Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manage. Sci. 2010, 66, 10–27. (g) Purser, S.; Moore, P. B.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. (h) Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359–4369. (i) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluoride atom. Chem. Commun. 2007, 1003–1022. (j) Jeschke, P. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem 2004, 5, 570–589. (k) Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–1886. (l) Pagliaro, M.; Cirmimina, R. New fluorinated functional materials. J. Mater. Chem. 2005, 15, 4981–4991. (m) Rosen, T. C.; Yoshida, S.; Kirk, K. L.; Haufe, G. Fluorinated phenylcyclopropylamines as inhibitors of monoamine oxidases. ChemBioChem 2004, 5, 1033–1043.

(2) For reviews: (a) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Organic fluoride compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev. 2011, 40, 3496–3508. (b) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Monofluorination of organic compounds: 10 Years of innovation. Chem. Rev. 2015, 115, 9073–9174. (c) Taguchi, T.; Yanai, H. in Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I., Ed.; Wiley-Blackwell: Chichester, 2009; pp 257–290.

(3) (a) Alamdini, A. S.; Tabolin, A. A.; Ioffe, S. L.; Nenajdenko, V. G. Green, catalyst-free reaction of indoles with β-fluoro-β-nitrostyrenes in water. Eur. J. Org. Chem. 2018, 3816–3825. (b) Zhang, H.; Zhou, C.-B.; Chen, Q.-Y.; Xiao, J.-C.; Hong, R. Monofluorovinyl tosylate: a useful building block for the synthesis of terminal vinyl monofluorides via Suzuki-Miyaura coupling. Org. Lett. 2010, 13, 560–563. (c) Drouin, M.; Paquin, J.-F. Recent progress in the racemic and enantioselective synthesis of monofluoroalkene-based dipeptide isosteres. Beilstein J. Org. Chem. 2017, 13, 2637–2658. (d) Der Veken, P. V.; Senten, K.; Kertész, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. Fluoro-Olefins as peptide mimetic inhibitors of dipeptidyl peptidase IV inhibitors. J. Med. Chem. 2005, 48, 1768–1780. (e) Osada, S.; Sano, S.; Ueyama, M.; Chuman, Y.; Kodama, H.; Sakaguchi, K. Fluoroalkene modification of mercaptoacetamide-based histone deacetylase inhibitors. Bioorg. Med. Chem. 2010, 18, 605–611. (f) Couve-Bonnaire, S.; Cahard, D.; Panneconque, X. Chiral dipeptide mimics possessing a fluoroolefin moiety: a relevant tool for conformational and medicinal studies. Org. Biomol. Chem. 2007, 5, 1151–1157. (g) Oishi, S.; Kamitani, H.; Kodera, Y.; Watanabe, K.; Kobayashi, K.; Narumi, T.; Tomita, K.; Ohno, H.; Naito, T.; Kodama, E.; Matsuoka, M.; Fujii, N. Peptide bond mimicry by (E)-alkene and (Z)-fluoroalkene peptide isosteres: synthesis and bioevaluation of a helical anti-HIV peptide analogues. Org. Biomol. Chem. 2009, 7, 2872–2877. (h) Edmondson, S. D.; Wei, L.; Xu, J.; Shang, J.; Xu, S.; Pang, J.; Chaudhary, A.; Dean, D. C.; He, H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.; Scapin, G.; Wu, J. K.; Beconi, M. G.; Thornberry, N. A.; Weber, A. E. Fluoroolefins as amide bond mimics in dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2409–2413.

(4) For reviews: (a) Zhang, X.; Cao, S. Recent advances in the synthesis and C-F functionalization of gem-difluoroalkenes. Tetrahe- dron Lett. 2017, 58, 375–392. (b) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Exploiting 3,3-difluoropropenes for the synthesis of monofluoroalkenes. Synlett 2017, 27, 821–830. (c) Van Steenis, J. F.; der Gen, A. V. Synthesis of terminal monofluoro olefins. J. Chem. Soc., Perkin Trans. 1 2002, 2117–2133. (d) Yanai, H.; Taguchi, T. Synthetic methods for fluorinated olefins. Eur. J. Org. Chem. 2011, 5939–5954. (e) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Synthetic approaches to monofluoroalkenes. Chem. Soc. Rev. 2011, 40, 2867–2908. For recent examples: (f) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Copper-catalyzed stereoselective defluorinating borylation and silylation of gem-difluoroalkenes. Adv. Synth. Catal. 2018, 360, 1032–1037. (g) Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Organic photooxidation catalytic decarboxylative cross-coupling of gem-difluoroalkenes with unactivated carboxylic acids. Org. Chem. Front. 2019, 6, 2365–2370. (h) Jiang, L.-F.; Ren, B.-T.; Li, B.; Zhang, G.-Y.; Peng, Y.; Guan, Z.-Y.; Deng, Q.-H. Nucleophilic substitution of gem-difluoroalkenes with TMSNu promoted by catalytic amounts of Cs2CO3. J. Org. Chem. 2019, 84, 6557–6564. (i) Jayaraman, A.; Lee, S. Silver-Mediated
decarboxylative fluorodiodination of alkyl acids: synthesis of regio- and stereoselective fluoroalkanes. Org. Lett. 2019, 21, 3485–3489. (j) He, Y.; Anand, D.; Sun, Z.; Zhou, L. Visible-light-promoted redox neutral n,γ-difluoroallylation of cycloketone oxime ethers with trifluoromethyl alkynes via C-C and C-F bond cleavage. Org. Lett. 2019, 21, 3769–3773. (k) Tian, H.; Xia, Q.; Wang, Q.; Dong, J.; Liu, Y.; Wang, Q. Direct α-monofluoroallylation of heteroatomic alkynes via a combination of photocatalysis and hydrogen-atom-transfer catalysis. Org. Lett. 2019, 21, 4585–4589. (l) Yang, L.; Ji, W.-W.; Lin, E.; Li, J.-L.; Fan, W.-X.; Li, Q.; Wang, H. Synthesis of alkylated monofluoroalkanes via Fe-catalyzed defluorinative cross-coupling of donor alkenes with gem-difluoroalkenes. Org. Lett. 2018, 20, 1924–1927. (m) Thornbury, R. T.; Toste, F. D. Palladium-catalyzed defluorinative coupling of 1-aryl-2,2-difluoroalkenes through C-H bond activation. ACS Omega 2018, 3, 4209–4213. (n) Kong, L.; Chang, J.; Kong, L.; Li, X. Ruthenium(II)-catalyzed α-fluoroallylation of arenes via C-H bond activation and C-F bond cleavage. Org. Lett. 2018, 5, 11629–11632. (o) Zhang, X.; Lin, Y.; Zhang, J.; Cao, S. Base-mediated direct fluoroalkenylation of N-nitrosoanilines with 2,2-difluorovinyl tosylates and selective tankyrase inhibitor modulating wnt pathway activity. J. Org. Chem. 2018, 84, 10153–10202. (f) Witt, A.; Bergman, J. Recent developments in the field of quinazoline chemistry. Curr. Org. Chem. 2003, 7, 659–677. (g) Nefti, A.; Ostresh, J. M.; Houghten, R. A. The Current Status of synthetic and selective fluorination of 2-arylquinazolin-4-one scaffolds via C-H bond activation. Tetrahedron 2005, 61, 10153–10202. (i) Tian, P.; Agrawal, S.; Weddinger, O.; Zhang, B.; Liu, B.; Li, X. Rh-Catalyzed C-H bond alkylation of indoles with 2,2-difluorovinyl tosylate via indolyl group migration. Chem. Commun. 2018, 54, 5618–5621. (j) Yang, L.; Li, C.; Wang, D.; Liu, H. Cp*Rh(III)-Catalyzed C-H bond difluoroalkenylation of indoles with α,α-difluorovinyl tosylate. J. Org. Chem. 2019, 84, 7320–7330. (k) For selected reviews see: (a) Li, S.-G.; Wang, K.-B.; Gong, C.-B.; Yao, Y.; Qin, N.-B.; Li, D.-H.; Li, Z.-L.; Bai, J.; Hua, H.-M. Cytoxic quinazoline alkaloids from the seeds of Peganum harmala. Biogeo. Med. Chem. Lett. 2018, 28, 103–106. (l) Shang, X.-F.; Morris-Natschke, S. L.; Liu, Y.-Q.; Guo, X.; Xu, X.-S.; Goto, M.; Li, J.-C.; Yang, G.-Z.; Lee, K.-H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018, 38, 775–828. (m) Michael, P. J. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2007, 24, 223–246. (n) Mhaske, S. B.; Argade, N. P. The chemistry of recently isolated naturally occurring quinazoline alkaloids. Tetrahedron 2006, 62, 9787–9826. (n) For recent reviews see: (a) Gadati, S.; Lakshmi, T. V.; Nanduri, S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur. J. Med. Chem. 2019, 170, 157–172. (b) Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S. A.; Arsha; Ishitaq, M.; Khan, K. M. Quinazoline and quinazoline alkaloids as important medicinal scaffolds: a comparative patent review (2011-2016). Expert Opin. Ther. Pat. 2018, 28, 281–297. (n) For recent reviews see: (a) Maiden, T. M. M.; Harity, J. P. A. Recent developments in transition metal catalysis for quinazoline synthesis. Org. Biomol. Chem. 2016, 14, 8014–8025. (b) Khirsagar, U. A. Recent developments in the chemistry of quinazoline and quinazolinone alkaloids. Org. Biomol. Chem. 2015, 13, 9336–9352. (c) Demeunynck, M.; Baussanne, I. Survey of recent literature related to the biologically active 4(3H)-quinazolinones containing fused heterocycles. Curr. Med. Chem. 2013, 20, 794–814. (d) Sharma, P. C.; Kaur, G.; Pahwa, R.; Sharma, A.; Rajak, H. Quinazoline analogs as potential therapeutic agents. Curr. Med. Chem. 2011, 18, 4786–4812. (e) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J. Synthesis of quinazolinones and quinoline. Tetrahedron 2005, 61, 9482–9509. (f) Witt, A.; Bergman, J. Recent developments in the field of quinazoline chemistry. Curr. Org. Chem. 2003, 7, 659–677. (g) Nefti, A.; Ostresh, J. M.; Houghten, R. A. The Current Status of heterocyclic combinatorial libraries. Chem. Rev. 1997, 97, 499–472. (h) For selected recent examples see: (a) Buchsteller, H.-P.; Ander, U.; Dorsch, M.; Kuhn, D.; Leuthner, B.; Millot, D.; Radtke, D.; Ritzert, C.; Rohdeh, F.; Schneider, R.; Esdar, C. Discovery and optimization of 2-arylquinazolin-4-ones into a potent and selective tankyrase inhibitor modulating wnt pathway activity. J. Med. Chem. 2019, 62, 7897–7909. (i) Liang, Y.; Tan, Z.; Jiang, H.; Zhu, Z.; Zhang, M. Copper-catalyzed oxidative multicomponent annulation reaction for direct synthesis of quinazolines via an imine-protection strategy. Org. Lett. 2019, 21, 4725–4728. (j) Archipchine, P. T. K.; Yi, C. S. Synthesis of quinazoline and quinazoline derivatives via ligand promoted ruthenium-catalyzed dehydrogenative and deaminative coupling reaction of 2-aminobenzyl Ketones and 2-amino-benzamidazoles with amines. Org. Lett. 2019, 21, 3337–3341. (k) Garia, A.; Jain, N. Transition-metal-free synthesis of fused quinazolines by oxidative cyclization of N-arylindolines. J. Org. Chem. 2019, 84, 9661–9670. (l) Maiti, S.; Kim, J.; Park, J.-H.; Nam, D.; Lee, J. B.; Kim, Y.-J.; Kee, J.-M.; Seo, K. J.; Myung, K.; Rohde, J.-U.; Choe, W.; Kwon, H.-H.; Hong, S. Y. Chemoselective trifluorothiolation reactions of quinazolines and identification of photostability. J. Org. Chem. 2019, 84, 6737–6751. (m) Rohokale, R. S.; Kalshetti, R. G.; Ramana, C. V. Iridium(III)-catalyzed alkylation of 2 (hetero)arylquinazolin-4-one scaffolds via C-H bond activation. J. Org. Chem. 2019, 84, 2951–2961. (n) Li, J.; Wang, Z.-B.; Xu, Y.; Lu, X.-C.; Zhao, Y.; Liu, L. Catalyst-free cyclization of aryl and cimyclic amines: one-step synthesis of rutacearcpine. Chem. Commun. 2019, 55, 12072–12075. (o) An, J.; Wang, Y.; Zhang, Z.; Zhao, Z.; Zhang, J.; Wang, F. The synthesis of quinazolines from olefins, CO, and amines over a heterogeneous Ru-clusters/ceria catalyst. Angew. Chem., Int. Ed. 2018, 57, 12308–12312. (p) Xie, L.; Lu, C.; Jing, D.; hydroarylation. Chem. Commun. 2017, 53, 9482–9485.
Ou, X.; Zheng, K. Metal-free synthesis of polycyclic quinazolinones enabled by a (NH₄)₂S₂O₈-promoted intramolecular oxidative cyclization. *Eur. J. Org. Chem.* 2019, 3649−3653. (j) Hudson, L.; Mui, J.; Vazquez, S.; Carvalho, D. M.; Williams, E.; Jones, C.; Bullock, A. N.; Hoelder, S. Novel quinazolinone inhibitors of ALK2 flip between alternate binding modes: structure activity relationship, structural characterization, kinase profiling, and cellular proof of concept. *J. Med. Chem.* 2018, 61, 7261−7272. (k) Yu, X.; Gao, L.; Jia, L.; Yamamoto, Y.; Bao, M. Synthesis of quinazolin-4(3H)-ones via one the reaction of 2-halobenzamides with nitriles. *J. Org. Chem.* 2018, 83, 10352−10358. (l) ViveKi, A. B.; Mhaske, S. B. Ruthenium-catalyzed regioselective alkenylation/tandem hydroaminative cyclization of unmasked quinazolinones using terminal alkynes. *J. Org. Chem.* 2018, 83, 8906−8913. (m) Ward, A.; Dong, L.; Harris, J. M.; Khanna, K. K.; Al-Ejeh, F.; Fairlie, D. P.; Wiegmans, A. P.; Liu, L. Quinazolinone derivatives as inhibitors of homologous recombination RAD51. *Bioorg. Med. Chem. Lett.* 2017, 27, 3096−3100. (n) Smith, G. F.; Altman, M. D.; et al. Identification of quinazoline based inhibitors of IRAK4 for the treatment of inflammation. *Bioorg. Med. Chem. Lett.* 2017, 27, 2721−2726. (o) Hrast, M.; Rožman, K.; Jukić, M.; Patin, D.; Gobec, S.; Sova, M. Synthesis and structure activity relationship study of novel quinazolinone-based inhibitors of MurA. *Bioorg. Med. Chem. Lett.* 2017, 27, 3529−3533.

(11) (a) Yan, Z.; Ouyang, B.; Mao, X.; Gao, W.; Deng, Z.; Peng, Y. One-pot regioselective C-H activation iodination cyanation of 2,4-diarylquinazolines using malononitrile as a cyano source. *RSC Adv.* 2019, 9, 18256−18264. (b) Lou, M.; Deng, Z.; Mao, X.; Fu, Y.; Yang, Q.; Peng, Y. Rhodium-catalyzed C–H bond activation alkylation and cyclization of 2-aryquinazolin-4-one. *Org. Biomol. Chem.* 2018, 16, 1851−1859. (c) Zhang, Y.; Huang, J.; Deng, Z.; Mao, X.; Peng, Y. Rhodium(III)-catalyzed C−H amination of 2-aryquinazolin-4(3H)-one with N-alkyl-O-benzoyl-hydroxylamines. *Tetrahedron* 2018, 74, 2330−2337. (d) Zhou, J.; Liu, L.; Pan, Y.; Zhu, Q.; Lu, Y.; Wei, J.; Luo, K.; Fu, Y.; Zhong, C.; Peng, Y.; Song, Z. Asymmetric difluoroboron quinazolinone-pyridine dyes with large stokes shift: high emission efficiencies both in solution and in the solid state. *Chem.—Eur. J.* 2018, 24, 17897−17901. (e) Wei, M.; Chai, W.-M.; Wang, B.; Yang, Q.; Deng, Z.; Peng, Y. Quinazoline derivatives: Synthesis and comparison of inhibitory mechanisms on α-glucosidase. *Bioorg. Med. Chem.* 2017, 25, 1303−1308. (f) Jiang, X.; Yang, Q.; Yuan, J.; Deng, Z.; Mao, X.; Peng, Y.; Yu, C. Rhodium-catalyzed tandem C-H activation and aza-Michael addition of 2-aryquinazolin-4-ones with acrylates for the synthesis of pyrrolo[2,1-b]quinazolin-9(1H)-one derivatives. *Tetrahedron* 2016, 72, 1238−1243. (g) Wang, R.; Chai, W.-M.; Yang, Q.; Wei, M.-K.; Peng, Y. 2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: synthesis, inhibitory activity, and mechanism. *Bioorg. Med. Chem.* 2016, 24, 4620−4625. (h) Peng, Y.; Chen, X.; Yang, Q.; Zhou, Y.; Deng, Z.; Mao, X.; Peng, Y. Synthesis of 4-(dimethylamino)quinazoline via direct amination of quinazolin-4(3H)-one using N,N-dimethylformamide as a nitrogen source at room temperature. *Synthesis* 2015, 47, 2055−2062. (i) Zhao, Y.; Liu, W.; Li, Q.; Yang, Q.; Chai, W.; Zeng, M.; Li, R.; Peng, Y. Multiparameter-based bioassay of 2-(4-chlorophenyl)-4-(4-methoxyphenyl)quinazoline, a newly-synthesized quinazoline derivative, toward microcystis aeruginosa HABS100 (cyanobacteria). *Bull. Environ. Contam. Toxicol.* 2015, 94, 376−381. (j) Lu, H.; Yang, Q.; Zhou, Y.; Guo, Y.; Deng, Z.; Ding, Q.; Peng, Y. Cross-coupling/annulations of quinazolones with alynes for access to fused polycyclic heteroarenes under mild conditions. *Org. Biomol. Chem.* 2014, 12, 758−764.

(12) (a) Shuklov, I.; Börner, A.; Dubrovina, N. Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis. *Synthesis* 2007, 2925−2943. (b) Bonnet-Delpon, D.; Bégue, J.-P.; Crousse, B. Fluorinated alcohols: a new medium for selective and clean reaction. *Synlett* 2004, 18−29.