Plants in the real world: an introduction to the JBC Reviews thematic series

Joseph M. Jez

From the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130

To whom correspondence may be addressed. E-mail: jjez@wustl.edu

Keywords: biofortification, crops, ethylene, gene editing, herbicides, iron, plant cell wall, plant immunity, thiamine, ubiquitin

The deep relationship between plants and humans predates civilization and our reliance on plants as sources of food, feed, fiber, fuels, and pharmaceuticals continues to grow. Understanding how plants grow and overcome challenges to their survival is critical for using these organisms to meet current and future demands for food and other plant-derived materials. This thematic review series on "plants in the real world" presents a set of eight reviews that highlight advances in understanding plant health, including the role of thiamine (vitamin B1), iron, and the plant immune system; how plants use ethylene and ubiquitin systems to control growth and development; and how new gene editing approaches, the redesign of plant cell walls, and deciphering herbicide resistance evolution can lead to the next generation of crops.

As the world's population grows from 7 billion to 9 billion people by 2050 (1), our reliance on plants only promises to grow. For example, the projected growth in population will need an estimated 70% increase in agricultural production, while limiting environmental impacts and adapting to changes in climate, water availability, and resource demands (1). Beyond their use as food for us and feeds for animals, the diverse biological chemistry of plants provides a vast array of building blocks for fibers, fuels, and pharmaceuticals (2-5). To keep up with the ever increasing demands we make on plants, a better understanding of the variety of molecular, cellular, and developmental systems these organisms use to survive is critical for maintaining their productivity. In this JBC reviews thematic series, eight reviews give a glimpse on some recent advances that help reveal how plants function in the real world.

Just like humans, plants need diverse vitamins and minerals to maintain a good diet. The first set of reviews highlight new insights on plant health and how this is important for us. Fitzpatrick & Chapman (6) focus first on thiamin (vitamin B1), a versatile molecule linked to plant disease resistance, stress tolerance, and crop yield. They particularly explore recent thiamin biofortification efforts to enhance food nutritional value and improve human health. The focus on plant micronutrients, specifically iron, continues in the review by Herlihy and co-authors (7) describing how plants use iron to support normal growth and development and for plant immune responses. They also discuss how efforts aimed at biofortification of food and feed plants for enhanced iron content may also have positive outcomes on plant disease resistance. The review by Bentham and co-authors (8) continues the focus on the plant immune system. The global impact of crop losses to diseases caused by pathogens and pests has multiple impacts, but new insights on the molecular machinery plants use to respond to pathogens, captured in this analysis, could be used to improve disease responses in plants.

In addition to responding to external nutrients and attackers, plants evolved internal
signals that differ from microbes or animals. The first gaseous hormone identified was ethylene (not NO/nitric oxide, as many plant biologists are quick to remind their biomedical friends). The review by Binder (9) summarizes how ethylene signaling in plants operates and how they contribute to plant growth and development, as well as stress responses. Plants also use many of the canonical signaling systems found in other organisms, but plants exploit ubiquitin-based systems to an extent not found in mammals. In their review, Linden & Callis (10) highlight how critical agronomic traits - flowering, seed size, and pathogen responses - are controlled by ubiquitin systems.

An important goal of understanding basic processes in plants is to enable translational efforts aimed at improving yields, growth, and survivability. Application of gene editing technology is at the forefront of these efforts. The review by Van Eck (11) covers current developments and challenges in plant gene editing and provides examples of how the technology can be used not just for ‘engineering’ but also for increasing the efficiency of traditional breeding and domestication of crops (12). Plant cell wall components can be sustainable sources of a range of bio-based building blocks currently derived from petroleum. The ability to redesign and alter key metabolic processes is also being pursued for changing plant cell wall composition and structures, as reviewed by Carpita & McCann (13). The last review in the series by Gaines and co-authors (14) explores the evolution of herbicide resistance mechanisms and the impact on future crop development and field management practices.

The eight reviews in this thematic series capture only a small piece of the diverse biology and chemistry plants deploy in the real world; however, the processes highlighted here offer new opportunities for using plants to meet a variety of future challenges.

Footnote

The author declares no conflict of interest with the contents of this article.

References

1. Food and Agriculture Organization of the United Nations (2009) How to Feed the World in 2050.
2. Horn, P., Benning, C. (2016) The plant lipidome in human and environmental health. Science 353, 1228-1232
3. Wurtzel, E.T., Kutchan, T.M. (2016) Plant metabolism, the diverse chemistry set of the future. Science 353, 1232-1236
4. Lomonossoff, G.P., D’Aoust, M.A. (2016) Plant-produced biopharmaceuticals: a case of technical developments driving clinical development. Science 353, 1237-1240
5. Jez, J.M., Lee, S.G., Sherp, A.M. (2016) The next green movement: plant biology for the environment and sustainability. Science 353, 1241-1244
6. Fitzpatrick, T.B., Chapman, L.M. (2020) The importance of thiamine (vitamin B1) in plant health: from crop yield to biofortification. J. Biol. Chem. 295, 12002-12013
7. Herlihy, J.H., Long, T.A., McDowell, J.M. (2020) Iron homeostasis and plant immune responses: recent insights and translational implications. J. Biol. Chem. jbc.REV120.010856. doi: 10.1074/jbc.REV120.010856
8. Bentham, A., De la Concepcion, J.C., Mukhi, N., Zdrzalek, R., Draeger, M., Gorenkin, D., Hughes, R.K., Banfield, M.J. (2020) A molecular roadmap to the plant immune system. J. Biol.
9. Binder, B.M. (2020) Ethylene signaling in plants. *J. Biol. Chem.* **295**, 7710-7725

10. Linden, K.J., Callis, J. (2020) The ubiquitin system affects agronomic plant traits. *J. Biol. Chem.* jbc.REV120.011303. doi:10.1074/jbc.REV120.011303

11. van Eck, J. (2020) Applying gene editing to tailor precise genetic modifications in plants. *J. Biol. Chem.* jbc.REV120.010850. doi:10.1074/jbc.REV120.010850

12. Kwon, C.T., Heo, J., Lemmon, Z.H., Capua, Y., Hutton, S.F., Van Eck, J., Park, S.J., Lippman, Z.B. (2020) Rapid customization of Solanaceae fruit crops for urban agriculture. *Nat. Biotechnol.* **38**, 182-188

13. Carpita, N.C., McCann, M.C. (2020) Redesigning plant cell walls for the biomass-based bioeconomy. *J. Biol. Chem.* jbc.REV120.014561. doi:10.1074/jbc.REV120.014561

14. Gaines, T.A., Duke, S.O., Morran, S., Rigon C.A.G., Tranel, P.J., Küpper, A., Dayan, F.E. (2020) Mechanisms of evolved herbicide resistance. *J. Biol. Chem.* **295**, 10307-10330
Plants in the real world: an introduction to the JBC Reviews thematic series
Joseph M. Jez

J. Biol. Chem. published online September 1, 2020

Access the most updated version of this article at doi: 10.1074/jbc.REV120.015446

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts