Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals

Lucie Kraftova1,2, Marc Finianos1,2, Vendula Studentova1,2, Katerina Chudejova1,2, Vladislav Jakubu3,4, Helena Zemlickova3,4, Costas C. Papagiannitsis5,6,6, Ibrahim Bitar1,2,6 & Jaroslav Hrabak1,2

The aim of the present study is to describe the ongoing spread of the KPC-producing strains, which is evolving to an epidemic in Czech hospitals. During the period of 2018–2019, a total of 108 KPC-producing Enterobacterales were recovered from 20 hospitals. Analysis of long-read sequencing data revealed the presence of several types of blaKPC-carrying plasmids; 19 out of 25 blaKPC-carrying plasmids could be assigned to R (n = 12), N (n = 5), C (n = 1) and P6 (n = 1) incompatibility (Inc) groups. Five of the remaining blaKPC-carrying plasmids were multireplicon, while one plasmid couldn't be typed. Additionally, phylogenetic analysis confirmed the spread of blaKPC-carrying plasmids among different clones of diverse Enterobacterales species. Our findings demonstrated that the increased prevalence of KPC-producing isolates was due to plasmids spreading among different species. In some districts, the local dissemination of IncR and IncN plasmids was observed. Additionally, the ongoing evolution of blaKPC-carrying plasmids, through genetic rearrangements, favours the preservation and further dissemination of these mobile genetic elements. Therefore, the situation should be monitored, and immediate infection control should be implemented in hospitals reporting KPC-producing strains.

Carbapenem-resistant Enterobacterales (CRE) incidence have increased, causing worldwide public-health concern due to their rapid global dissemination and limited treatment options. Carbapenemases are enzymes able to hydrolyse almost all β-lactam antibiotics including carbapenems, one of the last drugs of choice. Carbapenemases are divided into different groups depending on their structure and hydrolytic activity. Klebsiella pneumoniae carbapenemase (KPC) is the most predominant β-lactamase of class A carbapenemases. The KPC-type carbapenemases hydrolyse a wide variety of β-lactam antibiotics such as cephalosporins, penicillins and carbapenems.

The blaKPC gene was first identified in 1996 in North Carolina, USA, harboured by a K. pneumoniae isolate. Later reports presented the monoclonal dissemination of KPC-producing isolates across America that was attributed to sequence type 258 (ST258) K. pneumoniae, as the predominant lineage. Subsequently, KPC producers emerged in European countries, becoming highly endemic in some countries, especially in Greece and Italy. Other European countries had confirmed very few cases of blaKPC up to 2013 according to the EuSCAPE project. Even though KPC-type carbapenemases have been mostly associated with K. pneumoniae isolates, there are also reports of other bacterial species harbouring blaKPC-like genes, including Escherichia coli, Citrobacter freundii, Klebsiella oxytoca and other Enterobacterales, and Pseudomonas aeruginosa.

The blaKPC-like genes are most commonly found on the 10 kb transposon Tn4401 and its isoforms. Until now, there are 9 isoforms of Tn4401 (a to i). Due to the high mobilization efficiency of Tn4401, blaKPC-like genes have been identified on several plasmids belonging to different incompatibility (Inc) groups.

In the Czech Republic, the first case of KPC-producing K. pneumoniae was identified in 2009. This strain producing KPC-2, was collected from a patient repatriated from a hospital in Greece. Shortly after the first report, an outbreak of KPC-3-producing K. pneumoniae, belonging to ST512, was observed in another Czech hospital, with the index case being a patient repatriated from Italy. All those isolates harboured transposon isoform Tn4401a, carried on IncFIIK2 pKpQIL-like plasmids. Another ten KPC-2-producing Enterobacterales,
mainly of the species _C. freundii_, were recovered in the University Hospital of Hradec Královo (Czech Republic)\(^{16}\), during the period 2014–2016. Interestingly, sequencing revealed the presence of three plasmid types with the Tn\(^{4401}\) transposon. The first type comprised an IncR backbone and a KPC-2 encoding multidrug resistance (MDR) region, while the second type were derivatives of the first type carrying an IncN3-like segment. Finally, the third type was IncP6 plasmids sharing the same KPC-2 encoding MDR region with the two other types.

However, a significant increase in the number of KPC-producing isolates, referred to our laboratory from Czech hospitals, was observed since 2018. The aim of the present study is to describe the ongoing spread of the KPC-type producers, which is evolving to an epidemic in Czech hospitals, during the period of 2018–2019.

Results

KPC-producing Enterobacteriales. During 2018–2019, a total of 490 _Enterobacteriales_ isolates with a meropenem MIC of >0.125 \(\mu\)g/ml were referred to the National reference laboratory for antibiotics (Prague) or to the Biomedical Center (Pilsen) from 55 laboratories. All bla\(_{KPC}\)-positive isolates (108) were subjected to further analysis described below. Distribution of laboratories is shown in Figure S1. Among them, 26 of the isolates were identified to be _K. pneumoniae_, 24 were identified to be _C. freundii_, 18 were identified to be _Enterobacter cloacae_ complex, 14 were identified to be _Proteus mirabilis_, 11 were identified to be _Morganella morganii_ and 10 were identified to be _E. coli_. The five remaining KPC-producing isolates belonged to the bacterial species, _Citrobacter freundii_ (n = 1), _Enterobacter aerogenes_ (n = 1), _K. michiganensis_ (n = 2) and _Klebsiella variicola_ (n = 1) (Figure S2).

Analysis of short-read sequencing results. Forty-nine out of 108 KPC producers, selected as representatives of all different hospitals, bacterial species and susceptibility profiles, were characterized by short-read sequencing using MiSeq (Illumina) platform. Based on short-read data, 44 of the 49 sequenced isolated harboured the _bla\(_{KPC}\)_ allele (Table S1), while the five remaining isolates carried the _bla\(_{KPC}\)_ gene. The _bla\(_{KPC}\)_ allele was identified among 3 _K. pneumoniae_, 1 _K. michiganensis_ and 1 _E. coli_ isolates. Besides species-specific chromosomal beta-lactamases, most of the clinical isolates also carried genes encoding OXA-1/9 oxacillines (n = 37) and/or TEM-1 penicillinases (n = 34). The _bla\(_{CTX-M-15}\)_ gene was found among 2 _Enterobacter_ and 5 _K. pneumoniae_ isolates, while 4 out of 5 _P. mirabilis_ harboured the _bla\(_{CTX-M-14}\)_ gene. Additionally, 4 out of 7 _Enterobacter_ isolates carried the carbapenemase-encoding gene _bla\(_{VIM-4}\)_.

All sequenced isolates exhibited a wide variety of resistance genes conferring resistance to aminoglycosides, sulfonamides, trimethoprim, macrolides, streptogramin B, fosfomycin (low-level resistance), fluoroquinolones, chloramphenicol, tetracyclines, and/or rifampicin (Table S1).

WGS data revealed that _C. freundii_ isolates belonged to sequence types ST65 (n = 6), ST580 (n = 3), ST98 (n = 2) and ST8 (n = 1) (Table S1). ST98 _C. freundii_ isolates producing KPC-2 carbapenemase were previously recovered from critically ill patients hospitalized in Germany\(^{17}\), while ST8 _C. freundii_ expressing a VIM-4 iso-enzyme were identified in Poland\(^{18}\), in 2013. On the other hand, the novel ST580 was a single allele variant of ST142, which was previously associated with KPC-2 production in isolates from the University Hospital of Hradec Královo (Czech Republic)\(^{16}\). The isolates belonging to _E. cloacae_ complex were assigned to ST133 (n = 4) and ST421 (n = 3), which haven’t been previously associated with the production of KPC-2 carbapenemase. Additionally, in silico _hsps60_ typing of the genome sequences showed that four _Enterobacter_ isolates belonged to the species _Enterobacter hormaehelii_\(^{19}\). The _K. pneumoniae_ isolates included eight STs. Seven KPC-2-producers were distributed in ST101 (n = 4) and ST11 (n = 3). The remaining KPC-2-producing _K. pneumoniae_ isolates belonged to unique STs (ST13, ST17 and ST147), while the _K. pneumoniae_ isolates, which produced the KPC-3 enzyme, were ST307, ST512 and ST846. ST11, ST101, ST147, ST307 and ST312 have been previously associated with the spread of KPC resistance mechanism and have been considered as ‘high risk clones’\(^{20,21}\). Finally, the _E. coli_ and _K. michiganensis_ (closely related to _K. oxytoca_)) isolates were assigned to diverse STs, as shown in Table S1. Since MLST schemes do not exist for _M. morganii_ and _P. mirabilis_ isolates, phylogenetic clusters for the respective isolates were determined based on core-genome alignment (see below), using the Harvest suite\(^{22}\).

Characterization of _bla\(_{KPC}\)_-carrying genetic units. Based on short-read data, 25 KPC-producing isolates were selected to be sequenced by Sequel I platform, in an attempt to close plasmid sequences. All the 25 sequenced isolates showed resistance to cephalosporins and ertapenem while (except for _P. mirabilis_ isolates) showed resistance to aminoglycosides, sulfonamides, trimethoprim, macrolides, streptogramin B, fosfomycin (low-level resistance), fluoroquinolones, chloramphenicol, tetracyclines, and/or rifampicin (Table S1). Since MLST schemes do not exist for _M. morganii_ and _M. morganii_, the respective isolates were determined based on core-genome alignment (see below), using the Harvest suite\(^{22}\).

Three out of 12 _bla\(_{KPC}\)_-carrying plasmids, belonging to IncR group, were 69 kb in size, while the nine remaining IncR plasmids sized \(\geq 89\) kb. The IncR plasmids that were \(\geq 89\) kb in size were derivatives of the IncR KPC-2 encoding plasmid pCfr-31816c (Fig. 1a), which was characterized during an outbreak of KPC-2-producing _Enterobacteriales_ in a Czech hospital (Hradec Královo)\(^{16}\). However, they differed from pCfr-31816c by the presence of an additional 9232-bp sequence (nt 7286 to 16,517; GenBank accession no. CP070521) encoding CcdAB toxin-antitoxin system, and IncFIIA RepA and Ssb proteins. On the other hand, the IncR plasmids that were \(\leq 89\) kb in size showed high degrees of similarity to each other and to the previously described plasmid pCfr-36049c (Fig. 1b). Plasmid pCfr-36049c was characterized during the KPC-2 outbreak that took place in Hradec Královo\(^{16}\), during 2014–2016. Similar to pCfr-36049c, the latter plasmids were fusion derivatives of IncR
Figure 1. BRIG comparison of IncR KPC-encoding plasmids characterized from *Enterobacterales* isolates recovered from Czech hospitals.

Figure 2. Linear comparisons of the KPC-encoding plasmids p48659_KPC and p45182_KPC. Arrows show the direction of transcription of open reading frames (ORFs). Resistance genes are shown in red. IS elements and transposases are shown in yellow and light green, respectively. *intI1* genes are shaded purple. Genes encoding replication, stability and transfer systems are shown in aqua, blue and green colors, respectively. The remaining genes are shown in gray. Homologous segments (representing ≥ 85% sequence identity) are indicated by gray shading.

*bla*KPC-2-positive plasmids and an IncN3-type-derived segment. However, unlike in pGfr-36049, a complete IncN3 transfer system was found, explaining the ability of pA4411_KPC, p46506_KPC, p52260_KPC, p52808_KPC, p52810_KPC, p52812_KPC, p52813_KPC, p53083_KPC and p53415_KPC to transfer via conjugation. Of note, the IncR plasmid p52813_KPC carried the *bla*KPC-3 allele, indicating the ongoing evolution of the determinants encoding KPC carbapenemases.

Plasmid p48659_KPC is a fusion derivative of the p52810_KPC and pMmo-37590cz (Fig. 2). pMmo-37590cz is an IncP6 KPC-2-encoding plasmid that was also characterized during the KPC-2 outbreak in Hradec Kralove hospital16. Plasmid p48659_KPC contains a 50,603-bp sequence (nt 5917 to 56,519) encoding KPC-2, which is identical to a partial sequence of p52810_KPC. The remaining 11,723-bp sequence of p48659_KPC consists of one segment sharing extensive similarity with sequences carried by pMmo-37590cz. This segment included the IncP6 replication gene repA, the partitioning genes, parA, parB, and parC, and genes encoding a DNA invertase/
The IncN plasmidic backbone contained a replication region (Tn4401b-derived sequence (designated Tn2833-bp, encoding KPC-2 carbapenemase. In comparison to Tn4401b of IncN plasmids, which ranged from 21,011 to 31,420 bp in size, harboured a Tn4401b-derived fragment of 2833-bp, encoding KPC-2 carbapenemase. In comparison to Tn4401b, the Tn4401-derived sequence (designated Tn4401j) had a deletion of 217 bp found upstream of the blaKPC-2. The Tn4401-derived fragment was disrupted by a Tn3-like sequence, 111 bp upstream of the blaKPC-2. The Tn3-like sequence was composed of the inverted repeat (IR) of the transposon and the blaTEM-1 resistance gene. A similar blaKPC-2-carrying genetic environment has been previously identified in the IncN plasmid pCF8698_KPC2, characterized from a C. freundii strain isolated in Germany (GenBank accession no. LN610760) (Figure S4). The MDR region of the IncN plasmids exhibited additional genes conferring resistance to aminoglycosides, sulfonamides, trimethoprim, macrolides, and/or fluoroquinolones (Table S2, Figure S4).

Plasmid p49969_KPC, typed as IncC based on PlasmidFinder, exhibited highest similarity with the OXA-204-encoding plasmid pCf3880 (74% coverage, 99.87% identity) (Figure S5). The pCf3880, which was an IncFII/FIB/C hybrid plasmid, was characterized from a C. freundii isolated from a hospital in Canada23. Unlike pCF3880, plasmid p49969_KPC carried the carbapenemase-encoding gene, blaKPC-2, which resulted from the acquisition of a 29,121-bp fragment (nt 111,204 to 140,234 in GenBank accession no. CP070549) showing extensive similarity to IncN plasmid p48846_KPC. The IncN-derived fragment was bound by two copies of the insertion sequence IS26, in parallel orientation, forming a composite transposon. Plasmid p49969_KPC carried, also, the resistance genes blatem1,1, aac(6')-Ibm, aac(3)-IId and aph(2'')-Ib.

Plasmids pA9853_KPC, p47693_KPC and p51248_KPC, which were characterized from ST101 K. pneumoniae isolates (Table S2), exhibited extensive similarity to pIT-12C73 and plasmid unnamed 3 (GenBank accession no. CP033628) (Fig. 3). Plasmid pIT-12C73 which was also characterized from a ST101 K. pneumoniae, isolated in Italy in 2011, was a multireplicon IncFIIK2-IncR KPC-encoding plasmid. Plasmids pA9853_KPC and p51248_KPC differed from pIT-12C73 by acquisition of a 3254-bp fragment containing the IncFIA repE gene. Plasmid pA9853_KPC harboured an additional 9295-bp sequence, being identical to ColE1-like plasmid pColRNAI-Kp1-1 (GenBank accession no. LC505458). Comparative analysis suggested that IS26-mediated recombination events likely played a major role in acquisition of fragments of diverse origin. Similarly, to pIT-12C73, apart from blaKPC-2 plasmids pA9853_KPC, p47693_KPC and p51248_KPC carried also blatem1,1, armA,
mphE, msrE resistance genes (Fig. 3). Interestingly, a duplication of the KPC-2-encoding transposon, Tn4401a, was found in plasmid p51428_KPC.

Plasmid p51483_KPC, which contained replicons FIB and FIIL, showed highest similarity to KPC-2-encoding plasmid pRIVM_C008981_1 (96% coverage; 99.93% identity) (Figure S6a), characterized from a K. pneumoniae isolate collected in the Dutch national surveillance24. Similarly, to pRIVM_C008981_1, apart from regions responsible for conjugative transfer (traX/I/D/T/S/G/H/F/B/Q/C/U/W/V/P/K/Y/M) and plasmid maintenance (psiA/B, parA/B and umuD/C operons), p51483_KPC carried genes silE/S/R/C/B/A/P encoding a silver exporting ATPase, pcoA/B/C/D/R/E involved in copper resistance, and fecI/R/A/B/C/D/E implicated in Fe (3+) dicitrate transport. In addition to blaKPC-2, plasmid p51483_KPC contained blaTEM-1, aadA2, aph(3')-Ia, catA1, dfrA12 and mphA resistance genes. Finally, plasmid p51059_KPC, isolated from a ST512 K. pneumoniae, showed high similarity to IncFIIK2 KPC-2 encoding plasmids pGR-1504 (99% coverage; 99.97% identity) and pIT-01C22 (coverage 99%; identity 99.96%) (Figure S6b) characterized from two endemic settings, Greece and Italy, during 2010–201120. Plasmids pGR-1504 and pIT-01C22 were derivatives of the archetypal IncFIIK2 KPC-encoding plasmid pKpQIL, originally described in the ST258 K. pneumoniae Kpn557 isolate25.

Genomic comparison and relatedness. Sequence data from the 49 sequenced isolates, have been used to investigate their genomic relatedness with global isolates and SNPs based phylogenies have been constructed accordingly. For P. mirabilis, the five sequenced isolates were compared against 582 genomes found in the NCBI database (Fig. 4). Four isolates (Pmi-52808, Pmi-52812, Pmi-53415 and Pmi-52260) clustered together forming a clade. These isolates were isolated from the same hospital (NY) and using Pmi-52260 as reference for SNPs detection, Pmi-52808 and Pmi-53415 shared 14 and 9 alterations (snps, del/ins), respectively, while Pmi-52812 shared 117 alterations (Table S4). Lastly, Pmi-45467, isolated in hospital HK, was relatively distant from the rest of the isolates.

Similarly, 92 M. morganii available genomes in NCBI database were downloaded to compare them with the five isolates sequenced in this study (Fig. 5). Mmo-48659, isolated in HK hospital, clustered alone in a unique node. However, it was closely related to an isolate from South Africa (790 alteration). On the other hand, four isolates (isolated from three different hospitals; Table S1) clustered together, with Mmo-51087 and Mmo-50821 isolated from the same hospital forming a subclade. For the detection of SNPs among the four isolates of this clade, Mmo-51087 was used as a reference. Mmo-50821 and Mmo-46544 showed 22 and 62 alterations, respectively, while Mmo-46903 222 alterations (Table S4).
For *C. freundii*, 118 genomes were downloaded from the NCBI database to compare them with the 12 sequenced isolates (Fig. 6). The genomes of three isolates (Cfr-46338, Cfr-49942 and Cfr-48658), which belonged to ST580 and were recovered from HK hospital, clustered together forming a clade. SNPs detection among these isolates showed that Cfr-49942 and Cfr-46338 had 93 and 111 alterations, respectively, compared to Cfr-48658. In a closely related clade, another six genomes from ST65 isolates Cfr-50935, Cfr-48846, Cfr-51238, Cfr-47462, Cfr-48294 and Cfr-47299 clustered together. SNPs detection when compared to Cfr-50935 showed that Cfr-48846 had 25 alterations while Cfr-51238, Cfr-47462, Cfr-47299 and Cfr-48294 had 47, 57, 88 and 99 respectively (Table S4). On the other hand, the genomes of the two ST98 isolates, Cfr-48736 and Cfr-49141, clustered together in a considerable distant clade. These isolates are clustered together with other ST98 *C. freundii* isolates from the USA and UK. SNPs detection showed that Cfr-48736 had 28 alterations when compared to Cfr-49141. Finally, the isolate Cfr-49969, which was assigned to ST8, resulted in a unique node.

For *Enterobacter hormaechei*, 126 genomes were downloaded from the NCBI database and were compared with the seven isolates sequenced during this study (Fig. 7). The isolates clustered in two clades. The first clade contained four isolates (Ecl-49142, Ecl-48587, Ecl-48293 and Ecl-49583). Ecl-48293 was used as a reference genome for SNPs detection among these four isolates. Ecl-49142 had 26, Ecl-48587 had 34 and Ecl-49583 had 32 alterations. All ST133 isolates recovered from Czech Republic, South Africa, Japan, Australia and Egypt were grouped in a unique cluster. Additionally, the other cluster contained the three isolates (Ecl-51693, Ecl-51846 and Ecl-52075) which were ST421. For SNPs detection, Ecl-51846 was used as a reference, showing that Ecl-52075 and Ecl-51846 had 12 and 14 alterations, respectively (Table S4).

For *K. pneumoniae*, 732 genomes were downloaded from the NCBI database to compare them with the 13 sequenced isolates (Fig. 8). Isolates Kpn-51835, Kpn-47158, Kpn-51483, Kpn-53027, Kpn-52813 and Kpn-51069, which were assigned to diverse STs, formed a unique distinct node each. One clade consisting of Kpn-47693, Kpn-O141 and Kpn-A9853 was in close proximity with Kpn-51248 in the neighbouring cluster. Using Kpn-47693 as a reference genome for SNPs detection, Kpn-O141, Kpn-A9853 and Kpn-51248 had 25, 22 and 100 alterations, respectively. The above isolates were grouped together with other ST101 isolates from Italy, USA, Japan, India and South Africa. The last three *K. pneumoniae* isolates (Kpn-52810, Kpn-A4411 and Kpn-45128) clustered together. Using Kpn-52810 as a reference genome for SNPs detection, Kpn-A4411 had 27 alterations, while Kpn-45128 exhibited 816 alterations (Table S4). Interestingly, the last isolates were clustered with isolates from China, Switzerland, India and the USA, which belonged also to ST11.
Discussion

KPC-producing Enterobacterales represent a major threat of global dimensions for public health. The current study described the change of the epidemiological situation in Czech hospitals, from the sporadic cases or outbreaks to the epidemic spread of KPC-producing isolates (Figure S1). During 2018–2019, 108 KPC producers were recovered from 22 different Czech hospitals located throughout the country. Additionally, the bla\textsubscript{KPC} gene was found among diverse species and clones of Enterobacterales family (Figure S2).

Phylogenetic analysis indicated that \textit{P. mirabilis} and \textit{M. morganii} isolates, carrying the \textit{bla\textsubscript{KPC}}-like gene, didn't exhibit close relationship with isolates characterized previously from other geographical areas. Additionally, phylogenetic analysis showed that the KPC-2-producing \textit{E. hormaechei} isolates belonged to two distinct clones (Fig. 7), assigned as ST133 and ST421 based on MLST. The ST421 isolates weren't closely related with other isolates analysed, using parsnp software, while ST133 isolates clustered together with isolates from South Africa, Japan, Australia and Egypt. However, ST133 isolates, recovered from other geographical areas, weren't associated with the production of KPC-2 carbapenemase. Regarding \textit{C. freundii} isolates, phylogenetic analysis revealed two main clones, which were assigned to ST65 and ST580 based on MLST. These two clones were distinct to each other and to the isolates included in the analysis. Isolates Cfr-48736 and Cfr-49141 grouped together with other ST98 isolates from the UK and USA, while the isolate Cfr-49969 was clustered with other isolates from worldwide. Additionally, the 7 remaining \textit{K. pneumoniae} isolates belonged to two distinct clades. The later clades included ST11 and ST101 isolates from different geographical origins. Among \textit{K. pneumoniae}, the 'high risk' clones, ST11, ST101, ST147 and ST512, that have been previously associated with the spread of KPC resistance mechanism were found20,26. In agreement with recent reports, those data confirm that high-risk clones, other than CC258, currently contribute to spread of KPC resistance mechanism in Europe24, 25. Finally, the KPC-producing \textit{E. coli} and \textit{K. michiganensis} isolates belonged to unique STs. These findings underline the ongoing spread of the KPC resistance mechanism among different species and clones.

The analysis of the genetic units carrying the \textit{bla\textsubscript{KPC}}-like genes revealed the presence of a wide variety of plasmids involved in the spread of the KPC resistance mechanism. Some of the observed plasmid-types, like Inc\textit{FII}\textsubscript{K2}, pKpQIL, Inc\textit{FII}\textsubscript{K2}-Inc\textit{R} p\textit{IT}-12C73, and Inc\textit{R}-Inc\textit{N} p\textit{Cfr}-36049cz, have been previously described to

Figure 6. SNPs-based phylogeny of the 12 \textit{C. freundii} with 118 genomes downloaded from NCBI database. Red nodes indicate the isolates from the study. Grey triangles indicate collapsed nodes.
be responsible for the spread of the *bla*_{KPC}-like genes^{16, 20, 25}. Additionally, some novel emerging plasmid-types, as the IncN pCF8698_KPC2 originally described from Germany (GenBank accession no. CP070521), the IncFIB_I/FII pRIVM_C008981_1 firstly characterized from a Dutch collection²⁴, and the hybrid IncFII/FIB/C/N plasmid p49969_KPC characterized during this study, were identified to disseminate the *bla*_{KPC}-like genes. A few fusion derivatives of the *bla*_{KPC}-carrying plasmids described above were observed. These data verify the presence of some successful plasmid lineages spreading the KPC resistance mechanism, but also highlight the ongoing evolution of the mobile genetic elements involved in the dissemination of clinically important resistance mechanisms. For example, IncR plasmids carrying *bla*_{KPC} genes have played a significant role in the spread of the specific resistance mechanism, in the Czech Republic. But, IncR plasmids have also been involved with the spread of other important carbapenemases, like NDM and VIM^{27, 28}. Additionally, in agreement with previous studies^{20, 25, 29}, IncF plasmids are one of the major factors contributing to the worldwide spread of KPC carbapenemases. Moreover, the distribution of the different plasmid types detected suggests local dissemination with IncR plasmid spreading in middle part of the map especially in Hradec Kralove and Nymburk (Figure S3), while the IncN plasmid spreading in the North West of the Bohemian region. However, Prague seems like the melting pot, in which all plasmid families were detected, indicating the transient admission of patients from surrounding districts in and outside Prague. This route of dissemination could be explained by the spread of specific plasmid families within the same region, like IncR plasmids, or crossing the borders via travelling, like IncN plasmid from Germany.

In conclusion, our results show that the increased prevalence of KPC-producing isolates was due to plasmids being conjugative and spreading among different species and clones. Additionally, the ongoing evolution through genetic rearrangements, observed in *bla*_{KPC}-carrying plasmids, favour the preservation and further dissemination of these mobile genetic elements. Therefore, the situation should be monitored, and immediate infection control should be implemented in hospitals reported.

Material and methods

Bacterial isolates, carbapenemase production and susceptibility testing. From 2018 to 2019, National reference laboratory for antibiotics referred a total of 108 *Enterobacteriaceae* isolates being PCR positive for *bla*_{KPC}. Species identification was performed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) using MALDI Biotyper software (Bruker Daltonics, Bremen, Germany).
All isolates were tested for carbapenemase production by the MALDI-TOF MS meropenem hydrolysis assay\(^3\). Additionally, the presence of carbapenemase-encoding genes (\(\text{bla}_{\text{KPC}}, \text{bla}_{\text{VIM}}, \text{bla}_{\text{IMP}}, \text{bla}_{\text{NDM}}, \text{and} \text{bla}_{\text{OXA-48-like}}\)) was confirmed by PCR amplification\(^1, 31-33\). Antimicrobial susceptibility was performed using broth microdilution according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Susceptibility data were interpreted according to the criteria (version v11.0) of the EUCAST (http://www.eucast.org/).

Short-read whole genome sequencing. Forty-nine KPC-producing Enterobacterales were selected for complete sequencing, using the Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA). These isolates were selected as representatives of all different hospitals, bacterial species and susceptibility profiles.

The genomic DNAs of the clinical isolates were extracted using the DNA-Sorb-B kit (Sacace Biotechnologies S.r.l., Como, Italy). Multiplexed DNA libraries were prepared using the Nextera XT library preparation kit, and 300-bp paired-end sequencing was performed on the Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) using the MiSeq v3 600-cycle reagent kit. Initial paired-end reads were quality trimmed using the Trimmomatic tool v0.33\(^3\) and then, assembled by use of the de Bruijn graph-based de novo assembler SPAdes v3.14.0\(^3\).

Map. Maps of the Czech Republic was created using the Leaflet package\(^3\) in R-studio\(^3\) from R-project\(^3\).

Long-read whole genome sequencing. Based on the results of short-read sequencing (see below), twenty-five KPC producers were selected to be sequenced using long-read sequencing technology, to help close the whole plasmid sequences. These isolates were selected as representatives of all different hospitals, bacterial species, STs, replicon profiles and KPC alleles.

Genomic DNA was extracted from the clinical isolates using NucleoSpin Microbial DNA kit (Macherey–Nagel, Germany). Whole genome sequencing (WGS) was performed on the Sequel I platform (Pacific biosciences, Menlo Park, CA, United States). Microbial multiplexing protocol was used for the library preparation. The Microbial Assembly pipeline offered by the SMRT Link v9.0 software was used to perform the assembly and circularization with minimum seed coverage of 30X. Assembled sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).
Analysis of WGS data. Antibiotic resistant genes, plasmid replicons and multilocus sequence types (MLST) were determined through uploading the assembled sequences to ResFinder 4.1 and CARD45,46, PlasmidFinder41, and MLST 2.043, respectively.

For sequence analysis, the BLAST algorithm (www.ncbi.nlm.nih.gov/BLAST), the ISFinder database (www.is.biotoul.fr), and open reading frame (ORF) finder tool (www.bioinformatics.org/sms/) were utilized. Comparative genome alignment was done using Mauve v.2.3.1. (http://darlinglab.org/mauve/mauve.html) and BLAST Ring Image Generator (BRIG)43. Diagrams and gene organization were sketched using Easyfig v.2.2.244.

Transfer of blaKPC-like genes. Conjugal transfer of blaKPC-like genes from the clinical strains was carried out in mixed broth cultures45, using the rifampicin-resistant E. coli A15 laboratory strain as a recipient. Transconjugants were selected on MacConkey agar plates supplemented with rifampicin (150 mg/l) and ampicillin (50 mg/l). Transconjugants were confirmed to be KPC producers by PCR31 and the MALDI-TOF MS meropenem hydrolysis assay36.

Phylogenetic analysis. Genotypic diversity and phylogenetic relationship between the sequenced samples and global genomes were studied. All phylogenies were created using core genome, recombination and single nucleotide polymorphisms (SNPs) using parsnp v.1.2, available in the harvest suite22 using a corresponding reference genome. SNPs identified in local collinear blocks were subsequently used for reconstructing an approximate maximum-likelihood tree using FastTree246 while including the general time reversible (GTR) model of nucleotide substitution. The Shimodaira–Hasegawa test implemented in FastTree2 was used to assess the support for significant clustering in the observed phylogeny. The interactive tree of life or iTOL (https://itol.embl.de/). 47 was used for the graphic illustration of the trees along with relative annotations.

For the construction of the SNPs-based phylogenies, 582 Proteus mirabilis genomes were downloaded from NCBI assembly database including complete and draft genomes, using ASM6996v1 as reference. Similarly, 92 genomes for Morganella morganii (ASM1428397v1 as reference), 118 genomes for Citrobacter freundii (Cfr-49,969 as reference), 126 genomes for Enterobacter hormaechei (Ecl-48,293 as reference) and 732 genomes for K. pneumoniae using Kpn-48,293 as reference.

Moreover, isolates from the study that clustered together forming a clade or/and subclade were investigated further. SNPs among the isolates within the clade/subclade were compared to a reference genome within the selected set using snippy v. 4.4.3 (https://github.com/oseemann/snippy).

Nucleotide sequence accession numbers. The nucleotide sequence of the genotypes and plasmids were deposited and available in GenBank under the BioProject number PRJNA700516; all accession numbers can be retrieved from Table S5.

Received: 10 May 2021; Accepted: 23 July 2021
Published online: 03 August 2021

References
1. Ambler, R. P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289(1036), 321–331 (1980).
2. Quenan, A. & Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 20, 440–458 (2007).
3. Yigit, H. et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a Carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45, 1151–1161 (2001).
4. Chen, L. et al. Complete nucleotide sequences of blakPC-4- and blakPC-KPC-5-Harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob. Agents Chemother. 57, 269–276 (2012).
5. Albiger, B., Glasner, C., Struelens, M., Grundmann, H. & Monnet, D. Carbapenemase-producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015. Eurosurveillance 20, 2 (2015).
6. Lee, C. et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 7, 2 (2016).
7. Grundmann, H. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. (2021).
8. Villegas, M. et al. First Identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother. 51, 1553–1555 (2007).
9. Cuzon, G. et al. Wide dissemination of Pseudomonas aeruginosa producing β-lactamase blakPC-2gene in Colombia. Antimicrob. Agents Chemother. 55, 5350–5353 (2011).
10. Stoesser, N. et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci. Rep. 7, 2 (2017).
11. Naas, T. et al. Genetic structures at the origin of acquisition of the β-lactamase blakPC-KPC gene. Antimicrob. Agents Chemother. 52, 1257–1263 (2008).
12. Bittar, I. et al. Interplay among IncA and blakPC-carrying plasmids in Citrobacter freundii. Antimicrob. Agents Chemotherapy 63, 2 (2019).
13. Temkin, E., Adler, A., Lerner, A. & Carmeli, Y. Carbapenem-resistant Enterobacteriaceae: Biology, epidemiology, and management. Amn. N. Y. Acad. Sci. 1323, 22–42 (2014).
14. Hrabák, J. et al. KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Folia Microbiol. 56, 361–365 (2011).
15. Hrabák, J. et al. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Eurosurveillance 18, 2 (2013).
16. Kukla, R. et al. Characterization of KPC-encoding plasmids from enterobacteriaceae isolated in a Czech hospital. Antimicrob. Agents Chemother. 62, 2 (2018).
17. Schweitzer, C. et al. Plasmid-mediated transmission of KPC-2 carbapenemase in enterobacteriaceae in critically ill patients. Front. Microbiol. 10, 2 (2019).
18. Majewski, P. et al. Emergence of a multidrug-resistant Citrobacter freundii ST18 harboring an unusual VIM-4 gene cassette in Poland. Int. J. Infect. Dis. 61, 70–73 (2017).
19. Hoffmann, H. & Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 69, 5306–5318 (2003).
20. Papagiannitsis, C. et al. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J. Antimicrob. Chemother. 71, 2824–2830 (2016).
21. Woodford, N., Turton, J. & Livermore, D. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35, 736–755 (2011).
22. Treangen, T., Ondov, B., Koren, S. & Phillippy, A. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 2 (2014).
23. GobeilleParé, S. et al. Arrival of the rare carbapenemase OXA-204 in Canada causing a multispecies outbreak over 3 years. J. Antimicrob. Chemother 75, 2787–2796 (2020).
24. Hendrickx, A. et al. Plasmid diversity among genetically related Klebsiella pneumoniae blaKPC-2 and blaKPC-3 isolates collected in the Dutch national surveillance. Sci. Rep. 10, 2 (2020).
25. Leavitt, A., Chmelínský, I., Carmeli, Y. & Navon-Venezia, S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob. Agents Chemother. 54, 4493–4496 (2010).
26. Giakkoupi, P. et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J. Antimicrob. Chemother. 66, 1510–1513 (2011).
27. Studentova, V. et al. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 59, 1325–1328 (2014).
28. Papagiannitsis, C., Mriagou, V., Giakkoupi, P., Toutouvelis, L. & Vatopoulos, A. Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST117, encoding the VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 68, 2259–2262 (2013).
29. Coltagnone, M. et al. Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese Area Northern Italy. Front. Microbiol. 8, 2 (2017).
30. Rotova, V., Papagiannitsis, C., Skalova, A., Chudejeva, K. & Hrabak, J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods 137, 30–33 (2017).
31. Poirel, L., Héritier, C., Tolün, V. & Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48, 15–22 (2004).
32. Ellington, M., Kistler, J., Livermore, D. & Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-lactamases. J. Antimicrob. Chemother. 59, 321–322 (2006).
33. Yong, D. et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53, 5046–5054 (2009).
34. Bolger, A., Lohse, M. & Usadel, B. Trimmmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
35. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
36. Graul, Christian: leafletR: Interactive Web-Maps Based on the Leaflet JavaScript Library. R package version 0.4–0, (2016). at <http://cran.r-project.org/package=leafletR>
37. RStudio Team RStudio: Integrated Development for R. RStudio, Inc., Boston, MA (2019) at <http://www.rstudio.com/>.
38. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020) at <https://www.R-project.org/>.
39. Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).
40. Alcock, B. et al. CARD 2020: Antibiotic resistance surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkj935 (2019).
41. Carattoli, A. et al. In SilicoDetection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).
42. Larsen, M. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).
43. Aklihan, N., Petty, N., Ben Zakour, N. & Beatson, S. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 12, 2 (2011).
44. Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: A genome comparison visualizer. Bioinformatics 27(7), 1009–1010. https://doi.org/10.1093/bioinformatics/btq139 (2011).
45. Vatopoulos, A., Philippon, A., Toutouvelis, L., Komninou, Z. & Legakis, N. Prevalence of a transferable SHV-5 type β-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J. Antimicrob. Chemother. 26, 635–648 (1990).
46. Price, M., Dehal, P. & Arkin, A. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
47. Letunic, I. iTOL: Interactive Tree Of Life. Itol.embl.de (2021). at <https://itol.embl.de/>.

Acknowledgements
We would like to thank the Czech participants of the “Working Group for Monitoring of Antibiotic Resistance” for providing the isolates. The participants information is detailed in Table S6 in supplementary materials.

Author contributions C.C.P. and I.B. played an important role in interpreting the results and in writing the manuscript. K.C., V.J., H.Z., V.S. and J.H. helped to acquire data. L.K., M.F., and I.B. carried out experimental work. I.B. and C.P. supervised the experiments and revised the final manuscript, which was approved by all authors.

Funding The study was supported by research project grant NU20J-05-00033, provided by the Czech Health Research Council, by the Charles University Research Fund PROGRES (project number Q39), and by project CZ.02.1.01/0.0/0.0/16_019/0000787 “Fighting Infectious Diseases,” provided by the Ministry of Education Youth and Sports of the Czech Republic.

Competing interests The authors declare no competing interests.
