Supporting information

High-Performance Broadband Photodetectors Based on All-inorganic Perovskite CsPb(Br/I)$_3$ Nanocrystal/CdS-Microwire Heterostructures

Haixia Li,* Weiwei Lin, Liang Ma, Yang Liu, Yu Wang, Ao Li, Xiaorui Jin, and Lun Xiong*

School of Optical Information and Energy Engineering, School of Mathematics and Physics, Wuhan Institute of Technology, Guanggu 1st Road 206, Wuhan 430205, P. R. China.

*Corresponding author: Haixia Li: lihaixia@wit.edu.cn, Lun Xiong: xionglun@wit.edu.cn

Figure S1: Energy-dispersive spectroscopy (EDS) analysis was used to assess of the fabricated CsPb(Br/I)$_3$ NC/CdS MW heterostructure.

Figure S2: The high-resolution XPS spectra of Cs-3d, Pb-4f, Br-3d, and I-3d in CsPb(Br/I)$_3$ NCs were observed at 725.55, 136.15, 69.90, and 619.95 eV, respectively.
Figure S3: The individual spectra of (a): CdS MWs, (b): CsPb(Br/I)₃ NCs, (c): CsPb(Br/I)₃ NC/CdS MW-hybrid structures, (d) The magnified view of the PL spectra of CsPb(Br/I)₃ NCs.

Table S1: The parameters (R, EQE, D*) for the CsPb(Br/I)₃-NC/CdS-MW- and CdS-MW-based photodetectors under illumination of 365 nm (the applied bias = 5 V).

	I_{on}/I_{off}	Rise/decay time	R(A/W)	EQE	D* (Jones)
CdS	1.75×10³	0.2 s/0.2 s	6.28	2137%	3.93×10¹⁰
CdS/CsPb(Br/I)₃	3.93×10³	<0.1 s/<0.1 s	14.07	4789%	8.81×10¹⁰

Table S2: The parameters (R, EQE, D*) for the CsPb(Br/I)₃-NC/CdS-MW- and CdS-MW-based photodetectors under illumination of 530 nm (the applied bias = 5 V).

	I_{on}/I_{off}	Rise/decay time	R(A/W)	EQE	D* (Jones)
CdS	4.78×10²	0.2 s/0.2 s	2.29	537%	1.43×10¹⁰
CdS/CsPb(Br/I)₃	1.9×10³	<0.1 s/<0.1 s	9.11	2136%	5.71×10¹⁰

Table S3: The parameters (R, EQE, D*) for the CsPb(Br/I)₃-NC/CdS-MW- and CdS-MW-based photodetectors under illumination of 660 nm (the applied bias = 5 V).

	I_{on}/I_{off}	Rise/decay time	R(A/W)	EQE	D* (Jones)
CdS	2.4×10²	0.2 s/0.2 s	0.73	137%	4.57×10⁹
CdS/CsPb(Br/I)₃	1.1×10³	0.1 s/0.1 s	3.36	632%	2.11×10¹⁰
Table S4: The parameters (R, EQE, D*) for the CsPb(Br/I)$_3$-NC/CdS-MW- and CdS-MW-based photodetectors under illumination of 760 nm (the applied bias = 5 V).

I$_{on}$/I$_{off}$	Rise/decay time	R(A/W)	EQE	D* (Jones)	
CdS	54	0.3 s/0.3 s	0.125	20%	7.80×108
CdS/CsPb(Br/I)$_3$	189	0.1 s/0.1 s	0.436	71%	2.73×109

Table S5: The parameters (R, EQE, D*) for the CsPb(Br/I)$_3$-NC/CdS-MW- and CdS-MW-based photodetectors under illumination of 810 nm (the applied bias = 5 V).

I$_{on}$/I$_{off}$	Rise/decay time	R(A/W)	EQE	D* (Jones)	
CdS	16	0.3 s/0.3 s	0.233	36%	1.46×109
CdS/CsPb(Br/I)$_3$	41	0.1 s/0.1 s	0.597	91%	3.74×109