Compact Star Twins with a Dark Matter Core

DAVID ALVAREZ-CASTILLO
Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Cracow, Poland

MICHAL MARCZENKO
Incubator of Scientific Excellence - Centre for Simulations of Superdense Fluids, University of Wroclaw, plac Maksa Borna 9, PL-50204 Wroclaw, Poland

Received September 15, 2022

We present a model of compact stars with a dark matter core. The hadronic equation of state is based on the parity doublet model and does not present a phase transition to quark matter. Instead, a strong first-order phase transition to dark matter described by a constant speed of sound model leads to the scenario of compact star mass twins. Compact star structural properties which obey state-of-the-art measurements and constraints are presented.

1. Introduction

The long-standing problem of the clarification of dark matter (DM) has persisted since its discovery. Astronomical observations, such as anomalies in the rotation curves of galaxies or gravitational lensing, as well as cosmological features, support the idea that DM is present in the universe however hitherto unexplainable. Several attempts to describe DM include exotic particles such as supersymmetric ones or axions, as well as modifications to Einstein’s gravity or extra forces beyond the Standard Model. Dark matter is thought to interact only gravitationally and perhaps changing its strength over different scales, as for instance suggested in Chameleon models [1]. Consequently, DM might have some sizeable effect on compact stars in whose interiors and surroundings gravity is very strong. Within this work, we focus on neutron stars, motivated by the aforementioned facts. The idea that DM can be found in neutron star (NS) interiors, exteriors, or in both cases [2, 3] has been explored already in [4], where it is meant

* Presented at the XXVII Cracow EPIPHANY Conference on Recent Advances in Astroparticle Physics (2022).
to be a separated fluid weakly interacting gravitationally with normal matter. Furthermore, examples of microscopic approaches to DM in compact stars that might serve as evidence include axions and their emission resulting in cooling of compacts [5], or sexaquarks [6] which might lead to stellar collapse [7] into a hybrid star with a quark matter (QM) core.

We consider a particular scenario, where we assume that DM lies in the core of compact stars without inquiring into its nature. We allow the condensed DM to interact with normal matter through nuclear interactions. The resulting dark matter equation of state undergoes a strong first-order phase transition to hadronic matter in the interior of compact stars, producing the so-called compact star mass twins configurations, stars of about the same gravitational mass but different radius. This phenomenon has been studied in many works [8, 9, 10, 11, 12, 13, 14] where compact stars feature a deconfined quark matter core. The astrophysical aspects of the twins have been studied in [15]. Moreover, in order to discriminate from the standard mass twins scenario, we choose a hadronic equation of state that does not feature quark deconfinement but includes chiral symmetry restoration. Thus, the resulting hybrid compact stars bear a DM core.

2. The Equation of State

The most basic elements of compact star twins require a stiff enough hadronic equation of star capable of describing stable high mass stars of more than the observed $2M_\odot$ pulsars [16] and a strong first-order phase transition to high densities. Following the softening at the phase transition, the EoS at the high-density phase should be as well stiff enough to produce stable stars. For compact star twins to appear, the Seidov condition $\Delta \varepsilon > \Delta \varepsilon_{\text{crit}}$ [17] should be fulfilled. The expression

$$\frac{\Delta \varepsilon_{\text{crit}}}{\varepsilon_{\text{trans}}} = \frac{1}{2} + \frac{3}{2} \frac{p_{\text{trans}}}{\varepsilon_{\text{trans}}} .$$

relates critical energy density difference at the transition $\Delta \varepsilon_{\text{crit}}$ with the energy density and pressure at the onset of DM, p_{trans}, and $\varepsilon_{\text{trans}}$. As for the lower neutron star densities, the NS crust is well described by the approach developed in [18].

2.1. Hadronic Equation of State

Central densities of neutron stars lie up to a few times normal nuclear density, so it is to be expected that baryons change their properties due to the restoration of chiral symmetry. The recent lattice QCD (LQCD) results [19] exhibit a clear manifestation of the parity doubling structure
Compact Star Twins with a Dark Matter Core

for the low-lying baryons around the chiral crossover at finite temperature. Such properties of the baryonic chiral partners can be described in the parity doublet model [20]. It has been applied to hot and dense hadronic matter, neutron stars, as well as the vacuum phenomenology of QCD (see, e.g., [21, 22, 23, 24, 25]). In the parity doublet model, the masses of the chiral partners, N_{\pm}, are given by

$$m_{\pm} = \frac{1}{2} \left(\sqrt{(g_1 + g_2)^2 \sigma^2 + 4m_0^2 \mp (g_1 - g_2) \sigma} \right),$$

where g_i's are baryon-to-meson coupling constants and m_0 is the chirally invariant mass parameter. From Eq. (2), it is clear that the chiral symmetry breaking generates only the splitting between the two masses. When the symmetry is restored, the masses become degenerate, $m_{\pm}(\sigma = 0) = m_0$.

The positive-parity state, corresponds to the nucleon $N(938)$. Its negative parity partner is identified with $N(1535)$. In this work, we adopt the parametrization for purely nucleonic EoSs in the mean-field approximation [25].

2.2. Dark Matter Equation of State

For simplicity, in order to parametrize the microscopically unknown dark matter equation of state we consider the constant speed of sound (CSS) approach, as introduced in [26].

$$\varepsilon(p) = \begin{cases}
& \varepsilon_{NM}(p) \\
& \varepsilon_{NM}(p_{\text{trans}}) + \Delta \varepsilon + c_{DM}^2(p - p_{\text{trans}}) \quad p < p_{\text{trans}} \\
& \varepsilon_{NM}(p_{\text{trans}}) + \Delta \varepsilon + c_{DM}^2(p - p_{\text{trans}}) \quad p > p_{\text{trans}}
\end{cases}$$

where ε_{NM} is the energy density of nuclear matter, and c_{DM} is the speed of sound of dark matter.

3. Results

The resulting sequences of compact stars with dark matter cores are displayed in the mass-radius diagram of Fig. 1. They are obtained by integrating the Tolman-Oppenheimer-Volkoff equations [27, 28]:

$$\frac{dP(r)}{dr} = -\frac{\left(\varepsilon(r) + P(r)\right) \left(m(r) + 4\pi r^3 P(r)\right)}{r \left(r - 2m(r)\right)},$$

$$\frac{dm(r)}{dr} = 4\pi r^2 \varepsilon(r).$$

for each compact star defined by its central density ε_c up to the maximum mass where $\partial M/\partial \varepsilon_c > 0$. For the solution of these equations the EoS
relation $P(\varepsilon)$ must be used as an input. For our models, it can be seen that the three lower m_0 EoS parameters can lead to stable configurations at low compact star masses avoiding the excluded region by \cite{29}. The remaining EoS with $m_0 = 700\text{MeV}$ is soft enough to avoid this constraint and support the $2M_{\odot}$ compact star, however if dark matter sets in its core it would collapse due to the softness of its nuclear matter possibly leading to a detectable radiation emission event. In addition, we have computed other stellar properties like the moment of inertia and tidal deformation, which have been already observed through electromagnetic or gravitational radiation of compact stars and their mergers, respectively. The moment of inertia is computed following \cite{30}:

$$I \simeq \frac{J}{1+2GJ/R^3c^2}, \quad J = \frac{8\pi}{3} \int_0^R r^4 \left(\rho(r) + \frac{P(r)}{c^2} \right) \Lambda(r) dr. \quad (6)$$

with $\Lambda(r) = [1 - 2Gm(r)/rc^2]^{-1}$. Tidal deformability is computed following \cite{31}. The expression $\Lambda = 2\kappa^2 R^5/3M^5$ relates the Love number κ and the mass M and radius R of the star. This quantity has been estimated from the neutron star merger event GW170817 \cite{32, 33}. Figure 2 shows the corresponding diagrams for these quantities and astrophysical measurements, whereas table 1 shows the parameters found for our EoS models.

Hadronic EoS m_0 [MeV]	M_{gset} [M$_{\odot}$]	$\Delta \varepsilon$	c_{DM}	ρ_{trans} [MeV/fm3]	$\varepsilon_{\text{trans}}$ [MeV/fm3]	n_{trans} [fm$^{-3}$]
550	1.325	0.75	0.80	30.95	281.32	0.286
600	1.325	0.75	0.90	30.95	281.32	0.286
650	1.325	0.70	0.98	30.95	281.32	0.286
700	2.000	0.75	1.00	417.63	1312.42	1.049

Table 1. EoS parameters found in this work.

4. Outlook

The search for DM in NS has become feasible due to the birth of multimessenger astronomy and progress on the determination of the cold, dense matter EoS. The macroscopical properties of compact stars may be affected from quantities like the cosmological constant \cite{36} or the presence of DM, the latter considered here. Observations of the effects of a strong phase transition on supernova explosions, compact stars, and their mergers \cite{37} or of NS cooling as well as detection of associated cosmic rays \cite{38}, eccentric binary orbits \cite{39}, emissions from evolutionary stages \cite{40}, or the growth of black holes as DM in the interior of rotating NS \cite{41}, may allow for
Fig. 1. Mass-radius diagram for compact stars which includes measurement regions as well as exclusion regions. Each curve corresponds to a sequence of compact stars for the same parameters within our model which is characterized by the hadronic m_0 parameter. Description of the several regions in this diagram as well as their usage within Bayesian studies can be found in [34].

testing our NS twins hypothesis. In our work, we have introduced a realistic equation of state for the nuclear matter which features chiral symmetry restoration without phase transition to deconfined QM in order to produce NS twins with a DM core described by the CSS EoS. Under these specific assumptions, best upon corroboration of the hadronic EoS implemented, detection of the mass twins would allow for the study of the bulk properties of DM. Inclusion of more refined DM models in NS is work in progress.
Fig. 2. Stellar moment of inertia I (left panel) and dimensionless tidal deformability Λ (right panel) related to the compact star mass M with corresponding measurements in electromagnetic and gravitational signals, respectively. A recent Bayesian estimation of the moment of inertia reports $I_\ast = 1.15^{+0.38}_{-0.24} \times 10^{45} \text{g cm}^2$ [35].

Acknowledgements

The authors thank the COST Action CA16214 “PHAROS” for its support of their networking activities. M.M. acknowledges support from the Polish National Science Centre (NCN) under No. 2017/27/N/ST2/01973 Preludium Grant, and the program Excellence Initiative–Research University of the University of Wroclaw of the Ministry of Education and Science.

REFERENCES

[1] Noshad Khosravi Largani and Mohammad Taghi Mirtorabi. Chameleon Mechanism in Inhomogeneous Astrophysical Objects. AIP Conf. Proc., 2163(1):090008, 2019.
[2] Tolga Güver, Arif Emre Erkoca, Mary Hall Reno, and Ina Sarcevic. On the capture of dark matter by neutron stars. JCAP, 05:013, 2014.
[3] Paolo Ciarcelluti and Fredrik Sandin. Have neutron stars a dark matter core? Phys. Lett. B, 695:19–21, 2011.
[4] Davood Rafiei Karkevandi, Soroush Shakeri, Violetta Sagun, and Oleksii Ivanytskyi. Tidal Deformability as a Probe of Dark Matter in Neutron Stars. 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and
Experimental General Relativity, Astrophysics and Relativistic Field Theories, arXiv:2112.14231 [astro-ph.HE], 2021.

[5] Armen Sedrakian. Axion cooling of neutron stars. Phys. Rev. D, 93(6):065044, 2016.

[6] M. Shahrbaf, D. Blaschke, S. Typel, G. R. Farrar, and D. E. Alvarez-Castillo. Sexaquark dilemma in neutron stars and its solution by quark deconfinement. Phys. Rev. D, 105(10):103005, 2022.

[7] D. Blaschke, O. Ivanytskyy, and M. Shahrbaf. Quark deconfinement in compact stars through sexaquark condensation. arXiv:2202.05061 [nucl-th], 2022.

[8] Sanjin Benic, David Blaschke, David E. Alvarez-Castillo, Tobias Fischer, and Stefan Typel. A new quark-hadron hybrid equation of state for astrophysics - I. High-mass twin compact stars. Astron. Astrophys., 577:A40, 2015.

[9] V. Dexheimer, R. Negreiros, and S. Schramm. Role of strangeness in hybrid stars and possible observables. Phys. Rev. C, 91(5):055808, 2015.

[10] D. E. Alvarez-Castillo and D. B. Blaschke. High-mass twin stars with a multipolytrope equation of state. Phys. Rev. C, 96(4):045809, 2017.

[11] D. E. Alvarez-Castillo, D. B. Blaschke, A. G. Grunfeld, and V. P. Pagura. Third family of compact stars within a nonlocal chiral quark model equation of state. Phys. Rev. D, 99(6):063010, 2019.

[12] Z. Sharifi, M. Bigdeli, and D. Alvarez-Castillo. Studying VLOCV twin compact stars with binary mergers. Phys. Rev. D, 103(10):10, 2021.

[13] Gloria Montana, Laura Tolos, Matthias Hanauske, and Luciano Rezzolla. Constraining twin stars with GW170817. Phys. Rev. D, 99(10):103009, 2019.

[14] Mateusz Cierniak and David Blaschke. Locating the special point of hybrid neutron stars. EPJ Web Conf., 258:07009, 2022.

[15] David Blaschke, David Edwin Alvarez-Castillo, Alexander Ayriyan, Hovik Grigorian, Noshad Khosravi Largani, and Fridolin Weber. Astrophysical aspects of general relativistic mass twin stars. Topics on Strong Gravity, C. A. Zen Vasconcellos (Ed.), World Scientific., pages 207–256, 2020.

[16] E. Fonseca et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett., 915(1):L12, 2021.

[17] Seidov, Z. F. Soviet Astronomy, 15:347, 1971.

[18] F Douchin, P Haensel, and J Meyer. Nuclear surface and curvature properties for SLy Skyrme forces and nuclei in the inner neutron-star crust. Nucl. Phys. A, 665:419–446, 2000.

[19] Gert Aarts, Chris Allton, Simon Hands, Benjamin Jäger, Chrisanthisi Praki, and Jon-Ivar Skullerud. Nucleons and parity doubling across the deconfinement transition. Phys. Rev., D92(1):014503, 2015.

[20] Carleton E. De Tar and Teiji Kunihiro. Linear σ Model With Parity Doubling. Phys. Rev., D39:2805, 1989.

[21] Daisuke Jido, Makoto Oka, and Atsushi Hosaka. Chiral symmetry of baryons. Prog. Theor. Phys., 106:873–908, 2001.
[22] D. Zschiesche, L. Tołos, Jurgen Schaffner-Bielich, and Robert D. Pisarski. Cold, dense nuclear matter in a SU(2) parity doublet model. *Phys. Rev.*, C75:055202, 2007.

[23] Michał Marczenko, Krzysztof Redlich, and Chihiro Sasaki. Interplay between chiral dynamics and repulsive interactions in hot hadronic matter. *Phys. Rev. D*, 103(5):054035, 2021.

[24] Michał Marczenko, Krzysztof Redlich, and Chihiro Sasaki. Reconciling Multimessenger Constraints with Chiral Symmetry Restoration. *Astrophys. J. Lett.*, 925(2):L23, 2022.

[25] Michał Marczenko, Krzysztof Redlich, and Chihiro Sasaki. Chiral symmetry restoration and ∆ matter formation in neutron stars. *Phys. Rev. D*, 105(10):103009, 2022.

[26] Mark G. Alford, Sophia Han, and Madappa Prakash. Generic conditions for stable hybrid stars. *Phys. Rev. D*, 88(8):083013, 2013.

[27] Richard C. Tolman. Static solutions of Einstein’s field equations for spheres of fluid. *Phys. Rev.*, 55:364–373, 1939.

[28] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. *Phys. Rev.*, 55:374–381, 1939.

[29] Annala, Eemeli and Gorda, Tyler and Kurkela, Aleksi and Vuorinen, Aleksi. *Phys. Rev. Lett.*, 120(17):172703, 2018.

[30] Ravenhall, D. G. and Pethick, C. J. Neutron Star Moments of Inertia. *The Astrophysical Journal*, 424:846, apr 1994.

[31] Tanja Hinderer. Tidal Love numbers of neutron stars. *Astrophys. J.*, 677:1216–1220, 2008.

[32] B. P. Abbott et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. *Phys. Rev. Lett.*, 119(16):161101, 2017.

[33] B. P. Abbott et al. GW170817: Measurements of neutron star radii and equation of state. *Phys. Rev. Lett.*, 121(16):161101, 2018.

[34] A. Ayriyan, D. Blaschke, A. G. Grunfeld, D. Alvarez-Castillo, H. Grigorian, and V. Abgaryan. Bayesian analysis of multimessenger M-R data with interpolated hybrid EoS. *Eur. Phys. J. A*, 57(11):318, 2021.

[35] Philippe Landry and Bharat Kumar. Constraints on the moment of inertia of PSR J0737-3039A from GW170817. *Astrophys. J. Lett.*, 868(2):L22, 2018.

[36] Noshad Khosravi Largani and David E. Alvarez-Castillo. Cosmological Constant Effects on the Properties of Mass Twin Compact Stars. *EPJ Web Conf.*, 201:09007, 2019.

[37] Andreas Bauswein, David Blaschke, and Tobias Fischer. Effects of a strong phase transition on supernova explosions, compact stars and their mergers. *arXiv:2203.17188 [nucl-th]*, 2022.

[38] Piotr Homola et al. Cosmic Ray Extremely Distributed Observatory. *Symmetry*, 12(11):1835, 2020.

[39] David Edwin Alvarez-Castillo, John Antoniadis, Alexander Ayriyan, David Blaschke, Victor Danchev, Hovik Grigorian, Noshad Khosravi Largani, and
Fridolin Weber. Accretion-induced collapse to third family compact stars as trigger for eccentric orbits of millisecond pulsars in binaries. *Astron. Nachr.*, 340(9-10):878–884, 2019.

[40] David E. Alvarez-Castillo. The energy budget of the transition of a neutron star into the third family branch. *Astron. Nachr.*, 342(1-2):234–239, 2021.

[41] Chris Kouvaris and Peter Tinyakov. Growth of Black Holes in the interior of Rotating Neutron Stars. *Phys. Rev. D*, 90(4):043512, 2014.