Inheritance of True Leaf Stage Downy Mildew Resistance in Broccoli

Min Wang,1 Mark W. Farnham,2 and Claude E. Thomas3
U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2875 Savannah Highway, Charleston, SC 29414

ABSTRACT. Downy mildew, incited by the biotrophic fungal parasite, Peronospora parasitica (Pers. Fr.) Fr., is one of the most destructive diseases of broccolí (Brassica oleracea L., Italica Group) and other related crop species throughout the world. Cultivation of resistant cultivars is the most desirable control method because it provides a practical, long-term, and environmentally benign means of limiting damage from this disease. The commercial hybrid cultivar, Everest, has been shown previously to contain a high level of downy mildew resistance. Doubled-haploid (DH) lines developed from that hybrid were also shown to exhibit a similar, high level of resistance at the three- to four-leaf stage. To determine the mode of inheritance of this true leaf resistance, the resistant DH line was crossed to a susceptible line (derived from ‘Marathon’) to produce an F1 hybrid. Subsequently, F1 and backcross (BC) populations were developed from the hybrid. In addition, a DH population of ≈100 lines was developed from the same F1 used to create the F2 and BC. All populations were evaluated for response to artificial inoculation with P. parasitica at the three- to four-leaf stage. F1 plants were resistant like the resistant parent and F2 populations segregated approximately nine resistant to seven susceptible. Using the resistant parent as recurrent parent, BC populations contained all resistant plants, while the BC to the susceptible parent fit a 1 resistant : 3 susceptible segregation ratio. These results can be explained by a model with two complementary dominant genes. This model was confirmed by the DH population that segregated 1:3, resistant to susceptible. Due to the dominant nature of this resistance, controlling genes should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew.

Downy mildew, incited by the biotrophic fungal parasite, Peronospora parasitica, is one of the most destructive diseases of cruciferous crops (Channon, 1981). The disease has worldwide distribution and has been reported on many economically important cruciferous crops (Channon, 1981). The disease has worldwide distribution and has been reported on many economically important cruciferous crops (Channon, 1981). Cultivation of resistant cultivars is the most desirable control method because it provides a practical, long-term, and environmentally benign means of limiting damage from this disease. The commercial hybrid cultivar, Everest, has been shown previously to contain a high level of downy mildew resistance. Doubled-haploid (DH) lines developed from that hybrid were also shown to exhibit a similar, high level of resistance at the three- to four-leaf stage. To determine the mode of inheritance of this true leaf resistance, the resistant DH line was crossed to a susceptible line (derived from ‘Marathon’) to produce an F1 hybrid. Subsequently, F1 and backcross (BC) populations were developed from the hybrid. In addition, a DH population of ≈100 lines was developed from the same F1 used to create the F2 and BC. All populations were evaluated for response to artificial inoculation with P. parasitica at the three- to four-leaf stage. F1 plants were resistant like the resistant parent and F2 populations segregated approximately nine resistant to seven susceptible. Using the resistant parent as recurrent parent, BC populations contained all resistant plants, while the BC to the susceptible parent fit a 1 resistant : 3 susceptible segregation ratio. These results can be explained by a model with two complementary dominant genes. This model was confirmed by the DH population that segregated 1:3, resistant to susceptible. Due to the dominant nature of this resistance, controlling genes should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew.

Materials and Methods

Parenal Materiales and Genetic Populations. Two homozygous broccoli lines (USVL012 and USVL047) were evaluated in a previous study (Wang et al., 2000). USVL012 exhibits three- to four-leaf stage downy mildew resistance, and USVL047 is susceptible to all leaf stages. Each was controlled by single dominant genes. More recently, Hoser-Krause et al. (1987) identified a single recessive gene responsible for downy mildew resistance at the four- to five-leaf stage in broccoli. There are no reports that any of the above-described resistance genes have been incorporated into cultivars. Based on gradations observed in disease reaction phenotype, Dickson and Petzold (1993) hypothesized that modifying genes probably act in concert with major genes to confer variable levels of downy mildew resistance. This is supported by observations of Jensen et al. (1999) who characterized moderate resistance in breeding lines of broccoli.

Other sources of resistance to downy mildew in B. oleracea have been identified (Coelho et al., 1998; Laemmlien and Mayberry, 1984; Silue et al., 1995; Sousa et al., 1997). To date, genes controlling these resistances have not been characterized or are currently under study (Agnola et al., 2000; Farinho et al., 2000). Dickson and Petzold (1993) showed that the F1 hybrid broccoli cultivar, Everest, exhibits a relatively high level of resistance at several leaf stages, and the observations of Wang et al. (2000) at the three- to four-leaf stage confirmed this. Because the parentage of ‘Everest’ is protected as a trade secret, inheritance of its three- to four-leaf stage resistance has never been described. Accordingly, we developed doubled-haploid (DH) lines of broccoli using ‘Everest’ as a parent to identify homozygous lines with high levels of resistance similar to ‘Everest’ for use in inheritance studies (Wang et al., 2000). Among our developed lines, we identified some lines that were susceptible at the cotyledon stage, but highly resistant at a three-to-four-leaf stage (Wang et al., 2000). The primary objective of this study was to determine inheritance of this resistance originally derived from ‘Everest’ and expressed in a DH line developed from the cultivar.

Received for publication 16 Mar. 2001. Accepted for publication 9 July 2001. The contents of this publication do not necessarily reflect the views or policies of the USDA, nor does the mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

1Former research associate. Present address: D’ Francesco and Sons, 47641 West Nees Ave., Firebaugh, CA 93622.
2Research genetist and corresponding author.
3Research plant pathologist.

J. Amer. Soc. Hort. Sci. 126(6):727–729. 2001.
tible to downy mildew at all stages. USVL012 was derived from the commercial hybrid cultivar, Everest (Syngenta Seed, Gilroy, Calif.), and served as the resistant (R) parent in studies described herein. USVL047 was derived from the commercial hybrid cultivar Marathon (Sakata Seed America, Inc., Salinas, Calif.) and served as the susceptible (S) parent. Both lines were developed as DH lines at the U.S. Vegetable Laboratory (USVL), Charleston, S.C. (Farnham, 1998). The R and S inbreds were crossed in both directions to create two reciprocal F1 hybrids (F1(RS) and F1(SR)). Both F1 hybrids were used to generate four backcross (BC) populations (BC1(RS-R), BC1(RS-S), BC1(SR-R), and BC1(SR-S)) by backcrossing to the respective R or S parental inbred; and 2) make two F2 populations (F2(RS) and F2(SR)) by selfing the respective hybrids.

The same F1(RS) plants used to generate the conventional segregating populations described above also produced microspore-derived DH populations using techniques described previously (Wang et al., 1999). The ploidy of all regenerated plantlets (R0) was determined at the four- to five-leaf stage using DNA flow cytometry procedures (Farnham, 1998). Only diploid regenerants with normal anthers and viable pollen were self-pollinated to produce seed. Harvested seed lots from all individual diploid, R0 plantlets represent a population of DH lines (R1 generation) segregating for three- to four-leaf stage downy mildew resistance.

Downy Mildew Evaluations. Two downy mildew resistance evaluations were performed at the three- to four-leaf stage. The first was carried out in Fall 1998 and consisted of 14 to 15 seedlings of each parental line and each F1, 50 to 55 seedlings of each BC1, and 40 to 90 seedlings of each F2. The second evaluation was conducted in Fall 1999 and consisted of 98 DH lines derived from F1(RS). Except during periods when plants were incubated in dew chambers, both seedling evaluation studies were conducted in a walk-in growth room set at 22 °C with a 14-h photoperiod of 240 µmol-m⁻²-s⁻¹ [measured using an integrating quantum photometer (LI-188B; LI-COR, Lincoln, Nebr.) immediately above plants] provided by sodium vapor lamps. In preparation for both rounds of evaluation, individual seeds were planted in 145-cm³ plastic pots filled with Metro Mix 360 (Grace Sierra, Milpitas, Calif.). Calibrated seeds were germinated and seedlings were grown to the three- to four-leaf stage at conditions described above. Seven days after inoculation, seedlings were again placed in a dark dew chamber for 24 h to promote sporulation. The following day, plants were evaluated for downy mildew reaction phenotype under a stereomicroscope at 65× magnification.

Ratings of reaction phenotype (RP) were assigned using the following 0 to 9 scale: 0 = no symptoms; 1 = small necrotic flecks, no sporulation; 3 = necrotic flecks, one to few sporangiophores present; 5 = necrotic lesions, sparse scattered sporulation usually confined to necrotic areas; 7 = necrotic lesions, sometimes with accompanying chlorosis, with heavy to abundant sporulation in both chlorotic and necrotic areas on the adaxial surface and scattered sporulation on the abaxial surface; and 9 = necrosis and some chlorosis usually evident, uniformly heavy sporulation over adaxial and abaxial surfaces. This rating scale is very similar to that described originally by Williams (1986). Seedlings with a RP <3, i.e., lacking any sporulation, were designated as resistant. Seedlings with a RP rating ≥3 were considered susceptible. All data were collected on an individual seedling basis.

Chi-square tests were used to determine goodness of fit to hypothesized models based on observed and expected numbers of resistant and susceptible individuals in F1, BC, and DH populations.

Results

All plants of the susceptible USVL047 parent were uniformly and highly susceptible to infection by *P. parasitica* at the three- to four-leaf stage (mean RP = 7.9). Conversely, all plants from the resistant USVL012 parent were uniformly and highly resistant (mean RP = 1.3). All F1 plants from reciprocal crosses were resistant. There was no significant difference in RP rating between F1(RS) and F1(SR) (mean RP = 2.0 for both).

The F3(RS) population segregated 53 resistant to 37 susceptible (Table 1). The reciprocal F3(SR) population gave similar results segregating 52 resistant to 39 susceptible (Table 1). The reciprocal BC populations to the susceptible parent were similar to each other with BC1(RS-S) segregating 15 resistant to 37 susceptible and BC1(SR-S) segregating 17 resistant to 34 susceptible. The reciprocal BC lines did not exhibit two complementary dominant genes conditioning resistance.

Table 1. Segregation of downy mildew resistant and susceptible plants in reciprocal F1, F2, and BC1 populations derived from the cross of USVL012 (R) and USVL047 (S) parents. Expected ratios for resistant (R) versus susceptible (S) are based on the model with two complementary dominant genes conditioning resistance.

Population	R	S	Expected ratio	χ²	P
USVL012 (R)	14	0	9:7 (51:39)	0.18	0.5-0.7
USVL047 (S)	0	14	1:0 (55:0)	0.00	1.0
F1 (RS)	15	0	1:0 (55:0)	0.00	1.0
F1 (SR)	15	0	1:0 (55:0)	0.00	1.0
F2 (RS)	53	37	1:3 (13:38)	1.65	0.1-0.2
F2 (SR)	52	39	1:3 (13:38)	1.65	0.1-0.2
BC1(RS)	55	0	1:0 (51:0)	0.02	0.8-0.9
BC1(SR)	17	34	1:3 (13:38)	1.65	0.1-0.2
BC2(RS)	52	39	1:3 (13:38)	1.65	0.1-0.2
BC2(SR)	50	1	1:0 (51:0)	0.02	0.8-0.9
BC3(RS)	15	37	1:3 (13:38)	1.65	0.1-0.2
BC3(SR)	15	37	1:3 (13:38)	1.65	0.1-0.2

Concentration was adjusted to 10⁶ conidia/ml. The entire adaxial and abaxial surfaces of all leaves of test plants at the three- to four-leaf stage were sprayed uniformly with the inoculum suspension using a Paasche Type-H airbrush (Paasche Airbrush Co., Chicago) at 138 kPa. Immediately after inoculation, seedlings were placed in a dark dew chamber at 16 °C and 100% relative humidity for 24 h to facilitate infection, after which plants were returned to the growth room at conditions described above. Seven days after inoculation, seedlings were again placed in the dew chamber for 24 h to promote sporulation. The following day, plants were evaluated for downy mildew reaction phenotype under a stereomicroscope at 65× magnification.

Chi-square tests were used to determine goodness of fit to hypothesized models based on observed and expected numbers of resistant and susceptible individuals in F1, BC, and DH populations.
Developing resistant F1 hybrids. The dominant resistance genes of resistance (Wang et al., 2000), to be used as inbred parents for USVL012 will allow it, and other lines that contain the same as a parent. In addition, the dominant expression of resistance in USVL012 is controlled by only two genes, this resistance should expressed by the reciprocal F1 hybrids indicates dominance for this resistance. Based on the segregation ratio in the F2 and BC populations, and goodness of fit for Chi-square tests, it is proposed that two unlinked, complementary dominant genes (designated as DM$_{TL1}$ and DM$_{TL2}$) interact to confer the resistance in USVL012.

Strong evidence supporting the two-gene model comes in the observed 1:3 segregation ratio for resistance and susceptibility in the DH population. Although 16 genotypes are possible with a two-gene model, four genotypes including the F2 populations formed by crossing USVL012 and USVL047 and the two respective F2 populations exhibited the same response or segregation ratios indicating no maternal or cytoplasmic effect for the three- to four-leaf stage downy mildew resistance expressed by USVL012. In addition, the highly resistant phenotype observed 1:3 segregation ratio for resistance and susceptibility in the DH population derived from F1(RS) exhibited resistance at the three- to four-leaf stage conditioned by a single recessive gene. These mildew resistances reported in Brassica oleracea.

Discussion

The two F1 populations formed by crossing USVL012 and USVL047 and the two respective F2 populations exhibited the same response or segregation ratios indicating no maternal or cytoplasmic effect for the three- to four-leaf stage downy mildew resistance expressed by USVL012. In addition, the highly resistant phenotype expressed by the reciprocal F1 hybrids indicates dominance for this resistance. Based on the segregation ratio in the F2 and BC populations, and goodness of fit for Chi-square tests, it is proposed that two unlinked, complementary dominant genes (designated as DM$_{TL1}$ and DM$_{TL2}$) interact to confer the resistance in USVL012.

Strong evidence supporting the two-gene model comes in the observed 1:3 segregation ratio for resistance and susceptibility in the DH population. Although 16 genotypes are possible with a two-gene model, four genotypes including the first (homozygous dominant) of the possible genotypes is predicted to be resistant. Thus, the observed segregation in the DH population matches very closely what would be expected if two dominant genes conferred the downy mildew resistance. These results present the first use of a DH population to determine inheritance of downy mildew resistance in B. oleracea. The two-gene control for the high level of three- to four-leaf stage resistance in USVL012 is unique when compared to other downy mildew resistances reported in B. oleracea. Natti et al. (1967) cited two different single dominant genes identified from different B. oleracea sources (one cabbage and one broccoli plant introduction) and concluded that the two genes were effective against different races of P. parasitica at the cotyledon stage. Examining a different B. oleracea source (in broccoli), Hoser-Krause et al. (1987) described a high level of downy mildew resistance expressed at the four- to five-leaf stage conditioned by a single recessive gene. These variable observations described by different investigators are likely the result of different resistance genes present in different B. oleracea germplasm sources.

Because three- to four-leaf stage resistance to downy mildew in USVL012 is controlled by only two genes, this resistance should prove easy to transfer to new breeding lines when USVL012 is used as a parent. In addition, the dominant expression of resistance in USVL012 will allow it, and other lines that contain the same resistance (Wang et al., 2000), to be used as inbred parents for developing resistant F2 hybrids. The dominant resistance genes of USVL012 are especially useful because they need be incorporated into only one of the parental inbreds to be totally effective. Also, lack of maternal control for expression of this dominant resistance makes it possible for any potential resistant parents to be used as either a male or female in hybrid combinations. Thus, the true leaf stage resistance described herein, could be deployed readily in new commercial broccoli cultivars.

Literature Cited

Agnola, B., D. Sillue, and S. Boury. 2000. Identification of RAPD markers of downy mildew (Peronospora parasitica) resistance gene in broccoli (Brassica oleracea var. italica). Proc. 3rd Intl. Symp. on Brassicas. Wellesbourne, Warwick, United Kingdom, 5–9 Sept. 2000.

Brophy, T.F. and M.D. Laing. 1992. Screening of fungicides for the control of downy mildew on container-grown cabbage seedlings. Crop Protection 11:160–164.

Channon, A.G. 1981. Downy mildew of brassicas, p. 321–339. In: D.M. Spencer (ed.). The downy mildews. Academic Press, New York.

Coelho, P., D. Leckie, D. Asytley, I.R. Crute, K. Bahecvandziev, L. Valero, A. Monteiro, and I. Boukema. 1998. The relationship between cotyledon and adult plant resistance to downy mildew (Peronospora parasitica) in Brassica oleracea. Acta Hort. 459:335–342.

Crute, I.R., J.M. Norwood, and D.L. Gordon. 1985. Resistance to phenylamide fungicides in lettuce and Brassica downy mildew, p. 311–314. In: Proc. Mixt. Centenary Meeting Bordeaux. British Crop Protection Council Monogr. 31.

Crute, I.R., P.L. Gordon, and N.A. Moss. 1994. Variation for response to phenylamides in UK populations of Bremia lactucae (lettuce downy mildew) and Peronospora parasitica (Brassica (downy mildew), p. 155–162. In: S. Heaney, D.W. Hollonom, M. Smith, P.E. Russell, and D.W. Parry (ed.). Fungicide resistance. British Crop Protection Council Monogr. 60.

Dickson, M.H. and R. Petzoldt. 1993. Plant age and isolate source affect expression of downy mildew in broccoli. HortScience 28:730–731.

Farinha, M.J., P.S. Coelho, A.A. Monteiro, and J.M. Leitao. 2000. RAPD and AFLP markers linked to Peronospora parasitica resistance gene in broccoli. Proc. 3rd Intl. Symp. on Brassicas. Wellesbourne, Warwick, United Kingdom, 5–9 Sept. 2000.

Farnham, M.W. 1998. Doubled-haploid broccoli production using anther culture: effect of anther source and seed set characteristics of derived lines. J. Amer. Soc. Hort. Sci. 123:73–77.

Flint, M.L., N.A. Davidson, F.G. Zalom, and J.S. Auburn. 1992. Potential losses of pesticides in California and identification of alternative pest management practices in broccoli. Amer. Entomologist. Summer:115–121.

Hoser-Krause, J., E. Lakowska-Ryk, and J. Antosik. 1987. The inheritance of broccoli (Brassica oleracea L. var. botrytis) leaf resistance to downy mildew, Peronospora parasitica (Pers.) et. Fr. Genetica Polonica 28:377–380.

Jensen, B.D., S. Vaerbaek, L. Munk, and S.B. Anderson. 1999. Characterization and inheritance of partial resistance to downy mildew, Peronospora parasitica, in breeding material of broccoli, Brassica oleracea conver. botrytis var. italic. Plant Breeding 118:549–554.

Laemmle, F.F. and K.S. Mayberry. 1984. Broccoli resistance to downy mildew. California Agr. (Nov.–Dec.):17.

Natti, J.J., M.H. Dickson, and J.D. Atkin. 1967. Resistance of Brassica oleracea varieties to downy mildew. Phytopathology 57:144–147.

Sherf, A.F and A.A. MacNab. 1986. Vegetable diseases and their control. Wiley, New York.

Silue, D., C. Laviec, and Y. Tirilly. 1995. New sources of resistance in cauliflower (Brassica oleracea var. botrytis) to crucifer downy mildew caused by Peronospora parasitica. J. Phytopathol. 143:659–661.

Sousa, M.E., J.S. Dias, and A.A. Monteiro. 1997. Screening Portuguese cole landraces for resistance to seven indigenous downy mildew isolates. Scienta Hort. 68:49–58.

Thomas, C.E. and L. Jourdain. 1990. Evaluation of broccoli and cauliflower germplasm for resistance to race 2 of Peronospora parasitica. HortScience 25:1429–1431.

Wang, M., M.W. Farnham, and J.S.P. Nannes. 1999. Ploidy of broccoli regenerated from microspore versus anther cultures. Plant Breeding 118:249–252.

Wang, M., M.W. Farnham, and C.E. Thomas. 2000. Phenotypic variation for downy mildew resistance among inbred broccoli. HortScience 35:925–929.

Williams, P.H. 1986. Crucifer genetics- cooperative resource book. Dept. of Plant Pathology, Univ. of Wisconsin, Madison.