1. Introduction

CD4+ T cell depletion by anti-CD4 antibody was first shown to be effective in prevention and treatment of mouse EAE three decades ago [1]. The simple and most plausible mechanism is that the CD4+ T cell depletion induces immunosuppression. However, CD4+ T cell depletion trials for patients with multiple sclerosis (MS) yield controversial results [2–4], although efficiently depleted 50–60% of the CD4+ T cells. The discrepancy between mouse and human studies inspired us to re-examine the mechanism of CD4+ T cell depletion therapy. Given CD4+ T cell depletion may not be effective for the patients with MS, the depletion of CD4+ T cells is unlikely the key mechanism for long-term suppression of mouse EAE [1,5]. A significant difference between the patients and mice was that excessive autoantigenic peptide was presented in the mice throughout the disease course, especially when the CD4+ T cells were depleted, which suggested that autoantigenic peptide in combination with CD4+ T cell depletion syntactically might exert the therapeutically effect.

Manipulation of CD4+CD25+Foxp3+ Treg cells hold promise for developing immunotherapy for autoimmune and inflammatory diseases [6–9]. Although many approaches have been proposed, most approaches are not able to manipulate Treg cells to “treat” the established autoimmune diseases in experimental models or patients. We have

Abbreviations: αTGF, Anti-TGF; Del, T cell depletion antibodies; EAE, Experimental autoimmune encephalomyelitis; MOG, Myelin-oligodendrocyte glycoprotein; MT, Mycobacterium Tuberculosis; PLP, proteolipid protein; Treg, regulatory T cells.

⁎ Corresponding author at: Mucosal Immunology Section, Building 30, Room 304, NIDCR, NIH, 30 Convent Dr, Bethesda, MD 20892, USA.

1 These authors contributed equally to this study.
mouse CD4⁺CD25⁺ Regulatory T cell Isolation Kit (Miltenyi Biotec). For intracellular cytokine measurement cells were incubated with PMA (5 ng/mL, Sigma), Ionomycin (250 ng/mL, Sigma) and GolgiPlug (1 μL/mL, BD Biosciences) to determine intracellular expression of IL-17 and IFN-γ. All samples were analyzed using FACS Calibur flow cytometer (BD Biosciences) and data were analyzed using Flowjo software.

2.3. MHC class II (IA^b) tetramer staining

The procedure for ex vivo-staining with MHC class II tetramer has been previously described in detail. Briefly, single cell suspensions were incubated at a density of 10⁶ cells/mL with MOG₃₅₋₅₅-tetramers (GlyWYRSPFSRVHVLRYNGK) in serum free DMEM at 4°C/5% CO₂ for 16 h before cells were stained with indicated surface molecules.

2.4. Peptides

PLP₁₃₉-151 (HSLGRLGLHPDFK), MOG₃₅₋₅₅ (MEVGWYRSPFSRVHVLRYNGK) and OVA₃₂₃₋₃₃₉ (ISQQAVHAAHAEINEAGR) were purchased from Invitrogen.

2.5. Cell isolation

CD4⁺ T cells, CD4⁺CD25⁺ T cells, CD4⁺CD25⁻ T cells were isolated from spleens via either positive or negative selection using MACS isolation kits (Miltenyi Biotec) following the manufacturer’s protocols. Briefly, CD4⁺CD25⁻ T cells were isolated by the Regulatory T cell Isolation Kit (Miltenyi Biotec). Non-CD4⁺ T cells were isolated via negative selection by Regulatory T cell Isolation Kit (Miltenyi Biotec) (purity of cell separation was >90% each) and used as antigen presenting cells (APCs) after irradiation with 3000 rad of γ-irradiation (Gammacell 1000, Best Theratronics).

2.6. Proliferation assays and cytokine assays

Splenocytes were cultured at 37 °C in 5% CO₂ for 2–3 days with either soluble CD3-specific antibody (anti-CD3) (0.5 μg/mL) or MT (heat-killed Mycobacterium tuberculosis, H37RA, DIFCO) (50 μg/mL) or peptides (pMOG, pPLP) (0–50 μg/mL as indicated). We quantified cytokines in culture supernatants by ELISA: TNF-α, IL-6, and IFN-γ (BioLegend) and IL-17 (eBioscience). For the final 16 h of incubation, 1 μCi of thymidine was added to each well, and the incorporation of thymidine was determined using a liquid scintillation counter. Background was subtracted in thymidine incorporation assay.

2.7. EAE induction, scoring, analysis and in vitro cell cultures

Peptide-induced EAE was induced in SJL mice and C57BL/6 mice as previously reported [11,12]. Individual mice were observed daily and clinical scores were assessed on a 0–5 scale as follows: 0, no abnormality; 1, limp tail or hindlimb weakness; 2, limp tail and hindlimb weakness; 3, hindlimb paralysis; 4, hindlimb paralysis and forelimb weakness; and 5, moribund. 7-wk-old male C57BL/6 mice were immunized subcutaneously with 200 μg/mouse of MOG₃₅₋₅₅-peptide (pMOG) emulsified in complete Freund’s adjuvant (CFA) (IFA supplemented with 300 μg/mL Mycobacterium tuberculosis (MT)). 7-wk-old female SJL mice were immunized subcutaneously with 75 or 100 μg/mouse of pPLP emulsified in CFA (MT 300 μg/mouse). Mice also received 200 ng of Bordetella pertussis (List Biological Lab) i.p. on the day of immunization and 2 days later. At the end of each experiment spinal cords and brains were harvested and a part was fixed in neutral 10% formalin, extracted as well as embedded in paraffin blocks for Hematoxylin and Eosin (H&E) staining. Cells were isolated from brains and spinal cords as previously reported (Perruche et al., 2008). Spleen was also harvested for further staining and culture. For cell cultures, splenocytes
were cultured at 37°C in 5% CO2 for 3 days with either soluble anti-CD3 (0.5 µg/mL) or MT (50 µg/mL) or peptides (pMOG, pPLP). After 3 days culture, cells were pulsed with 1 µCi [3H]thymidine for 8-16 h. Radioactive incorporation was counted using a flatbed β-counter (Wallac). To examine the function of peptide-specific CD4+CD25+ Treg cells in the spleen of mice, CD4+, CD4+CD25+, and CD4+CD25− T cells were MACS sorted and cultured with irradiated APCs from peptide-immunized EAE mice in the presence of either pPLP or pMOG (10 µg/mL), or anti-CD3 (0.5 µg/mL). After 3 days of culture supernatant and cells were collected for cytokine assays and determination of T cell proliferation.

2.8. Antibodies used for in vivo

Anti-CD4 (clone Gk1.5), anti-CD8a antibody (clone 53-6.72), anti-TGFβ antibody (clone ID1.16.8) and mouse IgG1 (clone MOPC-21) were purchased from Bio X cell.

2.9. T cell depletion studies in EAE disease models

For EAE prevention studies SJL/J mice were either untreated or treated with anti-CD4− (100 µg/mouse) and anti-CD8− (50 µg/mouse) specific antibodies (T cell depletion antibody, once i.p. injection). Some mice were immediately injected intraperitoneally (i.p.) with pPLP or pOVA (25 µg/mouse) or PBS every other day for 16 days. All mice were immunized with pPLP and CFA (day 0). For EAE treatment studies, SJL mice were treated with anti-CD4− and anti-CD8− specific antibodies followed by i.p. injection of either 5 µg of pPLP, pOVA or PBS i.p. every other day from day 12 to day 26 before immunization with pPLP (day 0). In C57BL/6 mice, the same T cell depletion regimen was utilized but pMOG (10 µg/mouse) was administered via i.p. In some mice, anti-TGFβ or isotype control antibody (mlgG1) (200 µg/mice each day) were injected by i.p. administration on the same day (day 14) and one day after T cell depletion (day 15).

2.10. Statistical analyses

Group comparisons of parametric data were made by Student's t-test (unpaired two-tail). We tested data for normality and variance and considered a P value of <0.05 as significant.

3. Results

3.1. T cell depletion and autoantigenic peptide administration prevent EAE

We first tested the hypothesis of inducing tolerance by the apoptosis-antigen combination in a relapsing-remitting EAE model in SJL mice [12,13]. We used anti-CD4 and anti-CD8 depleting antibodies (Del) to induce T cell apoptosis [14,15], which depleted 90% of CD4+ T cells for 3 weeks (Supplementary Fig. 1a). Given macrophages release TGFβ 12–24 h after phagocytosis of apoptotic cells [12], we injected pPLP from day 2 post depletion treatment to facilitate the apoptotic T cell-triggered macrophages to condition the immunosuppressive milieu by releasing TGFβ. We continued to administer the pPLP for 3 weeks to stimulate pPLP-specific Treg cell generation. We then immunized the mice with pPLP and CFA to induce EAE (Fig. 1a, upper panel), with an typical acute phase of disease followed by relapsing–remitting EAE (Fig. 1a, lower panel). Strikingly, depletion of T cells followed by specific autoantigen pPLP administration not only significantly delayed the onset and suppressed the acute EAE, but also prevented relapse and attenuated the chronic EAE (Del/PLP) (Fig. 1a). However, injection of pPLP without T cell depletion exacerbated but not prevented EAE (Supplementary Fig. 1b), and depletion of T cells alone (Del/PBS) did not prevent EAE either (Fig. 1a). Moreover, depletion of T cells in combination with administration of the control peptide (chicken ovalbumin OVA323–339) (Del/OVA) also failed to prevent the acute and chronic EAE (Fig. 1a).

Consistent with EAE disease scores, histological analysis of the central nervous system (CNS) revealed that the spinal cords and brains showed substantially less infiltration of inflammatory cells in Del/PLP-treated (tolerized) mice than those in the other groups (Fig. 1b).

3.2. T cell depletion and autoantigenic peptide administration treat established EAE

We next utilized SJL mice with established EAE to explore the therapeutic potential of apoptosis-antigen therapy for EAE. We first induced EAE in SJL mice. At the peak of disease, mice were randomly assigned into one of five groups: untreated (PBS), pPLP (PLP) alone, anti-CD4 and anti-CD8- antibodies treated followed by injection of pPLP (αCD4/CD8 + PLP), control pOVA (αCD4/CD8 + OVA), or PBS (αCD4/CD8 + PBS) (Fig. 2a, upper panel). αCD4/CD8 + PLP-treated mice showed significantly lower disease scores and reduced relapse rate in chronic EAE than PBS, pPLP or αCD4/CD8 + OVA-treated mice (Fig. 2a). Unexpectedly, αCD4/CD8 + PBS-treated mice also showed lower disease scores [14,15] (Fig. 2a), which was in contrast to the exacerbation of EAE in the prevention experiments (Fig. 1a). Consistent with the disease score, the spinal cords and brain in αCD4/CD8 + PLP and αCD4/CD8 + PBS treated mice showed less inflammatory CD4+ T cell infiltration (Supplementary Fig. 2a). Analysis of CD4+ T cells in the CNS revealed that the frequency of Foxp3+ Treg cells was increased and the frequencies and numbers of IL-17+ (Th17) and IFN-γ+ (Th1) CD4+ T cells were lowest in tolerized mice among all groups (Supplementary Fig. 1c). Together, these data indicated that apoptotic depletion of T cells in vivo followed by pPLP injection induced an antigen-specific immunosuppressive state and prevented the development of EAE.
Fig. 1. Preventive effects of apoptosis-antigen treatment in EAE. 7 weeks old female SJL mice were treated with CD4- (Clone: Gk1.5) (100 μg/mouse) and CD8a- (Clone: 53–6.72) (50 μg/mouse) specific antibody (Deletion) 21 days before immunization, followed by pPLP peptide administration (25 μg/every other day for 16 days). Mice were sacrificed at day 48 after immunization. (a) Upper panel, the experimental scheme, Lower panel, the mean clinical score of EAE in SJL mice (mean ± s.e.m.). PBS (untreated control, n = 10 mice), Del/PBS (Deletion plus PBS, n = 10 mice), Del/PLP (Deletion plus pPLP administration, n = 10 mice), Del/OVA (Deletion plus pOVA administration, n = 10 mice). Pooled data of 3 different experiments. (b) Histological analysis of brain and spinal cord. Data are shown as H&E staining of formalin-fixed sections obtained from representative mice from each group. Blue dots or areas surrounded by yellow dashed lines indicate inflammatory infiltrates. (c, d) Flow cytometric analysis of CD4+ IL-17+, CD4+ IFN-γ+ and CD4+ Foxp3+ T cells in the spinal cords (cells were pooled in each group). (e) Flow cytometric analysis of CD8+ IFN-γ+ T cells in the spinal cords (cells were pooled in each group). (f) Splenocytes (pooled from each group) were stimulated by pPLP, and T cell proliferation was assessed by "TH-thymidine incorporation (mean ± s.d. of triplicate measurements). (g) Protein levels of IL-17, IFN-γ, and TNF-α in the supernatants of the cultured splenocytes as described in (f) were measured by ELISA (mean ± s.d. of triplicate measurements). * P < .05 (PBS v.s. Del/PLP, Del/PBS v.s. Del/PLP and Del/OVA v.s. Del/PLP) determined by Student's t-test. (f-g) Data are representative of the three independent experiments.
after the onset of EAE significantly suppressed the ensuing disease (Supplementary Fig. 3a). In spleens, pMOG-specific T cell proliferation and inflammatory cytokines production in tolerized mice were also inhibited compared to untreated mice (Supplementary Fig. 3b, c). Collectively, T cells apoptosis-autoantigen peptide administration, but not T cells apoptosis-foreign peptide administration, showed therapeutic potential in mice with established EAE.

3.3. A critical function of phagocytes in EAE suppression

We next explore the underlying mechanisms of the long-term EAE remission mediated by T cell depletion and self-peptide-mediated therapy. We hypothesized that professional phagocytes such as macrophages, played an essential roles in the tolerance induction by sensing and digesting apoptotic cells [16,17]. First, we pre-depleted phagocytes...
with clodronate-loaded liposomes [12] before αCD4/CD8 and pMOG administration in C57BL/6 mice with established EAE. We showed that elimination of phagocytes reversed apoptosis-antigen-induced suppression of EAE (Supplementary Fig. 4a). We next pre-depleted phagocytes with clodronate-loaded liposomes before αCD4/CD8 and pLP1 administration (Del/PLP) in uninimmunized SJL mice, and then immunized mice with pLP1 to induce EAE (Supplementary Fig. 4b, upper panel). Similarly, DEL/PLP + PBS-liposomes-treated (tolerized) mice showed significantly lowered disease scores compared to untreated (PBS) mice. Furthermore, pLP1-specific T cell proliferation and inflammatory cytokines production were significantly decreased in tolerated mice (Supplementary Fig. 4c, d). However, T cell depletion and pLP1 administration plus in vivo depletion of phagocytes with clodronate-loaded liposomes (Del/PLP + Clodronate-liposome–treated) did not induce tolerance (Supplementary Fig. 4b, lower panel). Compatible with high disease activity in DEL/PLP + Clodronate-liposome–treated mice, pLP1–specific T cell proliferation and inflammatory cytokine production in these mice were higher compared to tolerated mice (Supplementary Fig. 4c, d). Collectively, these findings suggested that phagocytes are required for the T cell apoptosis-autoantigen therapy to induce tolerance in EAE.

3.4. TGFβ is key in T cell apoptosis plus autoantigen-mediated therapy of EAE

Since TGFβ is one of the primary cytokines produced by phagocytes upon digestion of apoptotic cells [12,16,17], we next determined the role of TGFβ in apoptosis-antigen-mediated suppression of EAE. We treated EAE mice at the peak of acute EAE with αCD4/CD8 and pMOG in the presence of anti-TGFβ neutralizing antibody (Del + pMOG + α-TGFβ) or isotype control antibody (Del + pMOG + Control Ab). (Fig. 3a, upper panel). All mice with T cell depletion and pMOG injection showed rapid remission lasting about a week. However, relapse was observed in the mice treated with anti-TGFβ 10–14 days after the treatment, while the control antibody-treated (tolerized) mice remains in remission (Fig. 3a). We next examined the mRNA levels of TGFβ in the phagocytes (macrophages) after depletion therapy. As expected, mRNA levels of TGFβ1 and TGFβ2 of the peritoneal macrophages were significantly upregulated by T cell depletion therapy (Fig. 3b). Similarly, surface expression of LAP-TGFβ1 on the peritoneal macrophages was upregulated after depletion therapy (Fig. 3c). In spinal cords, the tolerated mice showed the lowest number of infiltrating cells among three groups of mice (Fig. 3d). The increased frequency of Foxp3+ Treg cells in the spleen of tolerated mice were partly reversed by anti-TGFβ injection (Fig. 3e). M Og 1a-40 tetramer positive Treg cells significantly increased in the spinal cord tissues in tolerated mice compared to PBS group, which was decreased in mice treated with anti-TGFβ antibody (Fig. 3f, upper panel). Moreover, in M OG 1a-40 tetramer positive CD4+ T cells, both IFN-γ+ and IL-17+ cells were decreased in tolerated mice, but not in anti-TGFβ group (Fig. 3f, lower panel). In cell cultures, anti-TGFβ treatment reversed the pMOG-specific CD4+ T cell proliferation and inflammatory cytokines IFN-γ and IL-17A secretion in tolerated mice (Fig. 3g, h). In contrast, anti-CD3 driven T cell proliferation in tolerated mice exhibited similar or higher levels than those of untreated (PBS) mice (Fig. 3i). Furthermore, IL-10, another immunoregulatory cytokine produced by phagocytes by digesting apoptotic cell [18] seemed dispensable in the apoptosis-antigen-mediated therapy of EAE. Blockade with anti-IL-10 receptor antibody did not reverse the suppression of EAE in C57BL/6 mice induced by T cell depletion and pMOG injection (data not shown). Thus, these findings indicate that TGFβ but not IL-10 is crucial for the therapeutic effects on EAE by the apoptosis-antigen combination.

3.5. Induction and function of autoantigen-specific Treg cells in tolerized mice

As TGFβ was found to be essential in mediating the therapeutic effects (Fig. 3), and TGFβ is critical for generating Foxp3+ Treg cells in vitro [19], we hypothesized that the apoptosis-antigen treatment induced antigen-specific CD4+Foxp3+ Treg cells. Since CD4+ CD25+ Foxp3+ T cells in SJL mice with established EAE are a pool of Treg cells recognizing many antigens, it was impossible to identify pLP1–specific Treg cells with the markers of CD25 and Foxp3. We therefore developed an in vitro system to determine the presence of pLP1–specific Treg cells. We isolated CD4+ T cells as well as their CD4+ CD25- and CD4+ CD25+ subsets from the spleens of EAE mice after apoptosis-antigen therapy, and examined the antigen-specific T cell proliferation and cytokine production by stimulation with pLP1 and splenic antigen-presenting cells (APCs) isolated from the untreated immunized (PBS) mice. As controls, these T cell subpopulations were also stimulated with anti-CD3. The rationale for this approach was based on that the Foxp3+ Treg cell requirements specific TCR stimulation to suppress effector T cells [20,21]. If pLP1–specific Foxp3+ Treg cells were generated and served as suppressor T cells in the tolerated mice, a decreased CD4+ T cell responses to pLP1 in these mice compare to the responses in the untreated (PBS) mice would be presented. However, if CD4+ CD25+ Foxp3+ Treg cells were removed from CD4+ T cells, the remaining CD4+ CD25+ T cells in the tolerated mice would exhibit similar or higher T cell responses to pLP1. On the other hand, the same CD4+ T cell subpopulations would exhibit no significant alterations of T cell responses to anti-CD3 antibody (non-specific TCR stimulation) compared to untreated control mice. Indeed, in T cell apoptosis-pLP1 antigen treatment-mediated EAE prevention study (Fig. 1a), non-separated splenic CD4+ T cells from Del/PLP–treated tolerated mice showed significantly decreased CD4+ T cell proliferation to pLP1, but not to anti-CD3 stimulation (Fig. 4a,b). However, CD4+ CD25+ T cells strikingly regained the proliferation potential to pLP1 or anti-CD3 comparable with those from untreated mice (Fig. 4a, b). In contrast, CD4+ T cells from Del/ OVA or Del/ PBS–treated mice showed no inhibition of pLP1–specific T cell responses, and proliferation of pLP1–specific CD4+ CD25+ T cells was similar with those from untreated mice (Fig. 4a). These findings indicated that CD4+ CD25+ Treg cells inhibited pLP1–specific T cell proliferation only in Del/PLP–treated tolerated mice. Importantly, tolerized mice show similar levels of anti-CD3–driven T cell proliferation, suggesting that T cell depletion–pLP1 (Del/PLP) therapy did not compromise overall immunity in preventive model of EAE.

We then investigated pLP1–specific Treg cell generation in apoptosis-antigen-therapy in therapeutic model of EAE (Fig. 2a). Again, autoantigen–specific Treg cells were generated in αCD4/CD8 + PLP or αCD4/CD8 + PBS–treated tolerated mice. pLP1–specific T cell proliferation was attenuated in splenic CD4+ T cells in these tolerated mice, but not in αCD4/CD8 + OVA–treated mice (Fig. 4c). Again, the inhibition was completely restored when the CD4+ CD25+ cells were removed in these tolerated mice (Fig. 4c). pLP1–specific IFN-γ and IL-17 production was also inhibited in splenic CD4+ T cells in αCD4/CD8 + PLP–treated tolerated mice compared to untreated (PBS) control mice, but this inhibition was partially (Fig. 4e) or completely (Fig. 4f) restored to the levels of untreated mice when the CD4+ CD25+ cells were removed in these tolerated mice. Tolerized mice showed similar levels of anti-CD3–driven T cell proliferation as untreated (PBS) mice or αCD4/CD8 + OVA–treated mice (Fig. 4d), suggesting that T cell depletion–pLP1 (αCD4/CD8 + PLP) therapy did not compromise overall immunity in treatment model of EAE. Similarly, T cell depletion–pMOG therapy selectively suppressed MOG–specific T cell proliferation and IL-17 production but did not compromise overall immunity in treatment model of pMOG–induced EAE (Fig. 3g, h). Taken together, apoptosis–antigen treatment generated autoantigen–specific Treg cells in therapeutic and preventive models of EAE without compromising overall immunity.

4. Discussion

In this study, we have developed an approach to prevent mice from developing EAE, and more importantly suppress established EAE, by
generating autoantigen-specific T_{reg} cells in vivo by combination of induction of T cell apoptosis and administration of autoantigenic peptides.

Our study highlighted several interesting points. First, T cell apoptosis is a key to initiating long-term immune tolerance. Our apoptosis process requires transient yet sufficient apoptosis of T cells in vivo. Depletion of CD4⁺ T cells to suppress EAE was reported 20 years ago ([1,15]), but the underlying mechanisms were incompletely understood. The presumed mechanism was simply the depletion of effector T cells. However, long-term CD4⁺ T cell depletion with anti-human chimeric CD4 antibody in clinical trials failed to receive significant therapeutic effects on MS patients [2]. Besides a more complex in MS compared with animal models, it is likely that the therapeutic effects on EAE models

![Image](image1.png)

Fig. 3. TGF-β plays a key role in apoptosis-antigen combined therapy of EAE. 7 weeks old male C57BL/6 mice were immunized with pMOG to induce EAE (day 0) and were given CD4- (Clone; Gk1.5) (100 μg/mouse) and CD8a- (Clone; 53–6.72) (50 μg/mouse) antibodies (Del) at day 14 to induce T cell apoptosis. Mice were treated with i.p. injection of 10 μg of pMOG peptide every other day from day 15 to day 26 in the presence of either anti-TGF-β (αTGF-β) (200 μg/day/mouse) or isotype control antibody mouse IgG1 (control Ab) (200 μg/day/mouse) for twice from day 14 to 15 (indicated as invert opened trigons). (a) The clinical mean scores of EAE (mean ± s.e.m.), PBS (untreated control, n = 8 mice), Del + pMOG + αTGF-β (T cell depletion plus pMOG plus anti-TGF-β antibody, n = 8 mice), and Del + pMOG + Control Ab (T cell depletion plus pMOG plus control antibody, n = 8 mice). (b) Gene expression of TGFβ1, TGFβ2 and TGFβ3 in the peritoneal macrophages. Cells were collected from untreated control mice (PBS) and mice receiving depletion therapy (Del) that were sacrificed 24 h after depletion therapy. (c) Protein level of LAP-TGFβ1 in the peritoneal macrophages of mice in the PBS group and Del group. (d) Total number of infiltrating T cells in the spinal cords of indicated groups. (e) The frequency of splenic Foxp3⁺ T_{reg} cells. (f) The frequency of MOG_{38–49} tetramer positive Foxp3⁺ T_{reg} cells (upper) or CD4⁺IFN-γ⁺ and CD4⁺IL-17A T cell populations (lower) in the spinal cord of indicated group. (g-i) Splenocytes were pooled in each group and CD4⁺ T cells were purified and stimulated by either pMOG (10 μg/mL) or anti-CD3 (0.5 μg/mL) in the presence of antigen presenting cells. T cell proliferation (g, i) was assessed by 3H-thymidine incorporation (mean ± s.d. of triplicate measurements). The protein levels of pMOG-specific or anti-CD3-driven IFN-γ and IL-17A in the supernatant (h) were measured by ELISA (mean ± s.d. of duplicate measurements). * P < .05, ** P < .001 determined by Student’s t-test. Data are representative of five independent experiments.
were implicated with the mechanisms beyond the depletion of CD4+ T cells. Our study suggests the depletion of T cells possibly serves as an initiator of a series of events toward long-term immune tolerance. Indeed, long-term immune tolerance was achieved even after T cells were recovered. The mechanisms of apoptosis-triggered tolerance reported here is different from recent studies using non-depleting CD4-specific antibody [1,15] to block of CD4 molecules. Our study relied on the transient yet sufficient cell apoptosis to initiate the tolerance process, which generated autoantigen-specific T_{reg} cells. It has been reported that antigen pulsed antigen-presenting cells (APCs) chemically fixed with 1-ethyl-3-(3-dimethylaminopropyl)-carboodimidene could induce antigen-specific tolerance in vivo. The underlying mechanism however remains unknown [22]. Previously, we and others have reported that CD3 antibody is able to deplete large numbers of T cells and consequently induce long-term tolerance in experimental autoimmune encephalomyelitis disease and transplantation [12,23,24], although the clinical trials showed conflicting results [25,26]. However, CD3 antibody-mediated immune tolerance has potential adverse effects. First, it can transiently

Fig. 4. Generation of antigen-specific CD4⁺CD25⁺ T_{reg} cells in mice with long-term remission of EAE induced by apoptosis-antigen treatment. Splenocytes were isolated from the SJL/J mice as shown in Fig. 1a (a, b) and Fig. 2a (c–f). In each experiment, splenocytes were pooled from all of mice in each group and CD4⁺, CD4⁺CD25[−], and CD4⁺CD25⁺ T cell were purified and cultured with irradiated APCs obtained from untreated control (PBS) mice either in the presence of either pPLP peptide or anti-CD3 antibody. (a, b) pPLP-specific (a) or anti-CD3-driven (b) T cell proliferation in response to the different treatments as shown in Fig. 1a was assessed by 3H-thymidine incorporation method (mean ± s.d. of triplicate wells). (c, d) pPLP-specific (c) or anti-CD3-driven (d) T cell proliferation in the indicated groups shown in Fig. 2a was assessed by 3H-thymidine incorporation (mean ± s.d. of triplicate wells). (e, f) The supernatant levels of pPLP-specific IL-17 and IFN-γ of CD4⁺ T cell and CD4⁺CD25[−] T cell subsets in the indicated groups shown in Fig. 2a were determined by ELISA (mean ± s.d. of duplicate wells). T cell depletion-pMOG therapy selectively suppressed MOG specific cell proliferation (g) and IL-17 production (h), which disappeared in pMOG and anti-TGFβ treatment mice. *P < .05, determined by Student’s t-test. Data are representative of two experiments.
yet powerfully engage TCR to promote T cells to release large amounts of proinflammatory cytokines including IFN-γ, TNF-α, and IL-6 in vivo, which potentially affect the consequential T cell differentiation even in the TGF-β-enrich environment in vivo [27,28]. Second, the CD3 antibody engages all TCR, which might theoretically promote T cells to differentiate into Treg cells or other T cell subsets depending on the cytokine milieu, which might lead to Treg cells lacking antigen specificity and potentially suppress essential T cell response such as anti-viral response. Our approach here overcomes those pitfalls and induce an immunologically quiescent microenvironment. Neither anti-CD4 nor anti-CD8 antibodies activated T cells to produce inflammatory cytokines. Indeed, a TGF-β-rich immunoregulatory milieu (discussed below) without inflammatory cytokines provide a precondition for generation of Treg cells. The tolerance induction and maintenance are dependent on the reprogramming of the immune system, including the generation of antigen-specific Treg cells, but not on the long-term depletion of T cells. This notion was further supported by our recent study in inducing and maintaining similar immune tolerance by depleting B cells or CD8+ T cells without affecting CD4+ T cells or non-discriminatively killing immune cells by single dose of irradiation plus adoptive transfer of exogenous normal macrophages [10].

Macrophages are key in mediating the long-term immune tolerance and therapy of EAE by T cell depletion and peptide combination therapy, which was implicated by experiments of depletion of endogenous phagocytes with clodronate-loaded liposomes [12] in tolerized mice induced by T cell depletion plus peptide treatment. It could be accomplished by professional phagocytes such as macrophages clearing apoptotic cells and consequently producing immunosuppressive cytokines that create and mediate the immunoregulatory milieu, which facilitates the generation of Treg cells when the newly naïve T cells encounter specific antigen. Our findings not only help design an effective immunotherapy for autoimmune diseases and transplantation [29], but also provide an explanation for the reported enhanced effects of Treg cells that mediate the suppression of EAE and long-term immune tolerance in apoptosis-antigen combination therapy. It has been well recognized that TGFβ is the key cytokine of inducing Foxp3+ Treg cells (iTreg cells) in vitro. Here we provide additional evidence that it does the same for iTreg generation in vivo.

Apoptosis, phagocytes, and antigenic peptides are all required for the generation of antigen-specific Treg cells in vivo. The macrophages are the major cell subset [31] in apoptosis-mediated immune tolerance. Our data provide strong evidence that TGFβ is the primary driving force in generating antigen-specific Treg cells that mediate the suppression of EAE and long-term immune tolerance in apoptosis-antigen combination therapy. It has been well recognized that TGFβ is the key cytokine of inducing Foxp3+ Treg cells (iTreg cells) in vitro. Here we provide additional evidence that it does the same for iTreg generation in vivo.

Caveats and limitations

The conclusion of this study provides a new approach on how to generate autoantigen-specific Treg cells in MS patients, by transient injection of anti-CD4 and anti-CD8 antibody, combined with the administration of disease specific peptides. However, our approach has several limitations. First, although CD4 T cell depletion were well-tolerated in several clinical trials, the safety profile of the combination of CD4 and CD8 cell depletion remains unknown. A controlled study is warranted to establish the safety of this depletion therapy. Second, a spectrum of autoantigens is presented in patients with MS, which is much more complicated than a single peptide induced EAE model. Therefore, a single peptide induced antigen-specific Treg cell might not efficiently suppress MS in clinical settings. The major challenge in human MS is that the disease specific antigen is not clear and may not be a single antigen.
The pool, quantity and timing of peptide(s) administration might need to be optimized before applying this approach in clinical setting. Although we did not observe a significant reversal of EAE suppression induced by T cell depletion and peptide administration by blockade of IL-10 signaling with anti-IL-10 receptor antibody, we cannot completely exclude the possibility that IL-10 producing T cells may also contribute to this tolerance process, which need to be further investigated. This only suggests a less important role for IL-10 in the generation of Treg cells in this setting.

Author contributions

S.K, D.W, P.Z, designed and performed experiments, analyzed data and contributed to the writing of the manuscript. H.C, P.Z. and D.Z, performed experiments and contributed to the writing of the manuscript. J. L, I, M. H, N.R, and W.J, performed experiments. LS provided crucial scientific input and designed experiments. W.J.C, conceived and supervised whole research, designed experiments and wrote the manuscript.

Disclosures

A patent application for the reported data is in progress by NIH, NIDCR Intramural Technology Transfer Office, which was filed by W.J.C, S·K, and P.Z. The authors declare no other competing financial interests.

Acknowledgement

This research was supported by the Intramural Research Program of the NIH, NIDCR. S.K and H.N are supported in part by Ph.D. Students Scholarship from The State Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, China. The funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ebiom.2019.05.005.

References

[1] Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H. Therapy with mono- clonal antibodies by elimination of T-cell subsets in vivo. Nature 1984;312:548–51.
[2] Lindsey JW, Hodgkinson S, Mehta R, Mitchell D, Enzmann D, Steinman L. Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann Neurol 1994;36:183–9.
[3] Llewellyn-Smith N, Lai M, Miller DH, Rudge P, Thompson AJ, Cunzer ML. Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumour necrosis factor alpha production: a study of 29 multiple sclerosis patients entered into a clinical trial of CM-7412. Neurology 1997;48:810–6.
[4] Steinman L. Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunol Rev 2014;58:307–14.
[5] Waldor MK, Sripiram S, Hardy R, Herzenberg LA, Herzenberg LN, Lanier L, et al. Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 1985;227:415–7.
[6] Bluestone JA, Abbasi AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003;3:253–7.
[7] Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010;140:845–58.
[8] Sakaguchi S, Miyara M, Costantino CM, Hafler DA, FOG3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010;10:490–500.
[9] Sakaguchi S, Powrie F, Ransohoff RM. Re-establishing immunological self-tolerance in autoimmune disease. Nat Med 2012;18:54–8.
[10] Kasagi S, Zhang P, Che L, Abbatibelli B, Maruyama T, Nakatsukasa H, et al. In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci Transl Med 2014;6:241ra278.
[11] Bettelli E, Pagany M, Weiner HL, Linting C, Sohel RA, Kuchroo VK. Myelin oligo- dendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 2003;197:1073–81.
[12] Perruche S, Zhang P, Liu Y, Saas P, Bluestone JA, Chen W. CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phago- cytes digesting apoptotic T cells. Nat Med 2008;14:328–35.
[13] Kennedy MK, Cachf RJ, Dal Canto MC, Trotter JL, Miller SD. Monoclonal antibody-induced inhibition of relapsing EAE in SJL/J mice correlates with inhibition of neurontigen-specific cell-mediated immune responses. J Neuroimmunol 1987;16:345–64.
[14] Cobbold SP, Waldmann H. Therapeutic potential of monovalent monoclonal anti- bodies. Nature 1984;308:460–2.
[15] Cobbold SP, Adams E, Marshall SE, Davies JD, Waldmann H. Mechanisms of periph- eral tolerance and suppression induced by monoclonal antibodies to CD4 and CD8. Immnuol Rev 1996;149:5–33 [Review].
[16] Chen W, Frank ME, Jin W, Wahl SM. TGF-beta-released by apoptotic T cells contrib- utes to an immunosuppressive milieu. Immunology 2001;114:715–25.
[17] Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine produc- tion through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101:890–8.
[18] Chung EY, Liu J, Homma Y, Zhang Y, Brendolan A, Saggese M, et al. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by Herpesvirus proteins P31 and Prep-1. Immunity 2007;27:952–64.
[19] Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4 +CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction: a high- expression subset in the thymus. J Exp Med 2003;198:1875–86.
[20] Chen W, Wahl SM. TGF-beta: the missing link in CD4 +CD25 + regulatory T cell- mediated immunosuppression. Cytokine Growth Factor Rev 2003;14:85–9.
[21] Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immu- nity 2009;30:363–45.
[22] Luo X, Pothoven KL, McCarthy D, DeGutes M, Martin A, Getts DR, et al. ECID-flxed al- logeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc Natl Acad Sci U S A 2008;105:14527–32.
[23] Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of au- toimmunity. Nat Rev Immunol 2007;7:622–32.
[24] Ferran C, Bluestone J, Bach JR, Chatenoud L. In vivo thymocyte activation induced by TGF-beta treatment of mice following the injection of anti-CD3 monoclonal antibody. Transplant Proc 1990;22:1922–3.
[25] Plevy S, Salzberg B, Van Assche G, Regueiro M, Hommes D, Sandborn W, et al. A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology 2007;131:1414–22.
[26] Sandborn WJ, Colombel JF, Frankel M, Hommes D, Lowder JW, Mayer L, et al. Anti- CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut 2010;59:1485–92.
[27] Bettelli E, Carrier Y, Gao W, Korin T, Strom TB, Okkda M, et al. Reciprocal develop- mental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–8.
[28] Perruche S, Zhang P, Maruyama T, Bluestone JA, Saas P, Chen W. Lethal effect of CD3- specific antibody in mice deficient in Tgf-beta1 by uncontrolled flu-like syndrome. J Immunol 2000;163:953–61.
[29] Zelenika D, Adams E, Humm S, Lin CY, Waldmann H, Cobbold SP. The role of CD4 + T-cell subsets in determining transplantation rejection or tolerance. Immunol Rev 2001;182:164–79.
[30] Cameron RB, Spiess PJ, Rosenberg SA. Synergistic antitumor activity of tumor- infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. J Exp Med 1990;171:249–63.
[31] Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P, Int J Biochem Cell Biol 2011;43:154–62.
[32] Bai XF, Li HL, Shi PD, Liu JQ, Xiao BG, Van der Meide PH, et al. Complexities of apply- ing nasal tolerance induction as a therapy for ongoing relapsing experimental auto- immune encephalomyelitis (EAE) in DA rats. Clin Exp Immunol 1998;111:205–10.
[33] Karpus WJ, Kennedy KJ, Smith WS, Miller SD. Inhibition of relapsing experimental autoimmune encephalomyelitis in SJL mice by feeding the immunodominant PLP139–151 peptide. J Neurosci Res 1996;45:410–23.
[34] Myers LK, Seyer JM, Stuart JM, Kang AH. Suppression of murine collagen-induced ar- thritis by nasal administration of collagen. Immunology 1997;90:161–4.
[35] Miller SD, Turvey DM, Podojil JR. Antigen-specific tolerance strategies for the preven- tion and treatment of autoimmune disease. Nat Rev Immunol 2007;7:665–77.
[36] Okhura N, Sakaguchi S. Regulatory T cells: roles of T cell receptor for their develop- ment and function. Semin Immunopathol 2010;32:95–106.