Transmuted complementary exponential power distribution: properties and applications

Caner TANİŞ1, Buğra SARAÇOĞLU1, Coşkun KUŞ1, Ahmet PEKGÖR2

1 Selcuk University, Department of Statistics, Konya/TURKEY
2 Necmettin Erbakan University, Department of Statistics, Konya/TURKEY

Abstract
In this study, we introduce a new lifetime distribution by using quadratic rank transmutation map. The some properties of this new distribution is provided. Furthermore, the parameters of this new distribution are estimated by the maximum likelihood method. The performances of the estimates are examined according to bias and mean squared errors (MSEs) criteria through a Monte Carlo simulation study. Finally, two applications with real data are presented to evaluate the fits of introduced distribution.

Article info
History:
Received: 25.12.2019
Accepted: 24.03.2020
Keywords:
Maximum likelihood estimation, Monte Carlo simulation, Transmuted distribution.

1. Introduction
In reliability analysis, every statistical tools are presented based on assumption of the distribution of lifetimes. Therefore, lifetime distributions are hearts of survival and reliability theory. Nowadays, introducing the new lifetime distributions is gaining much more attention. There are a lot of distributions introduced in last two decades. One of the them is complementary exponential power (CEP) distribution suggested by [1] using exponential power (EP) distribution introduced in [2]. The probability density function (pdf) and cumulative distribution function (cdf) of CEP distribution are given, respectively, by

\[g(x;\gamma) = \frac{\beta x^{\beta-1}}{\alpha^\beta} \exp\left(1 + \left(\frac{x}{\alpha}\right)^\beta - \exp\left(\frac{x}{\alpha}\right)^\beta\right) \]

\[\times \left[1 - \exp\left(1 - \exp\left(\frac{x}{\alpha}\right)^\beta\right)\right]^{\beta-1} I_A(x) \] (1)

and

\[G(x;\gamma) = \left[1 - \exp\left(1 - \exp\left(\frac{x}{\alpha}\right)^\beta\right)\right]^\alpha, \] (2)

where \(I_A(x) \) is indicator function on set \(A \), \(\gamma = (\alpha, \beta, \theta) \) is parameter vector, \(\alpha > 0 \) is a scale parameter, \(\beta > 0 \) and \(\theta > 0 \) are shape parameters.

In this study, we aim to introduce a new distribution named transmuted complementary exponential power (TCEP) using Quadratic Rank Transmutation Map (QRTM) proposed by [3]. In the literature, there are many lifetime distributions generated by QRTM such as [4], [5], [6] and [7]. The pdf and cdf of QRTM family are given by

\[f(x;\delta) = g(x;\gamma)[1 + \lambda - 2\lambda G(x;\gamma)] \] (3)

and
\[F(x; \delta) = (1 + \lambda)G(x; \gamma) - \lambda G(x; \gamma)^2, \quad (4) \]

where \(G \) and \(g \) are cdf and corresponding pdf of any lifetime, \(\gamma \) is parameter vector of distribution with cdf \(G \) and \(\lambda \in [-1, 1] \) is extra parameter beside \(\delta = (\gamma, \lambda) \). Hence, new distribution includes a parameter to baseline distribution \(G \). For more information on QRTM, see [3].

In this paper, a new lifetime distribution is introduced by QRTM family. In Section 2, the pdf and cdf of distribution are described. The raw moments are derived under a condition, quantile, survival and hazard functions are also given. In Section 3, the point and interval estimations are discussed by maximum likelihood (ML) methodology. A simulation study is conducted to observe the behaviours of ML estimates (MLEs) in Section 4. In Section 5 and Section 6, two numerical examples are also provided to close the paper.

2. TCEP Distribution

In this study, we introduce a new lifetime distribution obtained by using Eqs. (1-2) in Eqs. (3-4). Then pdf and cdf of introduced distribution are given, respectively, by

\[
f(x; \delta) = \frac{\beta \theta x^{\beta - 1}}{\alpha^\theta} \exp \left\{ 1 + \left(\frac{x}{\alpha} \right)^\theta - \exp \left(\left(\frac{x}{\alpha} \right)^\theta \right) \right\} \times \left[1 - \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\theta \right) \right) \right]^{\gamma - 1} \left[1 + \lambda - 2\lambda \left[1 - \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\theta \right) \right) \right] \right] I_s, (x) \quad (5)\]

and

\[
F(x; \delta) = (1 + \lambda) \left[1 - \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\theta \right) \right) \right]^{\gamma - 1} - \lambda \left[1 - \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\theta \right) \right) \right]^{2\theta}, \quad (6)\]

where \(\delta = (\alpha, \beta, \theta, \lambda) \) is parameter vector, \(\lambda \in [-1, 1], \alpha, \beta, \theta \in \mathbb{R}_+ \) are parameters. The distribution with pdf (5) and cdf (6) is called Transmuted Complementary Exponential Power (TCEP) \((\delta) \) distribution. When \(\lambda = 0 \), TCEP \((\delta) \) reduces to CEP\((\gamma) \). In Fig. 1, the pdf of TCEP \((\delta) \) are plotted for some selected parameter values.
2.1. Moments

In this subsection, the raw moments of the TCEP(\(\delta\)) distribution are derived, explicitly. We obtain the raw moments using following lemma under the condition that \(r/\beta\) is an integer.

Lemma 1 For \(\nu, \mu > 0\) and \(m \in \mathbb{N}\)

\[
\int x^{m-1} \left(\log x \right)^m \exp(-\mu x) dx = \frac{\partial^m \mu^\nu \Gamma(\nu, \mu)}{\partial \nu^m}, \quad m = 0, 1, 2, \ldots
\]

where \(\Gamma(\alpha, x) = \int_x^\infty t^{\alpha-1} \exp(-t) dt\) is the incomplete gamma function [8]. Using Lemma 1, following theorem gives the raw moments of TCEP(\(\delta\)) distribution.

Theorem 1

If \(r/\beta\) is an positive integer, the \(r\) th moments of TCEP(\(\delta\)) distribution are given by

\[
E(X^r) = (1 + \lambda)\alpha^r \sum_{j=0}^{\infty} \frac{(-1)^j \Gamma(\theta + 1) \exp(j + 1)}{\Gamma(\theta - j) j!} \left(\frac{\partial^m \mu^\nu \Gamma(\nu, \mu)}{\partial \nu^m} \right)_{\nu = j + 1}
\]

\[
-\lambda\alpha^r \sum_{j=0}^{\infty} \frac{(-1)^j \Gamma(2\theta + 1) \exp(j + 1)}{\Gamma(2\theta - j) j!} \left(\frac{\partial^m \mu^\nu \Gamma(\nu, \mu)}{\partial \nu^m} \right)_{\nu = j + 1},
\]

where \(r = 1, 2, \ldots\) and \(\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} \exp(-t) dt\) is the well-known gamma function.

Proof. Using pdf in Eq. (5), the raw moments can be written by
\[E(X') = \left(1 + \lambda\right) \frac{\beta \theta^\beta}{\alpha^\beta} \int_0^\infty \exp\left[1 + \left(\frac{x}{\alpha}\right)^\beta - \exp\left(\frac{x}{\alpha}\right)^\beta\right] \left(1 - \exp\left[1 - \exp\left(\frac{x}{\alpha}\right)^\beta\right]\right)^{\theta-1} dx \]

\[- \frac{2\lambda \beta \theta^\beta}{\alpha^\beta} \int_0^\infty \exp\left[1 + \left(\frac{x}{\alpha}\right)^\beta - \exp\left(\frac{x}{\alpha}\right)^\beta\right] \left(1 - \exp\left[1 - \exp\left(\frac{x}{\alpha}\right)^\beta\right]\right)^{2\theta-1} dx \]

for \(\theta > 0 \). Let us consider the identity

\[(1 - z)^{\theta-1} = \sum_{j=0}^{\infty} (-1)^j \frac{\Gamma(\theta) z^j}{\Gamma(\theta - j) j!} \]

By using expansion (10) in (9), we can write

\[\mu' = \frac{(1 + \lambda) \Gamma(\theta + 1) \beta}{\alpha^\beta} \sum_{j=0}^{\infty} \frac{(-1)^j e^{j/j^\beta}}{\Gamma(\theta - j) j!} \int_0^\infty \exp\left[\left(\frac{x}{\alpha}\right)^\beta\right] \exp\left[-(j+1)\left(\frac{x}{\alpha}\right)^\beta\right] dx \]

\[- \frac{\lambda \Gamma(2\theta + 1) \beta}{\alpha^\beta} \sum_{j=0}^{\infty} \frac{(-1)^j e^{j/j^\beta}}{\Gamma(2\theta - j) j!} \int_0^\infty \exp\left[\left(\frac{x}{\alpha}\right)^\beta\right] \exp\left[-(j+1)\left(\frac{x}{\alpha}\right)^\beta\right] dx. \]

Using transformation of \(y = \exp\left[\left(\frac{x}{\alpha}\right)^\beta\right] \) in integrals in (11), we get

\[\mu' = (1 + \lambda) \alpha' \Gamma(\theta + 1) \sum_{j=0}^{\infty} \frac{(-1)^j e^{j/j^\beta}}{\Gamma(\theta - j) j!} y^{j+1} \exp\left[-(j+1)y\right] dy \]

\[- \lambda \alpha' \Gamma(2\theta + 1) \sum_{j=0}^{\infty} \frac{(-1)^j e^{j/j^\beta}}{\Gamma(2\theta - j) j!} y^{j+1} \exp\left[-(j+1)y\right] dy \]

By using Lemma 1 in (12), the proof is completed.

2.2. Quantile function and random number generation

The quantile function of TCEP (\(\delta \)) distribution is obtained by solving \(F(x; \delta) = p \) for \(p \in (0,1) \) and it is given by

\[x_p = \alpha \left[\log \left(1 - \log \left(1 - \left[\frac{1 + \lambda - \sqrt{(\lambda + 1)^2 - 4\lambda p}}{2\lambda} \right]^\theta \right) \right) \right]^{1/\beta}, \]

where \(F(x; \delta) \) is given in (6).

2.3. Reliability and hazard functions

The reliability function and hazard function of TCEP (\(\delta \)) distribution are given, respectively, by

\[R(t) = 1 - \left[(1 + \lambda) \left(1 - \exp\left[1 - \exp\left(\frac{t}{\alpha}\right)^\beta\right]\right) \right]^{\theta} - \lambda \left(1 - \exp\left[1 - \exp\left(\frac{t}{\alpha}\right)^\beta\right]\right)^{\theta-1} \]

and
\[
g(t; \alpha, \beta) = \frac{1 - \exp\left(1 - \exp\left(\frac{t}{\alpha}\right)\right)^{\theta-1} \left[1 + \lambda - 2\lambda \left[1 - \exp\left(1 - \exp\left(\frac{t}{\lambda}\right)\right)^{\theta}\right]\right]}{1 - \left(1 + \lambda\right) \left[1 - \exp\left(1 - \exp\left(\frac{t}{\lambda}\right)\right)^{\theta}\right] - \lambda \left[1 - \exp\left(1 - \exp\left(\frac{t}{\lambda}\right)\right)^{\theta}\right]^2}.
\]

where
\[
g(t; \alpha, \beta) = \frac{\beta \theta t^{\theta-1}}{\alpha^\theta} \exp\left(1 + \left(\frac{t}{\alpha}\right)^\theta\right) - \exp\left(\left(\frac{t}{\alpha}\right)^\theta\right).
\]

Fig. 2 presents the shapes of the hazard function of TCEP(\(\delta\)) distribution for selected parameter values.

![Hazard function plots](image)

Figure 2. TCEP hazard functions

3. Maximum Likelihood Estimation and Asymtotic Confidence Intervals

Let \(X_1, X_2, ..., X_n\) be the independent random variables having TCEP(\(\delta\)) distribution. The log-likelihood function based on this sample is given by
\[\ell(\delta | x) = n(1 + \log(\beta) + \log(\theta) - \beta \log(\alpha)) \]

\[+ (\beta - 1) \sum_{i=1}^{n} \log(x_i) + \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} \right)^\theta - \sum_{i=1}^{n} \exp \left(\frac{x_i}{\alpha} \right) \]

\[+ \sum_{i=1}^{n} \log \left[\left(1 - \exp \left(1 - \exp \left(\frac{x_i}{\alpha} \right)^\theta \right) \right)^{(\theta - 1)} \left(1 + \lambda - 2 \lambda \left(1 - \exp \left(\frac{x_i}{\alpha} \right)^\theta \right) \right) \right] \]

and associated gradients found to be

\[\frac{\partial \ell(\delta | x)}{\partial \alpha} = \frac{2 \lambda \theta (\theta - 1) \left[\sum_{i=1}^{n} \log(k(x, \alpha, \beta))(k(x, \alpha, \beta))^\theta \right]}{k(x, \alpha, \beta)} \]

\[+ \frac{(\theta - 1) \left(\frac{1}{2} + \frac{\lambda}{2} - \lambda \left(k(x, \alpha, \beta) \right)^\theta \right) \beta \left(\frac{x_i}{\alpha} \right)^\theta \exp \left(\frac{x_i}{\alpha} \right) (1-k(x, \alpha, \beta))}{k(x, \alpha, \beta)} \]

\[+ \frac{\beta}{\alpha} \left[\sum_{i=1}^{n} \left(\frac{x_i}{\alpha} \right)^\theta \exp \left(\frac{x_i}{\alpha} \right) + \left(n + \sum_{i=1}^{n} \frac{x_i}{\alpha} \right)^\theta \right] \]

\[\frac{\partial \ell(\delta | x)}{\partial \beta} = \frac{n}{\beta} - n \log(\alpha) + \sum_{i=1}^{n} \log(x_i) + \left(\sum_{i=1}^{n} \frac{x_i}{\alpha} \right)^\theta \]

\[+ \log \left(\sum_{i=1}^{n} \frac{x_i}{\alpha} \right) - \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} \right)^\theta \log \left(\frac{x_i}{\alpha} \right) \exp \left(\frac{x_i}{\alpha} \right) \]

\[-2 \lambda \theta \sum_{i=1}^{n} \frac{x_i}{\alpha} \log(k(x, \alpha, \beta))(k(x, \alpha, \beta))^\theta \]

\[-2 \lambda \theta \sum_{i=1}^{n} \frac{x_i}{\alpha} \log(k(x, \alpha, \beta))(k(x, \alpha, \beta))^\theta \]

\[\frac{\partial \ell(\delta | x)}{\partial \theta} = n \left(1 + \frac{1}{\theta} + \lambda \right) - 2 \lambda \sum_{i=1}^{n} \left(k(x, \alpha, \beta) \right)^\theta + 2 \lambda (\theta + 1) \log(k(x, \alpha, \beta))(k(x, \alpha, \beta))^\theta \]

\[\ell(\delta | x) = \sum_{i=1}^{n} \log \left(k(x, \alpha, \beta) \right)^{(\theta - 1)} \left(1 - 2 \left(k(x, \alpha, \beta) \right)^\theta \right) \]

where

\[k(x, \alpha, \beta) = 1 - \exp \left(\left(\frac{x_i}{\alpha} \right)^\theta \right) \]

The log-likelihood function \(\ell(\delta | x) \) can be maximized by using numerical methods such as Nelder-Mead. Let \(\hat{\delta} \) denote the MLEs of \(\delta \). Under some mild regularity conditions, one can write

\[\sqrt{n} \left(\hat{\delta} - \delta \right) \to N \left(0, \tau^{-1}(\hat{\delta}) \right) \]
where

$$I(\hat{\delta}) = \begin{pmatrix}
 -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \alpha^2} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \alpha \beta} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \alpha \theta} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \alpha \lambda} \right] \\
 -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \beta \alpha} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \beta^2} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \beta \theta} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \beta \lambda} \right] \\
 -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \theta \alpha} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \theta^2} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \theta \lambda} \right] \\
 -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \lambda \alpha} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \lambda \beta} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \lambda \theta} \right] & -E \left[\frac{\ell^2(\hat{\delta} | x)}{\partial \lambda^2} \right]
\end{pmatrix}$$

is expected Fisher information matrix. $I(\hat{\delta})$ can be approximated by $I(\hat{\hat{\delta}})$ which is observed Fisher Information Matrix. Using asymptotic normality of MLEs, we can write the approximate confidence intervals (CIs)

$$P\left(\tilde{\delta} - z_\frac{\eta}{2} \sqrt{\text{Var}(\hat{\delta})} < \delta_i < \tilde{\delta} + z_\frac{\eta}{2} \sqrt{\text{Var}(\hat{\delta})}\right) = 1 - \eta, \ i=1,2,3,4,$$

where $\text{Var}(\hat{\delta})$ is \((i,i)\) (diagonal) elements of $I^{-1}(\hat{\delta})$, $\tilde{\delta}=(\delta_1,\delta_2,\delta_3,\delta_4)=(\alpha,\beta,\theta,\lambda)$ and $\hat{\delta}=(\hat{\delta}_1,\hat{\delta}_2,\hat{\delta}_3,\hat{\delta}_4)=(\hat{\alpha},\hat{\beta},\hat{\theta},\hat{\lambda})$.

4. Simulation Study

In this section, Monte Carlo simulation study is performed in order to compare the performances of the MLEs of $\tilde{\delta}$ according to MSE and bias. In the simulation study, the biases and MSEs of the MLEs are empirically estimated by 1000 trials. The sample sizes are fixed as 50, 100, 250, 500, 750, 1000, 5000 and four different parameter settings are considered. The bias and MSEs of MLEs are given in Table 1 while the average lengths (AL) and coverage probabilities (CPs) of MLEs for TCEP$(\tilde{\delta})$ are presented in Table 2.

According to Table 1, when the sample size increases, the MSEs and bias of MLEs decrease for all selected parameters settings. On the other hand, it is observed that the CPs of confidence intervals approach to nominal level 0.95 and AL of intervals decrease when the sample size increases for all the parameters.
Table 1. Biases and MSEs of MLEs for TCEP ($\hat{\alpha}$) parameters

α	β	θ	λ	n	$\hat{\alpha}$ bias	$\hat{\alpha}$ MSE	$\hat{\beta}$ bias	$\hat{\beta}$ MSE	$\hat{\theta}$ bias	$\hat{\theta}$ MSE	$\hat{\lambda}$ bias	$\hat{\lambda}$ MSE
0.3	0.5	-0.2		50	0.1157	0.0596	0.5440	0.8602	-0.0728	0.3321	0.1192	0.2737
0.4	0.6	0.3		100	0.1124	0.0469	0.3407	0.3864	-0.1340	0.0768	0.0939	0.2586
0.2	0.3	0.4		50	0.0781	0.0384	0.0620	0.0198	-0.0361	0.0137	0.0100	0.0784
0.5	0.7	0.8	-0.5	100	0.1124	0.0790	0.1472	0.0741	-0.0629	0.0434	-0.0715	0.2099
0.2	0.3	0.4		50	0.1157	0.0909	0.2334	0.1456	-0.0536	0.1047	-0.0963	0.2066
0.5	0.7	0.8		100	0.1124	0.0651	0.0952	0.0368	-0.0554	0.0214	-0.0324	0.1345
0.5	0.7	0.8		50	0.0470	0.0133	0.1037	0.0778	-0.0561	0.0380	0.0778	0.1330
0.2	0.3	0.4		100	0.1124	0.0041	0.0485	0.0164	-0.0329	0.0211	0.0472	0.0707
0.5	0.7	0.8		50	0.0505	0.0511	0.0134	0.0029	-0.01	0.0028	0.0103	0.0135
5. Real Data Analysis I

In this section, an application with real data is provided to compare the fitting ability of TCEP(\(\theta\)) distribution with some lifetime distributions such as Complementary Exponential Power (CEP) [1], Log-Kumaraswamy (LKw) [9], Weibull and Exponentiated Exponential (EE) [10]. The pdfs of these distributions are given by

\[LKw: \quad f(x) = \alpha \beta e^{-\beta x} \left(1 - e^{-\beta x}\right)^{\alpha-1} \left[1 - \left(1 - e^{-\beta x}\right)^\alpha\right]^\beta - 1 \nu s(x) \]

\[Weibull: \quad f(x) = \frac{\alpha}{\beta^\alpha} x^{\alpha-1} e^{-\frac{x}{\beta}} \nu s(x) \]

\[EE: \quad f(x) = \alpha \beta (1 - e^{-\beta x})^{\alpha-1} e^{-\beta x} \nu s(x) \]

where \(\alpha, \beta > 0\) are parameters. We have considered the comparison criteria as the -2*log-likelihood value, Akaike’s Information Criterion (AIC), Kolmogorov-Smirnov test statistics (KS) and its (p-value) as comparison criteria. The data related to the failure stresses of single carbon fibers (length 1mm) is considered in the analysis. Note that this data firstly analyzed by [11]. The MLEs and the selection criteria statistics are given in Table 3. Furthermore, Fig. 3 presents the fitted cdfs to real data.
Table 3. Selection criteria statistics and MLEs for carbon fibres data

	Weibull	TCEP	LKw	EE	CEP
LogL	-71.0240	-69.9704	-72.0352	-73.7699	-70.0187
-2LogL	142.0479	139.9408	144.0705	147.5399	140.0375
AIC	146.0479	147.9408	148.0705	151.5399	146.0375
BIC	150.1340	156.1130	152.1566	155.6260	152.1666
CAIC	146.2701	148.7100	148.2927	151.7621	146.4903
HQIC	147.6359	151.1168	149.6585	153.1279	148.4195
K-S	0.0859	0.1521	0.4354	0.6913	0.1595
W*	0.0591	0.0212	0.0729	0.1067	0.0227
p-value(K-S)	0.7618	0.9859	0.8273	0.6261	0.9777
p-value (A*)	0.8598	0.9985	0.8124	0.5655	0.9978
p-value (W*)	0.8219	0.9961	0.7359	0.5545	0.9941
\(\hat{\alpha}\)	4.5752	4.0176	68.7284	114.5288	3.5979
\(\hat{\beta}\)	5.5930	1.5294	1.7687	1.2421	1.3105
\(\hat{\theta}\)	-	5.7577	-	-	7.5679
\(\hat{\lambda}\)	-	0.3693	-	-	-
LB for \(\alpha\)	4.3507	1.9357	47.7744	15.5453	2.0178
LB for \(\beta\)	4.4972	0.0795	1.0788	1.0039	0.2921
LB for \(\theta\)	-	-4.7440	-	-	-5.2705
LB for \(\lambda\)	-	-1.1059	-	-	-
UB for \(\alpha\)	4.7998	6.0995	89.6825	213.5122	5.1779
UB for \(\beta\)	6.6887	2.9793	2.4587	1.4804	2.3290
UB for \(\theta\)	-	16.2593	-	-	20.4064
UB for \(\lambda\)	-	1.8444	-	-	-
SE of \(\hat{\alpha}\)	0.1146	1.0622	10.6910	50.5027	0.8062
SE of \(\hat{\beta}\)	0.5591	0.7397	0.3520	0.1215	0.5196
SE of \(\hat{\theta}\)	-	5.3581	-	-	6.5503
SE of \(\hat{\lambda}\)	-	0.7526	-	-	-
Figure 3. Fitted cdfs and empirical cdf for carbon fibres data

From Table 3 and Fig. 3, it can be said that the TCEP(6) distribution is candidate to fitting the real data and it is competitor to the other existing models according to all criteria discussed here.

6. Real Data Analysis II

Let us consider lifetime regression analysis and let \(Y = \log(X) \). Then cdf and pdf of \(Y \) is given by

\[
F_Y(y; \kappa) = (1 + \lambda) \left[1 - \exp \left(\frac{y - \mu}{\sigma} \right) \right]^{\nu} - \lambda \left[1 - \exp \left(\frac{y - \mu}{\sigma} \right) \right]^{\nu+1},
\]

and

\[
f_Y(y; \tau) = \frac{\theta}{\sigma} \exp \left(\frac{y - \mu}{\sigma} \right) \exp \left(1 + \exp \left(\frac{y - \mu}{\sigma} \right) - \exp \left(\frac{y - \mu}{\sigma} \right) \right) \times \left[1 - \exp \left(\frac{y - \mu}{\sigma} \right) \right]^{\nu-1} \times \left[1 + \lambda - 2\lambda \left[1 - \exp \left(\frac{y - \mu}{\sigma} \right) \right] \right]^{\nu} I_y(y)
\]

where \(\kappa = (\mu, \sigma, \theta, \lambda) \) is parameter vector. Let \(\mu = 0 \) and \(\sigma = 1 \) in Eq. (22). Then, Eq. (22) is reduce to

\[
F_Y(z; \kappa) = (1 + \lambda) \left[1 - \exp \left(1 - \exp \left(\frac{z}{\sigma} \right) \right) \right]^{\nu} - \lambda \left[1 - \exp \left(1 - \exp \left(\frac{z}{\sigma} \right) \right) \right]^{\nu+1}.
\]
Let us consider regression model

$$Y = \mu + \sigma Z,$$

where $Y = (Y_1, Y_2, \ldots, Y_n)^T$ is a random vector and Y_1, Y_2, \ldots, Y_n are iid random variables (they are also called dependent variables) with cdf (22). $Z = (Z_1, Z_2, \ldots, Z_n)^T$ is a random error vector and Z_1, Z_2, \ldots, Z_n are iid random variables with cdf (24) and $\sigma > 0$. Assume that location is linked to covariates by $\mu = X \beta$, where X is $n \times (p + 1)$ matrix consist of covariates (First column is 1) and $\beta = (\beta_0, \beta_1, \ldots, \beta_p)^T$. Let $T_i = \min(Y_i, c_i)$ and c_i is censoring time for ith individual or any component. Then the log-likelihood function is written by

$$\ell(k) = \sum_{i=1}^{n} \left\{ \omega_i \log \left(f_i(t_i; k) \right) + (1 - \omega_i) \log \left(1 - F_i(t_i; k) \right) \right\},$$

where ω_i is the indicator function given by

$$\omega_i = \begin{cases} 1, & t_i \leq c_i \\ 0, & t_i > c_i \end{cases}$$

Let us consider the data given in page 335 in [12], [13] carried out an experiment and obtained a data on the lifetime of specimens of solid epoxy electrical-insulation in an accelerated voltage life test. 20 specimens were put on a life test at each of three voltage levels: 52.5, 55.0, and 57.5 kV. Failure times were measured in minutes. Six lifetimes of specimens are censored at a random. Based on the data, the log-likelihood (25) is maximized and the MLEs of parameters, AIC criteria are presented in Table 4 for TCEP regression. For a comparison Weibull and TLGBXII (see [14]) regression results are also given in Table 4. From the Table 4 and Fig. 4, it can be conclude that TCEP regression can be alternative lifetime regression analysis to Weibull and TLGBXII regression.

Figure 4. Fitted survival functions and the empirical survivals
distribution: A generalization of the Weibull probability distribution. In Table 5, Method “1” indicates Nelder-Mead whereas Method “2” indicates BFGS.

Table 5. First 10 best solutions with initial values for TCEP regression

Trial	Method	-\ell	\hat{\theta}_0	\hat{\beta}_0	\hat{\sigma}	\hat{\lambda}	se(\hat{\lambda})	se(\hat{\sigma})	se(\hat{\theta}_0)	se(\hat{\beta}_0)	se(\hat{\beta}_0)	se(\hat{\sigma})	se(\hat{\lambda})	\hat{\beta}_1(t)	\hat{\beta}_1(s)	\hat{\sigma}(s)	\lambda(t)
359	1	-78.375	11.361	-0.191	9.942	126.844	0.619	6.656	0.060	257.279	0.502	26.936	-0.357	0.845	0.620	0.366	
971	1	-78.455	12.328	-0.192	8.719	86.939	0.464	3.994	0.059	70.926	0.640	21.215	-0.225	0.840	0.894	0.685	
262	2	-78.483	13.115	-0.198	8.318	72.457	0.509	4.963	0.059	101.625	0.570	27.251	-0.048	0.670	0.905	0.892	
309	2	-78.494	13.225	-0.199	8.221	69.651	0.510	4.904	0.059	96.054	0.565	16.533	-0.096	1.146	0.541	0.103	
631	2	-78.497	13.205	-0.198	8.216	60.078	0.517	4.868	0.059	93.937	0.556	15.886	-0.073	1.352	0.733	0.910	
487	2	-78.513	12.409	-0.186	8.287	70.057	0.523	4.481	0.059	79.607	0.532	27.940	-0.330	1.276	0.640	0.161	
727	2	-78.521	13.492	-0.200	8.003	63.720	0.509	4.872	0.059	87.711	0.558	22.355	-0.118	1.386	0.138	0.374	
218	1	-78.529	12.926	-0.193	8.255	67.090	0.587	4.058	0.059	60.461	0.473	26.250	-0.356	0.991	0.727	0.879	
781	2	-78.535	13.363	-0.197	7.946	61.167	0.521	4.547	0.059	73.457	0.541	19.195	0.260	1.329	0.730	0.276	
890	1	-78.537	12.225	-0.196	8.658	102.473	0.090	4.362	0.085	138.953	3.308	23.208	-0.295	0.839	0.903	0.297	

Conflicts of interest

There is no conflict of interest.

References

[1] Barriga, G. D., Louzada-Neto, F., Cancho, V. G. The complementary exponential power lifetime model. *Computational Statistics and Data Analysis*, 55 (3) (2011) 1250-1259.

[2] Smith, R. M., Bain, L. J. An exponential power life-testing distribution. *Communications in Statistics-Theory and Methods*, 4 (5) (1975) 469-481.

[3] Shaw, W. T., Buckley, I. R. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. (2009) *arXiv preprint arXiv:0901.0434*

[4] Aryal, G. R. Transmuted log-logistic distribution. *Journal of Statistics Applications and Probability*, (2013), 2-1 11-20.

[5] Aryal, G. R., Tsokos, C. P. Transmuted Weibull distribution: A generalization of the Weibull probability distribution. *European Journal of Pure and Applied Mathematics*, 4 (2) (2011) 89-102.

[6] Khan, M. S., King, R., Hudson, I. L. Transmuted Kumaraswamy Distribution. *Statistics in Transition new series*, 17 (2) (2016) 183-210.
[7] Merovci, F. Transmuted exponentiated exponential distribution. *Mathematical Sciences and Applications E-Notes*, 1-2, (2013) 112-122.

[8] Gradshteyn, I., Ryzhik, I. M. Table of integrals, series, and products. Academic Press, San Diego, 6th edition, 2000.

[9] Lemonte, A. J., Barreto-Souza, W., Cordeiro, G. M. The exponentiated Kumaraswamy distribution and its log-transform. *Brazilian Journal of Probability and Statistics*, 27-1, (2013) 31-53.

[10] Gupta, R. D., Kundu, D. Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biometrical Journal: *Journal of Mathematical Methods in Biosciences*, 43 (1) (2000) 117-130.

[11] Crowder, M.J., Kimber, A.C., Smith, R.L. and Sweeting, T.J. The Statistical Analysis of Reliability Data. Chapman and Hall, London, 1991.

[12] Lawless, J. F. Statistical models and methods for lifetime data (Vol. 362). John Wiley & Sons, 2011.

[13] Yousof, H.M., Altun, E., Rasekhi, M., Alizadeh, M., Hamedani G. G., Ali, M.M. A new lifetime model with regression models, characterizations and applications. *Communications in Statistics - Simulation and Computation*, 48(1), (2019) 264-286.