Pressure and alloying effects on the metal to insulator transition in NiS$_{2-x}$Se$_x$ studied by infrared spectroscopy

A. Perucchi1,2, C. Marini2, M. Valentini2, P. Postorino2, R. Sopracase2, P. Dore2, P. Hansmann3,4, O. Jepsen3, G. Sangiovanni3,4, A. Toschi3,4, K. Held4, D. Topwal5, D.D. Sarma6, and S. Lupi2

1 Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza, Trieste, Italy
2 CNR-INFM COHERENTIA and Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 2, I-00185 Roma, Italy
3 Max-Planck Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
4 Institute for Solid State Physics, Vienna University of Technology, 1040 Wien, Austria
5 International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34100 Trieste, Italy
6 Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadarpur, Kolkata 70032, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

(Dated: July 22, 2009)

The metal to insulator transition in the charge transfer NiS$_{2-x}$Se$_x$ compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS$_2$ (lattice contraction) and by Se-alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs Pressure scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.

PACS numbers: 71.30.+h, 78.30.-j, 62.50.-p

Understanding the physics of strongly correlated systems is one of the most challenging tasks of condensed matter research [1]. Besides displaying extremely interesting physical behavior, their sensitivity to small changes in external parameters makes them highly appealing for future technological applications. That sensitivity is attributed to the small value of the electron bandwidth in comparison with other relevant energy scales as the electron correlation U or the charge transfer (CT) energy gap. The independent electron approximation breaks down and materials at half filling can be insulators, contrary to the prediction of band theory.

The cubic pyrite NiS$_2$, which is a CT insulator following the Zaanen-Sawatsky-Allen classification scheme [2], is considered, together with vanadium sesquioxide V$_2$O$_3$, a text-book example of strongly correlated materials. NiS$_2$ attracts particular interest as it easily forms a solid solution with NiSe$_2$ (NiS$_{2-x}$Se$_x$), which, while being iso-electronic and iso-structural to NiS$_2$, is nevertheless a good metal. A metal to insulator transition (MIT), induced by Se alloying, is observed at room temperature (T) for $x \approx 0.6$, and a magnetic phase boundary from an antiferromagnetic to a paramagnetic metal is found at low T at about $x = 1$ (see the inset of Fig.1a) [1]. An alternative way to induce a metallic state in NiS$_2$ is applying a hydrostatic pressure (P). Following Mott’s original idea [3], this technically challenging procedure offers the unique opportunity to continuously tune the bandwidth, without introducing impurities or disorder. High-P techniques have indeed been used in the past few years to investigate the dc transport properties of NiS$_{2-x}$Se$_x$ [4,5], and a P induced MIT has been observed in pure NiS$_2$ for P > 4 GPa.

Infrared reflectivity, in particular under pressure, is a very suitable probe to address the physics of strongly correlated systems. The investigation of the T-dependent optical properties of V$_2$O$_3$ and their theoretical explanation in terms of coherent and incoherent excitations around the Fermi energy (E$_F$) represents one of the most compelling successes of the dynamical mean field theory (DMFT) [6,7,8]. However, with few remarkable exceptions [9,10,11,12], infrared investigations of the MIT in CT insulators are still rare, and a thorough optical study of NiS$_{2-x}$Se$_x$ vs Se-alloying and applied-P is completely lacking to the best of our knowledge. In this paper we fill this gap, presenting room-T reflectivity measurements over a broad spectral range on 4 compounds ($x = 0, 0.55, 0.6, 1.2$) of the NiS$_{2-x}$Se$_x$ series together with optical measurements as a function of P on pure NiS$_2$. Experimental data are compared with local density approximation (LDA) calculations, and the resulting scenario for the two MITs is finally depicted.

The ambient-P nearly normal incidence reflectivity $R(\omega)$ has been measured between 50 and 35000 cm$^{-1}$ on well characterized high density pellets of NiS$_{2-x}$Se$_x$ [13,14]. An in situ evaporation technique was used to measure the reference. The high-P study has been performed using a diamond anvil cell (DAC). A small piece of NiS$_2$ was loaded inside the gasket hole together with KBr as hydrostatic medium. Great care was taken to obtain a clean sample-diamond interface where reflectivity spectra, $R_{sd}(\omega)$, have been measured [15]. The measurement was performed at the high brightness infrared synchrotron radiation source SISSI@Elettra (Trieste) [16]. Further details on the measurement procedures are reported elsewhere [17,18].
The $R(\omega)$ of NiS$_2$ at ambient-P, shown in Fig.1, is nearly flat from 50 to 10000 cm$^{-1}$ except for weak phonon contributions at 260 and 290 cm$^{-1}$. On increasing the Se-content, $R(\omega)$ is progressively enhanced at low frequencies, characteristic of a metallic behavior. The real part of the optical conductivity $\sigma_1(\omega)$ (Fig.1b) has been determined through Kramers-Kronig (KK) transformations. To this end, standard extrapolation procedures were adopted at both high and low frequency [14, 20].

The optical conductivity of NiS$_2$ is strongly depleted at low frequency showing the CT gap (evaluated at Full-Width-Half-Maximum of the absorption). This is consistent with previous optical measurements [4, 21] at about 4000 cm$^{-1}$. On increasing the Se-content x, a large amount of spectral weight (SW) is transferred from high to low frequency through an isosbestic point around 8000 cm$^{-1}$. This suggests the main role played in the MIT by electronic correlations [1]. As it is better highlighted by the $\Delta \sigma_1 = \sigma_1(x) - \sigma_1(x=0)$ difference spectra in the inset of Fig.1b, the low energy contribution to the $\sigma_1(\omega)$ is made up of two well distinct terms: one broad mid-IR band peaked around 2000 cm$^{-1}$ and extending up to nearly 8000 cm$^{-1}$, and a sharp contribution below 500 cm$^{-1}$. In analogy with spectra of metallic V$_2$O$_3$ [6], the narrow peak is attributed to quasiparticle (QP) coherent excitations around E_F, while the mid-IR term is associated to optical transitions from the QP peak to the upper and lower Hubbard bands. This scenario has been confirmed by fitting the $\sigma_1(\omega)$ curves through a Drude-Lorentz (DL) model. Data can be described by a Drude term plus two Lorentzian oscillators. The Drude and the low energy oscillator (centered around 2000 cm$^{-1}$) describe the coherent and the mid-IR excitations around E_F, while the remaining oscillator at 10000 cm$^{-1}$ mimics the CT and Hubbard transitions. The fitting components are reported as thick dashed lines in Fig.1b for $x = 0.6$.

We turn now to the high-P measurements on NiS$_2$. The reflectivity at the sample-diamond interface, $R_{sd}(\omega)$ (thick solid lines), is shown in Fig.2a. The strong two-phonon diamond absorption provides reliable data only above 2000 cm$^{-1}$. On increasing the pressure, $R_{sd}(\omega)$ is progressively enhanced at low-frequency showing an overdamped behavior (similarly to $R_{cal}^{sd}(\omega)$ obtained on varying x), as a signature for a correlated bad metallic state. At high-frequencies all $R_{sd}(\omega)$ converge above 10000 cm$^{-1}$. In order to evaluate the accuracy of our high-P measurements, we compare the $R_{sd}(\omega)$ data to the expected reflectivity at a sample-diamond interface, $R_{cal}^{sd}(\omega)$, calculated by using a procedure previously introduced [17, 18]. The calculated $R_{cal}^{sd}(\omega)$ for NiS$_2$ (dashed lines in Fig.2a) is in good agreement with $R_{sd}(\omega)$ measured in the DAC at the lowest pressure (1.1 GPa) being both nearly flat and with a value $\approx 20\%$ over the whole frequency range. The same procedure has been applied to NiS$_{2-x}$Se$_x$ ($x = 0.55, 0.6, 1.2$) compounds and the resulting $R_{cal}^{sd}(\omega)$ are shown in Fig.2b for the sake of comparison. We then tried to fit the $R_{sd}(\omega)$ measured vs P for NiS$_2$ within the same DL framework previously used for NiS$_{2-x}$Se$_x$ at ambient-P. Although a certain degree of arbitrariness remains in fitting the data over a restricted spectral range, a reliable description of the $R_{sd}(\omega)$ at any P is obtained by the sum of a Drude and a mid-IR term plus a high-frequency oscillator kept constant at all pressures. This fit provides a robust estimate of the quasi-particle SW, defined by the sum of the Drude and of the mid-IR intensities. This sum remains nearly unchanged by varying the fitting parameters over realistic ranges.

The microscopic mechanisms inducing the P- and Se-MTs are further investigated by studying the quasi-particle SW as a function of the cubic lattice parameter a. The lattice is expanded by Se-alloying [22, 23] whereas it is compressed by pressure [24]. The x- and the P-dependence (up to ≈ 5 GPa) of a have been obtained from Ref.[23] and Ref. [24] respectively. Data at higher P have been estimated using the procedure developed in Ref.[15]. Through the specific heat results of Ref.[25], which provide a Debye frequency $\omega_D \approx 350$ cm$^{-1}$ well comparable with the NiS$_2$ phonon frequencies, we obtain a sound velocity $v_s \approx 4300$ m/s. As the density of NiS$_2$ is $\rho = 4455$ kg/m3, the Bulk modulus results...
\[B_0 = \rho \cdot v_s^2 \approx 83 \text{ GPa}. \] Assuming \(B(P) = B_0 + B'P, \) \(a(P) \) is finally given by the Birch-Murnaghan (B-M) equation:

\[a(P) = a(0) \left[1 + \frac{B'}{B_0} P \right]^{-1/3B'} \]

where \(B' \) normally ranges between 4 and 8 \[27\]. The experimental \(a(P) \) data, the values estimated from Eq\[1\] and those from LDA calculations \[28\] are in a very good agreement as shown in the inset of Fig. 2.

The quasi-particle SW, shown for pure NiS\(_2\) at working P in Fig. 2a and for NiS\(_{2-x}\)Se\(_x\) at different Se-contents in Fig. 2b, reveals a striking non-monotonic behavior as a function of \(x \). Its slow continuous increase for \(x < 5.57 \) Å (i.e., at the highest values of P) reflects the progressive enhancement of the kinetic energy due to the applied P and corresponds to a nearly-complete metalization of NiS\(_2\). For \(x > 5.57 \) Å up to \(x_{\text{crit}} \approx 5.68 \) Å (namely the lattice parameter corresponding to NiS\(_2\) at ambient conditions), correlation effects get larger and the SW drops rapidly to zero as a consequence of the Mott transition. On further increasing \(x \) above \(x_{\text{crit}} \), the SW (Fig. 2) reverts to increase, owing to the onset of the Se-induced MIT.

Despite the opposite behavior of the lattice parameter vs Se-alloying and pressure, a linear scaling factor \(f \approx 0.14/\text{GPa} \) between \(x \) and P has been formerly established from low-T dc-resistivity data \[4, 5\], thus suggesting an equivalency between the two MITs. However, the same \(f \) does not apply comparing the optical SW dependence on P and \(x \). It is indeed clear from the inset of Fig. 2c that the rate of increase of SW is much larger with P than with \(x \). The breakdown at finite frequencies of the dc linear scaling between \(x \) and P suggests that, while a metallic state can be obtained from NiS\(_2\) both by applying P and by alloying Se, this state takes place through substantially different microscopic mechanisms, involving different redistributions in the electronic density of states. A qualitative understanding of the two different MITs can be obtained through self-consistent TB-LMTO LDA calculations \[30\], see Fig. 3. To this end, we employed the Nth order muffin-tin orbital (NMTO) down-folding \[31\], and the augmented plane waves plus local orbitals (APW+lo) techniques within the framework of the Wien2k code \[32\]. At ambient P the Ni \(e_g \)-states with a bandwidth \(W_{e_g} = 2.1 \text{ eV} \) and the antibonding \(pp\sigma^* \)-S states are separated by a CT gap \((\Delta_{\text{LDA}}) \) centered around 1.5 eV. Beside this gap, a second LDA-CT gap is present between occupied \(pp\sigma^-\)S states below \(E_F \) and the \(e_g\)-Ni states (see e.g. Ref. \[33\]). Upon applying pressure, the lattice contracts and the entire band-structure around \(E_F \) is renormalized; e.g. by a factor of 1.13 at \(P = 10 \text{ GPa} \) (dashed curve in Fig. 3). All features of the DOS stay the same, in particular, the energy scales, \((W_{e_g} \text{ and } \Delta_{\text{LDA}}) \), are rescaled by a factor 1.13. Hence, the bandwidth-gap ratio \(W_{e_g}/\Delta_{\text{LDA}} \) remains nearly constant. On the other hand, the interaction \(U \) can be assumed to be constant, so that \(W_{e_g}/U \) increases by the factor 1.13, triggering a bandwidth-controlled MIT (BC-MIT). In the case of Se-substitution, the lattice expands (instead of shrinking) due to the larger atomic radius of Se ions. This leads to a very complementary scenario: While the changes of the \(e_g\)-bandwidth \(W_{e_g} \) are negligible, the CT gaps shrink (see Fig. 3). Assuming \(U \) again to be constant, the driving force for the MIT is now the the reduction of the charge transfer gap \((W_{e_g}/\Delta_{\text{LDA}} \text{ increases), as } W_{e_g} \text{ remains basically unaffected).}

Let us now turn back to the optical experiment in Fig. 2. Deep inside the metallic phase, we can expect correlations to be weak and LDA to give the proper answer. Within LDA we calculated the "square plasma
frequency3, which is defined as the average over the FS of the squared velocities. In Fig. 2b-c we compare the square plasma frequency to the experimental SW. Because of the different changes in the bandstructure under pressure and upon Se alloying, LDA gives non-monotonic behavior and very different slopes in agreement with experiment, see Fig. 2b-c. For the insulating NiS\textsubscript{2} compound and close to the phase transition, electronic correlations are not negligible and we performed LDA+DMFT \cite{34} calculations. To this end, the NMTO bandstructure was downfolded to effective Ni \(e_g\)-states and the correlations in these two orbitals were treated by means of DMFT. For \(U > 3J\) (\(U\) being the intra-orbital Coulomb interaction between the Ni \(e_g\)-states and \(J\) the Hund coupling), the two \(e_g\)-orbitals split and a gap opens for NiS\textsubscript{2}. This insulating LDA+DMFT solution results in a very strong suppression of the square plasma frequency to the experimental SW. Besides important similarities between the P- and Se-dependent phase diagrams \cite{1, 22}, the present optical study reveals that a simple linear scaling between \(P\) and \(x\), as that indicated by transport, does not hold at finite frequencies. This suggests that the two MITs rely on distinct microscopic mechanisms. These mechanisms can be understood theoretically in terms of the two fundamental parameters for the MIT in a CT insulator: Under pressure, \(W_{e_g}/\Delta\text{LDA} = \text{const.}\) and \(W_{e_g}/U\) increases, triggering the MIT; in contrast upon alloying Se, the increase of \(W_{e_g}/\Delta\text{LDA}\) is responsible for the MIT, whereas \(W_{e_g}/U\) even decreases. This makes NiS\textsubscript{2-x}Se\textsubscript{x} under pressure an ideal system for the study of the MIT in a CT strongly correlated system.

![Graph showing DOS for NiS2 and NiSe2](image)

FIG. 3: (Color online): a) Total LDA-DOS for NiS\textsubscript{2}. Solid line represent the DOS at ambient \(P\), dashed lines at 10 GPa. b) Total LDA-DOS for the NiSe\textsubscript{2} compound. In the case of NiS\textsubscript{2}, the 10 GPa DOS can be rescaled by a factor 0.88 on that at ambient-\(P\), resulting in an increase of \(W_{e_g}/U\), keeping \(W_{e_g}/\Delta\text{LDA}\) fixed. In contrast, Se-substitution results in a decrease of \(W_{e_g}/U\) and an increase of \(W_{e_g}/\Delta\text{LDA}\) due to the shrinking of the charge-transfer gap \(\Delta\text{LDA}\).

Acknowledgments

The authors acknowledge L. Baldassarre and E. Arcangeletti for preliminary optical measurements and M. Polentarutti for x-ray characterization of the NiS\textsubscript{2} compound. This work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung for founding.

\begin{thebibliography}{99}
\bibitem{1} M. Imada et al., Rev. Mod. Phys. 70, 1039 (1998).
\bibitem{2} J. Zaanen et al., Phys. Rev. Lett. 55, 418 (1985).
\bibitem{3} N. F. Mott, Proc. Phys. Soc. A 64, 416 (1949).
\bibitem{4} S. Miyasaka et al., J. Phys. Soc. Japan 69, 3166 (2000).
\bibitem{5} P.G. Niklowitz et al., cond-mat/0610166v1.
\bibitem{6} M.J. Rozenberg et al., Phys. Rev. Lett. 75, 105 (1995).
\bibitem{7} L. Baldassarre et al., Phys. Rev. B 77, 113107 (2008)
\bibitem{8} G. Kotliar et al., Rev. Mod. Phys. 78, 865 (2006).
\bibitem{9} Y. Okimoto et al., Phys. Rev. B 51, 9581 (1995).
\bibitem{10} A. Congeduti et al. Phys. Rev. B 63, 1744 (2001).
\bibitem{11} P. Postorino et al. Phys. Rev. Lett. 91, 175501 (2003).
\bibitem{12} A. Pashkin et al. Phys. Rev. B 74, 165118 (2006).
\bibitem{13} D.D. Sarma et al., Phys. Rev. B 67, 155112 (2003), and Phys. Rev. B, 57, 6084 (1998).
\bibitem{14} Due to the cubic NiS\textsubscript{2-x}Se\textsubscript{x} structure, IR data on high density pellets are not affected by anisotropic effects.
\bibitem{15} A. Sacchetti et al., Phys. Rev. Lett. 98, 026401 (2007).
\bibitem{16} S. Lupi et al., J. Opt. Soc. Am. B 24, 959 (2007).
\end{thebibliography}
5

[17] L. Baldassarre et al., Phys. Rev. B 75, 245108 (2007).
[18] E. Arcangeletti et al., Phys. Rev. Lett. 98, 196406 (2007).
[19] F. Wooten, in Optical Properties of Solids, Academic Press, New York (1972).
[20] M. Dressel and G. Grünér, in Electrodynamics of Solids, Cambridge University Press (2002).
[21] R.L. Kautz et al., Phys. Rev. B 6, 2078 (1972).
[22] A. Fujimori, Phys. Stat. Sol. (b) 233, 47 (2001).
[23] P. Kwizera et al., Phys. Rev. B 21, 2328 (1980).
[24] T. Fujii et al., Miner. Journ. 13, 448 (1987).
[25] X. Yao et al., Phys. Rev. B 56, 7129 (1997).
[26] F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
[27] S. Jiuxun et al., J. Phys. Chem. Solids 66, 773 (2005).
[28] Concerning the LDA analysis, $\alpha(P)$ values were calculated using the Tight-Binding Linear-Muffin Tin-Orbital (TB-LMTO) plus LDA method and the so-called force theorem, that is the change of the total energy under uniform compression, (see e.g. Ref. 29).

[29] A.R. Mackintosh and O.K. Andersen: Electrons at the Fermi Surface, edited by M. Springford (Cambridge, 1980), p. 149
[30] O. K. Andersen and O. Jepsen, Phys. Rev. Lett., 53, 2571 (1984).
[31] O. K. Andersen et al., 'Electronic Structure and Physical Properties of Solids. The Uses of the LMTO method', edited by H. Dreyssé, Springer Lecture Notes in Physics (Springer, New York, 2000); O.K. Andersen and T. Saha-Dasgupta, Phys. Rev. B. 62, R16219 (2000); E. Zurek, O. Jepsen, and O.K. Andersen, Chem. Phys. Chem. 6, 1934 (2005).
[32] K. Schwarz, P. Blaha and G.K.H. Madsen, Comp. Phys. Commun. 147, 71 (2002).
[33] A. Y. Matsuura et al., Phys. Rev. B, 53, R7584 (1996)
[34] The Hirsch-Fye quantum Monte Carlo simulation has been used for solving the DMFT equations.
[35] V. I. Anisimov et al., J. Phys. Cond. Matter 9 7359 (1997); A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57 6884 (1998); G. Kotliar et al., Rev. Mod. Phys. 78 865 (2006). K. Held, Adv. Phys. 56, 829 (2007).