RESEARCH ARTICLE

Location-dependent effects of trauma on oxidative stress in humans

Luis Servia1, José C. E. Serrano1, Reinald Pamplona2, Mariona Badia1, Neus Montserrat1, Manuel Portero-Otin2*, Javier Trujillano1*

1 Department of Critical Care Unit, University Hospital Arnau de Vilanova, University of Lleida-IRBLleida, Lleida, Spain, 2 Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain

* jtruj@cmb.udl.cat (JT); manuel.portero@mex.udl.cat (MPO)

Abstract

Though circulating antioxidant capacity in plasma is homeostatically regulated, it is not known whether acute stressors (i.e. trauma) affecting different anatomical locations could have quantitatively different impacts. For this reason, we evaluated the relationship between the anatomical location of trauma and plasma total antioxidant capacity (TAC) in a prospective study, where the anatomical locations of trauma in polytraumatic patients (n = 66) were categorized as primary affecting the brain-traumatic brain injury (TBI)-, thorax, abdomen and pelvis or extremities. We measured the following: plasma TAC by 2 independent methods, the contribution of selected antioxidant molecules (uric acid, bilirubin and albumin) to these values and changes after 1 week of progression. Surprisingly, TBI lowered TAC (919 ± 335 μM Trolox equivalents (TE)) in comparison with other groups (thoracic trauma 1187 ± 270 μM TE; extremities 1025 ± 276 μM TE; p = 0.004). The latter 2 presented higher hypoxia (PaO2/FiO2 272 ± 87 mmHg) and hemodynamic instability (inotrope use required in 54.5%) as well. Temporal changes in TAC are also dependent on anatomical location, as thoracic and extremity trauma patients’ TAC values decreased (1187 ± 270 to 1045 ± 263 μM TE; 1025 ± 276 to 918 ± 331 μM TE) after 1 week (p < 0.01), while in TBI these values increased (919 ± 335 to 961 ± 465 μM TE). Our results show that the response of plasma antioxidant capacity in trauma patients is strongly dependent on time after trauma and location, with TBI failing to induce such a response.

Introduction

It is generally assumed that critical care patients, as well as experimental models of acute trauma, show an increase in tissue oxidative stress (OS), as indicated by systematic reviews [1]. This may be the basis for the positive response to some antioxidant treatments in this context [2]. In this clinical setting, OS is derived from a concerted build-up of proinflammatory factors, leading to increased tissue efflux of reactive species (RS), such as oxygen-, nitrogen- and carbonyl species [1]. Physiologically, the deleterious effects of RS are limited by antioxidant defense systems, which counteract their potential to modify biomolecules. This modification
potential is based on the ability of RS to modify biomolecules, both structurally and functionally, exemplified by their capacity for molecular disruption of lipids, proteins and nucleic acids. For these reasons, oxidative stress has been invoked in multiple organ failure (MOF) after systemic inflammatory response syndrome (SIRS) following traumatic events [3,4].

Though there are many techniques to evaluate oxidative stress status, a consensus on which is the best measure does not exist [5–7]. This may be due to the diverse nature of RS and the myriad of potential targets. However, clinically applicable methods should include general measurements that do not require specialized equipment. Specifically, one could try to analyse RS directly, but its low stability does not allow for precise quantification in the clinical environment. On the other hand, one could measure the molecular footprints generated by RS on selected biomolecules, the so-called OS biomarkers, but specific detection requires forefront mass spectrometry and dedicated chromatographic systems. In contrast, the measurement of antioxidant molecules determined in the plasma compartment by the total antioxidant capacity (TAC) technique has been used as a robust oxidative stress indicator [7,8], assuming that, in the event of continuous OS, TAC may be exhausted. Plasma TAC is known as the result of the combination of several biomolecules, such as classical antioxidant vitamins (C and E), sulphydryl groups from plasma proteins, as well as some degradation products such as bilirubin and uric acid, besides other uncharacterized antioxidants [9].

Accounting for this diversity, most previous studies aiming to evaluate oxidative status in the critical care setting have been focused on septic shock or sepsis with SIRS and/or MOF. These studies have shown an increase in RS-derived markers concurrently with decreases in the antioxidant levels in plasma, with those patients with a more critical status showing a higher degree of oxidative modification [10].

Although these findings indicate an influence of clinical status in OS homeostasis based on patients with sepsis, relatively fewer reports have focused on trauma patients [11, 12]. Disease severity is apparently similar in sepsis and trauma patients, but their clinical specificities could help to delineate the role of RS in the critical care patient outcome. As an example of these specificities, generally, traumatic patients are considered as a good example of abrupt changes in homeostasis, while sepsis patients often have a longer prodromic phase. Furthermore, trauma patients are often younger and without major comorbidities. Reinforcing the specificity of the relationship between the severity of clinical status and OS, we demonstrated that plasma TAC values were strongly influenced by trauma severity (APACHE II) and its gross location, with a paradoxical (in comparison to sepsis patients) increase in TAC values with increasing severity [13]. The aim of this study was to obtain a more accurate estimation of the potential influence of the anatomical location of trauma on blood antioxidant status. In the present work, we have selected those patients with a unique lesion located almost exclusively in a single, defined anatomic place. In addition, to evaluate the influence location in OS-related parameters in plasma, we focused to the individual changes in these after a 7-day period in an intensive care unit (ICU) environment.

Materials and methods

Study design, patient population and reagents

A prospective cohort study was performed in the ICU of the Arnau de Vilanova University Hospital (Lleida, Spain). The protocol was approved by the Institutional Ethics Committee of the Arnau de Vilanova Hospital. All participants (or their legal representatives) gave their written consent for the study. As a healthy population, we included plasma samples from fasted individuals (n = 49, 24 females) with a mean age not different from that of trauma-affected individuals. The healthy population was used to establish the reference values of ferric.
reducing activity/antioxidant power (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS). For the rest of the biomarkers, the reference ranges established by our laboratory were used.

The inclusion criteria for trauma patients were all trauma-affected patients with severe status requiring ICU admission caused by a traumatic event in the prior 48 h, age >16 years, with a follow-up period of 7 days in the ICU, in the period between 2011/10/1 and 2012/11/15.

Patient acuity was defined according to the Injury Severity Score (ISS) [14]. Anatomical influence was evaluated according to the Abbreviated Injury Scale (AIS) [15]. Anatomical locations of trauma were defined according to the following scheme: TBI (traumatic brain injury), ABD (abdominal trauma), THORAX (thoracic trauma) and PEXT (pelvis or extremity trauma). Severity of Injury is ranked on a scale of 1–6 as follows: (1 = minor, 2 = moderate, 3 = serious, 4 = severe, 5 = critical and 6 = maximum) according to the AIS classification [15]. In the present work, we only include those patients with a major single trauma (TBI, ABD, THORAX or PEXT), with an AIS ≥3 without any other location with AIS ≥2, according previously published criteria [16].

The exclusion criteria were all patients whose samples were not obtained in the first 48 h, those discharged before 7 days and all chronic disease patients (according APACHE II) [17]. Similarly, we excluded patients with acute kidney failure, defined as plasma creatinine ≥1.5 mg/dl or diuresis <400 ml/24 h.

Age, gender, length of ICU stay, APACHE II [17] classification and mortality were also documented. We also recorded the severity of loss of respiratory function, measured as the lowest PaO₂/FiO₂ in the first 24 h of ICU admission, by using arterial gasometry. Hemodynamic instability (shock) was diagnosed as the patient having a maintained (>2 h) low systolic blood pressure level (<90 mm Hg) and/or requiring norepinephrine. The Glasgow Coma Scale (GCS) was used for evaluation of neurological function. The TBI group was divided into moderate (GCS 9–12 points) and severe (Glasgow <9) involvement. Transfusion need was defined as those patients requiring more than one hemoconcentrate, and coagulopathy was defined as Quick score <70% and/or thrombocyte count <100,000/μL. All scales were validated by 2 independent evaluators.

Sample preparation and total antioxidant capacity (TAC) measurement

Measurements were performed in a double-blinded fashion; therefore, samples were randomized before TAC analyses. Blood was obtained in all cases by standard venipuncture or central venous catheterisation (basal measurement: between 24 and 48 h after the traumatic event and 7 days later in sodium citrate tubes. Immediately after sampling, diethylpentaacetic acid (1 mM) and butyl-hydroxy-toluene (10 μM) were added to the sample, in order to avoid artefactual oxidation. Plasma was obtained after centrifugation (2500 rpm, 4 ºC, 10 min), and aliquoted into cryovials for immediate storage at −80 ºC.

TAC was measured using 2 methods: FRAP and the capacity for neutralization of the free radical ABTS, which measures the reducing ability and the proton transfer capacity, respectively. For the FRAP assay, 900 μL of the FRAP reagent containing 2,4,6-tri(2-piridil)-s-triazine, FeCl₃ and acetate buffer (300 mM, pH 3.6) were mixed with 90 μL of distilled water and 30 μL of plasma or sodium phosphate buffer for the blank. Maximum absorbance values of this solution at 595 nm were taken at 37 ºC, using a Beckman DU-640 spectrophotometer (Beckman Instruments Inc., Fullerton, CA, USA). Antioxidant capacity was referenced to standards containing known concentrations of 6-hydroxy-2,5,7,8- tetramethylchroman-2-carboxylic acid (Trolox) and expressed as μM Trolox Equivalents (TE) [18].
For the ABTS assay, ABTS radical cation (ABTS\(^+\)) was produced by reacting 7 mmol/L ABTS stock solution with 2.45 mmol/L potassium persulphate in the dark at room temperature for 12–16 h before use. The ABTS\(^+\) solution was diluted with 5 mM phosphate buffered saline (pH 7.4) to an absorbance of 0.70±0.02 at 730 nm. After addition of 0.1 mL of plasma to 3.9 mL of diluted ABTS\(^+\) solution, absorbance readings were taken every 20 s using a Beckman DU-640 spectrophotometer. The reaction was monitored for 6 min. Inhibition of absorbance vs. time was plotted, and the area below the curve (0–6 min) was calculated. Solutions of known Trolox concentration were used to calculate antioxidant capacity equivalents [18]. Inter-assay and intra-assay coefficients of variance were below 5%.

To evaluate the contribution of structurally characterized plasma antioxidants, the concentrations of uric acid (reference range (RR): 3.5–7.2 mg/dL), bilirubin (RR 0.30–1.30 mg/dL), protein (RR 6.0–8.3 g/dL) and albumin (RR 3.4–5.2 g/dL) were also measured by routine biochemical analysis in a Cobas autoanalyzer at the Clinical Laboratory of Arnau Vilanova University hospital.

Statistical methods

The data are presented either as the mean ± standard deviation, the median (interquartile range) or as a percentage. For between-group comparisons, the chi-squared (χ\(^2\)) test was used for categorical variables, and the Kruskal-Wallis test or Wilcoxon test were used for continuous variables. The relationship between the TAC values and markers was assessed by Spearman’s correlation test. The calculations were performed using SPSS software version 20.0. For Circos table representation, we employed the package reported in Krzywinski et al. [19].

Results

Clinical characteristics

A total of 66 participants were enrolled in this study, and their general characteristics are shown in Table 1. As expected, TBI patients showed lower GCS test scores, THORAX patients had lower (PaO\(_2\)/FiO\(_2\)) respiratory function and those with PEXT had a higher shock prevalence and greater transfusion needs.

The extraction was performed by standard venipuncture in only 5 patients and in all remaining cases, by central venous catheter. We did not find any differences in clinical or analytical values.

Plasma TAC values

Compared with healthy individuals, the values of TAC measured by FRAP in trauma patients were higher, while those of ABTS were lower (95% CI of the mean: 463–501 and 2130–2216 for FRAP and ABTS in a healthy population, respectively). In all anatomic locations, there was a reduction in FRAP and an increase in ABTS values at day 7 after ICU entry, the increase in ABTS values being significant in all trauma locations and larger in PEXT trauma. In general terms, it was also observed that TAC values measured by both methods approached the values found in the healthy population as the number of days spent in the ICU increased. As shown in Table 2, at ICU entry, FRAP values were significantly lower in TBI and ABD in comparison with THORAX and PEXT patients (p = 0.014). However, after 1 week, these values tended to increase in TBI and ABD patients, whereas THORAX and PEXT patients showed a decrease, leading to lack of significant differences between locations (p = 0.419). ABTS measurements showed a tendency (p = 0.055) toward lower values in TBI and PEXT, with a tendency to increase in all cases after 1 week, being significant in the case of PEXT patients (p < 0.05).
Table 1. Study population characteristics of trauma patients (according anatomic location).

ANATOMIC AREA	ALL (n = 66)	TBI (n = 20)	ABD (n = 8)	THORAX (n = 27)	PEXT (n = 11)	p
Age (years)*	47±22	47±22	46±17	53±15	36±18	0.085
Gender male	78.8	75.0	87.5	88.9	54.5	0.109
APACHE II*	12±6	13±5	12±7	10±6	11±8	0.141
ISS	19±8	21±10	20±9	17±8	18±7	0.713
Type of trauma						
Transit	62.1	55.0	75.0	59.3	72.7	0.489
Work-related	7.6	5.0	0.0	7.4	18.2	
Other	30.3	40.0	25.0	33.3	9.1	
MV	43.9	60.0	75.0	18.5	54.5	0.005
PaO2/FiO2	318±110	361±113	308±131	272±87	354±102	0.040
Shock-NA	31.8	30.0	37.5	22.2	54.5	0.271
Glasgow (score)	15 (12–15)	11 (5–12)	13 (9–15)	15 (15–15)	15 (14–15)	0.001
Blood transfusion*	21.2	10.0	12.5	14.8	63.6	0.002
ICU stay (days)*	21±24	22±20	32±39	19±25	15±8	0.831
ICU Mortality	7.6	10.0	12.5	3.7	9.1	0.787

ISS (Injury severity score), FiPO2 (Inspirational Fraction of O2), MV: mechanical ventilation. Values are shown as % unless stated otherwise.
* Mean ± SD.
*Median (IQR). Blood transfusion (considering a minimum amount of 1 haemoconcentrate required).
*P values shown are according χ² or Kruskal-Wallis test.

https://doi.org/10.1371/journal.pone.0205519.t001

Table 2. Values of TAC and its components according to anatomic location and time after ICU entry.

ANATOMIC AREA	Control	ALL (n = 66)	TBI (n = 20)	ABD (n = 8)	THORAX (n = 27)	PEXT (n = 11)	p*
TAC							
FRAP (µM TE)	1	1043±312	919±335	915±283	1187±270	1025±276	0.014
	7	987±348	961±465	948±324	1045±263	918±331	0.419
ABTS (µM TE)	1	1661±520	1502±598	1958±280	1778±462	1459±509	0.055
	7	1732±556*	1572±634	1976±266	1803±554	1697±534*	0.325
MARKERS							
Uric acid (mg/dL)	1	3.53±3.5	1.99±1.3	3.00±2.2	4.74±5.2	3.83±2.2	0.007
	7	3.11±4.0*	1.71±1.4	2.73±1.9*	3.65±4.0*	4.58±7.1	0.048
Bilirubin (mg/dL)	1	0.99±0.6	0.99±0.6	0.61±0.3	0.85±0.7	0.99±0.8	0.283
	7	0.98±1.6*	0.74±0.5*	0.59±0.3	1.21±2.5	1.15±1.1	0.852
Total protein (mg/dL)	1	4.92±0.8	5.21±0.9	4.99±0.9	5.00±0.6	4.16±0.6	0.008
	7	5.51±0.7*	5.55±0.7*	5.46±0.8*	5.64±0.7*	5.18±0.6*	0.435
Albumin (mg/dL)	1	3.16±0.5	3.31±0.5	3.27±0.6	3.23±0.5	2.65±0.5	0.012
	7	3.17±0.6	3.21±0.6	3.25±0.7	3.27±0.6	2.88±0.6	0.375

Values are shown as means ± SD. p* shows P values according to the Kruskal-Wallis test measuring differences between anatomic locations. Control 1: first 2 days; Control 7: 1 week.
* Indicates significant differences between control 1 and 7 according to the Wilcoxon test (p < 0.05).
TE: Trolox-equivalents.

https://doi.org/10.1371/journal.pone.0205519.t002
Relationship of TAC values with individual molecules

As indicated in Table 2, uric acid concentrations were increased in the THORAX group relative to the TBI and ABD groups (p < 0.007). After 1 week, these values decreased, with the exception of PEXT patients. In line with this behaviour, bilirubin values were highest in the TBI and ABD groups. In contrast with uric acid, bilirubin values decreased in TBI and ABD, while they increased in THORAX and PEXT. Finally, both total proteins and serum albumin showed the same pattern, increasing in the week after ICU entry, with the lowest values in the PEXT group at entry (p < 0.008).

We also analysed the TBI group separately according to the degree of affection (moderate vs severe). We did not find differences in the demographic variables. However, there were statistically significant differences between the severe and moderate groups in APACHE II (23 ± 11 vs 18 ± 10, p = 0.002) and MV need (83.3 vs 25.0%, p = 0.009). The moderate group did not present mortality, and there were 2 deaths in the severe group (not statistically significant; p = 0.224). Regarding the values of TAC and its components, we only found differences in the levels of FRAP in the first control (786 ± 270 vs 928 ± 535 uM TE, p = 0.025).

Treating their behaviour as continuous variables, we found a significant correlation between the 2 TAC measurements, as well as between uric acid values and TAC measurements (Table 3). Bilirubin values were inversely related to TAC. APACHE II scores were inversely correlated with FRAP.

Reinforcing the influences of anatomic location on the relationship between TAC and severity, we demonstrated a difference in these relationships between the analysed groups (Fig 1). Thus, ABD patients maintained the correlation of FRAP with uric acid but not with ABTS. Moreover, they showed an inverse correlation between APACHE II score and bilirubin values. Similarly, THORAX patients did not maintain the correlation between the 2 measurements of TAC. Finally, PEXT patients showed a significant correlation between PaO$_2$/FiO$_2$ and ABTS.

Discussion

The measurement of TAC is not a common feature in clinical diagnosis, mainly because of the lack of standardization of the methodology employed and the need for standardization of the normal values and range found in the normal population. Trauma patients and healthy individuals presented different levels, though ABTS and FRAP values showed inverse changes [13]. Previous data in ICU patients showed similar results: while some patients with SIRS or

Table 3. TAC correlation with clinical variables.
ALL (n = 66)
FRAP (μM TE)

FRAP (μM TE)
ABTS (μM TE)
Uric acid (mg/dL)
Bilirubin (mg/dL)
Protein (mg/dL)
Albumin (mg/dL)
APACHE II (score)
Glasgow (score)
PaO$_2$/FiO$_2$

Correlations according Spearman’s rank correlation test. Values shown are those present in the first 48 h. Significant correlations are shown in bold characters (p < 0.05). TE: Trolox-equivalents

https://doi.org/10.1371/journal.pone.0205519.t003
Sepsis show decreased ABTS values, septic shock patients show an increase in this variable [20]. In line with our results, other authors evaluating trauma patients have shown increased reductive potential for patients who had experienced severe trauma [12]. Our data demonstrating higher FRAP, but not ABTS, capacity underscores the importance of technique used for determination of antioxidant capacity. Generally, it is assumed that the FRAP assay is more suitable for hydrophilic compounds, in contrast to the ABTS assay, which is suitable for lipophilic compounds. In previous experiments, both sepsis and infusion of lipopolysaccharide increased FRAP capacity [21, 22].

It should be remarked that plasma TAC should be the result of the cumulative effects of all the antioxidant compounds (uric acid, bilirubin, albumin, thiols, antioxidant vitamins, exogenous antioxidants) found in the vascular compartment. Although a good correlation was observed between FRAP levels and trauma severity measured by APACHE II and Glasgow scores, no single antioxidant compound was found to correlate with trauma severity scores. Thus, changes in TAC levels could be viewed as an integrative response with global relevance,
whereas individual parameters could help to delineate the pathophysiological mechanism [23,24].

Interestingly, our work demonstrates a previously unreported anatomic influence over plasma TAC, which may be explained by pathophysiological mechanisms. Thus, tissue hypoxia (as evidenced by low PaO₂/FiO₂ in the THORAX group or by low perfusion in PEXT patients) could help to explain increased uric acid concentrations in these patients, subsequent to ATP degradation. This is shared by sepsis patients, where an increase in uric acid is present [20,25–26], leading to increased TAC values, together with increased bilirubin concentrations. This would arise as a secondary effect from cholestasis induced by sepsis and its treatment [27]. Nonetheless, trauma patients exhibit a high level of haemolysis, secondary to trauma. Similarly, concerning the other component influencing TAC, albumin, it has been reported that hypoalbuminemia in trauma patients can be secondary to low synthetic rates, hypercatabolism or vascular efflux, all leading to diminished TAC [23,28]. In our PEXT group, haemodilution secondary to fluid and haemoderivate treatment could contribute as well to hypoalbuminemia and diminished TAC values in comparison with THORAX patients.

To our surprise, TBI patients showed lower TAC values. Preclinical experimental works show a delayed (24-h post-trauma) RS efflux, with consumption of circulating antioxidants, such as ascorbic acid and tocopherol [29]. We also found a relationship according to the degree of severity of the TBI: patients with more severe TBI had, at an early stage, lower levels of TAC (measured by FRAP) than patients with moderate TBI. These results agree with those obtained in patients with severe head injury, where lipid peroxidation and superoxide dismutase activities were increased, with a concomitant depletion of tocopherol, all related to a poor prognosis [30].

Concerning abdominal trauma, there are few reports on the specific relationship between abdominal location and OS. These previous works conclude that there are no relationships between trauma severity and lipid peroxidation or antioxidant levels [31]. Nonetheless, other works indicate that abdominal trauma, as present in open surgery, induces increased OS [32].

Reinforcing the dissimilarities between trauma and sepsis patients, temporal evolution of TAC values also differs between these groups. Thus, sepsis is associated with a sharp increase in TAC values, followed by a decrease in the subsequent days [20,25]. In our TBI patients, values increased from baseline to 1 week after trauma. In a population with ICU patients with overall SIRS, it was reported that decreased TAC values were a positive prognostic sign [33].

Glutamine and antioxidant-enriched diets are indicated during ICU stay, as a potential measure of inflammation and OS modulation, subsequent to increased free-radical efflux and endogenous antioxidant exhaustion [10,34–35]. However, recent data cast doubts over the clinical effectivity of those dietary measures [36–38], with some works even doubting the nutritional approach as therapeutic support to counter OS [39]. Along these lines, as many as 39% of trauma patients under glutamine supplementation (0.5 g/kg/day) showed decreased glutamine values after 6 days [40]. Nonetheless, our results help to open the question of whether the general use of antioxidant supplements might be effective in these patients, irrespective of trauma location.

The present work is limited by the relatively small population studied as well as the inclusion of patients from a single ICU. Similarly, the non-equal size of the study groups could explain the observed differences, in part on the basis of their high heterogeneity. We also assume that particular dietary habits, such as heavy vitamin/mineral supplementation (before a traumatic event) could influence the starting (and statistically processed) values, especially in small subgroups of subjects (e.g. ABD or PEXT). Furthermore, although the therapeutic approaches chosen for each of the anatomic location groups did not differ significantly, we could not exclude that individually tailored therapeutic approaches may have contributed to
the observed differences. Other biomarkers, such as vitamin C or E, with antioxidant capacity that could have modified some of our conclusions could also have been used. Nonetheless, even with these limitations, collectively, our results indicate the complexity of factors affecting circulating antioxidant status in the ICU setting in the context of severe trauma patients. The relationship between antioxidant status and anatomic location as well as the differential results depending on technique used for antioxidant capacity evaluation underscore the need for further studies. Injury can cause oxidative stress and an increase in reactive oxygen species, both of which are mitigated with time. Our main conclusion is that any study carried out on the antioxidant capacity of trauma patients should take into account not only the time since the trauma but also the location of it. Furthermore, these results could be useful in the definition of criteria for inclusion of antioxidant-rich supplements.

In summary, the response of plasma antioxidant capacity in trauma patients, viewed as a homeostatic response, is strongly dependent on time after trauma and location, with TBI failing to induce such a response.

Acknowledgments

We are also indebted to ICU nurses for its help in sample obtention.

This work has been partially supported by the IRBLleida biobank and RETICS BIOBAN-COS RD09/0076/00059, the Spanish Ministry of Economy and Competitiveness, Institute of Health Carlos III (PI 11–1532; PI 17–00134; 14–01115 and 14–00328) and the Generalitat of Catalonia (2014SGR168). FEDER Funds are also acknowledged: “A way to make Europe”.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceptualization: Luis Servia, Reinald Pamplona, Manuel Portero-Otin, Javier Trujillano.

Data curation: José C. E. Serrano, Mariona Badia, Neus Montserrat.

Formal analysis: Luis Servia, José C. E. Serrano, Mariona Badia, Neus Montserrat, Manuel Portero-Otin, Javier Trujillano.

Investigation: Luis Servia, José C. E. Serrano, Reinald Pamplona, Neus Montserrat, Manuel Portero-Otin.

Methodology: Luis Servia, José C. E. Serrano, Reinald Pamplona, Mariona Badia, Neus Montserrat, Manuel Portero-Otin.

Resources: José C. E. Serrano.

Software: Javier Trujillano.

Supervision: Luis Servia, Reinald Pamplona, Mariona Badia, Javier Trujillano.

Writing – original draft: Reinald Pamplona, Mariona Badia, Manuel Portero-Otin, Javier Trujillano.

Writing – review & editing: Luis Servia, José C. E. Serrano, Manuel Portero-Otin, Javier Trujillano.

References

1. Goodyear-Bruch C, Pierce JD: Oxidative stress in critically ill patients. Am J Crit Care. 2002; 11:543–551. PMID: 12425405
2. Berger MM, Soguel L, Shenkin A, Revelly JP, Pinget C, Baines M, et al: Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Crit Care. 2008; 12:R101. https://doi.org/10.1186/cc6981 PMID: 18687132

3. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005; 36:691–709. https://doi.org/10.1016/j.injury.2004.12.037 PMID: 15910820

4. Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med. 2003; 31:1048–1052. https://doi.org/10.1097/01.CCM.0000055371.27268.36 PMID: 12682471

5. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A: Biomarkers of oxidative damage in human disease. Clin Chem. 2006; 52:601–623. https://doi.org/10.1373/clinchem.2005.061408 PMID: 16484333

6. Grune T, Berger MM. Markers of oxidative stress in ICU clinical settings: present and future. Curr Opin Clin Nutr Metab Care. 2007; 10:712–717. https://doi.org/10.1097/MCO.0b013e3282f0c97c PMID: 18089952

7. Lemineur T, Deby-Dupont G, Preiser JC: Biomarkers of oxidative stress in critically ill patients: what should be measured, when and how? Curr Opin Clin Nutr Metab Care. 2006; 9:704–710. https://doi.org/10.1097/01.mco.0000247467.41661.f3 PMID: 17053423

8. Roth E, Manhart N, Wessner B: Assessing the antioxidative status in critically ill patients. Curr Opin Clin Nutr Metab Care. 2004; 7:161–168. PMID: 15075707

9. Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med. 2000; 29:1106–1114. PMID: 11121717

10. Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky AS, Ignarro LJ, et al. The role of oxidative stress in adult critical care. Free Radic Biol Med. 2006; 40:398–406. https://doi.org/10.1016/j.freeradbmed.2005.10.054 PMID: 16443154

11. Oldham KM, Wise SR, Chen L, Stacewicz-Sapuntzakis M, Burns J, Bowen PE: A longitudinal evaluation of oxidative stress in trauma patients. JPEN J Parenter Enteral Nutr. 2002; 26:189–197. https://doi.org/10.1177/0148607102026003189 PMID: 12005461

12. Rael LT, Bar-Or R, Salottolo K, Mains CW, Slone DS, Offner PJ, Bar-Or D: Injury severity and serum amyloid A correlate with plasma oxidation-reduction potential in multi-trauma patients: a retrospective analysis. Scand J Trauma Resusc Emerg Med. 2009; 17:57. https://doi.org/10.1186/1757-7241-17-57 PMID: 19925664

13. Servia L, Trujillano J, Serrano JC, Pamplona R, Badia M, Jove M et al. Plasma antioxidant capacity in critical polytraumatized patients?: methods, severity, and anatomic location. Crit Care. 2014; 18:434. https://doi.org/10.1186/cc13917 PMID: 25044207

14. Baker SP, O’Neill B, Haddon W Jr, WB: The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974; 14:187–196. PMID: 4814394

15. Abbreviated Injury Scale 2005, Update 2008 Barrington, USA: Association for Advancement of Automatic Medicine 2008.

16. Butcher N, Balogh ZJ. The definition of polytrauma: the need for international consensus. Injury. 2009; 40:S12–22.

17. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985; 13:818–829. PMID: 3928249

18. Serrano JC, Gonzalo-Benito H, Jové M, Fourcade S, Cassanyé A, Boada J, et al. Dietary intake of green tea polyphenols regulates insulin sensitivity with an increase in AMP-activated protein kinase α content and changes in mitochondrial respiratory complexes. Mol Nutr Food Res. 2013; 57:459–470. https://doi.org/10.1002/mnfr.201200513 PMID: 23281062

19. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009; 19:1639–1645. https://doi.org/10.1101/gr.092759.109 PMID: 19541111

20. Pascual C, Karzai W, Meier-Hellmann A, Oberhoffer M, Horn A, Bredle D et al. Total plasma antioxidant capacity is not always decreased in sepsis. Crit Care Med. 1998; 26:705–709. PMID: 9559608

21. Andresen M, Regueira T, Bruhn A, Perez D, Strobel P, Dougnac A, et al. Lipoperoxidation and protein oxidative damage exhibit different kinetics during septic shock. Mediators Inflamm. 2008; 2008:168652. https://doi.org/10.1155/2008/168652 PMID: 18566692

22. Ramakers BP, Riksen NP, Stal TH, Heemskerk S, van den Broek P, Peters WH, et al. Dipyridamole augments the antiinflammatory response during human endotoxemia. Crit Care. 2011; 15:R289. https://doi.org/10.1186/cc10576 PMID: 22129171
23. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37:277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015 PMID: 15003729

24. Tsai K, Hsu T, Kong C, Lin K, Lu F. Is the endogenous peroxyl-radical scavenging capacity of plasma protective in systemic inflammatory disorders in humans? Free Radic Biol Med. 2000; 28:926–933. PMID: 10802224

25. Doise JM, Aho LS, Quenot JP, Guillaud JC, Zeller M, Vergely C et al. Plasma antioxidant status in septic critically ill patients: a decrease over time. Fundam Clin Pharmacol. 2008; 22:203–209. https://doi.org/10.1111/j.1472-8206.2008.00573.x PMID: 18353115

26. Grum CM, Simon RH, Dantzker DR, Fox IH. Evidence for adenosine triphosphate degradation in critically ill patients. Chest. 1985; 88:763–767. PMID: 4053719

27. Chand N, Sanyal AJ. Sepsis-induced cholestasis. Hepatology. 2007; 45:230–241. https://doi.org/10.1002/hep.21480 PMID: 17187426

28. Crook MA. Hypoalbuminemia: the importance of correct interpretation. Nutrition. 2009; 25:1004–1005. https://doi.org/10.1016/j.nut.2009.04.001 PMID: 19500943

29. Shohami E, Gatì I, Beit-Yannai E, Trembovler V, Kohén R: Closed head injury in the rat induces whole body oxidative stress: overall reducing antioxidant profile. J Neurotrauma. 1999; 16:365–376. https://doi.org/10.1089/neu.1999.16.365 PMID: 10369557

30. Paolin A, Nardin L, Gaetani P, Rodríguez Y Baena R, Pansarasa O, et al. Oxidative damage after severe head injury and its relationship to neurological outcome. Neurosurgery. 2002; 51:949–954. PMID: 12234402

31. Rana SV, Kashinath D, Singh G, Pal R, Singh R. Study on oxidative stress in patients with abdominal trauma. Mol Cell Biochem. 2006; 291:161–166. https://doi.org/10.1007/s11010-006-9210-y PMID: 16733803

32. Tsuchiya M, Sato EF, Inoue M, Asada A. Open abdominal surgery increases intraoperative oxidative stress: can it be prevented? Anesth Analg. 2008; 107:1946–1952. https://doi.org/10.1213/ane.0b013e318187c96b PMID: 19020142

33. Chuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, et al. Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care 2006; 10:R36. https://doi.org/10.1186/cc4826 PMID: 16507162

34. Wischmeyer PE, Dhaliwal R, McCall M, Ziegler TR, Heyland DK. Parenteral glutamine supplementation in critical illness: a systematic review. Crit Care.2014; 18:R76. https://doi.org/10.1186/cc13836 PMID: 24745648

35. Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005; 31:327–337. https://doi.org/10.1007/s00134-004-2522-z PMID: 15605227

36. Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, et al. Scottish Intensive care Glutamine or selenium. Evaluative Trial Trials Group. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011; 342:d1542. https://doi.org/10.1136/bmj.d1542 PMID: 21415104

37. Heyland D, Wischmeyer PE, Day AG; Canadian Clinical Care Trials Group: Glutamine and antioxidants in critically ill patients. N Engl J Med. 2013; 369:484–485.

38. van Zanten AR, Sztark F, Kaisers UX, Zielmann S, Felbinger TW, Sablotzki AR, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014; 312:514–524. https://doi.org/10.1001/jama.2014.7698 PMID: 25096691

39. Berger MM. Can oxidative damage be treated nutritionally? Clin Nutr. 2005; 24:172–183. https://doi.org/10.1016/j.clnu.2004.10.003 PMID: 15784476

40. Pérez-Barcena J, Marsé P, Zabalegui-Pérez A, Corral E, Herrán-Monge R, Gero-Escapa M, et al. A randomized trial of intravenous glutamine supplementation in trauma ICU patients. Intensive Care Med. 2014; 40:539–547. https://doi.org/10.1007/s00134-014-3230-y PMID: 24556911