Collagen fiber angle in the submucosa of small intestine and its application in gastroenterology

Yan-Jun Zeng, Ai-Ke Qiao, Ji-Dong Yu, Jing-Bo Zhao, Dong-Hua Liao, Xiao-Hu Xu, Gregersen Hans

INTRODUCTION

Several G.I. diseases can change the collagen fiber structure in the G.I. tract\[1-4\]. The collagen fiber content and its distribution outside the cell are closely related to some diseases. For example, systemic sclerosis (scleroderma) will replace smooth muscle and deposit large amounts of collagen instead. Gastrointestinal sclerema is a common clinical disorder; however, due to its complicated etiology, most of them are not easily diagnosed and all the patients with such disease manifested distinct collagen fiber transformations. Early collagen fiber transformations are swelling and homogenization and then become thickened, sclerosed and arranged in a close order\[5-9\]. Collagen synthesis is increased especially the ratio of fine collagen fibers; at the same time, the smooth muscle fiber bundles become homogeneous, sclerosed and atrophic. There are changes occurred in the orientation of collagen fibers\[10-13\]. Obstructive diseases could also change the collagen structure and content\[14-16\]. In normal tissue the submucosal layer consist almost entirely of collagen, which is called the skeleton of the small intestine, and it is well known that the fibers run in a cross-cross pattern with 30 degrees angle in longitudinal direction\[17-20\]. The directional distribution of collagen fibers has a very important role in studying the function and self-repair of soft tissue\[21\].

The application of digital image-processing technology in medicine field has offered an accurate, simple, convenient and rapid method for the measurement and analysis of large amounts of medical images, especially for the quantitative analysis of smaller pictures, such as microscopic images. At the present time, the techniques for the quantitatively analyzing the distribution of collagen fibers consist mainly of several kinds as follows: that is, the method of quantitatively polarized light microscopy, small angle beam dispersion, image analysis and X-ray diffraction. These methods will sometimes be constrained by the image size, time cost or image connecting, and 90° orientation of template etc\[22\].

The purpose of this paper is to propose a method suitable for analyzing the angle and distribution of 2-dimensional collagen fiber in larger sample and to investigate the relationship between the angles of collagen fiber and the pressure it undergoes. At the same time, this paper also offers an effective method for research of the large area collagen fiber distribution.

MATERIALS AND METHODS

Isolation of small intestine

Seven Sprague-Dawley (250-300 g body wt) rats were used in this study. They were fasted but free access to water for 24 hours before experiment. Approval of the protocol was obtained from the Danish Animal Experiment Committee. After animal was euthanized by cervical dislocation, its abdomen was opened and the small intestine was separated from the adjacent organs. An 18-cm-long segment from the middle part of small intestine was cut and excised within 2 min, then transferred to an organ bath containing oxygenated Krebs-Ringer-bicarbonate solution at pH 7.4 with 6 % Dextran and 2 mL EGTA.
Procedures

The specimen was further cut into six 3-cm-long segments. One of the six segments served as control and was fixed in 4% formalin in no-load condition. The 5 segments left had one end ligated while the other end was connected via a tube to a fluid container for application of different pressures, which were 2, 5, 10, 15 and 20 cm H₂O respectively. Before we pressurized the intestinal segments, we placed some microbeads on surface of the middle part of the segments. Then the outlet was clamped to maintain the volume. After applying pressure for 3 minutes, a record of the whole intestine segment and the part with dots was obtained using video-camera (SONY CCD/RGB, JAPAN) to monitor the whole process (refer to Figure 1) performed under room temperature.

After the specimen was fixed in 4% formalin for 24 hours, 1.0 cm long and 0.5 cm long transverse sections were taken from the middle part of specimen and dehydrated in a series of graded ethanol (70%, 90%, 95% and 100%) and embedded in paraffin respectively. 5 µm serial slices were cut and stained with picrosirius red for collagen analysis and HE (hemotoxylin and eosin) for general histological observation[22-26].

Figure 1 Slice record.

Image acquire

A series of polarized images of intestine slice was acquired by the recorder through microscope at every δ degree angle, and then stored in computer through image collecting card with TIFF format (RGB system type). The TIFF format, a very popular in use currently to reflect the details of the slice images distinctly, and the pixel values in the polarized images are suitable for the principles presented previously very well[27-29]. Therefore we took the TIFF form to verify the method’s feasibility and practicality.

In polarized light microscope, polarized light is delivered onto the sample to be analyzed and handled after being passed through two filter glasses. When the angle between optical axis of the two polarizing lens is 0 degree (that is, both of the two optical axis are parallel to the muscle direction), the blackest image area will be the part where the collagen fiber angle is 90 or 0 degree to the optical axis. Such an image area is also the part where the pixel values are minimum. Therefore, through image analysis we can find out all the area where the collagen fibers are parallel to muscle direction and thereby figure out the area ratio between the study area and the entire analysis Area (abcd). In the slice image analysis, the collagen fiber manifested as some pink striation (f) and the muscle fiber (e) some buff[4](refer to Figure 2).

Rotating the polarizing eyepiece while maintaining the objective lens and the experiment sample stable can make muscle fiber direction coincide with the optical axis of polarizing objective. When the polarizing eyepiece is rotated δ degree, all the areas where the collagen fiber are δ degree or 90 + δ degree with the muscle fiber will present in the blackest part[21], in this way, their ratio to the entire analyzing area can be figured out as well.

Accordingly, we can obtain the relationship between the angle and its area ratio to the entire area. Since the collagen fiber distribution is uniform, that is, reticular in shape, its longitude and latitude lines are +30 degree and -30 degree to the muscle fiber direction. The area ratio for which is therefore the biggest, we can utilize the area ratio to reckon the collagen fiber angle.

Figure 2 Image processing.
Image processing

The image processing is the key part of the research, which is eventually based on the analysis of every image’s pixels, namely, first to normalize the pixel value and then to use proper algorithms to obtain results. When all the data are summed up, the distribution relationship of collagen fibers can be obtained reversely through the regression curve.

Since the scope of the images recorded is so large that there can include a great deal of muscle tissue and other unrelated background (Figure 2), which should be removed by the image filter before the analysis. The area selected for analysis should be done on the original image before it was polarized.

In this study, the background noises were excluded directly with a frequency domain strengthening method because both of the edge and noise in the image correspond to the high frequency section of the image’s Fourier transformation, we could weaken this part of the frequency to lessen its influence in the frequency domain\[30-33\].

Data processing

For the purpose of saving much more information of each pixel, the matrix was unified. Take matrix F (m,n) as the basis for further processing, the data less than the chosen threshold value were considered as the collagen fiber area in the polarized image. Figure out the pixel’s number that was less than the chosen threshold value’s \(j\)[34,35]. And made:

\[
b(j) = \frac{s(j)}{m \times n},
\]

\(b(j)\) was equal to the area ratio of collagen fiber and the chosen observed area in polarized image \(j\). From this we got series of the ratio sequence, which were stored into array \(Y(j)\).

RESULTS

According to the steps mentioned above, the calculation results were shown in Table 1, where the first column listed the pressures the tissue were received and the first row was the polarized light angles being rotated. We found that for the same slice, with polarized light angle’s variation, its corresponding area ratio is not identical; for each tissue under different pressures, its biggest area ratio is not identical either. To obtain the smooth curve showing the relationship between the angle and the corresponding ratio, we made a nonlinear normality on the sample data\[36\], the abscissa of the curve was \(\delta\)’s integer multiple and the ordinate the series value in array \(Y(i)\) (Figure 3).

The relationship between pressures tissue received and their corresponding fiber angle was shown in Figure 4.

We tested other intestinal slice’s images (of the same animal) and found that their properties above were similar by and large.

DISCUSSION

From the data in Table 1, we found that in the same tissue sample there exist obvious alterations in the collagen area ratio

Table 1 Area ratio of slice image at different angles within various distension pressures (\(\delta = 5^\circ\), *is the biggest area ratio of this slice image)

\(\delta\)	0	5	10	15	20	25	30	35	40	45
H\(_2\)O										
0 cm	.7288	.7465	.7016	.6694	.6238	.5978	.7666*	.5290	.4852	.4669
2 cm	.7649	.7713	.7732	.7890	.7576	.7399	.7245	.7956*	.6730	.6654
5 cm	.6817	.6874	.6959	.7118	.7535	.7591	.7632	.7744	.7976*	.7664
10 cm	.7162	.7375	.7563	.7877*	.7730	.7469	.7272	.6866	.6764	.6884
15 cm	.7139	.7285	.7455	.7611	.7760	.8337*	.8000	.7693	.7580	.6873
20 cm	.7548	.7700	.7885	.8125	.8270*	.7807	.7457	.7400	.7372	.7320
as the angles of polarized light changed. In different slice’s images with different pressures, its biggest ratio was also not identical (Figure 4), and the biggest value was fairly obvious. However, it cannot be determined whether the magnitude of collagen fiber angle and the fiber content are all in direct proportion with the pressure that the intestines received (Figure 4, Figure 5), because this depends somewhat on the way how it receives the pressure. Using other methods to change its stress still needs to be tested in future experiments. The method of calculating ratios of different pixel values to estimate collagen fiber angles has its feasibility and reliability, which allows a larger area of soft tissue being analyzed with relatively low cost and simple equipment. The disadvantage of this method is the difficulty in determining an appropriate threshold value as well as a definite scope suitable for analyzing which have very important influence on the study results. At the same time, the less δ is to be selected, the more accurate the angle will be.

This paper has tried to acquire the collagen fiber angle of soft tissue in intestine slice through introducing a quantitative analysis method for calculating different pixel values whose validity is verified with computer program, and suggested a practical and effective method for basic research on G.I. disease.

REFERENCES

1 Sacks MS, Gloeckner DC. Quantification of the fiber architecture and biaxial mechanical behaviour of porcine intestinal submucosa. J Biomech Mater Res 1999; 46: 1-10
2 Clarke KM, Lantz GC, Salisbury SK, Badyak SF, Hiles MC, Voytk SL. Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 1996; 60: 107-114
3 Badyak SF, Lantz GC, Coffoy A, Geddies LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989; 47: 74-80
4 Fackler K, Klein L, Hiltner A, Micros J. Polarizing light microscopy of intestine and its relationship to mechanical behaviour. J Micros 1981; 124: 305-311
5 Klein L, Eichleberger H, Mirian M, Hiltner A. Ultrastructural properties of collagen fibers in rat intestine. Connective Tissue Res 1983; 12: 71-78
6 Gabella G. The cross-ply arrangement of collagen fibers in the submucosa of the mammalian small intestine. Cell Tissue Res 1987; 248: 491-497
7 Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT. Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 1988; 22: 686-695
8 Whittaker P, Boughner DR, Kloner RA. Role of collagen in acute myocardial infarct expansion. Circulation 1991; 84: 2123-2134
9 Yao YL, Xu B, Zhang WD, Song YG. Gastrin, somatostatin, and experimental disturbance of the gastrointestinal tract in rats. World J Gastrointestol 2001; 3: 399-402
10 Jalil JE, Janicki JS, Pick R, Abrahams C, Weber KT. Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circ Res 1989; 65: 258-264
11 Jorgensen CS, Assentoff JE, Knauss D, Gregersen H, Briggs GA, Jorgensen Claus S. Small intestine wall distribution of elastic stiffness measured with 500 MHz scanning acoustic microscopy. An Biomed Eng 2001; 29: 1059-1063
12 Eghbali M, Robinson TF, Seltser S, Blumenfeld EO. Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 1989; 23: 723-729
13 Zou XP, Liu F, Lei YX, Li ZS. Change and role of β-endorphine in plasma and gastric mucosa during the development of rat stress ulceration. Shanghai Shengwu Yixue Gongcheng 2001; 22: 3-5
14 Jiang ZL, Li HH, Liu B, Teng ZZ, Qing KR. Biomechanical properties of arteries in experimental hypotensive rats. Shengwu Yixue Gongcheng 2001; 18: 381-384
15 Wang ZS, Chen JDZ. Blind separation of slow waves and spikes from gastrointestinal myoelectrical recordings. IEEE Transactions on Information Technology in Biomedicine 2001; 5: 133-137
16 Cui JH, Krueger U, Henne-Bruns D, Kremer B, Kalthoff H. Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases. World J Gastroenterol 2001; 7: 381-386
17 James X, Horace HS, Nabi S, Helena TF, Gatenso J, Wang DF, Tideman H. Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery. IEEE Transactions on Information Technology in Biomedicine 2001; 5: 97-107
18 Zhao J, Shu H, Zhou S, Tong X, Zhuang FY, Gregersen H. Remodelling of zero-stress state of small intestine in streptozocin-induced diabetic rats. Effect of gliclazide. Dig Liver Dis 2002; 34: 707-716
19 Orberg JM, Klein L, Hiltner A. Scanning electron microscopy of collagen fibers in intestine. Connective Tissue Research 1982; 9: 187-193
20 Orberg J, Baer E, Hiltner A. Organization of collagen fibers in the intestine. Connective Tissue Research 1983; 11: 257-259
21 Komuro T. The lattice arrangement of the collagen fibers in the submucosa of the rat small intestine: scanning electron microscopy. Cell Tissue Res 1986; 251: 117-121
22 Gabella G. The collagen fibrils in the collapsed and the chronically stretched intestinal wall. J Ultrastruct Res 1983; 85: 127-138
23 Dickey JP, Hewlett BR, Dumas GA, Bednar DA. Measuring collagen fiber orientation: A two-dimensional quantitative macroscopic technique. J Biomech Eng Aug 1996; 120: 537-540
24 Pu PY, Li YH, Han YS, Yuan CW, Wu L. Rat keratinocyte primary cultures based on conducive polypropylene primary cell culture technique. J Biomed Eng 2001; 25: 416-418
25 Liu XP, Li YM, Qiu XC, Li J, Yang YL. Effect and mechanism of melatonin on hemorrhoeology in morphine withdrawal rats. Beijing Shengwu Yixue Gongcheng 2001; 20: 143-145
26 Jiang ZL, Yang QJ, Ji HK, Chen EY. Effect of endothelin on zero-stress state of arties in spontaneous hypertensive rats (SHR). Zhongguo Shengwu Yixue Gongcheng Xuebao 2001; 289-292
27 Whittaker P, Kloner RA, Boughner DR, Pickering JG. Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 1994; 89: 397-410
28 Sluyter EM. Optical methods in biology. New York Wiley 1970: 268-338
29 Chandraratna PA, Whittaker P, Chandraratna PM, Gallet J, Kloner RA, Hla A. Characterization of collagen by high-frequency ultrasound: evidence for different acoustic properties based on collagen fiber morphologic characteristics. Am Heart J 1997; 133: 364-368
30 Pickering JG, Boughner DR. Quantitative assessment of the age of fibrotic lesions using polarized light microscopy ang digital image analysis. Am J Pathol 1991; 138: 1225-1231
31 Zhang YJ. Objective image quality measures and their applications in segmentation evaluation. Journal of Electronics 1997; 14: 97-103
32 Liu ZW, Zhang YJ. Image retrieval using both color and texture features. Tongyun Xuebao 1999; 20: 36-40
33 Dong YN. A New method for efficiently implementing parallel image radations. I J Xue 2001; 29: 1671-1675
34 Xue JH, Zhang YJ, Lin KG. MAP pixel clustering method based on SEM estimation of scatter-plot for low quality image. I J Xue 1999; 27: 95-98
35 Zhang YJ, Xu Y, Liu ZW, Yoo YR, Li Q. A test-bed for retrieving images with extracted features. Zhongguo Tu Xing Xuebao 2003; 6: 439-443
36 Crowe JA, Gibson NM, Woolfson MS, Somek MG. Wavelet transform as a potential tool for ECG analysis and compression. J Biomed Eng 1992; 14: 268-272

Edited by Zhu L