Chapter from the book *Optoelectronics - Materials and Techniques*
Downloaded from: http://www.intechopen.com/books/optoelectronics-materials-and-techniques
1. Introduction

In the fields of polymer and material chemistry, conjugated polymers (Skotheim et al., 2006) are an important class of polymers for next-generation optoelectronic materials due to their intriguing conductivity, photoluminescence, electroluminescence, and liquid crystallinity. Numerous conjugated polymers have been synthesized thus far, and a variety of unique conjugation systems have been incorporated into conjugated polymer backbones. One of the current research topics in this field focuses on the construction of layered and/or π-stacked structures. Layered π-electron systems are commonly found in both nature and artificial materials; for example, light-harvesting antenna complexes in photosynthetic systems, such as chlorophylls and bacteriochlorophylls, consist of layered π-electron systems. In optoelectronic materials, charges are delocalized in some layers and transferred from one electrode to the opposite one through the layered π-electron systems. Despite the importance of the layered structures of the π-electron systems, the synthesis of polymers comprising layered-aromatic rings and π-electron systems in a single polymer chain has rarely been studied (Morisaki & Chujo, 2006; Morisaki & Chujo, 2008a; Morisaki & Chujo, 2009d; Nakano, 2010).

To achieve the construction of the desired layered structure, xanthene, anthracene, and naphthalene compounds can be employed as scaffolds. The rotary motion of two aromatic units substituted at the 4,5-positions of xanthene, 1,8-positions of anthracene, and 1,8-positions of naphthalene is restricted due to steric hindrance, leading to a face-to-face structure. Thus, this review presents a summary of the syntheses and properties of a new class of aromatic ring-layered polymers, as well as oligomers containing xanthene, anthracene, and naphthalene scaffolds. Due to the vast number of studies on xanthene-, anthracene-, and naphthalene-based face-to-face dimeric systems, the polymers and oligomers (i.e., three or more face-to-face aromatic rings) are drawn.

2. Xanthene-based polymers

The 4,5-positions of xanthene can be readily functionalized by the treatment of xanthene compounds with alkyllithium reagents to yield the corresponding 4,5-dilithiated xanthenes due to the lithium-oxygen interaction, as shown in Scheme 1 (Morisaki & Chujo, 2005). The reaction of the 4,5-dilithiated xanthenes with halogens such as iodine results in the formation of diiodoxanthene derivative 1, which is used in the palladium-catalyzed coupling reactions.
Scheme 1. Synthesis of monomer 1

\[
\begin{align*}
\text{Br} & \quad \text{Br} \\
\text{\begin{center}Scheme 1. Synthesis of monomer 1\end{center}}
\end{align*}
\]

Scheme 2. Synthesis of polymers P1-P3

\[
\begin{align*}
\text{Pd(PPh}_3\text{)}_4 & \quad \text{Cul} \\
\text{THF, Et}_3\text{N} & \quad 50 \text{ °C, 48 h} \\
\text{Ar} & \quad \text{Ar} \\
\text{P1-P3}
\end{align*}
\]

Table 1. Polymerization results

entry	Mono-ethylarene	Feed ratio \(x:y:z\)	Polymer	Yield (%)	\(M_n\) (calcd.)	\(M_n\) (found by \(^1\text{H NMR}\))
1		10:9:2	P1a	79	5956	4100
2		5:4:2	P1b	65	3082	3100
3		3:2:1	P1c	50	1933	2100
4		10:9:2	P2a	70	5896	7500
5		5:4:2	P2b	50	3022	4200
6		3:2:1	P2c	65	1872	2600
7		10:9:2	P3a	76	5786	5750
8		5:4:2	P3b	59	2912	3000
9		3:2:1	P3c	56	1762	1700

Table 1. Polymerization results

As shown in Scheme 2, the Sonogashira-Hagihara coupling (Tohda et al., 1975; Sonogashira, 2002) of diiodoxanthene 1 with either a diethynylarene, such as pseudo-\(p\)-diethynyl[2.2]paracyclophane 2, or mono-ethynylarenes 3-5 proceeded smoothly to produce [2.2]paracyclophane-layered polymers (Morisaki et al., 2008b; Morisaki et al., 2009b). The results are summarized in Table 1. In the presence of mono-ethynylarenes 3-5, aromatic groups were introduced as end-capping units. Polymers P1, P2, and P3 possess [2.2]paracyclophane, anthracene, and nitrobenzene as the end-capping units, respectively. Their molecular weights were controlled by the molar ratios of the monomers, as shown in Table 1. For example, in the case of a molar ratio (xy:z) of 9:10:2, the number average molecular weights \(M_n\) of P1a, P2a, and P3a were 4100, 7500, and 5750 (entries 1, 4, and 7), respectively, which were calculated from their respective \(^1\text{H NMR}\) spectra.
Fig. 1. UV-vis absorption (UV) spectra of polymers P1a-c in CHCl₃ (1.0 × 10⁻⁵ M).

As shown in the UV-vis absorption spectra (in CHCl₃, 1.0 × 10⁻⁵ M) of polymers P1a-c (Figure 1), there were π-π* absorption bands at around 290 and 330 nm. The absorption spectra of P1a-c were independent of the number of the layered [2.2]paracyclophanes. It is reported that neighboring [2.2]paracyclophane units in the polymer backbone have sufficient free space according to X-ray crystallographic analysis of the model compound (Morisaki et al., 2009a). Therefore, π-π interactions among [2.2]paracyclophane units in a single polymer chain are considered to be weak in the ground state.

The optical properties of polymers P1a ($M_n = 4100$) and P2b ($M_n = 4200$) were compared. Figures 2A and 2B show the UV-vis absorption and emission spectra of polymers P1a and P2b, respectively. As shown in Figure 2A (see also Figure 1), the π-π* band of the layered [2.2]paracyclophane units was observed in the spectrum of P1a, whereas a sharp absorption peak at around 270 nm and a broad absorption peak at around 400 nm appeared in the
spectrum of \(\text{P}_2\text{b} \) (Figure 2B). These new absorption bands were derived from the anthracene units at the polymer \(\text{P}_2\text{b} \) chain ends.

Polymer \(\text{P}_1\text{a} \) emitted blue light with a peak at around 400 nm after excitation at 334 nm (Figure 2A), which was attributed to emission from the layered [2.2]paracyclophane moieties. \(\text{P}_2\text{b} \) exhibited a quite different photoluminescence spectrum with a peak at around 450 nm with a vibrational structure on the excitation wavelength of 334 nm (Figure 2B). This excitation wavelength excited only the layered [2.2]paracyclophane moieties because the end-capping anthracene units do not have an absorption band around 334 nm. Thus, \(\text{P}_2\text{b} \) emitted from the terminal anthracenes instead of emitting from the layered [2.2]paracyclophanes. As shown in Figures 2A and 2B, the emission peak of the layered cyclophane units (at 400 nm in Figure 2A) efficiently overlapped with the absorption band of the anthracene units (at around 400 nm in Figure 2B). Time-resolved photoluminescence spectra of \(\text{P}_2\text{b} \) are shown in Figure 3; these spectra indicate that emission from the cyclophane units decreased while that from the anthracene units increased. These results suggest that fluorescence resonance energy transfer (FRET) (Förster, 1946) from the cyclophane units to the end-capping anthracenes occurs.

Fig. 3. Time-resolved PL spectra of polymer \(\text{P}_2\text{b} \) in CHCl$_3$.

The UV-vis absorption spectra of the nitrobenzene-end-capped polymers \(\text{P}_3\text{a-c} \) (in CHCl$_3$, 1.0×10^{-5} M) are shown in Figure 4A. These spectra exhibited broad absorption bands around 400 nm in addition to the \(\pi-\pi^* \) transition band of the layered [2.2]paracyclophanes; the absorbance around 400 nm increased as the \(M_n \) value decreased. This absorption band arises from the polymer chain ends that contain nitrophenyl groups as the concentration of the end-capping nitrophenyl groups increased with a decreasing \(M_n \) value. As can be expected, the emission from the [2.2]paracyclophane moieties was quenched by the introduction of the nitrophenyl units at the polymer chain ends due to the good overlap between the emission peak of the [2.2]paracyclophane moieties and the absorption band of the nitrophenyl moieties. As shown in Figure 4B, the photoluminescence peak intensities and the photoluminescence quantum efficiencies of \(\text{P}_3\text{a-c} \) decreased relative to those of \(\text{P}_1\text{a} \). The end-capping nitrophenyl groups of \(\text{P}_3\text{a-c} \) effectively quenched the photoluminescence from the layered [2.2]paracyclophane moieties by FRET. It is reported that the end-capping nitrophenyl group quenched photoluminescence 1.0×10^4 times more effectively than the addition of nitrobenzene to a \(\text{P}_1\text{a} \) solution.
Fig. 4. (A) UV spectra in CHCl$_3$ (1.0 × 10$^{-5}$ M) and photoluminescence (PL) spectra in CHCl$_3$ (5.0 × 10$^{-7}$ M) of polymers P$_{3a-c}$. (B) UV spectra in CHCl$_3$ (1.0 × 10$^{-5}$ M) and PL spectra in CHCl$_3$ (5.0 × 10$^{-7}$ M) of polymers P$_{1a}$ and P$_{3a-c}$.

This synthetic approach using xanthene as the scaffold makes it possible to incorporate various aromatic compounds as the layered ring units in a single polymer chain. Scheme 3 shows the synthesis of 4,5-diethynylxanthene 3 as well as its polymerization with diiodocarbazoles 4 and 5. The results of polymerization are summarized in Table 2. Polymers P$_4$ (Fernandes et al., 2010) and P$_5$ (Morisaki et al., 2009e) comprise 2,7-substituted and 3,6-substituted carbazoles, and their M_n values were calculated to be 2500 and 2300 (Table 2), respectively.

![Scheme 3. Synthesis of monomer 3 and polymers P4 and P5.](image-url)
Table 2. Synthesis of polymers P4 and P5

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{entry} & \text{Polymer} & \text{Yield (\%)} & M_n & M_w/M_n \\
\hline
1 & P_4 & 63 & 2500 & 1.3 \\
2 & P_5 & 62 & 2300 & 1.1 \\
\hline
\end{array}
\]

M_n and M_w/M_n were calculated by MALDI-TOF mass spectra and GPC (CHCl$_3$, polystyrene standards), respectively.

The UV-vis absorption and photoluminescence spectra of P4 and P5 in diluted CHCl$_3$ solution are shown in Figure 5. The conjugation length of P4, which consists of 2,7-linked carbazole units, was longer than that of P5, which has 3,6-linked carbazole units. Conjugation of the 3,6-linked carbazole unit is not effective because the 3,6-linked carbazole unit on xanthene is twisted due to steric hindrance, which results in the shorter wavelength of the absorption peak in P5 as compared to that of P4. In Figure 5, P4 and P5 are shown to exhibit emission peak maxima at 431 and 425 nm, respectively. The Stokes shift of P5 was greater than that of P4 suggesting that the conformation change from the ground state to the excited state of the 3,6-linked carbazole is larger than that of 2,7-linked carbazole due to the boomerang shape of the 3,6-linked carbazole unit (Morin et al., 2005; Grazulevicius et al., 2003).

The fluorescence emission spectrum of N-(p-tolyl)carbazole-layered polymer P6 with nitrophenyl groups at the polymer chain ends was investigated to show its potential as a single molecular wire in comparison with P7. Figure 6A shows the photoluminescence spectra of polymers P6 and P7 in CHCl$_3$. The peak intensity of P6 clearly decreased and the photoluminescence quantum yield (Φ_{PL}) of P6 was estimated to be 1% indicating that the terminal nitrophenyl moieties in P6 quenched the emission from the layered carbazole units. To compare, 1, 10, and 100 equivalents of nitrobenzene molecules per carbazole unit were added as a fluorescence quencher to a solution of P7, as shown in Figure 6B. However, ineffective quenching of the emission from the layered carbazole in P7 was observed. The carbazole-layered polymer can also act as a molecular wire that transfers energy and/or electrons to the polymer termini in the same manner as the cyclophane-layered polymers discussed above.
By using xanthene as the scaffold, not only aromatic compounds but also π-conjugated oligomers can be one-dimensionally layered in a single polymer chain. Scheme 4 outlines the synthetic procedure of the oligo(p-phenylene)-layered polymers (Morisaki et al., 2009c) by modified Suzuki-Miyaura coupling (Miyaura et al., 1979; Miyaura & Suzuki, 1995). In this case, tert-butyl groups were not introduced into the xanthene skeleton because of their steric bulk and dodecyl groups were substituted at the 9-position of xanthene in order to improve the solubility of the polymers. The reaction of monomers 6 and 7 (10:9) was carried out in the presence of Pd(OAc)$_2$ with 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos) as the ligand (Scheme 4) (Barder et al., 2005), and the successive addition of p-methoxyphenyl boronic acid 8 and p-nitrophenyl boronic acid 9 afforded the corresponding polymers P8 and P9 in 37% and 40% isolated yields with M_n values of 6100 and 6250, respectively.
Scheme 4. Synthesis of polymers P8 and P9.

Figure 7A shows the photoluminescence spectra of P8 and P9 in diluted CHCl₃ solutions; the spectra are almost identical and feature peak maxima at around 410 nm. As can be expected, the peak intensity of P9 (Φₚₐₗ = 55%) was lower than that of P8 (Φₚₐₗ = 25%), indicating that the end-capping nitrobenzene units of P9 quench the emission from the layered biphenylenes. The photoluminescence spectra of P8, which possesses p-methoxyphenyl chain ends, with an excess amount of nitrobenzene are shown in Figure 7B. However, the quenching effect of the additional nitrobenzene was quite low despite the addition of 100 equivalents of nitrobenzene per biphenylene unit. According to the Stern–Volmer plots, the Stern–Volmer coefficient (Kₛᵥ) of P9 was 10⁴ times larger than that of P8 upon the addition of nitrobenzene. The two end-capping nitrophenyl moieties in P9 effectively quenched the photoluminescence from the layered biphenylenes via through-space interactions of the single polymer chain.

Fig. 7. (A) UV spectra of polymers P8 and P9 in CHCl₃ (1.0 × 10⁻⁵ M). (B) PL spectra of polymer P8 with 100 equiv of nitrobenzene in CHCl₃ (1.0 × 10⁻⁷ M).
Oligothiophenes were also layered on xanthenes (Morisaki et al., 2009f; Morisaki et al., 2010b); the synthetic routes for the bithiophene-layered polymer \(P_{10} \) by iron-mediated oxidative coupling and modified Suzuki-Miyaura coupling are shown in Scheme 5. Bis(thienyl)xanthen monomer 10 was prepared in 81% yield by Negishi coupling (Negishi et al., 1977; Negishi, 1982) of 2-thienylzinc bromide and 6 and then treated with \(\text{FeCl}_3 \) to obtain the corresponding polymer \(P_{10} \) in 84% isolated yield with an \(M_n \) of 4500. However, \(P_{10} \) was contaminated with a small amount of iron species. Therefore, an alternate synthesis was pursued; compound 10 was readily iodinated to afford monomer 11 in 56% yield, which was reacted with bis(pinacolato)diboron 12 in the presence of a catalytic amount of \(\text{Pd(OAc)}_2/\text{S-Phos} \) to give \(P_{10} \) in 25% isolated yield with an \(M_n \) of 2600.

The UV-vis absorption spectra of \(P_{10} \) and model compound 13 in CHCl\(_3\) solutions are shown in Figure 8. The absorption maximum of \(P_{10} \) was observed at around 360 nm, while that of 13 appeared at 379 nm due to the contribution of the coplanarity of the bisthioene and the methoxyphenyl groups of 11 in the ground state (Figure 9). This was supported by the \(^1\)H NMR spectrum of 13. The bithiophene units in \(P_{10} \) rotate freely to avoid steric hindrance, while the bithiophene units in 13 adopt a relatively planar structure to extend its conjugation length (Figure 9).

Scheme 5. Synthesis of polymer \(P_{10} \).

Fig. 8. UV spectra of polymer \(P_{10} \) and compound 13 in CHCl\(_3\) (1.0 \(\times \) 10\(^{-5} \) M).
Terthiophene-, quarterthiophene- and quinquethiophene-layered polymers were synthesized by the coupling reaction of 11 with monomers 14–16, as shown in Scheme 6; the polymerization results are listed in Table 3. The isolated yields of P10–13 were relatively low (19%–40%) due to repeated reprecipitation and purification using recyclable liquid chromatography. The polymers obtained were soluble in common organic solvents such as THF, CH$_2$Cl$_2$, CHCl$_3$, and toluene. The polymer thin films were readily formed by spin-coating from their toluene solution. The thermal stabilities of the polymers were examined by thermogravimetric analysis (TGA) and all polymers were sufficiently stable with a 10% weight loss at temperatures around 400 °C under N$_2$ (Figure 10).

Scheme 6. Synthesis of polymers P11–P13.

The UV-vis absorption spectra and PL spectra of P10–P13 in CHCl$_3$ are shown in Figure 11; the data are listed in Table 3. In Figure 11A, absorption bands assigned to the π-π* transition of oligothiophenes were observed, and the absorption maxima bathochromically shifted as the number of thiophene rings increased.
Synthesis of Aromatic-Ring-Layered Polymers

entry	Polymer	Yield (%)	M_n	M_w/M_n	$\lambda_{\text{abs,max}}$ (nm)	$\lambda_{\text{PL,max}}$ (nm)	Φ_{PL}
1	P10	25	2600	1.1	360	440, 470	0.12
2	P11	40	3200	1.0	358, 380(sh)	480, 504	0.20
3	P12	30	2800	1.1	412	520(sh), 541	0.29
4	P13	19	3800	1.1	420	534, 562	0.27

Table 3. Polymerization results and optical properties

M_n and M_w/M_n were calculated by MALDI-TOF mass spectra and GPC (CHCl$_3$, polystyrene standards), respectively. $\lambda_{\text{abs,max}}$ was measured in CHCl$_3$ (1.0 x 10$^{-5}$ M). $\lambda_{\text{PL,max}}$ was measured in CHCl$_3$ (1.0 x 10$^{-7}$ M) excited at each absorption maximum. Φ_{PL} was absolute quantum efficiency in solution.

Fig. 10. TGA thermograms of polymers P10-13.

Fig. 11. (A) UV spectra of polymers P10-13 in CHCl$_3$ (1.0 x 10$^{-5}$ M). (B) PL spectra of polymers P10-13 in CHCl$_3$ (1.0 x 10$^{-7}$ M).
Figure 11B exhibits the photoluminescence spectra of P10–P13 by excitation at each absorption maximum. The red-shift of the spectra was observed with an increase in the number of the thiophene rings in the same manner as in common conjugated systems. The photoluminescence absolute quantum efficiencies (\(\Phi_{\text{PL}}\)) in CHCl\(_3\) solutions were estimated to be 0.12–0.29, as listed in Table 3. Generally, the \(\Phi_{\text{PL}}\) values of the \(\pi\)-stacked bisthiophenes were low (0.001–0.054) because of the intermolecular aggregation of bisthiophenes due to strong \(\pi-\pi\) interactions. The layered oligothiophenes are considered to be isolated in a single polymer chain due to the relatively long distance between the 4- and 5-positions of the xanthene skeleton despite the layered structure of P10–P13.

Cyclic voltammetric (CV) analyses of P10–P13 were carried out in CH\(_2\)Cl\(_2\), and the resultant cyclic voltammograms are shown in Figure 12. Broad oxidation peaks were observed ranging from 0.4 to 0.5 V with a ferrocene/ferrocenium (Fc/Fc\(^+\)) external reference, as shown in Figure 12. The onset potentials of P10–P13 were found to be approximately 0.15 V (vs. Fc/Fc\(^+\)); they decreased slightly as the number of thiophene rings increased. The HOMO energy levels of the polymers were calculated to be approximately –5.0 eV, suggesting that the oligothiophene-layered polymers have potential for applications in optoelectronic devices as hole-transporting materials.

Furan can also be incorporated as the layered-aromatic unit into the oligothiophene-layered polymers (Fernandes et al., 2011). As shown in Scheme 7, the treatment of 11 with 2,5-bis(tributylstannyl)furan 17 in the presence of Pd(PPh\(_3\))\(_4\)/CuO afforded the corresponding polymer P14, which contains a thiophene/furan/thiophene oligomer as the layered unit. Migita-Kosugi-Stille coupling (Kosugi et al., 1977; Milstein & Stille, 1978) of 4,5-bis(bromofuryl)xanthene 19 and 2,5-bis(tributylstannyl)thiophene 20 yielded polymer P15, which contains a furan/thiophene/furan oligomer as the layered unit (Scheme 7). The \(M_n\) values of P14 and P15 were 3700 and 4000, respectively.
Scheme 7. Synthesis of polymers P14 and P15.

In the UV-vis absorption spectra (1.0 × 10^{-5} M in THF) of P14 and P15 (Figure 13), the absorption maximum of P14, which was ascribed to the π-π* transition band of the thiophene/furan/thiophene moieties, was observed at 344 nm, while the absorption maximum of P15, consisting of furan/thiophene/furan units, appeared at 396 nm. It is reported that the absorption spectra were almost identical regardless of the thiophene/furan sequence. In addition, in the case of furan- and thiophene-substituted porphyrin systems, a longer π-conjugation length between the porphyrin ring and meso-substituted-furan was observed than between the porphyrin ring and meso-substituted-thiophene due to steric repulsion. Therefore, it is implied that the thiophene/furan/thiophene moiety in P14 is more twisted against the xanthene scaffold than the furan/thiophene/furan moiety in P15 in the ground state.

Fig. 13. UV spectra in CHCl₃ (1.0 × 10^{-5} M) and PL spectra in CHCl₃ (1.0 × 10^{-7} M) of polymers P14 and P15.
The photoluminescence spectra of \(P_{14} \) and \(P_{15} \) (1.0 \(\times \) 10\(^{-7} \) M in THF) are shown in Figure 13. Both polymers exhibited similar photoluminescence spectra with the peak around 480 nm and photoluminescence quantum efficiencies of 0.25. The conformational change of \(P_{14} \) from the twisted structure to the coplanar structure by photo-excitation resulted in a larger Stokes shift for \(P_{14} \) than for \(P_{15} \). It is possible that the interactions among the layered \(\pi \)-electron systems in a single polymer chain are weak because of the relatively long distance between the 4- and 5-positions of the xanthene skeleton as well as because of the coplanarity of the layered \(\pi \)-electron system with xanthene in the excited state.

Although it is not a polymer, xanthene-based compound 21, which consists of layered quaterthiophenes, was synthesized (Takita et al., 2008), as shown in Figure 14. By chemical oxidation with \(\text{Et}_3\text{O} \cdot \text{SbCl}_6 \) or electrical oxidation, one quaterthiophene was oxidized to form a \(\pi \)-dimer (mixed-valence compound). This class of polymer can potentially be applied to molecular actuation responding to the redox of quaterthiophenes (Figure 14). Oligothiophene-layered polymers based on calix[4]arene also exhibit similar redox behaviors (Yu et al., 2003; Yu et al., 2004; Casanovas et al., 2006; Alemán et al., 2006; Scherlis & Marzari, 2005; Song & Swager, 2008), suggesting that they are candidates for sensing and actuating materials as well.

3. Xanthene-based oligomers

Perilenediimide and its derivatives have been focused on as the active materials for light-harvesting system photovoltaics and charge/electron transfer processes. In order to obtain insight into the nature of the photophysical properties of perilenediimide aggregates, they were layered onto the xanthene scaffold. As shown in Figure 15, reference compound 22 as well as oligomers 23a–b, and 24, which contain two and three cofacial perilenediimides, respectively, were prepared (Giaimo et al., 2008; Yoo et al., 2010). Their photophysical data are listed in Table 4. The absorption maxima of 23a–b and 24 were shifted hypsochromically in comparison with that of 22 due to the formation of \(H \)-like aggregates. The photoluminescence spectrum of 22 exhibited a sharp spectrum with an emission maximum at 534 nm and vibronic structures at 576 nm and 624 nm. In contrast, the photoluminescence spectra of 23a–b and 24 were broad and featureless; the spectrum of 23a was highly broad with a peak at around 700 nm, and that of 23b had a shoulder peak at around 550 nm and a broad peak at 650 nm. Time-resolved absorption and photoluminescence spectroscopy indicated that 23b having 12-tricosanyl substituents exhibited slower formation of the
excimer-like excited state and had a higher energy than \(23a \), which has n-octyl substituents, because of its more bulky substituents. These results imply that perilenediimide chromophores in \(23a \) adopt nearly optimal \(\pi \)-stacking. Their photophysical properties in the polymer matrix were also studied (Yoo et al, 2010). It was observed that the photoluminescence intensity and lifetime depended on the molecular conformations in the polymer matrix. Intramolecular overlap of the \(\pi \)-electron systems in perilenediimides would favor the use of n-type semiconductors.

Fig. 15. Structures of compounds 22-24.

entry	Compound	\(\lambda_{\text{abs,max}} \) / nm	\(\lambda_{\text{em,max}} \) / nm	\(\Phi_{\text{PL}} \)	\(\tau_{\text{PL}} \) / ns (\(\lambda_{\text{em}} \))
1	22	527	533	0.98	3.8±0.1 (550)
2	23a	490	735	0.02	9.2±0.1 (700)
3	23b	491	647	0.19	0.05±0.01 (550)
					28.6±0.1 (700)
4	24	488	647	0.13	0.05±0.01 (550)
					22.5±0.1 (700)

Table 4. Photophysical Data of Compounds 22-24

Photoluminescence spectra, quantum efficiencies (\(\Phi_{\text{PL}} \)), and lifetimes (\(\tau_{\text{PL}} \)) were determined with an excitation wavelength of 400 nm.

Fig. 16. Structures of oligomers 25-27.
Π-Stacked oligomers 25–27 comprising anthracene as the layered unit and xanthene as the scaffold were synthesized (Morisaki et al., 2010a) by repeated Sonogashira-Hagihara couplings (Figure 16). An anthracene-stacked polymer, P16, was also prepared by the reaction of 6 with 28 and 29 in 59% yield with an M_n of 4600, as shown in Scheme 8. According to the 1H NMR spectra of oligomers 25–27 and polymer P16, the chemical shifts of the anthracene protons moved to a higher magnetic field than those of the common anthracene derivatives. Their signals gradually shifted as the number of stacked anthracene moieties increased because of the effect of the ring current of the neighboring anthracene rings.

![Scheme 8. Synthesis of polymer P16.](image)

As shown in Figure 17A, the molar extinction coefficient (ε) of an absorption and a broad band at around 250 nm and 400 nm, respectively, increased in accordance with the number of anthracene rings. The photoluminescence spectrum of 25 in CHCl$_3$ revealed an emission peak at around 450 nm with a clear vibrational structure (Figure 17B); excimer-like emission did not appear despite the face-to-face orientation of the two anthracenes in 25. In contrast, the photoluminescence spectra of 26, 27, and P16 were broad without any vibrational structure. A fluorescence life time measurement of P16 indicated emission from the excimer-like structures of the anthracene moieties, whereas oligomers 26, 27, and polymer P16 exhibited emission mainly from aggregates because of the buttressing effect of the anthracene rings. These phenomena are attributed to the intramolecular π-stacked structure of the anthracene rings in both the excited and ground states.

![Fig. 17. (A) UV spectra of oligomers 25-27 and polymer P16 in CHCl$_3$ (1.0 × 10$^{-5}$ M). (B) PL spectra of oligomers 25-27 and polymer P16 in CHCl$_3$ (1.0 × 10$^{-7}$ M).](image)
4. Anthracene-based oligomers and polymers

Anthracene can be employed as the scaffold to layer aromatic rings one-dimensionally. Aromatic rings at the 1- and 8-positions of anthracene readily face each other due to the presence of hydrogen at the 9-position. Face-to-face porphyrin arrays, 32, were constructed by condensation of formyl- and porphyrin-substituted anthracene, 30, with dipyromethane 31 followed by oxidation (Scheme 9) (Nagata et al., 1990). In addition, oligomer 33 comprising five-layered porphyrin was prepared from dimeric porphyrin (Scheme 9).

![Scheme 9. Synthesis of oligomer 32 and structure of oligomer 33.](image)

According to the absorption spectra of 32–35 in 1,2-dichlorobenzene solutions, the Soret bands of the zinc complexes of 32 and 33 (face-to-face systems) were hypsochromically shifted, without being split, as the number of layered porphyrins increased. In contrast, those of 34 and 35 (linear systems, Figure 18) bathochromically shifted with a split that became larger with an increasing number of porphyrins. These results can be explained by the exciton coupling theory.

![Fig. 18. Structures of linear oligomers 34 and 35.](image)

A 1,8-anthracene-linked Fe(III)-porphyrin trimer, 36, (Figure 19) was synthesized (Naruta et al., 1994); the Fe(III) ions were connected by imidazolates. According to electron paramagnetic resonance (ESR) and magnetic susceptibility measurements, the antiferromagnetic exchange coupling ($-\mu$) was calculated to be 15.3 cm$^{-1}$. Without the imidazole moieties, no magnetic interaction among the Fe(III) ions was observed. The appropriate
distance and the face-to-face arrangement of the Fe(III) ions resulted in a short distance of ~2.0 Å between the Fe(III) ion and nitrogen atom of imidazolate leading to the antiferromagnetic exchange coupling among the Fe(III) ions.

Fig. 19. Structure of oligomer 36.

A benzene ring-layered polymer, P17, was synthesized via Suzuki-Miyaura polycondensation between 1,8-bis(trifluoromethyl)anthracene 37 and p-phenylene diborinate 38, as shown in Scheme 10 (Sangvikar et al., 2009). Additionally, cyclic dimers were also isolated in 5% yield. The M_n of P17 was relatively high ($M_n = 7000, M_w/M_n = 2.0$), which suggests the possibility of obtaining this class of polymers with a longer chain length.

Scheme 10. Synthesis of polymer P17

5. Naphthalene-based oligomers and polymers

The distance between the 1- and 8-carbon atoms of naphthalene compounds is approximately 2.5–2.6 Å; therefore, aromatic groups substituted at the 1,8-positions of naphthalene derivatives are constrained in a face-to-face arrangement. Various 1,8-diarylnaphthalenes have been synthesized, and their π-stacked structures and π-π interactions have been studied. However, oligomers and polymers composed of multi-stacked aromatic rings have rarely been developed.

π-Stacked metallocene polymers were obtained, as shown in Scheme 11. The treatment of 1,8-diiodonaphthalene 39 with 1,1′-ferrocenyldizinc chloride 40 by Negishi coupling afforded polymer P18 with a relatively low M_n of 3600 (Arnold et al., 1988). The synthetic procedure was modified as follows: the treatment of bis(2-octyl)ferrocene 43 with NaN(SiMe$_3$)$_2$ and FeCl$_2$ provided the ferrocene-stacked polymer P19 with an M_n of 18400 (Nugent & Rosenblum, 1993; Rosenblum et al., 1995; Hudson et al., 1999). The addition of CoCl$_2$ and NiBr$_2$ instead of FeCl$_2$ yielded the corresponding ferrocene/cobaltocene-stacked and ferrocene/nickelocene-stacked polymers, respectively. The stacked ferrocenes in P19 adopted a weakly interacting mixed-valence system by chemical doping with I$_2$, after which the electrical conductivity increased from 10^{-12} to 6.7×10^{-3} Scm$^{-1}$.
Scheme 11. Synthesis of polymers P18 and P19.

Scheme 12. Synthesis of oligomers 46, 47, and 49.

Oligothiophenes were stacked by a step-wise reaction. Scheme 12 illustrates the construction of three oligothiophene-layered systems (Kuroda et al., 1994). The chlorination of the thiophene ring by N-chlorosuccinimide (NCS) and a successive Ni-catalyzed coupling reaction afforded compounds 46 and 49. Compound 47 was synthesized by cyclization with Lawesson’s reagent. X-ray crystallographic analysis of 46 revealed that the outer thiophene rings and the inner bithiophene moiety are almost parallel and that the dihedral angle
between the thiophene planes and naphthalenes is approximately 53°. The CV oxidation potentials of 46, 47, and 49 decreased with the increasing number of thiophenes and were lower than the CV oxidation potentials of the monomeric compounds due to the stabilization of radical cations among the three-layered oligothiophenes.

Stepwise coupling reactions of the naphthalene-based stannylthiophenes yielded the corresponding oligothiophene-stacked oligomers (Scheme 13) (Iyoda et al., 2001; Nakao et al., 2008). Cyclic dimer 51 was primarily obtained along with oligomers 52-54 by the oxidative coupling reaction of 50 with BuLi and CuCl₂. The treatment of 55 with Cu(NO₃)₂·3H₂O afforded the coupling product 52 in 30% yield. Compound 52 was reacted with BuLi and ClSnBu₃ followed by treatment with Cu(NO₃)₂·3H₂O to obtain the corresponding thiophene-layered oligomer 54 in 8% yield.

Scheme 13. Synthesis of oligomers 52-54.

entry	Oligomer	λₘₐₓ / nm	λₑₘₐₓ / nm	Φₑ	Eₒₓ₁, Eₒₓ₂ / V
1	52	325	471	0.033	0.67
2	53	330	481	0.021	0.40, 0.60
3	54	333	485	0.007	0.40, 0.64

Table 5. Optical Data and Oxidation Potentials

Optical data were collected in their benzene solutions. Oxidation potentials were determined in o-dichlorobenzene using a ferrocene/ferrocenium external reference. The optical and electrochemical behaviors of the compounds were studied and the results are summarized in Table 5. The absorption maxima of the oligomers were slightly red-shifted as the number of layered thiophenes increased. The long-wavelength absorption was assigned to the S₀ to S₁ transition of the bithiophene moieties. Their photoluminescence spectra were broad and featureless, and the photoluminescence quantum efficiencies, which were estimated to range from 0.007-0.033, were low. Oligomers 52-54 exhibited the redox properties of the π-donor. Oligomer 52 showed the one-electron oxidation wave (Eₒₓ = 0.67 V) of a bithiophene unit, while two-step one-electron oxidation waves were observed for 53 and 54.
Scheme 14. Synthesis of polymers P20 and P21.

Scheme 14 shows the synthetic pathway for oligothiophene-stacked polymers. Polymers P20 and P21 were synthesized by the polymerization of 57 and co-monomers 14 and 15 via modified Suzuki-Miyaura coupling using a catalytic amount of Pd(OAc)$_2$ and a bulky phosphine ligand (S-Phos) (Morisaki et al., 2010c). The M_n values of P20 and P21 were estimated to be 2800 and 3600, from which the number-average degrees of polymerization were estimated to be 5 and 6, respectively.

Fig. 20. UV spectra in CHCl$_3$ (1.0 × 10$^{-5}$ M) and PL spectra in CHCl$_3$ (1.0 × 10$^{-7}$ M) of polymers P20 and P21.

The UV-vis absorption spectra in CHCl$_3$ (1.0 × 10$^{-5}$ M) and photoluminescence spectra in CHCl$_3$ (1.0 × 10$^{-7}$ M) of P20 and P21 are shown in Figure 20. An increase in the absorption maxima was observed with an increasing number of thiophene rings. The absorption maxima of P20 and P21 appeared at 379 and 410 nm, respectively. It is suggested that this absorption band should also be assigned to the S$_0$→S$_1$ transition of the bithiophene-
naphthalene moieties. It is expected that the S_1 state forms a quinoidal-like structure of thiophene with naphthalene (Seixas de Melo et al., 2001; Pina et al., 2009). Bathochromic shifts of the photoluminescence spectra and an increase in the absolute Φ_{PL} were observed with an increasing number of thiophene rings. The Φ_{PL} values of P_{20} and P_{21} were similar to the values found for naphthalene-based bithiophene and quaterthiophene oligomers, respectively. Concentration-quenching was not observed among the layered oligothiophenes indicating that the main quenching pathway is radiationless intersystem crossing from S_1 to T_1. The HOMO energy levels of P_{20} and P_{21} were approximately -5.30 and -5.25 eV, respectively, as calculated from the E_{onset} values of their cyclic voltammograms. The oligothiophene-stacked polymers can potentially be applied in electronic devices such as hole-transporting materials.

6. Conclusion

In this chapter, the synthesis and properties of aromatic-ring- and π-electron-systems-layered polymers using xanthene, anthracene, and naphthalene as scaffolds were depicted. The oligomers introduced here were limited to three or more face-to-face aromatic systems, although dimeric compounds prevail. From a synthetic point of view, the method of using xanthene, anthracene, and naphthalene scaffolds is ideal for constructing face-to-face arrangements of a variety of aromatic rings and π-electron systems. The application of this class of polymers and oligomers to optoelectronic devices such as field emission transistors, photovoltaic devices, and charge-transporting materials has not yet been extensively investigated. It is worth noting that the presence of the π-stacked structure and the orientation of the π-electron systems play an important role in the effective charge transfer, energy transfer, and delocalization of excitons in the devices, leading to great potential of these systems in optoelectronic devices. The challenge for the near future is the development of controlled polymerization instead of stepwise oligomer synthesis to obtain aromatic-ring-layered polymers with narrow polydispersity, which would lead to high-performance next-generation organic optoelectronic devices.

7. References

Alemán, C.; Zanuy, D. & Casanovas, J. (2006) Conformational isomerism of electroactive calyx[4]arenes: influence of the electronic state in the flexibility of thiophene-containing calyx[4]arene. *J Org. Chem.*, Vol. 71, No. 18, (September 2006) 6952-6957, ISSN 0022-3263

Arnold, R.; Matchett, S. A. & Rosenblum, M. (1988) Preparation and properties of stacked oligomeric and polymeric metallocenes. *Organometallics*, Vol. 7, No. 11, (November 1988) 2261-2266, ISSN 0276-7333

Barder, T. E.; Walker, S. D.; Martinelli, J. R. & Buchwald, S. L. (2005) New catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. *J Am. Chem. Soc.*, Vol. 127, No. 13, (March 2005) 4685-4696, ISSN 0002-7863

Casanovas, J.; Zanuy, D. & Alemán, C. (2006) Conducting polymer actuator mechanism based on the conformational flexibility of calyx[4]arene. *Angew. Chem. Int. Ed.*, Vol. 45, No. 6, (February 2006) 1103-1105, ISSN 1521-3773
Fernandes, J. A.; Morisaki, Y. & Chujo, Y. (2010) Aromatic ring-Layered polymer containing 2,7-linked-carbazole on xanthene. *Polym. Bull.*, Vol. 65, No. 5, (September 2010) 465-476, ISSN 0170-0839.

Fernandes, J. A.; Morisaki, Y. & Chujo, Y. (2011) π-Electron-system-layered polymers comprising thiophene/furan oligomers. *J Polym. Sci. Part A: Polym. Chem.*, Vol. 49, No. 16, (August 2011) 3664-3670, ISSN 0887-624X

Förster, T. (1946) Energiewanderung und fluoreszenz. *Naturwissenschaften*, Vol. 33, No. 6, (June 1946) 166-175, ISSN 0028-1042.

Giaimo, J. M.; Lockard, J. V.; Sinks, L. E.; Scott, A. M.; Wilson, T. M. & Wasielewski, M. R. (2008) Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3,4:9,10-bis(dicarboximide). *J Phys. Chem. A*, Vol. 112, No. 11, (March 2008) 2322-2330, ISSN 1089-5639

Grazulevicius, J. V.; Strohrieg, P.; Pielichowski, J. & Pielichowski, K. (2003) Carbazole-containing polymers: synthesis, properties, and applications. *Prog. Polym. Sci.*, Vol. 28, No. 9, (September 2003) 1297-1353, ISSN 0079-6700

Hudson, R. D. A.; Foxman, B. M. & Rosenblum, M. (1999) *Organometallics*, Vol. 18, No. 20, (September 1999) 4098-4016, ISSN 0276-7333

Iyoda, M.; Nakao, K.; Kondo, T.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Fukami, K. & Nagase, S. (2001) [6,6](1,8)Naphthalenophane containing 2,2′-bithienyl-5,5′-ylene bridges. *Tetrahedron Lett.*, Vol. 42 No. 39, (September 2001) 6869-6872, ISSN 0040-4039

Kosugi, M.; Sasazawa, K.; Shimizu, Y. & Migita, T. (1977) Reactions of allyltin compounds. III. Allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(0). *Chem. Lett.*, Vol. 6, No. 3, (March 1977) 301-302, ISSN 0366-7022

Kuroda, M.; Nakayama, J.; Hoshino, M.; Furusho, N. & Ohba, S. (1994) Synthesis and properties of a-oligothiophenes carrying three cofacially oriented thiophene rings through peri positions of naphthalene. *Tetrahedron Lett.*, Vol. 35, No. 23, (June 1994) 3957-3960, ISSN 0040-4039

Milstein, D. & Stille, J. K. (1978) A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. *J Am. Chem. Soc.*, Vol. 100, No. 11, (May 1978) 3636-3638

Miyaura, N.; Yamada, K. & Suzuki, A. (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. *Tetrahedron Lett.*, Vol. 20, No. 36, (September 1979) 3437-3440, ISSN 0040-4039

Miyaura, N. & Suzuki, A. (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. *Chem. Rev.*, Vol. 95, No. 7 (July 1995) 2457-2483, ISSN 0009-2665

Morin, J. F.; Leclerc, M.; Ades, D. & Siove, A. (2005) Polycarbazoles: 25 years of progress. *Macromol. Rapid Commun.*, Vol 26, No. 11, (May 2005) 761-778, ISSN 1022-1336

Morisaki, Y. & Chujo, Y. (2005). Construction of benzene ring-layered polymers, *Tetrahedron Lett.* Vol. 46, No. 15, (April 2005) 2533-2537, ISSN 0040-4039
Morisaki, Y. & Chujo, Y. (2006). Through-space conjugated polymers based on cyclophanes. *Angew. Chem. Int. Ed.*, Vol. 45, No. 39, (October 2006) 6430-6437, ISSN 1521-3773

Morisaki, Y. & Chujo, Y. (2008a). Cyclophane-containing polymers. *Prog. Polym. Sci.*, Vol. 33, No. 3, (March 2008) 346-364, ISSN 0079-6700

Morisaki, Y.; Murakami, T. & Chujo, Y. (2008b). Synthesis and properties of [2.2]paracyclocaphane-layered polymers. *Macromolecules*, Vol. 41, No. 16, (August 2008) 5960-5963, ISSN 0024-9297

Morisaki, Y.; Murakami, T. & Chujo, Y. (2009a). Synthesis, structure, and properties of aromatic ring-layered polymers containing ferrocene as a terminal unit. *J. Inorg. Organomet. Polym. Mater.*, Vol. 19, No. 1, (March 2009) 104-112, ISSN 1574-1443.

Morisaki, Y.; Murakami, T.; Sawamura, T. & Chujo, Y. (2009b). [2.2]Paracyclocaphane-layered polymers end-capped with fluorescence quenchers. *Macromolecules*, Vol. 42, No. 10, (May 2009) 3656-3660, ISSN 0024-9297

Morisaki, Y.; Imoto, H.; Miyake, J. & Chujo, Y. (2009c) Synthesis and properties of oligophenylene-layered polymers. *Macromol. Rapid Commun.*, Vol 30, No. 13, (July 2009) 1094-1100, ISSN 1022-1336

Morisaki, Y. & Chujo, Y. (2009d). Synthesis of π-stacked polymers on the basis of [2.2]paracyclocaphane. *Bull. Chem. Soc. Jpn.*, Vol. 82, No. 9, (September 2009) 1070-1082, ISSN 0009-2673

Morisaki, Y.; Fernandes, J. A.; Wada, N. & Chujo, Y. (2009e) Synthesis and properties of carbazole-layered polymers. *J Polym. Sci. Part A: Polym. Chem.*, Vol. 47, No. 17, (September 2009) 4279-4288, ISSN 0887-624X.

Morisaki, Y.; Fernandes, J. A. & Chujo, Y. (2009f) Synthesis of oligothiophene-layered polymers. *Macromol. Rapid Commun.*, Vol 30, No. 24, (December 2009) 2107-2111, ISSN 1022-1336

Morisaki, Y.; Sawamura, T.; Murakami, T. & Chujo, Y. (2010a) Synthesis of anthracene-stacked oligomers and polymer. *Org. Lett.*, Vol. 12, No. 14, (July 2010) 3188-3191, ISSN 1523-7060

Morisaki, Y.; Fernandes, J. A. & Chujo, Y. (2010b) Xanthene-Based Oligothiophene-Layered Polymers. *Macromol. Chem. Phys.*, Vol. 211, No. 22, (November 2010) 2407-2415, ISSN 0003-3146

Morisaki, Y.; Fernandes, J. A. & Chujo, Y. (2010c) Naphthalene-based oligothiophene-stacked polymers. *Polym. J.*, Vol. 42, No. 12, (December 2010) 928-934, ISSN 0032-3896

Nagata, T.; Osuka, A. & Maruyama, K. (1990) Synthesis and optical properties of conformationally constrained trimeric and pentamer porphyrin arrays. *J Am. Chem. Soc.*, Vol. 112, No.8, (April 1990) 3054-3059, ISSN 0002-7863

Nakano, T. (2010). Synthesis, structure and function of π-stacked polymers. *Polym. J.*, Vol. 42, No. 2, (February 2010) 103-123, ISSN 0032-3896

Nakao, K.; Nishiuichi, T. & Iyoda, M. (2008) Syntheses, structures, and properties of bithiophenophanes bridged at 1,8-positions of naphthalenes. *Heterocycles*, Vol. 76, No. 1, (September 2008) 727-745, ISSN 0385-5414
Naruta, Y.; Sawada, N.; Tadokoro, M. (1994) Imidazolate-mediated antiferromagnetic coupling between Fe(III) ions in rigidly-linked porphyrin dimers and trimers. *Chem. Lett.*, Vol. 23, No. 9, (September 1994) 1713-1716, ISSN 0366-7022

Negishi, E.; King, A. O. & Okukado, N. (1977) Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryl and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. *J Org. Chem.*, Vol. 42, No. 10, (May 1977) 1821-1823, ISSN 0022-3263

Negishi, E. (1982) Palladium- or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation. *Acc. Chem. Res.*, Vol. 15, No. 11, (November 1982) 340-348, ISSN 0001-4842

Nugent, H. M. & Rosenblum, M. (1993) *J Am. Chem. Soc.*, Vol. 115, No. 10, (May 1993) 3848-3849, ISSN 0022-3263

Pina, J. & Seixas de Melo, J. A. (2009) Comprehensive investigation of the electronic spectral and photophysical properties of conjugated naphthalene-thiophene oligomers. *Phys. Chem. Chem. Phys.*, Vol. 11, No. 39, (October 2009) 8706-8713, ISSN 1463-9076

Rosenblum, M.; Nugent, H. M.; Jang, K.-S.; Labes, M. M.; Cahalane, W.; Klemarczyk, P. & Reiff, W. M. (1995) *Macromolecules*, Vol. 28, No. 18, (August 1995) 6330-6342, ISSN 0024-9909

Sangvikar, Y.; Fischer, K.; Schmidt, M.; Schlüter, A. D. & Sakamoto, J. (2009) Suzuki polycondensation with a hairpin monomer. *Org. Lett.*, Vol. 11, No. 18, (September 2009), 4112-4115, ISSN 1523-7060

Scherlis, D. A. & Marzari, N. (2005) π-Stacking in thiophene oligomers as the driving force for electroactive materials and devices. *J Am. Chem. Soc.*, Vol. 127, No. 9, (March 2005) 3207-3212, ISSN 0002-7863

Seixas de Melo, J., Silva, L. M., & Kuroda, M. (2001) Photophysical and theoretical studies of naphthalene-substituted oligothiophenes. *J Chem. Phys.*, Vol. 115, No. 12, (September 2001) 5625-5636, ISSN 0021-9606

Skotheim, T. A.; Elsenbaumer, R. L. & Reynolds, J. R. (Eds.). (2006). Handbook of organic conducting polymers, 3rd ed., Marcel Dekker, ISBN 0824700503, New York

Song, C. & Swager, T. M. (2008) π-Dimer formation as the driving force for calix[4]arene-based molecular actuators. *Org. Lett.*, Vol. 10, No. 16 (August 2008), 3575-3578, ISSN 1523-7060

Sonogashira, K. (2002). In: *Handbook of Organopalladium Chemistry for Organic Synthesis*, Negishi, E., pp. 493-529, Wiley-Interscience, ISBN 047131506,0 New York

Takita, R.; Song, C. & Swager, T. M. (2008) π-Dimer formation in an oligothiophene tweezer molecule. *Org. Lett.*, Vol. 10, No. 21 (November 2008), 5003-5005, ISSN 1523-7060

Tohda, Y.; Sonogashira, K. & Hagihara, N. (1975). A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. *Tetrahedron Lett.*, Vol 16, No. 50, (December 1975), 4467-4470, ISSN 0040-4039

Yoo, H.; Yang, J.; Yousef, A.; Wasielewski, M. R. & Kim D. (2010) Excimer formation dynamics of intramolecular π-stacked perylenediimides probed by single-molecule...
fluorescence spectroscopy. *J Am. Chem. Soc.*, Vol. 132, No. 11, (March 2010) 3939-3944, ISSN 0002-7863

Yu, H.-h.; Xu, B. & Swager, T. M. (2003) A proton-doped calyx[4]arene-based conducting polymer. *J Am. Chem. Soc.*, Vol. 125, No. 5, (February 2003) 1142-1143, ISSN 0002-7863

Yu, H.-h.; Pullen, A. E.; Büschel, M. G. & Swager, T. M. (2004) Charge-specific interactions in segmented conducting polymers: an approach to selective ionoresistive responses. *Angew. Chem. Int. Ed.*, Vol. 43, No. 28, (July 2004) 3700-3703, ISSN 1521-3773
Optoelectronics - Materials and Techniques is the first part of an edited anthology on the multifaceted areas of optoelectronics by a selected group of authors including promising novices to the experts in the field. Photonics and optoelectronics are making an impact multiple times the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D the science of optics and electronics get coupled by fine technology advances to make incredibly large strides. The technology of light has advanced to a stage where disciplines sans boundaries are finding it indispensable. Smart materials and devices are fast emerging and being tested and applications developed in an unimaginable pace and speed. Here has been made an attempt to capture some of the materials and techniques and underlying physical and technical phenomena that make such developments possible through some real time players in the field contributing their work and this is sure to make this collection of essays extremely useful to students and other stakeholders such as researchers and materials scientists in the area of optoelectronics.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yasuhiro Morisaki and Yoshiki Chujo (2011). Synthesis of Aromatic-Ring-Layered Polymers, Optoelectronics - Materials and Techniques, Prof. P. Predeep (Ed.), ISBN: 978-953-307-276-0, InTech, Available from: http://www.intechopen.com/books/optoelectronics-materials-and-techniques/synthesis-of-aromatic-ring-layered-polymers