Search for Pair Production of Scalar Top Quarks in R-parity Violating Decay Modes in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

D. Acosta, T. Affolder, H. Akimoto, M. G. Albrow, D. Ambrose, D. Amidei, K. Anikeev, J. Antos, G. Apollinari, T. Arisawa, A. Artikov, T. Asakawa, W. Ashmanskas, F. Azfar, P. Azzi-Bacchetta, N. Bacchetta, H. Bachacou, W. Badgett, S. Bailey, P. de Barbaro, A. Barbaro-Galtieri, V. E. Barnes, B. A. Barnett, S. Baroiant, M. Barone, G. Bauer, F. Bedeschi, S. Behari, S. Belforte, W. H. Bell, G. Bellettini, J. Bellinger, D. Benjamin, J. Bensinger, A. Beretvas, J. Berryhill, A. Bhatti, M. Binkley, D. Bisello, M. Bishai, R. E. Blair, C. Blocker, K. Bloom, B. Blumenfeld, S. R. Blusk, A. Bocci, A. Bodek, G. Bolla, A. Bolshov, Y. Bonushkin, D. Bortoletto, J. Boudreau, A. Brandl, C. Bromberg, M. Brozovic, E. Brubaker, N. Bruner, J. Budagov, H. S. Budd, K. Burkett, G. Busetto, K. L. Byrum, S. Cabrera, P. Calafiura, M. Campbell, J. Carlson, D. Carlsmith, W. Caskey, A. Castro, D. Cauz, A. Cerri, L. Cerrito, A. W. Chan, P. S. Chang, P. T. Chang, J. Chapman, C. Chen, Y. C. Chen, M. T. Cheng, M. Chertok, G. Chiarelli, I. Chirikov-Zorin, G. Chlachidze, F. Chlebana, L. Christofek, M. L. Chu, J. Y. Chung, W.-H. Chung, Y. S. Chung, C. I. Ciobanu, A. G. Clark, M. Coca, A. P. Colijn, A. Connolly, M. Convery, J. Conway, M. Cordelli, J. Cranshaw, R. Culbertson, D. Dagenhart, S. D’Auria, S. De Cecco, F. DeJongh, S. Dell’Agnello, M. Dell’Orso, S. Demers, L. Demortier, M. Deninno, D. De Pedis, P. F. Derwent, T. Devlin, C. Dionisi, J. R. Dittmann, A. Dominguez, S. Donati, M. D’Onofrio, T. Dorigo, N. Eddy, K. Einsweiler, E. Engels, Jr., R. Erbacher, D. Errede, S. Errede, R. Eusebi, Q. Fan, S. Farrington, R. G. Feild, J. P. Fernandez, C. Ferretti, R. D. Field, I. Fiori, B. Flaugher, L. R. Flores-Castillo, G. W. Foster, M. Franklin, J. Freeman, J. Friedman, Y. Fukui, I. Furic, S. Galeotti, A. Gallas, M. Gallinaro, T. Gao,
M. Garcia-Sciveres, 25 A. F. Garfinkel, 40 P. Gatti, 36 C. Gay, 53 D. W. Gerdes, 28 E. Gerstein, 9 S. Giagu, 43 P. Giannetti, 38 K. Giolo, 40 M. Giordani, 5 P. Giromini, 15 V. Glagolev, 11 D. Glenzinski, 13 M. Gold, 31 N. Goldschmidt, 28 J. Goldstein, 13 G. Gomez, 8 M. Goncharov, 45 I. Gorelov, 31 A. T. Goshaw, 12 Y. Gotra, 39 K. Goulianos, 42 C. Green, 40 A. Gresele, 3 G. Grim, 5 C. Grossopilcher, 10 M. Guenther, 40 G. Guillian, 28 J. Guimaraes da Costa, 18 R. M. Haas, 14 C. Haber, 25 S. R. Hahn, 13 E. Halkiadakis, 41 C. Hall, 18 T. Handa, 19 R. Handler, 52 F. Happacher, 15 K. Hara, 49 A. D. Hardman, 40 R. M. Harris, 13 F. Hartmann, 22 K. Hatakeyama, 42 J. Hauser, 6 J. Heinrich, 37 A. Heiss, 22 M. Hennecke, 22 M. Herndon, 21 C. Hill, 7 A. Hocker, 41 K. D. Hoffman, 10 R. Holllebeek, 37 L. Holloway, 20 S. Hou, 1 B. T. Huffman, 35 R. Hughes, 33 J. Huston, 29 J. Huth, 18 H. Ikeda, 49 C. Issever, 7 J. Incandela, 7 G. Intorozzi, 38 M. Iori, 43 A. Ivanov, 41 J. Iwai, 51 Y. Iwata, 19 B. Iyutin, 27 E. James, 28 M. Jones, 37 U. Joshi, 13 H. Kambara, 16 T. Kamon, 45 T. Kaneko, 49 J. Kang, 28 M. Karagoz Unel, 32 K. Karr, 50 S. Kartal, 13 H. Kasha, 53 Y. Kato, 34 T. A. Keaffaber, 40 K. Kelley, 27 M. Kelly, 28 R. D. Kennedy, 13 R. Kephart, 13 D. Khazins, 12 T. Kikuchi, 49 B. Kilminster, 41 B. J. Kim, 24 D. H. Kim, 24 H. S. Kim, 20 M. J. Kim, 9 S. B. Kim, 24 S. H. Kim, 49 T. H. Kim, 27 Y. K. Kim, 25 M. Kirby, 12 M. Kirk, 4 L. Kirsch, 4 S. Klimenko, 14 P. Koehn, 33 K. Kondo, 51 J. Konigsberg, 14 A. Korn, 27 A. Korytov, 14 K. Kotelnikov, 30 D. Kuhlmann, 2 K. Kurino, 19 T. Kuwabara, 49 N. Kuznetsova, 13 A. T. Laasanen, 10 N. Lai, 13 S. Lami, 42 S. Lammel, 13 J. Lancaster, 12 K. Lannon, 20 M. Lancaster, 26 R. Landers, 5 A. Lath, 44 G. Latino, 31 T. LeCompte, 2 Y. Le, 21 J. Lee, 41 S. W. Lee, 45 N. Leonardo, 27 S. Leone, 38 J. D. Lewis, 13 K. Li, 53 C. S. Lin, 13 M. Lindgren, 6 T. M. Liss, 20 J. B. Liu, 41 T. Liu, 13 Y. C. Liu, 1 D. O. Litvintsev, 13 O. Lobban, 46 N. S. Lockyer, 37 A. Loginov, 30 J. Loken, 35 M. Loreti, 36 D. Lucchesi, 36 P. Lukens, 13 S. Lusin, 52 L. Lyons, 35 J. Lys, 25 R. Madrak, 18 K. Maeshima, 13 P. Maksimovic, 21 L. Malferrari, 3 M. Mangano, 38 G. Manca, 35 M. Mariotti, 36 G. Martignon, 36 M. Martin, 21 A. Martin, 53 V. Martin, 32 M. Martinez, 13 J. A. J. Matthews, 31 P. Mazzanti, 3 K. S. McFarland, 41 P. McIntyre, 45 M. Menguzzato, 36 A. Menzione, 38 P. Merkel, 13 C. Mesropian, 42 A. Meyer, 13 T. Miao, 13 R. Miller, 29 J. S. Miller, 28 H. Minato, 49 S. Miscetti, 15 M. Mishina, 23 G. Mitselmakher, 14 Y. Miyazaki, 34 N. Moggi, 3 E. Moore, 31 R. Moore, 28 Y. Morita, 23 T. Moulik, 40 M. Mulhearn, 27 A. Mukherjee, 13 T. Muller, 22 A. Munar, 38 P. Murat, 13 S. Murgia, 29 J. Nachtman, 6
V. Nagaslaev, S. Nahn, H. Nakada, I. Nakano, R. Napora, F. Niell, C. Nelson, T. Nelson, C. Neu, M. S. Neubauer, D. Neuberger, C. Newman-Holmes, C.-Y. P. Ngan, T. Nigmanov, H. Niu, L. Nodulman, A. Nomertski, S. H. Oh, Y. D. Oh, T. Ohmoto, T. Ohsugi, R. Oishi, T. Okusawa, J. Olsen, W. Orejudos, C. Pagliarone, F. Palmonari, R. Paoletti, V. Papadimitriou, D. Partos, J. Patrick, G. Pauletta, M. Paulini, T. Pauly, C. Paus, D. Pellett, A. Penzo, L. Pescara, T. J. Phillips, G. Piacentino, J. Piedra, K. T. Pitts, A. Pompos, L. Pondrom, G. Pope, T. Pratt, F. Prokoshin, J. Proudfoot, F. Ptohos, O. Pukhov, G. Punzi, J. Rademacker, A. Rakitine, F. Ratnikov, H. Ray, D. Reher, A. Reichold, P. Renton, M. Rescigno, A. Ribon, W. Riegler, F. Rimondi, L. Ristori, M. Riveine, W. J. Robertson, T. Rodrigo, S. Rolli, L. Rosenson, R. Roser, R. Rossin, C. Rott, A. Roy, A. Ruiz, D. Ryan, A. Safonov, R. St. Denis, W. K. Sakamoto, D. Saltzberg, C. Sanchez, A. Sansoni, L. Santi, D. Sannino, P. Schlabach, E. E. Schmidt, M. P. Schmidt, M. Schmitt, L. Scodellaro, A. Scott, A. Scribano, A. Sedov, S. Seidel, Y. Seiya, A. Semenov, F. Semeria, T. Shah, M. D. Shapiro, P. F. Shepard, T. Shibayama, M. Shimojima, M. Shochet, A. Sidoti, J. Siegrist, A. Sill, P. Sinervo, P. Singh, A. J. Slaughter, K. Sliwa, F. D. Snider, R. Snuhr, A. Solodsky, J. Spalding, T. Speer, M. Spezziga, P. Sphicas, F. Spinella, M. Spiropulu, L. Spiegel, J. Steele, A. Stefanini, J. Strologas, F. Strumia, D. Stuart, A. Sukhanov, K. Sumorok, T. Suzuki, T. Takano, R. Takashima, K. Takikawa, P. Tamburello, M. Tanaka, B. Tannenbaum, E. Thomson, A. S. Thompson, E. Thomson, R. Thurman-Keup, P. Tipton, S. Tkaczyk, D. Toback, K. Tollefson, D. Tonelli, M. Tonnesmann, H. Toyoda, W. Trischuk, J. F. de Troconiz, J. Tseng, D. Tsybychev, N. Turini, F. Ukegawa, T. Unverhau, T. Vaiciulis, J. Valls, A. Varganov, E. Vataga, S. Vejcik III, G. Velev, G. Veramendi, R. Vidal, I. Vila, R. Vilar, I. Volobouev, M. von der Mey, D. Vucinic, R. G. Wagner, R. L. Wagner, W. Wagner, N. B. Wallace, Z. Wan, C. Wang, M. J. Wang, S. M. Wang, B. Ward, S. Waschke, T. Watanabe, D. Waters, T. Watts, M. Weber, H. Wenzel, W. C. Wester III, B. Whitehouse, A. B. Wicklund, E. Wicklund,
T. Wilkes, H. H. Williams, P. Wilson, B. L. Winer, D. Winn, S. Wolbers, D. Wolinski, J. Wolinski, S. Wolinski, M. Wolter, S. Worm, X. Wu, F. Würthwein, J. Wyss, U. K. Yang, W. Yao, G. P. Yeh, P. Yeh, K. Yi, J. Yoh, C. Yosef, T. Yoshida, I. Yu, S. Yu, Z. Yu, J. C. Yun, L. Zanello, A. Zanetti, F. Zetti, and S. Zucchelli

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
4 Brandeis University, Waltham, Massachusetts 02254
5 University of California at Davis, Davis, California 95616
6 University of California at Los Angeles, Los Angeles, California 90024
7 University of California at Santa Barbara, Santa Barbara, California 93106
8 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
9 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
10 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
11 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
12 Duke University, Durham, North Carolina 27708
13 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
14 University of Florida, Gainesville, Florida 32611
15 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
16 University of Geneva, CH-1211 Geneva 4, Switzerland
17 Glasgow University, Glasgow G12 8QQ, United Kingdom
18 Harvard University, Cambridge, Massachusetts 02138
19 Hiroshima University, Higashi-Hiroshima 724, Japan
20 University of Illinois, Urbana, Illinois 61801
21 The Johns Hopkins University, Baltimore, Maryland 21218
22 Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany

23 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan

24 Center for High Energy Physics: Kyungpook National University, Taegu 702-701; Seoul National University, Seoul 151-742; and SungKyunKwan University, Suwon 440-746; Korea

25 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720

26 University College London, London WC1E 6BT, United Kingdom

27 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

28 University of Michigan, Ann Arbor, Michigan 48109

29 Michigan State University, East Lansing, Michigan 48824

30 Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

31 University of New Mexico, Albuquerque, New Mexico 87131

32 Northwestern University, Evanston, Illinois 60208

33 The Ohio State University, Columbus, Ohio 43210

34 Osaka City University, Osaka 588, Japan

35 University of Oxford, Oxford OX1 3RH, United Kingdom

36 Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

37 University of Pennsylvania, Philadelphia, Pennsylvania 19104

38 Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy

39 University of Pittsburgh, Pittsburgh, Pennsylvania 15260

40 Purdue University, West Lafayette, Indiana 47907

41 University of Rochester, Rochester, New York 14627

42 Rockefeller University, New York, New York 10021

43 Instituto Nazionale de Fisica Nucleare, Sezione di Roma, University di Roma I, “La Sapienza,” I-00185 Roma, Italy

44 Rutgers University, Piscataway, New Jersey 08855

45 Texas A&M University, College Station, Texas 77843

46 Texas Tech University, Lubbock, Texas 79409

47 Institute of Particle Physics, University of Toronto, Toronto M5S 1A7, Canada

48 Istituto Nazionale di Fisica Nucleare, University of Trieste/ Udine, Italy
Abstract

We present the results of a search for pair production of scalar top quarks (\tilde{t}_1) in an R-parity violating supersymmetry scenario in 106 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV collected by the Collider Detector at Fermilab. In this mode each \tilde{t}_1 decays into a τ lepton and a b quark. We search for events with two τ's, one decaying leptonically (e or μ) and one decaying hadronically, and two jets. No candidate events pass our final selection criteria. We set a 95% confidence level lower limit on the \tilde{t}_1 mass at 122 GeV/c2 for $\text{Br}(\tilde{t}_1 \to \tau b) = 1$.

Typeset using REVTeX
Many supersymmetry (SUSY) models [1] predict that the first two generations of supersymmetric partners of the quarks and the leptons (squarks and sleptons) are approximately mass degenerate. However, the mass of the lightest top squark (\(\tilde{t}_1\) or ‘stop’) can be relatively light due to a large mixing between the interaction eigenstates, \(\tilde{t}_L\) and \(\tilde{t}_R\). This mixing depends in part on the top Yukawa coupling which is largely due to the heavy top quark mass, and it is possible that \(\tilde{t}_1\) is lighter than the top quark [2].

\(R\)-parity (\(R_p\)) is a multiplicative quantum number defined as
\[R_p \equiv (-1)^{3B+L+2S}, \]
where \(S\), \(B\) and \(L\) are the spin, baryon and lepton numbers of a particle, respectively [3]. \(R_p\) distinguishes SM particles (\(R_p = +1\)) from SUSY particles (\(R_p = -1\)). Conservation of \(R_p\) requires SUSY particles to be produced in pairs and to decay, through a cascade, to SM particles plus the stable lightest supersymmetric particle. The \(R_p\) conservation, which is not required by SUSY, is often built into the theory by hand and is justified phenomenologically by limits on the proton lifetime, the absence of flavor-changing neutral currents, etc. Viable \(R_p\) violating (\(R_p\)) models can be built by adding explicit \(R_p\) terms with trilinear couplings (\(\lambda_{ijk}\), \(\lambda'_{ijk}\), \(\lambda''_{ijk}\)) and spontaneous \(R_p\) terms with bilinear couplings (\(\epsilon_i\)) to the SUSY Lagrangian [4,5], where \(i, j\) and \(k\) are the generation indices. These couplings allow \(B\) or \(L\) violating interactions and, if \(\lambda'_{33k}\) or \(\epsilon_3\) is non-zero, a \(\tilde{t}_1\) may decay directly to SM final states which are experimentally observable.

At the Fermilab Tevatron, in \(p\bar{p}\) collisions, stop pairs might be produced strongly via \(R_p\)-conserving processes through \(gg\) fusion and \(q\bar{q}\) annihilation. In \(R_p\) scenarios each stop can decay into a tau (\(\tau\)) lepton and a bottom (\(b\)) quark with a branching ratio, \(Br\), which depends on the coupling constants of the particular model. A good final state search topology identifies either an electron or a muon (\(\ell = e\) or \(\mu\)) from the \(\tau \to \ell\nu\nu\) decay, as well as a hadronically decaying tau (\(\tau_h\)) lepton, and two or more jets.

We present the results of a search for \(\tilde{t}_1\tilde{t}_1 \to \ell\tau_hjj\) events, in the framework of \(R_p\)-MSSM, using 106 pb\(^{-1}\) of \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV collected by the Collider Detector at Fermilab (CDF) during the 1992–95 run of the Tevatron (Run I). CDF is a general purpose detector and has been described in detail elsewhere [6,7]. We briefly describe the
subsystems of the CDF detector relevant to this analysis. The location of the \(p\bar{p} \) collision event vertex \((z_{\text{vtx}}) \) is measured along the beam direction [8] with a time projection chamber. The transverse momentum \((p_T) \) of charged particles is measured in the region \(|\eta| < 1.0 \) by a central tracking chamber (CTC) which is immersed in a uniform 1.4 T solenoidal magnetic field [8]. Electromagnetic (EM) and hadronic (HAD) calorimeters, segmented in a projective tower geometry surrounding the solenoid and covering the region \(|\eta| < 4.2 \), are used for identification of electrons, taus, and jets and the measurement of the missing transverse energy \((E_T) \). The central strip chamber (CES) is embedded in the central EM calorimeter at a depth of approximately shower maximum, and is used for further electron identification as well as \(\pi^0 \to \gamma\gamma \) identification from \(\tau_h \) decays. A muon subsystem is located outside the hadron calorimeter and has trigger coverage for the region \(|\eta| < 0.6 \).

The analysis begins with a sample of events which pass a three-level trigger system [6] which requires a single isolated lepton \((e \text{ or } \mu)\) with \(p_T > 8 \text{ GeV}/c \) \(|\eta| < 1.0 \) if it is an electron and \(|\eta| < 0.6 \) if it is a muon) [9]. Offline, the lepton is required to have \(p_T > 10 \text{ GeV}/c \), come from the event vertex, and pass more restrictive identification and isolation requirements [7,10]. An event is removed as a Z boson candidate if it contains a second, loosely identified same-flavor opposite-sign lepton with \(76 < M_{\ell\ell} < 106 \text{ GeV}/c^2 \). To maintain the projective geometry of the calorimeter, all events are required to have \(|z_{\text{vtx}}| \leq 60 \text{ cm} \).

An inclusive \(\ell\tau_h \) subsample is made by requiring each event to further contain a high \(p_T \), isolated, hadronically decaying \(\tau \) lepton candidate with \(p_T^{\tau} > 15 \text{ GeV}/c \) [11] and \(|\eta| < 1.0 \). A \(\tau_h \) candidate is identified as a calorimeter cluster which satisfies the following requirements [12]: (i) not identified as an \(e \) or \(\mu \); (ii) one or three tracks with \(p_T > 1 \text{ GeV}/c \) in a \(10^\circ \) cone around the calorimeter cluster center; (iii) the scalar sum of the \(p_T \) of all tracks in \(\Delta R = 0.4 \) around the cluster center, excluding those in the \(10^\circ \) cone, less than \(1 \text{ GeV}/c \); (iv) fewer than three \(\pi^0 \to \gamma\gamma \) candidates identified in the CES; (v) more than 4 GeV of \(E_T \) measured in the calorimeter; (vi) \(0.5 < E_T/p_T^{\tau_h} < 2.0 \) (1.5) for one track (three tracks); (vii) the cluster width of the calorimeter cluster in \(\eta-\phi \) space less than
0.11 (0.13) − 0.025 (0.034) \times E_T \ [\text{GeV}]/100 \text{ for one track (three tracks); and (viii) the}
\text{invariant mass reconstructed from tracks and } \pi^0 \text{'s less than 1.8 GeV}/c^2. \text{ The charge of the}
\tau_h \text{ object is defined as the sum of the track charges, and is required to have unit magnitude}
\text{and have the opposite sign (OS) of the } \ell \text{ candidate. A total of 642 events pass the above}
\text{requirements; 16 of these have two or more jets (identified using a fixed cone algorithm}
\text{with } \Delta R = 0.4 \text{[13]) with } E_T > 15 \text{ GeV and } |\eta| < 2.4. \text{ Note that, as expected, the four}
\ell \tau_h + \text{jets candidate events which were found in the search for } t\bar{t} \rightarrow (W^+ b)(W^- \bar{b}) \text{[12] pass}
\text{the kinematic requirements for this search.}

\text{The dominant backgrounds come from } Z/\gamma^* (\to \tau^+\tau^-)+\text{jets}, \ t\bar{t}, \ \text{diboson } (W^+W^-, \ W^\pm Z, \ ZZ) \text{ production, and fake } \ell \tau_h \text{ combinations from } W^+\text{jets and QCD events. Monte Carlo}
\text{(MC) programs with CTEQ4L parton distribution functions (PDFs) [14] and a detector}
\text{simulation are used to estimate the background rates by simulating the kinematics of}
\text{Z/\gamma^*, W, t\bar{t}, and diboson events. All SM processes except } W/Z\text{+jets events are generated}
\text{using isajet [15]; vecbos [16] is used for vector boson plus jets production and decay,}
\text{followed by herwig [17] for the fragmentation and hadronization of the quarks and gluons.}
\text{The cross sections for } Z/\gamma^*, \ t\bar{t} \text{ and } W^+W^- \text{ production are normalized to the CDF measurements [18–21] and next-to-leading order (NLO) calculations for } W^\pm Z \text{ and } ZZ \text{ production}
\text{are used [22,23]. The number of fake events from QCD is estimated from the data and}
\text{assumes that the number of OS events, after subtracting off the non-fake contribution, is}
\text{identical to the number of like-sign (LS) events observed in the data as expected from QCD}
\text{sources i.e., } N_{QCD}^{OS} = N_{data}^{LS} - N_{MC}^{LS}. \text{ The final optimized data selection requirements are based on simulated } \tilde{t}_1\tilde{\tau}_1 \text{ production,}
\text{using isajet [15] and the CDF detector simulation, background expectations, and a control}
\text{sample. See Fig. 2. To reduce the number of } W+\text{jets events we require } M_T(\ell, E_T) < 35 \text{ GeV}/c^2 \text{ where } M_T(\ell, E_T) \text{ is the transverse mass of the } \ell \text{ and the event } E_T, \text{ defined}
\text{as } M_T(\ell, E_T) \equiv \sqrt{2 p_T^\ell E_T(1-\cos(\phi_{\ell E_T}))}, \text{ and where } \phi_{\ell E_T} \text{ is the azimuthal angle difference}
\text{between the } \ell \text{ and the } E_T. \text{ To reduce the QCD backgrounds we require } \Sigma p_T(\ell, \tau_h, E_T) \equiv p_T^\ell + p_T^{\tau_h} + E_T > 75 \text{ GeV}/c. \text{ A control sample of } \ell \tau_h + \text{jet events with similar kinematic}
FIG. 1. The number of charged tracks in each \(\tau_h \) candidate for the opposite-sign (OS) \(\ell \tau_h^+0 \) jet control sample. The data are compared to the MC expectation (all background histograms are summed) which is dominated by real \(\tau_h \)’s from \(Z \to \tau^+\tau^- \) production.

A comparison of the OS \(\ell \tau_h^+ \geq 2 \) jet data and background estimation is shown in Fig. 2 before the final \(M_T(\ell, E_T) \) and \(\Sigma p_T(\ell, \tau_h, E_T) \) cuts. A breakdown of the backgrounds and data is given in Table I. The backgrounds appear well modeled. A total of \(3.2^{+1.4}_{-0.3} \) events are predicted from all SM sources, dominated by \(Z(\to \tau^+\tau^-)+\text{jets} \) production. No candidate events pass the final \(\tilde{t}_1\tilde{t}_1 \) selection criteria, which is unusual but expected in roughly 3% of experiments when taking into account the statistical and systematic uncertainties.

In order to set limits on \(\tilde{t}_1\tilde{t}_1 \) production and decay, the acceptances and efficiencies are normalized to the rate of \(Z(\to \tau^+\tau^-)+0 \) jet decays using the following relation:
FIG. 2. The final data selection criteria for the OS $\ell\tau_h+\geq 2$ jet sample. The arrows show the final event selection requirements. The assumed stop mass is 100 GeV/c2. The quantities $\Sigma p_T(\ell, \tau_h, E_T)$ and $M_T(\ell, E_T)$ are defined in the text.
FIG. 3. The 95% C.L. upper limit on cross section for $\tilde{t}_1\tilde{t}_1$ production compared to the NLO calculations

$$\sigma(\tilde{t}_1\tilde{t}_1 \rightarrow \tau^+\tau^-b\bar{b}) = \left(\frac{N_{\text{Obs}}^{\text{stop}} - N_{\text{BG}}^{\text{stop}}}{N_{\text{Obs}}^{Z} - N_{\text{BG}}^{Z}} \right) \cdot R_{\text{Acc}} \cdot R_{\text{Trig}} \cdot \sigma_Z \cdot \text{Br}(Z \rightarrow \tau^+\tau^-) \quad (1)$$

where $N_{\text{Obs}}^{\text{stop}}$ and $N_{\text{BG}}^{\text{stop}}$ (N_{Obs}^{Z} and N_{BG}^{Z}) are the number of candidate events observed in the data and expected background in the ≥ 2 jet/$\tilde{t}_1\tilde{t}_1$ (0 jet/Z) selections, R_{Acc} is the ratio of the Z to $\tilde{t}_1\tilde{t}_1$ acceptances and R_{Trig} is the ratio of the trigger efficiencies. The primary advantage of this approach is that potential systematic uncertainties in the estimate of identification and isolation efficiencies are reduced in the ratio of $\tilde{t}_1\tilde{t}_1$ to Z production.

The 95% confidence level (C.L.) limits on $\sigma(\tilde{t}_1\tilde{t}_1 \rightarrow \tau^+\tau^-b\bar{b})$ in the e, μ and combined channels are found using Eq. (1) and come from a Bayesian integration of the likelihood as
a function of the cross section, integrating over the correlated and uncorrelated systematic uncertainties on the expected signal with a flat prior. The R_{Acc} term is a function of the \tilde{t}_1 mass and varies in the range $0.34 < R_{\text{Acc}}^e < 2.15$ ($0.35 < R_{\text{Acc}}^\mu < 1.87$) for the e (μ) channel over the range $70 < m_{\tilde{t}_1} < 130$ GeV/c^2. The R_{Trig} term varies between $0.95 < R_{\text{Trig}}^e < 0.97$ ($0.99 < R_{\text{Trig}}^\mu < 1.00$) for the e (μ) channel with an uncertainty of about 1%. (The acceptance and trigger efficiencies for the Z control sample for this analysis are 1.19% (0.69%) and 74.5% (83.0%) for the e (μ) channel respectively.) Assuming lepton universality gives $\sigma_Z \cdot \text{Br}(Z \to \tau^+\tau^-) \approx \sigma_Z \cdot \text{Br}(Z \to \ell^+\ell^-) = 231 \pm 12$ (stat+sys) pb [24].

The dominant uncertainty is due to the statistical uncertainty in $N_{\text{Obs}}^Z - N_{\text{BG}}^Z$ and is 17.0% (24.9%) [25]. Additional uncertainty comes from our estimation of R_{Acc} which is dominated by the variation in the $\tilde{t}_1\tilde{t}_1$ acceptance from choices of the QCD renormalization scale Q^2, PDFs, amount of gluon radiation, the jet energy scale and the statistical uncertainty in the MC samples [26]. The total uncorrelated uncertainties vary between 17.1 and 17.7% (25.1% and 25.4%), and the total correlated uncertainties vary between 9.3 and 14.1%.

Figure 3 shows the final 95% C.L. upper limits on the cross section times Br for the e, μ and combined channels, along with the NLO prediction of the production cross sections [27]. The 95% C.L. lower limits on $M_{\tilde{t}_1}$ are 110 and 75 GeV/c^2 for the e and μ channels, respectively, where we have assumed Br = 1 for simplicity. Combining the two results yields a limit of 122 GeV/c^2. Since our analysis does not distinguish the quark flavors in jet reconstruction, these results are equally valid for any λ'_{33k} coupling. These results substantially improve on the currently most stringent mass limit which comes from the ALEPH experiment [28] which excludes \tilde{t}_1 masses below 93 GeV/c^2 using $e^+e^- \to \tilde{t}_1\tilde{t}_1 \to \tau^+\tau^- + 2$ jets topology with an assumption of $\lambda'_{33k} \neq 0$ ($k = 1, 2$ or 3).

In conclusion, we have searched for $\tilde{t}_1\tilde{t}_1$ production using 106 pb$^{-1}$ data in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. We have examined the $\ell\tau_h + \geq 2$ jet final state within an \tilde{b}_R SUSY scenario in which each \tilde{t}_1 decays to a τ lepton and a b quark via non-zero λ'_{333} or ϵ_3 couplings. No $\tilde{t}_1\tilde{t}_1$ event candidates pass our selection criteria and we have set a 95% C.L. lower limit on the \tilde{t}_1 mass at 122 GeV/c^2 for Br = 1.
TABLE I. Summary of the number of OS events in the data and expectations for the background sources as each selection requirement is applied.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science, Sports and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; the Korea Science and Engineering Foundation (KoSEF), the Korea Research Foundation; and the Comision Interministerial de Ciencia y Tecnologia, Spain.
REFERENCES

[1] H.P. Nilles, Phys. Rep. 110, 1 (1984); H.E. Haber and G.L. Kane, *ibid.* 117, 75 (1985).

[2] K. Inoue, A. Kakuo, H. Komatsu, and H. Takeshita, Prog. Theor. Phys 68, 927 (1982); 71, 413 (1984); L. Ibanez and C. Lopez, Nucl. Phys. B 233, 511 (1984); J. Ellis and S. Rudaz, Phys. Lett. B 128, 248 (1983).

[3] A. Salam and J. Strathdee, Nucl. Phys. B 87, 85 (1975); P. Fayet, *ibid.* 90, 104 (1975); G. Farrar and P. Fayet, Phys. Lett. B 76, 575 (1978).

[4] S. Weinberg, Phys. Rev. D 26, 287 (1982); G. Farrar and S. Weinberg, *ibid.* 27, 2732 (1983); S. Dawson, Nucl. Phys. B 261, 297 (1985).

[5] For recent reviews on R_p violating SUSY, see H. Dreiner, hep-ph/9707435, and F. de Campos et al., hep-ph/9903245.

[6] CDF Collaboration, F. Abe et al., Nucl. Instrum. Methods A 271, 387 (1988).

[7] CDF Collaboration, F. Abe et al., Phys. Rev. D 50, 2966 (1994).

[8] We use a coordinate system where θ and ϕ are the polar and azimuthal angles, respectively, with respect to the proton beam direction (z axis). The pseudorapidity η is defined as $-\ln[\tan(\theta/2)]$. The transverse momentum of a particle is denoted as $p_T = p \sin \theta$. The analogous quantity using energies, defined as $E_T = E \sin \theta$, is called transverse energy. The missing transverse energy, \not{E}_T, is a magnitude of $\sum \not{E}_T \cdot \hat{n}_i$, where \hat{n}_i is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter cell i.

[9] CDF Collaboration, F. Abe et al., Phys. Rev. D 58, 092002 (1998).

[10] Each lepton is required to have less than 4 GeV of E_T (as measured in the calorimeter) in a cone of $\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$ around the lepton, excluding the lepton energy. Similarly, the isolation in CTC is also required to be less than 4 GeV/c. Also, see CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 87, 251803 (2001).

[11] $p_T^{h\ell}$ is defined as the sum of the p_T of any tracks in a 10° cone around the center of the candidate, plus the E_T of any identified π^0's, as measured in the EM calorimeter.
[12] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 79, 3585 (1997).
[13] CDF Collaboration, F. Abe et al., Phys. Rev. D 45, 1448 (1992).
[14] H.L. Lai et al., Phys. Rev. D 55, 1280 (1997).
[15] H. Baer, F.E. Paige, S.D. Protopopescu, and X. Tata, hep-ph/0001086. We use isajet version 7.44.
[16] F.A. Berends, W.T. Giele, H. Kuijf, and B. Tausk, Nucl. Phys. B 357, 32 (1991); W.T. Giele, E.W. Glover, and D.A. Kosower, Nucl. Phys. B 403, 633 (1993).
[17] G. Marchesini and B. R. Webber, Nucl. Phys. B 310, 461 (1988); G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992).
[18] CDF Collaboration, F. Abe et al., Phys. Rev. D 76, 3070 (1996).
[19] CDF Collaboration, F. Abe et al., Phys. Rev. D 49, 1 (1994).
[20] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 80, 2773 (1998).
[21] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 78, 4536 (1997).
[22] J. Ohnemus, Phys. Rev. D 44, 3477 (1991).
[23] J. Ohnemus and J. Owens, Phys. Rev. D 43, 3626 (1991).
[24] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 77, 448 (1996).
[25] For the electron channel we have \(N^{\text{Obs}}_{Z^-} - N^{\text{BG}}_{Z^-} = 54 - (8.1 \pm 2.5) \) events which gives 46\(\pm 8 \) events when statistical uncertainties are taken into account. Similarly, for the muon channel we have 23 - (2.9\(\pm 1.5 \)) which gives 20\(\pm 5 \) events.
[26] We note for completeness that the estimated systematic uncertainties in \(R_{\text{Acc}} \) due to \(\tilde{t}_1 \tilde{t}_1 \) production and decay for the stop mass range from 130 to 70 GeV/c\(^2\) are: between 4.5 and 8.2% due to choice of the \(Q^2 \) scale (taken to be correlated, and equal for the \(e \) and \(\mu \) cases), 2.0 and 4.6% due to the choice in PDFs (again taken to be correlated and equal for \(e \) and \(\mu \)), 2.3 and 6.4% due to uncertainty in the initial and final state gluon radiation (correlated, and averaged between \(e \) and \(\mu \)), 1.1 and 3.7% due to jet energy scale (correlated and averaged), and 1.7 and 4.7% for \(e \)'s and 2.3 and 4.8% for \(\mu \)'s due to MC statistics (uncorrelated).
[27] W. Beenakker, R. Höpker, M. Spira, and P. M. Zerwas, Nucl. Phys. B 492, 51 (1997).
The calculation for NLO cross section for $\bar{t}_1 t_1$ production is made using the PROSPINO program with CTEQ4M, hep-th/9611232 (1996). We note for completeness that the theoretical uncertainty on the NLO scalar quark production cross section is a function of the scalar quark mass and ranges from 11% to 22% for the mass range 30 GeV/c^2 to 150 GeV/c^2.

[28] ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C 19, 415 (2001).