Environmental Research Letters

LETTER

Estimating site-specific optimum air temperature and assessing its effect on the photosynthesis of grasslands in mid- to high-latitudes

Qing Chang¹, Xiangming Xiao¹, Xiaocui Wu¹, Russell Doughty¹, Wenzhe Jiao¹, Rajen Bajgain¹, Yuanwei Qin¹, and Jie Wang¹

¹ Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, United States of America
² Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, United States of America

E-mail: xiangming.xiao@ou.edu

Keywords: eddy flux tower sites, gross primary productivity, EVI, vegetation productivity model

Supplementary material for this article is available online

Abstract

The effect of air temperature on photosynthesis is important for the terrestrial carbon cycle. The optimum air temperature for photosynthesis is one of the major parameters in data-driven and process-based photosynthesis models that estimate the gross primary production (GPP) of vegetation under a changing climate. To date, most models use the biome-specific optimum air temperature (\(T_{\text{opt}}^{b}\)) parameter. To what degree will the site-specific optimum air temperature (\(T_{\text{opt}}^{s}\)) affect GPP simulation results remains unclear. In this study, we estimated \(T_{\text{opt}}^{s}\) by using GPP data from 11 grassland eddy flux tower sites (GPP_{EC}) and satellite vegetation indices (NDVI and EVI). We found that \(T_{\text{opt}}^{s}\) parameter values estimated from EVI have good consistency with those from GPP_{EC} at individual sites. We also evaluated the effects of site-specific and biome-specific optimum air temperature parameters on grassland photosynthesis. The results showed that the use of \(T_{\text{opt}}^{s}\) in the Vegetation Photosynthesis Model improved to various degrees in both daily and annual GPP estimates in those grassland flux tower sites. Our results highlight the necessity and potential for the use of \(T_{\text{opt}}^{s}\) in terrestrial GPP models, especially in those situations with large temperature variation (heatwave and cold spill events).

1. Introduction

The relationship between air temperature and photosynthesis or gross primary production (GPP) of vegetation at the local, regional, and global scales has been studied over many decades (Williams et al 2014; Huang et al 2019). Global warming and climatic extremes (e.g. heatwaves and cold spills) have large impacts on vegetation production across space and time (Mu et al 2011; Jiao et al 2019a; Ryu et al 2019). Accurately quantifying the effects of air temperature on the GPP of vegetation at local, regional, and global scales is critical to improving the modeling of GPP and terrestrial carbon cycles.

In addition to process-based biogeochemical models (Sellers et al 1986; McGuire et al 1995; Zhang et al 2012), satellite-based data-driven biogeochemical models have proven to be a great tool for estimating GPP, as satellite-based sensors provide continuous observations across local, regional, and global scales, especially for regions with limited in situ observations. A number of satellite-based terrestrial carbon models have been developed and used to estimate GPP at various spatial scales (Potter et al 1993; Xiao et al 2004a; Zhao et al 2005; Turner et al 2006; Jiang and Ryu 2016; Ryu et al 2019). Most of these satellite-based GPP models are designed on the basis of the production efficiency concept, also known as light use efficiency (LUE) or the radiation use efficiency concept (table S1, available online at stacks.iop.org/ERL/15/034064/mmedia). These LUE models estimated daily GPP based on photosynthetically active radiation (PAR) absorbed by vegetation (APAR) and LUE (\(\varepsilon\)) (GPP = APAR \times \varepsilon). In these models, the LUE (\(\varepsilon\))
parameter is often estimated as the product of the potential or maximum LUE (ε) and a few down-regulation scalars such as temperature, precipitation, soil moisture, vapor pressure deficit, and leaf age (Monteith 1972, 1977; Prince and Goward 1995).

Temperature constraint, represented by temperature scalar (T_{opt}), has been used in most LUE models (table S1). The typical response of leaf-level photosynthesis to temperature can be described by a bell-shaped relationship (Berry and Bjorkman 1980; Cox 2001; Clark et al 2011; Landsberg et al 2011). Because of the limitation of electric transport and Rubisco activity, plants tend to have low photosynthesis at cool temperatures, and increase to a maximum rate at optimal temperatures in the 20 °C–30 °C range and then decrease again at very high temperatures (Fitter and Hay 2012). This optimum temperature (T_{opt}) response has been described across a wide range of plant species (Kirschbaum and Farquhar 1984; Battaglia et al 1996; Fitter and Hay 2012), and ecosystem biomes (Huang et al 2019). In most satellite-based LUE GPP models, T_{opt} has been defined as a function of T_{opt}, maximum temperature, and minimum temperature for vegetation growth. As reported, the temperature scalar (T_{opt}) is more sensitive and is more highly governed by the choice of T_{opt} than by maximum and minimum temperatures (Raich et al 1991; Zhang et al 2017b). Thus, the choice of T_{opt} largely affects the T_{opt}, and finally affects the accuracy of GPP estimates in the models.

Biome-specific optimum air temperature parameters ($T_{\text{opt-b}}$) have been used to calculate biome-specific temperature scalars ($T_{\text{opt-b}}$) in biogeochemical models (table S1), including the Moderate Resolution Imaging Spectro-radiometer (MODIS) GPP algorithm (Running and Zhao 2013), Vegetation Photosynthesis Model (VPM; Xiao et al 2004b), TEC (Yan et al 2015), C-Fix (Veroustraete et al 2002), EC-LUE (Yuan et al 2007), CFLUX (King et al 2011), and GLOPEM (Prince and Goward 1995). Several studies have reported that the use of biome-specific parameters introduced an inaccurate derivation of ε and could be one of the potential error sources in GPP data product (Heinsch et al 2006; Turner et al 2006; Šjöström et al 2013). Note that a vegetation biome often covers a very large geographical domain, and vegetation may adapt to its local climate over years and thus develop a site-specific optimum air temperature ($T_{\text{opt-b}}$) (Huang et al 2019). There is a need to quantify the range of $T_{\text{opt-b}}$ parameter values and the difference between the $T_{\text{opt-b}}$ and $T_{\text{opt-s}}$ parameters. There is also a need to quantify the potential of using the $T_{\text{opt-b}}$ parameter to improve GPP estimates in the models. To date, only a few studies have reported the use of $T_{\text{opt-b}}$ in estimating GPP (Potter et al 2003, Sasai et al 2005). However, these studies have not used the GPP estimates and air temperature from the eddy flux tower sites to quantify the relationship between air temperature and GPP and estimate $T_{\text{opt-b}}$ parameter values. Therefore, our knowledge of the $T_{\text{opt-b}}$ parameter values and the potential of using the $T_{\text{opt-b}}$ parameter to improve GPP estimates is still very limited. A number of scientific questions need to be addressed: what is the most appropriate method for estimating $T_{\text{opt-b}}$ from both GPP data in the eddy flux tower sites (GPP$_{\text{EC}}$) and satellite datasets (NDVI, EVI)? What are the differences between site-specific temperature scalar ($T_{\text{opt-s}}$) and biome-specific temperature scalar ($T_{\text{opt-b}}$), and to what degree does $T_{\text{opt-b}}$ affect GPP estimates in the data-driven models? The answers to these questions will help improve our understanding of many aspects of continental carbon cycling, such as the impacts of climatic extremes (e.g. heatwave, cold spill) on the seasonal dynamics and inter-annual variation of GPP.

Grasslands in mid- to high-latitude regions are sensitive and vulnerable to climate variability, and temperature is a major climate factor controlling GPP (Yi et al 2010). Also grasslands have the largest inter-annual variation of gross and net primary production among the major ecosystem types (Fridley et al 2016; Hufkens et al 2016; Knapp et al 2017). Grasslands in these regions have high uncertainties in satellite-based GPP estimates. Compared with in situ flux observations, studies have found that the MOD17 GPP algorithm underestimated grassland GPP from sites to regions (Doughty et al 2018; Zhu et al 2016; Zhu et al 2018). The VPM GPP product added a C3/C4 ratio for the parameter ε calculation and significantly improved grassland GPP estimates (Zhang et al 2017b). However, larger uncertainties still exist in mid- to high-latitude grassland VPM GPP estimates (Wu et al 2018). The large uncertainties in grassland GPP estimates directly hinder our understanding of inter- and inter-annual GPP dynamics, and affect our assessment of ecosystem response to climate variability. For example, an analysis using MOD17 GPP showed large carbon losses for the US in 2012 because of the warm spring and dry summer (Wolf et al 2016), while the VPM GPP showed a slight carbon uptake (Wu et al 2018). In this study, first we quantified $T_{\text{opt-b}}$ parameter values in 11 grassland sites in mid- to high-latitude regions, and compared the $T_{\text{opt-b}}$ and $T_{\text{opt-b}}$ parameters. Our hypothesis is that the $T_{\text{opt-b}}$ parameter for photosynthesis of mid- to high-latitude grasslands varies among the sites and differs substantially from the commonly used $T_{\text{opt-b}}$. In order to explore the effects of the methods that are used to estimate $T_{\text{opt-b}}$, we identified potential data sources for $T_{\text{opt-b}}$ calculation across the globe. $T_{\text{opt-b}}$ values were calculated and compared with multiple data sources (GPP$_{\text{ECO}}$, MODIS NDVI, and EVI) and different methods. Second, we assessed the effects of the $T_{\text{opt-b}}$ parameter on GPP estimates in these grasslands sites. Our hypothesis is that the $T_{\text{opt-b}}$ parameter value may result in a large overestimation or underestimation of GPP of grasslands in previous GPP products, depending upon the differences between $T_{\text{opt-b}}$ at individual sites and $T_{\text{opt-b}}$. The VPM, which was developed under the LUE concept and satellite datasets (Xiao et al 2004b;
Zhang et al. (2017b), was used to estimate GPP for each site over several years. We also estimated and compared VPM GPP products driven by the two different types of T_{opt}, including both $T_{\text{opt-}a}$ (GPPa) and $T_{\text{opt-}b}$ (GPPb). The results from this study may help improve $T_{\text{opt-}a}$ parameter estimates and GPP estimates in the grasslands.

2. Materials and methods

2.1. Study sites

Data from grassland flux tower sites at mid- to high-latitudes were used in this study, and the details for these sites are described in the FLUXNET-2015 dataset. We selected the flux sites based on the following criteria: (1) the site has obvious seasonal changes, winter (daily daytime mean temperature (T_{max}) lower than 0 °C) lasting at least 2 months for each year; (2) land cover type at the site is homogeneous within the MOD09A1 (500 m) pixel (figure S1); (3) the site has had continuous observation for at least 1 year. In this study, we selected and analyzed 11 grassland sites. Spatial distribution and meteorological information of all the flux tower sites used in the analysis are shown in figure S2 and table S2.

2.2. Meteorological data and GPP data from the flux tower sites

The FLUXNET-2015 dataset provides meteorological data, water flux, and CO$_2$ flux data at half-hourly, hourly, daily, and yearly intervals. We visually checked the tower observations, and the values with low quality such as those with the same values in a whole year were removed. We also calculated daily downward surface solar shortwave radiation (s_{sw}), daily daytime mean temperature (T_{DT}), and daily GPP (GPP$_{\text{EC}}$) which were calculated with the variable USTAR filtering approach and daytime portioning method (Kumar et al. 2016). Then, 8 day s_{sw}, T_{DT} and GPP$_{\text{EC}}$ were generated from daily products respectively, and used in the VPM GPP simulation and comparison.

2.3. MODIS vegetation indices

This study used the MODIS land reflectance product MOD09A1 V006 (500 m spatial resolution and 8 day intervals) (Vermote 2015). For all the sites, three vegetation indices including the normalized difference vegetation index (NDVI) (Rouse Jr et al. 1974; Chang et al. 2018), enhanced vegetation index (EVI; Huete et al. 2002), and land surface water index (LSWI) (Xiao et al. 2004a) were calculated using equations (1)–(3) based on the following MODIS spectral bands: red band (RED) (620–670 nm); near infrared band (NIR) (841–876 nm); blue band (BLUE) (459–479 nm), green band (GREEN) (545–565 nm), and short wavelength near infrared band (SWIR) (1628–1652 nm).

\[
\text{NDVI} = \frac{\text{NIR} - \text{RED}}{\text{NIR} + \text{RED}}
\]

(1)

\[
\text{EVI} = 2.5 \times \frac{\text{NIR} - \text{RED}}{\text{NIR} + 6 \times \text{RED} - 7.5 \times \text{BLUE} + 1}
\]

(2)

\[
\text{LSWI} = \frac{\text{NIR} - \text{SWIR}}{\text{NIR} + \text{SWIR}}
\]

(3)

To filter out poor quality observations, we firstly identified those affected by ice, snow, and clouds using the quality control (QC) layer (Zhang et al. 2017b). Poor quality observations were replaced by the multi-year mean of good observations during the same time period. The Best Index Slope Extraction method was used to further detect the abnormal observations unidentified by the QC layer. The abnormal values were then filled with the mean value of its nearest two observations (Viovy et al. 1992; White et al. 1997, Xiao et al. 2009). At the end, the Savitzky–Golay (S–G) filter model was designed for removing the existing abnormal values (Savitzky and Golay 1964; Chen et al. 2004).

2.4. Methods for estimating site-specific optimum temperature for GPP

Biome-specific optimum air temperature ($T_{\text{opt-}b}$) was used at 27 °C as reported in the global VPM GPP product (Zhang et al. 2017b). Site-specific optimum air temperature ($T_{\text{opt-}a}$) was estimated from the analyses of temperature, GPP$_{\text{EC}}$, EVI, and NDVI data at individual flux tower sites. We developed two new methods to estimate $T_{\text{opt-}a}$, namely, the 95% maximum method and the generalized additive model (GAM) regression method. In order to make a comparison with a previous study (Potter et al. 2003), we also estimated the $T_{\text{opt-}a}$ from NDVI following the method in the CASA model, which is denoted as $T_{\text{opt-}a-\text{CASA}}$. In the response curve between the daily air temperature (T_{max}) and GPP or vegetation indices (T_{max}) (figure 1), we define the site-specific optimum air temperature as the daily air temperature when GPP or vegetation indices reach their peak value within the growing season.

With the 95% maximum method, we firstly found the maximum values of GPP$_{\text{EC}}$ (GPP$_{\text{EC-max}}$), or EVI (EVI$_{\text{max}}$), for each site. We calculated the optimum temperature as the daily daytime mean temperature (T_{DT}) during those observations with GPP or EVI values equal to or higher than 95% GPP$_{\text{EC-max}}$ or EVI$_{\text{max}}$ (figures 1(a) and (b)). Estimated $T_{\text{opt-}a}$ using the 95% maximum method from GPP$_{\text{EC}}$ and EVI are denoted as $T_{\text{opt-}a-\text{CASA}}$. The $T_{\text{opt-}a-\text{CASA}}$ was defined as the average monthly T_{DT} when GPP$_{\text{EC-max}}$ or EVI$_{\text{max}}$ occurred (figure 1(c)).

With the GAM regression method, the relationship between the GPP$_{\text{EC}}$ values (or EVI values) and the T_{DT} at a site over all the years were determined using a cyclic penalized cubic regression spline smooth model in R software. The optimum temperature for this site was then defined as the T_{DT} when GPP$_{\text{EC}}$ (or EVI) reached the maximum value in the GAM regression line (figures 1(d), (e)). $T_{\text{opt-}a}$ estimated by the GAM...
The VPM estimates daily GPP from PAR absorbed by chlorophyll in the canopy (\(\text{APAR}_{\text{chl}}\)) and \(\text{LUE}\) (\(\epsilon\)), see equations (4) and (5):

\[
\text{GPP}_{\text{VPM}} = \epsilon \times \text{APAR}_{\text{chl}} \times \text{PAR}
\]

\[
\epsilon = \epsilon_0 \times T_i \times W_i
\]

where \(\epsilon\) is LUE, APAR\(_{\text{chl}}\) is the fraction of PAR absorbed by chlorophyll, and PAR is the photosynthetic active radiation. EVI is used to estimate FPAR\(_{\text{chl}}\). Temperature stress \(T_i\) and water stress \(W_i\) are used to downscale maximum LUE \(\epsilon_0\) and estimate \(\epsilon\).

\(T_i\) is calculated using the temperature response equation documented in the Terrestrial Ecosystem Model (Raich \textit{et al} (1991)), as shown in equation (6):

\[
T_i = \frac{(T - T_{\text{min}})(T - T_{\text{max}})}{(T - T_{\text{min}})(T - T_{\text{max}}) - (T - T_{\text{opt}})^2}
\]

where \(T\) is the daily daytime mean air temperature (°C); \(T_{\text{min}}\), \(T_{\text{max}}\) and \(T_{\text{opt}}\) are the minimum, maximum, and maximum air temperatures for photosynthesis, respectively. The biome-specific parameters used in the global VPM GPP simulations came from the biome-specific look-up table, and the \(T_{\text{opt}}\) for grasslands was set as 27 °C (Zhang \textit{et al} 2017b). Four groups of site-specific \(T_{\text{opt}}\) were calculated using the two methods (95% max and GAM) from GPP\(_{\text{EC}}\) and EVI, and are denoted as \(T_{\text{opt} - \text{a}}\), \(T_{\text{opt} - \text{b}}\), \(T_{\text{opt} - \text{c}}\), \(T_{\text{opt} - \text{d}}\), and \(T_{\text{opt} - \text{e}}\). The four groups of site-specific \(T_{\text{opt}}\) based on \(T_{\text{opt} - \text{c}}\) are denoted as GPP\(_{\text{VPM} - \text{a}}\), GPP\(_{\text{VPM} - \text{b}}\), GPP\(_{\text{VPM} - \text{c}}\), and GPP\(_{\text{VPM} - \text{d}}\).

3. Results

3.1. Estimation of site-specific optimum air temperature from GPP\(_{\text{EC}}\) and vegetation index

We estimated \(T_{\text{opt} - \text{c}}\) for each site with the three methods using GPP\(_{\text{EC}}\), EVI, and NDVI (table S2). The results (figure 2) showed that the \(T_{\text{opt} - \text{c}}\) values showed a large difference within the grassland sites, and the estimates of \(T_{\text{opt} - \text{c}}\) were very different for the three methods using GPP\(_{\text{EC}}\), EVI, and NDVI. For the estimates of \(T_{\text{opt} - \text{c}}\), the difference between the highest and lowest \(T_{\text{opt} - \text{c}}\) of the 11 grassland sites was larger than 10 °C. \(T_{\text{opt} - \text{c}}\) calculated from EVI and NDVI were significantly correlated with \(T_{\text{opt} - \text{c}}\) from GPP\(_{\text{EC}}\) when using the same estimation method (root mean square error (RMSE) values are from 1.58–3.28 °C). All of the linear regression results (RMSE, R\(^2\), P-value) for \(T_{\text{opt} - \text{c}}\) from NDVI using the two methods developed in our study, \(T_{\text{opt} - \text{c}}\), were significantly correlated with those from GPP\(_{\text{EC}}\) when using the same estimation method (root mean square error (RMSE) values are from 1.58–3.28 °C).
were more consistent with $T_{\text{opt-s}}$ estimates from GPPEC ($T_{\text{opt-s-95-GPP EC}}$) than those from the CASA model ($T_{\text{opt-s-95-NDVI}}$) (figures 2(c) and (d)).

3.2. Effects of site-specific optimum air temperature on temperature scalars in the models

$T_{\text{opt-s}}$ based T_{-s} values in the VPM model were calculated with $T_{\text{opt-s-95-GPP EC}}$, $T_{\text{opt-s-95-EVI}}$, $T_{\text{opt-s-GAM-GPP EC}}$, and $T_{\text{opt-s-GAM-EVI}}$. The results showed that the T_{-s} values in the model for all observations at the 11 sites (figure 3) have large differences from T_{-sb} and most of the T_{-s} values were larger than T_{-sb}. The results indicated that the use of T_{-sb} in a previous global GPP simulation had underestimated T_{s} or overestimated the temperature limitation (temperature constraints) on the photosynthesis of grassland sites, especially for the sites with low temperatures such as IT-Tor and IT-MBo, where the annual mean temperatures are 5.1 °C and 2.9 °C, respectively (table S3).

![Figure 2](image1.png)

Figure 2. Comparisons among site-specific optimum temperature ($T_{\text{opt-s}}$) values estimated with different methods and data sources. $T_{\text{opt-s-95-GPP EC}}$, $T_{\text{opt-s-95-EVI}}$, and $T_{\text{opt-s-95-NDVI}}$ are the $T_{\text{opt-s}}$ from eddy covariance GPP (GPPEC), MODIS EVI, and NDVI using the 95% maximum method; $T_{\text{opt-s-GAM-GPP EC}}$, $T_{\text{opt-s-GAM-EVI}}$, and $T_{\text{opt-s-GAM-NDVI}}$ are the $T_{\text{opt-s}}$ from eddy covariance GPPEC, EVI, and NDVI using the GAM regression method. $T_{\text{opt-s-CASA-NDVI}}$ is the $T_{\text{opt-s}}$ calculated from NDVI following the CASA model. Solid lines are linear regression lines.

![Figure 3](image2.png)

Figure 3. Comparison of site-specific temperature scalar (T_{-s}) values and biome-specific temperature scalar (T_{-sb}) for all grassland sites. (a) $T_{-s-95-GPP EC}$ and (b) $T_{-s-95-EVI}$ are from eddy covariance GPP (GPPEC) and EVI with the 95% maximum method; (c) $T_{-s-GAM-GPP EC}$ and (d) $T_{-s-GAM-EVI}$ are the T_{-s} from eddy covariance GPP (GPPEC) and EVI with the GAM regression method. The black line in each panel is a linear regression line for all samples. Other colors represent different flux tower sites.
Table 1. A comparison between GPPVPM calculated with \(T_{\text{opt}} \), (GPPVPM→), \(T_{\text{opt}} \), (GPPVPM→), and GPPEC. Simple linear regression models were used at each eddy covariance site, and \(R^2 \) and RMSE (g C/m\(^2\)/day) were shown. *** means a P-value less than 0.001.

SiteID	Cor \((\text{GPPVPM→}_b, \text{GPPEC})\)	Cor \((\text{GPPVPM→}_s, \text{GPPEC})\)	Cor \((\text{GPPVPM→}_s, \text{GPPEC})\)	Cor \((\text{GPPVPM→}_s, \text{GPPEC})\)	Cor \((\text{GPPVPM→}_s, \text{GPPEC})\)
AT-Neu	0.75***, 3.02	0.80***, 2.38	0.80***, 2.37	0.76***, 2.81	0.80***, 2.31
CH-Fru	0.76***, 2.79	0.81***, 2.18	0.82***, 2.02	0.79***, 2.30	0.79***, 2.37
CH-Oel	0.47***, 3.72	0.52***, 3.28	0.52***, 3.27	0.52***, 3.30	0.52***, 3.27
CN-Cng	0.85***, 1.06	0.85***, 1.04	0.85***, 1.04	0.85***, 1.04	0.85***, 1.04
DE-RuR	0.81***, 1.89	0.85***, 1.77	0.86***, 1.75	0.83***, 1.73	0.83***, 1.73
DK-Eng	0.37***, 2.59	0.43***, 2.83	0.42***, 2.88	0.43***, 2.86	0.43***, 2.85
IT-MBo	0.83***, 1.75	0.89***, 1.76	0.89***, 1.74	0.88***, 1.75	0.88***, 1.75
IT-Tor	0.89***, 1.31	0.91***, 1.60	0.91***, 1.58	0.91***, 1.43	0.91***, 1.54
NL-Hor	0.82***, 1.71	0.83***, 2.00	0.83***, 1.99	0.82***, 1.79	0.83***, 1.97
RU-HaI	0.85***, 1.15	0.87***, 0.99	0.87***, 0.99	0.86***, 1.00	0.86***, 1.04
US-JB2	0.84***, 1.76	0.86***, 1.65	0.84***, 1.75	0.83***, 1.77	0.84***, 1.74

3.3. Effects of site-specific temperature scalar on GPP estimates in the model simulation

For most grassland sites, GPPVPM values calculated with \(T_{\text{opt}} \) (GPPVPM→) were significantly correlated with GPPEC and had a higher correlation coefficient (\(R^2 \)) and lower RMSE than results from GPPVPM→ (table 1). Also, GPPVPM→ values estimated from four types of \(T_{\text{opt}} \) (\(T_{\text{opt}}\rightarrow 95\text{-GPP}\), \(T_{\text{opt}}\rightarrow \text{GPP-EVI}\), \(T_{\text{opt}}\rightarrow \text{GPP-GAM}\), and \(T_{\text{opt}}\rightarrow \text{GPP-EVI}\)) were higher than GPPVPM→ with various values for almost all the intervals of the total 11 grassland sites (figures 4(a)-(d)). For some sites, the GPPVPM→ values were higher than GPPVPM→ up to 4 g C m\(^{-2}\) day\(^{-1}\) in the summer. In addition, the average annual GPPVPM→ (1121.20 g C m\(^{-2}\) year\(^{-1}\)) was 25.36% lower than the average annual GPPEC for the selected grassland sites (1502.16 g C m\(^{-2}\) year\(^{-1}\)) (figure 4(e)). The average annual GPPVPM→ was higher than GPPVPM→ for 80~178 g C m\(^{-2}\) year\(^{-1}\), depending upon the method. Four types of annual GPPVPM→ were lower than GPPEC for 11.95% (GPPVPM→→GPP-EVI; 8.00% (GPPVPM→→GPP-EVI), 5.81% (GPPVPM→→GPP-EVI), and 5.35% (GPPVPM→→GPP-EVI)) respectively. Similarly, RMSE values between the four GPPVPM→ and GPPEC were lower than that between GPPVPM→ and GPPEC. From both 8 day and annual analyses, the results indicated that using a site-specific optimum temperature improved the accuracy of the GPP estimates in the VPM model.

4. Discussion

\(T_{\text{opt}} \) was generally studied and estimated along the level of organization of species, community, and ecosystem. The studies indicated that \(T_{\text{opt}} \) varies across species and across ecosystems (biomes) (Kattge and Knorr 2007; Lin et al. 2012), and \(T_{\text{opt}} \) was used in the biogeochemical models. Different from most previous studies, our study explored and discussed the variability of \(T_{\text{opt}} \) across sites within a biome. Our results showed large differences of \(T_{\text{opt}} \) across sites within a biome, and thus supported the urgent need to address \(T_{\text{opt}} \) in a global terrestrial ecosystem study. In addition, the ecosystem-level \(T_{\text{opt}} \) parameters in previous global process-based ecosystem models were directly scaled from the leaf-level \(T_{\text{opt}} \) parameters, in which the \(T_{\text{opt}} \) values at the ecosystem level were found to be consistently lower than those at the leaf level and varied spatially (Huang et al. 2019). Our study introduced the methods by using satellite datasets for ecosystem-level \(T_{\text{opt}} \) extraction. The new methods provide a new way and results for future ecosystem \(T_{\text{opt}} \) studies. Previous studies have suggested gradually changing \(T_{\text{opt}} \) values along the latitude, while our study did not find a clear relationship between \(T_{\text{opt}} \) and latitude, annual precipitation, and temperature for the 11 grassland sites (figure S3). This is likely caused by the limited number of grassland sites, or due to grasslands being sensitive to both temperature anomalies and water supply and cannot be well explained by a single climate factor (Huikens et al. 2016; Green et al. 2019).

In recent years, many approaches have been developed to reduce the impacts from biome-specific look-up table parameters and coarse image resolutions in GPP estimates, such as readjusting biome-specific parameters (Sjöström et al. 2013), considering different C3/C4 \(\varepsilon_g \) values (Zhang et al. 2017b; Wu et al. 2018), and generating new equations for LUE (Ma et al. 2014). Our study contributed the LUE estimates by adjusting the temperature parameter and therefore temperature scalars, which was a less considered direction. Even though the CASA model has already tried to use \(T_{\text{opt}} \) instead of \(T_{\text{opt}} \), in the Net Photosynthesis Productivity (NPP) products (Field et al. 1995), the two methods (95% max and GAM regression) developed in our study improved the estimates of \(T_{\text{opt}} \) significantly. Compared with the \(T_{\text{opt}} \) estimated from NDVI in the CASA model, \(T_{\text{opt}} \) estimated from EVI was more consistent to \(T_{\text{opt}} \) from GPPEC (figure 2), which indicates that EVI is a reliable indicator for \(T_{\text{opt}} \) estimation in space, which could contribute to a
large-scale GPP simulation in the future. Because T_{opt} in the CASA model has usually been defined as the monthly mean temperature when NDVI reaches its maximum (Yan et al. 2015), thus T_{opt}–CASA–NDVI had more errors than that with a 95% max and GAM regression (figure 1). What is more, NDVI was more affected than EVI especially at regions mixed with complicated background information (Chang et al. 2019). As a previous validation study has proved that the global GPPVPM product with T_{opt}–b has been more reliable than GPPCASA when compared with GOME-2 SIF data, our GPPVPM with T_{opt}–a could be much more competitive in model comparison studies (Wu et al. 2018). It is important to apply the T_{opt}–a estimation methods in other land cover types, and explore the effects on GPP simulation. Both the datasets and methods in this study have widely applicability in other land cover types.

Accurate T_{opt}–a estimation is a reasonably reliable way for improving GPP estimates. A CASA model research study improved NPP by about 50 g C m$^{-2}$ yr$^{-1}$ at China’s Shennongjia Forestry District in the Hubei province by slightly improving the T_{opt}–a estimation method, in which the T_{opt}–a was defined as the mean temperature during the period of mature stability (Pei et al. 2018). Our results indicated that using T_{opt}–b, in previous VPM GPP studies could lead to an underestimation of GPP of 25% for grassland ecosystems annually (figure 4(e)). But we found that even though the use of T_{opt}–a improved GPP estimation and resulted in higher GPP values than using T_{opt}–b, in most grassland sites, GPPVPM with T_{opt}–b was still lower than GPPEC from eddy covariance observation for many of the 8 day intervals (figures S4(a)–(d)), and GPPVPM–a was about 5%–12% lower than GPPEC annually (figure 4(e)). The annual underestimation mostly occurred in the higher GPP years with 1400 g C m$^{-2}$ yr$^{-1}$ at AT-Neu (2002–2012) and CH-Oel (2002–2007), which could be caused by the inter-annual and inner-annual variability of C3/C4 composition which are not well recognized in the models (Doughty et al. 2018; Zhu et al. 2018). At AT-Neu (figure S6) and CH-Oel (figure S7), the start of the season and end of the season from GPPEC and GPPVPM agrees well with each other, but the magnitude differs substantially between them within a few years (e.g. 2002, 2003, 2004, 2006 at AT-Neu). Both shortwave radiation data and vegetation index data do not support a very high GPPEC during the 8 day periods of those years. We used daily GPP portioned by net ecosystem exchange (NEE) in the flux tower sites which has been reported

Figure 4. Seasonal and annual comparisons among modeled GPPVPM values and GPPEC. (a)–(d) Seasonal characteristics for values of the difference between GPPVPM and the site-specific parameter (GPPVPM–a) and GPPVPM with the biome-specific parameter (GPPVPM–b) at all grassland sites. The GPPVPM are estimated at 8 day intervals. The monthly mean temperature when NDVI reaches its maximum was defined as the mean temperature during the period of mature stability (Pei et al. 2018). Our results indicated that using T_{opt}–b, in previous VPM GPP studies could lead to an underestimation of GPP of 25% for grassland ecosystems annually (figure 4(e)). But we found that even though the use of T_{opt}–a improved GPP estimation and resulted in higher GPP values than using T_{opt}–b, in most grassland sites, GPPVPM with T_{opt}–b was still lower than GPPEC from eddy covariance observation for many of the 8 day intervals (figures S4(a)–(d)), and GPPVPM–a was about 5%–12% lower than GPPEC annually (figure 4(e)). The annual underestimation mostly occurred in the higher GPP years with 1400 g C m$^{-2}$ yr$^{-1}$ at AT-Neu (2002–2012) and CH-Oel (2002–2007), which could be caused by the inter-annual and inner-annual variability of C3/C4 composition which are not well recognized in the models (Doughty et al. 2018; Zhu et al. 2018). At AT-Neu (figure S6) and CH-Oel (figure S7), the start of the season and end of the season from GPPEC and GPPVPM agrees well with each other, but the magnitude differs substantially between them within a few years (e.g. 2002, 2003, 2004, 2006 at AT-Neu). Both shortwave radiation data and vegetation index data do not support a very high GPPEC during the 8 day periods of those years. We used daily GPP portioned by net ecosystem exchange (NEE) in the flux tower sites which has been reported

![Figure 4](image-url)
to have errors or uncertainties in some observations (Reichstein et al. 2005). Here, we would like to attribute the quality of GPP_EC data as a major source of the large discrepancy between annual GPP_VPM and GPP_EC in some years. The daily GPP data showed that the abnormal GPP_EC values could be caused by the intensive rainfall (figures S8 and S9). The consistency between GPP_EC and climate data and remote sensing data is important for us to evaluate GPP_EC data. However, the use of $T_{\text{opt-b}}$ was slightly overestimated for the years with lower annual GPP. The overestimation for low GPP years, mostly occurred at IT-Tor (2009–2013), and could be related to the water stress or lower annual precipitation in these years (628–818 mm yr$^{-1}$) relative to the multi-year mean annual precipitation (920 mm yr$^{-1}$). Under drought conditions, there could be a lower $T_{\text{opt-a}}$ than in normal years. Further studies are needed to explore the possible ways to improve GPP estimation at the ecosystem scale. Other likely sources of uncertainty in data-driven GPP products include for example the model structure (Zheng et al. 2018), meteorological input data-sets (Anav et al. 2015), and seasonal dynamic of LUE (Wei et al. 2017). Many novel approaches have been developed to reduce uncertainties in GPP estimates. For example, a study estimated GPP by only using PAR and EVI (Ma et al. 2014). The Photochemical Reflectance Index was found to be significantly correlated to LUE, and was effective in detecting seasonal carbon fluxes in evergreen ecosystems where FPAR and greenness-related vegetation indices change little (Garbulsky et al. 2011; Middleton et al. 2016). NIRD was better correlated to modeled MODIS FPAR than NDVI and significantly correlated to GPP (Badgley et al. 2017), and has been used for GPP estimates globally in 0.5° (Badgley et al. 2018). Also, significant linear relationships between GPP and OCO-2-based SIF product (GOSIP) contributed to the work that estimated GPP in 0.05° using GOSIP (Li and Xiao 2019). Further studies are needed to explore the possible ways to improve GPP estimation at the ecosystem scale.

The satellite-based GPP_VPM−a product with higher estimate accuracies could be more reliable for studying the impacts of climate variability, especially extreme climate events, on the ecosystem. Here, we take drought, which is expected to show an intensified frequency and consequences under climate change (Jiao et al. 2016; Jiao et al. 2019b), as an example for discussing the possible contributions of our study in a future study. Previous studies based on three different global GPP products reported that the impact of drought on terrestrial primary production was underestimated by satellite-based LUE GPP models (Turner et al. 2005; Mu et al. 2007; Sims et al. 2008). The reason for the underestimation is that these GPP models did not simulate the water balance, or did not account for the direct effects of soil moisture in addition to VPD and changes in greenness (Jiao et al. 2019a; Stocker et al. 2019). Our study found that GPP_VPM computed with $T_{\text{opt-a}}$ for the years with higher precipitation showed a greater improvement than for the years with lower precipitation (figure S5). This result indicated that the $T_{\text{opt-b}}$ used in previous global GPP simulations might finally underestimate the decrease of GPP from a normal year to a drought year, which could be one of the reasons for the underestimation of drought impacts on ecosystem productivity. As shown, when drought occurs, it is often accompanied by higher temperature (Zhang et al. 2017a). The plants thus actually suffer both water stress and temperature stress under drought. As the drought condition $T_{\text{opt-a}}$ was different with and lower than $T_{\text{opt-b}}$, the use of $T_{\text{opt-b}}$ might not capture well the effect of increasing temperature on GPP, and therefore resulted in a greater underestimation. Future GPP models need to consider the comprehensive impacts from multi-parameters such as temperature, water, canopy structural, leaf nitrogen, and chlorophyll content.

5. Conclusions

Our study explored the estimates of $T_{\text{opt-a}}$ using a satellite and the potential of using $T_{\text{opt-b}}$ in estimating the GPP of grasslands. We found that EVI has a similar performance with in situ measured GPP_EC for determining photosynthesis $T_{\text{opt-a}}$. We also compared the differences in $T_{\text{opt-a}}$ values using different extraction methods and different data sources. Our results provide references with data sources and methods for reliable $T_{\text{opt-a}}$ estimation and more accurate GPP simulations at the site and global scales. $T_{\text{opt-a}}$ values differ among sites and differ from $T_{\text{opt-b}}$ significantly. We found a significant improvement in the accuracy of GPP estimates for grasslands by using $T_{\text{opt-a}}$ rather than $T_{\text{opt-b}}$. We suggest that terrestrial ecosystem models should account for site-specific temperature parameters. As the climatic impacts on ecosystems have always been assessed by GPP anomalies, an improved GPP product would help us better understand the impacts of extreme events on terrestrial ecosystem carbon cycles, and better manage terrestrial ecosystems.

Acknowledgments

This study was supported by research grants from the USDA National Institute of Food and Agriculture (NIFA) (2013–69002 and 2016–68002–24967) and the US National Science Foundation EPSCoR program (IIA-1301789). This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, Asia-Flux, CarboAfrica, CarboEuropeIP, CarbOitaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The FLUXNET-2015 dataset can be downloaded from http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/. All the other datasets used in this study are discussed in section 2.
Data availability

Any data that support the findings of this study are included and discussed within the article.

ORCID iDs

Yuanwei Qin https://orcid.org/0000-0002-5181-9986

References

Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo N C and Peyslin P 2015 Spatiotemporal patterns of terrestrial gross primary production: a review Rev. Geophys. 53 785–818

Badgley G, Field C B and Berry J A 2017 Canopy near-infrared reflectance and terrestrial photosynthesis Sci. Adv. 3 e1602244

Badgley G, Anderegg L D, Berry J A and Field C B 2018 Terrestrial gross primary production: using NIR to scale from site to globe Glob. Change Biol. 25 3731–40

Battaglia M, Beadle C and Loughhead S 1996 Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens Tree Physiol. 16 61–9

Berry J and Bjorkman O 1980 Photosynthetic response and adaptation to temperature in higher plants Ann. Rev. Plant Physiol. 31 491–543

Chang Q, Zhang J, Jiao W and Yao F 2018 A comparative analysis of the NDVItg and NDVItg3 in monitoring vegetation phenology changes in the Northern Hemisphere Geocarto Int. 33 1–20

Chang Q, Xiao X, Jiao W, Wu X, Doughty R, Wang J, Du L, Zou Z and Qin Y 2019 Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence Agric. For. Meteorol. 275 305–16

Chen J, Jonsson P, Tamura M, Gu Z, Matsuhashi B and Ecklundh L 2004 A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Goey filter Remote Sens. Environ. 91 332–44

Clark D, Mercado L, Sitch S, Jones C, Gedney N, Best M, Pryor M, Rooney G, Essery R and Blyth E 2011 The Joint UK Land Environment Simulator (JULES) model description: II. Carbon fluxes and vegetation dynamics Geosci. Model Dev. 4 701–22

Cox P M 2001 Description of the ’TRIFFID’ dynamic global vegetation model Technical Note 24 Hadley Centre (https://pdfs.semanticscholar.org/b214/62cfd3764c091046c73ed213d48b503bca.pdf)

Doughty R, Xiao X, Wu X, Zhang Y, Baigian R, Zhou Y, Qin Y, Zou Z, McCarthy H and Friedman J 2018 Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA Agric. Water Manage. 204 47–59

Field C B, Randerson J T and Malmström C M 1995 Global net primary production: combining ecology and remote sensing Remote Sens. Environ. 51 74–88

Fitter A H and Hay R K 2012 Environmental Physiology of Plants (New York: Academic)

Fridley J D, Lynn S, Grime J and Askew A 2016 Longer growing seasons shift grassland vegetation towards more-productive species Nat. Clim. Change 6 865

Garbalsky M F, Peñuelas J, Gamon J, Inoue Y and Filella I 2011 The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis Remote Sens. Environ. 115 281–97

Green J K, Seneviratne S I, Berg A M, Findell K L, Hagemann S, Lawrence D M and Gentine P 2019 Large influence of soil moisture on long-term terrestrial carbon uptake Nature 565 476

Heinsch F A, Zhao M, Running S W, Kimball J S, Nemani R R, Davis K J, Bolstad P V, Cook B D, Desai A R and Ricciuto D M 2006 Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations IEEE Trans. Geosci. Remote Sens. 44 1906–25

Huang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan T F, Peng S, Berry J A, Wang K and Mao J 2019 Air temperature optima of vegetation productivity across global biomes Nat. Ecol. Evol. 3 772–79

Hue A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G 2002 Overview of the radiometric and biophysical performance of the MODIS vegetation indices Remote Sens. Environ. 83 195–213

Hufkens K, Keenan T F, Hanagan L B, Scott B L, Bernacchi C J, Joo E, Brunsell N A, Verfaillie J and Richardson A D 2016 Productivity of North American grasslands is increased under future climate scenarios despite rising aridity Nat. Clim. Change 6 710

Jiang C and Ryu Y 2016 Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS) Remote Sens. Environ. 186 528–47

Jiao W, Chang Q and Wang L 2019a The sensitivity of satellite solar-induced chlorophyll fluorescence to meteorological drought Earth’s Future 7 558–73

Jiao W, Tian C, Chang Q, Novick K A and Wang L 2019b A new multi-sensor integrated index for drought monitoring Agric. For. Meteorol. 268 73–85

Jiao W, Zhang L, Chang Q, Fu D, Cen Y and Tong Q 2016 Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States Remote Sens. 8 224

Kattge J and Knorr W 2007 Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species Plant Cell Environ. 30 1176–90

King D A, Turner D P and Ritts W D 2011 Parameterization of a diagnostic carbon cycle model for continental scale application Remote Sens. Environ. 115 1653–64

Kirschbaum M and Farquhar G 1984 Temperature dependence of whole-leaf photosynthesis in Eucalyptus deglupta Funct. Plant Biol. 11 1–16

Kumar J, Hoffman F M, Hargrove W W and Collier N 2016 Changes in the Northern Hemisphere NDVIg and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere Geocarto Int. 33 1–20

Kattge J and Knorr W 2007 Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species Plant Cell Environ. 30 1176–90

Knap A K, Ciais P and Smith D M 2017 Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change New Physiol. 214 41–7

Kumar J, Hoffman P M, Hargrove W W and Collin N 2016 Understanding the representativeness of FLUXNET for upsampling carbon flux from eddy covariance measurements Earth Syst. Sci. Data Discuss. (https://doi.org/10.5194/essd-2016-36)

Landsberg J I 1986 Physiological Ecology of Forest Production: Principles, Processes and Models (London: Academic)

Li X and Xiao J 2019 Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2 Remote Sens. 11 2563

Lin Y-S, Medlyn B E and Ellsworth D S 2012 Temperature responses of leaf net photosynthesis: the role of component processes Tree Physiol. 32 219–31

Ma X, Huea A, Yu Q, Restrepo-Coupe N, Beringer J, Hutley L B, Kanniah K D, Cleverly J and Emanuel D 2014 Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI Remote Sens. Environ. 154 253–71

McGuire A D, Melillo J M, Kicklighter D W and Joyce L A 1995 Equilibrium responses of soil carbon to climate change: empirical and process-based estimates J. Biogeogr. 22 785–96

Middleton E, Huenrnrch K, Landsd D, Black T, Barr A and McHugh J 2016 Photosynthetic efficiency of northern forest ecosystems using a MODIS-derived Photochemical Reflectance Index (PRI) Remote Sens. Environ. 187 345–66
Monterith J L 1972 Solar radiation and productivity in tropical ecosystems J. Appl. Ecol. 9 747–66
Monterith J L 1977 Climate and the efficiency of crop production in Britain Phil. Trans. R. Soc. Lond. B 281 277–94
Mu Q, Zhao M and Running W S 2011 Improvements to a MODIS global terrestrial evapotranspiration algorithm Remote Sens. Environ. 115 1781–800
Mu Q, Zhao M, Heinisch F A, Liu M, Tian H and Running W S 2007 Evaluating water stress controls on primary production in biogeochemical and remote sensing based models J. Geophys. Res. Biogeosci. 112 1–13
Pei Y, Huang J, Wang L, Chi H and Zhao Y 2018 An improved phenology-based CASA model for estimating net primary production of forest in central China based on Landsat images Int. J. Remote Sens. 39 7684–92
Potter C, Kloos A, Myhre R, Genoves V, Tan P-N and Kumar V 2003 Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998 Global Planet. Change 39 201–13
Potter C, Randerson J, Field C, Matson P, Vitousek P, Potter C, Klooster S, Myneni R, Genovese V, Tan P-N and Kumar V 2003 Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998 Global Planet. Change 39 201–13
Potter C, Randerson J, Field C, Matson P, Vitousek P, Potter C, Klooster S, Myneni R, Genovese V, Tan P-N and Kumar V 2003 Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998 Global Planet. Change 39 201–13
Potter C, Randerson J, Field C, Matson P, Vitousek P, Potter C, Klooster S, Myneni R, Genovese V, Tan P-N and Kumar V 2003 Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998 Global Planet. Change 39 201–13

Turner D P, Ritts W D, Cohen W B, Maeslisperger T K, Gower S T, Kirschbaum A A, Running W S, Zhao M, Wofsy S C and Dunn A L 2005 Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring Global Change Biol. 11 666–84
Turner D P, Ritts W D, Cohen W B, Gower S T, Running W S, Zhao M, Costa M H, Kirschbaum A A, Ham J M and Sasek S R 2006 Evaluation of MODIS NPP and GPP products across multiple biomes Remote Sens. Environ. 102 282–92
Vermote E, Roger J C and Ray J P 2015 MODIS Surface Reflectance User’s Guide: Collection 6, pp 1–40
Veraoustraeke F, Sabbe H and Eremes H 2002 Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflox data Remote Sens. Environ. 83 376–99
Viéy N, Arino O and Belward A 1992 The best index slope extraction (BISE): a method for reducing noise in NDVI time-series Int. J. Remote Sens. 13 1585–90
Wei S, Yi C, Fang W and Hendry G 2017 A global study of GPP focusing on light-use efficiency in a random forest regression model Ecosphere e01724
White M A, Thornton P E and Running S W 1997 A continental phenology model for monitoring vegetation responses to interannual climatic variability Glob. Biogeochem. Cycles 11 199–217
Williams I, Torn M, Riley W and Wehner M 2014 Impacts of climate extremes on gross primary production under global warming Environ. Res. Lett. 9 094011
Wolf S, Keenan T F, Fisher J B, Baldocchi D D, Desai A R, Richardson A D, Scott R L, Law B E, Litvak M E and Brunsell N A 2016 Warm spring reduced carbon cycle impact of the 2012 US summer drought Proc. Natl. Acad. Sci. 113 8806–10
Wu X, Xiao X, Zhang Y, He W, Wolf S, Chen J, He M, Gough C M, Qin Y and Zhou Y 2018 Spatiotemporal consistency of four gross primary production products and solar–induced chlorophyll fluorescence in response to climate extremes across CONUS in 2012 J. Geophys. Res. Biogeosci. 123 3140–61
Xiao X, Zhang J, Yan H, Wu W and Biradar C 2009 Land surface phenology Phenology of Ecosystem Processes (Berlin: Springer) pp 247–70
Xiao X, Hollinger D, Aber J, Goltz M, Davidson E A, Zhang Q and Moore B III 2004a Satellite-based modeling of gross primary production in an evergreen needleleaf forest Remote Sens. Environ. 89 519–34
Xiao X, Zhang Q, Brasswell B, Urbanski S, Boles S, Wofsy S, Moore B III and Ojima D 2004b Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data Remote Sens. Environ. 91 256–70
Yan H, Wang S.-q., Billeshbach D, Oechel W, Bohrer G, Meyers T, Martin T A, Matamala R, Phillips R P and Rahman F 2015 Improved global simulations of gross primary production based on a new definition of water stress factor and a separate treatment of C3 and C4 plants Ecol. Modell. 297 42–59
Yi C, Ricciuto D, Li R, Wolbeck J, Xu X, Nilsson M, Aires L, Albertson J D, Annam C and Arain M A 2010 Climate control of terrestrial carbon exchange across biomes and continents Environ. Res. Lett. 5 034007
Yuan W, Liu S, Zhou G, Zhou G, Tieszen L L, Baldocchi D, Bernhofer C, Gholz H, Goldstein A H and Goulden M L 2007 Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes Agric. For. Meteorol. 143 189–207
Zhang F, Chen J M, Chen J, Gough C M, Martin T A and Drago D 2012 Evaluating spatial and temporal patterns of MODIS GPP over the conterminous US against flux measurements and a process model Remote Sens. Environ. 124 717–29
Zhang L, Jiao W, Zhang H, Huang C and Tong Q 2017a Studying drought phenomena in the Continental United States in 2011
and 2012 using various drought indices *Remote Sens. Environ.* 190 96–106
Zhang Y, Xiao X, Wu X, Zhou S, Zhang G, Qin Y and Dong J 2017b
A global moderate resolution dataset of gross primary production of vegetation for 2000–2016 *Sci. Data* 4 170165
Zhao M, Heinsch F A, Nemani R R and Running S W 2005
Improvements of the MODIS terrestrial gross and net primary production global data set *Remote Sens. Environ.* 95 164–76
Zheng Y, Zhang L, Xiao J, Yuan W, Yan M, Li T and Zhang Z 2018
Sources of uncertainty in gross primary productivity simulated by light use efficiency models: model structure, parameters, input data, and spatial resolution *Agric. For. Meteorol.* 263 242–57
Zhu H, Lin A, Wang L, Xia Y and Zou L 2016 Evaluation of MODIS gross primary production across multiple biomes in China using eddy covariance flux data *Remote Sens.* 8 395
Zhu X, Pei Y, Zheng Z, Dong J, Zhang Y, Wang J, Chen L, Doughty R, Zhang G and Xiao X 2018 Underestimates of Grassland Gross Primary Production in MODIS Standard Products *Remote Sens.* 10 1771