The Complications of *Aspergillus fumigatus* Sensitization in Patients with Asthma

Vida Mortezaee, Seyed Alireza Mahdaviani, Maryam Sadat Mirenayat, Mihan Pourabdollah, Maryam Hassanzad, Payam Mehrian, Maede Maleki, Jalal Heshmatnia, Atefeh Fakharian, Felix Bongomin, Alessandro C. Pasqualotto, and Mohammad Taghi Hedayati

1Department of Medical Mycology, Mazandaran University of Medical Sciences, Sari, Iran
2Paediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
5Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
6Santa Casa de Misericórdia de Porto Alegre/Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
7Invasive Fungi Research Center (IFRC), Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Corresponding author: Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: mahdavini@yahoo.com

Corresponding author: Invasive Fungi Research Center (IFRC), Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Khazarabad Rd., P.O. Box: 48175-1665, Sari, Iran. Email: hedayatimm@gmail.com

Received 2019 December 01; Revised 2020 January 24; Accepted 2020 January 28.

Abstract

Background: Two major complications of *Aspergillus* sensitization in patients with asthma, including severe asthma with fungal sensitization (SAFS) and asthma associated with fungal sensitization (AAFS), have been recently described.

Objectives: In the present study, we aimed to evaluate the prevalence of SAFS and AAFS in Iranian patients with asthma.

Methods: Two hundred consecutive outpatients aged ≥ 18 years with moderate to severe allergic asthma, referred to a pulmonary subspecialty hospital (Tehran, Iran) for 25 months, were included in the study. Skin prick test (SPT), total IgE (tIgE), and specific IgE (sIgE) and IgG against *Aspergillus fumigatus* (sIgGf) were determined for all subjects. Comprehensive criteria were applied for the diagnosis of SAFS and AAFS.

Results: Of 200 included patients, 103 (51.5%) and 97 (48.5%) were with moderate and severe asthma, respectively. Of these patients, 111 (55.5%) were female. The mean (range) of age was 45.8 (18 - 78) years. Of 200 patients, 27 (13.5%), 22 (11.0%), 114 (57.0%), and 131 (65.5%) were positive for *Aspergillus* SPT, sIgEs, sIgGfs, and tIgEs, respectively. The overall prevalence of SAFS in patients with severe asthma and AAFS in patients with moderate asthma were 7.2% (7/97) and 3.9% (4/103), respectively.

Conclusions: According to the findings, the prevalence of SAFS and AAFS in Iranian patients with severe and moderate allergic asthma was lower than the previously published global data. This low-prevalence reported rate may be due to the fact that we applied strict criteria in the present study.

Keywords: Asthma, Severe Asthma with Fungal sensitization, Asthma Associated with Fungal Sensitization, *Aspergillus* Sensitization

1. Background

Asthma, as a global public health problem, is a complex inflammatory and heterogeneous disease with chronic inflammation in airways and significant morbidity and mortality (1). It is estimated that 1% to 18% of the general population in different countries suffer from asthma (1). Exposure to animal dander, house dust mite, and airborne fungal spores, like environmental factors, results in the stimulation of host immune responses and subsequently triggers asthma (2). In severe manifestations of asthma, fungal exposure, and sensitivity to fungal allergens can also lead to asthma exacerbation (3). There are several reports on the distribution of fungal allergy in various studies (4, 5). The prevalence of fungal sensitization was reported as 5 - 70% in the north and 5 - 65% in central
and south of Iran (5).

Although various fungal genera may cause sensitization in asthmatic patients, *Aspergillus* species are the most common agents involved in asthma associated with fungal sensitization (6). Given the fact that sensitivity to *Aspergillus* increases the severity of asthma, the evaluation of sensitivity to *Aspergillus* allergens is very important in the management protocol of asthma (7). In 2006, Denning et al. (8) suggested the term “severe asthma with fungal sensitization” (SAFS) to describe severe asthma in patients who were sensitive to fungi with lack of diagnostic criteria for allergic bronchopulmonary aspergillosis (ABPA), with or without fungal colonization, without the presence of specific IgG against *Aspergillus fumigatus* (sIgGAF) and no response to antifungal therapy. This new and particular phenotype of severe asthma and another form of asthma, known as asthma associated with fungal sensitization (AAFS), may also be seen in patients with mild to moderate asthma (9). Asthma associated with fungal sensitization can progress to SAFS and eventually to ABPA.

Proper characterization of fungal sensitization in patients with severe asthma is critical to the appropriate management of patients with ABPA or SAFS (10). The diagnosis of SAFS, as a new classification of patients with allergic asthma, is increasing (9). It is estimated that about 33% (25 - 50%) of subjects with severe asthma have fungal allergies and may be eligible for SAFS if they do not label as ABPA (11). Since fungal allergy makes asthma more severe, so identifying SAFS, a new phenotype of asthma, appears to have important therapeutic implications that could be effective in reducing asthma symptoms (12). Therefore, in the present study, we aimed to evaluate the burden of *Aspergillus* sensitization in Iranian patients with asthma according to comprehensive proposed diagnostic criteria.

2. Objectives

In this present study, we aimed to evaluate the prevalence of SAFS and AAFS in Iranian patients with asthma.

3. Methods

3.1. Clinical Assessment and Ethics Statement

In a cross-sectional and prospective study, 200 consecutive patients aged ≥ 18 years with a diagnosis of moderate to severe asthma based on the Global Initiative for Asthma (GINA 2015) (13) guideline referred to Masih Daneshvari Hospital (the reference center for tuberculosis and pulmonary diseases of Iran), Tehran, Iran from January 2016 to February 2018 were included in the study. Patients younger than 18 years, pregnant women, smoking, non-allergic asthma, other widespread lung diseases such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, mild asthma, and malignancy were excluded. We collected data on the demographic profile of all the included participants. Spirometry was performed according to the American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines (14). The included subjects undertook X-Ray or computed tomography (CT) scan of the lung.

3.2. Paraclinical Assessments

All included patients screened for serum specific IgE against *A. fumigatus* (sIgEAf) using HYTEC 288 (HYCOR Biomedical, Hannover, Germany), serum specific IgG against *A. fumigatus* (sIgGAF) (IBL ELISA Kit, Hamburg, Germany) and total IgE (tIgE) levels (Genesis, Omega Diagnostic Group, UK). Skin prick testing (SPT) with commercial *Aspergillus* allergens (Alk-Abello, Lincoln Diagnostics, Dallas, TX, USA) was also performed on all patients.

3.3. Peripheral Blood Eosinophil Counts

The total white cell counts and the percentage of eosinophils in peripheral blood were determined by an auto-analyzer (Sysmex XT-1800i, U.S.A). Eosinophil counts of > 500 cells/µL were considered peripheral eosinophilia.

3.4. Computed Tomography (CT) Scan and/or Chest X-Ray

All enrolled asthmatic patients were evaluated by CT scan (single slice, Medra, India) and/or chest X-ray for evidence of bronchiectasis, centrilobular nodules/ mucoid impaction/ hyperdense mucus.

3.5. The Proposed Criteria for the Diagnosis of SAFS

The applied criteria for the diagnosis of SAFS and AAFS were bronchial asthma, positive type I SPT to *Aspergillus* allergens and/or raised sIgEAF, negative (usually) sIgGAF, tIgE < 1000 IU/mL (usually less than 500 IU/mL), normal or central bronchiectasis less than 3 lobes, no centrilobular nodules/mucoid impaction/hyperdense mucus, eosinophil count generally < 500 cells/µL (Table 1).

3.6. Data Analysis

IBM SPSS version 18.0 was used for data entry and analysis. The quantitative variables were presented as frequencies and percentages, mean ± standard deviation (± SD), and mean (range) or median (range).
Two hundred patients with a diagnosis of moderate (51.5%) or severe (48.5%) allergic bronchial asthma were included in the study. Of this population, 111 (55.5%) individuals were female. The mean (range) age of the patients was 45.8 (18-78) years with a mean (± SD) duration of asthma of 10.04 (± 9.94) years. Twenty-seven (13.5%) patients showed immediate-type hypersensitivity to *Aspergillus* antigens. Twenty-two (11.0%) subjects demonstrated the presence of serum sIgG levels above 0.35 KU/L. The mean ± SD of sIgE levels were 1.5 ± 6.01 KU/L in the study population. The concordance of positivity and negativity of SPT and sIgE tests were observed in 187 (93.5%) of our asthmatic patients.

The mean ± SD of tIgE and sIgG levels in asthmatic patients were 316.2 ± 305.4 IU/mL and 35.2 ± 42.6 U/mL, respectively. The tIgE levels < 500 IU/mL and > 1000 IU/mL were observed in 153 (76.5%) and 6 (3.0) of study population. Of 200 patients with asthma, 114 (57.0%) cases were positive (> 12 U/mL) for sIgG. The rates of sIgG positivity in patients with moderate and severe asthma were 63 (61.2%) and 51 (52.6%), respectively. Normal to mild eosinophilia (< 500 cell/µL) and moderate to severe eosinophilia (> 500 cell/µL) were reported in 142 (71.0%) and 58 (29.0%) patients, respectively. Of 200 patients with asthma, 172 (86%) had no evidence of bronchiectasis in CT scan of whom 111 (6.4%) met all diagnostic criteria for the diagnosis of SAFS or AAFS.

4. Results

4.1. Demographic Characteristics

Overall, SAFS was observed in 7/97 (7.2%) and AASF in 4/103 (3.8%) of the included patients. Of 11 patients with SAFS or AASF, 6 (54.5%) cases showed concordant in the positivity of SPT and sIgG test. All patients with SAFS or AASF had tIgE level of < 1000 IU/mL (Table 2).

5. Discussion

Sensitization to *Aspergillus*, which exacerbates the symptoms of asthma, is most likely to occur in people with severe asthma (15). It has been estimated that the prevalence of SAFS in adult asthma patients is 4% - 8% with a cumulative total of 6.5 million people worldwide (16). Hedaya et al. (17) estimated a total burden of 50,907 (63,7/100,000 general population) SAFS in Iran. These estimations can show the importance of SAFS as one of the most complications of sensitization to *Aspergillus* in patients with asthma. There are limited reports of SAFS (Table 3) from different countries (3, 8, 18-21). In these reports, various criteria have been considered for evaluating the SAFS and/or AAFS prevalence rate. The reported prevalence rates of SAFS in these studies ranged from 4% to 60% (3, 18-21). According to applied criteria in the present study, the prevalence of *Aspergillus* sensitization and SAFS was 3.9% and 7.2% in patients with a moderate and severe type of asthma, respectively. In this regard, the rate of SAFS in Moghtaderi et al. (22) and Agin et al. (21) studies from different geographic regions of Iran was 8.5% and 18.0% of asthmatic patients that our results were mostly consistent with Moghtaderi et al. reports (22).

In different studies, the positivity rate of SPT with *A. fumigatus* allergen in patients with asthma was reported as 16% (23), 28.7% (24), 39.5% (25) and 17.0% (22). However, a higher positivity rate was reported by the intradermal
Our results showed a lower mean value of tIgE and slgE\textsubscript{Af} in asthmatic patients in comparison to some previous studies (7, 18). However, in line with Bowyer et al. (31) study, our results showed a level of tIgE less than 500 IU/mL in most of the patients with SAFS. The levels of tIgE are one of the most important characteristics for differential diagnosis of SAFS from ABPA in patients with asthma (31). In contrast to ABPA, which generally results from a significant increase of Aspergillus species colonization in the lungs of allergic patients, SAFS is usually relevant to the exposure with temporary or a low-levels of fungal allergens, especially \textit{A. fumigatus} (31). All of our patients with SAFS or AAFS showed negative results for slgG\textsubscript{Af}, which was considered to be one of the main diagnostic criteria for differentiation of ABPA in different previous studies (15, 19, 20). It is suggested that total IgE levels and eosinophil counts might be reduced in patients who have recently received corticosteroids to control the asthma exacerbation.

The drop in total IgE value (< 1000 IU/mL) and/or count of eosinophils, with no evidence of bronchiectasis, might be lead the patient as having SAFS/AAFS (28). On the other hand, corticosteroid therapies in people with allergic diseases, including SAFS and ABPA can lead to a significant increase in fungal burden in the lung, which increases the pulmonary symptoms of affected individuals (32). Pasqualotto et al. (33) reported that appropriate antifungal therapy could be beneficial to reduce eosinophil counts, oral corticosteroid dose, and courses of systemic corticosteroids required in SAFS and ABPA patients. Moreover, Denning et al. (34) showed that oral antifungal therapy in SAFS could lead to significant improvements in the

Table 3. Literature Review of SAFS in Patients with Asthma

Author, Year, (Reference)	Country	Age Group and Patients (N)	Diagnostic Criteria Used for SAFS or AAFS	Type of Skin Test	Prevalence of SAFS
O’Driscoll et al., [2009], (10)	UK Adults (100)	slgE\textsubscript{Af}, prick test and total IgE	Prick test	43.0%	
Farrant et al., [2016], (20)	UK Adult (135)	slgE\textsubscript{Af}, prick test and total IgE < 1000 IU/mL, exclusion of ABPA	Prick test	60.0%	
Masaki et al., [2007], (19)	Japan Adult (124)	Serum IgE and fungal specific IgE	Not done	21.1%	
Woolnough et al., [2017], (3)	UK Adult (431)	Exclude all ABPA criteria	Prick test	22.0%	
Nath et al., [2007], (18)	India Adult (350)	Fungal sensitization, exclusion of ABPA	Prick test	8.0%	
Goh et al., [2007], (15)	Singapore Adult (206)	Prick test and absence of ABPA, slgE\textsubscript{Af} not done	Prick test	11.7%, AAFS	
Agin, [2018], (21)	Iran Adult (56)	slgE\textsubscript{Af}, prick test and total IgE <1000 IU/mL, exclusion of ABPA	Prick test	18.0%	
Moghtaderi et al., [2019], (22)	Iran Adult (59)	patients with severe asthma, \(\geq \) two exacerbations of respiratory symptoms in the past year, and total serum IgE < 417 IU/L, prick test	Prick test	8.5%	

Abbreviations: AAFS, asthma association with fungal sensitization; ABPA, allergic bronchopulmonary aspergillosis; SAFS, severe asthma with fungal sensitization; slgE\textsubscript{Af}, specific IgE against \textit{A. fumigatus}.
life quality of these patients. Because of significant overlap with ABPA, especially with seropositive ABPA, and given the fact that the therapeutic approach for ABPA and SAFS is different, a proper diagnosis and differentiation of this new phenotype of asthma from ABPA would be critical for the management of the disease.

5.1. Conclusions

In conclusion, the prevalence of SAFS and AAFS in Iranian patients with severe and moderate allergic asthma was lower than the previous limited studies worldwide. This low reported rate may be due to the fact that we considered all items in the proposed criteria to diagnose SAFS and AAFS.

Acknowledgments

The participating patients are appreciated for their kind cooperation, which was essential for the completion of the study.

Footnotes

Authors’ Contribution: Vida Mortezaei and Maedeh Maleki contributed to the acquisition of data, drafting the article, and were responsible for all aspects of the work in terms of its accuracy or integrity. Seyed Alireza Mahdaviani, Maryam Sadat Mirenayat, Mihan Pourabdollah, Maryam Hassanzad, Payam Mehrian, Jalal Heshmatnia, and Atefeh Fakharian contributed to the acquisition of clinical data, were responsible for all aspects of the work in terms of its accuracy or integrity, and reviewed the manuscript critically for important intellectual content. Felix Bongomin and Alessandro C. Pasqualotto contributed to the analysis and interpretation of data, reviewed the manuscript critically for important intellectual content, and were responsible for all aspects of the work in terms of its accuracy or integrity. Mohammad Taghi Hedayati made substantial contributions to the conception and design of the study, given final approval of the version to be published and were responsible for all aspects of the work in terms of its accuracy or integrity.

Conflict of Interests: The authors declared no potential conflict.

Ethical Approval: Ethics Committee of Mazandaran University of Medical Sciences, Sari, Iran approved the study (Code: IR.MAZUMS.REC.94-2060).

Funding/Support: This study was supported by a research fund (No. 2060) from Invasive Fungi Research Center of Mazandaran University of Medical Sciences, Sari, Iran.

Informed Consent: Informed consent was obtained from all participants.

References

1. Nunes C, Pereira AM, Morais-Almeida M. Asthma costs and social impact. Asthma Res Pract. 2017; 31. doi: 10.1186/s40473-016-0029-3. [PubMed: 28078100]. [PubMed Central: PMC5219738].
2. Zhang Z, Reponen T, Hershey GK. Fungal exposure and asthma: IgE and non-IgE-mediated mechanisms. Curr Allergy Asthma Rep. 2016; 16(12):86. doi: 10.1007/s11882-016-0657-9. [PubMed: 27943046]. [PubMed Central: PMC6150787].
3. Woolnough KF, Richardson M, Newby C, Craner M, Bourne M, Monteiro W, et al. The relationship between biomarkers of fungal allergy and lung damage in asthma. Clin Exp Allergy. 2017; 47(1):48–56. doi: 10.1111/cea.12848. [PubMed: 27805757].
4. Nazari Z, Ghaffari J, Ghaflari N, Ahangarkani F. A review on hypersensitivity reactions to fungal aeroallergens in patients with allergic disorders in Iran. Curr Med Mycol. 2009; 39(1):42–7. doi: 10.18502/cmm.v3i3.537. [PubMed: 19044958]. [PubMed Central: PMC6488288].
5. Zűkiewicz-Sobczak WA. The role of fungi in allergic diseases. Postepy Dermatol Alergol. 2013; 30(1):42–5. doi: 10.5104/pdia.2013.33377. [PubMed: 24278044]. [PubMed Central: PMC3834689].
6. Agarwal R, Gupta D. Severe asthma and fungi: Current evidence. Med Mycol. 2011; 49 Suppl 1:S50–7. doi: 10.3109/13693786.2010.504752. [PubMed: 20662637].
7. Maurya V, Gugnani HC, Sarma PIU, Madan T, Shah A. Sensitization to Aspergillus antigens and occurrence of allergic bronchopulmonary aspergillosis in patients with asthma. Chest. 2005; 127(4):1252–9. doi: 10.1378/chest.127.4.1252. [PubMed: 15822022].
8. Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: A summary of the evidence. Eur Respir J. 2006; 27(3):1651–26. doi: 10.1183/09031936.06.00074705. [PubMed: 16507864].
9. Overton N, Simpson A, Bowyer P, Denning DW. Genetic susceptibility to severe asthma with fungal sensitization. Int J Immunogenet. 2007; 34(3):93–106. doi: 10.1111/j.1399-3003.2007.00335.x. [PubMed: 18820978].
10. O’Driscoll BR, Powell G, Chew F, Niven RM, Miles JF, Vyas A, et al. Comparison of skin prick tests with specific serum immunoglobulin E in the diagnosis of fungal sensitization in patients with severe asthma. Clin Exp Allergy. 2009; 39(9):1677–83. doi: 10.1111/j.1365-2222.2009.03339.x. [PubMed: 19685458].
11. Chishimba L, Langridge P, Powell G, Niven RM, Denning DW. Efficiency and safety of nebulised amphotericin B (NAB) in severe asthma with fungal sensitisation (SAFS) and allergic bronchopulmonary aspergillosis (ABPA). J Asthma. 2015; 52(3):289–95. doi: 10.3090/02770901.2014.984458. [PubMed: 25181099].
12. Moss RB. Treatment options in severe fungal asthma and allergic bronchopulmonary aspergillosis. Eur Respir J. 2014; 43(5):1487–500. doi: 10.1183/09031936.003951.31. [PubMed: 24317766].
13. Reddel HK, Bateman ED, Becker A, Boulet LP, Cruz AA, Drazen JM, et al. A summary of the new GINA strategy: A roadmap to asthma control. Eur Respir J. 2015; 46(3):622–39. doi: 10.1183/09031936.00653-2015. [PubMed: 26206572]. [PubMed Central: PMC4554544].
14. Miller MR, Hankinson J, Bruuscas V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005; 26(2):319–38. doi: 10.1183/09031936.05.0034805. [PubMed: 16055882].
15. Goh KJ, Yi ACA, Lapperre TS, Chan AK, Chew FT, Chotirmall SH, et al. Sensitization to Aspergillus species is associated with frequent exacerbations in severe asthma. J Asthma Allergy. 2017; 10(3):31–40. doi: 10.2147/AA.S103045. [PubMed: 2848762]. [PubMed Central: PMC5407445].

Jundishapur J Microbiol. 2020; 13(3):e99833.
16. Denning DW. The ambitious ‘95-95 by 2025’ roadmap for the diagnosis and management of fungal diseases. Thorax. 2015;70(7):661–4. doi: 10.1136/thoraxjnl-2015-207305. [PubMed: 26024686].

17. Hedayati MT, Taghiзадه Armaki M, Yazdani Charati J, Hedayati N, Seyedmousavi S, Denning DW. Burden of fungal infections in Iran. J Infect Dev Ctries. 2018;12(10):390–8. doi: 10.3855/jidc.10476. [PubMed: 32004161].

18. Nath A, Khan A, Hashim Z, Patra JK. Prevalence of Aspergillus hypersensitivity and allergic bronchopulmonary aspergillosis in patients with bronchial asthma at a tertiary care center in North India. Lung India. 2017;34(2):150–4. doi: 10.4103/0970-2132.201300. [PubMed: 28360463]. [PubMed Central: PMC5351357].

19. Masaki K, Fukunaga K, Matsusaka M, Kabata H, Tanosaki T, Mochimaru T, et al. Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol. 2017;119(3):253–7. doi: 10.1016/j.anai.2016.10.017. [PubMed: 28802088].

20. Farrant J, Brice H, Fowler S, Niven R. Fungal sensitisation in severe asthma is associated with the identification of Aspergillus fumigatus in sputum. J Asthma. 2016;53(7):732–5. doi: 10.3109/02770903.2016.1140471. [PubMed: 27043956].

21. Agin K. Assessment status of the seroconversion of anti-aspergillus immunoglobulin G sera antibody among chronic persistent asthma in allergic condition and evaluates the severe asthma with fungal sensitization (SAFS). J Public Health. 2018;4:5–20.

22. Moghtaderi M, Farjadian S, Hossieni Teshnizi S, Hadibarhaghtalab M. Allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitization in patients with uncontrolled asthma: An experience from Southwestern Iran. Med J Islam Repub Iran. 2019;33(95). doi: 10.34171/mjiri.33.95. [PubMed: 31696089]. [PubMed Central: PMC6825389].

23. Hendrick DJ, Davies RJ, D’Souza MF, Pepys J. An analysis of skin prick test reactions in 656 asthmatic patients. Thorax. 1975;30(1):2–9. doi: 10.1136/tho.30.1.2. [PubMed: 158878]. [PubMed Central: PMC4703237].

24. Agarwal R, Aggarwal AN, Gupta D, Jindal SK. Aspergilus hypersensitivity and allergic bronchopulmonary aspergillosis in patients with bronchial asthma: Systematic review and meta-analysis. Int J Tuberc Lung Dis. 2009;13(5):396–44. doi: 10.24397/ijtld.2009.13.04.004. [PubMed: 9723372].

25. Agarwal R, Gupta D, Aggarwal AN, Behera D, Jindal SK. Allergic bronchopulmonary aspergillosis: Lessons from 126 patients attending a chest clinic in north India. Chest. 2006;130(2):442–8. doi: 10.1378/chest.130.2.442. [PubMed: 16899843].

26. Agarwal R, Nath A, Aggarwal AN, Gupta D, Chakrabarti A. Aspergillus hypersensitivity and allergic bronchopulmonary aspergillosis in patients with acute severe asthma in a respiratory intensive care unit in North India. Mycoses. 2010;53(2):138–43. doi: 10.1111/j.1439-0507.2008.01680.x. [PubMed: 19207831].

27. Agarwal R, Maskey D, Aggarwal AN, Saikia B, Garg M, Gupta D, et al. Diagnostic performance of various tests and criteria employed in allergic bronchopulmonary aspergillosis: A latent class analysis. PLoS One. 2013;8(4). e6105. doi: 10.1371/journal.pone.006105. [PubMed: 23593402]. [PubMed Central: PMC362590].

28. Black PN, Udy AA, Brodie SM. Sensitivity to fungal allergens is a risk factor for life-threatening asthma. Allergy. 2000;55(5):501–4. doi: 10.1034/j.1398-9995.2000.00293.x. [PubMed: 10843433].

29. Singh M, Paul N, Singh S, Nayak GR. Asthma and fungus: Role in allergic bronchopulmonary aspergillosis (ABPA) and other conditions. Indian J Pediatr. 2018;85(10):989–904. doi: 10.1007/s12098-018-2646-8. [PubMed: 29549557].

30. Frew AJ. Mold allergy: Some progress made, more needed. J Allergy Clin Immunol. 2004;113(2):216–8. doi: 10.1067/jaci.2003.12.038. [PubMed: 14767432].

31. Bowyer P, Blightman O, Denning DW. Relative reactivity of Aspergillus allergens used in serological tests. Med Mycol. 2006;44(5):523–8. doi: 10.1080/1369378060092250. [PubMed: 30408909].

32. Frazek MG, Chishimba L, Niven RM, Bromley M, Simpson A, Smyth L, et al. Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. J Allergy Clin Immunol. 2018;142(2):407–14. doi: 10.1016/j.jaci.2017.09.039. [PubMed: 29126559].

33. Pasqualotto AC, Powell G, Niven R, Denning DW. The effects of antifungal therapy on severe asthma with fungal sensitization and allergic bronchopulmonary aspergillosis. Respir Res. 2009;10(8):322–7. doi: 10.1186/1465-9921-10-322. [PubMed: 19909460].

34. Denning DW, O’Driscoll BR, Powell G, Chew F, Atherton GT, Vyas A, et al. Randomized controlled trial of oral antifungal treatment for severe asthma with fungal sensitization: The Fungal Asthma Sensitization Trial (FAST) study. Am J Respir Crit Care Med. 2009;179(1):11–8. doi: 10.1164/rccm.200805-737OC. [PubMed: 18948425].