The Convergence of Racial and Income Disparities in Health Insurance Coverage in the United States

De-Chih Lee
Dayeh University

Hailun Liang (hliang16@jhu.edu)
Johns Hopkins University Bloomberg School of Public Health https://orcid.org/0000-0002-9917-411X

Leiyu Shi
JHU School of Public Health: Johns Hopkins University Bloomberg School of Public Health

Research

Keywords: Convergence, United States, Health Insurance

DOI: https://doi.org/10.21203/rs.3.rs-122024/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective

This study applies the vulnerability framework and examines the combined effect of race and income on health insurance coverage in the US. Results of the study could assist policymakers in targeting limited resources on subpopulations likely most in need of assistance for insurance coverage.

Data sources

The household component of the US Medical Expenditure Panel Survey (MEPS-HC) in 2017 was used for the study.

Study design

Logistic regression models were used to estimate the associations between insurance coverage status and vulnerability measure, comparing insured with uninsured or partially insured, partially insured only, and uninsured only, respectively.

Data collection/extraction methods

We constructed a vulnerability measure that reflects the convergence of predisposing (race/ethnicity), enabling (income), and need (self-perceived health status) attributes of risk.

Principal findings

While income was a significant predictor of health insurance coverage (a difference of 6.1%-7.2% between high- and low-income Americans), race/ethnicity was independently associated with lack of insurance. The combined effect of income and race on insurance coverage was devastating as low-income minorities with bad health had 66% less odds of being insured instead of uninsured or partially insured than high-income Whites with good health.

Conclusions

Policymakers should target insurance coverage for the most vulnerable subpopulation, i.e., those who have low income and are racial/ethnic minorities.

Background

It is well-known that in the United States there are significant racial and income disparities in health insurance coverage. In 2018, non-Hispanic Whites had the highest health insurance coverage at 94.6%, followed by Asians at 93.2%, Blacks at 90.3%, and Hispanics at 82.2 % (1). Similarly, another study compared insurance coverage rate before and after the Medicaid expansion across racial/ethnic groups and found that the uninsured rate only changed slightly in minority groups (2). There was only a one
percentage point decrease in uninsured gap between Hispanic and non-Hispanic Whites in 2015 and the uninsured rate was three times higher between the two subpopulations. Likewise, lower household income was associated with lower health insurance coverage rate (1,3-4). People in households with an annual income of $150,000 or more had a higher percentage of insurance coverage (96.8%) than people in households with income of less than $25,000 (86.2%). Another method to assess income level is income-to-poverty ratio. People in higher income-to-poverty ratio groups had higher health insurance coverage rates in general. People living at or above 400% of poverty had higher coverage (96.6%) than people living below 100% of poverty (83.7%).

However, little is known about the combined effect of race and income on insurance coverage. For example, does minority status have an independent effect on health insurance coverage regardless of income level implying systematic racial disparity in insurance coverage? Or is lack of insurance primarily associated with low income? Since minorities are more likely to have lower income than Whites, could racial disparity in insurance coverage mainly reflect racial disparity in income distribution? Sorting out the respective influences of race and income on insurance coverage requires a new conceptual and analytic framework that examines the effect of the convergence of risk factors rather than addressing them individually or independently. Since health insurance contributes significantly to ensuring access to, and continuity of, care (5-7), and continuity of care affects quality and health outcomes (8-10), ensuring health insurance coverage is essential in improving health status. As demographic shifts and socioeconomic trends in the US will result in minority populations becoming the majority within the twenty-first century, fundamental improvement of the nation's health cannot be accomplished without corresponding improvement in the health of American minorities.

This study applies the vulnerability framework and examines the combined effect of race and income on health insurance coverage in the US. Results of the study would help advance the knowledge of the combined effect of race and income on health insurance coverage which could assist policymakers in targeting limited resources on subpopulations likely most in need of assistance for insurance coverage. Having health insurance is also crucial during pandemics like COVID-19 as the insured are more likely to get help in triaging, testing, treatment, and recovery. Those without health insurance could face systematic barriers accessing COVID-19 testing and treatment services.

Methods

Data

Data for this analysis came from the Household Component (HC) of the 2017 Medical Expenditure Panel Survey (MEPS), a nationally representative survey of the civilian noninstitutionalized population of the United States, that was publicly available for download (https://www.meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-201). The analysis included all the participants who had a positive sampling weight (PERWT17F). For
descriptive statistics, we further restricted the sample to those under 65 years old at the time of being surveyed since those over 65 are eligible for government Medicare insurance.

Outcome

The primary outcome was insurance coverage status, a categorical variable with five levels: (1) publicly insured: having public insurance for every of the 12 months of 2017; (2) privately insured: having private insurance for every of the 12 months of 2017; (3) dually insured: having public or private insurance for every of the 12 months of 2017 AND for at least one of these months the participant had both public and private insurance coverage, including the scenario that for one month the participant had private insurance and for another month the participant had public insurance; (4) partially insured: having either public or private insurance for at least one month but less than 12 months of 2017; and (5) uninsured: having no insurance coverage for every of the 12 months of 2017.

We used three sets of variables to construct the insurance coverage status variable – any insurance in a month (INSJA17X – INSDE17X), any public insurance in a month (PUBJA17X – PUBDE17X), and private insurance in a month (PRIJA17 – PRIDE17). Public insurance referred to TRICARE, Medicare, Medicaid or State Children's Health Insurance Program (SCHIP), or other public hospital/physician programs. Private insurance included union or employer group insurance, non-group insurance, other group insurance, and private insurance through federally facilitated, state-based or state partnership marketplace or exchange. We considered a subject as having any insurance if covered by any of these insurance sources above.

Exposures

Operationalization of the exposures used for this study was based on the vulnerability framework promulgated by Shi and Stevens (11). According to Shi and Stevens, vulnerability refers to the likelihood of experiencing poor health and is determined by a convergence of predisposing, enabling, and need characteristics. In their access to care framework (12-13), Aday and Andersen described predisposing characteristics as those that describe the propensity of individuals to use health services including basic demographic characteristics (e.g., age, sex, and family size), social structure variables (e.g., race and ethnicity, education, employment status, and occupation), and beliefs (e.g., general beliefs and attitudes about the value of health services); enabling characteristics as the means individuals have available to them for the use of services including resources specific to individuals and families (e.g., income and insurance coverage) and attributes of the community or region in which an individual lives; and need characteristics as health status or illness, which is the most important cause of health services use. Thus, individuals are most vulnerable if they experience a convergence of predisposing, enabling, and need attributes of risk.

Based on this framework, we identified measures within MEPS that denote predisposing, enabling, and need attributes of risk. We combined three of these variables into a new vulnerability measure that reflects the convergence of predisposing, enabling, and need attributes of risk. These were race (predisposing dimension), income (enabling dimension), and self-perceived health status (need
dimension), and are among the most, although not the only, significant indicators of vulnerability. It is possible to create a measure incorporating other vulnerable attributes (e.g., the more objective chronic illness measure for health status, the behavioral risks such as smoking, alcohol, and drug abuse for predisposing factor). However, the trade-off is that the resulting sample size for some subgroups would be too small for comparative analysis (e.g., chronic illness is likely to be more concentrated among the elderly population). To avoid small subgroup sample size, we further re-coded these variables into dichotomous categories so that our final vulnerability measure was limited to eight categories: (1) the minority-low-income-bad health group (the most vulnerable group with vulnerable attributes in all three dimensions), (2) the minority-low-income-good health group, (3) the white-low-income-bad health group (3) the minority high-income-good health group, (4) the white-low-income-good health group, (5) the minority-high-income-bad health group, (6) the minority-high-income-good health group, (7) the white-high-income-bad health group, and (8) the white-high-income-good health group (this is the least vulnerable group with none of the three vulnerable attributes measured).

Minority included all non-white racial and ethnic groups including blacks, Hispanics, Asians, American Indians, and others. Measure of income was based on the variable family income as a percentage of poverty within MEPS (POVCAT). Family income comprised annual earnings from wages, salaries, bonuses, tips, commissions; business and farm gains and losses; unemployment and workman's compensation; interest and dividends; alimony, child support, and other private cash transfers; private pensions, IRA withdrawals, social security, and veterans payments; supplemental security income and cash welfare payments from public assistance, aid to families with dependent children, and aid to dependent children; gains and losses from estates, trusts, partnerships, S corporations, rent, and royalties; and a small amount of "other" income. Family income excluded tax refunds and capital gains. Person-level income totals were then summed over family members to yield the family-level total. POVCAT was constructed by dividing family income by the applicable poverty line (based on family size and composition), with the resulting percentages grouped into five categories: negative or poor, near poor, low income, middle income, and high income. For the purpose of this study, we grouped ‘negative or poor, near poor, low income’ as ‘low income’ and ‘middle income, high income’ as ‘high income.’ For health, ‘good health’ included excellent, very good, and good health, whereas ‘bad health’ included fair and poor health). Self-rated health has strong predictive validity for mortality, morbidity, and mental health, independent of other physiological, behavioral, and psychosocial risk factors (14-17).

Other covariates

We selected additional measures of vulnerability as the other covariates, including age (≤ 17 years; 18-64 years; 65-85 years), sex (male; female), education (college; General Educational Development [GED] or high school; none), employment status (employed; unemployed), census region (northeast; Midwest; west; south), perceived mental health status (excellent; very good; good; fair; poor), and need Activities of Daily Living (ADL) help (yes; no).

Statistical analyses
We summarized the insurance coverage status by vulnerability groups as percentages (95% confidence intervals) (PROC SURVEYFREQ). We constructed three logistic regression models (PROC SURVEYLOGISTIC) to estimate the associations between insurance coverage status and vulnerability measures, comparing insured with uninsured or partially insured, partially insured only, and uninsured only, respectively.

We excluded observations with missing outcome (insurance coverage status) or exposures (race, family income, self-perceived health status). We treated missing values for the other covariates as a separate category for the multivariable logistic regressions. We performed data management and analyses using SAS 9.4 (SAS Institute, Cary, NC, USA), accounting for complex survey design, i.e., strata, cluster, and sampling weights. The designated statistical significance level was two-sided p-value < 0.05.

Results

Of the 25,696 US civilian noninstitutionalized subjects that were under 65 years old in the analytical data set, 7,208 (28.1%) subjects were classified into the white-high income-good health group (Table 1). The majority of this group had private insurance (78.2%, 95% CI: 76.6%, 79.8%). On the other hand, 1,022 (4.0%) subjects were classified into the minority-low income-bad health group, 54.5% of whom were covered by public insurance (95% CI: 50.6%, 58.4%) (Table 1). Across the eight groups, the low-income minorities with bad health had the highest uninsured percentage (15.8%, 95% CI: 12.6%, 19.0%), followed by low-income minorities with good health (15.3%, 95% CI: 13.7, 16.8), whereas the white-high income-good health group had the lowest uninsurance rate (3.7%, 95% CI: 3.0, 4.3).

There is a clear association between income level and health insurance coverage. Those with high income had much smaller uninsurance rate than those with low income: 3.7%-8.6% vs. 9.8%-15.8%, a difference of 6.1%-7.2%. Likewise, those with high income had much smaller partial insurance rate than those with low income: 8.7%-14.4% vs. 14.9%-18.1%, a difference of 3.7%-6.2%. Among the insured, those with high income were more likely to have private insurance (51.3%-78.2% vs. 8.9%-25.8%) whereas those with low income were more likely to have public insurance (39.0%-54.5% vs. 4.9%-17.4%).

At the same income level, minorities were more likely to be uninsured than Whites. For example, at the low-income level, 15.3%-15.8% minorities were uninsured depending on their health status whereas 9.8%-10.4% Whites were uninsured, a difference of about five percentage points. At the high-income level, 8.3%-8.6% minorities were uninsured depending on their health status whereas 3.7%-5.9% Whites were uninsured, a difference of about four percentage points. Likewise, minorities were more likely to be partially insured than Whites. For example, at the low-income level, 15.2%-18.1% minorities were partially insured depending on their health status whereas 14.9%-17.2% Whites were partially insured. At the high-income level, 11.3%-14.4% minorities were partially insured depending on their health status whereas 8.7%-10.9% Whites were partially insured.

We provide the results of logistic regression models in Table 2. Compared with the high-income Whites with good health (the least vulnerable group), the other groups had lower odds of becoming insured, after
adjusting for age, sex, education, employment status, census region, perceived mental health status, and ADL help (Table 2). Low-income minorities with bad health had 66% less odds of being insured instead of uninsured or partially insured than high-income Whites with good health (odds ratio [OR]: 0.34; 95% CI: 0.26, 0.45) (Table 2, Model 1). Similarly, compared with high-income Whites with good health, the odds of being insured among low-income minorities with good health, high-income minorities with bad health, high-income minorities with good health, low-income Whites with bad health, low-income Whites with good health, and high-income Whites with bad health were 73% (OR: 0.27; 95% CI: 0.22, 0.32), 45% (OR: 0.55; 95% CI: 0.41, 0.74), 42% (OR: 0.58; 95% CI: 0.49, 0.68), 49% (OR: 0.51; 95% CI: 0.37, 0.70), 62% (OR: 0.38; 95% CI: 0.31, 0.45), and 17% (OR: 0.83; 95% CI: 0.60, 1.14) lower, respectively (Table 2, Model 1). Additional analyses using the partially insured and uninsured levels as reference groups yielded analogous results (Table 2, Model 2 and 3).

Discussion

This study used the vulnerability framework and assessed the combined and individual effect of race and income on health insurance coverage in the US. Results of the study showed that while income was a significant predictor of health insurance coverage (a difference of 6.1%-7.2% between high- and low-income Americans), race/ethnicity was independently associated with lack of insurance. At the same income level, minorities were significantly more likely to be uninsured than Whites ranging from four percentage-point difference at the high-income level to five percentage-point difference at the low-income level. Moreover, minorities were more likely to be partially insured than Whites. There were 31.0%-33.4% low-income minorities who were either uninsured or partially insured during the year compared to 25.3%-27.0% for low-income whites, a difference of about six percentage point. There were 19.9%-22.7% high-income minorities who were either uninsured or partially insured during the year compared to 12.4%-16.8% for high-income Whites, also a difference of about six percentage point. The combined effect of income and race on insurance coverage was devastating as low-income minorities with bad health had 66% less odds of being insured instead of uninsured or partially insured than high-income Whites with good health. It is also noteworthy that minorities were disproportionately over-represented in the low-income or bad health groups so that any adverse association between income, bad health, and insurance status would more adversely affect minorities than Whites.

These findings have significant policy implications. To expand insurance coverage and eliminate racial disparities as called for by Healthy People 2030, concerted and targeted efforts are needed to both improve economic status and address discrimination towards racial/ethnic minorities. To maximize limited resources, policymakers should target insurance coverage for the most vulnerable subpopulations, i.e., those with a convergence of predisposing, enabling, and need attributes of risk. As shown in this study, these are individuals who have low income and are racial/ethnic minorities. Significant progress at reducing disparities in care and quality across racial and ethnic groups is unlikely to be fulfilled without significantly expanding insurance coverage for this most vulnerable group.
There were a number of limitations with this study. First, the cross-sectional nature of the dataset made it impossible to establish the causal connection between individual socioeconomic characteristics and insurance coverage. Only longitudinal or cohort study could overcome this limitation. Second, the limitation of MEPS prevented us from studying a broad array of vulnerable characteristics particularly measures of behavioral risks such as smoking, alcohol consumption, and drug abuse, all of which likely to contribute to vulnerability.

Despite these limitations, the study contributes to the literature on predictors of insurance coverage and has practical implications. For example, having insurance coverage is critical to accessing the health system and is particularly important during pandemics like COVID-19. Having health insurance and the resulting usual source of care is paramount for getting timely and coordinated care. People without health insurance and a usual place to go when they need medical care will likely face unique barriers accessing COVID-19 testing and treatment services. They may not know where to go to get tested if they think they have been exposed to the virus and may forego testing or care out of fear of having to pay out-of-pocket for the test. The Emergency Medical Treatment and Labor Act requires hospitals to screen and stabilize patients with emergent conditions, however, they are not required to provide treatment for non-emergent conditions. Access barriers are magnified in times of crisis like COVID-19 and are unlikely to be fundamentally addressed without ultimately expanding health insurance coverage to all Americans just like all other industrialized nations in the world do.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The data that support the findings of this study are available from Medical Expenditure Panel Survey, https://meps.ahrq.gov/mepsweb/.

Competing interests

The authors declare that they have no competing interests.

Funding

The study was sponsored by the Johns Hopkins Primary Care Policy Center.

Authors’ contributions
D-CL and LS conceptualized the study; HL provided the analyses; all authors drafted and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. US Census Bureau. (2019, November 8). Health Insurance Coverage in the United States: 2018. Retrieved from https://www.census.gov/library/publications/2019/demo/p60-267.html

2. Wehby, G. L., & Lyu, W. (2018). The impact of the ACA Medicaid expansions on health insurance coverage through 2015 and coverage disparities by age, race/ethnicity, and gender. Health services research, 53(2), 1248-1271.

3. Ku L. Health insurance coverage and medical expenditures of immigrants and native-born citizens in the United States. Am J Public Health. 2009; 99(7):1322–8. DOI: 10.2105/AJPH.2008.144733 [PubMed: 19443829]

4. Muller, K. J., Patil, K., & Boilesen, E. (1998). The role of uninsurance and race in healthcare utilization by rural minorities. Health Services Research, 33, 507–610.

5. Newacheck, P. W., Stoddard, J. J., Hughes, D. C., & Pearl, M. (1998). Health Insurance and Access to Primary Care for Children. New England Journal of Medicine, 338, 513–519.

6. Kogan, M. D., Alexander, G. R., Teitelbaum, M. A., Jack, B. W., Kotelchuck, M., & Pappas, G. (1995). The effect of gaps in health insurance on continuity of a regular source of care among preschool-aged children in the United States. Journal of American Medical Association, 274, 1429–1435.

7. Sox, C. M., Swartz, K., Burstin, H. R., & Brennan, T. A. (1998). Insurance or a regular physician: Which is the most powerful predictor of health care?. American Journal of Public Health, 88, 364–370.

8. Safran, D. G., Taira, D. A., Rogers, W. H., Kosinski, M., Ware, J. E., & Tarlov, A. R. (1998). Linking primary care performance to outcomes of care. Journal of Family Practice, 47, 213–219.

9. Starfield, B. (1992). Primary care: Concept, evaluation, and policy. New York, Oxford: Oxford University Press.

10. Starfield, B. (1998). Primary care, health services, and health. New York, Oxford: Oxford University Press.

11. Shi, Leiyu, and Stevens, Greg. Vulnerable Populations in the United States. Jossey-Bass Publishers, Inc., San Francisco, CA, 2nd edition, 325 pages, 2010.

12. Aday, L. A. (1993a). At risk in America: The health and health care needs of vulnerable populations in the United States. San Francisco: Jossey-Bass Publishers.

13. Aday, L. A. (1993b). Indicators and predictors of health services utilization. In S. J. Williams, & P. R. Torrens (Eds.), introduction to health services (4th ed.) (pp. 46–70). Albany, NY: Delmar.
14. Idler, E. L., & Kasl, S. (1995). Self-ratings of health: Do they also predict change in functional ability?. *Journal of Gerontology B Psychological Science and Social Science*, 50B, S344–S353.

15. Farmer, M. M., & Ferraro, K. F. (1997). Distress and perceived health: Mechanisms of health decline. *Journal of Health and Social Behaviour*, 39, 298–311.

16. Idler, E. L., & Benyamini, Y. (1997). Self-rated health and mortality: A review of twenty-seven community studies. *Journal of Health and Social Behaviour*, 38, 21–37.

17. Kennedy, B. P., Kawachi, I., Glass, R., & Prothrow-Stith, D. (1998). Income distribution, socioeconomic status, and self-rated health in the United States: multilevel analysis. *British Medical Journal*, 317, 917–927.

Tables

Table 1. Vulnerability and health insurance coverage - 2017 US civilian noninstitutionalized population under 65 years old.

Vulnerability	N (%)	Public insurance	Private insurance	Private & public insurance	Partial insurance	Uninsured
Minority-low income-bad health	1,022	54.5	8.9	5.6	15.2	15.8
	(4.0)	(50.6, 58.4)	(7.1, 10.8)	(4.2, 7.0)	(12.6, 17.7)	(12.6, 19.0)
Minority-low income-good health	6,783	46.5	14.2	5.9	18.1	15.3
	(26.4)	(44.4, 48.6)	(12.8, 15.7)	(4.9, 6.9)	(16.6, 19.6)	(13.7, 16.8)
White-low income-bad health	511	53.4	12.8	8.5	14.9	10.4
	(2.0)	(49.7, 57.0)	(9.7, 16.0)	(6.2, 10.7)	(11.5, 18.2)	(8.2, 12.7)
White-low income-good health	2,408	39.0	25.8	8.2	17.2	9.8
	(9.4)	(35.5, 42.5)	(22.5, 29.1)	(6.5, 9.9)	(15.2, 19.3)	(8.3, 11.3)
Minority-high income-bad health	541	17.4	51.3	8.6	14.4	8.3
	(2.1)	(14.4, 20.4)	(46.9, 55.8)	(6.0, 11.1)	(11.0, 17.8)	(6.3, 10.3)
Minority-high income-good health	6,742	9.9	65.4	4.8	11.3	8.6
	(26.2)	(8.8, 11.0)	(63.4, 67.4)	(4.0, 5.6)	(10.3, 12.4)	(7.6, 9.7)
White-high income-bad health	481	15.6	61.7	6.0	10.9	5.9
	(1.9)	(12.5, 18.7)	(57.9, 65.6)	(4.3, 7.7)	(8.8, 12.9)	(3.8, 7.9)
White-high income-good health	7,208	4.9	8.2	4.5	8.7	3.7
	(28.1)	(4.2, 5.6)	(76.6, 79.8)	(3.7, 5.2)	(7.6, 9.8)	(3.0, 4.3)

1 All values are proportions (95% confidence intervals) unless otherwise specified. Civilian noninstitutionalized population is defined as "All U.S. civilians not residing in institutional group quarters facilities such as correctional institutions, juvenile facilities, skilled nursing facilities, and other long-term care living arrangements."

(Reference: https://www.census.gov/glossary/#term_Civiliannoninstitutionalizedpopulation.)

The observations with "Don't know" were setting to missing and are not presented in this Table.
*The subjects with missing ages were not included because we could not assume they were under 65 years old.

Table 2. Logistic regressions of vulnerability, sociodemographic characteristics, and insurance status - 2017 U.S. Civillian noninstitutionalized population at all ages.
Independent Variables	Model 1 (1=Insured 0=Uninsured or partially insured)	Model 2 (1=Insured 0=Partially insured)	Model 3 (1=Insured 0=Uninsured)
Number of Observations Used	30,425	27,836	27,053
Intercept	56.05 (35.54, 88.40)^c	68.41 (39.29, 119.12)^c	336.39 (156.77, 721.82)^c
Vulnerability			
Minority-low income-bad health	0.34 (0.26, 0.45)^c	0.46 (0.32, 0.64)^c	0.21 (0.15, 0.30)^c
Minority-low income-good health	0.27 (0.22, 0.32)^c	0.35 (0.28, 0.43)^c	0.17 (0.13, 0.21)^c
White-low income-bad health	0.51 (0.37, 0.70)^c	0.57 (0.38, 0.85)^b	0.39 (0.25, 0.62)^c
White-low income-good health	0.38 (0.31, 0.45)^c	0.41 (0.32, 0.51)^c	0.31 (0.23, 0.41)^c
Minority-high income-bad health	0.55 (0.41, 0.74)^c	0.55 (0.38, 0.79)^b	0.53 (0.36, 0.78)^b
Minority-high income-good health	0.58 (0.49, 0.68)^c	0.70 (0.58, 0.85)^c	0.43 (0.34, 0.54)^c
White-high income-bad health	0.83 (0.60, 1.14)	0.87 (0.60, 1.26)	0.73 (0.44, 1.23)
White-high income-good health	Reference group	Reference group	Reference group
Age			
≤ 17	0.15 (0.10, 0.23)^c	0.13 (0.08, 0.21)^c	0.15 (0.08, 0.31)^c
18 - 64	0.06 (0.05, 0.08)^c	0.08 (0.06, 0.11)^c	0.03 (0.02, 0.05)^c
65 - 85	Reference group	Reference group	Reference group
Sex			
Male	0.89 (0.74, 0.85)^c	0.89 (0.82, 0.97)^b	0.66 (0.59, 0.72)^c
Female	Reference group	Reference group	Reference group
Education			
GED/high school	1.52 (1.35, 1.70)^c	1.21 (1.04, 1.39)^a	1.85 (1.60, 2.15)^c
College	3.23 (2.76, 3.77)^c	2.09 (1.72, 2.55)^c	5.69 (4.39, 7.37)^c
None	Reference group	Reference group	Reference group
Employment status			
Category	Odds Ratio (95% CI)	Odds Ratio (95% CI)	Odds Ratio (95% CI)
---------------------------	---------------------	---------------------	---------------------
Employed	0.72 (0.64, 0.80)	0.74 (0.65, 0.84)	0.68 (0.58, 0.79)
Unemployed	Reference group	Reference group	Reference group
Census region			
Northeast	1.91 (1.59, 2.30)	1.61 (1.30, 1.99)	2.54 (1.90, 3.41)
Midwest	1.39 (1.18, 1.65)	1.22 (1.02, 1.46)	1.73 (1.33, 2.25)
West	1.38 (1.18, 1.60)	1.16 (0.98, 1.37)	1.86 (1.51, 2.30)
South	Reference group	Reference group	Reference group
Perceived mental health status			
Excellent	1.18 (0.82, 1.69)	1.53 (1.01, 2.34)	0.74 (0.40, 1.38)
Very good	1.28 (0.89, 1.84)	1.55 (1.01, 2.37)	0.91 (0.50, 1.66)
Good	1.14 (0.79, 1.65)	1.48 (0.96, 2.27)	0.74 (0.40, 1.36)
Fair	1.31 (0.90, 1.90)	1.49 (0.97, 2.29)	1.03 (0.54, 1.96)
Poor	Reference group	Reference group	Reference group
Need ADL help			
Yes	4.00 (2.44, 6.55)	4.17 (2.13, 8.16)	3.76 (1.89, 7.48)
No	Reference group	Reference group	Reference group

All values are odds ratios (95% confidence intervals) unless otherwise specified. \(a \) \(P < 0.05 \), \(b \) \(P < 0.01 \), \(c \) \(P < 0.001 \).