Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels

Ishan Misra1 C. Lawrence Zitnick3 Margaret Mitchell2 Ross Girshick3

1Carnegie Mellon University
2Microsoft Research
3Facebook AI Research

(experiments presented by An T. Nguyen)
Human Reporting Bias

- Captions, tags, keywords ...
- Report only salient/important objects.
- Cause visually biased classifiers.
Human Reporting Bias

- Captions, tags, keywords ...
- Report only salient/important objects.
- Cause visually biased classifiers.

This paper

- Model the bias as hidden variables.
- Improve classification of visual concepts.
Examples
(from MSCOCO dataset)

Captions:

- a small dog is on a wood desk
- a dog is sitting on a desk behind a computer.
- dog sitting on a desk next to a monitor
- a little dog with a leash laying on a desk behind a computer monitor.
- a dog sits on a desk behind a computer
Examples

Detection labels

- dog
- tv
- remote
- cup
- book book
Two Classifiers

1. Visual Presence Classifier v
2. Relevance Classifier r
Two Classifiers

1. Visual Presence Classifier v
2. Relevance Classifier r
My experiments

Analyze the relevance classifier r

1. r with varying objects sizes, orientations (is r sensitive to sizes and orientations?)
My experiments

Analyze the **relevance classifier** r

1. r with varying objects sizes, orientations (is r sensitive to sizes and orientations?)

2. Evaluate the accuracy of r.
 (in detecting (un)reported objects)
My experiments

Analyze the **relevance classifier r**

1. r with varying objects sizes, orientations (is r sensitive to sizes and orientations?)
2. Evaluate the accuracy or r. (in detecting (un)reported objects)
3. Evaluate the learned ‘representation’ (as features in scene classification).
Reportability with varying size
(image from the paper, black line = prob. of not reporting)

- Small size correlates with not reported.
Reportability with varying size
(image from the paper, black line = prob. of not reporting)

- Small size correlates with not reported.
- **Question:** Does r capture this?
Experiment: varying sizes
(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

Observations:
1. (Almost) same from 100% to 60%
2. But increase from 60% to 20%

Possible explanation:
1. r is not sensitive to size. (it predicts based on other features)
2. Objects too small \rightarrow not recognized \rightarrow default to reported
Experiment: varying sizes
(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

Observations:
1. (Almost) same from 100% to 60%
2. But increase from 60% to 20%

Possible explanation:
1. \(r \) is not sensitive to size. (it predicts based on other features)
2. Objects too small → not recognized → default to reported
Experiment: varying sizes
(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

Observations:
1. (Almost) same from 100% to 60%
2. But increase from 60% to 20%

(Possible) explanation:
1. \(r \) is not sensitive to size. (it predicts based on other features)
2. Objects too small \(\rightarrow \) not recognized \(\rightarrow \) default to reported
Experiment: varying orientations
Experiment: varying orientations
10
Experiment: varying orientations
Experiment: varying orientations
(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)
Experiment: varying orientations
(Average over 1000 images in test set and over common objects: glove, phone, backpack, ...)

- r sensitive to orientations.
- Unusual rotation \rightarrow not recognized \rightarrow ...
Accuracy of r
(Surprisingly not reported by the paper)

For each concept:
- Negative instances: object present but no captions mentioned.
- Positive instances: object present and captions mentioned.
Accuracy of \(r \)
(Surprisingly not reported by the paper)

For each concept:
- Negative instances: object present but no captions mentioned.
- Positive instances: object present and captions mentioned.
- Metric: AUC of \(r \) prediction.
Accuracy of r (over all images in test set)
Evaluate the learned ‘representation’

- \(r \) outputs 4 ‘probabilities’ for each concept.
Evaluate the learned ‘representation’

- \(r \) outputs 4 ‘probabilities’ for each concept.
- 1000 concepts \(\rightarrow \) 4000-dim vector.
Evaluate the learned ‘representation’

- \(r \) outputs 4 ‘probabilities’ for each concept.
- 1000 concepts \(\rightarrow \) 4000-dim vector.
- Assumed to be features for scene classification.
Evaluate the learned ‘representation’

- \(r \) outputs 4 ‘probabilities’ for each concept.
- 1000 concepts \(\rightarrow \) 4000-dim vector.
- Assumed to be features for scene classification.
- Pretext task = predict human reporting bias.
Evaluate the learned ‘representation’

- \(r \) outputs 4 ‘probabilities’ for each concept.
- 1000 concepts \(\rightarrow \) 4000-dim vector.
- Assumed to be features for scene classification.
- Pretext task = predict human reporting bias.
- Same data as in Assignment 2.
Evaluate the learned ‘representation’
(LinearSVM, no finetuning, test set 2)

Features	Accuracy(%)
HumanBias	58.24
Alex	81.36
HumanBias + Alex	82.62
ResNet	87.12
HumanBias + ResNet	87.73
Evaluate the learned ‘representation’
(LinearSVM, no finetuning, test set 2)

Features	Accuracy(%)
HumanBias	58.24
Alex	81.36
HumanBias + Alex	82.62
ResNet	87.12
HumanBias + ResNet	87.73

- Features are informative
- Complementary to Alex & ResNet
Confusion Matrices for Human Bias

The diagram shows a confusion matrix for human bias in categorization. The matrix compares the true labels against the predicted labels for various categories such as 'broadleaf', 'exterior', 'street', 'dining room', 'dorm room', 'chalet', 'hospital room', 'bookstore', 'crevasse', 'train railway', 'orchard', 'indoor', 'snowfield', 'landing deck', 'sand', 'vegetable garden', 'mansion', 'shoe shop', 'outdoor', 'formal garden', 'bus interior'. The matrix indicates the number of misclassifications between these categories.

For example, there are 2 instances of 'exterior' being incorrectly predicted as 'dining room', and 1 instance of 'dining room' being incorrectly predicted as 'exterior'.
Confusion Matrices for Human Bias

- Less distinctive, mix categories.
- e.g. exterior, mansion, chalet.
Summary

- r classifies into reported/unreported by human.
- Sensitive to orientations, not to scale.
- Good performance in AUC.
- Learn informative features.
Summary

- r classifies into reported/unreported by human.
- Sensitive to orientations, not to scale.
- Good performance in AUC.
- Learn informative features.

Questions?