Conservation of the noetherianity by perfect transcendental field extensions

M. Fernández-Lebrón and L. Narváez-Macarro*
Departamento de Algebra, Facultad de Matemáticas,
Universidad de Sevilla, P.O. Box 1160, 41080 Sevilla, Spain.
lebron@algebra.us.es, narvaez@algebra.us.es

March, 2001

Abstract

Let k be a perfect field of characteristic $p > 0$, $k(t)_{\text{per}}$ the perfect closure of $k(t)$ and A a k-algebra. We characterize whether the ring

$$A \otimes_k k(t)_{\text{per}} = \bigcup_{m \geq 0} (A \otimes_k k(t^{1/p^m}))$$

is noetherian or not. As a consequence, we prove that the ring $A \otimes_k k(t)_{\text{per}}$ is noetherian when A is the ring of formal power series in n indeterminates over k.

Keywords: perfect−power series ring−noetherian ring− perfect extension−complete local ring.

Introduction

Motivated by the generalization of the results in [10] (for the case of a perfect base field k of characteristic $p > 0$) in this paper we study the conservation of noetherianity by the base field extension $k \rightarrow k(t)_{\text{per}}$, where $k(t)_{\text{per}}$ is the

*Both authors are partially supported by DGESIC, PB97-0723.
perfect closure of $k(t)$. Since this extension is not finitely generated, the conservation of noetherianity is not clear \textit{a priori} for k-algebras which are not finitely generated.

Our main result states that $k(t)_{\text{per}} \otimes_k A$ is noetherian if and only if A is noetherian and for every prime ideal $p \subset A$ the field $\bigcap_{m \geq 0} Qt(A/p)^{p^m}$ is algebraic over k (see theorem 3.6). In particular, we are able to apply this result to the case where A is the ring of formal power series in n indeterminates over k.

We are indebted to J. M. Giral for giving us the proof of proposition 2.6 and for other helpful comments.

1 Preliminaries and notations

All rings and algebras considered in this paper are assumed to be commutative with unit element. If B is a ring, we shall denote by $\dim(B)$ its Krull dimension and by $\Omega(B)$ the set of its maximal ideals. We shall use the letters K, L, k to denote fields and \mathbb{F}_p to denote the finite field of p elements, for p a prime number. If $p \in \text{Spec}(B)$, we shall denote by $\text{ht}(p)$ the height of p.

Remember that a ring B is said to be \textit{equicodimensional} if all its maximal ideals have the same height. Also, B is said to be \textit{biequicodimensional} if all its saturated chains of prime ideals have the same length.

If B is an integral domain, we shall denote by $Qt(B)$ its quotient field.

For any \mathbb{F}_p-algebra B, we denote $B^\sharp = \bigcap_{m \geq 0} B^{p^m}$.

We shall first study the contraction-extension process for prime ideals relative to the ring extension $K[t] \subset K[t^{1/p}]$, K being a field of characteristic $p > 0$. Let us recall the following well known result (cf. for example [I], th. 10.8):

\textbf{Proposition 1.1} Let K be a field of characteristic $p > 0$. Let $g(X)$ be a monic polynomial of $K[X]$. Then, the polynomial $f(X) = g(X^p)$ is irreducible in $K[X]$ if and only if $g(X)$ is irreducible in $K[X]$ and not all its coefficients are in K^p.

From the above result, we deduce the following corollary.
Corollary. 1.2 Let K be a field of characteristic $p > 0$. Let P be a non zero prime ideal in $K[t^{\frac{1}{p}}]$ and let $F(t) \in K[t]$ be the monic irreducible generator of the contraction $P^e = P \cap K[t]$. Then the following conditions hold:

1. If $F(t) = a_0^p + a_1^p t + \cdots + t^d \in K^p[t]$, then $P = (a_0 + a_1 t^\frac{1}{p} + \cdots + t^d)$.
2. The equality $P = P^{ce}$ holds if and only if $F(t) \not\in K^p[t]$.

Proof:

1. Consider the polynomial $G(\tau) = a_0 + a_1 \tau + \cdots + \tau^d \in K[\tau](\tau = t^\frac{1}{p})$ and the ring homomorphism $\mu : K[\tau] \rightarrow K[t]$ defined by

$$\mu(\sum a_i \tau^i) = \sum a_i^p t^i.$$

From the identity $\mu(G) = F$ we deduce that $G(\tau)$ is irreducible. Since $G(t^\frac{1}{p})^p = F(t) \in P$, we deduce that $G(t^\frac{1}{p}) \in P$ and then $P = (G(t^\frac{1}{p}))$.

2. The equality $P = P^{ce}$ means that $F(t) = F(\tau^p) \in K[\tau]$ generates the ideal P, but that is equivalent to saying that $F(\tau^p)$ is irreducible in $K[\tau]$. To conclude, we apply proposition 1.1.

For each k-algebra A, we define $A(t) := k(t) \otimes_k A$. We also consider the field extension

$$k(\infty) = \bigcup_{m \geq 1} k(t^\frac{1}{p^m}).$$

If k is perfect, $k(\infty)$ coincides with the perfect closure of $k(t)$, $k(t)_{per}$.

For the sake of brevity, we will write $t_m = t^\frac{1}{p^m}$. We also define

$$A_{(m)} := A(t_m) := A \otimes_k k(t_m) = A(t) \otimes_{k(t)} k(t_m), \quad A_{[m]} := A[t_m]$$

and

$$A_{(\infty)} := A \otimes_k k(\infty) = \bigcup_{m \geq 0} A_{(m)}, \quad A_{[\infty]} := \bigcup_{m \geq 0} A_{[m]}.$$

Each $A_{(m)}$ (resp. $A_{[m]}$) is a free module over $A(t)$ (resp. over $A[t]$) of rank p^m (because $(t_m)^{p^m} - t = 0$).

3
For each prime ideal \(P \) of \(A_\infty \) we denote \(P_\infty := P \cap A_\infty \), \(P_m := P \cap A_m \in \text{Spec}(A_m) \) and \(P_m := P \cap A_m \in \text{Spec}(A_m) \).

In a similar way, if \(Q \) is a prime ideal of \(A_\infty \) we denote \(Q_m := Q \cap A_m \in \text{Spec}(A_m) \).

We have:

- \(P = \bigcup_{m \geq 0} P_m, \ P_\infty = \bigcup_{m \geq 0} P_m \), (resp. \(Q = \bigcup_{m \geq 0} Q_m \)).
- \(P_n \cap A_m = P_m \) and \(P_n \cap A_m = P_m \) for all \(n \geq m \) (resp. \(Q_n \cap A_m = Q_m \) for all \(n \geq m \)).

The following properties are straightforward:

1. The \(k \)-algebras \(A_m \) (respectively \(A_m \)) are isomorphic to each other.
2. If \(S_m = k[t_m] \setminus \{0\} \), then \(A_m = S_m^{-1} A_m \).
3. Since \((S_m)^n \subset S_0 \subset S_m \), we have \(A_m = S_m^{-1} A_m \) for \(m \geq 0 \). Consequently \(A_\infty = S_0^{-1} A_\infty \).
4. If \(A \) is a domain (integrally closed), then \(A_m \) and \(A_m \) are domains (integrally closed) for all \(m \geq 0 \) or \(m = \infty \).
5. If \(A \) is a noetherian \(k \)-algebra, then \(A_m \) and \(A_m \) are noetherian rings, for every \(m \geq 0 \).
6. If \(A = k[X] = k[X_1, \ldots, X_n] \), then \(A_\infty \) is not noetherian (the ideal generated by the \(t_m, m \geq 0 \), is not finitely generated).
7. If \(I \subset A \) is an ideal, then \((A/I)_\infty = A_\infty/I \).
8. If \(T \subset A \) is a multiplicative subset, then \((T^{-1}A)_\infty = T^{-1}A_\infty \).
9. If \(A = k[X] \), then \(A_\infty = k_\infty[X] \), hence \(A_\infty \) is noetherian. Moreover, \(A_\infty \) is noetherian for every finitely generated \(k \)-algebra \(A \).

The main goal of this paper is to characterize whether the ring \(A_\infty \) is noetherian (see th. 3.6 and corollary 3.8).

Proposition. 1.3 With the above notations, the following properties hold:
1. The extensions $A_{[m-1]} \subset A_m$ and $A_{(m-1)} \subset A_m$ are finite free, and therefore integral and faithfully flat.

2. The corresponding extensions to their quotient fields are purely inseparable.

Proof: Straightforward.

Corollary 1.4 $A_{[\infty]}$ (resp. $A_{(\infty)}$) is integral and faithfully flat over each $A_{[m]}$ (resp. over each $A_{(m)}$).

From the properties above, we obtain the following lemmas:

Lemma 1.5 Let $P' \subseteq P$ be prime ideals of $A_{(\infty)}$ (resp. of $A_{[\infty]}$). The following conditions are equivalent:

(a) $P' \subsetneq P$

(b) There exists an $m \geq 0$ such that $P'_{(m)} \subsetneq P_{(m)}$ (resp. $P'_{[m]} \subsetneq P_{[m]}$).

(c) For every $m \geq 0$, $P'_{(m)} \subsetneq P_{(m)}$ (resp. $P'_{[m]} \subsetneq P_{[m]}$).

Lemma 1.6 Let P prime ideal of $A_{(\infty)}$ (resp. of $A_{[\infty]}$). The following conditions are equivalent:

(a) P is maximal.

(b) $P_{(m)}$ (resp. $P_{[m]}$) is maximal for some $m \geq 0$.

(c) $P_{(m)}$ (resp. $P_{[m]}$) is maximal for every $m \geq 0$.

Corollary 1.7 With the notations above, for every prime ideal P of $A_{(\infty)}$ we have $\text{ht}(P) = \text{ht}(P_{(m)}) = \text{ht}(P_{[m]})$ for all $m \geq 0$. Moreover, $\dim(A_{(\infty)}) = \dim(A_{(m)})$.

Proof: Since flat ring extensions satisfy the “going down” property, corollary [1.4] implies that $\text{ht}(P \cap A_{(m)}) \leq \text{ht}(P)$. By corollary [1.4] again, $A_{(\infty)}$ is integral over $A_{(m)}$, then $\text{ht}(P) \leq \text{ht}(P \cap A_{(m)})$.

The equality $\text{ht}(P_{(m)}) = \text{ht}(P_{[m]})$ comes from the fact that $A_{(m)}$ is a localization of $A_{[m]}$.

The last relation is a standard consequence of the “going up” property.
Remark. 1.8 Corollary 1.7 remains true if we replace \(A(m) \subset A(\infty) \) by \(A[m] \subset A[\infty] \).

Corollary. 1.9 With the notations above, for every \(Q \in \text{Spec}(A(m)) \) there is a unique \(\tilde{Q} \in \text{Spec}(A(m+1)) \) such that \(\tilde{Q}^c = Q \). Moreover, the ideal \(\tilde{Q} \) is given by \(\tilde{Q} = \{ y \in A(m+1) \mid y^p \in Q \} \).

Proof: This is an easy consequence of the fact that \((A(m+1))^p \subset A(m)\). ■

Corollary. 1.10 Let us assume that \(A \) is noetherian and for every maximal ideal \(m \) of \(A \), the residue field \(A/m \) is algebraic over \(k \). Then for every \(m \geq 0 \) we have:

1. \(\dim(A[\infty]) = \dim(A[m]) = \dim(A[t]) = n + 1 \).
2. \(\dim(A(\infty)) = \dim(A(m)) = \dim(A(t)) = n \).

Proof: The first relation comes from remark 1.8 and the noetherianity hypothesis.

The second relation comes from corollary 1.7 and proposition (1.4) of [10]. ■

The following result is a consequence of theorem (1.6) of [10], lemma 1.6 and corollary 1.10.

Corollary. 1.11 Let \(A \) be a noetherian, biequidimensional, universally catenarian \(k \)-algebra of Krull dimension \(n \), and that for any maximal ideal \(m \) of \(A \), the residue field \(A/m \) is algebraic over \(k \). Then every maximal ideal of \(A(\infty) \) has height \(n \).

2 The biggest perfect subfield of a formal functions field

Throughout this section, \(k \) will be a perfect field of characteristic \(p > 0 \), \(A = k[[X]] \), \(p \subset A \) a prime ideal, \(R = A/p \) and \(K = Qt(R) \).
The aim of this section is to prove that the biggest perfect subfield of K, $K^\sharp = \bigcap_{e \geq 0} K^{p^e}$, is an algebraic extension of the field of constants, k. This result is proved in prop. 2.6 and it is one of the ingredients in the proof of corollary 3.8.

Proposition. 2.1 Under the above hypothesis, it follows that $k = R^\sharp$.

Proof: Let m be the maximal ideal of R. It suffices to prove that $R^\sharp \subseteq k$. If $f \in R^\sharp$, then for every $e > 0$ there exists an $f_e \in R$ such that $f = f^{p^e}_e$.

- Suppose at first that f is not a unit, then f_e is not a unit for any $e > 0$, and $f_e \in m$ for every $e > 0$. Thus, $f \in m^{p^e}$ for every $e > 0$ and by Krull’s intersection theorem,

$$f \in \bigcap_{e \geq 0} m^{p^e} = \bigcap_{r \geq 0} m^r = (0).$$

- If f is unit, then $f = f_0 + \tilde{f}$, with $f_0 \in k \subset R^\sharp$ and $\tilde{f} \in R^\sharp$ and f_0 is unit. By the above case $\tilde{f} = 0$, hence $f \in k$.

Proposition. 2.2 If $p = (0)$, that is $R = k[[X]]$, $K = k((X))$, then $k = K^\sharp$.

Proof: It is a consequence of prop. 2.1 and the fact that R is a unique factorization domain.

In order to treat the general case, let us look at some general lemmas.

Lemma. 2.3 (cf. [3] Chap. 5, § 15, ex. 8) If L is a separable algebraic extension of a field K of characteristic $p > 0$, then L^\sharp is an algebraic extension of K^\sharp.

Proof: If $x \in L^\sharp$, then $x = y^p_e$ with $y_e \in L$ for all $e \geq 0$. Since y_e is separable over K, $K(y_e) = K(y^p_e) = K(x)$, it follows that $y_e = x^{p^{-e}} \in K(x)$ and then $x \in K^{p^e}(x^{p^e})$. Therefore

$$[K^{p^e}(x) : K^{p^e}] = [K^{p^e}(x^{p^e}) : K^{p^e}] = [K(x) : K].$$

Thus x satisfies the same minimal polynomial over K^{p^e} and over K for all $e \geq 0$, and the coefficients of this minimal polynomial must be in K^\sharp. So x is algebraic over K^\sharp.
Lemma. 2.4 Every algebraic extension of a perfect field is perfect.

Proof: This is obvious because this is true for the finite algebraic extensions.

Lemma. 2.5 Let C be a subring of a domain D and let \overline{C} be the integral closure of C in D. If $f(X), g(X)$ are monic polynomials in $D[X]$ such that $f(X)g(X) \in \overline{C}[X]$, then $f(X), g(X) \in \overline{C}[X]$.

Proof: We consider a field L containing D such that the polynomials $f(X), g(X)$ are a product of linear factors: $f(X) = \prod(x - \alpha_i), g(X) = \prod(x - \beta_j), \alpha_i, \beta_j \in L$. Each α_i and β_j are roots of $f(X)g(X)$, hence they are integral over \overline{C}. Thus the coefficients of $f(X)$ and $g(X)$ are integral over \overline{C} and therefore they are in \overline{C}.

Proposition. 2.6 Let k be a perfect field of characteristic $p > 0$, $A = k[[X]] = k[[X_1, \ldots, X_n]], p \subset A$ a prime ideal, $R = A/p$ and $K = \mathbb{Q}_p(R)$. Then K^\sharp is an algebraic extension of k.

Proof: Let $r = \dim(A/p) \leq n$. By the normalization lemma for power series rings (cf. [1], 24.5 and 23.7) there is a new system of formal coordinates Y_1, \ldots, Y_r of A, such that

- $p \cap k[[Y_1, \ldots, Y_r]] = \{0\}$,
- $k[[Y_1, \ldots, Y_r]] \hookrightarrow \frac{A}{p} = R$ is a finite extension, and
- $k((Y_1, \ldots, Y_r)) \hookrightarrow K$ is a separable finite extension.

The proposition is then a consequence of proposition 2.2 and lemma 2.3.

1Due to J. M. Giral.
2The proof of the normalization lemma for power series rings in [1] uses generic linear changes of coordinates and needs the field k to be infinite. This proof can be adapted for an arbitrary perfect coefficient field (infinite or not) by using non linear changes of the form $Y_i = X_i + F_i(X_{i+1}^p, \ldots, X_n^p)$, where the F_i are polynomials with coefficients in \mathbb{F}_p.
3In particular, if k is algebraically closed, we would have $K^\sharp = k.$
Remark. 2.7 Actually, under the hypothesis of proposition 2.6, J.M. Gir al and the authors have proved that the following stronger properties hold:

(1) If R is integrally closed in K, then $K^\sharp = k$.
(2) In the general case, K^\sharp is a finite extension of k.

3 Noetherianity of $A \otimes_k k(t)_{per}$

Throughout this section, k will be a perfect field of characteristic $p > 0$, keeping the notations of section 1.

Proposition. 3.1 Let K be a field extension of k and suppose that K^\sharp is algebraic over k. For every prime ideal $\mathcal{P} \in \text{Spec}(K_{\infty})$ such that $\mathcal{P} \cap k[t] = 0$ there exists an $m_0 \geq 0$ such that $\mathcal{P}_{[m]}$ is the extended ideal of $\mathcal{P}_{[m_0]}$ for all $m \geq m_0$.

Proof: The extension $k[t] \subset K^\sharp[t]$ is integral and then $\mathcal{P} \cap K^\sharp[t] = 0$.
We can suppose $\mathcal{P} \neq (0)$. From Remark 1.8, we have $ht(\mathcal{P}[i]) = ht(\mathcal{P}) = 1$ for every $i \geq 0$. Let $F_i(t_i) \in K[t_i]$ be the monic irreducible generator of $\mathcal{P}[i]$. From 1.2 for each $i \geq 0$ there are two possibilities:

(1) $F_i \in K^p[t_i]$, then $F_{i+1}(t_{i+1}) = F_i(t_i)^{1/p}$.
(2) $F_i \notin K^p[t_i]$, then $\mathcal{P}[i+1] = \mathcal{P}[i]^e$ and $F_{i+1}(t_{i+1}) = F_i(t_i) = F_i(t_i^p)$.

Since $\mathcal{P} \cap K^\sharp[t] = (0)$, $F_0(t_0) \notin (\bigcap_{m \geq 0} K^{p^m})[t_0] = \bigcup_{m \geq 0} K^{p^m}[t_0]$ and there exists an $m_0 \geq 0$ such that $F_0(t_0) \in K^{p^{m_0}}[t_0]$ and $F_0(t_0) \notin K^{p^{m_0+1}}[t_0]$.

From (1) we have $F_i(t_i) = F_0(t_0)^{1/p^i} \in K^{p^{m_0-i}}[t_i]$ for $i = 0, \ldots, m_0-1$ and $F_{m_0}(t_{m_0}) \notin K^p[t_{m_0}]$. Hence, applying (2) repeatedly we find $F_{j+m_0}(t_{j+m_0}) = F_{m_0}(t_{m_0}) = F_{m_0}(t_{j+m_0})$ and $\mathcal{P}_{[j+m_0]}$ is the extended ideal of $\mathcal{P}_{[m_0]}$ for all $j \geq 1$.

Corollary. 3.2 Under the same hypothesis of proposition 3.1, \mathcal{P} is the extended ideal of some \mathcal{P}_{m_0}.

9
Therefore \(f \) is not algebraic over \(P \).

To prove the other inclusion, take an \(s \in \text{Spec}(R) \) and let \(\mathcal{P}_1 \) be a prime ideal in \(B \) such that \(\mathcal{P}_1 \cap S = \emptyset \). Let \(\mathcal{P}_0 = \mathcal{P}_1^c \), \(\mathcal{P}_1 = \mathcal{P}_1^e \) and \(\mathcal{P}_0 = \mathcal{P}_1^c \). If \(\mathcal{P}_1 = \mathcal{P}_0^e \), then \(\mathcal{P}_1 = \mathcal{P}_0^c \).

Proposition 3.3 With the notations above, let \(\mathcal{P}_1 \) be a prime ideal in \(B \) such that \(\mathcal{P}_1 \cap S = \emptyset \). Let \(\mathcal{P}_0 = \mathcal{P}_1^c \), \(\mathcal{P}_1 = \mathcal{P}_1^e \) and \(\mathcal{P}_0 = \mathcal{P}_1^c \). If \(\mathcal{P}_1 = \mathcal{P}_0^e \), then \(\mathcal{P}_1 = \mathcal{P}_0^c \).

Proof: Let \(\{e_i\} \) be a \(A \)-basis of \(B \). Since \(\mathcal{P}_1 \cap S = \emptyset \), it is clear that \(\mathcal{P}_1 = \mathcal{P}_0^c \) and \(\mathcal{P}_0 = \mathcal{P}_0^e \). If \(\mathcal{P}_1 = \mathcal{P}_0^e \), we have

\[
\mathcal{P}_1 = \mathcal{P}_0^e = \mathcal{P}_0^c = (\mathcal{P}_0^e)^c = (\mathcal{P}_0^c)^c = (\mathcal{P}_0^e)^c = \sum_{s \in S} (\mathcal{P}_0^e : s)B \supset \mathcal{P}_0^e.
\]

To prove the other inclusion, take an \(s \in S \) and let \(f = \sum a_i e_i \) be an element of \((\mathcal{P}_0^e : s)B\) with \(a_i \in A \). Then, \(sf = \sum (sa_i)e_i \in \mathcal{P}_0^e \) and from the equality \(\mathcal{P}_0^e = \{\sum b_i e_i \mid b_i \in \mathcal{P}_0\} \) we deduce that \(sa_i \in \mathcal{P}_0 \) and \(a_i \in (\mathcal{P}_0^e : s)_A = \mathcal{P}_0 \). Therefore \(f \in \mathcal{P}_0^e \).

Proposition 3.4 Let \(R \) be an integral \(k \)-algebra, \(K = \text{Qt}(R) \), and suppose that \(K \) is algebraic over \(k \). Then any prime ideal \(\mathcal{P} \in \text{Spec}(R_{(\infty)}) \) with \(\mathcal{P} \cap k[t] = 0 \) and \(\mathcal{P} \cap R = 0 \) is the extended ideal of some \(\mathcal{P}_{[m_0]} \), \(m_0 \geq 0 \).

Proof: Let us write \(T = R - \{0\} \). We have \(K = T^{-1}R \) and \(K_{[m]} = T^{-1}R_{[m]} \) for all \(m \geq 0 \) or \(m = \infty \). We define \(\mathcal{P} = T^{-1}\mathcal{P} \). We easily deduce that \(\mathcal{P}_{[m]} = T^{-1}\mathcal{P}_{[m]} \) for all \(m \geq 0 \).

From proposition 3.3, there exists an \(m_0 \geq 0 \) such that \(\mathcal{P}_{[m]} \) is the extended ideal of \(\mathcal{P}_{[m_0]} \) for every \(m \geq m_0 \). Then, proposition 3.3 tells us that \(\mathcal{P}_{[m]} \) is the extended ideal of \(\mathcal{P}_{[m_0]} \) for every \(m \geq m_0 \), so \(\mathcal{P} = \bigcup \mathcal{P}_{[m]} \) is the extended ideal of \(\mathcal{P}_{[m_0]} \).

Proposition 3.5 Let \(K \) be a field extension of \(k \) and suppose that \(K \) is not algebraic over \(k \). Then \(K_{(\infty)} \) is not noetherian.
Proof: Let $s \in K^\#$ be a transcendental element over k.

For each $m \geq 0$, let $s_m = s^{1/p^m} \in K$ and $\alpha_m = t_m - s_m$. Let P be the ideal in $K(\infty)$ generated by the $\alpha_m, m \geq 0$. We have $\alpha_m = \alpha_{m+1}^p$ and $P_{(m)} = K_{(m)}\alpha_m$ for all $m \geq 0$.

Suppose that P is finitely generated. Then, there exists an $m_0 \geq 0$ such that $P = K(\infty)\alpha_{m_0}$. By faithful flatness, we deduce that $\alpha_{m_0+1} \in K_{(m_0+1)}\alpha_{m_0}$. Let us write $\tau = t_{m_0+1}, \sigma = s_{m_0+1}$. Then, $\alpha_{m_0+1} = \tau - \sigma$ and there exist $\psi(\tau) \in K[\tau] = K_{[m_0+1]}, \varphi(\tau) \in k[\tau] \setminus \{0\}$ such that

$$\varphi(\tau)(\tau - \sigma) = \psi(\tau)(\tau - \sigma)^p.$$

Simplifying and making $\tau = \sigma$ we obtain

$$\varphi(\sigma) = \psi(\sigma)(\sigma - \sigma)^{p-1} = 0$$

contradicting the fact that s is transcendental over k.

We conclude that P is not finitely generated and $K(\infty)$ is not noetherian.

\[\square\]

Theorem 3.6 Let k be a perfect field of characteristic $p > 0$ and let A be a k-algebra. The following properties are equivalent:

(a) The ring A is noetherian and for any $p \in \text{Spec}(A)$, the field $Q_t(A/p)^\#$ is algebraic over k.

(b) The ring $A(\infty)$ is noetherian.

Proof: Let first prove $(a) \Rightarrow (b)$. By Cohen’s theorem (cf. \[8\], (3.4)), it is enough to prove that any $P \in \text{Spec}(A(\infty)) - \{(0)\}$ is finitely generated.

From corollaries \[1.7\] and \[1.11\], we have

$$\text{ht}(P_{[m]}) = \text{ht}(P_{(m)}) = \text{ht}(P_{[\infty]}) = \text{ht}(P) = r \leq n.$$

Consider the prime ideal of A:

$$p := A \cap P = A \cap P_{[\infty]} = A \cap P_{[m]} = A \cap P_{(m)}.$$

There are two possibilities (cf. \[8\], prop. (5.5.3)):

(i) $\text{ht}(p) = r = \text{ht}(P_{[m]})$ and $P_{[m]} = p[1/p_m]$, for every $m \geq 0$.

11
(ii) $\text{ht}(p) = r - 1 = \text{ht}(P_{[m]}) - 1$, $p[t_m] \not\subseteq P_{[m]}$ and $A/p \not\subseteq A[t_m]/P_{[m]}$ is algebraic generated by t_m mod $P_{[m]}$, for every $m \geq 0$.

In case (i), $P_{[\infty]}$ and P are the extended ideals of p and they are finitely generated.

Suppose we are in case (ii). We denote $R = A/p$, $K = Qt(R)$.

Then:

$$R_{[m]} = A_{[m]}/p[t_m], \quad R_{[\infty]} = A_{[\infty]}/A_{[\infty]}p = A_{[\infty]}/\bigcup_{m \geq 0} p[t_m].$$

Define $\mathcal{P} := R_{[\infty]}P_{[\infty]} = P_{[\infty]}/\bigcup_{m \geq 0} p[t_m] \in \text{Spec}(R_{[\infty]})$. We have $\mathcal{P}_{[m]} = \mathcal{P} \cap R_{[m]} = P_{[m]}/p[t_m]$, $\mathcal{P} \cap R = \mathcal{P} \cap k[t] = 0$ and

$$\text{ht}(\mathcal{P}_{[m]}) = \text{ht}(P_{[m]}/p[t_m]) = 1, \quad \text{ht}(\mathcal{P}) = \text{ht} \left(P_{[\infty]}/\bigcup_{m \geq 0} p[t_m] \right) = 1.$$

We conclude by applying proposition 3.4: there exists an $m_0 \geq 0$ such that \mathcal{P} is the extended ideal of $P_{[m_0]}$. Then, $P_{[\infty]}$ is the extended ideal of $P_{[m_0]}$ and $P = A_{(\infty)}P_{[\infty]} = A_{(\infty)}P_{[m_0]}$ is finitely generated.

Let us prove now (b) \Rightarrow (a). Since $A_{(\infty)}$ is faithfully flat over A, we deduce that A is noetherian.

Let $p \in \text{Spec}(A)$ and let $R = A/p$, $K = Qt(R)$. Noetherianity of $A_{(\infty)}$ implies, first, noetherianity of $R_{(\infty)}$, and second, noetherianity of $K_{(\infty)}$. To conclude we apply proposition 3.5. \(\blacksquare\)

Corollary. 3.7 Let k be a perfect field of characteristic $p > 0$ and let A be a noetherian k-algebra. The following properties are equivalent:

(a) The ring $A_{(\infty)}$ is noetherian.

(b) The ring $(A_m)_{(\infty)}$ is noetherian for any maximal ideal $m \in \Omega(A)$.

Proof: For (a) \Rightarrow (b) we use the fact that $(A_m)_{(\infty)} = A_m \otimes_A A_{(\infty)}$.

For (b) \Rightarrow (a), let $p \subset A$ be a prime ideal and let m be a maximal ideal containing p. From hypothesis (b), the ring $(A_m)_{(\infty)}$ is noetherian. Then, from theorem 3.6 we deduce that the field $Qt(A/p)^{\sharp} = Qt(A_m/A_mp)^{\sharp}$ is algebraic over k. From theorem 3.6 again we obtain (a). \(\blacksquare\)
Corollary. 3.8 Let k be a perfect field of characteristic $p > 0$, k' an algebraic extension of k and $A = k'[\{X_1, \ldots, X_n\}]$. Then, the ring $A_\infty = k(t)_{\text{per}} \otimes_k A$ is noetherian.

Proof: It is a consequence of lemma 2.4, proposition 2.6 and theorem 3.6.

Corollary. 3.9 Let k be a perfect field of characteristic $p > 0$. If (B, \mathfrak{m}) is a local noetherian k-algebra such that B/\mathfrak{m} is algebraic over k, then $B_\infty = k(t)_{\text{per}} \otimes_k B$ is noetherian. In particular, the field $Qt(B/p)^\#$ is algebraic over k for every prime ideal $p \subset B$.

Proof: Let $k' = B/\mathfrak{m}$. By Cohen structure theorem (cf. [6], Chap. 0, Th. (19.8.8)), the completion \hat{B} of B is a quotient of a power-series ring A with coefficients in k'. Since \hat{B}_∞ is also a quotient of A_∞, we deduce from corollary 3.8 that B_∞ is noetherian. Since \hat{B} is faithfully flat over B, the ring \hat{B}_∞ is also faithfully flat over B_∞. So, B_∞ is noetherian.

The last assertion is a consequence of theorem 3.6.

Corollary. 3.10 Let k be a perfect field of characteristic $p > 0$. For any noetherian k-algebra A such that the residue field A/\mathfrak{m} of every maximal ideal $\mathfrak{m} \in \Omega(A)$ is algebraic over k, the ring A_∞ is noetherian. Furthermore, if A is regular and equicodimensional then A_∞ is also regular and equicodimensional of the same dimension as A.

Proof: The first part is a consequence of corollaries 3.7 and 3.9. For the last part, we use corollary 1.11, the fact that all $A_{(m)}$, $m \geq 0$ are regular and of the same (global homological = Krull) dimension ([10], th. (1.6)) and [2].

References

[1] S.S. Abhyankar, *Local Analytic Geometry*, (Academic Press, New York-London, 1964)
[2] I. Beršteın, On the dimension of modules and algebras IX, Direct limits, Nagoya Math. J. 13 (1958), 83–84

[3] N. Bourbaki, Éléments de mathématique, Algèbre, Chapitres 4 à 7, Lecture Notes in Mathematics 864, (Masson, Paris, 1981)

[4] D. J. H. Garling, A course in Galois theory, (Cambridge University Press, Cambridge, 1986)

[5] A. Grothendieck, Eléments de géométrie algébrique IV: Étude locale des schémas et de morphismes de schémas (première partie), Inst. Hautes Études Sci. Publ. Math. 20 (1964)

[6] A. Grothendieck, Eléments de géométrie algébrique IV: Étude locale des schémas et de morphismes de schémas (seconde partie), Inst. Hautes Études Sci. Publ. Math. 24 (1965)

[7] J.P. Jouanolou, Théorèmes de Bertini et applications, (Birkhäuser Boston Inc., Boston, MA, 1983)

[8] H. Matsumura, Commutative algebra, (Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980)

[9] M. Nagata, Local rings, (Robert E. Krieger Publishing Co., Huntington, N.Y., 1975), Corrected reprint

[10] L. Narváez-Macarro, A note on the behaviour under ground field extension of quasi-coefficient fields, J. London Math. Soc. 43 (1991), 12–22