Title
Low Reporting of Cointerventions in Recent Cardiovascular Clinical Trials: A Systematic Review.

Permalink
https://escholarship.org/uc/item/7s00063q

Journal
Journal of the American Heart Association, 9(12)

ISSN
2047-9980

Authors
Moutzouri, Elisavet
Adam, Luise
Feller, Martin
et al.

Publication Date
2020-06-01

DOI
10.1161/jaha.119.014890

Peer reviewed
SYSTEMATIC REVIEW AND META-ANALYSIS

Low Reporting of Cointerventions in Recent Cardiovascular Clinical Trials: A Systematic Review

Elisavet Moutzouri MD, PhD; Luise Adam, MD; Martin Feller, MD, MSc; Lamprini Syrogiannouli, MSc, PhD; Bruno R. Da Costa, PhD; Cinzia Del Giovane, PhD; Douglas C. Bauer, MD; Drahomir Aujesky, MD, MSc; Arnaud Chiolero, MD, PhD; Nicolas Rodondi, MD, MAS

BACKGROUND: A cointervention in a randomized clinical trial (RCT) is medical care given in addition to the tested intervention. If cointerventions are unbalanced between trial arms, the results may be biased. We hypothesized that cointerventions would be more adequately reported in RCTs without full blinding or at risk of bias.

METHODS AND RESULTS: To describe the reporting of cointerventions and to evaluate the factors associated with their reporting, we did a systematic search of all RCTs evaluating pharmacological interventions on cardiovascular outcomes published in 5 high-impact journals. The reporting of cointerventions, blinding, and risk of bias were extracted and evaluated independently by 2 reviewers (E.M., L.A.). Cointerventions were inadequately reported in 87 of 123 RCTs (70.7%), with 56 (45.5%) providing no information on cointerventions and 31 (25.2%) providing only partial information. Of the RCTs, 52 (42.3%) had inadequate blinding of participants and/or personnel and 63 (51.2%) of the RCTs were judged at risk of bias. In univariable analysis, the reporting of cointerventions was not associated with blinding of participants and/or personnel (odds ratio [OR], 1.04; 95% CI, 0.47–2.27 for adequately versus inadequately blinded trials) or with risk of bias (OR, 1.47; 95% CI, 0.67–3.21 for at low risk of bias versus trials at risk of bias). In multivariable analysis, only a follow-up of <1 month was associated with the adequate reporting of cointerventions (OR, 3.63; 95% CI, 1.21–10.91).

CONCLUSIONS: More than two-thirds of recent major cardiovascular trials did not adequately report cointerventions. The quality of reporting was not better among trials that were not fully blinded or at risk for bias.

REGISTRATION: URL: https://www.crd.york.ac.uk/PROSPERO/. Unique identifier: CRD42018106771.

Key Words: blinding ■ cardiovascular trials ■ cointerventions ■ competing treatments ■ reporting ■ risk of bias

Because randomized clinical trial (RCT) outcomes shape clinical guidelines and daily practice,1,2 we expect them to meet the highest standards of methodological quality and provide us with robust results.3,4 RCTs have benefitted from continuous improvement in methodological quality,5 especially in random sequence generation and allocation concealment, which have freed them from baseline confounding.3–5 However, randomization does not eliminate differences that may arise between treatment groups during follow-up. After randomization, bias can arise when participants receive medical care in addition to the intervention of interest (cointerventions).6,8 It is not provided equally to all treatment groups.6–8 This unequal distribution of cointerventions might be caused by a failure to adequately blind participants and/or personnel.12 For example, if investigators know that a participant is receiving an active substance in a trial...
designed to prevent myocardial infarction (eg, new antidiabetic drugs), they might suggest that the participant take other medications that reduce cardiovascular risk (eg, statins). If a family doctor knows that a patient is not receiving the active substance, he or she might feel ethically bound to prescribe effective cointerventions.8 If cointerventions affect one group more than another, the results could be biased in either direction.6,8 To reduce the risk of bias, cointerventions should be systematically reported in cardiovascular trials to assess the validity of the findings, particularly when trials are not fully blinded.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
OR	odds ratio
RCT	randomized clinical trial
RR	relative risk
CONSORT	Consolidated Standards of Reporting Trials
INR	International normalized ratio
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SPORTIF	Stroke Prevention Using the Oral Direct Thrombin Inhibitor Ximelagatran in Patients With Atrial Fibrillation

CLINICAL PERSPECTIVE

What Is New?

- In this systematic review of major cardiovascular trials in 5 highly influential medical journals, cointerventions were inadequately reported in more than two-thirds of the trials, whereas the quality of reporting was not better among trials that were not fully blinded or at risk for bias.

What Are the Clinical Implications?

- Cointerventions should be systematically reported in cardiovascular trials to assess the validity of the findings, particularly when trials are not fully blinded.

Beyond the studied medication, each of which could affect outcomes, so cointerventions and in particular these comediations may play an important role in cardiovascular RCTs, especially if unblinded.5,8,20,21 After several years without new potent drugs for cardiovascular prevention, a number of large RCTs have demonstrated the benefit of recent drugs for cardiovascular prevention.22–27 but in some there was risk that cointerventions were unbalanced between study groups. We designed this systematic review to evaluate the quality of cointervention reporting in recently published RCTs with cardiovascular outcomes and to evaluate potential explanatory factors for reporting. We hypothesized that cointerventions would be more adequately reported in RCTs that were not fully blinded or otherwise at risk of bias because unbalanced cointerventions between trial arms may be more likely in these studies and could compromise their findings.

METHODS

Selection of Articles

We searched MEDLINE and EMBASE for RCTs evaluating pharmacological interventions on binary cardiovascular outcomes (fatal and/or nonfatal myocardial infarction, fatal and/or nonfatal stroke, mortality as well as composite outcomes) published in the 5 general medical journals with the highest impact factors (New England Journal of Medicine, Lancet, Journal of the American Medical Association, British Medical Journal, and Annals of Internal Medicine) between 2011 and 2019 (see Table S1 for details of the search strategy). Our methods conform to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting systematic reviews and meta-analyses.28 The protocol is registered on PROSPERO (CRD42018106771). One reviewer (E.M.) screened all titles and abstracts, assessed the full text of eligible abstracts and articles, and identified relevant trials. Another investigator (L.A.) independently assessed the eligible abstracts. The data that support the findings of this study are available from the corresponding author upon request.

Assessment of Included RCTs

The following information was extracted: study design (superiority versus noninferiority/equivalence trials), number of patients, type of intervention and comparator, follow-up duration, outcomes, information concerning methods of binding of participants and personnel, binding of outcome assessors, information about cointerventions, implementation of study treatment, adherence to study treatment, cross-overs, statistical analysis conducted, and funding source (industry versus non-industry). Available information on cointerventions, binding of participants and/or personnel, adherence to study treatment, and statistical analysis was extracted.
independently by 2 reviewers (E.M., L.A.). All available information was extracted from the original trial reports, supplementary material, and protocols (if available).

Definition of Cointerventions and Quality of Their Reporting

Two investigators (E.M., L.A.) independently assessed the cointervention reporting. Because we included RCTs with cardiovascular outcomes, we considered potential cointerventions whose modification has been shown to decrease cardiovascular risk (Box 1).29,30,33 We defined cointerventions as concomitant medications (statins, antihypertensives, antiplatelets) over follow-up (Box 1). In addition, diuretics, antidiabetics, and anticoagulants were also included in the definition of “cointervention” if these patients were included in the trials (i.e., patients with heart failure, diabetics, or atrial fibrillation). We also defined 2 special categories of cointerventions in (1) RCTs where there was an index procedure after randomization, in which case, in addition to concomitant medications (statins, antihypertensives, antiplatelets) over follow-up, procedural characteristics and periprocedural medications between the groups would also be cointerventions29,30,33 (Box S1), and (2) in RCTs with an index procedure after randomization but with a follow-up of <1 month in which case cointerventions would be procedural characteristics and periprocedural medications without considering concomitant medications (statins, antihypertensives, antiplatelets; Box S1).29,30,33 Although advice for smoking, diet, and physical activity are also effective cointerventions, they are difficult to quantify, are rarely assessed in the original studies, and are therefore not evaluated in the present study.

To evaluate the reporting quality of cointerventions in each RCT, cointerventions were judged as adequately reported if the authors reported all cointerventions across trial arms (as described in Box 1) or if the authors explicitly stated that cointerventions did not differ between groups or gave indirect evidence that cointerventions did not differ between groups (e.g., “there were no differences between groups in blood-pressure or cholesterol levels”) or that there were no cointerventions. We judged cointerventions as inadequately reported if information in the article or supplement was incomplete (i.e., partially reported) or missing (i.e., not reported). Trials that did report cointerventions were classed as either “balanced” if there were similar levels of cointerventions between both groups or “unbalanced” and were judged by 2 reviewers (E.M., L.A.) independently. Disagreements were resolved by consensus in discussions that involved a third author (M.F.).

Assessment of Blinding and the risk of bias

We independently assessed the blinding of participants and/or personnel. We based our judgments about blinding participants and/or personnel on the Cochrane Collaboration risk of bias tool 2011 (Risk of bias 1.0) and instructions from Unverzagt et al (Table S2).35 We classified RCTs into having adequate blinding or inadequate blinding.

Two authors (E.M., L.A.) used the risk of bias 2.0 tool to independently assess risk of bias caused by deviations from the intended interventions (effect of adhering to treatment),13 and classified RCTs as at high risk of bias, some concerns, or at low risk of bias. For our analysis, we grouped together RCTs judged as “some concerns” and RCTs judged as “at high risk of bias” and classed them all as “at risk of bias.”

In general, there was good agreement regarding the previous classifications: Cohen’s κ score for interobserver variability was 0.84 for the reporting of cointerventions, 0.87 for blinding participants and/or personnel, and 0.76 for the RoB 2.0 assessment.

Statistical Analysis

We used descriptive statistics. Comparisons between groups were conducted using a chi-square test. We used univariable and multivariable logistic regressions to evaluate the association of reporting of cointerventions with blinding (adequately versus inadequately), risk of bias (trials at low risk of bias versus trials at risk of bias), funding (nonindustry funded versus industry funded), design (superiority versus noninferiority/equivalence), and duration of follow-up (≤1 month versus >1 month). Finally, in an analysis that was not prespecified in the protocol, we looked at RCTs that adequately reported cointerventions...
and explored the aforementioned factors for their association with balanced cointerventions between treatment arms using univariable logistic regression. \(P\) values were 2-sided and considered significant if \(P<0.05\). For data management, analysis, and graphics, we used Stata version 15.0.

RESULTS

General Characteristics of Included RCTs

The literature search identified 1625 potentially eligible reports. After screening titles and abstracts, we evaluated 149 full articles, of which 123 met the inclusion criteria (Figure S1). A detailed description of the excluded trials is provided in Table S3. Table S4 describes the main characteristics of the 123 included RCTs: 83 (67.5%) were published in the *New England Journal of Medicine*; 27 (21.9%) had a noninferiority/equivalence design; 94 (76.4%) were industry funded; 45 (36.6%) examined antithrombotics or anticoagulants; 16 (13.0%) involved antidiabetics; 14 (11.4%) involved antihypertensives; and 17 (13.8%) were lipid-modifying agents (Table S4). The primary end points of all trials were composite end points (Table S5), and all of the trials had blinded adjudication committees.

Reporting of Cointerventions

As seen in Table, cointerventions were inadequately reported in 87 of 123 RCTs (70.7%), with 56 (45.5%) providing no information on cointerventions and 31 (25.2%) providing only partial information (Table). Table S5 provides detailed descriptions of the potential cointerventions in the protocols, all cointerventions reported and not reported, and the time points of reporting in each RCT. As seen in Table S6, the results remained similar in a stratified analysis based on medication category. Assessing potential cointerventions at regular intervals, usually at each visit and the last visit, was often included in study protocols (Table S5). Protocols were not available in only 7 RCTs.

The Reporting of Cointerventions in Relation to Quality of Blinding and Risk of Bias

A total of 71 (57.7%) RCTs adequately blinded participants and/or personnel, whereas 52 (42.3%) were inadequately blinded. Of the RCTs, 60 (48.8%) were at “low risk of bias”; 63 (51.2%) were “at risk of bias” (\(n=28, 22.8\%\) as “some concerns”; \(n=35, 28.5\%\) as “at high risk of bias”) because they deviated from planned interventions. Among the 52 trials with inadequate blinding of participants and/or personnel, 15 (28.9%) adequately reported cointerventions versus 21 (29.6%) in those with adequate blinding (\(P=0.93\); Figure A). Among the 63 trials “at risk of bias,” 16 (25.4%) adequately reported cointerventions versus 20 (33.3%) in those “at low risk of bias” (\(P=0.33\); Figure B).

Factors Associated With Adequately Reporting Cointerventions

As seen in Table S7, the odds ratio (OR) in the univariable analysis for adequately reporting cointerventions was 1.04 (95% CI, 0.47–2.27) comparing adequately versus inadequately blinded trials, 1.47 (95% CI, 0.67–3.21) comparing trials “at low risk of bias” versus trials “at risk of bias,” 2.06 (95% CI, 0.86–4.92) comparing non-industry-funded trials versus industry-funded trials, 0.63 (95% CI, 0.26–1.55) comparing superiority trials versus noninferiority/equivalence trials, and 4.33 (95% CI, 1.63–11.52) comparing trials with a follow-up ≤1 month versus >1 month (Table S7). In multivariable analysis, only a follow-up of <1 month was associated with the adequate reporting of cointerventions (OR, 3.63; 95% CI, 1.21–10.91; Table S7).

Factors Associated With Balanced Cointerventions

As seen in Table, among the 36 RCTs that adequately reported cointerventions, cointerventions were balanced in 31 and unbalanced in 5 trials. All trials with unbalanced cointerventions were judged as inadequately blinded trials and were industry funded. As seen in Table S8, no other factor was associated with unbalanced cointerventions, even though the confidence intervals were large.

DISCUSSION

In this systematic review of recent RCTs on cardiovascular outcomes, more than two-thirds of RCTs did not adequately report cointerventions. Reporting was not better among trials that were not fully blinded.
nor among RCTs at risk of bias in which the reporting of cointerventions would be particularly important to assess the validity of their results. Adequate reporting of cointerventions was more common in trials that followed patients for <1 month, perhaps because cointerventions are easier to assess over a short follow-up.

Lack of blinding could lead to biased results through many different ways. Indeed, an association between lack of blinding and positive results has been shown, especially when the outcomes were subject to ascertainment bias, that is, not “hard” outcomes. RCTs with inadequate blinding seem particularly at risk for unbalanced cointerventions, and reporting cointerventions is important because if they are unbalanced between treatment arms, they could introduce bias. In an earlier systematic review of 12 complementary/alternative medicine RCTs, cointerventions (use of analgesics) were reported in 7 of these studies, and it was shown that not blinding participants was associated with an 1.55 increased risk (95% CI, 0.99–2.43) of receiving cointerventions. The lack of blinding and cointerventions could also explain the differences in the effect sizes between SPORTIF III (Stroke Prevention Using the Oral Direct Thrombin Inhibitor Ximelagatran in Patients With Atrial Fibrillation), an open-label trial evaluating the effect of ximelagatran versus warfarin on strokes and systemic embolic events and SPORTIF V, a trial with otherwise similar design and end points with SPORTIF III, but double-blinded. Although the potential risk factors were well balanced across the treatment arms within each trial, the effect sizes were remarkably different between the 2 trials: SPORTIF III, primary event rate 1.6% per year with ximelagatran and 2.3% per year with warfarin (relative risk [RR], 0.71; 95% CI, 0.48–1.07) versus SPORTIF V, primary event rate 1.6% with ximelagatran per year and 1.2% with warfarin per year (RR, 1.38; 95% CI, 0.91–2.10). Outcome assessments were blinded in both trials. Indeed, in a pooled analysis of the 2 trials, it was shown that the differences between the trials could be attributed to differences in cointerventions such as statins and differences in other risk factors (eg, hypertension), in addition to less variability in international normalized ratio (INR) control in SPORTIF V, although ascertainment bias cannot be excluded. In our review, the reporting of cointerventions was scarce in both RCTs with adequate and inadequate blinding, and we found no association between blinding and the reporting of cointerventions. The reasons for this could be that the reporting of cointerventions in cardiovascular trials might have received less attention and/or be less standardized. Although the Consolidated Standards of Reporting Trials (CONSORT) statement recognizes that a lack of blinding may influence the use of cointerventions, subsequent reporting of cointerventions across groups is currently not mandatory. However, cointerventions are among the data required to be collected in a Cochrane systematic review. In cardiovascular medicine, cointerventions may be particularly important because participants usually receive many different treatments that could reduce cardiovascular risk and change cardiovascular outcomes. In the Women’s Health Initiative, which

Figure. Proportion of trials reporting cointerventions according to blinding and risk of bias.
A. Proportion of trials reporting cointerventions according to blinding of participants and/or personnel (n=123). For the analysis, we grouped together the trials with no information on cointerventions and partial information and defined them as “not adequately reported”; P=0.93 for the comparison between groups. B. Proportion of trials reporting cointerventions according to risk of bias attributed to deviation of intended interventions (n=123). For the analysis, we grouped (1) trials with some concerns and at high risk of bias and defined them as “at risk of bias” attributed to the deviation of intended interventions and (2) trials with no information on cointerventions and partial information and defined them as “not adequately reported”; P=0.33 for the comparison between groups.
examined the effect of hormone therapy on cardiovascular outcomes, the differential use of statins showed significantly different effects on coronary heart disease and stroke, confounding the results. A recently published RCT on the effects of coronary computer tomography on cardiovascular outcomes, which did not blind participants or personnel, found that the participants assigned to the intervention group were more likely to receive additional preventive treatments for cardiovascular disease (statins, antihypertensives, antiplatelets). In a double-blind RCT designed to test the effects of fenofibrate versus placebo on hard cardiovascular end points, 17% of the participants on placebo were also treated with statins versus 8% in the fenofibrate group, which may have caused the results to be biased toward the null. In many cardiovascular trials, depending on the type of intervention, the presence of cointerventions may reflect the effectiveness of the study treatment that occurs in a real world instead of a perfect hypothetical study scenario, and the blinding of participants and/or personnel may not always be possible. Nevertheless, as cointerventions may lead to an overestimation of treatment effect, this is of particular concern when the results of an RCT are used for the registration of a new drug. In addition, in this systematic review, we included RCTs with pharmacological interventions (and not surgery or with devices), so that in these cases binding is usually feasible.

This study has limitations. First, the results were limited to cardiovascular trials published in major medical journals, which represent a minority of published clinical research. However, trials published in journals with high impact factors usually do better in terms of the quality of reporting, and previous methodological reviews have used the same design. Second, this study did not evaluate the reporting of cointerventions in medical fields other than cardiovascular. Third, the definition of which cointerventions should be reported is (to some extent) arbitrary. We proposed a definition (Box 1) that was easy to apply, reflected by a high interobserver agreement (Cohen’s κ, 0.84).

CONCLUSIONS

More than two-thirds of recent major cardiovascular trials did not adequately report cointerventions. The quality of reporting was not better among trials that were not fully blinded or at risk of bias. Our review highlights the need for more standardized, systematic reporting of cointerventions in cardiovascular trials.

ARTICLE INFORMATION

Received October 8, 2019; accepted April 8, 2020.
review of trials randomizing patients to blind and nonblind sub-studies. *Int J Epidemiol.* 2014;43:1272–1283.

13. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eltridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ.* 2019;366:l4898.

14. SchulzKF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. *J Pharmacol Pharmacother.* 2010;1:100–107.

15. Haahr MT, Hrobjartsson A. Who is blinded in randomized clinical trials? A study of 200 trials and a survey of authors. *Clin Trials.* 2006;3:360–365.

16. Bello S, Moustgaard H, Hrobjartsson A. The risk of unblinding was infrequently and incompletely reported in 500 randomized clinical trial publications. *J Epidemiol.* 2014;47:1059–1069.

17. Bello S, Moustgaard H, Hrobjartsson A. Unreported formal assessment of unblinding occurred in 4 of 10 randomized clinical trials, unreported loss of blinding in 1 of 10 trials. *J Clin Epidemiol.* 2017;81:42–50.

18. Bello S, Wei M, Hilden J, Hrobjartsson A. The matching quality of experimental and control interventions in blinded pharmacological randomised clinical trials: a methodological systematic review. *BMJ Res Methodol.* 2016;16:18.

19. Boutron I, Estellat C, Guittet L, Dechartres A, Sackett DL, Hrobjartsson A, Ravaud P. Methods of blinding in reports of randomized controlled trials assessing pharmacological treatments: a systematic review. *PLoS Med.* 2006;3:e425.

20. Albers GW, Diener HC, Frison L, Grind M, Nevinson M, Partridge S, Halperin JL, Horrow J, Olsson SB, Petersen P, et al. Ximelagatran vs warfarin for stroke prevention in patients with non-valvular atrial fibrillation: a randomized trial. *JAMA.* 2005;293:690–698.

21. Olsson SB, Executive Steering Committee of the SILLI. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): a randomised controlled trial. *Lancet.* 2003;362:1681–1688.

22. Kerman WN, Viscosi CM, Furie KL, Young LH, Inuzuchi SE, Gorman M, Guarino PD, Lovejoy AM, Peduzzi PN, Conwit R, et al. Pioglitazone after ischemic stroke or transient ischemic attack. *N Engl J Med.* 2016;374:1321–1331.

23. Goette A, Merino JL, Erezekowitz MD, Zomorodian H, Melino M, Jin J, Mercuri MF, Grosso MA, Fernandez V, Al-Saady N, et al. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): a randomised, open-label, phase 3b trial. *Lancet.* 2016;388:1995–2003.

24. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, et al. Ezetimibe added to statin therapy after acute coronary syndromes. *Circulation.* 2011;124:2458–2473.

25. Cannon CP, Blazing MA, Giugliano RP, Mccagg A, Lewis BS, Ophuis TO, Jukema JW, et al. Secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American College of Cardiology Foundation and American Heart Association. *Circulation.* 2011;124:2458–2473.

26. Wright JT Jr, Whelton PK, Reboussin DM. A randomized trial of intensive versus standard blood-pressure control. *N Engl J Med.* 2016;374:2294.

27. Marso SP, Bain BC, Conso A, Eiaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenson RJ, Seifert J, Warren ML, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. *N Engl J Med.* 2016;375:1834–1844.

28. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *J Clin Epidemiol.* 2009;62:e1–e34.

29. Sousa-Uva M, Head SJ, Miliojevic M, Collet JP, Landoni G, Castella M, Dunning J, Gudbjartsson T, Linker NJ, Sandoval E, et al. 2017 EACTS guidelines on perioperative medication in adult cardiac surgery. *Eur J Cardiothorac Surg.* 2018;55:S3–S3.

30. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. *Eur J Cardiothorac Surg.* 2019;55:4–90.

31. Smith SC Jr, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, Gibbons RJ, Grundy SM, Hiratzka LF, Jones DW, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. *Circulation.* 2011;124:2458–2473.

32. Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, Josse RG, McGuire DK, Lokhnygina Y, Cornel JH, et al. Secondary prevention of cardiovascular disease in patients with type 2 diabetes mellitus: international insights from the TECOS Trial (Trial Evaluating Cardiovascular Outcomes With Sitagliptin). *Circulation.* 2017;136:1193–1203.

33. Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, Davila-Roman VG, Gerhard-Herman MD, Holly TA, Kane GC, et al. 2014 ACC/AHA guideline on periprocedural cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. *J Am Coll Cardiol.* 2014;64:e77–e137.

34. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *Circulation.* 2019;140:e596–e646.

35. Unverzagt S, Prondzinsky R, Peinemann F. Single-center trials tend to provide larger treatment effects than multicenter trials: a systematic review. *J Clin Epidemiol.* 2013;66:1271–1280.

36. Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, Gluud C, Martin RM, Wood AJ, Sterne JA. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. *BMJ.* 2008;336:601–605.

37. Diener HC, Executive Steering Committee of the SPORTIF III and V Investigators. Stroke prevention using the oral direct thrombin inhibitor ximelagatran in non-valvular atrial fibrillation. Pooled analysis from the SPORTIF III and V studies. *Cerebrovasc Dis.* 2006;21:279–293.

38. Hylek EM, Frison L, Henault LE, Cupples A. Disparate stroke rates on warfarin among contemporary cohorts with atrial fibrillation: potential insights into risk from a comparative analysis of SPORTIF III versus SPORTIF V. *Stroke.* 2008;39:3009–3014.

39. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. *BMJ.* 2011;343:d5928.

40. SCOT-HEART Investigators, Newby DE, Adamson PO, Berry C, Boon NA, Dweck MR, Fother M, Forbes J, Hunter A, Lewis S, et al. Coronary CT angiography and 5-year risk of myocardial infarction. *N Engl J Med.* 2018;379:924–933.

41. Pitrou I, Boutron I, Ahmad N, Ravaud P. Reporting of safety results in published reports of randomized controlled trials. *Arch Intern Med.* 2009;169:1756–1761.
SUPPLEMENTAL MATERIAL
Table S1. Literature search.

```sql
((("Annals of internal medicine"[Journal]) OR ("BMJ (Clinical research ed.)"[Journal]) OR ("JAMA"[Journal]) OR ("Lancet (London, England)"[Journal]) OR ("The New England journal of medicine"[Journal])) AND (randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR placebo[tiab] OR drug therapy[sh] OR randomly[tiab] OR trial[tiab] OR groups[tiab] NOT (animals[mh] NOT humans[mh]))) AND ("Cardiovascular Diseases/drug therapy"[Mesh] OR "Cardiovascular Diseases/mortality"[Mesh] OR "Cardiovascular Diseases/prevention and control"[Mesh]) OR ("Myocardial Ischemia/drug therapy"[Mesh] OR "Myocardial Ischemia/mortality"[Mesh] OR "Myocardial Ischemia/prevention and control"[Mesh]) OR ("Myocardial Infarction/drug therapy"[Mesh] OR "Myocardial Infarction/mortality"[Mesh] OR "Myocardial Infarction/prevention and control"[Mesh]) OR ("Stroke/drug therapy"[Mesh] OR "Stroke/mortality"[Mesh] OR "Stroke/prevention and control"[Mesh]) OR ("Cerebrovascular Disorders"[Mesh:noexp]) OR ("Ischemic Attack, Transient"[Mesh]) OR ("Intracranial Embolism and Thrombosis"[Mesh]) OR ("Intracranial Arteriosclerosis"[Mesh:noexp])) NOT ((comment[Publication Type]) OR (letter[Publication Type])) Filters: Publication date from 2011/01/01 to 2019/04/11)
```

The last update of the search was on 11.04.2019
Table S2. Adequate and inadequate blinding of participants and/or personnel.

based on risk of bias due to lack of/insufficient blinding of participants and/or personnel of the Cochrane Collaboration risk of bias tool 2011 and on the basis of the instructions used from Unverzagt et al. (see ref. 35)

Inadequate	Adequate	
High	Some concerns	Low
Open-label, Single-blind	No Information	Both patients and caregivers were blinded
The method of masking was described and it was inappropriate (e.g. comparison of tablet versus injection with no double dummy)	The authors stated that the study was double-blind but there was no adequate description in the text or in protocol (e.g. “matching placebo”)	Detailed description about how the blinding status was established and maintained (either in published paper of in protocol): matching placebo or adequate description
	Treatments administered from care-givers (i.v. i.m. injections): with no other description concerning the preparation (e.g. similar colour or matched, opaque syringes or bottles)	No specific adverse effects or methods to avoid unblinding included in the protocol
	Unblinding is possible (e.g. blood investigations, specific adverse effects) & no methods to avoid unblinding	
Table S3. Description of 26 excluded studies.

Author, y	Reason for exclusion
Anderson, 2016 (PMID:27161018)	Primary outcome: death or disability defined through modified Rankin scale
He, 2014 (PMID: 24240777)	Primary outcome: death and major disability defined through modified Rankin scale
Kirchhof, 2012 (PMID: 22713626)	Primary outcome: persistent atrial fibrillation or death
Sandercock, 2012 (PMID: 22632908)	Primary outcome: proportion of patients alive and independent, as defined by an Oxford Handicap Score
Torres, 2014 (PMID: 25399731)	Primary outcome: death, end-stage renal disease, or a 50% reduction from the baseline estimated GFR
Sabatine, 2015 (PMID: 25773607)	Other outcome; CV events assessed as prespecified exploratory analysis
Robinson, 2015 (PMID: 25773378)	Other outcome; CV events assessed as post hoc analysis
Beckett, 2011 (PMID: 22218098)	Extension of a randomised, clinical trial
Bonow, 2011 (PMID: 21463153)	Substudy
De Boer, 2011 (PMID: 22077236)	Extension of a randomised, clinical trial
Gerstein, 2014 (PMID: 25088437)	Analysis of data from other randomised, clinical trial
Leonardi, 2016 (PMID: 27677503)	Substudy
Scirica, 2012 (PMID: 22932716)	Substudy
Wang, 2016 (PMID: 27348249)	Substudy
Williamson, 2016 (PMID: 27195814)	Substudy/already included
Zannad, 2015 (PMID: 25765696)	Posthoc/already included
Zoungas, 2014 (PMID: 25234206)	Extension of a randomised, clinical trial
Macdougall, 2013 (PMID: 23343062)	Other outcome; CV events assessed only as safety
Newby, 2014 (PMID: 24930728)	Other outcome; CV events assessed only as safety
Reference	Description
-------------------------------	--
Cleland, 2011 (PMID: 21856481)	Other outcome; CV events assessed only as safety
Marchioli, 2013 (PMID: 23216616)	Combination of pharmaceutical and non pharmaceutical treatments
Ohman, 2017 (PMID: 28325638)	Other outcome; CV events as exploratory outcome
Anand, 2018 (PMID: 29132880)	Substudy/already included
Connolly, 2018 (PMID: 29132879)	Substudy/already included
Kudenchuch, 2016 (PMID: 27043165)	Other outcomes
Perkins, 2018 (PMID: 30021076)	Other outcomes

y: year, CV: cardiovascular
Table S4. Trial characteristics (n=123).

Variables	Sample (n) (%)
Journal	
New England Journal of Medicine	83 (67.5)
Lancet	14 (11.4)
Journal of the American Medical Association	24 (19.5)
British Medical Journal	1 (0.8)
Annals of Internal Medicine	1 (0.8)
Type of comparator	
Placebo only	72 (58.5)
Active (with the use of placebo)	34 (27.6)
Active only	14 (11.4)
Standard of care (no treatment only)	3 (2.5)
Trial Design	
Superiority	96 (78.1)
Non-inferiority/equivalence	27 (21.9)
Type of funding source	
Industry-sponsored	94 (76.4)
Non-industry	29 (23.6)
Type of intervention	
Antihypertensives/diuretics/heart failure treatments	14 (11.4)
Antithrombotics/anticoagulants	45 (36.6)
Lipid-modifying medications	17 (13.8)
Antidiabetics	16 (13.0)
Antiinflammatory, antirheumatic, antineoplastic	12 (9.8)
Cardiac therapy†	3 (2.4)
Various‡	16 (13.0)

*Classified according to ATC Code; †includes antianginal treatment and antiarrhythmic medications ‡includes antiobesity preparations, medications for the treatment of bone disease, vitamins, and combination of different treatments (see Table S3)
Table S5. Detailed characteristics of 123 included Randomized Clinical Trials and descriptions of reported and not reported co-interventions.

PMID of the study	Interventions	Setting	Outcome	Co-intervention s in the protocol	Co-interventions reported	Timepoint	Co-interventions not reported	F U
21732835	Nesiritide vs Placebo	Patients hospitalized with acute HF	Composite end point of rehospitalisation for HF or death	If concomitant medication is used for HF, the medical therapy should remain as stable as possible during the first 6 hours after study drug initiation to allow for the evaluation of any potential effects of study drug. Diuretics, morphine and other vasoactive drugs may be used during this period if clinically warranted	Information about the use of loop diuretics, inotropic agents, vasodilators in the first 24h in table	First 24h	No information on other antihypertensives, aldosterone receptor blockers	1
29766750	Clopidogrel and Aspirin vs Aspirin	Patients with acute ischemic stroke or high risk TIA	Composite of major ischemic events (ischemic stroke, MI, or death from an ischemic vascular event)	Any treatment which is ongoing before randomization and/or prescribed or changed during the study must be recorded	NI	NI	No information on antihypertensives, statins in patients with acute stroke	2.9
27160892	Tigagrelor vs Aspirin	Patients with acute ischemic stroke or death	Composite of stroke, MI, death	Recording of concomitant medications will be made at each visit. Medications of special interest including study	NI	NI	No information on antihypertensives, statins in patients with acute stroke	3
medication, other antiplatelet medications, PPIs and statins will be captured in detail. There are no restrictions to other statin therapies (...). Investigators are advised to check lipid levels and adjust statin dosages per local practice and appropriate guidelines.

Study ID	Intervention	Patient Population	Endpoint	Protocol Information	
23803136	Aspirin and Clopidogrel vs Aspirin	Patients with acute minor stroke or TIA	Stroke	Through day 90 (end of follow-up)	
24247616	Varespladib vs Placebo	Patients with ACS	Composite of CV mortality, nonfatal MI, nonfatal stroke, or unstable angina with evidence of ischemia requiring	-	3.1
Study ID	Treatment	Patients	Outcome Measure	Notes	
-----------	------------------------------------	---------------------------------------	--	--	
22082198	Dronedaron vs Placebo	Patients with high-risk atrial fibrillation	Composite of stroke, MI, systemic embolism, or CV death	“Patients included in the study should receive the usual standard therapy (…) according to guidelines. Patients who received concomitant medications during the study drug period (…) will be summarized using same classes as those already defined for baseline medications.”	
21406646	High vs standard dose of Clopidogrel	Patients undergoing PCI	Composite of CV death, nonfatal MI, or stent thrombosis	No extended protocol available; published study design: “Concomitant medications: aspirin, periprocedural anticoagulation: left to the discretion of physician”	
21316752	Candesartan vs Placebo	Patients with acute stroke	Composite of CV death, MI, or stroke	No extended protocol available; published study design: “All patients are given standard treatment in stroke units. Therapeutic agents other”	

Notes:
- NI = No information
- No information on antihypertensives, antiplatelet agents or statins; No information on anticoagulation in patients with atrial fibrillation
- No extended protocol available; published study design: “All patients are given standard treatment in stroke units. Therapeutic agents other”
| Study ID | Treatment Comparison | Study Population | Outcome Measure | Notes | |
|---|---|---|---|---|---|
| 21780946 | Apixaban vs Placebo | Patients with ACS | Composite of CV death, MI or ischemic stroke | “All subjects should receive evidence-based post-ACS care according to local standards of care and national practice guidelines (ACC/AHA, ESC, etc.). All subjects should receive single or dual antiplatelet therapy based on investigator discretion”, “The use of clopidogrel and other approved antiplatelet agents will be left to investigator discretion and according to local guidelines”; Assess concomitant medications at each visit. |
| 24206459 | Bardoxolon vs Placebo | Patients with diabetes and chronic kidney disease | Composite of end-stage renal disease or CV death | “Investigator should not reduce or discontinue ACE inhibitors and/or ARBs unless indicated secondary to a medical contraindication (e.g. hyperkalemia). |
| 9 | 7 | | | |
| Study ID | Study Name | Patient Characteristics | Medication Assessment | Concomitant Medications | Notes |
|----------|------------|--------------------------|-----------------------|-------------------------|-------|
| 28304242 | Bocozizumab vs Placebo | Patients at high CV risk | Composite nonfatal MI, nonfatal stroke, hospitalization for unstable angina requiring urgent revascularization, or CV death | All permitted concomitant medications should be recorded at each study visit: Lipid lowering: all patients will continue to take their prescribed lipid lowering treatment; “Other concomitant treatment are permitted at the discretion of the physician according to local guidelines” | NI NI No information on cardiac preventive treatments (antihypertensives, antiplatelet s) |
| 29766772 | Rivaroxaban vs Aspirin | Patients with recent embolic stroke of undetermined source | Stroke or systemic embolism | Concomitant medications assessment at visit 0, 12 and end of follow-up | NI NI No information on cardiac preventive medications (antihypertensives, antiplatelet s, statins) |
| ID | Study Description | Patients | Composite | Note | Details |
|--------|--|---|--|--|--|
| 2347874 | Aliskiren vs Placebo | Patients with acute HF | Composite of CV death of HF rehospitalisation | NI | No information on other antihypertensives, diuretics, aldosterone receptor inhibitors, antiplatelet s, statins |
| 2795971 | Low-dose Rivaroxaban and P2Y12 Inhibitor vs very low-dose Rivaroxaban | Patients with atrial fibrillation undergoing PCI | Composite of CV death, MI, Stroke | NI | Concomitant therapies must be recorded throughout the study. |
| 2255019 | Fish oil capsules vs Placebo | Patients with arteriovenous hemodialysis grafts | Composite of hemodialysis graft patency thrombosis and CV events | NI | No information on other cardiac preventive treatments (antihypertensives, antiplatelets, statins) |
| 2130965 | Apixaban vs Aspirin | Patients with atrial fibrillation | Composite of stroke or systemic embolism | NI | Assessment of concomitant medications: 0, 12, end of FU |

Change in antihypertensive medications: secondary outcome

Assessment of aspirin and clopidogrel in text

During follow-up

No information on antihypertensives, statins
Study ID	Treatment Group	Patient Population	End Point	Protocol Details	Additional Information		
28402745	Ularitide vs Placebo	Patients with acute HF	CV death	“Required medication for the treatment of concomitant diseases is unrestricted” Concomitant medications assessment at day 30.	NI	NI	No information on other antihypertensives, diuretics, aldosterone receptor inhibitors, antiplatelets, statins
29900874	Dabigatran vs Placebo	Patients with myocardial injury after non-cardiac surgery	Composite of vascular mortality and non-fatal MI, non-hemorrhagic stroke, peripheral arterial thrombosis, amputation, and symptomatic venous thromboembolism	Not extended protocol, from published study design: “managements was left to the discretion of the treating physician, including cardiovascular medications. We recommend that all patients with MINS take low-dose acetylsalicylic acid (ASA) and a statin”. Concomitant medications assessment every 6 months until end of FU.	Antiplatelets, ACEI/ARB, b-blockers, statins	During follow-up	-
22920930	Prasugrel vs Clopidogrel	Patients with NSTEMI, who do not undergo PCI	Composite of CV death, MI, or stroke	“Other cardiac and non-cardiac medications not specifically excluded may be administered at the discretion of the treating physician”; The use of all concomitant	NI	NI	No information on other cardiac preventive treatments (antihypertensives, statins)
Study Code	Description	Population	Outcome	Other Information	Endpoints	Other Information	
------------	-------------	------------	---------	-------------------	-----------	------------------	
30279197	6 vs 12 months of dual treatment (Clopidogrel and Aspirin)	Patients with STEMI treated PCI and second generation zotarolimus-eluting stent	Composite of all cause mortality, MI, revascularisation, stroke, and thrombolysis MI major bleeding	Not extended protocol, from published study design: NI	NI	No informatio n on other cardiac preventive treatments (antihypertensives, statins)	
23992602	Alogliptin vs Placebo	Patients with recent ACS and type 2 diabetes	Composite of CV death, nonfatal MI, or nonfatal stroke	"At each study visit, subjects will be asked whether they have taken any medication other than the study medication. Investigators will be encouraged to manage subjects according to regional guidelines for the Subjects will be instructed on proper nutrition and exercise"	Medications not provided. Informatio n about lipoprotein levels in table	End of follow-up	No informatio n on other cardiac preventive treatments (antihypertensives, antiplatelet s)
30291013	Albiglутide vs Placebo	Patients with CV disease	Composite of CV	Not extended protocol, Informatio n on other hypoglycemia	At different times of	No informatio n on other	
Study ID	Treatment A vs Treatment B	Study Population	Outcomes	Concomitant Medications	Diuretics, ACEI/ARBs, β-blockers, aldosterone receptor inhibitors	Different time-points until the end of follow-up	
----------	---------------------------	------------------	----------	-------------------------	--	---	
21073363	Eplerenone vs Placebo	Patients with systolic HF and mild symptoms	Composite of CV death or hospitalisation for HF	Permitted concomitant medications may include angiotensin ACE-Is, ARBs, β-blockers, and diuretics. Digoxin, vasodilators, and inotropes may be used, as clinically indicated	NI	NI	
30146935	Rivaroxaban vs Placebo	Patients with HF and coronary disease	Composite of death from any cause, MI, or stroke	Different time-points until the end of follow-up	Diuretics, ACEI/ARBs, β-blockers, aldosterone receptor inhibitors	Different time-points until the end of follow-up	

and type 2 diabetes death, MI, or stroke from published study design: “Information on the use of concomitant medications is captured at each visit. Usual care providers are encouraged to follow most-up-to-date guidelines for diabetes and CV disease management according to local guidelines”
the study will be recorded on the appropriate page of the eCRF. Subjects must be receiving at a minimum for their HF: a diuretic and RAS inhibitor/vasodilator therapy (either an ACEI, ARB, or hydralazine/nitrate combination), and, unless contraindicated, the following: Beta blockers, which should be titrated to the maximum dose recommended by current guidelines., Aldosterone antagonists, which should be prescribed per guideline recommendations. Additional standard care treatments for HF and CAD (except anticoagulants) as prescribed by their managing physician are allowed. Subjects
Study ID	Treatment	Patient Population	Outcomes	Antiplatelets, ACEI/ARBs, Potassium Channel Blockers, Calcium Channel Blockers, Nitrate, Anti-ischemic Drugs	Time Points	Information on Cardiac Preventive Treatments (Antihypertensives, Antiplatelets or Statins) at the End of Follow-Up
26474810	Ranolazine vs Placebo	Patients with incomplete revascularisation	Composite of ischemia-driven revascularisation or ischemia-driven hospitalisation without revascularisation	Antiplatelets, ACEI/ARBs, statins, β-blockers, calcium channel blockers, nitrate, anti-ischemic drugs	6 and 12 months	No information on cardiac preventive treatments (antihypertensives, antiplatelets or statins) at the end of follow-up
21870978	Apixaban vs Warfarin	Patients with atrial fibrillation at risk for stroke	Composite of stroke (ischemic or hemorrhagic) or “The frequency of subjects receiving concomitant medications	NI	NI	No information on antiplatelets, antihypertensives or statins
Study ID	Intervention	Population	Outcomes	Concomitant medications	Adverse Events	Notes
----------	---------------	------------	----------	--------------------------	----------------	-------
28844192	Rivaroxaban and Aspirin vs Aspirin	Patients with stable CV disease	Composite of CV death, stroke, or MI	“Subjects may receive all medications that their treating physicians believe are necessary” Concomitant medications assessed at screening, 9 months and end of FU.	NI	NI
21830957	Rivaroxaban vs Warfarin	Patients with nonvalvular atrial fibrillation at risk of stroke	Composite of stroke or systemic embolism	“All medications not restricted or disallowed, as outlined below, are permitted”. “Appropriate caution should be exercised with any changes in diet or for aspirin-use in text. Only information on other cardiac preventive treatments (antihypertensives, statins) at some point during the study.	NI	NI

| Systemic Embolism after randomization will be summarized by treatment group, medication class (anti-platelet, anti-coagulant/VKA, anti-arrhythmic, diuretic, ace inhibitor, beta blocker, alpha blocker, calcium channel blocker, ARB, lipid lowering, CYP3A4 inhibitor, hypoglycemic, anti-depressant, NSAID, other) and drug name. |

| 28844192 | Rivaroxaban and Aspirin vs Aspirin | Patients with stable CV disease | Composite of CV death, stroke, or MI | “Subjects may receive all medications that their treating physicians believe are necessary” Concomitant medications assessed at screening, 9 months and end of FU. | NI | NI |
| 21830957 | Rivaroxaban vs Warfarin | Patients with nonvalvular atrial fibrillation at risk of stroke | Composite of stroke or systemic embolism | “All medications not restricted or disallowed, as outlined below, are permitted”. “Appropriate caution should be exercised with any changes in diet or for aspirin-use in text. Only information on other cardiac preventive treatments (antihypertensives, statins) at some point during the study. | NI | NI |

| Systemic Embolism after randomization will be summarized by treatment group, medication class (anti-platelet, anti-coagulant/VKA, anti-arrhythmic, diuretic, ace inhibitor, beta blocker, alpha blocker, calcium channel blocker, ARB, lipid lowering, CYP3A4 inhibitor, hypoglycemic, anti-depressant, NSAID, other) and drug name. |
Study ID	Treatment	Patient Population	End Point	Protocol Details	Comparator	Follow-up	Adverse Events
27367876	Escitalopram vs Placebo	Patients with HF and depression	Composite of all cause death or hospitalization	Not extended protocol, from published study design: NI	ACEI/ARBs, β-blockers	At 3 months	No information on diuretics, aldosterone receptor inhibitors, antiplatelet s, statins
24682069	Aleglitazar vs Placebo	Patients with recent ACS and type 2 diabetes	Composite of CV death, nonfatal MI, nonfatal stroke	Extended protocol not available, from published study design: *Although statins may be adjusted throughout the trial according to LDL-C levels, investigators are encouraged to maintain other background lipid-modulating therapy (niacin, fish oil, bile acid sequestrants) at stable doses during the trial. Patients are counseled on diet and*	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)
Study ID	Intervention	Patient Population	Composite Endpoints	Relevant Concomitant Medications	At the End of Follow-up	Notes	
----------	--------------	---------------------	---------------------	----------------------------------	------------------------	-------	
Degludec vs Glargine	Patients with type 2 diabetes	Composite of major CV event (death from CV causes, nonfatal MI, or nonfatal stroke)	“Relevant concomitant medications: diabetes and cardiovascul ar related diseases, (for example antihypertensives, lipid-lowering agents, aspirin and other antiplatelet agents) taken at trial entry and during the trial must be recorded”	Lipid lowering, antihypertensives, anticoagulants, antiplatelets, diuretics, hypoglycemic medications	-		
Lixisenatide vs Placebo	Patients with recent ACS and type 2 diabetes	Composite of CV death, MI, stroke, or hospitalisation for unstable angina	“Treatments in addition to the IP should be kept to a minimum during the study. However, if these are considered necessary for the patient’s welfare and are unlikely to interfere with the IP, they may be given at the discretion of the Investigator, with a stable dose (when possible)”			No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)	
Study ID	Intervention	Population Description	Outcomes	Timepoint	N		
------------	---------------------------------------	--	---	----------------------------	----		
27633186	Semaglutide vs Placebo	Patients with type 2 diabetes	Composite of CV death, nonfatal MI, nonfatal stroke	At the end of follow-up	25		
			“A broad spectrum of concomitant glucose-lowering treatments, as well as other treatments for co-morbidities and cardiovascular risk factors can be introduced in subjects based on individual requirements and at investigator’s discretion”				
			Lipid lowering, antihypertensives, anticoagulants, antiplatelets, diuretics, hypoglycemic medications				
23992601	Saxagliptin vs Placebo	Patients with CV disease or at high CV risk and type 2 diabetes	Composite of CV death, MI, or ischemic stroke	At 1-year, 2-year and at the end of follow-up	25		
			“All patients will be treated to regional standards of care for cardiovascular risk factors (eg, blood pressure, lipids) and HbA1c. Investigator will be duly informed of this requirement via….. Recording of concomitant medication with a duration of ≥3 months in the appropriate sections of				
			Lipid lowering, antihypertensives, antiplatelets, diuretics, hypoglycemic medications				
Study ID	Treatment Group	Eligibility Criteria	Outcomes Measure	Randomization	Blinding	Other Relevant Information	
----------	------------------	----------------------	------------------	---------------	---------	-----------------------------	
28514624	Evacetrapib vs Placebo	Patients at high CV risk	Composite of CV death, MI, stroke, coronary revascularization, or hospitalization for unstable angina	Random allocation to medication type	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet agents)	
28304224	Evolocumab vs Placebo	Patients with CV disease	Composite of CV death, MI, stroke, hospitalization for unstable angina, or coronary revascularization	Controlled trial design	NI	Only information about statins and ezetimibe during follow-up	

"Patients will be allowed to take any concomitant medications required except those listed in the ….. These therapies may include, but are not limited to, aspirin, other antiplatelet agents, H2 receptor blockers, proton pump inhibitors, antihypertensives, and appropriate diet and exercise and other nonpharmacologic measures."

"Throughout the study, investigators may prescribe any concomitant medications or treatments deemed necessary to provide adequate supportive care. Subjects must remain on the same dose of atorvastatin with or without ezetimibe as taken at baseline."

"Only information about statins and ezetimibe is provided during follow-up."

Number	26					
NCT Number	Intervention	Study Population	Primary Endpoint	Comparator	Postbaseline Information	
------------	--------------	------------------	------------------	------------	--------------------------	
30418475	Linagliptin vs Placebo	Patients with type 2 diabetes and high CV and renal risk	Composite of CV death, nonfatal MI, or nonfatal stroke	Not extended protocol, from published study design: "Investigators were also encouraged to treat all other CV risk factors (e.g. dyslipidemia, hypertension, albuminuria, smoking) in accordance with optimal local or regional guidelines and standards of care. Ultimately, changes in medication were at the discretion of the investigator and/or treating clinician"	Lipid lowering, ACEI/ARB, renin inhibitors, diuretics, β-blockers, calcium channel inhibitors, anticoagulants, antidiabetics	
25176015	Angiotensin- nepriysin inhibition vs enalapril	Patients with class II, III, or IV HF and an ejection fraction of 40%	Composite of CV death or HF hospitalization	"The patient should be on an optimal medical regimen of background HF medications. This must include an individually optimized dose of a β-blocker (i.e., maximally tolerated dose) at a stable dose for at least 4 weeks.	NI	No information on diuretics, aldosterone receptor inhibitors, antiplatelet agents, statins
Weeks prior to study entry, unless contraindicated or not tolerated. Every effort should be made to keep the dose level of these background, life-saving HF medications stable throughout the entire study. However, if the patient's condition warrants a change in any of these medications, it is allowed at the discretion of the study investigator. Diuretics may be used and may be adjusted throughout the length of the study at the discretion of the investigator.						
---	---					
Patients with CV disease and type 2 diabetes or metabolic syndrome	Patients with CV death, MI, or stroke					
Methotrexate vs Placebo	Composite of CV death, MI, or stroke					
Ixabtaglumab, with stable nonfatal coronary artery disease	Composite of CV death, MI, or stroke					
Patients selected for the study	No information on other cardiac preventive treatments (antihypertensives, antithrombotics, statins)					
No information on other cardiac preventive treatments	No information on other cardiac preventive treatments					

Patients selected for the study should receive the treatments appropriate for their condition. Diverters should be made to keep the dose levels of these background, life-saving HF medications stable throughout the entire study. However, if the patient's condition warrants a change in any of these medications, it is allowed at the discretion of the study investigator. Diuretics may be used and may be adjusted throughout the length of the study at the discretion of the investigator.
to their cardiovascular condition. The concomitant treatments received by patients (and their respective doses) should not be modified during the study, unless there is a clinical need."

Study ID	Treatment Comparison	Endpoint Description	Information Provided	Follow-up Duration	Notes	
26954408	Naltrexone-bupropion group vs Placebo	Overweight and obese patients with high CV risk	The incidence of the use of certain medications (e.g., statins, antihypertensive agents, and antidiabetic agents) at screening, Visit 8 (Week 52) ... and at study medication discontinuation ... as applicable) will be summarized for each treatment group. The incidence of subjects with a change in these medications ... may also be summarized.	During follow-up	No information on potential differences between groups in text	
23473338	Darbepoetin alfa vs Placebo	Patients with systolic heart failure and anemia	"Throughout the study, investigators may prescribe any concomitant medications or other treatments presented in the text"	During follow-up	No information on other antihypertensives, other diuretics, aldosterone	
Study ID	Treatment Group	Patient Group	Endpoint	Protocol Details	Comparator	Results
----------	-----------------	---------------	----------	-----------------	------------	---------
21616527	Terutroban vs Aspirin	Patients with recent ischemic stroke or TIA	Composite of fatal or non-fatal ischemic stroke, fatal or non-fatal MI, or other vascular death	Not extended protocol, from published study design: “Clinical examination is performed, and concomitant treatments are recorded at every visit”	-	*Furthermore, we recorded no differences between groups in mean blood pressure, heart rate, or laboratory parameters throughout the study (data not shown)*
24251359	Edoxaban vs Warfarin	Patients with atrial fibrillation	Composite of stroke or systemic embolism	“There are no concomitant medications required as part of the study design”	NI	NI
25399658	12 or 30 months of dual	Patients who had undergone PCI	Composite of stent thrombosis and antiplatelet	“All anticoagulant and antiplatelet	NI	NI

- Receptor inhibitors, antiplatelet(s), statins
| Study ID | Treatment | Patient Selection | Endpoints | Cox Proportional Hazards Model | Other Cardiac Preventive Treatments | |
|---|---|---|---|---|---|---|
| 22443427 | Vorapaxar vs Placebo | Patients with a history of CV disease | Composite of CV death, MI, or stroke | The potential influence of baseline risk factors and concomitant therapies such as statins, thienopyridines, and aspirin dosing on the occurrences of the primary and key secondary efficacy endpoints will be explored using the Cox proportional hazard model | No information on other cardiac preventive treatments (antihypertensives, antiplatelet agents, statins) |
| 25173516 | Darapladib vs Placebo | Patients with | Composite of | “It is recommend” | No difference | No information on other cardiac preventive treatments (antihypertensives, antiplatelet agents, statins) |
recent ACS coronary heart disease death, MI, or urgent coronary revascularization for MI ed that subjects enrolled in the SOLID-TIMI 52 trial be treated according to the existing guidelines for patients after ACS. The background use of evidence-based medications including statins, antiplatelet drugs, and β-blockers is closely monitored throughout the course of the trial"

| 22077192 | Rivaroxaban vs Placebo | Patients with recent ACS | Composite of CV death, MI or stroke | NI | NI | No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins) | 31 |
managing clinician. It is advised that the appropriate guideline recommendations be followed for all other concomitant medication.

Study ID	Treatment	Patient Group	Outcomes	Concomitant Medication				
23126252	Dalcetrapib vs Placebo	Patients with recent ACS	Composite of death from coronary heart disease, nonfatal MI, ischemic stroke, unstable angina, or cardiac arrest with resuscitation	Antiplatelets (aspirin, clopidogrel, ticlopidine, prasugrel), statins, b-blockers, ACEI/ARBs, diuretics, calcium channel blockers	At 3, 12, 24, 36 months	-	31	
ID	Drug Comparison	Study Population	Outcome Measures	Concomitant Medications Assessment	Follow-up	Other Information		
--------	--	---	--	-----------------------------------	-----------	---		
29527974	Febuxostat vs Allopurinol	Patients with gout and CV disease	Composite of CV death, nonfatal MI, nonfatal stroke, or unstable angina with urgent revascularization	“Concomitant medications assessed at each visit”	At 12, 24, 36 months	-		
25781440	Thienopyridine vs Placebo	Patients following treatment with bare-metal stents or drug-eluting stents	Composite of death, MI, stroke	NI	NI	No information on other cardiac preventive treatments (antihypertensives, statins)		
23121378	Aliskiren vs Placebo	Patients with type 2 diabetes and CV or renal disease	Composite of CV death or cardiac arrest with resuscitation; nonfatal MI; nonfatal stroke; unplanned HF hospitalisation; renal hard endpoints	“Patients should be treated with the target dose of the medications as per the guidelines relevant to his/her medical history and concomitant conditions. Concomitant treatment must include an ACEI or an ARB and treatment with statins is recommended”	At 12, 24, 36 months	No information on antiplatelet s		
Study ID	Treatment 1	Treatment 2	Comparator	Comparator Description	Outcome Event	Outcome Event Description	Notes	
----------	-------------	-------------	------------	------------------------	---------------	----------------------------	-------	
25773268	Tigagrelor vs Placebo	Patients with prior MI	Composite of CV death, MI, or stroke	“Concomitant therapy with simvastatin or lovastatin at doses higher than 40 mg daily is not permitted. There are no restrictions to other statin therapies (ie, doses of simvastatin or lovastatin ≤40 mg daily or any dose of any other statin is permitted)”	NI	No information on other cardiac preventive treatments (antihypertensives, statins)	33	
30403574	Alirocumab vs Placebo	Patients with prior ACS	Composite of death from coronary heart disease, nonfatal MI, fatal or nonfatal ischemic stroke, or unstable angina requiring hospitalization	“All patients should receive contemporary evidence-based treatment for ACS and chronic coronary heart disease as described in regional professional guidelines, including, but not limited to anti-platelet agents, β-blockers, ACEIs or ARBs, and treatments for diabetes, hypertension, and smoking”	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s)	33.6	
27959716	Celecoxib vs Naproxen Celecoxib vs Ibuprofen	Patients at increased CV risk	Composite outcome of CV death (including hemorrhagic death), nonfatal MI, or	“Concomitant medications assessed at each visit”	NI	No information on other cardiac preventive treatments (antihypertensives, statins)	34.1	
ID	Treatment 1	Treatment 2	Participants	Outcomes	Notes	Duration of follow-up	Other Cardiac Preventive Treatments	
--------	-------------------------------	-------------------------------	---	--	--	------------------------	-------------------------------------	
22085343	Niacin vs Placebo	Patients with CV disease and low HDL	Composite of death from coronary heart disease, nonfatal MI, ischemic stroke, hospitalisation for an acute coronary syndrome, or symptom-driven coronary or cerebral revascularization	Adequate description of other preventive treatments in text	Concomitant drugs not allowed: Lipid-lowering drugs (other than the investigation drugs), such as statins, bile-acid sequestrants, fish oils, cholesterol absorption inhibitors (e.g., ezetimibe, except for its use as described above to achieve study protocol treatment goals for LDL-C), fibrates	During follow-up	-	
26052984	Sitagliptin vs Placebo	Patients with type 2 diabetes and CV disease	Composite of CV death, nonfatal MI, nonfatal stroke, or hospitalisation for unstable angina	NI	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet, statins)	36
27043774	Aliskiren vs Enalapril	Patients with HF and reduced ejection fraction	Composite of CV death or HF hospitalisation	NI	NI	No information on diuretics, antiplatelet s, statins	36.6	

Every effort should be made by the investigator to keep the dose level of each patient’s background heart failure medications (such as ARB’s, beta blocker) stable throughout the entire study duration. However, if the clinical condition of the patient warrants a change in any of these medications.
Study ID	Intervention	Population Description	Outcome Measures	Intervention Medications	Follow-Up Duration	P Value	
28910237	Exenatide vs Placebo	Patients with type 2 diabetes	Composite outcome death from CV causes, nonfatal MI, or nonfatal stroke	Lipid lowering, antihypertensives, anticoagulants, antiplatelets, hypoglycemic medications	During follow-up	-	
						38.4	
26378978	Empagliflozin vs Placebo	Patients with type 2 diabetes and high CV risk	Composite outcome of CV death, nonfatal MI, or nonfatal stroke	Lipid lowering, antihypertensives, anticoagulants, antiplatelets, hypoglycemic medications	Postbaseline	-	
						38.4	
ID	Study Design	Eligibility Criteria	Outcomes	Medications	Follow-Up Measures		
-------	---	--	--	--	--		
26551272	Intensive BP Lowering vs Control	Persons with a systolic blood pressure of 130 mm Hg or higher and an increased CV risk, but without diabetes	Composite of MI, other acute coronary syndrome, stroke, HF, or CV death	“Information regarding the participants’ concomitant non-study medication therapy is collected at annual followup visits....Although data are collected on all current therapies, emphasis is placed on concurrent antihypertensive, cardiovascular, chronic kidney disease and dementia medications as well as background risk reduction therapy such as aspirin and lipid-lowering drugs”	NI		
30145941	Lorcaserin vs Placebo	Overweight or obese patients with CV disease or multiple CV risk factors	Composite of CV death, MI, or stroke	Medications for the treatment of hypertension, dyslipidemia, or diabetes may be started, discontinued, or adjusted during the study according to local standards of care if, in	NI	No information on other cardiac preventive treatments (antiplatelets, statins, which antihypertensives per group)	
Study ID	Intervention	Patient Population	End Point	Allocation	Follow-Up	No Information on other cardiac preventive treatments (antihypertensives, diuretics, aldosterone receptor inhibitors, antiplatelet agents, statins)	
------------	---------------------------------------	---	---	------------	-----------	--	
24716680	Spironolactone vs Placebo	Patients with heart failure and a preserved left ventricular ejection fraction	Composite of CV death, aborted cardiac arrest, or hospitalisation for the management of HF	NI	NI	No information on other cardiac preventive treatments (antihypertensives, diuretics, aldosterone receptor inhibitors, antiplatelet agents, statins)	
22931357	Aspirin and Clopidogrel vs Aspirin	Patients with recent lacunar stroke	Composite of recurrent stroke, ischemic stroke and intracranial hemorrhage	NI	Statins	At any time of follow-up (antihypertensives as part of 2x2 factorial)	
22551105	Warfarin vs Aspirin	Patients with HF and reduced ejection fraction	Composite of ischemic stroke, intracerebral hemorrhage, death from any cause	NI	NI	No information on diuretics, aldosterone receptor inhibitors, statins	
Study ID	Intervention	Participants	Outcome Measures	N1	N2	Notes	
----------	--------------	--------------	-----------------	----	----	-------	
28605608	Canagliflozin vs Placebo	Patients with type 2 diabetes	Composite of CV death, nonfatal MI, or nonfatal stroke	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelets, statins)	
23726159	Intensive blood pressure lowering vs Control	Patients with recent lacunar stroke	Stroke (including ischemic strokes and intracranial hemorrhages)	NI	Mean number of antihypertensives (ACEI/ARBs, diuretics, calcium channel blockers, b-	At last visit	44.2

4.4.3 Management of Vascular Risk Factors

All patients will receive optimal treatment for hypertension, diabetes mellitus and hypercholesterolemia (See Procedure Manual).
Trial ID	Treatment	Eligibility Criteria	Outcomes	Follow-up	Notes
28845751	Canakinum ab 50 mg vs Placebo	Patients with previous MI and a high-sensitivity C-reactive protein level of 2 mg or more per liter	Composite of nonfatal MI, nonfatal stroke, or CV death	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet agents, statins)
24678955	Darapladib vs Placebo	Patients with stable coronary heart disease	Composite of CV death, MI, or stroke	Following informatio in the text “LDL levels and BP were balanced at the end of the study”	No information on antiplatelet agents
27295427	Liraglutide vs Placebo	Patients with type 2	Composite of CV death,	End of follow-up	Lipid lowering, antihypert

Note: LDL = Low Density Lipoprotein, MI = Myocardial Infarction, CV = Cardiovascular
Study ID	Intervention	Patient Population	Primary Outcome	Concomitant Drugs Required	Concomitant Drug Recording	Follow-up	
25014686	Niacin vs Placebo	Patients with CV disease	Composite of nonfatal MI, death from coronary causes, stroke or arterial revascularisation	Concomitant medication will be recorded at every visit, if any changes... However, the final choice of concomitant therapy and glucose-lowering intensification modalities will be at Investigator's discretion	Concomitant medications will be recorded at every visit, if any changes...	Until the end of follow-up	
30535217	Alfacalcidol vs control	Patients with chronic kidney disease	Composite of fatal and nonfatal CV events (MI, hospitalizations for congestive HF, stroke, aortic dissection/rupture, amputation of lower limb due to ischemia, cardiac sudden death; coronary revascularisation)	Concomitant drugs shall be recorded ... shall also be recorded: 1) Drugs for abnormal mineral metabolism and hyperparathyroidism 2) Antihypertensive drugs (calcium channel blocker, ACE inhibitor, Angiotensin receptor blocker, β-blocker, α-	Concomitant drugs shall be recorded ... shall also be recorded: 1) Drugs for abnormal mineral metabolism and hyperparathyroidism 2) Antihypertensive drugs (calcium channel blocker, ACE inhibitor, Angiotensin receptor blocker, β-blocker, α-	Until the end of follow-up	
Study ID	Treatment	Intervention	Primary Outcome	Comparator 1	Comparator 2	OtherNotes	
----------	--------------------	---	--	--------------	--------------	---	
21388310	Irbesartan vs Placebo	Patients with atrial fibrillation at risk for stroke	Composite of stroke, MI, or death from vascular causes	NI	NI	No information on other cardiac preventive treatments (statins) and anticoagulation in patients with atrial fibrillation	
28847206	Anacetrapib vs Placebo	Patients with CV disease and low HDL	Composite of first major coronary event, a coronary death, MI, or coronary revascularization	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)	
Study Code	Treatment	Patients	Primary Endpoint	Prescribing Guide	Information About Other Treatments	During Follow-up	Other Information
------------	-----------	----------	------------------	-------------------	--------------------------------------	------------------	------------------
30415602	Dapagliflozin vs Placebo	Patients with type 2 diabetes and CV disease or at high CV risk	Composite of CV death, MI, or ischemic stroke	“All patients should be treated according to regional standards of care for CV risk factors (e.g., blood pressure, lipids, antithrombotic treatment) and HbA1c. Other medication(s), which are considered necessary for the patient’s safety and well-being, may be given at the discretion of the Investigator”			
25771069	Enalapril–folic vs Enalapril alone	Patients with hypertension	Stroke	“Any drugs other than use of folic acid are permitted. Proper control of blood pressure should be used as a goal for antihypertensive medications other than the study drugs… If blood pressure is not properly controlled, other antihypertensive medications can be”	NI		No information on other cardiac preventive treatments (antiplatelets, statins)
added based on the recommendation of the “Chinese Guidelines of Hypertension Management” published in 2005. Controlling of the blood pressure within a normal range is not mandatory. The first choices of anti-hypertensive drugs to be added are..

Study ID	Intervention	Comparator	Endpoint Description	NI	NI	NI	Other Cardiac Preventive Treatments
24490264	High-dose multivitamin vs Placebo	Patients with prior MI	Composite of total death, recurrent MI, stroke, coronary revascularization, or hospitalisation for angina	NI	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)
23532240	EDTA Chelation solution vs Placebo	Patients with prior MI	Composite of total mortality, recurrent MI, stroke, coronary revascularization, or hospitalisation for angina	NI	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)
30415628	Icosapent Ethyl vs Placebo	Patients with CV disease or with diabetes and other risk factors	Composite of CV death, nonfatal MI, nonfatal stroke, coronary revascularization, or coronary heart disease	NI	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s) and hypoglycemia
Study ID	Treatment Group	Participants	Outcome Measures	Medications Provided	Follow-up Duration		
---------------	-----------------	---	---	--	-------------------		
26886418	Pioglitazone vs Placebo	Patients with recent ischemic stroke or TIA	Composite of fatal or non-fatal stroke, MI, D.8.2.1 Hypertension, D.8.2.2 Elevated Blood Lipids, D.8.2.3 Carotid Artery Disease, D.8.2.4 Atrial Fibrillation, D.8.2.5 Cigarette Smoking, D.8.2.6 Diet, Exercise, and Weight, D.8.3 Other Preventive Therapy	Statins, "on blood pressure goal", anticoagulants or antiplatelets, hypoglycemic medications, smoking	Each year until end of follow-up		
21663949	Simvastatin plus Ezetimibe vs Placebo	Patients with chronic kidney disease	MACE (non-fatal MI or coronary death, non-hemorrhagic stroke, or any arterial revascularization procedure)	From published study design: NI	NI NI No information on other cardiac preventive treatments (antihypertensives, antiplatelet(s))	58.8	
30158069	Aspirin vs Placebo	Patients with moderate CV risk	Composite outcome of time to first occurrence of CV death, MI, No protocol	NI NI No information on other cardiac preventive treatments (antihypertensives, antiplatelet(s))	60.0		
Study ID	Intervention	Patients	Composite End Point	Concomitant Treatments	Duration		
----------	--------------	----------	---------------------	------------------------	----------		
23656645	N-3 fatty acids vs Placebo	Patients with multiple CV risk factors or atherosclerotic vascular disease but not MI	Composite of CV death or admission to the hospital for CV causes (revised)	ACEI/ARBs, statins, antiplatelets	60		
25401325	Aspirin vs Control	Patients with hypertension, dyslipidemia, or type 2 diabetes	Composite of death from CV causes (MI, stroke, and other CV causes), nonfatal stroke (ischemic or hemorrhagic, including undefined cerebrovascular events), and nonfatal MI	NI	NI		
23121374	Cinacalcet vs Placebo	Patients with chronic	Composite of death, MI, hospitalisation	"Concomitant therapy will be collected"	During follow-up		

Note: "NI" indicates no information on other cardiac preventive treatments (antihypertensives, statins).
Kidney Disease	Benznidazole vs Placebo	Patients with established Chagas' cardiomyopathy	Composite of death, resuscitated cardiac arrest, sustained ventricular tachycardia, insertion of a pacemaker or implantable cardioverter-defibrillator, cardiac transplantation, new HF, stroke, or other thromboembolic event	"Any concomitant therapy, including treatments demonstrated to be effective in the study population is permitted"	NI	NI	No information on other cardiac preventive treatments (antihypertensives, antiplatelets, statins), diuretics, aldosterone receptor inhibitors
26323937	Candesartan/HCT vs Placebo	Patients with intermediate CV risk	Composite of CV death, nonfatal MI, nonfatal stroke	"Concomitant treatments assessed 0, 24, end of FU; Concurrent Treatments: There are no other restrictions to the use of additional therapies. If clinicians managing only informatio about other antihypertensives in table across groups	At 2 years and at the end of follow-up	No information on other cardiac preventive treatments (antiplatelets)	
27041480							
individual study participants believe that lipid modifying or blood pressure lowering treatments are clinically indicated after randomization, open label lipid modifying or blood pressure lowering drug(s) can be added. Whenever possible, drugs other than statins, ARBs, ACE inhibitors and thiazide diuretics should be used."

| 27039945 | Rosuvastatin and Candesartan/HCT vs Placebo | Patients with intermediate CV risk | Composite of CV death, nonfatal MI, or nonfatal stroke | Concomitant treatments assessed 0, 24, end of FU; Concurrent Treatments: There are no other restrictions to the use of additional therapies. If clinicians managing individual study participants believe that lipid modifying or blood pressure lowering treatments are clinically indicated after randomization, open label lipid modifying or blood pressure lowering drug(s) can be added. Whenever possible, drugs other than statins, ARBs, ACE inhibitors and thiazide diuretics should be used. | NI | NI | No information on other cardiac preventive treatments (antiplatelets) | 67.2 |
Study ID	Treatment	Study Design	Outcome Measure	Follow-up	Concurrent Treatments	No information on other cardiac preventive treatments (antiplatelets)	
27040132	Rosuvastatin vs Placebo	Patients with intermediate CV risk	Composite of CV death, nonfatal MI, or nonfatal stroke	0, 24, end of FU	No other restrictions to the use of additional therapies. If clinicians managing individual study participants believe that lipid modifying or blood pressure lowering treatments are clinically indicated after randomization, open label lipid modifying or blood pressure lowering drug(s) can be added. Whenever possible, drugs other than statins, ARBs, ACE inhibitors and thiazide diuretics should be used.	67.2	
Study ID	Interventions	Study Design	Comparator	Concomitant Medications	CV Composite Events	Notes	
-----------	---------------	--------------	------------	-------------------------	---------------------	-------	
2603952	Simvastatin + Ezetimibe vs Simvastatin + Placebo	Patients with recent ACS	Composite of CV death, nonfatal MI, unstable angina requiring rehospitalisation, coronary revascularization or nonfatal stroke	“CV Concomitant Medications Review in each visit. The use of any concomitant medication must relate to an adverse event or the subject's medical history”	NI	NI	
22686415	N-3 fatty acids vs Placebo	Patients at risk for CV and impaired fasting glucose, impaired glucose tolerance, or diabetes	Composite of death from coronary heart disease, nonfatal MI, ischemic stroke, hospitalisation for an acute coronary syndrome, or symptom-driven coronary or cerebral revascularization	“Concomitant medications may be used at the discretion of the participant's physician when indicated for the participant's welfare. Participants will be formally asked about the types of concomitant treatments every year. As noted above, TZDs will not be permitted in combination with insulin glargine”	NI	NI	
22686416	Insulin-glargine vs standard-care	Patients with CV risk factors plus impaired fasting glucose, impaired glucose	Composite of nonfatal MI, nonfatal stroke, or CV death	“Concomitant medications may be used at the discretion of the participant's physician when indicated for the participant's welfare”	Lipid lowering, antihypertensives (Thiazid, ACEI/ARBs, b-blocker, other), antiplatelet	At the end of follow-up	-

and thiazide diuretics should be used.."
Study ID	Intervention	Participants	Endpoints	Criteria
30146932	N-3 fatty acids vs Placebo	Patients with type 2 diabetes	Composite of serious vascular event (i.e., nonfatal MI or stroke, transient ischemic attack, or vascular death)	"Follow-up questionnaires asking about use of relevant non-study treatments will be sent 6-monthly with a further supply of the participant's allocated study treatment"
30146931	Aspirin vs Placebo	Patients with type 2 diabetes	Composite of serious vascular event (i.e., nonfatal myocardial infarction or stroke, transient ischemic attack, or vascular death)	"Follow-up questionnaires asking about use of relevant non-study treatments will be sent 6-monthly with a further supply of the participant's allocated study treatment"
30043065	Escitalopram vs Placebo	Patient with recent ACS and depression	Composite of all-cause mortality, MI, and percutaneous coronary	"Any change in concomitant medications or dosage will be documented"

Other treatments indicated for the participant's welfare. Participants will be formally asked about the types of concomitant treatments every year. As noted above, TZDs will not be permitted in combination with insulin glargine.

NI: No informatio n on other cardiac preventive treatments (antihypertensives, statins, other antidiabetics, Statins, ACEI/ARBs, hypoglycemic medications, β-blockers, calcium channel blockers, diuretics (antiplatelets part of 2x2 factorial)
Study ID	Intervention	Population	Primary Endpoints	Comparator	Endpoint Definition	Trial Specifics
2311777 5	Multivitamin vs Placebo	Male physicians; subgroup with CV disease	Composite of MACE, including nonfatal MI, nonfatal stroke, and CVD mortality.	NI	From published study design: “We will use the Cox proportional hazards model to compare event rates for each treatment group while controlling simultaneously for variable lengths of follow-up, other treatment assignment, and any risk factors that are unbalanced”.	No information on other cardiac preventive treatments (antihypertensives, antiplatelet, statins)
2704308 2	Losmapimod vs Placebo	Patients with ACS	Composite of CV death, MI, or severe recurrent ischemia requiring urgent coronary revascularization	NI	“Investigator’s will manage the subjects according to standard of care, following local prescribing information. Close adherence to professional society guidelines for standard of care therapies in ACS will be	No information on procedural characteristics

Long term follow-up (>1 month) with index procedure after randomization.
emphasized during study conduct, including anti-platelet therapy, statin medications, use of appropriate revascularization, ACEIs and b-blockers. All concomitant medications taken during the study will be recorded in the eCRF”

NCT Number	Study Design	Intervention	Outcomes	Procedure Characteristics	Procedural & At Discharge	Type of Stent	Notes	
28844201	Bivalirudin vs Heparin	Patients with ACS undergoing PCI	Composite of death from any cause, MI, or major bleeding	“Procedure strategies: All other treatments are according to local tradition. GpIIb/IIIa inhibitors may be given as bailout treatment according to physician's decision. After the index PCI, lifelong acetylsalicylic acid ... will be prescribed”	Periprocedural characteristics: aspirin, clopidogrel, GpIIb/IIIa inhibitors, b-blockers, statins, ACEI/ARBs, calcium channel blockers, anticoagulants	Periprocedural & At Discharge	Type of stent is not reported	
24177257	3 months vs 12 months of dual treatment	Patients undergoing PCI with zotarolimus-eluting stents	Net adverse clinical and cerebral events (MACE and major bleeding)	“All intervention s were recommend ed to be performed according to the current standard guidelines, and final procedure strategy was left entirely at the operators’	Informati on about procedural characteri stics	Periprocedural	Access site per group is missing. Periproced ural medication s missing; Informati on o other cardiac preventive treatments (antihypert ensives, statins) at end of	5, 9
Study ID	Treatment Comparison	Participants	Primary Endpoint	Procedure Details	Discharge Details	Study Details		
----------	----------------------	--------------	------------------	-------------------	------------------	---------------		
22077816	Vorapaxar vs Placebo	Patients with NSTEMI	Composite of CV death, MI, stroke, recurrent ischemia with rehospitalisation, or urgent coronary revascularization	“In general, record in the eCRF those medications or therapies taken, used, or administered during the study.”	Only information about procedural characteristics	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)		
2954469	6 vs 12 months of dual treatment (Clopidorgel and Aspirin)	Patients with ACS undergoing PCI with drug-eluting stents	Composite of all-cause death, MI, or stroke	“Direct stenting or predilution and antithrombotic medications during the procedure, and use of glycoprotein IIb/IIIa inhibitors will be up to operators discretion. The length and diameter of the stent will not be restricted” (from published study design)	Informatio n about procedural characteristics & medications: heparin, GpIIb/IIIa inhibitors and discharge medications: aspirin, clopidogrel, b-blockers, statins, ACEI/ARBs.	No information on other cardiac preventive treatments (antihypertensives, statins) at the end of follow-up; no information for balloon dilatation		
30166073	Aspirin and Ticagrelor vs Aspirin and Clopidogrel	Patients undergoing elective or urgent PCI with drug-eluting stents	Composite of all-cause mortality or non-fatal new Q-wave MI	“Balloon angioplasty and stent implantation were performed according to standard techniques; direct stenting (without discretion). Direct stenting and implant of multiple E-ZES were allowed” (from published study design)	Informatio n about procedural characteristics	No information on other cardiac preventive treatments (antihypertensives, antiplatelet s, statins)		
previous balloon dilatation) was allowed. Staged procedures were permitted ... Glycoprotein IIb/IIIa receptor inhibitors were to be administered only in patients who had periprocedural ischemic complications (i.e., no reflow or giant thrombus) after stenting. The use of unfractionated heparin (up to an arbitrary set maximum of 4000IU) during the index diagnostic angiogram was left at the discretion of the investigator. The use of other medications was per applicable professional guidelines."

| 26321103 | Cyclosporin vs Placebo | Patients with STEMI undergoing PCI (randomization before recanalization) | Composite of death from any cause, worsening of HF during the initial hospitalization, rehospitalization for HF, or "Associated treatments (antiplatelet agents, anticoagulants, ACE-I, -blockers, statins, n-3 PUFA ...) will be administered according | Procedural characteristics and periprocedural medications; lipid lowering, antihypertensives, anticoagulants. | Periprocedural & at discharge | No information on cardiac preventive treatments (antihypertensives, antiplatelet s, statins) at end of follow-up; Type of |
Short term follow-up (<1 month) with index procedure after randomization	Procedural characteristics and periprocedural medications (P2Y12 inhibitors use, bivalirudin, heparin, fondaparinux, aspirin)	Periprocedural & at discharge						
Cangrelor vs Clopidogrel	2347369	Patients undergoing urgent or elective PCI	Composite of death, MI, ischemia-driven revascularization or stent thrombosis	All patients should receive standard of care antiplatelet therapy per ACC/AHA/ESC guidelines; The following allowed medications may constitute standard care and will be allowed as concomitant medications, including…. institution's standard practices during the index PCI procedure with the exception of medications prohibited	0.2			
Study ID	Treatment	Patients Description	Outcome Measures	Procedural Characteristics	Periprocedural & Discharge	Type of Stent Not Reported		
---------	----------------------------------	--	---	----------------------------	---------------------------	---------------------------		
23995608	Otamixaban vs Heparin plus eptifibatide	Patients with NSTEMI undergoing PCI	Composite of all-cause death or new MI	In addition to study medication, all randomized patients must receive both aspirin and an oral adenosine diphosphate receptor antagonist given as per their local label or international guidelines. Both radial and femoral access for angiography and PCI are allowed. For patients having femoral access, if a closure device is used, the sheath …..	Procedural characteristics and periprocedural medications (P2Y12 inhibitors use, bivalirudin, heparin, fondaparinux, aspirin) and aspirin, clopidogrel, Gp IIb/IIIa inhibitors, β-blockers, statins, ACEI/ARBs	Periprocedural & at discharge	Type of stent not reported, balloon-dilatation not reported	
25002178	Bivalirudin vs Heparin	Patients undergoing primary PCI	Composite of all-cause mortality, cerebrovascular accident, reinfarction, or unplanned target lesion revascularisation	“The GP IIb/IIIa inhibitor, abciximab, was allowed for selective use in both groups as per the European Society of Cardiology guidelines (..). No other trial-related restrictions were imposed on the performance of angiography and PCI, which were done in accordance with ACEI/ARBs, aspirin, clopidogrel, statin at discharge and procedural characteristics and periprocedural medications (Aspirin, P2Y12-inhibitor loading dose, GpIIb/IIIa)	ACEI/ARBs, aspirin, clopidogrel, statin at discharge and procedural characteristics and periprocedural medications (Aspirin, P2Y12-inhibitor loading dose, GpIIb/IIIa)	Periprocedural & at discharge	-	1
ID	Treatment 1	Treatment 2	Outcome Measure	Protocol Description	Duration	N		
--------	--------------	--------------	--	--	----------	---		
24679062	Aspirin vs Placebo	Patients undergoing noncardiac surgery	Composite of death or nonfatal MI	“All aspects of the patient’s management are at the discretion of the attending physician. This includes all decisions on antiplatelet, anticoagulation, and anti-ischemic therapies. We will encourage physicians not to prescribe an alpha-2 agonist…. We will also encourage physicians not to prescribe antiplatelet therapy during the initial 7 days after surgery….”	Anticoagulants, NSAID, statin, Cox-2, b-blocker, P2Y12, perioperative antifibrinolytic & procedural characteristics	During the first 3 days	1	
24679061	Clonidine vs Placebo	Patients undergoing noncardiac surgery	Composite of death or nonfatal MI	“All aspects of the patient’s management are at the discretion of the attending physician. This includes all decisions on antiplatelet, anticoagulation, and anti-	B-blocker, Calcium-Channel blockers, statin, a2-adrenergic agonist & procedural characteristics (antiplatelets as part of factorial 2x2)	During the first 3 days	-	
Study ID	Treatment	Eligibility	Outcomes	Main Findings	Data Types	Interpretation		
-----------	----------------------------------	----------------------------------	---	--	------------	---		
27590218	Edoxaban vs Enoxaparin – warfarin	Patients undergoing cardioversion for atrial fibrillation	Composite of stroke, systemic embolic event, MI, CV death	“There are no concomitant medications required as part of the study design. The study procedures detailed below are for both TEE and non-TEE-guided subjects, unless specifically stated otherwise. As much as possible, procedures must be followed in the order listed”	NI	No information on antiplatelet s, or procedural characteristics		
2311776	Dexamethasone vs Placebo	Patients undergoing cardiac surgery	Composite of death, MI, stroke, renal failure, or respiratory failure	“Anesthesia and surgical treatment were performed according to the standard procedures of each participating center”. (no protocol)	B- blockers, statin, corticosteroid & procedural characteristics	Periop procedures	No information on antiplatelet s	
25775052	Bivalirudin vs Heparin	Patients undergoing	Composite of MACE	“Anticoagulant agent” ACEI/ARB, aspirin, Periop procedures &	-	1		
22077909	Abciximab plus Heparin vs Bivalirudin	Patients with NSTEMI undergoing PCI	Composite outcomes: death, large recurrent MI, urgent target-vessel revascularisation, major bleeding	“Concomitant medication assessed at discharge. Post-interventionally Sheath should … respectively. After the intervention, all patients will receive 80-325 mg/day aspirin indefinitely, clopidogrel 75-150 mg until discharge (but no longer than 3 days) followed by at least 75 mg/day for at least 6 months and other cardiac medications according to the judgment of patient’s physician (e.g. β-blockers,	Procedural characteristics and periprocedural medications (GpIIb/IIIa inhibitors, bivalirudin, heparin, randomization after aspirin & P2Y12 was given)	Periprocedural	-	1
Study ID	Intervention	Study Design	Outcomes	Medications	Procedure Characteristics	Results		
-----------	------------------------------------	--------------	--	---	--	---------		
2185648 3	Enoxaparin vs Heparin	Patients with STEMI undergoing PCI	Composite of death, complication of MI, procedure failure, or major bleeding	Procedures described in paper (no protocol)	Aspirin, clopidogrel, Gp IIb/IIIa inhibitors, statins, b-blocker, ACEI/ARB S periprocedural and postprocedural characteristics	No info		
2245280 7	Glucose-insulin-potassium vs Placebo	Patients with suspected ACS	MI	NI (published study design)	NI	-		
2417149 0	Bivalirudin vs Heparin	Patients with STEMI undergoing PCI	Composite of death or major bleeding not associated with coronary-artery bypass grafting	“Once a patient has commenced treatment with an anti-thrombin (...) no change in strategy is recommended. In patients requiring ongoing anticoagulation for reasons other than PCI then anticoagulation should be maintained as per local practice. Glycoprotein IIb/IIIa Inhibitor Management: In patients randomised to the	Aspirin, clopidogrel, b-blockers, statins, ACEI/ARB S at discharge and procedural characteristics and periprocedural medications (aspirin, P2Y12-inhibitor loading dose, heparin, bivalirubin, enoxaparin, GpIIb/IIIa inhibitors)	-		
control arm
the use of a
GPI will be
classified as
either
"routine"
treatment
of patients
before or
during
angiography
but not once
PCI has
commenced
) or "bail
out"
treatment
of patients
during or
after PCI"

Study ID	Intervention	Participant Details	Outcomes	Procedural Characteristics	Periprocedural Medications at Discharge	Type of Stent Missing
26324049	Bivalirudin vs Heparin	Patients with ACS undergoing PCI	Composite of urgent target-vessel revascularization, definite stent thrombosis, or net adverse clinical events	Only information on vascular access site: transfemoral access	Procedural characteristics; Periprocedural medications and medications at discharge (aspirin, clopidogrel, GpIIb/IIIa inhibitors, b-blockers, statins, ACEI/ARBs, diuretics, antidiabetics)	1
29525821	Atorvastatin vs Placebo	Patients with ACS undergoing PCI	“Co-intervention: Concomitant treatment with ASA and clopidogrel will be recommended for all patients at discharge. Due to its pragmatic design, the co-intervention	Procedural characteristics, periprocedural medications: only heparin	Periprocedural & at discharge	1
s choice will be at the medical staff discretion. Nevertheless, the use of the following agents listed below will be strongly recommended to all sites (except if contraindications are present). The percutaneous coronary intervention will be performed according to the current clinical practice of the Institution, using either the transfemoral or the transradial access. Stents implantation, as well as stent characteristics, will be at the interventional cardiologist discretion.

Trial ID	Study Description	Study Population	Potential concomitant antiplatelet Therapy, antithrombotic drugs	Periprocedural Characteristics			
26095867	Low Molecular Weight Heparin vs Placebo	Patients with atrial fibrillation undergoing surgery	Aspirin, clopidogrel, NSAIDs, Cox-2, heparin, warfarin & procedural characteristics	-			
23991622	Prasugrel vs Placebo	Patients with NSTEMI undergoing PCI	Procedural characteristics: Stent type is missing	-			
Study ID	Intervention 1	Intervention 2	Outcome 1	Outcome 2			
-----------	-----------------	-----------------	------------	------------			
26933848	Aspirin vs Placebo	Patients undergoi ng cardiac surgery	Composite of death and thrombotic complications (nonfatal MI, stroke, pulmonary embolism, renal failure, or bowel infarction)	“All other perioperative clinical care will be according to standard practice as this is an effectiveness trial and some elements of the trial are deliberately left to the clinicians’ discretion in order to reflect usual practice and maximise generalisability. Anaesthesia and surgery will be according to local practices…. All such relevant perioperative data will be recorded on the CRF”	ACEI/ARBs, aspirin, clopidogrel, statin, b-blocker, diuretics, digoxin, NSAID, amiodarone, and procedural characteristics	Periprocessual & up to 7 days	1
27774838	Tranexamic acid vs Placebo	Patients undergoi ng cardiac surgery	Composite of death and thrombotic complications (nonfatal MI, stroke, pulmonary	“All other perioperative clinical care will be according to standard practice as this is an effectiveness	ACEI/ARBs, aspirin, clopidogrel, statin, b-blocker, diuretics, digoxin, NSAID, amiodarone	Periprocessual & up to 7 days	1
embolism, renal failure, or bowel infarction)

s trial and some elements of the trial are deliberately left to the clinicians’ discretion in order to reflect usual practice and maximise generalisability. Anaesthesia and surgery will be according to local practices.... All such relevant perioperative data will be recorded on the CRF”

Code	Treatment	Patients undergoing cardiac surgery	Composite of all-cause mortality, nonfatal stroke, or need for mechanical support for severe left ventricular dysfunctio n	“Standard local procedures for CABG surgery or associated preoperative and postoperative care were followed” (no protocol)	ACEI/ARB s, β-blockers, statins, clopidogrel, calcium channel blockers, nitrate, hypoglycemic medicatio ns	Periprocedural & at discharg e	No information on procedural characteristics	1
22782417	Acadesine vs Placebo	Patients undergoing cardiac surgery	Composite of all-cause mortality, nonfatal stroke, or need for mechanical support for severe left ventricular dysfunctio n	“Standard local procedures for CABG surgery or associated preoperative and postoperative care were followed” (no protocol)	ACEI/ARB s, β-blockers, statins, clopidogrel, calcium channel blockers, nitrate, hypoglycemic medicatio ns	Periprocedural & at discharg e	No information on procedural characteristics	1
26460660	Methylprednisolone vs Placebo	Patients undergoing cardiac surgery	Mortality and a composite of death and major morbidity (ie, myocardial injury, stroke, renal failure, or respiratory failure)	No protocol available	Procedural characteristics; periprocedural medicatio ns (inotropes, antifibrinolytic, non-study steroids, ACEI/ARB s, β-blockers, antiplatelets, statins, vitamin K antagonist s, PPIs, hypoglycemic medicatio ns	Periprocedural	-	1
ACEI: angiotensive converting enzyme inhibitors, ACS: acute coronary syndrome, ARBs: Angiotensin II receptor blockers, CV: cardiovascular, FU: follow-up, GpIIb/IIa: Glycoprotein IIb/IIIa, HDL: high-density cholesterol, HF: heart failure, LDL: low-density cholesterol, MACE: major adverse cardiac events, MI: myocardial infarction, NI: no information, NSAID: non-steroidal anti-inflammatory, PCI: percutaneous coronary angiography, PPIs: Proton pump inhibitors, TIA: transient ischemic attack
Table S6. Reporting of co-interventions according to medication category (n=123).

Drug	Reported (%,n)	Not adequately reported (%,n)
Overall (n=123)	29.3 (36)	70.7 (87)
Antihypertensives/diuretics/heart failure (n=14)	14.3 (2)	85.7 (12)
Antithrombotics/anticoagulants (n=45)	35.6 (16)	64.4 (29)
Lipid-lowering treatment (n=17)	23.5 (4)	76.5 (13)
Antidiabetics (n=16)	56.3 (9)	43.7 (7)
Antiinflammatory, antirheumatic medication (n=12)	16.7 (2)	83.3 (10)
Cardiac treatments & various (n=19)	15.8 (3)	84.2 (16)
Table S7. Potential explanatory factors associated with the reporting of co-interventions (n=123).

	Univariable analysis			Multivariable analysis		
	OR	95% CI	P-value	OR	95% CI	P-value
Blinding of participants and/or personnel[*] *(ref: Inadequate blinding)*						
Adequate blinding	1.04	0.47 to	0.93	0.99	0.41 to	0.99
		2.27			2.38	
Risk of bias due to deviations of intended interventions[†] *(ref: “At risk of bias”[‡])*						
“At low risk of bias”	1.47	0.67 to	0.33	1.38	0.52 to	0.52
		3.21			3.69	
Funding						
(ref: Industry)						
Non-Industry	2.06	0.86 to	0.10	2.24	0.80 to	0.12
		4.92			6.25	
Trial design						
(ref: Non-inferiority)						
Superiority	0.63	0.26 to	0.32	0.38	0.13 to	0.08
		1.55			1.13	
Follow-up						
(ref: >1 month)						
<1 month	4.33	1.63 to	0.003	3.63	1.21 to	0.02
		11.52			10.91	

*according to risk of bias due to lack of blinding of participants and/or personnel (RoB 1.0); †risk of bias due to deviations of the intended interventions: effect of adhering to treatment (RoB 2.0); ‡“at risk of bias”: “some concerns” and “at high risk of bias”
Table S8. Factors associated with balanced co-interventions among RCTs with adequate reporting of co-interventions (n=36).

	Univariable analysis	
	OR	95%CI
Blinding of participants and/or personnel† (ref: Inadequate blinding)		
Adequate blinding*	Omitted*	
Risk of bias due to deviations of intended interventions (ref: “At risk of bias”‡)		
“At low risk of bias”	6.33	0.63 to 63.63
Funding (ref: Industry)		
Non-Industry*	Omitted*	
Trial design (ref: Non-inferiority)		
Superiority	5.14	0.71 to 37.15
Follow-up (ref: >1 month)		
<1 month	2.19	0.22 to 22.19

† according to risk of bias due to lack of blinding of participants and/or personnel (RoB 1.0); ‡ risk of bias due to deviations of the intended interventions: effect of adhering to treatment (RoB 2.0); “at risk of bias”: “some concerns” and “at high risk of bias”; All trials with unbalanced co-interventions were judged as inadequately blinded trials and were industry-funded.
Box S1. Detailed definition of procedural characteristics and periprocedural medications.

- If the index procedure is cardiac surgery, minimum of procedural characteristics to be reported are: duration of aortic-cross clamping, on or off-pump surgery, duration of cardiac surgery. Minimum periprocedural medications to be reported are: antiplatelets, ACEIs/ARBs, statins, b-blockers (see ref. 29).
- If the index procedure is percutaneous coronary angiography, minimum of procedural characteristics to be reported are: stents and type of stents (bare-metal stents, drug-eluting stents), balloon dilatation, arterial access site. – minimum of periprocedural medications to be reported are: Heparin or Bivalirubin, Aspirin, P2Y12 inhibitors drug use, Glycoprotein IIb/IIIa (see ref. 30).
Figure S1. Flow diagram of the systematic review (Study selection).

Records identified through database searching
Total: 1335 (Medline) & 812 (Embase)

Additional records identified through hand search
(n = 3)

Records after duplicates removed
(n = 1625)

Records excluded based on title and abstract
(n = 1476)

Records screened
(n = 1625)

Full-text articles assessed for eligibility
(n = 149)

Full-text articles excluded, with reasons
(n = 26)
- Not RCTs n = 12
- Other outcomes n = 13
Other comparisons n = 1

Studies included in qualitative synthesis
(n = 123)