Diabetes mellitus and risk of new-onset and recurrent heart failure: a systematic review and meta-analysis

Satoru Kodama1*, Kazuya Fujihara2, Chika Horikawa3, Takaaki Sato2, Midori Iwanaga1,2,4, Takaho Yamada2, Kiminori Kato1, Kenichi Watanabe1, Hitoshi Shimano4, Tohru Izumi5 and Hirohito Sone2,4

1Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; 2Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan; 3Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan; 4Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; 5Department of Cardiology, Niigata Minami Hospital, Niigata, Japan

Abstract

Despite mounting evidence of the positive relationship between diabetes mellitus (DM) and heart failure (HF), the entire context of the magnitude of risk for HF in relation to DM remains insufficiently understood. The principal reason is because new-onset HF (HF occurring in participants without a history of HF) and recurrent HF (HF re-occurring in patients with a history of HF) are not discriminated. This meta-analysis aims to comprehensively and separately assess the risk of new-onset and recurrent HF depending on the presence or absence of DM. We systematically searched cohort studies that examined the relationship between DM and new-onset or recurrent HF using EMBASE and MEDLINE (from 1 Jan 1950 to 28 Jul 2019). The risk ratio (RR) for HF in individuals with DM compared with those without DM was pooled with a random-effects model. Seventy-four and 38 eligible studies presented data on RRs for new-onset and recurrent HF, respectively. For new-onset HF, the pooled RR [95% confidence interval (CI)] of 69 studies that examined HF as a whole [i.e. combining HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF)] was 2.14 (1.96–2.34). The large between-study heterogeneity ($I^2 = 99.7$, $P < 0.001$) was significantly explained by mean age [pooled RR (95% CI) 2.60 (2.38–2.84) for mean age < 60 years vs. pooled RR (95% CI) 1.95 (1.79–2.13) for mean age ≥ 60 years] (P < 0.001). Pooled RRs (95% CI) of seven and eight studies, respectively, that separately examined HFpEF and HFrEF risk were 2.22 (2.02–2.43) for HFpEF and 2.73 (2.71–2.75) for HFrEF. The risk magnitudes between HFpEF and HFrEF were not significantly different in studies that examined both HFpEF and HFrEF risks (P = 0.86). For recurrent HF, pooled RR (95% CI) of the 38 studies was 1.39 (1.33–1.45). The large between-study heterogeneity ($I^2 = 80.1$, $P < 0.001$) was significantly explained by the proportion of men [pooled RR (95% CI) 1.53 (1.40–1.68) for < 65% men vs. 1.32 (1.25–1.39) for ≥65% men (P = 0.01)] or the large pooled RR for studies of only participants with HFpEF [pooled RR (95% CI), 1.73 (1.32–2.26) (P = 0.002)]. Results indicate that DM is a significant risk factor for both new-onset and recurrent HF. It is suggested that the risk magnitude is large for new-onset HF especially in young populations and for recurrent HF especially in women or individuals with HFpEF. DM is associated with future HFpEF and HFrEF to the same extent.

Keywords Diabetes mellitus; New-onset heart failure; Recurrent heart failure; Cohort study; Meta-analysis

Received: 5 December 2019; Revised: 17 April 2020; Accepted: 28 April 2020

*Correspondence to: Satoru Kodama, Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori Chuou-ku, Niigata-shi, Niigata 951-8510, Japan. Email: ybbkodama@gmail.com

Introduction

Heart failure (HF) is a major clinical and public health problem with high prevalence,1 incurring extraordinary health care expenditures2 and negatively influencing activities of daily living.3 Many epidemiological studies have indicated that diabetes mellitus (DM) increases the risk of HF. For example, a recent large cohort study showed a higher risk of hospitalization for HF among patients with than without type 2 DM even if their cardiovascular risk factors were within target ranges.4 Because recent trials suggested that HF is preventable by specific pharmacological treatment (sodium glucose co-transporter-2 inhibitor)5 and intensified multifactorial interventions,6 HF has received appropriate attention7 as one of the most common cardiovascular complications of DM.8 Estimating the magnitude of HF risk among persons with

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
DM is essential for assessing the importance of HF as a diabetes-related complication and deciding whether prevention of HF should be given priority among diabetes-related complications. However, the entire context of the magnitude of risk for HF in relation to DM remains insufficiently understood. Particularly, new-onset HF (HF occurring without a history of HF) and recurrent HF (HF re-occurring with a history of HF) are not discriminated. The issues regarding risk of new-onset and recurrent HF should be discussed separately considering differences in patients’ characteristics, therapy goals, and treatments to achieve goals specific to those at high risk for HF but without symptoms of HF compared with those with prior symptoms of HF. In addition, although we should emphasize that it is impossible to compare new-onset and recurrent HF when the criteria differ between the two conditions, the risk imparted by DM is hypothesized to be quite different between new-onset and recurrent HF considering the burden of hospitalization after an HF diagnosis even though the cause of such hospitalizations is not necessarily due to HF. Based on this hypothesis, results of many previous cohort studies that combined new-onset and recurrent HF as the HF outcome would lead to inaccurate conclusions because these studies failed to consider an interaction effect of DM status and a past history of HF even if risk indicators were adjusted for a history of HF.

Previous meta-analyses of cohort studies that examined the risk of new-onset HF in relation to DM included studies on an unselected community population but not on a population selected according to specific characteristics and conditions (e.g. hypertension and renal diseases) that clinicians usually see in a real-world clinical setting. A recent meta-analysis that estimated the risk of new-onset HF failed to exclude studies in which participants with and without a history of HF were combined. Another meta-analysis of cohort studies limited to patients with a history of HF indicated that DM adversely affected all-cause death and hospitalization. However, the causes of death or reasons for hospitalization were not specified. This meta-analysis aims to comprehensively assess the risk of new-onset and recurrent HF depending on the presence or absence DM.

Methods

We followed the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines for conducting meta-analyses of observational studies. The protocol for this meta-analysis was registered in advance with the International Prospective Register of Systematic Reviews (PROSPERO) (registration number: CRD42019117390).

Search strategy

We used MEDLINE and EMBASE (from 1 Jan 1950 to 28 Jul 2019) as electronic databases for systematic literature searches. Keywords are presented in Appendix 1. Inclusion criteria were (i) cohort study; (ii) DM status of all participants was ascertained before the follow-up period; (iii) at least 6 months of follow-up; (iv) exposure is having DM at baseline; (v) referent is not having DM at baseline; (vi) outcome is new-onset or recurrent HF (see Study outcome); and (vii) the risk indicators [i.e. hazards ratio (HR) or odds ratio (OR)] for HF in relation to DM were described or the risk ratio (RR) could be calculated. Studies that classified new-onset HF into HF with preserved ejection fraction (EF) (HFrEF) and HF with reduced EF (HFrEF) were also considered. Remarks related to (i) to (v) are in Appendix 2.

We examined the reference lists of publications that met our inclusion criteria to identify additional studies that might be suitable for our purpose. We considered articles published in any language. When there were unclear issues within a study, we contacted the authors for clarification before deciding whether the study met these inclusion criteria. If two or more articles existed for one cohort study, priority for choosing one of these articles was given as follows: (i) direct presentation of data on the HR or the OR and its corresponding 95% confidence interval (CI), (ii) long-term follow-up study, and (iii) inclusion of a large number of participants.

Study outcome

As previously mentioned, we considered only studies that separated new-onset from recurrent HF as the study outcome. We defined new-onset HF as HF occurring in participants without a history of HF. When the outcome was incident new-onset HF, included studies had to exclude participants with a history of HF or with current HF. If it was unclear whether such participants were actually excluded, we did not exclude the study if there was no evidence that participants who had history of HF or currently had HF were obviously included. Conversely, even if a study author stated that participants having HF at baseline were excluded, we excluded that study wherein participants were obviously included who had HF of class ≥ II in the New York Heart Association (NYHA) classification or a history of HF of class ≥ II in the Killip classification. We defined recurrent HF as that which re-occurred in patients with a history of HF although a widely accepted definition does not exist. Thus, when an outcome is recurrent HF, we included only studies that clarified that all participants had already been diagnosed as having HF regardless of the NYHA or Killip classification status.

The endpoints for new-onset HF were hospitalization due to HF or a doctor’s diagnosis of HF and for recurrent HF were hospitalization due to previously diagnosed HF or worsening of existing HF. The HF had to be an independent outcome. Studies that combined endpoints from HF and those from other causes (e.g. all-cause hospitalizations and
cardiovascular events) were excluded. In addition, the endpoints had to include both fatal and non-fatal events. Studies that included only HF mortality as the endpoint were excluded.

Data extraction

Two authors (S. K. and H. So.) independently extracted the data. Discrepancies were solved by a third author (K. K.). In addition to the risk indicator and its corresponding 95% CI, we extracted the following data: first author, year, study design, cohort name or affiliation, specificity of study population such as underlying diseases, mean age, percentage of men, number of participants and cases, follow-up duration, percentage of lost to follow-up, risk indicator, methods for ascertaining DM and HF, endpoint corresponding to the study outcome, and confounding factors. When the study outcome was recurrent HF, we added data on the characteristic of the EF (i.e. reduced/preserved/non-specified).

If the risk indicator was expressed as HR or OR and its corresponding 95% CI was not directly provided, we calculated the RR and standard error (SE) of the natural logarithm (log) of RR using the formula: RR = \(\frac{C_1/N_1}{C_2/N_2} \), SE (logRR) = \(\sqrt{\frac{1}{C_0} + \frac{1}{C_1} - \frac{1}{N_0} - \frac{1}{N_1}} \), where ‘1’ and ‘0’ are having DM and not having DM at baseline, respectively, and ‘C’ and ‘N’ are the number of cases and total number of participants, respectively. These risk indicators were standardized into RR. The HR was considered to be the same as the RR. The OR was transformed into the RR using the formula: OR \(\rightarrow \) RR = \(\frac{C_1}{N_1} \times \frac{C_2}{N_2} \), SE (logOR) = \(\sqrt{\frac{SE^2(\log OR) + (\log RR/\log OR)}{P_0} \times \log RR} \), where \(P_0 \) is the incident rate of study endpoints in the referent group. Other remarks with regard to Data Extraction are shown in Appendix 3.

To assess study quality, we adapted the Newcastle-Ottawa Scale (NOS) for this meta-analysis. The NOS consists of the following three broad perspectives: selection of study groups (Selection), comparability of groups (Comparability), and ascertainment of the outcome of interest (Outcome). With regard to Comparability, we selected age and coronary heart disease (CHD) as the most important confounders because HF and DM are typical age-related diseases. Compared with individuals without DM, those with DM have a higher prevalence of CHD, and CHD presents the largest attributable risk for HF among potential risk factors. As to outcome, we used the median of the follow-up duration in the included studies as a cut-off value for a sufficient follow-up duration. Remarks on the criteria for NOS are provided in Appendix 4.

Data synthesis

We separately produced a dataset for estimating the risk of new-onset and recurrent HF in relation to DM. The RR in each study was pooled with a random-effects model if between-study heterogeneity for the magnitude of risk assessed by \(I^2 \) was statistically significant. Otherwise, a fixed-effects model was chosen. The analysis was stratified by each of the pre-specified study characteristics (i.e. follow-up duration, mean age, proportion of men, characteristics of risk adjustment, endpoints, and pre-existing diseases (for new-onset and recurrent HF) and characteristic of baseline EF status (for recurrent HF)). With regard to mean age and proportion of men (%), cut-off values were determined in 5 year and 5% increments, which were close to the median in included studies so that the number of data belonging to the upper and lower values of the cut-off were as similar as possible. In general, the cut-off value was close to the median value of the included studies. Based on the stratified analyses, meta-regression analyses were added to explore the origin of heterogeneity. If a characteristic significantly explained the heterogeneity, that characteristic could be suggested to significantly affect the risk magnitude. Meta-regression was also performed to compare the risk magnitude between HFrEF and HFrEF with adjustment for each included study.

Publication bias was assessed by two formal tests, Begg’s rank correlation test and Egger’s regression asymmetry test. If publication bias was statistically detected, we adjusted the pooled RR for publication bias using the trim-and-fill method. This method includes (i) the assumption that the funnel plot is symmetrical if there is no publication bias, (ii) detection of hypothetically unpublished data causing the funnel plot to be asymmetrical, and (iii) recalculation of the pooled RR after filing these data as if they had actually existed. Two-sided \(P < 0.05 \) was considered statistically significant. All analyses were based on statistical software STATA version 14 (STATA Corp., College Station, TX, USA).

Results

Literature Searches

Appendices 5 and 6 are flow charts describing the procedures for selecting studies that examined new-onset HF and recurrent HF, respectively. Among studies kept for further review after excluding studies at the title and abstract level, it was impossible to judge whether three of these studies were eligible. In one of these, it was unclear whether the reason for re-hospitalization was HF; in another, the 95% CI of the RR to calculate its corresponding standard error (SE) was not presented, and in the third, the RR could not be calculated because of incorrect data on DM status (i.e. DM/impaired
Table 1: Characteristics of studies that examined the risk of new-onset heart failure in relation to diabetes mellitus

Study source	Design	Cohort name/affiliation	Population	% men	Age	n	Cases	Dur years	% LOF	Risk	DM	HF	Endpoint	
Chen (2019)^97	C	MAX General patients	7	40.0	2.4 \times 10^5	1318	1.8	?	RR	R	R	Hosp		
Fogarassy (2019)^86	C	Hungarian NCR Breast cancer	1	58.1	8068	N/A	5.9	0	OR	R	R	Dx		
Magnussen (2019)^99	C	BiomarCaRE General	48	49.5	78 657	5170	12.7	?	HR	S	R	S/R	Dx	
Winell (2019)^98	C	Finnish NHRD and CDR General	—	—	3.0 \times 10^6	3.0 \times 10^5	17	0	RR	R	R	Dx		
Chen (2018)^92	C	NHI in Taiwan General	53	60.4	68 582	8420	7.9	0	HR	R	R	Hosp		
Eggimann (2018)^33	C	BEAT-AF AF	30	68	951	60	3.9	?	HR	S	M	Hosp		
Gong (2018)^34	C	SCREEN-HF Patients at high risk of HF	55	69	3847	162	5.6	22	HR	S	M	Hosp		
Lamblin (2018)^91	C	CORONOR CHD	78	66.0	3785	211	5	2	HR	M	M	Hosp		
LaMonte (2018)^42	C	WHI Post-menopausal	0	63	1.4 \times 10^5	2516	8.0	?	RR	S	S	Hosp		
Larson (2018)^98	C	The 2 cohorts in Sweden General	53	59.9	71 236	4246	17	?	HR	R	R	Hosp		
McAllister (2018)^90	C	Scottish DM Register General	47	53.2	3.2 \times 10^6	1.2 \times 10^5	10	0	RR	R	R	Hosp		
Rosengren (2018)^95	C	NDR, Sweden General	55	62	1.6 \times 10^6	6.9 \times 10^4	5.6	1-5	HR	R	R	Hosp		
Wandel (2018)^96	C	PHC in Stockholm AF	55	74	9424	2259	5.4	0	HR	R	R	Dx		
Wellings (2018)^37	C	MIDAS CHD	35	63	1.1 \times 10^5	—	5.0	0	HR	R	R	Hosp		
Agarwal (2017)^26	C	HCUP General patients	42	50.2	1.7 \times 10^7	2.0 \times 10^5	5.0	0	RR	R	R	Hosp		
Ballotari (2017)^44	C	REDR General	49	50	3.6 \times 10^5	2321	3.0	0	RR	R	R	Hosp		
Chatterjee (2017)^29	T	WHS AF	0	69	1495	187	20.6	0	HR	S	S	Dx		
Jacobs (2017)^97	C	HOMAGE General/high risk patients	49	74.5	10 236	470	3.5	0	HR	?	M	Hosp		
Kim (2017)^40	C	Explorys Platform General patients	46	—	4.5 \times 10^7	9.9 \times 10^4	10.0	0	OR	M	M	Dx		
Pandey (2017)^43	C	ORBIT-AF AF	56	74	6545	236	2.0	4	RR	R	R	M	Dx	
Policardo (2017)^44	C	Tuscany Regional Health Care System General	—	—	—	2.6 \times 10^4	5.0	0	RR	R	R	Hosp		
Zhang (2017)^31	C	Montefiore Medical Center Diastolic dysfunction	37	68	7878	833	5.5	?	HR	R	R	Dx		
Eaton (2016)^28	C	WHI Post-menopausal	0	64	42 170	1952	13.2	?	HR	S	S	Hosp		
Goldharp (2016)^5	C	Ontario Cancer Registry Breast cancer	0	52	19 074	—	5.9	?	HR	R	R	Dx		
Ho (2016)^29	C	FHS/ PREVEND/ CHS General	46	60.1	22 142	1745	12.2	0	HR	R	R	Dx		
Sahle (2016)^46	T	ANBP-2 HT	59	84	6083	373	10.8	?	HR	M	M	Dx		
Silverman (2016)^30	C	MESA General	53	62	6742	257	11.2	?	HR	M	M	Dx		
Chahal (2015)^97	C	MESA General	47	62	6814	176	7.1	?	HR	S	M	Dx		
Donneguy (2015)^48	T	CaD trial Post-menopausal	0	63	35 983	744	7.1	0	RR	?	S	Hosp		
Qin (2015)^99	C	UHCMC Breast cancer	0	53	1153	120	7.6	29	RR	R	R	Dx		
Shah (2015)^20	C	CALIBER General	49	47	1.9 \times 10^6	1.4 \times 10^4	5.5	?	HR	R	R	Dx		
Miao (2014)^47	C	MIMIC II ICU patients	—	58.4	3048	555	1	0	HR	M	R	Dx		
Wong (2014)^51	C	UPMC suspected HD	59	55	1176	46	1.3	?	RR	M	M	Dx		
Brouwers (2013)^52	C	PREVEND RD	50	50	8569	374	11.5	?	HR	M	M	Dx		
Ho (2013)^53	C	The 2nd FHS General	46	50.0	1.2 \times 10^4	512	7.7	0	HR	M	M	Hosp		
Hung (2013)^100	C	NHMD CHD	70	63.7	15 464	1024	1	13	OR	R	R	Dx		
Potpara (2013)^34	C	Belgrade Atrial Fibrillation Study AH	63	52	842	83	11.2	0	HR	?	M	M	Dx	
Qureshi (2013)^55	C	Henry Ford Health System LT	52	53	970	98	5.3	0	RR	M	M	Dx		
Agarwal (2012)^96	C	ANIC General	45	54	13 555	1487	15.5	?	HR	S	M	M	Hosp	
Study source	Design	Cohort name/affiliation	Population	% men	Age	n	Cases	Dur years\(^b\)	% LOF	Risk	DM	HD	HF	Endpoint
------------------	--------	-------------------------	------------	-------	-----	---	------	----------------	------	------	---	---	---	----------
Nakajima (2012)	C	J-ACCESS RD\(^d\)	64	66	2395	64	3.00	?	RR	M	M	M	M	Hosp
Sato (2012)	C	Okayama RCH CHD\(^d\)	73	68.8	197	23	1.0	0	RR	M	S/M	Hosp		
Shafazand (2011)	C	Swedish NHDR CHD\(^d\)	64	68.9	1.8 × 10\(^3\)	43,034	3.0	0	HR	R	R	R	M	Hosp
Roy (2011)	C	CHS General	42	73	5464	1134	13.0	?	HR	M	S	S	Dx	
de Simone (2010)	C	SHS phase I General	64	56	2740	291	11.9	?	RR	M	M	M	Dx	
Goyal (2010)	C	One Million Person-Year Follow-up Study	47	38	3.6 × 10\(^5\)	4,001	2.9	?	RR	R	R	Dx		
Smith (2010)	C	MDCS General	41	58	5,135	112	13.8	1	HR	S/M	R	Dx		
van Melle (2010)	C	Heart and Soul Study CHD	82	67	839	77	4.1	0	HR	S	S	Hos		
Bibbins-Domingo (2009)	C	CARDIA General	44	24	2,637	26	20.0	28	HR	R	M	M	Hosp	
Kenchaiah (2009)	C	PHS Physicians	100	53	21,094	1,109	20.5	?	RR	S	S	Dx		
Leung (2009)	C	Saskatchewan Health beneficiaries General	51	63	5.6 × 10\(^5\)	2,293	1.1	?	RR	R	R	Dx		
Lewis (2009)	T	PEACE CAD	82	64	8,211	268	4.8	1	HR	R	R	Hosp		
Ruigomez (2009)	C	GPRD in 1996, UK General	47	64	9,057	386	3.6	0	HR	R	M	Dx		
Nafaji (2008)	C	Perth MONICA Register CHD\(^d\)	15	54.5	3,109	406	14.4	0	HR	M	R	Dx		
Akens (2007)	T	VALUE HT	58	66	15,245	754	4.2	?	RR	M	M	Hosp		
Fukuda (2007)	T	Cardiovascular Institute Hospital AF	77	64	2,484	16	4.1	?	RR	R	M	Hosp		
Held (2007)	T	ONTARGET/TRANSCEND CHD\(^d\)	70	67	30,798	668	2.4	2	RR	M	M	Hosp		
Ito (2007)	T	Nagoya City Higashi Municipal Hospital RD\(^d\)	64	57	100	6	4.7	?	RR	M	M	Hosp		
Ingelsson (2005)	C	ULSAM General	100	50	2,321	259	28.8	?	HR	M	R	Dx		
Lentine (2005)	C	USRDS RD\(^d\)	47	27,011	-	3.0	?	HR	R	R	Dx			
Bibbins-Domingo (2004)	T	HERS CHD\(^d\)	0	67	2,391	237	6.3	?	HR	S	M	Hosp		
Nichols (2004)	C	KPNW General	48	63	17,076	1,693	4.7	?	HR	R	R	Dx		
Wylie (2004)	T	OPUS-TIMI 16 CHD\(^d\)	60.5	4681	254	0.8	?	OR	?	M	Dx			
Lewis (2003)	T	CARE CHD\(^d\)	87	58	3,860	243	5.0	?	HR	?	M	Hosp		
Rigatto (2002)	C	University of Manitoba RD\(^d\)	62	38	638	63	8.9	?	RR	M	M	Dx		
Williams (2002)	C	YHAP General	42	74.3	2,176	N/A	14.3	13	HR	S	M	Dx		
Abramson (2001)	T	SHEP HT	57	71.6	4,538	156	4.5	?	HR	S	M	Dx		
He (2001)	C	HHANES-I General	41	50	13,643	1,382	19.0	4	HR	S	R	Hosp		
Johansson (2001)	C	GPRD in 2000, UK General	52	72	5,000	938	1.0	0	RR	R	M	Hosp		
Wilhelmsen (2001)	C	MPPS General	100	52	7,495	937	27.0	12	OR	S	R	Hosp		
Aronow (1999)	C	Hebrew Hospital General	32	81	2,893	794	3.6	?	HR	M	M	Dx		
Chen (1999)	C	New Haven Cohort General	41	74	1,749	173	7.9	13	HR	S	M	Hosp		
Kannel (1999)	C	FHS General	42	63	15,267	486	38.0	0	OR	M	M	Dx		
Harnett (1999)	C	Royal Victoria Hospital, Montreal RD\(^d\)	65	48	299	76	3.4	2	RR	M	M	Dx		

Abbreviations: —, no data; ?, unclear; AF, atrial fibrillation; C, cohort; CHD, coronary heart disease; CKD, chronic kidney disease; Dur, duration of follow-up; Dx, diagnosed as HF; HD, heart diseases; HDL-C, high-density lipoprotein cholesterol; HL, hyperlipidaemia; Hosp, hospitalization due to HF; HR, hazards ratio; HT, hypertension; ICU, intensive care unit; LOF, lost to follow-up; M, medical records; N/S, not specified; OR, odds ratio; R, registry; RD, renal diseases, RR, calculated risk ratio (not HR); S, self-report; T, trial; TLV, administration of tolvaptan. Abbreviations of cohort names: ANBP-2, Second Australian National Blood Pressure Study; ARIC, Atherosclerosis Risk in Communities study; BEAT-AF, Basel Atrial Fibrillation Cohort Study; BiomarCaRe, Biomarker for Cardiovascular; CaD, Vitamin D plus calcium; CALIBER, Carbohydrates, Lipids and Biomarkers of Traditional and Emerging Cardiometabolic Risk Factors; CARDIA, Coronary Artery Risk Development in Young Adults Study; CARE, Cholesterol And Recurrent Events; CDR, Causes of Death Register; CHS, Cardiovascular Health Survey; CORONOR, suivi d’une cohorte de patients COROnariens stables en région NORd-pas-de-Calais; CRIC, Chronic Renal Insufficiency Cohort; FHS, Framingham Health Study; GPRD, General Practice Research Database; HCUP, Healthcare Cost and Utilization Project; Health ABC, Health ABC, Health, Aging, and Body Composition Study; HERS, Heart and Estrogen/progestin...
glucose tolerance/normal glucose tolerance). We contacted the authors of these studies to clarify these points but received no response. Thus, we did not include those studies in our analysis. Finally, there were 74 studies in which we could estimate RRs for new-onset and recurrent HF, respectively, in relation to DM. One study examined both new-onset and recurrent HF risk.

Study characteristics

Characteristics of 74 eligible studies of the risk for incident new-onset HF are shown in Table 1. Ten studies involved studies that were originally trials but were subsequently treated as cohort studies. Most included studies did not differentiate type 1 and type 2 DM. Exceptionally, 10 studies limited DM patients to those with type 2 DM. One differentiated type 1 from type 2 DM. Ranges (median) of mean age and follow-up duration in the participants of included studies were from 24 to 84 years (62 years) and from 0.8 to 38 years (5.6 years), respectively. Median of proportion of men was 49%. As to the endpoint, 44 studies involved studies that were limited the DM patients to type 1 DM.

Table 2 shows characteristics of the 38 eligible studies that examined the risk for recurrent HF. In comparing those 38 studies with the 74 studies that examined risk for new-onset HF, the study population was relatively old (mean, 67 years; range, from 54 to 79 years), follow-up duration was relatively short (median, 2.0 years; range, from 0.8 to 7.0 years), and the proportion of men was higher (median, 68%) in the 38 studies.

Overall analysis of new-onset heart failure risk in relation to diabetes mellitus

Among the 74 studies of the risk for incident new-onset HF, in four the outcome was separated into HfPeF and HFrEF.
Study source	Cohort name/affiliation	Design	Population	EF	% men	Age	n	Cases	Dur	LOF	Risk	DM	HF	Endpoint
Kim (2019)	KorHF	C	N/S	N/S	50	67	3162	863	1.5	?	HR	R	?	Hosp
Chen (2018)	Sun Yat-sen University	C	N/S	N/S	66	64.9	587	384	7.0	?	RR	M	M	Hosp
Cooper (2018)	HA-ACTION	T	N/S	↓	77	59	6214	243	1.0	?	HR	M	R	Hosp
Iorio (2018)	Cardiomet® in Trieste	T	N/S	N/S	75	77	2314	510	2.6	?	HR	M	R	Hosp
Kristensen (2018)	ATMOSPHERE	T	N/S	↓	78	63	7016	1324	2.7	1	RR	M	R	Hosp
Retwinski (2018)	ESC-HF-LT	C	N/S	N/S	70	65.3	1080	377	1.0	0	RR	M	S/M	Hosp
Rorth (2018)	DNPR	T	N/S	N/S	74	69	3385	437	3.4	?	RR	S	R	Hosp
Sandesara (2018)	TOPCAT	C	N/S	N/S	66	64	587	384	7.0	?	RR	M	M	Hosp
Takimura (2018)	ESC-HF-LT	C	N/S	N/S	72	72	9428	437	3.4	?	RR	M	S	Hosp
Dauriz (2017)	Local Health Department	C	N/S	N/S	45	77	8816	510	2.6	1	RR	M	R	Hosp
Farre (2017)	Catasotal	T	N/S	N/S	78	63	7016	1324	2.7	1	RR	M	R	Hosp

Table 2 Characteristics of studies that examined risk of recurrent heart failure in relation to diabetes mellitus

Methods

Cohort name abbreviations: ACMC, Advocate Christ Medical Center; ATMOSPHERE, Aliskiren Trial of Minimizing Outcomes for Patients with Heart Failure; BEST, Beta-blocker Evaluation of Survival Trial; CHARM, Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity programme; CHART-2, Chronic Heart Failure Analysis and Registry in the

Abbreviations: —, no data; ?, unclear; C, cohort; CRT, cardiac resynchronization therapy; Dur, duration of follow-up; EF, ejection fraction; Hosp, hospitalization due to HF; HR, hazards ratio; ICD, implantable cardioverter–defibrillator; LOF, lost to follow-up; LVAD, left ventricular assist device placement; M, medical records; N/S, not specified; NYHA, New York Heart Association class; OR, odds ratio; R, registry; RR, calculated risk ratio (not HR); S, self-report; T, trial; worse, worsening of HF.
Meaning that the study was originally designed as a trial but then was treated as a cohort study.

Methods for confirmation of DM and HF.

Mean of median follow-up duration is indicated.

Excluding seven hypothetically unpublished studies that caused inflation of RR. After these hypothetical studies were included, the RR was slightly deflated to 1.33 (95% CI, 1.27–1.40).

Sensitivity analysis of new-onset heart failure risk in relation to diabetes mellitus

There was large between-study heterogeneity ($I^2 = 99.7\%$, $P < 0.001$) (Figure 1). Table 3 shows the results of sensitivity analyses wherein the 69 studies shown in Figure 1 were stratified according to key study characteristics (Table 1). Although a weaker association was observed in limiting the analysis to studies that adjusted the RR for new-onset HF for age and CHD compared with those without those adjustments, the pooled RR was significant regardless of the adjustment [RR (95% CI), 1.78 (1.70–1.87) vs. 2.71 (2.26–3.25)]. In
studies of a population with a mean age < 60 years, the RR was larger for new-onset HF [pooled RR (95% CI), 2.60 (2.38–2.84)] than in studies with a population having a mean age ≥ 60 years [pooled RR (95% CI), 1.95 (1.79–2.13)]. Meta-regression analysis indicated that the difference in mean age of the study population significantly explained the between-study heterogeneity in the RR (P < 0.001).

Stratified analyses of recurrent heart failure risk in relation to diabetes mellitus

Similar to new-onset HF risk, there was large between-study heterogeneity (I² = 80.1%, P < 0.001) (Figure 3). Results of

mean age of the study population significantly explained the between-study heterogeneity in the RR (P < 0.001).

Stratified analyses of recurrent heart failure risk in relation to diabetes mellitus

Similar to new-onset HF risk, there was large between-study heterogeneity (I² = 80.1%, P < 0.001) (Figure 3). Results of
sensitivity analyses of recurrent HF risk in which the 38 included studies were stratified according to key study characteristics (Table 2) are presented in Table 4. A relatively large association was observed when analysing only studies with proportions of men < 65% [pooled RR (95% CI), 1.53 (1.40–1.68)] compared with studies having ≥65% men [pooled RR (95% CI), 1.32 (1.25–1.39)]. The effect of the proportion of men on between-study heterogeneity in the RR for recurrent HF was statistically significant (P = 0.01). Studies limiting participants to those having HF with HFP EF
Table 3 Stratified analysis of risk ratio for new-onset heart failure in relation to diabetes mellitus using pre-specified study characteristics

Variable	n	RR (95% CI)	P value for RR	I² (%)	P value for I²	Meta-regression
Total	106	2.14 (1.96–2.34)	<0.001	99.7	<0.001	
Follow-up period						
≥6 years	56	2.40 (2.14–2.68)	<0.001	97.0	<0.001	
<6 years	50	1.94 (1.69–2.23)	<0.001	99.6	<0.001	0.01
Study design						
Trial	10	2.15 (1.62–2.86)	<0.001	93.0	<0.001	
Non-trial	96	2.14 (1.95–2.35)	<0.001	99.5	<0.001	0.92
Mean age						
≥60 years	64	1.95 (1.79–2.13)	<0.001	98.2	<0.001	
<60 years	52	2.60 (2.38–2.84)	<0.001	96.5	<0.001	0.001
% men						
≥50%	53	2.03 (1.76–2.35)	<0.001	99.3	<0.001	0.11
<50%	51	2.33 (1.99–2.72)	<0.001	99.4	<0.001	
Risk adjustment						
Both age and CHD	64	1.78 (1.70–1.87)	<0.001	91.7	<0.001	<0.001
Endpoint						
Only hospitalization due to HF	49	2.34 (2.11–2.60)	<0.001	97.5	<0.001	
Including non-hospitalizations for HF⁴	57	1.96 (1.73–2.23)	<0.001	99.6	<0.001	0.02
Underlying diseases						
Non-hospital-based study⁵	67	2.30 (2.02–2.62)	<0.001	99.6	<0.001	
RD	7	1.99 (1.36–2.93)	<0.001	80.8	<0.001	0.23
AF	7	1.45 (1.32–1.59)	<0.001	26.8	0.22	0.045
CHD	12	1.94 (1.77–2.12)	<0.001	79.9	<0.001	0.41
breast cancer	3	1.69 (1.44–1.97)	<0.001	50.8	0.13	0.32
HT	3	2.08 (1.40–3.11)	<0.001	81.7	0.004	0.70
Others⁶	7	1.99 (1.32–3.00)	0.001	98.0	<0.001	0.40

Abbreviations: AF; atrial fibrillation; CHD, coronary heart disease; HT, hypertension; RD, renal disease.

*Cohort study that was originally designated as a trial.

Total number of data was different from the other stratified analyses because in this stratified analysis, priority for data extraction was given to data based on subgroup analysis according to age instead of gender if a study provided data on subgroup analysis based on both age and gender. In the other stratified analyses, priority for data extraction was given to data based on the subgroup analysis based on gender.

Data were not available in two studies.⁴⁰,⁷³

*Including community-based study or specific populations such as post-menopausal, nurses, and physicians.

*Multivariate regression analysis was performed.

*Including non-specified diseases (i.e. hospital-based study), preclinical cardiac dysfunction, after liver transplantation, patients at high risk of vascular diseases, and suspected heart diseases.

Table 4 Stratified analysis of risk ratio for recurrent heart failure in relation to diabetes mellitus using pre-specified study characteristics

Variable	n	RR (95% CI)	P value for RR	I² (%)	P value for I²	Meta-regression
Total	47	1.39 (1.33–1.45)	<0.001	80.1	<0.001	
Follow-up period						
≥2 years	30	1.41 (1.32–1.49)	<0.001	85.6	<0.001	
<2 years	17	1.34 (1.26–1.43)	<0.001	64.5	0.04	0.65
Study design						
Trial	14	1.47 (1.28–1.70)	<0.001	91.0	<0.001	
Non-trial	33	1.33 (1.28–1.38)	<0.001	56.9	<0.001	0.23
Mean age						
≥65 years	33	1.41 (1.34–1.49)	<0.001	79.6	<0.001	
<65 years	14	1.34 (1.23–1.47)	<0.001	82.0	<0.001	0.41
Men						
≥65%	30	1.32 (1.25–1.39)	<0.001	72.0	<0.001	
<65%	17	1.53 (1.40–1.68)	<0.001	87.0	<0.001	0.01
Risk adjustment						
Both age and CHD	27	1.36 (1.30–1.41)	<0.001	73.2	<0.001	
Failure in adjustment for age and/or CHD	20	1.46 (1.28–1.67)	<0.001	85.4	<0.001	0.36
Endpoint						
Only hospitalization due to HF	2	1.24 (1.12–1.37)	<0.001	67.5	0.08	

(Continues)
showed a larger RR [pooled RR (95% CI), 1.73 (1.32–2.26)] than did studies of only those having HF with HFrEF [pooled RR (95% CI), 1.37 (1.24–1.50)] or when the EF was not specified among HF patients [pooled RR, 1.33 (1.28–1.38)]. Limiting patients to those with HFrEF significantly explained study heterogeneity in the RR for recurrent HF (P = 0.002). Analysis of only studies that adjusted the RR for age and CHD showed that the RR for recurrent HF remained significant [pooled RR, 1.36 (1.30–1.41)].

Discussion

This meta-analysis is the first to separately assess the risk of new-onset and recurrent HF in individuals with DM. Current results confirm that DM is a significant risk factor for both new-onset and recurrent HF. The explanation for these results is that impaired insulin signalling is associated with early changes in the heart such as cardiac stiffness, hypertrophy, and fibrosis.9

Given that diastolic dysfunction is the first hallmark of diabetic cardiomyopathy,9 the risk magnitude for HF in individuals with DM would be larger for HFrpEF than for HFrEF. That is because among those with HF, the proportion of HFrpEF was greater than that of HFrEF in individuals with than without DM. However, the current meta-analysis revealed no difference in the magnitude of risk between HFrpEF and HFrEF. One plausible explanation is that it is difficult to detect the HF in the early stage that is classified as HFrEF, which specifically occurs in patients with DM.

The stratified analysis by the study population’s mean age suggested that the risk magnitude of new-onset HF in relation to DM was especially large in relatively young study populations (i.e. in the current meta-analysis, ≤60 years). Thus, individuals with DM had a high risk of incident HF even if relatively young. A possible explanation is that the relative contribution of DM to HF is larger in the young than in the elderly, as the younger population has not yet experienced the health burdens of aging or age-associated conditions such as CHD, which might overwhelm the contribution of DM to HF. However, a further plausible explanation should be sought.

According to the results of the meta-regression analysis wherein the baseline EF status was an explanatory variable, it is suggested that the impact of DM on the risk of recurrent HF is relatively large in HF patients with HFrpEF. It is possible that individuals with DM had an especially poor prognosis as compared with those without DM in terms of recurrent HF when the EF is preserved. This possibility is supported by the RELAX (Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity) study reporting that impaired exercise capacity, increased left ventricular hypertrophy, high prevalence of co-morbidities, and increased biomarkers of fibrosis, oxidative stress, inflammation, and vasoconstrictions in HFrpEF patients with DM could contribute to adverse outcomes.141 Differences in these cardiovascular phenotypes between patients with and without DM were notable among HF cases, in particular HFrpEF, indicating that HFrpEF is a heterogeneous syndrome.142

Results of the stratified analysis according to the proportion of men (65%) suggested that the impact of DM on the risk of recurrent HF was stronger in women than in men. This could be explained by deficiencies in managing HF rather than susceptibility of women with DM to recurrent HF. The Euro Heart Survey on Heart Failure indicated that, compared with men, women were less often treated with drugs proven to reduce

Variable	n	RR (95% CI)	P value for RR	I² (%)	P value for I²	Meta-regression
Including non-hospitalizations for HF	45	1.40 (1.33–1.46)	<0.001	81.5	<0.001	0.52
Special characteristics						
Non-specified	36	1.33 (1.30–1.35)	<0.001	83.2	<0.001	0.9
After CRT and/or LVAD implantation	8	1.41 (1.24–1.61)	<0.001	51.9	0.04	0.88
After AMI	2	1.25 (1.05–1.48)	0.01	67.5	0.08	0.26
Others	2	1.66 (1.26–2.18)	<0.001	0.0	0.4	0.45
EF status						
Non-specified	24	1.33 (1.28–1.38)	<0.001	59.6	<0.001	0.9
Reduced EF	17	1.37 (1.24–1.50)	<0.001	80.4	<0.001	0.82
Preserved EF	6	1.72 (1.32–2.26)	<0.001	86.7	<0.001	0.02

Abbreviations: AMI, acute myocardial infarction; CHD, coronary heart disease; CRT, cardiac resynchronization therapy; EF, ejection fraction; LVAD, left ventricular assist device.

Cohort study that was originally designated as a trial.

Data based on the subgroup analysis according to age instead of gender were used.

Worsening of HF that did not lead to hospitalization.

Because one study124 was included in the two categories indicated as #, total number of data (n = 47) in this stratified analysis was different from that in the overall analysis.

Number of data and RRs are not consistent with those in the text because a sub-cohort study wherein the cohort was limited to patients having underlying diseases indicated as was excluded from this stratified analysis if the original cohort study existed.

Including patients on dialysis (1 study) and who were administered tolvaptan (1 study).

Multivariate regression analysis was performed.
mortality such as angiotensin-converting enzyme inhibitors, beta-blockers, and spironolactone.143 In addition, women were less likely to undergo assessment of left ventricular function.143 Another explanation is that, in comparison with men, women have less potential to benefit from management of HF rather than to suffer from deficiencies in management, because women have a higher proportion of HFpEF,144 for which no effective treatment with a high grade of evidence has been identified.145

Several limitations should be addressed. First, the follow-up period varied among studies, which could affect study results. Second, a meta-analysis of observational studies generally elicits a low grade of evidence. Furthermore, according to the method for assessing the quality of evidence,146 our findings of large between-study heterogeneity and statistically significant publication bias might have further downgraded the quality of evidence. However, regarding the suspected publication bias, the RR that was deflated by the adjustment for publication bias was modest. It is unlikely that we need to change the general conclusions. Third, in most studies, type 2 DM was not differentiated from type 1 DM, although most patients with DM have type 2 and many features of cardiac phenotypes are shared by type 1 and type 2 DM.147 In addition, we could not perform sensitivity analyses based on characteristics of patients with DM at baseline such as duration of DM, haemoglobin A1c, and hypoglycaemic medications including insulin use as most studies lacked these data. These characteristics could substantially affect the results. Fourth, hospitalization has a narrower range of endpoints involved in HF outcomes than a doctor’s diagnosis or self-report of HF that did or did not lead to hospitalization due to HF. The characteristics of endpoints could modify the impact of DM on the risk of HF given that the HF cases with DM were more likely to have experienced hospitalization than those without DM.142 Lastly, as is inherent to the nature of study-level meta-analyses, degrees of confounder adjustments across the included studies varied, which hampers a comprehensive assessment of the impact of a risk factor (i.e. DM in this meta-analysis) on the outcome (i.e. new-onset and recurrent HF in this meta-analysis).

Conclusions

The present results indicate that DM is a significant risk factor for both new-onset and recurrent HF. It is suggested that the risk magnitude is large for new-onset HF especially in young populations and for recurrent HF especially in women or those with HFpEF. These findings help to specify the populations that should be the focus of preventive strategies for DM-related HF. It is also indicated that DM is associated with future HFpEF and HFrEF to the same extent, which could possibly be explained by a current finding that HF in the early stage in patients with DM is difficult to detect.

Acknowledgements

All authors thank Ms. Haga and Ms. Chino in the Niigata University for their excellent secretarial work.

Conflict of interest

None declared.

Author Contributions

All authors conceived and designed the research; S.K., K.F., C. H., T.S., and M.I. acquired the data; S.K., K.K., and H.So. analysed the data; S.K. drafted the manuscript; and S.K., T. Y., K.K., K.W., H.Sh., T.I., and H.So. interpreted the results and made critical revision of the manuscript for important intellectual content. All authors approved the submission of the final manuscript.

Funding

The study was funded by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (ID: 19K12840). The sponsor had no influence over the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

Appendix 1: Study keywords used for electronic literature searches

S1 (retrospective OR retrospectively OR longitudinal OR prospective OR prospectively OR cohort OR followup OR follow-up OR “follow up” OR period OR observation OR observational OR concurrent) AND (study OR studies)
S2 "odds ratio" OR "OR" OR "RR" OR "relative risk[*1]" OR "hazard ratio[*1]" OR (incident OR incidence) AND rate[*1] OR person-years OR “person years” OR “risk ratio[*1]”
S3 ti((failure OR insufficiency OR decompensation OR incompetence) AND (heart OR cardiac OR myocardial) OR "congestive failure" OR (diabetic AND (heart OR myocardial OR cardiomyopath[*3])))
S4 MJEMB ("heart failure") OR MJEMB ("congestive heart failure") OR MJMESH ("Heart Failure") OR (MJMESH ("Diabetes Complications") AND MESH ("Heart Failure"))
S5 S4 OR S3

ESC Heart Failure 2020; 7: 2146–2174
DOI: 10.1002/ehf2.12782
Appendix 2: Study inclusion criteria

1) Cohort study

We also considered a study that was originally designed as a trial such as a randomized controlled trial but then treated as a cohort study.

2) Diabetes status [i.e. whether a participant had diabetes mellitus (DM) or not] of all participants was ascertained before the follow-up period.

Even if the type of design was a cohort study, a study that concurrently examined whether the participants developed DM and whether they developed HF was excluded.

3) At least 6 months of follow-up

The interest of this study is the chronic effect of DM. Therefore, studies whose outcome was incident early-onset HF (e.g. HF occurring during hospitalization due to coronary heart disease) were excluded.

4) Exposure is having DM at baseline.

Every participant in the risk group had to have DM at baseline. For example, studies were excluded in which the risk group, that is, participants with impaired fasting glucose/impaired glucose tolerance (IFG/IGT), were combined with those with DM.

5) Referent is not having DM at baseline.

Studies had to include only participants who did not have DM at baseline. For example, studies were excluded that only included individuals with normal glucose tolerance (i.e. excluded those with IFG/IGT).

Appendix 3: Remarks on data extraction in this meta-analysis

If two or more risk indicators with different degrees of adjustments for confounding factors were provided within one study, we extracted the most fully adjusted risk indicators in the individual study. If both overall and subgroup analyses (e.g. age, gender, and age and gender) were performed in an individual study, the most finely stratified data (i.e. age and gender in the above example) were extracted. If the risk indicators were provided for each subgroup into which the participants were classified by either gender or age, priority for the overall analysis was given to the data based on the subgroup analysis by gender. In this case, data based on the subgroup analysis by age, instead of those by gender, were used in subsequent stratified analyses.

When a study included participants with type 2 diabetes mellitus (DM) but excluded those with type 1 DM, we simply pooled the data on the risk for HF in individuals with type 2 DM with the data on the risk for HF in studies which type 1 and type 2 DM were combined because type 2 DM accounts for almost all individuals with DM. One study provided data on the risk for HF in individuals with type 1 DM and type 2 DM separately but did not provide data on the risk for HF wherein type 1 and type 2 DM were combined. In this case, we chose the data on type 2 DM.

Appendix 4: Study quality assessment using the Newcastle-Ottawa Quality Assessment Scale adapted for this meta-analysis

< For studies that examined the risk of new-onset heart failure (HF) in relation to diabetes mellitus (DM) >

S: Selection
S1. Representative of the cohort

a) Non-selected study population except for age and gender* #1
b) Specific characteristics (e.g. post-menopausal, specific occupation)
c) Specific underlying diseases (e.g. coronary heart diseases (CHD), renal diseases, atrial fibrillation)
d) Study design was originally a trial.
e) Non-selected patients

O2. Duration of follow-up
a) ≥6 years *
b) < 6 years

O3. Adequacy of follow-up of cohorts
a) Complete follow-up (i.e. lost to follow-up rate was zero)*
b) Not complete follow-up, but appropriate reasons for the lost to follow-up were described*
c) Neither complete follow-up nor description of appropriate reasons for the lost to follow-up
d) Follow-up rate was unclear
< For studies that examined the risk of recurrent HF in relation to DM >

S: Selection
1. Representative of the cohort
a) Typical patients with HF*
b) Typical patients with HF, but limited to patients within specific range of ejection fraction*
c) Specific characteristics (e.g. receiving cardiac resynchronization therapy or left ventricular assist device placement)
d) Specific underlying diseases (e.g. CHD)
e) Study design was originally a trial

2. Relationship between the analysis sample and the full cohort?
a) Equal*
b) Not equal

3. Confirmation of exposure (i.e. whether patients had DM at baseline)
a) Medical records* #2
b) Registry* (e.g. accessing study-specific database, using the code of the International Statistical Classification of Diseases)
c) Self-report/questionnaire
d) Unclear

4. Did the study confirm that the outcome (i.e. recurrent episode of HF) was not present at the beginning of the study? #3
a) Yes*
b) Unclear

C: Comparability
C1. Did the study control for the most important factors (i.e. age and CHD)?
a) Yes*
b) No

O: Outcome
O1. Ascertainment of outcome
a) Medical records (i.e. doctor’s diagnosis)
b) Registry* (e.g. accessing study-specific database, investigators’ reviews using the code of the International Statistical Classification of Diseases)
c) Self-report/questionnaire
d) Unclear

S2. Relationship between the analysis sample and the full cohort?
a) Equal*
b) Analysis sample was a random sample of the full cohort
c) The non-exposed cohort (i.e. individuals without DM) was selected for the exposed cohort (i.e. individuals with DM) (e.g. propensity-matched cohort)

S3. Confirmation of exposure (i.e. whether participants had DM at baseline)
a) Medical records* #2
b) Registry* (e.g. accessing study-specific database, using the code of the International Statistical Classification of Diseases)
c) Self-report/questionnaire
d) Unclear

S4. Did the study confirm that the outcome (i.e. incident heart failure) was not present at the beginning of the study? #3
a) Yes*
b) Unclear

C2. Specific characteristics (e.g. post-menopausal, specific occupation)
C3. Specific underlying diseases (e.g. coronary heart diseases (CHD), renal diseases, atrial fibrillation)
C4. Study design was originally a trial.
C: Comparability

1. Did study control for the most important factors (i.e. age and CHD)?
 a) Yes
 b) No

O: Outcome

1. Ascertainment of outcome
 a) Medical records (i.e. doctor’s diagnosis)
 b) Registry* (e.g. accessing study-specific database, investigators’ reviews using the code of the International Statistical Classification of Diseases)
 c) Self-report/questionnaire
 d) Unclear

2. Duration of follow-up
 a) ≥2.1 years*
 b) ≤2 years

3. Adequacy of follow-up of cohorts
 a) Complete follow-up (i.e. lost to follow-up rate was zero)*
 b) Not complete follow-up, but appropriate reasons for the lost to follow-up were described*
 c) Neither complete follow-up nor description of appropriate reasons for the lost to follow-up
 d) Follow-up rate was unclear

NOS scale consists of 7 criteria that are classified into the following 3 broad perspectives: S (Selection), C (Comparability), and O (Outcome). One star (*) corresponds to one point. Full score is 8.

#1 Including population that excluded participants with CHD at baseline.
#2 Including direct measurement of blood glucose levels by the study.
#3 Including direct measurement of blood glucose levels by the study.
#4 In meta-analysis of risk of recurrent HF, this criterion is not applicable. All studies were given one point.
Appendix 5: Flow chart describing procedures for selection of studies that examined the risk of incident new-onset heart failure (HF) in relation to diabetes mellitus (DM)

Abbreviation: CI, confidence interval
Appendix 6: Flow chart describing procedures for selection of studies that examined risk of recurrent heart failure (HF) in relation to diabetes mellitus (DM)
Appendix 7: Study confounders considered when the relationship between diabetes mellitus and new-onset heart failure was examined

Study source	Confounders
Chen (2019)	None
Fogarassy (2019)	Age, HT, CHD, stroke, cancer stage, chemotherapies, antihypertensive agents
Magnussen (2019)	Age, gender, smoking, BMI, HT, antihypertensive medication, TC
Winell (2019)	(Age), (gender)
Chen (2018)	Age, gender, region, CHD, coronary revascularization, medication
Eggimann (2018)	Age, BMI, valve surgery, arrhythmia intervention, QTc, BNP
Gong (2018)	Age, smoking, BMI, MI, OSA, NT-proBNP, Hb, calcium channel blocker
McAllister (2018)	(Age), (gender)
Lamblin (2018)	Age, BMI, HT, multi-vessel CAD, angina, AF, (CHD)
LaMonte (2018)	(Gender)
Larsson (2018)	Age, gender, BMI, education, (CHD), FH of MI, smoking, PA, HT, HL, alcohol, DASH diet score
Magnus (2018)	Age, (gender), income, education, marital status, duration of DM, stroke, CHD, AF, renal dialysis or transplantation
Winell (2018)	Age, gender, obesity, socio-demography, HT, valvular disease, cardiomyopathy, COPD, OSA
Chen (2018)	Age, gender, race, insurance, HT, (CHD), liver disease, CKD, dyslipidaemia
Eggimann (2018)	Age, gender, race, HT, CAD, AF, income, ventricular premature complexes
Goyal (2018)	(Gender)
McAllister (2018)	None
Lamblin (2018)	Age, (gender), race, assignment, smoking, PA, alcohol, BMI, SBP, HL, history of MI, CKD, (AF), medication
Rosengren (2018)	Age, (gender), income, education, (CHD), FH of MI, smoking, PA, HT, HL, alcohol, DASH diet score
Winell (2018)	Age, gender, BMI, education, (CHD), FH of MI, smoking, PA, HT, HL, alcohol, DASH diet score
Chen (2017)	Age, gender, smoking, obesity, HT, DM, dyslipidaemia, CHD
Ballotari (2017)	None
Chahal (2017)	Age, gender, smoking, BMI, SBP, HR, Cre, LVH, (CVD)
Goldhar (2016)	Age, gender, smoking, alcohol, BMI, HT, MI, LVH, LBBB (left bundle branch block)
Ho (2016)	Age, gender, smoking, BMI, HT, MI, LVH, LBBB (left bundle branch block)
Sahle (2016)	Age, gender, smoking, BMI, BP, CVD, eGFR, HDL
Silverman (2016)	Men: age, gender, race, HR, HT, BMI, TC, HDL, eGFR, IL-6, coronary artery calcium score, MI during follow-up, proBNP, Troponin T, LV mass index; women: age, gender, race, HR, HT, smoking, HDL, eGFR, IL-6, coronary artery calcium score, MI during follow-up, proBNP, troponin T, LV mass index
Zhang (2017)	Age, gender, socioeconomic status, race/ethnicity, HT, MI, PVD, cerebrovascular accident, pulmonary disease, RD, malignancy, Hb, Na, K, BUN, Cre, baseline EF medication
Eaton (2016)	Age, education, income, smoking, HT, AF, CHD, chronic lung disease, PA, medication, alcohol, other morbidities, anaemia
Goldhar (2016)	Age, gender, smoking, alcohol, BMI, HT, MI, LVH, LBBB (left bundle branch block)
Ho (2016)	Age, gender, smoking, alcohol, BMI, HT, MI, LVH, LBBB (left bundle branch block)
Sahle (2016)	Age, gender, smoking, BMI, BP, CVD, eGFR, HDL
Silverman (2016)	Men: age, gender, race, HR, HT, BMI, TC, HDL, eGFR, IL-6, coronary artery calcium score, MI during follow-up, proBNP, Troponin T, LV mass index; women: age, gender, race, HR, HT, smoking, HDL, eGFR, IL-6, coronary artery calcium score, MI during follow-up, proBNP, troponin T, LV mass index
Chahal (2017)	Age, gender, smoking, BMI, SBP, HR, Cre, LVH, (CVD)
Donneyong (2015)	None
Qin (2015)	None
Shah (2015)	Age, gender, smoking, deprivation, BMI, SBP, HDL, TC, statin, (CHD), antihypertensive drugs
Miao (2014)	Age, obesity, arrhythmias, PVD, pulmonary disease, pulmonary vascular disease, HT, hypothyroidism, CKD, LD, AIDS, weight loss, electrolyte disorders
Wong (2014)	None
Brouwers (2013)	Age, gender, obesity, HT, MI, smoking, AF, HL, Cre, cystatin C, UA, CRP, NT-proBNP, hs-TnT
Ho (2013)	Age, gender, HT, BMI, HR, MI, CHD, smoking, valvular disease, HDL, AF, LVH, LBBB
Hung (2013)	(CHD), age, gender
Potpara (2013)	Age, gender, medication
Qureshi (2013)	None
Agarwal (2012)	Age, gender, race
Nakajima (2012)	None
Sato (2012)	None
Shafazand (2011)	(CHD), smoking, HT, MVD
Roy (2011)	(CHD), age, gender, stroke, AF, valvular disease
de Simone (2010)	Multiple (65 characteristics)
Goyal (2010)	None
Smith (2010)	Age, gender, CHD, AF, valvular diseases

(Continues)
The confounder in parentheses indicates that the risk measure was adjusted for this confounder although the adjustment was not stated.

Abbreviations: ADL, activities of daily living; AF, atrial fibrillation; BMI, body mass index; AIDS, acquired immunodeficiency syndrome; BNP, brain natriuretic peptide; BP, blood pressure; CARP, coronary artery revascularization procedure; CHD, coronary heart disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; Cre, creatinine; CRP, C-reactive protein; CVA, cerebrovascular accidents; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; EF, ejection fraction; eGFR, estimated glomerular filtration rate; ESRD, end stage renal disease; FS, fractional shortening; GFR, estimated glomerular filtration rate; Hb, haemoglobin; HDL-C, high-density lipoprotein cholesterol; HL, hyperlipidaemia; HR, heart rate; hs-TnT, high-sensitivity troponin T; HT, hypertension; IL, interleukin; LAD, left atrial diameter; LBBB, left bundle branch block; LD, liver diseases; LDL-C, low-density lipoprotein cholesterol; LT, liver transplantation; LV mass, left ventricular mass; LVH, left ventricular hypertrophy; MI, myocardial infarction; MR-proANP, mid-regional pro-atrial natriuretic peptide; MR-proADM, Mid-regional pro-adrenomedullin; MVD, multi-vessel disease; NT-proBNP, N-terminal pro-brain natriuretic peptide; OSA, obstructive sleep apnoea; PA, physical activity; PP, pulse pressure; PVD, peripheral vascular disease; RD, renal diseases; rTPA, recombinant tissue plasminogen activator; SBP systolic blood pressure; TC, total cholesterol; UAE, urine albumin excretion; WC, waist circumference.

Study source	Confounders
van Melle (2010)	Age, gender, race, smoking, BMI, PA, LDL, SBP, MI during follow-up, LVEF, wall motion abnormality, diastolic dysfunction, CRP, medication (CHD)
Bibbins-Domingo (2009)	None
Kennaiah (2009)	Age, gender
Lewis (2009)	Age, BMI, MI, bypass surgery, HT, angina, GFR, LVEF, medication (CHD)
Ruigomez (2009)	Age, gender, AF, alcohol, smoking, BMI, HT, hyperlipidaemia, venous thromboembolism, CHD, cardiac diseases, COPD
Nafaji (2008)	Age, gender, smoking, HT, ECG, CARP, streptokinase or rTPA
Bibbins-Domingo (2004)	None
Nichols (2004)	Age, CHD, BNP, ECG, HR
Wylie (2004)	Age, PA, HT, previous MI, LVEF
Lewis (2003)	Age, DBP, CHD, systolic dysfunction, Hb, albumin, LV mass
Rigatto (2002)	None
Williams (2002)	Age, gender, HT, MI, PP, depression, functional limitations
Abramson (2001)	Age, gender, smoking, MI, angina, SBP, DBP, TC, HLD, ECG, trial group, ADL
He (2001)	Age, gender, race, CHD
Johansson (2001)	Age, smoking, BMI, hyperlipidaemia, prior dyspnea irrelevant to HT, prior co-morbidity (inc. CHD)
Wilhelmsen (2001)	Age, gender, smoking, alcohol, coffee, BMI, HT, (CHD)
Aronow (1999)	Age, gender, race, HT, (CHD)
Chen (1999)	Age, gender, PP, BMI, MI during follow-up
Kannel (1999)	Age, gender, SBP, LVH, heart rate, (CHD), valve disease
Harnett (1995)	Age, DBP, CHD, systolic dysfunction, Hb, albumin, LV mass

DOI: 10.1002/ehf2.12782
Appendix 8: Results of assessing quality of studies that examined the risk of new-onset heart failure in relation to diabetes mellitus based on the adapted Newcastle-Ottawa Scale (NOS). The criterion corresponding to each combination of a capital letter and a number is indicated in Appendix 4.

Study source	S1	S2	S3	S4	C1	O1	O2	O3	Score
Chen (2019)	1	0	0	1	1	0	0	0	3
Fogarassy (2019)	0	1	1	1	1	0	1	0	6
Magnusson (2019)	1	1	0	1	0	1	1	0	5
Winell (2019)	1	1	1	1	0	1	1	1	7
Chen (2018)	1	0	1	1	1	1	1	7	7
Eggimann (2018)	0	1	0	1	1	1	0	0	4
Gong (2018)	0	1	0	1	1	1	0	1	5
McAllister (2018)	1	1	1	1	0	1	1	1	7
Lamblin (2018)	0	1	0	1	1	0	0	0	5
LaMonte (2018)	0	1	0	1	1	1	0	1	3
Larsson (2018)	1	1	0	1	1	1	0	1	7
Rosengren (2018)	1	0	1	1	1	0	1	6	6
Cambell (2018)	1	1	1	1	1	0	0	1	7
Wellings (2018)	0	1	1	0	1	1	0	1	5
Agarwal (2017)	0	0	1	1	1	1	0	1	5
Ballotari (2017)	1	1	1	0	0	1	0	1	5
Chatterjee (2017)	0	1	0	1	1	1	0	1	5
He (2017)	1	1	1	1	1	0	0	1	6
Jacobs (2017)	0	1	0	1	1	1	0	1	5
Kim (2017)	0	1	1	1	1	1	1	7	7
Paney (2017)	0	1	1	1	0	1	1	1	7
Policardo (2017)	1	1	1	0	1	1	0	1	6
Zhang (2017)	0	1	1	1	1	1	0	0	5
Eaton (2016)	1	1	0	1	1	0	1	0	5
Goldhar (2016)	0	1	1	1	1	0	0	5	5
Ho (2016)	0	1	1	1	1	1	1	1	7
Sahle (2016)	0	1	1	1	1	1	1	0	6
Silverman (2016)	1	1	1	0	1	1	1	0	6
Chahal (2015)	1	1	0	0	1	1	1	1	0
Donnay (2015)	0	1	0	1	0	0	1	1	4
Qin (2015)	0	1	1	1	0	1	0	1	5
Shah (2015)	1	1	1	0	1	1	0	0	5
Miao (2014)	0	1	1	1	1	0	1	1	5
Wong (2014)	0	1	1	0	0	1	0	0	3
Brouwers (2013)	0	1	1	1	1	1	0	1	5
Ho (2013)	1	1	1	1	1	1	1	1	8
Hung (2013)	0	1	1	1	1	1	0	0	5
Potpara (2013)	0	1	0	1	0	1	1	1	5
Qureshi (2013)	0	1	0	1	0	1	0	1	4
Agarwal (2012)	1	1	1	1	0	0	1	0	6
Nakajima (2012)	0	1	1	1	0	1	0	0	4
Sato (2012)	0	1	1	0	0	1	0	1	4
Shafazand (2011)	0	1	1	1	1	0	1	0	6
Roy (2011)	1	1	1	1	1	0	0	1	6
de Simone (2010)	1	1	1	0	1	1	0	0	6
Goyal (2010)	1	1	0	1	1	1	0	0	6
Smith (2010)	1	1	1	1	1	1	0	1	7
van Melle (2010)	0	1	0	1	1	0	0	1	4
Bibbins-Domingo (2009)	1	1	1	0	1	1	7	7	
Kenchaiah (2009)	0	1	0	0	0	0	0	0	2
Leung (2009)	1	0	1	1	0	1	0	0	4
Lewis (2009)	0	1	1	1	1	0	0	5	5
Ruigomez (2009)	1	1	1	1	1	0	1	7	7
Nafaji (2008)	0	1	1	1	1	1	1	1	7
Aksnes (2007)	0	1	1	0	1	1	0	0	4

(Continues)
Appendix 9: Study confounders considered when the relationship between diabetes mellitus and recurrent heart failure was examined

Study source	Confounders
Kim (2019)	Age, (gender), BMI, SBP, HR, HT, CHD, Hb, Na, Cre, NT-proBNP, LVEF, medications
Chen (2018)	None
Cooper (2018)	Age, gender, race, BMI, SBP, HrR, NYHA, CHD, AF, PVD, COPD, CKD, ACE-I, ARB, diuretics
Kristensen (2018)	Age, gender
Retwinski (2018)	None
Rorth (2018)	Age, gender, education, IHD, AF, CKD, COPD, HT, stroke, cancer, medications
Sandesara (2018)	None
Takimura (2018)	Age, duration after previous HF, Hb, UA, LVEF, LAVI
Dauriz (2017)	Age, gender, smoking, BMI, SBP, eGFR, LVEF, IHD, HT, statin, stroke, COPD, Hb
Farre (2017)	Age, gender, recent HF, anaemia, valvular disease, IHD, CKD, dialysis, AF, cardiac conduction disorders, cancer, stroke, dementia, cirrhosis number of hospitalization, visits to emergency department
Kristensen (2017)	Age, gender, recent HF, LVEF, HrR, eGFR, NT-proBNP, neutrophils, COPD, MI, ischaemic origin
Mohamedali (2017)	None
Echouffo-Tcheugui (2016)	Age, gender, race, LVEF, NYHA, AF, ischaemic cardiomyopathy, ECG (LBBB, wide QRS), cardiac conduction disorders, HF duration, Cre, history of syncope, FH of sudden death, CHD, ventricular tachycardia medications
Kristensen (2016)	None
Ruizgomez (2016)	Age, gender, smoking, alcohol, BMI, residence, IHD, stroke, HT, AF, hyperlipidaemia, COPD, asthma, RD, visiting hospital in the previous year
Kaneko (2015)	Age, IHD, DBP, HrR, diuretics
Takeda (2015)	Age, NYHA, GFR, Na, BMI, anaemia, PVD, beta-blocker, ACE-Is, ARBs
Carrasco-Sanchez (2014)	Pulmonary congestion, previous HF, diuretics
Cubbon (2014)	None
Paoletti (2014)	Age, gender, smoking, BMI, SBP, HT, dyslipidaemia, LVEF, HrR, Hb, Cre, BNP, medications
Sakata (2014)	None
Lin (2013)	Age, gender, smoking, BMI, SBP, EF, Na, BUN, QRS duration, BNP/NT-proBNP, AF, HT, CKD, stroke, medications
Sarma (2013)	Obesity, HT, COPD, CKD, NYHA, right ventricular function, ischaemic aetiology of HF Propensity-matched for age, gender, smoking, BMI, SBP, DBP, HrR, others (multiple) (previous diseases, laboratory data, medications)
Verbrugge (2012)	(Continues)
Deedwania (2011)	(Continues)

Meta-analysis of diabetes and heart failure

DOI: 10.1002/ehf2.12782

ESC Heart Failure 2020; 7: 2146–2174
The confounder in parentheses indicates that the risk measure was adjusted for this confounder although the adjustment was not stated.

Abbreviations: ACE-Is, angiotensin-converting enzyme inhibitors; AF, atrial fibrillation; AMI, acute myocardial infarction; ARBs, angiotensin receptor blockers; BMI, body mass index; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; CHD, coronary heart disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; Cre, creatinine; DBP, diastolic blood pressure; EF, ejection fraction; eGFR, estimated glomerular filtration rate; FH, family history; Hb, haemoglobin; HL, hyperlipidaemia; HR, heart rate; hs-TnT, high-sensitivity troponin T; HT, hypertension; ICD, implantable cardioverter–defibrillator; LAVI, left atrial volume index; LBBB, left bundle branch block; LVAD, left ventricular assist device placement, LV mass, left ventricular mass; NT-proBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association classification; PIP, procollagen type 1; PVD, peripheral vascular disease; RD, renal diseases; SBP systolic blood pressure; TC, total cholesterol; UA, uric acid; VT, ventricular tachycardia.

Appendix 10: Results of assessing quality of studies that examined the risk of recurrent heart failure in relation to diabetes mellitus based on the adapted Newcastle-Ottawa Scale (NOS). The criterion corresponding to each combination of a capital letter and a number is indicated in Appendix 4.

Study source	Confounders
Martin (2011)	None
Aguilar (2010)	Age, gender, obesity, ischaemic origin, NYHA
Sze (2010)	Gender, NYHA, AF, wide QRS, HR, one of renal function indicators, beta-blocker, diuretics
MacDonald (2008)	32 covariates (including age, gender, smoking, SBP, DBP, NYHA, LVEF, HR, IHD, stroke, AT, pacemaker, various medications)
MacDonald (2008)	Age, (gender), co-morbidities (including CHD)
Ghali (2007)	None
Ruiz-Ruiz (2007)	None
Formiga (2006)	Age, gender, SBP, PIP
Garcia (2005)	None
Domanski (2003)	Age, gender, BMI, race, Cre, SBP, aetiology of HF, cholesterol, diuretics, vasodilators
Shindler (1996)	Age, gender, race, EF, aetiology of left ventricular dysfunction, NYHA
Harnett (1995)	Age, IHD, EF, Hb, albumin, DBP, LV mass

The confounder in parentheses indicates that the risk measure was adjusted for this confounder although the adjustment was not stated.
Meta-analysis of diabetes and heart failure

Study source	S1	S2	S3	S4	C1	O1	O2	O3	Score
Carrasco-Sanchez (2014)	1	1	1	1	1	1	0	1	7
Cubbon (2014)	1	1	1	1	0	1	0	1	6
Paoletti (2014)	0	1	1	1	0	1	0	1	6
Sakata (2014)	0	1	1	1	1	1	1	0	6
Larina (2013)	1	1	1	1	0	1	1	0	6
Sarma (2013)	0	0	0	1	1	1	0	0	4
Verbrugge (2012)	0	1	1	1	0	1	1	0	5
Deedwania (2011)	0	0	1	1	1	1	0	0	4
Martin (2011)	0	1	0	1	0	1	1	0	3
Aguilar (2010)	1	0	0	1	1	1	1	0	4
Sze (2010)	0	0	0	1	1	1	1	0	4
MacDonald (2008)	0	0	0	1	1	1	1	0	4
Macdonald (2008)	1	1	1	1	1	1	1	1	8
Ghali (2007)	0	1	0	1	0	1	0	1	4
Ruiz-Ruiz (2007)	1	1	1	1	0	1	1	0	6
Formiga (2006)	1	1	1	1	0	1	1	1	6
Garcia (2005)	1	1	0	0	1	1	1	0	4
Domanski (2003)	0	1	1	1	0	1	1	0	4
Shindler (1996)	0	0	0	1	1	1	1	0	4
Harnett (1995)	0	1	1	1	1	1	1	0	6

References

1. Roger VL. Epidemiology of heart failure. *Circ Res* 2013; 113: 646–659.
2. Yang H, Negishi K, Otaiali P, Marwick TH. Clinical prediction of incident heart failure risk: a systematic review and meta-analysis. *Open Heart* 2015; 2: e000222.
3. Wolinsky FD, Smith DM, Stump TE, Overhage JM, Lubitz RM. The sequelae of hospitalization for congestive heart failure among older adults. *J Am Geriatr Soc* 1997; 45: 558–563.
4. Rawshani A, Rawshani A, Franzen S, Sattar N, Elissau B, Svensson AM, Zethelius B, Miftaraj M, McGuire DK, Rosengren A, Gudbjornsdottr S. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. *N Engl J Med* 2018; 379: 633–644.
5. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondo N, Shaw W, Law G, Desai M, Matthews DR, Group CPC. Cagafiilozin and cardiovascular and renal events in type 2 diabetes. *N Engl J Med* 2017; 377: 644–657.
6. Oellgaard J, Gaede P, Rossing P, Rorth R, Kober L, Parving HH, Pedersen O. Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised Steno-2 study. *Diabetologia* 2018; 61: 1724–1733.
7. Sattar N, Preiss D. Research digest: heart failure in diabetes comes into focus. *Lancet Diabetes Endocrinol* 2018; 6: 603–605.
8. Kaszniicki J, Drzewoski J. Heart failure in the diabetic population—pathophysiology, diagnosis and management. *Arch Med Sci* 2014; 10: 546–556.
9. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson IW, Tang WH, Tasi EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. *Circulation* 2013; 128: 1810–1852.
10. Dunlay SM, Redfield MM, Weston SA, Themeau TM, Hall Long K, Shah ND, Roger VL. Hospitalizations after heart failure diagnosis a community perspective. *J Am Coll Cardiol* 2009; 54: 1695–1702.
11. Ohkuma T, Komorita Y, Peters SAE, Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. *Diabetologia* 2019; 62: 1550–1560.
12. Aune D, Schlesinger S, Neuenschwander M, Peng T, Janszky I, Norat T, Riboli E. Diabetes mellitus, blood glucose and the risk of heart failure: a systematic review and meta-analysis of prospective studies. *Nutr Metab Cardiovasc Dis* 2018; 28: 1081–1091.
13. Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppiini G, Bonora E, Targher G. Prognostic Impact of Diabetes on Long-term Survival Outcomes in Patients With Heart Failure: A Meta-analysis. *Diabetes Care* 2017; 40: 1597–1605.
14. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA* 2000; 283: 2088–2092.
15. Willi C, Bodenmann P, Gali WAL, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. *JAMA* 2007; 298: 2654–2664.
16. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2011; 2664.
17. Shiui T, Inuzuka Y. Aging as a substrate for coronary heart disease in diabetes. *Diabetes Care* 2004; 27: 1047–1053.
18. Nexo RW. Prevalence of and risk factors for coronary heart disease in diabetes mellitus. In: Gersh BJ, Nathan DM, editors. *UpToDate* 2018.
cortical depth of preclinical left ventricular diastolic dysfunction. Am J Cardiol 2017; 119: 1815–1820.

32. Chen HF, Ho CA, Li CY. Risk of heart failure in a population with type 2 diabetes versus a population without diabetes with and without coronary heart disease. Diabetes Obes Metab 2018; 21: 112–119.

33. Eggimann L, Blum S, Aeschbacher S, Reusser A, Ammann P, Erne P, Moschovitis G, Di Valentino M, Shah D, Schlapper J, Mondet N, Kuhne M, Sticherling C, Oswald S, Conen D. Risk factors for heart failure hospitalizations among patients with atrial fibrillation. PLoS ONE 2018; 13: e0191736.

34. Gong FF, Jelinek MV, Castro JM, Coller JM, McGrail M, Bofita U, Shiel L, Ivey D, Wolfe R, Stewart S, Owen AJ, Krum H, Reid CM, Prior DL, Campbell DJ. Risk factors for incident heart failure with preserved or reduced ejection fraction, and valvular heart failure, in a community-based cohort. Open Heart 2018; 5: e004792.

35. Rosengren A, Edqvist J, Rawshani A, Ovaskainen M, Kestin U, Grumbach K, Selby J, Brown AF, Washington E. Hospitalization for congestive heart failure. Explaining racial differences. JAMA 1995; 274: 1037–1042.

36. Agarwal V, Vittinghoff E, Whitman IR, Devland TA, Dukes JW, Marcus GM. Relationship between ventricular premature complexes and incident heart failure. Am J Cardiol 2017; 119: 1238–1242.

37. Wellings J, Kostis JB, Sargsyan D, Cabrera J, Kostis WJ, Myocardial Infarction Data Acquisition System Study G. Risk factors and trends in incidence of heart failure following acute myocardial infarction. Am J Cardiol 2018; 122: 1-5.

38. Ballotari P, Venturilli F, Greici M, Giorgi Rossi P, Manicardi V. Sex differences in the effect of type 2 diabetes on major cardiovascular diseases: results from a population-based study in Italy. Int J Endocrinol 2017; 2017: 6039356.

39. Chatterjee NA, Chae CU, Kim E, Moorthy MV, Conen D, Sandhu RK, Cook NR, Lee IM, Albert CM. Modifiable risk factors for incident heart failure in atrial fibrillation. JACC Heart Fail 2017; 5: 552–560.

40. Kim GH, Al-Kindi SG, Jandal B, Askari AD, Zacharias M, Oliveira GH. Incidence and risk of heart failure in systemic lupus erythematosus. Heart 2017; 103: 227–233.

41. He J, Shlipak M, Anderson A, Roy JA, Feldman RH, Kallet RR, Kanthar R, Kusek JW, Oin A, Rahmeh M, Ricardo AC, Soliman EZ, Wolf M, Zhang X, Raj D, Hamm L, Investigators C. Risk factors for heart failure in patients with chronic kidney disease: the CRIC (Chronic Renal Insufficiency Cohort) Study. J Am Heart Assoc 2017; 17: e655.

42. LaMonte MJ, Manson JE, Chomistek AK, Larson JC, Lewis CE, Bea JW, Johnson KC, Li W, Klein L, LaCroix AZ, Stefanick ML, Wactawski-Wende J, Eaton CB. Physical activity and incidence of heart failure in postmenopausal women. JACC Heart Fail 2018; 6: 983–995.

43. Pandey A, Kim S, Moore C, Thomas L, Gersh B, Allen LA, Kowey PR, Mahaffey KW, Hylek E, Peterson ED, Piccini JP, Fonarow GC. Investigators O-A. Patients. Predictors and prognostic implications of incident heart failure in patients with prevalent atrial fibrillation. JACC Heart Fail 2017; 5: 44–52.

44. Polascik T, Seghieri G, Francesconi P, Anichini R, Francioni F, Del Prato S. Gender difference in diabetes related excess risk of cardiovascular events: when does the ‘risk window’ open? J Diabetes Complications 2017; 31: 74–79.

45. Goldhar HA, Yan AT, Ko DT, Earle CC, Tomlinson GA, Trudeau ME, Krahn MD, Krzyzanowska MK, Pal RS, Brezden-Masley C, Gavura S, Lien K, Chan KK. The temporal risk of heart failure associated with adjudiant trastuzumab in breast cancer patients: a population study. J Natl Cancer Inst 2017; 109: djv030.

46. Sahle BW, Owen AJ, Krum H, Reid CM, Second Australian National Blood Pressure Study Management C. Incidence of heart failure in 6083 elderly hypertensive patients: the Second Australian National Blood Pressure Study (ANBP2). Eur J Heart Fail 2016;18:38-45.

47. Chahal H, Bluemke DA, Wu CO, McClelland R, Liu K, Shea SJ, Burke G, Balfour P, Herrington D, Shi P, Post W, Olson J, Watson KE, Folsom AR, Lima JA. Heart failure risk prediction in the multi-ethnic study of atherosclerosis. Heart 2015; 101: 58–64.

48. Donneyong MM, Hornung CA, Taylor KC, Baumgartner RN, Myers JA, Eaton CB, Gorodeski EZ, Klein L, Martin IW, Shikany JM, Song Y, Li W, Manson JE. Risk of heart failure among postmenopausal women: a secondary analysis of the randomized trial of vitamin D plus calcium of the women’s health initiative. Circ Heart Fail 2015; 8: 49–56.

49. Qin A, Thompson CL, Silverman P. Predictors of late-onset heart failure in breast cancer patients treated with doxorubicin. J Canc Survivorship: Res Pract 2015; 9: 252–259.

50. Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujadas-Rodriguez M, Gale DR, De Ferranti S, Lhotta A, Hingmeyer H. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 2015; 3: 105–113.
Meta-analysis of diabetes and heart failure

51. Wong TC, Piehlmer KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH, Schelbert EB. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2014; 35: 657–664.

52. Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ, Hillege HL, van Veldhuisen DJ, van Gilst WH. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVENT. Eur Heart J 2013; 34: 1424–1431.

53. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, Levy D. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail 2013; 6: 279–286.

54. Poppara TS, Polovina MM, Licina MM, Marrone AP, Lip GY. Predictors of multi-organ prognostic implications of incident heart failure following the first diagnosis of atrial fibrillation in patients with structurally normal hearts: the Belgrade Atrial Fibrillation Study. Eur J Heart Fail 2013; 15: 415–424.

55. Qureshi W, Mintal C, Ahmad U, Alirhyam Z, Hassan S, Qureshi S, Khalid F. Clinical predictors of post-liver transplant new-onset heart failure. Liver Transplant 2013; 19: 701–710.

56. Agarwal SK, Chambliss LE, Ballantyne CM, Astor B, Bertoni AG, Chang PP, Folsom AR, He M, Hoogeveen RC, Ni H, Quibra JM, Rosamond WD, Russell SD, Shahar E, Heiss G. Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail 2012; 5: 422–429.

57. Nakajima K, Matsu S, Okuyama C, Hatta T, Tsukamoto K, Nishimura S, Yamashina A, Kusuoka H, Nishimura T. Cardiac event risk in Japanese subjects estimated using gated myocardial perfusion imaging, in conjunction with diabetes mellitus and chronic kidney disease. Circ J 2012; 76: 168–175.

58. Roy B, Pawar PP, Desai RV, Fanoraw GC, Mujib M, Zhang Y, Feller MA, Ovalle F, Aban IB, Love TE, Iskandrian AE, Deedwania P, Ahmed A. A propensity-matched study of the association of diabetes mellitus with incident heart failure and mortality among community-dwelling older adults. Am J Cardiol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2011; 108: 1747–1753.

59. de Simone G, Devereux RB, Chinali M, Lee ET, Galloway JM, Barac A, Panza JA, Howard BV. Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens 2010; 28: 353–360.

60. Goyal A, Norton CR, Thomas TN, Davis RL, Butler J, Ashok V, Zhao L, Vaccarino V, Wilson PW. Predictors of incident heart failure in a large insured population: a one million person-years follow-up study. Circ Heart Fail 2010; 3: 698–705.

61. Smith JG, Newton-Cheh C, Almgren P, Struck J, Morgenhalter NG, Bergmann A, Platnon VG, Heubl B, Engstrom G, Wang TJ, Melander O. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol 2010; 56: 1712–1719.

62. van Melle JP, Bot M, de Jonge P, de Boer RA, van Veldhuisen DJ, Whooley MA. Diabetes, glycemic control, and new-onset heart failure in patients with stable coronary artery disease: data from the heart and soul study. Diabetes Care 2010; 33: 2084–2089.

63. Bibbins-Domingo K, Folsom AR, Lin F, Vittinghoff E, Gardin JM, Arthyson A, Lewis CE, Williams OD, Hulley SB. Racial differences in incident heart failure among young adults. N Engl J Med [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2009; 360: 1179–1189.

64. Kengaiah S, Sesso HD, Gaziano JM. Body mass index and vigorous physical activity and the risk of heart failure among men. Circulation 2009; 119: 44–52.

65. Leung EA, Aurich DT, Lamb DA, Majumdar SR, Johnson JA, Blackburn RF, McAlister FA. Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study. J Card Fail 2009; 15: 152–157.

66. Lewis EF, Solomon SD, Jablonski KA, Rice MM, Clemenza F, Hsia J, Maggioni AP, Zabin L, Muntaner C, Cuddy TE, Gersh BJ, Rouleau J, Braunwald E, Pfeffer MA, Investigators P. Predictors of heart failure in patients with stable coronary artery disease: a peace study. Circ Heart Fail 2009; 2: 209–216.

67. Ruigomez A, Johansson S, Wallander MA, Edvardsson N, Garcia Rodriguez LA. Risk of cardiovascular and cerebrovascular events after atrial fibrillation diagnosis. Int J Cardiol 2009; 136: 186–192.

68. Aksnes TA, Kjeldsen SE, Rostrup M, Omvik P, Hua TA, Julius S. Impact of new-onset diabetes mellitus on cardiac outcomes in the Valsartan Antihypertensive Long-term Use Evaluation (VALUE) trial population. Hypertension 2007; 50: 467–473.

69. Fukuda T, Yamashita T, Sagara K, Kato T, Sawada H, Aizawa T. Development of congestive heart failure in Japanese patients with atrial fibrillation. Circ J 2007; 71: 308–312.

70. Held C, Gerstein HC, Yusuf S, Zhao F, Hilibrich L, Anderson C, Sleight P, Teo K, Investigators OT. Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation 2007; 115: 1371–1375.

71. Ito S, Murali S, Sugira M, Yoshida T, Fukutomi T. Predictors of congestive heart failure in patients on maintenance hemodialysis. Circ J 2007; 71: 1424–1429.

72. Ingelsson E, Arnlov J, Sundstrom J, Zethelius B, Vessby B, Lind L. Novel metabolic risk factors for heart failure. J Am Coll Cardiol 2005; 46: 2054–2060.

73. Lentine KL, Schnitzler MA, Abbott KC, Li L, Burroughs TE, Irish W, Brennan DC. De novo congestive heart failure after kidney transplantation: a common condition with poor prognostic implications. Am J Kidney Dis 2005; 46: 720–733.

74. Bibbins-Domingo K, Lin F, Vittinghoff E, Barrett-Connor E, Hulley SB, Grady D, Shlipak MG. Predictors of heart failure among women with coronary disease. Circulation 2004; 110: 1424–1430.

75. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 2004; 27: 1879–1884.

76. Wylie JV, Murphy SA, Morrow DA, de Lemos JA, Antman EM, Cannon CP. Validated risk score predicts the development of congestive heart failure after presentation with unstable angina or non-ST-elevation myocardial infarction: results from OPUS-TIMI 16 and TACTICS-TIMI 18. Am Heart J 2004; 148: 173–180.

77. Lewis EF, Moey LA, Rouleau JL, Sacks FM, Arnold JM, Warnica JW, Flaker GC, Braunwald E, Pfeffer MA, Study C. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol 2003; 42: 1446–1453.

78. Rigatto C, Parfrey P, Foley R, Negrin J, Tribula C, Jeffery J. Congestive heart failure in renal transplant recipients: risk factors, outcomes, and relationship with ischemic heart disease. J Am Soc Nephrol: JASN 2002; 13: 1084–1090.

79. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med 2001; 161: 996–1002.

80. Johansson S, Wallander MA, Ruigomez A, Garcia Rodriguez LA. Incidence of newly diagnosed heart failure in UK general practice. Eur J Heart Fail 2001; 3: 225–231.

81. Wilhelmsen L, Rosengren A, Eriksson H, Lappas G. Heart failure in the general population of men—morbidity, risk factors and prognosis. J Intern...
myocardial infarction, and prognosis. J Card Fail 2018; 24: 815–822.

92. Najafi F, Dobson AJ, Hobbs M, Jamrozik K. Late-onset heart failure after myocardial infarction: trends in incidence and survival. Eur J Heart Fail 2008; 10: 765–771.

93. Williams SA, Kasl SV, Heiat A, Abramson JL, Krumholz HM, Vaccarino V. Depression and risk of heart failure among the elderly: a prospective community-based study. Psychosom Med 2002; 64: 6–12.

94. Larsson SC, Wallin A, Hakansson N, Stålberg O, Back M, Wolk A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int J Cardiol 2018; 262: 66–70.

95. Abramson J, Berger A, Krumholz HM, Vaccarino V. Depression and risk of heart failure among older persons with isolated systolic hypertension. Arch Intern Med 2001; 161: 1725–1730.

96. Miao F, Cai Y, Zhang Y. Risk prediction for heart failure incidence within 1-year using clinical and laboratory factors. 2014 11th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014; 26-30 August 2014; United States: IEEE; 2014. p. 1790-1793.

97. Jacobs I, Efremov I, Ferreira JP, Thijs L, Yang WY, Zhang YZ, Latini R, Masson S, Agahiri N, Sever P, Delles C, Sattar N, Butler J, Cleland JGF, Kuznetsova T, Staessen JA, Zannad F, Heart Failure. Risk for incident heart failure: a subject-level meta-analysis from the Heart “OMics” in AGEing (HOMAGE) Study. J Am Heart Assoc 2017; 6: e005231.

98. Sato T, Oto N, Morimoto Y, Kawai H, Fuke S, Ikeda T, Saito H. Five-year clinical outcomes after implantation of sirolimus-eluting stents in patients with and without diabetes mellitus. Cardiovasc Interw Therapeut 2012; 27: 189–195.

99. Shafazand M, Rosengren A, Lappas G, Shillingford AM, Howie P, Temporelli PL, Ferrari R, Anker S, Coats A, Filippatos G, Crespo-Leiro M, Mehazza A, Piepoli MF, Maggioni AP, Tavazzi L, Registry E-HFHLT. Association between diabetes and 1-year adverse clinical outcomes in a multinational cohort of ambulatory patients with chronic heart failure: results from the ESC-HFA Heart Failure Long-Term Registry. Diabetes Care 2017; 40: 671–678.

100. Farre N, Vela E, Cleries M, Bustins M, Cainzos-Achirica M, Enjuanes C, Moliner P, Ruiz S, Verdu-Rotellar JM, Comin-Colet J. Real world heart failure epidemiology and outcome: a population-based analysis of 88,195 patients. PLoS ONE 2017; 12: e0172745.

101. Kristensen SI, Mogensen UM, Tarnesby G, Guimpelewicz CR, Ali MA, Shao Q, Chiang Y, Hjund PS, Abraham WT, Dickstein K, McMurray J, Kober L, Aliskiren alone or in combination with enalapril vs. enalapril among patients with chronic heart failure with and without diabetes: a subgroup analysis from the ATMOSPHERE trial. Eur J Heart Fail 2018; 20: 136–147.

102. Cooper LB, Yao J, Tay WT, Teng TK, MacDonald M, Anand IS, Sharma A, O’Connor CM, Kraus WE, Mentz RJ, Lam CS, Haf A, Investigators A-H. Multi-ethnic comparisons of diabetes in heart failure with reduced ejection fraction: insights from the HF-ACTION trial and the ASIAN-HF registry. Eur J Heart Fail 2018; 20: 1281–1289.
morbidity and mortality in heart failure patients candidates to cardiac resynchronization therapy. *European J Heart Fail* 2014; 16: 71–80.

118. Sakata Y, Miyata S, Nochioka K, Miura M, Takada T, Tadaki S, Takahashi J, Shimokawa H. Gender differences in clinical characteristics, treatment and long-term outcome in patients with stage C/D heart failure in Japan. Report from the CHAR-T2 study. *Circ J* 2014; 78: 428–435.

119. Larina VN, Bart BY, Vartanyan EA. Factors effecting the decomposition of chronic heart failure in the elderly. *Rational Pharmacother Cardiol* 2013; 15: 15–24.

120. Sarma S, Mentz RJ, Krasnys MJ, Fought AJ, Huffman M, Subacius H, Nodari S, Konstam M, Swedberg K, Maggioni AP, Zannad F, Bonow RO, Gheorghie M, Investigators E. Association between diabetes mellitus and post-discharge outcomes in patients hospitalized with heart failure: findings from the EVEREST trial. *J Card Fail* 2012; 18: 845–853.

121. Verbrugge FH, Dupont M, Rivero-Ayerza M, de Vusser P, Van Herendael B, Vercaemmen J, Jacobs L, Verhaert D, Vandervoort P, Tang WH, Mullens W. Comorbidity significantly affects clinical outcome after cardiac resynchronization therapy regardless of ventricular remodeling. *J Card Fail* 2012; 18: 845–853.

122. Deedwania PC, Ahmed MI, Feller MA, Abar IB, Love TE, Pitt B, Ahmed A. Impact of diabetes mellitus on outcomes in patients with acute myocardial infarction and systolic heart failure. *Eur J Heart Fail* 2011; 13: 551–559.

123. Martin DT, McNitt S, Nesto RW, Rutter JL, Perez-Calvo J, Propeptide of procollagen type I (PII) and outcomes in decompenstated heart failure. *Eur J Intern Med* 2007; 18: 129–134.

124. Flamarique-Pascual A, Morales-Rull JL, Perez-Calvo J. Prognostic impact of coexisting diabetes on outcomes of patients with advanced heart failure. *J Card Fail* 2007; 13: 769–773.

125. Formiga F, Chivite D, Sole A, Manito N, Ramon JM, Pujol R. Functional outcomes of elderly patients after the first hospital admission for decompensated heart failure (HF). A prospective study. *Arch Gerontol Geriatr* 2006; 43: 175–185.

126. Garcia C, Lupon J, Urrutia A, Gonzalez B, Herreros J, Altimir S, Coll R, Prats M, Rey-Joly C, Valle V. Prognostic significance of diabetes in a heart failure population: one year mortality and heart failure related hospital admission. *Med Clin (Barc)* 2005; 125: 161–165.
mellitus on long-term clinical outcome in people with heart failure: a report from the Korean Heart Failure Registry. Diabet Med 2019; 36: 1312–1318.

135. Takimura H, Hada T, Kawano M, Yabe T, Takimura Y, Nishio S, Nakano M, Tsukahara R, Muramatsu T. A novel validated method for predicting the risk of re-hospitalization for worsening heart failure and the effectiveness of the diuretic upgrading therapy with tolvaptan. PLoS ONE 2018; 13: e0207481.

136. Retwinski A, Kosmalski M, Crespo-Leiro M, Maggioni A, Opolski G, Ponikowski P, Polonski L, Jankowska E, Drzewoski J, Drozdz J. The influence of metformin and the presence of type 2 diabetes mellitus on mortality and hospitalisation in patients with heart failure. Kardiol Pol 2018; 76: 1336–1343.

137. Iorio A, Senni M, Barbati G, Greene SJ, Poli S, Zambon E, Di Nora C, Cioffi G, Tarantini L, Gavazzi A, Sinagra G, Di Lenarda A. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail 2018; 20: 1257–1266.

138. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018; 122: 624–638.

139. Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets. J Diabetes Res 2017; 2017: 1310265.

140. Leon LE, Rani S, Fernandez M, Larico M, Calligaris SD. Subclinical detection of diabetic cardiomyopathy with microRNAs: challenges and perspectives. J Diabetes Res 2016; 2016: 6143129.

141. Lindman BR, Davila-Roman VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, de las Fuentes L, Joseph SM, Vader J, Hernandez AF, Redfield MM. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol 2014; 64: 541–549.

142. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC, Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 2015; 131: 269–279.

143. Lenzen MJ, Rosengren A, Scholte op Reimer WJ, Follath F, Boersma E, Simoons ML, Cleland JG, Komajda M. Management of patients with heart failure in clinical practice: differences between men and women. Heart 2008; 94: e10.

144. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251–259.

145. Andersen MJ, Borlaug BA. Heart failure with preserved ejection fraction: current understandings and challenges. Curr Cardiol Rep 2014; 16: 501.

146. Balschm H, Helfand M, Schummann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64: 401–406.

147. Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech 2009; 2: 454–466.