Alternativas terapêuticas e aplicação de bacteriófagos como estratégia no uso de antibióticos no tratamento de doenças bacterianas

Therapeutic alternatives and application of bacteriophages as a strategy in the use of bacterial diseases

Renata Dellalibera-Joviliano1, Samara Ariane de Melo2, Henrique de Mello Remelli Ceni3

Dellalibera-Joviliano R, Melo SA, Ceni HMR. Alternativas terapêuticas e aplicação de bacteriófagos como estratégia no uso de antibióticos no tratamento de doenças bacterianas / Therapeutic alternatives and application of bacteriophages as a strategy in the use of bacterial diseases. Rev Med (São Paulo). 2020 jan.-fev.;99(1):88-95.

ABSTRACT: Resistance to treatment of different microorganisms has been considered a major concern in the public health and medical fields. Pharmacological, microbiological, immunological approaches and the search for therapeutic alternatives have gained prominence in this area in order to understand the theme. In this context, the objective was to compile information correlating with alternative therapies with the problem of bacterial diseases in view of the multidrug resistance developed by antibiotic superbugs, since they represent the main treatment used in patients with these comorbidities. The electronic bases used as facilitators of the theme included SciELO, PubMed, MEDLINE and LILACS, period 2010-2019. From the active approaches, it is observed that the expansion of the therapeutic collection and prolongation of treatment to all periods of the natural process of bacterial diseases, avoiding the imminent seclusion regarding the offer of treatments to the most distinct cases of resistance, is considered a differential aspect. Still, aiming at solving this impasse, seeking effective therapeutic alternatives in the treatment of the most varied cases of bacterial diseases, and the possibility of its execution, either exclusively or mainly complementary to the use of antibiotics. Multiple intervention possibilities have been considered to include haemofiltration devices, quorum detection inhibitors, advanced immunotherapies, bacteriophage use, alternative efforts to limit virulence, integrative medicine measures such as homeopathy and herbal medicine. After the analysis, it was concluded that due to its efficacy and selective mechanism of action among the therapeutic alternatives found, the most promising was the application of bacteriophages.

Keywords: Bacteriophages; Drug resistance, Bacterial infections; Complementary therapies.

RESUMO: Resistências para o tratamento a diferentes microrganismos têm sido considerado uma grande preocupação em ordem de saúde pública e área médica. Enfoques farmacológicos, microbiológicos, imunológicos e busca de alternativas terapêuticas têm ganhado destaque nesta área a fim de compreender a temática. Neste contexto, objetivou-se compilar informações correlacionando-se com as terapias alternativas com a problemática das doenças bacterianas frente a multirresistência desenvolvida pelas superbactérias aos antibióticos, posto que representam o principal tratamento empregado em pacientes acometidos por essas comorbididades. As bases eletrônicas utilizadas como facilitadores da temática incluíram SciELO, PubMed, MEDLINE e LILACS, período 2010-2019. A partir das abordagens ativas, observa-se que ampliação do acervo terapêutico e prolongamento do tratamento a todos os períodos do processo natural de doenças bacterianas, evitando a iminente reclusão quanto a oferta de tratamentos aos mais distintos casos de resistência, é considerado um aspecto diferencial. Ainda, objetivando solucionar esse impasse, buscar de alternativas terapêuticas efetivas no tratamento dos mais variados casos de doenças bacterianas, e a possibilidade de sua execução, seja de modo exclusivo ou principalmente complementar ao uso de antibióticos. Múltiplas possibilidades de intervenção tem sido consideradas a incluir dispositivos de hemofiltração, inibidores de detecção de quórum, imunoterapias avançadas, uso de bacteriófagos, esforços alternativos para limitar a virulência, medidas da medicina integrativa como a homeopatia e a fitoterapia. Após as análises, concluiu-se que devido a sua eficácia e mecanismo de ação seletivo entre as alternativas terapêuticas encontradas, a que se mostrou mais promissora foi a aplicação de bacteriófagos.

Descritores: Bacteriófagos; Resistência a medicamentos; Infeções bacterianas; Terapias complementares.
INTRODUÇÃO

A medicina do século XX contou com um avanço essencial no tratamento de doenças infecciosas, a terapia antibiótica. Em 1940, Alexander Fleming, descobriu o primeiro antibiótico biológico, a penicilina, e junto a isso já tinha ciência de que a resistência a esse medicamento estaria agregada ao seu uso, sendo por isso necessário acompanhá-lo. Contribuindo para esse pensamento, após um ano dessa descoberta, foi comprovado por Barber em um experimento a capacidade das bactérias de resistir a penicilina, a partir de penicilases que degradavam tal antibiótico

Atualmente, sabe-se que a transmissão do mecanismo de resistência, ocorre de modo intrínseco ou adquirido, através de ganhos de função variados, pela produção de novas proteínas ligantes a penicilina, mecanismos enzimáticos de alteração de fármacos, alvos terapêuticos alterados, bombas de efluxo aumentadas e modificações na permeabilidade da membrana. Mesmo tendo conhecimento de suas desvantagens, o mundo ocidental adotou o uso amplo e indiscriminado de antibióticos, o que hoje corroborou para que a resistência a esses medicamentos seja um dos problemas mais sérios da saúde, não somente pela pressão seletiva exercida pelo seu uso intensivo, como também pelo processo de desenvolver novos fármacos antimicrobianos

Explanando a realidade prática desse problema, exemplifica-se que nos Estados Unidos (EUA), anualmente, pelo menos 2 milhões de pessoas são infectadas por bactérias resistentes, e a resistência aos antimicrobianos atinge custos bastante onerosos, tendo um impacto estimado de 20 mil milhões de dólares anualmente nesse país. Na Europa, o custo total anual associado à resistência bacteriana atinge mais de 1500 milhões de euros, um valor que poderá estar subestimado. Somado a isso, uma estimativa feita pela Organização Mundial de Saúde, é de que até 2050 as superbactérias podem ser responsáveis por cerca de 10 milhões de mortes por ano e além disso, gerarão um custo de aproximadamente 84 trilhões de dólares para a economia global

Consciente desses problemas, o Brasil se pôe a frente da situação desde 2013, gerando Boletins Informativos de Segurança do Paciente e Qualidade em Serviços de Saúde (GVIMS). O primeiro relatório da Rede Nacional de Monitoramento de Resistência, englobou dados de 908 hospitais de 26 das 27 unidades federativas brasileiras, com dados dos fenótipos de resistência de 19.009 microrganismos responsáveis por causarem IPCSL (Infecção primária da corrente sanguínea laboratorial) em UTIs brasileiras. A partir dessas informações, confirme-se que a resistência microbiana é um problema de saúde pública em todas as regiões do país. A Figura 1 ilustra o perfil percentual de bactérias resistentes em pacientes infectadas nas UTIs no Estado de São Paulo

Caso não sejam tomadas medidas intervencionistas para a realidade exposta, a falência terapêutica dos antibióticos culminará no aumento dos dias de internação, de morbidade, da persistência do processo infeccioso com conseqüências a nível da infeção nosocomial, de mortalidade e aumento dos custos associados. Este problema pode vir a ser ainda mais grave a ponto de uma infeção comum adquirir elevada complexidade terapêutica, tornando-se intratável e procedimentos interventivos, desde cirurgias, à quimioterapia, transplantatação de órgãos ou
cuidados de neonatologia, correm o risco de se tornarem impraticáveis. Somando a isso, devido à baixa rentabilidade e crescente desinteresse na produção trabalhosa de novos antibacterianos pela indústria farmacêutica, a eleição de novos métodos terapêuticos é de suma importância devido a suas repercussões econômicas. Cientes da situação apresentada, e intencionando contribuir para a crescente demanda por novas medidas interventivas nas doenças bacterianas, formas alternativas ao uso de antibióticos ganharam potência no mercado de pesquisa. Para isso seria necessário buscar soluções que as combatesse como um todo, tanto em sua incidência, por meio da instauração de medidas preventivas, quanto investindo em diferentes métodos terapêuticos, em casos que não fosse possível prevenir.

MATERIAL E MÉTODOS

Nesse estudo, que segue o modelo de revisão bibliográfica, concretizando-se os objetivos a partir de informações coletadas em artigos científicos, sites de pesquisa como as plataformas CAPES, SciELO, Pubmed, CNPq e FAPESP. Compilou a utilização de um referencial teórico atualizado no período entre 2010–2019. Visando uma maior apuração das fontes de informações, fez-se necessário dividir sistematicamente os artigos científicos a partir de um fluxograma identificado na Figura 2, permitindo um progresso prospectivo entre a introdução, a seleção bibliográfica e a compilação de artigos, ampliando a produção da discussão e da conclusão. Descritores utilizados para a execução deste estudo incluíu: Bacteriófago, multirresistência bacteriana, doenças bacterianas, alternativas terapêuticas.

Figura 2: Fluxograma elaborado a partir da metodologia utilizada para coleta dos dados deste estudo

DESENVOLVIMENTO

Para facilitar a compreensão dos dados obtidos, é possível observarmos na Figura 3 a elaboração de um fluxograma onde identificamos a busca de alternativas terapêuticas frente a doenças bacterianas que podem ocasionar até mesmo multirresistência. Assim, os quadros patológicos que envolvem doenças bacterianas incentivaram a investigação incessante por medidas terapêuticas que pudessem ser aplicadas as doenças bacterianas. Podemos considerar que busca cessou em 1940 com a descoberta de Fleming dos antibióticos, porém concomitantemente a percepção de que juntamente com esses medicamentos, as superbactérias poderiam desenvolver-se configurando uma realidade ainda pior, a multirresistência. Cercados por essa realidade, é possível questionar-se se a descoberta de Fleming culminou no retorno a busca de outras alternativas, em um cenário onde as doenças bacterianas ainda estão presentes e a multirresistência ganha proporções ainda mais assustadoras que a inicial.

Motivados pela exploração de estratégias para esta temática, encontramos várias possibilidades de intervenções alternativas a incluir dispositivos de hemofiltração, inibidores de detecção de quórum, imunoterapias avançadas, esforços alternativos para limitar a virulência, medidas da medicina integrativa como a homeopatia e a fitoterapia, mas principalmente a mais promissora, o uso de bacteriófagos.
ALTERNATIVAS TERAPÊUTICAS

Os dispositivos de hemofiltração atuam como filtros extracorpóreos, objetivando permitir que o sistema imune inato e adaptativo do hospedeiro remova os agentes e seus possíveis resíduos panresistentes aos agentes microbianos. Alguns desses equipamentos simulam a atuação do baço humano e são estudados para o possível tratamento da sepse. Eles operam através do magnetismo, provocando a opsonização de um ou vários tipos de microrganismos, esculpindo um arranjo microfluido semelhante ao baço e permitindo assim a eliminação dos patógenos.

Como a ação bacteriana nos biofilmes de liberação de sinais químicos e expressão gênica é sujeita a detecção de quórum, que permitem a coordenação de um comportamento coletivo das bactérias, que agem semelhante a organismos multicelulares. Os agentes inibidores dessa detecção representam um benefício clínico prático contra patógenos multirresistentes, que as bactérias utilizam um tipo de comunicação intercelular de alerta aos patógenos sobre a sua concentração bacteriana coletiva, que quando elevadas podem alterar seus perfis de transcrição para um fenótipo invasivo. Assim, o bloqueio da detecção do quórum apresenta capacidade de melhorar os resultados em modelos experimentais de infecção sistêmica, representando outro método promissor para o tratamento das doenças bacterianas.

Outra medida terapêutica são as imunoterapias avançadas, que apesar de não representarem uma abordagem nova, podem ainda ser inovadas ao gerarem anticorpos humanos policlonais e monoclonais, como terapias passivas contra patógenos bacterianos, objetivando impulsionar as imunidades adaptativas celular e humoral do hospedeiro, representando assim a possibilidade de uso para profilaxia ou para tratamento pré ou pós-exposição.

MEDICINA INTEGRATIVA

Na Medicina Integrativa a homeopatia é formulada considerando o conceito hipocrático, que é baseado na ideia de que a doença é produzida pelos semelhantes e pelos semelhantes o paciente retorna a saúde. A partir disso, essa prática articula-se pela associação entre a medicina e a farmacêutica, que pretende por mínimas doses de medicamento estimular a reação orgânica para...
a cura e assim evitar o agravo dos sintomas. Essa prática baseia-se no caráter filosófico de que a manifestação de uma doença presente no paciente, estará presente também em certa substância, por isso ao ser administrada a um indivíduo saudável, ele apresentará os sintomas do doente. Utilizando dessa substância específica o clínico homeopata a transformará no medicamento necessário pelo método de dinamização, que permite diminuir os efeitos tóxicos da substância original e aumentar seu potencial curativo. Conclui-se a partir disso que o medicamento tem o poder de fazer o corpo reagir imunologicamente, combatendo esses sintomas, buscando a cura.

Estudo realizado por Furuta et al. envolvendo amostras de pacientes pediátricos, mostraram que as crianças apresentavam diagnóstico de amigdalite recorrente, as quais foram divididas em dois grupos duplo-cegos, onde um grupo de 20 pacientes receberiam o remédio homeopático e o outro grupo de 20 pacientes receberiam um placebo. Ambos os grupos realizaram o tratamento diariamente por 4 meses. Ao final do estudo, dentre o grupo tratado com medicamento homeopático, 22% dos pacientes apresentaram amigdalite aguda e 78% não, já dentre o grupo placebo 67% dos pacientes apresentaram amigdalite aguda e 33% não. Esta estatística demonstra uma maior eficácia favorável ao uso do tratamento homeopático.

Acrecenta-se a isso o uso da fitoterapia, eficaz em atendimento primário a saúde, é concretizado pelo uso de plantas medicinais em sua forma farmacêutica, tendo finalidade preventiva ou curativa de patologias. Para países em desenvolvimento, onde a taxa de uso de fitoterápicos tem cerca de 80% de adeptos, lhes é imprescindível ter maior aceitabilidade cultural e acessibilidade ao tratamento, para que alcancem alta compatibilidade com o corpo humano e minimizem seus efeitos colaterais. Portanto, quando os compostos advindos das plantas medicinais são utilizados na inibição e destruição de patógenos, eles têm toxicidade infame para células hospedeiras, sendo portanto excelente pretendente a um novo antimicrobiano.

Faz-se necessário compreender que esta alternativa é um dos principais recursos da Medicina Alternativa e que ela já é utilizada há muito tempo pela população brasileira. Unido a isto, é importante reconhecer sua notoriedade dentre os pacientes que dificilmente tem acesso ao atendimento primário de saúde e também ao remédio alopático devido seu alto custo.

Nascimento-Junior et al. mostram que durante a execução de um estudo transversal envolvendo 96 profissionais com nível superior atuantes no Programa de Estratégia de Saúde da Família não estão aptos a disseminar informações sobre o uso de alternativa como uma escolha de tratamento, independentemente da enfermidade. Neste estudo foram analisados quanto a percepção da importância, da utilização e de indicações de Plantas Medicinais e Fitoterápicos. Essa realidade culmina na eliminação de uma possibilidade a mais que poderia ser oferecida aos pacientes que procuram soluções mais naturais e de menor custo de tratamento, prejudicando não só o doente mas também o serviço que conseguiria ser melhor.

O resultado foi conflitante e pode-se denotar que uma grande parte não está preparada para repassar informações sobre o uso de plantas medicinais ou prescrever fitoterápicos para população, e isso, acaba acarretando um grande prejuízo para o serviço, pois essa Medicina Complementar e Alternativa é uma boa opção e de custo geralmente menor.

No âmbito comunitário, a infecção urinária é a mais comum das infecções, sendo mais prevalentes em mulheres, devido a facilidade que microrganismos anais têm de alcançar a uretra feminina e resultarem nesta enfermidade. Um método eficaz de tratamento para essa afeição é o aumento da diurese por administração de substâncias diuréticas, favorecendo uma limpeza eficaz de núcleos de cristalização e bactérias que possam estar no trato urinário. A este respeito se faz pertinente o uso da fitoterapia, por meio de plantas que tenham caráter promissor no incremento da excreção renal de água.

BACTERIÓFAGOS

Analisando os bacteriófagos líticos, seu meio de replicação se dá através da inserção de seu material genético, que conduzirá a maquinaria celular bacteriana replicando a informação viral transmitida. Isso ocorre de um modo muito mais rápido que o da própria bactéria. Tendo concluído o processo de síntese e montagem de novos fagos, estes serão liberados por lise da célula bacteriana e terão a capacidade de iniciar um novo ciclo de replicação. Por esta razão, são considerados os agentes antimicrobianos de controle natural.

Existe uma grande necessidade de opções seguras e eficazes para o tratamento antimicrobiano, visto que os antibióticos possuem limitações, como a fraca penetração em biofilmes bacterianos e a crescente emergência de estirpes bacterianas resistentes. Como destacado, o uso de bacteriófagos estritamente líticos tem tido um papel ativo nessas pesquisas e vem sendo sugerido como alternativa ou complemento aos antibióticos químicos convencionais, permitindo sua atuação como predadores bacterianos com capacidade de iniciar um novo ciclo de replicação. Desde que a infeção esteja limitada a um local específico, o uso de fagos vem sendo utilizado de forma eficaz.

As terapias fágicas podem ter diferentes efeitos e eficácia de acordo com a enfermidade, podendo ser utilizadas de várias formas, como a inclusão do seu local de administração (Via tópica, oral, sistêmica ou até mesmo diretamente sobre os tecidos corporais). Acrecenta-se que a forma de entrega dos fagos que não sejam diretamente sobre as bactérias, a antibioterapia convencional, permitindo sua atuação como predadores bacterianos, mantendo sua eficácia.
a agentes patogênicos intracelulares, sendo a mais usual a administração de fagos livres ou de bactérias já infectadas com fagos, é outro modo de diferenciação. Pode-se ainda alterá-los geneticamente para que entregue genes não fágicos codificantes de agentes antibacterianos específicos. Além de se certificar da eficácia dos bacteriófagos na corrente sanguínea, é possível desenvolver um coquetel fágico com a gama da formulação de fagos específicos para seu host, por meio de misturas contendo dois ou mais bacteriófagos, chamados “coquetéis fágicos”22.

Estabelecer uma comparação entre as alternativas terapêuticas demonstra que a mais promissora foi a dos bacteriófagos, tendo por vantagem o seu vasto período de desenvolvimento, similar ao antibiótico, porém com menor custo e maior eficácia. A fim de demonstrar sua efetividade, dados de Schooley23 ilustram uma infusão intravenosa de bacteriófagos na concentração de 1.8E+04 em um paciente acometido por uma doença bacteriana e que apresentou-se resistente a uso de antibióticos. É possível observar que dentro de 360 minutos após seu uso, a concentração de bacteriófagos chegou a nível 0, pois sua viabilidade de sobrevivência no organismo humano é restrita a sua reprodução dentro das bactérias23.

Assim, ao atuar sobre os receptores específicos do microorganismo causador da doença, impedindo sua replicação e sobrevivência na célula hospedeira, ambos são exterminados. Para garantir que isso ocorra, in situ, a modificação do fago quanto a sua imunogenicidade ou mesmo a seleção de fagos de longa circulação, tem a capacidade de diminuir sua depuração pelas células do sistema reticulo-endotelial (RES), corroborando uma melhor ação23.

Nos campos de doenças infecciosas e gastroenterologia, Sabino et al.24 mostram que terapia com fagos é uma ferramenta terapêutica promissora contra bactérias patogênicas. Estão em andamento estudos randomizados, controlados por placebo, com terapia fágica para doenças gastroenterológicas24.

As bactérias podem desenvolver resistência aos antibióticos. Mesmo sem mudar geneticamente, as bactérias também podem exibir tolerância a tratamentos com antibióticos. Muitos antibióticos também estão atuando amplamente, pois podem resultar em modificações excessivas dos microbiomas do corpo. Particularmente para antibióticos de último recurso ou no tratamento de pacientes extremamente doentes, os antibióticos também podem exibir toxicidade excessiva. Os antibióticos, no entanto, continuam sendo o padrão de tratamento para infecções bacterianas, e com razão, devido aos seus longos registros de eficácia antibacteriana e pouca frequência de efeitos colaterais graves. Os antibióticos não curam em sucesso todas as infecções bacterianas tratadas, no entanto, proporcionando assim uma utilidade para abordagens antibacterianas alternativas. Uma dessas abordagens é o uso de bacteriófagos, os vírus das bactérias25.

Essa tecnologia anti-infeccão bactericida de quase 100 anos de idade pode ser eficaz contra bactérias resistentes a antibióticos ou tolerantes, incluindo biofilmes bacterianos e células persistentes. Idealmente, os fagos poderiam ser usados em combinação com antibióticos padrão, mantendo a sua atividade farmacodinâmica antibacteriana, apesar de os antibióticos interferirem em aspectos do metabolismo bacteriano que também são necessários para a atividade completa da infeccão por fagos. Abedon25 através de uma revisão bibliográfica identificou de tratamentos combinados pré-clínicos com fagos e antibióticos, com ênfase em alvos bacterianos suscetíveis a antibióticos. Evidências de interferência de antibióticos na atividade de infeccão por fagos, juntamente com seu inverso sugere o funcionamento antibacteriano de fagos apesar da presença de antibióticos25.

As perspectivas de endolisinas são aumentadas pela capacidade de projetá-las; novas endolisinas podem ser desenvolvidas com estabilidade, especificidade e função lítica otimizadas. Assim o crescimento da engenharia e aplicação da endolisina requer uma compreensão abrangente da relação entre as propriedades bioquímicas, biofísicas e bacteriolíticas das enzimas. Love et al.26 relatam que as endolisinas de bacteriófagos têm o potencial de serem um substituto antibacteriano a longo prazo para antibióticos sendo a aplicação exógena de endolisinas em algumas bactérias resultante em rápida lise celular26.

A alta taxa de sucesso e segurança da terapia fágica em comparação com antibióticos deve-se em parte à sua especificidade para bactérias selecionadas e à capacidade de infectar apenas uma espécie, sorotipo ou cepa. Este mecanismo não causa a destruição da flora bacteriana comensal. Atualmente, os fagos estão sendo usados com sucesso em humanos e animais em terapias direcionadas para infecções de cura lenta. Eles também encontaram aplicação nos EUA na eliminação de patógenos da superfície de alimentos de origem animal e vegetal. Em um momento de crescente resistência a antibióticos em bactérias e das restrições resultantes ao uso de antibióticos, os bacteriófagos podem fornecer um meio alternativo de eliminar patógenos27.

Já a efetividade da fitoterapia e da homeopatia é comprovada por inúmeros estudos, mostrando serem superiores ao uso isolado ou conjunto do antibiótico. No entanto a expansão de seu uso requer a ruptura de paradigmas sócio-cultural, como a descrença de sua efetividade pela população que impede a total adesão dessas alternativas. Para isso, é possível acompanhar sua prodigiosa aplicação no Mundo Oriental e torná-la um modelo a ser seguido a fim de consolidar essas práticas na realidade brasileira.

No que diz respeito aos outros métodos abordados, como uso de dispositivos de hemofiltração, inibidores de detecção de quórum, dispositivos de limitação de virulência e uso de imunoterapias avançadas, esses métodos demandam ainda de muito tempo de pesquisa e altos investimentos,
CONCLUSÃO

Compilando o cenário completo das doenças bacterianas, a solução para a indagação inicial do projeto incluiria o período pré-patogênico, a fim de impedir a incidência exponencial da multirresistência. Para isso, preconizam-se a tomada de medidas de base a nível de prevenção primária, a fim de erradicar a prescrição por vezes desnecessária e excessiva de antibióticos que é feita na área da saúde, a sua banalização pelos profissionais, que muitas vezes deixam disseminam a crença de que o uso desses medicamentos pode ser feito de modo desenfreado ou até desvalorizam as consequências que podem provocar. Soma-se a isso a administração incorreta pelos pacientes, que muitas não são orientados e desconhecendo sua complexidade, interrompem o tratamento antes de sua conclusão, consomem bebidas alcoólicas concomitante ao uso do medicamento e utilizam medicamentos de prescrições anteriores quando inacabados.

Considerando os casos em que a multirresistência já existe, a aplicação das medidas terapêuticas alternativas ao uso de antibióticos representa a consolidação da equidade no tratamento dos pacientes. Visto que haveria expansão no acervo de possíveis medidas a serem oferecidas a cada pessoa de acordo com suas necessidades integrais e considerando a fase patogênica em que estivesse inserido, e não de acordo com um contexto genérico. E apesar dos obstáculos encontrados com o aumento da resistência, os bacteriófagos juntamente as outras diversas alternativas terapêuticas assumem um papel de destaque na tentativa de reverter e erradicar os milhões de casos de multirresistência já instaurados no mundo e geram um cenário de esperança quanto a sua eficácia e sua aplicabilidade.

Participação dos autores: Renata Dellalibera-Joviliano: professora-orientadora; orientação geral, revisão, execução, revisão geral do texto. Henrique de Mello Remelli Coni e Samara Ariane Melo: acadêmicos do curso de medicina e alunos de iniciação científica; coleta de dados, desenvolvimento da metodologia, elaboração do texto integrante ao artigo: elaboração do artigo.

Declaração de Conflito de Interesse: os autores declaram não haver conflito de interesse neste artigo proposto para publicação.

REFERIÊNCIAS

1. Rosa JEC. Multirresistência bacteriana – uma “nova” terapêutica. coeficárias [mestrado]. Covilhã: Universidade Beira Interior, Ciências da Saúde; 2015. Disponível em: https://ubiliburum.ubi.pt/bitstream/10400.6/4094_7905.pdf.

2. Centers for Disease Control and Prevention. Antibiotic resistance threats. United States: Department of Health and Human Services; 2013. Chap 1, p.11. Available from: https:// www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.

3. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism, MCR-1 in animals and human beings in China: microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-8. doi: 10.1016/S1473-3099(15)00424-7.

4. Krake MEA, Stewardson AJ, Harbath S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13(11):e1002184. doi: 10.1371/journal. pmed.1002184.

5. Agência Nacional de Vigilância Sanitária. Plano nacional para a prevenção e o controle da resistência microbiana nos serviços de saúde. Brasília; 2017. Cap. 2. Disponível em: http://portal.anvisa.gov.br/documents/33852/271855/Plano+Nacional+para+a+Preven%C3%A7%C3%A3o+e+Controle+a+Resist%C3%A9ncia+Microbiana+nos+Servi%CC%81os+de+Sa%C3%B3+Antibiorum.ubi.pt/bitstream/10400.6/4094_7905.pdf.

6. Kakas A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents. 2019;53(1):16-21. doi: 10.1016/j. ijanmicag.2018.09.004.

7. Rolain JM, Parola P, Coriglia C. New Delhi metallo-beta lactamase (NDM-1): towards a new pandemic? Clin Microbial Infect. 2010;16(12):1699-701. doi: 10.1111/j.1469-0691.2010.03385.x.

8. Opal SM. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Critical Care. 2016;20(1):397. doi: 10.1186/s13054-016-1549-1.

9. Kang JH, Super M, Yung CW, Cooper RM, Domansky K, Graveline AR, et al. Biospleen device for extracorporeal sepsis therapy. In: 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Antonio, Texas, USA, Oct. 26-30, 2014. Available from: https://www.rsc.org/ images/loc/2014/PDFs/Papers/838_5020.pdf.

10. Kalia V. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31(2):224-45. doi: 10.1016/j. biotechadv.2012.10.004.

11. Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21(5):5-11. doi: 10.2.

12. Campos-Galvão MEM. Caracterização do mecanismo de sinalização por quorum sensing em Salmonella enterica sorovar Enteritidis [tese]. Viçosa: Universidade Federal de Viçosa; 2012. Disponível em: https://www.locus.ufv.br/ handle/123456789/1568.

13. Irani V, Guy A, Andrew D. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonalantibodies against infectious diseases. Mol Immunol. 2015;67(2 Pt A):171-82. doi: 10.1016/j. molimm.2015.03.255.

14. Fontes OLF. Farmácia homeopática: teoria e prática. Barueri:
Manole; 2014. Cap. 1, 2.

15. Furuta SE, Weckx LL, Figueiredo CR. Estudo clínico, duplo-cego, randomizado, em crianças com amigdalites recorrentes submetidas a tratamento homeopático. Rev Homeopatia (São Paulo). 2017;80(1/2):164-73. Disponível em: http://revista.aph.org.br/index.php/aph/article/view/398/444.

16. Miranda JAL, Rocha JA, Araújo KM, Quelemes PV, Mayo SJ, Andrade IM. Atividade antibacteriana de extratos de folhas de Montrichardia linifera (Arruda) Schott (Araceae). Rev Bras Plantas Med. 2015;17(4 supl. 3):1142-9. doi: 10.1590/1983-084x/14_169.

17. Nascimento Júnior BJ, Tinel LO, Silva ES, Rodrigues LA, Freitas TON, Nunes XP, Amorim ELC. Avaliação do conhecimento e percepção dos profissionais da estratégia de saúde da família sobre o uso de plantas medicinais e fitoterapia em Petrolina-PE, Brasil. Rev Bras Plantas Med. 2016;(18):57-66. doi: 10.1590/1983-084X/15_031.

18. Teixeira ACJ. Fitoterapia aplicada à prevenção e tratamento de infecções urinárias. Porto; 2012. Cap. 2.4. Disponível em: https://bdigital.ufp.pt/bitstream/10284/3738/1/ Fitoterapia%20aplicada%20ao%20tratamento%20de%20infec%C3%A7%C3%B5es%20urin%C3%A1rias.pdf.

19. Wittebole X. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogenic. Virulence. 2014;5(1):226-35. doi: 10.4161/viru.25991.

20. Rossi, LPR, Almeida RCC. Bacteriófagos para controle de bactérias patogênicas em alimentos. Rev Inst Adolfo Lutz. 2010;69(2):151-6. Disponível em: https://pesquisa.bvsalud.org/portal/resource/pt/lil-571125.

21. Wright A, Hawkins CH, Anggard EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349-57. doi: 10.1111/j.1749-4486.2009.01973.x.

22. Azevedo AFOM. Desenvolvimento do sistema terapêutico com bacteriófagos para administração por via inalatória com recurso de nanoencapsulação, como modelo para tratamento de pneumonia bacteriana [dissertação]. João Pessoa: Universidade Fernando Pessoa, Faculdade de Ciências da Saúde; 2010. Disponível em: http://hdl.handle.net/10284/2488.

23. Schooley RT. Development and use of personalized Bacteriophage – based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agent Chemother. 2017;61:e000954-17. doi: 10.1128/AAC.000954-17.

24. Sabino J, Hirten RP, Colombel JF. Review article: bacteriophages in gastroenterology-from biology to clinical applications. Aliment Pharmacol Ther. 2019 Nov 7. doi: 10.1111/apt.15557. [Epub ahead of print].

25. Abedon ST. Phage-antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics (Basel). 2019;8(4):pii: E182. doi: 10.3390/antibiotics8040182.

26. Love MJ, Abeysekera GS, Muscroft-Taylor AC, Billington C, Dobson RCJ. On the catalytic mechanism of bacteriophage endolysins: Opportunities for engineering. Biochim Biophys Acta Proteins Proteom. 2019 Oct 30:140302. doi: 10.1016/j.bbapap.2019.140302.

27. Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017;14(1):179. doi: 10.1186/s12985-017-0849-7.

Recebido: 10.11.19
Aceito: 11.11.19