АНАЛІЗ ФОТОКАТАЛИТИЧНОЇ АКТИВНОСТІ ПОКРИТТЯ З TiO₂ НА СКІЛЯ ЯК КРИТЕРІЮ ЙОГО ЗДАТНОСТІ ДО САМООЧИЩЕННЯ

Племянніков М. М.

АНАЛІЗ ФОТОКАТАЛИТИЧЕСКОЙ АКТИВНОСТИ ПОКРЫТИЯ ИЗ TiO₂ НА СТЕКЛЕ КАК КРИТЕРИЯ ЕГО СПОСОБНОСТИ К САМООЧИЩЕНИЮ

Племянников Н.Н.

ANALYSIS OF THE PHOTOCATALYTIC ACTIVITY OF TiO₂ COATING ON A GLASS AS A CRITERION OF ITS ABILITY TO SELF-CLEANING

Plemyannikov M.

Об'єктом дослідження є процес фотокаталітичної деградації метиленового синього на склі з покриттям з оксиду титану під дією ультрафіолетового випромінювання (УФ-випромінювання). Дослідження має на меті опосередковано оцінювати здатність стекол до самоочищення. Робиться аксіоматичне припущення про кореляцію між здатністю до самоочищення і фотокаталітичною активністю.

В ході дослідження використовувався фотокаталітичний реактор власної конструкції. Це циліндрична порожнина з кварцового скла у вигляді стакану, на внутрішню поверхню якої попередньо нанесене фотокаталітичне покриття з оксиду титану. Порожнина стакану заповнюється розчином метиленового синього. Ззовні стакан опромінюється ртутно-кварцовою лампою. УФ-випромінювання безперешкодно проходить крізь кварцове скло і з тильної сторони активує фотокаталітичне покриття. Для активації процесу потрібна участь атмосферного кисню. Для цього здійснюється барботаж розчину повітрям з перфорованого кільцевого трубчастого колектора, розташованого на дні стакану.

Розчин метиленового синього після різних термінів експозиції піддається спектральному аналізу. Кінетика деградації барвника оцінюється фотоколориметричним методом за зменшенням інтенсивності характеристичної смуги поглинання метиленового синього. Процес знебарвлення наочно демонструється на діаграмі колірності. Новизна запропонованої схеми функціонування фотокаталітичного реактора полягає в тому, що УФ-випромінювання активує покриття, діючи на нього з боку внутрішньої поверхні поділу: кварцеве скло-покриття. Електронно-діркові пари мігрують на поверхню і за умов контакту з киснем повітря здійснюють фотокаталіз модельного розчину. Така схема устрою
фотокаталітичного реактору вигідно відрізняється від відомих через те, що УФ-випромінювання не проходить через досліджувану модельну рідину. Це виключає можливість їх взаємодії, що може внести похибку в кінцеві результати.

Ключові слова: фотокаталітичний реактор, метиленовий синій, УФ-випромінювання, фотокаталіз, спектральний аналіз, знебарвлення, діаграма колірності.

Об'єктом дослідження є процес фотокаталітичної деградації метиленового синього на стеклі з покриттям з оксиду титана під дією ультрафіолетового випромінювання (УФ-випромінювання). Дослідження має мету оцінювати спроможність стекол до самоочищення. Делается аксіоматичне припущення про кореляцію між спроможністю до самоочищення і фотокаталітичною активністю.

В ході дослідження використовувалася фотокаталітичний реактор собственені конструкції. Це циліндрична полова з кварцевого стекла в вигляді стакана, на внутрішню поверхню якого, попередньо нанесено фотокаталітичне покриття, виготовлене з оксида титана. Площадь стакана заповнюється розчином метиленового синього. Інтенсивність фотокаталізованого випромінювання проходить сквозь кварцеве стекло і з протилежної сторони активуйе фотокаталітичне покриття. Для активації процесу звісною барботаж із розчином на дно стакана.

Розчин метиленового синього після різних періодів експозиції підвергається спектральному аналізу. Кинетика деградації красителя оцінюється фотоколориметричним методом по зменшенню інтенсивності характерних полос поглинання метиленового синього. Процес обесцвечування наглядно демонструється на електронно-діодних діаграмах.

Новизна предложеної схеми працювання фотокаталітичного реактора заключається в тому, що УФ-випромінювання активує покриття, діючи на нього з іншої сторони внутрішньої поверхні розчину: кварцеве стекло-покриття. Електронно-діоричні пари мігрують на поверхню і при умови контакту з киснем в поглинуваному модельному розчині. Така схема працювання фотокаталітичного реактора дуже поширено в інших видів, що УФ-випромінювання не проходить через розчин рідину. Це інциклічно вносить погривність до кінцевих результатів.

Ключеві слова: фотокаталітичний реактор, метиленовий синій, УФ-випромінювання, фотокаталіз, спектральний аналіз, обесцвечування, діаграма колірності.
1. Вступ

Останнім часом спостерігається великий попит на самоочисне скло, яке під дією сонячного випромінювання самоочищається від забрудненості атмосферними аерозолями. Таке великогабаритне скло виробляється флоат-методом, на яке методом піролізу наноситься наноструктуроване покриття з оксидів титану.

Однозначно встановити критерії оцінки здатності скла до самоочищення неможливо. Це залежить від умов експлуатації світлових прорізів засклених будівель, а саме: їх просторової орієнтації, метеорологічних умов, наявності дощових опадів, ступеня інсоляції, забрудненості атмосфери.

В наш час потреба виготовлення самоочисного скла не обмежується великогабаритним заскленим будівель і споруд. Виникає необхідність виготовлення малосерійних штучних виробів складної конфігурації, у тому числі і порожнистих. Відомі промислові методи нанення покриття можуть статися недієвими.

У нагоді може стати метод нанення покриття з водних розчинів [1]. Неодмінною ознакою здатності до самоочищення є фотокаталітична активність такого покриття. В даній роботі запропонована оригінальна методика відповідної випробувань. можна аксіоматично стверджувати, що здатність до самоочищення корелює із фотокаталітичною активністю покриття. А її можна простежити за кінетикою розкладання (деградації) певної речовини в фотокаталітичних реакторах. Їх устрої кожної з дослідників підпорядковується конкретним цілям досліджень. Найчастіше – це аналіз ефективності даного каталізатора. В такому разі досліджується кінетика деградації водного розчину певної речовини, убування вмісту якої можна простежити хімічним або фізико-хімічним аналізом. Найчастіше використовують органічні барвники. Їх знежебарвлення легко простежити методом фотоколориметрії.

Іноді дослідження носять чисто утилітарне спрямування. Наприклад, зменшення забруднення певних полюантів в стічних водах. Тоді реактори адаптуються для вирішення відповідної проблеми. Фотокаталітичні реактори можуть бути періодичної і безперервної дії (проточні). Фотокаталітична реакція ініціюється ультрафіолетовим випромінюванням (УФ-випромінюванням), джерелом якого можуть бути ртутно-кварцові лампи або УФ-світлодіоди.

В наукових дослідженнях фотокаталітичні процеси реалізуються в фотокаталітичних реакторах. Відомо чимало варіантів їх устрою. Суттєвою ознакою функціонування реакторів є стан фотокаталізатора. Фотокаталізатор може бути в дисперсному стані і перебувати в водному середовищі реактору у вигляді аквагелів [2, 3]. Фотокаталізатор може бути попередньо нанесений на певну поверхню і іммобілізований на ній [4].

В рамках даної роботи особливий інтерес представляють фотокаталітичні реактори з нанопокриттям, нанесеним на скло [5, 6]. Оригінальний метод використовується в реакторі, в якому, на відміну від інших методів, фотокаталітичне покриття наноситься на кварцові оптичні волокна, через які надходить УФ-випромінювання від світлодіодів [7]. Це забезпечує оптимальні умови для доставки випромінювання в зону фотокаталітичної реакції. Фотокаталітичне очищення водних субстанцій може поєднуватися з процесами
фільтрації. В такому разі фотокаталізатор наноситься на певні мембрани [8]. Носієм фотокаталізатора може бути молекулярні сита, наприклад, цеоліти [9, 10]. Таким чином, об’єктом дослідження є процес фотокаталітичної деградації метиленового синього на склі з покриттям з оксиду титану під дією УФ-випромінювання. А мета роботи полягає у опосередкованому оцінюванні здатності стекол до самоочищення.

2. Методика проведення дослідження

В роботі для апробації запропонованої методики дослідження була зібрана лабораторна установка, принципова схема якої наведена на рис. 1.

![Рис. 1. Схема фотокаталітичного реактора:](image)

1 - стакан з кварцового скла; 2 – фотокаталітичне покриття внутрішньої поверхні стакану; 3 – водний розчин метиленового синього; 4 - джерело ультрафіолетового випромінювання; 5 – променевий потік на зовнішню поверхню стакану; 6 – перфорований колектор для барботажу розчину метиленового синього повітрям; 7 – бульбашки повітря; 8 – повітряний насос; 9 – ресивер; 10 – вентиль для скидання надлишкового тиску

Неодмінною умовою моделювання цього процесу є наступне:
1. Дослідний зразок скла з нанесеним покриттям з діоксиду титану в модифікації наноструктурованого анатазу.
2. Опромінювання покриття фотоактивним випромінюванням УФ-діапазону.
3. Контакт з водним середовищем.
4. Контакт з киснем повітря.
5. Контакт з органічною речовиною, аналізуючи деградацію (розкладання) якої, можна якісно констатувати та кількісно аналізувати кінетику процесу.

Стакан представляє собою трубку з кварцового скла оптичної якості. Діаметр стакану – 25 мм, висота – 50 мм. Необхідність використання саме кварцового скла диктувалося вимогою прозорості для УФ-випромінювання в
діапазоні 200÷400 нм. Нижній переріз трубки був заглушенний латексним короком (дно стакану). Попереднє нанесення фотокаталітичного покриття на внутрішню поверхню стакану було здійснене за методикою [1].

3. Результати дослідження та обговорення
Стакан заповнювався водним розчином (0,09 ммоль) метиленового синього. В якості джерела випромінювання використовувалась ртутно-кварцова лампа потужністю 350 Вт. Вона була розташована горизонтально на відстані 20 мм від стакану. Для уникнення нагрівання стакану з розчином було передбачене його обдування вентилятором (на схемі не показано). На рис. 2. Наведена спектральна характеристика ртутно-кварцової лампи.

Рис. 2. Спектральна характеристика ртутно-кварцової лампи

Як випливає з рис. 2, в актинічному інтервалі 200÷400 нм, здатному до провокування фотокаталітичної властивості покриття, перебуває велика кількість смуг випромінювання, у тому числі і найпотужніша з них.

Для перебігу фотокаталітичних процесів необхідний контакт покриття з водою і киснем повітря. Вода – це розчинник метиленового синього, а контакт з повітрям здійснюється шляхом барботажу розчину повітрям. Для цього на дні стакану встановлений кільцевий перфорований колектор з пластикової трубки. Повітряні бульбашки підймаються догори, що забезпечує контакт покриття з повітрям.

Повітря нагнітается поршневим компрессором. Між ним і колектором встановлений ресивер. Ресивер оснащений вентилем для скидання надлишкового тиску для того, щоб уникнути бурхливого барботажу розчину. Опромінення розчину метиленового синього здійснювалося впродовж 3-ох і 6-ти годин.

Розчини були піддані спектральному аналізу у видимому діапазоні світла 400÷800 нм. Вони заповнювали прямокутні скляні кювети із внутрішньою порожніною розміром в 1 см. Для уникнення похибки вимірювання на втрати інтенсивності променя на віддзеркалення на поверхнях поділу: скло-повітря і
скло-рзччн, а також втрат на поглинання власне водою, здійснювалося порівняльне вимірювання пропускання кювети з розчином і кювети з водою. Звідки цьому можна стверджувати, що значення пропускання мають характеризувати власне розчин метиленового синього.

На рис. 3 наведені криві пропускання, а на рис. 4 - поглинання розчинів метиленового синього для трьох випадків: вихідний розчин і розчини при терміні експозиції 3 і 6 годин.

Рис. 3. Залежність від довжини хвилі коефіцієнту пропускання:
1 - вихідний розчин; 2 - розчин після експозиції в 3 години; 3 - розчин після експозиції в 6 годин

Рис. 4. Залежність від довжини хвилі коефіцієнту поглинання:
1 - вихідний розчин; 2 - розчин після експозиції в 3 години; 3 - розчин після експозиції в 6 годин
Аналізуючи діаграми на рис. 3, 4, можна стверджувати про знебарвлення розчину метиленового синього. Чітко простежується характеристична смуга поглинання при довжині хвилі в 663 нм, яка притаманна саме метиленовому синьому. Із збільшенням терміну експозиції інтенсивність цієї смуги зменшується, що є свідченням про деградацію барвника.

Початкова концентрація метиленового синього становила C=0,09 ммоль. Для характеристичної смуги поглинання 663 нм коефіцієнт поглинання дорівнював 3,6 см\(^{-1}\). Методом фотоколориметрії була розрахована концентрація барвника після терміну експозиції 3 і 6 годин (табл. 1).

Для визначення порядку реакції використовувалися функціональні шкали для концентрацій, відповідно для реакцій: 0-го, 1-го і 2-го порядку (табл. 1).

Термін експозиції, год	Коефіцієнт поглинання, см\(^{-1}\)	Порядок реакції			
		0	1	2	
	C, ммоль	ln C	1/C		
0	3,6	0,09	-2,41	11,11	
3	1,89	0,047	-3,06	21,28	
6	1,08	0,027	-3,61	37,04	

На рис. 5–7 наведені залежності відповідних концентраційних функцій від терміну витримки і здійснена лінеаризація шляхом побудови ліній тренду. Наведені лінійні рівняння залежності відповідних концентраційних функцій від терміну витримки, а також значення достовірності апроксимації (R\(^2\)).

Рис. 5. Лінеаризація залежності концентраційної функції від часу експозиції для реакції нульового порядку
Рис. 6. Лініаризація залежності концентраційної функції від часу експозиції для реакції першого порядку

Як витікає з діаграм на рис. 6, процес гетерогенного фотокаталізу відповідає реакції 1-го порядку.

За даними спектральної кривої пропускання (рис. 3) були визначені координати колірності розчину (рис. 8).

Рис. 7. Лініаризація залежності концентраційної функції від часу експозиції для реакції другого порядку
Рис. 5. Ілюстрація процесу знебарвлення розчину метиленового синього: 1 – координата кольору вихідного розчину; 2 – координата кольору розчину з терміном експозиції 3 години; 3 – координата кольору розчину з терміном експозиції 6 годин

Як витікає з діаграми рис. 8, колірний тон для всіх випадків дорівнює ~ 485 нм, що відповідає синьо-блакитному кольору. В залежності від терміну експозиції координата кольору зсувається до ахроматичної точки, а чистота кольору зменшується від 40 % до значень менше 10 %. Це наочно свідчить про факт знебарвлення розчину метиленового синього.

4. Висновки
Стандартних універсальних методів визначення самоочисної здатності стекол з фотокаталітичним покриттям не існує. Це пов’язано з тим, що скляні вироби можуть мати різноманітну і складну конфігурацію, експлуатуватися в різноманітних атмосферних умовах, бути призначені для самоочищення від певних конкретних полюантів.
Можна аксіоматично стверджувати що самоочисна здатність стекол корелює з фотокаталітичною активністю покриття. Вона оцінюється за
кінетикою розкладання (деградації) модельної речовини. Досліджуючи цю активність, можна опосередковано оцінити і самоочисні здатність.

Фотокаталітична активність покриття може бути досліджена в фотокаталітичних реакторах. За відомими схемами їх устрою таке покриття наноситься на певну поверхню і опромінюється з її боку УФ-випромінюванням. При цьому це випромінювання має проходити через певний об’єм модельної речовини і може змінювати свою інтенсивність. Особливістю запропонованої схеми є те, що УФ-випромінювання діє на шар покриття з тильної сторони, попередньо подолавши стінку з кварцового скла. Інтенсивність променю має бути сталою.

В роботі запропонований устрій для моделювання фотокаталітичного процесу, що відбувається на поверхні скла з покриттям. Такий фотокаталітичний реактор представляє собою циліндричну порожнину (стакан) з кварцового скла. На його внутрішню поверхню методом осадження з водного розчину нанесений шар покриття з модифікації TiO₂ (анатазу). В якості модельної речовини використовується водний розчин метиленового синього. Методом спектрофотометрії і фотоколориметрії констатується його знебарвлення і кінетика деградації. Це дозволяє визначати порядок реакції і константу її швидкості.

Література

1. Plemyannikov, M., Korniiovych, V. (2019). Preparation of a self-cleaning glass using solutions of titanium fluor complexes. Technology audit and production reserves, 5 (3 (49)), 5–9. doi: http://doi.org/10.15587/2312-8372.2019.181546
2. Shahrezaei, F., Mansouri, Y., Zinatizadeh, A. A. L., Akhbari, A. (2012). Photocatalytic Degradation of Aniline Using TiO₂Nanoparticles in a Vertical Circulating Photocatalytic Reactor. International Journal of Photoenergy, 2012, 1–8. doi: http://doi.org/10.1155/2012/430638
3. Azevedo, E. B., Tôrres, A. R., Aquino Neto, F. R., Dezotti, M. (2009). TiO2-Photocatalyzed degradation of phenol in saline media in an annular reactor: hydrodynamics, lumped kinetics, intermediates, and acute toxicity. Brazilian Journal of Chemical Engineering, 26 (1), 75–87. doi: http://doi.org/10.1590/s0104-66322009000100008
4. Hirose, F., Kurita, M., Kimura, Y., Niwano, M. (2006). Photocatalytic oxidation of natural organic adsorbates on anatase TiO 2 films observed by infrared adsorption spectroscopy with a multiple internal reflection geometry. Applied Surface Science, 253 (4), 1912–1916. doi: http://doi.org/10.1016/j.apsusc.2006.03.039
5. Jang, S.-J., Kim, M.-S., Kim, B.-W. (2004). Photodegradation of Reactive Black-5 in Photo-reactors using TiO₂ Immobilized on a Glass Tube. Journal of Industrial and Engineering Chemistry 10 (4), 544–550.
6. Ling, C. M., Mohamed, A. R., Bhatia, S. (2004). Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere, 57 (7), 547–554. doi: http://doi.org/10.1016/j.chemosphere.2004.07.011
7. O’Neal Tugaoen, H., Garcia-Segura, S., Hristovski, K., Westerhoff, P. (2018). Compact light-emitting diode optical fiber immobilized TiO2 reactor for
photocatalytic water treatment. *Science of The Total Environment, 613-614*, 1331–1338. doi: http://doi.org/10.1016/j.scitotenv.2017.09.242

8. Damodar, R.-A., You, S.-J., Chiou, G.-W. (2012). Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment. *Journal of Hazardous Materials, 203*–*204*, 348–356. doi: http://doi.org/10.1016/j.jhazmat.2011.12.027

9. Kabir, M. F., Vaisman, E., Langford, C. H., Kantzas, A. (2006). Effects of hydrogen peroxide in a fluidized bed photocatalytic reactor for wastewater purification. *Chemical Engineering Journal, 118* (3), 207–212. doi: http://doi.org/10.1016/j.cej.2006.02.003

10. Montañez, J. P., Gómez, S., Santiago, A. N., Pierella, L. B. (2015). TiO2Supported on HZSM-11 Zeolite as Efficient Catalyst for the Photodegradation of Chlorobenzoic Acids. *Journal of the Brazilian Chemical Society, 26* (6). doi: http://doi.org/10.5935/0103-5053.20150083

The object of research is the process of photocatalytic degradation of methylene blue on glass coated with titanium oxide under the influence of ultraviolet radiation (UV radiation). The study aims to indirectly assess the ability of glasses to self-clean. An axiomatic assumption is made about the correlation between self-cleaning ability and photocatalytic activity.

The proprietary photocatalytic reactor is used. This is a cylindrical quartz glass cavity in the form of a glass, on the inner surface of which a photocatalytic coating of titanium oxide is preliminarily applied. The cavity of the glass is filled with a solution of methylene blue. Externally, the glass is irradiated with a mercury-quartz lamp. UV radiation passes unhindered through quartz glass and activates photocatalytic coatings on the back side. To activate the process requires the participation of atmospheric oxygen. To do this, the solution is bubbled with air from a perforated annular tubular collector located at the bottom of the glass.

The solution of methylene blue after various exposure times is subjected to spectral analysis. The kinetics of dye degradation is estimated by the photocolorimetric method with a decrease in the intensity of the characteristic absorption band of methylene blue. The bleaching process is clearly demonstrated on the color chart.

The novelty of the proposed scheme for the functioning of the photocatalytic reactor is that UV radiation activates the coatings acting on it from the side of the inner interface: quartz glass coating. Electron-hole pairs migrate to the surface and, under conditions of contact with oxygen, carry out the photocatalysis of the model solution. Such a design of the photocatalytic reactor device compares favorably with the known ones because UV radiation does not pass through the studied model fluid. This excludes the possibility of their interaction, may introduce an error in the final results.

Keywords: photocatalytic reactor, methylene blue, UV radiation, photocatalysis, spectral analysis, discoloration, color diagram.