On Contra Delta Generalized Pre-Continuous Functions

J.B. Toranagatti

Department of Mathematics, Karnataka University’s Karnatak College, Dharwad, India

*Corresponding Author: jagadeeshb2000@gmail.com, Tel.: +919986624200

Available online at: www.isroset.org

Abstract- In this paper, the notion of contra δgp-continuous functions is introduced by utilizing δgp-closed sets in topological spaces. Some of their fundamental properties are studied and some of their basic properties. Relationships between contra δgp-continuous functions and other related functions are discussed.

Keywords- δgp-open set, contra continuous function, contra pre-continuous function, contra δgp-continuous function.

I. INTRODUCTION

In 1996, Dontchev [8] initiated the study of contra continuous functions. Subsequently, Jafari and Noiri [15, 16] exhibited contra α-continuous and contra pre-continuous functions in topological spaces. In this paper, a new class of generalized contra continuous functions by using δgp-closed sets, called contra δgp-continuous functions is introduced and study some of their basic properties. Relationships between contra δgp-continuous functions and other related functions are investigated.

II. PRELIMINARIES

Definition 2.1 A subset A of a topological space X is called pre-closed [19] (resp, b-closed [1], regular closed [26], semi-closed [18] and α-closed [21]) if cl(int(A))⊆ A (resp, cl(int(A))∩ int(cl(A))⊆ A, A=cl(int(A)), int(cl(A))⊆ A and int(cl(int(A)))⊆ A).

Definition 2.2 A subset A of a topological space X is called δ-closed [28] if A = clδ(A) where

\[clδ(A) = \{ x ∈ X: int(cl(U)) \cap A = φ, U ∈ τ \text{ and } x ∈ U \} \]

Definition 2.3 A subset A of a topological space X is called ,

(i) δgp-closed [5] (resp, gp-closed [13] and gp-closed [17]) if pcl(A)⊆ U whenever A⊆ U and U is δ-open (resp, regular open and open) in X.

(ii) δσ-closed [3] if scl(A)⊆ U whenever A⊆ U and U is δ-open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.4 A function f:X→Y from a topological space X into a topological space Y is called,

(i) contra continuous [8] (resp, contra pre-continuous [15], contra α-continuous [16], contra gp-continuous [7] and contra gp-continuous) if f−1(G) is closed (resp, pre-closed, α-closed, gp-closed and gpr-closed) in X for every open set G of Y.

(ii) perfectly continuous [23] if f−1(G) is clopen in X for every open set G of Y.

(iii) pre-closed [10] if for every closed subset A of X, f(A) is pre-closed in Y.

(iv) δgp-continuous [27] (resp, completely-continuous [2] and super continuous [20]) if f−1(G) is δgp-open (resp, regular-open and δ-open) in X for every open set G of Y.

Definition 2.5 A space X is called,

(a) extremely disconnected [12] if the closure of every open subset of X is open.

(b) strongly irresolvable [11] if every open subspace of X is irresolvable.

(c) semi-regular [6] if every open set is δ-open in X.

(d) Urysohn [29] if for each pair of distinct points x and y of X, there exist open sets U and V containing x and y such that cl(U)∩cl(V) = φ.

(e) regular [29] if U is open in X and x∈ U, then there is an open set V containing x such that cl(V)⊆ U.

Definition 2.5 A space X is said to be:

(i) Tδgp-space if every δgp-closed subset of X is closed.

(ii) δgpT1/2-space if every δgp-closed subset of X is pre-closed.

© 2017, IJCSE All Rights Reserved
3. Contra δgp-Continuous Functions.

Definition 3.1 A function $f:X\rightarrow Y$ is called contra delta generalized pre-continuous (briefly, contra δgp-continuous) if the inverse image of every open set of Y is δgp-closed in X.

Theorem 3.2 A function $f:X\rightarrow Y$ is contra δgp-continuous if and only if $f^{-1}(U)$ is δgp-open in X for every closed set U of Y.

Remark 3.3 From Definitions 2.4 and 3.1, we have the following diagram of implications for a function $f:X\rightarrow Y$

\[
\text{Perfectly continuity} \quad \downarrow \\
\text{contra pre-continuity} \quad \leftrightarrow \quad \text{contra continuity} \\
\downarrow \\
\text{contra gp-continuity} \quad \rightarrow \quad \text{contra } \delta gp\text{-continuity} \\
\downarrow \\
\text{contra gpr-continuity}
\]

None of the implications in above diagram is reversible.

Example 3.4 Consider $X\equiv \{a,b,c,d\}$ with the topologies $T = \{X, \emptyset, \{a\}, \{b\}, \{a\}, \{a,\{a,c\}\}\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a,\{a,c\}\}\}$. Define $f:(X,\tau)\rightarrow(X,\sigma)$ by $f(a)=f(b)=a, f(c)=b$ and $f(d)=c$. Then f is contra gpr-continuous but not contra δgp-continuous, since $\{a\}$ is open in Y but $f^{-1}(\{a\})=\{a, \{a\}\}$ is not δgp-closed in X. Define $g:(X,\tau)\rightarrow(X,\sigma)$ by $g(a)=g(c)=a, g(b)=b$ and $g(d)=d$. Then g is contra δgp-continuous but contra gp-continuous, since $\{a\}$ is open in Y but $g^{-1}(\{a\})=\{a,\{a\}\}$ is not gp-closed in X.

Remark 3.5 (a) contra δgp-continuity and δgp-continuity are independent each other. (b) contra δgp-continuity and contra gôs-continuity are independent each other.

Example 3.6 In Example 3.4, f is δgp-continuous but not contra δgp-continuous.

Example 3.7 Consider X, Y as in Example 3.4. Define $h:(X,\tau)\rightarrow(X,\sigma)$ by $h(a)=d, h(b)=c, h(c)=a$ and $h(d)=b$. Then h is contra δgp-continuous but not δgp-continuous, since $\{a,b\}$ is open in Y but $h^{-1}(\{a,b\})=\{c,d\}$ is not δgp-open in X.

Definition 3.8 A space X is called locally δgp-indiscrete if every δgp-open set is δgp-closed in X.

Theorem 3.9 If $f:X\rightarrow Y$ is a contra δgp-continuous and X is locally δgp-indiscrete space, then f is δgp-continuous.

Proof: Let V be a closed set in Y. Since f is contra δgp-continuous and X is locally δgp-indiscrete space, then $f^{-1}(V)$ is δgp-closed in X. Hence f is δgp-continuous.

Definition 3.10 [22] A space X is called locally indiscrete if every open set is closed in X.

Theorem 3.11 If $f:X\rightarrow Y$ is a δgp-continuous and Y is locally indiscrete space, then f is contra δgp-continuous.

Proof: Let G be any open set of Y. Since Y is locally indiscrete space and f is δgp-continuous, then $f^{-1}(G)$ is δgp-closed in X. Hence f is contra δgp-continuous.

Theorem 3.12 [27] (a) In extremely disconnected space X, every $gôs$-closed set is δgp-closed. (b) In strongly irresolvable space X, every δgp-closed set is $gôs$-closed.

As a consequence of Theorem 3.12, we have the following Theorem 3.13 and Theorem 3.14.

Theorem 3.13 If $f:X\rightarrow Y$ is a contra $gôs$-continuous and X is extremely disconnected space, then f is contra δgp-continuous.

Theorem 3.14 If $f:X\rightarrow Y$ is a contra δgp-continuous and X is strongly irresolvable space, then f is contra $gôs$-continuous.

Theorem 3.15 If $f:X\rightarrow Y$ is contra δgp-continuous and X is $T_{\delta gp}$-space, then f is contra continuous.

Proof: Suppose X is $T_{\delta gp}$-space and f is contra δgp-continuous. Let G be an open set in Y, by hypothesis $f^{-1}(G)$ is δgp-closed in X and hence $f^{-1}(G)$ is closed in X. Therefore f is contra continuous.

Theorem 3.16 If $f:X\rightarrow Y$ is contra δgp-continuous and X is $\delta gp T_{1/2}$-space, then f is contra pre-continuous.

Proof: Suppose X is $\delta gp T_{1/2}$-space and f is contra δgp-continuous. Let G be an open set in Y, by hypothesis $f^{-1}(G)$ is δgp-closed in X and hence $f^{-1}(G)$ is pre-closed in X. Therefore f is contra pre-continuous.

Theorem 3.17 If $f:X\rightarrow Y$ is contra δgp-continuous and X is semi regular, then f is contra gp-continuous.

Proof: Follows from the fact that every open set is δ-open in semi-regular space.

Lemma 3.18 [27] For a subset A of a space X, the following are equivalent:

(a) A is clopen;
(b) A is open and pre-closed;
(c) A is open and gp-closed;
Theorem 3.20 The following statements are equivalent for a function $f:X \to Y$:

(a) f is perfectly continuous.
(b) f is continuous and contra pre-continuous.
(c) f is continuous and contra gp-continuous.
(d) f is super-continuous and contra gp-continuous.
(e) f is r-continuous contra gp-continuous.
(f) f is r-continuous and contra pre-continuous.
(g) f is super-continuous and contra pre-continuous.

Theorem 3.21 If $f:X \to Y$ is contra gp-continuous, then the following equivalent statements hold:

(i) For each $x \in X$ and each closed set B of Y containing $f(x)$, there exists an open and pre-closed A in X containing x such that $f(A) \subseteq B$.
(ii) For each $x \in X$ and each open set G of Y not containing $f(x)$, there exists a closed set H in X not containing x such that $f^{-1}(G) \subseteq H$.

Proof: Let B be a closed set in Y such that $f(x) \in B$, then $x \in f^{-1}(B)$. By hypothesis, $f^{-1}(B)$ is gp-open set in X containing x. Let $A = f^{-1}(F)$, then $f(A) = f(f^{-1}(B)) \subseteq B$.

Theorem 3.22 [5] Let $A \subseteq X$. Then $x \in \text{gpcl}(A)$ if and only if $U \cap A = \emptyset$ for every gp-open set U containing x.

Recall that for a subset A of a space (X, τ), the set $\bigcap\{U \in \tau : A \subseteq U\}$ is called the kernel of A and is denoted by ker(A).

Lemma 3.23 [14] The following properties hold for subsets A and B of a space X:

(i) $x \in \text{ker}(A)$ if and only if $A \cap F = \emptyset$ for any closed set F of X containing x.
(ii) $A \subseteq \text{ker}(A)$ and $A = \text{ker}(A)$ if A is open in X.
(iii) If $A \subseteq B$, then ker$(A) \subseteq$ ker(B).

Definition 3.24 A space X is said to be gp-additive if $\text{GPC}(X)$ is closed under arbitrary intersections.

Theorem 3.25 Let X be gp-additive, then the following are equivalent for a function $f:X \to Y$.

(i) f is contra gp-continuous.
(ii) For each $x \in X$ and each closed set D of Y containing $f(x)$, there exists a gp-open set C in X containing x such that $f(C) \subseteq D$.
(iii) $f(\text{gpcl}(C)) \subseteq \text{ker}(f(C))$ for every subset C of X.
(iv) $\text{gpcl}(f^{-1}(D)) \subseteq f^{-1}((\text{ker}(D))$ for every subset D of Y.

Proof: (i) \to (ii) It follows from Theorem 3.21

Write up the full text as needed.
Definition 3.28 The graph G(f) of a function f:X→Y is said to be contra δgp-closed if for each (x,y)∈(X×Y)-G(f) there exist δgp-open set U in X containing x and closed set V in Y containing y such that (U×V)∩G(f)=∅.

Theorem 3.29 The graph G(f) of a function f:X→Y is contra δgp-closed if for each (x,y)∈(X×Y)-G(f) there exist δgp-open set U in X containing x and closed set V in Y containing y such that f(U)∩V=∅.

Theorem 3.30 If f(X,τ)→(Y,σ) is contra δgp-continuous and Y is Urysohn, then G(f) is contra δgp-closed in the product space X×Y.

Proof: Let (x,y)∈(X×Y)-G(f), then y=f(x) and there exist open sets U and V such that f(x)∈U,y∈V and cl(U)∩cl(V)=∅. Since f is contra δgp-continuous, there exists a δgp-open set G such that x∈G and f(G)∩cl(U) and hence we obtain f(G)∩cl(V)=∅. This shows that G(f) is contra δgp-closed.

Theorem 3.31 Let g:X→X×Y be the graph function of f:X→Y defined by g(x)=(x,f(x)) for each x∈X. Then f is contra δgp-continuous if g is contra δgp-continuous.

Proof: Let V be any open set in Y, then X×V is an open set in X×Y. It follows that f⁻¹(U)=g⁻¹(X×U) is δgp-closed in X since g is contra δgp-continuous. Hence f is contra δgp-continuous.

Definition 3.32 [24] A space X is submaximal if every pre-open set is open in X.

Theorem 3.33 If M and N are δgp-closed sets in a submaximal space X, then M∪N is δgp-closed in X.

Proof: Let U be δ-open set in X such that M∪N⊂U. Then pcI(M)⊂U and pcI(N)⊂U since M and N are δgp-closed sets. As X is submaximal, pcI(A)=cl(A) for any subset A of X. Therefore pcI(M∪N)=pcI(M)∪pcI(N)⊂U and hence M∪N is δgp-closed.

Corollary 3.34 If A and B are δgp-open sets in submaximal space X, then A∩B is δgp-open in X.

Theorem 3.35 [5] If A⊂X is δgp-closed, then A=δgpcl(A).

Remark 3.36 Converse of above theorem is true if X is δgp-additive.

Theorem 3.37 Assume that X is δgp-additive. If f:X→Y and g:X→Y are contra δgp-continuous, X is submaximal and Y is Urysohn. Then F={x∈X:f(x)=g(x)} is δgp-closed in X.

Proof: Let x∈X-F, then f(x)=g(x). Therefore, there exist open sets U and V such that f(x)∈U,g(x)∈V and cl(U)∩cl(V)=∅ because Y is Urysohn. Since f and g are contra δgp-continuous, f⁻¹(cl(U)) and g⁻¹(cl(V)) are δgp-open sets in X. Let M=f⁻¹(cl(U)) and N=g⁻¹(cl(V)), then M and N are δgp-open sets containing x. Set O=M∩N, then O is δgp-open set in X. Hence f(O)∩g(O)=f(M∩N)∩g(M∩N)=cl(M∩N)=cl(U∩cl(V)=∅ and so O∩F=∅. From Theorem 3.32, x∉δgpcl(F), hence by above remark, F is δgp-closed in X.

Definition 3.38 A space X is called δgp-connected if X is not the union of two disjoint nonempty δgp-open sets.

Theorem 3.39 For a space X the following are equivalent: (a) X is δgp-connected, (b) φ and X are the only subsets of X which are both δgp-open and δgp-closed, (c) Every contra δgp-continuous function of X into a discrete space Y with at least two points is a constant function.

Proof: (a)→(b): Suppose A is any proper δgp-open and δgp-closed subset of X. Then X-A is both δgp-closed and δgp-open in X. Then X=A∪(X-A) and A∩(X-A)=∅ which contradicts the fact that X is δgp-connected. Hence A=φ or X.

(b)→(a): Suppose X=A∪B where A and B are disjoint δgp-open subsets of X. Since A=X-B, A is both δgp-closed and δgp-open but by assumption A=φ or X which is a contradiction. Hence (a) holds.

(b)→(c): Let f:X→Y be a contra δgp-continuous function where Y is a discrete space with at least two points. Then f⁻¹({y}) is δgp-closed and δgp-open for each y∈Y and X=∪(f⁻¹({y})): y∈Y. By hypothesis, f⁻¹({y})=φ or X. If f⁻¹({y})=φ for all y∈Y, then f fails to be a function. Then there exists only one point y∈X such that f⁻¹({y})=X. This shows that f is constant.

(c)→(b): Let N be a nonempty proper δgp-open and δgp-closed subset of X. Let f:X→Y be a contra δgp-continuous function defined by f(N)=f(y} and f(X-N)=∅ for some distinct points in Y. By (c), f is constant so that f(N)=X.

Theorem 3.40 If f:X→Y is a contra δgp-continuous function and X is δgp-connected space, then Y is not a discrete space.

Proof: If possible, let Y be a discrete space. Let A be a proper non empty open and closed subset of Y. Since f is
contra δgp-continuous, then f⁻¹(A) is proper nonempty δgp-open and δgp-closed subset of X which contradicts the fact that X is δgp-connected space. Hence Y is not discrete.

Theorem 3.41 If a surjective function f:X→Y is contra δgp-continuous and X is δgp-connected space, then Y is connected.

Proof: Suppose that Y is not a connected space. Then there exist disjoint open sets U and V in Y such that Y=U∪V. Therefore U and V are closed sets in Y. Since f is contra δgp-continuous, f⁻¹(U) and f⁻¹(V) are δgp-open sets in X. Also f is surjective, f⁻¹(U) and f⁻¹(V) are non empty disjoint and X=f⁻¹(U)∪f⁻¹(V) which contradicts the fact that X is δgp-connected space. Hence Y is connected.

Theorem 3.42 Let X be a δgp-connected and Y be T₁ -space. If f:X→Y is contra δgp-continuous, then f is constant.

Proof: By hypothesis Y is T₁ -space, K= f⁻¹(y): y∈Y is a disjoint δgp-open partition of X. If |K|≥2, then X is the union of two nonempty δgp-open sets. This is contradiction to the fact that X is δgp-connected. Therefore |K|=1 and hence f is constant.

Definition 3.43 A topological space X is said to be δgp-Hausdorff space if for any pair of distinct points x and y, there exist disjoint δgp-open sets G and H such that x ∈ G and y ∈ H.

Theorem 3.44 If an injective function f:X→Y is contra δgp-continuous and Y is an Urysohn space. Then X is δgp-Hausdorff.

Proof: Let x and y be any two distinct points in X and f is injective, then f(x)=f(y). Since Y is an Urysohn space, there exist open sets A and B in Y containing f(x) and f(y) respectively, such that cl(A)∩cl(B)=ϕ. Then f(x) ∈ cl(A) and f(y) ∈ cl(B). Since f is contra δgp-continuous, then by Theorem 3.8, there exist δgp-open sets C and D in X containing x and y, respectively, such that f(C) ⊆ cl(A) and f(D) ⊆ cl(B). We have C ∩ D ⊆ f⁻¹(cl(A)) ∩ f⁻¹(cl(B)) = f⁻¹(ϕ) = ϕ. Hence X is δgp-Hausdorff.

Definition 3.45 [25] A space X is called Ultra normal space, if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 3.46 A topological space X is said to be δgp-normal if each pair of disjoint closed sets can be separated by disjoint δgp-open sets.

Theorem 3.47 If f:X→Y be contra δgp-continuous closed injection and Y is ultra normal, then X is δgp-normal.

Proof: Let E and F be disjoint closed subsets of X. Since f is closed and injective f(E) and f(F) are disjoint closed sets in Y. Since Y is ultra normal there exist disjoint clopen sets U and V in Y such that f(E)⊂U and f(F)⊂V. This implies E∩f⁻¹(U) and F∩f⁻¹(V). Since f is contra δgp-continuous injection, f⁻¹(U) and f⁻¹(V) are disjoint δgp-open sets in X. This shows X is δgp-normal.

Remark 3.48 The composition of two contra δgp-continuous functions need not be contra δgp-continuous as seen from the following examples.

Example 3.49 Let X=Y=Z={ a,b,c }, τ = {X,ϕ, { a }, { b }, { a,b } } , σ = { Y,ϕ, { a } } and η= { Z,ϕ, { b,c } } be topologies on X,Y and Z respectively. Define a function f:X→Y as f(a)=a,f(b)=b and f(c)=c and a function g:Y→Z as g(a)=b,g(b)=c and g(c)=a. Then f and g are contra δgp-continuous but g*f:X→Z is not contra δgp-continuous, since there exists an open set { b,c } in Z such that(g*f)⁻¹{ b,c }={ a,b } is not δgp-closed in X.

Theorem 3.50 For any two functions f:X→Y and g:Y→Z, the following hold:

(i)g*f is contra δgp-continuous if f is contra δgp-continuous and g is contra continuous.

(ii)g*f is contra δgp-continuous if f is δgp-continuous and g is contra continuous.

(iii)g*f is contra δgp-continuous if g is δgp-irresolute and g is contra δgp-continuous.

Proof: (i) Let U be an open set in Z. Then g⁻¹(V) is open in Y since g is continuous. Therefore f⁻¹{ g⁻¹(U) }=(g*f)⁻¹(U) is δgp-closed in X because f is contra δgp-continuous. Hence g*f is contra δgp-continuous.

The proofs of (ii) and (iii) are analogous to (i) with the obvious changes.

Theorem 3.51 Let f:X→Y be contra δgp-continuous and g:Y→Z be δgp-continuous with Y is Tδgp -space, then g*f:X→Z is contra δgp-continuous.

Proof: Let V be any open set in Z. Since g is δgp-continuous, g⁻¹(V) is δgp-open in Y and since Y is Tδgp -space, g⁻¹(V) open in Y . Since f is contra δgp-continuous, f⁻¹(g⁻¹(V))=(g*f)⁻¹(V) is δgp-closed set in X. Therefore g*f is contra δgp-continuous.
Definition 3.52 A function f:X→Y is called pre δgp-closed if the image of every δgp-closed set of X is δgp-closed in Y.

Theorem 3.53 Let f:X→Y be pre δgp-closed surjection and g:Y→Z be a function such that g•f:X→Z is contra δgp-continuous, then g is contra δgp-continuous.

Proof: Let U be any open set in Z. Then (g•f)−1(U)=f−1(g−1(U)) is δgp-closed in X. Since f is a pre δgp-closed surjection, f(f−1(g−1(U)))=g−1(U) is δgp-closed set in Y. Therefore, g is contra δgp-continuous.

REFERENCES

[1] D. Andrijivcic, On b-open sets, Mat. Vesnic, Vol. 48, pp. 59-64, 1996.
[2] S. P. Arya and R. Gupta, On strongly continuous mappings, Kyungpook Mathematical Journal, Vol. 14, pp. 131-143, 1974.
[3] S. S. Benchalli and Umadevi Neeli, Generalized δ semi closed sets in topological spaces, International Journal of Applied Mathematics, Vol. 24, pp. 21-38, 2011.
[4] S. S. Benchalli, Umadevi Neeli and G. P. Siddapu, Contra gδσ continuous functions in topological spaces, International Journal of Applied Mathematics, Vol. 25, pp. 457-471, 2012.
[5] S. S. Benchalli and J. B. Toranagatti, Delta generalized pre-closed sets in topological spaces, International Journal of Contemporary Mathematical Sciences, Vol. 11, pp. 281-292, 2016.
[6] J. Cao, M. Ganster, I. Reilly and M. Steiner, δ-closure, δ-closure and generalized closed sets, Applied General Topology, Vol. 6, pp. 79-86, 2005.
[7] Dunya M. Hanned and Maysssa Z. Salaman, Some types of contra gp-closed functions in topological spaces, Journal of Al-Nahrain University, Vol. 17, pp. 189-198, 2014.
[8] J. Dontchev, Contra continuous functions and strongly S-closed mappings, International Journal of Mathematics and Mathematical Sciences, Vol. 19, pp. 303-310, 1996.
[9] J. Dontchev and T. Noiri, Contra-semantic functions, Mathematica Pannonica, Vol. 10, pp. 159-168, 1999.
[10] N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. Roumanie Tome, Vol. 27, pp. 311-315, 1983.
[11] J. Foran and P. Liebinitz, A characterization of almost resolveable spaces, Rendiconti del Circolo Matematico di Palermo, Vol. 40, pp. 136-141, 1991.
[12] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960.
[13] Y. Gnaniambal, On generalized pre-regular closely set in topological spaces, Indian Journal of Pure and Applied Mathematics, Vol. 28, pp. 351-360, 1997.
[14] S. Jafari and T. Noiri, Contra-super-continuous functions, Annales Universitatiss Scientiarum Budapestiensis de Rolando Esteriim Nominatae, Sectio Mathematica, Vol. 42, pp. 27-34, 1999.
[15] S. Jafari and T. Noiri, On contra pre continuous functions, Bulletin of the Malaysian Mathematical Sciences Society, Vol. 25, pp. 115-128, 2002.
[16] S. Jafari and T. Noiri, Contra α-continuous functions between topological spaces, Iranian International Journal of Science, Vol. 2, pp. 153-167, 2001.
[17] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Faculty of Science Kochi University Series A Mathematics, Vol. 17, pp. 33-42, 1996.
[18] N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, Vol. 70, pp. 36-41, 1963.
[19] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak pre continuous mappings, Proceedings of the Mathematical and Physical Society of Egypt, Vol. 53, pp. 47-53, 1982.
[20] B. M. Munshi and D. S. Bassan, Super-continuous mappings, Indian Journal of Pure and Applied Mathematics, Vol. 13, pp. 229-236, 1982.
[21] O. Njastad, On some classes of nearly open sets, Pacific J. Math., Vol. 15, pp. 961-970, 1965.
[22] T. Nieminen, On ultraseudo compact and related spaces, Annales Academici Scientiarum Fennicac, Series A I Mathematica, Vol. 3, pp. 185-205, 1977.
[23] T. Noiri, Super-continuity and some strong forms of continuity, Indian Journal of Pure and Applied Mathematics, Vol. 15, pp. 241-250, 1984.
[24] I. L. Reilly and M. K. Vamanamurthy, On some questions concerning proper sets, Kyungpook Mathematical Journal, Vol. 30, pp. 87-93, 1990.
[25] R. Staum, The algebra of bounded continuous functions into a non-archimedean field, Pacific Journal of Mathematics, Vol. 50, pp. 169-185, 1974.
[26] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., Vol. 41, pp. 371-381, 1937.
[27] J. B. Toranagatti, Delta generalized pre-continuous functions in topological spaces, International Journal of Pure and Applied Mathematics, Vol. 116, pp. 829-843, 2017.
[28] N. V. Veliko, H-compact topological spaces, American Mathematical Society Translations, Vol. 78, pp. 103-118, 1968.
[29] S. Willard, General topology, University of Alberta, Addison-wisely publishing company, 1970.

AUTHOR PROFILE

Mr. J.B. Toranagatti is working as Asst. Professor at Karnataka Collage, Dharwad, Karnataka, India. He is having overall teaching experience of 12 years. His research areas of interest are General Topology and Fuzzy Topology. He has published research papers in pre revived International Journals.