Analysis of Strength, Stiffness, and Stability The Formwork Construction in LRT Jabodebek Project

Agyanata Tua Munthe and Muhammad Ardiansyah Noegroho
Faculty of Engineering, University Mercu Buana Jakarta, Indonesia
Agyanata.umb@gmail.com, ancha.noegroho@gmail.com

Abstrak

The Upper Longitudinal Beam casting on the Jabodebek LRT Project requires a shoring to be able to withstand the workloads. To avoid the failure of formwork construction, formwork must meet the strength, stiffness, and stability requirements for each formwork component material. The analysis is carried out on the value of bending stress, deflection, and shear that occur in each component of formwork. From the analysis carried out each obtained as follows. Strength requirements with flexural stress values that occur in Plywood, Girder GT 24, and Steel Waller SRZ materials, each of which is smaller than $\sigma_{\text{permit}} = 100 \text{ kg/cm}^2$, 70000 kg/cm2, and 12000 kg/cm2. Stiffness requirements with deflection values that occur on Plywood and Girder GT 24 material are $\Delta_{\text{permit}} = 1/400$. Whereas the SRZ Steel Waller fulfills $\Delta_{\text{permit}} = 1/240$. Stability requirements with shear stress values that occur in Plywood, Girder GT 24, and Steel Waller SRZ materials, each of which is smaller than $\tau_{\text{permit}} = 12 \text{ kg/cm}^2$, 14000 kg/cm2, and 696 kg/cm2. Peri Up Shoring can support all formwork loads. So it can be said that the construction of the Upper Longitudinal Beam formwork is in a safe condition.

Keywords: Formwork, Bending Stress, Deflection, Shear Stress

1. Introduction

In the construction of concrete work, there are three main components that must be completed carefully and will succeed in the structural work. The three components are concrete mixture, concrete reinforcement and formwork.

Formwork is a temporary mold that is used to hold concrete as long as the concrete is poured and shaped in accordance with the desired shape. Because it functions as a temporary mold, formwork will be removed or dismantled if the concrete that has been poured has reached sufficient strength. To avoid formwork failures due to working loads and other factors, a formwork construction must meet the strength, stiffness and stability requirements. Formwork is said to be strong if when receiving loads - the workloads formwork material is not broken. The strength of formwork becomes a major component in producing quality structural dimensions that are in accordance with the plan. Formwork is said to be rigid, when when receiving loads - loads that work formwork material does not change shape. Formwork must also be stable, so that when receiving the formwork load does not collapse. This requirement must be met considering that formwork is work that is carried out repeatedly in high rise buildings and requires a large fee for rental costs and make it.

The construction of Light Rail Transit Infrastructure Project is implemented by PT. Adhi Karya (Persero) Tbk. Formwork construction that is used for casting Transversal Beam and Lower Longitudinal Beam at Cawang Station is a steel profile structure fabricated by PT. Adhi Karya subcontractor’s according to the needs of construction in the field. The construction process of the steel scaffolding construction requires lifting equipment such as a crawler / mobile crane. The steel formwork construction cannot be used for the construction of the Upper Longitudinal Beam because there is no wiggle room for the crane when assembling the steel scaffolding construction if the floor plate on the Concourse Level has been casted. Longitudinal Beam elevation is ± 4,588 to the Concourse Level floor plate. So we need a formwork scaffolding system to withstand the forces that emerge when the Longitudinal Beam casting takes place. So this research aims to analyze the strength of the formwork structure against the flexural stress, deflection and shear stress of the material permits used so that it can be ensured that the formwork construction is safe.
2. Literature Review

According to Amien Sajekti (2009) quoted by Dolokarsibu (2018), that formwork is a temporary mold for fresh concrete and as a support is used scaffolding (shore). [3]

According to Asiyanto (2010) quoted by Fitriansyah (2018), Formwork is a tool of concrete structures, for molding concrete into the desired shape, size, and controlling its position and alignment. [5]

Reference and scaffolding or formwork or formwork is a temporary construction in the form of a mall / mold on both the upper and lower sides of the desired concrete shape. Formwork functions as desired construction, while Scaffolding serves as a helper strengthening the form of construction.

According to Wigbout (1997), formwork construction works perform 5 functions, namely: [4]
1. Formwork determines the shape of the concrete construction to be made. The simple form of a concrete construction requires a simple formwork.
2. Formwork must be able to safely absorb the load caused by concrete species and various external loads and vibrations. In this case the change in shape that arises and the friction can be allowed as long as it does not exceed these tolerances.
3. Formwork must be able to be simply installed, removed and moved.
4. Preventing loss of wetness from new concrete.
5. Provides thermal insulation.

In planning a formwork, the following data are needed:

1. Concrete Self Weight
 Reinforcement Concrete Self Weight
 Wet concrete specific gravity

 \[q = Volume \times \text{Concrete Specific Gravity} \]

2. Live Load

 \[q = 250 \text{ Kg/m}^2 = 2500 \text{ N/m}^2 \]

 Live load consist of the weight of workers, tools and belisting materials, vibrators, buckets, cast pipes and wheelbarrows.

3. Shock Load

 \[q = 100 \text{ Kg/m}^2 = 1000 \text{ N/m}^2 \]

 Shock load is the load that occurs due to concrete work that is jerking at the time of pouring and vibration by the vibrator during compaction.

Calculation Formula

According to F.Wigbout Ing. (1997), for each situation in casting, the flexure in a field can be calculated using the following formula: Simplified formula by oleh F.Wigbout (1997) In his book entitled “Bekisting (Kotak Cetak) Hal.133” published by Erlangga. [4]

Correction of M.Max, D.Max & Deflection

\[
\sigma_{\text{Max}} = \frac{M_{\text{Max}}}{W}
\]

\[
\tau_{\text{Max}} = \frac{D_{\text{Max}} \times S}{I \times b}
\]

\[
\Delta_{\text{Max}} = \frac{5 \times w \times I^4}{384 \times E \times I}
\]

Explanation:
- M.Max = Moment Maximum (kg.cm)
- D.Max = Displacement Maximum (kg)
- \(\sigma\).Max = Bending Stress Maximum (kg/cm2)
- \(\tau\).Max = Shear Stress Maximum (kg/cm2)
- \(\Delta\).Max = Deflection Maximum (mm)
- W = Momen Resistance (cm3)
- S = Axis Distance (cm)
- I = Moment Inersia (cm4)
- A = Cross-sectional Area (cm2)
- b = Width (cm)
- h = Height (cm)
3. Research Methodology

Planning of a formwork shoring on the beam must of course take into account its strength, stiffness, and stability. In order to guarantee the achievement of strength, rigidity, and stability of formwork construction, it must be designed as a general structural design. Following is the flowchart methodology used in the completion of this Research.

4. Results and Discussion

IV.1. Data Dimention Upper Longitudinal Beam

Refer to Shop Drawing (LRT-CV-ST-DW-L2-TRLV-01 sd 47) getting form PT. Adhi Karya as a main contractor on Light Rail Transit JABODEBEK that is known the Upper Longitudinal Beam beam dimension data shown in Figure 3 and Table 1 below.

From the dimensional data in Figure 3 and Table 1, the calculation of shoring can be grouped because it has the same dimensions.

1. Block sizes 900x1000, namely: B1, B1R, B2, B3, B3L, B4, B4L, B5, B5L, B6, B6A, and B8L
2. Block Size 600 x1200, namely: B10
3. Block Size 800 x 1300, namely: B11
IV.2 Shoring Calculation for Beam 900*1000 mm

IV.2.1 Section Drawing
IV.2.2 Structural Analysis

IV.2.2.1 Control Ply Wood 18 mm

Load to be used:

- Concrete Load = 2500 kg/m2 x 1 m x 0.9 m = 2250 kg/m
- Live Load = 250 kg/m2 x 1 m = 250 kg/m
- Shock Load = 100 kg/m2 x 1 = 100 kg/m
- Selfweight of Plywood = 600 kg/m3 x 0.018 x 1 m = 10.8 kg/m

Total = 2610.8 kg/m

- **Modeling Load**

- **M.Max**

According to F.Wigbout Ing. (1997), select configuration structure accordingly.

The moment maximum occurs in joint area no. 2 (B and C)

M Max = $\frac{1}{10} x q x l^2$

= $\frac{1}{10} x 2610.8 x 0.225^2$

= 1271.1 kg.m ~ 1271.1 kg.cm

- **D.Max**

D Max occurs in joint B and D:

D Max = $\frac{6}{5} x q x l$

= $\frac{6}{5} x 2610.8 x 0.225$

= 704.916 kg
Correction of M.Max, D.Max & Deflection Properties Plywood 18 mm

1) $\sigma_{\text{Max}} = \frac{M_{\text{Max}}}{W} = \frac{1271}{54} = 23,537 \text{ kg/cm}^2$

 $\sigma_{\text{ijin}} = 100 \text{ kg/cm}^2$

 (OK)

2) $\tau_{\text{Max}} = \frac{D_{\text{Max}} \times s}{I_x \times b} = \frac{704.916 \times 40.5}{48.6 \times 100} = 5,874 \text{ kg/cm}^2$

 $\tau_{\text{ijin}} = 12 \text{ kg/cm}^2$

 (OK)

3) $\Delta_{\text{Max}} = \frac{5 \times 26.022 \times 22.5^4}{384 \times 100 \times 100000 \times 48.6} = 0.018 \text{ cm}$

 $\Delta_{\text{ijin}} = l/400 = 0.0562 \text{ cm}$

 (OK)

IV.2.2.2 Control Girder GT 24

Load to be used:

- Concrete Load = 2500 kg/m² x 1 m x 0.9 m = 2250 kg/m
- Live Load = 250 kg/m² x 1 m = 250 kg/m
- Shock Load = 100 kg/m² x 1 = 100 kg/m
- Selfweight of Plywood = 600 kg/m³ x 0.018 x 1 m = 10.8 kg/m
- Bekisting Samping = 70 kg/m² = 70 kg/m
- Selfweight of Girder GT 24 = 6 kg/m
- Total = 2686.8 kg/m

Modeling Load

$q = 2686.8 \text{ kg/m}$
According to F.Wigbout Ing. (1997), select configuration structure accordingly.

The moment maximum occurs in joint area no. 2 (Middle Joint)

\[M_{\text{Max}} = \frac{1}{8} q l^2 \]
\[= \frac{1}{8} \times 2686.8 \times 1.5^2 \]
\[= 755.662 \text{ kg.m} \sim 75566.25 \text{ kg.cm} \]

\[D_{\text{Max}} = \frac{6}{5} q l \]
\[= \frac{6}{5} \times 2686.8 \times 1.5 \]
\[= 4836.24 \text{ kg} \]

Correction of \(M_{\text{Max}}, D_{\text{Max}} \) & Deflection Properties Girder GT 24

\[\begin{array}{|c|c|}
\hline
b &= 8 \text{ cm} \\
A_x &= 96 \text{ cm}^2 \\
I_x &= 8000 \text{ cm}^4 \\
W_x &= 700 \text{ cm}^3 \\
S_x &= 525 \text{ cm}^3 \\
\Delta_{\text{max}} &= l/400 \\
E &= 100,000 \text{ kg/cm}^2 \\
M_{\text{max}} &= 70000 \text{ kg.cm} \\
D_{\text{max}} &= 1400 \text{ kg} \\
\hline
\end{array} \]
1) \[\sigma_{\text{Max}} = \frac{M_{\text{Max}}}{W} = \frac{75566.25}{700} = 107,951 \text{ kg/cm}^2 \]
\[\sigma_{\text{ijin}} = 70000 \text{ kg/cm}^2 \]
\[\sigma_{\text{ijin}} < \sigma_{\text{ijin}} \]
\[\text{OK} \]

2) \[\tau_{\text{Max}} = \frac{D_{\text{Max}} \times S}{l \times b} = \frac{4836.24 \times 5.25}{800 \times 8} = 39,672 \text{ kg/cm}^2 \]
\[\tau_{\text{ijin}} = 1400 \text{ kg/cm}^2 \]
\[\tau_{\text{ijin}} < \tau_{\text{ijin}} \]
\[\text{OK} \]

3) \[\Delta_{\text{Max}} = \frac{5 \times w \times x^4}{384 \times E \times I} = \frac{5 \times 2608.2 \times 1.5^4}{384 \times 10000 \times 8000} = 0.0001 \text{ cm} \]
\[\Delta_{\text{ijin}} = \frac{l}{400} = 0.375 \text{ cm} \]
\[\Delta_{\text{ijin}} < \Delta_{\text{ijin}} \]
\[\text{OK} \]

IV.2.2.3 Control Steel Wale SRZ

Load to be used:
- Concrete Load = 2500 kg/m² x 1 m x 0.9 m = 2250 kg/m
- Live Load = 250 kg/m² x 1 m = 250 kg/m
- Shock Load = 100 kg/m² x 1 = 100 kg/m
- Selfweight of Plywood = 600 kg/m³ x 0.018 x 1 m = 10.8 kg/m
- Side Formwork 70 kg/m² = 70 kg/m
- Selfweight of Girder GT 24 = 6 kg/m
- Selfweight of Steel Wale = 19.08 kg/m
- Total = 2705.88 kg/m

Modelling Load

The moment maximum occurs in 1/8 x q x l²

\[M_{\text{Max}} = \frac{1}{8} \times q \times l^2 \]
\[= \frac{1}{8} \times 2705.88 \times 1.5^2 \]
\[= 761,029 \text{ kg.m} \sim 76102.88 \text{ kg.cm} \]

D.Max

\[D_{\text{Max}} = \frac{1}{2} \times q \times l \]
\[= \frac{1}{2} \times 2705.88 \times 1.5 \]
\[= 2029.41 \text{ kg} \]
Correction of M.Max, D.Max & Deflection Properties Steel Waller

\[
\begin{align*}
\sigma_{\text{Max}} &= \frac{M_{\text{Max}}}{W} = \frac{761,028}{74.38} = 10,231,163 \text{ kg/cm}^2 \\
\tau_{\text{Max}} &= \frac{D_{\text{Max}} \times S}{I \times D} = \frac{202.941 \times 43.38}{37.2 \times 1} = 236,607 \text{ kg/cm}^2 \\
\Delta_{\text{Max}} &= \frac{5 \times w \times l^4}{384 \times E \times I} = \frac{5 \times 26.14 \times 1.5^4}{384 \times 2100 \times 0.001 \times 37.2} = 0.0001 \text{ cm}
\end{align*}
\]

IV.2.2.4 Control Shoring

Load to be used:
- Concrete Load = 2500 kg/m\(^2\) x 1 m x 0.9 m = 2250 kg/m
- Live Load = 250 kg/m\(^2\) x 1 m = 250 kg/m
- Shock Load = 100 kg/m\(^2\) x 1 = 100 kg/m
- Side Formwork 70 kg/m\(^2\) = 70 kg/m
- Selfweight of Plywood = 600 kg/m\(^3\) x 0.018 x 1 m = 10.8 kg/m
- Selfweight of Girder GT 24 = 6 kg/m
- Selfweight of Steel Wale = 19.08 kg/m
- Total = 2705.88 kg/m
Calculation formula for 1 span:
\[D_{\text{Max}} = \frac{1}{2} \times q \times l \]
\[= \frac{1}{2} \times 2705.88 \times 1.5 \]
\[= 2029.41 \text{ kg} < P_{\text{ijin}} = 4000 \text{ kg} \quad \ldots \text{(OK)} \]

IV.2.3 Resume Control Stress, Strain, and Deflection

The static calculation of the formwork shoring structure above, it can be concluded in Table 2:

Item	Control Value	Unit	Status
Plywood 18 mm	\(\sigma_{\text{maks}} = 23.537 < \sigma_{\text{ijin}} = 100\) kg/cm\(^2\) OK		
	\(\tau_{\text{maks}} = 5.874 < \tau_{\text{ijin}} = 12\) kg/cm\(^2\) OK		
	\(\Delta_{\text{maks}} = 0.018 < \Delta_{\text{ijin}} = 0.0562\) cm OK		
Girder GT 24	\(\sigma_{\text{maks}} = 107.951 < \sigma_{\text{ijin}} = 70000\) kg/cm\(^2\) OK		
	\(\tau_{\text{maks}} = 39.672 < \tau_{\text{ijin}} = 1400\) kg/cm\(^2\) OK		
	\(\Delta_{\text{maks}} = 0.0001 < \Delta_{\text{ijin}} = 0.375\) cm OK		
Steel Wale SRZ	\(\sigma_{\text{maks}} = 1023.163 < \sigma_{\text{ijin}} = 1200\) kg/cm\(^2\) OK		
	\(\tau_{\text{maks}} = 236.607 < \tau_{\text{ijin}} = 696\) kg/cm\(^2\) OK		
	\(\Delta_{\text{maks}} = 0.0001 < \Delta_{\text{ijin}} = 0.625\) cm OK		
Shoring	\(P_{\text{maks}} = 2029.41 < P_{\text{ijin}} = 4000\) kg OK		

(Source: Author, 2020)
IV.3 Shoring Calculation for Beam 600*1200 mm

IV.3.1 Section Drawing

![Figure 5. Upper Longitudinal Beam 600x1200 mm](Source: Author, 2020)

IV.3.2 Resume Control Stress, Strain, and Deflection

The static calculation of the formwork shoring structure above, it can be concluded in Table 3:

Item	Control Value	Unit	Status
Plywood 18 mm	\(\sigma_{\text{maks}} = 16 \) \(\leq \sigma_{\text{ijin}} = 100 \)	kg/cm²	OK
	\(\tau_{\text{maks}} = 4.322 \) \(\leq \tau_{\text{ijin}} = 12 \)	kg/cm²	OK
	\(\Delta_{\text{maks}} = 0.011 \) \(\leq \Delta_{\text{ijin}} = 0.0562 \)	cm	OK
Girder GT 24	\(\sigma_{\text{maks}} = 932 \) \(\leq \sigma_{\text{ijin}} = 70000 \)	kg/cm²	OK
	\(\tau_{\text{maks}} = 33,552 \) \(\leq \tau_{\text{ijin}} = 1400 \)	kg/cm²	OK
	\(\Delta_{\text{maks}} = 0.021 \) \(\leq \Delta_{\text{ijin}} = 0.375 \)	cm	OK
Steel Wale SRZ	\(\sigma_{\text{maks}} = 853 \) \(\leq \sigma_{\text{ijin}} = 1200 \)	kg/cm²	OK
	\(\tau_{\text{maks}} = 197.298 \) \(\leq \tau_{\text{ijin}} = 696 \)	kg/cm²	OK
	\(\Delta_{\text{maks}} = 0.001 \) \(\leq \Delta_{\text{ijin}} = 0.625 \)	cm	OK
Shoring	\(P_{\text{maks}} = 1691.91 \) \(\leq P_{\text{ijin}} = 4000 \)	kg	OK

(Source: Author, 2020)
IV.4 Calculation Shoring for Beam 800*1300 mm
IV.4.1 Section Drawing

Figure 6. Upper Longitudinal Beam 800x1300 mm
(Source: Author, 2020)

IV.4.2 Resume Control Stress, Strain, and Deflection
The static calculation of the formwork shoring structure above, it can be concluded in Table 4.:
Table 4. Resume Control Stress, Strain, and Deflection Shoring for Casting Beam 80*130 cm

Item	Control Value	Unit	Status
Plywood 18 mm	\(\sigma_{\text{maks}} = 31.58 \), \(\tau_{\text{maks}} = 7.106 \), \(\Delta_{\text{maks}} = 0.023 \)	\(\sigma_{\text{ijin}} = 100 \), \(\tau_{\text{ijin}} = 12 \), \(\Delta_{\text{ijin}} = 0.0562 \)	OK, OK, cm
Girder GT 24	\(\sigma_{\text{maks}} = 122 \), \(\tau_{\text{maks}} = 44.84 \), \(\Delta_{\text{maks}} = 0.021 \)	\(\sigma_{\text{ijin}} = 70000 \), \(\tau_{\text{ijin}} = 1400 \), \(\Delta_{\text{ijin}} = 0.375 \)	OK, OK, cm
Steel Wale SRZ	\(\sigma_{\text{maks}} = 1155.507 \), \(\tau_{\text{maks}} = 267.266 \), \(\Delta_{\text{maks}} = 0.001 \)	\(\sigma_{\text{ijin}} = 1200 \), \(\tau_{\text{ijin}} = 696 \), \(\Delta_{\text{ijin}} = 0.625 \)	OK, OK, cm
Shoring	\(P_{\text{maks}} = 2291.91 \)	\(P_{\text{ijin}} = 4000 \)	OK

(Source: Author, 2020)

5. Conclusion
Based on the analysis and recapitulation of the value of bending stress, deflection and shear stress in the beam formwork components of the Upper Longitudinal Beam:
a) Upper Longitudinal Beam formwork fulfills strength requirements with flexural stress values that occur on Plywood, Girder GT 24, and Steel Waler SRZ materials, each of which is smaller than \(\sigma_{\text{permit}} = 100 \) kg / cm\(^2\), 70000 kg / cm\(^2\), and 1200 kg / cm\(^2\).
b) Upper Longitudinal Beam formwork meets the requirements of stiffness with deflection value occurring on Plywood and Girder GT 24 material is \(\Delta_{\text{permit}} = 1 / 400 \). Whereas the SRZ Steel Waler fulfills \(\Delta_{\text{permit}} = 1 / 240 \).
c) Upper Longitudinal Beam formwork fulfills the stability requirements with shear stress values that occur in Plywood, Girder GT 24, and SRZ Steel Waller materials, each of which is smaller than $\tau_{\text{permit}} = 12 \text{ kg/cm}^2$, 1400 kg/cm^2, and 696 kg/cm^2.

d) Peri Up Scaffolding / Shoring is able to support the entire formwork of Upper Longitudinal Beam Size 90x100 cm, 60x120, and 80x130 with the respective values $P_{\text{max}} = 2029.41 \text{ kg}$, $P_{\text{max}} = 1691.91 \text{ kg}$, and $P_{\text{max}} = 2291.91 \text{ kg}$. Where the 1 foot shoring capacity is able to withstand a permit load of $P = 4000 \text{ kg}$.

References

[1] Dewobroto W. & Marianto H. (2015): “Analisis Stabilitas Perancah Bertingkat dengan Advance Analysis dan D.A.M.”, Prosiding Seminar Nasional: Sains, Rekayasa & Teknologi UPH–2015, Karawaci, Tangerang, Google Scholar.

[2] Dipohusodo, I. (1988): “Mengenal Acuan Beton Bertulang”, Yogyakarta: Liberty.

[3] Doloksaribu B. (2018): “Analisa Perhitungan Kekuatan Perancah Terhadap Waktu Siklus Pengecoran Lantai untuk Memenuhi Keamanan Struktur Bangunan.”, Universitas Medan Area. Google Scholar.

[4] F. Wigbout Ing. (1997): “Bekisting (Kotak Cetak) “, Jakarta: Erlangga.

[5] Fitriansyah, K. R. (2018): “Analisis Pada Pelaksanaan Pekerjaan Bekisting Plat Lantai Menggunakan Bekisting Ring-Lock Scaffolding Dan Aluma System Terhadap Perbandingan Biaya Dan Waktu (Studi Kasus: Kota Kasablanka 3)”, Universitas Mercu Buana Jakarta. Google Scholar.

[6] Hidayat A. ST., MT. (2018): “Buku Panduan Penulisan Proposal & Tugas Akhir”., Fakultas Teknik Sipil, Universitas Mercu Buana.

[7] Husniah, F. (2017): “Metode Pelaksanaan, Analisis Kekuatan dan RAB Bekisting Semi Sistem Struktur Sub Dam 1 WO-C2 Rehabilitasi dan Rekonstruksi Sabo Dam Merapi Kali Woro Prov. Jawa Tengah”, Universitas Gadjah Mada. Google Scholar.

[8] Ir. V Sunggono Kh. (1984): “Buku Teknik Sipil “, Bandung: Nova.

[9] NI-2 (1971). Peraturan Beton Bertulang Indonesia, Indonesia

[10] NI-3 (1970). Peraturan Umum untuk Bahan Bangunan di Indonesia.

[11] NI-5 (1961). Peraturan Konstruksi Kayu Indonesia.

[12] Nugraha, H. R. (2018): “Evaluasi Terhadap Penggunaan Perancah Baja Modifikasi Sebagai Penopang Sementara Untuk Struktur Transfer Beam Column “, Universitas Jember, Google Scholar.

[13] Pamungkas C.C. (2016): "Design Pemodelan Bekisting System Untuk Pelat 60 Cm (Studi Kasus : Proyek Gedung BRI PSCF Ragunan)", Universitas Pancasila.

[14] Peraturan Standard Beton 1991 (SK.SNI T-15-1991-03).

[15] Saptowati, H. (2018): “Analisis Bekisting Pada Pengecoran Dinding Bunker Gedung Irradiator Merah-Putih”. PRIMA-Aplikasi dan Rekayasa dalam Bidang Iptek Nuklir, 15(2), 1-9.

[16] Sudarmono; Setiono K. J.; Anung Suwarno A. (2015): "Sistem Acuan Perancah Balok Lantai Yang Mudah Dipasang Bongkar Tampak Tiang", Politeknik Negeri Semarang
[17] Talim, M. (2017): “Analisis Pengaruh Kuat Tekuk pada Sistem Perancah Bangunan (Scaffolding) dengan Metode Analisa Langsung (Direct Analysis Method)”, Universitas Sumatera Utara, Google Scholar.

[18] Zakkiyah, N. (2015): “Analisis Kekuatan, Kekakuan dan Stabilitas Bekisting Pada Proyek Pembangunan UI Teaching Hospital”, Universitas Gadjah Mada, Google Scholar.

Biographies

Agyanata Tua Munthe was born in 21 March 1981. After graduation his highschool education at BPK Penabur senior high school in Bandar Lampung, continued his civil engineering education at Atmajaya University, Special Region of Yogyakarta in 2004. He obtained his Master’s degree in civil engineering in 2006 at University of Gajah Mada, Special of Region of Yogyakarta. Currently active as lecturer at Mercu Buana University Jakarta with an interest in structure part and active as a project manager managing several construction projects.

Muhammad Ardiansyah Noegroho was born in 19 March 1990 at Palopo City, South of Sulawesi in Indonesia. He completed his study at Politeknik Negeri Ujung Pandang for his Associate/Diploma Degree in 2011. He continued his study at Universitas Mercu Buana in 2018-2020 for his bachelor degree. Currently, he worked at PT. Adhi Karya as Project QHSE Manager for Light Rail Transit (LRT) Jabodebek Project.