Incoldregions,thepermanentsettlementofembankmentismainlycausedbytherepeatedfreeze-thawprocessandlong-term
repeatedtrainloads.Meanwhile,thecriticaldynamicstress(σ_{dcr})isanimportantparameterindexfordeterminingembankment
stability.Therefore,thearcumulativepermanentdeformationevolutionandcriticaldynamicstressofembankmentsoilsubjected
tocyclicfreeze-thawwerestudiedusingdynamictriaxialtests.Firstly,anumericalmodelforcalculatingcriticaldynamicstress
consideringtheretrievedfreeze-thawprocesswasproposed,whichshowsthatthecriticaldynamicstressofembankmentsoil
rapidlydecreasesinthefirsttworepeatedfreeze-thawcycles,whilstitstabilizesafterthesubsequentfreeze-thawprocess.

Next,basedonthenormalizationofthecriticaldynamicstress,anexplicitmodelforpredictingaccumulativeplasticstrain(ε_p)
ofembankmentsoilwasestablished.Thenabove modelempowersfreeze-thawtimes,repeatedydynamicstressamplitude(σ_d),
andloadingtimes,insuchthatallmaterialparametersofQinghai-Tibet-siltyclaywerepresented.Thus,thecriticaldynamicstressand
accumulativeplasticstrainmodelsestablishedinthispapercanbeappliedtojudgetheembankmentstabilityandpredictthe
embankmentsettlementinducedbytrainloadsincoldregions.

1. Introduction

InChina,thewide-latitude,high-altitude,geologicaltopographycausesahugedifferenceinthedistributionofcold
andwarmzones.PermafrostiswidelydistributedinChina,
including 2.15×10^6 km2 of permafrost area and
5.14×10^5 km2 of seasonal permafrost area, which a prey-
dominantlydistributedinNortheastChina,Northwest
China,andQinghai-TibetPlateau[1].Recently,withthedevelopmentofChina’sstrategyofwesterndevelopment
andrevalorizationofthenortheastoldindustrialbase,thethe
rastructureconstructionrepresentedbyhigh-speed
railwaysandexpresswayswillrapidlydevelopinthecold
regionssuchasNortheastChinaandNorthwestChina,
CentralAsia,andRussia.Incoldregions,thesurfacesoilas
thefoundationundergoesaretpeatedfreeze-thawprocess,
whichchangesthestructureconnectionandarrangementof
soilparticles,furtherchangingthephysical-mechanical
property of soil. Furthermore, the long-term and repeated action of traffic load causes the mechanical properties of embankment soil to constantly evolve, which further aggravates the occurrence of a large area of embankment subsidence, slurry turning disease, slope collapse, lateral uplift, or shear crack extrusion caused by basement extrusion and seriously affects the long-term service performance of traffic engineering. Therefore, it is critical and imperative to investigate the influence of the repeated freeze and thaw process and long-term train loading on the accumulative deformation evolution of embankment soil.

Currently, the research results mainly focus on the effect of repeated freeze-thaw on the static characteristic of different types of soils [2–5]. Many researchers found that resilience modulus and shear strength of soil are reduced with an increase of repeated freeze-thaw times. Meanwhile, the compressibility of soil also affects the mechanical properties subjected to freeze-thaw cycle. The cohesive force of soil exhibiting large compactness reduced with the increase of repeated freeze-thaw, and the angle of internal friction increased or underwent insignificant changes [6–8]. However, Su et al. [9] found that the cohesive forces of soil exhibiting little compactness decrease after some freeze-thaw cycles, which is because fine-grained soils are sensitive to water and temperature and unsuitable for direct use as an engineering material. There are few studies on the dynamic properties of soil subjected to cyclic freeze-thaw under dynamic loads, including earthquake, traffic, and wave loads [10–14]. Based on the nonconsolidation and nondrainage dynamic triaxial test on Changchun silty clay, Dai et al. [15] found that the dynamic strength of silty clay after three repeated freeze-thaw cycles tended to be stable and did not change with confining pressure and freeze-thaw cycle times. The dynamic strength of fly ash soil subjected to repeated freeze-thaw also has the characteristics mentioned above [16]. After repeated freezing and thawing for 3–8 times, the dynamic modulus of fly ash soil and silty soil remained stable, among which the dynamic modulus of fly ash soil was higher than that of silty soil. Zhang [17] investigated the dynamic shear modulus and damping ratio of the silty soil of Natural Mabel Creek in Alaska subjected to repeated freeze-thaw. They observed that dynamic shear modulus of silty clay after cyclic freeze-thaw increased and the damping ratio remained unchanged at the shear strain less than 0.03%, but the damping ratio of the soil after cyclic freeze-thaw increased when it was greater than 0.03%. Based on freeze-thaw cycle tests on soils with three different plasticity indexes, the mechanical parameters of compacted embankment soil subjected to cyclic freeze-thaw were studied by Wang et al. [18]. They found that repeated freeze-thaw significantly affected the strength and deformation property of the soil. Many researchers studied the static strength of melted soil by considering the freezing temperature, melting temperature, and cyclic freeze-thaw times, while the investigation of the dynamic characteristics of melted soil has just begun. Comprehensive research on the accumulative deformation evolution of embankment silty clay subjected to repeated freeze-thaw is even less common.

Therefore, centering on the demand of transportation construction in cold region, the evolution law of \(\sigma_{dcr}\) and \(\varepsilon_p\) of Qinghai-Tibet silty clay subjected to cyclic freeze-thaw as important parameters of dynamic stability of subgrade was studied using a dynamic triaxial test. A constitutive model of permanent deformation is proposed, which considers cyclic freeze-thaw times and long-term traffic load. The research results provide significant scientific and application value for clarifying the development mechanism of accumulated deformation of roadbed soil and its role in treating roadbed diseases in traffic engineering in cold regions by providing guidance to local railroad and highway construction.

2. Test Scheme

2.1. Soil Properties. The particle distribution curve of the material used in this paper is shown in Figure 1, which was taken from the Qinghai-Tibet Railway in China. The physical characteristics of the soil are summarized in Table 1, such as the maximum dry density, plasticity index, and optimum water content.

2.2. Test Equipment. In this paper, the MTS-810 closed-loop servohydraulic material testing machine, equipped with automatic numerical control and data acquisition system, was used for the dynamic triaxial tests. The various indexes of the triaxial test machine are shown in [19]. A refrigerator equipped with an automatic temperature control system is used to freeze Qinghai-Tibet silty clay. The freezing temperature of the refrigerator is up to 30 °C, and the temperature accuracy is 0.1 °C.

2.3. Test Programme. According to the requirements of Railway Engineering Geotechnical Test Code (TB10102-2010), the silty clay samples were prepared in batches and the experimental procedures involved the following five steps. (1) Cylindrical soil specimens with a compressed dry density of 1.89 g/cm³, a diameter of 61.8 mm, and a height of 120 mm were prepared by the artificial freezing method. (2) To ensure uniform freezing of soil samples, the prepared soil specimen with rubber sleeve was placed in the refrigerator for 24 hours at −11 °C. (3) The specimen was melted at a maximum temperature of 20 °C for 18 h. The time of freezing and thawing was enough which had been proved by experiments [20]. (4) After 0, 1, 2, 4, and 6 repeated freeze-thaw cycles, the cylindrical soil specimen was placed in the triaxial test instrument chamber. (5) The tests were carried out by the undrained and unconsolidated loading method. The repeated cyclic loads of sinusoidal waveform with vibration frequency of 2 Hz were applied in the test, as shown in Figure 2. Figure 2 also shows definition of accumulative plastic strain using dynamic stress-strain relationship. It can be seen from the figure that the line of plastic strain of soil in each load cycle is the curve of \(\varepsilon_p\) changing with the number of load vibration. Test termination criteria are 10,000 vibrations or 8% dynamic axial strain. Table 2 shows dynamic triaxial experiment conditions of each sample.
3. Results and Discussion

3.1. Effect of the Dynamic Stress Amplitude. Figure 3 illustrates the influence of σ_d on ε_p of Qinghai-Tibet silty clay subjected to different number of repeated freeze-thaw cycles. It is clear that ε_p increases with increasing vibration numbers (N). For all the tests, there is similar changing tendency of accumulative strain including initial creep stage, steady creep stage, and tertiary stage. During the initial creep stage, the accumulative strain increases at a rapid rate, while the strain rate gradually decreases until it reaches a minimum value. During the stable creep stage, ε_p develops at a constant rate. As expected, the accumulative plastic strain increased with the increase of σ_d. For the subgrade fill, there is a threshold value of dynamic stress. When the dynamic stress is greater than this value, the accumulative plastic strain of the soil will increase significantly until failure, which is called failure type. When the dynamic stress is less than this value, the accumulative plastic strain of soil is small and tends to be stable, and the soil sample is elastic, which is called stable type.

Figure 3(b) shows that when σ_d is less than 200 kPa, the accumulative axial strain of silty clay gradually increases during the initial stage of vibration and tends to be stable with the increase of vibration numbers, which shows a stable type. When σ_d is greater than 400 kPa, ε_p of silty clay increases slowly at the initial stage of vibration, then starts to increase sharply, and quickly reaches failure which indicated a failure-type curve. After the turning point, ε_p of silty clay increases sharply and rapidly reaches the failure which indicated a failure-type curve. Figure 3(b) also shows the relationship between ε_p of silty clay and σ_d under different vibration numbers. From the results obtained, when σ_d is 240 kPa, ε_p of silty clay linearly increases with σ_d at the

![Figure 1: Particle analysis curve of Qinghai-Tibet silty clay.](image1)

![Figure 2: Axial strain of sample under long-term repeated cyclic loading.](image2)

![Table 1: Physical properties of Qinghai-Tibet silty clay.](table1)

Physical property	Value
Maximum dry density (g/cm³)	1.89
Liquid limit (%)	26.1
Plastic limit (%)	17.3
Optimum water content (%)	12.35
Saturated water content (%)	17.45
Plasticity index	8.8

![Table 2: Dynamic triaxial test condition of thawed soil.](table2)

Water content (%)	Times of cyclic freeze-thaw (N_{cyc})	Dynamic stress amplitude (kPa) (σ_d)
0	300, 360, 400, 440, 500	200, 240, 300, 400
1	150, 200, 240, 300, 400	150, 200, 240, 300
12.35	150, 180, 200, 240	150, 180, 200, 240

![Figure 3]:

Figure 3: The influence of σ_d on ε_p of Qinghai-Tibet silty clay subjected to different number of repeated freeze-thaw cycles.
Figure 3: Continued.
3.2. Effect of the Number of Cyclic Freeze-Thaw. Figure 4 gives the relationship between ε_p and vibration times of the Qinghai-Tibet Railway silty clay under different freeze-thaw cycles and vibration numbers. Figure 4(b) shows that when σ_d was 300 kPa, ε_p of the silty clay is small for unfrozen soil, but the relationship curve between ε_p of soil subjected to two repeated freeze-thaw cycles and vibration numbers appeared as a turning point, sharply increasing and rapidly reaching failure. Figure 5 shows the relationship between N_{cyc} and ε_p of Qinghai-Tibet silty clay. ε_p of soil induced by train load is significantly affected by the repeated freeze-thaw process. When σ_d was 200 kPa, the accumulative plastic strain of the embankment soil exhibited an obvious increasing trend with the increase of cyclic freeze-thaw. When σ_d was increased to 300 kPa, the accumulative plastic strain showed an increasing trend during the first two times of freeze-thaw cycles, and then the accumulative plastic strain changed slightly with the increase in the subsequent freeze-thaw cycles, indicating that the failure form of silty clay gradually evolved from brittle failure to plastic failure.

3.3. Effect of Freeze-Thaw Cycles on Critical Dynamic Stress. One of important parameters for determining embankment stability is the critical dynamic stress (σ_{dcr}). According to the fatigue test of cohesive soil, Heath et al. [21] defined the critical dynamic stress, which means that repeated dynamic stress greater than it will cause large permanent deformation of subgrade soil, and permanent deformation is small and terminated when repeated applied load is less than it, as shown in Figure 6.

Consequently, Figure 3(c) shows that σ_{dcr} of silt clay at freeze-thaw cycle $N_{cyc} = 2$ was 200 kPa under certain test conditions. Based on this, σ_{dcr} of silt clay is 200 kPa subjected to two freeze-thaw cycles. Figure 7 shows the influence of cyclic freeze-thaw on σ_{dcr} of Qinghai-Tibet silty clay. The x and y axes represent N_{cyc} and σ_d, respectively, and each point obtained from the above test is plotted in this coordinate. From Figure 6, the critical dynamic stress decreased with an increase in the number of freeze-thaw cycles, suggesting that N_{cyc} significantly influenced σ_{dcr}. Through regression analysis of σ_{dcr} subjected to repeated freeze-thaw, the fitting formula of σ_{dcr} of Qinghai-Tibet silty clay is obtained:

$$\sigma_{dcr} = 213.59 + 183.63 \times \exp \left(\frac{-N_{cyc}}{0.474} \right) R^2 = 0.98,$$

where N_{cyc} and σ_{dcr} represent the number of freeze-thaw cycles and the critical dynamic stress, respectively.

3.4. Prediction Model for Accumulative Deformation of Thawed Soil. This study adopted the Monismith model, which is simple and practical and conforms to equation (2). Based on this model, the evolution law of accumulated plastic strain of silty soil shown in Figure 3 was described by regression analysis. Parameters A and B of the Monismith model were obtained, respectively, as shown in Table 3.

$$\varepsilon_p = AN^B,$$

where ε_p is the accumulative plastic strain, N represents the vibration numbers, and A and B are the parameters. The correlation coefficient R^2 under each test condition shown in Table 3 was mostly above 0.95, and the fitting effect was good.

To reduce the discretization of data points, the dynamic stress amplitude of each level was divided by the critical dynamic stress in the corresponding physical state. After normalization treatment, the dimensionless dynamic stress ratio S_{st} was used to describe the magnitude of each level of dynamic stress. Equation (3) shows the stress ratio formula.

$$S_{st} = \frac{\sigma_d}{\sigma_{dcr}} = \frac{q}{\sigma_{dcr}}$$
Figure 4: Relationship between the accumulative plastic strain and vibration numbers under different number of freeze-thaw cycles. (a) $\sigma_d = 200 \text{kPa}$. (b) $\sigma_d = 300 \text{kPa}$.

Figure 5: Relationship between the accumulative plastic strain and $(N)_{cyc}$. (a) $\sigma_d = 200 \text{kPa}$. (b) $\sigma_d = 300 \text{kPa}$.

Figure 6: Schematic diagram of accumulative plastic strain development patterns.

Figure 8 shows that with an increase in the dynamic stress ratio, model parameters A and B also increased. Parameter A linearly increased with the stress ratio S_{cr}, and the fitting formula can be expressed using equation (4). The exponent B of load times linearly increased with stress ratio S_{cr}, and the fitting formula can be expressed using equation (5).
The above analysis shows that the permanent deformation prediction formula of Qinghai-Tibet silty clay after cyclic freeze-thaw was as follows:

\[\varepsilon_p = AN^B = (0.00103 + 0.00211S_{cr})N^{(0.00825+0.20837S_{cr})}. \]

The above formula indicates that the accumulative plastic strain prediction model considers the comprehensive action of the freeze-thaw cycle and long-term train load. Figure 9 compares the calculated and measured results of the accumulative plastic strain prediction model of Qinghai-Tibet silty clay considering repeated freeze-thaw cycles. The predicted permanent strain agrees well with the test results. The above model can be used for predicting the permanent deformation induced by the long-term action of traffic load. The model has important guiding significance for predicting...
the accumulative permanent deformation of permafrost embankment soil under freeze-thaw cycles and long-term train loads.

4. Conclusions

The effect of cyclic freeze-thaw, train loads, and vibration numbers on the permanent settlement of silty clay widely distributed along the Qinghai-Tibet railroad was investigated. Prediction models for the critical dynamic stress and permanent deformation were presented by considering the freeze-thaw cycle and long-term train load. The main findings are summarized as follows:

(1) The repeated freeze-thaw significantly influenced the accumulation of permanent deformation evolution and critical dynamic stress of Qinghai-Tibet silty clay. When N_{cyc} was less than two, ε_p of soil sharply increased with the vibrations, reaching a brittle failure. However, when N_{cyc} was six, the accumulative plastic strain of the silty clay gradually increased with the number of vibrations until it was destroyed, thus showing plastic failure. The failure form of the silty clay gradually evolved from brittle to plastic failure with an increase in the number of cyclic freeze-thaw.

(2) A model for predicting the critical dynamic stress of silty clay subjected to cyclic freeze-thaw was established by using the multiple nonlinear regression method. The critical dynamic stress of soil after two repeated freeze-thaw cycles rapidly decreases and then changes little after the following freeze-thaw process.

(3) Using the Monismith exponential model and normalizing the critical dynamic stress, a model for predicting the accumulative plastic strain of Qinghai-Tibet silty clay was established, which considers N_{cyc} and the long-term repeated cyclic load. The model has clear parameters and considers the influence of cyclic freeze-thaw, train loads, and vibration numbers on the accumulative plastic strain.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Lina Wang was responsible for methodology, investigation, resources, original draft preparation, and review and editing. Tianliang Wang supervised the study. Zhiyu Weng, Qiang...
Liu, Guoyu Li, and Yingying Zhao were responsible for validation. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant no. 52108346), State Key Laboratory Project of China (Grant nos. KF2020-12 and SKLFSE202019), Yunnan Science and Technology Department Basic Research Project of China (Grant no. 202101AT070253), and Jiangsu Planned Projects for Post-doctoral Research Funds (Grant no. 2021K534C).

References

[1] Y. W. Zhou, D. X. Guo, G. Q. Qiu, and Z. Tingjun, *Geocryology in china*, pp. 157–360, Beijing Science Press, Beijing, China, 2000.

[2] M. N. Tsarapov, “Strength capacity evolution in thawing soils,” *Moscow University Geology Bulletin*, vol. 62, no. 6, pp. 393–396, 2007.

[3] T. I. T. Tokoro, “Influence of freeze-thaw action on hydromechanical behavior of unsaturated crushable volcanic soils,” *Springer*, vol. 3, pp. 143–148, 2013.

[4] Z.-D. Cui, P.-P. He, and W.-H. Yang, “Mechanical properties of a silty clay subjected to freezing-thawing,” *Cold Regions Science and Technology*, vol. 98, pp. 26–34, 2014.

[5] D. Chang, J. K. Liu, and X. Li, “Experimental study on yielding and strength properties of silty sand under freezing-thawing cycles,” *Chinese Journal of Rock Mechanics and Engineering*, vol. 34, no. 8, pp. 1721–1728, 2015.

[6] J. Qi, W. Ma, and C. Song, “Influence of freeze-thaw on engineering properties of a silty soil,” *Cold Regions Science and Technology*, vol. 53, no. 3, pp. 397–404, 2008.

[7] H. Yan, J. K. Liu, and T. L. Wang, “Experimental research of influences of freeze-thaw on mechanical properties of silty sand,” *Journal of Beijing Jiaotong University*, vol. 37, no. 4, pp. 73–77, 2013.

[8] Z. J. Zhou, S. F. Zhong, and H. Liang, “Test research on change law of highway performance at loess are influenced by number of freeze-thaw cycles,” *Chang’an Daxue Xuebao (Ziran Kexue Ban). Journal of Chang’an University (Natural Science Edition)*, vol. 33, no. 4, pp. 1–6, 2013.

[9] Q. Su, D. J. Tang, and S. Liu, “Test on physico- mechanical properties of Qinghai - tibet slope clay under freezing-thawing cycles,” *Chinese Journal of Rock Mechanics and Engineering*, vol. 27, no. 1, p. 2990, 2008.

[10] T.-I. Wang, Y.-j. Liu, H. Yan, and L. Xu, “An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles,” *Cold Regions Science and Technology*, vol. 112, pp. 51–65, 2015.

[11] X. Z. Ling, F. Zhang, Q. L. Li, L. S. An, and J. H. Wang, “Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multistage cyclic loading,” *Soil Dynamics and Earthquake Engineering*, vol. 76, pp. 111–121, 2015.

[12] Y. T. Ma, H. H. Cui, and J. K. Liu, “Study on dynamic behavior of subgrade silty clays under freeze-thaw cycles,” *Low Temperature Architecture Technology*, vol. 39, no. 1, pp. 81–85, 2017.

[13] Y. Wang, W. Fu, and B. He, “Deterioration of resilience properties and mechanism analysis of silty clay under freeze-thaw cycles,” *Geotechnical Investigation and Surveying*, vol. 47, no. 5, pp. 12–17, 2019.

[14] L. H. Tian, L. Yu, S. Liu, and B. Zhang, “Deformation research of silty clay under freeze-thaw cycles,” *KSCE Journal of Civil Engineering*, vol. 24, no. 1, pp. 435–442, 2020.

[15] W. T. Dai, H. B. Wei, H. B. Liu, and Y. Gao, “Dynamic damage model of silty clay after freeze-thaw cycles,” *Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)*, vol. 132, no. 4, pp. 790–793, 2007.

[16] H. B. Wei, H. B. Liu, Y. F. Gong, and Y. He, “Dynamic properties of damage for fly ash soil after freeze-thaw cycles,” *Journal of Harbin Institute of Technology*, vol. 41, no. 10, pp. 110–113, 2009.

[17] Y. Zhang, *Impact of Freeze-Thaw on Liquefaction Potential and Dynamic Prosperities of Mabel Creek Silt*, University of Alaska Fairbanks, Fairbanks, Alaska, 2009.

[18] J. Wang, H. B. Liu, and C. L. Wu, “Influence of freeze-thaw cycles on dynamic characteristics of subgrade soils with different plasticity indices,” *Chinese Journal of Geotechnical Engineering*, vol. 36, no. 4, pp. 633–639, 2014.

[19] Q. Li, X. Ling, L. Wang, F. Zhang, J. Wang, and P. Xu, “Accumulative strain of clays in cold region under long-term low-level repeated cyclic loading: experimental evidence and accumulation model,” *Cold Regions Science and Technology*, vol. 94, pp. 45–52, 2013.

[20] D. Y. Wang, W. Ma, X. X. Chang, and Z. Sun, “Physico-mechanical properties changes of Qinghai-Tibet clay due to cyclic freezing and thawing,” *Chinese Journal of Rock Mechanics and Engineering*, vol. 24, pp. 4313–4319, 2005.

[21] D. L. Heath, M. J. Shenton, P. W. Sparrow, and J. M. Waters, “Design of conventional rail track foundations,” *Proceedings of the Institution of Civil Engineers*, vol. 51, no. 2, pp. 251–267, 1972.