Role of endoscopic ultrasound in liver disease: Where do we stand in 2017?

Hamzeh A Saraireh, Mohammad Bilal, Shailendra Singh

Hamzeh A Saraireh, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States

Mohammad Bilal, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, TX 77555, United States

Shailendra Singh, Division of Gastroenterology, Hepatology and Nutrition, Allegheny General Hospital, Pittsburgh, PA 15212, United States

ORCID number: Hamzeh A Saraireh (0000-0002-6725-8001); Mohammad Bilal (0000-0002-1784-212X); Shailendra Singh (0000-0001-9505-4842).

Author contributions: Saraireh HA and Bilal M performed literature review and search; Saraireh HA wrote the initial manuscript which was edited by Bilal M; Bilal M wrote certain parts of the manuscript; Singh S was involved in editing the manuscript and provided expert opinion.

Conflict-of-interest statement: The authors report no conflict of interest and have no financial disclosures.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Abstract

Endoscopic ultrasound (EUS) was first introduced into medical practice in 1980s as a diagnostic imaging modality for pancreatic pathology. EUS has the unique advantage of combining ultrasound and endoscopy to obtain detailed information of the gastrointestinal tract. Over the past decade, the use of EUS in liver diseases has been increasing. EUS, which was initially used as a diagnostic tool, is now having increasing therapeutic role as well. We provide a review of the application of EUS in the diagnostic and therapeutic aspects of liver disease. We also look at the evolving future research on the role of EUS in liver diseases.

Key words: Endoscopic ultrasound; Liver disease; Portal hypertension; Liver lesions

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We have summarized the up-to-date literature on the emerging role of endoscopic ultrasound (EUS) in liver disease. This brief review summarizes both the diagnostic and therapeutic role of EUS in focal hepatic lesions, portal hypertension, liver abscess and hepatic cysts. We have also summarized the future research on this subject.

Saraireh HA, Bilal M, Singh S. Role of endoscopic ultrasound in liver disease: Where do we stand in 2017? World J Hepatol
INTRODUCTION

The evaluation of liver disease has been progressively changing over the last few decades with advancement of new technologies. Computed tomography (CT), conventional ultrasound and magnetic resonance imaging has been the principal means for evaluating hepatic disease for long time[1].

Endoscopic ultrasound (EUS) was first introduced into medical practice in 1980s as a diagnostic imaging modality for pancreatic pathology[2]. It is distinctive in its ability to differentiate the histological layers of the gastrointestinal (GI) tract wall as well as the periluminal structures[3]. EUS has the unique advantage of combining ultrasound and endoscopy to obtain detailed information of the GI tract. With recent advances in technology, advanced physicians’ training and the expanding use of EUS, its role has grown dramatically to include both diagnostic and therapeutic aspects in gastrointestinal, pancreatic and hepatobiliary tree disease[4].

In this review, we aim to summarize the application of EUS in diagnostic and therapeutic aspects of liver diseases. EUS performances in diagnostic and therapeutic aspects of liver disease include diagnosis and management of focal hepatic lesions, simple hepatic cysts, hepatic abscesses and portal hypertension. Limitations of EUS include limited access to the right hepatic lobe and increased risk of complications in those with anatomical alteration of the GI tract. Complications, although rare, can happen during EUS-guided fine needle aspiration (FNA) and include esophageal and duodenal perforation. We also look at the evolving future research on the role of EUS in liver diseases.

DIAGNOSTIC USE OF EUS, CONTRAST ENHANCED HARMONIC EUS, EUS-GUIDED FNA IN FOCAL HEPATIC LESIONS

Focal hepatic lesions are divided into benign lesions (such as hepatic cysts, focal nodular hyperplasia, regenerative nodular hyperplasia, abscess, adenoma or hemangioma) and malignant lesions (such as hepatocellular carcinoma, intrahepatic cholangiocarcinoma, biliary cystadenoma and metastatic liver disease)[4]. Those lesions were classically diagnosed with combination of conventional imaging such CT and transabdominal ultrasound and percutaneous liver. EUS was first used in liver imaging in 1997[5] and since then its use has become increasing popular.

EUS, especially when combined by cytology, has been used not for evaluating intra-abdominal masses only, but also for staging purposes[6-9]. In recent review by Srinivasan et al[6], EUS has shown superiority in detecting focal hepatic lesions compared with conventional CT and trans-abdominal ultrasound, especially for small lesions. A recent study comparing the diagnostic sensitivity of EUS and CT scan showed that of 574 patients, 14 had liver lesions that were visualized by EUS, however, only 3 of those 14 patients had their lesions visualized by CT scan prior to the use of EUS[10]. Another study by Awad et al[11] showed that EUS could detect additional hepatic lesions in 28% of patients with a history of known liver mass that were detected initially by CT scan. Similarly, other reports have shown that EUS can detect liver lesions that were missed by conventional imaging modalities[12]. Fujii-Lau et al[13] proposed diagnostic criteria to differentiate between benign hepatic lesions and malignant metastatic lesions according to the lesion’s characteristics on EUS. These criteria include lesion’s shape, borders, echogenicity, homogeneity and size. These EUS criteria were applied to 200 patients who were diagnosed with malignancy using EUS-FNA. The authors concluded that EUS criteria may help in distinguishing benign from malignant hepatic lesions with a positive predictive value of 88%. The authors also suggested that the use of EUS criteria can guide the decision to perform EUS-FNA on a liver mass or not. The limitations of their study was that it was a single center study and the EUS criteria was validated by one expert endosonosgrapher only.

The use of contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) for liver disease has evolved recently. Since the liver cells have a dual blood supply, CH-EUS is divided into three phases according to timing from contrast injection; arterial phase, portal phase and late phase[14]. According to contrast enhancement imaging, increased arterial enhancement and late-phase contrast washout indicate hepatocellular carcinoma, while peripheral-rim like hyper enhancement followed by subsequent washout is visualized in metastatic liver cancer[15]. In cases of hemangioma, peripheral nodular hyper enhancement associated with sustained enhancement in the late phase is usually visualized[15]. A comparable study by Liu et al[16] showed that CH-EUS is the same if not superior to CT scan in characterization and visualization of focal hepatic lesions.

The use of EUS was not limited to visualization only, but also in obtaining tissue biopsy for diagnostic purpose. EUS guided fine needle aspiration (FNA) has played a major role in revolutionizing the diagnosis of focal hepatic lesions. EUS-FNA is a minimally invasive procedure that is utilized for procurement of tissue
of hepatic lesions. Currently, its use is limited to the left lobe, the proximal right lobe, the hilum and part of the intrahepatic biliary tract. EUS-FNA has a theoretical advantage over classical percutaneous biopsy in patients with cirrhosis, since percutaneous approach may be difficult in these patients owing to the presence of ascites and coagulopathy. Previous reports on the safety and efficacy of EUS-FNA have yielded encouraging results. In a survey by tenBerge et al., which included data from twenty-one centers of 167 cases of EUS-FNA of the liver lesions, it was shown that EUS-FNA was able to diagnose malignancy in 23 out of 26 (89%) of cases after a non-diagnostic trans-abdominal ultrasound guided FNA. Safety of EUS-FNA was also tested, with only 1% rate of major complication was reported. EUS-FNA was also shown to be safe with only 1% rate of major complications. Several other studies have shown the sensitivity of EUS-FNA for diagnosis of malignancy in liver lesions ranging from 82%–94%.[19,20]. Table 1 summarizes the complications of EUS-guided FNA and percutaneous FNA.[18,21-24].

EUS-GUIDED LIVER BIOPSY

Liver biopsy remains the cornerstone in the diagnosis of liver diseases.[25] Percutaneous liver biopsy was first described in 1923[26] before the transjugular approach was suggested in 1973.[17] Limitations of percutaneous approach are significant sample variability[25] and risk of adverse events that include pain at site of biopsy, bleeding, marked hypotension and pneumothorax.[21]. The transjugular approach for liver biopsy entails accesses to the liver parenchyma through superior vena cava and hepatic vein, hence the liver capsule is not punctured.[25] This approach is preferred in those with coagulopathy, marked ascites and in morbidly obese patients.[25] Recently, EUS was used to obtain liver biopsy. EUS-guided liver biopsy (EUS-LB) was first described in animal studies in 2002,[29] with favorable outcome and safety profile. EUS-LB in humans was described by Dewitt et al.[21]. A case series of 21 patients who underwent a transgastric EUS guided Trucut biopsy with a 19-gauge needle. Histologic diagnosis was successfully obtained in 90% of specimens (19/21), however, only 71% (15/21) were helpful for clinical diagnosis. No adverse events were reported in any of the patients. In another retrospective study of 9 patients, Gleeson et al.[30] were able to show that Trucut biopsy is safe and at the same time yields suitable tissue for diagnostic purposes of liver disease.

THERAPEUTIC USE OF EUS IN SIMPLE HEPATIC CYSTS

Hepatic cysts are mostly asymptomatic, and estimated to occur in 5% of population.[36] The female: Male is approximately 1.5:1 among those with asymptomatic simple hepatic cysts (SHC) while it is 9:1 in those with symptomatic or complicated SHC.[36] SHC is generally diagnosed incidentally on abdominal imaging. Only 10%-16% of such cysts are symptomatic.[4] Symptoms are due to mass effect, rupture, hemorrhage and infection,[36] and include abdominal pain, nausea, vomiting, early satiety, obstructive jaundice and hepatomegaly.[36,37]. Management of SHC has varied over the years. Treatment options include surgical approach (open derofenosing, laparoscopic derofening, complete cyst resection and hepatectomy), percutaneous aspiration and sclerotherapy.[36,38,39] Prior reports have shown that percutaneous aspirations is associated with recurrence rate, as high as 100%, that can be seen as early as two weeks.[38,40] A recent systematic review by Wijnands et al.[39] evaluated the role of percutaneous sclerotherapy in the management of SHC. The authors included 16 studies and reported cysts volume reduction ranged between 76% to 100% after a median follow-up period.

THERAPEUTIC EUS-FNA OF FOCAL HEPATIC LESIONS

Recently some case reports have highlighted the therapeutic role of EUS in liver lesions as well.[31-34] This includes the use of EUS to guide alcohol injection and laser ablation of hepatic lesions. Barclay et al.[31] described a case of 3.3 cm metastatic liver lesion treated with multiple EUS-guided ethanol injections. Follow-up imaging showed a decrease in tumor size to less than 2 cm. Hu et al.[32] also reported a patient with pancreatic adenocarcinoma with metastasis to retroperitoneal lymph nodes and left hepatic lobe. Following pancreatoduodenectomy and chemotherapy, patient underwent successful ethanol injection of left hepatic lesion with no significant post-procedure complications. Other examples of therapeutic intervention include EUS-guided Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y:Al₃O₅) laser ablation of hepatocellular carcinoma.[35].
of one to fifty-four months. In 10 of these studies, 72% to 100% patients reported improvement of symptoms, while 56% to 100% patients reported symptoms resolution. In regards to safety, three studies reported ethanol intoxication incidence, manifested as headache, nausea and flushing, with frequency of intoxication as high as 93%. The risk of intoxication increased with increased sclerotherapy duration, and increased volume of ethanol used.

In recent years, EUS guided ethanol lavage has emerged as a popular treatment modality of SHC. In 2014, Lee et al. did a single center retrospective cohort study comparing EUS guided and percutaneous ethanol lavage for treatment of large hepatic cysts. A total of 10 cysts were drained by percutaneous approach with placement of drainage catheter, while 8 cysts were drained using EUS guided ethanol lavage. In EUS-guided group, cysts were drained in a 1-step approach without the placement of a catheter. Both approaches were efficacious. Results revealed a 97.5% and 100% reduction in cysts size at 11.5-mo follow-up and 15-mo follow-up, respectively. The authors concluded that there is an excellent symptomatic and radiological response in both groups. EUS-guided approach is more effective for left liver lobe cysts while percutaneous approach is better in right sided liver cysts. Despite positive results, further multi-center trials are needed to confirm these findings, since this was a single center study.

THERAPEUTIC USE OF EUS IN LIVER ABSCESES

Liver abscesses are defined as encapsulated collection of suppurative material within the liver parenchyma. They are the most common intra-abdominal abscesses with a reported incidence of 8-20 cases per 100000 hospitalized patients per year in the United States. Historically, pyogenic liver abscess has been managed with either surgical or percutaneous interventions. Since 2001, the number of percutaneous procedures has doubled, while the number of surgical procedures has decreased by about 20%, percutaneous abscess drainage has a success rate of up to 100%, hence making it the first line drainage technique. On the other hand percutaneous drainage is associated with side effects including catheter dislodgment, subcapsular hematoma, drainage from catheter exit site, hepatic-venous fisulas and hepato-colic fistulas. In recent years, EUS guided drainage for liver abscesses has emerged as an alternative approach since it was first proposed by Seewald et al. in 2005. The authors reported a case of an 11 cm hepatic abscess within the left lobe of the liver that was successfully drained through trans-gastric approach using EUS with no complications or recurrence on follow-up. Since then, several other case reports and series have described successful EUS guided drainage of liver abscess via trans-gastric and trans-duodenal approaches. In a retrospective report by Ogura et al., 27 patients who underwent either EUS-guided abscess drainage or percutaneous abscess drainage, the clinical success rate of EUS-guided group was superior to that of the percutaneous group, at 100% and 82%, respectively. Safety and hospital stay was also superior in EUS guided group. Although this data is encouraging, more prospective studies are still needed to compare the safety and efficacy of both interventions.

EUS AND PORTAL HYPERTENSION

Diagnostic aspect

Portal hypertension is the hallmark of end stage liver disease or advanced fibrosis. Hepatic venous pressure gradient (HVPG) greater than 5 mmHg is defined as portal hypertension. Esophageal varices (EV) form when HVPG is greater than 10 mmHg and the chances of EV bleeding occurs when HVPG exceeds 12 mmHg. Esophagogastroduodenoscopy (EGD) has been the cornerstone for diagnosis, surveillance and treatment of EV. Over the last decade EUS has emerged as an important tool for evaluation of gastroesophageal varices.

EUS can effectively measure the size of EV by using the sum of the cross-sectional surface area of all the EV in the distal third of the esophagus. While upper gastrointestinal endoscopy continues to be the gold standard in detecting EV, EUS has better sensitivity in detecting gastric varices. In one study EUS was able to detect gastric varices twice more than conventional EGD. Since EUS can detect vascular changes better, some experts believe that EUS can easily differentiate thickened gastric folds from small gastric varices that can be difficult to diagnose via EGD. EUS like EGD can not only diagnose esophageal and gastric varices but can also predict the risk of bleeding. One report showed that the detection of hemocystic spots via EUS predicted the chance of variceal hemorrhage.

The other advantage of EUS is increased sensitivity in detection of collateral veins around the esophagus. These veins can be small in size, called peri-esophageal collateral veins, or large in size; para-esophageal collateral veins. In one study from China, EUS was able to detect extra-luminal venous abnormalities in greater than 90% of patients with cirrhosis. Some gastroenterologists argue that the early detection of gastroesophageal varices, and other venous abnormalities in cirrhosis via EUS might reduce the need of liver biopsy if the etiology of cirrhosis is clear, e.g., alcohol use and long standing viral hepatitis.

The detection of collateral vasculature does not only have diagnostic significance, but also has prognostic value. Prior studies have shown that the presence of severe collateral and perforating veins can help predict
the chance of recurrence of esophageal varices before and after treatment\(^\text{\cite{68-70}}\). Konishi \textit{et al}\(^\text{\cite{70}}\) performed a study evaluating the risk of recurrence of esophageal varices after band ligation based on presence of vascular structures around the gastric cardia detected via EUS. They reported that over 90% of patients with severe perforating veins seen on EUS prior to variceal band ligation had recurrence of varices\(^\text{\cite{70}}\). In another study by Masalaite \textit{et al}\(^\text{\cite{71}}\), severe esophageal collateral veins seen during EUS were shown to be independent risk factors for recurrence of varices. This suggests that this subset of patients might need closer follow-up as compared to patients who do not have perforating veins.

Therapeutic aspect

Over recent years, EUS has found role in management and treatment of gastroesophageal varices as well. The role of sclerosing therapy under EUS guidance is becoming increasingly popular. One randomized trial from Brazil showed encouraging results demonstrating that EUS guided sclerotherapy was equally effective as compared to standard endoscopic sclerotherapy for esophageal collateral vessels\(^\text{\cite{72}}\). Where treatment of esophageal varices via EGD continues to be the standard of care, bleeding from gastric varices continues to be a challenge for endoscopists around the globe. Gastroesophageal varices type 2 (GOV-2) are continuing to be a challenge for endoscopists due to presence of unexpected anatomical changes. Gastroesophageal varices type 2 (GOV-2) are usually large in size and lead to significant bleeding. These varices cannot be effectively treated by band ligation, and therapy targeting the accompanying perforating and collateral veins is needed. Due to these challenges, EUS guided therapy with precise localization of these veins is becoming exceedingly popular\(^\text{\cite{73}}\). The two common modalities include EUS guided cyanoacrylate injection and EUS guided coil embolization\(^\text{\cite{73,74}}\). Lee \textit{et al}\(^\text{\cite{66}}\) performed a study in which 54 patients with bleeding due to gastric varices underwent EUS every two weeks, with injection of cyanoacrylate until obliteration of gastric varices. The authors reported that this intervention lead to decrease in recurrence of bleeding and improved survival in this group of patients\(^\text{\cite{66}}\). A multi-center study also compared the use of cyanoacrylate injection (CI) with EUS guided coil embolization (CE) for treatment of bleeding gastric varices\(^\text{\cite{75}}\). The results of this study were promising and showed that both EUS guided CI and CE were effective in treatment of gastric varices, however, CE had less side effects and needed less number of sessions for eradication of gastric varices. EUS guided sclerosis has also been successfully used to treat bleeding rectal varices in some cases\(^\text{\cite{76}}\).

The role of EUS in portal hypertension seems to be growing even more. Recently an animal study reported comparable results of portal pressure gradient measurement by EUS guided manometer approach with interventional radiology guided portal pressure measurement\(^\text{\cite{77}}\). The same group of investigators also performed a pilot human study in which 28 patients underwent EUS guided portal pressure measurement with a hundred percent success rate and no adverse events\(^\text{\cite{76}}\). Whereas further studies with larger sample size are needed in this regard, EUS guided portal pressure measurement might be a breakthrough for gastroenterologists and hepatologists in taking care of patients with cirrhosis. Animal studies (Table 2) have also shown that EUS can potentially be used for creation of intra-hepatic portosystemic shunts\(^\text{\cite{79,80}}\). Historically the intra-hepatic portosystemic shunt has been placed using a trans-jugular approach under angiography (TIPS). Although this procedure as suggested has been technically feasible in animals, major concerns should be addressed before its application in patients with advanced liver disease. Those concerns include high risk of bleeding, severe infections and technical difficulties in stent placement\(^\text{\cite{81}}\).

COMPLICATIONS OF EUS

Due to specific mechanical properties of echoendoscopes used for EUS and the evolving training of advanced endoscopy specialists, there is a low, and yet noteworthy risk of complications with EUS. Majority of the complications related to EUS occur during EUS-FNA\(^\text{\cite{82}}\). The mortality associated with EUS and EUS-FNA is 0.02%\(^\text{\cite{82}}\). The major adverse complication with EUS is perforation. Gastrointestinal perforation can happen, especially at areas of angulation and in the presence of unexpected anatomical changes\(^\text{\cite{82}}\). A survey conducted in Germany, including 67 centers, reported 32 complications associated with EUS. Esophageal perforation occurred only in 8 of almost 85000 diagnostic EUS procedures\(^\text{\cite{83}}\). Another survey among members of American endosonography club in 2002 reported 16 esophageal perforations that occurred after almost 44000 EUS procedures were performed, and more than half of those occurred with endoscopists who had less than one year of experience performing EUS\(^\text{\cite{84}}\). Duodenal perforations occur more frequently than esophageal perforation\(^\text{\cite{82}}\). In a prospective EUS online registry, 10 events of gastrointestinal perforations in 13988 diagnostic EUS procedures were noted, with duodenal perforation accounting for 60% of these cases\(^\text{\cite{85}}\). A survey by Lachter\(^\text{\cite{86}}\) investigated the mortality in patients who had a complication during EUS. The authors reported that 13 out of 18

Table 2 Animals studies regarding endoscopic ultrasound-guided intrahepatic portosystemic shunt placement

Ref.	Animals	Type of needle	Success rate
Schulman \textit{et al}\(^\text{\cite{70}}\)	5 pigs	19-G-needle	100%
Buscaglia \textit{et al}\(^\text{\cite{79}}\)	10 pigs	19-G-needle	100%

Saraireh HA \textit{et al}. EUS in liver diseases

WJH | www.wjgnet.com 1017 August 28, 2017 | Volume 9 | Issue 24 |
(73%) fatalities resulted from duodenal tears causing retroperitoneal perforations, with four of those thirteen patients having duodenal diverticula.

CONCLUSION

The role of EUS has evolved greatly in recent years. Initially thought to be a great tool for diagnostics, EUS has now several therapeutic implications as well. Since expansion of EUS in liver diseases, it is emerging as a great tool for gastroenterologists and hepatologists to manage several liver related conditions. Focal hepatic lesions have always been a challenge for hepatologists. With recent advancements in EUS, it has shown superiority in detecting focal liver lesions as compared to conventional CT scan and ultrasound imaging modalities. Moreover, recently several therapies including EUS guided ethanol and EUS-guided Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:YAlO₃) laser ablation are also used to treat focal hepatic lesions. Similarly, recent data is showing that EUS guided liver biopsy may potentially be more safer than percutaneous liver biopsy when done by an experienced endosonographer. In regards toportal hypertension, EUS can detect early changes of portal hypertension and hence provides early and accurate assessment of overall clinical status. Despite encouraging results from available data, further research including randomized control trials is needed, before the use of EUS can be generalized in liver diseases.

REFERENCES

1. Schwartz DA, Wiersema MJ. The role of endoscopic ultrasound in hepatobiliary disease. Curr Gastroenterol Rep 2002; 4: 72-78 [PMID: 11825544 DOI: 10.1007/s11894-002-0040-0]
2. Wong JY, Kongpam P, Ho KY. Training in endoscopic ultrasonography: An Asian perspective. Dig Endosc 2017; 29: 512-516 [PMID: 28086947 DOI: 10.1111/den.12802]
3. Kim E, Telford JJ. Advances in endoscopic ultrasound, part 2: Therapy. Can J Gastroenterol 2009; 23: 691-698 [PMID: 19826645 DOI: 10.1155/2009/786212]
4. Srinivasan I, Tang SJ, Vilmann AS, Menachery J, Vilmann P. Hepatic applications of endoscopic ultrasound: Current status and future directions. World J Gastroenterol 2015; 21: 12544-12557 [PMID: 26640331 DOI: 10.3748/wjg.v21.i44.12544]
5. Bogstad J, Vilmann P, Burchardt F. Early detection of recurrent hepatocellular carcinoma by endosonographically guided fine-needle aspiration biopsy. Endoscopy 1997; 29: 322-324 [PMID: 9255540 DOI: 10.1055/s-2007-1004198]
6. Jhala NC, Jhala DN, Chhieng DC, Eloubeidi MA, Eltoum IA. Endoscopic ultrasound-guided fine-needle aspiration. Gastroendosc 1997; 40: 694-699 [PMID: 7859697]
7. Singh P, Erickson RA, Mukhopadhyay P, Gopal S, Kiss A, Khan A, Ulf Westblom T. EUS for detection of the hepatocellular carcinoma: results of a prospective study. Gastrointest Endosc 2007; 66: 265-273 [PMID: 17543307 DOI: 10.1016/j.gie.2006.10.053]
8. Nguyen P, Feng JC, Chang KJ. Endoscopic ultrasound (EUS) and EUS-guided fine-needle aspiration (FNA) of liver lesions. Gastrointest Endosc 1999; 50: 357-361 [PMID: 10462656 DOI: 10.1053/giej.1999.v50.97208]
9. Awad SS, Fagan S, Abudayyeh S, Karim N, Berger DH, Ayub K. Preoperative evaluation of hepatic lesions for the staging of hepatocellular and metastatic liver carcinoma using endoscopic ultrasonography. Am J Surg 2002; 184: 601-604; discussion 604-605 [PMID: 12488184 DOI: 10.1016/S0002-9610(02)01092-9]
10. Prasad P, Schmulowitz N, Patel A, Varadarajulu S, Wildi SM, Roberts S, Tutuian R, King P, Hawes RH, Hoffman BJ, Wallace MB. Detection of occult liver metastases during EUS for staging of malignancies. Gastrointest Endosc 2004; 59: 49-53 [PMID: 14722547]
11. Fuji-Lau LL, Abu Dayyeh BK, Bruno MJ, Chang KJ, DeWitt JM, Fockens P, Forcione D, Napoleon B, Palazzo L, Topazian MD, Wiersema MJ, Chak A, Clain JE, Faigel DO, Gleeson FC, Hawes R, Iyer PG, Rajan E, Stevens T, Wallace MB, Wang KK, Levy MJ. EUS-derived criteria for distinguishing benign from malignant metastatic solid hepatic masses. Gastrointest Endosc 2015; 81: 1188-1196.e1-7 [PMID: 25660980 DOI: 10.1016/j.gie.2014.10.035]
12. Choi JH, Seo DW. Applications of contrast-enhanced harmonic ultrasound on biliary, focal liver lesions and vascular diseases. Endosc Ultrasound 2017; 6: 21-24 [PMID: 28218196 DOI: 10.4103/2303-9027.200211]
13. Xu HX. Contrast-enhanced ultrasound: The evolving applications. World J Gastroenterol 2009; 15: 13-24 [PMID: 19160717 DOI: 10.4329/wjg.v15.i1.15]
14. Liu GJ, Xu HX, Lu MD, Xie XY, Xu ZF, Zheng YL, Li JG. Enhancement pattern of hepatocellular carcinoma: comparison of real-time contrast-enhanced ultrasound and contrast-enhanced computed tomography. Clin Imaging 2006; 30: 315-321 [PMID: 16919551 DOI: 10.1016/j.clinimag.2006.03.031]
15. Hammond GM, Almahshrawi A, Ibda AH. Usefulness of endoscopic ultrasound-guided fine needle aspiration in the diagnosis of hepatic, gallbladder and biliary tract lesions. World J Gastrointest Oncol 2014; 6: 420-429 [PMID: 25408873 DOI: 10.4251/wjgo.v6.i11.420]
16. tenBerge J, Hoffman BJ, Hawes RH, Van Eekerveit C, Giovanni M, Erickson RA, Catalano MF, Fogel R, Mallory S, Faigel DO, Ferrari AP, Waxman I, Palazzo L, Ben-Menchem T, Jowell PS, McGrath KM, Kowalski TE, Nguyen CC, Wasself WY, Yamao K, Chak A, Greenwald BD, Woodward TA, Vilmann P, Sabbagh L, Wallace MB. EUS-guided fine needle aspiration of the liver: indications, yield, and safety based on an international survey of 167 cases. Gastrointest Endosc 2002; 55: 859-862 [PMID: 12024141]
17. DeWitt J, LeBlanc J, McHenry L, Ciaccia D, Impertiale T, Chappo J, Cramer H, McGregor K, Chriswell M, Sherman S. Endoscopic ultrasound-guided fine needle aspiration cytology of solid liver lesions: a large single-center experience. Am J Gastroenterol 2003; 98: 1976-1981 [PMID: 14499774 DOI: 10.1111/j.1572-0241.2003.00763.x]
18. Hollerbach S, Willert T, Topalidis T, Reiser M, Schmigiel W. Endoscopic ultrasound-guided fine-needle aspiration biopsy of liver lesions: histological and cytological assessment. Endoscopy 2003; 35: 743-749 [PMID: 12929021 DOI: 10.1055/s-2003-41593]
19. Seeff LB, Everson GT, Morgan TR, Curto TM, Lee WM, Ghany MG, Shiffman ML, Fontana RJ, Di Bisceglie AM, Bonkovsky MG. Endoscopy liver disease in the HALT-C trial. Clin Gastroenterol Hepatol 2010; 8: 877-883 [PMID: 20362695 DOI: 10.1016/j.cgh.2010.03.025]
20. Gilmore IT, Burroughs A, Murray-Lyon IM, Williams R, Jenkins D, Hopkins A. Indications, methods, and outcomes of percutaneous
liver biopsy in England and Wales: an audit by the British Society of Gastroenterology and the Royal College of Physicians of London. Gut 1995; 36: 437-441 [PMID: 7669705]

23 Edoute Y, Ben-Haim SA, Brenner B, Malberger E. Fatal hemoperitoneum after fine-needle aspiration of a liver metastasis. Am J Gastroenterol 1992; 87: 358-360 [PMID: 1539572]

24 Huang JF, Hsieh MY, Dai CY, Hou NJ, Lee LP, Lin ZY, Chen SC, Wang LY, Hsieh MY, Chang CY, Wu ML, Chuang WL. The incidence and risks of liver biopsy in non-cirrhotic patients: An evaluation of 3860 biopsies. Gut 2007; 56: 736-737 [PMID: 17440193 DOI: 10.1136/gut.2006.115410]

25 Parekh PJ, Majithia R, Diehl DL, Baron TH. Endoscopic ultra-
sound-guided liver biopsy. Endosc Ultrasound 2015; 4: 85-91 [PMID: 26026041 DOI: 10.1016/j.endusu.2015.06.015]

26 Grant A, Neuberger J. Guidelines on the use of liver biopsy in clinical practice. British Society of Gastroenterology. Gut 1999; 45 Suppl 4: IV1-IV11 [PMID: 10485854]

27 Rösch J, Lakin PC, Antonovic R, Dotter CT. Transjugular approach to liver biopsy and transhepatic cholangiography. N Engl J Med 1973; 289: 227-231 [PMID: 4713761 DOI: 10.1056/NEJM197308022890501]

28 Wiersema MJ, Levy MJ, Harewood GC, Vazquez-Sequeiros E, Jondal ML, Wiersema LM. Initial experience with EUS-guided trucut needle biopsy of perigastric organs. Gastrointest Endosc 2002; 56: 275-278 [PMID: 12145612]

29 Dewitt J, McGreevy K, Cummings O, Sherman S, Leblanc JK, McHenry L, Al-Haddad M, Chalasani N. Initial experience with EUS-guided Tru-cut biopsy of benign liver disease. Gastrointest Endosc 2009; 69: 535-542 [PMID: 19231495 DOI: 10.1016/j.gie.2008.09.056]

30 Gleeson FC, Clayton AC, Zhang L, Clain JE, Gores GJ, Rajan E, Smyrk TC, Topazian MD, Wang KK, Wiersema MJ, Levy MJ. Adequacy of endoscopic ultrasound core needle biopsy specimen of nonmalignant hepatic parenchymal disease. Clin Gastroenterol Hepat 2008; 6: 1437-1440 [PMID: 19081532 DOI: 10.1016/j.jgh.2008.07.015]

31 Barclay RL, Perez-Miranda M, Giovannini M. EUS-guided treatment of a solid hepatic metastasis. Gastrointest Endosc 2002; 55: 266-270 [PMID: 11818938 DOI: 10.1016/mge.2002.12.0784]

32 Hu YH, Tuo XP, Jin ZD, Liu Y, Gao Y, Luo L. Endoscopic ultrasound (EUS)-guided ethanol injection in hepatic metastatic carcinoma: a case report. Endoscopy 2010; 42 Suppl 2: E256-E257 [PMID: 20439898 DOI: 10.1055/s-0030-1256533]

33 DiMaio C, Krishna S, Roayaei S. EUS-guided ethanol ablation for management of metastatic hepatocele carcinoma. J Interv Gastroenterol 2014; 4: 13-14

34 Nakai S, Hira H, Iwaki K, Shiratori T, Kobayashi M, Inase M. Endoscopic ultrasound (EUS)-guided ethanol injection for hepatic metastasis. Hepatol Int 2014; 8: 293-298 [PMID: 25034563 DOI: 10.1007/s12072-014-9641-6]

35 Di Matteo F, Grassi R, Paccia CM, Martino M, Pandolfi M, Rea R, Luppi G, Silvestri S, Zardi E, Costamagna G. EUS-guided Nd:YAG laser ablation of a hepatocellular carcinoma in the caudate lobe. Gastrointest Endosc 2011; 73: 632-636 [PMID: 21030019 DOI: 10.1016/j.gie.2010.08.019]

36 Asquero M, Ngwagbara V, Aghor C, Otobo O, Ometoso A. Giant simple hepatic cyst: a case report and review of relevant literature. Afr Health Sci 2015; 15: 293-298 [PMID: 25834563 DOI: 10.4314/ahs.v15i1.40]

37 Maaza OM, Fernandez DL, Pekolj J, Pfaffen G, Sanchez Claria R, Molmenti EP, de Santibanes E. Management of nonparasitic hepatic cysts. Am J Gastroenterol 2009; 94: 733-739 [PMID: 19959042 DOI: 10.1038/jamolgastro.2009.09.006]

38 Saini S, Mueller PR, Ferrucci JT Jr, Simeone JF, Wittenberg J, Butch RJ. Percutaneous aspiration of hepatic cysts does not provide definitive therapy. AJR Am J Roentgenol 1983; 141: 559-560 [PMID: 6603770 DOI: 10.2214/ajr.141.3.559]

39 Wijnands TF, Görtjes AP, Gevers TJ, Jennensk Fred, Kool LJ, Potthoff A, Ronot M, Drenth JP. Efficacy and Safety of Aspiration Sclerotherapy of Simple Hepatic Cysts: A Systematic Review. AJR Am J Roentgenol 2017; 208: 201-207 [PMID: 27824501 DOI: 10.2214/AJR.16.16130]

40 Saraireah HA et al. EUS in liver diseases
transluminal drainage for peripancreatic fluid collections: where are we now? Gut Liver 2014; 8: 341-355 [PMID: 25071899 DOI: 10.5009/gnl.2014.8.4.341]

56 Tozonzuka R, Itoi T, Tsuchiya T, Sofuni A, Ishii K, Ikeuchi N, Umeda J, Tanaka R, Maki S, Gotoda T, Moriyasu F. EUS-guided drainage of hepatic abscess and infected biloma using short and long metal stents (with videos). Gastrointest Endosc 2015; 81: 1463-1469 [PMID: 25843615 DOI: 10.1016/j.gie.2015.01.023]

57 Ogura T, Masuda D, Saoi O, Wataru T, Sano T, Okuda A, Miyano A, Kito M, Abdel-Aal UM, Takeuchi T, Fukunishi S, Higuchi K. Clinical Outcome of Endoscopic Ultrasound-Guided Liver Abscess Drainage Using Self-Expandable Covered Metallic Stent (with Video). Dig Dis Sci 2016; 61: 301-308 [PMID: 10.1007/s10620-015-3841-3]

58 Grossmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, Escorsell A, Garcia-Pagan JC, Patch D, Matloff DS, Gao H, Makuch R; Portal Hypertension Collaborative Group. Beta-blockers to prevent gastrointestinal varices in patients with cirrhosis. N Engl J Med 2005; 353: 2254-2261 [PMID: 16306522 DOI: 10.1056/NEJMoa044456]

59 Ripoll C, Grossmann R, Garcia-Tsao G, Grace N, Burroughs A, Planas R, Escorsell A, Garcia-Pagan JC, Makuch R, Patch D, Matloff DS, Bosch J; Portal Hypertension Collaborative Group. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007; 133: 481-488 [PMID: 17681169 DOI: 10.1053/j.gastro.2007.05.024]

60 Garcia-Tsao G, Sanayl AJ, Grace ND, Carey WD; Practice Guidelines Committee of American Association for Study of Liver Diseases; Practice Parameters Committee of American College of Gastroenterology. Prevention and management of gastrointestinal varices and variceal hemorrhage in cirrhosis. Am J Gastroenterol 2007; 102: 2086-2102 [PMID: 17727436 DOI: 10.1111/j.1572-0241.2007.01481.x]

61 El-Saadany M, Jali S, Iriawan A, Shibukawa G, Ohira H, Bhatuni MS. EUS for portal hypertension: a comprehensive and critical appraisal of clinical and experimental indications. Endoscopy 2008; 40: 690-696 [PMID: 18609464 DOI: 10.1055/s-2008-1077400]

62 Miller L, Banson FL, Bazir K, Korimilli A, Liu Ji, Dewan R, Wolfson M, Panganamalam KV, Carrasquillo JI, Schwartz J, Chaker AE, Black M. Risk of esophageal variceal bleeding based on endoscopic ultrasonography examination of the sum of esophageal variceal cross-sectional surface area. Am J Gastroenterol 2003; 98: 454-459 [PMID: 12591068 DOI: 10.1111/j.1572-0241.2003.07224.x]

63 Choudhuri G, Konishi Y, Sato T, Ibrahim AK, Planas R, Escorsell A, Garcia-Pagan JC, Patch D, Matloff DS, Bosch J. EUS in liver diseases: Clinical Outcome of Endoscopic Ultrasound-Guided Liver Abscess Drainage Using Self-Expandable Covered Metallic Stent (with Video). J Gastroenterol Hepatol 2003; 18: 810-816 [PMID: 12603532]

64 Sato T, Yamazaki K, Toyota J, Karino Y, Ohmura T, Akaike J. Endoscopic ultrasonographic evaluation of hemodynamics related to variceal relapse in esophageal variceal patients. Hepatol Res 2009; 39: 126-133 [PMID: 19208033 DOI: 10.1111/j.1872-034X.2008.00415.x]

65 Konishi Y, Nakamura T, Kida H, Seno H, Okazaki K, Chiba T. Catheter US probe EUS evaluation of gastric cardia and peri gastric vascular structures to predict esophageal variceal recurrence. Gastrointest Endosc 2002; 55: 197-203 [PMID: 11818922 DOI: 10.1016/mge.2002.121338]

66 Malasaile L, Valantinas J, Stanaitis J. Endoscopic ultrasound findings predict the recurrence of esophageal varices after endoscopic band ligation: a prospective cohort study. Scand J Gastroenterol 2015; 50: 1322-1330 [PMID: 25956657 DOI: 10.3109/00365521.2015.1043640]

67 de Paula GA, Ardengh JC, Nakao FS, Ferrari AP. Treatment of esophageal varices: a randomized controlled trial comparing endoscopic sclerotherapy and EUS-guided sclerotherapy of esophageal collateral veins. Gastrointest Endosc 2006; 63: 396-402; quiz 463 [PMID: 16500386 DOI: 10.1016/j.gie.2005.10.039]

68 Tang RS, Teoh AL, Lau JY. EUS-guided cyanoacrylate injection for treatment of endoscopically obscured bleeding gastric varices. Gastrointest Endosc 2016; 83: 1032-1033 [PMID: 26551730 DOI: 10.1016/j.gie.2015.10.043]

69 Fujii-Lau L, Law R, Wong Kee Song LM, Gostout CJ, Kamath PS, Levy MJ. Endoscopic ultrasound (EUS)-guided coil injection therapy of esophagogastric and ectopic varices. Surg Endosc 2016; 30: 1396-1404 [PMID: 26319494 DOI: 10.1007/s00464-015-4342-3]

70 Romero-Castro R, Elrichmann M, Ortiz-Moyano C, Subtil-Inigo JC, Junquera-Florez F, Gornals JB, Repiso-Ortega A, Vila-Costas J, Marcos-Sanchez F, Muñoz-Navas M, Romero-Gomez M, Brulet-Benedi E, Romero-Vazquez J, Caunedo-Alvarez A, Pellicer-Bautista F, Herrerias-Gutierrez JM, Fritsch-Ravens A. EUS-guided coil versus cyanoacrylate therapy for the treatment of gastric varices: a multicenter study (with videos). Gastrointest Endosc 2013; 78: 711-721 [PMID: 23891417 DOI: 10.1016/j.gie.2013.05.009]

71 Connor EK, Duran-Castro OL, Attam R. Therapy for recurrent bleeding from rectal varices by EUS-guided sclerosis. Gastrointest Endosc 2015; 81: 1280-1281 [PMID: 25583557 DOI: 10.1016/j.gie.2014.07.037]

72 Huang JY, Samarasena JB, Tsujiro T, Chang KJ. EUS-guided portal pressure gradient measurement with a novel 25-gauge needle device versus standard transjugular approach: a comparison animal study. Gastrointest Endosc 2016; 84: 358-362 [PMID: 26945557 DOI: 10.1016/j.gie.2016.02.032]

73 Huang JY, Samarasena JB, Tsujiro T, Lee J, Hu KQ, McLaren CE, Chen WP, Chang KJ. EUS-guided portal pressure gradient measurement with a simple novel device: a human pilot study. Gastrointest Endosc 2017; 85: 996-1001 [PMID: 27693644 DOI: 10.1016/j.gie.2016.09.026]

74 Schulman AR, Ryoo M, Aihara H, Abidi W, Chiang A, Jirapinyo P, Sakr A, Ajeje E, Ryan MB, Thompson CC. EUS-guided intrahepatic portosystemic shunt with direct portal pressure measurements: a novel alternative to transjugular intrahepatic portosystemic shunting. Gastrointest Endosc 2017; 85: 243-247 [PMID: 27468858 DOI: 10.1016/j.gie.2016.07.041]

75 Buscaglia JM, Dray X, Shin EJ, Magno P, Chmura KM, Suri C, Dillon TE, Ducharme RW, Donatelli G, Thuluvath PJ, Giday SA, Kantešev SV. A new alternative for a transjugular intrahepatic portosystemic shunt: EUS-guided creation of an intrahepatic portosystemic shunt (with video). Gastrointest Endosc 2009; 69: 941-947 [PMID: 19327481 DOI: 10.1016/j.gie.2008.09.051]

76 Bosch J. EUS-guided intrahepatic portosystemic shunt: A real alternative to transjugular intrahepatic portosystemic shunt? Gastrointest Endosc 2017; 85: 248-249 [PMID: 27986115 DOI: 10.1016/j.gie.2016.08.039]

77 Jenssen C, Alvarez-Sanchez MV, Napoleon B, Fais S. Diagnostic endoscopic ultrasonography: assessment of safety and prevention
of complications. *World J Gastroenterol* 2012; **18**: 4659-4676 [PMID: 23002335 DOI: 10.3748/wjg.v18.i34.4659]

83 **Jenssen C**, Faiss S, Nürnberg D. [Complications of endoscopic ultrasound and endoscopic ultrasound-guided interventions - results of a survey among German centers]. *Z Gastroenterol* 2008; **46**: 1177-1184 [PMID: 18937186 DOI: 10.1055/s-2008-1027334]

84 **Das A**, Sivak MV Jr, Chak A. Cervical esophageal perforation during EUS: a national survey. *Gastrointest Endosc* 2001; **53**: 599-602 [PMID: 11323585]

85 **Lachter J**. Fatal complications of endoscopic ultrasonography: a look at 18 cases. *Endoscopy* 2007; **39**: 747-750 [PMID: 17661252 DOI: 10.1055/s-2007-966005]

P- Reviewer: Huang JYL, Napoleon B, Reeh M, Sadik R
S- Editor: Kong JX
L- Editor: A
E- Editor: Li D
