Enhancement of jet quenching around phase transition: result from the dynamical holographic model

Danning Li1, Jinfeng Liao2,3, Mei Huang1,4

1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
2 Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA
3 RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973, USA
4 Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing, China

(Dated: January 15, 2014)

The phase transition and jet quenching parameter \hat{q} have been investigated in the framework of dynamical holographic QCD model. It is found that both the trace anomaly and the ratio of the jet quenching parameter over cubic temperature \hat{q}/T^3 show a peak around the critical temperature T_c, and the ratio of jet quenching parameter over entropy density \hat{q}/s sharply rises at T_c. This indicates that the jet quenching parameter can characterize the phase transition. The effect of jet quenching parameter enhancement around phase transition on nuclear modification factor R_{AA} and elliptic flow v_2 have also been analyzed, and it is found that the temperature dependent jet quenching parameter from dynamical holographic QCD model can considerably improve the description of jet quenching azimuthal anisotropy as compared with the conformal case.

PACS numbers:

\section{I. INTRODUCTION}

Studying Quantum Chromodynamics (QCD) phase transition and properties of hot/dense quark matter at high temperature has been the main target of heavy ion collision experiments at the Relativistic Heavy Ion collider (RHIC) and the Large Hadron Collider (LHC). It is now believed that the system created at RHIC and LHC is a strongly coupled quark-gluon plasma (sQGP) and behaves like a nearly "perfect" fluid[1,2].

The collective flow v_2 of the highly excited and strongly interacting matter formed at RHIC can be well described by relativistic hydrodynamics with a negligible ratio of shear viscosity over entropy density η/s [3]. Lattice QCD calculations confirmed that η/s for the purely gluonic plasma is rather small and in the range of $0.1 \sim 0.2$ [4]. Shear viscosity η characterizes how strongly particles interact and move collectively in a many-body system. In general, the stronger the interparticle interaction, the smaller the ratio of shear viscosity over entropy density. Another unusual feature of the strongly interacting matter formed at RHIC is that the emission of hadrons with large transverse momentum is strongly suppressed in central collisions [5]. The suppression of hadrons at large transverse momentum is normally referred to as jet quenching, which characterizes the squared average transverse momentum exchange between the medium and the fast parton per unit path length [6]. Current knowledge on jet quenching is that it is caused by gluon radiation induced by multiple collisions of the leading parton with color charges in the near-thermal medium [6,8]. Therefore, jet quenching can tell us the properties of the created hot dense matter by the energetic parton passing through the medium.

It is very interesting to ask whether transport quantities can characterize phase transitions.

It has been observed that the shear viscosity over entropy density ratio η/s has a minimum in the phase transition region in systems of water, helium, nitrogen [9] and many other substances [10]. It has been shown η/s is suppressed near the critical temperature in the semi quark gluon plasma [11], and η/s can characterize first-, second-order phase transitions and crossover [12], i.e. η/s shows a cusp, a jump at T_c and a shallow valley around T_c, respectively.

In [13] it has been suggested that the jet quenching parameter can also be used to measure the coupling strength of the medium and a general relation between the shear viscosity η and the jet quenching parameter \hat{q}/T^3 for a quasi-particle dominated quark-gluon plasma has been derived, i.e. $\eta/s \sim T^3/\hat{q}$. The relation associates a small ratio of shear viscosity to entropy density to a large value of the jet quenching parameter. If we naively extend this relation to the critical temperature region, we would expect that \hat{q}/T^3 will show a peak around the critical temperature T_c. Phenomenologically, the strong near-Tc-enhancement (NTcE) scenario of jet-medium interaction [14] was proposed in the efforts to explain the large jet quenching anisotropy at high p_T at RHIC [15,16]. More recently it was shown in Refs. [17,20] that the NTcE model naturally induces a reduction ($\sim 30\%$) of jet-medium interaction strength from RHIC to LHC.

It is worthy of mentioning that another transport coefficient, the bulk viscosity ζ/s, also exhibits a sharp rising behavior around the critical temperature T_c as shown in Lattice QCD [21,23], the linear sigma model [24], the Polyakov-loop linear sigma model [25] and the real scalar model [26]. The rising of bulk viscosity near phase transition corresponds to peak of trace anomaly around T_c, which shows the equation of state is highly non-conformal [27,28] around phase transition.

Due to the complexity of QCD in the regime of strong coupling, in recent years, the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [29,31] has generated enormous interest in using thermal $\mathcal{N} = 4$ super-Yang-Mills theory (SYM) to understand sQGP. However, a conspicuous shortcoming of this approach is the conformality of SYM: the square of the speed of sound c_s^2 always equals to $1/3$, the bulk viscosity is always zero at all temperatures in this theory, and
Quantum chromodynamics (QCD) in terms of quark and gluon degrees of freedom is accepted as the fundamental theory of the strong interaction. In the ultraviolet (UV) or weak coupling regime of QCD, the perturbative calculations for deep inelastic scattering (DIS) agree well with experimental data. However, in the infrared (IR) regime, the description of QCD vacuum as well as hadron properties and nonperturbative processes still remains as outstanding challenge in the formulation of QCD as a local quantum field theory. In the past half century, various non-perturbative methods have been developed, in particular lattice QCD, Dyson-Schwinger equations (DSEs), and functional renormalization group equations (FRGs). In recent decades, an entirely new method based on the anti-de Sitter/conformal field theory (AdS/CFT) correspondence and the conjecture of the gravity/gauge duality [29, 31] provides a revolutionary method to tackle the problem of strongly coupled gauge theories.

In general, holography relates quantum field theory (QFT) in d-dimensions to quantum gravity in (d + 1)-dimensions, with the gravitational description becoming classical when the QFT is strongly-coupled. The extra dimension can be interpreted as an energy scale or renormalization group (RG) flow in the QFT [46].

The recently developed dynamical holographic QCD model [43–45] can resemble the renormalization group from ultraviolet (UV) to infrared (IR). The dynamical holographic QCD model is constructed in the graviton-dilaton-scalar framework, where the dilaton background field and scalar field are dual to the dimension-4 gluon operator and dimension-3 quark-antiquark operator. The metric structure at IR is automatically deformed by the nonperturbative gluon condensation and chiral condensation in the vacuum. The produced scalar glueball spectra in the graviton-dilaton framework agree well with lattice data, and the light-flavor meson spectra generated in the graviton-dilaton-scalar framework are in well agreement with experimental data. Both the chiral symmetry breaking and linear confinement are realized in this dynamical holographic QCD model.

In this work, we will investigate the phase transition, equation of state and calculate the jet quenching parameter in the dynamical holographic QCD model. The paper is organized as follows. In Sec. II we briefly introduce the dynamical holographic QCD model for pure gluon system and light-flavor system. In Sec. III we will investigate the phase transition and equation of state, including the entropy density, the pressure density, the energy density for the pure gluon system. Then in Sec. IV, Sec. V and Sec. VI we calculate jet quenching parameter and investigate the nuclear modification factor R_{AA} and elliptic flow v_2. The summary and discussion is given in Sec. VII.
To avoid the gauge non-invariant problem and to meet the requirement of gauge/gravity duality, we take the dilaton field in the form of

$$\Phi(z) = \mu_G^2 z^2 \tanh(\mu_G^2 z^2 / \mu_G^2).$$ (3)

In this way, the dilaton field at UV behaves $\Phi(z) \to 0$ $\mu_G^2 z^2$, and is dual to the dimension-4 gauge invariant gluon operator $Tr G^2$, while at IR it takes the quadratic form $\Phi(z) \to \mu_G^2 z^2$. The equations of motion can be derived as

$$-A_s'' + \frac{4}{3} \Phi A_s' + A_s' + \frac{2}{3} \Phi'' = 0,$$ (4)

$$\Phi'' + (3 A_s' - 2 \Phi') \Phi' - \frac{3}{8} e^{2 A_s - \frac{1}{2} \Phi} \partial_\Phi (e^{\Phi} V' G(\Phi)) = 0.$$ (5)

By self-consistently solving the Einstein equations, the metric structure A_s will be automatically deformed at IR by the dilaton background field or the nonperturbative gluodynamics. It is found in [44] that the scalar glueball spectra in the quenched dynamical model is in very well agreement with lattice data. For details, please refer to Refs. [44].

To describe the two-flavor system, we then add light flavors in terms of meson fields on the gluodynamical background. The total 5D action for the graviton-dilaton-scalar system takes the following form:

$$S = S_G + \frac{N_f}{N_c} S_{KKSS}.$$ (6)

Here S_G is the 5D action for gluons in terms of dilaton field Φ and takes the same form as Eq. (1), and S_{KKSS} is the 5D action for mesons propagating on the dilaton background and takes the same form as in the KKSS model [39].

$$S_{KKSS} = - \int d^5 x \sqrt{g} e^{-\Phi} tr ([D X]^2 + V_X(X, \Phi) + \frac{1}{4g_s^2} (F_L^2 + F_R^2)).$$ (7)

The difference here is that the metric structure A_s is solved from the following coupled equations of motion:

$$-A_s'' + A_s' + \frac{2}{3} \Phi'' - \frac{4}{3} A_s' \Phi' - \frac{\lambda_0}{6} e^{\Phi} \chi'^2 = 0,$$ (8)

$$\Phi'' + (3 A_s' - 2 \Phi') \Phi' - \frac{3 \lambda_0}{16} e^{\Phi} \chi'^2$$

$$-\frac{3}{8} e^{2 A_s - \frac{1}{2} \Phi} \partial_{\Phi} \left(V_G(\Phi) + \lambda_0 e^{\Phi} V_C(\chi, \Phi) \right) = 0,$$ (9)

$$\chi'' + (3 A_s' - \Phi') \chi' - e^{2 A_s} V_C(\chi, \Phi) = 0.$$ (10)

Here we have defined $V_C = Tr V_X$ and $V_C = \frac{\partial V_C}{\partial \chi}$.

$$\frac{16 \pi G_N N_f}{L^3} \to \lambda_0.

For two flavor system in the graviton-dilaton-scalar framework, the deformed metric is self-consistently solved by considering both the chiral condensate and nonperturbative gluodynamics in the vacuum, which are responsible for the chiral symmetry breaking and linear confinement, respectively. The mixing between the chiral condensate and gluon condensate is important to produce the correct light flavor meson spectra [44].

III. PHASE TRANSITION AND EQUATION OF STATES

The chiral and deconfinement phase transitions for the graviton-dilaton-gluon system will be investigated in the future. In this section, we will focus on the deconfinement phase transition for the pure gluon system described by Eq. (1).

The finite temperature dynamics of gauge theories, has a natural holographic counterpart in the thermodynamics of black-holes on the gravity side. Adding the black-hole background to the holographic QCD model constructed from vacuum properties, in the string frame we have

$$ds^2 = e^{2 A_s} \left(-f(z) dt^2 + \frac{dz^2}{f(z)} + dx^i dx^i \right).$$ (11)

The metric in the string frame is useful to calculate the jet quenching parameter.

The thermodynamical properties of equation of state is convenient to be derived in the Einstein frame,

$$ds^2_E = e^{2 A_s} \frac{4 \Phi}{3} \left(-f(z) dt^2 + \frac{dz^2}{f(z)} + dx^i dx^i \right).$$ (12)

Under the frame transformation

$$g^E_{mn} = g^E_{mn} e^{-2 \Phi/3}, \quad V_G^E = e^{4 \Phi/3} V_G^E,$$

Eq. (11) becomes

$$S^E_G = \frac{1}{16 \pi G^E_5} \int d^5 x \sqrt{g} e^{3 \Phi} \left(R_E - \frac{4}{3} \partial_m \Phi \partial^m \Phi - V^E_G(\Phi) \right).$$ (14)

We can derive the following equations from the Einstein equations of $(t, t), (z, z)$ and (x_1, x_1) components:

$$-A_s'' + A_s' + \frac{2}{3} \Phi'' - \frac{4}{3} A_s' \Phi' - \frac{\lambda_0}{6} e^{\Phi} \chi'^2 = 0,$$ (15)

$$f''(z) + (3 A_s' - 2 \Phi') f'(z) = 0.$$ (16)

The EOM of the dilaton field is given as following

$$\frac{8}{3} \partial_z \left(e^{3 A_s(z) - 2 \Phi(z)} \partial_z \Phi(z) \right) - e^{5 A_s(z) - \frac{10}{3} \Phi(z)} \partial^2_\Phi V_G = 0.$$ (17)

To get the solutions we impose the asymptotic AdS_5 condition $f(0) = 1$ near the UV boundary $z \sim 0$, and require Φ, f to be finite at $z = z_h$ with z_h the black-hole horizon. Fortunately, we find that the solution of the black-hole background takes the form of

$$f(z) = 1 - f^h \int_0^z e^{-3 A_s(z')} + 2 \Phi(z') dz',$$ (18)

with

$$f^h = \frac{1}{\int_0^h e^{-3 A_s(z')} + 2 \Phi(z') dz'}.$$ (19)

A black-hole solution with a regular horizon is characterized by the existence of a surface $z = z_h$, where $f(z_h) = 0$. The Euclidean version of the solution is defined only for
$0 < z < z_h$, in order to avoid the conical singularity, the periodicity of the Euclidean time can be fixed by

$$\tau \to \tau + \frac{4\pi}{|f'(z_h)|}.$$ \hspace{1cm} (20)

This determines the temperature of the solution as

$$T = \frac{|f'(z_h)|}{4\pi}.$$

From Eq. (18), one can easily read out the relation between the temperature and position of the black hole horizon.

$$T = \frac{e^{-3\lambda_s(z_h)+2\Phi(z_h)}}{4\pi \int_0^{z_h} e^{-3\lambda_s(z)+2\Phi(z)} dz}$$ \hspace{1cm} (22)

For numerical calculations, we take $\mu_G = 0.75\text{GeV}$ in Eq. (3) so that the transition temperature is around 255MeV, and we take three different values for μ_{G^2}: $\mu_{G^2} = \mu_G = 0.75\text{GeV}$, $\mu_{G^2} = 3\text{GeV}$ and $\mu_{G^2} = \infty$. When $\mu_{G^2} = \infty$, the dilaton field Eq. (3) takes the form of quadratic term $\Phi = \mu_{G^2} z^2$, and the model can be regarded as the self-consistent KKSS model. The only difference is that in this model the metric structure is selfconsistently deformed by the dilaton background, while in the KKSS model, the metric structure takes the same as AdS_5.

We can solve A_s from Eq. (15), and the results of A_s configurations for $\mu_G = 0.75\text{GeV}$ and $\mu_{G^2} = \mu_G = 0.75\text{GeV}$, $\mu_{G^2} = 3\text{GeV}$ and $\mu_{G^2} = \infty$ are shown in Fig.2. To show the configuration smoothly, we have subtracted the log(z) divergence in A_s. Comparing with AdS_5 metric, it is easy to find that the metric structure is largely deformed at IR by the dilaton background field or gluodynamics. The two cases $\mu_{G^2} = 3\text{GeV}$ and $\mu_{G^2} = \infty$ are almost the same.

From Eq. (16) and Eq. (22), we can get the $f(z)$ solution and the temperature behavior. The temperature v.s. horizon for $\mu_G = 0.75\text{GeV}$ and $\mu_{G^2} = \mu_G = 0.75\text{GeV}$, $\mu_{G^2} = 3\text{GeV}$ and $\mu_{G^2} = \infty$ are shown in Fig.3. As long as μ_{G^2} is large, the IR physics is not sensitive to large μ_{G^2}, the behaviors for $\mu_{G^2} = 3\text{GeV}$ and $\mu_{G^2} = \infty$ are almost the same. From Fig. 3, it is noticed that for pure AdS_5 Schwarzschild black hole, the temperature monotonically decreases with the increasing of the horizon. If one solves the dual black-hole background self-consistently, one can find that there is a minimal temperature $T_{\min} = 255\text{MeV}$ at certain black-hole horizon z_{h}^{\min}. This is similar to the case for the confining theory (at zero temperature) discussed in Ref. (15). For $T < T_{\min}$, there are no black-hole solutions. For $T > T_{\min}$, there are two branches of black-hole solutions. When $z_h < z_{h}^{\min}$, the temperature increases with the decreasing of z_h, which means that the temperature increases when the horizon moves close to UV, this phase is thermodynamically unstable. When $z_h > z_{h}^{\min}$, the temperature increases with the increase of z_h, which means that the temperature becomes higher and higher when the horizon moves to IR. This indicates that the solution for the branch $z_h > z_{h}^{\min}$ is unstable and thus not physical. In order to determine the critical temperature, we have to compare the free energy difference between the stable black hole solution and the thermal gas. Following the discussion in Ref. (37), the transition temperature would be near this minimal temperature and we would just take it as the transition temperature $T_c = 255\text{MeV}$, which is in agreement with lattice result for pure gluon system.

From the Bekenstein-Hawking formula, one can easily read the black-hole entropy density s, which is defined by the area A_{area} of the horizon:

$$s = \frac{A_{\text{area}}}{4G_5 V_3} \bigg|_{z_h} = \frac{1}{4G_5} \mu_{L_s(z_h)} + 2\Phi(z_h).$$ \hspace{1cm} (23)

Where G_5 is the Newton constant in 5D curved space and
and when at high temperature. It can be seen that when the pure gluon system \[27\]. It can be seen that when \(\mu_G\) is large enough, the result is not sensitive to the value of \(\mu_{G^2}\), and it takes almost the same as that in the selfconsistent KKSS model. The entropy density for \(\mu_{G^2} = 3\text{GeV}\) to \(\mu_{G^2} = \infty\) agrees well with the lattice result for pure SU(3) gauge theory.

The pressure density \(p(T)\) can be calculated from the entropy density \(s(T)\) by solving the equation

\[
\frac{dp(T)}{dT} = s(T), \quad (24)
\]

and the energy density is related to the entropy density by

\[
\epsilon = -p + sT. \quad (25)
\]

The trace anomaly \((\epsilon - 3p)/T^4\) for \(\mu_G = 0.75\text{GeV}\) and \(\mu_{G^2} = 0.75\text{GeV}\), \(\mu_G = 3\text{GeV}\) and \(\mu_{G^2} = \infty\) are shown in Fig.5 compared with lattice results for the pure gluon system \[27\]. The trace anomaly shows a peak around \(T/T_c = 1.1\). When \(\mu_{G^2} = 0.75\text{GeV}\), the height of the peak is around 3.7, and when \(\mu_{G^2} = 3\text{GeV} \sim \infty\), the height reduces to 2.7, which agrees with lattice data for pure SU(3) gauge theory as shown in \[27\]. At very high temperature, the trace anomaly goes to zero, which indicates the system is asymptotically conformal at high temperature.

The sound velocity \(c_s^2\) can be obtained from the temperature and entropy:

\[
c_s^2 = \frac{dT}{d\log s} = \frac{s}{Tds/dT}, \quad (26)
\]

which can directly measure the conformality of the system. For conformal system, \(c_s^2 = 1/3\), for non-conformal system, \(c_s^2\) will deviate from 1/3. From Eq.(26), we can see that the speed of the sound is independent of the normalization of the 5D Newton constant \(G_5\) and the space volume \(V_3\).

The numerical result of the square of the sound velocity is shown in Fig.6 At \(T_c\), the sound velocity square is around 0 which is in agreement with lattice data \[27\]. At high temperature, the sound velocity square goes to 1/3, which means that the system is asymptotically conformal.

\[
\begin{align*}
\text{FIG. 4: The entropy density as a function of } T/T_c \text{ for } G_5 = 1.25 \text{ and } & \mu_G = 0.75\text{GeV and } \mu_{G^2} = 0.75\text{GeV, } \mu_G = 3\text{GeV and } \mu_{G^2} = \infty, \text{ respectively. The red crosses are lattice results from [27].} \\
\text{FIG. 5: Trace anomaly as a function of } T/T_c \text{ for } G_5 = 1.25 \text{ and } & \mu_G = 0.75\text{GeV and } \mu_{G^2} = 0.75\text{GeV, } \mu_G = 3\text{GeV and } \mu_{G^2} = \infty, \text{ respectively. The red crosses are lattice results from [27].} \\
\end{align*}
\]

\[
\begin{align*}
\text{FIG. 6: The square of the sound velocity } c_s^2 \text{ as a function of scaled temperature } T/T_c \text{ for } G_5 = 1.25 \text{ and } & \mu_G = 0.75\text{GeV and } \mu_{G^2} = 0.75\text{GeV, } \mu_G = 3\text{GeV and } \mu_{G^2} = \infty, \text{ respectively. The red crosses are lattice results from [27].} \\
\end{align*}
\]
IV. JET QUENCHING PARAMETER \(\hat{q} \)

Jet quenching measures an energetic parton interacts with the created hot dense medium. It is very important to find the characterization of the resulting medium induced modification of high-\(p_T \) parton fragmentation, i.e., jet quenching and its connection to properties of the hot dense matter, and whether and how such a parameter can tell us about the QCD phase transitions.

It has been expected that the shear viscosity over entropy density ratio \(\eta/s \) has a minimum in the QCD phase transition region \([12]\) as that in systems of water, helium and nitrogen \([9, 10]\). The bulk viscosity \(\zeta/s \), also exhibits a sharp rising behavior around the critical temperature \(T_c \) as shown in Lattice QCD \([21–23]\) and some model calculations \([24, 26]\).

It has been suggested in \([13]\) shear viscosity \(\eta/s \) and the jet quenching parameter \(\hat{q}/T^3 \) for a quasi-particle dominated quark-gluon plasma has a general relation \(\eta/s \sim T^3/\hat{q} \). If we naively extend this relation to the critical temperature region, we would expect that \(\hat{q}/T^3 \) will show a peak around the critical temperature \(T_c \). Phenomenologically, the strong near-Tc enhancement (NTcE) scenario of jet-medium interaction \([14]\) was proposed in the efforts to explain the large jet quenching anisotropy at high \(p_t \) at RHIC \([15–18]\).

There has no model calculations for the jet quenching parameter around the critical temperature. Lattice QCD is not suitable for transport properties, recently there are several groups played efforts on calculate the jet quenching parameter around the critical temperature. Lattice QCD \([21–23]\) and some model calculations \([24, 26]\). However, no information on jet quenching parameter has been extracted around the critical temperature in the dynamical holographic QCD model which can describe phase transitions.

Following \([33]\)(see also \([49–51]\)), the jet quenching parameter is related to the adjoint Wilson loop by

\[
W^{Adj}[\mathcal{C}] \approx \exp\left(-\frac{1}{4\sqrt{2}}\hat{q}L^{-}L^{+}\right) \tag{27}
\]

where \(L^{+}, L^{-} \) are distances along \(x^{+} = \frac{r-x_1}{\sqrt{2}} \) and spatial direction \(x_2 \) respectively. (Another method for jet quenching of light quarks has been developed in \([52]\).

Denoting \(x^{+} = \frac{r-x_1}{\sqrt{2}}, x^{-} = \frac{x_1}{\sqrt{2}} \), then the metric in Eq.(11) becomes

\[
ds^2 = e^{2A_s}\{1 + f(z)}dx^-dx^+ + \frac{1-f(z)}{2}\left[dx^{+2} + dx^{-2}\right] + \frac{1}{f(z)}d\sigma^2 + dx^2 + dx_3^2 \tag{28}
\]

The action on the string world sheet is taken to be

\[
S_{NG} = \frac{1}{2\pi\alpha'} \int d^2\sigma \sqrt{-\text{det}(G_{\alpha\beta})} \tag{29}
\]

with \(G_{\alpha\beta} = g_{\mu\nu} \partial_{\alpha} x^\mu \partial_{\beta} x^\nu \) the induced metric on the string world sheet.

With the above configuration in Fig.7 we have

\[
S_1 = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{g_{-}g_{zz}/(2\hat{q})} \tag{30}
\]

\[
S_2 = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{g_{-}g_{zz}/(2\hat{q})} \tag{31}
\]

and with the below configuration in Fig.7 we have

\[
S_2 = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{g_{-}g_{zz}} \tag{32}
\]

where \(g_{-} = e^{2A_s} \frac{1-f(z)}{2}, g_{zz} = \frac{e^{2A_s}}{f(z)} \) can be read from Eq.(28).

Then we extract the adjoint Wilson loop by

\[
W^{Adj} = \exp(2i(S_1 - S_2)) \tag{32}
\]

and from the small \(L \) expansion of \(W^{Adj} \) we get \(\hat{q} \) of the form

\[
\hat{q} = \frac{\sqrt{2}\sqrt{\lambda}}{\pi f_0^{\alpha} dz \sqrt{g_{zz}/(g_{zz}^2)}} \tag{33}
\]

with \(\sqrt{\lambda} = \frac{g_{zz}^2}{\alpha’}. \)

The numerical results of the jet quenching parameter \(\hat{q} \) and the ratio of \(\hat{q}/T^3 \) for \(\mu_G = 0.75\text{GeV} \) and \(\mu_{G^2} = 0.75\text{GeV}, \)
which can describe deconfinement phase transition, we can find that \(\hat{q}/T^3 \) indeed shows a peak at the same temperature where the trace anomaly also shows a peak. For the case of \(\mu_G^2 = 3\text{GeV} \sim \infty \), the height of the peak is around 40 at \(T = 1.1T_c \).

It is worthy of mentioning that our \(\hat{q} \) is much dependent on the value of the ’t Hooft coupling \(\lambda \), which at the moment is a free parameter. In the recent work [53], the jet quenching parameter \(\hat{q} \) extracted from experiment is around \(1.1\text{GeV}^2/\text{fm} \) at \(T = 370\text{MeV} \) and \(1.9\text{GeV}^2/\text{fm} \) for \(T = 470\text{MeV} \), which is \(5 \) times smaller than our results. This might indicate that we should take a smaller ’t Hooft coupling. However, the temperature dependent feature is independent of the ’t Hooft coupling.

V. JET QUENCHING CHARACTERIZING PHASE TRANSITION

\(\mu_G^2 = 3\text{GeV} \) and \(\mu_G^2 = \infty \) are shown in Fig. 8 and Fig. 9 respectively. The results are compared with the \(\text{AdS}_5 \) case. For all the cases, we have taken \(\lambda = 6\pi \) as in [43]. It is found that the jet quenching parameter \(\hat{q} \) itself does not show much differences for all the cases. It is even hard to find much differences comparing with the \(\text{AdS}_5 \) case. For all these cases, the value of \(\hat{q} \) is around \(5 \sim 10\text{GeV}^2/\text{fm} \) in the temperature range \(300 \sim 400\text{MeV} \), which is in agreement with the lattice result in [48]. However, the ratio \(\hat{q}/T^3 \) shows very different behavior for different cases: For the \(\text{AdS}_5 \) case, the ratio is a constant, for the dynamical holographic QCD model which can describe deconfinement phase transition, we can

FIG. 8: Jet quenching parameter as a function of the temperature \(T \) for \(\mu_G = 0.75\text{GeV} \) and \(\mu_G^2 = 0.75\text{GeV} \), \(\mu_G^2 = 3\text{GeV} \) and \(\mu_G^2 = \infty \) with \(G_5 = 1.25 \). The red crosses are the results of \(\text{AdS}-\text{SW} \) black hole in [33]. We have taken \(\lambda = 6\pi \) here.

FIG. 10: \(\hat{q}/T^3 \) and trace anomaly \((\epsilon - 3p)/T^4 \) as a function of \(T \) for different values of \(\mu_G \) with \(\mu_G^2 = 3\text{GeV} \sim \infty \). The red crosses are for \(\text{AdS}_5 \) case. We have taken \(G_5 = 1.25 \) and \(\lambda = 6\pi \) here.

FIG. 9: Jet quenching parameter over cubic temperature \(\hat{q}/T^3 \) as a function of \(T/T_c \) for \(\mu_G = 0.75\text{GeV} \) and \(\mu_G^2 = 0.75\text{GeV} \), \(\mu_G^2 = 3\text{GeV} \) and \(\mu_G^2 = \infty \) with \(G_5 = 1.25 \). The red crosses are the results of \(\text{AdS}-\text{SW} \) black hole in [33]. We have taken \(\lambda = 6\pi \) here.

We have observed that both \(\hat{q}/T^3 \) and trace anomaly \((\epsilon - 3p)/T^4 \) show a peak around the critical temperature for \(\mu_G = 0.75\text{GeV} \), which indicates that the jet quenching parameter
over cubic temperature can characterize QCD phase transition. In this section, we explore how different values of μ_G affect the phase transition and jet quenching. From \cite{43,44}, μ_G is related to the linear confinement and determines the Regge slope of the glueball spectra as well as the string tension of the linear quark potential.

In Figs.\cite{10} and \cite{11}, we show the behavior of \hat{q}/T^3 and trace anomaly $(\varepsilon - 3p)/T^4$ for different values of μ_G as a function of temperature T and scaled T/T_c, respectively.

From Fig.\cite{10} we find that for different values of μ_G (with $\mu_G^2 \rightarrow \infty$), the critical temperature T_c increases with μ_G. We can read $T_c = 146,170,204,255$ MeV for $\mu_G = 0.43, 0.5, 0.6, 0.75$ GeV, respectively. It is also observed that the height of the peak for either \hat{q}/T^3 or $(\varepsilon - 3p)/T^4$ does not change with the value of μ_G, but the width of the peak increases with μ_G.

Another interesting observation from Fig.\cite{11} is that either \hat{q}/T^3 or $(\varepsilon - 3p)/T^4$ as a function of scaled T/T_c is not sensitive to μ_G, i.e. $\hat{q}/T^3(T/T_c)$ or $(\varepsilon - 3p)/T^4(T/T_c)$ overlaps for different values of μ_G.

In the next section, we will investigate the nuclear modification R_{AA} and elliptic flow v_2, where the behavior of \hat{q}/s is needed. For the case of AdS_5, the temperature is $T = \frac{1}{\pi \beta}$, the entropy density takes the form of

$$s_{AdS_5} = \frac{1}{4G_5} \frac{1}{\zeta_3} \frac{\pi^3}{4G_5} T^3 \simeq \frac{7.75}{G_5} T^3,$$ \tag{34}

and the jet quenching parameter is given by:

$$\hat{q}_{AdS_5} = \frac{\pi^{3/2}\sqrt{\Lambda} [3/4]}{\Gamma[5/4]} T^3 \simeq 7.53 \sqrt{\Lambda} T^3.$$ \tag{35}

Therefore, in the AdS_5 limit, the ratio of jet quenching parameter over entropy density takes the value of

$$\hat{q}_{AdS_5}/s_{AdS_5} = 0.97 G_5 \sqrt{\Lambda}. \tag{36}$$

With parameters used in our work, we have $\hat{q}_{AdS_5}/s_{AdS_5} = 5.27$. The ratio of \hat{q}/s in the dynamical hQCD model as a function of T and T/T_c is shown in Fig. \cite{12} compared with the AdS_5 result. It is found that the ratio of \hat{q}/s reaches AdS_5 limit 5.27 at high temperature, and it sharply rises with the decreasing of T and develops a peak exactly at T_c with the height.
16.3, which is about 3 times larger than its value at high temperature. It is worthy of mentioning that the sharp rising of \hat{q}/s around T_c is very similar to the behavior of bulk viscosity over entropy density ξ/s as shown in [21,22].

Moreover, \hat{q}/s as a function of the scaled temperature T/T_c overlaps for different values of μ_G.

VI. JET QUENCHING PHENOMENOLOGY FROM HOLOGRAPHY

In this section, we study the phenomenological implications of the temperature dependence for $\hat{q}(T)$ as obtained from the holography model above. The observable commonly used for jet quenching phenomenology in AA collisions is the nuclear modification factor, R_{AA}, defined as the ratio between the hadron production in AA collision and that in NN collision (further scaled by the expected binary collision number). If a jet parton loses energy along its path penetrating the hot medium, one expects a significant suppression of leading high-p_t (transverse momentum) hadron production from the jet as compared with the pp collision at the same beam energy. A strong suppression was first observed at RHIC [5] and then at LHC [54], with R_{AA} reaching ~ 0.2 in the most central collisions. Another important aspect of jet quenching is the so called geometric tomography [55] by measuring the azimuthal angle dependence of the suppression $R_{AA}(\phi)$ where ϕ is the angle of the produced hadron with respect to the reaction plane. In a typical off-central collision, the hot medium on average has an almond-like geometric shape, and thus the jet in-medium path length would depend on its orientation with respect to the matter geometry, leading to nontrivial dependence of the suppression on azimuthal angle. The dominant component of the ϕ-dependence is the second harmonic with its coefficient commonly referred to as v_2. Both RHIC and LHC measurements have shown a sizable v_2 in the high p_t region where the jet energy loss should be the mechanism of generating such anisotropy [56,59].

The key issue we focus on here is the temperature dependence of jet-medium coupling, in particular its possible nontrivial behavior near the parton/hadron phase boundary. As was first found in [14], the geometric anisotropy v_2 at high p_t is particularly sensitive to such temperature dependence, and a simultaneous description of high p_t R_{AA} and v_2 at RHIC requires a strong enhancement of jet-medium coupling in the near-T_c region. The near-T_c enhancement of jet-medium interaction as a generic mechanism, has been further studied in many later works and shown to increase the jet azimuthal anisotropy with fixed overall suppression. Furthermore, how the overall opaqueness of the created fireball evolves with collisional beam energy, is also very sensitive to such temperature dependence. From RHIC to LHC, the collision beam energy increases by a little more than 10 times, and the matter density increases (in most central collisions) by a factor of about 2. Such a span from RHIC to LHC provides opportunity for determining how jet-medium interaction changes with temperature. In particularly, the near-T_c enhancement predicts a visible reduction of average opaqueness of the fireball from RHIC to LHC. A number of recent analyses have consistently reported that the R_{AA} data at RHIC and LHC indeed suggest about $\sim 30\%$ reduction of jet-medium interaction at LHC as compared at RHIC [19,20,60–65]. Therefore phenomenologically, it appears that there are now strong evidences for a nontrivial temperature dependence, in particular the near-T_c enhancement, of jet-medium coupling on matter temperature.

![Graph showing the R_{AA} and v_2 as a function of participant number N_{part} for RHIC. The thick blue curves are results from non-conformal holographic model with \hat{q}/T^3 given in Fig.9 ($\mu_G = 0.75\text{GeV}, T_c = 255\text{MeV}$) while the thin red curves are from conformal model with \hat{q}/T^3 being constant. The data are PHENIX measurements of neutral pions for kinematic range in $6 < p_t < 9 \text{ GeV}$ and in $p_t > 9 \text{ GeV}$.

Theoretically, however, there has been very limited way to figure out the precise form of such T-dependence due to the highly non-perturbative nature of this temperature regime. The holographic approach provides a useful way to gain insight into this problem. In the previous Section, we’ve used the holographic QCD model with non-conformal dynamics to calculate the $\hat{q}(T)$. As clearly seen Fig.9 the scaled jet-medium coupling \hat{q}/T^3 shows strong enhancement in the vicinity of T_c, while in contrast any conformal holographic model will show no T-dependence for the \hat{q}/T^3. We also emphasize that the same holographic model also describes the
trace anomaly (with strong peak near T_c) in thermodynamics. With such T-dependence obtained from the holographic model here, it is of great interest to see its phenomenological implications. Here we use the simple geometric energy loss model as in [14, 60] to study the R_{AA} and v_2 at high p_t for RHIC which are most sensitive to such T-dependence. Let us assume that the final energy E_f of a jet with initial energy E_i after traveling an in-medium path \hat{P} (specified by the jet initial spot and momentum direction) can be parameterized as $E_f = E_i \times f_{\hat{P}}$ with the $f_{\hat{P}}$ given by

$$f_{\hat{P}} = \exp \left\{ - \int_{\hat{P}} \kappa(s(l)) s(l) dl \right\}.$$ \hspace{1cm} (37)

Here $s(l)$ is the local entropy density along the jet path, while the $\kappa(s)$ represents the local jet-medium interaction strength which depends on the local density $s(l)$ (or equivalently the temperature T). We choose to explicitly separate out the density s itself, and the combination $\kappa(s)s$ corresponds to \hat{q}. To implement the holographic model results for \hat{q}, we use $\kappa(s) = \xi \cdot \hat{q} T^3$ with $\hat{q} T^3$ given as in Fig.9 and with ξ just one parameter to be fixed by the most central collisions $R_{AA} \approx 0.18$ for 0-5% centrality class and then used for other computations. We use optical Glauber model to sample initial jet spots according to binary collision density and we determine a medium density from participant density with longitudinal boost-invariant expansion. It is known that there are strong initial state fluctuations, but since we are focusing on the average R_{AA} and the dominant geometric anisotropy component v_2 which is dominantly from geometry and the current approach is reasonable (for a detailed discussions of the initial fluctuations for hard probe see e.g. [19, 20, 60]). In our simulations for each given impact parameter we compute the energy loss for 1 million jet paths with different initial spots and orientations, and extract the R_{AA}:

$$R_{AA}(\phi) = \langle f_{\hat{P}} \rangle^{n-2} >_{\hat{P}}$$ \hspace{1cm} (38)

where $< >_{\hat{P}}$ means averaging over all jet paths as azimuthal orientation ϕ and including all sampled initial jet production spots. The exponent n comes from reference p-p spectrum at the same collision energy: $n \approx 8.1$ and 6.0 for $\sqrt{s} = 0.2$ and 2.76 TeV. The so-obtained $R_{AA}(\phi)$ in each event can be further Fourier decomposed as $R_{AA}(\phi) = R_{AA} [1 + 2v_2 \cos(2\phi)]$. The overall quenching R_{AA} as well as the azimuthal anisotropy v_2 can then be determined.

In Fig.13 we show the results for R_{AA} and v_2 at high p_t for RHIC with the input T-dependent jet-medium interaction from our non-conformal holographic model (the thick blue curves). For comparison we also show the results from conformal model i.e. with \hat{q}/T^3 being constant in QGP phase (the thin red curves). The data are from PHENIX measurements in [56]. As one can see, while both types of models describe the R_{AA} well, the non-conformal model shows a sizable improvement over the conformal model in getting closer to the data. Of course our current non-conformal model still does not give enough anisotropy, which implies that the T-dependence of jet-medium coupling in this model may still show less near-T_c enhancement than the phenomenologically favored form. Such discrepancy at quantitative level may not be unexpected due to a number of issues. After all the holographic model used here is supposed to be an effective description dual to pure gluodynamics and strictly speaking may not be suitable for direct application to full QCD phenomenology. First of all, in real QCD case with crossover transition there is the "hadronic" side (i.e. the sizable contribution for \hat{q} when T is smaller but close to T_c [62] which is missing in the current holographic model with 1st order transition. Furthermore, the entropy density here (only counting the gluons essentially) is also different from full QCD where there are quarks too, and that in general would shift the peak toward lower density region in the present model. One might attempt to "cook up" certain extrapolative ways of accounting for such differences and thus improve the agreement with data. We however feel that would weaken the internal rigor and consistency of the holographic model approach, and would add very little to our main purpose which is not to claim success in description of data but to demonstrate the consequence of non-conformal dynamics in our holographic model on the jet energy loss phenomenology.

Let us end by reiterating our main points here: 1) there are strong non-conformal, non-perturbative dynamics going on in the near-T_c region (which is modeled via holography here by introducing quadratic terms); 2) such dynamics leads to non-monotonic behavior in QGP thermodynamics as shown by the strong near-T_c peak of trace anomaly (which is well modeled by holography); 3) the same dynamics leads to non-monotonic behavior in QGP transport properties and in particular strong near-T_c enhancement of jet-medium coupling; 4) phenomenologically the T-dependence of \hat{q} from non-conformal holographic model considerably improves the description of jet quenching azimuthal anisotropy as compared with the conformal case.

VII. SUMMARY

We have investigated QCD phase transition and jet quenching parameter \hat{q} in the framework of dynamical holographic QCD model. The thermodynamical properties in this dynamical holographic QCD model agree well with lattice results for pure gluon system. It is found that both the trace anomaly $(\epsilon - 3\rho)/T^4$ and the ratio of the jet quenching parameter over cubic temperature \hat{q}/T^3 show a peak around the critical temperature T_c. It is also noticed that the ratio of jet quenching parameter over entropy density \hat{q}/s sharply rises at T_c which is similar to the behavior of bulk viscosity over entropy density η/s. The enhancement of jet quenching parameter around T_c indicates that, like the ratio of shear viscosity over entropy density η/s and the ratio of bulk viscosity over entropy density ξ/s, the ratio of jet quenching parameter over entropy density \hat{q}/s can also characterize the phase transition.

The effect of jet quenching parameter enhancement around phase transition on nuclear modification factor R_{AA} and elliptic flow v_2 have also been analyzed, and it is found that the T-dependence of \hat{q} from non-conformal dynamical holographic model can considerably improve the description of jet...
quenching azimuthal anisotropy as compared with the conformal case.

Here are several remarks about the dynamical holographic QCD model we used in this work: 1) We have only considered the graviton-dilaton coupled system for the pure gluon system, it is interesting to see in the future how the behavior of jet quenching parameter changes by including dynamical quarks and how it will affect R_{AA} and v_2; 2) We have only considered the gluonic matter above T_c, one needs to construct the thermal gas below T_c in order to get the q/T^3 behavior in the hadron gas; 3) One should also consider how to distinguish the energy loss of gluons and quarks \[68\] in the framework of holography QCD.

Acknowledgement

This work is supported by the NSFC under Grant No. 11275213, DFG and NSFC (CRC 110), CAS key project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS. JL is grateful to RIKEN BNL Research Center for partial support.

[1] I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005).
[2] M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005).
[3] D. Teaney, J. Lauret and E. V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).
[4] K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005).
[5] B. Back et al., Nucl. Phys. A 757, 28 (2005).
[6] J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005).
[7] J. Liao and V. Koch, Phys. Rev. C 74, 014901 (2006).
[8] H. Mao, J. Jin and M. Huang, J. Phys. G 37, 035001 (2010).
[9] B. C. Li and M. Huang, Phys. Rev. D 78, 117503 (2008).
[10] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B. Peterssson, Nucl. Phys. B 469, 419 (1996).
[11] J. Jia, W. A. Horowitz and J. Liao, Nucl. Phys. B 483, 291 (1997).
[12] M. Gyulassy and X.-N. Wang, Nucl. Phys. A 583 (1994).
[13] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005).
[14] K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002).
[15] F. Karsch, D. Kharzeev and K. Tuchin, Phys. Lett. B 707, 18 (2008).
[16] A. Majorde, B. Muller and X.-N. Wang, Phys. Rev. Lett. 99, 192301 (2007).
[17] J. Liao, E. Shuryak, Phys. Rev. Lett. 102, 202302 (2009).
[18] J. Adams et al., [STAR Collaboration], Phys. Rev. C 72, 014904 (2005).
[19] A. Adare et al., [PHENIX Collaboration], Phys. Rev. Lett. 105, 142301 (2010).
[20] J. Jia, R. Wei, Phys. Rev. C 82, 024902 (2010).
[21] J. Jia, W. A. Horowitz and J. Liao, Phys. Rev. C 84, 034904 (2011) [arXiv:1101.0290] [nucl-th].
[22] X. Zhang and J. Liao, arXiv:1208.6361 [nucl-th].
[23] X. Zhang and J. Liao, Phys. Rev. C 87, 044910 (2013); Phys. Lett. B 713, 35 (2012).
[24] D. Kharzeev and K. Tuchin, arXiv:0705.4280 [hep-ph].
[25] F. Karsch, D. Kharzeev and K. Tuchin, Phys. Lett. B 663, 217 (2008).
[26] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).
[27] K. Huebner, F. Karsch and C. Pica, arXiv:0808.1127 [hep-lat].
[28] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1999) [hep-th/9711200].
[29] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105 (1998) [hep-th/9802109].
[30] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [hep-th/9802150].
[31] S. S. Gubser and A. Nellore, Phys. Rev. D 78, 086007 (2008).
[32] S. S. Gubser, A. Nellore, S. S. Pufu and F. D. Rocha, Phys. Rev. Lett. 101, 131601 (2008).
[33] S. S. Gubser, S. S. Pufu and F. D. Rocha, JHEP 0808, 085 (2008).
[34] U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti, JHEP 0905, 033 (2009).
[35] U. Gursoy, E. Kiritsis, L. Mazzanti and F. Nitti, Phys. Rev. Lett. 101, 131601 (2008).
[36] U. Gursoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, JHEP 0912, 056 (2009).
[37] E. Megias, H. J. Pirner and K. Veskhgini, Phys. Rev. D 83, 056003 (2011).
[38] K. Veskhgini, E. Megias and H. J. Pirner, arXiv:1009.4639 [hep-th].
[39] D. Li, S. He, M. Huang and Q. -S. Yan, JHEP 1109, 041 (2011) [arXiv:1103.5389 [hep-th]].
[40] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005).
[41] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74 (2006) 015005.
[42] C. Csaki and M. Reece, JHEP 0705, 062 (2007).
[43] Gherghetta T., Kapusta, J I. and Kelley T. M., Phys. Rev. D 81, 072305 (2013) [arXiv:1103.5389 [hep-th]].
[44] D. Li and M. Huang, JHEP 1311, 088 (2013) [arXiv:1303.6929 [hep-ph]].
[45] D. Li and M. Huang, arXiv:1311.0593 [hep-ph].
[46] Adams A., Carr L. D., Schaefer T., Steinberg P. and Thomas
[47] A. Majumder, Phys. Rev. C 87, 034905 (2013) [arXiv:1202.5295 [nucl-th]].
[48] M. Panero, K. Rummukainen and A. Schfer, [arXiv:1307.5850 [hep-ph]].
[49] U. Gursoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, JHEP 0912 (2009) 056 [arXiv:0906.1890 [hep-ph]].
[50] R.-G. Cai, S. Chakrabortty, S. He and L. Li, JHEP 1302 (2013) 068 [arXiv:1209.4512 [hep-th]].
[51] Z.-q. Zhang, D.-f. Hou and H.-c. Ren, JHEP 1301, 032 (2013) [arXiv:1210.5187 [hep-th]].
[52] A. Ficnar, S. S. Gubser and M. Gyulassy, [arXiv:1311.6160 [hep-ph]].
[53] K. M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy, U. Heinz, S. Jeon and A. Majumder et al., [arXiv:1312.5003 [nucl-th]].
[54] K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 696, 30 (2011). S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 72, 1945 (2012).
[55] M. Gyulassy, I. Vitev and X. N. Wang, Phys. Rev. Lett. 86, 2537 (2001).
[56] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 105, 142301 (2010).
[57] B. Abelev et al. [ALICE Collaboration], [arXiv:1205.5761 [nucl-ex]].
[58] G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012); Phys. Lett. B 707, 330 (2012).
[59] S. Chatrchyan et al. [CMS Collaboration], [arXiv:1204.1850 [nucl-ex]].
[60] J. Liao, AIP Conf. Proc. 1441, 874 (2012) [arXiv:1109.0271 [nucl-th]].
[61] W. A. Horowitz and M. Gyulassy, Nucl. Phys. A 872, 265 (2011) [arXiv:1104.4958 [hep-ph]].
[62] B. Betz and M. Gyulassy, [arXiv:1305.6458 [nucl-th]]; Phys. Rev. C 86, 024903 (2012).
[63] A. Buzzatti and M. Gyulassy, Nucl. Phys. A904-905 2013, 779c (2013).
[64] R. A. Lacey, N. N. Ajitanand, J. M. Alexander, J. Jia and A. Taranenko, [arXiv:1203.3605 [nucl-ex]]; [arXiv:1202.5537 [nucl-ex]].
[65] B. G. Zakharov, JETP Lett. 93, 683 (2011); [arXiv:1105.0191 [hep-ph]].
[66] T. Renk, Phys. Rev. C 85, 044903 (2012). T. Renk, H. Holopainen, J. Auvinen and K. J. Eskola, Phys. Rev. C 85, 044915 (2012). T. Renk, H. Holopainen, U. Heinz and C. Shen, Phys. Rev. C 83, 014910 (2011).
[67] C. Hidalgo-Duque and F. J. Llanes-Estrada, [arXiv:1309.7211 [hep-ph]].
[68] S. Lin, R. D. Pisarski and V. V. Skokov, [arXiv:1312.3340 [hep-ph]].