Highly Heterogeneous Bacterial Communities Associated with the South China Sea Reef Corals *Porites lutea*, *Galaxea fascicularis* and *Acropora millepora*

Jie Li¹, Qi Chen¹,², Si Zhang¹, Hui Huang¹, Jian Yang¹, Xin-Peng Tian¹, Li-Juan Long¹*

¹ CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, P. R. China, ² Graduate University of Chinese Academy of Sciences, Beijing, P. R. China

Abstract

Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, *Porites lutea*, *Galaxea fascicularis* and *Acropora millepora*, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: *P. lutea* and *G. fascicularis*, *A. millepora* and seawater. *P. lutea* and *G. fascicularis* displayed more similar bacterial communities, and bacterial communities associated with *A. millepora* differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

Citation: Li J, Chen Q, Zhang S, Huang H, Yang J, et al. (2013) Highly Heterogeneous Bacterial Communities Associated with the South China Sea Reef Corals *Porites lutea*, *Galaxea fascicularis* and *Acropora millepora*. PLoS ONE 8(8): e71301. doi:10.1371/journal.pone.0071301

Editor: Raymond Schuch, Rockefeller University, United States of America

Received March 24, 2013; **Accepted** June 27, 2013; **Published** August 7, 2013

Copyright: © 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the National Basic Research Program of China (No. CB833801), the National Natural Science Foundation of China (No. 41106139, 412030962), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-G-12) and the Academic Frontier Project for young researchers (No. SQ201013). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: longj@scsio.ac.cn

Introduction

The abundance of bacteria has been shown to be an important part of the coral holobiont [1]. Coral-associated bacteria are ubiquitous in the coral holobiont temporally and spatially. Planulae older than 79 h harbor internalized bacteria cells [2]. Subsequently, abundant and various bacterial communities were associated with adult corals, for example, *Stylcolella piscillata* and *Pocillopora damicornis* [3,4]. Evidence has also accumulated suggesting that coral-associated bacterial communities respond to dynamic environmental conditions at different scales [5–7]. In divergent compartments of corals, such as mucus, tissues and the calcium carbonate skeleton, dissimilar bacterial communities have been detected [8,9]. Although coral-associated bacterial communities are diverse, they are distinct from ambient seawater bacterial communities [1,10,11]. Diverse and dynamic coral-associated bacteria assemblages potentially have functions related to nitrogen, carbon and sulfur metabolism, coral disease resistance and abiotic stress tolerance [12].

Our understanding of the specificity of coral-associated microorganisms is changing because the information on coraldervived microbial sequences is increasing at a staggering rate. The bacterial communities associated with the corals *Montastraea franksi*, *Diploria strigosa* and *Porites astreoides* from Panama and Bermuda [1] support the argument that coral-associated bacterial assemblages are most likely species-specific. In contrast, Littman et al. [13] reported that the bacterial communities in three species of *Acropora* corals on the Great Barrier Reef were more crucially shaped by location than by the host coral species. Meanwhile, the argument that coral bacterial communities may be both site and species specific has been recently reported [14]. Although all of these studies support the conclusion that corals possess specific microbiota, the inconsistency of the findings on specificity across studies should not be overlooked. These results were mainly obtained using conventional cloning and sequencing or DGGE methods. Therefore, the major limitation of these studies is that the characterization of the microbial communities is not comprehensive. More recently, pyrosequencing has been employed to investigate the bacterial community associated with corals [11,15–19]. These studies have further supported the conclusion that the bacterial communities appear to be regulated by the host coral species. In addition to the coral species, the significant influence derived from environmental factors has also been emphasized. Therefore, the specificity of coral bacterial communities is more complex than initially thought and still obscure. To better understand the nature of the specificity of coral-associated
microorganisms, more comprehensive surveys about more corals from different environments at different scales are required.

Coral reefs are widely distributed across the South China Sea, with a total reef area of approximately 7974 km², matching the Great Barrier Reef in size, latitudinal range and biodiversity [20]. However, the microbial consortium has been rarely documented in South China Sea corals. The Luhuitou fringing reef located in Sanya, southern Hainan Island, is approximately 3500 m long and 250–500 m wide and consists of approximately 70% of the coral species so far reported for Hainan Island and its surrounding islands [20]. Luhuitou is a popular tourist location; therefore, investigating the bacteria associated with local coral colonies is crucial for us to estimate anthropogenic impacts on the coral reef. The aim of this study is to comprehensively investigate the diversity and structure of bacterial communities associated with the three dominant coral species *Porites lutea*, *Galaxea fascicularis* and *Acropora millepora* from the South China Sea. Furthermore, we compared the bacterial communities among coral species and individual colonies to define the common and specific bacteria communities in these corals. Such information will provide a further understanding of the specificity of coral-associated bacteria.

Materials and Methods

Ethics Statement

Permits for coral sampling were provided by the Administration of Sanya Coral Reef National Nature Reserve, the Department of Ocean and Fisheries of Hainan Province.

Sample Collection

Coral and seawater samples were collected in July 2011 from the Luhuitou fringing reef (18°13′N, 109°28′E), Sanya, Hainan province, China. Three coral species, including *P. lutea*, *G. fascicularis* and *A. millepora*, were sampled at a depth of 3–5 m using a punch and hammer. The temperature of ambient sea water was approximately 27–28°C, the average pH was 8.78±0.01, and the salinity was 34. Triplicate samples of each species were collected. The interval distance of sampling was 0.5 m. All nine samples were washed with autoclaved sea water and then placed in sterile plastic bags. Ambient sea water was collected into sterile plastic bags. Ambient sea water was filtered through a 0.22-μm polycarbonate filter membrane (Millipore). All samples were frozen at −80°C until DNA extraction.

DNA Extraction, PCR Amplification and Pyrosequencing

The coral samples were homogenized in liquid nitrogen with a mortar and pestle. The 0.22-μm polycarbonate filter membranes with adsorbed microbial cells were cut into pieces before DNA extraction. Total DNA was extracted using the PowerSoil DNA Isolation Kit (MoBio, Solana Beach, CA, USA) according to the manufacturer’s instructions. Bacterial V1–V3 hypervariable regions of the 16S ribosomal RNA gene were amplified using the bacterial forward primer 27F [21], which includes the primer A adaptor and a unique 10 bp barcode on the 5′ end (5′-GACTCTATGCCGCTCAGAGNNNNNNNNNGAGATTITGGA-TGCCTGGTCATCA-3′), and the reverse primer 534R with the primer B adaptor on the 5′ end (5′-CCTATATGCCGCTCACTTGGTTCCCC- CAGTCTACGGAAATTACCGGGCAGTCTGCTGG-3′) [22]. PCR amplifications were performed in a Mastercycler pro (Eppendorf, Hamburg, Germany) in a final volume of 50 μL, containing 4 μL of 2.5 mM deoxynucleotide triphosphate mixture (TaKaRa), 2 μL of 10 μM each primer, 5 μL (10–20 ng) template DNA and 2.5 units Ex Taq DNA polymerase (TaKaRa, with its recommended reaction buffer). The PCR conditions were as follows: 94°C for 5 min; 30 cycles of 94°C for 30 s, 60°C −0.5°C/cycle for 30 s, 72°C for 30 s; followed by 72°C for 10 min. Each genomic DNA sample was amplified in triplicate PCR reactions, and amplicons were pooled and purified using the EZ.N.A.® Gel Extraction Kit (Omega BioTek).

The quality of the purified PCR products was assessed using a Nanodrop spectrophotometer (Thermo Scientific, Vantaa, Finland). Pooled 200 ng of the purified tagged amplicons from each sample were pyrosequenced on the Roche 454 Genome Sequencer FLX System.

Pyrosequencing Analysis

After excluding the reads with low quality scores (<20) and containing homopolymer inserts, high quality reads were reserved for downstream analysis [23]. The pyrosequencing data were deposited in the NCBI Sequence Read Archive (SRA) database under the accession number SRP020999. Chimeras were detected by running chimera.uchime packaged in Mothur [24], and potential chimeras were removed. All quantified sequences were identified using the RDP classifier with a bootstrap confidence level of 50% [25]. Sequences were clustered into operational taxonomic units (OTUs) with a 97% threshold using uclust [26]. Species richness and diversity estimates were performed using Mothur [24]. To standardize all datasets, the smallest number (678) of sequences was randomly selected from each sample 1000 times. The relationships among bacterial assemblages of coral and seawater samples were analyzed by non-Metric Multidimensional scaling (nMDS) ordination [27]. The Bray-Curtis distance matrix was estimated from the OTU matrix, and then, the nMDS profile was generated by the PRIMER 5 software (PRIMER-E, Lutton, Ivybridge, UK). Differences in bacterial communities between categories were tested with an analysis of similarities (ANOSIM); with 10,000 replicates [27]. SIMilarity PERCenTage (SIMPER) analysis was carried out to determine which taxa generated the most differences between categories [27].

Results

Diversity of Coral-associated Bacteria

A total of 29877 reads were recovered through quality filtering and clustered into 8316 different 97% OTUs. The number of reads ranged from 678 to 6450 in each sample. The largest number of 1031–2463 OTUs was in *P. lutea* compared to 646–1459 and 361–724 OTUs that were associated with *G. fascicularis* and *A. millepora*, respectively (Table 1). The bacterial communities associated with the three coral species were highly diverse. The Shannon index ranged from 5.79 to 7.04 in *P. lutea*, from 4.16 to 6.72 in *G. fascicularis* and from 5.26 to 5.83 in *A. millepora*. The value of the Shannon index in sea water was 4.95. As the P-value was 0.14 to 0.67, there was no significant difference in the Shannon index among corals and seawater samples.

Bacterial Community Composition

At a confidence threshold of 50%, 24135 out of the 29877 qualified reads could be assigned to 18 formally described bacterial phyla and 5 candidate phyla (Fig. 1). The proportions of these phyla varied among different coral species and seawater libraries. *Alphaproteobacteria* were predominant in the *P. lutea* (11.2–42.5%) and *G. fascicularis* (6.3–35.3%) libraries compared to *A. millepora* (1.1–5.4%). Within *Alphaproteobacteria*, *Silicibacter* were predominant in the *P. lutea* and *G. fascicularis* libraries, while no sequence belonging to the genus *Silicibacter* was detected in the *A. millepora* libraries. Additionally, *Sphingomonas* was a major group in the *P. lutea*-associated bacterial community, which was not present in the
 Classified reads affiliated with Alphaproteobacteria, especially Rhodobacterales, were also the most abundant group in the seawater library (38.8%). More sequences affiliated with Bacteroidetes were detected in the P. lutea (5.3–16.7%), G. fascicularis (6.2–9.9%) and seawater libraries (7.1%) in contrast to the A. millepora (0.5–2.7%) libraries. Both Flavobacteria and Sphingobacteria were the major Bacteroidetes groups in coral samples, while Flavobacteria were more abundant than Sphingobacteria in the seawater library. Prosthecochloris was the most abundant Chlorobi group in P. lutea colonies 1 and 3, but Prosthecochloris was much rarer in the G. fascicularis libraries and was not even present in the A. millepora and seawater libraries. Betaproteobacteria were more predominant in the A. millepora (2.5–7.4%) and seawater (2.3%) libraries compared to the G. fascicularis and P. lutea (<0.8%) libraries. Burkholderiales were the major Betaproteobacteria group in the A. millepora and seawater libraries. A total of 1.8–6.9% and 2.1–4.0% of sequences were related to Planctomycetes in the P. lutea and G. fascicularis libraries, respectively, but were not detected in the A. millepora libraries.

Firmicutes were more predominant in A. millepora (14.2–16.4%) compared to P. lutea (2.3–7.6%) and G. fascicularis colonies 1 (1.8%) and colony 2 (5.6%), and were much rarer (1.3%) in the seawater library. In G. fascicularis colony 3, the spike of Firmicutes (55.7%) resulted from an increasing presence of Lachnospiraceae. Gammaproteobacteria (36.6–57.4%), primarily Enterobacteriales, dominated the A. millepora libraries compared to the G. fascicularis (8.0–16.3%), P. lutea (5.2–7.9%) and seawater (7.3%) libraries. In addition to Gammaproteobacteria and Firmicutes groups, Deinococci was another major group in the A. millepora bacterial community that was rarely detected in the G. fascicularis, P. lutea and seawater libraries.

Other differences in coral-associated bacteria included Acidobacteria, which account for 1.6–2.8% of the bacteria in the P. lutea libraries and in G. fascicularis colonies 1 and 2 (0.34% in G. fascicularis colonies 3) but were absent from the A. millepora and seawater libraries with the exception of 0.37% in A. millepora colony 3. Similarly, relatively abundant sequences related to Deltaproteobacteria were found in the P. lutea (2.4–6.8%) and G. fascicularis (2.0–7.6%) libraries, which were rarely detected in A.

Table 1. Numbers of sequences and OTUs (97%) and diversity estimates of coral-associated bacteria.

Index	Porites lutea	Galaxea fascicularis	Acropora millepora	Seawater														
	colony 1	colony 2	colony 3	colony 1	colony 2	colony 3	colony 1	colony 2	colony 3	colony 1	colony 2	colony 3	colony 1	colony 2	colony 3	colony 1	colony 2	colony 3
No. of Seq	4,780	2,857	6,450	2,839	2,766	3,249	2,085	678	1,078	3,093								
OTUs	1374	1031	2,463	1,459	1,438	646	724	361	484	788								
Chao 1	2993.29	2878.81	5671.05	4350.69	4663.02	1597.86	1261.98	775.75	1392.47	2073.51								
ACE	4515.78	5673.82	8970.90	7518.84	8547.68	2666.94	1642.64	855.53	2368.62	3584.98								
Shannon	6.03	5.79	7.04	6.63	6.72	4.16	5.83	5.46	5.26	4.95								

doi:10.1371/journal.pone.0071301.t001

Figure 1. Bacterial composition profiles. Pl, Porites lutea; Gf, Galaxea fascicularis; Am, Acropora millepora; SW, seawater.

doi:10.1371/journal.pone.0071301.g001
millepora. Actinobacteria were abundant in coral libraries, especially in *P. lutea* and *G. fascicularis*, but were rare in the seawater library. Five candidate phyla, including BRC1, OD1, SR1, TM7 and WS3, were detected in the coral data set. Among them, OD1 and WS3 were present in both *P. lutea* and *G. fascicularis*, and TM7 were detected in all three types of corals, while BRC1 and SR1 were only observed in *G. fascicularis*. In the seawater library, 23.4% of sequences were related to *Cyanobacteria* compared to 2.1% in the coral libraries.

Comparison of Coral-associated Bacterial Communities

The nMDS matrix was generated from the OTU percentages in each sample and was computed to compare the similarity of the bacterial communities among different coral species (Fig. 2). Bacterial communities from *P. lutea* and *G. fascicularis*, *A. millepora* and seawater showed significant differences between each other in global testing (*R* = 0.99, *P* = 0.001). Bacterial communities associated with *P. lutea* and *G. fascicularis* did not show significant difference (*P* > 0.05), and they were separated from the *A. millepora*-associated bacterial communities (*R* = 0.99, *P* = 0.012). Such differences in bacterial community composition between *P. lutea* and *G. fascicularis* and *A. millepora* are caused by those taxa that are restricted to either *P. lutea* and *G. fascicularis* or *A. millepora* (Table S1).

The Distribution of Ubiquitous and Unique Bacterial Groups

The distribution of OTUs within the coral samples was investigated by combining all tag sequences and determining their presence in different coral species. All of the three coral species shared only 22.97% OTUs, 14 of which were distributed in *Alphaproteobacteria*, *Deltaproteobacteria*, *Gammaproteobacteria*, *Chloroflexi*, *Actinobacteria* and *Acidobacteria*, whereas the other 8 could not be identified as any described bacterial group using the RDP classifier at a confidence level of 50% (Table 2). These OTUs presented at all three coral species were defined as a common community. In contrast to the common bacterial community, the species-specific community is very large. There were 3448, 2550 and 886 unique OTUs observed in *P. lutea*, *G. fascicularis* and *A. millepora*, respectively.

In the nMDS profile, compositions of bacterial communities within the three colonies of *A. millepora* grouped at the similarity value 33.9%. Analysis of the OTU composition indicated that 11.2% of all OTUs were shared by the three *A. millepora* colonies and were affiliated with all major groups detected in this study, including *Actinobacteria*, *Betaproteobacteria*, *Deinococcus-Thermus*, *Firmicutes*, *Gammaproteobacteria* and unclassified bacterial groups (Table S2 in File S2). The *P. lutea* and *G. fascicularis* bacteria communities grouped at an approximately 9.0% similarity level. Approximately 1.8% of all OTUs were observed in all three colonies of *P. lutea*, and 1.1% of all OTUs were shared by *G. fascicularis* colonies. Similar to OTUs shared by the *A. millepora* colonies, OTUs shared by the *P. lutea* or *G. fascicularis* colonies were distributed in their own dominant groups, i.e., *Acidobacteria*, *Actinobacteria*, *Alphaproteobacteria*, *Bacteroidetes*, *Chlorobi*, *Chloroflexi*, *Firmicutes*, *Deltaproteobacteria*, *Gammaproteobacteria*, *Planctomycetes* and unclassified bacterial groups (Table S3 & S4 in File S2).

Figure 2. Non-metric multidimensional scaling plot showing the distance of each sample. PI, *Porites lutea*; Gf, *Galaxea fascicularis*; Am, *Acropora millepora*; SW, seawater sample.

doi:10.1371/journal.pone.0071301.g002
Table 2. Common bacterial community in corals.

Tag ID	Taxonomic affiliation	Tag ID	Taxonomic affiliation	Tag ID	Taxonomic affiliation
HEW737K01CVO0E_MID45	Bacteria	HEV CZ001 C4QLC_MID44	Bacteria	HEV CZ001 ANR0V0_MID45	Bacteria
		HEV CZ001 AG417_MID48	Bacteria	HEV CZ001 ER8YY_MID48	Bacteria
		HEV CZ001 ARZKL_MID48	Bacteria	HEVCZ001 C2XUU_MID47	Bacteria
		HEV CZ001 EP96Q_MID47	Acidobacteria_Gp9; Gp9	HEV CZ001 DF7YC_MID47	Actinobacteria_Gp21; Gp21
		HEV CZ001 D5VHN_MID47	Acidobacteria_Gp10; Gp10	HEV CZ001 D460N_MID48	Chloroflexi; Caldilineae; Caldilinea; Caldine
Tag ID	Taxonomic affiliation	Pl	Gf	Am	Best BLAST-hit description
----------------------------	---	----	----	----	--
HEVCZ0I01EZU2I_MID48	Proteobacteria; Deltaproteobacteria	11	33	2	891 99 0 98 DQ889875 uncultered delta proteobacterium from gorgonian octocoral Erythropodium carioaeon
HEVCZ0I01AN8PE_MID49	Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Escherichia/Shigella	1	1	8	876 98 0 98 GU535930 uncultered bacterium from Guri wastewater [attached biomass (2)]
HEW737K01CAH9Q_MID49	Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Escherichia/Shigella	1	1	5	896 99 0 98 JN866566 uncultered bacterium from Haemaphysalis longicornis
HEW737K01DLRLP_MID50	Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Escherichia/Shigella	1	2	8	869 100 0 97 EU472715 uncultered bacterium from red panda (Ailurus fulgens) feces
HEW737K01C6ZJ2_MID50	Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Escherichia/Shigella	1	1	4	828 92 0 97 KC011135 uncultered Enterobacteriaceae bacterium from soil

*represents the OTUs present both in corals and seawater libraries.

*numbers show the reads detected in different coral species. Pl, Porites lutea; Gf, Galaxea fascicularis; Am, Acropora millepora.

doi:10.1371/journal.pone.0071301.t002
Discussion

Coral Bacterial Community Analysis

Presently, the high-throughput pyrosequencing technique combined with barcoded PCR primers has been used for the survey of coral-associated bacterial communities by several researchers [10,11,15–19]. The number of OTUs detected in a single species of coral in the present study is similar to results obtained from *Iopora palifera* collected from Tan-Tzei Bay [11]. In comparison with the results shown by previous studies, this study revealed a higher bacterial diversity in corals from Sanya Bay than those from the Caribbean Sea [10,17,18], Indo-Pacific reefs [18] and the Red Sea [19]. This difference may be due to technical factors, including PCR primer selection and sequencing depth, and may still reflect the essential distinction among different coral species in different environments. Sunagawa et al [15] found that mound corals (*Montastrea faveolata*, *M. franksi*, *D. strigosa* and *P. astreoides*) had higher estimated diversities than branch-forming acroporid corals and, therefore, speculated that coral morphology plays a role in determining the diversity of coral bacteria. In this study, although the estimated diversities of coral-associated bacteria were not significantly different, they were grouped into *A. millepora* or *P. lutea* and *G. fascicularis* categories, which supports the previous hypothesis to a certain extent. Similar to previous reports, *Alphaproteobacteria*, *Gammaproteobacteria*, *Firmicutes*, *Bacteroidetes* and *Actinobacteria* were ubiquitous major groups detected in three coral species. Although *Cyanobacteria* was predominant in the Red Sea corals [19], *Acropora formosa* and *P. lutea* from Indo-Pacific reefs [18] and in *M. faveolata* from the Caribbean Sea [17], *Cyanobacteria* were rare in the three coral species studied in this work as well as in the results presented by Chen et al [11]. Members of five candidate phyla, including BRC1, OD1, SR1, TM7 and WS3, with the exception of WS3 and TM7 [19,28], were not previously known to inhabit corals.

In previous studies, the most abundant bacteria of *A. millepora* in the Great Barrier Reef were *Gammaproteobacteria*, *Alphaproteobacteria* and *Betaproteobacteria* or *Deltaproteobacteria* [13], while in this study, *Gammaproteobacteria* and *Firmicutes* and *Deinococcus-Thermus* were dominant in the *A. millepora* affiliated bacterial community. The divergence of habitat between this and previous studies may contribute to the different bacterial communities. Moreover, *Deinococcus-Thermus* has also been observed in stony coral *Pocillopora verrucosa*, *Astrosphaera myxophthalma* and *S. pistillata* and soft coral *Sarcophyton* sp. from the Red Sea [19]. In contrast to *P. lutea* in Indo-Pacific reefs, *Actinobacteria*, *Bacteroidetes* and *Planctomycetes* were more abundant and *Cyanobacteria* and *Gammaproteobacteria* were less abundant in the *P. lutea*-associated bacterial community in Sanya Bay [18]. Additionally, *Chlorobi* was a major group in the *P. lutea*-associated bacterial community from Sanya Bay, but it was absent in bacterial communities associated with Indo-Pacific *P. lutea* [18]. All of the observations mentioned above suggest that these differences are most likely due to geographical separation and distinct environmental conditions.

Potential Functional Groups

As coral reefs often reside in nutrient limited waters, nitrogen-fixing microbes are important for compensating the nitrogen deficit in coral holobionts [10]. Several bacteria potentially involved in nitrogen-fixing have been detected in this study, including *Chlororibis*, *Chloroflexis*, *Clostridia* and *Cyanobacteria*. Scleractinian corals are significant contributors to the production of dimethylsulfonopropionate (DMSP) and dimethylsulfide (DMS), which are key compounds in the global sulfur cycle [29]. Diverse coral-associated bacteria take part in the degradation of DMSP and DMS. In this study, bacterial groups capable of metabolizing DMSP/DMS, such as *Rugeria*, *Pseudomonas*, *Actinobacter*, *Desulfovibrio*, *Flavobacterium*, *Cytophaga*, *Oceanisola* and *Comamonas* [29] were observed in three coral libraries. These diverse and metabolic potential bacterial groups play a crucial role in the biogeochemical cycle. *Actinobacteria* were observed in abundance in coral samples but were rare in seawater. This group may generate a diverse array of antibacterial compounds that protect the coral from pathogens [30]. The coexistence of various potential functional groups should be essential to the coral holobiont. Therefore, the detailed ecological functions of the bacterial groups identified in this study warrant further research.

Lachnospiraceae was previously suggested to be a bacterial group for fecal source tracking [31]; however, Newton et al. [32] further suggested that the single phylotype Lachno2, which is closely related to the genus *Blautia*, would be a candidate for a host-associated fecal indicator. A high proportion of *Lachnospiraceae* was detected in *G. fascicularis* colony 3, and most of them belonged to an unclassified group. Whether they are related to human fecal bacteria still need further investigated. Additionally, *Escherichia*, which are assumed to be animal-associated bacteria [33], appeared prominently in all A. *millepora* colonies. Because Sanya Bay is a popular tourist spot, the presence of *Lachnospiraceae* and *Escherichia* indicates that we should pay attention to the pollution sources in Sanya Bay, and the real reason for the appearance of these bacteria needs more study.

Common and Specific Bacterial Communities Associated with Corals

As in sponges and the human gut, the common bacterial community in corals was rather small [34,35]. The representative sequences of these 22 OTUs shared by three coral species, except 2 OTUs that also observed in seawater, showed ≤98% similarity to sequences in GenBank, most of which were previously found in sponge- or coral-associated microbial communities (Table 2). It appears that these 20 OTUs might be coral-specific bacteria adapted to the coral reef niche. The species-specific community was large in contrast to the common bacterial community. Although bacterial communities associated with corals were grouped into *A. millepora* or *P. lutea* and *G. fascicularis* categories, bacterial composition in each colony varied at the 97% OTU level. This variation has also been detected in the *I. palifera* bacterial community [11]. The extensive specificity of coral-associated bacteria might result from varied coral development stages or exterior environments [1,28]. Previous studies have indicated that the specific bacterial lineages present in individual sponge and human gut microbiomes vary [34,35]. Turnbaugh et al. [35] further proposed that different bacterial species assemblages shared genes among sampled individuals, comprising a “core microbiome” at the genomic level rather than the bacterial lineage level. Different sets of microbial species observed in coral individuals sampled in this study allow for us to speculate that these diverse combinations of species may fulfill the same functional roles required by corals through functional-overlap. Whether this pattern exists in coral-associated bacterial assemblages still needs further global investigation and more direct evidence.

Conclusions

In this study, bacterial communities associated with corals from the South China Sea were investigated in detail for the first time. The results showed that coral-associated bacteria are highly diverse and are divergent from the seawater bacterial community. Furthermore, the bacterial community associated with *A. millepora* was distinct from *P. lutea* and *G. fascicularis*. In comparison with previous studies, bacterial communities associated with *A. millepora*...
and *P. lutea* in the South China Sea were distinct from those located in the Great Barrier Reef and in Indo-Pacific reefs. It was observed that different coral species share a small common bacterial community, and the composition of the bacterial communities within each colony of each coral species also showed variation. The coexistence of specificity and uniformity reflects the complexity of coral-associated bacterial community and suggests that corals combine the functional bacterial associates in a subtle and sophisticated manner. This study provides novel insights into the complex structure of coral bacterial associates.

Supporting Information

File S1 Table S1: Description of the OTUs that contributed to the differences between *Porites lutea-Galaxea fascicularis* and *Acropora millepora* groups (>1%) (DOCX)

References

1. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol-Prog Ser 245: 1–10.
2. Apprill A, Marlow HQ, Marrinade MQ, Rappe MS (2009) The onset of microbial associations in the coral *P. millepora* mandarina. ISME J 3: 685–699.
3. Hong-MJ, Yu YT, Chen CA, Chiang PW, Tang SL (2009) Influence of species specificity and other factors on bacteria associated with the coral *Stylophora pistillata* in Taiwan. Appl Environ Microbiol 75: 7797–7806.
4. Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral *P. millepora danaeformis* from the Great Barrier Reef. Environ Microbiol 7: 1162–1174.
5. Bourne D, Eda Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2: 530–560.
6. Litman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ Microbiol Rep 3: 651–660.
7. Thruber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, et al. (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11: 2148–2163.
8. Nithyanand P, Pandian SK (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral *A. digitifera* from the Gulf of Mannar. FEMS Microbiol Ecol 69: 384–394.
9. Sweet MJ, Croquer A, Bythell JC (2011) *Reticulitermes* speratus spp. and *A. millepora* colonies: 4. *Pocillopora meandrina* and *P. lutea*.
10. McKew B, Dumbrell AJ, Daud SD, Hephurn L, Thorpe E, et al. (2012) Characterization of geographically distinct bacterial communities associated with the coral mucus from *A. digitifera* and *Porites* spp. Appl Environ Microbiol 78: 5229–5237.
11. Chen CP, Tseng CH, Chen CA, Tang SL (2011) The dynamics of microbial communities in coral holobionts located in the Great Barrier Reef and in Indo-Pacific reefs. It was observed that different coral species share a small common bacterial community, and the composition of the bacterial communities within each colony of each coral species also showed variation. The coexistence of specificity and uniformity reflects the complexity of coral-associated bacterial community and suggests that corals combine the functional bacterial associates in a subtle and sophisticated manner. This study provides novel insights into the complex structure of coral bacterial associates.

File S2 Table S2: Common bacterial OTUs in *Porites lutea* and *Acropora millepora* colonies, Table S3: Common bacterial OTUs in *Porites lutea* colonies, Table S4: Common bacterial OTUs in *Galaxea fascicularis* colonies (XLSX)

Acknowledgments

We would like to thank the Tropical Marine Biological Research Station in Hainan for help with sample collection.

Author Contributions

Conceived and designed the experiments: JL, SZ, L-JL. Performed the experiments: JL, QC. Analyzed the data: JL, QC. Contributed reagents/materials/analysis tools: SZ, HH, YX, PT, L-JL. Wrote the paper: JL, QC.

Bacteria Associated with South China Sea Corals

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e71301