Development of analytical seismic fragility functions for the common buildings in Iran

Zarin Karim Zadeh1 · Mohsen Ghafory-Ashtiany1 · Afshin Kalantari1 · Sahar Shokuhirad1

Received: 12 December 2021 / Accepted: 19 April 2022 / Published online: 23 May 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
One of the main components for developing regional seismic risk models is the fragility functions of common building types. Due to the differences between the national design codes, construction practices, and construction materials, it is necessary to develop specific fragility functions for the common building types which are constructed in each region. For this reason, the present study is devoted to filling this essential gap for Iran. Therefore, in the first step, the existing building types in the country are classified into 31 categories regarding material, lateral-load-resisting system, height, and code level. Also, by conducting comprehensive studies on all previously performed research in the country, structural and dynamic parameters have been collected for buildings in each class. This information was used to compute a large set of backbone curves for Iranian buildings taxonomy. Then nearly three hundred appropriate fragility functions were generated using non-linear time-history analyses on the generic backbone curves and a large set of ground motion records. Based on the existing empirical data from past earthquakes in the country, the validation of the resulting fragility functions was carried out. The resulted fragility functions can be utilized in seismic risk assessment studies in the country.

Keywords Earthquake · Iran · Iranian buildings · Taxonomy · Fragility functions · Seismic risk

Mohsen Ghafory-Ashtiany ashtiany@iiees.ac.ir
Zarin Karim Zadeh zkarinmzadeh73@gmail.com
Afshin Kalantari A.kalantari@iiees.ac.ir
Sahar Shokuhirad sahar.shokuhirad@stu.iiees.ac.ir

1 Structural Engineering Research Center, International Institute of Earthquake Engineering and Seismology, Tehran, Iran
1 Introduction

Earthquake, as one of the most important natural disasters in Iran, has caused extensive economic and human losses, mainly due to the destruction of vulnerable buildings (Tavakoli and Ghaforiy-Ashtiany 1999). The most recent earthquake with Mw 7.3 occurred on November 12, 2017, in Sarpol-e Zahab city in Kermanshah province, which left approximately 600 fatalities (Zare et al. 2017). Reliable assessment of seismic vulnerability and risk of buildings requires the development of classified, reliable, and cogent fragility functions of the common building types constructed in Iran.

The development of appropriate/reliable fragility functions has been the aim of various studies. In these studies, fragility functions have been developed based on different methods, which can be classified into three main groups: empirical methods, expert opinion-based, and analytical methods. Empirical fragility functions are generated based on a statistical analysis of observed damage from past earthquakes, such as from data collected by post-earthquake surveys (Colombi et al. 2008; Sabetta et al. 1998). Expert opinion-based fragility functions are proposed based on the judgment and information of experts (ATC-13 1985; Jaiswal et al. 2012). Analytical fragility functions are developed starting from the statistical elaboration of damage distributions that are simulated from analyses of structural models under increasing earthquake intensity (HAZUS 1999; Ibarra and Krawinkler 2005; Rossetto and Elnashai 2005; Nasserasadadi et al. 2008; Samadian et al. 2019). Despite the existence of notable studies that have been conducted to develop fragility functions for different buildings in the country, due to the differences between the development methods, type of buildings, type of intensity measures, definition of damage states, the results of these studies are widely dispersed. Thus, it is necessary to develop uniform fragility functions for the common building types which are constructed in Iran.

This paper focused on a comprehensive study of the existing building types in the country to identify the common building types and building taxonomy of Iran based on the material, structural system, code conformance, and height, which resulted in 14 major types of buildings. Then, a comprehensive review was performed to determine the principal structural and dynamic characteristics of the 14 types of Iranian buildings to derive their equivalent Single-Degree-Of-Freedom (SDOF) models. For seismic demand, the presented method by Ghafoory-Ashtiany et al. (2021) was used in order to define representative Strong Ground Motion Records (SGMRs) from a large database of approximately 4000 records. Also, this paper has followed the analytical procedure proposed in Martins and Silva (2020) to develop fragility functions that consider the building-to-building variability, record-to-record variability, and uncertainty in the definition of the damage criterion using a low computational effort. All of the calculations were performed using the Vulnerability Modellers Toolkit (VMTK) (Martins et al. 2021). This study has developed more than 300 fragility functions for 14 common buildings in Iran, which have been considered in three code levels. The outcomes of this study can utilize in regional and national earthquake risk analyses.
2 A brief review of the current state of studies on the development of fragility functions for buildings

In the last decades, many important studies have been performed on the development of fragility functions worldwide [e.g., HAZUS (1999), Risk-UE project (Mouroux and Le Brun 2006), SYNER-G (Pitilakis et al. 2014), Global Earthquake Model (GEM) (Rossetto et al. 2014; D’Ayala et al. 2015), Silva et al. 2017, Villar-Vega et al. (2017), Martins and Silva (2020)]. Especially several studies have been performed to assess seismic fragility and vulnerability functions for Iranian buildings. The first study on seismic fragility curves in Iran was carried out by Tavakoli and Favakoli (1993) based on the Manjil-Rudbar earthquake data in 1990. This study presented empirical fragility functions for residential buildings regardless of the year of construction, seismic code, and building types. In another study, part of the GEM project was dedicated to the Middle East region, which was called the EMME project. The main part of the EMME project was relevant to seismic risk assessment in the region (Mansouri and Amini-Hosseini 2013). The first important result of this project was determining residential building taxonomy for Iran based on the national census database. The other significant result of this project was the derivation of appropriate vulnerability functions to estimate the building damage and the associated casualties.

Omidvar et al. (2012) have presented the empirical fragility curves for engineered steel and RC structures in Iran based on the observed damage from previous earthquakes that have occurred in Iran, mainly the 1990 Manjil and 2003 Bam earthquakes. Sadeghi et al. (2015) developed a set of vulnerability curves for the 42 Iranian building types by combining the existing fragility/vulnerability curves in Iran and other countries with similar seismicity and construction practices. Kazemi et al. (2017) developed fragility curves for steel braced frame structures using new spectral shape indicators and a weighted damage index in the city of Mashhad, Iran. Motamed et al. (2019) defined 23 building classes based on the construction material, building height, lateral load resisting system, and year of construction. The output of this study was the fragility functions of some of the building classes in Iran in order to utilize for the development of a probabilistic earthquake loss model for the country. Fallah Tafti et al. (2020) also categorized all buildings in Iran into 19 classes in terms of building structure types, building quality, and building height. In this study, 19 sets of expert judgment-based fragility functions were developed for the different types of common buildings in Iran. These fragility functions were developed using existing empirical fragility functions in Iran and those proposed for similar types of buildings in other countries. Kohrangi et al. (2021) classified the buildings into 27 classes based on age, height, material, and lateral-load-resisting system. This study developed a seismic risk model for the city of Isfahan using the exposure, fragility, and vulnerability models for the residential, mixed residential/commercial, and public building stock. Biglari et al. (2021) investigated the damaged database of engineered residential steel and RC buildings after Mw7.3 2017 earthquake. This study presented the empirical fragility curves for engineered steel and RC structures.
3 Building taxonomy in Iran

3.1 Development of a taxonomy for Iranian buildings

A necessary prerequisite for the vulnerability assessment of buildings is identifying the common building types in the country, which should be classified based on important parameters such as the construction material, the lateral load resisting system, design quality, and height. In order to develop and classify the comprehensive inventory of the most common building types in Iran, an extensive study has been performed on the existing building taxonomies worldwide to come up with an updated taxonomy for Iran with the consideration of the most important parameters [e.g., HAZUS (1999), RISK-UE project (Mouroux and Le Brun 2006), WHE-PAGER project (Jaiswal et al. 2010), Global Earthquake Model (Brzev et al. 2013)]. Also, similar studies have been conducted in Iran, which has been reviewed in the previous section. In addition to the mentioned studies, the Statistical Center of Iran (SCI 2018) Classified the existing buildings into three categories of steel structure, reinforced concrete, and others based on their structure types. These categories are not exhaustive and do not include all common buildings in Iran. Therefore, with respect to the description of several studies that were relevant for the development of a building taxonomy, in the current study, some parameters have been selected in order to classify existing buildings in urban and rural areas of Iran. These parameters consist of construction material, lateral load resisting system, code level (which is defined based on the integration of the seismicity level and the year of construction), and height. The procedure and the parameters that are reflected in the development of the building taxonomy are discussed in this section.

3.2 Building classification based on the construction material and the lateral load resisting system

In this section, based on previous research and the experts’ opinion, common building types in Iran are classified into two main categories: engineered buildings and non-engineered buildings. Engineered buildings are named as (1) Steel moment bare frames (S1_MRF); (2) Steel moment infill frame (S2_INFF); (3) Steel braced frame with the concrete shear wall (S3_MRF&CSW); (4) Steel braced frame (S4_SBR); (5) Steel frames with a dual system (S5_DUAL); (6) Steel braced frames with Khorjini connections (S6_SBR&KHC); (7) RC moment bare frame (C1_MRF); (8) RC moment infill frame (C2_INFF); (9) RC frames with the shear wall (C3_CSW); (10) RC tunnel-form (C4_TUF). Also, non-engineered buildings are named as (1) Confined masonry buildings (CM); (2) Unreinforced masonry buildings (UM); (3) Adobe (ADOBE), and (4) Wooden buildings (WD). The classification of Iranian buildings based on construction material and load resisting systems is presented in Table 1.

3.3 Buildings classification based on code level

In this study, code level is defined based on the year of construction and the seismicity levels of the region in which the buildings are designed. The existing Iranian buildings mainly were designed based on the various version of the Iranian standard for seismic
design of buildings (Standard No. 2800, ICSRDB 2014, http://www.std2800.ir) and the Iranian National Buildings Code parts 8, 9, and 10 (INBC Part 8 2013; INBC Part 9 2013; INBC Part 10 2013, https://inbr.ir). Therefore the existing buildings are categorized into four groups based on the different editions of Iranian building codes, as shown in Table 2.

The STD-2800 divided Iran into four seismic hazard zones with the Design-Based earthquake (DBE) values of 0.35 g (very high), 0.30 g (high), 0.25 g (moderate), 0.20 g (low). Due to the low differences in the reference design PGA, only two seismic levels were considered in this study. Level 1 is equivalent to low and moderate seismic zones, and
level 2 is equal to high and very high seismic zones of STD-2800. Combining the seismic
levels of the STD-2800 and the year of construction, common buildings in Iran are divided
into four code levels: Pre-Code, Low-Code (LC), Moderate-Code (MC), and High-Code
(HC). The classification of Iranian buildings based on the code level is presented in Fig. 1.
It should be noted that the code levels for the RC, Steel, and confined masonry buildings
are defined and named as 1. For Pre-Code and Low-Code levels have merged since their
differences are not recognizable and are named LC; 2. For Moderate-Code named as MC,
and 3. For High-Code named as HC. For unreinforced masonry, wood, and adobe build-
ings, these classifications based on code-level do not really exist, so only one level has been
considered for them.

3.4 Buildings classification based on height

Iranian building taxonomy, as shown in Table 3, has been defined based on the experts’
opinion of the IIEES Structural research center and the statistical survey on existing build-
ings in urban and rural regions of Iran. The height has been divided into three catego-
ries considering the different heights of buildings: Low-Rise (LR/1 to 3 storeys buildings),

No. of edition	History of STD-2800, and national building codes	Iranian buildings classification based on the year of construction in this study		
	National building codes			
	Part 10	Part 9	Part 8	
1st edition	1986	1986	2005	1987 Prior to 1990
2nd edition	2005	2006	2013	1999 1990–2006
3rd edition	2008	2009	–	2007 2006–2016
4th edition	2013	2013	–	2014 After 2016

Fig. 1 Iranian buildings classification based on code-level
Table 3 Iranian buildings taxonomy and their descriptions and selected MBT in this study

No.	Taxonomy	Description	N_{storey}	Range	MBT
1	S1_MRF_LR	Steel moment frames, low-rise	1–3	2	
2	S1_MRF_MR	Steel moment frames, mid-rise	4–7	5	
3	S1_MRF_HR	Steel moment frames, high-rise	+8	8	
4	S2_INFF_LR	Steel infilled frames, low-rise	1–3	2	
5	S2_INFF_MR	Steel infilled frames, mid-rise	4–7	5	
6	S2_INFF_HR	Steel infilled frames, high-rise	+8	8	
7	S3_MRF&CSW_MR	Steel frames with concrete shear walls, mid-rise	4–7	5	
8	S3_MRF&CSW_HR	Steel frames with concrete shear walls, high-rise	+8	8	
9	S4_SBR_LR	Steel braced frame, low-rise	1–3	2	
10	S4_SBR_MR	Steel braced frame, mid-rise	4–7	5	
11	S4_SBR_HR	Steel braced frame, high-rise	+8	8	
12	S5_DUAL_LR	Steel frames with dual system, low-rise	1–3	2	
13	S5_DUAL_MR	Steel frames with dual system, mid-rise	4–7	5	
14	S5_DUAL_HR	Steel frames with dual system, high-rise	+8	8	
15	S6_SBR&KHC_LR	Steel braced frames with Khorjini connections, low-rise	1–3	2	
16	S6_SBR&KHC_MR	Steel braced frames with Khorjini connections, mid-rise	4–7	5	
17	C1_MRF_LR	Reinforced concrete moment frames, Low-Rise	1–3	2	
18	C1_MRF_MR	Reinforced concrete moment frames, Mid-Rise	4–7	5	
19	C1_MRF_HR	Reinforced concrete moment frames, high-rise	+8	8	
20	C2_INFF_LR	Reinforced concrete infilled frame, low-rise	1–3	2	
21	C2_INFF_MR	Reinforced concrete infilled frame, mid-rise	4–7	5	
22	C2_INFF_HR	Reinforced concrete infilled frame, high-rise	+8	8	
23	C3_CSW_MR	Reinforced concrete frames with the concrete shear wall, mid-rise	4–7	5	
24	C3_CSW_HR	Reinforced concrete frames with the concrete shear wall, high-rise	+8	8	
25	C4_TUF_LR	Reinforced concrete tunnel-form, low-rise	1–3	2	
26	C4_TUF_MR	Reinforced concrete tunnel-form, mid-rise	4–7	5	
27	C4_TUF_HR	Reinforced concrete tunnel-form, high-rise	+8	8	
28	CM_LR	Confined masonry buildings, low-rise	1–3	2	
29	UM_LR	Unreinforced masonry buildings, low-rise	1–3	2	
30	WD_LR	Wooden buildings, low-rise	1–3	2	
31	ADOBE_LR	Adobe buildings, low-rise	1–3	2	
Mid-Rise (MR/4 to 7 storeys buildings), and High-Rise (H.R./over 8 storeys buildings). Iranian buildings’ taxonomy and their related descriptions are described in Table 3.

4 Fragility analyses

Many studies using different methods have been conducted to develop fragility functions. The Global Earthquake Model (GEM) conducted a guideline, which has presented the most advanced methods for the derivation of robust fragility functions for the building typologies (D’Ayala et al. 2015). Similar researches were also conducted to describe existing methods for developing fragility curves and discuss the existing challenges in each of these methods (Calvi et al. 2006b; Silva et al. 2019). Utilizing these methodologies depends on the availability, quality, and level of precision of input data. In this study, the development of the fragility functions follows the analytical procedure proposed by Martins and Silva (2020). In this procedure, inputs are defined in terms of a set of ground motion records and equivalents SDOF systems that are illustrative of the buildings within each specific class. Structural responses have been obtained using Non-Linear Time-History Analysis (NLTHA) of equivalent SDOF systems with the consideration of record-to-record uncertainty and building-to-building variability. Then the fragility functions have been developed using the cloud analysis approach proposed by (Jalayer et al. 2015), considering the uncertainty in the definition of the damage criterion. All of the calculations related to the non-linear response of the SDOF oscillators and the derivation of fragility functions were performed using the VMTK (Martins et al. 2021), open-source software for deriving fragility and vulnerability functions. One of the advantages of this procedure is utilizing the simplified SDOF models, which their response is not computationally heavy and time-consuming. All of the required inputs and steps for the development of the fragility functions are defined separately and entirely in the following sub-sections. Also, each of the above-mentioned steps is explained in the flow diagram presented in Fig. 2.

4.1 Definition of structural and dynamic parameters for Iranian buildings

In this section, to define the proper structural parameters required for the capacity curves of each building class, a review has been accomplished on the previous research conducted by Calvi (1999), Borzi et al. (2008a, b), Ahmad et al. (2010), Villar-Vega et al. (2017), and Martins and Silva (2020). The selected parameters are shown in Table 4. In this study, initially, the backbone curves from the existing studies in Iran were collected to define the structural and dynamic parameters for Iranian buildings classes. For some of the building types where not sufficient data were available in Iran, the parameters were chosen based on the existing studies which have similar buildings to Iran. Finally, approximately 100 backbone curves were collected. A weight factor was assigned for each curve considering the expert’s opinion about the level of appropriateness and accuracy of different researches collected in this survey. Then, the existing parameters in each category were combined, based on their weights obtained from engineering judgment, to determine the final parameters for each class of building. The considered structural and dynamic parameters for Iranian building classes and the list of related references, which have been utilized to define these parameters, are demonstrated in Table 4.
4.2 Nonlinear equivalent SDOF systems for the buildings taxonomy

One generic capacity curve per building class in Acceleration Displacement Response Spectrum (ADRS) format (spectral acceleration versus spectral displacement) is defined.
Building class	Description	T_y [s]	N_{storey}	Inter-storey height [m]	Yield drift [%]	Ult. drift [%]	Γ	References
S1_MRF_LC	Steel moment frames, low-code	$0.091 \times H^{0.8}$	1–10	3.0–3.2	0.55	2.7	1.35	Tavakoli and Rashidi Alashti (2013), Amiri et al. (2012), Mohsenian et al. (2020a), Haj Najafi and Tehranizadeh (2013), Martins and Silva (2020), Beiranvand (2017), Mobarrez Chini Belagh (2016), Entezari Zarch (2017), Poursha et al. (2011), Mehdizadeh and Karamodin (2017), Namjouyan (2013), Tehranizadeh and Yakhchalian (2011), Rahmani et al. (2018)
S1_MRF_MC	Steel moment frames, mid-code	$0.091 \times H^{0.8}$	1–10	3.0–3.2	0.65	3.7	1.35	S1_MRF_HC
S1_MRF_HC	Steel moment frames, high-code	$0.091 \times H^{0.8}$	1–10	3.0–3.2	0.75	4.7	1.35	
S2_INFF_LC	Steel infilled frames, low-code	$0.06 \times H^{0.75}$	1–10	3.0–3.2	0.38	1.5	1.35	Nassirpour and D’Ayala (2014), Kazemi et al. (2017), Martins and Silva (2020), STD-2800 version 4 (ICSRDB 2014), Lookzadeh (2020)
S2_INFF_MC	Steel infilled frames, mid-code	$0.06 \times H^{0.75}$	1–10	3.0–3.2	0.43	1.8	1.35	S2_INFF_HC
S2_INFF_HC	Steel infilled frames, high-code	$0.06 \times H^{0.75}$	1–10	3.0–3.2	0.50	2	1.35	
S3_MRF&CSW_LC	Steel frames with concrete shear walls, low-code	$0.053 \times H^{0.75}$	4–10	3.0–3.2	0.25	1.1	1.35	Esmaeili et al. (2013), Martins and Silva (2020), Kazemi et al. (2013), Rahmani Qeranqayah (2014), Raji (2012)
S3_MRF&CSW_MC	Steel frames with concrete shear walls, mid-code	$0.053 \times H^{0.75}$	4–10	3.0–3.2	0.4	1.3	1.35	S3_MRF&CSW_HC
S3_MRF&CSW_HC	Steel frames with concrete shear walls, high-code	$0.053 \times H^{0.75}$	4–10	3.0–3.2	0.55	1.5	1.35	
Building class	Description	\(T_y \) [s]	\(N_{\text{storey}} \)	Inter-storey height [m]	Yield drift [%]	Ult. drift [%]	\(I' \)	References
----------------	-------------	----------------	----------------	----------------------	----------------	--------------	--------	-----------
S4L_SBR_LC	Steel braced frame, low-code	\(0.072 \times H^{0.8} \)	1–10	3.0–3.2	0.75	2	1.35	Nassipour and D'Ayala (2014), Dorri et al. (2019), Heidari et al. (2010), Haj Najafi and Tehranizadeh (2013), Martins and Silva (2020), Mahmoudi and Zaree (2011), Mahmoudi and Zaree (2012) Mahmoudi and Zaree (2013), Jahangir and Karamodin (2015), Pourmoghadam (2017), Etezadi Ghozhdi (2012), Dolatshahi et al. (2018)
S4L_SBR_MC	Steel braced frame, mid-code	\(0.072 \times H^{0.8} \)	1–10	3.0–3.2	0.79	2.6	1.35	
S4L_SBR_HC	Steel braced frame, high-code	\(0.072 \times H^{0.8} \)	1–10	3.0–3.2	0.83	3.2	1.35	
S5_DUAL_LC	Steel frames with dual system, low-code	\(0.07 \times H^{0.8} \)	1–10	3.0–3.2	0.88	1.8	1.35	Nassipour and D'Ayala (2014), Gerami et al. (2013), Maddah and Eshghi (2018), Kalani Sarokolayi et al. (2015), STD-2800 version 4 (ICSRDB 2014), STD-2800 version 2 (ICSRDB 1999), Hosseini Hashemi and Hassanzadeh (2008), Hosseini Hashemi and Ghafoory-Ashtiany (2002)
S5_DUAL_MC	Steel frames with dual system, mid-code	\(0.07 \times H^{0.8} \)	1–10	3.0–3.2	0.93	2.2	1.35	
S5_DUAL_HC	Steel frames with dual system, high-code	\(0.07 \times H^{0.8} \)	1–10	3.0–3.2	0.98	2.6	1.35	
S6_SBR&KHC_LC	Steel braced frames with Khorjini connections, low-code	\(0.06 \times H^{0.75} \)	1–7	3.0–3.2	0.2	0.7	1.4	Kiani et al. (2016), STD-2800 version 4 (ICSRDB 2014), STD-2800 version 2 (ICSRDB 1999), Hosseini Hashemi and Hassanzadeh (2008), Hosseini Hashemi and Ghafoory-Ashtiany (2002)
S6_SBR&KHC_MC	Steel braced frames with Khorjini connections, mid-code	\(0.06 \times H^{0.75} \)	1–7	3.0–3.2	0.25	0.85	1.4	
Building class	Description	T_y [s]	N_{storey}	Inter-storey height [m]	Yield drift [%]	Ult. drift [%]	Γ	References
---------------	-------------	----------	--------------	-------------------------	----------------	--------------	--------	------------
C1_MRF_LC	RC moment frames, low-code	$0.1 \times H$	1–10	3.0–3.2	0.72	1.5	1.4	Mahdi and Soltangharaei, (2011), Mahdi (2009), Khoshnoud (2010), Khoshnoudian et al. (2011), Khoshnoud and Marsono (2011), Martins and Silva (2020), Villar-Vega et al. (2017), Gholizad and Safari (2014), Kalantari et al. (2020), Hosseini et al. (2019), Mortezaei and Ronagh (2013)
C1_MRF_MC	RC moment frames, mid-code	$0.1 \times H$	1–10	3.0–3.2	0.76	2.5	1.4	
C1_MRF_HC	RC moment frames, high-code	$0.1 \times H$	1–10	3.0–3.2	0.78	3.5	1.4	
C2_INFF_LC	Reinforced concrete infilled frame, low-code	$0.060 \times H$	1–10	3.0–3.2	0.25	1.3	1.4	Martins and Silva (2020), Villar-Vega et al. (2017), STD-2800 version 4 (ICSRDB 2014), Khoshnoud and Marsono (2011), Erberik (2008b), Crowley and Pinho (2004), Crowley and Pinho (2009), Borzi et al. (2008b)
C2_INFF_MC	Reinforced concrete infilled frame, mid-code	$0.054 \times H$	1–10	3.0–3.2	0.35	1.6	1.4	
C2_INFF_HC	Reinforced concrete infilled frame, high-code	$0.048 \times H$	1–10	3.0–3.2	0.45	1.9	1.4	
C3L_CSW_LC	RC frames with shear wall, low-code	$2 \times (0.049 \times N)$	4–10	3.0–3.2	0.24	1.0	1.4	Martins and Silva (2020), Villar-Vega et al. (2017), Hassan and Jafari (2012), Motamed et al. (2019), Aliabadi (2016), Tavakoli (2016)
C3L_CSW_MC	RC frames with shear wall, mid-code	$2 \times (0.048 \times N)$	4–10	3.0–3.2	0.27	1.2	1.4	
C3L_CSW_HC	RC frames with shear wall, high-code	$2 \times (0.047 \times N)$	4–10	3.0–3.2	0.3	1.4	1.4	
C4_TUF_LC	RC tunnel-form, low-code	$0.07 \times H^{0.75}$	1–10	3.0–3.2	0.4	0.9	1.4	Ashkoo (2015), Shokrollahi Yancheshmeh (2014), Mohsenian et al. (2021), Mohsenian et al. (2020b) STD-2800 version 4 (ICSRDB 2014)
C4_TUF_MC	RC tunnel-form, mid-code	$0.07 \times H^{0.75}$	1–10	3.0–3.2	0.45	1.1	1.4	
C4_TUF_HC	RC tunnel-form, high-code	$0.07 \times H^{0.75}$	1–10	3.0–3.2	0.5	1.3	1.4	
Building class	Description	T_y [s]	N_{storey}	Inter-storey height [m]	Yield drift [%]	Ult. drift [%]	Γ	References
----------------	-------------	-----------	--------------	------------------------	----------------	---------------	--------	------------
CM_LC	Confined masonry buildings, low-code	$0.060 \times H^{0.9}$	1–3	2.8–3.0	0.18	0.6	1.5	Martins and Silva (2020), Lotfy et al. (2019), Hamzeh et al. (2018), Riahi et al. (2009), Ahmad et al. (2010), Sartaji et al. (2017)
CM_MC	Confined masonry buildings, mid-code	$0.058 \times H^{0.9}$	1–3	2.8–3.0	0.20	0.66	1.5	
CM_HC	Confined masonry buildings, high-code	$0.056 \times H^{0.9}$	1–3	2.8–3.0	0.22	0.72	1.5	
UM	Unreinforced masonry buildings	$0.062 \times H^{0.9}$	1–3	2.8	0.10	0.40	1.4	Villar-Vega et al. (2017), Calvi (1999), Erberik (2008a), Bal et al. (2008), Borzi et al. (2008a), Shabani et al. (2021), Ranjbaran et al. (2012)
WD	Wooden buildings	$0.75 \times (0.066 \times H^{0.9} + 0.25 \times (0.123 \times H^{0.5}))$	1–3	2.5	0.16	1.19	1.4	Villar-Vega et al. (2017), Martins and Silva (2020), Camelo et al. (2002), Goda (2015)
Adobe	Adobe buildings	$0.066 \times H^{0.9}$	1–3	2.6	0.08	0.35	1.4	Martins and Silva (2020), Tarque et al. (2012), Preciado et al. (2020)

N_{storey} correspond to the number of storeys, H_{storey} corresponding to the typical building storey height, T_1 is the oscillator period, T_y corresponding to the period of vibration at the yielding point, Γ represents the first mode of vibration participation factor adopted.

θ_y [or Yield drift (%)] represents the global drift at the yielding point of the Multi-Degree-of-Freedom (MDOF) structure.

θ_u [or Ult. drift (%)] represents the global drift at the ultimate point of the MDOF structure.
based on the parameters determined in the previous section. The elastic-perfectly plastic behavior of each SDOF oscillator is computed based on the related backbone curve in ADRS format using the following equations:

$$S_d = \frac{N_{\text{Storey}} \times H_{\text{storey}} \times \theta_{\text{global}}}{\Gamma}, \quad S_{\text{ay}} = S_{\text{dy}} \times \left(\frac{2 \times \pi}{T_y}\right)^2, \quad S_{\text{au}} = S_{\text{ay}}$$ \hspace{1cm} (1)

where, S_d = spectral displacement at the yielding or ultimate points, depending on the global drift θ_{global}, N_{Storey} = the number of storeys, H_{storey} = the inter-storey height, Γ = first mode of vibration participation factor; T_y stands for the period of vibration at the yielding point; and S_{ay} and S_{au} represents the spectral acceleration at the yielding and ultimate points, respectively. In order to characterize the seismic response and the performance of each building type, a generic equivalent SDOF system with a backbone curve and a hysteresis behavior are defined. For this purpose, recommendations by Dolšek and Fajfar (2008), Riahi et al. (2009), Bal et al. (2010), Silva et al. (2014b), Villar-Vega et al. (2017), Martins and Silva (2020), and also the experts’ opinions have been used. The “Bilinear idealization shape” was supported to express the backbone curve for the steel and timber structures, which define based on three pairs of points, as illustrated in Fig. 3a. As depicted in Fig. 3a, the first point of the backbone curve was equal to zero. The last two points of the backbone curve were calculated according to the yield displacement (S_{dy}), the ultimate displacement (S_{du}), and the corresponding spectral accelerations ($S_{\text{ay}}, S_{\text{au}}$).

The backbone curves with three branches can also be found in the literature, depending on the characteristics of the building type. The “Tri-linear idealization shape” was supported to express the backbone curve for the RC, confined and unreinforced masonry, and adobe structures. Tri-linear backbone curves are defined based on four pairs of points as described in Fig. 3b. In these curves, the initial branch has been defined with two different slopes. The first is proportional to the elastic period (T_1), and the second is proportional to the yielding period (T_y). In this case, the value of T_y is considered equal to 1.5 times the value of T_1 (Calvi et al. 2006a; Crowley and Pinho 2006; Martins and Silva 2020). The displacements for these building classes were defined based on the yield and ultimate displacements ($S_{\text{dy}}, S_{\text{du}}$).

Martins and Silva (2020) recommended the “Quadrilinear idealization shape” to represent the backbone curve for the infilled reinforced concrete structures that are anticipated a notable decrease in the strength and stiffness due to the structural damage of the masonry walls, as shown in Fig. 3c. These curves are defined through the yield (S_{dy}) and ultimate (S_{du}) displacements and the elastic (T_1) and yield (T_y) periods. The displacements for the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3a.png}
\caption{(a) Generic two-lines backbone curve, (b) Generic Tri-lines backbone curve, (c) backbone curves of bare frame vs infilled frames}
\end{figure}
first two points were defined similarly to the tri-linear backbone curve. The corresponding spectral acceleration for the first two points was considered equal to 50 percent of the spectral acceleration at the yielding point ($0.5 S_{ay}$) and the spectral acceleration at the yielding point (S_{ay}), respectively. The third point corresponds to the yielding point of the RC frame alone, without any contribution to the infills (i.e., bare frame). In the end, the last point is defined based on the ultimate displacement of the system.

4.3 Selection of ground motion records

Generally, the GM selection methods that are utilized for seismic vulnerability assessment of structures can be divided into two main categories. In the first method, a more general approach is used to select generic sets of ground motions in order to investigate the structure’s responses. These sets of ground motions are popular because they allow users to obtain ground motions with a minimum amount of effort. These sets of ground motion records are appropriate for vulnerability assessment because they simplify the assessment procedure. In the second method, the ground motion records select to represent the seismic hazard in the specific site. These sets of ground motions are viewed as the best estimate of what future ground motions are at the particular site of interest (Baker et al. 2011; Ghafory-Ashtiany et al. 2011, 2014; Jayaram et al. 2011; Baker 2011; Mousavi et al. 2011; Azarbakht et al. 2012; Silva et al. 2019; Mohandesi et al. 2019).

This study aims to develop a national database of fragility functions to be used in large-scale risk assessments all over the country. So, the records have been selected utilizing the first aforementioned method considering the tectonic environment and seismicity of Iran. So, an extensive database of ground motions has been specially selected from the IIEES SGMR Toolbox (Ghafory-Ashtiany et al. 2021) to be used to perform NLTHAs on the idealized SDOF systems. Using this extensive database of ground motion records helps to consider the record-to-record variability, which is one of the significant sources of uncertainty in fragility assessment. IIEES SGMR toolbox includes records from 1975 to 2017, as shown in Fig. 4a. Most of the earthquakes and recorded data belong to the years 2005, 2006, 2012, 2013, and 2017. This main dataset is composed of 3521 time-series out of 1025 earthquakes recorded at 594 different stations,
with moment magnitudes varying from 2.0 to 7.7 and Joyner-Boore distances within 220 km. Figure 4b demonstrates the location of considered stations and the location of the selected earthquakes in Iran. Most of the data (about 89%) are relative to distances shorter than 60 km, and most of the stations are V_s30 larger than 375 m/s (using the V_s30 measured or estimated by the empirical method).

Finally, in this study, PGA and spectral acceleration (SA) at three periods of vibration (0.3 s, 0.6 s, and 1.0 s) were selected as the Intensity Measure (IM) for the fragility assessment. These Intensity Measure Types (IMT) were utilized during the record selection procedure in order to have four sets of records close to the dynamic properties of the building types, which increase the accuracy and efficiency in response prediction. Ten levels of ground shaking were defined for each intensity measure type between 0.1 g and 2.0 g. Then, for each Intensity Measure Level (IML), 30 records were randomly selected at each level of ground shaking from the initial catalog. In case 30 records have not existed for a particular IML (which generally occurs in high IML), the records were scaled up to a maximum of 2.0 times (Watson-Lamprey and Abrahamson 2006) to lead to the minimum number of ground motion records. Figure 5 illustrates the response spectra of a set of 300 ground motion records corresponding to each of four selected IM types.

Fig. 5 Response spectra of the selected ground motion records considering: a PGA, b Sa (0.3 s), c Sa (0.6), and d Sa (1)
4.4 Definition of the damage criterion

There are several classifications of damage criteria to describe building damage from different perspectives (e.g., ATC-13 1985; HAZUS 1999). In this study, four damage criteria are considered, corresponding to slight, moderate, extensive, and complete damage levels following the recommendations of previous studies (Lagomarsino and Giovinazzi 2006; Silva et al. 2014a; Villar-Vega et al. 2017; Martins and Silva 2020). These Limit states are defined based on the yielding and ultimate displacement of each system. Herein, the limit states corresponding to specified damage criteria for this study have been described in the following list:

(i) Slight Damage (LS1) corresponds to 75 percentile of spectral displacement at the yielding point;
(ii) Moderate Damage (LS2), defined at spectral values of $0.5 \times S_{dy} + 0.33 \times S_{du}$;
(iii) Extensive Damage (LS3), defined at spectral values of $0.25 \times S_{dy} + 0.67 \times S_{du}$;
(iv) Complete damage (LS4), equal to spectral displacement at the ultimate point;

The Engineering Demand Parameter (EDP) for each damage criteria was fitted with a lognormal distribution for this study. The statistical parameters assigned to this lognormal distribution were a mean equal to the threshold presented above and a coefficient of variation of 45% (Dymiotis et al. 1999, Borzi et al. 2008a, b; Martins and Silva 2020).

4.5 Fragility functions assessment methodology

As briefly described earlier, all calculations relevant to the development of fragility functions (e.g., derivation of the backbone curves, structural response) are performed by the VMTK software (Martins et al. 2021). The VMTK is an open-source software developed with the Python programming language and integrated with the open-source finite element model software OpenSEES (McKenna et al. 2000) in order to compute the non-linear response of the SDOF oscillators. The VMTK’s source code is freely available through a public GitHub repository (https://github.com/GEMScienceTools/VMTK-Vulnerability-Modellers-ToolKit). This software consists of six modules that users can perform all the steps of developing fragility and vulnerability curves from the record selection to the validation and verification of the results utilizing the VMTK. These modules are:

(i) Selection of appropriate ground motion records in order to take into consideration the record-to-record uncertainty,
(ii) Definition of structural capacity that is defined by bilinear, trilinear or quadrilinear backbone curves,
(iii) Structural response module,
(iv) Fragility function module,
(v) Derivation of vulnerability functions,
(vi) Validation of the results,

This section gives an overview of modules (iii) and (iv). Module (iii) estimates structural response by utilizing Nonlinear Dynamic Analyses (NDA) on SDOF oscillators using OpenSEES software. The hysteresis model of each SDOF was defined according to the relevant
backbone curve and using the uniaxial material Pinching4 considering structural degradation in three stages: (1) unloading stiffness degradation, (2) reloading stiffness degradation, and (3) strength degradation. The default degradation implementation, which was adapted from simpleSDOF4.tcl by Vamvatsikos (2011), utilizes the energy option of Pinching4 (The reader is encouraged to study Martins et al. (2021) for more information about this process). In the present study, a damping ratio equal to 7.5% is considered for masonry and adobe buildings, 5% for RC building classes, and 2% for steel and wooden constructions. Each SDOF system (one per building class) was tested against a set of ground motion records, leading to 300 dynamic analyses. After performing the structural analyses, the maximum spectral displacement or the maximum spectral acceleration was computed for each SDOF as the EDPs.

In module (iv), the development of the fragility functions is performed based on the cloud analysis presented by Jalayer et al. (2015). Cloud analysis is based on simple regression between the structural response and the seismic intensity measure for a suit set of ground motion records in the logarithmic space. With a proper record selection, the cloud method manages to consider both record-to-record variability and building-to-building variability, which are two main sources of uncertainty related to the fragility analysis. Figure 6a shows a distribution of EDPs versus Intensity Measure (IM) levels for a 5-storey steel moment frame building. So, the expected value of the EDP for an intensity measure \(E[\ln (EDP_i)] \) is modeled by a linear regression equation with parameters a and b, while the standard error of the regression estimates the standard deviation or dispersion due to the record-to-record variability (\(\sigma_{rec-to-rec} \)); Eq. (2). In this equation, \(E[\ln (EDP_i)] \) stands for the expected value of the EDP given an IM, \(\sigma_{rec-to-rec} \) is the record-to-record variability, b and a are the regression parameters, n is the number of records, and EDP\(_i\) corresponds to the i-EDP value obtained from the non-linear analysis for the corresponding IM\(_i\).

\[
E[\ln EDP] = \ln a + b \ln IM
\]

\[
\sigma_{rec-to-rec} = \sqrt{\frac{\sum_{i=1}^{n} (\ln EDP_i - E[\ln EDP])^2}{n - 2}}
\]

Fig. 6 a Scatter of ln (EDP) and ln (IM) with Curve Fitting using Linear Regression, b Scatter of ln (EDP) and ln (IM), with the associated best-fit uncensored and censored regressions
From the two regression models (linear and censored) analysis, censored regression, where the structural responses are unexpectedly high, has been used to prevent significant bias in the fragility functions. The parameters of the best-fit curve (a and b) in the linear regression analysis (considering all observations) compute utilizing the Maximum Likelihood Method (MLE) (Lallemant et al. 2015; Stafford 2008), by the Eq. (3). In the following equation, ϕ stands for the probability density function of the standard Gaussian distribution.

$$L = \prod_{i=1}^{n} \left[\phi \left(\frac{EDP_i - a - bIM_i}{\sigma} \right) \right]$$

A factor equal to 1.5 has been determined for censored regression analysis (Schnedler 2005), representing the ratio between maximum allowable EDP and the last limit state (e.g., Complete). Considering this certain threshold ($EDP_c = 1.5 \times EDP$), the observed data (i.e., EDP_i) is divided into two categories: the uncensored (n_u) and the censored (n_c) observations. A step-by-step description of this process (with or without the censored regression) can be found in (Martins and Silva, 2020). Figure 6b depicted these data points using circles and squares, respectively, for a 5-storey steel moment frame structure. For the censored regression analysis (e.g., Stafford 2008), the following equation has been utilized, where Φ stands for the cumulative function of the standard Gaussian distribution:

$$\ln(L) = \sum_{j=1}^{n_c} \left(1 - \Phi \left(\frac{EDP_c - a - bIM_j}{\sigma} \right) \right) + \sum_{j=1}^{n_0} \left[\ln \Phi \left(\frac{EDP_j - a - bIM_j}{\sigma} \right) \right]$$

As mentioned earlier, the two types of uncertainty which exist in fragility analysis are as follows:

- $\sigma_{rec-to-rec}$, which corresponds to record-to-record variability, has been considered by employing a large set of ground motion records.

- $\sigma_{building-to-building}$ corresponds to building-to-building variability, which can be considered in two different methods according to Martins and Silva (2020). The first method is to consider a large number of numerical models (backbone curves) per building class (Erberik 2008a, b; Villar-Vega et al. 2017). The second method is to increase the standard deviation directly, which decreases the volume and time of needed computations. In this study, a value of 0.3 has been considered as the building-to-building variability. So, assuming $\sigma_{rec-to-rec}$ and $\sigma_{building-to-building}$, the total uncertainty (σ_{total}) is computed according to Eq. (5).

$$\sigma_{total} = \sqrt{\left(\sigma_{rec-to-rec}\right)^2 + \left(\sigma_{building-to-building}\right)^2}$$

So the fragility function developed based on the Cloud analysis can be expressed as Eq. (6):

$$P[LS \geq lsi | IM] = \phi \left(\frac{\ln EDP_{lsi} - E[\ln EDP][\ln IM]}{\sigma_{total}} \right)$$

In the aforementioned equation, ($P[LS \geq lsi | IM]$) is the probability of exceeding a certain limit state for a given intensity measure, and EDP_{lsi} is the engineering demand parameter (i.e., maximum displacement) for limit state lsi. As previously mentioned, the engineering demand parameters corresponding to each damage criteria were fitted to a lognormal distribution in order to consider another source of uncertainty corresponding.
to the definition of damage criteria. So, with regard to this source of uncertainty, the fragility functions were defined by the following equation:

$$P[LS \geq l_{Si}|IM] = \sum_{j=1}^{n} \phi \left(\frac{lnEDP_{lsi,j} - E[lnEDP|lnIM]}{\sigma_{total}} \right) \cdot P[EDP_{lsi,j}]$$ \hspace{1cm} (7)

In the above equation, $P[EDP_{lsi,j}]$ stands for the probability of occurrence of $EDP_{lsi,j}$, and $EDP_{lsi,j}$ is an increment of the possible range of EDPs for damage state lsi. The steps followed for the fragility assessment using cloud analysis are illustrated in Fig. 7, while the probability of exceedance for three Intensity Measure Levels (IMLs) given a considered Limit State (LS_i) is illustrated in the left panel of Fig. 7. The hatched area under the probability density functions illustrated in the left panel presented the probability of exceeding LS_i for three IMLs. The resulting probability of LS_i for three IMLs is plotted as data points on the right panel.

For the purpose of this study, four types of intensity measures have been considered in fragility analysis. These intensity measures were selected based on the yield period of each building type. The fragility functions have been produced for 1–10 storeys for each building type. More than 300 fragility functions have been developed for 14 common buildings in Iran. In order to present the results briefly in the paper, a Model Building Type (MBT) has been considered for each building class. Table 5 describes the considered IDs for each MBTs and a detailed description of them. Table 5 presents an example of defining Labels for each building class; these labels are used to display fragility function results for each building type in Sect. 5. Likewise, the label related to other building classes is defined similarly to Table 5. The developed fragility functions for other building classes are available by request from the corresponding author.

![Fig. 7 A schematic of the fragility assessment based on the cloud analysis approach: a probability of exceedance for three IMLs given a limit State; b fragility function for a given limit State](image-url)
Table 5 Selected MBT in this study and their descriptions

Model building type	Description
S1_MRF_LC/H:2,5,8	Steel moment frames, low-code/height: 2, 5, and 8 storeys
S1_MRF_MC/H:2,5,8	Steel moment frames, mid-code/height: 2, 5, and 8 storeys
S1_MRF_HC/H:2,5,8	Steel moment frames, high-code/height: 2, 5, and 8 storeys
S2_INFF_LC/H:2,5,8	Steel infilled frames, low-code/height: 2, 5, and 8 storeys
S2_INFF_MC/H:2,5,8	Steel infilled frames, mid-code/height: 2, 5, and 8 storeys
S2_INFF_HC/H:2,5,8	Steel infilled frames, high-code/height: 2, 5, and 8 storeys
S3_MRF&CSW_LC/H:5,8	Steel frames with concrete shear walls, low-code/height: 5 and 8 storeys
S3_MRF&CSW_MC/H:5,8	Steel frames with concrete shear walls, mid-code/height: 5 and 8 storeys
S3_MRF&CSW_HC/H:5,8	Steel frames with concrete shear walls, high-code/height: 5 and 8 storeys
S4_SBR_LC/H:2,5,8	Steel braced frame, low-code/height: 2, 5, and 8 storeys
S4_SBR_MC/H:2,5,8	Steel braced frame, mid-code/height: 2, 5, and 8 storeys
S4_SBR_HC/H:2,5,8	Steel braced frame, high-code/height: 2, 5, and 8 storeys
S5_DUAL_LC/H:2,5,8	Steel frames with dual system, low-code/height: 2, 5, and 8 storeys
S5_DUAL_MC/H:2,5,8	Steel frames with dual system, mid-code/height: 2, 5, and 8 storeys
S5_DUAL_HC/H:2,5,8	Steel frames with dual system, high-code/height: 2, 5, and 8 storeys
S6_SBR_MC/H:2,5	Steel braced frames with Khorjini connections mid-code/height: 2 and 5 storeys
C1_MRF_LC/H:2,5,8	Reinforced concrete moment frames, low-code/height: 2, 5, and 8 storeys
C1_MRF_MC/H:2,5,8	Reinforced concrete moment frames, mid-code/height: 2, 5, and 8 storeys
C1_MRF_HC/H:2,5,8	Reinforced concrete moment frames, high-code/height: 2, 5, and 8 storeys
C2_INFF_LC/H:2,5,8	Reinforced concrete infilled frame, low-code/height: 2, 5, and 8 storeys
C2_INFF_MC/H:2,5,8	Reinforced concrete infilled frame, mid-code/height: 2, 5, and 8 storeys
C2_INFF_HC/H:2,5,8	Reinforced concrete infilled frame, high-code/height: 2, 5, and 8 storeys
C3_CSW_LC/H:5,8	Reinforced concrete frames with the concrete shear wall, low-code/height: 5, 8 storeys
C3_CSW_MC/H:5,8	Reinforced concrete frames with the concrete shear wall, mid-code/height: 5, 8 storeys
C3_CSW_HC/H:5,8	Reinforced concrete frames with the concrete shear wall, high-code/height: 5, 8 storeys
C4_TUF_LC/H:2,5,8	Reinforced concrete tunnel-form, low-code/height: 2, 5, and 8 storeys
C4_TUF_MC/H:2,5,8	Reinforced concrete tunnel-form, mid-code/height: 2, 5, and 8 storeys
C4_TUF_HC/H:2,5,8	Reinforced concrete tunnel-form, high-code/height: 2, 5, and 8 storeys
CM_LC/H:2	Confined masonry buildings, low-code/height: 2 storeys
CM_MC/H:2	Confined masonry buildings, mid-code/height: 2 storeys
CM_HC/H:2	Confined masonry buildings, high-code/height: 2 storeys
UM/H:2	Unreinforced masonry buildings/Height: 2 storeys
WD/H:2	Wooden buildings/height: 2 storeys
ADOBE/H:2	Adobe buildings/height: 2 storeys

5 Results

5.1 Results of the capacity curves
Table 6 Generic two-linear capacity curves for steel and wooden Model Building Types (MBT)

Building class	IMT	S_{dy}	S_{du}	S_{ay}	S_{au}
S1_MRF_LC/H:2	Sa (0.6 s)	0.0261	0.128	0.6377	0.6377
S1_MRF_LC/H:5	Sa (0.6 s)	0.0652	0.32	0.368	0.368
S1_MRF_LC/H:8	Sa (1.0 s)	0.1043	0.512	0.2776	0.2776
S1_MRF_MC/H:2	Sa (0.6 s)	0.0308	0.1754	0.7536	0.7536
S1_MRF_MC/H:5	Sa (0.6 s)	0.077	0.4385	0.4349	0.4349
S1_MRF_MC/H:8	Sa (1.0 s)	0.1233	0.7016	0.328	0.328
S1_MRF_HC/H:2	Sa (0.6 s)	0.0356	0.2228	0.8696	0.8696
S1_MRF_HC/H:5	Sa (0.6 s)	0.0889	0.557	0.5018	0.5018
S1_MRF_HC/H:8	Sa (1.0 s)	0.1422	0.8913	0.3785	0.3785
S3_MRF&CSW_LC/H:5	Sa (0.6 s)	0.0296	0.1304	0.6507	0.6507
S3_MRF&CSW_LC/H:8	Sa (0.6 s)	0.0474	0.2086	0.5144	0.5144
S3_MRF&CSW_MC/H:5	Sa (0.6 s)	0.0474	0.1541	1.0411	1.0411
S3_MRF&CSW_MC/H:8	Sa (0.6 s)	0.0759	0.2465	0.823	0.823
S3_MRF&CSW_HC/H:5	Sa (0.6 s)	0.0652	0.1778	1.4315	1.4315
S3_MRF&CSW_HC/H:8	Sa (0.6 s)	0.1043	0.2844	1.1317	1.1317
S4_SBR_LC/H:2	Sa (0.3 s)	0.0356	0.0948	1.389	1.389
S4_SBR_LC/H:5	Sa (0.6 s)	0.0889	0.237	0.8016	0.8016
S4_SBR_LC/H:8	Sa (1.0 s)	0.1422	0.3793	0.6046	0.6046
S4_SBR_MC/H:2	Sa (0.3 s)	0.0375	0.1233	1.4631	1.4631
S4_SBR_MC/H:5	Sa (0.6 s)	0.0936	0.3081	0.8443	0.8443
S4_SBR_MC/H:8	Sa (1.0 s)	0.1498	0.493	0.6369	0.6369
S4_SBR_HC/H:2	Sa (0.3 s)	0.0393	0.1517	1.5372	1.5372
S4_SBR_HC/H:5	Sa (0.6 s)	0.0984	0.3793	0.8871	0.8871
S4_SBR_HC/H:8	Sa (1.0 s)	0.1574	0.6068	0.6691	0.6691
S5_DUAL_LC/H:2	Sa (0.3 s)	0.0417	0.0853	1.7243	1.7243
S5_DUAL_LC/H:5	Sa (0.6 s)	0.1043	0.2133	0.995	0.995
S5_DUAL_LC/H:8	Sa (1.0 s)	0.1669	0.3413	0.7505	0.7505
S5_DUAL_MC/H:2	Sa (0.3 s)	0.0441	0.1043	1.8222	1.8222
S5_DUAL_MC/H:5	Sa (0.6 s)	0.1102	0.2607	1.0516	1.0516
S5_DUAL_MC/H:8	Sa (1.0 s)	0.1764	0.4172	0.7932	0.7932
S5_DUAL_HC/H:2	Sa (0.3 s)	0.0465	0.1233	1.9202	1.9202
S5_DUAL_HC/H:5	Sa (0.6 s)	0.1161	0.3081	1.1081	1.1081
S5_DUAL_HC/H:8	Sa (1.0 s)	0.1858	0.493	0.8358	0.8358
S6_SBR_LC/H:2	Sa (0.3 s)	0.0091	0.032	0.6193	0.6193
S6_SBR_MC/H:2	Sa (0.3 s)	0.0229	0.08	0.3917	0.3917
S6_SBR_MC/H:5	Sa (0.6 s)	0.0114	0.0389	0.7741	0.7741
S6_SBR_MC/H:8	Sa (0.6 s)	0.0286	0.0971	0.4896	0.4896
WD_H:2	Sa (0.3 s)	0.0057	0.0425	0.2796	0.2796
Table 7 Fragility parameters for steel and wooden MBT

Building class	IM	DS1	DS2	DS3	DS4				
		θ	β	θ	β	θ	β	θ	β
S1_MRF_HC/H:2	Sa (0.6 s)	0.6476	0.4284	0.526	0.4283	1.0502	0.4283	1.3771	0.4283
S1_MRF_MC/H:2	Sa (0.6 s)	0.7884	0.4202	0.2397	0.4202	0.7168	0.4202	1.017	0.4202
S1_MRF_HC/H:2	Sa (0.6 s)	0.9625	0.4181	0.0736	0.4181	0.365	0.4181	0.6451	0.4181
S1_MRF_HC/H:5	Sa (0.6 s)	0.4139	0.5119	0.6604	0.512	1.1401	0.5119	1.4392	0.5119
S1_MRF_MC/H:5	Sa (0.6 s)	0.5534	0.5027	0.4494	0.5027	0.9147	0.5027	1.2074	0.5027
S1_MRF_HC/H:5	Sa (0.6 s)	0.7085	0.5072	0.1793	0.5072	0.6172	0.5072	0.8967	0.5072
S1_MRF_HC/H:8	Sa (1.0 s)	0.7811	0.4596	0.3313	0.4596	0.8279	0.4596	1.1375	0.4596
S1_MRF_MC/H:8	Sa (1.0 s)	0.9093	0.4677	0.127	0.4676	0.608	0.4676	0.9107	0.4677
S1_MRF_HC/H:8	Sa (1.0 s)	1.065	0.4728	0.1484	0.4728	0.3036	0.4728	0.5922	0.4729
S3_MRF&CSW_HC/H:5	Sa (0.6 s)	0.9074	0.4015	0.0834	0.4015	0.3417	0.4016	0.6164	0.4016
S3_MRF&CSW_HC/H:5	Sa (0.6 s)	0.4205	0.4022	0.3038	0.4023	0.7285	0.4022	1.014	0.4023
S3_MRF&CSW_HC/H:5	Sa (0.6 s)	0.0325	0.4115	0.6177	0.4115	1.0288	0.4116	1.3124	0.4115
S3_MRF&CSW_HC/H:5	Sa (0.6 s)	0.804	0.4223	0.0315	0.4224	0.4628	0.4223	0.7415	0.4223
S3_MRF&CSW_HC/H:5	Sa (0.6 s)	0.3598	0.3959	0.3065	0.3958	0.6973	0.3959	0.96	0.3958
S3_MRF&CSW_HC/H:8	Sa (0.6 s)	0.0303	0.3822	0.5622	0.3822	0.9369	0.3822	1.1953	0.3823
S4_SBR_HC/H:2	Sa (0.3 s)	0.2654	0.4433	0.8776	0.4433	1.2687	0.4433	1.5395	0.2654
S4_SBR_HC/H:2	Sa (0.3 s)	0.3278	0.4441	1.0968	0.4441	1.5455	0.4441	1.8466	0.4433
S4_SBR_HC/H:5	Sa (0.3 s)	0.3762	0.4237	1.2422	0.4237	1.7144	0.4237	2.0245	0.4237
S4_SBR_HC/H:5	Sa (0.6 s)	0.2863	0.4305	0.2587	0.4305	0.6067	0.4305	0.8476	0.4305
S4_SBR_HC/H:5	Sa (0.6 s)	0.2287	0.4253	0.4484	0.4253	0.8434	0.4253	1.1084	0.4253
S4_SBR_HC/H:5	Sa (0.6 s)	0.1804	0.4275	0.6092	0.4274	1.0399	0.4274	1.3229	0.4274
S4_SBR_HC/H:5	Sa (1.0 s)	0.6772	0.3807	0.1305	0.3807	0.2185	0.3807	0.4601	0.3807
S4_SBR_HC/H:8	Sa (1.0 s)	0.614	0.3837	0.0705	0.3837	0.4698	0.3836	0.7376	0.3836
S4_SBR_HC/H:8	Sa (1.0 s)	0.5584	0.377	0.2303	0.377	0.6606	0.377	0.9432	0.377
S5_DUAL_HC/H:2	Sa (0.3 s)	0.4872	0.4286	0.9546	0.4286	1.2891	0.4287	1.5316	0.4287
S5_DUAL_HC/H:2	Sa (0.3 s)	0.5288	0.4201	1.0833	0.4201	1.4561	0.4201	1.7194	0.4201
S5_DUAL_HC/H:2	Sa (0.3 s)	0.6044	0.4368	1.2479	0.4369	1.6596	0.4368	1.945	0.4368
In this section, the results have been presented only for MBTs. The assumed MBTs for Iranian buildings taxonomy are shown in Table 5. As discussed earlier, an SDOF system was generated for each building type, considering the associated structural and dynamic properties presented in Table 4. These structural and dynamic properties were used to derive a generic backbone curve for each building type. The resulted generic Two-Linear backbone curves for MBTs have been shown in Table 6.

5.2 Results of the fragility functions

This section presents the resulting fragility parameters for the steel and wooden MBTs listed in Table 7. The resulting fragility parameters for other MBT are provided in Appendix A. As described in Table 7, the resulted fragility parameters are presented with the logarithmic mean (θ) and standard deviation (β) values. The Intensity Measure Types (IMT) for the derivation of fragility functions were selected considering the fundamental period of each building type. These IMTs are presented in Table 7. Figure 8 shows the resulted fragility curves for some MBTs.

6 Comparison of the fragility curves with empirical data derived from past earthquakes in Iran

In order to clarify the validity of the proposed fragility curves, a comparison has been provided between the presented fragility functions and damages observed during the past earthquakes in the country first. To this aim, observed damage data from Iran’s past earthquakes, from 1970 to 2017, have been collected. The information related to Iran’s
major past earthquakes is described in Table 8 (Sadeghi et al. 2015; Fallah Tafti et al. 2020).

Due to the lack of detailed and sufficient information on Iran’s past earthquake damages for different building types, the comparison has been accomplished only for some building types. The comparison between the fragility functions proposed in this study with the observed damage from past earthquakes has been illustrated for some building types in Fig. 9. The damages data due to past earthquakes in Iran have been extracted

![Some example of generated fragility functions](image-url)
from past research (Sadeghi et al. 2015; Izanloo and Yahyaabadi 2018; Biglari and Formisano 2020; Biglari et al. 2021), provided fragility curves based on PGA. In this study, these damage data were converted into Sa (0.3 s) and Sa (0.6 s) by using the PGA to Sa ratio extracted from the ground motion records used in this study. As shown in Fig. 9, it can be claimed that the fragility curves proposed in this study have mainly a good and appropriate agreement with observed damage data derived from past earthquakes in Iran.

Also, Fig. 10 compares the fragility curves of this study for eight building classes with the existing fragility curves found in the literature. To this aim, firstly, the expert judgment-based fragility curves proposed by Fallah Tafti et al. (2020) for common buildings in entire Iran and analytical ones by Kohrangi et al. (2021) for Isfahan are discussed. Overall, proposed herein fragility curves for Low-Rise unreinforced masonry (Fig. 10a), High-Code High-Rise reinforced concrete infilled frame (Fig. 10b), High-Code Mid-Rise Steel moment frame (Fig. 10c), and High-Code Mid-Rise RC moment frames building classes (Fig. 10d) are fairly close to those of Fallah Tafti et al. (2020) and Kohrangi et al. (2021) for all damage states (nearly identical for the High-Code Mid-Rise RC moment frames, and High-Code Mid-Rise Steel moment frame cases shown in Fig. 10c, d). Secondly, the analytical fragility curves proposed by Villar-Vega et al. (2017) for the most representative building classes in the Andean region of South America are compared. The fragility curves provided by Villar-Vega et al. (2017) for the High-Code Mid-Rise RC moment frames building class (Fig. 10f) show an approximately equal fragility at all damage grades with those proposed in this study. The only

Earthquake	Province	Date
Gharnaveh	Golestan	30 July 1970
Gharnaveh	Golestan	10 April 1972
Qir-Karzin	Fars	21 June 1990
Manjil-Rudbar	Gilan	21 June 1990
Manjil-Rudbar (Manjil)	Gilan	21 June 1990
Manjil-Rudbar (Rudbar)	Gilan	21 June 1990
Manjil-Rudbar (Rasht)	Gilan	21 June 1990
Manjil-Rudbar (Loushan)	Gilan	21 June 1990
Lordegan	Chaharmahal and Bakhtiari	4 March 1992
Golestan	Ardabil	28 February 1997
Qayen	Khorasan	10 May 1997
Bam	Kerman	26 December 2003
Zarand	Kerman	22 February 2005
Varzaghan	Kerman	11 August 2012
EMME1	Mashhad, Khorasan	2013
EMME2	Mashhad, Khorasan	2013
Borazjan	Bushehr	28 Nov 2013
Sarpol-e-Zahab (Kuick)	Kermanshah	12 Nov 2017
Sarpol-e-Zahab City	Kermanshah	12 Nov 2017

EMME Earthquake model of Middle East
exception is for the complete damage state of the Low-Rise unreinforced masonry building class (Fig. 10e), which shows less fragility according to Villar-Vega et al. (2017) predictions. Meanwhile, the expert judgment-based fragility curves proposed by Fallah Tafti et al. (2020) for low-rise unreinforced masonry (Fig. 10a) are more realistic.
than the ones of Villar-Vega et al. (2017). Indeed, the IIEES Structural research center experts expected more damage to the Iranian unreinforced masonry building class than

Fig. 10 Comparison between analytical fragility curves proposed herein (green lines) and by Fallah Tafti et al. (2020) (red lines), Kohrangi et al. (2021) (purple lines), and Villar-Vega et al. (2017) (blue lines) for a, e Low-Rise unreinforced masonry, b High-Code High-Rise reinforced concrete infilled frame, c High-Code Mid-Rise Steel moment frame, d, f High-Code Mid-Rise RC moment frame building class
the fragility curves from Villar-Vega et al. (2017) for South America. So, this study is predicting more fragility at the complete damage state for Iran.

7 Summary and conclusion

Developing fragility functions is one of the most critical steps in seismic risk assessment. The lack of comprehensive and reliable fragility functions for common buildings in Iran is an essential gap to evaluate the extent of damage to buildings due to the potential earthquake hazard. For this reason, an extensive review was performed on previous studies in the country, and their beneficial data have been collected. The extracted data have been utilized to identify all common buildings in Iran and develop cogent fragility functions for them. This work has been done through the following steps:

(1) In the initial step, by conducting comprehensive studies, common buildings in Iran were identified and divided into 31 categories based on the type of materials, lateral resisting system, height, and code level.
(2) Then, considering structural and dynamic parameters, an equivalent single-degree-of-freedom oscillator with a generic backbone curve and a hysteresis behavior has been defined for buildings in each class.
(3) A large collection of ground motion records has been provided from the IIEES SGMR Toolbox.
(4) The non-linear time-history analyses were performed on SDOF systems defined for each building class utilizing a set of 300 ground motion records.
(5) Finally, approximately 300 fragility functions were developed for Iranian building taxonomy using the cloud analysis methodology proposed by Jalayer et al. (2015).
(6) The developed fragility functions have been compared with experimental data from past earthquakes in Iran and with similar fragility curves found in the literature. The results showed that generated fragility functions follow the empirical data reasonably well and show good agreement with the fragility curves produced in the literature.

As discussed earlier, the fragility functions developed in this study have been mainly in good agreement with empirical data from past earthquakes. So, the proposed fragility functions can be used directly to assess the damage to human and economic losses due to earthquake scenarios, probabilistic risk analysis, and risk management. Lastly, although the obtained results are encouraging, the awareness of the limitations of the current study is significant. These fragility functions have been developed based on a simplified numerical method and expert judgment. So, it is recommended for future studies to focus on:

- Refining numerical models by using more detailed characteristics of the buildings, proper identification of the structural parameters of the buildings, and considering structural deficiencies.
- Defining more accurate backbone curves for Iranian common building types based on these numerical models.
- A comprehensive study on some existing building types in the country, which sufficient information has not existed (such as precast concrete buildings).
- Providing instructions for collecting building damage data for future events.
These steps allow for a more precise evaluation of the earthquake’s impact on Iranian buildings stock, thus obtaining more reliable risk analyses.

Appendix A The resulting fragility parameters for concrete, masonry, adobe, and other steel MBTs

Taxonomy	IM	DS1	DS2	DS3	DS4				
		θ	β	θ	β	θ	β	θ	β
S2_INFF_LC/H:2	Sa (0.3 s)	0.1177	0.5186	0.8548	0.5187	1.2528	0.5186	1.5135	0.5187
S2_INFF_MC/H:2	Sa (0.3 s)	0.3326	0.517	1.1678	0.5169	1.6082	0.517	1.8945	0.517
S2_INFF_HC/H:2	Sa (0.3 s)	0.6152	0.5071	1.4958	0.507	1.9688	0.5071	2.2781	0.5071
S2_INFF_LC/H:5	Sa (0.6 s)	−0.5274	0.4631	0.1231	0.4631	0.4744	0.4631	0.7043	0.4631
S2_INFF_MC/H:5	Sa (0.6 s)	−0.3986	0.475	0.2999	0.4751	0.6681	0.475	0.9076	0.475
S2_INFF_HC/H:5	Sa (0.6 s)	−0.2179	0.4845	0.4877	0.4845	0.8668	0.4845	1.1147	0.4844
S2_INFF_LC/H:8	Sa (0.6 s)	−0.4574	0.419	0.222	0.419	0.589	0.419	0.8294	0.419
S2_INFF_MC/H:8	Sa (0.6 s)	−0.3463	0.4139	0.3766	0.4139	0.7574	0.4139	1.005	0.4139
S2_INFF_HC/H:8	Sa (0.6 s)	−0.1835	0.411	0.5322	0.4111	0.9165	0.4111	1.1678	0.4111
C1_MRF_LC/H:2	Sa (0.6 s)	−0.7505	0.4014	−0.4159	0.4014	−0.1783	0.4014	−0.0068	0.4014
C1_MRF_MC/H:2	Sa (0.6 s)	−0.6786	0.4082	−0.1243	0.4082	0.199	0.4083	0.4158	0.4082
C1_MRF_HC/H:2	Sa (0.6 s)	−0.6421	0.4044	0.0923	0.4044	0.4683	0.4044	0.7109	0.4044
C1_MRF_LC/H:5	Sa (1.0 s)	−1.136	0.4383	−0.7457	0.4382	−0.4684	0.4382	−0.2682	0.4382
C1_MRF_MC/H:5	Sa (1.0 s)	−1.0887	0.479	−0.4476	0.4791	−0.0734	0.479	0.1776	0.4791
C1_MRF_HC/H:5	Sa (1.0 s)	−1.0607	0.4866	−0.2265	0.4866	0.2004	0.4866	0.4758	0.4865
C1_MRF_LC/H:8	Sa (1.0 s)	−0.8967	0.5402	−0.4888	0.5402	−0.199	0.5402	0.0104	0.5402
C1_MRF_MC/H:8	Sa (1.0 s)	−0.8534	0.5568	−0.1962	0.5567	0.1873	0.5568	0.4446	0.5568
C1_MRF_HC/H:8	Sa (1.0 s)	−0.8287	0.5616	0.0271	0.5615	0.4652	0.5615	0.7477	0.5616
C2_INFF_LC/H:2	Sa (0.3 s)	−0.5651	0.4328	0.185	0.4329	0.546	0.4329	0.775	0.4329
C2_INFF_MC/H:2	Sa (0.3 s)	−0.1374	0.4333	0.5668	0.4333	0.9247	0.4333	1.1549	0.4334
Taxonomy	IM	DS1	DS2	DS3	DS4				
------------------	--------	------	------	------	------				
	\(\theta\)	\(\beta\)	\(\theta\)	\(\beta\)	\(\theta\)	\(\beta\)			
C2_INFF_HC/H:2	Sa (0.3 s)	0.3489	0.4613	1.0678	0.4613	1.4454	0.4613	1.6907	0.4613
C2_INFF_LC/H:5	Sa (1.0 s)	-1.7172	0.4094	-0.859	0.4094	-0.4456	0.4094	-0.1831	0.4094
C2_INFF_MC/H:5	Sa (1.0 s)	-1.2431	0.4083	-0.5582	0.4083	-0.2103	0.4082	0.0135	0.4082
C2_INFF_HC/H:5	Sa (1.0 s)	-0.8658	0.405	-0.2341	0.4049	0.0976	0.4049	0.313	0.4049
C2_INFF_LC/H:8	Sa (1.0 s)	-1.6485	0.4916	-0.7116	0.4916	-0.2604	0.4916	0.026	0.4916
C2_INFF_MC/H:8	Sa (1.0 s)	-1.27	0.4674	-0.4544	0.4674	-0.0401	0.4674	0.2264	0.4674
C2_INFF_HC/H:8	Sa (1.0 s)	-0.9337	0.4299	-0.1846	0.4298	0.2088	0.4298	0.4643	0.4298
C3_CSW_HC/H:5	Sa (0.6 s)	-0.5701	0.4058	0.0793	0.4059	0.4221	0.4058	0.6451	0.4058
C3_CSW_MC/H:5	Sa (0.6 s)	-0.4152	0.4241	0.2846	0.4241	0.6445	0.4241	0.8769	0.424
C3_CSW_HC/H:5	Sa (0.6 s)	-0.2574	0.4382	0.4846	0.4382	0.8582	0.4382	1.0982	0.4382
C3_CSW_LC/H:8	Sa (0.6 s)	-0.674	0.4379	0.0574	0.4379	0.4436	0.4379	0.6949	0.4379
C3_CSW_MC/H:8	Sa (0.6 s)	-0.5299	0.4275	0.2396	0.4274	0.6353	0.4275	0.8907	0.4274
C3_CSW_HC/H:8	Sa (0.6 s)	-0.3999	0.419	0.4013	0.419	0.805	0.419	1.0642	0.419
C4_TUF_LC/H:2	Sa (0.3 s)	0.0256	0.4441	0.4546	0.4441	0.7282	0.444	0.9177	0.4441
C4_TUF_MC/H:2	Sa (0.3 s)	0.2175	0.4575	0.6942	0.4576	0.9895	0.4575	1.1919	0.4576
C4_TUF_HC/H:2	Sa (0.3 s)	0.3957	0.482	0.9231	0.482	1.2432	0.4819	1.4608	0.4819
C4_TUF_LC/H:5	Sa (0.6 s)	-0.5351	0.3939	-0.0999	0.394	0.1779	0.394	0.3703	0.394
C4_TUF_MC/H:5	Sa (0.6 s)	-0.3731	0.4067	0.113	0.4067	0.4141	0.4067	0.6204	0.4067
C4_TUF_HC/H:5	Sa (0.6 s)	-0.2269	0.4217	0.2934	0.4217	0.6092	0.4217	0.8239	0.4217
C4_TUF_HC/H:5	Sa (0.6 s)	-0.4808	0.4293	0.0073	0.4293	0.319	0.4293	0.5349	0.4293
C4_TUF_MC/H:8	Sa (0.6 s)	-0.3126	0.419	0.2209	0.419	0.5514	0.4189	0.7779	0.419
C4_TUF_HC/H:8	Sa (0.6 s)	-0.1799	0.4212	0.3884	0.4213	0.7333	0.4213	0.9677	0.4213
CM_LC/H:2	Sa (0.3 s)	-0.6889	0.3989	-0.2111	0.3989	0.0658	0.3988	0.2511	0.3989
CM_MC/H:2	Sa (0.3 s)	-0.5499	0.4094	-0.0756	0.4093	0.2014	0.4093	0.3874	0.4093
CM_HC/H:2	Sa (0.3 s)	-0.4098	0.416	0.069	0.416	0.3487	0.416	0.5364	0.416
UM_H2	Sa (0.3 s)	-1.214	0.3997	-0.6068	0.3997	-0.2807	0.3997	-0.0675	0.3998
ADOBE_H2	Sa (0.3 s)	-1.5719	0.4448	-0.8758	0.4448	-0.5142	0.4448	-0.28	0.4448
Acknowledgements The authors would like to thank Luis Martins for his kind help in the process of operating the VMTK software. Also, the authors wish to forward special thanks to the local experts who participated in the “IIEES Fragility Function Working Group,” Prof. Behrokh Hosseini Hashemi, Prof. Abdoreza Sarvghad Moghadam, and Prof. Babak Mansouri, for the technical guidance, kind help, and insightful suggestions. Finally, the first author wishes to forward thanks to Amir Reza Taherian for the valuable discussions and helpful comments.

Funding The authors received no financial support for the research, authorship, and/or publication of this article.

Data availability The data presented in this study are available on reasonable request from the corresponding author.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Ahmad N, Crowley H, Pinho R, Ali Q (2010) Displacement-based earthquake loss assessment of masonry buildings in Mansehra City, Pakistan. J Earthq Eng 14:1–37. https://doi.org/10.1080/13632461003651794

Aliabadi MH (2016) Comparison between some of reinforced concrete shear wall’s modeling methods for non-linear static and dynamic analysis. MS Thesis In Civil Engineering, apadana institute of higher education Shiraz, Iran

Alizadeh Basban N (2018) Study on the Response Modification Coefficient dual-bending frame of k-shape Eccentrically Braced Steel Frames using Nonlinear Static Pushover Analysis and Incremental Dynamic Analysis. Master of Science (MSc) Thesis, Ghiaseddin Jamshid Kashani Higher Education Institute, Faculty of Civil and Mechanical Engineering

Amiri G, Darvishan E, Rokni HR (2012) Deterioration effect of hysteresis loops in non-linear static analysis of intermediate and special steel moment frames. Asian J Civ Eng 13:499–510

Ashkoo M (2015) Analytical study the effect of distribution of RC bearing walls on seismic performance of tunnel form buildings. MSc. Thesis, University of Science & Culture, Department Of Civil Engineering

ATC-13 (1985) Earthquake damage evaluation data for California. Applied Technology Council, Federal Emergency Management Agency (FEMA), 492 pp, CA

Azarbakht A, Mousavi M, Ghafoory-Ashtiany M (2012) Adjustment of the seismic collapse fragility curves of structures by considering the ground motion spectral shape effects. J Earthq Eng 16:1095–1112. https://doi.org/10.1080/13632469.2012.703384

Baker JW (2011) Conditional mean spectrum: tool for ground-motion selection. J Struct Eng 137:322–331. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000215

Baker J, Lin T, Shahi S, Jayaram N (2011) New ground motion selection procedures and selected motions for the PEER transportation research program. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, PEER report 3

Bal İE, Bommer JJ, Stafford PJ et al (2010) The influence of geographical resolution of urban exposure data in an earthquake loss model for Istanbul. Earthq Spectra 26:619–634. https://doi.org/10.1193/1.3459127

Bal İ, Crowley H, Pinho R (2008) Development of a displacement-based earthquake loss assessment method for Turkish buildings. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China

Hosseini Hashemi B, Ghafoory-Ashtiany M (2002) Semi-rigid steel frame with “Khorjinee” connections. Tehran, Iran

Beiravan D (2017) Appointment of Structural fragility curve approximation using the system a degree of freedom. Master of Science (MSc) Thesis, Vali-e-Asr University of Rafsanjan Faculty of Engineering
Biglari M, Formisano A (2020) Damage probability matrices and empirical fragility curves from damage
data on masonry buildings after Sarpol-e-zahab and bam earthquakes of Iran. Front Built Environ.
https://doi.org/10.3389/fbuil.2020.00002

Biglari M, Formisano A, Hashemi BH (2021) Empirical fragility curves of engineered Steel and RC resi-
dential buildings after Mw 7.3 2017 Sarpol-e-zahab earthquake. Bull Earthq Eng 19:2671–2689.
https://doi.org/10.1007/s10518-021-01090-4

Borzi B, Crowley H, Pinho R (2008a) Simplified pushover-based earthquake loss assessment (SP-BELA)
method for masonry buildings. Int J Archit Herit 2:353–376. https://doi.org/10.1080/1558305070
1828178

Borzi B, Pinho R, Crowley H (2008b) Simplified pushover-based vulnerability analysis for large-scale
assessment of RC buildings. Eng Struct 30:804–820. https://doi.org/10.1016/j.engstruct.2007.05.021

Brzev S, Scawthorn C, Charleson AW, et al (2013) GEM Building Taxonomy Version 2.0. Vol. GEM Tech-
Nical Report 2013-02 V1.0.0, Pavia,IT: Global Earthquake Model Foundation

Calvi GM (1999) A displacement-based approach for vulnerability evaluation of classes of buildings. J
Earthq Eng 3:411–438. https://doi.org/10.1080/13632469909350353

Calvi G, Pinho R, Magenes G et al (2006b) Development of seismic vulnerability assessment methodolo-
gies over the past 30 years. ISET J Earthq Technol 43:75–104

Calvi G, Pinho R, Crowley H (2006a) State-of-the-knowledge on the period elongation of RC buildings dur-
ing strong ground shaking. In Proceedings of the 1st European conference of earthquake engineering
and seismology, Geneva, Switzerland, paper (Vol. 1535)

Camelo V, Beck J, Hall J (2002) Dynamic characteristics of woodframe buildings. California Institute of
Technology.

Colombi M, Borzi B, Crowley H et al (2008) Deriving vulnerability curves using Italian earthquake damage
data. Bull Earthq Eng 6:485–504. https://doi.org/10.1007/s10518-008-9073-6

Crowley H, Pinho R (2004) Period-height relationship for existing European reinforced concrete buildings. J
Earthq Eng 8:93–119. https://doi.org/10.1080/13632460409350522

Crowley H, Pinho R (2006) Simplified equations for estimating the period of vibration of existing buildings.
In: Proceedings of the 1st European conference on earthquake engineering and seismology. (Vol. 1122, pp.
3–8). Citeseer.

Crowley H, Pinho R (2009) Revisiting eurocode 8 formulae for periods of vibration and their employment in
linear seismic analysis. Earthq Eng Struct Dyn. https://doi.org/10.1002/eqe.949

D’Ayala D, Meslem A, Vamvatsikos D et al (2015) GEM guidelines for analytical vulnerability assessment
of low/mid-rise buildings. Vulnerability Global Component Project. https://doi.org/10.13117/GEM.
VULN-MOD.TR2014.12

Dolatshahi KM, Nikoukalam MT, Beyer K (2018) Numerical study on factors that influence the in-plane
drift capacity of unreinforced masonry walls. Earthq Eng Struct Dyn 47:1440–1459. https://doi.org/
10.1002/eqe.3024

Dolšek M, Fajfar P (2008) The effect of masonry infills on the seismic response of a four-storey reinforced
concrete frame—a deterministic assessment. Eng Struct 30:1991–2001. https://doi.org/10.1016/j.
engstruct.2008.01.001

Dorri F, Ghasemi SH, Nowak A (2019) Developing a lateral load pattern for pushover analysis of EBF sys-
tem. Reliab Eng Resil. https://doi.org/10.22115/rer.2019.184387.1009

Doulatabadi A (2017) Compare seismic performance of steel building frame construction with simple frame
and moment frame in two versions 3 and 4, 2800. Master of Science (M.Sc.)Thesis, Hakim Sabzevari
University of Engineering

Dymiotis C, Kappos AJ, Chrysanthopoulos MK (1999) Seismic reliability of RC frames with uncertain
drift and member capacity. J Struct Eng 125:1038–1047. https://doi.org/10.1061/(ASCE)0733-
9445(1999)125:9(1038)

Erberik MA (2008a) Generation of fragility curves for Turkish masonry buildings considering in-plane fail-
ure modes. Earthq Eng Struct Dyn 37:387–405. https://doi.org/10.1002/eqe.760

Erberik MA (2008b) Fraility-based assessment of typical mid-rise and low-rise RC buildings in Turkey.
Eng Struct 30:1360–1374. https://doi.org/10.1016/j.engstruct.2007.07.016

Entezari Zarch A (2017) Evaluation of Seismic Performance of Steel Buildings Designed in accordance
with the 2800 Regulation Using Capacity Spectrum Method and Comparison with each other. The
thesis of M.Sc in Technical Engineering & sciences Department of Civil Engineering

Esmaeili H, Kheyroddin A, Naderpour H (2013) Seismic behavior of steel moment resisting frames
associated with RC Shear Walls. Iran J Sci Technol Trans B Eng 37:395–407

Ettezadi Ghozhdi SA (2012) Comparison of the Special Concentric Braces with Pushover Analysis. The
Dissertation of M.Sc. in Structure Engineering, The University of Sistan & Baluchestan
Fallah Tafti M, Amini Hosseini K, Mansouri B (2020) Generation of new fragility curves for common types of buildings in Iran. Bull Earthq Eng 18:3079–3099. https://doi.org/10.1007/s10518-020-00811-5
Gerami M, Sharbaty S, Yivandi-pour A (2013) Non-linear seismic vulnerability evaluation of irregular steel buildings with cumulative damage indices. Int J Adv Struct Eng. https://doi.org/10.1186/2008-6695-5-9
Ghafory-Ashtiany M, Mousavi M, Azarbakht A (2011) Strong ground motion record selection for the reliable prediction of the mean seismic collapse capacity of a structure group. Earthq Eng Struct Dyn 40:691–708
Ghafory-Ashtiany M, Mousavi M, Azarbakht A (2014) Epsilon as an indicator of ground motion spectral shape. Sharif J Civ Eng 29:109–115
Ghafory-Ashtiany M, Shokoohi S, Ansari A (2021) The recently compiled strong-motion database catalog for Iran. Manuscript in preparation.
Gholizad A, Safari H (2014) Seismic fragility curves for mid-rise RC frames designed according to Iranian seismic code. Asian J Civ Eng 15:803–815
Goda K (2015) Record selection for aftershock incremental dynamic analysis. Earthq Eng Struct Dyn 44:1157–1162. https://doi.org/10.1002/eqe.2513
Haj Najafi L, Tehranizadeh M (2013) Evaluation of seismic behavior for moment frames and eccentrically braced frames due to near-field ground motions. Asian J Civ Eng 14:809–830
Hamzeh L, Ashour A, Galal K (2018) Development of fragility curves for reinforced-masonry structural walls with boundary elements. J Perform Constr Facil 32:04018034. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001174
Hassani B, Jafari A (2012) An investigation on the seismic performance of reinforced concrete panel structures. ASIAN J Civ Eng (BUILDING HOUSING) 13:181–193
HAZUS (1999) Earthquake loss estimation methodology—technical and user manuals. Federal Emergency Management Agency, Washington
Heidari PS, Kayhani H, Jazany RA (2010) Effects of x-bracing resistant system configuration on limit state behavior in steel frames using pushover analysis. InProc. The 9th US National and 10th Canadian Conference on Earthquake Engineering 2010
Hosseini SA, Ruiz-Garcia J, Massumi A (2019) Seismic response of RC frames under far-field main-shock and near-fault aftershock sequences. Struct Eng Mech 72:395–408. https://doi.org/10.12989/sem.2019.72.3.395
Hosseini Hashemi B, Hassanzadeh M (2008) Study of a semi-rigid steel braced building damaged in the Bam earthquake. J Concr Steel Res 64:704–721. https://doi.org/10.1016/j.jcsr.2007.12.007
Ibarra L, Krawinkler H (2005) Global Collapse of Frame Structures Under Seismic Excitations. Stanford University. Final Report on PEER Project 3192002. The John A. Blume Earthquake Engineering Center, Stanford, California, USA
ICSRDB (1999) Iranian code of practice for the seismic-resistant design of buildings, Standard 2800, 2nd edn. Building and Housing Research Center, Tehran, Iran
ICSRDB (2014) Iranian code of practice for the seismic-resistant design of buildings, Standard 2800, 4th edn. Building and Housing Research Center, Tehran, Iran
INBC Part 8 (2013) Iranian National Building Code (INBC), Part 8: Masonry Structures. Ministry of Housing and Urban Development, Tehran, Iran
INBC Part 9 (2013) Iranian National Building Code (INBC), Part 9: Concrete Structures. Ministry of Housing and Urban Development, Tehran, Iran
INBC Part10 (2013) Iranian National Building Code (INBC), Part 10: Steel Structures. Ministry of Housing and Urban Development, Tehran, Iran
Izanloo F, Yahyaabadi A (2018) Determination of structural fragility curves of various building types for seismic vulnerability assessment in the Sarpol-e Zahab City. J Seismol Earthq Eng 20:93–107
Jahangir H, Karamodin A (2015) Structural Behavior Investigation Based on Adaptive Pushover Procedure. In 10th International Congress on Civil Engineering, University of Tabriz, Tabriz, Iran
Jaiswal K, Wald D, Porter K (2010) A global building inventory for earthquake loss estimation and risk management. Earthq Spectra 26:731–748. https://doi.org/10.1193/1.3450316
Jaiswal K, Aspinall WP, Perkins DM, et al (2012) Use of expert judgment elicitation to estimate seismic vulnerability of selected building types. Proceedings of 15th world conference on earthquake engineering, Lisbon, Portugal, pp 24–28
Jalayer F, De Risi R, Manfredi G (2015) Bayesian cloud analysis: efficient structural fragility assessment using linear regression. Bull Earthq Eng 13:1183–1203. https://doi.org/10.1007/s10518-014-9692-z
Jayaram N, Lin T, Baker J (2011) A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthq Spectra 27:797–815. https://doi.org/10.1193/1.3608002

Kalantari A, Roobkhahsh H, Taherian AR (2020) Seismic fragility assessment of RC moment resisting frame buildings designed for different editions of Iranian seismic design code. Disaster Prev Manage Knowl 10(1):58–49

Kazemi H, Ghafori-Ashtiany M, Azarbakhht A (2013) Effect of epsilon-based record selection on fragility curves of typical irregular steel frames with concrete shear walls in Mashhad city. Int J Adv Struct Eng 5:23. https://doi.org/10.1186/2008-6695-5-23

Kazemi H, Ghafori-Ashtiany M, Azarbakhht A (2017) Development of fragility curves by incorporating new spectral shape indicators and a weighted damage index: case study of steel braced frames in the city of Mashhad. Iran Earthq Eng Eng Vib 16:383–395. https://doi.org/10.1007/s11803-017-0388-7

Khoshnoud H (2010) Evaluating equivalent static analysis of Iranian code with non-linear static pushover analysis. In Proceedings of the First Makassar International Conference on Civil Engineering (MICCE2010), Makassar, Indonesia

Khoshnoud HR, Marsono AK (2011) Evaluation of seismic behaviour of masonry infills in RC frame by pushover analysis. In proceeding of Sixth International Conference on Seismology and Earthquake Engineering. pp.16–18

Khoshnoudian F, Mestri S, Abedi-Nik F (2011) Proposal of lateral load pattern for pushover analysis of RC buildings. Comput Methods Civ Eng 2(2):169–183

Kiani A, Mansouri B, Moghadam AS (2016) Fragility curves for typical steel frames with semi-rigid saddle connections. J Constr Steel Res 118:231–242. https://doi.org/10.1016/j.jcsr.2015.11.001

Kohrangi M, Bazzurro P, Vamvatsikos D (2021) Seismic risk and loss estimation for the building stock in Isfahan. Part I: exposure and vulnerability. Bull Earthq Eng 19:1709–1737. https://doi.org/10.1007/s10518-020-01036-2

Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4:415–443. https://doi.org/10.1007/s10518-006-9024-z

Lallemant D, Kiremidjian A, Burton H (2015) Statistical procedures for developing earthquake damage fragility curves. Wiley, Hoboken

Lookzadeh AH (2020) Investigation of the performance of damaged steel buildings after Sarpol-e-Zahab earthquake. Master of Science Thesis, International Institute of Earthquake Engineering and Seismology (IIEES)

Lotfy I, Mohammadalizadeh T, Ahmadi F, Soroushian S (2019) Fragility functions for displacement-based seismic design of reinforced masonry wall structures. J Earthq Eng 26:1–19. https://doi.org/10.1080/13632469.2019.1659881

Maddah MM, Eshghi S (2018) Evaluation of a seismic collapse assessment methodology based on the collapsed steel buildings data in Sarpol-e Zahab, Iran Earthquake. J Seismol Earthq Eng 20(3):47–59

Mahdi T (2009) Pushover analysis of asymmetric ordinary moment RC frames designed according to the Iranian codes. In Proceedings of the 3rd International Conference on Concrete and Development.

Mahdi T, Soltangharaei V (2011) Plan irregular RC frames: comparison of pushover with non-linear dynamic analysis. Asian J Civ Eng 12:679–690

Mahmoudi M, Zaree M (2011) Evaluating the overstrength of concentrically braced steel frame systems considering members post-buckling strength. Int J Civ Eng 9:57–62

Mahmoudi M, Zaree M (2012) Performance based design using force reduction factor and displacement amplification factors for BFS. Asian J Civ Eng 14:577–586

Mahmoudi M, Zaree M (2013) Evaluating the displacement amplification factors of concentrically braced steel frames. Int J Adv Struct Eng. https://doi.org/10.1186/2008-6695-5-13

Mansouri B, Amini-Hosseini K (2013) “Global Earthquake Risk Model (GEM)—Earthquake Model of the Middle East Region (EMME), Final Report of Work Package 4, WP4: Seismic Risk Assessment”, Final Report, IIEES internal contract #AM 7-269 (15/5/90), Tehran, Iran

Martins L, Silva V (2020) Development of a fragility and vulnerability model for global seismic risk analyses. Bull Earthq Eng. https://doi.org/10.1007/s10518-020-00885-1

Martins L, Silva V, Crowley H, Cavaleri F (2021) Vulnerability modellers toolkit, an open-source platform for vulnerability analysis. Bull Earthq Eng 19:5691–5709. https://doi.org/10.1007/s10518-021-01187-w

McKenna F, Fenves G, Scott MJ (2000) Open system for earthquake engineering simulation (Open-Sees). Pacific Earthquake Engineering Research Center. University of California, Berkeley

Springer
Mehdizadeh K, Karamodin A (2017) Probabilistic assessment of steel moment frames incremental collapse (ordinary, intermediate and special) under earthquake. J Struct Constr Eng 4:129–147. https://doi.org/10.22065/jisce.2017.75370.1066

Mobarrez Chini Belagh R (2016) Computing of fragility spectrum for mid rise steel frame structures regarding to evaluation of story cumulative damage indices strategies. Master of Science Thesis, Semnan University Faculty of Civil Engineering

Moghaddasi SS (2014) No TitleAssess Different Methods of Non-linear Static Analysis on the frame with the Dual system. Master of Science Thesis, Ferdowsi University of Mashhad, Department of Civil Engineering

Mohandesi MA, Azarbakht A, Ghafor-Yashtian M (2019) The conditional mean spectra by disaggregating the eta spectral shape indicator. Struct Des Tall Spec Build 28:e1586. https://doi.org/10.1002/tal.1586

Mohsenian V, Filizadeh R, Ozdemir Z, Hajirouliha I (2020a) Seismic performance evaluation of deficient steel moment-resisting frames retrofitted by vertical link elements. Structures 26:724–736. https://doi.org/10.1016/j.structures.2020.04.043

Mohsenian V, Hajirouliha I, Mariani S, Ninkhoo A (2020b) Seismic reliability assessment of R.C. tunnel-form structures with geometric irregularities using a combined system approach. Soil Dyn Earthq Eng 139:106356. https://doi.org/10.1016/j.soildyn.2020.106356

Mohsenian V, Ninkhoo A, Rostamkalaei S et al (2021) The seismic performance of tunnel-form buildings with a non-uniform in-plan mass distribution. Structures 29:993–1004. https://doi.org/10.1016/j.istruc.2020.11.063

Mortezaei A, Ronagh HR (2013) Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near-fault ground motions having fling step. Nat Hazards Earth Syst Sci 13:1579–1593. https://doi.org/10.5194/nhess-13-1579-2013

Motamed H, Calderon A, Silva V, Costa C (2019) Development of a probabilistic earthquake loss model for Iran. Bull Earthq Eng 17:1795–1823. https://doi.org/10.1007/s10518-018-0515-5

Mouroux P, Le Brun B (2006) Risk-UE project: an advanced approach to earthquake risk scenarios with application to different European towns. In: Oliveira CS, Roca A, Goula X (eds) Assessing and managing earthquake risk. Springer, Netherlands, pp 479–508

Mousavi M, Ghafor-Yashtian M, Azarbakht A (2011) A new indicator of elastic spectral shape for the reliable selection of ground motion records. Earthq Eng Struct Dyn 40:1403–1416. https://doi.org/10.1002/eqe.1096

Namjouyan MA (2013) Evaluation of Seismic Performance of Irregular R.C. Frames in Height. Master of Science Thesis, Shahid Bahonar University of Kerman, Department of Civil Engineering

Nasserasadi K, Ghafor-Yashtian M, Eshghi S, Zolfaghari MR (2008) Developing seismic fragility function of structures by stochastic approach. J Appl Sci 8:975–983. https://doi.org/10.3923/jas.2008.975.983

Nassirpour A, D’Ayala D (2014) Fragility analysis of mid-rise masonry in-filled steel frame (MISF) structures. In: Second European conference on earthquake engineering and seismology, Istanbul

Omidvar B, Gatmiri B, Derakhshan S (2012) Experimental vulnerability curves for the residential buildings of Iran. Nat Hazards 60:345–365. https://doi.org/10.1007/s11069-011-0019-y

Pitilakis K, Crowley H, Kaynia AM (2014) SYNER-G: typology definition and fragility functions for physical elements at seismic risk: buildings, lifelines, transportation networks and critical facilities. SYNER-G Typology Defin Fragility Funct Phys Elem Seism Risk

Pourmoghadam H (2017) Study on the Response Modification Coefficient of Eccentrically Braced Special Steel Frames with Vertical Shear Link using Nonlinear Static Pushover Analysis and Incremental Dynamic Analysis. M.Sc. Thesis, Ghiaseddin Jamshid Kashani Higher Education Institute Faculty of Civil Engineering

Poursha M, Khoshnoudian F, S. Moghadam A, (2011) A consecutive modal pushover procedure for non-linear static analysis of one-way asymmetric plan tall building structures. Eng Struct 33:2417–2434. https://doi.org/10.1016/j.engstruct.2011.04.013

Preciado A, Ramirez-Gaytan A, Santos JC, Rodriguez O (2020) Seismic vulnerability assessment and reduction at a territorial scale on masonry and adobe housing by rapid vulnerability indicators: the case of Tlajomulco. Mexico Int J Disaster Risk Reduct 44:101425. https://doi.org/10.1016/j.ijdrr.2019.101425

Rahmani Qeranqayah M (2014) Probabilistic Seismic Performance Assessment of Multistorey Steel Moment Resisting Frame Accompanied with Reinforced Concrete Shear Wall. Master of Science (M.Sc.) In earthquake Engineering, K. N. Toosi University of Technology Faculty of Civil Engineering
Rahmani Y, Bourahla N, Bento R, Badaoui M (2018) An improved upper-bound pushover procedure for seismic assessment of high-rise moment resisting steel frames. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0204-9

Raj R (2012) Applicability of pushover analysis to structures with shear wall. Master of Science (M.Sc.) Thesis, University of Tabriz Department of Civil Engineering

Ranjanbaran F, Hosseini M, Soltani M (2012) Simplified formulation for modeling the non-linear behavior of confined masonry walls in seismic analysis. Int J Archit Herit 6:259–289. https://doi.org/10.1007/s10518-010-5288-26

Riahi Z, Elwood KJ, Alcocer SM (2009) Backbone model for confined masonry walls for performance-based seismic design. J Struct Eng 135:644–654. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000012

Rigi A (2018) Comparison of seismic behavior of semi-rigid and rigid steel moment resisting frames through incremental dynamic analysis. M.Sc. Thesis, Shiraz University of Technology Department of Civil and Environmental Engineering

Rossetto T, Elanshahi A (2005) A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures. Eng Struct 27:397–409. https://doi.org/10.1016/j.engstruct.2004.11.002

Rossetto T, Ioannou I, Grant D, Maqsood T (2014) Guidelines for empirical vulnerability assessment. GEM Technical Report 2014-08 V1.0.0, Global Earthquake Model Foundation, Pavia, Italy

Sabeta, Goret, A, Antonio L (1998) Empirical fragility curves from damage surveys and estimated strong ground motion. 11th European conference on earthquake engineering

Sadeghi M, Ghafory-Ashtiany M, Pakdel-Lahiji N (2015) Developing seismic vulnerability curves for typical Iranian buildings. Proc Inst Mech Eng O J Risk Reliab 229:627–640. https://doi.org/10.1177/1748006X15596085

Samadian D, Ghafory-Ashtiany M, Naderpour H, Eghbali M (2019) Seismic resilience evaluation based on vulnerability curves for existing and retrofitted typical RC school buildings. Soil Dyn Earthq Eng 127:105844. https://doi.org/10.1016/j.soildyn.2019.105844

Sarokolayi LK, Dehkordib SG, Sefidabc MS (2015) Evaluating response modification factors of concentrically braced and special moment steel frames in duplex buildings. J Struct Eng Geo-Techn 5:31–38

Sartaji P, Sarvghad Moghadam A, Ashtiany MG (2017) Practical modelling issues for masonry building retrofitted with squat shear wall. Struct Des Tall Spec Build 26:e1380. https://doi.org/10.1002/tal.1380

Schnedler W (2005) Likelihood estimation for censored random vectors. Econ Rev. https://doi.org/10.1081/ETC-200067925

Shabani A, Kiousi M, Zucconi M (2021) State of the art of simplified analytical methods for seismic vulnerability assessment of unreinforced masonry buildings. Eng Struct 239:112280. https://doi.org/10.1016/j.engstruct.2021.112280

Shokrollahi Yanceshmeh A (2014) Calculating the behavior factor of ordinary buildings with tunnel form system. MSc. Thesis, University of Science and Culture Department of Civil Engineering

Silva V, Crowley H, Varum H et al (2014a) Evaluation of analytical methodologies used to derive vulnerability functions. Earthq Eng Struct Dyn. https://doi.org/10.1002/equ.2337

Silva V, Crowley H, Varum H et al (2014b) Investigation of the characteristics of Portuguese regular moment-frame RC buildings and development of a vulnerability model. Bull Earthq Eng 13:1455–1490. https://doi.org/10.1007/s10518-014-9669-y

Silva V, Casotto C, Vuamvatsikos D, et al (2017) Presentation of the Risk Modeller’s Toolkit, the open-source software for vulnerability assessment of the Global Earthquake Model. In16th World Conference on Earthquake Engineering. Santiago

Silva V, Akkar S, Baker J et al (2019) Current challenges and future trends in analytical fragility and vulnerability modeling. Earthq Spectra 35:1927–1952. https://doi.org/10.1193/042418EQS101O

Stafford PJ (2008) Short note conditional prediction of absolute durations. Bull Seismol Soc Am 98:1588–1594. https://doi.org/10.1785/0120070207

Statistical Center of Iran (SCI) (2018) Building inventory statistical data 2018–2019. https://www.amar.org.ir/english/Population-and-Housing-Censuses

Tarque N, Crowley H, Pinho R, Varum H (2012) Displacement-based fragility curves for seismic assessment of adobe buildings in Cusco, Peru. Earthq Spectra 28:759–794. https://doi.org/10.1193/1.4000001

Tavakoli B, Favakoli A (1993) Estimating the vulnerability and loss functions of residential buildings. Nat Hazards 7:155–171. https://doi.org/10.1007/BF00680428

Tavakoli B, Ghafory-Ashtiany M (1999) Seismic hazard assessment of Iran. Ann Geophys 42(6):903–915
Tavakoli HR, Rashidi Alashti A (2013) Evaluation of progressive collapse potential of multi-story moment resisting steel frame buildings under lateral loading. Sci Iran 20:77–86. https://doi.org/10.1016/j.scient.2012.12.008

Tavakoli S (2016) Evaluation of seismic behavior of reinforced concrete moment frame system with shear wall. M.Sc Thesis, Islamic Azad University Taft Branch Faculty of Engineering

Tehranizadeh M, Yakhchalian M (2011) Displacement based and consolidated force/displacement based methods for seismic assessment of steel moment resisting frames. Sci Iran 18:1054–1060. https://doi.org/10.1016/j.scient.2011.08.002

Vamvatsikos D (2011) Software—earthquake, steel dynamics and probability. http://users.ntua.gr/divamva/software.html. Accessed Jan 2021

Villar-Vega M, Silva V, Crowley H et al (2017) Development of a fragility model for the residential building stock in South America. Earthq Spectra 33:581–604. https://doi.org/10.1193/010716EQS005M

Zare M, Kamranzad F, Parcharidis I, Tsironi V (2017) Preliminary report of Mw7.3 Sarpol-e Zahab, Iran earthquake on November 12

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.