Characterization of a coupled DNA replication and translesion synthesis polymerase supraholoenzyme from archaea

Matthew T. Cranford1,†, Aurea M. Chu1,†, Joshua K. Baguley1, Robert J. Bauer2 and Michael A. Trakselis1,*

1Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA and 2Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

Received March 27, 2017; Revised June 08, 2017; Editorial Decision June 09, 2017; Accepted June 12, 2017

ABSTRACT

The ability of the replisome to seamlessly coordinate both high fidelity and translesion DNA synthesis requires a means to regulate recruitment and binding of enzymes from solution. Co-occupancy of multiple DNA polymerases within the replisome has been observed primarily in bacteria and is regulated by post-translational modifications in eukaryotes, and both cases are coordinated by the processivity clamp. Because of the heterotrimeric nature of the PCNA clamp in some archaea, there is potential to occupy and regulate specific polymerases at defined subunits. In addition to specific PCNA and polymerase interactions (PIP site), we have now identified and characterized a novel protein contact between the Y-family DNA polymerase and the B-family replication polymerase (YB site) bound to PCNA and DNA from Sulfolobus solfataricus. These YB contacts are essential in forming and stabilizing a supraholoenzyme (SHE) complex on DNA, effectively increasing processivity of DNA synthesis. The SHE complex can not only coordinate polymerase exchange within the complex but also provides a mechanism for recruitment of polymerases from solution based on multiequilibrium processes. Our results provide evidence for an archaeal PCNA ‘tool-belt’ recruitment model of multienzyme function that can facilitate both high fidelity and translesion synthesis within the replisome during DNA replication.

INTRODUCTION

To ensure accurate and faithful DNA synthesis, the DNA replisome must maintain a certain plasticity, such that enzymes can be exchanged to overcome any obstacles to replication. Although the bulk of DNA synthesis is performed by high fidelity B-family (archaea and eukaryotes) or C-family (bacteria) DNA polymerases that ensure genomic integrity, DNA damage encountered in the template strand is replicated using lower fidelity Y-family translesion (TLS) DNA polymerases (1,2). In eukaryotes, multiple TLS polymerases have evolved to provide specificity and accuracy of DNA synthesis across a broad range of lesions in spite of the type of damage (3,4). However, bacteria and archaea generally contain one or two translesion DNA polymerases with broader lesion specificity.

In both archaea and eukaryotes, the processivity clamp, PCNA, interacts with many protein partners that contain a PCNA interacting peptide (PIP) motif that binds to a hydrophobic pocket on the front face of PCNA (5). This common interaction site on PCNA is utilized to localize proteins not only for DNA replication but also for translesion synthesis, mismatch repair, nucleotide excision repair, chromatin remodeling, and cell cycle control, making PCNA an important localization point for many DNA related processes (6,7). In eukaryotes, although specific mechanisms may differ between yeast and mammals, optimal TLS activity includes the monoubiquitinylation (mUb) of PCNA (8,9). The hypothesis is that the combination of mUb and PIP binding provides greater binding specificity and selectivity for TLS polymerases. Eukaryotic Y-family TLS polymerases, pol η, pol κ, pol λ, contain both PIP sites and ubiquitin binding domains (UBD) (3,10). mUb-PCNA has been shown to not only increase the localization of these TLS polymerases to sites of damage (11,12), but it also aids in the resistance to UV sensitization of cells (13). These in vivo results are validated by the increased kinetic polymerization ability of TLS polymerases with mUb-PCNA compared to unmodified PCNA (14,15). Therefore, the combination of PIP and UBD sites increases the localization and...
stability of TLS polymerases at sites of DNA damage in eukaryotes.

Although bacteria and archaea also possess multiple DNA polymerases including Y-family TLS polymerases, the processivity clamps in these organisms do not seem to be modified with ubiquitin or any other posttranslational modifications. Instead, the PIP binding site (in archaea) (16,17) or the equivalent hydrophobic patch on the β-clamp (in bacteria) (18) are the primary interaction sites for both high and low fidelity DNA polymerases within both domains. In addition to clamp binding, direct contacts between polymerases (Pol III and Pol II or Pol IV) have been identified that are important for polymerase switching and translesion synthesis in bacteria (19,20). Although an initial interaction between PolB1 and PolY has been identified in archaea (21), its mechanistic role in polymerase exchange or TLS has not been described making comparisons with either the bacterial or eukaryotic domain impossible. However, homologeric contacts within single archaeal DNA polymerases have been described (22,23), providing a potential for heterologeric polymerase contacts. Barring these secondary interaction sites, there would be direct competition and thermodynamic equilibria/competition for individual polymerase molecules binding to PCNA and DNA, potentially impacting processivity and fidelity of DNA synthesis (22,24).

Because the eukaryotic DNA processing components seemed to have emerged from a common ancestor in archaea (25,26), the archaeal DNA replication enzymes are a de facto relevant model system for understanding mechanism of action within the replisome. In fact, Sulfolobus solfataricus (Sso) Dpo4 (PolY) has been one of the most intricately studied DNA polymerases with regards to its structure/function, kinetics, and template lesion bypass specificities (27–37). The heterotrimeric SsoPCNA123 clamp can provide for more specific interactions of proteins with individual subunits in a ‘tool-belt’ configuration (38–40), similar to that described for the bacterial system (41). SsoPolB1 is considered to be the main DNA replication polymerase and interacts specifically with SsoPCNA2 (38,42), while SsoDpo4 (PolY) is the primary TLS polymerase and interacts specifically with SsoPCNA1 (43). In addition, direct contacts between PolB1 and PolY have also been observed but not functionally characterized (21). Therefore, the potential for a coordinated PolB1/PolY/PCNA123 supraholoenzyme (SHE) in Sso is possible and would provide valuable insight into the polymerase exchange mechanism in archaea.

In this report, we have not only detected the presence of a Sso SHE complex using analytical gel filtration and presteady-state stopped flow FRET, but we have also validated the activity and polymerase exchange using both kinetic replication and processivity assays. Interaction between PolB1 and PolY within the SHE occurs at both PIP sites on PCNA2 and PCNA1, respectively, as well as a novel YB binding site directly between PolY-PolB1 polymerases. Addition of PolY stabilizes the SHE complex on DNA and increases processivity of DNA synthesis. Although direct polymerase solution equilibrium competition occurs for binding to DNA, the presence of both the PIP and YB interaction sites in the SHE increases the ability to directly exchange and regulate polymerase contacts with the primer-template. Altogether, this work identifies the presence of a novel YB interaction site that is important in coordinating polymerase switching for low and high fidelity synthesis within a novel supraholoenzyme complex, providing significant implications for polymerase recruitment and lesion bypass during replication.

MATERIALS AND METHODS

Materials

Oligonucleotides used (Supplemental Table S1) were purchased from IDT (Coralville, IA, USA). Fluorescently labeled DNA was HPLC purified by IDT. ATP was from Sigma-Aldrich (St. Louis, MO, USA). 32P-γ-ATP was from PerkinElmer (Waltham, MA, USA). Alexa Fluor 488® (A488) and Alexa Fluor 594® (A594) C5 maleimides were from ThermoFisher (Pittsburgh, PA, USA). All other chemicals, buffers, and media were analytical grade or better.

Cloning and protein purification

Sso PolB1, RFC and PCNA123 and their mutants were purified as described previously (44). SsoPolY mutants were created using a standard Quickchange protocol from pET11-Dpo4 (22,28) using KAPA DNA polymerase (Kapa Biosystems, Wilmington, MA, USA). Primers are listed in Supplemental Table S1. Mutations were confirmed by DNA sequencing (ICMB, UT Austin). PolY WT and mutants were purified essentially as described previously (22) using autoinduction (45) in Rosetta 2 cells (Novagen EMD Milipore, Billerica, MA, USA) followed by HiTrap MonoQ, Heparin, and Superdex S-200 columns on a AKTA Pure FPLC chromatography system (GE Healthcare Life Sciences, Marlborough, MA, USA). All PolY mutants retain near wild-type activity on their own and within a PolY HE complex (data not shown).

Analytical gel filtration

Analytical gel filtration experiments were conducted using a Superdex 200 10/300 GL column (GE Healthcare Life Sciences) equilibrated in Buffer A (20 mM HEPES-NaOH (pH 7.0), 50 mM NaCl, 10% β-mercaptoethanol). Calibration of the Superdex 200 10/300 GL column was performed by running molecular ruler standards consisting of Thyroglobulin (165 kDa, Sigma), Conalbumin (75 kDa, GE Healthcare Life Sciences), Albumin (43 kDa, Sigma), Myoglobin (17.6 kDa, Sigma) and Vitamin B12 (1.4 kDa, Sigma). The standard calibration curve was created by plotting retention volume data against the logarithm of the molecular weights of the calibration proteins and was fitted by linear least squares. Five hundred microliters samples consisting of 5 μM of each indicated component (PolB1, PolY, PCNA123, RFC, DNA21/31) and 1.6 mM ATP were mixed, nutated at room temperature for 10 min, and injected in the Superdex column (4°C). Protein elution was monitored at 280 nm and fractions collected at regular intervals.
Western blot analysis
Analytical gel filtration fractions of SHE and PolY HE were separated in 10% SDS-PAGE, transferred onto PVDF membranes, and probed with antibodies against PolB1 or PolY (1:4000). Proteins of interest were detected with HRP-conjugated anti-rabbit (1:5000) and visualized with the Pierce ECL western blotting substrate (Thermo Scientific, Rockford, IL, USA), using ImageQuant LAS 4000 (GE Healthcare Life Sciences) according to the manufacturer’s instructions.

Protein fluorescent labeling
Proteins were fluorescently labeled at a single accessible cysteine residue with either A488 or A594 maleimides as described previously (44). PolB1 has three native cysteines: C538 and C556 in a disulfide bond and a single solvent accessible C67. C67 was mutated to Ser in favor of moving the labeling position towards the C-terminus (C67S/S740C). Single cysteines were introduced into SsoPCNA subunits [PCNA1 (S191C), PCNA2 (S92C)] and labelled similarly. SsoDpo4 (PolY) was labelled at a single native C31 (46). Proteins were dialyzed into their storage buffer free of dye. Reactions were allowed to proceed for 2 h at room temperature or overnight at 4°C. Labeled proteins were separated from free dye using a 1 ml G-25 column (GE Healthcare Life Sciences), and/or extensive dialysis in labeling buffer. Labeling efficiencies were calculated from a ratio of concentrations (dye:protein) using the extinction coefficients and generally exceeded 95%.

Steady-state FRET
Steady-state fluorescence spectroscopy was performed on a FluoroMax-4 spectrofluorimeter (HORIBA Jobin Yvon). WT or Y122P PolY labeled with A488 at 20 nM was titrated at room temperature with increasing concentrations of PolB1 labeled with A594 as indicated in the figure legends. The fluorescence emission spectra (505–650 nm) were collected with an excitation wavelength of 485 and 4 nm slits on a FluoMax-4 spectrofluorimeter (HORIBA Jobin Yvon). Steady-state fluorescence spectroscopy was performed on a FluoroMax-4 spectrofluorimeter (HORIBA Jobin Yvon). WT or Y122P PolY labeled with A488 at 20 nM was titrated at room temperature with increasing concentrations of PolB1 labeled with A594 as indicated in the figure legends. The fluorescence emission spectra (505–650 nm) were collected with an excitation wavelength of 485 and 4 nm slits on a FluoMax-4 spectrofluorimeter (HORIBA Jobin Yvon). Steady-state fluorescence spectroscopy was performed on a FluoroMax-4 spectrofluorimeter (HORIBA Jobin Yvon). WT or Y122P PolY labeled with A488 at 20 nM was titrated at room temperature with increasing concentrations of PolB1 labeled with A594 as indicated in the figure legends. The fluorescence emission spectra (505–650 nm) were collected with an excitation wavelength of 485 and 4 nm slits on a FluoMax-4 spectrofluorimeter (HORIBA Jobin Yvon). Steady-state fluorescence spectroscopy was performed on a FluoroMax-4 spectrofluorimeter (HORIBA Jobin Yvon). WT or Y122P PolY labeled with A488 at 20 nM was titrated at room temperature with increasing concentrations of PolB1 labeled with A594 as indicated in the figure legends. The fluorescence emission spectra (505–650 nm) were collected with an excitation wavelength of 485 and 4 nm slits on a FluoMax-4 spectrofluorimeter (HORIBA Jobin Yvon). Steady-state fluorescence spectroscopy was performed on a FluoroMax-4 spectrofluorimeter (HORIBA Jobin Yvon). WT or Y122P PolY labeled with A488 at 20 nM was titrated at room temperature with increasing concentrations of PolB1 labeled with A594 as indicated in the figure legends. The fluorescence emission spectra (505–650 nm) were collected with an excitation wavelength of 485 and 4 nm slits on a FluoMax-4 spectrofluorimeter (HORIBA Jobin Yvon). Steady-state fluorescence spectroscopy was performed on a FluoroMax-4 spectrofluorimeter (HORIBA Jobin Yvon). WT or Y122P PolY labeled with A488 at 20 nM was titrated at room temperature with increasing concentrations of PolB1 labeled with A594 as indicated in the figure legends. The fluorescence emission spectra (505–650 nm) were collected with an excitation wavelength of 485 and 4 nm slits on a FluoMax-4 spectrofluorimeter (HORIBA Jobin Yvon). Pre-steady state FRET
Stopped-flow fluorescence experiments were performed on an Applied Photophysics (Leatherhead, UK) SX.20MV in fluorescence mode at a constant temperature of 22°C. Template DNA (31mer) was labeled at the 3′ end with A488 by IDT. A 21 base primer was annealed and complementary to the 3′ end of the template. Final concentrations of components after mixing were PolB1 (0.4 μM), RFC (0.4 μM), DNA (0.2 μM), ATP (0.3 mM), and PolY (0.4 μM), unless indicated otherwise. The samples were excited at 490 nm, and a 590-nm-cutoff filter was used to collect 4000 oversampled data points detecting only A594 emission over single or split-time bases. The slits were set at 3 mm for both excitation and emission. At least seven traces were averaged for each experiment and performed multiple times and on multiple occasions. The observed averaged traces were fit to one, two or three exponentials using the supplied software. Below is the equation for a double exponential fit:

\[
v = a_1 \cdot e^{-k_1 t} + a_2 \cdot e^{-k_2 t} + C
\]

where \(a\) is the amplitude change, \(k\) is the exponential rate, \(t\) is time, and \(C\) is a constant for the amplitude.

In vitro replication and processivity assays
Polymerase replication and processivity assays were performed as previously described (44), with the following modifications. PolB1 (0.2 μM), PCNA (2 μM), RFC (0.4 μM) and ATP (0.2 mM) were loaded onto primed M13mp18 DNA (18 nM) to form the PolB1 HE. A M13 primer was 5′ end labeled with 32P-γ-ATP (PerkinElmer, Waltham, MA) using OptiKinase (Affymetrix, Santa Clara, CA) according to manufacturer’s instructions. PolY was added (at indicated concentrations) and incubated for 5 min, before initiating the reaction with 0.2 mM dNTPs. Single-turnover processivity assays were simultaneously initiated with 0.2 mM dNTPs and a 5000-fold excess salmon sperm DNA trap (3 mg/ml). DNA products were separated on either a 0.8% or 2.5% alkaline agarose gel depending on expected product length and dried under vacuum at 80°C for 1 h. Gels were exposed to a phosphor screen (GE Healthcare Life Sciences) for a minimum of 4 h, imaged using a Storm 820 Phosphorimager (GE Healthcare Life Sciences), and the data analyzed using ImageQuant software (v4.5, GE Healthcare Life Sciences). Quantification of the lane profiles from multiple experiments were calibrated to the 1kb DNA ladder (Promega, Madison, WI) to determine DNA product lengths.

RESULTS
Detection of the supraholoenzyme (SHE) complex
As a means to follow composition and stability of the DNA polymerase holoenzyme complexes, we utilized analytical gel filtration chromatography (Figure 1A). The heteropentameric Sso clamp-loader (RFC), consisting of four subunits of RFCs (small) and 1 subunit of RFCL (large), alone elutes around 12 ml with a total molecular weight of 197 760 g/mol. RFC-directed loading of PCNA (individual subunits 1, 2 and 3) onto DNA is apparent at 10.5 ml. The broad spread of signal from 10 to 14 ml most likely indicates dynamic loading/dissociation of PCNA on DNA and interactions with RFC as well as RFC and
PCNA123 alone. Formation of the PolY HE complex includes PolY/PCNA123/DNA at 10.6 ml with RFC dissociated from this complex. Similarly, the PolB1 HE consisting of PolB1/PCNA123/DNA forms at 10.5 ml (Figure 1B) with RFC dissociated as also indicated previously (44). Interestingly, addition of PolY to the PolB1 HE shifts the main peak to 9.7 ml indicative of a higher order SHE complex as well as an internal standard to account for drift in the elution profile. (B) Western-blot analysis of aPolB1 and aPolY in SHE and PolB1 or PolY HE fractions. (C) Relative quantification of PolY compared between SHE and PolY HE.

Recruitment of PolY to form the SHE complex

Previously, we have shown assembly of the SsoPolB1 DNA polymerase holoenzyme (PolB1 HE) using presteady-state FRET (44). Assembly included a complex multiplex step pathway to form the PolB1 HE complex. Although PolB1 has specificity for PCNA2 and PolY has specificity for PCNA1, we can also monitor binding to the heterotrimer PCNA123 and assembly of the complexes from either labelled position (Supplemental Figure S1A&B). Larger FRET is observed when there is a preformed PCNA123 heterotrimer with the label at either PCNA1 or PCNA2 subunit. From the clamp-loaded state (DNA/PCNA123/RFC), we have now monitored the recruitment of PolY to form the PolY TLS holoenzyme complex using specifically fluorescently labelled proteins (Supplemental Figure S1C). The averaged stopped-flow FRET trace fit best to a double exponential consistent with two conformational change steps (k^obs, and k^obs) after association. PolY HE assembly can be monitored from either donor labeling of PCNA1, or PCNA2 with similar results and k constants although labeling at PCNA2 ensures interaction FRET measurements with the PCNA123 trimer instead of direct interactions between PolY and PCNA1. Doubling or halving the PolY concentration did not significantly affect the observed rate constants, k, and k, consistent with second order conformational change processes. Importantly, these experiments formed the basis for directly monitoring PolB1–PolY interactions within a SHE complex by FRET.
Figure 2. Direct Interaction of PolB1 and PolY Monitored by FRET. (A) Steady-state FRET quenching 20 nM PolY labeled with Alexa 488 (PolY488) with PolB1 labeled with Alexa 594 (PolB1594) at room temperature (22°C). Reported spectra were corrected for dilution and for the intrinsic fluorescence of buffer components and unlabeled PolY. Spectra were normalized to 1.0 by using the donor only as a reference. (B) The fluorescence maximum (at 517 nm) was plotted as a function of [PolB1594] and fit to Equation (1) to give $K_d = 0.14 \pm 0.02$ μM. Error bars represent the standard error from five independent titrations. (C) Presteady-state FRET of PolB1488 interacting with PolY594 (0.4 μM final) shows a biphasic curve. The observed rates (k_1 and k_2) from ten experiments consisting of at least seven averaged traces each were plotted as a function of [PolY594] indicating second order rate constants (inset).

Figure 3. Presteady-state FRET Assembly of the SHE. (A) Presteady-state FRET traces monitoring interactions of PolY594 (0.4 μM final) to specific components of a preformed PolB1 HE complex. In each experiment, only one PolB1 HE component was fluorescent labeled with Alexa488 (*): DNA* (gray), PCNA2* (red), PCNA1* (blue) or PolB1* (purple) in separate experiments. (B) Fluorescence traces were adjusted to 8.0 and plotted together for more direct comparison of the (C) rates fit from a double exponential increase (Equation 2). Error values indicate the standard error from three independent experiments consisting of at least seven averaged traces each.

In the complex, the observed rates (k_{obs1} and k_{obs2}) are similar for binding of PolY (Figure 3B and C). This suggests that PolY binds the PolB1 HE complex independent of any one protein and that no single protein is displaced upon binding PolY. The DNA concentration in this experiment is limiting (0.2 μM final) as higher concentrations of DNA show vastly greater rates when DNA is labelled with A488, more consistent with direct binding of PolY to free DNA. Changing the concentration of PolY while keeping the concentration of the PolB1 HE components the same does not alter the observed rates indicating that we are monitoring a first-order conformational change process (Supplemental Figure S2). Building on the kinetic assembly pathway from PolB1/PCNA123/DNA published previously (44), formation of the SHE complex proceeds through an equi-
Figure 4. Addition of PolY Stabilizes the SHE Complex. (A) Preformed PolB1 HE with two of the components labeled was mixed with unlabeled PolY in a stopped-flow instrument and the FRET signal was monitored. (B) Presteady-state FRET traces of a preformed FRET PolB1 HE complex showing the fluorescence enhancement and stabilization upon addition of unlabeled PolY (0.4 μM final). Fluorescence traces were normalized to 8.0 for more direct comparison. Schematic representation of the FRET experiments is shown inset. (C) Double exponential rates (Equation 2) of the interactions fit for each FRET increase. Error values indicate the standard error from three independent experiments consisting of at least seven averaged traces each.

liberum binding step (H) followed by two additional fluorescently observed conformational states (I-J).

In order to confirm that the PolB1 HE stays intact when PolY binds to form the SHE, we instead assembled a PolB1 HE labelled with both a donor and acceptor dye as a FRET complex from three different perspective and then mixed with unlabeled PolY (Figure 4A). In this experiment, should PolY displace the binding of any single PolB1 HE component, the FRET signal would decrease. However, for the three different experiments with donor and acceptor labels on different proteins or DNA, double exponential increases in fluorescence were observed (Figure 4B and C) that mirror the rates from direct FRET monitoring of SHE formation (Figure 3B). Therefore, PolY not only binds to form the SHE complex, it also stabilizes and/or rearranges the overall conformation.

Polymerase exchange is directed by PIP interactions

Previously, we described how the Sso replicative holoenzyme achieves high rates of replication through a process of rapid polymerase re-recruitment, rather than processive single enzyme synthesis (44). This mechanism may also allow for the rapid exchange of the PolB1 replication polymerase with a TLS polymerase, PolY, opportunistically or specifically when needed. However, whether this is directed by contacts within a SHE complex or polymerase exchange occurs preferentially from solution is not known. Therefore, we titrated PolY constructs aimed to test interactions with PCNA into a PolB1 HE primer extension reaction (Figure 5). PolY has a slower global polymerization rate because of its low processivity (42); therefore, if it exchanges with PolB1, the product length will be shorter than as seen with WT (lanes 2–5). The reduction in product length occurs at stoichiometric or higher concentrations compared with PolB1. Mutation of the PIP site in PolY (cat[−]) eliminates an interaction with PCNA1 specifically and shuts down DNA synthesis even more than WT (lanes 6–9) suggesting that either direct exchange from solution is favored or the PIP site interaction coordinates exchange within a SHE complex. Mutation of the active site of PolY (cat[−]) reduces product length further (lanes 10–13), consistent with both direct PolY exchange and with PCNA directed exchange within the SHE. Interestingly when the cat[−]/PIP[−] PolY mutant was titrated, there was a partial rescue in product length (lanes 14–17) compared to cat[−] alone (lanes 10–13) (Figure 5B and C), suggesting that PolY-PCNA1 contacts are important but not solely required for effective polymerase exchange. DNA synthesis was not inhibited until higher concentrations of the cat[−]/PIP[−] polymerase were titrated compared to the cat[−] PolY (Supplemental Figure S3). However, full length DNA products were not restored to WT lengths for cat[−]/PIP[−] and were even greater than cat⁺ products, indicating that other interaction sites for PolY may exist within the SHE to mediate exchange. The combined data indicates that PolY is able to replace PolB1 from solution and that exchange is facilitated when PolY interacts with PCNA1, but importantly, there is also evidence for direct contacts between PolB1 and PolY within a SHE complex during active replication.

Novel PolB1-PolY (YB) interaction site identified within the supraholoenzyme

In order to probe a potential PolB1–PolY interaction on DNA synthesis ability and exchange, we identified residues (Y122, L126, I163) within a hydrophobic patch on the surface of PolY (Figure 6A and B). This patch was identified first through molecular modelling of a SHE complex that fixed the PIP site of PolB1 to PCNA2 and the PIP site of PolY to PCNA1 bound to a primer template DNA. We then utilized PolB1 truncation data that mapped PolY binding to the central region on PolB1 (residues 482–617) (21) to limit the potential interaction site of PolY contained within the SHE. Coincidently, these residues in Archaeal PolY are homologous to residues in the TLS polymerase, Pol IV, from...
Figure 5. PolY PIP contacts are important for SHE action and exchange. (A) Experimental scheme showing PolY variants titrated at 200 nM PolB1 HE before initiation with dNTPs to follow DNA synthesis length after five minutes at 60°C. (B) PolY WT, PIP−, cat− or cat−/PIP− were added at increasing concentration (50, 100, 200, 400 nM). The dashed lines (lanes 10 and 14) indicate C) the 50 nM [PolY] that are directly compared (cat− versus cat−/PIP−) by difference shading (green) in quantification of the product lengths.

Figure 6. PolY YB contacts are also important for SHE action and exchange. (A) Crystal structure of SsoPolY(Dpo4)/DNA (PDBID: 1JXL) identifying residues (Y122, L126 and I163) within a (B) hydrophobic patch on the back of the palm domain. (C) Structural overlay of EcPol IV (PDBID: 4IR1) (green) with SsoPolY (brown) highlighting homologous Pol IV residues (T120, Q124 and Q161). (D) Experimental scheme showing PolY variants titrated to a 200 nM PolB1 holoenzyme before initiation with dNTPs to follow DNA synthesis length after 5 min at 60°C. (E) PolY WT, PIP−, Y122P, Y122P/PIP− were added at increasing concentration (50, 100, 200, 400 nM). The dashed lines (lanes 12 and 16) indicate (F) the 200 nM [PolY] that are directly compared (Y122P vs. Y122P/PIP−) by difference shading (lilac) in quantification of the product lengths.

E. coli identified from a genetic mutant screen sensitive to DNA damage (19) (Figure 6C).

Again, we designed primer extension assays to test the ability of these PolY mutants (Y122A, Y122P, L126N, I163N) to direct exchange within the SHE complex and slow synthesis to affect product length. The absence of an interaction of PolY with PolB1 from a specific mutation would abrogate this polymerase exchange ability and result in longer products than with wild-type PolY. Mutation of PolY (Y122P) decreases the quenching and binding affinity for PolB1 measured in steady-state FRET assay (Supplemental Figure S4). In fact when each of the PolY mutants was titrated into a PolB1 HE primer extension assay, only in combination with the PIP− mutation did the PolY−
YB/PIP− mutants restore more full length product at the higher concentrations, indicating the exchange had been affected (Supplemental Figure S5). Directly comparing stoichiometric concentrations of PolB1 and PolY in this assay for Y122P and Y122P/PIP− mutants show only a restoration of product length when both contact sites in PolY are mutated (lanes 14–17) (Figure 6D–F). Quantification of the product length as a function of concentration of each PolY construct shows modulation in the product length, especially for Y122P/PIP− (Supplemental Figure S6). Therefore, PolY requires at a minimum interactions with both PCNA1 (PIP) and PolB1 (YB) to direct exchange from solution and within the SHE complex.

Based on the stabilization of the SHE complex noted above with the stopped-flow FRET (Figure 4) and the YB contacts identified to be important for complex formation, we next tested the ability of the SHE complex to increase processivity of DNA synthesis (Figure 7). Previously, we had shown that the PolB1 HE alone has low processivity and instead acts distributively during synthesis, repetitively recruiting PolB1 to replicate long stretches of DNA (44). Addition of WT PolY to the PolB1 HE (forming the SHE) increases the processivity of DNA synthesis by a few hundred bases (lanes 3 versus 4) (Figure 7B). In these processivity assays, a high concentration of ssDNA is added with the dNTPs to initiate synthesis while at the same time trapping any polymerases that dissociate from the DNA template during the course of the reaction to measure length of DNA synthesis from a single processive event. Both PIP− and Y122P PolY constructs also increase the processivity significantly over PolB1 HE alone (Figure 7B, lanes 5–6 and C). However, when both PIP− and Y122P mutations are combined, the processivity is reduced to PolB1 HE level (lanes 3 versus 7) implicating both sites for the stabilization of the SHE complex on DNA.

Presteady-state stopped-flow FRET experiments were used again to follow the impact of the Y122P on interaction within the PolB1 HE. PolY Y122P interacts similarly to WT with PCNA123 labelled at PCNA1 or PCNA2 in isolation (Supplemental Figure S7). When PolB1488 was preloaded on DNA in a HE complex and rapidly mixed with PolY594 (WT or Y122P), there were similar double exponential increases observed (Figure 8). The amplitude is consistently larger for Y122P over WT, which may indicate a slightly different final conformation for this mutant within the SHE complex.
complex. Mutation of PIP\(^-\) in PolY reduces the FRET signal considerably but without significantly affecting the rate, suggesting a reduction in the formation of the SHE complex. The combination of Y122P and PIP\(^-\) mutations in PolY virtually abrogate the entire FRET signal, clearly implicating both the PIP and YB sites in formation of the SHE complex.

DISCUSSION

In this study, we have identified interactions between the B-family replication polymerase and the Y-family TLS polymerase in *Sso* that contribute to formation of a suprapholoenzyme (SHE) complex. For this, we utilized a combination of biochemical techniques aimed at first identifying direct interactions between polymerases first by analytical gel filtration and FRET and second examining the mechanism of polymerase exchange that occurs during DNA synthesis. Known PIP binding sites to PCNA1 as well as a newly identified YB interaction site between polymerases are together required for maintaining the SHE complex. The YB site is a conserved hydrophobic patch on the back of the palm domain of PolY. Binding of PolY to the PolB1 HE occurs through concerted interactions with the PIP interaction site on PCNA1 and a YB interaction site with PolB1. The presence of PolY within the SHE stabilizes the entire complex, effectively increasing processivity of DNA synthesis. Direct polymerase exchange with the DNA template can occur within the confines of the SHE complex during DNA synthesis repetitively switching high and low fidelity polymerases. At higher concentrations of PolY, polymerase exchange from solution predominates, displacing the PolB1 HE or SHE. Identification of the SHE complex expands our understanding of concerted DNA polymerase exchange within the complex as well as provides a plausible mechanism for recruitment of PolY from solution for coordination of high fidelity and translesion DNA synthesis.

PCNA is known to interact with many protein partners through the PIP binding site, however, how the trimeric protein coordinates binding and regulates activity is still not known. The availability of three binding sites on the trimer could allow up to three different protein partners to be contained and their activities coordinated towards the DNA substrate in a ‘tool-belt’ configuration. Increasing local concentrations of proteins or providing contacts for recruitment by simultaneous binding to PCNA can effectively increase the rate of processing. For example, Okazaki fragment maturation requires the sequential action of DNA polymerase, flap endonuclease, and DNA ligase. In archaea, it has been shown that an Okazakiiosome consisting of the co-occupancy of these three proteins to the heterotrimeric *Sso*PCNA123 can exist to promote joining of Okazaki fragments (39,47). However, although a similar Okazaki fragment maturation complex can exist in eukaryotes, engineered single binding site PCNA molecules are fully capable of directing lagging-strand processing through a sequential switching process (48,49) calling into question the absolute utility of the ‘tool-belt’.

Perhaps some of the most well characterized ‘tool-belt’ activity and coordination comes from work with the betaclamp and various DNA polymerases in bacteria. Both the high-fidelity Pol III and lower-fidelity TLS Pol IV can be contained on the beta clamp (41) and a secondary binding site can regulate Pol IV engagement and Pol III dissociation at the site of a lesion (50–53). In the absence of Pol IV or on undamaged DNA, Pol III preferentially engages the DNA template for active and processive DNA synthesis. Further work identified a functional interaction between residues in Pol III and Pol IV from a genetic screen (19) that are homologous to the YB site identified here (Figure 6C). In addition to Pol IV, the cryptic activity of the TLS Pol II has also been shown to form a ‘tool-belt’ complex with Pol III and the beta clamp that can rapidly exchange binding to the DNA template, although the disruptive activity is less than for Pol IV (20). The third TLS polymerase in bacteria, Pol V, can also be bound to the beta clamp through an opposite cleft from Pol III, however, genetic experiments show that a single cleft is capable of supporting coordinated TLS synthesis implicating other binding sites within this complex (54). Pol V–Pol III directed exchange and TLS coordination has yet to be shown experimentally *in vitro*.

It is interesting that different laboratories have independently identified common polymerase interaction sites (YB) in two highly divergent domains of life: bacteria and archaea. The amino acid residues in this area are not highly homologous across domains or even within related species. However from the limited X-ray structures available, there is a strong hydrophobic surface on the back of the palm domain of all these polymerases. As well as providing for an interaction with PolB1 (YB) within a SHE complex, this hydrophobic patch may also be important for recruiting PolY to additional DNA damaged sites through interactions with other proteins such as single-strand binding protein or other DNA repair factors.

PolY’s primary interaction site is with the clamp protein, i.e. PCNA1 in *Sso*. The co-occupancy of two polymerases on the clamp (especially Pol III and Pol IV) has been shown to be dynamic, with both polymerases switching access to the DNA template and influencing dissociation of the other (50,51). The consequences of co-occupancy of polymerases must include having at least two conformational states: DNA engaged and unengaged. High fidelity proof-reading polymerases must also have at least two additional engaged conformational states for polymerase and exonuclease activities. The dynamics and coordination of all of these conformational states are not entirely clear, however, archaeal *Pyrococcus furiosus* PolB has been visualized by EM in different conformation states identifying additional interactions with PCNA that position it in a ‘standby’ state that is unengaged from DNA (55,56). Moreover, hinges in *Sso*PolY (Dpo4) have also been shown to influence the conformation of PolY bound to PCNA/DNA complex indicating at least three conformational states that regulate the activity and accessibility to DNA (43). These alternative conformational states could allow for binding of both *Sso* PolB1 to PolY in the SHE complex and allow for ‘tool-belt’ – like polymerase switching to occur that seamlessly replicates undamaged DNA and bypasses lesions.

In eukaryotes, stalled DNA polymerases at DNA lesions will cause an increase in the amount of ssDNA created, and the buildup and persistence of RPA-coated DNA which is a signal for the Rad6/Rad18 dependent monoubiquitination.
(mUb) of PCNA (57–59). Whether this later stage temporal process is what actually directs TLS activity or just upregulates the global DNA damage response (DDR) in severe cases is still being determined. For example, the human Y-family pol η is known to colocalize with DNA replication foci even in undamaged conditions (8), and the ubiquitination of PCNA is not required for the localization of pol η in foci (60). Although in humans there is no current evidence for a SHE-like complex, translesion synthesis can occur ‘on the fly’ and without mUb through a passive exchange mechanism with pol δ (59,61,62). This passive exchange mechanism relies on the inherent dissociation property of pol δ at a lesion site allowing for pol η to bind in its place. Whether pol η or any other Y-family pol influences this dissociation or exchange is still being studied. Therefore, the emerging view is that ‘on the fly’ TLS activity can be coordinated within the progressing replisome with associated Y-family pols, while more extreme stalling or replication re-start may require mUb of PCNA for more stable recruitment of Y-family pols. This is similar in principle to the archaeal SHE complex identified here.

In conclusion, our study identifies and characterizes a PCNA ‘tool-belt’ configuration of high fidelity PolB1 and TLS PolY polymerases simultaneously contained within a SHE complex in archaea. This novel YB interaction site between polymerases and in combination with the PIP sites are important for the processivity of the entire complex and exchange processes that occur both within the SHE complex as well as from solution. The implication of the SHE complex provides a mechanism for coordinating and localizing replication and TLS activities at the replication fork. It still remains to be seen how this polymerase coordination actually contributes to efficient TLS activity both in vitro and in vivo and whether similar mechanisms exist in eukaryotic systems or whether archaea and bacteria share sole homology for this process.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are grateful to P.F. Guengerich for providing antibodies to SsoPolY and SsoPolB1. We acknowledge the Baylor Molecular Bioscience Center (MBC) for providing instrumentation and resources aiding this project.

Author contributions: M.T.C. and R.J.B. performed mutagenesis, protein purification, and kinetic replication and processivity assays. A.M.C. performed mutagenesis, protein purification, analytical gel filtration, fluorescent labeling, steady-state, and stopped-flow experiments. J.K.B. performed protein mutagenesis and purification. M.A.T. designed the experimental approach and wrote the paper. All authors analyzed data, prepared figures and edited the manuscript.

FUNDING

Baylor University and a Research Scholar Grant [RSG-11–049-01-DMC to M.A.T.] from the American Cancer Society and the NSF-MCB [NSF1613534 to M.A.T.]. Funding for open access charge: Baylor University.

Conflict of interest statement. None declared.

REFERENCES

1. Ohmori,H., Friedberg,E.C., Fuchs,R.P., Goodman,M.F., Hanaoka,F., Hinkle,D., Kunkel,T.A., Lawrence,C.W., Livneh,Z., Nohmi,T. et al. (2001) The Y-family of DNA polymerases. Mol. Cell, 8, 7–8.
2. Prakash,S., Johnson,R.E. and Prakash,L. (2005) Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annu. Rev. Biochem., 74, 317–353.
3. Sale,J.E., Lehmann,A.R. and Woodgate,R. (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol., 13, 141–152.
4. Liu,B., Xue,Q., Tang,Y., Cao,J., Guengerich,F.P. and Zhang,H. (2016) Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. Mutat. Res. Rev. Mutat. Res., 765, 53–67.
5. Boehm,E.M., Gildenberg,M.S. and Washington,M.T. (2016) The many roles of PCNA in eukaryotic DNA replication. Eizynets, 39, 231–254.
6. Maga,G. and Hubscher,U. (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell. Sci., 116, 3051–3060.
7. Moldovan,G.L., Pander,B. and Jentsch,S. (2007) PCNA, the maestro of the replication fork. Cell, 129, 665–679.
8. Bienko,M., Green,C.M., Crosetto,N., Rudolf,F., Zapart,G., Coull,B., Kannouche,P., Wider,G., Peter,M., Lehmann,A.R. et al. (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science, 310, 1821–1824.
9. Hendel,A., Krijger,P.H., Diamant,N., Goren,Z., Langerak,P., Kim,J., Reissner,T., Lee,K.Y., Geacintov,N.E., Curel,T. et al. (2011) PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet., 7, e1002262.
10. Pryor,J.M., Dieckman,L.M., Boehm,E.M. and Washington,M.T. (2014) In: Murakami,KS and Trakselis,MA (eds). Nucleic Acids Mol. Bi. Springer-Verlag, Berlin, Vol. 30, pp. 85–108.
11. Masuda,Y., Kanao,R., Kaji,K., Ohmori,H., Hanaoka,F. and Masutani,C. (2015) Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Res., 43, 7898–7910.
12. Plosky,B.S., Vidal,A.E., Fernandez de Henestrosa,A.R., McLenigan,M.P., McDonald,J.P., Mead,S. and Woodgate,R. (2006) Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J., 25, 2847–2855.
13. Despras,E., Delrieu,N., Garandeau,C., Ahmed-Seghir,S. and Kannouche,P.L. (2012) Regulation of the specialized DNA polymerase eta: revisiting the biological relevance of its PCNA- and ubiquitin-binding motifs. Environ. Mol. Mutagen., 53, 752–765.
14. Freudenthal,B.D., Gakhar,L., Ramaswamy,S. and Washington,M.T. (2010) Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat. Struct. Mol. Biol., 17, 479–484.
15. Garg,P. and Burgers,P.M. (2005) Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and Rev1. Proc. Natl. Acad. Sci. U.S.A., 102, 18361–18366.
16. Matsumiya,S., Ishino,S., Ishino,Y. and Morikawa,K. (2002) Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Genes Cells, 7, 911–922.
17. Williams,G.J., Johnson,K., Rudolf,J., McMahon,L.M., Carter,L., Carter,L., Oke,M., Liu,H., Taylor,G.L., White,M.F. and Naismith,J.H. (2006) Structure of the heterotrimeric PCNA from Sulfolobus solfataricus. Acta Crystallograph. Sect. F. Struct. Biol. Cryst. Commun., 62, 944–948.
18. Jeruzalmi,D., Yurieva,O., Zhao,Y., Young,M., Stewart,J., Loparo,J.J. and Sutton,M.D. (2015) A genetic selection for dinB mutants reveals an interaction between DNA polymerase IV and the replicative polymerase that is required for translesion synthesis. PLoS Genet., 11, e1005507.
20. Kath,J.E., Chang,S., Scotland,M.K., Wilbertz,J.H., Jergic,S., Dixon,N.E., Sutton,M.D. and Loparo,J.J. (2016) Exchange between Escherichia coli polymerases II and III on a processivity clamp. *Nucleic Acids Res.*, 44, 1681–1690.

21. De Felice,M., Medagli,B., Esposito,L., De Falco,M., Pucci,B., Rossi,M., Grup,Z., Nolimi,T. and Pissiati,F.M. (2007) Biochemical evidence of a physical interaction between Sulfolobus solfataricus B-family and Y-family DNA polymerases. *Extremophiles*, 11, 277–282.

22. Lin,H.K., Chase,S.F., Lau,T.M., Jen-Jacobson,L. and Trakselis,M.A. (2012) Differential temperature-dependent multimeric assembly of repair and replication polymerases on DNA increase processivity. *Biochemistry*, 51, 7367–7382.

23. Mikheikin,A.L., Lin,H.K., Mehta,P., Jen-Jacobson,L. and Bell,S.D. (2009) A trimeric DNA polymerase complex increases the native replication processivity. *Nucleic Acids Res.*, 37, 7194–7205.

24. Lopez de Sario,F.J., Georgescu,R.E., Goodman,M.F. and O'Donnell,M. (2003) Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. *EMBO J.*, 22, 6408–6418.

25. Makarova,K.S. and Koonin,E.V. (2013) Archaeology of eukaryotic DNA replication. *Cold Spring Harbor Perspect. Biol.*, 5, a012963.

26. Hug,L.A., Baker,B.J., Anantharaman,K., Brown,C.T., Probst,A.J., Castelle,C.J., Butterfield,C.N., Hersendsof,A., Amano,Y., Isi,K. et al. (2016) A new view of the tree of life. *Nat. Microbiol.*, 1, 16048.

27. Ling,H., Boudsocq,F., Woodgate,R. and Yang,W. (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. *Cell*, 107, 91–102.

28. Boudsocq,F., Iwai,S., Hanaoka,F. and Woodgate,R. (2001) Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DnB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poIeta. *Nucleic Acids Res.*, 29, 4607–4616.

29. Kokoska,R.J., Bebenek,K., Boudsocq,F., Woodgate,R. and Kunkel,T.A. (2002) Low fidelity DNA synthesis by a Y-family DNA polymerase due to misalignment in the active site. *J. Biol. Chem.*, 277, 19633–19638.

30. Ling,H., Boudsocq,F., Woodgate,R. and Yang,W. (2004) Snapshots of replication through an abasic lesion: structural basis for base substitutions and frameshifts. *Mol. Cell.*, 13, 751–762.

31. Fiala,K.A. and Suo,Z. (2004) Mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV. *Biochemistry*, 43, 2116–2125.

32. Eoff,R.L., Sanchez-Ponce,R. and Guengerich,F.P. (2009) Conformational changes during nucleotide selection by Sulfolobus solfataricus DNA polymerase Dpo4. *J. Biol. Chem.*, 284, 21090–21099.

33. Maxwell,B.A. and Suo,Z. (2012) Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus. *Biochemistry*, 51, 3485–3496.

34. Boudsocq,F., Kokoska,R.J., Plosky,B.S., Vaisman,A., Ling,H., Kunkel,T.A., Yang,W. and Woodgate,R. (2004) Investigating the role of the little finger domain of Y-family polymerases during DNA replication and repair. *Nat. Microbiol.*, 111, 14118–14123.

35. Furukohri,A., Goodman,M.F. and Maki,H. (2008) A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. *J. Biol. Chem.*, 283, 11260–11269.

36. Heltzel,J.M., Maul,R.W., ScouJan,Ponticelli,S.K. and Sutton,M.D. (2009) A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. *Proc. Natl. Acad. Sci. U.S.A.*, 106, 12664–12669.

37. Sholder,G., Creech,A. and Loechler,E.L. (2015) How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene. *DNA Repair (Amst)*., 35, 145–153.

38. Walsh,J.M., Ippoliti,P.J., Ronayev,E.A., Rozners,E. and Beuning,P.J. (2013) Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily. *DNA Repair (Amst)*., 12, 713–722.

39. Wilson,R.C., Jackson,M.A. and Pata,J.D. (2013) Y-family polymerase conformation is a major determinant of fidelity and translesion specificity. *Structure*, 21, 20–31.

40. Dionne,I., Nookala,R.K., Jackson,S.P., Doherty,A.J. and Bell,S.D. (2003) A heterotrimetric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. *Mol. Cell.*, 11, 273–282.

41. Beuttel,T.R. and Bell,S.D. (2012) Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation. *EMBO J.*, 31, 1556–1567.

42. Dore,A.S., Kilkenny,M.L., Jones,S.A., Oliver,A.W., Roe,S.M., Bell,S.D. and Pearl,L.H. (2006) Structure of an archaeal PCNA1-PCNA2-FEN1 complex: Elucidating PCNA subunit and client enzyme specificity. *Nucleic Acids Res.*, 34, 4515–4526.

43. Stodola,J.L. and Burgers,P.M. (2016) Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. *Nat. Struct. Mol. Biol.*, 23, 402–408.

44. Kath,J.E., Jergic,S., Heltzel,J.M., Jacob,D.T., Dixon,N.E., Sutton,M.D., Walker,G.C. and Loparo,J.J. (2014) Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. *Proc. Natl. Acad. Sci. U.S.A.*, 111, 7647–7652.

45. Dvorkin,A., Goodman,M.F. and Makita,H. (2008) A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. *Proc. Natl. Acad. Sci. U.S.A.*, 106, 12664–12669.

46. Bodo,D., Stodola,J.L., Burgers,P.M. and Aharoni,A. (2014) Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation. *Proc. Natl. Acad. Sci. U.S.A.*, 111, 14118–14123.

47. Nishida,H., Mayanagi,K., Kiyonari,S., Kohda,D., Ishino,Y., Shrai,T. and Morikawa,K. (2011) Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. *Proc. Natl. Acad. Sci. U.S.A.*, 108, 1845–1849.

48. Nishida,H., Mayanagi,K., Kiyonari,S., Sato,Y., Oyama,T., Ishino,Y. and Morikawa,K. (2009) Structural determinant for switching between the polymerase and exonuclease modes in the PCNA- replicative DNA polymerase complex. *Proc. Natl. Acad. Sci. U.S.A.*, 106, 20693–20698.

49. Chang,D.J., Lupardus,P.J. and Cintrich,K.A. (2006) Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and micronucleosome maintenance helicase activities. *J. Biol. Chem.*, 281, 32081–32088.

50. Davies,A.A., Huettner,D., Daigaku,Y., Chen,S. and Ulrich,H.D. (2008) Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A. *Mol. Cell.*, 29, 625–636.

51. Hedglin,M. and Benkovic,S.J. (2015) Regulation of Rad6-mediated by replication protein A. *Mol. Cell.*, 29, 625–636.
(2008) Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. *Mol. Biol. Cell*, **19**, 5193–5202.

61. Edmunds, C.E., Simpson, L.J. and Sale, J.E. (2008) PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. *Mol. Cell*, **30**, 519–529.

62. Hedglin, M., Pandey, B. and Benkovic, S.J. (2016) Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. *Elife*, **5**, e19788.