Comparative Insecticidal Activities of some Botanical Powders and Pirimiphos-Methyl Against *Callosobruchus maculatus* Fab.[Coleoptera: Bruchidae] Infesting Cowpea Seeds

Abstract

Insecticidal activities of powders of *Anacardium occidentale*, *Momordica charantia*, *Jatropha curcas*, *Zanthoxylum zanthoxyloides* as well as Pirimiphos-methyl were assessed under ambient atmospheric condition (28±2°C and 74% r.h) in the laboratory on *Callosobruchus maculatus* Fabricius at four treatment levels of 0.2, 0.4, 0.6, and 0.8 g plant powders per 20 g of cowpea seeds. Percentage mortality of adults was observed at 24, 48, 72, 96, 120, 144, and 168 h. *Z. zanthoxyloides* had the highest toxicity effect causing up to 100% mortality of adult *C. maculatus* by 168 h post treatment with the treatment level of 0.8 g followed by the powders of *M. charantia*, *J. curcas*, *A. occidentale*, and then Pirimiphos-methyl, causing 84.3%, 83.2%, 82.2% and 72.0% insect mortality respectively. The four botanical powders considerably reduced the number of adults *C. maculatus* that emerged and effectively protected the cowpea seeds during the period of storage for five weeks as against the poor protection offered by Pirimiphos-methyl. From this result, it can be deduced that the insecticide powders from the botanicals used were more effective in protecting *C. maculatus* compared to the chemical insecticide (Pirimiphos-methyl).

Keywords: Insecticidal; *Anacardium occidentale*; *Momordica charantia*; *Jatropha curcas*; *Callosobruchus Maculates*; Pirimiphos-methyl; Insecticides; Mortality

Introduction

Cowpea, *Vigna unguiculata* [L.] Walp. is a widely planted nutritious grain legume [1]. It is cultivated in many West African countries including Nigeria. Cowpea is a source of dietary protein, vitamins and mineral salts. It has been consumed by human since the earliest practice of Agriculture in developing countries of Africa, Asia, and Latin America [2]. The pulse beetle, *Callosobruchus maculates* Fab. [Coleoptera: Bruchidae], is a major pest of economically important grain legume such as cowpea, lentils, green gram and black gram [3-10]. Infestation by *C. maculatus* starts in the field, where adult females lay eggs on the green pods of cowpea. The larva bore into the pulse grain which becomes unsuitable for human consumption, viability for replanting, or for production of sprouts [11,2,3,13]. The control of infested stored grains by weevils is primarily achieved by the use of convensional insecticides, such as methyl bromide and phosphone. The shortcomings of these conventional insecticides such as environmental pollution, ozone layer depletion of insecticides containing Chlorofloro carbon, human health hazard, among other has led to the ban or restriction of several chemical insecticides [14]. These chemical insecticides are associated with problems such as, lethal effect on non target organisms, pest resurgence, pest resistance and mammalian toxicity due to residue persistence [14-16,6,17]. These aforementioned problems associated with chemical insecticides has led to the search for ecological friendly and cheap control measures [17-19] which include the use of botanical-derived materials such as plant oil extracts, plant crude extracts, plant powders, wood ash etc. Traditional plant materials are sometimes mixed with legume pod or seed in storage for reducing infestation by weevils [20,21]. This work is aimed at determining the comparative insecticidal activities of some botanical insecticide powders and pirimiphos-methyl against *Callosobruchus maculatus*.

Materials and Methods

Insect culture

The adult *C. maculatus* were obtained from Oba market, Ado Ekiti, Ekiti State, Nigeria. Clean, wholesome and uninfested cowpea seeds were also bought from Oba market, Ado Ekiti and was used to rear the insects inside 2 transparent jars covered with muslin cloth. The jars were kept at 28±2°C and 75±5% relative humidity in a woody cage. The culture was maintained by replacing the devoured grains with fresh un-infested ones.

Preparation of insecticide powders

The test botanicals, that is, *Anacardium occidentale*, *Momordica charantia*, *Jatropha curcas*, *Zanthoxylum zanthoxyloides* were collected from Ugbo Elu forest in Omuo Ekiti, Ekiti State, Nigeria.
The leaves of Jatropha curcas Momordica charantia and the bark of Zanthoxylum zanthoxyloides were air-dried in the laboratory for about one month. The nuts of Anacardium occidentale were sun-dried for about 10 days, after which they were cracked in order to remove the kernels. The kernels were further air-dried in the laboratory for three weeks. Each of the test plant materials was pulverized separately into fine powders using an electric grinder. The powders were passed through 2.12µm uniform sieve, tied in a nylon and placed in a tight-lid glass jar to avoid the loss of active compound in the test plant materials. The Pirimiphos-methyl used for the experiment was obtained from Department of Crop Science, Ekiti State University, Ado Ekiti, Nigeria. These Powders are referred to as the Insecticide Powders.

Response of C. maculatus to the Insecticide Powders

Twenty grams of clean un-infested cowpea seeds were measured into Petri-dishes of 9 cm diameter. Thereafter, 0.2, 0.4, 0.6, 0.8 g of each insecticide powder was mixed with the seeds inside each Petri-dish. Another Petri-dish containing 20 g of untreated cowpea seed was also prepared to serve as a control. Five pairs of day old C. maculatus adults were introduced into each Petri-dish. Each treatment was replicated 4 times and arranged in a Complete Randomization Design (CRD). The number of adult weevils that died was observed and recorded at 24 h interval for a period of 168 h (7 days). Thereafter, all insects were removed and the experiment was allowed to stay until adults (first filial generation) started to emerge. The number of adults that emerged was counted and recorded. The number of seeds that damaged was also counted, recorded and expressed as a percentage of the total number of seeds in the Petri-dish [6].

Data analysis

Data obtained were converted to percentage. Arcsin transformation was carried out on the percentage values. The data were later subjected to one-way analysis of variance (ANOVA) and means were separated using Tukey’s test.

Results

Mortality of C. maculatus in treated Cowpea Seeds

Table 1-7 show the mortality of C. maculatus in cowpea seeds treated with insecticide powders of Anacardium occidentale, Momordica charantia, Jatropha curcas, Zanthoxylum zanthoxyloides and Pirimiphos-methyl. It was observed that all the treatments were found to have significant effects on beetle mortality. Mortality of C. maculatus increased with increase in dosages of the insecticide powders and the time of exposure to the powders. Z. zanthoxyloides was the most potent of all the powders. At a low dosage level of 0.2 g by 24 h after treatment, Z. zanthoxyloides effected 16% mortality which was significantly different from 4.2, 5.9, 4.3, and 4.1% mortality in A. occidentale, M. charantia, J. curcas and Pirimiphos-methyl treated cowpea seeds respectively. At the highest dosage of 0.8 g, Z. zanthoxyloides caused mortality of 62% by 24 h after treatment. This trend of mortality was observed in 48, 72, 96, 120, 144 and 168 h after treatment. There was 100% insect mortality at 168 h post-treatment in cowpea seeds treated with 0.8 g Z. zanthoxyloides powders and this was significantly different from percentage mortality in other treatments. It can be deduced that Z. zanthoxyloides was the most toxic to C. maculatus, followed by M. charantia, J. curcas and A. occidentale respectively. The least toxic was Pirimiphos-methyl which is a chemical insecticide.

Table 1: Percentage Mortality of C. maculatus exposed to insecticide powders at 24 hours post-treatment

Insecticide Powders	Dosage (G) of Insecticides / % Mortality at Hours Post-Treatment				
	0	0.2	0.4	0.6	
A. occidentale	0.0±0.0a	4.2±0.7a	8.3±0.2a	12.3±0.4a	15.2±2.2a
M. charantia	0.0±0.0a	5.9±0.4a	9.2±0.5a	13.5±0.4a	16.7±0.8a
J. curcas	0.0±0.0a	4.3±0.7a	6.2±0.3a	10.4±0.4a	12.6±0.4a
Z. zanthoxyloides	0.0±0.0a	16.0±1.2b	24.0±1.2b	45.6±1.2c	62.2±0.4c
Pirimiphos-ethyl	0.0±0.0a	4.1±0.8a	7.2±0.4a	19.3±0.4b	35.6±2.0b

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (p>0.05) by Tukey’s test.

Table 2: Percentage Mortality of C. maculatus exposed to insecticide powders at 48 hours post-treatment

Insecticide Powders	Dosage (G) Of Insecticide / % Mortality At Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A. occidentale	0.0±0.0a	8.2±0.3a	15.3±0.3a	20.2±0.7b	45.4±0.8c
M. charantia	0.0±0.0a	12.2±0.8b	18.3±0.6a	23.2±2.0b	35.3±0.3b
J. curcas	0.0±0.0a	8.2±0.2a	12.3±0.2a	15.0±0.2a	25.2±0.8a
Z. zanthoxyloides	0.0±0.0a	20.3±1.3c	35.2±0.3c	55.2±1.0d	65.2±0.2d
Pirimiphos-methyl	0.0±0.0a	13.3±0.2b	28.2±0.2b	35.3±0.2c	45.2±0.5c

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (p>0.05) by Tukey’s test.
Table 3: Percentage Mortality of *C. maculatus* exposed to insecticide powders at 72 hours post-treatment.

Insecticide Powders	Dosage (G) Of Insecticide / % Mortality At Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A. occidentale	0.0±0.0a	16.4±0.8a	25.2±0.2a	34.2±0.1a	43.2±0.1a
M. charantia	0.0±0.0a	20.3±0.2	28.3±0.8b	42.2±0.7b	52.0±0.8b
J. curcas	0.0±0.0a	16.1±0.7a	22.4±0.8a	33.3±0.1a	52.0±0.3b
Z. anthozyloides	0.0±0.0a	26.2±0.2b	35.0±0.2	45.0±0.8b	68.0±0.2c
Pirimiphos-methyl	0.0±0.0a	18.0±0.5a	26.2±0.7a	35.3±0.8a	45.2±0.3a

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (*p* > 0.05) by Tukey’s test.

Table 4: Percentage Mortality of *C. maculatus* exposed to insecticide powders at 96 hours post treatment.

Insecticide Powders	Dosage (G) Of Insecticide / % Mortality At Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A. occidentale	0.0±0.0a	23.5±0.8a	34.3±0.8a	42.8±0.8a	52.2±0.2a
M. charantia	0.0±0.0a	30.3±0.2b	42.5±0.7b	55.2±0.2b	68.2±0.2b
J. curcas	0.0±0.0a	25.2±0.2a	32.3±0.4a	43.3±0.3a	52.2±0.4a
Z. anthozyloides	0.0±0.0a	36.3±0.7c	45.0±0.7b	54.2±0.2b	73.3±0.5b
Pirimiphos-ethyl	0.0±0.0a	20.2±0.7a	30.1±0.2a	41.7±0.8a	52.3±0.3a

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (*p* > 0.05) by Tukey’s test.

Table 5: Percentage Mortality of *C. maculatus* exposed to insecticide powders at 120 hours post-treatment.

Insecticide Powders	Dosage (G) Of Insecticide / % Mortality At Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A. occidentale	0.0±0.0a	32.3±0.4b	42.5±0.5b	53.5±0.2a	60.4±0.2a
M. charantia	0.0±0.0a	38.2±0.8b	50.3±0.2c	58.3±0.7b	75.2±0.8b
J. curcas	0.0±0.0a	35.3±0.2b	40.8±0.8b	52.8±0.2a	60.2±0.2a
Z. anthozyloides	0.0±0.0a	46.2±0.5c	55.8±0.5d	62.3±0.5c	74.3±0.8b
Pirimiphos-methyl	0.0±0.0a	28.2±0.2a	35.8±0.7a	48.3±0.2a	60.2±0.2a

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (*p* > 0.05) by Tukey’s test.

Table 6: Percentage Mortality of *C. maculatus* exposed to insecticide powders at 144 hours post-treatment.

Insecticide Powders	Dosage (G) Of Insecticide / % Mortality At Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A. occidentale	0.0±0.0a	40.4±0.7a	51.2±0.2a	64.3±0.5b	68.4±0.8b
M. charantia	0.0±0.0a	47.4±0.3b	62.1±0.5b	65.2±0.3b	73.2±0.4c
J. curcas	0.0±0.0a	42.2±0.7a	48.2±0.7a	62.5±0.4a	68.2±0.7b
Z. anthozyloides	0.0±0.0a	54.8±0.2c	63.2±0.5b	71.5±0.2c	85.8±0.2d
Pirimiphos-methyl	0.0±0.0a	39.3±0.5a	46.2±0.0a	58.2±0.8a	60.2±0.8a

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (*p* > 0.05) by Tukey’s test.
Table 7: Percentage Mortality of C. maculatus exposed to insecticide powders at 168 hours post-treatment.

Insecticide Powders	Dosage (G) of Insecticide / % Mortality at Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A occidentale	0.0±0.0a	55.4±0.8b	62.4±0.3b	74.2±0.6b	82.2±0.2b
M. charantia	0.0±0.0a	56.6±0.5b	73.4±0.1c	73.4±0.4b	84.5±0.5b
J. curcas	0.0±0.0a	54.8±0.4b	57.6±0.0a	74.8±0.5b	83.2±0.4b
Z. anthoxyloides	0.0±0.0a	62.2±0.4c	75.3±0.4c	82.2±0.6c	100±0.0c
Pirimiphos-ethyl	0.0±0.0a	50.2±0.6a	58.4±0.5a	62.3±0.4a	72.0±0.4a

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (p˃0.05) by Tukey’s test.

Effect of insecticide powders on adult emergence of C. Maculatus

Table 8 revealed that the treatments had significant effect on adult emergence. The number of adults that emerged decreased with increase in dosages of the insecticide powders. There was no adult emergence in cowpea seeds treated with 0.8 g of all the botanical insecticide powders six weeks after treatment except for Pirimiphos-methyl caused 4.2% adult emergence.

Table 8: Mean adult emergence of C. maculatus after six weeks post-treatment with insecticide powders.

Insecticide Powders	Dosage (G) of Insecticide / % Mortality at Hours Post-Treatment				
	0	0.2	0.4	0.6	0.8
A occidentale	102a	16.40b	7.40b	1.50a	0.00a
M. charantia	98a	18.20b	6.50b	1.20a	0.00a
J. curcas	100a	13.00b	5.20b	0.00a	0.00a
Z. anthoxyloides	105a	6.00a	0.00a	0.00a	0.00a
Pirimiphos-ethyl	103a	70.20c	58.30c	24.20b	4.20b

Each value is the mean of four replicates. Means in the same column follow by the same letter(s) are not significantly different (p˃0.05) by Tukey’s test.

Discussion

The toxicity effect of some botanical insecticide powders and Pirimiphos-methyl against Callosobruchus maculatus infesting cowpea seeds in storage were evaluated, using mortality, adult emergence and seed damage as indices. The various results obtained from the present findings revealed that there was a significant effect of the botanical insecticide powders and the Pirimiphos-methyl on C. maculatus mortality, adult emergence and seed damage during the period of storage. It can be deduced from the results obtained that Z. anthoxyloides was the most potent against C. maculatus because it effected the highest beetle mortality, suppressed adult emergence and drastically reduced seed damage. The high toxicity of Z. anthoxyloides insecticide powders may be due to its peppery characteristic. Also the powder may block the spiracles of the insects, thereby, leading to suffocation and death of the insects [6]. The efficacy of plant may also be due to the presence of phytochemicals such as alkaloid, glycosides, saponin, tannins, phenolic among others. Since most of these compounds had been reported to cause insect mortality, therefore, the high mortality of C. maculatus in insecticide powder of Z. anthoxyloides can be associated to the presence of one or more of these compounds [22]. A. occidentale, M. charantia and J. curcas are also very effective in the control of C. maculatus as a result of their ability to evoke between 82 to 84% C. maculatus mortality, low adult emergence and low seed damage.

Effect of botanical insecticide powders and pirimiphos-methyl on seed damage

The ability of the powders to protect the cowpea seeds from damaging increased with increase in dosages of the powders as revealed by (Table 8). Almost all the cowpea seeds in the control experiment were damaged with the degree of damage ranging from 94 to 100%. All the Botanical insecticides powders offered better protection of the cowpea seeds Z. anthoxyloides was observed to be the best protectant of cowpea seeds.

Citation: Obembe OM, Ogunbile OC (2017) Comparative Insecticidal Activities of some Botanical Powders and Pirimiphos-Methyl Against Callosobruchus maculatus Fab.[Coleoptera: Bruchidae] Infesting Cowpea Seeds. MOJ Biol Med 2(4): 00063. DOI: 10.15406/mojbm.2017.02.00063
with chili pepper, black pepper and they both obtained positive results of their insecticidal effectiveness. The result from this study revealed that powders from the four test plants are more effective than Pirimiphos-methyl for the protection of cowpea against *C. maculatus*. *C. maculatus* found it difficult to develop resistance to plant powders due to the presence of several active insecticidal compounds and this has given botanical powders the potency to solve the problems caused by insect pest [25,26]. Since the botanical species are cheap, ecologically friendly and readily available it is recommended that the powders of the test botanicals be used in the control of adult *C. maculatus*, most especially the powders of *Z. zanxylodes*.

Conflict of Interest
None.

Acknowledgement
None.

References
1. Singh SR, Jackai LEN (1985) Insect pest of cowpea in Africa: Their life cycle, economic importance and potential for control. In: Singh SR and Rachie KR (Eds.), Cowpea Research. John Wiley and Son, USA, pp. 217-231.
2. Jackai LEN, Daoust (1986) Insect Pest of Cowpea. Annual Review of Entomology 31:95-105.
3. Talukder FA, Howe PE (1994) Repellent, toxic and food protectant effect of pithraj, *Aphananximisipolychaeta* extracts against the pulse beetle *Callosobruchus chinensis* in storage. J Chem Ecol 20(4): 899-908.
4. Okonkwo EU, Okoye WI (1996) The efficacy of four seed powders and the essential oils as protectants of cowpea and maize grains against infestation by *Callosobruchus maculatus* (Fabricius) (*Coleoptera: Bruchidae*) and *Sitophilus Zeamais* Motschulsky (*Coleoptera: Curculionidae*) in Nigeria. International Journal of Pest Management 42(3): 143-146.
5. Mualu B, Gebremedhin T (2000) Oviposition deterrent and toxic effects of various botanicals on the adult bean beetle, *Callosobruchus chinensis*. Insect Science and its Application 20(1): 33-38.
6. Raja N, Babu A, Doru S, Ignacimuthu S (2001) Potential of Plants for protecting stored pulses from *Callosobruchus maculatus* (*Coleoptera: Bruchidae*) in *storage*, *Biological Agriculture and Horticulature* 19(1): 19-27.
7. Park, C, Kim S, Ahn YJ (2003) Insecticidal activities of asarones identified in *Acorus gramineus* rhizome against three coleopteran stored-product insects. Journal of Stored Products Research 39(3): 333-342.
8. Adegbire CO, Obembe OM, Akinkuroro RO, Samson OO (2011) Response of *Callosobruchus maculatus* F. to extracts of cashew kernel. Journal of plant diseases and protection 118(2): 75-79.
9. Asamo MO, Odeyemi OO, Ogunghibe OC (2013) Protection of Cowpea, *Vigna unguiculata* L. (*Walp*) with *Newbouldia laevis* (Seem) extracts against infestation by *Callosobruchus maculatus* (Fabricius) *Archives of Phytopathology and Plant Protection* 46(11): 1295-1306.
10. Ogunghibe OC (2015) Entomopoison efficacy of fume of different parts of *Newbouldia laevis* against *Callosobruchus maculatus* in storage. International Journal of Research Studies in Microbiology and Biotechnology 1(1): 6-14.
11. Ogunwolu EO, Idoeju (1994) Potential of powdered Zanthoxylum zanthoxyloides (*Rutaceae*) root bark and *Azadirachta indica* (*Melaceae*) seed for the control of the cowpea seed bruchid, *Callosobruchus maculatus* (*Bruchidae*) Nigeria. Journal of African Zoology 10(8): 521-538.
12. Ajayi FA, Lale NES (2001) Seed coat texture, host species and time of application affect the efficacy of essential oils applied for the control of *Callosobruchus maculatus* F. (*coleoptera: Bruchidae*) in stored pulses. *International Journal of Pest Management* 47(3): 161-166.
13. Tapanjou LA, Adler C, Boua I, Fomem DA (2002) Efficacy of powders and essential oils from *Chromopodium ambrosioides* leaves as post-harvest grain protectants against six-stored product beetles. Journal of Stored Product Research 38(4): 496-504.
14. Asawalam EF, Adekeye SO (2001) Potential of *Ocimum basilicum* (Lino) for control of *Maize Weevil* *Sitophilus zeamais* (Motsch). *Niger Agric J* 32: 195-201.
15. Epiti TT, Nwani CD, Udoh S (2008) Efficacy of some plant species for the control of cowpea weevil (*Callosobruchus maculatus*) and maize weevil (*Sitophilus zeamais*). *Int J Agric Biol* 10: 588-590.
16. Ewete FK, Alamu OT (1999) Extracts of three mahogany as grain protectants against *Sitophilus zeamais* Motschulsky (*Coleoptera: Curculionidae*) *J. Tropical*.
17. Obembe OM, Kayode J (2013) Insecticidal Activity of the Aqueous Extracts of Four Under-utilized Tropical Plants as Protectant of *Cowpea Seeds* from *Callosobruchus maculatus* infestation. *Pak J Biol Sci* 16: 175-179.
18. Adedire CO, Ajayi TS (1996) Assessment of the insecticidal properties of some plant extracts as grain protectants against maize weevil, *Sitophilus zeamais* Motschulsky. *Nigeria Journal of Entomology* 13: 93-101.
19. Sighamony S, Aneeso Chandrakala TS, Osmani (1986) Efficacy of certain protectants against *Sitophilus oryzae* (L.) *Rhizopertha dominica* F. *J Stored Prod Res* 21(1): 21-23.
20. Golob P, Welsey DT (1980) The use of plants and minerals as traditional protectants of stored product. *Report of Tropical Product*. *Int J 138(14): 32-38*
21. Lake NE (1992) A Laboratory study of the comparative toxicity of products from three species to the maize weevil *Postharvest Biology and Technology* 2(1): 61-64.
22. Philipson JD, Wright CW (1991) Antiprotozoal compounds from plant source. *Plant medica. 57: 553-559.*
23. Odeyemi OO, Gbaje OA, Akeju O (2006) Resistance of *Callosobruchus maculatus* (Fab.) to Pirimiphos-methyl in Three Zones in Nigeria. Proceedings of The 9th International Working Conference on Stored product protection, *Brazil, pp. 324-329.*
24. Ravinder S (2011) Biocological study and control of pulse beetle *C. chinensis* (*Bruchidae*) on cowpea seeds. *Adv. Appl Sci Res* 2(2): 295-302.
25. Oparaeke AM (1997) Evaluation of comparative Efficacy of some plant powders For the control of *Callosobruchus maculatus* F. (*coleoptera: Bruchidae*) on stored Cowpea. *Unpublished Thesis Ahmadu Bello University, Nigeria, pp. 1-105.*
26. Cohen E (2006) Pesticide-mediated homeostatic modulation in arthropods. *Pesticides Biochemistry and Physiology 85(1): 21-27.*