Research paper

Bacterial Profile and asymptomatic bacteriuria among pregnant women in Africa: A systematic review and meta analysis

Nefsu Awoke a,*, Tiwabwork Tekalign a, Mistre Teshome a, Tsegaye Lolaso b, Getahun Dendir c, Mohammed Suleiman Obsa a

a School of Nursing, College of Health Science and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
b School of Public Health, College of Health Science and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
c School of Anesthesia, College of Health Science and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia

ARTICLE INFO

Article History:
Received 13 December 2020
Revised 18 May 2021
Accepted 19 May 2021
Available online 9 June 2021

Keywords:
Asymptomatic bacteriuria
Pregnant women
Systematic review
Meta-analysis, africa

ABSTRACT

Background: Different physiologic changes that occur during pregnancy, such as Hydroureter, dilatation of the renal pelvis, glycosuria and aminoaciduria, and low urine production predispose pregnant women for ascending urinary tract infection. Globally, 2% to 15% of the pregnant women have urinary tract infection without specific symptoms. Therefore, this study aimed to estimate the prevalence of asymptomatic bacteriuria (ABU) in pregnant women in Africa.

Methods: Systematic search of published studies done on PubMed, EMBASE, Web of Science, SCOPUS, PsychInfo, CINAHL, and google scholar for gray literature. All published observational studies until October 30, 2020 were included. This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Quality of studies was assessed by modified Newcastle-Ottawa Scale (NOS). Meta-analysis was carried out using a random-effects method with the double arcsine transformation approach using the STATA™ Version 14 software. Trim and fill analysis was done to correct presence of significant publication bias. The study protocol is prospectively registered on PROSPERO, registration number CRD42020212601.

Findings: From 3393 obtained studies, 48 studies from 12 African countries involving 15, 664 pregnant women included in this Meta-analysis. The overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa after correction for publication bias by trim and fill analysis was found to be 11.1% (95% CI: 7.8, 14.4). The most common bacterial isolates involved in the etiology of ABU was Escherichia coli with pooled prevalence 33.4% (95% CI: 27.3 - 39.4)

Interpretation: Asymptomatic bacteriuria is substantial among pregnant women in Africa. Therefore, all pregnant women should be tested for the presence of asymptomatic bacteriuria. A screening program must be based not only on the incidence but also on a cost-efficacy evaluation and a microbiological evaluation.

Funding: There was no funding source for this study.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Due to the hormonal and physiological changes during pregnancy: women’s are more susceptible to infections. Different physiologic changes that occur during pregnancy, such as Hydroureter, dilatation of the renal pelvis, glycosuria and aminoaciduria, were responsible for the stasis of urine and create the best medium for the growth of different species of bacteria [1,2]. Also, low urine osmolality due to physiologic change facilitate bacterial colonization and increase ascending infection increased in addition to the dysfunctional vesicoureteral reflex and ureteric valves [2].

Asymptomatic bacteriuria (ABU) in pregnancy is defined as the presence of ≥ 100,000 colony-forming units (CFU) /ml of urine taken from a clean catch midstream urine specimen in the absence of specific symptoms of acute urinary tract infection [1,3]. Globally, it happens in 2% to 15% of all pregnancies [3]. Pregnancy boosts the progression from asymptomatic to symptomatic bacteriuria. Due to this, ABU is a main risk factor for the development of urinary tract infections (UTIs) [4,5].

The most common organism responsible for 75–90% of bacteriuria in pregnancy is Escherichia coli [5,6]. Other microbial agents include, Proteus mirabilis, group B Streptococcus, Pseudomonas
Research in context

Evidence before this study

We systematically searched PubMed, EMBASE, Web of Science, SCOPUS, PsychInfo, and CINAHL to identify published studies. Grey literature searching done by Google and Google Scholar. All published observational studies written in English language, published until October 30, 2020 and studies that reported the prevalence of asymptomatic bacteriuria among pregnant women in Africa were included. The overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa after corrected for Duval and Tweedie’s trim and fill analysis and was found to be 11.1% (95% CI: 7.8, 14.4).

Added value of this study

Our study confirmed that the prevalence of asymptomatic bacteriuria among pregnant women was significant and Escherichia coli is the most common bacterial isolates involved in the etiology of ABU.

Implications of all the available evidence

The findings may have great clinical implication on importance of testing all pregnant women for the presence of asymptomatic bacteriuria and microbiological evaluation.

aeruginosa, Klebsiella pneumoniae, Streptococcus sапrophyticus, Staphylococcus aureus, and Enterococcus faecalis [7].

The maternal and fetal outcomes related to ABU are numerous. Untreated ABU result in abnormal maternal outcomes such as development of pyelonephritis in 20–50% of cases [1,4–6, 8,9], higher rate of preterm labor, chronic infection resistant to drugs, preeclampsia, anemia, chorioamnionitis, endometritis and UTI in the postpartum period [2,5,7,8]. Fetal complications associated with ABU include prematurity, Intrauterine growth restriction (IUGR), low birth weight, increase in perinatal mortality, stillbirth, mental retardation and development delay [2,4,5].

Maternal and fetal complications that may arise due to infection can be prevented by timely detection and treatment [1,4,8]. Urine culture is the gold standard diagnostic technique for ABU which occurs during pregnancy [5]. It’s recommended that three up to seven days antibiotics therapy reduces the risk of symptomatic UTI by 80 to 90% [4]. Also, antimicrobial treatment of ABU will reduce the risk of risk of having a low birth weight baby from 15% to 5% and pyelonephritis from 20 to 35% to 1–4% [2].

Since the risk of asymptomatic bacteriuria was increased by prior history urinary tract infection, pre-existing diabetes mellitus, increased parity, and low socioeconomic status [10]; understanding the magnitude and bacterial isolates of asymptomatic bacteriuria in Africa is important in reducing the complications related to it. Even though, there were several studies conducted on the prevalence of asymptomatic bacteriuria, there are disagreements on the result of the studies. Therefore, this meta-analysis was aimed to estimate the overall prevalence of asymptomatic bacteriuria among pregnant women in Africa.

2. Methods

2.1. Study protocol

The study protocol was registered and published in the PROSPERO international prospective register of systematic reviews with registration number (CRD42020212601). This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature search strategy, selection of studies, data extraction, and result reporting [11]. To download, organize, review, and cite related articles Endnote (version X8) reference management software for Windows was used.

2.2. Study design and search strategy

We systematically searched PubMed, EMBASE, Web of Science, SCOPUS, PsychInfo, and CINAHL to identify published studies. The following search key terms were used to include studies from above mentioned database: “pregnant women”, “pregnant mother”, “pregnancy”, “Urinary tract infection”, “bacteriuria”, “UTI”, “asymptomatic bacteriuria”, “bacterial profile”, “Asymptomatic Urinary Tract Infection”, and “Uropathogens”. The Boolean operators (AND and OR) combination were used to search databases. The PubMed search terms with their Boolean operators of this review was attached as an additional file (Additional file 1). In addition, manual hand searching done by Google and Google Scholar to include studies that reported the prevalence of asymptomatic bacteriuria among pregnant women in Africa.

2.3. Study selection

The relevant studies were obtained after titles and abstracts screening of retrieved record. The screening was done by two independent authors (N.A, and T.T) and when the discrepancies occur it was resolved by the third authors (M.T)

2.4. Eligibility criteria

All published observational studies written in English language, published until October 30, 2020 and studies that reported the prevalence of asymptomatic bacteriuria among pregnant women in Africa were included.

Studies were excluded if:

1. Studies that reported the prevalence of ABU without laboratory test
2. Methodologically poor studies with 0–5 points on Newcastle-Ottawa Scale (NOS) were excluded

2.5. Quality assessment of included studies

The quality of each study was assessed using the modified Newcastle-Ottawa Scale (NOS) for cross-sectional studies [12]. The scale contains eight sections, and evaluated the included articles based on the selection, comparability, exposure assessment, and outcome. The point score and interpretation were: Points of 0–5 considered as low quality, 6–7 as moderate quality and 8–10 as high quality. We included articles with a minimum score of 6 on NOS

2.6. Data extraction

We prepared a form in Microsoft Excel 2013 spreadsheet for data extraction. The format was prepared to extract the following important variables from the articles: The first author’s name, publication year, region, design, type of sample collected, sample size, sampling method, the prevalence of asymptomatic bacteriuria and microorganisms involved in bacteriuria. The extraction was done by two independent authors (N.A, and T.T) and any discrepancy that occur during the extraction process was resolved by a third author (M.T).

2.7. Statistical analysis

An inverse-variance weighted random effects meta-analysis model using the double arcsine transformation approach [13] was
used to pool the prevalence of asymptomatic bacteriuria among pregnant women in Africa. Statistical analyses were done by using Stata version 14.0. The heterogeneity test of the studies was assessed using Higgins I-squared (I^2) and p-value. The value of I^2 was taken as 0–24% may not be important, 25–49% indicates moderate heterogeneity, 50–75% indicates substantial heterogeneity and over 75% indicates considerable heterogeneity [14]. The Source of heterogeneity was analyzed by subgroup analysis and Meta-regression. Publication bias was tested statistically by Egger's tests and viewed graphically by the funnel plots. Due to presence of publication bias the result was corrected by Duval and Tweedie's trim and fill analysis.

2.8. Ethics approval and consent to participate

Not applicable.

3. Role of the funding source

There was no funding source for this study.

4. Search results

Initially, a total of 3393 studies were retrieved from the databases and manual searching. From this, 30 duplicate were found and removed. The remaining 3363 articles were screened by their title and abstract and 3276 irrelevant studies were removed. Eight-seven full-text articles were assessed for eligibility, and 39 of them were excluded due to not reporting the outcome of interest, poor methodological quality and not based on laboratory. Finally, a total of 48 studies fulfilled the inclusion criteria and enrolled in the study (Fig. 1).

5. Study characteristics

A total of 48 articles with 15,664 pregnant women from 12 African countries was included in this systematic review and meta-analysis. Among included studies 46 were cross-sectional and 2 studies were case control study design. The sample size across the studies ranges from 100 [15] to 1830 [16] pregnant women. The highest number (27) of studies was included from West Africa and only one study was obtained from the Southern region of Africa. The lowest prevalence 3.8% of ABU was reported in Uganda [17] and the highest 63.3% was reported from Nigeria [18] (Table 1).

5.1. Prevalence of asymptomatic bacteriuria among pregnant women

The overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa was 18% (95% CI: 15, 21) with heterogeneity index (I^2) of 97.47% (p < 0.001) (Fig. 2). Since the Eggers test was found significant, the final pooled prevalence was corrected for Duval and Tweedie's trim and fill analysis and was found to be 11.1% (95% CI: 7.8, 14.4).

5.2. Subgroup analysis

Subgroup analyses revealed a marked variation in the region of Africa with highest prevalence 22% (95% CI: 17, 28) in West Africa.
The presence of publication bias was evaluated graphically by funnel plots and statistically tested for the presence of small study effect by Egger test. The funnel plot indicated the presence of publication bias (Fig. 4) and after adjusting for publication bias by trim and fill analysis the funnel plot appeared symmetrical (Fig. 5). The presence of small study effect was evident by Egger test with p < 0.001.

6. Publication bias

The presence of publication bias was evaluated graphically by funnel plots and statistically tested for the presence of small study effect by Egger test. The funnel plot indicated the presence of publication bias as the graph appear asymmetrical (Fig. 4) and after adjusting for publication bias by trim and fill analysis the funnel plot appeared symmetrical (Fig. 5). The presence of small study effect was evident by Egger test with p < 0.001.

6.1. Type of bacterial isolates

Sixteen different types of bacterial isolates were extracted from studies included in this systematic review and meta-analysis. The most common bacterial isolates involved in the etiology of ABU in this systematic review and meta-analysis was *E. coli* with pooled prevalence 33.4% (95% CI: 27.3 - 39.4) (Table 3).
anatomic abnormalities, age, previous history of UTI, multiple pregnancies, diabetes, lack of personal hygiene and socioeconomic status [64].

E. coli was the most common bacterial isolate which cause ABU in this systematic review and meta-analysis. This is similar with the report from Infectious Diseases Society of America Guidelines for the Diagnosis and Treatment of Asymptomatic Bacteriuria in Adults [63] and WHO [65], and Meta analyses of randomized clinical trials [66]. For health women *E. coli* had lower levels of virulence factors such as specific lipopolysaccharide, adhesions, toxins, mobility factors, and other proteins. But due to physiologic change in pregnancy the strain might have a higher level of virulence [64].

Although this systematic review and meta-analysis presented up-to-date evidence on prevalence of ABU in Africa, it might have faced the following limitations. First, lack of studies from central African countries and only one study included from South region of Africa, this may affect the generalizability of the finding to Africa and warrants further investigation in central and south regions of Africa on prevalence of ABU among pregnant women. Secondly, significant heterogeneity was observed cross-study despite the analysis was
conducted on random effect Meta-analysis model to manage it. Thirdly, there is significant publication bias in this meta-analysis which is evaluated graphically by funnel plots and statistically tested for the presence of small study effect by Egger test due to this the result should be interpreted cautiously. Hence, the pooled prevalence was corrected by Duval and Tweedie’s trim and fill analysis. Finally, lack of similar meta-analysis at other continents to compare with our finding which might have influenced the discussion of our result.

The results of this meta-analysis indicated the prevalence of asymptomatic bacteriuria is substantial among pregnant women in Africa. Therefore, pregnant women should be screened for bacteriuria by urine culture at least once in early pregnancy. Positive pregnant women should receive standard antibiotics regimen and thereafter

Table 2
Meta-regression analysis of factors affecting between-study heterogeneity.

Heterogeneity source	Coef	Std. Err.	P-value
Publication year	-0.0722	0.0573	0.214
Sample size	-0.0003	0.0006	0.618

Table 3
Type of bacterial isolates extracted from studies included in the systematic review and meta-analysis of asymptomatic bacteriuria among pregnant women in Africa.

S/N	Type of microorganisms [Ref]	Number of included study	Total sample size	Pooled prevalence (95% CI)	Study heterogeneity
1	*E. coli* [14 – 21,23 – 25,28 – 34,38,39,42,44 – 53,55,56,58 – 61]	37	2723	33.4 (27.3 – 39.4)	92.8 < 0.001
2	*S. aureus* [14 – 18,20 – 25,28 – 30,32 – 34,38,44,47,53,55,56,58 – 61]	32	2634	23.9 (18.9 – 29.0)	91.6 < 0.001
3	CoNS [18,25,28 – 30,34,51]	7	453	20.9 (8.0 – 33.8)	91.1 < 0.001
4	Klebsiella Spp [14,17,20 – 24,29,30,34,38,44,51,52,56,58 – 60]	19	1673	12.2 (8.0 – 16.5)	90.1 < 0.001
5	*S. saprophyticus* [40,52,56,59 – 61]	6	260	11.1 (7.3 – 14.9)	0 0.524
6	*C. albicans* [14,15,20,36,49,52,56,58,61]	7	1311	10.0 (6.6 – 13.5)	69 0.004
7	*S. faecalis* [20,33,44,48]	4	212	9.3 (5.0 – 18.1)	85 < 0.001
8	*Proteus mirabilis* [18,23,24,28,32,34,42,44,46,48,50,52,53,56,61]	15	873	9.3 (5.6 – 12.9)	80.7 < 0.001
9	Streptococci species [15,25,28,35,40,49]	6	492	9.0 (6.5 – 11.5)	0 0.504
10	Other coliforms [18,47,53,59]	4	182	8.7 (1.1 – 16.3)	66.1 0.031
11	*K. pneumoniae* [15,16,18,25,28,31,32,34,35,39,44 – 46,55,60,61]	16	1050	6.9 (3.9 – 9.9)	72 < 0.001
12	*Staphylococcus epidermidis* [20,42,55]	3	82	6.7 (1.3 – 12.1)	0 0.730
13	*Proteus spp* [14,15,17,20,21,29,30,33,38,43,49,51,55,58]	15	1801	6.2 (3.8 – 8.6)	75.3 < 0.001
14	*Pseudomonas spp.* [14,46 – 18,20,28 – 30,33,38,44,45,46,55,60,56,65]	16	1375	4.7 (3.6 – 5.8)	31.8 0.108
15	*C. freundii* [18,28,35,56]	4	173	3.3 (0.6 – 5.9)	0 0.455
16	*Enterococcus* [16,20,32,35,42,49,59,60,61]	9	345	3.1 (1.2 – 5.1)	6.7 0.379

CoNS* = Coagulase negative *Staphylococci.*
periodic screening for recurrent bacteriuria should be undertaken after therapy.

8. List of abbreviations

ABU: Asymptomatic bacteriuria, CoNS: Coagulase negative Staphylococci, NOS: Newcastle Ottawa Scale, PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses, UTI: Urinary Tract Infection,

9. Data sharing statement

The data analyzed during the current systematic review and meta-analysis is available from the corresponding author on reasonable request.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Funding

There was no funding source for this study.

Contributors

NA developed the protocol and involved in the design, selection of study, data extraction, quality assessment, statistical analysis, results interpretation and developing the final and initial drafts of the manuscript, TT, MT, TL, GD, and MS involved in data extraction, quality assessment, statistical analysis and revising subsequent drafts. All authors read and approved the final draft of the manuscript.

Acknowledgment

We would like to thank all authors of studies included in this systematic review and meta-analysis.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2021.100952.

References

[1] Ansari HQ, Rajkumari A. Prevalence of asymptomatic bacteriuria and associated risk factors among antenatal patients attending a tertiary care hospital. J Med Allied Sci 2011 Jul;1(2):74.
[2] Perera J, Randeniya C, Perera P, Gambehage N, Jayatharachchi R. Asymptomatic bacteriuria in pregnancy: prevalence, risk factors and causative organisms. Sri Lanka J Infect Dis 2012 Jan;2(1) http://dx.doi.org/10.4038/sljid.v2i1.3810.
[3] Smaiil FM, Vazquez J. Antibiotics for asymptomatic bacteriuria in pregnancy. Cochrane database of systematic reviews. https://doi.org/10.1002/14651858.CD00490.2013.
[4] Sujatha R, Nawani M. Prevalence of asymptomatic bacteriuria and its antibacterial susceptibility pattern among pregnant women attending antenatal care at Mbale, Eastern Uganda. PLoS one. 2015 May;10(5):e0230523 https://doi.org/10.1371/journal.pone.0230523.
[5] Okon KO, Nkwakalu L, Bofulan ST, Usman H, Adesina AA, Ohuokwu RT, Uba A, Shi-dali NN. Antimicrobial susceptibility profile of bacterial pathogens isolated from pregnant women with asymptomatic bacteriuria at tertiary hospital in Northern Nigeria. Sierra Leone J Biomed Res 2012;4(1):32–42 http://dx.doi.org/10.9734/JAMS/2016/27929.
[6] Aboderin AO, Ako-Nai AK, Zailani SB, Ajayi A, Adegosu AN. A study of asymptomatic bacteriuria in pregnancy in Ille-Ife, Southwestern Nigeria. African J Clin Experiment Microbiol 2004 Sep;5(3):252–9 http://dx.doi.org/10.4103/aicjem.v5i3.7378.
[7] Ajayi AB, Nwabuisi C, Aboyeji AP, Ajayi NS, Fowotade A, Ige FO. Asymptomatic bacteriuria in antenatal patients in Ikorin, Nigeria. Oman Med J 2012 Jan;1(1). Available from: http://www.ommenjournal.org/fulltext_PDF.aspx?DetailsID=191&type=fultext.
[8] Akinyolu O, Ogbulu DO, Akinyolu OM, Terry Alli OA. Asymptomatic bacteriuria of pregnancy in Ilorin, Nigeria: a re-assessment, 63. British journal of biomedical science. 2006 Jan. p. 109–12.
[9] Akujobi CO, Ogbulie JN, Umeh SI, Abanoo NU, Nwachukwu IN. Asymptomatic bacteriuria in pregnant women at the outpatient clinic of some governmental hospitals in Imo State, Nigeria. Int J Biol Chem Sci 2009;3(3) http://dx.doi.org/10.414/jibcs.v3i3.45326.
[10] Alfred AO, Chiedozie I, Martin DU. Pattern of asymptomatic bacteriuria among pregnant women attending an antenatal clinic at a private health facility in Benin, South-South Nigeria. Ann Afr Med 2013 Jul;12(1):160. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC376252.
[11] Awojule OA, Adesina OA, Oladokun A, Mutiu WB, Adewole IF. Asymptomatic bacteriuria among HIV positive pregnant women. Virulence 2010 May 1;1(1):130–3 http://dx.doi.org/10.4161/viru.1.3.11384.
[12] Banda JM, Dletu D, Zakka Sheyn SA, John B, Mohammed SS, Danero JG. Prevalence of asymptomatic bacteriuria among pregnant women attending antenatal clinic at plateau state specialist hospital, Jos, Nigeria. Arch Microbiol Immunol 2020,4;3(1):121–30 10.2147/AMM.S9365051.
[13] Bello MA. Bacterial profile and ESBL screening of urinary tract infection among asymptomatic and symptomatic pregnant women attending antenatal care of northeastern nigeria. Infect Drug Resist 2020;13:2579. https://doi.org/10.2147/IDR.S215226.
[14] Chaudhary S, Adam A, Umar S, Kaliyau IJ. Urinary tract infections among HIV positive pregnant women in Mwanza city, Tanzania. Lipids Health Dis 2012;11:97 https://doi.org/10.1186/1476-513X-11-97.
[15] Desere EK, Kedi H, Teklemariam Z, Weldegebreal F, Balakrishnan S. Prophylactic regimen evaluation and antimicrobial susceptibility pattern among pregnant women attending at Antenatal Care in Dil Chora Referral Hospital, Dire Dawa, Eastern Ethiopia. Ther Clin Risk Manag 2016;12:251 https://doi.org/10.2147/TCRM.S99831.
Obirikorang C, Quaye L, Bio FY, Amidu N, Acheampong I, Addo K. Asymptomatic bacteriuria among pregnant women in Enugu, Nigeria. Tropical J Obstet Gynaecol 2006 Nov;23:12–3 https://doi.org/10.4314/tjog.v23i1.14556.

Gessesse YA, Damessa DL, Amare MM, Bahta YH, Shifera AD, Tasew FS, Gebremedhin EZ. Urinary pathogenic bacterial profile, antibiotic isolates and associated factors in pregnant women in Ambo town, central Ethiopia: a cross-sectional study. Antimicrobial Resistance Infect Control 2017 Dec;6(1):132. https://doi.org/10.1016/j.apic.2017.09.029.6.

Hagos K, Tesfamariam A, Adugna B, Amanuel H, Hgebrey E, Eman D, Kassm N. Fadilemola FM. Prevalence of asymptomatic bacteriuria among pregnant women attending antenatal care at Semienawi Amara Health Center. Br J Appl Sci Technol 2015 Jan-Jun;2(6):172. https://doi.org/10.9734/BJAST/2015/14003.

Hamdan HZ, Zaid AH, Ali SK. Adam L. Epidemiology of urinary tract infections and antibiotics sensitivity among pregnant women at Khatmoro North Hospital. Annals of clinical microbiology and antimicrobials. 2011 Jan; 10(1):2. https://doi.org/10.1186/1476-7071-10-2.

Igwegbe AO, Ugocha JO, Okoli OA. Prevalence of asymptomatic bacteriuria among pregnant women in Nnewi, southeast Nigeria. Int J Biol Chem Sci 2012;6(1):88–98 https://doi.org/10.4314/ijbcs.v6i1.8.

Imade PE, Izeok PE, Egboha NO, Enabulele OF, Oboreh O. Asymptomatic bacteriuria among pregnant women. N Am J Med Sci 2010 Jun;2(6):263. https://doi.org/10.4297/najms.2010.2263.

Kamel HA, Hegab MH, Al-Sehrawey AA, Hassan HM. Prevalence of asymptomatic bacteriuria in patients with preterm labor. Egypt J Obstet Gynecol 2018 Oct 1;73(9):4444–7 https://doi.org/10.12816/ejogm.18.168699.

Kehinde AO, Adedope KS, Amaikhu CO, Okotogbe AT, Gbajoye O, Salako B. Significant bacteriuria among asymptomatic antenatal care attendees in Ibadan, Nigeria. Trop Med Health; 2011 Sep; 39. p. 73–6.

Koffi KA, Aka EK, Apollinaire H, Milan-Britto A, Konan JMP. Epidemiological, bacteriological profile and bacterial resistance of urinary tract infections at pregnant women in prenatal consultation in African setting. Int J Reprod Contracept Obstet Gynecol 2020(19):461–7 https://doi.org/10.16263/2320-1770.jirocg20200025.

Labi AK, Yawson AE, Yanyalogu GY, Newman MJ. Prevalence and associated risk factors of asymptomatic bacteriuria in ante-natal clients in a large teaching hospital in Ghana. Ghana Med J 2013;47(3):154–8 https://doi.org/10.4314/gmj.v49i3.5.

Masinde A, Gumudoka B, Kilonzo A, Mshana SE. Prevalence of urinary tract infection among pregnant women at Bugando Medical Centre, Mwanza, Tanzania. Tanzania J Health Res 2009;11(3) (https://doi.org/10.4314/thbr.v11i3.47704).

Mayanja R, Kiondo P, Kaddu S, Ogwange F, Andrew C, Ngour J, Kiggundu C. The prevalence of asymptomatic bacteriuria and associated factors among women attending antenatal clinics in Lower Mulago Hospital, Uganda. Am Sci Res J Eng Technol Sci (ASRJETS) 2016;25(1):131–48 Available from https://asrjetsjournal.org/index.php/American_Scientist/article/view/48.

Mokube MN, Atashili J, Halle-Ekane GI, Ikomey GM, Ndumbe PM. Asymptomatic bacteriuria amongst pregnant women in the Buea Health District, Cameroon: prevalence, predictors, antibiotic susceptibility pattern and diagnosis. PLoS One 2013 Aug;8(8):e71086. https://doi.org/10.1371/journal.pone.0071086.

Mwezi MK, Mchome B, John B, Maro E. Asymptomatic bacteriuria among pregnant women attending antenatal care at Kilimanjaro Christian Medical Centre in Northern Tanzania. Tanzan J Health Res 2018;20(4) https://doi.org/10.4314/tjhr.v20i4.18.

Obirikorang C, Quaye L, Bio YF, Amidu N, Acheampong I, Addo K. Asymptomatic bacteriuria among pregnant women attending antenatal clinic at the uni-versity Hospital, Kumasi, Ghana. J Med Biomed Sci 2012;1:38–43.

Ogha OM, Eni IU, Eyo AA. Asymptomatic urinary tract infections among pregnant women in a nigerian referral hospital. J Dis Glob Health 2016;6(6):56–60 Retrieved from https://www.ijpjournal.com/index.php/JDOAGH/article/view/1726.

Ojide CK, Wagbatsoma VA, Kalu EI, Nwadike VO. Asymptomatic bacteriuria among pregnant women in a tertiary hospital in Benin, Nigeria. Nigerian J Experiment Clin Biosci 2014 Jul;22(2):79. Available from: https://www.njcbonline.org/text.asp?2014/2/2/79/144841.

Okoro ND, Ndiami CB, Anyado-Nwadike SO, Okondu SI. Prevalence and antibiotic susceptibility profile of urinary tract infection pathogens among pregnant and non-pregnant women. Int J Biomed Sci 2013;7(4):1668–77 http://dx.doi.org/10.4314/ijbms.v7i4.22.

Olaniyan AO, Okorof CI, Ihezie EC, Akujobi CN, Owoyeni MO. Prevalence of asymptomatic bacteriuria Retrived on. Available from https://www.cochrane.org/CD000491/PREG_duration-asymptomatic-bacteriuriaRetrived on.

Onyango HA, Ngugi C, Maina J, Kiru J. Urinary tract infection among pregnant women at pumwani maternity hospital. Bacterial etiologic agents, antimicrobial susceptibility profiles and associated risk factors, 8. Nairobi, Kenya: Advances in Microbiology. 2018 Mar; 21, p. 175.

Tadesse A, Negash M, Ketema LS. Asymptomatic bacteriuria in pregnancy: assessment of prevalence, microbial agents and their antimicrobial sensitivity pattern in Gondar Teaching Hospital, North West Ethiopia. Ethiop Med J 2007 Apr; 45(2):139–9.

Tadesse S, Kahsay T, Aduanom G, Kahsu G, Legese H, Deribe H. Prevalence, antimicrobial susceptibility profile and predictors of asymptomatic bacteriuria among pregnant women in Adigrat General Hospital, Northern Ethiopia. BMC Res Notes 2018 Dec;11(1):740. https://doi.org/10.1186/s13104-018-3844-1.

Taye S, Getachew M, Desalegn Z, Biratu A, Mubashkar K. Bacterial profile, antibiotic susceptibility pattern and associated factors among pregnant women with Urinary Tract Infection in Goba and Sinana Woredas, Bale Zone, Southeast Ethiopia. BMC Res Notes 2018 Dec;11(1):799. https://doi.org/10.1186/s13104-018-3910-8.

Tokolope A, Deborah O. Urinary tract infection amongst pregnant women in Amassoma, Southern Nigeria. Afr J Microb Res 2015 Feb;9(6):355–9 https://doi.org/10.5897/AJMR2014.7323.

Turpin CA, Minkah B, Danso KA, Frimpong BH. Asymptomatic bacteriuria in pregnant women attending antenatal clinic at Komfo anokye teaching hospital, Kumasi, Ghana. Ghana Med J 2007 Mar-Apr;41(2):26. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890540/pdf/GMJ4100-0026.pdf.

Wabe YA, Reda DY, Abreham ET, Gobene DB, Ali MM. Prevalence of Asymptomatic Bacteriuria, Associated Factors and Antimicrobial Susceptibility Pattern of Bacteria Among Pregnant Women Attending Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia. Ther Clin Risk Manag 2020;16:923. https://doi.org/10.2147/TCRM.S3267101.

Widmer TA, Theron G, Grove D. Prevalence and risks of asymptomatic bacteriuria among HIV-positive pregnant women. Southern African J Epidemiol Infect 2010 Jan;25(1):28–32 https://doi.org/10.1080/101066009034714374.

Ghafari M, Bagi V, Cheraghi Z, Doosti-Irani A. The prevalence of asymptomatic bacteriuria in Iranian pregnant women: a systematic review and meta-analysis. PLoS ONE 2016 jun;11(6):e0158031 https://doi.org/10.1371/journal.pone.0158031.

Nicolle LE, Bradley S, Colgan R, Rice JC, Schaefler A, Hooton TM. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin Infect Dis 2005 May;1:643–54 https://doi.org/10.1086/427507.

Azami M, Jaafari Z, Masoumi M, Shoahani M, Babfar G, Mahsudi L, Abbasalizadeh S. The etiology and prevalence of urinary tract infection and asymptomatic bacteriuria in pregnant women in Iran: a systematic review and Meta-analysis. BMC Urol 2019 Dec;19(1):43. https://doi.org/10.1186/s12894-019-0454-8.

WHO. recommendation on antibiotics for asymptomatic bacteriuria. Available from: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/antenatal-care-who-recommendation-antibiotics-asymptomat-bacteriuria Retrieved on.

Widmer M, Lopez I, Galvezolga AM, Mignosi L, Roganti A. Duration of treatment for asymptomatic bacteriuria in pregnancy. Cochrane Database Systematic Rev 2015(11) Available at https://www.cochrane.org/CD000491/PREG_duration-treatment-asymptomatic-bacteriuria-during-pregnancy.