Fedor Pakovich

Tame rational functions: Decompositions of iterates and orbit intersections

Received June 28, 2020

Abstract. Let A be a rational function of degree at least 2 on the Riemann sphere. We say that A is tame if the algebraic curve $A(x) - A(y) = 0$ has no factors of genus 0 or 1 distinct from the diagonal. In this paper, we show that if tame rational functions A and B have some orbits with infinite intersection, then A and B have a common iterate. We also show that for a tame rational function A decompositions of its iterates $A^{\circ d}$, $d \geq 1$, into compositions of rational functions can be obtained from decompositions of a single iterate $A^{\circ N}$ for N large enough.

Keywords. Orbit intersections, decompositions of iterates

1. Introduction

Let A be a rational function of degree at least 2 on the Riemann sphere. For a point $z_1 \in \mathbb{CP}^1$ we denote by $O_A(z_1)$ the A-forward orbit of z_1, that is, the set \{\{z_1, A(z_1), A^{\circ 2}(z_1), \ldots\}\}. In this paper, we address the following problem: given two rational functions A and B of degree at least 2, under what conditions do there exist orbits $O_A(z_1)$ and $O_B(z_2)$ having an infinite intersection? We show that under a mild restriction on A and B this happens if and only if A and B have an iterate in common, that is, if and only if

$$A^{\circ k} = B^{\circ l}$$

(1)

for some $k, l \geq 1$. Put another way, unless rational functions A and B have the same global dynamics, an orbit of A may intersect an orbit of B at most in finitely many places.

In the particular case where A and B are polynomials, the problem under consideration was completely settled in [7, 8], where it was shown that the above condition on orbits is equivalent to (1). An essential ingredient of the proof was a result of [32], concerning functional decompositions of iterates of polynomials, which can be described as follows. Let

$$A^{\circ d} = X \circ Y$$

(2)
be a decomposition of an iterate $A^{\circ d}$ of a rational function A into a composition of rational functions X and Y. We say that this decomposition is induced by a decomposition $A^{\circ d'} = X' \circ Y'$, where $d' < d$, if there exist $k_1, k_2 \geq 0$ such that

$$X = A^{\circ k_1} \circ X', \quad Y = Y' \circ A^{\circ k_2}.$$

In general, decompositions of $A^{\circ d}$ are not exhausted by decompositions induced by decompositions of smaller iterates. However, the main result of [32] states that if A is a polynomial of degree $n \geq 2$ not conjugate to z^n or to $\pm T_n$, where T_n stands for the Chebyshev polynomial, then there exists an integer $N \geq 1$ such that every decomposition of $A^{\circ d}$ with $d \geq N$ is induced by a decomposition of $A^{\circ N}$. Moreover, the number N depends on n only.

It seems highly likely that the result of [7, 8] about orbit intersections of polynomials remains true for all rational functions, while the result of [32] about decompositions of iterates of polynomials not conjugate to z^n or to $\pm T_n$ remains true for all non-special rational functions, where by a special function we mean a rational function A that is either a Lattès map or is conjugate to $z^{\pm n}$ or $\pm T_n$. However, the approach of the papers [7, 8, 32] cannot be extended to the general case, since it crucially depends on results of the Ritt theory of functional decompositions of polynomials [27], some of which have no analogues in the rational case while others are known not to be true. The result of [32] was proved by a different method in [16]. Nevertheless, the method of [16] does not extend to rational functions either.

A partial generalization of the result of [32] to rational functions was obtained in [25]. Namely, it was shown that there exists a function with integer arguments $N = N(n, l)$ such that for every rational function A of degree $n \geq 2$ decompositions $A^{\circ l}$ with deg $X \leq l$ of $A^{\circ d}$ with $d \geq N$ are induced by decompositions of $A^{\circ N}$. Other related results in the rational case were obtained in [2, 3]. Specifically, it was shown in [2] that decompositions of iterates of a rational function A correspond to equivalence classes of certain analytic spaces defined in dynamical terms. On the other hand, in [3], an analogue of the problem about orbits was considered for semigroups of rational functions, and the results obtained were formulated in terms of the amenability of the corresponding semigroups. Giving a new look at the problems considered, the papers [2, 3], however, do not provide handy conditions on rational functions A and B under which the results of [7, 8, 32] remain true.

To formulate our results explicitly, we introduce the following definition. Let A be a rational function of degree at least 2. We say that A is tame if the algebraic curve

$$A(x) - A(y) = 0$$

has no factors of genus 0 or 1 distinct from the diagonal. Otherwise, we say that A is wild. By the Picard theorem, the condition that A is tame is equivalent to the condition that for any functions f and g meromorphic on \mathbb{C} the equality

$$A \circ f = A \circ g$$

implies that $f \equiv g$. The problem of describing tame rational functions appears in holo-
morphic dynamics [10]. It is also closely related to the problem of describing rational functions sharing the measure of maximal entropy [23, 31].

It is easy to see that every rational function of degree 2 is wild. Consequently, a tame rational function has degree at least 3. On the other hand, a generic rational function of degree at least 4 is tame. Specifically, a rational function of degree at least 4 is tame whenever it has only simple critical values [15]. A comprehensive classification of wild rational functions is not known. The most complete result in this direction, obtained in [1], is the classification of solutions of equation (3) under the assumption that A is a polynomial and f, g are rational functions. For an account of recent progress in the general case we refer the reader to [29].

Our first main result is a generalization of the result of [32] to tame rational functions.

Theorem 1.1. Let A be a tame rational function of degree n. Then there exists an integer N, depending on n only, such that every decomposition of A^d with $d \geq N$ is induced by a decomposition of $A^{\circ N}$.

Our second main result is a similar generalization of the result of [7, 8].

Theorem 1.2. Let A and B be tame rational functions such that an orbit of A has an infinite intersection with an orbit of B. Then A and B have a common iterate.

Our proof of Theorem 1.1 is based on the result of [25] about decompositions of iterates cited above and the following statement of independent interest, providing lower bounds for genera of irreducible components of algebraic curves of the form

$$C_{A,B} : A(x) - B(y) = 0,$$

where A and B are rational functions.

Theorem 1.3. Let A be a tame rational function of degree n, B a rational function of degree m, and C an irreducible component of the curve $C_{A,B}$. Then

$$g(C) \geq \frac{m/n! - 84n + 168}{84},$$

unless $B = A \circ S$ for some rational function S, and C is the graph $x - S(y) = 0$.

Since equality (2) implies that the curve $C_{A,X}$ has a factor of genus 0, it follows from Theorem 1.3 that if deg X is large enough, then $X = A \circ S$ for some $S \in \mathbb{C}(z)$, and further analysis combined with the result of [25] permits us to prove Theorem 1.1.

In turn, the proof of Theorem 1.2 goes as follows. First, using the theorem of Faltings, we conclude that if $O_A(z_1) \cap O_B(z_2)$ is infinite, then for every pair $(d, i) \in \mathbb{N} \times \mathbb{N}$ the algebraic curve

$$A^{\circ d}(x) - B^{\circ i}(y) = 0$$

has a factor of genus 0 or 1. Then, using Theorem 1.3, we prove that each iterate of B is a compositional left factor of some iterate of A, where by a compositional left factor of a rational function f we mean any rational function g such that $f = g \circ h$ for some ratio-
nal function \(h \). Finally, we deduce Theorem 1.2 from the following result of independent interest.

Theorem 1.4. Let \(A \) and \(B \) be tame rational functions. Then the following conditions are equivalent:

(i) Each iterate of \(B \) is a compositional left factor of some iterate of \(A \).

(ii) Each iterate of \(B \) is a compositional right factor of some iterate of \(A \).

(iii) The functions \(A \) and \(B \) have a common iterate.

In addition to Theorem 1.2, we prove two other results supporting the conjecture that existence of orbits with an infinite intersection is equivalent to (1). The first result states that for arbitrary rational functions \(A \) and \(B \) the existence of such orbits imposes strong restrictions on their degrees consistent with condition (1). Specifically, letting \(\mathcal{P}(n) \) denote the set of prime divisors of a natural number \(n \), we prove the following statement.

Theorem 1.5. Let \(A \) and \(B \) be rational functions of degree at least 2 such that an orbit of \(A \) has an infinite intersection with an orbit of \(B \). Then \(\mathcal{P}(\deg A) = \mathcal{P}(\deg B) \).

The second result states that special rational functions, which are the simplest examples of wild rational functions and for which Theorem 1.1 is not true, cannot serve as counterexamples to Theorem 1.2.

Theorem 1.6. Let \(A \) and \(B \) be rational functions of degree at least 2 such that an orbit of \(A \) has an infinite intersection with an orbit of \(B \). Assume that at least one of these functions is special. Then \(A \) and \(B \) have a common iterate.

Besides the above results, we give new proofs of the main results of [7, 8, 32], using instead of Ritt theory the results of [19, 20] and the classification of commuting polynomials.

The rest of the paper is organized as follows. In the second section, we discuss tame and wild rational functions, and provide a sufficient condition for a rational function to be wild. In the third section, we prove Theorem 1.3. In the fourth section, we prove Theorems 1.1, 1.2, and 1.4. In the fifth section, we deduce Theorems 1.5 and 1.6 from the results of [20]. Specifically, we use a description of pairs of rational functions \(A \) and \(U \) such that for every \(d \geq 1 \) the algebraic curve

\[
A^d(x) - U(y) = 0
\]

has a factor of genus 0 or 1. Finally, in the sixth section, we reconsider the polynomial case and give new proofs of the main results of [7, 8, 32].

2. Tameness and normalization

Let \(f : S \to \mathbb{CP}^1 \) be a holomorphic function on a compact Riemann surface \(S \). Let us recall that the *normalization* of \(f \) is defined as a holomorphic function of the lowest possible degree between compact Riemann surfaces \(\tilde{f} : \tilde{S}_f \to \mathbb{CP}^1 \) such that \(\tilde{f} \) is a
Galois covering and
\[\tilde{f} = f \circ h \] (7)
for some holomorphic map \(h : \tilde{S}_f \to S \). Equivalently, \(\tilde{f} \) can be defined as a Galois covering \(\tilde{f} : \tilde{S}_f \to \mathbb{CP}^1 \) of the form (7) such that
\[\deg \tilde{f} = |\text{Mon}(f)|, \] (8)
where \(\text{Mon}(f) \) is the monodromy group of \(f \) (see e.g. [9, Proposition 2.72]). We will denote by \(\Sigma(f) \) the subgroup of \(\text{Aut}(S) \) consisting of automorphisms \(\sigma \) such that \(f \circ \sigma = f \).

Theorem 2.1. Let \(A \) be a rational function of degree at least 2. Assume that there exist a compact Riemann surface \(S \) of genus 0 or 1, a holomorphic function \(U : S \to \mathbb{CP}^1 \), and a Galois covering \(\Psi : S \to \mathbb{CP}^1 \) such that \(A \circ U \) is a rational function in \(\Psi \), but \(U \) is not a rational function in \(\Psi \). Then \(A \) is wild.

Proof. Since the assumptions of the theorem imply that
\[A \circ U = A \circ (U \circ \alpha) \]
for every \(\alpha \in \Sigma(\Psi) \), to prove that the algebraic curve
\[C_A : \frac{A(x) - A(y)}{x - y} = 0 \] (9)
has a factor of genus 0 or 1, it is enough to show that there exists \(\alpha \in \Sigma(\Psi) \) such that \(U \circ \alpha \neq U \). Assume to the contrary that \(U \circ \alpha \equiv U \) for any \(\alpha \in \Sigma(\Psi) \). Since the equality \(\Psi(x) = \Psi(y) \) holds for \(x, y \in S \) if and only if \(y = \sigma(x) \) for some \(\sigma \in \Sigma(\Psi) \), in this case the algebraic function \(S = U \circ \Psi^{-1} \) is single-valued and therefore rational. Thus, \(U = S \circ \Psi \), in contradiction with the assumption.

Remark 2.2. We do not know whether all wild rational functions \(A \) can be obtained in the way described in Theorem 2.1. Nevertheless, the result of [23, Theorem 3.1] implies that this is true if the curve \(C_A \) is irreducible. Moreover, in this case we can assume that \(\Psi \) has degree 2.

Corollary 2.3. Let \(A \) be a rational function of degree at least 2. Assume that there exist a compact Riemann surface \(R \) and holomorphic functions \(X : R \to \mathbb{CP}^1, Y : R \to \mathbb{CP}^1, B : \mathbb{CP}^1 \to \mathbb{CP}^1 \) such that
\[(1) \] the diagram
\[
\begin{array}{ccc}
R & \xrightarrow{Y} & \mathbb{CP}^1 \\
X \downarrow & & \downarrow B \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1
\end{array}
\]
commutes,
\[(2) \] \(X \) is not a rational function of \(Y \),
\[(3) \] the normalization \(\tilde{Y} : \tilde{S}_Y \to \mathbb{CP}^1 \) satisfies \(g(\tilde{S}_Y) \leq 1 \).
Then \(A \) is wild.
Proof. Let $H : \tilde{S}_Y \to R$ be a holomorphic map such that $\overline{Y} = Y \circ H$. Then

$$A \circ (X \circ H) = B \circ \overline{Y}. $$

On the other hand, $X \circ H$ is not a rational function of \overline{Y} for otherwise X would be a rational function of Y. Thus, the assumptions of Theorem 2.1 are satisfied for $S = \tilde{S}_Y$, $U = X \circ H$, and $\Psi = \overline{Y}$.

Let $f : R_1 \to R_2$ be a holomorphic map between Riemann surfaces. We say that a holomorphic map $h : R_1 \to R_0$ is a compositional right factor of f if $f = g \circ h$ for some holomorphic map $g : R' \to R_2$. Compositional left factors are defined similarly.

Corollary 2.4. Every rational function A that has a compositional right factor Y of degree at least 2 with $g. z S Y / 1$ is wild. In particular, a rational function A of degree at least 2 is wild whenever $g(\tilde{S}_A) \leq 1$.

Proof. Let B be a rational function such that $A = B \circ Y$. Then the assumptions of Corollary 2.3 are satisfied for B, Y, and $X = z$.

Notice that rational functions A with $g(\tilde{S}_A) = 0$ can be listed explicitly as compositional left factors of rational Galois coverings. On the other hand, functions with $g(\tilde{S}_A) = 1$ admit a simple geometric description (see [18]).

Corollary 2.5. Any special rational function is wild.

Proof. The function $z^{\pm n}$ itself is a Galois covering. On the other hand, T_n is a compositional left factor of the Galois covering $z^n + \frac{1}{z^n}$, implying that $g(\tilde{S}_{\pm T_n}) = 0$. Finally, every Lattès map A satisfies $g(\tilde{S}_A) \leq 1$ (see [18]).

For a holomorphic function $f : S \to \mathbb{CP}^1$ the condition $g(\tilde{S}_f) \leq 1$ can be expressed merely in terms of the ramification of f. The easiest way to formulate the corresponding criterion is to use the notion of *Riemann surface orbifold* (see e.g. [20, Section 2.1] for basic definitions). Specifically, with each holomorphic function $f : S \to \mathbb{CP}^1$ one can associate in a natural way two orbifolds $\mathcal{O}_1^f = (S, v_1^f)$ and $\mathcal{O}_2^f = (\mathbb{CP}^1, v_2^f)$, setting $v_2^f(z)$ equal to the least common multiple of the local degrees of f at the points of the preimage $f^{-1}\{z\}$, and

$$v_1^f(z) = \frac{v_2^f(f(z))}{\deg_z f}. $$

In these terms, the following statement holds.

Lemma 2.6. Let S be a compact Riemann surface and $f : S \to \mathbb{CP}^1$ a holomorphic function. Then $g(\tilde{S}_f) = 0$ if and only if $\chi(\mathcal{O}_2^f) > 0$, and $g(\tilde{S}_f) = 1$ if and only if $\chi(\mathcal{O}_2^f) = 0$.

Proof. For $S = \mathbb{CP}^1$ the proof can be found in [18, Lemma 2.1], and this proof carries over verbatim to the case of arbitrary compact Riemann surface S.

By Corollary 2.4, any rational function A with $g(S_A) \leq 1$ gives rise to the family of wild rational functions $f \circ A$, $f \in \mathbb{C}(z)$. However, other examples of wild rational functions also exist.

Example 2.7. Let us consider the family of polynomials

$$A_{l,m} = z^l(z + 1)^m,$$

where l, m are coprime and $l + m \geq 3$, found in [1]. It was shown in [1] that the corresponding curve $C_{A_{l,m}}$ defined by (9) is irreducible and has the rational parametrization $z \mapsto (X(z), Z(z))$, where

$$X = \frac{1 - z^l}{z^{l+m} - 1}, \quad Z = z^m X.$$

Moreover, $A_{l,m}$ is an indecomposable rational function, that is, $A_{l,m}$ has no decompositions into a composition of rational functions of degree at least 2. Thus, any compositional right factor of $A_{l,m}$ of degree at least 2 has the form $\mu \circ A_{l,m}$ for some $\mu \in \text{Aut}(\mathbb{C}\mathbb{P}^1)$.

On the other hand, it is easy to see that if $l + m > 4$, then $\chi(\mathcal{O}_2^{\mu \circ A_{l,m}}) < 0$, implying that $g(\bar{S}_f) > 1$. Indeed, $A_{l,m}$ has three critical values $0, (\frac{1}{l+m})m, \frac{1}{l+m}$, and the signature of the orbifold $\mathcal{O}_2^{\mu \circ A_{l,m}}$ is $(l + m, \text{lcm}(l, m), 2)$. Thus, for $l + m > 4$, we have

$$\chi(\mathcal{O}_2^{\mu \circ A_{l,m}}) = 2 + \left(\frac{1}{l+m} - 1\right) + \left(\frac{1}{\text{lcm}(l, m)} - 1\right) + \left(\frac{1}{2} - 1\right)$$

$$= -\frac{1}{2} + \frac{1}{l+m} + \frac{1}{\text{lcm}(l, m)} < -\frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 0.$$

Let us notice however that although the family $A_{l,m}$ for $l + m > 4$ does not satisfy the assumption of Corollary 2.4, it does satisfy the assumptions of Theorem 2.1. Indeed, one can check that $Z = X \circ \frac{1}{z}$, implying that the function

$$A_{l,m} \circ X = A_{l,m} \circ Z$$

is invariant with respect to the transformation $z \mapsto 1/z$. Therefore,

$$A_{l,m} \circ X = B \circ \left(z + \frac{1}{z}\right)$$

for some rational function B and the Galois covering $Y = z + 1/z$. On the other hand, X is not a rational function of Y, since X is not invariant with respect to $z \mapsto 1/z$.

3. Bounds for genera of components of $A(x) - B(y) = 0$

3.1. Fiber products

Let $f : C_1 \to C$ and $g : C_2 \to C$ be holomorphic maps between compact Riemann surfaces. The collection

$$(C_1, f) \times_C (C_2, g) = \bigcup_{j=1}^{n(f,g)} \{R_j, p_j, q_j\},$$
where \(n(f, g) \) is a positive integer and \(R_j \) are compact Riemann surfaces provided with holomorphic maps

\[
p_j : R_j \to C_1, \quad q_j : R_j \to C_2, \quad 1 \leq j \leq n(f, g),
\]
is called the fiber product of \(f \) and \(g \) if

\[
f \circ p_j = g \circ q_j, \quad 1 \leq j \leq n(f, g).
\]

and for any holomorphic maps \(p : R \to C_1, \ q : R \to C_2 \) between compact Riemann surfaces satisfying

\[
f \circ p = g \circ q
\]

there exist a unique index \(j \) and a holomorphic map \(w : R \to R_j \) such that

\[
p = p_j \circ w, \quad q = q_j \circ w.
\]

The fiber product exists and is defined in a unique way up to natural isomorphisms.

Notice that the universality property implies that the holomorphic maps \(p_j \) and \(q_j \), \(1 \leq j \leq n(f, g) \), have no non-trivial compositional common right factor in the following sense: the equalities

\[
p_j = \bar{p} \circ w, \quad q_j = \bar{q} \circ w,
\]

where

\[
w : R_j \to \tilde{R}, \quad \bar{p} : \tilde{R} \to C_1, \quad \bar{q} : \tilde{R} \to C_2
\]

are holomorphic maps between compact Riemann surfaces, imply that \(\deg w = 1 \). In particular, this implies that

\[
\deg q_j \leq \deg f, \quad \deg p_j \leq \deg g, \quad 1 \leq j \leq n(f, g).
\]

Another corollary is that \(p_j, 1 \leq j \leq n(f, g) \), is a rational function of \(q_j \) if and only if \(\deg q_j = 1 \).

In practical terms, the fiber product is described by the following algebro-geometric construction. Let us consider the algebraic curve

\[
L = \{(x, y) \in C_1 \times C_2 \mid f(x) = g(y)\}.
\]

Let us denote by \(L_j, 1 \leq j \leq n(f, g) \), the irreducible components of \(L \) and by \(R_j, 1 \leq j \leq n(f, g) \), their desingularizations; let

\[
p_j : R_j \to L_j, \quad 1 \leq j \leq n(f, g),
\]

be the desingularization maps. Then the compositions

\[
x \circ \pi_j : L_j \to C_1, \quad y \circ \pi_j : L_j \to C_2, \quad 1 \leq j \leq n(f, g),
\]

extend to holomorphic maps

\[
p_j : R_j \to C_1, \quad q_j : R_j \to C_2, \quad 1 \leq j \leq n(f, g),
\]
and the collection \(\bigcup_{j=1}^{n(f,g)} \{ R_j, p_j, q_j \} \) is the fiber product of \(f \) and \(g \). Abusing notation we call the Riemann surfaces \(R_j, 1 \leq j \leq n(f,g) \), the irreducible components of the fiber product of \(f \) and \(g \).

Below we will use the following results, describing the fiber product of \(f \) and \(g \) through the fiber product of \(f \) and \(g \) (see [20, Theorem 2.8 and Corollary 2.9]). For better understanding, see diagram (10).

\[
\begin{array}{ccc}
R_{ij} & \xrightarrow{p_{ij}} & R_j \\
\downarrow q_{ij} & & \downarrow q_j \\
C_3 & \xrightarrow{u} & C_2 \\
& \xrightarrow{g} & C
\end{array}
\]

(10)

Theorem 3.1. Let \(f : C_1 \to C, g : C_2 \to C \), and \(u : C_3 \to C_2 \) be holomorphic maps between compact Riemann surfaces. Assume that

\[
(C_1, f) \times_C (C_2, g) = \bigcup_{j=1}^{n(f,g)} \{ R_j, p_j, q_j \}
\]

and

\[
(R_j, q_j) \times_{C_2} (C_3, u) = \bigcup_{i=1}^{n(u,q_j)} \{ R_{ij}, p_{ij}, q_{ij} \}, \quad 1 \leq j \leq n(f,g).
\]

Then

\[
(C_1, f) \times_C (C_3, g \circ u) = \bigcup_{j=1}^{n(f,g)} \bigcup_{i=1}^{n(u,q_j)} \{ R_{ij}, p_j \circ p_{ij}, q_{ij} \}.
\]

Corollary 3.2. In the above notation, the fiber products \((C_1, f) \times_C (C_2, g) \) and \((C_1, f) \times_C (C_3, g \circ u) \) have the same number of irreducible components if and only if for every \(j, 1 \leq j \leq n(f,g) \), the fiber product \((R_j, q_j) \times_{C_2} (C_3, u) \) has a unique irreducible component.

3.2. Proof of Theorem 1.3

The proof of Theorem 1.3 uses two results. The first result is the following statement (see [20, Theorem 3.1]), generalizing an earlier result from [17].

Theorem 3.3. Let \(T, R \) be compact Riemann surfaces and \(W : T \to \mathbb{C}P^1 \) a holomorphic map of degree \(n \). Then for any holomorphic map \(P : R \to \mathbb{C}P^1 \) of degree \(m \) such that the fiber product of \(P \) and \(W \) consists of a unique component \(E \), we have

\[
\chi(E) \leq \chi(R)(n-1) - \frac{m}{42}.
\]

unless \(g(\tilde{S}_W) \leq 1 \).

Since \(\chi(E) = 2 - 2g(E) \) and \(\chi(R) = 2 - 2g(R) \leq 2 \), inequality (11) implies

\[
g(E) \geq \frac{m - 84n + 168}{84}.
\]

\[\tag{12}
\]

1In [20], instead of \(g(\tilde{S}_W) \leq 1 \) the equivalent condition \(\chi(\mathcal{O}_2^W) \geq 0 \) is used.
In particular, Theorem 3.3 implies the following result proved in [17]: if A and B are rational functions of degrees n and m such that $g(\bar{S}_A) > 1$ and the curve $C_{A,B}$ is irreducible, then $g(C_{A,B})$ satisfies inequality (12). Theorem 1.3 can be considered as an analogue of the last result for reducible curves $C_{A,B}$, with $g(\bar{S}_A) > 1$ replaced by the stronger condition that A is tame.

The second result we need is the following result of Fried (see [6, Proposition 2], or [14, Theorem 3.5]).

Theorem 3.4. Let A and B be rational functions such that $n(A, B) > 1$. Then there exist rational functions A_1, B_1, U, V such that

$$A = A_1 \circ U, \quad B = B_1 \circ V,$$

and the equalities $\bar{A}_1 = \bar{B}_1$ and $n(A, B) = n(A_1, B_1)$ hold. □

Proof of Theorem 1.3. Let E be the desingularization of C, and $\{E, X, Y\}$ the corresponding component of $(\mathbb{CP}^1, A) \times (\mathbb{CP}^1, B)$. Assume first that $n(A, B) = 1$, and hence $C = C_{A,B}$. Since A is tame, $g(\bar{S}_A) > 1$ by Corollary 2.4. Therefore, by Theorem 3.3, inequality (12) holds, implying that (4) also holds. Thus, in this case the conclusion holds.

Assume now that $n(A, B) > 1$, and let A_1, B_1, U, V be the rational functions provided by Theorem 3.4. By Theorem 3.1, the component $\{E, X, Y\}$ of the fiber product $(\mathbb{CP}^1, A) \times (\mathbb{CP}^1, B)$ factors through some component of $(\mathbb{CP}^1, A) \times (\mathbb{CP}^1, B_1)$, that is, there exist a compact Riemann surface R and holomorphic maps between compact Riemann surfaces X_1, F, H such that $X = X_1 \circ H$ and the diagram

$$
\begin{array}{ccc}
E & \xrightarrow{Y} & \mathbb{CP}^1 \\
\downarrow H & & \downarrow V \\
R & \xrightarrow{F} & \mathbb{CP}^1 \\
\downarrow X_1 & & \downarrow B_1 \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \\
\end{array}
$$

(13)

commutes. Moreover, the maps X_1 and F have no common non-trivial compositional right factor, and

$$\deg X_1 \leq \deg B_1, \quad \deg F \leq \deg A. \quad (14)$$

Finally, since

$$n(A, B) \geq n(A_1, B_1) \geq n(A_1, B_1),$$

it follows from $n(A, B) = n(A_1, B_1)$ that $n(A, B) = n(A_1, B_1)$. Therefore, $n(F, V) = 1$ by Corollary 3.2.

Now we consider the cases $g(\bar{S}_F) > 1$ and $g(\bar{S}_F) \leq 1$ separately. In the first case, applying Theorem 3.3 to the fiber product of F and V, we see that

$$g(E) \geq \frac{\deg V - 84 \deg F + 168}{84}.$$
Since the order of the monodromy group of a rational function A does not exceed the order of the full symmetric group on $n = \deg A$ symbols, it follows from (8) and $A_1 = B_1$ that

$$\deg B_1 \leq \deg B_1 = \deg \tilde{A}_1 \leq (\deg A_1)! \leq (\deg A)! = n!,$$

implying that

$$\deg V = \frac{\deg B}{\deg B_1} \geq m/n!.$$

Taking into account the second equality in (14), we conclude that if $g(\tilde{S}_F) > 1$, then

$$g(E) \geq \frac{\deg V - 84 \deg F + 168}{84} \geq \frac{m/n! - 84n + 168}{84}.$$

Assume now that $g(\tilde{S}_F) \leq 1$. Since X_1 and F have no common non-trivial compositional right factor, X_1 is not a rational function in F, unless $\deg F = 1$. Therefore, if $\deg F > 1$, we can apply Corollary 2.3 to the bottom square in diagram (13), concluding that A is wild, in contradiction with the assumption. Thus, $\deg F = 1$, implying that $R = \mathbb{C}P^1$ and

$$B = B_1 \circ V = A \circ X_1 \circ F^{-1} \circ V, \quad X = X_1 \circ H = X_1 \circ F^{-1} \circ V \circ Y.$$

Thus, if $g(\tilde{S}_F) \leq 1$, then

$$B = A \circ S, \quad X = S \circ Y$$

for

$$S = X_1 \circ F^{-1} \circ V.$$

Since X and Y have no non-trivial compositional common right factor, the second equality in (15) implies that $\deg Y = 1$ and $E = \mathbb{C}P^1$. Finally, C is the image of $\mathbb{C}P^1$ under the map $t \mapsto (X(t), Y(t))$. On the other hand, since $X = S \circ Y$, this image coincides with the image of $\mathbb{C}P^1$ under the map $t \mapsto (S(t), t)$, which is equal to $x - S(y) = 0$.

Theorem 1.3 implies two important corollaries. The first concerns compositional left factors of iterates of a tame rational function A. We recall that a tame rational function has degree at least 3.

Corollary 3.5. Let A be a tame rational function, and X and Y rational functions such that

$$A^{os} = X \circ Y$$

for some $s \geq 1$. Then there exists a rational function X_0 such that

$$\deg X_0 \leq 84(\deg A - 2)(\deg A)!$$

and

$$X = A^{ol} \circ X_0, \quad A^{os-l} = X_0 \circ Y \quad \text{for some } l \geq 1.$$
Proof. Equality (16) implies that the curve $C_{A,X}$ has a factor C of genus 0, parametrized by the map
\[t \mapsto (A^{\circ(s-1)}(t), Y(t)). \] (17)
On the other hand, if $\deg X > 84(\deg A - 2)(\deg A)!$, then
\[\frac{(\deg X)/(\deg A)! - 84 \deg A + 168}{84} > \frac{84(\deg A - 2) - 84 \deg A + 168}{84} = 0, \]
implying by Theorem 1.3 that $X = A \circ X'$ and C is the graph $x - X'(y) = 0$ for some rational function X'. Since C is parametrized by the map (17), this implies that $A^{\circ(s-1)} = X' \circ Y$.

Applying this reasoning recursively, we obtain the required statement.

The second corollary is the following.

Corollary 3.6. Let A and B be rational functions such that the curve $C_{A^{\circ s}, B}$, $s \geq 1$, has an irreducible factor C of genus 0 or 1. Assume in addition that B is tame, $\deg A \geq 2$, and
\[s > \log_2[84(\deg B - 1)(\deg B)!]. \] (18)
Then $A^{\circ s} = B \circ Q$ for some rational function Q, and C is the graph $Q(x) - y = 0$.

Proof. Inequality (18) implies that
\[\deg A^{\circ s} = (\deg A)^s \geq 2^s > 84(\deg B - 1)(\deg B)!. \]

Thus,
\[\frac{(\deg A^{\circ s})/(\deg B)! - 84 \deg B + 168}{84} > \frac{84(\deg B - 1) - 84 \deg B + 168}{84} = 1, \]
and the corollary follows from Theorem 1.3.

4. Proofs of Theorems 1.1, 1.2, and 1.4

Theorem 1.1 follows from Theorem 1.3 combined with the following result proved in [25].

Theorem 4.1. There exists a function $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ with the following property. For any rational functions A and X such that
\[A^{\circ d} = X \circ R \] (19)
for some rational function R and some $d \geq 1$, there exists $N \leq \varphi(\deg A, \deg X)$ and a rational function R' such that
\[A^{\circ N} = X \circ R' \]
and $R = R' \circ A^{\circ(d-N)}$ if $d > N$. ■
Proof of Theorem 1.1. By Corollary 3.5, for any decomposition
\[A^d = X \circ Y \]
we can find \(X' \) and \(l \geq 0 \) such that
\[\deg X' \leq 84(n - 2)n!, \]
and we have \(X = A^l \circ X' \) and
\[A^{(d - l)} = X' \circ Y. \]
On the other hand, it follows from Theorem 4.1 that there exists \(N \), which depends on \(n \) only, such that for any decomposition (22) with \(d - l > N \) satisfying (21), (22) there exists a rational function \(Y' \) such that
\[A^N = X' \circ Y', \quad Y = Y' \circ A^{(d - l - N)}. \]
The above implies that any decomposition of \(A^d \) with \(d \geq N \) is induced by a decomposition of \(A^N \). Indeed, if \(d - l \leq N \), then decomposition (20) is induced by the decomposition
\[A^N = (A^{(N - d + l)} \circ X') \circ Y, \]
while if \(d - l > N \), it is induced by \(A^N = X' \circ Y' \).

Let \(F \) be a rational function of degree at least 2. We define \(G(F) \) as the group of Möbius transformations \(\sigma \) such that
\[F \circ \sigma = \nu_\sigma \circ F \]
for some Möbius transformation \(\nu_\sigma \). Below we need the following result (see [21, Theorem 4.2]).

Theorem 4.2. Let \(F \) be a rational function of degree \(d \geq 2 \). Then the group \(G(F) \) is one of the five finite rotation groups of the sphere, \(A_4, S_4, A_5, C_n, D_{2n} \), unless \(F = \theta_1 \circ z^d \circ \theta_2 \) for some Möbius transformations \(\theta_1 \) and \(\theta_2 \).

Proof of Theorem 1.4. We recall that functional decompositions \(F = U \circ V \) of a rational function \(F \) into compositions of rational functions \(U \) and \(V \), considered up to the equivalence
\[U \mapsto U \circ \mu, \quad V \mapsto \mu^{-1} \circ V, \]
are in a one-to-one correspondence with imprimitivity systems of the monodromy group of \(F \). In particular, the number of such classes is finite. Therefore, if for every \(i \geq 1 \) there exist \(s_i \geq 1 \) and \(R_i \in \mathbb{C}(z) \) such that
\[A^{s_i} = B^{s_i} \circ R_i, \]
then Theorem 1.1 implies that there exist a rational function \(U \) and increasing sequences of non-negative integers \(f_k, k \geq 0 \), and \(v_k, k \geq 0 \), such that
\[B^{s_k} = A^{v_k} \circ U \circ \eta_k, \quad k \geq 0. \]
for some $\eta_k \in \text{Aut}(\mathbb{C}P^1)$. In turn, this implies that there exists an increasing sequence of non-negative integers r_k, $k \geq 1$, such that

$$B^{r_k} = A^{r_k} \circ B^0 \circ \mu_k, \quad k \geq 1, \quad (25)$$

for some $\mu_k \in \text{Aut}(\mathbb{C}P^1)$. Furthermore, since (25) implies that for every $k \geq 1$ the function $B^0 \circ \mu_k$ is a compositional right factor of an iterate of B, there exist a rational function V and an increasing sequence of non-negative integers k_l, $l \geq 0$, such that

$$B^0 \circ \mu_{k_l} = \theta_l \circ V, \quad l \geq 0,$$

for some $\theta_l \in \text{Aut}(\mathbb{C}P^1)$, implying that

$$B^0 \circ \mu_{k_l} = \delta_l \circ B^0 \circ \mu_{k_0}, \quad l \geq 1,$$

for some $\delta_l \in \text{Aut}(\mathbb{C}P^1)$.

Clearly, the Möbius transformations $\mu_{k_l} \circ \mu_{k_0}^{-1}$, $l \geq 1$, belong to the group $G(B^0)$. On the other hand, since the function B is tame, the function B^0 is also tame and hence, by Corollary 2.4, it is not of the form $B^0 = \theta_1 \circ z^d \circ \theta_2$, where $\theta_1, \theta_2 \in \text{Aut}(\mathbb{C}P^1)$. Therefore, by Theorem 4.2,

$$\mu_{k_{l_2}} \circ \mu_{k_0}^{-1} = \mu_{k_{l_1}} \circ \mu_{k_0}^{-1},$$

for some $l_2 > l_1$, implying that $\mu_{k_{l_2}} = \mu_{k_{l_1}}$. It now follows from (25) that

$$B^{r_{k_{l_2}}} = A^{(r_{k_{l_2}} - r_{k_{l_1}})} \circ B^{r_{k_{l_1}}},$$

implying that

$$B^{r_{k_{l_2}}} = A^{(r_{k_{l_2}} - r_{k_{l_1}})}.$$ \quad (26)

Since $l_2 > l_1$ and the sequences k_l, $l \geq 1$, and f_k, $k \geq 1$, are increasing, we know that $f_{k_{l_2}} > f_{k_{l_1}}$, and therefore A and B have a common iterate. This proves (i)\Rightarrow(iii).

Similarly, if for every $i \geq 1$ there exist $s_i \geq 1$ and $R_i \in \mathbb{C}(z)$ such that

$$A^{s_i} = R_i \circ B^{s_i},$$

we conclude that there exist increasing sequences f_k, $k \geq 0$, and r_k, $k \geq 1$, such that

$$B^{r_k} = \mu_k \circ B^0 \circ A^{r_k}, \quad k \geq 1, \quad (27)$$

for some $\mu_k \in \text{Aut}(\mathbb{C}P^1)$. Moreover, there exists an increasing sequence k_l, $l \geq 0$, such that

$$\mu_{k_l} \circ B^0 = A \circ B^0 \circ \delta_l, \quad l \geq 1,$$

for some $\delta_l \in \text{Aut}(\mathbb{C}P^1)$$. Finally, for some $l_2 > l_1$ we have $\delta_{l_2} = \delta_{l_1}$, implying $\mu_{k_{l_2}} = \mu_{k_{l_1}}$. Now (27) yields

$$B^{r_{k_{l_2}}} = B^{r_{k_{l_1}}} \circ A^{(r_{k_{l_2}} - r_{k_{l_1}})}.$$
Since B is tame, the last equality in turn implies (26). This proves (ii)\Rightarrow(iii). Finally, it is clear that (iii) implies (i) and (ii).

Remark 4.3. It is not the case that Theorem 1.4 is true for all rational functions. For example, it is easy to see that for the functions z^6 and z^{12} conditions (i) and (ii) are satisfied, while (iii) is not. Nevertheless, one can expect that (i) and (iii) are equivalent for non-special functions. On the other hand, there exist non-special rational functions for which (ii) and (iii) are not equivalent. Specifically, using wild rational functions one can construct A and B such that

$$A^{o2} = A \circ B,$$

but A and B have no common iterate (see [23, 31]). Since (28) implies that

$$A^{o2k} = A^{ok} \circ B^{ok},$$

for such A and B any iterate of B is a compositional right factor of an iterate of A.

Our starting point in the proofs of Theorems 1.2, 1.5, and 1.6 is the following lemma.

Lemma 4.4. Let A and B be rational functions of degree at least 2 such that an orbit of A has an infinite intersection with an orbit of B. Then for every pair $(d, i) \in \mathbb{N} \times \mathbb{N}$ the algebraic curve $A^{o_d}(x) - B^{o_i}(y) = 0$ has a factor of genus 0 or 1.

Proof. Recall that by the theorem of Faltings [5], if an irreducible algebraic curve C defined over a finitely generated field K of characteristic 0 has infinitely many K-points, then $g(C) \leq 1$. On the other hand, it is easy to see that if $O_A(z_1) \cap O_B(z_2)$ is infinite, then for every pair $(d, i) \in \mathbb{N} \times \mathbb{N}$ the algebraic curve (5) has infinitely many points $(x, y) \in O_A(z_1) \times O_B(z_2)$. Defining now K as the field generated over \mathbb{Q} by z_1, z_2, and the coefficients of A, B, and observing that the orbits $O_A(z_1)$ and $O_B(z_2)$ belong to K, we conclude that for every pair $(d, i) \in \mathbb{N} \times \mathbb{N}$ the curve (5) has a factor of genus 0 or 1.

Proof of Theorem 1.2. Since B^{o_i}, $i \geq 1$, is tame whenever B is tame, it follows from Lemma 4.4 and Corollary 3.6 that for every $i \geq 1$ there exist $s_i \geq 1$ and $R_i \in \mathbb{C}(z)$ such that equality (24) holds. Therefore, by Theorem 1.4, A and B have a common iterate.

5. **Proofs of Theorems 1.5 and 1.6**

5.1. **Proof of Theorem 1.5**

We start by recalling the results of [20], describing pairs of rational functions A and U of degree at least 2 such that for every $d \geq 1$ the algebraic curve (6) has an irreducible factor of genus 0 or 1. In case A is non-special, the main result of [20] in a slightly simplified form can be formulated as follows (see [20, Theorem 1.2]).
Theorem 5.1. Let A be a non-special rational function of degree at least 2. Then there exist a rational Galois covering X_A and a rational function F such that the diagram

$$
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{F} & \mathbb{CP}^1 \\
X_A & \downarrow & X_A \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1
\end{array}
$$

(29)

commutes, and for a rational function U of degree at least 2 the algebraic curve $C_{A^{od},U}$ has a factor of genus 0 or 1 for every $d \geq 1$ if and only if U is a compositional left factor of $A^{od} \circ X_A$ for some $l \geq 0$.

The Galois covering X_A in Theorem 5.1 can be described explicitly (see [20, Theorem 3.4]). However, we do not need this more explicit description to prove Theorem 1.5 in the case where both functions A and B are non-special. Indeed, since by Lemma 4.4 for every pair $(d, i) \in \mathbb{N} \times \mathbb{N}$ the algebraic curve (5) has a factor of genus 0 or 1, it follows from Theorem 5.1 that for every $i \geq 1$ there exist $d_i \geq 1$ and $S_i \in \mathbb{C}(z)$ such that

$$A^{od_i} \circ X_A = B^{oi} \circ S_i. \quad (30)$$

Therefore, if

$$\text{ord}_p(\deg B) > 0 \quad (31)$$

for some prime number p, then for every $i \geq 1$ there exists $d_i \geq 1$ such that

$$d_i \text{ ord}_p(\deg A) + \text{ ord}_p(\deg X_A) \geq i \text{ ord}_p(\deg B).$$

implying that

$$\text{ord}_p(\deg A) > 0. \quad (32)$$

By symmetry, inequality (32) implies (31). Therefore,

$$\mathbb{P}(\deg A) = \mathbb{P}(\deg B).$$

This proves Theorem 1.5 when A and B are non-special. On the other hand, if A or B is special, then Theorem 1.5 obviously follows from Theorem 1.6 proved below.

5.2. Proof of Theorem 1.6 for A conjugate to $z^{\pm n}$ or $\pm T_n$

For $s \geq 1$, we set

$$D_s = \frac{1}{2} \left(z^s + \frac{1}{z^s} \right).$$

To prove Theorem 1.6 when A is conjugate to $z^{\pm n}$ or $\pm T_n$, we use the following result (see [20, Theorem 3.6]).

Theorem 5.2. Let A and U be rational functions of degree at least 2.

(i) If $A = z^n$, then the algebraic curve $C_{A^{od},U}$ has a factor of genus 0 or 1 for every $d \geq 1$ if and only if $U = z^s \circ \mu$, $s \geq 2$, where μ is a Möbius transformation.
(ii) If \(A = T_n \), then the algebraic curve \(C_{A^d, U} \) has a factor of genus 0 or 1 for every \(d \geq 1 \) if and only if either \(U = \pm T_s \circ \mu \), \(s \geq 2 \), or \(U = D_s \circ \mu \), \(s \geq 1 \), where \(\mu \) is a Möbius transformation.

Let us prove Theorem 1.6 when \(A \) is conjugate to \(\pm T_n \). Clearly, without loss of generality we may assume that \(A = D_s \) if \(n \) is even, or \(A = D_s^{-1} \) if \(n \) is odd. Since by Lemma 4.4 for every pair \((d, i) \in \mathbb{N} \times \mathbb{N}\) the algebraic curve (5) has a factor of genus 0 or 1, it follows from Theorem 5.2(ii) that if \(A = D_s \), then for any \(i \geq 1 \) either
\[B^{\circ i} = \pm T_s \circ \mu, \quad s \geq 2, \quad \mu \in \text{Aut}(\mathbb{C}\mathbb{P}^1), \] (33)
or
\[B^{\circ i} = D_s \circ \mu, \quad s \geq 1, \quad \mu \in \text{Aut}(\mathbb{C}\mathbb{P}^1). \] (34)
The same is true if \(A = -T_n \), since we can apply Theorem 5.2 to iterates of \(A^{\circ 2} \). Setting \(m = \deg B \), we show first that conditions (33), (34) imply \(B = \pm T_m \). Since an iterate of a rational function \(f \) of degree at least 2 equals \(\pm T_s \) if and only if \(f \) equals \(\pm T_s \) (see e.g. [22, Lemma 6.3]), it is enough to show that \(B^{\circ 2} = \pm T_m^{2} \). Therefore, considering only even iterates of \(B \), without loss of generality we may assume that the degree of \(B \) in (33), (34) is greater than 2, implying that \(\deg T_s > 2 \) and \(\deg D_s > 2 \).

Let us observe first that equality (34) is actually impossible for any \(i \geq 1 \). Indeed, otherwise considering the iterate \(B^{\circ 2i} \) we conclude that there exists \(v \in \text{Aut}(\mathbb{C}\mathbb{P}^1) \) such that either
\[D_s \circ \mu \circ D_s \circ \mu = \pm T_{4s^2} \circ v, \] (35)
or
\[D_s \circ \mu \circ D_s \circ \mu = D_{2s^2} \circ v. \] (36)
Equality (35) is impossible since the function on the left hand side has more than one pole. Moreover, since any decomposition \(D_l = U \circ V \) of \(D_l \), up to the equivalence (23), reduces either to the decomposition
\[D_l = D_{l/d} \circ z^d, \]
or to
\[D_l = \varepsilon^l T_{l/d} \circ D_d(\varepsilon z), \]
where \(d \mid l \) and \(\varepsilon^{2l} = 1 \) (see e.g. [18, Section 4.2]), it is easy to see comparing the ramification of the functions \(z^d \), \(\pm T_s \), and \(D_s \) that if \(\deg D_s > 2 \) then (36) is impossible too.

Since (34) is impossible, \(B = \pm T_m \circ \mu \) for some \(\mu \in \text{Aut}(\mathbb{C}\mathbb{P}^1) \) and
\[\pm T_m \circ \mu \circ \pm T_m \circ \mu = \pm T_m^{2} \circ v \] (37)
for some \(v \in \text{Aut}(\mathbb{C}\mathbb{P}^1) \). Furthermore, since finite critical values of Chebyshev polynomials are \(\pm 1 \), and the local multiplicity of \(\pm T_s \) at each of the points in \(T_s^{-1}\{-1, 1\} \) distinct from \(-1 \) and \(1 \) is 2, equality (37) implies by the chain rule that whenever \(m > 2 \)
the equalities $\mu(\infty) = (\infty)$ and $\mu\{-1, 1\} = \{-1, 1\}$ hold. Thus, $\mu = \pm z$ and hence $B = \pm T_m$.

Let now $O_A(z_1)$ and $O_B(z_2)$ be orbits having an infinite intersection. Evidently, without loss of generality we may assume that $z_1 = z_2 = z_0$, and it is clear that $z_0 \neq \infty$. The equalities $A = \pm T_n$ and $B = \pm T_m$ imply that there exist a linear function α_A of the form nz or $nz + 1/2$ and a linear function α_B of the form mz or $mz + 1/2$ such that the diagrams

\[
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\alpha_A} & \mathbb{C} \\
\downarrow \cos 2\pi z & & \downarrow \cos 2\pi z \\
\mathbb{C}P^1 & \xrightarrow{A} & \mathbb{C}P^1
\end{array}
\quad
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\alpha_B} & \mathbb{C} \\
\downarrow \cos 2\pi z & & \downarrow \cos 2\pi z \\
\mathbb{C}P^1 & \xrightarrow{B} & \mathbb{C}P^1
\end{array}
\]

commute. If z_0' is a point of \mathbb{C} such that $\cos (2\pi z_0') = z_0$ and $k, l \geq 1$ are integers such that

\[A^{\alpha k}(z_0) = B^{\alpha l}(z_0),\]

(38)

then $(\alpha_A^{\alpha k} \pm \alpha_B^{\alpha l})(z_0')$ is an integer. Taking into account the form of α_A and α_B, this implies that either z_0' is a rational number, or $\alpha_A^{\alpha k} = \pm \alpha_B^{\alpha l}$. In the first case, however, z_0' is a preperiodic point both for α_A modulo 1 and for α_B modulo 1, implying that the orbits $O_A(z_1)$ and $O_B(z_2)$ are finite, and therefore cannot have an infinite intersection. Thus, $\alpha_A^{\alpha k} = \pm \alpha_B^{\alpha l}$, implying that $A^{\alpha k} = B^{\alpha l}$. This finishes the proof of Theorem 1.6 when A is conjugate to $\pm T_n$.

In case A is conjugate to $z^{\pm n}$, the proof can be done in a similar way using Theorem 5.2 (i) and the family of semiconjugacies

\[
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\pm n z} & \mathbb{C} \\
\downarrow \exp z & & \downarrow \exp z \\
\mathbb{C}P^1 & \xrightarrow{z^{\pm n}} & \mathbb{C}P^1
\end{array}
\]

where $n \in \mathbb{N}$.

\[\rule{20pt}{.5pt}\]

5.3. **Proof of Theorem 1.6 when A is a Lattès map**

In this section, we need some further definitions and results concerning Riemann surface orbifolds; in particular, the definition of the orbifold O_0^A associated with a rational function A, and the description of Lattès maps as self-covering maps of orbifolds of zero Euler characteristic. All the necessary information can be found in [20, Sections 2.1 and 2.4].

The first result we need is the following (see [20, Theorem 3.5]).

Theorem 5.3. Let A and U be rational functions of degree at least 2. If A is a Lattès map, then the algebraic curve $A^{\alpha d}(x) - U(y) = 0$ has a factor of genus 0 or 1 for every $d \geq 1$ if and only if U is a compositional left factor of $\theta_{O_0^A}$.

\[\rule{20pt}{.5pt}\]

In addition, we need the following two facts (see [20, Theorem 2.4] and [21, Lemma 3.5]).
Theorem 5.4. Let U be a rational function and $\mathcal{O} = (\mathbb{C} \mathbb{P}^1, \nu)$ an orbifold. Then U is a compositional left factor of $\theta_\mathcal{O}$ if and only if $\mathcal{O}^U_2 \leq \mathcal{O}$.

Lemma 5.5. Let A be a rational function such that $\chi(\mathcal{O}^A_2) = 0$, and U, V rational functions of degree at least 2 such that $A = U \circ V$ and

$$\deg U, \deg V \not\in \{2, 3, 4, 6, 8, 12\}.$$

Then $\mathcal{O}^V_2 = \mathcal{O}^U_1$.

Finally, we recall that if $\mathcal{O} = (\mathbb{C} \mathbb{P}^1, \nu)$ is an orbifold distinct from the non-ramified sphere, then $\chi(\mathcal{O}) = 0$ if and only if the signature of \mathcal{O} belongs to the list

$$\{2, 2, 2, 2\}, \{3, 3, 3\}, \{2, 4, 4\}, \{2, 3, 6\},$$

while $\chi(\mathcal{O}) > 0$ if and only if the signature of \mathcal{O} belongs to the list

$$\{n, n\}, n \geq 2, \{2, 2, n\}, n \geq 2, \{2, 3, 3\}, \{2, 3, 4\}, \{2, 3, 5\}.$$

(39)

To prove Theorem 1.6 when A is a Lattès map we show first that if $\mathcal{O} = \mathcal{O}^d$ is the orbifold such that $A : \mathcal{O} \to \mathcal{O}$ is a covering map, then $B : \mathcal{O} \to \mathcal{O}$ is also a covering map. Assume, say, that $\nu(\mathcal{O}) = \{2, 3, 6\}$. Since for every pair of integers $d \geq 1, i \geq 1$ the algebraic curve (5) has a factor of genus 0 or 1, it follows from Theorems 5.3 and 5.4 that for every $d \geq 1$ we have $\chi(\mathcal{O}^B_2^{od}) \leq \mathcal{O}$, implying that the signature $\nu(\mathcal{O}^B_2^{od})$ is either $\{2, 3, 6\}$, or one of the signatures

$$\{2, 2, 2\}, \{2, 3, 3\}, \{2, 2\}, \{3, 3\}.$$

(40)

However, rational functions f such that \mathcal{O}^f_2 belongs to the list (40) have bounded degrees (see e.g. [18]). Thus, for d large enough, $\nu(\mathcal{O}^B_2^{od}) = \{2, 3, 6\}$. Furthermore, for d large enough, $\deg B^{od} > 12$. Therefore, applying Lemma 5.5 to the decomposition

$$B^{od^2} = B^{od} \circ B^{od},$$

we conclude that

$$\mathcal{O}^B_1^{od} = \mathcal{O}^B_2^{od} = \mathcal{O}.$$

Thus, $B^{od} : \mathcal{O} \to \mathcal{O}$ is a covering map. Finally, the fact that $B^{od} : \mathcal{O} \to \mathcal{O}$ is a covering map implies that $B : \mathcal{O} \to \mathcal{O}$ is a covering map (see [22, Corollary 4.6]). The proof for the other signatures from the list (39) is similar.

Let now $O_A(z_0)$ and $O_B(z_0)$ be orbits having an infinite intersection. Since $A : \mathcal{O} \to \mathcal{O}$ and $B : \mathcal{O} \to \mathcal{O}$ are both covering maps, there exist an elliptic curve \mathcal{C} and holomorphic maps

$$\alpha_A : \mathcal{C} \to \mathcal{C}, \quad \alpha_B : \mathcal{C} \to \mathcal{C}, \quad \pi : \mathcal{C} \to \mathbb{C} \mathbb{P}^1$$

such that the diagrams

$$
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\alpha_A} & \mathcal{C} \\
\pi \downarrow & & \pi \\
\mathbb{C} \mathbb{P}^1 & \xrightarrow{A} & \mathbb{C} \mathbb{P}^1
\end{array}
\quad
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\alpha_B} & \mathcal{C} \\
\pi \downarrow & & \pi \\
\mathbb{C} \mathbb{P}^1 & \xrightarrow{B} & \mathbb{C} \mathbb{P}^1
\end{array}
$$
commute. Moreover,
\[\alpha_A = \psi_A + T_A, \quad \alpha_B = \psi_B + T_B, \quad (41) \]
where \(\psi_A, \psi_B \in \text{End}(\mathbb{C}) \) and \(T_A, T_B \) are points of finite order (see e.g. [13, Lemma 5.1]).

If \(z_0' \) is a point of \(\mathbb{C} \) such that \(\pi(z_0') = z_0 \) and \(k, l \geq 1 \) are integers such that (38) holds, then
\[(\alpha_A^o k - \alpha_B^{o l})(z_0') = 0. \]

On the other hand, it follows from (41) that
\[\alpha_A^{o k} - \alpha_B^{o l} = \psi + T, \]
where \(\psi \in \text{End}(\mathbb{C}) \) and \(T \) is a point of finite order \(d \). Moreover, since \((\psi + T)(z_0') = 0 \) implies \(d(\psi + T)(z_0') = 0 \), we see that \(\psi(dz_0') = 0 \). Therefore, either \(\psi = 0 \), or \(dz_0' \) belongs to the group \(\text{Ker} \psi \) of finite order, implying that \(z_0' \) itself has finite order. Since points of finite order of \(\mathbb{C} \) are mapped to preperiodic points of \(A \) and \(B \) (see e.g. [30, Proposition 6.44]), in the second case the orbits \(O_A(z_0) \) and \(O_B(z_0) \) cannot have an infinite intersection. Therefore, \(\psi = 0 \), implying \(T = 0 \). Thus, \(\alpha_A^{o k} = \alpha_B^{o l} \), implying \(A^{o k} = B^{o l} \).

6. The polynomial case

6.1. Polynomial decompositions

First of all, we recall that if \(A \) is a polynomial, and \(A = U \circ V \) is a decomposition into a composition of rational functions, then there exists a Möbius transformation \(\mu \) such that \(U \circ \mu \) and \(\mu^{-1} \circ V \) are polynomials. Thus, when studying decompositions of \(A^{o d} \) we can restrict ourselves to considering decompositions into compositions of polynomials. We also mention that since a polynomial cannot be a Lattès map, a polynomial is special if and only if it is conjugate to \(z^n \) or \(\pm T_n \).

The following result follows easily from the fact that the monodromy group of a polynomial of degree \(n \) contains a cycle of length \(n \).

Theorem 6.1 ([4]). Let \(A, C, D, B \) be polynomials such that
\[A \circ C = D \circ B. \quad (42) \]
Then there exist polynomials \(U, V, \tilde{A}, \tilde{C}, \tilde{D}, \tilde{B} \), where
\[\deg U = \text{GCD}(\deg A, \deg D), \quad \deg V = \text{GCD}(\deg C, \deg B), \]
such that
\[A = U \circ \tilde{A}, \quad D = U \circ \tilde{D}, \quad C = \tilde{C} \circ V, \quad B = \tilde{B} \circ V, \]
and
\[\tilde{A} \circ \tilde{C} = \tilde{D} \circ \tilde{B}. \]
Notice that Theorem 6.1 implies that if \(\deg D \mid \deg A \) in (42), then

\[
A = D \circ R, \quad B = R \circ C
\]

for some polynomial \(R \). In particular, if (3) holds for polynomials \(A, f, g \), then \(f = \mu \circ g \) for some polynomial \(\mu \) of degree 1 such that \(A \circ \mu = A \). Moreover, Theorem 6.1 implies Theorem 4.1 when \(A \) is a polynomial. Indeed, since (19) implies that \(\mathcal{P}(X) \subseteq \mathcal{P}(A) \), we have

\[
\deg X = \prod_{p \in \mathcal{P}(A)} p^{\alpha_p},
\]

where obviously \(\alpha_p \leq \log_2 \deg X \). Therefore,

\[
\deg X \mid \deg(A^\circ N)
\]

for \(N = \log_2 \deg X \), and applying Theorem 6.1 to the equality

\[
A^\circ d = A^\circ N \circ A^\circ (d-N) = X \circ R,
\]

where \(d > N \), we conclude that

\[
A^\circ N = X \circ R', \quad R = R' \circ A^\circ (d-N)
\]

for some polynomial \(R' \).

For a polynomial \(T \) we denote by \(\text{Aut}(T) \) the set of polynomial Möbius transformations commuting with \(T \). The following result classifies polynomials commuting with a given non-special polynomial (see [28] and [24, Section 6.2]).

Theorem 6.2. Let \(A \) be a polynomial of degree at least 2, not conjugate to \(z^n \) or \(\pm T_n \). Then there exists a polynomial \(T \) such that \(A = \mu \circ T^\circ k \), where \(\mu \in \text{Aut}(A) \) and \(k \geq 1 \), and any polynomial \(B \) commuting with \(A \) has the form \(B = v \circ T^\circ l \), where \(v \in \text{Aut}(A) \) and \(l \geq 1 \).

Corollary 6.3. Let \(A \) be a polynomial of degree at least 2, not conjugate to \(z^n \) or \(\pm T_n \). Assume that \(B \) is a polynomial commuting with \(A \) such that \(\deg B \geq \deg A \). Then \(B = A \circ S \) for some polynomial \(S \).

Proof. Applying Theorem 6.2 and taking into account that \(v, \mu \in \text{Aut}(A) \), we see that \(B = A \circ S \) for the polynomial

\[
S = v \circ \mu^{-1} \circ T^\circ (l-k).
\]

6.2. Equivalence relation

Let \(A \) be a rational function. Following [19], we say that a rational function \(\hat{A} \) is an **elementary transformation** of \(A \) if there exist rational functions \(U \) and \(V \) such that \(A = V \circ U \) and \(\hat{A} = U \circ V \). We say that \(A \) and \(B \) are **equivalent** and write \(A \sim B \) if there
exists a chain of elementary transformations between A and B. Notice that any pair A, \hat{A} as above gives rise to the semiconjugacies

\[
\begin{array}{c}
\mathbb{CP}^1 \xrightarrow{\hat{A}} \mathbb{CP}^1 \\
\downarrow V \\
\mathbb{CP}^1 \xrightarrow{A} \mathbb{CP}^1
\end{array}
\quad
\begin{array}{c}
\mathbb{CP}^1 \xrightarrow{A} \mathbb{CP}^1 \\
\downarrow U \\
\mathbb{CP}^1 \xrightarrow{\hat{A}} \mathbb{CP}^1
\end{array}
\]

implying inductively that whenever $A \sim B$, the function A is semiconjugate to B, and B is semiconjugate to A.

Since for any Möbius transformation μ we have

\[
A = (A \circ \mu^{-1}) \circ \mu,
\]

the equivalence class $[A]$ of a rational function A is a union of conjugacy classes. We denote the number of conjugacy classes in $[A]$ by $d(A)$. In this notation, the following statement holds.

Theorem 6.4. Let A be a rational function of degree n. Then its equivalence class $[A]$ contains infinitely many conjugacy classes if and only if A is a flexible Lattès map. Furthermore, if A is not a flexible Lattès map, then $d(A)$ can be bounded in terms of n only.

The first part of Theorem 6.4 was proved in [19], using the McMullen theorem about isospectral rational functions [11]. This approach however provides no bound for $d(A)$. The fact that $d(A)$ can be bounded in terms of n was proved in [21, Theorem 1.1 and Remark 5.2]).

Lemma 6.5. Let A be a special function, and $A' \sim A$. Then A' is special.

In full generality Lemma 6.5 is proved in [21, Lemma 2.11]. Below we use this lemma only in the polynomial case, in which it follows from the well known description of decompositions of z^n and $\pm T_n$.

6.3. Polynomial orbits and iterates

We start by re-proving the main result of [32], basing merely on the results of Sections 6.1–6.2.2

Theorem 6.6. Let A be a polynomial of degree $n \geq 2$ not conjugate to z^n or $\pm T_n$. Then there exists an integer N, depending on n only, such that any decomposition of A^{nd} with $d \geq N$ is induced by a decomposition of A^{dN}.

\[\text{2Unlike [32], we do not provide an explicit bound for } N. \text{ However, for applications similar to Theorem 6.7 the actual form of this bound is not really important.}\]
Proof. It is enough to show that if a polynomial A is not conjugate to z^d or $\pm T_d$, then equality (16) for some polynomials X and Y with $\deg X$ large enough with respect to $\deg A$ implies that

$$X = A \circ R$$

(43)

for some polynomial R. Indeed, in this case without loss of generality we may assume that $A^{s-1} = R \circ Y$ by Theorem 6.1, and applying this argument inductively, we obtain an analogue of Corollary 3.5, which holds for any non-special polynomial A. The rest of the proof is similar to the proof of Theorem 1.1.

Since (16) implies that $\mathcal{P}(X) \subseteq \mathcal{P}(A)$, we have $\gcd(\deg X, \deg A) > 1$. Therefore, by Theorem 6.1, there exists a polynomial V_1 of degree at least 2 such that

$$A = V_1 \circ U_1, \quad X = V_1 \circ X_1,$$

and

$$U_1 \circ A^{s-1} = X_1 \circ Y$$

(44)

for some polynomials U_1 and X_1. In turn, (44) implies

$$A_1^{s} = X_1 \circ Y_1,$$

(45)

where

$$A_1 = U_1 \circ V_1, \quad Y_1 = Y \circ V_1.$$

Applying now the same reasoning to (45) we can find polynomials $U_2, V_2, X_2, \deg V_2 \geq 2$, such that

$$A_1 = V_2 \circ U_2, \quad X_1 = V_2 \circ X_2,$$

and

$$A_2^{s} = X_2 \circ Y_2$$

for

$$A_2 = U_2 \circ V_2, \quad Y_2 = Y_1 \circ V_2.$$

Continuing in the same way and taking into account that $\deg V_i \geq 2$, we see that there exist an integer $p \geq 1$ and a sequence of elementary transformations

$$L : A_0 = A \to A_1 \to A_2 \to \cdots \to A_p$$

such that

$$A_0 = V_1 \circ U_1, \quad A_i = U_i \circ V_i, \quad 1 \leq i \leq p,$$

$$U_i \circ V_i = V_{i+1} \circ U_{i+1}, \quad 1 \leq i \leq p - 1,$$

$$X = V_1 \circ V_2 \circ \cdots \circ V_p.$$

Since a polynomial cannot be a Lattès map, the equivalence class $[A]$ contains at most finitely many conjugacy classes by Theorem 6.4. Setting

$$M = n^{d(A)K},$$
where K is a natural number to be defined later, assume that $\deg X > M$. Since $\deg V_i \leq n$, this implies that $p \geq d(A)K + 1$. Therefore, there exist indices
\[0 \leq s_0 < s_1 < \cdots < s_K \leq p \]
such that $A_{s_0}, A_{s_1}, \ldots, A_{s_K}$ are conjugate to each other. We now consider the commutative diagram

\[
\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{A_p} & \mathbb{CP}^1 \\
W_{K+1} & \downarrow & W_{K+1} \\
\mathbb{CP}^1 & \xrightarrow{A_{s_K}} & \mathbb{CP}^1 \\
& \downarrow & \\
\mathbb{CP}^1 & \xrightarrow{A_{s_1}} & \mathbb{CP}^1 \\
& \downarrow & \\
\mathbb{CP}^1 & \xrightarrow{A_{s_0}} & \mathbb{CP}^1 \\
& \downarrow & \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \\
\end{array}
\]

where
\[W_0 = V_1 \circ V_2 \circ \cdots \circ V_{s_0}, \quad W_{K+1} = V_{s_K+1} \circ V_{s_2+2} \circ \cdots \circ V_p, \]
and
\[W_i = V_{s_{i-1}+1} \circ V_{s_{i-1}+2} \circ \cdots \circ V_{s_i}, \quad 1 \leq i \leq K. \]

Since
\[A_{s_K} = v^{-1} \circ A_{s_0} \circ v \quad \text{for some } v \in \text{Aut}(\mathbb{CP}^1), \]
the polynomial
\[W = W_1 \circ W_2 \circ \cdots \circ W_K \circ v^{-1} \]
commutes with A_{s_0}. Moreover, since A is non-special, so is A_{s_0} by Lemma 6.5.

Assume now that $K \geq \log_2 n$. Since $\deg V_i \geq 2$, in this case $\deg W \geq n$, and hence $W = A_{s_0} \circ S$ for some polynomial S, by Corollary 6.3. Therefore,
\[X = W_0 \circ W \circ v \circ W_{K+1} = W_0 \circ A_{s_0} \circ S \circ v \circ W_{K+1} = A \circ W_0 \circ S \circ v \circ W_{K+1}. \]

Summarizing, we see that the condition
\[\deg X > n^{d(A) \log_2 n} \]
implies (43) for some polynomial R.

Now we re-prove the main result of [7, 8], relying on Theorems 5.1 and 6.6.

Theorem 6.7. Let A and B be polynomials of degree at least 2 such that an orbit of A has an infinite intersection with an orbit of B. Then A and B have a common iterate.
Proof. By Theorem 1.6, we may assume that A and B are not special. Arguing as in Section 5.1, we see that there exist a Galois covering X_A and a rational function F such that diagram (29) commutes and for every $i \geq 1$ there exist $d_i \geq 1$ and $S_i \in \mathbb{C}(z)$ such that equality (30) holds. Moreover, $\mathcal{P}(B) \subseteq \mathcal{P}(A)$, implying that for every $i \geq 1$ there exist $s_i \geq d_i$ such that
\[
\deg(B^\circ_s) | \deg(A^{\circ s_i}).
\] (46)
Equality (30) implies
\[
A^{\circ d_i} \circ X_A \circ F^{\circ(s_i-d_i)} = B^{\circ s_i} \circ S_i \circ F^{\circ(s_i-d_i)},
\] which in turn implies
\[
A^{\circ s_i} \circ X_A = B^{\circ s_i} \circ S_i \circ F^{\circ(s_i-d_i)},
\] (47)
Applying now Theorem 6.1 to (47) and taking into account (46), we conclude that for every $i \geq 1$ there exist $R_i \in \mathbb{C}[z]$ such that (24) holds. Finally, arguing as in the proof of Theorem 1.4, but using Theorem 6.6 instead of Theorem 1.1, we conclude that A and B have a common iterate.

Funding. This research was supported by ISF Grant No. 1432/18.

References

[1] Avanzi, R. M., Zannier, U. M.: The equation $f(X) = f(Y)$ in rational functions $X = X(t)$, $Y = Y(t)$. Compos. Math. 139, 263–295 (2003) Zbl 1050.14020 MR 2041613
[2] Cabrera, C., Makienko, P.: On decomposable rational maps. Conform. Geom. Dynam. 15, 210–218 (2011) Zbl 1298.37027 MR 2869014
[3] Cabrera, C., Makienko, P.: Amenability and measure of maximal entropy for semigroups of rational maps. Groups Geom. Dynam. 15, 1139–1174 (2021) Zbl 07476315 MR 4349656
[4] Engstrom, H. T.: Polynomial substitutions. Amer. J. Math. 63, 249–255 (1941) Zbl 67.0059.01 MR 3599
[5] Faltings, G.: Complements to Mordell. In: Rational Points (Bonn, 1983/1984), Aspects Math. E6, Vieweg, Braunschweig, 203–227 (1984) MR 766574
[6] Fried, M.: The field of definition of function fields and a problem in the reducibility of polynomials in two variables. Illinois J. Math. 17, 128–146 (1973) Zbl 0267.37043 MR 347828
[7] Ghioca, D., Tucker, T. J., Zieve, M. E.: Intersections of polynomials orbits, and a dynamical Mordell–Lang conjecture. Invent. Math. 171, 463–483 (2008) Zbl 0634.30028 MR 2367026
[8] Ghioca, D., Tucker, T. J., Zieve, M. E.: Linear relations between polynomial orbits. Duke Math. J. 161, 1379–1410 (2012) Zbl 1267.37043 MR 2922378
[9] Girondo, E., González-Diez, G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants. London Math. Soc. Student Texts 79, Cambridge Univ. Press, Cambridge (2012) Zbl 1253.30001 MR 2895884
[10] Lyubich, M., Minsky, Y.: Laminations in holomorphic dynamics. J. Differential Geom. 47, 17–94 (1997) Zbl 0910.58032 MR 1601430
[11] McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. of Math. (2) 125, 467–493 (1987) Zbl 0634.30028 MR 890160
[12] Medvedev, A., Scanlon, T.: Invariant varieties for polynomial dynamical systems. Ann. of Math. (2) 179, 81–177 (2014) Zbl 1347.37145 MR 3126567
[13] Milnor, J.: On Lattès maps. In: Dynamics on the Riemann Sphere, Eur. Math. Soc., Zürich, 9–43 (2006) Zbl 1235.37015 MR 2348953
[14] Pakovich, F.: Prime and composite Laurent polynomials. Bull. Sci. Math. 133, 693–732 (2009) Zbl 1205.30025 MR 2557404
[15] Pakovich, F.: Algebraic curves $P(x) - Q(y) = 0$ and functional equations. Complex Var. Elliptic Equations 56, 199–213 (2011) Zbl 1220.30037 MR 2774592
[16] Pakovich, F.: Polynomial semiconjugacies, decompositions of iterations, and invariant curves. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 17, 1417–1446 (2017) Zbl 1386.37044 MR 3752532
[17] Pakovich, F.: On algebraic curves $A(x) - B(y) = 0$ of genus zero. Math. Z. 288, 299–310 (2018) Zbl 1395.14024 MR 3774414
[18] Pakovich, F.: On rational functions whose normalization has genus zero or one. Acta Arith. 182, 73–100 (2018) Zbl 1406.14024 MR 3740243
[19] Pakovich, F.: Recomposing rational functions. Int. Math. Res. Notices 2019, 1921–1935 Zbl 1436.30005 MR 3938311
[20] Pakovich, F.: Algebraic curves $A^g(x) - U(y) = 0$ and arithmetic of orbits of rational functions. Moscow Math. J. 20, 153–183 (2020) Zbl 1460.37087 MR 4060316
[21] Pakovich, F.: Finiteness theorems for commuting and semiconjugate rational functions. Conform. Geom. Dynam. 24, 202–229 (2020) Zbl 1451.30053 MR 4159155
[22] Pakovich, F.: On generalized Lattès maps. J. Anal. Math. 142, 1–39 (2020) Zbl 1461.30059 MR 4190057
[23] Pakovich, F.: On rational functions sharing the measure of maximal entropy. Arnold Math. J. 6, 387–396 (2020) Zbl 1485.39033 MR 4181717
[24] Pakovich, F.: Commuting rational functions revisited. Ergodic Theory Dynam. Systems 41, 295–320 (2021) Zbl 1461.30057 MR 4190057
[25] Pakovich, F.: Invariant curves for endomorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$, Math. Ann. (online, 2022)
[26] Ritt, J. F.: On the iteration of rational functions. Trans. Amer. Math. Soc. 21, 348–356 (1920) Zbl 47.0312.01 MR 1501149
[27] Ritt, J. F.: Prime and composite polynomials. Trans. Amer. Math. Soc. 23, 51–66 (1922) Zbl 48.0079.01 MR 1501189
[28] Ritt, J. F.: Permutable rational functions. Trans. Amer. Math. Soc. 25, 399–448 (1923) Zbl 49.0712.02 MR 1501252
[29] Segol, N.: Injectivity of rational functions. M.Sc. thesis, Technion (2018)
[30] Silverman, J. H.: The Arithmetic of Dynamical Systems. Grad. Texts in Math. 241, Springer, New York (2007) Zbl 1130.37001 MR 2316407
[31] Ye, H.: Rational functions with identical measure of maximal entropy. Adv. Math. 268, 373–395 (2015) Zbl 1351.37187 MR 3276598
[32] Zieve, M., Müller, P.: On Ritt’s polynomial decomposition theorem. arXiv:0807.3578 (2008)