Biomarker Research Approach to the Pathogenesis of Ossification of the Spinal Ligament: A Review

Yoshiharu Kawaguchi

Department of Orthopaedic Surgery, University of Toyama, Toyama, Japan

Abstract:
The ossification of the spinal ligaments (OSL) is characterized by ectopic new bone formation in the spinal ligament. However, the etiology of OSL has not yet been fully elucidated. This review paper summarizes the contents of previous reviews, introduces recent advances in the study of OSL and discusses future perspectives. A review of the literature that investigated the biomarkers involved in OPLL was published in 2019. The review cited 11 reports in which a calcium phosphate metabolism marker, bone turnover markers, sclerostin, dickkopf-1, secreted frizzled-related protein-1, fibroblast growth factor-23, fibronectin, menatetrenone, leptin, pentosidine, and hypersensitive C-reactive protein were examined as markers. Data published in 2021 noted that non-coding RNAs might be useful biomarkers for OSL. In addition, triglycerides, uric acid, gene expression levels of interleukin-17 receptor C, chemokine (C-X-C motif) ligand 7 (CXCL7) in the serum reportedly are biomarkers of OSL. However, several issues have been raised in previous studies. Therefore, biomarkers have yet to be conclusively investigated. Research using biomarkers is very important in clarifying pathomechanisms. Results for studies using biomarkers might also be useful for the treatment of patients with OSL in the near future.

Keywords:
biomarkers, ossification of spinal ligaments, pathogenesis

1. Introduction

The ossification of the spinal ligaments (OSL) causes neurological symptoms, such as cervical myelopathy and/or radiculopathy, owing to the narrowing of the spinal canal. Some patients’ neurological impairment results in quadriplegia and/or severe disability, impacting the activities of daily living. Clinical Practice Guidelines for Ossification of Spinal Ligaments were published in Japanese in 2019 and were translated into English in 2021\(^1\). OSL consists of three pathological categories: cervical ossification of the posterior longitudinal ligament (cervical OPLL); thoracic ossification of the posterior longitudinal ligament (thoracic OPLL); and thoracic ossification of the ligamentum flavum (thoracic OLF). According to the guidelines, the incidence of cervical OPLL is approximately 3% (1.9%-4.3%) in Japanese patients. Rates in East Asian countries are approximately equal to that in Japan, including rates of 2.8%-3.0% among Taiwanese, 0.95%-3.6% among Korean people, and 1.1%-1.7% among Chinese. However, the incidence of cervical OPLL is lower in Caucasian populations than in Asian populations. Cervical OPLL is predominant in male patients, whereas thoracic OPLL is predominant in female patients. Surgical treatment for thoracic OPLL can be very difficult. OLF is often associated with OPLL and is frequently seen in the upper (T3-T5) and lower thoracic spine (T10-12). OSL, including cervical OPLL, thoracic OPLL, and thoracic OLF, is characterized by ectopic new bone formations in the spinal ligament. However, the etiology of OSL has not yet been fully elucidated. It is very important to clarify the pathogenesis of OSL. There are two possible approaches for the research of OSL pathology as follows: a genetic and a biomarker approach. To date, numerous candidate genes have been identified, which were reviewed in an article published in 2017\(^2\). Additionally, several biomarkers for OPLL and OLF have been identified, but have not yet been confirmed. One review article on potential biomarkers for OSL was published in 2019\(^3\). This review paper summarizes the contents of the previous reviews, introduces recent advances in the study of OSL and discusses future perspectives.
2. Summary of the Literature on Biomarkers for OSL

The search for OSL biomarkers started in 1985. Takuwa et al. were the first to determine that inorganic phosphate levels were lower in OSL patients than in controls. They also showed that the tubular resorptive capacity for phosphate to glomerular infiltration rate (TmP/GFR) was decreased in patients with OSL compared with controls, and stated that patients with OSL demonstrated a tendency for low serum inorganic phosphate with a reduced TmP/GFR. These results were related to the high incidence of OPLL in patients with calcium and phosphate metabolism disorders, vitamin D-resistant rickets, and hypoparathyroidism and hyperparathyroidism.

A review published in 2021 noted that non-coding RNAs involved in OPLL was published in 2019 (Table 1). The data were extracted from articles published from 1985 to 2017. There were nine articles from Japan, one article from Taiwan, and one article from China. The literature search found no articles from North or South America, European countries, or African countries. This is because OSL is more common in Asian countries than in Western countries. The review cited 11 reports in which a calcium phosphate metabolism marker, bone turnover markers, sclerostin, dickkopf-1 (DKK1), secreted frizzled-related protein-1, fibroblast growth factor-23 (FGF-23), fibronectin, menatetitone, leptin, pentosidine, and hypersensitive C-reactive protein were examined as markers. However, the numbers of cases and controls were too small in all these studies; only two articles included more than 100 patients with OPLL, and four included fewer than 30 subjects as controls. The small number of subjects makes definitive conclusions difficult. In addition, limited data were available to reproduce studies that employed the possible candidate biomarkers. A study that could reproduce these data in terms of the serum levels of DKK1 was published in 2020. The level of DKK1 decreased in patients with OPLL in comparison with those without OPLL. This finding was similar to that in a previous study. Most importantly, no studies functionally demonstrated how the candidate biomarkers brought about ectopic ossification in the spinal ligament. Therefore, no definite conclusion has been reached regarding biomarkers for OSL. Table 1 summarizes the biomarkers for OSL in a case-control study published in the Global Spine Journal (GSJ) in 2019. (The table is inserted in this paper with the permission of GSJ.)

3. Recent Advances Regarding Biomarkers for OSL (Table 2)

A review published in 2021 noted that non-coding RNAs (ncRNAs) might be useful biomarkers for OSL. Non-coding RNAs include microRNAs (miRNAs), long non-coding RNAs, and circular RNAs. Recent studies have revealed that ncRNAs are involved in many physiological and pathological processes, such as cancer, inflammation, and degenerative diseases. A Chinese group found significant differences in miR-10a-3p, miR-10a-5p, miR-563, miR-210-3p, and miR-218-3p when comparing blood samples from OPLL and non-OPLL patients. They used high-throughput miRNA sequencing data from OPLL and non-ossified posterior longitudinal ligament cells and selected the 10 most differentially expressed miRNAs. Then, they analyzed the levels of miRNA in the blood samples of patients and performed a case-control study. The authors stated that blood tests for these markers may be useful in a clinical setting for early detection of OPLL. This study was based on previous results using ligament cells from OPLL and non-OPLL patients by the same Chinese research group; they found an OPLL-specific miRNA and described its regulatory network. A series of their studies found that miRNA-10a actively modulates the ossification of posterior ligament cells in vitro. By modulating the ID3/RUNX2 axis using OPLL model mice, the authors identified a critical role for the highly increased levels of miRNA-10a in the regulation of OPLL development. They also found that the long non-coding RNA X-inactive-specific transcript (XIST) has four binding sites for miR-17-5p and that miR-17-5p was also significantly decreased in OPLL ligament fibroblast compared with non-OPLL ligament fibroblast cells. They described how XIST gene inhibition plays an important role in the occurrence of cervical OPLL through the regulation of the miR-17-5p/AHNK/BMP2 signaling pathway. Their recent study using ligament tissues from OPLL and non-OPLL patients indicated that miR-181a-5p also plays an important role in the development of OPLL and that PBX1 is responsible for the osteogenic phenotype of miR-181a-5p. Therefore, the methods that use ncRNAs to analyze the pathomechanisms of OSL have been a hot topic in recent years.

One Japanese study published in 2020 used routine medical checkup data, in the form of blood samples and whole-body computed tomography, to determine the characteristics of cervical OPLL in 120 OPLL subjects out of 1789 asymptomatic subjects. In comparing data between subjects with and without OPLL, they found that OPLL patients were older, were more likely to be men, had higher body mass indexes, had a higher incidence of hypertension, and had higher levels of HbA1c, triglycerides, and uric acid (UA). Furthermore, carotid artery ultrasounds showed higher maximum intima-media thickness and a higher incidence of plaques in subjects with OPLL. This study had the advantage of using data from a large cohort. These results indicate that triglycerides and UA serum levels might be biomarkers for OPLL.

Recent research on biomarkers for OSL revealed that specific markers are altered in both the blood and ligament tissue of patients with OSL. A study found elevated interleukin-17 receptor C (IL17RC) levels in the plasma of patients with thoracic OPLL with rs199772854A compared with thoracic OPLL patients with rs199772854C, indicating
Table 1. Comparison of the Results of Biomarkers between Cases and Controls.

Year	First author	Materials	Biomarkers	Case (number)	Control (number)	Data in case	Data in control	p-value	Results
1	Takuwa Y	Serum	Pi	28 PVLO	11	0.97 mmol/L	1.07 mmol/L	0.07	Decrease
		Serum	TmP/GFR	28 PVLO	11	0.97 mmol/L	1.03 mmol/L	<0.05	Decrease
		Serum	Ca	28 PVLO	11	2.20 mmol/L	2.25 mmol/L	NS	No difference
		Serum	25OHD	24 PVLO	11	85.9 mmol/L	46.0 mmol/L	NS	No difference
		Serum	1,25OHD	22 PVLO	11	88.8 pmol/L	94.7 pmol/L	NS	No difference
2	Miyamoto S	Plasma	Fibronectin	30 OPLL or OLF	20	43.4±1.2 mg/dL	34.6±1.5 mg/dL	<0.0001	Increase
3	Matsui H	Serum	PICP	40 OPLL	36	980±350 ng/mL	360±130 ng/mL	<0.05	Increase
		Serum	PICP	40 OPLL	36	38±12 ng/mL	17±8 ng/mL	<0.05	Increase
		Serum	Osteocarcin	22 male OPLL	20 male	90.4±39.5 ng/mL	109.8±34.8 ng/mL	NS	No difference
		Serum	Osteocarcin	22 male OPLL	20 male	4.9±2.9 ng/mL	4.4±2.9 ng/mL	NS	No difference
		Serum	ICTP	22 male OPLL	20 male	3.8±2.3 ng/mL	3.2±1.1 ng/mL	NS	No difference
		Urine	Pyr	22 male OPLL	20 male	341.9±19.9 mmol cre.	32.2±12.6 mmol cre.	NS	No difference
		Urine	Dpyr	22 male OPLL	20 male	6.7±4.4 mmol cre.	4.8±2.0 mmol cre.	NS	No difference
4	Ishiharu C	Serum	Intact osteocarcin	8 female OPLL	8 female	7.17±0.76 ng/mL	6.17±0.75 ng/mL	<0.05	Increase
		Serum	Glu-osteocarcin	8 female OPLL	8 female	5.21±1.63 ng/mL	4.96±1.81 ng/mL	<0.05	Increase
		Serum	Ca	8 female OPLL	8 female	3.37±0.42 ng/mL	3.53±0.61 ng/mL	NS	No difference
		Serum	MK-4	8 female OPLL	8 female	9.55±0.46 mg/dL	9.46±0.22 mg/dL	NS	No difference
		Serum	MK-7	8 female OPLL	8 female	NS	NS	NS	No difference
		Serum	Intact osteocarcin	16 male OPLL	16 male	4.20±0.52 ng/mL	4.73±0.50 ng/mL	NS	No difference
		Serum	Glu-osteocarcin	16 male OPLL	16 male	2.10±0.37 ng/mL	2.07±0.40 ng/mL	NS	No difference
		Serum	Pi	16 male OPLL	16 male	3.05±0.35 mg/dL	3.29±0.66 mg/dL	NS	No difference
		Serum	Ca	16 male OPLL	16 male	9.42±0.29 mg/dL	9.28±0.42 mg/dL	NS	No difference
		Serum	MK-4	16 male OPLL	16 male	4.20±0.52 ng/mL	4.73±0.50 ng/mL	<0.05	Increase
		Serum	MK-7	16 male OPLL	16 male	NS	NS	NS	No difference
5	Yamada K	Serum	Intact osteocarcin	8 female OPLL	8 female	7.17±0.76 ng/mL	6.17±0.75 ng/mL	<0.05	Increase
		Serum	Glu-osteocarcin	8 female OPLL	8 female	5.21±1.63 ng/mL	4.96±1.81 ng/mL	<0.05	Increase
		Serum	Ca	8 female OPLL	8 female	3.37±0.42 ng/mL	3.53±0.61 ng/mL	NS	No difference
		Serum	MK-4	8 female OPLL	8 female	NS	NS	NS	No difference
		Serum	MK-7	8 female OPLL	8 female	NS	NS	NS	No difference
6	Ikeda Y	Serum	Leptin	57 female OPLL	27 female	9.67±5.1 ng/mL	6.55±3.67 ng/mL	<0.01	Increase
		Serum	Leptin	68 male OPLL	35 male	3.85±2.2 ng/mL	3.20±1.4 ng/mL	NS	No difference
7	Yoshimura N	Serum	Total cholesterol	30 OPLL	1532 none-OPLL	209.6±36.2 mg/dL	208.8±34.5 mg/dL	NS	No difference
		Serum	Uric acid	30 OPLL	1532 none-OPLL	5.24±1.21 mg/dL	4.84±1.30 mg/dL	NS	No difference
		Serum	HbA1c	30 OPLL	1532 none-OPLL	5.38±0.79%	5.17±0.70%	NS	No difference
		Serum	iPTH	30 OPLL	1532 none-OPLL	41.2±14.2 pg/mL	41.2±34.4 pg/mL	NS	No difference
		Serum	PINP	30 OPLL	1532 none-OPLL	52.6±9.9 μg/L	57.9±27.0 μg/L	NS	No difference
		Urine	β-CTX	30 OPLL	1532 none-OPLL	150.4±79.1 μg/mmol Cr	187.2±121.3 μg/mmol Cr	NS	No difference
Year	First author	Materials	Biomarkers	Case (number)	Control (number)	Data in case	Data in control	p-value	Results
------	--------------	-----------	------------	--------------	-----------------	--------------	----------------	---------	---------
8	2016 Kashii M	Serum	Pentosidine	30 OPLL	1532 none-OPLL	0.085±0.140 μg/mL	0.058±0.037 μg/mL	<0.0005	Increase
			OPLL			5.7%±0.2%	5.3%±0.6%		
			Plasma						
8		Serum	Glycated hemoglobin Ca	49 male OPLL	22 male control	9.1±0.3 mg/dL	8.9±0.3 mg/dL	NS	No difference
8		Serum	Glycated hemoglobin Pi	49 male OPLL	22 male control	3.1±0.5 mg/dL	3.3±0.5 mg/dL	NS	No difference
8		Serum	BAP	49 male OPLL	22 male control	14.7±7.8 μg/L	12.8±3.9 μg/L	NS	No difference
8		Serum	PINP	49 male OPLL	22 male control	35.2±16.4 μg/L	47.7±22.3 μg/L	0.01	Decrease
8		Serum	Osteocarcin	49 male OPLL	22 male control	3.6±1.6 ng/mL	3.3±1.5 ng/mL	NS	No difference
8		Serum	TRAP5b	49 male OPLL	22 male control	332±128 μU/dL	427±173 μU/dL	0.01	Decrease
8		Serum	Parathyroid hormone	49 male OPLL	22 male control	49.5±14.3 pg/dL	41.5±11.1 pg/dL	0.01	Increase
8		Serum	1,25-hydroxyvitamin D Sclerostin	49 male OPLL	22 male control	58.0±18.5 μg/dL	62.3±25.9 μg/dL	NS	No difference
8		Serum	Dickkopf-1	49 male OPLL	22 male control	2069±785 pg/dL	2355±1076 pg/dL	0.002	Increase
8		Serum	Glycated hemoglobin Ca	29 female OPLL	17 female control	5.8±1.0%	5.3±0.5%	0.04	Increase
8		Serum	Glycated hemoglobin Pi	29 female OPLL	17 female control	9.3±0.5 mg/dL	9.0±0.2 mg/dL	NS	No difference
8		Serum	BAP	29 female OPLL	17 female control	15.7±6.1 μg/L	13.1±4.7 μg/L	NS	No difference
8		Serum	PINP	29 female OPLL	17 female control	42.7±14.9 μg/L	49.2±24.2 μg/L	NS	No difference
8		Serum	Osteocarcin	29 female OPLL	17 female control	4.7±1.7 ng/mL	3.8±1.8 ng/mL	NS	No difference
8		Serum	TRAP5b	29 female OPLL	17 female control	417±161 μU/dL	397±179 μU/dL	NS	No difference
8		Serum	Parathyroid hormone	29 female OPLL	17 female control	58.6±23.3 pg/dL	46.6±13.7 pg/dL	NS	No difference
8		Serum	1,25-hydroxyvitamin D Sclerostin	29 female OPLL	17 female control	55.6±18.0 μg/dL	60.9±21.0 μg/dL	NS	No difference
8		Serum	Dickkopf-1	29 female OPLL	17 female control	1928±924 pg/dL	2443±812 pg/dL	NS	No difference
9	2017 Kawaguchi Y	Serum	hs-CRP	103 OPLL	95	0.122±0.141 mg/dL	0.086±0.114 mg/dL	0.047	Increase
9		Serum	Pi	103 OPLL	95	3.19±0.55 mg/dL	3.09±0.47 mg/dL	0.02	Decrease
9		Serum	Ca	103 OPLL	95	9.1±0.35 mg/dL	9.2±0.35 mg/dL	NS	No difference
10	2017 Niu CC	Serum	Osteocarcin DKK-1	8 OPLL	9	7.95±3.91 ng/mL	2.28±1.37 ng/mL	<0.01	Increase
10		Serum	SFRPs	8 OPLL	9	395.8±260.1 ng/mL	792.5±308.6 ng/mL	<0.05	Decrease
10		Serum	Sclerostin	8 OPLL	9	3.82±1.17 ng/mL	2.61±1.08 ng/mL	NS	No difference
10		Serum	Osteoprotegrin	8 OPLL	9	499.4±104.1 ng/mL	261.1±111.4 ng/mL	<0.01	Increase
10		Serum	Osteocarcin	3 OYL	9	5.62±1.78 ng/mL	2.28±1.37 ng/mL	<0.05	Increase
Table 1. continued.

Year	First author	Materials	Biomarkers	Case (number)	Control (number)	Data in case	Data in control	p-value	Results
2017	Cai GD	Serum	DKK-1	3 OYL	9	316.1±112.1 pg/mL	792.5±308.6 ng/mL	<0.01	Decrease
		Serum	SFRPs	3 OYL	9	3.61±0.49 ng/mL	2.61±1.08 ng/mL	NS	No difference
		Serum	Sclerostin	3 OYL	9	368.9±91.4 pg/mL	261.1±111.4 ng/mL	NS	No difference
		Serum	Osteoprotegrin	3 OYL	9	18.7±3.79 ng/mL	26.1±15.3 ng/mL	NS	No difference
11	2017	Serum	FGF-23	76 male cOPLL	41 healthy male	35.11±2.599 pg/mL	27.05±2.526 pg/mL	0.046	Increase
		Serum	Osteopontin	76 male cOPLL	41 healthy male	17880±1326 pg/mL	13300±1713 pg/mL	0.04	Increase
		Serum	DKK-1	76 male cOPLL	41 healthy male	372.4±28.92 pg/mL	448.7±28.89 pg/mL	0.046	Decrease
		Serum	DKK-1	45 female cOPLL	19 healthy male	359.1±38.20 pg/mL	480.4±59.89 pg/mL	0.049	Decrease

Pi: inorganic phosphate
PVLO: paravertebral ligament ossification
NS: not significant
TnPiGFR: tubular reabsorptive capacity for Pi
OPLL: ossification of the posterior longitudinal ligament
Ca: calcium
OLF: ossification of the ligamentum flavum
25OHD: 25-hydroxyvitamin D
AS: ankylosing spondylitis
1,25 (OH)2D: 1,25-dihydroxyvitamin D
DISH: diffuse idiopathic spinal hyperostosis
PICP: C-terminal extension peptide of type I procollagen
OYL: ossification of the yellow ligament
ICTP: carboxyterminal telopeptide of type I collagen
cOPLL: cervical ossification of the posterior longitudinal ligament
Pyr: pyridinoline
Dpyr: deoxypyridinoline
MK: menatetrenone
iPTH: intact parathyroid hormone
PINP: N-terminal propeptide of type I procollagen
β-CTX: β-isomerised C-terminal cross-linking telopeptide of type I collagen
BAP: bone specific alkaline phosphatase
TRAP5b: tartate-resistant acid phosphatase 5b
DKK-1: dickkopf-1
hs-CRP: hypersensitive C reactive protein
SFRPs: frizzled-related proteins
FGF-23: fibroblast growth factor-23

that the gene polymorphism is a susceptibility gene for OSL, and IL17RC staining in the ligament tissue of these patients was positive14,15. A Japanese group performed a serum proteomic analysis in both patients with OPLL and healthy subjects to identify factors potentially involved in the development of OPLL, and found reduced levels of chemokine (C-X-C motif) ligand 7 (CXCL7) in patients with OPLL16. They generated a CXCL7 knockout mouse model to study the molecular mechanisms underlying OPLL and found that CXCL7-null mice presented with an OPLL phenotype. These results indicated that CXCL7 may be a useful serum marker for OPLL progression.

Other approaches to discover biomarkers for OSL include proteome and transcriptome analyses. A Korean group compared the two-dimensional electrophoresis patterns of sera from OPLL patients and healthy subjects. They identified nine spots that were differentially expressed in the sera of OPLL patients as follows: PRO2675; human serum albumin in a complex with myristic acid and triiodobenzoic acid; an unknown protein; chain B of the crystal structure of deoxy human hemoglobin beta 6; pro-apolipoprotein; ALB protein; retinol-binding protein; and chain A of human serum albumin mutant R218h complexed with thyroxine (3,3',5,5'; tetraiodo-L-thyronine) were upregulated, whereas the 1-microglobulin/bikunin precursor was downregulated17. A Chinese group analyzed diagnostic biomarkers in blood samples of thoracic OLF patients using metabolomics and transcriptomics18. The authors included 25 patients with OLF and recruited 23 healthy volunteers for the control group. Using liquid chromatography-mass spectrometry, they identified 37 metabolites in OLF samples, including UA and hypoxanthine. Transcriptomic data revealed a substantial change in the purine metabolism in OLF patients, with xanthine dehydrogenase as the key regulatory factor. Based on the results, the authors concluded that UA is a potential biomarker for OLF and could play an important role within the pathway; xanthine dehydrogenase could affect the purine metabolism by suppressing the expression of hypoxanthine and xanthine, leading to low serum UA levels in OLF patients.
Table 2. Comparison of the Results of Biomarkers between Cases and Controls in Recent Studies.

Year	First author	Materials	Biomarkers	Case (number)	Control (number)	Data in case	Data in control	p-value	Results
1	Xu C	plasma or serum	10 miRNAs	68 OPLL	45 disc herniation, 53 none myelopathy	Increase	Increase	Increase	Increase
			miR-10a-3p						Increase
			miR-10a-5p						Increase
			miR-563						Increase
			miR-210-3p						Increase
			miR218-3p						Increase
			miR-196b-5p						Decrease
			miR-129-3p						Decrease
			miR-199b-5p						Decrease
			miR212-3p						Decrease
			miR-218-3p						Decrease
2	Ohshima Y	blood	HbA1C>6.5%-no. (%)	120 OPLL	1669 none OPLL	24 (20%)	18.5 (11%)	0.003	higher incidence
			TG>150mg/dL-no. (%)			35 (29%)	348 (21%)	0.03	higher incidence
			UA>7.0mg/dL-no. (%)			25 (21%)	278 (17%)	0.239	NS
3	Wang P	plasma	IL 17RC, rs199772854C/A	72 T-OPPL				0.001	IL17RC was higher in A than C polymorphism
4	Tsuru M	serum	chemokine (C-X-C motif) ligand 7 (CXCL7)	13 OPLL	7 healthy control			<0.05	Decrease
5	Eun JP	serum (proteomics)	9 spots	6 OPLL	6 normal subjects			change in ratio	
			PRO2675					2.81±0.40	Increase
			Human serum albumin in a complex with myristic acid and tri-iodobenzoic acid					3.98±0.65	Increase
			Unknown (protein for IMAGE: 3934797)					2.55±0.38	Increase
			Chain B, crystal structure of deoxy-human hemoglobin beta6					9.12±0.95	Increase
			Pro-apoipoprotein					7.66±0.87	Increase
			ALB protein					4.79±0.68	Increase
			Retinol binding protein					3.10±0.56	Increase
			Chain A, human serum albumin mutant R218h complexed with thyroxine (3,3,5,5, tetraiodo-L-thyronine)					2.36±0.33	Increase
			1-microglobulin/bikunin precursor					0.19±0.15	Decrease
Table 2. continued.

Year	First author	Materials	Biomarkers	Case (number)	Control (number)	Data in case	Data in control	p-value	Results
6	Li J	serum (metabolomics and transcriptomics)	uric acid	25 T-OLF	23 healthy volunteers	Increase			
			triacetin			Increase			
			hypoxanthine			Increase			
			pyrimidine metabolism			Increase			
			purine metabolism			Increase			
7	Oh YM	PLL tissue	25 proteins, Upregulated	12 OPLL	12 none OPLL	Upregulated			
			Chain A, Thioredoxin peroxidase B			Upregulated			
			Immunoglobulin kappa right chainVLJ region			Upregulated			
			Ig kappa chain NKG26 Precursor			Upregulated			
			Drug-protein interaction: structure of sulfonamide drug complexed with human carbonic anhydrase I			Upregulated			
			Hypothetical protein			Upregulated			
			4 proteins, Downregulated			Downregulated			
			Apolipoprotein A			Downregulated			
			Proapolipoprotein			Downregulated			
8	Zhang Y	PLL tissue (proteomic profiling+mRNA expression)	3 proteins, up-regulated by proteomic profiling and 1 marker confirmed by mRNA expression	4 OPLL	4 none OPLL	Upregulated			
			N-RAP			Downregulated			
			18 proteins, down regulated by proteomic profiling and 2 markers confirmed by mRNA expression			Downregulated			

PLL: posterior longitudinal ligament
HbA1C: glycated hemoglobin
OPLL: ossification of the posterior longitudinal ligament
NS: not significant
TG: triglycerides
OLF: ossification of the ligamentum flavum
UA: uric acid
T-OPLL: thoracic OPLL
IL17RC: interleukin-17 receptor C
T-OLF: thoracic OLF
N-RAP: nebulin-related anchoring protein
NSDHL: NAD (P) dependent steroid dehydrogenase-like
VIαⅠ: collagen VI alpha-1
Ligament tissue samples from patients with OSL and control subjects were used in two studies for proteome analyses to understand the pathobiology of OSL. One study found 25 proteins that were significantly and consistently different on two-dimensional electrophoresis gels between the ossified posterior longitudinal ligament tissue samples from patients with OPLL and the non-ossified posterior longitudinal ligament tissue samples from patients on two-dimensional electrophoresis gels between the ossified proteins that were significantly and consistently different to understand the pathophysiology of OSL. One study found controls, used in two studies for proteome analyses, difficult to use data from ligament cells as biomarkers.

Table 3. The Classification of the Serum Biomarkers Which Might Be Related to Ossification of the Spinal Ligament.

Calcium phosphate metabolism marker	inorganic phosphate (Pi)
	the tubular reabsorptive capacity for Pi
	Fibroblast growth factor-23 (FGF-23)
Bone turnover marker	C-terminal extension peptide of type I procollagen (PICP)
	intact osteocalcin
	Glu-osteocalcin
	N-terminal propeptide of type I procollagen (PINP)
	Tartate-resistant acid phosphate 5b (TRAP5b)
	Osteoprotegerin
	Osteopontin
	Sclerostin
	Dickkopf-1 (DKK-1)
Glycoprotein of the extracellular matrix	Fibronectin
	Glycated hemoglobin
Vitamin K2	Matetrenone (MK-4)
Hormone	Leptin
	Parathyroid hormone
Advanced glycation end products	Pentosidine
Inflammation	Hypersensitive C-reactive protein (hs-CRP)
	Erythrocyte sedimentation rate (ESR)
MicroRNA	miR-10a-3p, miR-10a-5p, miR-563, miR-210-3p, and miR-218-3p
Others	Triglycerides
	Uric acid
	Interleukin 17 receptor C (IL17RC) gene expression
	Chemokine (C-X-C motif) ligand 7 (CXCL7)

4. Future Perspectives Regarding Biomarkers for OSL

There have been numerous reports regarding biomarkers of OSL (Table 3). Information on candidate biomarkers and methodological progress increase every year. However, several issues have been raised in previous studies. First, the research fields focusing on the target markers are few. Second, the number of subjects has not been sufficient to obtain definitive results. Third, very few results regarding biomarkers have been reproducible. Fourth, there are very few functional studies on how biomarkers bring about ectopic ossification in the spinal ligament. Fifth, there are many studies from Asia but very few from other regions, such as North and South America and European countries. These issues were described in the Japanese OSL guideline, which stated, “The limitations include the few types of markers targeted to date, the small sample size, and the fact that these markers were not reproducible. Therefore, biomarkers have yet to be conclusively investigated”. Furthermore, useful biomarkers for clinical practice have several requirements. First and foremost, the samples must be easy to obtain. Although previous studies used ligament tissue from patients and controls, obtaining this tissue requires a surgical procedure. Cirulating blood samples would be easier to use. However, if the secretion levels of the candidate biomarkers are very small, detecting them in blood samples might be difficult. However, if the candidate biomarkers are detectable in blood samples, it might be possible to diagnose and evaluate the disease activity of OSL earlier, without employing radiological examination. Our earlier studies on hypersensitive C-reactive protein and FGF-23 might be useful in detecting the progression of OPLL. Very recent our paper showed that the serum level of periostin reflected the progression of OPLL. Another benefit of detecting biomarkers for OSL would be clarifying the pathomechanism of the disease. As previously mentioned, the etiology and pathomechanism of OSL have not yet been fully elucidated. Determining the pathomechanism might be very useful in seeking a therapeutic strategy for OSL. Research using both biomarkers and data from ligament tissue is very important in clarifying the pathomechanism. In the near future, this research should be applicable in treating patients with OSL.

5. Conclusions

This paper reviewed the recent progress toward determining biomarkers for OSL, and research seeking these biomarkers is ongoing. There are several issues in this research field. Once these issues are overcome, results from research should be applied to treatment of patients with OSL.

Disclaimer: Prof. Yoshiharu Kawaguchi is one of the Editors of Spine Surgery and Related Research and on the journal’s Editorial Committee. He was not involved in the edito-
rial evaluation or decision to accept this article for publication at all.

Conflicts of Interest: The author declares that there are no relevant conflicts of interest.

Sources of Funding: This research received no external funding.

Acknowledgement: The work reported in this article was supported by grants from the Ministry of Health, Labour and Welfare of Japan: Committee for Study of Ossification of Spinal Ligament and Committee for Research and Development of Therapies for Ossification of The Posterior Longitudinal Ligament.

Author Contributions: Y. Kawaguchi wrote and prepared the manuscript.

Ethical Approval: Not applicable

Informed Consent: Not applicable

References
1. Kawaguchi Y, Imagama S, Iwasaki M, et al. 2019 Clinical Practice Guideline for Ossification of Spinal Ligaments working group. Japanese Orthopaedic Association (JOA) clinical practice guidelines on the management of ossification of the spinal ligament, 2019. J Orthop Sci. 2021;26(1):1-45.
2. Yan L, Gao R, Liu Y, et al. The pathogenesis of ossification of the posterior longitudinal ligament. Aging Dis. 2017;8(5):570-82.
3. Kawaguchi Y. Biomarkers of ossification of the spinal ligament. Global Spine J. 2019;9(6):650-7.
4. Takuwa Y, Matsumoto T, Kurokawa T, et al. Calcium metabolism in paravertebral ligamentous ossification. Acta Endocrinol. 1985; 109(3):428-32.
5. Dong J, Xu X, Zhang Q, et al. Dkk1 acts as a negative regulator in the osteogenic differentiation of the posterior longitudinal ligament cells. Cell Biol Int. 2020;44(12):2450-8.
6. Kashii M, Matuso Y, Sugiuara T, et al. Circulating sclerostin and dickkopf-1 levels in ossification of the posterior longitudinal ligament of the spine. J Bone Miner Metab. 2016;34(3):315-24.
7. Yuan X, Shi L, Chen Y. Non-coding RNAs in ossification of spinal ligament. Eur Spine J. 2021;30(4):801-8.
8. Xu C, Zhang H, Zhou W, et al. MicroRNA-10a, -210, and -563 as circulating biomarkers for ossification of the posterior longitudinal ligament. Spine J. 2019;19(4):735-43.
9. Xu C, Chen, Y Zhang H, et al. Integrated microRNA-mRNA analyses reveal OPLL specific microRNA regulatory network using high-throughput sequencing. Sci Rep. 2016;6:21580.
10. Xu C, Zhang H, Gu W, et al. The microRNA-10a/ID3/RUNX2 axis modulates the development of ossification of posterior longitudinal ligament. Sci Rep. 2018;8(1):9225.
11. Liao X, Tang D, Yang H, et al. Long non-coding RNA XIST may influence cervical ossification of the posterior longitudinal ligament through regulation of miR-17-5P/AHNAK/BMP2 signaling pathway. Calcif Tissue Int. 2019;105(6):670-80.
12. Liu N, Zhang Z, Li L, et al. MicroRNA-181 regulates the development of ossification of posterior longitudinal ligament via epigenetic modulation by targeting PBX1. Theranostics. 2020;10(17):7492-509.
13. Oshima Y, Doi T, Kato S, et al. Association between ossification of the longitudinal ligament of the cervical spine and arteriosclerosis in the carotid artery. Sci Rep. 2020;10(1):3369.
14. Wang P, Liu X, Liu, et al. IL17RC affects the predisposition to thoracic ossification of the posterior longitudinal ligament. J Orthop Surg Res. 2019;14(1):210.
15. Wang P, Liu X, Kong C, et al. Potential role of the IL17RC gene in the thoracic ossification of the posterior longitudinal ligament. Int J Mol Med. 2019;43(5):2005-14.
16. Tsuru M, Ono A, Umeyama H, et al. Ubiquitin-dependent proteolysis of CXCL7 leads to posterior longitudinal ligament ossification. PLoS One. 2018;13(5):e0196204.
17. Eun JP, Ma TZ, Lee WJ, et al. Comparative analysis of serum proteomes to discover biomarkers for ossification of the posterior longitudinal ligament. Spine. 2007;32(7):728-34.
18. Li J, Yu L, Guo S, et al. Identification of the molecular mechanism and diagnostic biomarkers in the thoracic ossification of the ligamentum flavum using metabolomics and transcriptomics. BMC Mol Cell Biol. 2020;21(1):37.
19. Oh YM, Lee WJ, Kim MG, et al. Comparative proteomic tissue analysis in patients with ossification of the posterior longitudinal ligament. World Neurosurg. 2014;82(2-3):e535-9.
20. Zhang Y, Liu B, Shao J, et al. Proteomic profiling of posterior longitudinal ligament of cervical spine. Int J Clin Exp Med. 2015;8(4):5631-9.
21. Kawaguchi Y, Kitajima I, Nakano M, et al. Increase of the serum FGF-23 in ossification of the posterior longitudinal ligament. Global Spine J. 2019;9(5):492-8.
22. Kawaguchi Y, Nakano M, Yasuda T, et al. Serum biomarkers in patients with ossification of the posterior longitudinal ligament (OPLL): inflammation in OPLL. PLoS One. 2017;12(5):e0174881.
23. Kawaguchi Y, Kitajima I, Yasuda T, et al. Serum Periostin level reflects progression of ossification of the posterior longitudinal ligament. JBJS Open Access. 2022;7(1):e21.00111.