Abstract

Recent years have seen a growing number of publications that analyse Natural Language Inference (NLI) datasets for superficial cues, whether they undermine the complexity of the tasks underlying those datasets and how they impact those models that are optimised and evaluated on this data. This structured survey provides an overview of the evolving research area by categorising reported weaknesses in models and datasets and the methods proposed to reveal and alleviate those weaknesses for the English language. We summarise and discuss the findings and conclude with a set of recommendations for possible future research directions. We hope it will be a useful resource for researchers who propose new datasets, to have a set of tools to assess the suitability and quality of their data to evaluate various phenomena of interest, as well as those who develop novel architectures, to further understand the implications of their improvements with respect to their model’s acquired capabilities.

1 Introduction

Research in areas that require natural language inference (NLI) over text, such as Recognizing Textual Entailment (RTE) (Dagan et al., 2006) and Machine Reading Comprehension (MRC) is advancing at an unprecedented rate. On the one hand, novel architectures (Vaswani et al., 2017) enable efficient unsupervised training on large corpora to obtain expressive contextualised word and sentence representations for a multitude of downstream NLP tasks (Devlin et al., 2019). On the other hand, large-scale datasets (Bowman et al., 2015; Rajpurkar et al., 2016; Williams et al., 2018) provide sufficient examples to optimise large neural models that are capable of outperforming the human baseline on multiple tasks (Raffel et al., 2019; Lan et al., 2020).

Recent work, however, has questioned the seemingly superb performance for some of the tasks. Specifically, training and evaluation data may contain exploitable superficial cues, such as syntactic constructs (McCoy et al., 2019), specific words (Poliak et al., 2018) or sentence length (Gururangan et al., 2018) that are predictive of the expected output. After having been evaluated on data in which those cues have been removed, the performance of those models deteriorated significantly (McCoy et al., 2019; Niven and Kao, 2019), showing that they are in fact relying on the existing cues rather than learning to understand meaning or perform inference. In other words, those well-performing models tend to obtain optimal performance on a particular dataset, i.e. overfitting on it, rather than generalising for the underlying task. This issue, in fact, remains concealed, if a model is compared to a human baseline by means of a single number that reports the average score on a held-out test set, which is typically the case with contemporary benchmark leaderboards.

To reveal and overcome these issues mentioned above, a growing number of approaches has been proposed in the past. All those methods contribute towards a fine-grained understanding of whether the existing methodology actually evaluates the required inference capabilities, what existing models learn from available training data and, more importantly, which capabilities they still fail to acquire, thus providing targeted suggestions for future research.

To make sense of this growing body of literature and help researchers new to the field to navigate it, we present a structured survey of the recently proposed methods and report the trends, applications
Figure 1: Number of premise-hypothesis pairs in an RTE dataset following lexical patterns, spuriously skewed towards Entailment (McCoy et al., 2019).

Figure 2: Models’ over-stability towards common words in question and paragraph, revealed by adversarially inserting distracting sentences (Jia and Liang, 2017).

and findings. In the remainder of this paper, we first establish terminology, set the objectives and the scope of the survey and describe the data collection methodology. We then present a categorisation of the surveyed methods with their main findings, and finally discuss the arising trends and open research questions.

1.1 Terminology

Tasks: The task of Recognising Textual Entailment (RTE) is to decide, for a pair of natural language sentences (premise and hypothesis), whether given the premise the hypothesis is true (Entailment), false (Contradiction) or whether the two sentences are unrelated (Neutral) (Dagan et al., 2013).

We refer to the task of finding the correct answer to a question over a passage of text as Machine Reading Comprehension (MRC), also known as Question Answering (QA). Usual formulations of the task require models to select a span from the passage, select from a given set of alternatives or generate a free-form string (Liu et al., 2019b).

In this paper, we use the term “NLI” in its broader sense, referring to the requirement to perform inference over natural language. Thus we expand the usual textual entailment-based definition to also include MRC, as answering a question can be framed as finding an answer that is entailed by the question and the provided context, and the tasks can be transformed vice versa (Demszky et al., 2018).

Model and Architecture: We refer to the neural network architecture of a model as “architecture”, e.g. BiDAF (Seo et al., 2017). We refer to a (statistical) model of a certain architecture that was optimised on a given set of training data simply as “model”. It is important to make this distinction, as an optimised model’s systematic failures can either be traced to biases in the training data (and can potentially be different for a model optimised on different data) or affiliated with the model class (and exist for all models with the same architecture) (Liu et al., 2019a; Geiger et al., 2019).

Spurious Correlations: We call correlations between input data and the expected prediction as “spurious” if they are not indicative for the underlying task but rather an artefact of the data at hand (as illustrated in Figure 1). The exploitation of those correlations in order to produce the expected prediction is known as the “Clever Hans Effect”, named after a horse that was believed to perform arithmetic tasks but was shown to react to subtle body language cues of the asking person (Pfungst and Rahn, 1911).

Adversarial: Szegedy et al. (2014) define “adversarial examples” as (humanly) imperceptible perturbations to images that cause a significant drop in the prediction performance of neural models. Similarly for NLP, we refer to data as “adversarial” if it is designed to minimise prediction performance for a class of models, while not impacting the human baseline. Examples include appending irrelevant information (Jia and Liang, 2017), illustrated in Figure 2, or paraphrasing (Ribeiro et al., 2019).

Stress-test: The evaluation of trained models and neural architectures in a controlled way with regard to a particular type of reasoning (e.g. logic inference (Richardson and Sabharwal, 2019)) or linguistic capability (e.g. lexical semantics (Naik et al., 2018)) is referred to as “stress-testing” (Naik et al., 2018). Measuring the prediction performance of a model with a particular architecture that was trained on a particular dataset on an evaluation-only stress-test (Glockner et al., 2018) allows to draw conclusions
about the capabilities the model obtains from the training data. Stress-tests with a training set allow for more general conclusions whether a model with a specific architecture is capable of obtaining the capability, even when optimised with sufficient examples (Kaushik et al., 2020; Geiger et al., 2019).

Robustness: In line with the literature (Wang and Bansal, 2018; Jia et al., 2019), we call a model “robust” against a method that alters the underlying (unknown) distribution of the evaluation data when compared to the training data, such as introduced by adversarial evaluation or stress-tests, if the out-of-distribution performance of the model is similar to that on the original evaluation set. The opposite of robustness is referred to as “brittleness”.

1.2 Objectives and Scope

We aim to provide a comprehensive overview of issues in NLI data and models that are trained and evaluated upon them as well as the methodology used to report them. We set out to address the following questions:

• Which NLI tasks and corresponding datasets have been investigated?
• Which types of weaknesses have been reported in NLI models and their training and evaluation data?
• What types of methods have been proposed to detect those weaknesses and their impacts on model performance and what methods have been proposed to overcome them?
• How have the proposed methods impacted the creation of novel datasets (that were described in published papers)?

1.3 Data collection methodology

To answer the first three questions we collect a literature body using the “snowballing” technique. Specifically, we initialise the set of surveyed papers with Gururangan et al. (2018), Poliak et al. (2018) and Jia and Liang (2017), because their impact helped to motivate further studies and shape the research field. For each paper in the set we follow its citations and works that have cited it according to Google Scholar and include papers that describe methods and/or their applications to report either (1) qualitative evaluation of training and/or test data; (2) superficial cues present in data and the tendency of models to pick them up; (3) systematic issues with task formulations and/or data collection methods; (4) analysis of specific linguistic and reasoning phenomena in data and/or models’ performance on them; or (5) enhancements of models’ architecture or training procedure in order to overcome data-specific or model-specific issues, related to phenomena and cues described above. We exclude a paper if its target task does not fall under the NLI definition established above, was published before the year 2014 or the language of the target dataset is not English; otherwise, we add it to the set of surveyed papers. With this approach, we obtain a total of 69 papers from the years 2014-2017 (6), 2018 (17), 2019 (38) and 2020 (8). More than two thirds (48) of the papers were published in venues hosted by the the Association for Computational Linguistics, whereas five and three were presented in AAAI and ICLR conferences, respectively. The remaining papers were published in other venues (3) or are available as an arXiv preprint (10). The papers were examined by the first author; for each paper the target task and dataset(s), the method applied and the result of the application was extracted and categorised.

To answer the final question, we took those publications introducing any of the datasets that were mentioned by at least one paper in the pool of surveyed papers and extended that collection by additional state-of-the-art NLI dataset resource papers (for detailed inclusion and exclusion criteria, see Appendix B). This approach yielded 73 papers. For those papers, we examine whether any of the previously collected methods were applied to report spurious correlations or whether the dataset was adversarially pruned against some model.

Although related, we deliberately do not include work that introduces adversarial attacks on NLP systems or discuss their fairness. For an overview thereof, we refer the interested reader to respective surveys conducted by Zhang et al. (2019c) or Xu et al. (2019) for the first, and by Mehrabi et al. (2019) for the latter.
2 Weaknesses in NLI data and models

Here, we report the types of weaknesses found in state-of-the-art NLI data and models.

2.1 Data

We identify three main types of weakness found in the data that was utilised in training and evaluating models and outline them below:

Spurious Correlations In span extraction tasks such as MRC, question (Rychalska et al., 2018), passage wording and the position of the answer span in the passage is indicative of the expected answer for various datasets (Kaushik and Lipton, 2018). In the ROC stories dataset, (Mostafazadeh et al., 2016) where the task is to choose the most plausible ending to a story, the endings exhibit exploitable cues (Schwartz et al., 2017). These cues are even noticeable by humans (Cai et al., 2017).

For sentence pair classification tasks, such as RTE, Poliak et al. (2018) and Gururangan et al. (2018) showed that certain n-grams, lexical and grammatical constructs in the hypothesis and its length correlate with the expected label for a multitude of RTE datasets. The latter study referred to these correlations as “annotation artifacts”. McCoy et al. (2019) showed that lexical features like word overlap and common subsequences between the hypothesis and premise, are highly predictive of the entailment label in the MNLI dataset. Beyond RTE, the choices in the COPA (Roemmele et al., 2011) dataset, where the task is to finish a given passage (similar to ROC Stories), and ARCT (Habernal et al., 2018) where the task is to select whether a statement warrants a claim, contain words that correlate with the expected prediction (Kavumba et al., 2019; Niven and Kao, 2019).

Task unsuitability Chen and Durrett (2019a) demonstrated that selecting from answers in a multiple choice setting considerably simplifies the task when compared to selecting a span from the context. They further showed that for large parts of the popular HotPOTQA dataset the answer can be found when deliberately not integrating information from multiple sentences (“multi-hop” reasoning), replicated by Min et al. (2019).

Data Quality issues Pavlick and Kwiatkowski (2019) argue that when training data are annotated using crowdsourcing, a fixed label representing the ground truth, usually obtained by majority vote between annotators, is not representative of the uncertainty which can be important to indicate the complexity of an example or the fact that its correctness is debateable. Neural networks are, in fact, unable to pick up such uncertainty. Furthermore, both Schlegel et al. (2020) and Pugaliya et al. (2019) report the existence of factual errors in MRC evaluation data, where the expected answer to a question is actually wrong. Finally, Rudinger et al. (2017) show the presence of gender and racial stereotypes in crowd-sourced RTE datasets.

2.2 Models

These data weaknesses contribute to brittleness in trained models themselves. Below, we outline those and other issues reported in the literature:

Exploitation of Cues Given the existence of spurious correlations in NLI data, it is worthwhile knowing whether models optimised on data containing those correlations actually exploit them. In fact, multiple studies confirm this hypothesis, demonstrating that evaluating models on a version of the same dataset where the correlations do not exist, results in poor prediction performance (McCoy et al., 2019; Niven and Kao, 2019; Kavumba et al., 2019).

Semantic Over-stability Another weakness, particularly shown for MRC models, is that they appear to not capture the semantics of text beyond superficial lexical features. Neural models struggle to distinguish important from irrelevant sentences that share words with the question (Jia and Liang, 2017), disregard syntactic structure (Basaj et al., 2018; Rychalska et al., 2018) and semantically important words (Mudrakarta et al., 2018). For RTE, they may disregard the composition of the sentence pairs (Nie et al., 2019a).
Figure 3: Taxonomy of investigated methods. Dashed arrows indicate conceptually related types of methods, i.e. a method of one type are commonly applied with another method of the related type. Labels (a), (b) and (c) correspond to the coarse grouping discussed in Section 3.

Generalisation Issues Some issues hint at limited generalisation capabilities of models beyond a particular dataset. A reason lies in the typical machine learning strategy whereby data used for evaluation is drawn from the same distribution as the training data. In the case of NLP, the distribution is determined by the design of the data collection method, usually crowd-sourced annotation of a large corpus of documents in natural language, e.g. SQuAD (Rajpurkar et al., 2016), MNLI (Williams et al., 2018). A related problem is that datasets contain spurious correlations that are inherent to a particular dataset rather than to the underlying task, and that optimised models learn to exploit them as discussed above. The implications are, firstly, that models overfit to a specific dataset and do not generalise well to other examples drawn from the (unknown) task-specific distribution. Secondly, they fail to acquire linguistic and reasoning capabilities that were not explicitly required in the training sets (Glockner et al., 2018; Richardson and Sabharwal, 2019; Yanaka et al., 2019a). Evaluation data drawn from the same distribution as the training data is unsuitable for revealing both of those issues.

3 Methods that reveal weaknesses in NLI

In the following section we categorise the surveyed papers, briefly describe the categories and illustrate the methodologies by reference to respective papers. On a high level, we distinguish between methods that (a) reveal systematic issues with existing training and evaluation data such as the spurious correlations mentioned above, (b) investigate what inference and reasoning capabilities models optimised on these data acquire when evaluated on samples not drawn from the training distribution and (c) propose architectural (Sagawa et al., 2020) and training procedure (Wang and Bansal, 2018) improvements in order to achieve more robust generalisation beyond data drawn from the training distribution. A schematic overview of the taxonomy of the categories is shown in Figure 3.

3.1 Data-investigating Methods

Methods in this category analyse flaws in data such as cues in input that are predictive of the output (Gururangan et al., 2018). As training and evaluation data from state-of-the-art NLI datasets are assumed to be drawn from the same distribution, models that were fitted on those cues achieve high performance in the evaluation set, without being tested on the required inference capabilities. Furthermore, methods that investigate the evaluation data in order to gain a deeper understanding of the assessed capabilities (Chen et al., 2016) fall under this category as well. In the analysed body of work, we identified the following three types of methods:

Partial Baselines These methods seek to verify that every input modality provided by the task is actually required to make the right prediction (e.g. both question and passage for MRC, and premise and hypothesis for RTE). Training and evaluating a classifier on parts of the input only suggests that those parts exhibit cues that correlate with the expected prediction, if the measured performance is significantly
higher than randomly guessing. Both Gururangan et al. (2018) and Poliak et al. (2018) demonstrated near state-of-the-art performance on multiple RTE datasets, such as SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2018), when training a classifier with hypothesis-only input. Kaushik and Lipton (2018) even surpass state-of-the-art MRC models on various datasets when training and evaluating only on parts of the provided input. Methods that mask, drop or shuffle input words or sentences fall under this category as well. Using them, Sugawara et al. (2020) reach performance comparable to that of a model that is trained on full input on a variety of MRC datasets. Similarly, Nie et al. (2019a) reach near state-of-the-art performance on the SNLI and MNLI datasets when shuffling the words in the premise and hypothesis. Finally, we include methods here that seek to verify whether the data or task formulation is fit to evaluate a particular capability, as they involve training models that are architecturally restricted to obtain said capability, e.g. models that process documents strictly independently to answer questions that require information synthesis from multiple documents (Min et al., 2019; Chen and Durrett, 2019a). Good performance of those impaired models indicates that the task can be solved without the required capability to a certain extent.

Above-chance performance of partial input baselines hints at spurious correlations in the data and suggests that models learn to exploit them; it does not however reveal their precise nature. The opposite does not hold true either: near-chance performance on partial input does not warrant cue-free data, as Feng et al. (2019) illustrate on synthetic examples and published datasets.

Heuristics and Correlations These aim to unveil specific cues and spurious correlations between input and expected output that enable models to learn the task more easily. For sentence pair classification tasks, Gururangan et al. (2018) use the PMI measure between words in a hypothesis and the expected label, while Poliak et al. (2018) use the conditional probability of a label given a word. In contrast, Tan et al. (2019) use word bigrams instead of single words to model their correlation. McCoy et al. (2019) count instances of (subsequently) overlapping words and mutual subtrees of the syntactic parses in a given premise and hypothesis pair, and show that their label distribution is heavily skewed towards entailment. Nie et al. (2019a) optimise a logistic regression model on lexical features and use its confidence to predict a wrong label for a given premise-hypothesis pair as a score for the requirement of inference beyond lexical matching. Niven and Kao (2019) define productivity and coverage to measure how likely and for what proportion of the dataset an n-gram is indicative of the expected label. Cai et al. (2017) propose simple rules based on length, negation and off-the-shelf sentiment analyser scores to select the most probable ending for the ROC story completion task.

To show that models actually learn to react to the cues, the data analysis is usually followed by an evaluation on a balanced evaluation set where those correlations are not present anymore (e.g. by balancing the label distribution for a correlating cue, as described in Section 3.2).

Manual Analyses These methods intend to qualitatively analyse the data, if automated approaches as those mentioned above are unsuitable due to the complexity of the phenomena of interest. To some extent, all papers describing experiment results on evaluation data or introducing new datasets are expected to perform a qualitative error or data analysis. We highlight a comparative qualitative analysis of state-of-the-art models on multiple MRC datasets (Pugaliya et al., 2019). Furthermore, Schlegel et al. (2020) perform a qualitative analysis of popular MRC datasets reporting evaluated linguistic phenomena and reasoning capabilities as well as existing factual errors in data.

3.2 Model-investigating Methods

Rather than analysing data, approaches described in this section directly evaluate the models with respect to their inference capabilities with regard to various phenomena of interest. Furthermore, methods that improve a model’s generalisation beyond potential biases it encounters during training, either by augmenting the training data, or by altering the architecture or the training procedure, are described here as well.

Stress-test is an increasingly popular way to assess trained models and architectures. Naik et al. (2018) automatically generate NLI evaluation data based on an analysis of observed state-of-the-art model er-
ror patterns, introducing the term “stress-test”. Stress-tests have since been proposed to evaluate the capabilities of handling monotonicity (Yanaka et al., 2019a), lexical inference (Glockner et al., 2018), definitions (Richardson and Sabharwal, 2019) and compositionality (Nie et al., 2019a) for RTE models and semantic equivalence (Ribeiro et al., 2019) for MRC. Liu et al. (2019a) propose an evaluation methodology to rightfully attribute the stress test performance to either missing examples in training data or the model’s inherent incapability to capture the tested phenomenon by optimising the trained model on portions of the stress test data.

Adversarial Evaluation refers to generating data with the aim to “fool” a target model. Jia and Liang (2017) showed that models across the leaderboard exhibit over-stability to keywords shared between a given question and passage pair in the SQuAD (Rajpurkar et al., 2016) dataset. These models change their prediction after the addition of distracting sentences, even if they do not alter the semantics of the passage (therefore keeping the validity of the expected answer). Wallace et al. (2019) further showed that adversaries generated against a target model tend to be universal for a whole range of neural architectures. Methods that evaluate whether models that are trained on data exhibiting spurious correlations inherit those, belong to this category as well. McCoy et al. (2019) use patterns to generate an adversarial evaluation set with controlled distribution, such that lexical cues in the training data are not indicative of the label anymore. Niven and Kao (2019) and Kavumba et al. (2019) add mirrored instances (i.e. modify the semantics of the sentences in a way such that the opposite label is true) of the biased data to create a set with balanced distribution of examples that contain words that otherwise correlate with the expected label in the original data.

3.3 Model-improving Methods

Here we discuss methods that improve the robustness of models against adversarial and out-of-distribution evaluation, by either modifying the available training data or making adjustments to the training procedure.

Training data augmentation methods improve the training data to train a model that is robust against a given adversary type. Thus they are inherently linked with the adversarial data generation methods. However, simply training the model on parts of the adversarial evaluation set is not always sufficient, as adversarially robust generalisation increases the sample complexity, and therefore “requires more (training) data” (Schmidt et al., 2018). Wang and Bansal (2018) introduce various improvements to the original ADDSENT algorithm, in order to generate enough training data to obtain robustness for the adversarial evaluation set introduced by Jia and Liang (2017). Geiger et al. (2019) propose a method to estimate the required size of the training set for any given adversarial evaluation set and apply their theory on evaluating the capability of neural networks to learn compositionality. As an alternative to augmenting training data, Sakaguchi et al. (2019) introduce AFLITE, a method to automatically detect and remove data points that contribute to arbitrary spurious correlations. It has been since empirically validated and theoretically underpinned by Bras et al. (2020).

Furthermore, we include the application of adversarial data generation when employed during the construction of a new dataset: in crowd-sourcing, where humans act as adversary generators and an entry is only accepted if it triggers a wrong prediction by a trained target model (Nie et al., 2019b; Dua et al., 2019b), or when automatically generating multiple choice alternatives until a target model cannot distinguish between human-written and automatically generated options, called **Adversarial Filtering** (Zellers et al., 2018; Zellers et al., 2019).

Architecture and Training Procedure Improvements deviate from the idea of data augmentation and seek to train robust and de-biased models from potentially biased data. These methods include joint training (and discarding) of robust models together with models that are designed to exploit the dataset biases (Clark et al., 2019; He et al., 2019), re-weighting the loss function to incorporate the bias in the data (Schuster et al., 2019; Zhang et al., 2019b), parameter regularisation (Sagawa et al., 2020) and the use of external resources, such as linguistic knowledge (Zhou et al., 2019; Wu et al., 2019) or logic (Minervini and Riedel, 2018).
4 Results and Discussion

We report the result of our categorisation of the literature in this section. More than half of the surveyed papers (35) are focusing on the RTE task, followed by analysis of the MRC (25) task with 4 and 5 investigating other and multiple tasks, respectively. Looking at the breakdown by type of analysis according to our taxonomy (Figure 4) we see that most approaches concern adversarial evaluation and propose improvements for robustness against biased data and adversarially generated test data. This is not surprising, as robustness against a type of adversary can only be empirically validated via evaluation on the corresponding adversarial test set.

It is worth highlighting that there is little work analysing MRC data with regard to spurious correlations. We attribute this to the fact, that it is hard to conceptualise the correlations of input and expected output for MRC beyond very coarse heuristics (such as sentence position or lexical answer type), as the input is a whole paragraph and a question and the expected output is typically a span anywhere in the paragraph. For RTE, by contrast, where the input consists of two sentences and the expected output is one of three fixed class labels, possible correlations are easier to unveil. In fact, the sole paper (included in our survey) which reports spurious correlations in MRC data, investigated a dataset where the goal is to predict the right answer given four alternatives, thus considerably constraining the expected output space (Yu et al., 2020). Finally, there are few (4) stress-tests for the task of MRC. Those focus on prediction consistency (Ribeiro et al., 2019), acquired knowledge (Richardson and Sabharwal, 2019), unanswerability (Nakanishi et al., 2018) or multi-dataset evaluation (Dua et al., 2019a) rather than performing an analysis of acquired linguistic or reasoning capabilities.

Regarding the datasets used in the surveyed papers most analyses were done on the SNLI and MNLI datasets (20 and 22 papers, respectively) For RTE. For MRC, the most analysed dataset is SQuAD. 17 RTE and 30 MRC datasets were analysed at least once; we attribute the difference to the existence of various different MRC datasets and the tendency of performing multi-dataset analyses in papers that investigate MRC datasets (Kaushik and Lipton, 2018; Sugawara et al., 2020; Si et al., 2019). For a full list of investigated datasets and the weaknesses reported on them, please refer to Appendix A.

We report, whether the existence of spurious correlations was investigated in the original or a later publication, by applying quantitative methods such as those discussed in Section 3.1: Partial Baselines and Heuristics and Correlations, or whether the dataset was generated adversarially against a neural model. The results are shown in Figure 5. We observe that the publications we use as our seed papers for the survey (c.f. Section 1.3) in fact seem to impact how novel datasets are presented, as after their publication (in years 2017 and 2018) a growing number of papers report partial baseline results and advanced correlations in their data (three in 2018 and seven in 2019). Furthermore, newly proposed resources are progressively pruned against neural models (eight in 2018 and 2019 cumulative). However, for nearly a half (36 out of 75) of the datasets under investigation there is no information about potential spurious correlations and biases yet.
A noteworthy corollary of the survey is that – perhaps unsurprisingly – neural models’ notion of complexity does not necessarily correlate with that of humans. In fact, after creating a “hard” subset of their evaluation data that is clean of correlations, Yu et al. (2020) report a better human performance than on the biased version, directly contrary to neural models they evaluate. Partial baseline methods suggest a similar conclusion: without the help of statistics, humans will arguably not be able to infer, whether a sentence is entailed by another sentence they never see, whereas neural networks excel at it (Poliak et al., 2018; Gururangan et al., 2018). Additionally, models’ prediction confidence does not correlate with human confidence as approximated by inter-annotator agreement on a variety of RTE datasets (Pavlick and Kwiatkowski, 2019).

Finally, results suggest that models can benefit from different types of knowledge that enables them to learn to perform the task even when trained on biased data. Models that incorporate structural biases (Battaglia et al., 2018), e.g. by operating on syntax trees rather than plain text, are more robust to syntactic adversaries (McCoy et al., 2019). In the case of models that build upon large pre-trained language models, the number of the parameters and the size of the corpus used for language model training appear beneficial (Kavumba et al., 2019).

5 Conclusion

We present a structured survey of methods that reveal heuristics and spurious correlations in datasets, methods which show that neural models inherit those correlations or assess their capabilities otherwise, and methods that mitigate this by adversarial training, data augmentation and model architecture or training procedure improvements. Various NLI datasets are reported to contain spurious correlations between input and expected output, might be unsuitable to evaluate some task modality due to dataset design or suffer from quality issues. RTE is a popular target task for these data-centred investigations with more than half of the surveyed papers focusing on it. NLI models, in turn, are shown to exploit those correlations and to rely on superficial lexical cues. Furthermore, they lack generalisation beyond the evaluation set resulting in poor performance on out-of-distribution evaluation sets, generated adversarially or targeted at a specific capability. Efforts to achieve robustness include augmenting the training data with adversarial examples, making use of external resources and modifying the neural network architecture or training objective.

Based on these findings, we formulate the following recommendations for possible future research directions:

• There is a need for an empirical study that systematically investigates the benefits of type and amount of prior knowledge on neural models’ out-of-distribution stress test performance.

• We believe the scientific community will benefit from an application of the quantitative methods that have been presented in this survey to the remaining 36 recently proposed NLI datasets that have not been examined for spurious correlations yet.

• Partial baselines are conceptually simple and cheap to employ for any given task, so we want to incentivise researchers to apply and report their performance, when introducing a novel dataset. While not a guarantee for the absence of spurious correlations (Feng et al., 2019), they can hint at their presence and serve as an upper bound for the complexity of the dataset.

• Adapting methods applied to RTE datasets or developing novel methodology to reveal cues and spurious correlations in MRC data is a possible future research direction.

• While RTE is increasingly becoming a proxy task to attribute various reading and reasoning capabilities to neural models, the transfer of those capabilities to different tasks, such as MRC, remains to be shown yet. Additionally, the MRC task requires further capabilities that cannot be tested in an RTE setting conceptually, such as selecting the relevant answer sentence from distracting context or integrating information from multiple sentences, both shown to be inadequately tested by current state-of-the-art gold standards (Jia and Liang, 2017; Jiang and Bansal, 2019). Therefore it is
important to develop those “stress-tests” for MRC models as well, in order to gain a more focussed understanding of their capabilities and limitations.

We want to highlight, that albeit exhibiting cues or weaknesses in design, the availability of multiple large-scale datasets is a vital step in order to gain empirically grounded understanding of what the current state-of-the-art NLI models are learning and where they still fail. This is a necessary requirement for building the next iteration of datasets and model architectures and therefore further advance the research in NLP.

While the discussed methods seem to be necessary to make progress and gain a precise understanding of the capabilities and, most importantly, of the limits of existing (deep learning-based) approaches and can guide research towards solving the NLI task beyond leaderboard performance on a single dataset, the question persists whether they are sufficient. It remains to be seen whether the availability of benchmark suites (Wang et al., 2019a; Wang et al., 2019b) consisting of multiple training and evaluation datasets – open-domain or targeted at a specific phenomenon – will provide enough diversity to optimise models that are robust enough to perform any given natural language understanding task, the so called “general linguistic intelligence” (Yogatama et al., 2019).

References

Asma Ben Abacha, Duy Dinh, and Yassine Mrabet. 2015. Semantic analysis and automatic corpus construction for entailment recognition in medical texts. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9105, pages 238–242. Springer Verlag.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2016. MS MARCO: A Human Generated Machine Reading Comprehension Dataset. Proceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 co-located with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), pages 1–11, 11.

Ondrej Bajgar, Rudolf Kadlec, and Jan Kleindienst. 2016. Embracing data abundance: BookTest Dataset for Reading Comprehension. arXiv preprint arXiv 1610.00956, 10.

Dominika Basaj, Barbara Rychalska, Przemyslaw Biecek, and Anna Wroblewska. 2018. How much should you ask? On the question structure in QA systems. arXiv preprint arXiv 1809.03734, 9.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Matusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018. Relational inductive biases, deep learning, and graph networks. arXiv preprint arxiv:1806.01261.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642. Stroudsburg, PA, USA. Association for Computational Linguistics.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E. Peters, Ashish Sabharwal, and Yejin Choi. 2020. Adversarial Filters of Dataset Biases. arXiv preprint arXiv:2002.04108, 2.

Zheng Cai, Lifu Tu, and Kevin Gimpel. 2017. Pay Attention to the Ending: Strong Neural Baselines for the ROC Story Cloze Task. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 616–622. Stroudsburg, PA, USA. Association for Computational Linguistics.

Jifan Chen and Greg Durrett. 2019a. Understanding Dataset Design Choices for Multi-hop Reasoning. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4026–4032, Stroudsburg, PA, USA. Association for Computational Linguistics.
Jifan Chen and Greg Durrett. 2019b. Understanding Dataset Design Choices for Multi-hop Reasoning. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4026–4032, Stroudsburg, PA, USA. Association for Computational Linguistics.

Danqi Chen, Jason Bolton, and Christopher D. Manning. 2016. A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 4, pages 2358–2367, Stroudsburg, PA, USA. Association for Computational Linguistics.

Tiffany Chien and Jugal Kalita. 2020. Adversarial Analysis of Natural Language Inference Systems. In 2020 IEEE 14th International Conference on Semantic Computing (ICSC), pages 1–8, 12.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. 2018. QuAC: Question Answering in Context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2174–2184, Stroudsburg, PA, USA. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge. arXiv preprint arXiv:1803.05457.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. 2019. Dont Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4067–4080, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2006. The PASCAL Recognising Textual Entailment Challenge. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3944 LNAI, pages 177–190.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Zanzotto. 2013. Recognizing Textual Entailment: Models and Applications. Synthesis Lectures on Human Language Technologies, 6(4):1–222.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau Yih, and Peter Clark. 2018. Tracking State Changes in Procedural Text: a Challenge Dataset and Models for Process Paragraph Comprehension. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1595–1604, Stroudsburg, PA, USA. Association for Computational Linguistics.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018. Transforming Question Answering Datasets Into Natural Language Inference Datasets. arXiv preprint arXiv:1809.02922, 9.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Stroudsburg, PA, USA. Association for Computational Linguistics.

Dheeru Dua, Ananth Gottumukkala, Alon Talmor, Matt Gardner, and Sameer Singh. 2019a. Comprehensive Multi-Dataset Evaluation of Reading Comprehension. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 147–153, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019b. DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368–2378, Stroudsburg, PA, USA. Association for Computational Linguistics.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Guney, Volkan Cirik, and Kyunghyun Cho. 2017. SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine. arXiv preprint arXiv:1704.05179, 4.

Shi Feng, Eric Wallace, and Jordan Boyd-Graber. 2019. Misleading Failures of Partial-input Baselines. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5533–5538, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.
Atticus Geiger, Ignacio Cases, Lauri Karttunen, and Christopher Potts. 2019. Posing Fair Generalization Tasks for Natural Language Inference. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4484–4494, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Max Glockner, Vered Shwartz, and Yoav Goldberg. 2018. Breaking NLI Systems with Sentences that Require Simple Lexical Inferences. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 650–655, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.

Quentin Grail, Julien Perez, and Tomi Silander. 2018. Adversarial Networks for Machine Reading. TAL Traitement Automatique des Langues, 59(2):77–100.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and Noah A Smith. 2018. Annotation Artifacts in Natural Language Inference Data. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, Stroudsburg, PA, USA. Association for Computational Linguistics.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych, and Benno Stein. 2018. The Argument Reasoning Comprehension Task: Identification and Reconstruction of Implicit Warrants. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1930–1940, Stroudsburg, PA, USA. Association for Computational Linguistics.

He He, Sheng Zha, and Haohan Wang. 2019. Unlearn Dataset Bias in Natural Language Inference by Fitting the Residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), pages 132–142, Stroudsburg, PA, USA, 8. Association for Computational Linguistics.

Karl Moritz Hermann, Tom Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching Machines to Read and Comprehend. Advances in Neural Information Processing Systems, 2015-Janua:1693–1701, 6.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2391–2401, Stroudsburg, PA, USA. Association for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. 2019. Certified Robustness to Adversarial Word Substitutions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4127–4140, Stroudsburg, PA, USA, 9. Association for Computational Linguistics.

Yichen Jiang and Mohit Bansal. 2019. Avoiding Reasoning Shortcuts: Adversarial Evaluation, Training, and Model Development for Multi-Hop QA. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2726–2736, Stroudsburg, PA, USA, 6. Association for Computational Linguistics.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. 2019. PubMedQA: A Dataset for Biomedical Research Question Answering. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, Stroudsburg, PA, USA, 9. Association for Computational Linguistics.

Yimin Jing, Deyi Xiong, and Zhen Yan. 2019. BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2452–2462, Stroudsburg, PA, USA, 10. Association for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611.

Tomasz Jurczyk, Michael Zhai, and Jinho D. Choi. 2016. SeiQA: A New Benchmark for Selection-based Question Answering. Proceedings - 2016 IEEE 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016, pages 820–827, 6.
Sanjay Kamath, Brigitte Grau, and Yue Ma. 2018. An Adaption of BIOASQ Question Answering dataset for Machine Reading systems by Manual Annotations of Answer Spans. In Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering, pages 72–78, Stroudsburg, PA, USA. Association for Computational Linguistics.

Dongyeop Kang, Tushar Khot, Ashish Sabharwal, and Eduard Hovy. 2018. AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 2418–2428, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.

Divyansh Kaushik and Zachary C. Lipton. 2018. How Much Reading Does Reading Comprehension Require? A Critical Investigation of Popular Benchmarks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 5010–5015, Stroudsburg, PA, USA. Association for Computational Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary C. Lipton. 2020. Learning the Difference that Makes a Difference with Counterfactually-Augmented Data. In International Conference on Learning Representations, 9.

Pride Kavumba, Naoya Inoue, Benjamin Heinzelerling, Keshav Singh, Paul Reisert, and Kentaro Inui. 2019. When Choosing Plausible Alternatives, Clever Hans can be Clever. In Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing, pages 33–42. Association for Computational Linguistics (ACL), 11.

Tom Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gbor Melis, and Edward Grefenstette. 2018. The NarrativeQA Reading Comprehension Challenge. Transactions of the Association for Computational Linguistics, 6:317–328.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A Benchmark for Question Answering Research. Transactions of the Association for Computational Linguistics, 7:453–466, 3.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A Denotational and Distributional Approach to Semantics. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 329–334, Stroudsburg, PA, USA, 6. Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou, and Wei Xu. 2016. Dataset and Neural Recurrent Sequence Labeling Model for Open-Domain Factoid Question Answering. arXiv preprint arXiv 1607.06275, 7.

Yichan Liang, Jianheng Li, and Jian Yin. 2019. A New Multi-choice Reading Comprehension Dataset for Curriculum Learning. In Proceedings of Machine Learning Research, volume 101, pages 742–757. International Machine Learning Society (IMLS), 3.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gardner. 2019. Reasoning Over Paragraph Effects in Situations. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 58–62, Stroudsburg, PA, USA. Association for Computational Linguistics.

Pengyuan Liu, Chengyu Du, Shuofeng Zhao, and Chenghao Zhu. 2019a. Emotion Action Detection and Emotion Inference: the Task and Dataset. arXiv preprint arXiv 1903.06901, 3.

Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, and Weiming Zhang. 2019b. Neural Machine Reading Comprehension: Methods and Trends. Applied Sciences, 9(18):3698, 9.

Rabeeh Karimi Mahabadi and James Henderson. 2019. Simple but effective techniques to reduce biases. arXiv preprint arXiv:1909.06321, 9.

Gengchen Mai, Krzysztof Janowicz, Cheng He, Sumang Liu, and Ni Lao. 2018. POIReviewQA: A semantically enriched POI retrieval and question answering dataset. In Proceedings of the 12th Workshop on Geographic Information Retrieval, GIR 2018, pages 1–2, New York, New York, USA, 11. Association for Computing Machinery, Inc.
Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 3428–3448, Stroudsburg, PA, USA. Association for Computational Linguistics.

Ninareh Mehrabi, Fred Mortstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2019. A Survey on Bias and Fairness in Machine Learning. *arXiv preprint arXiv:1908.09635*, 8.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 2381–2391, Stroudsburg, PA, USA. Association for Computational Linguistics.

Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. 2018. Efficient and Robust Question Answering from Minimal Context over Documents. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, volume 1, pages 1725–1735, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2019. Compositional Questions Do Not Necessitate Multi-hop Reasoning. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4249–4257, Stroudsburg, PA, USA, 6. Association for Computational Linguistics.

Pasquale Minervini and Sebastian Riedel. 2018. Adversarially Regularising Neural NLI Models to Integrate Logical Background Knowledge. In *Proceedings of the 22nd Conference on Computational Natural Language Learning*, pages 65–74, Stroudsburg, PA, USA, 8. Association for Computational Linguistics.

Arindam Mitra, Ishan Shrivastava, and Chitta Baral. 2020. Enhancing Natural Language Inference Using New and Expanded Training Data Sets and New Learning Models. In *Proceedings of the AAAI Conference on Artificial Intelligence*.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 839–849, Stroudsburg, PA, USA. Association for Computational Linguistics.

Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan, and Kedar Dhamdhere. 2018. Did the Model Understand the Question? In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, volume 1, pages 1896–1906, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.

James Mullenbach, Jonathan Gordon, Nanyun Peng, and Jonathan May. 2019. Do Nuclear Submarines Have Nuclear Captains? A Challenge Dataset for Commonsense Reasoning over Adjectives and Objects. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 6051–6057, Stroudsburg, PA, USA. Association for Computational Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig. 2018. Stress Test Evaluation for Natural Language Inference. In *Proceedings of the 27th International Conference on Computational Linguistics*, page 23402353, Santa Fe, New Mexico, USA, 8. Association for Computational Linguistics.

Mao Nakanishi, Tetsunori Kobayashi, and Yoshihiko Hayashi. 2018. Answerable or Not: Devising a Dataset for Extending Machine Reading Comprehension. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 973–983.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019a. Analyzing Compositionality-Sensitivity of NLI Models. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):6867–6874, 7.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2019b. Adversarial NLI: A New Benchmark for Natural Language Understanding. *arXiv preprint arXiv:1910.14599*, 10.

Timothy Niven and Hung-Yu Kao. 2019. Probing Neural Network Comprehension of Natural Language Arguments. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4658–4664, Stroudsburg, PA, USA, 7. Association for Computational Linguistics.
Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Google Brain. 2018. Adversarially Robust Generalization Requires More Data. In Advances in Neural Information Processing Systems 31 (NIPS 2018), pages 5014–5026.

Martin Schmitt and Hinrich Schütze. 2019. SherLIiC: A Typed Event-Focused Lexical Inference Benchmark for Evaluating Natural Language Inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 902–914, Stroudsburg, PA, USA, 6. Association for Computational Linguistics.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santus, and Regina Barzilay. 2019. Towards Debiasing Fact Verification Models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3417–3423, Stroudsburg, PA, USA, 8. Association for Computational Linguistics.

Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila Zilles, Yejin Choi, and Noah A. Smith. 2017. The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 15–25, Stroudsburg, PA, USA. Association for Computational Linguistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Bidirectional Attention Flow for Machine Comprehension. In International Conference on Learning Representations.

Chenglei Si, Shuo Hang Wang, Min-Yen Kan, and Jing Jiang. 2019. What does BERT Learn from Multiple-Choice Reading Comprehension Datasets? arXiv preprint arXiv:1910.12391, 10.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4505–4514, Stroudsburg, PA, USA. Association for Computational Linguistics.

Janez Starc and Dunja Mladenić. 2017. Constructing a Natural Language Inference dataset using generative neural networks. Computer Speech & Language, 46:94–112, 11.

Saku Sugawara, Pontus Stenetorp, Kentaro Inui, and Akiko Aizawa. 2020. Assessing the Benchmarking Capacity of Machine Reading Comprehension Datasets. In Proceedings of the AAAI Conference on Artificial Intelligence, 11.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks. In International Conference on Learning Representations.

Shawn Tan, Yikang Shen, Chin-wei Huang, and Aaron Courville. 2019. Investigating Biases in Textual Entailment Datasets. arXiv preprint arXiv 1906.09635, 6.

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Peter Clark, and Antoine Bosselut. 2019. WIQA: A dataset for What if... reasoning over procedural text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6075–6084, Stroudsburg, PA, USA, 9. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos Christodouloupolous, and Arpit Mittal. 2019. Evaluating adversarial attacks against multiple fact verification systems. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2944–2953, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Paul Trichelair, Ali Emami, Adam Trischler, Kaheer Suleman, and Jackie Chi Kit Cheung. 2019. How Reasonable are Common-Sense Reasoning Tasks: A Case-Study on the Winograd Schema Challenge and SWAG. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3380–3385, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. 2017. NewsQQA: A Machine Comprehension Dataset. In Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 191–200, Stroudsburg, PA, USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In Advances in Neural Information Processing Systems 30, pages 5998–6008.
David Vilares and Carlos Gómez-Rodríguez. 2019. HEAD-QA: A Healthcare Dataset for Complex Reasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 960–966, Stroudsburg, PA, USA. Association for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal Adversarial Triggers for Attacking and Analyzing NLP. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2153–2162, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Yicheng Wang and Mohit Bansal. 2018. Robust Machine Comprehension Models via Adversarial Training. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2 (Short P:575–581.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019a. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In 7th International Conference on Learning Representations, ICLR 2019.

Haohan Wang, Da Sun, and Eric P. Xing. 2019b. What if We Simply Swap the Two Text Fragments? A Straightforward yet Effective Way to Test the Robustness of Methods to Confounding Signals in Nature Language Inference Tasks. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7136–7143, 7.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. 2018. Constructing Datasets for Multi-hop Reading Comprehension Across Documents. Transactions of the Association for Computational Linguistics, 6:287–302.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkić-Mrkić, Milica Gašić-Gašić, Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2017. A Network-based End-to-End Trainable Task-oriented Dialogue System. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, volume 1, pages 438–449. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122, Stroudsburg, PA, USA. Association for Computational Linguistics.

Bowen Wu, Haoyang Huang, Zongsheng Wang, Qihang Feng, Jingsong Yu, and Baoxun Wang. 2019. Improving the Robustness of Deep Reading Comprehension Models by Leveraging Syntax Prior. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 53–57, Stroudsburg, PA, USA, 11. Association for Computational Linguistics.

Wenhan Xiong, Jiawei Wu, Hong Wang, Vivek Kulkarni, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. 2019. TWEETQA: A Social Media Focused Question Answering Dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5020–5031, Stroudsburg, PA, USA. Association for Computational Linguistics.

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K. Jain. 2019. Adversarial Attacks and Defenses in Images, Graphs and Text: A Review. arXiv preprint arXiv:1909.08072, 9.

Yadollah Yaghoobzadeh, Remi Tuchet, T. J. Hazen, and Alessandro Sordoni. 2019. Robust Natural Language Inference Models with Example Forgetting. arXiv preprint arXiv:1911.03861, 11.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine, Lasha Abzianidze, and Johan Bos. 2019a. Can Neural Networks Understand Monotonicity Reasoning? In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 31–40, Stroudsburg, PA, USA, 6. Association for Computational Linguistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine, Lasha Abzianidze, and Johan Bos. 2019b. HELP: A Dataset for Identifying Shortcomings of Neural Models in Monotonicity Reasoning. In Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019), pages 250–255, Stroudsburg, PA, USA, 4. Association for Computational Linguistics.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A Challenge Dataset for Open-Domain Question Answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2013–2018, Stroudsburg, PA, USA. Association for Computational Linguistics.

Mark Yatskar. 2019. A Qualitative Comparison of CoQA, SQuAD 2.0 and QuAC. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2318–2323, Stroudsburg, PA, USA. Association for Computational Linguistics.
Dani Yogatama, Cyprien de Masson D’Autume, Jerome Connor, Tomas Kocisky, Mike Chrzanowski, Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, and Phil Blunsom. 2019. Learning and Evaluating General Linguistic Intelligence. *arXiv preprint arXiv:1901.11373*, 1.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. 2020. ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning. In *International Conference on Learning Representations*, 2.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 93–104, Stroudsburg, PA, USA, 6. Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a Machine Really Finish Your Sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4791–4800, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme. 2018. ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension. *arXiv preprint arXiv:1810.12885*.

Guanhua Zhang, Bing Bai, Jian Liang, Kun Bai, Shiyu Chang, Mo Yu, Conghui Zhu, and Tiejun Zhao. 2019a. Selection Bias Explorations and Debias Methods for Natural Language Sentence Matching Datasets. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4418–4429, Stroudsburg, PA, USA, 5. Association for Computational Linguistics.

Guanhua Zhang, Bing Bai, Junqi Zhang, Kun Bai, Conghui Zhu, and Tiejun Zhao. 2019b. Mitigating Annotation Artifacts in Natural Language Inference Datasets to Improve Cross-dataset Generalization Ability. *arXiv preprint arXiv:1909.04242*, 9.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. 2019c. Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey. *arXiv preprint arXiv:1901.06796*, 1.

Mantong Zhou, Minlie Huang, and Xiaoyan Zhu. 2019. Robust Reading Comprehension with Linguistic Constraints via Posterior Regularization. *arXiv preprint arXiv:1911.06948*, 11.
Detailed Survey Results

Figure 6: Word cloud with investigated RTE, MRC and other datasets. Size proportional to the number of surveyed papers investigating the dataset.

The following table shows the full list of surveyed papers, grouped by dataset and method applied. As papers might report the application of multiple methods on multiple datasets, they can appear in the table more than once.

Dataset	Method used	Used by / Investigated by	
HotPotQA	Partial Baselines	(Min et al., 2019; Sugawara et al., 2020; Chen and Durrett, 2019b)	
	Adversarial Evaluation	(Jiang and Bansal, 2019)	
	Data Improvements	(Jiang and Bansal, 2019)	
	Arch/Training Improvements	(Jiang and Bansal, 2019)	
	Manual Analyses	(Schlegel et al., 2020; Pugaliya et al., 2019)	
MNLI	Stress-test	(Naik et al., 2018; Glockner et al., 2018; McCoy et al., 2019; Liu et al., 2019a; Nie et al., 2019a; Richardson et al., 2019)	
	Arch/Training Improvements	(Wang et al., 2019a; He et al., 2019; Sagawa et al., 2020; Minervini and Riedel, 2018; Mahabadi and Henderson, 2019; Zhang et al., 2019b; Clark et al., 2019; Mitra et al., 2020; Yaghoobzadeh et al., 2019)	
	Heuristics	(Gururangan et al., 2018; Poliak et al., 2018; McCoy et al., 2019; Zhang et al., 2019a; Nie et al., 2019a; Bras et al., 2020; Tan et al., 2019)	
	Partial Baselines	(Gururangan et al., 2018; Poliak et al., 2018; Nie et al., 2019a)	
	Manual Analyses	(Pavlick and Kwiatkowski, 2019)	
	Adversarial Evaluation	(Chien and Kalita, 2020; Nie et al., 2019a)	
HELP	Data Improvements	(Yanaka et al., 2019b)	
SNLI	Stress-test	(Glockner et al., 2018; Nie et al., 2019a; Richardson et al., 2019)	
	Data Improvements	(Kang et al., 2018; Mitra et al., 2020; Kaushik et al., 2020)	
	Heuristics	(Gururangan et al., 2018; Poliak et al., 2018; Zhang et al., 2019a; Nie et al., 2019a; Rudinger et al., 2017; Bras et al., 2020; Tan et al., 2019)	
	Partial Baselines	(Gururangan et al., 2018; Poliak et al., 2018; Feng et al., 2019; Nie et al., 2019a)	
	Adversarial Evaluation	(Sanchez et al., 2018; Nie et al., 2019a)	
	Manual Analyses	(Pavlick and Kwiatkowski, 2019)	
Dataset	Evaluation Type	Baseline Type	Reference
--------------	-----------------------	-----------------------------	---
SciTail	Stress-test	Heuristics	(Glockner et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
COPA	Heuristics		(Kavumba et al., 2019)
	Stress-test		(Kavumba et al., 2019)
SICK	Arch/Training Improvements	Heuristics	(Wang et al., 2019a; Zhang et al., 2019b)
		Partial Baselines	(Poliak et al., 2018; Zhang et al., 2019a)
			(Poliak et al., 2018; Lai and Hockenmaier, 2014)
ADD-1	Heuristics		(Poliak et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
DPR	Heuristics		(Poliak et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
FN+	Heuristics		(Poliak et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
JOCT	Heuristics		(Poliak et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
		Manual Analyses	(Pavlid and Kwiatkowski, 2019)
		Arch/Training Improvements	(Zhang et al., 2019b)
MPE	Heuristics		(Poliak et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
SPR	Heuristics		(Poliak et al., 2018)
		Partial Baselines	(Poliak et al., 2018)
SQuAD	Adversarial Evaluation		(Rychalska et al., 2018; Wallace et al., 2019; Mudrakarta et al., 2018; Jia and Liang, 2017; Basaj et al., 2018)
		Arch/Training Improvements	(Min et al., 2018; Wu et al., 2019; Zhou et al., 2019; Clark et al., 2019)
		Stress-test	(Liu et al., 2019a; Dua et al., 2019a; Nakanishi et al., 2018; Ribeiro et al., 2019)
		Data Improvements	(Wang and Bansal, 2018; Nakanishi et al., 2018)
		Partial Baselines	(Sugawara et al., 2020; Kaushik and Lipton, 2018)
		Manual Analyses	(Pugaliya et al., 2019)
DROP	Adversarial Evaluation		(Dua et al., 2019b)
		Manual Analyses	(Schlegel et al., 2020)
		Stress-test	(Dua et al., 2019a)
DNC	Manual Analyses		(Pavlid and Kwiatkowski, 2019)
RTE2	Manual Analyses		(Pavlid and Kwiatkowski, 2019)
MSMarco	Manual Analyses		(Schlegel et al., 2020; Pugaliya et al., 2019)
MultiRC	Manual Analyses		(Schlegel et al., 2020)
		Partial Baselines	(Sugawara et al., 2020)
NewsQA	Manual Analyses		(Schlegel et al., 2020)
		Arch/Training Improvements	(Min et al., 2018)
		Stress-test	(Dua et al., 2019a)
ReCoRd	Manual Analyses		(Schlegel et al., 2020)
ROCStories	Partial Baselines		(Schwartz et al., 2017; Cai et al., 2017)
	Heuristics		(Cai et al., 2017)
Dataset	Method	Reference	
--------------	-------------------------	---	
TriviaQA	Arch/Training Improvements	(Min et al., 2018; Clark et al., 2019)	
FEVER	Arch/Training Improvements	(Mahabadi and Henderson, 2019; Schuster et al., 2019)	
	Adversarial Evaluation	(Thorne et al., 2019)	
	Heuristics	(Schuster et al., 2019)	
	Data Improvements	(Schuster et al., 2019)	
ARCT	Heuristics	(Niven and Kao, 2019)	
	Adversarial Evaluation	(Niven and Kao, 2019)	
ARC	Stress-test	(Richardson and Sabharwal, 2019)	
OBQA	Stress-test	(Richardson and Sabharwal, 2019)	
CoQA	Partial Baselines	(Sugawara et al., 2020)	
	Manual Analyses	(Yatskar, 2019)	
DuoRC	Partial Baselines	(Sugawara et al., 2020)	
	Stress-test	(Dua et al., 2019a)	
MCTest	Partial Baselines	(Sugawara et al., 2020; Si et al., 2019)	
	Adversarial Evaluation	(Si et al., 2019)	
RACE	Partial Baselines	(Sugawara et al., 2020; Si et al., 2019)	
	Adversarial Evaluation	(Si et al., 2019)	
SQuAD 2.0	Partial Baselines	(Sugawara et al., 2020)	
	Stress-test	(Dua et al., 2019a)	
	Manual Analyses	(Yatskar, 2019)	
SWAG	Partial Baselines	(Sugawara et al., 2020; Trichelair et al., 2019)	
	Adversarial Evaluation	(Zellers et al., 2019; Zellers et al., 2018)	
CNN	Manual Analyses	(Chen et al., 2016)	
	Partial Baselines	(Kaushik and Lipton, 2018)	
DailyMail	Manual Analyses	(Chen et al., 2016)	
DREAM	Partial Baselines	(Si et al., 2019)	
	Adversarial Evaluation	(Si et al., 2019)	
MCScript	Partial Baselines	(Si et al., 2019)	
	Adversarial Evaluation	(Si et al., 2019)	
MCScript 2.0	Partial Baselines	(Si et al., 2019)	
	Adversarial Evaluation	(Si et al., 2019)	
Hella-SWAG	Adversarial Evaluation	(Zellers et al., 2019)	
ANLI	Adversarial Evaluation	(Nie et al., 2019b)	
Narrative-QA	Stress-test	(Dua et al., 2019a)	
Quoref	Stress-test	(Dua et al., 2019a)	
ROPES	Stress-test	(Dua et al., 2019a)	
WikiHop	Partial Baselines	(Chen and Durrett, 2019b)	
QNLI	Heuristics	(Bras et al., 2020)	
CBT	Partial Baselines	(Kaushik and Lipton, 2018)	
	Arch/Training Improvements	(Grail et al., 2018)	
Who-did-What	Partial Baselines	(Kaushik and Lipton, 2018)	
bAbI	Partial Baselines	(Kaushik and Lipton, 2018)	
The following table shows those 36 datasets from Figure 5 broken down by year, where no quantitative methods to describe possible spurious correlations have been applied yet:

Year	Dataset
2015	MedlineRTE (Abacha et al., 2015), WikiQA (Yang et al., 2015), DailyMail (Hermann et al., 2015)
2016	MSMarco (Bajaj et al., 2016), BookTest (Bajgar et al., 2016), SelQA (Jurczyk et al., 2016), WebQA (Li et al., 2016)
2017	SearchQA (Dunn et al., 2017), NewsQA (Trischler et al., 2017), GANNLI (Starc and Mladenić, 2017), TriviaQA (Joshi et al., 2017), CambridgeDialogs (Wen et al., 2017)
2018	PoiReviewQA (Mai et al., 2018), NarrativeQA (Kočiský et al., 2018), ReCoRd (Zhang et al., 2018), ARC (Clark et al., 2018), QuAC (Choi et al., 2018), emrQA (Pampari et al., 2018), ProPara (Dalvi et al., 2018), MedHop (Welbl et al., 2018), OBQA (Mihaylov et al., 2018), BioASQ (Kamath et al., 2018)
2019	BiPaR (Jing et al., 2019), NaturalQ (Kwitkowski et al., 2019), ROPES (Lin et al., 2019), SherLiC (Schmitt and Schütze, 2019), CLUTRR (Sinha et al., 2019), PubMedQA (Jin et al., 2019), WIQA (Tandon et al., 2019), HELP (Yanaka et al., 2019b), HEAD-QA (Vilares and Gómez-Rodríguez, 2019), CosmosQA (Huang et al., 2019), TWEET-QA (Xiong et al., 2019), RACE-C (Liang et al., 2019), VGNLI (Mullenbach et al., 2019), CEAC (Liu et al., 2019a)
B Inclusion Criteria for the Dataset Corpus

We expand the collection of papers introducing datasets that were investigated or used by any publication in the original survey corpus (e.g. those shown in Figure 6 by a Google Scholar search using the queries shown in Table 3. We include a paper if it introduces a dataset for an NLI task according to our definition and the language of that dataset is English, otherwise we exclude it.

```
allintitle: reasoning ("reading comprehension" OR "machine comprehension") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: comprehension (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: entailment (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: reasoning (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: QA (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: NLI (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: language inference (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
allintitle: "question answering" (((set OR dataset) OR corpus) OR benchmark) OR "gold standard") -image -visual -"knowledge graph" -"knowledge graphs"
```

Table 3: Google Scholar Queries for the extended dataset corpus