Lightweight Secure and Reliable Authentication for Cluster Based WSN

Sangamesh J. Kalyane, Nagaraj B.Patil

Abstract—Wireless sensor networks (WSNs) are distributed all over the globe and are widely used for physical collection of data sensed in its surrounding. Tiny, affordable, constrained battery power, information processing capability devices called sensor nodes, plays a crucial role in agriculture, army, industry, intelligent grid, health care, critical infrastructure, etc. WSNs are often exposed to types of attacks. Once a sensor is affected by adversaries, the sensor's data materials become non-protective and intercepted by the enemy. In this paper we propose a lightweight polynomial secret key (LWPK) sharing mechanism for secure hierarchical cluster based communication. LWPK is built on elliptical curve cryptography by exchanging symmetric keys to secure data transmission. Set of tests is carried on discrete event simulation tool and simulation results achieves better performance in terms of communication overhead, packet delivery ratio, end to end delay and network lifetime.

Keywords: Key sharing, key pre distribution, security, wsn

I. INTRODUCTION

The Wireless Sensor Network (WSN) is a set of randomly or deterministically deployed small sensor nodes in a region of concern. These nodes can exchange information between them without using a pre-existing or centralized network infrastructure or control. Sensor nodes communicate to Base Station (BS) through single or multi hop transmission. The data is routed through intermediate nodes by routing protocol [1]. These routing protocols are classified into two categories: Flat and cluster based. Since sensor nodes are energy constrained, cluster based routing is effective way to improve the network lifetime than flat based routing [2]-[5]. In cluster routing, sensor nodes divided into set of groups or clusters. In each cluster one sensor node is selected as cluster head (CH) based on high residual energy and others as cluster members. CH has vital role in assisting its cluster members to route sensed data to sink or BS via single or multihop transmission.CH collects data from members, aggregates and transmits to BS. WSN is exposed to major security issues while routing data to its destination securing aggregates and transmits to BS. LEACH is vulnerable to malicious attacks, CH becomes compromise to malicious node and can launch attacks like spoofing, blackhole and crypto attacks that may disrupt the network. Thus LEACH has to be secured from malicious attacks to guarantee confidentiality, integrity, freshness and authentication of the originating node of the transmitted message. In this paper we propose lightweight cryptographic key exchange scheme using polynomial secret sharing keys to ensure secure data transmissions in cluster based routing. Initially BS distributes polynomial secret key shares k to CH, CH communicates to BS through inter cluster communication. CH aggregates data along with secure key is forwarded to BS and keys are reconstructed at BS achieving secure communication. The rest of this paper is organized as follows. In Section II describe the related work carried out. Section III describes the propose system model. In section IV the performance analysis and relative simulation are conducted. Finally we draw the conclusion on the proposed scheme in section V.

II. RELATED WORKS

Symmetric key cryptography provides better key management system for WSN; keys are distributed before node utilizes it. In [8-10] authors have come up with different pair wise key distribution techniques. In [11] author proposed random key distribution scheme, where the nodes selects randomly from keys subset generated by key generator and stores their keys along with their identities. This scheme could create a connected graph among two adjacent nodes and secure communication between them. If the keys are matched it would establish direct secure link and if mismatch captures the malicious node. In [12] author proposed low energy based key management for hierarchical WSN, network was divided into group of clusters comprising CH and cluster members. Shared secret keys are stored in CH memory. Each cluster members selects key from CH and exchanges with CH along with sensed data. If the key matches with the CH memory it creates protected connection, if not matched CH requests intended secret key from matching CH. However this scheme fails for large scale WSN. To resist sinkhole, selective forwarding and flooding attacks SLEACH [8] was proposed to secure hierarchical clustering using message authentication code (MAC) and detects intruder from becoming CH and injecting fake data. In [9] author proposed RLEACH, to improvise random pairwise key management. Since the LEACH was not able to resist malicious threats and shared keys was not properly shared to all adjacent nodes.

Revised Manuscript Received on October 30, 2019.
Sangamesh J. Kalyane, Department of CSE Bheemanna Khandre Institute of Technology Bhatki, India.
Dr. Nagaraj B. Patil, Principal, Govt Engg College Gangavati, India.
RLEACH could efficiently detect and resist Sybil and selective forwarding attacks.

III. SYSTEM MODEL PRELIMINARIES

Assumptions in modelling the network
- Sensor nodes are static after forming clusters
- BS assigns unique key and ID for each sensor nodes
- All sensor nodes has same transmission range

Polynomials have two variables and their monomials is the sum of the indices of variable which is represented as

\[P = x^i y^j \]

Bivariate polynomial of monomial degree \(\deg(P) = i + j \)

Symmetric keys are established between sensor nodes and cluster head as follows:
- Sensor nodes broadcasts its ID’s
- CH which is within the transmission range of sensor node 1 receives request and its ID, then sends key request message to BS
- BS looks up shared secret key table for ID and picks corresponding key \(K_{Si-CH} \)
- BS along with \(K_{Si-CH} \) and \(K_{CH-TBS} \) and sends to CH
- CH along with \(H(K_{Si-CH}) \) and \(K_{CH-TBS} \) to get \(K_{Si-CH} \) for integrity check

Inter Cluster pairing keys

Inter-cluster pairing is done once the keys are pre-loaded into sensors once the sensors are authenticated inter cluster communication is established.

Given as
- Two Cluster heads exchange their ID’s \(CH_1 \) and \(CH_2 \)

\[f(x, y) = \sum_{i,j=0}^{r} a_{ij} x^i y^j \]

According to large scale key distribution for WSN, for given polynomial of \(n \) variables the sensor nodes has shares of
- Each node evaluates stored polynomial secret shares upon receiving ID’s and generates
 \(f(ID_{CH_1}, ID_{CH_2}) \)
 \(f(ID_{CH_1}, ID_{CH_2}) \)

IV. SIMULATION RESULTS AND ANALYSIS

We evaluate our proposed scheme performance in terms of average energy consumption, computation delay, packet delivery ratio and transmission overhead. Simulation were

Proposed Lightweight mechanism

Key generation phase: The Base station (BS) \(T_{BS} \) selects random polynomial degree of \(f(x) \) of \((t - 1) \)

\[(x) = S + a_1 x + ... + a_{t-1} x^{t-1} \mod(n) \]

Where secrete= \((0) \) , coefficients \(S, a_1, a_2, ..., a_{t-1} \) are finite with each nodes and BS computes shares \(S_i = (x_i) \) for \(i = 1, ... , n \) then distributes \(S_i \) to each nodes under BS \(T_{BS} \).

Using bitise XOR keys are computed as

\[K_{S_i-CH} = k_1 \oplus k_2 \oplus k_3 \]

Sensor nodes \(S_i \) are pre-loaded with keys along with their ID’s

At each levels by changing the threshold dynamically by using lagrange method for each level sensor node \(i \in [1, m-1] \).

\[\alpha_{i+1} = \alpha_i + \beta_i \]

and finally \(\alpha_m \) is calculated after calculating \(\{1, 2, 3, ..., m\} \).

Intra cluster pairing keys

Carried on discrete event tool, results were analysed and compared with existing group key management scheme. The disadvantage of group key scheme is, if group key is determined by the fixed formula, the adversary will obtain all previous and future keys by compromising nodes in the network. Table 1 show the simulation parameters and performance of proposed scheme is analysed.
Table 1: Simulation Parameters

Parameters	Value
MAC	802.11
Propagation Model	TwoRayGround
No of Nodes	80
Network Area	1000 x 1000
Simulation Time	100sec
Malicious Nodes	4
Initial Energy	10J
Antenna	Omni

Security Analysis

In our proposed scheme, even if the CH is compromised, the keys of the other sensor nodes are not revealed. Compared to the group key scheme, if the CH is compromised the keys of the other nodes can be made available by computing the component key search within a key string. Our scheme provides strong tamper proof for CH which does not provide to retrieve keys when the attacker tries to retrieve keys by any act. Figure 2 shows the resilience of network successful rate when the nodes are attacked, proposed scheme performs better results compare to group scheme.

Figure 2: Network Successful Rate Energy Consumption and Computation Overhead

In figure 3 shows the average energy consumption of proposed scheme, the energy equation is given as

\[\text{Energy consumption} = \text{Initial Energy} \times 100\% \]

by the CH unless the keys of the sensor nodes are authenticated and CH will not establish communication between them until it is verified. In the below figure our scheme achieves more PDR and delivers more authentic packets.

Figure 3: Average Energy Consumption

Figure 4: Computation Overhead Packet Delivery Ratio

Figure 5: Packet Deliver Ratio End to End Delay

In the presence of malicious nodes, any node sending packet which is not authenticated will be eliminated.
Figure 6 shows average end to end delay results, we observe the delay is less in our scheme compared to group scheme. We analyse delay in terms of cryptographic operation in generating and verifying keys. We note that time taken to generate keys for independent nodes are lesser.

Figure 6: Average End to End Delay

V. CONCLUSION

In this paper we focus on providing lightweight key management scheme for hierarchical cluster based WSN. We propose a lightweight polynomial secret key (LWPK) sharing mechanism for secure hierarchical cluster based communication. This scheme is based on ECC symmetric key exchange and establishes secure cluster communication. Proposed scheme ensures better security requirement and it can be robust against malicious attacks. We have compared our scheme with existing group key scheme and evaluated performance in terms of overhead, packet delivery ratio, end to end delay and energy consumption. Simulation results show our scheme out performs than group key scheme and it is energy efficient.

REFERENCES

1. J. N. Al-Karakki and A. E. Kamal, “Routing technique wireless sensor networks: a survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6–28, Dec 2004.
2. V. Kattyar, N. Chand, and S. Soni, “A survey on clustering algorithms for heterogeneous WSN,” Int. J. Adv. Netw. Appl., vol. 2, no. 4, pp. 745–754, 2011.
3. J. N. Al-Karakki and A. E. Kamal, “Routing techniques in wireless sensor networks: A survey,” IEEE Wireless Commun., vol. 11, no. 6, pp. 6–28, Dec 2004.
4. M. Singh and S. C. Sharma, “A survey on cluster based routing protocols in wireless sensor networks,” Procedia Comput. Sci., vol. 45, pp. 687–695, 2015.
5. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless sensor networks,” Comput. Commun., vol. 30, nos. 14–15, pp. 2826–2841, Oct 2007.
6. Z. J. Has, L. Yang, M.-L. Liu, Q. Li, and F. Li, Current Challenges and Approaches in Securing Communications for Sensors and Actuators. Springer Berlin Heidelberg, 2014, pp. 569–608.
7. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the IEEE HICSS33, Jan 2000, p. 10 pp. vol.2.
8. A. C. Ferreira, M. A. Vilaça, L. B. Oliveria, E. Haabib, H.
9. C. Wong, and A. A. Loureiro, On the Security of Cluster- Based Communication Protocols for Wireless Sensor Networks. Springer Berlin Heidelberg, 2005, pp. 449–458.
10. K. Zhang and C. Wang, “A secure routing protocol for cluster-based wireless sensor networks using group key management,” in 4th IEEE International conference on WiCOM’08, Oct 2008, pp. 1–5.
11. Blom, R. (1985). Proceedings of the EUROCRYPT ’84 Workshop on Advances in Cryptology: Theory and Application of Cryptographic Techniques (pp. 335–338).
12. Dua, W., Deng, J., Haan, Y., & Varshney, P. (2003). A pairwise key pre-distribution scheme for wireless sensor networks. In Proceedings of the 10th ACM Conference on Computer and Communication Security-CCS ’03 (pp. 42–51). doi:10.1145/948109.948118
13. Chan, H., & Perl, A. (2005). PIKE—Peer intermediaries for key establishment in sensor networks. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies (Vol. 1, pp. 524–535). doi:10.1109/infcom.2005.1497920.
14. Echenauer, L., & Gligor, V. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM Conference on Computer and communications security-CCS ’02, (pp.41–47). doi:10.1145/586110.586117.
15. Jolly, G., Kuscu, M., Kokate, P., & Younis, M. (2003). A low-energy key management protocol for wireless sensor networks. In Proceedings of the Eighth IEEE Symposium on Computers and Communications ISCC(Vol.1,pp. 335–340). doi:10.1109/iscc.2003.1214142.