Periodicity of identifying codes in strips

Minghui Jiang

Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
mjiang@cc.usu.edu

July 14, 2016

Abstract

An identifying code in a graph is a subset of vertices having a nonempty and distinct intersection with the closed neighborhood of every vertex. We prove that the infimum density of any identifying code in \(S_k \) (an infinite strip of \(k \) rows in the square grid) can always be achieved by a periodic identifying code with pattern length at most \(2^{4k} \). Assisted by a compute program implementing Karp’s algorithm for minimum cycle mean, we find a periodic identifying code in \(S_4 \) with the minimum density \(11/28 \), and a periodic identifying code in \(S_5 \) with the minimum density \(19/50 \).

Keywords: identifying code, minimum cycle mean.

1 Introduction

For \(d \geq 1 \), the grid \(G_d \) is the (infinite) graph with vertex set \(\mathbb{Z}^d \), and with edges between vertices with (Euclidean) distance 1. For \(k \geq 1 \), the strip \(S_k \) is the subgraph of \(G_2 \) induced by the vertex subset \(\mathbb{Z} \times \mathbb{Z}_k \), where \(\mathbb{Z}_k := \{0, \ldots, k-1\} \). For \(l \geq 1 \), any subgraph of \(S_k \) induced by \(\{j_1, \ldots, j_2\} \times \mathbb{Z}_k \) with \(j_2 - j_1 + 1 = l \) is called a bar with length \(l \), or an \(l \)-bar. For \(i \in \mathbb{Z}_k \) and \(j \in \mathbb{Z} \), the subgraphs of \(S_k \) induced by \(\mathbb{Z} \times \{i\} \) and \(\{j\} \times \mathbb{Z}_k \), respectively, are called a row and a column of \(S_k \); similarly we also talk about rows and columns of a bar.

Let \(G \) be a (finite or infinite) graph. For any vertex \(v \in V(G) \), the open neighborhood \(N(v) \) is the subset of vertices adjacent to \(v \) in \(G \), and the close neighborhood \(N[v] \) is \(N(v) \cup \{v\} \). For \(r \geq 0 \) and \(v \in V(G) \), the ball of radius \(r \) centered at \(v \), denoted by \(B_r(v) \), is the set of vertices with distance at most \(r \) from \(v \) in \(G \). In particular, \(B_0(v) = \{v\} \) and \(B_1(v) = N[v] \). A vertex subset \(C \subseteq V(G) \) is an identifying code in \(G \) if

1. for each vertex \(v \in V(G) \), \(N[v] \cap C \neq \emptyset \),
2. for each pair of distinct vertices \(u, v \in V(G) \), \(N[u] \cap C \neq N[v] \cap C \).

Let \(v_0 \) be an arbitrary vertex in \(G \). For any \(C \subseteq V(G) \), the upper density and lower density of \(C \) in \(G \) are, respectively,

\[
\overline{d}(C, G) := \limsup_{r \to \infty} \frac{|C \cap B_r(v_0)|}{|B_r(v_0)|} \quad \text{and} \quad \underline{d}(C, G) := \liminf_{r \to \infty} \frac{|C \cap B_r(v_0)|}{|B_r(v_0)|}.
\]

If these two numbers are equal, then their common value is simply called the density of \(C \) in \(G \),

\[
d(C, G) := \lim_{r \to \infty} \frac{|C \cap B_r(v_0)|}{|B_r(v_0)|}.
\]
In particular, if G is a finite graph, then $d(C, G)$ always exists, and

$$d(C, G) = \frac{|C|}{|V(G)|}.$$

The infimum density of an identifying code in G is customarily defined as

$$d^*(G) := \inf_C d(C, G), \quad (1)$$

where C ranges over all identifying codes in G. Here the upper density \bar{d} is used because the density d does not always exist when G is an infinite graph. We show in this paper that if G is S_k, for any $k \geq 1$, then the infimum density can always be achieved by a periodic identifying code repeating a bar pattern whose length l is bounded by a function of k, and hence

$$d^*(G) = \min_C d(C, G), \quad (2)$$

where C ranges over all periodic identifying codes C, whose densities exist.

Identifying codes in the square grid G_2 and its subgraphs have been extensively studied. The concept was introduced by Karpovsky, Chakrabarty, and Levitin [8] for its application in fault diagnosis of multiprocessor systems. Cohen et al. [4, 3] proved an upper bound of $\frac{7}{20}$ by giving two periodic identifying codes achieving this density. Subsequently, Ben-Haim and Litsyn [1] proved the matching lower bound of $\frac{7}{20}$.

Figure 1: Bar patterns of periodic identifying codes with densities $\frac{3}{7}$ and $\frac{7}{18}$, respectively, in S_2 and S_3.

Daniel, Gravier, and Moncel [6] initiated the study of identifying codes in strips, and proved that $d^*(S_1) = \frac{1}{2}$ and $d^*(S_2) = \frac{3}{7}$. The infimum density of $\frac{1}{2}$ for S_1 is achieved by a periodic identifying code with pattern length 2, consisting of every other vertex in S_1. The infimum density of $\frac{3}{7}$ for S_2 is achieved by a periodic identifying code with pattern length 7, as illustrated in Figure 1 left. Bouznif, Havet, and Preissmann [2] recently proved that $d^*(S_3) = \frac{7}{18}$ by a sophisticated charging argument; see Figure 1 right for the periodic identifying code with pattern length 12 that achieves this density. Extending the previous result of $d^*(G_2) = \frac{7}{20}$ for the square grid G_2, Bouznif, Havet, and Preissmann [2] also proved that, for any $k \geq 1$,

$$\frac{7}{20} + \frac{1}{20k} \leq d^*(S_k) \leq \min \left\{ \frac{2}{5}, \frac{7}{20} + \frac{3}{10k} \right\}.$$

Figure 2: Bar patterns of periodic identifying codes with densities $\frac{11}{28}$ and $\frac{19}{50}$, respectively, in S_4 and S_5.

2
In this paper, we prove that $d^*(S_4) = 11/28$ and $d^*(S_5) = 19/50$, with the assistance of a computer program justified by (2). Refer to Figure 2 the infimum density of $11/28$ for S_4 is achieved by a periodic identifying code with pattern length 14; the infimum density of $19/50$ for S_5 is achieved by a periodic identifying code with pattern length 10. It is interesting to note that $d^*(S_3) < d^*(S_4) > d^*(S_5)$ (0.3888 . . . < 0.3928 . . . > 0.38), in contrast to the strict monotonicity of $d^*(S_1) > d^*(S_2) > d^*(S_3)$, and to the asymptotic bound of $d^*(S_k) = 7/20 + \Theta(1/k)$.

2 An alternative interpretation of periodic identifying codes in strips

Consider any subset C of vertices in a graph G. For any pair of distinct vertices $u, v \in V(G)$, if $N[u] \cap C \neq \emptyset$, $N[v] \cap C \neq \emptyset$, and $N[u] \cap N[v] = \emptyset$, then $N[u] \cap C \neq N[v] \cap C$. Thus to verify whether C is an identifying code in G, it suffices to verify that

1. for each vertex $v \in V(G)$, $N[v] \cap C \neq \emptyset$,
2. for each pair of distinct vertices $u, v \in V(G)$ with $N[u] \cap N[v] \neq \emptyset$, $N[u] \cap C \neq N[v] \cap C$.

Any two vertices with intersecting closed neighborhoods are within distance 2 from each other. In particular, in the strip S_k, such a pair of vertices must be located in some 3-bar, and the union of their closed neighborhoods is contained in some 5-bar.

Let R be any bar with length $l \geq 3$ in the strip S_k, and let R' be the sub-bar with length $l - 2$ consisting of the middle columns (except the first column and the last column) of R. Then the closed neighborhood (in S_k) of each vertex in R' is contained in R. We say that a subset P of vertices in R is a barcode of R, if P satisfies the two conditions of an identifying code locally for the vertices in R', that is, for each vertex $v \in R'$, $N[v] \cap P \neq \emptyset$, and for each pair of distinct vertices $u, v \in R'$, $N[u] \cap P \neq N[v] \cap P$.

Construct an edge-weighted directed graph H_k as follows. For each barcode P of any 4-bar, let H_k have a corresponding vertex. For each barcode Q of any 5-bar, which induces two barcodes P' and P'' of 4-bars consisting of the first 4 columns and the last 4 columns, respectively, of the 5-bar, let H_k have an edge, directed from the vertex corresponding to P', to the vertex corresponding to P'', then set the weight of this edge to the number of vertices of Q in the last column of the 5-bar. Then H_k has at most 2^k vertices and at most 2^k edges, where each vertex is incident to at most 2^k incoming edges and at most 2^k outgoing edges, and each edge has an integer weight between 0 and k.

Note that H_k is strongly connected. Given any barcode P of a 4-bar, we can always extend it to a barcode Q of a 5-bar, which consists of the vertices of P in the first 4 columns and all k vertices in the last column. This implies that H_k contains an edge progression (a directed path) of at most 4 edges from any vertex v, to the vertex s corresponding to the barcode containing all $4k$ vertices of a 4-bar. Symmetrically, there is also an edge progression of at most 4 edges from s to any vertex v in H_k. Note also that H_k contains self-loops, for example, from s to itself. Indeed if a vertex is connected to itself by an edge, then the barcode corresponding to this vertex must include either all or none of the 4 vertices in each row of the 4-bar.

Define the mean weight of any finite edge progression in an edge-weighted directed graph as the total weight of the edges divided by the number of edges (allowing duplicates). Define the minimum cycle mean of any edge-weighted directed graph as the minimum mean weight of any cycle in it. The following proposition is easy to prove:

Proposition 1. Each bar pattern of a periodic identifying code in S_k corresponds to a cycle in H_k, and vice versa. The minimum density a periodic identifying code in S_k is exactly the minimum cycle mean of H_k divided by k.

3
3 Existence of a periodic identifying code achieving the infimum density

We next show that the infimum density of an identifying code in S_k can always be achieved by a periodic identifying code with pattern length bounded by a function of k:

Theorem 1. For any $k \geq 1$, there is a periodic identifying code C^* with pattern length $l \leq 2^{4k}$ in S_k satisfying $d(C^*, S_k) = d^*(S_k)$.

The proof follows the line of reasoning of [2], hint for Exercise 3.2, where a similar question on the (lattice) packing density of a convex body in the plane is considered. The following lemma will be used:

Lemma 1. For any graph G, if $C \subseteq V(G)$ is an identifying code in G, then any subset D with $C \subseteq D \subseteq V(G)$ is also an identifying code in G.

Proof. Since $C \subseteq D$, we have for each vertex $v \in V(G)$,

$$N[v] \cap C \neq \emptyset \implies N[v] \cap D \neq \emptyset,$$

and for each pair of distinct vertices $u, v \in V(G)$,

$$N[u] \cap C \neq N[v] \cap C \implies N[u] \cap D \neq N[v] \cap D.$$

The lemma then follows by the definition of identifying codes. \hfill \Box

Now we proceed with the proof of Theorem 1. Fix $k \geq 1$. For each $n \geq 4$, we will construct a periodic identifying code C_n in S_k with pattern length at most 2^{4k} such that

$$d(C_n, S_k) \leq d^*(S_k) + 5n^{-1}. \quad (3)$$

Fix $n \geq 4$. By the definition of d^* in (1), there exists a sequence of (not necessarily periodic) identifying codes in S_k, whose upper densities tend arbitrarily close to $d^*(S_k)$. In particular, we can find A_n such that

$$\overline{d}(A_n, S_k) \leq d^*(S_k) + n^{-1}.$$

In the following we will derive C_n from A_n.

Partition S_k into an infinite sequence of disjoint n-bars $R[i]$, induced by disjoint vertex subsets $V[i] := \{in, \ldots, (i+1)n - 1\} \times \mathbb{Z}_k$, $i \in \mathbb{Z}$. Let $A[i] := A_n \cap V[i]$. Then for all $i \in \mathbb{Z}$,

$$d(A[i], R[i]) = \frac{|A[i]|}{nk},$$

and hence there exists $j \in \mathbb{Z}$ such that

$$d(A[j], R[j]) \leq \overline{d}(A_n, S_k).$$

Let $Q := \{nj, \ldots, nj+3\} \times \mathbb{Z}_k$ and $Q' := \{n(j+1), \ldots, n(j+1)+3\} \times \mathbb{Z}_k$ be the vertices in the first 4 columns of $R[j]$ and of $R[j+1]$, respectively. By Lemma 1, $A_n \cup Q \cup Q'$ remains an identifying code in S_k. Let $P := A[j] \cup Q$. Then simply repeating the pattern P of $R[j]$ results in an identifying code too. Let C_n denote this periodic identifying code in S_k, with pattern length n. Note that $|P| \leq |A[j]| + 4k$. Thus

$$d(C_n, S_k) = \frac{|P|}{nk} \leq \frac{|A[j]| + 4k}{nk} = d(A[j], R[j]) + 4n^{-1} \leq \overline{d}(A_n, S_k) + 4n^{-1} \leq d^*(S_k) + 5n^{-1},$$

as desired in (3).
Recall Proposition 1 on the equivalence between patterns of periodic identifying codes in S_k and cycles in H_k. Since H_k has at most 2^{4k} vertices, any cycle in H_k with more than 2^{4k} edges must repeat some vertex. Then the edges of the cycle can be partitioned to form two shorter cycles, and the mean weights of the two parts cannot be both greater than that of the whole. Correspondingly, if the length n of the pattern P exceeds 2^{4k}, then we can replace P by a shorter pattern with equal or smaller density. Thus we can assume, without loss of generality, that C_n is a periodic identifying code with pattern length at most 2^{4k}.

We have obtained an infinite sequence of periodic identifying codes C_n, for $n \geq 4$, with pattern length at most 2^{4k}. Since k is finite, the number of distinct periodic identifying codes with pattern length at most 2^{4k} is finite. So there must exist a periodic identifying code C^* with pattern length at most 2^{4k}, such that C_n is identical to C^* for an infinite sequence of increasing positive integers n_i, $i = 1, 2, \ldots$. Then by (3) we have $d(C^*, S_k) = d(C_{n_i}, S_k) \leq d^*(S_k) + 5n_i^{-1}$ for $i = 1, 2, \ldots$, and consequently $d(C^*, S_k) = d^*(S_k)$. This completes the proof of Theorem 1.

4 An algorithm for finding a minimum-density periodic identifying code

We briefly review Karp’s algorithm [7] for computing the minimum cycle mean λ^* of a strongly connected directed graph G with n vertices and m edges, where each edge $e \in E(G)$ has a weight $f(e)$. Let s be an arbitrary vertex in G. For each vertex $v \in V(G)$, and each integer $k \geq 0$, define $F_k(v)$ as the minimum weight of any edge progression of length k from s to v; if no such edge progression exists, then $F_k(v) := \infty$. Karp proved [7, Theorem 1] (see also [5, Problem 24.5] for a step-by-step sketch of the main argument in this elegant proof) that

$$\lambda^* = \min_{v \in V(G)} \max_{0 \leq k \leq n-1} \frac{F_n(v) - F_k(v)}{n - k}.$$ (4)

All values of $F_k(v)$ can be computed in $O(nm)$ time by dynamic programming, with the recurrence

$$F_k(v) = \min_{(u,w) \in E(G)} [F_{k-1}(u) + f(u,v)]$$ for $1 \leq k \leq n-1$, (5)

and the initial conditions

$$F_0(s) = 0 \quad \text{and} \quad F_0(v) = \infty \text{ for } v \neq s.$$

Finally, by (4), the value of λ^* can be computed in $O(n^2)$ time. The overall running time is $O(nm)$.

If the actual cycle yielding the minimum cycle mean is desired, it may be extracted from a minimum-weight edge progression of length n between s and the minimizing vertex v in (4). Such edge progressions for all vertices v can be recorded, in parallel to the computation of $F_k(v)$ by (5), by recording back references to the vertices u of the minimizing edges (u,v).

It is easy to verify that Karp’s algorithm remains valid for directed graphs with self-loops.

Now recall Proposition 1. By applying Karp’s algorithm to the directed graph H_k corresponding to the strip S_k, we immediately have the following theorem:

Theorem 2. For any $k \geq 1$, a minimum-density periodic identifying code in S_k, with pattern length at most 2^{4k}, can be found by Karp’s algorithm in $O(2^{9k})$ time.

A straightforward implementation of Karp’s algorithm uses $\Theta(n^2)$ space for all values of $F_k(v)$ and the corresponding back references to u. The space for $F_k(v)$ can be easily reduced to $O(n)$ by running the dynamic programming algorithm in two passes. In each pass, by (5), the values of $\{F_k(v) \mid v \in V\}$ for each $k \geq 1$ depend only on $\{F_{k-1}(v) \mid v \in V\}$. Thus the space for $F_k(v)$ in each round k can be kept for
the next round, while the space for $F_{k-1}(v)$ can be recycled for $F_{k+1}(v)$. At the end of the first pass, the values of $F_n(v)$ are recorded. Then in the second pass, with ready access to $F_n(v)$, we can compute

$$\lambda(v) := \max_{0 \leq k \leq n-1} \frac{F_n(v) - F_k(v)}{n - k}$$

for each v on the fly, without keeping the values of $F_k(v)$ for all k. Finally, after the second pass, we can compute $\lambda^* = \min_{v \in V(G)} \lambda(v)$ in $O(n)$ time. The overall running time remains $O(nm)$.

The $\Theta(n^2)$ space for the back references is harder to reduce. However, it turns out that in our application, a rather short cycle yielding the minimum cycle mean can be found near the end of the minimum-weight edge progression of length n from s to v. Thus we only need to record back references when k gets close to n in [5], and hence can reduce the total space usage to $O(n + m)$.

Refer to Appendix A for the source code of a computer program written in the C programming language. The subscript k of $F_k(v)$ in Karp’s algorithm and the subscript k of S_k have different meanings, and are denoted by variable k and symbolic constant K, respectively, in the program. The values of $\{F_k(v) \mid v \in V\}$ and $\{F_{k-1}(v) \mid v \in V\}$ are recycled in the two arrays d0 and d1, while the values of $\{F_n(v) \mid v \in V\}$ are recorded in the array dn. To avoid numerical inaccuracy of floating point arithmetics, the numerator and denominator of each $\lambda(v)$ are recorded separately, in the two int arrays dd and nk. The back references for each vertex v are recorded in the array pp in struct vertex.

The program has been tested on a laptop computer with modest computing power: MacBook Air (13-inch, Mid 2011); 1.8 GHz Intel Core i7 processor; 4 GB 1333 MHz DDR3 memory. With K set to 2 and 3, respectively, the program runs for less than one second, confirms the known results of $d^*(S_2) = 3/7$ and $d^*(S_3) = 7/18$, and redisCOVERS the minimum-density periodic identifying codes in Figure 1. With K set to 4, the program runs for about three minutes, determines $d^*(S_4) = 11/28$, and finds the minimum-density periodic identifying code in Figure 2. With K set to 5, the program runs for about 45 hours, determines $d^*(S_5) = 19/50$, and finds the minimum-density periodic identifying code in Figure 2.

References

[1] Y. Ben-Haim and S. Litsyn. Exact minimum density of codes identifying vertices in the square grid. SIAM Journal on Discrete Mathematics, 19:69–82, 2005.

[2] M. Bouznif, F. Havet, and M. Preissmann. Minimum-density identifying codes in square grids. https://hal.inria.fr/hal-01259550, Research Report RR-8845, INRIA Sophia Antipolis – I3S, 2016. Also in Proceedings of the 11th International Conference on Algorithmic Aspects in Information and Management (AAIM’16), pages 77–88, 2016.

[3] G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, C. Payan, and G. Zémor. Improved identifying codes for the grid. The Electronic Journal of Combinatorics, Comment to 6:#R19, 1999.

[4] G. Cohen, I. Honkala, A. Lobstein, and G. Zémor. New bounds for codes identifying vertices in graphs. The Electronic Journal of Combinatorics, 6:#R19, 1999.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. Third Edition. The MIT Press, 2009.

[6] M. Daniel, S. Gravier, and J. Moncel. Identifying codes in some subgraphs of the square lattice. Theoretical Computer Science, 319:411–421, 2004.

[7] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23:309–311, 1978.
A Source code of a computer program

```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define K 3
#define N (1 << 4 * K)
#define M (1 << K)
#define P (M * K * 2)
#define INF (N * K + 1)

struct vertex {
    int vv[M];
    int ww[M];
    int pp[P]; /* P instead of N to save space */
    int m;
} *xx[N];

int d0[N], d1[N], dn[N], dd[N], nk[N];
int q[P];

int gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a % b);
}

int count(int b) {
    int cnt = 0;

    while (b > 0) {
        cnt++;
        b &= b - 1;
    }
    return cnt;
}

int h(int j, int i) {
    return j * K + i;
}

int encode(char a[][K], int l) {
    int i, j, b = 0;

    for (j = 0; j < l; j++)
        for (i = 0; i < K; i++)
            if (a[j][i])
                b |= 1 << h(j, i);
    return b;
}

void decode(char a[][K], int l, int b) {
```

int i, j;

for (j = 0; j < l; j++)
 for (i = 0; i < K; i++)
 a[j][i] = (b & 1 << h(j, i)) == 0 ? 0 : 1;

int neighborhood(char a[][K], int j, int i) {
 int b = 0;
 if (a[j][i])
 b |= 1 << h(j, i);
 if (a[j - 1][i])
 b |= 1 << h(j - 1, i);
 if (a[j + 1][i])
 b |= 1 << h(j + 1, i);
 if (i - 1 >= 0 && a[j][i - 1])
 b |= 1 << h(j, i - 1);
 if (i + 1 < K && a[j][i + 1])
 b |= 1 << h(j, i + 1);
 return b;
}

int valid_vertex(char a[4][K]) {
 int i;
 for (i = 0; i < K; i++)
 if (neighborhood(a, 1, i) == 0 || neighborhood(a, 2, i) == 0)
 return 0;
 if (neighborhood(a, 1, i) == neighborhood(a, 2, i))
 return 0;
 if (i >= 1) {
 if (neighborhood(a, 1, i) == neighborhood(a, 1, i - 1))
 return 0;
 if (neighborhood(a, 2, i) == neighborhood(a, 2, i - 1))
 return 0;
 if (neighborhood(a, 1, i) == neighborhood(a, 2, i - 1))
 return 0;
 if (neighborhood(a, 2, i) == neighborhood(a, 1, i - 1))
 return 0;
 }
 if (i >= 2) {
 if (neighborhood(a, 1, i) == neighborhood(a, 1, i - 2))
 return 0;
 if (neighborhood(a, 2, i) == neighborhood(a, 2, i - 2))
 return 0;
 }
 return 1;
}

int valid_edge(char a[5][K]) {
 int i;
 for (i = 0; i < K; i++)
 if (neighborhood(a, 1, i) == neighborhood(a, 3, i))
 return 0;
 return 1;
}
int build_graph() {
 struct vertex *x;
 char a[5][K];
 int n, m, u, v, e, w;

 memset(xx, 0, sizeof(xx));
 n = m = 0;
 for (u = 0; u < N; u++) {
 decode(a, 4, u);
 if (!valid_vertex(a))
 continue;
 x = malloc(sizeof(struct vertex));
 x->m = 0;
 for (e = 0; e < M; e++) {
 decode(a + 4, 1, e);
 if (!valid_vertex(a + 1) || !valid_edge(a))
 continue;
 v = encode(a + 1, 4);
 w = count(e);
 x->vv[x->m] = v;
 x->ww[x->m] = w;
 x->m++;
 m++;
 }
 xx[u] = x;
 n++;
 }
 printf("n = %d m = %d
", n, m);
 return n;
}

void karp(int pass, int n) {
 int k, u, v, e, w, percent = K == 4 ? 10 : 1;
 for (v = 0; v < N - 1; v++)
 d0[v] = INF;
 d0[N - 1] = 0;
 if (pass == 2)
 for (v = 0; v < N; v++)
 if (xx[v]) {
 dd[v] = dn[v] - d0[v];
 nk[v] = n - 0;
 }
 for (k = 1; k <= n; k++) {
 for (v = 0; v < N; v++)
 d1[v] = INF;
 for (u = 0; u < N; u++)
 if (xx[u]) {
 for (e = 0; e < xx[u]->m; e++) {

 }
 }
v = xx[u]->vv[e];
w = xx[u]->ww[e];
if (d1[v] > d0[u] + w) {
 d1[v] = d0[u] + w;
 if (pass == 2 && n - k < P)
 xx[v]->pp[n - k] = u;
}
}
for (v = 0; v < N; v++)
 d0[v] = d1[v];
if (pass == 2 && k < n)
 for (v = 0; v < N; v++)
 if (xx[v] && dn[v] != INF && d0[v] != INF
 && dd[v] * (n - k) <= (dn[v] - d0[v]) * nk[v]) {
 dd[v] = dn[v] - d0[v];
 nk[v] = n - k;
 }
}
if (pass == 1)
 for (v = 0; v < N; v++)
 dn[v] = d0[v];
}

void print_cycle(int j1, int j2) {
 int i, j;
 printf("cycle -%d -%d\n", j1, j2);
 for (i = K - 1; i >= 0; i--) {
 for (j = j1; j < j2; j++)
 printf("%c ", (q[j] & 1 << i) == 0 ? '-' : 'x');
 printf("\n");
 }
}

int main() {
 int n, u, v, w, c, g, k;
 n = build_graph();
karp(1, n);
karp(2, n);
 w = INF;
c = 1;
v = N - 1;
for (u = 0; u < N; u++)
 if (xx[u] && w * nk[u] > dd[u] * c) {
 w = dd[u];
 c = nk[u];
 v = u;
 }
g = gcd(w, c * K);
printf("w = %d c = %d density = %d/%d\n", w, c, w / g, c * K / g);
 for (k = 0; k < P; k++) {
 q[k] = v;
 v = xx[v]->pp[k];
 if (k >= c && q[k] == q[k - c]) {
 print_cycle(k - c, k);
 break;
 }
 }
}
return 0;