Role of the STAT1-SH2 Domain and STAT2 in the Activation and Nuclear Translocation of STAT1*

(Received for publication, August 27, 1998, and in revised form, September 16, 1998)

Kerri Mowen‡ and Michael David§

From the Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92039-0322

Interferon (IFN) induction of immediate-early response genes is mediated through the signal transducers and activators of transcription (STATs). Activation of STAT1 by IFNα or IFNγ through its tyrosine phosphorylation involves members of the Jak tyrosine kinases. In addition, STAT2 is activated by IFNα, and, together with STAT1 and p48/ISGF3γ, forms the transcription factor complex ISGF3. Previous findings suggested that the STAT1-SH2 domain, which is required for the homodimerization of STAT1, also participates in the recruitment of STAT1 to the IFN-receptors, because mutations in the SH2-domain abolished STAT1 activation by IFNγ. Furthermore, STAT2 was reported to be required for the activation of STAT1 by IFNγ. We were able to induce STAT1 tyrosine phosphorylation by IFNα/β in the absence of STAT2 or a functional STAT1-SH2 domain. In contrast, IFNγ was unable to cause tyrosine phosphorylation of STAT1-(SH2:Arg → Gln). Interestingly, although STAT1 was found in the nucleus in STAT2-deficient cells, the nuclear accumulation of the tyrosine phosphorylated SH2-mutant STAT1 was impaired. In summary, our results indicate that the SH2 domain of STAT1 is not required for its ligand-dependent activation by IFNα/β. Moreover, tyrosine phosphorylation is not sufficient to target STAT1 to the nucleus; rather, dimerization appears to play a critical role in the subcellular distribution of STAT1.

Interferons as well as many other cytokines and growth factors mediate their biological effects through the induction of a set of immediate-early response genes (1–10). This process depends on the activation of a family of SH2 and SH3 domain containing signal transducers and activators of transcription (STATs) (11–16). Activation of latent, cytoplasmic, or membrane-associated STAT proteins is accomplished through their tyrosine phosphorylation (11, 15–17), which in most cases depends on the activity of the Janus protein-tyrosine kinases (Jaks) (18–25). IFNγ initiation of STAT1 tyrosine phosphorylation requires the activity of Jak1 and JakoK2 (18, 19), whereas IFNα/β mediates STAT1 and STAT2 activation through the kinases Jak1 and Tyk2 (18, 25). Activation of STAT1 by IFNα/β was also reported to depend on the presence of STAT2 (26, 27), implying a sequential activation of STAT proteins through the IFNα/β receptor. More recently, Li et al. demonstrated that STAT1 and STAT2 are prebound to the inactive IFNAR2c chain and that this association requires the N-terminal region of STAT2 (28).

After its tyrosine phosphorylation, STAT1 either homodimerizes or forms heterodimers when STAT2 is activated by IFNα/β to translocate to the nucleus where site-specific binding to enhancer elements leads to gene activation (29, 30). Nuclear import is often controlled by binding of a karyophilic protein that contains a single or bipartite nuclear localization signal to the nuclear pore, with subsequent import in a GTP hydrolysis-dependent manner. Although the dependence of STAT1 nuclear import in response to IFNγ on the GTPase activity of Ran/TC4 has been demonstrated (31), no nuclear localization signal has been identified in any of the STAT proteins. Tyrosine phosphorylation of STAT1 is an absolute prerequisite for its nuclear translocation and its ability to bind DNA (32, 33). The SH2 domain of STAT1 has been implicated in the activation as well as in the dimerization process (29, 30, 34–36), because mutations in the SH2 domain of STAT1 also prevent it from becoming tyrosine phosphorylated (34, 37). This defect in the ability to activate an SH2 domain-mutated STAT1 (STAT1-SH2mut) made it thus far impossible to determine whether dimerization is required for nuclear translocation of STAT1 or whether the phosphorylated tyrosine residue serves as a binding site for a potential transport protein.

Here we demonstrate the activation of STAT1 by IFNα/β, but not IFNγ, in the absence of a functional STAT1-SH2 domain; furthermore, we show STAT1 activation by IFNα/β in STAT2-deficient cells. Importantly, whereas the lack of STAT2 did not affect the nuclear localization of STAT1, the abrogation of STAT1-SH2 domain function resulted in the inability of STAT1 to translocate to the nucleus despite its tyrosine phosphorylation.

MATERIALS AND METHODS

Cells—2Fgh, U3-SH2mut, and U6A cells were described previously (26, 38). Cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, penicillin, and streptomycin (Irvine Scientific).

Interferons and Reagents—IFNα, IFNβ, and IFNγ were generous gifts from Hoffman LaRoche, Chiron, and Genentech, respectively. 50 μM sodium vanadate and 100 μM hydrogen peroxide (both from Fisher) were incubated in Dulbecco’s modified Eagle’s medium without fetal bovine serum for 15 min prior to addition to cells.

Whole Cell Extracts—Following treatment, cells were washed with PBS and lysed on the plates with lysis buffer (1 ml) containing 20 mM Hepes, pH 7.4, 1% Triton X-100, 100 mM NaCl, 50 mM NaF, 10 mM β-glycerophosphate, 1 mM sodium vanadate and 1 mM phenylmethylsulfonyl fluoride. Lysates were centrifuged at 13,000 rpm for 5 min, and protein concentration was determined by Lowry (Bio-Rad Protein Assay).

Immunoprecipitation and Immunoblotting—Lysates were preclariﬁed by incubation with protein G-Sepharose for 30 min; subsequently, lysates were incubated for 2 h with a polyclonal antibody against the C terminus of STAT1 and protein G-Sepharose for an additional hour. Immunoprecipitates were washed three times with ice-cold lysis buffer.
resuspended in SDS sample buffer, and resolved on a 7.5% SDS-polyacrylamide gel (Bio-Rad). After transfer onto polyvinylidene difluoride membrane, proteins were detected with anti-phosphoSTAT1 (1:500; New England Biolabs) or anti-STAT1 (1:1000; Transduction Labs) antibodies. Blots were developed with horseradish peroxidase-conjugated secondary antibodies and enhanced chemiluminescence (Amersham Pharmacia Biotech).

Electrophoretic Mobility Shift Assay—EMSAs were performed using whole cell extracts prepared as described above and an end-labeled oligonucleotide corresponding to the GRR sequence found in the promoter sequence of the FcRI (5’-AATTAGCAATGTTCAGAGATT-GAGATGTTATCCAGAAAAG-3’) as described previously (39).

Immunofluorescence—Cells were seeded onto coverslips in 6-well plates and incubated overnight at 37 °C in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. After treatment, coverslips were washed once with PBS followed by one wash with PIPES buffer. Cells were fixed in methanol at room temperature for 6 min, and nuclei were permeabilized by incubating with 0.5% Nonidet P-40/PIPES buffer for 13 min at room temperature. Coverslips were washed three times with PBS, blocked with 10% goat serum for 35 min, and incubated with anti-STAT1 (Transduction Laboratory) for 50 min at room temperature. Cells were rinsed four times for 5 min in PBS before incubation with Cy3-conjugated secondary antibody for 40 min at room temperature. After washing, coverslips were mounted onto glass slides in 50% glycerol/PBS.

RESULTS AND DISCUSSION

Significant progress has been made in our understanding of the mechanisms that lead to the activation of STAT proteins through numerous cytokine and growth factor receptors. However, very little is known about the process of nuclear translocation of STAT proteins after their tyrosine phosphorylation. Although tyrosine phosphorylation of STAT1 is required for its nuclear localization, it remains unclear whether phosphorylation of Tyr701 is solely required for STAT dimerization or whether a cytosolic transport protein utilizes this phosphotyrosine residue as a docking site. Previous findings suggested that the SH2 domain of STAT1 was required to recruit latent STAT1 to activated receptors (29, 35, 36, 40–42). Consequently, the reverse approach of introducing an Arg → Gln mutation in the SH2 domain to render it incapable of binding phosphotyrosine and preventing dimerization was unsuccessful, because a STAT1 carrying such a mutation did not become tyrosine phosphorylated in response to IFN or epidermal growth factor (34, 37).

It has been previously shown that incubation of cells with a combination of 1 mM hydrogen peroxide and 0.1 mM orthovanadate (H/V) results in the ligand-independent activation of STAT proteins (43, 44). This treatment even proved effective in the activation of STAT1 in the absence of the Jak tyrosine kinases that are required for STAT activation (44), indicating that this procedure effectively bypasses the need for receptor-mediated signaling. We therefore decided to explore the possibility that this treatment might also activate a STAT1 carrying the Gln mutation in the SH2 domain. Indeed, exposure of either wild-type 2ftgh cells or STAT1-deficient U3A cells stably expressing STAT1-SH2mut to H/V resulted in the IFN-independent reactivatable phosphorylation of STAT1-SH2mut (Fig. 1A), respectively (data not shown). However, this treatment appeared to be extremely toxic to cells, because we found that it not only failed to target tyrosine phosphorylated wild-type STAT1 into the nucleus, but it also prevented the nuclear translocation of wild-type STAT1 when IFN was added after H/V, despite the fact that this costimulation resulted in a further increase in STAT1 tyrosine phosphorylation (data not shown).

We therefore decided to titrate the concentration of H/V to a level where it did not affect the normal nuclear translocation of wild-type STAT1 after stimulation of cells with IFN. It was found that a significantly lower concentration of H/V (referred to as H/V, to indicate 10 μM hydrogen peroxide and 5 μM orthovanadate) did not interfere with the nuclear translocation of wild-type STAT1 after IFN stimulation (see Fig. 3A, lower panel) but was also unable to induce tyrosine phosphorylation of wild-type STAT1 or STAT1-SH2mut (Fig. 1, A and B, lanes 5). Surprisingly, however, although the exposure of cells to this low concentration of H/V did not cause tyrosine phosphorylation of STAT1 or STAT1-SH2mut by itself, it promoted the subsequent activation of STAT1-SH2mut by IFNα/β. In contrast, IFNγ was still unable to induce tyrosine phosphorylation of STAT1-SH2mut (Fig. 1B, lane 8). Interestingly, we were also able to detect a weak but reproducible tyrosine phosphorylation of wild-type STAT1-SH2mut through stimulation with IFNα/β alone but not with IFNγ. This is in contrast to previous reports suggesting that STAT1 could not become phosphorylated in the absence of a functional SH2 domain; however, these studies were predominantly focused on STAT1 activation by IFNγ or epidermal growth factor. Furthermore, we believe that the use of phosphoSTAT1-specific antiserum results in increased sensitivity compared with phosphotyrosine blots, allowing for the detection of low levels of STAT1 phosphorylation. It thus appears that the priming of cells with a subthreshold concentration of H/V facilitates an increase in the activation of STAT1-SH2mut after IFNα/β while preserving the IFN-dependent nature of the stimulation. Earlier studies showed that in some cases the autophosphorylation sites of receptors are dispensable for STAT activation, leaving the possibility that the STAT-SH2 domain binds to a receptor-associated, tyrosine phosphorylated protein (24, 45). In contrast, our findings suggest for
the first time the presence of an alternate mechanism for recruitment of a STAT protein to an activated cytokine receptor that does not involve the SH2 domain of the STAT protein.

Because it had been reported that STAT2 is essential for activation of STAT1 by IFNa (27), we decided to test whether h/v priming could also overcome this requirement. Indeed, whereas IFNa/β alone activates STAT1 only weakly in STAT2-deficient U6A cells (Fig. 1C, lanes 1 and 2), the pretreatment with h/v before addition of IFNa/β restored the ligand-induced tyrosine phosphorylation to levels comparable with those seen in wild-type cells (Fig. 1C, lanes 6 and 7). As was the case with STAT1-SH2mut, h/v treatment alone did not lead to any detectable tyrosine phosphorylation in the U6A cells (Fig. 1C, lane 5).

To analyze the DNA binding capabilities of tyrosine phosphorylated STAT1-SH2mut or of STAT1 activated by IFNa in the absence of STAT2, we performed electrophoretic mobility shift assays using the GRR sequence of the high affinity FcγRI promoter as a probe. As shown in Fig. 2C, tyrosine phosphorylated STAT1 in U6A cells lysates was able to bind to the GRR as expected and confirmed the results of the phosphoSTAT1 Western blots. In contrast, tyrosine phosphorylated STAT1-SH2mut in U6A cells lysates was able to bind to the GRR. These results confirm that the SH2 domain of STAT1 is required for formation of a dimerizing DNA binding complex but is expendable for achieving tyrosine phosphorylation in response to IFNa/β.

Our primary goal was to investigate whether the dimerization of STAT1 was required for its nuclear translocation or whether tyrosine phosphorylated STAT1 is transported into the nucleus as a monomer. We therefore resorted to immunohistochemistry to analyze the subcellular localization of tyrosine phosphorylated STAT1 in U6A cells. As shown in Fig. 3A (upper panel), IFNa/activated, tyrosine phosphorylated STAT1 translocated efficiently into the nucleus, with h/v priming apparently enhancing the level of translocation (Fig. 3A, lower panel). STAT2-deficient U6A cells displayed, in good correlation with the low level of tyrosine phosphorylation of STAT1, only marginal translocation of STAT1 to the nucleus in response to IFNa/β alone (Fig. 3B, lower panel). However, h/v priming was able to facilitate substantial nuclear presence of STAT1 in response to IFNa/β (Fig. 3C, lower panel).

In contrast, no STAT1-SH2mut could be detected in the nucleus after any of the treatments (Fig. 3B), despite proper phosphorylation of the protein on Tyr701 in response to IFNa/β after h/v priming. These results demonstrate that the tyrosine phosphorylation per se, although required, is not sufficient to target STAT1 to the nucleus. Rather, the dimerization of STAT proteins appears to be the essential mediator of nuclear translocation. It is theoretically possible that h/v priming is able to promote the tyrosine phosphorylation of STAT1-SH2mut in response to IFNa/β but is unable to facilitate any additional phosphorylation on serine/threonine residues that could be required for STAT1 translocation to the nucleus. However, thus far the only reported ligand-induced serine phosphorylation of STAT1 occurs on Ser727 (46), a residue that is absent in the STAT1 splice variant. Nevertheless, STAT1β is still able to translocate to the nucleus in response to IFN stimulation.

In conclusion, our results show for the first time that STAT1 can be rapidly activated in a ligand-dependent manner even in the absence of a functional SH2 domain, demonstrating that the binding of the STAT1-SH2 domain to receptor phosphorylation sites is not the only mechanism that allows STAT1 to interact with an activated cytokine receptor. In contrast, an intact SH2 domain is required in order for STAT1 to be imported into the nucleus. These results lead to the conclusion that STATs need to form homo- or heterodimers in the cytoplasm to cross the nuclear membrane.
30076

Nuclear Translocation of STAT1

3. Larner, A. C., Jonak, G., Cheng, Y.-S. E., Kerant, B., Knight, E., and Darnell, J. E. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 6733–6737.

4. Luster, A. D., Unkeless, J. C., and Ravetch, J. V. (1985) Nature 315, 672–676.

5. Revel, M., and J. C. (1986) Trends Biochem. Sci. 11, 166–170.

6. Yan, C., Sehgal, P. B., and Tammi, I. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 2243–2247.

7. Hallek, M., Lepisto, E. M., Slatterey, K. E., Griffin, J. D., and Ernst, T. J. (1992) Blood 80, 1736–1742.

8. Stasheki, P., Danielson, P., Haller, O., and Sutcliffe, J. G. (1986) Mol. Cell. Biol. 6, 4770–4774.

9. Khan, K. D., Shuai, K., Lindwall, G., Maher, S. E., Darnell, J. E., Jr., and Bothwell, A. L. M. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6806–6810.

10. Finbloom, D. S., and Larner, A. C. (1995) Arthritis Rheum. 38, 677–89.

11. Fu, X.-Y. (1995) Cell 79, 323–335.

12. Fu, X.-Y., Schindler, C., Improta, T., Aebersold, R., and Darnell, J. E., Jr. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 7840–7843.

13. Levy, D. E., Kessler, D. S., Pine, R., and Darnell, J. E., Jr. (1989) Genes Dev. 3, 1362–1371.

14. Schindler, C., Fu, X.-Y., Improta, T., Aebersold, R., and Darnell, J. E., Jr. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 7836–7839.

15. Larner, A. C., David, M., Romero, G., Zhang, Z. Y., Dixon, J. E., Thompson, S., Larner, A. C., and Johnson, G. (1990) J. Biol. Chem. 271, 9185–9188.

16. Shuai, K., Stark, G. R., Kerr, I. M., and Darnell, J. E., Jr. (1995) Nature 376, 580–583.

17. Muller, M., Laxton, C., Griscione, D., Ziemiecki, A., Silvennoinen, O., Harpur, A. G., Barbieri, G., Wittthuhn, B. A., Schindler, C., Pellegrini, S., Wilka, A. F., Ile, J. N., Stark, G. R., and Kerr, I. M. (1995) Nature 366, 129–135.

18. Wilting, D., Guschin, D., Muller, M., Silvennoinen, O., Wittthuhn, B. A., Quelle, F. W., Rogers, N. C., Schindler, C., Ile, J. N., Stark, G. R., and Kerr, I. M. (1993) Science 261, 1730–1733.

19. Silvennoinen, O., Ile, J. N., Schlessinger, J., and Levy, D. E. (1993) Nature 366, 583–585.

20. Johnstone, B. A., Kawamura, M., Kirken, R. A., Chen, Y.-Q., Blake, T. B., Shibuya, K., Ortaldo, J. R., McVicar, D. W., and O’Shea, J. J. (1994) Nature 370, 151–153.

21. Ile, J. N., Wittthuhn, B. A., Quelle, F. W., Yamamoto, K., Thierfelder, W. E., Kreider, B., and Silvennoinen, O. (1994) Trends Biochem. 19, 222–227.

22. Darnell, J. E., Kerr, I. M., and Stark, G. R. (1994) Science 264, 1415–1421.

23. David, M., Wong, L., Flavell, R., Thompson, S., Larner, A. C., and Johnson, G. (1996) J. Biol. Chem. 271, 9185–9188.

24. Velazquez, L., Fellous, M., Stark, G. R., and Pellegrini, S. (1992) Cell 70, 313–322.

25. Leung, S., Qureshi, S., Kerr, I., Darnell, J., and Stark, G. (1995) Mol. Cell. Biol. 15, 1312–1317.

26. Qureshi, S. A., Leung, S., Kerr, I. M., Stark, G. R., and Darnell, J. E., Jr. (1996) Mol. Cell. Biol. 16, 288–293.

27. Li, X., Leung, S., Kerr, I., and Stark, G. (1997) Mol. Cell. Biol. 17, 2048–2056.

28. Gupta, S., Yan, H., Song, L. H., Ralph, S., Kroelewski, J., and Schindler, C. (1996) EMBO J. 15, 1075–1084.

29. Shuai, K., Harvath, C. M., Hwang, L. H., Qureshi, S. A., Cowburn, D., and Darnell, J. E., Jr. (1994) Cell 76, 821–828.

30. Sekimoto, T., Nakajima, T., Tachibana, T., Hirano, T., and Yoneda, Y. (1996) J. Biol. Chem. 271, 31017–31020.

31. Shuai, K., Stark, G. R., Kerr, I. M., and Darnell, J. E., Jr. (1993) Science 261, 1744–1746.

32. Shuai, K., Schindler, C., Preziuso, V., R., and Darnell, J. E., Jr. (1992) Science 255, 1808–1812.

33. Imprinta, T., Schindler, C., Harvath, C. M., Kerr, I. M., Stark, G. R., and Darnell, J. E., Jr. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 4776–4780.

34. Greenlund, A. C., Morales, M. O., Viviano, B. L., Yan, H., Kroelewski, J., and Schreiber, R. D. (1995) Immunity 2, 677–687.

35. Heim, M. H., Kerr, I. M., Stark, G. R., and Darnell, J. E., Jr. (1995) Science 267, 1347–1349.

36. Shuai, K., Ziemiecki, A., Wilks, A. F., Harpur, A. G., Sadowski, H. B., Gilman, M. Z., and Darnell, J. E., Jr. (1993) Nature 366, 580–583.

37. Muller, M., Laxton, C., Griscione, J., Schindler, C., Imprinta, T., Darnell, J. E., Jr., Stark, G. R., and Kerr, I. M. (1993) Proc. Natl. Acad. Sci. U. S. A. 91, 11964–11968.

38. Bach, E. A., Tannen, W., Masters, S., Ashkenazi, A., Aguet, M., Shaw, A. S., and Schreiber, R. D. (1995) EMBO J. 14, 4221–4228.

39. Wilson, K. C., and Finbloom, D. S. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 7840–7843.

40. Wilson, K. C., and Finbloom, D. S. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 7840–7843.

41. Greenlund, A. C., Farrar, M. A., Viviano, B. L., and Schreiber, R. D. (1994) EMBO J. 13, 1591–1600.

42. Yan, R., Krishman, K., Greenlund, A. C., Gupta, S., Lim, J. T. E., Schreiber, R. D., Schindler, C. W., and Kroelewski, J. J. (1996) EMBO J. 15, 1064–1074.

43. Igarsahi, K., David, M., Larner, A. C., and Finbloom, D. S. (1993) Mol. Cell. Biol. 13, 3984–3989.

44. Haque, S., Wu, Q., Kammer, W., Friedrich, K., Smith, J., Kerr, I., Stark, G., and Williams, R. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8563–8568.

45. Ali, S., and Ali, S. (1998) J. Biol. Chem. 273, 7709–7716.

46. Wen, Z., Zhang, Z., and Darnell, J. E., Jr. (1995) Cell 82, 241–250.