Purinergic Signalling in Parkinson’s Disease: A Multi-target System to Combat Neurodegeneration

Adrián Tóth1,2,3 · Zsófia Antal2 · Dániel Bereczki1 · Beáta Sperlágh2

Received: 10 January 2019 / Revised: 4 April 2019 / Accepted: 10 April 2019 / Published online: 4 May 2019
© The Author(s) 2019

Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons that results in characteristic motor and non-motor symptoms. L-3,4 dihydroxyphenylalanine (L-DOPA) is the gold standard therapy for the treatment of PD. However, long-term use of L-DOPA leads to side effects such as dyskinesias and motor fluctuation. Since purines have neurotransmitter and co-transmitter properties, the function of the purinergic system has been thoroughly studied in the nervous system. Adenosine and adenosine 5′-triphosphate (ATP) are modulators of dopaminergic neurotransmission, neuroinflammatory processes, oxidative stress, excitotoxicity and cell death via purinergic receptor subtypes. Aberrant purinergic receptor signalling can be either the cause or the result of numerous pathological conditions, including neurodegenerative disorders. Many data confirm the involvement of purinergic signalling pathways in PD. Modulation of purinergic receptor subtypes, the activity of ectonucleotidases and ATP transporters could be beneficial in the treatment of PD. We give a brief summary of the background of purinergic signalling focusing on its roles in PD. Possible targets for pharmacological treatment are highlighted.

Keywords Adenosine · Adenosine receptors · ATP · Parkinson’s disease · Purinergic receptors

Abbreviations
ADOR2A Adenosine A2A receptor
ADP Adenosine 5′-diphosphate
AP4A Diadenosine tetraphosphate
ATP Adenosine 5′-triphosphate
cAMP Cyclic adenosine monophosphate
CB1 Cannabinoid receptor type 1
DA Dopamine
GABA γ-Amino butyric acid
GRIN2A Glutamate ionotropic receptor NMDA type subunit 2A
5-HT1A 5-Hydroxytryptamine-serotonin receptor 1A
LPS Lipopolysaccharide
LRRK2 Leucine-rich repeat kinase 2
6-OHDA 6-hydroxydopamine
mGlu Metabotropic glutamate receptor
MPP+ 1-Methyl-4-phenylpyridinium
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MSA Multiple system atrophy
NMDA N-methyl-D-aspartate
PD Parkinson’s disease
ROS Reactive oxygen species
UDP Uridine 5′-diphosphate
UTP Uridine 5′-triphosphate

The authors are pleased to be part of the SI dedicated to Professor Vera Adam-Vizi and grateful for the great inspiration and collaboration.

Special Issue of Neurochemical Research: In honour of Professor Vera Adam-Vizi.

✉ Beáta Sperlágh sperlagh@koki.hu
Introduction

Parkinson’s Disease: Pathophysiological Background

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta that results in dopamine (DA) deficiency in the striatum. The ongoing degeneration of this peculiar pathway causes the characteristic motor symptoms such as resting tremor, rigidity, bradykinesia and postural instability [1, 2]. Besides dopaminergic neural degeneration, the presence of Lewy bodies (protein aggregates) due to misfolding of α-synuclein occurs in various regions of the affected brain [3]. In spite of many studies on the pathogenesis of PD, the precise mechanism underlying these events has not been unraveled yet. However, a genetic predisposition associated with disturbed proteostasis due to impaired ubiquitin–proteasome system, mitochondrial dysfunction, oxidative stress and neuroinflammation seems to play cardinal roles for the α-synuclein aggregation and the progression of pathology in PD [4–7]. Among these factors, the pathological, self-amplifying interaction between mitochondrial dysfunction and oxidative stress has been early recognized, which might be a key factor responsible for the selective vulnerability of dopaminergic neurons in PD, and one potential reason behind the clinical failures of neuroprotective therapies so far [8]. Dysfunction of the mitochondrial complex I results in an enhanced production of reactive oxygen species (ROS), which, in turn will inhibit complex I and other vital metabolic enzymes such as alpha-ketoglutarate dehydrogenase, whilst the latter also serves as a source of ROS generation in mitochondria [9, 10]. Simultaneous or preceding mitochondrial dysfunction exacerbates the effect of oxidative stress on pathological monoamine release from nerve terminals [11, 12]. This process leads to the formation of toxic, oxidative DA metabolites, such as dopamine quinone, which might further amplify the ongoing degeneration process [13]. Therefore, disease-modifying potential could be primarily expected from those novel multi-target therapies, which simultaneously target the above mentioned pivotal pathological pathways and prevent their pathological interaction [14, 15].

The Current Treatment of PD

As for the symptomatic treatment of PD, the clinical breakthrough came with the first clinical trials of DA replacement therapy using the high dosage of the DA precursor l-3,4 dihydroxyphenylalanine (l-DOPA) [16–19]. l-DOPA is able to cross the blood–brain barrier and converts into DA that engages specific DA receptor subtypes (D_1 to D_5) [20]. However, long-term use of l-DOPA leads to a dysbalance of striatal circuits of the motor system and leads to side effects such as l-DOPA induced dyskinesias and motor fluctuation in 50% of patients after 5 years of continuous treatment [21, 22]. The therapeutic management of these complications is difficult and there is a need for developing effective and new pharmacological therapies against motor fluctuation and dyskinesias [23].

Purinergic Signalling: Concept and Purinergic Receptors

The concept of purinergic signalling, being adenosine 5′-triphosphate (ATP) as an extracellular signalling molecule with neurotransmitter properties was proposed in the early 1970s [24, 25]. A couple of years later, purines were also described as co-transmitters and neuromodulators in the peripheral and central nervous system (CNS), as they are able to modulate other signalling pathways and neurotransmitter systems [26–28]. ATP is co-released with acetylcholine, catecholamines, γ-amino butyric acid (GABA), glutamate and DA in the CNS [29–34]. Extracellular ATP is released from cells under physiological conditions. The levels of extracellular ATP are controlled by ectonucleotidases that catalyze its degradation [35, 36].

There are two families of purinergic receptors, which are distinguished by their main agonists [37]. P1 receptors are G protein-coupled metabotropic receptors activated by adenosine and can be subdivided into four subtypes (A_1, A_2A, A_2B, A_3). P2 receptors are subdivided into two classes: P2X_(1-7) ionotropic receptors, activated by ATP and G protein-coupled metabotropic P2Y_(1-12) receptors, activated by ATP, adenosine diphosphate (ADP), uridine di- and triphosphate (UDP and UTP), or UDP-glucose depending on the receptor subtype [38–40]. ATP is able to bind to the extracellular ligand-binding site of P2X receptors and leading to conformational change that opens a permeable channel to Na^+, K^+ and Ca^{2+}. The activation of these ionotropic receptors is important for Ca^{2+}-induced intracellular signalling pathways [41–43]. Depending on the activated adenosine and P2 receptor subtype, the induced signalling pathway may vary. These activated receptors are able to make alterations in Ca^{2+} levels, which modulate the activity of several secondary messengers involved in physiological processes [44–46]. The final effects of purinergic receptor-mediated signalling depend on the cell type and other physiological (neurogenesis, proliferation, cell death, stem cell differentiation) or pathological cellular conditions (inflammatory, neurological, psychiatric, oncological, cognitive, neuromuscular and neuromotor diseases) [47–66]. Purinergic receptor...
activation may have para- or autocrine nature, which is characteristic for astrocytes in the regulation of neuronal activity [67]. Not only purinergic receptors but membrane nucleotide/nucleoside transporters, channels and ectonucleotidases also play important role in purinergic signalling [36,68–70]. Adenosine is the predominant, presynaptic modulator of neurotransmitter release in the CNS, although ATP has presynaptic modulator effect as well [71–73]. Adenosine is produced by enzymatic breakdown of released ATP, but some CNS cells are able to release adenosine directly [74]. A1 and A2A receptors have higher affinity (activated by physiological extracellular levels of adenosine) and A2B and A3 receptors have lower affinity (activated by higher extracellular levels of adenosine) for the ribonucleoside [75–77]. The adenosine A1 and A2A receptors are highly expressed in the brain and CNS, where they have profound influence on neuronal activity. Adenosine A1 receptor is the dominant adenosine receptor subtype in the CNS. Adenosine A1 receptors can be found in various cortical and subcortical regions of the brain, while A2A receptors are mainly expressed in the striatum [78–81] (Table 1). In contrast, adenosine A2B and A3 receptors are mainly found in peripheral tissues, even though low levels of these receptors are also expressed in some regions of the brain [82–84].

There is a heterogeneous distribution of P2 purinergic receptors in the CNS as well. For instance P2X1 receptors are predominantly expressed in the cerebellum, while P2X3 receptors are expressed in the brainstem [85,86], and they can be found in the basal ganglia with variable expression level [87] (Table 2). Various P1 and P2 receptor subtypes are also expressed by microglia, astrocytes and oligodendrocytes [88–93]. Extracellular nucleotides act as messengers between neuronal and non-neuronal cells, thereby integrating functional activity between neurons, glial and vascular cells in the CNS [94–98]. Adenosine and ATP—as key players in neuron–glia interaction and microglial activation—are modulators of neuroinflammatory processes, oxidative stress, excitotoxicity and cell death [99–102]. Aberrant purinergic receptor signalling can be the cause or result of numerous pathological conditions, including neurodegenerative disorders [103]. Here, we explore the importance of purinergic signalling in PD to suggest potential targets for novel therapies.

Purinergic Signalling Involvement in PD

Purinergic Gene Polymorphisms in PD

Two ADORA2A (A2A receptor) polymorphisms (rs71651683, a 5′ variant or rs5996696, a promoter region variant) were inversely associated with genetic PD risk, moreover, there was evidence of interaction with coffee consumption [104]. CYP1A2a is an enzyme, which is responsible for caffeine metabolism, two polymorphisms (rs762551 or rs5996696) of the enzyme in homozygous coffee drinkers reduced PD risk [104]. Humans with R1628P variant (LRRK2 risk variant) who did not take caffeine had a 15 times increased risk of PD [105]. GRIN2A encodes an N-methyl-D-aspartate-2A (NMDA) glutamate receptor subunit involved in central excitatory neurotransmission, which is associated with A2A receptor activation. Carriers of GRIN2A rs4998386-T allele had a lower risk of PD, than carriers of rs4998386-CC.
Adenosine Receptor-Mediated Signalling in PD

A2A receptors are enriched in dopaminergic brain areas (the highest expression of these receptors are in the striatum), thus pointing to a significant role of purines in motor control [109]. A2A and DA D2 receptors are mainly expressed in the neurons of the indirect pathway of striatal circuits projecting to the globus pallidus, in contrast to A1 and DA D1 receptors, which are mainly found on the neurons of the direct pathway of motor control projecting to the internal globus pallidus and substantia nigra pars reticulata. The main adenosine signalling mechanism is via the cyclic adenosine monophosphate (cAMP)-dependent pathway. Activated A2A receptors stimulate the enzymatic function of adenylyl cyclase that increases cAMP levels and depresses the signalling mediated by D2 receptors. Activation of protein Gi-coupled DA D2 receptors leads to reduction in the cAMP level. There is a reciprocal situation in the direct pathway of motor control with protein Gs-coupled D1 and protein Gi/o-coupled A1 receptors. Generally, adenosine acts as a negative modulator of D1- and D2-mediated actions in the direct and indirect pathways [110–112].

The antagonistic functional interaction between adenosine A2A and DA D2 receptors may depend on the formation of receptor heterodimers (A2A-D2 heteroreceptor complexes) in the striatum thereby balancing the inhibitory and excitatory impulses in the striatal circuits [112]. Not only dopaminergic mechanisms, but non-dopaminergic modes of action of A2A receptors may involve interactions with various non-dopaminergic receptors, possibly by forming heterodimeric and/or multimeric receptor complexes [23]. Thus, adenosine A3A receptors may adjust the actions of striatal adenosine A1 receptors (A1-A2A heteroreceptor complexes), metabotropic glutamate receptors (mGlu) 5 (A2A-mGlu5 heteroreceptor complexes), cannabinoid receptor type 1 (CB1) receptors (A2A-CB1 heteroreceptor complexes) and serotonin 1A (5-HT1A) receptors [113–115]. Moreover, studies also suggested the presence of multimeric A2A2-D2 mGlu5 and A2A-CB1-D2 receptor complexes in the striatum [116, 117]. These functional interactions between receptors may modulate the activity of striatal efferent neurons and influence motor behavior [23]. In general, adenosine tone appears as a key for the fine tune control of DA dependent actions in the basal ganglia and affects non-dopaminergic mechanisms also [20].

Adenosine receptor antagonists (especially non-selective A2A receptor antagonists, such as methylxanthines, caffeine, or selective A2A antagonists) have been shown to enhance therapeutic effect of l-DOPA in a wide range of animal models of PD [118–121]. A2A homoreceptor complexes are in balance with DA D2 homoreceptor complexes in intact striatum [122–126]. Dysbalance of striatal circuits leads to motor inhibition and disruption of this balance in PD leads to increased signalling via A2A receptors and decreased signalling via DA D2 receptors. These changes explain the beneficial effect of A2A receptor antagonists on increasing motor functions without worsening l-DOPA-induced dyskinesias [20, 127].

A2A Receptor antagonists have been used in clinical trials in patients with PD (Table 3). Istradefylline is a xanthine-based compound with increased selectivity for A2A receptors against A1 receptors, which is used concomitantly with l-DOPA [128]. The drug was not approved in the USA because there was no significant reduction in off time compared to l-DOPA treatment [129]. In contrast, istradefylline was approved in Japan in 2013 with the trade name Nouriant® to enhance the antiparkinsonian effect of l-DOPA with less long-term side effects [130, 131]. Preladenant is a second-generation A2A receptor antagonist, which failed in phase III clinical trials in the treatment of PD because the compound was not superior to placebo in reducing off state [132, 133]. Vipadenant is a triazolopyrimidine-based drug, which has increased selectivity for A2A receptors versus A1 and A3 receptors [134]. Its development as an antiparkinsonian medication was stopped; however, A2A receptor antagonists have considerable potential in novel immune-oncology and cardiology therapies [113, 135–137]. Another adenosine A2A receptor antagonist, tozadenant was safe, well tolerated and effective in reducing off time in PD patients in phase II trial but phase III clinical trial was discontinued because of serious adverse events (agranulocytosis) [23, 133, 138]. There have been many drug trials for selective A2A receptor antagonists. Most of them were shown to be safe, well tolerated and beneficial; however, the majority did not reach the regulatory threshold for efficacy to be approved as PD drugs [139, 140]. Development of bivalent drugs (able to bind to two receptors simultaneously) to target A2A-D2 heteroreceptor complexes acting on A2A and DA D2 receptors may be a good therapeutic approach in the future. Heterobivalent drugs offers the opportunity to target the orthosteric sites of the receptors in the heterodimer with a higher affinity and a higher specificity versus corresponding homomers and reduce the dose required for therapy and, accordingly, the side effects [20].

Adenosine A2A receptor antagonists may also involve direct or indirect actions at microglia and inflammatory
processes. Pre-treatment of slices from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-injected mice with preladenant facilitates the ability of activated microglia to respond to tissue damage [141]. The nonselective A1/A2A adenosine receptor antagonist caffeine and the selective A2A receptor antagonist (KW-6002) had anti-inflammatory potential in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation [142].

The Role of A2A Receptors in Synucleopathy

Increased striatal A2A receptor expression was observed as an early pathological event in PD and increased A2A receptor expression was detected after hippocampal injection of α-synuclein in mice [143, 144]. A2A receptor-knock out mice showed resistance against α-synuclein induced insults [145]. A2A receptor antagonism restrained hyperactivation of NMDA-glutamate receptors and decreased the aggregation of α-synucleins [146]. Based upon these results, A2A receptors seem to have role in the pathological process of synucleinopathy [111].

P2 Receptor-Mediated Signalling in PD

P2 ionotropic and metabotropic receptors are widely expressed in basal ganglia and in various cell types, such as neurons and astrocytes [87, 147, 148]. 6-Hydroxidopamine (6-OHDA) induced lesions of nigral dopaminergic neurons generate a significant decrease in the expression of P2X and P2Y receptor proteins from striatal spiny neurons and GABAergic interneurons, thus confirming the involvement of P2 receptors and extracellular ATP in the striatal circuits [87]. P2Y1 and P2X1-4, 6 receptor protein subtypes are expressed in dopaminergic neurons with co-expression of P2X1 with DA D1 receptors, therefore stimulation of P2 receptors by ATP induces an increased release of DA in the striatum [149–152]. In a neuronal cell model, extracellular ATP induced a significant increase in intracellular

Compounds	Mechanism of effect	Models	Published	Results
KW-6002 (istradefylline)	A2A receptor antagonism	PD patients	2003	Improved PD motor scores when added to low-dose l-DOPA
KW-6002 (istradefylline)	A2A receptor antagonism	LPS treated rats	2013	Enhanced therapeutic effect of l-DOPA
Caffeine	A2A receptor antagonism	LPS treated rats	2013	Reduced motor impairment
Preladenant	A2A receptor antagonism	MPTP treated mice	2014	Enhanced therapeutic effect of low doses of l-DOPA
8-Ethoxy-9-ethyladenine	A2A receptor antagonism	6-OHDA lesioned rats	2015	Enhanced effect of low doses of l-DOPA without increased dyskinesia
SCH 58261	A2A receptor antagonism	A2A receptor knockout mice, SH-SY5Y cells	2015	Decreased α-synuclein aggregation, prevented neuronal death
ZM 241385	A2A receptor antagonism	A2A receptor knockout mice, SH-SY5Y cells	2015	Decreased α-synuclein aggregation, prevented neuronal death
Preladenant	A2A receptor antagonism	PD patients	2017	Failed (was not superior to placebo in phase III clinical trial
Vipadenant	A2A receptor antagonism	PD patients	2009	Failed (was not superior to placebo)
Tozadenant	A2A receptor antagonism	PD patients	2017	Failed in phase III clinical trial (induced agranulocytosis)
NF449	P2X1 receptor antagonism	H4 cells	2015	Prevented α-synuclein aggregation
A-438079	P2X2 receptor antagonism	6-OHDA lesioned rats	2010	Prevented depletion of DA in striatum
BBG	P2X2 receptor antagonism	6-OHDA lesioned rats	2014	Reverted dopaminergic neurons loss in substantia nigra
BBG	P2X2 receptor antagonism	BV2 microglia cells	2015	Decreased ROS production induced by α-synuclein
PPADS	P2X2 receptor antagonism	SH-SY5Y cells	2017	Prevented abnormal calcium influx induced by α-synuclein
AZ 11645373	P2X2 receptor antagonism	SH-SY5Y cells	2017	Prevented abnormal calcium influx induced by α-synuclein
AP4A	P2Y2/P2Y4 antagonism	6-OHDA lesioned rats	2003	Reduced dopaminergic neurons loss
MRS2578	P2Y4 receptor antagonism	SH-SY5Y cells	2017	Delayed neuronal loss

The list is not comprehensive and is restricted to studies mentioned in the article. For further references, see [111, 113].
α-synuclein levels, which was the result of lysosome dysfunction caused by P2X7 receptor activation [153].

Many data have implicated the role of P2X7 receptor in PD. P2X7 receptor antagonism with A-438059 or Brilliant Blue G (BBG) prevented DA deficit in the striatum and 6-OHDA-induced hemiparkinsonian behavior [154, 155]. However, P2X7 receptor deficiency or inhibition did not promote the survival of dopaminergic neurons in rotenone and MPTP induced animal models of PD [156]. It is presumed that there is a massive release of ATP during cell death in the lesioned striatum and substantia nigra, which activates cell death pathways via purinergic receptors and is able to activate further purinergic subtypes [20]. Permanent purinergic receptor activation and ATP release seem to play a key role in the neuronal death, which exacerbates α-synuclein aggregation in PD [87]. The accumulation of α-synuclein might overwhelm the capacity of intracellular protein-degradation mechanisms and induce neuroinflammation, which creates a positive feedback loop promoting the degeneration of dopaminergic cells [7]. α-Synuclein-induced intracellular free calcium mobilization in neuronal cells depends on the activation of purinergic P2X7 receptors. In the same study, activation of P2X7 receptors lead to ATP release with the recruitment of the pore forming protein pannexin1, whilst α-synuclein decreased the activity of extracellular ecto-ATPase which is responsible for ATP degradation [157]. Stimulation of the microglial P2X7 receptor by extracellular α-synuclein increased oxidative stress, which was prevented with the use of P2X7 receptor antagonist [158].

DA neurotransmission has been linked to calcium signalling. There is data that P2Y1 receptor is involved in the regulation of calcium signalling [159]. Neurodegeneration induced by 6-OHDA in nigrostriatal dopaminergic neurons was reduced by pretreatment with diadenosine tetraphosphate (AP4A, an endogenous diadenosine polyphosphate) possibly through an anti-apoptotic mechanism and the activation of P2Y1 and P2Y4 receptors [160]. Recently, expression levels of P2Y6 receptor in PD patients younger than 80 years were higher than healthy controls and multiple system atrophy (MSA) patients and P2Y6 receptor could thereby be a potential clinical biomarker of PD. P2Y6 receptor was also upregulated in LPS-treated microglial cells and involved in proinflammatory cytokine release through UDP secretion [161]. Another study showed that expression of P2Y6 receptor on neuronal SH-SY5Y cell is associated with the progression of oxidative stress and cell death induced by 1-methyl-4-phenylpyridinium (MPP+) [162]. In vivo, LPS induced microglial activation and delayed neuronal loss was prevented by selective inhibition of P2Y6 receptor with MRS2578 [163]. Based on these studies P2Y6 receptor subtype seems to be involved in the process of neuroinflammation in PD and blocking UDP/P2Y6 receptor signalling could reverse these pathological processes [161].

Conclusion

In many data, many data confirm the involvement of purinergic signalling pathways in PD. Modulation of purinergic receptor subtypes, the activity of ectonucleotidases and ATP transporters could be beneficial in the treatment of PD. Antagonism of A2A, P2X1, P2X7 and P2Y6 receptor subtypes is a promising weapon against PD via various ways: reducing l-DOPA induced dyskinesia, influencing neuroinflammation, preventing α-synuclein aggregation, reducing microglia activation. Development of new bivalent compounds to target A2A-D2 heteroreceptor complexes, which are orally bioavailable and can cross the blood–brain barrier could be a potential therapeutic tool. In addition, multi-target compounds targeting self-amplifying circuits controlled by purinergic and non-purinergic receptors could be a viable strategy to obtain the desired disease-modifying effect [164]. Additional studies and better quality PD animal models are required for the deeper understanding of underlying unknown pathological processes in PD and the role of purinergic signalling in it.

Acknowledgements

Open access funding provided by MTA Institute of Experimental Medicine (MTA KOKI). This study was supported by Research Grants from Hungarian Research and Development Fund (Grant K116654 to BS), Hungarian Brain Research Program (2017-1.2.1.-NKPI-2017-00002 to BS) and the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 766124.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Dehay B, Bourdenx M, Gorry P et al (2015) Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14:855–866
2. Olanow CW, Kieburtz K, Odin P et al (2014) Continuous intrajejunal infusion of levodopa–carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 13:141–149
3. Braak H, Del Tredici K, Rüb U et al (2013) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211
4. Ghavami S, Shojaei S, Yeganeh B et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry 42:24–49
5. Osellame LD, Duchen MR (2013) Defective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases. Autophagy 9:1633–1635
6. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518
7. Zhang G, Xia Y, Wan F et al (2018) New perspectives on roles of alpha-synuclein in Parkinson’s disease. Front Aging Neurosci 10:370
8. Trettler L, Sipos I, Adam-Vizi V (2004) Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochem Res 29:569–577
9. Trettler L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24:7771–7778
10. Adam-Vizi V, Trettler L (2013) The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem Int 62:757–763
11. Milusheva E, Sperlagh B, Shikova L et al (2003) Non-synaptic release of \(^{3} \)H]noradrenaline in response to oxidative stress combined with mitochondrial dysfunction in rat hippocampal slices. Neuroscience 120:771–781
12. Milusheva E, Baranyi M, Kittel A et al (2005) Increased sensitivity of striatal dopamine release to \(\text{H}_{2}\text{O}_{2} \) upon chronic rotenone treatment. Free Radic Biol Med 39:133–142
13. Baranyi M, Milusheva E, Vizi ES et al (2006) Chromatographic analysis of dopamine metabolism in a Parkinsonian model. J Chromatogr B 1120:13–20
14. Milusheva E, Baranyi M, Kormos E et al (2010) The effect of antiparkinsonian drugs on oxidative stress induced pathological \(^{3} \)H]dopamine efflux after in vitro rotenone exposure in rat striatal slices. Neuropharmacology 58:816–825
15. Baranyi M, Porecz P, Gölöncsér F et al (2016) Novel (hetero) arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson’s disease. Mol Neurodegener 11:6
16. Birkmayer W, Hornykiewicz O (1962) The \(\gamma \)-dihydroxyphenylalanine (\(\gamma \)-DOPA) effect in Parkinson’s syndrome in man: on the pathogenesis and treatment of Parkinson akinesia. Arch Psychiatr Nervenkrankh Z Gesamte Neurol Psychiatr 203:560–574
17. Birkmayer W, Hornykiewicz O (1964) Additional experimental studies on \(\gamma \)-DOPA in Parkinson’s syndrome and Reserpine Parkinsonism. Arch Psychiatr Nervenkrankh 206:367–381
18. Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of Parkinsonism. N Engl J Med 276:374–379
19. Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of Parkinsonism-chronic treatment with \(\gamma \)-DOPA. N Engl J Med 280:337–345
20. Navarro G, Borroto-Escuela DO, Fuxe K et al (2016) Purinergic signaling in Parkinson’s disease. Relevance for treatment. Neuropharmacology 104:161–168
21. Lang AE (2009) When and how should treatment be started in Parkinson disease? Neurology 72:S39–S43
22. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease. Neurology 72:S1–S136
23. Pinna A, Serra M, Morelli M et al (2018) Role of adenosine \(A_{2A} \) receptors in motor control: relevance to Parkinson’s disease and dyskinesia. J Neural Transm (Vienna) 125:1273–1286
24. Burnstock G, Campbell G, Satchell D et al (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688
25. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581
26. Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248
27. Burnstock G (1997) The past, present and future of purine nucleotides as signaling molecules. Neuropharmacology 36:1127–1139
28. Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94:20–24
29. Potter P, White TD (1980) Release of adenosine 5’-triphosphate from synaptosomes from different regions of rat brain. Neuroscience 5:1351–1356
30. Poelchen W, Sieler D, Wirkner K et al (2001) Co-transmitter function of ATP in central catecholaminergic neurons of the rat. Neuroscience 102:593–602
31. Sperlágh B, Sershen H, Lajtha A et al (1998) Co-release of endogenous ATP and \(^{3} \)H]noradrenaline from rat hypothalamic slices: origin and modulation by \(\alpha_{2} \)-adrenoceptors. Neuroscience 82:511–520
32. Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804
33. Mori M, Heuss C, Gahwiler BH et al (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123
34. Krügel U, Kintner H, Franke H et al (2003) Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47:134–142
35. Zimmermann H (2001) Ectonucleotidases: some developments and a note on nomenclature. Drug Dev Res 52:44–56
36. Zimmermann H (2006) Ectonucleotidases in nervous system. Purinergic Signal Neuron-Glia Interact 276:113–130
37. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118
38. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483
39. Ciruela F, Albergaria C, Soriano C et al (2010) Adenosine receptors interacting proteins (ARIPs): behind the biology of adenosine signaling. Biochim Biophys Acta 1798:9–20
40. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34
41. Khakh BS, Burnstock G, Kennedy C et al (2001) International Union Of Pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118
42. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359
43. Puchalowicz K, Baranowska-Bosiacka I, Dziedziejko V et al (2016) Purinergic modulators of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47:134–142
44. Dubyak GR, el-Moatassim C (1993) Signal transduction via P2-purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118
45. Madeira MH, Boia R, Ambrósio AF et al (2017) Having a coffee break: the impact of caffeine consumption on microglia-mediated inflammation in neurodegenerative diseases. Mediat Inflamm 2017:1–12
58. Parpura V, Fisher ES, Lechleiter JD et al. (2017) Glutamate
59. Tozzi M, Novak I (2017) Purinergic receptors in adipose tissue
60. Labazi H, Teng B, Mustafa SJ (2018) Functional changes in
61. Ortiz R, Ulrich H, Zarate CA et al. (2015) Purinergic system
62. Krügel U (2016) Purinergic receptors in psychiatric disorders.
67. Pascual O, Casper KB, Kubera C et al. (2005) Astrocytic
66. Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M et al. (2016)
65. Burnstock G, Arnett TR, Orriss IR (2013) Purinergic signaling
68. Scemes E, Suadicani SO, Dahl G et al. (2007) Connexin and
69. Abbrachio MP, Burnstock G, Verkhratsky A et al. (2009) Purinergic
71. Vizi ES, Knoll J (1976) The inhibitory effect of adenosine and
70. Vizi ES, Knoll J (1976) The inhibitory effect of adenosine and
72. Dunwiddie TV (1985) The physiological role of adenosine in the
central nervous system. Int Rev Neurobiol 27:63–139
73. Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator.
74. Wall MJ, Dale N (2007) Auto-inhibition of rat parallel fibre–
75. Fredholm BB, Djerzem AP, Jacobson KA et al. (2011) International
76. Chen JF, Pedata F (2008) Modulation of ischemic brain injury
77. Pedata F, Dettori L, Coppi E et al. (2016) Purinergic signalling in
78. Latini S, Pedata F (2001) Adenosine in the central nervous
79. Augood SJ, Emson PC (1994) Adenosine A2A receptors mRNA
80. Dixon AK, Gubitz AK, Sirinathsinghji DJ et al. (1996) Tis-
tissue distribution of adenosine receptor mRNAs in the rat. Br J
81. Sebastião AM, Ribeiro JA (2009) Adenosine receptors and the
central nervous system. Handb Exp Pharmacol 193:471–534
82. Peokttistov I, Biagiotti I (1997) Adenosine A2A receptors.
83. Rivkees SA, Thevananther S, Hao H (2000) Are A1 adenosine
84. Rücker C, Thevananther S, Hao H et al. (2000) Expression of P2X1
85. Burnstock G, Knight GE (2004) Cellular distribution and
functions of P2Y receptor subtypes in different systems. Int Rev
86. Guo W, Xu X, Gao X et al. (2008) Expression of P2X1 recep-
tors in the mouse central nervous system. Neuroscience 128:697–712
87. Amadio S, Montili C, Picconi B et al. (2007) Mapping P2X and
P2Y receptor proteins in striatum and substantia nigra: an immu-
nohistochemical study. Purinergic Signal 3:389–398
88. Moore D, Chambers J, Waldvogel H et al. (2000) Regional and
cellular distribution of the P2Y1 purinergic receptor in the
human brain: striking neuronal localization. J Comp Neurol 421:374–384
89. Miras-Portugal MT, Marin-Garcia P, Carrasquera LM et al.
(2007) Physiological role of extracellular nucleotides at the cen-
tral nervous system: signaling through P2X and P2Y receptors.
90. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinorecep-
tors in neuroglia. Mol Neurobiol 39:190–208
91. Fukumitsu N, Ishii K, Kimura Y et al. (2005) Adenosine A1
receptor mapping of the human brain by PET with 8-dicyclopro-
pyl methyl-1-11C-methyl-3-propylxanthine. J Nucl Med 46:32–37
92. Ishiwata K, Mishina M, Kimura Y et al. (2005) First visualization of
adenosine A2A2 receptors in the human brain by positron emission tomography with [11C]TMSX. Jpn J Physiol 55:133–136
93. Sheehy S, Brito R, Mukherjea D et al. (2014) Adenosine receptors:
expression, function and regulation. Int J Mol Sci 15:2024–2052
94. Abbrachio MP, Burnstock G (1998) Purinergic signalling: patho-
physiological roles. Jpn J Pharmacol 78:113–145
95. Fields D, Burnstock G (2006) Purinergic signalling in neuron-
glial interactions. Nat Neurosci 7:423–436
modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovasc Res 72:292–302

137. Llach A, Molina CE, Prat-Vidal C et al (2011) Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. Eur Heart J 32:721–729

138. Hauser RA, Olano CW, Kieburtz KD et al (2014) Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol 13:767–776

139. LeWitt PA, Gutman M, Tetrud JW et al (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63:295–302

140. Fernandez HH, Greeley DR, Zweig RM et al (2010) Istradefylline as monotherapy for Parkinson disease: results of the 6002-US-051 trial. Parkinsonism Relat Disord 16:16–20

141. Gyoneva S, Shapiro L, Lazo C et al (2014) Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease. Neurobiol Dis 67:191–202

142. Golembiowska K, Wardas J, Noworyta-Sokolowska K, Kaminska K et al (2013) Effects of adenosine receptor antagonists on the in vivo LPS-induced inflammation model of Parkinson’s disease. Neurotox Res 24:29–40

143. Villar-Menéndez I, Porta S, Buira SP et al (2014) Increased striatal adenosine A2A receptor levels is an early event in Parkinson’s disease-related pathology and it is potentially regulated by miRNA-34b. Neurobiol Dis 69:206–214

144. Hu Q, Ren X, Liu Y et al (2016) Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Exp Neurol 283:213–223

145. Kachroo A, Schwarzschild MA (2012) Adenosine A2A receptor gene disruption protects in an α-synuclein model of Parkinson’s disease. Ann Neurol 71:278–282

146. Ferreira DG, Batalha VL, Vicente Miranda H et al (2015) Adenosine A2A receptors modulate α-synuclein aggregation and toxicity. Cereb Cortex. https://doi.org/10.1093/cercor/bhv268

147. Pintor J, Diaz-Rey MA, Miras-Portugal MT (1993) Ap4A and ADP-beta-S binding to P2 purinoreceptors present on rat brain synaptic terminals. Br J Pharmacol 108:1094–1099

148. Rodriguez-Pascual F, Cortes R, Torres M et al (1997) Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain. Neuroscience 77:247–255

149. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

150. Heine C, Wegner A, Grosche J et al (2007) P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 149:165–181

151. Krügel U, Kittner H, Franke H et al (2001) Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40:1084–1093

152. Krügel U, Kittner H, Illes P (2001) Mechanisms of adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Synapse 39:222–232

153. Gan M, Moussaoud S, Jiang P et al (2015) Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol Aging 36:1209–1220

154. Marcellino D, Suarez-Boomgaard D, Sanchez-Reina MD et al (2010) On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079. J Neural Transm 117:681–687

155. Carmo MR, Menezes AP, Nunes AC et al (2014) The P2Y7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptic toxicity, neurotoxicity and gliosis. Neuropharmacology 81:142–152

156. Hracszkó Z, Baranyi M, Csölle C et al (2011) Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson’s disease. Mol Neurodegener 6:28

157. Wilkaniec A, Gassowska M, Czapski GA et al (2017) P2X7 receptor-pennexin 1 interaction mediates extracellular alpha-synuclein-induced ATP release in neuroblastoma SH-SY5Y cells. Purinergic Signal 13:347–361

158. Jiang T, Hoekstra J, Heng X et al (2015) P2X7 receptor is critical in α-synuclein-mediated microglial NADPH oxidase activation. Neurobiol Aging 36:2304–2318

159. Coppi E, Pedata F, Gibb AJ (2012) P2Y1 receptor modulation of Ca²⁺-activated K⁺ currents in medium-sized neurons from neonatal rat striatal slices. J Neurophysiol 107:1009–1021

160. Wang Y, Chang CF, Morales M et al (2013) Diadenosine tetraphosphate protects against injuries induced by ischaemia and 6-hydroxidopamine in rat brain. J Neurosci 23:7958–7965

161. Yang X, Lou Y, Liu G et al (2017) Microglia P2Y₆ receptor is related to Parkinson’s disease through neuroinflammatory process. J Neuroinflamm 14:38

162. Qian Y, Xu S, Yang X et al (2017) Purinergic receptor P2Y₆ contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J Neurosci Res 96:253–264

163. Neher JJ, Neniskyte U, Hornik T et al (2014) Inhibition of UDP/P2Y₆ purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia 62:1463–1465

164. Dunkel P, Chai CL, Sperlágh B et al (2012) Clinical utility of P2Y₆ receptor-pennexin 1 interaction mediates extracellular alpha-synuclein-induced ATP release in neuroblastoma SH-SY5Y cells. Purinergic Signal 13:347–361

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.