Evaluation of immune protection against Toxoplasma gondii infection in mice induced by a multi-antigenic DNA vaccine containing TgGRA24, TgGRA25 and TgMIC6

Xiao-Pei Xu1,2, Wen-Ge Liu1,2, Qian-Ming Xu2, Xing-Quan Zhu1, and Jia Chen1,3,*

1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
2 College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
3 Ningbo University School of Medicine, Ningbo, Zhejiang Province 315211, PR China

Received 22 April 2019, Accepted 31 July 2019, Published online 19 September 2019

Abstract – Toxoplasma gondii infection is prevalent in humans and animals worldwide. In this study, recombinant eukaryotic expression plasmids (pVAX-GRA24, pVAX-GRA25 and pVAX-MIC6) were constructed, and then injected into Kunming mice intramuscularly, as cocktailed plasmids or as single-gene plasmids. We evaluated immune protective responses by detecting the titer of antibodies and cytokine production of IFN-γ, IL-2, IL-4, IL-10, IL-12 and IL-23, the percentages of the subclasses of T lymphocytes, as well as the records of the survival time and cyst decrement in the brain of the mouse model after challenge with the T. gondii RH and Pru strains, respectively. Compared with the control groups, antibody and cytokine production were significantly increased, while the survival times of mice in all immunized groups were also prolonged, and the number of T. gondii cysts in their brains were decreased significantly (29.03% for pVAX-GRA24; 40.88% for pVAX-GRA25; 37.70% for pVAX-MIC6; 48.06% for pVAX-GRA24 + pVAX-GRA25; and 55.37% for pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6). The mouse group immunized with the three-gene cocktail (TgGRA24 + TgGRA25 + TgMIC6) had better performance in each detection index than the mouse groups immunized with the two-gene cocktail of TgGRA24 + TgGRA25, which was better than that in the group immunized with the single gene vaccine of TgGRA24, TgMIC6 or TgGRA25. In conclusion, TgGRA24 or TgGRA25 may be good vaccine candidates against T. gondii infection, but the three-gene cocktail of TgGRA24, TgMIC6 and TgGRA25 may induce the strongest protective immunity. Further studies of multi-antigenic DNA vaccines or cocktailed vaccines against T. gondii infection are necessary.

Key words: Toxoplasma gondii, DNA vaccine, Dense granule protein 24, Dense granule protein 25, Microneme protein 6.
Introduction

Toxoplasma gondii est un parasite obligatoire intracellulaire protozoaire, avec une distribution mondiale, et est capable d'infecter presque tous les organismes à sang chaud, y compris les humains [8, 30]. Les infections _T. gondii_ menacent la santé humaine, menant à des maladies graves et à des périls économiques [9, 10]. Bien que le traitement par médicaments puisse contrôler les infections _T. gondii_, il ne peut pas neutraliser l'infection à la suite d'un déclenchement chez les animaux, en particulier dans les animaux de boucher et les bovins, entraînant de lourdes pertes économiques [9, 10].

Les vaccinations sont considérées comme une priorité élevée pour le contrôle et la prévention de cette infection à _T. gondii_ [7]. Toutefois, aucune étude préalable n’a évalué les candidats vaccinaux à ADN contre cette infection parasitaire [8, 32]. C’est pourquoi il est urgent de développer des vaccins plus efficaces, pratiques et sûrs.

DNA vaccines can be prepared simply at low cost, and are able to generate effective immune responses [13]. Numerous studies have focused on the use of plasmid DNA to elicit protective immunity against _T. gondii_ infection in animal models, including the virulence factors of _T. gondii_, such as ROP18, ROP5, GRA15, GRA6, MIC6 and MIC8 [6, 20, 24, 35]. However, no DNA vaccine candidates have been identified to induce complete protective immunity against _T. gondii_ infection, so the identification of potential novel vaccine candidates against _T. gondii_ infection will be the crucial step toward significant progress in the development of _T. gondii_ vaccines [32, 39]. GRA24 is a dense granule protein, which could enter into the host cell nucleus, and modulate host immune response by directly interacting with p38 MAP kinase in the host cell. In addition, TgGRA24 can regulate the expression of many chemokines, such as CXCL10/IP-10, CCL2/MCP-1, CXCL1/GROα and CCL5/RANTES. During the acute stage of _T. gondii_, these chemokines could control _T. gondii_ burden in infected organs [2, 4, 15, 19]. TgGRA24 is a novel virulence factor of _T. gondii_, impacting chemokine secretion, such as CCL2, which plays an important role in immune response during _T. gondii_ infection. Mice lacking CCL2 can easily be infected with _T. gondii_ [26, 28]. TgMIC6 is a constituent of the MIC1/MIC4/MIC6 complex, which is a well-characterized virulence factor of _T. gondii_, and also a DNA vaccine candidate against _T. gondii_ infection in mouse models [24, 34, 37].

Due to their critical biological roles in the pathogenesis of _T. gondii_ infection, TgGRA24 and TgGRA25 may be promising DNA vaccine candidates against this parasitic infection. However, no previous studies have evaluated the vaccine potential of these two dense granule proteins. The objectives of this study were to evaluate the immunogenicity of TgGRA24 and TgGRA25 after injection of the constructed eukaryotic plasmids, containing different multi-components or a single-gene plasmid, respectively, and to assess the protective effects of these DNA vaccines against acute and chronic _T. gondii_ infection in mice models.

Materials and methods

Ethics

All animals were handled under specific pathogen-free conditions, with the supply of food and water _ad libitum_, according to the Good Animal Practice requirements of the Animal Ethics Procedures and Guidelines of the People’s Republic of China. This study was approved by the Animal Ethics Committee of Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences.

Mice and parasites

Specific pathogen-free grade female Kunming mice (6–8 weeks old) were purchased from Lanzhou University Laboratory Animal Center (Lanzhou, China).

Tachyzoites of the highly virulent _T. gondii_ RH strain (Type I) were preserved in the Department of Parasitology, Lanzhou Veterinary Research Institute (LVRI), Chinese Academy of Agricultural Sciences, China. Cysts of the _T. gondii_ Pru strain were obtained from the brains of Kunming mice one month after oral administration of 20 cysts.

Construction of DNA vaccine plasmid

The mammalian expression vector pVAX I was used as a DNA vaccine vector. The coding sequence of TgGRA24 and TgGRA25 was amplified by PCR from tachyzoite cDNA of the _T. gondii_ RH strain using specific primers (forward primer: 5’-GGGGTACCATTAGCTCCAGATGGCAGATATA-3’; reverse primer: 5’-GCTCTAGATATTACCTAGTGGTGTTT-3’), which were designed based on the TgGRA24 gene sequence of the _T. gondii_ GT1 strain (TGGT1_230180, http://www.toxodb.org/toxo/), containing KpnI and XbaI restriction sites (in bold). The PCR product was ligated into the pMD-18 T Vector (TaKaRa, China), generating pMD-GRA24. TgGRA25 was amplified using specific primers (forward primer: 5’-GGGGTACCATTAGCTCCAGATGGCAGATATA-3’; reverse primer: 5’-GCTCTAGATATTACCTAGTGGTGTTT-3’), which were cleaved by KpnI and XbaI. Plasmid pVAX-GRA25 was prepared in this study as mentioned above, with specific primers (forward primer, 5’-GGGGTACCATTAGCTCCAGATGGCAGATATA-3’; reverse primer, 5’-GCTCTAGATATTACCTAGTGGTGTTT-3’), and KpnI and XbaI recognition sites were introduced. The plasmid pVAX-MIC6 was kept in the Department of Parasitology, LVRI, The People’s Republic of China [24].
In vitro expression of recombinant plasmid

The recombinant plasmids pVAX-GRA24 and pVAX-GRA25 were transfected into 293T cells using Lipofectamine 2000 reagent (Invitrogen, USA), according to the manufacturer’s instructions, and expression was assayed by indirect immunofluorescence assay (IFA). After 48 h of transfection, the cells were fixed in 12-well culture well plate with cold acetone and permeabilized with PBS-0.1% Triton-X-100 (PBST) for 15 min at each step. The cells were incubated with goat anti-T. gondii tachyzoite polyclonal antibody at 37 °C for 1 h, followed by FITC-labeled donkey-anti-goat IgG (Proteintech Group Inc., Chicago, USA) antibody at the dilution rate of 1:100 in PBST at room temperature for 45 min. At each step, the wells were washed three times with PBST. The specific fluorescence was examined using a Zeiss Axioplan Fluorescence Microscope (Carl Zeiss, Germany). 293T cells transfected with empty pVAX I were kept as a negative control.

Immunization and challenge

Eight groups (30 Kunming mice per group) were used for this study, consisting of five experimental and three control groups. Mice in the experimental groups were immunized three times (2-week intervals) with 100 μL (1 μg/μL) of pVAX-GRA24, pVAX-GRA25, pVAX-MIC6, pVAX-GRA24 + pVAX-GRA25 or pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6 plasmids by intramuscular injection into the quadriceps, respectively. Control groups included mice injected with 100 μL empty pVAX I vector (1 μg/μL), 1× PBS or blank control, respectively. Two weeks after the third booster vaccine dose, 10 mice from all groups were challenged intraperitoneally with 1 × 10⁵ tachyzoites of the virulent RH strain, and the survival periods were recorded daily until all mice were dead. Meanwhile, another 10 mice per group were challenged with a non-lethal dose of 20 cysts of the Pru strain. Then, 4 weeks after the challenge, the surviving mice were sacrificed via cervical dislocation, and the mean number of cysts per brain was determined by counting three samples of 10 μL aliquots of each homogenized brain under an optical microscope. Two weeks after the last immunization, a total of 10 mice per group were sacrificed and splenocytes were aseptically harvested for a lymphocyte proliferation assay (three mice), cytokine measurements (another three mice), and flow cytometric analysis (another three mice). Blood was collected from the tail vein prior to each immunization and challenge (at weeks 0, 2, 4 and 6), and sera were separated and stored at −20 °C until analysis for specific antibodies. Pre-immune (at week 0) serum samples were used as negative controls.

Antibody analysis

Enzyme-linked immunosorbent assay (ELISA) was used to detect IgG at 0, 2, 4 and 6 weeks, and to detect IgG1 and IgG2a antibodies in serum at 2 weeks after the last immunization by using an SBA Clonotyping System-HRP Kit (Southern Biotech Co., Ltd, Birmingham, AL, USA), as described previously [6]. In brief, 100 μL of capture antibody (10 μg/mL; provided by the commercial Kit) were added into each well and incubated overnight at 4 °C. After washing with PBST (1× PBS and 0.05% Tween 20), the wells were blocked with 100 μL of 1.0% BSA/PBS for 1 h, followed by adding detected sera and incubated at room temperature for 1 h. Plates were then washed, and anti-mouse-IgG, IgG1 and IgG2a antibodies conjugated with horseradish peroxidase (HRP) (Sigma-Aldrich, USA) were added to each well and incubated at 37 °C for 60 min. After washing with PBST, immune complexes were visualized by incubating with 100 μL substrate solution (1.05% citrate substrate buffer, 1.5% ABTS, 0.03% H₂O₂ of pH 4.0) for 30 min. The absorbance was measured at 405 nm using an ELISA reader (Bio-TekEL × 800, USA). All samples obtained from three different mice were run in triplicate.

Lymphocyte proliferation assay by MTT

Two weeks after the immunization with the third booster dose, splenocytes were collected from three mice in each group, as described previously [5]. The erythrocytes were lysed using erythrocyte lysis buffer (0.15 M NH₄Cl, 1.0 M KHCO₃, 0.1 M EDTA, pH 7.2). After washing, the splenocytes were re-suspended in DMEM medium supplemented with 10% fetal calf serum (FCS). Briefly, 3 × 10⁵ cells per well were cultured in 96-well Costar plates with addition of concanavalin A (ConA) (5 μg/mL; Sigma, Sangon, China), or medium alone (negative control) at 37 °C under 5% CO₂ for 72 h. Thereafter, 10 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 5 mg/mL, Sigma, Sangon, China) was added to each well, and incubated for 4 h and the proliferative activity was measured according to the method described by Bounous et al. [3]. The stimulation index (SI) was calculated using the formula OD₅₇₀ Test/OD₅₇₀ Cont × 100. All samples obtained from three different mice were run in triplicate independently.

Flow cytometry assay

To analyze the percentages of CD4⁺ and CD8⁺ T lymphocytes, a total of 1 × 10⁶ cells/mL were incubated with surface markers PE-CD3, APC-CD4 and FITC-CD8 antibodies (eBioscience, USA) at 4 °C for 30 min in a dark place, and then fixed with FACScan buffer (PBS containing 1% FCS and 0.1% sodium azide), and 2% paraformaldehyde. The samples were analyzed for fluorescence profiles on a FACScan flow cytometer (BD Biosciences, USA). All samples obtained from three different mice were run in triplicate independently.

Cytokine assay

Splenocytes from each group were co-cultured with ConA for positive control and medium alone for negative control in flat-bottom 96-well microtiter plates. Culture supernatants were harvested for IL-2, IL-4 and IL-23 assay at 24 h, for IL-10 activity at 72 h, and for gamma interferon (IFN-γ) and IL-12p70 activity at 96 h using commercial ELISA kits according to the manufacturer’s instructions (Biolegend, USA). All samples obtained from three different mice were run in triplicate independently.
Statistical analysis

The statistical analyses were performed using GraphPad Prism 7.0 and SPSS 17.0 Data Editor (SPSS, Inc., IL, USA). The differences in the data (e.g., antibody titer and cytokine production) for all groups were compared by one-way ANOVA. *p* < 0.05 was considered statistically significant. The Kaplan–Meier method was used for analysis of the survival time of the RH strain.

Results

Expression of pVAX-GRA24 and pVAX-GRA25 plasmids in 293T cell

Expression of the recombinant plasmid was analyzed by indirect immunofluorescence (IFA). Specific green fluorescence was observed in 293T cells transfected with pVAX-GRA24 (Fig. 1A) and pVAX-GRA25 (Fig. 1B), whereas there was no fluorescence in cells transfected with empty pVAX I (Fig. 1C), indicating that the eukaryotic plasmid was successfully expressed in 293T cells.

Humoral responses induced by DNA immunization

Significant antibody response was observed in all immunized mice. The highest antibodies titer was observed in mice immunized with the plasmid cocktail (pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6), as shown in Figure 2A. Also, boosting with pVAX-GRA24 and pVAX-GRA25 increased the IgG titer induced by DNA immunization with pVAX-GRA24 or pVAX-GRA25. The levels of IgG titer in the pVAX-GRA24, pVAX-GRA25 or pVAX-MIC6 groups were significantly higher (*p* < 0.05) than those in the three control groups. However, the levels of antibodies in the three control groups did not significantly increase with successive immunization (*p* > 0.05).

The levels of antibody subclass (IgG1 and IgG2a) isotypes were analyzed 2 weeks after the third immunization, showing a higher IgG2a to IgG1 ratio in experimental groups than that in the control groups, with the highest IgG2a to IgG1 ratio in groups of mice immunized with pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6 (Fig. 2B).

Cellular responses induced by DNA immunization

The results for humoral responses were similar to those for levels of cytokines from individual mice at 2 weeks after the third immunization. Co-injected mice induced the highest levels of IL-2, IFN-γ, IL-12 and IL-23, which were also significantly higher in experimental groups of mice immunized with a single antigen than in control groups. However, there was no significant difference in the levels of IL-4 and IL-10 between the groups of mice immunized with single and multiple-genes (*p* > 0.05) (Fig. 3).

Splenocyte proliferation and the percentages of CD4+ and CD8+ of T lymphocytes

As shown in Figure 4A and B, the percentages of CD3+ CD4+CD8− and CD3−CD8+CD4− T lymphocytes were significantly increased in the groups of mice immunized with pVAX-GRA24, pVAX-GRA25, pVAX-MIC6, pVAX-GRA24 + pVAX-GRA25, or pVAX-MIC6 + pVAX-GRA24 + pVAX-GRA25 compared with those in the three control groups (*p* < 0.05). In comparison, the groups of mice immunized with pVAX-GRA24 + pVAX-GRA25 showed higher percentages of CD3+CD4+CD8− and CD3−CD8+CD4− T lymphocytes than in the groups of mice immunized with a single-gene plasmid, but the highest percentages of CD4+ and CD8+ T lymphocytes were induced in the groups of mice immunized with single or multiple gene vaccines (with the highest SI in co-injected mice) than in the three controls (Fig. 4C).

Immuno-protection against lethal/non-lethal challenge

After challenge with 1 × 10^3 tachyzoites of the virulent RH strain of *T. gondii*, mice immunized with pVAX-GRA24 (8.1 ± 0.5 days), pVAX-GRA25 (9.4 ± 0.7 days), pVAX-MIC6 (11.5 ± 0.8 days), pVAX-GRA24 + pVAX-GRA25 (Fig. 1).

Figure 1. Immunofluorescence assay for the recombinant GRA24 and GRA25 protein expressed in 293T cells. 293T cells were transfected with pVAX-GRA24 (A) or pVAX-GRA25 (B) or empty pVAX I (C).
Figure 2. Detection of specific humoral immune responses. (A) Detection of total IgG antibody induced by experimental groups of mice on weeks 0, 2, 4, 6. (B) Detection of IgG1 and IgG2a antibodies in immunized mice groups 2 weeks after the last immunization. *Statistically significant difference ($p < 0.05$) between different immunized groups from the same measurement.

Figure 3. Cytokine production by splenocytes of mice immunized with single or multiple genes. *$p < 0.05$.

X.-P. Xu et al.: Parasite 2019, 26, 58
(13.8 ± 0.9 days) and with pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6 (18.7 ± 1.3 days) had a significantly longer survival time compared to the three control groups (Fig. 5) (p < 0.05). However, the mice in the three control groups died within 6 days after challenge (p > 0.05).

As shown in Table 1, the number of cysts in the mouse brain was reduced significantly in the pVAX-GRA24 (29.03%), pVAX-GRA25 (40.88%), pVAX-MIC6 (37.70%), pVAX-GRA24 + pVAX-GRA25 (48.06%) and pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6 (55.37%) groups,
compared to the control group (p < 0.05). However, there was no apparent reduction of brain cysts among the three control groups (p > 0.05).

Discussion

Dense granules (GRAs) are known to maintain and form the nascent parasitophorous vacuole (PV) or a lipid-based intravacuolar network (IVN), or to be responsible for the uptake of nutrients from the host cell, and for intracellular parasite survival [22]. Due to their critical biological roles, some GRAs have been demonstrated to be effective DNA vaccine candidates, such as GRA1, GRA4, GRA6 and GRA7 [17, 27]. Here, the potential of TgGRA24 or TgGRA25 used as DNA immunization was evaluated in mouse models. The results suggest that DNA immunization with TgGRA24 or TgGRA25 could trigger effective protective immunity against acute and chronic *T. gondii* infection resulting from potent humoral and Th1-type cellular immune responses.

It is well known that a cocktail DNA vaccine could be used as a promising approach to elicit more potent protective immunity against acute and chronic toxoplasmosis, in contrast to that of a single antigen-based DNA vaccine [23, 31]. In the present study, two antigen-based DNA vaccines achieved a longer survival time and greater reduction in the parasite cyst burden than a single-gene plasmid. Furthermore, a cocktail of three antigens induced a prolonged survival time and reduction in the parasite cyst burden, which was greater than that of other vaccinations using multiple antigenic peptides [29, 38].

Table 1. Mean cyst burden per mouse brain 4 weeks after challenge with 20 cysts of *Toxoplasma gondii Pru* strain per mouse.

Group (n = 3)	No of brain cysts (Means ± SD)	Reduction (%)
Blank control	3011 ± 101 *	–
pVAX I	2967 ± 110*	1.4
PBS	2980 ± 112*	1.03
pVAX-GRA24	2137 ± 99**	29.03
pVAX-GRA25	1780 ± 129**	40.88
pVAX-MIC6	1876 ± 113**	37.70
pVAX-GRA24 + pVAX-GRA25	1564 ± 102**	48.06
pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6	1334 ± 96**	55.37

* No statistically significant difference (p > 0.05) between different immunized groups from the same measurement.
** Statistically significant difference (p < 0.05).

As the indicators for Th1-type cellular immune responses, cytokines including IL-2, IL-12 and IFN-γ were considered to be critical to the Th1 cell-mediated response against acute or chronic *T. gondii* infection [12, 21]. Also, higher titers of IgG subclass IgG2a isotype in sera favor Th1 responses [1, 36]. The IFN-γ cytokine is able to mediate killing intracellular *T. gondii* via innate or adaptive immune responses, which play a crucial role in resistance to *T. gondii* infection, in combination with IL-2 [25, 26]. Also, IL-12 could activate NK cells for the production of T-cell-independent mechanisms of resistance to infection, as well as drive development of Th1-type response through TLR stimulation of DC [25]. IL-23 is commonly considered to play a role in promoting the proliferation of T cells and IFN-γ generation, further in inducing memory T cells proliferation [21], and also its high levels were demonstrated to be induced by DNA vaccination against *T. gondii* infection in previous studies [5, 6]. In the present study, significant increases in IL-2, IL-12, IFN-γ, IL-23 and IgG2a were detected in all immunized groups, which suggests that all kinds of vaccines could induce vigorous Th1-based cellular immunity against *T. gondii*. Furthermore, the highest levels of cytokines in the
group immunized with the three-gene cocktail indicate that cocktailed DNA vaccines could significantly enhance Th1 cell-mediated responses induced by a single DNA vaccine. The CD4+ T lymphocytes play an important role in the immune response against *T. gondii* infection, while in synergy with CD4+ T cells, CD8+ T lymphocytes are critical to prevent the development of brain cyst formation and tachyzoite spreading of *T. gondii* [11, 14]. In the present study, we found that the percentages of both CD8+ and CD4+ T cells were significantly increased in all immunized groups, while the highest increment was observed in mice immunized with the three-gene cocktail. The results of the present study are consistent with previous DNA vaccination studies based on multi-antigens, such as SAG1, ROP2, GRA2, ROP5 and GRA15 [6, 33].

The primary goal of the DNA vaccine construct is to provide further protective immunity against both acute and chronic toxoplasmosis caused by different *T. gondii* strains. In this study, we performed challenge models in mice, involving lethal infection with the wild-type (Type I) RH strain, and non-lethal infection with the low-virulent cyst-forming Pru strain (Type II). Our results show that DNA immunization with pVAX-GRA24 and pVAX-GRA25 induced a significantly longer survival time, and lower brain cyst number than that in a single DNA immunization, and also immunization with pVAX-GRA24 + pVAX-GRA25 + pVAX-MIC6 induced the best protective efficacy, which is also able to induce cross-protection between different genotypes of *T. gondii*.

In conclusion, the present study evaluated the immunoprotective effect of TgGRA24 and TgGRA25 in mice models, and demonstrated that both TgGRA24 and TgGRA25 are potential DNA vaccine candidates. Vaccination with cocktailed plasmids of TgGRA24, TgGRA25 and TgMIC6 induced better protective immunity against acute and chronic *T. gondii* infection in the mouse model.

Acknowledgements. Project support was kindly provided by the National Natural Science Foundation of China (Grant No. 31802180), the National Key Research and Development Program of China (Grant No. 2017YFD0501304), and the Agricultural Science and Technology Innovation Program (ASTIP) (Grant No. CAAS-ASTIP-2016-LVRI-03).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Ahmadpour E, Sarvi S, Hashemi Soteh MB, Sharif M, Rahimi MT, Valadan R, Tehranl M, Khalilian A, Montazeri M, Daryani A. 2017. Evaluation of the immune response in BALB/c mice induced by a novel DNA vaccine expressing GRA14 against *Toxoplasma gondii*. Vaccine, 35(25), 3427–3435.

2. Bougourd A, Tardieux I, Hakimi MA. 2014. *Toxoplasma* exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cellular Microbiology, 16(3), 334–343.

3. Bouneus DJ, Camagnoni RP, Brown J. 1992. Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Diseases, 36(4), 1022–1027.

4. Braun L, Brenier-Pichart MP, Yogavel N, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod N, Coute Y, Pelfaux H, Tardieux I, Sharma A, Beirali H, Bougourd A, Hakimi MA. 2013. A *Toxoplasma* dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Journal of Experimental Medicine, 210(10), 2071–2086.

5. Chen J, Huang SY, Li ZY, Yuan ZG, Zhou DH, Petersen E, Zhang NZ, Zhu XQ. 2013. Protective immunity induced by a DNA vaccine expressing eff4A of *Toxoplasma gondii* against acute toxoplasmosis in mice. Vaccine, 31(13), 1734–1739.

6. Chen J, Li ZY, Petersen E, Huang SY, Zhou XQ. 2015. DNA vaccination with genes encoding *Toxoplasma gondii* antigens ROP5 and GRA15 induces protective immunity against toxoplasmosis in Kunming mice. Expert Review of Vaccines, 14(4), 617–624.

7. Coombs GH, Muller S. 2002. Recent advances in the search for new anti-coccidial drugs. International Journal for Parasitology, 32(5), 497–508.

8. Dubey JP. 2008. The history of *Toxoplasma gondii*-the first 100 years. Journal of Eukaryotic Microbiology, 55(6), 467–475.

9. Dubey JP, Hill DE, Jones JL, Hightower AW, Kirkland E, Roberts JM, Marce PL, Lehrman T, Vianna MC, Miska K, Sreekumar C, Kwok OC, Shen SK, Gamble HR. 2005. Prevalence of viable *Toxoplasma gondii* in beef, chicken, and pork from retail meat stores in the United States: risk assessment to consumers. Journal of Parasitology, 91(5), 1082–1093.

10. Fayer R, Dubey JP, Lindsay DS. 2004. Zoonotic protozoa: from land to sea. Trends in Parasitology, 20(11), 531–536.

11. Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. 1992. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with *Toxoplasma gondii*. Journal of Immunology, 149(1), 175–180.

12. Gilgey JP, Fox BA, Bzik DJ. 2009. Cell-mediated immunity to *Toxoplasma gondii* develops primarily by local Th1 host immune responses in the absence of parasite replication. Journal of Immunology, 182(2), 1069–1078.

13. Gurunathan S, Wu CY, Freidag BL, Seder RA. 2000. DNA vaccines: a key for inducing long-term cellular immunity. Current Opinion in Immunology, 12(4), 442–447.

14. Hakim FT, Gazzinelli RT, Denkers E, Hieny S, Shearer GM, Sher A. 1991. CD8+ T cells from mice vaccinated against *Toxoplasma gondii* are cytotoxic for parasite-infected or antigen-pulsed host cells. Journal of Immunology, 147(7), 2310–2316.

15. Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED, Norose K, Wilson EH, John B, Weninger W, Luster AD, Liu AJ, Hunter CA. 2012. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature, 486(7404), 545–548.

16. Hill DE, Chirukandoth S, Dubey JP. 2005. Biology and epidemiology of *Toxoplasma gondii* in man and animals. Animal Health Research Reviews, 6(1), 41–61.

17. Hiszczynska-Sawicka E, Oledzka G, Holec-Gasior L, Li H, Xu ZH, Sedcole R, Kur J, Bickerstaffe R, Stankiewicz M. 2011. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of *Toxoplasma gondii*. Veterinary Parasitology, 177(3–4), 281–289.

18. Innes EA, Vermeulen AN. 2006. Vaccination as a control strategy against the coccidial parasites *Eimeria*, *Toxoplasma* and *Neospora*. Parasitology, 133 Suppl, S1–S8.

19. Khan IA, MacLean JA, Lee FS, Cacciotti L, DeHaan E, Schwartzman JD, Luster AD. 2000. IP-10 is critical for effector T cell trafficking and host survival in *Toxoplasma gondii* infection. Immunity, 12(5), 483–494.
20. Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, Yin CC, He Y, Lin RQ, Song HQ, Zhu XQ. 2010. Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitology Research, 106(5), 1079–1084.

21. Matowicka-Karna J, Dymicka-Piekarska V, Kemona H. 2009. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha)? Clinical & Developmental Immunology, 2009, 374696.

22. Nam HW. 2009. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean Journal of Parasitology, 47 Suppl, S29–137.

23. Nasernia R, Ghaffarifar F, Dalimi A, Shariati Z, Solhjoo K, Hosseinian Khosroshahi K. 2015. Evaluation of immunogenicity of cocktail DNA vaccine containing plasmids encoding complete GRAS, SAG1, and ROP2 antigens of Toxoplasma gondii in BALB/c mice. Iranian Journal of Parasitology, 10(4), 590–598.

24. Peng GH, Yuan ZG, Zhou DH, He XH, Liu MM, Yan C, Yin CC, He Y, Lin RQ, Zhu XQ. 2009. Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. Vaccine, 27(47), 6570–6574.

25. Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, Soldati-Favre D. 2008. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host & Microbe, 3(2), 77–87.

26. Robben PM, LaRegina M, Kuziel WA, Sibley LD. 2005. Recruitment of Gr1+ monocytes is essential for control of acute toxoplasmosis. Journal of Experimental Medicine, 201(11), 1761–1769.

27. Shaddel M, Ebrahimi M, Tabandeh MR. 2018. Bioinformatics analysis of single and multi-hybrid epitopes of GRA-1, GRA-4, GRA-6 and GRA-7 proteins to improve DNA vaccine design against Toxoplasma gondii. Journal of Parasitic Disease, 42(2), 269–276.

28. Shastri AJ, Marino ND, Franco M, Lodoen MB, Boothroyd JC. 2014. GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response. Infection and Immunity, 82(6), 2595–2605.

29. Sun X, Mei M, Zhang X, Han F, Jia B, Wei X, Chang Z, Lu H, Yin J, Chen Q, Jiang N. 2014. The extracellular matrix protein mindin as a novel adjuvant elicits stronger immune responses for rBAG1, rSRS4 and rSRS9 antigens of Toxoplasma gondii in BALB/c mice. BMC Infectious Diseases, 14, 429.

30. Tenter AM, Heckerth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30(12–13), 1217–1258.

31. Vazini H, Ghafari Far F, Sharifi Z, Dalimi A. 2018. Evaluation of immune responses induced by GRA7 and ROP2 genes by DNA vaccine cocktails against acute toxoplasmosis in BALB/c mice. Avicenna Journal of Medical Biotechnology, 10(1), 2–8.

32. Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ. 2019. Advances in the development of anti-Toxoplasma gondii vaccines: challenges, opportunities, and perspectives. Trends in Parasitology, 35(3), 239–253.

33. Xue M, He S, Cui Y, Yao Y, Wang H. 2008. Evaluation of the immune response elicited by multi-antigenic DNA vaccine expressing SAG1, ROP2 and GRA2 against Toxoplasma gondii. Parasitology International, 57(4), 424–429.

34. Yan HK, Yuan ZG, Song HQ, Petersen E, Zhou Y, Ren D, Zhou DH, Li HX, Lin RQ, Yang GL, Zhu XQ. 2012. Vaccination with a DNA vaccine coding for perforin-like protein 1 and MIC6 induces significant protective immunity against Toxoplasma gondii. Clinical and Vaccine Immunology, 19(5), 684–689.

35. Yuan ZG, Zhang XX, Lin RQ, Petersen E, He S, Yu M, He XH, Zhou DH, He Y, Li HX, Liao M, Zhu XQ. 2011. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine, 29(38), 6614–6619.

36. Zheng B, Ding J, Chen X, Yu H, Lou D, Tong Q, Kong Q, Lu S. 2017. Immuno-efficacy of a T. gondii secreted protein with an altered thrombospondin repeat (TgSPATR) as a novel DNA vaccine candidate against acute toxoplasmosis in BALB/c mice. Frontiers in Microbiology, 8, 216.

37. Zheng B, He A, Gan M, Li Z, He H, Zhan X. 2009. MIC6 associates with aldolase in host cell invasion by Toxoplasma gondii. Parasitology Research, 103(2), 441–445.

38. Zhou J, Wang L. 2017. SAG4 DNA and peptide vaccination provides partial protection against T. gondii infection in BALB/c Mice. Frontiers in Microbiology, 8, 1733.

39. Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. 2015. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Review of Vaccines, 14(12), 1609–1621.

Cite this article as: Xu X-P, Liu W-G, Xu Q-M, Zhu X-Q & Chen J. 2019. Evaluation of immune protection against Toxoplasma gondii infection in mice induced by a multi-antigenic DNA vaccine containing TgGRA24, TgGRA25 and TgMIC6. Parasite 26, 58.