Left upper lobar agenesis of lung: A rare case report

Sir,

Underdevelopment of lung is a group of congenital anomalies classified into agenesis, aplasia, and hypoplasia of lung, on the basis of presence or absence of lung parenchyma, bronchial tree, and pulmonary artery. The pathogenesis of such anomalies is not accurately known with several proposed theories. It is often associated with anomalies of the cardiovascular, genitourinary systems. An isolated left upper lobe pulmonary agenesis is rare and more commonly involves the right upper and middle lobes. It is associated with the absence of lung parenchyma, bronchial tree, pulmonary vasculature, and remains undiagnosed until adulthood. Treatment depends on patient’s symptoms, with most patients being treated conservatively.

A 29-year-old male, with no major illness (nondiabetic; nonhypertensive) or significant past surgical history, got a chest radiograph done as a part of routine health checkup. The radiograph revealed mild volume loss of left lung with abnormal homogenous opacity in the left upper zone. His respiratory examination revealed relatively reduced breath sounds in the left upper chest as compared to right side. His cardiovascular examination was unremarkable. Later, the patient underwent a contrast-enhanced computed tomography scan (CECT) chest for further evaluation of the radiographic findings.

The chest radiograph posterior-anterior view [Figure 1] revealed volume loss of left lung field with the collapse of left upper lobe suggested by the left upper zone opacity, superior migration of the hilum, fissure, and elevation of the left hemidiaphragm. Secondary changes were seen in the form of hyperinflated right lung, herniation across the midline, and shift of mediastinum to the left.

CECT chest [Figure 2] revealed the absence of left upper and lingular bronchus with complete agenesis of the left upper lobe (along with its lingular segment). The left main bronchus was seen continuing as the left lower lobe bronchus [Figure 3]. Compensatory hyperinflation with herniation of the right lung across the midline was also seen. The main pulmonary artery was short in length with early bifurcation [Figure 4]. There was hypoplasia of the left pulmonary artery (diameter of 9 mm at origin) which continued as the left lower lobe pulmonary artery without any upper lobe branch. No other associated congenital anomaly was found.

Lobar agenesis is a very rare entity, resulting from the anomalous formation of primitive lung bud. The incidence of the disease is 0.0034% with no gender predisposition. The first case was reported in 1673 by De Pozze in the autopsy of an adult female.

Lobar agenesis is included in “underdevelopment of lung” and is classified into three categories:
1. Agenesis shows complete absence of bronchus, lung parenchyma, and associated vessels
2. Aplasia has a rudimentary bronchus with absent lung parenchyma
3. Hypoplasia has hypoplastic bronchus and lung parenchyma.

The etiopathogenesis is unclear; however, genetic, teratogenic agents (allopurinol), and Vitamin A deficiency during pregnancy have been hypothesized as its causes.
The lung development starts at 4 weeks of gestation from the ventral wall of the foregut. A laryngotracheal groove develops from the ventral wall of the pharynx, dividing into the right and left lung buds at around 28th day of gestation. A tracheoesophageal septum separates the trachea and esophagus. Definitive human lung development is divided into five phases: Embryonic, pseudoglandular, canalicular, saccular, and alveolar. Insult during the phase of lung bud development is the probable cause of underdevelopment of lung.[2]

The abnormality goes undetected or is incidentally detected in the majority of cases. Symptomatic patients present in early childhood with symptoms of recurrent respiratory tract infection while others remain asymptomatic. Underdevelopment of lung is usually associated with other congenital abnormalities of cardiovascular, musculoskeletal, and genitourinary system, more commonly toward the ipsilateral side. Mardini-Nyhan association[5] is seen in consanguineous marriages, comprising congenital heart disease, thumb abnormality, and complete/partial lung agenesis. Our case did not have any other associated congenital abnormality.

History of pneumonectomy, segmental or lobar collapse, and thickening of pleura are few differential diagnosis[4] to be thought off. Thus, proper history taking is critical in these cases. Chest CECT is the most conclusive examination[6] for the diagnosis of the spectrum of underdevelopment of lung diseases. The role of angiography is important as it clearly entails the associated vascular abnormalities. These patients are managed conservatively, and surgery is rarely required as in symptomatic patients.

Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.

Keshav Gupta, Dhruv Taneja, Monika Aggarwal, Rajiv Gupta
Department of Radiodiagnosis and Imaging, Medanta ‑ The Medicity, Gurgaon, Haryana, India
E‑mail: drkeshavgupta23@gmail.com

REFERENCES

1. Clements BS. Congenital malformations of the lungs and airways. In: Landau LI, Taussing LM, editors. Pediatric Respiratory Medicine. St. Louis, MO, USA: Mosby; 1999. p. 1106‑36.
2. Berrocal T, Madrid C, Novo S, Gutiérrez J, Arjonilla A, Gómez‑León N. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: Embryology, radiology, and pathology. Radiographics 2004;24:e17.
3. Kozenko M, Grynspan D, Oluyomi‑Obi T, Sitar D, Elliott AM, Chodirker BN. Potential teratogenic effects of allopurinol: A case report. Am J Med Genet A 2011;155A: 2247‑52.
4. Kisku KH, Panigrahi MK, Sudhakar R, Nagarajan A, Ravikumar R, Daniel JR. Agenesis of lung – A report of two cases. Lung India 2008;25:28‑30.
5. Hastings R, Harding D, Donaldson A, Liebling R, Hayes A, Kraus A, et al. Mardini-Nyhan association (lung agenesis, congenital heart, and thumb anomalies); Three new cases and possible recurrence in a sib-is there a distinct recessive syndrome? Am J Med Genet A 2009;149A: 2838‑42.
6. Kuo CP, Lu YT, Lin RL. Agenesis of right upper lobe of lung. Respirol Case Rep 2015;3:51-3.

How to cite this article: Gupta K, Taneja D, Aggarwal M, Gupta R. Left upper lobar agenesis of lung: A rare case report. Lung India 2017;34:302-4.