Data Article

Fungal metabolic profile dataset was not influenced by long-term in vitro preservation of strains

Tereza Veselská a, b, Miroslav Kolarík a, b, *

a Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, CZ-14220 Prague, Czech Republic
b Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague, Czech Republic

ARTICLE INFO

Article history:
Received 21 June 2019
Received in revised form 21 August 2019
Accepted 19 September 2019
Available online 26 September 2019

Keywords:
Fungi
Metabolic profile
Biolog microarray
Fungal physiology
In vitro preservation
Comparative ecophysiology

ABSTRACT

Comparative ecophysiology is highly valuable approach to reveal adaptive traits linked with specific ecological niches. Although long-term in vitro preserved fungal isolates are often used for analyses, only sparse data is available about the effect of such handling on fungal physiology. The purpose of our data is to show the effect of long-term in vitro preservation of fungal strains on their metabolic profiles. This data is related to research paper “Adaptive traits of bark and ambrosia beetle-associated fungi” (Veselská et al., 2019). Biolog MicroPlates™ for Filamentous fungi were used to compare metabolic profiles between freshly isolated and long-term in vitro preserved strains of two Geosmithia species. Additionally, carbon utilization profiles of 35 Geosmithia species were assessed, including plant pathogen G. morbida and three ambrosia species. Data also shows differences in carbon utilization profiles among diverse ecology types presented in the genus Geosmithia.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

Biolog MicroPlate™ for Filamentous fungi was used to assess carbon sources utilization profiles of Geosmithia fungi living in symbiosis with bark beetles [1]. Their ecology spans from facultative to obligatory ambrosia symbiosis and from saprotrophic to pathogenic nourishment of severe phytopathogen G. morbida (Table 1). The aims were to test whether metabolic profiles of Geosmithia species are modified by their ecology and whether long-term preservation of strains has effect on their metabolic profiles. The distinct metabolic profiles belonging to particular ecology types are pictured in Fig. 1 and Table S1. The similarity in metabolic profiles of freshly isolated and long-term preserved strains of Geosmithia sp. 5 and G. langdonii is shown in Fig. 1 and Table S1. Raw data containing growth value of individual strains on each carbon source is presented in Table S1. Raw data is helpful for further identification of adaptive traits of these important species.

2. Experimental design, materials and methods

2.1. Fungal strains

The metabolic profiles of 60 strains belonging to 35 Geosmithia species (Table 1) were analyzed. These strains are deposited in the Culture Collection of Fungi (CCF) or at Institute of Microbiology of the Czech Academy of Sciences for several years. Then, two species, G. sp. 5 and G. langdonii, were chosen and the effect of long-term in vitro preservation (0–10 years) on fungal carbon assimilation profiles was observed. Fresh strains of these species were isolated from active beetle galleries in 2009 and identified as it is described in Pepori et al. [2]. These strains were analyzed within a 2 months on Biolog MicroPlates™ for Filamentous fungi. Altogether, three “old” and six “new” strains of G. sp. 5 and four “old” and four “new” strains of G. langdonii were compared. The species classification follows Kolarík et al. [3].
Species	Ecology type	Strain code	Culture collection	Strain code in Fig. 1	Substrate (mostly as insect vector/plant hosts)	Locality	Year of isolation	Reference
G. sp. 1	PF, G	1, 1790	CCF4529	1	*Hypoborus ficus/Ficus carica*	Azerbaijan, Shaki Rayonu	2006	[6]
G. sp. 2	PF, G	2, 1510	CCF4270	2	*Scolytus kirschii/Ulmus minor*	Italy, Termoli	2004	[6]
G. sp. 4	PF, G	4, 1722	CCF4278	4	*Pteleobius vitattus F./Ulmus laevis*	Czech R., Breclav	2004	[7]
G. purretillii	PF, G	6, 103	CCF3342	6	*Scolytus rugulosus/Prunus sp.*	Czech R., Velemín	2000	[8]
G. flava	PF, G	7, 264	CCF3534	7	*Hylesinus fraxini/Fraxinus excelsior*	Slovakia, Murán castle	2002	[8]
G. sp. 8	PF, HWS	8, 124	CCF3530	8a	*Scolytus intricatus/Quercus sp.*	Czech R., Prague	2001	[7]
		8, 1712a	CCF4277	8b	*Scolytus intricatus/Quercus ceras*	Bulgaria, Kardzalý	2005	[7]
		37, 1806	CCF4207	8c	*Scolytus beetle/Acacia smithii*	Australia, Eugella, Credition Hall	2006	[6]
G. ulmacea	PF, HWS	13, 924	CCF4601	13	*Scolytus multistriatus/Ulmus minor*	Belgium, Brussels, Antwerp	2002	[7]
G. obscura	PF, G	17, 391	CCF3424	12a	*Taphrychus bicolor/Fagus sylvatica*	Czech R., Louny, Hřivice	2003	[7]
G. lavendula	PF, G	18, 1219	CCF4268	18a	*Hypoborus ficus/Ficus carica*	Croatia, Dalmatia, Sibenik	2005	[6]
		18, 1781	CCF4285	18b	*Hypoborus ficus/Ficus carica*	Azerbaijan, Baki Sahara, Baku	2006	[6]
G. sp. 19	PF, G	19, 1085a	CCF3658	19	*Hypoborus ficus/Ficus carica*	Italy, Molise, Termoli	2004	[6]
G. sp. 20	PF, G	20, 764	CCF4527	20	*Phloeotribus scarabeoides/Olea europea*	Syria, Krak des Chevaliers	2004	[6]
G. sp. 21	PF, G	21, 1665	CCF4520	21	*Hypoborus ficus/Ficus carica*	Spain, Rosal de la Frontera	2005	[6]
G. sp. 22	PF, G	22, 739	CCF3645	22	*Phloeotribus scarabeoides/Olea europea*	Jordan, Wadi al Mujib	2004	[6]
G. morbida	HWS, P	41, 1218	CCF3879	41a	*Pityophthorus juglandis/J. nigra*	USA, Colorado, Boulder	2007	[9]
		(CBS 124664)						
		41, U173	CCF4576	41b	*Pityophthorus juglandis/J. nigra*	USA, California, Rio Oso	2009	[9]
		41, U1259.55	CCF4576	41c	*Pityophthorus juglandis/Juglandis sp.*	USA, Oregon	2008	[9]
		41, U1259.59	CCF4576	41d	*Pityophthorus juglandis/Juglandis sp.*	USA, Oregon	2008	[9]
G. sp. 9	PF, SP	9, 1210	CCF3703	9	*Cryphalus piceae/Abies alba*	Poland, Myślenice	2005	[10]
G. sp. 16	PF, SP	16, 08 m	CCF4201	16	*Pityophthorus pityographus/Picea abies*	Poland, Czajowice	2007	[11]
G. sp. 24	PF, SP	24, R06ka	CCF4525	24	*Pityogenes bidentatus/Pinus sylvestris*	Poland, Zaborze	2007	[11]
G. sp. 26	PF, SP	26, 1796	CCF4223	26	*Pityophthorus pityographus/Pinus silvestris*	Czech R., Seník	2006	[11]
G. sp. 27	PF, SP	27, 0919	CCF4206	27	*Pityogenes bidentatus/Pinus silvestris*	Poland, Záruša	2006	[11]
G. sp. 28	PF, SP	28, 279	CCF4210	28	*Polygraphus poligraphus/Picea abies*	Poland, Chyżówko	2007	[11]
G. sp. 30	PF, SP	30, 09 m	CCF4209	30	*Pityophthorus pityographus/Picea abies*	Poland, Czajowice	2007	[11]
G. sp. 31	PF, SP	31, 21k	CCF4526	31	*Pityophthorus pityographus/Pinus sylvestris*	Poland, Czajowice	2007	[11]
G. sp. 29	PF, SP	33, 1827b	CCF4221	33	*Pityophthorus pityographus + Cryphalus abietis/Abies alba*	Czech R., Boubín hill	2008	[11]
G. sp. 30	PF, SP	34, 1833	CCF4208	34	*C. piceae + P. pityographus/Abies alba*	Czech R., Jilové u Prahy	2008	[11]
G. sp. 25	PF, SP	35, 1835	CCF4205	25	*C. piceae + P. pityographus/Abies alba*	Czech R., Plešné jezero lake	2008	[11]

(continued on next page)
Species	Strain code (collection)	Substrate (mostly as insect vector/plant hosts)	Locality	Year of isolation	Reference
G. sp. 5	5_U1.2c.25 CNR28	*Scolytus multistriatus/Ulmus minor*	Czech R., Středokluky	2009	[2]
	5_U6.3e.35 CNR48	*Scolytus multistriatus/Ulmus minor*	Czech R., Velký Osek	2009	[2]
	5_U7.8b CNR30	*Scolytus multistriatus/Ulmus laevis*	Czech R., Velký Osek	2009	[2]
	5_U8.1a CNR49	*Scolytus multistriatus/Ulmus minor*	Czech R., Maršovice	2009	[2]
	5_U8.1b –	*Scolytus multistriatus/Ulmus minor*	Czech R., Maršovice	2009	[2]
	5_580 –	*Hypoborus ficus/Ficus carica*	France, Biaritz, Ondres	2003	[6]
	5_U7.9a CNR6	*Scolytus multistriatus/Ulmus laevis*	Czech R., Velký Osek	2009	[2]
	5_1550 CCF4271	*Scolytus intricatus/Quercus petraea*	Poland, Szynowiec	1997	[7]
	5_157 m CCF4215	*Pityophthorus pityographus galleries/Picea abies*	Czech R., Mlynářův luh, 1997	1997	[7]
G. omnicola	10_989 CCF3560	*Scolytus pygmaeus/Ulmus minor*	Czech R., Breclov	2004	[7]
	10_1788 CCF4286	*Hypoborus ficus/Ficus carica*	Azerbaïdjan, Suvalan	2006	[6]
	10_U2.6a CNR5	*Scolytus multistriatus/Ulmus minor*	Czech R., Středokluky	2009	[2]
	10_U7.5a CNR8	*Scolytus multistriatus/Ulmus laevis*	Czech R., Velký Osek	2009	[2]
	10_942 –	*Hypoborus ficus/Ficus carica*	Croatia, Brač Island	2004	[6]
G. langdonii	15_U5.3a CNR11	*Scolytus multistriatus/Ulmus minor*	Czech R., Velký Osek	2009	[2]
	15_U7.9a CNR6	*Scolytus multistriatus/Ulmus laevis*	Czech R., Velký Osek	2009	[2]
	15_U8.6c CNR117	*Scolytus multistriatus/Ulmus minor*	Czech R., Maršovice	2009	[2]
	15_U8.12a –	*Scolytus multistriatus/Ulmus minor*	Czech R., Maršovice	2009	[2]
	15_1645 –	*Scolytus multistriatus/Ulmus laevis*	Czech R., Neratovice	2005	[12]
	15_1683 CCF4276	*Ernoporus tiliae/Tilia sp.*	Czech R., Nové Hradky	2005	[7]
	15_1603c CCF3562	*Phloeosinus thujae/Thuja occidentalis*	Czech R., Poříčí nad Sázavou	2005	[7]
	15_1619 CCF4272	*bostrichid beetle/Pistacia lentiscus*	Portugal, Sesimbra	2005	[6]
G. cnesini	29_1820 CCF4292	*Cnesinus lecontei/Creton draco*	Costa Rica, Heredia	2007	[13]
G. microcorthyli	38_A2 CCF3861	*Microcorthylus sp./Cassia grandis*	Costa Rica, Heredia	2006	[14]
G. eupagioceri	39_A1 CCF3754	*Eupagiocerus dentipes/Paulinia renesi*	Costa Rica, Heredia	2006	[14]
G. rufescens	42_1821 CCF4524	*Cnesinus lecontei/Creton draco*	Costa Rica, Heredia	2007	[14]

Ecology: PF – association with phloem feeding beetles, G – generalist, SF – specialists to *Fagus*, SP – specialist to Pinaceae, HWS – hardwood specialists, P – pathogen, AF – ambrosia fungi, AAF – auxiliary ambrosia fungi.
2.2. Biolog MicroPlate™ for Filamentous fungi

Biolog MicroPlate™ for Filamentous fungi contains 95 different dried carbon sources and one negative control. Fungal conidia from grown cultures were transferred into the inoculating fluid (0.25% Phytagel, 0.03% Tween 40) by rolling a swab across sporulating areas to get the final transmittance of 75 ± 2%. The inoculated plates (200 µl per well) were then incubated in the dark at 25 °C and absorbance at 750 nm was used to measure mycelial growth at 24, 48, 72, 96 and 168 h. An absorbance reading taken 96 h after the inoculation was included in the analysis, because sporulation occurred in some strains after that time. Two technical replicates per strain were prepared.

2.3. Statistical analysis

The absorbance of the negative control was subtracted from all substrates within one plate and negative values were assigned a value of zero [4]. Biolog™ data were visualized on PCA (Principal Component Analysis) in PAST program [5]. The statistical significance of the type of ecology was evaluated by one-way NPMANOVA with Bonferroni-corrected p values using Bray-Curtis distance and 9999 permutations.

Acknowledgments

The project was founded by Czech Science Foundation project GACR 16-15293Y.
Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104568.

References

[1] T. Veselská, J. Skelton, M. Kostovčík, J. Hulcr, P. Baldrian, M. Chudíčková, T. Cjahthaml, T. Vojtová, P. García-Fraile, M. Kolařík, Adaptive traits of bark and ambrosia beetle-associated fungi, Fungal Ecol. 41 (2019) 165–176. https://doi.org/10.1016/j.funeco.2019.06.005.

[2] A.L. Pepori, M. Kolařík, P.P. Bettini, A.M. Vettriano, A. Santini, Morphological and molecular characterisation of Geosmithia species on European elms, Fungal Biol. 119 (2015) 1063–1074. https://doi.org/10.1016/j.funbio.2015.08.003.

[3] M. Kolařík, J. Hulcr, N. Tisserat, W. De Beer, M. Kostovčík, Z. Kolaríková, S.J. Seybold, D.M. Rizzo, Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity, Mycologia 109 (2017) 185–199. https://doi.org/10.1080/00275514.2017.1303861.

[4] J.L. Garland, Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization, Soil Biol. Biochem. 28 (1996) 213–221. https://doi.org/10.1016/0038-0717(95)00112-3.

[5] O. Hammer, D.A.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron. 4 (2001) 1–9.

[6] M. Kolařík, M. Kostovčík, S. Pazoutová, Host range and diversity of the genus Geosmithia (Ascomycota : Hypocreales) living in association with bark beetles in the Mediterranean area, Mycol. Res. 111 (2007) 1298–1310. https://doi.org/10.1016/j.mycres.2007.06.010.

[7] M. Kolařík, A. Kubatová, J. Hulcr, S. Pazoutová, Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe, Microb. Ecol. 56 (2008) 198–199. https://doi.org/10.1007/s00248-008-9371-1.

[8] M. Kolařík, A. Kubatová, S. Pazoutová, P. Srutka, Morphological and molecular characterisation of Geosmithia putterillii, G-pallida comb. nov and G-flava sp nov., associated with subcorticolous insects, Mycol. Res. 108 (2004) 1053–1069. https://doi.org/10.1017/S0953756204000796.

[9] M. Kolařík, E. Freeland, C. Utley, N. Tisserat, Geosmithia morbida sp nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA, Mycologia 103 (2011) 325–332. https://doi.org/10.3852/10-124.

[10] R. Jankowiak, M. Kolařík, Fungi associated with the fir bark beetle Cryptophagus piceae in Poland, For. Pathol. 40 (2010) 133–144. https://doi.org/10.1111/j.1439-0329.2009.00620.x.

[11] M. Kolařík, R. Jankowiak, Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe, Microb. Ecol. 66 (2013) 682–700. https://doi.org/10.1007/s00248-013-0228-x.

[12] M. Kolařík, A. Kubatová, I. Cepicka, S. Pazoutová, P. Srutka, A complex of three new white-spored, sympatric, and host range limited Geosmithia species, Mycol. Res. 109 (2005) 1323–1336. https://doi.org/10.1017/S0953756205003965.

[13] M. Kolařík, J. Hulcr, L.R. Kirkendall, New species of Geosmithia and Graphium associated with ambrosia beetles in Costa Rica, Czech Mycol. 67 (2015). https://doi.org/10.33585/cmy.67103.

[14] M. Kolařík, L.R. Kirkendall, Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales), Fungal Biol. 114 (2010) 676–689. https://doi.org/10.1016/j.funbio.2010.06.005.