Exact diagonalization for a 16-site spin-1/2 pyrochlore cluster

C Wei* and S H Curnoe

Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s A1B 3X7, Newfoundland & Labrador, Canada

E-mail: cw7734@mun.ca

Received 17 August 2022, revised 7 April 2023
Accepted for publication 13 April 2023
Published 26 April 2023

Abstract

We find exact solutions to the Hamiltonian of a 16-site spin-1/2 pyrochlore cluster with nearest neighbour exchange interactions. The methods of group theory (symmetry) are used to completely block-diagonalize the Hamiltonian, yielding precise details about symmetry of the eigenstates, in particular those components which are spin ice states, in order to evaluate the spin ice density at finite temperature. At low enough temperatures, a ‘perturbed’ spin ice phase, where the ‘2-in-2-out’ ice rule is largely obeyed, is clearly outlined within the four parameter space of the general model of exchange interactions. The quantum spin ice phase is expected to exist within these boundaries.

Keywords: pyrochlores, spin ice, exact diagonalization

1. Introduction

The ideal spin ice was proposed by Philip Anderson in 1956 [1] in a study of finite entropy, short-range ordered states in magnetic spinels. In pyrochlores and spinels (which share the same crystallographic symmetry group, Fd3m), the ‘spin ice rule’ is that the four Ising-like spins on a tetrahedron must be oriented so that two of them point toward the centre of each tetrahedron, and two point away, the so-called ‘two-in-two-out’ configuration. Given that the tetrahedra share spins on each vertex, the number of pure spin ice states (those states for which the spin ice rule is satisfied on every tetrahedron) is constrained by the geometry of the system and is approximately 1.5N/2 [2]. The spin ice rule is precisely analogous to the ice rule for water ice, which governs the positions of the hydrogen atoms, and which results in a highly degenerate ground state in water ice, producing a residual entropy at zero temperature, as shown by Pauling in 1935 [2]; spin ice is expected to have the same property [1]. This classical spin ice state occurs in several pyrochlores, including Ho2Ti2O7 and Dy2Ti2O7 [3, 4]. The elementary excitations of spin ice are magnetic monopoles, which occur when the spin ice rule is violated and behave in accordance with Maxwell’s equations [5–7].

In contrast to classical spin ice materials, a quantum spin ice occurs when there are quantum fluctuations of the degenerate spin ice states, even at zero temperature, which may lead to the formation of a quantum spin liquid [8–10]. Examples of candidate quantum spin ice pyrochlores include Tb2Ti2O7 [11, 12], Yb2Ti2O7 [13–16], Ce2Zr2O7 [17], and several Pr oxides [18–20].

In this article we investigate a quantum spin Hamiltonian for the pyrochlore lattice using exact diagonalization. This numerical method can be used to evaluate the entire spectrum, as well as finite temperature spin-correlations, for small systems. This method has been applied to spin-1/2 pyrochlore magnets with anti-ferromagnetic interactions [21] in order to investigate spin correlations on a ‘breathing’ pyrochlore...
lattice, which occurs when the tetrahedra of two different orientations have two different sets of coupling constants. In this work, we study the phase space of the most general model of exchange interactions on the pyrochlore lattice in the vicinity of the classical spin ice phase. The general form of the Hamiltonian has four exchange parameters and the methods of group theory are used to block-diagonalize the Hamiltonian in order to reduce the computational effort required to investigate this 4-parameter space. One of our aims is to determine the position of candidate quantum spin ice materials within this space.

2. Perturbed spin ice

2.1. The Hamiltonian

In pyrochlore magnets, the spins occupy the 16d Wyckoff position of the crystallographic space group $Fd\bar{3}m$, which are the vertices of a network of corner-sharing tetrahedra. The site symmetry is D_{3d} and there are four inequivalent sites (which we number $s = 1, 2, 3, 4$) which are distinguished by the direction of their 3-fold symmetry axes. The D_{3d} site symmetry lifts the $2f+1$-fold degeneracy of spin J magnetic ions into singlets and doublets. Any well-separated doubly degenerate ground state can be treated as spin-1/2 doublet. There are three different kinds of doublets, one which is non-Kramers (integral J) and two which are Kramers (1/2-integral J) [22].

The tetrahedra alternate between two orientations, often called ‘A’ and ‘B’. Each spin is shared between an A and a B tetrahedron, and there are four tetrahedra of each type within a face-centred cubic cell. Classical spin states can be represented as kets of the form $|±±±±\rangle$ where the quantization axis of each spin lies along the direction of its 3-fold symmetry axis, which points toward or away from the centres of the tetrahedra which share the spin. For example, the ‘all-in-all-out’ state $|+++.\rangle$ has all spins pointing out of one set of tetrahedra (say the ‘A’ set) and into the other set. Two spins located on the same tetrahedron (of either orientation) are nearest neighbours.

We consider a general nearest-neighbour exchange interaction for spin-1/2 spins,

$$H_{ex} = \sum_{(i,j)} J_{ij}^{\mu\nu} S_i^\mu S_j^\nu,$$

where the sum over (i,j) runs over pairs of nearest-neighbour spins and $S_i^\mu = (S_i^x, S_i^y, S_i^z)$ is the spin operator for the ith site. $J_{ij}^{\mu\nu}$ are exchange constants which are constrained by the space group symmetry of the crystal. In pyrochlore magnets there are only four independent parameters. It is convenient to express the Hamiltonian as

$$H = J_1 X_1 + J_2 X_2 + J_3 X_3 + J_4 X_4,$$

where J_a are the exchange constants and

$$X_1 = -\frac{1}{3} \sum_{(i,j)} S_i^x S_j^x,$$

$$X_2 = -\frac{\sqrt{2}}{3} \sum_{(i,j)} [\Lambda_{xy}(S_i^x S_j^y + S_j^x S_i^y) + \text{h.c.}],$$

$$X_3 = \frac{1}{3} \sum_{(i,j)} [\Lambda_{yz}(S_i^y S_j^z + S_j^y S_i^z) + \text{h.c.}],$$

$$X_4 = -\frac{1}{6} \sum_{(i,j)} (S_i^+ S_j^- + \text{h.c.}).$$

In these expressions, the spin operators \vec{S}_i are given in terms of a set of local axes, such that the local z axes are the 3-fold symmetry axes described above (see [23, 24] for more details). Λ_{ab} are phases which depend on the site numbers: $\Lambda_{12} = \Lambda_{34} = 1$ and $\Lambda_{13} = \Lambda_{24} = \Lambda_{15} = e \equiv \exp(i\frac{2\pi}{3})$, and $S_{\pm} = S_x \pm iS_y$. Note that the Hamiltonian (2) is the most general form compatible with the symmetry of the lattice for magnetic site doublets that are spin $S = 1/2$ states (i.e. one of the Kramers-type doublets). The general form of the Hamiltonian will be slightly different for the other kinds of doublets. In the special case when $J_2 = J_3 = J_4 = 0$ all states of the form $|±±±±\rangle$ (i.e. the basis kets) are eigenstates of H. If $J_1 > 0$ then the ground state will be the doubly degenerate ‘all-in-all-out’ states, $|+++.\rangle$ and $|--.\rangle$, otherwise the ground state is the set of highly degenerate ‘two-in-two-out’ classical spin ice states. We examine perturbations around the classical spin ice state by finding exact numerical solutions for H for $J_1 < 0$ and the other exchange constants small ($|J_{2,3,4}| \ll |J_1|$), with the aim of determining the range for which the ice rule is satisfied as the system evolves into a quantum spin ice.

2.2. Finite temperature

To study the system at finite temperature we consider the density function,

$$\rho = \frac{1}{Z} \exp(-H/T) = \frac{1}{Z} \sum_i \exp(-E_i/T) |\psi_i\rangle \langle \psi_i|$$

where $|\psi_i\rangle$ are the eigenstates of H with eigenvalues E_i and

$$Z = \sum_i \exp(-E_i/T)$$

is the partition function.

Each basis state $|±±±±\rangle$ is a unique, classical spin configuration on the eight tetrahedra (A-type and B-type) of our 16-site system. For each state, the number of all-in-all-out tetrahedra is N_{AA}, the number of two-in-two-out (ice rule) tetrahedra is N_{22}, and the number of three-in-one-out or one-in-three-out tetrahedra is N_{13}/N_{31}, where $N_{AA} + N_{22} + N_{13}/N_{31} = 8$. A spin ice state satisfies the spin ice rule on all tetrahedra and will have $N_{22} = 8$; such states include states
that are superpositions of classical spin ice states. Thus the total density of each configuration is

\[n_{\text{config}} = \sum_j \left(\frac{N_{\text{config},j}}{8} \right) |u_j\rangle \rho |u_j\rangle \]

(5)

where \(|u_j\rangle \) are the basis kets.

2.3. Method

Generally, the Hamiltonian can be block-diagonalized into sectors classified by the irreducible representations (IR’s) of the underlying space group. These will be labelled by a \(k \)-vector to which will belong various different IR’s. In a finite system with periodic boundary conditions only a small number of \(k \)-vectors will occur. In order to fully exploit the symmetry of the system, the shape of the finite system should be chosen so that the point group symmetry is preserved along with a set of translations. Periodic boundary conditions are assumed. The smallest unit that preserves the point group symmetry is a single tetrahedron with four spins; here there are no translations and the only \(k \)-vector is \(k = (0, 0, 0) \), the \(\Gamma \)-point of the Brillouin zone. The next smallest unit has 16 spins arranged on four tetrahedra inside a cubic cell; here the IR’s belong to the \(\Gamma \)-point or the \(X \)-point, \(k = \frac{\pi}{a} (1, 0, 0) \).

The symmetry group of the sixteen-site system contains 192 elements with 14 IR’s (10 belonging to the \(\Gamma \)-point and 4 to the \(X \)-point), of which all but four are degenerate. Thus the \(2^{16} \times 2^{16} \) Hamiltonian matrix can be block-diagonalized by an appropriate unitary transformation which is found by explicitly constructing the set of symmetrized states belonging to each IR (see appendix A). Among the \(2^{16} \) basis kets, only 90 are pure spin ice states; linear superpositions of these form 90 symmetrized spin ice states which occur in 12 of the 14 IR’s.

3. Results

We solved the block-diagonalized \(H \) numerically for \(J_1 = -1 \) and computed the densities \(n_{\text{AAAO}}, n_{\text{2220}} \) and \(n_{31/13} \) (equation (5)) for select planes within the parameter space of \(J_2, J_3 \) and \(J_4 \). The results are shown in figures 1–6 at two different temperatures. Figures 1 and 2 show the two-in-two-out density \(n_{2220} \). A well-defined, finite region in the parameter space where the ice rule is largely satisfied is evident. Outside this region, the number of tetrahedra satisfying the ice rule is between roughly 50% and 80%.

Figures 3 and 4 show the three-in-one-out/one-in-three-out density \(n_{31/13} \) using the same parameter ranges, temperatures, and overall scale as the two-in-two-out results discussed above. Figures 5 and 6 show the all-in-all-out density \(n_{\text{AAAO}} \) for the same parameter ranges and temperatures, but a different colour scheme has been used because the maximum density is only 10% and otherwise negligible for much of the parameter space. Hence the plots of \(n_{31/13} \) mirror those of \(n_{2220} \), with a well-defined region centred at the origin where the density vanishes, and a maximum value of approximately 50% outside this region.

The origin point of the figures, corresponding to \(J_2 = J_3 = J_4 = 0 \) and \(J_1 = -1 \) can be solved analytically, yielding a 90-fold degenerate pure, classical spin ice ground state with energy \(-4/3\) and a 2680-fold degenerate first excited state with energy \(-1\). The spacing between energy levels is \(1/3\), up to the highest energy all-in-all-out state with energy \(4\). Generally, the energy of a pure, classical spin ice state is \(-N/12\), where \(N\) is the number of sites and \(N/2\) is the total number of tetrahedra, while the energy of the highest level is \(N/4\), and the level spacing is \(1/3\). At \(T = 0.05\), the value of \(n_{2220}\) is 0.99, i.e. the degenerate ground state carries nearly all of the weight at this temperature, while at \(T = 0.1\) the value of \(n_{2220}\) is reduced to 0.84. At \(T = 0.1\), the first excited state, with its large degeneracy, contributes the same weight as the ground state.
state, and the second excited state, with an even larger degeneracy of 8934, also has a non-negligible contribution to n_{2I2O}.

For small values of the constants J_2, J_3 and J_4, to zeroth order in degenerate perturbation theory, the eigenstates of the Hamiltonian will be the symmetrized states belonging to the various IR’s. These symmetrized states are, by construction, superpositions of classical states which all have the same values of $N_{AI/1O}$, N_{2I2O} and $N_{31/13}$. More generally, the eigenstates of H are superpositions of states with different values of N’s; nevertheless, the densities n_{config} remain well-defined and may be calculated using equation (5).

Figure 3. The three-in-one-out/one-in-three-out density $n_{31/13}$ at $T = 0.05$.

(a) $J_1 = -1, J_4 = 0$

(b) $J_1 = -1, J_3 = 0$

(c) $J_1 = -1, J_2 = 0$

(d) $J_1 = -1$

Figure 4. The three-in-one-out/one-in-three-out density $n_{31/13}$ at $T = 0.1$.

(a) $J_1 = -1, J_4 = 0$

(b) $J_1 = -1, J_3 = 0$

(c) $J_1 = -1, J_2 = 0$

(d) $J_1 = -1$

Figure 5. The all-in-all-out density n_{AiAO} at $T = 0.05$.

(a) $J_1 = -1, J_4 = 0$

(b) $J_1 = -1, J_3 = 0$

(c) $J_1 = -1, J_2 = 0$

(d) $J_1 = -1$

Figure 6. The all-in-all-out density n_{AiAO} at $T = 0.1$.

The notable feature of our results is the extent of the region in which the ice-rule is obeyed for well-defined, finite ranges of the constants J_2, J_3 and J_4. In appendix B we show the results for a smaller system—a single tetrahedron. We find that in the smaller system the 2-in-2-out density plots are similar to those of the larger system for the parameters J_2 and J_3, but an unusual finite size effect for the single-tetrahedron occurs when J_4 is non-zero. This effect arises when the number of basis states is small compared to the number of IRs, which occurs in the four-site single-tetrahedron problem, but not in the larger sixteen-site problem.

In praseodymium pyrochlores the constant J_2 is zero because the term X_2 in H is not invariant under time reversal.
for the non-Kramers ground state doublet of the Pr ions [25]. The phase diagram for this model was studied using mean field theory in [20], with the boundaries of the spin ice phase for similar to what we have shown in figures 1(c) and 2(c); the roughly triangular shape of the central region is similar, as are the other phase boundaries appearing outside this region. (The relations between the coupling constants used in [20] and those used in equation (2) are given in appendix C). Outside this region, [20] identifies ‘quantum’ phases associated with spins arranged perpendicular to their local z-axes, which are compatible with the superposition of three-in-one-out/one-in-three-out and two-in-two-out states evident in our results.

We can determine the location in our phase diagrams of quantum spin ice candidates using estimates of coupling constants. For Yb$_2$Ti$_2$O$_7$, the exchange constants were determined by fits to spin wave spectra in several different experiments [13, 16, 26, 27]. These experiments found consistent results for J_2, in the range -3.5 to -3.9 K, and for J_3 ≈ 1.4 to 2.1 K, but with larger discrepancies for J_4 ≈ 3.5 to 6.1 K, and even larger disagreement for J_5 $\approx -.9$ to -5.9 K. Nevertheless, all of these results correspond to points that lie well outside the central 2-in-2-out zone shown in figures 1 and 2, but with an appreciable 2-in-2-out density (about 50%).

The terbium ions in Tb$_2$Ti$_2$O$_7$ are another example of non-Kramers doublets, but mixing with excited states (within the 2$I+1$ multiplet) and a symmetry-preserving map allows for all four exchange terms to be present in the Hamiltonian. Assuming a perturbative renormalization of the coupling constants, estimates of them obtained from fits to diffuse neutron scattering measurements are: $J_1 = -5.1$ K, $J_2/|J_1| = .04$, $J_3/|J_1| = .02$ and $J_4/|J_1| = .06$ [12], which is near the centre of the region where the 2-in-2-out rule is obeyed, suggesting that this material is a perturbed spin ice.

4. Summary

Useful physical insight, in addition to computational advantages, can be gained by exploiting the high symmetry underlying pyrochlore magnets. Here we have combined this approach with numerical methods to determine precisely how the spin ice contribution to the total density function varies with the coupling constants of the most general model for nearest-neighbour spin-spin interactions. A well-defined region centred at the origin of this parameter space is the location of a phase which can be thought of as a perturbed spin ice—a phase where the 2-in-2-out ice rule is largely obeyed, with small fluctuations due to the transverse terms X_2, X_3 and X_4 in the nearest neighbour exchange Hamiltonian. Beyond this region, where transverse fluctuations are larger, boundaries between other phases are also evident, suggestive of competing quantum phases.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We thank Oliver Stueker for assistance with using the resources at Compute Canada and Kyle Hall for helpful discussions about coding. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Appendix A. Block Diagonalization

The pyrochlore crystal structure has space group symmetry $Fd\bar{3}m$ (No. 227), with octahedral point group symmetry O_h and fcc lattice translations $n_1\vec{t}_1 + n_2\vec{t}_2 + n_3\vec{t}_3$, where $\vec{t}_1 = a(0,1/2,1/2)$, $\vec{t}_2 = a(1/2,0,1/2)$ and $\vec{t}_3 = a(1/2,1/2,0)$ and n_1, n_2 and n_3 are integers.

By considering the cubic conventional cell with periodic boundary conditions, the symmetry group used to block-diagonalize the Hamiltonian is $O_h \times \{1, t_1, t_2, t_3\}$ (where the point group O_h contains non-symorphic elements), which has 192 group elements and 14 IRs. The unitary transformation that block-diagonalizes the Hamiltonian is found by generating the complete set of symmetrized, orthogonal basis states belonging to each IR. Ninety of these states will be spin ice states (superpositions of classical spin ice states that satisfy the ice-rule on every tetrahedron), which appear in nearly all the representations of the group. In addition to these spin ice states, there are many more states where the ice rule is satisfied on some of the tetrahedra that also contribute to the two-in-two-out density. These states occur in every block.

Table 1 lists the dimension (degeneracy) of each IR, as well as the size of the blocks of the Hamiltonian and the number of symmetrized spin ice states in each IR. The last column in table 1 contains a sample of our data for a specific set of coupling constants. The ground state occurs in the A_{1g} block with energy -1.43 (in units of J_1). All the blocks containing spin ice states have similar smallest values, while those with no spin ice states have lowest energy values of approximately -1.19; there is a gap of approximately 0.2 between the spin ice states and the first set of excited states for the set of coupling constants used.
Table 1. Block-diagonalization of H for 16 sites. The first column lists the IR’s of the symmetry group, the second column lists their dimension (degeneracy), the third column gives the size of each block (i.e. the number of basis states that belong to each dimension of each IR), and the fourth column lists the number of spin ice states belonging to each block. The last column lists the lowest energy eigenvalue of each block, calculated using $J_1 = -1$, $J_2 = 0.02$, and $J_3 = J_4 = 0.1$.

IR	Dimension	Block size	Number of spin ice states	Lowest energy in each block
A_{1g}	1	383	4	-1.43673
A_{2g}	1	371	0	-1.19478
A_{1u}	1	335	2	-1.38473
A_{2u}	1	335	0	-1.19904
E_g	2	774	4	-1.40312
E_u	2	682	2	-1.39776
T_{1g}	3	1081	2	-1.38476
T_{2g}	3	1085	3	-1.40894
T_{1u}	3	957	0	-1.17351
T_{2u}	3	957	1	-1.38197
X_1	0	2038	2	-1.38315
X_2	0	2042	4	-1.40764
X_3	0	2038	1	-1.39129
X_4	0	2042	2	-1.39200

Table 2. Block-diagonalization of H for four sites. The columns are the same as in Table 1.

IR	Dimension	Block size	Number of spin ice states
A_{1g}	1	1	1
A_{2g}	1	0	0
A_{1u}	1	0	0
A_{2u}	1	0	0
E_g	2	3	1
E_u	2	0	0
T_{1g}	3	2	1
T_{2g}	3	1	0
T_{1u}	3	0	0
T_{2u}	3	0	0

Appendix B. Single Tetrahedron

For comparison, we present results for a single tetrahedron. Since periodic boundary conditions are applied, the system contains two tetrahedra and so all interactions for a single tetrahedron occur twice (effectively doubling the eigenvalues). With a Hamiltonian of size 2^4, this problem is easy to solve numerically, and block-diagonalization yields analytic results for some sectors. Table 2 lists the IR’s for the symmetry group of a single tetrahedron, their dimensions and block size, as well as the number of spin ice states for each IR. There are only 6 spin ice states altogether. The 2-in-2-out density n_{220}, the three-in-one-out/one-in-three-out density $n_{31/13}$ and the all-in-all-out density n_{440} (equation (5)) for a single tetrahedron are shown in figures 7 and 8, 9 and 10, at $T = 0.05$ and $T = 0.1$.

Symmetry and finite-size effects play a large role in the single tetrahedron problem, which are especially evident when $J_4 \neq 0$. To analyse this problem, we consider the four terms in H separately. As discussed in section 2.1, the operator X_1 has only diagonal matrix elements. Because the operator X_2 contains single raising or lowering operators it must mix spin ice states with other states; likewise X_3 will have the same effect. However, X_4 may connect symmetrized spin ice states to either non-spin ice states or to other symmetrized spin ice states.

As we have discussed, the general Hamiltonian can be block-diagonalized into blocks with symmetrized states belonging to the different IR’s. It turns out that in the single-tetrahedron problem, after block-diagonalization, X_4 has only
Figure 9. The three-in-one-out/on-in-three-out density $n_{31/13}$ for a single tetrahedron at $T = 0.05$.

Figure 10. The three-in-one-out/one-in-three-out density $n_{31/13}$ for a single tetrahedron at $T = 0.1$ for select cuts within the parameter space of J_2, J_3, and J_4. Diagonal matrix elements, which means that X_4 will not mix the symmetrized spin ice states appearing singly in each block with any other state. Therefore, large enough positive or negative values of J_4 will produce a spin ice ground state that will cause the value of n_{2120} to be very close to one, hence there is no confinement of the phase where the 2-in-2-out rule is largely obeyed for the parameter J_4. This does not occur in the larger (216) system because X_4 has non-diagonal matrix elements in each block. However the phase diagram in the space of the parameters J_2 and J_3 is very similar to the larger system.

Figure 11. The all-in-all-out density n_{AIAO} for a single tetrahedron at $T = 0.05$.

Figure 12. The all-in-all-out density n_{AIAO} for a single tetrahedron at $T = 0.1$.

Appendix C. Exchange constants conversion

The relations between the exchange constants in [13, 20] and those used in (2) are:

$J_1 = -3J_{zz}$ \hspace{2cm} (C1)

$J_2 = 3\sqrt{2}J_{\pm \pm}$ \hspace{2cm} (C2)

$J_3 = 3J_{\pm \pm}$ \hspace{2cm} (C3)

$J_4 = 6J_{\pm}$. \hspace{2cm} (C4)
References

[1] Anderson P W 1956 Phys. Rev. 102 1008
[2] Pauling L 1935 J. Am. Chem. Soc. 57 2680
[3] Harris M J, Bramwell S T, McMorrow D F, Zeiske T and Godfrey K W 1997 Phys. Rev. Lett. 79 2554
[4] Ramirez A, Hayashi A, Cava R, Siddharthan R and Shastry B 1999 Nature 399 333
[5] Castelnovo C, Moessner R and Sondhi S L 2008 Nature 451 42
[6] Jaubert L and Holdsworth P 2009 Nat. Phys. 5 258
[7] Benton O, Sikora O and Shannon N 2012 Phys. Rev. B 86 075154
[8] Hermele M, Fisher M P A and Balents L 2004 Phys. Rev. B 69 064404
[9] Shannon N, Sikora O, Pollmann F, Penc K and Fulde P 2012 Phys. Rev. Lett. 108 067204
[10] Balents L 2010 Nature 464 199–208
[11] Gardner J S, Gaulin B D, Berlinsky A J, Waldron P, Dunsmuir S R, Raju N P and Greedan J E 2001 Phys. Rev. B 64 224416
[12] Curnoe S H 2013 Phys. Rev. B 88 014429
[13] Ross K A, Savary L, Gaulin B D and Balents L 2011 Phys. Rev. X 1 021002
[14] Chang L-J, Onoda S, Su Y, Kao Y-J, Tsuei K-D, Yasui Y, Kakurai K and Lees M R 2012 Nat. Commun. 3 992
[15] Pan L, Kim S K, Ghosh A, Morris C M, Ross K A, Kermarrec E, Gaulin B D, Koohpayeh S M, Tchernyshyov O and Armitage N P 2014 Nat. Commun. 5 4970
[16] Robert J, Lhotel E, Remenyi G, Sahling S, Mirebeau I, Decorse C, Canals B and Petit S 2015 Phys. Rev. B 92 064425
[17] Gaudet J et al 2019 Phys. Rev. Lett. 122 187201
[18] Zhou H D, Wiebe C R, Janik J A, Balicas L, Yo Y J, Qiu Y, Copley J R D and Gardner J S 2008 Phys. Rev. Lett. 101 227204
[19] Sibille R, Lhotel E, Hatnean M C, Balakrishnan G, Fäk B, Gauthier N, Fennell T and Kenzelmann M 2016 Phys. Rev. B 94 024436
[20] Petit S et al 2016 Phys. Rev. B 94 165153
[21] Chandra V R and Sahoo J 2018 Phys. Rev. B 97 144407
[22] Curnoe S H 2018 J. Phys.: Condens. Matter 30 235803
[23] Curnoe S H 2007 Phys. Rev. B 75 212404
[24] Curnoe S H 2008 Phys. Rev. B 78 094418
[25] Onoda S and Tanaka Y 2011 Phys. Rev. B 83 094411
[26] Thompson J D, McClarty P A, Prabhakaran D, Cabrera I, Guidi T and Coldea R 2017 Phys. Rev. Lett. 119 057203
[27] Scheie A, Kindervater J, Zhang S, Changlani H J, Sala G, Ehlers G, Heinemann A, Tucker G S, Koohpayeh S M and Broholm C 2020 Proc. Natl Acad. Sci. 117 27245