Coupling between Nutrient Availability and Thyroid Hormone Activation*

Lattoya J. Lartey, João Pedro Wernack-de-Castro, InSug O-Sullivan, Terry G. Unterman, and Antonio C. Bianco

From the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136, the Department of Internal Medicine, Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois 60612, the Carlos Chagas Filho Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil, and the Jesse Brown Veterans Affairs Medical Center and the Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612

Background: Insulin/IGF-1-induced activation of the PI3K-mTORC2-Akt pathway transcriptionally up-regulates D2.

Results: Insulin/IGF-1-induced activation of the PI3K-mTORC2-Akt pathway transcriptionally up-regulates D2.

Conclusion: FOXO1 represses DIO2 during fasting, and derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway.

Significance: This mechanism explains how T₃ production, serum T₃ levels, and T₃-dependent cellular metabolic rate are kept at a level proportionate to the availability of energy substrates.

The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of c-glucocorticoids.

In mammals, body energy expenditure is gradually decreased with caloric restriction as well as prolonged starvation. This is an adaptive response driven by the hypothalamus that includes behavioral as well as metabolic modifications, such as increased sleep, diminished motor activity, and core temperature (1). During fasting, the hormonal milieu is dominated by low levels of insulin and thyroid hormones, which has been proposed as an explanation for the slowdown in weight loss after a few days of caloric restriction (2, 3). Notably, thyroid activity is restored promptly upon refeeding, as seen in patients recovering from anorexia nervosa (4). In such patients, weight gain and an increase in serum T₃₂ are closely associated with acceleration in energy expenditure (4). These observations indicate that the set point at which the hypothalamic-pituitary-thyroid activity is maintained is affected by nutrient availability, with the lowest (default) levels of activity seen during caloric restriction. Leptin is the key molecule signaling food intake and the availability of energy substrates, which defines the hypothalamic-pituitary-thyroid set point by stimulating secretion of thyrotropin-releasing hormone and thyroid-stimulating hormone and hence thyroidal activity (5, 6).

In humans, the thyroid gland contributes with about 20% of the daily T₃ production, and the residual 80% is contributed by two deiodinases that convert T₄ to T₃ outside the thyroid parenchyma (i.e. D1 and D2, with the latter playing the major role) (7). In vivo kinetic studies in rats indicate that serum T₃ levels fall during fasting also as a result of decreased thyroidal T₃ secretion (8). In addition, there is also accelerated thyroid hormone inactivation via D3 expression in multiple tissues as well as accelerated sulfation and glucuronidation in the liver (9, 10). However, it is less clear whether the extrathyroidal T₃ production is reduced as well. Whereas hepatic D1 activity is reduced during caloric restriction in rodents (11), this seems to be a consequence rather than a cause of the low serum T₃; given that DIO1 is highly responsive to T₃ (8, 12). On the other hand, D2 is normally stimulated during hypothyroidism (7), and the fact that it is reduced by fasting in the pituitary gland and brown
adipose tissue (BAT) (10) indicates a role in the fall of serum T₃. D₂ is an endoplasmic reticulum-resident protein that increases intracellular T₃ concentration and the expression of thyroid hormone-dependent genes (7, 13). For example, approximately half of the T₃ present in the brain and in the BAT is originated locally via D₂ activity; D₂ inactivation in both tissues has been shown to dampen thyroid hormone signaling (7). Therefore, control of the D₂ pathway by caloric intake could potentially modulate thyroid hormone signaling by affecting intracellular T₃ concentration as well as circulating T₃ levels.

D₂ expression is controlled by transcriptional (i.e. cAMP, FOXO3, and NF-κB) (14, 15), translational (i.e. ER stress) (16), and post-translational mechanisms, such as ubiquitination and proteasomal degradation (17). In addition, D₂ activity in rat BAT is up-regulated by growth factors such as IGF-1 and the multifunctional protein insulin (18, 19), which promotes cellular glucose uptake and growth by acting through various nutrient-sensing pathways, such as the PI3K-mTOR signaling pathway. Mammalian target of rapamycin (mTOR) is a signaling pathway that functions as a regulator of translational initiation for cellular metabolism, growth, survival, proliferation, and protein synthesis (20, 21). mTOR, a 289-kDa Ser/Thr kinase, serves as the catalytic core of two distinct multicomponent complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) (22). Numerous studies have linked mTORC1 to protein synthesis and growth (23) and to the downstream activation of a myriad of metabolic regulatory genes, including HIF-1α and SREBP1/2 (24). In addition, it has been determined that mTORC2 phosphorylates the AGC kinases (25) and mediates cell survival and proliferation through phosphorylation of its downstream effector, Akt (26).

The observation that insulin stimulates D₂ activity in rat brown adipocytes (19) and that insulin sensitizers stimulate D₂ expression in cultures of skeletal myocytes (27) indicate that the nutritional state of an organism can also affect thyroid hormone signaling by acting at the target cell level. The mechanism behind D₂ stimulation by insulin remain unknown, despite evidence that an indirect effect via the adrenergic receptors could play a role (28). In the present study, we have examined how nutrient availability and insulin stimulate D₂ activity in mice and cell models. We have found that insulin signals through the PI3K-mTORC2-Akt to relieve FOXO1-mediated repression of its downstream effector, Akt (26).

For generation of stable knockdown cell lines, MSTO-211H cells using GIPZ lentiviral shRNAmir for non-silencing control (NSC), human rictor (clone ID V2LHS_367492), or human raptor (clone ID V2LHS_367492) were from American Type Culture Collection (Manassas, VA) and cultured in humidified atmosphere with 5% CO₂ at 37 °C, in RPMI 1640 from CellGro (Manassas, VA) supplemented with 10% FBS and 100 mM sodium selenite (16, 30). As indicated, cells were serum-starved for 48 h in 0.1% FBS medium prior to re-exposure to 10% FBS medium, insulin stimulation, or IGF-1 stimulation.

Deiodinase Assays—After harvesting, tissues and MSTO-211H cells were resuspended in Dulbecco’s PBS containing 1 mM EDTA (PE). 0.25 mM sucrose, and 10 mM dithiothreitol (DTT) and sonicated, and cell lysates were analyzed for protein concentration via Bradford assay (Bio-Rad). D₂ assays were performed as described previously in duplicate (27).

Gene Expression Analysis—RNA was extracted from MSTO-211H cells or animal tissue using the RNeAqueous Micro Kit (Life Technologies Inc.) or RNeasy Mini Kit (Qiagen), respectively. RNA was quantified with a NanoDrop and reverse transcribed using High Capacity cDNA (Applied Biosystems) or the First Strand cDNA for RT-PCR (AMV) Kit (Roche Applied Science). Genes of interest were measured by qPCR (Bio-Rad iCycler iQ real-time PCR detection system) using the iQ SYBR Green Supermix (Bio-Rad) or qPCR (Applied Biosystems Step One Plus Real-Time PCR System) using the SYBR Green Fast-Mix ROX (Quanta Biosciences). Relative quantitation was using the standard curve method and the iCycler or Step One Plus software.

Western Blot Analysis—Cells/tissues were lysed in 0.25 mM sucrose PE containing 10 mM DTT. The lysates were diluted with 4× sample loading buffer (Invitrogen), and 5–25 μg of total protein were run on 4–12% NuPAGE BisTris gels (Life Technologies, Inc.). Samples were transferred to Immobilon-FL PVDF transfer membrane (Millipore, Billerica, MA) and probed with antibodies as indicated at a 1:1000 dilution overnight. Fluorescent labeled secondary antibodies (LI-COR Biosciences, Lincoln, NE) were used at 1:2500 for 1 h. All blots were imaged using the LI-COR Odyssey instrument per the manufacturer’s instructions.

Experimental Procedures

Reagents and Antibodies—Outer ring-labeled [¹²⁵I]T₄ (specific activity 4400 Ci/mmol; PerkinElmer Life Sciences) was purified on LH-20 columns before use; fetal bovine serum (FBS) was from Atlanta Biologicals (Flowery Branch, GA); cyclohexamide, insulin, IGF−1, LY294002, wortmannin, GSK690693, rapamycin, and PP242 were from Sigma-Aldrich; AS1842856 was from EMD Millipore (Billerica, MA); α-phospho-S6rp (Ser-235/236), α-phospho-S6rp (Ser-240/244), α-total S6rp, α-phospho-Akt (Ser-473), α-phospho-Akt (Thr-308), α-pan-Akt, α-phospho-4EBP, α-total 4EBP, α-total rictor, α-total raptor, α-phospho-FOXO1 (Ser-256), and α-total FOXO1 were from Cell Signaling Technology (Boston, MA); GAPDH antibody was from GeneTex (Irvine, CA); α-FKHR (H-128) was from Santa Cruz Biotechnology, Inc. (Dallas, TX).

Cell Culture—MSTO-211H cells were from American Type Culture Collection (Manassas, VA) and cultured in humidified atmosphere with 5% CO₂ at 37 °C, in RPMI 1640 from CellGro (Manassas, VA) supplemented with 10% FBS and 100 mM sodium selenite (16, 30). As indicated, cells were serum-starved for 48 h in 0.1% FBS medium prior to re-exposure to 10% FBS medium, insulin stimulation, or IGF-1 stimulation.
lentiviral particles at a multiplicity of infection of ~23 and ~15 for raptor, respectively, and a multiplicity of infection of ~13 for raptor and diluted in 1 ml of serum-free RPMI containing 8 μg/ml Polybrene (Sigma-Aldrich). After 6 h, 1 ml of complete RPMI was added to each well (6-well plates). 72 h later, the transfection mixture was replaced with complete medium containing puromycin (1 μg/ml) to select for shRNA-expressing cells. Stable cell lines were generated after puromycin selection for 7 days.

Adenovirus-mediated Transduction of WT and Constitutively Active (CA) FOXO1—Adenoviral particles expressing WT and CA FOXO1 as described (32) were used to generate transient transfections for WT and CA FOXO1 in MSTO-211H. Cells were plated at 2.5 × 10⁵ cells/well in 6-well dishes and transduced with adenoviral particles of concentration 2.0 × 10⁹ pfu/ml and 1.8 × 10¹⁰ pfu/ml, respectively, that were diluted in 1 ml of serum-free RPMI. Complete medium containing 10% FBS was added after 6 h, and the medium was changed again after 24 h. At 48 h, cells were refed or stimulated with insulin for the experimental procedure.

Animal Studies—All studies performed were approved by the institutional animal care and use committee of the University of Miami in compliance with National Institutes of Health Standards. Male, 3-month-old C57BL/6j mice purchased from Jackson Laboratory were housed at room temperature (22 °C) on a 12-h dark/light cycle. Mice were randomly divided into three groups (control, fasting, refeeding) and acclimatized for 5 days. Male, 3-month-old C57BL/6j mice purchased from Jackson Laboratory were housed at room temperature (22 °C) on a 12-h dark/light cycle. Mice were randomly divided into three groups (control, fasting, refeeding) and acclimatized for 5 days. Male, 3-month-old C57BL/6j mice purchased from Jackson Laboratory were housed at room temperature (22 °C) on a 12-h dark/light cycle. Mice were randomly divided into three groups (control, fasting, refeeding) and acclimatized for 5 days.

Fasting for 36 h caused a marked loss in body weight (Fig. 1A), a drop in serum insulin levels (Fig. 1B), and insulin signaling in skeletal muscle (Fig. 1C). This was associated with an ~80% reduction in soleus Dio2 mRNA levels (Fig. 1D) and D2 activity (Fig. 1E). The decrease in D2 expression and activity was tissue-specific given that cerebral cortex Dio2 mRNA remained stable throughout the fasting period (Fig. 1F).

This led to a ~45% reduction in serum T₃ levels (0.56 ± 0.11 versus 0.29 ± 0.06 ng/ml; n = 4; p < 0.01), whereas serum T₄ remained largely unaffected (59 ± 12 versus 53 ± 10 ng/ml; n = 4; not significant). Refeeding for 8 h normalized body weight (Fig. 1A), increased serum insulin levels by about 100-fold (Fig. 1B), increased insulin signaling (Fig. 1C), elevated Dio2 mRNA (Fig. 1, G and H) and activity levels (Fig. 1I), normalized serum T₃ (0.48 ± 0.09 ng/ml; n = 4), and did not affect serum T₄ (54 ± 13 ng/ml; n = 4).

Fresh Serum Induces D2 Expression in a Cell Model—Given that D2 activity is near background level in skeletal muscle cell lines (27), the role played by fasting and refeeding on DIO2 expression was next modeled using MSTO-211H cells, a cell line that endogenously expresses readily measurable D2 activity (30). In this setting, keeping the cells for 48 h in 0.1% FBS caused a progressive reduction in DIO2 mRNA and activity to approximately half of the baseline values seen in cells cultured in 10% FBS (Fig. 2outf;F2, A and B). Notably, transition to 10% FBS resulted in a ~3.5-fold increase in D2 activity (Fig. 2C) that followed a ~2-fold increase in D2 mRNA levels (Fig. 2D); both subsided and returned to baseline levels by 24 h (Fig. 2, C and D). The increases in D2 activity (Fig. 2E) and typical serum-dependent downstream targets (Fig. 2F) were dependent on the amount of FBS contained in the fresh medium. D2 is known for having a post-translational regulation via ubiquitination and proteasomal degradation, explaining its relatively short activity half-life of less than 1 h (35). Thus, we tested whether the surge in D2 activity that follows refeeding could also involve the ubiquitin-proteasomal mechanism. D2 activity half-life was measured by exposing cells in 10% FBS to cycloheximide, but at no time was there a significant effect on D2 activity half-life (Fig. 2, G–J).

PI3K-dependent Pathways Stimulate D2 Activity—Serum/FBS contains a number of growth factors that could potentially induce D2 expression during refeeding, mostly acting via PI3K. Thus, we used insulin and observed a concentration-dependent increase in D2 activity of ~50% after 8 h (Fig. 2K). We also observed a time-dependent increase in D2 activity following the stimulation of serum-starved MSTO-211H cells with 50 ng/ml IGF-1 (Fig. 2L). The acceleration in D2 activity increased thyroid hormone activation, given that T₃ production was accelerated 4–5-fold after the addition of IGF-1 or insulin (Fig. 2M).

Next, different strategies were used to dissect the molecular pathway that mediates the insulin/IGF-1 stimulation of DIO2 expression. First, we inhibited PI3K using LY294002, a well-known reversible inhibitor of PI3K phosphorylation. Following
the standard 48 h starvation period in 0.1% FBS, MSTO-211H cells were treated with 50 μM LY294002 and either stimulated with 10% FBS (Fig. 3A) or exposed to insulin (Fig. 3B). Notably, inhibition of PI3K abrogated the increase in D2 activity at all timepoints studied, which coincided with the inhibition of phosphorylation of the downstream targets Akt and S6rp (Fig. 3A and B). Similar results were observed when 0.1–1 μM wortmannin was used to inhibit PI3K signaling (Fig. 3C, a and b). Next, we looked further down the pathway and used GSK690693, an inhibitor of all three Akt isoforms (36, 37) to examine the involvement of Akt in this mechanism. MSTO-211H cells that had been starved for 48 h were pretreated for 1 h with 10 nM GSK690693 (37) and subsequently exposed to insulin. Again, insulin induction of D2 activity was prevented at all time points tested throughout a 24 h time period (Fig. 3D). Western blot analysis of Akt phosphorylation shows overstimulation of the Akt pathway, a feature commonly observed when small molecule Akt inhibitors are used (36, 37). This was coupled with inhibition of S6rp phosphorylation (Fig. 3D), indicating successful Akt inhibition.

Inhibition of mTOR Pathway Prevents FBS and Insulin-mediated D2 Stimulation—We next used PP242, a selective ATP-competitive inhibitor of both mTORC1 and mTORC2 (38, 39) to test the involvement of the mTOR signaling pathway in the D2 stimulation by FBS or insulin. Treating cells with 2 μM PP242 prevented the surge in D2 activity that follows 10% FBS (Fig. 4A) or insulin stimulation (Fig. 4B). The effectiveness of PP242 in blocking both the mTORC1 and mTORC2 signaling pathways was documented by Western blot analysis of downstream targets of mTORC1 (S6rp and 4EBP1) and of mTORC2 (Akt) (Fig. 4A and B). Next, we used rapamycin, an inhibitor of mTORC1 (40), to further investigate the involvement of the mTOR pathway. Inhibition of mTORC1 delayed but did not prevent the surge in D2 activity caused by 10% FBS (Fig. 4C). Inhibitory selectivity was documented by Western blot analysis of phosphorylated and total S6rp, a downstream marker of mTORC1. Indeed, there was reduction of mTORC1 signaling after 4 h of rapamycin treatment, whereas phosphorylation of Akt via mTORC2 was not inhibited (Fig. 4D). Similar to D2 activity, we also found a significant increase of DIO2 mRNA
FIGURE 2. Nutrient availability increases D2 activity via transcriptional activation of DIO2 in MSTO-211H cells. A and B, DIO2 mRNA expression levels (A) and D2 activity (B) measured during 48 h of starvation in 0.1% FBS; n = 3; **, p < 0.01 versus 0 h; ***, p < 0.001 versus 0 h. C, D2 activity following the addition of 10% FBS; n = 3; **, p < 0.01 versus 0 h; ***, p < 0.001 versus 0 h. D, DIO2 expression levels measured by -fold change of DIO2/CYCLOA following the addition of 10% FBS; n = 3; *, p < 0.05 versus 0 h; **, p < 0.01 versus 0 h. E, D2 activity following 48 h of serum starvation in 0.1% FBS prior to the addition of 0.1 or 10% FBS supplemented medium. Cells were harvested at the indicated time points; n = 3; *, p < 0.05; **, p < 0.01. F, Western blot analysis at the indicated time points using -total S6rp, -phospho-S6rp (Ser-235/236/240/244), -pan-Akt, and -phospho-Akt (Ser-473) antibodies. G–J, assessment of D2 half-life using cyclohexamide (CHX) as a translational inhibitor 4 h (G), 0 h (H), 8 h (I), and 12 h (J) following the addition of 10% FBS. Cells were harvested at the indicated time points; n = 3. K, D2 activity following 8 h of insulin stimulation with 0, 100, 300, or 600 nm insulin supplemented with 0.1% FBS; n = 3; *, p < 0.05 versus 0 nm; **, p < 0.01 versus 0 nm. L, D2 activity measured following 48 h of serum starvation prior to stimulation with 50 ng/ml IGF-1; n = 3; *, p < 0.05; **, p < 0.01; ***, p < 0.001. M, T3 production measured in intact MSTO-211H cells 12 h after 300 nm insulin or 50 ng/ml IGF-1 stimulation. T3 production was calculated based on the free 125I content in the medium; n = 3; **, p < 0.01. Error bars, S.E.
levels at various time points over a 24 h period (Fig. 4 E). Studies with insulin led to similar observations (Fig. 4 F). As further confirmation, we used GIPZ lentiviral shRNA vectors to knockdown raptor (regulatory-associated protein of mTOR), a component of the mTORC1 complex. Despite successful raptor knockdown in these cells, both 10% FBS (Fig. 5 A) and the addition of insulin (Fig. 5 B) stimulated D2 activity. Altogether, these data suggest that D2 induction by 10% FBS or exposure to insulin is mediated by an mTORC2-dependent pathway.

To assess the role played by mTORC2, we next used GIPZ lentiviral shRNA vectors to knock down an essential component of the mTORC2 complex, rictor (rapamycin-insensitive component of mTOR) in MSTO-211H cells. Rictor is a core unit of the mTORC2 complex, and its reduction disrupts mTORC2 complex assembly (41). Stably expressing cells were starved for 48 h prior to the addition of 10% FBS (Fig. 5 C) or insulin stimulation (Fig. 5 D). Inhibition of mTORC2 significantly inhibits the surge in D2 activity at all time points tested, peaking at a 4-fold reduction by 12 h in both conditions as compared with NSCs. The successful knockdown of rictor was documented by Western blot. These data show the dependence of induction of D2 activity on the mTORC2 pathway.

FIGURE 3. Inhibition of PI3K signaling using LY294002 and wortmannin or of Akt signaling using GSK690693 prevents the insulin-induced increase in D2 activity in MSTO-211H cells. A, top, D2 activity following 48 h of starvation in 0.1% FBS prior to the addition of 10% FBS along with 50 μM LY294002; n = 3; ***, p < 0.001; **, p < 0.01. Bottom, corresponding Western blot analysis at the indicated time points using α-total S6rp, α-phospho-S6rp (Ser-235/236/240/244), α-pan-Akt, and α-phospho-Akt (Ser-473) antibodies. B, top, D2 activity following 48 h of starvation in 0.1% FBS prior to 300 nM insulin stimulation along with 50 μM LY294002; n = 3; **, p < 0.001; ***, p < 0.01. Bottom, corresponding Western blot analysis at the indicated time points using α-total S6rp, α-phospho-S6rp (Ser-235/236/240/244), α-pan-Akt, and α-phospho-Akt (Ser-473) antibodies. C(a), D2 activity following 48 h of starvation in 0.1% FBS prior to 300 nM insulin stimulation along with 1 μM wortmannin; n = 3; *, p < 0.05; ***, p < 0.001; corresponding Western blot analysis at the indicated time points using α-total S6rp, α-phospho-S6rp (Ser-235/236/240/244), α-pan-Akt, and α-phospho-Akt (Ser-473) antibodies. C(b), D2 activity following 48 h of starvation in 0.1% FBS and 3 h of preinhibition with 100 nM wortmannin prior to the addition and 300 nM insulin stimulation; n = 3; *, p < 0.05; **, p < 0.01; ***, p < 0.001. D, left, D2 activity following 48 h of starvation in 0.1% FBS and 3 h of 100 nM preinhibition with wortmannin prior to the addition of 10 nM GSK690693 and 300 nM insulin stimulation; n = 3; *, p < 0.05; **, p < 0.01; ***, p < 0.001. Right, corresponding Western blot analysis at the indicated time points using α-total S6rp, α-phospho-S6rp (Ser-235/236/240/244), α-pan-Akt, and α-phospho-Akt (Ser-473 and Thr-308) antibodies. Error bars, S.E.
tion of the insulin receptor (LIRKO) and that Dio2 mRNA levels were restored when this mouse was crossed with a mouse harboring a liver-specific disruption of FOXO1 (LIRFKO) (Fig. 6A). This observation, along with previous studies indicating that FOXO3 interacts with the Dio2 gene (15), suggested that FOXO1 may be the key molecule mediating the effects of nutrient status and insulin signaling on Dio2. This suspicion was strengthened by the observation that there was synchronized
FIGURE 6. The phosphorylation of FOXO1 or its inhibition using AS1842856 is correlated with an increase in D2 activity, whereas constitutive activation of FOXO1 abrogates the insulin and FBS-induced stimulation in D2 activity in MSTO-211H cells. A, the relative mRNA levels of Dio2/TATA-binding protein in the livers of IR floxed, LIRKO, and LIRFKO mice; n = 5, 4, and 6, respectively. *, p < 0.05; $, D2 activity in cells following 48 h of starvation in 0.1% FBS and the addition of 10% FBS; n = 3; **, p < 0.01; ***, p < 0.001. C, corresponding Western blots of phosphorylated and total FOXO1. D, D2 activity during starvation in 0.1% FBS with the addition of 20 μM AS1842856; n = 3; ***, p < 0.001. E, D2 activity after 48 h starvation in 0.1% FBS followed by treatment with 20 μM AS1842856; n = 3; **, p < 0.01; ***, p < 0.001. F, the measurement of Dio2/CYCLOA relative mRNA levels in cells transduced with WT or CA FOXO1 adenoviral vectors following the addition of 10% FBS; n = 3; ***, p < 0.001. G, the measurement of Dio2/CYCLOA relative mRNA levels in cells transduced with WT or CA FOXO1 adenoviral vectors following 600 nM insulin stimulation; n = 3; **, p < 0.01; ***, p < 0.001. H, top, D2 activity measured in cells transduced with WT or CA FOXO1 adenoviral vectors following the addition of 10% FBS; n = 3; **, p < 0.01. Bottom, corresponding Western blots of phosphorylated and total FOXO1. I, top, predicted binding site of FOXO1 on Dio2 promoter; transcription start site (TSS) depicted. Bottom, chromatin immunoprecipitation of MSTO-211H cells with anti-FOXO1 antibody followed by RT-qPCR analysis with results presented as percentage of input by control antibody; n = 2; *, p < 0.05. Error bars, S.E.

stimulation of D2 activity and FOXO1 phosphorylation after serum-starved MSTO-211H cells were exposed to 10% FBS (Fig. 6, B and C). Subsequently, the specific FOXO1 inhibitor AS1842856, which prevents Ser-256 phosphorylation, was added to cells during 0.1% FBS starvation (42). Whereas 0.1% FBS resulted in the expected loss of D2 activity, treatment with AS1842856 not only reversed this but increased D2 activity above baseline levels (Fig. 6D). Similar findings were observed in cells that had been starved in 0.1% FBS for 48 h and then treated with AS1842856 (Fig. 6E). Taken together, these results indicate that loss of D2 activity associated with fasting is mediated by FOXO1.

To further explore the role of FOXO1 in regulating D2 expression, MSTO-211H cells were infected with WT or CA FOXO1-expressing adenovirus and processed through the 0.1%/10% FBS or insulin stimulation protocols. Remarkably, expression of the CA FOXO1 protein prevents all of the induction of Dio2 mRNA (Fig. 6, F and G) and most of the D2 activity (Fig. 6, H and J) caused by 10% FBS and insulin stimulation. This indicates that Dio2 is a probable direct target of FOXO1 and that 10% FBS/insulin acts by relieving FOXO1 gene repression. To demonstrate the binding of FOXO1 to predicted binding sites in the Dio2 promoter region (Fig. 6f), ChIP analysis was performed in MSTO-211H cells in 0.1% FBS and 10% FBS. There is specific binding of FOXO1 to a site in the Dio2 promoter located −570 bp from the transcription start site that is abrogated in refed cells (Fig. 6f).

Discussion

The present studies employed a combination of animal and cell models to establish that nutritional availability affects thyroid hormone activation via induction of D2. This enzyme contributes to about two-thirds of the circulating T₃ in humans (about one-third in rodents) and at least one-half of the T₃ present in murine brain and BAT (7). D2 stimulation by 10% FBS is transcriptional and involves insulin and IGF-1 signaling through PI3K-mTORC2-Akt to relieve FOXO1-mediated Dio2 repression (Fig. 7). These data provide a mechanistic explanation for the observation in humans that fasting is associated with a reduction in skeletal muscle D2 activity that is partially prevented by insulin administration (43). The present findings constitute a new aspect of the overarching homeostatic role played by the hypothalamic-pituitary-thyroid axis to adjust thyroid hormone activation to the appropriate level of energy substrates; thyroidal activity and serum T₃ levels are kept at a minimum (default) during fasting or severe caloric restriction, and both increase as food becomes available.

T₃ receptors (TRs) are ligand-dependent transcription factors that control tissue-specific sets of T₃-responsive genes. TRs are bound to the promoter of T₃-responsive genes, and, as
opposed to most other receptors, unoccupied TRs actively inhibit transcription, given their affinity for corepressors. Upon binding of T_3, TRs gain affinity for coactivators and trigger T_3-dependent gene transcription. Thus, the role of T_3 is not only to promote expression of T_3-dependent genes but also to relieve TR-mediated gene repression (44). The present observation that fasting shuts down DIO2 expression (and T_3 production) via shifting the balance between PI3K-mTORC2-Akt and FOXO1 highlights the importance of unoccupied TRs.

D2 expression in the cerebral cortex was not modified by fasting or refeeding (Fig. 1F), indicating that Dio2 regulation by nutrient availability is not universal, probably occurring in tissues where the metabolic pathways are responsive to T_3 and insulin (e.g. BAT and skeletal muscle) (7). D2-generated T_3 in BAT enhances local thyroid hormone signaling and the expression of Ucp1 and Pgc-1alpha, both critical for thermogenesis (45). A local role for D2-generated T_3 in skeletal muscle is less clear. The fact that skeletal muscle physiology is T_3-sensitive (46) sets the stage for a potential D2 contribution, such as during development and response to injury (47). Nevertheless, selective D2 inactivation in the mouse skeletal muscle failed to identify a metabolic phenotype, and serum T_3 was preserved due to increased thyroidal T_3 production (48, 49). The present findings are particularly relevant because the thyroid gland does not adjust T_3 production during fasting (8), and serum T_3 drops also as a consequence of FOXO1-mediated DIO2 inhibition.

In addition, the present findings are clinically relevant because there are ~10 million hypothyroid individuals in the United States alone who depend >80% on the D2 pathway to convert levothyroxine to T_3. Because these patients are hypothyroid, they lack the ability to compensate for FOXO1-mediated DIO2 suppression during fasting. Thus, serum T_3 levels in these individuals could fluctuate substantially with caloric intake. In many aspects, the balance between PI3K-mTORC2-Akt and FOXO1 signaling should provide nutritional input and fine tuning to the regulation of circulating T_3 levels and T_3-dependent processes.

The data from the LIRKO and LIRFKO mice indicate that insulin is probably a key molecule mediating Dio2 regulation (Fig. 6A), known to provide nutritional input through the PI3K-mTOR signaling pathway in many other systems (50). In the cell model, both insulin and IGF-1 stimulate D2 (Fig. 2, K and L), indicating that this is an insulin/IGF-1-mediated mechanism. mTOR, which is downstream of insulin/IGF-1 signaling, also plays a central role in defining the balance between anabolic and catabolic processes (51). Downstream targets of mTORC2 include the AGC kinases (i.e. Akt, SGK, and PKCalpha, which function to promote cell survival, metabolism, and actin organization) (41). In turn, Akt directly phosphorylates FOXO1 (25, 52), a nuclear transcription factor that modulates multiple sets of genes in a tissue-specific manner (53, 54).

A functional FOXO3 binding site is located in the 5'-UTR of the human DIO2, positively regulating DIO2 expression in developing skeletal muscle (15). Although proteins in the FOXO family can potentially bind to the same DNA cis-elements, the FOXO1 binding site identified in the present studies is within the DIO2 promoter, close to the transcription start site. Binding of FOXO1 to this site (Fig. 6F) suppresses DIO2 gene expression.

In conclusion, the present study reveals that insulin/IGF-1 transcriptionally up-regulates DIO2 expression and activity via signaling through the PI3K-mTORC2-Akt pathway, relieving FOXO1-mediated DIO2 inhibition. D2 is a major contributor to plasma T_3 levels in rodents and in humans and is the predominant pathway producing T_3 in hypothyroid individuals treated with levothyroxine. Therefore, the PI3K-mTORC2-Akt pathway is likely to have major metabolic consequences because it provides a coupling mechanism between nutrient availability and thyroid hormone activation.

Author Contributions—L. J. L. conducted experiments, analyzed and interpreted the data, and prepared the manuscript. J. P. W. and I. O. conducted experiments and analyzed data. T. G. U. created the LIRKO and LIRFKO mice, directed the experiments with these animals, and reviewed/edited the manuscript. A. C. B. directed the studies, interpreted the data, and prepared the manuscript along with L. J. L.

Acknowledgments—We are grateful to John Harney for pointing out that D2 activity in cultured cells increases after a change in the medium; we thank Balázs Gereben for valuable discussions regarding the manuscript; we thank Manish Tandon for assistance with the ChIP experiments.

References

1. Park, H. K., and Ahima, R. S. (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. *Metabolism* 64, 24–34
2. Burger, A. G., Berger, M., Wimpfheimer, K., and Danforth, E. (1988) Interrelationships between energy metabolism and thyroid hormone metabolism during starvation in the rat. *Acta EndocrinoL* 93, 322–331
3. O’Brian, J. T., Bybee, D. E., Burman, K. D., Osborne, R. C., Kiszak, M. R., Wartofsky, L., and Georges, L. P. (1980) Thyroid hormone homeostasis in states of relative caloric deprivation. *Metabolism* 29, 721–727
4. Schebendach, J. E., Golden, N. H., Jacobson, M. S., Hertz, S., and Shenker, I. R. (1997) The metabolic responses to starvation and refeeding in adolescents with anorexia nervosa. *Ann. N.Y. Acad. Sci.* 817, 110–119
5. Boelen, A., Wiersinga, W. M., and Flers, E. (2008) Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. *Thyroid* 18, 123–129
6. Chan, J. L., Heist, K., DePaoli, A. M., Veldhuis, J. D., and Mantzoros, C. S.
Nutrient Availability and Thyroid Hormone Activation

(2003) The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 111, 1409–1421

7. Gereben, B., Zavacki, A. M., Ribich, S., Kim, B. W., Huang, S. A., Simonides, W. S., Zeóld, A., and Bianco, A. C. (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938

8. Kinlaw, W. B., Schwartz, H. L., and Oppenheimer, J. H. (1985) Decreased serum triiodothyronine in starving rats is due primarily to diminished thyroidal secretion of thyroxine. J. Clin. Invest. 75, 1238–1241

9. Vella, K. R., Ramadoss, P., Lam, F. S., Harris, J. C., Ye, F. D., Same, P. D., O’Neill, N. F., Maratos-Flier, E., and Hollenberg, A. N. (2011) NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab. 14, 780–790

10. Galton, V. A., Hernandez, A., and St Germain, D. L. (2014) The 5’-deiodinases are not essential for the fasting-induced decrease in circulating thyroid hormone levels in male mice: possible roles for the type 3 deiodinase and tissue sequestration of hormone. Endocrinology 155, 3172–3181

11. Balsam, A., and Ingbar, S. H. (1978) The influence of fasting, diabetes, and several pharmacological agents on the pathways of thyroid hormone metabolism in rat liver. J. Clin. Invest. 62, 415–424

12. Zavacki, A. M., Ying, H., Christofolloite, M. A., Aerts, G., So, E., Harney, J. W., Cheng, S. Y., Larsen, P. R., and Bianco, A. C. (2005) Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 146, 1568–1575

13. Bianco, A. C. (2011) Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology 152, 3306–3311

14. Gereben, B., and Salvatore, D. (2005) Pretranslational regulation of type 2 deiodinase. Thyroid 15, 855–864

15. Dentice, M., Marsili, A., Ambrosio, R., Guardiola, O., Sibilio, A., Paik, J. H., Minchiotti, G., DePinho, R. A., Fenzi, G., Larsen, P. R., and Salvatore, D. (2010) The FoxO3a/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J. Clin. Invest. 120, 4021–4030

16. Arrojo E Drigo, R., Fonseca, T. L., Castillo, M., Salathe, M., Simovic, G., Mohácsik, P., Gereben, B., and Bianco, A. C. (2011) Endoplasmic reticulum stress decreases intracellular thyroid hormone activation via an eIF2a-mediated decrease in type 2 deiodinase synthesis. Mol. Endocrinol. 25, 2065–2075

17. Sagar, G. D., Gereben, B., Callebaut, I., Morrison, J. P., Zeóld, A., da Silva, W. S., Luongo, C., Dentice, M., Tente, S. M., Freitas, B. C., Harney, J. W., Zavacki, A. M., and Bianco, A. C. (2007) Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol. Cell. Biol. 27, 4774–4783

18. Martinez-deMena, R., and Obregón, M. J. (2005) Insulin increases the influence of fasting, diabetes, and several pharmacological agents on the pathways of thyroid hormone metabolism in rat liver. J. Clin. Invest. 120, 4021–4030

19. Arrojo E Drigo, R., Fonseca, T. L., Castillo, M., Salathe, M., Simovic, G., Mohácsik, P., Gereben, B., and Bianco, A. C. (2011) Endoplasmic reticulum stress decreases intracellular thyroid hormone activation via an eIF2a-mediated decrease in type 2 deiodinase synthesis. Mol. Endocrinol. 25, 2065–2075

20. Sagar, G. D., Gereben, B., Callebaut, I., Morrison, J. P., Zeóld, A., da Silva, W. S., Luongo, C., Dentice, M., Tente, S. M., Freitas, B. C., Harney, J. W., Zavacki, A. M., and Bianco, A. C. (2007) Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol. Cell. Biol. 27, 4774–4783

21. Martinez-deMena, R., and Obregón, M. J. (2005) Insulin increases the influence of fasting, diabetes, and several pharmacological agents on the pathways of thyroid hormone metabolism in rat liver. J. Clin. Invest. 120, 4021–4030

22. Frost, R. A., and Lang, C. H. (2011) mTOR signaling in skeletal muscle. J. Cell. Biol. 197, E74–E79

23. Bianco, A. C., Anderson, G., Forrest, D., Galton, V. A., Gereben, B., Kim, B. W., Kopp, P. A., Liao, X. H., Obregon, M. J., Peeters, R. P., Reffert, S., Sharlin, D. S., Simonides, W. S., Weiss, R. E., Williams, G. R., American Thyroid Association Task Force on Approaches and Strategies to Investigate Thyroid Hormone Economy and Action (2014) American thyroid association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 24, 88–168

24. Curcio, C., Baqui, M. M., Salvatore, D., Rihn, B. H., Mohr, S., Harney, J. W., Larsen, P. R., and Bianco, A. C. (2001) The human type 2 iodothyronine deiodinase is a selenoprotein highly expressed in a mesothelioma cell line. J. Biol. Chem. 276, 30183–30187

25. O-Sullivan, I., Zhang, W., Wasserman, D. H., Liew, C. W., Liu, J., Paik, J., DePinho, R. A., Stolz, D. B., Kahn, C. R., Schwartz, M. W., and Unterman, T. G. (2015) FoxO1 integrates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117

26. Levy, D. S., Kahana, J. A., and Kumar, R. (2009) Akt inhibitor, GS690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 113, 1723–1729

27. Carol, H., Morton, C. L., Gorlick, R., Kolb, E. A., Keir, S. T., Reynolds, C. P., Kang, M. H., Maris, J. M., Billups, C., Smith, M. A., Houghton, P. J., and Lock, R. B. (2010) Initial testing (stage 1) of the Akt inhibitor GS690693 by the pediatric preclinical testing program. Pediatr. Blood Cancer 55, 1329–1337

28. Feldman, M. E., Apel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., and Shokat, K. M. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38

29. Guertin, D. A., and Sabatini, D. M. (2009) The pharmacology of mTOR inhibition. Sci. Signal. 2, pe24

30. Dowling, R. J., Topisirovic, I., Fonseca, B. D., and Sonenberg, N. (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochem. Biophys. Acta 1804, 433–439

31. Oh, W. J., and Jacinto, E. (2011) mTOR complex 2 signaling and functions. Cell Cycle 10, 2305–2316

32. Nagashima, T., Shigematsu, N., Maruki, R., Uranou, Y., Tanaka, H., Shimaya, A., Shimokawa, T., and Shibusaki, M. (2010) Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol. Pharmacol. 78, 961–970

33. Heemstra, K. A., Soeters, M. R., Fliers, E., Serlie, M. J., Burggraaf, J., van Doorn, M. B., van der Klauw, A. A., Romijn, J. A., Smit, J. W., Corssmit, E. P., and Visser, T. J. (2009) Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting. J. Clin. Endocrinol. Metab. 94, 2144–2150
44. Brent, G. A. (2012) Mechanisms of thyroid hormone action. J. Clin. Invest. 122, 3035–3043
45. Hall, J. A., Ribich, S., Christoffolete, M. A., Simovic, G., Correa-Medina, M., Patti, M. E., and Bianco, A. C. (2010) Absence of thyroid hormone activation during development underlies a permanent defect in adaptive thermogenesis. Endocrinology 151, 4573–4582
46. Simonides, W. S., and van Hardeveld, C. (2008) Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 18, 205–216
47. Dentice, M., Ambrosio, R., Damiano, V., Sibilio, A., Luongo, C., Guardiola, O., Yennek, S., Zordan, P., Minchiotti, G., Colao, A., Marsili, A., Brunelli, S., Del Vecchio, L., Larsen, P. R., Tajbakhsh, S., and Salvatore, D. (2014) Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 20, 1038–1048
48. Fonseca, T. L., Werneck-De-Castro, J. P., Castillo, M., Bocco, B. M., Fernandes, G. W., McAninch, E. A., Ignacio, D. L., Moises, C. C., Ferreira, A. R., Gereben, B., and Bianco, A. C. (2014) Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse. Diabetes 63, 1594–1604
49. Werneck-de-Castro, J. P., Fonseca, T. L., Igancio, D. L., Fernandes, G. W., Andrade-Feraud, C. M., Larrey, L. J., Ribeiro, M. B., Ribeiro, M. O., Gereben, B., and Bianco, A. C. (2015) Thyroid hormone signaling in male mouse skeletal muscle is largely independent of D2 in myocytes. Endocrinology 156, 3842–3852
50. Hay, N., and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945
51. Kim, S. G., Buel, G. R., and Blenis, J. (2013) Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 35, 463–473
52. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W. H., 3rd, Arden, K. C., and Accili, D. (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129
53. Barthel, A., Schmoll, D., and Unterman, T. G. (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189
54. Matsumoto, M., Han, S., Kitamura, T., and Accili, D. (2006) Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464–2472