Maximum Product of Spacing Parameter Estimation of Gompertz Rayleigh Distribution and Application to Rainfall Datasets

Hussein Ahmad Abdulsalam1*, Sule Omeiza Bashiru2, Alhaji Modu Isa3 and Yunusa Adavi Ojirobe1

1 Department of Statistics, Ahmadu Bello University, P.M.B. 1045, Zaria, Kaduna State, Nigeria.
2 Department of Mathematical Sciences, Kogi State University, Anyigba, Kogi State, Nigeria.
3 Department of Mathematical and Computer Sciences, Borno State University, Borno State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author HAA designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors SOB and AMI managed the analyses of the study. Author YAO managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2021/v14i230325

Editor(s):
(1) Dr. Manuel Alberto M. Ferreira, Lisbon University, Portugal.

Reviewers:
(1) Ampalavanar Nantha Kumar, State University of New York, USA.
(2) Anthony Torres Hernandez, México.
(3) Mohammad Khorashadizadeh, University of Birjand, Iran.

Complete Peer review History: http://www.sdiarticle4.com/review-history/71568

Received: 14 June 2021
Accepted: 18 August 2021
Published: 24 August 2021

Original Research Article

Abstract

Gompertz Rayleigh (GomR) distribution was introduced in an earlier study with few statistical properties derived and parameters estimated using only the most common traditional method, Maximum Likelihood Estimation (MLE). This paper aimed at deriving more statistical properties of the GomR distribution, estimating the three unknown parameters via a competitive method, Maximum Product of Spacing (MPS) and evaluating goodness of fit using rainfall data sets from Nigeria, Malaysia and Argentina.

*Corresponding author: E-mail: habdulsalam49@gmail.com;
Properties of statistical distributions including distribution of smallest and largest order statistics, cumulative or integrated hazard function, odds function, r^{th} non-central moments, moment generating function, mean, variance and entropy measures for GomR distribution were explicitly derived. The fitted data sets reveal the flexibility of GomR distribution over other distributions been compared with. Simulation study was used to evaluate the consistency, accuracy and unbiasedness of the GomR distribution parameter estimates obtained from the method of MPS. The study found that GomR distribution could not provide a better fit for Argentine rainfall data but it was the best distribution for the rainfall data sets from Nigeria and Malaysia in comparison with the distributions; Generalized Weibull Rayleigh (GWR), Exponentiated Weibull Rayleigh (EWR), Type (II) Topp Leone Generalized Inverse Rayleigh (TTITLGR), Kumaraswamy Exponential Inverse Rayleigh (KEIR), Negative Binomial Marshall-Olkin Rayleigh (NBMOR) and Exponentiated Weibull (EW). Furthermore, the estimates from MPSE were consistent as the sample size increases but not as efficient as those from MLE.

Keywords: Gompertz-Rayleigh; probability distribution; smallest and largest order statistics; entropy measures; maximum product of spacing.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

Rayleigh(R) is a continuous lifetime distribution introduced by [1], it has few properties of the Weibull (W) distribution. Areas including communication theory, medical imaging science, engineering among others benefits from this distribution. Compared to other widely used classical distributions, fewer source of materials were found on R distribution.

Several modification of R exist in literature. The inverted form, Inverse Rayleigh (IR) was introduced by [2] which have some properties of the Inverse Weibull (IW) distribution. [3] and [4] respectively studied maximum likelihood estimator, percentile estimator and different estimation methods of the parameter of IR. Ali et al., 2015 studied and found that "higher order statistics as well as the variance of the IR do not exist. [5] introduced the generalized Rayleigh also known as exponentiated rayleigh (ER) having some properties of log-normal distribution and is a special case of exponentiated weibull by [6]. Other modifications include transmuted Weibull Rayleigh by [7], Gompertz Rayleigh by [8], Power Rayleigh by [9] and recent addition in literature are Inverse Weibull Rayleigh by [10] and extended odd Weibull Rayleigh by [11].

The Maximum Likelihood estimation (MLE) is the most frequently used method of estimation not just in statistical distributions but in statistics as a whole because of its desirable properties. The estimates are obtained by maximizing the likelihood function of the PDF. This method however have it setbacks making the estimators fail sometimes.

Maximum Product of Spacing estimation (MPS), introduced by [12] is likely to serve as a competitor of MLE in cases where the estimates from MLE breaks down. The estimators obtained by maximizing the geometric mean of spacings between cumulative distribution function in close observations are consistent and as efficient as MLE. [13] noted that " The MLE perfectly estimates the parameters of discrete distributions if the contribution to the likelihood function is bounded from above but not for compound continuous distributions". The consistency of MPS was studied and shown that it works in place of MLE.
[14] introduced Gompertz Exponentiated Rayleigh distribution and adopted MPS method. The study found estimates of most parameters from MPS more efficient than those from ML especially at larger sample sizes. More-so, [15] estimates the parameters of newly introduced Marshall-Olkin Alpha Power Lomax distribution using MPS along with Least Squares Estimation (LSE) and MLE. The study reveal that all methods were consistent and efficient, but those from LSE have more relative efficiency for most parameters.

There exist plethora of extended forms of R distributions, however, the traditional method, Maximum likelihood estimation is mostly used to estimate their parameters. The parameters of extended R distributions namely Gompertz Rayleigh (GomR) by [8] were estimated using only MLE. Estimation these parameters using addition method would be very important to reliability and applied statisticians.

Moreso, no extended distribution in literature thus far have utilize the rainfall data sets from these regions to access their goodness of fit.

2 Gompertz-Rayleigh (GomR) Distribution

Using a family of distribution Gompertz-G by [16], [8] defined the CDF and PDF of GomR distribution as follows

\[
F(x; \alpha, \beta, \gamma) = 1 - e^{\frac{x}{\gamma}(1-(1-e^{\frac{x}{\gamma}})^{-\beta})} \\
= 1 - e^{\frac{x^2}{\gamma^2} (1-e^{\frac{x^2}{\gamma^2}})}
\]

(2.1)

and

\[
f(x; \alpha, \beta, \gamma) = \frac{\alpha x}{\gamma^2} e^{\frac{x^2}{\gamma^2}} \left[1 - \left(1 - e^{\frac{x^2}{\gamma^2}} \right)^{-\beta} \right]^{-1} e^{\frac{x^2}{\gamma^2}} (1-e^{\frac{x^2}{\gamma^2}})^{-\beta} \\
= \frac{\alpha x e^{\frac{x^2}{\gamma^2}}}{\gamma^2} \left[1 - \left(1 - e^{\frac{x^2}{\gamma^2}} \right)^{-\beta} \right]^{-1} e^{\frac{x^2}{\gamma^2}} (1-e^{\frac{x^2}{\gamma^2}})^{-\beta} \\
= \frac{\alpha x}{\gamma^2} e^{\frac{x^2}{\gamma^2}} e^{\frac{x^2}{\gamma^2} (1-e^{\frac{x^2}{\gamma^2}})}
\]

(2.2)

where \(\alpha, \beta > 0 \) are shape parameters while \(\gamma > 0 \) is a scale parameter and \(x > 0 \).

2.1 Useful representation

The CDF and PDF of GomR distribution can be represented in simpler as follows. Using

\[
e^x = \sum_{b_t=0}^{\infty} \frac{x^b}{b_t!}
\]

and

\[
(1 - m)^b = \sum_{b_2=1}^{\infty} \binom{b}{b_2} (-1)^{b_2} x^{b_2}
\]
the simplified CDF is
\[
F(x) = 1 - \sum_{b_1=0}^{\infty} \frac{\left(\frac{\alpha}{b_2}\right)^{b_1}}{b_1!} \left[1 - e^{\frac{x^2}{2}}\right]^{b_1}
\]
(2.3)

the simplified PDF is
\[
f(x) = \frac{\alpha x}{\sqrt{2}} e^{\frac{x^2}{2}} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{1}{a_1!} (-1)^{b_2} \left(\frac{\alpha}{\beta}\right)^{a_1} \left(\frac{b_1}{b_2}\right) e^{\frac{x^2}{2}}
\]
(2.4)

3 Properties of GomR Distribution

[8] presented the shapes of the densities, hazard and survival function of the GomR distribution for several parameter values. GomR distribution have positively skewed density function, an increasing hazard function and a decreasing survival function. The study further derived the reliability and quantile function.

4 Additional Statistical Properties of GomR Distribution

4.1 Order statistic of the GomR distribution

Given a distribution with sample of independent characteristics \(X_1, X_2, \ldots, X_n\). This can be represented in a notation \(X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}\) or ordered as \(X_1 \leq X_2 \leq \cdots \leq X_n\). \(X_{(1)}\) representing the 1st order is considered the minimum, \(X_{(2)}\) representing the 2nd order, the second minimum while the \(n^{th}\) order statistics, \(X_{(n)}\), is the maximum.

4.1.1 PDF of the \(k^{th}\) order statistics of GomR distribution

Suppose a random sample \(X_1, X_2, \ldots, X_n\) is obtained from the densities of the GomR distribution and represents \(X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}\) as the order statistic, then the PDF, \(f_{(k,n)}(x)\), the \(k^{th}\) order statistics is expressed as
\[
f_{(k,n)}(x) = \frac{n!}{(k-1)!(n-k)!} f(x) \times F(x)^{k-1} \times [1 - F(x)]^{n-k}
\]
(4.1)

where \(F(x)\) and \(f(x)\) are the CDF and PDF of the GomR distribution.

For easier simplification, the binomial expansion on \([1 - F(x)]^{n-k}\) was used
\[
[1 - F(x)]^{n-k} = \sum_{b_3=0}^{\infty} \binom{n-k}{b_3} (-1)^{b_3} (F(x))^{b_3}
\]
(4.2)

Substituting (4.2) in (4.1) results to
\[
f_{(k,n)}(x) = \sum_{b_3=0}^{\infty} \frac{n!}{(k-1)!(n-k)!} f(x) \cdot \binom{n-k}{b_3} (-1)^{b_3} (F(x))^{b_3+k-1}
\]
(4.3)
Again, substituting (2.1) and (2.2) in (4.3), gives the k^{th} order statistic of the GomR distribution as

$$f(k,n)(x) = \sum_{b_3=0}^{\infty} \frac{n!}{(k-1)! (n-k-b_3)! b_3!} \frac{\alpha x^{\frac{2}{\gamma^2}} e^{\frac{x^2}{2\gamma^2}}}{\gamma^2} e^{\frac{2 x^2}{\gamma^2}} \left[1 - e^{\frac{2 x^2}{\gamma^2}} \right]^{b_3} \times \left[1 - e^{\frac{2 x^2}{\gamma^2}} \right]^{b_3+k-1}$$

(4.4)

4.1.2 PDF of the smallest and largest order statistics

Substituting $k=1$ into (4.4) gives the PDF of minimum or 1st order statistics as

$$f(1,n)(x) = \sum_{b_3=0}^{\infty} \frac{n!}{(n-1)! (-b_3)! b_3!} \frac{\alpha x^{\frac{2}{\gamma^2}} e^{\frac{x^2}{2\gamma^2}}}{\gamma^2} e^{\frac{2 x^2}{\gamma^2}} \left[1 - e^{\frac{2 x^2}{\gamma^2}} \right]^{b_3} \times \left[1 - e^{\frac{2 x^2}{\gamma^2}} \right]^{b_3+1}$$

(4.5)

Similarly, the n^{th} order or the maximum order statistics was obtained by substituting $k=n$ as

$$f(n,n)(x) = \sum_{b_3=0}^{\infty} \frac{n!}{(n-k)! (-b_3)! b_3!} \frac{\alpha x^{\frac{2}{\gamma^2}} e^{\frac{x^2}{2\gamma^2}}}{\gamma^2} e^{\frac{2 x^2}{\gamma^2}} \left[1 - e^{\frac{2 x^2}{\gamma^2}} \right]^{b_3} \times \left[1 - e^{\frac{2 x^2}{\gamma^2}} \right]^{b_3+n-1}$$

(4.6)

4.2 Reliability analysis of GO-R distribution

Suppose a random variable X comes from the GomR distribution with PDF, $f(x)$ and CDF, $F(x)$; the following properties were obtained.

4.2.1 Cumulative or integrated hazard function

This is a risk function and not a probability. The cumulative hazard function of GomR is derived as follows

$$H(x) = \int_0^t h(x) dx$$

$$= \frac{\alpha}{\gamma^2} \int_0^t x e^{\frac{x^2}{2\gamma^2}} dx$$

(4.7)

let $x^{\frac{2}{2\gamma^2}}$ then $\frac{du}{dx} = \frac{x \beta}{\gamma^2}$ and $dx = \frac{\gamma^2 du}{x \beta}$

Now, $x \rightarrow 0, u \rightarrow 0$ and $x \rightarrow t, u \rightarrow t^2 \beta$ $2 \gamma^2$

$$H(x) = \frac{\alpha}{\beta} \int_0^{t^2 \beta} x e^u du$$

$$= \frac{\alpha}{\beta} \left[e^{\frac{t^2 \beta}{2 \gamma^2}} - 1 \right]$$

(4.8)
4.2.2 Odds function

This is the odds of the probability that the failure of a unit is bound to happen at a given time, to the probability that it is bound to survive beyond that time. That is:

\[
O(x) = \frac{F(x)}{S(x)} = \frac{e^x}{e^{\frac{\alpha}{\gamma}(1 - e^{\frac{\beta}{\gamma^2}})}},
\]

(4.9)

4.3 Moment and moment generating function

4.3.1 \(r^{th}\) non-central moment

This is an important property of any distribution and used in obtaining some measures like shapes, dispersion, central tendencies and so on.

Suppose a random variable \(X\) follows GomR distribution, the \(r^{th}\) non-central moment, \(\mu_r\), is obtained using the expression

\[
\mu_r = E(X^r) = \int_0^\infty x^r f(x) dx = \int_0^\infty x^r \frac{\alpha x}{\gamma^2} e^{\frac{\beta x^2}{\gamma^2}} e^{\frac{\alpha x}{\gamma}(1 - e^{\frac{\beta x^2}{\gamma^2}})} dx
\]

Recalling the useful representation (2.4)

\[
\mu_r = \int_0^\infty x^r \frac{\alpha x}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{1}{b_1! b_2!} (-1)^{b_2} \left(\frac{\alpha}{\beta} \right)^{b_1} \left(\frac{b_1}{b_2} \right) e^{\frac{2 \beta (b_1 + b_2)}{\gamma^2}} dx
\]

= \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \mathcal{B}_{b_1 b_2} \int_0^\infty x^{r+1} e^{\frac{2 \beta (b_1 + b_2)}{\gamma^2}} dx

where \(\mathcal{B}_{b_1 b_2} = \frac{1}{b_1! (-1)^{b_2}} \left(\frac{\alpha}{\beta} \right)^{b_1} \left(\frac{b_1}{b_2} \right)\)

Now

\[
\mu_r = \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \mathcal{B}_{b_1 b_2} \int_0^\infty x^{r+1} e^{-\frac{x^2 \beta (-1 - b_2)}{2\gamma^2}} dx
\]

let \(m = \frac{x^2 \beta (-1 - b_2)}{2\gamma^2}\) and \(x = \frac{(2 m)^{\frac{1}{2}}}{\left(\beta (-1 - b_2)\right)^{\frac{1}{2}}}\)

then \(\frac{dm}{dx} = \frac{\beta x (-1 - b_2)}{\gamma^2}\) and \(dx = \frac{\beta \gamma^2 dm}{(\beta x (-1 - b_2))}\)
Now

\[\mu'_r = \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} B_{b_1 b_2} \frac{1}{\beta^{(-1 - b_2)}} \int_0^{\infty} \left(\frac{(2m)^{\frac{1}{2}} \gamma}{\beta^{(-1 - b_2)}} \right)^{r+1} e^{-m} \frac{dm}{x} \]

\[= \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} B_{b_1 b_2} \frac{1}{\beta^{(-1 - b_2)}} \int_0^{\infty} \left(\frac{(2m)^{\frac{1}{2}} \gamma}{\beta^{(-1 - b_2)}} \right)^r e^{-m} \frac{dm}{x} \]

\[= \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} B_{b_1 b_2} \frac{2^r \gamma^r}{\beta^{(-1 - b_2)}} \int_0^{\infty} m^r e^{-m} \frac{dm}{x} \]

\[= \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} B_{b_1 b_2} \frac{2^r \gamma^r}{\beta^{(-1 - b_2)}} \int_0^{\infty} m^r e^{-m} \frac{dm}{x} \]

therefore

\[\mu'_r = \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} B_{b_1 b_2} \frac{2^r \gamma^r}{\beta^{(-1 - b_2)}} \int_0^{\infty} m^r e^{-m} \frac{dm}{x} \]

(4.10)

4.3.2 MGF

Generally, the MGF of any random variable can be obtained using the relation

\[M(\theta) = E(e^{\theta X}) \]

since \(X \) is a continuous random variable with pdf \(f(x) \),

\[M(\theta) = \int_0^{\infty} e^{\theta x} f(x)dx \]

or in simpler form

\[M(\theta) = \sum_{r=0}^{\infty} \frac{\theta^r}{r!} \int_0^{\infty} x^r f(x)dx \]

\[= \sum_{r=0}^{\infty} \frac{\theta^r}{r!} \mu'_r \]

since \(e^{\theta x} = \sum_{r=0}^{\infty} \frac{(\theta x)^r}{r!} \)

and \(\mu'_r \) is the \(r^{th} \) non-central moment

the MGF of GomR is

\[\frac{\alpha}{\gamma^2} \sum_{r=0}^{\infty} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{\theta^r}{r!} B_{b_1 b_2} \frac{2^r \gamma^r}{\beta^{(-1 - b_2)}} \int_0^{\infty} m^r e^{-m} \frac{dm}{x} \]

(4.11)

4.4 Mean and variance of GomR distribution

These are obtained from the \(r^{th} \) non-central moment of GomR distribution.
4.4.1 Mean
If in (4.10), \(r = 1 \), the resulting equation is the mean (1st moment) of GomR distribution, That is,
\[
\mu_1' = E(X) = \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{B_{b_1 b_2} 2^2 \gamma}{(\beta(-1 - b_2))^2} \cdot \Gamma\left(\frac{3}{2}\right)
\]
\[
= \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} 0.8862 B_{b_1 b_2} \gamma
\]
(4.12)

4.4.2 Variance
Using the relation
\[
\text{Var}(X) = E(X^2) - [E(X)]^2
\]
where \(E(X^2) \) is the 2nd moment and obtained when \(r = 2 \) in (4.10).
Hence
\[
\mu_2' = E(X^2) = \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{B_{b_1 b_2} 2^2 \gamma^2}{(\beta(-1 - b_2))^2} \cdot \Gamma(2)
\]
\[
= \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{B_{b_1 b_2} \gamma^2}{(\beta(-1 - b_2))^2}
\]
(4.13)
therefore the variance of GomR distribution is
\[
\text{Var}(X) = \frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{B_{b_1 b_2} \gamma^2}{(\beta(-1 - b_2))^2} - \left(\frac{\alpha}{\gamma^2} \sum_{b_1=0}^{\infty} \sum_{b_2=0}^{\infty} \frac{0.8862 B_{b_1 b_2} \gamma}{(\beta(-1 - b_2))^2} \right)^2
\]
(4.14)

4.5 Entropy
Renyi entropy by [17] a measure of uncertainty was defined as
\[
I_R(c) = \frac{1}{1-c} \log \int_{0}^{\infty} f^c(x)dx \quad c > 0 \ , c \neq 1
\]
(4.15)
Suppose a random variable \(X \) follows the GomR distribution, the degree of uncertainty is obtained as follows
\[
f^c(x) = \left(\frac{\alpha x \frac{a^x e^{\frac{a x}{\beta}} e^{\frac{\alpha x}{\beta(1-e^{\frac{a x}{\beta}})}}}{\gamma^2}}{e^{\frac{a x}{\beta}} e^{\frac{\alpha x}{\beta(1-e^{\frac{a x}{\beta}})}}} \right)^c
\]
\[
= \left(\frac{\alpha}{\gamma^2} \right)^c \frac{x^c e^{\frac{a x}{\beta}} e^{\frac{\alpha x}{\beta(1-e^{\frac{a x}{\beta}})}}}{e^{\frac{a x}{\beta}} e^{\frac{\alpha x}{\beta(1-e^{\frac{a x}{\beta}})}}}
\]
using the expansions earlier
\[
e^{\frac{\alpha x}{\beta(1-e^{\frac{a x}{\beta}})}} = \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} \frac{1}{b_4!} \left(\frac{\alpha c}{\beta} \right)^{b_4} \left(\frac{b_4}{b_5} \right) (-1)^{b_5} e^{\frac{2 a b_4}{2 \gamma^2 b_5}}
\]
implies that

\[f^c(x) = \left(\frac{\alpha}{\gamma^2} \right)^c x^c \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} \frac{1}{b_4!} \left(\frac{\alpha c}{\beta} \right)^{b_4} \left(\frac{b_4}{b_5} \right) (-1)^{b_5} c^{2 \beta (c + b_5)} \sum_{b_5=0}^{\infty} \frac{1}{b_3!} \left(\frac{\alpha c}{\beta} \right)^{b_4} \left(\frac{b_4}{b_5} \right) (-1)^{b_5} \]

where \(C_{b_4,b_5} = \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} \frac{1}{b_3!} \left(\frac{\alpha c}{\beta} \right)^{b_4} \left(\frac{b_4}{b_5} \right) (-1)^{b_5} \)

now

\[I_R(c) = \frac{1}{1-c} \log \left(\left(\frac{\alpha}{\gamma^2} \right)^c \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} C_{b_4,b_5} \int_0^\infty x^c e^{\frac{2 \beta (c + b_5)}{\gamma^2 x}} \, dx \right) \quad c > 0 \quad c \neq \frac{1}{\beta} \]

let \(n = e^{-\frac{2 \beta (c - b_5)}{\gamma^2}} \) then \(\frac{dn}{dx} = \frac{x \beta (c - b_5)}{\gamma^2} \) and \(x = \frac{(2n)^{\frac{1}{2} \gamma}}{\beta (c - b_5)^{\frac{1}{2}}} \)

\[= \frac{1}{1-c} \log \left[\frac{\alpha}{\gamma^2} \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} C_{b_4,b_5} \int_0^\infty \left(\frac{(2n)^{\frac{1}{2} \gamma}}{\beta (c - b_5)^{\frac{1}{2}}} \right)^c e^{-n} \frac{\gamma^2 dn}{\beta x (c - b_5)^{\frac{1}{2}}} \right] \]

\[= \frac{1}{1-c} \log \left[\frac{\alpha}{\gamma^2} \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} C_{b_4,b_5} \int_0^\infty \left(\frac{(2n)^{\frac{1}{2} \gamma}}{\beta (c - b_5)^{\frac{1}{2}}} \right)^{c-1} e^{-n} \frac{\gamma^2 dn}{\beta x (c - b_5)^{\frac{1}{2}}} \right] \]

\[= \frac{1}{1-c} \log \left[\frac{\alpha}{\gamma^2} \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} C_{b_4,b_5} \int_0^\infty n \frac{e^{-n}}{\beta (c - b_5)^{\frac{1}{2}}} \gamma^2 dn \right] \]

\[= \frac{1}{1-c} \log \left[\frac{\alpha}{\gamma^2} \sum_{b_4=0}^{\infty} \sum_{b_5=0}^{\infty} C_{b_4,b_5} \Gamma \left(\frac{1+c}{2} \right) \right] \]

(4.16)

5 Parameter Estimation

This section provides the estimates of the three unknown parameters \((\alpha, \beta, \gamma)\) of GomR distribution using the method of Maximum Product of Spacing in addition to the MLE from an earlier study.
5.1 MLE

Assume X_1, X_2, \ldots, X_n to be a random sample of size n following GomR distribution. The likelihood function is

$$L = \prod_{i=1}^{n} f(x_i; \epsilon)$$

$$= \prod_{i=1}^{n} \left\{ \frac{\alpha x_i}{\gamma^2} e^{\frac{\beta x_i^2}{2\gamma^2}} e^{\frac{\beta x_i^2}{2\gamma^2} [1 - e^{\frac{\beta x_i^2}{2\gamma^2}}]} \right\}$$

$$= \left(\frac{\alpha}{\gamma^2} \right)^n \prod_{i=1}^{n} x_i \prod_{i=1}^{n} \left\{ e^{\frac{\beta x_i^2}{2\gamma^2}} + \frac{\beta}{\gamma^2} (1 - e^{\frac{\beta x_i^2}{2\gamma^2}}) \right\}$$

The log-likelihood function

$$L(\theta) = n \log \alpha - 2n \log \gamma + \sum_{i=1}^{n} \log(x_i) + \frac{\beta}{2\gamma^2} \sum_{i=1}^{n} x_i^2 + \frac{\alpha}{\beta} \sum_{i=1}^{n} \left[1 - e^{\frac{\beta x_i^2}{2\gamma^2}} \right]$$

To obtain the estimates of the parameters $(\hat{\alpha}, \hat{\beta}, \hat{\gamma})$, we differentiate $L(\theta)$ wrt individual parameter and equate to zero. The resulting differentials are,

$$\frac{\partial L(\theta)}{\partial \alpha} = \frac{n}{\alpha} + \frac{1}{\beta} \sum_{i=1}^{n} \left[1 - e^{\frac{\beta x_i^2}{2\gamma^2}} \right]$$

(5.1)

$$\frac{\partial L(\theta)}{\partial \beta} = \frac{1}{2\gamma^2} \sum_{i=1}^{n} x_i^2 - \frac{\alpha}{2\beta \gamma^2} \sum_{i=1}^{n} \left(x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}} \right) - \frac{\alpha}{\beta^2} \sum_{i=1}^{n} \left(1 - e^{\frac{\beta x_i^2}{2\gamma^2}} \right)$$

(5.2)

$$\frac{\partial L(\theta)}{\partial \gamma} = \frac{2n}{\gamma} - \frac{\beta}{\gamma^3} \sum_{i=1}^{n} x_i^2 - \frac{\alpha}{\gamma^3} \sum_{i=1}^{n} \left(x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}} \right)$$

(5.3)

The above equations are not in explicit form, hence, do not have exact solution. For this reason, we use the Newton-Raphson method of iteration, to obtain the MLEs of the equations analytically.

To enable the construction of confidence intervals of the parameters and hypothesis testing of the GomR distribution. The elements of the observed information matrix are found as follows.

$$\frac{\partial L(\theta)}{\partial \alpha^2} = -\frac{n}{\alpha^2}$$

(5.4)

$$\frac{\partial L(\theta)}{\partial \beta^2} = -\alpha x_i^4 \left[\frac{\beta x_i^2}{2\gamma^2} \right] + \alpha x_i^2 \left(\frac{\beta x_i^2}{2\gamma^2} \right) + \frac{\alpha}{\beta^3} \sum_{i=1}^{n} \left(1 - e^{\frac{\beta x_i^2}{2\gamma^2}} \right)$$

(5.5)

$$\frac{\partial L(\theta)}{\partial \gamma^2} = \frac{\beta}{\gamma^4} \sum_{i=1}^{n} x_i^2 - \frac{2n}{\gamma^5} \sum_{i=1}^{n} x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}} - \frac{\alpha}{\gamma^3} \sum_{i=1}^{n} x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}}$$

(5.6)

$$\frac{\partial L(\theta)}{\partial \alpha \partial \beta} = \frac{1}{\gamma^2} \sum_{i=1}^{n} x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}} - \frac{1}{\beta^2} \sum_{i=1}^{n} \left[1 - e^{\frac{\beta x_i^2}{2\gamma^2}} \right]$$

(5.7)

$$\frac{\partial L(\theta)}{\partial \alpha \partial \gamma} = \frac{1}{\gamma^3} \sum_{i=1}^{n} x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}}$$

(5.8)

$$\frac{\partial L(\theta)}{\partial \beta \partial \gamma} = -\frac{1}{\gamma^2} \sum_{i=1}^{n} x_i^2 + \frac{\alpha}{2 \gamma^3} \sum_{i=1}^{n} x_i^2 e^{\frac{\beta x_i^2}{2\gamma^2}}$$

(5.9)
5.2 MPS

The maximum likelihood estimation is the most common and widely used method but in cases such as that involving compound continuous distributions and large samples, the method may break down.

[12] introduced the MPS method serving as an alternative to ML method, a powerful one. Also, [13] independently studied the method as an approximation to Kullback-Leibler information and explained its consistency property.

If X_1, X_2, \ldots, X_n are random samples from GomR distribution having CDF $F(x, \varepsilon)$ and $X_{(1)} \leq X_{(2)}, \ldots, X_{(n)}$ represents the corresponding ordered sample. The spacing

$$U_i = F(x_{(i)}) - F(x_{(i-1)}) \quad \text{for} \quad i = 1, 2, \ldots, n + 1$$

where

$$F(x_0) = 0 \quad \text{and} \quad F(x_{n+1}) = 1$$

Since we are sampling from GomR distribution,

$$F(x_{(i)}) = 1 - e^ {- \frac{\alpha x_{(i)}^2}{2 \gamma}}$$

and

$$F(x_{(i-1)}) = 1 - e^ {- \frac{\alpha x_{(i-1)}^2}{2 \gamma}}$$

then

$$U_i = \left(1 - e^ {- \frac{\alpha x_{(i)}^2}{2 \gamma}} \right) - \left(1 - e^ {- \frac{\alpha x_{(i-1)}^2}{2 \gamma}} \right)$$

The parameter estimates are obtained by maximizing

$$T = \frac{1}{n + 1} \sum_{i=1}^{n+1} \log e \ U_i$$

$$T = \frac{1}{n + 1} \sum_{i=1}^{n+1} \log e \left\{ e^ {- \frac{\alpha x_{(i)}^2}{2 \gamma}} - e^ {- \frac{\alpha x_{(i-1)}^2}{2 \gamma}} \right\}$$

The parameters estimates $\hat{\alpha}_{MPS}, \hat{\beta}_{MPS}, \hat{\gamma}_{MPS}$ can be found by differentiating T wrt individual parameters and solving the non-linear equations

$$\frac{\partial T(\alpha, \beta, \gamma)}{\partial \alpha} = \frac{1}{n + 1} \sum_{i=1}^{n+1} \frac{1}{U_i(\alpha, \beta, \gamma)} \left[U_1(x_{(i)}, \varepsilon) - U_1(x_{(i-1)}, \varepsilon) \right]$$

$$\frac{\partial T(\alpha, \beta, \gamma)}{\partial \beta} = \frac{1}{n + 1} \sum_{i=1}^{n+1} \frac{1}{U_i(\alpha, \beta, \gamma)} \left[U_2(x_{(i)}, \varepsilon) - U_2(x_{(i-1)}, \varepsilon) \right]$$

$$\frac{\partial T(\alpha, \beta, \gamma)}{\partial \gamma} = \frac{1}{n + 1} \sum_{i=1}^{n+1} \frac{1}{U_i(\alpha, \beta, \gamma)} \left[U_3(x_{(i)}, \varepsilon) - U_3(x_{(i-1)}, \varepsilon) \right]$$
where

\[U_1(x_{(i)}, \varepsilon) = e^{\alpha(1 - e^{\beta x_{(i)}})} \cdot \frac{1}{\beta} \left(1 - e^{-\frac{\beta x_{(i)}}{2\gamma^2}} \right) \]
(5.18)

\[U_2(x_{(i)}, \varepsilon) = e^{\alpha(1 - e^{\beta x_{(i)}})} \cdot \frac{1}{\beta} \left(1 - e^{-\frac{\beta x_{(i)}}{2\gamma^2}} \right) \]
(5.19)

\[U_3(x_{(i)}, \varepsilon) = e^{\alpha(1 - e^{\beta x_{(i)}})} \cdot \left\{ \left(1 - e^{-\frac{\beta x_{(i)}}{2\gamma^2}} \right) \cdot \frac{\alpha}{\beta} + \frac{\beta x_{(i-1)}}{2\gamma^2} - \frac{x_{(i-1)}}{2\gamma^2} \right\} \]
(5.20)

\[U_3(x_{(i-1)}, \varepsilon) = e^{\alpha(1 - e^{\beta x_{(i-1)}})} \cdot \frac{\alpha}{\beta} - e^{-\frac{\beta x_{(i-1)}}{2\gamma^2}} \cdot \frac{\beta x_{(i-1)}}{\gamma^2} \]
(5.21)

The solutions to equations (5.15), (5.16) and (5.17) are the MPS parameter estimates. However, the equations cannot be obtained analytically but rather with the use of numerical solutions.

6 Applications

We portray the advantage of GomR distribution over some related distributions having at least two parameters in fitting two rainfall data sets. The comparison was done using the log-likelihood, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Corrected Akaike’s Information Criteria (CAIC) and Hannan-Quinn Information Criteria (HQIC).

\[\text{AIC} = 2(\text{ll}) + 2k \]
\[\text{BIC} = -(2 \ast \text{ll}) + (k \ast \log(n)) \]
\[\text{CAIC} = -(2\text{ll}) + 2k(k + 1)/(n - k - 1) \]
\[\text{HQIC} = -(2\text{ll}) + (2 \ast k \ast \log(\log(n))) \]

where \(\text{ll}\) is the log-likelihood, \(n\) is the sample size and \(k\) is the number of parameters to be fitted.

These information criteria will serve as scores for selecting the distribution that best fits the data. Using rainfall data sets from three different regions, the goodness of fit of the GomR distribution was compared with Generalized Weibull Rayleigh (GWR) by [18], Exponentiated Weibull Rayleigh (EWR) by [19], Type (II) Topp Leone Generalized Inverse Rayleigh (TITLGR) by [20], Kumarawamy Exponential Inverse Rayleigh (KEIR) by [21], Negative Binomial Marshall-Olkin Rayleigh (NBMOR) by [22] and Exponentiated Weibull (EW) by [6].

6.1 Malaysian Rainfall data

These consists of 30 years means of maximum daily rainfall from 1975-2004 at 35 stations in the middle and west of peninsular Malaysia. Table below provide the descriptive statistics of the data.

Table 3 presents each distribution with their maximum likelihood estimates and maximum product of spacing estimates while Table 4 the distributions and their corresponding measures of comparison.

52
Table 1. Malaysian rainfall data

Data	1.134	1.196	1.181	1.178	1.048	1.077	0.835	1.163	0.880
	1.056	1.164	0.914	1.141	1.068	1.007	1.027	1.298	0.842
	0.991	0.955	0.703	0.953	1.018	1.003	1.106	1.110	1.249
	1.092	1.187	1.047	0.989	0.955	1.234	0.937	0.933	

Table 2. Descriptive statistics of Malaysian rainfall data

Variables	Description
Sample size	35
Maximum value, Minimum value	1.298, 0.703
Mode	1.05, 1.15
Kurtosis, Skewness	-0.0760, -0.3504
Mean, Median, Variance	1.0477, 1.048, 0.0172

Table 3. Models parameter estimates

Distribution	MLEs	MPSs						
	α	β	γ	θ	α	β	γ	θ
GomR	0.0719	8.5914	1.0561	---	0.0949	7.4284	1.0303	---
GWR	40.8144	1.9501	---	---	28.6915	1.8642	---	---
EWR	0.4924	1.5769	1.0194	3.1147	0.2412	1.2453	1.4860	2.6946
TIITLGIR	7.8861	0.0418	79.3689	---	6.1335	0.0623	50.5646	---
KEIR	4.4906	79.3503	18.9096	0.0613	12.5434	50.5068	0.9696	0.3852
NBMOR	494.5516	1.3154	0.2903	---	1.2558	8.8050	0.5167	---
EW	1.4725	0.9432	7.6228	---	1.3744	0.9307	7.1843	---

Table 4. Log-likelihood and information criteria

Distribution	AIC	BIC	95% CI	MLLE	HQLC	HQLI	B	AIC	BIC	95% CI	MLLE	HQLC	HQLI	B
GomR	54.366	50.297	48.088	63.474	20.632	48.088	51.305	48.088	41.414	48.088	51.305	48.088	41.414	
GWR	114.644	111.476	103.854	123.103	63.120	103.698	102.840	103.698	96.157	103.698	102.840	103.698	96.157	
EWR	30.655	29.048	26.135	33.168	21.713	26.135	26.103	26.135	25.701	26.103	26.135	25.701	25.701	
TIITLGIR	15.655	14.148	13.054	16.985	11.698	13.054	13.028	13.054	12.504	13.028	13.054	12.504	12.504	
KEIR	15.655	14.148	13.054	16.985	11.698	13.054	13.028	13.054	12.504	13.028	13.054	12.504	12.504	
NBMOR	145.951	143.563	136.804	148.935	79.368	136.804	135.133	136.804	128.604	135.133	136.804	128.604	128.604	
EW	10.451	9.800	8.654	11.868	6.629	8.654	8.669	8.654	8.144	8.669	8.654	8.144	8.144	

6.2 Nigerian rainfall data

These consists of 115 years average annual rainfall in Nigeria from 1901-2015. Below is the descriptive statistics of the data Table 7 gives each distribution with their maximum likelihood estimates and maximum product of spacing estimates while Table 8 the distributions and their corresponding measures of comparison.

6.3 Argentine rainfall data

These consist of 25 years annual rainfall of Argentina from 1991-2015 . Table below provide the descriptive statistics of the data Table 3 presents each distribution with their maximum likelihood estimates and maximum product of spacing estimates while Table 4 the distributions and their corresponding measures of comparison.
Table 5. Nigerian rainfall data

	1.0158	1.0103	0.9736	0.9584	1.1158	1.0478	0.8551	1.0077	1.1099
0.9432	1.0257	0.8447	0.8696	0.7831	0.9807	1.0687	0.9952	1.0350	
0.8836	1.0099	1.0079	0.9125	0.9785	1.0838	1.0005	0.9254	1.0801	
1.0457	1.0189	1.0391	1.0490	0.9110	1.0950	1.0240	0.9847	0.9921	
0.9343	0.9407	1.0718	0.9947	0.9875	0.9195	0.9584	0.8958	0.9354	
0.9492	0.9964	0.9839	0.9626	0.9022	1.0245	1.0204	0.9846	1.1070	
1.0952	0.8952	1.1184	0.9070	1.0138	1.0551	0.9284	1.0697	1.1027	
0.9794	0.9674	1.0042	0.9595	1.0343	1.1026	1.0925	0.9807	0.8770	
0.8120	0.9448	0.9642	0.9146	0.8699	1.0143	0.9688	1.0006	0.9157	
0.8568	0.7301	0.8905	0.8558	0.8840	0.8289	0.9479	0.9160	0.8901	
0.9751	0.9086	0.9576	0.9765	0.9542	1.0192	0.9967	0.9622	1.0135	
0.9371	0.8835	0.9046	1.0267	0.9644	0.8712	0.9599	1.0104	1.0931	
0.9428	0.9497	0.8024	1.0183	0.7660	0.9070	0.8039			

Table 6. Descriptive statistics of Nigerian rainfall data

Variables	Description
Sample size	115
Maximum value, Minimum value	1.1184, 0.7302
Mode	1.025
Kurtosis, Skewness	0.1405, -0.3703
Mean, Median, Variance	0.9640, 0.9674, 0.0061

Table 7. Models parameters estimates

distribution	MLEs	MPSs						
	α	β	γ	θ	α	β	γ	θ
GomR	0.0074	9.6384	0.8154		0.0092	9.5050	0.8334	
GWR	0.2000	0.7382	0.3827		0.0092	9.5050	0.8334	
EWR	0.2313	2.0730	1.3902		0.0096	0.7676	4.0070	5.0639
TITTGIR	0.2889	4.0786	0.9853		0.0090	26.7564	776.7488	
KEIR	0.9050	0.9450	0.5708	0.2621	0.2019	313.5056	0.2266	85.9585
NBMOR	0.4923	1.3153	0.2903		1.5199	1.5199	0.8155	
EW	2.1413	1.9092	0.8412		1.5931	1.5931	0.8412	

Table 8. Log-likelihood and information criteria

Distribution	MLEs	MPSs						
	AIC	BIC	HQIC	B	AIC	BIC	HQIC	B
GomR	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404
GWR	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404
EWR	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404
TITTGIR	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404
KEIR	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404
NBMOR	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404
EW	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404	255.1404

From Tables 4 and 8, except for NBMOR and GWR in MPS, GomR had the lowest information criteria and highest log-likelihood than the distributions compared with. These implies that although GWR, EWR, TITTGIR, KEIR, NBMOR, EW are good distributions for the Malaysian and
Table 9. Argentine rainfall data

Rainfall (mm)	6.163	6.775	5.685	5.607	4.687	5.871	6.149	5.809
Rainfall (mm)	5.936	6.673	6.675	7.040	5.500	5.375	5.277	5.508
Rainfall (mm)	5.447	4.944	4.972	5.155	5.178	5.794	5.427	6.523
Rainfall (mm)	5.988							

Table 10. Descriptive statistics of Argentine rainfall data

Variables	Description
Sample size	25
Maximum value, Minimum value	7.04, 4.687
Mode	5.75
Kurtosis, Skewness	-0.65405, 0.3784
Mean, Median, Variance	5.7663, 5.685, 0.3844

Table 11. Models parameter estimates

Variables	MLEs	MPSs						
Distribution	α	β	γ	δ	α	β	γ	δ
GomR	0.9175	2.2313	2.9276	--	0.9626	2.6488	2.9660	--
GWR	174.1354	0.4131	--	--	94.4851	0.3890	--	--
EW	--	--	--	--	--	--	--	--
TITLGR	14.4895	0.4169	132.4984	--	15.8917	0.3188	77.9312	--
KEIR	19.5197	132.5918	6.2707	32.8224	21.8488	77.9643	0.6662	11.8540
NBMSOR	--	--	--	--	--	--	--	--
EW	76.0723	0.3380	2.3593	--	6.3212	0.2116	4.1536	--

Table 12. Log-likelihood and information criteria

Distribution	MLEs	MPSs						
	AIC	BIC	HQC	B	AIC	BIC	HQC	B
GomR	57.9748	61.2160	66.8594	26.5232	41.0973	46.5170	53.1045	27.5724
GWR	67.9710	72.2934	77.9368	23.9307	41.0973	46.5170	53.1045	27.5724
TITLGR	49.2445	53.5222	59.2450	23.1544	41.0973	46.5170	53.1045	27.5724
KEIR	56.2484	60.5252	66.1484	23.1544	41.0973	46.5170	53.1045	27.5724
NBMOR	38.2844	38.5824	38.8845	23.1544	41.0973	46.5170	53.1045	27.5724
EW	38.9953	38.8845	39.1893	23.1544	41.0973	46.5170	53.1045	27.5724

Nigerian rainfall data, the GomR distribution provides a better fit considering MLE while GomR only provides a better fit than EWR, TITLGR, KEIR and EW distributions when MPSE was considered. However, Table 12 showed otherwise where GomR distribution was the worst in fitting Argentine rainfall data while NBMSOR and GWR distributions could not fit the data at all.

7 Simulation Study

In this subsection, Monte Carlo approach to simulation study was adopted. The important objective of simulations is to determine the most efficient between MLE and MPS methods for the GomR distribution parameters. Using different parameters values and sample sizes (30 – 1000), the estimation methods were compared based on bias and root mean square error (RMSE) of the estimates.

\[
\text{Bias} = \frac{1}{1000} \sum_{i=1}^{1000} (\hat{\theta}_i - \theta_i) \tag{7.1}
\]
RMSE = \sqrt{\frac{1}{1000} \sum_{i=1}^{1000} (\hat{\theta}_i - \theta_i)^2} \hspace{1cm} (7.2)

Steps adopted are as follows:

1. Set the sample size and the vector of parameter values \(\theta = (\alpha, \beta, \gamma) \)
2. Generate sample of size \(n \) from GomR distribution
3. Using the values obtained above, obtain \(\hat{\alpha}, \hat{\beta} \) and \(\hat{\gamma} \) using MLE and MPSE.
4. In 1000 times, repeat steps (2) and (3).
5. Using \(\theta \) and \(\hat{\theta} \), compute Bias and RMSE.

| Table 13. Means Bias and RMSE for the parameter estimates when \(\alpha = 2.3, \beta = 5.2, \gamma = 1.0 \) |
|---|---|---|---|---|---|---|
n	\(\theta \)	MLEs	Bias	RMSE	MPSE	Bias	RMSE
30	2.2712	-0.0288	0.5599	2.7118	0.4118	1.0571	
	3.8504	0.2591	1.0975	3.2236	-0.2764	1.1148	
	0.9942	-0.0558	0.9714	1.0259	0.0259	0.9717	
100	2.3782	0.0782	0.5821	2.5866	0.2866	0.6718	
	5.4793	0.2703	0.7745	5.1854	-0.0146	0.7830	
	1.0130	0.0140	0.0405	1.0286	0.0286	0.0475	
250	2.3629	0.0629	0.5471	2.4672	0.1672	0.4195	
	5.4166	0.2166	0.5307	5.2666	0.0966	0.4760	
	1.0148	0.0148	0.0262	1.0215	0.0215	0.0343	
350	2.3672	0.0672	0.2924	2.4470	0.1479	0.3462	
	5.3862	0.1868	0.4378	5.2728	0.0728	0.3928	
	1.0146	0.0146	0.0233	1.0199	0.0199	0.0296	
1000	2.3630	0.0630	0.1911	2.3880	0.0980	0.2136	
	5.3243	0.1243	0.2696	5.2750	0.0750	0.2530	
	1.0117	0.0117	0.0181	1.0141	0.0141	0.0204	

| Table 14. Means, Bias and RMSEs for the parameter estimates when \(\alpha = 1.8, \beta = 5.9, \gamma = 0.5 \) |
|---|---|---|---|---|---|---|
n	\(\theta \)	MLEs	Bias	RMSE	MPS	Bias	RMSE
30	1.8363	0.0363	0.8320	2.2900	0.4900	1.1576	
	6.387	0.4487	1.1556	5.7491	-0.1599	1.1060	
	0.5013	0.0013	0.0326	0.5213	0.0213	0.0352	
100	1.8655	0.0655	0.4860	2.0446	0.2446	0.5948	
	6.1721	0.2721	0.7229	5.9275	0.0725	0.6674	
	0.5667	0.0067	0.0193	0.5146	0.0146	0.0250	
250	1.8546	0.0546	0.3145	1.9492	0.1492	0.3537	
	6.1300	0.2300	0.4576	6.0671	0.1071	0.4181	
	0.6075	0.0075	0.0339	0.5112	0.0112	0.0167	
350	1.8533	0.0533	0.2538	1.9215	0.1215	0.2915	
	6.0919	0.1919	0.3048	6.0008	0.1008	0.3375	
	0.5060	0.0060	0.0118	0.5100	0.0100	0.0146	
1000	1.8519	0.0519	0.1612	1.8822	0.0822	0.1703	
	6.0447	0.1447	0.2544	6.0673	0.1073	0.2225	
	0.5061	0.0061	0.0092	0.5067	0.0075	0.0104	
The results showed that both estimation methods were consistent as the sample size increases from 30 to 1000 since the RMSE decreases and the means converges in probability to the actual values of the parameters. This consistency of MPSE justify the work of [13]. However, for all sample sizes and different actual values of parameters α and γ the MLE proved to be better estimators than MPSE because of their lower RMSEs but for parameter β at sample size from 100 \sim 1000, the MPSE was better.

8 Conclusions

This study does not introduce a new distribution, rather an innovation by deriving additional statistical properties of GomR distribution by [8] and estimate the parameters using another method other MLE from the earlier study. The applications were further demonstrated using data sets from another area to ascertained its flexibility over sub models and related distributions. Upon application to rainfall dataset from Nigeria and Malaysia, considering goodness-of-tests statistics, the proposed distribution provides better fit compared to some related distributions although it was the worst in fitting the rainfall data from Argentina. The parameters were estimated using another frequentist method, MPSE. Albeit application to two data sets portray the advantage of MLE over MPSE considering AIC and BIC, simulation study showed that the parameter estimates via both methods were consistent since as the sample size increases, the means converges to the actual values. However those from MLE are more efficient than those from MPSE for majoriti of the parameters.

Acknowledgement

Sincere gratitude goes to the co-authors for their relentless efforts and positive criticisms that helped to shape the final outcome of this article.

Competing Interests

Authors have declared that no competing interests exist.
References

[1] Rayleigh L. Xii. on the resultant of a large number of vibrations of the same pitch and of arbitrary phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1880;10(60):73-78.

[2] Trayer VN, Dokladlady Acad N, Belorus. The inverse rayleigh distribution. U.S.S.R; 1964.

[3] Mukherjee S, Maiti S. A percentile estimator of the inverse rayleigh parameter. IAPqR Transactions. 1996;21:63-66.

[4] Gharraph M. Comparison of estimators of location measures of an inverse rayleigh distribution. The Egyptian Statistical Journal. 1993;37:295-309.

[5] Surles J, Padgett W. Inference for reliability and stress-strength for a scaled burr type x distribution. Lifetime Data Analysis. 2001;7(2):187-200.

[6] Mudholkar GS, Srivastava DK. Exponentiated weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability. 1993;42(2):299-302.

[7] Yahaya A, Ieren TG. A note on the transmuted weibull-rayleigh distribution. In Edited Proceedings of 1st Int. Conf. of Nigeria Stat. Soc. 2017;1:7-11.

[8] Mohammed FB, Manju KA, Abdullahi UK, Sani MM, Kuje S. A study of some properties and goodness-of-fit of a gompertz-rayleigh model. Asian Journal of Probability and Statistics. 2020;18-31.

[9] Bhat A, Ahmad S. A new generalization of rayleigh distribution: Properties and applications. Pak. J. Statist. 2020;36(3):225-250.

[10] Adamu A, Yahaya A, Dikko HG. Applications of inverse weibull rayleigh distribution to failure rates and vinyl chloride data sets. Fudma Journal of Sciences. 2021;5(2):8999.

[11] Almongy HM, Almetwally EM, Aljohani HM, Alghamdi AS, Hafez E. A new extended rayleigh distribution with applications of covid-19 data. Results in Physics. 2021;23:104012.

[12] Cheng R, Amin N. Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society: Series B (Methodological). 1983; 45(3):394-403.

[13] Ranneby B. The maximum spacing method. an estimation method related to the maximum likelihood method. Scandinavian Journal of Statistics. 1984;93-112.

[14] Abdulsalam H, Abubakar Y, Dikko HG. On the properties and applications of a new extension of exponentiated rayleigh distribution. FUDMA Journal of Sciences. 2021;5(2):377-398.

[15] Almongy HM, Almetwally EM, Mubarak AE. Marshallolkin alpha power lomax distribution: Estimation methods, applications on physics and economics. Pakistan Journal of Statistics and Operation Research. 2021;137153.

[16] Alizadeh M, Cordeiro GM, Pinho LGB, Ghosh I. The gompertz-g family of distributions. Journal of Statistical Theory and Practice. 2017;11(1):179-207.

[17] Renyi A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California; 1961.

[18] Yahaya A, Yohanna AA. On generalized weibull-rayleigh distribution: Its properties and applications. ATBU Journal of Science, Technology and Education. 2017;5(1):217-231.

[19] Elgarhy M. On the exponentiated weibull rayleigh distribution. Gazi University Journal of Science. 2019;32(3):10601081.

[20] Yahia N, Mohammed H. The type ii topp-leone generalized inverse rayleigh distribution. Int. J. Contemp. Math. Sci. 2019;14:113-122.
[21] Hussain Mohamed, Amin Essam A. Estimation and prediction for the Kumaraswamy-inverse Rayleigh distribution based on records. Institute of Technology, Linköping University, Sweden International Journal of Advanced Statistics and Probability. 2014;2(1):2127.

[22] Jose KK, Sivadas, Remya. Negative binomial Marshall-Olkin Rayleigh distribution and its applications. Institute of Technology, Linköping University, Sweden Economic Quality Control. 2015;30(2):89-98. De Gruyter.