Embedding Divisor and Semi-Prime Testability in f-Vectors of Polytopes

Eran Nevo

Received: 26 October 2021 / Revised: 13 September 2022 / Accepted: 16 September 2022 / Published online: 20 October 2022

Abstract

We obtain computational hardness results for f-vectors of polytopes by exhibiting reductions of the problems DIVISOR and SEMI-PRIME TESTABILITY to problems on f-vectors of polytopes. Further, we show that the corresponding problems for f-vectors of simplicial polytopes are polytime solvable. The situation where we prove this computational difference (conditioned on standard conjectures on the density of primes and on $P \neq NP$) is when the dimension d tends to infinity and the number of facets is linear in d.

Keywords Polytopes · f-vector · Computational complexity

Mathematics Subject Classification 52B05

1 Introduction

The f-vector $(f_0(P), f_1(P), \ldots, f_{d-1}(P))$ of a d-polytope P records the number of faces P has: $f_i(P)$ faces in dimension i. The f-vectors of polytopes of dimension at most 3 were characterized by Steinitz, and the conditions, which are linear equalities and inequalities on the entries of the f-vector, are then easy to check; see e.g. [10, Sect. 10.3]. In contrast, the f-vectors of d-polytopes for $d \geq 4$ are not well understood; see e.g. [10, Sect. 10.4] and the fatness parameter [25] for $d = 4$, while the case $d > 4$ is even less understood. The set of f-vectors of the important subfamily of simplicial
polytopes is characterized by the g-theorem, conjectured by McMullen [13] and proved by Stanley [20] and Billera–Lee [6]. While this well-understood set may be regarded as complicated from some viewpoints (e.g. it is not a semi-algebraic set of lattice points, for any $d \geq 6$, see [18]), yet deciding membership in it is computationally easy, see [14, Thm. 1.4]. The analogous computational problem for the set of f-vectors of d-polytopes is unsolved, see [14, Problem 1.5], and we conjecture it to be NP-hard. It is known to be decidable in time double exponential in the input size, see e.g. [14, Sect. 1.2].

We exhibit two variants of the above membership problem and show that they are computationally hard for f-vectors of polytopes (given standard conjectures in complexity theory), but are efficiently solvable for f-vectors of simplicial polytopes.

Problem 1.1 (fiber count) Given d, a subset of integers $S \subseteq [0, d-1]$, and values f_i for all $i \in S$, let $f_c = f_c(d, (f_i)_{i \in S})$ be the number of f-vectors of d-polytopes with the given values for the S-coordinates. What is the computational complexity (as a function of the input size):

(i) of computing f_c?
(ii) of deciding whether $f_c = 1$?

For example, a recent result of Xue [23], verifying Grünbaum’s lower bound conjecture for general polytopes, implies that for all integers $d \geq 2$, $1 \leq i \leq d - 2$, and $d + 1 \leq a \leq 2d$, for $S = \{0, i\}$,

$$f_c \left(d, \left(f_0 = a, f_i = \left(\binom{d + 1}{i + 1} + \binom{d}{i + 1} - \binom{2d + 1 - a}{i + 1} \right) \right) \right) = 1.$$

Thus, to obtain a hardness result in (ii) where S is a two element subset containing 0, we must have $f_0 \geq 2d + 1$; see Lemma 1.2 (ii) below.

The problem of computing the number of divisors of a given integer, or even of deciding if a given integer is the product of exactly two primes (Semiprime Testability), is believed to be as hard as FACTORING, namely, as factoring the integer into a product of primes; see e.g. Terry Tao’s answer at MathOverflow [17]. From a structural result of McMullen on d-polytopes with $d + 2$ facets [12], specialized to the case $f_0 = 2d + 1$ (see also [16]), we conclude:

Lemma 1.2 (i) The number of f-vectors of d-polytopes with $f_0 = 2d + 1$ and $f_{d-1} = d + 2$ equals $\lfloor D(d)/2 \rfloor$, where $D(d)$ is the number of divisors of d in the interval $[2, d-1]$.
(ii) In particular, $f_c \left(d, \left(f_0 = 2d + 1, f_{d-1} = d + 2 \right) \right) = 1$ iff d either is a semiprime or equals p^3 for some prime p.

(And of course $f_c \left(d, \left(f_0 = 2d + 1, f_{d-1} = d + 2 \right) \right) = 0$ iff d is a prime, which can be decided in polytime in $\log d$ by the celebrated PRIMES is in P result [1, 2].)

As a corollary, we can reduce Semiprime Testability to a decision problem on fiber count, namely Problem 1.1 (ii). Here the bit length of the input is $O(\log d)$, while the full f-vector clearly has bit length of size $\Omega(d)$ (in fact $\Omega(d \log d)$). Nevertheless, the corresponding problem for f-vectors of simplicial polytopes can be solved efficiently:

Springer
Let $f_{cs} = f_{cs}(d, (f_i)_{i \in S})$ be the number of f-vectors of simplicial d-polytopes with the given values for the S-coordinates.

Theorem 1.3 Given as input positive integers d, a, b of total bit length $O(\log d)$, and b of order $O(d)$:

(i) It can be decided in polylog(d)-time whether $f_{cs}(d, f_0 = a, f_{d-1} = b) = 1$.

(ii) Deciding whether $f_{cs}(d, f_0 = a, f_{d-1} = b) = 1$ is at least as hard as Semiprime Testability for d.

The problem DIVISOR, asking whether given three integers $L < U < d$, d has a divisor in the interval $[L, U]$, is believed to be NP-complete, see e.g. Sudan’s survey [22]. In fact, it is NP-complete if for any large enough real number x there exists a prime in the interval $[x, x + \text{polylog}(x)]$, see e.g. the answers by Peter Shor and Boaz Barak in StackExchange [7] to a question of Michaël Cadilhac. Cramér’s conjecture [8, 9] implies that for any $\epsilon > 0$ the interval $[x, x + (1 + \epsilon)\log^2 x]$ suffices for x large enough. DIVISOR remains NP-complete if we require $\sqrt{d} \in [L, U]$ (under the assumption above on the existence of primes in short intervals), by a reduction from a variant of SUBSET SUM of real numbers where the target sum is approximately half the sum of all input numbers.

Lemma 1.4 Given three integers $L < U < d$, with $\sqrt{d} \in [L, U]$, denote $M = M(L, U, d) = \max(L + d/L, U + d/U)$. Then there exists a divisor x of d such that $L \leq x \leq U$ iff there exists a d-polytope P whose f-vector satisfies $f_0(P) = 2d + 1$, $f_{d-1}(P) = d + 2$ and $f_1(P) \in [d^2 + d(1 + d - M)/2, d^2 + d(1 + d - 2\sqrt{d})/2]$.

Again, we show that the corresponding problem for simplicial polytopes is polytime-solvable, despite the fact that the input is of size logarithmic in d, the number of coordinates in the f-vector. Combined, it reads as follows.

Theorem 1.5 Given as input positive integers d, a, b, L, U of total bit length $O(\log d)$, such that $L \leq U$ and b is of order $O(d)$, then:

(i) It can be decided in polylog(d)-time whether there exists a simplicial d-polytope P whose f-vector satisfies $f_0(P) = a$, $f_{d-1}(P) = b$, and $f_1(P) \in [L, U]$.

(ii) Deciding whether there exists a d-polytope P whose f-vector satisfies $f_0(P) = a$, $f_{d-1}(P) = b$, and $f_1(P) \in [L, U]$ is at least as hard as DIVISOR for d.

Remarks (1) Sjöberg and Ziegler [19] characterized the pairs (n, m) such that there exists a d-polytope P with $(f_0(P), f_{d-1}(P)) = (n, m)$ for even d whenever $n + m \geq \binom{3d+1}{d/2}$ (and they proved similar but weaker results for d odd); however our interest is in the region $m + n \in O(d)$ where the behaviour is different and not well understood. If one fixes $d \geq 5$ and let $m + n$ tend to infinity, the results [19, Thms. 3.2 and 3.3] show that deciding whether (n, m) equals $(f_0(P), f_{d-1}(P))$ for some d-polytope is polytime-solvable for d even, but may still be hard for d odd.

(2) For $d = 4$, all the two-projection pairs $(f_i(P), f_j(P))$, $0 \leq i < j \leq 3$, are characterized, in a series of works, see Grünbaum [10, Thms. 10.4.1 and 10.4.2], Barnette–Reay [4, Thm. 10], and Barnette [3, Thm. 1]. It follows that these pairs are polytime decidable. Polytime decidability holds also for the pairs $(f_0(P), f_1(P))$.
of 5-polytopes P, characterized independently by Kusunoki–Murai [11, Thm. 1.2] and Pineda-Villavinecio et al. [15, Thm. 7.2]. However, whether f-vectors of 4-polytopes can be decided in polynomial time is an open problem which we expect to be NP-hard.

Outline: Section 2 sets notation and collects the background results we need on f-vectors of polytopes. In Sect. 3 we prove the computational hardness results above, for general polytopes, namely Theorems 1.3 (ii) and 1.5 (ii). In Sect. 4 we prove the computational efficiency results above, for simplicial polytopes, namely, Theorems 1.3 (i) and 1.5 (i). Section 5 ends with open problems.

2 Preliminaries

For the basics on face enumeration and on polytopes needed here we refer to e.g. the textbooks by Grünbaum [10] and Ziegler [24].

2.1 Faces of Polytopes

A d-polytope is a polytope of dimension d. Its faces of dimension k are called k-faces. Faces of dimension 0, 1, $d - 1$ are called vertices, edges, facets, respectively. A polytope is simplicial if all its proper faces are simplices. Denote by $f_k(P)$ the number of k-faces of a d-polytope P. The f-vector of P is $f(P) = (1 = f_{-1}(P), f_0(P), f_1(P), \ldots, f_{d-1}(P))$. The following lower bound result of McMullen is crucial for our computational hardness results. Let

$$
\Phi_j(v, d) = \min \{ f_j(P) : P \text{ is a } d\text{-polytope, } f_0(P) = v \}.
$$

Theorem 2.1 [12, Thm. 2]

- $\Phi_{d-1}(d + 1, d) = d + 1$, achieved by the d-simplex only.
- If $d + 2 \leq v \leq \lfloor d(d + 8)/4 \rfloor$, then either

 (i) $\Phi_{d-1}(v, d) = d + 2$, and a d-polytope that achieves this must be of the form $T^{r,s,t} := a t$-fold pyramid over the cartesian product of an r-simplex and an s-simplex. Thus $v = (r + 1)(s + 1) + t$, $d = r + s + t$, $t \geq 0$, and $r, s \geq 1$, for some integers r, s, t in this case.

 (ii) Or else, $\Phi_{d-1}(v, d) = d + 3$.

2.2 Face Numbers of Simplicial Polytopes

Assume that the d-polytope P is simplicial. Then the f-vector and h-vector of P determine each other by a polynomial equation in the ring $\mathbb{Z}[x]$:

$$
\sum_{i=0}^{d} f_{i-1}x^{d-i} = \sum_{i=0}^{d} h_i(x + 1)^{d-i}.
$$
Define the g-vector $g(P) = (g_0, \ldots, g_{\lfloor d/2 \rfloor})$ by setting $g_0 = 1$ and $g_i = h_i - h_{i-1}$ for $1 \leq i \leq d/2$. The celebrated g-theorem [6, 20] asserts what follows.

Theorem 2.2 (g-theorem) $f = (1, f_0, \ldots, f_{d-1})$ is the f-vector of a simplicial d-polytope iff

(i) the corresponding h-vector satisfies Dehn–Sommerville relations: $h_i = h_{d-i}$ for all $0 \leq i \leq \lfloor d/2 \rfloor$; and

(ii) the corresponding g-vector is an M-sequence, namely $0 \leq g_i$ for all $1 \leq i \leq d/2$ and it satisfies Macaulay inequalities $g_i^{(i)} \geq g_{i+1}$ for all $1 \leq \langle i \rangle \leq \lfloor d/2 \rfloor - 1$.

See e.g. [21] for the definition of the functions $m \mapsto m^{(i)}$ and for further background on the g-theorem.

3 Reductions

Here we prove our computational hardness results, Theorems 1.3 (ii) and 1.5 (ii), via Lemmas 1.2 and 1.4, respectively. As observed in [16], plugging $v = 2d + 1$ into Theorem 2.1 gives the following, as then $d = sr$.

Corollary 3.1 (i) If d is a prime then $\Phi_{d-1}(2d + 1, d) = d + 3$.

(ii) If d is the product of exactly two primes, or equals a prime cubed, then $\Phi_{d-1}(2d + 1, d) = d + 2$, achieved by a unique minimizer polytope.

(iii) If d is the product of more than two primes, and not a prime cubed, then $\Phi_{d-1}(2d + 1, d) = d + 2$, and is achieved by $\lceil D/2 \rceil > 1$ minimizer polytopes, where D is the number of divisors of d in the interval $[2, d - 1]$. Each of these minimizers has a different number of edges, hence a different f-vector.

The only part of Corollary 3.1 that is not immediate from Theorem 2.1 is the claim on the different f_1 in (iii). However, a routine computation gives that

$$f_1(T^{r,s,t}) = d^2 + \frac{d(t + 1)}{2}$$

in this case (which is indeed an integer!), hence fixing f_1 determines t which in turn determines r and s as $rs = d$ and $r + s = d - t$.

Lemma 1.2 immediately follows. Theorem 1.3 (ii) follows by plugging $a = 2d + 1$ and $b = d + 2$, and recalling that deciding if a given d equals a prime cubed is polytime solvable: first one checks if $d^{1/3}$ is an integer in $O((\log d)^{1+\epsilon})$-time (for any fixed $\epsilon > 0$), see e.g. [5], and if the answer is YES, then one checks primality of $d^{1/3}$ in $O(\text{polylog}(d))$-time by [1].

To prove Lemma 1.4 we use again the expression for $f_1(T^{r,s,t})$: recall we assume that $\sqrt{d} \in [L, U]$. Note that the function $x \mapsto x + d/x$ has a unique extremal point for $x \geq 0$, which is a local minimum, at $x = \sqrt{d}$. Thus, there exists a divisor r of d with $L \leq r \leq U$ iff there exists $T^{r,s,t}$ with $d - t = r + s = r + d/r \in [2\sqrt{d}, M]$ for $M = M(d, L, U) := \max \{L + d/L, U + d/U\}$, equivalently with $t \in [d - M, d - 2\sqrt{d}]$. This happens, using Corollary 3.1, iff there exists a d-polytope P with $f_0(P) = 2d + 1$, $f_{d-1}(P) = d + 2$, and $f_1(P) \in [d^2 + d(1 + d - M)/2, d^2 + d(1 + d - 2\sqrt{d})/2]$, as claimed. As before, Theorem 1.5 (ii) follows from the case $a = 2d + 1$ and $b = d + 2$.
4 Efficient Computations for Simplicial Polytopes

Here we prove our computational efficiency results, Theorems 1.3 (i) and 1.5 (i) using the g-theorem. By a direct computation, the number of facets is expressed in terms of the g-vector as follows: for $d = 2k$ even

$$f_{d-1} = (d + 1) + (d - 1)g_1 + (d - 3)g_2 + \cdots + 3g_{k-1} + g_k,$$

and for $d = 2k + 1$ odd

$$f_{d-1} = (d + 1) + (d - 1)g_1 + (d - 3)g_2 + \cdots + 4g_{k-1} + 2g_k.$$

Now, combined with the g-theorem, if $f_{d-1}(P) = b \in O(d)$ then there exists a constant $C > 0$ s.t. $g_i(P) = 0$ for all $i > C$ and $0 \leq g_i(P) \leq C$ for all $0 \leq i \leq \lfloor d/2 \rfloor$; hence, there are only finitely many potential g-vectors to check. In each of them the Macaulay inequalities $g_i \geq g_{i+1}$ need to be checked only for $i < C$, so each such inequality is checked in constant time. Altogether, in constant time all the g-vectors whose f_{d-1} equals b are found. In particular, one checks in constant time if there exists exactly one such g-vector; this proves Theorem 1.3 (i).

Now, for each g-vector which passed the test above we compute $f_1 = g_2 + dg_1 + \binom{d+1}{2}$ in $O(\text{polylog}(d))$-time and then check whether $f_1 \in [L, U]$ in $O(\log(d))$-time, proving Theorem 1.5 (i).

5 Concluding Remarks

For fixed dimension we conjecture the following, which if correct would provide an explanation why when $d \geq 4$ the f-vectors of d-polytopes are poorly understood.

Conjecture 5.1 Let $d \geq 4$ be fixed. Then it is NP-hard to decide if a given N-bit vector $f = (1, f_0, \ldots, f_{d-1})$ of positive integers is the f-vector of a d-polytope.

Regarding the computational efficiency results,

Problem 5.2 Can the assumption $b \in O(d)$ in Theorems 1.3 (i) and 1.5 (i) be dropped and the same conclusions there hold?

This means b would be polynomial (rather than linear) in d, as the entire input is of size $O(\log d)$.

Acknowledgements I deeply thank Nathan Keller for pointing me to [5] and [17], Boaz Barak and Igor Pak for helpful discussions, Guillermo Pineda-Villavicencio for helpful comments on an earlier version, and the referees for helpful comments on the presentation.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793 (2004)
2. Agrawal, M., Kayal, N., Saxena, N.: Errata: PRIMES is in P. Ann. Math. 189(1), 317–318 (2019)
3. Barnette, D.: The projection of the f-vectors of 4-polytopes onto the (E, S)-plane. Discrete Math. **10**, 201–216 (1974)
4. Barnette, D., Reay, J.R.: Projections of f-vectors of four-polytopes. J. Combin. Theory Ser. A **15**, 200–209 (1973)
5. Bernstein, D.J.: Detecting perfect powers in essentially linear time. Math. Comp. **67**(223), 1253–1283 (1998)
6. Billera, L.J., Lee, C.W.: A proof of the sufficiency of McMullen’s conditions for f-vectors of simplicial convex polytopes. J. Combin. Theory Ser. A **31**(3), 237–255 (1981)
7. Cadilhac, M., Barak, B., Shor, P.: An NP-complete variant of factoring (2011). Stack Exchange. https://cstheory.stackexchange.com/questions/4769/an-np-complete-variant-of-factoring
8. Cramér, H.: On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. **2**, 23–46 (1936)
9. Granville, A.: Harald Cramér and the distribution of prime numbers. Scand. Actuar. J. **1995**(1), 12–28 (1995)
10. Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003)
11. Kusunoki, T., Murai, S.: The numbers of edges of 5-polytopes with a given number of vertices. Ann. Comb. **23**(1), 89–101 (2019)
12. McMullen, P.: The minimum number of facets of a convex polytope. J. Lond. Math. Soc. **3**, 350–354 (1971)
13. McMullen, P.: The numbers of faces of simplicial polytopes. Israel J. Math. **9**, 559–570 (1971)
14. Nevo, E.: Complexity yardsticks for f-vectors of polytopes and spheres. Discrete Comput. Geom. **64**(2), 347–354 (2020)
15. Pineda-Villavicencio, G., Ugon, J., Yost, D.: The excess degree of a polytope. SIAM J. Discrete Math. **32**(3), 2011–2046 (2018)
16. Pineda-Villavicencio, G., Ugon, J., Yost, D.: Lower bound theorems for general polytopes. Eur. J. Combin. **79**, 27–45 (2019)
17. Rune, Tao, T.: How hard is it to compute the number of prime factors of a given integer? (2009). MathOverflow. https://mathoverflow.net/questions/3820/how-hard-is-it-to-compute-the-number-of-prime-factors-of-a-given-integer/10062#10062
18. Sjöberg, H., Ziegler, G.M.: Semi-algebraic sets of f-vectors. Israel J. Math. **232**(2), 827–848 (2019)
19. Sjöberg, H., Ziegler, G.M.: Characterizing face and flag vector pairs for polytopes. Discrete Comput. Geom. **64**(1), 174–199 (2020)
20. Stanley, R.P.: The number of faces of a simplicial convex polytope. Adv. Math. **35**(3), 236–238 (1980)
21. Stanley, R.P.: Combinatorics and Commutative Algebra. Progress in Mathematics, vol. 41. Birkhäuser, Boston (1996)
22. Sudan, M.: The P vs. NP problem (2010). http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf
23. Xue, L.: A proof of Grünbaum’s lower bound conjecture for general polytopes. Israel J. Math. **245**(2), 991–1000 (2021)
24. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)
25. Ziegler, G.M.: Face numbers of 4-polytopes and 3-spheres. In: International Congress of Mathematicians (Beijing 2002), vol. 3, pp. 625–634. Higher Ed. Press, Beijing (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.