The Relationship Between Lower Respiratory Tract Microbiome and Allergic Respiratory Tract Diseases in Children

Jinghua Cui
Capital Institute of Pediatrics

Yuanyuan Zhang
Beijing Key Laboratory of Emerging Infectious Disease, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University

Hanqing Zhao
Capital Institute of Pediatrics

Zhen Chen
Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital

Quan Zhang
Capital Medical University Affiliated Beijing Ditan Hospital

Chao Yan
Capital Institute of Pediatrics

Guanhua Xue
Capital Institute of Pediatrics

Shaoli Li
Capital Institute of Pediatrics

Yanling Feng
Capital Institute of Pediatrics

Han Liu
Baicheng Medical College

Chen Chen
Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases

Xianghui Xie
Capital Institute of Pediatrics

Jing Yuan
Capital Institute of Pediatrics https://orcid.org/0000-0002-6939-9676
Abstract

Background: With the development of sequencing technologies, it has been found that there are microbes similar to those in the upper respiratory tract present in the healthy human lower respiratory tract (LRT), including the lungs and bronchus. Thus, to study the LRT microbiome and evaluate the relationship between this microbiome and allergic respiratory diseases in children, we enrolled 68 children who visited the respiratory department and underwent bronchoscopy from January 2018 to December 2018 in the affiliated hospital of the Capital Institute of Pediatrics.

Methods: Using the total IgE (TIgE) values, children were divided into two groups: one group had 34 patients with allergy (allergy sensitivity, AS); the second group had 34 patients with no allergy (no allergy sensitivity, NAS). Nucleic acid was extracted from samples of bronchoalveolar lavage fluid (BALF) taken during bronchoscopy treatment and the 16S rDNA gene was sequenced and analysed.

Results: The results showed that *Haemophilus*, *Moraxella*, *Streptococcus*, *Prevotella*, *Neisseria*, and *Rothia* were detected in all patients. There was a statistically significant difference in the composition and distribution of microbiota between the AS and NAS groups (p < 0.01). Compared with children in the AS group, the LRT of those belonging to the NAS group were enriched with *Streptococcus*, *Lactobacillus*, and *Anoxybacillus*. However, the level of *Bacteroidetes* in the AS group was significantly higher. Analysis of the correlation of clinical indices and microbiome showed that TIgE was positively correlated with *Bacteroidetes* and negatively correlated with *Streptococcus*. In addition, absolute lymphocyte count showed a relationship with *Streptococcus*, and the absolute neutrophil count or percentage of neutrophils showed a relationship with *Cardiobacterium*.

Conclusions: The respiratory tract microbiome functioned similarly to the intestinal microbiome. That is, the decrease in microbial diversity and the change in composition could lead to an increase in allergic symptoms. The colonised microbiota of the LRT in children, especially that of *Bacteroidetes* and *Streptococcus*, showed a certain correlation with early respiratory allergic diseases.

Trial registration number is ISRCTN18302701, and date of registration is 06/10/2020.

Introduction

At present, the prevalence rate of allergic rhinitis in mainland China is 4–38% [1]. During the past few decades, the prevalence of allergic respiratory diseases in children, especially asthma caused by allergies, has been increasing year by year in China [2]. This rapid increase in atopic diseases can be explained by the “hygiene hypothesis”, which suggests that low infection rates in developed countries lead to inappropriate immune activation of immunoglobulin E (IgE) against the common environment and autoantigens [3]. This hypothesis may account for the recent increase observed in food allergies, especially among children [4]. The prevalence of allergic respiratory diseases in children has been on the rise as well, and it is easily confused with inflammation caused by pathogenic infections; therefore, it is important to distinguish the characteristics of the disease. Total IgE (TIgE) and specific IgE (SIgE) are still
important indicators for diagnosis of suspected allergic diseases. IgE is an immunoglobulin that regulates response to various allergens, and is mainly synthesised by B cells in the lymphatic tissues of the respiratory and digestive mucosa lamina propria and mediates type I hypersensitivity reactions that cause diseases such as allergic rhinitis, allergic reactions, and asthma [5]. Previous reports have demonstrated a quantitative relationship between serum IgE and various allergic diseases [6].

A healthy and diverse gut microbiome can block the development of IgE-mediated food sensitivity [7, 8], and a decrease in intestinal microbial diversity and changes in composition can lead to an increase in allergy symptoms [9]. Similarly, some changes in the pulmonary microbiota of asthma patients have been noted, when compared with that in normal people, opening the door to the concept that dysbacteriosis of pulmonary microbiome may play a role in the pathogenesis of chronic airway disease [10, 11]. It has been reported that in the first year after birth, infants have *Haemophilus, Streptococcus, Moraxella, Staphylococcus, Clostridium*, and *Corynebacterium* in the nasopharynx, which are associated with a higher risk of asthma [12]. Analysis of the microbiome from nasopharyngeal swabs and bronchoalveolar lavage fluid (BALF) demonstrated that nasopharyngeal swab samples can be used to distinguish the differences in individuality among children, but the relative abundance of the microbiome in the nasopharyngeal and lower respiratory tract (LRT) was different [13]. Furthermore, the characteristics of the respiratory tract microbiome and its relationship with allergic disease are not clear. In children, bacterial colonisation and early allergic sensitisation are associated with wheezing, which is characteristic of the asthma phenotype [14]. It is now well established that the healthy bronchial tree contains a microbiome distinct from that of the upper respiratory tract and that the lung microbiome may be dysregulated in individuals with a respiratory disease [10]. Therefore, analysis of respiratory microbiome components may contribute to early detection and intervention in high-risk children, thus aiding in the prevention of allergic disease.

Materials And Methods

Patient selection

We selected 68 children admitted to the respiratory department of the Children's hospital, the Capital Institute of Paediatrics, Beijing, from January 2018 to December 2018. All children underwent bronchoscopy and were classified into two groups, the allergy group (AS) and the non-allergy group (NAS), and there were 34 children in each group. The patients in the AS group had a total IgE > 60 IU/mL and a diagnosis of pneumonia or bronchopneumonia with or without allergic symptoms. The NAS group had presented with a total IgE ≤ 60 IU/mL and a diagnosis pneumonia or bronchopneumonia, without allergic symptoms. Patients were excluded based on the following criteria: (1) diagnosis of pneumonia with specific pathogen infection such as fungus, virus, or mycoplasma or (2) history of mechanical ventilation.

Biomarkers test
Total IgE levels were detected using a special protein analyser (Siemens BNII, Munich, Germany). The peripheral blood cell count was measured using an automatic haematology analyser (XE2100, Sysmex, Japanes). Peripheral venous blood (3 mL) was extracted from children in the aseptic state and then placed into an ethylenediaminetetraacetic acid anticoagulant tube. The anticoagulant and blood were shaken gently and centrifuged at 8000 rpm for 15 min. The stratified plasma and serum were stored in a refrigerator at −20 °C for testing.

BALF Sample preparation

BALF samples obtained from the LRT were used for routine diagnostic procedures. Fibreoptic bronchoscopies with BAL were performed according to the American Thoracic Society guidelines via the oropharyngeal route in accordance with a standard operating procedure, during which 1 mL/kg saline with a concentration of 9 g/L was administered to the bronchial opening in the middle lobe of the right lung and the lower lobe of the upper lobe of the left lung. The lavage was fully recollected and used for bacterial culture and DNA extraction.

DNA extraction and 16S rDNA sequencing

DNA extraction and high-throughput sequencing were performed by the Beijing Key Laboratory of Emerging Infectious Diseases Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University. DNA was extracted using a MagNA Pure LC 2.0 system and a MagNA Pure LC Total NA Isolation kit (Roche, Mannheim, Baden-Württemberg Land, Germany) in accordance with the manufacturer’s instructions and quantified using a Quant-iT PicoGreen dsDNA assay kit (Invitrogen, Eugene, Oregon, USA). Polymerase chain reaction (PCR) amplification of the V3–V4 region was performed with the following primers containing Illumina adaptor sequences and dual-index barcodes to tag each sample: 341F 5’-CCTACGGGNGGCWGCAG-3’ and 805R 5’-GACTACHVGGGTATCT AATCC-3’. The PCR reaction conditions were as follows: 95 °C for 3 min, followed by 25 cycles of denaturation at 95 °C for 30 s, annealing at 65 °C for 30 s, extension at 72 °C for 30 s, and a final extension step at 72 °C for 5 min. PCR products were then cleaned using AMPure XP beads (item no. A63882; Beckman Coulter Inc., Fullerton, CA, USA). The amplicon sequencing libraries were constructed in accordance with the 16S Metagenomic Sequencing Library Preparation (Illumina, Inc., San Diego, CA, USA). Paired-end sequencing with a read length of 250 bp × 2 was performed on a MiSeq instrument (Illumina, Inc.) using a Miseq v2 reagent kit (Illumina, Inc.).

Data analysis

Reads were trimmed using Sickle (version 1.33) [15]. Sickle is a tool that uses sliding windows along with quality and length thresholds to determine when quality is sufficiently low to trim the 3′-end of reads and also determines when the quality is sufficiently high to trim the 5′-end of reads. It also discards reads based on the length threshold. SAPAdes (version 3.7.1) was used for hybrid metagenome assembly [16].
Sequencing reads were processed using QIIME (version 1.9.0) [17], and an index of alpha diversity was calculated with QIIME based on sequence similarity at 97% (operational taxonomic units, OTU). The distance matrix obtained by Unifrac analysis was used for a variety of analytical methods, and the similarity and difference of microbial evolution in different samples were visualised through the principal coordinate analysis (PCA) of multivariate statistical methods. All statistical tests were double-tailed, and P < 0.05 was considered statistically significant.

Results

Patient information

Among the 68 children aged 3 months to 14 years, the number of patients aged < 1 year, 1–3 years, and 3–14 years patients were 21 (30.9%), 18 (26.5%), and 29 (42.4%), respectively. There were 33 males and 35 females. A total of 64 patients were included, of whom 27 presented with pneumonia with respiratory allergy, 28 with pneumonia, and 9 with pneumonia with other symptoms, such as tracheal stenosis and tracheal softening. In addition, four patients in the tracheal group who had foreign body in trachea, were matched. The results of traditional culture and nucleic acid testing of bacteria, fungi, mycoplasma, viruses, and others were negative.

Characterisation of core microbiome in the BALF

The LRT microbiome composition profiles were analysed using a 16S rDNA sequencing-based method. We obtained 16 M paired-end 250 bp reads, with an overall average of ~ 302487 reads per sample. The proportion of sequence reads obtained in every genus to all genera in each BALF sample were calculated, and the top 20 genera were selected for analysis and presentation (Fig. 1A). Further analysis of the core microbiota at the genus level showed that at least four genera could be observed in all patients and that these genera might comprise the core microbiome in the LRT. Haemophilus, Moraxella, Streptococcus, Rhodobacter, Neisseria, and Prevotella were detected in BALF samples from all patients, and the abundance of Streptococcus was the highest in this group (Fig. 1B). Among the 64 patients, 24 patients (37.5%) had the frequency of one genus more than 50%. In 11 patients, the relative concentration of Streptococcus was more than 50%, and similar results were observed for Haemophilus in seven patients, Morella in four patients, Serratia in one patient, and Paracoccus in one patient.

In these 24 patients, a TlGE level ≥ 60 IU/mL was obtained in nine patients and a TlGE < 60 IU/mL was obtained in 15 patients. There was no significant difference in the results of clinical symptoms or other indicators between these patients and those with diverse microbiomes. The remaining 44 patients showed microbiome diversity and could be further analysed. Because the abundance value of a single species in the sample is too high to affect the analysis of the microbiome profile, which happened in 24 samples of the 68 cases in this study, the distribution and diversity of the microbiome were analysed in
the samples of 44 cases. BAFL collected from children with foreign bodies in the bronchus was a negative control, since the microbiomes in these samples were similar to those in the normal LRT.

LRT microbiome in children with AS

Because the frequency of one genus in some LRT samples was more than 50%, and this result could not show the diversity of the microbiome, these samples were excluded from the data analysis. All the samples were collected from children with pneumonia, so we thought that the dysbacteriosis in LRT samples may have been caused by bacterial infection. Therefore, only 44 samples with relatively rich microbiome structures were analysed. In order to determine whether the children with AS displayed a different pattern of microbiota in LRT relative to the children without AS, we compared the microbiome profile in the AS group and the NAS group. Using a PCA with Bray–Curtis distances, the distribution of the LRT microbiome in the children of the AS group was significantly different from that in the NAS group (p < 0.01). This result indicates that the patients with AS have a specific microbiota pattern in their LRT samples (Fig. 2).

To clarify which specific bacteria caused the different patterns between groups, we examined the difference in the relative abundance of the bacteria between the cohorts at the genus level. Compared to the control NAS group, the LRT microbiome in the children of the AS group had lower levels of *Streptococcus, Lactobacillus, Anoxybacillus, Aerococcus, Pavimonas, Cardiobacterium*, and TG5 but higher levels of *Bacteroides* (Fig. 3). This result indicated that children in the AS group have a specific microbiota pattern in their BALF samples. We assessed the genetic diversity of 16S rDNA of the microbiome in the two groups to compare alpha-diversity, including index of Chao1, Simpson, Shannon, and phylogenetic diversity (PD_whole_tree). The results showed that the index value of PD_whole_tree of the NAS group was significantly higher than that of the AS group (p < 0.05), indicating that the genetic diversity of the bacteria in the NAS group was significantly higher than that in the AS group (Fig. 4).

Relation of clinical indices and microbiome in the children of different groups

To determine the clinical characteristics of children with NAS and AS, we listed the clinical indices for the children of the two groups and compared the differences between them (Table 1). The value of T1gE, the percentage eosinophils count (EO%), the absolute eosinophils count (EO#), and the CD16/56 level were significantly different in the two groups (p < 0.05). The analysis of correlation between the clinical indices and microbiome which had significant different abundance in NAS and AS groups, showed T1gE was positively correlated with *Bacteroidetes* and negatively correlated with *Streptococcus*. In addition, absolute lymphocyte count showed a relationship with *Streptococcus*, and the absolute neutrophil count or percentage of neutrophils showed a relationship with *Cardiobacterium* (Spearman correlation index |R| ≥ 0.30 and p < 0.05), as showed in Fig. 5.
Table 1
The biomarkers in different groups

	NAS (n = 25)	AS (n = 19)	P-value
Age, years	3.5 (3M-11Y)	4.3 (10M-13Y)	-
Gender (M/F)	11/14	10/9	-
Tlge (IU/mL)	25.42 (3.66–58.9)	259.24 (61-1947)	0.001*
WBC	9.28 (3.44–19.14)	10.2 (5.07–17.88)	0.811
N%	0.51 (0.10–1.21)	0.43 (0.26–0.79)	0.087
L%	0.43 (0.13–0.81)	0.47 (0.157–0.679)	0.553
EO%	0.02 (0-0.091)	0.03 (0.01–0.079)	0.016*
N#	5.39 (1.21–23.6)	4.31 (2.2–13.85)	0.859
L#	3.80 (0.69–6.78)	4.71 (2.08–12.14)	0.380
EO#	0.16 (0-0.83)	0.31 (0.03–0.95)	0.005*
PCT (ng/ml)	0.31 (0.05–1.42)	0.24 (0.05–1.03)	0.652
PLT	397.84 (181–756)	428.78 (175–672)	0.879
CRP	15.77 (1-103)	5.97 (1-31)	0.259
CD4	36.04 (17–55)	37.12 (19–45)	0.447
CD8	26.83 (16–37)	26.31 (18–37)	0.393
CD4/CD8(%)	1.42 (0.9–2.91)	1.48 (0.57–2.21)	0.2
CD3	68.12 (39–82)	67.31 (55–73)	0.419
CD19	20.13 (10–37)	20.13 (10–37)	0.666
CD16/56	11.41 (4–22)	10.13 (1–19)	0.012*
ZLBXB	97.33 (95–99)	97.56 (95–99)	0.904

Discussion

There have been many reports on the correlation between decreased diversity of the intestinal microbiome in infants and in school-age children and the increased risk of allergic diseases, such as asthma and atopic eczema, as well as the therapeutic strategies aimed at modulating the microbiome [18–20]. Recently, Chiu et al. analysed the intestinal microbiome, the value of IgE in faeces, and the serum allergenic source, which were associated with allergic rhinitis and asthma in children. Furthermore, they found that the interaction between specific species of intestinal microbial dysbacteriosis and IgE-
mediated allergen response might lead to early susceptibility to allergic rhinitis and asthma in children [21]. The total serum level thus forms the basis for atopic quality.

However, does the respiratory tract microbiome increase the risk of allergic respiratory disease by regulating IgE levels? In previous studies, the relationship between bacteria in the upper respiratory tract and allergic respiratory diseases, especially asthma, has been reported [22]. When the nasopharyngeal microbiome of children was assessed, the virus and bacteria species that caused acute respiratory tract infection were captured. *Haemophilus, Morakot, Bacterias, Staphylococcus, Streptococcus*, ectopic *Clostridium*, and *Corynebacterium* were found in the nasopharyngeal sample of infants during the first year after birth. These bacteria not only cause inflammatory reactions (such as fever) in the respiratory tract but also directly or indirectly promote persistent asthma [12]. Similar results were also reported for pharyngeal colonisation of *Haemophilus, Streptococcus*, and *Moraxella*, which increased the risk of acute asthma or aggravated asthma in children [23]. In addition, *Streptococcus pneumoniae, Staphylococcus aureus, Moraxella catarrhalis, Pseudomonas aeruginosa*, and *Haemophilus influenzae* were cultured from the sputum of patients with asthma [24]. These bacteria are also cultured during phases of exacerbations and clinical plateaus in asthma patients. Furthermore, the sputum microbiomes of patients with severe asthma were different from those of healthy individuals and patients with mild asthma, and the level of *Streptococcus eosinophilus* was especially different [25]. The pathophysiological mechanisms by which these organisms cause asthma are not well known [26]. Since the nasopharynx is thought to be a microbial reservoir associated with acute respiratory infections, its microbial composition is primarily similar to that of the upper airway. There are many studies on the microbiome of the upper respiratory tract in children, but few studies have investigated the microbiome characteristics of the LRT due to the difficulty in obtaining BALF samples from children. Comparing nasopharyngeal samples with BALF samples, it was found that species abundance and diversity of the microbiome in BALF were more abundant than those identified using nasopharynx samples. *Actinobacteria* species are more abundant in the nasopharynx, while *Bacteroidetes* is more abundant in the BALF. There are differences in the levels of all species, except for *Streptococcus* [13].

In this study, although the microbiome diversity in 35% of patients (24/68) was disordered, the remaining 65% of patients (44/68) showed the potential effect of the microbiome in the LRT on allergic respiratory diseases in children by analysing the correlation between the pulmonary microbiome and serum IgE in children undergoing bronchoscopy. Analysis results with PCA showed that there was a statistically significant difference (p < 0.01) between the AS group and the NAS group, suggesting that the LRT microbiome was correlated with T1gE level. Compared with the AS group, *Streptococcus, Lactobacillus*, and *Anoxybacillus* were more abundant in the LRT microbiome of the NAS group, with statistically significant differences, while *Bacteroidetes* was significantly higher in the AS group, which demonstrated that enrichment of *Streptococcus, Lactobacillus*, and *Anoxybacillus* in the LRT group may suppress allergy and *Bacteroidetes*-induced allergy. Previous reports have shown that respiratory infection or treatment with *Streptococcus pneumoniae* attenuates allergic immune responses and suppresses allergic airway disease by inducing regulatory T cells [27–29]. Furthermore, *S. pneumoniae* vaccination of asthmatic children and elderly patients reduced the number and severity of asthmatic exacerbations [29].
In contrast, the number of *Bacteroidetes fragilis* and *Bacteroidetes intestinalis* was reported to be significantly higher in Japanese cedar pollinosis (JCPsis) subjects than in non-JCPsis subjects before the pollen season, and symptom scores and JCPsis-specific IgE were also positively correlated with these bacteria [30]. In addition, diversity and decrease in the community composition of the microbiome were observed in the lower airway, which is associated with inflammatory phenotypes (Fig. 1). Recurrent cycles of infection-related inflammation of the LRT drive the pathogenesis of persistent wheezing in children.

All children were classified into NAS and AS groups according to the value of T1gE. Comparing the clinical indices of the two groups, the percentage eosinophils count (EO%), the absolute eosinophils count (EO#), and the CD16/56 level were significantly different in the two groups, which demonstrated the children in this study was effectively grouped, because EO%, EO#, and CD16/56 were all reported the meaningful indicators for allergy disease [31–33]. Then the microbiome, such as *Bacteroidetes* and *Streptococcus* and, showed positively or negatively correlated with T1gE. Therefore, the respiratory microbiome, as intestinal microbiome, may also be a fertile target for the prevention or management of diseases such as allergic asthma, which are characterised by adaptive immune dysfunction [9]. Using a model of respiratory dysbacteriosis in mice, it was found that respiratory tract microbiome imbalance improved the progress of allergic respiratory diseases, and this was by promoting the local production of IL-33. This information will help to further explore the pathophysiological mechanisms of allergic respiratory diseases and provide new ideas for the diagnosis and treatment of diseases [34]. IgE is most common immunoglobulin in atopic disease and plays an important role in mast cell degranulation and in initiating the T helper 2 (Th2) response. Asthma and atopic disease are typically associated with adaptive immunity with the overexpression of Th2. This is still a relatively new field of research. Although microbiome, such as *Streptococcus* and *Bacteroidetes*, are related with allergic sensitivity, the mechanism of the correlation between the microbiome of the LRT and early respiratory allergic diseases in children is not clear and needs to be studied further.

Conclusion

A disorder in the composition of the microbiome was shown in BALFs obtained from children with inflammatory phenotypes. The microbiome of the LRT of children was related to early respiratory allergic diseases. As with the microbiome in the intestinal tract, a decrease in microbial diversity and a change in population composition was found lead to an increase in allergic symptoms in children.

Declarations

Ethics approval and consent to participate

This study was approved by the medical ethics committee of the Capital Institute of Pediatrics, Beijing, China.

Consent for publication
This has been approved for publication by all authors.

Availability of data and material

The 16S rRNA gene sequences are available through the National Genomics Data Center of the China National Center for Bioinformation (CNCB-NGDC) under accession number Project ID PRJCA003568. Data published link is https://bigd.big.ac.cn/gsa/browse/CRA003290.

Competing interests

The authors declare that they have no competing interests.

Funding

Public service development and reform pilot project of Beijing Medical Research Institute (BMR2019-11); National Natural Science Foundation of China (81501799).

Authors’ contributions

JC and YZ wrote the manuscript, processed the sequencing data, and performed the analyses. HZ performed the sample curation. ZC and QZ curated the samples, managed the metadata. CY and GX extracted the DNA and sequenced the microbiome samples. SL and YF performed the clinical experiment. HL performed the analyses and assisted in the manuscript writing. CC and XX conceived of the project and reviewed the manuscript. JY guided the analysis and manuscript writing. All authors read and approved the final manuscript.

References

1. Zhang Y, Zhang L. Prevalence of allergic rhinitis in China. Allergy Asthma Immunol Res 2014; 6(2):105-13.
2. Sha L, Liu C, Shao M, Chen Y. Ten Years Comparison of Diagnosis and Treatment of Asthma in Urban Children in China. Zhonghua Er Ke Za Zhi. 2016; 54(3):182-6.
3. Anvari S, Miller J, Yeh CY, Davis CM. IgE-Mediated Food Allergy. Clin Rev Allergy Immunol. 2019; 57(2):244-60.
4. Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, et al. Microbiome and Allergic Diseases. Front Immunol. 2018; 9:1584.
5. Salo PM, Calatroni A, Gergen PJ, Hoppin JA, Sever ML, Jaramillo R, et al. Allergy-related outcomes in relation to serum IgE: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol 2011; 127(5): 1226-35. e7.
6. Testa D, DI Bari M, Nunziata M, Cristofaro G, Massaro G, Marcuccio G, et al. Allergic rhinitis and asthma assessment of risk factors in pediatric patients: A systematic review. Int J Pediatr Otorhinolaryngol. 2020; 129:109759.
7. Plunkett CH, Nagler CR. The Influence of the Microbiome on Allergic Sensitization to Food. J Immunol. 2017;198(2):581–9.

8. Molloy J, Allen K, Collier F, Tang ML, Ward AC, Vuillermin P. The potential link between gut microbiota and IgE-mediated food allergy in early life. Int J Environ Res Public Health. 2013;10(12):7235–56.

9. Fujimura KE, Lynch SV. Microbiota in Allergy and Asthma and the Emerging Relationship with the Gut Microbiome. Cell Host Microbe. 2015; 17(5):592-602.

10. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5: e8578.

11. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One. 2011; 6: e16384.

12. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–15.

13. Kloepfer KM, Deschamp AR, Ross SE, Peterson-Carmichael SL, Hemmerich CM, Rusch DB, et al. In children, the microbiota of the nasopharynx and bronchoalveolar lavage fluid are both similar and different. Pediatr Pulmonol. 2018; 53(4):475-82.

14. Teo SM, Tang HHF, Mok D, Judd LM, Watts SC, Pham K, et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe. 2018; 24(3): 341–52. e5.

15. Joshi NA, Fass JN2011. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle

16. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013; 20(10):714–37.

17. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

18. Pisi G, Fainardi V, Aiello M, Bertorelli G, Crisafulli E, Chetta A. The role of the microbiome in childhood asthma. Immunotherapy. 2017; 9(15):1295-304.

19. Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Müller G, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011; 128(3):646–52.

20. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012; 129(2):434–40. 440. e1-2.

21. Chiu CY, Chan YL, Tsai MH, Wang CJ, Chiang MH, Chiu CC. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organ J. 2019; 12(3):100021.
22. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. 2013. Asthma-associated differences in microbial composition of induced sputum. J. Allergy Clin. Immunol. 131(2):346–52. e1–3.
23. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke K, et al. Childhood Asthma after Bacterial Colonization of the Airway in Neonates. N Engl J Med. 2007; 357(15):1487–95.
24. Wood LG, Simpson JL, Hansbro PM, Gibson PG. Potentially pathogenic bacteria cultured from the sputum of stable asthmatics are associated with increased 8-isoprostane and airway neutrophilia. Free Radic Res. 2010; 44(2):146–54.
25. Zhang Q, Illing R, Hui CK, Downey K, Carr D, Stearn M, et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res. 2012; 13 (1):35.
26. Zhang Q, Cox M, Liang Z, Brinkmann F, Cardenas PA, Duff R, et al. Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLoS One. 2016; 11(4): e0152724.
27. Preston JA, Thorburn AN, Starkey MR, Beckett EL, Horvat JC, Wade MA, et al. Streptococcus pneumoniae infection suppresses allergic airways disease by inducing regulatory T-cells. Eur Respir J. 2011; 37(1):53-64.
28. Thorburn A, Hansbro P. Harnessing regulatory T cells to suppress asthma: from potential to therapy. Am J Respir Cell Mol Biol. 2010; 43(5): 511–9.
29. Thorburn A, Hansbro P, Gibson P. Pneumococcal vaccines for allergic airways diseases. Expert Opin Biol Ther 2009; 9(5): 621–9.
30. Odamaki T, Xiao JZ, Sakamoto M, Kondo S, Yaeshima T, Iwatsuki K, et al. Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl Environ Microbiol. 2008;74(21):6814-7.
31. Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12(2):117-29.
32. Kelly KJ. Eosinophils and the Scope of Practice in Allergy/Immunology. J Allergy Clin Immunol Pract. 2018 Sep-Oct;6(5):1506-1507.
33. Kelly A, Khan K. Prevalence of allergies in children with complex medical problems. Clin Pediatr (Phila). 2008;47(8):809-16.
34. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014; 20(6):642-7.