Genomics update

Genomes of model organisms: know thy tools

Michael Y. Galperin*
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

The list of recently completed microbial genome sequencing projects (Table 1) includes genomes of two unicellular eukaryotes, three archaea and a variety of bacteria, including an unusually diverse selection of the Firmicutes. The highlights of these sequencing efforts include complete genome sequences of several important model organisms, including the standard laboratory strain *Escherichia coli* DH10B, the model halophile *Halobacterium salinarum* strain R1, the marine cyanobacterium *Synechococcus* sp. PCC 7002 and the unicellular green alga *Chlamydomonas reinhardtii*.

Arguably, the biggest news was sequencing of the genome of *E. coli* DH10B (Durfee et al., 2008). Among more than a dozen of *E. coli* strains with completely sequenced genomes, most are pathogenic and only two, MG1655 and W3110, are derivatives of *E. coli* K-12. Strain DH10B was constructed at Douglas Hanahan’s lab at Cold Spring Harbor Laboratory (Grant et al., 1990) as a derivative of *E. coli* MC1061 designed to serve as a convenient host for cloning and propagation of foreign DNA. Owing to its unusually high transformation efficiency and the ability to maintain large DNA inserts, DH10B became the strain of choice for many genetic engineering tasks and has been extensively used for preparation of mammalian DNA libraries for whole-genome sequencing. Because of this circumstance, the authors were able to replace most of the sequencing with computational analysis of ~4 million sequence reads collected in the course of the bovine genome sequencing project at Baylor College of Medicine. Bovine BAC DNA preparations were found to contain some (<1%) DNA contamination from the *E. coli* DH10B host. These DH10B DNA fragments were identified by comparison to the recently updated genomic sequence of *E. coli* K12 strain MG1655 (Riley et al., 2006), extracted and assembled into contigs. The genomic finishing phase included identification of the DH10B DNA regions that were absent in the strain MG1655 chromosome and closing the gaps between contigs, which still required some sequencing. After the assembly of *Wolbachia* genomes from *Drosophila* sequence reads by Salzberg and colleagues (2005), this work is another impressive example of extracting useful information on bacterial genomes from the massive amounts of sequence data accumulated by the eukaryotic genome sequencing projects.

The genome sequence of *E. coli* DH10B revealed 226 mutations, a 113 kb tandem duplication and an inversion as compared with the genome of *E. coli* MG1655 (Durfee et al., 2008). Surprisingly, the presence of *deoR* mutation in DH10B could not be confirmed, which made the causes of the high transformation efficiency of this strain as obscure as ever before.

In addition to DH10B, two other *E. coli* genomes have been released in March 2008 and will be used for comparative genome analysis. *Escherichia coli* strain SEEC SMS-3–5 was isolated from a toxic metal-contaminated coastal site at Shipyard Creek in Charleston, South Carolina. Surprisingly, this environmental strain is highly resistant to a number of antibiotics, including ciprofloxacin and moxifloxacin, which is obviously a cause for great concern, see http://msc.jcvi.org/e_coli_and_shigella/. *Escherichia coli* C str. ATCC 8739 has an altered outer membrane that lacks the outer membrane porin OmpC and contains only OmpF.

Another important model organism with a recently finished genome is the extremely halophilic archaeon *Halobacterium salinarum* R1. This organism has been first isolated from salted fish in 1920s and has been known under several names, including *Halobacterium halobium*. *Halobacterium salinarum* was used in the famous work of Oesterhelt and Stoeckenius (1971) that discovered bacteriorhodopsin, a 26 kDa protein that comprises the simplest membrane proton pump. Bacteriorhodopsin served as a founding member of a vast family of retinal-binding proteins found in a wide variety of organisms and habitats (Beja et al., 2000; Venter et al., 2004). Sequencing of the *H. salinarum* R1 genome was performed several years ago, although closing the genome proved impossible at that time owing to the abundance of insertion sequences (Pfeiffer et al., 2008). In contrast, *Halobacterium* sp.
1384 Genomics update

Table 1. Recently completed microbial genomes (February–March 2008).

Species name	Taxonomy	GenBank accession	Genome size (bp)	Proteins (total)	Sequencing centre*	Reference	
New organisms							
Chlamydomonas reinhardtii	Eukaryota, Chlorophyta	ABCN00000000	~121 Mbp	14 489	JGI	Merchant et al. (2007)	
Monosiga brevicollis	Eukaryota, Choanoflagellata	AFB00000000	~41.6 Mbp	~9 200	JGI	King et al. (2008)	
Candidatus Korarchaeum cryptofilum	Firmicutes	CP0000086	1 590 757	1 602	JGI	Unpublished	
Thermoproteus neutrophilus	Firmicutes	CP0001014	1 769 823	1 966	JGI	Unpublished	
Halobacterium salinarum R1	Euryarchaeota	AM774415–	2 668 776	2 749	MPI Biochem.	Pfeiffer et al. (2008)	
Corynebacterium ureaeryticum	Actinobacteria	AM6942444	2 369 219	2 024	Bielefeld U.	Tauch et al. (2008)	
Mycobacterium abscessus	Actinobacteria	CU548596	5 067 172	4 941	Genoscope	Ripoll et al. (2007)	
Cyanothoe sp. ATCC 51142	Cyanobacteria	CP0000806	5 460 377	5 304	Wash U.	Unpublished	
Synechococcus sp. PCC 7002	Cyanobacteria	CP0000951–	3 409 935	3 186	BGI	Unpublished	
Acholeplasma laidlawii	Firmicutes	CP0000896	1 496 992	1 380	JGI	Moscow Inst. Phys.-Chem.	Goto et al. (2008)
Candidatus Desulforudis audaxviator	Firmicutes	CP0000860	2 349 476	2 157	JGI	Unpublished	
Finegoldia magna	Firmicutes	AP008971–	1 797 577	1 813	RIKEN	Goto et al. (2008)	
Hellobacterium modesticaldum	Firmicutes	CP0000930	3 075 407	3 000	TGRI	Unpublished	
Leucosarcina citreum KM20	Firmicutes	DQ489736–	1 896 614	1 840	KRIIB	Kim et al. (2008)	
Lysinibacillus (Bacillus) sphaericus	Firmicutes	CP0000817	4 639 821	4 771	BGI	Hu et al. (2008)	
Thermoanaerobacter pseudethanolicus	Firmicutes	CP0000924	2 362 816	2 243	JGI	Unpublished	
Thermoanaerobacter sp. X514	Firmicutes	CP0000923	2 457 259	2 349	JGI	Unpublished	
Caulobacter sp. K31	α-Proteobacteria	CP0000927	5 477 872	5 438	JGI	Unpublished	
Methylobacterium radiotolerans	α-Proteobacteria	CP0001001–	6 899 110	6 431	JGI	Unpublished	
Methylobacterium sp. 4–46	α-Proteobacteria	CP0000943	7 659 055	6 692	JGI	Unpublished	
Cupnividus taiwanensis	β-Proteobacteria	CU633749	3 416 911		Genoscope	Unpublished	
Leptothrix choldnii	β-Proteobacteria	CU633750	2 502 411				
Polynucleobacter necessarius	β-Proteobacteria	CU633751	557 200				
Francisella philomirga	γ-Proteobacteria	CP0000937	2 045 775	1 915	JGI	Unpublished	
Shevawella halifaxensis	γ-Proteobacteria	CP0000931	5 226 917	4 278	JGI	Unpublished	
Shevawella woody	γ-Proteobacteria	CP0000961	5 935 403	4 880	JGI	Unpublished	
Leptospira biflexa strain ‘Patoc 1 (Ames)’	Spirochaetes	CP0000777	3 603 977	3 600	Institut Pasteur	Picardeau et al. (2008)	
Leptospira biflexa strain ‘Patoc 1 (Paris)’	Spirochaetes	CP0000778	277 995		Institut Pasteur	Picardeau et al. (2008)	
Leptospira biflexa strain ‘Patoc 1 (Ames)’	Spirochaetes	CP0000779	74 117		Institut Pasteur	Picardeau et al. (2008)	
Thermotoga sp. RQ2	Thermotoga	CP0000969	1 877 693	1 819	JGI	Unpublished	
New strains							
Clostridium michiganensis ssp. sepedonicus	Actinobacteria	AM649034	3 258 645	2 943	JGI	Sanger institute	
Clostridium bolitunum A3 str. Loch Maree	Firmicutes	CP0000962	3 992 906	3 984	USAMRIID	Bentley et al. (2008)	
Clostridium bolitunum B1 str. Okra	Firmicutes	CP0000963	266 785				
Streptococcus pneumoniae Hungary19A-6	Firmicutes	CP0000939	3 958 233	3 852	USAMRIID	Smith et al. (2007a)	
Ureaplasma parvum str. ATCC 27915	Firmicutes	CP0000940	148 780				
Burkholderia cenocepacia MCO-3	β-Proteobacteria	CP0000958	3 532 883	3 160	JGI	Unpublished	
Polynucleobacter necessarius	β-Proteobacteria	CP0000959	3 213 911	2 795	JGI	Unpublished	
Burkholderia cenocepacia MCO-3	β-Proteobacteria	CP0000960	1 224 595	1 053	JGI	Unpublished	
Acinetobacter baumannii KWE	γ-Proteobacteria	CU459137–	4 048 735	3 712	Genoscope	Fournier et al. (2006)	
Acinetobacter baumannii SDF	γ-Proteobacteria	CU468230–	3 477 996	2 975	Genoscope	Fournier et al. (2006)	
Table 1. cont.

Species name	Taxonomy	GenBank accession	Genome size (bp)	Proteins (total)	Sequencing centre	Reference
Escherichia coli C str. ATCC 8739	γ-Proteobacteria	CP000946	4 746 218	4 200	JGI	Unpublished
Escherichia coli DH10B	γ-Proteobacteria	CP000948	4 686 137	4 126	U. Wisconsin	Durfee et al. (2008)
Escherichia coli SECEC SMS-3-5	γ-Proteobacteria	CP000970	5 215 377	4 913	JCVI	Unpublished
Haemophilus somnus 2336	γ-Proteobacteria	CP000947	2 263 857	1 980	JGI	Unpublished
Pseudomonas putida GB-1	γ-Proteobacteria	CP000926	6 078 430	5 409	JGI	Unpublished
Pseudomonas putida W619	γ-Proteobacteria	CP000949	5 774 330	5 182	JGI	Unpublished
Xylella fastidiosa M12	γ-Proteobacteria	CP000941	2 475 130	2 104	JGI	Unpublished
Yersinia pseudotuberculosis YPIII	γ-Proteobacteria	CP000950	4 689 441	4 192	JGI	Unpublished

Sequencing centre names are abbreviated as follows: BGI, Beijing Genomics Institute, Beijing, China; Bielefeld U., Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany; Genoscope, Centre National de Séquençage, Evry cedex, France; Institute Pasteur, Institut Pasteur, Paris, France; JCVI, J. Craig Venter Institute, Rockville, Maryland, USA; JGI, US Department of Energy Joint Genome Institute, Walnut Creek, California, USA; RIKKB, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Monash Univ., Victorian Bioinformatics Consortium and Department of Microbiology, Monash University, Clayton, Victoria, Australia; Moscow Inst. Phys.-Chem., Research Institute for Physico-Chemical Medicine, Federal Agency of Public Health and Social Development of the Russian Federation, Moscow, Russia; MPI Biochem., Max-Planck-Institute of Biochemistry, Martinsried, Germany; RIKEN, Genome Core Technology Facility, RIKEN Genomic Sciences Center, Yokohama, Kanagawa, Japan; Sanger Institute, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; TGR, Translational Genomics Research Institute, Scottsdale, Arizona, USA; USAMRIID, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, USA; U. Wisconsin, Department of Genetics, University of Wisconsin, Madison, Wisconsin, USA; Wash U., Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, USA.

NRC-1, whose genome has been successfully sequenced (Ng et al., 2000), remained taxonomically uncharacterized until 2004 when Gruber and colleagues (2004) showed that it also belongs to *H. salinarum*. Indeed, the recently completed genome sequence of *H. salinarum* R1 proved nearly identical to that of *Halobacterium* sp. NRC-1: most of the observed differences were attributable to the presence of insertion sequences (Pfeiffer et al., 2008). Given the significant body of transcriptomic and proteomic data for *H. salinarum* (Klein et al., 2008), the availability of the genome sequence should make it an even more useful model organism.

The unicellular green alga *Chlamydomonas reinhardtii* is used as a model organism to study photosynthesis, cellular division, intracellular signalling and a variety of other topics. At some point it has even been called ‘the photosynthetic yeast’ (Rochaix, 1995). It has distinct advantages in comparison to higher plants because it is unicellular, haploid and amenable to transformation. It can be grown photoautotrophically or heterotrophically and can be genetically manipulated (Grossman, 2000; 2007). In addition, its genome, as well as the recently released genomes of *Monosiga brevicollis* and *Physcomitrella patens*, is extremely interesting from the evolutionary point of view.

Monosiga brevicollis is a representative of a small group of *Chaoanoflagellates*, unicellular eukaryotes characterized by a single flagellum surrounded by a collar (choane) of microvilli. *Chaoanoflagellates* are very similar to the choanocytes, specialized cells that are found in several animal phyla, including sponges, the most primitive group of *Metazoa*. This makes them particularly interesting objects for studying the origin of metazoans (King et al., 2008). *Monosiga brevicollis* genes contain numerous introns and might be used to clarify the origin of introns and their role in metazoan evolution.

Another interesting genome that may be important for understanding evolution of life is that of *Candidatus Korarchaeum cryptofilum*, a member of the candidate division *Korarchaeota*. This group does not include any cultivated organisms but, based on the 16S rRNA phylogeny, was proposed to form a separate archaeal phylum, distinct from *Crenarchaeota*, *Euryarchaeota* and *Nanoarchaeota* (hence ‘cryptofilum’). Extensive sampling of the Obsidian Pool in Yellowstone National Park in Wyoming allowed collection of sufficiently pure DNA samples to perform the whole-genome sequencing. The completed genome reveals a relatively simple metabolism relying on peptide fermentation. It also confirms that *K. cryptofilum* represents a deep-branching archaeal lineage with limited similarity to *Crenarchaeota*, *Euryarchaeota* or *Nanoarchaeota*, which probably deserves to be considered a separate archaeal phylum.

The three actinobacteria in the current list are all important pathogens: *Clavibacter michiganensis* ssp. *sepedonicus* is a phytopathogen causing the wilt and tuber rot in potato, whereas *Corynebacterium urealyticum* and *Mycobacterium abscessus* are both human pathogens that cause, respectively, urinary tract infections and infections of skin and lungs (Ripoll et al., 2007; Tauch et al., 2008).

Clavibacter michiganensis ssp. *sepedonicus* was first described in 1914 as the causative agent of potato ring rot.

Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, *Environmental Microbiology*, 10, 1383–1391

No claim to original US government works
It is a close relative of the tomato pathogen Clavibacter michiganensis ssp. michiganensis, whose genome was sequenced in 2007 (Gartemann et al., 2008). However, while C. michiganensis ssp. michiganensis can survive both as an endophyte and an epiphyte, C. michiganensis ssp. sepedonicus appears to be limited to the endophytic lifestyle of a potato pathogen (Bentley et al., 2008). Genome comparisons suggest a recent evolution of C. michiganensis ssp. sepedonicus, which resulted in its adaptation to the potato host and included differential gene gain and loss (Bentley et al., 2008).

Mycobacterium abscessus, first described more than 50 years ago, is a rapidly growing mycobacterium, commonly isolated from soil and water. This organism, formerly known as Mycobacterium chelonae ssp. abscessus (Kusunoki and Ezaki, 1992), is an important emerging pathogen that causes a variety of human infections, including skin, ear, soft tissue and lung infections (Brown-Elliott and Wallace, 2002; Petriti, 2006). Although it belongs to the group of so-called non-tuberculous mycobacteria, M. abscessus can cause a chronic lung infection, similar to tuberculosis, particularly in patients with cystic fibrosis and those undergoing immunosuppressive therapy. Mycobacterium abscessus is resistant to many commonly used antibiotics, which makes treatment very difficult.

The marine cyanobacterium Synechococcus sp. PCC 7002 was originally isolated in 1961 in Puerto Rico. Owing to its ability to grow fast, either phototrophically or heterotrophically on glycerol, and natural transformability, Synechococcus sp. PCC 7002 has become a favourite model organism to study oxygenic photosynthesis (see the Donald Bryant’s lab web site http://www.bmb.psu.edu/faculty/bryant/lab/Project/Cyano/ for details).

The second cyanobacterium in the list, Cyanothecae sp. ATCC 51142, is an aerobic unicellular marine bacterium that is capable of fixing nitrogen and oxygenic photosynthesis (Reddy et al., 1993). As nitrogenase, the enzyme responsible for N2 fixation, is sensitive to oxygen, photosynthesis and N2 fixation cannot occur in the same cell at the same time. Cyanothecae overcomes this conundrum by using a diurnal cycle: oxygenic photosynthesis and CO2 assimilation occur during the day time, while N2 fixation occurs during the night (Schneegurt et al., 1994). This turnover is apparently regulated by the circadian clock system, which makes Cyanothecae a good model organism to study the mechanisms of circadian rhythm.

The 1.5 Mbp genome of Acholeplasma laidlawii is the largest mollicute genome sequenced to date and the very first one to be sequenced in Russia. Quite appropriately, in Russian street slang, the organism’s genus name means something like ‘Why not?’ Like other mycoplasmas, A. laidlawii is a common parasite of animals but has been found also in association with plants, in soil, water and raw sewage. It is one of the most frequently identified contaminants of insect and mammalian cell culture. While lacking a cell wall, A. laidlawii retains the ability to synthesize fatty acids and glycolipids and does not require exogenous cholesterol, which made it a favourite model organism to study the biophysical properties of biological membranes. Acholeplasma laidlawii genome encodes a number of proteins that are not encoded in other mollicutes. These include, among others, components of a signal transduction machinery with two sensory histidine kinases, three response regulators and 14 proteins with diguanylate cyclase (GGDEF) and/or c-di-GMP-specific phosphodiesterase (EAL) domains, which are all missing in previously sequenced mycoplasmal genomes.

Desulfuris audaxviator has not yet been cultivated but appears to be a dominant organism in the deep subsurface environment (hence the species name, which means ‘bold traveller’ and comes from Jules Verne’s ‘Journey to the Center of the Earth’). This sulfate-reducing bacterium has been described so far only in a single poster at the ASM General Meeting in 2006 (Chivian et al., 2006) and provisionally assigned to a new genus in the clostridial family Peptococaceae. Desulfuris audaxviator was first identified in South African gold mines and detected in almost all fracture fluids emanating from depths ranging from 1.5 to 3.2 km below the surface (Onstott et al., 2003). Electron microscopy revealed large cells of up to 4 μm in length. Sequencing the D. audaxviator genome was undertaken after analysis of DNA extracted from a borehole water sample collected at 2.8 km depth showed that more than 93% of that microbial community was Desulfuris-type cells. Preliminary genome analysis indicated the ability of D. audaxviator to utilize CO and fix N2 (Chivian et al., 2006). The authors speculate that D. audaxviator has retained an ancient mode of metabolism that might sustain life on other planets.

The genome of Helio bacterium modesticaldum is the first complete genome sequence from a phototrophic firmicute. This organism is a representative of the family Helio bacteriaceae, which unifies spore-forming Gram-positive bacteria that are capable of anoxygenic photosynthesis. The genome of closely related Heliobacillus mobilis has been reportedly sequenced by Integrated Genomics, but was never publicly released (Mulikjanian et al., 2006). Helio bacterium modesticaldum is a moderately thermophilic anaerobe that was first isolated from a microbial mat in Yellowstone hot spring and grows best at 50–56°C (Kimble et al., 1995). This organism is capable of fixing nitrogen and can grow either phototrophically or heterotrophically using pyruvate as a carbon source. The availability of the genome sequence will make H. modesticaldum a potential model organism to study the photosynthetic machinery (see the TGRI web site http://genomes.tgen.org/helio.html for more details). It might also help decipher the evolutionary history of anoxyge-
nic photosynthesis, which remains controversial: some authors suggest that heliobacteria possess ancestral photosynthetic machinery (Woese et al., 1985; Gupta et al., 1999), whereas others believe that heliobacteria acquired it through lateral gene transfer (Mulkidjanian et al., 2006). In addition, the ability of H. modesticaldum to grow phototrophically at elevated temperatures using N₂ as nitrogen source makes it attractive for use in biotechnology.

Finegoldia magna, formerly known as Peptostreptococcus magnus, is a member of the Gram-positive anaerobic cocci, part of the normal human bacterial flora that colonizes skin and mucous membranes of the mouth and gastrointestinal tract (Goto et al., 2008). Finegoldia magna is an important opportunistic pathogen that is commonly found in clinical samples from infections of soft tissue, bone and joints. The sequenced strain F. magna ATCC 29328 was originally isolated from an abdominal wound.

The lactic acid bacterium Leuconostoc citreum is used in preparation of various processed foods, such as French cheeses, sauerkraut and pickled cucumbers. Over the past several years, L. citreum strains have been isolated from a variety of traditional ethnic foods, including Moroccan soft white cheese; wheat sourdoughs from Southern Italy; pozol, a Mexican traditional fermented corn beverage; traditional fermented milk from South Africa; fermented bamboo tender shoots in North-east India; som-fak, a low-salt fermented fish product from Thailand, and puto, fermented rice cake popular in the Philippines. The sequenced strain L. citreum KM20 has been isolated from kimchi, a traditional Korean dish made of fermented napa cabbage, white radish and other vegetables and seasoned with garlic, ginger and hot red pepper (Cho et al., 2006). Preliminary analysis of L. citreum genome revealed a variety of carbohydrate transporters and glycoside hydrolases, consistent with fermentation of plant material, as well as a mucin-binding protein, consistent with the ability of L. citreum to function as a probiotic (Kim et al., 2008).

Lysinibacillus sphaericus is the recently adopted name of the well-known soil bacterium Bacillus sphaericus, some strains of which are pathogenic for mosquito larvae and widely used for insect control (Ahmed et al., 2007). As noted earlier, two complete genomes of the insect pathogen Bacillus thuringiensis, serovar konkukian and strain Al Hakam, were sequenced primarily because of their pathogenicity to humans (Han et al., 2006; Challacombe et al., 2007). Thus, L. sphaericus strain C3-41 is the first complete bacillus genome sequenced solely because of its mosquitoicidal properties. The genome paper (Hu et al., 2008) offers a detailed analysis of L. sphaericus genome and compares it with genomes of six other firmicutes. This comparison reveals a number of significant differences between L. sphaericus and both B. subtilis and B. anthracis, lending further support to the notion that L. sphaericus should be considered a member of a different genus. Remarkably, the closest relative of L. sphaericus was Bacillus sp. strain NRRL B-14905, isolated from surface waters of the Gulf of Mexico (Siebert et al., 2000), whose unfinished whole-genome shotgun sequence (GenBank accession No. AAXV00000000) has been determined at JCVI.

Two more firmicutes with completely sequenced genomes belong to the genus Thermoanaerobacter. Thermoanaerobacter pseudethanolicus strain 39E has been isolated from an algal-bacterial mat in Octopus Spring in Yellowstone National Park in Wyoming and initially described as Clostridium thermohydrosulfuricum (Zeikus et al., 1980). It was later assigned to Thermoanaerobacter ethanolicus and recently renamed T. pseudethanolicus (Onyenwoke et al., 2007). It is a moderately thermophilic (optimal growth at 65°C) anaerobic bacterium that efficiently ferments carbohydrates into ethanol. The ability of T. pseudethanolicus to metabolize xylose makes it attractive for use in bioconversion of lignocellulose to industrial alcohol.

Thermoanaerobacter sp. X514 is a moderately thermophilic bacterium closely related to Thermoanaerobacter ethanolicus. It has been isolated from the deep subsurface environments of Piceance Basin in Colorado (Roh et al., 2002). This organism grew optimally at 60°C using molecular hydrogen as an electron donor for Fe(III) reduction. It could also reduce a variety of metals, including Fe(III), Co(III), Cr(VI), Mn(IV) and U(IV) when using acetate, lactate, pyruvate, succinate, glucose and xylose as electron donors. Metal reduction led to the precipitation of various minerals. Thus, reduction of Fe(III) oxyhydroxide (FeOOH) at temperatures ranging from ~45°C to 70°C led to the production of magnetite Fe₃O₄ (Roh et al., 2002).

The next two organisms, the α-proteobacterium Methylobacterium radiotolerans and the β-proteobacterium Cupriavidus taiwanensis, are remarkably similar in their ability to form symbiotic associations with legume roots: they both form root nodules and live there, fixing N₂ and providing fixed nitrogen to the host plant. At the end of 2007, JGI scientists released the complete genome sequence of the α-proteobacterial methylotroph Methylobacterium extorquens strain PA1, a member of the Rhizobiales (GenBank accession No. CP000908). That genome has now been followed by genomes of two more members of Methylobacterium spp. Methylobacterium radiotolerans strain JCM 2831 is a facultative symbiont of legumes that is capable of nodulation and nitrogen fixation, whereas Methylobacterium sp. 4–46 apparently is not and will be used for comparative genome analysis.

The nitrogen-fixing β-proteobacterium Cupriavidus taiwanensis strain LMG19424 has been isolated from the root nodules of the legumes Mimosa pudica and Mimosa diplotricha in the southern part of Taiwan and originally named...
Ralstonia taiwanensis (Chen et al. 2001). It was subsequently renamed Wautersia taiwanensis (Vaneechoutte et al. 2004) and, several months later, Cupiavidus taiwanensis (Vandamme and Coenye, 2004). It is one of several β-proteobacteria found to be capable of root nodule formation and nitrogen fixation (Moulin et al., 2001; Chen et al., 2003). The genes responsible for nodule formation and nitrogen fixation were shown to reside on a 0.5 Mbp plasmid. As C. taiwanensis is only distantly related to nodule-forming α-proteobacteria, analysis of its genome could define the set of genes that are required for efficient nodulation of plant roots.

The β-proteobacterium Polynucleobacter necessarius is an obligate intracellular symbiont of the freshwater ciliate Euplotes aediculatus; the organism has not been cultivated outside the host and the host cells cured from P. necessarius die after one or two cell divisions (Heckmann and Schmidt, 1987). However, close relatives of P. necessarius are found in freshwater habitats all over the world and comprise a large fraction of bacteria in the pelagic zone of surface freshwater (Hahn, 2003). This appears to be a case of a relatively minor sequence divergence between a free-living organism and an obligate endosymbiont (Vannini et al., 2007). Complete genome sequence of a free-living Polynucleobacter strain QLW-P1DMWA-1 has been released by the JGI a year ago (GenBank accession No. CP000655). The completion of the P. necessarius genome offers an opportunity to compare the two and gain important clues on the physiology of this important group of bacteria, as well as the genetic determinants of the intracytoplasmic lifestyle.

The first genome of Acinetobacter baumannii, an obligately aerobic bacterium commonly found in soil, water and sewage, as well as in hospital environment, was sequenced in 2007 (Smith et al., 2007b). Genomes of two more strains of A. baumannii have now been sequenced, an antibiotic-sensitive strain A. baumannii SDF, isolated from body lice collected from homeless people living in France (La Scola and Raoult, 2004), and an antibiotic-resistant strain A. baumannii AYE.

Francisella philomiragia, formerly known as Yersinia philomiragia, is a strictly aerobic γ-proteobacterium found in water and fish. It is an emerging pathogen, infecting humans (and fish) with chronic granulomatous disease (Holis et al., 1989; Mikalsen et al., 2007). The sequenced strain Francisella philomiragia ssp. philomiragia ATCC 25017 was isolated from water in the Bear River Refuge in Utah. Genome comparison of F. philomiragia and Francisella tularensis should help define the pathogenic mechanisms used by these two related bacteria.

The Shewanella genome sequencing project at the JGI has released complete genomes of two more marine bacteria, Shewanella halifaxensis and Shewanella woodyi. Shewanella halifaxensis has been isolated from the Emerald Basin, an unexploded ordinance-contaminated marine sediment site near the Halifax Harbor in Nova Scotia, Canada (Zhao et al., 2006), together with Shewanella sediminis whose complete genome sequence was released by the JGI several months ago (see Galperin, 2007). Like S. sediminis, S. halifaxensis is capable of metabolizing the explosive agent RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), which is also known as hexogen, hexolite and cyclonite (see http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=8490 for the formula). The periplasmic protein fraction of S. halifaxensis transformed RDX almost as well as whole cells, converting it into nitroso derivatives and/or ring cleavage products such as methylenedinitramine (Zhao et al., 2008). Shewanella halifaxensis is not just an attractive organism for bioremediation of unexploded RDX: it is already hard at work, at least in the Halifax Harbor that gave it its name.

Shewanella woodyi is a bioluminescent bacterium that was isolated from seawater and squid ink samples collected from intermediate depth (200–300 m) in the Alboran Sea between Spain and Morocco. These luminous bacteria were unable to ferment sugars but could grow anaerobically using nitrate or nitrite as terminal electron acceptors. The species name was assigned in honour of J. Woodland (‘Woody’) Hastings, a Harvard University professor and a pioneer in studying bacterial luminescence (Makemson et al., 1997).

Acknowledgements

M.Y.G. is supported by the Intramural Research Program of the NIH, National Library of Medicine. The author’s opinions do not reflect the views of NCBI, NLM or the National Institutes of Health.

References

Ahmed, I., Yokota, A., Yamazoe, A., and Fujiwara, T. (2007) Proposal of Lysinibacillus boroniferans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57: 1117–1125.

Aivaliotis, M., Gevaert, K., Falb, M., Tebbe, A., Konstantinidis, K., Bisle, B., et al. (2007) Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis. J Proteome Res 6: 2195–2204.

Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T., Hadd, A., Nguyen, L.P., et al. (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902–1906.

Bentley, S.D., Corton, C., Brown, S.E., Barron, A., Clark, L., Doggett, J., et al. (2008) Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus

Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 10, 1383–1391

No claim to original US government works
suggests recent niche adaptation. *J Bacteriol* **190**: 2150–2160.

Brown-Elliott, B.A., and Wallace, R.J., Jr (2002) Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. *Clin Microbiol Rev* **15**: 716–746.

Challacombe, J.F., Altherr, M.R., Xie, G., Bhotika, S.S., Brown, N., Bruce, D., *et al.* (2007) The complete genome sequence of *Bacillus thuringiensis* AI Hakam. *J Bacteriol* **189**: 3680–3681.

Chen, W.M., Laevens, S., Lee, T.M., Coenye, T., De Vos, P., Chen, W.M., Laevens, S., Lee, T.M., Coenye, T., De Vos, P., Grant, S.G., Jessee, J., Bloom, F.R., and Hanahan, D. (1990) *Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology*.

Chen, W.M., Moulin, L., Bontemps, C., Vandamme, P., Bena, G., and Boivin-Masson, C. (2003) Legume symbiotic nitro- et al.

Chen, W.M., Moulin, L., Bontemps, C., Vandamme, P., Bena, G., and Boivin-Masson, C. (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. *J Bacteriol* **185**: 7266–7272.

Chivian, D., Alm, E.A., Brodie, E.L., Culley, D.E., Gihring, T., Lapidus, A., *et al.* (2006) Environmental genomic characterization of the deep subsurface microorganism *Desulfurodatis audaxlax.* In *American Society for Microbiology General Meeting.* Orlando, FL, USA: American Society for Microbiology Press, Poster N-034.

Cho, J., Lee, D., Yang, C., Jeon, J., Kim, J., and Han, H. (2006) Microbial population dynamics of kimchi, a fermented cabbage product. *FEBS Microbiol Lett* **257**: 262–267.

Durfee, T., Nelson, R., Baldwin, S., Plunkett, G., 3rd, Burland, V., Mau, B., *et al.* (2008) The complete genome sequence of *Escherichia coli* DH10B: Insights into the biology of a laboratory workhorse. *J Bacteriol* **190**: 2597–2606.

Fournier, P.E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., *et al.* (2006) Comparative genomics of multidrug resistance in *Acinetobacter baumannii.* *PLoS Genet* **2**: e7.

Galperin, M.Y. (2007) Some bacteria degrade explosives, others prefer boiling methanol. *Environ Microbiol* **9**: 2905–2910.

Gartemann, K.H., Abt, B., Bekel, T., Burger, A., Engemann, J., Gaigalat, L., *et al.* (2008) The genome sequence of the tomato-pathogenic actinomycete *Clavibacter michiganensis* subsp. *michiganensis* NCPPB382 reveals a large island involved in pathogenicity. *J Bacteriol* **190**: 2138–2149.

Goto, T., Yamashita, A., Hirakawa, H., Matsutani, M., Todo, K., Ohshima, K., *et al.* (2008) Complete genome sequence of *Finegoldia magna*, an anaerobic opportunistic pathogen. *DNA Res* **15**: 39–47.

Grant, S.G., Jessee, J., Bloom, F.R., and Hanahan, D. (1990) Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. *Proc Natl Acad Sci USA* **87**: 4645–4649.

Grossman, A.R. (2000) *Chlamydomonas reinhardtii* and photosynthesis: genetics to genomics. *Curr Opin Plant Biol* **3**: 132–137.

Grossman, A.R. (2007) In the grip of algal genomics. *Adv Exp Med Biol* **616**: 54–76.

Gruber, C., Legat, A., Pfaffenhuermer, M., Radax, C., Weidler, G., Busse, H.J., and Stan-Lotter, H. (2004) Halobacterium noricense *sp.* nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium *sp.* NRC-1 as a strain of *H. salinarum* and emended description of *H. salinarum*. *Extremophiles* **8**: 431–439.

Gupta, R.S., Mukhtar, T., and Singh, B. (1999) Evolutionary relationships among photosynthetic prokaryotes (*Helio- bacterium chlorum*, *Chloroflexus aurantiacus*, cyanobacteria, *Chlorobium tepidum* and proteobacteria): implications regarding the origin of photosynthesis. *Mol Microbiol* **32**: 893–906.

Hahn, M.W. (2003) Isolation of strains belonging to the cosmopolitan *Polynucleobacter necessarius* cluster from freshwater habitats located in three climatic zones. *Appl Environ Microbiol* **69**: 5248–5254.

Han, C.S., Xie, G., Challacombe, J.F., Altherr, M.R., Bhotika, S.S., Brown, N., *et al.* (2006) Pathogenomic sequence analysis of *Bacillus cereus* and *Bacillus thuringiensis* isolates closely related to *Bacillus anthracis*. *J Bacteriol* **188**: 3382–3390.

Heckmann, K., and Schmidt, H.J. (1987) Polynucleobacter *necessarius* gen. *sp.* nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euclotes aediculatus. *Int J Bacteriol* **37**: 456–457.

Hollis, D.G., Weaver, R.E., Steigerwalt, A.G., Wenger, J.D., Moss, C.W., and Brenner, D.J. (1989) *Francisella philomiragia* comb. *nov.* (formerly *Yersinia philomiragia*) and *Francisella tularensis* biogroup novicida (formerly *Francisella novicida*) associated with human disease. *J Clin Microbiol* **27**: 1601–1608.

Hu, X., Fan, W., Han, B., Liu, H., Zheng, D., Li, Q., *et al.* (2008) Complete genome sequence of the mosquitocidal bacterium *Bacillus sphaericus* C3–41 and comparison with closely related *Bacillus* species. *J Bacteriol* **190**: 2892–2902.

Kim, J.F., Jeong, H., Lee, J.S., Choi, S.H., Ha, M., Hur, C.G., *et al.* (2008) The complete genome sequence of *Leuconostoc citreum* KM20. *J Bacteriol* **190**: 3093–3094.

Kimble, L.K., Mandelco, L., Woese, C.R., and Madigan, M.T. (1995) *Hellobacterium modesticaldum*, *sp.* nov., a thermophilic heliobacterium of hot springs and volcanic soils. *Arch Microbiol* **163**: 259–267.

King, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., *et al.* (2008) The genome of the choanoflagellate *Monosiga brevicollis* and the origin of metazoans. *Nature* **451**: 783–788.

Klein, C., Aliviotis, M., Olsen, J.V., Falb, M., Besir, H., Scheffer, B., *et al.* (2007) The low molecular weight proteome of *Halobacterium salinarum*. *J Proteome Res* **6**: 1510–1518.

Kusunoki, S., Ezaki, T. (1992) Proposal of *Mycobacterium peregrinum* sp. *nov.* nom. rev. and elevation of *Mycobacterium cheiorea* subsp. *abscessus* (Kubic*ka* et al.) to species status: *Mycobacterium abscessus* comb. *nov.* *Int J Syst Bacteriol* **42**: 240–245.

La Scola, B., and Raoult, D. (2004) *Acinetobacter baumannii* in human body louse. *Emerg Infect Dis* **10**: 1671–1673.

Makemson, J.C., Fulayfil, N.R., Landry, W., Van Ert, L.M., Wimpee, C.F., Widder, E.A., and Case, J.F. (1997) *Shewanella woodyi* sp. *nov.*, an exclusively respiratory luminous bacterium isolated from the Alboran Sea. *Int J Syst Bacteriol* **47**: 1034–1039.

Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H.,
Karpowicz, S.J., Witman, G.B., et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250.

Mikalsen, J., Olsen, A.B., Tengs, T., and Colquhoun, D.J. (2007) Francisella philomiragia subsp. noatunensis subsp. nov., isolated from farmed Atlantic cod (Gadus morhua L.). Int J Syst Evol Microbiol 57: 1960–1965.

Moulin, L., Munive, A., Dreyfus, B., and Boivin-Masson, C. (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411: 948–950.

Mulkidjanian, A.Y., Koonin, E.V., Makarova, K.S., Mekhedov, S.L., Sorokin, A., Wolf, Y.I., et al. (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103: 13126–13131.

Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., et al. (2000) Genome sequence of Halo bacterium species NRC-1. Proc Natl Acad Sci USA 97: 12176–12181.

Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature 233: 149–152.

Onstott, T.C., Moser, D.P., Pfiffner, S.M., Fredrickson, J.K., Brockman, F.J., Phelps, T.J., et al. (2003) Indigenous and contaminant microbes in ultradepth mines. Environ Microbiol: 1168–1191.

Onyenwoke, R.U., Kebrvin, V.V., Lysenko, A.M., and Wiegel, J. (2007) Thermoanaerobacter pseudethanolicus sp. nov., a thermophilic heterotrophic anaerobe from Yellowstone National Park. Int J Syst Evol Microbiol 57: 2191–2193.

Petri, B. (2006) Mycobacterium abscessus: an emerging rapid-growing potential pathogen. APMS 114: 319–328.

Pfeiffer, F., Schuster, S.C., Broich, A., Falb, M., Palm, P., Rodewald, K., et al. (2008) Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics 91: 335–346.

Picardau, M., Bulach, D.M., Bouchier, C., Zuerner, R.L., Zidane, N., Wilson, P.J., et al. (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3: e1607.

Reddy, K.J., Haskell, J.B., Sherman, D.M., and Sherman, L.A. (1993) Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothecae. J Bacteriol 175: 1284–1292.

Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamon, A., Shapiro, H., et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69.

Riley, M., Abe, T., Arnaud, M.B., Berlyn, M.K., Blatter, F.R., Chaudhuri, R.R., et al. (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot – 2005. Nucleic Acids Res 34: 1–9.

Ripoll, F., Deshayes, C., Pasek, S., Laval, F., Beretti, J.J., Biet, F., et al. (2007) Genomics of glyocopetidolipid biosynthesis in Mycobacterium abscessus and M. cheloneae. BMC Genomics 8: 114.

Rochaix, J.D. (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230.

Roh, Y., Liu, S.V., Li, G., Huang, H., Phelps, T.J., and Zhou, J. (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68: 6013–6020.

Salzberg, S.L., Hotopp, J.C., Delcher, A.L., Pop, M., Smith, D.R., Eisen, M.B., and Nelson, W.C. (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6: R23.

Schneegurt, M.A., Sherman, D.M., Nayar, S., and Sherman, L.A. (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176: 1586–1597.

Siefert, J.L., Larios-Sanz, M., Nakamura, L.K., Slepecky, R.A., Paul, J.H., Moore, E.R., et al. (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr Microbiol 41: 84–88.

Smith, T.J., Hill, K.K., Foley, B.T., Detter, J.C., Munk, A.C., Bruce, D.C., et al. (2007a) Analysis of the neurotoxin complex genes in Clostridium butulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS ONE 2: e1271.

Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M., and Snyder, M. (2007b) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21: 601–614.

Tauch, A., Trost, E., Tilk, A., Ludewig, U., Schneiker, S., Goesmann, A., et al. (2008) The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol (in press). doi:10.1016/j.jbiotec.2008.02.009

Tewellmeyer, J., Wende, A., Wolferz, J., Pfeiffer, F., Panhuyzen, M., Zieglar, A., et al. (2007) Microarray analysis in the archaeon Halobacterium salinarum strain R1. PLoS ONE 2: e1064.

Vandamme, P., and Coenye, T. (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54: 2285–2289.

Vaneechoutte, M., Kampsper, P., De Baere, T., Falsen, E., Verschaeghen, G. (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54: 317–327.

Vannini, C., Pockl, M., Petroni, G., Wu, Q.L., Lang, E., Stackebrandt, E., et al. (2007) Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betasproteobacteria). Environ Microbiol 9: 347–359.

Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Ruch, D., Eisen, J.A., et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.

Weese, C.R., Debrunner-Vossbrinck, B.A., Oyaizu, H., Stackebrandt, E., and Ludwig, W. (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229: 762–765.

Zeikus, J.G., Ben-Bassat, A., and Hegge, P.W. (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143: 432–440.
Zhao, J.S., Manno, D., Leggiadro, C., O’Neil, D., and Hawari, J. (2006) *Shewanella halifaxensis* sp. nov., a novel obligately respiratory and denitrifying psychrophile. *Int J Syst Evol Microbiol* **56**: 205–212.

Zhao, J.S., Manno, D., and Hawari, J. (2008) Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in *Shewanella halifaxensis* HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. *Microbiology* **154**: 1026–1037.