TRIPHENYL PHOSPHONIUM-BASED SUBSTANCES ARE ALTERNATIVES TO COMMON ANTIBIOTICS

Pinto TCA1, Banerjee A2, Nazarov PA1

1 Instituto de Microbiologia Paulo de Góes,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2 Department of Biosciences & Bioengineering,
Indian Institute of Technology Bombay, Mumbai, India

There is an urgent need for new antimicrobial and therapeutic strategies to deal with the ever evolving antimicrobial resistance among the most prevalent bacterial pathogens. Infections due to virulent bacteria remain significant causes of morbidity and mortality despite progress in antimicrobial therapy, primarily because of the increasing of antimicrobial resistance levels among such group of bacteria. Despite significant advances in the understanding of the pathogenesis of infection due to these organisms, there are only limited strategies to prevent infection. Recently it was reported that SkQ1, triphenyl phosphonium-based mitochondria-targeted antioxidant and antibiotic, effectively kills all tested Gram-positive laboratory strains including Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae. Moreover, SkQ1 demonstrated effectiveness towards Gram-negative strains too, except Escherichia coli. The mechanism of the bactericidal action of TPP-based antibiotics could be also described by its ability to suppress bacterial bioenergetics by collapsing membrane potential through activation of protonophorous uncoupling. To this day, there are no reports of resistance to SkQ1 among Gram-positive strains; therefore, triphenyl phosphonium-based antibacterial agents would be effective towards planktonic and sessile cells of clinical resistant strains.

Keywords: triphenyl phosphonium, protonophore, bacteria, antibiotic resistance, clinical strains, membrane potential, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae

Acknowledgement: We are grateful to Dr. Y. N. Antonenko and Dr. M. V. Skulachev for critical reading and helpful discussion of the manuscript.

Correspondence should be addressed: Pawel Nazarov
ul. Narimanovskaya, d. 22, k. 3, kv. 294, Moscow, Russia, 107564; nazarovpa@gmail.com

Received: 23.01.2018
Accepted: 01.02.2018

DOI: 10.24075/vrgmu.2018.003
Устойчивость бактерий к антимикробным препаратам — серьезный вызов для современного здравоохранения. Систематическое злоупотребление антибиотиками в медицине и пищевой промышленности ставит под угрозу население всех стран. Необходимы решительные и безотлагательные меры глобального масштаба, иначе человечество рискует оказаться на пороге нового времени, в котором обычные и незначительные инфекции могут вновь ока- заться смертельными [1].

Из-за повсеместно наблюдаемой устойчивости микроорганизмов к антимикробным препаратам вариантов лечения бактериальных инфекций становится все меньше. Бактериальная резистентность оказывается на всех аспектах здравоохранения. Последствия инфекции, вызываемой резистентными штаммами, могут быть крайне тяжелыми.

В 2017 г. Всемирная организация здравоохранения опубликовала список устойчивых к антибиотикам «приоритетных патогенов» [2], который должен быть старт ориентиром в деле разработки новых препаратов против существующих инфекций. Угрожающей становится ситуация с грамположительными бактериями Streptococcus pneumoniae, Staphylococcus aureus и Enterococcus faecium, вызывающими как внебольничные, так и госпитальные инфекции. Эти бактерии, которые в принципе являются нормальными компонентами живой и человеческой микрофлоры, обладают широким спектром вирулентных факторов, обеспечивающих успешную колонизацию хозяина и помогающих бактериям защищаться от иммунного ответа. Одним из факторов вирулентности, способствующим развитию инфекции, является способность бактерии формировать биопленки на органических (кости, сердечный клапан) и синтетических (катетеры, протезы и иные медицинские приспособления) поверхностях [3–5]. Биопленки — это осадные (сессильные) сообщества.microор- ганизмов, которые прочн прикрепляются к поверхности и/или другим клеткам и встраиваются в защитный внешне- точный полимерный матрикс. В процессе формирования биопленок микроорганизмы претерпевают ряд фенотипи- ческих изменений, включая потерю подвижности, сни- жение скорости роста, усиление способности к адгезии и устойчивость к антибиотикам и иммунному ответу [6]. Таким образом, бактериальные биопленки могут быть ас- социированы с хроническими или рецидивирующими ин- фекциями. Способность формировать биопленки и быст- ро приобретать устойчивость к антибиотикам, наблюдаясь у некоторых штаммов S. pneumoniae, S. aureus и E. faecium, значительно сужает круг возможных вариан- тов лечения вызываемых ими инфекций. В связи с этим разработка новых терапевтических подходов становится необходимою.

Staphylococcus aureus

Золотистая стафилококк — это опасный патоген, основ- ной возбудитель инфекций мягких тканей, а также гемо- контактных и девайс-ассоциированных инфекций у взрос- лых и детей. На данный момент S. aureus является самым распространенным патогеном, присутствующим в от- делениях интенсивной терапии в США [7]. Кроме того, S. aureus — второй по частоте встречаемости возбуди- тель инфекций, регистрируемых у амбулаторных больных [8]. В то же время у 20 % населения он обитает на коже и в ноздрях, не вызывая клинических симптомов [9]. Ин- фицированию стафилококком способствуют нарушение целостности слизистой или кожных покровов, наличие имплантатов, хирургическое вмешательство, гемодиализ и ослабленный иммунитет. Устойчивость изолятов золо- тистого стафилококка к антибиотикам, в частиности, к мет- цицину, является актуальной проблемой в современ- ном здравоохранении, поскольку она затрудняет лечение и профилактику стафилококковых инфекций. С момен- та первых сообщений о метцицин-устойчивом (MRSA) штамме в 1960-х гг. количество новых случаев инфициро- вания этим патогеном неуклонно растет. MRSA обнаружива- ется почти в 50 % случаев всех нозокomialных инфек- ций, вызванных золотистым стафилококком, в частности, развивающихся на пролонгированных участках тела или ассоциированных с применением медицинских катетеров. Устойчивость к метцицину и прочим бета-лактамам — следствие приобретения патогеном генной кассеты mecA, которая приводит к некоторым изменениям в пеницил- лин-связывающих белках клеточной стенки [10]. В кон- тексте антибиотикорезистентности большое беспокойство вызывает недавнее появление штаммов S. aureus, устой- чивых к ванкомицину (VRSA) или обладающих сниженной чувствительностью к нему (VISA). За период с 2004 по 2009 гг. доля штаммов, устойчивых к метцицину, обладающих при этом сниженной чувствительностью к ванкомицину, увеличилась почти вдвое [11].

Enterococcus sp.

В последние десятилетия значительно возросла клини- ческая значимость энтерококков как возбудителей но- зокomialных инфекций. Энтерококк — третий по рас- пространенности в больничных отделениях условно-па- тогенный микроорганизм, на долю которого приходится около 12 % всех госпитальных инфекций [12]. При этом Enterococcus является нормальным компонентом кишеч- ной микрофлоры человека и животных. Из всех энте- рококковых штаммов, колонизирующих и инфицирую- щих человека, основная доля приходится на E. faecalis и E. faecium. Изолятов энтерококка часто имеют множествен- ную устойчивость к антимикробным препаратам. Учитывая высокую способность патогена к диссеминации, особенно критичной представляется его устойчивость к ванкоми- цину [13]. Она наиболее типична для E. faecium и опосре- дуется приобретением группы генов, составляющих кла- стер van. Эти гены расположены на транспонсе и коди- руют модификацию клеточной стенки, которая приводит к снижению сродства к ванкомицину. Важно, что изолят- штаммов энтерококка, нечувствительных к ванкомици- ну (VRE), являются резервуарами генов антимикробной устойчивости, которые могут передаваться другим видам, включая S. aureus. Так, штаммы стафилококка со снижен- ной чувствительностью к ванкомицину получили кластер van от изолятов энтерококка [14]. Примерно у 8 % паци- ентов, колонизированных ванкомицин-резистентным па- тогеном, инфекция развивается во время пребывания в больнице [15]; смертность от подобных инфекций остается высокой, варьируя от 13 до 46 % [16]. Штаммы VRE обыч- но ассоциируются с инфекциями брюшной полости, кожи, мягких тканей, мочевыводящих путей, крови и эндокарди- тами. Часто инфекцию переносят медицинские работники. Заразившись однажды, пациент может страдать от ин- фекции в течение всей жизни. Примерно треть известных случаев заражения энтерококками связаны со штаммами, устойчивыми к ванкомицину. Поэтому эффективность те- рапии существующими антимикробными препаратами в данном случае является сомнительной, что выводит на
МНЕНИЕ | АЛЬТЕРНАТИВА АНТИБИОТИКАМ

S. pneumoniae

S. pneumoniae, или пневмококк, является клинически значимым патогеном человека, ведущей причиной внебольничных пневмоний и одним из основных возбудителей бактериального менингита. Этот микробион может бессимптомно обитать в носоглотке здоровых людей, но при попадании в мозг, легкие, кровоток и прочие стерильные органы может вызвать серьезные поражения, особенно у пожилых людей и маленьких детей, иммунитет которых ослаблен или не полностью сформирован. Нечувствительный к пенициллину пневмококк (PNSP) — активный междусобноственный и резидентный к антибиотикам, но тенденция к резистентности установлена давно [2, 17]. Рост числа изолятов PNSP с момента раннего чередования их обнаружения в 1960-х гг. вызывает серьезное беспокойство. Эти изоляты обычно устойчивы к бета-лактамам и возникают в результате мутаций в генах, кодирующих пенициллин-связывающий белок, за счет чего и уменьшается сродство этого белка к бета-лактамам. Кроме нечувствительных к бета-лактамам штаммов в последнее время в разных регионах мира регистрируют пневмококки, устойчивые к макролидам; они составляют до 40 % от всех пневмококковых изолятов, выделенных у европейского населения [18] и более 70 % — от штаммов, распространенных в Азии. Устойчивость к макролидам в основном определяется изменениями на участке рибосомы, который является мишенью для антимикробных препаратов, но также может возникать из-за модификации самого препарата или механизма его доставки [19]. Устойчивость S. pneumoniae к антимикробикам развилась во многом из-за повсеместного использования антибиотиков и применения пневмококковых конъюгированных вакцин.

Энергетический метаболизм бактерии — мишень для новых антимикробных препаратов

Энергетический метаболизм привязан к клеточной мембране, которая функционирует как барьер, преобразующий энергию электрохимического градиента в чистую химическую энергию, удовлетворяющую потребностям клетки. Электрохимический градиент протон-двойной силы (ПДС) необходим всем бактериям для поддержания самых разнообразных процессов, включая синтез АТФ и доспеху питательных элементов из окружающей среды для роста и метаболической активности. Более того, выработанная ПДС является эволюционно консервативным процессом, который налицо, как уединения общего универсального продукта (LUCA) [20, 21]. Некоторые химические соединения, включая грамицидин, могут разрушать мембрану, образуя в ней поры и, как следствие, снижая электрохимический градиент. Соединения, которые называются пропионофорами, могут уменьшать градиент путем специфического связывания ионов водорода, участвующих в протоннофильном цикле на мембране (рисунок, слева). Существует еще одна группа химических агентов, способных уменьшать градиент: это пропионофильные соединения, переносящие через мембрану вещества, связывающие ионы водорода (рисунок, справа), например жирные кислоты [22].

В связи с вышесказанным энергетический метаболизм бактерий может стать хорошей мишенью для новых антимикробных препаратов, стимулирующих химические метаболические циклы, что предположительно должно привести к развитию устойчивости, но будет эффективным в борьбе с резистентными к антибиотикам штаммами.

Соединения на основе трифенилфосфония

Четвертичные производные аммония и фосфония используются в качестве антисептиков и дизинфектантов уже не одно десятилетие [23–28]. Недавно были разработаны вещества, имеющие в своем составе антиоксидантную группу и компонент, воздействующий на митохондрии. Примером таких соединений являются конъюгированные с трифенилфосфоном углехимиион (MitoQ) [29] и пластиофосфон (SkQ1) [30]. В недавних работах сообщается, что митохондрии успешно уничтожают бактерии Bacillus subtilis [31, 32]. Более того, SkQ1 показал свою эффективность в борьбе против некоторых грамотрицательных бактерий (за исключением Escherichia coli) и различных грамположительных видов, включая Staphylococcus aureus и Mycobacterium sp.

Механизм бактерицидного действия антибиотика SkQ1 может объяснить способностью последнего нарушать

Протонофильное разобщение

Разобщение протонофиллюзивным соединением

Протонофиллюзивный цикл с участием протонофиллюзивного разобщителя CCCP, протонофиллюзивного соединения SkQ1 на основа трифенилфосфония и жирных кислот (FA)

18

ВЕСТНИК РГМУ | 1, 2018 | VESTNIKRGMU.RU
Энергетический обмен бактерии в результате протонофорного разобщения, которое приводит к резкому падению мембранного потенциала. В экспериментах in silico было обнаружено, что некоторые антибактериальные соединения, применяемые для лечения паразитарных инфекций, одновременно являются разобщителями энергетического метаболизма бактерий [33]. Более того, было показано, что трюконал, довольно распространенный антимикробный препарат широкого спектра действия, вызывает у бактерий коллапс мембранного потенциала и одновременно подавляет редуктато вирус-ацетил переносящего белка, который является одним из ключевых участников синтеза жировых кислот у бактерий [34].

SkQ1 содержит не только эффективный антимикробный компонент, но и антиоксидантную часть, воздействующую на активные формы кислорода в митохондриях. Поэтому SkQ1 можно считать новым видом гибридного антибиотика двойного действия. Отсутствие токсичности этого вещества в дозе 1–2 μM для клеток человека и животных означает, что SkQ1 является безопасным антимикробным средством, которое, с одной стороны, уникально токситает патоген, а с другой — способствует регенерации поврежденных клеток организма.

Подобные соединения могли бы применяться для лечения бактериальных инфекций, сопровождаемых формированием биопленок. На сегодняшний день нет никаких сообщений о развитии резистентности к SkQ1 и производимым трифенилфосфония среди грамположительных микроорганизмов.

Выводы
Современный уровень знаний о механизмах развития бактериальной устойчивости к антибиотикам и о биоэнергетических процессах у бактерий позволяет предположить, что соединения на основе трифенилфосфония могут стать альтернативой в лечении инфекций, вызываемых резистентными к антибиотиками бактериями. Эти препараты определяют новый подход к лечению бактериальных инфекций, который поможет победить устойчивость бактерий к антибиотикам и снизить уровень смертности от вызывающих ими инфекций.

Литература

1. World Health Organization. Global action plan on antimicrobial resistance. Geneva, Switzerland: WHO Document Production Services; 2015. 21 p. Available from: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/.
2. World Health Organization [Internet]. c2018– [cited 2018 Jan]. Antibiotic-resistant priority pathogens list. Available from: http://www.who.int/mediacentre/news/releases/2017/antibiotics-resistant-needed/en/.
3. Pareek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003; 57: 677–701. DOI: 10.1146/annurev.micro.57.030502.097200.
4. Barrett L, Atkins B. The clinical presentation of prosthetic joint infection. J Antimicrob Chemother. 2014 Sep; 69 Suppl 1: 25–7. DOI: 10.1093/jac/dku250.
5. Chatterjee S, Maiti P, Dey R, Kundu A, Dey R. Biofilms on indwelling urologic devices: microbes and antimicrobial management prospect. Ann Med Health Sci Res. 2014 Jan; 4 (1): 100–4. DOI: 10.4103/2141-9248.126612.
6. Scherr TD, Heim CE, Morrison JM, Kielian T. Hiding in Plain Sight: Interplay between Staphylococcus Biofilms and Host Immunity. Front Immunol. 2014 Feb 5; 5: 37. DOI: 10.3389/fimmu.2014.00037.
7. Bouchon H, Corey GR. Epidemiology of methillin-resistant Staphylococcus aureus. Clin Infect Dis.2008 Jun 1; 46 Suppl 5: S344–9. DOI: 10.1086/533590.
8. Styers D, Sheehan DJ, Hogan P, Sahm DF. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus; 2005 status in the United States. Ann Clin Microbiol Antimicrob. 2006 Feb 9; 5: 2. DOI: 10.1186/1476-0711-5-2.
9. Peacock S.J., de Silva I., Lowy F.D. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001 Dec; 9 (12): 605–10.
10. Goyal N, Miller A, Tripathi M, Parvizi J. Methillin-resistant Staphylococcus aureus (MRSA): colonisation and pre-operative screening. Bone Joint J. 2013 Jan; 95-B (1): 4–9. DOI: 10.3132/0301-620X.95B1.27973.
11. Hawser SP, Bouchillon SK, Hoban DJ, Dowzicky M, Babincak T. Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004-2009. Int J Antimicrob Agents. 2011 Mar;37 (3):219–24.DOI:10.1016/j.ijantimicag.2010.10.029.
12. Hidron AI, Edwards JR, Patel J, Horan TC, Dawn M, Sievert DM et al. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008; 29 (11): 996–1011.
13. Olsen MK, Babinchak T, Bouchillon SK, Hoban DJ, Dowzicky M, Parvizi J. Methicillin-resistant Staphylococcus aureus: Annual Summary of Data—2011. Clin Infect Dis.2008; 47 (2): 23.
14. Centers for Disease Control and Prevention (CDC). Staphylococcus aureus Resistant to Vancomycin. MMWR Mortal Mortal Wkly Rep. 2002 Jul 5; 51 (26): 565–7.
15. Nguyen GC, Leung W, Weizman AV. Increased risk of vancomycin-resistant enterococcus (VRE) infection among patients hospitalized for inflammatory bowel disease in the United States. Inflamm Bowel Dis. 2011 Jun; 17 (6): 1338–42. DOI: 10.1002/ibd.21519.
16. Khang DW, Miller LG, Partain NM, McKinnell JA. Systematic review and meta-analysis of linezolid and daptomycin for treatment of vancomycin-resistant enterococcal bloodstream infections. Antimicrob Agents Chemother. 2013 Oct; 57 (10): 5013–8. DOI: 10.1128/AAC.00714-13.
17. Weiner LM, Frickin SK, Aponte-Torres Z, Avery, L., Coffin N., Dudeck MA, et al. Vital Signs: Estimated Effects of a Coordinated Approach for Action to Reduce Antibiotic-Resistant Infections in Health Care Facilities. MMWR Mortal Mortal Wkly Rep. 2013; 62 (26): 565–7.
18. European Centre for Disease Prevention and Control. Invasive pneumococcal disease. In: ECDC. Annual epidemiological report for 2015. Stockholm: ECDC; 2017.
19. Cherrazaz R, Epstein M, Doan TL, Salm T, Bharti S, Smith MA. Antimicrobial Resistance Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications. Am J Ther. 2017 May; 24 (3): e361–9. DOI: 10.1097/MTJ.0000000000000551.
20. Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct. 2011; 6: 35. DOI: 10.1186/1745-6160-6-35.
21. Sojo V, Piotrjankowski A, Lane N. A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biol. 2014 Aug 12;12 (8): e1001926. DOI: 10.1371/journal.pbio.1001926.
22. Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN et al. Penetrating fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci U S A. 2010 Jan 12; 107 (2): 663–8. DOI: 10.1073/ pnas.0910216107.
23. Kanazawa A, Ikeda T, Endo T. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths. Antimicrob Agents Chemother. 1994 May; 38 (5): 945–52.
alkyl chains of various lengths. Antimicrob Agents Chemother. 1994 May; 38 (5): 945–52.

24. Pernak J, Jedraszczyk J, Krysiński J. [Quaternary ammonium- and phosphonium compounds against bacteria and fungi]. Pharmazie. 1987 Oct; 42 (10): 703–4. German.

25. Galkina I, Bakhtiyarova Y, Andryashin V, Galkin V, Cherkasov R. Synthesis and Antimicrobial activities of phosphonium salts on basis of triphenylphosphate and 3,5-di-tert-butyl-4-hydroxybenzyl bromide. Phosphorus, Sulfur, and Silicon and Related Elements. 2013; 188: 15–8.

26. Listvan VN, Listvan VV, Mališevskaya AV, Deineka SY. [Benzylic type triphenylphosphonium salts and their antimicrobial properties]. Zhurnal organicnoy ta farmatsevtichnoy khimii. 2008; 6 (24): 77–80. Ukrainian.

27. Martin-Rodríguez AJ, Babarro JM, Lahoz F, Sansón M, Martín VS, Norté M et al. From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: antifouling profile of alkyltriphenylphosphonium salts. PLoS One. 2015 Apr 21; 10 (4): e0123652. DOI: 10.1371/journal.pone.0123652.

28. Nikitina EV, Zelić M, Pugachev MV, Sapozhnikov SV, Shyrlin NV, Kuznetsova SV, et al. Antibacterial effects of quaternary bis-phosphonium and ammonium salts of pyridoxine on Staphylococcus aureus cells: A single base hitting two distinct targets? World J Microbiol Biotechnol. 2016 Jan; 32 (1): 5. DOI: 10.1007/s11274-015-1969-0.

29. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001 Feb 16; 276 (7): 4588–96. DOI: 10.1074/jbc.M000693200.

30. Skulachev VP. A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc). 2007 Dec; 72 (12): 1385–96.

31. Khailova LS, Nazarov PA, Sumbatyan NV, Korshunova GA, Rokitskaya TI, Dedukhova VI et al. Uncoupling and toxic action of alkyltriphenylphosphonium cations on mitochondria and the bacterium Bacillus subtilis as a function of alkyl chain length. Biochemistry (Mosc). 2015 Dec; 80 (12): 1589–97. DOI: 10.1134/ S000629791512007X.

32. Nazarov PA, Osterman IA, Tokarchuk AV, Karakozova MV, Korshunova GA, Lyamzaev KG et al. Mitochondria-targeted antioxidants as highly effective antibiotics. Sci Rep. 2017 May 3; 7 (1): 1394. DOI: 10.1038/s41598-017-00802-8.

33. Popova LB, Nosikova ES, Kotova EA, Tarasova EO, Nazarov PA, Khailova LS et al. Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochim Biophys Acta. 2018 Jan 6; 1860 (5): 1000–7. DOI: 10.1016/j.bbamem.2018.01.008.