Multicritical phase transitions in multiply rotating black holes

Jerry Wu and Robert B Mann

1 Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
2 Perimeter Institute, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada
E-mail: rbmann@uwaterloo.ca

Received 3 December 2022; revised 16 January 2023
Accepted for publication 13 February 2023
Published 22 February 2023

Abstract

We show that multi-critical points in which more than three phases coalesce are present in multiply rotating Kerr-anti de Sitter black holes in \(d\)-dimensions. We explicitly present a quadruple point for a triply rotating black hole in \(d = 8\) and a quintuple point for a quadruply rotating black hole in \(d = 10\). The maximal number of distinct phases \(n\) is one larger than the maximal number of independent rotations, and we outline a method for obtaining the associated \(n\)-tuple point. Situations also exist where more than three phases merge at sub-maximal multi-critical points. Our results show that multi-critical points in black hole thermodynamics are more common than previously thought, with systems potentially supporting many phases as long as a sufficient number of thermodynamic variables are present.

Keywords: black hole, multicritical phase transitions, Kerr-AdS

Black hole thermodynamics provides crucial guidance along the path toward a quantum theory of gravity. Asymptotically anti de Sitter (AdS) black holes have been of particular importance to this end ever since the discovery of a phase transition between thermal radiation and a large AdS black hole (known as the Hawking-Page (HP) transition [1]), which corresponds to the confinement/deconfinement of a dual quark gluon plasma [2] in the context of the AdS/Conformal Field Theory (CFT) correspondence.
Once it was understood that a cosmological constant Λ can be understood as a thermodynamic variable (associated, for example, with a $(d-1)$-form gauge field [3]) corresponding to pressure [4–6], black holes were seen to exhibit a broad range of phase behaviour. Charged black holes can undergo Van der Waals transitions [7], the HP transition can be understood as a solid–liquid transition [8], reentrant transitions take place in rotating black holes [9], scalar couplings admit superfluid transitions [10], Lovelock black holes can have polymer-type phase transitions [11], and accelerating black holes [12] have snapping transitions in which Van der Waals behaviour suddenly disappears [13]. The resemblance of these phenomena to chemical phase transitions has prompted a molecular interpretation of the underlying constituent degrees of freedom [14], and the subject has come to be known as Black Hole Chemistry [15].

The existence of triple points, in which three black hole phases coalesce at a single pressure and temperature (analogous to ice/water/steam), were discovered some time ago in doubly rotating black holes [16], and subsequently in Lovelock gravity [17, 18]; more recently a proposal for the microstructure of black holes at such points was proposed [19]. However multi-critical points of the type seen in colloidal polymers and other heterogeneous systems [20–22], in which more than three phases merge, did not seem to be present in black hole physics. Recently multi-critical points were discovered for charged AdS black holes in non-linear electrodynamics [23].

Here we show that the family of multiply-rotating Kerr-AdS black holes [24, 25] also exhibits multi-critical behaviour. The different angular momenta introduce additional thermodynamic conjugate pairs to the system, allowing for more phases than the small/intermediate/large ones seen for doubly rotating black holes [16]. We find multiple phases separated by first order phase transitions for sufficiently high pressure and appropriate angular momenta. As the pressure is lowered, these phases merge at a single pressure and temperature; for pressures below this multi-critical point only the largest and smallest black hole phases remain, separated by a first order phase transition. We explicitly show the existence of a quadruple point for a triply-rotating black hole and a quintuple point for a black hole with four angular momenta. In general we find that a black hole with $(n+1)$ distinct angular momenta can have an n-tuple point, as well as lower order multi-critical points.

The importance of the Kerr-AdS class of solutions cannot be underestimated. They have been employed in advancing our understanding of gauged supergravities [26], black hole thermodynamics [15], hidden symmetries [27], geons [28], defining conserved charges [29], black rings [30], separability of wave equations [31], gravitational instabilities [32], black strings [33], quantum gravity [34], cosmic censorship [35], holographic complexity [36], ultraspinning black holes [37], and black hole superradiance [38]. Our results suggest that black hole multi-critical behaviour is common, requiring neither the introduction of unusual matter sources nor a theory of gravity different from general relativity.

Setting $\hbar = c = G = 1$, the general metric for multiply rotating Kerr-AdS black holes is [24, 25]

$$\text{d}s^2 = -W\left(1 + \frac{r^2}{F}\right)\text{d}r^2 + \frac{2m}{U}\left(W\text{d}\tau - \sum_{i=1}^{N} \frac{a_i \mu_i^2 \text{d}\phi_i}{E_i}\right)^2 + \sum_{i=1}^{N} \frac{r^2 + a_i^2}{E_i} \mu_i^2 \text{d}\phi_i^2 + \frac{U d\tau^2}{F - 2m} + \sum_{i=1}^{N+i} \frac{r^2 + a_i^2}{E_i} d\mu_i^2$$

$$- \frac{l^{-2}}{W(1 + r^2/P)} \left(\sum_{i=1}^{N+i} \frac{r^2 + a_i^2}{E_i} \mu_i \text{d}\mu_i\right)^2$$

(1)
in d spacetime dimensions, with metric functions

$$W = \sum_{i=1}^{N+\epsilon} \mu^2_i / \Xi_i, \quad U = r^d \sum_{i=1}^{N+\epsilon} \mu^2_i / r^2 + a^2_i \prod_{j=1}^{N}(r^2 + a^2_j),$$

$$F = r^{d-2}(1 + \frac{\mu^2}{F^2}) \prod_{i=1}^{N}(r^2 + a^2_i), \quad \Xi_i = 1 - a^2_i / F^2$$ \hspace{1cm} (2)

and where $N = \frac{1}{2}(d - 1 - \epsilon)$, is the maximal number of independent rotations, with $\epsilon = 0/1$ for odd/even spacetime dimensions. The coordinates μ_i obey the constraint $\sum_{i=1}^{N+\epsilon} \mu^2_i = 1$. I is the AdS radius, m is the mass parameter, and a_i are the rotation parameters. The horizon radius r_+ can be determined by finding the largest root of the equation $F - 2m = 0$. For constant J_i, the a_i parameters are functions of r_+ and the thermodynamic pressure P, where

$$P = -\frac{\Lambda}{8\pi}, \quad \Lambda = -\frac{(d-1)(d-2)}{2F^2}$$ \hspace{1cm} (3)

in Planckian units $\ell_P^2 = \frac{\hbar}{mc^2}$ [15]. The mass M, angular momenta J_i, and the thermodynamically conjugate angular velocities Ω_i are [39]

$$M = \frac{m\Sigma_{d-2}}{4\pi(\prod_i \Xi_i)} \left(\sum_{i=1}^{N} \frac{1}{\Xi_i} - \frac{1-\epsilon}{2} \right),$$

$$J_i = \frac{a_i m \Sigma_{d-2}}{4\pi \Xi_i (\prod_i \Xi_i)}, \quad \Omega_i = \frac{a_i (1 + \frac{\mu^2}{F^2})}{r^2 + a^2_i},$$ \hspace{1cm} (4)

where $\Sigma_{d-2} = \frac{2\pi \cdot \kappa_{d-1}}{\Gamma(\frac{d}{2})}$. The temperature $T = \frac{\kappa}{2\pi}$ and entropy S are determined in terms of r_+

$$T = \frac{1}{2\pi} \left[r_+ (\frac{\mu^2}{F^2} + 1) \sum_{i=1}^{N} \frac{1}{a^2_i + r_+^2} - \frac{1}{r_+} \left(\frac{1}{2} - \frac{r_+^2}{2F^2} \right) \right],$$

$$S = \frac{\Sigma_{d-2}}{4\pi r_+^2} \prod_{i=1}^{N} \frac{a^2_i + r^2_+}{\Xi_i}.$$ \hspace{1cm} (5)

The thermodynamically stable state of the system is given by the global minimum of the Gibbs free energy $G = M - TS$ [15].

The first law is [39, 40]

$$dM = TdS + \sum_{i=1}^{N} \Omega_i dJ_i + VdP$$ \hspace{1cm} (6)

with the thermodynamic volume

$$V = \frac{r_+ A}{d-1} + \frac{8\pi}{(d-1)(d-2)} \sum_{i=1}^{N} a_i J_i$$ \hspace{1cm} (7)

and A the area of the outermost horizon. Taking the variation of G and substituting (6) yields

$$dG = \sum_{i=1}^{N} \Omega_i dJ_i - SdT + VdP$$ \hspace{1cm} (8)

and so $dG = -SdT$ for constant P and J_i, in which case the extrema of $G(r_+)$ and $T(r_+)$ occur at the same r_+ values. Consequently T alone determines the existence and distribution
Figure 1. T and T' for different values of P. $d = 8, J_1 = 7.967, J_2 = 1.24, J_3 = 0.12798$.

Top. T at three different pressures, attaining local extrema at the roots of T'. A maximum of three pairs of maxima and minima is displayed for $P = 0.121$, indicating three swallowtails. Bottom. The derivative T' at these three pressures, showing different numbers of roots.

of swallowtails in the G–T plot, with the cusps of the swallowtails corresponding to the zeros of $T' = \frac{\partial T}{\partial r_+}$. It is possible to choose constant J_i so that T' has a new set of local maxima and minima for each new rotation. Adjusting the pressure changes the locations of these extrema; the maximum number of coexistent states is attained when $T'(r_+)$ has a root between every local extremum. Unlike the doubly rotating case [16] where the system only depends on the ratio between the two angular momenta, in general the a_i rotational parameters are not invariant under constant scaling of J_i, and so we will directly fix the J_i.

We begin by illustrating the existence of a quadruple point for a triply rotating black hole in $d = 8$, the minimal value needed to support four distinct phases. The temperature is

$$ T = \frac{1}{2\pi} \left[r_+ \left(1 + \frac{8r_+^2 \pi P}{21} \right) \sum_{i=1}^{3} \frac{1}{a_i^2 + r_+^2} - \frac{1}{r_+} \left(\frac{1}{2} - \frac{4r_+^2 \pi P}{21} \right) \right] \tag{9} $$

where the a_i are calculated numerically as functions of r_+ using (4), as an analytic solution is not possible. All of our results satisfy the constraint $|a_i| < l$, so that the metric (1) remains well-defined.

For large P, no phase transitions are present. As P decreases, $T(r_+)$ develops extrema (shown in figure 1) and new thermodynamic phenomena arise illustrated in figure 2. At the critical pressure $P_{c_1} \approx 0.24335$, a first order phase transition between the smallest black hole and a larger black hole appears and the G–T plot has a single swallowtail. Further lowering the
Figure 2. G–T plot with three rotations. $d = 8, J_1 = 7.967, J_2 = 1.24, J_3 = 0.12798$. At $P = 0.141$ (black curve), only two swallowtails exist indicating two stable phase transitions between three distinct phases. As the pressure is lowered a third swallowtail appears (red curve) signifying four distinct phases. At $P_q = 0.121$, these three swallowtails merge at a quadruple point (green curve). For pressures lower than P_q, only one stable first order phase transition is seen (blue curve). Dashed lines indicate negative specific heat.

At $P = 0.141$ (black curve), only two swallowtails exist indicating two stable phase transitions between three distinct phases. As the pressure is lowered a third swallowtail appears (red curve) signifying four distinct phases. At $P_q = 0.121$, these three swallowtails merge at a quadruple point (green curve). For pressures lower than P_q, only one stable first order phase transition is seen (blue curve). Dashed lines indicate negative specific heat.

While there is a finite range of values of J_i that admit quadruple points, in general these will not be present for most choices of J_i. Instead for sufficiently low pressures the four distinct phases will each be separated by first-order phase transitions, and the four branches of the coexistence plot merge in two places at two distinct triple points. Similarly, with appropriate choices of J_i, a quadruply rotating black hole in $d = 10$ can support five distinct phases at a fixed pressure. With the added a_4 parameter in $T(r_+, P, J_1, J_2, J_3, J_4)$, $T'(r_+)$ can admit another pair of extrema, which can then be adjusted to line up with the other three pairs seen for $d = 8$. P is chosen in the same way so that a root appears between each extremum of T, yielding five distinct black hole phases and the maximal number of four swallowtails, indicating four first order phase transitions, which appear in the G–T diagram for a range of fixed P. These merge at sufficiently small P, shown in figure 4. The P–T behaviour is analogous to that of the quadruple point: one stable phase transition is present for small pressures, above which the coexistence curve splits into four branches at the quintuple point, each branch terminating at a distinct critical point as P is increased.
Figure 3. $P-T$ phase diagram for quadruple point with three rotations. $d = 8$, $J_1 = 7.967$, $J_2 = 1.24$, $J_3 = 0.12798$. For low pressures only one stable phase transition between the smallest and largest black holes exists (red curve). At $P = P_q$, four phases (smallest, small, large, largest) coexist at $T_q \approx 0.3606$. For $P_q < P < P_c$, three stable first order phase transitions are observed between four phases. All three coexistence curves terminate at their respective critical points.

Figure 4. $G-T$ plot of quintuple point with four rotations. $d = 10$, $J_1 = 24.48$, $J_2 = 4.33$, $J_3 = 1.2$, $J_4 = 0.1435$. Four swallowtails in the Gibbs free energy merge at one point for $P = 0.231$. Dashed lines indicate negative specific heat.

More generally the five phases can exist at fixed pressure without the presence of a quintuple point. In this case, the $P-T$ phase diagram can exhibit three triple points or a quadruple point and a triple point for particular choices of J_i. Figure 5 shows a system with one quadruple point and a triple point at a lower pressure.

Multi-critical behaviour will be present for any multiply rotating AdS black hole for an appropriate choice of angular momenta. In general, a $d = (2n + \epsilon)$ dimensional spacetimes supports up to $n - 1$ independent rotations, yielding $n = \lfloor \frac{d}{2} \rfloor$ potential distinct phases in d dimensions, where $\epsilon = 0, 1$ in even/odd dimensions. New phases (and thus higher degrees of multicriticality) will appear with increasing even dimension (increasing n), since one of the exponents in the temperature function vanishes in odd dimensions. The necessary conditions to obtain the maximum amount of phases are unclear, but we have found numerically that the magnitudes of J_i must be sufficiently spaced out. Assuming all phases are separated by first order phase transitions, the coexistence curve has at most $n - 1$ branches in regions where all n
Fig. 5. $P - T$ phase diagram with four rotations. $d = 10$, $J_1 = 24.48$, $J_2 = 4.331$, $J_3 = 1.1973$, $J_4 = 0.155$. For $P < P_{tr} \approx 0.22695$, the only stable phase transition observed is one of first order between the largest and smallest black hole phases (blue). At $P = P_{tr}$, a new phase emerges at a triple point, above which three phases are present. Two additional coexistence curves appear on the right branch at a quadruple point $(P = P_{q} = 0.231)$. Five distinct black hole phases exist for $P \in (P_{q}, P_{c_4} \approx 0.23883)$. All coexistence curves terminate at critical points as the pressure is increased.

phases remain, and only one branch as $P \to 0$. All $n - 1$ branches of the curve eventually merge to a single branch as pressure is decreased, which can be in the form of an n-tuple point, or many other lower order multi-critical points at different pressures. Scaling the J_i by a constant factor does not change the phase behaviour, but rather shifts the locations of critical points in the $P-T$ phase diagram. With sufficiently large scaling, multi-critical points can be pushed arbitrarily close to $P = T = 0$.

Multi-critical points in multiply rotating black holes are unlike those found in the context of non-linear electrodynamics \cite{23} with regards to the Gibbs phase rule, which relates the degrees of freedom F in a simple thermodynamic system to the number of coexistence phases P and the number of chemical constituents. The generalized Gibbs phase rule \cite{22}:

$$F = W - P + 1.$$ \hspace{1cm} (10)

replaces the notion of chemical constituents with the number of thermodynamic conjugate pairs W, which is directly applicable in the context of black hole thermodynamics. The n-tuple points in non-linear electrodynamics were discovered to have at minimum n degrees of freedom and required two additional conjugate pairs for each new phase \cite{23}, whereas in the Kerr-AdS case the n-tuple points always have a lower bound of $F = 2$, and only one added rotation is needed for a new phase. This disparity is likely due to the fact that T depends nonlinearly on the angular momenta J_i, in contrast to its linear dependence on the coupling constants in non-linear electrodynamics.

The presence of multi-critical behaviour of vacuum black holes in d-dimensional Einstein gravity raises a number of interesting questions. It would be of great interest to know the necessary and sufficient conditions for multi-criticality to occur, and to find the conditions (if any) under which it is possible for multiple phases to coalesce as pressure is increased. It would likewise be interesting to understand the implications of multi-criticality for the microstructure of black holes. An analysis of the de Sitter case would likewise be interesting, though the
challenge there is dealing with the distinct temperatures of the black hole and cosmological horizons. This can be dealt with by placing the black hole in a cavity \[41–45\], though in the multi-rotating case the structure of the cavity will be difficult to describe geometrically. Finally, recent work has shown that the results of black hole chemistry are amenable to a holographic interpretation \[36, 46–57\]. It would be most interesting to understand what the holographic duals are of multicritical points.

Data availability statement

No new data were created or analysed in this study.

Acknowledgment

This work supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), Perimeter Institute and the University of Waterloo are situated on the Haldimand Tract, land that was promised to the Haudenosaunee of the Six Nations of the Grand River, and is within the territory of the Neutral, Anishnawbe, and Haudenosaunee peoples.

ORCID iDs

Jerry Wu 𝖙≤ https://orcid.org/0000-0003-4408-9695
Robert B Mann 𝖙≤ https://orcid.org/0000-0002-5859-2227

References

[1] Hawking S W and Page D N 1983 Thermodynamics of black holes in anti-de Sitter space Commun. Math. Phys. 87 577
[2] Witten E 1998 Anti-de Sitter space, thermal phase transition and confinement in gauge theories Adv. Theor. Math. Phys. 2 505–32
[3] Creighton J D E and Mann R B 1995 Quasilocal thermodynamics of dilaton gravity coupled to gauge fields Phys. Rev. D 52 4569–87
[4] Caldarelli M M, Cognola G and Klemm D 2000 Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories Class. Quantum Grav. 17 399
[5] Kastor D, Ray S and Traschen J 2009 Enthalpy and the mechanics of AdS Black holes Class. Quantum Grav. 26 195011
[6] Cvetic M, Gibbons G W, Kubiznak D and Pope C N 2011 Black hole enthalpy and an entropy inequality for the thermodynamic volume Phys. Rev. D 84 024037
[7] Kubiznak D and Mann R B 2012 P-V criticality of charged AdS black holes J. High Energy Phys. JHEP07(2012)033
[8] Kubiznak D and Mann R B 2015 Black hole chemistry Can. J. Phys. 93 999
[9] Altamirano N, Kubiznak D and Mann R B 2013 Reentrant phase transitions in rotating anti-de Sitter black holes Phys. Rev. D 88 101502
[10] Hennigar R A, Mann R B and Tjoa E 2017 Superfluid black holes Phys. Rev. Lett. 118 021301
[11] Dolan B P, Kostouki A, Kubiznak D and Mann R B 2014 Isolated critical point from Lovelock gravity Class. Quantum Grav. 31 242001
[12] Anabalon A, Gray F, Gregory R, Kubiznáč D and Mann R B 2019 Thermodynamics of charged, rotating and accelerating black holes J. High Energy Phys. JHEP04(2019)096
[13] Abbasvandi N, Cong W, Kubiznak D and Mann R B 2019 Snappping swallowtails in accelerating black hole thermodynamics Class. Quantum Grav. 36 104001
[14] Wei S-W, Liu Y-X and Mann R B 2019 Repulsive interactions and universal properties of charged anti de Sitter black hole microstructures Phys. Rev. Lett. 123 071103
Kubiznak D, Mann R B and Teo M 2017 Black hole chemistry: thermodynamics with lambda Class. Quantum Grav. 34 063001
Altamirano N, Kubiznak D, Mann R B and Sherkatghanad Z 2014 Kerr-AdS analogue of triple point and solid/liquid/gas phase transition Class. Quantum Grav. 31 042001
Wei S-W and Liu Y-X 2014 Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space Phys. Rev. D 90 044057
Frassino A M, Kubiznak D, Mann R B and Simovic F 2014 Multiple reentrant phase transitions and triple points in Lovelock thermodynamics J. High Energy Phys. JHE09(2014)080
Wei S W and Liu Y X 2022 The microstructure and Ruppeiner geometry of charged anti-de Sitter black holes in Gauss-Bonnet gravity: from the critical point to the triple point Commun. Theor. Phys. 74 095402
Akahane K, Russo J and Tanaka H 2016 Nat. Commun. 7 12599
González García A, Wensink H H, Lekkerkerker H N W and Tuinier R 2017 Sci. Rep. 7 17058
Sun W and Powell-Palm M J Generalized Gibbs Phase Rule (arXiv:2105.01337)
Tavakoli M, Wu J and Mann R B 2022 Multi-critical points in black hole phase transitions J. High Energy Phys. JHE12(2022)117
Gibbons G W, Lu H, Page D N and Pope C N 2004 Rotating black holes in higher dimensions with a cosmological constant Phys. Rev. Lett. 93 171102
Gibbons G W, Lu H, Page D N and Pope C N 2005 The General Kerr-de Sitter metrics in all dimensions J. Geom. Phys. 53 49–73
Chong Z-W, Cvetic M, Lu H and Pope C N 2005 Five-dimensional gauged supergravity black holes with independent rotation parameters Phys. Rev. D 72 044001
Frolov V P and Kubiznak D 2008 Higher-dimensional black holes: hidden symmetries and separation of variables Class. Quantum Grav. 25 154005
Louko J, Mann R B and Marolf D 2005 Geons with spin and charge Class. Quantum Grav. 22 1451–68
Deeser S, Kanik I and Tekin B 2005 Conserved charges of higher D Kerr-AdS spacetimes Class. Quantum Grav. 22 3383–90
Calderelli M M, Emparan R and Rodriguez M J 2008 Black rings in (Anti)-de Sitter space J. High Energy Phys. JHE11(2008)011
Vasudevan M, Stevens K A and Page D N 2005 Separability of the Hamilton-Jacobi and Klein-Gordon equations in Kerr-de Sitter metrics Class. Quantum Grav. 22 3339–52
Cardoso V, Dias O J C and Yoshida S 2006 Classical instability of Kerr-AdS black holes and the issue of final state Phys. Rev. D 74 044008
Brihaye Y, Radu E and Stielea C 2007 Black strings with negative cosmological constant: inclusion of electric charge and rotation Class. Quantum Grav. 24 4839–70
Gerhardt C 2018 The quantization of a Kerr-AdS black hole Adv. Math. Phys. 2018 4328312
Gibbons G W, Perry M J and Pope C N 2005 Bulk/boundary thermodynamic equivalence and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes Phys. Rev. D 72 084028
Al Balushi A, Hennigar R A, Kunduri H K and Mann R B 2021 Holographic complexity and thermodynamic volume Phys. Rev. Lett. 126 101601
Hennigar R A, Kubiznak D, Mann R B and Musoke N 2015 Ultraspinning limits and super-entropic black holes J. High Energy Phys. JHE06(2015)096
Cardoso V, Dias O J C, Hartnett G S, Lehner L and Santos J E 2014 Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS J. High Energy Phys. JHE04(2014)183
Gibbons G W, Perry M J and Pope C N 2005 The first law of thermodynamics for Kerr-anti-de Sitter black holes Class. Quantum Grav. 22 1503–26
Altamirano N, Kubiznak D, Mann R B and Sherkatghanad Z 2014 Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume Galaxies 2 89–159
Simovic F and Mann R B 2019 Critical phenomena of charged de Sitter black holes in cavities Class. Quantum Grav. 36 014002
Simovic F and Mann R B 2019 Critical phenomena of Born-Infeld-de Sitter black holes in cavities J. High Energy Phys. JHE05(2019)136
Haroon S, Hennigar R A, Mann R B and Simovic F 2020 Thermodynamics of Gauss-Bonnet-de Sitter black holes Phys. Rev. D 101 084051
Simovic F, Fusco D and Mann R B 2021 Thermodynamics of de Sitter black holes with conformally coupled scalar fields J. High Energy Phys. JHE02(2021)219
[45] Marks G A, Simovic F and Mann R B 2021 Phase transitions in 4D Gauss-Bonnet de Sitter black holes Phys. Rev. D 104 104056
[46] Dolan B P 2014 Bose condensation and branes J. High Energy Phys. JHE10(2014)179
[47] Johnson C V 2014 Holographic heat engines Class. Quantum Grav. 31 205002
[48] Kastor D, Ray S and Traschen J 2014 Chemical potential in the first law for holographic entanglement entropy J. High Energy Phys. JHE11(2014)120
[49] Zhang J L, Cai R G and Yu H 2015 Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS$_5 \times S^5$ spacetime J. High Energy Phys. JHE02(2015)143
[50] Zhang J-L, Cai R-G and Yu H 2015 Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space Phys. Rev. D 91 044028
[51] Karch A and Robinson B 2015 Holographic black hole chemistry J. High Energy Phys. JHE12(2015)073
[52] Sinamuli M and Mann R B 2017 Higher order corrections to holographic black hole chemistry Phys. Rev. D 96 086008
[53] McCarthy F, Kubizňák D and Mann R B 2017 Breakdown of the equal area law for holographic entanglement entropy J. High Energy Phys. JHE11(2017)165
[54] Cong W, Kubiznak D and Mann R B 2021 Thermodynamics of AdS black holes: critical behavior of the central charge Phys. Rev. Lett. 127 091301
[55] Cong W, Kubiznak D, Mann R B and Visser M R 2022 Holographic CFT phase transitions and criticality for charged AdS black holes J. High Energy Phys. JHE08(2022)174
[56] Visser M R 2022 Holographic thermodynamics requires a chemical potential for color Phys. Rev. D 105 106014
[57] Frassino A M, Pedraza J F, Svesko A and Visser M R Higher-dimensional origin of extended black hole thermodynamics (arXiv:2212.14055 [hep-th])