Sun_Supplemental Fig1A

Group I

rank	HOMER de novo motif	p-value	similar motif	% of targets	% of background	enrichment
1	TCTACCTG	1E-208	Zelda	41.97%	3.92%	10.71
2	GGAATTCCCCG	1E-47	Dorsal	13.55%	1.88%	7.21
3	GTCTATAAA	1E-45	Caudal	19.59%	4.47%	4.38
4	GGAATTAGG	1E-19	Bicoid	20.47%	8.96%	2.28
5	TTTCCCGGAA	1E-18	STAT92E	20.03%	8.81%	2.27
6	GCCATGTGC	1E-15	Twist	11.19%	3.87%	2.89
7	TCAACCTTTTCCC	1E-14		1.77%	0.05%	35.40
8	CCAAGAGAGA	1E-14	GAGA	11.49%	4.29%	2.68
9	AGCCATTATGCC	1E-12	Pho	1.77%	0.07%	25.29
10	AGCGGAAAAACCG	1E-12	Dorsal	5.45%	1.28%	4.26
Sun_Supplemental Fig1A, cont.

Group II

rank	HOMER *de novo* motif	p-value	similar motif	% of targets	% of background	enrichment
1	TATGGTCACT	1E-113	Ohler1	11.90%	2.00%	5.95
2	AGGGCCATCT	1E-95	CTCF	4.96%	0.26%	19.08
3	TATCGATACT	1E-74	DRE	10.11%	2.24%	4.51
4	AGGACAAACC	1E-51	matches DPE	3.95%	0.43%	9.19
5	AGGCTTGGCA	1E-48	Ohler8	9.97%	3.13%	3.19
6	AGAGAGAGAG	1E-47	GAGA	17.65%	7.97%	2.21
7	AAAATTACCA	1E-33	Ohler6	5.84%	1.61%	3.63
8	ATTTTACATT	1E-30	CG11617	5.06%	1.34%	3.78
9	AACAAGCTGT	1E-25	Ohler5	5.42%	1.72%	3.15
10	GTTAAACAG	1E-25	Ovo	8.69%	3.72%	2.34
11	GGGATTTCGA	1E-22	Dorsal	18.01%	10.82%	1.66
12	AATTCAATTG	1E-22	Invected	4.27%	1.25%	3.42
13	CGTGCGCGC	1E-20	CG-repeat	13.60%	7.68%	1.77
14	TAAAGCAGTTG	1E-17	Grainy head	2.16%	0.44%	4.91
15	TACAGATGTA	1E-17	Ohler7	2.76%	0.71%	3.89
16	TGTTATTTGCT	1E-17	Caupolican	20.22%	13.59%	1.49
Group III

Rank	HOMER de novo motif	p-value	similar motif	% of targets	% of background	Enrichment
1	![Motif](image1)	1E-58	Ohler1	12.42%	1.02%	12.18
2	![Motif](image2)	1E-36	DRE	13.35%	2.37%	5.63
3	![Motif](image3)	1E-35	matches MTE	11.18%	1.64%	6.82
4	![Motif](image4)	1E-26	GAGA	21.43%	7.80%	2.75
5	![Motif](image5)	1E-20	Ohler6	9.94%	2.41%	4.12
6	![Motif](image6)	1E-19	Ovo	6.52%	1.06%	6.15
7	![Motif](image7)	1E-19	Ohler7	1.24%	0.00%	N/A
8	![Motif](image8)	1E-19	Deaf1	4.66%	0.48%	9.71
9	![Motif](image9)	1E-18	Ohler5	7.76%	1.64%	4.73
10	![Motif](image10)	1E-16	Slp1	5.28%	0.81%	6.52
11	![Motif](image11)	1E-15		6.99%	1.55%	4.51
12	![Motif](image12)	1E-14	Hsf	3.42%	0.35%	9.77
13	![Motif](image13)	1E-13	Twist	4.04%	0.56%	7.21
14	![Motif](image14)	1E-12		7.76%	2.37%	3.27
15	![Motif](image15)	1E-12		4.04%	0.67%	6.03
Sun_Supplemental Fig1B

Group I (non-TSS, w/ Zld binding)

rank	HOMER de novo motif	p-value	similar motif	% of targets	% of background	enrichment
1	CTACCTGT	1E-125	Zelda	41.98%	4.19%	10.02
2	GGGATTTTCCCC	1E-37	Dorsal	28.07%	7.28%	3.86
3	AGGCATATAAA	1E-28	Caudal	21.70%	5.65%	3.84
4	AGCGGAACAAAAGAG	1E-14	Dorsal	4.01%	0.26%	15.42
5	TTAGCTGCCCT	1E-14	Zelda	20.99%	8.71%	2.41
6	GGAATTAGG	1E-12	Bicoid	15.33%	5.68%	2.70

Group II (non-TSS, w/ Zld binding)

rank	HOMER de novo motif	p-value	similar motif	% of targets	% of background	enrichment
1	CATAGATGGGCGC	1E-59	CTCF	9.58%	0.43%	22.28
2	AGAGAGAGAGGAGAG	1E-25	GAGA	23.55%	9.43%	2.50
3	TCGGCAGTCTCA	1E-23	Grainy head	4.24%	0.26%	16.31
4	TGGTTTTTCTCC	1E-21	Dorsal	9.42%	1.99%	4.73
5	TAGATTTTACAT	1E-18	CG11617	6.59%	1.15%	5.73
6	GTTCGAGGTC	1E-16	Deaf1	3.14%	0.21%	14.95
7	TTATGAGGCC	1E-16	Caudal	14.29%	5.39%	2.65
8	TTTCGGGTTTG	1E-15	Deaf1	2.98%	0.21%	14.19
9	GCATACCTTTTTAG	1E-15	su(Hw)	4.40%	0.60%	7.33
10	TTCTTATCGATA	1E-13	DRE	5.18%	0.97%	5.34
Supplemental Fig. 1. HOMER de novo motif discovery. De novo motifs found in Group I, II, III DI peak regions are shown for (A) all DI peaks, and (B) DI peaks >1kb away from a TSS that are bound or unbound by Zld, ranked by enrichment p-value. Possible false positive de novo motifs are not shown; only top 16 out of 21 motifs are shown for Group II peaks in (A), and only top 10 out of 13 motifs are shown for Zld bound non-TSS DI Group II peaks in (B). The name of similar motif, or the protein bound to the similar motif, is listed if known. The percentage of the de novo motif identified in each DI peak group and from background is shown, together with motif enrichment over background (% of targets/% of background).
Supplemental Fig. 2. Features of genes assigned to each DI group. (A) Genomic distribution of wt Zld peaks, and DI peaks within each group. The y-axis represents the frequency of peaks belonging to a certain genomic annotation. The expected DI occurrence for all DI peaks within each annotation is shown as a gray shadow. The expected percentage of each annotation across the genome is denoted with a black bar. Significantly different annotations between DI groups are denoted by an asterisk (* p<0.05, ** p<0.001, *** p<0.0001, hypergeometric test). "Promoter" is -500bp to +150bp of a TSS. (B) The maternal/zygotic contribution of genes assigned to each DI group is based on the classification of Chen et al. (Chen et al., 2013), with “Z” indicating actively transcribed zygotic genes (pre-MBT + MBT active), “MZ” indicating genes with both maternal and zygotic contribution (MBT maternal), “None” indicating genes not zygotically expressed (N/A + MBT poised).
Supplemental Fig. 3. Meta-profiles of DI peaks that are >1kb away from a TSS are shown for the three DI-peak groups bound by Zld, as well as DI peaks that do not co-localize with Zld binding as control. *wt* Zld binding in blue, *wt* DI binding in solid brown line, *zld−* DI binding in dashed brown line. The normalized reads were aligned at the DI summit, and average reads within 2kb distance are shown.
Supplemental Fig. 4. Heatmaps of nucleosome occupancy at 3 DI groups in \textit{wt} and \textit{zld} embryos. MNase reads comparing \textit{wt} and \textit{zld} embryos are shown for the 3 DI groups, aligned at DI summit and ranked by \textit{wt} DI summit reads high to low. The read coverage is in linear scale ranging from minimum (zero reads) to maximum (read value at the 99th percentile among all displayed bases). The x-axis indicates the distance from DI peak summit (bp). Note within Group I, there is a significant increase in nucleosome occupancy in \textit{zld} compared to \textit{wt}. For Groups II and III, the overall nucleosome occupancy is comparable between \textit{wt} and \textit{zld}, indicating that Zld does not have a significant influence on the nucleosome occupancy at these regions.
Supplemental Fig. 5. (A) G-C frequency is plotted for DI peaks that are >1kb away from a TSS, centered at DI summits, and 1000 random regions of 800bp length that are >1kb away from a TSS as control, aligned at the center of the random regions. The random regions were selected so that their G-C content is insignificantly different from that of all non-TSS DI peaks within ±400bp of DI summits. Regions around DI summits in all three groups show relatively higher G-C content than their surrounding regions, while random regions have uniform G-C content. (B) Meta-profiles of wt (blue) and zld (red) MNase reads, as well as predicted average nucleosome occupancy based on the underlying DNA sequence (grey) using a published prediction model (Xi et al. 2010), are shown for aforementioned 1000 random regions, aligned at the center of the random regions. (C) Meta-profiles of predicted nucleosome occupancy based on the underlying DNA sequence are shown for DI peaks that are >1kb away from a TSS (solid grey line), either bound or not bound by Zld, centered at DI summits, and aforementioned 1000 random regions (dotted grey line), aligned at the center of the random regions. The predicted nucleosome model for all non-TSS DI peaks, either bound or not bound by Zld, is significantly different from that at random regions within ±75bp of alignment center, with p-value indicated on top of each group (t-test).
Supplemental Fig. 6. *In silico* Zld motif mutagenesis. All eight Zld motifs (Nien et al. 2011) within Zld bound regions were mutated *in silico* by transition (C ↔ T, G ↔ A). The nucleosome occupancy models based on wild-type DNA sequence (blue) and mutated sequence (red) were predicted with NuPoP (R package; Xi et al. 2010), and the average profiles at top 1000 Zld peaks that are >1kb away from a TSS were plotted, aligned at Zld summits. After mutating Zld motifs, the nucleosome prediction algorithm still predicted high nucleosome occupancy.
Supplemental Fig. 7. Numbers of total reads, mapped reads and coverage are listed for all ChIP-seq and MNase-seq experiments. The numbers of total reads and mapped reads are calculated by SAMtools (Li et al. 2009). Reads are either extended to the average insert size of the library estimated by Bioanalyzer for ChIP-seq, or extended to the corresponding paired-end tag for MNase-seq, then piled up by customized R-script. The percentage of coverage of each experiment was calculated as total length of regions without zero read divided by total length of the genome.

Experiment	Total reads	Mapped reads	Coverage
wt DI ChIP Rep1	32,245,179	23,433,272	91.49%
wt DI input Rep1	25,304,120	18,434,455	91.12%
wt DI ChIP Rep2	27,668,522	20,263,763	91.61%
wt DI input Rep 2	26,337,208	19,179,796	91.63%
zldf DI ChIP Rep1	33,008,560	22,116,976	91.50%
zldf DI input Rep1	25,138,375	17,539,536	91.65%
zldf DI ChIP Rep2	29,125,647	20,425,616	89.52%
zldf DI input Rep2	27,203,754	19,120,525	92.00%
wt Zld ChIP Rep1	9,647,361	5,589,244	84.50%
wt Zld input Rep1	24,616,671	16,309,411	91.20%
wt Zld ChIP Rep2	113,969,589	85,895,299	91.32%
wt Zld input Rep2	17,145,271	13,081,018	91.53%
gd7 Zld ChIP Rep1	13422849	9,738,885	88.31%
gd7 Zld input Rep1	18920890	11,129,487	90.71%
gd7 Zld ChIP Rep2	137,666,689	93,343,236	88.90%
gd7 Zld input Rep2	19,094,553	13,959,054	91.37%
wt MNase Rep1	66,488,782	39,998,542	98.51%
wt MNase Rep2	59,379,260	35,062,208	98.47%
zldf MNase Rep1	74,350,274	44,783,514	98.67%
zldf MNase Rep2	68,845,544	38,921,312	98.69%
Supplemental Fig. 8. As a normalization control, DI ChIP and input data were normalized to the mean of total reads, then the differential DI binding between wt and zld⁻ was analyzed by DESeq as aforementioned in the main text, and MNase meta-profiles as well as predicted nucleosome model were plotted for each DI group >1kb away from a TSS. This normalization method generated very similar properties of DI bound regions and MNase profiles as those generated by our Z-score transformation method used in the main text. (A) MA plot of differential DI binding in zld⁻ versus wt embryos. The x-axis represents the mean of normalized DI reads per peak; the y-axis represents the log₂ fold-change of normalized reads per peak between the genotypes. Significantly decreased peaks (Group I, red), not significantly changed peaks (Group II, blue) and significantly increased peaks (Group III, green) were identified by DESeq with FDR<0.1. (B) MNase meta-profiles (wt in blue, zld⁻ in red, predicted nucleosome occupancy model in grey) of DI peaks that are >1kb away from a TSS are shown for the three DI-peak groups defined from (A), as well as DI peaks that do not co-localize with Zld binding as control. The normalized MNase reads and model were aligned at the DI summit, and average reads (average probability for model) within 1kb distance are shown.
Supplemental Methods

Genomic annotations
Zld and Dl group peaks were each assigned an exclusive genomic annotation based on FlyBase Dmel_Release_5.57 with the following assignment hierarchy: 1) if the peak summit is within a single annotated transcript, it is assigned to the annotations of that transcript; 2) if the peak region has multiple annotations, the peak is assigned to one annotation in the following hierarchical order: promoter (-500bp to +150bp of a TSS), CDS, 5'UTR, 3'UTR and intron; 3) if the peak does not fall into a transcript, it is annotated as in an intergenic region. A peak was considered as “near a TSS” if the peak boundary is within 1kb of a TSS.

Assigning Dl peaks to genes
Dl peaks (from peak summit) were assigned to the nearest TSS based on FlyBase Dmel_Release_5.57. Genes that were assigned to multiple Dl-peak groups were excluded from further analysis.

Maternal/zygotic contribution of genes associated with Dl peaks
The maternal/zygotic contribution of a gene was determined according to Chen et al. (Chen et al. 2013), with “Z” indicating actively transcribed zygotic genes during 1-3h, “MZ” indicating genes with both maternal and zygotic contribution, “None” indicating genes not zygotically expressed (N/A + poised).

Random region control and G-C frequency calculation
1000 random regions of 800bp length were selected across the genome, with the criteria that they are >1kb away from a TSS and that their G-C content is insignificantly different (p=0.71, t-test) from that of non-TSS Dl peaks (>1kb away from a TSS) within 400bp of DI summits. The G-C frequency in Supplemental Fig. 5A within 1kb of the alignment center was calculated with a 75bp sliding window for non-TSS Dl-peak groups and the aforementioned 1000 random regions. In Supplemental Fig. 5C, student’s t-test was performed on the predicted nucleosome model centered at DI summits and 1000 aforementioned random regions within 75bp of alignment center.