Electronic Supplementary information for:

Olfactory Receptor Repertoire Size in Dinosaurs

Graham M. Hughes*1, John A. Finarelli1,2.

*Corresponding author: g.hughes@ucd.ie

1School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland

2Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
Supplementary Methods

Olfactory receptor gene sequences

OR genes were mined from raw genome files for each extant target avian taxon. OR sequences were initially mined by mapping all RefSeq query genes to a target reference with blastx [1]. Blast best-hit regions were extended 500bp up and downstream, investigated for OR sequences and assigned to specific gene subfamilies using Hidden Markov Models (HMMs) via the Olfactory Receptor Assigner (ORA [2]). Putative pseudogenes less than 150bp in length were excluded. OR sequences from a number of non-avian sauropsid taxa, (hereafter: ‘sauropsids’; Alligator sinensis, Alligator mississippiensis, Chrysemys picta, Anolis carolinensis, Python molurus) were also downloaded [3-7]. Additionally, the genome of the American alligator, Alligator mississippiensis, was mined for OR sequences.

Estimation of ancestral ORs using shared identity

To estimate the minimum number of ancestral OR gene numbers in the dinosaurs, OR sequences from the five sauropsid species mapped to avian ORs using tblastx [1]. Given that the same OR genes may be present in all five, only representative orthologs were used, determined by clustering sequences with 80% shared identity (cd-hit [8]) and choosing one template per cluster, based on the longest sequence. To account for more than 200 MY [9] since the divergence of Aves, subsequent operational thresholds of 65% shared identity and 50% gene coverage were used to infer orthology across both lineages and thus presence in the ancestral dinosaur genome. We further explored OR gene families whose binding odorant ligands are known, and have been verified in human and mouse (de-orphaned), to identify the potential odorant-space [10-12] that was perceivable by extinct dinosaur taxa.

Olfactory bulb ratio correlations

Correlations of the OB ratio with dietary niche and log body mass were investigated across taxa (n = 74, diet data not available for both Lithornis sp., no body mass available for Viavenator or Pawpawasaurus) using Phylogenetic Generalized Least Squares (PGLS), with a null Brownian motion (BM) model of trait evolution in the R packages ‘ape’ [13] and ‘nlme’ [14]. Correlation between body mass and OB ratio was investigated using PGLS for five groups, specifically ‘all taxa’, ‘non-avian dinosaurs’, ‘non-avian dinosaurs+stem birds’ (that is, members of the Avialae (Archaeopteryx, Confuciusornis, Hesperornis, Ichthyornis) outside of Aves), ‘Avialae’ and ‘Aves’, with correlation coefficients determined by computing the phylogenetic trait variance-covariance matrix via phytools [15], and the cov2cor function in R.

We investigated correlations of OB ratio with total OR repertoire and individual gene family sizes for Aves species using a phylogenetically corrected Pearson’s correlation coefficient, with Benjamini–Hochberg false discovery rate (FDR [16]), using the p.adjust function in R. Three taxa (chicken, Gallus gallus; zebra finch, Taeniopygia guttata; and budgerigar, Melopsittacus undulatus) show a highly expanded OR family 14 relative to other extant birds. These outliers show similar OB ratios to their respective sister taxon, but have a far greater repertoire size (with each sister taxon closer to the mean), suggesting some extreme expansion event post-divergence. This analysis was therefore conducted with and without these outlier taxa. Correlations of OB ratios with trait data were done with Phylogenetic
Generalized Least Squares (PGLS), using a composite phylogeny of all 76 species (see below: Phylogenetic tree topology, and Main Text Figure 1).

Phylogenetic tree topology

A composite phylogeny of all 76 species was generated for all comparative analyses. An initial cladogram of extant avian taxa was generated based on the topology of Prum et al. [17], with Lithornis added as basal to extant birds, and Avialae basal to Aves. The topologies of dinosaur taxa within families/superfamilies were based on various studies (Abelisauridae [18], Allosauroidae [19], Ankylosauridae [20], Dromaeosauridae [21], Ornithomimosauria [22], Tyrannosauridae [23]), with Ornithischia as sister group to Saurischia, Dinosauria basal to Aves. The location of Therizinosauria was based on Zanno [24], with the Saurichian topology from Cau et al. [21], Zanno [24] and Chinzorig et al. [22] used. *A. mississippiensis* was added as outgroup to all other taxa. The final phylogeny was then created based on the method devised by Grafen [25], where internal nodes are assigned a ‘height’ based on the number of branching events, with branch lengths scaled based on nodal differences. Grafen transformation was carried out in R using *ape* [13].

Ancestral state reconstruction of OR repertoire and OB ratio

We estimated ancestral OB ratios at internal nodes using both the all-taxon phylogeny (i.e., including fossil taxa) and a tree limited to extant birds. We performed the analyses both with and without the three outlier taxa discussed above, to determine if their inclusion biased the ancestral reconstructions. Additional sauropsid taxa were excluded due to a lack of reported OB ratios. *Alligator mississippiensis* was used as the outgroup for all analyses. A number of methods for reconstructing the ancestral states of internal nodes across the phylogeny were employed. Ancestral state reconstruction was carried out using the ‘ape’ package in R, focusing on: 1) Maximum Likelihood (ML), reconstructing ancestral states by maximizing the likelihood under a BM model; 2) Phylogenetic Independent Contrasts (PIC), reconstructing ancestral states recursively with branch-dependent weighting [26] and 3) Generalized Least Squares (GLS), reconstructing ancestral states as a linear combination of extant leaves, based on the variance-covariance matrix and a BM model of evolution. These ancestral OB ratio estimates were compared across methods using a Kruskal-Wallis test.

Modeling OR gene repertoire as a function of OB ratio

PGLS was used to model OR gene repertoire size (functional + non-functional) as a function of OB ratio using data from extant birds (n = 42), extant birds with the three outlier species above excluded (n = 39) and both with and without *A. mississippiensis* (n = 43; n = 40, respectively). These models were used to predict OR gene numbers across all extinct taxa. Given the paucity of literature on whether or not an OB-ratio/OR repertoire size correlation exists in the crocodilian or testudine lineages, and the general lack of OB ratios for taxa for which genome sequences are available, we only included the American alligator as an outgroup. For the PGLS modeling, we make the assumption that theropod dinosaurs reflect scaling patterns more similar to the avian lineage rather than crocodilian/testudine lineages.
References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990 Basic local alignment search tool. *J Mol Biol.* 215 (3): 403–410.

2. Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. 2010 Ecological adaptation determined functional mammalian olfactory subgenomes. *Genome Res.* 20 (1): 1–9.

3. Dehara Y, Hashiguchi Y, Matsubara K, Yanai T, Kubo M, Kumazawa Y. 2012 Characterization of squamate olfactory receptor genes and their transcripts by the high-throughput sequencing approach. *Genome Biol Evol.* 4 (4): 602–616.

4. St. John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed’hom B, Abzhanov A, et al. 2012 Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. *Genome Biol* 13 (1): 415.

5. Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomas RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KY, et al. 2013 The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. *Gen Biol.* 14: R28.

6. Wan Q, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, Chen H, He GY, He J, Ni XW, et al. 2013 Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. *Cell Res.* 23 (9): 1091–1105.

7. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St. John JA, Capella-Gutiérrez S, Castoe TA, et al. 2014 Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. *Science* 346 (6215): 1254449.

8. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012 CD-HIT: accelerated for clustering the next generation sequencing data. *Bioinformatics* 28 (23): 3150–3152.

9. Zheng Y, Wiens JJ. 2016 Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. *Mol Phylogenetics Evol.* 94: 537–547.

10. Modena D, Trentini M, Corsini M, Bombaci A, Giorgetti A. 2011 OlfactionDB A database of olfactory receptors and their ligands. *Adv Lif Sci.* 1 (1): 1–5.

11. Dunkel A, Steinhaus M, Kothoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T. 2014 Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. *Angew Chem.* 53 (28): 7124–7143.

12. Moran JK, Dietrich DR, Elbert T, Pause BM, Kubler L, Weierstall R. 2015 The scent of Blood: A driver of Human Behavior? *PLoS ONE* 10 (9): e0137777.

13. Paradis E, Claude J, Strimmer K. 2004 APE: analysis of phylogenetics and evolution in R language. *Bioinformatics* 20 (2): 289–290.

14. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2015 nlme: Linear and nonlinear mixed effects models. *R package version 3.1-128.* Available from: https://cran.r-project.org/web/packages/nlme/nlme.pdf.

15. Revell. 2012 An R package for phylogenetic comparative biology (and other things). *Methods Ecol Evol.* 3: 217–223.
16. Benjamini Y, Hochberg, Y. 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc Series B* 57: 289–300.

17. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2015 A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. *Nature* 526: 569–573.

18. Filippi LS, Méndez AH, Valieri RDJ, Garrido AC. 2016 A new brachyrostran with hypertrophied axial structures reveals an unexpected radiation of latest Cretaceous abelisaurids. *Cretac Res.* 61: 209–219.

19. Brusatte SL, Sereno PC. 2008 Phylogeny of Allosauroidea (Dinosauria: Theropoda): Comparative analysis and resolution. *J Syst Palaeontol.* 6 (2): 155–182.

20. Thompson RS, Parish JC, Maidment SCR, Barrett PM. 2011 Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora). *J Syst Palaeontol.* 10 (2): 301–312.

21. Cau A, Beyrand V, Voeten D, Fernandez V, Tafforeau P, Stein K, Barsbold R, Tsogtbaatar K, Currie P, Godfreroit P. 2017 Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. *Nature* 552 (7685): 395–399.

22. Chinzorig T, Kobayashi T, Tsogtbaatar K, Currie PJ, Watabe M, Barsbold R. 2017 First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögōr giin Shiree, Mongolia. *Sci Rep.* 7 (5832).

23. Brusatte SL, Carr TD. 2016 The phylogeny and evolutionary history of tyrannosaurid dinosaurs. *Sci Rep.* 6 (20252).

24. Zanno LE. 2010 A taxonomic and phylogenetic re-evaluation of Therizinosauria (Dinosauria: Maniraptora). *J Syst Palaeontol.* 8 (4): 503–543.

25. Grafen A. 1989 The phylogenetic regression. *Philos Trans R Soc B.* 326 (1233): 119–157.

26. Royer-Carenzi M, Didier G. 2016 A comparison of ancestral state reconstruction methods for quantitative characters. *J Theor Biol* 7 (404): 126–142.
Supplementary Table S1. The list of extinct and extant taxa included in this study. OR repertoire sizes OB ratio, Diet and Body mass are displayed. Where multiple OB ratios are available, the mean ratio was used (denoted by *). PGLS corrected repertoire sizes are inferred for extinct taxa. † indicates extinct taxon.

Species	Common name	OR Repertoire	OB ratio (%)	Inferred OR Repertoire	Diet	Body mass (kg)	
Alligator mississippiensis	Alligator	1077	49.8	-	Carnivore	150	
Tinamus guttatus	White-throated tinamou	388	19.5	-	Omnivore	0.8	
Struthio camelus	Ostrich	318	19.2	-	Omnivore	111	
Taeniopygia guttata	Zebra finch	688	9.7	-	Herbivore	0.0122	
Geospiza fortis	Medium ground finch	182	9.7	-	Herbivore	0.0183	
Corvus brachyrhynchos	American crow	229	5	-	Omnivore	0.506	
Manacus vitellinus	Golden-collared manakin	227	9.7	-	Frugivore	0.0193	
Acanthisitta chloris	Rifleman	222	9.7	-	Insectivore	0.007	
Melopsittacus undulatus	Budgerigar	484	6.2	-	Herbivore	0.029	
Nestor notabilis	Kea	239	8	-	Omnivore	0.956	
Falco peregrinus	Peregrine falcon	460	20	-	Carnivore	0.815	
Cariama cristata	Red-legged seriema	293	22.2	-	Carnivore	1.4	
Picoides pubescens	Downy woodpecker	252	10	-	Omnivore	0.028	
Merops nubicus	Northern carmine bee-eater	252	14.5	-	Insectivore	0.051	
Colius striatus	Speckled mousebird	292	9.7	-	Frugivore	0.055	
Tyto alba	Barn owl	321	18.5	-	Carnivore	0.392	
Haliaeetus leucocephalus	Bald eagle	262	18	-	Piscivore	5.35	
Haliaeetus albicilla	White-tailed eagle	283	18	-	Carnivore	5.572	
Cathartes aura	Turkey vulture	400	28.7	-	Carnivore	2.006	
Pelecanus crispus	Dalmatian pelican	330	9.7	-	Piscivore	10	
Egretta garzetta	Little egret	491	21.7	-	Omnivore	0.55	
Nipponia nippon	Crested ibis	371	21.7	-	Carnivore	1.9	
Phalacrocorax carbo	Great cormorant	270	14.5	-	Piscivore	2.4	
Pygoscelis adeliae	Adélie penguin	320	17	-	Carnivore	4.85	
Aptenodytes forsteri	Emperor penguin	355	17	-	Carnivore	38.2	
Fulmarus glacialis	Northern fulmar	370	27.1	-	Carnivore	0.613	
Gavia stellata	Red-throated loon	369	20	-	Piscivore	1.729	
Phaethon lepturus	White-tailed tropicbird	306	20	-	Carnivore	0.33	
Balearica regulorum	Grey crowned crane	369	22.2	-	Omnivore	3.777	
Charadrius vociferus	Killdeer	393	16.1	-	Omnivore	0.101	
Ophisthocome hoazin	Hoatzin	467	24.2	-	Herbivore	0.696	
Calypte anna	Anna’s hummingbird	324	14	-	Nectivore	0.0045	
Species	Common Name	Length	Width	Height	Mass	Diet	Mass*
---------------------------------	-------------------------------	--------	-------	--------	-------	-----------------	--------
Chaetura pelagica	Chimney swift	355	18.8	-	-	Carnivore	0.024
Antrostomus carolinensis	Chuck-will’s-widow	353	23.8	-	-	Insectivore	0.188
Cuculus canorus	Common cuckoo	266	19.5	-	-	Insectivore	0.117
Mesitornis unicolor	Brown mesite	343	22.2	-	-	Omnivore	0.148
Pterocles gutturalis	Yellow-throated sandgrouse	280	20.7	-	-	Herbivore	0.342
Columba livia	Rock dove	437	21.2	-	-	Herbivore	0.355
Phoenicopterus ruber	American crested grousse	363	21.7	-	-	Carnivore	3.579
Podiceps cristatus	Great crested grousse	319	24.5	-	-	Carnivore	0.92
Meleagris gallopavo	Wild turkey	313	13.5	-	-	Omnivore	6.05
Gallus gallus	Chicken	674	15.4	-	-	Omnivore	0.904
Anas platyrhynchos	Mallard duck	344	19.1	-	-	Omnivore	1.082
†Allosaurus fragilis		-	51.6	540	50	Carnivore	2545.13
†Acrocanthosaurus atokensis		-	50.8*	536	50.8	Carnivore	2545.13
†Carcharodontosaurus saharicus		-	56	564	56	Carnivore	7905.47
†Giganotosaurus carolinii		-	57.7	573	57.7	Carnivore	7559.49
†Ceratosaurus magnicornis		-	48.1	521	48.1	Carnivore	538.86
†Majungasaurus crenatissimus		-	48.3	522	48.3	Carnivore	1130
†Dilong paradoxus		-	27	407	27	Carnivore	9.69
†Albertosaurus sarcophagus		-	71	645	71	Carnivore	2545.13
†Gorgosaurus libratus		-	68.5	631	68.5	Carnivore	2709.45
†Tarbosaurus bataar		-	65.1	613	65.1	Carnivore	2164.6
†Tyrannosaurus rex		-	66.5	621	66.5	Carnivore	5855.3
†Garudimimus brevipes		-	71	645	71	Carnivore	206.79
†Ornithomimus edmontonensis		-	31.4	431	31.4	Omnivore	152.74
†Dromiceiominus brevitertiis		-	29.4	420	29.4	Omnivore	206.79
†Struthiornis altus		-	32.5	437	32.5	Omnivore	277.97
†Citipati osmolskæ		-	31.5	431	31.5	Omnivore	129.78
†Saurornitholestes langstoni		-	34.8	449	34.8	Carnivore	16.62
†Bambiraptor feinbergi		-	28.5	415	28.5	Carnivore	2.44
†Velociraptor mongoliensis		-	35.7	454	35.7	Carnivore	13.36
†Troodon formosus		-	33.2	440	33.2	Carnivore	60.76
Species	Mass (kg)	Length (cm)	Diet	Body Mass Adjusted (Kg)			
-------------------------------	-----------	-------------	----------	------------------------			
†Archaeopteryx lithographica	33.1*	439	Carnivore	0.28			
†Confuciusornis sanctus	33	440	Carnivore	0.277			
†Hesperornis regalis	17.1	353	Piscivore	10.608			
†Ichthyornis dispar	18.1	359	Piscivore	0.35			
†Lithornis pleius	36.5	458	-	0.48			
†Lithornis promiscuus	37.7	465	-	0.908			
†Deinonychus antirrhopus	41	483	Carnivore	56.7			
†Tsagaan mangas	36	456	Carnivore	13.36			
†Viavenator exxoni	57	569	Carnivore	-			
†Erlikosaurus andrewsi	40	477	Herbivore	173.7			
†Euoplocephalus sp	52	542	Herbivore	2675.90			
†Pawpawsaurus campbelli	46.2	511	Herbivore	-			
†Panoplosaurus mirus	44	499	Herbivore	1600			
Supplementary Table S2. Correlations between OB ratio and OR repertoire size in birds were investigated using phylogenetically uncorrected and corrected Pearson’s correlation coefficient (r). Correlations for individual OR gene families, OR gene class and total OR repertoire size are given. The p-values were adjusted for multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR, [40]). Significant p-values are highlighted in bold. Correlations with and without outlier species (*Gallus gallus, Melopsittacus undulatus* and *Taeniopygia guttata*) are displayed.

Family	Aves (n = 39)	Aves (n = 42)						
	Phylogenetically uncorrected r	Adjusted p-value	Phylogenetically corrected r	Adjusted p-value	Phylogenetically uncorrected r	Adjusted p-value	Phylogenetically corrected r	Adjusted p-value
OR 1/3/7	0.2261	0.1791	-0.1555	0.4019	0.1816	0.2496	-0.0788	0.6677
OR 2/13	0.4750	0.0045	0.4446	0.0206	0.3751	0.0267	-0.0878	0.6677
OR 4	0.3952	0.0179	0.4061	0.0206	0.3212	0.04845	0.32448	0.0841
OR 5/8/9	0.5556	0.0008	0.1830	0.3369	0.4410	0.0154	0.1958	0.3775
OR 6	0.6278	9.193e-05	0.4172	0.0206	0.6321	9.96e-05	0.5317	0.0041
OR 10	0.4762	0.0045	0.4113	0.0206	0.3815	0.0251	0.3631	0.0632
OR 11	0.5485	0.0009	0.5096	0.0129	0.4847	0.0080	0.4873	0.0074
OR 12	0.2094	0.2008	0.0180	0.9133	0.2625	0.1085	0.3875	0.0524
OR 14	0.3995	0.0179	0.2349	0.2624	0.2280	0.1578	-0.03695	0.8163
OR 51	0.4140	0.0154	0.1351	0.4438	0.3788	0.0251	0.1341	0.5156
OR 52	0.3267	0.0494	0.2069	0.3206	0.3561	0.0289	0.3392	0.0783
Alpha (Class I)	0.3868	0.0191	0.1943	0.3301	0.3668	0.0262	0.1595	0.4870
Gamma (Class II)	0.6267	9.193e-05	0.4133	0.0206	0.4208	0.0154	0.2474	0.2284
Total OR	0.6516	9.193e-05	0.4289	0.0206	0.4208	0.0154	0.1319	0.5156
Supplementary Table S3. Internal ancestral node estimates of OB ratios and OR gene repertoires using three different methods are displayed. All extant taxa, including alligator, is included. Information pertaining to what each ancestral node represents is also given. Node numbers correspond to Supplementary Figure 4.

Node description	Node	Olfactory bulb ratio	Olfactory receptor gene repertoire											
		ML	PIC	GLS	ML	PIC	GLS							
Alligator+Aves	1	32.09	25.49	25.49	488	497	497							
Palaeognathae+ Neognathae	2	32.15	19.22	24.84	470	365	483							
Galloanserae+ Strisosores+Columbaves+Neoaves (Neognathae)	3	30.52	19.19	23.8	349	353	355							
Columbaves+Neoaves	4	28.03	20.2	22.13	436	368	462							
Aequorlitornithes+Afroaves+Opisthocomus+Balearica (Neoaves)	5	24.59	20.04	21.4	418	429	430							
Aequornithes+Phaethon+Mirandornithes+Charadrius (Aequorlitornithes)	6	19.59	19.69	19.94	393	349	433							
Aequornithes+Phaethon	7	17.74	19.46	19.67	349	345	347							
Palaeognathae+Neoaves+Gavia (Aequornithes)	8	18.24	19.25	19.54	342	340	342							
Galliformes+Phalacrocorax+Neoaves+Gavia (Aequornithes)	9	18.75	18.9	19.34	364	350	411							
Pelecaniformes+Phalaenopterus	10	18.42	19.25	19.54	342	340	342							
Pelecaniformes+Phalaenopterus	11	17.43	16.83	17.52	325	327	330							
Pelecanus+Nipponia+Egretta (Pelecaniformes)	12	17.94	18.27	17.93	342	365	349							
Pelecanus+Nipponia	13	17.89	15.7	16.44	325	312	324							
Spheniscidae+Fulmarus (Austrodyptornithes)	14	21.64	21.33	20.98	365	359	393							
Aptenodytes+Pygocelis (Spheniscidae)	15	18.4	17	18.33	365	355	389							
Mirandornithes+Charadrius	16	20.6	20.1	20.09	366	359	367							
Podiceps+Phoenicopterus (Mirandornithes)	17	22.08	23.1	22.1	353	321	359							
Afroaves+Ostriches (Mirandornithes)	18	16.93	18.98	19.54	334	327	329							
Inopinaves+Coraciiformes+Tyto+Accipitriformes (Afroaves)	19	17.93	17.15	19.12	291	273	291							
Inopinaves+Coraciiformes+Tyto	20	22.2	14.45	17.08	311	319	341							
Psittacopasserae+Falco+Cariama (Inopinaves)	21	18.63	14.76	15.6	288	289	295							
Psittacopasserae+Falco	22	16.98	11.83	14.4	274	269	281							
Psittaciformes+Passeriformes (Psittacopasserae)	23	15.61	8.21	12.4	266	252	262							
Passeroidea+Corvus+Manacus+Acanthisitta (Passeriformes)	24	10.37	8.89	10.33	281	337	338							
Passeroidea+Corvus+Manacus	25	9.19	8.46	9.46	302	354	343							
Geospiza+Taeniopygia (Passeroidea)	26	8.32	7.69	8.5	295	307	332							
	27	9.13	9.7	9.3	358	362	359							
	29	30	31	32	33	34	35	36	37	38	39	40	41	42
-----------------------------	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
Melopsittacus+Nestor (Psittaciformes)	6.89	7.1	7.58	252	273	297								
Coraciimorphae+Tyto	15.84	13.96	14.32	286	301	299								
Picoides+Merops+Colius (Coraciimorphae)	15.37	11.16	12.62	319	347	325								
Picooides+Merops	13.7	12.25	12.37	400	435	398								
Haliaetus+Cathartes (Acciprimorphae)	21.65	22.59	22.37	337	351	357								
Haliaetus	19.19	18	19.46	361	363	363								
Strisores+Columbaves+Neoaves	29.36	20.04	22.82	347	341	348								
Mesitornis+Pterocles+Columba+Cuculus (Columbaves)	22.39	20.64	20.69	332	344	350								
Mesitornis+Pterocles+Columba	21.35	21.34	21.04	338	359	353								
Mesitornis+Pterocles	21.97	21.45	21.31	341	354	353								
Apodiformes+Antrostomus (Strisores)	19.31	19.57	19.65	348	351	352								
Chaetura+Calypte (Apodiformes)	17.46	16.4	17.48	340	338	342								
Galliformes+Anas (Galloanserae)	17.64	16.4	16.57	352	357	356								
Gallus+Meleagris (Galliformes)	15.96	14.45	15.16	379	411	385								
Tinamus+Struthio (Palaeognathae)	20.22	19.35	19.42	361	351	362								
Supplementary Table S4. Internal ancestral node estimates of OB ratios and OR gene repertoires for extant taxa, with anomalous species (*Gallus gallus, Taeniopygia guttata, Melopsittacus undulates*) removed. Information pertaining to what each ancestral node represents is also given. Node numbers correspond to Supplementary Figure 5.

Node description	Node	Olfactory bulb ratio	Olfactory receptor gene repertoire						
		ML	PIC	GLS	ML	PIC	GLS		
Gallus+Meleagris (Galliformes)	1	27.12	25.48	25.48	413	480	480		
Melopsittacus+Nestor (Psittaciformes)	2	25.66	19.21	24.82	399	344	466		
Geospiza+Taeniopygia (Passeroidea)	3	25.30	19.17	23.78	379	342	443		
Alligator+Aves	4	24.02	20.06	22.82	362	346	418		
Palaeognathae+ Neognathae	5	22.74	20.22	22.13	352	347	399		
Galloanserae+ Strisores+Columbaves+Neoaves (Neognathae)	6	20.97	20.07	21.41	351	354	383		
Strisores+Columbaves+Neoaves	7	21.01	19.33	21.20	351	349	380		
Columbaves+Neoaves	8	18.70	19.69	19.94	351	351	356		
Aequorlitornithes+Afroaves+Opisthocomus+Balearia (Neoaves)	9	18.36	19.46	19.67	346	344	349		
Aequorlitornithes+ Afroaves + Opisthocomus	10	17.72	19.25	19.54	351	359	352		
Aequornithes+Phaethon+Mirandornithes+Charadrius (Aequorlitornithes)	11	17.59	18.90	19.34	352	354	353		
Aequornithes+Phaethon	12	18.26	16.83	17.52	356	357	356		
Pelecaniformes+Phalacrocorax+Austrodyptornithes+Gavia (Aequornithes)	13	16.76	18.27	17.93	385	411	385		
Pelecaniformes+Phalacrocorax+Austrodyptornithes	14	15.34	15.70	16.44	364	351	362		
Pelecaniformes+Phalacrocorax	15	20.40	21.33	20.98	352	351	352		
Pelecanus+Nipponia+Egretta (Pelecaniformes)	16	18.42	17.00	18.33	342	338	342		
Pelecanus+Nipponia	17	20.15	20.10	20.09	363	363	363		
Spheniscidae +Fulmarus (Austrodyptornithes)	18	22.46	23.10	22.10	349	341	348		
Aptenodytes+Pygocelis (Spheniscidae)	19	23.54	19.04	19.60	356	347	355		
Mirandornithes+Charadrius	20	24.71	17.24	19.18	348	305	346		
Podiceps+Phoenicopterus (Mirandornithes)	21	23.79	14.59	17.17	321	294	323		
Afroaves+Opisthocomus	22	20.10	14.97	15.77	299	297	306		
Inopinaves+Coraciimorphae+Tyto+Accipitriformes (Afroaves)	23	16.88	12.09	14.62	295	298	304		
Inopinaves+Coraciimorphae+Tyto	24	13.62	8.50	12.69	275	225	279		
Psittacopasserae+Falco+Cariama (Inopinaves)	25	10.94	8.79	10.41	238	217	243		
Psittacopasserae+Falco	26	8.88	8.29	9.45	228	214	230		
Psittaciformes (Nestor)+Passeriformes (Psittacopasserae)	27	8.28	7.35	8.40	219	206	218		
Taxon	Node	R1	R2	R3	R4	R5	R6	R7	R8
--	------	-----	-----	-----	-----	-----	-----	-----	-----
Passeroidea + Corvus + Manacus + Acanthisitta (Passeriformes)	28	16.82	13.96	14.33	295	289	293		
Passeroidea + Corvus + Manacus	29	14.77	11.16	12.62	281	269	280		
Passeroidea (Geospiza) + Corvus	30	13.21	12.25	12.37	261	252	261		
Coraciiformes + Tyto	31	23.34	22.59	22.37	326	327	328		
Picoides + Merops + Colius (Coraciiformes)	32	19.74	18.00	19.46	289	273	291		
Picoides + Merops	33	21.46	20.64	20.69	328	327	330		
Haliaeetus + Cathartes (Accipitriformes)	34	20.79	21.34	21.04	349	365	349		
Haliaeetus	35	20.93	21.45	21.31	323	312	324		
Mesitornis + Pterocles + Columba + Cuculus (Columbaves)	36	19.86	19.57	19.65	346	345	347		
Mesitornis + Pterocles + Columba	37	17.37	16.40	17.48	342	340	342		
Mesitornis + Pterocles	38	15.94	16.25	16.45	329	329	332		
Apodiformes + Antrostomus (Strisores)	39	19.55	19.35	19.42	353	353	354		
Supplementary Table S5. Internal ancestral node repertoire estimates for both extant and extinct taxa using three different methods. Node labels corresponding to the phylogenies displayed in Supplementary Figures S6–S8 are also given.

Node label	ML	PIC	GLS
1	31.82	43.21	43.21
2	31.83	41.36	43.08
3	31.98	39.88	42.48
4	32.05	37.38	41.53
5	31.68	33.05	39.46
6	30.53	27.91	35.73
7	29.33	27.36	33.12
8	29.06	24.94	32.35
9	28.8	23.53	31.59
10	26.81	20.57	26.67
11	26.66	21.23	26.06
12	26.62	21.91	25.62
13	26.74	22.78	25.08
14	26.3	19.22	23.97
15	25.88	19.19	23.09
16	25.75	20.04	22.3
17	25.73	20.2	21.75
18	25.53	20.04	21.15
19	25.27	19.29	20.96
20	19.61	19.69	19.9
21	19.31	19.46	19.65
22	19.01	19.25	19.53
23	18.75	18.9	19.33
24	17.34	16.83	17.52
25	17.95	18.27	17.93
26	16.5	15.7	16.44
27	20.99	21.33	20.98
28	18.39	17	18.33
29	20.04	20.1	20.08
30	22.08	23.1	22.09
31	22.27	18.98	19.49
32	21.46	17.15	19.07
33	17.76	14.45	17.05
34	14.5	14.76	15.59
35	13.03	11.83	14.39
36	11.19	8.21	12.4
37	9.71	8.89	10.33
38	9.19	8.46	9.46
39	8.72	7.69	8.5
40	9.56	9.7	9.3
41	7.42	7.1	7.58
42	14.71	13.96	14.31
43	12.89	11.16	12.61
44	12.5	12.25	12.37
45	22.52	22.59	22.37
46	19.5	18	19.46
47	21.05	20.64	20.68
48	21.25	21.34	21.04
49	21.4	21.45	21.31
50	19.66	19.57	19.64
51	17.46	16.4	17.48
52	16.53	16.4	16.55
53	15.11	14.45	15.15
----	-------	-------	-------
54	19.44	19.35	19.41
55	36.97	37.1	36.96
56	18.3	18.2	18.28
57	34.81	34.47	34.37
58	35.09	35.18	34.69
59	36.92	38.06	37.05
60	36.06	35.85	36.25
61	32.07	31.65	32.08
62	30.26	30.34	30.45
63	30.8	31.3	30.91
64	30.53	30.4	30.57
65	52.9	53.45	53.12
66	59.83	68.33	59.88
67	67.8	69.75	67.78
68	65.58	66.9	65.5
69	53.61	54.87	54.64
70	55.48	57.39	56.12
71	56.32	56.85	56.61
72	50.65	50.7	50.6
73	52.04	52.65	51.97
74	48.02	48.06	48
75	46.12	45.1	46.07
Supplementary Table S6. Inferred repertoire sizes for extinct taxa using various PGLS models and using non-phylogenetically corrected linear regression. Mean OB ratios are indicated with ‘*’.

Models with and without the alligator are displayed.

Species	OB ratio	PGLS alligator+Aves, rep= 6.87*OB+305.20	PGLS Aves rep= 5.63*OB+236.38	PGLS alligator+Aves, rep= 6.61*OB+328.33	Linear Regression
		Outlier taxa removed	Outlier taxa removed	Outlier taxa removed	
Allosaurus fragilis	51.6	660.0319	526.7173	669.5696615	753.7345
Allosaurus fragilis	50	649.0294	517.7147	658.988481	735.1643
Allosaurus fragilis*	50.8	654.5306	522.2160	664.2790748	744.4494
Acrocanthosaurus atokensis	58.1	704.7297	563.2902	712.5556786	829.1758
Ceratotholosa saharicus	56	690.2889	551.4743	698.6678844	804.8025
Giganotosaurus carolinii	57.7	701.9791	561.0396	709.9130852	824.5333
Ceratosaurus magnicorns	48.1	635.9638	507.0242	646.4234464	713.1122
Majungasaurus crenatissimus	48.3	637.3392	508.1495	647.7459913	715.4335
Dilong paradoxus	27	490.8678	388.3028	506.88412	468.2182
Albertosaurus sarcophagus	71	793.4378	635.8734	797.8663893	978.8978
Gorgosaurus libratus	68.5	776.2463	621.8069	781.333059	949.8819
Tarbosaurus bataar	65.1	752.8659	602.6764	758.843812	910.4203
Tyrannosaurus rex	66.5	762.4931	610.5537	768.1068391	926.6692
Tyrannosaurus rex	71	793.4378	635.8734	797.8663893	978.8978
Tyrannosaurus rex*	68.7	777.6216	622.9322	782.659525	952.2032
Ornithomimus brevipes	28.8	503.2456	398.4307	518.7879401	489.1095
Dromiceiomimus breviterius	29.4	507.3716	401.8067	522.7558801	496.0733
Struthiomimus altus	32.5	528.689	419.2491	543.2569037	532.0532
Saurornitholestes langston i	34.8	544.5052	432.1903	558.4673405	530.4647
Bambiraptor feinbergi	28.5	501.1827	396.7427	516.803971	485.6276
Velociraptor mongoliensis	35.7	550.6941	437.2543	564.4192505	569.1934
Troodon formosus	33.2	533.5026	423.1878	547.886167	540.1775
Troodon formosus	33.5	535.5656	424.8757	549.870137	543.6594
Troodon formosus	32.6	529.3767	419.8118	543.918227	533.2137
Troodon formosus	33	532.1273	422.0624	546.5635204	537.8562
Troodon formosus*	33.1	532.815	422.6251	547.224837	539.0168
Archaeopteryx lithographica	17.1	422.7895	332.5994	441.413094	353.3151
Confuciusornis sanctus	17.9	428.2908	337.1007	446.703961	362.6002
Hesperornis regalis	15.3	410.4117	322.4715	429.509289	332.4236

Upper
Species	Weight (kg)	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Length (mm)	Width (mm)	Height (mm)	Weight (kg)	Length (mm)	Width (mm)	Height (mm)	Weight (kg)	Length (mm)	Width (mm)	Height (mm)
Hesperornis regalis	21.3	451.6712	356.2312	469.1886897	402.0618	151.2376	652.886									
Hesperornis regalis*	18.3	431.0414	339.3513	449.3489895	367.2427	116.9158	617.5697									
Ichthyornis dispar	18.1	429.6661	338.226	448.0263428	364.9214	114.5979	615.245									
Lithornis pleius	36.5	556.1954	441.7555	569.7098372	578.4785	312.7251	844.2318									
Lithornis promiscuus	37.7	564.4473	448.5075	577.5457173	592.4061	324.6515	860.1607									
Deinonychus antirrhopus	41	587.14	467.0753	599.4693875	630.7071	356.8918	904.5223									
Tsaagan mangus	36	552.7571	438.9422	566.4032206	572.6753	307.7228	837.6277									
Viavenator exxoni	57	697.1655	557.1009	705.2811218	816.4088	503.2184	1129.5992									
Erlikosaurus andrewsi	40	580.2635	461.4487	592.8561541	619.1007	347.2063	890.9951									
Euoplocephalus sp	52	662.7825	528.9679	672.2149549	758.377	459.0728	1057.6813									
Pawpawsaurus campbelli	46.2	622.8983	496.3336	633.8582012	691.0601	406.1437	975.9766									
Panoplosaurus mirus	44	607.7698	483.9551	619.3090877	665.5261	385.5273	945.525									
Supplementary Table S7. Representative reptilian OR genes used to find orthologous sequences in bird genomes, using 65% identity as a threshold.

Olfactory Receptor	Source
XM_006035034.1 PREDICTED: Alligator sinensis olfactory receptor 4E1	
XM_006039314.1 PREDICTED: Alligator sinensis olfactory receptor 52L1	
XM_006032220.2 PREDICTED: Alligator sinensis olfactory receptor 1052	
XM_006032219.1 PREDICTED: Alligator sinensis olfactory receptor 1052	
XM_014526796.1 PREDICTED: Alligator sinensis olfactory receptor 2AP1	
XM_006038492.1 PREDICTED: Alligator sinensis olfactory receptor 6B1	
XM_014527740.1 PREDICTED: Alligator sinensis olfactory receptor 6C75	
XM_006038961.2 PREDICTED: Alligator sinensis olfactory receptor 10A2	
XM_014527570.1 PREDICTED: Alligator sinensis olfactory receptor 6F1	
XM_006035991.2 PREDICTED: Alligator sinensis olfactory receptor 10A5	
XM_014527671.1 PREDICTED: Alligator sinensis olfactory receptor 10A3	
XM_006034106.2 PREDICTED: Alligator sinensis olfactory receptor 6	
XM_006039013.2 PREDICTED: Alligator sinensis olfactory receptor 14A16	
XM_006034107.1 PREDICTED: Alligator sinensis olfactory receptor 12	
XM_006035018.1 PREDICTED: Alligator sinensis olfactory receptor 4E1	
XM_006033996.1 PREDICTED: Alligator sinensis olfactory receptor 51G2	
XM_006036778.1 PREDICTED: Alligator sinensis olfactory receptor 1020	
XM_006032087.1 PREDICTED: Alligator sinensis olfactory receptor 52R1	
XM_014523915.1 PREDICTED: Alligator sinensis olfactory receptor 10A7	
XM_006037936.1 PREDICTED: Alligator sinensis olfactory receptor 51G2	
XM_006036778.1 PREDICTED: Alligator sinensis olfactory receptor 1020	
XM_014523915.1 PREDICTED: Alligator sinensis olfactory receptor 51G2	
XM_006032221.2 PREDICTED: Alligator sinensis olfactory receptor COR8	
XM_014523977.1 PREDICTED: Alligator sinensis olfactory receptor 1019	
XM_014526594.1 PREDICTED: Alligator sinensis olfactory receptor 52A5	
XM_006032247.1 PREDICTED: Alligator sinensis olfactory receptor 1009	
XM_006032247.1 PREDICTED: Alligator sinensis olfactory receptor 1009	
XM_006039174.1 PREDICTED: Alligator sinensis olfactory receptor 4D9	
XM_006034999.1 PREDICTED: Alligator sinensis olfactory receptor 49	
XM_006031590.2 PREDICTED: Alligator sinensis olfactory receptor 1052	
XM_014527682.1 PREDICTED: Alligator sinensis olfactory receptor 6F1	

RefSeq [6]
Accession	Description
XM_006032090.2	Predicted: Alligator sinensis olfactory receptor 51G2
XM_006039094.1	Predicted: Alligator sinensis olfactory receptor 12D3
XM_014524214.1	Predicted: Alligator sinensis olfactory receptor 10R2
XM_006039141.1	Predicted: Alligator sinensis olfactory receptor 6X1
XM_006032222.1	Predicted: Alligator sinensis olfactory receptor 1052
XM_006032242.1	Predicted: Alligator sinensis olfactory receptor 1013
XM_006034789.1	Predicted: Alligator sinensis olfactory receptor 1019
XM_006039298.1	Predicted: Alligator sinensis olfactory receptor 12D2
XM_014525901.1	Predicted: Alligator sinensis olfactory receptor 1019
XM_014526945.1	Predicted: Alligator sinensis olfactory receptor 10A7
XM_006033958.1	Predicted: Alligator sinensis olfactory receptor 4S2
XM_006036686.1	Predicted: Alligator sinensis olfactory receptor 2AT4
XM_006037243.2	Predicted: Alligator sinensis olfactory receptor 6X1
XM_014527719.1	Predicted: Alligator sinensis olfactory receptor 14D9
XM_014527787.1	Predicted: Alligator sinensis olfactory receptor 52R1
XM_006039137.2	Predicted: Alligator sinensis olfactory receptor 5V1
XM_006035034.1	Predicted: Alligator sinensis olfactory receptor 4E1
XM_014604867.2	Predicted: Alligator mississippiensis olfactory receptor COR4
XM_019478665.1	Predicted: Alligator mississippiensis olfactory receptor 9G4
XM_019488518.1	Predicted: Alligator mississippiensis olfactory receptor 2A12
XM_014597746.1	Predicted: Alligator mississippiensis olfactory receptor 11A1
XM_006269294.2	Predicted: Alligator mississippiensis olfactory receptor 1009
XM_014611427.1	Predicted: Alligator mississippiensis olfactory receptor 49
XM_019499955.1	Predicted: Alligator mississippiensis olfactory receptor 10AC1
XM_006278564.2	Predicted: Alligator mississippiensis olfactory receptor 2A5
XM_006274969.2	Predicted: Alligator mississippiensis olfactory receptor 10T2
XM_014594828.1	Predicted: Alligator mississippiensis olfactory receptor 10A4
XM_014597745.1	Predicted: Alligator mississippiensis olfactory receptor 1440
XM_019482376.1	Predicted: Alligator mississippiensis olfactory receptor 52A5
XM_006260764.3	Predicted: Alligator mississippiensis olfactory receptor 1052
XM_006269293.1	Predicted: Alligator mississippiensis olfactory receptor 11A1
XM_006271899.2	Predicted: Alligator mississippiensis olfactory receptor 10H1
XM_006262992.2	Predicted: Alligator mississippiensis olfactory receptor 51G2
XM_006267750.2	Predicted: Alligator mississippiensis olfactory receptor 2G3
XM_006268318.2	Predicted: Alligator mississippiensis olfactory receptor 10C1
XM_014609974.2	Predicted: Alligator mississippiensis olfactory receptor 4N2
XM_019489818.1	Predicted: Alligator mississippiensis olfactory receptor 6F1
XM_006262994.2	Predicted: Alligator mississippiensis olfactory receptor 51Q1
XM_014597747.1	Predicted: Alligator mississippiensis olfactory receptor 6A2
XM_014611430.1	Predicted: Alligator mississippiensis olfactory receptor 6M1
XM_014989814.1	Predicted: Alligator mississippiensis olfactory receptor 6B1
XM_006258018.2	Predicted: Alligator mississippiensis olfactory receptor 10C1
XM_006262993.2	Predicted: Alligator mississippiensis olfactory receptor 51C2
XM_006263697.2	Predicted: Alligator mississippiensis olfactory receptor 51C2
XM_006268307.3	Predicted: Alligator mississippiensis olfactory receptor 10A4
XM_006263040.1	Predicted: Alligator mississippiensis olfactory receptor 1038
XM_006259095.1	Predicted: Alligator mississippiensis olfactory receptor 4D9
XM_006260759.1	Predicted: Alligator mississippiensis olfactory receptor 1019
XM_006267538.1	Predicted: Alligator mississippiensis olfactory receptor 1019
XM_006268320.1	Predicted: Alligator mississippiensis olfactory receptor 10A7
XM_014595168.1	Predicted: Alligator mississippiensis olfactory receptor 2A12
XM_006278509.1	Predicted: Alligator mississippiensis olfactory receptor 4N5
XM_014594485.1	Predicted: Alligator mississippiensis olfactory receptor 4S2
XM_006263191.1	Predicted: Alligator mississippiensis olfactory receptor 10C1
XM_006265550.1	Predicted: Alligator mississippiensis olfactory receptor 4S2

RefSeq [7]
XM_006278498.1	PREDICTED: Alligator mississippiensis olfactory receptor 4S2
XM_006278500.2	PREDICTED: Alligator mississippiensis olfactory receptor 4S2
XM_019486358.1	PREDICTED: Alligator mississippiensis olfactory receptor 12D1
XM_019496768.1	PREDICTED: Alligator mississippiensis olfactory receptor 4S2
XM_019496752.1	PREDICTED: Alligator mississippiensis olfactory receptor 4S2
XM_005311793.2	PREDICTED: Chrysemys picta bellii olfactory receptor 51G2
XM_008175041.1	PREDICTED: Chrysemys picta bellii olfactory receptor 4D5
XM_008176388.1	PREDICTED: Chrysemys picta bellii olfactory receptor 14A16
XM_008175031.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1
XM_005302244.2	PREDICTED: Chrysemys picta bellii olfactory receptor 1468
XM_008174413.1	PREDICTED: Chrysemys picta bellii olfactory receptor 1411
XM_005289441.2	PREDICTED: Chrysemys picta bellii olfactory receptor 2AT4
XM_008175033.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4
XM_005309234.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1
XM_008175027.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5
XM_005314359.1	PREDICTED: Chrysemys picta bellii olfactory receptor 52E4
XM_008178121.1	PREDICTED: Chrysemys picta bellii olfactory receptor 1019
XM_008174412.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1
XM_008168738.1	PREDICTED: Chrysemys picta bellii olfactory receptor 14A16
XM_005310841.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1
XM_005310413.1	PREDICTED: Chrysemys picta bellii olfactory receptor 12D2
XM_008175572.1	PREDICTED: Chrysemys picta bellii olfactory receptor 51G2
XM_005309056.2	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1
XM_008177588.1	PREDICTED: Chrysemys picta bellii olfactory receptor 52B2
XM_008175561.1	PREDICTED: Chrysemys picta bellii olfactory receptor 51G2
XM_005313796.2	PREDICTED: Chrysemys picta bellii olfactory receptor 6C75
XM_008174336.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1
XM_008174338.1	PREDICTED: Chrysemys picta bellii olfactory receptor 12D2
XM_005310393.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1
XM_005310272.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1
XM_005310408.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1
XM_008171713.1	PREDICTED: Chrysemys picta bellii olfactory receptor 1019
XM_005310400.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A7
XM_005310439.2	PREDICTED: Chrysemys picta bellii olfactory receptor 14A16
XM_008174340.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1
XM_005290045.2	PREDICTED: Chrysemys picta bellii olfactory receptor 12
XM_008175036.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1
XM_008176638.1	PREDICTED: Chrysemys picta bellii olfactory receptor 4Q2
XM_005309255.1	PREDICTED: Chrysemys picta bellii olfactory receptor 51G2
XM_005310292.2	PREDICTED: Chrysemys picta bellii olfactory receptor 14A16
XM_005310406.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A7
XM_005314585.2	PREDICTED: Chrysemys picta bellii olfactory receptor 14A16
XM_005309641.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A7
XM_005314320.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1
XM_005311899.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1
XM_005290011.1	PREDICTED: Chrysemys picta bellii olfactory receptor 52B2
XM_005309431.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6P1
XM_00530955.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1

RefSeq [5]
XM	Accession Number	Description
XM_005310422.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_008174332.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	
XM_008177992.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A7	
XM_005309019.1	PREDICTED: Chrysemys picta bellii olfactory receptor 1020	
XM_005313885.1	PREDICTED: Chrysemys picta bellii olfactory receptor 52K2	
XM_005310280.2	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_008174321.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005309024.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10C1	
XM_005311817.2	PREDICTED: Chrysemys picta bellii olfactory receptor 51G2	
XM_005312282.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005290052.1	PREDICTED: Chrysemys picta bellii olfactory receptor 51G2	
XM_005313793.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6C4	
XM_005284256.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005313793.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6C4	
XM_005284256.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005313793.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6C4	
XM_005284256.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005314254.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1	
XM_005312282.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005309010.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005313793.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6C4	
XM_005284256.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_005313793.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6C4	
XM_005284256.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005290036.2	PREDICTED: Chrysemys picta bellii olfactory receptor 52B2	
XM_008177901.1	PREDICTED: Chrysemys picta bellii olfactory receptor 51E2	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005310433.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005314254.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1	
XM_005312282.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005310433.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005314254.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1	
XM_005312282.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005310433.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005314254.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1	
XM_005312282.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005310433.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005312401.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6F1	
XM_008177186.1	PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	
XM_005314254.1	PREDICTED: Chrysemys picta bellii olfactory receptor 11A1	
XM_005312282.1	PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	
XM_005309014.1	PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	
XM_005310433.1	C89	Pm066
XM_005310433.1	C89	Pm091
XM_005310433.1	C89	Pm010
XM_005310433.1	C89	Pm120
XM_005310433.1	C89	Pm047
XM_005310433.1	C89	Pm068
XM_005310433.1	C89	Pm020
XM_005310433.1	C89	Pm046
XM_005310433.1	C89	Pm055
XM_005310433.1	C89	Pm136
XM_005310433.1	C89	Pm045
XM_005310433.1	C89	Pm148
XM_005310433.1	C89	Pm070
XM_005310433.1	C89	Pm119
XM_005310433.1	C89	Pm014
XM_005310433.1	C89	Pm053
XM_005310433.1	C89	Pm030
XM_005310433.1	C89	Pm036
XM_005310433.1	C89	Pm049
XM_005310433.1	C89	Pm088
Pm115		
-------	--------	--------
Pm005		
Pm132		
Pm057		
Pm123		
Pm004		
Pm096		
Pm023		
Pm054		
Pm155	P	
Pm171	T	
Pm207	T	
Pm213	T	
Pm223	T	
Pm222	T	
Pm209	T	
Pm248	T	
Pm250	T	
Pm271	T	
Pm275	T	
Pm277	T	
Pm184	T	
Pm195	T	
Pm188	T	
Pm243	T	
Pm219	T	
Pm279	T	
Pm178	T	
Pm252	T	
Pm204	T	
Ac93		
Ac89		
Ac75		
Ac109		
Ac110		
Ac52		
Ac98		
Ac106		
Ac131		
Ac59		
Ac3		
Ac91		
Ac125		
Ac112		
Ac119		
Ac44		
Ac103		
Ac27		
Ac20		
Ac37		
Ac87		
Ac81		
Supplementary Table S8. Query reptilian OR genes were used to find orthologs in birds with 65% shared amino acid identity. The query, orthologs, sequence lengths and shared identities for all sequences used are displayed.

Query Reptile sequence	Length (amino acids)	Bird orthologs	Shared amino acids	Bird OR length	% identity	
XM_006035034.1 PREDICTED: Alligator sinensis olfactory receptor 4E1	377	Struthio camelus OR4	207	300	69%	
XM_006039314.1 PREDICTED: Alligator sinensis olfactory receptor 52L1	229	Struthio camelus OR52	130	178	73%	
XM_006032220.2 PREDICTED: Alligator sinensis olfactory receptor 1052	375	Anas platyrhynchos OR5	221	305	72%	
XM_006032219.1 PREDICTED: Alligator sinensis olfactory receptor 1052	370	Anas platyrhynchos OR5	201	305	66%	
XM_014526796.1 PREDICTED: Alligator sinensis olfactory receptor 2AP1	367	Aptenodytes forsteri OR10	200	307	65%	
XM_006038492.1 PREDICTED: Alligator sinensis olfactory receptor 6B1	364	Cathartes aura OR6	249	307	81%	
XM_014527740.1 PREDICTED: Alligator sinensis olfactory receptor 6C75	360	Fulmarus glacialis OR6	210	300	70%	
XM_006038961.2 PREDICTED: Alligator sinensis olfactory receptor 10A2	562	Pterocles gutturalis OR10	212	294	72%	
XM_014527570.1 PREDICTED: Alligator sinensis olfactory receptor 6F1	355	Nestor notabilis OR6	212	306	69%	
XM_006035991.2 PREDICTED: Alligator sinensis olfactory receptor 10A5	348	Tinamus guttatus OR10	184	270	68%	
XM_014527671.1 PREDICTED: Alligator sinensis olfactory receptor 10A3	346	Charadrius vociferus OR10	189	270	70%	
XM_006034106.2 PREDICTED: Alligator sinensis olfactory receptor 6	344	Antrostomus carolinensis OR6 Pseudogene	139	215	65%	
XM_006039013.2 PREDICTED: Alligator sinensis olfactory receptor 14A16	344	Nipponia nippon OR14	200	307	65%	
XM_006034107.1 PREDICTED: Alligator sinensis olfactory receptor 12	342	Balearica regulorum OR14	223	308	72%	
XM_006035018.1 PREDICTED: Alligator sinensis olfactory receptor 6C4	342	Charadrius vociferus OR6	217	308	70%	
XM_006036718.1 PREDICTED: Alligator sinensis olfactory receptor 52B2	342	Meleagris gallopavo OR52	213	304	70%	
XM_006032241.2 PREDICTED: Alligator sinensis olfactory receptor 2G3	337	Cathartes aura OR13	228	309	74%	
XM_006031572.2 PREDICTED: Alligator sinensis olfactory receptor 5B21	510	Phoenicopterus ruber OR13	197	304	65%	
XM_006032244.1 PREDICTED: Alligator sinensis olfactory receptor 1052	336	Charadrius vociferus OR5	208	311	67%	
XM_014524909.1 PREDICTED: Alligator sinensis olfactory receptor 6P1	336	Aptenodytes forsteri OR5	187	273	68%	
XM_006035017.1 PREDICTED: Alligator sinensis olfactory receptor 6C4	334	Nipponia nippon OR6	205	300	68%	
XM_006032228.2 PREDICTED: Alligator sinensis olfactory receptor 5AR1	333	Cathartes aura OR5	241	313	77%	
XM_006036717.1 PREDICTED: Alligator sinensis olfactory receptor 52D1	333	Struthio camelus OR52	217	303	72%	
XM_006032217.1 PREDICTED: Alligator sinensis olfactory receptor 1019	332	Fulmarus glacialis OR5	221	307	72%	
XM_014526923.1 PREDICTED: Alligator sinensis olfactory receptor 51Q1	330	Columba livia OR51	203	305	67%	
XM_006037936.1 PREDICTED: Alligator sinensis olfactory receptor 51G2	328	Tinamus guttatus OR51	171	225	76%	
XM_006036778.1 PREDICTED: Alligator sinensis olfactory receptor 1020	477	Phaeton leptopus OR10	209	313	67%	
XM_006032087.1 PREDICTED: Alligator sinensis olfactory receptor 52R1	325	Gavia stellata OR52	224	308	73%	
XM_014523915.1 PREDICTED: Alligator sinensis olfactory receptor 51S1	325	Struthio camelus OR51 Pseudogene	142	200	71%	
XM_006032091.1 PREDICTED: Alligator sinensis olfactory receptor 51L1	324	Struthio camelus OR51	195	298	65%	
XM_006035000.1 PREDICTED: Alligator sinensis olfactory receptor 4E1	459	Struthio camelus OR4	243	301	81%	
XM_006039093.1 PREDICTED: Alligator sinensis olfactory receptor 12D2	322	Cariama cristata OR12	230	309	74%	
XM_014524856.1 PREDICTED: Alligator sinensis olfactory receptor 4S2	321	Phaeton leptopus OR4	201	309	65%	
Accession	Species	Start	Stop	Identity		
-----------	-------------------------------	-------	------	------------		
XM_006036061.1	Alligator sinensis olfactory receptor 4S2	320	392	68%		
XM_006037726.1	Alligator sinensis olfactory receptor 4N2	320	392	71%		
XM_006038500.1	Alligator sinensis olfactory receptor 6F1	433	505	66%		
XM_006032092.1	Alligator sinensis olfactory receptor 51E2	319	391	76%		
XM_006033957.1	Alligator sinensis olfactory receptor 4S2	319	391	74%		
XM_006034122.1	Alligator sinensis olfactory receptor 6N1	319	391	84%		
XM_014526782.1	Alligator sinensis olfactory receptor 10T2	430	502	70%		
XM_006032221.2	Alligator sinensis olfactory receptor COR8	318	390	73%		
XM_006034790.2	Alligator sinensis olfactory receptor COR4	318	390	70%		
XM_014523649.1	Alligator sinensis olfactory receptor 10A7	318	390	66%		
XM_014523977.1	Alligator sinensis olfactory receptor 1019	318	390	65%		
XM_014526594.1	Alligator sinensis olfactory receptor 52A5	318	390	67%		
XM_006032247.1	Alligator sinensis olfactory receptor 1009	317	389	66%		
XM_006032098.2	Alligator sinensis olfactory receptor 2A5	316	388	79%		
XM_006039254.1	Alligator sinensis olfactory receptor 10A7	421	503	65%		
XM_006031595.1	Alligator sinensis olfactory receptor 6M1	316	388	66%		
XM_006039174.1	Alligator sinensis olfactory receptor 4D9	316	388	66%		
XM_006034999.1	Alligator sinensis olfactory receptor 49	316	388	70%		
XM_006031590.2	Alligator sinensis olfactory receptor 1052	316	388	67%		
XM_014527682.1	Alligator sinensis olfactory receptor 6F1	315	387	73%		
XM_006032090.2	Alligator sinensis olfactory receptor 51G2	314	386	82%		
XM_006039094.1	Alligator sinensis olfactory receptor 12D3	314	386	73%		
XM_014524214.1	Alligator sinensis olfactory receptor 10R2	314	386	71%		
XM_006039141.1	Alligator sinensis olfactory receptor 6X1	409	491	66%		
XM_006032222.1	Alligator sinensis olfactory receptor 1052	313	385	72%		
XM_006032222.1	Alligator sinensis olfactory receptor 1013	313	385	71%		
XM_006034789.1	Alligator sinensis olfactory receptor 1019	313	385	70%		
XM_006039298.1	Alligator sinensis olfactory receptor 12D2	313	385	68%		
XM_014525901.1	Alligator sinensis olfactory receptor 1019	313	385	75%		
XM_014526945.1	Alligator sinensis olfactory receptor 10A7	313	385	74%		
XM_006033958.1	Alligator sinensis olfactory receptor 4S2	403	485	84%		
XM_014527719.1	Alligator sinensis olfactory receptor 4D9	400	482	67%		
XM_006036686.1	Alligator sinensis olfactory receptor 2AT4	396	478	74%		
XM_006037243.2	Alligator sinensis olfactory receptor 6X1	311	393	70%		
XM_014526109.1	Alligator sinensis olfactory receptor 14A16	307	389	66%		
XM_006036787.1	Alligator sinensis olfactory receptor 6F1	298	380	65%		
XM_014527787.1	Alligator sinensis olfactory receptor 52R1	277	359	73%		
XM_006039137.2	Alligator sinensis olfactory receptor 5V1	261	343	65%		
XM 006035034.1 PREDICTED: Alligator sinensis olfactory receptor 4E1	377	Struthio camelus OR4	207	300	69%	
XM 014604867.2 PREDICTED: Alligator mississippiensis olfactory receptor COR4	334	Gallus gallus OR5	201	305	66%	
XM 019478665.1 PREDICTED: Alligator mississippiensis olfactory receptor 9G4	160	Phoenicopterus ruber OR6	68	93	73%	
XM 019488518.1 PREDICTED: Alligator mississippiensis olfactory receptor 2A12	363	Fulmarus glacialis OR2	200	305	66%	
XM 014597746.1 PREDICTED: Alligator mississippiensis olfactory receptor 11A1	357	Phoenicopterus ruber OR6	205	306	67%	
XM 006269294.2 PREDICTED: Alligator mississippiensis olfactory receptor 1009	353	Nipponia nippon OR5	200	310	65%	
XM 014611427.1 PREDICTED: Alligator mississippiensis olfactory receptor 49	331	Fulmarus glacialis OR6	215	324	66%	
XM 019499955.1 PREDICTED: Alligator mississippiensis olfactory receptor 10AC1	331	Podiceps cristatus OR10	245	326	75%	
XM 006278564.2 PREDICTED: Alligator mississippiensis olfactory receptor 2A5	328	Charadrius vociferus OR2	205	306	67%	
XM 006274969.2 PREDICTED: Alligator mississippiensis olfactory receptor 10T2	326	Charadrius vociferus OR10	229	303	76%	
XM 006274969.2 PREDICTED: Alligator mississippiensis olfactory receptor 10T2	326	Charadrius vociferus OR10	229	303	76%	
XM 014594828.1 PREDICTED: Alligator mississippiensis olfactory receptor 10A4	326	Charadrius vociferus OR10	216	308	70%	
XM 014597745.1 PREDICTED: Alligator mississippiensis olfactory receptor 1440	325	Phoenicopterus ruber OR10	164	247	66%	
XM 019482376.1 PREDICTED: Alligator mississippiensis olfactory receptor 52A5	469	Struthio camelus OR52	195	279	70%	
XM 006260764.3 PREDICTED: Alligator mississippiensis olfactory receptor 1052	324	Anas platyrhynchos OR5	205	305	66%	
XM 006269293.1 PREDICTED: Alligator mississippiensis olfactory receptor 11A1	324	Fulmarus glacialis OR10	146	226	65%	
XM 006271879.2 PREDICTED: Alligator mississippiensis olfactory receptor 10H1	324	Haliaeetus leucocephalus OR10	200	308	65%	
XM 006269922.2 PREDICTED: Alligator mississippiensis olfactory receptor 51G2	322	Tinamus guttatus OR51	231	318	73%	
XM 006267750.2 PREDICTED: Alligator mississippiensis olfactory receptor 2G3	321	Melopsittacus undulatus OR10	197	303	65%	
XM 006268318.2 PREDICTED: Alligator mississippiensis olfactory receptor 10C1	321	Cathartes aura OR10	237	316	75%	
XM 014609974.2 PREDICTED: Alligator mississippiensis olfactory receptor 4N2	320	Cathartes aura OR4	235	312	75%	
XM 019489818.1 PREDICTED: Alligator mississippiensis olfactory receptor 6F1	320	Aptenodytes forsteri OR4	208	303	69%	
XM 006262994.2 PREDICTED: Alligator mississippiensis olfactory receptor 51Q1	318	Columba livia OR51	226	303	75%	
XM 014597747.1 PREDICTED: Alligator mississippiensis olfactory receptor 6A2	318	Nipponia nippon OR6	209	318	66%	
XM 014611430.1 PREDICTED: Alligator mississippiensis olfactory receptor 6M1	318	Pygoscelis adeliae OR6	227	313	73%	
XM 019489814.1 PREDICTED: Alligator mississippiensis olfactory receptor 6B1	318	Fulmarus glacialis OR10	148	227	65%	
XM 006258018.2 PREDICTED: Alligator mississippiensis olfactory receptor 4M1	315	Pterocles gutturalis OR4	215	309	70%	
XM 006262993.2 PREDICTED: Alligator mississippiensis olfactory receptor 51I2	315	Struthio camelus OR51	242	309	78%	
XM 006263697.2 PREDICTED: Alligator mississippiensis olfactory receptor 51I2	315	Struthio camelus OR51	214	309	69%	
XM 006268307.3 PREDICTED: Alligator mississippiensis olfactory receptor 10A4	315	Tinamus guttatus OR10	189	270	70%	
XM 006263040.1 PREDICTED: Alligator mississippiensis olfactory receptor 1038	314	Struthio camelus OR5	234	307	76%	
XM 006259095.1 PREDICTED: Alligator mississippiensis olfactory receptor 4D9	313	Gavia stellata OR4	203	312	65%	
XM 006260759.1 PREDICTED: Alligator mississippiensis olfactory receptor 1019	310	Fulmarus glacialis OR5	221	307	72%	
XM 006260759.1 PREDICTED: Alligator mississippiensis olfactory receptor 1019	313	Fulmarus glacialis OR5	220	305	72%	
XM 006267538.1 PREDICTED: Alligator mississippiensis olfactory receptor 1019	313	Struthio camelus OR5	224	310	72%	
XM 006268320.1 PREDICTED: Alligator mississippiensis olfactory receptor 10A7	313	Tinamus guttatus OR10	213	303	70%	
XM 014595168.1 PREDICTED: Alligator mississippiensis olfactory receptor 2A12	313	Nipponia nippon OR2	212	313	68%	
XM 006278509.1 PREDICTED: Alligator mississippiensis olfactory receptor 4N5	312	Pygoscelis adeliae OR4	207	304	68%	
Accession	Description	Confidence	Specificity			
-------------	--	------------	-------------			
XM_014594485.1	Alligator mississippiensis olfactory receptor 4S2	312	70%			
XM_006268319.1	Alligator mississippiensis olfactory receptor 10C1	311	72%			
XM_006265550.1	Alligator mississippiensis olfactory receptor 4S2	310	71%			
XM_006278498.1	Alligator mississippiensis olfactory receptor 4S2	310	73%			
XM_006278500.2	Alligator mississippiensis olfactory receptor 4S2	310	75%			
XM_019486358.1	Alligator mississippiensis olfactory receptor 12D1	308	66%			
XM_019496768.1	Alligator mississippiensis olfactory receptor 4S2	302	65%			
XM_019496762.1	Alligator mississippiensis olfactory receptor 4S2	292	75%			
XM_005311793.2	Chrysemys picta bellii olfactory receptor 51G2	596	74%			
XM_008175041.1	Chrysemys picta bellii olfactory receptor 4D5	229	68%			
XM_008176388.1	Chrysemys picta bellii olfactory receptor 14A16	226	65%			
XM_008175039.1	Chrysemys picta bellii olfactory receptor 6F1	376	68%			
XM_008175031.1	Chrysemys picta bellii olfactory receptor 6B1	201	65%			
XM_005309244.2	Chrysemys picta bellii olfactory receptor 1468	199	66%			
XM_008174413.1	Chrysemys picta bellii olfactory receptor 14I	188	70%			
XM_005289441.2	Chrysemys picta bellii olfactory receptor 2A14	372	81%			
XM_008175033.1	Chrysemys picta bellii olfactory receptor 10A4	175	71%			
XM_005309234.1	Chrysemys picta bellii olfactory receptor 6B1	169	69%			
XM_008175027.1	Chrysemys picta bellii olfactory receptor 5	169	69%			
XM_005314359.1	Chrysemys picta bellii olfactory receptor 52E4	108	66%			
XM_008178121.1	Chrysemys picta bellii olfactory receptor 1019	584	74%			
XM_008174412.1	Chrysemys picta bellii olfactory receptor 4D2	360	71%			
XM_008168738.1	Chrysemys picta bellii olfactory receptor 14A16	356	67%			
XM_005310841.1	Chrysemys picta bellii olfactory receptor 5V1	356	68%			
XM_005310413.1	Chrysemys picta bellii olfactory receptor 12D2	355	72%			
XM_008168730.1	Chrysemys picta bellii olfactory receptor 14A16	355	65%			
XM_008178018.1	Chrysemys picta bellii olfactory receptor 52K1	543	75%			
XM_008175965.1	Chrysemys picta bellii olfactory receptor 1009	351	66%			
XM_005311801.1	Chrysemys picta bellii olfactory receptor 51G2	538	74%			
XM_008177963.1	Chrysemys picta bellii olfactory receptor 1019	348	68%			
XM_005312774.1	Chrysemys picta bellii olfactory receptor 4N2	528	73%			
XM_008175572.1	Chrysemys picta bellii olfactory receptor 51G2	346	69%			
XM_005309056.2	Chrysemys picta bellii olfactory receptor 6B1	345	65%			
XM_008177588.1	Chrysemys picta bellii olfactory receptor 52B2	345	79%			
XM_008175561.1	Chrysemys picta bellii olfactory receptor 51G2	517	73%			
XM_005313796.2	Chrysemys picta bellii olfactory receptor 6C75	341	67%			
XM_008174336.1	Chrysemys picta bellii olfactory receptor 6N1	339	66%			
XM_008174338.1	Chrysemys picta bellii olfactory receptor 12D2	338	70%			
Accession	Predicted	Species	OR10	OR14	OR51	
--------------	----------------------	--------------------------------	-------	-------	-------	
XM_005310393.1	Chrysemys picta bellii olfactory receptor 6N1	Phaeon lepturus	204	310	66%	
XM_005310272.1	Chrysemys picta bellii olfactory receptor 11A1	Haliaeetus leucocephalus	211	320	66%	
XM_005310292.2	Chrysemys picta bellii olfactory receptor 14A16	Tinamus guttatus	189	292	65%	
XM_005310408.1	Chrysemys picta bellii olfactory receptor 6B1	Opisthocomus hoazin	239	315	76%	
XM_008171713.1	Chrysemys picta bellii olfactory receptor 1019	Cathartes aura	209	307	68%	
XM_005310401.1	Chrysemys picta bellii olfactory receptor 10C1	Cathartes aura	210	309	68%	
XM_008177751.1	Chrysemys picta bellii olfactory receptor 11A1	Charadrius vociferus	201	310	65%	
XM_005309045.2	Chrysemys picta bellii olfactory receptor 12	Baleafrica regulorum	222	306	73%	
XM_008175036.1	Chrysemys picta bellii olfactory receptor 6B1	Fulmarus glacialis	229	312	73%	
XM_008176638.1	Chrysemys picta bellii olfactory receptor 4Q2	Nester notabilis	193	297	65%	
XM_005309255.1	Chrysemys picta bellii olfactory receptor 6F1	Cathartes aura	203	307	66%	
XM_005310439.2	Chrysemys picta bellii olfactory receptor 14A16	Gavia stellata	157	242	65%	
XM_008174340.1	Chrysemys picta bellii olfactory receptor 11A1	Phoenicopterus ruber	209	309	68%	
XM_005290034.1	Chrysemys picta bellii olfactory receptor 52B2	Anas platyrhynchos	272	323	84%	
XM_005310406.1	Chrysemys picta bellii olfactory receptor 10A7	Pelecanus crispus	206	303	68%	
XM_005314585.2	Chrysemys picta bellii olfactory receptor 14A16	Columba livia	195	290	67%	
XM_005309064.1	Chrysemys picta bellii olfactory receptor 10AG1	Baleafrica regulorum	198	305	65%	
XM_005313202.1	Chrysemys picta bellii olfactory receptor 11A1	Fulmarus glacialis	148	227	65%	
XM_005311899.1	Chrysemys picta bellii olfactory receptor 6N1	Phoenicopterus ruber	207	309	67%	
XM_005290011.1	Chrysemys picta bellii olfactory receptor 52B2	Phaethon lepturus	203	305	67%	
XM_005309043.1	Chrysemys picta bellii olfactory receptor 6P1	Opisthocomus hoazin	200	310	65%	
XM_005309055.1	Chrysemys picta bellii olfactory receptor 6B1	Podiceps cristatus	164	249	66%	
XM_005310422.1	Chrysemys picta bellii olfactory receptor 6N1	Aptenodytes forsteri	197	303	65%	
XM_008174332.1	Chrysemys picta bellii olfactory receptor 6B1	Phoenicopterus ruber	203	312	65%	
XM_008177992.1	Chrysemys picta bellii olfactory receptor 10A7	Phoenicopterus ruber	202	306	66%	
XM_005309019.1	Chrysemys picta bellii olfactory receptor 1020	Aptenodytes forsteri	224	314	71%	
XM_005313885.1	Chrysemys picta bellii olfactory receptor 52K2	Cathartes aura	233	316	74%	
XM_005310280.2	Chrysemys picta bellii olfactory receptor 6F1	Mesitornis unicolor	229	304	75%	
XM_008174321.1	Chrysemys picta bellii olfactory receptor 6N1	Phoenicopterus ruber	230	246	65%	
XM_005309024.1	Chrysemys picta bellii olfactory receptor 10C1	Gavia stellata	242	310	78%	
XM_005311817.2	Chrysemys picta bellii olfactory receptor 51G2	Struthio camelus	235	295	80%	
XM_005312282.1	Chrysemys picta bellii olfactory receptor 5V1	Charadrius vociferus	235	316	74%	
XM_005290052.1	Chrysemys picta bellii olfactory receptor 51G2	Tinamus guttatus	215	308	70%	
XM_005313248.1	Chrysemys picta bellii olfactory receptor 52R	Gavia stellata	224	307	73%	
XM_008178061.1	Chrysemys picta bellii olfactory receptor 52P1	Haliaeetus leucocephalus	215	316	68%	
XM_005314254.1	Chrysemys picta bellii olfactory receptor 11A1	Aptenodytes forsteri	206	317	65%	
XM_008174690.1	Chrysemys picta bellii olfactory receptor 11A1	Cuculus canorus	203	310	65%	
XM_005310270.2	Chrysemys picta bellii olfactory receptor 6N1	Charadrius vociferus	200	310	65%	
XM_005309010.1 PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	315	Tinamus guttatus OR10	195	301	65%	
XM_005313793.1 PREDICTED: Chrysemys picta bellii olfactory receptor 6C4	315	Charadrius vociferus OR6	194	300	65%	
XM_005284256.1 PREDICTED: Chrysemys picta bellii olfactory receptor 6B1	417	Phoenicopterus ruber OR6	203	306	66%	
XM_008177186.1 PREDICTED: Chrysemys picta bellii olfactory receptor 6N1	414	Melopsittacus undulatus OR10	206	319	65%	
XM_005290036.2 PREDICTED: Chrysemys picta bellii olfactory receptor 52B2	313	Struthio camelus OR52	222	310	72%	
XM_008177901.1 PREDICTED: Chrysemys picta bellii olfactory receptor 51E2	313	Phaeton lepturus OR51	230	300	77%	
XM_005309014.1 PREDICTED: Chrysemys picta bellii olfactory receptor 10A4	312	Chaetura pelagica OR10	214	309	69%	
XM_005310433.1 PREDICTED: Chrysemys picta bellii olfactory receptor 5V1	312	Phoenicopterus ruber OR13	209	308	68%	
XM_005311794.2 PREDICTED: Chrysemys picta bellii olfactory receptor 51G2	391	Tinamus guttatus OR51	211	299	71%	
XM_008174396.1 PREDICTED: Chrysemys picta bellii olfactory receptor 4M1	305	Fulmarus glacialis OR10	145	203	71%	
XM_008174324.1 PREDICTED: Chrysemys picta bellii olfactory receptor 4D9	387	Geospiza fortis OR4	203	289	70%	
XM_008177073.1 PREDICTED: Chrysemys picta bellii olfactory receptor 11A1	287	Charadrius vociferus OR5	184	272	68%	
XM_005309054.2 PREDICTED: Chrysemys picta bellii olfactory receptor 11L1	281	Picoides pubescens OR10	160	236	68%	
XM_005309062.1 PREDICTED: Chrysemys picta bellii olfactory receptor 11L1	281	Melopsittacus undulatus OR10	170	256	66%	
XM_008177845.1 PREDICTED: Chrysemys picta bellii olfactory receptor 52K1	379	Fulmarus glacialis OR10	146	226	65%	
XM_005310838.2 PREDICTED: Chrysemys picta bellii olfactory receptor 52B6	245	Charadrius vociferus OR5	129	196	66%	
Pm066	349	Cathartes aura OR4	210	298	70%	
Pm091	343	Opisthocomus hoazin OR6	242	310	78%	
Pm100	334	Charadrius vociferus OR4	240	306	78%	
Pm120	333	Struthio camelus OR51	226	303	75%	
Pm047	331	Tinamus guttatus OR5	212	309	69%	
Pm068	331	Podiceps cristatus OR2	209	318	66%	
Pm020	328	Cuculus canorus OR5	201	310	65%	
Pm046	328	Fulmarus glacialis OR10	227	311	73%	
Pm055	328	Struthio camelus OR6	213	297	72%	
Pm136	324	Anstrocomus carolinensis OR9 Pseudogene	142	215	66%	
Pm045	322	Struthio camelus OR5	197	303	65%	
Pm148	322	Opisthocomus hoazin OR52	228	301	76%	
Pm070	320	Tinamus guttatus OR52	221	303	73%	
Pm119	318	Falco peregrinus OR52	251	314	80%	
Pm014	316	Tinamus guttatus OR5	207	312	66%	
Pm053	316	Struthio camelus OR5	205	308	67%	
Pm030	314	Cariama cristata OR12	208	314	66%	
Pm036	314	Anas platyrhynchos OR4 Pseudogene	127	190	67%	
-------	-----	----------------------------------	-----	-----	-----	
Pm049	314	Falco peregrinus OR4	206	309	67%	
Pm088	313	Antrostomus carolinensis OR11	207	313	66%	
Pm115	313	Cathartes aura OR4	199	305	65%	
Pm005	310	Pterocles gutturalis OR5	219	302	73%	
Pm132	310	Gallus gallus OR5	215	309	70%	
Pm057	309	Baleaecia regulorum OR5	205	305	67%	
Pm123	308	Tyto alba OR9	215	297	72%	
Pm004	300	Phoenicopterus ruber OR5	194	300	65%	
Pm096	296	Fulmarus glacialis OR6	207	271	76%	
Pm023	385	Struthio camelus OR4	226	301	75%	
Pm054	280	Struthio camelus OR6	222	269	83%	
Pm155	196	Gavia stellata OR10	93	142	65%	
Pm171	226	Struthio camelus OR4	142	212	67%	
Pm207	209	Opisthocomus hoazin OR6	142	195	73%	
Pm213	207	Fulmarus glacialis OR6	133	193	69%	
Pm223	199	Fulmarus glacialis OR4	136	197	69%	
Pm222	198	Antrostomus carolinensis OR12 Pseudogene	128	185	69%	
Pm209	195	Gallus gallus OR5	125	189	66%	
Pm248	194	Struthio camelus OR2	130	186	70%	
Pm250	190	Anas platyrhynchos OR12	129	190	68%	
Pm271	180	Gavia stellata OR10	134	180	74%	
Pm275	179	Fulmarus glacialis OR10	103	159	65%	
Pm277	174	Cariama cristata OR12	106	159	67%	
Pm184	169	Fulmarus glacialis OR2	110	169	65%	
Pm195	155	Phoenicopterus ruber OR10	63	97	65%	
Pm188	148	Nestor notabilis OR5	101	145	70%	
Pm243	144	Aptenodytes forsteri OR5	96	142	68%	
Pm219	141	Cathartes aura OR10	82	126	65%	
Pm279	141	Opisthocomus hoazin OR9	85	131	65%	
Pm178	140	Nestor notabilis OR5	93	140	66%	
Pm252	132	Antrostomus carolinensis OR12 Pseudogene	91	132	69%	
Pm204	261	Nestor notabilis OR6	177	260	68%	
Ac93	331	Podiceps cristatus OR10	225	322	70%	
Ac89	324	Struthio camelus OR6	235	319	74%	
Ac75	323	Pterocles gutturalis OR6	205	310	66%	
Ac109	323	Tinamus guttatus OR13	198	303	65%	
Ac110	314	Tinamus guttatus OR5	164	237	69%	
Ac52	314	Pterocles gutturalis OR4	201	306	66%	
Ac98	314	Podiceps cristatus OR10	163	248	66%	
Ac106	314	Struthio camelus OR4	224	301	74%	
Ac131	314	Cariama cristata OR9	124	170	73%	
Ac59	313	Struthio camelus OR6	201	305	66%	
Ac3	312	Tinamus guttatus OR5	204	306	67%	
Ac91	312	Struthio camelus OR6	231	304	66%	
Ac125	312	Fulmarus glacialis OR10	148	226	65%	
Ac112	312	Phaeton lepturus OR5	118	179	66%	
Ac119	311	Cariama cristata OR12	120	186	65%	
Ac44	311	Phaeton lepturus OR6	215	311	69%	
Ac103	311	Balearica regulorum OR6	205	308	67%	
Ac27	310	Cathartes aura OR4	205	298	69%	
Ac20	309	Tinamus guttatus OR5	198	305	65%	
Ac37	307	Phoenicopterus ruber OR13	198	305	65%	
Ac87	307	Opisthocomus hoazin OR6	231	305	76%	
Ac81	306	Calypte anna OR10	197	302	65%	
Alligator mississippiensis predicted OR4	240	Phoenicopterus ruber OR4	102	156	65%	
Alligator mississippiensis predicted OR10	225	Charadrius vociferus OR10	174	219	79%	
Alligator mississippiensis predicted OR51/PSEUDOGENE	212	Tinamus guttatus OR51	76	114	67%	
Alligator mississippiensis predicted OR13/PSEUDOGENE	201	Pelecanus crispus OR13	130	198	66%	
Alligator mississippiensis predicted OR6/PSEUDOGENE	197	Columba livia OR6	98	131	75%	
Alligator mississippiensis predicted OR12/PSEUDOGENE	77	Podiceps cristatus OR12	53	76	70%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	94	Haliaeetus leucophalus OR12	59	91	65%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	35	Podiceps cristatus OR10	23	34	68%	
Alligator mississippiensis predicted OR6/PSEUDOGENE	144	Cathartes aura OR5	71	110	65%	
Alligator mississippiensis predicted OR2/PSEUDOGENE	109	Gavia stellata OR10	68	105	65%	
Alligator mississippiensis predicted OR2/PSEUDOGENE	83	Phoenicopterus ruber OR13	56	82	68%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	122	Phaeton lepturus OR13	79	117	68%	
Alligator mississippiensis predicted OR2/PSEUDOGENE	28	Anas platyrhynchos OR12	20	28	71%	
Alligator mississippiensis predicted OR11/PSEUDOGENE	53	Picoides pubescens OR10	35	53	66%	
Alligator mississippiensis predicted OR9/PSEUDOGENE	103	Pygoscelis adeliae OR10	71	102	70%	
Alligator mississippiensis predicted OR2/PSEUDOGENE	43	Struthio camelus OR6	20	31	65%	
Alligator mississippiensis predicted OR5/PSEUDOGENE	50	Phaeton lepturus OR10	29	44	66%	
Alligator mississippiensis predicted OR12/PSEUDOGENE	97	Cariama cristata OR12	63	95	66%	
Alligator mississippiensis predicted OR5/PSEUDOGENE	97	Phoenicopterus ruber OR6	61	89	69%	
Alligator mississippiensis predicted OR8/PSEUDOGENE	52	Anas platyrhynchos OR5	38	52	73%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	77	Fulmarus glacialis OR5	44	66	67%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	40	Aptenodytes forsteri OR5 Pseudogene	15	22	68%	
---	----------	------------------------------------	----	----	-----	
Alligator mississippiensis predicted OR13/PSEUDOGENE	73	Phoenicopterus ruber OR10 Pseudogene	32	48	67%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	71	Charadrius vociferus OR10	29	40	73%	
Alligator mississippiensis predicted OR12/PSEUDOGENE	70	Manacus vitellinus OR12	43	66	65%	
Alligator mississippiensis predicted OR12/PSEUDOGENE	53	Anas platyrhynchos OR12	36	52	69%	
Alligator mississippiensis predicted OR2/PSEUDOGENE	69	Nipponia nippon OR5	42	61	69%	
Alligator mississippiensis predicted OR13/PSEUDOGENE	65	Phoenicopterus ruber OR13	31	47	66%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	60	Gavia stellata OR8 Pseudogene	42	60	70%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	35	Aptenodytes forsteri OR6 Pseudogene	26	35	74%	
Alligator mississippiensis predicted OR2/PSEUDOGENE	64	Antrostomus carolinensis OR2 Pseudogene	28	39	72%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	64	Phoenicopterus ruber OR10	29	43	67%	
Alligator mississippiensis predicted OR12/PSEUDOGENE	63	Eretta garzetta OR14	40	59	68%	
Alligator mississippiensis predicted OR12/PSEUDOGENE	62	Struthio camelus OR2	41	61	67%	
Alligator mississippiensis predicted OR10	361	Fulmarus glacialis OR10	148	227	65%	
Alligator mississippiensis predicted OR13/PSEUDOGENE	57	Struthio camelus OR5	33	50	66%	
Alligator mississippiensis predicted OR1/PSEUDOGENE	50	Haliaetus albicilla OR12 Pseudogene	31	47	66%	
Alligator mississippiensis predicted OR1/PSEUDOGENE	40	Struthio camelus OR5	26	40	65%	
Alligator mississippiensis predicted OR10/PSEUDOGENE	45	Gavia stellata OR8 Pseudogene	26	36	72%	
Alligator mississippiensis predicted OR5/PSEUDOGENE	37	Fulmarus glacialis OR8	24	36	67%	
Alligator mississippiensi predicted OR14/PSEUDOGENE	36	Balearica regulorum OR14	23	35	66%	
Alligator mississippiensi predicted OR6/PSEUDOGENE	28	Phoenicopterus ruber OR13	19	28	68%	
Alligator mississippiensi predicted OR51	350	Struthio camelus OR51	245	317	77%	
Alligator mississippiensi predicted OR10	344	Fulmarus glacialis OR10	153	226	68%	
Alligator mississippiensi predicted OR10	343	Phoenicopterus ruber OR10	209	294	71%	
Alligator mississippiensi predicted OR55	332	Struthio camelus OR55	195	285	68%	
Alligator mississippiensi predicted OR52	331	Cathartes aura OR52	235	310	76%	
Alligator mississippiensi predicted OR6	331	Podiceps cristatus OR10	164	250	66%	
Alligator mississippiensi predicted OR10	328	Aptenodytes forsteri OR5	216	323	67%	
Alligator mississippiensi predicted OR6	326	Struthio camelus OR6	257	313	82%	
Alligator mississippiensi predicted OR10	325	Phoenicopterus ruber OR10	160	246	65%	
Alligator mississippiensi predicted OR10	321	Fulmarus glacialis OR10	147	226	65%	
Alligator mississippiensi predicted OR52	321	Merops nubicus OR52	210	303	69%	
Alligator mississippiensi predicted OR5	321	Aptenodytes forsteri OR5	201	310	65%	
Alligator mississippiensi predicted OR6	320	Opisthocomus hoazin OR6	241	303	80%	
Alligator mississippiensi predicted OR10	320	Charadrius vociferus OR10	218	319	68%	
Alligator mississippiensi predicted OR5	319	Phoenicopterus ruber OR5	221	311	71%	
Alligator mississippiensi predicted OR6	319	Anas platyrhynchos OR6	224	312	72%	
Alligator mississippiensi predicted OR10	317	Pelecanus crispus OR10	220	308	71%	
Species predicted	OR	Length	Species predicted	OR	Length	Similarity
-------------------	----	--------	-------------------	----	--------	------------
Alligator mississippiensis	OR10	317	Balearica regulorum	OR10	219	69%
Alligator mississippiensis	OR52	317	Tinamus guttatus	OR52	231	75%
Alligator mississippiensis	OR52	316	Cariama cristata	OR52	251	80%
Alligator mississippiensis	OR10	316	Fulmarus glacialis	OR10	209	70%
Alligator mississippiensis	OR6	316	Columba livia	OR6	231	74%
Alligator mississippiensis	OR6	316	Struthio camelus	OR6	252	81%
Alligator mississippiensis	OR5	315	Charadrius vociferus	OR5	231	74%
Alligator mississippiensis	OR52	315	Struthio camelus	OR52	225	72%
Alligator mississippiensis	OR10	315	Tinamus guttatus	OR10	204	68%
Alligator mississippiensis	OR4	315	Pterocles gutturalis	OR4	231	75%
Alligator mississippiensis	OR6	315	Nipponia nippon	OR6	200	65%
Alligator mississippiensis	OR5	314	Struthio camelus	OR5	219	71%
Alligator mississippiensis	OR5	314	Tinamus guttatus	OR5	226	74%
Alligator mississippiensis	OR5	313	Fulmarus glacialis	OR5	226	74%
Alligator mississippiensis	OR5	313	Tinamus guttatus	OR5	244	78%
Alligator mississippiensis	OR10	313	Apterodytes forsteri	OR10	192	68%
Alligator mississippiensis	OR10	313	Tinamus guttatus	OR10	203	75%
Alligator mississippiensis	OR2	313	Nipponia nippon	OR2	213	68%
Alligator mississippiensis	OR5	311	Haliaeetus leucocephalus	OR5	211	69%
Alligator mississippiensis	OR11	311	Struthio camelus	OR11	218	70%
Alligator mississippiensis	OR14	310	Egretta garzetta	OR14	173	65%
Alligator mississippiensis	OR10	301	Anas platyrhynchos	OR10	207	70%
Alligator mississippiensis	OR2	301	Charadrius vociferus	OR2	213	71%
Alligator mississippiensis	OR6	298	Taeniopygia guttata	OR6	190	73%
Alligator mississippiensis	OR10	381	Anas platyrhynchos	OR10	203	71%
Alligator mississippiensis	OR8	265	Phoenicopterus ruber	OR8	131	66%
Alligator mississippiensis	OR4	250	Podiceps cristatus	OR4	115	71%
Supplementary Table S9. OR genes showing at least 65% shared identity between reptiles and birds were considered present in extinct dinosaur taxa. Shared ORs that have had their odorant ligand de-orphaned in humans and mice, as well as their human odorant ‘descriptions’, are displayed.

Receptor 65% identity between reptiles and birds	Ligands	Odor	PubChem CID	Ref
OR51E2	Propanoic acid	Sharp, rancid	1032	
OR51L1	Hexanoic acid	Goat-like, Barn-yard animal	8892	
OR51G2	Heptanoic acid	Rancid	8094	
OR51Q1	Hexanoic acid	Rancid	8094	
OR52B2	Fentanal	Strong, acrid, pungent	8063	[10]
OR52E4	Octanoic acid	Fruity, unpleasant, irritating	379	
OR52D1	Octanoic acid, methyl ester	Powerful, fruity	8091	
OR52R1	Octanoic acid	Rancid	8094	[11]
OR52R1	Octanoic acid	Fruity, unpleasant, irritating	379	[10]
OR2A5	Nonanoic acid	Fatty, coconut	8158	[10]
OR2A5	1-Octanol	Orange rose	957	[10,11]
OR2A5	1-Nonanol	Floral	8914	
OR2A5	1-Decanol	Sweet, floral, fruity	8174	
OR2A5	1-Heptanol	Fragrant	8129	
OR4E2	(Methylthio)-methanethiol	-	122370	[10]
OR4E2	(Methylthio)-ethanethiol	-	525462	
OR4E2	Bis(Methyl-thiomethyl) disulphide	-	158825	
OR5AR1 (Olfr1019)	Prenyl acetate	Fruity, floral	14489	
OR5AR1 (Olfr1019)	R-limonene	Fruity	440917	
OR6A2	Heptanal	Fatty, pungent, fruity, metallic blood	8130	[10,12]
OR6N1	Allyl benzene	-	9309	
OR6P1	Eugenol	Spicy, floral	3314	
OR6X1	(+)-Carvone	-	16724	
OR10A3	1-Nonanethiol	Unpleasant	15077	
OR10A3	1-Heptanal	Orange rose	957	[10,11]
OR11A1	2-Ethyl fenchol	Earthy	106997	
OR11L1	(+)-Camphor	Fragrant, penetrating	159055	[10]
OR11L1	(-)-Camphor	Fragrant, penetrating	444294	
OR11L1	(+)-Fenchone	Similar to camphor	82229	
OR12D3	(+)-Carvone	-	16724	
Olfr545	Nonanedioic acid	-	2266	
Supplementary figure legends

Supplementary Figure S1. Boxplot of olfactory bulb (OB) ratios with respect to a piscivorous, insectivorous, omnivorous, herbivorous and carnivorous dietary niches. Data represents taxa with known diet data (n = 74). Median values (black) and mean values (red) are displayed.

Supplementary Figure S2. Body mass vs. OB ratio. The body mass (Kg) and olfactory bulb (OB) ratio for 74 taxa, combining non-avian dinosaurs, crown-clade Aves and stem birds, shows a strong linear relationship, possibly driven by larger theropods (tyrannosaurs labeled in red).

Supplementary Figure S3. Body mass (Kg) vs. size of the olfactory receptor repertoire observed in modern birds. There is no significant correlation between the two variables.

Supplementary Figure S4. Ancestral olfactory bulb ratios estimated using maximum likelihood, with only extant taxa and outliers (Gallus gallus, Taeniopygia guttata and Melopsittacus undulatus) included. Node numbers correspond to Supplemental Table S3.

Supplementary Figure S5. Ancestral olfactory bulb ratios estimated using maximum likelihood, with only extant taxa and outliers (Gallus gallus, Taeniopygia guttata and Melopsittacus undulatus) excluded. Node numbers correspond to Supplemental Table S4.

Supplementary Figure S6. Grafen length phylogeny with ancestral olfactory bulb ratios estimated using maximum likelihood. Branches show an increase (red) or decrease (blue) in OB ratio relative to the most recent common ancestor. Node labels correspond to Supplementary Table S5.

Supplementary Figure S7. Grafen phylogeny with ancestral olfactory bulb ratios estimated using phylogenetic independent contrasts (PICs). Branches show increases (red) or decreases (blue) in OB ratio relative to a most recent common ancestor. Node labels correspond to Supplementary Table S5.

Supplementary Figure S8. Grafen length phylogeny with ancestral olfactory bulb ratios estimated using generalized least squares (GLS). Branches show an increase (red) or decrease (blue) in OB ratio relative to the most recent common ancestor. Node labels correspond to Supplementary Table S5.
