Neoadjuvant treatment for esophageal squamous cell carcinoma

Yoshifumi Baba, Masayuki Watanabe, Naoya Yoshida, Hideo Baba

Abstract
Squamous cell carcinoma and adenocarcinoma are types of esophageal cancer, one of the most aggressive malignant diseases. Since both histological types present entirely different diseases with different epidemiology, pathogenesis and tumor biology, separate therapeutic strategies should be developed against each type. While surgical resection remains the dominant therapeutic intervention for patients with operable esophageal squamous cell carcinoma (ESCC), alternative strategies are actively sought to reduce the frequency of post-operative local or distant disease recurrence. Such strategies are particularly sought in the preoperative setting. This review discusses the current knowledge, available data and information regarding neoadjuvant treatment for operable ESCC.

INTRODUCTION
Esophageal cancer is the sixth most common cause of cancer-related deaths and the eighth most commonly diagnosed cancer worldwide[1]. The predominant histological types of esophageal cancer are adenocarcinoma and squamous cell carcinoma[2]. Adenocarcinoma of the distal esophagus predominates in the West, whereas squamous cell carcinoma, which tends to localize in the middle thoracic esophagus, predominates in the East, including Japan. In Western societies, esophageal squamous cell carcinoma (ESCC) is associated with low socioeconomic status, a history of smoking and drinking, liver dysfunction, and pulmonary comorbidities[3]. Since both...
histological types present as different diseases in terms of epidemiology, pathogenesis, and tumor biology. Therapeutic strategies should be separately developed for each histological type.

Although the prognosis for patients with either type of esophageal cancer is poor, the outlook is worse for ESCC patients than for those with adenocarcinoma, according to some studies[4,5]. However, a Surveillance, Epidemiology, and End-results (SEER) study of 4753 cases archived in a database revealed no difference between the two types[6]. Traditionally, both adenocarcinomas and squamous cell tumors have been treated by surgical resection; however, high frequencies of systemic and local tumor recurrence have urged investigations into multimodality therapies that combine surgery with radiotherapy (RT), chemotherapy (CT), and chemoradiotherapy (CRT). In particular, preoperative therapy has been considered for both tumor types. In Western countries, operable esophageal adenocarcinoma is generally treated by neoadjuvant or definitive CRT. While most researchers agree with this strategy, the optimal therapeutic strategy for ESCC remains controversial. Recently, the Japan Clinical Oncology Group study (JCOG9907) demonstrated that preoperative CT with cisplatin (CDDP) plus 5-fluorouracil (5-FU) followed by surgery improves the overall survival of patients with resectable thoracic ESCC[7]. Since then, preoperative CT followed by radical esophagectomy has been accepted as the standard therapeutic approach to resectable cStage II/III ESCC. This review discusses the current knowledge, rationale, available data and information regarding neoadjuvant treatment for resectable ESCC.

STRENGTHS AND LIMITATIONS OF SURGICAL RESECTION

Radical esophagectomy with radical lymph node (LN) dissection is the accepted gold standard for therapeutic and staging purposes for ESCC patients. Ando et al[8] reported that the survival of Japanese patients undergoing esophagectomy for advanced ESCC improved from 1981 to 1995, largely because of advances in surgical technique and perioperative management. In 2006, the Comprehensive Registry of Esophageal Cancer in Japan reported 1-year, 3-year, and 5-year post-esophagectomy survival rates of 83%, 57%, and 48%, respectively[9]. A German study analyzing whether ESCC could be successfully treated by surgery alone indicated a 5-year survival rate of 30% in primarily resected patients[10]. We of course acknowledge that these results may be influenced by the patient selection bias for surgical procedure.

Western and Eastern counties adopt different surgical approaches; Ivor-Lewis type surgery with two-field LN dissection is preferred in the West, while three-field LN dissection is the treatment of choice in the East, especially in Japan. Three-field LN dissection may increase the complete resection rate, but whether this approach improves the overall survival rate remains uncertain. A randomized study of two-field vs three-field LN dissection reported a significantly higher complication rate in three-field LN dissection, with no significant differences in recurrence or survival[10]. On the other hand, some non-randomized trials have reported a survival advantage associated with three-field LN dissection[11].

One limitation of surgery is that, at the time of diagnosis, two-thirds of patients with ESCC present with advanced, inoperable tumor stages and severe comorbidities. Another limitation is that resection margins are clearly defined in (at most) one-third of patients[12]. According to the Comprehensive Registry of Esophageal Cancer in Japan, 2006, the 5-year survival rate post-esophagectomy was 52% for patients with no residual tumor, but decreased to only 14% if residual tumors were present[13]. In addition, even if tumors were completely resected, the prognosis was poorer in patients with LN metastasis than in patients without LN metastasis; the 1-year, 3-year, and 5-year survival rates of patients with LN metastasis were 77%, 45%, and 35%, respectively[14]. These unsatisfactory outcomes have prompted investigation into multidisciplinary management involving CT, RT, and CRT, especially in the neoadjuvant setting.

STRENGTHS AND LIMITATIONS OF PREOPERATIVE THERAPY

Preoperative therapies can benefit ESCC patients in multiple ways. First, preoperative therapies can potentially downstage and degrade tumor size, and thus increase the possibility of complete resection. Second, they can eliminate possible hematogenous and/or lymphogenous micro-metastases from ESCC, and thereby limit postoperative disease recurrence. Third, undamaged blood and/or lymph vessels may permit more effective drug delivery to the tumor area.

One limitation of preoperative therapies is that surgical procedures are delayed in non-responders, exposing these patients to further metastatic spread. If this occurs, the effectiveness of preoperative therapy may be reduced, increasing postoperative morbidity and mortality. Currently, however, the relationship between preoperative therapy and postoperative morbidity and mortality remains controversial. Hirao et al[15] have reported that preoperative CT of JCOG9907 does not increase the risk of complications or hospital mortality after surgery for advanced thoracic ESCC. The meta-analysis conducted by Kranzfelder et al[16] revealed no evidence of increased mortality resulting from neoadjuvant CT and CRT. By contrast, randomized trials conducted by two independent groups did report increased postoperative mortality rates following neoadjuvant CRT[17,18].

NEOADJUVANT RT

The main purpose of preoperative neoadjuvant RT is to improve local control by down-sizing, if not eradicating, tumors in the involved LNs. Table 1 summarizes the
results of six phase III randomized trials, in which ESCC patients were treated by surgery supplemented with neoadjuvant RT or by surgery alone\(^\text{[17-22]}\). Two trials, conducted by Nygaard \textit{et al}\(^\text{[20]}\) and Cao \textit{et al}\(^\text{[23]}\), demonstrated a higher 3-year survival in the neoadjuvant RT + surgery group than in the group receiving surgery alone. The other four trials revealed no significant improvement of resectability or overall survival advantage. On the contrary, some of the studies reported a higher treatment-related mortality in the neoadjuvant RT + surgery group. One prospective randomized trial directly compared the therapeutic efficacy of preoperative vs postoperative RT in ESCC patients. This study found no difference in overall survival but reported a higher mortality following preoperative RT\(^\text{[24]}\). A meta-analysis of 1147 cases, most of which were SCC, reported a slight trend in favor of neoadjuvant RT after a median follow-up period of 9 years, but the results were statistically insignificant (HR = 0.89, 95%CI: 0.78-1.01). In this study, the overall reduction in mortality was 11% and the absolute survival benefit was 3% and 4% at 2 and 5 years, respectively\(^\text{[24]}\). In a SEER study of 1033 cases, 33% of whom presented with squamous cell carcinoma, demonstrated that the median overall survival and cause-specific survival were both significantly greater for patients who received neoadjuvant RT than for those receiving surgery alone (27 mo vs 18 mo and 35 mo vs 21 mo, respectively, \(P < 0.0001\))\(^\text{[25]}\). However, since the SCC patients were not separately analyzed, the study presents no clear evidence that preoperative RT improves the survival of patients with potentially resectable ESCC. Thus, at present, preoperative neoadjuvant RT treatment is not recommended for ESCC patients.

NEoadjuvant CT

In theory, preoperative CT is expected to down-stage the tumor prior to surgery, eradicate tumor micrometastases and reduce the risk of distant spread. In the 1990s, several randomized trials comparing neoadjuvant CT + surgery vs surgery alone were conducted on ESCC patients using CDDP, bleomycin, vindesin, 5-FU, and combinations of these drugs\(^\text{[26-29]}\) (Table 2). However, none of these trials conclusively demonstrated the efficacy of neoadjuvant CT for patients with ESCC. Two large-scale randomized control studies have also been undertaken on this topic; the United Kingdom Medical Research Council esophageal cancer trial (OEO2) and Radiation Therapy Oncology Group (RTOG) 8911. OEO2 recruited 802 esophageal cancer patients to evaluate whether preoperative CT consisting of two cycles of CDDP and 5-FU followed by surgery improves survival compared with surgery alone\(^\text{[30]}\). The survival benefit was maintained with a HR of 0.84 (95%CI: 0.72-0.98; \(P = 0.03\)); the 5-year survival was 23% for the preoperative CT + surgery group, vs 17% for the surgery group. Although this study included both adenocarcinoma and squamous cell carcinoma, the treatment effect was independent of histological type\(^\text{[31]}\). However, the pattern of first disease progression was similar between the two treatment groups, in particular there was no clear trend toward fewer patients with distant metastases as first site of relapse in the preoperative CT + surgery group. The other large-scale study, RTOG8911, enrolled 443 patients with localized esophageal cancer, and compared the effect of CT plus surgery with that of surgery alone. This study showed no difference in overall survival between the two patient groups\(^\text{[32]}\). The reason for these disparate survival outcomes remains unclear, since both studies involved CDDP and 5-FU-based CT. However, a subgroup of the RTOG8911 study who responded objectively to neoadjuvant CT, when separately analyzed, showed significantly better survival outcomes than non-responding patients and all patients randomly assigned to surgery. Thus, effective CT will positively impact the survival of patients whose tumors respond to the administered chemotherapeutic agents. Importantly, an updated meta-analysis, which combined the data of OEO2 and RTOG8911, has proven that neoadjuvant CT confers a survival benefit over surgery alone in esophageal adenocarcinoma patients (HR = 0.83; 95%CI: 0.71-0.95; \(P = 0.01\)). However, CT supplements exerted no significant effect on the all-cause mortality of ESCC patients (HR =

Table 1 Neoadjuvant radiotherapy treatment and outcomes for esophageal squamous cell carcinoma

Ref.	Year of publication	Histology	Treatment	\(n\)	Median survival (mo)	5-yr overall survival (%)	\(P\)
Launois \textit{et al}\(^\text{[17]}\)	1981	SCC	RT 40 Gy → Surgery	77	10	10	NS
Gignieux \textit{et al}\(^\text{[18]}\)	1987	SCC	RT 33 Gy → Surgery	106	11	11	NS
Arnott \textit{et al}\(^\text{[19]}\)	1992	AC/SCC (56%)	RT 20 Gy → Surgery	90	8	9	NS
Nygaard \textit{et al}\(^\text{[20]}\)	1992	SCC	RT 35 Gy → Surgery	48	11	11	NS
Wang \textit{et al}\(^\text{[21]}\)	1989	SCC	RT 40 Gy → Surgery	104	35	35	NS
Cao \textit{et al}\(^\text{[22]}\)	2009	SCC	RT 40 Gy → Surgery	118	11	11	NS
Chu \textit{et al}\(^\text{[23]}\)	1994	SCC	RT 24-53 Gy → Surgery	40	10	10	NS

\(^3\)3-yr overall survival. AC: Adenocarcinoma; NS: Not significant; RT: Radiation therapy; SCC: Squamous cell carcinoma.
esophagectomy is an invasive, surgically stressful procedure, requiring a high disease control rate. On the other hand, since adjuvant CRT requires a high response rate, or at least a high disease control rate, it is not possible to recommend such treatment as the first-line approach. Thus, success of preoperative CT in resectable ESCC has yet to be established. Therefore, this imbalance in treatment arms does not affect the conclusion that the trial design of JCOG9907 had some limitations.

Recently, the JCOG9907 study on resectable cStage II/III thoracic ESCC demonstrated that survival was significantly improved by preoperative CT with two courses of CDDP plus 5-FU followed by surgery, compared with postoperative CT. The 5-year overall survival was 43% and 55% in the postoperative and preoperative CT groups, respectively (HR = 0.73, 95%CI: 0.54-0.99, P = 0.044). The predecessor to this study, JCOG9204, had compared surgery + postoperative CT with surgery alone. These results indicate that additional postoperative CT treatment improved the disease-free survival of the entire cohort (from 45% to 55%, P = 0.037) and the 5-year overall survival in patients with LN metastases (52% vs. 38%, P = 0.041). Based on these data, preoperative CT followed by radical esophagectomy has become accepted in Japan as the standard therapeutic approach to resectable cStage II/III ESCC. However, we need to acknowledge that the trial design of JCOG9907 had some limitations. In the postoperative treatment group, patients with LN metastasis negative cancer did not receive CT because JCOG9204 did not find a benefit for adjuvant CT in a subset analysis of LN metastasis-negative patients. Thus, this imbalance in treatment arms does not allow us to conclude that preoperative therapy is superior to postoperative therapy because not all patients in the postoperative CT arm received treatment. In addition, the primary end point of disease-free survival was not met, yet overall survival was in favor of the preoperative group.

An optimal regimen of neoadjuvant CT against ESCC has yet to be established. The tumors of patients treated with neoadjuvant CT are potentially curable by surgery alone, and may progress to an inoperable stage while the patient is receiving preoperative CT. Thus, successful adjuvant therapy requires a high response rate, or at least a high disease control rate. On the other hand, since esophagectomy is an invasive, surgically stressful procedure, preventing organ dysfunction and worsening of the patients’ physical condition are also important. Especially, patients with ESCC frequently present with multiple organ disorders, because they are usually aged patients with a long-term history of smoking and alcohol use. In Japan, the JCOG9907 study has established a combination of CDDP and 5-FU as the standard regimen. However, the therapeutic efficacy of this regimen is by no means uniform satisfactory; the response rate varies between 19% and 50%[12,20]. Thus, triplet CT, in which another drug is added to CDDP and 5-FP, has been intensively explored. A sole drug, docetaxel, has proven to positively supplement CDDP and 5-FP in randomized control trials. Docetaxel combined with CDDP and 5-FP (DCF therapy) is now regarded as a standard regimen for gastric or esophagogastric adenocarcinomas. In addition, DCF is reportedly as effective as induction CT against head and neck squamous cell carcinoma, whose features are biologically similar to those of ESCC[12]. Regarding ESCC, exploratory trials of neoadjuvant CT with DCF have demonstrated a high response rate (60%)[18,20]. Taken together, these results indicate DCF as a promising regimen of neoadjuvant CT for ESCC. McCann et al. Neoadjuvant chemotherapy treatment and outcomes for esophageal squamous cell carcinoma

Table 2 Neoadjuvant chemotherapy treatment and outcomes for esophageal squamous cell carcinoma

Ref.	Year of publication	Histology	Treatment	n	Median survival (mo)	5-yr overall survival (%)	P
Schlgl[24]	1992	SCC	FU, CDDP → Surgery	22	10	NS	
Nygaard et al[26]	1992	SCC	CDDP, BL → Surgery	44	7	3	
Maipang et al[27]	1994	SCC	CDDP, BL, VI → Surgery	24	17	31	
Law et al[28]	1997	SCC	FU, CDDP → Surgery	22	17	36	
Ancona et al[29]	2001	SCC	FU, CDDP → Surgery	69	13	13	
Kelsen et al[30] (RTOG 8911)	2007	AC/SCC (47%)	FU, CDDP → Surgery	213	15	19	
Allum et al[31] (OEO2)	2009	AC/SCC (31%)	FU, CDDP → Surgery	400	17	23	
Ando et al[32] (JCOG9907)	2012	SCC	FU, CDDP → Surgery	164	17	17	

13-yr overall survival. AC: Adenocarcinoma; BL: Bleomycin; CDDP: Cisplatin; FU: Fluorouracil; NS: Not significant; SCC: Squamous cell carcinoma; VI: Vinblastine; JCOG: Japan Clinical Oncology Group study.

NEOADJUVANT CRT

The role of neoadjuvant CRT has been debated for several decades. Various trials have compared the effects of neoadjuvant CRT in ESCC with those of surgery alone (Table 3). In most of these trials, CRT adjuvant treatment conferred no survival benefit; however, these trials can be criticized for inadequate trial design or small sample size. The Cancer and Leukemia Group B 9781 reported an overall survival enhancement in patients receiving neoadjuvant CRT, the 5-year overall survival was 39% in the neoadjuvant CRT + surgery group (95%CI: 21%-57%), vs 16% (95%CI: 5%-33%) in the surgery only group. Because this trial attracted few participants, it was closed,
Owing to their risk factors, middle- and elderly-aged smokers with lower physical fitness and with a higher proportion of concomitant diseases, the median survival among patients with potentially curable esophageal cancer treated by this approach. To overcome this problem, Japanese health authorities are currently reviewing their therapeutic strategies. In contrast to Japan, Western countries have adopted CRT as the standard therapeutic strategy. Whether preoperative CRT with radical surgery is effective for Japanese ESCC patients has yet to be established. Another promising regimen is preoperative triple-drug CT (involving docetaxel, CDDP and 5-FU). This background has initiated the JCOG1109 (NESt study) trial, a three-arm phase III trial started in November of 2012. The aim of this study is to confirm whether docetaxel, CDDP + 5-FU is superior to CDDP + 5-FU, and whether CDDP + 5-FU is superior to CRT over CDDP + 5-FU, as preoperative therapies for ESCC. Depending on the outcome of the JCOG1109 trial, the current ESCC therapeutic strategy might become altered in Japan. Importantly, the phase 2 study for neoadjuvant CRT (docetaxel, CDDP, 5-FU and concurrent RT) showed promising results; pathological complete remission (pCR) was found in 47%, and the 3- and 5-year survival rates were, respectively, 83% and 77% for pCR cases.

The limited improvements in treatment outcomes provided by conventional therapies have prompted us to seek innovative strategies for ESCC treatment; in particular, molecularly-targeted treatments. However, no promising results have been reported to date. The addition of an angiogenesis inhibiting drug (bevacizumab) to neoadjuvant CT with CDDP and 5-FU conferred the same benefit to ESCC patients as CDDP and 5-FU alone, the histological response rates and local-regional control were significantly improved, and the 3- and 5-year survival rates were, respectively, 83% and 77% for pCR cases.

FUTURES DIRECTIONS

In Japan, preoperative CT (FU + CDDP) followed by radical esophagectomy is the standard therapeutic approach to operable ESCC. However, systemic and regional recurrences are relatively common among patients treated by this approach. To overcome this problem, Japanese health authorities are currently reviewing their therapeutic strategies. In contrast to Japan, Western countries have adopted CRT as the standard therapeutic strategy. Whether preoperative CRT with radical surgery is effective for Japanese ESCC patients has yet to be established. Another promising regimen is preoperative triple-drug CT (involving docetaxel, CDDP and 5-FU). This background has initiated the JCOG1109 (NESt study) trial, a three-arm phase III trial started in November of 2012. The aim of this study is to confirm whether docetaxel, CDDP + 5-FU is superior to CDDP + 5-FU, and whether CDDP + 5-FU is superior to CRT over CDDP + 5-FU, as preoperative therapies for ESCC. Depending on the outcome of the JCOG1109 trial, the current ESCC therapeutic strategy might become altered in Japan. Importantly, the phase 2 study for neoadjuvant CRT (docetaxel, CDDP, 5-FU and concurrent RT) showed promising results; pathological complete remission (pCR) was found in 47%, and the 3- and 5-year survival rates were, respectively, 83% and 77% for pCR cases.

The limited improvements in treatment outcomes provided by conventional therapies have prompted us to seek innovative strategies for ESCC treatment; in particular, molecularly-targeted treatments. However, no promising results have been reported to date. The addition of an angiogenesis inhibiting drug (bevacizumab) to neoadjuvant CT with CDDP and 5-FU conferred the same benefit to ESCC patients as CDDP and 5-FU alone, the histological response rates and local-regional control were significantly improved, and the 3- and 5-year survival rates were, respectively, 83% and 77% for pCR cases.
latter administered to a historical control group. The addition of bevacizumab and erlotinib to neoadjuvant CRT (paclitaxel/carboplatin/5-FU/radiation) similarly delivered no extra survival benefit to esophageal cancer patients, nor improved the pathologic complete response rate over similar regimens. A phase II study with cetuximab and radiation therapy for patients with surgically resectable esophageal carcinomas (Hoosier Oncology Group G05-92) has shown that cetuximab and radiation therapy results in a pathologic complete response rate (67% for squamous cell carcinoma) that seems at least comparable with that of CT and radiation therapy.

Regarding locally advanced ESCC, some phase III studies are now recruiting patients to investigate new CT combinations, especially molecular-targeting reagents such as panitumumab, gefitinib, and cetuximab.

CONCLUSION

Currently, no international consensus on therapeutic strategy has been established for resectable thoracic ESCC. Western countries are focusing on neoadjuvant CRT followed by surgery or definitive CRT, while neoadjuvant CT and subsequent esophagectomy have become the standard therapeutic strategy in Japan. Many phase III trials, such as JCOG1109, are underway across the globe. Hopefully, the large datasets generated from these trials will assist our understanding of preoperative therapy, and guide the establishment of a universal standard strategy for resectable ESCC.

REFERENCES

1 Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108 [PMID: 15761078 DOI: 10.3322/canjclin.55.2.74]

2 Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003; 349: 2241-2252 [PMID: 14657432 DOI: 10.1056/NEJMra030510]

3 Brown LM, Hoover R, Silverman D, Baris D, Hayes R, Swanson GM, Schoenberg J, Greenberg R, Liff J, Schwartz A, Dosemeci M, Pottem L, Fraumeni JF. Excess incidence of squamous cell esophageal cancer among US Black men: role of social class and other risk factors. Am J Epidemiol 2001; 153: 114-122 [PMID: 11159155 DOI: 10.1093/aje/153.2.114]

4 Sievert JR, Stein HJ, Feith M, Bruecher BL, Bartels H, Fink U. Histologic tumor type is an independent prognostic parameter in esophageal cancer: lessons from more than 1,000 resections at a single center in the Western world. Ann Surg 2001; 234: 360-367, discussion 368-369 [PMID: 11524589 DOI: 10.1097/00000548-200109000-00010]

5 Bonavina L, Incarcrone B, Saino G, Clespi P, Peracchia A. Clinical outcome and survival after esophagectomy for carcinoma in elderly patients. Dis Esophagus 2003; 16: 90-93 [PMID: 12823204 DOI: 10.1046/j.1442-2050.2003.00300.x]

6 Chang DT, Chapman C, Shen J, Su Z, Koong AC. Treatment of esophageal cancer based on histology: a surveillance epidemiology and end results analysis. Ann. Surg Oncol 2009; 16: 405-410 [PMID: 19415029 DOI: 10.1007/JCO.00123181917 158]

7 Ando N, Kato H, Igaki H, Shinoda M, Ozawa S, Shimizu H, Nakamura T, Yabuhashi H, Aoyama N, Kurita A, Ikeda K, Kanda T, Tsujinaka T, Nakamura K, Fukuda H. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluourouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol 2012; 19: 68-74 [PMID: 21859261 DOI: 10.1245/s10434-011-1949-9]

8 Ando N, Ozawa S, Kitagawa Y, Shinozawa Y, Kitajima Y. Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann Surg 2000; 232: 225-232 [PMID: 10903602 DOI: 10.1097/00000568-200008000-00013]

9 Tachimori Y, Ozawa S, Fujishiro M, Matsubara H, Numasaki H, Oyama T, Shinoda M, Toh Y, Udagawa H, Uno T. Comprehensive Registry of Esophageal Cancer in Japan, 2006. Esophagus 2013; 11: 21-47 [DOI: 10.1007/s10588-013-0393-5]

10 Nishihiro T, Hirayama K, Mori S. A prospective randomized trial of extended cervical and superior mediastinal lymphadenectomy for carcinoma of the thoracic esophagus. Ann J Surg 1998; 175: 47-51 [PMID: 9445239 DOI: 10.1016/S0002-9610(97)00227-4]

11 Lelut T, Naeftoux P, Moons J, Coosemans W, De Leyn P, Van Raemdonck D, Ectors N. Three-field lymphadenectomy for carcinoma of the esophagus and gastro-esophageal junction in 174 R0 resections: impact on staging, disease-free survival, and outcome: a plea for adaptation of TNM classification in upper-half esophageal carcinoma. Ann Surg 2004; 240: 962-972, discussion 972-964 [PMID: 15570202]

12 Kelsen DP, Ginsberg R, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, Estes N, Haller DG, Ajanj J, Kocha W, Minsky BD, Roth J. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 1998; 339: 1979-1984 [PMID: 9869669 DOI: 10.1056/NEJM199812313392704]

13 Hirao M, Ando N, Tsujinaka T, Udagawa H, Yano M, Yama- na H, Nagai K, Muzisawa J, Nakamura K. Influence of preoperative chemotherapy for advanced thoracic esophageal squamous cell carcinoma on perioperative complications. Br J Surg 2011; 98: 1735-1741 [PMID: 21918956 DOI: 10.1002/bjs.7683]

14 Kranzfelder M, Schuster T, Geinitz H, Bühler P. Meta analysis of neoadjuvant treatment modalities and definitive non surgical therapy for esophageal squamous cell cancer. Br J Surg 2011; 98: 768-783 [PMID: 21462364 DOI: 10.1002/bjs.7455]

15 Bosset JF, Gignoux M, Triboulet JP, Tiret E, Mantion G, Elias D, Lozach P, Ollier JC, Favy J, Mercier M, Sahnoud T. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 1997; 337: 161-167 [PMID: 9219702 DOI: 10.1056/NEJM199701163370406]

16 Malthaner R, Fenlon D. Preoperative chemotherapy for resectable thoracic esophageal cancer. Cochrane Database Syst Rev 2003; (4): CD001556 [PMID: 1458936]

17 Launois B, Delarue D, Campion JP, Kerbaol M. Preoperative radiotherapy for carcinoma of the esophagus. Surg Clin North Am 1981; 155: 690-692 [PMID: 764167]

18 Gignoux M, Roussel A, Paillot B, Gillet M, Schlag P, Favre JP, Daleos O, Buyse M, Duez N. The value of preoperative radiotherapy in esophageal cancer: results of a study of the E.O.R.T.C. World J Surg 1987; 11: 426-432 [PMID: 3630187 DOI: 10.1007/BF01658505]

19 Arnott SJ, Duncan W, Kerr GR, Wallbaum PR, Cameron E, Jack WJ, Mackillop WJ. Low dose preoperative radiotherapy for carcinoma of the esophagus: results of a randomized clinical trial. Radiother Oncol 1992; 24: 108-113 [PMID: 1496141 DOI: 10.1016/0187-2381(92)90267-5]

20 Nygaard K, Hagen S, Hansen HS, Hatlelrott R, Hultborn R, Jacobsen A, Mønøya M, Modig H, Munch-Wikland E, Rosengren B. Pre-operative radiotherapy prolongs survival in operable esophageal carcinoma: a randomized, multicenter study of pre-operative radiotherapy and chemotherapy. The second Scandinavian trial in esophageal cancer.
Sjoquist KM, Burmeister BH, Smithers BM, zalberg JR, Simes RJ, Barbour A, Gelski V. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal cancer: an updated meta-analysis. Lancet Oncol 2011; 12: 691-692 [PMID: 21684205 DOI: 10.1016/S1470-2045(11)7014-5]

Ando N, Izuka T, Ide H, Ishida K, Shinoda M, Nishimaki T, Takigami W, Watanabe H, Isouko N, Aoyama N, Makuuchi H, Tanaka O, Yamana H, Ikeuchi S, Kabuto T, Nagai K, Shima-da Y, Kinjo Y, Fukuda H. Surgery plus chemotherapy compared with surgery alone for localized squamous cell carcinoma of the thoracic esophagus: a Japan Clinical Oncology Group Study–JCOG2004. J Clin Oncol 2007; 25: 4592-4596 [PMID: 17463047 DOI: 10.1200/JCO.2003.12.095]

Ajani JA, Swisher SG. Preoperative chemotherapy for localized squamous cell carcinoma of the esophagus? We should go back to the drawing board! Ann Surg Oncol 2012; 19: 3-4 [PMID: 21986665 DOI: 10.1245/s10434-011-1210-9]

Van Cutsem E, Moiseyenko VM, Tjulandin S, Majlis A, Costea M, Boni C, Rodrigues A, Fodor M, Chao Y, Veznyi E, Risse ML, Ajani A. Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol 2006; 24: 4991-4997 [PMID: 1705117 DOI: 10.1200/JCO.2006.06.8429]

Posner MR. Herschorn DM, Blajman CR, Mickiewicz E, Winkquist E, Gorbounova V, Tjulandin S, Shin DM, Cullen K, Ervin TJ, Murphy BA, Zea L, Cohen RB, Spaulding M, Tishler RB, Roth B, Viroglo R, Genkens V, Romanov I, Agarwala S, Hartker KW, Dugan M, Cnelk A, Markoo AM, Read PW, Steinbrenner L, Colevas AD, Norris CM, Haddad RI. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 2007; 357: 1705-1715 [PMID: 17960013 DOI: 10.1056/NEJMoa070956]

Hara H, Tahara M, Daiko H, Kato K, Ikagi H, Kadowski S, Tanaka Y, Hamamoto Y, Matsuhashi H, Nagase M, Hosoya Y. Phase II feasibility study of preoperative chemotherapy with docetaxel, cisplatin, and fluorouracil for esophageal squamous cell carcinoma. Cancer Sci 2013; 104: 1455-1460 [PMID: 23991469 DOI: 10.1111/cas.12274]

Watanabe M, Nagai Y, Kinosita K, Saito S, Kuraszige J, Harashima R, Harashima K, Sato N, Namamura Y, Hiroyoshi Y, Baba Y, Iwagami S, Miyamoto Y, Iwatsuki M, Hayashi N, Baba H. Induction chemotherapy with docetaxel/cisplatin/5-fluorouracil for patients with node-positive esophageal cancer. Digestion 2011; 83: 146-152 [PMID: 21266808 DOI: 10.1159/000321797]

Urschel JD, Vasam H. A meta-analysis of randomized controlled trials that compared neoadjuvant chemoradiotherapy and surgery to surgery alone for resectable esophageal cancer. Am J Surg 2003; 185: 538-543 [PMID: 12781882 DOI: 10.1016/S0002-9440(03)00067-6]

Fiorica F, Di Bona D, Schepis F, Licata A, Shahied L, Venturi A, Falchi AM, Craxi A, Cmam C. Preoperative chemoradiotherapy for oesophageal cancer: a systematic review and meta-analysis. Gut 2004; 53: 925-930 [PMID: 15194636 DOI: 10.1136/gut.2003.02580]

Nakamura K, Kato K, Ikagi H, Ito Y, Mizusawa J, Ando N, Udaghawa H, Tsukuba H, Daiko H, Hiroha N, Fukuda H, Kitagawa Y. Three-arm phase III trial comparing cisplatin plus 5-FU (CF) versus docetaxel, cisplatin plus 5-FU (DCF) versus radiotherapy with CF (CF-R) as pretherapeutic therapy for locally advanced esophageal cancer (JCOG1109, Next study). Jpn J Clin Oncol 2013; 43: 752-755 [PMID: 23625063 DOI: 10.1095/jjco/hy1061]

Pasin F, de Manzoni G, Zanoni A, Grandiato A, Capricc C, Pavarana M, Tomezolli A, Rubello D, Cordiano C. Neoadjuvant viant with weekly docetaxel and cisplatin, 5-fluorouracil continuous infusion, and concurrent radiotherapy in patients with locally advanced esophageal cancer produced.
a high percentage of long-lasting pathological complete response: a phase 2 study. Cancer 2013; 119: 939-945 [PMID: 23165781 DOI: 10.1002/cncr.27822]

44 Idelevich E, Kashtan H, Klein Y, Buevich V, Baruch NB, Dinerman M, Tokar M, Kundel Y, Brenner B. Prospective phase II study of neoadjuvant therapy with cisplatin, 5-fluorouracil, and bevacizumab for locally advanced resectable esophageal cancer. Oncologie 2012; 35: 427-431 [PMID: 22846974 DOI: 10.1159/000340072]

45 Bendell JC, Meluch A, Peyton J, Rubin M, Waterhouse D, Webb C, Burris HA, Hainsworth JD. A phase II trial of preoperative concurrent chemotherapy/radiation therapy plus bevacizumab/erlotinib in the treatment of localized esophageal cancer. Clin Adv Hematol Oncol 2012; 10: 430-437 [PMID: 22895283]

46 Becerra CR, Hanna N, McCollum AD, Bechamn N, Timmerman RD, DiMaio M, Kesler KA, Yu M, Yan T, Choy H. A phase II study with cetuximab and radiation therapy for patients with surgically resectable esophageal and GE junction carcinomas: Hoosier Oncology Group G05-92. J Thorac Oncol 2013; 8: 1425-1429 [PMID: 24084441 DOI: 10.1097/JTO.0b013e3182a46c3b]

47 Le Prise E, Etienne PL, Meunier B, Maddern G, Ben Hassel M, Gedouin D, Boutin D, Campion JP, Launois B. A randomized study of chemotherapy, radiation therapy, and surgery versus surgery for localized squamous cell carcinoma of the esophagus. Cancer 1994; 73: 1779-1784 [PMID: 8157201 DOI: 10.1002/1097-0142(19940401)73:7<1779::AID-CNCR2820730702>3.0.CO;2-T]

48 Apinop C, Puttisak P, Preecha N. A prospective study of combined therapy in esophageal cancer. Hepatogastroenterology 1994; 41: 391-393 [PMID: 7959579]

49 Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001; 19: 305-313 [PMID: 11208820]

50 Heise JW, Heep H, Frieling T, Sarbia M, Hartmann KA, Röher HD. Expense and benefit of neoadjuvant treatment in squamous cell carcinoma of the esophagus. BMC Cancer 2001; 1: 20 [PMID: 11737874 DOI: 10.1186/1471-2407-1-20]

51 Lee JL, Park SI, Kim SB, Jung HY, Lee GH, Kim JH, Song HY, Cho KJ, Kim WK, Lee JS, Kim SH, Min YI. A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann Oncol 2004; 15: 947-954 [PMID: 15151953 DOI: 10.1093/annonc/mdh129]

52 Burmeister BH, Smithers BM, Gelsing V, Fitzgerald L, Simes RJ, Devitt P, Ackland S, Gofley DC, Joseph D, Millar J, North J, Walpole ET, Denham JW. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the esophagus: a randomised controlled phase III trial. Lancet Oncol 2005; 6: 659-668 [PMID: 16129366 DOI: 10.1016/S1470-2119(05)70288-6]

53 Natsugoe S, Okumura H, Matsumoto M, Uchikado Y, Setoyama T, Yokomakura N, Ishigami S, Owaki T, Aikou T. Randomized controlled study on preoperative chemoradiotherapy followed by surgery versus surgery alone for esophageal squamous cell cancer in a single institution. Dis Esophagus 2006; 19: 468-472 [PMID: 17069590 DOI: 10.1111/j.1442-2050.2006.00615.x]

54 Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, Kiel K, Willett C, Sugarbaker D, Mayer R. Phase III trial of trimodality therapy with cisplatin, fluorouracil, and radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol 2008; 26: 1086-1092 [PMID: 18309943 DOI: 10.1200/JCO.2007.12.9593]

55 Lv J, Cao XF, Zhu B, Ji L, Tao L, Wang DD. Long-term efficacy of perioperative chemoradiotherapy on esophageal squamous cell carcinoma. World J Gastroenterol 2010; 16: 1649-1654 [PMID: 20355244 DOI: 10.3748/wjg.v16.i13.1649]

56 van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hopsers GA, Bonenkamp JJ, Cuesta MA, Blaasse RJ, Busch OR, ten Kate FJ, Creemers GJ, Punt CJ, Plukker JT, Verheul HM, Spillenaar Bilgen EJ, van Dekken H, van der Sangen MJ, Rozema T, Biermann K, Beukema JC, Piet AH, van Rij CM, Reinders JG, Talianu HW, van der Gaast A. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 2011; 366: 2074-2084 [PMID: 22646630 DOI: 10.1056/NEJMoa1112088]

P- Reviewers: Ilson DH, Souza MANE S- Editor: Wen LL L- Editor: A E- Editor: Liu SQ
