Radiomics for the Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Meta-Analysis

Liujun Li1,2, Chaoqun Wu1,2, Yongquan Huang1,2, Jiaxin Chen1, Dalin Ye1 and Zhongzhen Su1,2*

1 Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China, 2 Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China

Background: Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). To perform a meta-analysis to investigate the diagnostic performance of radiomics for the preoperative evaluation of MVI in HCC and the effect of potential factors.

Materials and Methods: A systematic literature search was performed in PubMed, Embase, and the Cochrane Library for studies focusing on the preoperative evaluation of MVI in HCC with radiomics methods. Data extraction and quality assessment of the retrieved studies were performed. Statistical analysis included data pooling, heterogeneity testing and forest plot construction. Meta-regression and subgroup analyses were performed to reveal the effect of potential explanatory factors [design, combination of clinical factors, imaging modality, number of participants, and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) applicability risk] on the diagnostic performance.

Results: Twenty-two studies with 4,129 patients focusing on radiomics for the preoperative prediction of MVI in HCC were included. The pooled sensitivity, specificity and area under the receiver operating characteristic curve (AUC) were 84% (95% CI: 81, 87), 83% (95% CI: 78, 87) and 0.90 (95% CI: 0.87, 0.92). Substantial heterogeneity was observed among the studies ($I^2=94\%$, 95% CI: 88, 99). Meta-regression showed that all investigative covariates contributed to the heterogeneity in the sensitivity analysis ($P<0.05$). Combined clinical factors, MRI, CT and number of participants contributed to the heterogeneity in the specificity analysis ($P<0.05$). Subgroup analysis showed that the pooled sensitivity, specificity and AUC estimates were similar among studies with CT or MRI.

Conclusion: Radiomics is a promising noninvasive method that has high preoperative diagnostic performance for MVI status. Radiomics based on CT and MRI had a
INTRODUCTION

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths and the second most lethal tumor (1), with 905,677 new cases and 830,180 new deaths in 2020 worldwide (2). New HCC cases and deaths in China account for approximately 50% of the cases in the world (3). Surgical and local ablative therapies are recognized as the radical treatment for HCC (4). However, the postoperative 5-year recurrence rate is still as high as 70% (5). Studies have shown the relationship between the high recurrence rate and microvascular invasion (MVI), which is recognized as an independent risk factor for postoperative recurrence of HCC (6–8). Postoperative pathology is the gold standard for MVI, but it is a lagging indicator. Therefore, the preoperative evaluation of MVI status will contribute to inform decision-making about the extent of surgical resection or ablation treatment for patients with HCC.

Biopsy is the preoperative reference standard for the diagnosis of MVI. Nevertheless, it is an invasive operation that may cause correlative complications and tumor seeding (9). In addition, there are some false negative results due to specimen limitation and tumor heterogeneity. Therefore, a noninvasive evaluation system is needed for preoperatively identifying MVI. Ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) have been used to assess the MVI status of HCC based on morphological features, such as size, number, shape, boundary, edge, capsule and enhancement characteristics (10–12). Unfortunately, the results have been inconsistent. The reasons are that the spatial resolution is too low to detect microvessels, and the reviews of medical images rely on subjective experience. Thus, there is an unmet clinical need to objectively, standardly and quantitatively evaluate the MVI status of HCC.

In 2012, Dutch scholar Lambin (13) proposed the concept of radiomics. It could extract massive quantitative imaging features from medical images by the statistics methods or machine learning algorithms. Radiomics has been used to construct predictive models for MVI by extracting quantitative features from US, CT, MRI, or positron emission tomography (PET). However, these studies differed in the diagnostic performance of the preoperative evaluation of MVI due to the differences in imaging modalities, research methods, sample size and so on. The reported diagnostic power ranged from 68% to 98% in the above studies (14–35). For these reasons, the diagnostic performance of radiomics for the preoperative identification of MVI in clinical practice remains uncertain. Therefore, we collected relevant studies and performed this meta-analysis to investigate the diagnostic performance of radiomics for the preoperative evaluation of MVI in HCC and the effect of potential factors.

MATERIALS AND METHODS

Literature Search and Study Selection

The present study followed the Preferred Reporting Items for Systematic reviews and Meta-Analysis of Diagnostic Test Accuracy (PRISMA-DTA) (36), and it was registered in the International Prospective Register of Systematic Reviews (number CRD42021259363). All papers were screened independently by two authors (LL and CW, radiologists with 8 and 2 years of experience, respectively). Any disagreements were resolved by discussion, and if the disagreement could not be resolved, a consensus was reached through arbitration by a third reviewer (YH, a radiologist with 11 years of experience).

We selected published relevant studies by systematically searching the PubMed, Embase and Cochrane Library databases without language, nation, or time restrictions. The deadline for searching the databases was June 06, 2021. We used subject words and free words such as “hepatocellular carcinoma”, “microvascular invasion”, and “radiomics” and their variations. A detailed search strategy is described in the Supplementary Materials. After the elimination of duplicate papers, the titles and abstracts of all remaining articles were reviewed. When it was ambiguous whether an article should be included, the full-text content had to be accessible online or in print and reviewed. Furthermore, we scrutinized the reference lists of each identified primary study and previous systematic reviews to identify additional related articles.

The inclusion criteria were as follows: diagnosis of HCC by pathology after hepatectomy or liver transplantation; presence or absence of MVI by pathologic diagnosis; US, CT, MRI or PET-CT performed one month before surgery; and imaging analysis based on a radiomics algorithm. The exclusion criteria were as follows: antitumor therapy was performed preoperatively; the studies did not have enough information to construct a two-by-two contingency table; the type of study included animal experiments, nondiagnostic tests, case reports, reviews, expert opinions and conference abstracts.

Data Extraction and Quality Assessment

Data extraction and quality assessment of the retrieved studies were completed by two authors independently (LL and JC,
radiologists with 8 and 5 years of experience, respectively). Any discrepancies were resolved by consensus with a senior author (ZS, a radiologist with 22 years of experience). We extracted data on patient characteristics, imaging modalities, and study characteristics from each selected study. Patient characteristics included the total number of participants, the number of participants with MVI present and MVI absent, sensitivity and specificity. We tabulated the number of true positives (TPs), false positives (FPs), false negatives (FNs) and true negatives (TNs) by the number of MVI-present and MVI-absent cases, sensitivity and specificity reported in each included study. If there were two or more predictive models based on the same cohort of patients in one study, the best model reported in the study was included in our meta-analysis.

We evaluated the methodological quality of the included studies by using the standard Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool (Bristol University, Bristol, UK) (37). We followed the guidelines for scoring each item of the checklist to assess the risk of bias and concerns regarding applicability by the software Review Manager 5.4 (Cochrane Library Software, Oxford, UK). The four domains assessed are as follows: patient selection, index test, reference standard, and flow and timing. Each individual question was categorized as “yes”, “no” or “unclear” for the risk of bias and “high risk”, “low risk” or “unclear risk” for applicability concerns.

Statistical Analysis
We used the MIDAS module for STATA version 16 (Stata Corp LP, College Station, Texas, USA) to analyze the raw data. We calculated the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) and their corresponding 95% confidence intervals (CI) using a bivariate regression model. Moreover, we plotted the results on a summary receiver operating characteristic (SROC) curve, and the area under the receiver operating characteristic curve (AUC) exhibited the diagnostic power of the included studies (38). AUCs of 0.5–0.7, 0.7–0.9 and > 0.9 show low, moderate and high diagnostic value, respectively. In addition, we plotted the Fagan nomogram by the MIDAS module and used the pretest probability (the ratio of MVI-positive cases to all cases in the included studies), PLR and NLR to calculate the posttest probability.

We drew forest plots to show the variation among studies and to detect heterogeneity for the pooled sensitivity and specificity. Heterogeneity due to the threshold effect was tested with the STATA MIDAS module. Heterogeneity caused by nonthreshold effects was measured using Cochrane’s Q-test and inconsistency index I^2, and the difference was considered significant when $P < 0.05$, with $I^2 \geq 50\%$ regarded as being indicative of moderate-to-high heterogeneity among studies (39). Meta-regression and subgroup analysis were performed to investigate the potential sources of heterogeneity. We performed univariable meta-regression analysis of several relevant covariates: design (retrospective or prospective), combined clinical factors (yes or no), imaging modality (MRI, CT or US), number of participants (≥ 100 or < 100), and QUADAS-2 applicability risk (absence or presence of high risk). In addition, the possible presence of publication bias was further assessed by using a Deeks’ regression test of asymmetry (40). Slope coefficients with a P value < 0.10 indicate significant publication bias.

RESULTS

Literature Selection
The literature search and study selection are shown in Figure 1 (36). All included studies were published between 2017 and 2021, and nine radiomics studies based on CT, nine radiomics studies based on MRI, three radiomics studies based on US and one radiomics study based on PET-CT were eligible for inclusion in this meta-analysis. A total of 4,129 HCC patients were included. Among them, 1,668 (40.4%) patients were pathologically diagnosed as MVI-positive and 2,461 (59.6%) as MVI-negative.

Extracted and Quality Assessment
The relevant characteristics and details of the 22 included studies are shown in Table 1. Figure 2 displays the distribution based on the QUADAS-2 scale of the methodological quality assessment of the included studies. The majority of studies were judged to have a low risk of bias and minimal concerns regarding applicability. None of the studies were excluded from the analysis according to the quality assessment. The slope coefficients of Deeks’ funnel plot asymmetry test for the presence of publication bias (P $= 0.38$) are presented in Figure 3, which suggested no publication bias.

Data Analysis
The forest plots and comprehensive results of all studies included in this diagnostic meta-analysis are shown in Figure 4 and Table 2. The primary analysis showed that the pooled sensitivity, specificity, PLR, NLR and DOR for the preoperative prediction of MVI in HCC were 84% (95% CI: 81%, 87%), 83% (95% CI: 78, 87), 5.0 (95% CI: 3.7, 6.6), 0.19 (95% CI: 0.16, 0.24) and 25.5 (95% CI: 16.7, 39.0), respectively. The AUC was 0.90 (95% CI: 0.87, 0.92), which suggested high diagnostic value (Figure 5). In addition, the pretest probability of MVI positive was 0.40 in our study, and both the likelihood ratio and posttest probability were high. A PLR of 5 implies an increase in the posttest probability for a positive test result to 77%. Likewise, an NLR of 0.19 reduced the posttest probability to 11% for a negative test result (Figure 6).

Meta-regression
Considerable heterogeneity existed among the studies (overall I^2 94%; 95% CI: 88, 99; $P < 0.001$). Similarly, the forest plots indicated high heterogeneity with I^2 values $> 50\%$ for sensitivity (I^2 62%; 95% CI: 44, 80; $P < 0.001$) and specificity (I^2 88%; 95% CI: 83, 92; $P < 0.001$). The proportion of heterogeneity likely due to the threshold effect was small (8%). Therefore, we recorded no evidence of a threshold effect. To identify the source of heterogeneity, we performed univariable meta-regression analysis. Table 3 shows the results of univariable meta-regression and subgroup analyses to
explore the influence of patient characteristics, imaging modality, and study characteristics on the pooled sensitivity and specificity estimates. The results showed that all investigative covariates contributed to the heterogeneity in the sensitivity analysis ($P < 0.05$). In addition, combined clinical factors, MRI, CT and number of participants contributed to the heterogeneity in the specificity analysis ($P < 0.05$).

Subgroup Analysis

In terms of research design, prospective studies ($n=2$) had higher sensitivity (88%; 95% CI: 78, 99) and specificity (100%; 95% CI: 100, 100) than retrospective studies ($n=20$; sensitivity, 83% [95% CI: 80, 86]; specificity, 81% [95% CI: 77, 86]). Regardless of whether radiomics was combined with clinical risk factors to construct a predictive diagnostic model, the sensitivity (84%; 95% CI: 81, 88 vs. 83\%; 95\% CI: 78, 88) was basically equivalent for both. However, radiomics alone had a slightly higher specificity ($n=10$; 86\%; 95\% CI: 80, 93) than radiomics combined with clinical risk factors ($n=12$; 81\%; 95\% CI: 74, 87).

In terms of different imaging modalities, US ($n=3$) had a higher sensitivity (87%; 95\% CI: 80, 95) and specificity (87%; 95\% CI: 74, 100) than CT ($n=9$; sensitivity, 84\% [95\% CI: 79, 88]; specificity, 80\% [95\% CI: 72, 88]) and MRI ($n=9$; sensitivity, 84\% [95\% CI: 79, 88]; specificity, 84\% [95\% CI: 77, 90]). On the other hand, the pooled sensitivity, specificity and AUC (0.89; 95\% CI: 0.86, 0.91 vs. 0.88; 95\% CI: 0.85, 0.91) estimates were similar among studies with CT or MRI.

In addition, the pooled sensitivity estimates were higher in studies with 100 participants or more ($n=15$; 84\%; 95\% CI: 81, 87) than in studies with fewer than 100 participants ($n=7$; 81\%; 95\% CI: 74, 88), but the pooled specificity (80%; 95\% CI: 74, 85 vs. 91\%; 95\% CI: 86, 97) showed the opposite trend. Similarly, studies without high risk according to QUADAS ($n=17$) had a higher pooled sensitivity (85%; 95\% CI: 83, 88) but a lower specificity (82%; 95\% CI: 77, 87) than studies with high risk according to QUADAS ($n=5$; sensitivity, 74\% [95\% CI: 66, 82]; specificity, 87\% [95\% CI: 79, 95]).

DISCUSSION

Our meta-analysis showed high pooled sensitivity (84%; 95\% CI: 81, 87), specificity (83%; 95\% CI: 78, 87), and AUC (0.90; 95\% CI: 0.87, 0.92) values which demonstrated that radiomics has the potential ability to preoperatively differentiate MVI status in HCC. The confirmation of this evidence will be beneficial to the formulation of optimal preoperative therapeutic strategies for patients with MVI of HCC. For example, if the presence of MVI
Table 1 | Basic characteristics and details of the 22 included studies.

Study ID	First Author	Year	N (M VI-Present)	MVI-Absent	Imaging Modality	Design	Combine-Clinical Factors (Yes/No)	Tumor size: ≤ 5 cm and >5 cm
1	Chong et al.	2021	356	90	MRI	Yes	Training and Validation cohort	Yes
2	Dai et al.	2021	69	29	MRI	No	Retrospective	Yes
3	Dong et al.	2020	322	144	US	No	Retrospective	No
4	Feng et al.	2019	160	62	MRI	No	Retrospective	Yes
5	Jiang et al.	2021	81	44	CT	Yes	Validation cohort	Yes
6	Li et al.	2021	50	22	PET-CT	No	Retrospective	No
7	Ni et al.	2019	58	23	CT	No	Retrospective	No
8	Peng et al.	2018	304	201	CT	Yes	Training and Validation cohort	Yes
9	Song et al.	2021	601	225	MRI	Yes	Training and Validation cohort	Yes
10	Wang et al.	2019	125	41	MRI	No	Retrospective	No
11	Yao et al.	2018	43	21	US	No	Retrospective	No
12	Yu et al.	2021	148	88	CT	No	Retrospective	No
13	Zhang et al.	2019	267	90	MRI	Yes	Training and Validation cohort	Yes
14	Zhang et al.	2021	111	57	CT	No	Retrospective	No
15	Zhang et al.	2020	75	37	CT	Yes	Validation cohort	Yes
16	Zhang et al.	2021	195	110	MRI	Yes	Training and Validation cohort	Yes
17	Zheng et al.	2017	120	53	CT	No	Retrospective	No
18	Zhu et al.	2019	142	53	MRI	Yes	Training and Validation cohort	Yes

N, number of patients; MVI, microvascular invasion; TP, true positive; FP, false positive; TN, true negative; FN, false negative; US, ultrasound; CT, computed tomography; MRI, magnetic resonance imaging; PET, positron emission tomography.

is confirmed preoperatively, the extent of resection or ablation will be expanded. So it has great clinical value in reducing recurrence and improving the survival rate of HCC patients.

Likelihood ratios and posttest probabilities can also provide important information about the likelihood that a patient with a positive or negative test actually has MVI or not. Through our meta-analysis, a PLR of 5 indicates that the test is five times more likely to correctly judge a positive result than incorrectly judge a positive result, and the posttest probability for a positive test result is 77%. Similarly, an NLR of 0.19 indicates that the test is 0.19 times more likely to incorrectly judge a negative result than correctly judge a negative result, and the posttest probability for a negative test result is 11%. These results further indicate that radiomics has important clinical value in preoperatively evaluating the MVI status in HCC.

A previous meta-analysis reported that the sensitivity, specificity, and AUC of MVI prediction in HCC were 78% (95% CI: 75, 80), 78% (95% CI: 76, 81) and 0.855 for radiomics and 73% (95% CI: 0.71, 0.75), 82% (95% CI: 0.80, 0.83) and 0.860 for non-radiomics, respectively (41). The results indicated that the diagnostic performance for predicting MVI status in HCC was equivalent between radiomics and non-radiomics. However, the results reported above were all lower than those of our meta-analysis. A reasonable interpretation is that the number of included studies was not enough for radiomics (n=9) in the previous meta-analysis. This meta-analysis included 22 studies, showing that radiomics had a higher performance than non-radiomics for the preoperative prediction of MVI status in HCC.

Substantial heterogeneity among the studies was observed, so we performed meta-regression and subgroup analyses to detect the sources of heterogeneity. Due to the limitation of the number of included studies, we only performed univariable meta-regression analysis instead of multivariable meta-regression analysis. The results showed that all the observed indicators contributed to the source of heterogeneity. In addition, each included study used a different methodological design, which was only a part of the heterogeneity, and it was not possible to find all sources of heterogeneity.

We used five key factors for subgroup analysis. In the study design subgroup analysis, prospective studies were better than retrospective studies. This result is reasonable given that prospective studies have a clear purpose, a thorough design, proper observational indicators and so on, suggesting that more prospective studies in the future will improve the predictive performance for MVI. However, only 2 prospective studies addressed the use of radiomics for the evaluation of MVI status in HCC, and more high-quality evidence is needed to reach more definitive conclusions. Some previous studies have shown that an MVI predictive model with combined clinical risk factors had higher diagnostic performance (26, 27, 42). However, the results of our meta-analysis showed that the combination of clinical risk factors with radiomics did not improve the diagnostic ability. This indicates that radiomics alone could also achieve high diagnostic performance, which was consistent with the results of other previous studies (14, 19, 33).
We performed subgroup analysis to compare the diagnostic performance of radiomics based on different imaging modalities. The results showed that CT and MRI were essentially equivalent, consistent with previous studies (41, 43). However, due to multiparameter imaging and hepatobiliary phase-specific imaging agents, MRI has greater advantages in the diagnostic sensitivity of HCC. For example, a prospective study by Granito A, et al. showed that the diagnostic sensitivity of the hepatobiliary phase for the diagnosis of small HCC was 100% (95% CI: 90-100) with Gd-EOB-DTPA enhanced magnetic resonance, which had a higher sensitivity than contrast-enhanced CT and US (44). In our meta-analysis, US was superior to CT or MRI, but only three studies focusing on grayscale US were included, and two of them were prospective studies. Additionally, another US study with a retrospective design reported an AUC of only 0.68 (17). So the pooled result is incompletely convincing showing ultrasound superior to CT or MRI. However, again, prospective studies can significantly

![Figure 2](image-url)
FIGURE 3 | Deeks’ funnel plot shows no asymmetry and the presence of publication bias. Numbers in circles refer to the study ID. ESS, effective sample size.

FIGURE 4 | Forest plots show the performance estimates (sensitivity and specificity) of each study based on radiomics for the preoperative prediction of MVI in HCC. Vertical lines in the forest plots show the pooled estimates of sensitivity and specificity. $I^2 > 50\%$ indicates substantial heterogeneity in the diagnostic parameters across studies.
TABLE 2 | Sensitivity analysis based on radiomics for the preoperative prediction of microvascular invasion in hepatocellular carcinoma.

Author	ACC (%)	SEN (%)	SPE (%)	PLR	NLR	DOR
Chong HH	91	89 (81, 95)	92 (88, 95)	10.75 (7.16, 16.14)	0.12 (0.07, 0.22)	88.7 (40.3, 195.3)
Dai H	87	93 (77, 99)	82 (67, 93)	5.32 (2.69, 10.50)	0.08 (0.02, 0.32)	63.6 (12.2, 332.0)
Dong Y*	93	86 (64, 97)	100 (84, 100)	37.00 (2.37, 576.55)	0.16 (0.06, 0.43)	227.3 (11.0, 1000.0)
Dong Y†	69	84 (77, 90)	56 (49, 64)	1.92 (1.60, 2.30)	0.28 (0.19, 0.42)	6.7 (4.0, 11.5)
Feng ST	84	76 (63, 88)	89 (81, 84)	6.75 (3.50, 11.99)	0.27 (0.17, 0.45)	24.8 (10.5, 58.3)
Jiang YQ	85	77 (62, 89)	95 (82, 99)	14.30 (0.68, 55.55)	0.24 (0.14, 0.42)	59.5 (12.1, 291.7)
Li Y	84	68 (45, 86)	96 (82, 100)	19.09 (2.73, 133.61)	0.33 (0.18, 0.61)	57.9 (6.5, 516.1)
Ma X	77	87 (76, 95)	72 (62, 80)	3.07 (2.22, 4.24)	0.18 (0.09, 0.36)	17.3 (7.0, 42.6)
Ni M	84	83 (61, 95)	86 (70, 95)	5.78 (2.51, 13.30)	0.20 (0.08, 0.50)	28.5 (6.8, 119.7)
Peng J	77	78 (72, 84)	76 (66, 84)	3.22 (2.27, 4.56)	0.29 (0.22, 0.38)	11.1 (6.4, 19.5)
Song D	86	85 (80, 89)	87 (83, 90)	6.38 (4.90, 8.31)	0.17 (0.13, 0.24)	36.6 (22.9, 58.7)
Wang H	76	71 (54, 84)	79 (68, 87)	3.30 (2.10, 5.20)	0.37 (0.23, 0.61)	8.9 (3.8, 20.8)
Xu X	81	89 (82, 93)	77 (73, 82)	3.93 (3.21, 4.82)	0.15 (0.09, 0.23)	26.7 (15.2, 46.9)
Yang L	87	89 (77, 96)	86 (79, 91)	6.25 (4.19, 9.31)	0.13 (0.06, 0.28)	47.4 (18.1, 123.9)
Yao Z	95	90 (70, 99)	100 (85, 100)	40.77 (2.62, 634.99)	0.12 (0.04, 0.37)	351.0 (15.9, 1000.0)
Yu Y	95	96 (89, 99)	93 (84, 98)	14.32 (0.55, 56.94)	0.05 (0.02, 0.13)	294.0 (70.6, 1000.0)
Zhang R	74	82 (73, 88)	70 (63, 77)	2.75 (2.15, 3.51)	0.25 (0.16, 0.40)	10.8 (5.8, 20.3)
Zhang W	71	72 (58, 83)	70 (56, 82)	2.43 (1.56, 3.78)	0.40 (0.25, 0.63)	6.09 (2.7, 13.8)
Zhang X	73	70 (53, 84)	76 (60, 89)	2.97 (1.62, 5.45)	0.39 (0.23, 0.66)	7.6 (2.7, 21.3)
Zhang Y	80	83 (74, 89)	76 (66, 85)	3.52 (2.37, 5.21)	0.23 (0.15, 0.35)	15.6 (7.7, 31.5)
Zheng J	78	91 (79, 97)	67 (55, 78)	2.76 (1.94, 3.93)	0.14 (0.06, 0.33)	19.6 (6.9, 56.3)
Zhu YJ	81	81 (68, 91)	81 (71, 88)	4.25 (2.72, 6.64)	0.23 (0.13, 0.41)	18.2 (7.7, 43.4)

Data in parentheses are 95% CIs. *Published in 2019; †Published in 2020.

ACC, accuracy; SEN, sensitivity; SPE, specificity; PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio.
FIGURE 6 | Fagan nomogram of radiomics for the preoperative identification of microvascular invasion in hepatocellular carcinoma. LR, likelihood ratio; Prob, probability; Pos, positive; Neg, negative.

TABLE 3 | Univariable meta-regression and subgroup analyses.

Parameter	Category	No. of Studies	Sensitivity (%)	P_1	Specificity (%)	P_2
Design	retrospective	20	83 (80, 86)	0.04	81 (77, 86)	0.15
	prospective	2	88 (78, 99)	0.15	100 (100, 100)	
Combine clinical factors	yes	12	84 (81, 88)	0.00	81 (74, 87)	0.00
	no	10	83 (78, 88)	0.00	86 (80, 93)	
MRI	yes	9	84 (79, 88)	0.00	84 (77, 90)	0.00
	no	13	84 (80, 88)	0.00	83 (76, 89)	0.00
CT	yes	9	84 (79, 88)	0.00	80 (72, 88)	0.00
	no	13	84 (80, 88)	0.00	85 (79, 90)	
US	yes	3	87 (80, 95)	0.02	87 (74, 100)	0.44
	no	19	83 (80, 86)	0.00	83 (78, 88)	
No. of participants	≥100	15	84 (81, 87)	0.00	80 (74, 85)	0.00
	<100	7	81 (74, 88)	0.00	91 (86, 97)	
QUADAS	QUADAS high risk	5	74 (66, 82)	0.00	87 (79, 95)	0.08
	QUADAS no high risk	17	85 (83, 88)	0.00	82 (77, 87)	

Data in parentheses are 95% CIs. MRI, magnetic resonance imaging; CT, computed tomography; US, ultrasound; QUADAS, quality assessment of diagnostic accuracy studies.
radiomics methods. Moreover, it is necessary to carry out further analysis based on radiomics methods to improve the preoperative diagnostic performance of MVI in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Study design: LL, CW, YH, JC, DY, and ZS. Literature search and study selection: LL, CW and YH. Data extraction and quality assessment: LL, CW, JC and ZS. Statistical analysis: LL, DY and YH. Study supervision: ZS and YH. ZS obtained the research fund. Editing and review of the manuscript: all authors. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science Foundation of China (Grant No. 82072038) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A0303130070).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.831996/full#supplementary-material

REFERENCES

1. Villanueva A. Hepatocellular Carcinoma. *N Engl J Med* (2019) 380:1450–62. doi: 10.1056/NEJMra1713263
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* (2021) 71:209–49. doi: 10.3322/caac.221660
3. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, et al. Mortality, Morbidity, and Risk Factors in China and its Provinces, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. *Lancet* (2019) 394:1145–58. doi: 10.1016/S0140-6736(19)30427-1
4. Department of Medical Administration and National Health and Health Commission of the People’s Republic of China. Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China (2019 Edition). *Chin J Hepatol* (2020) 28:112–28. doi: 10.3760/cma.j.issn.1007-3418.2020.02.004
5. Vitale A, Peck-Radosavljevic M, Giannini EG, Vibert E, Sieghart W, Van Poucke S, et al. Personalized Treatment of Patients With Very Early Hepatocellular Carcinoma. *J Hepatol* (2017) 66:412–23. doi: 10.1016/j.jhep.2016.09.012
6. Wang H, Wu MC, Cong WM. Microvascular Invasion Predicts a Poor Prognosis of Solitary Hepatocellular Carcinoma Up to 2 Cm Based on Propensity Score Matching Analysis. *Hepatol Res* (2019) 49:344–54. doi: 10.1111/hepr.13241
7. Zhang XP, Wang K, Wei XB, Li LQ, Sun HC, Wen TF, et al. An Eastern Hepatobiliary Surgery Hospital Microvascular Invasion Scoring System in Predicting Prognosis of Patients With Hepatocellular Carcinoma and Microvascular Invasion After R0 Liver Resection: A Large-Scale, Multicenter Study. *Oncologist* (2019) 24:e1476–88. doi: 10.1634/theoncologist.2018-0868
8. Zhang XP, Zhou TF, Wang ZH, Zhang F, Zhong CQ, Hu YR, et al. Association of Preoperative Hypercoagulability With Poor Prognosis in Hepatocellular Carcinoma Patients With Microvascular Invasion After Liver Resection: A Multicenter Study. *Ann Surg Oncol* (2019) 26:4117–25. doi: 10.1245/s10434-019-07594-7
9. Szpakowski JL, Drasin TE, Lyon LL. Rate of Seeding With Biopsies and Ablations of Hepatocellular Carcinoma: A Retrospective Cohort Study. *Hepatol Commun* (2017) 1:841–51. doi: 10.1002/hep4.1089
10. Renzulli M, Brocchi S, Cucchieta A, Mazzotti F, Mosconi C, Sportoletti C, et al. Can Current Preoperative Imaging be Used to Detect Microvascular Invasion of Hepatocellular Carcinoma? *Radiology* (2016) 279:432–42. doi: 10.1148/radiol.2015150998
11. Lee S, Kim SH, Lee JE, Sinn DH, Park CK. Preoperative Gadoxetic Acid-Enhanced MRI for Predicting Microvascular Invasion in Patients With Single
Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Two-Center Study. Clin Transl Med (2020) 10:e111. doi: 10.1002/ctm2.111

Zhang Y, Shu Z, Ye Q, Chen J, Zhong J, Jiang H, et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Multi-Parametric MRI Radiomics. Front Oncol (2021) 11:e633596. doi: 10.3389/fonc.2021.633596

Zheng J, Chakraborty J, Chapman WC, Gerst S, Gonen M, Pak LM, et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis. J Am Coll Surg (2017) 225:788–8.e1. doi: 10.1016/j.jamcollsurg.2017.09.003

Zhu YF, Feng B, Wang S, Wang LM, Wu JF, Ma XH, et al. Model-Based Three-Dimensional Texture Analysis of Contrast-Enhanced Magnetic Resonance Imaging as a Potential Tool for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Oncol Lett (2019) 18:720–32. doi: 10.3892/ol.2019.10378

McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM and the PRISMA-DTA Group, et al. Preferred Reporting Items for a Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA (2018) 319:388–96. doi: 10.1001/jama.2017.19163

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann Intern Med (2011) 155:529–36. doi: 10.7326/0003-4819-155-8-201101100-00009

Moses LE, Shapiro D, Littenberg B. Combining Independent Studies of a Diagnostic Test Into a Summary ROC Curve: Data-Analytic Approaches and Some Additional Considerations. Stat Med (1993) 12:1293–316. doi: 10.1002/sim.4780140307

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring Inconsistency in Meta-Analyses. BMJ (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557

Deeks JJ, Macaskill P, Irwig L. The Performance of Tests of Publication Bias and Other Sample Size Effects in Systematic Reviews of Diagnostic Test Accuracy was Assessed. J Clin Epidemiol (2005) 58:882–93. doi: 10.1016/j.jclinepi.2005.01.016

Huang J, Tian W, Zhang L, Huang Q, Lin S, Ding Y, et al. Preoperative Prediction Power of Imaging Methods for Microvascular Invasion in Hepatocellular Carcinoma: A Systemic Review and Meta-Analysis. Front Oncol (2020) 10:687. doi: 10.3389/fonc.2020.00687

Hu HT, Wang Z, Huang XW, Chen SL, Zheng X, Ruan SM, et al. Ultrasound-Based Radiomics Score: A Potential Biomarker for the Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Eur Radiol (2019) 29:2890–901. doi: 10.1007/s00330-018-5797-0

Meng XP, Wang YC, Zhou JY, Yu Q, Lu CQ, Xia C, et al. Comparison of MRI and CT for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma Based on a Non-Radiomics and Radiomics Method: Which Imaging Modality Is Better? J Magn Reson Imaging (2021) 54:526–36. doi: 10.1002/jmri.27575

Quaglino D, Galassi M, Pisacchia F, Romanini L, Lucidi V, Renuzzi M, et al. Impact of Gadoteric Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance on the non-Invasive Diagnosis of Small Hepatocellular Carcinoma: A Prospective Study. Aliment Pharmacol Ther (2013) 37(3):355–63. doi: 10.1111/apt.12166
45. Wilson GC, Cannella R, Fiorentini G, Shen C, Borhani A, Furlan A, et al. Texture Analysis on Preoperative Contrast-Enhanced Magnetic Resonance Imaging Identifies Microvascular Invasion in Hepatocellular Carcinoma. *HPB (Oxf)* (2020) 22:1622–30. doi: 10.1016/j.hpb.2020.03.001

46. Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, et al. Noninvasive Radiomics Signature Based on Quantitative Analysis of Computed Tomography Images as a Surrogate for Microvascular Invasion in Hepatocellular Carcinoma: A Pilot Study. *J Med Imaging (Bellingham)* (2017) 4:41303. doi: 10.1117/1.JMI.4.4.041303

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Li, Wu, Huang, Chen, Ye and Su. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.