Original Article

Butenafine and analogues: An expeditious synthesis and cytotoxicity and antifungal activities

Ana María Garzón Porras a, Bruna Silva Terra a, Taniris Caiero Braga a, Thais Furtado Ferreira Magalhães b,c, Cleide Viviane Buzanello Martins c,d, Danielle Letícia da Silva b,c, Ludmila Matos Baltazar b, Ludmila Ferreira Gouveia b, Gustavo José Cota de Freitas b, Daniel Assis Santos b, Maria Aparecida Resende-Stoianoff b, Beth Burgwyn Fuchs c, Eleftherios Mylonakis c, Rossimiriam Pereira de Freitas a, Ângelo de Fátima a,*

a Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
b Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
c Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
d Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná, Toledo, PR, Brazil

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 7 March 2018
Revised 19 June 2018
Accepted 20 June 2018
Available online 21 June 2018

Keywords:
Antifungal activity
Butenafine
Microwave-assisted synthesis

ABSTRACT

The incidence of fungal infections is considered a serious public health problem worldwide. The limited number of antifungal drugs available to treat human and animal mycosis, the undesirable side effects and toxicities of the currently available drugs, and the emergence of fungal resistance emphasizes the urgent need for more effective antifungal medicines. In this paper, we describe a rapid, simple, and efficient synthetic route for preparation of the antifungal agent butenafine on a multigram scale. This novel synthetic route also facilitated the preparation of 17 butenafine analogues using Schiff bases as precursors in three steps or less. All the synthesized compounds were evaluated against the yeast, Cryptococcus neoformans/C. gattii species complexes and the filamentous fungi Trichophyton rubrum and Microsporum

https://doi.org/10.1016/j.jare.2018.06.004
2090-1232/© 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Fungal infections can range in severity depending on the patient age, the infection site, and the disease-causing agent. These factors affect the type of medical treatment employed to combat fungi. Superficial fungal infections caused by dermatophytes, known as dermatophytosis [1–3], have debilitating effects, and they negatively impact the quality of human or animal life [1,4]. The main causative agents of dermatophytosis belong to the genera *Microsporum*, *Trichophyton*, and *Epidermophyton*, with *T. rubrum* being the most prevalent species worldwide [1]. Dermatophytosis is often recalcitrant to treatment mainly due to the poor penetration of antifungals at the site of infection but also because of drug resistance mechanisms employed by the infectious agent [1,5]. Cutaneous fungal infections can be originated via direct inoculation of the fungi (primary cutaneous mycosis), or they can result from the systemic hematogenous spread of the pathogen (secondary cutaneous mycosis). Early diagnosis and treatment are very important, especially in immunocompromised individuals, as these agents can also cause invasive infections due to mucosal or cutaneous barrier disruption and metabolic dysfunction or due to neutrophil defects in the number and function and in cell-mediated immunity [6,7]. Invasive fungal infections (IFIs) occur when fungi invade deep tissues, leading to prolonged illness and high mortality (>50% in some cases). These infections are more common in immunocompromised or other high-risk hospitalized patients, including those with hematologic or other malignancies, and in those who have undergone hematologic stem-cell or solid-organ transplants and who therefore receive immunosuppressive therapy. In recent years, there has been an increase in the number of IFIs due to an increase in the number of immunocompromised people, to the emergence of antifungal resistant species, and to the prophylactic use of antifungals. Certain fungi are known to cause IFIs including yeasts of the genus *Candida* and *Cryptococcus* [8,9]. Previously, *C. albicans* was the main species of the genus *Candida* that was known to cause IFIs: however during recent years, non-albicans species, such as *C. parapsilosis*, *C. glabrata*, *C. tropicalis* and more recently and *C. auris*, have gained interest as etiologic agents of these infections. The resistance of these species to azoles and echinocandins has become a severe clinical challenge [10–12]. The *Cryptococcus neoformans/Cryptococcus gattii* species complex is responsible for almost all cryptococcal infections, which are the most common life-threatening fungal infections in patients with HIV in many regions of the world. Despite the lack of consensus regarding the nomenclature of the *Cryptococcus* species, it is believed that differences exist in their susceptibility to the most commonly used antifungals (amphotericin B, 5-FC and azole derivatives) [13,14]. Worldwide, infections caused by these pathogens account for an estimated 223,000 cases of cryptococcal meningitis per year among people with HIV/AIDS, resulting in approximately 180,000 deaths per year [15].

Typically, fungal infections are treated with polyenes, including amphotericin B, azoles, such as fluconazole and ketoconazole, allylamines, such as terbinafine and naftifine and butenafine, which is the only benzylamine-containing compound commonly used to treat fungal infections (Fig. 1) [1,16–18]. Butenafine is structurally similar to terbinafine, and its antifungal activity is attributed to its ability to directly damage fungal cell membranes by disrupting the

Fig. 1. Chemical structures of antifungal agents: amphotericin B, fluconazole, ketoconazole, terbinafine, naftifine and butenafine.
early stages of ergosterol biosynthesis via inhibition of the enzyme squalene epoxidase [19]. The inhibition of this enzyme compromises the plasma membrane, leading to the toxic accumulation of squalene in the fungal cell membrane, which culminates in fungal death [20–22].

Due to antifungal properties of butenafine, many strategies have been reported in the literature to prepare this benzylamine compound. The majority of the synthetic strategies involve a bimolecular nucleophilic substitution reaction (SN2 reaction), employing N-methyl-1-(naphthalen-1-yl)methanamine hydrochloride as the nucleophile and 1-(tert-butyl)-4-(chloromethyl)benzene or 1-(bromomethyl)-4-(tert-butyl)benzene as the electrophile. These reactions occur in the presence of a base, and the desired product is obtained after 3–5 h. Subsequently, the conversion of the free base of butenafine to its corresponding hydrochloride salt furnishes the desired benzylamine in a 73–86% yield (2 steps) [23–26]. Although the above methodologies involve only two steps, the use of toxic solvents such as toluene and dimethylformamide (DMF) and the use of catalysts make the process less attractive.

In 2014, Beydoun and co-workers described a “one-pot” synthesis of butenafine with a 60% yield that employed a non-commercially available catalyst formed from Ru(triphos)(tmm) (5 mol%) and trifluoromethanesulfonyl imide (HNTf2) (10 mol%) [27]. A year later, Fu and co-workers described the synthesis of butenafine, in which a boronic acid-catalyzed amide condensation was followed by the B(C6F5)3-catalyzed reduction of the amide and the direct reductive N-methylation with formic acid. Butenafine was thus obtained after two steps, with a 91% yield [28]. In general, all the synthetic strategies described for the synthesis of butenafine use an expensive and/or non-commercially available catalyst as well as a prolonged reaction time, or they require prior manipulation of the starting materials [25,27–31].

As butenafine is a potent compound, many reports have been published describing the synthesis and biological evaluation of its analogues. In general, the analogues have demonstrated potent antifungal activity, while the synthetic routes result in moderate yields of the desired compounds [32–35].

Previous work from our research group described the design, synthesis, and antifungal activities of a series of Schiff bases [36–38]. Schiff bases are some of the most widely used organic compounds. They serve as pigments and dyes, catalysts, intermediates/precursors in organic synthesis, and polymer stabilizers [36,39]. Indeed, the importance of Schiff bases as precursors for organic synthesis is well established, as they have been used in numerous chemically diverse reactions, including the addition of organic metallic reagents or hydrides to convert C=N into C=C bonds, the hetero Diels–Alder reaction to obtain heterocyclic compounds, and the Staudinger reaction for the preparation of β-lactams [40].

Herein, we describe a strategy to the synthesize butenafine using a Schiff bases precursors and to subsequently produce its hydrochloride salt. In addition, 17 butenafine analogues were prepared from 6 Schiff bases, and 11 amines and their corresponding hydrochloride salts were generated. Butenafine and its analogues were evaluated for their antifungal activity as well as for toxicity.

Material and methods

Chemistry

General procedures

The reagents were obtained from chemical suppliers. Benzaldehyde was purified using the method previously described by Kieboom [41], all the amines were distilled by fractional distillation, and the solvents were purified by simple distillation. The reaction progress was monitored by thin-layer chromatography and gas chromatography–mass spectrometry using a Shimadzu CGMS-QP2010 Ultra instrument. Column chromatography was performed with silica gel 60 (70–230 mesh), and hexane/ethyl acetate/triethylamine (50:50:0.1) served as the eluent for all the phenyl amines. The melting point was measured using a MQAPF-302 apparatus, and the values were not corrected. NMR spectra were obtained on a Bruker AVANCE DXP 200. The data were reported as follows: chemical shift multiplicities [s (singlet), br s (broad singlet), d (doublet), dd (double doublet) or m (multiplet)], coupling constants (hertz), and integration. Chemical shifts were reported in parts per million (ppm), relative to tetramethylsilane (TMS) for 1H spectra and relative to residual solvent peaks for 13C spectra. Copies of 1H NMR and 13C NMR spectrum for all synthesized compounds are available as Supplementary Material. High-resolution mass spectra were obtained using a mass spectrometer with an electrospay ionization source (ESI-MS) on a Shimadzu LC-ITTOF instrument. The infrared spectra were recorded as KBr plates by Fourier transform spectrometry on a Bruker Alpha spectrometer or a Perkin Elmer spectrometer.

General procedure for the synthesis of Schiff bases (3)

The requisite amine (1.0 mmol) and aldehyde (1.0 mmol) in ethanol (4 mL) were stirred under microwave radiation (MW) in a DISCOVER CEM reactor using the following conditions: temperature 80°C, maximum power 200–250 Watts, hold time 2 min, and run time 2–8 min, with vigorous stirring in an open tube. After the complete consumption of the starting materials, the reaction mixture was concentrated under reduced pressure to achieve the desired Schiff bases (3).

N-Benzyl-1-phenylmethanimine (3ac).

Yield 98%. Light yellow oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 8.38 (s, 1H, HC–N), 7.78 (d, J = 6.6 and 2.9, 2H), 7.42–7.24 (m, 8H), 4.81 (s, 2H, CH2), 13.3 (C, NMR (50 MHz, CDCl3): δ (ppm) = 162.2 (C=N), 139.5 (C), 136.3 (C), 131.0 (CH), 128.8 (2CH), 128.7 (2CH), 128.5 (2CH), 128.2 (2CH), 127.2 (CH), 65.2 (CH2). IR (KBr): ν/cm−1 = 3062 and 3027 (ν benzyl = CH), 2871 and 2839 (ν CH2), 1642 (ν C–N of ArCH–N–Ar), 1602, 1580 and 1495 (ν C–C benzyl), 1451 (δ, CH2). HRMS (ESI): m/z observed: 196.1099; C10H13N [M+H]+ requires: 196.1126; error (ppm): 1.4. Data for 3ac are in accordance with those reported elsewhere [42].

N-(4-(tert-Butyl)-1-phenylmethanimine (3bc).

Yield 100%. White solid (Mp 40.7–41.1 °C). 1H NMR (200 MHz, CDCl3): δ (ppm) = 8.38 (s, 1H, HC–N), 7.80–7.77 (m, 2H), 7.43–7.35 (m, 5H), 7.27 (d, J = 8.4, 2H), 4.79 (s, 2H, CH2), 1.31 (s, 9H, 3CH3). 13C NMR (50 MHz, CDCl3): δ (ppm) = 162.0 (C=N), 150.1 (C), 136.5 (C), 136.4 (C), 131.0 (CH), 128.8 (2CH), 128.5 (2CH), 127.9 (2CH), 125.6 (2CH), 65.0 (CH2), 34.7 (C), 31.6 (3CH3). IR (KBr): ν/cm−1 = 3057 and 3026 ν CH benzyl, 2956 (ν2 CH benzyl), 2871 and 2806 (ν CH2), 1644 (ν C–N of ArCH–N–Ar), 1462 (δ, CH2). HRMS (ESI): m/z observed: 252.1742; C9H13N + [M+H]+ requires: 252.1752; error (ppm): 0.4. Data for 3bc are in accordance with those reported elsewhere [43].

N-((Naphthalen-1-yl)methylene)phenylmethanimine (3ad).

Yield 99%. Dark yellow thick oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 9.04 (s, 1H, HC–N), 8.95 (d, J = 7.8, 1H), 7.96–7.86 (m, 3H), 7.64–7.47 (m, 3H), 7.43–7.23 (m, 5H), 4.95 (s, 2H, CH2). 13C NMR (50 MHz, CDCl3): δ (ppm) = 161.9 (C=N), 139.7 (C), 134.0 (C), 131.7 (C), 131.5 (C), 131.3 (CH), 129.3 (CH2), 128.8 (CH), 128.7 (2CH), 128.2 (2CH), 127.4 (CH), 127.2 (CH), 126.2 (CH), 125.4 (CH), 124.6 (CH), 66.2 (CH2). IR (KBr): ν/cm−1 = 3085, 3058 and 3028 ν CH benzyl), 2870 and 2827 (ν CH2), 1641 (ν C–N of ArCH–N–Ar), 1619 (ν C–C naphthyl), 1589 (ν C–C benzyl), 1452 (δ, CH2). HRMS (ESI): m/z observed: 246.1259; C10H13N [M+H]+ requires: 246.1251; error (ppm): 0.3.
requires: 246.1282; error (ppm): 0.9. Data for 3ad are in accordance with those reported elsewhere [44].

(4-tert-Butylyphenyl)-N-(naphthalen-1-yl)methylene)methanamine (3bd). Yield 100%. Beige solid. 1H NMR (200 MHz, CDCl3): δ (ppm) = 9.02 (s, 1H, HC = N), 8.96 (d, J = 8.2, 1H), 7.95–7.84 (m, 3H), 7.58–7.44 (m, 3H), 7.42–7.27 (m, 4H), 4.91 (s, 2H, CH2), 1.32 (s, 9H, 3CH3). 13C NMR (50 MHz, CDCl3): δ (ppm) = 161.7 (C = N), 150.1 (C), 136.7 (C), 134.0 (C), 132.0 (C), 131.3 (C), 129.2 (CH), 129.0 (CH), 127.9 (2CH), 127.4 (CH), 126.2 (CH), 125.6 (2CH), 125.4 (CH), 124.6 (CH), 66.0 (CH2), 34.7 (C), 31.6 (3CH3). IR (KBr): v (cm⁻¹) = 3329 (ν NH of Ar-NH-R), 3086, 3060 and 3027 (ν = CH benzyl), 2971 (ν CH3), 2868 (ν CH3, 1495 and 1454 (ν = C–C benzyl), 1394 and 1363 (δ CH3 of C(CH3)2), 1269 (ν C=C Ar). HRMS (ESI): m/z observed: 254.1831; C16H12N [M+H]+ requires: 254.1908; error (ppm): 3.0. Data for 4bc are in accordance with those reported elsewhere [47].

N-(Naphthalen-1-yl)-methyl[phenyl)methanamine (4ad). Yield 98%. Yellow oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.80–7.82 (m, 1H), 7.76 (d, J = 7.8, 1H), 7.53–7.22 (m, 9H, 4.23 (s, 2H, CH2), 3.90 (s, 2H, CH2), 2.03 (s, 1H, NH). 13C NMR (50 MHz, CDCl3): δ (ppm) = 140.3 (C), 135.8 (C), 134.1 (C), 132.0 (C), 128.9 (11H), 128.6 (2CH), 128.5 (2CH), 128.0 (CH), 127.3 (CH), 126.4 (CH), 126.3 (CH), 125.8 (CH), 129.1 (C), 53.8 (CH2), 50.9 (CH3). IR (KBr): v (cm⁻¹) = 3324 (ν NH of Ar-NH-R), 3059 and 3028 (ν = CH benzyl), 1510 (ν C=C naphthyl), 1452 (ν = C=C benzyl), 1331 (ν C=C Ar). HRMS (ESI): m/z observed: 248.1394; C16H12N [M+H]+ requires: 248.1439; error (ppm): 1.8. Data for 4ad are in accordance with those reported elsewhere [48].

N-Benzyl-1-(naphthalen-2-yl)methanamine (4ae). Yield 82%. Yellow oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.83–7.77 (m, 4H), 7.50–7.42 (m, 3H), 7.36–7.22 (m, 5H), 3.96 (s, 2H), 3.84 (s, 2H), 2.00 (s, 1H). 13C NMR (50 MHz, CDCl3): δ (ppm) = 140.0 (C), 137.5 (C), 133.6 (C), 132.9 (C), 128.7 (CH), 128.5 (CH), 128.3 (CH), 127.9 (CH), 127.3 (CH), 126.8 (CH), 126.8 (CH), 126.2 (CH), 128.5 (CH), 126.9 (CH), 53.4 (CH2), 52.9 (CH2), 34.7 (C), 31.6 (3CH3). IR (KBr): v (cm⁻¹) = 3328 (ν NH of Ar-NH-R), 3054, 3023 (ν = CH benzyl), 2960 (ν CH3) of C(CH3)2). 2868 (ν CH3, 1495 and 1454 (ν = C–C benzyl), 1394 and 1363 (δ CH3 of C(CH3)2), 1269 (ν C=C Ar). HRMS (ESI): m/z observed: 304.2003; C20H16N [M+H]+ requires: 304.2065; error (ppm): 2.0. Data for 4ae are in accordance with those reported elsewhere [49].

Dibenzylamine (4ac). Yield 80%. Yellow oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.35–7.23 (m, 10H), 3.81 (s, 4H, 2CH2), 1.89 (s, 1H, NH). 13C NMR (50 MHz, CDCl3): δ (ppm) = 140.4 (2C, CH2), 128.6 (4C, CH2), 127.2 (2CH), 53.3 (2CH2). IR (KBr): v (cm⁻¹) = 3327 (ν NH of Ar-NH-R), 3085, 3062 and 3027 (ν = CH benzyl), 2814 (ν CH2), 1603 and 1453 (ν C–C benzyl), 1362 (ν C=C,N). HRMS (ESI): m/z observed: 198.1251; C10H12N [M+H]+ requires: 198.1282; error (ppm): 1.6. Data for 4ac are in accordance with those reported elsewhere [46].

(4-tert-Butylyphenyl)-N-(naphthalen-2-yl)methylene)methanamine (4be). Yield 99%. Yellow oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.83–7.79 (m, 4H), 7.51–7.42 (m, 3H), 7.39–7.27 (m, 4H), 3.98 (s, 2H, CH2), 3.81 (s, 2H, CH2), 2.10 (s, 1H, NH), 1.32 (s, 3H, CH3). 13C NMR (50 MHz, CDCl3): δ (ppm) = 150.2 (C), 137.8 (C), 137.2 (C), 133.6 (C), 132.9 (C), 128.3 (CH), 128.2 (2CH), 127.9 (CH), 127.9 (CH), 126.8 (CH), 126.8 (CH), 126.2 (CH), 125.8 (CH), 126.9 (CH), 53.4 (CH2), 52.9 (CH2), 34.7 (C), 31.6 (3CH3). IR (KBr): v (cm⁻¹) = 3328 (ν NH of Ar-NH-R), 3054, 3023 (ν = CH benzyl), 2960 (ν CH3) of C(CH3)2).
N-Benzyl-N-methyl(phenyl)methanamine (5ac). Yield 74%. Yellow oil. 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.39–7.23 (m, 10H), 3.52 (s, 2H, CH2), 3.51 (s, 2H, CH2), 2.19 (s, 3H, NCH3), 1.31 (s, 9H, 3CH3). CDCl3): δ (ppm) = 139.6 (C), 135.2 (C), 134.1 (C), 132.7 (C), 129.3 (CH), 129.6 (CH), 128.4 (CH), 127.2 (CH), 125.9 (CH), 125.8 (CH), 125.3 (CH), 125.1 (CH), 62.6 (CH2), 60.7 (CH2), 42.5 (CH3) IR (KBr): ν (cm⁻¹) = 3068, 3061, 3027 (ν = CH benzyl), 2923 (ν = CH), 2862 (ν = CH2), 1501 ν (C = naphthyl) HRMS (ESI): m/z observed: 268.1966, C13H15N [M−H]+ requires: 268.2065; error (ppm): 0.3.

N-Benzyl-N-methyl(phenyl)-N-(naphthalen-2-yl)methanamine (5ae). Yield 72%. Mp 36.1–37.0 °C (white solid). 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.84–7.76 (m, 4H), 7.54 (dd, 1H, J = 8.4 and 1.4, 1H), 7.47–7.41 (m, 2H), 7.38–7.28 (m, 4H), 3.65 (s, 2H, CH2), 3.54 (m, 2H, CH2), 2.22 (s, 3H, NCH3), 1.31 (s, 9H, CH3). 13C NMR (50 MHz, CDCl3): δ (ppm) = 150.0 (C), 137.3 (C), 136.3 (C), 133.6 (C), 133.0 (C), 128.9 (2CH), 128.1 (CH), 127.9 (CH), 127.6 (CH), 126.5 (CH), 126.1 (CH), 125.7 (CH), 62.2 (CH2), 61.8 (CH2), 42.6 (NCH3), 34.7 (CH3). IR (KBr): ν (cm⁻¹) = 3051 (ν = CH benzyl), 2962 (ν = CH2), 2876 (ν = CH3 of N-Ch3), 1501 ν (C = benzyl), 1519 ν (C = naphthyl), 1395 and 1363 (δs, CH3 of C(CH3)3), 1342 (δs, CH3 of N-CH3). HRMS (ESI): m/z observed: 262.1577; C17H17N [M+H]+ requires: 262.1595; error (ppm): 0.7. Data for 5ae are in accordance with those reported elsewhere [53].

N-Benzyl-N-ethyl-1-(naphthalen-2-yl)methanamine (5ae). Yield 73%. Mp 36.0–36.8 °C (white solid). 1H NMR (200 MHz, CDCl3): δ (ppm) = 7.83–7.77 (m, 4H), 7.54 (dd, 1H, J = 8.4 and 1.4, 1H), 7.47–7.41 (m, 2H), 7.38–7.28 (m, 4H), 3.65 (s, 2H, CH2), 3.54 (m, 2H, CH2), 2.22 (s, 3H, NCH3), 1.31 (s, 9H, CH3). 13C NMR (50 MHz, CDCl3): δ (ppm) = 150.0 (C), 137.3 (C), 136.3 (C), 133.6 (C), 133.0 (C), 128.9 (2CH), 128.1 (CH), 127.9 (CH), 127.6 (CH), 126.5 (CH), 126.1 (CH), 125.7 (CH), 62.2 (CH2), 61.8 (CH2), 42.6 (NCH3), 34.7 (CH3). IR (KBr): ν (cm⁻¹) = 3051 (ν = CH benzyl), 2962 (ν = CH2), 2876 (ν = CH3 of N-Ch3), 1501 ν (C = benzyl), 1519 ν (C = naphthyl), 1395 and 1363 (δs, CH3 of C(CH3)3), 1342 (δs, CH3 of N-CH3). HRMS (ESI): m/z observed: 262.1577; C17H16N [M+H]+ requires: 262.1595; error (ppm): 2.3. Data for 5be are in accordance with those reported elsewhere [52].

Synthesis of amine hydrochlorides salts

Amine 4 or 5 was dissolved in ethyl ether, and HCl gas (generated from CaCl2 and a HCl 37% solution in which 1.0 g of CaCl2 was used per mL of the 37% HCl solution) was introduced. After 2–5 min, salt formation was complete, and the solvent was evaporated to achieve the desired hydrochloride salts.

Multigram scale synthesis of butafenine (5bd)

The reaction between 1-naphthaldehyde (12.2 mmol) and N-Benzyl-tetrt-butylamine (12.2 mmol) in methanol (73 mL) was conducted under microwave radiation (MW) in a DISCOVER CEM® reactor under the following conditions: temperature 60 °C, maximum power 250 Watts, hold time 2 min, and run time 15 min, with vigorous stirring in an open tube. Next, NaBH4 (18.3 mmol) and H3BO3 (18.0 mmol) were added, and the reaction mixture was again heated at 60 °C under microwave radiation using the same conditions described above. After stirring in the microwave for 15 min, the solvent was removed, and the obtained mixture was dissolved in dichloromethane (DCM) and was extracted with a saturated aqueous solution of K2CO3. The organic layer was dried over Na2SO4 filtered, and concentrated to give amine 4bd in a 95% yield. In the next step, 4bd (12.0 mmol) and formaldehyde (36.0 mmol, 37% aqueous solution) were dissolved in 70 mL of ethanol, and the reaction mixture was heated under MW conditions: temperature 70 °C, maximum power 250 Watts, hold time 2 min, and run time 15 min, with vigorous stirring in an open tube. Next, NaBH4 (48.0 mmol) and H2B2O5 (18.0 mmol) were added, and the reaction mixture was again heated at 70 °C under MW using the same conditions described previously. The solvent was evaporated, and the mixture obtained was dissolved in DCM and extracted with a saturated K2CO3 solution. The organic phase was dried over Na2SO4 filtered, and concentrated in vacuo. After purification by
column chromatography using hexane/ethyl acetate (3:1) as the eluent, butenafine (5bd) was obtained, with a 69% of yield.

Biological activities

Susceptibility test

To investigate the antifungal activity of butenafine and its analogues, were determined the MIC using a broth microdilution assay following the CLSI guidelines with some modifications. The tested fungi were the yeasts *C. neoformans* ATCC28957 and *C. gattii* ATCC 32608 as well as the filamentous fungi *T. rubrum* (ATCC 40051) and *M. gypseum* (clinical isolate). Standard RPMI 1640 medium (Himedia, Brazil) at 34.54 g/L buffered with 0.165 M MOPS (Sigma-Aldrich, St. Louis, MO, USA) was used to prepare the 96-well flat-bottomed microdilution plates. For dermatophytes, the media was supplemented with 2% glucose. The test compounds were diluted in DMSO, with concentrations ranging from 64 to 0.125 μg/mL. The inoculum concentration was 0.4–5 × 10^3 CFU/mL for filamentous fungi and 1–5 × 10^3 CFU/mL for yeasts, which corresponds to two-fold the tested concentrations [54]. The MIC was determined visually as the concentration that results in 100% inhibition of fungal growth compared to the control (non-treated fungi).

Toxicity tests

Hemolysis assessment. The protocol used to test the compound's ability to cause hemolysis of human erythrocytes (Rockland Immunochemicals, Limerick, PA, USA) was adapted from Raja-Amelia and ability to cause hemolysis of human erythrocytes (Rockland Immunochemicals, Limerick, PA, USA) was used to prepare the 96-well flat-bottomed microdilution plates. For dermatophytes, the media was supplemented with 2% glucose. The test compounds were diluted in DMSO, with concentrations ranging from 64 to 0.125 μg/mL. The inoculum concentration was 0.4–5 × 10^3 CFU/mL for filamentous fungi and 1–5 × 10^3 CFU/mL for yeasts, which corresponds to two-fold the tested concentrations [54]. The MIC was determined visually as the concentration that results in 100% inhibition of fungal growth compared to the control (non-treated fungi).

Cytotoxicity assay with HepG2 cells. The protocol for measuring cytotoxicity was previously described by Kwon and co-workers [56]. HepG2 cells (ATCC HB 8065; ATCC, Manassas, VA, USA) were maintained by successive passages in Dulbecco's modified Eagle medium (DMEM; Life Technologies, Carlsbad, CA, USA) containing 10% fetal bovine serum, 25 mM D-glucose, 2 mM L-glutamine, 1 mM sodium pyruvate and 1% penicillin/streptomycin at 37 °C in 5% CO2. To assess cytotoxicity HepG2 cells were cultured at 70–80% confluence in culture media (100 μL/well) using 96-well plates. Serially diluted butenafine and analogues (0.125–8.0 μg/mL) were incubated with the cells at 37 °C and 5% CO2 for 24 h. Then, 10 μL of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disul-5bd+501d)-2H-tetrazolium (WST-1) solution (Roche, Mannheim, Germany) was added to each well, and the plate was incubated for an additional period. WST-1 reduction was detected by reading the absorbance at 490 nm, using a Vmax microplate reader (Molecular Device, Sunnyvale, CA, USA). The percentage of surviving cells was determined as follows: survival rate (%) = (Ac sample − Ac0) / (Ac sample − Ac0) X 100, where Ac sample = Sample Absorbance, Ac0 = Blank (medium + wst) and Ac = Negative Control (cells + medium + wst). The compounds were evaluated in triplicate.

Results and discussion

Synthesis of butenafine and its analogues

We report herein a facile synthetic process to generate butenafine (5bd; Table 1) and its analogues (see Table 1 and Scheme 1

Table 1

Entry	Ar1	Ar2	Scaffold base	Amine	Amine.HCl	N-Methylamine	N-Methylamine.HCl
1	a	c	3ac (98)	4ac (80)	4ac.HCl (95)	Sac (74)	5ac.HCl (94)
2	b	c	3bc (1 0 0)	4bc (94)	4bc.HCl (1 0 0)	Sbc (79)	Sbc.HCl (96)
3	a	d	3ad (99)	4ad (98)	4ad.HCl (93)	Sad (27)	Sad.HCl (96)
4	b	d	3bd (1 0 0)	4bd (96)	4bd.HCl (94)	Sbd (60)	Sbd.HCl (95)
5	a	e	3ae (87)	4ae (82)	4ae.HCl (99)	Sae (72)	Sae.HCl (97)
6	b	e	3be (96)	4be (99)	4be.HCl (1 0 0)	Sbe (73)	Sbe.HCl (98)

*aReagents and reaction conditions: (i) 1 (1.0 mmol), 2 (1.0 mmol), ETOH (4 mL/mmol), 80 °C under MW, 2–8 min. (ii) 1 (0.5 mmol), NaBH4 (0.8 mmol), MeOH (5 mL/mmol of 3) rt, 20–30 min. (iii) 4 (0.5 mmol) in dioxane (6 mL/mmol of 4), formaldehyde (1.5 mmol, 37% in water), acetic acid (4.0 mmol), zinc (1.5 mmol), 65–70 °C, 5–7 h.

*b Yield for purified compound.

For the preparation of hydrochloride salt, the etheric solution of 4 or 5 was exposed to HCl vapoour during 2–5 min. The desirable salts were obtained after the ether being removed in vacuum.
Also highly toxic, with an LD50 of 76 mg/kg when dosed orally in rats and is potentially carcinogenic, mutagenic, and teratogenic. Likewise, dimethyl sulfate is ever, these methods have several disadvantages [58]. Methyl iodide was treated with formaldehyde in ethanol under MWI for 15 min. Then, NaBH4 and H3BO3 were added, and the reaction mixture was heated under MWI for another 15 min (Scheme 1). After this two-step one-pot process, the amine 4bd was obtained, with a 95% yield. Next, amine 4bd was treated with formaldehyde in ethanol under MWI for 15 min. Then, NaBH4 and H3BO3 were added, and the reaction mixture was heated under MWI for another 15 min. Butenafine (5bd) was obtained with a 67% yield after purification (Scheme 1). The corresponding hydrochloride salts of amine 4bd and butenafine (5bd) were obtained using the same reaction conditions described in Table 1. Overall, both synthetic strategies (Table 1 and Scheme 1) were efficient in generating butenafine (5bd) and its hydrochloride salt 5bd.HCl (Scheme 1). The first step utilized a single vessel for the condensation of 1-naphthaldehyde and 4-tert-butylbenzylamine in methanol under MWI for 15 min, followed by reduction of the formed Schiff base with NaBH4 and H3BO3, again under MWI for 15 min (Scheme 1). After this two-step one-pot process, the amine 4bd was obtained, with a 95% yield. Next, amine 4bd was treated with formaldehyde in ethanol under MWI for 15 min. Then, NaBH4 and H3BO3 were added, and the reaction mixture was heated under MWI for another 15 min. Butenafine (5bd) was obtained with a 67% yield after purification (Scheme 1). The corresponding hydrochloride salts of amine 4bd and butenafine (5bd) were obtained using the same reaction conditions described in Table 1. Overall, both synthetic strategies (Table 1 and Scheme 1) were efficient in generating butenafine (5bd) and its hydrochloride salt 5bd.HCl with similar yields, as described in the literature; however, we achieved the synthesis of these substances in a rapid manner without using toxic solvents and/or without an expensive catalyst or reagent. In this multigram scale approach, we verified that the combination of the reductant NaBH4 and the catalyst H3BO3 showed better results than metal zinc. Furthermore, NaBH4 is compatible with microwaves techniques and allows for a “one-pot” process.

Biologic activities of butenafine and its analogues

In vitro antifungal activities of butenafine and its analogues

To investigate the *in vitro* antifungal activity of the newly generated butenafine and its analogues (Table 1), the minimal...
inhibitory concentration (MIC; Table 2) was determined using a broth microdilution assay following the CLSI guidelines with some modifications (M38-A2 and M27-A3). The MIC of the compounds against the yeasts, C. neoformans ATCC 28957 and C. gattii ATCC 32608 as well as the filamentous fungi, Trichophyton rubrum ATCC 40051 and Microsporum gypseum (clinical isolate) was assayed. Butenafine analogues that exhibited antifungal activity (MIC ≥ 64 μg/mL) were more efficient at inhibiting the growth of filamentous fungi compared to the two strains of yeast. Amine 4bd and its corresponding hydrochloride salt 5bd.HCl showed the lowest MIC values against filamentous fungi followed by amine 4be and its salt 5be.HCl (Table 2). The MIC was not detected (MIC > 64 μg/mL) of butenafine compounds (Table 2). Considering the antifungal activity of butenafine all its analogues, it is noteworthy that both the presence of a para-tert-butyl group and a

Table 2

Compound	MIC values (μg/mL)			
	M. gypseum^a	T. rubrum^b	C. neoformans^c	C. gattii^d
3ac	>64	>64	>64	>64
4ac	>64	>64	>64	>64
4ac.HCl	>64	>64	>64	>64
5ac	>64	>64	>64	>64
5ac.HCl	>64	>64	>64	>64
3bc	>64	>64	>64	>64
4bc	>64	>64	>64	>64
4bc.HCl	64	32	64	64
5bc	32	4	64	64
5bc.HCl	16	0.5	32	32
3ad	>64	>64	>64	>64
4ad	>64	>64	>64	>64
4ad.HCl	>64	>64	>64	>64
5ad	>64	>64	>64	>64
5ad.HCl	>64	>64	>64	>64
3bd	>64	>64	>64	>64
4bd	2	0.5	16	8
4bd.HCl	2	1	16	8
5bd	<0.125	<0.125	1	1
5bd.HCl	<0.125	<0.125	0.5	1
3ae	>64	>64	>64	>64
4ae	>64	>64	>64	>64
4ae.HCl	32	32	>64	>64
5ae	>64	>64	>64	>64
5ae.HCl	>64	>64	>64	>64
3be	>64	>64	>64	>64
4be	4	8	8	4
4be.HCl	8	4	8	4
5be	0.5	0.25	16	32
5be.HCl	>64	>64	>64	>64

^a MIC was visually determined as the concentration giving 100% inhibition of fungal growth compared with the control growth (non-treated fungi).

^b Clinical isolate.

^c ATCC number 40051.

^d ATCC number 28957.

^e ATCC number 32608.

Even though the most significant growth inhibition was achieved against filamentous fungi, butenafine and some of its analogues were also able to reduce the growth of C. neoformans and C. gattii (Table 2). Butenafine (5bd) and its hydrochloride salt 5bd.HCl were the most potent at inhibiting the growth of C. neoformans and C. gattii, followed by the analogues/salts 4be/4be.HCl, 4bd/4bd.HCl, and 5be/5be.HCl (Table 2). Considering the in vitro antifungal activity of butenafine all its analogues, it is noteworthy that both the presence of a para-tert-butyl group and a
1-substituted naphthyl group is important for potency in this class of antifungal agents (see Table 2).

In vitro toxicity effect of butenafine and its analogues

To move a compound forward as an antimicrobial agent, was evaluated the toxicity of the compounds to determine if there were any deleterious effects on to mammalian cells. In vitro toxicity of butenafine (5bd), its hydrochloride salt (5bd.HCl) and the most potent analogues against filamentous fungi, 4bd (free-base) and 4bd.HCl (HCl-salt), was evaluated by determining if the compounds elicited hemolysis of human blood cells or if they altered the survival of liver cells (HepG2) (Fig. 2, panels A, B and C). Human red blood cells were treated with serial dilutions of butenafine and its analogues (0.0625–32.0 μg/mL) for 1 h. Cells treated with serial dilutions of Triton X-100 (0.0019–1% solution) served as the positive control (Fig. 2, panels A and B). Butenafine (5bd) and its hydrochloride salt (5bd.HCl) were slightly hemolytic at higher concentrations of but neither its analogue 4bd nor 4bd.HCl lysed red blood cells compared to the Triton X-100 control. The positive control Triton X-100 caused a high rate of hemolysis at concentrations of 0.0078% or higher. The highest percentage of hemolysis caused by the investigational compounds was less than 14%, which indicates low toxicity, as were considered 10% hemolysis as the limit for detection of toxic effects [57]. Thus, the LD₅₀ of the compounds for human red blood cells were >32 μg/mL, which is greater than the observed antifungal MIC values.

The cytotoxicity of 5bd and 5bd.HCl as well as the most potent analogues against filamentous fungi, 4bd and 4bd.HCl, was also evaluated using the human liver carcinoma-derived HepG2 cell line. HepG2 cells were treated with serial dilutions of the drug using a concentration range of 0.125–8.0 μg/mL, and cellular viability was measured. The cells treated with butenafine and its analogues were almost 100% viable at all the drug concentrations tested (Fig. 2, panel C), indicating a compound LD₅₀ > 8 μg/mL.

In vivo toxicity of butenafine and its analogues

Larvae of the greater wax moth (Galleria mellonella) were used as an invertebrate model system to evaluate the toxicity of butenafine (5bd), its hydrochloride salt (5bd.HCl) and its most potent analogues, 4bd (free-base) and 4bd.HCl (HCl-salt). Such a model provides meaningful data at low cost and does not require the same ethical considerations as mammalian models [64]. In addition, the G. mellonella model satisfies many basic requirements of a useful mammalian model, such as having an immune system with a similar structure and function as that of mammals as well as the presence of both cellular and humoral defenses [65,66]. The larvae mortality rate of butenafine and its analogues was less than 20%, even after prolonged exposure (144 h), when compounds were dosed 1 mg/kg (Fig. 3, panels A and B). However, 40% of the larvae experienced mortality within 24 h after administration of butenafine (5bd) at 5 mg/kg (Fig. 3, panel C). The larvae treated with demethylated analogue 4bd showed a time-dependent survival behavior, with almost 40% mortality observed 144 h after being treated with this analogue at a dose of 5 mg/kg (Fig. 3, panel C). No relevant reduction (<20%) in larvae was observed for 5bd.HCl or 4bd.HCl when these substances were dosed at 5 mg/kg (Fig. 3, panel D). In summary, all the tested substances presented low toxicity in the G. mellonella model, except for butenafine (5bd) when dosed at 5 mg/kg, which significantly reduced larvae survival (Fig. 3, panel C).

![Fig. 3. Survival of G. mellonella larvae treated with butenafine (5bd), its analogue (4bd) and corresponding hydrochloride salts (4bd.HCl and 5bd.HCl) at 1 mg/kg (A and B) or 5 mg/kg (C and D). No injection; stands for non-treated larvae. PBS; stands for larvae treated with the vehicle.](image_url)
Conclusions

A short synthetic route to obtain the antifungal butenafine and 17 butenafine analogues was developed. The synthetic approach using Schiff bases as precursors yielded the desired products in multigram scales. All the synthesized compounds were evaluated for their in vitro antimicrobial activity against fungi of clinical interest. The most active compound, 4bd (and its hydrochloride salt 4bd.HCl), is a simple demethylated analogue of butenafine that can be prepared in only two steps from commercial sources. The low toxicity of this analogue and toxicity of butenafine (5bd) and its hydrochloride salt (5bd.HCl) was demonstrated in two mammalian cell types (hemolysis of human blood cells and survival of the liver cells line HepG2) and in an invertebrate model system (G. mellonella). Therefore, compound 4bd (and its salt) represents a promising antifungal agent as an alternative that benefits from a short and simple synthetic route and that has the potential to reduce the burning sensation that is a reported side effect of butenafine.

Conflict of interest

The authors report no conflicts of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Acknowledgments

The authors are thankful for the financial support provided by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPE-MG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ângelo de Fátima, Cleide Viviane Buzanello Martins, Daniel de Assis Santos, Maria Aparecida Resende-Stoianoff and Rossimiriam Pereira de Freitas are supported by research fellowships from CNPq. Daniela Leticia da Silva and Thais Furtado Ferreira Magalhães were supported by research fellowships provided by the Brown-Brazil Initiative. Dr. Fuchs and Mylonakis received provisions through a grant from the Brown-Brazil Initiative. The authors thank Esther da Silva Dias for her contribution in the previous project that motivated us to pursue the development of new butenafine analogues as antifungal agents.

References

[1] Peres NT, Maranhao Fc Fau - Rossi A, Rossi A Fau - Martinez-Rossi NM, Martinez-Rossi NM. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol 2010;85:637–67.
[2] Hay R. Superficial fungal infections. Medicine 2013;41:716–8.
[3] Hube B, Hay R, Brasch J, Veraldi S, Schaller M. Dermatomycoses and inflammation: the adaptive balance between growth, damage, and survival. J Med Mycol 2015;25:348–58.
[4] Rotta I, Otuki MF, Sanches ACC, Correr CJ. Eficácia de antifúngicos tópicos em diferentes dermatomícos: uma revisão sistemática com metanálise. Rev Assoc Med Bras 2012;58:308–18.
[5] Ghannoumi MA, Chaturvedi V, Eipenl-Ingroff A, Pfaffer MA, Rinaldi MG, Lee-Yang W, et al. Intra- and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol 2004;42:2977–9.
[6] Nucci M, Varon AG, Garnica M, Akiti T, Barreiros G, Trope BM, et al. Increased transmissibility of Candida auris among residents at secondary care hospital. J Med Microbiol 2015;64:1756–72.
[7] Badree P, Hashemizadeh Z. Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res. 2014;139:185–204.
[8] Enoch DA, Yang H, Alsharif O, Alfaro J, An A. The changing epidemiology of invasive fungal infections. Methods Mol Biol 2017;1508:17–65.
[9] Kontoyiannis DP. Invasive mycoses: strategies for effective management. Am J Med 2012;125:325–38.
[10] Vazei A, Fakhim H, Khodavaisy S, Alizadeh A, Nazemi M, Soleimani A, et al. Epidemiological and mycological characteristics of candidemia in Iran: a systematic review and meta-analysis. J Mycol Med 2017;27:146–52.
[11] Fakhim H, Chowdhary V, Prakash A, Vazei A, Danannou E, Meis JF, et al. In vitro interactions of echinocandins with triazoles against multidrug-resistant Candida auris. Antimicrob Agents Chemother 2017;61:00156-e1117.
[12] Zecas MS, Vazei A, Fakhim H, Soleimani A, Mohammad Jafari H, Mohseni S, et al. Successful treatment of invasive fungal infection in a child with Wilms tumor; review of literature. J Mycol Med 2017;27:261–5.
[13] Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre TR, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 2017;17:873–81.
[14] de Oliveira PR, Resende SM, de Oliveira FC, de Oliveira AC. Ceratite fúngica. Ara Bras Oftalmol. 2001;64:75–9.
[15] Gregori Valdés BS. Estructura y actividad de los antifúngicos. Rev Cubana Farmac 2005;39:1–12.
[16] Mullikan LE. Current concepts in systemic and topical therapy for superficial mycoses. Clin Dermatol 2010;28:212–6.
[17] Iwatani W, Arika T, Yamaguchi H. Two mechanisms of butenafine action in Cnindul albicans. Antimicrob Agents Chemother 1993;37:785–8.
[18] Greer DL, WM, J, Rodriguez DA, Hebert AA, Swinewart JM. A randomized trial to assess once-daily topical treatment of tinea corporis with butenafine, a new antifungal agent. J Am Acad Dermatol 1997;37:231–5.
[19] Nahm WK, Orengo I, Rosen T. The antifungal agent butenafine manifests anti-inflammatory activity in vivo. J Am Acad Dermatol 1998;41(2):203–6.
[20] Mingoe-Reclemp-M-P, Gallet X, Flore C, Van Bambekke F, Peuvot J, Brasseur R. Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob Agent Chemother 2001;45:3347–54.
[21] Peters JM, Posthumus TAP, Van Vliet NP, Zeeen JF, Johnson WS. Biomimetic synthesis of new butenafine analogues as antifungal agents. J Med Chem 2010;53:5898–902.
[22] Yueheng L, Lifang M, Tao J. Method of preparing aminopropylene kind benzylamine antifungal agent. Pharmac Soc Jpn 1991;111(2):126–37.
[23] Mingeot-Leclercq M-P, Gallet X, Flore C, Van Bambeke F, Peuvot J, Brasseur R. Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob Agent Chemother 2001;45:3347–54.
[24] Nucci M, Varon AG, Garnica M, Akiti T, Barreiros G, Trope BM, et al. Increased transmissibility of Candida auris among residents at secondary care hospital. J Med Microbiol 2015;64:1756–72.
[25] Krauss J, Stadler M, Bracher F. Synthesis and structure-activity relationships of butenafine (and its hydrochloride 4bd.HCl) was demonstrated in two mammalian cell types (hemolysis of human blood cells and survival of the liver cells line HepG2) and in an invertebrate model system (G. mellonella). Therefore, compound 4bd (and its salt) represents a promising antifungal agent as an alternative that benefits from a short and simple synthetic route and that has the potential to reduce the burning sensation that is a reported side effect of butenafine.

Conflict of interest

The authors report no conflicts of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Acknowledgments

The authors are thankful for the financial support provided by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPE-MG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ângelo de Fátima, Cleide Viviane Buzanello Martins, Daniel de Assis Santos, Maria Aparecida Resende-Stoianoff and Rossimiriam Pereira de Freitas are supported by research fellowships from CNPq. Daniela Leticia da Silva and Thais Furtado Ferreira Magalhães were supported by research fellowships provided by the Brown-Brazil Initiative. Dr. Fuchs and Mylonakis received provisions through a grant from the Brown-Brazil Initiative. The authors thank Esther da Silva Dias for her contribution in the previous project that motivated us to pursue the development of new butenafine analogues as antifungal agents.
VI. The effects of p-alkyl substituents on prototropy in the methyleneazomethine system. J Chem Soc 1935. 1847.

[44] Ushakov DB, Plutschack MB, Gilmore K, Seeberger PH. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen. Chem Eur J 2015;21:6528–34.

[45] Joly GD, Jacobsen EN. Thiourea-catalyzed enantioselective hydrophosphonylation of imines: practical access to enantiothermally enriched α-amino phosphonic acids. J Am Chem Soc 2004;126:4102–3.

[46] Miriyala B, Bhattacharyya S, Williamson JS. Chemoselective reductive alkylation of ammonia with carbonyl compounds: synthesis of primary and symmetrical secondary amines. Tetrahedron 2004;60:1463–71.

[47] Ayesa S, Samuelsson B, Classon B. A One-pot, solid-phase synthesis of secondary amines from reactive alkyl halides and an alkyl azide. Synlett 2008;2008:97–9.

[48] Giovenzana GB, Imperio D, Penoni A, Palmisano G. Reductive amination with zinc powder in aqueous media. Beilstein J Org Chem 2011;7:1095–9.

[49] Arika T, Yokoo M, Amamiya K, Maeda T. Antifungal composition. EP0310122 (A1); 1991.

[50] Hanada S, Ishida T, Motoyama Y, Nagashima H. The ruthenium-catalyzed reduction and reductive N-alkylation of secondary amides with hydrosilanes: practical synthesis of secondary and tertiary amines by judicious choice of hydrosilanes. J Org Chem 2007;72:7551–9.

[51] Molander GA, Beaumard F. Cross-coupling of mesylated phenol derivatives with potassium amino- and amidomethyltrifluoroborates. Org Lett 2011;13:1242–5.

[52] Maeda T, Yamamoto TT, Takase mituo, Sasaki K, Arika T, Yokoo M, et al. Amine derivatives, processes for preparing the same and fungicides containing the same. EP0164697 (A2); 1984.

[53] Dahn H, Solms U, Zoller P. Über die hydrogenolyse benzylähnlicher gruppen in tertiären aminen. 3. mitteilung über hydrogenolyse. Helv Chim Acta 1952;35:2117–31.

[54] Santos DA, Barros MES, Hamdan JS. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J Clin Microbiol 2006;44:98–101.

[55] Rajamuthiah R, Fuchs BB, Conery AL, Kim W, Jayamani E, Kwon B, et al. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One 2015;10:e0124595.

[56] Kwon B, Kumar P, Lee HK, Zeng L, Walsh K, Fu Q, et al. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Hum Mol Genet 2014;23:13.

[57] Fischer D, Li Y, Ahlemeyer R, Kriegstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24:1121–31.

[58] Jiang X, Tiwari A, Thompson M, Chen Z, Cleary TP, Lee TBK. A Practical method for N-methylation of indoles using dimethyl carbonate. Org Proc Res Dev 2001;5:604–8.