Syntheses and Crystal Structures of Vanadium and Iron Chloride Complexes with Diglyme

Saša Petriček* and Alojz Demšar

Faculty of Chemistry and Chemical Technology, Department of Inorganic Chemistry, Večna pot 113, P.O.B. 537, SLO – 1001 Ljubljana, Slovenia
Tel.: +3861 4798512

* Corresponding author: E-mail: sasa.petricek@fkkt.uni-lj.si

Received: 13-11-2014

Dedicated to the memory of Prof. Dr. Jurij V. Brenčič.

Abstract

A mononuclear molecular complex \(\text{fac-[VCl}_3\text{(diglyme)}] \) (1) resulted from the reaction of VCl\(_3\) and diglyme (diglyme = di(2-methoxyethyl)ether) in dichloromethane. The violet complex 1 is a sensitive substance which slowly oxidized to a new, blue mononuclear molecular complex, \(\text{fac-[VOCl}_2\text{(diglyme)}] \) (2) in the presence of air.

The synthesis of iron(II), iron(III) complex \(\text{[FeCl(diglyme)(THF)]}_2 \) (3) was achieved by the reaction of yellow-green, partly oxidized FeCl\(_2\)·4H\(_2\)O, diglyme and chlorotrimethylsilane in tetrahydrofuran. The compound consists of dinuclear cations with octahedral environment of iron(II) and tetrahedral anions of iron(III). A pure iron(II) chloride-diglyme complex \(\text{[FeCl}_2\text{(diglyme)}]_2 \) (4) was gained by the reaction of freshly prepared iron(II) chloride hydrate, diglyme and chlorotrimethylsilane in dichloromethane. Diglyme is coordinated in a meridional mode to octahedral iron(II) in dinuclear cations of 3 and in dinuclear molecules 4.

Keywords: Iron, Vanadium, Chloride, Di(2-Methoxyethyl)ether, mer-isomer, fac-isomer

1. Introduction

Applying a polyether diglyme as a ligand in syntheses of alkaline earth complexes is a common approach to prevent oligomerization by bridging ligands.\(^1\)–\(^4\) Saturating a coordination sphere of a metal by the tridentate chelate ligand diglyme hinders ‘metal – metal’ contacts. The formation of two five-membered puckered rings increases the stability of complexes. Minimized intermolecular solid-state interactions in monomeric complexes resulted in an enhanced volatility in comparison to oligomeric complexes, which makes mononuclear alkaline earth complexes superior metal organic chemical vapor deposition (MOCVD) precursors. A prevalingly chelate bonding of diglyme to metal centers in complexes is confirmed by the structural data in the CSD (version 5.35 updated May 2014) listing only about a dozen compounds of alkali metals, aluminum and lead with bridging diglyme molecules among numerous diglyme complexes.

Diglyme is a flexible O-donor ligand able to coordinate to a whole range of metals; not only earth alkaline MOCVD precursors,\(^1\)–\(^4\) but also lanthanide(III) halide complexes have been extensively studied.\(^5\)–\(^10\) On the other hand, only a few examples of the first row d-block metal halide complexes with diglyme were prepared. They are either mononuclear molecular \(\text{[MCl}_3\text{(diglyme)}] \) (M(III) = Sc, Ti),\(^11\)–\(^13\) \(\text{[MX}_2\text{(diglyme)}] \) (X = Cl, M(II) = Zn, X = I, M(II) = Co, Zn) complexes,\(^13\)–\(^14\) dinuclear \(\text{[MX}_2\text{(diglyme)}]_2 \) (X = Cl, M(II) = Mn, Co, Ni; X = Br, I, M(II) = Ni) or 1-D polymeric \(\text{[Co}_2\text{Cl}_4\text{(diglyme)}]_n \).\(^13\)–\(^16\) Metal M(II) ions in polymeric and dinuclear complexes are connected by halides to achieve a preferred octahedral environment. A great flexibility of diglyme is most clearly demonstrated in complexes with octahedral arrangement of donor atoms coordinated to M\(^{2+}\) or M\(^{3+}\) either in mer or fac geometry (Chart 1). All three oxygen atoms, O1, O2, O3, of diglyme and the central metal atom M are almost in the same plane with O1–M–O3 angles in the range from 144 to 156° in mer isomers.\(^13\)–\(^17\) In fac isomers the two planes, each through the central metal atom M, the middle (O2) and one of terminal oxygen atoms (O1 or O3) in diglyme, nearly perpendicular to each other with O1–M–O3 angles close to 90°.\(^11\)–\(^12\)
Dinuclear octahedral M(II) complexes (M = Mn, Co, Ni and Mg) with bridging halides and coordinated diglyme crystallize as mer isomers. Mononuclear scandium(III) and titanium(III) chloride complexes with diglyme crystallize as fac isomers, and a complex of a smaller Al is the mer-[AlBr₃(diglyme)].

We prepared vanadium and iron chloride complexes with diglyme to continue our investigation of nuclearity and isomerism in the first row d-block metal halide complexes with this polyether. A correlation between structure and interesting magnetic properties of these compounds will be in focus of our research in the future.

2. Experimental

2.1. General

All the manipulations were carried out under an inert atmosphere. Vanadium(III) chloride (Aldrich, 97%), iron(II) chloride tetrahydrate (Merck, 99%), iron (Kemika, 95%), hydrochloric acid (Riedel-de Haën, 32%), diglyme (Fluka, 99.5%) and chlorotrimethylsilane (Aldrich, 97.0%) were used as delivered. Solvents were dried (CH₂Cl₂ over CaH₂, THF over Na/K) and distilled before use. Aqueous solutions of iron(II) chloride hydrate instead of the partly oxidized FeCl₂·4H₂O (1.092 g, 5.71 mmol) were added to VCl₃ (0.810 g, 5.15 mmol) under an inert atmosphere. The suspension was stirred for three days at room temperature and then dried in vacuo. A considerable amount of unreacted VCl₃ in the resulting powder product was detected by a CHN analysis and IR spectroscopy. In order to complete the reaction of VCl₃ and diglyme additional solvent (THF, 30 mL) and diglyme (0.979 g, 7.29 mmol) were mixed with the powder product and stirred for 20 hours at 65 °C. This suspension was dried in vacuo. Although the powder product still contained unreacted VCl₃ according to results of CHN analysis, a recrystallization of the product from dichloromethane resulted in crystals of 1.

Method B

Solvent (CH₃Cl₂, 30 mL) and diglyme (0.601 g, 4.48 mmol) were added to VCl₃ (0.433 g, 2.75 mmol) under an inert atmosphere. The suspension was stirred for a week at room temperature, then dried in vacuo, the complex 1 (0.798 g, 99.6% yield) was gained. Anal. Calcd. mass fractions of elements, w %, for C₃H₇Cl₂O₃V (Mᵣ = 291.46) are: C, 24.72; H, 4.84; Cl, 36.49; found: C, 24.50; H, 4.78; Cl, 36.51. IR (1 in Nujol) 1302 m, 1275 w, 1258 m, 1240 m, 1198 s, 1098 s, 1065 s, 1010 s, 946 m, 899 s, 866 w, 834 s, 796 s, 550 m, 438 m cm⁻¹. Recrystallization from dichloromethane resulted in crystals of 1.

2.3. Synthesis of [VOCl₂(diglyme)], 2

Air leaking to a closed system during a crystallization of 1 by a slow evaporation of dichloromethane at a reduced pressure resulted in an oxidation of 1 to crystals of the blue complex 2. Anal. Calcd. mass fractions of elements, w %, for C₃H₇Cl₂O₃V (Mᵣ = 272.01) are: C, 26.49; H, 5.19; found: C, 26.51; H, 5.22. IR (2 in Nujol) 1285 m, 1261 s, 1205 w, 1193 w, 1098 s, 1070 s, 1040 s, 919 m, 879 w, 856 s, 825 m, 588 w cm⁻¹. Recrystallization from dichloromethane resulted in crystals of 2.

2.4. Synthesis of [FeCl(diglyme)(THF)]₃[FeCl₄]₃, 3

Solvent (THF, 30 mL), diglyme (1.490 g, 11.1 mmol) and (CH₃)₃SiCl (15.103 g, 139 mmol) were added to a yellow-green partly oxidized FeCl₃·4H₂O (1.092 g, 5.49 mmol). The yellow suspension was stirred for five days at room temperature. An attempt to evaporate solvent in vacuo resulted in a highly viscous brownish solution. After a week yellow crystals of the complex 3 grew out of the solution. IR (3 in Nujol) 1260 s, 1093 s, 1018 s, 866 w, 799 s, 465 w cm⁻¹.

2.5. Synthesis of [FeCl₂(diglyme)]₂, 4

In the synthesis of 4 was used the freshly prepared iron(II) chloride hydrate instead of the partly oxidized one. Therefore iron (3.0 g, 53.7 mmol) reacted with hydrochloric acid (22 mL, 18%) at 80 °C for three hours.

Petriček and Demšar: Syntheses and Crystal Structures of Vanadium...
Unreacted iron was removed by a hot filtration, a green solution was dried in vacuo and a moist green product resulted. Chlorine content (33.06%) of this product was determined by potentiometric titrations and iron content (25.98%) was calculated according to the molar ratio of iron and chlorine in FeCl₂. Solvent (CH₂Cl₂, 30 mL), diglyme (1.410 g, 10.5 mmol) and (CH₃)₃SiCl (13.13 g, 121 mmol) were added to the freshly prepared green iron(II) chloride hydrate (1.014 g, 4.72 mmol of FeCl₂). The suspension was stirred for a day at room temperature and then dried in vacuo. The procedure was repeated in the second step, because some water was present in the white product, as proven by characteristic peaks (3419 s, 1600 m cm⁻¹) in IR spectrum. Solvent (CH₂Cl₂, 30 mL), diglyme (1.410 g, 10.5 mmol) and (CH₃)₃SiCl (13.13 g, 121 mmol) were added to the white product. The suspension was stirred for a week at room temperature and then dried in vacuo. The complex 4 (0.959 g, 77.9% yield) was gained. Anal. Calcd. mass fractions of elements, w/%, for C₃H₇Cl₂O₃Fe₂ (Mₑ = 521.84) are: C, 27.62; H, 5.41; Cl, 521.84; Fe, 521.84; FeCl₂ (0.959 g, 77.9% yield) was obtained.

2.6 Crystal Structure Determination

Details of the crystal data collections and the refinement parameters of the complexes 1–4 are summarized in Table 1.

All studied compounds are hygroscopic. The crystals were mounted on a tip of a glass fiber with a small amount of silicon grease. Diffraction data were collected on a Nonius Kappa diffractometer with a CCD area detector at 150(2) K. Graphite monochromatic Mo Kα radiation (λ = 0.71073 Å) was employed for all measurements. The data were processed using the program DENZO-SMN. The crystal structures were solved by direct methods implemented in SHELXS-97 and refined by a full-matrix least-squares procedure based on F² (SHELXL-97). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in the models at geometrically calculated positions and refined using a riding model. The calculations were performed using the WinGX program suite.

Absolute structures of 1 and 2 cannot be determined reliably (Flack parameter 0.51(3) and 0.53(2) respectively). Figures depicting the structures were prepared by ORTEP3 and Mercury.

Table 1 Crystallographic data for the compounds 1, [VCl₃(diglyme)]₂, 2, [VOCl₃(diglyme)]₃, 3, [FeCl(diglyme)(THF)] [FeCl₂], and 4, [FeCl₃(diglyme)]₂.

	1	2	3	4
Formula	[VCl₃(O₂C₆H₄)₂]	[VOCl₃(O₂C₆H₄)₃]	[FeCl(O₂C₆H₄)₂(OC₄H₈)]₂[FeCl₄]	[FeCl₃(O₂C₆H₄)₃]²
Color	violet	blue	yellow	colorless
For. mass (g mol⁻¹)	291.46	272.01	990.45	521.84
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	P 2₁ c n (no. 33)	C c (no. 9)	P 2₁/c (no. 14)	P 2₁/c (no. 14)
α (Å)	6.9987(1)	6.9947(2)	12.2851(3)	10.3118(4)
β (Å)	11.2312(2)	11.8436(3)	13.6297(3)	13.5637(4)
γ (Å)	28.4482(6)	13.0738(4)	12.9313(3)	12.4736(5)
Z (form.)	8	4	2	2
Dₐ (g cm⁻³)	1.732	1.670	1.695	1.655
μ (mm⁻¹)	1.577	1.392	2.191	1.919
Crystal size (mm)	0.20 0.18	0.07 0.06 0.05	0.15 0.14 0.14	0.20 0.20 0.17
θ Range (°)	1.43–27.48	3.78–27.40	3.5–27.5	3.43–27.44
Total numb. of collected reflections	4941	2381	13188	4474
Number of unique reflections	4941	2375	4415	2387
R₁ (å)	0.045	0.0155	0.0245	0.029
Number of reflections used	4419	2301	3857	1899
Threshold	[l>2.0 σ(l)]	[l>2.0 σ(l)]	[l>2.0 σ(l)]	[l>2.0 σ(l)]
Number of parameters	239	121	192	111
R² (obs.)	0.0333	0.0248	0.0229	0.027
wR₂	0.0692	0.0591	0.0557	0.055
S	1.044	1.027	1.015	1.034
Maximum/minimum	0.296, –0.401	0.217, –0.339	0.624, –0.294	0.289, –0.354

R = Σ |F₁| – |F₂|/Σ |F₁|; \[b \] wR₂ = (Σ(wF₂ – F₁²)²)²/Σ(wF₂²)²; \[c \] S = \[d (Å⁻²)\]
3. Results and Discussion

3.1. Syntheses of Vanadium Chloride Complexes with Diglyme, \([\text{VCl}_3(\text{diglyme})], 1, \) and \([\text{VOCl}_2(\text{diglyme})], 2 \)

A choice of solvent applied in the reaction of vanadium(III) chloride and diglyme is very important. A reaction is completed in dichloromethane at room temperature, but in tetrahydrofuran even a reaction at elevated temperature (20 hours, 65 °C) resulted in a mixture of unreacted \(\text{VCl}_3\) and complex 1. The complex 1 is a sensitive and unstable compound which is oxidized by oxygen to the \(\text{V(IV)}\) complex 2. The blue color of 2 is characteristic for almost all compounds containing a vanadyl unit.

3.2. Crystal Structures of 1 and 2

A distorted octahedral arrangement of ligands is observed in the mononuclear molecular complexes of 1 and 2 (Figure 1). Three oxygen atoms of a diglyme molecule are coordinated in a facial mode to a central vanadium(III) ion in 1 or to an oxidovanadium(IV) ion in 2. The coordination sphere is fulfilled by three or two chloride ions in 1 and 2, respectively.

The overlay of two molecules in the asymmetric unit of the complex 1 clearly shows a different puckering of coordinated diglyme ligand (Figure 2).

The ring conformation differences of coordinated diglyme in two molecules of an asymmetric unit as in 1 were reported also for the isostructural complex \([\text{TiCl}_3(\text{diglyme})]\) (Figure 3).\(^{11}\) A similar facial geometry of a coordinated diglyme as in 1, 2 and \([\text{TiCl}_3(\text{diglyme})]\)\(^{11}\) was found also in \([\text{ScCl}_3(\text{diglyme})]\),\(^{12}\) but the smaller\(^{18}\) \(\text{Al}^{3+}\) is coordinated by a diglyme molecule in a meridional mode in \([\text{AlBr}_3(\text{diglyme})]\).\(^{19}\)

Selected geometric parameters (Å, °) in 1 and 2 are summarized in Table 2.

Interestingly, the average V–Cl bonding distances in 2 are longer than in 1 in spite of a higher oxidation state of vanadium in 2 than in 1.

V–Cl bonding distances in complexes 1 are comparable to those observed in \(\text{fac-[VCl}_3(\text{DME})(\text{THF})]\) (2.298(4)–2.306(6) Å)\(^{28}\) and \(\text{mer-[VCl}_3(\text{THF})_3]\) (2.297(1)–2.333(1) Å).\(^{29}\) The average V–O(diglyme) distance in 1 is in the same range as V–O(DME) (2.119(8) Å) and longer than V–O(THF) to a sterically less demanding ligand THF in \(\text{fac-[VCl}_3(\text{DME})(\text{THF})]\) (2.03(1) Å)\(^{28}\) or \(\text{mer-[VCl}_3(\text{THF})_3]\) (2.062(8) Å).\(^{29}\)

A comparison of orthorhombic vanadyl complexes \([\text{VOCl}_2(\text{MeOH})_3]\) and \([\text{VOCl}_2(\text{H}_2\text{O})(\text{THF})_2]\) reveals similar bonding distances as in 2.\(^{30}\) A pronounced elongation of V–O bonding distance \(\text{trans}\) to a short vanadyl bond similar as in 2 was found in both compared complexes. V–O distances to monodentate ligands are slightly shorter (V–O(\text{MeOH}) 2.056(5)–2.088(5) Å, V–O(\text{THF}) 2.064(2) Å) and V–Cl distances slightly longer
3. 3. Syntheses of Iron Chloride Complexes with Diglyme, [FeCl(diglyme)(THF)]₂, [FeCl₄], 3, and FeCl₂(diglyme)], 4

Only a few crystals of iron(II)-iron(III) complex 3 were obtained when partly oxidized FeCl₂·4H₂O was used in the synthesis of iron chloride complex with diglyme. A reaction of the freshly prepared green iron(II) chloride hydrate, diglyme and (CH₃)₃SiCl in excess, which should guarantee a formation of a water free complex, resulted in an aqua iron chloride complex with diglyme. The complex 4 was gained only in the reaction of the aqua iron chloride complex with (CH₃)₃SiCl and diglyme in dichloromethane. A one step synthesis of 4 was not successful even with a prolonged reaction time and a higher (CH₃)₃SiCl content in a reaction mixture of freshly prepared moist green iron(II) chloride hydrate and diglyme in dichloromethane. A similar two step reaction was reported for a dehydration of FeCl₂·4H₂O by triethyl orthoformate in propan-2-ol yielding [FeCl₂(PrOH)]₂₆, 33.

3. 4. Magnetic Measurements

The magnetic moment of iron complex 4 (5.48 BM) measured at room temperature suggests a high spin d⁶ configuration of octahedrally coordinated Fe²⁺ ions. ²⁰

3. 5. Crystal structures of 3 and 4

Two bridging chloride ions and three oxygen atoms of a diglyme molecule in a meridional mode are coordinated to each of two iron centers connected into a cation of 3 or a dinuclear molecule 4 (Figure 4). A distorted octahedral arrangement of iron(II) ions is fulfilled by a non-brid-

![Figure 4](image-url)

*Table 2. Selected geometric parameters (Å, °) in 1, [VCl₃(diglyme)], and 2, [VOCl₂(diglyme)]

	1, [VCl₃(diglyme)] n = 1	2, [VOCl₂(diglyme)]
Vn–Cl	2.3293(10)	2.2834(10)
Vn–Cn	2.2655(9)	2.3183(9)
Vn–Cl	2.2798(10)	2.2849(9)
Vn–Cl	2.291(3)	2.296(3)
Vn–On	2.185(2)	2.108(2)
Vn–On	2.088(2)	2.088(2)
Vn–On	2.120(2)	2.102(2)
Vn–On	2.131(6)	2.099(6)
On1–Vn–On3	88.23(9)	82.43(9)
On2–Vn–On3	76.03(9)	78.37(9)
Cln1–Vn–Cln2	74.60(8)	76.80(9)
Cln2–Vn–Cln3	100.57(4)	97.12(3)
Cln1–Vn–Cln3	97.65(4)	96.45(4)
Cln1–Vn–Cln3	93.54(4)	96.58(4)
On1–Vn–Cln1	168.06(6)	166.60(7)
On2–Vn–Cln2	160.91(7)	167.38(7)
On3–Vn–Cln3	170.18(7)	168.36(7)
O1–V–O3	85.98(6)	
O3–V–O2	70.63(6)	
O1–V–O2	72.60(6)	
Cl2–V–Cl1	93.35(2)	
O4–V–O1	94.82(7)	
O4–V–O3	90.75(7)	
O4–V–Cl2	102.64(6)	
O3–V–Cl1	166.85(5)	

![Figure 4](image-url)

a) A cation of 3, [FeCl(diglyme)(THF)]₂⁺. b) The crystal structures of dinuclear molecular complex 4, [FeCl₂(diglyme)]₂, with the numbering scheme adopted. Hydrogen atoms are omitted for clarity. The probability of the thermal ellipsoids is 50%.
ging chloride in 4 and by an oxygen atom from THF molecule in cation of 3.

A rhombus M–Cl–M–Cl is almost the same in 4 and isostructural complexes of manganese(II), nickel(II) and cobalt(II),13, 15 while ring conformation of coordinated diglyme molecules slightly differs (Figure 5).

Selected geometric parameters (Å, °) in 3 and 4 are summarized in Table 3.

The average Fe–Cl(bridging), Fe–O(diglyme) bonding distances and distances between two Fe2+ ions linked by two μ-bridging chlorides are shorter in a cation of 3 than in a dinuclear complex 4.

M–O and M–Cl bonding distances in 4 and isostructural [MCl\textsubscript{2}(diglyme)]\textsubscript{2} (M = Mn, Co and Ni)13, 15 decrease perfectly in accord to the decreasing ionic radii of the transition metal atoms from manganese to nickel.18

Fe–Cl(bridging) and Fe–O bonding distances in cations of 3 are in the same range as in a tetranuclear complex [Fe\textsubscript{4}Cl\textsubscript{8}(THF)]\textsubscript{2} (Fe–(μ\textsubscript{2}–Cl) 2.355(1)–2.488(2) Å and average Fe–O 2.135(9) Å).34 A comparison of geometric parameters in mixed Fe(II), Fe(III) complex 3 and in a Fe(III) complex [FeCl\textsubscript{3}(DME)]\textsubscript{2}[FeCl\textsubscript{4}] (Fe–Cl in anion 2.1895(9)–2.200(1) Å)15 indicates similarity of anions and thus confirming the 3+ oxidation number of iron in anion of 3. The average Fe–O bonding distances in 3 are longer than in [FeCl\textsubscript{2}(DME)]\textsubscript{2} (2.101(4) Å)35 due to a lower oxidation number of iron in cation of 3.

Table 3. Selected geometric parameters (Å, °) in 3, [FeCl(diglyme)(THF)]\textsubscript{2}[FeCl\textsubscript{4}]\textsubscript{2} and 4, [FeCl\textsubscript{2}(diglyme)]\textsubscript{2}

	3	4
	[FeCl(diglyme)(THF)]\textsubscript{2}[FeCl\textsubscript{4}]\textsubscript{2}	[FeCl\textsubscript{2}(diglyme)]\textsubscript{2}
Fe2–Cl21	2.3804(4)	
Fe2–Cl21a	2.5098(4)	
Fe2–Cl1	2.445(1)	
Fe–O\textsubscript{av}(diglyme)	2.139(3)	
Fe2–Fe2a	3.5506(4)	
Fe2–Cl21–Fe2a	93.07(1)	
Cl1–Fe1–Cl21	110.5(2)	
O1–Fe1–O21	108.85(2)	
O2–Fe2–O23	151.44(5)	
O2–Fe2–O24	90.61(5)	
Cl1–Fe1–Cl2	109.98(2)	
Cl2–Fe1–Cl2a	84.93(2)	
Cl2–Fe1–O2	76.77(5)	
Cl2–Fe1–O3	75.83(5)	
Cl–Fe2–O3	84.93(2)	
Cl–Fe2–Fe2a	90.61(5)	
Fe1–Cl1	2.1938(5)	Fe1–Cl1
Fe1–Cl12	2.1966(5)	Fe1–Cl2
Fe1–Cl13	2.1968(5)	Fe1–Cl2a
Fe1–Fe1a	90.57(2)	Fe1–Cl2 Fe1a
Fe1–Cl2	3.6522(5)	Fe1–Cl2 Fe1a
Fe1–Cl2a	2.5154(5)	Fe1–Cl2 Fe1a
Fe1–Cl1	2.1938(5)	Fe1–Cl1
Fe1–Fe1a	90.57(2)	Fe1–Cl2 Fe1a
Cl1–Fe2	110.5(2)	
Cl1–Fe1–Cl2a	84.93(2)	
Cl2–Fe1–Cl2	76.77(5)	
Cl2–Fe1–O2	75.83(5)	
Cl–Fe2–O3	84.93(2)	
Cl–Fe2–Fe2a	90.61(5)	
Fe2–Cl1	2.1938(5)	Fe2–Cl1
Fe2–Cl12	2.1966(5)	Fe2–Cl2
Fe2–Cl13	2.1968(5)	Fe2–Cl2a
Fe2–Fe2a	3.6522(5)	Fe2–Fe2a
Fe1–Cl2	2.1938(5)	Fe1–Cl2
Fe1–Cl2a	2.5154(5)	Fe1–Cl2a
Fe1–Cl1	2.1938(5)	Fe1–Cl1
Fe1–Fe1a	90.57(2)	Fe1–Fe1a
Cl1–Fe2	110.5(2)	
Cl1–Fe1–Cl2a	84.93(2)	
Cl2–Fe1–Cl2	76.77(5)	
Cl2–Fe1–O2	75.83(5)	
Cl–Fe2–O3	84.93(2)	
Cl–Fe2–Fe2a	90.61(5)	
Fe2–Cl1	2.1938(5)	Fe2–Cl1
Fe2–Cl12	2.1966(5)	Fe2–Cl2
Fe2–Cl13	2.1968(5)	Fe2–Cl2a
Fe2–Fe2a	3.6522(5)	Fe2–Fe2a
Fe1–Cl2	2.1938(5)	Fe1–Cl2
Fe1–Cl2a	2.5154(5)	Fe1–Cl2a
Fe1–Cl1	2.1938(5)	Fe1–Cl1
Fe1–Fe1a	90.57(2)	Fe1–Fe1a
Cl1–Fe2	110.5(2)	
Cl1–Fe1–Cl2a	84.93(2)	
Cl2–Fe1–Cl2	76.77(5)	
Cl2–Fe1–O2	75.83(5)	
Cl–Fe2–O3	84.93(2)	
Cl–Fe2–Fe2a	90.61(5)	
Fe2–Cl1	2.1938(5)	Fe2–Cl1
Fe2–Cl12	2.1966(5)	Fe2–Cl2
Fe2–Cl13	2.1968(5)	Fe2–Cl2a
Fe2–Fe2a	3.6522(5)	Fe2–Fe2a

Figure 5. Structure overlay of isostructural complexes [MCl\textsubscript{2}(diglyme)]\textsubscript{2}, (M = Fe in red; Mn in green, Ni in black and Co in blue).13, 15 Hydrogen atoms are omitted for clarity.

4. Conclusions

A chelate η3, non-bridging coordination of diglyme as characteristic for all complexes of the first row d-block metals13–16 was found in the four novel vanadium and iron complexes 1–4. The new complex of vanadium(III) chloride with diglyme 1 is a mononuclear compound with a facial arrangement of O-donor atoms from diglyme, which has been already reported for [MCl\textsubscript{3}(diglyme)] (M = Sc, Ti).11, 12 The facial coordination of diglyme molecule is retained in the vanadyl complex [FeCl\textsubscript{2}(diglyme)]\textsubscript{2}, achieved by an oxidation of [VCl\textsubscript{3}(diglyme)]\textsubscript{2}, in the presence of air.

The new compound of iron(II) chloride with diglyme 4 is a dinuclear complex with two bridging chlorides to achieve a preferred octahedral environment of the central Fe2+. Diglyme is in [FeCl\textsubscript{2}(diglyme)]\textsubscript{2}, 4, coordinated to Fe2+ in the meridional mode similarly as in all reported M(II) complexes with an octahedral geometry.13–17 In the iron(II)-iron(III) complex [FeCl\textsubscript{2}(diglyme)(THF)]\textsubscript{2} [FeCl\textsubscript{4}]\textsubscript{3}, diglyme is coordinated to Fe2+. Two iron(II) ions in the cation are linked by bridging chlorides and diglyme is also coordinated in a meridional geometry.

Petriček and Demšar: Syntheses and Crystal Structures of Vanadium ...
5. Appendix A. Supplementary Data

Crystallographic data for the structures 1 (CCDC 1031640), 2 (CCDC 1031641), 3 (CCDC 1031639) and 4 (CCDC 1031642) have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223 336033; or e-mail deposit@ccdc.cam.ac.uk.

6. Acknowledgement

This work was supported by the Slovenian Research Agency (Research Program P1-0175).

7. References

1. W. Maudez, K. M. Fromm, Z. Anorg. All. Chem. 2012, 638, 1810–1819.
2. W. D. Buchanan, M. A. Guino-o, K. Ruhlandt-Senge, Inorg. Chem. 2010, 49, 7144–7155.
3. K. M. Fromm, Chem. Eur. J. 2001, 7, 2236–2244.
4. N. P. Kuzmina, D. M. Tsymbarenko, I. E. Korsakov, Z. A. Starikova, K. A. Lysenko, O. V. Boytsova, A. V. Mironov, I. P. Malkorova, A. S. Alikhanya, Polyhedron 2008, 27, 2811–2818. http://dx.doi.org/10.1016/j.poly.2008.06.021
5. S. Petriček, Z. Anorg. All. Chem. 2005, 631, 1947–1952.
6. S. Petriček, Z. Anorg. All. Chem. 2008, 634, 377–381.
7. S. Petriček, N. Senčar, Z. Anorg. All. Chem. 2008, 634, 377–381.
8. S. Petriček, Acta Chim. Slov. 2009, 56, 426–433.
9. G. B. Deacon, T. Feng, P. C. Junk, G. Meyer, N. M. Scott, B. W. Skelton, A. H. White, Aust. J. Chem. 2000, 53, 853–865.
10. K. V. Vasudevan, N. A. Smith, B. L. Scott, B. L. Bennett, R. E. Muenhausen, J. C. Gordon, Dalton Trans. 2012, 41, 1924–1927.
11. M. G. B. Drew, J. A. Hutton, J. Chem. Soc., Dalton Trans. 1978, 1176–1179.
12. V. Ripert, L. G. Hubert-Pfalzgraf, J. Vaissermann, Polyhedron 1999, 18, 1845–1851.
13. S. Petriček, A. Demšar, Polyhedron 2010, 29, 3329–3334.
14. S. Petriček, Croat. Chem. Acta 2011, 84, 515–520.
15. A. Crochet, K. Fromm, Z. Anorg. Allg. Chem. 2010, 636, 1484–1496.
16. R. S. Pilato, T. Terry, A. L. Rheingold, Private communication in CSD 2009 (Refcode: COTJEB)
17. N. Metzler, H. Nöth, M. Schmidt, A. Treitl, Z. Naturforsch. 1994, 49 b, 1448–1451.
18. R. D. Shannon, Acta Crystallogr. 1976, A32, 751–767.
19. L. Jakobsmeier, I. Krossing, H. Nöth, M. J. H. Schmidt, Z. Naturforsch. 1996, 51 b, 1117–1126.
20. R. L. Dutta and A. Syamal, Elements of Magnetochemistry, second ed., Affiliated East – West PVT LTD, New Delhi, 1993.
21. Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307–326.
22. G. M. Sheldrick, SHELXS-97, A Program for Automatic Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
23. G. M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
24. L. J. Farrugia, J Appl Crystallogr. 1999, 32, 837–838.
25. L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. http://dx.doi.org/10.1107/S0021889897003117
26. H. D. Flack, Acta Cryst. 1983, A39, 876–881. http://dx.doi.org/10.1107/S0108767383001762
27. Mercury 3.3, Cambridge Crystallographic Data Centre.
28. G. Pampaloni, U. Englert, Inorganica Chimica Acta 1995, 231, 167–173.
29. F. A. Cotton, S. A. Duraj, G. I. Powell, W. J. Roth, Inorganica Chimica Acta 1986, 113, 81–85.
30. D. Papoutsakis, A. S. Ichimura, V. G. Young, Jr., J. E. Jackson, D. G. Nocera, Dalton Trans. 2004, 224–228. http://dx.doi.org/10.1039/b309432d
31. K. H. Yang, Acta Chim. Slov. 2014, 61, 629–636.
32. S. Petriček, A. Demšar, L. Golič, J. Košmrlik, Polyhedron 2000, 19, 199–204.
33. G. G. Nunes, R. C. R. Bottini, D. M. Reis, P. H. C. Camargo, D. J. Evans, P. B. Hitchcock, G. J. Leigh, E. L. Sa, J. F. Soares, Inorganica Chimica Acta 2004, 357, 1219–1228.
34. F. A. Cotton, R. L. Luck, K. A. Son, Inorganica Chimica Acta 1991, 179, 11–15.
35. A. Malassa, H. Görls, A. Buchholz, W. Plass, M. Westerhausen, Z. Anorg. Allg. Chem. 2006, 632, 2355–2362.
Povzetek

Enojedni molekulski kompleks \(\text{fac-}[\text{VCl}_3(\text{diglyme})] \) (1) je bil sintetiziran z reakcijo med \(\text{VCl}_3 \) in polietrom diglyme (diglyme = di(2-metoksietil)eter) v diklorometanu. Vijolično obarvani kompleks 1 se v prisotnosti kisika iz zraka počasi oksidira, nastane moder enojedni kompleks \(\text{fac-}[\text{VOCl}_2(\text{diglyme})] \) (2).
Kompleks \(\text{[FeCl(diglyme)(THF)]}_2[\text{FeCl}_4] \) (3), ki vsebuje železo(II) in železo(III), je nastal z reakcijo rumeno zelenega, delno oksidiranega FeCl\(_2\)-4H\(_2\)O, polietra diglyme in klorotrimetilsilana v tetrahidrofurantu. Spojino sestavljajo dvojedrni kationi z oktaedrično koordiniranim železom(II) in tetraedričnimi anioni v katerih je centralni ion železo(III).
Kompleks čistega železovega(II) klorida z ligandom diglyme \(\text{[FeCl}_2(\text{diglyme})]_2 \) (4) je bil sintetiziran iz sveže pripravljenega železovega(II) klorida hidrata, polietra diglyme in klorotrimetilsilana v diklorometanu. Ligand diglyme je koordiniran meridionalno na centralni železo(II) ion tako v dvojedrnem kationu spojine 3 kot v dvojednih molekulah 4.