Duloxetine compared with fluoxetine and venlafaxine: use of meta-regression analysis for indirect comparisons.
Laurent Eckert, Christophe Lançon

To cite this version:
Laurent Eckert, Christophe Lançon. Duloxetine compared with fluoxetine and venlafaxine: use of meta-regression analysis for indirect comparisons. BMC Psychiatry, BioMed Central, 2006, 6, pp.30. <10.1186/1471-244X-6-30>. <inserm-00089756>

HAL Id: inserm-00089756
http://www.hal.inserm.fr/inserm-00089756
Submitted on 23 Aug 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Duloxetine compared with fluoxetine and venlafaxine: use of meta-regression analysis for indirect comparisons

Laurent Eckert*†1 and Christophe Lançon†2

Address: 1Unit 669, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), F-75014, Paris, France; and the University of Paris-Sud 11, F-94000, Le Kremlin Bicêtre, France and 2Hopital Sainte-Marguerite, 270, boulevard Sainte-Marguerite, 13274 Marseille, France

Email: Laurent Eckert* - laurent.eckert@gmail.com; Christophe Lançon - christophe.lancon@mail.ap-hm.fr
†Corresponding author †Equal contributors

Abstract

Background: Data comparing duloxetine with existing antidepressant treatments is limited. A comparison of duloxetine with fluoxetine has been performed but no comparison with venlafaxine, the other antidepressant in the same therapeutic class with a significant market share, has been undertaken. In the absence of relevant data to assess the place that duloxetine should occupy in the therapeutic arsenal, indirect comparisons are the most rigorous way to go.

We conducted a systematic review of the efficacy of duloxetine, fluoxetine and venlafaxine versus placebo in the treatment of Major Depressive Disorder (MDD), and performed indirect comparisons through meta-regressions.

Methods: The bibliography of the Agency for Health Care Policy and Research and the CENTRAL, Medline, and Embase databases were interrogated using advanced search strategies based on a combination of text and index terms. The search focused on randomized placebo-controlled clinical trials involving adult patients treated for acute phase Major Depressive Disorder. All outcomes were derived to take account for varying placebo responses throughout studies. Primary outcome was treatment efficacy as measured by Hedge's g effect size. Secondary outcomes were response and dropout rates as measured by log odds ratios. Meta-regressions were run to indirectly compare the drugs. Sensitivity analysis, assessing the influence of individual studies over the results, and the influence of patients' characteristics were run.

Results: 22 studies involving fluoxetine, 9 involving duloxetine and 8 involving venlafaxine were selected. Using indirect comparison methodology, estimated effect sizes for efficacy compared with duloxetine were 0.11 [-0.14;0.36] for fluoxetine and 0.22 [0.06;0.38] for venlafaxine. Response log odds ratios were -0.21 [-0.44;0.03], 0.70 [0.26;1.14]. Dropout log odds ratios were -0.02 [-0.33;0.29], 0.21 [-0.13;0.55]. Sensitivity analyses showed that results were consistent.

Conclusion: Fluoxetine was not statistically different in either tolerability or efficacy when compared with duloxetine. Venlafaxine was significantly superior to duloxetine in all analyses except dropout rate. In the absence of relevant data from head-to-head comparison trials, results suggest that venlafaxine is superior compared with duloxetine and that duloxetine does not differentiate from fluoxetine.
Background
Duloxetine is a selective serotonin and norepinephrine reuptake inhibitor (SNRI) that claims greater affinity for the serotonin and norepinephrine transporters compared with venlafaxine [1,2]. The efficacy and safety of duloxetine in the treatment of major depressive disorder (MDD) in adults (18–65 years) has been evaluated in 9 phase II and III clinical trials [3-5]. All were randomized, double blind, placebo-controlled studies with doses ranging from 40 to 120 mg/day in the acute treatment of MDD. Results have shown that duloxetine provided relief from psychological symptoms of depression compared with placebo. Six of the above studies used an active comparator: either fluoxetine or paroxetine. None, however, was designed and powered for direct head-to-head comparison between duloxetine and the active comparator. Inclusion of a selective serotonin reuptake inhibitor (SSRI) was intended only to show non-inferiority of duloxetine. No trial has used venlafaxine, the other marketed SNRI, as an active comparator.

The amount of data comparing duloxetine with existing antidepressant treatments is quite limited. The lack of direct comparisons between the recommended daily dose (60 mg) and an active comparator was criticised in a recent evaluation of duloxetine by the Committee for Medicinal Products for Human Use (CHMP) [6]. Assessments of the benefit/risk ratio of a new drug compared with a standard drug at an adequate dose are generally required and it is recommended that clinical trials be conducted not only against placebo, but also against active comparators [7]. The aim of such studies may be to show superiority over the active comparator or to demonstrate that at least a similar balance between benefit and risk exists when the drug of interest is compared with another acknowledged standard antidepressant.

In the absence of head-to-head randomized studies, indirect comparisons can be made between molecules. Clinical trials frequently compare efficacy of a drug versus placebo in the treatment of MDD. Less frequent, however, are head-to-head comparisons. Indirect comparisons taking into account all available placebo-controlled studies are capable of obtaining an effect size and a confidence interval of the difference between two compounds. The algorithm used gives results adjusted for discrepancies in sociodemographics, settings and designs.

After conducting a systematic review of the efficacy of duloxetine, fluoxetine and venlafaxine versus placebo in the treatment of MDD we performed an indirect comparison of the benefits of duloxetine versus fluoxetine and venlafaxine. We used meta-regression analysis to test whether or not differences in effectiveness (which cannot be explained by the differences in settings only) exist between fluoxetine and duloxetine on one hand and venlafaxine and duloxetine on the other.

Methods
The analyses sets
We used advanced search strategies based on a combination of text and index terms to interrogate the CENTRAL, Medline and Embase databases as well as the bibliography of the US Agency for Health Care Policy and Research (AHCPR). The bibliography from the AHCPR is an exhaustive literature search (both published and non-published) of trials in depression up to 1999.

Selection criteria were: study reporting HAMD results in randomised trials with a placebo arm, involving adult patients suffering from MDD (as assessed by DSM (III, III-R, IV)) treated in acute phase with either fluoxetine, venlafaxine, duloxetine. Excusion criteria were presence of comorbidities; absence of the HAMD scale; involving adolescents, children or elderly; absence of randomisation and absence of a placebo arm.

These criteria were considered sufficient to retrieve all studies of interest to be included in the analysis set.

Two research assistants independently selected papers by reading the abstract and, if necessary, the entire article to assess eligibility and data extraction. Careful re-reading of the papers resolved differences between each author analysis set and letters were sent to corresponding authors in the attempt to reduce missing data.

Publication bias was assessed drawing funnel plots, and Egger Test was used to test funnel plot asymmetry.

Statistical outcomes
Because different trials do not necessarily use the same scale and/or version for assessing efficacy, an effect size was derived from the primary outcome of each study (either HAM-D 17 21 or 24). This enabled deriving a common effect measure across studies that used different scales. The effect size was Hedge's g (a Standardised Response Mean estimator), which was corrected for small sample size bias. To compute an effect size, both the mean and an estimate of dispersion (variance, standard deviation) have to be present. When the dispersion was missing, data was imputed using the sample size weighted method [8]. If both mean and dispersion were missing, the study was removed from the analysis set.

The computed effect sizes were adjusted for severity at baseline to account for differences in patients' groups (selection bias).
The effect size was defined as the difference between the mean change in depression scale score from baseline to end-of-study in the active arm and the mean change in depression scale score from baseline to end of study in the placebo arm; divided by the standard deviation of the difference.

Other endpoints were response and dropout rates. Response was defined as a reduction of at least 50% in the HAM-D score from baseline. Dropouts were considered regardless of cause, which gave a rough indicator of the tolerability and safety of the treatment. In other words, dropouts were an indicator of failures of the present therapy.

The response and dropouts rates were analysed using log-odds ratios. A log-odds ratio equal to zero indicated that there was no statistical difference between the two compared groups. Considering the response rate, a value greater than zero indicated that more patients in the treatment group were classified as responders, and therefore that the treatment was better compared with the reference (placebo or duloxetine). A value lower than zero indicated that the reference (placebo or duloxetine) was better. Regarding dropouts, a value greater than zero indicated that more patients in the reference group (placebo or duloxetine) withdrew, and therefore that the treatment was better (in terms of efficacy and/or safety) compared with the reference (placebo or duloxetine). A value lower than zero indicated that treatment was less effective or less tolerated than the reference (placebo or duloxetine).

Statistical methods

Random-effect meta-analyses were computed for each outcome and each treatment compared with placebo. Mean age, mean percentage of male, mean study duration and range of dosage were computed for each treatment.

Following recommendations by Glenny et al. [9] and van Houwelingen et al. [10], a mixed procedure was run. This enabled handling studies with more than two arms (typically when different dosages are included in the same study), as well as studies presenting two drugs in the same trial (two trials assessed the effectiveness of duloxetine versus placebo and were fluoxetine controlled). The method used is a weighted least squares algorithm which iteratively computes a between-study variance while keeping each within-study variance constant. Therefore, what are modelled by default (when no adjustment is made) are drug effect (an antidepressant effect of the drugs) and drug-specific effect. The drug specific effect is the effect tested between the two treatments compared.

The models were computed under SAS PROC MIXED [11]. This procedure gives also good coverage for confidence intervals according to van Houwelingen et al. [10]. As in van Houwelingen et al., [10] Wald confidence intervals were used.

Sensitivity analyses were planned a priori and included: Performing several adjustments. The variables chosen a priori as having a potential influence over the outcome of a study were age, male percentage, duration of study and dosage. Robustness was then assessed observing the variation in the estimation of the outcome, its corresponding confidence interval, as well as the size of the estimated residual between-study variance [10]. An adjustment over the fact that the effect size was imputed was also run (in case the dispersion had to be imputed to compute an effect size). To assess its influence over the results, studies were removed from the analysis set one at a time. A post hoc sensitivity analysis was run on a subgroup of fluoxetine studies excluding the studies where the number of patients was below 20.

The following rules were applicable for all computed models:

- In case an adjustment factor was missing, it was imputed by the corresponding weighted mean computed with available data.
- Influence of missing data was computed through sensitivity analyses by removing the studies where the data was missing.
- In the event that an outcome was missing and no reply was received from the letters sent, the study was removed from the analysis set for the particular analysis for which the outcome was missing.

Results

No precise answers were received from the letters sent to corresponding authors; therefore, the number of missing data remained unchanged.

Individual studies results

For duloxetine, 8 publications showing results for 9 trials (each with varying characteristics) were selected, [Figure 1]. [Table 1] matches the publications with the information available from each trial. Mean age varied from 41 to 45 and the percentage of males varied from 25 to 40%. Duration of treatment varied from 8 to 9 weeks and dosages (fixed or variable) were from 40 to 120 mg per day. The effect size comparing duloxetine to placebo was -0.29(0.15). The response and dropouts log odds ratio were 0.58(0.18) and -0.02(0.32) respectively. The funnel plot shape cannot rule out the possibility of a publication
bias; see [Figure 4]. The Funnel plot was not statistically significantly asymmetrical according to the Egger test ($p = 0.9$).

For fluoxetine, 22 papers were selected [Figure 2], presenting a rather heterogeneous picture [Table 2]. Mean age varied from 33 to 47 and the percentage of males varied from 26 to 57%. Duration of treatment varied from 5 to 12 weeks and dosages (fixed or variable) were from 20 to 80 mg per day. It is worth noting that some studies include few patients (from 5 to 169). The effect size comparing fluoxetine to placebo was $-0.46(0.52)$. The response and dropouts log odds ratio were $0.37(0.32)$ and $-0.02(0.23)$, respectively. A positive point worth noting is that publication bias is shown to be minimised (see Figure 4). This figure shows the typical conic shape centred
over the value estimated which indicates little or no bias. The Funnel plot was not statistically significantly asymmetrical according to the Egger test (p = 0.4).

For venlafaxine, 8 papers were selected, see [Figure 3], with the following characteristics [Table 3]. Mean age varied from 40 to 65 and the percentage of males varied from 31 to 60%. Duration of treatment varied from 6 to 12 weeks and the dosages (fixed or variable) were from 75 to 225 mg per day. The effect size comparing venlafaxine to placebo was -0.51 (0.20). The response and dropouts log odds ratio was -0.02 [-0.33;0.29] (Figure 5c) (only 8 fluoxetine studies and 5 duloxetine studies were included because of missing data). None of these results vs. fluoxetine were significant, although a trend can be seen in favor of duloxetine in term of number of responders.

Log Odds ratios (SD)

For duloxetine compared with venlafaxine, the estimated effect size was 0.22 [0.06;0.38] for the treatment effect (Figure 5a), demonstrating a significant better efficacy of venlafaxine compared with duloxetine. The estimated response log odds ratio was 0.70 [0.26;1.14] also significantly different in favour of venlafaxine (Figure 5b) (only 6 venlafaxine studies and 6 duloxetine studies were included because of missing data). The estimated dropout log odds ratio was 0.21 [-0.13;0.55] (Figure 5c) (only 7 venlafaxine and 5 duloxetine studies were included because of missing data). Venlafaxine seem more efficacious both in reduction of symptoms and in term of number of responders (the corresponding odds ratio is 2.01) for a similar safety profile.

Table 1: Selected studies presentation for duloxetine

Study	Inclusion criteria	Age	Percent	Duration	Treatment	Dosage (mg/day)	Patients per arm	Effect size (SD)	Response (%)	Dropouts (%)
Goldstein et al. [9]	DSM-IV, Age 18–65	42	0.34	8	Duloxetine	40–120	70	-0.3(0.03)	0.64	0.34
	HAM-D ≥ 15, CGI-S ≥ 4				Placebo	70		0.48	0.24	
Detke et al. [10]	DSM-IV, Age ≥ 18	42	0.33	9	Duloxetine	60	123	-0.6(0.02)	0.62	0.29
	HAM-D ≥ 15, CGI-S ≥ 4				Placebo	122		0.29	0.29	
Detke et al. [12]	DSM-IV, Age ≥ 18	41	0.31	9	Duloxetine	60	128	-0.2(0.02)	0.65	0.39
	HAM-D ≥ 15, CGI-S ≥ 4				Placebo	139		0.42	0.35	
Detke et al. [13]	DSM-IV, Age ≥ 18	45	0.26	8	Duloxetine	80	95	-0.3(0.02)	0.65	0.13
	HAM-D ≥ 15, CGI-S ≥ 4				Placebo	93		0.71	0.10	
Goldstein et al. [14]	DSM-IV, Age ≥ 18	41	0.4	8	Duloxetine	40	86	-0.4(0.02)	0.54	0.36
	HAM-D ≥ 15, CGI-S ≥ 4				Placebo	80		0.56	0.42	
Greist et al. [4]	DSM-IV, Age ≥ 18	41	0.4	8	Duloxetine	120	128	0.38	-0.1(0.03)	
Falissard et al. [3]	DSM-IV, Age ≥ 18	43	0.25	8	Duloxetine	120	128	0.40		
Greist et al. [4]	DSM-IV, Age ≥ 18	41	0.38	8	Duloxetine	120	128	0.34	-0.1(0.03)	
Falissard et al. [3]	DSM-IV, Age ≥ 18	8			Placebo	120	128	0.34	-0.1(0.03)	
Brannan et al. [5]	DSM-IV, Age ≥ 18	41	0.35	9	Duloxetine	60	141	0.39	-0.2(0.02)	0.42
	HAM-D ≥ 15, CGI-S ≥ 4				Placebo	141		0.40	0.09	

Log Odds ratios (SD)

Globally 42 (1) 0.33 8 (0.4) Duloxetine Placebo 20–120 0.29(0.05) 0.58(0.09 - 0.02(0.16)
Sensitivity analyses

For duloxetine compared with fluoxetine, cf. [Table 4] either investigating the primary outcome (efficacy as measured by derived HAMD scale) or the response factor, the results were stable through adjustments, no amelioration in the adjustment was reached (the residual between-study variance estimate remained approximately constant), and confidence intervals remained large and stable. The effect size of the best prediction (smallest residual between-study variance) was 0.12 [-0.14;0.38]. The odds ratio of the response factor varied from 0.81 to 0.95, favouring numerically duloxetine in every analysis and reaching borderline significance when the estimate was close to 0.81. The residual between-study variance was constant. Concerning the dropout factor, the odds ratio varied from 1.21 to 1.40, numerically favouring fluoxetine in every analysis. Adjusting for duration of the study revealed a significant advantage in favour of fluoxetine (corresponding...
Table 2: Selected studies presentation for fluoxetine

Study	Inclusion criteria	Age (weeks)	Percent	Duration (weeks)	Treatment	Dosage (mg/day)	Patients per arm	Effect size (SD)	Response (%)	Dropout (%)
Fabre et al. [15]	Age 21–70	5	Male	Placebo	Fluoxetine	40–80	22	-0.8 (0.1)	0.50	0.44
Stark et al. [16]	DSM-III, Age 18–70	40	0.32	Placebo	Fluoxetine	20–80	185	-0.3 (0.01)	0.63	0.38
Cohn et al. [17]	DSM-III, Age 20–64	41	0.40	Placebo	Fluoxetine	20–80	54	-1.3 (0.04)	0.72	0.30
Fieve et al. [18]	DSM-III, Age 18–65	0.57	Male	Placebo	Fluoxetine	5	14	-0.5 (0.1)	0.72	0.30
Rickels et al. [19]	DSM-III, Age 21–70	47.2	0.21	Placebo	Fluoxetine	20–80	18	-0.7 (0.2)	0.90	0.39
Goodnick et al. [20]	DSM-III, Age 18–65	0.54	Female	Placebo	Fluoxetine	20–60	30	-1.1 (0.3)	0.38	0.40
Wernicke et al. [21]	DSM-III, Age 18–65	39.8	0.43	Placebo	Fluoxetine	20	97	-0.5 (0.03)	0.53	0.38
Fabre et al. [22]	DSM-III, Age 18–65	38.4	0.37	Placebo	Fluoxetine	5	94	-0.5 (0.02)	0.54	0.33
Wernicke et al. [23]	DSM-III, Age 18–65	35.8	0.37	Placebo	Fluoxetine	5	94	-0.5 (0.02)	0.54	0.33
Harto et al. [24]	DSM-III, Age 18–65	38.9	0.31	Placebo	Fluoxetine	40–80	32	-1.1 (0.1)	0.38	0.45
Muijen et al. [26]	Research Diagnostic Criteria, Age 18–65	35.8	0.37	Placebo	Fluoxetine	20	27	-1.2 (0.2)	0.55	0.46
Table 2: Selected studies presentation for fluoxetine (Continued)

Study Authors	DSM, Age	HAMD-D17 ≥ 18, RSDM ≥ 8 and RSDM ≥ Covi	Fluoxetine	Placebo	Odds Ratio (SD)	Log Odds Ratios (SD)			
Feighner et al. [27]	DSM-III, Age 18–70	HAMD-D21 ≥ 20, RSDM ≥ 8 and RSDM ≥ Covi	45	0.26	6	150	-0.3(0.04)	0.51 (0.68)	
Dunlop et al. [28]	DSM-III, Age 18–65	HAMD-D ≥ 14 and RSDM >Covi	39.3	6	Fluoxetine	40	-0.03(0.03)	0.51 (0.41)	
Valducci et al. [29]	DSM-III-R, Age 19–67	HAMD-D >18	0.43	8	Fluoxetine	20	-0.9 (0.1)	0.70 (0.25)	
Heiligenstein et al.	DSM-III-R, Age 18–65	HAMD-D17 ≥ 15	44.4	8	Fluoxetine	20	0.1 (0.1)	0.61 (0.41)	
Sramek et al. [32]	DSM-III-R, Age 18–65	HAMD-D24 ≥ 21 with item 1 ≥ 2, HAM-A ≤ 18, HAMD-D24 <HAM-A, RSDM ≥ 8 and RSDM >Covi	33.9	0.40	ABT-200	160-320	-0.3(0.03)	0.17 (0.13)	
Fava et al. [33]	DSM-III-R, Age (mean 41.3) HAMD-D17 ≥ 18, Raskin depression score ≥ 8 and superior to Raskin anxiety score	41.3	0.49	12	Paroxetine	20-50	0.1 (0.1)	0.57 (0.53)	
Rudolph et al. [34]	DSM-IV, Age > 18	HAMD-D21 ≥ 20	40	0.33	8	Venlafaxine XR	75-225	0.2(0.02)	0.50 (0.27)
Coleman et al. [35]	DSM-IV, Age 18–76	HAMD-D21 ≥ 20	37.1	8	Bupropion SR	150-400	-0.2(0.01)	0.57 (0.37)	
Goldstein et al. [9]	DSM-IV, Age 18–65	HAMD-D17 ≥ 15 and CGI-S ≥ 4	39.7	0.35	8	Duloxetine	40-120	-0.2(0.04)	0.45 (0.36)
Silverstone et al. [42]	DSM-IV, Age ≥ 18	HAMD-D21 ≥ 20 (on the first 17 items), Covi ≥ 8	43.2	0.4	12	Fluoxetine Venlafaxine XR	20-60	-0.6(0.02)	0.62 (0.26)
Globally	40	0.39	7 ± 2	Fluoxetine	Placebo	20-80	-0.46(0.11)	0.37(0.09) **	-0.02(0.09) **

** Log Odds ratios (SD)
odds ratio 1.40). This advantage is borderline significant when adjusting for duration (corresponding odds ratio 1.36). The residual between-study variance was constant.

Whatever the parameter of interest or the adjustment factor considered, the fact that variances were imputed did not change the conclusions.

When removing studies one at a time in the analysis set, the conclusions didn't change except when removing [4] or [5] where statistical significance is reached -0.27 [-0.50; -0.01] (Odds ratio 0.76) in favour of duloxetine.

Analyses made on the subgroup of fluoxetine studies (where the number of analysed patients was greater than 20), gave for the efficacy 0.09 [-0.09;0.26] (13 fluoxetine studies) still favouring fluoxetine, for the response factor -0.22 [-0.46;0.02] (10 fluoxetine studies) still favouring duloxetine and for the dropouts factor -0.02 [-0.33;0.28] (7 fluoxetine studies) similar results were found.
For duloxetine compared with venlafaxine, cf. [Table 4] investigating the efficacy score (in the effect size scale) the effect size varied from 0.16 to 0.25 favouring venlafaxine significantly in all analyses except when adjusting for sex repartition where the result is borderline significant 0.16 [-0.01;0.33] though still numerically favouring venlafaxine. The residual between-study variance is small in all analyses, the model which has the best fit (smallest residual between-study variance) gave an estimated effect size of 0.25 [0.11;0.40] significantly in favour of venlafaxine.

Investigating the response factor, the odds ratio varied from 1.75 to 2.46 favouring venlafaxine significantly in all analyses. The residual between-study variance remained stable, the best fit (smallest residual between-study variance) corresponds to an odds ratio of 1.75. Concerning the dropouts the odds ratio varied from 1.14 to 1.30 throughout adjustments favouring numerically venlafaxine in all analyses. The residual between-study variance remained stable and small.

When removing studies one at a time from the analysis set, the conclusions didn’t change thus favouring robustness in results.
Study	Inclusion criteria	Age	Percent male	duration (weeks)	Treatment	Dosage (mg/day)	Patients per arm	Effect size (SD)	Response (%)	Dropouts (%)
Khan et al. [36]	DSM-III, HAMD-D ≥ 20	41	0.44	6	Venlafaxine	75	23	-0.8(0.1)	0.21	
		41	0.44		Venlafaxine	75–225	22	-0.6(0.1)	0.15	
		41	0.44		Venlafaxine	150–375	22	-0.7(0.1)		
Schweizer et al. [37]	DSM-III-R, Age 24–63, HAMD-D ≥ 20	46	0.60	6	Venlafaxine	75	15	-0.6(0.1)	0.43	
		46	0.60		Venlafaxine	225	15	-1.2(0.2)	0.57	
		46	0.60		Venlafaxine	375	14	-1.1(0.2)		
Cunningham et al. [38]	DSM-III-R, Age ≥ 18, HAMD-D ≥ 20	41	0.33	6	Venlafaxine	25–200	72	-0.4(0.03)	0.29	
					Trazodone	50–400	77	0.72	0.55	
					Placebo		76	0.55	0.36	
Schweizer et al. [39]	DSM-III-R, Age ≥ 18, HAMD-D21 ≥ 20	41	0.31	6	Imipramine	75–225	73	-0.6(0.03)	0.36	
					Venlafaxine	75–225	73	0.77	0.47	
					Placebo		78	0.47	0.27	
Cunningham et al. [40]	DSM-III-R, Age ≥ 18, HAMD-D ≥ 20	40	0.38	12	Venlafaxine XR	75–150	97	-0.5(0.02)	0.29	
		43	0.39		Venlafaxine IR	75–150	96	0.68	0.40	
					Placebo		100	0.52	0.40	
Thase et al. [41]	DSM-IV, Age ≥ 18, HAMD-D21 ≥ 20	40	0.39	8	Venlafaxine XR	75–225	91	-0.6(0.02)	0.27	
					Placebo		100	0.58	0.29	
Rudolph et al. [34]	DSM-IV, Age ≥ 18, HAMD-D21 ≥ 20	40	0.32	8	Fluoxetine	20–60	103	-0.1(0.02)	0.19	
					Venlafaxine XR	75–225	100	0.57	0.42	
					Placebo		98	0.42	0.21	
Silverstone et al. [42]	DSM-IV, Age ≥ 18, HAMD-D21 ≥ 20 (on the first 17 items), Covi ≥ 8	41	0.39	12	Fluoxetine	20–60	121	-0.4(0.02)	0.29	
					Venlafaxine XR	75–225	128	0.67	0.43	
					Placebo		119	0.43	0.40	
Globally	NA	42±2	0.43	8±3	Venlafaxine	75–225	768	-0.51(0.07)	1.28(0.26)***	
					Placebo		613	-0.25(0.12)***		

** Log Odds ratios (SD)
Discussion

The use of the meta-regression method to indirectly compare duloxetine with each active comparator revealed that there was no significant difference with fluoxetine either in efficacy or in safety. Findings only suggest that more patients might respond to duloxetine. Results suggest that duloxetine might be significantly less effective compared with venlafaxine, (in terms of treatment effects and number of response) with similar dropouts rates. Results given by sensitivity analyses showed relatively good consistency, as no analysis changed the conclusions. The results became nonsignificant in one analysis comparing venlafaxine with duloxetine, but the estimated value seldom moved. When removing [4] or [5] from the analysis set, duloxetine treated patients had statistically more chance to respond than when treated with fluoxetine. These findings were obtained by removing the less favourable studies for duloxetine, and we found no differences in the design or patients’ characteristics that may explain why. These tests showing significance (when comparing fluoxetine to duloxetine) or non-significance (when comparing venlafaxine to duloxetine), as in every study where multiple testing is performed, may be due to a drop in statistical power, which can bias the conclusions. As some robust trends have been found between the different drugs, the findings are considered robust to the confounding factors that have been investigated.

Our findings should, however, be interpreted with caution. Findings of superior efficacy by indirect comparisons are observational and therefore vulnerable to bias. Yet, several articles have recently shown that indirect comparisons adjusted at the aggregate level usually agree with direct comparisons. An indirect meta-analysis of studies comparing olanzapine with haloperidol and risperidone with haloperidol yielded conclusions similar to those found in a direct comparative randomized clinical trial of olanzapine and risperidone [43]. Song et al. [44] demonstrated that the results of adjusted indirect comparisons were usually similar to those of direct comparisons. In their study, there were a few significant discrepancies between the direct and the indirect estimates, although the direction of discrepancy was unpredictable. The authors concluded that empirical evidence presented in their study clearly indicates that in most cases, results of adjusted indirect comparisons are not significantly different from those of direct comparisons.

While we recognize that none of the trials involving duloxetine used venlafaxine as an active comparator, our results are in accordance with a recent meta-analysis comparing duloxetine and venlafaxine in the treatment of MDD [45] and a review comparing second-generation antidepressants [46].

Vis et al. used results of 6 trials with duloxetine and 4 with venlafaxine to report the efficacy and safety of either venlafaxine or duloxetine compared with placebo. They found that venlafaxine rates for remission and response were respectively 17.8% (CI_{95%} 9.0–26.5) and 24.4% (CI_{95%} 15.0–37.7) greater than placebo, compared with

Table 4: Sensitivity analyses: adjustment for confounding factors

EFFECT	RESPONSE	DROPOUTS										
	mean	Confidence interval	Est. bet.	st. variance	mean	Confidence interval	Est. bet.	st. variance	value	Confidence interval	Est. bet.	st. variance
AGE												
venlafaxine	0.25	0.11	0.40	0.002	0.90	0.49	1.31	0.049	0.26	-0.09	0.61	0.000
Fluoxetine	0.13	-0.14	0.39	0.097	-0.10	-0.37	0.17	0.000	0.23	-0.14	0.60	0.000
MALE PERCENT												
venlafaxine	0.16	-0.01	0.33	0.008	0.66	0.21	1.12	0.096	0.23	-0.13	0.59	0.001
Fluoxetine	0.12	-0.14	0.38	0.010	-0.17	-0.43	0.08	0.000	0.31	-0.26	0.64	0.000
DURATION												
venlafaxine	0.23	0.07	0.39	0.009	0.56	0.18	0.95	0.047	0.13	-0.23	0.48	0.000
Fluoxetine	0.10	-0.16	0.36	0.100	-0.21	-0.45	0.03	0.000	0.34	0.02	0.67	0.000
DOSAGE												
venlafaxine	0.22	0.06	0.37	0.008	0.70	0.26	1.15	0.096	0.22	-0.12	0.56	0.000
Fluoxetine	0.19	-0.10	0.48	0.094	-0.05	-0.38	0.27	0.000	0.19	-0.19	0.57	0.000
IMPUTATION												
venlafaxine	0.22	0.06	0.37	0.008	0.74	0.29	1.18	0.093	0.18	-0.18	0.54	0.000
Fluoxetine	0.11	-0.14	0.36	0.096	-0.20	-0.44	0.04	0.000	0.27	-0.06	0.60	0.000

* estimated between study variance
fluoxetine. The relative benefit: 1.12 (CI

Concerning available comparisons with fluoxetine, of the

A review of second-generation antidepressants’ efficacy in

Our study had some limitations. First, the time frame dif-

Superiority of one antidepressant medication relative to

14.2% (CI_{95\%} 8.9–26.5) and 18.6% (CI_{95\%} 13.0–24.2) for
duloxetine. Reported adverse events were comparable between
active drugs. The authors concluded that venlafaxine showed a favorable trend in remission and
response rates compared with duloxetine, but that no
significant between-drug differences were observed for drop-
out rates and adverse events. Due to the nature of the
methodology used, no objective evidence concerning how
venlafaxine performs when compared with duloxetine can be
drawn. Nonetheless, the numerical trend seen in
this paper is in accordance with the ones found here.

The primary goal was comparison of duloxetine

Concerning available comparisons with fluoxetine, of the

Superiority of one antidepressant medication relative to

Another needs to be established by means of prospectively
designed, adequately powered, head-to-head clinical tri-

As the results of placebo-controlled trials are often suf-
ficient to acquire the regulatory approval of new drugs,
pharmaceutical companies may not be motivated to sup-
port trials that compare new drugs with existing active
treatments. Lack of evidence from direct comparison
between active interventions makes it difficult for cli-
nicians to choose the most effective treatment for patients
[49]. Because of the lack of direct evidence, indirect com-
parisons have been recommended [50]. Adjusted indirect
comparison is a way to compare two compounds through
their relative effect vs. a common comparator (placebo in
our study). The indirect approach to meta-analysis
requires certain conditions to yield optimal results. Differ-
ences in study designs, inclusion/exclusion criteria,
patients characteristics at baseline as well as difference in
drug dosage [48] and publication bias are limitations that
may lead to unbalanced conclusions [43] and merit dis-
cussion.

Secondly, sample sizes seem to be smaller for the
fluoxetine studies and include patients with lower HAM-
D score (14 to 19). Thirdly the patients characteristics,
even if they vary only slightly can act as confounding fac-
tors and bias the results. Fourthly, dosages varied between
studies and between drugs. Lastly, the missing data might
not be balanced between treatments. All these sources of
heterogeneity could lead to bias. Considering that the
computation of an effect size included adjustment for
baseline severity differences and that influence of patient
characteristics and study designs were assessed through
sensitivity analyses, some confidence can be put on the
results if they show stability over the different analyses.
Also, the random effect nature of the model used here
should be able to deal with the remaining amount of bias
that couldn't be measured or properly modelled. Finally,
the other major issue in any meta-analysis is the potential
publication bias. Publication bias is a major source of sys-
tematic bias in overviews, where trials with positive results
are more likely to be published than those with neutral or
negative results, especially if the trials are small. We there-
fore tested for publication bias using the Egger test for fun-
nel plot asymmetry [51]. Ruling out completely
publication bias is nearly impossible. Even so, any bias
would most likely be in favour of the newer drug and its
existence would not undermine the results presented here
[52].
Conclusion
In the absence of a well-powered randomised placebo controlled direct comparison trial, meta-regression analysis offers the most rigorous evidence science can buy. Even if it's true that the level of evidence provided by indirect comparisons is lower than the level provided by direct comparisons; in some cases [43] indirect comparisons have actually been able to predict the results of head-to-head-clinical trials. The capacity of prediction is nonetheless indirectly linked to the quality of the methodology used and the information available. Both have been discussed in the core of this paper, and in this context the results seem stable enough to be confident that the bias are controlled and that the results provide valuable additional information to health care professionals, health economists and the pharmaceutical industry. These results suggest evidence of venlafaxine superiority compared with duloxetine and absence of a difference between fluoxetine and duloxetine. In any case, investigating the relative efficacy of duloxetine compared directly with other existing antidepressants – particularly venlafaxine – in a well-designed trial would be welcomed to challenge or reinforce our findings.

Authors’ contributions
Each author has made substantial contributions at every phase in the planning and writing of the manuscript. Each have each equally contributed to the drafting and critical revision of this work.

Acknowledgements
H. Lundbeck A/S provided funding for this research, which is part of the doctoral thesis of Laurent Eckert.

Christophe Lançon declares no conflict of interest or receipt of funding from any source.

References
1. Wong DT, Bymaster FP, Mayle DA, Reid LR, Krushinski JH, Robertson DV: LY248868, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology 1993, 8:23-33.
2. Pitsikas N: Duloxetine. Curr Opin Investig Drugs 2000, 1:116-121.
3. Falissard B, Lothgren M, Perahia D, Garcia-Cebrian A: Meta-analyses of duloxetine in the treatment of MDD [Poster], presented at the 4th International Forum on Mood and Anxiety Disorders : abstract PO13, 19 Nov 2003.
4. Greist J, McNamara RK, Mallinckrodt CH, Rayamaji JN, Raskin J: Incidence and duration of antidepressant-induced nausea: duloxetine compared with paroxetine and fluoxetine. Clin Ther 2004, 26:1446-1455.
5. Brannan SK, Mallinckrodt CH, Brown EB, Wohrlehim MM, Wadkin JG, Schatzberg AF: Duloxetine 60 mg once-daily in the treatment of painful physical symptoms in patients with major depressive disorder. J Psychiatr Res 2005, 39:43-53.
6. EMA: European Public Assessment Report. Scientific discussion. Cymbalta. 2005.
7. EMA, CPMF (Comité for Proprietary Medicinal Products. Concept Paper on the revision of the Committee for Proprietary Medicinal Products): Note for guidance on medicinal products for the treatment of depression. CPMF/EWP/IS18/97/2002.
8. Edwards ME, Baltzan M: The generalization of the odds ratio, risk ratio and risk difference to r x k tables. Statistics in Medicine 2000, 19:1901-1914.
9. Glenn AM, Altman DG, Song F, Sakarovitch C, Deeks JJ, D’Amico R, Bradburn M, Eastwood AJ: Indirect comparisons of competing treatments. Health Technology Assessment 2005, 9(25).
10. Van Houwelingen HC, Arends LR, Stijnen T: Advanced methods in meta-analysis:multivariate approach and meta-regression. Statistics in medicine 2002, 21:589-624.
11. Andorn AC, Mallinckrodt C, Watkin J, Wohrlehim R: Efficacy of duloxetine in patients with mild, moderate, or severe depressive symptoms. [Poster] presented at the 158th Annual Meeting of the American Psychiatric Association. Abstract NR363, 24 May 2005 2005, 135:
12. Goldstein DJ, Mallinckrodt C, Lu Y, Demitrack MA: Duloxetine in the treatment of major depressive disorder: a double-blind clinical trial. J Clin Psychiatry 2002, 63:225-231.
13. Detke MJ, Lu Y, Goldstein DJ, Hayes JR, Demitrack MA: Duloxetine, 60 mg once daily, for major depressive disorder: a randomized double-blind placebo-controlled trial. J Clin Psychiatry 2002, 63:389-390.
14. Detke MJ, Witte CG, Mallinckrodt CH, McNamara RK, Demitrack MA, Bitter I: Duloxetine in the acute and long-term treatment of major depressive disorder: a placebo- and paroxetine-controlled trial. Eur Neuropsychopharmacol 2004, 14:457-470.
15. Goldstein DJ, Lu Y, Detke MJ, Witte C, Mallinckrodt C, Demitrack MA: Duloxetine in the treatment of depression: a double-blind placebo-controlled comparison with paroxetine. J Clin Pharmacol 2004, 43:399-399.
16. Fabre LF, Crismon L: Efficacy of fluoxetine in outpatients with major depression. Curr Ther Res 1985, 37:115-123.
17. Stark P, Hardison CD: A review of multicenter controlled studies of fluoxetine vs. imipramine and placebo in outpatients with major depressive disorder. J Clin Psychiatry 1985, 46:53-58.
18. Cohn JB, Wilcox C: A comparison of fluoxetine, imipramine, and placebo in patients with major depressive disorder. J Clin Psychiatry 1985, 46:26-31.
19. Fieve RR, Goodnick PJ, Peselow E, Schlegel A: Fluoxetine response: endpoint vs pattern analysis. Int Clin Psychopharmacol 1986, 1:320-323.
20. Ricks K, Amsterdam JD, AVALONE MF: Fluoxetine in major depression: a controlled study. Curr Ther Res 1986, 39:559-563.
21. Goodnick PJ, Fieve RR, Peselow ED, Barouche F, Schlegel A: Double-blind treatment of major depression with fluoxetine: use of pattern analysis and relation of HAM-D score to CGI change. Psychopharmacol Bull 1987, 23:162-163.
22. Wernicke JF, Dunlop SR, Dornseif BE, Zerbe RL: Fixed-dose fluoxetine therapy for depression. Psychopharmacol Bull 1987, 23:164-168.
23. Fabre LF, Putnam HP III: A fixed-dose clinical trial of fluoxetine in outpatients with major depression. J Clin Psychiatry 1987, 48:406-408.
24. Wernicke JF, Dunlop SR, Dornseif BE, Bosomworth JC, Humbert M: Low-dose fluoxetine therapy for depression. Psychopharmacol Bull 1988, 24:183-188.
25. Harto NE, Spera KF, Brannion RJ: Fluoxetine-induced reduction of body mass in patients with major depressive disorder. Psychopharmacol Bull 1988, 24:220-223.
26. Byerley WF, Reimherr FW, Woold DR, Grosser BI: Fluoxetine, a selective serotonin uptake inhibitor, for the treatment of outpatients with major depression. J Clin Psychopharmacol 1988, 8:112-115.
27. Muijen M, Roy D, Silverstone T, Mehmet A, Christie M: A comparative clinical trial of fluoxetine, mianserin and placebo in depressed outpatients. Acta Psychiatr Scand 1988, 78:384-390.
28. Feighner JP, Boyer WF, Meredeth CH, Hendrickson GG: A double-blind comparison of fluoxetine, imipramine and placebo in outpatients with major depression. Int Clin Psychopharmacol 1989, 4:127-134.
29. Dunlop SR, Dornseif BE, Wernicke JF, Potvin JH: Pattern analysis shows beneficial effect of fluoxetine treatment in mild depression. Psychopharmacol Bull 1990, 26:173-180.
30. Valdacci M, Valdacci A, Paolatti C, Colonna CV: A double-blind, placebo controlled clinical trial to evaluate efficacy and
safety of fluoxetine in the treatment of major depression. G Ital Ric Clin Ther 1992, 13:59-64.

33. Heiligenstein H, Tollefson GD, Faries DE: Response patterns of depressed outpatients with and without melancholia: a double-blind, placebo-controlled trial of fluoxetine versus placebo. J Affect Disord 1994, 30:163-173.

34. Sramek JJ, Kashkin K, Jasinsky O, Kardatzke D, Kennedy S, Cutler NR: Placebo-controlled study of a BT-200 versus fluoxetine in the treatment of major depressive disorder. Depression 1995, 3:199-203.

35. Fava M, Amsterdam JD, Deltito JA, Salzman C, Schwaller M, Dunner DL: A double-blind study of paroxetine, fluoxetine, and placebo in outpatients with major depression. Ann Clin Psychiatry 1998, 10:145-150.

36. Rudolph RL, Feiger AD: A double-blind, randomized, placebo-controlled trial of once-daily venlafaxine extended release (XR) and fluoxetine for the treatment of depression. J Affect Disord 1999, 53:171-181.

37. Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL: Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety 2000, 11:58-65.

38. Coleman CC, King BR, Bolden-Watson C, Book MJ, Segraves RT, Richardson N, Ascher J, Batey S, Jamerson B, Merz A: A placebo-controlled comparison of the effects on sexual functioning of bupropion sustained release and fluoxetine. Clin Ther 2001, 23:1040-1058.

39. Khan A, Fabre LF, Rudolph R: Venlafaxine in depressed outpatients. Psychopharm Bull 1991, 27:141-144.

40. Schweizer E, Weise C, Clary C, Fox I, Rickels K: Placebo-controlled trial of venlafaxine for the treatment of major depression. J Clin Psychopharmacol 1991, 11:233-236.

41. Cunningham LA, Botison RL, Carman JS, Chouinard G, Crowder JE, Diamond BL, Fischer DE, Hearst E: A comparison of venlafaxine, trazodone, and placebo in major depression [published erratum appears in J Clin Psychopharmacol 1994 Aug;14(4):292]. J Clin Psychopharmacol 1994, 14:99-106.

42. Schweizer E, Feighner J, Mandos LA, Rickels K: Comparison of venlafaxine and imipramine in the acute treatment of major depression in outpatients. J Clin Psychiatry 1994, 55:104-108.

43. Cunningham LA: Once-daily venlafaxine extended release (XR) and venlafaxine immediate release (IR) in outpatients with major depression. Venlafaxine XR 208 Study Group. Ann Clin Psychiatry 1997, 9:157-164.

44. Thase ME: Efficacy and tolerability of once-daily venlafaxine extended release (XR) in outpatients with major depression. The Venlafaxine XR 209 Study Group. J Clin Psychiatry 1997, 58:393-398.

45. Silverstone PH, Ravindran A: Once-daily venlafaxine extended release (XR) compared with fluoxetine in outpatients with depression and anxiety. Venlafaxine XR 360 Study Group. J Clin Psychiatry 1999, 60:22-28.

46. Sauriol L, Laporta M, Edwards MD, Deslandes M, Ricard N, Suissa S: Meta-analysis comparing newer antipsychotic drugs for the treatment of schizophrenia: evaluating the indirect approach. Clin Ther 2001, 23:942-956.

47. Song F, Altman DG, Glenny AM, Deeks JJ: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ 2003, 326:472.

48. Vis PMJ, van Baardwijk M, Einhorn TR: Duloxetine and venlafaxine-XR in the treatment of MDD: a meta-analysis of randomized clinical trials. Ann Pharmacother 2003, 37(11):1798-807.

49. Hansen RA, Gartlehner G, Lohr KN, Gaynes BN, Carey TS: Efficacy and safety of second-generation antidepressants in the treatment of major depressive disorder. Ann Intern Med 2005, 143:415-426.

50. Bech P, Ciadella P, Haugh MC, Birkett MA, Hours A, Boissel JP, Tollefson GD: Meta-analysis of randomised controlled trials of fluoxetine v. placebo and tricyclic antidepressants in the short-term treatment of major depression. British Journal of Psychiatry 2000, 176:421-428.

51. Greenberg RP, Bornstein RF, Zborowski MJ, Fisher S, Greenberg MD: A meta-analysis of fluoxetine outcome in the Treatment of Depression. The journal of Nervous and Mental Disease 1994, 182(10):547-551.

52. Song F, Glenny AM, Altman DG: Indirect comparison in evaluating relative efficacy illustrated by antimicrobial prophylaxis in colorectal surgery. Control Clin Trials 2000, 21:488-497.

53. McAlister FA, Laupacis A, Wells GA, Sackett DL: Users’ Guides to the Medical Literature: XIX. Applying clinical trial results B. Guidelines for determining whether a drug is exerting (more than) a class effect. JAMA 1999, 282:1371-1377.

54. Egger M, Davey SG, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315:629-634.

55. Geddes J, Freemantle N, Harrison P, Bebbington P: Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 2000, 321:1371-1376.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-244X/6/30/prepub