Updated parameter limits of the left-right symmetric model

Jukka Sirkka

Department of Physics, University of Turku, 20500 Turku, Finland

September 1994

Submitted to Physics Letters B

Abstract

Bounds of the neutral current sector parameters of the left-right symmetric model are investigated taking into account the low-energy data, LEP-data and CDF-result for the top mass $m_t = 174 \pm 10^{13}_{12}$. It is found that in the case of the minimal scalar sector with a left- and a right-handed triplet and a bidoublet Higgses the mass of the heavy neutral gauge boson $M_{Z'}$ should be larger than 1.2 TeV, assuming equal left- and right-handed gauge couplings and a negligible VEV of the left-handed triplet. For larger values of the ratio g_L/g_R smaller values of $M_{Z'}$ are allowed.

sirkka@sara.cc.utu.fi
1. Introduction. The left-right symmetric model (LR-model) with the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ is a very appealing extension of the Standard Model. It has several attractive features. In this model, parity is a symmetry of the lagrangian and it is broken only spontaneously due to the form of the scalar potential providing a natural explanation for the parity violation. Furthermore, the $U(1)$ generator has a physical interpretation as the $B-L$ quantum number. Finally, the seesaw-mechanism can be realized and it leads to very small Majorana masses for the neutrinos which are mainly left-handed and large Majorana masses for the neutrinos which are mainly right-handed. In addition to the Standard Model particle content, there are heavy charged gauge boson W' and neutral gauge boson Z' and three right-handed neutrinos which form as mentioned, together with left-handed neutrinos the six Majorana mass eigenstates.

The purpose of this paper is to update the parameter limits for the LR-model using the latest LEP results, low-energy data and the CDF-result for the top mass $m_t = 174 \pm 10^{+13}_{-12}$ GeV. We shall do this in three cases. First, we do not specify the scalar sector of the LR-model. In this case we have three fitting parameters: the tree level correction $\Delta \rho_0 = M_W^2/(M_Z^2 \cos^2 \theta_w) - 1$ to the parameter $\rho = G_{NC}/G_{CC}$, which measures the relative strength of the neutral and charged current effective four fermion interactions and is unity in the Standard Model at the tree level; the mixing angle ξ_0 between Z and Z' and the mass $M_{Z'}$ of the Z'-boson. As the second case we consider the minimal LR-model, with left- and right-handed triplets $\Delta_{L,R}$ and a bidoublet Φ in the scalar sector. In ref. the most general scalar potential of the minimal LR-model was studied\footnote{However, it was assumed that the parameters of the scalar potential are real.}. It was shown that the potential has a minimum with the see-saw relation $v_L v_R = \gamma (k_1^2 + k_2^2)$, where $v_{L,R}$ and k_i are VEV parameters of the left- and right-handed triplets and bidoublet, respectively, while γ
is a particular combination of the scalar potential parameters and k_i's. By analysing the mass limits of neutrinos it was further shown, abandoning the possibility of fine-tuning the Yukawa couplings and the scalar potential parameters, that, to avoid the need to fine-tune the parameter γ very close to zero, the most natural possibility is to have $v_R \gtrsim 10^7$ GeV. Another possibility, to have v_R and thus $M_{Z'}$ in observable range, is to look for a new symmetry to eliminate the relevant terms from the scalar potential to guarantee that $\gamma = 0$ without fine-tuning. In both cases v_L becomes negligible. Thus we assume that the VEV of the left-handed triplet vanishes, $v_L = 0$. In this case the parameter $\Delta \rho_0$ can be expressed in terms of the mixing angle ζ of the charged gauge bosons and the ratio $M_Z^2/M_{Z'}^2$, and the angle ξ_0 can be expressed in terms of the ratio $M_Z^2/M_{Z'}^2$, leaving us with two fitting parameters. Finally we assume that the angle ζ is negligibly small and perform the data-analysis only with $M_{Z'}$ as the fitting parameter.

The present study differs from the previous ones in the respect that we use the experimental value of the top mass as a constraint and that we study also the case where the gauge couplings g_L and g_R corresponding to the subgroups $SU(2)_L$ and $SU(2)_R$ may differ by performing the analysis with various values of the ratio $\lambda \equiv g_L/g_R$. The motivation for doing this is that if the LR-model is embedded in a grand unified theory, it can happen that the discrete left-right symmetry is broken at much higher energy scale than the weak scale, allowing $g_R \neq g_L$ in the low-energy phenomena. For example, in the case of supersymmetric version of $SO(10)$ grand unified theory, a chain of symmetry breakings can be realized that leads to a $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ breaking scale ≈ 1 TeV and to a value of λ as large as 1.2.[4]

2. Basic structure of the LR-model. In the LR-model, with the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$, the left-handed leptons $\psi_L = (\nu, l)_L$ are in the represen-
The quark sector is assigned correspondingly. In the minimal LR-model the scalar sector contains fields Φ, Δ_L and Δ_R assigned to the representations $(2, 2, 0)$, $(3, 1, 2)$ and $(1, 3, 2)$, respectively. The vacuum expectation values of the fields are

$$
\langle \Phi \rangle = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}, \quad \langle \Delta_L \rangle = \begin{pmatrix} 0 \\ 0 \\ v_L \end{pmatrix}, \quad \langle \Delta_R \rangle = \begin{pmatrix} 0 \\ v_R \end{pmatrix}.
$$

(1)

As discussed in the Introduction, we shall set $v_L = 0$. Due to these VEV’s, the group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ is broken down to the electromagnetic group $U(1)_Q$ and six gauge bosons W^\pm, W'^\pm, Z, Z' acquire mass. The masses of the charged gauge bosons W and W' are found to be, in the limit $v_R^2 \gg k_1^2 + k_2^2$,

$$
M_{W}^2 = g_L^2 \bar{k}^2 \left(1 - \frac{k_1^2 k_2^2}{k^2 v_R^2}\right),
$$

$$
M_{W'}^2 = g_R^2 v_R^2,
$$

(2)

where $\bar{k}^2 = (k_1^2 + k_2^2)/2$. The masses of the neutral gauge bosons Z, Z' read as

$$
M_{Z}^2 = \frac{g_L^2 \bar{k}^2}{c_w} \left(1 - \frac{y^4 \bar{k}^2}{2 c_w^4 v_R^2}\right),
$$

$$
M_{Z'}^2 = \frac{2 c_w^2 g_R^2 v_R^2}{y^2},
$$

(3)

where shorthand notation $c_w = \cos \theta_W$ for weak mixing angle has been used. In the LR-model the weak mixing angle is defined through

$$
g_L s_w = g' y = e.
$$

(4)

Here g' is the $U(1)_{B-L}$ gauge coupling and

$$
y = \sqrt{c_w^2 - \lambda^2 s_w^2},
$$

(5)

and $\lambda = g_L/g_R$.

Using Eqs. (2) and (3) one deduces the value of the parameter $\Delta \rho_0$,

$$\Delta \rho_0 = \frac{y^2 \beta}{\lambda^2} - \frac{y^2 \zeta^2}{2\beta \lambda^2},$$

(6)

where $\beta = M_Z^2/M_\nu^2$. The $W-W'$ mixing angle ζ is in the minimal LR-model given by

$$\zeta = \frac{\lambda k_1 k_2}{\nu_R^2}.$$

(7)

One should notice that $\Delta \rho_0$ can be either positive or negative depending on the values of β and ζ.

The neutral current lagrangian reads

$$\mathcal{L}_{NC} = g_L j_{3L} \cdot W_{3L} + g_R j_{3R} \cdot W_{3R} + g' J_{B-L} \cdot B,$$

(8)

where $W_{3L,3R}$ are the neutral $SU(2)_{L,R}$ gauge bosons, and B is the gauge boson of $U(1)_{B-L}$. The fermion neutral currents have a form

$$j_{\mu}^{L,R} = \bar{\psi} \gamma^\mu T_{3L,3R} \psi, \quad j_{\mu}^{B-L} = \bar{\psi} \gamma^\mu \frac{1}{2}(B - L) \psi.$$

(9)

The lagrangian (8) can be expressed in terms of the photon field A and the fields Z_L and Z_R requiring that photon couples only to the electromagnetic current $j_{em} = j_{3L} + j_{3R} + j_{B-L}$ and defining Z_R to be that combination of W_{3L}, W_{3R} and B that does not couple to j_{3L}. It follows that Z_L and Z_R couple to the currents $e/(s_w c_w)(j_{3L} - s_w^2 J_{em})$ and $e/(s_w c_w \lambda y)(y^2 j_{3R} - \lambda^2 s_w^2 j_{B-L})$, respectively. After a rotation to the mass eigenstate basis Z, Z',

$$\begin{pmatrix} Z \\ Z' \end{pmatrix} = \begin{pmatrix} \cos \xi_0 & \sin \xi_0 \\ -\sin \xi_0 & \cos \xi_0 \end{pmatrix} \begin{pmatrix} Z_L \\ Z_R \end{pmatrix},$$

(10)

we can express the neutral current lagrangian in terms of the mass eigenstates A, Z and Z'. The mixing angle ξ_0 measures the deviations of the Z-boson LR-model couplings from the Standard Model couplings. Since the Standard Model is tested
to be valid with a good accuracy, we can expand the Z-coupling in linear order and, at energy scales much lower than $M_{Z'}$, Z'-coupling in zeroth order in ξ_0. The neutral current lagrangian then reads

$$L_{NC} = eA \cdot j_{em} + \frac{e}{s_wc_w}Z \cdot \left[j_{3L} \left(1 + \frac{s_w^2 \lambda}{y} \xi_0 \right) - s_w^2 j_{em} \left(1 + \frac{\lambda}{y} \xi_0 \right) + j_{3R} \frac{c_w^2}{\lambda y} \xi_0 \right]$$

$$+ \frac{e}{s_wc_w}Z' \cdot \left[j_{3L} \frac{s_w^2 \lambda}{y} - s_w^2 j_{em} \frac{\lambda}{y} + j_{3R} \frac{c_w^2}{\lambda y} \right].$$

(11)

In the minimal LR-model ξ_0 reads, in the limit $M_{Z'} \gg M_Z$,

$$\xi_0 = \frac{y}{\lambda} \beta.$$

(12)

3. The LR-model formulas for the observables. In Standard Model, the analyses of the low-energy data are based on the effective lagrangian of the form

$$L_{eff} = \frac{e^2(q^2)}{q^2} j_{em}(1) \cdot j_{em}(2)$$

$$+ 4\sqrt{2} G_F \rho(q^2)[j_{3L}(1) - s_{eff}^2(q^2)j_{em}(1)] \cdot [j_{3L}(2) - s_{eff}^2(q^2)j_{em}(2)].$$

(13)

Here the loop corrections are collected to form three effective quantities $e^2(q^2)$, $\rho(q^2)$ and $s_{eff}^2(q^2)$, which depend on the energy scale $\sqrt{|q^2|}$, such that L_{eff} preserves the form of the tree level lagrangian. This can be naturally done also in the context of the LR-model. However, one might wonder if the form of the effective quantities e^2, ρ and s_{eff}^2 is changed when the tree level LR-model corrections are taken into account. It was shown in [3] that, in leading order in quantities β, ξ_0 and $\Delta \rho_0$ the changes can be parametrized with $\Delta \rho_0$ only:

$$\rho = 1 + \Delta \rho_{SM} + \Delta \rho_0$$

$$s_{eff}^2 = s^2(1 + \Delta \kappa_{SM}) + c^2 \Delta \rho_0$$

$$e^2 = e_{SM}^2,$$

(14)

where $\Delta \rho_{SM}$ and $\Delta \kappa_{SM}$ represent the Standard Model loop corrections and $c^2 = 1 - s^2 = M_W^2/M_Z^2$. Thus the low-energy lagrangian for the LR-model can be written
in the form

\[\mathcal{L}_{\text{eff}} = \frac{e^2}{q^2} j_{\text{em}}(1) \cdot j_{\text{em}}(2) \]

\[+ 4\sqrt{2} G_F \rho \left[j_{3L}(1) \left(1 + \frac{s^2 \lambda}{y} \xi_0 \right) - s^2 j_{\text{em}}(1) \left(1 + \frac{\xi_0}{\lambda y} \right) + j_{3R}(1) \frac{c^2 \xi_0}{\lambda y} \right] \times \]

\[j_{3L}(2) \left(1 + \frac{s^2 \lambda}{y} \xi_0 \right) - s^2 j_{\text{em}}(2) \left(1 + \frac{\xi_0}{\lambda y} \right) + j_{3R}(2) \frac{c^2 \xi_0}{\lambda y} \]

\[+ 4\sqrt{2} G_F \beta \left[j_{3L}(1) \frac{s^2 \lambda}{y} - s^2 j_{\text{em}}(1) \frac{\lambda}{y} + j_{3R}(1) \frac{c^2}{\lambda y} \right] \times \]

\[j_{3L}(2) \frac{s^2 \lambda}{y} - s^2 j_{\text{em}}(2) \frac{\lambda}{y} + j_{3R}(2) \frac{c^2}{\lambda y} \].

(15)

Strictly speaking, the Eq. (14) for \(s_{\text{eff}}^2 \) is only valid when \(M_W \) and hence \(s^2 \) is used as an input. The parameter \(s^2 \) is calculable as a function of the other more precisely measured parameters from the expression for the Fermi coupling constant, which reads, when taking into account the LR-model corrections,

\[\frac{1}{\sqrt{2}} G_F = \frac{\pi \alpha}{2s^2c^2M_Z^2}(1 + \Delta r - \frac{c^2}{s^2}\Delta \rho_0 + \delta_F). \]

(16)

Here \(\Delta r \) represents the Standard Model loop corrections and \(\delta_F \) the LR-model tree level corrections to the muon decay rate. As \(\delta_F \) is a second order correction in the parameters \(\zeta \) and \(M_W^2/M_W'^2 \), it will be neglected in the following. By calculating \(s^2 \) from Eq. (16) and substituting the result to Eq. (14), one then obtains

\[s_{\text{eff}}^2 = s_{\text{eff,SM}}^2 - \frac{s^2 c^2}{c^2 - s^2} \Delta \rho_0. \]

(17)

In the relation (16), we have included in addition to the \(\mathcal{O}(\alpha) \)-corrections also the \(\mathcal{O}(\alpha \alpha_s) \)-corrections whereas in Eqs. (14) only \(\mathcal{O}(\alpha) \)-corrections are included. This is because the parameter \(s^2 \), calculated from relation (13), enters also in the expressions of the LEP-observables, which are measured with a much greater accuracy than the low-energy observables.

From (15) one can write the model independent low-energy parameters, as defined through the model independent effective lagrangians, in terms of LR-model
parameters. For deep inelastic neutrino-hadron scattering the parameters $\varepsilon_{L,R}(q)$ are defined through the lagrangian

$$L^{\nu H} = \sqrt{2} G_F \bar{\nu}_L \gamma_i \gamma_L \sum_q (\varepsilon_L(q) \nu_L \gamma_\mu q_L + \varepsilon_R(q) \bar{\nu}_R \gamma_\mu q_R),$$

with the LR-model expressions

$$\varepsilon_L(q) = \rho (1 + A_L \xi_0) \left[T_3 (1 + A_L \xi_0 + A_L^2 \beta) - Q s^2_{\text{eff}} (1 + A_Q \xi_0 + A_L A_Q \beta) \right],$$

$$\varepsilon_R(q) = \rho (1 + A_L \xi_0) \left[T_3 (A_R \xi_0 + A_L A_R \beta) - Q s^2_{\text{eff}} (1 + A_Q \xi_0 + A_L A_Q \beta) \right],$$

where $A_L = s^2 \lambda / y$, $A_Q = \lambda / y$ and $A_R = c^2 / \lambda y$ and $T_3 \equiv T_{3L} = T_{3R}$. Note that in Eq. (18), neutrinos are assumed to be left-handed. But in the LR-model, neutrinos are most naturally Majorana particles. The see-saw mechanism produces three heavy and three light mass eigenstates, with mass matrices $M_N \approx v_R h_M$ and $M_\nu \approx M_D M_N^{-1} M_D^T$, respectively [8]. Here h_M is the matrix of Yukawa couplings between leptons and right-handed triplet scalar Δ_R and $M_D = F k_1 + G k_2$ is a Dirac mass term with Yukawa coupling matrices F and G. Further, the charged lepton mass matrix has a form $M_l = F k_2 + G k_1$. Assuming that neither of the two terms in M_l is negligible and neglecting the inter-generational mixings between neutrinos, we have the see-saw relation between the light and heavy neutrino masses

$$m_\nu \approx \frac{m_l^2}{m_N}. \quad (20)$$

This implies, together with the experimental limits of the light neutrino masses [9], $m_{\nu_1} < 7.3$ eV, $m_{\nu_2} < 0.27$ MeV and $m_{\nu_3} < 35$ MeV, approximate lower bounds for the heavy neutrinos:

$$m_{N_1} \gtrsim 4 \text{ GeV}, \quad m_{N_2} \gtrsim 40 \text{ GeV}, \quad m_{N_3} \gtrsim 90 \text{ GeV}. \quad (21)$$

Further, the current eigenstates ν_L and ν_R can be expressed in terms of the mass eigenstates χ through a unitary transformation,

$$\nu_{Li} = U_{Li,j} \chi_{l,j} + U_{Lh,i} \chi_{h,j},$$

8
 where U_{Li} etc. are 3×3 submatrices of a unitary 6×6 matrix U and χ_h, χ_l denote the heavy and light Majorana neutrinos, respectively. The see-saw mechanism implies that U_{Lh} and U_{Rh} are $O(m_l/m_N)$ and U_{Li} and U_{Rl} are $O(1)$ \cite{8}. We can now write the left- and right-handed parts of the neutrino neutral current effectively as

$$\nu_L \gamma^\mu \nu_L = \bar{\chi}_L \gamma^\mu U^\dagger_{LI} U_{LI} \chi_L + \ldots = \bar{\chi}_L \gamma^\mu \chi_L + O(m_l^2/m_N^2) + \ldots$$

$$\nu_R \gamma^\mu \nu_R = \bar{\chi}_R \gamma^\mu U^\dagger_{RI} U_{RI} \chi_R + \ldots = (m_l^2/m_N^2) + \ldots,$$

(23)

where dots represent the contribution where there is at least one heavy neutrino involved. When the limits (21) apply, the production of heavy neutrinos is forbidden at low-energy scales and the lagrangian (18) is applicable.

Note also that, as the parameters ε_L and ε_R are determined from the ratios

$$R = \sigma^{NC}_{\nu N} / \sigma^{CC}_{\nu N}$$

and

$$\bar{R} = \sigma^{NC}_{\bar{\nu} N} / \sigma^{CC}_{\bar{\nu} N}$$

of the neutral and charged current cross sections of deep inelastic neutrino scattering, one needs in principle to consider also the charged sector of the LR-model. However, it is straightforward to check that this contribution is of the second order in parameters ζ and M_W^2/M_W^2, and as such, negligible.

The effective lagrangian for the electron-neutrino scattering defines the parameters g_V^e and g_A^e according to

$$\mathcal{L}^{\nu e} = \sqrt{2} G_F \bar{\nu}_L \gamma^\mu \nu_L \tau^\gamma \mu (g_V^e - g_A^e).$$

The LR-model expressions for them are

$$g_V^e = \rho(1 + A_L \xi_0) \left(-\frac{1}{2}(1 + (A_L + A_R)\xi_0 + A_L(A_L + A_R)\beta) + 2s^2_{\text{eff}}(1 + A_Q \xi_0 + A_L A_Q \beta)\right),$$

$$g_A^e = -\frac{1}{2} \rho(1 + A_L \xi_0)(1 + (A_L - A_R)\xi_0 + A_L(A_L - A_R)\beta).$$

(25)
For the ν_e-e scattering the charged current contribution must be included. Again, it is easy to check that the charged current LR-model contribution to the cross-section is a negligible second order term in parameters ξ_0 and M_W^2/M_W^2.

The effective parity violating lagrangian in the electron-hadron scattering defines the parameters C_{iq} according to

$$L^{eH} = \frac{G_F}{\sqrt{2}} \sum_q \left(C_{1q} \bar{e}_\mu \gamma^\mu \gamma^5 e_q + C_{2q} \bar{e}_\mu e_q \gamma^\mu \gamma^5 q \right),$$

with the LR-model expressions

$$C_{1q} = \rho (1 + (A_L - A_R)\xi_0) \left(-T_{3q}(1 + (A_L + A_R)\xi_0 + (A_L^2 - A_R^2)\beta) \right.$$
$$+ 2s_{eff}^2 Q_q(1 + A_Q\xi_0 + A_Q(A_L - A_R)\beta) \left. \right),$$

$$C_{2q} = 2T_{3q}\rho (1 + (A_L - A_R)\xi_0) \left(-\frac{1}{2}(1 + (A_L + A_R)\xi_0 + (A_L^2 - A_R^2)\beta) \right.$$
$$+ 2s_{eff}^2 (1 + A_Q\xi_0 + A_Q(A_L - A_R)\beta) \left. \right).$$

(27)

The parameters ρ and s_{eff}^2 in the low-energy formulas depend slightly on the process in question. Furthermore, there are some additional terms from the box graphs [6, 10], which should be included. The experimental values of the low-energy parameters are taken from Ref. [10].

In the Z-line shape measurement at LEP, the $e^-e^+\to f\bar{f}(\gamma)$ cross-sections are fitted, after subtracting the pure QED effects and the $\gamma-Z$ interference term, to the function

$$\sigma^0(s) = \sigma_f^p \frac{s\Gamma_Z^2}{(s - M_Z^2)^2 + s^2\Gamma_Z^2/M_Z^2},$$

where

$$\sigma_f^p = \frac{12\pi\Gamma_f\Gamma_f}{M_Z^2\Gamma_Z^2}.$$

(29)

An additional gauge boson would give a contribution to the cross-section [11]

$$\frac{\delta\sigma_0}{\sigma_0} \approx \delta R_{ZZ} \frac{s - M_Z^2}{M_Z^2},$$

(30)
where
\[
\delta R_{ZZ'} \approx -2 \frac{M_Z^2}{M_{Z'}^2} \frac{v_e v'_e + a_e a'_e v_f v'_f + a_f a'_f}{v_e^2 + a_e^2} \frac{v_e^2 + a_e^2}{v'_f + a'_f}, \tag{31}
\]
where \(v_f\) and \(a_f\) are vector and axial-vector couplings of the fermion \(f\) to the \(Z\)-boson while \(v'_f\) and \(a'_f\) are the corresponding quantities for \(Z'\). Presence of the term \(\delta R_{ZZ'}\) could in principle affect the line shape parameters, but it turns out that this effect is negligible even for modest values of \(M_{Z'}\). For example, the location of the maximum of the cross-section gets shifted by an amount
\[
\frac{\delta s_0}{s_0} \approx \frac{\Gamma_Z^2}{2M_Z^2} \delta R_{ZZ'} \approx 4 \cdot 10^{-4} \delta R_{ZZ'} \tag{32}
\]
Using \(\delta s_0/s_0 \approx 2\delta M_Z/M_Z\) and \(M_Z = (91.1899 \pm 0.0044) \text{ GeV} \tag{12}\) and taking the couplings in \(\delta R_{ZZ'}\) to be equal for \(Z\) and \(Z'\) requires \(M'_{Z'} < 300 \text{ GeV}\) for the additional gauge boson to give a measurable contribution.

Thus the LEP measurements are sensitive only to the parameters \(\Delta \rho_0\) and \(\xi_0\) through the dependence of the couplings \(v_f\) and \(a_f\) of them. The form of the couplings can be read from the lagrangian \(\text{(11)}\) by replacing the bare quantity \(s_w^2\) with the effective quantity \(s_f^2\).

We shall use the following high energy observables in the analysis: the total width of the \(Z\)-boson \(\Gamma_Z\), the hadronic peak cross-section \(\sigma_{p\text{had}}\), the ratio \(R_l\) between the hadronic and leptonic widths and the mass of the \(Z\), the ratio \(R_b\) between the partial width to a b\(\bar{b}\)-pair and the hadronic width, the mass of the \(Z\) and the effective leptonic weak mixing angle defined through
\[
\sin^2 \theta_{ew}^{\text{eff}} = \frac{1}{4} \left(1 - \frac{v_l}{a_l}\right), \tag{33}
\]
which can be extracted from any of the leptonic asymmetries \(A_{FB}, P_\tau, A_{FB}^{\text{pol}(\tau)}\) or \(A_{LR}\). Using mass of the \(Z\) as input leaves us five observables, of which \(\Gamma_Z, \sigma_{p\text{had}}, R_l\) and \(R_b\) can be expressed in terms of the partial fermionic widths. The widths have
the form
\[\Gamma_f = \frac{G_F M_Z^2 \rho_f}{6\sqrt{2\pi}} (v_f^2 + a_f^2) (1 + \frac{3a_s}{4\pi} Q_f^2) K_{QCD}, \]
where
\[v_f = T_{3f} (1 + (A_L + A_R) \xi_0) - 2s_f^2 Q_f (1 + A_Q \xi_0), \]
\[a_f = T_{3f} (1 + (A_L - A_R) \xi_0) \]
and the QCD correction factor is defined by
\[K_{QCD} = 3(1 + \frac{\alpha_s}{\pi}) \quad \text{for quarks} \]
\[= 1 \quad \text{for leptons.} \]

The partial width to a $b\bar{b}$-pair has a slightly different behaviour due to the large contribution from the $Zb\bar{b}$-vertex. This is taken into account by a parameter δ_{vb} defined through
\[\Gamma_b = \Gamma_d (1 + \delta_{vb}). \]

In the limit of the large top mass it has the form
\[\delta_{vb} = -\frac{20}{13} \frac{\alpha}{\pi} \left(\frac{m_t^2}{M_Z^2} + \frac{13}{6} \ln \frac{m_t^2}{M_Z^2} \right). \]

The Eqs. (34) and (35) can also be applied to the case of light neutrinos after removing the $A_R \xi_0$ terms. The partial widths to a light and a heavy neutrino and to a heavy neutrino pair can be neglected even if these decays are kinematically allowed. This is because the widths are proportional to
\[|g_L(\chi_i\chi_j)|^2 + |g_R(\chi_i\chi_j)|^2, \]
where $g_{L,R}(\chi_i\chi_j)$ are left- and right- handed couplings of the Z to the neutrinos χ_i and χ_j. By substituting Eq. (22) to the lagrangian (11) one deduces that the couplings $g_{L,R}(\chi_i\chi_j)$, except the left-handed couplings of the light neutrinos, are
proportional at least to the first power of the parameters ξ_0 or $U_{Lh} = O(m_l/m_N)$ and hence give a negligible second order contribution to the partial widths.

The quantities ρ_f and s_f^2 have the same dependence on the parameter $\Delta \rho_0$ as the corresponding low-energy quantities. The Standard Model loop corrections for them differ slightly because of the different energy scale and the non-negligible vertex corrections. In addition to the $O(\alpha)$-corrections [6], we have also included $O(\alpha \alpha_s)$-corrections [7] in the expressions of the parameters ρ_f and s_f^2. Note that $\sin^2 \theta_{\text{eff}}^w$ is equal to s_l^2 in the absence of LR-corrections. The values of the high energy observables to be used in our analysis are [12]

\begin{align*}
\Gamma_Z &= 2.4974 \pm 0.0038 \text{ GeV}, \\
\sigma_p^{\text{had}} &= 41.49 \pm 0.12 \text{ nb}, \\
R_l &= 20.795 \pm 0.040, \\
R_b &= 0.2192 \pm 0.0018, \\
\sin^2 \theta_{\text{eff}}^w &= 0.2317 \pm 0.0004. \tag{40}
\end{align*}

For the quantities Γ_Z, σ_p^{had} and R_l we have applied the correlations used by the DELPHI Collaboration [14] (i.e. $c_{12} = -0.20$, $c_{13} = 0.00$ and $c_{23} = 0.14$).

In addition to the low-energy and LEP-data we also use the W-mass value $M_W = 80.23 \pm 0.18$ [12] as constraint, theoretical value for M_W being calculable from Eq. (16).

4. Results and discussion. We have performed a χ^2-function minimization to fit the LR-model parameters with various values of $\lambda = g_L/g_R$. As input we have used $M_Z = (91.1888 \pm 0.0044)$ GeV [12], $m_t = (174 \pm 17)$ GeV [2], $\alpha_s = 0.118 \pm 0.007$ [15] and $\Delta \alpha^{(5)} = 0.0288 \pm 0.0009$ [16]. Here $\Delta \alpha^{(5)}$ is the contribution of the light quarks to the running of α from low energies up to M_Z. It appears in the loop correction factor Δr in Eq. (13). In addition to the LR-model parameters, the strong coupling
constant α_s and the top mass m_t were allowed to vary. The experimental values for them cited above were used as constraints. The mass of the higgs was assumed to be between 60 and 1000 GeV with a central value 250 GeV.

The 95% CL results for the case with the unspecified scalar sector are presented in Table 1. The allowed ranges of the parameters are slightly larger for larger values of λ. The same holds also for the case of minimal LR-model, results for which are presented in Table 2, and for the minimal LR-model with a negligibly small $W-W'$ mixing angle ζ, the results for which are presented in Table 3.

The experimental value of the ratio R_b prefers lower values of m_t. Setting $m_t = 174$ GeV causes the theoretical value of R_b to be two standard deviations away from the experimental value. For example, in the case of LR-model with unspecified scalar sector and $\lambda = 1$, excluding the R_b-contribution lowers the minimum of χ^2 to $\chi^2_{min} = 8.5$, changes the 95% CL range of the parameter $\Delta \rho_0$ to $\Delta \rho_0 = (1.0 \pm 3.7) \cdot 10^{-3}$, changes the 95% CL range of the top mass from $m_t = 152 \pm 33$ GeV to $m_t = 165 \pm 35$ GeV but leaves the bounds for ξ_0 and $M_{Z'}$ unchanged. This behaviour can be explained by noting that the dominant m_t-dependence of R_b comes through the term δ_{v_b} in Eq. \(17\), whereas the other observables receive a significant contribution also from $\Delta \rho \equiv \Delta \rho_0 + \Delta \rho_t$. Here $\Delta \rho_t$ is the top mass dependent part of the Standard Model contribution to the parameter ρ and it reads, in the limit of large top mass, $\Delta \rho_t = \frac{3 G_F m_t^2}{(8\sqrt{2}\pi^2)}$. When m_t decreases to fit better to R_b, the Standard Model contribution to the parameter $\Delta \rho$ decreases allowing a larger value of $\Delta \rho_0$.

The best value of the top mass was found to be, almost independently of the model considered, to be around $m_t = 150 \pm 35$ GeV (95% CL). We performed also a Standard Model fit to the parameters m_t and m_H. We found the 68% CL result

$$m_t = 157^{+11}_{-11} \text{ GeV},$$
\[m_H = 77^{+144}_{-48} \text{ GeV} \quad (41) \]

in agreement with a recent study \[17\].

We now compare our results with those obtained in the studies \[18\] and \[19\]. Langacker and Luo \[18\] used low-energy measurements, LEP-measurements and \(M_W \)-measurement to fit the parameters of the extended models. They found the 95\% CL bounds \(\xi_0 = (1.8^{+0.1}_{-0.6}) \cdot 10^{-3} \) and \(M_{Z'} > 387 \text{ GeV} \) in the case of the general LR-model with \(g_L = g_R \); and \(M_{Z'} > 857 \text{ GeV} \) in the case of the minimal LR-model with \(g_L = g_R \). Due to the increased precision of the LEP-measurements the bounds obtained in the present study are considerably tighter except for \(M_{Z'} \) in the general LR-model, for which our bound is 30 GeV lower. This is presumably due to the larger low-energy data set used in \[18\], in addition to the experimental quantities used in the present study Langacker and Luo use also \(e^-e^+ \)-annihilation data below the \(Z \)-pole.

Altarelli et al. \[19\] used the LEP-measurements and \(M_W \)-measurement to fit the parameters of the extended models. In the case of LR-model with \(g_L = g_R \) and unspecified scalar sector they found the 1\(\sigma \) ranges \(\xi_0 = (0.15 \pm 1.58) \cdot 10^{-3} \) with top mass fixed to \(m_t = 150 \text{ GeV} \); and \(\xi_0 = (-0.1 \pm 2.5) \cdot 10^{-3} \), \(m_t < 147 \text{ GeV} \) when letting \(\alpha_s \) and \(m_t \) vary. The low value of the top mass in the latter case is due the use of \(\Delta \rho = \Delta \rho_0 + \Delta \rho_t \) as a fitting parameter, causing the other observables than \(R_b \) being almost independent of the top mass. Our results are in agreement with those cited above. The 1\(\sigma \) range for \(\xi_0 \) in the case of LR-model with unspecified scalar sector and \(\lambda = 1 \) is \(\xi_0 = (0.5 \pm 1.4) \cdot 10^{-3} \). The constraint \(m_t = 174 \pm 17 \text{ GeV} \) used in our analysis raises the central value and reduces slightly the allowed range of \(\xi_0 \).

In the case of minimal LR-model, one obtains from Table 2 a lower bound also
for $M_{W'}$ by using the relation

$$M_{W'} = \frac{y}{\sqrt{2c_w}} M_{Z'}$$

which follows from the Eqs. (2) and (3). For example, in the case of $\lambda = 1$, $M_{W'} > 740$ GeV. This bound is more restrictive than the bound obtained from charged current data [20] in the case when the right-handed quark mixing matrix U^R is unrelated to the left-handed CKM-matrix U^L, $M_{W'} > 670$ GeV (90% CL); but is less restrictive in the case of manifest or pseudomanifest left-right symmetry, which implies $|U^R_{ij}| = |U^L_{ij}|$, $M_{W'} > 1.4$ TeV (90% CL).

To conclude, using the latest LEP results and the top mass constraint $m_t = 174 \pm 17$ GeV and assuming the left-right symmetric model, one is able to constrain the $Z-Z'$ mixing to be smaller than 0.5 % and the tree level contribution $\Delta \rho_0$ to the ρ-parameter to be smaller than 0.6 %. If one further assumes the LR-model with minimal scalar sector, it is found that the mass of the heavier neutral gauge boson should be larger than 1 TeV.

Acknowledgement Author thanks Iiro Vilja and Jukka Maalampi for a critical reading of the manuscript.

References

[1] J.C. Pati and A. Salam, Phys. Rev. D10 (1974) 275; R.N. Mohapatra and J.C. Pati, Phys. Rev. D11 (1975) 566, 2558; G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12 (1975) 1502; R.N. Mohapatra and R.E. Marshak, Phys. Lett. 91B (1980) 222.

[2] F. Abe et al. (CDF collaboration), Phys. Rev. Lett. 73 (1994) 225.
[3] N.G. Deshpande, J.F. Gunion, B. Kayser and Fredrik Olness, Phys. Rev. D44 (1991) 837.

[4] N. G. Deshpande, E. Keith and T. G. Rizzo, Phys. Rev. Lett. 70 (1993) 3189.

[5] J. Maalampi and J. Sirkka, Z. Phys. C61 (1994) 471.

[6] A. Sirlin, Phys. Rev. D22 (1980) 971; W. J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2695; G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151; W. Wetzel, Nucl. Phys. B217 (1983) 1; M. Böhm, H. Spiesberger and W. Hollik, preprint DESY 84-027.

[7] B. A. Kniehl, Nucl. Phys. B347 (1990) 86; F. Halzen and B. A. Kniehl, Nucl. Phys. B353 (1991) 567.

[8] R. Mohapatra and P. Pal, Massive Neutrinos in Physics and Astrophysics (World Scientific, Singapore, 1991).

[9] L. Montanet et al. (Particle Data Group), Review of Particle Properties, Phys. Rev. D50 (1994) 1173.

[10] P. Langacker and J. Erler in Review of Particle Properties, p. 1304.

[11] A. Borelli, M. Consoli, L. Maiani and R. Sisto, Nucl. Phys. B333 (1990) 357; G. Altarelli, R. Casalbuoni, D. Dominici, F. Feruglio and R. Gatto, Nucl. Phys. B342 (1990) 15.

[12] D. Scheile, plenary talk, in the Proceedings of the XXVII International Conference on High Energy Physics (Glasgow, Scotland, July 1994), to appear.

[13] A. Blondel and C. Verzegnassi, Phys. Lett. B311 (1993) 346.

[14] P. Abreu et al. (DELPHI Collaboration), Nucl. Phys. B417 (1994) 3.
[15] S. Catani, plenary talk, in the Proceedings of the EPS Conference on High Energy Physics (Marseille, France, July 1993), ed. by J. Carr and M. Perrottet (Ed. Frontières, Gif-sur-Yvette, 1994).

[16] G. J. H. Burgers, F. Jegerlehner, B. A. Kniehl and J. H. Kühn, in Z Physics at LEP, G. Altarelli, R. Kleiss and C. Verzegnassi (eds.) CERN Yellow Report CERN 89-08 vol. 1 (1989) 55.

[17] J. Ellis, G.L. Fogli and E. Lisi, Phys. Lett. B333 (1994) 118.

[18] P. Langacker and M. Luo, Phys. Rev. D45 (1992) 278.

[19] G. Altarelli, R. Casalbuoni, S. De Curtis, N. Di Bartolomeo, R. Gatto and F. Feruglio, Phys. Lett. B318 (1993) 139.

[20] P. Langacker and S. Uma Sankar, Phys. Rev. D40 (1989) 1569.

TABLE CAPTIONS

Table 1. The 95% CL neutral current parameter limits ($\chi^2 < \chi^2_{\text{min}} + 4.8$) for the LR-model with unspecified scalar sector.

Table 2. The 95% CL parameter limits for the minimal LR-model.

Table 3. The 95% CL lower limits of the mass of the heavy neutral gauge boson in the minimal LR-model with a negligible charged current mixing angle.
Table 1.

λ	χ^2_{min}	$\Delta \rho_0$	ξ_0	$M_{Z',min}$ [GeV]
1.0	14.5	$(2.1 \pm 3.6) \cdot 10^{-3}$	$(0.5 \pm 3.1) \cdot 10^{-3}$	359
1.1	14.4	$(2.1 \pm 3.6) \cdot 10^{-3}$	$(0.6 \pm 3.6) \cdot 10^{-3}$	344
1.2	14.3	$(2.2 \pm 3.7) \cdot 10^{-3}$	$(0.8 \pm 4.1) \cdot 10^{-3}$	333

Table 2.

| λ | χ^2_{min} | $|\zeta|_{max}$ | $M_{Z',min}$ [TeV] |
|-----------|----------------|---------------|-----------------|
| 1.0 | 15.7 | $5.5 \cdot 10^{-3}$ | 1.24 |
| 1.1 | 15.6 | $6.7 \cdot 10^{-3}$ | 1.06 |
| 1.2 | 15.6 | $8.1 \cdot 10^{-3}$ | 0.92 |

Table 3.

λ	χ^2_{min}	$M_{Z',min}$ [TeV]
1.0	15.7	1.24
1.1	15.6	1.06
1.2	15.6	0.92