Self-rated health among people living with HIV in Spain in 2019: a cross-sectional study

Marta Ruiz-Algueró
CentrInsituto de Salud Carlos III

Victoria Hernando
Instituto de Salud Carlos III

Henar Marcos
Consejería de Sanidad de Castilla y León

Gonzalo Gutiérrez
Consejería de Sanidad de Castilla La Mancha

María Jesus Pérez-Elias
Hospital Universitario Ramon y Cajal

Juan Carlos López-Bernaldo de Quirós
Hospital General Universitario Gregorio Marañon

Federico Pulido
Hospital Universitario 12 de Octubre

Miguel Górgolas
Hospital Universitario Fundacion Jimenez Diaz

Jesus Sanz
Hospital Universitario de la Princesa

Inés Suarez-García
Hospital Universitario Infanta Sofia

María Teresa Fernandez
Hospital Universitario del Sureste

Juan Emilio Losa
Hospital Universitario Fundacion Alcorcon

Jose Luis Pérez
Hospital Universitario Infanta Cristina

María Oliva Ladrero
DG Salud Publica de Aragón

Miguel Angel Prieto
Consejeria de Sanidad de Asturias

Gustavo González
Servicio Extremeño de Salud

Ana Izquierdo
Servicio Canario de Salud

Luis Javier Viloria
Consejería de Sanidad de Cantabria

Irene López
Consejería de Sanidad y Consumo de Ceuta

Eva Martínez
Consejería de Sanidad de La Rioja

Daniel Castrillejo
Consejería de Bienestar Social y Sanidad de Melilla

Rosa Aranguren
Conselleria de Salut, Familia i Bienestar Social. Islas Baleares

María Antonia Belmonte
Consejeria de Salud de Murcia

IV Aranda-García
Conselleria de Sanitat Universal i Salut Publica. Comunidad Valenciana

Antonio Arraiza
Research article

Keywords: Self-rated health, health quality of life, fourth 90, people living with HIV, Spain.

DOI: https://doi.org/10.21203/rs.3.rs-85377/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: HIV infection has become a chronic disease and well-being of people living with HIV (PLHIV) is now of particular concern. The objectives of this paper are to describe self-rated health among PLHIV, on ART and on ART virally suppressed and to analyse its determinants.

Methods: Data were obtained from a second-generation surveillance system based on a cross-sectional one-day survey in public hospitals. Epidemiological and clinical data were collected among HIV-infected inpatients and outpatients receiving HIV-related care the day of the survey in 86 hospitals in 2019. Self-rated health was measured using a question included in the National Health Survey: “In the last 12 months, how would you rate your health status?” Descriptive and bivariate analyses were performed. Factors associated with very good/good self-rated health were estimated using logistic regression.

Results: Of 800 PLHIV, 67.5% perceived their health as very good/good, 68.4% among PLHIV on ART and 71.7% of those virally suppressed. Having a high educational level (aOR:2.1), being unemployed (aOR:0.3) or retired (aOR:0.2), ever being diagnosed of AIDS (aOR:0.6), comorbidities (aOR:0.3), less than 2 year since HIV diagnosis (aOR:0.3) and not receiving ART (aOR:0.3) were associated with good self-rated health. Moreover, among PLHIV on ART, viral load less than 200 copies (aOR:3.2) were related to better perceived health. Bad adherence was inversely associated with good self-rated health among PLHIV on ART and of those virally suppressed.

Conclusions: Nearly seven in 10 PLHIV in Spain considered their health status as very good/good, being higher among virally suppressed PLHIV. Both demographic and clinical determinants affect quality of life.

Background

Highly effective antiretroviral treatment (ART) has dramatically changed the natural history of HIV infection in terms of decreasing mortality and increasing life expectancy, thus the HIV infection has become a chronic disease [1]. Benefits of ART go beyond the individual level, since suppressing viral load substantially reduces the risk of HIV transmission [2].

In 2014, the Joint United Nations Programme on HIV/AIDS (UNAIDS) launched the 90-90-90 strategy. This target directed efforts towards testing and treatment in order to achieve the goal of 90% of people living with HIV (PLHIV) being diagnosed, 90% of those diagnosed receiving ART and 90% of those receiving ART having viral load suppression, i.e., at least 73% of all PLHIV worldwide being virally suppressed [3]. Two years later, the World Health Organization (WHO) included the 90-90-90 target in their Global Health Sector Strategy for 2016–2021 to end the acquired immunodeficiency syndrome (AIDS) epidemic as a public health threat by 2030, along with other intermediate objectives to be achieved in 2020. Furthermore, the overall goal included ensuring that PLHIV had healthy lives and promoting well-being for all at all ages [4]. In the same year, Lazarus et al. proposed the concept of the “fourth 90”, with the objective of operationalizing the WHO goal of promoting well-being. The fourth 90 set the objective that 90% of PLHIV with viral load suppression have a good health-related quality of life (HRQoL) [5].

There is no consensus on how to measure HRQoL among PLHIV. Different instruments have been used for this purpose, both generic and HIV-specific scales, that explore different domains [6]. Generic scales have the benefit of allowing data comparisons with the general population [7]; however, they may be less sensitive to changes among the HIV infected population. HIV-specific scales might solve this problem due to their consistency and validity among PLHIV [6]. A recent study in Spain has validated the Spanish version of the WHOQOL-HIV-BREF in a broad sample of HIV-infected people [8]. However, HRQoL measurement with these tools is time-consuming and difficult to incorporate into clinical practice [9].

Self-rated health is a consolidated indicator related to well-being and quality of life. It is considered a predictor of morbidity, mortality and health services use [10, 11] and has been widely used in health and socio-economic surveys at population level in Europe [12, 13].

Several studies have used self-rated health to measure quality of life among PLHIV [14] and PLHIV on ART [15, 16], and have identified related epidemiological and clinical variables. Self-perceived health and comorbidities have been suggested as the two main domains of good HRQoL of PLHIV or “fourth 90” [5]. In the beginning, this new target was described as the last stage of the HIV continuum of care, applied only to PLHIV who were on ART and virally suppressed. However, there is an open debate about whether good HRQoL should be a target only for PLHIV who are virally suppressed or whether it should also cover the previous 90-90-90 and therefore encompass the whole HIV continuum of care [17].

Our aim was to describe self-rated health among PLHIV, among those on ART, and among those on ART that are virally suppressed, and to evaluate factors associated with very good/good self-rated health among these groups in Spain.

Methods

An observational study was carried out. Data were obtained from a second-generation surveillance system of PLHIV, in Spanish referred to as “Encuesta hospitalaria de pacientes infectados con VIH (EH)” [Hospital survey of patients infected with HIV]. A description of its methodology has been published elsewhere [18]. Briefly, the EH is an annual one-day cross-sectional survey that collects epidemiological, behavioural and clinical variables among all PLHIV, inpatients and outpatients, attending general public hospitals for HIV-related care on the day of the survey. This population-based information system started in 1996 and over time, variables have been modified to include other information of interest. In the 2019 edition, a question on self-rated health status was introduced.
Participation in the survey is voluntary for both hospitals and individual patients. In 2019 the number of participating hospitals was 86 from 15, out of the 19 autonomous regions in Spain (population coverage: 65.5% of the total population in the participating regions). Survey coverage was 38.5% of the whole Spanish population.

Variables were collected from each HIV patient using a standard questionnaire by inpatient and outpatient medical staff. All information was extracted from the clinical records, except demographic and self-rated health data, which were obtained directly from the patients by the attending physician. Once completed, the questionnaires were sent to the National Centre of Epidemiology, where questionnaires were entered into a database, made quality control and data analysis.

Variables included in this analysis were the following: a) epidemiological: gender, age, educational level, country of birth, residence, employment status, HIV transmission mode, b) clinical: HIV stage, viral load and CD4 count at last measurement, being on ART, ART adherence, years since HIV diagnosis and comorbidities. ART adherence was classified as optimal, suboptimal or very bad according to the judgment of the attending physician. Comorbidity was gathered as a dichotomous variable that collects the presence of non-AIDS diseases in the previous 12 months (cancer, heart disease, cerebrovascular disease, active hepatitis C, liver cirrhosis, hypertension, mental disorder, kidney disease, respiratory disease).

Self-rated health was measured using the same question included in the last National Health Survey in Spain [19]: "In the last 12 months, how would you rate your health status?" with five response options: very good, good, moderate, bad and very bad. For the analysis, we grouped this variable into two categories: 1 = very good/good and 0 = moderate, bad or very bad health status.

We conducted a descriptive, bivariate and multivariate analysis, according to variables of interest, stratified by all patients, patients on ART and patients on ART virally suppressed. For quantitative variables, median and interquartile range (IQR) were used. For categorical variables, frequency distributions were calculated and the chi-squared test was used for comparisons. We calculated prevalence of very good/good self-rated health and its 95% confidence interval (95% CI). Logistic regression models were fitted using a backward elimination procedure. Associations were measured using the odds ratio (OR) and its 95% CI. Data analyses were performed using the STATA statistical software package Version 14 (Stata Corp, College Station, Texas, USA)

Results

In 2019, 800 (94.9%) out of 843 PLHIV included in the cross-sectional study had data available on self-rated health. Regarding recruitment area, 713 (89.1%) of participants were outpatients. Characteristics of the study population are shown in Table 1. The majority were males, had been born in Spain and were men infected through sexual contact with men (MSM). Median age was 51 years (IQR: 43–56) and 37.4% were between 51–60 years old. Nearly 41% had a low educational level (2.5% had no studies and 38.4% only primary education). Regarding residence and employment status, more than half were living with their family and had been employed for the 30 days before the study. Participants had been diagnosed with HIV a median of 14 (IQR: 6–23) years ago. Overall, 776 cases (97.0%) were on ART and of these, 702 (90.5%) had a viral load less than 200 copies/ml at last measurement. Among the 24 cases who were not receiving ART at the time of the study, treatment had been delayed in 15 patients for medical reasons, and the reason was unknown for the remaining cases. The proportion of subjects with a CD4 T-cell count greater than 349 cells was 76.8%. Overall, 11% had other comorbidities and the proportion ever diagnosed with AIDS was 33.4% (267 cases).
Table 1
Characteristics of study population and by self-rated health perception, 2019

Variables	Total cases	Self-rated health perception									
		Very good	Good	Fairly	Bad	Very bad					
		n	%	n	%	n	%	n	%	n	%
Gender											
Male	591	73.9	141	73.1	263	75.8	116	73.4	51	73.9	20
Female	195	24.4	47	24.4	80	23.1	40	25.3	16	23.2	12
Transgender	12	1.5	4	2.1	4	1.2	2	1.3	1	1.4	1
Unknown	2	0.3	1	0.5	0	0.0	0	0.0	1	1.4	0
Age group (years)											
<35	111	13.9	48	24.9	38	11.0	17	10.8	5	7.2	3
35–50	282	35.3	68	35.2	129	37.2	52	32.9	24	34.8	9
51–60	299	37.4	55	28.5	133	38.3	69	43.7	27	39.1	15
>60	95	11.9	16	8.3	44	12.7	17	10.8	13	18.8	5
Unknown	13	1.6	6	3.1	3	0.9	3	1.9	0	0	1
Educational level											
Illiteracy	20	2.5	1	0.5	7	2.0	5	3.2	3	4.3	4
Primary education	307	38.4	49	25.4	132	38.0	72	45.6	39	56.5	15
Secondary education	258	32.2	74	38.3	109	31.4	52	32.9	15	21.7	8
University education	180	22.5	62	32.1	88	25.4	22	13.9	7	10.1	1
Unknown	35	4.4	7	3.6	11	3.2	7	4.4	5	7.2	5
Country of birth											
Spain	631	78.9	137	71.0	275	79.3	133	84.2	60	87.0	26
Other	164	20.5	56	29.0	67	19.3	25	15.8	9	13.0	7
Unknown	5	0.6	0	0	5	1.4	0	0	0	0	0
Residence											
Living with family	478	59.8	116	60.1	214	61.7	96	60.8	34	49.3	18
Living alone	216	27.0	55	28.5	87	25.1	42	26.6	24	34.8	8
Closed institutions	17	2.1	1	0.5	5	1.4	7	4.4	3	4.3	1
Prisons	9	1.1	1	0.5	4	1.2	1	0.6	3	4.3	0
Homeless	5	0.6	0	0.0	0	0.0	2	1.3	1	1.4	2
Other	70	8.8	19	9.8	37	10.7	7	4.4	4	5.8	3
Unknown	5	0.6	1	0.5	0	0.0	3	1.9	0	0.0	1
Employment status											
Employed	430	53.8	142	73.6	211	60.8	59	37.3	15	21.7	3
Unemployed	139	17.4	23	11.9	42	12.1	39	24.7	19	27.5	16
Retired/disabled	184	23.0	19	9.8	67	19.3	56	35.4	29	42.0	13
Student	23	2.9	7	3.6	13	3.7	2	1.3	1	1.4	0
Other/ unknown	24	3.0	2	1.0	14	4.0	2	1.3	5	7.3	1
Mode of transmission											
Heterosexuals	246	30.8	65	33.7	106	30.5	41	25.9	22	31.9	12
MSM: Men who have sex with men;											
PWID: People who injected drugs											
According to self-rated health, 24.1% considered their health as very good, 43.4% good, 19.8% as moderate and 8.6% and 4.1% bad and very bad, respectively.

Prevalence of very good or good self-rated health according to the epidemiological and clinical characteristics is presented in Table 2. Among all patients, this proportion was 67.5%. Prevalence of very good or good self-rated health increased with educational level, and was higher in cases born in countries other than Spain (75.0%) and employed patients (82.1%). Conversely, prevalence of very good/good self-rated health was lower among older age groups and among people who had ever injected drugs (PWID/Ex-PWID) (51.8%), people who lived in closed institutions, prisons or were homeless (35.5%), were unemployed or retired/disabled (47%), and among those diagnosed more than 20 years ago (60.2%). Regarding clinical variables, prevalence of very good or good self-rated health was lower among those ever diagnosed of AIDS (53.9%), patients with viral load more than 200 copies (33.8%) or low CD4 count (20.9%), with comorbidities (33.0%) and not receiving ART (44.4%). All analyzed variables, except gender, were associated with health status in the bivariate analysis (p < 0.05).
Table 2
Prevalence of very good/good self-rated health among all PLHIV, PLHIV on antiretroviral treatment and PLHIV on antiretroviral treatment virally suppressed.

	All PLHIV	Very good/good self-rated health among all PLHIV	On ART	Very good/good self-rated health among PLHIV on ART	On ART virally suppressed	Very good/good self-rated health among PLHIV on ART virally suppressed
	n	n % (95% CI)	n	n % (95% CI)	n	n % (95% CI)
Gender						
Male	591	404 68.4 (64.4–72.1)	571	398 69.7 (65.8–73.4)	516	377 73.1 (69.0–76.8)
Female	195	127 65.1 (58.0–71.8)	193	126 65.3 (58.1–72.0)	177	120 67.8 (60.4–74.6)
Transgender	12	8 66.7 (34.9–90.0)	11	7 63.6 (30.8–89.1)	8	6 75.0 (34.9–96.8)
Unknown	2	1 50.0 (1.3–98.7)	1	0 0	1	0 0
Age group (years)						
< 35	111	86 77.5 (68.6–84.9)	103	82 79.6 (70.5–84.9)	91	73 80.2 (70.6–87.8)
35–50	282	197 69.9 (64.1–75.2)	274	194 70.8 (65.0–76.1)	240	182 75.8 (69.9–81.1)
51–60	299	188 62.9 (57.1–68.4)	295	187 63.4 (57.6–68.9)	274	182 66.4 (60.5–72.0)
> 60	95	60 63.2 (52.6–72.8)	92	60 65.2 (54.6–74.9)	87	59 67.8 (56.9–77.4)
Unknown	13	9 69.2 (38.6–90.9)	12	8 66.7 (34.9–90.1)	10	7 70.0 (34.8–93.3)
Educational level						
Illiteracy/Primary education	327	189 57.8 (52.2–63.2)	319	188 58.9 (53.3–64.4)	285	176 61.8 (55.8–67.4)
Secondary education	258	183 70.9 (65.0–76.4)	252	180 71.4 (65.4–76.9)	229	172 75.1 (69.0–80.6)
University education	180	150 83.3 (77.1–88.5)	171	146 85.4 (79.2–90.3)	159	139 87.4 (81.2–92.1)
Unknown	35	18 51.4 (34.0–68.6)	34	17 50.0 (32.4–67.6)	29	16 55.2 (35.7–73.6)
Country of birth						
Spain	631	412 65.3 (61.4–69.0)	613	406 66.2 (62.3–70.0)	566	390 68.9 (64.9–72.7)
Other	164	123 75.0 (67.7–81.4)	158	120 76.0 (68.5–82.4)	132	109 82.6 (75.0–88.6)
Unknown	5	5 100.0 (1)	5	5 100 (48.0–100)	4	4 100 (39.8–100)
Residence						
Living with family	478	330 69.0 (63.4–71.9)	467	326 69.8 (65.4–73.9)	428	309 72.2 (67.7–76.4)
Living alone	216	142 65.7 (59.0–72.0)	208	139 66.8 (60.0–73.2)	188	136 72.3 (65.4–78.6)
Closed institutions/Prison/Homeless	31	11 35.5 (19.2–54.6)	31	11 35.5 (19.2–54.6)	25	9 36.0 (18.0–57.5)
Other	70	56 80.0 (68.7–88.6)	65	54 83.1 (71.7–91.2)	59	48 81.4 (69.1–90.3)
Unknown	5	1 20.0 (0.5–71.6)	5	1 20.0 (0.5–71.6)	2	1 50.0 (1.2–98.7)
Employment status						
Employed	430	353 82.1 (78.1–85.6)	421	348 82.7 (78.7–86.2)	389	333 85.6 (81.7–88.9)
Unemployed	139	65 46.8 (38.3–55.4)	126	61 48.4 (39.4–57.5)	105	54 51.4 (41.5–61.3)
Retired/disabled	184	86 46.7 (39.4–54.2)	182	86 47.2 (39.8–54.8)	167	82 49.1 (41.3–56.9)

*95% CI: Confidence interval 95%; PLHIV: People living with HIV; ART: antiretroviral treatment; MSM: Men who have sex with men; PWID: People who injected drugs
Mode of transmission	All PLHIV	Very good/good self-rated health among all PLHIV	On ART	Very good/good self-rated health among PLHIV on ART	On ART virally suppressed	Very good/good self-rated health among PLHIV on ART virally suppressed			
Student	23	20	87.0 (66.4–97.2)	23	20	87.0 (66.4–97.2)	22	19	86.4 (65.1–97.1)
Other/ unknown	24	16	66.7 (44.7–84.4)	24	16	66.7 (44.7–84.4)	19	15	78.9 (54.4–93.9)
Mode of transmission									
Heterosexual	246	171	69.5 (63.3–75.2)	240	168	70.0 (63.8–75.7)	216	161	74.5 (68.2–80.2)
MSM	293	228	77.8 (72.6–82.4)	282	223	79.1 (73.9–83.7)	260	210	80.8 (75.4–85.4)
PWID	195	101	51.8 (44.5–59.0)	192	101	52.6 (45.3–59.8)	169	95	56.2 (48.4–63.8)
Other/ unknown	66	40	60.6 (47.8–72.4)	62	39	62.9 (49.7–74.8)	57	37	64.9 (51.1–77.1)
Total	800	540	67.5 (64.1–70.7)	776	531	68.4 (65.0–71.7)	702	503	71.7 (68.2–75.0)

95% CI: Confidence interval 95%; PLHIV: People living with HIV; ART: antiretroviral treatment; MSM: Men who have sex with men; PWID: People who injected drugs
HIV infection stage	All PLHIV	Very good/good self-rated health among all PLHIV	On ART	Very good/good self-rated health among PLHIV on ART	On ART virally suppressed	Very good/good self-rated health among PLHIV on ART virally suppressed
	n	n (%) (95% CI)	n	n (%) (95% CI)	n	n (%) (95% CI)
Asymptomatic	386	299 77.5 (73.0–81.5)	378	296 78.3 (73.8–82.4)	353	280 79.3 (74.7–83.4)
Symptomatic non AIDS	126	80 63.5 (54.4–71.9)	122	77 63.1 (53.9–71.7)	111	72 64.9 (55.2–73.7)
AIDS	267	144 53.9 (47.8–60.0)	257	143 55.6 (49.3–61.8)	224	141 63.0 (56.3–69.3)
Unknown	21	17 80.9 (58.1–94.6)	19	15 78.9 (54.4–93.9)	14	10 71.4 (41.9–91.6)
Viral load < 200 copies/ml (last determination)						
Yes	704	503 71.4 (68.0–74.8)	702	503 71.6 (68.2–75.0)	-	-
No	71	24 33.8 (23.0–46.0)	56	17 30.4 (18.8–44.0)	-	-
Unknown	25	13 52.0 (31.3–72.2)	18	11 61.1 (35.7–82.7)	-	-
CD4 count (last determination)						
< 200	67	14 20.9 (11.9–32.6)	61	12 19.7 (10.6–31.8)	36	10 27.8 (14.2–45.2)
200–349	92	48 52.2 (41.5–62.7)	89	47 52.8 (51.9–63.5)	76	91 59.2 (47.3–70.4)
350–499	116	71 61.2 (51.7–70.1)	112	68 60.7 (51.0–69.8)	99	60 60.6 (50.2–70.3)
>=500	499	391 78.4 (74.5–81.9)	496	391 78.8 (75.0–82.3)	483	381 78.9 (75.0–82.4)
Unknown	26	16 61.5 (40.6–79.8)	18	13 72.2 (46.5–90.3)	8	7 87.5 (47.3–99.7)
Comorbidities						
Yes	88	29 33.0 (23.3–43.8)	87	29 33.3 (23.6–44.3)	72	27 37.5 (26.4–49.7)
No/ Unknown	712	511 71.8 (66.3–75.0)	689	502 72.9 (69.3–76.1)	630	476 75.6 (72.0–78.9)
Antiretroviral treatment						
Yes	776	531 68.4 (65.0–71.7)	-	- -	-	-
No	18	8 44.4 (21.5–69.2)	-	- -	-	-
Unknown	6	1 16.7 (0.4–64.1)	-	- -	-	-
Adherence						
Optimal	653	471 72.1 (68.5–75.5)	653	471 72.1 (68.5–75.5)	611	451 73.8 (70.1–77.3)
Suboptimal	68	36 52.9 (40.4–65.1)	68	36 52.9 (40.4–65.2)	56	31 55.4 (41.5–68.7)
Very bad	25	3 12.0 (2.5–31.2)	25	3 12.0 (2.5–31.2)	8	1 12.5 (3.2–52.7)
Unknown	30	21 70.0 (50.6–85.2)	30	21 70.0 (50.6–85.3)	27	20 74.1 (53.7–88.9)
No/unknown ART	24	9 37.5 (18.8–59.4)	-	- -	-	-
Years since HIV diagnosis						
< 2	73	42 57.5 (45.4–69.0)	59	34 57.6 (44.1–70.4)	38	27 71.1 (54.1–84.6)
2–5	111	86 77.5 (68.6–84.8)	109	86 78.9 (70.0–86.1)	99	81 81.8 (72.3–88.6)
6–10	121	93 76.9 (68.3–84.0)	120	93 77.5 (69.0–84.6)	110	89 80.9 (72.3–87.8)
11–15	111	77 69.4 (59.9–77.8)	110	77 70.0 (60.5–78.4)	104	75 72.1 (62.5–80.5)
> 15	374	233 62.3 (57.2–67.2)	369	233 63.1 (58.0–68.1)	345	225 65.2 (60.0–70.2)
Unknown	10	9 90.0 (55.5–99.7)	9	8 88.9 (51.7–99.7)	6	6 100 (54.1–100)

*95% CI: Confidence interval 95%; PLHIV: People living with HIV; ART: Antiretroviral treatment
Among subjects on ART and those who were on ART and virally suppressed, prevalence of very good or good self-rated health was 68.4% and 71.7%, respectively. Differences in prevalence by variables of interest between these two groups were similar to overall cases. Additionally, this prevalence was higher in patients with optimal ART adherence (Table 2).

In the multivariate analysis, three regression logistic models, adjusted by gender, age, country of birth and transmission mode, were fitted (Table 3). Among PLHIV, having a university education was positively associated with having very good or good self-rated health. Factors associated with a poor evaluation of their health status were being unemployed or retired, living in closed institutions/prison/being homeless, ever having been diagnosed of AIDS, having comorbidities, not being on ART and having been diagnosed with HIV less than two years ago. Among people on ART, determinants related to reporting better health were similar to those found among overall PLHIV. Moreover, having a viral load less than 200 copies/ml was also associated with good/very good self-rated health. Finally, among cases on ART and those on ART and virally suppressed, suboptimal/very bad adherence to ART were associated with poor self-rated health.
	All PLHIV	PLHIV on ART	PLHIV on ART virally suppressed			
	aOR 95% CI	p	aOR 95% CI	p	aOR 95% CI	p
Gender (male)						
Female	0.7 0.4–1.1	0.164	0.7 0.4–1.1	0.105	0.6 0.4–1.0	0.046
Transgender	1.1 0.2–5.5	0.882	0.9 0.1–5.5	0.899	1.4 0.2–10.5	0.744
Age group (< 35)						
35–50	0.8 0.4–1.5	0.409	0.8 0.4–1.6	0.500	1.1 0.5–2.5	0.737
51–60	0.8 0.4–1.6	0.516	0.7 0.3–1.5	0.344	1.1 0.5–2.3	0.901
> 60	1.6 0.7–3.6	0.298	1.4 0.6–3.5	0.459	2.0 0.8–5.3	0.142
Educational level (Illiteracy /Primary education)						
Secondary education	1.1 0.8–1.7	0.509	1.1 0.7–1.7	0.587	1.2 0.8–2.0	0.382
University education	2.1 1.2–3.8	0.010	2.0 1.1–3.7	0.024	2.1 1.1–3.9	0.028
Country of birth (Spain)						
Other	1.4 0.9–2.3	0.180	1.5 0.9–2.5	0.138	1.6 0.9–3.0	0.106
Residence (living with family)						
Living alone	0.7 0.5–1.1	0.133	0.7 0.5–1.1	0.166	0.8 0.5–1.3	0.450
Closed institutions/Prison/ Homeless						
Other	1.4 0.6–2.5	0.664	1.3 0.6–2.8	0.575	1.1 0.5–2.4	0.868
Employment status (Employed)						
Unemployed	0.3 0.2–0.4	<0.001	0.3 0.2–0.5	<0.001	0.2 0.1–0.4	<0.001
Retired/disabled	0.2 0.1–0.4	<0.001	0.2 0.1–0.4	<0.001	0.2 0.1–0.3	<0.001
Student	2.0 0.5–7.6	0.313	2.1 0.5–8.6	0.290	2.3 0.6–9.2	0.256
Mode of transmission (heterosexual)						
MSM	1.0 0.6–1.7	0.892	0.8 0.5–1.5	0.507	0.7 0.4–1.3	0.248
PWID	0.7 0.4–1.2	0.174	0.7 0.4–1.2	0.206	0.7 0.3–1.1	0.132
Stage (asymptomatic)						
Symptomatic non AIDS	0.7 0.4–1.2	0.254	0.7 0.4–1.2	0.156	0.6 0.4–1.1	0.128
AIDS	0.6 0.4–0.8	0.006	0.6 0.4–0.9	0.023	0.7 0.5–1.2	0.207
Comorbidities (No/Unknown)						
Yes	0.3 0.2–0.6	<0.001	0.3 0.2–0.6	<0.001	0.4 0.2–0.7	0.002
Years since HIV diagnosis (> 15)						
< 2	0.3 0.1–0.6	<0.001	0.3 0.1–0.6	0.001	0.3 0.1–0.8	0.021
2–5	0.6 0.3–1.1	0.126	0.7 0.3–1.4	0.270	0.8 0.4–1.6	0.519
6–10	0.6 0.4–1.2	0.165	0.7 0.4–1.3	0.264	0.7 0.4–1.4	0.365
11–15	0.6 0.4–1.1	0.118	0.6 0.4–1.1	0.133	0.7 0.4–1.3	0.240
on ART (Yes)						
No	0.3 0.1–0.9	0.036	- - - - - -	- - - - - -	- - - - - -	- - - - - -

aOR: Adjusted odds ratio; 95% CI: Confidence interval 95%; PLHIV: People living with HIV; ART: antiretroviral treatment; MSM: Men who have sex with men; PWID: People who injected drugs; Reference categories are in brackets.
Viral load < 200 copies/ml (No)	All PLHIV	PLHIV on ART	PLHIV on ART virally suppressed
Yes | - | - | -
Adherence (optimal) | 3.2 | 1.5–6.8 | 0.002 | - | - | -
Suboptimal/ Very bad | 0.5 | 0.3–0.8 | 0.006 | 0.4 | 0.2–0.8 | 0.009

Table: Comparisons of adjusted odds ratio for self-rated health among PLHIV in Spain.

Discussion

This manuscript presents data on self-rated health among PLHIV in Spain. Our findings show the impact of sociodemographic and clinical factors on perceived health. To our knowledge, this is the first study in Spain that provides population-based information on self-rated health using a second generation HIV surveillance system as data source.

Overall, 67.5% of PLHIV perceived their health as very good or good in the previous 12 months. This percentage increased to 68.4% and 71.7% among PLHIV on ART, and on ART and virally suppressed, respectively. These figures are lower than the 74% reported among the general population by the National Health Survey in Spain, 2017. This difference could be partly explained by the fact that the mean age of analysed PLHIV was higher than the general population included in the Spanish National Health Survey (49 years vs. 43 years, respectively); in fact, positive health perceptions decreased with increasing age in the National Health Survey [19].

Our result was lower than reported in the United Kingdom in 2017 (73% of PLHIV reported very good or good self-rated health). The United Kingdom study also found a lower prevalence of good/very good self-rated health in PLHIV than in the general population in England (76%) [14]. Among PLHIV on ART, we obtained higher figures than described in Brazil in 2009 (66.4%) [20] and in 2011 (65.0%) [16] in this same subgroup. However, different characteristics of HIV epidemics between countries make the comparisons difficult.

Similarly to other studies in Spain [8, 21] and abroad [16, 22], educational level and employment status were strongly associated with self-rated health in PLHIV, in both ART treated and virologically suppressed. Both variables are considered a proxy of socio-economic status, which has been shown to be associated with self-rated health among the general population in Spain [19]. Lack of financial and educational resources could increase uncertainty under life circumstances, impairing quality of life. In a cross-sectional study among PLHIV in Canada, a great impact of employment status was found on both physical and mental health quality of life and the authors suggested a bidirectional relationship between both variables: a higher quality of life would be necessary to maintain employment and employment may be a benefit of health and well-being [23]. In our study, being retired was also associated with poor self-rated health suggesting that a person's financial situation is an important determinant [8].

Lower proportion of very good/good self-rated health was reported among PLHIV who lived in closed institutions, or prisons and those who were homeless. Other studies have described associations between homeless or marginally-housed PLHIV and poor access and adherence to ART, as well as poor retention in care, highlighting the vulnerability of this group of people [24]. On the other hand, lack of social support has been linked to poor health status among PLHIV, either as an independent factor or mediated by depression, isolation or marginalization [8, 22, 25, 26].

Regarding disease stage, people who had ever been diagnosed of AIDS rated their health status as poorer. AIDS has been related to worse physical health and lower scores in mental components of HRQoL [16, 22, 26]. Some cases that reached the last stage of HIV infection are long-term survivors who may have experienced the hardest years of the HIV epidemic with less effective treatments or with more side effects. In our study, 51% of total AIDS cases were diagnosed with HIV infection between 1985 and 2000.

Comorbidities are a major determinant of quality of life for PLHIV, both in the physical [27, 28] and psychological domains [25]. We found a lower prevalence of comorbidities than other studies in Spain [29], suggesting that this second-generation surveillance system does not fully capture all the complexity of multi-morbidity in these patients. In spite of this limitation, our results show that comorbidities have an important impact on self-rated health among PLHIV, even among patients receiving ART and those with viral suppression. As HIV infection become a chronic disease, other comorbidities are emerging and a comprehensive management of these patients should reinforce preventive measures, early detection, and treatment in order to improve their perceived health.

Aging has been associated with worse HrQoL [8, 22]. Some studies have reported a greater impact of age on physical than on mental health [26], other authors have described a lower prevalence of depression and anxiety in older people [25], related to development of resilience and coping strategies [30]. Our results show a decreased prevalence of good/very good self-rated health with increasing age in the univariate analysis, but it was no longer statistically significant in the multivariate analysis; this suggests that other factors related to aging, such as comorbidities and ever having been diagnosed of AIDS, rather than biological age, contribute to poor evaluation of health status in older PLHIV.
A longer time with a diagnosed HIV infection has been associated with lower scores of HQoL [8, 30]. In contrast, our results shown that having had an HIV diagnosis less than two years ago was associated with worse self-rated health. One possible explanation for this finding lies in the fact that being diagnosed with HIV infection is considered a stressful life event with psychological consequences such as depressive and anxiety symptoms [31]. Worries about confidentiality, disclosure, discrimination or stigma, and fear of infecting others, have been described as main stressors among newly HIV diagnosed [32]. Interventions for detecting and reducing stress among recently diagnosed PLHIV will contribute to improve self-rated health.

Being on ART has been associated with better perceived health [22], highlighting the benefits of treatment beyond the clinical and immunological level. Among PLHIV on ART, a suppressed viral load has also been linked to good/very good self-rated health; a better virological status has been related to better physical and mental health [8, 33], although other studies have not found this association [28]. There is more consensus on the relationship between adherence to ART and QoL [8, 33–35]. In our study, poor adherence was related to worse self-rated health among PLHIV on ART and those that are virally suppressed. Improving adherence has benefits not only in slowing disease progression and decreasing mortality, but also in increasing the well-being of PLHIV.

This study has some limitations. Firstly, not all regions in Spain participate in this information system and results cannot be extrapolated to the whole country. Secondly, participation of hospitals is voluntary, although population coverage regarding population in participating regions is high. Thirdly, patients who attend clinics more regularly or those who are more seriously ill could be overrepresented; under this hypothesis, prevalence of good or very good self-rated health in this study would be underestimated. Fourthly, many different individuals performed data collection, making it difficult to control reproducibility and data quality. To prevent bias, a common questionnaire and standard procedures were developed. Fifthly, self-rated health is a subjective measure and is difficult to compare with general or specific scales to evaluate HQoL. However, self-perceived health is a multidimensional construction that includes not only health problems but also coping and well-being attitudes. Finally, some important variables that affect HQoL such as depression or anxiety were not included in the EH at the time of the study.

On the other hand, our study also has several strengths. It is population-based, allowing all PLHIV who attend HIV care in the catchment areas of the participating centers to be included. In Spain, ART is available only in hospital pharmacy services and therefore the vast majority of HIV-infected patients receive HIV care and treatment in public hospitals. Inclusion criteria collect both new HIV diagnoses and patients diagnosed many years ago, providing an overall picture of PLHIV in Spain. Furthermore, the use of the same question of self-rated health than in the National Health Survey allows for comparison with the general population. This new variable has been well accepted by participants, as indicated by the low number of missing data. Last but not at least, including a self-rated health question in a consistent information system allows us to include a proxy of HQoL as part of routine monitoring of PLHIV.

Conclusions

Nearly seven in 10 patients attending public hospitals in Spain considered their health status as good or very good; this figure is lower than in the general population in Spain, even among PLHIV who are virally suppressed. Both demographic and clinical determinants have an impact on quality of life.

Prevalence of very good/good self-rated health increased among PLHIV on ART and among those virally suppressed. Measuring this indicator only in the last subgroup does not take into account HIV-infected people who do not receive ART and those on ART with unsuppressed viral load; these two groups perceived having poorer health. This finding suggest that evaluating self-rated health as a proxy of the fourth 90 only among virally suppressed PLHIV could provide overestimated results.

Abbreviations

AIDS: acquired immunodeficiency syndrome

ART: antiretroviral treatment

HRQoL: health-related quality of life

MSM: Men who have sex with men

PLHIV: people living with HIV

PWID/Ex-PWID: people who had ever injected drugs

Declarations

Ethics approval and consent to participate

The study was performed in accordance with the requirements of the Spanish legislation on data protection. Questionnaires were totally anonymous, i.e. no personal identifiers were collected and linkage of questionnaires to patients was not possible. Informed consent for epidemiological surveillance data is deemed unnecessary according to national regulations (Ley 33/2011, de 4 de octubre, General de Salud Pública, Article 41. BOE-A-2011-15623). The Ethics Committee of Hospital Puerta de Hierro approved this study in 2014 (Acta nº 301).
Consent to publish

Not applicable.

Availability of data and materials

The dataset analysed during the current study is only available from the corresponding author on reasonable request.

Competing interests

None.

Funding

None.

Author's contributions

AD was the main study researcher. She supervised field work, wrote the statistical analysis plan and the final version of the manuscript. MRA performed data collection and management, quality control, wrote the first version of the manuscript and reviewed all the manuscript drafts. VH made important contributions to successive versions of the manuscript. HM, GG, MOL, MAP, GG, AI, LJV, IL, EM, DC, RA, MAB, IA-G, AA were the staff responsible for coordinating the survey in the autonomous regions. They participated in development of the study protocol, supervised field work and estimated the population coverage. They have critically reviewed all versions of the manuscript. MJP-E, JCL-B, FP, MG, JS, IS-G, MTF, JEL, JLP and the Hospital Survey Study Group were the clinicians responsible for patient recruitment the participating hospitals and performed field work in their hospitals. They have reviewed all versions of the paper. All authors have seen and approved the final manuscript.

Acknowledgements

We acknowledge health professional and patients participating in the Hospital survey of patients infected with HIV. We would like to thank Dr. Julia del Amo for constructive criticism of the manuscript and Nuria Gallego for English review.

Members of the Hospital Survey Study Group, 2019.

- Aragón: M Egido (H.G. San Jorge, Huesca); S Letona (H.C.U. Lozano Blesa, Zaragoza).
- Asturias: MC Royo (DG de Salud Pública, Consejería de Sanidad. Oviedo), V Asensi (H.U. Central de Asturias, Oviedo), E García (H. de Jove, Gijón); J Lobo (H. Valle del Nalón, Langreo); MA Meana (H. Álvarez Buylla, Mieres); M de Zárraga (H. San Agustín, Aviles), P Abad (H. Oriente de Asturias, Arriondas); M Alvarez (H. de Jarrio, Coaña); R Suárez del Villar (H. Carmen y Severo Ochoa, Cangas de Narcea).
- Baleares: MG Jaume Amengual (Conselleria de Salut, DG de Salut Pública i Participació); A Rey (F.H. Comarcal de Inca, Inca); A Payeras (H. Son Llatzer, Palma de Mallorca); M Riera (H. Son Espases, Palma de Mallorca); L Vilaplana (H. Manacor, Manacor); E Rodríguez de Castro (H. Mateu Orfila, Mahón); R Canet (H. Can Misses, Ibiza).
- Canarias: E Colino (C.H.U. Materno-Insular Infantil, Las Palmas de Gran Canaria); MA Cárdenas (C.H. Dr Negrín, Las Palmas de Gran Canaria); JL Gómez (C.H.U. de Canarias, San Cristóbal de la Laguna, Tenerife); J Gómez (H.U. Ntra Sra. de la Candelaria, Santa Cruz de Tenerife); JF Lluch (H. Dr. José Molina Orosa, Arrecife).
- Cantabria: MC Fariñas (H.U. Marqués de Valdecilla, Santander).
- Castilla-La Mancha: E Martinez (C.H.U. de Albacete, Albacete); MI García (H.G. de Almansa, Almansa); H Portillo (C.H. de Ciudad Real, Ciudad Real); JR Barbera (H. General La Mancha-Centro, Alcazar de San Juan); C Pereda (H. Santa Bárbara, Puertollano); G López (H. General de Tomelloso, Tomelloso); MP Gejo (H. Virgen de la Luz, Cuenca); F Cuadra (H. Virgen de la Salud, Toledo); M Torralba (HGU de Guadalajara, Guadalajara); JM Yzusqui (H. Nuestra Señora del Prado, Talavera de la Reina).
- Castilla y León: MA Garcinuño (H. Ntra. Sra. de Sonsoles, Ávila); M Sánchez (H. Santiago Apóstol, Miranda de Ebro); P Cancelo (H. Santos Reyes, Aranda de Duero); J Locutura (C.A. Universitario de Burgos, Burgos); JA Carro (C.A. de León, León); A Bahamonde (H. del Bierzo, Ponferrada); Y Morán, J Sánchez (C.A. Universitario de Palencia, Palencia); A Iglesias (C.A. de Salamanca, Salamanca); EM Ferreira (C.H. de Segovia, Segovia); M del Valle (C.A. de Soria, Soria); C. Hinojosa (H.C.U. Valladolid); P Bachiller (H. U. Río Hortega, Valladolid); A Chocarro (C.A. Zamora, Zamora).
References

1. Deeks SG, Lewin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. The Lancet [Internet]. 2013 Nov [cited 2020 Jun 30];382(9903):1525–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673613618097

2. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 Infection with Early Antiretroviral Therapy. N Engl J Med [Internet]. 2011 Aug 11 [cited 2020 Jun 30];365(6):493–505. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1105243

3. UNAIDS: 90-90-90. An ambitious treatment target to help end the AIDS epidemic [Internet]. UNAIDS; 2014. Available from: https://www.unaids.org/sites/default/files/media_asset/90-90-90_en.pdf

4. Global Health Sector Strategy on HIV 2016-2021 [Internet]. 2016. 60 p. [Internet]. World Health Organization; 2016 p. 60. Available from: http://apps.who.int/iris/bitstream/10665/246178/1/WHO-HIV-2016-05-eng.pdf?ua=1

5. Lazarus JV, Safreed-Harmon K, Barton SE, Costagliola D, Dedes N, del Amo Valero J, et al. Beyond viral suppression of HIV – the new quality of life frontier. BMC Med [Internet]. 2016 Dec [cited 2020 Jun 30];14(1):94, s12916-016-0640-4. Available from: http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0640-4

6. Cooper V, Clatworthy J, Harding R, Whetham J, Emerge Consortium. Measuring quality of life among people living with HIV: a systematic review of reviews. Health Qual Life Outcomes [Internet]. 2017 Dec [cited 2020 Jun 30];15(1):220. Available from: https://hqlo.biomedcentral.com/articles/10.1186/s12955-017-0778-6

7. Miners A, Phillips A, Kreif N, Rodger A, Speakman A, Fisher M, et al. Health-related quality-of-life of people with HIV in the era of combination antiretroviral treatment: a cross-sectional comparison with the general population. Lancet HIV [Internet]. 2014 Oct [cited 2020 Jun 30];1(1):e32–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352301814700189

8. Fuster-Ruiz de Apodaca MJ, Laguia A, Safreed-Harmon K, Lazarus JV, Cenoz S, del Amo J. Assessing quality of life in people with HIV in Spain: psychometric testing of the Spanish version of WHOQOL-HIV-BREF. Health Qual Life Outcomes [Internet]. 2019 Dec [cited 2020 Jun 30];17(1):144. Available from: https://hqlo.biomedcentral.com/articles/10.1186/s12955-019-1208-8

9. Crane HM, Rompaeay SEV, Dillingham PW, Herman E, Diehr P, Kitahata MM. A Single-Item Measure of Health-Related Quality-of-Life for HIV-Infected Patients in Routine Clinical Care. AIDS Patient Care STDs [Internet]. 2006 Mar [cited 2020 Jun 30];20(3):161–74. Available from: http://www.liebertpub.com/doi/10.1089/apc.2006.20.161

10. Bonner WIA, Weiler R, Orisakohi M, Ramsay D, et al. Determinants of self-perceived health for Canadians aged 40 and older and policy implications. Int J Equity Health [Internet]. 2017 Dec [cited 2020 Jun 30];16(1):94. Available from: http:// equityhealthe.biomedcentral.com/articles/10.1186/s12939-017-0595-x

11. Jylhä M. What is self-rated health and why does it predict mortality? Towards a unified conceptual model. Soc Sci Med [Internet]. 2009 Aug [cited 2020 Jun 30];69(3):307–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0277953609002925

12. European Health Interview Survey (EHIS). [Internet]. Available from: https://ec.europa.eu/eurostat/web/microdata/european-health-interview-survey

13. Croesen S, Burdorf A, van Lenthe FJ. Self-perceived health in older Europeans: Does the choice of survey matter? Eur J Public Health [Internet]. 2016 Aug [cited 2020 Jun 30];26(4):686–92. Available from: https://academic.oup.com/eurpub/article-lookup/doi/10.1093/eurpub/ckw017
14. Kall M, Kelly C, Auenberg M, Delpech V. Positive Voices: The National Survey of People Living with HIV - findings from the 2017 survey [Internet]. London: Public Health England; 2020 Jan. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/857922/PHE_positive_voices_report_2019.pdf

15. Le Coeur, S, Desesquelles, A, Morand E, Kanabakw C, Lellière E. Self-rated Health among HIV-infected People Receiving Treatments in Thailand. Asian Soc Sci [Internet]. 2017;13(10):20–30. Available from: http://hdl.handle.net/20.500.12204/ARWHwyjgpz89Adag4RL

16. Souza Junior PRB de, Szwarcwald CL, Castilho EA de. Self-rated health by HIV-infected individuals undergoing antiretroviral therapy in Brazil. Cad Saúde Pública [Internet]. 2011 [cited 2020 Jun 30];27(suppl 1):s56–6. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2011001300007&lng=en&tlng=en

17. Lazarus JV, Safreed-Harmon K. Depicting a new target for the HIV response: How do you see the "Fourth 90" [Internet]. 2018. Available from: https://www.isglobal.org/en/healthisglobal/-/custom-blog-portlet/visually-depicting-a-new-target-for-the-hiv-response-how-do-you-see-the-fourth-90-5511380/0

18. Diez M, Diaz A, Garriga C, Pons M, Ten A, Marcos H, et al. A low-cost, sustainable, second generation system for surveillance of people living with HIV in Spain: 10-year trends in behavioural and clinical indicators, 2002 to 2011. Eurosurveillance [Internet]. 2014 May 22 [cited 2020 Jun 30];19(20):20805. Available from: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20805

19. Encuesta Nacional de Salud de España 2017 (ENSE 2017) [Internet]. Ministerio de Sanidad, Consumo y Bienestar Social; Available from: https://www.mscbs.gob.es/estadEstudios/estadisticas/encuestaNacional/encuestaNac2017/ENSE17_pres_web

20. Campos LN, César CC, Guimarães MDRC. Quality of life among HIV-infected patients in Brazil after initiation of treatment. Clinics [Internet]. 2009 [cited 2020 Jun 30];64(9). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-5932200900900007&lng=en&nrm=iso&tlng=en

21. Ventura Cerda JM. Adherencia, satisfacción y calidad de vida relacionada con la salud en pacientes infectados por el. Farm Hosp [Internet]. 2014 Jul 1 [cited 2020 Jun 30];4(4):291–9. Available from: http://doi.org/10.7399/fh.2014.38.4.7404

22. Degroote S, Vogelaers D, Vandijck DM. What determines health-related quality of life among people living with HIV: an updated review of the literature. Arch Public Health [Internet]. 2014 Dec [cited 2020 Jun 30];72(1):40. Available from: https://archpubhealth.biomedcentral.com/articles/10.1186/2049-3258-72-40

23. Rueda S, Raboud J, Mustard C, Bayounmi A, Lavis JN, Rouibe SB. Employment status is associated with both physical and mental health quality of life in people living with HIV. AIDS Care [Internet]. 2011 Apr [cited 2020 Jun 30];23(4):435–43. Available from: https://www.tandfonline.com/doi/full/10.1080/09540121.2010.507952

24. Milloy M-J, Marshall BDL, Montaner J, Wood E. Housing Status and the Health of People Living with HIV/AIDS. Curr HIV/AIDS Rep [Internet]. 2012 Dec [cited 2020 Jun 30];9(4):364–74. Available from: http://link.springer.com/10.1007/s11904-012-0137-5

25. Passos SMK, Souza LD de M. An evaluation of quality of life and its determinants among people living with HIV/AIDS from Southern Brazil. Cad Saúde Pública [Internet]. 2015 Apr [cited 2020 Jun 30];31(4):800–14. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2015004000800&lng=en&nrm=iso&tlng=en

26. Ruiz Perez I, Rodríguez Baño J, Ruiz López MA, Jimenez del Arco A, Prados M, Liaoño Pasquau J, et al. Health-related quality of life of patients with HIV: Impact of sociodemographic, clinical and psychosocial factors. Qual Life Res [Internet]. 2005 Jun [cited 2020 Jun 30];14(5):1301–10. Available from: http://link.springer.com/10.1007/s11136-004-04715-x

27. Rodriguez-Penney AT, Iudicello JE, Riggs PK, Doyle K, Ellis RJ, Letendre SL, et al. Co-Morbidities in Persons Infected with HIV: Increased Burden with Older Age and Negative Effects on Health-Related Quality of Life. AIDS Patient Care STDs [Internet]. 2013 Jan [cited 2020 Jun 30];27(1):5–16. Available from: http://www.liebertpub.com/doi/10.1089/apc.2012.0329

28. George S, Bergin C, Clarke S, Courtney G, Dodd MB. Health-related quality of life and associated factors in people with HIV: an Irish cohort study. Health Qual Life Outcomes [Internet]. 2016 Dec [cited 2020 Jul 2];14(1):115. Available from: http://hqlo.biomedcentral.com/articles/10.1186/s12955-016-0517-4

29. Knobel H, Domingo P, Suarez-Lozano I, Gutierrez F, Estrada V, Palacios R, et al. Rate of cardiovascular, renal and bone disease and their major risks factors in HIV-infected individuals on antiretroviral therapy in Spain. Enfermedades Infecc Microbiol Clínica [Internet]. 2019 Jun [cited 2020 Jun 30];37(6):373–9. Available from: http://doi.org/10.7399/fh.2014.37.8.7404

30. McGowan J, Sherr L, Rodger A, Fisher M, Miners A, Anderson J, et al. Age, time living with diagnosed HIV infection, and self-rated health. HIV Med [Internet]. 2017 Feb [cited 2020 Jun 30];18(2):89–103. Available from: http://doi.wiley.com/10.1111/hiv.12398

31. Garrido-Hernansaiz H, Alonso-Tapia J. Associations Among Resilience, Posttraumatic Growth, Anxiety, and Depression and Their Prediction From Stress in Newly Diagnosed People Living With HIV. J Assoc Nurses AIDS Care JANAC. 2017 Apr;28(2):289–94.

32. Huang Y, Luo D, Chen X, Zhang D, Huang Z, Xiao S. HIV-Related Stress Experienced by Newly Diagnosed People Living with HIV in China: A 1-Year Longitudinal Study. Int J Environ Res Public Health [Internet]. 2020 Apr 14 [cited 2020 Jul 2];17(8):2681. Available from: https://www.mdpi.com/1660-4601/17/8/2681

33. Ruiz-Pérez I, de Labry-Lima AO, López-Ruz MÁ, del Arco-Jiménez A, Rodríguez-Bañó J, Causse-Prados M, et al. Estado clínico, adherencia al TARGA y calidad de vida en pacientes con infección por el VIH tratados con antiretrovirales. Enfermedades Infecc Microbiol Clínica [Internet]. 2005 Oct [cited 2020 Jul 2];23(10):581–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X05750369
34. Degroote S, Vogelaers DP, Vermeir P, Mariman A, De Rick A, Van Der Gucht B, et al. Socio-economic, behavioural, (neuro)psychological and clinical determinants of HRQoL in people living with HIV in Belgium: a pilot study. J Int AIDS Soc [Internet]. 2013 Jan [cited 2020 Jul 2];16(1):18643. Available from: http://doi.wiley.com/10.7448/IAS.16.1.18643

35. Mannheimer SB, Matts J, Telzak E, Chesney M, Child C, Wu AW, et al. Quality of life in HIV-infected individuals receiving antiretroviral therapy is related to adherence. AIDS Care [Internet]. 2005 Jan [cited 2020 Jun 30];17(1):10–22. Available from: https://www.tandfonline.com/doi/full/10.1080/09540120412331305098