B meson decay anomaly with a non-universal $U(1)'$ extension

R. Martinez, F. Ochoa, J.M. Quimbayo

October 18, 2018

Abstract

We propose an extension of the standard model with an extra $U(1)'$ abelian symmetry, three Higgs doublets and two Higgs singlets, where the new $U(1)'$ charges are flavour non-universal. As a result, the model introduces an enlarger particle spectrum in the TeV scale with large new physics possibilities. The model reproduces the mixing angles and mass structures of the quarks, charged and neutral leptons. We found scenarios where the observed anomaly of the $B^+ \to K^+ \ell\ell$ decay can be explained due to the existence of couplings with new extra fermions at the TeV scale. By modifying the parametrization of the mixing matrices, we found solution in the decoupling limit.

1 Introduction

Despite all its success, the Standard Model (SM) of Glashow, Weinberg and Salam [1] does not account for all the theoretical and experimental observations; therefore it is believed that there is a more fundamental theory where the SM emerges as an effective lower limit at the electroweak scale. For example, the fermion mass hierarchy and the neutrino mass problem are two related subjects that may be understood as manifestations of an underlying theory beyond the SM [2] [3]. Also, there are some observables that show some tensions from the SM predictions, which may be associated to new physics. Among the different observations accesible to collider physics, the flavor observables imposes stringent limits to many SM extensions. In particular, the lepton universality exhibited by the SM is sensitive to new physics that can be tested in rare semi-leptonic transitions of mesons [4] [5] [6]. Recently, the ratio of the branching fractions of B meson decays into muon and electron pairs was reported by the LHCb collaboration [7], where a deviation from the SM prediction within 2.6σ suggest us a possible lepton universality violation not explained in the framework of the SM.
From the theoretical point of view, the mass hierarchy problem can be addressed in a model independent approach by assuming texture zero structures for the mass matrices \[8\]. Relations between mixing angles and masses can also be derived for both quarks and lepton sectors in models with broken flavor symmetries. These symmetries, that relates the three fermion families in a non-trivial way, have been extensively studied in the literature in different extensions of the SM, either as a continuos abelian or non-abelian extensions \[9\], or as a discrete flavour symmetry \[10\]. On the other hand, many grand unified and superstring models predicts one or multiple extra abelian symmetries in their effective low energy limit \[11\], which motivates extensions of the SM with an extra \(U(1)' \) gauge symmetry. If this symmetry is family nonuniversal, it is possible to connect the flavour problem with the group properties of these models. Also, these type of extensions imply a new extra neutral \(Z' \) boson which, in the framework of a nonuniversal model, produces new contributions to flavour-changing neutral current (FCNC) processes. Although these type of interactions are strongly suppressed in the SM, which is consistent with most of the experimental observations, there are some anomalies reported, as the aforementioned decay \(B^+ \to K^+ \ell^+ \ell^- \), corresponding to a \(b \to s \) FCNC process.

Motivated initially by the mass hierarchy of the quarks, in the \(U(1)' \) model proposed in reference \[12\], the new abelian charge distinguishes one family of quarks from the other two, and newly vector-like quarks are introduced in order to restore the cancellation of the chiral anomalies. This model is universal in the lepton sector. A modification of the above model was presented in \[13\], where newly charged leptons are also introduced in order to obtain nonuniversal lepton families compatible with the cancellation of the chiral anomalies. The above structure can reproduce the elements of the mixing mass matrix and the squared-mass differences data from neutrinos oscillations experiments.

In this article, we combine the nonuniversal \(U(1)' \) model from \[13\] with a three higgs doublet model in order to explain the anomaly measured by the LHCb in the ratio of the branching fractions of \(B^+ \to K^+ \mu^+ \mu^- \) to \(B^+ \to K^+ e^+ e^- \) decays. This model was already presented in \[14\], where the three doublets may induce naturally the fermion hierarchy, while the smallness of the neutrinos can be implemented through an inverse see saw mechanism, where the vacuum expectation value that breaks the extra \(U(1)' \) symmetry defines the large mass scale.

2 Survey of the model

2.1 Particle content

The model is an extension of the SM group, with the addition of a nonuniversal abelian gauge symmetry (which we denote as \(U(1)_X \)) whose gauge boson and coupling constant are \(Z'_\mu \) and \(g_X \), respectively, while the weak hypercharge is defined as usual through the Gell-Mann-Nishijima relation:

\[
Q = I_3 + \frac{Y}{2},
\]

with \(Q \) the electric charge operator and \(I_3 \) the isospin.

The additional gauge symmetry introduces new chiral anomaly equations which can be solved by assigning non-trivial \(X \)-quantum numbers to the fermions of the SM \[12\]. If this new \(U(1) \) charges are different from the SM \(U(1)_Y \) charges, then anomaly cancellation require new quarks and leptons to be added into the spectrum with masses at a larger scale than the electroweak scale \[15\]. For simplicity, all the new particles are assumed to be singlets under
The chosen particle spectrum is presented in the table 1 where three new quarks (with vacuum expectation values (VEV) \(v \)) introduce three right-handed neutrinos, and \(\Phi \) is the heaviest observed fermion at 10^2 GeV scale. This general structure can be directly induced with three Higgs doublets \(\Phi \) and \(\chi \) Higgs singlet, and two charged leptons (T). The gauge symmetry parities, which are identical to \(\chi \) but without VEV is introduced, which can play the role of a dark matter candidate, such as in the \(U(1)' \) extension in [16].

On the other hand, the phenomenological fermions define three mass scales. First, the top quark (t) is the heaviest observed fermion at 10^2 GeV scale. Second, the tau lepton and bottom quark (\(\tau, b \)) are in the 10^2 GeV scale. Finally, the muon and strange quark (\(\mu, s \)) are in the 10^2 MeV scale. This general structure can be directly induced with three Higgs doublets with vacuum expectation values (VEV) \(v_1 > v_2 > v_3 \) associated to the three scales above. The chosen particle spectrum is presented in the table 1 where three new quarks (T, \(\mathcal{J}^{1,2} \)) and two charged leptons (\(\mathcal{E}^{1,2} \)) are introduced. To obtain masses for the active neutrinos, we introduce three right-handed neutrinos \(\nu_R^{1,2,3} \) with nontrivial \(U(1)_X \) charges, which allow the coupling with the ordinary lepton doublets \(\ell_L \), but because of their \(X=1/3 \) charge, they do not generate Majorana mass terms. The addition of Majorana fermions, \(\mathcal{N}^{1,2,3}_R \), allow an inverse see saw mechanism in order to explain the smallness of the active neutrinos.

In order to obtain predictable and analytical relations for the masses and mixing angles of the fermions according to observations, we assign specific \(\mathbb{Z}_2 \) symmetry parities, which are shown as superscripts in the \(X \)-charges. It is to note that, despite the scalar doublets \(\Phi_2 \) and \(\Phi_3 \) have the same \(X \) charge, they have opposite \(\mathbb{Z}_2 \) parity such that their couplings to fermions are complementary.

Finally, since the new fermions are vector-like under the SM group, they do not introduce any extra \(SU(2)_L \times U(1)_Y \) contribution to the anomaly equations. However, the symmetry \(U(1)_X \) may generate the following pure and mixed anomalies:

Bosons	\(X^{+} \)	Quarks	\(X^{+} \)	Leptons	\(X^{+} \)
Scalar Doublets		SM Fermionic Doublets			
\(\Phi_1 = \{ \phi_1^+ \} \)	\(+2^+ \)	\(q_L = \left(\begin{array}{c} u_1^+ \\ \frac{d_1^+}{3} \end{array} \right) \)	\(+1^+ \)	\(\ell_L^e = \left(\begin{array}{c} \nu^e_L \\ e^e_L \end{array} \right) \)	
\(\Phi_2 = \{ \phi_2^+ \} \)	\(+1^- \)	\(q_2^e = \left(\begin{array}{c} u_2^+ \\ \frac{d_2^+}{3} \end{array} \right) \)	\(0^- \)	\(\ell_L^\mu = \left(\begin{array}{c} \nu^\mu_L \\ \mu^\mu_L \end{array} \right) \)	
\(\Phi_3 = \{ \phi_3^+ \} \)	\(+1^- \)	\(q_3^e = \left(\begin{array}{c} u_3^+ \\ \frac{d_3^+}{3} \end{array} \right) \)	\(0^+ \)	\(\ell_L^\tau = \left(\begin{array}{c} \nu^\tau_L \\ \tau^\tau_L \end{array} \right) \)	
Scalar Singlets		SM Fermionic Singlets			
\(\chi = \frac{\xi_x + v_x + \zeta_x}{\sqrt{2}} \)	\(-1^+ \)	\(u_R^{1,3} \)	\(+1^+ \)	\(\epsilon_R^{0+} \)	
\(\sigma \)	\(-1^- \)	\(u_R^2 \)	\(+\frac{1}{3}^- \)	\(\epsilon_R^{0^+} \)	
\(d_R^{1,2,3} \)	\(-1^- \)		\(\epsilon_R^{0^-} \)		

Table 1: Non-universal \(X \) quantum number and \(\mathbb{Z}_2 \) parity for SM and non-SM fermions.
while for the neutral and charged leptons we obtain:

\[[U(1)_X]^3 \rightarrow A_1 = \sum_{\ell, Q} [X_{\ell L}^3 + 3X_{Q_L}^3] - \sum_{\ell, Q} [X_{\ell R}^3 + 3X_{Q_R}^3] \]

\[[SU(3)_c]^2 U(1)_X \rightarrow A_2 = \sum_Q X_{Q_L} - \sum_Q X_{Q_R} \]

\[[SU(2)_L]^2 U(1)_X \rightarrow A_3 = \sum_{\ell} X_{\ell L} + 3\sum_Q X_{Q_L} \]

\[[U(1)_Y]^2 U(1)_X \rightarrow A_4 = \sum_{\ell} \sum_{Q} [Y_{\ell L}^2 X_{\ell L} + 3Y_{Q_L}^2 X_{Q_L}] - \sum_{\ell, Q} [Y_{\ell R}^2 X_{\ell R} + 3Y_{Q_R}^2 X_{Q_R}] \]

\[U(1)_Y [U(1)_X]^2 \rightarrow A_5 = \sum_{\ell} \sum_{Q} [Y_{\ell L}^2 X_{\ell L} + 3Y_{Q_L}^2 X_{Q_L}] - \sum_{\ell, Q} [Y_{\ell R}^2 X_{\ell R} + 3Y_{Q_R}^2 X_{Q_R}] \]

\[[\text{Grav}]^2 \otimes U(1)_X \rightarrow A_6 = \sum_{\ell, Q} [X_{\ell L} + 3X_{Q_L}] - \sum_{\ell, Q} [X_{\ell R} + 3X_{Q_R}] \] (2)

where the sums in \(Q \) runs over all the quarks, and \(\ell \) over all leptons. However, by direct calculation, it is possible to verify that the chosen \(U(1)_X \) charges satisfy the cancellation of the anomalies in (2), so that the model is free from chiral anomalies.

2.2 Lagrangians

Yukawa interactions

The most general Yukawa Lagrangian must obey the gauge symmetry \(G_{SM} \times U(1)_X \) in order to obtain a renomalizable model, where \(G_{SM} \) is the SM gauge group. However, we impose additionally that the interactions respect the discrete \(Z_2 \) symmetry, where each particle has the intrinsic \(Z_2 \)-parity shown in table. Since there are particles with different \(Z_2 \)-parities, not all couplings between fermions and scalars are allowed. Specifically, the Yukawa Lagrangian allowed by the symmetries of the model for the up- and down-like quarks are:

\[-\mathcal{L}_U = h^{11}_{3a_1L} \Phi_3 u_R^1 + h^{12}_{3a_2L} \Phi_2 u_R^2 + h^{13}_{3a_3L} \Phi_3 u_R^3 + h^{22}_{3a_1L} \Phi_3 u_R^2 + h^{33}_{3a_1L} \Phi_3 u_R^3 + h^{22}_{3a_2L} \Phi_3 u_R^2 + h^{33}_{3a_2L} \Phi_3 u_R^3 + h^{22}_{3a_3L} \Phi_3 u_R^2 + h^{33}_{3a_3L} \Phi_3 u_R^3 + h^{22}_{3a_1L} \Phi_3 u_R^2 + h^{33}_{3a_1L} \Phi_3 u_R^3 \] (3)

\[-\mathcal{L}_D = h^{11}_{3a_1L} \Phi_1 \overline{J}_R^1 + h^{11}_{3a_2L} \Phi_2 \overline{J}_R^2 + h^{11}_{3a_3L} \Phi_3 \overline{J}_R^3 + h^{22}_{3a_1L} \Phi_1 \overline{J}_R^2 + h^{33}_{3a_1L} \Phi_1 \overline{J}_R^3 + h^{22}_{3a_2L} \Phi_1 \overline{J}_R^2 + h^{33}_{3a_2L} \Phi_1 \overline{J}_R^3 + h^{22}_{3a_3L} \Phi_1 \overline{J}_R^2 + h^{33}_{3a_3L} \Phi_1 \overline{J}_R^3 + h^{22}_{3a_1L} \Phi_1 \overline{J}_R^2 + h^{33}_{3a_1L} \Phi_1 \overline{J}_R^3 \] (4)

while for the neutral and charged leptons we obtain:

\[-\mathcal{L}_N = h^{\mu \nu}_{3a_1L} \Phi_3 \nu_{\ell R}^1 + h^{\mu \nu}_{3a_2L} \Phi_3 \nu_{\ell R}^2 + h^{\mu \nu}_{3a_3L} \Phi_3 \nu_{\ell R}^3 + h^{\mu \nu}_{3a_1L} \Phi_3 \nu_{\ell R}^2 + h^{\mu \nu}_{3a_2L} \Phi_3 \nu_{\ell R}^3 + h^{\mu \nu}_{3a_1L} \Phi_3 \nu_{\ell R}^2 + h^{\mu \nu}_{3a_2L} \Phi_3 \nu_{\ell R}^3 + h^{\mu \nu}_{3a_3L} \Phi_3 \nu_{\ell R}^2 + h^{\mu \nu}_{3a_3L} \Phi_3 \nu_{\ell R}^3 \] (5)
\[-L_E = h_{3e}^{\mu} \overline{\Phi}_L e_{e}^\mu + h_{3e}^{\mu} \overline{\Phi}_L e_{e}^R + h_{2e}^{\mu} \overline{\Phi}_L e_{e}^\mu + h_{2e}^{\mu} \overline{\Phi}_L e_{e}^R + h_{1e}^{\mu} \overline{\Phi}_L e_{e}^\mu + h_{1e}^{\mu} \overline{\Phi}_L e_{e}^R + g_{Xe}^{\mu} \overline{\Phi}_L e_{e}^\mu + g_{Xe}^{\mu} \overline{\Phi}_L e_{e}^R + g_{Xe}^{\mu} \overline{\Phi}_L e_{e}^\mu + g_{Xe}^{\mu} \overline{\Phi}_L e_{e}^R + h.c.,\]

where $\tilde{\Phi} = i \sigma_2 \Phi^*$ are the scalar doublet conjugates and the Majorana mass components are denoted as M_{ij}^{ij}.

Gauge and scalar boson interactions

The Higgs kinetic Lagrangian contains the couplings among vector gauge and scalar bosons, which takes the general form

$$\mathcal{L}_{\text{kin}} = (D_\mu S)_\dagger (D_\mu S),$$

where the covariant derivative is defined as:

$$D_\mu = \partial_\mu - ig W_\alpha T_\alpha S - ig' Y_S B_\mu - ig X_S Z_\mu.$$ (8)

The parameters $2T_\alpha^S$ corresponds to the Pauli matrices when $S = \Phi_{1,2,3}$ and $T_\alpha^S = 0$ when $S = \chi, \sigma$, while Y_S and X_S correspond to the hypercharge and $U(1)_X$ charge according to the values in table 1. The gauge coupling constants g and g' obey the same relation as in the SM, $g' = g \tan \theta_W$, with θ_W the Weinberg angle.

Dirac Lagrangian

Finally, the interactions of fermions through vector gauge fields are described by the following Lagrangian:

$$\mathcal{L}_D = i \overline{f}_{Li} \gamma^\mu D_\mu f_{Li} + i \overline{f}_{Ri} \gamma^\mu D_\mu f_{Ri},$$ (9)

where f_i runs over all flavour of fermions, and, as usual, a sum over repeated indices is implied. The covariant derivative D_μ is similar to (8) but changing the scalar parameters by the corresponding fermion parameters.

2.3 Mass eigenstates and interactions

Fermion masses

The Yukawa Lagrangians from (3) to (6) provide masses to all the fermions after the symmetries of the model breaks spontaneously, through the vacuum structure of the Higgs fields shown in table 1. In general, the mass terms have the following form:

$$-\mathcal{L}_f = \overline{f}_L M_f f_R + h.c.,$$ (10)

where f are fermion multiplets with components of the same electric charge, namely

$$f : U = (u^1, u^2, u^3, T)$$

$$D = (d^1, d^2, d^3, J^1, J^2)$$

$$E = (e^\mu, e^\mu, \mathcal{E}^1, \mathcal{E}^2)$$

$$N_L = (\nu_L^{e,\mu,\tau}, \nu_R^{1,2,3C}, N_R^{1,2,3C}),$$ (11)
and M_f are complex non-diagonal mass matrices. In general, the above mass matrices can be
diagonalized by bi-unitary transformations of the form:

$$m_f = (V^f_L)^\dagger M_f V^f_R,$$

which, after replacing in (10), lead us to the left- and right-handed mass basis:

$$\tilde{f}_L = (V^f_L)^\dagger f_L, \quad \tilde{f}_R = (V^f_R)^\dagger f_R,$$

where:

$$\tilde{f} : \tilde{U} = (u, c, t, T)$$
$$\tilde{D} = (d, s, b, J^1, J^2)$$
$$\tilde{E} = (e, \mu, \tau, E^1, E^2)$$
$$\tilde{N}_L = (\nu^{1,2,3}_L, \nu^{1,2,3C}_L)$$

The specific form of the matrices $V^f_{L,R}$ depends on the Yukawa structure of the original
Lagrangians in (3)-(6). In particular, with the chosen Z_2-parities, these Yukawa terms lead
us to predictable mass structures for quarks, charged leptons and neutrinos, as shown in [14],
which we summarize in the appendix B.

The unitary constraint

Each rotation matrix in (13) must obey the unitary condition

$$\left(V^f_{L,R}\right)^\dagger \left(V^f_{L,R}\right) = I,$$

where I is the identity. In the above relation, we must take into account that the sum from the
matrix products contain two contributions due to the components with ordinary SM particles
and the newly vector-like fermions. Labelling $a, b, c, ...$ the components with ordinary femions,
and $\alpha, \beta, \gamma, ...$ the exotic ones, the unitary condition in (15) can be written in tensor form as

$$\delta_{ij} = (V^*_{L,R})_{ij} (V_{L,R})_{jk}$$
$$= (V^*_{L,R})_{ia} (V_{L,R})_{ak} + (V^*_{L,R})_{i\alpha} (V_{L,R})_{\alpha k}.$$

In particular, for the SM components:

$$\delta_{cb} = (V^*_{L,R})_{ca} (V_{L,R})_{ab} + (V^*_{L,R})_{c\alpha} (V_{L,R})_{\alpha b}.$$

Thus, the pure SM submatrix $(V_{L,R})_{ab}$ does not satisfy an exact unitary relation, but it is
deviated by a small contribution due to new physics from the extra particle content. The
relation (17) is conveniently written as:

$$(V^*_{L,R})_{ca} (V_{L,R})_{ab} = \delta_{cb} - (V^*_{L,R})_{c\alpha} (V_{L,R})_{\alpha b}.$$
Gauge bosons

After the symmetry breaking, we obtain from the kinetic Lagrangian in (7) the charged mass eigenstates

\[W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{1} \mp W_{\mu}^{2}), \]

(19)

with squared mass \(M_{\pm}^{2} = g^{2} v^{2}/4 \), where the electroweak vacuum expectation value \(v = 246 \) GeV is defined with the VEV of each scalar doublet as

\[v = \sqrt{v_{1}^{2} + v_{2}^{2} + v_{3}^{2}}. \]

(20)

As for the neutral gauge sector, we obtain in the basis \((W_{3}^{\mu}, B_{\mu}, Z'_{\mu})\) the following symmetric squared mass matrix:

\[M_{0}^{2} = \frac{g^{2}}{4} \begin{pmatrix} v^{2} & -T_{W} v^{2} & -\frac{2gX}{\sqrt{2}} (v^{2} + v_{1}^{2}) \\ * & T_{W}^{2} v^{2} & \frac{2gX}{\sqrt{2}} T_{W} (v^{2} + v_{1}^{2}) \\ * & * & \frac{4g^{2}}{9} (v_{X}^{2} + v^{2} + 3v_{1}^{2}) \end{pmatrix} = \begin{pmatrix} A & C \\ C^{T} & D \end{pmatrix}, \]

(21)

where \(T_{W} = \tan \theta_{W} \) is the tangent of the Weinberg angle. Taking into account the hierarchy \(v_{\chi} \gg v \), the above mass matrix can be diagonalized analytically by the recursive expansion method [17]. First, according to the block diagonalization shown in Appendix A, we can reduce the above 3 \(\times \) 3 mass matrix into one 2 \(\times \) 2 mass matrix and a heavy mass associated to the \(Z' \) boson:

\[a \approx A - C D^{-1} C^{T} = N \begin{pmatrix} 1 & -T_{W} \\ -T_{W}^{2} & T_{W}^{2} \end{pmatrix}, \]

\[b \approx D = \frac{g^{2}}{9} (v_{X}^{2} + v^{2} + 3v_{1}^{2}), \]

(22)

where \(N = \frac{1}{4} \left(v^{2} - \frac{(v^{2} + v_{1}^{2})^{1/2}}{v_{\chi}} \right) \), while the transformation matrix that induces the above block diagonalization is:

\[V = \begin{pmatrix} I & F \\ -F^{T} & I \end{pmatrix} = \begin{pmatrix} 1 & 0 & -S_{B} C_{W} \\ 0 & 1 & S_{B} S_{W} \\ S_{B} C_{W} & -S_{B} S_{W} & 1 \end{pmatrix}, \]

(23)

where the sine of the mixing angle \(\theta \) has been defined as

\[S_{\theta} = \frac{3}{2} \left(\frac{v^{2} + v_{1}^{2}}{v_{X}^{2}} \right) \frac{g}{gX}. \]

(24)

We clarify that in general an additional \(Z - Z' \) mixing angle results from the gauge kinetic terms, which can be neglected at a higher scale. This mixing may also arise due to radiative corrections. However, any \(Z - Z' \) mixing arised in the model is very restricted by the LEP
data, limiting S_θ to small values. In reference [16] the deviations on the Z pole observables due to the mixing angle were evaluated in a $U(1)_X$ model with the same gauge couplings as here, showing allowed mixing angle of the order up to 10^{-4}.

Second, the submatrix a in (22) has the following mass eigenvalues:

$$m_A^2 = 0, \quad m_Z^2 = \frac{g^2}{C_W^2} N,$$ \hspace{1cm} (25)

while the associated rotation matrix is:

$$p = \begin{pmatrix} S_W & C_W \\ C_W & -S_W \end{pmatrix}. \hspace{1cm} (26)$$

The total rotation into mass eigenstates is the combination of the rotations (23) and (26),

$$R_0 = PV = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} V = \begin{pmatrix} S_W & C_W & 0 \\ C_W & -S_W & S_\theta \\ -S_\theta C_W & S_\theta S_W & 1 \end{pmatrix}, \hspace{1cm} (27)$$

obtaining the mass eigenstates:

$$\tilde{V}_\mu = R_0 V_\mu \Rightarrow \begin{pmatrix} A_\mu \\ Z_{1\mu} \\ Z_{2\mu} \end{pmatrix} = R_0 \begin{pmatrix} W_\mu^3 \\ B_\mu \\ Z_\mu \end{pmatrix},$$ \hspace{1cm} (28)

where A_μ is identified with the photon. We see that in the limit $S_\theta = 0$, we obtain $Z_1 = Z = C_W W^3 - S_W B$ and $Z_2 = Z'$, with Z the SM neutral gauge boson.

Neutral currents

The weak interaction of fermions is contained into the Dirac Lagrangian in (9). First, taking into account the mass eigenstates in (19) and (28), the covariant derivative become

$$D^\mu = \partial^\mu - ig \left(W^{\mu+} T^\mu_f + W^{\mu-} T^{\mu+}_f \right) - \tilde{V}_m^\mu \left[ig \left(R^T_0 \right)_{1m} T^3_f + ig \frac{X_f}{2} \left(R^T_0 \right)_{2m} + ig X_f \left(R^T_0 \right)_{3m} \right],$$ \hspace{1cm} (29)

where $2T^{\pm}_f$ is the combination $(\sigma_1 \pm \sigma_2)$ between the first two Pauli matrices and $2T^3_f$ the third Pauli matrix for fermion fields f doublets of $SU(2)$, while $2T^+ = 2T^- = 0$ when f are singlets. The terms $(R^T_0)_{nm}$ correspond to the components of the transpose rotation matrix between the neutral weak and mass eigenstates, as defined in (27), and \tilde{V}_m^μ the corresponding neutral gauge bosons in mass eigenstate, where $(\tilde{V}_1^{\mu}, \tilde{V}_2^{\mu}, \tilde{V}_3^{\mu}) = (A^{\mu}, Z_1^{\mu}, Z_2^{\mu})$. Applying the above covariant derivative into the Dirac Lagrangian (9), we obtain the following neutral gauge interactions:

$$\mathcal{L}_{NC} = \frac{g}{2} \left[\overline{f_L} i \gamma_\mu \tilde{V}_m^\mu g_{Lm}^{(f_i)} f_L i + \overline{f_R} i \gamma_\mu \tilde{V}_m^\mu g_{Rm}^{(f_i)} f_R i \right],$$ \hspace{1cm} (30)

where $g_{L,Rm}^{(f_i)}$ are the electroweak neutral current couplings, defined in general as:
and for right-handed fermions

\[
g_m^{(f)} = T_W Y_f \left(R_0^T \right)_{2m} + \frac{2g_f}{g} X_f \left(R_0^T \right)_{3m},
\]

for singlets. In particular, for the ordinary SM fermions, labeled with the index \(a \), the left-handed couplings are:

\[
\begin{align*}
g_{L1}^{(f_a)} &= 2Q_{fa} S_W, \\
g_{L2}^{(f_a)} &= \frac{1}{C_W} \left(I_3 - 2Q_{fa} S_W^2 \right) + 2X_{f_{La}} \frac{g_f}{g} S_{\theta}, \\
g_{L3}^{(f_a)} &= \frac{1}{C_W} \left(-I_3 + 2Q_{fa} S_W^2 \right) S_{\theta} + 2X_{f_{La}} \frac{g_f}{g}.
\end{align*}
\]

and for right-handed fermions
Thus, the neutral current Lagrangian (30) in full mass eigenstates is:

\begin{align*}
\mathcal{J}_L &= \frac{4}{3} S_W \quad -\frac{2}{3} \left(\frac{2 S_W^2}{C_W} - \frac{g X}{g} S_\theta \right) \quad \frac{2}{3} \left(\frac{S_W^2}{C_W} S_\theta + \frac{g X}{g} \right) \\
\mathcal{J}_L^{1,2} &= -\frac{2}{3} S_W \quad \frac{2}{3} S_W^2 \quad -\frac{2}{3} S_W^2 S_\theta \\
\mathcal{E}_L^1 &= -2 S_W \quad 2 \left(\frac{S_W^2}{C_W} - \frac{g X}{g} S_\theta \right) \quad -2 \left(\frac{S_W^2}{C_W} S_\theta + \frac{g X}{g} \right) \\
\mathcal{E}_L^2 &= \frac{4}{3} \left(\frac{3 S_W^2}{2 C_W} - \frac{g X}{g} \right) \quad \frac{4}{3} \left(\frac{3 S_W^2}{2 C_W} S_\theta + \frac{g X}{g} \right)
\end{align*}

$f_{L\alpha}$	$g_{L1}^{(f_{\alpha})}$	$g_{L2}^{(f_{\alpha})}$	$g_{L3}^{(f_{\alpha})}$
\mathcal{J}_L	$\frac{4}{3} S_W$	$-\frac{2}{3} \left(\frac{2 S_W^2}{C_W} - \frac{g X}{g} S_\theta \right)$	$\frac{2}{3} \left(\frac{S_W^2}{C_W} S_\theta + \frac{g X}{g} \right)$
$\mathcal{J}_L^{1,2}$	$-\frac{2}{3} S_W$	$\frac{2}{3} S_W^2$	$-\frac{2}{3} S_W^2 S_\theta$
\mathcal{E}_L^1	$-2 S_W$	$2 \left(\frac{S_W^2}{C_W} - \frac{g X}{g} S_\theta \right)$	$-2 \left(\frac{S_W^2}{C_W} S_\theta + \frac{g X}{g} \right)$
\mathcal{E}_L^2	$\frac{4}{3} \left(\frac{3 S_W^2}{2 C_W} - \frac{g X}{g} \right)$	$\frac{4}{3} \left(\frac{3 S_W^2}{2 C_W} S_\theta + \frac{g X}{g} \right)$	

Table 4: Neutral current couplings for the newly left-handed fermions

\[g_{R1}^{(f_{\alpha})} = 2Q_{fa} S_W, \]
\[g_{R2}^{(f_{\alpha})} = -2Q_{fa} S_W^2 + 2X_{fa} \frac{g X}{g} S_\theta, \]
\[g_{R3}^{(f_{\alpha})} = 2Q_{fa} S_W^2 S_\theta + 2X_{fa} \frac{g X}{g}, \]

(34)

where Q_f and X_f are the corresponding electric and $U(1)_X$ charges of the fermion f, while I_3 is the isospin which is 1 for the upper components and -1 for the lower ones. For future reference, we list explicitly in Tables 2 and 3 the neutral currents for each flavour fermion. We emphasize that particles such as e^L, ν^L, $u^2,3$ and $d^2,3_L$ are devoid of couplings with g_X, which is a consequence of their zero $U(1)_X$ charge.

For the newly fermions, labeled with the index α, both the left-handed and right-handed are singlets of $SU(2)_L$. Thus, the neutral current couplings are:

\[g_{L,Rm}^{(f_{\alpha})} = T_W Y_{f_{L,R}} (R_0^T)_{2m} + \frac{2g X_{f_{L,R}}}{g} (R_0^T)_{3m}, \]

(35)

which are listed in Tables 4 and 5 for each flavour of this sector.

On the other hand, according to (13), the fermion fields must be also rotated into a mass eigenstate basis. By labeling \tilde{f}_i each component of the mass basis \tilde{f} and f_i the corresponding in weak basis, the transformation (13) are written in components as:

\[\tilde{f}_{L, Ri} = \left(V_{L,R}^f \right)^{ij} f_{L, Rj}. \]

(36)

Thus, the neutral current Lagrangian (30) in full mass eigenstates is:

\[\mathcal{L}_{NC} = \frac{g}{2} \left[\tilde{f}_{Li} \gamma_\mu \tilde{V}_m^j \left(V_L^f \right)^{ij} g_{Lm}^{(f_j)} \left(V_L^f \right)_{jk} \tilde{f}_{Lk} + \tilde{f}_{Ri} \gamma_\mu \tilde{V}_m^j \left(V_R^f \right)^{ij} g_{Rm}^{(f_j)} \left(V_R^f \right)_{jk} \tilde{f}_{Rk} \right]. \]

(37)

In mass eigenstates, the neutral current couplings transform through the fermionic bi-unitary matrices:

\[g_{L,Rm}^{(f_j)} \rightarrow \tilde{g}_{L,Rm}^{(f_{\alpha})} = \left(V_{L,R}^f \right)^{ij} g_{L,Rm}^{(f_j)} \left(V_{L,R}^f \right)_{jk}. \]

(38)
so, the neutral Lagrangian (37) become:

\[L_{NC} = \frac{g}{2} \left[\bar{f}_{L_{\mu}} \gamma_{\mu} \tilde{V}^{\mu}_{m} g^{(j)k} \tilde{f}_{L_{k}} + \bar{f}_{R_{\mu}} \gamma_{\mu} \tilde{V}^{\mu}_{m} g^{(j)k} \tilde{f}_{R_{k}} \right]. \] (39)

In general, as shown in Tables 2 - 5, there are couplings that are family dependent. For these cases, the neutral couplings \(\tilde{g}^{(ik)} \) are non-diagonal, producing FCNC processes, such as in the dilepton B decay. For the family universal couplings, due to the unitary constraint in (15), the neutral couplings become diagonal, \(\tilde{g}^{(ik)} = \tilde{g}^{(j)j} \delta_{ik} \), which only produce flavour conservative neutral currents.

3 B decay

The process \(B^+ \rightarrow K^+ \ell^+ \ell^- \) for chaged leptons \(\ell^\pm \) is due to \(b \rightarrow s \ell^+ \ell^- \) transitions. In the model, this process can be induced at tree level through the neutral weak bosons \(Z_1 \) and \(Z_2 \) as shown in Figure 1.

3.1 Fundamental couplings

The \(b - s - Z_{1(2)} \) coupling

First, according to the neutral current Lagrangian in (39), the FCNC transition \(b \rightarrow s \) in the first vertex of Figure 1 is described by the Lagrangian:

\[L_{sb} = \frac{g}{2} \left[\bar{s}_{L} \gamma_{\mu} \left(Z_{1}^{\mu} g_{L_{2}L_{2}}^{(23)} + Z_{2}^{\mu} g_{L_{3}L_{3}}^{(23)} \right) b_{L} + \bar{s}_{R} \gamma_{\mu} \left(Z_{1}^{\mu} g_{R_{2}R_{2}}^{(23)} + Z_{2}^{\mu} g_{R_{3}R_{3}}^{(23)} \right) b_{R} \right] + \text{H.c.}, \] (40)

where:

\[\tilde{g}_{L,Rm}^{(23)} = \left(V_{L,R}^{D_{j}} \right)_{2j} g_{L,Rm}^{(D_{j})} \left(V_{L,R}^{D_{j}} \right)_{j3}, \] (41)

with \(D_{j} = (d_{1}, d_{2}, d_{3}, J_{1}, J_{2}) \). Separating the ordinary fermions \(D_{a} = (d_{1}, d_{2}, d_{3}) \) from the new ones \(D_{\alpha} = (J_{1}, J_{2}) \), we can write the above coupling as:

\[\tilde{g}_{L,Rm}^{(23)} = \left(V_{L,R}^{D_{j}} \right)_{2a} g_{L,Rm}^{(D_{a})} \left(V_{L,R}^{D_{j}} \right)_{a3} + \left(V_{L,R}^{D_{j}} \right)_{2\alpha} g_{L,Rm}^{(D_{\alpha})} \left(V_{L,R}^{D_{j}} \right)_{\alpha3}. \] (42)
Figure 1: Decay $B^+ \to K^+\ell^+\ell^-$ through neutral gauge bosons $Z_{1,2}$.

Taking into account that according to tables 2-5 for the down-type sector, only the left-handed ordinary down quarks exhibit family dependence, then the left-handed couplings in (42) expands as:

$$\tilde{g}_{Lm}^{(23)} = g_{Lm}^{(d_1)} (V_L^D)_{21}^\dagger (V_{L,R})_{13} + g_{Lm}^{(d_{2,3})} \left[(V_L^D)_{22}^\dagger (V_{L,R})_{23} + (V_L^D)_{23}^\dagger (V_{L,R})_{33} \right]$$

$$+ g_{Lm}^{(D_\alpha)} (V_L^D)_{2\alpha}^\dagger (V_{L,R})_{\alpha 3},$$

while the right-handed couplings (family universal) cancel out,

$$\tilde{g}_{Rm}^{(23)} = 0. \tag{44}$$

From the unitary constraint (18), we find the following relation:

$$\left(V_L^D \right)_{22} (V_L^D)_{23} + (V_L^D)_{23} (V_L^D)_{33} = - \left(V_L^D \right)_{21} (V_L^D)_{13} - \left(V_L^D \right)_{2\alpha} (V_L^D)_{\alpha 3}, \tag{45}$$

which, after replacing in (43), we obtain:

$$\tilde{g}_{Lm}^{(23)} = \left(V_L^D \right)_{21} (V_L^D)_{13} \left[g_{Lm}^{(d_1)} - g_{Lm}^{(d_{2,3})} \right] + \left(V_L^D \right)_{2\alpha} (V_L^D)_{\alpha 3} \left[g_{Lm}^{(D_\alpha)} - g_{Lm}^{(d_{2,3})} \right]. \tag{46}$$

We see that in a family universal scenario, where the coupling $g_{Lm}^{(d_{2,3})}$ would be the same as for $g_{Lm}^{(d_1)}$ and $g_{Lm}^{(D_\alpha)}$, the above coupling cancel out, suppressing the FCNC transition $b \to s$.

However, the model distinguish these couplings, according to the family index. Specifically, using the values from Table 2, we obtain the left-handed neutral couplings for the $b-s$ interaction shown in the first row from Table 6.

The $e^+(\mu^+) - e^-(\mu^-) - Z_{1(2)}$ coupling

On the other hand, the neutral coupling for the decays $Z_{1,2} \to \ell_a^+\ell_a^-$ in the second vertex from Figure 1 for $\ell_a = e$ and μ, is described by:

$$\mathcal{L}_\ell = \frac{g}{2} \left[\bar{\ell}_a \gamma_\mu \left(Z_{1,2}^\mu \bar{g}_{L2} + Z_{2,3}^\mu \bar{g}_{L3} \right) \ell_a + \bar{\ell}_a \gamma_\mu \left(Z_{1,2}^\mu \bar{g}_{R2} + Z_{2,3}^\mu \bar{g}_{R3} \right) \ell_a \right], \tag{47}$$
with

\[\tilde{g}_{L,Rm}^{(aa)} = \left(V_{L,R}^E \right)_{aj} \tilde{g}_{L,Rm} \left(V_{L,R}^E \right)_{ja}, \]

(48)

for \(E_j = (e^+, e^e, e^\tau, \mathcal{E}_1, \mathcal{E}_2) \). By using the unitary constraint, we obtain for the left-handed couplings of the charged leptons:

\[\tilde{g}_{Lm}^{(aa)} = g_{Lm} + \left| (V_{L}^E)_{3a} \right|^2 \left[(e^+ - g_{Lm}) \left(g_{Lm} - (e^e \cdot e^e) \right) \right] + \left| (V_{L}^E)_{a3} \right|^2 \left[(e^e - g_{Lm}) \left(g_{Lm} - (e^e \cdot e^e) \right) \right], \]

(49)

and for the right-handed ones, we obtain:

\[\tilde{g}_{Rm}^{(aa)} = g_{Rm} + \left| (V_{R}^E)_{2a} \right|^2 \left[(e^e - g_{Rm}) \left(g_{Rm} - (e^e \cdot e^e) \right) \right] + \left| (V_{R}^E)_{a2} \right|^2 \left[(e^e - g_{Rm}) \left(g_{Rm} - (e^e \cdot e^e) \right) \right]. \]

(50)

In this case, we see that the first term of the above equations do not depend on the flavour number \(a \) (it is the same for \(e^\pm \) as for \(\mu^\pm \)). However, the subsequent terms depends explicitly from the \(ia \) components of the fermionic bi-unitary matrices, due to the nonuniversality of the neutral couplings. Since, in general, each component of the matrices are different, we will obtain a distinction between the couplings to electrons and to muons. As a consequence, the ratio of the branching of the \(B^+ \rightarrow K^+ e^+ e^- \) and \(B^+ \rightarrow K^+ \mu^+ \mu^- \) deviates from one, as suggests the LHCb data. Again, using the values from Tables 2-5 for the charged leptons, we obtain the neutral couplings for \(Z_{1,2} \rightarrow e^\pm (\mu^\pm) \) in tables 6 and 7 for left- and right-handed leptons, respectively.

3.2 Effective operators

From the neutral Lagrangians in (40) and (47), we obtain the matrix element for the \(b \rightarrow s \ell^+_a \ell^-_a \) process:

\[i \mathcal{M}_{fi} = -\frac{ig^2}{4} \left[\mathcal{M}_{\gamma\mu} \left(\tilde{g}_{Lm}^{(23)} L \right) u_b \right] D^{\mu\nu} \left[u_a \gamma_{\nu} \left(\tilde{g}_{Lm}^{(aa)} L + \tilde{g}_{Rm}^{(aa)} R \right) v_a \right], \]

(51)
Putting together both Hamiltonians, equations (54) and (55), and taking the approximated

$\tilde{\mathcal{H}}_{\text{eff}}^{\text{SM}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \left[C_i^{SM} \mathcal{O}_i + C_i'^{SM} \mathcal{O}_i' \right] + \text{H.c.,} \tag{55} $

where the dominant Wilson coefficients are $C_i^{SM} = C_i^{9,10}$, with

$\mathcal{O}_9 = \frac{\alpha_{\text{em}}}{4\pi} \left[\bar{s} \gamma_\mu L b \right] \left[\bar{\ell}_a \gamma^\mu \ell_a \right]$,

$\mathcal{O}_{10} = \frac{\alpha_{\text{em}}}{4\pi} \left[\bar{s} \gamma_\mu L b \right] \left[\bar{\ell}_a \gamma^\mu \gamma_5 \ell_a \right]. \tag{56} $

Putting together both Hamiltonians, equations (54) and (55), and taking the approximated value of

$G_F \alpha_{\text{em}} V_{tb} V_{ts}^* \approx \frac{1}{(36\text{TeV})^2}, \tag{57} $
we obtain the total effective Hamiltonian:

\[\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}} \]

\[= -\frac{1}{(36\text{TeV})^2} \left[C_{9}^{\text{SM}} - \frac{g^2(36\text{TeV})^2}{8M_Z^2} g_{Lm}^{(23)} (g_{Lm}^{(aa)} + g_{Rm}^{(aa)}) \right] (\bar{\nu} \gamma \mu L) (\bar{\nu} \gamma \ell_a) \]

\[- \frac{1}{(36\text{TeV})^2} \left[C_{10}^{\text{SM}} + \frac{g^2(36\text{TeV})^2}{8M_Z^2} g_{Lm}^{(23)} (g_{Lm}^{(aa)} - g_{Rm}^{(aa)}) \right] (\bar{\nu} \gamma \mu L) (\bar{\nu} \gamma \gamma_5 \ell_a) , \]

from where we identify the total Wilson coefficients:

\[C_{9}^{(a)} = C_{9}^{\text{SM}} + C_{9}^{\text{NP}(a)}, \quad C_{10}^{(a)} = C_{10}^{\text{SM}} + C_{10}^{\text{NP}(a)}, \]

with:

\[C_{9}^{\text{NP}(a)} = -\frac{g^2(36\text{TeV})^2}{8M_Z^2} g_{Lm}^{(23)} (g_{Lm}^{(aa)} + g_{Rm}^{(aa)}) \]

\[C_{10}^{\text{NP}(a)} = \frac{g^2(36\text{TeV})^2}{8M_Z^2} g_{Lm}^{(23)} (g_{Lm}^{(aa)} - g_{Rm}^{(aa)}) , \]

where a sum over repeated indices \(m = \{1, 2\} \) is implied in the right terms. For the SM contributions, we use the values \(C_{9}^{\text{SM}} \approx -C_{10}^{\text{SM}} \approx 4.1 \) \[20\].

3.3 \(e - \mu \) relative branching ratio

The LHCb collaboration recorded a measurement of the ratio of the branching fractions of \(B^+ \to K^+ \mu^+ \mu^- \) and \(B^+ \to K^+ e^+ e^- \) decay, which is given by:

\[R_K = \left(\frac{\int_{q_{\text{min}}^2}^{q_{\text{max}}^2} dq^2 \frac{d^4 \Gamma_{B^+ \to K^+ \mu^+ \mu^-}}{dq^2}}{\int_{q_{\text{min}}^2}^{q_{\text{max}}^2} dq^2 \frac{d^4 \Gamma_{B^+ \to K^+ e^+ e^-}}{dq^2}} \right) \]

within the dilepton invariant mass squared range \(1 < q^2 < 6 \text{ GeV}^2/c^4 \). In terms of the Wilson coefficients, \(R_K \) is \[21\]:

\[R_K = \left(\frac{C_{9}^{(\mu)}^2 + C_{10}^{(\mu)}^2}{C_{9}^{(e)}^2 + C_{10}^{(e)}^2} \right) . \]

By expanding the coefficients in SM and NP contributions according to \[59\], and taking into account the lepton universality of the SM, we obtain:

\[R_K = \left(\frac{C_{9}^{\text{SM}} + C_{9}^{\text{NP}(\mu)}^2 + C_{10}^{\text{SM}} + C_{10}^{\text{NP}(\mu)}^2}{C_{9}^{\text{SM}} + C_{9}^{\text{NP}(e)}^2 + C_{10}^{\text{SM}} + C_{10}^{\text{NP}(e)}^2} \right) . \]
By assuming that the above expression corresponds to the experimentally measured, we can fit the free parameters of the model according to the reported value \[7\]

\[
R_K = 0.745^{+0.090}_{-0.074} \pm 0.036. \tag{65}
\]

The free parameters are classified into two categories. First, the gauge parameters, corresponding to the Z' gauge boson mass, the gauge coupling constant of the \(U(1)_X\) symmetry, and the \(Z - Z'\) mixing angle: \((M_{Z'}, g_X, S_0)\). Second, the fermion parameters which arise from the biunitary transformations that rotate the fermion flavours into mass states, according to \[13\], and that depend from the Yukawa couplings and the VEVs of the Higgs fields. By using the scheme shown in reference \[14\], these matrices can be parameterized as functions of mixing angles. After some simplifications, as shown in appendix B, we are left with six free parameters: two ratios of Yukawa couplings, \(r_J = h_J/h_u\) and \(r_\varepsilon = h_\varepsilon/h_u\), where \(h_J, h_\varepsilon\) are the couplings of the extra charged fermions shown in the matrices in equations \[112\] and \[116\], while \(h_u\) is the coupling of the ordinary up-type quarks according to \[110\], the two masses \(m_J\) and \(m_\varepsilon\), corresponding to the new down-type quarks and charged leptons, and two mixing angles from the left- and right-handed charged leptons, \(\theta_{13}^{E_L}\) and \(\theta_{25}^{E_R}\), which we express through their tangents \(t_{13}^{E_L}\) and \(t_{25}^{E_R}\). All other mixing angles can be written as functions of these two angles, as shown in equation \[118\]. In particular, as shown in tables \[6\] and \[7\] the neutral current couplings depends on the \(ij = 2a, 3a, 4a\) and \(5a\) bi-unitary components with \(a = 1\) for electrons and 2 for muons. Explicitly these components can be fully written as functions of \(\theta_{13}^{E_L}\) and \(\theta_{25}^{E_R}\), as shown in equations \[120\] and \[121\].

Thus, the space of parameters is reduced to 9 variables: \((M_{Z'}, m_J, m_\varepsilon, g_X, r_J, r_\varepsilon, S_0, t_{13}^{E_L}, t_{25}^{E_R})\). However, some of these parameters are constrained from theoretical conditions and other experimental observables. For example, the mass \(M_{Z'}\) has lower limits from direct detection in colliders. Experiments at LHC collected data at \(\sqrt{s} = 13\) TeV for new resonances in dielectron and dimuon final states, where lower limits on \(M_{Z'}\) between 3.5 TeV and 4.5 TeV at 36.1 fb\(^{-1}\) by the ATLAS collaboration, and 3.5 TeV and 4 TeV at 12.4 fb\(^{-1}\) by CMS are reported \[22\]. We take the lowest experimental limit of 3.5 TeV. Also, in models with extra gauge neutral bosons, the \(Z - Z'\) mixing angle is suppressed as the inverse of the squared \(Z'\)-mass and by electroweak observables, to values up to \(~10^{-3}\), which has a negligible effect on the total branching decays. Thus, for simplicity, we ignore this mixing and take \(S_0 = 0\). The coupling \(g_X\) is constrained by \(Z'\) production limits. For example, in some models with the same gauge couplings as the model proposed here, limits on dilepton events \(pp \to Z' \to \ell\ell\) at LHC allow values as large as \(g_X \approx 0.4\) \[12\] \[16\]. Search for extra fermions can change according to specific model-dependent assumptions \[23\]. We use a safe scenario with mass values around the TeV scale. Finally, we assume one common Yukawa ratio \(r_h \equiv r_J = r_\varepsilon\).

In summary, if we fix the parameters as described above, we are left with three free parameters, two mixing angles and one Yukawa ratio \((t_{13}^{E_L}, t_{25}^{E_R}, r_h)\), which we fit according to the experimental bound in \[65\]. The first aspect to note is that the couplings to electrons have contributions from the biunitary components \((V_L^E)_{a1}\) for \(a = 3, 4, 5\) and \((V_R^E)_{a1}\) for \(a = 2, 4, 5\), while the muons couple through \((V_L^E)_{a2}\) and \((V_R^E)_{a2}\), as can be verified in tables \[6\] and \[7\]. So, the flavour nonuniversality in the model arise from the difference between the \(a1\) and \(a2\) components of the biunitary matrices, which occur according to equations \[120\] and \[121\]. The plots in figure 2 highlight the difference between electrons and muons components as function of the mixing tangent \(t_{13}^{E_L}\), where we have fixed the other parameters in an arbitrary form, which only will shift the curves but does not change their fundamental form. We see that for the left-handed leptons in the first plot, the 31 (red continuous curve) and 32 (blue continuous curve) components exhibit a small difference, which favoured a universal lepton
coupling. The largest lepton universality violation occur due to the 41 and 42 components near to $t^E_{13} = 0.13$. The right-handed leptons, on the other hand, exhibit larger violation terms than the left-handed ones, due mainly to the 21 and 22 components, as shown in the second plot. The largest differences occur for t^E_{13} far from 1, which may generate two scenarios: for small and for large t^E_{13} mixing. However, as we will discuss below, this angle is suppressed as the muon to top quark mass ratio m_μ/m_t, thus the scenario with small t^E_{13} will be favoured.

Numerically, we found that the reported anomaly can be fitted only for large Yukawa ratios, above $r_h \gtrsim 45$, i.e. the Yukawa couplings that mix the new fermions J and E with the ordinary SM fermions must be larger than the couplings among the ordinary up-type quarks in a factor of the order of 4.5×10^3, which corresponds to the order of the absolute values if we assume couplings of the ordinary particles at the order of 1. An important implication to have large Yukawa couplings is the possibility to find a Landau pole in the Yukawa coupling below the Planck scale, which would reduce the perturbative regimen of the model. A deep analysis in this aspect require a careful study of the renormalization group equations of the theory, which falls outside the scope of this work.

Regarding the mixing angles, the left plot in figure 3 displays allowed points in the
Figure 4: Closed contours in the \((m_J, m_E)\) plane for the extra fermion masses with central value \(t_{13}^{EL} = 0.08\) and the two limits \(t_{25}^{ER} = 0\) and \(0.8\), compatible with the allowed region from figure 3.

\((t_{13}^{EL}, t_{25}^{ER})\) plane for \(r_h = 50\), where a small but non-null mixing angle \(\theta_{13}^{EL}\) is require, while \(\theta_{25}^{ER}\) can be as large as \(42^\circ\), which occur for \(\theta_{13}^{EL} \approx 4.6^\circ\). According to (108), a \(\theta_{25}^{ER}\) mixing angle near \(45^\circ\) (i.e, \(t_{25}^{ER} \sim 1\)) represents a scenario where all the couplings with the new leptons \(\mathcal{E}\) have the same strength. However, most of the allowed points spread around a small 25 mixing, where the couplings of the new leptons is larger than their mixing coupling with the ordinary leptons. On the other hand, small \(\theta_{13}^{EL}\) mixing is expected according to (104), where the tangent of this angle is proportional to the VEV ratio \(v_3/v_1\). Since \(v_1\) is proportional to the top quark mass, while \(v_3\) is proportional to the muon mass as seen in equations (111) and (117), then this mixing angle is suppressed by the ratio \(m_\mu/m_t\). If we increase the Yukawa ratio \(r_h\), larger mixing angles can be obtained. The plot in the right of figure 3 shows contour plots for different ratios \(r_h\) from 50 to 90. Regarding the other mixing angles, they can be obtained from equations (118) and (119) once \(\theta_{13}^{EL}\) and \(\theta_{25}^{ER}\) are fixed in accordance with the above allowed regions.

On the other hand, the branching ratio is also very sensitive to the masses of the extra fermions, \(m_E\) and \(m_J\). To explore this, in figure 4 we display the allowed contours for the heavy quarks and charged leptons compatible with the limits in figure 3 for \(r_h = 50\). We choose the two limits for the \(\theta_{25}^{ER}\) angle, at 0 and 0.8, for the central value \(\theta_{13}^{EL} = 0.08\). We see that large mass values of one fermion, require smaller masses of the other one, which is confined in an energy range attainable by the LHC. Thus, the anomaly in the meson decay is compatible with new physics at the TeV scale.

In the above discussion, we assume real mixing rotations for the mass eigenstate transformations of the fermions. As a result, all the neutral current couplings in tables 6 and 7 take real values. Now we want to explore the role of possible complex phases in the biunitary transformations. For the lepton couplings, we see in tables 6 and 7 that the mixing matrices contribute as the squared of their magnitudes \(|(V_L^E)_{ij}|^2\), so any complex phase associated to this sector does not have any effect in the branching ratios. For the quark couplings \(g_{Lm}^{(23)}\), we see that they can be complex in general. In particular, if we neglect the \(Z - Z'\) mixing angle, the only contribution to the \(b \to s\) transition is the first term of \(g_{L3}^{(23)}\), which may provide a relative complex phase between \((V_L^D)_{21}\) and \((V_L^D)_{13}\) which we call \(\phi\). Thus, in this more
Figure 5: Muon to electron branching ratio as function of the complex phase of $\tilde{g}_{L3}^{(23)}$ for $t_{25}^{E_R} = 0$ and $t_{13}^{E_L} = 0.04, 0.06, 0.08$, and 0.12. The shaded area is the reported bound.

general scenario, the new physics of the Wilson coefficients in (60) and (61) will have a global complex term $e^{i\phi}$ coming from the coupling $\tilde{g}_{L3}^{(23)}$. If $\phi = 0$, we reproduce the same physics as shown above. If $\phi = \pi$, we obtain again real coefficients, but with opposite relative signs. For $0 < \phi < \pi$, the Wilson coefficients will have new complex contributions. In particular, if we take the same parameters as in figure 3, we can evaluate the ratio R_K for different values of the complex phase. For example, figure 5 shows the branching ratio as a function of the phase for $r_h = 50$, $t_{25}^{E_R} = 0$ and $t_{13}^{E_L}$ between the limits 0.04 and 0.12. The shaded band is the allowed region according to the reported anomaly. We first see that there are allowed solutions for small complex phases, obtaining the largest value at $\phi = \pi/4$ when $t_{13}^{E_L} = 0.08$. Second, we note that for $\phi = \pi$, the curves lies outside the allowed region. Thus, the sign (or more general, the phase) of the new physics contribution is essential to determine the best scenario to explain the observed anomaly.

4 Model in the decoupling limit

The mixing couplings with the extra particles matter $\mathcal{E}^{1,2}$, $\mathcal{J}^{1,2}$ and \mathcal{T} occurs through the fermionic bidiunitary matrices $(V_{L,R})_{i\alpha}$, with i the flavor index for the ordinary matter and α for the new matter. In the above section, we highlighted the importance of the new fermions in the simple scenary with "natural" parametrization. As a result, relatively large mixing couplings (strong coupling limit) is required in order to fit the observed anomaly of the B_s decay. If we reduce the mixing couplings to zero, i.e., if the $i\alpha$ components of the mass matrices are ignored, then we obtain the decoupling limit, where only ordinary fermions participate in the decay process. In particular, according to (102) and (104), the leptonic 13 left-handed mixing tangent would diverge ($t_{13}^{E_L} \to \infty$) in this limit, while from (108) its 25 right-handed tangent would cancel out ($t_{25}^{E_R} = 0$). Figure 6 displays the branching ratio for different $t_{13}^{E_L}$ values and $t_{25}^{E_R} = 0$ as function of the Yukawa ratio r_h. We observe that for small $t_{13}^{E_L}$ values (below 1), there are solutions in the shaded region of the reported interval for R_K. However, for $t_{13}^{E_L} \geq 1$, the theoretical values of R_K increases above the allowed region. In the decoupling limit, with large θ_{13} angles, the branching ratio goes to the SM limit $R_K^{SM} = 1$. Thus, the model in this scenario does not account for the reported anomaly. However, we can relax the
natural parametrization to more general cases in order to obtain a feasible scenario in the decoupling limit. For that, we first reparametrize the neutral current couplings from tables 6 and 7 in the decoupling limit as:

\begin{align}
\tilde{g}_{L2}^{(23)} &= \frac{2g_X}{3g} \left(V_{L}^{P\dagger}\right)_{21} (V_{L}^{P})_{13} S_\theta, \\
\tilde{g}_{L3}^{(23)} &= \frac{1}{S_\theta} \tilde{g}_{L2}^{(23)}, \\
\tilde{g}_{L2}^{(aa)} &= -u_9 - \frac{2g_X}{g} \left| (V_{L}^{E})_{3a} \right|^2 S_\theta, \\
\tilde{g}_{L3}^{(aa)} &= u_9 S_\theta - \frac{2g_X}{g} \left| (V_{L}^{E})_{3a} \right|^2, \\
\tilde{g}_{R2}^{(aa)} &= u_{10} - u_9 + \frac{2g_X}{g} \left(-\frac{4}{3} + \left| (V_{R}^{E})_{2a} \right|^2 \right) S_\theta, \\
\tilde{g}_{R3}^{(aa)} &= (u_9 - u_{10}) S_\theta + \frac{2g_X}{g} \left(-\frac{4}{3} + \left| (V_{R}^{E})_{2a} \right|^2 \right),
\end{align}

(66)

with

\begin{equation}
u_9 = \frac{1 - 2S_W^2}{C_W}, \quad u_{10} = \frac{1}{C_W}.
\end{equation}

(67)

By ignoring the $Z - Z'$ mixing angle, the Wilson coefficients for new physics defined by (61) become:

\begin{align}
C_9^{NP(a)} &= \frac{g_X^2 (36\text{TeV})^2}{8M_{Z'}^2} K_9^{(a)}, \\
C_{10}^{NP(a)} &= \frac{g_X^2 (36\text{TeV})^2}{8M_{Z'}^2} K_{10}^{(a)},
\end{align}

(68)

where the dependency on the flavour is separated in the coefficients.
Figure 7: Allowed region for the muon and electron new physics deviation defined as equation (71) compatible with the experimental data. The central blue point is the SM limit

\[
K_9^{(a)} = \frac{4}{3} \left(V_L^D \right)_{21} \left(V_L^D \right)_{13} \left[\frac{4}{3} - |(V_R^E)_{2a}|^2 + |(V_L^E)_{3a}|^2 \right],
\]

\[
K_{10}^{(a)} = \frac{4}{3} \left(V_L^D \right)_{21} \left(V_L^D \right)_{13} \left[\frac{4}{3} - |(V_R^E)_{2a}|^2 - |(V_L^E)_{3a}|^2 \right].
\]

(69)

Thus, the theoretical muon to electron branching ratio in (64) become:

\[
R_K = \left| C_{SM}^9 + \frac{g_\chi^2 (36\text{TeV})^2}{8 M_{Z^2'}} K_9^{(\mu)} \right|^2 + \frac{4}{3} \left(V_L^D \right)_{21} \left(V_L^D \right)_{13} \left[\frac{4}{3} - |(V_R^E)_{2a}|^2 + |(V_L^E)_{3a}|^2 \right] + \left| C_{SM}^{10} + \frac{g_\chi^2 (36\text{TeV})^2}{8 M_{Z^2'}} K_{10}^{(\mu)} \right|^2.
\]

(70)

In order to compare with the experimental data, we define the new physics deviation as:

\[
\Delta C_a = \sqrt{\left| C_9^{SM} + C_9^{NP(a)} \right|^2 + \left| C_{10}^{SM} + C_{10}^{NP(a)} \right|^2} - \sqrt{\left| C_9^{SM} \right|^2 + \left| C_{10}^{SM} \right|^2},
\]

(71)

so, the ratio (70) become:

\[
R_K = \left(\sqrt{\left| C_9^{SM} \right|^2 + \left| C_{10}^{SM} \right|^2 + \Delta C_{\mu}} \right)^2.
\]

(72)

Taking into account that \(C_9^{SM} \approx -C_{10}^{SM} \approx 4.1 \), and the range for \(R_K \) in (65), we find in figure 7 the allowed region for the new physics deviations for muons and electrons, where the SM limit outside the region is shown. We must to compare the above region with the theoretical deviation, determined by the definition (71) and the parameters from (68). For convenience, we redefine some parameters. First, we define the effective flavour \(U(1)_X \) coupling constants as:
\[\left(g_X^{(a)} \right)^2 = g_\chi^2 K_9^{(a)}. \] (73)

Second, we define the two ratios:

\[P_a = \frac{C_{10}^{NP(a)}}{C_9^{NP(a)}}, \quad K_{21} = \frac{C_9^{NP(\mu)}}{C_9^{NP(e)}}. \] (74)

Thus, the new physics contribution for the ninth electron Wilson coefficient is:

\[C_9^{NP(e)} = \left(g_X^{(e)} \right)^2 (36\text{TeV})^2 \frac{1}{8M_{Z'}^2}, \] (75)

while all the remaining coefficients can be parametrized entirely as functions of this as:

\[C_9^{NP(\mu)} = K_{21} C_9^{NP(e)}, \quad C_{10}^{NP(e)} = P_e C_9^{NP(e)}, \quad C_{10}^{NP(\mu)} = P_\mu K_{21} C_9^{NP(e)}. \] (76)

reducing the space of parameters to \((P_e, P_\mu, K_{21}, C_9^{NP(e)})\) which we must to fit in order to obtain the allowed deviations according to figure 7. Before doing this, we will show that the model predicts a relation between the parameters \(P_e\) and \(P_\mu\). We see from (68) and the definition in (69) that:

\[\frac{1 - P_e}{1 - P_\mu} = K_{21} \left| \frac{(V_E^L)_{31}}{(V_E^L)_{32}} \right|^2, \] (77)

where \((V_E^L)_{3a}\) are the 31 and 32 components of the lepton left-handed matrix, that in the decoupling limit takes the form:

\[V_E^L = \begin{pmatrix} V_{SM}^E & 0 \\ 0 & V_{new}^E \end{pmatrix}, \] (78)

with:

\[V_{SM}^E = R(\theta_{23}^E)R(\theta_{13}^E)R(\theta_{12}^E), \] (79)

where each rotation matrix \(R(\theta)\) takes the same form as equations (95) for the quarks, and each angle is defined in (104). In particular, we find for the 31 and 32 components that:

\[(V_E^L)_{31} = -s_{12}^{E_L}, \quad (V_E^L)_{32} = c_{12}^{E_L}, \] (80)

so that (77) become:

\[\frac{1 - P_e}{1 - P_\mu} = K_{21} \left| t_{12}^{E_L} \right|^2. \] (81)
reproduce the reported data by properly fitting the other parameters, as shown in figure 9. In (b) and (c) solutions are found for $1.2 \leq K_{21} \leq 5$ and $0 < K_{21} \leq 0.9$, respectively. All the theoretical curves cross the SM limit (blue central point).

Figure 8: New physics deviations of the Wilson coefficients for $t_{12}^{EL} = 1$ and different values of P_e. In (a), there are not solutions through the allowed region for any value of K_{21}. In (b) and (c) solutions are found for $1.2 \leq K_{21} \leq 5$ and $0 < K_{21} \leq 0.9$, respectively. All the theoretical curves cross the SM limit (blue central point).

Figure 9: New physics deviations of the Wilson coefficients for $P_e = -1$ and (a) $K_{21} = 0.1$, (b) 1 and (c) 10. The curves are for different ranges of t_{12}^{EL}.

This condition is equivalent to:

$$
\left(C^N_{9} \right) \left(C^N_{9} - C^N_{10} \right) \left(C^N_{9} - C^N_{10} \right) = \left| t_{12}^{EL} \right|^2 .
$$

(82)

According to (118), the limit $t_{12}^{EL} = 1$ is assumed in the natural parametrization. If in addition $P_e = -1$, we obtain for the new physics the same SM relation between the Wilson coefficients: $C^N_{9} = -C^N_{10}$. However, we did not find any allowed solution on this situation, as shown in graph (a) of figure 8, where the curves are the theoretical predictions for K_{21} ranging from 0 to very large values ($K_{21} \rightarrow \infty$). However, if we deviate from this scenario by choosing other values for P_e, we may fit the parameters into the anomaly region in the decoupling limit. For example, the graph (b) in the same figure displays the theoretical solutions for $P_e = -5$ where solutions into the allowed region are found in the interval $K_{21} = [1.2, 5]$. From the plot, we can estimate the bound $\Delta C_e \geq -2.6$ for the electron, while for the muon we obtain the allowed interval $-3.2 \leq \Delta C_\mu \leq -2.9$ when the former obtains its minimum value. Graph (c) shows the solutions for $P_e = 1$ for the interval $0 < K_{21} < 0.9$. Since K_{21} and t_{12}^{EL} are not zero, according to (82), this case also implies that $P_\mu = 1$. Thus, we found scenarios where $C^N_{9} = C^N_{10}$ for both $a = e$ and μ. In the limit $K_{21} \rightarrow 0$, corrections for the muon ΔC_μ does not exists, while for electron the allowed range according to graph (c) is $0.5 \leq \Delta C_e \leq 1.3$.

We also may explore scenarios with $t_{12}^{EL} \neq 1$. In particular, the case with $P_e = -1$ can reproduce the reported data by properly fitting the other parameters, as shown in figure 9. In
Figure 10: Figure (a) shows allowed regions in the \((C_{9}^{NP(e)}, K_{21})\) plane for \(P_{e} = 0.2, 0.5, 1, 2, 5\) and 10. For reference, the dashed horizontal line is the SM limit \(C_{9}^{SM} = 4.1\). The plot (b) is the effective coupling as function of the \(Z'\) boson mass according to regions in (a) for \(K_{21} = 0\). Figure (c) is for \(K_{21} = 0.53\).

In graph (a), we obtain solutions for the small ratio \(K_{21} = 0.1\), and in the range \(0 \leq t_{12}^{E_{L}} \leq 0.72\). Above this limit, the curves falls outside the allowed region, and \(\Delta C_{e} = 0\) in the limit \(t_{12}^{E_{L}} = 0\). We also see that the curves exhibits the bound \(\Delta C_{\mu} \geq -1.8\). In the case with \(K_{21} = 1\), graph (b) shows a larger range for the deviations, while allowed values extends to the bound \(t_{12}^{E_{L}} < 1\). For the large value \(K_{21} = 10\), the curves are shrunk again, as shown in graph (c), where \(0 \leq t_{12}^{E_{L}} \leq 0.51\).

On the other hand, the ratio \(K_{21}\) also represents the relative coupling of \(e\) and \(\mu\) to the \(Z'\) boson. Taking into account the equations (68) and the definition (73), we obtain that:

\[
K_{21} = \frac{C_{9}^{NP(\mu)}}{C_{9}^{NP(e)}} = \left(\frac{g_{X}^{(\mu)}}{g_{X}^{(e)}}\right)^{2},
\]

while the Wilson coefficient \(C_{9}^{NP(e)}\) in equation (75) provides a relation between the effective electron coupling constant \(g_{X}^{(e)}\) and the \(Z'\) mass. For example, the plot (a) in figure 10 shows the allowed regions of the electron Wilson coefficient for new physics as function of the ratio \(K_{21} = C_{9}^{NP(\mu)} / C_{9}^{NP(e)}\), with \(t_{12}^{E_{L}} = 1\) and different values of \(P_{e}: 0.2, 0.5, 1, 2, 5\) and 10. The dashed horizontal line is the SM limit \(C_{9}^{SM} = 4.1\), where we can see that corrections can be smaller, at the same order or, eventually larger than the SM prediction. We see that \(K_{21} < 1\), which means that solutions in this scenario are found if electrons couple stronger to the \(Z'\) boson than muons. Second, if \(C_{9}^{NP(e)}\) increases, then \(P_{e}\) decreases in accordance with the definition \(P_{e} = C_{10}^{NP(e)} / C_{9}^{NP(e)}\). So, we see in the plot that the lowest bounds are large.
for small values of P_e. Taking into account these bounds, the plot (b) displays the allowed
region for the effective electron coupling $g_X^{(e)}$ and the Z' mass for a muon-phobic scenario with
$K_{21} = 0$ ($g_X^{(\mu)} = 0$). The plot (c) shows the regions for $K_{21} = 0.53$, just at the upper limit of
$P_e = 10$ as observed in plot (a), and described by the green dashed line in (c). The conversion
to the muon coupling is obtained by doing $g_X^{(e)} \times \sqrt{0.53}$, according to (83). In general, we see
that large ratios P_e favour regions including small gauge couplings constants, which increase
as the Z' boson become heavier.

5 Conclusions

Observational facts as the fermion mass hierarchies, mixing schemes, oscillation of neutrinos
and experimental anomalies as the B meson decay may be manifestations of new physics
beyond the SM. Motivated initially by the fermion mass hierarchy problem, we propose a
non-universal $U(1)'$ extension with three Higgs doublets that may reproduce masses and
mixing schemes for quarks, charged and neutral leptons. In addition to new charged and
neutral Higgs particles, the model introduces other particles from the following conditions:

1. Due to the new abelian gauge symmetry, a second neutral gauge boson Z' is naturally
introduced.

2. In order to break the $U(1)'$ symmetry and provide mass to the Z' boson, a new Higgs
singlet with large VEV is added.

3. Also, the new Z' gauge boson induces quiral anomalies, which may spoil the renor-
malization of the model. In order to restore the cancellation of these anomalies, we
must assign suitable $U(1)'$ charges to the fermions. This assignation is done to obtain
flavour non-universal interactions for quarks and leptons, which requires extra quarks
and charged leptons.

The model exhibits lepton universality violation that may explain the B meson decay
anomaly into electron and muon pairs reported by the LHCb collaboration. This observable
can test the new couplings of the model, in particular, the anomaly is highly sensitive to
the new quark and lepton content of the model through their couplings with the Higgs sector. They participate in the meson decay indirectly through their mixing couplings with the
ordinary quarks b and s, and the charged leptons e and μ. Since these mixings occur in a
non-universal form, then the anomaly can be explained and fitted for new physics at the TeV
scale, attainable to be proved in the LHC.

Although we choose an specific scheme to parameterize the mass matrices for fermions
and the mixing angles, they are suppressed or enhanced by ratios of VEVs which we preserve
in the natural scheme. Specifically, the VEV of the first Higgs doublet determine the scale of
the top quark, i.e., $v_1/\sqrt{2} \sim 173$ GeV. The second VEV gives masses to the quark b and the
lepton τ at $v_2/\sqrt{2} \sim 3$ GeV. Finally, the third VEV is of the order of the quark s and lepton
μ mass, at $v_3/\sqrt{2} \sim 0.1$ GeV. Thus, we expect mixing angles with values of the order of the
ratios of the phenomenological fermions measured experimentally independent of the choosen
scheme to address the Yukawa free parameters.

A Block Diagonalization

Let us take a generic matrix with arbitrary dimension of the form:

$$M^2 = \begin{pmatrix} A & C \\ C^T & D \end{pmatrix},$$

(84)
with \(A, D \) and \(C \) sub-matrices whose elements obey the hierarchy
\[
A \ll C \ll D. \tag{85}
\]
The matrix (84), as shown in reference [17], can be block diagonalized approximately by a unitary rotation of the form:
\[
V = \begin{pmatrix} I & F \\ -F^T & I \end{pmatrix}, \tag{86}
\]
where \(I \) is an identity matrix, and \(F \) a small sub-rotation with \(F \ll 1 \). Keeping only up to linear terms on \(F \), the rotation gives:
\[
V^T M^2 V = \begin{pmatrix} A - CF^T - F C^T & C + AF - FD \\ C^T + F^T A - D F^T & D + C^T F + F^T C \end{pmatrix}, \tag{87}
\]
which, by definition, must lead us to a diagonal block form
\[
m^2 = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, \tag{88}
\]
with \(a \) and \(d \) non-diagonal matrices, and 0 the null matrix. By matching the upper right non-diagonal block in (87) and (88), we obtain that \(C + AF - FD = 0 \). Taking into account the hierarchy in (85), we may neglect the term with \(A \), finding the following approximate solution:
\[
F \approx CD^{-1}. \tag{89}
\]
On the other hand, if we match the diagonal blocks in (87) and (88), and using the solution (89), we can obtain the form of the submatrices \(a \) and \(b \) in terms of the original blocks \(A, C \) and \(D \). We obtain at dominant order that:
\[
a \approx A - CD^{-1}C^T \\
b \approx D. \tag{90}
\]
The above matrices can be diagonalized independently.

B Parametrization of the biunitary matrix transformations

In this appendix we obtain the parameters of the biunitary transformations that rotate the flavour fermion basis into mass basis.

Up sector

From the Yukawa Lagrangian [3], we obtain the following mass matrix for the up-type quark sector:
\[
M_U = \frac{1}{\sqrt{2}} \begin{pmatrix} h_{11}^{11} v_3 & h_{12}^{12} v_2 & h_{13}^{13} v_3 & h_{12}^{21} v_2 \\ 0 & h_{22}^{22} v_1 & 0 & h_{21}^{21} v_1 \\ h_{13}^{13} v_1 & 0 & h_{13}^{33} v_1 & 0 \\ 0 & g_{\chi u}^2 v_3 & 0 & g_{\chi R}^2 v_3 \end{pmatrix}, \tag{91}
\]
which diagonalizes through the biunitary matrices \(V_{L(R)}^U \). In particular, as shown in reference [14], the left-handed matrix can be expressed as the product of two mixing matrices of the form:
\[V_L^U = \begin{pmatrix} 1 & \Theta_L^U \end{pmatrix} \begin{pmatrix} V_{SM}^U & 0 \\ 0 & V_{new}^U \end{pmatrix}, \]
(92)

where \(\Theta_L^U \) is a see-saw matrix that block-diagonalize the mass matrix into one mass matrix of the ordinary SM quarks and a heavy matrix that mixes the new quarks, while \(V_{SM}^U \) and \(V_{new}^U \) diagonalize each of these matrices. For simplicity, we assume diagonal exotic matrices, so that \(V_{new}^U = 1 \). The see-saw matrix is:

\[
\Theta_L^U = \begin{pmatrix}
\frac{h_{12}^{1T}g_{\chi T} + h_{12}^{2u}g_{\chi T}v_2}{(g_{\chi T})^2 + (g_{\chi T}^2)^2 v_x}

\frac{h_{12}^{1u}g_{\chi T} + h_{12}^{1u}g_{\chi T}v_1}{(g_{\chi T})^2 + (g_{\chi T}^2)^2 v_x}

0
\end{pmatrix},
\]
(93)

and the SM matrix has the form:

\[V_{SM}^U = R_{23}(\theta_{23}^{U})R_{13}(\theta_{13}^{U})R_{12}(\theta_{12}^{U}), \]
(94)

with

\[
R_{12}(\theta_{12}^{U}) = \begin{pmatrix}
c_{12}^{U} & s_{12}^{U} & 0 \\
s_{12}^{U} & c_{12}^{U} & 0 \\
0 & 0 & 1
\end{pmatrix},
\]
(95a)

\[
R_{13}(\theta_{13}^{U}) = \begin{pmatrix}
c_{13}^{U} & 0 & s_{13}^{U} \\
0 & 1 & 0 \\
-s_{13}^{U} & 0 & c_{13}^{U}
\end{pmatrix},
\]
(95b)

\[
R_{23}(\theta_{23}^{U}) = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23}^{U} & s_{23}^{U} \\
0 & -s_{23}^{U} & c_{23}^{U}
\end{pmatrix},
\]
(95c)

and \(c_{ij}^U = \cos \theta_{ij}^U \) and \(s_{ij}^U = \sin \theta_{ij}^U \). The angles \(\theta_{ij}^U \) are specified by their tangents \(t_{ij}^U = \tan \theta_{ij}^U \), which are \([14]\):

\[
t_{12}^U = \frac{h_{22}^{1u}g_{\chi T} - h_{22}^{2u}g_{\chi T}v_2}{h_{11}^{2u}g_{\chi T} - h_{11}^{2u}g_{\chi T}v_1},
\]
\[
t_{13}^U = \frac{h_{33}^{1u}h_{11}^{3u} + h_{33}^{1u}h_{11}^{3u}v_3}{(h_{11}^{3u})^2 + (h_{11}^{3u})^2 v_1},
\]
\[
t_{23}^U = 0.
\]

Finally, the squared mass eigenvalues are:
\[
\begin{align*}
 m_u^2 &= \frac{(h_{3u}^1 h_{1u}^{33} - h_{3u}^{13} h_{1u}^{31})^2 v_3^2}{(h_{1u}^{33})^2 + (h_{1u}^{31})^2}, \\
 m_c^2 &= \frac{(h_{1c}^2 g_{X\tau} - h_{1\tau}^2 g_{X\mu}_c)^2 v_1^2}{(g_{X\tau})^2 + (g_{X\mu}_c)^2}, \\
 m_t^2 &= \frac{[(h_{1t}^{33})^2 + (h_{1t}^{31})^2] v_1^2}{2}, \\
 m_T^2 &= \frac{[(g_{X\tau})^2 + (g_{X\mu}_c)^2] v_2^2}{2}.
\end{align*}
\] (97)

Down sector

The mass matrix of the down-type quarks is:

\[
M_D = \frac{1}{\sqrt{2}} \begin{pmatrix}
 \Sigma_{d11} & \Sigma_{d12} & \Sigma_{d13} & h_{11}^{11} v_1 & h_{11}^{12} v_1 \\
 h_{22}^{11} v_3 & h_{22}^{12} v_3 & h_{22}^{13} v_3 & \Sigma_{d21} & \Sigma_{d22} & \Sigma_{d23} & h_{12}^{11} v_1 & h_{12}^{12} v_1 \\
 0 & 0 & 0 & g_{X\tau} v_1 & g_{X\tau} v_1
\end{pmatrix}
\] (98)

where \(\Sigma_{d1k}\) are one-loop mass components. The see-saw matrix is:

\[
\Theta_D^{\dagger} = \begin{pmatrix}
 h_{11}^{11} v_1 & h_{11}^{12} v_1 \\
 h_{22}^{11} v_3 & h_{22}^{12} v_3 & h_{22}^{13} v_3 & \Sigma_{d21} & \Sigma_{d22} & \Sigma_{d23} & h_{12}^{11} v_1 & h_{12}^{12} v_1 \\
 0 & 0 & 0 & g_{X\tau} v_1 & g_{X\tau} v_1
\end{pmatrix}
\] (99)

and the SM angles of \(V_{L,B}^D\) are given by

\[
\begin{align*}
 t_{12}^D &= \frac{\Sigma_{d11} h_{22}^{31} + \Sigma_{d12} h_{22}^{32} + \Sigma_{d13} h_{22}^{33} + \Sigma_{d13} h_{22}^{31} 1}{(h_{22}^{31})^2 + (h_{22}^{32})^2 + (h_{22}^{33})^2 v_3}, \\
 t_{13}^D &= \frac{\Sigma_{d11} h_{22}^{31} + \Sigma_{d12} h_{22}^{32} + \Sigma_{d13} h_{22}^{33} + \Sigma_{d13} h_{22}^{31} 1}{(h_{22}^{31})^2 + (h_{22}^{32})^2 + (h_{22}^{33})^2 v_2}, \\
 t_{23}^D &= \frac{h_{22}^{31} h_{22}^{31} + h_{22}^{32} h_{22}^{32} + h_{22}^{33} h_{22}^{33}}{(h_{22}^{31})^2 + (h_{22}^{32})^2 + (h_{22}^{33})^2 v_3},
\end{align*}
\] (100)

while the mass eigenvalues are:
The mass values are:

\[m_d^2 = \left[(\Sigma_d^{11} h_{3d}^{22} - \Sigma_d^{12} h_{3d}^{21}) h_{3d}^{33} + (\Sigma_d^{13} h_{3d}^{23} - \Sigma_d^{11} h_{3d}^{23}) h_{3d}^{32} + \Sigma_d^{12} h_{3d}^{22} - \Sigma_d^{13} h_{3d}^{23} \right]^2, \]

\[m_s^2 = \left[(h_{3d}^{21})^2 + (h_{3d}^{22})^2 \right] (h_{3d}^{33})^2 + \left[(h_{3d}^{31})^2 + (h_{3d}^{32})^2 \right] (h_{3d}^{22})^2 + \left[(h_{3d}^{33})^2 + (h_{3d}^{32})^2 \right] (h_{3d}^{21})^2, \]

\[m_b^2 = \left[(h_{2d}^{23})^2 + (h_{2d}^{32})^2 + (h_{2d}^{31})^2 \right] \frac{v_3^2}{2}, \]

\[m_{J_1} = (g_{\chi e}^1)^2 \frac{v_3^2}{2}, \quad m_{J_2} = (g_{\chi e}^2)^2 \frac{v_3^2}{2}. \]

(101)

Charged lepton sector: left-handed

The mass matrix of the charged leptons is:

\[\mathbb{M}_E = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & h_{3e}^{\mu} v_3 & h_{1e}^{\mu} v_1 & 0 \\ 0 & h_{3e}^{\mu} v_3 & h_{1e}^{\mu} v_1 & 0 \\ h_{2e}^{\nu} v_3 & 0 & h_{2e}^{\nu} v_2 & 0 \\ g_{\chi e}^{\nu} v_\chi & 0 & g_{\chi e}^{\nu} v_\chi & 0 \\ 0 & 0 & 0 & g_{\chi e}^{\nu} v_\chi \end{pmatrix}, \]

(102)

with left-handed matrix rotations:

\[\Theta_{L}^{E\dagger} = \begin{pmatrix} h_{1e}^{\ell} g_{\chi e}^{\ell} v_1 v_\chi & h_{3e}^{\mu} g_{\chi e}^{\mu} v_3 v_\chi \\ 2m_{E}^2 & 2m_{E}^2 & 2m_{E}^2 & 2m_{E}^2 \\ h_{2e}^{\nu} g_{\chi e}^{\nu} v_3 v_\chi & 0 & 0 & 0 \\ 2m_{E}^2 & 2m_{E}^2 & 2m_{E}^2 & 2m_{E}^2 \end{pmatrix}, \]

(103)

and

\[t_{Ei}^{\ell} \approx \frac{h_{1e}^{\ell}}{h_{1e}^{\mu}}, \]

\[t_{Ei}^{\mu} \approx \frac{g_{\chi e}^{\nu} h_{3e}^{\mu} v_3}{g_{\chi e}^{\nu} h_{1e}^{\nu} v_1}, \]

(104)

The mass values are:
\[m_e^2 = \frac{\left(h_{3e} \mu_{1e}^2 - h_{5e} \mu_{1e} h_{5e}^* \right)^2}{v_3^2}, \]
\[m_\mu^2 = \frac{\left(h_{3e} \mu_{1e}^2 + h_{5e} \mu_{1e} h_{5e}^* \right)^2}{v_3^2} + \frac{(h_{5e}^2)^2}{2}, \]
\[m_\tau^2 = \frac{(h_{2e}^2)^2 v_3^2}{2}, \]
\[m_{E1}^2 = \left(g_{1e}^2 \right)^2 + \left(g_{1e} \right)^2 \frac{v_3^2}{2}, \]
\[m_{E2}^2 = \left(g_{2e}^2 \right)^2 + \left(g_{2e} \right)^2 \frac{v_3^2}{2}. \]

Charged lepton sector: right-handed

In addition, we need the rotations for the right-handed component of the charged leptons. To obtain these parameters, we must construct the squared mass matrix \(M^E_R = M^E_L M^E_E \), which is diagonalized by the right-handed transformation \(V^E_R \). In this case, the rotation matrix is expressed as:

\[V^E_R = \begin{pmatrix} E_{R11}^E & E_{R12}^E & E_{R21}^E & E_{R22}^E \end{pmatrix} \begin{pmatrix} V_{SM}^E & 0 & 0 & V_{new}^E \end{pmatrix}, \]

with:

\[E_{R11}^E = \frac{c_{14}^E}{c_{25}^E} 0 0 \]
\[E_{R12}^E = \frac{s_{14}^E}{s_{25}^E} 0 \]
\[E_{R21}^E = \frac{-c_{34}^E s_{14}^E}{c_{34}^E} 0 \]
\[E_{R22}^E = \frac{c_{34}^E c_{14}^E}{c_{25}^E} 0 \]

where the tangent of the mixing angles are:

\[t_{25}^E = \frac{g_{2e}^e}{g_{2e} \mu}, \]
\[t_{34}^E = \frac{g_{1e}^e}{g_{1e} \mu}, \]
\[t_{14}^E = \frac{g_{2e}^e}{\sqrt{\left(g_{1e}^e \right)^2 + \left(g_{1e} \right)^2}}, \]
while the SM mixing angles are:

\[t^{E_1}_{12} = \frac{g_{\chi e}}{\sqrt{2}} \left(h_{1e}^1 \right)^2 + \left(h_{1e}^\mu \right)^2 \]

\[t^{E_2}_{23} = \frac{g_{\chi e} h_{2e}^{\tau \tau}}{\sqrt{2}} \left(h_{1e}^1 \right)^2 + \left(h_{1e}^\mu \right)^2 \frac{v_2^2}{v_3^2} \]

\[t^{E_3}_{13} = \frac{g_{\chi e} h_{2e}^{\tau \tau}}{\sqrt{2}} \left(h_{1e}^1 \right)^2 + \left(h_{1e}^\mu \right)^2 \frac{v_2 v_3}{v_1^2} \]

(109)

Natural parametrization

In order to simplify the analysis, we separate the Yukawa interactions in three parts. First, the couplings among the ordinary SM fermions. Second, the interactions among the new particle content. Finally, the mixing couplings of the ordinary and the new particles. We assume a "natural" limit, where each part couple independently with the same strength. As a consequence, the mass matrices shares Yukawa couplings in some components. For example, in the up-type sector, by calling

\[h_{ij} \equiv h_{u}, \quad g_{\chi T} = g_{\chi T}, \quad h_{ij}^{\tau \tau} = h_{ij}^{\tau \tau} \quad \text{and} \quad g_{\chi u} = g_{\chi u}, \]

the mass matrix in (91) become:

\[M_U = \frac{1}{\sqrt{2}} \begin{pmatrix} h_u v_3 & h_u v_2 & h_u v_1 & h_\tau v_2 \\ 0 & h_u v_1 & 0 & h_\tau v_1 \\ 0 & 0 & h_u v_1 & 0 \\ 0 & 0 & 0 & g_{\mu} v_2 \end{pmatrix}. \]

(110)

In particular, in this limit, the mass of the top quark is:

\[m_t^2 = h_{u}^2 v_1^2, \]

(111)

from where we obtain the VEV of the first Higgs triplet, \(v_1 = m_t / h_u \). In the same form, the down-type mass matrix in (98) is written as

\[M_D = \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_d^{11} & \Sigma_d^{12} & \Sigma_d^{13} & h_\tau v_1 \\ h_d v_3 & h_d v_2 & h_d v_3 & h_\tau v_2 \\ h_d v_2 & h_d v_2 & h_d v_3 & h_\tau v_3 \end{pmatrix}. \]

(112)

In this case, the masses of the quarks are:

\[m_d^2 \sim \Sigma_d, \quad m_s^2 = \frac{3}{2} h_d v_2^2, \quad m_b^2 = \left(\frac{1}{2} g_{\mu} v_2 \right)^2 \]

(113)
from where we obtain the VEVs for the other two Higgs triplets and the singlet as functions
of the quarks masses: $v_2 = \sqrt{2} m_b / \sqrt{3} h_d$, $v_3 = m_s / h_d$ and $v_\chi = \sqrt{2} m_J / g_J$. With this scheme,
the mixing angles (99) and (100) can be parameterized as:

$$
\Theta_L^{D\dagger} = \frac{h_J}{h_u} \begin{pmatrix}
\frac{1}{\sqrt{2}} m_t & \frac{1}{\sqrt{2}} m_t \\
\frac{1}{\sqrt{3}} m_b h_u & \frac{1}{\sqrt{3}} m_b h_u \\
\frac{1}{\sqrt{3}} m_s h_u & \frac{1}{\sqrt{3}} m_s h_u \\
\frac{1}{\sqrt{3}} m_J h_d & \frac{1}{\sqrt{3}} m_J h_d
\end{pmatrix},
$$

(114)

and

$$
t_{12}^D = \frac{m_d}{m_s}, \quad t_{13}^D = \frac{\sqrt{3} m_d}{\sqrt{2} m_b}, \quad t_{25}^D = \frac{\sqrt{3} m_s}{\sqrt{2} m_b}.
$$

(115)

We see that the mixing matrix (114) depends on the ratio $r_J = h_J / h_u$.

Regarding the lepton sector, the mass matrix (102) simplify to:

$$
M_E = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & h_e v_3 & 0 & h_\xi v_1 & 0 \\
0 & h_e v_3 & 0 & h_\xi v_1 & 0 \\
h_e v_2 & 0 & h_e v_2 & 0 & 0 \\
g_e v_\chi & 0 & 0 & g_\xi v_\chi & 0 \\
0 & g_e v_\chi & 0 & 0 & g_\xi v_\chi
\end{pmatrix},
$$

(116)

from where the charged lepton masses are expressed as:

$$
m_e^2 \approx 0, \\
m_\mu^2 = \frac{3}{2} h_e^2 v_3^2, \\
m_\tau^2 = \frac{1}{2} h_e^2 v_2^2, \\
m_E^2 = \left[(g_e)^2 + (g_\xi)^2 \right] \frac{v_\chi^2}{2}.
$$

(117)

Thus, the VEVs, in this case, can be written in terms of the lepton couplings as $v_2 = \sqrt{2} m_\tau / h_e$, $v_3 = \sqrt{2} m_\mu / \sqrt{3} h_e$ and $v_\chi = \sqrt{2} m_E / \sqrt{(g_e)^2 + (g_\xi)^2}$.

For the mixing angles, we choose two of them as free parameters. For the left-handed angles in (104), we choose $t_{13}^{E\dagger}$ as a free parameter, while for the right-handed angles in (108) we take $t_{25}^{E\dagger}$. Thus, with the natural parametrization, the other mixing angles are:
\[t_{E_{12}}^L \approx 1, \]
\[t_{E_{23}}^L \approx -\frac{6m_{\tau}^2}{m_{\mu}^2} \left(t_{E_{13}}^L \right)^3, \]
\[t_{E_{12}}^R \approx -\frac{1}{t_{E_{13}}^L}, \]
\[t_{E_{23}}^R \approx \frac{m_{\mu}}{\sqrt{3}m_{\tau}} t_{E_{13}}^L, \]
\[t_{E_{13}}^R \approx \frac{3m_{\tau}}{2m_{\mu}} \left(t_{E_{13}}^L \right)^2, \]
\[t_{E_{34}}^R \approx t_{E_{25}}^R, \]
\[t_{E_{14}}^R \approx s_{E_{25}}^R, \] (118)

while the mixing matrix (103) takes the form:

\[
\Theta_{E_L}^{\dagger} = \frac{h_{\xi}}{h_u} \left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \frac{m_{\tau}}{m_{E}} c_{E_{25}} & m_{\mu} & h_{\xi} \\
\frac{1}{\sqrt{2}} \frac{m_{\tau}}{m_{E}} c_{E_{25}} & m_{\mu} & h_{\xi} \\
\frac{m_{\mu}}{m_{E}} s_{E_{25}} & s_{E_{25}} & 0
\end{array} \right),
\] (119)

We also see that the above matrix is function of the ratio \(r_{\xi} = h_{\xi}/h_u \).

Putting all the above matrices together, we will obtain each component of the original bi-unitary transformations \(V_{L}^{D}, V_{L}^{E} \) and \(V_{R}^{E} \). In particular, the neutral current couplings for electrons depends on \((V_{L}^{E})_{31,41,51} \) and \((V_{R}^{E})_{21,41,51} \), while for muons we need \((V_{L}^{E})_{32,42,52} \) and \((V_{R}^{E})_{22,42,52} \). They are:

\[
(V_{L}^{E})_{51,52} = 0
\]
\[
(V_{L}^{E})_{31,32} = -\frac{t_{E_{13}}^L}{\sqrt{2} \left(1 + 36x^4 \left(t_{E_{13}}^L \right)^6 \right)} \left[E_{13} \pm 6x^2 \left(t_{E_{13}}^L \right)^2 \right]
\]
\[
(V_{L}^{E})_{41,42} = -\frac{1}{2} y r_{E} E_{25} \left[s_{E_{13}}^L + \frac{1 + 6x^2 c_{E_{13}} \left(t_{E_{13}}^L \right)^4}{\sqrt{1 + 36x^4 \left(t_{E_{13}}^L \right)^6}} \right],
\] (120)

where \(x = m_{\tau}/m_{\mu} \) and \(y = m_{\ell}/m_{E} \), and:
\begin{align}
(V_R^E)_{21} &= -t_{25}^{E_R} (V_R^E)_{51} = \frac{c_{13} c_{25}^{E_R}}{\sqrt{1 + \frac{1}{\sqrt{3}} (t_{13}^{E_L})^2}} \left[1 - \frac{\sqrt{3} (t_{13}^{E_L})^4}{2 \sqrt{1 + \frac{9}{4} x^2 (t_{13}^{E_L})^4}} \right], \\
(V_R^E)_{22} &= -t_{25}^{E_R} (V_R^E)_{52} = \frac{c_{13} c_{25}^{E_R}}{\sqrt{1 + \frac{1}{\sqrt{3}} (t_{13}^{E_L})^2}} \left[1 + \frac{\sqrt{3} (t_{13}^{E_L})^2}{2 \sqrt{1 + \frac{9}{4} x^2 (t_{13}^{E_L})^4}} \right], \\
(V_R^E)_{41} &= \frac{s_{13} c_{25}^{E_R}}{\sqrt{3x}} \left[1 + \frac{\frac{3}{\sqrt{3}} (t_{13}^{E_L})^2 s_{25}^{E_R}}{2 \sqrt{1 + \frac{9}{4} x^2 (t_{13}^{E_L})^4}} \right] \left[1 - \frac{1}{\sqrt{1 + \frac{1}{\sqrt{3}} (t_{13}^{E_L})^2}} - \frac{c_{25}^{E_R}}{1 + \frac{\sqrt{3} (t_{13}^{E_L})^2}{\sqrt{1 + \frac{9}{4} x^2 (t_{13}^{E_L})^4}}} \right], \\
(V_R^E)_{42} &= \frac{s_{13} c_{25}^{E_R} t_{13}^{E_L}}{\sqrt{3x}} \left[1 + \frac{\frac{3}{\sqrt{3}} (t_{13}^{E_L})^2 s_{25}^{E_R}}{2 \sqrt{1 + \frac{9}{4} x^2 (t_{13}^{E_L})^4}} \right] \left[\frac{-1}{\sqrt{1 + \frac{1}{\sqrt{3}} (t_{13}^{E_L})^2}} + \frac{c_{25}^{E_R}}{1 + \frac{\sqrt{3} (t_{13}^{E_L})^2}{\sqrt{1 + \frac{9}{4} x^2 (t_{13}^{E_L})^4}}} \right].
\end{align}

(121)

Acknowledgment

This work was supported by El Patrimonio Autonomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas programme of COLCIENCIAS in Colombia. RM thanks to professor Germán Valencia for the kindly hospitality at Monash University and his useful comments.

References

[1] S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Elementary Particle Theory: Relativistic Groups and Analyticity (Nobel Symposium No. 8), edited by N. Svartholm (Almqvist and Wiksell, Stockholm, 1968), p. 367.

[2] H. Georgi, The flavor problem, Phys. Lett. B169, 231 (1986).

[3] T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); J. Schechter and J. W. Valle, Phys. Rev. D22, 2227 (1980); R. N. Mohapatra, Phys. Rev. Lett. 56, 561 (1986); R. N. Mohapatra and J. W. Valle, Phys. Rev. D34, 1642 (1986); E. Cataño, R. Martinez, and F. Ochoa, Phys. Rev. D86, 073015 (2012); A. G. Dias, C. d. S. Pires, P. R. da Silva, and A. Sampieri, Phys. Rev. D86, 035007 (2012).
[4] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111, (2013) 191801; J. High Energy Phys. 06 (2014) 133; J. High Energy Phys. 07 (2013) 084; J. High Energy Phys. 04 (2015) 064.

[5] J. Matias, F. Mescia, M. Ramon and J. Virto, J. High Energy Phys. 04 (2012) 104; S. Descotes-Genon, J. Matias and J. Virto, Phys. Rev. D 88, 074002 (2013); W. Altmannshofer and D. M. Straub, arXiv:1308.1501 [hep-ph]; T. Hurth and F. Mahmoudi, JHEP 1404 (2014) 097; F. Mahmoudi, S. Neshatpour and J. Virto, Eur. Phys. J. C 74 (2014) 6, 2927; T. Hurth, F. Mahmoudi and S. Neshatpour, J. High Energy Phys. 12 (2014) 053, arXiv:1410.4545 [hep-ph]; S. Jager and J. Martin Camalich, J. High Energy Phys. 05 (2013) 043; G. Hiller and M. Schmaltz, Phys. Rev. D 90 (2014) 054014; A. J. Buras, F. De Fazio and J. Girrbach, J. High Energy Phys. 02 (2014) 112; A. J. Buras, F. De Fazio and J. Girrbach-Noe, J. High Energy Phys. 08 (2014) 039; R. Gauld, F. Goertz and U. Haisch, J. High Energy Phys. 01 (2014) 069; R. Gauld, F. Goertz and U. Haisch, Phys. Rev. D 89 (2014) 015005; E. Lunghi and J. Matias, J. High Energy Phys. 0704 (2007) 058; W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, J. High Energy Phys. 01 (2009) 019; Andreas Crivellin, Giancarlo D’Ambrosio, Julian Heeck, Phys. Rev. Lett. 114 (2015) 151801; Phys. Rev. D 91 (2015), 075006; Andreas Crivellin, Lars Hofer, Joaquim Matias, Ulrich Nierste, Stefan Pokorski, Janusz Rosiek, Phys. Rev. D 92 (2015) 054013; Andreas Crivellin, Javier Fuentes-Martin, Adimr Greljo, Gino Isidori, Phys. Lett. B 766 (2017) 77.

[6] Kingman Cheung, Takaaki Nomura, Hiroshi Okada, Phys. Rev. D94 (2016) 115024; Rodrigo Alonso, Peter Cox, Chengcheng Han, Tsutomu T. Yanagida, Phys. Lett. B 774 (2017) 643.

[7] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 113, 151601 (2014) [arXiv:1406.6482 [hep-ex]].

[8] H. Fritzsch, Phys. Lett. B73, 317 (1978); P. Ramond, R. Roberts, and G. G. Ross, Nucl. Phys. B406, 19 (1993) arXiv:hep-ph/9303320 [hep-ph]; G. Branco, D. Emmanuel-Costa, and R. Gonzalez Felipe, Phys. Lett. B477, 147 (2000) arXiv:hep-ph/9911418 [hep-ph]; R. Roberts, A. Romanino, G. G. Ross, and L. Velasco-Sevilla, Nucl. Phys. B615, 358 (2001) arXiv:hep-ph/0104088 [hep-ph]; H. Fritzsch and Z.-z. Xing, Phys. Lett. B555, 63 (2003) arXiv:hep-ph/0212195 [hep-ph]; M. Gupta and G. Ahuja, Int. Jour. Mod. Phys. A27, 1230033 (2012) arXiv:1302.4823 [hep-ph]].

[9] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277 (1979); S. F. King and G. G. Ross, Phys. Lett. B 520, 243 (2001); 574, 239 (2003); S. F. King, J. High Energy Phys. 08, (2005) 105; A.H. Galeana, R. E. Martinez, W. A. Ponce, and A. Zepeda, Phys. Rev. D 44, 2166 (1991); A. Hernandez and R. Martinez, Phys. Rev. D 51, 3962 (1995).

[10] F. Wilczek and A. Zee, Phys. Lett. B70, 418 (1977); E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001); K. S. Babu, E. Ma, and J.W. F. Valle, Phys. Lett. B 552, 207 (2003); E. Ma, Phys. Rev. D 70, 031901 (2004); G. Altarelli and F. Feruglio, Nucl. Phys. B741, 215 (2006); S. L. Chen, M. Frigerio, and E. Ma, Nucl. Phys. B724, 423 (2005); A. Zee, Phys. Lett. B 630, 58 (2005); P. D. Carr and P. H. Frampton, arXiv:0701034; F. Feruglio, C. Hagedorn, Y. Lin, and L. Merlo, Nucl. Phys. B775, 120 (2007); M.C. Chen and K. T. Mahanthappa, Phys. Lett. B 652, 34 (2007); P.H. Frampton and T.W. Kephart, J. High Energy Phys. 09 (2007) 110; A. Aranda, Phys. Rev. D 76, 111301 (2007).
[11] J. L. Hewett and T. G. Rizzo, Phys. Rep. 183, 193 (1989); A. E. Faraggi and D. V. Nanopoulos, Mod. Phys. Lett. A 06, 61 (1991); P. Anastasopoulos, T. P. T. Dijkstra, E. Kiritsis, and A. N. Schellekens, Nucl. Phys. B 759, 83 (2006); S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze, and A. Ringwald, J. High Energy Phys. 07 (2008) 124.

[12] R. Martinez, J. Nisperuza, F. Ochoa, and J. P. Rubio, Phys. Rev. D89, 056008 (2014).

[13] S.F. Mantilla, R. Martinez and F. Ochoa, Phys. Rev. D95, 095037 (2017) [arXiv:1612.02081 [hep-ph]].

[14] S.F. Mantilla, R. Martinez, Phys. Rev. D96, 095027 (2017) [arXiv:1704.04869 [hep-ph]].

[15] Puneet Batra, Bogdan A. Dobrescu, David Spivak, J. Math. Phys. 47, 082301 (2006) [arXiv:0510181 [hep-ph]].

[16] R. Martinez, J. Nisperuza, F. Ochoa and J.P. Rubio, Phys. Rev. D 90 (2014) 095004 [arXiv:1408.5153].

[17] W. Grimus and L. Lavoura, J. High Energy Phys. 11, 042 (2000).

[18] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996); A. J. Buras, in Probing the Standard Model of Particle Interactions, edited by R. Gupta et al. (Elsevier Science B.V., Amsterdam, 1998), p. 281, [arXiv: 9806471 [hep-ph]].

[19] Gudrun Hiller, Frank Kruger, Phys. Rev. D69, 074020 (2004).

[20] Cheng-Wei Chiang, Xiao-Gang He, German Valencia, Phys. Rev. D93, 074003 (2016).

[21] Guido D’Amico, Marco Nardecchia, Paolo Panci, Francesco Sannino, Alessandro Strumia, Riccardo Torre, Alfredo Urbano, J. High Energy Phys. 09, (2017) 010.

[22] ATLAS collaboration, J. High Energy Phys. 1710, 182 (2017) [arXiv:1707.02424]; CMS collaboration, CMS-PAS-EXO-16-031, Aug. 2016.

[23] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).