Fast Tabulation of Challenge Pseudoprimes

Andrew Shallue
Jonathan Webster

Illinois Wesleyan University
Butler University

ANTS-XIII, 2018
Outline

- Elementary theorems and definitions
- Challenge pseudoprime
- Algorithmic theory
- Sketch of analysis
- Future work
Fermat’s Little Theorem

Theorem

If \(p \) is prime and \(\gcd(b, p) = 1 \) then

\[
b^{p-1} \equiv 1 \pmod{p}.
\]
Fermat’s Little Theorem

Theorem

If p is prime and $\text{gcd}(b, p) = 1$ then

$$b^{p-1} \equiv 1 \pmod{p}.$$

Definition

If n is a composite integer with $\text{gcd}(b, n) = 1$ and

$$b^{n-1} \equiv 1 \pmod{n}$$

then we call n a base b Fermat pseudoprime.
Lucas Sequences

Definition

Let P, Q be integers, and let $D = P^2 - 4Q$ (called the discriminant). Let α and β be the two roots of $x^2 - Px + Q$. Then we have an integer sequence U_k defined by

$$U_k = \frac{\alpha^k - \beta^k}{\alpha - \beta}$$

called the (P, Q)-Lucas sequence.

Definition

Equivalently, we may define this as a recurrence relation:

$$U_0 = 0, \quad U_1 = 1, \quad \text{and} \quad U_n = PU_{n-1} - QU_{n-2}.$$
An Analogous Theorem

Theorem

Let the \((P, Q)\)-Lucas sequence be given, and let \(\epsilon(n) = (D|n)\) be the Jacobi symbol. If \(p\) is an odd prime and \(\gcd(p, 2QD) = 1\), then

\[
U_{p-\epsilon(p)} \equiv 0 \pmod{p}
\]
An Analogous Theorem

Theorem

Let the \((P, Q)\)-Lucas sequence be given, and let \(\epsilon(n) = (D|n)\) be the Jacobi symbol. If \(p\) is an odd prime and \(\gcd(p, 2QD) = 1\), then

\[U_{p-\epsilon(p)} \equiv 0 \pmod{p} \]

Definition

If \(n\) is a composite integer with \(\gcd(n, 2QD) = 1\) such that

\[U_{n-\epsilon(n)} \equiv 0 \pmod{n} \]

then we call \(n\) a \((P, Q)\)-Lucas pseudoprime.
A composite number n is a (b, P, Q)-challenge pseudoprime if it is
- a base b Fermat pseudoprime,
- a (P, Q)-Lucas pseudoprime, and
- $\epsilon(n) = -1$.

Definition
Examples

Previously seen...

Pomerance, Selfridge, and Wagstaff offer $620 for a $(2, 1, -1)$-challenge pseudoprime.

Jon Grantham offers $6.20 for a $(5, 5, -5)$-challenge pseudoprime.

Baillie-PSW test is built around $(2, P, Q)$-challenge pseudoprimes.

Williams numbers are (b, P, Q)-challenge pseudoprimes for fixed D.
Examples

Previously seen...

- Pomerance, Selfridge, and Wagstaff offer $620 for a (2, 1, −1)-challenge pseudoprime.
Examples

Previously seen...

- Pomerance, Selfridge, and Wagstaff offer $620 for a $(2, 1, -1)$-challenge pseudoprime.
- Jon Grantham offers $6.20 for a $(5, 5, -5)$-challenge pseudoprime.
Examples

Previously seen...

- Pomerance, Selfridge, and Wagstaff offer $620 for a $(2, 1, -1)$-challenge pseudoprime.
- Jon Grantham offers $6.20 for a $(5, 5, -5)$-challenge pseudoprime.
- Baillie-PSW test is built around $(2, P, Q)$-challenge pseudoprimes.
Examples

Previously seen...

- Pomerance, Selfridge, and Wagstaff offer $620 for a \((2, 1, -1)\)-challenge pseudoprime.
- Jon Grantham offers $6.20 for a \((5, 5, -5)\)-challenge pseudoprime.
- Baillie-PSW test is built around \((2, P, Q)\)-challenge pseudoprimes.
- Williams numbers are \((b, P, Q)\)-challenge pseudoprimes for fixed \(D\).
How Can We Find These?

We can't.

Two theoretical approaches:

Constructive: Computationally infeasible subset product problem.

Grantham and Alford

Chen and Greene

Enumerate: List base b

Fermat pseudoprime and hope you get lucky.
How Can We Find These?

We can’t.
How Can We Find These?

We can’t.

Two theoretical approaches:

- Constructive: Computationally infeasible subset product problem.
 - Grantham and Alford
 - Chen and Greene
How Can We Find These?

We can’t.

Two theoretical approaches:
- **Constructive**: Computationally infeasible subset product problem.
 - Grantham and Alford
 - Chen and Greene
- **Enumerate**: List base b Fermat pseudoprime and hope you get lucky.
First View on Fermat’s Little Theorem

Problem
Given an preproduct k, find a prime p such that $n = kp$ is a base b-Fermat pseudoprime.

Examining the exponent in Fermat’s Little Theorem:

$$n - 1 = kp - 1 = k(p - 1) + k - 1$$

First View
Since $\ell_b(p)$ divides $n - 1$ and $p - 1$, $\ell_b(p)|k - 1$. So

$$p|b^{k-1} - 1.$$
Second View on Fermat’s Little Theorem

Problem
Given an preproduct k, find a prime p such that $n = kp$ is a base b-Fermat pseudoprime.

Note, $b^{kp-1} \equiv 1 \pmod{p_i}$ for all $p_i|k$, so

$$kp \equiv 1 \pmod{\ell_b(p_i)}.$$

Second View
Let $L = \text{lcm}(\ell_b(p_1), \ldots, \ell_b(p_t))$, then

$$p \equiv k^{-1} \pmod{L}.$$
Two Views on the Analogous Theorem

First View

\[p \mid U_{k-\epsilon(k)}. \]

Second View

Let \(W = \text{lcm}(\omega(p_1), \ldots, \omega(p_t)) \), then

\[p \equiv -k^{-1} \pmod{W}. \]
Finding k

Definition

A number k is *admissible* if

$$\gcd(L, k) = 1, \quad \gcd(W, k) = 1, \quad \text{and} \quad \gcd(L, W) < 3.$$
Finding k

Definition

A number k is *admissible* if

$$\gcd(L, k) = 1, \quad \gcd(W, k) = 1, \quad \text{and} \quad \gcd(L, W) < 3.$$

Consequences:

- Primes with $\epsilon(p) = -1$ will always be admissible.
- Primes with $\epsilon(p) = 1$ will rarely be admissible.
Tabulation of Challenge Pseudoprimes

Create all admissible k up to some bound.

1. If k is small, then find p as a divisor of $\gcd(b^{k-1} - 1, U_{k-\epsilon(k)})$
2. If $\text{lcm}(L, W)$ is large, then find p by sieving

\[
p \equiv \begin{cases}
 k^{-1} \mod L \\
 -k^{-1} \mod W
\end{cases}
\]

Note:

1. GCD computation time monotonically increases with k.
2. Sieve time does not monotonically decrease with k.
Analysis: A Sketch

We want an estimate of

$$\sum_{p < \sqrt{B}} \min\{\text{gcd cost, sieve cost}\}.$$

We estimate

$$\sum_{p < X} \text{gcd cost} + \sum_{X < p < \sqrt{B}} \text{sieve cost}.$$
Analysis: A Sketch (cont.)

This is

\[
\sum_{p \leq X} O(p) + \sum_{X \leq p < \sqrt{B}} O\left(\frac{B}{p\ell_b(p)\omega(p)}\right).
\]

The interval length is \(B/p\) and the sieve step size is \(\ell_b(p)\omega(p)\).

This requires we balance:

\[
O(X^2) + O(B/X)
\]

for a run-time of

\[
O(B^{2/3}).
\]
Actual Results

Theorem

There exists an algorithm which tabulates challenge pseudoprimes up to B with t prime factors using $O(B^{1-\frac{1}{3t-1}})$ bit operations. Under the heuristic assumption that factoring plays a minimal role, then the time is $O(B^{1-\frac{1}{2t-1}})$.
Actual Results

Theorem

There exists an algorithm which tabulates challenge pseudoprimes up to B with t prime factors using $O\left(B^{1-\frac{1}{3t-1}}\right)$ bit operations. Under the heuristic assumption that factoring plays a minimal role, then the time is $O\left(B^{1-\frac{1}{2t-1}}\right)$.

Theorem

There are no $(2, 1, -1)$ challenge pseudoprimes with 2 or 3 prime factors less than 2^{80}.
Challenging Challenges

- $20 for a $(2, 1, -1)$ challenge pseudoprime with an even number of prime factors.
- $20 for a $(2, 1, -1)$ challenge pseudoprime with exactly three prime factors.
- $6 for a $(2, 1, -1)$ challenge pseudoprime divisible by 3.
Future Work

- Strong challenge pseudoprimes
 - Fewer admissible k.
 - Smaller gcds.
 - Large sieving moduli.
- Improved analysis.

Thank you for your time.