Quantifying promoter activity during the developmental cycle of \textit{Chlamydia trachomatis}

Yanguang Cong\(^1,2\), Leiqiong Gao\(^3\), Yan Zhang\(^1\), Yuqi Xian\(^3\), Ziyu Hua\(^3\), Hiba Elaasar\(^3\) & Li Shen\(^1\)

\textit{Chlamydia trachomatis} is an important human pathogen that undergoes a characteristic development cycle correlating with stage-specific gene expression profiles. Taking advantage of recent developments in the genetic transformation in \textit{C. trachomatis}, we constructed a versatile green fluorescent protein (GFP) reporter system to study the development-dependent function of \textit{C. trachomatis} promoters in an attempt to elucidate the mechanism that controls \textit{C. trachomatis} adaptability. We validated the use of the GFP reporter system by visualizing the activity of an early \textit{evo} gene promoter. Additionally, we uncovered a new \textit{ompA} promoter, which we named P3, utilizing the GFP reporter system combined with \(5^{\prime}\) rapid amplification of cDNA ends (RACE), \textit{in vitro} transcription assays, real-time quantitative RT-PCR (RT-qPCR), and flow cytometry. Mutagenesis of the P3 region verifies that P3 is a new class of \textit{C. trachomatis} \(\sigma\text{-}66\)-dependent promoter, which requires an extended –10 TGN motif for transcription. These results corroborate complex developmentally controlled \textit{ompA} expression in \textit{C. trachomatis}.

The exploitation of genetically labeled \textit{C. trachomatis} organisms with P3-driven GFP allows for the observation of changes in \textit{ompA} expression in response to developmental signals. The results of this study could be used to complement previous findings and to advance understanding of \textit{C. trachomatis} genetic expression.

\textit{Chlamydia trachomatis} is a Gram-negative obligate intracellular bacterium that is responsible for considerable morbidity and socioeconomic burden worldwide\(^1,2\). \textit{C. trachomatis} serovars A–C produce trachoma, a leading cause of blindness in developing countries. Serovars D–K cause the most common sexually transmitted bacterial infections. Serovars L1–L3 result in lymphogranuloma venereum (LGV), a chronic infection of the lymphatic system. Over 70\% of women with \textit{C. trachomatis} genital tract infections are asymptomatic and, if left untreated, severe sequelae may include pelvic inflammatory disease and infertility. Unfortunately, no vaccine against \textit{C. trachomatis} is currently available. A better understanding of bacterial adaptation and pathogenesis is imperative for developing effective control strategies against the pathogen.

Bacterial cells of \textit{Chlamydia} spp. grow solely in membrane-bound vacuoles known as inclusions within the host cell. A hallmark of the chlamydial developmental cycle is the reversible transition between two functionally divergent forms: infectious elementary bodies (EBs) and replicating reticulate bodies (RBs)\(^3,4\). During the developmental cycle, the expression of \textit{C. trachomatis} genes is tightly regulated. Three temporal classes of \textit{C. trachomatis} genes, early (EB-to-RB germination), middle (RB multiplication), and late (terminal RB-to-EB differentiation) have been revealed\(^5-7\). Bacterial gene transcription relies on RNA polymerase (RNAP) holoenzyme, which consists of a core enzyme and a \(\sigma\) factor. The \(\sigma\) factor confers the ability to initiate promoter-specific transcription on the enzyme\(^8\). \textit{C. trachomatis} utilizes three \(\sigma\) factors, \(\sigma\text{-}66\), \(\sigma\text{-}54\), and \(\sigma\text{-}28\), in addition to other regulators, to control its transcription\(^9\). Many \textit{C. trachomatis} housekeeping genes are transcribed by \(\sigma\text{-}66\) and a set of late-genes are regulated by \(\sigma\text{-}54\), whereas the target genes of \(\sigma\text{-}28\) remain unclear\(^10-14\). Both \textit{C. trachomatis} \(\sigma\text{-}66\) and \(\sigma\text{-}28\) belong to the \textit{E. coli} \(\sigma\text{-}28\) family, containing four functionally conserved domains, regions 1 to 4\(^15\). Despite a significantly condensed genome and limited gene regulation toolbox compared to many other bacteria, \textit{C. trachomatis} can change its regulatory networks of gene expression rapidly in response to internal metabolic changes and external stimuli for its adaptation and survival\(^16,17\). A significant hurdle to a detailed understanding of the underlying

\(^1\)Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA. \(^2\)Department of Microbiology, Third Military Medical University, Chongqing, China, 400038. \(^3\)Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014. Correspondence and requests for materials should be addressed to L.S. (email: lshen@lsuhsc.edu)
mechanisms of gene regulation is in part the lack, until recently, of genetic systems to assess the properties of temporal promoters. Whereas the study of C. trachomatis promoters has been often conducted in vitro and in heterogeneous “in vivo” systems, such approaches are unable to elucidate information critical to the understanding of the C. trachomatis developmental cycle.

Recent advances in genetic transformation enable the visualization of C. trachomatis growth and the study of its protein localization using shuttle plasmid-encoded fluorescent proteins in situ. We expanded the repertoire of these powerful tools to investigate the development-dependent action of promoters in C. trachomatis. We constructed a transcription vector, which contains a C. trachomatis promoter linked to green fluorescent protein (GFP) gene. We validated its use by evaluating promoter activity of the C. trachomatis euo (early upstream open reading frame) gene encoding a broad DNA binding protein. We also uncovered a new ompA promoter, P3, using the reporter assays combined with 5′ rapid amplification of cDNA ends (RACE), real-time RT-qPCR, flow cytometry, and an in vitro transcription assay.

C. trachomatis ompA encodes the major outer membrane protein (MOMP), which consists of 60% of total outer membrane proteins and serves as a general porin and cytoadhesin vital to the infection process. Our results contribute to a deeper understanding of gene regulatory mechanisms by defining transcription signals of ompA promoters during the C. trachomatis developmental cycle. The use of the GFP reporter system offers an efficient tool to assess development-dependent changes in gene regulation in the intact cells. The knowledge acquired from this study can be used to complement previous findings and to advance studies on regulation of C. trachomatis genes.

Results and Discussion

A shuttle plasmid-based GFP reporter driven by an early C. trachomatis promoter. To assess promoter activity in a desirable in situ setting, we constructed a transcriptional reporter vector, pPvGFP::SW2 (Fig. 1a) using the backbone of the Escherichia coli and C. trachomatis shuttle plasmid, pGFP::SW2. Plasmid pPvGFP::SW2 contained (i) a core promoter region (−38 to +6 relative to the transcription start site (TSS) +1) from the C. trachomatis euo gene (P_euo) that is flanked with a multiple cloning site (MCS) to facilitate cloning and to validate the reporter vector, (ii) a 34 bps region containing a ribosome binding site (RBS) from the C. trachomatis tuf gene, which codes for translation elongation factor EF-Tu at the 5′ end of the gfp gene.
sequences of putative are presented as mean at the exponential phase and subjected to ompA used to create the lacZ reporter strains are shown. Positions relative to the translation start codon ATG of ompA are indicated. (b) Results of β-gal activity. E. coli strains, FW/P21, FW/P2, and FW/P1, were harvested at the exponential phase and subjected to β-gal assays. Strain FW (vector only) was used as a control. Data are presented as mean ± SD from a representative experiment of three independent experiments. (c) Base sequences of putative ompA promoters used in this work. Putative −35//−10 hexamers are bolded. The E. coli σ70 or C. trachomatis σ36 consensus recognition sequences are listed at the top.

Previous studies showed that tuf RBS functioned in both C. trachomatis and in E. coli10,11, ensuring translation of reporter genes. The plasmid also contained the bla gene encoding β-lactamases for positive selection in C. trachomatis. The plasmid pPvGFP::SW2 was transformed into C. trachomatis L2/25667R, a naturally occurring plasmid-free strain. After four rounds of selection with ampicillin, GFP-expressing inclusions were observed by fluorescent microscopy. A clone of the transformed strain, named L2/pPvGFP::SW2, was used to infect HeLa cells. GFP-expressing inclusions appeared at 16 hours post-infection (h pi) (Fig. 1b). The levels of GFP increased proportionately to the expansion of C. trachomatis inclusions and accumulation of organisms. The control, transformed with the promoter-less plasmid, pPLGFP::SW2, did not express GFP. This data indicates that GFP expression is specifically driven by P

To facilitate GFP quantitation in C. trachomatis using an internal protein control, a DNA fragment containing MCS-P3-tuf RBS from pPvGFP::SW2 was subcloned into pBOMB4-tet-mCherry20 (hereafter called pBOMBm), which contained the fluorescent protein mCherry gene driven by a tetracycline controlled promoter (Ptet). The resultant plasmid, pBOMB-P3, was transformed into L2/25667R cells to generate L2/pBOMB-P3. Infection of L2/pBOMB-P3 in HeLa cells formed GFP-expressing inclusions at 16 h pi and beyond, a phenotype similar to C. trachomatis. transfection in strains FW/P21 could therefore not be explained by the lack of β-gal activity in strains FW/P1 and FW/P2. We

Prediction of ompA P3. C. trachomatis surface-exposed MOMP, encoded by the ompA gene, is a critical component that directly mediates pathogen-host interactions25. Developmentally regulated ompA transcription has been a topic of extensive study12,14,27,28. Although ompA is expressed as multiple mRNAs, only the P1-derived short transcript and the P2-derived long transcript have been studied in detail12,14,29. To quantify the effects of DNA regions on ompA promoter activity, we created a set of lacZ transcriptional fusions in E. coli based on Whipple’s system30. The regions carrying the promoters (either combined P2 and P1, or P1 or P2 alone) were cloned into the lacZ expression vector, pFW11, and the promoter-lacZ fusion was relocated to an F′ episome in the recipient cells as detailed in the Materials and Methods section. The resultant strains, designated FW/P21, FW/P2, or FW/P2 (Fig. 2a), were subjected to β-galactosidase (β-gal) assays to measure the activity of ompA promoters. We observed a 6-fold increase in β-gal activity in FW/P21 cells compared to the promoter-less control (Fig. 2b). However, no β-gal levels exceeding that of the promoter-less control were produced in FW/P2 or FW/P1. These results are comparable to previous studies using multi-copy plasmid-encoded chloramphenicol acetyltransferase (CAT) as a reporter in E. coli13. Although the activity of P2 has been authenticated in C. trachomatis, the role of P1 is still under debate12,29. It is unsurprising that P2 is not active in E. coli because P2 has a GC-rich −10 hexamer of TATCGGC, which is not recognized by E. coli σ70 in vitro30. The high levels of β-gal observed in strain FW/P21 could therefore not be explained by the lack of β-gal activity in strains FW/P1 and FW/P2. We

Figure 2. Studying C. trachomatis ompA promoter activity in E. coli. (a) Promoter-lacZ constructions. The organization of the regulatory region upstream of the ompA coding region (top) and DNA fragments used to create the lacZ reporter strains are shown. Positions relative to the translation start codon ATG of ompA are indicated. (b) Results of β-gal activity. E. coli strains, FW/P21, FW/P2, and FW/P1, were harvested at the exponential phase and subjected to β-gal assays. Strain FW (vector only) was used as a control. Data are presented as mean ± SD from a representative experiment of three independent experiments. (c) Base sequences of putative ompA promoters used in this work. Putative −35//−10 hexamers are bolded. The E. coli σ70 or C. trachomatis σ36 consensus recognition sequences are listed at the top.
suspected that an additional promoter recognized by *E. coli* transcription machinery must be present between the P2 and P1 regions.

We next searched for the putative promoter(s) from the 607 bp intergenic sequences (IGSs) upstream of the *ompA* of *C. trachomatis* strain L2/434/Bu in silico using a dynamic program-based MotifSearch tool. A two-block-motif, TTAACA (−35)-n 16–19 -TATAAT (−10), was used for *C. trachomatis* σ66 recognition sequences and motif TAAAGTTT (−35)-n 10–14 -GTTGACAA (−10) was used for σ28 recognition sequences. Up to 3 base-pair mismatches (a total 6 bases) were allowed in the −35 hexamer or −10 hexamer. These predictions resulted in the identification of the known *ompA* P2 region and a region containing the sequence TTACGA-n 17-TATGGT, which we named P3 (Fig. 2c). The same P3 region was predicted using a position weight matrix-based program called Footy. P1 was excluded, as it contained mismatches in five of six positions in the putative −35 hexamer and in three of six positions in the −10 hexamer. No σ28 recognition sequences were found. An alignment of *Chlamydia* spp. IGSs upstream of *ompA* available in the NCBI database shows a minor variation in P3 and P2 regions (Table S1). This suggests that these regions may have a conserved role in *ompA* expression in *Chlamydia* spp. There are more variations in the *ompA* P1 region in terms of the length of the “spacer” separating the putative −35/−10 hexamers, ranging from 18 to 26 bps. *Chlamydia* spp. σ66-dependent promoters typically have a 16–18 bp spacer, resembling those of *E. coli* σ70, which also senses the promoter spacing and preferentially recognizes a spacer with an average of 17 bps.

Validation of P3 function in C. trachomatis. To directly determine whether P3 functions in *C. trachomatis*, the 63 bp P3 region was cloned into pPvGFP::SW2 and pBOMB-*P*euo in place of *P*euo generating pP3GFP::SW2 and pBOMB-P3 (Fig. 3a), respectively. These plasmids were each transformed into the L2/25667R cells, resulting in L2/pP3GFP::SW2 and L2/pBOMB-P3. After three rounds of ampicillin selection, GFP-expressing inclusions were observed (Fig. 3b). Inclusion morphology in both strains carrying pP3GFP::SW2 and pBOMB-P3 appeared to be normal and not significantly different. Strain L2/pBOMB-P3 was chosen for further characterization.

Next, 5′ RACE assays were performed to determine the transcription start site (TSS) of P3-derived mRNA. Initially, total RNA isolated from the strain L2/434/Bu infected HeLa cells harvested at 18 h pi were used. Our attempt to detect the 5′ end of P3 mRNA was unsuccessful, although a site corresponding to the reported P1
mRNA\(^{14,27}\) was noted. We hypothesized that if the undetectable 5′ end of the P3 transcript is the result of low steady-state levels of P3 mRNA, the use of the \(C.\) trachomatis \(tuf\) RBS region should improve the stability of P3 mRNA in the reporter system. To test this hypothesis, P3 transcript was determined using a 5′ RACE assay with total RNA isolated from L2/pBomB-P3 infected HeLa cells harvested at 18 h pi. The DNA sequencing data showed that P3 transcript originated with an adenine located at 39 bp upstream from the \(gfp\) start codon (Fig. 3c).

Based on the TSS at position +1, the sequences of TTACGA and TATGGT are putative −35 promoter elements and confirm that this sequence is required for \(C.\) trachomatis transcription initiation. Moreover, the TGn motif may compensate for non-canonical −10 hexamers or suboptimal spacer length between −10 and −35 hexamers. The TGn-promoters appear to more often have significant deviations in the −35 hexamer than typical −10/−35 promoters in \(E.\) coli. It seems that \(ompA\) P3 deviates substantially from both the consensus −10 hexamer and −35 hexamer, because of its GC-rich sequences in these regions. Like

Figure 4. Identifying the determinants of \(ompA\) P3 region. (a) Sequences of P3 and its derivatives tested in this study. (b) Autoradiogram of a denaturing acrylamide gel showing the transcript products of *in vitro* transcription assays with P3 or its derivatives. \(σ^{66R24}\) RNAP holoenzyme (left panel) or \(σ^{28}\) RNAP holoenzyme (right panel) were used. (c) An autoradiogram of a denaturing acrylamide gel showing *ompA* P3 transcripts produced in the transcription assay. *E. coli* \(σ^{70}\) RNAP holoenzyme was used. The amounts of transcripts were determined by densitometry using ImageJ\(^4\) and are shown relative to WT P3, which is set at 100%, as indicated at the bottom of (b,c). Note: P3 is transcribed by both \(σ^{66R24}\) RNAP and \(σ^{70}\) RNAP, but not \(σ^{28}\) RNAP.

Defining the core P3 promoter.

To precisely define the relevant sequence features needed for the recognition of P3, we investigated how specific mutations of P3 could affect transcription *in vitro*. Plasmids containing wild-type (WT) or mutated P3 regions (Fig. 4a) and a control promoter of the *E. coli* fliC (P\(_{fliC}\))\(^{35}\) were used as templates. A functional RNAP holoenzyme was reconstituted with core enzyme from *E. coli* and a hybrid \(C.\) trachomatis \(σ\) factor, \(σ^{66R24}\), in which \(σ^{66}\) regions 2 to 4 (amino acid residues 315–571) were translationally fused to the region 1 of \(E.\) coli \(σ^{70}\) (amino acid residues 1–372). The use of this holoenzyme allows for the study of \(σ^{66}\)-dependent promoter activity that relies on the function of \(σ^{70}\). Substitution of the TTACGA (Fig. 4b) or TATGGT (Fig. 4c) to GGATCC reduced 80% of P3 transcript when either \(σ^{66}\) or \(σ^{70}\) RNAP holoenzyme, transcripts from WT P3 were evident (Fig. 4a). In contrast, no P3–derived transcript was observed in the presence of \(σ^{28}\). These data indicate that P3 is specifically recognized by *C. trachomatis* \(σ^{66}\) and its homolog *E. coli* \(σ^{70}\), consistent with our \(β\)-gal reporter assay data in *E. coli* (Fig. 2). Substitution of the TATGGT (−10 hexamer) with GCAATGC abolished P3 transcription activity when either \(σ^{66R24}\) RNAP or \(σ^{70}\) RNAP was used, indicating the importance of the TATGGT hexamer for P3 activity. Interestingly, substitutions of the TTACGA (−35 hexamer) to GGATCC reduced 80% of P3 transcript in comparison to the WT P3 using \(σ^{66R24}\) RNAP, while the use of \(σ^{70}\) RNAP reduced P3 transcript only by 50%, suggesting that the TTACGA hexamer is more recognizable by *C. trachomatis* \(σ^{66}\). These results indicate that the TTACGA sequence of P3 functions as the −35 promoter element and confirm that this sequence is required for the full activity of P3. We noted that the −16TG−14 sequences in P3 matched the consensus extended −10 TG motif recognized by \(σ^{70}\) from *E. coli*\(^{36,37}\). Substitution of TG with CA resulted in a significant decrease in P3 transcript levels, suggesting that the TG motif is important for P3 activity (Fig. 4). *C. trachomatis* \(σ^{66}\)-dependent promoters have typically been characterized as −10/−35 promoters. Our data, for the first time, show that P3 activity requires the −35 hexamer and an extended −10 TG motif, presenting a new promoter class in *C. trachomatis*.

Promoters harboring the TGn motif have been identified from several microbial systems, including *E. coli*\(^{37}\), *Streptococcus pneumoniae*\(^{38}\), *Bacillus subtilis*\(^{36}\), and *Mycobacterium tuberculosis*\(^{39}\). It has been shown that the recognition of the TGn motif by the principle \(σ\) factor plays a role in the formation of an open complex during transcription initiation. Moreover, the TGn motif may compensate for non-canonical −10 hexamers or suboptimal spacer length between −10 and −35 hexamers. The TGn-promoters appear to more often have significant deviations in the −35 hexamer than typical −10/−35 promoters in *E. coli*. It seems that *ompA* P3 deviates substantially from both the consensus −10 hexamer and −35 hexamer, because of its GC-rich sequences in these regions. Like
E. coli σ\textsubscript{70}, C. trachomatis σ\textsubscript{66} region 2 binds to the promoter −10 hexamer, region 4 of σ\textsubscript{66} recognizes the −35 hexamer40. It is likely that the TGn motif allows for extra contact points with σ\textsubscript{66} regions 2.5 and 3.0, as has been observed in its E. coli counterpart33,37,41.

Quantifying the contribution of P3 to ompA transcription. To define the role of P3 in ompA transcription and to understand the potential relationship between P3 expression and the action of the well-studied P214,27,29, we quantified the levels of ompA P2 and/or P3 mRNA in the context of chromosomal loci using real-time RT-qPCR. Total RNA from L2/434/Bu infected cells, which were sampled at 0, 2, 4, 12, 24, and 36 h pi, were analyzed (Fig. 5a). P3 transcript was detected early at a low level and continued to accumulate in abundance, exceeding that of P2 at both 2 and 4 h pi (Fig. 5b). P2 transcript rapidly increased with bacteria multiplication and peaked at 12 h pi. However, at 12 h pi, the use of P3 decreased and that of P2 drastically increased. Expression of both ompA P2 and P3 was significantly eliminated at 36 h pi. These data support the notion that P2 is the primary transcript during RB replication and RB-to-EB differentiation, as previously reported27, whereas P3 plays a role in the early stage of the development. Therefore, temporally expressed P3 and P2 coordinate ompA transcription during the C. trachomatis developmental cycle.

Evaluating the use of P3-GFP as a reporter in C. trachomatis infected epithelial cells. C. trachomatis growth is accompanied by quantitative and qualitative changes in ompA expression (Fig. 5). To investigate the relationship between P3-GFP level and C. trachomatis growth, GFP in L2/pBOMB-P3 infected HeLa cells was monitored throughout the C. trachomatis developmental cycle using fluorescence microscopy and flow cytometry. In parallel, a one-step growth curve was constructed to enumerate infectious EB progeny yields. We visualized GFP-expressing chlamydial organisms associated with the host cells instantly post-infection, and the levels of GFP expression increased through 36 h pi as C. trachomatis inclusions expanded (Fig. 6a). When quantitatively measured using flow cytometry, the GFP signal was detected instantly after infection but the signal-to-noise ratio was low, preventing meaningful quantitative measurements of cells. The distinct cell populations with bona fide P3-GFP expression were separate from the GFP negative cells until 8 h pi (Fig. 6b). The population of GFP-expressing cells increased from ~3.1% at 8 h pi to 30% at 24 h pi; concurrently, the mean florescence intensity (MFI) significantly increased (Fig. 6b). Interestingly, while GFP-expressing cells increased to 58.5% at 32 h pi, there were more heterogeneous cell populations which displayed a lower average MFI with a larger deviation compared to that at 24 h pi. This could be explained by the asynchronous growth of C. trachomatis, which occurs when decreasing numbers of RBs continue replicating and increasing progeny EBs accumulate and exit from the host cells to initiate a new cycle of infection. The overall P3-driven GFP levels seemed to be quite stable. Thus, it is likely that the GFP signal detected at the late stage is skewed by GFP accumulation along with bacteria accretion and inclusion expansion. We observed that L2/

Figure 5. The profile of ompA P3 and P2 expression in chromosomal loci. (a) Diagram showing the location of primers designed to assess ompA transcripts by RT-qPCR. Amplification with the primers, F2/R2, produces P2 transcript, whereas amplification with primers, F3/R3, generates the total transcripts of P2 and P3. The individual P3 transcript is obtained by subtracting P2 transcript from both P3 and P2 transcripts. (b) Results of RT-qPCR with total RNA from L2/434/Bu infected HeLa cells harvested at 0, 2, 4, 12, 24, and 36 h pi. Relative amounts of transcript were obtained by normalizing the levels of P2 or P3 transcript to C. trachomatis genomic DNA levels, which were assessed using primers specific to the 16S rRNA gene (Table S3). The values are presented as mean ± SD from an experiment with duplicates. *P < 0.05, **P < 0.005, and ***P < 0.0001. Three independent experiments were performed.
pBOMB-P3 exhibited delayed growth pattern relative to L2/434/Bu (Fig. 6c), possibly due to the stress induced by GFP overexpression. Isolated L2/pBOMB-P3 organisms from infected cells harvested at 40 h pi appeared green-tinged, a change detectable by eye (Fig. 6d), indicating high levels of GFP associated with bacteria. Long-lived P3-GFP used in this study may be applicable for long-term bacteria cell-labeling, which allows for the imagining to track the C. trachomatis infection process in intact cells, e.g. invasion, multiplication, and dissemination.

Determining the strength of P3 in C. trachomatis.

To evaluate the strength of P3, we assessed the P3-driven GFP levels in L2/pBOMB-P3 compared to those driven by the Neisseria meningitidis promoter, P_{nm}, in L2/pBOMBm. Four different quantitative methods (microscopy, flow cytometry, microspectrometry, and immunoblotting) were used. First, to facilitate a direct comparison, an equivalent mixture of L2/pBOMB-P3 and L2/pBOMBm was used to infect HeLa cells, followed by fluorescence microscopy analysis. In the same field of vision, L2/pBOMB-P3 exhibited a brighter green fluorescence than L2/pBOMBm (Fig. 7a). In the presence of equivalent mCherry levels, which were induced by the addition of αTC, L2/pBOMB-P3 displayed higher levels of GFP signal than L2/pBOMBm. Next, cells infected with either L2/pBOMB-P3 or L2/pBOMBm with similar infectivity (~30%) were harvested at 24 h pi and subjected to flow cytometry. As determined by assessment of the MFI, the average level of P3-driven GFP expression was ~32 times stronger than P_{nm}-driven GFP at 24 h pi (Fig. 7b). Further, isolated C. trachomatis organisms from cells harvested at 24 h pi were measured for their relative fluorescence intensities (RFI) using microspectrometry. Figure 7c shows that the RFI of L2/pBOMB-P3 was ~10-fold higher than that of L2/pBOMBm. Lastly, the level of GFP protein in isolated C. trachomatis organisms was determined by immunoblotting. The levels of GFP in lysates of L2/pBOMB-P3 were ~24-fold higher than those of L2/pBOMBm (Fig. 7d). With the use of similar plasmid constructs, these results demonstrate that, relative to P_{nm}, P3 is highly active in C. trachomatis. Furthermore, bacterial organisms expressing P3-GFP are more noticeable and easier to measure using fluorescence microscopy, flow cytometry and immunoblotting, rather than microspectrometry.

Figure 6. Inspecting P3-GFP levels during the course of the C. trachomatis infection. (a) Time course of GFP expression in HeLa cells visualized by fluorescent microscopy. L2/pBOMB-P3 infected HeLa cells were imaged at the times indicated. The inset highlights GFP-expressing C. trachomatis organisms. Bar = 10 μM. (b) Flow cytometric data corroborate microscopic images in (a), showing changes in GFP expression in C. trachomatis infected HeLa cells. GFP-expressing cell population is indicated as percentage. The average mean fluorescence intensity (MFI) and the standard deviation at each time is shown. (c) One-step growth curve of C. trachomatis strains L2/434/Bu and L2/pBOMB-P3. (d) Isolated L2/pBOMB-P3 organisms, but not L2/pBOMBm, appear to be green-colored by direct observation.
OmpA P3 displays weak transcription activity in E. coli. Our next step was to determine whether P3 activity varies with the E. coli \(\sigma^{70} \) paradigm. This information may provide new insight into the diversity of bacterial gene transcription and also may provide an explanation for the previous detection of P3 in E. coli systems. To this end, E. coli strains carrying pBOMB-P3, pBOMBm, and promoter-less pBOMB-PL were harvested at the exponential phase and their GFP expression was measured using fluorescence microscopy, microspectrometry, and immunoblotting. A significant increase in GFP expression in E. coli cells was observed as the bacterial culture grew (Fig. 8a), confirming that P3 was recognized by E. coli RNAP. This data is consistent with the earlier observations as shown in Figs 2 and 4b. Unlike in C. trachomatis, where P3 is highly expressed, P3-driven GFP expression was much lower than P\(_{nm}\)-driven GFP in E. coli (Fig. 8b,c). The weak activity of P3 in E. coli is not surprising, as perfect P3 function may be achieved only in the context of a regulatory network unique to C. trachomatis; different regulatory mechanisms exist in E. coli.

Given the high similarity between C. trachomatis \(\sigma^{66} \) and E. coli \(\sigma^{28} \) in their regions 1 to 4, the use of heterogeneous E. coli systems has provided useful information to understand some questions regarding chlamydial promoter recognition as described both previously and in this study. However, these heterogeneous systems do not allow for the expression of all C. trachomatis genes, such as ompA P2\(_{229}\). P3 functions weakly in E. coli and appears to rely on the availability of endogenous conditions for optimal expression in C. trachomatis. Such variety might be attributed to the non-conserved regions between C. trachomatis \(\sigma^{66} \) and E. coli \(\sigma^{28} \), including the area between regions 1 and 2, as well as the regions at the N- and C-termini of \(\sigma \) factors\(^{12,14}\). Differences between C. trachomatis \(\sigma^{28} \) and E. coli \(\sigma^{28} \) have been studied previously\(^{10,44}\). Additionally, physiological signals within the host cells (such as immunity and metabolic capacity) that C. trachomatis encounters affect bacterial gene expression. Therefore, it is necessary to validate the promoters that were predicted or identified by the heterologous systems in C. trachomatis. A major advantage of the transcription reporter shuttle plasmid with an MCS and tufRBS upstream of GFP is to allow a preferred promoter to be inserted conveniently so that promoter functioning can be studied by assessing the levels of GFP expression. Promoters detected in C. trachomatis could be directly compared to those in E. coli, thus providing an opportunity to examine the extent of the differences in their activity.

Conclusion
This study resulted in three significant conclusions. First, the ompA regulatory region is complex and exhibits novel features. In particular, ompA transcription is exactly derived from both mid-cycle expressed P2 and the newly identified, early-expressed P3. Second, P3 represents a new class of C. trachomatis promoter, which requires a \(-35 \) DNA element and an extended \(-10 \) TGn motif for its transcription. Third, expression of ompA P3-GFP,
but not \(P_{euo} \)-GFP, in living cells produces a unique, robust signal. These results provide a basis for a deeper understanding of novel characteristics of the gene regulation in \(C. trachomatis \).

Tandemly arranged promoters have been reported to involve developmentally regulated \(C. trachomatis \) gene expression, including \(ompA \)27,28 and \(tuf \)11. To complement the earlier finding that \(P2 \) plays a primary role in \(ompA \) synthesis, we have shown that \(P3 \) also contributes to \(ompA \) transcription (Figs 2–5). Previous studies have indicated the detection of steady-state levels of \(ompA \) transcript mid-cycle6,7. However, the levels of \(ompA \) transcripts often do not fully reflect the relative activities of the promoters because the fate of each transcript may be varied and is affected by various processes. The switch in utilization of \(P3 \) and/or \(P2 \) is evidently a regulatory mechanism of \(ompA \) transcription. The manner in which \(P3 \) and \(P2 \) activity is coordinated or mutually influenced can be affected by multiple factors. A 9-bp inverted repeat adjacent to the \(-35 \) hexamer of the \(P3 \) region may play a role in this process. Mathews and Stephens12 have proposed that this repeat, resembling an operator in DNA structure, might be a target of a yet not-identified protein repressor. Alternatively, a stable stem-loop structure that resembles a rho-independent terminator capable of stopping \(P2 \) transcription could be formed by this region. Additionally, DNA supercoiling has been reported to modify \(C. trachomatis \) transcription, including \(ompA \)245. Only a subset of early genes can be affected by DNA supercoiling46. In general, plasmids are supercoiled to a higher degree than chromosomal DNA. We found similar strong activity of \(P3 \) regardless of its plasmid and chromosomal locations, suggesting that supercoiling is less likely to be a main factor involved in \(P3 \) expression. Moreover, posttranscriptional regulation of \(ompA \) mRNA may occur during development. Transcript derived from \(P3 \) seems less stable than that of \(P2 \) by mRNA structural prediction. Despite its role in early transcription, \(P3 \) mRNA might limit its activity through quick turnover when RBs rapidly replicate and convert to EBs. We cannot exclude the possibility that \(P1 \) signal detected is the processed product of longer transcripts14, perhaps from \(P3 \) and/or \(P2 \). It is worth noting that the utility of \(tuf \) RBS in mediating the translation of \(gfp \) may be mechanistically different from, and possibly more efficient than, the native \(ompA \) RBS. Because of the apparent conservation of the \(P3 \) and \(P2 \) regions, their importance in \(Chlamydia \) spp. adaptation to changing environments can be predicted. The proposed \(P1 \) remains unproven, but phylogenetic analysis suggest that \(P1 \) is less likely to be the conserved regulatory mechanism of \(ompA \) in \(Chlamydia \) spp.

Our findings underscore the role of new promoter element, the extended \(-10 \) TGn, in \(C. trachomatis \) transcription. By sequence inspection, early promoters in \(C. trachomatis, P_{euo} \) and the promoter from \(C. trachomatis groES \)13, also contain potential extended \(-10 \) TGn motifs. It is possible that such a motif represents a signature element for early promoter-RNAP recognition and is affected differently from the typical \(-35/-10 \) promoters by a transcription factor. For example, we have found that anti-\(\sigma \) factor, CT663 (or Scc4)40, strongly inhibited transcription from the \(-35/-10 \) promoters but was less effective in suppressing transcription from an extended

![Figure 8. The OmpA P3 is weakly active in E. coli.](image-url)
– 10 promoter lacking a – 35 element. Despite the limited number of transcription factors in C. trachomatis, the arrangements of promoter modules may be largely diverse and greatly contribute to developmentally regulated gene expression profiles.

The consistency of the different quantitative methods employed show that robust P3-GFP signal is present throughout the developmental cycle. These properties make P3-GFP valuable for long-term bacterial cell-labeling to facilitate the visualization and tracking of infectious process in live cells. Coupled with flow cytometry and microscopy, this GFP-reporter assay may also be applicable in probing ompA changes induced by various insults at both population and single cell level. Adverse growth conditions, such as exposure to IFNγ or antibiotics, cause C. trachomatis ompA downregulation and the formation of an "altered persistent form"[17,47]. With regard to this, low levels of GFP expression driven by a weak promoter, such as Pore, could be challenging to interpret. At the same time, the use of long-lived GFP may be limited, as it is incapable of fully reflecting the highly dynamic process of gene expression. An improved short-lived GFP reporter may be more suitable for studying the transient mRNA dynamics in C. trachomatis. All together, the results obtained and approaches used in this study will allow for the design of future studies in defining promoter signatures, relationships between promoter structure, RNAP recognition, and transcriptional activity in C. trachomatis.

Materials and Methods

Cell cultures and bacteria growth. HeLa 229 cells (human cervical epithelial carcinoma cells; ATCC CCL-2) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 1 mM glutamic acid, 10% fetal bovine serum and 20 μg/ml gentamycin (DMEM-10) at 37 °C in an incubator supplied with 5% CO2. HeLa cells were infected with C. trachomatis as previously described[17]. To construct a one-step growth curve, cells infected at an MOI of 1 were lysed and cultured on fresh infected HeLa cells at 0, 4, 12, 24, 32, and 48h pi. Infectious EB progeny was then evaluated by enumeration of inclusion forming units (IFUs) in 1 ml. E. coli DH5α was used as the host for cloning. A methylation deficient E. coli strain (ER2925, New England Biolabs) was used to prepare the plasmids for C. trachomatis transformation. The E. coli cells were grown in Luria-Bertani (LB) broth or agar plates containing the appropriate antibiotics.

Molecular cloning. Plasmids, primers, and oligonucleotides used in this study are listed in Table S2 and Table S3, respectively. Primers and oligonucleotides were synthesized by Integrated DNA Technologies. To construct pPVGF::SW2 (Fig. 1a), two separated PCR fragments were obtained with primers, Euo_tuf priF/ORF2 priF or euoPriR/ORF1 priF, using pGFP::SW2[18] (a gift form Dr. Ina Clarke, University of Southampton, UK) as template. These PCR fragments were mixed, annealed, and used as templates for subsequent PCR using primers ORF2 priF/ORF1 priF. The Bam HI-cut PCR fragment was then inserted into the sites of Bam HI in pGF-P::SW2. To create pP3GFP::SW2, the two annealed complementary oligonucleotides consisting of ompA P3 were cloned into pPVGF::SW2 at the Spe I/Nco I sites. The Pvu II/Nco I fragment of the P3GFP::SW2 was cloned into the Pvu II/Nco I sites in pBOMB4-tet-mCherry (a gift form Ted Hackstadt, Rocky Mountain Lab, NIH) to yield pBOMB-P3 (Fig. 3a). To create a promoter-free plasmid, pPVGF::SW2 was digested by Spe I/Nco I to remove Pore. After Kenow fragment treatment, the DNA was self-ligated to create pPLGF::SW2. The Pvu II/Nco I fragment was subcloned into pBOMB to create pBOMB-PL. The plasmids used for the in vitro transcription assay were derived from pP3[35]. Two annealed complementary oligonucleotides consisting of WT or mutated P3 were inserted into pP3 [+73], at the Xba I/EcoR V sites to yield pP3WT-[P3]+, pP3M10-P3, pP3M7-P3, or pP3M35-P3. The expression plasmid, pLN-σ6624, containing genes encoding C. trachomatis σ66 regions 2–4 and E. coli σ70 region 1, was derived from pLNH-12. The PCR fragment consisting of region 1 of E. coli σ70 was amplified with primers σ70 priF/Sig7066Rg24BLo. The PCR fragment containing σ66 regions 2–4 was amplified with primers sig7066Rg24CUp/S66prRBM. This DNA fragments were annealed and used as a template for subsequent PCR using primers EC70 priF/S66 prRBam. The resultant PCR fragments were digested with NcoI/BamHI and were then inserted into the Nco I/BamHI sites of pLN-7066 to generate pLN-σ6624, which encodes a fusion σ6624 protein. The identities of all constructs were confirmed by PCR and DNA sequencing.

Generating ompA promoter-lac Z fusion in E. coli. A DNA fragment containing the ompA P1 and P2 regions (+375 to +18 relative to the translation start codon ATG of ompA) was amplified by PCR with primers ompAprI/F/P1 priR using the genome of C. trachomatis serovar D as a template. The EcoR I/Sal I digested PCR fragment was then inserted into the Eco RI/Sal I sites of pFW11 to yield pFW/P21. Two annealed oligonucleotides containing P2 (+317 to +243 relative to the ompA start codon) or P1 (+87 to +18 relative to the ompA start codon) were inserted into pFW11 at Eco RI/Sal I sites, resulting in pFW/P2 or pFW/P1 (Fig. 2a). These constructs were introduced into E. coli CSH100 for homologous recombination of the ompA promoter::lacZ onto an F’/episome as previously described[10]. Further mating with E. coli strain FW102 was performed to finalize the construction of the reporter strains, designated as FW/P21, FW/P2, and FW/P1, respectively. The identities of all constructs and strains were confirmed by PCR and DNA sequencing.

Transformation of C. trachomatis. C. trachomatis was transformed with the shuttle plasmids according to the method described[18] with minor modifications. Briefly, plasmid-free C. trachomatis L2/25667R EBs (1 × 107) were mixed with 7 μg of plasmid DNA in 100 μl of CaCl2 buffer (5 mM Tris HCl, pH7.4, 100 mM CaCl2) and incubated at room temperature for 30 minutes. Freshly trypsinized HeLa cells (6 × 106) resuspended in 200 μl CaCl2 buffer were added to the plasmid/EB mixture and incubated at 37 °C for an additional 20 min. Aliquots of this mixture were then added to a 6-well plate with 1.0 ml of pre-warmed medium in each well. After cultivating in DMEM-10 without antibiotics at 37 °C for 24h, cells were incubated in the presence of ampicillin (5 μg/ml) and cycloheximide (20 μg/ml) for an additional 24 hours. The infected cells were harvested and lysed by vortexing with glass beads. The cell debris was removed by spinning at 233 g for 10 min. The Chlamydia-containing
supernatant was collected and added onto a HeLa monolayer in a T175 flask. After incubation at 37 °C for 1 hour with gentle shaking, the infected cells were cultured in DMEM-10 containing ampicillin and cycloheximide for 48 hours. The C. trachomatis organisms were isolated by 30% renograin density gradient purification to enrich infectious EBs. For the first passage, a HeLa monolayer in a 6-well plate was inoculated with EBs, followed by centrifugation to enhance infection. Passages were continued 2–3 times, until inclusions positive for green fluorescence were observed. To isolate a single clone of C. trachomatis transformant, GFP-expressing cells were lysed in sterile dH₂O, serially diluted, and inoculated onto a HeLa cell monolayer in a 96-well plate. At 24 h pi, the plate was examined by fluorescence microscopy. The culture wells containing only a single inclusion were marked and continued to be cultured until subsequent harvest for C. trachomatis large scale amplification.

Phase contrast and fluorescence microscopy. HeLa cell monolayers grown in a glass culture chamber (NUNC) or 24-well culture plate were infected with C. trachomatis to achieve ~30% infection. At various times post infection, the culture wells were observed and photographed with an inverted fluorescence microscope (Zeiss Axio Observer D1). Images were processed using AxioVision software version 4.8.

Microspectrometry. Isolated chlamydial organisms from infected cells harvested at 36 h pi were washed with PBS, diluted to OD₆₀₀ = 0.4, and subjected to fluorescence intensity analysis using a SynergyMx microplate reader (BioTek) with excitation wavelengths of 48 nm and 528 nm. A volume of 100 µl of bacterial cell dilutions was added into each well of a 96-well plate. The overnight cultures of E. coli DH5α carrying GFP expression plasmids were diluted in fresh LB (1:100) and grown at 37 °C. E. coli cells grown at log phase (4 hours after inoculation) were collected (0.5 ml) by centrifugation and resuspended in the same volume of PBS. The fluorescence intensity of E. coli was obtained in the same manner as described above for C. trachomatis.

Flow cytometry. C. trachomatis infected HeLa 229 cells were detached by trypsinization at different times indicated in the results and fixed with 2% paraformaldehyde at room temperature for 20 minutes. Cells were then detected in a FACS Vantage flow cytometer (BD Biosciences) using the FL-1 (green) channel. Flow cytometry data was recorded for at least 3 x 10⁶ cells per sample. Mock infection cells were used as a blank. Data were analyzed using FlowJo software Version 7.6 (TreeStar Inc) for both the percentage of GFP-expressing cell populations and mean fluorescence intensity.

Immunoblotting analysis. Chlamydial organisms were lysed with 2 x SDS loading buffer, separated on 4–20% SDS-PAGE, and transferred onto a PVDF membrane for immunoblotting. The membrane was incubated with a polyclonal anti-GFP antibody (Pierce) or a monoclonal antibody to bacterial RNAP β subunit (RpoB) (Neolone), followed by incubation with horseradish peroxidase-conjugated goat anti-mouse IgG. RpoB was used as a protein loading control. The protein bands were visualized by an enhanced chemiluminescence kit (Pierce).

5′ Rapid amplification of cDNA ends (RACE). C. trachomatis-infected cells with ~90% infectivity were harvested at 18 hours. Total RNA was isolated using Trizol reagent (Invitrogen). The transcription start site for P3 in C. trachomatis was probed with the rapid amplification of the cDNA ends (5′-RACE) using the FirstChoice RLM-RACE Kit version 2.0 (Life Technologies) following the manufacturer’s protocol. Briefly, 10 µg of total RNA were treated with calf intestine alkaline phosphatase to remove free 5′-phosphates. The RNA was then treated with tobacco acid pyrophosphatase to remove the cap structure from full-length mRNA, leaving a 5′-monophosphate. An RNA adapter oligonucleotide was then ligated to the RNA with 5′-phosphate using T4 RNA ligase. The 5′ end of the gfp transcript, which is initiated by P3, was then amplified with random-primer reverse transcription and nested PCR using gfp specific primers with the primer-defined primers in the kit. PCR products were then inserted into pUC19 (Promega, Madison, WI) for DNA sequencing.

Real-time reverse transcription quantitative PCR (RT-qPCR). C. trachomatis-infected HeLa cells were harvested at indicated times post infection. Genomic DNA was isolated from cells using the DNeasy Blood & Tissue Kit (Qiagen). RNA was isolated from an equivalent number of cells using the Direct-zol RNA Kit (Zymo). DNase treatment was performed to remove residual DNA. A total of 1 µg of RNA was reverse transcribed into cDNA and the genes of interest were amplified using the_veriquest Fast SYBR Green qPCR (USB) with appropriate primers (Table S2). The PCR cycle conditions were as follows: 50 °C for 2 min., 95 °C for 5 min., 95 °C for 3 sec., and 60 °C for 30 sec. The latter two steps were repeated for 35 to 45 cycles, and fluorescence was detected at the end of each cycle. Transcripts were normalized to C. trachomatis genomic DNA levels, which were quantified by qPCR with primers specific to the 16S RNA gene (Table S3). The 2-ddCt method was used to obtain relative transcript levels.

Recombinant protein purification, RNAP and the in vitro transcription assays. Recombinant C. trachomatis σ₆₆₄R₂₄ was expressed in E. coli Rosetta™ (DE3) pLysS cells harboring pLN-σ₆₆₄R₂₄. Cells were grown in LB broth at 37 °C to A₆₀₀ = 0.8, and then protein expression was induced by the addition of isopropyl-1-thio-β-d-galactopyranosidase (IPTG) to a final concentration of 0.5 mM. Protein purification was performed using anion exchange chromatography (Source Q, GE Healthcare), followed by gel filtration purification as previously described39. Recombinant C. trachomatis σ²₈ was purified as previously described39. To make a functional RNAP holoenzyme, the purified σ₆₆₄R₂₄ (2.0 µg) was mixed with 1 unit of E. coli RNAP core (Epicentre Technologies) and incubated on ice for 30 min. The σ²₈-RNAP holoenzyme was reconstituted using E. coli core and purified σ²₈. E. coli σ₇₀ RNAP holoenzyme was purchased from USB. An in vitro transcription assay was performed as described previously10,40, in a 10 µl reaction containing 1 µl 10 × RNA Pol reaction buffer (New England

References:

1. To be added here.
Biolab), 1 μL RNAP holoenzyme, 1 μg of plasmid template, 400 μM ATP, 400 μM UTP, 1.2 μM CTP, 0.2 μM [α-32P] CTP, 100 μM 3′-O-methylguanosine 5′-triphosphate (GE HealthCare), 2 mM DTT, and 20 U RNase inhibitor (USB). The reaction was incubated for 15 min at 37 °C and terminated by adding loading buffer. The transcripts were separated by electrophoresis with 6% polyacrylamide/8 M urea gel and visualized by autoradiography.

Statistical analyses. Data analyses were performed using GraphPad PRISM software. Statistical significance was determined by two-way analysis of variance (ANOVA). Values of *P < 0.05 were considered statistically significant.

References
1. Rekart, M. L. et al. Chlamydia public health programs and the epidemiology of pelvic inflammatory disease and ectopic pregnancy. J Infect Dis 207, 30–38, doi: 10.1093/infdis/jis644 (2013).
2. Newman, L. et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS one 10, e0143304, doi: 10.1371/journal.pone.0143304 (2015).
3. Moulder, J. W. Interaction of chlamydiae and host cells in vitro. Microbiological reviews 55, 143–190 (1991).
4. Aberham, Y. & Belland, R. The chlamydial developmental cycle. FEMS Microbiology Review 29, 499–559 (2005).
5. Shaw, E. I. et al. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Molecular Microbiology 37, 913–925, doi: 10.1046/j.1365-2958.2000.02057.x (2000).
6. Bellard, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100, 8478–8483, doi: 10.1073/pnas.133135100 (2003).
7. Nicholson, T. L., Olinger, L., Chong, K., Schoonlak, G. & Stephens, R. S. Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J Bacteriol 185, 3179–3189 (2003).
8. Gross, C. A. et al. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb Symp Quant Biol 63, 141–155 (1998).
9. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759, doi: 10.1126/science.282.5389.754 (1998).
10. Shen, L. et al. Selective promoter recognition by chlamydial sigma28 holoenzyme. J Bacteriol 188, 7364–7377, doi: 10.1128/JB.00141-06 (2006).
11. Shen, L. et al. Identification and characterization of promoters regulating inf expression in Chlamydia trachomatis serovar. A. Fiches of biochemistry and biophysics 379, 46–56, doi: 10.1006/abbi.2000.1854 (2000).
12. Mathews, S. A. & Stephens, R. S. DNA structure and novel amino and carboxyl termini of the Chlamydia trachomatis σ70 analogue modulate promoter recognition. Microbiology 145, 1671–1681, doi: 10.1099/13500872-145-7-1671 (1999).
13. Tan, M., Wong, B. & Engel, J. N. Transcriptional organization and regulation of the dnaK and groE operons of Chlamydia trachomatis. J Bacteriol 178, 6983–6990 (1996).
14. Douglas, A. L. & Hatch, T. P. Functional analysis of the major outer membrane protein gene promoters of Chlamydia trachomatis. J Bacteriol 177, 6286–6289 (1995).
15. Lonetto, M., Gribskov, M. & Gross, C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174, 3843–3849 (1992).
16. Bellard, R. J. et al. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci USA 100, 15971–15976, doi: 10.1073/pnas.2005894100 (2003).
17. Wang, Y. et al. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. Microbiology 157, 2759–2771, doi: 10.1099/mic.0.044917-0 (2011).
18. Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R. J., Lambden, P. R. & Clarke, I. N. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7, e1002258, doi: 10.1371/journal.ppat.1002258 (2011).
19. Gong, S., Yang, Z., Lei, L., Shen, L. & Zhong, G. Characterization of Chlamydia trachomatis plasmid-encoded open reading frames. J Bacteriol 195, 3819–3826, doi: 10.1128/JB.00511-13 (2013).
20. Bauler, L. D. & Hackstadt, T. Expression and targeting of secreted proteins from Chlamydia trachomatis. J Bacteriol 196, 1325–1334, doi: 10.1128/JB.01290-13 (2014).
21. Agasse, H. & Derrez, I. A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS one 8, e57090, doi: 10.1371/journal.pone.0057090 (2013).
22. Vromman, F., Laverrière, M., Perrin, E., Dufour, A. & Subtil, A. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using gfp-expressing bacteria, microscopy and flow cytometry. PLoS one 9, e91917, doi: 10.1371/journal.pone.0091917 (2014).
23. Zhang, L., Douglas, A. L. & Hatch, T. P. Characterization of a Chlamydia psittaci DNA binding protein (EUC) synthesized during the early and middle phases of the developmental cycle. Infect Immun 66, 1167–1173 (1998).
24. Caldwell, H. D., Kromhout, J. & Schachter, J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31, 1161–1176 (1981).
25. Su, H., Watkins, N., Zhang, Y.-X. & Caldwell, H. D. Chlamydia trachomatis-host cell interactions: Role of the chlamydial major outer membrane protein as an adhesion. Infect Immun 58, 1017–1025 (1990).
26. Wichan, D. G. & Hatch, T. P. Identification of an early-stage gene of Chlamydia psittaci 6RC. J Bacteriol 175, 2936–2942 (1993).
27. Stephens, R. S., Wagar, E. A. & Edman, U. Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis. J Bacteriol 170, 744–750 (1988).
28. Yuan, Y., Zhang, Y. X., Manning, D. S. & Caldwell, H. D. Multiple tandem promoters of the major outer membrane protein gene (ompA) of Chlamydia psittaci. Infect Immun 58, 2850–2855 (1990).
29. Douglas, A. L. & Hatch, T. P. Mutagenesis of the P2 promoter of the major outer membrane protein gene of Chlamydia trachomatis. J Bacteriol 178, 5573–5578 (1996).
30. Whipple, F. W. Genetic analysis of prokaryotic and eukaryotic DNA-binding proteins in Escherichia coli. Nucleic Acids Research 26, 3700–3706, doi: 10.1093/nar/26.16.3700 (1998).
31. Mallios, R. R., Ojcius, D. M. & Ardell, D. H. An iterative strategy combining biophysical criteria and duration hidden Markov models for structural predictions of Chlamydomonas sigma66 promoters. BMC bioinformatics 10, 271, doi: 1471-2105-10-271 (2009).
32. Grech, B., Maetschke, S., Mathews, S. & Timmis, P. Genome-wide analysis of chlamydiae for promoters that phylogenetically footprint. Research in microbiology 158, 685–693 (2007).
33. Dombroski, A. J., Johnson, B. D., Lonetto, M. & Gross, C. A. The sigma subunit of Escherichia coli RNA polymerase senses promoter spacing. Proc Natl Acad Sci USA 93, 8858–8862 (1996).
34. Satche, K. et al. Emendation of the family Chlamydiaceae: Proposal of a single genus, Chlamydia, to include all currently recognized species. Systematic and Applied Microbiology 38, 99–103, doi: 10.1016/j.syapm.2014.12.004 (2015).
35. Shen, L., Li, M. & Zhang, Y. X. Chlamydia trachomatis sigma28 recognizes the fliC promoter of Escherichia coli and responds to heat shock in chlamydiae. *Microbiology* **150**, 205–215 (2004).

36. Voskuil, M. I., Voepel, K. & Chamblish, G. H. The—16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli. *Molecular Microbiology* **17**, 271–279, doi: 10.1111/j.1365-2958.1995.mmi_17020271.x (1995).

37. Hook-Barnard, I., Johnson, X. B. & Hinton, D. M. *Escherichia coli* RNA Polymerase Recognition of a σ70-Dependent Promoter Requiring a —35 DNA Element and an Extended —10 TGN Motif. *Journal of Bacteriology* **188**, 8352–8359, doi: 10.1128/jb.00853-06 (2006).

38. Sabelnikov, A. G., Greenberg, B. & Lacks, S. A. An Extended —10 Promoter Alone Directs Transcription of the DpnII Operon of *Streptococcus pneumoniae*. *J Mol Biol* **250**, 144–155, doi: 10.1006/jmbi.1995.0366 (1995).

39. Agarwal, N. & Tyagi, A. K. Role of 5′-TGN-3′ motif in the interaction of mycobacterial RNA polymerase with a promoter of ‘extended —10′ class. *FEMS Microbiology Letters* **225**, 75–83, doi: 10.1016/s0378-1097(03)00483-x (2003).

40. Rao, X. et al. A regulator from *Chlamydia trachomatis* modulates the activity of RNA polymerase through direct interaction with the beta subunit and the primary sigma subunit. *Genes & development* **23**, 1818–1829, doi: 10.1101/gad.1784009 (2009).

41. Barne, K. A., Bown, J. A., Busby, S. J. W. & Minchin, S. D. Region 2.5 of the *Escherichia coli* RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended-10′ motif at promoters. *EMBO J.* **16**, 4034 (1997).

42. Bao, X., Nickels, B. E. & Fan, H. *Chlamydia trachomatis* protein GrgA activates transcription by contacting the nonconserved region of sigma66. *Proc Natl Acad Sci USA* **109**, 16870–16875, doi: 10.1073/pnas.1207300109 (2012).

43. Koehler, J. E., Burgess, R. R., Thompson, N. E. & Stephens, R. S. *Chlamydia trachomatis* RNA polymerase major sigma subunit. Sequence and structural comparison of conserved and unique regions with *Escherichia coli* sigma 70 and *Bacillus subtilis* sigma 43. *The Journal of biological chemistry* **265**, 13206–13214 (1990).

44. Hua, Z., Rao, X., Feng, X., Luo, X., Liang, Y. & Shen, L. Mutagenesis of region 4 of sigma 28 from *Chlamydia trachomatis* defines determinants for protein-protein and protein-DNA interactions. *J Bacteriol* **191**, 651–660, doi: 10.1128/JB.01083-08 (2009).

45. Niehus, E., Cheng, E. & Tan, M. DNA Supercoiling-Dependent Gene Regulation in *Chlamydia*. *EMBO J.* **6419–6427**, doi: 10.1128/jb.00431-08 (2008).

46. Cheng, E. & Tan, M. Differential Effects of DNA Supercoiling on *Chlamydia* Early Promoters Correlate with Expression Patterns in Midcycle. *Journal of Bacteriology* **194**, 3109–3115, doi: 10.1128/jb.00242-12 (2012).

47. Beatty, W. L., Morrison, R. P. & Byrne, G. I. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. *Microbiological reviews* **58**, 686–699 (1994).

48. Engström, P., Bailey, L., Önskog, T., Bergström, S. & Johansson, J. A comparative study of RNA and DNA as internal gene expression controls early in the developmental cycle of *Chlamydia pneumoniae*. *FEMS Immunology & Medical Microbiology* **58**, 244–253, doi: 10.1111/j.1574-696X.2009.00631.x (2010).

49. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to Image J: 25 years of image analysis. *Nat Meth* **9**, 671–675 (2012).

Acknowledgements

We are grateful to Drs Ina Clarke (University of Southampton, UK), David Hackstadt (Rocky Mountain Laboratories, NIH), and Ann Hochschuld (Harvard University Medical School) for their generous gifts of plasmids. This work is supported by NIAID/NIH Grant R56 AI093565 and the Louisiana State University School of Medicine’s Dean’s Research Bridge Funding. This work is also supported by the National Natural Science Foundation of China 81370777.

Author Contributions

L.S. designed the study. Y.C, L.S., Y.Z., L.G., Y.X. and H.E. performed experiments. L.S and Y.C wrote the main manuscript and all authors reviewed the results and approved the final version of the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Cong, Y. et al. Quantifying promoter activity during the developmental cycle of *Chlamydia trachomatis*. *Sci. Rep.* **6**, 27244; doi: 10.1038/srep27244 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/