Exceptional H_2 emission in the Antennae galaxies:
Pre-starburst shocks from the galaxy collision*

Martin Haas1, Rolf Chini1, and Ulrich Klaas2

1 Astronomisches Institut, Ruhr-Universität Bochum (AIRUB), Universitätsstr. 150 / NA7, 44780 Bochum, Germany
2 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Received 13. Dec. 2004; accepted 20. Jan. 2005

Abstract. The collision of gas-rich galaxies is believed to produce strong shocks between their gas clouds which cause the onset of the observed bursts of extended star formation. However, the so far observed shock signatures in colliding galaxies can be explained essentially by winds from already existing massive stars and supernovae and thus do not give any evidence for an outstanding pre-starburst phase. Either pre-starburst gas shocks are too short-lived to be detected or one has to modify our perception of colliding galaxies. A dedicated analysis of ISOCAM-CVF mid-infrared spectral maps led us to the discovery of exceptional H_2 $v=0-0$ S(3) $\lambda=9.66\mu$m line emission from the “Antennae” galaxy pair, which is at an early stage of galaxy collision. Its H_2 line luminosity, normalized by the far-infrared luminosity, exceeds that of all other known galaxies and the strongest H_2 emission is spatially displaced from the known starbursts regions. This implies that most of the excited H_2 gas in the Antennae must be shocked due to the collision of the two galaxies. These observations indicate that the outstanding phase of pre-starburst shocks exists, and that they might be a key to our understanding of the formation of the first proto-galaxies.

Key words. Galaxies: interacting – Galaxies: ISM – Galaxies: starburst – Galaxies: evolution – Galaxies: individual: Antennae

1. Introduction

Bursts of star formation are frequently observed in gas-rich interacting galaxies, leading to a picture of different evolutionary starburst phases. Consensus is growing that after the firstignition of massive stars, further cascades of starbursts are triggered by the blast waves of massive stars and supernovae compresing the surrounding medium, as is indicated by observations of star forming regions in our Galaxy (Ögelman & Maran 1976, Elmegreen & Lada 1977). However, very little is known about the conditions immediately before the onset of the explosive star formation event, in particular the pre-starburst phase at the beginning of a cascade. Establishing basic principles thereof would be of general value.

Theoretical considerations as well as numerical simulations suggest that the ignition of starbursts requires not only dense gas reservoirs, but also shocks causing the gas clouds to collapse (Scoville et al. 1986, Jog & Solomon 1992, Barnes 2004). Although this picture is widely accepted, direct evidence for such pre-starburst shocks is yet missing due to the difficulty of observing the presumably short-lived phase itself. Any so far detected shock signatures in colliding galaxies can be explained by winds from already existing massive stars and supernovae (e.g. Campbell & Willner 1989, Kunze et al. 1996, Rigopoulou et al. 2002, Lutz et al. 2003, Ohyama et al. 2004). Furthermore, colliding systems in an advanced merger stage show already strong relics from previous starbursts. Since it may be hard to separate regions of already ongoing starbursts from those in a pre-starburst phase, the challenge is to find a rather virgin pair of colliding galaxies where most of the gas is still on the verge of collapse.

NGC 4038/4039 is the prototype of a colliding galaxy pair, due to its long tidal tails nicknamed the “Antennae”. The system is at an early stage of encounter (Toomre 1977, Mihos & Hernquist 1996). Although a luminous infrared galaxy with $L_{\text{FIR}}\sim5\times10^{10} L_{\odot}$ (Klaas et al. 1997), its current star formation efficiency is yet low, with an average value $L_{\text{FIR}}/M_{\text{gas}} = 4L_{\odot}/M_{\odot}$ comparable to that of normal star forming galaxies (Gao et al. 2001). Of particular interest is the overlap region of the two galaxy disks which exhibits a large amount of molecular gas (Stanford et al. 1990, Young et al. 1995, Wilson et al. 2000, Gao et al. 2001), permeated by compressed magnetic fields (Chyzy & Beck 2004). There are ongoing starbursts, the most violent ones are still heavily dustenshrouded and located south of the molecular gas concentrations (Vigroux et al. 1996, Mirabel et al. 1998). Hence, the Antennae are in a stage of further imminent extra-nuclear starbursts (Haas et al. 2000, Gao et al. 2001) and therefore well suited to search for pre-starburst shocks.

Send offprint requests to: Martin Haas (haas@astro.rub.de)

* Based on observations with the Infrared Space Observatory ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
A well known observational signature for shocks is the line emission of molecular hydrogen (H$_2$) although its excited states may also be induced by hard photons from already existing starbursts or by winds from supernova explosions (e.g. Hollenbach & McKee 1989, Sternberg & Neufeld 1999). So far, H$_2$ line emission has been detected in three small areas of the Antennae: The two nuclei display fairly inconspicuous H$_2$ luminosities compared to other starburst systems (Campbell & Willner 1989), while the H$_2$ emission in the southern edge of the overlap region has been attributed to the active starbursts there (Kunze et al. 1996). Hence, pre-starburst shocks have to be searched for in other regions of the Antennae.

2. Data

The ISO Data Archive (Kessler et al. 2003) provides valuable mid-infrared spectral maps of the entire Antennae system obtained with the ISOCAM Circular Variable Filter (CVF) mode (Cesarsky et al. 1996). Since only small portions of this data set have yet been published addressing other topics (Vigroux et al. 1996, Mirabel et al. 1998, Haas et al. 2002), we have reduced and evaluated the full 3D data cube. We checked the CVF frames and photometry by comparing with images in the 6.0, 6.7, 9.6, and 14.3 μm filters. By visual inspection we assured that the CVF frames do neither show ghost features, which may sometimes occur, nor any measurable effect of straylight within the typical calibration accuracy of about 30% (Blommaert et al. 2003).

3. Results and Discussion

Figure 1 shows the 5-16μm spectrum derived from a region, which encompasses the two nuclei as well as the overlap region in-between. Among several spectral features we focus here on the well discerned rotational H$_2$ line at $\lambda_{\text{obs}} = 9.72$ μm ($\lambda_{\text{rest}} = 9.66$ μm), designated in detail H$_2$ v = 0-0 S(3).

Figure 2 shows the total continuum-subtracted H$_2$ line map superimposed on an optical three colour image of the Antennae. Obviously, most of the H$_2$ line emission arises from the overlap region. While the most active starbursts are concentrated in the southern part of the overlap region (Mirabel et al. 1998) the northern part is less active displaying five times weaker starburst ionisation lines (Vigroux et al. 1996), cooler dust (Haas et al. 2000), more regular and stronger compressed magnetic fields (Chyzy & Beck 2004) and ten times fainter X-ray emission on the Chandra map (Fabbiano et al. 2000). In contrast, the H$_2$ line emission is evenly strong in both the southern and the northern part of the overlap region suggesting that most of the H$_2$ line emission is generated independently of the already active starbursts.

The continuum-subtracted H$_2$ line flux integrated over the entire area is 3.3×10^{-15} W m$^{-2}$, which corresponds to a line luminosity L(H$_2$) = 4.5×10^7 L$_\odot$ for a distance of 21 Mpc; correcting for a screen extinction $A_{9.7\mu m} = 0.6$ mag (Kunze et al. 1996) this value rises to 8×10^7 L$_\odot$. In order to estimate how much of this H$_2$ luminosity can be attributed to starbursts, we compare with the far-infrared luminosity L$_{\text{FIR}}$, which is an ideal tracer for the power of ongoing and still dust-enshrouded star formation events. As shown in Figure 3, the Antennae exhibit the highest L(H$_2$)/L$_{\text{FIR}}$ ratio relative to other FIR bright galaxies; their values were determined from the ISO Archive or taken from the literature (Spoon et al. 2000, Rigopoulou et al. 2002, Lutz et al. 2003). While luminous and ultra-luminous infrared galaxies in general have extinction corrected L(H$_2$)/L$_{\text{FIR}}$ ratios in the range of 10^{-5} to at most 10^{-4}, the corresponding value for the Antennae (1.25×10^{-3}) is more than ten times higher. Remarkably, this value exceeds even that of NGC 6240, known as the hitherto most pronounced H$_2$ emitter (Joseph et al. 1984, Herbst et al. 1990, van der Werf et al. 1993).

The primary suggestion, that in NGC 6240 the pre-starburst phase from the initial galaxy collision has been detected, turned out to be questionable: Today the high L(H$_2$)/L$_{\text{FIR}}$ ratio of this fairly advanced merger is believed to stem from extreme supernova winds, setting in roughly 10 million years after the previous nuclear starbursts (Tecza et al. 2000). These superwinds show up via the strong LINER spectrum and extended soft X-ray bubbles and are running now against the gas between the two nuclei causing the H$_2$ emission (Ohyama et al. 2003, Max et al. 2005).

In contrast, in the rather virgin Antennae the exceptionally high L(H$_2$)/L$_{\text{FIR}}$ ratio is neither accompanied by a high total FIR luminosity nor by a warm $f_{60\mu m}/f_{100\mu m}$ colour typical for most active starbursts, nor by a conspicuous LINER-type spectrum (L´ıpari et al. 2003). Again, this suggests that the H$_2$ emission cannot be a consequence of already active starbursts: In case of UV fluorescence and X-ray excitation of the H$_2$ line and...
even for shocks from supernova winds one would expect that the accompanying starbursts are reflected by the far-infrared luminosity, as it holds for luminous and ultra-luminous infrared galaxies with $L(H_2)/L_{\text{FIR}} < 10^{-4}$.

The exceptional $L(H_2)/L_{\text{FIR}}$ ratio together with the spatial displacement of the H_2 emission from the known vigorous starburst regions leads to the conclusion that in the Antennae much of the molecular gas is in an extraordinary phase, excited by a process not related to young stars and supernovae but originating from pre-starburst shocks running through the clouds. Since the shocks may quickly lead to the formation of massive stars having a lifetime in the order of 10^6 years, the phase with exceptionally high $L(H_2)/L_{\text{FIR}}$ which we see for the Antennae might be rather short-lived compared with the 10^8 years typically required for the whole merger process. Hence it is observationally rare, suggesting that such a pre-starburst phase is actually a common phenomenon during the early encounter of colliding galaxies.

At a first glance, the shocks may arise from direct H_2 cloud-cloud collisions due to the encounter of the two galaxy disks. A more detailed consideration, however, suggests that essentially the atomic HI clouds collide due to the higher impact efficiency, thereby creating an overpressure medium which leads to shocks at the surfaces of the H_2 clouds (Jog & Solomon 1992). In fact, high resolution (10") VLA maps of the Antennae show enhanced HI emission at the northern edge of the overlap region (Hibbard et al. 2001) marked by the green cross in Figure 2, close to the area of the bright H_2 line emission, in accordance with the overpressure model.

A rough estimate of the temperature and mass of the H_2 S(3) emitting gas of the Antennae can be obtained by standard procedures comparing with other H_2 line fluxes (c.f. Sect. 3.1. in Rosenthal et al. 2000). H_2 S(5) at $\lambda=6.91\mu m$ is blended with the [Ar II] $\lambda=6.99\mu m$ line (Fig. 1). Adopting that about one sixth to one half of the observed 7μm feature flux of $6 \times 10^{-15} \text{Wm}^{-2}$ is due to H_2 S(5), the temperature $T_{S(5)-S(3)}$ is about 575-825 K, a range also found for other starburst galaxies (Rigopoulou et al. 2002, Lutz et al. 2003). The mass of the molecular gas in the upper rotational level $J=5$ is $2.6 \times 10^5 \text{M}_\odot$.

The strength of the impending starbursts in the Antennae can be estimated from the total amount of excited molecular gas, even at cooler temperatures emitting the H_2 v=0-0 S(1) line. H_2 S(1) line observations are only available for a small 14"x27" area in the southern overlap region. For the entire Antennae we therefore extrapolate the H_2 S(1) line luminosity from these ISOSWS observations (Kunze et al. 1996). For this extrapolation we adopt a constant H_2 S(1) / H_2 S(3) ratio across the Antennae. Since this ratio might be higher in less active regions outside the area covered by the ISOSWS observations, this is a conservative assumption leading to a lower limit on the actual H_2 S(1) luminosity. We find that about 10% of the Antennae's total H_2 S(3) emission arise from a 14"x27" area. If also the H_2 S(1) emission from this ISOSWS area makes up 10% of that in the 2'x2' area, the mass of excited H_2 observed in the S(1) transition at a temperature $T \sim 200 \text{ K}$
Fig. 3. Comparison of the ratio $L(\text{H}_2 \ S(3))/L(\text{FIR})$ with the far-infrared $8 \cdot 1000$ μm luminosity. While the Antennae galaxy system has only a moderate FIR luminosity compared with other infrared galaxies, it exhibits the highest $\text{H}_2 \ S(3)$ to FIR luminosity ratio. The horizontal dotted lines indicate the range between 10^{-5} and 10^{-4} found for infrared galaxies with obviously inconspicuous H_2 luminosity. The $L(\text{H}_2 \ S(3))/L_{\text{FIR}}$ ratios of many sources are upper limits and, apart from the exotic merger N6240, the extreme starburst galaxy M82 is the only object reaching $L(\text{H}_2 \ S(3))/L_{\text{FIR}} = 10^{-4}$. Less active isolated galaxies like N253 and N4945 – having 60 to 100 μm flux ratio below 0.5 – show a ten times smaller $L(\text{H}_2 \ S(3))/L_{\text{FIR}}$ value of about 10^{-5}. For comparison, active starburst galaxies have $f(60)/f(100) \sim 1$, while the Antennae have $f(60)/f(100) \sim 0.7$.

(adapted from Kunze et al. 2000) yields about $4.9 \times 10^8 \ M_\odot$ for the entire Antennae; this corresponds to about 5% of the total gas mass of $9.6 \times 10^9 \ M_\odot$ as derived from CO observations covering a comparable area (Young et al. 1995). An open issue is whether or not the currently shocked gas is transformed into stars or whether much more of the gas is involved in the future star formation process with only a small fraction being currently gripped by the shock wave. Adopting that about 20% of the shocked H_2 of $5 \times 10^8 \ M_\odot$ collapses into stars during the next 10^6 years, the resulting average star forming rate is $100 \ M_\odot$/year. This is an extreme value found only for ultra-luminous infrared galaxies. If the gas mass of $10^8 \ M_\odot$ is converted to stars of about $20 \ M_\odot$, each having a luminosity of about $10^4 \ L_\odot$, the luminosity of the Antennae will increase by about $5 \times 10^{10} \ L_\odot$, hence it will be doubled. In order to become ultra-luminous much heavier nuclear starbursts are required during further stages of the merger process.

Eventually, the shock-induced star formation may have played a role in the evolution of proto-galaxies in the early universe at a redshift $z \sim 20$. The very first stellar generation with zero metallicity, the population III stars, must have formed during a short episode; otherwise their metallicity would have been raised. Due to the lack of appropriate radiative cooling via metals the kinetic energy in the gas clouds remains at a high level. Therefore, the clouds need time to accumulate the higher amount of gas required before they can collapse according to the Jeans criterion. In order to fit the constraints, strong simplifications for the processes in the early universe have to be made (e.g. Abel et al. 2002). Our results for the Antennae suggest that shocks could provide a natural trigger for speeding-up the collapse of clouds also in colliding proto-galaxies.

Acknowledgements. It is a pleasure for us to thank Olivier Laurent for help with the ISOCAM-CVF data reduction, Rainer Beck, Hans Hippelein and Theodor Schmidt-Kaler for stimulating discussions, and the referee Bruno Altieri for constructive suggestions. For photometry NED and SIMBAD were used. This research was supported by Nordrhein-Westfälische Akademie der Wissenschaften and by Deutsches Zentrum für Luft- und Raumfahrt (DLR).

References

Abel T., Bryan G.L., Norman M.L., 2002, Science 295, 93
Barnes J., 2004, MNRAS 350, 789
Blommaert J., Siebenmorgen R., Coulais A., et al., 2003, The ISO Handbook: Vol II. The ISO Camera, ESA-SP 1262
Campbell A., Willner S., 1989, AJ 97, 905
Cesarsky C., Abregel A., Agnese P., et al., 1996, A&A 315, L32
Chyzy K., Beck R., 2004, A&A 417, 541
Elmegreen B.G., Lada C.J., 1977, ApJ 214, 725
Fabbiano G., Zetas A., Murray S.S., 2000, ApJ 554, 1035
Gao Y., Lo K., Lee S.-W., Lee T.H., 2001, ApJ 548, 172
Haas M., Klaas U., Coulson I., et al. 2000, A&A 356, L83
Haas M., Klaas U., Bianchi S., 2002, A&A 385, L23
Herbst T., Graham T., Tsutsui K., et al. 1990, AJ 99, 1773
Hibbard J., van der Hulst J., Barnes J., Rich R., 2001, AJ 122, 2969
Hollenbach D., McKee C.F., 1989, ApJ 342, 306
Jog C.J., Solomon P.M., 1992, ApJ 387, 152
Joseph R.D., Wade R., Wright G.S., 1984, Nature 311, 133
Kessler M., Müller T., Leech K., et al., 2003, The ISO Handbook: Vol I. Mission & Satellite overview, ESA-SP 1262
Klaas U., Haas M., Heinrichsen I., Schulz B., 1997, A&A 325, L21
Kunze D., Rigopoulou D., Lutz D., et al., 1996, A&A 315, L101
Lépine J., Terlevich R., Díaz R., et al., 2003, MNRAS 340, 289
Lutz D., Sturm E., Genzel R., et al., 2003, A&A 409, 867
Max C., Canalizo G., et al., 2005, ApJ accepted [astro-ph/0411590]
Mihos J., Hernquist L., 1996, ApJ 464, 641
Mirabel F., Vigroux L., Charmandaris V., et al., 1998, A&A 333, L1
Ögelman H.B., Maran S.P., 1976, ApJ 209, 124
Ohyama Y., Yoshida M., Takata T., 2003, AJ 126, 2291
Rigopoulou D., Kunze D., Lutz D., et al., 2002, A&A 389, 374
Rosenthal D., Bertoldi F., Drapatz S., 2000, A&A 356, 705
Scoville N.Z., Sanders D.B., Clemens D.P., 1986, ApJ 310, L77
Spoon H., Koormee J., Moorwood A., et al., 2000, A&A 357, 898
Stanford S., Sargent A., Sanders D., Scoville N., 1990, ApJ 349, 492
Sternberg A., Neufeld D.A., 1999, ApJ 516, 371
Tecza M., Genzel R., Tacconi L., et al., 2000, ApJ 537, 178
Toomre A., 1977, in "The evolution of galaxies and stellar populations" ed. B.M. Tinsley & R.B. Larson, 401
van der Werf P., Genzel R., Krabbe A., et al., 1993, ApJ 405, 522
Vigroux L., Mirabel F., Altieri B., et al., 1996, A&A 315, L93
Whitmore B., Schweizer F., 1995, AJ 109, 960
Wilson C., Scoville N., Madden S., Charmandaris, 2000, ApJ 542, 120
Young J., Xie S. Tacconi L., et al., 1995, ApJS 98, 219