Tibet Orbivirus, a novel Orbivirus species isolated from Anopheles maculatus mosquitoes in Tibet, China

Minghua Li
Chinese Center for Disease Control and Prevention, Beijing

Yayun Zheng
Chinese Center for Disease Control and Prevention, Beijing

Guoyan Zhao
Washington University School of Medicine in St. Louis

Shihong Fu
Chinese Center for Disease Control and Prevention, Beijing

David Wang
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Li, Minghua; Zheng, Yayun; Zhao, Guoyan; Fu, Shihong; Wang, David; Wang, Zhiyu; and Liang, Guodong, "Tibet Orbivirus, a novel Orbivirus species isolated from Anopheles maculatus mosquitoes in Tibet, China." PLoS One. 9,2. e88738. (2014).
https://digitalcommons.wustl.edu/open_access_pubs/3048

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Tibet Orbivirus, a Novel Orbivirus Species Isolated from Anopheles maculatus Mosquitoes in Tibet, China

Minghua Li1,3, Yayun Zheng1,2,*, Guoyan Zhao3, Shihong Fu1, David Wang3, Zhiyu Wang2, Guodong Liang1,2,*

1 State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 2 School of Public Health, Shandong University, Jinan, Shandong Province, China, 3 Washington University, St. Louis, Missouri, United States of America

Abstract

Background: The genus Orbivirus includes a number of important pathogenic viruses, including Bluetongue virus (BTV), African horse sickness virus (AHSV), and Epizootic hemorrhagic disease virus (EHDV). In this study we describe the isolation and characterization of an Orbivirus strain isolated from Anopheles maculatus mosquitoes collected in Tibet, China.

Methods and Results: Initial viral screening identified a viral strain (XZ0906) that caused significant cytopathic effect (CPE) in BHK-21 cells, including rounding, cell rupture, and floating. Although CPE was not observed in insect cells (C6/36), these cells supported viral replication. Polyacrylamide gel analysis revealed a genome consisting of 10 segments of double-stranded RNA (dsRNA), with a distribution pattern of 3-3-3-1. 454 high throughput sequencing of culture supernatant was used for viral identification. Complete genome sequencing was performed by Sanger sequencing in combination with 5' RACE and 3'-RACE. Sequence analysis demonstrated that all 5' and 3' untranslated regions (UTRs) for each of the 10 genome segments contained a series of six highly conserved nucleotides. In addition, homology analysis and phylogenetic analysis based on amino acid sequence was completed, and all results show that virus XZ0906 was not a member of any known species or serotype of Orbivirus, indicating it to be a new species within the genus Orbivirus.

Conclusions: The isolated Orbivirus strain was designated Tibet Orbivirus, TIBOV to denote the location from which it was isolated. TIBOV is a novel orbivirus species which is isolated from Anopheles maculatus mosquitoes collected in Tibet, China.

Citation: Li M, Zheng Y, Zhao G, Fu S, Wang D, et al. (2014) Tibet Orbivirus, a Novel Orbivirus Species Isolated from Anopheles maculatus Mosquitoes in Tibet, China. PLoS ONE 9(2): e88738. doi:10.1371/journal.pone.0088738

Editor: Jianming Qiu, University of Kansas Medical Center, United States of America

Received November 2, 2013; Accepted January 9, 2014; Published February 12, 2014

Copyright: © 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by grants from National Natural Science Foundation of China (81290342), The Ministry of Science and Technology, China (2011CB504702) and Development Grant of State Key Laboratory for Infectious Disease Prevention and Control (2008SKLID105). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gdliang@hotmail.com

These authors contributed equally to this work.

Introduction

There are currently 22 confirmed species of the genus Orbivirus in the family Reoviridae [1]. This genus includes a number of important pathogenic viruses, including Bluetongue virus (BTV), African horse sickness virus (AHSV), and Epizootic hemorrhagic disease virus (EHDV) [1,2], which are spread primarily through insect vectors, such as Culicoides midges, ticks, mosquitoes, and phlebotomine flies [1,3-6].

Orbiviruses contain a multi-segmented, double-stranded RNA genome, consisting of 10 segments (Seg1–Seg10) of various length, which are identified according to their molecular weight [7]. Partial nucleotide sequences for each of the gene segments for many of the Orbiviruses have been published, along with complete genome sequences of some species [3,5,8–10], allowing for detailed classification and phylogenetic analysis of Orbiviruses.

This study describes a viral strain (XZ0906) isolated from Anopheles maculatus specimens collected in Tibet, China. All the results of initial viral screening showed a difference between XZ0906 and Yunnan Orbivirus (YUOV), an orbivirus also isolated from China. After whole genome sequencing, amino acid homology and molecular phylogenetic analysis, XZ0906, which is designated as Tibet Orbivirus (TIBOV), is identified as a novel species of the genus Orbivirus.

Materials and Methods

1. Cell culture
Aedes albopictus C6/36 cells and BHK-21 (Baby hamster kidney) cells (ATCC) were used in this study [11], and both cell lines were kept in our laboratory. C6/36 cells were maintained in medium with 45% RPMI 1640 and 45% DMEM (Invitrogen) supplemented with 10% inactivative fetal bovine serum (FBS, Invitrogen) and 100 U/mL penicillin and streptomycin. Cells were propagated and maintained at 28°C [11–13]. BHK-21 cells were grown in minimal essential medium with Eagle's balanced salt solution supplemented with 10% FBS (Invitrogen), 2 mM glutamine, 0.12% NaHCO3, and 100 U/mL penicillin and streptomycin.
Table 1. Primers used in this study.

Primer	Sequence (5’-3’)	Position	Orientation
6-1-1F	GTAAATCATATAATGTCG	1–18	Sense
6-1-1R	TACGAGCAATCTCCCCAAG	826–843	Antisense
6-1-2F	TGAAGAGGAGGGGCTGAG	679–697	Sense
6-1-2R	TAGACCTCTTGTTTTGGT	1531–1548	Antisense
6-1-3F	AGTCGAAAAGAAGTTTGGT	1385–1402	Sense
6-1-3R	CGACGTAAATATACGCTT	2310–2327	Antisense
6-1-4F	ATTTAGCATGATAGCACAG	2152–2171	Sense
6-1-4R	GAGAAATGCCCGGTGTT	3064–3081	Antisense
6-1-5F	ATGGGACCCCCATCATAA	2874–2891	Sense
6-1-5R	CGTCTCCTCCCTGCACAA	3786–3803	Antisense
6-1-6F	CTGAAATAATGGATCCTGTTGA	3019–3040	Sense
6-1-6R	GTAAATGTAGATAGCGCC	3926–3950	Antisense
6-2-1F	GTAAACCTGAGCTTGGAAGACCTT	1–25	Sense
6-2-1R	CGACTCCCTCTCTGAAAT	940–957	Antisense
6-2-2F	ATTTGGGAATGTTGAGT	760–777	Sense
6-2-2R	TTCATACGTTGTTGTAAG	1549–1566	Antisense
6-2-3F	TTAATAGTTGATGTTGCACTT	1428–1447	Sense
6-2-3R	CATCCTTACCTTGCACGG	2270–2287	Antisense
6-2-4F	GGGCATACGGCGGAGAAT	2021–2038	Sense
6-2-4R	GTAAGTAAATCTGCTGTGATC	2864–2888	Antisense
6-3-1F	GTAAATTTCTGGCCGATGCTGTA	1–25	Sense
6-3-1R	ACCGGAGTGGTATGATGT	824–841	Antisense
6-3-2F	GCTCGGACCCACTTTACC	637–654	Sense
6-3-2R	TGCTGCCACAAGCATCAG	1515–1532	Antisense
6-3-3F	GTAGTCTGGCAATCTCGT	2248–2265	Sense
6-3-3R	TATAATGGATGGGCTGTC	1356–1373	Antisense
6-3-4F	GTAAGTGTATTCCCGTTGCAGTCGG	2745–2769	Antisense
6-3-4R	TATTGGAGCGTGAAGCAT	2056–2073	Sense

BHK-21 cells were propagated and maintained at 37°C under a 5% CO2 atmosphere [11–13].

2. Viral isolation

Mosquito samples were collected in Medog County (altitude 1000 m) in the Nyingchi area of Tibet, China during the summer of 2009, and transported to the laboratory in liquid nitrogen containers, following morphological classification and species identification on-site. All specimens were homogenized and centrifuged at 12000 x g for 30 min at 4°C. To isolate the virus, 150 μL of supernatant was then added to monolayers of both C6/36 and BHK-21 cells, and cultured at 28 and 37°C, respectively, in a 5% CO2 incubator. Cells were monitored at 24-h intervals to identify cytopathic effects (CPE) associated with infection [11–13].

3. dsRNA-polyacrylamide gel electrophoresis

Viral RNA was isolated as described previously, and analyzed by polyacrylamide gel electrophoresis [13].

4. Preparation of viral DNA and RNA and 454 sequencing

Viral DNA was extracted from 200-μL aliquots of virus-infected BHK-21 cell culture supernatants using a QIAamp DNA Blood Mini Kit (Qiagen). Viral RNA was extracted from 140-μL aliquots of virus-infected BHK-21 cell culture supernatant using a QIAamp Viral RNA Mini Kit (Qiagen) according to the manufacturer’s instructions. cDNA was made with a Ready-To-Go kit (GE Healthcare) using random hexanucleotide primers. Samples were then amplified as described previously [14,15]. Amplification products were pooled, adaptor-ligated, and sequenced at the Washington University Genome Sequencing Center on the 454 GS-FLX platform (454 Life Sciences, Branford, CT).

Because the nucleic acids used for sequencing contained a mixture of host cell DNA and viral RNA, sequencing reads were filtered using the custom informatics pipeline VirusHunter [16] to identify viral sequences. Sequences identified as most similar to viruses in the genus Orbivirus, as well as those that had no significant hit to any sequence in the GenBank database, were assembled with Newbler (454 Life Sciences) using the default parameters. Sequences were trimmed to remove primer sequences prior to data analysis and assembly.
Genus	Species	Abbreviation	Strain/Serotype	GenBank accession no.
Genus Orbivirus	African horsesickness virus	AHSV-1	HS29-62/serotype1	FJ183364
	AHSV-2	HS02-07/	FJ196584	
	AHSV-4	HS32-62/	JQ796724	
	AHSV-9	E41-02(Or)/	U94887	
	Bluetongue virus	BTV-1	S297-1/serotype1	JN848759
	Bluetongue virus	BTV-1A	Australia	P20608
	Bluetongue virus	BTV-2	BTV-2IT(L)/serotype2	JN255862
	Bluetongue virus	BTV-4	BTV-4IT(L)/serotype4	JN255882
	Bluetongue virus	BTV-6	USA2006-01/serotype6	GQ506536
	Bluetongue virus	BTV-9	BTV-9IT(L)/serotype9	JN255902
	Bluetongue virus	BTV-12	BTV12-PT2003/serotype12	GU390658
	Changuinola virus	CGLV	BeAr478620	HQ397615
	Corriparta virus	CORV	CSIRO1740	HQ397617
	Epizootic hemorrhagic disease virus	EHDV-1	New Jersey/serotype1	NC_013396
	Epizootic hemorrhagic disease virus	EHDV-2	Ibaraki/serotype2	AM745077
	Epizootic hemorrhagic disease virus	EHDV-2	Alberta/serotype2	AM744997
	Epizootic hemorrhagic disease virus	EHDV-6	318/serotype6	AM745067
	Equine encephalosis virus	EEV	HS103-06	FJ183384
	Eubenangee virus	EUBV	AUS1963/01	JQ070376
	Great Island virus	GIV	CanAr-42	ADMM88592
	Broadhaven virus	BRDV	BRDV	NA
	Kemerovo virus	KEMV	EgAn 1169-61	ADMM8609
	Lipovnik virus	LIPV	CzArLip-91	ADMM8603
	Tribec virus	TRBV	TRBV	ADMM8606
	Itupiranga virus	ITUV	BeAr121086	HQ397639
	Maticare virus	MATV	MARU21343	HQ397640
	Orungo virus	ORUV	IBH11306-84	H397641
	Palyam virus	PALV	Chuzan	BAA76549
	St Croix River virus	SCRv	SCRv	AAG34363
	Umatilla virus	UMAV	USA1969/01	AEE98368
	Stretch Lagoon virus	SLOV	K49460	ACH91290
	Wallal virus	WALV	Ch12048	NA
	Warrego virus	WARV	VS080	ABM92924
	Warrego virus	WARV	Ch9935	ABM99690
	Wongorr virus	WGRV	CSIROS1	H397668
	Wongorr virus	WGRV	mrm13443	NA
	Wongorr virus	WGRV	Paroo-River	NA
	Yunnan orbivirus	YUOV	YOV-77-2	YP443925
	Middle point orbivirus	MPOV	DPP4440	ABU95014
Genus	Species	Abbreviation	Strain/Serotype	GenBank accession no.
---------------	----------------------------------	--------------	-----------------	-----------------------
			VP1(RdRp)	T 2
Genus Phytoreovirus	Rice dwarf virus	RDV-A	A	BAA14222
	Rice dwarf virus	RDV-Ch	Chinese	AAB18743
	Rice dwarf virus	RDV-H	H	BAA01074
Genus Rotavirus	Rotavirus A (Bovine rotavirus A)	BoRV-A/UK	UK WT BRV4A	CAA39085
	Rotavirus A (Bovine rotavirus A)	SIRV-A/SA11	Simian	AACS6684
	Rotavirus C (Porcine rotavirus C)	PoRV-C/Co	Co	AAB00801
Genus Seadornavirus	Banna virus	BAV	BAV-Ch	AAFF77631
	Kadipiro virus	KDV	JKT-7015	AAFF78848
	Liao ning virus	LNV	LNSV-NE9731	AAQ83562
Genus Cardoreovirus	Eriocheir sinensis reovirus	ESRV	905	AAT111887
Genus Mimoreovirus	Micromonas pusilla reovirus	MPRV	MPRV	AAZ94041
Genus Aquareovirus	Aquareovirus A (Chum salmon reovirus)	CSRV	CSRV	AAL31497
	Aquareovirus A (Striped bass reovirus)	SBRV	SBRV	AAM93410
	Aquareovirus C (Grass carp reovirus)	GCRV	GCRV	AAG10436
	Aquareovirus C (Golden shiner reovirus)	GSRV	GSRV	AAM92745
	Aquareovirus G (Golden ide reovirus)	GIRV	GIRV	AAM93415
Genus Cypovirus	Dendrhyus punctatus cytoplasmic polyhedrosis virus-1	DsCPV-1	DsCPV-1	AAN46860
	Lymnantria dispar cytoplasmic polyhedrosis virus-14	LdCPV-14	LdCPV-14	AAK73087
Genus Coltivirus	Colorado tick fever virus	CTVF	Florio	AAK00595
	Eyach virus	EYAV	Fr578	AAM18342
Genus Dinovernavirus	Aedes pseudoscutellaris reovirus	APRV	APRV	AAZ94068
Genus Fijivirus	Nilaparvata lugens reovirus	NLRV-Iz	Izumo	BAA08542
Genus Mycoreovirus	Mycoreovirus 1 (Cryphonectria parasitica reovirus)	CpMYRV-1	9B21	AAP45577
	Mycoreovirus 3 (Rosellinia RnMYRV-3 anti-rot virus)	RArV	RArV	BAC98431
Genus Orthoreovirus	Mammalian orthoreovirus MRV-1	Lang	Lang	AAA47234
	Mammalian orthoreovirus MRV-2	Jones	Jones	AAA47245
	Mammalian orthoreovirus MRV-3	Dearing	Dearing	AAA47255
	Mammalian orthoreovirus MRV-4	Ndele	Ndele	AAL36027
Genus Oryzavirus	Rice ragged stunt virus	RRSV-Th	Thai	AAC36456

Note: NA, Not available.

doi:10.1371/journal.pone.0088738.t002
5. Complete genome sequencing including 5'- and 3'-untranslated regions

Reverse-transcription polymerase chain reaction (RT-PCR) was performed to fill in gaps between viral gene sequences obtained with 454 sequencing using contig-specific primers. Total viral RNA was extracted as described in Step 4, cDNA was generated by reverse transcription, and used as a template for complete genome amplification. Next, a set of specific primers was designed to amplify each segment of the viral genome and the amplification products were sequenced using the Sanger method (Table 1). 5'-RACE and 3'-RACE systems (Rapid Amplification of cDNA Ends), Version 2.0 (Invitrogen) were used to amplify the 5'- and 3'-UTRs from each of the 10 segments, respectively. 5'-RACE was performed according to the manufacturer’s instructions. For 3'-RACE, a PolyA tail was first added to RNA using a PolyA polymerase. 3'-UTR sequences were then generated by RT-PCR using sequence-specific and oligo-dT-adapter primers. Sequence assembly was performed resulting in a complete viral genome.
6. Molecular detection of viral genes in cell culture

Viral replication was detected in infected C6/36 and BHK21 cells using RT-PCR for specific regions for TIBOV segment 1 and segment 2. Total RNA was extracted from cell culture supernatants as described in Step 4. cDNA was then generated by reverse transcription, and used as a template for RT-PCR. Gene amplification was performed using primers 6-1-5R and 6-1-5F (primers for Seg1), 6-2-2R and 6-2-2F (primers for Seg2), etc.

Figure 4. Contigs assembled from 454 sequencing reads compared with BTV. Blue bars represent RNA segments from the BTV reference genome; red bars represent assembled viral contigs. Contig lengths and coverage are shown below each of the respective contigs. doi:10.1371/journal.pone.0088738.g004

Table 3. Lengths of the coding and untranslated regions of each of the 10 genomic segments of virus XZ0906.

Segment	Length (bp)	Protein (aa)	5' UTR	Terminal sequence	3' UTR	
	Length (bp)					
S1	3950	1304	11	5'-GUAAAAUC--	24	--ACACUUAC-3'
S2	2888	946	13	5'-GUAAAAAC--	34	--AAACUUAC-3'
S3	2769	899	17	5'-GUAAAAAUU--	52	--ACACUUAC-3'
S4	1978	643	8	5'-GUAAAAAAC--	38	--ACACUUAC-3'
S5	1775	554	31	5'-GUAAAAAA--	79	--ACACUUAC-3'
S6	1636	526	26	5'-GUAAAAAA--	29	--AAACUUAC-3'
S7	1165	349	17	5'-GUAAAAAUU--	98	--ACACUUAC-3'
S8	1142	359	20	5'-GUAAAAAAA--	42	--AAACUUAC-3'
S9	1100	346	14	5'-GUAAAAAA--	45	--AAACUUAC-3'
S10	832	234	21	5'-GUAAAAAA--	106	--CAACUUAC-3'

doi:10.1371/journal.pone.0088738.t003
Table 4. Comparison of each segment between virus XZ0906 and other Orbiviruses in nucleotide numbers and amino acid identities.

Segment	AHHSV-4	BTV-6	EHDV-6	PALV	SCRV	YUOV						
	nt	aa(%)	nt	aa(%)	nt	aa(%)	nt	aa(%)				
S1	3965	1305(59.8)	3944	1302(71.9)	3942	1302(72.9)	3930	1295(59.2)	4089	1345(35.3)	3993	1315(47.8)
S2	3229	1060(9.9)	2922	955(28.8)	2971	972(24.6)	3055	1002(15.6)	2747	890(16.7)	2900	940(16.3)
S3	2792	905(58.5)	2772	901(75.9)	2768	899(75.8)	2774	904(58.0)	2024	654(13.1)	2688	873(8.8)
S4	1978	642(50.5)	1981	644(65.5)	1983	644(64.4)	1967	640(48.7)	2017	643(34.2)	1993	645(40.7)
S5	1748	548(27.6)	1769	552(38.5)	1803	551(41.6)	1764	545(25.3)	1664	517(8.8)	1957	574(20.1)
S6	1566	505(43.6)	1637	526(58.4)	1641	527(61.4)	1610	521(43.3)	1657	517(8.6)	1683	535(31.6)
S7	1167	349(56.7)	1157	349(69.1)	1162	349(69.3)	1151	348(54.1)	1463	462(8.8)	1504	435(17.2)
S8	1166	365(36.3)	1125	354(47.3)	1186	373(44.5)	1059	333(40.3)	1256	379(9.9)	1191	355(16.4)
S9	1160	366(32.9)	1046	328(52.4)	1140	359(46.5)	877	272(43.3)	764	232(35.3)	1082	338(39.8)
S10	756	217(30.7)	822	229(53.9)	810	228(51.0)	728	211(28.0)	764	224(17.4)	825	253(14.9)

Note: As the T2 protein of Orbiviruses had important functions in virus protein/RNA structure and assembly, amino acid homology analysis for the T2 protein of TIBOV (T2 = VP3) compared to the T2 proteins of the above mentioned orbiviruses is presented: AHHSV-4(T2 = VP3):58.5%; BTV-6(T2 = VP3):75.9%; EHDV-6(T2 = VP3):75.8%; PALV(T2 = VP3):58.0%; SCRV(T2 = VP2):22.9%; YUOV(T2 = VP2):37.6%.

doi:10.1371/journal.pone.0088738.t004

detailed sequence information for all primer sequences is shown in Table 1. PCR was performed under the following conditions: one cycle of denaturation at 95°C for 5 min, 35 cycles of 95°C for 1 min (denaturation), 52°C for 1 min (annealing), and 72°C for 1 min (extension), followed by a final extension at 72°C for 10 min. Amplification products were analyzed by gel electrophoresis on a 1% agarose gel.

7. Nucleotide and amino acid sequence analysis

Sequences were identified by BLAST analysis (http://www.ncbi.nlm.nih.gov/BLAST/). Multiple sequence alignments were performed using the Clustal X2 software. Phylogenetic analysis of amino acid sequences for each Orbivirus gene segment were performed using the MEGA 5.04 software package (www.megasoftware.net). Amino acid sequences were analyzed using PredictProtein (http://www.predictprotein.org/). The background information for all virus strains used in this study is shown in Table 2.

Results

1. Isolation of viral strains

A. maculatus mosquitoes collected from Tibet, China were homogenized, and the supernatant added to monolayers of C6/36 and BHK-21 cells. Severe CPE was observed in BHK-21 cells three days after inoculation with mosquito lysate XZ0906, characterized by cell rounding, lysis, and floating cells (Figure 1). However, no obvious pathological changes were seen in C6/36 cells cultured with the same mosquito lysate for five days, or after three consecutive passages. Despite the lack of CPE in C6/36 cells, Orbivirus Seg1 and Seg2 could be detected by RT-PCR in the supernatant of third-generation C6/36 cultures (Figure 2), indicating that virus XZ0906 could replicate in C6/36 cells.

2. Identification of a segmented dsRNA genome

Viral RNA was harvested from the culture supernatant of infected BHK-21 cells, and analyzed by polyacrylamide gel electrophoresis (PAGE), revealing a genome consisting of 10 dsRNA segments, whose migration pattern was 3-3-3-1 (Figure 3). Within this pattern Seg2 migrated to the same region as Seg3; Seg5 and Seg6 were also difficult to distinguish, indicating that these segments had similar molecular weights. Segments 7, 8, and 9 were also similar in terms of molecular weights, but were easily distinguished from Seg10.

3. Preliminary identification of virus XZ0906 using 454 sequencing

Following random PCR amplification, samples were pooled (with barcodes) along with other samples, and sequenced using the Roche/454 FLX Titanium platform, producing a total of 24,929 reads. Sequence data were analyzed using the customized data analysis pipeline VirusHunter [16], identifying 85 unique reads which exhibited 28.1–84.9% sequence identity to viruses in the genus Orbivirus.

All individual reads with detectable similarity to Orbivirus, as well as those sharing no detectable sequence similarity with any sequence in the GenBank database, were used as inputs and assembled into contigs using the Newbler assembler. Twenty-one contigs were assembled, of 138–1342 bp in length, with the greatest similarity to BTV at a coverage depth of 1.4–20.9-fold (Figure 4). Almost-complete RNA sequences were obtained for segments 7, 8, 10. Segments 1, 3, 4, 6 and 9 were represented by two to five contigs; a single contig was identified for segments 2 and 5.

4. Sequencing and analysis of virus XZ0906 and other Orbiviruses

RT-PCR amplification was used to close the gaps between contigs for each of the 10 segments. Primer walking, together with 5’- and 3’-RACE, were used to sequence the 5’- and 3’-ends of each segment. Finally, Sanger sequencing was employed to confirm sequences using primers newly designed for each of the 10 RNA segments (Table 1); complete sequences for this virus XZ0906 have been deposited in GenBank under accession number(genome segments KF746187 to KF746196).

Sequence analysis identified a stretch of six highly conserved nucleotides present at the ends of the 5’- and 3’-UTRs (5’-
GUAAA and ACUUAC-3', respectively) for each of 10 gene segments (Table 3). Significant differences were observed in both the nucleotide and amino acid sequences of virus XZ0906 relative to other members of the genus Orbivirus (Table 4). The VP1 protein (RNA-dependent RNA polymerase, RdRp), encoded by Seg1, shared 35.3% (SCRV)-72.9% (EHDV-6) identity at the amino acid level to the six selected Orbiviruses. Protein T2, encoded by Seg3 of XZ0906, shared 22.9% (SCRV) to 75.9% (BTV-6) identity (Table 4).

5. Phylogenetic analysis and classification of virus XZ0906

5.1. Phylogenetic analysis of virus XZ0906 based on VP1 amino acid sequences. To better understand the taxonomic classification of virus XZ0906, the amino acid sequences of 37 VP1 proteins (Table 2) covering 14 genera within the family Reoviridae were obtained from GenBank, and used to construct a phylogenetic tree. These 37 virus strains (including different species and different serotype of one species) readily clustered into 14 evolutionary branches, with virus XZ0906 clustering within the genus Orbivirus branch (Figure 5(A)). To further establish the taxonomic classification of virus XZ0906, VP1 amino acid sequences from 28 known Orbivirus strains were used to construct a phylogenetic tree specific to this genus (Table 2). This analysis shows that virus XZ0906 forms a unique phylogenetic branch independent of any known Orbivirus species (Figure 5(B)).

5.2. Phylogenetic analysis based on the T2 protein amino acid sequence. The amino acid sequence of the T2 protein is an important marker used to classify species within the genus Orbivirus. T2 amino acid sequences from 29 known Orbivirus strains, along with the equivalent region from virus XZ0906, were selected to construct a phylogenetic tree. This analysis showed that virus XZ0906 is independent of any known Orbivirus species (Figure 5(C)). From these results, we determined virus XZ0906 to represent a novel species within genus Orbivirus. This novel species was given the name Tibet Orbivirus, TIBOV to reflect the location from which it was isolated.
Discussion

According to the 9th meeting report of the International Committee on the Taxonomy of Viruses (ICTV), the Reoviridae family consists of 15 genera: Orbivirus, Rotavirus, Saugavirinae, Phytoreovirus, Cardiovirus, Minovirus, Aquareovirus, Calicivirus, Cytopivirus, Dinocevirus, Figivirus, Iridovirus, Myxocovirus Orthoreovirus, and Orzyavirus [1]. All Reoviridae genomes consist of multi-segmented dsRNA; for example, the genome of Saugavirinae, Rotavirus, and Orbivirus contain 12, 11, and 10 dsRNA segments, respectively [2,10,17,18]. Here we describe a novel orbivirus species isolated from mosquitoes collected in Tibet. This virus has many features characteristic of orbiviruses.

UTRs were detected at both the 5’ and 3’-ends of all 10 TIBOV gene segments. The lengths of these UTRs were highly variable; however, all 3’-UTRs contained a stretch of six highly conserved nucleotides at the end, which is a defining molecular characteristic used in the identification of Orbiviruses [8]. For BTV, AHSV, PALV, and Equine encephalitis virus (EEV), this stretch of six conserved nucleotides is readily detected in the 3’-UTRs of each gene segment [1,4]; however, no such sequences are found at their corresponding 5’-ends. Among the 10 gene segments in Yunnan virus (YUOV), a recently identified Orbivirus isolated from mosquitoes in Yunnan, China, nine (Seg2–Seg10) contained a conserved seven-nucleotide sequence at the 5’-UTR end, but only three conserved nucleotide sequences at the 3’-end [4]. Among the 10 gene segments of Tibet Orbivirus (TIBOV), six conserved nucleotide sequences were detected in both end of the 5’- and 3’-UTRs (5’-GUAAAA and ACUUAC-3’, respectively); these sequences were distinct from those in any other Orbivirus species.

The Orbivirus RNA-dependent RNA polymerases (RdRp), which is encoded by the Segl gene [VP1], is an important maker for species identification [4,8]. The VP1 protein sequence similarities of TIBOV to those of other Orbivirus species were 35.3–72.9% (Table 4), indicating that TIBOV constituted a novel member of the genus Orbivirus. In addition, the T2 protein of Orbivirus is used to classify serotypes within the genus, with a threshold >91% identity at the amino acid level [4,19,20]. Such as Middle Point orbivirus (MPOV), which is isolated from YUOV, and highlights the level of genetic diversity within Orbiviruses in China.

Orbiviruses can be transmitted by ticks or other hematophagous insect-vectors, including Culicoides, mosquitoes, and sand flies [1,9]. The phylogenetic analyses (Figure 5(C)) indicated that TIBOV, isolated from A. maculatus, clustered with Orbiviruses which are transmitted primarily by Culicoides [1,4,9,10], such as BTV, EHDV, and AHSV. TIBOV is more distantly related to Orbiviruses which are isolated from mosquito specimens, such as YUOV [3], Peruvian horse sickness virus (PHSV) [9], Umatilla virus (UMAV) [10], and Stretch Lagoon Orbivirus (SLOV) [9,10]. Further study is necessary to determine if TIBOV is transmitted exclusively through A. maculatus, or can be spread by other blood- sucking insects.

TIBOV was isolated from A. maculatus specimens collected at a pigsty in rural Tibet. It is currently unknown whether TIBOV can infect either humans or animals. In order to determine whether this virus poses a risk of public health, serological studies to define potential human and animal exposures to TIBOV are needed.

Author Contributions

Conceived and designed the experiments: GL ML. Performed the experiments: ML YZ GZ SF. Wrote the paper: GL YZ ML GZ DW. Critical revision of the manuscript: GL DW.

References

1. Attoui H, Mertens PPC, Becq J, Belaganahalli S, Bergoin M, et al. (2011) Ninth Report of the International Committee on Taxonomy of Viruses. In: Andrew MQ King, Michael J Adams, Eric B Carstens, Elliot J Lefkowitz, editors. Family: Reoviridae. London: Elsevier/Academic Press. pp. 541–603.

2. Mertens PPC (1999) In Encyclopedia of Virology, 2nd edn. In A. Granoff&R.G., editors. Orbiviruses and caliciviruses-general features. Webster: London. Academic Press. pp. 1043–1061.

3. Attoui H, Jaafar FM, Belhouachet M, Al-Ahmad F, Taso O, et al. (2005) Yunnan orbivirus, a new Orbivirus species isolated from Culex tritaeniorhynchus mosquitoes in China. J Gen Virol 86: 3409–3417.

4. Moss SR, Jones LD, Nuttall PA (1992) Comparison of the major structural core proteins of tick-borne and Culicoides-borne Orbiviruses. J Gen Virol 73: 2305–2390.

5. Attoui H, Stirling JM, Munroehoh UG, Billor F, Brookes SM, et al. (2001) Complete sequence characterization of the genome of the St Croix River virus, a new Orbivirus isolated from cells of Ixodes scapularis. J Gen Virol 82: 795–804.

6. Belaganahalli MN, Maan S, Maan NS, Nomikou K, Pritchard I, et al. (2012) Full Genome Sequencing and Genetic Characterization of Eubangene Virus Identify Pata Virus as a Distinct Species within the Genus Orbivirus. PLoS One 7(3): e31911. doi: 10.1371/journal.pone.0031911.

7. Roy P (2007) Fields Virology, 5th Edition. In Knipe DM, Howley PM, editors. Orbiviruses: Virus Structure. Wolters Kluwer-Lippincott Williams & Wilkins: Philadelphia. pp. 1976.

8. Mertens PPC, Diprose J, Maan S, Singh KP, Attou H, et al. (2004) Bluetongue virus replication, molecular, and structural biology. Vet Ital 40(4): 426–437.

9. Belhouachet M, Jaafar FM, Tesh R, Grimes J, Maan S, et al. (2010) Complete sequence of Great Island virus and comparison with the T2 and outer-capped proteins of Kemerovo, Lipovnik and Tribec viruses (genus Orbivirus, family Reoviridae). J Gen Virol 91: 2985–2993.

10. Belaganahalli MN, Maan S, Maan NS, Tesh R, Attou H, et al. (2011) Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Orbivirus species. PLoS One 6(8): e23605. doi: 10.1371/journal.pone.0023605.

11. Li MH, Fu SH, Chen WX, Wang HY, Guo YH, et al. (2011) Genotype V Japanese Encephalitis Virus Is Emerging. PLoS Negl Trop Dis 5(7): e1231. doi: 10.1371/journal.pntd.0001231.

12. Li YX, Li MH, Fu SH, Chen WX, Liu QQ, et al. (2011) Japanese encephalitis, China. Emerg Infect Dis 17(5): 934–936. doi: 10.3201/eid1705.101417.

13. Wang J, Zhang H, Sun X, Fu S, Wang H, et al. (2011) Distribution of mosquitoes and mosquito-borne arboviruses in Yunnan Province near the China-Myanmar-Laos border. Am J Trop Med Hyg 85(5): 738–746. doi: 10.4269/ajtmh.2011.10-0294.
14. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, et al. (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 99(24): 15687–15692.
15. Wang D, Urisman A, Liu YT, Springer M, Ksiazek TG, et al. (2003) Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 1(2): E2.
16. Zhao G, Krishnamurthy S, Cai Z, Popov VL, Travassos da Rosa AP, et al. (2013) Identification of Novel Viruses Using VirusHunter—An Automated Data Analysis Pipeline. PLoS One 8(10): e78470. doi: 10.1371/journal.pone.0078470.
17. Attoui H, Billoir F, Biagini P, de Micco P, de Lamballerie X (2000) Complete sequence determination and genetic analysis of Banna virus and Kadipiro virus: proposal for assignment to a new genus (Scadornavirus) within the family Reoviridae. J Gen Virol 81(Pt 6): 1507–1515.
18. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, et al. (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156(8): 1397–1413. doi: 10.1007/s00705-011-1006-z.
19. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, et al. (1998) The atomic structure of the bluetongue virus core. Nature 395(6701): 470–478.
20. Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, et al. (1999) The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97(4): 481–490.
21. Cowled C, Merville L, Weir R, Walsh S, Hyatt A, et al. (2007) Genetic and epidemiological characterization of Middle Point orbivirus, a novel virus isolated from sentinel cattle in northern Australia. J Gen Virol 88(Pt 12): 3413–3422.