Functional and pharmacological characteristics of permeability transition in isolated human heart mitochondria.

Morota, Saori; Manolopoulos, Theodor; Eyjolfsson, Atli; Kimblad, Per Ola; Wierup, Per; Metzsch, Carsten; Blomquist, Sten; Hansson, Magnus

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0067747

2013

Link to publication

Citation for published version (APA):
Morota, S., Manolopoulos, T., Eyjolfsson, A., Kimblad, P. O., Wierup, P., Metzsch, C., Blomquist, S., & Hansson, M. (2013). Functional and pharmacological characteristics of permeability transition in isolated human heart mitochondria. PLoS ONE, 8(6), Article e67747. https://doi.org/10.1371/journal.pone.0067747

Total number of authors: 8

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction

The mitochondrial permeability transition (mPT) is considered to be a major cause of cell death in ischemia-reperfusion injury of the heart. Opening of the mPT pore is characterized by uncoupling of oxidative phosphorylation, in vitro swelling of mitochondria and release of proapoptotic factors such as cytochrome c (CytC) [1,2]. Pharmacological inhibition or genetic ablation of the mitochondrial matrix protein cyclophilin D (CypD) prevents mPT and cardiac injury in animal models of ischemia-reperfusion and heart failure [3–7]. Ischemic preconditioning has been proposed to exert its beneficial effect through reduced mPT activation, although the signaling pathways remain to be fully elucidated [8–11]. The immunosuppressive agent and CypD inhibitor cyclosporin A (CsA) has also been shown to limit myocardial infarction [12,13]. CsA and other cyclophilin inhibitors are however not specific to CypD. Cyclophilins are found widely distributed in eukaryotes in all the major compartments of the cell, and the majority of the 17 identified human cyclophilins have cytoplasmic or nuclear localization [14]. The complex of cytoplasmic cyclophilin A and CsA inhibits the phosphatase calcineurin, which mediates the immunosuppressive activity of CsA [15].

An important step in translating experimental findings to clinical use and to increase the strength of the biologic rationale for treatment is to verify the pharmacological target in human tissue. Previously, mPT has been implicated indirectly in human atrial heart tissue by demonstrations of improved atrial trabeculae and myocyte viability following simulated ischemia in vitro and by prolonged time to depolarization following tetramethylrhodamine methyl ester (TMRM)-induced oxidative stress by cyclophilin inhibitors [16,17]. Repetitive calcium loads has also been shown to cause respiratory inhibition in permeabilized human atrial myofibres [18]. Even though cellular assays possess several strengths, the specificity may be lower compared to studies in isolated mitochondria with increased risk of confounding variables both in regard to the studied phenomena and the pharmacological
effects. There is no previous study exploring the specific characteristics of permeability transition or the direct effect and potencies of cyclophilin inhibitors in isolated human heart mitochondria.

The objective of the present study was to confirm the presence of mPT in the human heart by assessing characteristics of mPT in freshly isolated human heart mitochondria. Further, the aim was to explore the pharmacological modulation of mPT by CypD inhibitors in order to evaluate whether mPT constitutes a relevant target for cardioprotection in pathologies of the heart where this disease mechanism has been implicated in animal models. The study demonstrates that viable mitochondria from human cardiac tissue undergo calcium- and oxidant-sensitive mPT similar to what has previously been described in non-human mitochondria and human brain and liver mitochondria [19,20], and that its activation is dose-dependently inhibited by CypD ligands.

Materials and Methods

Material
To obtain fresh human heart tissue for functional mitochondrial analyses, left atrial appendage tissue samples were collected from 14 patients undergoing Maze surgery due to atrial fibrillation at the Skåne University Hospital, Lund, Sweden. For further patient characteristics, see Table 1. In Maze surgery, incisions are performed in the atria to disrupt abnormal electrical impulses and the left atrial appendage is removed. Tissue samples which would otherwise have been discarded, 0.3–4.3 g, were transferred into ice-cold Buffer A (100 mM KCl, 50 mM MOPS, 5 mM MgCl2, 1 mM EGTA, 1 mM ATP(K), pH 7.4).

Ethics Statement
The study procedures were approved by the regional ethical review board of Lund, Sweden (permit number 2009/507) and comply with the World Medical Association Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects. Samples were obtained after written informed consent was acquired.

Isolation of Heart Mitochondria
Heart tissue samples were rapidly prepared for mitochondrial isolation. Non-muscle tissue was removed and remaining muscle tissue was finely chopped in ice-cold Buffer A with BSA (2 mg/ml) [21,22]. After rinsing off BSA by adding excess ice-cold Buffer A, tissues were transferred to a Potter-Elvehjem homogenizer and trypsinized (10 mg trypsin/6 ml ice-cold Buffer A) for 30 minutes on ice. BSA, 12 mg, was added to stop the trypsination, and the tissue was homogenized gently with a Teflon pestle. Following 10 minutes centrifugation at 600 g, supernatant was collected and centrifuged for 5 minutes at 3000 g. The pellet was suspended in 8 ml of 26% Percoll solution in Buffer B (100 mM KCl, 50 mM MOPS, 0.5 mM EGTA, pH 7.4) and centrifuged for 7 minutes at 30000 g to remove contaminating membranes [23]. The pellet was resuspended in 8 ml of Buffer B with BSA (0.2 mg/ml Buffer B) and centrifuged for 3 minutes at 7000 g to wash away Percoll. A second washing step in Buffer B without BSA was performed with centrifugation for 3 minutes at 3000 g. The mitochondrial pellet was finally resuspended in Buffer B. Protein content was measured using Bradford analysis after which 1 mg/ml BSA was added. All centrifugations were performed at 4°C.

Mitochondrial Respiration
Oxygen consumption of mitochondria was analyzed using an Oxygraph-2k with a Titration-Injection microPump TIP-2k (Oroboros instruments, Innsbruck Austria). Experiments were performed at 37°C. Mitochondria, 40 μg, were suspended in 2 ml respiration medium (MIR05) containing 110 mM sucrose, 20 mM HEPES, 20 mM tauroine, 60 mM K -lactobionate, 3 mM MgCl2, 10 mM KH2PO4, 0.5 mM EGTA, 1 g/l BSA and 5 mM of the NADH-linked respiratory substrates malate and glutamate, pH 7.1. Mitochondrial suspensions were supplemented with 0.25 mM ADP to induce state 3 respiration and to evaluate respiratory coupling of the isolated mitochondrial preparations. State 4 respiration was measured after the ADP was consumed. In another experimental group, mitochondria were exposed to 1 mM CaCl2 to evaluate state 4 respiration. Then, 1 mM ADP was added in both experimental groups followed by the ATP synthase inhibitor oligomycin, 1 μg/ml, to induce State 4,Δψm. A stepwise titration of the protonophore CCCP (500 nM/addition) was performed to evaluate maximal capacity of the electron transport system (ETS) independent of the phosphorylation system.

De-energized Swelling
A Perkin-Elmer Luminescence Spectrometer LS-50B (Emeryville, CA, USA) with a temperature controlled cuvette holder was used for all fluorescence and light scattering experiments. De-energized swelling experiments were performed at 28°C in a 150 mM KCl-based buffer containing 0.5 mM rotenone, 0.2 mg/ml antimycin A, 2 μM calcium ionophore A23187, 0.5 mM PPI. Mitochondria were pre-treated for two minutes with 10, 100, 1000 nM CsA or 10, 100, 1000 nM of the non-immunosuppressive cyclosporin analog McAla3EtVal1-cyclosporin (NI-Cs, also known as alsiporivir, UNIL025, Debio-025 or DEB025). The mitochondrial suspensions were then exposed to 300 μM CaCl2 to induce swelling. The extent of swelling was calculated by dividing the calcium-induced decrease in light scattering during the first minute following CaCl2 addition with that induced by the ionophore alamethicin (10 μg/ml) [24].

Reversible Swelling
The reversibility of calcium-induced swelling was evaluated in respiring mitochondria at 37°C. Experiments were performed in buffer containing 125 mM KCl, 20 mM Trizma base, 2 mM Pi (K), 1 mM MgCl2, 1 mM EGTA and 5 mM of the NADH-linked respiratory substrates malate and glutamate, pH 7.1. Following 2 minutes exposure of mitochondria to 300 μM CaCl2 to induce

Table 1. Patient characteristics.
Age, median (range)
Sex
Previous AMI
Diabetes mellitus
Medication

*AMI = acute myocardial infarction, *ACE = Angiotensin-converting enzyme. doi:10.1371/journal.pone.0067747.t001

A previous study [21,22] evaluated the effect of calcium-induced mPT on to induce swelling. The extent of swelling was calculated by dividing the calcium-induced decrease in light scattering during the first minute following CaCl2 addition with that induced by the ionophore alamethicin (10 μg/ml) [24].
swelling, 0.5 mM EGTA was added to chelate the CaCl₂. A second exposure of CaCl₂ using 400 μM, was performed following 11 minutes of recovery. Experiments were terminated by adding 10 μg/ml alamethicin, and carried out with or without 1 μM CsA.

Calcium Retention Capacity (CRC)

Mitochondrial CRC was evaluated using both measurements of calcium fluxes and changes in respiration during a continuous CaCl₂ infusion using the luminescence spectrometer and oxograph described above. Mitochondrial Ca²⁺ uptake and release were monitored by following the excitation ratio of the extramitochondrial calcium-sensitive fluorescent probe Fura 6F (250 nM, Ex. 340/390 nm, Em. 509 nm). Release of sequestered calcium or initiation of respiratory inhibition were attributed to activation of the mitochondrial permeability transition (mPT) [25]. Mitochondria, 40 μg were suspended in 2 ml buffer containing 125 mM KCl, 20 mM Trizma base, 2 mM Pi (K), 1 mM MgCl₂, 1 μM EGTA, 200 μM ATP, 10 μM BSA, 5 mM of malate and glutamate, pH 7.1. At start of experiment, 1 μg/ml oligomycin, 50 μM ADP and then 1 μM CsA, 1 μM Ni-Cs, 1 μM of the vicinal thiol reagent phenylarsine oxide (PhArs) or vehicle (ethanol) was added. The suspensions were incubated with 0.2 μM CaCl₂ min⁻¹·mg⁻¹. CRC was calculated as the amount of infused calcium from the start of infusion until start of maximal calcium release or start of the rapid phase of respiratory inhibition.

Cytochrome C Release

The extent of cytochrome c (CytC) release was evaluated in the CRC experimental setup described above. Samples were prepared before and during calcium infusion as well as after induction of respiratory inhibition. Samples were also collected following incubation of mitochondria with 10 μg/ml alamethicin. An ELISA kit for detection of human CytC (Quantikine®, R&D Systems) was employed to measure the extent of its release as described previously [26].

Electron Micrographs

Mitochondrial morphology was evaluated in the CRC and reversible swelling experimental setups as described above. Samples were prepared before or during calcium infusion and after induction of respiratory inhibition in the CRC assay. In the reversible swelling experiments, samples were collected before and after the first CaCl₂ addition, following the light scattering recovery after EGTA chelation of CaCl₂, after second CaCl₂ exposure and following addition of 10 μg/ml alamethicin. The suspensions were rapidly chilled and centrifuged in an Eppendorf microcentrifuge, 12,000 g, for 2 minutes. Samples were fixed in a solution containing 0.1 M Sørensen buffer, 1.5% Paraformaldehyde and 1.5% Glutaraldehyde over night, and further processed as described previously [27].

Statistical Analyses

All average results are presented as mean ± SD and were, unless otherwise noted, evaluated using student’s t-tests or for multiple groups one-way ANOVA followed by Dunnet’s multiple comparison post hoc test using GraphPad Prism v5.0 software. Differences were considered significant where P<0.05.

Results

Functional Integrity of Isolated Mitochondria

The mitochondria isolated from fresh atrial heart tissue (isolation yield 376.1±205.2 μg mitochondria/g tissue) displayed good coupling of oxidation to ATP production. The state 3 and state 4 respiratory rates were 9157.1±2430.4 and 994.9±249.3 pmol O₂·min⁻¹·mg⁻¹, respectively, with a respiratory control ratio (RCR) of 9.22±1.15 (Fig. 1). State 4 respiration following addition of the ATP synthase inhibitor oligomycin (State 4 oligo) was not different from state 4 respiration without oligomycin (1054.3±54.5 pmol O₂·min⁻¹·mg⁻¹, p = 0.66), indicating that there was no contaminating ATPase activity, e.g. disrupted mitochondria, in the preparations.

Mitochondrial Calcium Retention

Heart mitochondria exposed to a continuous calcium challenge buffered the infused calcium resulting in a steady state extramitochondrial Ca²⁺ concentration. The latter lasted until a threshold where retained calcium was released and extramitochondrial Ca²⁺ concentration was increased (Fig. 2A). The same type of experiment performed during measurement of oxygen consumption demonstrated a slight increase in respiration during calcium infusion followed by a rapid phase of respiratory inhibition, which defined the limit of mitochondrial CRC (Fig. 2B). The cyclophilin inhibitor Ni-Cs (alisporivir) significantly increased CRC whereas the oxidant PhArs significantly decreased CRC (Fig. 2C). CsA was evaluated in the CRC assay using measurement of extramitochondrial Ca²⁺ concentration (Fig. 2A). Due to a high degree of variation in this set of experiments, the effect of CsA was only significant using paired analysis, i.e. when the experiments with CsA were compared to their respective controls (p = 0.034 using paired t-test, n = 4). CytC release from mitochondria was increased following the rapid phase of respiratory inhibition but not during the calcium infusion before (Fig. 2D). Electron micrographs indicated a dramatic alteration of morphological appearance following calcium-induced respiratory inhibition showing decreased cristae and expanded matrices (Fig. 2E–G).

Reversible Swelling

Respiering mitochondria exposed to a short-lasting bolus load of calcium demonstrated a decrease in light scattering, which was reversed following chelation of calcium by EGTA (Fig. 3A). Electron micrographs prepared during different time points in the experiment showed a transition from condensed to less condensed cristae following calcium exposure, consistent with the light scattering changes (Fig. 3B–C). Corresponding to the increase in light scattering following EGTA chelation of calcium, the mitochondrial cristae appeared hypercondensed (Fig. 3D). A second calcium exposure as well as subsequent addition of...
alamethicin induced decreased light scattering and appearance of disrupted cristae (Fig. 3E–F).

Potency of Cyclophilin Inhibitors

The potencies of the cyclophilin inhibitors CsA and NI-Cs to reduce calcium-induced swelling were compared under de-energized conditions (Fig. 4). Both compounds significantly inhibited swelling at 1 μM and NI-Cs also at 100 nM. The half maximal effective concentration (EC50) values were 138 nM for CsA and 23 nM for NI-Cs under the conditions used.

Discussion

In the present study, we demonstrate that viable mitochondria from human cardiac tissue undergo calcium- and oxidant-sensitive mPT, which is morphologically reversible following a transient calcium insult. We also demonstrate that mPT activation in human heart mitochondria is inhibited by CypD ligands. Indications of mPT have previously been shown in human atrial myocytes and permeabilized muscle fibres [16–18]. Here, we used isolated mitochondria in order to more specifically evaluate mPT characteristics in the human heart.

Opening of the mPT pore allows passage of solutes with molecular weight below approximately 1500 Da [29,30]. Respiratory uncoupling due to loss of proton motive force and respiratory inhibition due to loss of e.g. NAD(H) are more specific indications for mPT compared to e.g. changes in membrane potential probes in cell cultures. Although depolarization is a direct consequence of mPT pore opening, depolarization may not necessarily be caused by mPT. Further, a potential confounder when evaluating CsA effects and mitochondrial membrane potential is that membrane potential dyes such as TMRM as well as CsA are both substrates of the multidrug-resistance pump (MDR)/P-glycoprotein which may affect cellular loading and extrusion of the dyes [31]. The CRC assay is a sensitive and quantitative technique for assessing mitochondrial susceptibility to mPT [32]. The mPT pore is regulated by several endogenous factors such as redox status, adenine nucleotides, membrane potential and pH. Whether these factors will increase or decrease mPT activation in mitochondria actively buffering calcium will however also depend on their effects on intramitochondrial Ca2+ concentration e.g. by affecting calcium phosphate complex formation [25,32,33]. A potential pitfall when evaluating putative inhibitors of mPT using swelling or CRC assays is if the compound rather induces respiratory inhibition with reduced driving force for calcium uptake rather than direct modulation of mPT [20,34]. By including simultaneous measurement of oxygen consumption and evaluation of the permeability of NAD(H), the specificity of e.g. the CRC assay for mPT is increased [25]. The findings of the present study with respiratory uncoupling and inhibition following calcium overload in combination with a PhArs-induced reduction and a CsA- and NI-Cs-induced increase in CRC demonstrate a specific activation of mPT in human heart mitochondria that is oxidant- and CypD-modulated. Whereas there are several cyclophilins present in the cell, there is no other target than CypD for the cyclophilin inhibitors in mitochondria [14].

The increased permeability of mitochondria in vitro is reversible when mPT-inducing factors are removed [35,36]. It has also been demonstrated that swelling is a morphologically reversible event if calcium is chelated following mPT activation [24,37]. In the present study, we find evidence that a transient mPT can be induced in human heart mitochondria, as assayed by reversible light scattering decrease and reversible alteration of cristae appearance on electron micrographs, following a short-term calcium exposure. However, compared to the alteration following the transient calcium insult, the disruption of matrix cristae appeared more severe after a second calcium exposure (Fig. 3).
Figure 2. Effects of cyclophilin inhibition and oxidant on mitochondrial sensitivity to permeability transition during a continuous calcium infusion. A) Calcium retention capacity (CRC) was monitored by following fluorescence ratio of the extramitochondrial calcium-sensitive probe Fura 6F or B), by following respiration changes. Experiments were performed in presence of the vical thiol reagent phenylarsine oxide (PhArs) under both experimental settings. The cyclophilin inhibitor cyclosporin A (CsA) was evaluated in calcium fluorescence experiments and the non-immunosuppressive CsA analog MeAla^3EtVal^4-cyclosporin/alisporivir (NI-Cs) in respiration experiments. Arrowheads indicate drug or vehicle addition. C) Calculations of CRC from experiments in panel B, calculated as amount of calcium retained from start of calcium infusion until start of the rapid phase of respiratory inhibition. D) Cytochrome c (CytC) release from mitochondria during CRC experiments in respiration chamber expressed as percent of total CytC present in mitochondria and supernatant. Samples were prepared before (incubation) and calcium infusion (Ca^2+ pre-mPT), after induction of respiratory inhibition (Ca^2+ post-mPT) and following addition of the non-specific ionophore alamethicin. Values are means ± SD, n = 4–8 in panel C and n = 5 in panel D. * indicate p<0.05 using one-way ANOVA followed by Dunnett’s multiple comparison post hoc test. E–G) Electron micrographs prepared following sampling at time points indicated in panel B. Open arrowheads indicate examples of mitochondria with decreased cristae and expanded matrices.

doi:10.1371/journal.pone.0067747.g002
Permeability Transition in the Human Heart

following mPT activation in the CRC experiments (Fig. 2), possibly due to the severity and duration of the calcium insult. A transient and reversible mPT has both been suggested to represent a physiological calcium release mechanism of mitochondria [30], and to underlie mitochondrial remodeling and a trigger of cell death following excitotoxicity [39,40]. Transient mPT has also been proposed to mediate preconditioning in cardiac ischemia since cyclophilin inhibitors and genetic ablation of CypD were found to inhibit the protective effects of preconditioning [41,42].

On the other hand, entrapment of 2-deoxyglucose was not detected following preconditioning only, whereas preconditioning inhibited entrapment of 2-deoxyglucose and improved mPT pore closure following ischemia [43]. Transient mPT thus seems to be activated during ischemia-reperfusion injury but it is more unclear whether it also plays a role in mediating ischemic preconditioning.

In order to further evaluate the pharmacological modulation of mPT in human heart mitochondria, the potencies of the CypD inhibitors CsA and NI-Cs were compared in a de-energized model of mitochondrial swelling. The absence of mitochondrial substrates and inhibition of the respiratory chain prevent the formation of a membrane potential and hence calcium uptake into the matrix, and by addition of a calcium ionophore, equilibration of calcium ions across the inner mitochondrial membrane is facilitated. Although less physiological and quantitative compared to the CRC assay, the de-energized model offers a specific and dose-dependent evaluation of regulation and pharmacological inhibition of the mPT pore components without interference from possible confounding effects on mitochondrial respiration, membrane potential and electrochemical calcium uptake as well as calcium-phosphate complex formation [44–46].

In order to further evaluate the pharmacological modulation of mPT in human heart mitochondria, potencies of the CypD inhibitors CsA and NI-Cs were compared in a de-energized model of mitochondrial swelling. The absence of mitochondrial substrates and inhibition of the respiratory chain prevent the formation of a membrane potential and hence calcium uptake into the matrix, and by addition of a calcium ionophore, equilibration of calcium ions across the inner mitochondrial membrane is facilitated. Although less physiological and quantitative compared to the CRC assay, the de-energized model offers a specific and dose-dependent evaluation of regulation and pharmacological inhibition of the mPT pore components without interference from possible confounding effects on mitochondrial respiration, membrane potential and electrochemical calcium uptake as well as calcium-phosphate complex formation [44–46].

The EC_{50} values of CsA and NI-Cs inhibition of mPT in de-energized mitochondria were somewhat higher in the present study (138 and 23 nM, respectively) compared to what we have previously demonstrated in rodent brain mitochondria using similar experimental conditions (49 and 5.5 nM, respectively) [49]. One possible explanation for the difference is the relative severity of the calcium insult which was higher in the present study. The relative difference in potency between CsA and NI-Cs was however similar.

The amount of calcium sequestered before induction of mPT in the CRC assay was somewhat higher in human heart mitochondria compared to what we have previously demonstrated in human brain and liver mitochondria using similar experimental conditions, 5.3±0.8 μmol/mg in heart versus 2.34±0.3 and 1.0±0.5 in human brain and liver mitochondria, respectively [19]. Rodent mitochondria display comparable tissue differences with a somewhat higher CRC in heart mitochondria compared to brain mitochondria and substantially higher CRC compared to liver mitochondria (unpublished observations and [20,25], respectively). This indicates that under the conditions used, human heart mitochondria are more resistant to calcium-induced mPT than human brain and liver mitochondria. In contrast, studies exposing isolated mitochondria to bolus loads of calcium without exogenously added adenine nucleotides have demonstrated rodent heart mitochondria to be more sensitive to calcium-induced mPT compared to liver and brain mitochondria [50]. Such differences may be caused by different endogenous content of inhibitory factors of the mPT pore such as adenine nucleotides [51]. However, the comparison of mitochondria from different tissues has to be taken with some care as isolation of heart, liver and brain mitochondria require separate procedures, with possible different influence on both protective and sensitizing factors on mPT.

Several promising drugs in preclinical models have failed to translate into effective clinical use, which emphasizes the need to better validate the molecular targets chosen for drug discovery and development [32]. The mPT has been extensively characterized in animal models and may prove to be an important pathophysiological factor and pharmacological target in human cardiac

Figure 3. Light scattering and electron micrographs of mitochondria exposed to transient calcium insult. A) Light scattering of respiring mitochondria exposed to a transient calcium insult. Experiments were performed with 1 μM cyclosporin A (CsA, n = 2) or its vehicle ethanol (EtOH, Control, n = 5). A decrease in light scattering is attributed to swelling of mitochondria whereas an increase reflects reversal of swelling and accumulation of calcium-phosphate complexes [32], (a.u. = arbitrary units). Where indicated by arrowheads, mitochondria were exposed to 300 μM CaCl₂ to induce swelling, 0.5 mM EGTA to chelate the CaCl₂, a second addition of 400 μM CaCl₂ and finally 10 μg/ml alamethicin. Electron micrographs were prepared at indicated time-points for control experiments as follows; B) during incubation, C) after initial CaCl₂ addition, D) subsequent to EGTA, E) following second CaCl₂ addition, and F) after alamethicin exposure. Arrows indicate mitochondria with condensed cristae. Open arrowheads indicate mitochondria with less condensed or disrupted cristae.

doi:10.1371/journal.pone.0067747.g003
disease. Historically, mitochondrial swelling has been noted since early studies of isolated mitochondria, and in order to attain well functioning mitochondria, a calcium chelator had to be present during the isolation process [33,34]. The toxicity of calcium overload in heart has also since long been recognized [55]. The toxicity of calcium overload in heart has also since long been recognized [55].

Mitochondrial swelling was considered an artifact until the seminal studies in the late seventies established the mPT as a tightly regulated and reversible phenomenon. A pore formation as well as a physiological role was suggested [2,29,35,44]. A decade later, it was proposed that mPT may have a major role in necrotic cell death associated with ischemia-reperfusion injury due to the associated changes in calcium, inorganic phosphate, adenine nucleotides and oxidative stress [36]. CsA was found to inhibit mPT [56], and CypD to be the mitochondrial target of CsA [45].

More recently, genetic ablation of CypD has been demonstrated to be cardioprotective [5], and CsA has shown promising results in a phase II clinical trial of myocardial infarction [12]. Identifying and characterizing the pharmacological target in human tissue is however an important translational step to improve the potential success of a compound targeting a disease mechanism. In the present study, we have demonstrated mPT in human heart mitochondria.

The majority of myocardial infarctions are located in the left ventricle but obstruction of the right coronary artery may also lead to involvement of the right ventricle and atrium. Similar to previous studies examining human heart mitochondria, the present study utilized atrial tissue as sampling from left ventricle is generally not feasible, and this is a limitation to the study. Further, the samples were obtained from a patient cohort with several cardiovascular disorders and medications, which could potentially influence the results of the present study, but these characteristics are however not atypical for patients undergoing ischemia-reperfusion injuries. Another limitation of the present study is the potential risk of morphological alterations induced during centrifugation and preparation of mitochondria for electron micrographs even though care was taken to rapidly process the mitochondria under cool conditions following the experimental procedures.

Conclusion

Human heart mitochondria possess a CypD- and oxidant-regulated mPT similar to what has previously been characterized in non-human heart mitochondria as well as human brain and liver mitochondria [19,20]. These findings support that inhibition of mPT may be a relevant pharmacological target in human cardiac disease and that it may underlie the beneficial effect of cyclosporin A in reperfusion injury.

Acknowledgments

The authors are grateful to Eleonor Asander Frostner for technical support and to Jan-Otto Solem, Henrik Bjursten and Arash Mohktari for assistance in collecting tissue samples. MeAla3EtVal4-cyclosporin/alisporivir was kindly provided by Novartis (Basel, Switzerland).

Author Contributions

Conceived and designed the experiments: SM TM AE P-OK PW CM SB MJH. Performed the experiments: SM MJH. Analyzed the data: SM SB MJH. Contributed reagents/materials/analysis tools: TM AE P-OK PW CM SB. Wrote the paper: SM MJH.

References

1. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341: 233–249.
2. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251: 5069–5077.
3. Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25: 1461–1469.
4. Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufoosat J, et al. (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38: 367–374.
5. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–662.
6. Nakayama H, Chen X, Baines CP, Klevisky R, Zhang X, et al. (2007) Ca2+- and mitochondria-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117: 2431–2444.
7. Lim SY, Hauseley DJ, Arjun S, Price AN, Davidson SM, et al. (2011) Mitochondrial cyclophilin-D as a potential therapeutic target for post-myocardial infarction heart failure. J Cell Mol Med 15: 2443–2451.

8. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning. Cardiovasc Res 55: 534–543.

9. Liu Y, Sato T, O’Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97: 2463–2469.

10. Ardehali H, O’Rourke B (2005) Mitochondrial K+ATP channels in cell survival and death. J Mol Cell Cardiol 39: 7–16.

11. Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767: 1007–1031.

12. Pande SV, Blanchaer MC (1971) Reversible inhibition of mitochondrial respiration caused by cyclosporin A. J Biol Chem 246: 402–411.

13. Rosca MG, Vazquez EF, Kerner J, Parland W, Chandler MP, et al. (2008) Evidence for the presence of a reversible cyclosporin-sensitive permeability transition in rat cardiac mitochondria. Pflugers Arch 456: 460–467.

14. Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, et al. (2003) Cyclosporin-sensitive mitochondrial permeability transition pore activation of the mitochondrial permeability transition among brain regions in vivo: a two-photon imaging study. J Biomed Sci 10: 36109–36117.

15. Crompton M, Costi A, Hayat L (1987) Evidence for the presence of a reversible cyclosporin A-sensitive mitochondrial permeability transition in the human heart. Arch Biochem Biophys 246: 468–475.

16. Petronilli V, Nicolli A, Costantini P, Colonna R, Bernardi P (2003) Cyclophilin D as a potential therapeutic target for post-ischaemic preconditioning. Cardiovasc Res 55: 67–74.

17. Feuerstein GZ, Chavez J (2009) Translational medicine for stroke drug development: novel effectors of cardioprotection? Circulation 97: 2463–2469.

18. Hansson MJ, Persson T, Friberg H, Keep MF, Rees A, et al. (2003) Powerful nonimmunosuppressive cyclosporin analogs NIM811 and UNIL025 display calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem 278: 10317–10326.

19. Hansson MJ, Morota S, Chen L, Matsuyama N, Suzuki Y, et al. (2011) Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria. J Neurotrauma 28: 143–153.

20. Hansson MJ, Morota S, Hansson MJ, Sonoda I, Yasuda Y, et al. (2010) Mitoxantrone sensitizes rodent and human liver mitochondria to the permeability transition: implications for toxicity in liver transplantation. Hepatology 51: 347–358; author reply 349–350.

21. Hansson MJ, Morota S, Hansson MJ, Sonoda I, Yasuda Y, et al. (2010) Mitoxantrone sensitizes rodent and human liver mitochondria to the permeability transition: implications for toxicity in liver transplantation. Hepatology 51: 347–358; author reply 349–350.

22. Hansson MJ, Morota S, Sonoda I, Yasuda Y, et al. (2010) Mitochondrial cyclophilin-D as a potential therapeutic target for post-ischaemic preconditioning. Cardiovasc Res 88: 67–74.

23. Crompton M, Costi A, Hayat L (1987) Evidence for the presence of a reversible cyclosporin A-sensitive mitochondrial permeability transition in the human heart. Arch Biochem Biophys 246: 468–475.

24. Hansson MJ, Morota S, Hansson MJ, Sonoda I, Yasuda Y, et al. (2010) Mitochondrial cyclophilin-D as a potential therapeutic target for post-ischaemic preconditioning. Cardiovasc Res 88: 67–74.

25. Crompton M, Costi A, Hayat L (1987) Evidence for the presence of a reversible cyclosporin A-sensitive mitochondrial permeability transition in the human heart. Arch Biochem Biophys 246: 468–475.

26. Hansson MJ, Persson T, Friberg H, Keep MF, Rees A, et al. (2003) Powerful nonimmunosuppressive cyclosporin analogs NIM811 and UNIL025 display calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem 278: 10317–10326.

27. Hansson MJ, Morota S, Chen L, Matsuyama N, Suzuki Y, et al. (2011) Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria. J Neurotrauma 28: 143–153.

28. Hansson MJ, Morota S, Hansson MJ, Sonoda I, Yasuda Y, et al. (2010) Mitoxantrone sensitizes rodent and human liver mitochondria to the permeability transition: implications for toxicity in liver transplantation. Hepatology 51: 347–358; author reply 349–350.

29. Hansson MJ, Morota S, Hansson MJ, Sonoda I, Yasuda Y, et al. (2010) Mitochondrial cyclophilin-D as a potential therapeutic target for post-ischaemic preconditioning. Cardiovasc Res 88: 67–74.