Signaling Pathways of Receptors Involved in Platelet Activation and Shedding of These Receptors in Stored Platelets

Asra Amelirad\(^1\), Karim Shamsasanjan\(^1,2\), Parvin Akbarzadehlaehr\(^2\), Davod Pashoutan Sarvari\(^3\)

\(^1\)Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
\(^2\)Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
\(^3\)Asadabad School of Medical Sciences, Asadabad, Iran.

Abstract
All cells encounter various signals coming from the surrounding environment and they need to receive and respond to these signals in order to perform their functions. Cell surface receptors are responsible for signal transduction. Platelets are blood cells which perform several functions using diverse receptors. Platelet concentrate is one of the most consumed blood products. However, due to the short lifespan of the platelets and platelets damage during storage, we face shortage of platelet products. One of the damages that platelets undergo during storage is the loss of surface receptors. Since cell surface receptors are responsible for all cell functions, the loss of platelet receptors reduces the quality of platelet products. In this study, we reviewed the important receptors involved in platelet activation and their associated signaling pathways. We also looked at the platelet receptors that shed during storage and the causes of this incident. We found that GPIbα, P-selectin, CD40 and GPVI are platelet receptors that fall during platelet storage at room temperature. Considering that GPVI and GPIbα are the most important receptors which involved in platelet activation, their shedding can cause decrease in platelet activation after transfusion and decrease thrombus consistence. Shear stress and platelet contact with the container wall are among the mechanisms discussed in this process, but studies in this area have to be continued.

Introduction
Platelets are the smallest blood cells (~2.5 μm) and human adults approximately have 1 trillion platelets in circulation that are turned over every 8–10 days.\(^4,5\) They are metabolic active cells, and are seen in numerous functional organelles, highly organized cytoskeleton, vast array of receptors, and many secretory granules.\(^6\) Platelets are formed from mature megakaryocytes and arisen from the long tube-like developed cytoplasmic extension called proplatelets in particular platelets develop process. After release of platelets, the megakaryocyte nucleus, its envelope, and its neighbor cytoplasm, usually remains in the marrow, and finally, phagocytized by macrophages.\(^7\) Megakaryocytes are derived from hematopoietic stem cells (HSCs) in bone marrow.\(^8,9\) Bone marrow microenvironment contains cellular and acellular compartments. Cellular compartment contains HSCs, mesenchymal stem cells (MSCs), and some other kinds of stromal cells. On the other hand, acellular compartment includes scaffold proteins known as extra cellular matrix.\(^7\) HSCs are able to produce various blood cells.\(^5\) MSCs which recognized as main components of stromal cell niches support HSCs homing, proliferation, self-renewal, and differentiation in the bone marrow. Cheng et al\(^9\) demonstrated under co-culture conditions, MSCs are able to support megakaryocyte differentiation and platelet formation from CD34b HSC.\(^9\) Although platelets are well-known because of their essential role in homeostasis and thrombus formation, they have many different functions. Platelets release pro-inflammatory and anti-inflammatory, angiogenic factors, and microparticles into the circulation and play serious roles in the host defense, inflammation, angiogenesis, tumor growth and metastasis.\(^10-14\) Platelet receptors are responsible for all these functions and their density and affinity controls the cell function directly. Platelets are unable to perform these functions in the absence of their receptors. Disorder of platelet receptors were first described by Glanzmann\(^15\) in 1918 and Bernard & Soulier\(^16\) in 1948. After the recognition of these disorders, structure and functions of platelet receptors were extensively studied. In the loss of ligand binding and in shear stress status, cell surface receptors are down regulated. One of the receptors down regulation mechanisms is ectodomain shedding. In this mechanism, protein will break in a near location to external surface of membrane layer.\(^17-19\) One of the conditions in which platelets experience shear stresses in storage conditions. In such situation, some of the platelet

*Corresponding Author: Karim Shamsasanjan, Tel: +98 21 88601546, Fax: +98 21 88601545, Email: k.shams@ibto.ir

© 2019 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
Platelet receptor signaling and shedding

Platelet receptor signaling

Platelets perform their functions inside the vessels by using 3 types of signals: inhibitory, activation and negative feedback.23

Inhibitory signals

Inhibitory signals allow platelets to circulate in a resting state. Platelets are activated even in the absence of activation signals. In healthy vessels, endothelium expresses fundamental forms of nitric oxide synthase (NOSIII) and cyclo-oxygenase-1 (COX-1), which produce the vasoactive hormones NO and prostacyclin (PGI2), respectively. Both NO and PGI2 are co-released by endothelial cells and act in synergy to inhibit platelet activation, thereby limiting thrombosis. Nitric oxide activates soluble guanylyl cyclase, present in the cytosol, causing an increase in intracellular cGMP from GTP. An immediate consequence of increasing cGMP is direct activation of protein kinase g (PKg). The activated PKg reduces the intracellular calcium and cell activation by phosphorylation of several targets. PGI2 is able to bind with the prostacyclin receptor (IP) on the surface of platelets. Activation of the IP receptor on the surface of platelets induces production of cAMP, causing activation of PKa, the subsequent inhibition of several pathways including PKc activation, calcium release, and platelet inhibition. In addition to the NO and PGI2, CD39 is another mechanism of inhibitory function in the vascular endothelium. In platelet membrane, CD39 hydrolyze endothelium and red cells secreted ADP to AMP and adenosine. Adenosine activates the Gs-coupled adenosine receptor, and leads to inhibition of platelet through elevation of cAMP.23-28

Activatory signals

Among the various platelet receptors that are known, 2 groups of platelets receptors are involved in platelets activation: adhesion receptors and G protein-coupled receptors. Glycoprotein (GP) Ib-IX-V, GP Ia/IIa and GPVI are 3 important adhesion receptors, which play a role in platelet activation.29 In the following, we explain the pathways for platelet activation (Table 1).

VWF/GPIb-IX mediated platelet activation

Von will brand factor is a multi-subunit glycoprotein that circulates in plasma. It is synthesized by endothelial cells and megakaryocytes, that released through a regulated pathway after storage in endothelial Weibel-Palade bodies and platelet α granules.43,44 The mature von Willebrand factor (VWF) subunit has 2,050 residues with multiple A-, B-, C-, and D-type domains. The A1 domain contains binding site for platelet GPIba.45,46 GPIb-IX-V is composed by 4 distinct trans membrane proteins: 2 chains of GPIbα (135 kDa), 2 GPIbβ (26 kDa), 2 GPIX (20 kDa) and 1 GPV (82 kDa). These proteins are encoded by 4 different genes and belong to lucine rich family that map to chromosomes 17q12 (GPIba), 22q11.2 (GPIbβ), 3q29 (GP5) and 3q21 (GP9), respectively. GPIb-IX-V expresses on the platelet membrane exclusively. There are approximately, 25,000 copies of this receptor per platelet. When blood vessels are disrupted, circulating platelets adhere to exposed subendothelial surfaces through interactions of platelet GPIba with VWF, which is immobilized on collagen fibers. This is the first step in a cascade of adhesion and signaling events that produce a hemostatic plug at the injured site. Platelets tether to and roll on immobilized VWF, but do not adhere firmly.47-50

The interaction between VWF and GPIb-IX-V not only mediates transient platelet adhesion but also initiates a signaling cascade result in platelet integrin αIIbβ3 activation and outcome stable platelet adhesion, spreading, and aggregation.51,52 Platelet activation via VWF/GPIb-IX-V occurs only in high flow rates. Several intracellular signaling molecules and pathways in GPIb-IX-mediated platelet activation have been included: the phosphatidyl inositol 3-kinase (PI3-kinase) protein kinase b (AKT) pathway, the mitogen-activated protein kinase (MAPK) pathways, and the FCRγ-SYK/PLCγ2 pathway. Nevertheless, the detailed mechanism of this process remains unclear. There have been conflicted reports regarding to the role of spleen tyrosine kinase (SYK) in GPIb signaling.53,54

Collagen/GPVI mediated platelet activation

Collagens are the most numerous proteins in the subendothelial extracellular matrix and in addition are essential in platelet adherence and platelet plug

Table 1. Platelet receptor family

Receptor family	Example
Integrins	α2β11, α5β11, αIIbβ3
Lucine rich repeat family	GPIb-IX-V
Selectin s	CD62P, CELEC2
Tetraspanins	CD63
Transmembrane receptors	P2Y1 and P2Y12
Prostaglandin receptors	Prostacyclin receptors, thromboxane receptors
Lipid receptors	PAF receptors
Immunoglobulin superfamily receptors	GPVI, CD32
Tyrosine kinase receptors	Thromboxoepitin receptors
Miscellaneous platelet membrane receptors	Serotonin receptors
establishment to providing mechanical strength to the blood vessel walls. Among various collagen types only fibrillar collagen type I, III, V, VI and nonfibrillar collagen type IV and VIII are thrombogenic. Although platelets have various receptors for collagen, the integrin α2β1 and GPVI are the most important collagen receptors on platelet surface for binding to collagen and activation of platelets. GPVI (62 kDa) is a type I transmembrane receptor expressed on platelets and megakaryocytes exclusively. It comprises 2 Ig extracellular domains formed by disulfide bonds, a mucin-like stalk and a short 51-ASA cytoplasmic tail. The GPVI cytosolic tail contains recognized sequence motifs for binding to calmodulin and the SH3 domain of Src family tyrosine kinases positively charge in transmembrane region of GPVI that formed a disulfide-linked with FC receptor (FCR) γ-chain. Each FCR γ-chain contains one copy of an immunoreceptor, tyrosine-based activation motif (ITAM) that undergoes phosphorylation on 2 conserved tyrosines upon crosslinking of GPVI, leading to binding and activation of the tyrosine kinase SYK, which phosphorylates downstream targets, such as LAT and SLP-76. This subject induces the establishment of a signaling complex, including LAT, SLP-76, Bruton tyrosine kinase (BTK), Grb2-related adaptor downstream of Shc (GADs), and phospholipase C (PLCy) 2, which further activates PLCγ2. PLCγ2 activation leads to the formation of inositol 1, 4, 5-trisphosphate (IP3) and diacylglycerol (DAG) from phosphatidylinositol 4, 5-bisphosphate. DAG and IP3 formations activate protein kinase C (PKC) and Ca²⁺ release from intracellular stores, respectively. This result in the integrin-mediated adhesion of platelets and some cellular activation, which leads to the deliver and production of some platelet agonists such as ADP, TxA2, and thrombin acting via GPCRs.

CLEC-2/podoplanin mediate platelet activation

CLEC-2 is a C-type lectin-like type ii transmembrane receptor, in platelet binding of rhodocytin (exogenous ligand) and podoplanin (endogenous ligand) to CLEC-2 in platelets surface triggers a novel platelet-signaling pathway. Similar to collagen receptor glycoprotein (GP) VI/FCRγ-chain complex, CLEC2 ligand binding leads to tyrosine phosphorylation in the cytoplasmic tail of CLEC-2, which promotes the binding of SYK, subsequent activation of PLCγ2, and platelet activation and aggregation. Podoplanin is expressed on the surface of defined types of cancer cells and various normal cells such as kidney podocytes, type I lung alveolar cells, fibroblastic reticular cells in lymph nodes, and lymphatic endothelial cells. CLEC-2-deficient platelets displayed normal adhesion under flow conditions, but further thrombus formation was severely impaired in vitro and in vivo. Considering that, Podoplanin is expressed on the surface of tumor cells. Therefore, platelet activation by CLEC-2/podoplanin interaction facilitates tumor metastasis.

Platelet activation and signaling mediated by G protein-coupled receptors

Platelet signaling begins with activation of platelet receptors by agonists such as PAF, collagen, thrombin, ADP, TxA2 and epinephrine. Except collagen, which is described and acts as the first line of hemostasis in platelets, other agonists work through one or more members of G-coupled receptor superfamily. Through the activation of G protein–mediated signaling pathways, they can further increase their own formation and release; thus they acting as positive-feedback mediators that amplify the initial signals to ensure the rapid activation and recruitment of platelets into a growing plaque. G protein–coupled receptors (GPCRs) compose one of the largest families of membrane proteins involved in intracellular signaling. All GPCRs share a common serpentine structure of seven transmembrane-spanning domains, with an extracellular N-terminus and an intracellular C-terminus. GPCRs are so-named because they are physically associated with heterotrimeric G proteins. Each G protein is composed of α, β, and γ subunit. After receptor ligation a subunit dissociates from the βγ subunits, which allows exposure of surfaces on both a and βγ subunits for interaction with effector proteins. G proteins are generally classified into 4 families: Gq, Gi/Go/Gz, Gq/G11, and G12/13. Each of them is coupled to selective receptors and downstream effectors. Platelet activation via G protein-coupled receptors involves 3 major G protein-mediated signaling pathways that are initiated by the activation of the G proteins, Gq, G11, and G12. Although, in the absence of Gq-, G11, or G12-mediated signaling, some platelet activation can occur, efficient activation of platelets in vitro and in vivo requires all 3 G protein–mediated signaling pathways. TP (thromboxane a2 receptor), PAR3, PAR4 and PAR1 (thrombin receptors) which are coupled to Gq, and G11, P2Y1 (ADP receptor) are coupled to Gq, and P2Y12 (ADP receptor) are coupled to G12, Gq transmit cellular signals commonly through its interaction and activation of PLCγ. Gq signaling is necessary for GPCR-stimulated platelet granule secretion, integrin activation, and consequent platelet aggregation. Gq signaling is necessary but insufficient for platelet aggregation and induced by ADP and optimal platelet response induced by TXA2, or low dose thrombin. Gq also needs Gi-coupled to carry out these activities. Ga13 knockout platelets show reduction in granule secretion and unstable platelet aggregation induced by TxA2 analog U46619. In addition, platelet aggregation induced by low dose thrombin in Ga13 knockout platelets is decrease. All GPCR activity in the platelets depends on the G protein, as the knock-out of individual G proteins has been sufficient to disrupt platelet responses to receptor agonists (Table 2).

Negative feedback signals

Maintenance of the proper balance between platelet activation and platelet inhibition is critical because disruption of this balance can cause thrombotic or bleeding disorders, respectively. Following initiation of platelet
Platelet receptor signaling and shedding

Table 2. G protein-coupled receptors on human platelets

G protein	Agonist	Receptor	Effector/signaling	References
Gq	Thrombin	PAR1	Phospholipase C/Ca++ release, PKC activation	73-72
Gq	Thrombin	PAR4	Phospholipase C/Ca++ release, PKC activation	73-75
Gq	ADP	P2Y1	Phospholipase C/Ca++ release, PKC activation	76-77
Gq	TxA2	TP	Phospholipase C/Ca++ release, PKC activation	49
G13	Thrombin	PAR1	Rho activation, actin remodeling	74
G13	TxA2	TP	Rho activation, actin remodeling	78-79
G2	ADP	P2Y12	↓ cAMP, PI3K activation	80-81
Gi	PGI2	IP	↑ cAMP	82
Gi	Epinephrine	α2, adrenergic	↓ cAMP	75-80

PAR1, Protease activated receptor; TP, Thromboxane receptor; IP, Prostacyclin receptor; PI3, Phosphoinositide 3-kinase

activation and shedding of platelets, to control excess clot production, a number of negative regulator signals prevent the activation of more platelets. A number of endogenous inhibitory mechanisms are inhibitory receptors on the surface of platelets e.g., platelet endothelial cell adhesion molecule-1. Intracellular inhibitory receptors e.g., Liver X Receptor α and β and Emerging inhibitory pathways e.g., semaphorin 3A and junctional adhesion molecule-a.85-89

Key events in platelet activation

Platelet activation through agonists-GPCRs Signaling pathways induces platelet-shape change, degranulation, and integrin α_iβ_j-mediated aggregation.95,96 In this section, we describe the Integrin activation.

Integrin activation

Integrins are a widely family of heterodimeric transmembrane receptors that are connecting extracellular ligands to mediate cell adhesion α_iβ_j and intracellular signaling pathways.97 Integrins composed by α- and β-subunits, which are non-covalently linked to each other. Both subunits traverse the plasma membrane and terminate short cytoplasmic domains.97 α_iβ_j (fibronogen receptor), α_iβ_j (vitronectin receptor), (collagen receptor), α_iβ_j (fibronectin receptor), and α_iβ_j (laminin receptor) are expressed in platelet. Among these integrins, α_iβ_j is the most abundant integrin in the platelets. α_iβ_j is normally kept in a low affinity state in circulating platelets, but transforms into a high affinity state following platelet activation.96 This transformation allows α_iβ_j to bind Arg-Gly-Asp (RGD) sequence in their ligands. Activation of α_iβ_j is tightly regulated through a process termed ‘inside-out signaling.’ It has been shown that inside-out signaling requires the binding of talin and kindlins to the cytoplasmic domain of β_j. In addition, recent studies suggest that CalDAG-GEF1 and its downstream target, Rap1, plays an important role in inside-out signaling.87,88 Conversely, the interaction between integrins and their various ligands (fibronogen, VWF, vitronectin and fibronectin) induces outside-in signals across the membrane that allows αIIbβ3 clustering, e.g. during platelet aggregation. One of the earliest events occurring during integrin outside-in signaling is the tyrosine phosphorylation of specific substrates. The Src family of kinases (SKFs) has a dominant effect in these phosphorylation events. Src was originally proposed to be constitutively associated with the β3 integrin C-terminal tail in an inactive conformation of resting platelets via its SH3 domain. Upon ligand binding to αIIbβ3 and integrin clustering, protein phosphatases relieve the inhibitory Src phosphorylation with dissociation of C terminal Src kinase from β3, permitting Src activation. Src activation results in activation of the tyrosine kinase Syk. Syk substrates contain important outside-in effectors, including the RhoGEFs Vav1 and Vav3, and the SH2- containing leukocyte protein of 76 kDa (SLP-76). In addition, SFKs phosphorylate a host of signaling and cytoskeletal-associated proteins in platelets, including phospholipase Cy2 (PLCy2), focal adhesion kinase (FAK), and degranulation promoting adapter protein (ADAP), resulting recruitment and/or activation of these proteins.84 Activated FAK modulates the activity of a broad range of downstream signaling proteins, including PI3- Kinases, PLC–γ as well as a number of small GTPases such as Ras, Rac, and Rho.95 ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding.86 In general, inside-out signaling activates the ligand binding function of integrins and outside-in signaling mediates cellular responses induced by ligand binding to integrins leading to cell spreading, granule secretion, retraction, migration, and proliferation.97

Platelet receptor shedding

Role of shedding in platelet function

Cells membrane receptors are common beginners in cell signaling. Therefore, receptors density and affinity controls the cell function.14 However, there are extensive information in literature about activation of platelet receptor.19 Nevertheless, downregulation of these receptors have not been recognized properly. One of the external cells receptors downregulation mechanisms is ectodomain shedding. In this mechanism, protein breaks near the external surface of membrane layer and the isolated ectodomain will release into the plasma.8598,99 Disjunction part can be operational or use as a private biomarker of platelet.100 Ectodomain shedding can be
a useful mechanism in abnucleus cells such as platelets because in these cells control of receptor surface through regulation of gene expression has an inconspicuous role.18,100 Ectodomain shedding can have other roles in addition to controlling levels of superficial proteins. For instance, the capacity of platelets to form filopodia and lamellipodia and spread on a VWF and/or collagen matrix requires the dynamic breaking of existing receptor/matrix ligand bonds and formation of new receptor/ligand interactions at the tips of filopodia or the spreading lamellipodial edge. One mechanism for how this could occur is through receptor ectodomain shedding.19 According to the several investigations, 69 platelet membrane proteins have been identified in activated protein surfenatant which are prone for shedding. It has been observed that shedding occurs in 12 membrane proteins out of these 69 proteins including semaphorin7a, CD84, GPV, amyloid beta A4, GPibα, TL1, P-selectin, JAMA-1, CD40-1, semaphorin 4D, PECAM and GPVI. There are limited surveys on the remaining 57 membrane proteins.101-111

Shedase activation

Two members of a disintegrin and metalloprotease family (ADAMs) called ADAM10 and ADAM17 accomplish ectodomain shedding mechanism.19,112 ADAM10 and ADAM17 consist of a pro-peptide domain, catalytic domain, disintegrin domain, regulatory Cys-rich domain, transmembrane region, and cytoplasmic tail. They may be regulated by (a) cysteine-switch, where a free sulfhydryl in the pro-peptide domain interacts with the active-site metal ion inhibiting the enzyme, or (b) intracellular signals, required for ADAM mediated ectodomain shedding. ADAMs have a significant role in superficial proteins ectodomain shedding including growth factor, receptors and their ligands, cytokines and adhesion molecules.19 ADAMs will be active after cell activation or connecting to receptors which are able to shedding potentially. However, ADAMs basic activation mechanism is complex and has not been recognized completely. In some studies on the activation mechanism of these sheddase, it has been observed, for example, that (a) thiol modifying agents are able to activate ADAMs directly, (b) high amounts of ASA cause GPIba shedding by ADAM17, or (c) calmodulin restrain which attached to cytoplasmic sequences of some membrane receptors cause the shedding of these receptors. Actually, internal cell signals as external ones are able to cause induction shedding.18

Various studies in recent years have shown that calmodulin is connected to internal cell domain of GPV1, GPV and GPV1β in circulate platelets and activation of platelets by different agonist causes calmodulin separates from internal cell domain of these proteins. Also, it has been observed calmodulin inhibition causes external domain shedding of GPV and GPVI. However, GPIbβ is not affected by shedding in calmodulin inhibition. On the other hand, GPIbα which is connected to GPIbβ by disulfide and non-covalent bond is affected by shedding. It seems that connected calmodulin to GPIbβ has a restrain effect on GPIbα shedding and this is only report that shows a receptor has experienced shedding restrain by another cytoplasmic sequences receptor.19,98

Shedding in stored platelet Receptor

Platelet concentrates (PCs) are the most vulnerable blood products with the shortest shelf life.113,114 In recent years, requirement to platelet products is being increased due to increment of the patients who are being treated in bone marrow suppression. At the moment platelet are not only being used to control or prevent bleeding but also being increasingly used as a source of growth factors in tissue repair, wound redressing, and skin rejuvenation.115 Using autologous platelet rich products including platelet lystate, platelet rich plasma and platelet rich fibrin for MScs expansion become more general employing autologous platelet rich products for MScs expansion is a convenient, non-toxic, safe and cheap therapeutic method that promotes using MScs for cell therapy. These 3 products contain a variety of growth factors including platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor, platelet factor 4, and platelet-derived epidermal growth factor. These growth factors enhance and accelerate MSc.116 however, the short half-life of platelets has caused these products have the most wasting amounts among blood products; for example, in Canada platelet’s half-life is about 5 days and 30% of them will be out of reach.117 PSL (platelet storage lesion) is one of the main reasons of platelets short half-life. PSL explains structural and functional changes in platelets from bloodletting until the platelet transfusion.115 Shedding of platelets surface receptor during storage is one of the PSL. The receptor shedding has an obvious difference with other processes such as the losing of receptor surface through internalization, release of micro particles, and secretion process. In the secretion process, proteins from platelet storage granules releases.110,118

PSL accelerates clearance of platelet after transfusion and has connections with various elements including media, agitation method, bag materials, storage temperature, and so on. Unlike the erythrocyte, platelets are kept between 20-24°C.117,119-123 However, keeping the platelets in this range of temperature increases the percentage of bacterial infection and decreases hemostatic activity. Refrigerated platelets do not have these problems, however they eliminate from blood circulation shortly after injection. Desialylation of platelets is considered as one of the mechanisms for rapid elimination of refrigerated platelets that purge them by liver macrophage or hepatocyte through recognition of exposed glycan. Notably, desialylated GPIbα also shows increased susceptibility toward ADAM17-mediated metalloproteolysis.118,124

Beside the platelet activation, there are some other materials such as NEM (N-ethylmaleimide), W7 (N-6-
Platelet receptor signaling and shedding

Aminohexyl)-5-chloro-1-naphthalenesulfonamide), PMA (PKc activator phorhol-12-myristate-13-acetate), ASA (acetylsalicylic acid), and CCCP (mitochondrial-targeting compound carbonyl cyanide 3-chlorophenylhydrozalone) which can induce GPIbα shedding. This shedding cause production of a part called glyocalcin, a soluble n-terminal 130 kDa ectodomain fragment, which is further processed in the plasma by proteases. Glyocalcin is a private biomarker at PSL and refrigerated platelets. Since shedding is a proteolytic reaction that is dependent on enzyme, controlling of enzyme or substrate is inevitable for restraining shedding. In the case of controlling enzymes for GPIbα shedding, injection of GM6001 or MAPK p38 (which control ADAM17 enzyme) in the storage platelets decreases shedding of this glycoprotein and improves the result of platelet transfusion. Moreover, monoclonal antibody 5G6, which acts as a substrate controller, connects to GPIbα cleavage and prevents enzymes to connect to GPIbα. Thus, there is a close connection between ectodomain shedding and clearance of injected platelets. The reason can be described as follows: decrease of GPIbα surface affected by shedding in storage platelets is effective on adhesion strength of injected platelets under the increase of venous rate share. These platelets have lower functional power and will be eliminated from blood circulation rapidly. GPIbα shedding is also occurred in storage platelets in room temperature. In room temperature, P-selectin, CD40 and GPVI are also involved in surface deduction by shedding mechanism beside GPIbα. The amount of expression and shedding GPIbα and GPVI have a close correlation, and at the same time, there is a negative connection between these 2 glycoproteins with P-selectin and CD40 expression measure. However, all of their sheddings are increased during storage. Similar to GPIbα, signaling depended on GPV has a significant role in cross-linking of receptor. This receptor shedding decreases cell signaling time and causes decreasing in platelet activation and secretion. In addition, these glycoproteins’ shedding decrease thrombus consistence and make an easy establishment of thromboembolus.

GPVI shedding is more seriously regulated than GPIbα, and different shedding mechanisms may be involved GPV shedding is induced by GPV ligands such as collagen, convulxin and CRP. However, under conditions where GPV is completely lost, GPIbα is detected on platelets. This difference in regulation reflects the fact that GPV directly binds to calmodulin at the cytoplasmic domain whereas the cytoplasmic domain of GPIbα does not bind to calmodulin. Levels of GPV shedding are higher in stored platelets in compared with non-stored samples activated under the effect of agonists such as Calcium Ionophore. Either interplaying of platelet surface with the container walls during storage or induced shear stress under long-period agitation might play role in the excessive shedding of GPV during platelet storage. Shedding of 2 key platelet receptors, glycoprotein (GP) Ibα and GPVI, after exposed to the non-physiological high shear stress environment exists in blood contacting medical devices and stenotic blood vessels has also been reported.

Conclusion

All cells are constantly exposed to a variety of extracellular signals. The cells surface receptors are responsible for responding to these signals and, in this way, they control all cell functions. In this paper, we first describe those receptors and signaling pathways, which lead to the activation of platelets, and then explain the ectodomain shedding, which is one of the methods for controlling platelet surface receptors. Two main groups of receptors play roles in the activation of platelets: adhesion receptors and G protein-coupled receptors. However, the initial signaling mechanisms of these 2 receptor groups are different. They ultimately converge into common intracellular signaling events. In particular, almost all agonists induce activation of PLC. The cells use different mechanisms to control the level of their receptors. One of these mechanisms is ectodomain shedding which can be a useful mechanism in no-nucleus cells such as platelets because in these cells control of receptor surface through regulation of gene expression has an inconspicuous role. Regularly, shedding has been occurred after platelets activation, but it has been reported that it has also happened in circulating platelets. However, the platelet receptor shedding does not occur only in vivo. Several studies have suggested the presence of platelet receptors shedding in shear stress conditions, such as storage condition. GPIbα, P-selectin, CD40 and GPVI are induced by ectodomain shedding mechanism in storage bag. As we know, GPV and GPIbα are the most important receptors, which involved in platelet activation. Therefore, their shedding can reduce cell signaling time and finally, cause decrease platelet activation and secretion. Moreover, these glycoproteins’ shedding decreases thrombus consistence and makes an easy establishment of thromboembolus. In addition to shear stress, the platelet contact with the container wall, as another possible cause of this mechanism, has been raised, but studies in this area have to be continued. Thus, finding the main reasons for platelet shedding, which is one of the PSL cases in platelet storage conditions, helps to find a solution to prevent this mechanism or reduce its rate and speed, and ultimately to improve the quality of the storage platelets. Based on the studies reviewed here, there are 2 main possibilities for improving shedding. First method is change the agitation method and its revolution speed.
and second is using different platelet storage bag. Thus, investigation the effects of these 2 mode on shedding decrease is an interesting subject for further studies.

Ethical Issues
Not applicable.

Conflict of Interest
The authors declare that they have no conflict of interest.

Acknowledgments
The authors would like to thank Mr. Omid Amelirad (Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran) and Ms. Sarah Aqmasheh (Department of Immunology, Tabriz University of Medical Science, Tabriz, Iran) for helping us in editing the draft article.

References
1. Thon JN, Italiano JE. Platelets: Production, morphology and ultrastructure. In: Gresele P, Born G, Patrone C, Page C, eds. Antiplatelet Agents. Handbook of Experimental Pharmacology. Berlin: Springer; 2012.
2. Thon JN, Italiano JE. Platelet formation. Semin Hematol. 2010;47(3):220-6. doi: 10.1053/j.seminhematol.2010.03.005
3. Yun SH, Sim EH, Goh Ry, Park JI, Han JY. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int 2016;2016:9060143. doi: 10.1155/2016/9060143.
4. Patel SR, Hartwig JH, Italiano JE Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 2005;115(12):3348-54. doi: 10.1172/JCI26891.
5. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 2000;1(11):57-64. doi: 10.1038/35095577.
6. Chang Y, Bluteau D, Debili N, Vainchenker W. From hematopoietic stem cells to platelets. J Thromb Haemost 2007;5(suppl 1):318-27. doi: 10.1111/j.1538-7836.2007.02472.x.
7. Saleh M, Shamsasan K, Movassaghpourakbari A, Akbarzadehaleh P, Molaepour Z. The impact of mesenchymal stem cells on differentiation of hematopoietic stem cells. Adv Pharm Bull 2015;5(3):299-304. doi: 10.15171/abp.2015.042.
8. Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 2000;184(1):58-69. doi: 10.1002/(SICI)1097-4652(200007)184:1<58::AID-JCP6-3.0.CO;2-b.
9. Pashoutan Sarvar D, Shamssanjen K, Akbarzadehaleh P. Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull 2016;6(3):293-99. doi: 10.15171/apb.2016.041.
10. Karpakin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988;81(4):1012-9. doi: 10.1172/JCI13411.
11. Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 2003;10(3-4):335-50. doi: 10.1083/sj.mn.7800198.
12. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007;21(2):99-111. doi: 10.1016/j.bbre.2006.06.001.
13. Risau W, Drexler H, Mironov V, Smits A, Siegbahn A, Funa K, et al. Platelet-derived growth factor is angiogenic in vivo. Growth Factors 1992;7(4):261-6.
14. Knighton DR, Hunt TK, Thakral KK, Goodson WH 3rd. Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann Surg 1982;196(4):379-88.
15. Glanzmann E. Hereditaire hamorrhagische Thrombathenie. Ein Beitrag zur Pathologie der Blutplattchen. Jb Kinderheilkd 1981;88:113-41.
16. Bernard J, Soulier JP. Sur une nouvelle variete de dystrophie thrombocytaire hemorragiare congenitale. Bull Mem Soc Med Hop Paris 1948;64(28-29):969-74.
17. Saboor M, Ayub Q, Ilyas S, Moinuddin. Platelet receptors; An instrumental of platelet physiology. Pak J Med Sci 2013;29(3):891-6.
18. Bender M, Stegner D, Nieswandt B. Model systems for platelet receptor shedding. Platelets 2017;28(4):325-32. doi: 10.1080/09537104.2016.1195491.
19. Berndt MC, Karunakaran D, Gardiner EE, Andrews RK. Programmed autolagou cleavage of platelet receptors. J Thromb Haemost 2007;5(suppl 1):212-9. doi: 10.1111/j.1538-7836.2007.02484.x.
20. Torres R, Tormey CA, Stack G. Fluid motion and shear forces in platelet storage bags with different modes of agitation. Vox Sang 2016;111(2):209-12. doi: 10.1111/vox.12409.
21. Gardiner EE. Proteolytic processing of platelet receptors. Res Pract Thromb Haemost 2018;2(2):240-50. doi: 10.1002/rth2.12096.
22. Bennett JS. Shedding new light on the platelet storage lesion. Arterioscler Thromb Vasc Biol 2016;36(9):1715-6. doi: 10.1161/atvbaha.116.308095.
23. Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost 2016;14(5):918-30. doi: 10.1111/jth.13302.
24. Jones CI, Barrett NE, Moraes LA, Gibbins JM, Jackson DE. Endogenous inhibitory mechanisms and the regulation of platelet function. Methods Mol Biol 2012;788: 341-66. doi: 10.1007/978-1-61779-307-3_23.
25. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 2008;93(1):141-7. doi: 10.1113/exphysiol.2007.038588.
26. Dutta-Roy AK, Sinha Ak. Purification and properties of prostaglandin E1/prostacyclin receptor of human blood platelets. J Biol Chem 1987;262(26):12685-91.
27. JIN RC, Voetsc B, Loscalzo J. Endogenous mechanisms of inhibition of platelet function. Microcirculation 2005;12(3):247-58. doi: 10.1080/107398059025493.
28. Marcus AJ, Broekman MJ, Drosopoulos JH, Olson KE, Islam N, Pinsky DJ, et al. Role of CD39 (NTPDase1) in thromboregulation, cerebroprotection, and cardioprotection. Semin Thromb Hemost 2005;31(1):234-246. doi: 10.1055/s-2005-869528.
29. Sangkuhl K, Shulldiner AR, Klein TE, Altman RB. Platelet aggregation pathway. Pharmacogenet Genomics 2011;21(8):516-21. doi: 10.1097/FPC.0b013e3283406323.
30. Clemetson KJ, Clemetson JM. Platelet GP Ib complex as a target for anti-thrombotic drug development. Thromb Haemost 2008;99(3):473-9. doi: 10.1160/TH07-12-0718.
31. Kaisirer-Friede A, Kahn ML, Shattil SJ. Platelet integrins.
Platelet receptor signaling and shedding

Advanced Pharmaceutical Bulletin, 2019, Volume 9, Issue 1

Platelet receptor signaling and shedding

Adv. Clin. Invest. 1994;18(9):3195-207. doi: 10.1172/JCI135754

Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007;100(12):1673-85. doi: 10.1161/01.RES.0000267878.97021.ab

Du X. Signaling and regulation of the platelet glycoprotein Ib-IX-V complex. Curr Opin Hematol 2007;14(3):262-9. doi: 10.1097/MOH.0b013e3280de51a

Grainick HR, Williams SB, Coller BS. Asialo von Willebrand factor interactions with platelets. Interdependence of glycoproteins Ib and Iib/IIIa for binding and aggregation. J Clin Invest 1985;75(1):19-25. doi: 10.1172/JCI111673

Badolia R, Kostyk JC, Dangelmaier C, Kunapuli SP. Syk Activity Is Dispensable for Platelet GP Ib-IX-V Signaling. Int J Mol Sci 2017;18(6):1238. doi: 10.3390/ijms18061238

Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2015;35(3):403-12. doi: 10.1161/ATVBAHA.107.150474

Watson SP, Auger JM, McCarty OJ, Pearce AC. GPVI and integrin alphabeta3 signaling in platelets. J Thromb Haemost 2005;3(8):1752-62. doi: 10.1111/j.1538-7836.2005.01429.x

Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006;99(12):1293-304. doi: 10.1161/01.RES.0000251742.71301.16

Colonna M, Samaridis J, Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2002;30(2):697-704. doi: 10.1002/1521-4141(200002)30:2<697::AID-IMMU697>3.0.CO;2-M

Suzuki-inoue K, Inoue O, Suzuki K, et al. Identification of the platelet receptor CLEC-2: from discovery to prospects. J Thromb Haemost 2011;9(suppl 1):44-55. doi: 10.1111/j.1538-7836.2011.04335.x

Fuller GL, Williams JA, Tomlinson MG, Eble JA, Hanna SL, Pöhlmann S, et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via novel YXXL-dependent signaling cascade. J Biol Chem 2007;282(17):12397-409. doi: 10.1074/jbc.M609558200

Suzuki-inoue K, Fuller GL, Garcia A, Eble JA, Pöhlmann S, Inoue O, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006;107(2):542-9. doi: 10.1182/blood-2005-05-1994

May F, Hagedorn I, Pleines I, Bender M, Vögtle T, Eble JA, et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009;114(16):3464-72. doi: 10.1182/blood-2009-05-222273

Suzuki-inoue K, CLEC-2/podoplanin and thrombin-flammmation. Blood 2017;129(14):1896-8. doi: 10.1182/blood-2017-02-764670

Stalker TJ, Newman DK, Ma P, Wannemacher KM, Brass LF. Platelet Signaling. Handb Exp Pharmacol 2012;210:59-85. doi: 10.1007/978-3-642-29423-5_3

Woulfe DS. Platelet G protein-coupled receptors in hemostasis and thrombosis. J Thromb Haemost 2005;3(10):2193-200. doi: 10.1111/j.1538-7836.2005.01338.x

HollePeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, et al. Identification of the platelet ADP receptor targeted by antiplatelet drugs. Nature 2001;409(6817):202-7. doi: 10.1038/35051599

Foster CJ, Prosser DM, Agas J, Zhai Y, Smith MD, Lachowicz JE, et al. Molecular identification and...
characterization of the platelet ADP receptor targeted by tiensipyrine antidromthic drugs. J Clin Invest 2001;107(12):1591-8. doi: 10.1172/JCI12242
68. Kim S, Foster C, Lecchi A, Quinton TM, Prosser DM, Jin J, et al. Protease-activated receptors 1 and 4 do not stimulate Gi signaling pathways in the absence of secreted ADP and cause human platelet aggregation independently of Gisignaling. Blood 2002;99(10):3629-36. doi: 10.1182/blood.V99.10.3629
69. Paul BZ, Jin J, Kunapuli SP. Molecular mechanism of thromboxane a(2)-induced platelet aggregation. Essential role for p2(3ac) and alpha(2a) receptors. J Biol Chem 1999;274(41):29108-14. doi: 10.1074/jbc.274.41.29108
70. Moers A, Nieswandt B, Massberg S, Wetscherek N, Grüner S, Konrad I, et al. G 13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 2003;9(11):1418-22. doi: 10.1038/nm943
71. Riewald M, Ruf W. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J Biol Chem 2005;280(20):19808-14. doi: 10.1074/jbc.M500747200
72. Shenker A, Goldsmith P, Unson CG, Spiegel AM. The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem 1991;266(14):9309-13.
73. Vrentenbrant K, Ramström S, Bjerke M, Lindahl TL. Platelet activation via PAR4 is involved in the initiation of thrombin generation and in clot elasticity development. Thromb Haemost 2007;97(3):417-24. doi: 10.1160/TH06-07-0397
74. Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost 2010;8(3):453-62. doi: 10.1111/j.1538-7836.2009.03722.x
75. Keularts IML, van Gorp RMA, Feijge MAH, Vuist WMJ, Heemskerk JWM. α(2b)-adrenergic receptor proteins potentiates calcium release in platelets by modulating cAMP levels. J Biol Chem 2000;275(3):1763-72. doi: 10.1074/jbc.275.3.1763
76. Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 1998;273(4):2030-4.
77. Salzman EW, Kessler PC, Levine L. Cyclic 3′,5′-adenosine monophosphate in human blood platelets. iv. Regulatory role of cyclic amp in platelet function. Ann N Y Acad Sci 1972; 201: 61-71.
78. Neer EJ. Heterotrimeric G proteins: Organizers of transmembrane signals. Cell 1995;80(2):249-57.
79. Dangelmaier C, Jin J, Smith JB, Kunapuli SP. Potentiation of thromboxane A2-induced platelet secretion by Gi signaling through the phosphoinositol-3 kinase pathway. Thromb Haemost 2001;85(2):341-8.
80. Dorssam RT, Kunapuli SP. Central role of the P2Y 12 receptor in platelet activation. J Clin Invest 2004;113(3):340-5. doi: 10.1172/JCI20986
81. Murugappa S, Kunapuli SP. The role of ADP receptors in platelet function. Front Biosci 2006;11:1977-86.
82. Dorris SL, Peebles RS Jr. PG12 as a regulator of inflammatory diseases. Mediators Inflamm 2012;2012:926968. doi: 10.1155/2012/926968
83. Kim S, Jin J, Kunapuli SP. Akt activation in platelets depends on Gi signaling pathways. J Biol Chem 2004;279(6):4186-95. doi: 10.1074/jbc.M306162200
84. Gough NR. Platelet NF-κB-PKA Complex. Sci Signal 2010;3(126):ec182. doi: 10.1126/scisignal.3126ec182
85. Jones CJ, Barrett NE, Moraes LA, Gibbins JM, Jackson DE. Endogenous inhibitory mechanisms and the regulation of platelet function. Methods Mol Biol 2012;788:341-66. doi: 10.1007/978-1-61779-307-3_23
86. Newton-Nash DK, Newman PJ. A new role for platelet-endothelial cell adhesion molecule-1 (CD31): inhibition of TCR-mediated signal transduction. J Immunol 1999;163(2):682-8.
87. Moraes LA, Unsworth AJ, Vaiyapuri S, Ali MS, Sasikumar P, Sage T, et al. Farnesoid X Receptor and its ligands inhibit the function of platelets. Arterioscler Thromb Vasc Biol 2016;36(12):2324-33. doi: 10.1161/atvaha.116.308093
88. Kashiwagi H, Shiraga M, Kato H, Kamae T, Yamamoto N, Tadokoro S, et al. Negative regulation of platelet function by a secreted cell repulsive protein, semaphorin 3A. Blood 2005;106(3):913-21. doi: 10.1182/blood-2004-10-4092
89. Naik MU, Stalker TJ, Brass LF, Naik UP. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets. Blood 2012;119(14):3352-60. doi: 10.1182/blood-2011-12-397398
90. Nieswandt B, Schulte V, Zywietz A, Gratacap MP, Offermanns S. Costimulation of Gi-and G12/G13-mediated signaling pathways induces integrin alpha IIbbeta 3 activation in platelets. J Biol Chem 2002;277(42):39493-8. doi: 10.1074/jbc.M207256200
91. Joo SJ. Mechanisms of platelet activation and integrin αIIbβ3. Korean Circ J 2012;42(5):295-301. doi: 10.4070/kcj.2012.42.5.295
92. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 2011;209(2):139-51. doi: 10.1530/JOE-10-0377
93. Coller BS, Shattil SJ. The GPIbIIa/IIIa (integrin alphabeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008;112(8):3011-25. doi: 10.1182/blood-2008-06-077891
94. Durrant TN, van den Bosch MT, Hers I. Integrin αIIbβ3 outside-in signaling. Blood 2017;130(14):1607-19. doi: 10.1182/blood-2017-03-773614
95. Hitchcock IS, Fox NE, Prévost N, Sew K, Shattil SJ, Kaushansky K. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage specific FAK knockout. Blood 2008;111(2):596-604. doi: 10.1182/blood-2007-05-096860
96. Kasirer-Friede A, Kang J, Kahnner B, Ye F, Ginsberg MH, Shattil SJ. ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding. Blood 2014;123(20):3156-65. doi: 10.1182/blood-2013-08-520627
97. Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 2012;24(5):600-6. doi: 10.1016/j.ceb.2012.08.011
98. Mo X, Nguyen NX, Mu Pt, Yang W, Luo SZ, Fan H, et al. Transmembrane and Trans-subunit Regulation of Ectodomain Shedding of Platelet Glycoprotein Ibalpha. J Biol Chem 2010;285(42):32096-104. doi: 10.1074/jbc.m110.111864
99. Reiss K, Saftig P. The “a disintegrin and metalloprotease” (ADAM) family of sheddingases: physiological and cellular functions. Semin Cell Dev Biol 2009;20(2):126-137. doi: 10.1016/j.semcdb.2008.09.008
Platelet receptor signaling and shedding

10.1016/j.semcdb.2008.11.002

100. Gardiner EE, Al-Tamimi M, Andrews RK, Berndt MC. Platelet Receptor Shedding. Methods Mol Biol 2012; 788: 321-39. doi: 10.1007/978-1-61779-307-3_22

101. Hofmann S, Vogtle T, Bender M, Rose-John S, Nieswandt B. The SLAM family member CD84 is regulated by ADAM10 and calpain in platelets. J Thromb Haemost 2012;10(12):2581-92. doi: 10.1111/j.1538-7836.2012.04573.x

102. Rabie T, Strehl A, Ludwig A, Nieswandt B. Evidence for a role of ADAM17 (TACE) in the regulation of platelet glycoprotein V. J Biol Chem 2005;280(15):14462-8. doi: 10.1074/jbc.M500041200

103. Bergmeier W, Piffath CL, Cheng G, Dole VS, Zhang Y, Von Andrian UH, et al. Tumor necrosis factor-alpha-convertase–activating enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ res 2004;95(7):677-83. doi: 10.1161/01.RES.0000043899.73453.11

104. Koenen RR, Pruessmeyer J, Soehnlein O, Fraemohs L, Zernecke A, Schwarz N, et al. Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood 2009;113(19):4799-809. doi: 10.1182/blood-2008-04-152330

105. André P, Nannizi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 2002;106(8): 896-9.

106. Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Gieslak M, et al. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci USA 2007;104(5):1621-6. doi: 10.1073/pnas.0606344104

107. Wong MX, Harbour SN, Wee JL, Lau LM, Andrews RK, Jackson DE. Proteolytic cleavage of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is regulated by a calmodulin‐binding motif. FEBS Lett 2004;568(1-3): 70-8. doi: 10.1016/j.fels.2004.04.094

108. Gardiner EE, Arthur JE, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 2004;104(12):3611-7. doi: 10.1182/blood-2004-04-1549

109. Cauwenberghs S, van Pampus E, Curvers J, Akkerman JW, Heemskerk JW. Hemostatic and Signaling Functions of Transfused Platelets. Transfus Med Rev 2007;21(4):287-94. doi: 10.1016/j.tmrv.2007.05.004

110. Seghatchian J, Kraladsiri P. The platelet storage lesion. Transfus Med Rev 1997;11(2):130-44. doi: 10.1053/tm.1997.0110130

111. van der Meer PF, de Korte D. Platelet preservation: agitation and containers. Transfus Apher Sci 2011;44(3): 297-304. doi: 10.1016/j.transci.2011.03.005

112. Murphy S, Gardner FH. Platelet storage at 22 degrees C: role of gas transport across plastic containers in maintenance of viability. Blood 1975;46(2):209-18.

113. NasrEldin E. Effect of cold storage on platelets quality stored in a small containers: Implications for pediatric transfusion. Pediatr Hematol Oncol 2017;2(2):29-34. doi: 10.1016/j.phoj.2017.07.001

114. Grozovsky R, Hoffmeister KM, Falet S. Novel clearance mechanisms of platelets. Curr Opin Hematol 2010;17(6):585-9. doi: 10.1097/MOH.0b013e32833e7561

115. Chen W, Liang X, Syed AK, Jessup P, Church WR, Ware J, et al. Inhibiting GPIbα Shedding Preserves Post-Transfusion Recovery and Hemostatic Function of Platelets After Prolonged Storage. Arterioscler Thromb Vasc Biol 2016;36(9):1821-8. doi: 10.1161/atvbaha.116.307639

116. Hosseini E, Ghasemzadeh M, Nasaji F, Jamaat ZP. GPVI modulation during platelet activation and storage: its expression levels and ectodomain shedding compared to markers of platelet storage lesion. Platelets 2017;28(3):498-508. doi: 10.1080/09537304.2016.1235692

117. Jansen AJ, Josefsen EC, Rumjantseva V, Liu QP, Falet H, Bergmeier W, et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood 2012;119(5):1263-73. doi: 10.1182/blood-2011-05-355628

118. Gardiner EE, Arthur JE, Berndt MC, Andrews RK. Role of Calmodulin in Platelet Receptor Function. Curr Med Chem Cardiovasc Hematol Agents 2005;3(4):283-7.

119. Chen Z, Mondal NK, Ding J, Gao J, Griffith BP, Wu ZJ. Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: glycoprotein Iba and glycoprotein VI. Thromb res 2015;135(4):692-8. doi: 10.1016/j.thromres.2015.01.030