Can control of gut microbiota be a future therapeutic option for inflammatory bowel disease?

Atsushi Nishida, Kyohei Nishino, Keitaro Sakai, Yuji Owaki, Yoshika Noda, Hirotsugu Imaeda

Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract encompassing two main clinical entities, Crohn’s disease and ulcerative colitis. Accumulated evidence indicates that an aberrant immune activation caused by the interplay of genetic susceptibility and environmental impact on the gut microbiota may be involved in the pathogenesis of IBD. Rapid advances in next-generation sequencing technology have enabled a number of studies to identify the alteration of the gut microbiota, termed dysbiosis, in IBD. Moreover, the alteration in the metabolites derived from the gut microbiota in IBD has also been described in many studies. Therefore, microbiota-based interventions such as fecal microbiota transplantation (FMT) have attracted attention as a novel therapeutic option in IBD. However, in clinical trials, the efficacy of FMT for IBD remains controversial. Additional basic and clinical studies are required to validate whether FMT can assume a complementary role in the treatment of IBD. The present review provides a synopsis on dysbiosis in IBD and on the association between the gut microbiota and the pathogenesis of IBD. In addition, we summarize the use of probiotics in IBD and the results of current clinical trials of FMT for IBD.

Key Words: Inflammatory bowel disease; Dysbiosis; Fecal microbiota transplantation; Short chain fatty acid; Probiotics

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Nishida A et al. Control of gut microbiota in IBD

Country/Territory of origin: Japan

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C, C, C, C, C
Grade D (Fair): 0
Grade E (Poor): E

Received: March 17, 2021
Peer-review started: March 17, 2021
First decision: April 17, 2021
Revised: April 23, 2021
Accepted: May 7, 2021
Article in press: May 7, 2021
Published online: June 21, 2021
P-Reviewer: Kim DJ, Mazzarella G, Sitkin S, Sunkesula V, Truta B, Yang Y
S-Editor: Zhang L
L-Editor: Filipodia
P-Editor: Ma YJ

INTRODUCTION

Crohn’s disease (CD) and ulcerative colitis (UC), which are known as inflammatory bowel diseases (IBD), are chronic and relapsing inflammatory disorders of the gastrointestinal tract[1,2]. The precise etiology and pathogenesis remain to be elucidated. Genome-wide association studies have identified over 200 IBD associated-susceptible genes, some of which are known to be involved or implicated in mediating host responses to the gut microbiota[3]. This has evoked the possibility that the gut microbiota is implicated in the pathogenesis of IBD[4-7].

The human digestive tract is inhabited by more than 10 trillion commensal bacteria, which exceeds the total number of human cells of 37 trillion[8,9]. The concentration of human intestinal bacteria has been estimated to be from 10^{11} to 10^{12} cells per gram of luminal contents[10,11]. The intestinal bacteria regulate the balance between each bacterium by interacting with each other, thereby maintaining the homeostasis of the intestinal environment. More than 99% of the bacteria that live in the human intestine belong to the four major phyla: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria, of which Firmicutes is the most predominant phylum followed by Bacteroidetes[10,12].

Recent studies have shown that the composition of human gut microbiota is closely linked to health and disease[13,14]. Moreover, the gut microbiota contributes to the differentiation and maturation of intestinal epithelial cells and immune cells, the supply of energy to the host through metabolic processes, and protection against infection by pathogens[10]. Humans, on the other hand, provide the gut microbiota with an anaerobic place to reside. In this way, a symbiotic relationship is established between the gut microbiota and human host[15].

Developments in gene sequencing technologies as well as the increased availability of powerful bioinformatic tools have enabled novel insights into the microbial composition of human gut microbiota and the effect of microbial communities on human physiology and disease[16,17]. Recent studies using these technologies have indicated that abnormal microbiota composition, known as “dysbiosis,” and a decreased complexity of the gut microbial ecosystem are common features in patients with IBD. Moreover, it has been demonstrated that dysbiosis is involved in the pathophysiology of non-gastrointestinal diseases such as obesity and diabetes[17,18], in addition to gastrointestinal diseases such as IBD and irritable bowel syndrome[6,7,19].

Recently, it has been widely recognized that the gut microbiota plays a vital role in human immunity, metabolism, and diseases[4,6,20-22], leading to the idea of considering it as an organ. Based on this idea, the gut microbiota is sometimes called a “superorganism” or “forgotten organ”[23]. Considering these various functions of the gut microbiota on human biological functions, controlling its composition and diversity might allow us to treat or cure human diseases.

In this review, we will discuss the relationship between the gut microbiota and IBD, the efficacy of probiotics on IBD, and the current status of fecal microbiota transplantation (FMT) as a therapeutic option for IBD.

THE GUT MICROBIOTA IN IBD

Various alterations of the gut microbiota have been reported in patients with IBD. The most consistent findings of the gut microbiota in IBD patients are a reduction of...
diversity and a reduction of Firmicutes compared to healthy individuals[6,7,16]. Some studies on IBD patients have reported an increase in the phyla Proteobacteria and Bacteroidetes, while others have reported a decrease in these phyla[5,7].

Faecalibacterium prausnitzii (F. prausnitzii), which belongs to *Clostridium* cluster IV, has been reported to have an anti-inflammatory effect by producing short-chain fatty acids (SCFAs: C2-C6), especially butyrate[24]. It has been reported that there is a reduced abundance of *F. prausnitzii* in patients with CD and that this deficiency is associated with postoperative recurrence of CD[25]. It has been demonstrated that *F. prausnitzii*, *Blastia faciei*, *Roseburia inulinivorans*, *Ruminococcus torques*, and *Clostridium lavalense* are decreased in patients with CD when compared to healthy subjects[25,26] and that the number of *F. prausnitzii* is correlated with the risk of relapse of ileal CD after surgery[27]. Deficient colonization of *F. prausnitzii* was observed in UC patients during remission, and the recovery of the *F. prausnitzii* population after relapse is associated with the maintenance of clinical remission[27]. Moreover, Sokol et al[28] showed that human peripheral blood mononuclear cells stimulated with *F. prausnitzii* induce the production of interleukin (IL)-10 and inhibit the production of inflammatory cytokines, such as IL-12 and interferon-γ. Furthermore, a significant decrease of *Roseburia spp.* was shown in the gut microbiota of healthy individuals with a high genetic risk for IBD[29].

Another consistent finding from a number of reports is the relative increase in the phylum Proteobacteria, especially *Escherichia coli* (E. coli), in CD patients. The CD-associated[30] proinflammatory *E. coli* is known as adhesion-invasive *E. coli*, which is a bacterium isolated from CD patients. Adhesion-invasive *E. coli* has been reported to increase the permeability of the intestinal epithelium and induce intestinal inflammation by adhering directly to it[31].

Thus, in IBD enterobacteria, along with a decrease in diversity, a decrease in anti-inflammatory bacteria (Firmicutes phylum) and an increase in proinflammatory bacteria (Proteobacteria phylum) were observed, and these changes have also been observed in IBD. It is possible that these factors contribute to chronic inflammation of the intestinal tract. It is possible that it contributes to chronic inflammation of the intestinal tract.

ROLE OF SHORT-CHAIN FATTY ACIDS IN THE INTESTINAL TRACT

Although most nutrients are digested and absorbed in the duodenum and small intestine, dietary fiber remains intact until it reaches the colon. Dietary fibers are complex carbohydrates of plant origin broken down by specialized enzymes produced by gut bacteria but indigestible by the host[32]. They have recently been redefined as microbiota-accessible carbohydrates (MACs) and represent the major energy source for colonic bacteria[33]. MACs favor an increase in beneficial bacteria. The composition and function of the gut microbiota are dependent on the availability of MACs[34]. In preclinical studies, low dietary MACs have been shown to aggravate the development of inflammatory diseases, including autoimmune diseases, infections, and allergies [35-38] (Figure 1).

SCFAs, namely, acetate, propionate, and butyrate, are produced in the intestinal tract by the gut microbiota during fermentation of dietary fibers under anaerobic conditions[17]. Among these SCFAs, butyrate is the main energy source for the intestinal epithelial cells. Butyric acid positively modulates mitochondrial function, such as enhancing oxidative phosphorylation and β-oxidation, leading to an increase in oxygen consumption of colonic epithelial cells[32,33,39,40]. As a result, the concentration of oxygen in the intestinal tract decreases, and the number of obligate anaerobic bacteria, including those Firmicutes phylum that produce butyrate, increases[41]. As mentioned above, there is a decrease in butyrate-producing bacteria, such as *F. prausnitzii*, *Clostridium* cluster IV and XIVa, and a decrease in the concentration of butyrate in the gut microbiota in IBD patients[26,42]. Therefore, the decrease of both butyrate-producing bacteria and concentration of butyrate may be involved in the development of IBD and the persistence of chronic intestinal inflammation.

It has been reported that the genus *Clostridium* is important for the induction of regulatory T cells with an immunosuppressive function by producing butyrate from MACs, and in turn, the butyrate suppresses inflammatory cytokines via mucin and antimicrobial peptides from intestinal epithelial cells[22,43-45]. Moreover, it has been reported that the genus *Clostridium* promotes the differentiation and proliferation of regulatory T cells by enhancing the production of transforming growth factor β from intestinal epithelial cells[43]. In addition to the direct function of butyrate on T cells,
Figure 1 Function of butyrate in intestinal mucosa. Butyrate contributes to the maintenance of gut homeostasis by multiple mechanisms. Butyrate is mainly produced in the intestinal tract by bacteria of the Firmicutes phylum during fermentation of dietary fibers under anaerobic conditions. Butyrate is the main energy source for the intestinal epithelial cells. (1) The genus *Clostridium* promotes the differentiation and proliferation of regulatory T cells by enhancing the production of transforming growth factor β from intestinal epithelial cells; (2) Butyrate enhances the production of the anti-inflammatory cytokine, interleukin-10, produced by macrophages and dendritic cells through GPR109a, which is the G protein-coupled receptor for butyrate; and (3) Butyrate upregulates histone H3 acetylation at regulatory regions of the *Foxp3* gene and promotes the differentiation of naïve CD4+ T cells into regulatory T cells. IL: Interleukin.

Based on these findings, SCFAs play an important role in maintaining intestinal homeostasis through their anti-inflammatory properties. Thus, the decreased concentration of SCFAs in the feces of IBD patients may be involved in the pathophysiology of IBD through multiple points of action.

THE EFFECT OF PROBIOTICS ON IBD

Probiotics are defined as “live microorganisms that when administered in adequate amounts confer a health benefit on the host”[46]. Over the past decade, there has been a great interest in the use of probiotics as a therapeutic option in IBD. However, highly reliable scientific evidence regarding the efficacy of probiotics in IBD has been lacking.

There is a large double-blind clinical trial to investigate the efficacy of *E. coli* Nissle 1917 on maintaining remission in comparison to mesalamine (1500 mg/d) in UC patients in clinical remission (n = 120). The clinical trial showed the similar relapse rate between *E. coli* Nissle 1917 and mesalamine (*E. coli* Nissle 1917 group: 14%, mesalamine group: 16%)[47]. This group conducted a second large trial to examine the efficacy of *E. coli* Nissle 1917 on maintaining UC remission compared to mesalamine (1500 mg/d). This study revealed a comparable clinical relapse rate (*E. coli* Nissle 1917 group: 36%, mesalamine group: 34%)[48].

There is one randomized clinical trial that examined whether the addition of *E. coli* Nissle 1917 to standard therapy increased the rate of remission of patients with active UC. While undergoing the induction therapy, subjects were randomized to *E. coli* Nissle 1917 group and mesalamine group (2400 mg/d). After remission, patients were
maintained on either mesalamine or *E. coli* Nissle 1917. The remission rates were similar in the mesalamine group (75%) and *E. coli* Nissle 1917 group (68%). Moreover, the relapse rates were also similar in mesalamine group (73%) and *E. coli* Nissle 1917 group (67%). Notably, it is the only probiotic mentioned in the European Crohn’s and Colitis Organization guidelines as an effective alternative to mesalamine in maintenance of remission in UC patients[49]. Collectively, the efficacy of *E. coli* Nissle 1917 on maintenance of remission was comparable to mesalamine.

To date, the evidence of the use of VSL#3 in UC patients has been accumulated. VAL#3 is a combination of four strains of *Lactobacillus* (*Lactobacillus casei*, *Lactobacillus plantarum*, *Lactobacillus acidophilus*, *Lactobacillus delbrueckii* subsp. *bulgaricus*), three strains of *Bifidobacteria* (*Bifidobacteria longum*, *Bifidobacteria breve*, and *Bifidobacteria infantis*) and *Streptococcus salivarius* subsp. *Thermophilus*. Sood et al[50] conducted a randomized, double-blind clinical trial to investigate the efficacy of VSL#3 on mild-to-moderately active UC compared to placebo. By week 12, more patients given VSL#3 achieved remission (43%) as compared with those given placebo (15.7%; *P < 0.001*). Furthermore, by week 12, more patients in the VSL#3 group achieved mucosal healing (32%) as compared to the placebo group (15%; *P < 0.03*). Another study with similar design conducted by Tursi et al[51] also showed that the remission rate in VSL#3 group was higher than in the placebo group (44% vs 32%; *P = 0.13*). Collectively, these results suggest that the use of VSL#3 has a benefit in inducing remission in active UC.

There has been a lack of large clinical trials assessing the efficacy of probiotics in both inducing and maintaining the remission for patients with CD. A Cochrane review published in 2006 assessing the efficacy of probiotics to induce remission in CD patients found two studies that met criteria for inclusion[52]. One study had 11 subjects with mild-to-moderately active CD that randomized assignment to *Lactobacillus rhamnosus* strain GG or placebo. The other study had 35 subjects with active CD, whose CD activity index score of 150 to 450 randomized to receive a symbiotic treatment (*freeze-dried* *Bifidobacterium longum* and a commercial product) or placebo. The review concluded that there was no evidence to support the use of probiotics for the induction of remission in CD.

A Cochrane systematic review published in 2006 assessing the efficacy of probiotics to maintain the remission in CD found seven small controlled studies worthy of inclusion in their review[53]. The review concluded that there was no evidence to suggest that probiotics are beneficial for the maintenance of remission in CD. In summary, large clinical trials in the efficacy of probiotics on active and quiescent CD should be conducted to change these conclusions in the future.

THE EFFECT OF FMT ON IBD

FMT aims to restore the intestinal microbiota in diseased individuals by transplanting intestinal microbiota from healthy donors[10]. FMT has been reported to be highly effective against recurrent *Clostridium difficile* infection[54]. The success of FMT in treating *Clostridium difficile* infection has attracted attention as a new therapeutic option for IBD. Several clinical studies have been conducted to examine the effect of FMT on IBD, but the results have been inconsistent so it cannot be stated with confidence whether or not the treatment is effective. Furthermore, in these studies, the protocols including donor selection, method of stool administration, and method of stool preparation are not consistent. Collectively, at present FMT has not yet been used clinically as a therapeutic option.

To date, the findings of four randomized controlled trials (RCTs) of FMT for UC patients have been published: two in Gastroenterology in 2015[55,56], one in The Lancet in 2017[57], and the other in the Journal of the American Medical Association in 2019[58] (Table 1). In a report from Canada in 2015, 50 mL of donor stool was administered six times by enema in an FMT group, and 50 mL of water was administered in the same manner in a placebo group. The remission rate in the FMT group was significantly higher than the placebo group (9/38 (24%) vs 2/37 (5%); *P = 0.03*)[55]. On the other hand, according to a report from the Netherlands in 2015, donor stool was administered to patients at day 0 and 3 wk later using a nasoduodenal tube in an FMT group, and autologous stool was administered to patients in the same manner in a control group. In this study, there was no significant difference in the effect of FMT between the two groups[56]. More recently, two RCTs in patients with mild-to-moderately active UC were reported in 2017 and in 2019. Paramsothy et al[57] reported in 2017 that 81 UC patients were randomly assigned FMT or placebo and that the primary outcome was defined as steroid-free clinical remission with endoscopic...
Table 1 Randomized controlled studies of fecal microbiota transplantation in ulcerative colitis

Ref.	Moayyedi et al. [55]	Rossen et al. [56]	Paramsothy et al. [57]	Costello et al. [58]
Date of publication	2015	2015	2017	2019
Reference number	55	56	57	58
Number of patients	38	23	41	38
Number of controls	37	25	40	35
Severity of UC	Mayo 4-12 (mild to severe)	SCCAI 4-11 (mild to moderate)	Mayo 4-10 (mild to moderate)	Mayo 3-10 (mild to moderate)
Donor and Donor stool	6 volunteers	15 donors	Multi-donors	Multi-donors
Mode of FMT	Infusion	Nasoduodenal tube	Colonoscopy and enema	Colonoscopy and enema
Number of FMT	6	2	41	3
Follow-up	1/wk × 6 wk	0 and 3 wk	First infusion by colonoscopy + 5/wk for 8 wk by enema	3/wk (colonoscopy followed by 2 enemas)
Pretreatment with antibiotics	No	No	No	No
Subjects who achieved the primary endpoint	9/38 (24%) treated with FMT vs 2/37 (5%) control (P = 0.03)	7/23 (30.4%) treated with FMT vs 5/25 (20.0%) control (P = 0.51)	11/41 (27%) treated with FMT vs 3/40 (8%) control (P = 0.021)	12/38 (32%) treated with FMT vs 3/35 (9%) control (P = 0.03)

SCCAI: Simple Clinical Colitis Activity Index; FMT: Fecal microbiota transplantation; UC: Ulcerative colitis.

remission or response at week 8. The rate of primary outcome of the FMT group was significantly higher than the placebo group [11/41 (27%) vs 3/40 (8%); P = 0.02]. Costello et al. [58] reported that 73 patients with active UC were enrolled to an FMT group or autologous FMT group (placebo group). The steroid-free remission rate of the FMT group was significantly higher than that of the placebo group [12/38 (32%) vs 3/35 (9%); P = 0.03].

Since these four RCTs differ in donor selection, method of fecal administration, and the number of fecal administrations, it is difficult to make a direct comparison. It is presumed that increasing the number of FMT will be effective for UC. Based on the clinical data, FMT for UC may remain in clinical trials but not be adopted in practice. More high-quality RCTs are needed to optimize the protocol for FMT.

Sood et al. [59] reported the effect of FMT in maintenance of remission in UC patients who had achieved clinical remission by FMT. In this pilot study, 61 patients with UC in clinical remission achieved after multisession FMT were randomized to an FMT group (n = 31) or placebo group (n = 30). There was no significant difference in the rate of steroid-free clinical remission between the FMT group and placebo group [27/31 (87.1%) vs 20/30 (66.7%); P = 0.111]. Secondary endpoints of endoscopic remission [FMT group: 18/31 (58.1%) vs placebo group: 8/30 (26.7%); P = 0.026] and histological remission [FMT group: 14/31 (45.2%) vs placebo group: 5/30 (16.7%); P = 0.033] were achieved in a significantly higher number of patients with FMT. This pilot study suggested that maintenance FMT therapy may be one of the therapeutic options for UC patients in clinical remission.

To date, one pilot randomized controlled study has reported the effects of a single FMT administered via colonoscopy in patients with colonic or ileo-colonic CD who achieved clinical remission with systemic corticosteroids [60]. In this pilot study, 8 patients received FMT, and 9 patients received sham transplantation. The primary endpoint was the implantation of the donor microbiota at week 6. None of patients reached the primary endpoint. There was no significant difference in the steroid-free remission rate at week 10 between the FMT group and the sham group [7/8 (87.5%) vs 4/9 (44.4%); P = 0.13]. The CD Endoscopic Index of Severity decreased significantly 6 wk after FMT [8.5 (4.6; 13.0) vs 3.5 (1.0; 8.9); P = 0.03] but not after sham.
REFERENCES

1. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28: 573-621 [PMID: 20192811 DOI: 10.1146/annurev-immunol-030409-101225]

2. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474: 307-317 [PMID: 21677747 DOI: 10.1038/nature10209]

3. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Pouatchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly E. Control of gut microbiota in IBD. Annu Rev Immunol 2017; 35: 609-642 [PMID: 28472280 DOI: 10.1146/annurev-immunol-032716-092310]

4. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol 2010; 28: 573-621 [PMID: 20192811 DOI: 10.1146/annurev-immunol-030409-101225]

5. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474: 307-317 [PMID: 21677747 DOI: 10.1038/nature10209]

6. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Pouatchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly E. Control of gut microbiota in IBD. Annu Rev Immunol 2017; 35: 609-642 [PMID: 28472280 DOI: 10.1146/annurev-immunol-032716-092310]

7. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Pouatchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly E. Control of gut microbiota in IBD. Annu Rev Immunol 2017; 35: 609-642 [PMID: 28472280 DOI: 10.1146/annurev-immunol-032716-092310]

8. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Pouatchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly E. Control of gut microbiota in IBD. Annu Rev Immunol 2017; 35: 609-642 [PMID: 28472280 DOI: 10.1146/annurev-immunol-032716-092310]
Nishida A et al. Control of gut microbiota in IBD

MJ, Kubo M, Anderson CA, Weersma RK. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47: 979-986 [PMID: 26192919 DOI: 10.1038/ng.3359]

Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016; 535: 65-74 [PMID: 27383986 DOI: 10.1038/nature18847]

Matsuoaka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol 2015; 37: 47-55 [PMID: 25420450 DOI: 10.1007/s00281-014-0454-4]

Belkaid Y. Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157: 121-141 [PMID: 24679531 DOI: 10.1016/j.cell.2014.03.011]

Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13: 321-335 [PMID: 23618829 DOI: 10.1038/nri3430]

Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amoros S, Strippoli P, Canaider S. An estimation of the number of cells in the human body. Ann Hum Biol 2013; 40: 463-471 [PMID: 23829164 DOI: 10.3109/03014460.2013.807788]

Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012; 30: 759-795 [PMID: 22224764 DOI: 10.1146/annurev-immunol-020711-074937]

Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 2018; 11: 1-10 [PMID: 29285689 DOI: 10.1007/s12328-017-0813-5]

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-214 [PMID: 22699609 DOI: 10.1038/nature11234]

Andoh A. Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion 2016; 93: 176-181 [PMID: 26859303 DOI: 10.1159/000444065]

Somer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2015; 17: 630-638 [PMID: 28626231 DOI: 10.1038/nrmicro.2017.58]

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9: 313-323 [PMID: 19343057 DOI: 10.1038/nt.2015]

Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453: 620-625 [PMID: 18509436 DOI: 10.1038/nature07008]

Manichanh C, Borruel N, Casellas F, Guarnier F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 2012; 9: 599-608 [PMID: 22907164 DOI: 10.1038/nrgastro.2012.152]

Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012; 9: 577-589 [PMID: 22945443 DOI: 10.1038/nrgastro.2012.156]

Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol 2011; 45 Suppl: S128-S132 [PMID: 21992951 DOI: 10.1097/MCG.0b013e31821f44e4]

Brown EM, Kenny DJ, Xavier RJ. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annu Rev Immunol 2019; 37: 599-624 [PMID: 31026411 DOI: 10.1146/annurev-immunol-042718-041841]

Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17: 223-237 [PMID: 32076145 DOI: 10.1038/s41575-019-0258-z]

Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity 2017; 46: 562-576 [PMID: 28423337 DOI: 10.1016/j.immuni.2017.04.008]

Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016; 535: 75-84 [PMID: 27383982 DOI: 10.1038/nature18848]

Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Invest 2014; 124: 4190-4196 [PMID: 25083986 DOI: 10.1172/JCI72330]

Mentella MC, Scalaferri F, Pizzoferrato M, Gasbarrini A, Miggiano GAD. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020; 12: 944 [PMID: 32235316 DOI: 10.3390/nu12040944]

Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol 2013; 28: 613-619 [PMID: 23216550 DOI: 10.1111/jgh.12073]

Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease. Digestion 2016; 93: 59-65 [PMID: 26789999 DOI: 10.1159/000441768]

Varela E, Manichanh C, Gallart M, Torrejón A, Borruel N, Casellas F, Guarnier F, Antolin M. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther 2013; 38: 151-161 [PMID: 23725320 DOI: 10.1111/apt.12365]

Sokol H, Pigneur B, Watterlot L, Lakhdiri O, Bermúdez-Humán HG, Gratajoudz JX, Blugeon S, Bironneau C, Furet JP, Cothier G, Grangeat C, Vasquez N, Pochart P, Trugnan G, Thomas G, Bottlère HM, Dore J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105: 16731-16736 [PMID: 18936492 DOI: 10.1073/pnas.0804812105]

Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, Spekhorst LM, Alberts R,
C, Stolte M, Wolff C, Schulze J. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. *J Gastroenterol Hepatol* 2015; 30: 51-58 [PMID: 25168749 DOI: 10.1111/jgh.12727]

Ahmed I, Roy BC, Khan SA, Seper S, Umari S. Microbiome, Metabolome and Inflammatory Bowel Disease. *Microorganisms* 2016; 4: 20 [PMID: 27681914 DOI: 10.3390/microorganisms4020020]

El Kaoutari A, Arnowog M, Gordon JI, Raoult D, Henriuss B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. *Nat Rev Microbiol* 2013; 11: 497-504 [PMID: 23748339 DOI: 10.1038/nrmicro3050]

Daien CI, Pinget GV, Tan JK, Macia L. Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. *Front Immunol* 2017; 8: 548 [DOI: 10.3389/fimmu.2017.00548]

Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. *Cell Metab* 2014; 20: 779-786 [PMID: 25156449 DOI: 10.1016/j.cmet.2014.07.003]

Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen MS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. *Nature* 2016; 529: 212-215 [PMID: 26762459 DOI: 10.1038/nature16504]

Tan J, McKenize C, Vuillermin PJ, Gouverse C, Vinuesa CG, Melbis RE, Macia L, Mackay CR. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. *Cell Rep* 2016; 15: 2809-2824 [PMID: 27332873 DOI: 10.1016/j.celrep.2016.05.047]

Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, Roberts LS, Wong CH, Shim R, Robert R, Chevalier N, Tan JK, Marinho E, Moore RJ, Wong L, McConville MJ, Tull DL, Wood LG, Murphy VE, Matess J, Gibson PG, Mackay CR. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. *Nat Commun* 2015; 6: 7320 [PMID: 26102222 DOI: 10.1038/ncomms7320]

Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenize C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermans S, Teixeira MM, Moore RJ, Flavell RA, Fagarasen S, Mackay CR. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. *Nat Commun* 2015; 6: 6734 [PMID: 25828455 DOI: 10.1038/ncomms7734]

Tingirikari JMR. Microbiota-accessible pectic poly- and oligosaccharides in gut health. *Food Funct* 2018; 9: 5059-5073 [PMID: 30280147 DOI: 10.1039/c8ff00129b]

Sartor RB. Gut microbiota: Diets promote dysbiosis and colitis in susceptible hosts. *Nat Rev Gastroenterol Hepatol* 2012; 9: 561-562 [PMID: 22890110 DOI: 10.1038/nrgastro.2012.157]

Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Glover LE, Konimsky DJ, Magnuson A, Wei TLI, Ehrentraut SF, Pickel C, Kuhn KA, Lains JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HF Augments Tissue Barrier Function. *Cell Host Microbe* 2015; 17: 661-671 [DOI: 10.1016/j.chom.2015.03.005]

Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, Wang G, Xia B. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. *J Clin Microbiol* 2014; 52: 398-406 [PMID: 24478468 DOI: 10.1128/JCM.01500-13]

Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueda S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. *Nature* 2013; 500: 232-236 [PMID: 23842501 DOI: 10.1038/nature12351]

Atarashi K, Tanoue T, Shimata T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hiro S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. *Science* 2011; 331: 337-341 [PMID: 21205640 DOI: 10.1126/science.1198469]

Furusawa Y, Oba H, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakashishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyaochi E, Hino S, Atarashi K, Ono S, Fujimura Y, Loquet T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koeki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. *Nature* 2013; 504: 446-450 [PMID: 24226770 DOI: 10.1038/nature12721]

Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics--approaching a definition. *Am J Clin Nutr* 2001; 73: 361S-364S [PMID: 11153742 DOI: 10.1093/ajcn/73.2.361S]

Kruis W, Schlütz E, Fric P, Fixa B, Judmaier G, Stolte M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. *Aliment Pharmacol Ther* 1997; 11: 853-858 [PMID: 9354192 DOI: 10.1046/j.1365-2036.1997.0025x.x]

Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, Kamm MA, Weismueller J, Beglinger C, Stolte M, Wolff C, Schülke J. Maintaining remission of ulcerative colitis with the probiotic
Nishida A et al. Control of gut microbiota in IBD

Escherichia coli Nissle 1917 is as effective as with standard mesalazine. *Gut* 2004; 53: 1617-1623 [PMID: 15479662 DOI: 10.1136/gut.2003.037747]

Harbord M, Eliakim R, Bettenworth D, Karmiris K, Katanos K, Kopylov U, Kucharzik T, Molnár T, Raine T, Sebastian S, de Sousa HT, Dignass A, Carbonnel F, Crohn’s ile, Organisation C. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. *J Crohns Colitis* 2017; 11: 769-784 [DOI: 10.1093/ecco-jcc/jjx009]

Sood A, Midha V, Makharia GK, Ahuja V, Singal D, Goswami P, Tandon RK. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. *Clin Gastroenterol Hepatol* 2009; 7: 1202-1209, 1209 e1 [PMID: 19631292 DOI: 10.1016/j.cgh.2009.07.016]

Tursi A, Brandimarte G, Papa A, Giglio A, Elisei W, Giorgetti GM, Forti G, Morini S, Hassan C, Pistoia MA, Modeo ME, Rodino’ S, D’Amico T, Sebkova L, Sacca’ N, Di Giulio E, Luzzia F, Imeneo M, Larussa T, Di Rosa S, Annese V, Danese S, Gashbarri A. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmacological treatment: a double-blind, randomized, placebo-controlled study. *Am J Gastroenterol* 2010; 105: 2218-2227 [DOI: 10.1038/ajg.2010.218]

Limketkai BN, Akobeng AK, Gordon M, Adepoju AA. Probiotics for induction of remission in Crohn's disease. *Cochrane Database Syst Rev* 2020; 7: CD006634 [DOI: 10.1002/14651858.CD006634.pub3]

Rolf VE, Fortuin PJ, Hawkey CJ, Bath-Hextall F. Probiotics for maintenance of remission in Crohn's disease. *Cochrane Database Syst Rev* 2006; 4: CD004826 [DOI: 10.1002/14651858.CD004826.pub2]

van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijsjen JG, Speelman P, Dijkgraaf MG, Keller JJ. Duodenal infusion of donor feces for recurrent Clostridium difficile. *N Engl J Med* 2013; 368: 407-415 [PMID: 23238657 DOI: 10.1056/NEJMoa1205037]

Moayyedi P, Sorette MG, Kim PT, Libertucci J, Wolfle M, Onisichi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. *Gastroenterology* 2015; 149: 102-109. e6 [PMID: 25857665 DOI: 10.1053/j.gastro.2015.04.001]

Rosen NG, Fuentes S, van der Spek MJ, Tijsjen JG, Hartman JH, Duflou A, Löwenberg M, van den Brink GR, Mathus-Vliegen EM, de Vos WM, Zoetendal EG, D'Haens GR, Ponsioen CY. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. *Gastroenterology* 2015; 149: 110-118, e6 [PMID: 25836986 DOI: 10.1053/j.gastro.2015.03.045]

Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, Leong R, Connor S, Ng W, Paramsothy R, Xuan W, Lin E, Mitchell HM, Borody TJ. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. *Lancet* 2017; 389: 1218-1228 [PMID: 28214091 DOI: 10.1016/s0140-6736(17)30182-4]

Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makyanyanga J, Campaniello MA, Mavraganis C, Rosewarne CP, Bickley C, Peters C, Schoeman MN, Conlon MA, Roberts-Thomson IC, Andrews JM. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. *JAMA* 2019; 321: 156-164 [PMID: 30644982 DOI: 10.1001/jama.2018.20046]

Sood A, Mahajan R, Singh A, Midha V, Mehta V, Narang V, Singh T, Singh Pannu A. Role of Faecal Microbiota Transplantation for Maintenance of Remission in Patients With Ulcerative Colitis: A Pilot Study. *J Crohns Colitis* 2019; 13: 1311-1317 [PMID: 30873549 DOI: 10.1093/ecco-jcc/jj006]

Sokol H, Landman C, Seksik P, Berard L, Montil T, Non J-Lamurier I, Bourrier A, Le Gall G, Lalande V, De Rougemont A, Kirchgesner J, Dagaunel A, Cachanado M, Rousseau A, Drouet É, Rosenzweig M, Hagege H, Dray X, Klatzmann D, Marceau P; Saint-Antoine IBD Network, Beaugerie L, Simon T. Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. *Microbiome* 2020; 8: 12 [PMID: 32014035 DOI: 10.1186/s40168-020-00792-5]

Paramsothy S, Paramsothy R, Rubin DT, Kamm MA, Kaakoush NO, Mitchell HM, Castaño-Rodriguez N. Faecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. *J Crohns Colitis* 2017; 11: 1180-1199 [PMID: 28480648 DOI: 10.1093/ecco-jcc/jjx063]

Zhang XF, Guan XX, Sun JF, Wang XK, Wang WD, Fan JM. Clinical effects and gut microbiota changes of using probiotics, prebiotics or symbiotics in inflammatory bowel disease: a systematic review and meta-analysis. *Eur J Nutr* 2021 [PMID: 33555375 DOI: 10.1007/s00394-021-02503-5]

Riglar DT, Silver PA. Engineering bacteria for diagnostic and therapeutic applications. *Nat Rev Microbiol* 2018; 16: 214-225 [PMID: 29398705 DOI: 10.1038/nrmicro.2017.172]

Kang M, Choe D, Kim K, Cho BK, Cho S. Synthetic Biology Approaches in The Development of Engineered Therapeutic Microbes. *Int J Mol Sci* 2020; 21: 8744 [PMID: 33228099 DOI: 10.3390/ijms21228744]
