Discrete Cosine Transform Network for Guided Depth Map Super-Resolution

Zixiang Zhao1,2 Jiangshe Zhang1* Shuang Xu1,3* Zudi Lin2 Hanspeter Pfister2
1Xi’an Jiaotong University, Xi’an, China
2Harvard University, Cambridge MA, USA
3Northwestern Polytechnical University, Xi’an, China
zixiangzhao@stu.xjtu.edu.cn, jszhang@mail.xjtu.edu.cn, xs@nwpu.edu.cn,
\{linzudi,pfister\}@g.harvard.edu

Abstract

Guided depth super-resolution (GDSR) is an essential topic in multi-modal image processing, which reconstructs high-resolution (HR) depth maps from low-resolution ones collected with suboptimal conditions with the help of HR RGB images of the same scene. To solve the challenges in interpreting the working mechanism, extracting cross-modal features and RGB texture over-transferred, we propose a novel Discrete Cosine Transform Network (DCTNet) to alleviate the problems from three aspects. First, the Discrete Cosine Transform (DCT) module reconstructs the multi-channel HR depth features by using DCT to solve the channel-wise optimization problem derived from the image domain. Second, we introduce a semi-coupled feature extraction module that uses shared convolutional kernels to extract common information and private kernels to extract modality-specific information. Third, we employ an edge attention mechanism to highlight the contours informative for guided upsampling. Extensive quantitative and qualitative evaluations demonstrate the effectiveness of our DCTNet, which outperforms previous state-of-the-art methods with a relatively small number of parameters. The code is available at https://github.com/Zhaozixiang1228/GDSR-DCTNet.

1. Introduction

With the popularity of consumer-oriented depth estimation sensors, e.g., Time-of-Flight (ToF) and Kinect cameras, depth maps have promoted advancements in autonomous driving [24, 37], pose estimation [42, 56], virtual reality [20, 28], and scene understanding [10, 64]. Unfortunately, due to the technical limitations and suboptimal imaging conditions, depth images are often low-resolution (LR) and noisy. However, high-resolution (HR) RGB images (or intensity images) are relatively easy to obtain in the same scene without appraising the unique characteristics of depth SR.

Figure 1. Overview of DCTNet. First, the SCFE module extracts shared and private features from the depth (LR) and RGB (HR) images. The GESA module employs the RGB feature to obtain edge attention weights useful for SR. The multi-modal features and attention weights are then processed by the DCT module, where DCT is utilized in each channel to get HR depth features. Finally, the reconstruction module outputs the SR depth map.

*Corresponding authors.
Conventional methods for GDSR can be divided into three categories, i.e., filter- [27, 29, 30, 33], optimization-
[4, 6, 23, 35, 59] and learning-based [8, 54, 55] methods. Filter-
based (or local) methods focus on preserving sharp depth
edges under the guidance of the intensity image. However,
for texture-rich RGB images, irrelevant edges may be trans-
ferred to depth images (known as texture over-transferred).
In addition, the explicitly defined filters can only model a
specific visual task and lack flexibility. Optimization-based
(or global) methods design energy functions based on diverse
data prior, with data-fidelity regularization terms constraint
the solution space [38, 63]. However, natural priors are often
challenging to be explicitly represented and learned. The
third category contains learning-based methods, which em-
ploy data-driven pipelines to learn the dependency between
multi-modal inputs. Representative works in this category
use sparse dictionary learning [15, 19, 51], which learn dics-
tionaries in a group learning manner and set constraints on
the sparse representations of different modalities [2, 63].

Deep learning (DL) models are introduced to learn the
mapping from LR to HR images [44, 47, 49, 50, 52, 61], but
they still often cooperate classic methods for depth upsample-
ing. For example, learnable filter [16, 53] (combination of
DL and filter-based methods) and algorithm unrolling [3, 58]
(DL with optimization-based methods) have shown promising
results. However, there are still challenges in conven-
tional methods, including edge mismatch and texture over-
transferred between the RGB/depth images, difficulty to
learn of natural priors effectively, and limited interpretability
for the internal mechanism of DL architectures.

To this end, we propose a Discrete Cosine Transform
Network (DCTNet) for the GDSR task, inspired by cou-
dled dictionary learning and physics-based modeling. It
consists of four components: semi-coupled feature extrac-
tion (SCFE), guided edge spatial attention (GESA), discrete
cosine transform (DCT) module, and a depth reconstruc-
tion (DR) module. The workflow is illustrated in Figure 1.
Our contributions can be summarized as follows:

First, we propose the semi-coupled residual blocks to
leverage the correlation between the intensity edge in RGB
images and the depth discontinuities in depth images, but still
preserve the unique properties like detailed texture and seg-
ment smoothness in two modalities. In each convolutional
layer of this block, half of the kernels are responsible for
extracting shared information in depth/RGB images, which
is applied to both modalities. The rest half of the convo-
lution kernels are designed to extract unique information
in the depth and RGB images, respectively. Parameters in the
private kernel are not shared. Thus the feature extractor
with semi-coupled blocks can effectively extract informative
features for GDSR from input image pairs.

Second, we propose a novel DCT module to improve the
explainability of working mechanisms in the empirically-
designed DL architectures. This component utilizes DCT
to solve a well-designed optimization model for GDSR and
inserts it in the DL model as a module to acquire HR depth
map features guided by RGB features in the multi-channel
feature domain. Therefore, besides learning the LR-to-HR
mapping, our DCTNet focuses more on feature extraction
and edge weight highlighting. Although recent works have
used DCT for recognition [57] and image SR [32], we are
the first to use it in restoring degraded depth maps to the best
of our knowledge. We further make the tuning parameters in
the DCT module learnable to improve model flexibility.

Third, to overcome the issue that texture details in RGB
images are over-transferred, we employ the enhanced spa-
tial attention (ESA) block from RFANet [26] in our GESA
module to highlight the edges in RGB features useful for
GDSR. In this way, part of the intensity edges is activated
and associated with the depth discontinuities, achieving the
adaptive transfer from the texture structure in guided images.

We conduct comprehensive evaluations on four pop-
ular RGBD datasets, including NYU v2 [43], Middle-
bury [13, 41], Lu [31] and RGBDD [12]. The quantitative
and qualitative results show that our DCTNet can achieve
state-of-the-art performance in GDSR with a relatively small
number of parameters.

2. Related Work

Super-resolution is a basic computer vision topic with
many sub-fields and numerous approaches. Here we only
discuss methods for GDSR.

2.1. Conventional GDSR methods

Filter-based methods. The filter-based (local) methods aim
to use the RGB image to guide the joint filter to perceive
the edge in depth map. Starting from joint bilateral upsam-
pling [18] and its variants [1, 60], RGB images guide the
acquisition of bilateral weights. Liu et al. [27] replace the
Euclidean distance with the geodesic distances to maintain
the discontinuities of the depth image. Weighted mode fil-
ter [33], guided filtering [11] and its variants [30, 48] are also
widely used in the upsampling process. Lu et al. [29] use
the smoothing method to process the image parts obtained
by the depth map guided RGB image segmentation to solve
the texture transferring issue.

Optimization-based methods. The optimization-based
(global) methods model the interdependency between color
images and depth maps by Markov Random Field [4], nonlo-
cal means filtering [35], pixel-wise adaptive auto-regressive
model [59], total generalized variation [6] and multi-pass
optimization framework [23], respectively.

Learning-based methods. Earlier methods like bimodal
cosparse analysis [15] and joint dictionaries learning [51]
capture the interdependency of the RGB and depth images.
A multi-scale dictionary learning strategy with RGB-D structural similarity measure and a robust coupled dictionary learning algorithm with local coordinate constraints are employed by Kwon et al. [19] and Xie et al. [55] to solve over-smoothing and over-fitting problems in information transfer, respectively. Gu et al. [8] establish a task-driven learning method to learn the dynamic guidance by a weighted analysis representation model. Xie et al. [54] learn an HR edge map inference method from external HR/LR image pair.

2.2. Deep Learning GDSR Methods

GDSR performance is further promoted with the powerful feature extraction capability of neural networks. Riegler et al. [39] adopt the first-order primal-dual algorithm and unroll the optimization processing to a network structure, establishing the relationship between the DL-based methods and the optimization-based methods. Li et al. [21, 22] use a two-stream end-to-end network with skip connection to learn the mapping of LR to HR depth maps. Hui et al. [14] propose multi-scale guidance for edge transfer. Similarly, Guo et al. [9] use the residual U-Net structure to learn the residual information between bicubic interpolation upsampling and ground truth under multi-scale guidance. CoFAST [2], which is based on the iterative shrinkage thresholding algorithm (ISTA) [7], regard the estimation of HR depth map as a linear combination of two LISTA branches. CUNet [3] uses two modules to separate common/unique features by multi-modal convolutional sparse coding and elaborate the model interpretability. More recently, DKN [16] and FDSR [12] achieve adaptive filtering neighbors/weight calculation and high-frequency guided feature decomposition through spatially-variant kernels learning and octave convolution, respectively. They outperform previous state-of-the-art (SOTA) methods in synthetic and real scene datasets.

2.3. Comparison with existing approaches

Our proposed DCTNet is closely related to the optimization-based and DL-based coupled dictionary learning methods. (1) The DCT module in our model obtains the depth map features of HR by solving an optimization problem, and we are the first to use DCT to solve the problem to our knowledge. In addition, the DCT module is integrated into the DL framework to complete the multi-channel feature acquisition. The learnable parameters further enhance the flexibility of the optimization function in this module. (2) For the RGB texture over-transferred challenge, compared to local/global methods, we use the ESA module [26] to adaptively learn the edges attention weights in a data-driven manner. (3) Our feature extraction encoder is inspired by coupled dictionary learning, but we do not need to learn the dictionary explicitly. Instead, the private/shared feature extraction is accomplished by limiting whether the parameters are shared between the external HR/LR image pair.

3. Method

In this section, we will elaborate on the details of our proposed DCTNet. We first show how to use discrete cosine transform (DCT) to solve an optimization problem for the GDSR task in the image domain. We then describe the architectural units and training objectives of DCTNet.

3.1. Problem formulation

We first define some important symbols for clarity. In the GDSR task, a model is expected to take the HR RGB image \(R \in \mathbb{R}^{M \times N \times 3} \) and the LR depth image \(L \in \mathbb{R}^{m \times n} \) as inputs, where \(\{M, N\} \) and \(\{m, n\} \) are the height and width of input RGB and depth images, respectively. We aim to obtain the HR depth image \(H \in \mathbb{R}^{M \times N} \) under the guidance of \(R \). We also perform some preprocessing to get \(\tilde{R} \) and \(\tilde{L} \), where \(\tilde{R} \in \mathbb{R}^{M \times N} \) denotes the Y channel in YCrCb color space of \(R \) and \(\tilde{L} \in \mathbb{R}^{M \times N} \) is the upsampled image of \(L \). If \(\tilde{R} \) and \(\tilde{L} \) in the same scene are given, \(H \) can be obtained by minimizing the following energy function:

\[
F = \frac{1}{2} \|H - L\|^2_2 + \frac{\lambda}{2} \|\mathcal{L}(H) - \mathcal{L}(\tilde{R}) \circ \mathcal{W}(\tilde{R})\|^2_2, \tag{1}
\]

where \(\mathcal{L}(\cdot) \) is the Laplacian filter, \(\mathcal{W}(\cdot) \) can be regarded as a given threshold function to select the edges useful for GDSR. \(\circ \) denotes element-wise multiplication, and \(\lambda \) is a parameter controlling the contribution of the second term. The optimal solution can be achieved when \(\frac{\partial F}{\partial H} = 0 \), and we have

\[
H + \lambda \mathcal{L}^2(H) = \lambda \mathcal{L}\left(\mathcal{L}(\tilde{R}) \circ \mathcal{W}(\tilde{R})\right) + L. \tag{2}
\]

Eq. (2) can be treated as a 2D Poisson’s equation (PE). Here we assume a “reflection” extension at the boundary of the image when performing convolution operations, which makes zero gradients on the image boundary. Thus, PE Eq. (2) is with the Neumann boundary condition (NBC). Technically, PE with the NBC can be solved via DCT [45]. Then we set \(\lambda \mathcal{L}(\mathcal{L}(\tilde{R}) \circ \mathcal{W}(\tilde{R})) + L \equiv E \), and implement DCT operation on both sides of the equation:

\[
F_c(H) + \lambda K^2 \circ F_c(H) = F_c(E), \tag{3}
\]

where \(F_c(\cdot) \) is the DCT operation, \(K_{ij} = \cos \left(\frac{(i-1)\pi}{M} \right) + \cos \left(\frac{(j-1)\pi}{N} \right) \) and \(1 \leq i \leq M, 1 \leq j \leq N \). Finally, the HR depth images can be calculated by:

\[
H = F^{-1}_c \left\{ F_c(E) \circ (I + \lambda K^2) \right\}, \tag{4}
\]

where \(F^{-1}_c(\cdot) \) is the inverse DCT operation, \(\circ \) denotes the element-wise division, and \(I \) is the identity matrix. Due to space limitations, we refer readers to the supplementary material for the detailed derivation of the equation.

The above method has the following problems: (a) Although \(H \) can be solved by optimization, it requires additional edge perception methods to determine \(\mathcal{W}(\cdot) \). (b) The
Fig. 2. Detailed illustration of DCTNet workflow. Sub-figures (a)-(c) are the specific structures of SCFE, GESA, and DR modules in Fig. 1, which aims to extract cross-modality features, highlight RGB edge information, and reconstruct the HR depth map, respectively.

3.2. DCTNet

Our proposed DCTNet consists of four components including semi-coupled feature extraction (SCFE), guided edge spatial attention (GESA), discrete cosine transform (DCT) and depth reconstruction (DR) modules. The detailed illustrations are shown in Fig. 1 and 2.

We give an overview of the model. First, given a pair of \(L\) and \(R\), the semi-coupled residual blocks extract shared and private features from the source images. The GESA module then processes the RGB feature to obtain the attention edge weights useful for SR. Subsequently, multi-channel RGB and depth features and the attention edge weights are input into the DCT module to acquire HR depth features. Finally, the depth reconstruction module outputs the SR depth map. The details of the modules are explained next.

3.2.1 Semi-coupled feature extraction

The RGB and depth maps in the same scene can have redundant information (e.g., shape and edges) and complementary information (e.g., RGB texture details and depth discontinuities). At the same time, based on the basic assumptions of the GDSR that some of the features in the cross-modal image should be interdependent, while other are modality-specific. Therefore, our SCFE module is designed to achieve cross-modal extraction of shared and private features.

As shown in Fig. 2(a), we can build the SCFE module as an encoder for feature extraction. The internal convolutions are two initial convolutions and \(P\) semi-coupled residual blocks. Here we denote the initial convolution layers corresponding to \(L\), \(R\) as \(\{S^L_0, S^R_0\}\), and the \(q\)th convolution layer in the \(p\)th semi-coupled residual block corresponding to \(L, R\) is denoted as \(\{S^L_{pq}, S^R_{pq}\}\), where \(p = 1, 2, \cdots, P\) and \(q = 1, 2\). The output features of \(\{S^L_{pq}, S^R_{pq}\}\) are denoted by \(\{\Phi^L_{pq}, \Phi^R_{pq}\} \in \mathbb{R}^{M \times N \times C}\), where \(C\) is the number of kernels in \(\{S^L_{pq}, S^R_{pq}\}\). \(P\) and \(C\) are determined in Sec 4.2. Note that when \(q = 2\), \(\{\Phi^L_{pq}, \Phi^R_{pq}\}\) can be simplified as \(\{\Phi^L_{p}, \Phi^R_{p}\}\). The initialization layer generates \(\Phi^R_0 = S^R_0(R)\), \(\Phi^L_0 = S^L_0(L)\). Then taking the first convolution kernel in the \(p\)th semi-coupled residual block as an example, the semi-coupled convolution operation can be expressed as

\[
\begin{align*}
S^R_{p1}(\Phi^R_{p-1}) & = \Phi^R_{p-1} \ast C(\kappa^{\text{shared}}_{p1}, \kappa^{\text{priv}}_{p1}), \\
S^L_{p1}(\Phi^L_{p-1}) & = \Phi^L_{p-1} \ast C(\kappa^{\text{shared}}_{p1}, \kappa^{\text{priv}}_{p1}),
\end{align*}
\]

where \(\ast\) denotes convolution, \(\{\kappa^{\text{shared}}_{p1}, \kappa^{\text{priv}}_{p1}\}\) denote the shared convolution kernels and the private ones corresponding to \(R\) and \(L\), respectively. \(C(\cdot, \cdot)\) denotes the concatenation over the channel dimension. Then, the output feature \(\Phi^R_p\) of \(R\) in the \(p\)th residual block becomes

\[
\Phi^R_p = \text{ReLU} \left\{ S^R_{p2}(\text{ReLU}(S^R_{p1}(\Phi^R_{p-1}))) + \Phi^R_{p-1} \right\},
\]

and that of \(\Phi^L_p\) is similar to Eq. (7), only the superscript needs to be replaced from \(R\) to \(L\). Finally, the outputs of SCFE module are \(\Phi^L_p\) and \(\Phi^R_p\), which contain both the shared and the private features in the cross-modal image pair.

Compared with fully-shared or independent settings, the semi-coupled convolution kernels in the SCFE module can learn the shared/private parts of their respective input features, which extract features more effectively. The effectiveness of the SCFE module is demonstrated in Sec. 4.4.

3.2.2 Guided edge spatial attention

To prevent the problem that irrelevant textures are transferred to the SR depth map \(H\) when the guide RGB image contains rich textures, we adopt the ESA block from RFANet [26] that achieves excellent results in single image SR into our GESA module, as shown in Fig. 2(b). The ESA block can highlight the attention weight in a lightweight and efficient manner, facilitating the learning of discriminative features. This motivation meets our requirements for the GESA module. We use \(A(\cdot)\) to represent the operation in this module,
and the guided edge attention weight can be obtained by

\[\hat{W}^R = A(\Phi_H^R) \in \mathbb{R}^{M \times N \times C}. \] (8)

This module replaces the operation of obtaining \(W(\tilde{R}) \) by manually giving \(W(\cdot) \) in Eq. (1). Thus, part of the edges in intensity features can be highlighted. Compared with conventional methods that manually design criteria to extract edge weights useful for upsampling, data-driven strategies can achieve adaptive extraction of attention weights.

3.2.3 Discrete cosine transform

In the above subsections, we have acquired the multi-channel features \(\Phi^R \) and \(\Phi^L \) corresponding to \(R, L \), and guided edge attention weight \(\hat{W}^H \). In this subsection, we will use them to accomplish the depth feature upsampling. In Eq. (4), we illustrate that given a pair of \(L, R \) and a threshold functions \(\mathcal{W}(\cdot) \), the HR depth image can be reconstructed through DCT operation. Thus we consider the DCT algorithm as a module, which can be integrated into our DCTNet framework. Furthermore, it can be expanded to obtain the multi-channel HR depth map features by completing the DCT operation on each feature channel. Mathematically, the calculation of the DCT module, denoted as \(\mathcal{DCT}(\cdot, \cdot, \cdot) \), is

\[\Phi^H = \mathcal{DCT}(\Phi^R, \Phi^L, \hat{W}^R), \] (9)

where \(\Phi^H \in \mathbb{R}^{M \times N \times C} \) is the guided upsampling feature of depth map \(L \). More specifically, \(\mathcal{DCT}(\cdot, \cdot, \cdot) \) calculates

\[\Phi^E_R[c] = \hat{\lambda}_c \mathcal{L} \left(\mathcal{L}(\Phi^R[c]) \circ \hat{W}^R[c] \right) + \Phi^L[c], \] (10)

\[\Phi^H_R[c] = \mathcal{F}^{-1}_c \left\{ \mathcal{F}_c(\Phi^E[c]) \odot (I + \hat{\lambda}_c K^2) \right\}, \] (11)

where \(\Phi^H_R[c] \in \mathbb{R}^{M \times N} \) is the \(c \)th channel feature map of \(\Phi^H \). We want to emphasize that, compared with the manually given \(\lambda \) in Eq. (1) and Eq. (4), the \(\hat{\lambda} \in \mathbb{R}^C \) in Eq. (10) is set to be learnable. The channel-wise parameters are updated with the training progress, improving model flexibility.

To summarize, there are two main advantages of using the DCT module. First, besides \(\hat{\lambda} \in \mathbb{R}^C \), the acquisition of the feature map \(\Phi^H \) is learning-free, which can reduce the network size with less learnable weights. Second, using the DCT operation to directly calculate the output features makes this component more interpretable than a neural network that usually works like a black box.

3.2.4 Depth reconstruction

Finally, the depth reconstruction module aims to predict the HR depth map from its feature map \(\Phi^H \), which is the output of the DCT module. The detailed structure is shown

\[1 \text{We denote } \{ \Phi^L_c, \Phi^R_c \} \text{ as } \{ \Phi^L, \Phi^R \} \text{ for simplicity.} \]

Impact of network depth \(P (C = 64) \)	Setting	2	3	4	5	6
	4	2.378	1.989	1.544	1.521	1.527
	8	4.644	3.963	3.152	3.174	3.166
	16	8.245	6.904	5.764	5.787	5.776

Impact of network width \(C (P = 4) \)	Setting	8	16	32	64	128
	4	2.798	2.300	1.992	1.544	1.529
	8	5.694	4.476	3.808	3.152	3.171
	16	9.531	7.695	6.976	5.764	5.734

Table 1. The impacts of depth \(P \) and width \(C \) on the DCTNet using the validation set. **Bold** indicates the best RMSE result.

In Fig. 2(c). Specifically, the function \(\mathcal{R}(\cdot) \) of this module can be expressed as \(\hat{H} = \mathcal{R}(\Phi^H) \), where \(H \in \mathbb{R}^{M \times N} \) is the predicted HR depth map of DCTNet.

3.2.5 Training loss

Consistent with recent works [3, 21, 22], we choose \(\ell_2 \)-loss as the training objective. That is, \(D(H, \hat{H}) = \sum_{i=1}^{N} ||H_i - \hat{H}_i||^2_2 \), where \(H_i \) is the ground truth HR depth map.

4. Experiment

In this section, we conduct comprehensive quantitative and qualitative experiments on several datasets to demonstrate the effectiveness of our proposed DCTNet.

4.1. Setup

Datasets. We use popular GDSR benchmarks following the protocol in recent works [16, 21, 22, 46]. Specifically, we select the first 1000 pairs of NYU v2 dataset [43] as the training set (900 pairs for training the network and 100 pairs for validation), and the last 449 pairs as a test set. We also utilize Middlebury [13, 41] (30 pairs) and Lu [31] (6 pairs) provided by Lu et al. [31] as the test sets. In addition, 405 pairs of images in the RGBDD dataset [12] are incorporated for evaluation. We train our DCTNet on the NYU v2 dataset [43] and test on the four datasets mentioned above.

In our experiments, all the LR depth images are synthesized by applying bicubic down-sampling of the HR depth maps. Finally, to verify the generalization ability of our models in natural scenes, we test them on the real-world branch of the RGBDD dataset\(^2\) [12]. Please refer to the supplementary material for more descriptions of all the datasets.

Metric and implementation details. The training samples are resized to 256x256 in the pre-processing stage. The network is trained for 1000 epochs with a mini-batch size of

\[^2\]This branch dataset contains 2215/405 pairs of RGBD images as training/test set. The LR depth maps and target HR depth maps are all acquired in real scenes, with the sizes of 192x144 and 512x384, respectively.
values of the learnable parameters $\tilde{\lambda}$ against iterations during training. Different colored lines denote λ_c, corresponding to different channels.

64. We use the Adam [17] optimizer with a learning rate of 10^{-3}. In the test phase, we follow common practice and use the root-mean-square error (RMSE) to measure the depth SR performance against the ground-truth maps. A smaller RMSE implies a better quality of predicted depth images. The scripts are mainly implemented with Pytorch [36]. The training and testing are carried out on a PC with two NVIDIA GeForce RTX 3090 GPUs. We randomly initialize the learnable parameter $\tilde{\lambda}$ to e^{θ}, where $\theta \sim \mathcal{N}(0, 1, 0.3)$. The number of semi-coupled residual blocks P and the kernel numbers C of semi-coupled filters in each convolution layer are set to 4 and 64, respectively. The choices of P and C are verified using the validation set in Sec. 4.2.

4.2. Validation experiments

Impact of network depth and width. For our proposed DCTNet, the network depth P and the width C play an important role in the effectiveness of super-resolution. We show the results among different combinations of $\{P, C\}$ on the validation set. We first fix $C = 64$, and calculate the prediction quality when $P = 2, 3, 4, 5, 6$ on the validation set. Then we verify the SR results for $C = 8, 16, 32, 64, 128$ when fixing $P = 4$. The results are demonstrated in Table 1. When $P < 4$, the model capability is restricted. When $P > 4$, increasing the depth does not achieve obvious performance gain but makes the model heavier. Similarly, when C exceeds 64, there is no significant performance improvement but increases the training cost. To have a good balance of model performance and computational cost, we set $\{P = 4, C = 64\}$ for the following experiments.

Highlighting edge attention weights. We visualize the first three and last two channels of the guided edge attention weights $\tilde{V}_{\tilde{\lambda}}$ in Eq. (8) from a representative sample pair (Fig. 3). We can clearly see that after the weight attention operation in the GESA module, the contour of the object is effectively highlighted, and the texture information inside the object is smoothed, which can alleviate the issue for texture over-transferred and benefit the GDSR task.

Evolution of the learnable parameters in DCT. One of our contributions is to make the tuning parameter $\tilde{\lambda}$ in Eq. (10) a list of channel-wise learnable parameters to improve the flexibility of DCTNet. Here we show the changing curve of $\tilde{\lambda}$ in each channel against the iteration number during training (Fig. 3). The plot shows that under the data-driven setting, $\tilde{\lambda}$ can adaptively adjust the importance between the fidelity term and the regular term. Compared with the manually given λ in Eq. (4), our design is more capable of leveraging the characteristics of different data domains.

4.3. Comparison with the state-of-the-arts

In this section, we test our DCTNet on the NYU v2, Middlebury, Lu and RGBDD benchmarks, and compare the results with state-of-the-art methods including DJF [21], DJFR [22], PAC [46], CUNet [3], DKN [16], FDKN [16] and FDSR [12] to demonstrate its performance.

Qualitative Comparison. We show the comparison of error maps for the SR depth maps in Fig. 4 and 5. Qualitatively, the depth predictions of DCTNet have lower prediction errors and are closer to the ground truth images. More visual comparisons are shown in the supplementary material.

Quantitative Comparison. The quantitative results on four test sets with scaling factors $\times 4$, $\times 8$, and $\times 16$ are shown in Tab. 2. Compared with existing approaches that only perform well on a certain dataset or super-resolution factor, our DCTNet achieves the best or second-best performance for multiple datasets and different super-resolution scales. This shows the advantage of our model upon previous state-of-the-arts. Moreover, following [12], for the real-world branch of RGBDD dataset, we use the $\times 4$ models trained in Tab. 2 to verify their generalization ability in real-world scenes. All the models are tested directly without additional finetuning. The quantitative results are shown in Table 3. Our proposed DCTNet achieves lower RMSE than previous
methods, demonstrating its generalization ability.

Parameter Comparison. We discussed in Sec. 3 that the semi-coupled feature extraction (SCFE) module and the DCT module can reduce the number of learnable parameters while improving the interpretability of the model. Therefore, we show the number of model parameters vs. RMSE on the NYU v2 dataset in Fig. 6. Our model compares favorably against existing approaches with a relatively small number of parameters, demonstrating promising future directions in building lightweight network architectures.

4.4. Ablation Studies

We further validate the design choices of our DCTNet through ablation experiments (Tab. 4). Due to space limitations, we refer readers to the supplementary material for details about the network structures in Exp. III and V.

Semi-coupled filters. Besides the default semi-coupled filters in the SCFE module, we also tested independent (Exp. I) or fully-coupled (Exp. II) cases, where the parameters in each residual block are not shared or fully-shared, respectively. Exp. I result shows that the ability of independent kernels in extracting features is weaker than that of the semi-coupled filters, which demonstrates the necessity of using shared kernels to extract common features. On the other hand, Exp. II shows fully-shared filters lead to worse performance than the semi-coupled ones, which indicates the importance of considering the disparity between two modalities.

The DCT module. In Exp. III, we remove the DCT module and use a three-layer CNN to learn the mapping in Eq. (9). Removing the DCT module not only increases the number of learnable parameters but also reduces the prediction quality, which proves the effectiveness of the DCT module that follows the optimization-based methodology.

Learnable parameters λ. Instead of using learnable ones, we fix λ to $e^{0.3}$ in Exp. IV (the mean of their initialization values). The result shows that a fixed tuning coefficient can reduce the flexibility of the model and restrict the SR ability.

Residual skip connection. In Exp. V, we remove the residual connection in the SCFE module and only use a stack of convolution kernels. The results show that residual connections play an important role in the feature extraction stage, as removing them leads to significant performance degradation.
Table 2. Quantitative comparison between our DCTNet and previous state-of-the-art approaches on four benchmark datasets. We use the RMSE metric (lower is better). The best and the second-best values are highlighted by **bold** and *underline*, respectively.

Methods	Middlebury	NYU V2	Lu	RGBDD								
	×4	×8	×16	×4	×8	×16	×4	×8	×16	×4	×8	×16
DJF [21]	1.68	3.24	5.62	2.80	5.33	9.46	1.65	3.96	6.75	3.41	5.57	8.15
DJFR [22]	1.32	3.19	5.57	2.38	4.94	9.18	1.15	3.57	6.77	1.25	1.98	3.49
PAC [46]	1.32	2.62	4.58	1.89	3.33	6.78	1.20	2.33	5.19	1.25	1.98	3.49
CUNet [3]	1.10	2.17	4.33	1.92	3.70	6.78	0.91	2.23	4.99	1.18	1.95	3.45
DKN [16]	1.23	2.12	4.24	1.62	3.26	6.51	0.96	2.16	5.11	1.30	1.96	3.42
FDKN [16]	**1.08**	2.17	4.50	1.86	3.58	6.96	**0.82**	2.10	5.05	1.18	1.91	3.41
FDSR [12]	1.13	2.08	4.39	1.61	3.18	5.86	1.29	2.19	5.00	1.16	1.82	3.06
DCTNet (Ours)	**1.10**	**2.05**	**4.19**	**1.59**	**3.16**	**5.84**	0.88	**1.85**	**4.39**	**1.08**	**1.74**	**3.05**

Figure 6. The number of model parameters vs. RMSE on the NYU v2 dataset for ×4, ×8, and ×16 SR scales. Our DCTNet (red star) achieves better or comparable performance with a relatively small number of parameters than existing models (blue dots).

Table 3. Quantitative results on the real-world branch of the RGBDD dataset. The best and second-best values are highlighted by **bold** and *underline*, respectively. FDSR* and DCTNet* represent the results after finetuning on real-world branch data.

Configurations	×4	×8	×16
I w/ Independent Filters	1.74	3.34	6.06
II w/ Fully-shared Filters	1.80	3.48	6.46
III w/o DCT Module	1.78	3.46	6.61
IV w/o Learnable Parameters	1.77	3.55	6.63
V w/o Residual Connection	1.91	3.84	7.06
Ours	**1.59**	**3.16**	**5.84**

Table 4. Results of ablation experiments on the NYU v2 test set. **Bold** indicates the best score in terms of RMSE.

4.5. Limitation

Although our proposed DCTNet is more interpretable and compares favorably against existing approaches with less learnable parameters, one limitation is that the components in the model make the formulation more complex than approaches using an end-to-end deep neural network to regress the HR depth map. In our future work, we will explore different ways to simplify the network design while keeping the merit of interpretability and the good tradeoff between network parameters and SR performance. We will also investigate challenges ubiquitous for most guided depth SR approaches, *e.g.*, low illumination and blurry boundary in the paired RGB images.

5. Conclusion

In this paper, we propose a novel guided depth super-resolution (GDSR) model, DCTNet, based on discrete cosine transform, semi-coupled convolutional feature extraction, and adaptive edge attention. Our DCTNet incorporates intuitive motivations into the design choices to alleviate the challenges of RGB texture over-transferred, ineffective cross-modal feature extraction, and unclear working mechanism of network components in existing methods. In the future, we hope that more multi-modal image processing tasks can benefit from all or some components in DCTNet.

Acknowledgement

This work has been supported by the National Natural Science Foundation of China under Grant 61976174.
References

[1] Massimo Camplani, Tomás Mantecón, and Luis Salgado. Depth-color fusion strategy for 3-d scene modeling with kinect. *IEEE Trans. Cybern.*, 43(6):1560–1571, 2013. 2

[2] Xin Deng and Pier Luigi Dragotti. Deep coupled ISTA network for multi-modal image super-resolution. *IEEE Trans. Image Process.*, 29:1683–1698, 2020. 2, 3

[3] Xin Deng and Pier Luigi Dragotti. Deep convolutional neural network for multi-modal image restoration and fusion. *IEEE Trans. Pattern Anal. Mach. Intell.*, 43(10):3333–3348, 2021. 2, 3, 5, 6, 7, 8

[4] James Diebel and Sebastian Thrun. An application of markov random fields to range sensing. In *NIPS*, pages 291–298, 2005. 2

[5] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super-resolution. In *ECCV*, pages 184–199. Springer, 2014. 1

[6] David Ferstl, Christian Reinbacher, René Ranftl, Matthias Rüther, and Horst Bischof. Image guided depth upsampling using anisotropic total generalized variation. In *ICCV*, pages 993–1000. IEEE, 2013. 2

[7] Karol Gregor and Yann LeCun. Learning fast approximations work for multi-modal image super-resolution. In *IEEE Trans. Pattern Anal. Mach. Intell.*, 43(6):1560–1571, 2013. 2

[8] Shuhang Gu, Wangmeng Zuo, Shi Guo, Yunjin Chen, Chongyu Chen, and Lei Zhang. Learning dynamic guidance for depth image enhancement. In *CVPR*, pages 712–721. IEEE Computer Society, 2017. 2, 3

[9] Chunle Guo, Chongyi Li, Jichang Guo, Runmin Cong, Huazhu Fu, and Ping Han. Hierarchical features driven residual learning for depth map super-resolution. *IEEE Trans. Image Process.*, 28(5):2545–2557, 2019. 3

[10] Saurabh Gupta, Ross B. Girshick, Pablo Andrés Arbeláez, and Jitendra Malik. Learning rich features from RGB-D images for object detection and segmentation. In *ECCV*, pages 345–360. Springer, 2014. 1

[11] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. *IEEE Trans. Pattern Anal. Mach. Intell.*, 36(5):1397–1409, 2013. 2

[12] Ling Li, Xiaojian Li, Shanlin Yang, Shuai Ding, Alireza Jolfaei, and Xi Zheng. Unsupervised-learning-based continuous depth and motion estimation with monocular endoscopy for virtual reality minimally invasive surgery. *IEEE Trans. Ind. Informatics*, 17(6):3920–3928, 2021. 1

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2014. 6

[14] Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matthew Uyttendaele. Joint bilateral upsampling. *ACM Trans. Graph.*, 26(3):96, 2007. 2

[15] HyoekHyun Kwon, Yu-Wing Tai, and Stephen Lin. Data-driven depth map refinement via multi-scale sparse representation. In *CVPR*, pages 159–167. IEEE Computer Society, 2015. 2, 3

[16] Jiajun Lu and David A. Forsyth. Sparse depth super resolution. In *CVPR*, pages 353–369. Springer, 2016. 2, 3, 5, 6, 7, 8

[17] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2014. 6

[18] Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matthew Uyttendaele. Joint bilateral upsampling. *ACM Trans. Graph.*, 26(3):96, 2007. 2

[19] HyoekHyun Kwon, Yu-Wing Tai, and Stephen Lin. Data-driven depth map refinement via multi-scale sparse representation. In *CVPR*, pages 159–167. IEEE Computer Society, 2015. 2, 3

[20] Ling Li, Xiaojian Li, Shanlin Yang, Shuai Ding, Alireza Jolfaei, and Xi Zheng. Unsupervised-learning-based continuous depth and motion estimation with monocular endoscopy for virtual reality minimally invasive surgery. *IEEE Trans. Ind. Informatics*, 17(6):3920–3928, 2021. 1

[21] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep joint image filtering. In *ECCV*, pages 154–169. Springer, 2016. 3, 5, 6, 7, 8

[22] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Joint image filtering with deep convolutional networks. *IEEE Trans. Pattern Anal. Mach. Intell.*, 41(8):1909–1923, 2019. 3, 5, 6, 7, 8

[23] Yu Li, Dongbo Min, Minh N. Do, and Jiangbo Lu. Fast guided global interpolation for depth and motion. In *ECCV*, pages 717–733. Springer, 2016. 2

[24] Miao Liao, Feixiang Lu, Dingou Zhou, Sibo Zhang, Wei Li, and Ruigang Yang. DVI: depth guided video inpainting for autonomous driving. In *ECCV*, pages 1–17. Springer, 2020. 1

[25] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoungh Mu Lee. Enhanced deep residual networks for single image super-resolution. In *CVPRW*, 2017. 1

[26] Jie Liu, Wenjie Zhang, Yuting Tang, Jie Tang, and Gangshan Wu. Residual feature aggregation network for image super-resolution. In *CVPR*, pages 2356–2365. IEEE Computer Society, 2020. 2, 3, 4

[27] Ming-Yu Liu, Oncel Tuzel, and Yuichi Taguchi. Joint geodesic upsampling of depth images. In *CVPR*, pages 169–176. IEEE Computer Society, 2013. 2

[28] Xianming Liu, Deming Zhai, Rong Chen, Xiangyang Ji, Debin Zhao, and Wen Gao. Deep super-resolution via joint color-guided internal and external regularizations. *IEEE Trans. Image Process.*, 28(4):1636–1645, 2019. 1

[29] Jiajun Lu and David A. Forsyth. Sparse depth super resolution. In *CVPR*, pages 2245–2253. IEEE Computer Society, 2015. 2

[30] Jiangbo Lu, Keyang Shi, Dongbo Min, Liang Lin, and Minh N. Do. Cross-based local multipoint filtering. In *CVPR*, pages 430–437. IEEE Computer Society, 2012. 2

[31] Si Lu, Xiaofeng Ren, and Feng Liu. Depth enhancement via color-guided internal and external regularizations. *IEEE Trans. Image Process.*, 28(4):1636–1645, 2019. 1

[32] Salma Abdel Magid, Yulun Zhang, Donglai Wei, Won-Dong Jang, Zudi Lin, Yun Fu, and Hanspeter Pfister. Dynamic high-pass filtering and multi-spectral attention for image super-resolution. In *ICCV*, pages 4268–4277. IEEE, 2021. 2

[33] Dongbo Min, Jiangbo Lu, and Minh N. Do. Depth video enhancement based on weighted mode filtering. *IEEE Trans. Image Process.*, 21(3):1176–1190, 2012. 2
[62] Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfolding network for image super-resolution. In CVPR, pages 3214–3223. IEEE Computer Society, 2020.

[63] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep CNN denoiser prior for image restoration. In CVPR, pages 2808–2817. IEEE Computer Society, 2017.

[64] Yinda Zhang, Mingru Bai, Pushmeet Kohli, Shahram Izadi, and Jianxiong Xiao. Deepcontext: Context-encoding neural pathways for 3d holistic scene understanding. In ICCV, pages 1201–1210. IEEE, 2017.