DEFORMATION OF K-THEORETIC CYCLES

SEN YANG

ABSTRACT. By using previous results in [13], we answer the following two questions posed by Mark Green and Phillip Griffiths in chapter 10 of [10] (page 186-190):

• (1). Can one define $T Z^p(X)$ (tangent space to cycle class group) in general?
• (2). Obstruction issues.
The highlight is the appearance of negative K-groups which detects the obstructions to deforming cycles.

CONTENTS

1. Introduction
2. First order deformation-tangent spaces
 2.1. Definition of tangent spaces
 2.2. Why take kernel
 2.3. Why use Milnor K-theory
3. Higher order deformation-obstructions
 3.1. Obstructions and negative K-groups
 3.2. Obstruction issues-versus Hilbert scheme
References

1. Introduction

For X a smooth projective variety over a field k of characteristic 0, for each integer p satisfying $1 \leq p \leq \dim(X)$, let $Z^p(X)$ denote the cycle class group,

$$Z^p(X) = \bigoplus_{y \in X^{(p)}} \mathbb{Z} \cdot \{y\}.$$

The following question is posed by Green-Griffiths:

Question 1.1 (page 186 in [10]). Can one define $T Z^p(X)$ in general?
Here, \(TZ^p(X) \) is the tangent space to the cycle class group \(Z^p(X) \). Since the abelian group \(Z^p(X) \) is not a complex manifold or a scheme, the known deformation theory, such as Kodaira-Spencer theory or the theory of Hilbert schemes, can’t apply to this question directly. We consider \(Z^p(-) \) as a functor and attempt to define the tangent space to this functor as usual

\[
TZ^p(X) := \ker \{ Z^p(X \times \text{Spec}(k[\varepsilon]/(\varepsilon^2))) \xrightarrow{\varepsilon=0} Z^p(X) \},
\]

where \(k[\varepsilon]/(\varepsilon^2) \) is the ring of dual numbers. Unfortunately, the classical definition of algebraic cycles can’t distinguish nilpotent, \(Z^p(X \times \text{Spec}(k[\varepsilon]/(\varepsilon^2))) = Z^p(X) \), so this definition is clearly not the desirable one.

Green-Griffiths has answered this question for \(p = 1(\text{divisors}) \) and \(p = \dim(X)(0\text{-cycles}) \) in \([10]\). To give an example of what tangent spaces to cycle class groups are, we recall:

Definition 1.2 (page 84-85 and page 141 in \([10]\)). For \(X \) a smooth projective surface over a field \(k \) of characteristic 0, the tangent space \(TZ^2(X) \) to the 0-cycles on \(X \) and the tangent subspace \(TZ^2_{\text{rat}}(X) \) to the rational equivalence class are defined to be :

\[
TZ^2(X) := \bigoplus_{x \in X^{(2)}} H^2_x(\Omega^1_{X/Q}) ,\quad TZ^2_{\text{rat}}(X) := \text{Im}(\partial_1^{1,-2}),
\]

where \(\partial_1^{1,-2} \) is the differential of the Cousin complex of \(\Omega^1_{X/Q} \):

\[
0 \to \Omega^1_{k(X)/Q} \to \bigoplus_{y \in X^{(1)}} H^1_y(\Omega^1_{X/Q}) \xrightarrow{\partial_1^{1,-2}} \bigoplus_{x \in X^{(2)}} H^2_x(\Omega^1_{X/Q}) \to 0.
\]

It is worth noting that absolute differentials and local cohomology appear in this definition.

Moreover, Green-Griffiths points out that(page 186 in \([10]\)):

*The technical issue that arises in trying straightforwardly extend the definitions given in the text for \(p = n, 1 \) concerns cycles that are linear combinations of irreducible subvarieties

\[
Z = \sum_i n_i Z_i,
\]

where some \(Z_i \) may not be the support of a locally Cohen-Macaulay scheme.*

To handle this technical issue, we look at generic points of \(Z_i \)'s and need to use higher algebraic K-theory. In Section 2, we propose a definition of \(TZ^p(X) \) in Definition 2.6 for general \(p \), generalizing Green-Griffiths’ Definition 1.2 above.
Considering an element \(\tau \in TZ^p(X) \) as a first order deformation, Green-Griffiths asks whether we can successively deform \(\tau \) to infinite order. It is well-known that the deformation of a subvariety \(Y \), considered as an element of the Hilbert scheme \(\text{Hilb}(X) \), may be obstructed. However, Green-Griffiths predicts that we can eliminate obstructions, by considering \(Y \) as an element of \(Z^p(X) \):

Conjecture 1.3 (page 187-190 in [10]). \(TZ^p(X) \) is formally unobstructed, see Conjecture 3.8 in Section 3.2.

We answer this conjecture in Theorem 3.11. The main idea for answering Question 1.1 and Conjecture 1.3 is to use Milnor K-theoretic cycles to replace the classical algebraic cycles. In [3], Balmer defines K-theoretic Chow groups in terms of the derived category \(D^{perf}(X) \) obtained from the exact category of perfect complexes of \(O_X \)-modules. His idea is followed by Klein [13] and the author [18]. By modifying Balmer’s K-theoretic Chow groups [3], in [18], we extend Soulé’s variant of Bloch-Quillen identification from \(X \) to its infinitesimally trivial deformations. In this note, we continue using the techniques developed in [18] and focus on the geometry behind the formal definitions of K-theoretic cycles.

This note is organized as follows. We recall Milnor K-theoretic cycles and answer Green-Griffiths’ Question 1.1 in Section 2.1, concrete examples of Milnor K-theoretic cycles from geometry (locally complete intersections) are also discussed. In Section 2.2 and Section 2.3, we explain two new aspects of Milnor K-theoretic cycles, which are different from Balmer’s [3], featuring negative K-groups and Milnor K-theory.

The relation between obstructions and negative K-groups is discussed in Section 3.1. We discuss obstruction issues and answer Green-Griffiths’ Conjecture 1.3 in Section 3.2.

Notations and conventions.

1. K-theory used in this note will be Thomason-Trobaugh nonconnective K-theory, if not stated otherwise.
2. For any abelian group \(M \), \(M_\mathbb{Q} \) denotes the image of \(M \) in \(M \otimes \mathbb{Q} \).
3. \(k[\varepsilon]/(\varepsilon^2) \) is the ring of dual numbers.

2. First order deformation-tangent spaces

In this section, \(X \) is a \(d \)-dimensional smooth projective variety over a field \(k \) of characteristic 0. For each positive integer \(j \), \(X_j := X \times_k \text{Spec}(k[t]/t^{j+1}) \) is the \(j \)-th order infinitesimally trivial deformation of \(X \). In particular, we use \(X[\varepsilon] \) to stand for \(X_1 \), i.e., \(X[\varepsilon] = (X, O_X[t]/(t^2)) \).

Recall that Milnor K-groups with support are rationally defined in terms of eigenspaces of Adams operations in [18].
Definition 2.1 (Definition 3.2 in [18]). Let \(x_j \in X_j^{(i)} \), for any integer \(m \), Milnor K-group with support \(K^M_m(O_{X_j,x_j} \text{ on } x_j) \) is rationally defined to be
\[
K^M_m(O_{X_j,x_j} \text{ on } x_j) := K^{(m+i)}_m(O_{X_j,x_j} \text{ on } x_j)_\mathbb{Q},
\]
where \(K^{(m+i)}_m \) is the eigenspace for \(\psi^k = k^{m+i} \) and \(\psi^k \) is the Adams operations.

For each positive integer \(p \), there exists the following variant of Gersten complex, see Theorem 3.14 in [18],
\[
0 \to \bigoplus_{x_j \in X_j^{(0)}} K^M_p(O_{X_j,x_j} \text{ on } x_j) \to \cdots \to \bigoplus_{x_j \in X_j^{(p-1)}} K^M_1(O_{X_j,x_j} \text{ on } x_j) \to \bigoplus_{x_j \in X_j^{(p)}} K^M_0(O_{X_j,x_j} \text{ on } x_j) \to \cdots
\]
\[
\xrightarrow{d^p_{1,X_j}} \bigoplus_{x_j \in X_j^{(p)}} K^M_p(O_{X_j,x_j} \text{ on } x_j) \xrightarrow{d^p_{1,X_j}} \bigoplus_{x_j \in X_j^{(p+1)}} K^M_0(O_{X_j,x_j} \text{ on } x_j) \to 0.
\]

Definition 2.2 (Definition 3.4 and Definition 3.15 in [18]). For each positive integer \(p \), the \(p \)-th Milnor K-theoretic cycles and Milnor K-theoretic rational equivalence of \(X_j \), denoted \(Z^M_p(D_{\text{Perf}}(X_j)) \) and \(Z^M_{p,\text{rat}}(D_{\text{Perf}}(X_j)) \), are defined as
\[
Z^M_p(D_{\text{Perf}}(X_j)) := \text{Ker}(d^p_{1,X_j}),
\]
\[
Z^M_{p,\text{rat}}(D_{\text{Perf}}(X_j)) := \text{Im}(d^p_{1,X_j}).
\]

The \(p \)-th Milnor K-theoretic Chow group of \(X_j \) is defined to be:
\[
CH^M_p(D_{\text{Perf}}(X_j)) := \frac{\text{Ker}(d^p_{1,X_j})}{\text{Im}(d^p_{1,X_j})}.
\]

The reasons why we take the kernel of \(d^p_{1,X_j} \) to define \(Z^M_p(D_{\text{Perf}}(X_j)) \) and why we use Milnor K-groups with support, i.e., certain eigenspaces of Thomason-Trobaugh K-groups, not the entire Thomason-Trobaugh K-groups, are explained in Section 2.2 and Section 2.3 respectively.

2.1. Definition of tangent spaces. For \(Y \subset X \) a subvariety of codimension \(p \), let \(i : Y \to X \) be the inclusion, then \(i_*O_Y \) is a coherent \(O_X \)-module and can be resolved by a bounded complex of vector bundles on \(X \). Let \(Y' \) be a first order deformation of \(Y \), that is, \(Y' \subset X[\varepsilon] \) such that \(Y' \) is flat over Spec\((k[\varepsilon])\) and \(Y' \otimes_{k[\varepsilon]} k \cong Y \). Then \(i_*O_{Y'} \) can be resolved by a bounded complex of vector bundles on \(X[\varepsilon] \), where \(i : Y' \to X[\varepsilon] \).
Let $D_{\text{perf}}(X[\varepsilon])$ denote the derived category of perfect complexes of $O_X[\varepsilon]$-modules, and let $\mathcal{L}_{(i)}(X[\varepsilon]) \subset D_{\text{perf}}(X[\varepsilon])$ be defined as
\[
\mathcal{L}_{(i)}(X[\varepsilon]) := \{ E \in D_{\text{perf}}(X[\varepsilon]) \mid \text{codim}_{\text{Krull}}(\text{supph}(E)) \geq -i \},
\]
where the closed subset $\text{supph}(E) \subset X$ is the support of the total homology of the perfect complex E. The resolution of $i_*O_Y^\vee$, which is a perfect complex of $O_X[\varepsilon]$-module supported on Y, defines an element of the Verdier quotient $\mathcal{L}_{(-p)}(X[\varepsilon])/\mathcal{L}_{(-p-1)}(X[\varepsilon])$, denoted $[i_*O_Y^\vee]$.

If $Y \subset X$ is a locally complete intersection of codimension p, there exists an open affine $U(\subset X)$ such that $U \cap Y$ is defined by a regular sequence (f_1, \cdots, f_p), where $f_i \in O_X(U)$. Locally on U, Y' is given by lifting f_1, \cdots, f_p to $f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p$, where $g_i \in O_X(U)$.

We use $F_*(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)$ to denote the Koszul complex associated to the regular sequence $f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p$, which is a resolution of $O_X(U)[\varepsilon]/(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)$:
\[
0 \longrightarrow F_0 \xrightarrow{A_0} F_1 \xrightarrow{A_1} \cdots \xrightarrow{A_2} F_{p-1} \xrightarrow{A_p} F_p,
\]
where each $F_i = \wedge^i(O_X(U)[\varepsilon])^{\oplus p}$ and $A_i : \wedge^i(O_X(U)[\varepsilon])^{\oplus p} \xrightarrow{\Delta} \wedge^{i+1}(O_X(U)[\varepsilon])^{\oplus p}$ are defined as usual. And one can define tangent to this Koszul complex, which is given by the following commutative diagram (we assume $g_2 = \cdots = g_p = 0$ for simplicity):
\[
\begin{split}
F_*(f_1, f_2, \cdots, f_p) & \quad \longrightarrow \quad O_X(U)/(f_1, f_2, \cdots, f_p) \\
F_p(\cong O_X(U)) & \quad \xrightarrow{g_1d_1f_2 \wedge \cdots \wedge d_pf_p} \quad F_0 \otimes O_{O_X(U)/Q}^{p-1}(\cong O_{O_X(U)/Q}^{p-1}),
\end{split}
\]
where $d = d_Q$.

However, in general, $Y \subset X$ may not be a locally complete intersection and the length of the perfect complex $[i_*O_Y^\vee]$, which is the resolution of $i_*O_Y^\vee$, may not equal to p. To modify this, instead of considering $[i_*O_Y^\vee]$ which is an element of the Verdier quotient $\mathcal{L}_{(-p)}(X[\varepsilon])/\mathcal{L}_{(-p-1)}(X[\varepsilon])$, we consider its image in the idempotent completion $(\mathcal{L}_{(-p)}(X[\varepsilon])/\mathcal{L}_{(-p-1)}(X[\varepsilon]))^\#$, denoted $[i_*O_Y^\vee]^\#$. And we have the following result:

Theorem 2.3. For each $i \in \mathbb{Z}$, localization induces an equivalence
\[
(\mathcal{L}_{(i)}(X[\varepsilon])/\mathcal{L}_{(i-1)}(X[\varepsilon]))^\# \simeq \bigsqcup_{x[\varepsilon] \in X[\varepsilon]^{(-i)}} D_{x[\varepsilon]} \text{perf}(X[\varepsilon])
\]
between the idempotent completion of the Verdier quotient $\mathcal{L}_{(i)}(X[\varepsilon])/\mathcal{L}_{(i-1)}(X[\varepsilon])$ and the coproduct over $x[\varepsilon] \in X[\varepsilon]^{(-i)}$ of the derived category of perfect complexes of $O_{X[\varepsilon],x[\varepsilon]}$-modules with homology supported on the closed
point \(x[\varepsilon] \in \text{Spec}(O_{X[x],x[\varepsilon]}) \). And consequently, one has

\[
K_0((\mathcal{L}(i)(X[\varepsilon])/\mathcal{L}(i-1)(X[\varepsilon]))^\#) \simeq \bigoplus_{x[\varepsilon] \in X[\varepsilon][i][-i]} K_0(D_{x[\varepsilon]}^\text{perf}(X[\varepsilon])).
\]

Let \(y \) be the generic point of \(Y \), \(Y \) is generically defined by a regular sequence of length \(p \): \(f_1, \cdots, f_p \), where \(f_1, \cdots, f_p \in O_{X,y} \). \(Y' \) is generically given by lifting \(f_1, \cdots, f_p \) to \(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p \), where \(g_1, \cdots, g_p \in O_{X,y} \). We use \(F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \) to denote the Koszul complex associated to the regular sequence \(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p \), which is a resolution of \(O_{X,y}[\varepsilon]/(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \).

Under the equivalence (2.2), the localization at the generic point \(y \) sends \([i_*O_{Y'}] \# \) to the Koszul complex \(F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \):

\[
[i_*O_{Y'}] \# \rightarrow F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p).
\]

And one can define tangent to the Koszul complex \(F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \) similarly as (2.1), which defines an element of \(H^p_y(\Omega^{p-1}_{X/Q}) \).

Remark 2.4. In general, we don’t know whether the above kind of Koszul complexes can generate the Grothendieck group \(\bigoplus_{x \in X^{(p)}} K_0^M(O_{X,x}[\varepsilon]) \) on \(x \) or not. So we can’t use only these Koszul complexes to define tangent space to cycle class groups and have to use the following formal approach.

We recall that the Milnor K-theoretic cycles and Chow groups in Definition 2.2 recover the classical ones for \(X \):

Theorem 2.5 (Theorem 3.16 in [18]). For \(X \) a smooth projective variety over a field \(k \) of characteristic 0, for each positive integer \(p \), let \(Z^p(X), Z^p_{\text{rat}}(X) \) and \(CH^p(X) \) denote the classical \(p \)-cycles, rational equivalence and Chow groups respectively, then we have the following identifications

\[
\begin{align*}
Z^M_p(D_{\text{perf}}(X)) &= Z^p(X)_Q, \\
Z^M_{p,\text{rat}}(D_{\text{perf}}(X)) &= Z^p_{\text{rat}}(X)_Q, \\
CH^M_p(D_{\text{perf}}(X)) &= CH^p(X)_Q.
\end{align*}
\]

Recall that the tangent space to a functor \(\mathcal{F} \), denoted \(T\mathcal{F}(X) \), is defined to be

\[
T\mathcal{F}(X) := \text{Ker}\{\mathcal{F}(X[\varepsilon]) \xrightarrow{\varepsilon=0} \mathcal{F}(X)\}.
\]

Considering \(Z^M_p(D_{\text{perf}}(-)) \) as a functor, we are guided to the following definition, which answers Green-Griffiths’ Question [18].
Definition 2.6. For X a smooth projective variety over a field k of characteristic 0, for each positive integer p, the tangent space to p-cycles, denoted $TZ^p(X)$, is defined to be

$$TZ^p(X) := TZ^p(D_{\text{perf}}(X)) = \text{Ker}\{Z^p_{\text{M}}(D_{\text{perf}}(X)[\varepsilon])) \xrightarrow{\varepsilon=0} Z^p_{\text{M}}(D_{\text{perf}}(X))\}.$$

Similarly, the tangent space to rational equivalent classes, denoted $TZ^p_{\text{rat}}(X)$, is defined to be

$$TZ^p_{\text{rat}}(X) := TZ^p_{p,\text{rat}}(D_{\text{perf}}(X)) = \text{Ker}\{Z^p_{p,\text{rat}}(D_{\text{perf}}(X)[\varepsilon])) \xrightarrow{\varepsilon=0} Z^p_{p,\text{rat}}(D_{\text{perf}}(X))\}.$$
The following theorem has been proved in \cite{7, 18}.

Theorem 2.7 \cite{7, Theorem 3.14 in 18}. Let X be a smooth projective variety over a field k of characteristic 0. For each integer $p \geq 1$, there exists the following commutative diagram in which the Zariski sheafification of each column is a flasque resolution of $\Omega_{X/Q}^{p-1}$, $K_p^M(O_X,e)$ and $K_p^M(O_X)$ respectively. The left arrows are induced by Chern character from K-theory to negative cyclic homology and the right ones are the natural maps sending e to 0:

\[
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\downarrow & & \downarrow \\
\bigoplus_{x \in X^{(p-1)}} H^p_{\text{rat}}(\Omega_{X/Q}^{p-1}) & \rightarrow & \bigoplus_{x \in X^{(p)}} H^p_{\text{rat}}(\Omega_{X/Q}^{p-1}) \\
\downarrow & \downarrow & \downarrow \\
\bigoplus_{x \in X^{(p+1)}} H^p_{\text{rat}}(\Omega_{X/Q}^{p+1}) & \rightarrow & \bigoplus_{x \in X^{(p+1)}} H^p_{\text{rat}}(\Omega_{X/Q}^{p+1}) \\
\downarrow & \downarrow & \downarrow \\
\vdots & \vdots & \vdots \\
\bigoplus_{x \in X^{(d)}} H^p_{\text{rat}}(\Omega_{X/Q}^{d}) & \rightarrow & \bigoplus_{x \in X^{(d)}} H^p_{\text{rat}}(\Omega_{X/Q}^{d}) \\
\downarrow & \downarrow & \downarrow \\
0 & \rightarrow & 0
\end{array}
\]

This diagram enables us to compute $TZ^p(X)$ and $TZ_{\text{rat}}^p(X)$. A quick diagram chasing shows

Theorem 2.8. Let X be a smooth projective variety over a field k of characteristic 0. For each integer $p \geq 1$, we have the following
identifications:
\[TZ^p(X) \cong \text{Ker}(\partial_1^{p-1}), \]
\[TZ^p_{\text{rat}}(X) \cong \text{Im}(\partial_1^{p-1}). \]

Evidently, \(TZ^p_{\text{rat}}(X) \) is a subspace of \(TZ^p(X) \). We use the quotient space to define the tangent space to Chow groups:

Definition 2.9. Let \(X \) be a smooth projective variety over a field \(k \) of characteristic 0. For each integer \(p \geq 1 \), the tangent space to \(\text{CH}^p(X) \), denoted \(T\text{CH}^p(X) \), is defined to be
\[T\text{CH}^p(X) := \frac{TZ^p(X)}{TZ^p_{\text{rat}}(X)}. \]

Theorem 2.10. \(T\text{CH}^p(X) \) agrees with the formal tangent space \(T_f\text{CH}^p(X) \) defined by Bloch [4], where \(T_f\text{CH}^p(X) = H^p(X, \Omega_X^{p-1}/\mathbb{Q}) \).

Proof. It immediately follows from the fact that the Zariski sheafification of the left column in Theorem 2.7 is a flasque resolution of \(\Omega_X^{p-1}/\mathbb{Q} \).

For \(X \) a smooth projective surface over a field \(k \) of characteristic 0, by taking \(p = 2 \) in Theorem 2.8, we immediately see that

Corollary 2.11. For \(X \) a smooth projective surface over a field \(k \) of characteristic 0, Green and Griffiths’ definitions of \(TZ^2(X) \) and \(TZ^2_{\text{rat}}(X) \), recalled in Definition 1.2, agree with the formal Definition 2.6.

Next, we provide concrete examples of Milnor K-theoretic cycles which are from geometry. Let \(Y \subset X \) be a locally complete intersection of codimension \(p \). For a point \(x \in Y \subset X \), there exists an open affine \(U(\subset X) \) containing \(x \) such that \(U \cap Y \) is defined by a regular sequence \(f_1, \ldots, f_p \), where \(f_i \in O_{X,x} \). Let \(Y' \) be a first order deformation of \(Y \), locally on \(U \), \(Y' \) is given by lifting \(f_1, \ldots, f_p \) to \(f_1 + \varepsilon g_1, \ldots, f_p + \varepsilon g_p \), where \(g_i \in O_{X,x} \).

Let \(y \) be the generic point of \(Y \), then \(O_{X,y} = (O_{X,x})_{(f_1, \ldots, f_p)} \) and we see \(Y \) is generically defined by \(f_1, \ldots, f_p \). We use \(F_\bullet(f_1 + \varepsilon g_1, \ldots, f_p + \varepsilon g_p) \) to denote the Koszul complex associated to the regular sequence \(f_1 + \varepsilon g_1, \ldots, f_p + \varepsilon g_p \), which is a resolution of \(O_{X,y}[\varepsilon]/(f_1 + \varepsilon g_1, \ldots, f_p + \varepsilon g_p) \):
\[
0 \rightarrow F_p \xrightarrow{A_p} F_{p-1} \xrightarrow{A_{p-1}} \cdots \xrightarrow{A_2} F_1 \xrightarrow{A_1} F_0,
\]
where each \(F_i = \wedge^i(O_{X,y}[\varepsilon])^\oplus p \) and \(A_i : \wedge^i(O_{X,y}[\varepsilon])^\oplus p \to \wedge^{i-1}(O_{X,y}[\varepsilon])^\oplus p \) are defined as usual. Then \(F_\bullet(f_1 + \varepsilon g_1, \ldots, f_p + \varepsilon g_p) \in K_0(O_{X,y}[\varepsilon] \text{ on } y[\varepsilon]). \)
Theorem 2.12 (Prop 4.12 of [8]). The Adams operations ψ^k defined on perfect complexes, defined by Gillet-Soulé in [8], satisfy $\psi^k(F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)) = k^p F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)$.

Hence, $F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)$ is of eigenweight p and can be considered as an element of $K_0^{(p)}(O_{X,y}[\varepsilon])$ on $y[\varepsilon]_\mathbb{Q}$:

$F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \in K_0^{(p)}(O_{X,y}[\varepsilon])$ on $y[\varepsilon]_\mathbb{Q} = K_0^M(O_{X,y}[\varepsilon])$ on $y[\varepsilon]$.

Moreover, we shall show $F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)$ lies in the kernel of

$$d_{1,X[\varepsilon]}^{p,-p} : \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(p)}} K_0^{M}(O_{X,x}[\varepsilon]) \rightarrow \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(p+1)}} K_1^{M}(O_{X,x}[\varepsilon])$$

so that it is a Milnor K-theoretic p-cycle:

Theorem 2.13. For X a smooth projective variety over a field k of characteristic 0, let $Y \subset X$ be a locally complete intersection of codimension p. Suppose Y is locally defined by a regular sequence f_1, \cdots, f_p, where x is a point on Y and $f_i \in O_{X,x}$. A first order deformation Y' is locally given by lifting f_1, \cdots, f_p to $f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p$, where $g_i \in O_{X,x}$. Then the Koszul complex $F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \in \text{Ker}(d_{1,X[\varepsilon]}^{p,-p})$, i.e., $F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p) \in Z_p^M(D\text{perf}(X[\varepsilon]))$.

The strategy for proving this theorem is to use the map induced by Chern character from K-theory to negative cyclic homology

$$\text{Ch} : K_0^M(O_{X,y}[\varepsilon]) \rightarrow H_y^p(\Omega_{X/\mathbb{Q}}^{p-1}),$$

mapping $F_\bullet(f_1 + \varepsilon g_1, \cdots, f_p + \varepsilon g_p)$ to an element of $H_y^p(\Omega_{X/\mathbb{Q}}^{p-1})$, and then show its image under the differential

$$\partial_1^{p,-p} : \bigoplus_{x \in X^{(p)}} H_x^p(\Omega_{X/\mathbb{Q}}^{p-1}) \rightarrow \bigoplus_{x \in X^{(p+1)}} H_x^{p+1}(\Omega_{X/\mathbb{Q}}^{p-1})$$

is zero.

Proof. The map(left arrows) induced by Chern character from K-theory to negative cyclic homology in the commutative diagram of Theorem 2.7

$$\text{Ch} : K_0^M(O_{X,y}[\varepsilon]) \rightarrow H_y^p(\Omega_{X/\mathbb{Q}}^{p-1}),$$

can be described by a beautiful construction of Angénoil and Lejeune-Jalabert, see Lemme 3.1.1 on page 24 and Definition 3.4 on page 29 in [1] for details or Section 3 of [19] for a brief summary.
For our purpose, the Ch map on the Koszul complex $F_\bullet(f_1 + \varepsilon g_1, \ldots, f_p + \varepsilon g_p)$ can be described easily. For simplicity, we assume $g_2 = \cdots = g_p = 0$ in the following. To the Koszul complex,

$$0 \longrightarrow F_0 \xrightarrow{A_1} F_1 \xrightarrow{A_2} \cdots \xrightarrow{A_{p-1}} F_{p-1} \xrightarrow{A_p} F_p,$$

one defines the following class

$$\frac{1}{p!} dA_1 \circ dA_2 \circ \cdots \circ dA_p,$$

where $d = d_Q$ and each dA_i is the matrix of absolute differentials. In other words,

$$dA_i \in \text{Hom}(F_i, F_{i-1} \otimes \Omega^1_{X,Y[e]/Q}).$$

The truncation map $\frac{\partial}{\partial \varepsilon} |_{\varepsilon=0}$ sends $\frac{1}{p!} dA_1 \circ dA_2 \circ \cdots \circ dA_p$ to $g_1 df_2 \wedge \cdots \wedge df_p$. So the image of $F_\bullet(f_1 + \varepsilon g_1, \ldots, f_p)$, under the Ch map, in $H^p_y(\Omega^{p-1}_{X,Y})$ is represented by the following diagram (an element of $\text{Ext}^p(\Omega_{X,Y}/(f_1, f_2, \ldots, f_p), \Omega^{p-1}_{X,Y/Q})$);

$$F_\bullet(f_1, f_2, \ldots, f_p) \xrightarrow{g_1 df_2 \wedge \cdots \wedge df_p} F_0 \otimes \Omega^{p-1}_{X,Y/Q} \cong \Omega^{p-1}_{X,Y/Q}.$$

The regular sequence f_1, \ldots, f_p, where $f_i \in O_{X,x}$, can be extended to be a system of parameter $f_1, \ldots, f_p, f_{p+1}, \ldots, f_d$ in $O_{X,x}$. The prime ideals $Q_i := (f_1, \ldots, f_p, f_i)$, where $i = p+1, \ldots, d$, define generic points $z_i \in X^{(p+1)}$. In the following, we consider the prime Q_{p+1} and the generic point z_{p+1}, other cases work similarly.

Let $P = (f_1, \ldots, f_p)$ be the prime ideal defining the generic point $(of \ Y)y \in X^{(p)}$, $O_{X,Y} = (O_{X,z_{p+1}})_P$. The above diagram (2.3) can be rewritten as, denoted $[\alpha]$,

$$F_\bullet(f_1, f_2, \ldots, f_p) \xrightarrow{g_1 f_{p+1} df_2 \wedge \cdots \wedge df_p} F_0 \otimes \Omega^{p-1}_{(O_{X,z_{p+1}})_P/Q} \cong \Omega^{p-1}_{(O_{X,z_{p+1}})_P/Q}.$$

Here, $F_\bullet(f_1, f_2, \ldots, f_p)$ is of the form

$$0 \longrightarrow F_p \xrightarrow{A_1} F_{p-1} \xrightarrow{A_2} \cdots \xrightarrow{A_{p-1}} F_1 \xrightarrow{A_p} F_0,$$

where each $F_i = \bigwedge^i((O_{X,z_{p+1}})_P)^{\otimes p}$. Since $f_{p+1} \notin (f_1, \ldots, f_p)$, f_{p+1} exists in $(O_{X,z_{p+1}})_P$, we can write $g_1 df_2 \wedge \cdots \wedge df_p = \frac{g_1 f_{p+1}}{f_{p+1}} df_2 \wedge \cdots \wedge df_p$.

The image of the diagram (2.4) under the differential
\[\partial_1^{p,-p} : \bigoplus_{x \in X^{(p)}} H^p_x(\Omega^{p-1}_{X/Q}) \rightarrow \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x(\Omega^{p-1}_{X/Q}) \]
is represented by the following diagram
\[
\begin{array}{c}
F_\bullet(f_1, f_2, \ldots, f_p, f_{p+1}) \\
F_{p+1}(\cong O_{X,z_{p+1}}) \xrightarrow{g_1 f_{p+1} d_{2} \wedge \cdots \wedge d_{p}} F_0 \otimes \Omega^{p-1}_{O_{X,z_{p+1}}} = \Omega^{p-1}_{O_{X,z_{p+1}}}.
\end{array}
\]
The complex \(F_\bullet(f_1, f_2, \ldots, f_p, f_{p+1}) \) is of the form
\[
0 \rightarrow \wedge^{p+1}(O_{X,z_{p+1}})^{\otimes p+1} \xrightarrow{A_{p+1}} \wedge^{p}(O_{X,z_{p+1}})^{\otimes p+1} \rightarrow \cdots.
\]
Let \(\{e_1, \ldots, e_{p+1}\} \) be a basis of \((O_{X,z_{p+1}})^{\otimes p+1}\), the map \(A_{p+1} \) is
\[
e_1 \wedge \cdots \wedge e_{p+1} \rightarrow \sum_{j=1}^{p+1} (-1)^j f_j e_1 \wedge \cdots \wedge \hat{e}_j \wedge \cdots e_{p+1},
\]
where \(\hat{e}_j \) means to omit the \(j \)-th term.

Noting \(f_{p+1} \) appears in \(A_{p+1} \),
\[
g_1 f_{p+1} d_{2} \wedge \cdots \wedge d_{p} \equiv 0 \in \text{Ext}_{O_{X,z_{p+1}}}^{p+1}(O_{X,z_{p+1}}/(f_1, f_2, \cdots, f_p, f_{p+1}), \Omega^{p-1}_{O_{X,z_{p+1}}} / Q),
\]
so \(\partial_1^{p,-p}(\alpha) = 0 \). There exists the following commutative diagram,
which is part of the commutative diagram in Theorem 2.7
\[
\begin{array}{c}
\bigoplus_{x \in X^{(p)}} H^p_x(\Omega^{p-1}_{X/Q}) \xleftarrow{\partial_1^{p,-p}} \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(p)}} K^M_{0}(O_{X, x[\varepsilon]} \text{ on } x[\varepsilon]) \\
\downarrow_{\partial_1^{p,-p}} \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x(\Omega^{p-1}_{X/Q}) \xrightarrow{d_{1,X[\varepsilon]}} \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(p+1)}} K^M_{-1}(O_{X, x[\varepsilon]} \text{ on } x[\varepsilon]).
\end{array}
\]
This gives the following commutative diagram
\[
\begin{array}{c}
[\alpha] \xleftarrow{\text{Ch}} F_\bullet(f_1 + \varepsilon g_1, f_2, \cdots, f_p) \\
\downarrow_{\partial_1^{p,-p}} \xleftarrow{d_{1,X[\varepsilon]}} d_{1,X[\varepsilon]}^{p,-p}(F_\bullet(f_1 + \varepsilon g_1, f_2, \cdots, f_p)),
\end{array}
\]
which shows \(d_{1,X[\varepsilon]}^{p,-p}(F_\bullet(f_1 + \varepsilon g_1, f_2, \cdots, f_p)) = 0 \).

In general, \(Y \subset X \) may not be a locally complete intersection, and
the associated Koszul complex \(F_\bullet(f_1 + \varepsilon g_1, f_2, \cdots, f_p) \) may not be a Milnor K-theoretic \(p \)-cycle. However, we can find another subscheme \(Z \subset X \) of codimension \(p \) and \(Z' \in T_{Z}\text{Hilb}^p(X) \) such that the two
Koszul complexes associated Y' and Z' defines a Milnor K-theoretic p-cycle

To fix notations, let $W \subset Y$ be a subvariety of codimension 1 in Y, with generic point w. One assumes W is generically defined by $f_1, f_2, \cdots, f_p, f_{p+1}$ and Y is generically defined by f_1, f_2, \cdots, f_p. Let y be the generic point of Y, one has $O_{X,y} = (O_{X,w})_P$, where P is the idea $(f_1, f_2, \cdots, f_p) \subset O_{X,w}$.

Y' is generically given by $(f_1 + \varepsilon g_1, f_2 + \varepsilon g_2, \cdots, f_p + \varepsilon g_p)$, where $g_i \in O_{X,y} = (O_{X,w})_P$. For simplicity, we assume $g_2 = \cdots = g_p = 0$. We can write $g_1 = \frac{a}{b}$, where $a, b \in O_{X,w}$ and $b \notin P$. b is either in or not in the maximal idea $(f_1, f_2, \cdots, f_p, f_{p+1}) \subset O_{X,w}$.

Theorem 2.14 (Theorem 4.7 in [19]). For $Y' \in T_Y \text{Hilb}^p(X)$ which is generically defined by $(f_1 + \varepsilon g_1, f_2, \cdots, f_p)$, where $g_1 = \frac{a}{b} \in O_{X,y} = (O_{X,w})_P$, we use $F_\bullet(f_1 + \varepsilon g_1, f_2, \cdots, f_p)$ to denote the Koszul complex associated to $f_1 + \varepsilon g_1, f_2, \cdots, f_p$,

- Case 1: If $b \notin (f_1, f_2, \cdots, f_p, f_{p+1})$, then $F_\bullet(f_1 + \varepsilon g_1, f_2, \cdots, f_p) \in Z^p_\bullet(D^\text{perf}(X[\varepsilon]))$.

- Case 2: If $b \in (f_1, f_2, \cdots, f_p, f_{p+1})$, we reduce to considering $b = f_{p+1}$. Then there exists $Z \subset X$ which is generically defined by $(f_{p+1}, f_2, \cdots, f_p)$ and exists $Z' \in T_Z \text{Hilb}^p(X)$ which is generically defined by $(f_{p+1} + \varepsilon \frac{a}{f_1}, f_2, \cdots, f_p)$ such that $F_\bullet(f_1 + \varepsilon \frac{a}{f_1}, f_2, \cdots, f_p) + F_\bullet(f_{p+1} + \varepsilon \frac{a}{f_1}, f_2, \cdots, f_p) \in Z^p_\bullet(D^\text{perf}(X[\varepsilon]))$.

2.2. Why take kernel

In this subsection, we explain the reasons why we use the kernel of d^p_{1,X_j} to define $Z^M_p(D^\text{perf}(X_j))$ in Definition 2.2 instead of taking $\bigoplus_{x_j \in X_j^{(p)}} K_0^M(O_{X_j,x_j}$ on x_j).

1. As explained in the beginning of Section 2.1, in general, the length of the perfect complex $i_*O_{Y'}$, which is the resolution of $i_*O_{Y'}$, may not equal to p. To modify this, we need to look at its image $[i_*O_{Y'}]^\#$ in the idempotent completion $(\mathcal{L}_{(-p)}(X[\varepsilon]))/\mathcal{L}_{(-p-1)}(X[\varepsilon])^\#$. From the K-theoretic viewpoint, taking idempotent completion can result in the appearance of negative K-groups. We should include negative K-groups into the study of deformation of cycles, so we use the kernel of d^p_{1,X_j} to define $Z^M_p(D^\text{perf}(X_j))$. In Section 3.2, negative K-groups will be used for obstruction issues.
2). From the geometric viewpoint, taking the kernel of $$d_{1,X^{[\varepsilon]}}^p: \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{[p]}} K_0^M(O_{X,x}[\varepsilon] \text{ on } x[\varepsilon]) \to \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{[p+1]}} K_1^M(O_{X,x}[\varepsilon] \text{ on } x[\varepsilon])$$ to define $$Z^M_p(D_{\text{perf}}(X[\varepsilon]))$$ can produce the desirable tangent space. This can be explained by the following example.

Let $$X$$ be a smooth projective surface over a field $$k$$ of characteristic 0, we consider the 1-cycles $$Z^1(X)$$ on $$X$$ and study its tangent space $$TZ^1(X)$$. For simplicity, we look at the sheaf level, that is, we look at the tangent sheaf $$TZ^1(X)$$ to the 1-cycles $$Z^1(X)$$.

Let $$Z^1(X)$$ be the Zariski sheaf of 1-cycles on $$X$$, we have the following short exact sequence of sheaves:

$$0 \to O_X^* \to K(X)^* \to \bigoplus_{y \in X^{(1)}} i_{y,*}H^1_y(O_X) \xrightarrow{\partial_{1,-2}} \bigoplus_{x \in X^{(2)}} i_{x,*}H^2_x(O_X) \to 0,$$

where $$K(X)$$ is the function field of $$X$$. It is known that the tangent sheaves to $$O_X^*$$ and $$K(X)^*$$ are $$O_X$$ and $$K(X)$$ respectively, and there exists the following short exact sequence of sheaves:

$$0 \to O_X \to K(X) \to PP_X \to 0,$$

where $$PP_X$$ is the sheaf of principal parts. This suggests that

Definition 2.15 (page 100 [10]). The tangent sheaf $$TZ^1(X)$$ to the 1-cycles $$Z^1(X)$$ is defined to be

$$TZ^1(X) := PP_X.$$

To related this definition with the formal Definition 2.6, we note that the Cousin resolution of $$O_X$$ is

$$0 \to O_X \to K(X) \to \bigoplus_{y \in X^{(1)}} i_{y,*}H^1_y(O_X) \xrightarrow{\partial_{1,-2}} \bigoplus_{x \in X^{(2)}} i_{x,*}H^2_x(O_X) \to 0.$$

For $$X$$ a smooth projective surface over a field $$k$$ of characteristic 0, taking $$p = 1$$ in Theorem 2.8, we see the tangent sheaf is $$\ker(\partial_{1,-2})$$. The two exact sequences (2.5)(2.6) show that

$$PP_X \cong K(X)/O_X \cong \ker(\partial_{1,-2}).$$

This proves:

Corollary 2.16. For 1-cycles $$Z^1(X)$$ on $$X$$, the formal Definition 2.6 (at the sheaf level) agrees with the Definition 2.15 by Green-Griffiths.
If we don’t use the kernel of $d_{1,X}^{-1}$, but use $\bigoplus_{y \in X^{(1)}} K_0(O_{X,y}[\varepsilon] \text{ on } y[\varepsilon])$, to define Milnor K-theoretic 1-cycles, then the tangent sheaf becomes $\bigoplus_{y \in X^{(1)}} H^1_y(O_X)$, which is obviously not the desirable one.

In the next, combining with Green-Griffiths’ results in [10], we construct a concrete element of the kernel of $d_{1,X}^{-1}$.

Theorem 2.17. Let X be a smooth projective surface over a field k of characteristic 0, for $p = 1$ in Theorem 2.7, we have the following commutative diagram. The left arrows are induced by Chern character from K-theory to negative cyclic homology and the right ones are the natural maps sending ε to 0:

\[
\begin{array}{cccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
k(X) & K_1(k(X)[\varepsilon])_\mathbb{Q} & K_1(k(X))_\mathbb{Q} \\
\downarrow & \downarrow & \downarrow \\
\bigoplus_{y \in X^{(1)}} H^1_y(O_X) & \bigoplus_{y \in X^{(1)}} K_0(O_{X,y}[\varepsilon] \text{ on } y[\varepsilon])_\mathbb{Q} & \bigoplus_{y \in X^{(1)}} K_0(O_{X,y} \text{ on } y)_\mathbb{Q} \\
\downarrow & \downarrow & \downarrow \\
\bigoplus_{x \in X^{(2)}} H^2_x(O_X) & \bigoplus_{x \in X^{(2)}} K_{-1}(O_{X,x}[\varepsilon] \text{ on } x[\varepsilon])_\mathbb{Q} & \bigoplus_{x \in X^{(2)}} K_{-1}(O_{X,x} \text{ on } x)_\mathbb{Q} = 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 \\
\end{array}
\]

Let’s explain why one can use $K_0(O_{X,y} \text{ on } y)_\mathbb{Q}$ to replace $K_0^M(O_{X,y} \text{ on } y)$ (defined in Definition 2.1) in the above diagram. One notes that $K_0^{(j)}(O_{X,y} \text{ on } y)_\mathbb{Q} \cong K_0^{(j-1)}(k(y)) = 0$, except for $j = 1$. That is,

$$K_0^{(1)}(O_{X,y} \text{ on } y)_\mathbb{Q} = K_0(O_{X,y} \text{ on } y)_\mathbb{Q}.$$

This says $K_0^M(O_{X,y} \text{ on } y) = K_0(O_{X,y} \text{ on } y)_\mathbb{Q}$. Similar arguments for other K-groups in the middle and right columns in the above diagram.

Let Y_1 and Y_2 be two curves on X with generic point y_1 and y_2 respectively. For simplicity, we work locally in Zariski topology and assume Y_1 and Y_2 intersect transversely at a point x. Around the point x, we can write

$$Y_1 = \text{div}(f_1); \ Y_2 = \text{div}(f_2).$$
Take \(g \in O_{X,x} \) such that \(g(x) \neq 0 \), we consider \(O_{X,x}[\varepsilon]/(f_1 f_2 + \varepsilon g) \). The Koszul resolution of \(O_{X,x}[\varepsilon]/(f_1 f_2 + \varepsilon g) \),

\[
L^\bullet: 0 \to O_{X,x}[\varepsilon] \xrightarrow{f_1 f_2 + \varepsilon g} O_{X,x}[\varepsilon],
\]
defines an element of \(K_0(\mathcal{L}_-^{-1}(X[\varepsilon])/\mathcal{L}_-^{-2}(X[\varepsilon]))^\#) \).

Theorem 2.18. \(L^\bullet \in \text{Ker}(d_{1,X[\varepsilon]}^{-1}) \), i.e., \(L^\bullet \in Z_1^M(D_{\text{perf}}(X[\varepsilon])) \).

Proof. Under the isomorphism in Theorem 2.3

\[
K_0((\mathcal{L}^{-1}_-)(X[\varepsilon])/\mathcal{L}^{-2}_-(X[\varepsilon]))^\#) \simeq \bigoplus_{y[\varepsilon] \in X[\varepsilon]^{(1)}} K_0(D_{\text{perf}}(X[\varepsilon])),
\]

\(L^\bullet \) decomposes into the direct sum of

\[
L^1_\bullet: 0 \to (O_{X,x})(f_1)[\varepsilon] \xrightarrow{f_1 + \varepsilon g/ f_2} (O_{X,x})(f_1)[\varepsilon]
\]

and

\[
L^2_\bullet: 0 \to (O_{X,x})(f_2)[\varepsilon] \xrightarrow{f_2 + \varepsilon g/ f_1} (O_{X,x})(f_2)[\varepsilon].
\]

Noting \(O_{X,y_1} = (O_{X,x})(f_1) \), we have \(L^1_\bullet \in K_0(O_{X,y_1}[\varepsilon] \text{ on } y_1[\varepsilon]) \). Similarly, \(L^2_\bullet \in K_0(O_{X,y_2}[\varepsilon] \text{ on } y_2[\varepsilon]) \).

The following diagram, associated to \(L^1_\bullet \),

\[
\begin{align*}
(O_{X,x})(f_1) & \xrightarrow{f_1} (O_{X,x})(f_1) \xrightarrow{g} (O_{X,x})(f_1)/(f_1) \xrightarrow{0} \\
(O_{X,x})(f_1) & \xrightarrow{f_2} (O_{X,x})(f_1)/(f_1)
\end{align*}
\]
gives an element \(\alpha \) in \(\text{Ext}^1_{O_{X,y_1}}(O_{X,y_1}/(f_1), O_{X,y_1}) \), which further defines an element in \(H^1_{y_1}(O_X) \) and it is the image of \(L^1_\bullet \) under the map in Theorem 2.17.

(2.7) \(\text{Ch} : \bigoplus_{y[\varepsilon] \in X[\varepsilon]^{(1)}} K_0(O_{X,y}[\varepsilon] \text{ on } y[\varepsilon])_Q \to \bigoplus_{y \in X^{(1)}} H^1_y(O_X) \).

Similarly, the following diagram, associated to \(L^2_\bullet \),

\[
\begin{align*}
(O_{X,x})(f_2) & \xrightarrow{f_2} (O_{X,x})(f_2) \xrightarrow{g} (O_{X,x})(f_2)/(f_2) \xrightarrow{0} \\
(O_{X,x})(f_2) & \xrightarrow{f_1} (O_{X,x})(f_2)/(f_2)
\end{align*}
\]
gives an element \(\beta \) in \(\text{Ext}^1_{O_{X,y_2}}(O_{X,y_2}/(f_2), O_{X,y_2}) \), which further defines an element in \(H^1_{y_2}(O_X) \) and it is the image of \(L^2_\bullet \) under the Ch map.
where Green-Griffiths observes that H in diagram:

\[\Ext_{X,x}^{p+2} \longrightarrow \Ext_{X,x}^{p+1} \longrightarrow \Ext_{X,x}^{p} \longrightarrow \Ext_{X,x}^{p-1} \longrightarrow 0 \]

Similarly, $\partial^{1,-1}$ maps β in $H^2_x(O_X)$ to:

\[\begin{array}{rcl}
O_{X,x} & \xrightarrow{(f_1,-f_2)^T} & O_{X,x}^{\oplus 2} \\
O_{X,x} & \xrightarrow{g} & O_{X,x}.
\end{array} \]

Noting the commutative diagram below

\[\begin{array}{ccc}
O_{X,x} & \xrightarrow{(f_1,-f_2)^T} & O_{X,x}^{\oplus 2} \\
\downarrow & & \downarrow \\
O_{X,x} & \xrightarrow{(f_2,-f_1)^T} & O_{X,x}^{\oplus 2} \\
\downarrow & & \downarrow \\
O_{X,x} & \xrightarrow{g} & O_{X,x}
\end{array} \]

where M stands for the matrix

\[\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}. \]

Green-Griffiths observes that $\partial^{1,-1}(\alpha)$ and $\partial^{1,-1}(\beta)$ are negative of each other in $\Ext^2_{O_{X,x}}(O_{X,x}/(f_1, f_2), O_{X,x})$. Hence, $\partial^{1,-2}(\alpha + \beta)$ is 0 in $H^2_x(O_X)$. Therefore, $d^{1,-1}_{1,X[\varepsilon]}(L^*) = 0$ because of the commutative diagram:

\[\begin{array}{ccc}
\bigoplus_{y \in X^{(1)}} H^1_y(O_X) & \xleftarrow{\partial^{1,-1}} & \bigoplus_{y[\varepsilon] \in X[\varepsilon]^{(1)}} K_0(O_{X,y[\varepsilon]} \text{ on } y[\varepsilon]) \\
\bigoplus_{x \in X^{(2)}} H^2_x(O_X) & \xleftarrow{\approx} & \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(2)}} K_{-1}(O_{X,x[\varepsilon]} \text{ on } x[\varepsilon]).
\end{array} \]

The above argument seems formal, so it's convenient to intuitively explain the meaning of taking the kernel of $d^{1,-1}_{1,X[\varepsilon]}$. This has been done by using residue by Green-Griffiths [10].

Alternative explanation by using residue, due to Green-Griffiths [10] (page 103-104 and the summary on page 119) To fix notations, let Y_1 and Y_2 be two curves on X. It is well-known that tangent vectors to the curves Y_1 and Y_2 are given by normal vector fields,

\[v_1 \in H^0(N_{Y_1/X}), v_2 \in H^0(N_{Y_2/X}). \]
For simplicity, we work locally in Zariski topology and assume Y_1 and Y_2 intersect transversely at a point x. Around the point x, we can write
\[Y_1 = \text{div}(f_1); \quad Y_2 = \text{div}(f_2). \]
Then v_1 and v_2 can be expressed as
\[v_1 = w_1 \frac{\partial}{\partial f_1}, \quad v_2 = w_2 \frac{\partial}{\partial f_2}, \]
for some functions w_1 and w_2. For our purpose, we take $w_1 = \frac{g}{f_2}$ and $w_2 = \frac{h}{f_1}$, then
\[v_1 = \frac{g}{f_2} \frac{\partial}{\partial f_1}, \quad v_2 = \frac{h}{f_1} \frac{\partial}{\partial f_2}. \]

For $\omega = df_1 \wedge df_2$, we consider the Poincaré residue:
\[
\left\{ \begin{array}{l}
v_1 \omega = \text{Res}_{Y_1} \left(\frac{g df_1 \wedge df_2}{f_1 f_2} \right) = \frac{g df_2}{f_2} \in \Omega^1_{K(Y_1)/\mathbb{C}}; \\
v_2 \omega = \text{Res}_{Y_2} \left(\frac{h df_1 \wedge df_2}{f_1 f_2} \right) = -\frac{h df_1}{f_1} \in \Omega^1_{K(Y_2)/\mathbb{C}}.
\end{array} \right.
\]
We further take the residue at x:
\[\text{Res}_x \left(\frac{g df_2}{f_2} \right) = g, \quad \text{Res}_x \left(-\frac{h df_1}{f_1} \right) = -h. \]
The sum of the residues is
\[\text{Res}_x \left(\frac{g df_2}{f_2} \right) + \text{Res}_x \left(-\frac{h df_1}{f_1} \right) = g - h. \]
When $g = h$, the sum of the residues is 0.

\textbf{Conclusion:} for $v_1 = \frac{g}{f_2} \frac{\partial}{\partial f_1}$ and $v_2 = \frac{h}{f_1} \frac{\partial}{\partial f_2}$,
\[\text{Res}_x(v_1 \omega) + \text{Res}_x(v_1 \omega) = 0. \]

How does this connect to K-groups?
For normal vectors
\[v_1 = \frac{g}{f_2} \frac{\partial}{\partial f_1}, \quad v_2 = \frac{h}{f_1} \frac{\partial}{\partial f_2}, \]
v_1 corresponds to $f_1 + \varepsilon \frac{g}{f_2}$ and v_2 corresponds to $f_2 + \varepsilon \frac{g}{f_1}$. In other words, v_1 corresponds to the complex
\[L^*_1 : 0 \to (O_{X,x})(f_1)[\varepsilon] \xrightarrow{f_1 + \varepsilon \frac{g}{f_2}} (O_{X,x})(f_1)[\varepsilon]. \]
and \(v_2 \) corresponds to the complex

\[
L^\bullet_2: 0 \to (O_{X,x})_{(\varepsilon)} \xrightarrow{f_2 + \varepsilon g} (O_{X,x})_{(\varepsilon)}.
\]

Conclusion: \(\text{Res}_x(v_1|\omega) + \text{Res}_x(v_2|\omega) = 0 \) corresponds to \((L^\bullet_1 + L^\bullet_2) \in \text{Ker}(d_1^{p-1})\) in Theorem 2.18

Remark 2.19. One may ask why there is no necessary to take kernel in Quillen’s or Soulé’s proofs of Bloch’s formula in [16, 17]. That’s because negative K-groups are zero in this case, \(K_{-1}(k(x)) = 0 \). If we take kernel, the cycles class group \(Z^p(X) \) is still identified with \(\bigoplus_{x \in X^{(p)}} K_0(k(x)) \).

2.3. Why use Milnor K-theory. In the following, we explain why we use Milnor K-groups with support, i.e., certain eigenspaces of Thomason-Trobaugh K-groups, not the entire Thomason-Trobaugh K-groups, to define cycles and Chow groups in Definition 2.2.

In 2012 Fall, the author met a question on describing certain eigenspaces of K-groups and he E-mailed this question to Christophe Soulé for help. Christophe Soulé suggested that if the author’s question is true, then it should be only true for Milnor K-theory and guided the author to read Theorem 5 in [17]:

In our setting, \(X \) is smooth projective over \(k \), so the Gersten complex has the form of

\[
0 \to K_p(k(X)) \to \cdots \to \bigoplus_{x \in X^{(p-1)}} K_1(O_{X,x} \text{ on } x) \to \bigoplus_{x \in X^{(p)}} K_0(O_{X,x} \text{ on } x) \to 0,
\]

which agrees with the Gersten complex by Quillen [16] because of Dévissage:

\[
0 \to K_p(k(X)) \to \cdots \to \bigoplus_{x \in X^{(p-1)}} K_1(k(x)) \to \bigoplus_{x \in X^{(p)}} K_0(k(x)) \to 0.
\]

For \(x \in X^{(p)} \), Adams operations can decompose \(K_0(O_{X,x} \text{ on } x) \) and \(K_0(k(x)) \) into direct sums of eigenspaces respectively. Moreover, Riemann-Roch without denominator, due to Soulé [17], says

\[
K_0^{(j)}(O_{X,x} \text{ on } x)_Q = K_0^{(j-p)}(k(x))_Q.
\]

For \(j = p \),

\[
K_0^{(p)}(O_{X,x} \text{ on } x)_Q = K_0^{(0)}(k(x))_Q = K_0(k(x))_Q.
\]

This forces to

\[
K_0^{(j)}(O_{X,x} \text{ on } x)_Q = 0, \text{ for } j \neq p.
\]
So only $K^p_0(O_{X,x}$ on $x)_Q$ is needed to study $Z^p(X)_Q$.

To give an example, for X a smooth projective three-fold over a field k of characteristic 0, a point $x \in X^{(3)}$ is defined by (f, g, h) and a first order deformation of x is given by $(f + \varepsilon f_1, g + \varepsilon g_1, h + \varepsilon h_1)$. According to Theorem 2.12 the Koszul complex $F_\bullet(f + \varepsilon f_1, g + \varepsilon g_1, h + \varepsilon h_1)$ associated to $(f + \varepsilon f_1, g + \varepsilon g_1, h + \varepsilon h_1)$ is of weight 3:

$$F_\bullet(f + \varepsilon f_1, g + \varepsilon g_1, h + \varepsilon h_1) \in K_0^{(3)}(O_{X,x}[\varepsilon] \text{ on } x)_Q,$$

and $F_\bullet(f + \varepsilon f_1, g + \varepsilon g_1, h + \varepsilon h_1) \notin K_0^{(2)}(O_{X,x}[\varepsilon] \text{ on } x)_Q$.

So we ignore $K_0^{(2)}(O_{X,x}[\varepsilon] \text{ on } x)_Q(\cong H^3_x(O_X) \neq 0)$, and use only $K_0^{(3)}(O_{X,x}[\varepsilon] \text{ on } x)_Q$ to define Milnor K-theoretic 3-cycles $Z_3^M(D^{Perf}(X[\varepsilon]))$, which is the first order deformation of $Z^3(X)_Q$.

3. Higher order deformation-obstructions

Let X be a smooth projective variety over a field k of characteristic 0. For each positive integer j, $X_j = X \times_k \text{Spec}(k[t]/t^{j+1})$ is the j-th order infinitesimally trivial deformation of X. For any integer m, let $K_m^M(O_{X_j,x_j}$ on $x_j, t)$ denote the relative K-group, that is, the kernel of the natural projection

$$K_m^M(O_{X_j,x_j}$ on $x_j) \xrightarrow{t=0} K_m^M(O_{X,x}$ on $x)$.

Recall that we have proved the following isomorphisms in [18]:

Theorem 3.1 (Corollary 3.11 in [18]). Let X be a smooth projective variety over a field k of characteristic 0 and let $x \in X^{(i)}$. Chern character induces the following isomorphisms between relative K-groups and local cohomology groups:

$$K_m^M(O_{X_j,x_j}$ on $x_j, t) \cong H^i_x((\Omega^{m+i-1}_X)_Q)^{\oplus j})$.

So we have the following split exact sequence

$$0 \rightarrow H^i_x((\Omega^{m+i-1}_X)_Q)^{\oplus j}) \rightarrow K_m^M(O_{X_j,x_j}$ on $x_j) \xrightarrow{t=0} K_m^M(O_{X,x}$ on $x) \rightarrow 0.$$

Moreover, it is known that from the computation of Hochschild(cyclic) homology of truncated polynomials, $H^i_x((\Omega^{m+i-1}_X)_Q)^{\oplus j})$ carries additional structure:

$$H^i_x((\Omega^{m+i-1}_X)_Q)^{\oplus j}) \cong tH^i_x(\Omega^{m+i-1}_X)_Q) \oplus \cdots \oplus t^iH^i_x(\Omega^{m+i-1}_X)_Q).$$

To simplify the notations, we use A to denote $K_m^M(O_{X,x}$ on $x)$ and B to denote $H^i_x(\Omega^{m+i-1}_X)_Q$, then we have

$$K_m^M(O_{X_j,x_j}$ on $x_j) \cong A \oplus tB \oplus \cdots t^iB.$$
The natural map
\[f_j : X_j \to X_{j+1}, \]
induces \(f_j^* : K^M_m(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \to K^M_m(O_{X_j,x_j} \text{ on } x_j) \). Moreover, there exists the following commutative diagram
\[
\begin{array}{c}
K^M_m(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \\
\downarrow \\
A \oplus tB \oplus \cdots \oplus t^j B \oplus t^{j+1} B \\
\end{array}
\begin{array}{c}
f_j^* \\
\approx \\
f_j^* \\
\approx \\
\end{array}
\begin{array}{c}
K^M_m(O_{X_j,x_j} \text{ on } x_j) \\
A \oplus tB \oplus \cdots \oplus t^j B \\
\end{array}
\]
and exists the following short exact sequence of abelian groups:
\[
0 \to B \to A \oplus tB \oplus \cdots \oplus t^j B \oplus t^{j+1} B \to 0.
\]
This shows that

Lemma 3.2. For \(X \) a smooth projective variety over a field \(k \) of characteristic 0, for each positive integer \(j \) and \(x \in X^{(j)} \), there exists the following short exact sequence of abelian groups, where \(m \) is any integer,
\[
0 \to H^j_x(\mathcal{O}^m_{X/Q}) \to K^M_m(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \xrightarrow{f_j^*} K^M_m(O_{X_j,x_j} \text{ on } x_j) \to 0.
\]

3.1. Obstructions and negative K-groups. The natural map \(f_j : X_j \to X_{j+1} \) induces the following commutative diagram:
\[
\begin{array}{c}
\bigoplus_{x_{j+1} \in X_{j+1}^{(p+1)}} K^M_0(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \\
\downarrow \quad d^p_{1,X_{j+1}} \\
\bigoplus_{x_j \in X_j^{(p)}} K^M_0(O_{X_j,x_j} \text{ on } x_j) \\
\end{array}
\begin{array}{c}
f_j^* \\
d^p_{1,X_j} \\
\end{array}
\begin{array}{c}
\bigoplus_{x_{j+1} \in X_{j+1}^{(p+1)}} K^M_{-1}(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \\
\downarrow \quad d^p_{1,X_{j+1}} \\
\bigoplus_{x_j \in X_j^{(p+1)}} K^M_{-1}(O_{X_j,x_j} \text{ on } x_j) \\
\end{array}
\]
so it further induces \(f_j^* : Z^M_p(D^{\text{perf}}(X_{j+1})) \to Z^M_p(D^{\text{perf}}(X_j)) \), recall that \(Z^M_p(D^{\text{perf}}(X_j)) \) is defined as the kernel of \(\text{Ker}(d^p_{1,X_j}) \) in Definition 2.2.

Definition 3.3. Given \(\xi_j \in Z^M_p(D^{\text{perf}}(X_j)) \), an element \(\xi_{j+1} \in Z^M_p(D^{\text{perf}}(X_{j+1})) \) is called a deformation of \(\xi_j \), if \(f_j^*(\xi_{j+1}) = \xi_j \).

\(\xi_j \) and \(\xi_{j+1} \) can be formally written as finite sums
\[
\sum_{x_j} \lambda_j \cdot \{x_j\}_{\text{red}} \quad \text{and} \quad \sum_{x_{j+1}} \lambda_{j+1} \cdot \{x_{j+1}\}_{\text{red}},
\]
where \(\sum_{x_j} \lambda_j \in \ker(d_{1,X_j}^{\mathbb{P}^N}) \subset \bigoplus_{x_j \in X_j^{(p)}} K_0^M(O_{X_j,x_j} \text{ on } x_j) \) and \(\overline{x_j} \) is the closed reduced scheme associated to \(\{x_j\} \).

Since \(\overline{x_j} = \overline{x_{j+1}} \), when we deform from \(\xi_j \) to \(\xi_{j+1} \), we deform the coefficients, i.e., we deform from \(\sum_{x_j} \lambda_j \) to \(\sum_{x_{j+1}} \lambda_{j+1} \).

Since \(f_j^* : \bigoplus_{x_{j+1} \in X_{j+1}^{(p)}} K_0^M(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \rightarrow \bigoplus_{x_{j} \in X_{j}^{(p)}} K_0^M(O_{X,x_j} \text{ on } x_j) \) is surjective, see lemma 3.2 given any \(\xi_j \in Z^M_p(D_{\text{perf}}(X_j)) \), there exists \(\xi_{j+1} \in \bigoplus_{x_{j+1} \in X_{j+1}^{(p)}} K_0^M(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \) such that \(f_j^*(\xi_{j+1}) = \xi_j \). We would like to know whether \(\xi_{j+1} \in Z^M_p(D_{\text{perf}}(X_{j+1})) \).

An easy diagram chasing shows \(f_j^* d_{1,X_{j+1}}^{\mathbb{P}^N}(\xi_{j+1}) = 0 \), so \(d_{1,X_{j+1}}^{\mathbb{P}^N}(\xi_{j+1}) \in \ker(f_j^*) = \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x(O_{X/Q}^{p-1}) \), see lemma 3.2 take \(m = -1 \) and \(i = p+1 \). If \(d_{1,X_{j+1}}^{\mathbb{P}^N}(\xi_{j+1}) = 0 \), then we can lift \(\xi_j \) to \(\xi_{j+1} \).

Definition 3.4. The obstruction space for lifting elements in \(Z^M_p(D_{\text{perf}}(X_j)) \) to \(Z^M_p(D_{\text{perf}}(X_{j+1})) \) is defined to be \(\bigoplus_{x \in X^{(p+1)}} H^{p+1}_x(O_{X/Q}^{p-1}) \).

3.2. Obstruction issues-versus Hilbert scheme.

For each positive integer \(j \), let \(X_j \) denote the \(j \)-th trivial deformation of \(X \). Let \(Y \subset X \) be a subvariety of codimension \(p \). Obstruction issues asks whether it is possible to lift \(Y \) to \(Y_j \) successively, where \(Y_j \subset X_j \) with suitable assumptions.

It is a common phenomenon that obstructions can occur in deformation, though the deformation of \(X \) is trivial. It is well known that, considering \(Y \) as an element of \(\text{Hilb}(X) \), the tangent space \(T_Y \text{Hilb}(X) \) may be obstructed.

However, Green-Griffiths predicts that, considering \(Y \) as an element of \(Z^p(X) \), we can eliminate obstructions in their program [10]:

Obstruction issues (page 187-190 in [10]): There are essentially four (not mutually exclusive) possibilities:

- (i) \(TZ^p(X) \) may be obstructed. That is, there exists some \(\tau \in TZ^p(X) \) such that, thinking of \(\tau \) as a map
 \[\text{Spec}(k[\varepsilon]/(\varepsilon^2)) \rightarrow Z^p(X) \],
this map cannot be lifted to a map
\[\text{Spec}(k[[\varepsilon]]/(\varepsilon^{k+1})) \to Z_p(X) \]
for some \(k \geq 2 \).

- (ii) \(TZ^p(X) \) is formally unobstructed. That is, for any \(\tau \in TZ^p(X) \), \(\tau \) may be lifted to a map
\[\text{lim}(\text{Spec}(k[[\varepsilon]]/(\varepsilon^{k+1}))) \to Z_p(X). \]

- (iii) \(TZ^p(X) \) is formally unobstructed, but there exists \(\tau \in TZ^p(X) \) which is not the tangent to a geometric arc in \(Z_p(X) \).

- (iv) Every \(\tau \in TZ^p(X) \) is the tangent to a geometric arc in \(Z_p(X) \).

For \(p = 1 \), this question was solved by TingFai Ng in his Ph.D thesis,

\textbf{Theorem 3.5} (Theorem 1.3.3 in [15]). \textit{Every }\(\tau \in TZ^1(X) \text{ is the tangent to a geometric arc in } Z^1(X). \)

For \(p \geq 2 \), Green-Griffiths observes that

\textbf{Proposition 3.6} ((10.11) on page 189 in [10]). \textit{For }\(p \geq 2 \text{, there exists } X \text{ and } \tau \in TZ^p(X) \text{ which is not the tangent to a geometric arc in } Z_p(X). \)

This means only possibilities (i)-(iii) can occur for \(p \geq 2 \). Green-Griffiths conjectures that

\textbf{Conjecture 3.7} (page 190 in [10]). (ii) and (iii) above are the only possibilities that actually occur for \(p \geq 2 \).

Because of the Proposition 3.6 above, all we need to show is \(TZ^p(X) \) is formally unobstructed. The above question(ii) is expressed in a way, as if \(Z^p(X) \) were a scheme. In fact, we know \(Z^p(X) \) can’t be treated as a scheme. So we restate this conjecture as follows:

\textbf{Conjecture 3.8}. [10] \textit{Let }\(X \text{ be a smooth projective variety over a field } k \text{ of characteristic } 0 \text{. For each positive integer } p \text{, } TZ^p(X) \text{ is formally unobstructed. That is, for any } \tau \in TZ^p(X) \text{, } \tau \text{ can be lifted to } \tau_j \in Z^p(D^\text{perf}(X_j)) \text{ successively, where } j = 1, 2, \ldots. \)

To get a feeling of how to eliminate obstructions to deforming cycles, we firstly look at locally complete intersections.

For \(X \) a smooth projective variety over a field \(k \) of characteristic 0 and \(Y \subset X \) a subvariety, which is a locally complete intersection of
codimension \(p \). We assume that, on an open affine \(U_i \subset X \), \(Y \cap U_i \) is defined by a regular sequence \((f^i_1, \cdots, f^i_p)\), where \(f^i_j \in O_X(U_i) \). On another open affine \(U_j \subset X \), \(Y \cap U_j \) is defined by a regular sequence \((f^j_1, \cdots, f^j_p)\), where \(f^j_i \in O_X(U_j) \).

Let \(Y' \) be a first order deformation of \(Y \) in \(X[t] \), then \(Y' \cap U_i \) is given by lifting \((f^i_1, \cdots, f^i_p)\) to \((f^i_1 + \varepsilon g^i_1, \cdots, f^i_p + \varepsilon g^i_p)\), where \(g^i_j \in O_X(U_i) \). And \(Y' \cap U_j \) is given by lifting \((f^j_1, \cdots, f^j_p)\) to \((f^j_1 + \varepsilon g^j_1, \cdots, f^j_p + \varepsilon g^j_p)\), where \(g^j_i \in O_X(U_j) \).

On the intersection \(U_{ij} = U_i \cap U_j \), there exists two liftings which defines an element of \(\alpha_{ij} \in \Gamma(U_{ij}, \mathcal{N}_{Y/X}) \), where \(\mathcal{N}_{Y/X} \) is the normal sheaf. On the intersection \(U_{ijk} = U_i \cap U_j \cap U_k \) of three open affine subschemes, there are three liftings which defines \(\alpha_{ij}, \alpha_{jk}, \alpha_{ik} \). One checks \((\alpha_{ij})\) is a Čech 1-cocycle, which is the obstruction of finding a global lifting \(Y' \), see Theorem 6.2(page 47) of [12] for details.

Let \(y \in Y \) be the generic point, then \(y \in U_i \). One has \(O_{X,Y} = O_{U_i,y} = O_X(U_i)(f^i_1, \cdots, f^i_p) \), with maximal ideal \((f^i_1, \cdots, f^i_p)\). So \(Y \) is generically generated by \((f^i_1, \cdots, f^i_p)\) and the Koszul complex \(F_\bullet(f^i_1, \cdots, f^i_p) \in K^{(b)}_0(O_{X,y} on y) \subset Z^M_p(D_{\text{perf}}(X)) \).

We have shown that, in Theorem 2.13 the Koszul complex \(F_\bullet(f^i_1 + \varepsilon g^i_1, \cdots, f^i_p + \varepsilon g^i_p) \in Z^M_p(D_{\text{perf}}(X_1)) \), which lifts \(F_\bullet(f^i_1, \cdots, f^i_p) \). So the obstructions of gluing (as a subscheme) \(Y' \cap U_i \) and \(Y' \cap U_j \) along the intersection \(U_{ij} = U_i \cap U_j \) obvious vanishes (To lift K-theoretic cycles, we don’t need to glue). By mimicking the proof of Theorem 2.13 we can show that the Koszul complex \(F_\bullet(f^i_1 + \varepsilon g^i_1 + \varepsilon^2 h^i_1, \cdots, f^i_p + \varepsilon g^i_p + \varepsilon^2 h^i_p) \), where \(\varepsilon^2 \neq 0, \varepsilon^3 = 0 \), and \(h^i_p \in O_X(U_i) \), is a Milnor K-theoretic \(p \)-cycle and lifts \(F_\bullet(f^i_1 + \varepsilon g^i_1, \cdots, f^i_p + \varepsilon g^i_p) \). Furthermore, we can lift \(F_\bullet(f^i_1 + \varepsilon g^i_1 + \varepsilon^2 h^i_1, \cdots, f^i_p + \varepsilon g^i_p + \varepsilon^2 h^i_p) \) to higher order successively. In summary, we have shown that

Lemma 3.9. For \(X \) a smooth projective variety over a field \(k \) of characteristic 0 and \(Y \subset X \) a subvariety, which is locally defined by a regular sequence \((f_1, \cdots, f_p)\), let \(F_\bullet(f_1, \cdots, f_p) \) denote the associated Koszul complex, which defines a K-theoretic cycle in \(Z^M_p(D_{\text{perf}}(X)) \), we can lift this K-theoretic cycle to higher order successively.

In general, \(Y \subset X \) may not be a locally complete intersection. To eliminate the obstructions to lifting \(Y \) to higher order, we need to use the following strategy which has been known to Green-Griffiths [10] (page 187-189) and Ng [13] for the divisor case. We should introduce another cycle \(Z \) to help \(Y \) to eliminate obstructions. As a cycle,

\[Y = (Y + Z) - Z, \]
and the cycle Z should satisfy that

- (1) One can lift $(Y + Z)$ to higher order successively, i.e., Z helps Y to eliminate obstructions.
- (2) Z doesn’t introduce new obstructions.

To illustrate the idea, we sketch an example of curves on a three-fold and refer the readers to [20] for details. For X a nonsingular projective 3-fold over a field k of characteristic 0, let $Y \subset X$ be a curve with generic point y. For a point $x \in Y \subset X$ which is defined by (f, g, h), we assume Y is generically defined by (f, g). The Koszul complex $F_\bullet(f, g)$ is a K-theoretic 2-cycle:

$$F_\bullet(f, g) \in \mathbb{K}_0(O_{X,y} \text{ on } y) \subset Z^M_2(D_{\text{perf}}(X)).$$

For a first order deformation Y' which is generically given by $(f + \frac{\varepsilon}{h} g)$, the Koszul complex $F_\bullet(f + \frac{\varepsilon}{h} g)$ associated to $(f + \frac{\varepsilon}{h} g)$ is in $K_0(O_{X,y} [\varepsilon] \text{ on } y)$, but we can show it is not in $Z^M_2(D_{\text{perf}}(X[\varepsilon]))$, see Example 4.4 in [19]. So $F_\bullet(f + \frac{\varepsilon}{h} g)$ is not a first order deformation of $F_\bullet(f, g)$. To modify this, we consider the curve Z on X which is generically defined by (h, g). As a cycle,

$$Y = (Y + Z) - Z.$$

As a K-theoretic cycle,

$$F_\bullet(f, g) = (F_\bullet(f, g) + F_\bullet(h, g)) - F_\bullet(h, g).$$

To lift $F_\bullet(f, g)$ is equivalent to lifting $(F_\bullet(f, g) + F_\bullet(h, g))$ and $F_\bullet(h, g)$ respectively. We can show that $(F_\bullet(f + \frac{\varepsilon}{h} g) + F_\bullet(h + \frac{\varepsilon}{f} g))$ is in $Z^M_2(D_{\text{perf}}(X[\varepsilon]))$. And it is a first order deformation of $(F_\bullet(f, g) + F_\bullet(h, g))$, and can be lifted to higher order successively. On the other hand, $F_\bullet(h, g)$ is always a first order deformation of itself, which means we fix $F_\bullet(h, g)$ so it doesn’t introduce new obstructions. Consequently,

$$(F_\bullet(f + \frac{\varepsilon}{h} g) + F_\bullet(h + \frac{\varepsilon}{f} g)) - F_\bullet(h, g)$$

is a first order deformation of $F_\bullet(f, g)$, and can be lifted to higher order successively.

However, as pointed out in Remark 2.4, in general, we don’t know whether the Milnor K-theoretic cycles $Z^M_p(D_{\text{perf}}(X_j))$ are generated by these Koszul complexes or not. So, to answer Green-Griffiths’ Conjecture 3.8, we have to give a formal argument which relies on the following theorem:
Theorem 3.10 ([7], Theorem 3.14 in [18]). For X a smooth projective variety over a field k of characteristic 0, $X_j = X \times_k \text{Spec}(k[t]/(t^{j+1}))$, where j is any positive integer. For each integer $p \geq 1$, there exists the following commutative diagram in which the Zariski sheafification of each column is a flasque resolution of $(\Omega^{p-1}_{X/k})^j$, $K^M_p(O_{X_j})$ and $K^M_p(O_X)$ respectively. The left arrows are induced by Chern characters from K-theory to negative cyclic homology and the right ones are the natural maps sending ε to 0:

\[
\begin{array}{cccc}
\ldots & \longleftarrow & \ldots & \longleftarrow \\
\oplus H^p_x((\Omega^{p-1}_{X/k})^j) & \longleftarrow & \oplus K^{M,(p)}_{j-1}(O_{X_j}, x_j) & \longleftarrow \\
\oplus H^p_x((\Omega^{p-1}_{X/k})^j) & \longleftarrow & \oplus K^{M,(p)}_{j-1}(O_{X_j}, x_j) & \longleftarrow \\
\oplus H^p_x((\Omega^{p-1}_{X/k})^j) & \longleftarrow & \oplus K^{M,(p)}_{j-1}(O_{X_j}, x_j) & \longleftarrow \\
\oplus H^p_x((\Omega^{p-1}_{X/k})^j) & \longleftarrow & \oplus K^{M,(p)}_{j-1}(O_{X_j}, x_j) & \longleftarrow \\
\oplus H^p_x((\Omega^{p-1}_{X/k})^j) & \longleftarrow & \oplus K^{M,(p)}_{j-1}(O_{X_j}, x_j) & \longleftarrow \\
\end{array}
\]

Using this theorem, we answer Green-Griffiths’ Conjecture 3.8 affirmatively:

Theorem 3.11. The Conjecture 3.8 is true, that is, $T^pZ(X)$ is formally unobstructed.
Proof. For any positive integer \(j \) and given any \(\xi_j \in Z_p^M(D_{\text{perf}}(X_j)) \), we need to show \(\xi_j \) can be lifted to an element of \(Z_p^M(D_{\text{perf}}(X_{j+1})) \). There exists the commutative diagram (part of the diagram in Theorem 3.10),

\[
\begin{align*}
&\bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})^\otimes_j) & \xleftarrow{\text{Ch}} & \bigoplus_{x \in X^{(p)}} K^M_0(O_{X_j,x_j} \text{ on } x_j) \\
&\downarrow{\partial^{p,-p}_{1,j}} & & \downarrow{\partial^{p,-p}_{1,j}} \\
&\bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})^\otimes_j) & \xleftarrow{\text{Ch}} & \bigoplus_{x \in X^{(p+1)}} K^{M}_{-1}(O_{X_{j+1},x_j} \text{ on } x_j),
\end{align*}
\]

where the maps \(\text{Ch} \) are induced by Chern characters from K-theory to negative cyclic homology. It is obvious that \(\text{Ch}(\xi_j) \in \text{Ker}(\partial^{p,-p}_{1,j}) \).

There exists a similar commutative diagram for \(j+1 \):

\[
\begin{align*}
&\bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})^\otimes_{j+1}) & \xleftarrow{\text{Ch}} & \bigoplus_{x \in X^{(p)}} K^M_0(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \\
&\downarrow{\partial^{p,-p}_{1,j+1}} & & \downarrow{\partial^{p,-p}_{1,j+1}} \\
&\bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})^\otimes_{j+1}) & \xleftarrow{\text{Ch}} & \bigoplus_{x \in X^{(p+1)}} K^{M}_{-1}(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}).
\end{align*}
\]

As explained on page 20 (isomorphism (3.2)), \(\bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})^\otimes_j) \) carries additional structure:

\[
\bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})^\otimes_j) \cong t \bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})) \oplus \cdots \oplus t^j \bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})).
\]

And the differential

\[
\partial^{p,-p}_{1,j} : \bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})^\otimes_j) \rightarrow \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})^\otimes_j)
\]

is \(t\partial^{p,-p}_{1,0} \oplus \cdots \oplus t^j \partial^{p,-p}_{1,j} \):

\[
\begin{align*}
&\bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})^\otimes_j) \xrightarrow{\cong} t \bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})) \oplus \cdots \oplus t^j \bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1}) \\
&\downarrow{\partial^{p,-p}_{1,j}} \quad \quad \quad \quad \quad \downarrow{t\partial^{p,-p}_{1,0} \oplus \cdots \oplus t^j \partial^{p,-p}_{1,j}} \\
&\bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})^\otimes_j) \xrightarrow{\cong} t \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})) \oplus \cdots \oplus t^j \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})),
\end{align*}
\]

where \(\partial^{p,-p}_{1,p} : \bigoplus_{x \in X^{(p)}} H^p_x((\Omega_{X/Q}^{-1})) \rightarrow \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega_{X/Q}^{-1})) \).
Under these isomorphisms, $\text{Ch}(\xi_j)$ can be written as $ta_1 + \cdots + t^ja_j$, where each $a_i \in \bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q}))$ and $\partial^{p,-p}_t(a_i) = 0$. There exists a similar isomorphism for $j + 1$:

$$\bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\oplus j+1) \cong \bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})) \oplus \cdots \oplus t^{j+1} \bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})).$$

And the differential

$$\partial^{p,-p}_{i,j+1} : \bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\oplus j+1) \to \bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega^{p-1}_{X/Q})^\oplus j+1)$$

is $t\partial^{p,-p}_i \oplus \cdots \oplus t^{j+1}\partial^{p,-p}_i$.

We can always lift $ta_1 + \cdots + t^ja_j$ to $\eta_{j+1} := ta_1 + \cdots + t^ja_j + t^{j+1}a_{j+1}$ (note $t^{j+1} \neq 0$ here), where $a_{j+1} \in \text{Ker}(\partial^{p,-p}_i)$. So $\eta_{j+1} \in \text{Ker}(\partial^{p,-p}_{i,j+1})$. Hence, we can always lift $\text{Ch}(\xi_j)$ to $\eta_{j+1} \in \text{Ker}(\partial^{p,-p}_{i,j+1})$.

Since the map

$$\text{Ch} : \bigoplus_{x_{j+1} \in X^{(p)}_{j+1}} K^M_0(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \to \bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\oplus j+1)$$

is surjective, there exists $\xi_{j+1} \in \bigoplus_{x_{j+1} \in X^{(p)}_{j+1}} K^M_0(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1})$ such that $\text{Ch}(\xi_{j+1}) = \eta_{j+1}$.

By the naturality of Chern character, there exists the following commutative diagram:

$$
\begin{array}{ccc}
\bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\oplus j+1) & \xleftarrow{\text{Ch}} & \bigoplus_{x_{j+1} \in X^{(p)}_{j+1}} K^M_0(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \\
\downarrow{t^{j+1}=0} & & \downarrow{t^{j+1}=0} \\
\bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\oplus j) & \xleftarrow{\text{Ch}} & \bigoplus_{x \in X^{(p)}} K^M_0(O_{X,x} \text{ on } x_{j+1})
\end{array}
$$

So we have the following commutative diagram:

$$
\begin{array}{ccc}
\eta_{j+1} = \text{Ch}(\xi_{j+1}) & \xleftarrow{\text{Ch}} & \xi_{j+1} \\
\downarrow{t^{j+1}=0} & & \downarrow{t^{j+1}=0} \\
\eta_{j+1}|_{t^{j+1}=0} & \xleftarrow{\text{Ch}} & \xi_{j+1}|_{t^{j+1}=0}.
\end{array}
$$

This says $\eta_{j+1}|_{t^{j+1}=0} = \text{Ch}(\xi_{j+1}|_{t^{j+1}=0})$. On the other hand, since η_{j+1} lifts $\text{Ch}(\xi_j)$, $\eta_{j+1}|_{t^{j+1}=0} = \text{Ch}(\xi_j)$. Hence, $\xi_{j+1}|_{t^{j+1}=0} - \xi_j$ is in the kernel.
of the map

$$\text{Ch} : \bigoplus_{x_j \in X^{(p)}} K_0^M(O_{X_j,x_j} \text{ on } x_j) \to \bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\otimes j),$$

which is $\bigoplus_{x \in X^{(p)}} K_0^M(O_{X,x} \text{ on } x)$. In other words, $\xi_{j+1}|_{t^{j+1}=0} = \xi_j + W$, for some $W \in \bigoplus_{x \in X^{(p)}} K_0^M(O_{X,x} \text{ on } x)$.

As a cycle, ξ_j can be written as a formal sum

$$(3.4) \quad \xi_j = (\xi_j + W) - W.$$

Here, since $\bigoplus_{x \in X^{(p)}} K_0^M(O_{X,x} \text{ on } x)$ is a direct summand of $\bigoplus_{x_j \in X^{(p)}} K_0^M(O_{X_j,x_j} \text{ on } x_j)$, both W and $\xi_j + W$ are in $\bigoplus_{x_j \in X^{(p)}} K_0^M(O_{X_j,x_j} \text{ on } x_j)$.

Similarly, since $\bigoplus_{x \in X^{(p)}} K_0^M(O_{X,x} \text{ on } x)$ is also a direct summand of $\bigoplus_{x_j \in X^{(p)}} K_0^M(O_{X_j,x_j} \text{ on } x_j)$, and the cycle $\xi_{j+1} - W \in \bigoplus_{x_j \in X^{(p)}} K_0^M(O_{X_j,x_j} \text{ on } x_j)$ satisfies

$$(\xi_{j+1} - W)|_{t^{j+1}=0} = \xi_{j+1}|_{t^{j+1}=0} - W = \xi_j + W - W = \xi_j.$$

Moreover, $\text{Ch}(\xi_{j+1} - W) = \text{Ch}(\xi_{j+1}) = \eta_{j+1} \in \text{Ker}(\partial^{p-p}_{1,j+1})$, hence, $\xi_{j+1} - W \in Z^M_p(D_{\text{perf}}(X_{j+1})) := \text{Ker}(d^{p-p}_{1,X_{j+1}})$ because of the commutative diagram

$$
\begin{array}{ccc}
\bigoplus_{x \in X^{(p)}} H^p_x((\Omega^{p-1}_{X/Q})^\otimes j) & \xrightarrow{\text{Ch}} & \bigoplus_{x_{j+1} \in X^{(p)}} K_0^M(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}) \\
\downarrow \partial^{p-p}_{1,j+1} & & \downarrow d^{p-p}_{1,X_{j+1}} \\
\bigoplus_{x \in X^{(p+1)}} H^{p+1}_x((\Omega^{p-1}_{X/Q})^\otimes j) & \xrightarrow{\text{Ch}} & \bigoplus_{x_{j+1} \in X^{(p+1)}} K^M(O_{X_{j+1},x_{j+1}} \text{ on } x_{j+1}).
\end{array}
$$

In conclusion, $\xi_{j+1} - W \in Z^M_p(D_{\text{perf}}(X_{j+1})) := \text{Ker}(d^{p-p}_{1,X_{j+1}})$ can lift ξ_j.

In Section 4 of [9], Green-Griffiths conjectures that

Conjecture 3.12 (page 506 [9]). Let X be a smooth projective variety over a field k of characteristic 0, for each positive integer p, $TZ^p_{\text{rat}}(X)$ is formally unobstructed.
For any positive integer \(j \) and given any \(\eta_j \in \mathbb{Z}_{p,\text{rat}}^M(D_{\text{perf}}(X_j))(\equiv \text{Im}(d_{1,X_j}^{0,-p})) \), we want to know whether \(\eta_j \) can be lifted to \(\eta_{j+1} \in \mathbb{Z}_{p,\text{rat}}^M(D_{\text{perf}}(X_{j+1})) \).

By definition, \(\eta_{j} = d_{1,X_{j+1}}^{0,-p}(\xi_{j}) \), for some \(\xi_{j} \in \bigoplus_{x_j \in X_j^{(p-1)}} K_1^M(O_{X_j,x_j} \text{ on } x_j) \).

Since \(\xi_{j} \) is surjective, see lemma 3.2, we can always lift \(d \). Then \(\text{gram} : \)

\[
\begin{align*}
\text{Theorem 3.13.} & \quad \text{The conjecture 3.12 is true, i.e., } TZ^p_{\text{rat}}(X) \text{ is unobstructed. So we have} \\
& \text{Recall that in Definition 2.2, the } p \text{-th Milnor K-theoretic Chow group is defined to be:} \\
& CH_p^M(D_{\text{perf}}(X_j)) \equiv \frac{Z_p^M(D_{\text{perf}}(X_j))}{Z_{p,\text{rat}}^M(D_{\text{perf}}(X_j))}. \\
& \text{The proof of Theorem 3.11 says, for any given } [\xi_j] \in CH_p^M(D_{\text{perf}}(X_j)), \text{ we can lift it to } [\xi_{j+1}] \in CH_p^M(D_{\text{perf}}(X_{j+1})). \\
& \text{Recall that we have shown that, in } [18], CH_p^M(D_{\text{perf}}(X_j)) \text{ satisfies Soule’s variant of Bloch-Quillen identification:} \\
& CH_p^M(D_{\text{perf}}(X_j)) = H^p(X, K_p^M(O_{X_j}))_Q, \\
& \text{where } K_p^M(O_{X_j}) \text{ is the Milnor K-theory sheaf associated to the presheaf} \\
& U \rightarrow K_p^M(O_{X_j}(U)).
\end{align*}
\]
So we have proved the following fact, which is already known to Green-Griffiths and can be deduced from Proposition 2.6 of [9] (recalled below),

Corollary 3.14. [9] For each positive integer \(j \), \(X_j = X \times_k \text{Spec}(k[[t]]/(t^{j+1})) \), for any given \([\xi_j] \in H^p(X, K_p^M(O_{X_j}))_\mathbb{Q}\), we can lift it to \([\xi_{j+1}] \in H^p(X, K_p^M(O_{X_{j+1}}))_\mathbb{Q}\).

We briefly explain how to prove this Corollary by Green-Griffiths [9]. As a trivial version of (2.1) of [9] (page 498) or (2.8) of Proposition 2.3 of [6], there exists the following short exact sequence of sheaves

\[
0 \to \Omega_{X/Q}^{p-1} \to K^M_p(O_{X_{j+1}}) \to K^M_p(O_{X_j}) \to 0.
\]

The associated long exact sequence is of the form (3.5)

\[
\cdots \to H^p(X, K^M_p(O_{X_{j+1}}))_\mathbb{Q} \to H^p(X, K^M_p(O_{X_j}))_\mathbb{Q} \xrightarrow{\delta} H^{p+1}(X, \Omega_{X/Q}^{p-1}) \to \cdots.
\]

The arithmetic cycle mapping

\[
\eta : H^p(X, K^M_p(O_{X_j})) \to H^p(X, \Omega_{X_j/Q}^p)
\]

is induced by the dlog map

\[
K^M_p(O_{X_j}) \to \Omega_{X_j/Q}^p
\]

\[
\{r_1, \ldots, r_p\} \to \frac{dr_1}{r_1} \wedge \cdots \wedge \frac{dr_p}{r_p},
\]

where \(d = d_Q \).

Let \(\theta_j \) denote the \(j \)-th Kodaira-Spencer class, see Section 3.1 (page 492) of [9] for the definition.

Lemma 3.15 (Proposition 2.6 of [9] (page 502)). The coboundary map \(\delta \) in the above long exact sequence (3.5) is given by

\[
\delta(\xi_j) = \theta_j | \eta(\xi_j).
\]

In other words, the obstruction to lifting \(\xi_j \in H^p(X, K^M_p(O_{X_j})) \) to \(H^p(X, K^M_p(O_{X_{j+1}})) \) is given by

\[
\delta(\xi_j) = \theta_j | \eta(\xi_j),
\]

where \(\eta(\xi_j) \) is the arithmetic cycle class of \(\xi_j \).

In our situation, \(X_j = X \times \text{Spec}(k[[t]]/(t^{j+1})) \), the Kodaira-Spencer class \(\theta_j = 0 \) (see page 492 of [9]), so the coboundary map \(\delta = 0 \):

\[
\cdots \to H^p(X, K^M_p(O_{X_{j+1}}))_\mathbb{Q} \to H^p(X, K^M_p(O_{X_j}))_\mathbb{Q} \xrightarrow{\delta=0} H^{p+1}(X, \Omega_{X/Q}^{p-1})
\]

This proves Corollary 3.14 above.
Acknowledgements. The author must record his deep gratitude to Mark Green and Phillip Griffiths for enlightening discussions and for their interest in this work. He is very grateful to Spencer Bloch[5] and to Christophe Soulé(see Section 2.3) for discussions.

The author thanks several professors for their support: Ben Dribus, Hélène Esnault, Jerome Hoffman, Marc Levine, Kefeng Liu, Jan Stienstra, Hongwei Xu, Chao Zhang and anonymous comments on previous versions.

References

[1] B. Angéniol and M. Lejeune-Jalabert, Calcul différentiel et classes caractéristiques en géométrie algébrique, (French) [Differential calculus and characteristic classes in algebraic geometry] With an English summary, Travaux en Cours [Works in Progress], 38. Hermann, Paris, 1989.
[2] P. Balmer, Supports and filtrations in algebraic geometry and modular representation theory, Amer. J. Math. 129 (2007), no. 5, 1227-1250.
[3] P. Balmer, Tensor triangular Chow groups, Journal of Geometry and Physics, 72(2013), 3-6.
[4] S. Bloch, Lectures on algebraic cycles, Second edition. New Mathematical Monographs, 16. Cambridge University Press, Cambridge, 2010. xxiv+130 pp. ISBN: 978-0-521-11842-2.
[5] S. Bloch, Private discussions at Tsinghua University, Beijing, Spring semester (2015) and Fall semester(2016).
[6] S. Bloch, H. Esnault and M. Kerz, Deformation of algebraic cycle classes in characteristic zero, Algebraic Geometry 1(3) (2014), 290-310.
[7] B. Dribus, J.W.Hoffman and S.Yang, Tangents to Chow Groups: on a question of Green-Griffiths, Bollettino dell’Unione Matematica Italiana, available online, DOI: 10.1007/s40574-017-0123-3.
[8] H. Gillet and C. Soulé, Intersection theory using Adams operations, Invent. Math. 90 (1987), no. 2, 243-277.
[9] M. Green and P. Griffiths, Formal deformation of Chow groups, The legacy of Niels Henrik Abel. (2004) 467-509 Springer, Berlin.
[10] M. Green and P. Griffiths, On the Tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Math Studies, 157. Princeton University Press, Princeton, NJ, 2005, vi+200 pp. ISBN: 0-691-12044-7.
[11] R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20 Springer-Verlag, Berlin-New York 1966 vii+423 pp.
[12] R. Hartshorne, Deformation theory, Graduate Texts in Mathematics, 257. Springer, New York, 2010. viii+234 pp. ISBN: 978-1-4419-1595-5.
[13] S. Klein, Chow groups of tensor-triangulated categories, Preprint, 4 Jan 2013, arXiv:1301.0707.
[14] M. Levine, Lambda-operations, K-theory and motivic cohomology, Algebraic K-theory (Toronto, ON, 1996), 131-184, Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI, 1997.
[15] T.F. Ng, Geometry of algebraic varieties, Princeton University Ph.D thesis, 2004.
[16] D. Quillen, *Higher algebraic K-theory, I*. In: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lecture Notes in Math., vol. 341, 85-147. Springer, Berlin (1973).

[17] C. Soulé, *Opérations en K-théorie algébrique*, Canad. J. Math. 37 (1985), 488-550.

[18] S. Yang, *On extending Soulé’s variant of Bloch-Quillen identification*, accepted by The Asian Journal of Mathematics(July 14 2017), [arXiv:1604.04046](https://arxiv.org/abs/1604.04046).

[19] S. Yang, *K-theory, local cohomology and tangent spaces to Hilbert schemes*, submitted, [arXiv:1604.02629](https://arxiv.org/abs/1604.02629).

[20] S. Yang, *Eliminating obstructions: curves on a 3-fold*, [arXiv:1611.07279](https://arxiv.org/abs/1611.07279).

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

E-mail address: syang@math.tsinghua.edu.cn; senyangmath@gmail.com