Power spectrum scale invariance as a neural marker of cocaine misuse and altered cognitive control

Jaime S. Ide¹,b,⁎, Sien Hu¹, Sheng Zhang¹, Lilianne R. Mujica-Parodi¹, Chiang-shan R. Li¹,a,c,d,**

¹Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
²Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
³Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, United States
⁴Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States

ABSTRACT

Background: Magnetic resonance imaging (MRI) has highlighted the effects of chronic cocaine exposure on cerebral structures and functions, and implicated the prefrontal cortices in deficits of cognitive control. Recent investigations suggest power spectrum scale invariance (PSSI) of cerebral blood oxygenation level dependent (BOLD) signals as a neural marker of cerebral activity. We examined here how PSSI is altered in association with cocaine misuse and impaired cognitive control.

Methods: Eighty-eight healthy (HC) and seventy-five age and gender matched cocaine dependent (CD) adults participated in functional MRI of a stop signal task (SST). BOLD images were preprocessed using standard procedures in SPM, including detrending, band-pass filtering (0.01–0.25 Hz), and correction for head motions. Voxel-wise PSSI measures were estimated by a linear fit of the power spectrum with a log-log scale. In group analyses, we examined differences in PSSI between HC and CD, and its association with clinical and behavioral variables using a multiple regression. A critical component of cognitive control is post-signal behavioral adjustment, which is compromised in cocaine dependence. Therefore, we examined the PSSI changes in association with post-signal slowing (PSS) in the SST.

Results: Compared to HC, CD showed decreased PSS and PSSI in multiple frontoparietal regions. PSSI was positively correlated with PSS in HC in multiple regions, including the left inferior frontal gyrus (IFG) and right supramarginal gyrus (SMG), which showed reduced PSSI in CD.

Conclusions: These findings suggest disrupted connectivity dynamics in the fronto-parietal areas in association with post-signal behavioral adjustment in cocaine addicts. These new findings support PSSI as a neural marker of impaired cognitive control in cocaine addiction.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Scale-free brain activity (He, 2014) has been examined and modeled on many levels, from neurotransmitter release (Lowen et al., 1997), neuronal spiking (Levina et al., 2007; Rubinov et al., 2011) and local field potentials (Bedard and Destexhe, 2009), slow cortical potentials (He and Raichle, 2009), and electroencephalography (Freyer et al., 2009), suggesting the importance in examining the power-law property of neural signals across multiple scales. Recent research suggests complexity measures of cerebral blood oxygenation level dependent (BOLD) signals as an important neural marker of cerebral activity dynamics (Anderson et al., 2014; Bassett and Gazzaniga, 2011; Ciuciu et al., 2014; He et al., 2010). Deviations from the typical range of power-exponents in BOLD time series have been noted in neuropsychiatric disorders (Lai et al., 2010; Maxim et al., 2005; Mujica-Parodi et al., 2014; Radulescu et al., 2012; Tolkunov et al., 2010). For instance, male adults with an autism spectrum condition showed a significant shift to randomness in endogenous brain oscillations, as compared to neurotypical individuals, in brain regions implicated in autism (Lai et al., 2010). Our previous studies of power spectrum scale invariance (PSSI) as a measure of nonlinear complexity demonstrated that as the neural circuits become increasingly dysregulated, signal complexity of affected nodes deviates from an equilibrium value, as observed in trait anxiety, epilepsy and schizophrenia (Mujica-Parodi et al., 2014; Nedic et al., 2015; Radulescu et al., 2012; Tolkunov et al., 2010).

This intriguing scale-free property of brain activity is noted for more than a decade for fMRI signals (Bullmore et al., 2001). Although initially...
it was treated as a fractal noise, recent studies have shown that scale-free brain activity is not structured noise but rather is associated with rich temporal structures and functional significance (Ciuciu et al., 2014; El Boustani et al., 2009; Fransson et al., 2013; He, 2011; He et al., 2010). For instance, in an fMRI study, the power-law exponent decreased during performance of a visual detection task as compared to resting state (He, 2011). The power-law exponent presented distinct variation across functional brain networks, being larger for default-mode, saliency and visual networks (Fransson et al., 2013; He, 2011).

Further, this increase in power-law exponents was correlated with glucose metabolism (He, 2011). These observations rule out the possibility that scale-free property of brain activity is simply noise. It was also reported that power-law exponents were correlated with fMRI signal variance across different brain regions, thus providing unique information complementing univariate and multivariate mean-based fMRI analyses (He, 2011). In fact, recent studies reported altered fMRI signal variance in task-induced activations (Bianciardi et al., 2009; Fransson, 2006), highlighting the association between brain activity and second-order statistics. Finally, it was also observed that complexity of low-frequency BOLD signals covaries with local connectivity (Anderson et al., 2014). This relationship persisted even after regressing out the gray matter density and its standard deviation of the BOLD signal, suggesting that local interconnectivity may play a key role in establishing the complexity of low-frequency fluctuations. Thus, PSSI as a neural measure may capture an additional dimension of brain activity and connectivity that is not available from conventional analyses.

Chronic cocaine exposure is known to influence cerebral structures and functions, as highlighted by magnetic resonance imaging (MRI). For instance, functional MRI described altered regional activations in chronic cocaine users and individuals with prenatal exposure to drugs of abuse during a variety of behavioral challenges (Crnulce et al., 2012; Garavan and Hester, 2007; Li and Sinha, 2008; Moeller et al., 2014; Morein-Zamir et al., 2013, 2015; Roussotte et al., 2010). In particular, frontal cortical regions including the dorsolateral prefrontal and anterior cingulate cortices have consistently been implicated in deficits of decision making in association with cocaine misuse (Connolly et al., 2012; Hester et al., 2013; Hester and Garavan, 2004; Lundqvist, 2010). Furthermore, recent work showed altered functional and effective connectivity of prefrontal, cingulate and subcortical structures during cognitive challenges in cocaine abusers (Cisler et al., 2013; Ma et al., 2015; Zhang et al., 2014). Together, these studies suggest the utility of fMRI to delineate the dysregulated neurocircuitry of cocaine addiction (Koob and Volkow, 2010). However, it remains to be established how different components/nodes of the dysregulated circuit can be localized and quantified in terms of their dynamics. Conventional mean-based activation analyses do not necessarily identify regions where power spectrum and complexity properties are altered as a consequence of changes in interregional dynamic interactions.

Cocaine addiction is known to involve deficits in cognitive control (Ersche et al., 2011; Garavan and Hester, 2007; Goldstein and Volkow, 2011). Dysfunctional error-related processes not only characterize cocaine addiction but also predict relapse in a longitudinal setting (Luo et al., 2013). In our previous work, we have employed a stop signal task (SST) to describe how participants respond trial by trial in anticipation of a stop signal (Hu et al., 2015; Ide et al., 2013). While healthy individuals respond to stop signals by slowing down, cocaine addicts tend to be deficient in post-signal slowing, suggesting an impairment in signal monitoring and cognitive control (Franken et al., 2007; Ide et al., 2015; Ide and Li, 2011; Li et al., 2006b; Li et al., 2008a; Li et al., 2008b; Li et al., 2008c). Here, we hypothesize that dysfunctional cognitive control in cocaine abusers can be characterized by altered power-exponent properties of the underlying cerebral hemodynamics.

Considering that PSSI, along with other power-exponent measures, is closely associated with brain activity (Ciuciu et al., 2014; Ciuciu et al., 2012; He, 2011; He et al., 2010) and has been used to describe circuit-level changes in fMRI signals (Mujica-Parodi et al., 2014; Nedic et al., 2015; Radulescu and Mujica-Parodi, 2014; Radulescu et al., 2012; Tolkuhn et al., 2010), we took the logical step to examine differences in PSSI between cocaine dependent individuals and healthy controls and explore whether the differences in this dynamics marker are related to impaired post-signal slowing in cocaine addicts.

2. Material and methods

2.1. Subjects, informed consent, and assessment

Seventy-five patients (50 men) with cocaine dependence (CD) and eighty-eight age and gender matched healthy control (HC) subjects (49 men) participated in this study (Table 1). CD participants were recruited from the local, greater New Haven area via newspapers and flyers as part of a prospective study (Luo et al., 2013) and met criteria for current cocaine dependence, as diagnosed by the Structured Clinical Interview for DSM-IV (First et al., 1995). Of the 84 CD participants examined in our previous morphometry study (Ide et al., 2014), 9 oldest subjects were excluded in order to match HC in age and gender. Thus, the subjects represented a convenience sample as no power calculation was performed to predetermine the sample size. Recent cocaine use was confirmed by urine toxicology screens upon admission. They were drug-free while staying in an inpatient treatment unit at the Connecticut Mental Health Center during the study period. All subjects were physically healthy with no major medical illnesses or current use of prescription medications. None of them reported having a history of head injury or neurological illness. Other exclusion criteria included dependence on other psychoactive substances (except nicotine) and current or past history of psychotic disorders. Individuals with current depressive or anxiety symptoms requiring treatment or currently being treated for these symptoms were excluded as well. The Human Investigation committee at Yale University School of Medicine approved the study, and all subjects signed an informed consent prior to participation.

All CD participants were assessed with the Beck Depression Inventory (Beck et al., 1961) and the State-Trait Anxiety Inventory (Speilberger et al., 1970) at admission, both with scores within the range reported previously for individuals with cocaine dependence (Falck et al., 2002; Karlsgodt et al., 2003; Lopez and Becona, 2007; Rubin et al., 2007) (Table 1). Cocaine craving was assessed with the Cocaine Craving Questionnaire, brief version (CCQ-Brief), for all participants on the same day of the fMRI (Sussner et al., 2006). The CCQ-Brief is a 10-item questionnaire, abbreviated from the CCQ—Now (Tiffany et al., 1993). It is highly correlated with the CCQ—Now and other cocaine craving measures (Sussner et al., 2006). Each item was rated on a scale from 1 to 7, with 1 indicating no craving and 7 indicating extreme craving.

Table 1 Demographics of cocaine dependent (CD) and healthy control (HC) subjects.

Subject characteristic	CD (n = 75)	HC (n = 88)	p-Value
Age (years)	39.9 ± 7.6	38.7 ± 10.9	0.42*
Gender (M/F)	50/25	49/39	0.15*
Beck Depression Inventory (BDI)	12.2 ± 9.2	N/A	N/A
STAI State	37.6 ± 11.0	N/A	N/A
STAI Trait	41.7 ± 11.7	N/A	N/A
CCQ-Brief	20.8 ± 8.3	N/A	N/A
Current smoker (yes/no)	59/16	31/57	1e–12h
Years of alcohol use	16.1 ± 9.3	14.9 ± 14.3	0.57*
Days of drinking (prior month)	12.7 ± 7.5	3.4 ± 5.3	1e–16a
Years of marijuana use	10.0 ± 4.1	N/A	N/A
Average monthly cocaine use (gm)	18.8 ± 27.3	N/A	N/A
Day of cocaine use (prior month)	15.3 ± 8.7	N/A	N/A
Days of cocaine use (prior year)	18.0 ± 8.2	N/A	N/A
Days abstinent prior to assessment	18.0 ± 5.9	N/A	N/A

Note: values are mean ± S.D.

* Two-tailed two-sample t-test.

Table 2 Test results of functional activation and correlation between PSSI and reward-related measures in CD and HC.

PSSI Measure	CD	HC	p-Value
T-value	N/A	N/A	N/A
r-value	N/A	N/A	N/A

Note: values are mean ± S.D.
a higher total score (ranging from 10 to 70) indicating greater craving (Table 1).

Healthy control participants (HC) were drawn from the local community, underwent a thorough interview by a psychiatrist (C.-S. R. Li) to rule out a DSM-IV diagnosis including abuse or dependence on a substance other than nicotine, and all tested negative for illicit substances on the day of imaging. Smoking status and use of alcohol was documented. Previous use of any illicit substances and marijuana for longer than one year were exclusion criteria. As none of the HC reported depression or anxiety symptoms, HC were not assessed with the BDI or STAI. None of the HC were under any psychotropic medications during the year prior to the current study.

2.2. Behavioral task

We employed a simple reaction time task in this stop-signal paradigm (Farr et al., 2012; Hendrick et al., 2010; Hu et al., 2014b; Ide and Li, 2011; Li et al., 2006b; Li et al., 2010; Logan et al., 1984; Winkler et al., 2012). There are two trial types: “go” and “stop,” presented with an inter-trial interval of 2 s, and occurring on each trial with 0.75 probability of being a go trial (0.25 probability stop trial). A small dot appears on the screen to engage attention at the beginning of a go trial. After a randomized time interval (fore-period) between 1 and 5 s, drawn from a uniform distribution, the dot turns into a circle (the “go” signal), prompting the subjects to quickly press a button. The circle vanishes at a button press or after 1 s has elapsed, whichever coming first, and the trial terminates. A premature button press prior to the appearance of the circle also terminates the trial. On a stop trial, an additional “X” the “stop” signal, appears after and replaces the go signal, and instructs participants to withhold their response. Similar to go trials, a stop trial terminates at button press or 1 s after the appearance of the stop signal. Failure to withhold the go response for the 1st constitutes a stop error. The stop signal delay (SSD) – the time interval between go and stop signals – starts at 200 ms and is adjusted according to a staircase procedure, increasing and decreasing by 67 ms each for a successful and failed stop (Levitt, 1971). Subjects were instructed to respond to the go signal quickly while keeping in mind that a stop signal could come up occasionally. The staircase procedure ensures that subjects would succeed in withholding their response in approximately half of the stop trials.

2.3. Analyses of behavioral performance in the stop signal task

We computed a critical SSD that represents the time delay between go and stop signals that a subject would need to succeed in 50% of the stop trials (Levitt, 1971). Specifically, SSDs across trials were grouped into runs, with each run defined as a monotonically increasing or decreasing series. We derived a mid-run estimate by taking the middle SSD (or average of the two middle SSDs when there was an even number of SSDs) of every second run. The critical SSD was computed by taking the mean of all mid-run SSDs. It was reported that, except for experiments with a small number of trials (<30), the mid-run estimate was close to the maximum likelihood estimate of X_{50} (50% positive response; i.e., 50% SS in the SST, (Wetherill et al., 1966)). The stop signal reaction time (SSRT) was computed by subtracting the critical SSD from the median go trial RT (Logan, 1994).

It is known that in the SST the RT of a correct response is prolonged following a stop signal, compared with other correct responses, and this prolonged RT is thought to reflect conflict monitoring. We thus computed the RT difference between the go trials that followed a stop trial and those that followed another go trial, and termed the effect size of this RT difference “post-signal slowing” (PSS) (Li et al., 2009).

2.4. Image acquisition, preprocessing and statistical tests

All imaging data were collected in the same 3T Siemens Trio scanner while subjects performed the SST, as described in detail in our previous work (Li et al., 2006a; Li et al., 2006c). Each scan comprised four 10-min runs of the SST. Smokers and caffeine-using subjects were allowed to smoke and drink coffee or other caffeinated beverages until 1 h before the fMRI studies. Functional blood oxygen level dependent (BOLD) signals were acquired with a single-shot gradient echo–echo-planar imaging (EPI) sequence, with 32 axial slices parallel to the AC-PC line covering the whole brain, using our published parameters (Li et al., 2006a; Li et al., 2006c): TR = 2000 ms, TE = 25 ms, bandwidth = 2004 Hz/pixel, flip angle = 85°, FOV = 220 × 220 mm², matrix = 64 × 64, slice thickness = 4 mm and no gap. A high-resolution 3D structural image (MPRAGE; 1 mm resolution) was also obtained for anatomical co-registration.

Functional MRI data was preprocessed with Statistical Parametric Mapping 12 (SPM12) (Wellcome Department of Imaging Neuroscience, University College London, U.K.). Images from the first five TRs at the beginning of each trial were discarded to enable the signal to achieve steady-state equilibrium before RF pulsing and relaxation. Images of each individual subject were first corrected for slice timing, realigned (motion-corrected) (Andersson et al., 2001; Hutton et al., 2002), A mean functional image volume was constructed for each subject for each run from the realigned image volumes. The anatomical images (T1–weighted) were co-registered to the mean functional image, and normalized to an MNI (Montreal Neurological Institute) template with affine registration followed by nonlinear transformation using a unified segmentation and registration framework (Ashburner and Friston, 2005). The normalization parameters determined for the anatomical volume were then applied to the corresponding functional image volumes for each subject. In addition, the preprocessing procedures included detrending, and regression of global signal, cerebral spinal fluid, white matter, and six degrees of motion following our optimized pipeline for PSSI estimation (Rubin et al., 2013). Group analyses were performed also using SPM12 on the computed PSSI maps using two sample t-tests and multiple regressions, using age as covariate (Hu et al., 2012). In additional analyses, we examined whether clinical characteristics including alcohol use were associated with the findings on PSSI (Bednarzski et al., 2012; Yan and Li, 2009).

2.5. PSSI

Using methods optimized for fMRI (Rubin et al., 2013), we estimated PSSI β from each FFT-transformed time series S(f) as per S(f) = f⁻β. Power spectrum densities were computed from preprocessed BOLD images on a voxel-wise basis and plotted on a log-log scale. We computed the slope of the linear fit (β) within a frequency window of 0.01–0.25 Hz using least squares fitting; this range of frequency was adopted to exclude low fluctuations drifts (lower limit) and to avoid aliasing (upper limit) following previous experiments on PSSI computation on task data (Tolkunov et al., 2010). Following our previous work and others’ on the PSSI, we used preprocessed time-series without taking the derivative and reported β to simplify interpretation of correlations and having PSSI represented by positive numbers. Thus, β = 0 represents a power spectrum with maximum entropy (white noise), and increasing β represents greater persistence (which can be due either to diminished excitatory inputs or tighter homeostatic constraint over the system via negative feedback (Radulescu and Mujica-Parodi, 2014)). PSSI β maps were smoothed with a Gaussian kernel of 6 mm at Full Width at Half Maximum, and were carried to second-level analyses.

3. Results

3.1. Behavioral performance

Behavioral performance is summarized in Table 2. CD showed a decrease in the percentage of successful go trials and in the extent (effect size) of post-signal slowing, as compared to HC individuals. CD showed longer SSRT as compared to HC, but the difference did not reach...
statistical significance. The latter likely resulted from an underestimation of the SSRT because the “RT” of a larger number of go error trials could not be considered in the computation of SSRT for CD (Verbruggen et al., 2013).

3.2. The effects of cocaine misuse and post-signal behavioral adjustment

Compared to HC, CD presented a significant decrease of PSSI in several frontoparietal structures, including the angular and supramarginal gyri, as well as the inferior and middle frontal gyri (Fig. 1a and Table 3). We performed a linear regression of PSSI map against the effect size of post-signal slowing (PSS) each in HC and CD. In HC, multiple brain regions in the frontal and parietal cortex showed PSSI in positive correlation with PSS (Fig. 1b and Table 4). Regions were identified both using a published atlas (Duvernoy, 1999) and with reference to the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). At the same threshold, CD did not show any significant regional association of PSSI to PSS. Notably, subregions of the left inferior frontal gyrus (IFG), left angular gyrus (AG), and right supramarginal gyrus (SMG) with reduced PSSI in CD as compared to HC overlapped regions where the PSSI was in positive correlation with PSS in HC (Fig. 1, insets; Fig. 2b).

We extracted the PSSI of the left IFG, left AG, and right SMG for all individual CD and HC subjects and confirmed that the PSSI of the left IFG and right SMG were significantly lower in CD than in HC (Fig. 2a). Further, the differences in slope in the linear regression of the PSS vs. PSSI were significant for both regions (Fig. 2b; Zar, 1999). The PSSI of the left AG was also significantly lower in CD than in HC ($p < 10^{-05}$); however, the difference in slope in the linear regression of the PSS vs. PSSI was not significant between CD and HC ($p > 0.13$). The PSSI of none of these ROIs showed a significant correlation with the SSRT (all p’s > 0.69), go success % (all p’s > 0.02), stop success % (all p’s > 0.18), or median go RT (all p’s > 0.35) for CD or HC.

3.3. Correlation of PSSI with clinical characteristics and other SST performance measures

We examined whether the PPSI of the identified clusters was correlated with clinical characteristics of the CD subjects, including BDI score, STAI State/Trait score, CCQ-Brief score, years of alcohol use, days of

| Table 2 |
|---|---|---|---|---|
| SSRT (ms) | Median go RT (ms) | %go | %stop | PSS (effect size) |
| CD (n = 75) | 230 ± 50 | 594 ± 99 | 95.9 ± 1.4 | 52.4 ± 3.5 | 1.37 ± 2.10 |
| HC (n = 88) | 222 ± 45 | 624 ± 104 | 96.6 ± 1.9 | 52.8 ± 3.3 | 2.07 ± 1.98 |
| p-Value* | 0.31 | 0.06 | 0.01 | 0.40 | 0.03 |

Note: All values are mean ± standard deviation; CD: individuals with cocaine dependence; HC: healthy controls; SSRT: stop signal reaction time; RT: reaction time; %go: percentage of go response trials; PSS: post-signal slowing.

* p-Value based on 2-tailed 2-sample t-test.
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly

drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly

drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
drinking in the prior month, years of marijuana use, average monthly cocaine use in grams in the prior year, days of cocaine use in the prior month, years of marijuana use, average monthly
respond to inhibition of saccadic eye movements in an oculomotor go/no go task (Brown et al., 2006; Brown et al., 2008; Ettinger et al., 2008). The cortical thickness and white matter integrity of the right inferior parietal regions are linked to the capacity of attentional orienting in a visuospatial task (Yin et al., 2012). In clinical populations, voxel-based morphometry showed lower gray matter volumes in the striatum and right SMG in cocaine dependent patients, as compared to controls (Barros-Loscertales et al., 2011). Chronic methamphetamine users also demonstrated loss of gray matter volume in the right SMG (Hall et al., 2015). Frontoparietal functional connectivity involving the right SMG was decreased in adolescents at risk for dysfunctional control and depression (Clasen et al., 2014). Together, these findings support a role of the right SMG in orienting attention to external stimuli in support of motor decision making in a variety of behavioral contexts. These processes, including post-signal slowing in the SST, are likely compromised in chronic cocaine users and, as the current study shows, may be reflected in altered PSSI as a dynamics measure of cerebral cortical activity.

In addition to the IFG and SMG, we observed significant reduction of PSSI values in several other fronto-parietal regions in CD as compared to HC. This suggests that the fMRI signals overall are more random in these regions. Considering the equivalence between auto-correlation and PSSI measures (He, 2014; Nedic et al., 2015), the reduction in PSSI indicates weaker autocorrelation/persistence in these regions. In line with previous reports of PSSI deviations from the neurotypical range in other neurological and psychiatric disorders (Lai et al., 2010; Maxim et al., 2005; Mujica-Parodi et al., 2014; Nedic et al., 2015; Radulescu et al., 2012; Tolkunov et al., 2010), the current study is the first to report reduced PSSI in cocaine addicts and its association with deficits in cognitive control.

By comparing findings from GLM and PSSI analyses, we observed little overlap between the maps (Supplementary Fig. S1). This finding may suggest that PSSI captures changes in circuit dynamics that elude GLM analyses, with the latter characterizing mean-based brain responses and PSSI describing altered second order statistics of fMRI signals (He, 2011). However, this observation also calls for a broader question regarding the relationship between various neural measures investigators have used to quantify cerebral structural integrity and highlight regional activations in health and illness. For instance, we examined whole-brain morphometry and fractional amplitude of low-frequency fluctuation (fALFF) of fMRI signals and noted similar changes in the pre-frontal and frontal cortices in fALFF and gray matter density during healthy aging (Hu et al., 2014a) but not in cocaine addicts (Ide et al., 2014). Further, these findings do not mirror age-related changes identified for various GLM contrasts, including response inhibition, error processing, and risk taking, from the stop signal task (Hu et al., 2012) or age-related changes in PSSI (unpublished observations). More studies are clearly needed to provide insight to this important issue.

Finally, although we employed a previously optimized preprocessing pipeline for PSSI estimation in fMRI data (Rubin et al., 2013), aiming to remove measurement and physiological noises, we are not able to rule out the possibility of PSSI changes due to the effects of chronic...
coincide use on the vascular system. Further studies to include imaging of cerebral perfusion are necessary to dissociate neural from vascular consequences of cocaine abuse.

5. Conclusions

Taken together, the current findings suggest altered PSSI as a useful neural marker for cocaine misuse and impaired cognitive control. Along with our previous work (Radulescu et al., 2012; Rubin et al., 2013; Tolkunov et al., 2010), these new findings support the utility of PSSI in delineating the complex neural circuitry of various psychopathologies. Future work is needed to examine what is driving the decreased PSSI with our previous work (Radulescu et al., 2012; Rubin et al., 2013; Duann et al., 2014).

Ersche, K.D., Barnes, A., Jones, P.S., Morein-Zamir, S., Robbins, T.W., Bullmore, E.T., 2011. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024.

Ettinger, U., Flye, D.H., Kumari, V., Kathmann, N., Reuter, B., Zelaya, F., Williams, S.C., 2008. Decomposing the neural correlates of antecedent eye movements using event-related fMRI. Cereb. Cortex 18, 1148–1159.

Falck, R.S., Wang, J., Carlson, R.G., Eddy, M., Siegal, H.A., 2002. The prevalence and correlates of depressive symptomatology among a community sample of crack-cocaine smokers. J. Psychiatric Drugs 34, 281–288.

Farr, O.M., Hu, S., Zhang, S., Li, M., Li, T., Li, P., Lu, Z., 2012. Decreased saliency processing as a neural measure of Barratt impulsivity in healthy adults. NeuroImage 63, 1070–1077.

Fereder, E., Tononi, G., Postle, B.R., 2006. Direct evidence for a prefrontal contribution to the control of proactive interference in verbal working memory. Proc. Natl. Acad. Sci. U.S.A. 103, 19536–19541.

First, M., Spitzer, R., Williams, G., Gibbon, M., 1995. Structured Clinical Interview for DSM-IV (SCID). American Psychiatric Association, Washington DC.

Fraunster, S., Van Strien, J.W., Frankez, E.J., van de Wetering, R.J., 2007. Error-processing deficits in patients with cocaine dependence. Biol. Psychol. 75, 45–51.

Fransson, P., 2006. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. NeuroImage 44, 288–294.

Goldstein, R.Z., Volkow, N.D., 2011. Dysfunctions of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Drug Discov. 12, 652–659.

Hall, M.G., Allesson, O.M., Stern, M.J., Wollman, S.C., Kimmel, C.L., Perez-Figueroa, A., Radua, J., 2015. Gray matter abnormalities in cocaine versus methamphetamine-dependent patients: a neuroimaging meta-analysis. Am. J. Drug Alcohol Abuse 41, 290–299.

Hampshire, A., Chamberlain, S.R., Monti, M.M., Dunn, J., Owen, A.M., 2010. The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage 50, 1313–1319.

He, B.J., 2011. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J. Neurosci. Off. J. Soc. Neurosci. 31, 13786–13795.

He, B.J., 2014. Scale-free brain activity: past, present, and future. Trends Cogn. Sci. 18, 480–487.

He, B.J., Raichle, M.E., 2009. The SMRI model, slow cortical potential and consciousness. Trends Cogn. Sci. 13, 302–309.

He, B.J., Zempel, J.M., Snyder, A.Z., Raichle, M.E., 2010. The temporal structures and functional significance of scale-free brain activity. NeuroImage 66, 353–360.

Hedge, C., Stottard, G., Todd Jones, J., Rojas Frías, P., Magee, K.L., Brooks, J.C., 2015. A frontal attention mechanism in the visual mismatch negativity. Behav. Brain Res. 293, 173–181.

Hendrick, O.M., Ide, J.S., Luo, X., Li, C.S., 2010. Dissociable processes of cognitive control during error and non-error conflicts: a study of the stop signal task. PLoS One 5, e13153.

Hester, R., Garavan, H., 2004. Executive dysfunction in cocaine addiction: evidence for discordant frontal, circulate, and cerebellar activity. J. Neurosci. Off. J. Soc. Neurosci. 24, 11017–11022.

Hickey, E.K., Bell, R.P., Foxe, J.J., Garavan, H., 2013. The influence of monetary punishment on cognitive control in abstinent cocaine-users. Drug Alcohol Depend. 133, 86–93.

Hildebrandt, H., Hinkle, F., Elsing, P., Stoeckl, M., Kromer, J., Lentschiger, M., Kastrop, A., Thiel, C., Breckel, T., 2013. Neural correlates of stimulus response and stimulus outcome shifting in healthy participants and MS patients. Brain 136, 57–66.

Hu, S., Chao, H.H., Zhang, S., Ide, J.S., Li, C.S., 2014a. Changes in cerebral morphometry and amplitude of low-frequency fluctuations of BOLD signals during healthy aging: correlation with inhibitory control. Brain Struct. Funct.

Hu, S., Zhang, S., Li, C.S., 2014b. Neural bases of individual variation in decision-making conflict: Neural correlates of a Bayesian belief and its motor consequence. NeuroImage 110, 286–295.

Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., Turner, R., 2002. Image distortion correction in fMRI: a quantitative evaluation. NeuroImage 16, 217–240.

Ide, J.S., Li, C.S., 2011. Error-related functional connectivity of the habenula in humans. Front. Hum. Neurosci. 5.

References

Anderson, J.S., Zielinski, B.A., Nielsen, J.A., Ferguson, M.A., 2014. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity. Hum. Brain Mapp. 35, 1273–1283.

Anderson, J.L., Burton, C., Ashburner, J., Turner, R., Friston, K., 2001. Modeling geometric deformations in EPI time series. NeuroImage 13, 903–919.

Asaridou, S.S., Takashima, A., Dediu, D., Hagoort, P., McQueen, J.M., 2015. Repetition suppression in the left inferior Frontal Gyrus Predicts Tone Learning Performance Cereb. Cortex 25, 1260–1263.

Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J., 1961. An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571.

Bedard, C., Destexhe, A., 2009. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. J. Physiol. 596, 2589–2603.

Bednarski, S., Zhang, S., Luo, X., Erdman, E., Li, C.S., 2012. Neural correlates of an indirect analogue of risk taking in non-dependent heavy alcohol drinkers. Alcohol. Clin. Exp. Res. 36, 768–779.

Bennett, D.S., Gazzaniga, M.S., 2011. Understanding complexity in the human brain. Trends Cogn. Sci. 15, 200–209.

Bek, A., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J., 1961. An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571.

Bedard, C., Destexhe, A., 2009. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. J. Physiol. 596, 2589–2603.

Bednarski, S., Zhang, S., Luo, X., Erdman, E., Li, C.S., 2012. Neural correlates of an indirect analogue of risk taking in non-dependent heavy alcohol drinkers. Alcohol. Clin. Exp. Res. 36, 768–779.

Biancardi, M., Fukuinaga, M., van Gelderen, P., Horovitz, S.G., de Zwart, J.A., Duyhn, J.H., 2009. Modulation of spontaneous FMR1 activity in human visual cortex by behavioral state. NeuroImage 45, 160–168.

Brown, M.R., Goltz, H.C., Vills, T., Ford, K.A., Everling, S., 2006. Inhibition and generation of saccades: rapid event-related FMR1 of proscacates, antiscacates, and nogo trials. NeuroImage 33, 644–659.

Brown, M.R., Vills, T., Everling, S., 2008. Isolation of saccade inhibition processes: rapid event-related M1 of saccades and nogo trials. NeuroImage 39, 793–804.

Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., Brammer, M., 2001. Colored noise and computational inference in neurophysiological (M1) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 12, 61–78.

Cabeza, R., Carraleschi, E., Olson, R.R., Moschovitch, M., 2008. The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9, 613–625.

Chao, H.H., Luo, X., Chang, J.L., Li, C.S., 2009. Activation of the pre-supplementary motor area but not inferior frontal cortex in association with short stop signal reaction time—a intra-subject analysis. BMC Neurosci. 10, 75.

Cisler, J.M., Elton, A., Kennedy, A.P., Young, J., Smitherman, S., Andrew James, G., Kilts, C.D., 2014. Cognitive control network connectivity in adolescent women with and without a parental history of depression. Dev. Cogn. Neurosci. 7, 13–22.
Ide, J.S., Shenoy, P., Yu, A.J., Li, C.S., 2013. Bayesian prediction and evaluation in the ante- rior cingulate cortex. J. Neurosci. 33 (5), 2039–2047.

Ide, J.S., Hu, S., Zhang, R., Liu, D., Li, C.S., 2015. Improved Bayesian learning for cognitive control in cocaine dependence. Drug Alcohol Depend.

Ide, J.S., Zhang, S., Hu, S., Sinha, R., Mazure, C.M., Li, C.S., 2014. Cerebral gray matter vol- umes and low-frequency fluctuation of BOLD signals in cocaine dependence: dura- tion of use and gender difference. Drug Alcohol Depend. 134, 51–62.

Jirmu, K., Yamashita, K., Chikazoe, J., Hirose, M., Miyashita, Y., Konishi, S., 2009. A critical component that activates the left inferior prefrontal cortex during interference reso- lution. Eur. J. Neurosci. 29, 1915–1920.

Karlgodt, KH, Luuka, E.H., Elsworth, L., 2003. Psychosocial stress and the duration of cocaine use in non-treatment seeking individuals with cocaine dependence. Am. J. Drug Ab- abol 29, 539–551.

Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., Miyashita, Y., 1999. Common inhibitory mechanism underlying inferior prefrontal cortex revealed by event-related functional MRI. Brain 122 (Pt 5), 981–991.

Koob, G.F., Volkow, N.D., 2010. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238.

Lai, M.C., Lombardo, M.V., Chakrabarti, B., Sadek, S.A., Pasco, G., Wheelwright, S.J., Bullmore, E.T., Baron-Cohen, S., Suckling, J. 2010. A shift to randomness of brain cell- ulations in people with autism. Biol. Psychiatry 68, 1092–1099.

Leplien, J., Pollmann, S., 2002. Covert reorienting and inhibition of return: an event- related fMRI study. J. Cogn. Neurosci. 14, 127–144.

Levinia, A., Herrmann, JM, Geisel, T., 2007. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 3, 857–860.

Levit, H., 1991. Transformed up-down methods in psychopharmacology. J. Acoust. Soc. Am. 49 (1), 2467–2480.

Li, C.S., Lin, S.C., 2002a. Inhibition of return in temporal order saccades. Vis. Res. 42, 2089–2093.

Li, C.S., Lin, S.C., 2002b. A perceptual level mechanism of the inhibition of return in oculo- motor planning. Brain Res. Cogn. Brain Res. 14, 269–276.

Li, C.S., Sinha, R., 2008. Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. NeuroImage 40, 581–592.

Li, C.S., Huang, C., Yan, P., Bhagwagar, Z., Milivojevic, V., Sinha, R., 2008a. Neural correlates of impulse control during stop signal inhibition in cocaine-dependent men. Neuropsychopharmacology 33, 1798–1806.

Li, C.S., Huang, C., Yan, P., Palwal, P., Constable, R.T., Sinha, R., 2008b. Neural correlates of post-error slowing during a stop signal task: a functional magnetic resonance imag- ing study. J. Cogn. Neurosci. 20, 1021–1029.

Li, C.S., Chang, H.L., Lin, S.C., 2003. Inhibition of return in children with attention deficit hyperactivity disorder. Exp. Brain Res. 149, 125–130.

Li, C.S., Huang, C., Constable, R.T., Sinha, R., 2006a. Gender differences in the neural corre- lates of response inhibition during a stop signal task. NeuroImage 32, 1918–1929.

Li, C.S., Huang, C., Constable, R.T., Sinha, R., 2006b. Imaging response inhibition in a stop- signal task: neural correlates independent of signal monitoring and post-response processing. J. Neurosci. Off. J. Soc. Neurosci. 26, 186–192.

Li, C.S., Luo, X., Sinha, R., Rounsaville, B.J., Carroll, K.M., Malison, R.T., Ding, Y.S., Zhang, S., Ide, J.S., 2010. Increased error-relatedthalamic activity during early compared to late cocaine abstinence. Drug Alcohol Depend. 105, 181–189.

Li, C.S., Milivojevic, V., Kemp, H., Kong, H., Sinha, R., 2006c. Performance monitoring and stop signal inhibition in abstinent patients with cocaine dependence. Drug Alcohol Depend. 85, 205–212.

Li, C.S., Yan, P., Chang, H.L., Sinha, R., Palwal, P., Constable, R.T., Zhang, S., Lee, T.W., 2008c. Error-specific medial cortical and subcortical activity during the stop signal task: a functional magnetic resonance imaging study. Neuroscience 155, 1142–1151.

Li, C.S., Luo, X., Yan, P., Bergquist, K., Sinha, R., 2009. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol. Clin. Exp. Res. 33, 750–756.

Lindquist, C.T., 2010. Imaging cognitive deficits in drug abuse. Curr. Top. Behav. Neurosci. 3, 125–159.

Lundqvist, T., 2010. Imaging cognitive deficits in drug abuse. Curr. Top. Behav. Neurosci. 3, 125–159.

Luo, X., Zhang, S., Hu, S., Bednarski, S.R., Erdman, L., Farr, G.M., Hong, K.J., Sinha, R., Mazure, C.M., Li, C.S., 2010. Error-related field processing in abstinent and –specific neural predictors of relapse in cocaine dependence. Brain 136, 1231–1244.

Ma, L., Narayana, S., Robin, D.A., Fox, P.T., Xiong, J., 2011. Changes occur in resting state net- work of motor system during 4 weeks of motor skill learning. NeuroImage 58, 226–233.

Maloney, M.D., Ilg, M., van Dijk, M.J.H., Schoenbaum, G., 2015. An fMRI study of cognitive control in problem gamblers. Psychiatr. Res. 231, 262–268.

Luiten, J.M., Veltman, D.J., Hester, R., Smits, M., Nijs, I.M., Pepplinkhuizen, L., Franken, I.H., 2008. The role of dopamine in inhibitory control in smokers and non-smokers: a pharmacological fMRI study. Eur. Neuropsychopharmacol. 23, 1247–1256.

Lundquist, T., 2010. Imaging cognitive deficits in drug abuse. Curr. Top. Behav. Neurosci. 3, 247–275.

Luo, X., Zhang, S., Hu, S., Bednarski, S.R., Erdman, L., Farr, G.M., Hong, K.J., Sinha, R., Mazure, C.M., Li, C.S., 2010. Error-related field processing in abstinent and –specific neural predictors of relapse in cocaine dependence. Brain 136, 1231–1244.

Ma, L., Narayana, S., Robin, D.A., Fox, P.T., Xiong, J., 2011. Changes occur in resting state net- work of motor system during 4 weeks of motor skill learning. NeuroImage 58, 226–233.

Maloney, M.D., Ilg, M., van Dijk, M.J.H., Schoenbaum, G., 2015. An fMRI study of cognitive control in problem gamblers. Psychiatr. Res. 231, 262–268.

Lundquist, T., 2010. Imaging cognitive deficits in drug abuse. Curr. Top. Behav. Neurosci. 3, 247–275.

Luo, X., Zhang, S., Hu, S., Bednarski, S.R., Erdman, L., Farr, G.M., Hong, K.J., Sinha, R., Mazure, C.M., Li, C.S., 2010. Error-related field processing in abstinent and –specific neural predictors of relapse in cocaine dependence. Brain 136, 1231–1244.

Ma, L., Narayana, S., Robin, D.A., Fox, P.T., Xiong, J., 2011. Changes occur in resting state net- work of motor system during 4 weeks of motor skill learning. NeuroImage 58, 226–233.

Maloney, M.D., Ilg, M., van Dijk, M.J.H., Schoenbaum, G., 2015. An fMRI study of cognitive control in problem gamblers. Psychiatr. Res. 231, 262–268.

Lundquist, T., 2010. Imaging cognitive deficits in drug abuse. Curr. Top. Behav. Neurosci. 3, 247–275.

Ye, Z., Zhou, X., 2009. Conflict control during sentence comprehension: fMRI evidence. NeuroImage 48, 280–290.

Yin, X., Zhao, L., Xu, J., Evans, A.C., Fan, G., Lee, H., Tang, Y., Khundrakpam, B., Wang, J., Liu, S., 2012. Anatomical substrates of the alerting, orienting and executive control compo- nents of attention: focus on the posterior parietal lobe. PLoS One 7, e50590.

Zar, J.H., 1999. Biostatistical Analysis. Prentice-Hall, Inc., New Jersey.

Zhang, R., Hu, S., Bednarski, S.R., Erdman, L., Farr, G.M., Hong, K.J., Sinha, R., Mazure, C.M., Li, C.S., 2010. Error-related field processing in abstinent and –specific neural predictors of relapse in cocaine dependence. Brain 136, 1231–1244.