A SYMPLECTIC NON-SQUEEZING THEOREM FOR BBM EQUATION

DAVID ROUMÉGOUX

Abstract. We study the initial value problem for the BBM equation:
\[
\begin{aligned}
 u_t + u_x + uu_x - u_{txx} &= 0 & x \in \mathbb{T}, t \in \mathbb{R} \\
 u(0, x) &= u_0(x)
\end{aligned}
\]
We prove that the BBM equation is globally well-posed on \(H^s(\mathbb{T})\) for \(s \geq 0\) and a symplectic non-squeezing theorem on \(H^{1/2}(\mathbb{T})\). That is to say the flow-map \(u_0 \mapsto u(t)\) that associates to initial data \(u_0 \in H^{1/2}(\mathbb{T})\) the solution \(u\) cannot send a ball into a symplectic cylinder of smaller width.

1. Introduction

In 1877 Joseph Boussinesq proposed a variety of models for describing the propagation of waves on shallow water surfaces, including what is now referred to as the Korteweg-de Vries (KdV) equation. A scaled KdV equation reads
\[
u_t + u_x + \varepsilon (uu_x + u_{xxx}) = 0.
\]
The Benjamin-Bona-Mahony (BBM) equation was introduced in [1] as an alternative of the KdV equation. The main argument to derive the BBM equation is that, to the first order in \(\varepsilon\), the scaled KdV equation is equivalent to
\[
u_t + u_x + \varepsilon (uu_x - u_{txx}) = 0.
\]
Indeed, formally we have \(u_t + u_x = O(\varepsilon)\), hence \(u_{xxx} = -u_{txx} + O(\varepsilon)\).
In this article we shall consider the rescaled BBM equation:
\[
u_t + u_x + uu_x - u_{txx} = 0.
\]

In 2009, Jerry Bona and Nikolay Tzvetkov proved in [2] that BBM equation is globally well-posed in \(H^s(\mathbb{R})\) if \(s \geq 0\), and not even locally well-posed for negative values of \(s\) (see also [3]). The result extends to the periodic case (see section 3 below). Let us denote \(\Phi_t\) the flow map of BBM equation on the circle \(\mathbb{T}\). In this article we prove a symplectic non-squeezing theorem for \(\Phi_t\). That is, the flow map cannot squeeze a ball of radius \(r\) of \(H^{1/2}(\mathbb{T})\) into a symplectic cylinder of radius \(r' < r\). Precisely, let \(H^{1/2}_0(\mathbb{T}) = \{ u \in H^{1/2}(\mathbb{T}) / \int_\mathbb{T} u = 0 \} \) with the Hilbert basis
\[
\varphi^+_n(x) = \sqrt{\frac{n}{\pi(n^2 + 1)}} \cos(nx), \quad \varphi^-_n(x) = \sqrt{\frac{n}{\pi(n^2 + 1)}} \sin(nx).
\]
Set
\[
B_r = \left\{ u \in H^{1/2}_0(\mathbb{T}) / \| u \|_{H^{1/2}} < r \right\},
\]}
The goal of this paper is to prove Theorem 1.1. If $\Phi_t(B_r) \subset C_{R,n_0}$ then $r \leq R$.

S. Kuksin initiated the investigation of non-squeezing results for infinite dimensional Hamiltonian systems (see [7]). In particular he proved that nonlinear wave equation has the non-squeezing property for some nonlinearities. This result were extended to certain stronger nonlinearities by Bourgain [8], and he also proved with a different method that the cubic NLS equation on the circle \mathbb{T} has the non-squeezing property. Using similar ideas Colliander, Keel, Staffilani, Takaoka and Tao obtained the same result for KdV equation on \mathbb{T} (see [4]).

In this article we will use the original theorem of Kuksin. In section 2, we present the construction of a capacity on Hilbert spaces introduced by Kuksin in [7]. This capacity is invariant with respect to the flow of some hamiltonian PDEs provided it has the form “linear evolution + compact”. As a corollary of this result we get a non-squeezing theorem for these PDEs. Then we apply this theorem to the BBM equation in section 3. We prove the global wellposedness of BBM equation on $H^s(\mathbb{T})$ for $s \geq 0$, and some estimates on the solutions.

2. Symplectic capacities in Hilbert spaces and non-squeezing theorem

2.1. The framework and an abstract non-squeezing theorem. Let $(Z, \langle \cdot, \cdot \rangle)$ be a real Hilbert space with $\{\varphi_j^\pm / j \geq 1\}$ a Hilbert basis. For $n \in \mathbb{N}$ we denote $Z_n = \text{Span}(\{\varphi_j^\pm / 1 \leq j \leq n\})$, and $\Pi_n : Z \to Z_n$ the corresponding projector. We also denote Z_n the space such that $Z = Z_n \oplus Z_n$. Then, every $z \in Z$ admits the unique decomposition $z = z_n^+ + z_n^-$ with $z_n^+ \in Z_n^+$ and $z_n^- \in Z_n^-$. We define $J : Z \to Z$ the skewsymmetric linear operator by

$$J\varphi_j^\pm = \mp\varphi_j^\mp$$

and we supply Z with a symplectic structure with the 2-form ω defined by

$$\omega(\xi, \eta) = \langle J\xi, \eta \rangle.$$

We take a self-adjoint operator A, such that

$$\forall j \in Z, A\varphi_j^\pm = \lambda_j\varphi_j^\pm.$$

Define the Hamiltonian

$$f(z) = \frac{1}{2} \langle Az, z \rangle + h(z)$$

where h is a smooth function defined on $Z \times \mathbb{R}$. The corresponding Hamiltonian equation has the form

$$\left\{ \begin{array}{l} \dot{z} = JA\dot{z} + J\nabla h(z) \\ z(0, \cdot) = z_0 \in Z \end{array} \right.$$

If Z_- is a Hilbert space, we denote

$$Z < Z_-.$$
if Z is compactly embedded in Z_- and $\{\varphi^\pm_j\}$ is an orthogonal basis of Z_- (not an orthonormal one!). Clearly Z is dense in Z_-. We identify Z and its dual Z^\ast. Then $(Z_-)^\ast$ can be identified with a subspace Z_+ of Z and we have

$$Z_+ < Z < Z_-.$$

Denote $\| \cdot \|_-$ (resp. $\| \cdot \|_+$) the norm of Z_- (resp. Z_+).

We also denote $B_R(Z)$ the ball centered at the origin of radius R.

We impose the following assumptions:

(H1): The equation (2) defines a C^1-smooth global flow map Φ on Z. That is, for all $z_0 \in Z$ the equation (2) has a unique solution $z(t) = \Phi_t(z_0)$ for $t \geq 0$, and the flow map $\Phi_t : z_0 \mapsto z(t)$ is C^1-smooth.

(H2): The flow map Φ is uniformly bounded. That is for each $R > 0$ and $T > 0$, there exists $R' = R'_{R,T}$ such that

$$\Phi_t(B_R(Z)) \subset B_{R'}(Z), \quad \text{for } |t| \leq T.$$

(H3): Writing the flow map $\Phi_t = e^{tJA}(I + \tilde{\Phi}_t)$, we also impose the following compactness assumption: fix $R > 0$ and $T > 0$, there exists $C_{R,T}$ such that

$$\forall u_0, u'_0 \in B_R(Z), \quad \left\| \Phi_T(u_0) - \Phi_T(u'_0) \right\|_{Z_+} \leq C_{R,T} \| u_0 - u'_0 \|_Z.$$

Under these assumptions, it is well known that the flow maps Φ_t preserve the symplectic form.

The aim of this section is to show the following non-squeezing theorem

Theorem 2.1. Assume Φ_T is the flow map of an equation of the form (2) and satisfies the previous assumptions. If Φ_T sends a ball $B_r = \{ z \in Z/ \| z - \bar{z} \| < r \}$, \bar{z} fixed

into a cylinder

$$C_{R,j_0} = \left\{ z = \sum p_j \varphi^+_j + q_j \varphi^-_j \left/ (p_{j_0} - \bar{p}_{j_0})^2 + (q_{j_0} - \bar{q}_{j_0})^2 < R^2 \right. \right\}$$

$j_0, \bar{p}_{j_0}, \bar{q}_{j_0}$ fixed

then $r \leq R$.

In fact, this theorem is a simple version of the conservation of a symplectic capacity on Z by the flow map Φ_T (see subsection 2.3.2 below)

Remark 2.2. This theorem implies the following fact. Fix $\varepsilon > 0$, a time $T > 0$, a Fourier mode n_0 and $r > 0$ (no smallness conditions are imposed on r or T), then there exists $u_0 \in H^{1/2}(T)$ such that

$$\| u_0 \|_{H^{1/2}} < r$$

and

$$|\hat{u}(T)(n_0)| > \frac{r - \varepsilon}{(n_0^2 + 1)^{1/4}}$$

where u solves (2).
The non-squeezing theorem remains true if we don’t suppose that the flow map is global in (H1), but the conclusion would be:

either

\[|\hat{u}(T)(n_0)| > \frac{r - \varepsilon}{(n_0^2 + 1)^{1/4}} \]

or

\[\sup_{0 \leq t \leq T} \|u(t)\|_{H^{1/2}} = +\infty. \]

So we impose the global wellposedness in time for \(\Phi\) in order to rule out the second case.

2.2. An approximation lemma. In order to define a capacity, we will need to approximate the flow by finite-dimensional maps. We shall use the following lemma

Lemma 2.3. Let \(\Phi\) the flow at time \(T\) of an equation \(\Phi\) satisfying the previous assumptions. For each \(\varepsilon > 0\) and \(R > 0\), there exists \(N \in \mathbb{N}\) such that for \(u \in B_R\):

\[\Phi(u) = e^{tJA}(I + \tilde{\Phi}_e)(I + \tilde{\Phi}_N)(u) \]

where \((I + \tilde{\Phi}_e)\) and \((I + \tilde{\Phi}_N)\) are symplectic diffeomorphisms satisfying

\[\|\tilde{\Phi}_e(u)\| \leq \varepsilon \quad \text{for} \quad u \in (I + \tilde{\Phi}_N)(B_R) \]

\[(I + \tilde{\Phi}_N)(u^N + u_N) = (I + \tilde{\Phi}_N)(u^N) + u_N \quad \text{for} \quad u^N \in Z^N, u_N \in Z_N. \]

Proof. Recall that \(\Phi = e^{tJA}(I + \tilde{\Phi})\). First, we observe that for \(|t| \leq T\), any \(R > 0\) and \(u, v \in B_R(Z)\) we have

\[\|\tilde{\Phi}(u) - \Pi^N\tilde{\Phi}(u)\|_Z \leq \varepsilon_1(N) \xrightarrow{N \to +\infty} 0. \]

Indeed, as \(K = \bigcup_{|t| \leq T} \tilde{\Phi}(B_r(Z))\) is precompact in \(Z\) (by (H3)), then \(\Phi\) results from the following statement

\[\sup_{u \in K} \|u - \Pi^N u\|_N \xrightarrow{N \to +\infty} 0. \]

Suppose that the convergence does not hold, then we can find a sequence \((u_n)\) in \(K\) such that \(\|(I - \Pi^N)u_n\| \geq \varepsilon > 0\). As \(K\) is precompact there exists a subsequence \((u_{n_j})\) such that \(u_{n_j} \to u\). For \(n_j\) sufficiently large we have

\[\|(I - \Pi^N)(u)\| \leq \varepsilon / 2, \quad \|u_{n_j} - u\| \leq \varepsilon / 2. \]

Hence \(\|(I - \Pi^N)(u_{n_j})\| \leq \varepsilon\) and we get a contradiction.

Now we set \(h_N = h \circ \Pi^N\). Then \(\nabla h_N = \Pi^N \nabla h \Pi^N\). We define \(\Phi^N\) the time \(T\) flow of the equation

\[\dot{v} = J(Av + \nabla h_N(v)) \]

or, equivalently, \(v = v^N + v_N \in Z^N + Z_N\) and

\[
\begin{cases}
\dot{v}^N = J(Av^N + \Pi^N \nabla h(v^N)) \\
\dot{v}_N = JA v_N
\end{cases}
\]

We write \(\Phi^N = e^{tJA}(I + \tilde{\Phi}_N)\).
Since $\Phi_N = 0$ outside Z^N, Φ_N has the desired form \((\ref{eq:phi_n})\). Define
\[
\tilde{\Phi}_\varepsilon = \left(\Phi - \Phi_N \right) \left(I + \Phi_N \right)^{-1},
\]
so we have
\[
e^{TJA} \left(I + \tilde{\Phi}_\varepsilon \right) \left(I + \Phi_N \right) = e^{TJA} \left(I + \tilde{\Phi} \right) = \Phi.
\]

Next we estimate the difference $\tilde{\Phi} - \tilde{\Phi}_N$. For $u \in B_R(Z)$ we have
\[
\left\| \tilde{\Phi}(u) - \tilde{\Phi}_N(u) \right\|_Z \leq \left\| \tilde{\Phi}(u) - \Pi^N \tilde{\Phi}(u) \right\|_Z + \left\| \Pi^N \tilde{\Phi}(u) - \Pi^N \tilde{\Phi}(\Pi^N u) \right\|_Z + \left\| \Pi^N \tilde{\Phi}(\Pi^N u) - \tilde{\Phi}_N(u) \right\|_Z,
\]
Hence by \((\ref{eq:phi_n})\) and assumption (H3), for $u \in B_R(Z)$ we have
\[
\left\| \tilde{\Phi}(u) - \tilde{\Phi}_N(u) \right\|_Z \leq C\varepsilon(N) \xrightarrow{N \to +\infty} 0,
\]
so for $u \in \left(I + \tilde{\Phi}_N \right)(B_R(Z))$
\[
\left\| \tilde{\Phi}_\varepsilon(u) \right\|_Z \leq \varepsilon(N) \xrightarrow{N \to +\infty} 0.
\]

\section{2.3. Symplectic capacities and non-squeezing theorem.}

\subsection{2.3.1. Capacities in finite-dimensional space.}
Consider \mathbb{R}^{2n} supplied with the standard symplectic structure, that is $\omega(x, y) = \langle Jx, y \rangle$ where
\[
J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}.
\]

For $f : \mathbb{R}^{2n} \to \mathbb{R}$ a smooth function we define the hamiltonian vectorfield
\[
X_f = J\nabla f.
\]

\begin{definition}
Let \mathcal{O} an open set of \mathbb{R}^{2n}, $f \in C^\infty(\mathcal{O})$ and $m > 0$. The function f is called m-admissible if
\begin{itemize}
 \item $0 \leq f(x) \leq m$ for $x \in \mathcal{O}$, and f vanishes on a nonempty open set of \mathcal{O}, and $f|_{\partial\mathcal{O}} = m$.
 \item The set $\{ z / f(z) < m \}$ is bounded and the distance from this set to $\partial\mathcal{O}$ is $d(f) > 0$.
\end{itemize}

Following \([13]\) we define the capacity $c_{2n}(\mathcal{O})$ of an open set \mathcal{O} of \mathbb{R}^{2n} as
\[
c_{2n}(\mathcal{O}) = \inf \{ m_* \text{ for each } m > m_* \text{ and each } m\text{-admissible function } f \text{ in } \mathcal{O} \}
\]
the vectorfield X_f has a non constant periodic solution of period ≤ 1.

\begin{theorem}
c_{2n} is a symplectic capacity, that is
\begin{itemize}
 \item if $\mathcal{O}_1 \subset \mathcal{O}_2$ then $c_{2n}(\mathcal{O}_1) \leq c_{2n}(\mathcal{O}_2)$
 \item if $\varphi : \mathcal{O} \to \mathbb{R}^{2n}$ is a symplectic diffeomorphism $c_{2n}(\mathcal{O}) = c_{2n}(\varphi(\mathcal{O}))$.
 \item $c_{2n}(\lambda \mathcal{O}) = \lambda^2 c_{2n}(\mathcal{O})$.
\end{itemize}
\end{theorem}
\[c_{2n}(B_1) = c_{2n}(C_{r,1}) = \pi \text{ where} \]
\[B_r = \left\{ (p, q) / \sum (p_j^2 + q_j^2) < r^2 \right\}, \text{ and } C_{r,1} = \left\{ (p, q) / (p_1^2 + q_1^2) < r^2 \right\}. \]

See [6] for a proof. An immediate consequence of this theorem is the non-squeezing theorem of M. Gromov [5].

Theorem 2.6. The ball \(B_r \) can be symplecticaly embedded into the cylinder \(C_{R,1} \) if and only if \(r \leq R \).

2.3.2. Construction of a capacity on Hilbert spaces.

In this section we define a symplectic capacity on Hilbert spaces which is invariant with respect to the flow of the equation (2). We will follow the construction of S. Kuksin (see [7]).

For \(O \) an open set of \(\mathbb{Z} \) we denote \(O^n = O \cap \mathbb{Z}^n \) and observe that \(\partial O^n \subset \partial O \cap \mathbb{Z}^n \).

Definition 2.7. Let \(f \in C^\infty(O) \) and \(m > 0 \). The function \(f \) is called \(m \)-admissible if
- \(0 \leq f(x) \leq m \) for \(x \in O \), and \(f \) vanishes on a nonempty open set of \(O \), and \(f|_{\partial O} = m \).
- The set \(\{ z / f(z) < m \} \) is bounded and the distance from this set to \(\partial O \) is \(d(f) > 0 \).

Remark 2.8. If \(f \) is \(m \)-admissible, denoting \(\text{supp}(f) = \{ z / 0 < f(z) < m \} \), we have
\[\text{dist}(f^{-1}(0), \partial O) \geq d(f), \]
\[\text{dist}(\text{supp}(f), \partial O) \geq d(f). \]

Denote \(f_n = f|_{O^n} \) and consider \(X_{f_n} \) the corresponding hamiltonian vectorfield on \(O^n \).

Definition 2.9. A \(T \)-periodic trajectory of \(X_{f_n} \) is called fast if it is not a stationary point and \(T \leq 1 \).

A \(m \)-admissible function \(f \) is called fast if there exists \(n_0 \) (depending on \(f \)) such that for all \(n \geq n_0 \) the vectorfield \(X_{f_n} \) has a fast solution.

Lemma 2.10. Each periodic trajectory of \(X_{f_n} \) is contained in \(\text{supp}(f) \cap \mathbb{Z}^n \).

Proof. Pick \(z \in O^n \setminus \text{supp}(f) \), \(f_n \) takes either its minimal or maximal value in \(z \), hence \(X_{f_n}(z) = 0 \). Therefore \(z \) is a stationary point and a fast trajectory cannot pass through it. \(\blacksquare \)

We are now in position to define a capacity \(c \).

Definition 2.11. For an open set \(O \) of \(\mathbb{Z} \) its capacity equals to
\[c(O) = \inf \{ m_* / \text{each } m \text{-admissible function with } m > m_* \text{ is fast} \}. \]

Proposition 2.12. Assume that \(O_1, O_2 \) and \(O \) are open sets of \(\mathbb{Z} \) and \(\lambda \neq 0 \)
- (1) if \(O_1 \subset O_2 \) then \(c(O_1) \leq c(O_2) \);
- (2) \(c(\lambda O) = \lambda^2 c(O) \).
A SYMPLECTIC NON-SQUEEZING THEOREM FOR BBM EQUATION

Proof. (1) Assume \(m < c(\mathcal{O}_1) \), by definition of \(c \) there exists a \(m \)-admissible function \(f \) of \(\mathcal{O}_1 \) which is not fast. Hence, there exists a sequence \((n_j) \to +\infty \) such that for every \(j \in \mathbb{N} \), \(X_{f_{n_j}} \) has no fast periodic trajectory. Define \(\tilde{f} \) on \(\mathcal{O}_2 \) by

\[
\tilde{f}(x) = \begin{cases}
 f(x) & \text{if } x \in \mathcal{O}_1 \\
 m & \text{otherwise}
\end{cases}
\]

The function \(\tilde{f} \) is clearly \(m \)-admissible on \(\mathcal{O}_2 \).

By lemma 2.10 for each \(j \in \mathbb{N} \), each fast solution \(x(t) \) of \(X_{\tilde{f}_{n_j}} \) lies in \(\text{supp}\tilde{f} \cap Z^{n_j} = \text{supp}f \cap Z^{n_j} \). Hence \(x(t) \) is a fast trajectory of \(X_{f_{n_j}} \) (\(X_{\tilde{f}_{n_j}} \) and \(X_{f_{n_j}} \) are the same vectorfields on \(\text{supp}(f) \) by definition of \(\text{supp}(f) \)). Therefore, for each \(j \in \mathbb{N} \) the vectorfield \(X_{\tilde{f}_{n_j}} \) of \(\mathcal{O}_2 \) has no fast trajectory.

Hence \(\tilde{f} \) is \(m \)-admissible but is not fast. Thus \(c(\mathcal{O}_2) \geq m \), and the first assertion follows.

(2) Define \(f^\lambda = \lambda^2 f(\lambda^{-1} \cdot) \) on \(\lambda \mathcal{O} \). Clearly \(f \) is \(m \)-admissible on \(\mathcal{O} \) if and only if \(f^\lambda \) is \(\lambda^2 m \)-admissible on \(\lambda \mathcal{O} \). Moreover \(z(t) \in \mathcal{O}^n \) is a \(T \)-periodic trajectory of \(X_{f_n} \) if and only if \(\lambda z(t) \in \lambda \mathcal{O}^n \) is a \(T \)-periodic trajectory of \(X_{f_n} \). Therefore \(c(\lambda \mathcal{O}) = \lambda^2 c(\mathcal{O}) \).

Lemma 2.13. If \(F : Z \to Z \) has the form

\[
F(z^n + z_n) = F^n(z^n) + z_n \quad z = z^n + z_n \in Z = Z^n \oplus Z_n
\]

with \(F^n \) a symplectic diffeomorphism of \(Z^n \), then \(c(\mathcal{O}) = c(F(\mathcal{O})) \), for each open set \(\mathcal{O} \) of \(Z \).

Proof. We observe that if \(f \) is \(m \)-admissible in \(F(\mathcal{O}) \) and \(f \) is fast then \(f \circ F \) is \(m \)-admissible in \(\mathcal{O} \) and \(f \circ F \) is fast. Indeed \(F^n : f \mapsto f \circ F \) clearly sends \(m \)-admissible functions in \(F(\mathcal{O}) \) to similar ones in \(\mathcal{O} \), and for \(p \geq n \) it transforms \(X_{(f \circ F)^p} \) into \(X_{f^p} \). Hence admissible and fast functions are preserved by \(F \) and its inverse (\(F \) is the identity outside of \(Z^n \) which is a finite-dimentional space), and the result follows.

Proposition 2.14. For each open set \(\mathcal{O} \) of \(Z \) and \(\xi \) in \(Z \), we have

\[
c(\mathcal{O}) = c(\mathcal{O} + \xi).
\]

Proof. Denote \(\mathcal{O}_\xi = \mathcal{O} + \xi \). It is sufficient to prove that \(c(\mathcal{O}) \leq c(\mathcal{O} + \xi) \) (\(\lambda \xi \) into \(-\xi \)).

Denote \(\xi = \xi^{n_0} + \xi_{n_0} \in Z^{n_0} + Z_{n_0} \) \((n_0 \) will be fixed later) and \(\mathcal{O}_1 = \mathcal{O} + \xi^{n_0} \). By lemma 2.13 \(c(\mathcal{O}_1) = c(\mathcal{O}) \). We also remark that \(\mathcal{O}_\xi = \mathcal{O}_1 + \xi_{n_0} \).

Take any \(m \)-admissible function \(f \) on \(\mathcal{O}_\xi \) with \(m > c(\mathcal{O}) \). We wish to check that \(f \) is fast.

Since \(\partial \mathcal{O}_\xi \subset \partial \mathcal{O}_1 + \xi_{n_0} \) and \(\| \xi_n \| \xrightarrow{n \to +\infty} 0 \), we have

\[
\text{dist}(\partial \mathcal{O}_1, \partial \mathcal{O}_\xi) \leq \text{dist}(\partial \mathcal{O}_1, \partial \mathcal{O}_1 + \xi_{n_0}) \leq \| \xi_{n_0} \| \xrightarrow{n_0 \to +\infty} 0.
\]

Pick \(n_0 \) such that

\[
\text{dist}(\partial \mathcal{O}_1, \partial \mathcal{O}_\xi) \leq \| \xi_{n_0} \| < \frac{1}{2} d(f).
\]

We extend \(f \) outside \(\mathcal{O}_\xi \) with \(f(z) = m \) if \(z \notin \mathcal{O}_\xi \) and we denote \(\tilde{f} \) its restriction to \(\mathcal{O}_1 \).
f equals m on a $d(f)$-neighbourhood of ∂O_1. By (5), we deduce that \tilde{f} equals m on a $\frac{1}{2}d(f)$-neighbourhood of ∂O_1.

By remark 2.8 we have $\text{dist}(f^{-1}(0), \partial O_1) \geq d(f)$. Hence, by (6), we have $\text{dist}(f^{-1}(0), \partial O_1) \geq \frac{1}{2}d(f)$, and in particular \tilde{f} vanishes on a nonempty open set of $O_1 \cap O_2 \subset O_1$. Therefore \tilde{f} is m-admissible.

Since $c(O_1) = c(O) < m$, it follows that X_{f_0} has a fast trajectory in O_1 if $n \geq n_0$ is sufficiently large. By lemma 2.10 this trajectory lies in $\text{supp}\tilde{f} = \text{supp}f \subset O_1 \cap O$. Hence this trajectory is a fast solution of X_{f_0}, and the function f is fast.

If $r = (r_j)_{j \in \mathbb{N}^*}$ is a sequence of $\mathbb{R}_+ \cup \{+\infty\}$ with $0 < r = \inf_{j \in \mathbb{N}^*} r_j < +\infty$, we define

$$D(r) = \left\{ z = \sum_{j=1}^{+\infty} p_j \varphi_j^+ + q_j \varphi_j^- \mid \forall j \in \mathbb{N}, p_j^2 + q_j^2 < r_j^2 \right\}.$$ $$E(r) = \left\{ z = \sum_{j=1}^{+\infty} p_j \varphi_j^+ + q_j \varphi_j^- \mid \sum_{j=1}^{+\infty} \frac{p_j^2 + q_j^2}{r_j^2} < 1 \right\}.$$

Remark that if $r = (r, +\infty, \ldots, +\infty)$, $D(r)$ is a symplectic cylinder $C_{r,1}$.

Theorem 2.15. We have $c(E(r)) = c(D(r)) = \pi r^2$.

Proof. We have to check the following inequalities

1. $c(E(r)) \geq \pi r^2$
2. $c(D(r)) \leq \pi r^2$

then we will conclude by proposition 2.12.

- (1) It is sufficient to prove that $c(B_1) \geq \pi$ (then the result follows by proposition 2.12).

Define $m = \pi - \varepsilon$. Choose $f : [0, 1] \to \mathbb{R}_+$ satisfying:

- $0 \leq f(t) < \pi$ for $t \in [0, 1]$
- $f(t) = 0$ for t near 0
- $f(t) = m$ for t near 1

Then, define $H(x) = f(\|x\|) = \pi r^2$ for x in $B(1)$. H is m-admissible. We want to prove that H is not fast. Consider

$$H_n(x) = f \left(\sum_{j=1}^{n} (p_j^2 + q_j^2) \right), \quad \text{where } x = \sum_{j=1}^{n} (p_j \varphi_j^+ + q_j \varphi_j^-).$$

Using the variables $I_j = \frac{1}{2} (p_j^2 + q_j^2)$ and $\theta_j = \arctan \left(\frac{p_j}{q_j} \right)$ we observe that non-constant periodic solutions corresponding to this hamiltonian has a period $T > 1$. Hence X_{H_n} has no fast trajectory and H is not fast.

- (2) Denote $O = D(r)$. Pick $m > \pi r^2$ and f a m-admissible function in O. Since $f^{-1}(0)$ is not empty, there exists n such that $f^{-1}(0) \cap \mathbb{Z}^n \neq \emptyset$. Denote $f_n = f|\mathbb{O}^n$. Since $\partial \mathbb{O}^n \subset \partial O$, we deduce that f_n equals m on a neighbourhood of $\partial \mathbb{O}^n$. Hence f_n is m-admissible.
Since \(c_{2n}(O^n) = \pi \min_{1 \leq j \leq n} r_j^2 \), we have
\[
c_{2n}(O^n) \xrightarrow{n \to +\infty} \pi \inf_{j \geq 1} r_j^2 = \pi r^2 < m.
\]
Hence, for \(n \) sufficiently large \(c_{2n}(O^n) < m \). Therefore \(X_{f_n} \) has a fast periodic trajectory and the function \(f \) is fast. \(\blacksquare \)

Corollary 2.16. We have \(c(B_r) = c(C_{r,1}) = \pi r^2 \), and for each bounded open set \(O \) of \(Z \) we have \(0 < c(O) < +\infty \).

The essential property of the capacity \(c \) is its invariance with respect to the flow maps of PDEs satisfying assumptions (H1), (H2) and (H3). In fact the non-squeezing theorem 2.1 is a consequence of the following result.

Theorem 2.17. Let \(\Phi_T \) the flow of an equation (2) satisfying the assumptions (H1), (H2) and (H3). For any open set \(O \) of \(Z \) we have
\[
c(\Phi_T(O)) = c(O).
\]

Proof. Let us denote \(\Phi = \Phi_T \) and \(Q = \Phi(O) \). One easily checks that \(\Phi^{-1} \) satisfies (H1), (H2) and (H3), therefore it is sufficient to prove that \(c(Q) \leq c(O) \).

Take any \(m > c(O) \) and any \(f \) \(m \)-admissible in \(Q \). We want to prove that \(f \) is fast.

Since \(f \) is \(m \)-admissible there exists \(R > 0 \) such that \(\text{supp}f \subset B_R \). Define \(R_1 = R + d(f) \), \(Q' = Q \cap B_{R'} \) and \(O' = \Phi^{-1}(Q') \). By assumption \(O' \) is bounded, hence there exists \(R' \) such that \(O' \subset B_{R'} \). Moreover we clearly have \(O' \subset O \), thus by proposition 2.12
\[
c(O') \leq c(O).
\]

We apply lemma 2.3 with \(N \) so large that \(\varepsilon < \frac{1}{2} d(f) \), and we use the notations of the lemma 2.3: \(\Phi = e^{TJA}(I + \tilde{F}_2)(I + \tilde{F}_N) \). We denote \(O_1 \) and \(O_2 \) the intermediate domains which arise from the decomposition
\[
O' \xrightarrow{I + \tilde{F}_N} O_1 \xrightarrow{I + \tilde{F}_2} O_2 \xrightarrow{e^{TJA}} Q'.
\]
We also denote
\[
f_2 = (f \circ e^{TJA})\big|_{O_2}.
\]

Observe that \(f_2 \) is \(m \)-admissible on \(O_2 \). Indeed \(f \) is \(m \)-admissible on \(Q \) and also on \(Q' \) (by definition of \(Q' \)). Since \(e^{TJA} \) is an isometry, \(f_2 \) is \(m \)-admissible.

Then, we extend \(f_2 \) as \(m \) outside \(O_2 \), and we denote \(\tilde{f} \) its restriction to \(O_1 \). By (1) the \(\varepsilon \)-neighbourhood of \(\partial O_1 \) is contained in the \(2\varepsilon \)-neighbourhood of \(\partial O_2 \). Since \(\varepsilon < \frac{1}{2} d(f) \), we deduce that \(\tilde{f} \) equals \(m \) on a neighbourhood of \(\partial O_1 \). Moreover \(f^{-1}(0) = f_2^{-1}(0) \subset O_1 \cap O_2 \). Indeed by remark 2.8
\[
\text{dist}(f_2^{-1}(0), \partial O_2) \geq d(f)
\]
and
\[
\text{dist}(\partial O_1, \partial O_2) \leq \frac{1}{2} d(f).
\]
Hence \(\tilde{f} \) is \(m \)-admissible on \(O_1 \).
Using lemma 2.13 and (9), we deduce that

\[c(O_1) = c \left((I + \tilde{\Phi}) (O') \right) = c(O') \leq c(O) < m. \]

Hence \(\tilde{f} \) is m-admissible on \(O_1 \) and \(c(O_1) < m \), thus \(\tilde{f} \) is fast. So for \(n \) sufficiently large, the vectorfield \(X_{f_n} \) (where \(f_n = \tilde{f} |_{O_1} \)) has a fast solution. By lemma 2.10 this solution lies in \(\text{supp} \tilde{f} \) and by remark 2.8, \(\text{supp} \tilde{f} = \text{supp} f_2 \), so this solution is also a fast solution of \(X_{f_2} \) (where \(f_2 = f_2 |_{O_2} \)). Hence \(f_2 \) is fast too. Finally \(f \) is also fast \((f_2 = (f \circ e^{TJA}) |_{O_2}) \).

3. Application to the BBM equation

In this section we prove that the BBM equation

\[\left\{ \begin{array}{ll}
 u_t + u_x + uu_x - u_{xxx} = 0, & x \in \mathbb{T} \\
 u(0, x) = u_0(x)
\end{array} \right. \]

is globally well-posed in \(H^s(\mathbb{T}) \) for \(s \geq 0 \) (we will follow the proof given in [2] for \(x \in \mathbb{R} \) and has the non-squeezing property (theorem 1.1).

3.1. Bilinear estimates. We start by two helpful inequalities.

Let \(\varphi(k) = \frac{k}{1 + k^2} \) and \(\varphi(D) \) the Fourier multiplier operator defined by \(\varphi(D) u(k) = \varphi(k) \hat{u}(k) \).

Lemma 3.1. Let \(u \in H^r(\mathbb{T}) \) and \(v \in H^{r'}(\mathbb{T}) \) with \(0 \leq r \leq s \), \(0 \leq r' \leq s \) and \(0 \leq 2s - r - r' < 1/4 \). Then

\[\| \varphi(D)(uv) \|_{H^s} \leq C_{r,r',s} \| u \|_{H^r} \| v \|_{H^{r'}}. \]

Proof. We want to prove

\[\| \langle k \rangle^s \frac{k}{1 + k^2} \hat{uv}(k) \|_{L^2_k} \leq C \| u \|_{H^r} \| v \|_{H^{r'}}. \]

By duality it is sufficient to prove

\[\left\langle \langle k \rangle^s \frac{k}{1 + k^2} \hat{uv}, \hat{w} \right\rangle_{L^2_k} \leq C \| u \|_{H^r} \| v \|_{H^{r'}} \| w \|_{L^2_k}, \]

that is

\[I = \sum_{k \in \mathbb{Z}} k \langle k \rangle^{s-2} \hat{uv} \overline{\hat{w}}(k) \leq C \| u \|_{H^r} \| v \|_{H^{r'}} \| w \|_{L^2_k}. \]

Let \(f(k) = \langle k \rangle^r \hat{u}(k) \), \(g(k) = \langle k \rangle^{r'} \hat{v}(k) \) and \(h(k) = k \langle k \rangle^{-2(1+r+r'-2s)} \overline{\hat{u}}(k) \).

Since

\[\hat{uv}(k) = \sum_{l \in \mathbb{Z}} \hat{u}(l) \hat{v}(k-l) \]

we have

\[I = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} \langle k \rangle^{-3s+2r+2r'} \langle k-l \rangle^r f(l)g(k-l)h(k). \]

We have \(-2s + r + r' \leq 0\) and \(-s + r \leq 0\) and \(-s + r' \leq 0\) so

\[-3s + 2r + 2r' = -2s + r + r' + (-s + r') + r \leq r \text{ and } -3s + 2r + 2r' \leq r'. \]
Hence \(\langle k \rangle^{-3s+2r+2r'} \) is bounded for \(k \) and \(l \) in \(\mathbb{Z} \). Then (by Cauchy-Schwarz inequality and Young’s inequality)

\[
I \lesssim \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} f(l) g(k-l) h(k)
\]

\[
\lesssim \|f\|_{\ell^2} \|g \ast h(\cdot)\|_{\ell^2}
\]

\[
\lesssim \|f\|_{\ell^2} \|g\|_{\ell^2} \|h\|_{\ell^1}
\]

\[
\lesssim \|u\|_{H^r} \|v\|_{H^{r'}} \|w\|_{L^2} \left\| \frac{k}{(1+k^2)^{1+r+r'-2s}} \right\|_{\ell_k^2}.
\]

Since \(2s - r - r' < 1/4 \) we have \(1 + r + r' - 2s > 3/4 \). Hence

\[
\left\| \frac{k}{(1+k^2)^{1+r+r'-2s}} \right\|_{\ell_k^2} < +\infty.
\]

In subsection 3.3 we will use this lemma in the particular case \(r = r' = s \geq 0 \), that is

\[
\|\varphi(D)(uv)\|_{H^s} \leq C_s \|u\|_{H^r} \|v\|_{H^s}
\]

whereas in subsection 3.4 we need the general case \(0 \leq r, r' < s \).

Lemma 3.2. Let \(u \in H^r(\mathbb{T}) \) and \(v \in H^s(\mathbb{T}) \) with \(0 \leq s \leq r \) and \(r > \frac{1}{2} \), then

\[
\|\varphi(D)(uv)\|_{H^{s+1}} \leq C \|u\|_{H^r} \|v\|_{H^s}.
\]

Proof. Since \(r > \frac{1}{2} \) and \(r \geq s \geq 0 \), the elements of \(H^r(\mathbb{T}) \) are multipliers in \(H^s(\mathbb{T}) \), which is to say

\[
\|uv\|_{H^s} \lesssim \|u\|_{H^r} \|v\|_{H^s}.
\]

Hence

\[
\|\varphi(D)(uv)\|_{H^{s+1}} = \left\| \frac{\langle k \rangle^{s+1} k}{\langle k \rangle^2} \hat{uv} \right\|_{\ell_k^2}
\]

\[
\leq \|\langle k \rangle^s \hat{uv}\|_{\ell_k^2}
\]

\[
= \|uv\|_{H^s}
\]

\[
\lesssim \|u\|_{H^r} \|v\|_{H^s}.
\]

3.2. **Hamiltonian formalism for BBM equation.** Recall that BBM equation reads

\[
u_t + u_x + uu_x - u_{txx} = 0.
\]

Let us prove that BBM equation is a hamiltonian equation \([2]\).

First BBM can be written

\[
u_t = -\partial_x (1 - \partial_x^2)^{-1}(u + \frac{u^2}{2}).
\]
Denote \(Z = H^{1/2}_0(\mathbb{T}) = \{ u \in H^{1/2} / \int_T u = 0 \} \) with the following norm
\[
\| u \|_Z = \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1 + k^2}{k} (a_k^2 + b_k^2)
\]
where \(a_k \) and \(b_k \) are the (real) Fourier coefficients of \(u \).

Consider the Hilbert basis of \(Z \) given by
\[
\varphi^+_n(x) = \sqrt{\frac{n}{\pi(n^2 + 1)}} \cos(nx), \quad \varphi^-_n(x) = \sqrt{\frac{n}{\pi(n^2 + 1)}} \sin(nx).
\]
We have \(Z_+ = H^{1/2+\varepsilon}_0 < H^{1/2}_0 < H^{1/2-\varepsilon}_0 = Z_- \), where \(\varepsilon > 0 \) will be fixed later.

Define
\[
H(u) = \int_T \left(\frac{u(x)^2}{2} + \frac{u(x)^3}{6} \right) dx,
\]
we have
\[
\nabla_{L^2} H(u) = u + \frac{u^2}{2}.
\]

Assume
\[
u(t) = \sum_n p_n(t) \varphi^+_n + q_n(t) \varphi^-_n \]
and
\[
\nabla_{L^2} H(u) = \sum_n \alpha_n \varphi^+_n + \beta_n \varphi^-_n.
\]

Denoting \(\tilde{H}(p, q) = H(\sum_n p_n(t) \varphi^+_n + q_n(t) \varphi^-_n) \) we deduce that
\[
\frac{\partial \tilde{H}}{\partial p_n} = \langle \nabla_{L^2} H(u), \varphi^+_n \rangle_{L^2} = \alpha_n \| \varphi^+_n \|_{L^2}^2 = \frac{n\alpha_n}{1 + n^2}
\]
and
\[
\frac{\partial \tilde{H}}{\partial q_n} = \frac{n\beta_n}{1 + n^2}.
\]

Hence
\[
\dot{u} = \sum_n \dot{p}_n \varphi^+_n + \dot{q}_n \varphi^-_n = (1 - \partial_x^2)^{-1} \partial_x (-\nabla_{L^2} H(u))
\]
\[
= \sum_n \frac{-n\alpha_n}{1 + n^2} \varphi^-_n + \frac{n\beta_n}{1 + n^2} \varphi^+_n
\]
so
\[
\begin{cases}
\dot{p}_n = \frac{n\beta_n}{1 + n^2} = \frac{\partial \tilde{H}}{\partial q_n}
\end{cases} \quad \begin{cases}
\dot{q}_n = -\frac{n\alpha_n}{1 + n^2} = -\frac{\partial \tilde{H}}{\partial p_n}
\end{cases}
\]

That is \(\dot{u} = J \nabla_{L^2} H(u) \).

3.3. Verification of (H1).
3.3.1. Local well-posedness. Recall that $\varphi(k) = \frac{k}{1+k^2}$, the equation (10) can be written in the form:

$$
\begin{cases}
iu_t = \varphi(D)u + \frac{1}{2}\varphi(D)u^2 \\
u(0, x) = u_0(x)
\end{cases}
$$

(11)

Let $e^{-it\varphi(D)}$ be the unitary group defining the associated free evolution. That is, $e^{-it\varphi(D)}u_0$ solves the Cauchy problem

$$
\begin{cases}
iu_t = \varphi(D)u \\
u(0, x) = u_0(x)
\end{cases}
$$

(12)

Then, (11) may be rewritten as the integral equation

$$u(t) = e^{-it\varphi(D)}u_0 - \frac{i}{2}\int_0^t e^{-i(t-\tau)\varphi(D)}\varphi(D)(u(\tau)^2)d\tau = A(u)(t, \cdot).$$

Let $X^s_T = C^0([-T, T], H^s(\mathbb{T}))$. The H^s norm is clearly preserved by the free evolution, thus

$$
\left\|e^{-it\varphi(D)}u_0\right\|_{X^s_T} = \|u\|_{H^s}.
$$

(13)

Theorem 3.3. Let $s \geq 0$. For any $u_0 \in H^s(\mathbb{T})$, there exist a time T (depending on u_0) and a unique solution $u \in X^s_T$ of (10). The maximal existence time T_s has the property that

$$T_s \geq \frac{1}{4C_s\|u_0\|_{H^s}}$$

with C_s the constant from lemma 3.1 (in the special case $r = r' = s$).

Moreover, for $R > 0$, let T denote a uniform existence time for (10) with $u_0 \in B_R(H^s(\mathbb{T}))$, then the map $\Phi : u_0 \mapsto u$ is real-analytic from $B_R(H^s(\mathbb{T}))$ to X^s_T.

Proof. Let $R = 2\|u_0\|_{H^s}$. For any $u \in B_R(X^s_T)$, by (13) and lemma 3.1 (with $r = r' = s$) we have

$$
\|A(u)\|_{X^s_T} \leq \left\|e^{-it\varphi(D)}u_0\right\|_{X^s_T} + \frac{1}{2}\left\|\int_0^t e^{-i(t-\tau)\varphi(D)}\varphi(u(\tau)^2)d\tau\right\|_{X^s_T},
$$

$$
\leq \|u_0\|_{H^s} + \frac{C_sT}{2}\|u\|_{X^s_T}^2
$$

$$
\leq \|u_0\|_{H^s} + \frac{C_sT}{2}R^2
$$

$$
\leq R \quad \text{for} \quad T = \frac{2}{C_sR}
$$

and for any $u, v \in B_R(X^s_T)$, by lemma 3.1 (with $r = r' = s$) we have

$$
\|A(u) - A(v)\|_{X^s_T} \leq \frac{C_sT}{2}\|u - v\|_{X^s_T}, \|u + v\|_{X^s_T} \leq C_sTR\|u - v\|_{X^s_T}.
$$

Hence, A is a contraction mapping of $B_R(X^s_T)$ for $T = \frac{1}{2C_sR} = \frac{1}{4C_s\|u_0\|_{H^s}}$. Thus A has a unique fixed point which is a solution of (10) on time interval $[-T, T]$.

Let us consider now the smoothness of Φ. Let $\Lambda : H^s(\mathbb{T}) \times X_T^s \rightarrow X_T^s$ be defined as

$$
\Lambda(u_0, v)(t) = v(t) - e^{-it\varphi(D)}u_0 - \frac{i}{2} \int_0^t e^{-i(t-\tau)\varphi(D)}\varphi(D)(v(\tau)^2)d\tau.
$$

Due to lemma 3.1 (with $r = r' = s$), Λ is a smooth map from $H^s(\mathbb{T}) \times X_T^s$ to X_T^s. Let $u \in X_T^s$ be the solution of (10) with initial data $u_0 \in H^s(\mathbb{T})$, which is to say $\Lambda(u_0, u) = 0$. Thus, the Fréchet derivative of Λ with respect to the second variable is the linear map:

$$
\Lambda'(u_0, u)(t)[h] = h - \int_0^t e^{-i(t-\tau)\varphi(D)}\varphi(D)(u(\tau)h(\tau))d\tau.
$$

Still by lemma 3.1 we get

$$
\left\| \int_0^t e^{-i(t-\tau)\varphi(D)}\varphi(D)(u(\tau)h(\tau))d\tau \right\|_{X_T^s} \leq CT\|u\|_{H^s}\|h\|_{H^s}.
$$

So, for T' sufficiently small (depending only on $\|u\|_{H^s}$), $\Lambda'(u_0, u)(t)$ is invertible since it is of the form $Id + K$ with

$$
\|K\|_{\mathcal{B}(X_T^{s}, X_T^{s})} < 1
$$

where $\mathcal{B}(X_T^{s}, X_T^{s})$ is the Banach space of bounded linear operators on X_T^{s}. Thus $\Phi : B_R(H^s(\mathbb{T})) \rightarrow X_T^s$ is real-analytic by Implicit Function Theorem.

3.3.2. Global well-posedness.

Theorem 3.4. The solution defined in theorem 3.3 is global in time.

Proof. Fix $T > 0$. The aim is to show that corresponding to any initial data $u_0 \in H^s$, there is a unique solution of (10) that lies in X_T^s. Because of theorem 3.3, this result is clear for data that is small enough in H^s, and it is sufficient to prove the existence of a solution corresponding to initial data of arbitrary size (uniqueness is a local issue). Fix $u_0 \in H^s$ and let N be such that

$$
\sum_{|k| \geq N} \langle k \rangle^{2s} |\widehat{u}_0(k)|^2 \leq T^{-2}.
$$

Such values of N exist since $\langle k \rangle^s |\widehat{u}_0(k)|$ is in ℓ^2. Define

$$
v_0(x) = \sum_{|k| \geq N} e^{ixk} \widehat{u}_0(k).
$$

By theorem 3.3 there exists a unique $v \in X_T^s$ solution of (10) with initial data v_0. Split the initial data u_0 into two pieces: $u_0 = v_0 + w_0$; and consider the following Cauchy problem (where v is now fixed)

$$
\begin{align*}
\left\{
\begin{array}{l}
w_t - w_{xxt} + w_x + ww_x + (vw)_x \\
w(0, x) = w_0(x)
\end{array}
\right.
\end{align*}
$$

If there exists a solution w of (14) in X_T^s then $v + w$ will be a solution of (10) in X_T^s.

First, \(w_0 \) is in \(H^r(\mathbb{T}) \) for all \(r > 0 \), in particular \(w_0 \in H^1(\mathbb{T}) \). And \((14)\) may be rewritten as the integral equation

\[
w(t, x) = e^{-it\varphi(D)}w_0 - \frac{i}{2} \int_0^t e^{-i(t-\tau)\varphi(D)}(vw + w^2)d\tau = \mathcal{K}(w).
\]

This problem can be solved locally in time on \(H^1(\mathbb{T}) \) by the same arguments used to prove theorem 3.3. Indeed for any \(w \in B_R(X^\frac{r}{2}) \), by lemma 3.2 (with \(r = 1 \) and \(s = 0 \)) and lemma 3.1 (with \(r = r' = s = 1 \))

\[
\|\mathcal{K}(w)\|_{X^\frac{r}{2}} \leq \|w_0\|_{H^1} + CS \left(\|\nu\|_{X^0} \|w\|_{X^\frac{r}{2}} + \|w\|^2_{X^\frac{r}{2}} \right)
\leq CS \|v\|_{X^0} R
\]

and for any \(w_1 \) and \(w_2 \) in \(B_R(X^\frac{r}{2}) \)

\[
\|\mathcal{K}(w_1) - \mathcal{K}(w_2)\|_{X^\frac{r}{2}}
\leq CS \left(\|v\|_{X^0} \|w_1 - w_2\|_{X^\frac{r}{2}} + \|w_1 - w_2\|_{X^\frac{r}{2}} \|w_1 + w_2\|_{X^\frac{r}{2}} \right)
\leq CS \left(\|v\|_{X^0} + 2R \right) \|w_1 - w_2\|_{X^\frac{r}{2}}.
\]

Hence, by \((15)\) and \((16)\), \(\mathcal{K} \) has a unique fixed point in \(X^\frac{r}{2} \). Therefore we have a solution \(w \) in \(X^\frac{r}{2} \) for a small time \(S \).

If we have an \(a \) \text{ priori} bound on the \(H^1 \)-norm of \(w \) showing it was bounded on the interval \([-T, T]\) it would follow that a solution on \([-T, T]\) could be obtained.

The formal steps of this inequality are as folllows (the justification is made by regularizing). Multiply the equation \((14)\) by \(w \), integrate over \(\mathbb{T} \), and after integration by parts we get

\[
\frac{1}{2} \frac{d}{dt} \int_\mathbb{T} \left(w(t, x)^2 + w_x(t, x)^2 \right) dx - \int_\mathbb{T} v(t, x)w(t, x)w_x(t, x)dx = 0.
\]

By Hölder and Sobolev inequalities we deduce

\[
\left| \int_\mathbb{T} v(t, x)w(t, x)w_x(t, x)dx \right| \leq \|v(t, \cdot)\|_{L^2} \|w(t, \cdot)\|_{L^\infty} \|w_x(t, \cdot)\|_{L^2}
\leq C \|v(t, \cdot)\|_{L^2} \|w(t, \cdot)\|_{H^1}^2.
\]

Hence

\[
\frac{d}{dt} \|w(t, \cdot)\|_{H^1}^2 \leq 2C \|v(t, \cdot)\|_{L^2} \|w(t, \cdot)\|_{H^1}^2
\]

and by Gronwall’s inequality

\[
\|w(t, \cdot)\|_{H^1} \leq \|w_0\|_{H^1} \exp \left(C \int_0^t \|v(\tau, \cdot)\|_{L^2} d\tau \right).
\]

We deduce from this \(a \) \text{ priori} bound that the solution \(w \) of \((14)\) exists on the interval \([-T, T]\), and \(v + w \) is a solution of \((10)\) in \(X^r \).
3.4. Verification of (H2).

Proposition 3.5. For any $T > 0$, $R > 0$, and $s > 0$ there exists R' such that

$$\forall 0 \leq t \leq T, \Phi_t(B_R(H^s)) \subset B_{R'}(H^s).$$

With $s = \frac{1}{2}$ we deduce that Φ satisfies (H2).

Proof. The result is clear for $s \geq 1$, so we assume that $0 < s < 1$. Fix $T > 0$, $R > 0$ and u_0 in H^s such that $\|u_0\|_{H^s} \leq R$. Using the same idea as in theorem 3.3, we split u_0 into two pieces $u_0 = v_0 + w_0$, where

$$v_0 = \sum_{|k| \geq N} \hat{u}_0(k)e^{ikx}.$$

Using the same notations, let v be the solution of BBM equation with the initial data v_0 and w the solution of (14). We want to control v and w in H^s-norm.

Fix $\varepsilon > 0$ such that $\varepsilon < 1/8$ and $s - \varepsilon > 0$, we have

$$\|v_0\|_{H^{s-\varepsilon}} \leq N^{-\varepsilon} \|v_0\|_{H^s}.$$

We choose $N = \left(\frac{4RC}{\varepsilon}\right)^{1/\varepsilon}$ where C is the constant of lemma 3.1. Hence we have

$$\|v_0\|_{H^{s-\varepsilon}} \leq \frac{1}{4CT} = M.$$

By local theory (theorem 3.3) the flow map

$$\Phi : B_M(H^{s-\varepsilon}) \to X_T^{s-\varepsilon}$$

is continuous. Since $H^s \cap B_M(H^{s-\varepsilon})$ is precompact in $B_M(H^{s-\varepsilon})$ we have

$$\sup_{v_0 \in H^s \cap B_M(H^{s-\varepsilon})} \|\Phi(v_0)\|_{X^{s-\varepsilon}} = C_1(R, T).$$

By lemma 3.1 with $r = r' = s - \varepsilon$ we have

$$\|v\|_{X^s} \leq \|v_0\|_{H^s} + CT \|v\|_{X^{s-\varepsilon}} \leq R + CTC_1(R, T)^2 = C_2(R, T).$$

The a priori bound on w gives

$$\|w(t)\|_{H^s} \leq \|w(t)\|_{H^1} \leq \|w_0\|_{H^1} \exp \left(C \int_0^t \|v(\tau, \cdot)\|_{L^2} d\tau \right) \leq N^{1-s} \|w_0\|_{H^s} e^{CTC_2(R, T)} \leq C_3(R, T).$$

Hence, we have

$$\|u\|_{X_T^s} \leq C_2(R, T) + C_3(R, T) \quad \blacksquare$$

Corollary 3.6. For each $T > 0$ and $s > 0$, the flow map $\Phi : H^s \to X_T^s$ is real analytic.

Proof. Let $u_0 \in H^s$, $R = \|u_0\|_{H^s}$, and $T > 0$. By proposition 3.5 there exists R' such that $\Phi_t(B_{R'}(H^s)) \subset B_{R'}(H^s)$, for all $t \in [0, T]$. And by local theory (theorem 3.3) there exists a small time τ such that $\Phi : B_{R'}(H^s) \to X^s_T$ is real analytic. Splitting the time intervalle $[0, T]$ into $\bigcup_{k} [k\tau, (k+1)\tau]$, we deduce that $\Phi : H^s \to X_T^s$ is real analytic. \[\blacktriangleleft \]
3.5. Verification of (H3). Recall that $\tilde{\Phi}$ denote the non-linear part of the flow, that is $\Phi_t = e^{-it\Phi(D)}(I + \tilde{\Phi}_t)$. The assumption (H3) results from

Proposition 3.7. For any $u_0, v_0 \in B_R(H^{1/2}(\mathbb{T}))$ we have the following estimate

$$\left\| \tilde{\Phi}(u_0) - \tilde{\Phi}(v_0) \right\|_{X^{1/2+\varepsilon}_T} \leq C_{R,T,\varepsilon} \left\| u_0 - v_0 \right\|_{H^{1/2-\varepsilon}}$$

for $0 < \varepsilon < 1/12$.

Proof. Let $0 < \varepsilon < \frac{1}{12}$, u_0 and v_0 in $B_R(H^{1/2})$. Denoting u and v the solutions of BBM equation with initial data u_0 and v_0. By lemma 3.1 with $s = \frac{1}{2} + \varepsilon$ and $r = \frac{1}{2}$ and $r' = \frac{1}{2} - \varepsilon$ and (H2) we have

$$\left\| \tilde{\Phi}_t(u_0) - \tilde{\Phi}_t(v_0) \right\|_{X^{1/2+\varepsilon}_T} \leq CT \left\| u + v \right\|_{X^{1/2}_T} \left\| u - v \right\|_{X^{1/2-\varepsilon}_T} \leq 2CTR_{R,T} \left\| u - v \right\|_{X^{1/2-\varepsilon}_T}.$$

Since u_0 and v_0 are in $B_R(H^{1/2})$ and Φ is C^1 on $B_R(H^{1/2})$ which is a relatively compact subset of $H^{1/2-\varepsilon}$ we have

$$\left\| u - v \right\|_{X^{1/2-\varepsilon}_T} = \left\| \Phi_t(u_0) - \Phi_t(v_0) \right\|_{X^{1/2-\varepsilon}_T} \leq \sup_{u_0, v_0 \in B_R(H^{1/2}) \cap H^{1/2-\varepsilon}} \left(\left\| d\Phi_t(u_0) \right\|_{G(H^{1/2-\varepsilon}, X^{1/2-\varepsilon}_T)} \right) \left\| u_0 - v_0 \right\|_{H^{1/2-\varepsilon}} \leq C_{R,T,\varepsilon} \left\| u_0 - v_0 \right\|_{H^{1/2-\varepsilon}}.$$

Hence, we can apply the non-squeezing theorem (theorem 2.1) and that proves the theorem 1.1.

Acknowledgments: I’m grateful to Nikolay Tzvetkov for introducing me to this subject and for his advices on my work. I would also like to thank Patrick Gérard for many helpful discussions.

I thank the referee for pointing out an error in a previous version of this paper.

References

1. Thomas B. Benjamin, Jerry L. Bona, and John J. Mahony, *Model equations for long waves in nonlinear dispersive systems*, Philosophical Transactions of the Royal Society of London 272 (1972), no. 1220, 47–78.
2. Jerry L. Bona and Nikolay Tzvetkov, *Sharp well-posedness results for the BBM equation*, Discrete and Continuous Dynamical Systems 23 (2009), no. 4, 1241–1252.
3. Jean Bourgain, *Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations*, Geometric and Functional Analysis 5 (1995), no. 2, 105–140.
4. James Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka, and Terence Tao, *Symplectic nonsqueezing of the Korteweg-de Vries flow*, Acta Mathematica 195 (2005), no. 2, 197–252.
5. Mikhail Gromov, *Pseudo-holomorphic curves in symplectic manifolds*, Inventiones Mathematicae 82 (1985), no. 2, 307–347.
6. Helmut Hofer and Eduard Zehnder, *Symplectic Invariants and Hamiltonian Dynamics*, Birkhäuser, 1994.
7. Sergeï Kuksin, *Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE’s*, Communications in Mathematical Physics 167 (1995), 531–552.
8. Mahendra Panthee, *On the ill-posedness result for the BBM equation*, arXiv:1003.6098v1, preprint 2010.

University of Cergy-Pontoise, Department of Mathematics, CNRS, UMR 8088, F-95000 Cergy-Pontoise

E-mail address: david.roumegoux@u-cregy.fr