Pulmonary Complications of COVID-19

A case report

Wai Y. Chan,1 *Marlina T. Ramli Hamid,2 Yi T. Lim,1 Ching C. Ng,3 Nadia F.M. Gowdh,1 Kartini Rahmat1

ABSTRACT: Rapid evolution of pulmonary complications associated with severe COVID-19 pneumonia often pose a management challenge to clinicians especially in the critical care setting. Serial chest imaging enable clinicians to better monitor disease progression and identify potential complications early which may decrease the mortality and morbidity associated with COVID-19. We report a 69-year-old male patient with severe COVID-19 pneumonia who presented to a tertiary referral centre in Kuala Lumpur, Malaysia, in 2020 with multiple pulmonary complications including lung cavitation, bronchopleural fistula, pneumothorax, pneumomediastinum, subcutaneous emphysema and acute pulmonary embolism. Unfortunately, the patient died one month after admission. COVID-19 patients may develop pulmonary complications due to a combination of direct viral lung damage, hypoxaemia and high stress ventilation. Awareness of COVID-19 complications can prompt early diagnosis and timely management to reduce morbidity and mortality.

Keywords: COVID-19; Lung; Fistula; Pneumothorax; Pneumomediastinum; Case Report; Malaysia.

Case Report

A 69-year-old male patient with underlying diabetes mellitus and hypertension presented to the emergency department at a tertiary referral centre in Kuala Lumpur, Malaysia in March 2020 with a 6-day history of high-grade fever and occasional dry cough. He had recently attended a mass gathering, however there was no known history of close contact with a confirmed or probable COVID-19 positive case. Clinical examination revealed an elevated body temperature of 38.5 °C and bibasal lung crepitations on auscultation. Laboratory blood tests revealed a normal neutrophil count of 6.5 × 10⁹/L (normal range: 2.0–7.0 × 10⁹/L), borderline lymphocyte count of 1.14 × 10⁹/L (normal range: 1.0–3.0 × 10⁹/L), raised C-reactive protein of 137.6 mg/L (normal range: <5.0 mg/L) with high serum ferritin of 2,268 µg/L (normal range: 22.0–322.0 µg/L). The remaining blood investigations were normal. Screening tests for respiratory pathogens such as influenza A, influenza B, respiratory syncytial virus, legionella, mycoplasma pneumonia and chlamydia pneumonia were negative. SARS-CoV-2 was detected in the patient’s oropharyngeal and nasopharyngeal swab specimen through real-time reverse-transcription–polymerase chain- reaction assay.

Covid-19 emerged from Wuhan, Hubei Province, China in December 2019 and rapidly spread worldwide. Most affected patients have mild symptoms with good prognosis. However, WHO-China Joint Mission on Coronavirus Disease 2019 reported severe and critical diseases in 13.8% and 6.1% of patients, respectively.1 Pneumonia is a common complication of COVID-19 infection, whilst acute respiratory distress syndrome (ARDS) is the most severe sequela. Presence of pleural effusion, lung cavitation and lymphadenopathy are associated with severe disease and often carry poorer prognosis.2 Many studies have reported common COVID-19 chest manifestation on chest X-ray (CXR) and computed tomography (CT), however, studies that described chest complications on imaging are limited. Herein, we report a case of severe COVID-19 pneumonia, which progressed to multiple pulmonary complications including acute pulmonary embolism, pneumothorax, pneumomediastinum, extensive subcutaneous emphysema and ruptured lung cysts causing bronchopleural fistula. This case report aims to raise awareness of potential complications, spectrum of respiratory manifestations and sequelae of COVID-19 infection.

Keywords:
- COVID-19
- Lung
- Fistula
- Pneumothorax
- Pneumomediastinum
- Case Report
- Malaysia.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Departments of 1Biomedical Imaging and 1Anaesthesiology, University Malaya, Kuala Lumpur, Malaysia; 2Department of Radiology; University Teknologi Mara, Selangor, Malaysia

*Corresponding Author’s e-mails: marlina352@uitm.edu.my and tanty3011@yahoo.com
Case Report

positive respiratory and blood culture results. CXR done on day 24 of illness demonstrated a new well-defined cystic lesion at the right lower zone [Figure 2A]. There was no pneumothorax in the right chest. The left pneumothorax and subcutaneous emphysema had improved. A follow-up CTPA showed residual right pulmonary artery emboli and a large cyst in the consolidated right middle lobe communicating with a
segmental bronchus [Figures 2B and C]. There were also multiple subpleural cysts, some communicating with each other in the right middle and lower lobes [Figure 2D]. At the time, it was postulated that these cysts were likely secondary to underlying severe COVID-19 lung changes. However, complication secondary to pulmonary infarct cannot be excluded. The next day, the patient developed right tension pneumothorax secondary to rupture of the lung cysts and an emergency right chest tube insertion was done [Figures 3A and B]. Unfortunately, despite insertion of double chest tubes over the right lung, the pneumothorax persisted. Subsequently, blood pleurodesis was carried out but no clinical improvement was noted.

Throughout the patient’s ICU stay, he required multiple cycles of prone positioning as rescue therapy to improve oxygenation. He also developed multi-organ failure requiring vasopressors and continuous renal replacement therapy. On day 24 of hospitalisation...
(day 30 of illness), a fourth CT was performed in view of his worsening clinical condition and difficult ventilation. The CT depicted extensive bilateral consolidation, loculated right hydropneumothorax with a fluid filled cyst and communication between the pulmonary cyst with pleural space and segmental bronchi causing a bronchopleural fistula [Figures 3C and D]. Despite maximal organ support and medical treatment, the patient’s clinical condition deteriorated and he died on day 31 of illness [Table 1].

Informed consent for publication purposes was obtained from the patient’s family member.

Discussion

Chest imaging is indicated in COVID-19 patients for establishing a baseline for the patient’s pulmonary condition, identification of cardiopulmonary comorbidities and for monitoring disease progression. In the event of clinical deterioration, imaging assessment helps to diagnose disease progression and acute cardiopulmonary complications such as pulmonary embolism, superimposed bacterial infection, heart failure or less commonly, complications such as pneumothorax and pneumomediastinum.3,4

Typical chest findings in COVID-19 patients show bilateral lung involvement with patchy or asymmetric diffuse air space opacities, predominantly in a peripheral, posterior distribution and mainly in the lower lobes.5 In later stages of the disease, CT may show increased GGO, dispersed consolidation, reticular opacities, crazy-paving, bronchiectasis, pleural thickening, septal thickening and involvement of subpleural region.2,5 As the disease progresses, atypical CT features such as pleural effusion, cystic changes, pericardial effusion, nodules and lymphadenopathy may be present.1,2 In addition, complications such as pulmonary embolism, pneumothorax, pneumomediastinum and cavitation or cysts in COVID-19 positive patients have emerged which further elucidates the complexity in managing such patients.4

COVID-19 pneumonia is described as a unique disease despite fulfilling most of the Berlin definition of ARDS.5 The pathophysiology of this disease is attributed by a hyperimmune reaction of the host which results in massive vascular endothelial injury and alveolar epithelial cell damage.7 In the current case, the patient had no history of smoking or underlying lung pathology. The initial viral infection may impose structural damage to alveoli, particularly at the subpleural regions where ‘stress and strain’ insult is the greatest.2,7 This could possibly result in pneumatoceles or cysts in the subpleural areas of consolidation, as was seen in the current case.

Table 1: Timeline of major imaging findings according to day of illness and day of hospitalisation of a 69-year-old COVID-19-positive male patient

Day of illness	Day of hospitalisation	Major imaging findings	RT-PCR swab for SARS-CoV-2	Ct value
7	1	CXR Bilateral peripheral subpleural consolidations at lower zones.	+	35.53
8	2	HRCT Multifocal peripheral GGO; extensive consolidation with lung involvement.	+	33.33
9	3	CXR New left pneumothorax; extensive pneumomediastinum; AXR subcutaneous emphysema.	+	28.67
10	4	CXR New right lower zone cysts. CTPA New right middle and lower lobe cysts with bronchial communication; residual PE; worsening lung consolidations and dependent atelectasis.	+	25.44
11	5	CXR Right tension pneumothorax secondary to ruptured cysts; resolves left pneumothorax.	+	22.11
12	6	HRCT Right hydropneumothorax; ruptured cyst and bronchopleural fistula; extensive multifocal consolidations.	+	25.68
13	7	CXR Right tension pneumothorax secondary to ruptured cysts; resolves left pneumothorax.	+	25.68
14	8	CXR New right middle and lower lobe cysts with bronchial communication; residual PE; worsening lung consolidations and dependent atelectasis.	+	25.68
15	9	CXR New right lower zone cysts.	+	25.68
16	10	CXR New right lower zone cysts.	+	25.68
17	11	CXR New right lower zone cysts.	+	25.68
18	12	CXR New right lower zone cysts.	+	25.68
19	13	CXR New right lower zone cysts.	+	25.68
20	14	CXR New right lower zone cysts.	+	25.68
21	15	CXR New right lower zone cysts.	+	25.68
22	16	CXR New right lower zone cysts.	+	25.68
23	17	CXR New right lower zone cysts.	+	25.68
24	18	CXR New right lower zone cysts.	+	25.68
25	19	CXR New right lower zone cysts.	+	25.68
26	20	CXR New right lower zone cysts.	+	25.68
27	21	CXR New right lower zone cysts.	+	25.68
28	22	CXR New right lower zone cysts.	+	25.68
29	23	CXR New right lower zone cysts.	+	25.68
30	24	CXR New right lower zone cysts.	+	25.68
31	25	CXR New right lower zone cysts.	+	25.68

RT-PCR = reverse transcription-polymerase chain reaction; Ct = cycle threshold.
The development of lung cavitation is uncommon in COVID-19 positive patients and could occur secondary to direct lung damage caused by the virus, stress imposed by the mechanical ventilation or may also result from secondary bacterial or fungal infection. Possibility of secondary infection must be ruled out in the wake of development of lung cavitation in COVID-19 and appropriately managed to improve the patient outcome. The high stresses generated during mechanical ventilation can cause barotrauma leading to bronchial or alveolar rupture, which is evidenced by air leak detected as pneumothorax, pneumomediastinum and subcutaneous emphysema on imaging.4,5,9

Furthermore, the current patient developed acute pulmonary embolism during the course of the illness, which further exacerbated the ventilation/perfusion imbalances. Klok et al. reported that pulmonary embolism is the most common thrombotic complication encountered in patients with COVID-19; 16-31% of pulmonary embolism are complicated by pulmonary infarction and cavitation complicates 4-7% of pulmonary infarctions.10-13 Infarcts with cavities are commonly single, right-sided and after 2 weeks is associated with a large area of consolidation.14 Severe COVID-19 pneumonia is susceptible to both venous and arterial thromboembolism due to deranged coagulation, excessive inflammation, hypoxia and prolonged immobilisation. In addition, an increased D-dimer concentration at the time of admission is significantly associated with mortality.10,15 Hence, judicious use of anticoagulant therapy is prudent in patients with COVID-19 pneumonia in the absence of bleeding risk.

Conclusion

The current case highlights the imaging findings of multiple pulmonary complications in a patient with severe COVID-19 pneumonia. Widespread lung damage, hypoxaemia and high-stress ventilation may lead to severe manifestations as was seen in this case. Prompt recognition of these complications, cautious ventilation strategy and timely intervention targeted at the complications should be the direction of care for such patients to reduce morbidity and mortality.

ACKNOWLEDGEMENTS

This article was funded by University Malaya COVID-19 Related Special Research Grant (CSRG002-2020ST). We would also like to express our deepest gratitude to all the healthcare workers who have dedicated their time and efforts to battle COVID-19 and protect the health of our citizens.

AUTHORS’ CONTRIBUTION

LYT and NCC drafted the manuscript. MTRH and CWY conducted the literature review. NFMG prepared the images. CWY, MTRH, NFMG and KR edited the manuscript. All authors approved the final version of the manuscript submitted for publication and take responsibility for the statements in the article.

References

1. World Health Organisation. Report of the who-china joint mission on coronavirus disease 2019 (Covid-19). Geneva, Switzerland: World of Health Organisation. Pp. 12.
2. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu I, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020; 4:425–34. https://doi.org/10.1016/S1473-3099(20)30086-4.
3. Rubin GD, Ryeson CJ, Haramati LB, Sverzylanti N, Kanne JP, Raoof S, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society. Chest 2020; 158:106–16. https://doi.org/10.1016/j.chest.2020.04.003.
4. Sun R, Liu H, Wang X. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol 2020; 21:541–4. https://doi.org/10.3348/ kjr.2020.0180.
5. Salehi S, Abedi A, Balakrishnan S, Gholamrezaeezah A. Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. Air Am J Roentgenol 2020; 215:87–93. https://doi.org/10.2214/AJR.20.23034.
6. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012; 307:2526–33. https://doi.org/10.1001/jama.2012.5669.
7. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care 2020; 24:154. https://doi.org/10.1186/s13054-020-02880-z.
8. Cressoni M, Cadringer P, Chiurazzi C, Amini M, Gallerzi E, Marino A, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2014; 189:49–58. https://doi.org/10.1164/rccm.201308-1567OC.
9. Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med 2002; 28:406–13. https://doi.org/10.1007/s00134-001-1178-1.
10. Klok FA, Kruij MIHA, van der Meen NM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191:145–7. https://doi.org/10.1016/j.thromres.2020.04.013.
11. Miniati M, Bottai M, Ciccotosto C, Roberto L, Monti S. Predictors of pulmonary infarction. Medicine (Baltimore) 2015; 94:e1488. https://doi.org/10.1097/MD.0000000000001488.
12. Islam M, Filopei J, Frank M, Ramesh N, Verzosa S, Ehrlich M, et al. Pulmonary infarction secondary to pulmonary embolism: An evolving paradigm. Respiratory 2018; 23:866–72. https://doi.org/10.1111/resp.13299.
13. Rajagopala S, Devaraj U, D’Souza G. Infected cavitating pulmonary infarction. Respir Care 2011; 56:707–9. https://doi.org/10.4187/respcare.00828.

14. Wilson AG, Joseph AE, Butland RJ. The radiology of aseptic cavitation in pulmonary infarction. Clin Radiol 1986; 37:327–33. https://doi.org/10.1016/s0009-9260(86)80263-x.

15. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18:844–7. https://doi.org/10.1111/jth.14768.