Chemical Composition of *Actinodaphne pilosa* Essential Oil From Vietnam, Mosquito Larvicidal Activity, and Antimicrobial Activity

Nguyen Thanh Chung¹, Le Thi Huong², Nguyen Huy Hung³, Tran Minh Hoi¹, Do Ngoc Dai¹,⁴, and William N. Setzer⁵,⁶

Abstract

Leaves of *Actinodaphne pilosa* were collected at 2 different seasons from the Pù Hoạt Nature Reserve, Vietnam. The leaf samples were hydrodistilled to give essential oils, which were analyzed by gas chromatography (GC)–mass spectrometry and GC-flame ionization detection. The major components in the essential oils were α-pinene, (Z)-β-ocimene, (E)-β-ocimene, β-caryophyllene, germacrene D, bicyclogermacrene, and spathulenol. The essential oils were screened for antimicrobial activity against *Enterococcus faecalis*, *Staphylococcus aureus*, *Bacillus cereus*, *Escherichia coli*, *Pseudomonas aeruginosa*, and *Candida albicans*, as well as mosquito larvicidal activity against *Aedes aegypti*, *Aedes albopictus*, and *Culex quinquefasciatus*. *Actinodaphne pilosa* leaf essential oils showed broad antimicrobial activity (minimum inhibitory concentration = 32, 64, 64, 16, and 16 μg/mL against *E. faecalis*, *S. aureus*, *B. cereus*, *P. aeruginosa*, and *C. albicans*, respectively) and excellent larvicidal activity (24-hour 50% lethal concentration = 19.0, 24.7, and 48.1 μg/mL against *A. aegypti*, *A. albopictus*, and *C. quinquefasciatus*, respectively).

Keywords

essential oil composition, antibacterial, antifungal, larvicidal, β-caryophyllene, germacrene D, bicyclogermacrene

Results and Discussion

Essential Oil Composition

Two different leaf samples of *A. pilosa* (samples 763L and 821L) were collected from the Pù Hoạt Nature Reserve in...
April and August 2019, respectively. The leaves were hydrodistilled to give essential oils in 0.37% and 0.41% yield, respectively, and were analyzed by gas chromatography–mass spectrometry (GC–MS) and gas chromatography-flame ionization detection (GC–FID) (Table 1).

The major components in Vietnamese A. pilosa leaf essential oils were α-pinene (6.0%, 7.2%), (Z)-β-ocimene (14.3%, 10.1%), (E)-β-ocimene (10.4%, 6.5%), β-caryophyllene (14.9%, 9.0%), germacrene D (12.0%, 16.2%), bicyclogermacrene (11.0%, 15.9%), and spathulenol (1.0%, 6.2%). The leaf essential oil composition of A. pilosa from Guangdong, China, has been reported. The major components were viridiflorene (ledene, 12.7%), γ-muurolene (12.3%), germacrene D (11.6%), β-caryophyllene (10.7%), and globulol (5.9%). Thus, there are major qualitative and quantitative differences between the samples from Vietnam and China. The minor differences in composition between the two samples from Vietnam may be due to the phenological state; sample 763L was collected during the flowering stage (April 2019), while sample 821L was collected during the fruiting stage (August 2019).

Antimicrobial Activity

The leaf essential oils of A. pilosa were screened for antimicrobial activity against 3 Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, and Bacillus cereus), 2 Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and 1 yeast (Candida albicans) (Table 2). Sample 763L was particularly active with minimum inhibitory concentration (MIC) values of 32, 64, 64, 16, and 16 µg/mL against E. faecalis, S. aureus, B. cereus, P. aeruginosa, and C. albicans, respectively.

It is not clear what compounds may be responsible for the antimicrobial activities in these oils. (Z)- and (E)-β-Ocimene do not appear to be particularly active. On the other hand, several investigations have shown that germacrene D is to be broadly antimicrobial. In addition, essential oils rich in both bicyclogermacrene and β-caryophyllene have shown pronounced antimicrobial activity. In addition to the antimicrobial activities of these sesquiterpene hydrocarbons, synergistic effects may also be responsible for the antimicrobial activities observed for A. pilosa leaf essential oil.

Mosquito Larvicidal Activity

The A. pilosa leaf essential oils were screened for mosquito larvicidal activity against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus (Table 3). Based on the criteria of Dias and Moraes, the leaf essential oil of A. pilosa shows good larvicidal activities, particularly against the Aedes larvae.

The larvicidal activities of A. pilosa leaf essential oil can probably be attributed to the high concentrations of the sesquiterpene hydrocarbons β-caryophyllene, germacrene D, and bicyclogermacrene. β-Caryophyllene and germacrene D have shown larvicidal activity against A. aegypti. In addition, the leaf essential oil of Lantana camara, rich in bicyclogermacrene (19.5%) and β-caryophyllene (16.7%), has shown larvicidal activity against A. aegypti. On the other hand, (Z)- and (E)-β-ocimene are relatively inactive; essential oils rich in these components have shown only marginal larvicidal activity.

Conclusions

The leaf essential oil of A. pilosa can be considered to be active and shows promise as a potential antimicrobial agent and as an alternative insecticidal agent against mosquito larvae.

Materials and Methods

Plant Material

Leaves of A. pilosa were collected from the Pù Hoát Nature Reserve in April 2019, flowering stage (sample 763L: 19°32′10″N, 104°41′28″E, elev. 870 m), and August 2019, fruiting stage (sample 821L: 19°42′19″N, 104°49′40″E, elev. 640 m). The plant was identified by Do N. Dai and voucher specimens (763 and 821) have been placed in the plant specimen room, Faculty of Agriculture, Forestry and Fishery, Hanoi University of Agriculture and Forestry. In each case, 2 kg of the fresh leaves were shredded and hydrodistilled for 4 hours using a Clevenger apparatus to give the essential oils.

GC Analysis

GC-FID analysis was performed on an Agilent Technologies HP 7890A Plus Gas Chromatograph equipped with an FID and fitted with HP-5ms column (30 m × 0.25 mm, film thickness 0.25 µm, Agilent Technologies). The analytical conditions were: carrier gas H2 (1 mL/min), injector temperature (programmed temperature vaporizing) 250°C, detector temperature 260°C, column temperature programmed from 60°C (2 minutes hold) to 220°C (10 minutes hold) at 4°C/min. Samples were injected by splitting and the split ratio was 10:1. The volume injected was 1.0 µL. Inlet pressure was 6.1 kPa.

An Agilent Technologies HP 7890A Plus Chromatograph fitted with a fused silica capillary HP-5ms column (30 m × 0.25 mm, film thickness 0.25 µm) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC–MS analysis, under the same conditions as those used for GC-FID analysis. The conditions were the same as described above with He (1 mL/min) as the carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; acquisition scan mass range of 35-350 amu at a sampling rate of 1.0 scan/s.

Compound identification was carried out by comparison of the retention indices (RI), which were determined with respect to a homologous series of n-alkanes, under identical
No.	Compounds	RI^b	763L	821L
1	α-Thujene	930	0.2	0.5
2	α-Pinene	939	6.0	7.2
3	Camphene	955	0.7	0.4
4	Sabinene	978	0.8	0.8
5	β-Pinene	984	0.7	0.7
6	Myrcene	992	1.2	1.2
7	α-Phellandrene	1010	0.5	0.4
8	δ-3-Carene	1016	0.2	0.3
9	ο-Cymene	1029	-	0.3
10	Limonene	1034	0.4	0.4
11	(Z)-β-Ocimene	1039	14.3	10.1
12	(E)-β-Ocimene	1050	10.4	6.5
13	γ-Terpinene	1063	0.2	0.1
14	Terpinolene	1094	0.7	0.6
15	Linalool	1103	0.5	0.6
16	allo-Ocimene	1132	0.3	0.1
17	Methyl salicylate	1204	0.2	-
18	δ-Elemene	1348	0.5	0.7
19	α-Cubebene	1360	0.2	0.2
20	Eugenol	1367	4.1	-
21	α-Copaene	1389	2.8	1.4
22	β-Cubebene	1402	2.4	0.7
23	αis-β-Elemene	1403	1.9	3.2
24	β-Caryophyllene	1438	14.9	9.0
25	β-Gurjunene	1445	-	0.2
26	α-Guaiene	1456	-	0.5
27	Guai-6,9-diene	1457	0.6	-
28	(Zy)-β-Farnesene	1461	0.2	0.5
29	αis-Murola-4(14),5-diene	1466	0.2	-
30	α-Humulene	1471	1.8	1.3
31	Aromadendra-1(10),4-diene	1475	0.6	-
32	9-epi-(E)-Caryophyllene	1479	0.2	-
33	γ-Murolene	1491	0.7	0.8
34	α-Amorphene	1494	0.3	0.5
35	Germacrene D	1499	12.0	16.2
36	trans-Murola-4(14),5-diene	1510	-	0.4
37	Bicyclogermacrene	1514	11.0	15.9
38	δ-Amorphene	1521	0.2	-
39	γ-Cadinene	1529	-	0.2
40	Eugenyl acetate	1533	1.5	-
41	δ-Cadinene	1537	2.1	1.8
42	(E)-Dendrolasin	1583	0.2	-
43	Spathulenol	1598	1.0	6.2
44	Caryophyllene oxide	1605	0.7	1.7
45	Guaiol	1612	-	0.2
46	Cubehan-11-ol	1613	-	0.2
47	Guai-6,10(14)-dien-4β-ol	1642	-	0.3
48	1-epi-Cubenol	1645	-	0.4
49	epir-α-Cadinol	1657	-	0.4
50	α-Cadinol	1673	0.2	0.4
51	Eudesma-4(15),7-dien-1β-ol	1684	-	0.5

(Continued)

| 51 | Eudesma-4(15),7-dien-1β-ol | 1684 | - | 0.5 |

| | Monoterpene hydrocarbons | 36.6 | 29.6 |

(Continued)
chromatographic conditions, and the mass spectral fragmenta-
tion patterns found in the Wiley (Wiley 9th Version) and NIST
08 libraries (on ChemStation HP), or with those in the litera-
ture.30 The concentrations of the chemical components were
calculated based on the GC peak area (FID response) without
using correction factors.

Antimicrobial Screening

The antimicrobial activity of the essential oils was evaluated
using 3 strains of Gram-positive test bacteria, E. faecalis (ATCC
299212), S. aureus (ATCC 25923), B. cereus (ATCC 14579), 2
strains of Gram-negative test bacteria, E. coli (ATCC 25922)
and P. aeruginosa (ATCC 27853), and 1 strain of yeast, C. albicans
(ATCC 10231).

MIC and half-maximal inhibitory concentration (IC50) val-
ues were determined by the microdilution broth susceptibility
assay. Stock solutions of the oil were prepared in dimethylsul-
foxide. Dilution series were prepared from 16 384 to 2 µg/mL
in sterile distilled water in micro-test tubes from where they
were transferred to 96-well microtiter plates. Bacteria grown in
double-strength Mueller–Hinton broth or double-strength
tryptic soy broth and fungi grown in double-strength Sabouraud
dextrose broth were standardized to 5 × 10^5 and 1 × 10^3
colony-forming unit/mL, respectively. The last row, containing
only the serial dilutions of the sample without microorganisms,
was used as a positive (no growth) control. Sterile distilled
water and medium served as a negative (no antimicrobial agent)
control. Streptomycin was used as the antibacterial standard;
nystatin and cycloheximide were used as antifungal standards.

% inhibition = \frac{OD_{control(–)} - OD_{test agent}}{OD_{control(–)} - OD_{control(+)}} \times 100%

IC50 = \frac{High_{conc} - (High\%_{inh} - 50\%_{inh})(High_{conc} - Low_{conc})}{High_{conc} - Low_{conc}}

where OD is the optical density, control(–) are the cells with
the medium but without an antimicrobial agent, test agent cor-
responds to a known concentration of the antimicrobial agent,
control(+) is the culture medium without cells, High_{conc}/

Table 2. Antimicrobial Activities of the Leaf Essential Oils of Actinodaphne pilosa.

Sample	Gram (+)	Gram (-)	Yeast			
	Enteroceous faecalis ATCC 299212	Staphylococcus aureus ATCC 25923	Bacillus cereus ATCC 14579	Escherichia coli ATCC 25922	Pseudomonas aeruginosa ATCC 27853	Candida albicans ATCC 10231
MIC (µg/ml)						
763L	32	64	64	-	16	16
821L	64	128	128	128	-	128
Strep	256	256	128	32	256	-
Nis	-	-	-	-	-	-
Cyc	-	-	-	-	-	-
IC50 (µg/ml)						
763L	16.33	33.57	32.57	-	8.67	8.76
821L	23.56	45.68	46.77	45.67	-	45.68

IC50, half-maximal inhibitory concentration; MIC, minimum inhibitory concentration.
Chung et al.

Table 3. Mosquito Larvicidal Activity of *Actinodaphne pilosa* Leaf Essential Oil.

Samplea	LC50 (95% limits)b	LC90 (95% limits)b	χ²	P value
763L	19.022 (16.94-21.33)	34.46 (30.76-39.92)	20.87	0.000
821L	14.78 (12.11-17.11)	38.37 (31.78-51.75)	1.539	0.215

Aedes aegypti

| 763L | 24.74 (22.75-27.28) | 35.97 (32.36-42.03) | 0.2447 | 0.885 |
| 821L | n.t. | n.t. | - | - |

Culex quinquefasciatus

| 763L | 48.06 (43.76-53.31) | 76.75 (69.24-87.21) | 8.839 | 0.032 |
| 821L | n.t. | n.t. | - | - |

| 763L | 11.76 (9.46-13.79) | 26.81 (23.62-31.70) | 20.80 | 0.000 |
| 821L | 8.404 (4.815-11.035) | 25.64 (21.15-35.11) | 0.1033 | 0.748 |

Aedes albopictus

| 763L | 22.75 (20.78-25.11) | 34.53 (30.98-40.49) | 0.1681 | 0.919 |
| 821L | n.t. | n.t. | - | - |

| 763L | 39.85 (35.59-44.90) | 74.15 (66.06-85.60) | 5.242 | 0.155 |
| 821L | n.t. | n.t. | - | - |

n.t., not tested.
aSample 763L (leaf essential oil collected in April 2019), sample 821L (leaf essential oil collected in August 2019).
b50% lethal concentration (LC50) and 90% lethal concentration (LC90) in μg/mL.

Low_{conc} is the concentration of test agent at high concentration/low concentration and High_{inh%}/Low_{inh%} is the % inhibition at high concentration/% inhibition at low concentration). Each of the antimicrobial screens was carried out in triplicate.

Larvicidal Screening

Mosquito colonies were obtained and maintained as previously described.31 Larvicidal activity screening was carried out on 3rd instar larvae of *A. aegypti*, *A. albopictus*, and *C. quinquefasciatus* as previously described.31 The data obtained were subjected to log-probit analysis to obtain 50% lethal concentration values, 90% lethal concentration values, and 95% confidence limits using Minitab 19 (Minitab, LLC, State College, PA, USA).

Acknowledgments

WNS participated in this project as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 106.03-2018.02.

ORCID ID

William N. Setzer https://orcid.org/0000-0002-3639-0528

References

1. Allen CK. Studies in the Lauraceae. I. Chinese and Indo-Chinese species of Litsea, Neolitsea, and Actinodaphne. *Ann Mo Bot Gard*. 1938;25(1):361-434. doi:10.2307/2394482
2. *Actinodaphne pilosa*. Flora of China. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200008636. Accessed February 11, 2020.
3. Missouri Botanical Garden. Tropicos.org. www.tropicos.org. Accessed February 11, 2020.
4. Güner A, Atasever M, Atasever MA. New emerging and re-emerging bacterial foodborne pathogens. *Kafkas Üniversitesi Vet Fakültesi Derg*. 2012;18(5):889-898.
5. Appelbaum PC. The emergence of vancomycin-intermediate and vancomycin-resistant *Staphylococcus aureus*. *Clin Microbiol Infect*. 2006;12 Suppl 1(Suppl. 1):16-23. doi:10.1111/j.1469-0691.2006.01344.x
6. de Almeida Júnior JN, Hennequin C. Invasive *Trichosporon* infection: a systematic review on a re-emerging fungal pathogen. *Front Microbiol*. 2016;7:1629. doi:10.3389/fmicb.2016.01629
7. Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. *Antimicrob Resist Infect Control*. 2016;5:35. doi:10.1186/s13756-016-0132-5

8. Gubler DJ. Dengue and dengue hemorrhagic fever. *Clin Microbiol Rev*. 1998;11(3):480-496. doi:10.1128/CMR.11.3.480

9. Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika viruses: insights for mosquito vector control. *Parasitol Res*. 2016;115(5):1747-1754. doi:10.1007/s00436-016-4971-z

10. Dhimal M, Gautam I, Joshi HD, O'Hara RB, Ahrens B, Kuch U. Risk factors for the presence of Chikungunya and dengue vectors ([*Aedes* aegypti and *Aedes albopictus*]), their altitudinal distribution and climatic determinants of their abundance in central Nepal. *PLoS Negl Trop Dis*. 2015;9(3):e0003545. doi:10.1371/journal.pntd.0003545

11. Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. *Parasitol Res*. 2016;115(5):1747-1754. doi:10.1007/s00436-016-4971-z

12. Feng Z, Li W, Chen Z, Yang L. Analysis of essential oil from *Origanum vulgare* L. *Nat Prod Commun*. 2010;5(9):1365-1368.

13. Hammer KA, Carson CF. Antibacterial and antifungal activities of [42] essential oils. In: Thormar H, ed. *Antimicrobial Agents*. Chichester, UK: Wiley; 2011:203-238.

14. Zygadlo JA, Guzman CA, Grosso NR. Antifungal properties of the leaf oils of *Tagetes minuta* L. and *T. filifolia* Lag. *J Essent Oil Res*. 1994;6(6):617-621. doi:10.1080/10412905.1994.9699353

15. Valente J, Zuzzarte M, Goncalves MJ, et al. Antifungal, antioxidant and anti-inflammatory activities of *Oenanthe crocata* L. essential oil. *Food Chem Toxicol*. 2013;62:349-354. doi:10.1016/j.fct.2013.08.083

16. Rather MA, Dar BA, Dar MY, et al. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of *Juglans regia* L. and its constituents. *Phytotherapy*. 2012;19(13):1185-1190. doi:10.1016/j.phymed.2012.07.018

17. Schmidt E, Bail S, Friedl SM, et al. Antimicrobial activities of single aroma compounds. *Nat Prod Commun*. 2010;5(9):1365-1368. doi:10.1177/1934578X1000500906

18. Dahham SS, Tabana YM, Iqbal MA, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-carophyllene from the essential oil of *Aguilaria crassa*. *Molecules*. 2015;20(7):11808-11829. doi:10.3390/molecules200711808

19. Tabanca N, Demirci F, Ozbek T, Tumen G, Baser KHC. Composition and antimicrobial activity of the essential oil of *Origanum × dolichocypnos* P.H. Davis. *Chem Nat Compd*. 2001;37(3):238-241. doi:10.1023/A:1012513922871

20. Lago JHG, de Avila P, de Aquino EM, et al. Volatile oils from leaves and stem barks of *Cedrela fissilis* (Meliaceae): chemical composition and antibacterial activities. *Flavour Fragr J*. 2004;19(5):448-451. doi:10.1002/ffj.1347

21. Dias CN, Moraes DFC. Essential oils and their compounds as *Aedes aegypti* L. (Diptera: Culicidae) larvicides: review. *Parasitol Res*. 2014;113(2):565-592. doi:10.1007/s00436-013-3687-6

22. Perumalsamy H, Kim N-J, Ahn Y-J. Larvicidal activity of compounds isolated from *Aspergillus heterotrophicus* against *Culex pipiens pallens*, *Aedes aegypti*, and *Ochlerotatus togoi* (Diptera: Culicidae). *J Med Entomol*. 2009;46(6):1420-1423. doi:10.1603/033.046.0624

23. Lee DC, Ahn Y-J. Laboratory and simulated field bioassays to evaluate larvicidal activity of *Pinus densiflora* hydrodistillate, its constituents and structurally related compounds against *Aedes albopictus*, *Aedes aegypti* and *Culex pipiens pallens* in relation to their inhibitory effects on acetylcholinesterase activity. *Insects*. 2013;4(2):217-229. doi:10.3390/insects4020217

24. Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G. Eugenol, α-pinene and β-caryophyllene from *Plectranthus barbatus* essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. *Parasitol Res*. 2016;115(2):807-815. doi:10.1007/s00436-015-4809-0

25. Ravi Kiran S, Bhavani K, Sita Devi P, Janardhan Reddy K. Composition and larvicidal activity of leaves and stem essential oils of *Cloueocylen swietenia* DC against *Aedes aegypti* and *Anopheles stephensi*. *Bioresearch Technol*. 2006;97(18):2481-2484. doi:10.1016/j.biortech.2005.10.003

26. Govindarajan M. Chemical composition and larvicidal activity of leaf essential oil from *Clauema anisata* (Willd.) Hook. f. ex Benth. (Rutaceae) against three mosquito species. *Asian Pac J Trop Med*. 2010;3(11):874-877. doi:10.1016/S1995-7645(10)60210-6

27. Costa JGM, Rodrigues FFG, Sousa EO, et al. Composition and larvicidal activity of the essential oils of *Lantana camara* and *Lantana montevidensis*. *Chem Nat Compd*. 2010;46(2):313-315. doi:10.1007/s10600-010-9601-x

28. Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against *Aedes aegypti*. *Mem Inst Oswaldo Cruz*. 2004;99(5):541-544. doi:10.1590/S0074-02762004000500015

29. Fontes-Jr UR, Ramos CS, Serafini MR, et al. Evaluation of the lethality of *Porphyphylum ruderal* essential oil against *Biomphalaria glabrata*, *Aedes aegypti* and *Artemia salina*. *African J Biotechnol*. 2012;11(13):3169-3172.

30. Adams RP. *Identification of Essential Oil Components by Gas Chromatography*/*Mass Spectrometry*. 4th ed. Carol Stream, IL, USA: Allured Publishing; 2007.

31. Hung NH, Saryal P, Dai DN, et al. Chemical compositions of *Crasnopholium cupriploidio* essential oils and larvicidal activities against *Aedes aegypti*, *Aedes albopictus*, and *Culex quinquefasciatus*. *Nat Prod Commun*. 2019;14(6):1934578X19850003. doi:10.1177/1934578X19850033