Radiative decays of light vector mesons in Poincare invariant quantum mechanics

Viktor Andreev
Francisk Skorina Gomel State University, Theoretical Physics Department, Belarus.
E-mail: vik.andreev@gasu.by

Vadzim Haurysh
Francisk Skorina Gomel State University, Theoretical Physics Department, Belarus.
E-mail: mez0m@inbox.ru

Abstract. This work dedicated to describing two-body compounded system of quarks (meson) in point form of Poincare invariant quantum mechanics with potential, which was offered by so-called Mock-meson model. Authors shows process of calculation the basis parameters of the model by the variational method and followed applications for radiative decay processes. For such calculation authors use the simplest radiative decay scheme. Comparing results with experimental data was shown how to calculate the anomalous part of quark magnetic moment.

1. Introduction
The radiative processes, in particular the decays of vector mesons, has been a convenient tool for studying the structure of hadrons. There are quite a number of approaches for the model to describe radiative transitions mesons(see,[1, 2, 3, 4]). In our work the calculation of the form-factor of the radiative decay conducted within the constituent relativistic quark model, based on the point form of Poincare invariant quantum mechanics (about Poincare invariant quantum mechanics, see, eg [5, 6]).

2. Elements of quark model, based on Poincare invariant quantum mechanics
For the our relativistic quark model, based on the Poincare invariant quantum mechanics, used the potential proposed by the so-called Mock-meson model [7] with a model parameterization running coupling constant of the strong interaction, modified in [8]:

$$\alpha_s(Q^2) = \sum_{k=1}^{7} \alpha_k \exp \left(-\frac{Q^2}{4\gamma_k^2}\right).$$

The interquark potential in coordinate representation from [7] is used, which is considered a sum of Coulomb, linear confinement, and spin-spin parts for pseudoscalar and vector mesons:

$$\hat{V}(r) = \hat{V}_{\text{Coul}}(r) + \hat{V}_{\text{conf}}(r) + \hat{V}_{\text{SS}}(r)$$

(2)
where
\[\hat{V}_{\text{conf}}(r) = w_0 + \sigma r \left(\frac{\exp(-b^2 r^2)}{\sqrt{\pi} b r} + \left(1 + \frac{1}{2b^2 r^2} \right) \text{erf}(br) \right) \]

and
\[\hat{V}_{\text{SS}}(r) = \frac{32}{9\sqrt{\pi} m_q m_{\bar{Q}}} \sum_{k=1}^{7} \alpha_k \tau_k^4 \exp(-\tau_k^2 r^2). \]

Potential has following free parameters: gluon string tension parameter \(\sigma \), parameter of perturbative part \(w_0 \) and masses of quarks \(m_q, \bar{Q} \). Parameter \(\tau_k \) determined from relation
\[\tau_k^2 = \frac{\gamma_k^2}{\gamma_k^2 + b}, \]
where \(b \) is smearing parameter [7].

Parameter of linear part of the potential in most number of models lies in limits \(\sigma = (0.18 \pm 0.20) \text{ GeV}^2 \), that’s why we assume, that
\[\sigma = \sigma \pm \Delta \sigma = (0.19 \pm 0.01) \text{ GeV}^2. \]

The parameters \(\alpha_k, \gamma_k \) are fixed on the basis of requirements consistent with experimental data for the difference in the first moments of the proton and neutron spin structure functions (QCD-modified Bjorken sum rule [8, 9]).

In work [10] were calculated integral representation of decay constant for pseudoscalar and vector meson in framework of point form of Poincare invariant quantum mechanics:
\[f_P(m_q, m_{\bar{Q}}, \beta) = \frac{3}{2\pi} \int_0^{\infty} dk k^2 \Phi(k, \beta) \sqrt{\frac{M_0^2 - (m_q - m_{\bar{Q}})^2}{\omega_{m_q}(k) \omega_{m_{\bar{Q}}}(k)}} \left(\frac{m_q + m_{\bar{Q}}}{M_0^{3/2}} \right) \]
\[f_V(m_q, m_{\bar{Q}}, \beta) = \frac{3}{2\pi} \int_0^{\infty} dk k^2 \Phi(k, \beta) \sqrt{\frac{\omega_{m_q}(k) + m_q}{\omega_{m_q}(k) + \omega_{m_{\bar{Q}}}(k)}} \frac{\omega_{m_q}(k) + m_{\bar{Q}}}{\sqrt{\omega_{m_q}(k) \omega_{m_{\bar{Q}}}(k)}} \times \left(1 + \frac{k^2}{3 \left(\omega_{m_q}(k) + m_q \right) \left(\omega_{m_{\bar{Q}}}(k) + m_{\bar{Q}} \right)} \right), \]
where \(M_0 = \omega_{m_q}(k) + \omega_{m_{\bar{Q}}}(k) \) and \(\omega_m(k) = \sqrt{k^2 + m^2} \).

Using equations (2)-(5) and (8),(9) we get the following system of equations [8]:
\[M_P(m_q, m_{\bar{Q}}, w_0, \beta) = M_P^{\text{exp}} \pm \Delta M_P, \]
\[M_V(m_q, m_{\bar{Q}}, w_0, \beta) = M_V^{\text{exp}} \pm \Delta M_V, \]
\[M_V(m_q, m_{\bar{Q}}, w_0, \beta) - M_P(m_q, m_{\bar{Q}}, w_0, \beta) = M_V^{\text{exp}} - M_P^{\text{exp}} \pm \delta M_V^{\text{exp}} + \delta M_P^{\text{exp}}, \]
\[f_P(m_q, m_{\bar{Q}}, \beta) = f_P^{\text{exp}} \pm \Delta f_P^{\text{exp}}, \]
\[f_V(m_q, m_{\bar{Q}}, \beta) = f_V^{\text{exp}} \pm \Delta f_V^{\text{exp}}. \]
where M_P^{exp}, M_V^{exp} - experimental value of pseudoscalar and vector mesons, respectively. The last two equations (13)-(14) express condition of equality lepton constants for the pseudoscalar and vector mesons, calculated in the framework of Poincare covariant model, with experimental values of decay constants. It's should be notice, that during the calculation the wave function was taken in form

$$
\Phi(k, \beta) = \frac{2}{\sqrt{3} \pi^{1/4} \beta/2} \exp \left(-\frac{k^2}{2\beta^2} \right) .
$$

After solving the system of equations (10)-(14) for light mesons we have following values of quark masses and β-parameters of wave function:

$$
m_u = (239.9 \pm 2.3) \, \text{MeV} , \quad m_d = (243.8 \pm 2.3) \, \text{MeV} , \quad m_s = (466.6 \pm 28) \, \text{MeV} ,
$$

$$
\beta_{uu} \simeq \beta_{dd} \simeq \beta_{ud} = (328.78 \pm 2.1) \, \text{MeV} , \quad \beta_{us} \simeq (360.3 \pm 12.1) \, \text{MeV} .
$$

Thus, we have fixed all basic parameters of the model by equation (16).

3. Radiative decay of vector mesons

Matrix element of the radiative decay process $V \to P \gamma^*$ could be parameterized using 4-velocity of the vector and pseudoscalar mesons by expression:

$$
p\langle Q', M_P | j^\alpha | Q, M_V \rangle_V = \frac{e}{(2\pi)^3} g VP_{\gamma^*} \langle t \rangle K_\alpha(\mu) \frac{\sqrt{M_V M_P}}{\sqrt{4v_0 V_0'}} ,
$$

where $K_\alpha(\mu) = i e^{\nu_\mu \alpha} \epsilon_{\nu}(\mu) V_\nu V_\nu'$ and $e = \sqrt{4\pi\alpha_{\text{QED}}}$.

In framework of Poincare invariant quantum mechanics we consider mesons P and V as relativistic constituent quark-antiquark system. In such approach decay caused by the emission of quark a γ^*-quantum. In generalized Breit system it’s easy to show, that

$$
gVP_{\gamma^*} \langle t \rangle = \frac{1}{4\pi \sqrt{M_V M_P}} \int \frac{d^4k}{(2\pi)^4} k^2 \Phi(k, \beta) \sqrt{\frac{1}{\omega_{m_q}(k) \omega_{m_\bar{q}}(k)}} \sqrt{\frac{3 + 4\nu_1 (\lambda - \nu_1)}{2}} v_1 \times
$$

$$
\left[\Phi(k_2, \beta) \sqrt{\frac{\omega_{m_\bar{q}}(k_2)}{\omega_{m_q}(k_2)}} i_{\nu_{1'}} (k_2, m_q) B^{-1}(v_Q) \left(\frac{\Gamma_2 \cdot K^*}{K \cdot K^*} \right) u_{\nu_{1'}} (k, m_q) D_{\nu_{1'} \nu_{1}}^{1/2} (n_{W_2}(k, v_Q)) +
\right]
$$

$$
\left[\Phi(k_2, \beta) \sqrt{\frac{\omega_{m_q}(k_2)}{\omega_{m_\bar{q}}(k_2)}} i_{\nu_{1'}} (k, m_Q) \left(\frac{\Gamma_1 \cdot K^*}{K \cdot K^*} \right) B(v_Q) u_{\nu_{1'}} (k_2, m_Q) D_{\nu_{1'} \nu_{1}}^{1/2} (n_{W_1}(k, v_Q)) \right] ,
$$

where k is relative momentum and

$$
n_{W_{1,2}} = - \frac{[k, V]}{\omega_{m_{q,\bar{q}}} + m_{q,\bar{q}} - (kV)} ,
$$

$$
\Gamma_1^\mu = F_1(t) \gamma^\mu + i F_2(t) \frac{\sigma^{\mu\nu}(k_{1,2} - k)}{2m_{q,\bar{q}}} .
$$

In relation (20) form-factors $F_1(t)$ and $F_2(t)$ normalized in the natural units magnetic μ_q and anomalous magnetic moments κ_q of quarks:

$$
F_1(t = 0) + F_2(t = 0) = \mu_q , \quad F_2(t = 0) = \kappa_q .
$$
It’s also should be notice, than in (18) relation for \(k_2 \) and \(\omega_{m,q}(k_2) \) given by:

\[
k_2 = k + v_Q \left((\varpi + 1)\omega_{m,q} + \sqrt{\varpi^2 - 1} k \cos \theta_k \right), \tag{22}
\]

\[
\omega_{m,q}(k_2) = \omega_{m,q}(k)\varpi - \sqrt{\varpi^2 - 1} k \cos \theta_k, \tag{23}
\]

where

\[
\varpi = \frac{M_0^2 + M_0'^2 - t}{2M_0M_0'}. \tag{24}
\]

Using experimental data for radiative decay of light vector mesons \(\rho^+, K^{*\pm} \) and \(K^{*0} \) \[11\] and carrying numerical integration from (18) and (21) we obtain following values of magnetic moments of \(u, d \) and \(s \) quarks in units \(\mu_N \) (nuclear magneton):

Magnetic moment	This work	[12]	[13]
\(\mu_u \)	2.080 ± 0.082	2.066	2.08 ± 0.07
\(\mu_d \)	-1.261 ± 0.015	-1.110	-1.31 ± 0.06
\(\mu_s \)	-0.621 ± 0.011	-0.633	-0.77 ± 0.06

4. Conclusion and remarks

This work conducted within the framework of the relativistic quark model based on the point form of the Poincare-invariant quantum mechanics to obtain an integral representation for the form factor of the \(V \to P\gamma \) transition. From the condition of compliance model calculations with decay width of experimental values found values of the magnetic moments of quarks, which are correlated with the data, obtained using the experimental values of the magnetic moments of baryons.

5. Acknowledgments

We are grateful to the organizational and material support to the organizers of the Conference D-SPIN’15. This work was supported by the Belarusian Republican Foundation for Basic Research.

References

[1] Gerasimov S 1989 (Preprint JINR-E2-89-837)
[2] Jaus W 1991 Phys.Rev. D44 2851–2859
[3] Ebert D, Faustov R and Galkin V 2002 Phys.Lett. B537 241–248 (Preprint hep-ph/0204089)
[4] Choi H M 2007 Phys.Rev. D75 073016 (Preprint hep-ph/0701263)
[5] Krutov A and Troitsky V 2009 Physics of Particles and Nuclei 40 136–161 ISSN 1063-7796 URL http://dx.doi.org/10.1134/S1063779609020026
[6] Polyzou W N, Huang Y, Elster C, Glockle W, Golak J, Skibinski R, Witala H and Kamada H 2011 Few Body Syst. 49 129–147 (Preprint 1008.5215)
[7] Godfrey S and Isgur N 1985 Phys.Rev. D32 189–231
[8] Andreev V 2013 (Preprint 1305.4266)
[9] Bjorken J 1970 Phys.Rev. D1 1376–1379
[10] Andreev V 1998 (Preprint hep-ph/9912286)
[11] Olive K and Group P D 2014 Chinese Physics C 38 090001
[12] Bijker R, Santopinto E and Santopinto E 2009 Phys. Rev. C80 065210 (Preprint 0912.4494)
[13] Dothan Y 1982 Physica 114A 216–220