Cirrhosis is a chronic liver disease that can be caused by almost all progressive liver injuries, such as viral, autoimmune, hereditary, metabolic, and toxin-mediated liver diseases. Esophageal varices (EV) is a frequent complication of cirrhosis. Although the survival rate of cirrhotic patients with bleeding EV has improved because of the progress in variceal hemorrhage management, the inhospital mortality rate still remains at 14.5%. Adequate detection of EV in all patients with liver cirrhosis is required in order to improve the mortality.

Esophagogastroduodenoscopy (EGD) is the gold standard for the diagnosis of varices. Screening with EGD to identify EV in all cirrhotic patients at baseline as well as periodic intervals is recommended by current guidelines. However, the high cost and invasive procedures undercut its acceptance and applicability in patients. Several noninvasive methods, such as capsule endoscopy, computed tomography scan, and Fibrotest, are also frequently used to avoid the unpleasant experience with EGD for many patients.
However, these methods are expensive and/or do not have a high sensitivity or specificity in detecting EV. Thus there is a need to develop and validate noninvasive methods that can accurately diagnose EV.

Transient elastography (TE) is a noninvasive method measuring liver stiffness (LS). Several studies have been conducted in the past few years to evaluate the accuracy of TE (Fibroscan®) for the prediction of EV in cirrhosis. However, the accuracy of TE evaluated by different studies was not consistent, especially in identifying cirrhotic patients with EV from different etiologies. To confirm the foregoing findings, we performed a meta-analysis based on the Grading, Assessment, Development, and Evaluation (GRADE) framework to assess the predictive accuracy of TE, as compared with EGD (the gold standard), for the prediction of EV in cirrhotic patients.

MATERIALS AND METHODS

Literature search
A systematic literature search was performed independently by two reviewers in order to evaluate the predictive accuracy of TE for EV in cirrhotic patients. Studies included were checked by other reviewers, and discrepancies were resolved by discussing with each other. The following search strategy was used: (1) Electronic databases: PubMed, EMBASE, Web of Science, and CENTRAL on The Cochrane Library were searched without time or language restrictions. (2) Terms used were “FibroScan,” “transient elastography,” “stiffness,” and “esophageal varices” [Appendix 1]. After reviewing all titles and abstracts, full-text articles of eligible studies were obtained. The references listed in the papers of every eligible study were reviewed carefully to include studies that met the inclusion criteria. The search strategy was last updated on March 31, 2015.

Inclusion criteria
Studies were considered for inclusion if they met the following criteria: (1) Participants: liver cirrhosis patients (age ≥18 years). (2) Interventions and outcomes: liver stiffness was performed by TE (Fibroscan) for the prediction of EV, and EGD was used as the gold standard. Large EV was defined as EV of Grade II (enlarged, tortuous varices) and Grade III (large, coil-shaped varices). (3) Enough data could be extracted to calculate the true-positive, false-positive, true-negative, and false-negative diagnostic results. (4) Studies with at least 20 patients were included in order to obtain good reliability.

Exclusion criteria
Studies were excluded if (1) TE (Fibroscan) was not used to evaluate LS; (2) EGD was not used as the gold standard for the diagnosis of EV; (3) patients co-infected with HIV or liver carcinoma; (4) there was not enough data to calculate sensitivity or specificity; and (5) studies were reviews, corresponding letters, or abstracts with data that have been published as full-text articles.

Data extraction
Two reviewers carried out the extraction of the following data independently: (1) general characteristics, including the primary author, location, study design, year published, sample size, median age, gender, time period, and etiology of liver cirrhosis; (2) the cutoff value, sensitivity, and specificity to calculate the true-positive, false-positive, true-negative, and false-negative values for the diagnostic performance of TE for EV.

Quality assessment
Two reviewers performed the outcomes’ quality assessment independently using the GRADE framework. The quality of the evidence was rated as high, moderate, low, or very low. Discrepancies were resolved by discussion among the two reviewers and the other three authors.

Statistical analysis
Sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) with corresponding 95% confidence intervals (CI) were calculated and used to evaluate the diagnostic accuracy of TE for EV. Data analysis was conducted by using the “midas” program of Stata 12.0 statistical software package (StataCorp LP, College Station, TX, USA) and a bivariate mixed-effects regression model.

The heterogeneity of all test parameters was examined by Q-statistic test and F index. Heterogeneity was considered significant if $P < 0.10$ (Q statistic) or the F value was 50% and greater. When heterogeneity was detected, we further evaluated the threshold effects by calculating the Spearman’s correlation coefficient between the logit of sensitivity and the logit of (1−specificity). Threshold effects were considered significant if $P < 0.05$. If no threshold effects existed, sources of heterogeneity were analyzed by using subgroup analyses, where we stratified original estimates according to study characteristics (geographical origin, etiology of cirrhosis, blinding, appropriate interval or not, cutoff value, study design, and so on).
RESULTS

A total of 231 potentially relevant articles were found in the preliminary stage through literature search, and 191 articles remained after removing duplicates. Abstracts of the 191 articles were reviewed in detail to exclude 142 articles, which failed to meet the inclusion criteria. We assessed the remaining 49 articles carefully and further excluded 29 of them. Ten of the 29 excluded articles focused on LS for detecting large EV without reporting data of LS for EV; another article evaluating the diagnostic value of LS for EV was excluded because of the absence of areas under receiver operating characteristics curves (AUROC). Finally, 20 studies (including a total of 2530 patients) were included for our meta-analysis. Figure 1 shows the flow diagram of literature search and study selection.

Table 1 outlines the baseline characteristics of the included 20 studies. Twelve studies were performed in European countries, whereas five were performed in China. The other three studies were performed in the USA, Egypt, and India, respectively. The first study started from November 2002 and the last one started from September 2011. The last patients were recruited in October 2012. All patients were diagnosed as cirrhosis, and the diagnosis was based on liver biopsy or clinical judgment except one study, which included patients with liver stiffness suggesting cirrhosis (>12 kPa). The etiology of liver cirrhosis in most studies included a viral etiology, alcohol, NASH, and autoimmune hepatitis. Seven studies only included patients with virus-related cirrhosis.

Liver stiffness for the detection of esophageal varices

Table 2 summarized the results of studies evaluating the performance of LS for detecting the presence of EV. The cutoff value for AUROC ranged from 12.0 to 29.7 kPa. The pooled sensitivity of 20 studies was 0.84 (95% CI, 0.79–0.87), whereas the pooled specificity was 0.68 (95% CI, 0.61–0.73). The PLR and NLR were 2.58 (95% CI, 2.15–3.10) and 0.24 (95% CI, 0.19–0.32), respectively. The DOR was 10.60 (95% CI, 7.20–15.62) and the AUROC was 0.82 (95% CI, 0.79–0.86) [Figures 2 and 3]. However, the heterogeneity between studies was significant (Q = 28.884; P = 0.000; I² = 93.08, 95% CI, 86.90–99.25). We then performed Spearman’s rank correlation to evaluate the threshold effects. The Spearman’s correlation coefficient was 0.079 (P = 0.829), showing no evidence of threshold effects. We further performed several subgroup analyses in order to find the source of heterogeneity. The results are shown in Table 3. Interestingly, for studies only including hepatitis C patients, the pooled sensitivity was 0.83 (95% CI, 0.69–0.91) and the pooled specificity was 0.63 (95% CI, 0.48–0.75) without heterogeneity (I² = 0.00). The heterogeneity was still significant in other subgroups.
Liver stiffness for the detection of large esophageal varices

Ten included studies also evaluated the performance of liver stiffness for the diagnosis of large EV. The results of these studies are shown in Table 4. The cutoff value for AUROC ranged from 14.6 to 38.2 kPa. The pooled sensitivity was 0.84 (95% CI, 0.80–0.88), whereas the pooled specificity was 0.72 (95% CI, 0.65–0.79). The PLR and NLR were 3.02 (95% CI, 2.33–3.90) and 0.22 (95% CI, 0.17–0.29), respectively. The DOR was 13.65 (95% CI, 8.65–21.53) and the AUROC was 0.85 (95% CI, 0.81–0.88). For the heterogeneity test, $Q = 4.817$, $P = 0.045$, and $I^2 = 58.48$. For the five studies only including patients with viral liver cirrhosis, the pooled sensitivity was 0.82 (95% CI, 0.74–0.89), whereas the pooled specificity was 0.77 (95% CI, 0.65–0.85). The PLR and NLR were 3.56 (95% CI, 2.24–5.65) and 0.23 (95% CI, 0.14–0.37), respectively. The DOR was 15.53 (95% CI, 6.44–36.31) and the AUROC was 0.86 (95% CI, 0.82–0.88). For the heterogeneity test, $Q = 1.646$, $P = 0.220$, and $I^2 = 0.00$.

Table 1: Baseline characteristics of included studies

Study	Geographical origin	Type	Number of patients	Time period	Etiology	Age (years)	Gender (male %)
Castéra et al. 2009	France	Original	66	2003.06-2007.04	HCV	54.1±11.8	60
Fraquelli et al. 2014	Italy	Original	26	2010.01-2011.12	HCV, HBV	52.0±10.1	60
Vizzutti et al. 2007	Italy	Original	46	2005.03-2006.07	HCV	55.6±11.7	64
Bureau et al. 2008	France	Original	89	2005.11-2006.10.5	Alcohol, HBV, HCV, NASH, autoimmune hepatitis, etc.	55 (45-65)	60
Calvaruso et al. 2013	Italy	Original	96	2008.01-2011.3	HCV	60.7±10.5†	66.7†
Kazemi et al. 2006	France	Original	165	2002.11-2004.6	HCV, HBV, alcohol, etc.	54.2±12.8††	70.6††
Stefanescu et al. 2011	Romania	Original	122	NR	HCV, alcohol	56 (31-76)	56.2
Reed et al. 2011	UK	Abstract	96	NR	HCV, alcohol, NASH, autoimmune hepatitis, etc.	NR	NR
Li et al. 2014	China	Original	260	2010.01-2011.12	HBV, HCV, alcohol, autoimmune hepatitis	49.4±9.8	67.7
Malik et al. 2010	USA	Original	124	NR	Mainly HCV (70%)	53±9.0	70
Hu et al. 2015	China	Original	200	2007.07-2012.10	HBV (84%), HCV	45.1±10.2	71
Liu et al. 2013	China	Original	101	2011.05-2012.01	HBV, HCV, alcohol, autoimmune hepatitis, etc.	50.86±12.67	64.9
Saad et al. 2013	Egypt	Original	32	2011.04-2011.10	HCV	49.5±4.7†	NR
Bințintan et al. 2016	Romania	Original	60	2009-2012	HBV, HCV, alcohol	57.0±9.99	65
Sharma et al. 2013	India	Original	174	2011.09-2012.03	Alcohol, HBV, HCV, cryptogenic	49.3±11.7	88.5
Salzl et al. 2014	Austria	Original	59	2009.02-2010.04	Alcohol, HBV, HCV, etc.	58.5 (34-80)	NR
Goldis et al. 2010	Romania	Abstract	596	2007.05-2009.05	NR	NR	NR
Wang et al. 2012	Taiwan, China	Original	46	2008.11-2009.02	HBV, HBV, alcohol	54±10	65.2
Wang et al. 2012	Taiwan, China	Original	126	2008.11-2011.01	HBV	54.5±10.1	73.8
Augustin et al., 2014	Spain	Original	49	2010.01-2012.04	Mainly HCV (84%)	56±13	45

†Patients without EV ‡Patients with small EV §Patients with large EV patients without clinically significant portal hypertension *Patients with clinically significant portal hypertension. HCV: Hepatitis C virus, HBV: Hepatitis B virus. NASH: Nonalcoholic steatohepatitis, EV: Esophageal varices. NR: Not reported
The quality assessment of the outcomes by using the GRADE framework is presented in Table 5. The quality of the evidence for EV and large EV were rated as low because of risk of bias and inconsistency; however, the quality for EV (hepatitis C) and large EV (virus-related cirrhosis) were rated as moderate.

Sensitivity analysis

The pooled sensitivity, specificity, PLR, NLR, DOR, and AUROC changed minimally after omission of any individual study, indicating the stability of our results.

Publication bias

We performed the Deeks’ funnel plot asymmetry test and found no evidence of significant publication bias ($P = 0.975$).

DISCUSSION

About 80%–90% of patients with cirrhosis may develop EV during their lifetime, 30%–40% of which may suffer severe upper gastrointestinal bleeding. Therefore, screening for EV in patients with cirrhosis is strongly recommended across guidelines. EGD is currently considered as the gold standard for assessing EV. However, the low cost effectiveness and tolerance of EGD should be taken into account, which calls for new tools that are noninvasive and more economical.

In this meta-analysis, we evaluated the diagnostic performance of TE, as a noninvasive tool, for the prediction of EV. We observed that the sensitivity (84%) of TE for EV was good, but the specificity (68%) was moderate. The AUROC was 0.82, indicating a moderately high level of overall accuracy. The DOR was 10.60, indicating that the use of TE was helpful for the detection of EV.

Cirrhotic patients with large EV should be screened more frequently because of the higher risk of bleeding. In our meta-analysis, the diagnostic performance of TE...
for large EV was good with the summary estimates for sensitivity (84%), specificity (72%) and AUROC (0.85), similar to the performance of TE for EV. The DOR was 13.65 and the AUROC was 0.85, indicating a better performance. Encouragingly, when TE was used to detect the presence of large EV in patients with viral liver cirrhosis, the summary estimates for sensitivity and specificity were 82% and 77%, respectively. The AUROC was 0.86 and the heterogeneity was low ($I^2 = 0.00$). The quality of the evidence was rated as moderate by using the GRADE framework, indicating that TE may be more accurate and clinically relevant for detecting large EV in patients with viral cirrhosis.

The heterogeneity of included studies is the main limitation of our meta-analysis. According to our study, we cannot explain the heterogeneity when subgroup analyses were performed for locations or large EV. As for subgroup of hepatitis C patients, the diagnostic performance of TE for detecting the presence of EV was similar to all other patients with a sensitivity of 83% and specificity of 63%; however, the I^2 value was 0.00, indicating no significant heterogeneity. Furthermore, the quality of the evidence was rated as moderate by using the GRADE framework. This implies that TE may have a better clinical utility for hepatitis C patients. Several studies also showed that noninvasive predictors performed better in hepatitis C patients.[8,32] Hence, a considerable performance variation between the results of our diagnostic studies may be attributed to the different etiologies.

A study evaluating TE for diagnosing cirrhosis found variations in LS depending on the cause of cirrhosis and suggested that the optimal cutoff may be disease specific.[13] Meanwhile, the presence or development of EV may also be affected by the etiology of cirrhosis. Besides the etiology of cirrhosis, the diagnostic performance of TE can also be influenced by limited operator experience, as well as characteristics of patients (such as obesity, narrow intercostal spaces, and ascites).[34] Therefore, further studies need to be conducted on other disease cohorts to validate TE as a suitable test for EV and to define the optimal liver stiffness cutoffs. Studies on cirrhotic patients with single etiology might be an approach in the foreseeable future.

Combination of TE with other noninvasive methods, such as acoustic radiation force impulse elastography (ARFI), magnetic resonance elastography, and platelet count/spleen diameter ratio[15,17] may provide a better method for the diagnosis of EV than liver TE alone. For example, Fraquelli et al.[13] performed liver TE and spleen TE in combination for detecting EV, which showed a better accuracy than liver TE alone (sensitivity of 91% and specificity of 80% vs sensitivity of 75% and specificity of 47%). Augustin et al.[30] evaluated a sequential screening-diagnostic strategy based on routine clinical data (platelet count, abdominal ultrasonography) and

Characteristics	Subgroups	Number of studies	Sensitivity	Specificity	PLR	NLR	DOR	AUROC	Q	P	I^2 (%)	CI: Confidence interval
Geographical origin	European countries	12	0.82 (0.75-0.87)	0.65 (0.55-0.74)	2.35 (1.76-3.14)	0.28 (0.20-0.41)	0.28 (0.20-0.41)	0.65 (0.55-0.74)	8.36 (6.16-11.35)	0.81 (0.78-0.84)	0.00 (0.00-100.00)	90.00 (90.00-90.00)
	China	5	0.85 (0.77-0.90)	0.69 (0.61-0.75)	2.70 (2.23-3.18)	0.22 (0.15-0.33)	0.22 (0.15-0.33)	0.69 (0.61-0.75)	7.20 (5.47-9.35)	0.80 (0.76-0.83)	0.00 (0.00-100.00)	90.00 (90.00-90.00)
	HCV + HBV	7	0.81 (0.72-0.87)	0.66 (0.60-0.72)	2.40 (1.82-3.16)	0.29 (0.20-0.43)	0.29 (0.20-0.43)	0.66 (0.60-0.72)	7.56 (3.77-15.21)	0.80 (0.76-0.83)	0.00 (0.00-100.00)	90.00 (90.00-90.00)
	HCV only	4	0.83 (0.69-0.91)	0.63 (0.48-0.75)	2.21 (1.52-3.20)	0.28 (0.14-0.53)	0.28 (0.14-0.53)	0.63 (0.48-0.75)	7.34 (3.15-17.48)	0.80 (0.76-0.83)	0.00 (0.00-100.00)	90.00 (90.00-90.00)

HCV: Hepatitis C virus, HBV: Hepatitis B virus, AUROC: Areas under receiver operating characteristic curves, PLR: Positive likelihood ratio, NLR: Negative likelihood ratio, DOR: Diagnostic odds ratio, CI: Confidence interval.
Transient elastography for esophageal varices

Table 4: Results of studies evaluating the performance of transient elastography for the presence of large esophageal varices

Study	Cutoff (kPa)	AUROC	Sensitivity (%)	Specificity (%)	PLR	NLR	DOR
Castéra et al., 2009[7]	30.5	0.87	77	85	5.10	0.27	18.75
Bureau et al., 2008[13]	29.3	0.762	81	61	2.10	0.31	6.75
Calvaruso et al., 2013[14]	19.0	0.710	73	56	1.65	0.48	3.41
Kazemi et al., 2006[8]	19.0	0.83	91	60	2.30	0.14	16.24
Li et al., 2014[16]	30.6	0.849	83	70	2.77	0.25	11.17
Hu et al., 2015[21]	25.55	0.855	84	73	3.06	0.22	13.91
Saad et al., 2013[23]	38.2	NR	100	77	3.99	0	66.82
Bintintan et al., 2015[40]	28.8	0.90	88	82	4.90	0.15	32.20
Wang et al., 2012[29]	14.6	0.83	89	63	2.42	0.17	14.45
Wang et al., 2012[41]	21.0	0.865	77	87	5.79	0.27	21.78

EV: Esophageal varices, AUROC: Areas under receiver operating characteristics curves, NR: Not reported, PLR: Positive likelihood ratio, NLR: Negative likelihood ratio, DOR: Diagnostic odds ratio

Table 5: Outcomes quality assessment by using the grading, assessment, development, and evaluation framework

Outcome	Number of studies	Risk of bias	Inconsistency	Indirectness	Imprecision	Other consideration	Quality
EV	20	Serious*	Serious*	Not serious	Not serious	None	Low
EV (hepatitis C)	4	Serious*	Not serious*	Not serious	Not serious	None	Moderate
Large EV	10	Serious†	Not serious†	Not serious†	Not serious†	None	Low
Large EV (viral liver cirrhosis)	5	Serious*b	Not serious¹	Not serious¹	Not serious¹	None	Moderate

*We downgraded for risk of bias, because there was only 7 of 20 included studies providing sufficient description that endoscopists assessed the presence and size of EV without knowledge of the LS results, while 6 studies described that LS were performed blind to other results. Only 9 studies specifically mentioned the time between endoscopy and LS. **We downgraded for inconsistency, because the heterogeneity between studies was significant (Q=28.884, P=0.000, I²=93.08). *We did not downgrade for other consideration. There was no evidence of significant publication bias (P=0.975). *We downgraded for risk of bias, because there was only 1 study providing sufficient description that endoscopists assessed the presence and size of EV without knowledge of the LS results, while 1 study described that LS were performed blind to other results. All of the 4 studies specifically mentioned the time between endoscopy and LS. **We did not downgrade for inconsistency, because the heterogeneity between studies was significant (Q=1.774, P=0.206, I²=0.00). *We downgraded for risk of bias, because there were only 5 of 10 included studies providing sufficient description that endoscopists assessed the presence and size of EV without knowledge of the LS results, while 3 studies described that LS were performed blind to other results. Only 6 studies specifically mentioned the time between endoscopy and LS, We did not downgrade for inconsistency, because the heterogeneity between studies was significant (Q=4.817, P=0.045, I²=58.48). *We downgraded for risk of bias, because there were only 2 of 5 included studies providing sufficient description that endoscopists assessed the presence and size of EV without knowledge of the LS results, while 1 study described that LS were performed blind to other results. Four studies specifically mentioned the time between endoscopy and LS, We did not downgrade for inconsistency, because the heterogeneity was not statistically significant (Q=1.646, P=0.220, I²=0.00). EV: Esophageal varices, LS: Liver stiffness

TE as a feasible and effective way to identify patients with portal hypertension and EV. It was concluded that patients with low liver stiffness value (<15.6 kPa) and normal platelets/ultrasonography should avoid endoscopy examination, which may be a good method to balance effectiveness and cost. However, the small sample size is the main limitation of this study, requiring large and prospective studies.

CONCLUSIONS

Our meta-analysis indicated that TE could serve as an effective noninvasive screening tool for the prediction of EV, especially in hepatitis C patients, and for the prediction of large EV in patients with virus-related cirrhosis. TE provides a useful adjunct for clinicians in the management of cirrhotic patients. A moderate specificity and different cutoff values should not be obstacles to the application of TE. These limitations might also be a new beginning. Based on our analysis, we suggest that further research on the value of TE for population with single etiology of cirrhosis as well as the development of proper screening-diagnostic strategies should be the “new beginning.”

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Carbonell N, Pauwels A, Serfati L, Fourdan O, Lévy VG, Poupon R. Improved survival after variceal bleeding in patients with cirrhosis over the past two decades. Hepatology 2004;40:652-9.
2. Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W; Practice Guidelines Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 2007;46:922-38.
3. de Franchis R, Eisen GM, Laine L, Fernandez-Urrien I, Herreras JM, Brown RD, et al. Esophageal capsule endoscopy for screening and surveillance of esophageal varices in patients with portal hypertension. Hepatology 2008;47:1595-603.

4. Perri RE, Chiorean MV, Fidler JL, Fletcher JG, Talwalkar JA, Stadheim L, et al. A prospective evaluation of computerized tomographic (CT) scanning as a screening modality for esophageal varices. Hepatology 2008;47:1587-94.

5. Thabut D, Trabut JB, Massard J, Rudler M, Muntenau M, Messous D, et al. Non-invasive diagnosis of large oesophageal varices with FibroTest in patients with cirrhosis: A preliminary retrospective study. Liver Int 2006;26:271-8.

6. Kazemi F, Kettaneh A, N’kontchou G, Pinto E, Ganne-Carrié N, Trinchet JC, et al. Liver stiffness measurement selects patients with cirrhosis at risk of bearing large oesophageal varices. J Hepatol 2006;45:230-5.

7. Castéra L, Le Bail B, Roudout-Thoraval F, Bernard PH, Foucher J, Merrouche W, et al. Early detection in routine clinical practice of cirrhosis and oesophageal varices in chronic hepatitis C: Comparison of transient elastography (FibroScan) with standard laboratory tests and non-invasive scores. J Hepatol 2009;50:59-68.

8. Pritchett S, Cardenas A, Manning D, Curry M, Afahli NH. The optimal cut-off for predicting large oesophageal varices using transient elastography is disease specific. J Viral Hepat 2011;18:e75-80.

9. Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401-6.

10. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 2005;58:882-93.

11. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.

12. Colecchia A, Montrone L, Scaioli E, Bacchi-Reggiani ML, Colli A, Brozek J, et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology 2012;143:646-54.

13. Fraquelli M, Giunti M, Pozzi R, Rigamonti C, Della Valle S, Massironi S, et al. Feasibility and reproducibility of spleen transient elastography and its role in combination with liver transient elastography for predicting the severity of chronic viral hepatitis. J Viral Hepat 2014;21:90-8.

14. Vizzutti F, Arena U, Romanelli RG, Rega L, Foschi M, Colagrande S, et al. Liver stiffness measurement predicts severe portal hypertension in patients with HCV-related cirrhosis. Hepatology 2007;45:1290-7.

15. Bureau C, Metivier S, Peron JM, Selves J, Robic MA, Gourraud PA, et al. Transient elastography accurately predicts presence of significant portal hypertension in patients with chronic liver disease. Aliment Pharmacol Ther 2007;26:1261-8.

16. Calvaruso V, Bronte F, Conte E, Simone F, Craxi A, Di Marco V. Modified spleen stiffness measurement by transient elastography is associated with presence of large oesophageal varices in patients with compensated hepatitis C virus cirrhosis. J Viral Hepat 2013;20:867-74.

17. Stefanescu H, Grigorescu M, Lupsoar M, Procopet B, Maniu A, Badea R. Spleen stiffness measurement using Fibroscan for the noninvasive assessment of esophageal varices in liver cirrhosis patients. J Gastroenterol Hepatol 2011;26:164-70.

18. Reed E, Stanley A, Forrest E, Gillespie R, Dickson S, Neilson M, et al. Transient elastography as a predictor of oesophageal varices, a comparison with other non invasive markers. Gut 2011;60 Suppl 1:A244-5.

19. Li F, Yan T, Shao Q, Ji D, Li B, Li ZB, et al. Clinical study of FibroScan efficiency for diagnosing size of oesophageal varices in liver cirrhosis patients. Chin J Hepatol 2014;22:600-3.

20. Malik R, Lai M, Sadiq A, Farzan R, Mehta S, Nasser I, et al. Comparison of transient elastography, serum markers and clinical signs for the diagnosis of compensated cirrhosis. J Gastroenterol Hepatol 2010;25:1562-8.

21. Hu Z, Li Y, Li C, Huang C, Ou Z, Guo J, et al. Using ultrasonic transient elastometry (FibroScan) to predict esophageal varices in patients with viral liver cirrhosis. Ultrasound Med Biol 2015;41:1530-7.

22. Liu F, Li TH, Han T, Xiang HL, Zhang HS. Non-invasive assessment of portal hypertension in patients with liver cirrhosis using FibroScan transient elastography. Chin J Hepatol 2013;21:840-4.

23. Saad Y, Said M, Idris MO, Rabee A, Zakaria S. Liver stiffness measurement by fibroscan predicts the presence and size of esophageal varices in Egyptian patients with HCV related liver cirrhosis. J Clin Diagn Res 2013;7:2253-7.

24. Bintintan A, Chira RI, Bintintan VV, Nagy GA, Manzat-Saplacan MR, Lupsoar-Platon M, et al. Value of hepatic elastography and Doppler indexes for predictions of esophageal varices in liver cirrhosis. Med Ultrason 2015;17:5-11.

25. Sharma P, Kirnake V, Tyagi P, Bansal N, Singh V, Kumar A, et al. Spleen stiffness in patients with cirrhosis in predicting esophageal varices. Am J Gastroenterol 2013;108:101-7.

26. Salz P, Reiberger T, Ferflitsch M, Payer BA, Schwenger B, Trauner M, et al. Evaluation of portal hypertension and varices by acoustic radiation force impulse imaging of the liver compared to transient elastography and AST to platelet ratio index. Ultrasschall Med 2014;35:528-33.

27. Goldis A, Ratnu I, Lazzar D, Koukoulos D. Transient Elastography as a predictive tool for decapsulation and the occurrence of complications in liver cirrhosis. J Hepatol 2010;52:S163.

28. Wang HM, Lo GH, Chen WC, Hsu PI, Yu HC, Lin CK, et al. Efficacy of transient elastography in screening for large esophageal varices in patients with suspicious or proven liver cirrhosis. J Dig Dis 2012;13:430-8.

29. Wang JH, Chuah SK, Lu SN, Hung CH, Chen CH, Kee KM, et al. Transient elastography and simple blood markers in the diagnosis of esophageal varices for compensated patients with hepatitis B virus-related cirrhosis. J Gastroenterol Hepatol 2012;27:1213-8.

30. Augustin S, Millán L, González A, Martell M, Gelabert A, Segarra A, et al. Detection of early portal hypertension with routine data and liver stiffness in patients with asymptomatic liver disease: A prospective study. J Hepatol 2014;60:561-9.

31. Jensen DM. Endoscopic screening for varices in cirrhosis: Findings, implications, and outcomes. Gastroenterology 2002;122:1620-30.

32. Sen S, Griffiths WJ. Non-invasive prediction of oesophageal varices in cirrhosis. World J Gastroenterol 2008;14:2454-5.

33. Ganne-Carrié N, Ziol M, de Ledinghen V, Douvin C, Marcellin P, Casterra L, et al. Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases. Hepatology 2006;44:1511-7.

34. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003;29:1705-13.

35. Bota S, Sporea I, Sirli R, Fosca M, Popescu A, Danila M, et al. Can ARFI elastography predict the presence of significant esophageal varices in newly diagnosed cirrhotic patients? Ann Hepatol 2012;11:519-25.

36. Talwalkar JA, Yin M, Venkatesh S, Rossman PJ, Grimm KC, Manduca A, et al. Feasibility of in vivo MR elastographic spleen stiffness measurements in the assessment of portal hypertension. AJR Am J Roentgenol 2009;193:122-7.

37. Giannini EG, Zaman A, Kreil A, Floreani A, Dulbecco P, Testa E, et al. Platelet count/spleen diameter ratio for the noninvasive diagnosis of esophageal varices: Results of a multicenter, prospective, validation study. Am J Gastroenterol 2006;101:2511-9.
APPENDIX 1

Search strategy
#1. (FibroScan) OR (transient elastography) OR (liver stiffness) OR (spleen stiffness)
#2. (Esophageal varices) OR (oesophageal varices) OR (variceal bleeding) OR (variceal hemorrhage)
#3. (Hepatic venous pressure gradient) OR (portal hypertension)
#4. (Cirrhosis) OR (cirrhotic) OR (fibrosis)
#5. #2 OR #3
#6. #1 AND #4 AND #5