P_c Resonances in the Compact Pentaquark Picture

W. Ruangyoo,1,2 K. Phumphan,1,2 C. C. Chen,1,2 A. Limphirat,1,3 and Y. Yan1,4

1School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

2Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan

(Dated: June 15, 2021)

P_c resonances are studied in the approach of quark model and group theory. It is found that there are totally 17 possible pentaquark states with the quark contents q^4QQ (q are u and d quarks; Q is c quark) in the compact pentaquark picture, where the hidden heavy pentaquark states may take the color singlet-singlet ($\{111\}_{qqq} \otimes \{111\}_{cc}$) and color octet-octet ($\{21\}_{qqq} \otimes \{21\}_{cc}$) configurations. The partial decay widths of hidden heavy pentaquark states are calculated for all possible decay channels. The results show that the $P_c(4440)$ may not be a compact pentaquark state while $P_c(4312)$ and $P_c(4457)$ could be the spin-3/2 and spin-1/2 pentaquark states, respectively.

I. INTRODUCTION

In 2015, the two pentaquark-like states, $P_c(4380)$ and $P_c(4450)$, were observed for the first time at 7 and 8 TeV proton-proton collisions by the LHCb Collaboration\cite{1,2}. These two P_c^+ states with the minimal quark content $udc\bar{c}$ lie in the pJ/ψ invariant mass spectra in $\Lambda_b^0 \to pJ/\psi K^-$ decay process. Then in 2019, the LHCb Collaboration announced the updated data of three narrow pentaquark-like states, $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$\cite{3}. In this discovery a new structure of $P_c(4312)$ was observed in a lowest invariant mass around 4312 MeV with a width of $9.8 \pm 2.7_{-4.5}^{+3.2}$ MeV. The $P_c(4450)$ pentaquark-like state in the previous report is actually the result of two overlapped peaks—the $P_c(4440)$ and $P_c(4457)$. The two peaks have the widths of $20.6 \pm 4.9_{-10.1}^{+8.7}$ MeV and $6.4\pm 2.0_{-1.9}^{+5.7}$ MeV, respectively. The quantum numbers of these three narrow P_c states have not been confirmed by LHCb yet while $J^P = \frac{1}{2}^-$, $J^P = \frac{1}{2}^-$, and $J^P = \frac{3}{2}^-$ are only suggested for the $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ states, respectively. Moreover, the LHCb has proposed a structure of the bound state of a baryon and a meson for the P_c states stemming from that the masses of $P_c(4312)$ and $P_c(4457)$ states are approximately 5 MeV and 2 MeV below the $\Sigma_c^+D^0$ and $\Sigma_c^+D^{*0}$ thresholds, respectively, while $P_c(4440)^+$ is close to $\Sigma_c^+D^{*}$ threshold with a 20 MeV gap. At this moment, no further conclusion for $P_c(4380)$ state has been arrived yet.

The molecular picture of P_c states have been studied theoretically in Refs.\cite{4,12} resulting from the closeness of their masses to the $\Sigma_c^+D^{*0}$ threshold and the only observed pJ/ψ channel. The P_c^+ states are also studied as compact pentaquarks\cite{13,16}. Various approaches have been applied in theoretical studies, such as QCD sum rules\cite{17,22}, simple chromomagnetic model\cite{23} and others\cite{24}. However, the nature of P_c is still an open question.

We study in this work the P_c resonances in the compact pentaquark picture using the approach of quark model and group theory. The paper is organized as follows. In Sec. \textbf{II} all possible quark configurations and wave functions of ground state hidden-charm pentaquarks are worked out by applying S_3 permutation group. Sec. \textbf{III} shows the calculation of the partial decay widths of the hidden-charm pentaquarks for all possible decay channels. Discussion is given in Sec. \textbf{IV}.

II. P_c WAVE FUNCTIONS IN COMPACT PENTAQUARK PICTURE

The construction of the P_c pentaquark states follows the rules that the color wave function of P_c must be singlet, and the total P_c wave functions should be antisymmetric under any permutation of the three light quarks. The color wave function of the P_c states is required to be a $[222]_1$ singlet, and the total wave function for the ground P_c pentaquark state is

$$\Psi(q^4\bar{c}c) = \psi^O_{sym}\psi_{[222]}^C\psi^{SF},$$

where ψ^O, ψ^C and ψ^{SF} are the spatial, color and spin-flavor wave functions, respectively. The spatial wave function, ψ^O, is fully symmetric for the ground state.

The P_c wave function in this work can be considered in two parts, q^3 and $\bar{c}c$. For q^3 part, the permutation symmetry of the q^3 part is characterized by the S_3 young tableaux\cite{3,21,111}. The color part of q^3 can be both the $[111]$ and $[21]$ configurations while the color part of $\bar{c}c$ are also $[111]$ and $[21]$, so the color singlet wave functions of P_c states are either in a color singlet-singlet or a color octet-octet configuration, taking the form,

$$\psi_{[222]}^C = \begin{cases} \psi_{[111]}^C(q^3) \otimes \psi_{[111]}^C(\bar{c}c) \\ \psi_{[21]}^C(q^3) \otimes \psi_{[21]}^C(\bar{c}c) \end{cases}.$$ \hspace{1cm} (2)

In the color octet-octet configuration, the color wave function is composed of eight possible octet states to be
in the color singlet, taking the form,

$$\psi^C_{[222]} = \frac{1}{\sqrt{8}} \sum_{i=1}^{8} \psi^C_{[21]i} \psi^3 \psi^C_{[21]i, \bar{c}c}. \quad (3)$$

The \(q^3\) part is required to be fully antisymmetric. For the color singlet-singlet configuration, the general wave function of the \(q^3\) part is

$$\psi^{\text{single}}_{\{\lambda\}}(q^3) = \psi^O_{\{111\}}(q^0) \psi^S_F(q^3). \quad (4)$$

The spin-flavor part of the \(q^3\) cluster is in the [21] configuration for the color octet-octet configuration, and thus the \(q^3\) wave function is in the form,

$$\psi^{\text{octet}}_{\{\lambda\}}(q^3) = \frac{1}{\sqrt{2}} \psi^O_{\{21\}}(q^0) \psi^S_F(q^3) - \psi^S_F(q^3) \psi^C_{\{21\} \lambda} \psi^C_{\{21\} \lambda}. \quad (5)$$

The \(\Lambda\) and \(\rho\) color wave functions are listed in Appendix A. The possible spin-flavor configurations of the \(q^3\) cluster, listed in Table I, are taken from the previous studies in Refs. [25][26].

![TABLE I. Spin-flavor configurations of the \(q^3\) cluster.](image)

\([3]_SF\)	\([3]_F[3]_S\)	\([21]_F[21]_S\)
\([21]_SF\)	\([3]_F[21]_S\)	\([21]_F[21]_S\)
\([111]_SF\)	\([21]_F[21]_S\)	\([111]_F[21]_S\)

After working out the direct product of \(\Psi(q^3)\) and \(\Psi(c\bar{c})\), all the quark configurations of \(P_c\) and corresponding states are shown in Table III where \(\phi\) and \(\chi\) are the flavor and spin parts. The spatial wave functions are symmetric and are not specified here. The last two configurations with the flavor singlet in Table III are for the \(q^3 = uuds\) light quark cluster and will not be considered in this study.

III. \(P_c\) Partial Decay Widths

The \(P_c\) resonances may decay through both the hidden-charm and open charm modes, as shown in Fig. 1 and Fig. 2 respectively. The transition amplitudes are calculated from

$$T = \langle \psi_{\text{final}} \mid \hat{O} \mid \psi_{\text{initial}} \rangle, \quad (6)$$

where \(\psi_{\text{initial}}\) represents the initial states of hidden charm pentaquark listed in Table III and \(\psi_{\text{final}}\) represents the final states from all possible decay channels. The operator, \(\hat{O}\), can be either \(\hat{O}_d\) for the direct process or \(\hat{O}_c\) for the cross process. These operators can be written in the form

$$\hat{O}_d = \lambda \delta^3(\vec{q}_1 - \vec{q}_6) \delta^3(\vec{q}_2 - \vec{q}_7) \delta^3(\vec{q}_3 - \vec{q}_8) \delta^3(\vec{q}_4 - \vec{q}_9)$$

$$\hat{O}_c = \lambda \delta^3(\vec{q}_1 - \vec{q}_6) \delta^3(\vec{q}_2 - \vec{q}_7) \delta^3(\vec{q}_3 - \vec{q}_8) \delta^3(\vec{q}_4 - \vec{q}_9), \quad (7)$$

$$\hat{O}_c = \lambda \delta^3(\vec{q}_1 - \vec{q}_6) \delta^3(\vec{q}_2 - \vec{q}_7) \delta^3(\vec{q}_3 - \vec{q}_8) \delta^3(\vec{q}_4 - \vec{q}_9), \quad (8)$$

where \(\lambda\) is a coupling constant which are assumed in this work the same for both direct and cross processes.

Shown in Table III are the factors of the spin-flavor-color transition amplitudes for the decays of 17 initial pentaquark states to 10 final states, \(p_{\eta_c}, \Delta \eta_c, pJ/\psi, \Delta J/\psi, \Lambda_c D, \Sigma_c D, \Sigma^*_c D, \Sigma_c D^*, \Sigma_c D^*\) and \(\Lambda_c D^*\). The pentaquark states in both the color singlet-singlet and color octet-octet configurations are classified by the isospins.

![FIG. 1. Hidden charm decay process (direct process).](image)

![FIG. 2. Open charm decay process (cross process).](image)

With the transition amplitude defined in Eq. (6), the decay width is evaluated in the non-relativistic approximation [29].

$$\Gamma_{P_c \to BM} = \frac{2\pi E_1 E_2}{M_{P_c}} \frac{1}{2S_i + 1} f(m_B, m_M, q) \sum_{m_i, m_f} |\langle \psi_{\psi}^{SFC}\mid \hat{O} \mid \psi_{\psi}^{SFC}\rangle|^2, \quad (9)$$

where \(S_i\), \(m_i\), and \(M_{P_c}\) are the spin, spin projection quantum number, and mass of the initial pentaquark states, respectively. \(E_1\) and \(E_2\) are the energies of the baryon and meson in the final states, \(\langle \psi_{\psi}^{SFC}\mid \hat{O} \mid \psi_{\psi}^{SFC}\rangle\) is the spin-flavor-color of the transition amplitudes listed in Table III. The summation is over the spins of the initial and final states. \(f(m_B, m_M, q)\) is a kinematical phase-space factor depending on the masses of the baryon and meson in the final states as well as the spatial wave functions of all particles. To reduce the model dependence, we apply the phenomenological form for the
where $s_0 = (m_B + m_M)^2$, $\sqrt{s} = (m_B^2 + q^2)^{1/2} + (m_M^2 + q^2)^{1/2}$, and q is the final momentum at the rest frame of the pentaquark. The kinematical phase-space factor

$$f(m_B, m_M, q) = q \exp\{-1.2 \text{ GeV}^{-1} (s - s_0)^{1/2}\}, \quad (10)$$
in Eq. [10] has been fitted to the cross section of various $p\bar{p}$ annihilation channels [30] and applied successfully to other works [31][33]. The numerical values of the kinematical phase-space factor are shown in Appendix [3] for the masses of $P_c(4312)$ $P_c(4440)$ and $P_c(4457)$ resonances and various decay channels. Some decay channels of P_c states are vanished by missing of spin-flavor-color transition amplitude in Table III and phase space factor in Table IV. It is seen that $P_c(4312)$ in the configuration $\psi_{[111][c][21]p[21]s[x_1]}$ with spin $\frac{3}{2}$ has two decay channels, pJ/ψ and $P_\Lambda D^*$ while $P_c(4440)$ and $P_c(4457)$ with the same configuration have one more open charm decay channel, $\Sigma_c^0 D$. For the configuration $\psi_{[111][c][21]p[21]s[x_1]}$ and spin $\frac{3}{2}$, $P_c(4312)$ has pJ/ψ, $\Sigma_c D$ and $\Lambda_c D^*$ decay channels while $P_c(4440)$ and $P_c(4457)$ get one more open channel, $\Sigma_c D$.

The partial decay widths of all available pentaquark states are calculated in Eq. [9]. Listed in Table IV are the results for only the $I = \frac{1}{2}$ pentaquark states, where the partial decay widths are normalized to the $\psi_{[111][c][21]p[21]s[x_1]} \rightarrow pJ/\psi$ process. In the calculation we let the pentaquark states take the mass of $P_c(4457)$. The results for the channels allowed by the energy conservation are similar when the masses of $P_c(4312)$, $P_c(4440)$ are applied for the initial pentaquark states. In the calculation, we have considered only the S-wave decay since the mass thresholds for all the final states are very close to the mass of the P_c resonances. Among the 17 compact pentaquark states, the state of spin 5/2 in the $\psi_{[21][c][21]p[3]s[x_1]}$ configuration has no any allowed decay channel.

Table IV. Partial decay widths of $I = \frac{1}{2}$ pentaquark states of 4457 MeV, normalized to the $\psi_{[111][c][21]p[21]s[x_1]} \rightarrow pJ/\psi$ width.

J^P	P_c Configuration	pJ/ψ Width	p_{η_c}	$\Sigma_c^0 D$	$\Sigma_c D$	$\Lambda_c D$	$\Lambda_c D^*$
$\frac{1}{2}$	$\psi_{[111][c][21]p[21]s[x_1]}$	1	0.04	0.11			
	$\psi_{[21][c][21]p[3]s[x_1]}$	0.40	0.24				
	$\psi_{[21][c][21]p[3]s[x_0]}$	0.46					
$\frac{3}{2}$	$\psi_{[111][c][21]p[21]s[x_1]}$	1	0.01	0.07	0.03		
	$\psi_{[111][c][21]p[21]s[x_0]}$	0.90	0.03	0.02	0.09		
	$\psi_{[21][c][21]p[3]s[x_1]}$	0.62					
	$\psi_{[21][c][21]p[21]s[x_1]}$	0.04	0.28	0.11			
	$\psi_{[21][c][21]p[21]s[x_0]}$	0.12	0.09	0.34			

IV. DISCUSSION

We have calculated the partial decay widths for all the 17 compact pentaquark states since the quantum numbers of the three LHCb P_c resonances have not been determined yet. The results in Table IV for the nine $I = 1/2$ pentaquark states show that the pJ/ψ channel is open for only two states with the configuration $\psi_{[111][c][21]p[21]s[x_1]}$ and spin $\frac{3}{2}$ and $\frac{5}{2}$. If there is no mixing among the $I = \frac{1}{2}$ and $J = \frac{3}{2}$ states as well as among the $I = \frac{3}{2}$ and $J = \frac{5}{2}$ states, there are only two compact charmonium-like pentaquark states which decay through the pJ/ψ channel. Therefore, one may accommodate only two of the three observed P_c in the compact pentaquark picture. Our results show that the pJ/ψ partial decay widths of $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ in the configuration $\psi_{[111][c][21]p[21]s[x_1]}$ are almost the same due to the mass closeness, that is

$$
\frac{P_c(4312) \rightarrow pJ/\psi}{P_c(4457) \rightarrow pJ/\psi} = 1.16
$$

$$
\frac{P_c(4440) \rightarrow pJ/\psi}{P_c(4457) \rightarrow pJ/\psi} = 1.02
$$

Thus, this work indicates that $P_c(4440)$ may not be a compact pentaquark since its decay width is much larger than the other observed P_c, and that one may assign $J = \frac{1}{2}$ to the $P_c(4312)$ state and $J = \frac{3}{2}$ to the $P_c(4457)$ state in the compact pentaquark picture.

The branching ratios of the dominant channels are the key to reveal the nature of these charmonium-like pentaquark states. In addition to the pJ/ψ decay channel, the remaining possible decay channels, particularly the p_{η_c} channel should be targeted to search for P_c states and determine their quantum numbers in the future experiments.

ACKNOWLEDGEMENTS

This work is supported by Suranaree University of Technology (SUT), National Cheng Kung University(NCKU) and Development and Promotion of Science and Technology Talents Project (DPST).

Appendix A: The explicit color wave function

The explicit color singlet and octet wave functions of the q^3 and $c\bar{c}$ clusters are listed in Table V, which are employed to evaluate the spin-flavor-color transition amplitude of pentaquark states.

Appendix B: Phase space factor with the possible decay channels

Listed in Table VI are the numerical values of the kinematical phase-space factor in Eq. (10). Some decay channels are not available (N/A) because of the energy conservation.
TABLE V. Color wave functions of baryon and meson clusters for pentaquarks.

q³	q³p-type	q³λ-type	QQ
Singlet	\(\frac{1}{\sqrt{2}} (RGB - RGR + GBR - GRB) + BRG - BGR \)	\(\frac{1}{\sqrt{2}} (RRG - RGR + GBR - GRB) \)	\(\frac{1}{\sqrt{2}} (RGR) \)
Octet	\(\frac{1}{\sqrt{2}} (RGR - GRR) \)	\(\frac{1}{\sqrt{2}} (RRG - RGR - 2GGR) \)	\(B\bar{G} \)
2	\(\frac{1}{\sqrt{2}} (RGG - GRG) \)	\(\frac{1}{\sqrt{2}} (2RRB - RRB - BRR) \)	\(-G\bar{R} \)
3	\(\frac{1}{\sqrt{2}} (RBB + GBR - BRG - BGR) \)	\(\frac{1}{\sqrt{2}} (2RGB + 2GRB - GBR - RBG - BRG - BGR) \)	\(\frac{1}{\sqrt{2}} (R\bar{G}) \)
4	\(\frac{1}{\sqrt{2}} (GBG - BGG) \)	\(\frac{1}{\sqrt{2}} (2GBB - GBG - BGG) \)	\(R\bar{G} \)
5	\(\frac{1}{\sqrt{2}} (2RGB - 2GRB - GBR + RBG - BRG + BGR) \)	\(\frac{1}{\sqrt{2}} (2RBB + 3BRB - 2BBB - BRB) \)	\(-G\bar{B} \)
6	\(\frac{1}{\sqrt{2}} (GBB - BGB) \)	\(\frac{1}{\sqrt{2}} (3GGR + 2BGR - 3BGR - 3BBBG) \)	\(R\bar{B} \)

TABLE VI. Phase space factor, \(f(m_H, m_M, q) \), for \(P_c(4312) \), \(P_c(4440) \) and \(P_c(4457) \) with possible decay channels.

Final particles	Total mass of final particles (GeV)	\(P_c(4312) \)	\(P_c(4440) \)	\(P_c(4457) \)
pηc	3.922	0.08056	0.07038	0.06911
Δηc	4.214	0.12653	0.11442	0.11221
pJ/ψ	4.035	0.08929	0.07827	0.07686
ΔJ/ψ	4.327	N/A	0.12631	0.12516
Λc D	4.157	0.15350	0.13097	0.12797
Σc D	4.325	N/A	0.16237	0.16014
Σc D∗	4.390	N/A	0.16176	0.16517
Λc D∗	4.297	0.12507	0.16132	0.15847
Σc D∗	4.465	N/A	N/A	N/A
Σc D∗	4.530	N/A	N/A	N/A

[1] R. Aaij et al. (LHCb Collaboration), Observation of \(J/\Psi p \) Resonances Consistent with Pentaquark States in \(\Lambda_c^0 \rightarrow J/\Psi K^- p \) Decays, Phys. Rev. Lett. 115, 072001 (2015).
[2] R. Aaij et al. (LHCb Collaboration), Model-Independent Evidence for \(J/\Psi p \) Contributions to \(\Lambda_c^0 \rightarrow J/\Psi p K^- \) Decays, Phys. Rev. Lett. 117, 082002 (2016).
[3] R. Aaij et al. (LHCb Collaboration), Observation of a Narrow Pentaquark State, \(P_c(4312)^+ \), and of the Two-Peak Structure of the \(P_c(4450)^+ \), Phys. Rev. Lett. 122, 222001 (2019).
[4] H. X. Chen, W. Chen, and S. L. Zhu, Possible interpretations of the \(P_c(4312), P_c(4440), \) and \(P_c(4457) \), Phys. Rev. D 100, 051501 (2019).
[5] R. Chen, Z. F. Sun, X. Liu, and S. L. Zhu, Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks, Phys. Rev. D 100, 011502 (2019).
[6] L. Meng, B. Wang, G. J. Wang, and S. L. Zhu, The hidden charm pentaquark states and \(\Sigma_c D^* \) interaction in chiral perturbation theory, Phys. Rev. D 100, 014031 (2019).
[7] F. K. Guo, H. J. Jing, U. G. Meiňner, and S. Sakai, Isospin breaking decays as a diagnosis of the hadronic molecular structure of the \(\psi_c(4457) \), Phys. Rev. D 99, 091501 (2019).
[8] C. J. Xiao, Y. Huang, Y. B. Dong, L. S. Geng, and D. Y. Chen, Exploring the molecular scenario of \(\psi_c(4312) \), \(\psi_c(4440) \), and \(\psi_c(4457) \), Phys. Rev. D 100, 014022 (2019).
[9] M. B. Voloshin, Some decay properties of hidden-charm pentaquarks as baryon-meson molecules, Phys. Rev. D 100, 034020 (2019).
[10] S. Sakai, H. J. Jing, and F. K. Guo, Decays of \(\psi_c \) into \(J/\psi N \) and \(\eta_c N \) with heavy quark spin symmetry, Phys. Rev. D 100, 074007 (2019).
[11] Y. H. Lin and B. S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D 100, 056005 (2019).
[12] T. Gutsche and V. E. Lyubovitskij, Structure and decays of hidden heavy pentaquarks, Phys. Rev. D 100, 094031 (2019).
[13] A. Ali, I. Ahmed, M. Jamil Aslam, and A. Rehman, Heavy quark symmetry and weak decays of the \(b \) baryons in pentaquarks with a \(c \bar{c} \) component, Phys. Rev. D 94, 054001 (2016).
[14] A. Ali and A. Y. Parkhomenko, Interpretation of the narrow \(J/\psi p \) peaks in \(\Lambda_b \to J/\psi p K^- \) decay in the compact diquark model, Phys. Lett. B 793, 365 (2019).
[15] F. Giannuzzi, Heavy pentaquark spectroscopy in the diquark model, Phys. Rev. D 99, 094006 (2019).
[16] X.Z. Weng, X.L. Chen, W.Z. Deng, S.L. Zhu, Hidden-charm pentaquarks and \(\psi_c \) states, Phys. Rev. D 100, 016014 (2019).
[17] H. X. Chen, W. Chen, X. Liu, T. G. Steele and S. L. Zhu, Towards Exotic Hidden-Charm Pentaquarks in QCD, Phys. Rev. Lett. 115, 172001 (2019).
[18] H. X. Chen, W. Chen and S.L. Zhu, Possible interpretations of the \(\psi_c(4312) \), \(\psi_c(4440) \), and \(\psi_c(4457) \), Phys. Rev. D 100, 051501 (2019).
[19] K. Azizi, Y. Sarac and H. Sundu, Analysis of \(\psi_c^+(4380) \) and \(\psi_c^+(4450) \) as pentaquark states in the molecular picture with QCD sum rules, Phys. Rev. D 95, 094016 (2017).
[20] K. Azizi, Y. Sarac and H. Sundu, Strong decay of \(\psi_c(4380) \) pentaquark in a molecular picture, Phys. lett. B 782, 694 (2018).
[21] K. Azizi, Y. Sarac and H. Sundu, Possible Molecular Pentaquark States with Different Spin and Quark Configurations, Phys. Rev. D 98, 054002 (2018).
[22] Z. G. Wang, Analysis of the \(\psi_c(4312) \), \(\psi_c(4440) \), \(\psi_c(4457) \) and related hidden-charm pentaquark states with QCD sum rules, Int. J. Mod. Phys. A 35, 2050003 (2020).
[23] J. B. Cheng and , Y. R. Liu, Understanding the structures of hidden-charm pentaquarks in a simple model, Nucl. Part. Phys. Proc. 309-311, 158 (2020).
[24] M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sánchez, L. S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a Complete Heavy-Quark Spin Symmetry Multiplet: Seven Molecular Pentaquarks in Light of the Latest LHCb Analysis, Phys. Rev. Lett. 122, 242001 (2019).
[25] Y. Yan, Applied group theory in physics, Nakhonratchasima : Suranaree University of Technology Suranaree Press, University of Technology, (2011).
[26] Y. Yan and S. Srisuphaphon, Construction of multiquark states in group theory, Prog. Part. Nucl. Phys. 67, 496 (2012).
[27] K. Xu, A. Kaewsnod, X. Y. Liu, S. Srisuphaphon, A. Limphirat, and Y. Yan, Complete basis for pentaquark wave function in group theory approach, Phys. Rev. C 100, 065207 (2019).
[28] K. Xu, A. Kaewsnod, X. Y. Liu, S. Srisuphaphon, A. Limphirat, and Y. Yan, Pentaquark components in low-lying baryon resonances, Phys. Rev. D 101, 076025 (2020).
[29] A. Limphirat, C. Kobdaj, P. Suebka, and Y. Yan, Decay widths of ground-state and excited \(\Xi^b \) baryons in a nonrelativistic quark model, Phy. REV. C 82, 055201, (2010).
[30] J. Vandermeulen, \(\bar{N}N \) Annihilation creates two mesons, Z. Phys. C 37, 563 (1988).
[31] T. Gutsche and Amand Faessler and Granddon D. Yen and Shin Nan Yang, Consequences of strangeness content in the nucleon for \(\phi- \) meson production in \(\bar{N}N \) annihilation, Nucl. Phys. Proc. Suppl. 56, 311 (1997).
[32] T. Gutsche and R. Vinh Mau and M. Strohmier-Presicek and A. Faessler, Radiative proton-antiproton annihilation and isospin mixing in protonium, Phys. Rev. C 59, 630 (1999).
[33] S. Srisuphaphon, A. Kaewsnod, A. Limphirat, K. Khosonthongkee, and Y. Yan, Role of pentaquark components in \(\phi \) meson production proton-antiproton annihilation reactions, Phys. Rev. C 93, 025201 (2016).