Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Otolaryngology consultations for COVID-19 patients: A retrospective cohort study of indications, interventions, and considerations

Kunal R. Shettya,⁎, Brady J. Andersonb,⁎, Jumah G. Ahmadc, Lucy X. Liuc, Kevin Chowa, Samuel G. Ericksond, Shohan Shettye, Amber U. Luonga,f

aDepartment of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
bDepartment of Otolaryngology-Head and Neck Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
cDepartment of Otolaryngology-Head and Neck Surgery, LSU Health Shreveport, Shreveport, LA, United States
dDepartment of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
eWashington University in St. Louis, St. Louis, MO, United States
fCenter for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States

ARTICLE INFO

Article history:
Received 11 March 2022
Accepted 1 August 2022
Available online 4 August 2022

Keywords:
Otolaryngology consults
Otorhinolaryngologic diseases
Covid-19
Epistaxis
Anticoagulation

ABSTRACT

Objective: To identify differences in inpatient otolaryngology consultations and interventions for patients based on COVID-19.

Methods: Records were reviewed for all patients for whom otolaryngology was consulted at a high-volume tertiary care hospital from April 30, 2020 to October 1, 2020. Demographic information, length of stay, COVID-19 status, indication for consultation, and otolaryngology interventions were recorded. Statistical analysis was performed using R software.

Results: Bleeding composed a significantly higher proportion of otolaryngology consults in COVID-19 positive patients (28% vs. 8.4%, p<0.0001). Management of bleeding was the most common procedure performed in positive patients (n=37, 35%), and they had a higher median number of interventions performed when compared to bleeding patients who tested negative (1, IQR 1-2 vs. 1, IQR 0-1, p=0.04). COVID-19 positive patients with bleeding were more likely to expire than those with other indications for otolaryngology consultation (50% vs. 7%, p<0.001).

Conclusion: Bleeding and associated interventions comprised the predominant discrepancy between COVID-19 positive and negative patients in our cohort. We encourage routine use of simple and cost-effective methods to decrease risk of bleeding.

© 2022 Japanese Society of Otorhinolaryngology-Head and Neck Surgery. Inc. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Coronavirus SARS-CoV-2 (COVID-19) pandemic devastated communities and healthcare systems around the globe, with over 449 million cumulative confirmed cases worldwide and a death toll upwards of 5.9 million [1]. Healthcare professionals modified routines and procedures to protect
themselves, with a cross-sectional multi-institutional survey of 55 otolaryngology departments across North America revealing near-universal (n = 53 of 55, 96.3%) cancellations of elective cases at the height of the pandemic [2]. With these fluctuations in cases and responses, otolaryngology attendings and residents have continued to operate and take call across the country, with inevitable exposure to patients confirmed or under investigation for COVID-19 [2,3]. Although otolaryngologic symptoms of COVID-19 such as olfactory dysfunction, sneezing, and nasal congestion have been well-characterized to date [4], there remains a paucity of literature documenting inpatient trends of otolaryngology consults since the onset of the pandemic, with the few published studies demonstrating variable changes in consult patterns [5,6]. Only one case series and one small cohort study have addressed the issue of oropharyngeal bleeding requiring management by otolaryngology services [7,8]. In response to high rates of thrombotic events observed among patients with COVID-19, therapeutic dosing of anticoagulants was widely adopted as standard treatment, despite the inherently increased risks of bleeding [9–11]. As such, the overall bleeding rate in hospitalized COVID-19 patients is estimated at 2-5%, with a proportion accounted for by upper airway bleeding [8]. Recent findings have questioned the utility of therapeutic anticoagulation in improving overall survival in patients with severe cases of COVID-19, shifting the focus instead to the potential morbidity of this practice [12].

The observed high numbers of interventions for oropharyngeal bleeding in patients with severe COVID-19 infection, in light of new data challenging the benefit of therapeutic anticoagulation [12], prompted this single-institution study of inpatient otolaryngology consult rates based on COVID-19 status. In particular, we sought to determine whether patients with COVID-19 were more likely to require otolaryngology consultation for bleeding than patients without COVID-19, and if they would require a greater frequency of interventions to control their bleeding.

2. Methods

2.1. Ethical Considerations

This study was approved by the Committee for the Protection of Human Subjects of the University of Texas Health Science Center at Houston (IRB: HSC-MS-20-0970). Study participants provided written informed consent.

2.2. Study Design

This was a single-institution retrospective cohort study encompassing all patients with otolaryngology consults at a high-volume, tertiary care hospital, from April 30, 2020 to October 1st, 2020. Data on demographics, COVID-19 status, consult indication, length of stay, and interventions were collected.

2.3. Study Population

All patients for whom otolaryngology was consulted from April 30, 2020 to October 1, 2020 were included. We excluded patients with planned inpatient stays following scheduled operations. COVID-19 status was defined by test results dated within 14 days before or after consultation. Patients were also considered positive if they were being actively treated for COVID-19 related pneumonia or respiratory failure, even if their positive date was more than 14 days before consultation. Receipt of therapeutic anticoagulation was based on protocols established by the intensive care unit or hematology services and was variable. Typically, this involved heparin infusions or daily enoxaparin administration.

2.4. Stratification

Consultations were divided into 12 categories. Trauma included patients evaluated for facial trauma, temporal bone and laryngeal fractures, and traumatic injury to local structures (e.g. facial nerve, parotid duct, etc). Infections included peritonsillar abscess, cellulitis of the head-and-neck, Pott’s puffy tumor, epiglottitis, parotitis, and salivary gland abscesses. Bleeding included epistaxis and oropharyngeal hemorrhage. Otologic evaluations included otitis, mastoiditis, hearing loss, vertigo, and infections of the eardrum. Post-operative consultations included post-tonsillectomy hemorrhage, loosening of hardware (e.g. mandibulomaxillary fixation devices), and concerns for surgical site infection. Rhinologic evaluations included sinusitis, cerebrospinal fluid leaks, and pituitary masses. Tracheostomy management included consultations for placement, accidental decannulation, exchange, and bleeding from tracheostomy. Head-and-neck masses included consultations to investigate suspicions for malignancy, known head-and-neck malignancy, and benign endocrine masses. Airway evaluation included consultations that required an assessment of the upper airway secondary to concerns for airway compromise or active stridor that were not secondary to foreign body obstruction. The dysphonia category included consultations involving an assessment of the upper airway in patients with altered phonation. Foreign body consults involved an airway evaluation if there was suspicion or known foreign object causing obstruction. Consults for dysphagia were undertaken for patients with concern for aspiration or inability to tolerate oral intake.

Bedside laryngoscopy was performed using a flexible fiberoptic laryngoscope to evaluate consults including dysphonia, dysphagia, foreign body evaluation. Dressing and packing of infectious or post-surgical wounds was undertaken using iodineoform quarter or half-inch packing strips and Kerlix (Medline, Illinois, USA) gauze bandage rolls. Management of bleeding in the oropharynx entailed saline or tranexamic acid-soaked Kerlix (Medline, Illinois, USA) gauze bandage rolls. Nasopharyngeal bleeding management involved the application of gelatin absorbable Surgifoam (Ethicon, New Jersey, USA) sponges wrapped in Surgicel (Ethicon, New Jersey, USA) and soaked in oxymetazoline which were placed in the nasal cavities to obtain hemostasis. At our institution, facial laceration closure was rotated between the otolaryngology, plastic surgery, and oral and maxillofacial surgery services. Tracheostomy management includes tracheostomy changes and replacement with flexible laryngoscopy to evaluate for tube/cuff displacement, patency, or post-tracheostomy pos-
tioning. Routine tracheostomy care was performed by respiratory therapists and was not tabulated. Incision and drainage occurred most frequently for management of peritonsillar abscesses. Drainage of other cutaneous abscesses of the head and neck as well as simple hematoma evacuation were similarly performed bedside. Fine needle aspiration and biopsy was undertaken for masses and nodules requiring pathologic diagnosis. Rigid nasal endoscopy entailed the use of a 0-degree scope for an intact nose and a 30-degree scope for a post-surgical evaluation or evaluation of cerebrospinal fluid leak. Closed reduction of facial fractures included those of the mandible and nasal bones and were typically performed in the emergency department. There was no uniform protocol or instrumentation for foreign body removal in the airway. Other bedside interventions included wick placement for otitis externa, lingual frenectomy, and wound vacuum placement.

Procedures requiring intervention in the operating room were diverse and included tracheostomy, direct laryngoscopy, hematoma evacuation, complex abscess incision and drainage, complex laceration repair, endoscopic sinus surgery, and transsphenoidal hypophysectomy among others.

2.5. Statistical Analysis

Statistical analysis was performed using R [13–15]. Chi-square was used to test the null hypothesis that demographic factors, consult indications, and interventions performed were independent of the three COVID-19 statuses (positive, negative, and untested), df=2. Variables in which the null hypothesis was rejected (p<0.05) were examined further with chi-square using each COVID-19 status as a binary independent variable (e.g. positive vs. all others) to identify significant associations, df=1. Fisher’s exact test was used for variables with observation counts less than five. Tables display the p-value calculated for the initial analysis among all three groups; p-values for further binary analysis within individual groups are included in the text. P-values for all comparisons were adjusted using the Benjamini-Hochberg (BH) method to control the false discovery rate (FDR) [16]. Tables and in-text p-values reflect the lowest acceptable FDR at which the null hypothesis could be rejected, and associations considered significant. We rejected all null hypotheses in which the FDR was equal to or less than 0.05.

Shapiro-Wilk test was used to test normality of numerical variables. Medians were used to evaluate statistical significance of non-normal numerical variables. Kruskal-Wallis ANOVA was used to test the null hypothesis that there was no difference in medians among the three groups. Numerical values exhibiting significant differences among the three groups were then examined using pairwise tests for medians (positive vs. negative, positive vs. untested, and negative vs. untested), with p-values adjusted using the BH method.

3. Results

Of 1,089 otolaryngology consults completed during the period of interest, 693 (64%) were negative, 57 (5%) were positive, and 339 (31%) were untested for COVID-19. Six hundred and sixty-one (61%) were male, and the median age was 41 years (23 – 61 years) (Table 1). Shapiro-Wilk test revealed that none of the measured variables exhibited normal distributions. Analysis of demographic factors revealed an association with race (p=0.001; Table 1), however, investigation into insurance status yielded no association with positive COVID-19 status. Breakdown of consultation proportions by COVID-19 status is demonstrated in Fig. 1.

Bleeding composed a significantly higher proportion of consults in positive patients than all others (28% vs. 8.4%, p<0.0001; Table 2; Fig. 1). As such, bleeding management was the most common procedure performed for patients testing positive (n=37, 35%; Table 3). COVID-19 positive patients with bleeding had a higher median number of inter-

Table 1. Patient Demographics and Insurance Status. P-values represent associations among all three COVID-19 statuses, (chi-square for categorical, df=2; Kruskal-Wallis for numerical). P-values for significant associations using COVID-19 statuses as binary variables (df=1) are included in the text.

Total (n= 1089)	COVID-19 positive (n=57, 5%)	COVID-19 negative (n=693, 64%)	Untested (n=339, 31%)	P-value	
Male	662	37 (5.6%)	417 (63%)	208 (31%)	0.9
Median Age, yrs (IQR)	41 (23, 61)	44 (21, 61)	38 (24, 60)		0.9
Non-Hispanic White	405	7 (2%)	269 (66%)	129 (32%)	<0.001
Hispanic	314	32 (10%)	176 (56%)	106 (34%)	<0.0001
Non-Hispanic Black	302	17 (5.6%)	199 (66%)	86 (28%)	0.6
Asian	41	0 (0%)	32 (78%)	9 (22%)	0.15
Inpatient	732	51 (7.0%)	574 (78%)	107 (15%)	
Emergency Department	357	6 (1.7%)	119 (33%)	232 (65%)	<0.0001
Med LOS, (IQR)	2 (1, 10)	13 (2, 43)	5 (2, 13)	1 (0, 1)	<0.0001
Intervened	708	38 (5%)	454 (64%)	216 (31%)	0.6
Private Insurance	357	18 (32%)	221 (32%)	118 (35%)	0.7
Medicaid	241	17 (30%)	167 (24%)	57 (17%)	0.02
Medicare	225	8 (14%)	153 (22%)	64 (19%)	0.3
Self-pay	207	12 (21%)	113 (16%)	82 (24%)	0.02
Other	59	2 (4%)	39 (6%)	18 (5%)	0.9

IQR = interquartile range, LOS = length of stay.
otolaryngology consults stratified by indication in A) all consults, B) consults on COVID-19 positive patients, C) consults on COVID-19 negative patients, and D) consults on patients untested for COVID-19.

Table 2. Indications for Consultation. P-values represent associations between all three COVID-19 statuses, (chi-square for categorical, df=2). P-values for significant associations using COVID-19 statuses as binary variables (df=1) are included in the text.

Indication	Total (n=1089)	COVID-19 positive (n=57, 5%)	COVID-19 negative (n=695, 64%)	Untested (n=339, 31%)	P-value
Facial Trauma	363	17 (4.7%)	217 (36%)	129 (36%)	0.13
Infection	174	6 (3.4%)	112 (64%)	56 (32%)	0.6
Bleeding	103	16 (15%)	41 (40%)	46 (45%)	<0.0001
Airway Evaluation	95	3 (3%)	72 (76%)	20 (21%)	0.07
Head and Neck Mass	80	3 (3.8%)	60 (75%)	17 (21%)	0.14
Rhinologic	51	2 (3.9%)	40 (78%)	9 (17.6%)	0.10
Otologic	50	4 (8%)	32 (64%)	14 (28%)	0.6
Post-operative	51	1 (2%)	35 (69%)	15 (29%)	0.04
Tracheostomy Management	48	2 (4.2%)	33 (69%)	13 (27%)	0.9
Dysphonia	27	0 (0%)	25 (93%)	2 (7.4%)	0.01
Foreign Body	20	1 (5%)	6 (30%)	13 (65%)	0.01
Dysphagia	14	2 (14%)	11 (78%)	1 (7.1%)	0.08
Other	13	0 (0%)	9 (69%)	4 (31%)	

COVID-19 positive patients had longer median lengths of stay than negative and untested patients (13 days, IQR 2-43 vs. 2 days, IQR 1-9, p<0.0001; Table 1, Fig. 3). Of the 57 positive patients, 11 (19%) expired during their hospitalization. Nine (81%) died of respiratory failure due to COVID-19. Of the remaining two, one suffered from a subarachnoid hemorrhage while the other succumbed to a mixed cardiogenic shock; both had also developed hypoxic respiratory failure and received therapies targeting COVID-19. Of the 16 COVID-19 positive patients for whom otolaryngology was consulted for bleeding, 8 died (50%). This was a significantly higher rate than positive patients for whom otolaryngology performed than bleeding patients who were untested or tested negative (1, IQR 1-2 vs. 1, IQR 0-1, p<0.0001; Table 2; Fig. 2). After excluding consults from the emergency department, this difference held true (1, IQR 1-2 vs. 1, IQR 0-1; p=0.001). Twenty-three (40%) of 57 COVID-19 positive patients for whom otolaryngology was consulted had received therapeutic anticoagulation (TA) up to the day prior to consultation. TA was associated with consultation for bleeding, as otolaryngology was consulted for bleeding in 15 of the 23 COVID-19 positive patients receiving TA but only for one of the 34 COVID-19 positive patients not receiving TA (65% vs. 7%, p<0.0001).
Table 3. Procedures Performed. Mean procedures per patient are provided. However, p-values were calculated using non-parametric Kruskal-Wallis test due to a non-normal distribution.

Procedure	Total (Mean/per patient)	COVID-19 positive (n=57)	COVID-19 negative (n=695)	Untested (n=339)	P – value (Kruskal-Wallis)
Bedside	1,117	100 (1.75)	759 (1.09)	258 (0.76)	0.02
Laryngoscopy	262 (0.24)	15 (0.26)	201 (0.29)	46 (0.14)	<0.001
Dressing/Packing	146 (0.13)	18 (0.32)	103 (0.15)	25 (0.07)	0.13
Bleed Management	109 (0.10)	37 (0.65)	32 (0.05)	40 (0.12)	<0.0001
Laceration Repair	111 (0.10)	4 (0.07)	59 (0.08)	48 (0.14)	0.03
Tracheostomy	91 (0.08)	11 (0.19)	70 (0.10)	10 (0.03)	0.03
Incision and Drainage	73 (0.07)	1 (0.02)	32 (0.05)	40 (0.12)	<0.0001
Fine Needle Aspiration and Biopsy	31 (0.03)	0 (0)	21 (0.03)	10 (0.03)	0.5
Nasal Endoscopy	23 (0.02)	2 (0.04)	18 (0.03)	3 (0.01)	0.2
Closed Reduction of Facial Fracture	13 (0.01)	0 (0)	6 (0.01)	7 (0.02)	0.2
Foreign Body Removal	9 (0.008)	0 (0)	3 (0.004)	6 (0.02)	0.10
Other	19	2	10	7	
Operating Room	226	10 (0.18)	199 (0.29)	17 (0.05)	<0.001

was consulted for other reasons (50% vs. 7%, p=0.003). Although a higher median age was noted among COVID-19 positive patients who died, this was not statistically significant (53 vs. 38, p=0.07).

Consult rates, likelihood of intervention, and median number of procedures performed for other indications were similar between patients testing positive and negative (Tables 2; 3 and Fig. 1).

4. Discussion

During early stages of the COVID-19 pandemic, high incidences of pulmonary embolism (PE), deep venous thromboses (DVT), and arterial thrombotic events such as stroke were observed and associated with increased mortality among patients with COVID-19, despite treatment with prophylactic anticoagulation [9,10]. In some cases, patients already receiving therapeutic anticoagulation for other reasons demonstrated decreased rates of thrombotic events compared to those who received only prophylactic doses, raising the question as to whether therapeutic anticoagulation should be utilized to decrease thrombotic tendencies in patients with COVID-19 [9–11]. Subsequent observational studies of therapeutic anticoagulation in COVID-19 patients yielded conflicting results with regards to its effect on mortality, thrombotic events, and risk for bleeding, thus underscoring the need for further investigations to determine differences in outcomes [11]. Despite this uncertainty, guidelines have recommended anticoagulation in COVID-19 patients to mitigate some of the prothrombotic effects of the disease [17].

A recent landmark study found that in critically ill patients, anticoagulation with therapeutic dosing did not confer a survival advantage or improve the number of days free of cardiovascular or respiratory organ support as compared to thromboprophylaxis dosing [12]. This finding contrasts with previous cohort studies that have indicated that anticoagulation in COVID-19 positive patients increases overall survival.
This group also conducted an analogous trial for patients with COVID-19 who did not require intensive care unit-level support for organ dysfunction. In noncritically ill COVID-19 patients, this trial found that initial therapeutic-dose heparin significantly increased survival probability and reduced the need for cardiopulmonary end-organ support [20]. The changes in treatment that will undoubtedly result from these findings in relation to bleeding risk remain to be seen. At our institution, few protocols were specifically altered for COVID-positive patients.

We sought to examine differences at the patient level by comparing indications for consults, stratified by COVID-19 status (Table 2, Fig. 1). Consults for bleeding comprised the predominant indication for consultation among patients with COVID-19 during the studied period, suggesting that patients with COVID-19 were more likely to bleed than other patients. In addition, increased numbers of bleeding management procedures for COVID-19 positive patients suggest that bleeding in the context of COVID-19 is a complicated condition requiring repeat interventions with associated morbidity, cost, and potential for disease transmission (Table 3). Although un surprising given the high prevalence of therapeutic anticoagulation used during the time of study, these findings have important implications for both patient management and provider protection.

The standard intervention for epistaxis at our institution involves placing absorbable hemostatic packing such as Surgi-Foam and Surgicel (Ethicon, New Jersey, USA) in the nasal cavity, and saturating it with topical medications such as oxymetazoline, phenylephrine, tranexamic acid, or in refractory cases, epinephrine. The standard intervention for oropharyngeal bleeding in patients who are mechanically ventilated involves placing saline wet Kerlix gauze bandage rolls (Medline, Illinois, USA) in the oropharynx. Success is defined as observed hemostasis upon completion of the procedure. Rebleeding was exceptionally common in the positive cohort (Table 3), accounting for repeat procedures and substantial morbidity attributed to resuscitations from blood loss.

In response, we offer the following anticipatory guidance in COVID-19 positive patients given the increased risk for upper airway bleeding: 1) Additional care orders to include frequently scheduled nasal saline sprays, oral saline rinses, topical lubrication, and humidification. 2) In critically ill patients with significant episodes of bleeding requiring interventions and transfusions, frequent re-evaluation of therapeutic anticoagulation to determine whether the risk outweighs the benefit.

Of paramount importance is the ongoing prevention of transmission by patients to providers, as otolaryngologists are particularly susceptible due to the high volume of aerosol generating procedures in the head-and-neck. Current recommendations are to use N95 mask protection when in contact with positive patients in addition to standard personal protective equipment (PPE), especially when performing aerosol generating procedures [21]. Nasal and oral packing procedures cause coughing, sneezing, and spitting requiring considerable mucosal exposure and suctioning. Need for repeat interven-
5. Conclusion

Bleeding and associated interventions comprised the predominant discrepancy between COVID-19 positive and negative patients in our cohort. The risk of bleeding in COVID-19 patients should be considered when evaluating the need for therapeutic anticoagulation. We encourage routine use of simple and cost-effective methods to decrease the risk of bleeding in COVID-19 patients.

Disclosure Statement

The authors declare that there are no relationships or sources of financial support that may pose a conflict of interest.

Sources of Funding

None.

Disclosures

A.U.L. serves as a consultant for Aerin Medical (Austin, TX, USA), Lyra Therapeutics (Wattertown, MA, USA), Sanofi (Paris, France), and Stryker (Kalamazoo, MI, USA); A.U.L. has served on advisory boards for Acclarent (Irvine, CA), Glaxo-SmithKline (Brentford, UK) and AstraZeneca (Cambridge, UK); A.U.L. serves on the scientific advisory board for ENTvantage Dx (Austin, TX, USA) and Third Wave Therapeutics (San Francisco, CA, USA).

Meeting

A portion of this manuscript was presented at the 125th Annual meeting of the American Academy of Otolaryngology – Head and Neck Surgery, 10/5/2021, Los Angeles, CA.

References

[1] Ritchie H, Mathieu E, Rodés-Guiro L, Appel C, Giattino C, Ortiz-Ospiña E, et al. Coronavirus pandemic (COVID-19). Our World in Data 2020. Published online March 5Accessed March 2, 2021https://ourworldindata.org/coronavirus.
[2] Wickemeyer JL, Billings KR, Valika TS. Evolving Management of COVID-19: A Multi-institutional Otolaryngology Perspective. Otolaryngol Head Neck Surg 2020;163(2):259–64. doi:10.1177/0194599820930244.
[3] Anagiotis A, Petrichkos G. Otolaryngology in the COVID-19 pandemic era: the impact on our clinical practice. Eur Arch Otorhinolaryngol 2021;278(3):629–36. doi:10.1007/s00405-020-06161-x.
[4] Qiu J, Yang X, Liu L, Wu T, Cui L, Mou Y, et al. Prevalence and prognosis of otorhinolaryngological symptoms in patients with COVID-19: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2022;279(1):49–60. doi:10.1007/s00405-021-06900-8.
[5] Dharmarajan H, Belsky MA, Anderson JL, Sritharan S. Otolaryngology Consult Protocols in the Setting of COVID-19: The University of Pittsburgh Approach. Ann Otol Rhinol Laryngol 2022;131(1):12–26. doi:10.1177/00034894211005937.
[6] Shomorony A, Chern A, Long SM, Feit NZ, Ballakur SS, Gadjikio M, et al. Essential inpatient otolaryngology: what COVID-19 has revealed [published online ahead of print, 2021 Jul 10]. Eur Arch Otorhinolaryngol 2021;1–10. doi:10.1007/s00405-021-06963-7.
[7] Mulcahy CF, Ghulam-Smith M, Mamidi IS, Thakkar PG, Edwards H, Tummala N, et al. Oropharyngeal hemorrhage in patients with COVID-19: A multi-institutional case series. Am J Otolaryngol 2020;41(6) 102691. doi:10.1016/j.amjoto.2020.102691.
[8] Cui C, Yao Q, Zhang D, Zhao Y, Zhang K, Nisenbaum E, et al. Approaching Otolaryngology Patients During the COVID-19 Pandemic: Otolaryngol Head Neck Surg 2020;163(1):121–31. doi:10.1177/0194599820926144.
[9] Klok FA, Kruip MIHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020;191:148–50.
[10] Poissy J, Goutay J, Caplan M, Parmentier E, DuburcQ T, Lassalle F, et al. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation 2020;142:184–6.
[11] Wijaya I, Andhika R, Huang I. The use of therapeutic-dose anticoagulation and its effect on mortality in patients with COVID-19: a systematic review. Clin Appl Thromb Hemost 2020;261076920960797. doi:10.1177/1076029620960797.
[12] The REMAP-CAP, ACTIV-4a, and ATTACC InvestigatorsTherapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19. N Engl J Med 2021;385(9):777–89. doi:10.1056/NEJMoa2103417.
[13] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2021. Available from: https://www.R-project.org/.
[14] Maxime Hervé (2019). RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-73. https://CRAN.R-project.org/packages/RVAideMemoire.
[15] Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. doi:10.1007/978-0-387-98141-3.
[16] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol 1995;57:289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
[17] COVID-19 rapid guideline: reducing the risk of venous thromboembolism in over 16s with COVID-19. London: National Institute for Health and Care Excellence (NICE); November 20, 2020.
[18] Ionescu F, Jaiyesimi I, Petrescu I, Lawler PR, Castillo E, Munoz-Maldonado Y, et al. Association of anticoagulation dose and survival in hospitalized COVID-19 patients: A retrospective propensity score-weighted analysis. Eur J Haematol 2021;106(2):165–74 Feb. doi:10.1111/ejh.13533.
[19] Nadkami GN, Lala A, Bagiella E, Chang HL, Moreno PR, Pujadas E, et al. Anticoagulation, Bleeding, Mortality, and Pathology in Hospitalized Patients With COVID-19. J Am Coll Cardiol 2020;76(16):1815–26 Oct 20. doi:10.1016/j.jacc.2020.08.041.
[20] The REMAP-CAP, ACTIV-4a, and ATTACC InvestigatorsTherapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19. N Engl J Med 2021;385(9):790–802. doi:10.1056/NEJMoa2105911.
[21] Rameau A, Young VN, Amin MR, Sulica L. Flexible Laryngoscopy and COVID-19. Otolaryngol Head Neck Surg 2020;162(6):813–15. doi:10.1177/01945998209221395.
[22] Chua SE, Cheung V, Cheung C, McAlonen GM, Wong JWS, Cheung EPT, et al. Psychological effects of the SARS outbreak in Hong Kong on high-risk health care workers. Can J Psychiatry 2004;49(6):391–3.
[23] Civantos AM, Byrnes Y, Chang C, Prasad A, Chorath K, Poonia SK, et al. Mental health among otolaryngology resident and attending physicians during the COVID-19 pandemic: National study. Head Neck 2020;42(7):1597–609. doi:10.1002/hed.26292.
[24] Olayomi AO, Gunter SM, Leining LM, Murray KO, Amos C. COVID-19 Community Incidence and Associated Neighborhood-Level Characteristics in Houston, Texas, USA. Int J Environ Res Public Health 2021;18(4):1495 Published 2021 Feb 4. doi:10.3390/ijerph18041495.