Growth of *Mastigocladus* (Cyanobacteria) HS-46 isolated from maribaya hot spring, indonesia in medium NPK as a potential biofuel feedstock

Alinda Nurmarina 1, Nurul Rakhmayanti 1, Nining Betawati Prihantini 1,*, Sri Handayani 2, and Nasruddin 3

1Departement of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, 16424 UI Depok, Indonesia
2Departement of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, 16424 UI Depok, Indonesia
3Departement of Mechanical Engineering, Faculty of Engineering, University of Indonesia, 16424 UI Depok, Indonesia

Abstract. One of cyanobacteria genera which isolated from Maribaya hot spring located in Indonesia is *Mastigocladus* HS-46 can be used as raw material for biofuel production. *Mastigocladus* is cultured in commercial NPK fertilizer. Commercial NPK fertilizer is one of the low cost medium that commonly used for microalgae growth. The research aims to know the best concentration of commercial NPK fertilizer for *Mastigocladus* HS-46 growth. In this research, *Mastigocladus* HS-46 was grown in commercial NPK fertilizer with concentration 80 ppm, 240 ppm, NPK 80 ppm+BBM, and BBM (Bold Basal’s Medium) as a control. This strain was incubated on 35 °C. Observation were made approximately 14 days with 2 sampling for each medium. The average of wet weight *Mastigocladus* HS-46 after 14 day observation was obtained at NPK 80 ppm: 0.019 g/L, NPK 240 ppm: 0.009 g/L, NPK+BBM: 0.014 g/L, and BBM: 0.015 g/L. The results showed that the best NPK medium concentration was 80 ppm for growth *Mastigocladus* HS-46.

Commercial NPK fertilizer can be used for growth *Mastigocladus* HS-46 which has potential as biofuel feedstock.

1 Introduction

One of the genera of cyanobacteria that can live hot spring, namely *Mastigocladus* sp. *Mastigocladus* HS-46 was isolated from the Maribaya hot spring in Indonesia. *Mastigocladus* HS-46 lives at 42 °C and pH 6 [1]. *Mastigocladus* is potentially as a raw material for the production of biofuels, because biomass *Mastigocladus* contain lipid which can be used as a raw material for the production of biofuels [2]. The benefits of using microalga including cyanobacteria as a raw material for biofuels, that is in the process of harvesting can be done continuously, the cost of harvesting and transportation relatively low, and also does not require extensive land in breeding [3], to be able to produce biofuel, it takes high amounts of biomass. Therefore, it needed a growth medium for growing cyanobacteria so it can produce a high amount of biomass that can be used as raw material for the production of biofuels.

Growth medium containing nutrient for the growth of cyanobacteria. The growth medium commonly used for the growth of microalgae including cyanobacteria is Bold Basal's Medium. The Bold Basal's medium has a complete macronutrient and micronutrient [4] to serve as a medium control for the study. Nevertheless, the use of medium BBM to growing cyanobacteria in large scale research that leads to the production of biofuels is not economically. Therefore, to produce a high biomass needed an economical alternative medium.

In addition to the Bold Basal’s Medium, NPK fertilizers can be used as microalgae growth mediums [5]. NPK Fertilizer is an inorganic fertilizer with macronutrient composition consisting of N, P, and K which is essential and commonly used in plants to support its growth [6]. Other than as a plant fertilizer, NPK fertilizer can also be used to grow the cyanobacteria because it has enough content of nutrients for the growth of cyanobacteria.

This study is a basic study to find alternative medium, that is using NPK fertilizer to grow *Mastigocladus* HS-46 in order to produce high biomass. Research is expected to continue in large scale research leading to the biotechnology sector to produce biofuels.

2 Method and Materials

2.1 Microorganisms and Growth Medium

The microorganisms which used in this study was cyanobacteria genus *Mastigocladus* strain HS-46. *Mastigocladus* HS-46 was isolated from Maribaya hot spring. *Mastigocladus* HS-46 were grown in growth medium BBM as a control medium, and medium NPK
fertilizer with variations concentrations 80 ppm, 240 ppm, and medium NPK fertilizer mix with BBM (NPK 80 ppm+BBM).

2.2 Method

The first step of cultivation cyanobacteria is inoculated 30 mg biomass into growth medium. Amount 70 mL of growth medium were added into Erlenmeyer flask 100 mL. *Mastigocladus* HS-46 was incubated in an incubator at temperature 35 °C and light intensity ± 3300 lux, with initial pH 6-6.5 with two repetitions.

2.3 Measurement the weight of wet biomass *Mastigocladus* HS-46

Measurement of *Mastigocladus* HS-46 were done in 14 days with 10 times of observation. The sterile eppendorf tube 1.5 mL was measured at analytical measurement tool. Eppendorf tube with biomass were sentrifuged for 10 minute with 10.000 rpm. The supernatant were taken out and wet biomass weight were measured with analytical measurement tool.

2.4 Preparation and processing of data

This research is descriptive. Observation data include quantitative and qualitative data. Quantitative data in the form of weight biomass (g/L) and the qualitative data in the form of a color culture of *Mastigocladus* HS-46. Data weight biomass will be shown in the form of tables and curves while the color culture of *Mastigocladus* HS-46 will be shown in the photos of microscopic. Growth curve was made by comparing the value of biomass weight as ordinate axis Y by biomass weight counting time as abscissa X. The growth curves were made by Microsoft Excel.

3 Results and Discussion

3.1 Macroscopic observation *Mastigocladus* HS-46

Macroscopic observations of *Mastigocladus* HS-46 cultures by comparing the culture color on the Faber Castle standard color [7]. Based on the color chart, the color of the starter culture *Mastigocladus* HS-46 is sea green (Fig.1). The color appereance of *Mastigocladus* HS-46 in medium NPK 80 ppm dan 240 ppm was changed from sea green into apple green at day 14 (t14). while *Mastigocladus* HS-46 in BBM and NPK+BBM not changed and still colored sea green at day 14 (Fig.2)

The color change that occurs in the *Mastigocladus* HS-46 grown in medium NPK 240 ppm and 80 ppm, probably due to the chlorophyll degradations process. The process of chlorophyll degradation mechanism can occur due to the reaction of phaeophytin formation. Phaeophytin is a form of chlorophyll that loses the Mg$^{2+}$ ion. The process begins with the presence of Mg$^{2+}$ ions in the middle of the molecule. Furthermore, the Mg$^{2+}$ ion will be removed, and replaced by hydrogen ions. Consequently the color expressed becomes yellow [8].
Therefore *Mastigocladus* HS-46 grown in medium NPK 80 ppm and NPK 240 ppm change color to apple green.

3.2 Biomass Weight *Mastigocladus* HS-46

Mastigocladus HS-46 culture growth was seen in changes in the amount of biomass weight. Measurement of biomass weight of culture was done on day 0 (t0), day 1 (t1), day 2 (t2), day 3 (t3), day 4 (t4), day 7 (t7), day 8 (t8), day 11 (t11), day 12 (t12), and day 14 (t14).

Table 1. The average weight ratio of *Mastigocladus* HS-46 biomass in medium BBM, NPK 80 ppm, NPK 240 ppm, and NPK+BBM at observation time for 14 days

Time (Day)	Biomass weight (g/L)
	BBM
	NPK 80 ppm
	NPK 240 ppm
	NPK + BBM
t0	0.003
t1	0.001
t2	0.003
t3	0.013
t4	0.007
t7	0.013
t8	0.015
t11	0.001
t12	0.003
t14	0.015

Based on Table 1, the results of the mean weight calculation of *Mastigocladus* HS-46 biomass in all treatments decreased from day 0 (t0) to day 1 (t1). *Mastigocladus* HS-46 grown in BBM medium increased biomass on day 3 (t3): 0.013 g/L; day 8 (t8): 0.015 g/L; and day 14 (t14): 0.015 g/L.

Mastigocladus HS-46 grown in NPK 80 ppm increased biomass on day 8 (t8): 0.013 g/L; day 12 (t12): 0.014 g/L; and day 14 (t14): 0.019 g/L. *Mastigocladus* HS-46 grown in NPK 240 ppm increased biomass on day ke-7 (t7) sebesar 0.015 g/L and day 11 (t11): 0.018 g/L. Then decreased on day 14 (t14): 0.009 g/L. *Mastigocladus* HS-46 grown in NPK+BBM medium increased biomass on day ke-18 (t13): 0.018 g/L. Then decreased on day 14 (t14): 0.014 g/L.

The result of qualitative observation using growth curve shows *Mastigocladus* HS-46 difference which is grown in variation medium of BBM, medium NPK 80 ppm, 240 ppm, and NPK+BBM. The difference can be seen in Fig.4.

The growth curve of this study still imperfect, because *Mastigocladus* HS-46 were still adapted with the condition of growth medium [5]. The growth curve can increase and decrease again so it has not reached stable. This is because the medium BBM, NPK 80 ppm, and NPK 240 ppm, has a high nitrogen content. Nitrogen contained in the medium is a major nutrient in the growth of microalgae including cyanobacteria. Nitrogen function in biochemical processes, such as the biosynthesis of nucleic acids (DNA and RNA) and amino acids (protein). Cyanobacteria use sources of nitrogen in the form of NH$_4^+$, NO$_3^-$, NO$_2^-$, and NO$^-$ and also organic molecules in the form of urea and amino acids [9]. The source of nitrogen in the medium BBM from NaNO$_3$ while the nitrogen source in the NPK medium from ammonium (NH$_4^+$); nitrat (NO$_3^-$); and urea. High levels of nitrogen in the growth medium can lead to the deactivation of pigment production for photosynthesis [5]. Therefore, mediums that have high nitrogen levels take longer to reach a stable phase of growth. The nitrogen content in the BBM medium was 41.17 mg, while the nitrogen content of NPK medium 80 ppm and 240 ppm was 16 mg and 48 mg.

Fig.4. Growth curve of *Mastigocladus* HS-46 in BBM medium; NPK 80 ppm; NPK 240 ppm; and NPK+BBM.

4 Conclusion

Based on the observation of the 14 day and the discussion that has been done. The medium concentration of NPK 80 ppm is the best concentration of NPK for *Mastigocladus* HS-46 growth, because the average biomass weight *Mastigocladus* HS-46 in NPK 80 ppm on day 14 (t14): 0.019 g/L. The low average biomass weight in *Mastigocladus* HS-46 grown in NPK medium 240 ppm on day 14 (t14): 0.009 g/L.

This work was funded by Hibah Publikasi Internasional Terindeks untuk Tugas Akhir Mahasiswa (Hibah PITTA) 2018 to Nining Betawati Prihantini, grant no. 2288/UN2.R3.1/HKP.05.00/2018.

References

1. Prihantini, N.B. *Polyphasic taxonomy of culturable Cyanobacteria isolated from hot spring in west java, Indonesia*. Disertasi S3 Jurusan Biologi FMIPA UI, Depok: vii + 213 hlm (2015)

2. Kotelev, M.S. Antonov, M. S. Beskorovainyi A. V. & Vinokurov, V. A. *Photobioreactor operation condition optimization for high energy cyanobacterial biomass synthesis to produce third"
3. Mudasir, M. & Suyono, E. Potensi algae sebagai biofuel. Universitas Gadjah Mada, Departemen Kimia, FMIPA, Yogyakarta: 17 hlm (2010)

4. Andersen, R. A., J.A. Berges, P.J. Harrison & M.M.Watanabe. Appendix a recipes for freshwater and seawater media. in: Andersen, R.A (ed.). Algal culturing techniques. Elsevier Academic Press, Elsevier Inc, London: 538 hlm (2005)

5. Saad, A. H, Cultivation of microalgae Chlorella vulgaris in Airlift photobioreactor for biomass production using commercial NPK nutrients. Alkhwarizmi Engineering 12, 1 (2015)

6. Amini, S & Syamdidi. Konsentrasi unsur hara pada media dan pertumbuhan Chlorella vulgaris dengan pupuk anorganik teknis dan analisis. Jurnal Perikanan 2 (2006)

7. Faber castell polychromos artist color pencils. 5 hlm.http://www.fabercastell.com/service/color-charts, diakses 27 Mei 2018, pk 20.15 WIB.

8. Brandis, A. S., Salomon, Y., & Scherz, A. Advances in Photosynthesis and chlorophyll a to chlorophyll b ratio of Chlorella. Plant Physiology 46, 1 (2006)

9. Markou, G., D. Vandamme, K. Muylaert. Microalgal and Cyanobacterial cultivation: The supply of nutrients. Water research. 65 (2014)