Memory H_∞ performance control of a class T-S fuzzy system

Yanhua Wang1,*, Xiqin He2, Zhihua Wu1, Xiulan Kang1 and Wei Xiu1

1Chaoyang Teachers College, Liaoning, China
2University of Science and Technology Liaoning, Liaoning, China

*Corresponding author e-mail: wangyanhua1109@163.com

Abstract. For much nonlinear system in the control system, both the stability of the system and certain performance indicators are required. The characteristics of T-S model in fuzzy system make it possible to illustrate a great amount of nonlinear system efficiently. First and foremost, the T-S model with uncertainties and external disturbance is utilized to interpret nonlinear system so as to implement H_∞ performance control by means of fuzzy control theory. Meantime, owing to the tremendous existence of time delay phenomenon in the controlled, feedback controller with memory fuzzy state is fabricated. On the basis of Lyapunov Stability Theory, the closed-loop system becomes stable by establishing Lyapunov function. Gain matrix of the memory state feedback controller is obtained by applying linear matrix inequality methodology. And simultaneously it makes the system meet the requirement of the H_∞ performance indicator. Ultimately, the efficiency of the above-mentioned method is exemplified by the numerical computation.

1. Introduction
In practical engineering, as time delay of the controlled volume exists in the system, it is better to realize the performance of the system by using memory control. Since 1980s when Zames[1] first proposed H_∞ control theory, many scholars in the control field have begun to conduct research on it [2,3]. By applying the fuzzy control theory to the nonlinear system and designing fuzzy controller, the stability of nonlinear system was studied[4,5]. In recent years, many scholars have applied fuzzy control combined with many other control methods to study nonlinear systems. Liu Yi and Sun Liying[6] studied the design method of guaranteed cost controller by using parallel distribution compensation algorithm. Chen B and Xu S[7] discussed the guaranteed cost controller with memory state feedback for neutral time delay systems. Tan Chong[8] studied the robust H_∞ control problem in uncertain time-delay continuous generalized linear systems by feedback of memory state. Literature[9][and]10 research showed the design of a controller for the guarantee of cost suitable for fuzzy memory system. However, so far there has been little research on H_∞ performance of the memory T-S fuzzy systems. Therefore, the research on T-S fuzzy system with the state uncertainties and external disturbances will be expounded, and the memory state feedback controller is to be analyzed so as to achieve H_∞ performance.
2. Preliminaries and problem formulation

2.1. Relevant lemmas

Lemma 1 [12]: Let U, V and F be matrices composed by real numbers of appropriate dimensions, on the condition of $F^TF \leq I$, for any scalar $\varepsilon > 0$, we have

$$UFV + V^TF^TU^T \leq \varepsilon UU^T + \varepsilon^{-1}VV^T$$

Lemma 2 [13]: For any real vector x, y and matrices L, X, Y, Z of appropriate dimensions, if X, Z are symmetric positive definite and $\begin{bmatrix} X & Y \\ Y^T & Z \end{bmatrix} \geq 0$, we have

$$-2x^TLy \leq \inf_{x, y, z} \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} X & Y-L \\ Y-L^T & Z \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2.2. Problem formulation

The total fuzzy model is achieved by fuzzy aggregation [10].

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(\theta) [(A_i + \Delta A_i)x(t) + B_iu(t) + B_i\phi(t)] \quad (1)$$

$$y(t) = \sum_{i=1}^{r} C_i x(t)$$

where $\phi(t)$ is external perturbation input. $y(t) \in \mathbb{R}^q$ is the output of system, $C_i (i = 1, \cdots, r)$ is constant matrices.

Suppose the following fuzzy controller with the function of memory state feedback is taken.

$$u(t) = \sum_{i=1}^{r} h_i(\theta) [K_i x(t) + K_{2i} x(t - \tau)], i = 1, 2, \cdots, r \quad (2)$$

where $K_i, K_{2i} \in \mathbb{R}^{nm \times m}$ are the feedback gain matrix of the i-th rule, from (2).

The closed-loop system with state feedback by (2) and (1) can be described

$$\dot{x}(t) = \sum_{i=1}^{r} h_i(\theta) \sum_{j=1}^{r} h_j(\theta) [(\bar{A}_i x(t) + B_i (K_i x(t) + K_{2i} x(t - \tau)) + B_i \phi(t)] \quad (3)$$

$$y(t) = \sum_{i=1}^{r} C_i x(t)$$

among them $\bar{A}_i = A_i + \Delta A_i$

In the paper, we design a fuzzy memory state feedback controller (2), which can not only make (3) asymptotically stable, but can satisfy H_∞ performance function. H_∞ performance function is defined as follows:

$$\|x(t)\| < \gamma \|\phi(t)\| \quad (4)$$

3. Main results

Theorem: Consider uncertain system (3), if there are some symmetric positive definite matrices $\bar{P}, \bar{Q}, \bar{X}, \bar{Z}$, some positive constants ε_i ($i = 1, 2, \cdots, r$) and matrix \bar{Y}, \bar{K}_i and \bar{K}_{2i}, satisfying the following LMIs:
\[
\begin{bmatrix}
\Lambda_i & B_i \tilde{K}_{i,j} - \tilde{Y} & B_{i0} & \tau (\bar{P} \bar{A}_j^T + \tilde{K}^T_{i,j} \bar{B}^T_{i}) & \bar{P} \bar{E}^T_i & \varepsilon_i D_i & \bar{P} C_i^T \\
\tilde{K}^T_{i,j} \bar{B}^T_{i} - \tilde{Y}^T & -\tilde{Q} & 0 & \tau \tilde{K}^T_{i,j} \bar{B}^T_{i} & 0 & 0 & 0 \\
B_{i0} & 0 & -\gamma^2 I & 0 & 0 & 0 & 0 \\
\tau (A_i \bar{P} + B_i \tilde{K}_{i,j}) & \tau B_{i0} & -\tau \tilde{Z} & 0 & \varepsilon_i D_i & 0 & \tau \tilde{Z}_i \\
E_i \bar{P} & 0 & 0 & 0 & -\varepsilon_i I & 0 & 0 \\
\varepsilon_i D_i^T & 0 & 0 & \tau \tilde{Z}_i & 0 & -\varepsilon_i I & 0 \\
C_i \bar{P} & 0 & 0 & 0 & 0 & 0 & -I \\
\end{bmatrix}
< 0
\] (5)

\[
\mathbf{X} \begin{bmatrix} \mathbf{Y} \\ \mathbf{Y}^T \\ \mathbf{Z} \end{bmatrix} \geq 0 , \quad \mathbf{P} \geq \mathbf{Z}
\] (6)

then, the system (3) is progressively stable and satisfies the (4).

Proof: we construct Lyapunov function candidate:
\[
V(x(t)) = V_1(x(t)) + V_2(x(t)) + V_3(x(t))
\] (7)

where \(V_1(x(t)) = x(t)^T P x(t) \), \(V_2(x(t)) = \int^t_0 \int^t_{\alpha} \dot{x}(\alpha)^T Z \dot{x}(\alpha) d\alpha d\beta \), \(V_3(x(t)) = \int^t_0 x(s)^T Q x(s) ds \)

The time derivative of \(V(x(t)) \) is given by
\[
\dot{V}(x(t)) = \dot{V}_1(x(t)) + \dot{V}_2(x(t)) + \dot{V}_3(x(t))
\]

\[
\dot{V}_1(x(t)) = \sum_{i=1}^n h_i(\theta) \sum_{j=1}^n h_j(\theta) \dot{x}(x(t))^T (P \bar{A}_i + \tilde{K}_{i,j} + \tilde{K}^T_{i,j} \bar{B}^T_{i} + \tau X + Y + Y^T) x(t)
\]

\[
-2x(t)^T (Y - PB_{i0}) x(t - \tau) + \int^t_{\tau-} \dot{x}(\alpha)^T Z \dot{x}(\alpha) d\alpha + 2x(t)^T PB_{i0} \omega(t) \]

\[
\dot{V}_2(x(t)) = \tau \dot{x}(t)^T \tilde{Z} \dot{x}(t) - \int^t_{\tau-} \dot{x}(\alpha)^T Z \dot{x}(\alpha) d\alpha , \quad \dot{V}_3(x(t)) = x(t)^T Q x(t) - x(t - \tau)^T Q x(t - \tau)
\]

when \(t \geq 0 \), by \(\dot{V}(x(t)) \), (2)and(3),
\[
\dot{V}(x(t)) + y(t)^T y(t) - \gamma^2 \omega(t)^T \omega(t) \leq \sum_{i=1}^n h_i(\theta) \sum_{j=1}^n h_j(\theta) \begin{bmatrix} x(t) \\ x(t - \tau) \\ \omega(t) \end{bmatrix}^T \begin{bmatrix} \begin{bmatrix} x(t) \\ x(t - \tau) \end{bmatrix} \\ \omega(t) \end{bmatrix} \leq \sum_{i=1}^n h_i(\theta) \sum_{j=1}^n h_j(\theta) \begin{bmatrix} x(t) \\ x(t - \tau) \\ \omega(t) \end{bmatrix}^T \begin{bmatrix} \begin{bmatrix} x(t) \\ x(t - \tau) \end{bmatrix} \\ \omega(t) \end{bmatrix}
\]

where

\[
\Pi = \begin{bmatrix}
\Lambda_2 & PB_{i0} \tilde{K}_{i,j} - \tilde{Y} & PB_{i0} \\
\tilde{K}^T_{i,j} \bar{B}^T_{i} - \tilde{Y}^T & -\tilde{Q} & 0 \\
B_{i0}^T P & 0 & -\gamma^2 I \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix} (\bar{A}_i + B_i \tilde{K}_{i,j}, \tilde{Y}) \\ \bar{K}^T_{i,j} \bar{B}^T_{i} \\
\end{bmatrix} \\
\begin{bmatrix} (\bar{A}_i + B_i \tilde{K}_{i,j}) \tilde{Y} \\ \bar{K}^T_{i,j} \bar{B}^T_{i} \\
\end{bmatrix} \\
\end{bmatrix}
\] (8)

\[
\Lambda_2 = PA_i + \bar{A}_j^T P + PB_{i0} \tilde{K}_{i,j} + \tilde{K}^T_{i,j} \bar{B}^T_{i} + \tau X + Y + Y^T + Q + C_i^T C_i
\]

by \(\Delta_i = D_i F(t) E_i [10] \), according to scurh lemma[11] and lemma 1, we have
\[
\begin{bmatrix}
\Lambda_2 & PB_{i0} \tilde{K}_{i,j} - \tilde{Y} & PB_{i0} \\
\tilde{K}^T_{i,j} \bar{B}^T_{i} - \tilde{Y}^T & -\tilde{Q} & 0 \\
B_{i0}^T P & 0 & -\gamma^2 I \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix} (\bar{A}_i + B_i \tilde{K}_{i,j}, \tilde{Y}) \\ \bar{K}^T_{i,j} \bar{B}^T_{i} \\
\end{bmatrix} \\
\begin{bmatrix} (\bar{A}_i + B_i \tilde{K}_{i,j}) \tilde{Y} \\ \bar{K}^T_{i,j} \bar{B}^T_{i} \\
\end{bmatrix} \\
\end{bmatrix} \\
\] (9)
Pre- and post-multiplying the right side of (9) by diagonal matrix \(\{ P^i, P^{-i}, I, I, I, I, I, I, I, I, I \} \), let \(\bar{P} = P^{-1} \), \(\bar{P} = P^{-1} \bar{P}^{-1} \), \(\bar{Q} = P^{-1} Q \bar{P}^{-1} \), \(\bar{K}_{ij} = K_{ij} P^{-1} \), \(\bar{K}_{ij} = K_{ij} P^{-1} \), \(\bar{Z} = Z^{-1} \), at the same time, according to lemma 1, the right of (9) is equivalent to the following formula

\[
\begin{bmatrix}
\Lambda_i & B_i \bar{K}_{ij} - \bar{P} & B_o & \tau(\bar{P} \bar{A} + \bar{K}_{ij} \bar{B}^T) & \bar{P} \bar{E} & \varepsilon_i D_i & \bar{P} \bar{C}^T \\
\bar{K}_{ij}^T \bar{B}^T - \bar{Y}^T & -\bar{Q} & 0 & \tau \bar{K}_{ij}^T \bar{B}^T & 0 & 0 & 0 \\
B_o^T & 0 & -\gamma^2 I & \tau B_o^T & 0 & 0 & 0 \\
\bar{E} & \tau B_i \bar{K}_{ij} & \tau B_i & -\tau \bar{Z} & 0 & \varepsilon_i D_i & 0 \\
\varepsilon_i D_i^T & 0 & 0 & \tau \varepsilon_i D_i^T & 0 & -\varepsilon_i I & 0 \\
C \bar{P} & 0 & 0 & 0 & 0 & 0 & -I
\end{bmatrix}
\]

where \(\Lambda_i = A_i \bar{P} + \bar{P} A_i + B_i \bar{K}_{ij} + \bar{K}_{ij} B_i^T + \tau \bar{X} + \bar{Y} + \bar{Q} \)

by (5), \(\bar{X} < 0 \), therefore, \(\dot{V}(x(t)) + y(t) \gamma y(t) - \gamma^2 \omega(t)^T \omega(t) < 0, \omega(t) < 0, \omega(t) > 0 \), when \(\omega(t) = 0 \), we have \(\dot{V}(x(t)) < 0 \), the (3) that achieves asymptotical stability, and for all \(\omega(t) \in L_2(0, +\infty) \), thus \(x(t) \in L_2(0, +\infty) \), there is \(\lim\sup_{t \to \infty} x(t) = 0 \).

For \(\dot{V}(x(t)) + y(t) \gamma y(t) - \gamma^2 \omega(t)^T \omega(t) \), on both sides of the integration, and under zero initial conditions \(V(x(t)) = 0, V(x(\infty)) = 0 \), we have

\[
\int_0^\infty (y(t) \gamma y(t) - \gamma^2 \omega(t)^T \omega(t)) dt < 0
\]

So by definite integral property, there is \(y(t) \gamma y(t) \leq \gamma^2 \omega(t)^T \omega(t) \), equivalent to \(\| y(t) \| < \gamma \| \omega(t) \| \).

During the proving process, when applying lemma 2, we ensure \(X \geq 0 \), from (6) and [10].

4. Numerical examples

Considering the global fuzzy system (3) is described by the two rules, where

\[
A_1 = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \ B_1 = B_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ B_{11} = B_{12} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ D_1 = D_2 = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}, \\
E_1 = E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ C_1 = C_2 = [0 & 1], \ \gamma = 1, \ \tau = 0.2
\]

From Theorem 1, one feasible solution to LMIs is computed to be

\[
\bar{P} = \begin{bmatrix} 4.0710 & 0 \\ 0 & 2.4205 \end{bmatrix}, \ \bar{Q} = \begin{bmatrix} 7.0855 & 0 \\ 0 & 2.1426 \end{bmatrix}, \ K_{11} = \begin{bmatrix} -6.6763 & -1.6819 \\ 0 & -5.6832 \end{bmatrix}, \ K_{21} = \begin{bmatrix} -0.0821 & 0 \\ 0 & -0.1311 \end{bmatrix}, \\
K_{12} = \begin{bmatrix} -6.6763 & 0 \\ -0.5946 & -6.6832 \end{bmatrix}, \ K_{22} = \begin{bmatrix} -0.0821 & 0 \\ 0 & -0.1311 \end{bmatrix}, \varepsilon_1 = 1.1665, \varepsilon_2 = 133.5352.
\]

The initial conditions are given as

\[
x(0) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \ F_1(t) = F_2(t) = \sin(\pi t) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \omega(t) = 0.5 \sin(10\pi t) \begin{bmatrix} 1 \end{bmatrix},
\]

we choose the following membership functions \(\alpha_2(t) = 1 - \alpha_1(t), \ \alpha_1(t) = 1/(1 + e^{-2x_1}). \)
5. Conclusion
Considering a class of the T-S fuzzy system with state uncertainties and external perturbation, under the condition of the uncertainty which satisfies the norm bounded, the gain matrix of memory feedback control was substantiated by designing memory state feedback control and through the stability of Lyapunov and the linear matrix inequality methodology of Matlab (LMT toolbox) so that the closed loop system becomes asymptotically stable. Meanwhile, H_∞ performance indicator was required. The methodology was proved to be effective by the examples of numerical simulation in the final part of the paper.

References
[1] Zames G. Feedback and optimal sensitivity: model reference transfer functions, multiplicative semi-norms, and approximate inverses. IEEE Trans Automt Control.1981(2),pp.301-320;
[2] Sang-Hyun Cho, Ki-Tae Kim, Hong-Bae Park. Robust and Non-fragile H_∞ State feedback controller Design for Time Delay Systems. Internatonal Journal of Control, Automation ,and System-s.2003(4),pp.503-510;
[3] Jong-Hae .Kim and Do-Chang. Oh. Robust and Non-fragile H_∞ Control for Descriptor Systems w-ith Parameter Uncertainties and Time Delay. International Journal of Control, Automation, and S-ystems.2007(5),pp.8-14;
[4] T.Takagi and M.Surgeon, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, Jan. 1985, pp. 116-132.

[5] K. Tanaka, T. Ikeda, and H. O. Wang. A unified approach to controlling chaos via an LMI-based fuzzy control system design, IEEE Trans. Circuits Syst., vol. 45, Oct, 1998, pp. 1021-1040.

[6] Liu Yi and Sun Liying, Guaranteed cost control for a class of Uncertain Switched Fuzzy with time-delay Systems, Control Engineering of China, 2013.20(3), pp. 521-525

[7] Chen B, Lamj, Xu S. Memory State Feedback guaranteed Cost Control for Neutral Delay Systems[J]. International Journal of Innovative Computing, Information Control, 2006.2(2), pp. 93-303.

[8] Tan Chong, Zhang ruizhi, Zhang xian, Robust H_∞ Control for Uncertain Descriptor Linear Systems with time-delay via memory state feedback Journal of Natural Science of Heilongjiang University, 2009,26(4), pp.458-464.

[9] Hang Afang, Chen lihuan, LMI-based Guaranteed Cost Controller Designs for T-S Fuzzy Memory Non-fragile Systems, Journal of Southwest University (Natural Science Edition), 2012.34(11), pp. 125-131.

[10] Y.H.Wang, X.Q.He, Z.H.Wu, C.G.Wang, A Class of Memory Guaranteed Cost Control of T-S Fuzzy System, Future Mechatronics and Automation-Yang, Taylor & Francis Group, 2015(1), pp. 165-169;

[11] Chang-hua lien, Rubust Observer-based control of systems with state perturbations via LMI approach, IEEE Transactions on Automatic Control, 2004.49(8), pp. 1365-1370.

[12] Liberzon D. Switching in systems and control. Boston: Birkhauser, 2003.

[13] Jinlin xu, baida qu, baoguo xu, Guaranteed cost for networked control systems with uncertain time-delay, Computer engineering and applications, 2014, 50(5), pp. 239-242.