The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis

Hiral Chaudhary¹, Jalpa Patel¹, Nayan K. Jain² and Rushikesh Joshi¹*

Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The etiopathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health in women's lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attributed to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian hyperandrogenism which can result in PCOS.

Keywords: Polycystic ovary syndrome, Hyperandrogenism, Ovarian steroidogenesis, Gonadotropins, Candidate genes, Polymorphism

Introduction
Polycystic ovary syndrome (PCOS) is the most common endocrinopathies, first reported in 1935 by Stein I. F and Leventhal M. L [1]. WHO's estimated ratio of PCOS affecting women of reproductive age group worldwide is 116 million (3.6%) [2]. Globally, the prevalence of PCOS is varying from 2.2% to as high as 26%. Based on the 1990 US National Institutes of Health (NIH) diagnostic criteria, the prevalence rate from the United States, Europe, Asia, and Australia is between 5 to 9% and approximately between 4 to 21% when Rotterdam 2003 criteria is applied in clinically evident PCOS women of reproductive age [3]. In India, the prevalence estimate is 10% and yet no clear statistical data is available [4].

PCOS is majorly characterized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction manifested as oligomenorrhea, amenorrhea...
or chronic anovulation, and polycystic ovarian morphology (PCOM: an excessive number of preantral follicles in ovaries) [5]. Clinical Hyperandrogenemia leads to excessive terminal hair growth on the face or body suggesting masculine features known as hirsutism and leads to cosmetic consequences such as acne and alopecia (male pattern baldness). In contrast, biochemical hyperandrogenism results in excessive production of androgens and insulin resistance [6]. It is also associated with metabolic risk factors including hyperinsulinemia, Type II Diabetes mellitus, hypertension, dyslipidemia, and cardiovascular disorders [7].

An alteration observed in the steroid biosynthesis pathway increases the androgen levels in PCOS women [8]. Most of the enzymes involved in the biosynthesis of the adrenal steroid hormones and the gonadal steroid hormones fall into two major classes of proteins: the cytochrome P450 heme-containing proteins and the hydroxysteroid dehydrogenases. The P450 enzymes involved in steroid hormone biosynthesis are membrane-bound proteins associated with the mitochondrial membranes CYP11A, CYP11B1, and CYP11B2, or the endoplasmic reticulum (microsomal) CYP17, CYP19, and CYP21. Studies have shown that hyperandrogenism, luteinizing hormone (LH) hypersecretion, hyperinsulinemia are majorly associated with the pathophysiology of PCOS [9]. Hyperandrogenism is prominently observed in the ovary of PCOS women, which leads to intense ovarian steroidalogenesis [10]. For ages, ovarian function is affected by androgens which are often associated with infertility. Androgen excess is the main factor promoting anovulation and follicular arrest, suggesting decreased oocyte development and maturation [11]. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered. However, their exact role is still not clear [12]. The central genes explored in the steroidalogenesis pathway and gonadotropin action and regulation in developing PCOS are explained in this review article.

Etiopathogenesis

The term polycystic ovary syndrome was coined after Stein and Leventhal studied ovarian morphology and histology and numerous clinical findings that verified the existence of polycystic ovaries in women [13]. The National Institutes of Health (NIH) Conference suggested in 1990 when the diagnostic criteria for PCOS were first introduced that both hyperandrogenism and chronic anovulation be always present [14]. Later, in 2003, the ESRHE/ASRM Rotterdam criteria specified PCOS by requiring at least two of three characteristics of oligo-ovulation/anovulation, hyperandrogenism, and polycystic ovaries on USG to be present [15]. In 2006, the Androgen Excess Society (AES) proposed an amendment, in which oligo-ovulation/anovulation or polycystic ovaries on ultrasonography should accompany a clinical or biochemical diagnosis of hyperandrogenism [16].

PCOS being a multigenic trait, described in Fig. 1: Implications of Polycystic ovary syndrome in women’s lives; many pathways may be involved in its etiology. Researchers are studying PCOS for ages and generated many hypotheses about the PCOS development and its characteristics features, but the etiology behind the syndrome is still unclear. The pathogenesis of PCOS is associated primarily with theca cell defects along with neuroendocrine dysfunction of the hypothalamic-pituitary-ovarian axis resulting in hyperandrogenism [17]. In normal conditions, the hypothalamus signals the pituitary gland to release Gonadotropin-releasing hormone (GnRH), which further stimulates the normal signaling pathway for releasing Luteinizing hormone (LH) and Follicle-stimulating hormone (FSH). Studies have shown a significant increase in the frequency and the amplitude of LH release reflecting an increase in GnRH secretion with average/reduced FSH secretion, suggesting the presence of hypothalamic defects in PCOS [18, 19]. The elevated LH/FSH ratio is commonly observed in ovulatory women with polycystic ovary morphology (PCOM) [20]. The excessive hypothalamic GnRH secretion in PCOS patients shows a reduced sensitivity to inhibition by estradiol and progesterone [17]. Studies have also shown the role of neuropeptide kisspeptin coded by Kiss 1 gene as GnRH pulse generator. The GnRH neurons get a direct signal by Kisspeptin, which acts upstream of GnRH, to control pulsatile GnRH release [21]. Experimental studies in prenatally androgenized monkeys show the neuroendocrine dysregulation of the hypothalamic-pituitary-ovarian axis, resulting in increasing production of luteinizing hormone followed by increased ovarian androgen production [22]. Although androgen excess is a primary abnormality in PCOS, independent from hypothalamic–pituitary neuroendocrine dysregulation, studies so far have reported the dysregulation in the feedback loops between the hypothalamus-pituitary and the ovary.

Steroidogenesis and hyperandrogenism

The ovary is the major site for steroidalogenesis, where the differentiation of theca cells and granulosa cells plays a vital role in follicular development and maturation. In a normally ovulating woman, the theca interna of the ovarian follicle and the adrenal cortex’s zona fasciculata significantly contribute to the secretion of androstenedione, and granulosa cells influence the conversion of androstenedione to estradiol under the activity of aromatase. Furthermore, the enzymes involved in the
formation of androstenedione and estradiol are regulated by LH, FSH, and adrenocorticotropic hormone (ACTH) in the ovary and adrenal glands [23–25]. The conversion of precursor cholesterol to biologically active steroid hormones is known as steroidogenesis. Steroidogenic enzymes, which include several cytochrome P450 enzymes (CYP), hydroxysteroid dehydrogenases (HSDs), and steroid reductases, carry out the biosynthesis of various steroid hormones, like androgens and estrogens [26]. The pre-requisite step that forms the precursors for other steroid hormones is the conversion of cholesterol to pregnenolone by CYP11A (cholesterol side-chain cleavage) and pregnenolone to progesterone by 3-hydroxysteroid dehydrogenase (3-HSD) specified in Fig. 2: Schematic diagram of Steroidogenesis pathway and the enzymes involved in the biosynthesis [27].

Under the influence of high pulse LH release, theca cells increase steroidogenic activity and upregulate the StAR, P450scc, 3-HSD, and CYP17, which produces androstenedione, which is further enhanced by increased levels of insulin commonly observed in PCOS women [28]. Insulin resistance and hyperinsulinemia lower the levels of sex hormone-binding globulin (SHBG), leading to an increase in androgen production [29]. Under the influence of pituitary FSH, androstenedione is converted to estrogen by aromatase present in granulosa cells [28]. In PCOS women, hyperactive ovarian theca steroidogenesis causes the overproduction of androgenic steroids, mainly 7-hydroxyprogesterone and androstenedione resulting in hyperandrogenism [30]. Furthermore, PCOS women have reduced aromatase activity and follicular development is impaired and arrested due to the relative decrease in FSH secretion, resulting in excess androgen accumulation and hyperandrogenemia [30]. Therefore, hyperandrogenism seems to play a crucial role in the pathogenesis of PCOS, contributing to the reproductive and metabolic aspects of the syndrome.

Candidate genes involved in pathophysiology of PCOS

The increasing evidence of PCOS, hyperandrogenism, and metabolic alterations, and their hereditability is more observed in affected siblings of the family cluster than the general population [31–33]. There are several well-demonstrated biochemical abnormalities, despite the heterogeneity of PCOS, that can provide a reliable basis for adapting a candidate gene approach to the identification of susceptibility loci. So far, several genetic studies
have identified almost 100 susceptibility genes related to PCOS. The relationship between target genes and disease risk variants is determined using linkage and association studies within the population or families. A transmission disequilibrium test (TDT) in affected siblings with hyperandrogenemia and PCOS-related traits predicted a strong association of follistatin, a nominal association of CYP11A1 gene, and a strong genetic association D19S884 allelic marker around INSR gene with PCOS [34]. Polymorphisms in genes involved in metabolic or regulatory pathways of steroid hormone synthesis, gonadotropin action, and insulin-signaling pathways have been investigated as PCOS susceptibility genes; however, the precise role of these susceptibility genes has not yet been to be determined [20, 35–38]. In contrast to candidate gene approaches that study relatively small samples, genome-wide association studies (GWAS) provide researchers with a more systematic, unbiased approach to exploring thousands of variants across the entire genome in both case and control individuals to discover the association of genetic variants in a complex disease like PCOS. Hence, 11 susceptibility loci mapping to DENND1A, THADA, LHCGR, FSHR, INSR, TOX3, YAP1, RAB5B, c9orf3, HMGA2, and SUMO1P1/ZNF217 have been identified in Han Chinese populations, which are involved in various pathways [38, 39]. Polymorphism in CYP11A, CYP17, CYP19, CYP21, βHSD, playing a role in the steroidogenesis pathway, results in the phenotypic expression of PCOS. Besides, the androgen receptor (AR) gene mediates the androgen level, and SHBG regulates the free serum androgen level; thus, all these genes may involve in the etiopathogenesis of PCOS. The candidate genes studies are the widely used technique to find the variants of the gene of interest and examined for correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology [40]. In addition, the name of the genes, the physiologic function affected by the genes, the studied population, and the type of single nucleotide polymorphisms or polymorphisms related with PCOS are detailed in this
Table 1. Hence, in the below section, these genes, and their association with PCOS risk are described.

CYP11A

CYP11A is the side-chain cleavage enzyme (P450scc) located on chromosome 15q23-q24 [109] catalyses the conversion of cholesterol to pregnenolone, which is the first and rate-limiting enzymatic step in the biosynthesis of all steroid hormones [110]. P450scc is expressed in the ovary, more specifically in the theca interna and the granulosa cells of ovulatory follicles [111]. Apart from the ovary CYP11A is also expressed in the adrenal cortex, testis, and placenta [112]. There is an unusual exon/intron junctional sequence starting with GC in the sixth intron in the CYP11A gene which is at least 20kb with nine exons split by eight introns [113]. According to the linkage review, a CYP11A 5′ UTR (TTTTA)n pentanucleotide repeat polymorphism has a robust allelic association with hirsute PCOS patients [35]. Studies carried in the different ethnic groups showed varied association of these pentanucleotide repeat alleles with PCOS susceptibility. In the Caucasian population, a recent meta-analysis found a clear connection between the microsatellite (TTTTA)n repeat polymorphism of CYP11A and an increased risk of PCOS [41]. The allelic variants of CYP11A and its polymorphism associated with serum testosterone level might be associated with androgen excess and hyperandrogenemia [42]. In the United States, South India, and Greece, a repeat polymorphism (TTTTA)n in the promoter region of the CYP11A gene has been linked to PCOS in contrast to cases reported in Spanish, Chinese, Argentine, Indian showed no association in women with PCOS [114–116]. The meta-analysis findings revealed a connection between PCOS and a pentanucleotide repeat polymorphism in the CYP11A1 promoter [43]. Furthermore, the association of this gene with hirsutism and no significant association with ovulatory function indicates that CYP11A predominantly has a role in the development of hirsutism in PCOS [35]. Therefore, knowing the crucial role of this gene in ovarian steroidogenesis, all the studies imply the CYP11A gene as a possible genetic biomarker playing a major role in the pathogenesis of PCOS.

CYP19

CYP19 (P450arom), located on chromosome 15q21.1 [131, 132], catalyzes the transformation of the C19 androgens, androstenedione, and testosterone, to the C18 estrogens, estrone, and estradiol [133, 134]. The primary sites for the expression of P450arom are in the ovary, adipose stromal cells, placenta, bone, and various fetal tissues [135, 136]. In the ovary, the granulosa cells of preovulatory follicles show higher expression of P450arom than do small follicles as well as in the corpus luteum of ovulatory women [137, 138]. Many studies have reported the deficiency of aromatase activity in patients with hyperandrogenism [139, 140]. Furthermore, there is a significant decrease in the activity of P450arom (irrespective of the BMI in women with PCOS) in both lean and obese women with PCOS [141]. Studies have reported that the reduced expression of CYP19A1 by the hypermethylation of the promoter region decreases the aromatase enzyme's overall
Gene	Polymorphism	Studied population	Physiological function	Reference
CYP11A	5'UTR (TTTTA)n pentanucleotide repeat	Samaritan	Hirsutism	[35]
	(TTTTA)n, Microsatellite	Caucasian	Hyperandrogenism	[41]
	(TTTTA)n, Pentanucleotide repeat	Greek	Hyperandrogenism	[42]
	Different	Hyperandrogenism	[43]	
CYP17	-34T/C polymorphism	British	Hyperandrogenism	[44]
	American	Insulin resistance	[44]	
	Korean		[44]	
	Chinese		[45]	
	Thai		[44]	
	Indian		[46]	
	Turkish		[47]	
CYP19	rs2414096 polymorphism	African	Hyperandrogenism	[48]
	American		[48]	
	Caucasian	Decreased aromatase activity	[48]	
	Chinese		[49]	
	Iranian	Increased E2 to T ratio	[50]	
	Indian		[51]	
	Iraqi		[52]	
	Egyptian		[53]	
	Japanese		[48]	
	Chinese		[54]	
	(TTTA)n Tetranucleotide repeat polymorphism	Greek	Hyperandrogenism	[55]
	Han Chinese		[56]	
17βHSD	−71 A/G polymorphism	Greek	Hyperandrogenism	[57]
	Caucasian		[58]	
	African-American		[59]	
	Spanish		[60]	
SHBG	TAAAA repeat Polymorphism	French	Hirsutism	[61, 62]
	Greek	Late menarche	[63]	
	Croatian	Decrease SHBG level	[64]	
	Slovenian		[65]	
	rs1799941 & rs 727,A28	Chinese	Insulin resistance	[66]
	American		[67]	
D327N		Mediterranean	Hirsutism	[68]
	French	Androgen excess	[62]	
	Turkish	Metabolism of SHBG	[69]	
AR	Short CAG repeat	Chinese	Hyperandrogenism	[70]
	Caucasian	Increased androgen sensitivity	[71]	
			[72, 73]	
LHCGR	GGN polymorphism	Chinese	Hyperandrogenism	[74]
INSR	C/T polymorphism	Caucasian	Insulin resistance	[75]
	Chinese		[76]	
	Korean		[77]	
LHCGR	rs13405728	Han Chinese	Hyperandrogenism	[78]
	S312N	Sardinian		[79]
activity in women with PCOS varies [142]. The SNP of CYP19 rs2414096 showed significant association with reduced aromatase activity, increased estradiol to testosterone ratio (E2/T), hyperandrogenic phenotype, and PCOS development in African, American, Caucasian [48], Chinese [49], Iranian [50], Indian [51], Iraqi [52], Egyptian [53]. However, the association of CYP19 rs2414096 was not found statistically significant in Japanese women with PCOS [48]. Moreover, a tetranucleotide repeat polymorphism (TTTA)n in the CYP19 gene with short alleles inhibits aromatase activity, resulting in hyperandrogenism and its association with increased testosterone levels, high LH: FSH ratios in women with PCOS has been reported [54–56, 143]. Studies have been reported increased levels of testosterone from follicular fluid of PCOS women, significantly reduce the expression of the aromatase enzyme in luteinized granulosa cells [144]. Therefore, different studies showed a significant association of aromatase enzyme in hyperandrogenism, and androgen biosynthesis represents a pivotal role of CYP19 as a susceptible gene in PCOS development.
CYP21
CYP21 (P450c21) located on chromosome 6p21.3 [145]. The 21-hydroxylase enzyme catalyzes the hydroxylation of C21 steroids converting progesterone and 17-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol [146]. The major site for the expression of CYP21 is only in the adrenal cortex that is vital for the synthesis of adrenal-specific steroids, the glucocorticoids, cortisol, and corticosterone, and the mineralocorticoid, aldosterone [147, 148]. The expression of the P450c21 enzyme is not detected in the kidney, liver, testis, or ovary [149]. Studies have reported an increased frequency of heterozygosity for CYP21 gene mutation in women with symptomatic hyperandrogenism, premature pubarche, and PCOS-like phenotype [150–152]. Furthermore, the frequency of heterozygosity for CYP21 mutations was found to be significantly higher in Spanish women with hirsutism, in both American and Greek children with premature pubarche, and in American adolescent girls with hyperandrogenism [150, 153, 154]. Overall, the CYP21 gene and its mutations do not appear to play a significant role in the predisposition of PCOS; however, it can play a minor role that further studies will solve.

3βHSD
The 3β-Hydroxysteroid Dehydrogenase (3βHSD) enzyme is located on chromosome 1p13.1 [155]. The 3βHSD enzyme is essential for the biosynthesis of active steroid hormones, catalyzing the dehydrogenation and isomerization reaction converting delta5–3-β-hydroxysteroids, pregnenolone, and dehydroepiandrosterone into delta4–3-ketosteroids, progesterone, and androstenedione [156]. The expression of the 3βHSD isoform is tissue specific. The isoform 3βHSD II is expressed in the adrenal gland, ovary, and testes [157]. Studies have reported that the deficiency of the 3βHSD enzyme is associated with mild virilization and irregular or absent ovulation [158]. In Addition, the enzyme’s deficiency in hyperandrogenic females is linked to insulin resistance and LH hypersecretion in PCOS patients [159, 160]. There is a specific decrease in the expression of the 3βHSD gene in luteinizing granulosa cells with large follicle size in women with polycystic ovaries [161]. The deficiency of the 3βHSD gene and its association does not seem to play a significant role in PCOS development. Therefore, more research needs to be incorporated.

17βHSD
The 17β-Hydroxysteroid Dehydrogenase (17βHSD) enzyme on chromosome 10p14–p15 [162] plays an essential role in steroidogenesis. The 17βHSD enzymes catalyze the final step in the biosynthesis of active gonadal steroid, the conversion of androstenedione to estradiol and testosterone [159]. Type 5 of the 17βHSD gene is exclusively expressed in the ovary and adrenal gland [58]. Immunohistochemical studies have shown the expression of the 17βHSD type 5 gene in ovarian theca cells and corpus luteum [163]. Studies reported the increased frequency of −71A/G polymorphism in the 17βHSD type 5 promoter region and its association in Caucasian women with PCOS. Furthermore, it is observed that this SNP increases the 17βHSD type 5 promoter activity and its affinity for the transcription factors Sp1/Sp3. Some menstrual irregularities are also observed due to the accumulation of androstenedione due to the deficiency of this enzyme [164]. The −71A/G polymorphism in the 17βHSD type 5 gene is also associated with hyperandrogenemia and increased serum testosterone levels in women with PCOS but does not contribute to the pathophysiology of PCOS [59]. However, subsequent studies failed to identify the association between this SNP and hyperandrogenemia phenotype in African American, Caucasian, and premature pubarche in Spanish [57, 59, 60, 164]. Another polymorphism of 17βHSD type 5 gene, rs1937845 and rs12529, shows increased serum testosterone level, homeostasis model assessment of β-cell function (HOMA-B) index indicating the association of insulin resistance with hyperandrogenism in Chinese women [165]. 17βHSD type 5 polymorphism does not influence the effect of oral contraceptive pills in Brazilian women with hirsutism and androgen excess [166]. Therefore, the polymorphism of the 17βHSD type 5 gene may play a crucial role in the development of hyperandrogenemia and insulin resistance and can be regarded as a candidate gene for the etiopathogenesis of PCOS.

SHBG
The Sex hormone-binding globulin (SHBG) gene is located on chromosome 17p13.1 [167]. SHBG is primarily produced by hepatocytes, binds to androgens and estrogen with high affinity, thus, controls the levels of sex hormones within the circulation and regulates the access of target tissues to androgens [168, 169]. The prime expression of SHBG receptors (RSHBG) is observed in sex-steroid-dependent cells and tissues which include ovaries, endometrium, colon, prostate, hypothalamus, breast, placenta, liver, epididymis, immune cells, and cardiomyocytes [170]. PCOS women are attributed with increased androgen levels and often present with insulin resistance and compensatory hyperinsulinemia, which inhibits the hepatic synthesis and secretion of SHBG resulting in low circulating SHBG concentrations [171]. Studies have reported that low serum SHBG levels in PCOS women result in hyperandrogenic symptoms such as
hirsutism, acne, androgenic alopecia, and virilization [172–175]. Furthermore, some common genetic variations in the SHBG gene also influence circulating SHBG levels and may contribute to the PCOS phenotype [176, 177]. Studies have reported two novel coding region mutations, including one with abnormal glycosylation and the other is truncated SHBG synthesis in women, resulting in low SHBG levels and increased circulating free testosterone concentrations [178]. The correlation between a longer TAAAA repeats polymorphism and later menarche and lower SHBG levels in hirsute French women suggests that SHBG polymorphisms may play a genetic role [61, 62]. In Greek PCOS women, longer allele genotype showed a positive association with lower SHBG levels [63]. The long TAAAA repeat alleles, on the other hand, did not display any association with PCOS aetiology in Croatian, Slovenian, or Chinese women [64–66]. Long SHBG alleles in combination with short CYP19 alleles resulted in low SHBG levels and increased testosterone levels, and elevated FAI, DHEAS, and T/E2 ratios in Greek women with PCOS [179]. Overall, the meta-analysis findings indicated insufficient evidence to draw a definitive connection between the TAAAA repeat polymorphism and PCOS risk, implying that it might not be a good predictor of PCOS risk [180]. Four single nucleotide polymorphisms (SNPs; rs1799941, rs6257, rs6259, and rs727428) have been identified as predictors of the development of type 2 diabetes in men and women and as modifiers of serum SHBG concentrations [181, 182]. However, a family-based and case-control study conducted in American and Mediterranean women with PCOS showed no direct association with PCOS risk. SNPs rs1799941 and rs727428 in the SHBG gene influenced serum SHBG concentrations after controlling for BMI and indexes of androgen excess and insulin resistance [67, 68]. Several studies have been published. Exon 8 contains a functional missense polymorphism that induces an amino acid transition from aspartic acid to asparagine (D327N), which causes a delay in SHBG half-life and affects SHBG metabolism [62]. On the other hand, E326K, another missense polymorphism on exon eight, lowers SHBG levels and influences the SHBG metabolism independent of BMI, androgen, and insulin-related traits in PCOS women [69]. A recent study conducted in Bahraini women reported that specific SHBG variants affecting the SHBG concentrations and SHBG haplotypes spanning six polymorphisms were linked to increased or decreased PCOS susceptibility [183]. Thus, SHBG can be considered as a candidate gene playing a central role in the pathophysiology of PCOS.

AR
Androgen effects are facilitated by androgen receptors (AR). The AR gene is located on the X-chromosome at Xq11–12 and with a genetic polymorphism in exon one characterized by a CAG trinucleotide repeat encoding polyglutamine restudies [184]. Increased androgen levels show association with inhibition of follicle development, anovulation, menstrual irregularities, and appearance of micro cysts in the ovaries [185, 186]. Exposure to intrauterine androgens in experimental models leads to the development of PCOS phenotype in adult life [187]. Theca interna cells of preantral follicles, granulosa cells of preantral and antral follicles, and both theca and granulosa cells of dominant follicles have all been found to contain AR [188]. The genetic polymorphism in the AR gene in exon one with CAG repeats indicates the association between AR activity and PCOS prevalence [189]. Studies have reported an increased frequency of short AR CAG repeats in PCOS women and may contribute to PCOS onset in both Chinese and Caucasian populations [70, 71]. Furthermore, in PCOS patients, this polymorphism causes AR upregulation and increased androgen sensitivity [72, 73]. However, no association of AR CAG repeat lengths in Indian [190] Slovene [191], Korean [192], and Croatian [193], was reported in PCOS women. Furthermore, few studies have also reported an association of CAG repeats length with higher serum testosterone levels in PCOS women [192–195]. Another study carried by Hickey et al. showed preferential expression of longer CAG repeats in infertile Australian PCOS women compared to fertile PCOS women that were also found positively correlated with serum testosterone levels. Additionally, a study comparing PCOS families found that sister pairs with diverse patterns of XCI were more likely to display clinically varied PCOS symptoms than sister pairs with identical XCI profiles, emphasizing the relevance of XCI in the pathogenesis of PCOS [196]. In contrast, Mifsud et al. found lower testosterone levels in PCOS patients with short CAG repeats [73]. On the other hand, a study conducted by Westberg et al. in premenopausal Swedish women found higher levels of serum androgens with fewer CAG repeats than women with longer repeats [197]. In addition to influencing AR expression, the XCI pattern can influence the expres-sion of BMP15 (Xp11.2), a gene implicated in preovulatory follicular development [198]. Surprisingly, BMP15 increases FSHβ subunit transcription and secretion while not affect LH expression [199]. Calvo et al. investigated the relationships between AR-CAG allele length, XCI pattern, and hirsutism and compared AR CAG-BM levels to hormone (such as DHEAS) levels but found no significant difference links [200]. As a result, we believe the XCI pattern alters LH and FSH levels by directly altering
the expression of gonadotropins or other genes required for folliculogenesis. Studies have also reported a significant GGN polymorphism and rs6152G/A polymorphism with Chinese PCOS women [74, 201]. The meta-analysis showed no significant association between CAG repeat lengths at AR and PCOS risk, unlikely to be the primary determining factor in PCOS etiology [202, 203]. Thus, androgen excess has a vital role in the developing hyperandrogenic phenotype in PCOS women and the pathophysiology of PCOS.

StAR
The Steroidogenic acute regulatory protein (StAR) is located on the short arm of chromosome 8p11.2 [204]. StAR protein acts as a transporter protein, which plays a major role in the transportation of cholesterol from the outer to the inner mitochondrial membrane in the first step of the steroidogenesis pathway [205, 206]. The gene expression of steroidogenic enzymes including StAR was studied from granulosa and theca cells of women with PCOS. The follicles of theca cells showed increased expression of StAR in comparison to the size-matched control follicles which indicates the hyperstimulation of theca cells producing excessive amounts of androgens. However, in granulosa cells, there were no changes in the expression of StAR in follicles of PCOS women from control follicles, indicating the increased LH responsiveness of granulosa cells in PCOS women, which may contribute to arrested follicle development [207]. Another study conducted by Kahsar-Miller et al. showed no changes in expression of StAR in PCOS ovaries compared to normal healthy ovaries [208]. In Iranian PCOS women, however, no correlation was found between seven StAR SNPs [209].

INSR
The insulin receptor (INSR) gene is located on the short arm of chromosome 19 [210], which plays a significant role in insulin metabolism. The HAIR-AN syndrome (hyperandrogenism, insulin resistance, and acanthosis nigricans), a subset of PCOS marked by extreme insulin resistance, demonstrates the significance of insulin signaling in PCOS [211]. Insulin resistance may stimulate LH hypersecretion in the pituitary, increased testosterone production in theca cells, and P450scc activity in granulosa, and disturbs the follicular maturation, resulting in PCOS [212]. The polymorphism, C/T SNP at His1058 in exon 17 of the INSR gene has been significantly associated with Caucasian and Chinese PCOS women [75, 76]. However, in the Korean population, this polymorphism failed to confirm the association [77]. On the other hand, a novel T/C polymorphism at Cys1008 in exon 17 was associated with decreased insulin sensitivity in Chinese PCOS women [213]. Besides, linkage analysis studies predicted a microsatellite marker D19S884, located on chromosome 19p13.2, close to INSR gene associated with PCOS and was considered as a candidate gene [34, 214]. Other SNPs includes rs225673 in intron 11 and rs8107575, rs2245648, rs2245649, rs2963, rs2245655, and rs2962 around exon 9 in the INSR gene have shown an association with PCOS. However, the impact on gene expression or its association with underlying genetic variation is still uncovered [215, 216]. The results of meta-analyses showed no significant association between SNPs rs1799817 or rs2059806 with the development of PCOS. Nonetheless, SNP rs2059807 can be considered as a candidate risk factor for PCOS development [217]. Hence, all these studies so far suggest the association of the genetic variant in exon 17 of INSR with the pathophysiology of PCOS and INSR gene, being a crucial component of the insulin signaling pathway, could be a plausible candidate gene for PCOS.

LHCRG
The luteinizing hormone/choriogonadotropin receptor (LHCRG) gene, mapped on chromosome 2p16.3 [218] is a G-protein coupled receptor expressed predominantly in the granulosa cells of preovulatory follicles and is responsible for ovulation in response to the mid-cycle LH surge [219]. Inactivating mutations of LHCRG cause increased LH levels, menstrual irregularities, and infertility in women, while activating mutations cause hyperandrogenism [220]. A recent GWAS study identified the 2p16.3 region containing LHCRG loci to be associated with PCOS in Han Chinese and European populations [78, 221]. The LHCRG rs13405728 variant showed association with PCOS in Han Chinese women. However, it failed to explain association in European-derived and Caucasian population [78, 222–224], indicating that racial/ethnic background contributes to PCOS development. S312N, a nearby SNP in exon 10 (rs2293275) of LHCRG gene induces an amino acid substitution in the Sardinian population, was linked to PCOS [79]. The data obtained from the genomic study of LHCRG describes racial/ethnic background. Hence, independent ethnic research is needed to rule out the connection between gonadotropin receptor variants and an increased risk of PCOS.

FSHR
The Follicle-stimulating hormone receptor (FSHR) gene, located on chromosome 2p21, is a G protein-coupled receptor, expressed in granulosa cells similarly to LHCRG [225]. FSHR stimulates oogenesis, follicle development, and gametogenesis, resulting in follicular maturation and proliferation of granulosa cells on binding with FSH
Interleukin 1 (IL-1) is a crucial multifunctional pro-inflammatory cytokine composed of three distinct cytokines: IL-1α, IL-1β, and the physiologic antagonist IL-1 receptor antagonist (IL-1RA) [234]. IL-1α and IL-1β are located on chromosome 2q14.2 within a 430 kb area [235]. In reproductive biology, IL-1 is thought to alter ovulation, fertilisation, and implantation due to its inflammatory traits [236]. According to research, the polymorphism rs1800587 (−889C/T) reduces IL-1 gene transcription through altering IL-1α protein expression in ovarian tissue in Caucasian population [85, 86]. Moreover, the first association study of the two IL-1β polymorphism rs16,944 (−511C/T) and rs 1,143,634 (+3953 C/T) and PCOS development was conducted by Kolbus et al. in Caucasian population but failed to find a correlation. However, another study conducted in Chinese population showed that the rs 16,944 (−511C/T) polymorphism showed association with developing PCOS by somehow altering the IL-1β production. However, no association was observed while studying the rs 1,143,634 (+3953 C/T) [86, 87]. Hence, these findings suggest that IL-1 family gene polymorphism may be an influential marker for the risk of PCOS.

PPARG
Peroxisome proliferator activated receptor gamma (PPARG) is a ligand-activated transcription factor located on chromosome 3p24.2-p25 [237]. It impacts adipocyte differentiation, insulin sensitivity, lipid metabolism, and the development of atherosclerosis [238]. PPARG has many single nucleotide polymorphisms (SNPs), the most studied of which is PPARG Pro12Ala. Studies have shown the association of Pro12Ala polymorphism with abdominal obesity in Korean PCOS women with metabolic dysfunction since PPARG plays an essential role in adipose tissue metabolism [88]. The Ala allele carriers reported significant higher BMI waist circumference, waist to hip ratio and sum of skinfolds than non-carriers in PCOS cohort [239]. A meta-analysis conducted in European and Asian population reported a positive relationship between Pro12Ala polymorphism and BMI [89]. In addition, some studies found a significant increase in insulin sensitivity (lower HOMA-IR), as well as lower fasting insulin and glucose levels in Caucasian population [90–93] and a lower hirsutism score in PCOS women carrying the Pro12Ala G allele [94]; however, others, found no link between fasting glucose and insulin or changes in HOMA-IR in PCOS women carrying the Pro12Ala G allele [240–243]. Even though considerable research on Pro12Ala polymorphism in diverse ethnic populations of PCOS women have been undertaken, the majority of the results have been inconsistent, if not wholly contradicting.

KISS 1
Kisspeptin (KISS) is a neuropeptide located on chromosome 1q32. [244]. Kiss 1 gene stimulates the activity of GPR54, a G protein–coupled transmembrane receptor present in GnRH neurons, and hence increases LH levels [245]. Kisspeptin has been implicated in the control of the HPG axis in numerous studies since its discovery, at the cell, animal, and even human levels [246–248].
specific trials, kisspeptin treatment has been shown to result in an almost 2-fold increase in LH levels, with a minor or non-existent increase in FSH levels [249–251]. Additionally, Kisspeptin has been shown to have a direct influence on GnRH neurons upstream in terms of depolarization directly, increased firing rate, and up-regulated expression of GnRH mRNA, which explains the elevated LH/FSH ratio found in prior studies [252–255]. Although the primary research has revealed a possible link between the KISS1 system and the HPG axis, it is still unclear whether the plasma/serum kisspeptin concentration is higher in PCOS women than in general. Kisspeptin levels were more significant in PCOS women than in controls in some research [256–258], while other studies found similar or negatively linked results [259, 260]. As a result, plasma/serum kisspeptin levels are likely to be related with serum LH levels, and therefore with the pathophysiology of PCOS.

VDR

The Vitamin D receptor (VDR) Gene is located on chromosome 12q13.11 [261]. The VDR belongs to the nuclear receptor superfamily and is found in various tissues, including the intestine, kidney, parathyroid gland, pancreatic beta cells, and bones, all of which are important in calcium homeostasis maintenance. The active form of vitamin D, 1,25 ((OH)2-D3, regulates gene transcription in target organs by binding to the nuclear vitamin D receptor (VDR). In addition, for optimal VDR-DNA interaction, the VDR forms a heterodimer with the retinoid-X receptor (RXR) [262]. It is also expressed in human ovarian tissue and endometrium, and it has been shown to play a role in the steroidogenesis of sex hormones [263–265]. Irregularities in calcium balance may disturb follicular growth in women, affecting the aetiology of PCOS [266]. Although studies demonstrate that vitamin D deficiency might promote metabolic syndrome and insulin resistance in PCOS patients, it is unclear if vitamin D is associated with endocrine and reproductive parameters in PCOS patients [264, 267]. Several studies on VDR gene polymorphisms revealed a link between VDR BsmI (rs1544410), Apal (rs7975232), FokI (rs10735810), and TaqI (rs731236) and PCOS risk in South Indian women and Iranian women [95, 96, 268]. Ranjzad et al. also looked at the relationship between the FokI, BsmI, Apal, TaqI, and Tru9I (rs757343) polymorphisms and biochemical and metabolic parameters in Iranian PCOS women. The findings demonstrated substantial relationships between lower levels of sex hormone binding globulin (SHBG) and both VDR BsmI “GG” and adiponectin (ADIPOQ) BsmI “CC” genotypes, implying that the “G” allele is a risk factor for PCOS in homozygotes [97]. Bagheri and colleagues investigated the FokI and BsmI variants of the VDR gene in the genetic predisposition to PCOS in Iranian and Azeri Turkish women. Their findings revealed no statistically significant differences in PCOS susceptibility in the examined group [98]. Furthermore, Wehr and colleagues performed a cohort analysis in Austrian women with PCOS to assess the relationship between VDR polymorphisms and PCOS susceptibility. They found no link between VDR BsmI, FokI, and TaqI polymorphisms and anthropometric, endocrine, or metabolic parameters [99]. According to the findings of many studies, the association between VDR gene polymorphisms and PCOS in different ethnicities is debatable. However, it may play a significant role in the pathophysiology of PCOS.

FTO

The human Fat Mass and Obesity-Associated Protein (FTO) gene is found on chromosome 16q12.2 and is expressed in nearly all tissues [269, 270]. The protein encoded by the FTO gene is a 2-oxoglutarate-dependent nucleic acid demethylase involved in energy metabolism [271]. A genome-wide association analysis published in 2007 found that FTO is linked to body mass index (BMI) and obesity [269]. Obesity is a prevalent feature in PCOS patients, with more than half of all PCOS cases being overweight or obese [272]. A common single nucleotide polymorphism (SNP) (rs9939609) in the first intron of the FTO gene with a T to A change has recently been extensively researched in PCOS women. However, the results of various studies are conflicting. Studies found a strong correlation between FTO and PCOS in the Chinese, UK, Finland, and South Brazilian populations [100–103], while others revealed a link between FTO and BMI in PCOS women, although they do not appear to have a significant role in the reproductive phenotypes of PCOS [273–275]. Cai et al. found that the FTO rs9939609 polymorphism was linked with PCOS risk among East Asians but not in the Caucasian population [104]. As a result, it is fair to speculate that the FTO gene may have a role in the pathogenesis of PCOS via BMI and/or obesity.

RXR

Human sebocytes express retinoid X receptors (RXRs), members of the steroid/thyroid hormone superfamily [276]. Retinol is critical for female reproduction, and retinoids have been implicated in ovarian steroidogenesis, oocyte maturation, and corpus luteum development [277, 278]. Retinoids have been shown to increase steroid hormone production in peripheral steroidogenic tissues. Retinoid therapy elevated the expression of steroidogenic acute regulatory protein (STAR) in mice Leydig cells, resulting in steroidogenesis potentiation [279]. All-trans- and/or 9-cis-retinoic acid enhanced gene expression of...
StAR, CYP17A1, and P450scC, as well as testosterone and dehydroepiandrosterone synthesis in human ovarian thecal cells [280]. When PCOS cell extracts were compared to standars extracts, the conversion of retinol to retinoldehyde was enhanced, indicating that the enzymes responsible for retinol metabolism are present in theca cells and may be changed in PCOS [281]. RXR boosted the expression of CYP19, a crucial regulator in oestrogen synthesis, and increased the synthesis of estradiol, which protects hippocampus neurons against OGD and inflammatory stimuli, demonstrating that RXR is responsible for CYP19 expression [282]. These findings revealed that retinoids had a significant impact on theca cell androgen production as well as the expression of steroidogenic enzyme genes. More research is needed to understand the pattern of expression of enzymes involved in retinol metabolism/retinoid production in ovarian cells, as well as their functional significance in retinoid action in PCOS.

VEGF

The Vascular Epithelial Growth Factor (VEGF) is a homodimer glycoprotein that is expressed in granulosa and thecal cells and is known to play a role in the pathophysiology of PCOS [283]. It is involved in angiogenesis, follicular vascularisation, and intra-follicular oxygenation, and hence influences follicle maturation, oocyte quality, fertilisation, and embryo development [11, 28, 284]. PCOS is associated with increased stromal vascularity, which may be due to a dysregulation of numerous angiogenic factors, including VEGF. Daghestani et al. reported that VEGF levels in obese PCOS women were four times greater than in non-PCOS obese women, consistent with prior research indicating higher levels of VEGF in PCOS patients [285, 286]. As a result, the evidence so far suggests that VEGF may have a role in the aetiology of PCOS.

ACE

Angiotensin converting enzyme (ACE), a critical factor in the conversion of Angiotensin I to Angiotensin II, is found in a various organs, including the ovaries. ACE and its products, in addition to regulating blood pressure and fluid balance, play an essential role in regulating ovarian function through follicular development, oocyte maturation, ovulation, and follicular atresia [287]. The inter-individual variability in plasma ACE concentration has been linked to an insertion (I)/deletion (D) polymorphism involving a 287-bp DNA sequence located in intron 16 of the ACE gene, known as the ACE I/D polymorphism [288]. A recent meta-analysis found a positive association between this polymorphism and PCOS risk in Caucasians, but no such association in Asians [289]. Koika et al. discovered a positive link between I/D polymorphism and PCOS in cases of hyperandrogenism but not in situations of non-hyperandrogenism [105]. Another study in a Chinese population discovered that the DD genotype was related to higher testosterone concentrations when compared to the II genotype [106]. Moreover, similar associations were discovered for fasting insulin and homeostatic model assessment for insulin resistance (HOMA-IR) in PCOS patients in Turkey [107, 108]. Furthermore, obese women with PCOS have greater total renin levels than age- and BMI-matched controls, but not ACE activity or aldosterone levels [290]. Based on considerable research conducted in various ethnic populations, the presence of a relationship between ACE I/D polymorphism and PCOS is debatable. This shows that, whereas I/D polymorphisms in the ACE gene were not the major etiological cause, they may be linked to worsened clinical symptoms of PCOS.

Conclusion and future perspective

Polycystic ovary syndrome remains a complex endocrine paradox characterized mainly by surplus androgen production resulting in metabolic and gynecological concerns in affected individuals. The fact that 70% of women diagnosed with PCOS go on to become infertile makes it a concerning issue. With infertility on the rise and PCOS as a significant cause in women, early detection and treatment play critical roles in improving quality of life. As a result, we tried to look for unique polymorphisms of the chosen candidate gene that may be employed in the diagnosis and screening of PCOS. Although androgen excess is the primary cause of PCOS pathogenesis, the brain dysfunction route, which encompasses the hypothalamus-pituitary-ovarian axis, could also be the cause of PCOS. It is difficult to determine due to inhibition in the feedback loops involving the hypothalamus, pituitary, and ovary and should be investigated further to determine the aetiology and screening of PCOS. Hyperandrogenism can be studied by inducing PCOS phenotypes in fetal, neonatal, and prepubertal giving excess androgenic treatments to animal models. Another mechanism is using transgenic models for studying neuroendocrine dysfunction (HPO axis). Furthermore, obesity plays a vital part in the aetiology of PCOS, and most individuals with the condition are overweight or obese; nonetheless, these illnesses are not regarded diagnostic criteria for PCOS because not all obese women exhibit hyperandrogenism. Insulin resistance, which is present in the most obese and/or PCOS patients, is a risk factor for developing glucose intolerance and type 2 diabetes mellitus. Insulin resistance is higher and more severe in obese PCOS individuals than in non-obese PCOS patients.
The current review has summarized the influence of polymorphism in genes involved in steroidogenesis, gonadotropin action and control, insulin regulation that govern PCOS susceptibility and phenotypic heterogeneity. A candidate gene technique has been used in studies to give conclusive evidence for including or excluding any gene. Many genes are included in this article. However, only a handful have been proved to influence steroidogenesis pathways in PCOS women: CYP11A1, CYP17, CYP19, 17HSD, SHBG, AR, RXR, KISS1, VDR. In addition, the genes LHCGR, INSR, FSHR, and GnRHR have been demonstrated to affect gonadotropin activity and control in PCOS women. Obesity and metabolic consequences are linked to the genes FTO, VEGF, ACE, and PPARG, revealing that obese PCOS patients had greater levels of Interleukin-1, PPARG, FTO, and VEGF when compared to control women. However, family investigations have revealed that PCOS has a genetic basis and that no single gene can fully explain the disease. Additionally, candidate gene approach has not provided conclusive results for any of the susceptible gene. As a result, the genetic markers studied thus far could aid in diagnosing the syndrome and its phenotypes, allowing for earlier involvement in co-morbidities and more personalized care.

Abbreviations
PCOS: Polycystic ovary syndrome; USG: Ultrasonography; NIH: National Institute of Health; POCOM: Polycystic ovarian morphology; ESHRE: European Society of Human Reproduction and Embryology; ASRM: The American Society for Reproductive Medicine; AES: Androgen Excess Society; GnRH: Gonadotropin-releasing hormone; GnRHR: Gonadotropin-releasing hormone receptor; LH: Luteinizing hormone; LHCGR: Luteinizing hormone/choriogonadotropin-releasing hormone; GnRHR: Gonadotropin-releasing hormone receptor; ACTH: Adrenocorticotropic hormone; HSDs: Hydroxysteroid dehydrogenases; STAR: Steroidogenic acute regulatory protein; 3β-HSD: 3β-hydroxysteroid dehydrogenase; 17β-HSD: 17β-hydroxysteroid dehydrogenase; SHBG: Sex hormone-binding globulin; RSHBG: Receptor for sex hormone-binding globulin; AR: Androgen receptor; TDT: Transmission disequilibrium test; INSR: Insulin receptor; GWAS: Genome-wide association studies; DENN1A: DENN Domain-Containing Protein 1A; THADA: Thyroid Adenoma Associated Protein; TOX3: Tox High Mobility Group Box Family Member 3; YAP1: Yes-Associated Protein 1; RAB5A: Ras-Related Protein Rab-5; C9orf3: Chromosome 9 Open Reading Frame 3; HMGA2: High-Mobility Group AT-Hook 2; SUMO1P1/ZNF217: Pseudogene 1 / Zinc Finger Protein 217; HOMA-B: Homeostasis Model Assessment Of β-Cell Function; HAIR-AN: Hyperandrogenism, insulin resistance, and acanthosis nigricans; P450 scs: Side-chain cleavage enzyme; P450c17: 17-hydroxylase enzyme; P450arom: Aromatase enzyme; P450c21: 21-hydroxylase enzyme; NADPH: Nicotinamide adenine dinucleotide phosphate; SNPs: Single nucleotide polymorphism; FAK: Focal Adhesion Kinase; DHEAS: Dehydroepiandrosterone sulfate; E2: Estradiol; T: Testosterone; UTR: Untranslated Region; XCI: X-chromosome inactivation; BMP: Bone morphogenetic protein; BMAL: Basal Metabolic Index; HPG: Hypothalamus-Pituitary-Gonadal; IL: Interleukin; ILRA: Interleukin-1 receptor antagonist; PPARG: Peroxisome proliferator activated receptor gamma; KISS: Kisspeptin; VDR: Vitamin-D receptor; RXR: Retinoid X receptor; FTO: Fat Mass and Obesity-Associated Protein; VEGF: Vascular Epithelial Growth Factor; ACE: Angiotensin converting enzyme.

Acknowledgements
We would like to acknowledge CSIR-UGC-NET for providing Junior Research fellowship to Hiral Chaudhary. We would like to acknowledge Department of Biochemistry and Forensic Science for providing necessary facility.

Authors’ contributions
HC assisted with data collecting, writing, and manuscript preparation. JP assisted with data collection. The critical review was carried out by NKJ and RJ. The article was read and approved by all writers.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate
The study was approved by Institutional Ethics Committee (IEC) of University of Sciences, Gujarat University. Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1. Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India. 2. Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.

Received: 13 July 2021 Accepted: 9 September 2021
Published online: 26 September 2021

References
1. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovarian syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7(4):219–31.
2. Kabel AM. Polycystic ovarian syndrome: insights into pathogenesis, diagnosis, prognosis, pharmacological and non-pharmacological treat- ment. Pharm Bioprocess. 2016;4(1):7–12.
3. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilava-Jordan L, Azziz R, et al. Criteria, prevalence, and phenotypes of polycystic ovarian syn- drome. Fertil Steril. 2016;106(1):6–15.
4. Bharathiv RV, Swetha S, Neeraj A, Madhavica JV, Janani DM, Rekha S, et al. An epidemiological survey: effect of predisposing factors for PCOS in Indian urban and rural population. Middle East Fertil Soc J. 2017;22(4):313–6.
5. Knochenhauer E, Key T, Kahsar-Miller M, Waggoner W, Boots L, Azziz R, et al. Prevalence of the polycystic ovarian syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83(9):3078–82.
6. Ferriman D, Gallwey JD. Clinical assessment of body hair growth in women. J Clin Endocrinol Metab. 1961;21(11):1440–7.
7. Wild RA. Long-term health consequences of PCOS. Hum Reprod Update. 2002;8(3):231–41.
8. Goodarzi MO, Carmina E, Azziz R, Dhea, dhea and pcos. J Steroid Biochem Mol Biol. 2015;145:213–25.
9. Fenichel P, Rougier C, Hieronimus S, Chevalier N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both?. Annales d’endocrinologie. 2017;78(3):176–15.
10. Jona S, Dewailey D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum Reprod Update. 2004;10(2):107–17.
11. Qiao J, Feng HL. Extra-and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17–33.

12. Ben-Shlomo I. The polycystic ovary syndrome: what does insulin resistance have to do with it? Reprod BioMed Online. 2003;6(1):36–42.

13. Ehrman DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev. 1995;16(3):322–53.

14. Kawadziuki J, Dunau A, Givens J, Haslett F, Merriam GJ. Diagnostic criteria for polycystic ovary syndrome: a rational approach. In: Polycystic ovary syndrome. Cambridge: Blackwell Scientific; 1992. p. 377.

15. ESHRE TR, A-SCPGW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.

16. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91(11):4257–65.

17. Rogel P, Garcia Rudaz MC, Escobar ME, Bengoea SV, Calcagno ML, Veldhuis JD, et al. Acute effects of testosterone infusion on the serum luteinizing hormone profile in eumenorrheic and polycystic ovary syndrome adolescents. J Clin Endocrinol Metab. 2009;94(9):3602–10.

18. Blank SK, McCartney CR, Helm KD, Marshall JC, editors. Neuroendocrine basis for polycystic ovary syndrome. Cambridge: Blackwell Scientific; 1992. p. 377.

19. Abbott D, Barnett D, Bruns C, Dumesic D. Androgen excess fetal development and puberty. In: Seminars in reproductive medicine. New York: Copyright© 2007 by Thieme Medical Publishers, Inc.; 2007.

20. Waldstreicher J, Santoro NF, Hall JE, Filicori M, Crowley JRWF. Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab. 1988;66(1):165–72.

21. Franks S. Polycystic ovary syndrome. N Engl J Med. 1995;333(3):853–61.

22. Skorupskie K, George JT, Anderson RA. The kisspeptin-GrnI/Pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485–500.

23. Abbott D, Barnett D, Bruns C, Dumesic D. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update. 2005;11(4):375–74.

24. Rosenfield RL, Barnes RB, Jose’F C, Lucky AW. Dysregulation of gonadotropin secretion with hyperandrogenemia in PCOS adolescents. J Clin Endocrinol Metab. 2006;91(11):4237–45.

25. Balen A H, Conway G, Homburg R, Legro R. (Eds.) Polycystic ovary syndrome adolescents. J Clin Endocrinol Metab. 2009;94(9):3602–10.

26. Chaudhary et al. J Ovarian Res. (2021) 14:125

27. Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci. 1999;96(15):8573–8.

28. Gharni N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS, et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet. 1997;6(3):397–402.

29. Dunau A, Xia J, Book C-B, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96(2):801–10.

30. O’Rahilly S, Choi WH, Patel P, Turner RC, Flier JS, Moller DE. Detection of mutations in insulin-receptor gene in NIDDM patients by analysis of single-stranded conformation polymorphisms. Diabetes. 1991;40(6):777–82.

31. Conway GS, Avey C, Rumsby G. Genetics. The tyrosine kinase domain of the insulin receptor gene is normal in women with hyperinsulinaemia and polycystic ovary syndrome. Hum Reprod. 1994;9(9):1681–3.

32. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020.

33. Goodarzi MO. Looking for polycystic ovary syndrome genes: rational and best strategy. Semin Reprod Med. 2008;26(1):5–13.

34. Shen W, Li T, Hu Y, Liu H, Song M. Common polymorphisms in the CYP1A1 and CYP1A1 genes and polycystic ovary syndrome risk: a meta-analysis and meta-regression. Arch Gynecol Obstet. 2014;298(1):107–18.

35. Diamanti-Kandarakis E, Bartzis ML, Bergiege AT, Tsianateli TC, Kouli CR. Micrornas on the polycystic ovary syndrome: new insights into the CYP1A1 and CYP1A1 genes. Mol Biol Rep. 2014;41(7):4435–45.

36. Sharp L, Cardy AH, Cotton SC, Little J. CYP17 gene polymorphisms: prevalence and associations with hormones levels and related factors. A HuGE review. Am J Epidemiol. 2004;160(8):729–40.

37. Li Y, Liu F, Luo S, Hu H, Li X-H, Li S-W. Polymorphism T—C of gene CYP17 promoter and polycystic ovary syndrome risk: a meta-analysis. Gene. 2012;495(1):16–22.

38. Pusalkar M, Meherpi J, Sokal J, Chinnaraj S, Maitra A. CYP1A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome. Fertil Steril. 2009;73(4):735–41.

39. Yu M, Feng R, Sun X, Wang H, Wang H, Sang Q, et al. Polymorphisms of pentanucleotide repeats (tttta)n in the promoter of CYP1A1 and their relationships to polycystic ovary syndrome (PCOS): CYP1A1 (tttta)n polymorphism is strongly associated with PCOS. Hum Mol Genet. 2005;14(20):4853–60.

40. Rodriguez G, Longo D, Mooren S, Veldhuis JD, et al. Acute effects of testosterone infusion on the serum luteinizing hormone profile in eumenorrheic and polycystic ovary syndrome adolescents. J Clin Endocrinol Metab. 2008;93(9):3291–300.

41. Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci. 1999;96(15):8573–8.
of women with polycystic ovary syndrome. Gynecol Endocrinol. 2013;29(5):478–82.
56. Hao C, Zhang N, Qu Q, Wang X, Gu HF, Chen ZJ. Evaluation of the association between the CYP19 tetranucleotide (TTTA) n polymorphism and polycystic ovarian syndrome (PCOS) in Han Chinese women. Neuroendocrinol Lett. 2010;31(3):370–4.
57. Goodarzi MO, Jones MR, Antoine HJ, Pall M, Chen Y-DI, Azizz R, et al. Nonreplication of the type 5 17β-hydroxysteroid dehydrogenase gene association with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(1):300–3.
58. Qin K-N, Rosenfield RL. Expression of 17β-hydroxysteroid dehydrogenase type 5 in human ovary: a pilot study. J Soc Gynecol Invest. 2000;7(1):61–4.
59. Maroli DJ, Saltamavros AD, Conception ES, Greenberg DA, Vil- lanueva R, et al. AC/T single nucleotide polymorphism at the tyrosine-kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome. Fertil Steril. 2002;78(6):1240–3.
60. Chen Z, Shi Y, Zhao Y, Li Y, Tang R, Zhao L, et al. Correlation between single nucleotide polymorphism of insulin receptor gene and polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi. 2004;39(9):582.
61. Lee E-J, Yoo K-J, Kim S-I, Lee S-H, Cha KY, Baek K-H, et al. Single nucleotide polymorphism in exon 17 of the insulin receptor gene is not associated with polycystic ovary syndrome in a Korean population. Fertil Steril. 2006;86(2):380–4.
62. Chen Z-J, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p13. 3, 2p21 and 9q33. 3. Nat Genet. 2011;43(1):55–9.
63. Capalbio A, Sagnella F, Apa R, Pulghesu A, Lanzone A, Mocarnio A, et al. The 312 N variant of the luteinizing hormone/choriogonadotropin receptor gene (LHCR) confers up to 2-7-fold increased risk of polycystic ovary syndrome in aardinian population. Clin Endocrinol. 2012;77(1):113–9.
64. Dolfino E, Guani B, Russellian C, Mari C, Bertagno G, Revelli A, et al. FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women. J Assist Reprod Genet. 2011;28(10):925–30.
65. Gu B-H, Park J-M, Baek K-H. Genetic variations of follicle stimulating hormone receptor are associated with polycystic ovary syndrome. Int J Mol Med. 2010;26(1):107–12.
66. Wu X-Q, Xu S-M, Liu J-F, Bi X-Y, Wu Y-X, Liu J, et al. Association between FSH polymorphisms and polycystic ovary syndrome among Chinese women in north China. J Assist Reprod Genet. 2014;31(3):371–7.
67. Du J, Zhang W, Guo L, Zhang Z, Shi H, Wang J, et al. Two FSHR variants, haplotypes and meta-analyses in Chinese women with premature ovarian failure and polycystic ovary syndrome. Mol Hum Reprod. 2013;19(2):295–305.
68. Cabaret S, Fruchter RB, Leois M, Fellous L, Shalay S, Veitia RA. A homozygous mutation of GPRHR is associated with polycystic ovary syndrome. Eur J Endocrinol. 2017;176(3):K14.
69. Eser B, Islimye Taskin M, Hısımbogullari AA, Akist B, Bodur AS. The effects of IL-1α and IL-6 genes polymorphisms on gene expressions, hormonal and biochemical parameters in polycystic ovary syndrome. J Obstet Gynecol. 2017;37(3):358–62.
70. Kolbus A, Walch K, Nagele F, Gersak BM, Gersak K. Association between insulin sensitivity and IL-1 receptor antagonist expression in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2000;85(9):3484–8.
94. Hahn S, Fingerhut A, Khohtsiv U, Khomtsiv L, Tan S, Quadbeck B, et al. The peroxisome proliferator activated receptor gamma Pro12Ala polymorphism is associated with a lower hirsutism score and increased insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol. 2005;62(5):573–9.

95. Siddamalla S, Reddy TV, Govatati S, Erram N, Deenadayal M, Shivaji S, et al. Vitamin D receptor gene polymorphisms and risk of polycystic ovary syndrome in South Indian women. Gynecol Endocrinol. 2018;34(2):161–5.

96. Mahmoudi T. Genetic variation in the vitamin D receptor and polycystic ovary syndrome risk. Fertil Steril. 2009;92(2):1381–3.

97. Ranjard M, Mahban A, Shemirani AL, Mahmoudi T, Vahedi M, Nikzamir A, et al. Influence of gene variants related to calcium homeostasis on biochemical parameters of women with polycystic ovary syndrome. J Assist Reprod Genet. 2011;28(5):225–32.

98. Bagherti M, Ira ABD, Rizzi JN, Nanbakhsh F. Lack of association of vitamin D receptor FokI (rs10735810) (CT/C) and BsmI (rs1544140) (A/G) genetic variations with polycystic ovary syndrome risk: A case–control study from Iranian azeri turkish women. Maedica. 2012;7(4):303.

99. Wehr E, Trummer O, Giuliani A, Gruber H-J, Pieber TR, Obermayer-Pietsch B. Vitamin D-associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol. 2011;164(5):741.

100. Yan Q, Hong J, Gu W, Zhang Y, Liu Q, Su Y, et al. Association of the common rs939609 variant of FTO gene with polycystic ovary syndrome in Chinese women. Endocrinology. 2009;150(3):377–82.

101. Li T, Wu K, You L, Xing X, Wang P, Cui L, et al. Common variant rs9939609 in gene FTO confers risk to polycystic ovary syndrome. PLoS One. 2013;8(7):e66250.

102. Barber T, Bennett A, Groves C, Sovio U, Ruokonen A, Martikainen H, et al. Influence of gene variants related to calcium homeostasis on insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol Metab. 2015;560(1):25–9.

103. Koika V, Georgopoulos NA, Piouka A, Roupas ND, Karela A, Armeni AK, et al. Increased frequency of the DI genotype of the angiotensin-I converting enzyme gene with polycystic ovary syndrome. Diabetologia. 2008;51(7):1153–8.

104. Miller WL. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol. 2002;198(1–2):7–14.

105. Oonk R, Parker K, Gibson J, Richards J. Rat cholesterol side-chain cleavage cytochrome P450 (P-450scc) gene. Structure and regulation by cAMP in vitro. J Biol Chem. 1990;265(36):22392–401.

106. Shaw B, Zhou L, Yang S, Yan M, Wang Z, Ouyang Y, et al. Association between polycystic ovary syndrome (PCOS) and CYP11A1 polymorphism in Haian, China: a case–control study. Int J Clin Exp Pathol. 2016;9(11):230–6.

107. Morohashi KH, Soogah K, Oamura T, Fuji-kuriyama Y. Gene structure of human cytochrome P450 (SCC), cholesterol desmolase. J Biochem. 1987;101(4):879–87.

108. Chaudhary et al. J Ovarian Res (2021) 14:125

109. 97. Reddy KR, Deepika M, Supriya K, Latha KP, Rao SL, Rani VU, et al. CYP11A1 microsatellite (ttta) n polymorphism in PCOS women from South India. J Assist Reprod Genet. 2014;31(7):857–63.

110. 98. Manillian JE, Sancho J, Calvo RM, Escobar-Morreale HF. Role of the pentanucleotide (ttta) n polymorphism in the promoter of the CYP11a gene in the pathogenesis of hirsutism. Fertil Steril. 2001;75(4):797–802.

111. 99. Li T, Gujin Z. Role of the pentanucleotide (ttta) n polymorphisms ofCYP11a gene in the pathogenesis of hyperandrogenism in chinese women with polycystic ovary syndrome. J Huazhong Univ Sci Technol Med Sci. 2005;25(2):212–4.

112. 100. Fan Y-S, Sasi R, Lee C, Winter J, Waterman M, Lin C. Localization of the human CYP17 gene (cytochrome P450c17a) to 10q24.3. By fluorescence in situ hybridization and simultaneous chromosome banding. Genomics. 1992;14(4):1110–1.

113. 101. Matteson KJ, Picado-Leonard J, Chung B-C, Mohandas T, Miller WL. Assignment of the gene for adrenal P450c17 (steroid 17a-hydroxylase/17, 20 lyase) to human chromosome 10. J Clin Endocrinol Metab. 1986;63(5):789–91.

114. 102. Prapas N, Karkanaki A, Prapas I, Kalogiannidis I, Katsikis I, Pandis D. Genetics of polycystic ovary syndrome. Hippokratia. 2009;13(4):216.

115. 103. Sasano H, Okamoto M, Mason J, Simpson E, Mendelson C, Sasano N, et al. Immunolocalization of aromatase, 17a-hydroxylase and side-chain- cleavage cytochromes P450 in the human ovary. Reproduction. 1989;98(1):163–9.

116. 104. Tamura T, Kitawaki J, Yamamoto T, Osawa Y, Komimani S, Takemori S, et al. Immunohistochecmical localization of 17a-hydroxylase/C17–20 lyase and aromatase cytochrome P450 in polycystic human ovaries. J Endocrinol. 1993;139(3):503–NP.

117. 105. Morant F, VanMello G, Overstreet J, Lasley B, Conley AJ. Molecular target of endothrine disruption in human luteinizing granulosa cells by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin: inhibition of estradiol secretion due to decreased 17a-hydroxylase/17, 20-lyase cytochrome P450 expression. Endocrinology. 2003;144(2):467–73.

118. 106. Wickenheisser JK, Quin PG, Nelson VL, Legro RS, Strauss JF III, McClamir JM, et al. Differential activity of the cytochrome P450 17a-hydroxylase and steriodogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab. 2000;85(6):2304–11.

119. 107. Wickenheisser JK, Nelson-DeGrave VL, Quin PG, McClamir JM. Increased cytochrome P450 17a-hydroxylase promoter function in theca cells isolated from patients with polycystic ovary syndrome involves nuclear factor-1. Mol Endocrinol. 2004;18(3):588–605.

120. 108. Wickenheisser JK, Nelson-DeGrave VL, McAllister JM. Dysregulation of cytochrome P450 17a-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(3):1720–7.

121. 109. Yanase T. 17α-hydroxylase/17, 20-lyase defects. J Steroid Biochem Mol Biol. 1992;45(4):1110–1.

122. 110. Perez MS, Cerrone GE, Benencia H, Marquez N, De Piano E, Frechtel GD. Polymorphism in CYP11 alpha and CYP17 genes and the etiology of hyperandrogenism in patients with polycystic ovary syndrome. Endocrinology. 1994;130(10):1873–6.

123. 111. Miyoshi Y, Iwao K, Ikeda N, Egawa C, Noguchi S. Genetic polymorphism in CYP17 and breast cancer risk in Japanese women. Eur J Cancer. 2003;36(18):2375–9.

124. 112. Perez MS, Cerrone GE, Benencia H, Marquez N, De Piano E, Frechtel GD. Polymorphism in CYP17A1 and CYP17 genes and the etiology of hyperandrogenism in patients with polycystic ovary syndrome. Endocrinology. 2008;149(3):1055–61.

125. 113. Chen S, Besman M, Sparkes RS, Zollman S, Klisik I, Mohandas T, et al. Human aromatase: cDNA cloning, southern blot analysis, and assignment of the gene to chromosome 15. DNA. 1988;7(11):27–38.

126. 114. Takayama K, Suzuki T, Bulun SE, Sasano H, Yilmaz B, Sebastian S, editors. Organization of the human aromatase p450 (CYP19) gene. In: Seminars in reproductive medicine. New York: Copyright 2004 by Theme Medi- cal Publishers, Inc.; 2004.
133. Simpson ER, Mahendroo MS, Means GD, Kligore MW, Hinshelwood MW, Graham-Lorence S, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994;15(3):342–55.

134. Graham-Lorence S, Khalil MW, Lorence MC, Mendelson CR, Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, et al. Aromatase—a brief overview. Annu Rev Physiol. 2002;64(1):93–127.

135. Kamat A, Hinshelwood MM, Murry BA, Mendelson CR. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends Endocrinol Metab. 2002;13(3):122–8.

136. Hickey GJ, Chen S, Besman MJ, Shively JE, Hall PF, Gaddy-Kurten D, et al. Structure-function relationships of human aromatase cytochrome P450 messenger ribonucleic acid and enzyme in rat ovarian follicles and corpora lutea: relationship to estradiol biosynthesis. Endocrinology. 1998;132(4):1426–36.

137. Rice DA, Kronenberg M, Mouw AR, Aitken L, Franklin A, Schimmer B, et al. Regulation of the human aromatase gene in ovarian follicles and corpora lutea throughout the menstrual cycle. J Clin Endocrinol Metab. 1990;70(4):1041–9.

138. Chen J, Shen S, Tan Y, Xia D, Xia Y, Cao Y, et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. J Ovarian Res. 2015;8(1):11.

139. Morel Y, Bristow J, Gitelman SE, Miller WL. The opposite strand of the human steroid 21-hydroxylase/complement C4B locus is responsible for estrogen biosynthesis. Endocr Rev. 1994;15(3):342–55.

140. Petry C, Ong K, Michelmore K, Artigas S, Wingate D, Balen A, et al. Expression of messenger RNA encoding steroidogenic enzymes in human follicles and corpora lutea throughout the menstrual cycle. J Clin Endocrinol Metab. 1990;70(4):1041–9.

141. Parker KL, Chaplin DD, Wong M, Seidman J, Smith JA, Schimmer BP. The presence of the 21-hydroxylase deficiency carrier status in hirsute women: phenotype-genotype correlations. Fertil Steril. 1999;72(4):629–38.
174. Pasquali R, Vicennati V, Bertazzo D, Casimirri F, Pascal G, Tortelli O, et al. Determinants of sex hormone—binding globulin blood concentrations in premenopausal and postmenopausal women with different estrogen status. Metabolism. 1997;46(1):5–9.

175. Rannevik G, Jespersen S, Johnell OA, Bjerre B, Laurell-Bonafé Y, Svaneberg L. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas. 1995;21(2):103–13.

176. Ring HZ, Lessov CN, Reed T, Marcus R, Holloway L, Swan GE, et al. Heritability of plasma sex hormones and hormone binding globulin in adult male twins. J Clin Endocrinol Metab. 2005;90(6):3653–8.

177. Xita N, Tsatsouls A. Genetic variants of sex hormone-binding globulin and their biological consequences. Mol Cell Endocrinol. 2010;316(1):60–5.

178. Hogeveen K, Nijveldt RJH, van Ginkel RJ, van Herwerden LA, van Beek EJMV. Bone morphogenetic protein-15: identification of target cells and biological consequences. J Biol Chem. 2000;275(4):3181–6.

179. Peng CY, Xie HJ, Guo ZF, Nie YL, Chen J, Zhou JM, et al. The association between androgen receptor gene CAG polymorphism and polycystic ovary syndrome: a case-control study and meta-analysis. J Assist Reprod Genet. 2014;31(9):1211–9.

180. Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(1):161–5.

181. Westberg L, Baghaei F, Rosmond M, Hellstrand M, Landén M, Jansson M, et al. Polymorphisms of the androgen receptor gene and the estrogen receptor β gene are associated with androgen levels in women. J Clin Endocrinol Metab. 2001;86(6):2562–8.

182. Ouksel F, Yao Z, Lee T-H, Yamamoto S, Erickson GF, Shimakawa S. Bone morphogenic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes. Endocrinology. 2002;143(12):4938–41.

183. Calvo RM, Asunción M, San Millán JL, Escobar-Morreale HF. The role of the CAG repeat polymorphism in the androgen receptor gene and of skewed X-chromosome inactivation, in the pathogenesis of androgen insensitivity. J Clin Endocrinol Metab. 2000;85(4):1735–40.

184. Peng C, Long X, Lu G. Association of AR rs6152G/A gene polymorphism with susceptibility to polycystic ovary syndrome in Chinese women. Reprod Fertil Dev. 2010;22(5):881–5.

185. Zhang T, Liang W, Fang M, Yu J, Ni Y, Li Z. Association of the CAG repeat polymorphisms in androgen receptor gene with polycystic ovary syndrome: a systematic review and meta-analysis. Gene. 2013;524(2):161–7.

186. Wang R, Goodarzi MO, Xiong T, Wang D, Azziz R, Zhang H. Negative association between androgen receptor gene CAG repeat polymorphism and polycystic ovary syndrome? A systematic review and meta-analysis. Mol Hum Reprod. 2012;18(10):498–509.

187. Jehaime CT, Araiza VC, Batsrh SD, Brosnan PG. Polycystic ovaries and adrenal insufficiency in a young pubescent female with lipid-congenital adrenal hyperplasia due to splice mutation of the STAR gene: a case report and review of the literature. J Pediatr Endocrinol Metab. 2010;23(12):1225–31.

188. Rager KM, Omar HA. Androgen excess disorders in women: the severe insulin-resistant hyperandrogenic syndrome, HAIR-AN. ScientificWorldJ. 2015;13(12):771.

189. Seino S, Seino M, Bell GI. Human insulin-receptor gene. Diabetes. 1990;39(2):129–33.

190. Nazouzi A-S, Khasrawifah M, Akhlaghi A-A, Shiva M, Afsharian P. No relationship between most polymorphisms of steroidogenic acute regulatory (STAR) gene with polycystic ovarian syndrome. Int J Reprod Biomed. 2015;13(12):771.

191. Seino S, Seino M, Bell GI. Human insulin-receptor gene. Diabetes. 1990;39(2):129–33.

192. Rager KM, Omar HA. Androgen excess disorders in women: the severe insulin-resistant hyperandrogenic syndrome, HAIR-AN. ScientificWorldJ. 2015;13(12):771.

193. Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006;12(7):324–32.

194. Tan L, Zhu X-M, Luo Q, Qian Y, Jin F, Huang H-F. A novel SNP at exon 17 of INSR is associated with decreased insulin sensitivity in Chinese women with PCOS. Mol Hum Reprod. 2006;12(3):151–5.

195. Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TE, et al. Evidence for association of polycystic ovary syndrome with steroid metabolism and insulin action in polycystic ovary syndrome. Gynecol Endocrinol. 2012;28(3):190–4.

196. Peng CY, Xie HJ, Guo ZF, Nie YL, Chen J, Zhou JM, et al. The association between androgen receptor gene CAG polymorphism and polycystic ovary syndrome: a case-control study and meta-analysis. J Assist Reprod Genet. 2014;31(9):1211–9.
in caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab. 2001;86(1):446–9.
215. Goodarzi MO, Louwers YV, Taylor KD, Jones MR, Cui J, Kwon S, et al. Replication of association of a novel insulin receptor gene polymorphism with polycystic ovary syndrome. Fertil Steril. 2011;95(5):1736–41.e11.
216. Hanzu FA, Radian S, Attoua R, Ait-Ei-Mkadem S, Fica S, Segerheu M, et al. Association of insulin receptor genetic variants with polycystic ovary syndrome in a population of women from Central Europe. Fertil Steril. 2010;94(6):2389–92.
217. Feng C, Lv P-P, Yu T-T, Jin M, Shen J-M, Wang X, et al. The association between polymorphism of INSR and polycystic ovary syndrome: a meta-analysis. Int J Mol Sci. 2015;16(2):2403–25.
218. Rousseau-Merck M, Atger M, Loosfelt H, Milgrom E, Berger R. The chromosomal localization of the human follicle-stimulating hormone receptor gene (FSHR) on 2p21-p16 is similar to that of the luteinizing hormone receptor gene. Genomics. 1993;15(1):222–4.
219. Dufau ML. The luteinizing hormone receptor. Annu Rev Physiol. 2002;64:401–19.
220. Mutharasan P, Galdones E, Peñalver Bernabé B, Garcia OA, Jafari N, Shea Eriksen MB, Brusgaard K, Andersen M, Tan Q, Altinok ML, Gaster M, et al. Genetic complexity of FSH receptor function. Endocrinology. 2005;153(5):275–81.
221. Gromoll J, Simoni M. Genetic determinants of expression of the human follicle-stimulating hormone gene. J Clin Endocrinol Metab. 2004;89(10):5110–5.
222. Haap M, Machicao F, Stefan N, Thamer C, Tschirrter Q, Schnuck F, et al. Genetic determinants of insulin action in polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:1130–4.
223. Xita N, Lazaros L, Georgiou I, Tsatsoulis A. The Pro12Ala polymorphism of the FSH-R gene is not associated with the polycystic ovary syndrome. Hormones. 2009;8(4):267–72.
224. West A, Voja P, Welch DR, Weissman BE. Chromosomal localization and genetic structure of the KISS-1 metastasis suppressor gene (KISS1). Genomics. 1998;49(1):145–8.
225. Lee J-H, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KISS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23):1731–7.
226. De Roux N, Genin E, Carle J-C, Matsuda F, Chausson J-L, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KISS1-derived peptide receptor GPR54. Proc Natl Acad Sci. 2003;100(19):10972–6.
227. Ordi A, Kanasaki H, Mijiddorj T, Sukhbaatar U, Ishihara T, Kyo S, et al. Regulation of kisspeptin and gonadotropin-releasing hormone expression in rat placenta: study using primary cultures of rat placental cells. Reprod Biol Endocrinol. 2015;13(1):1–9.
228. Xie C, Jonak CR, Kauffman AS, Coss D. Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice. Mol Cell Endocrinol. 2015;411:223–31.
229. Dhillon WS, Chaudiub OD, Patterson M, Thompson EL, Murphy KG, Badman MK, et al. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab. 2005;90:6609–15.
230. Messager S, Chaczkes KA, Li X, van der Laarse A, de Koning A, Dixon J. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor. PNAS. 2005;102:1761–6.
231. Jayasena CN, Abbara A, Veldhuis JD, Conininos AN, Ratnasabapathy R, De Silva A, et al. Increasing LH pulsatility in women with hypothalamic amenorrhoea using intravenous infusion of kisspeptin-54. J Clin Endocrinol Metab. 2011;96:8;823:1731–7.
232. Zhang C, Roepeke TA, Kelly MJ, Ruenneklev OK. Kisspeptin degrades gonadotropin-releasing hormone neurons through activation of TRPC- cationic channels. J Neurosci. 2008;28(17):4423–34.
233. Novaira HJ, Ng Y, Wolfe A, Radichkov S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol Cell Endocrinol. 2009;311(1–2):126–34.
234. Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev. 2009;30(6):713–43.
235. Chen X, Mo Y, Li L, Chen Y, Li Y, Yang D, et al. Increased plasma metastin levels in adolescent women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2010;149(1):72–6.
Katulski K, Podfigurna A, Czyzyk A, Mezczeniak B, Genazzani AD. Kisspeptin and LH pulsatile temporal coupling in PCOS patients. Endocrine. 2018;61(1):149–57.

Gokern U, Togrul C, Arslan E, Sargin Oruc A, Buyukkayaci Duman N. Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome? Gynecol Endocrinol. 2018;34(2):157–60.

Panidis D, Roosu D, Koliakos G, Kourtis A, Farmakiotis D, et al. Plasma metatmin levels are negatively correlated with insulin resistance and free androgens in women with polycystic ovary syndrome. Fertil Steril. 2006;85(6):1779–83.

Albalawi FS, Daghestani MH, Eldali A, Warsy AS. rs4889 polymorphism in KISS1 gene, its effect on polycystic ovary syndrome development and anthropometric and hormonal parameters in Saudi women. J Biomed Sci. 2018;25(1):50.

Raymons SE, Pack S, Pak E, Orban Z, Barsony J, Zhuang Z, et al. The pleiotropic effects of vitamin D in gynaecological and obstetric diseases: an overview on a hot topic. Biomed Res Int. 2015;2015:986281.

Agić A, Xu H, Altgassen C, Noack F, Wolfler MM, Diedrich K, et al. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1α-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci. 2007;14(5):486–97.

Lerchbaum E, Obermayer-Pietsch B. Vitamin D and fertility: a systematic review. Eur J Endocrinol. 2011;166(5):75–78.

Pankh G, Varadinova M, Suwandi P, Araki T, Rosenwaks Z, Poretsky L, et al. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res. 2010;42(10):754–7.

Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017–29.

Ngo DTM, Chan W, Rajendran S, Heresztyn T, Amarasekera A, Sverdlov CM, et al. A FTO variant and risk of acute coronary syndrome. J Renin-Angiotensin-Aldosterone Syst. 2019;19:150421.

Tal R, Seifer DB, Ariac A. The emerging role of angiogenic factor dysregulation in the pathogenesis of polycystic ovarian syndrome. Semin Reprod Med. 2015;33(3):195–207.

Giovanni Artini P, Monteleone P, Parisen Toldin MR, Matteucci C, Ruggiero M, Cela V, et al. Growth factors and folliculogenesis in polycystic ovary patients. Expert Rev Endocrinol Metab. 2007;2(2):215–23.

Peitsidis P, Agraval R. Role of vascular endothelial growth factor in women with PCO and PCOS: a systematic review. Reprod BioMed Online. 2010;20(4):444–52.

Alphan Z, Daghestani MH, Warsy A, El-Ansary A, Osman MA, Oma MA, et al. Adverse effects of selected markers on the metabolic and endocrine profiles of obese women with and without PCOS. Front Endocrinol. 2021;12:665446.

van Sande ME, Scharpé SL, Neels HM, Van Camp KO. Distribution of angiotensin converting enzyme in human tissues. Clin Chim Acta. 1985;147(3):255–60.

Right B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.

Jia H, Wang B, Yu L, Jiang Z. Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with polycystic ovary syndrome: a meta-analysis. J Renin-Angiotensin-Aldosterone Syst. 2013;14(3):255–62.

Alphan Z, Berberoglu Z, Gorar S, Candan Z, Aktas A, Aral Y, et al. Increased total renin levels but not angiotensin-converting enzyme activity in obese patients with polycystic ovary syndrome. Med Princ Pract. 2013;22(5):475–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.