The loop-mediated isothermal amplification technique to determine T. gondii infection in women with spontaneous abortion

CURRENT STATUS: POSTED

Farnaz Kheirandish kheirandish81@yahoo.com
Medical Parasitology
Corresponding Author
ORCID: 0000-0003-2680-0703

Shirzad Fallahi
Lorestan University of Medical Sciences

Hossein Mahmoudvand
Lorestan University of Medical Sciences

Khatereh Anbari
Lorestan University of Medical Sciences

Ali Araban
Lorestan University of Medical Sciences

Arian Karimi Rouzbahani
Lorestan University of Medical Sciences

Soheila Akbari
Lorestan University of Medical Sciences

DOI: 10.21203/rs.2.10516/v1

SUBJECT AREAS
Infectious Diseases Obstetrics & Gynecology

KEYWORDS Toxoplasmosis, LAMP, ELISA, Pregnant, Iran
Abstract

Background

Toxoplasmosis caused by Toxoplasma gondii is well-known as one of the most widespread parasitic diseases, which has now infected nearly a third of the world's population. Among the infectious agents, T. gondii is considered as one of the main causes of spontaneous abortion (SA). The present study aimed to use the loop-mediated isothermal amplification (LAMP) technique in comparison with serological tests to determine the rate of T. gondii infection in women suffering from SA in Lorestan Province, Western Iran.

Methods

A total of 140 women suffering from their first spontaneous abortion and who had been referred to the Obstetrics and Gynecology Department, Asalian hospital (Khorramabad, Iran) were included in this study. The collected aborted fetal remains and blood samples (5 ml) from each patient were examined in sterilized conditions using the LAMP technique and ELISA commercial kits to determine the specific IgM and IgG anti-Toxoplasma antibodies respectively. Moreover, a questionnaire about some demographic and risk factors, such as the mother’s age, gestational age, and contact with cats was completed for each patient.

Results

Of the 140 women, 80 (57.1%) tested seropositive for anti-T. gondii antibodies by ELISA, 72 (51.4%) women tested seropositive for the IgG antibody, 8 (5.7%) tested seropositive for the IgM antibody. Among the 8 women who’d had their first spontaneous abortion who tested seropositive for IgM antibody by ELISA, only 5 cases (62.5%) reported positively to the LAMP test. The difference in the frequency distribution of the LAMP results for measuring the Toxoplasma infection in pregnant women under study was statistically significant (P <0.001) from the results of the serological test (ELISA). Although there was
a significant difference between age and positivity in the LAMP test ($P = 0.017$), no significant difference was observed between positivity in the LAMP test and residence, education, job, and contact with cats.

Conclusion

The findings of the present investigation suggest that LAMP is a preferred method for determining Toxoplasma infection in pregnant women suffering from spontaneous abortion compared with other routine serological tests.

1. Background

Toxoplasmosis caused by *Toxoplasma gondii* is well-known as one of the most widespread parasitic diseases, which has now infected nearly a third of the world’s population.$^{1-3}$ The main ways to contract this disease are consumption of undercooked meat with *T. gondii* tissue cysts, drinking of water and food contaminated with excreted oocysts of cat faeces, as well as congenitally.$^{4-6}$ Although toxoplasmosis is almost asymptomatic in healthy and immunocompetent people, it results in severe complications in immunocompromised individuals.4,7 Among the serious complications of toxoplasmosis, congenital infection is considered the most important complication in pregnant women, with a worldwide prevalence rate of nearly 200,000 cases every year.8 During pregnancy, especially in the first trimester, if a mother gets infected with the *T. gondii*, the parasite is capable of passing through the placental barriers and causing stillbirth or spontaneous abortion (SA) in the fetus.9 SA, which often occurs before 20 weeks of pregnancy, was reported in about 1 to 2% of pregnant women.10 A number of factors, such as genetic factors, anatomical disorders, endocrine disorders, autoimmune syndromes, as well as infections can cause abortion.11

Among the infectious agents, *Chlamydia trachomatis, Ureaplasma urealyticum,*
Mycoplasma hominis, cytomegalovirus, human papillomaviruses, and T. gondii are the main causes of SA.12, 13 Previous studies have shown the association between toxoplasmosis and SA.11-15 However, there are few studies regarding the connection between toxoplasmosis and SA in Iran. The majority of studies regarding the prevalence of toxoplasmosis in SA have been carried out based on serological and some molecular tests, such as conventional polymerase chain reaction (PCR). The loop-mediated isothermal amplification (LAMP) technique has some unique properties, such as high sensitivity and specificity, field usability, and isothermal reaction conditions, without the need for expensive equipment, such as thermal cycling. It is well-known as one of the important techniques for determining microbial pathogenesis.16-19 The present study aimed to use the LAMP technique together with serological tests to determine the rate of T. gondii infection in women suffering from SA in Lorestan Province, Western Iran.

2. Methods

2.1. Participants

A total of 140 women suffering from their first SA, and who had been referred to the Obstetrics and Gynecology Department, Asalian Hospital, Khorramabad, Iran, were investigated. The fact of SA was diagnosed by a gynecologist, based on a case history and clinical tests, and also from the results of a sonography, to rule out other possible causes of SA for example Rh-incompatibility, threatened abortion, incompetent cervix, as well as some uterine disorders. All the enrolled participants were informed about study and written informed consent was obtained. For women under 15 years of age, written consent was given to their spouse.
2.2 Sample collection
Aborted fetal remains and blood samples (5 ml) were collected from each patient in sterilized conditions and stored at a temperature of −20°C until testing. Moreover, a questionnaire including some demographic and risk factors such as the mother’s age, gestational age, contact with cats, etc was completed by each patient.

2.3. Serological test
The serum samples of all patients were examined to determine the specific IgM and IgG anti- *Toxoplasma* antibodies using ELISA commercial kits (de EIA de *Toxoplasma* IgG Foresight® ACON) according to the manufacturer’s instructions.

2.4. Molecular test by LAMP technique
In this study, the genomic DNA was extracted from the remains of aborted fetuses using a DNA Extraction Kit (Yekta Tajhiz Azma, Iran). The nucleotide sequences of four *Toxoplasma*-specific primers targeting the six conserved regions within the sequence of the B1 gene of 35-fold repeats used in the LAMP reaction are as follow;

\[\text{F3: 5'}-\text{CAGATGTGCTAAAGCGCTCA-3'} \]
\[\text{B3: 5'}-\text{ACGTGACAGTGAAGAGAGGA-3'} \]
\[\text{FIP: 5'}-\text{AGGCGGAACCAACGGAAAATCCTTGCTTGGTTCTGCTCTTATCGC-3'} \]
\[\text{BIP: 5'}-\text{TGTTCGCTGTCTGTCTAGGGCAGGTGGTGGTCGACTTCATGGGA-3'} \]

The LAMP reaction mixture was prepared in 25µl containing: 2 µl of template DNA, 40 pmol each of FIP and BIP inner primers, 5 pmol each of F3 and B3 outer primers, 8 U (1 µl) of Bst DNA polymerase (New England Biolabs (NEB), Ipswich, MA, USA) in 2.5 µl of buffer [20 mM Tris-HCl (pH 8.8), 8 mM MgSO$_4$, 10 mM (NH$_4$)$_2$SO$_4$, 0.1% Tween 20], 10 mM KCl, 0.8 M betaine (Sigma-Aldrich), in addition to 1.4 mM deoxynucleosidetriphosphates (dNTP). *T. gondii* RH-strain genomic DNA and distilled water (D.W) were used as positive and negative controls, respectively.
Using a water bath, the reaction mixture of the isothermal LAMP samples were incubated at 65°C for 60 min and then was inactivated at 80°C for 2 min. The resulting amplicons were visually detected by adding 3µL of 1:10 diluted 10,000 x concentration fluorescent dye SYBR Green I (Invitrogen Carlsbad, CA, USA) to the reaction tubes. In a positive LAMP sample, green fluorescence was observed, while in the negative one, it remained the original pinkish-orange.

2.5. Statistical analysis

SPSS 17.0 software (SPSS Inc., Chicago, IL, USA) was used to analyse the collected data. Descriptive statistics were shown in terms of percent (for categorical) and mean (SD) (for continuous) variables. The Chi-square test was applied to determine the univariate association between independent variables and the outcome. Multifactorial logistic regression models were also used to assess the association between T. gondii positivity and the present risk factors. $P<0.05$ was considered to be statistically significant.

3. Results

3.1. Participants

In this study, a total of 140 pregnant women suffering from their first SA were evaluated for toxoplasmosis infection by molecular (LAMP) tests. The mean age of the participants was 26.7 ± 6.6 years, ranging from 15 to 44 years old. In term of education, the majority of participants had secondary education and diplomas (39.3%). The majority of participants were also housewives (70.7%), resident in urban areas (75.7%). Table 1 shows the demographic characteristics of the participants in the study.

The epidemiologic and clinical characteristics of pregnant women suffering from their first SA are presented in Table 1. Out of 140 women, 24 (17.1%) had a history of keeping cats at home. In terms of pregnancy rate, 67 (47.9%) were pregnant for the first time, 41 (29.3%) were pregnant for the second time, 19 (13.6%) were pregnant for the third time, 8
(5.7%) were pregnant for the fourth time and 5 (6.3%) had experienced their fifth pregnancy. The history of abortion in previous pregnancies was not positive in any of the women studied, and none of the women reported a history of the specific disease in their previous offspring at birth. The history of the underlying disease was not reported in any of the women.

3.2. Prevalence *T. gondii* infection

Of the 140 women, 80 (57.1%) tested seropositive for anti-*T. gondii* antibodies by ELISA, 72 (51.4%) women tested seropositive for the IgG antibody, 8 (5.7%) tested seropositive for the IgM antibody (Table 2).

Among the 8 women suffering from their first SA who tested seropositive for the IgM antibody by ELISA, only 5 cases (62.5%) reported positively by the LAMP test. Based on Fisher's exact test, the difference in the frequency distribution of the LAMP results for measuring the toxoplasma infection in the pregnant women under study was statistically significant (*P* < 0.001) with the serological test (ELISA).

In term of age, there was a significant difference between age and positivity in the LAMP test (*P* = 0.017), so that all positive cases for *Toxoplasma* parasite infection based on LAMP test were reported from the age group of lower than 25 years. The majority of positive cases (8.5%) were observed in women with lower education (≤diploma). However, there was no significant difference between positivity to toxoplasmosis by LAMP and education (*P* = 0.073).

Based on the LAMP test, the highest number of positive cases was observed in housewives (4%). However, no statistically significant difference was observed between positivity to toxoplasmosis by LAMP and profession (*P* = 0.813). The highest number of positive cases of *T. gondii* infection was observed in pregnant women who lived in rural areas (5.9%), but by Fisher's exact test, the difference between positivity to toxoplasmosis by LAMP and
residence was not statistically significant (P = 0.595). Moreover, the results demonstrate that no statistically significant difference was observed between positivity to toxoplasmosis by LAMP and contact with cats (P = 0.588) and pregnancy grade (P = 0.193) (Table 1).

4. Discussion

Congenital toxoplasmosis, an infectious disease that is found in fetuses infected with *Toxoplasma gondii*, may result in severe consequences, such as ocular, hearing, cognitive, and mental complications, and may even cause SA, miscarriage or stillbirth.\(^1\) Since the accurate mechanism of transmission of the *Toxoplasma* across the human placenta is not completely understood, the rate of congenital toxoplasmosis in pregnant women varies, depending on the trimester during which the congenital infection occurred.\(^1,4\) So far, it has been proven that in the first trimester, the rate of transmission of toxoplasmosis is nearly 25%, while the transmission rates in the second and third trimester are 50 and 65%, respectively.\(^8,9\) SA occurring before 20 weeks of pregnancy has been reported in about 1 to 2% of pregnant women.\(^10\) A number of factors such as genetic factors, anatomical disorders, endocrine disorders, autoimmune syndromes, as well as infections can contribute to abortion.\(^10,15\) Among the infectious agents, *C. trachomatis, U. urealyticum, M. hominis*, cytomegalovirus, human papillomaviruses, and *T. gondii* are the main causes of SA.\(^11-14\) Despite the fact that previous studies have shown the association between toxoplasmosis and SA,\(^13,14\) there are few studies regarding the association between toxoplasmosis and SA in Iran. The majority of the studies regarding the prevalence of toxoplasmosis in SA have been carried out based on serological and some
molecular tests, such as conventional PCR.

In this study, 140 pregnant women suffering from their first SA were examined for Toxoplasma infection by serological (ELISA) and molecular (LAMP) tests. The results from ELISA demonstrated that anti- Toxoplasma IgG and IgM were found in 72 (51.4%) and 8 (5.8%) of a group of pregnant women.

Usually, identification of acute primary infection, especially in pregnant women, is very challenging, but the IgM antibody can be used to identify early acute toxoplasmosis.20,21

In line with our results, Elamin Elhag et al (2015) showed that among 99 women who had suffered SA in Khartoum State, \textit{T. gondii} IgM was found in 5 women (5.3%), whereas 27 women (28.4%) were found to be positive for \textit{T. gondii} IgG.14 Zargar et al. (1998) have demonstrated the prevalence of the IgM anti-Toxoplasma antibody in 49.47% of women with recurrent SA (49.47%) in Kashmir, Pakistan.22

In Iran, in a study conducted by Matin et al (2017) in Ardebil Province, Iran, the prevalence of anti-Toxoplasma IgG and IgM in women with a history of SA or stillbirth in Sari, Iran was 4.0% and 43.0%, respectively.23 Saki et al (2015) reported that IgG and IgM anti-Toxoplasma antibodies were found in 32 (24.6%) and 1 (0.77%) of women suffering SA in Ahvaz, Southwest of Iran.24 Sharif and Ajami25 demonstrated that the prevalence of anti-Toxoplasma IgG and IgM in women with a history of SA or stillbirth in Sari, Iran was 34.2% and 7.9%, respectively. Jahromi et al (2007) have reported that among 124 women with a history of SA in Bandar Abbas, southern Iran, anti-Toxoplasma IgG, and IgM antibodies were found in 98 (79.03%) and 19 (15.32%) cases, respectively.26 In another study conducted by Saeedi et al (2009) in Gorgan province, Iran, the prevalence of anti-Toxoplasma antibodies among women with abnormal pregnancy was 44.1% and 21% for IgG and IgM antibodies, respectively.27
The results showed that among 140 pregnant women suffering their first SA studied in this investigation, *T. gondii* DNA was found in 5 (3.6%) women by LAMP. Similarly, Abdoli et al (2017) demonstrated that *T. gondii* DNA was detected in 3.8% of in formalin-fixed, paraffin-embedded fetoplacental tissues (FFPTs) of women with recurrent SA in Tehran, Iran. On the other hand, Asgari et al (2013) have reported that among 542 FFPTs, the B1 gene was amplified from 78 (14.4%) of Spontaneous Aborted Fetuses in Shiraz, Southern Iran by semi-nested PCR. In recent years, the loop-mediated isothermal amplification (LAMP) technique has become well-known as one of the important techniques to determine microbial pathogens because of its unique properties, such as high sensitivity and specificity, field usability, and isothermal reaction condition that don’t need expensive equipment, such as thermal cycling. However, the difference between the serological tests and LAMP for the detection of acute infection may be affected by some factors, including the short duration of parasitemia and the low numbers of trophozoites circulating in peripheral blood, which can cause a sampling error that will create false-negative results in such cases.

Among the demographic and risk factors studied in the present investigation, such as age, residence, education, contact with cats, etc, a significant correlation was only observed between age (<25 yrs) and positivity to *T. gondii* (p=0.017). However, there is no significant association between other risk factors and positivity to *T. gondii*. Consistent with our results, Elamin Elhag et al (2015) showed that among 99 women suffering SA in Khartoum State, the highest percentage of a positive result was observed between 20-29 years. Moreover, in the study conducted by Saki et al (2015) in line with our results, there was no significant association between some risk factors such as contact with cats and positivity to *T. gondii* in women who had spontaneously aborted. However, to reach
a more accurate conclusion the sample size needs to be increased.

5. Conclusion

The results of the present study, in line with previous studies, indicate the importance of this parasite as a cause of SA. The findings of the present investigation suggested that LAMP is a preferred method to determine *Toxoplasma* infection in SA by pregnant women, compared with other routine serological tests.

Declarations

Ethics approval and consent to participate

A written consent was taken from the participants before sampling; moreover, the study was also approved by the Ethical Committee of Lorestan University of Medical Sciences (Khorramabad, Iran). The present cross-sectional investigation was carried out from February 2016 to March 2017.

Consent for publication

Not applicable

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests

Funding

Not applicable

Authors' Contributions
Study design: FK

Data collection: SA, AA, SF

Analysis: KA

Writing manuscript: HM, FK, AKR

All authors read and approved the final manuscript: HM, FK, AA, SF, SA, AKR, KA

Acknowledgment

We thank the staff of the Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran for their assistance to collect the blood samples.

Abbreviations

PCR: polymerase chain reaction
LAMP: loop-mediated isothermal amplification (LAMP)
ELISA: enzyme-linked immunosorbent assay
dNTP: deoxynucleosidetriphosphates

References

1. Gilbert RE. Epidemiology of infection in pregnant women. In: Petersen E, Amboise-Thomas P, editors. Congenital Toxoplasmosis: Scientific Background, Clinical Management, and Control. Paris (France): Springer-Verlag; 2000; 237-249.

2. Kheirandish, F., Nazari, H., Mahmoudvand, H., Yaseri, Y., Tarahi, M.J, Fallahi, S., Ezatpour, B. Possible link between Toxoplasma gondii infection and mood disorders in Lorestan province, Western Iran. Archives Clin Infect Dis. 2016; 11(4):, e36602, 8p.

3. Fallahi, Sh., Kazemi, B., Seyyed tabaei, S.J., Bandehpour, M., Lasjerdi, Z., Taghipour, N., Zebardast, N., Nikmanesh, B., Omrani, V.F., Ebrahimzadeh, F. Comparison of the RE and B1 gene for detection of Toxoplasma gondii infection in children with cancer. Parasitol Int. 2014;63(1):37-41.

4. Dunn D, Wallon M, Peyron F, Petersen E, Peckham C, Gilbert R. Mother-to-child transmission of toxoplasmosis: risk estimates for
clinical counseling. Lancet. 1999;353(9167):1829–1833.

5. Hanifehpour, H., Samsam Shariat, S.K., Ghafari, M.S., Kheirandish, F., Saber, V., Fallahi, Sh. Serological and molecular diagnosis of *Toxoplasma gondii* infections in thalassemia patients. Iranian J Parasitol. 2019; 14(1): 20-28.

6. Arab-Mazar, Z., Fallahi, Sh., Koochaki, A., Haghighi, A., Seyyed Tabaei, S.J. Immunodiagnosis and molecular validation of *Toxoplasma gondii*-recombinant dense granular (GRA) 7 protein for the detection of toxoplasmosis in patients with cancer. Microbiologic Res. 2016;183(1): 53-59.

7. Kheirandish, F., Nazari, H., Mahmoudvand, H., Yaseri, Y., Tarahi, M.J, Fallahi, S., Ezatpour, B. Possible link between *Toxoplasma gondii* infection and mood disorders in Lorestan province, Western Iran. Archives Clin Infect Dis. 2016; 11(4): e36602, 8p.

8. Remington JS, McLeod R, Thulliez P, Desmonts G. Toxoplasmosis. In: Remington JS, Klein JO, Wilson CB, Baker CJ, editors. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia, USA: Elsevier Saunders; 2006. pp. 947-1091.

9. Robbins JR, Zeldovich VB, Poukchanski A, Boothroyd JC, Bakardjiev AI. Tissue barriers of the human placenta to infection with *Toxoplasma gondii*. Infect Immun. 2012; 80: 418–428.

10. Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol. 2009; 2(2): 76–83.

11. Nigro G, Mazzocco M, Mattia E, Di Renzo GC, Carta G, Anceschi MM. Role of the infections in recurrent spontaneous abortion. J Matern Fetal Neonatal Med. 2011; 24(8): 983–989.

12. Torgerson PR\(1\), Mastroiacovo P. The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ. 2013 1; 91(7): 501-8. doi: 10.2471/BLT.12.111732. Epub 2013 May 3.

13. Singh J, Graniello C, Ni Y, Payne L, Sa Q, Hester J, Shelton BJ, Suzuki Y. *Toxoplasma* IgG and IgA, but not IgM antibody titers increase in sera of immunocompetent mice in association with proliferation of tachyzoites in the brain during the chronic stage of
infection. Microbes Infect. 2010; 12: 1252-1257.

14. Elamin Elhag K, Elturabi SEM. Seroprevalence of toxoplasmosis among women with abortion in Khartoum State. J Coastal Life Med. 2015; 3(7): 551-554.

15. Fallahi, S., Rostami, A., Nourollahpour Shiadeh, M., Behniafar, H., Paktinat, S. An updated literature review on maternal-fetal and reproductive disorders of *Toxoplasma gondii* infection. J Gynecol Obstet Hum Reprod. 2018; 47(3): 133-140.

16. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y. Specific, sensitive, and rapid diagnosis of active toxoplasmosis by a loop-mediated isothermal amplification method using blood samples from patients. J Clin Microbiol 2010; 48: 3698-702.

17. Fallahi, Sh., Seyyed Tabaei, S.J., Pournia, Y., Zebardast, N., Kazemi, B. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of *Toxoplasma gondii* in blood samples of children with leukaemia. Diag Microbiol Infect Dis. 2014; 79(3): 347-354.

18. Rostami, A., Karanis, P., Fallahi, S. Advances in serological, imaging techniques and molecular diagnosis of *Toxoplasma gondii* infection. Infect. 2018; 46(3): 303-315.

19. Fallahi, Sh., Mazar, Z., Ghasemian, M., Haghighi, A. Challenging loop-mediated isothermal amplification (LAMP) technique for molecular detection of *Toxoplasma gondii*. Asian Pacific J Trop Med. 2015; 8(5): 366-372.

20. Amany A. Abd El Aal, Reham K. Nahnoush, Marwa A. Elmallawany, Walid S. El-Sherbiny, Mohamed S. Badr, Ghada M. Nasr. Isothermal PCR for Feasible Molecular Diagnosis of Primary Toxoplasmosis in Women Recently experienced Spontaneous Abortion. Macedonian J Med Sci. 2018; 6(6): 982-987.

21. Mousavi, P., Mirhendi, H., Mohebali, M., Shojaei, S., Keshavarz Valian, H. Fallahi, Sh.
Mamishi, S. Detection of Toxoplasma gondii in acute and chronic phases of infection in immunocompromised patients and pregnant women with real-time PCR assay using TaqMan fluorescent probe. Iranian J Parasitol. 2018; 13(3): 373-381.

22. Zargar A. H., Masoodi S. R., Laway B. A., Sofi B. A., Wani A. I. Seroprevalence of toxoplasmosis in women with repeated abortions in Kashmir. J Epidemiol Com Health. 1998; 52(2): 135-136. doi: 10.1136/jech.52.2.135.

23. Matin S., Shahbazi G., Tabrizian Namin S., Moradpour R., Feizi F., Piri-dogahe H. Comparison of Placenta PCR and Maternal Serology of Aborted Women for Detection of Toxoplasma gondii in Ardabil, Iran. Korean J Parasitol. 2017 Dec; 55(6): 607–611.

24. Saki J, Mohammadpour N, Moramezi F, Khademvatan S. Seroprevalence of Toxoplasma gondii in Women Who Have Aborted in Comparison with the Women with Normal Delivery in Ahvaz, Southwest of Iran. Sci World J. 2015; 2015: 764369.

25. Sharif M., Ajami A. Serological survey of toxoplasmosis in women with abortion or still birth referring to women clinic in Sari, 1997-1998. J Mazandaran University Med Sci. 1999; 26: 13–18.

26. Jahromi A.S. Anti-toxoplasma antibodies in women with abortion or still birth. J Jahrom University of M Sci. 2007; 4: 47–52.

27. Saeedi M., Nosrat S. B., Moradi A., Mofidi S. M. H., Behnampoor N. Comparative study of Cytomegalovirus, Listeria monocytogen and Toxoplasma gondii infections in successful and non-successful pregnancy in Gorgan. Med Lab J. 2009; 3(1): 25–30.

28. Abdoli A, A, Soltanghoraee H, Ghaffarifar F. Molecular Detection and Genotypic Characterization of Toxoplasma gondii in Paraffin-Embedded Fetoplacental Tissues of Women with Recurrent Spontaneous Abortion. Int J Fertil Steril 2017; 10(4): 327–336.

29. Asgari Q, Fekri M, Monabati A, Kalantary M, Mohammadpour I, Motazedian MH, et al. Molecular genotyping of Toxoplasma gondii in human spontaneous aborted fetuses in Shiraz, Southern Iran. Iran J Public Health. 2013; 42(6): 620–625.
30. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop mediated isothermal amplification using loop primers. Mol Cell Probes. 2002; 16: 223-229. https://doi.org/10.1006/mcpr.2002.0415 PMid:12144774.

31. Mahmoudvand, H., Fallahi, Sh., Mahmoudvand H., Shakibaie, M., Harandi, M.F., Dezaki, E.S. Efficacy of Myrtus communis L. to Inactivate the Hydatid Cyst Protoscoleces. J Investigat Surg. 2016; 29: 137-143.

32. Fallahi, Sh., Rostami, A. Birjandi, M., Zebardast, N., Kheirandish, F, Spotin, A. Parkinson's disease and Toxoplasma gondii infection: Sero-molecular assess the possible link among patients. Acta Trop. 2017; 173: 97-101.

33. Arab-Mazar, Z., Fallahi, Sh., Koochaki, A., Mirahmadi, H., Seyyed Tabaei, S.J. Cloning, expression and immunoreactivity of recombinant Toxoplasma gondii GRA5 protein. Iranian J Microbiol. 2016; 8(5): 331-337.

34. Fallahi, Sh., Rostami, A., Mohammadi, M., Ebrahimzadeh, F., Pournia, Y. Practical parasitology courses and infection with intestinal parasites in students. J Infect Pub Health. 2016;9(5): 654-660.

35. Badparva, E., Fallahi, Sh., Sepahvand, A., Pournia, Y., Mollaei Rashnoo, S. The comparison of the efficacy of various fixatives on diverse staining methods of Giardia lamblia cyst. Pakistan J Biologic Sci. 2009; 12(17): 1212-1216.

Tables

Table 1. Demographic characteristics and prevalence of T. gondii infection among the 140 pregnant women with the first spontaneous abortion
Variables	Frequency No. (%)	Positive in LAMP No. (%)	P value	
	Positive	In LAMP		
Age				
≤25 yrs	63 (45)	5 (7.9)	0.017*	
25 yrs<	77 (55)	0 (0.0)	-	
Residence	Rural	106 (75.7)	3 (2.8)	-
	Urban	34 (24.3)	2 (5.9)	0.595
Education	illiterate	4 (0.0)	0 (0.0)	-
≤guidance Diploma	47 (33.6)	4 (8.5)	0.073	
Academic	55 (39.3)	1 (1.8)	-	
	38 (27.1)	0 (0.0)	-	
Job	Housewife	99 (70.7)	4 (4)	0.813
	Employee	32 (22.9)	1 (3.1)	-
	Student	9 (6.4)	0 (0.0)	-
Contacting with cat	Yes	24 (17.1)	0 (0.0)	-
	No	116 (82.9)	5 (4.3)	0.588
Pregnancy grade	First	67 (47.9)	4 (6.0)	0.193
	Second	41 (29.3)	1 (1.4)	-
	Third	19 (13.6)	0 (0.0)	-
	Forth	8 (5.7)	0 (0.0)	-
	Fifth	5 (3.6)	0 (0.0)	-

* Difference was statistically significant

Table 2. The frequency of *T. gondii* infection among the 140 pregnant women with the first spontaneous abortion by ELISA and LAMP methods.
Test	Positive No. (%)	Negative No. (%)	N
Toxoplasma IgM Ab	8 (5.7)	132 (94.3)	14
Toxoplasma IgG Ab	72 (51.4)	68 (48.6)	14
LAMP	5 (3.6)	135 (96.4)	14