Occupational health and safety start at school of engineering

M Ramirez*, A Pastor¹, E Diaz¹, D Piñero¹ and M Batista¹

¹School of Engineering, Universidad de Cádiz, Av. Universidad de Cádiz, 10, 11519, Puerto Real (Cádiz), Spain

*Corresponding author: magdalena.ramirez@uca.es

Abstract: The occupational risk prevention has been the subject of study for many years, but it could be said that in Spain, it is from the promulgation of laws in this regard when it becomes more important in view of the need to reduce the accident rate in all professions. Focusing on the engineering profession, the need arises to know if in their training stages, this matter is contemplated by developing a preventive culture in the person that helps to become familiar with and minimize risks. That is why this study aims to find out how this subject is dealt with in Spanish universities. To this end, it proposes the study through the Spanish universities best positioned in international rankings such as the Academic Ranking of World Universities (ARWU) and Quacquarelli Symonds, known as QS World University Ranking. The results of the study show that Spanish universities are not very well disposed towards this subject, thus depriving future engineers of the acquisition of competencies related to risk prevention.

Keywords: Occupational Health and Safety, Manufacturing Engineering, Training Methods, Risk Prevention, Occupational Hazards.

1. Introduction

The prevention of occupational hazards was born with the commitment to provide a work environment where workers can develop their activities without assuming risks derived from the activities they perform and with that intention the International Labour Organization (ILO) was constituted in 1919, developing policies, promoting programs and establishing work standards for the 187 member states that compose it [1].

ILO is a specialized organization of the United Nations for this matter and another agency is the World Health Organization (WHO) [2]. Further downstream, at the European level, is the European Agency for Safety and Health at Work (EU-OSHA) [3] in charge of occupational safety and health matters among the Member States. From here, each country has its own legislation and regulations to apply. Specifically in Spain, this is Law 31/1995 of November 8, 1995, together with the regulations derived therefrom [4].

The Ministry of Labour, Migration and Social Security is ultimately responsible for occupational safety and health in Spain and the National Institute of Occupational Safety and Hygiene, whose mission is to support and promote occupational safety and health in its technical aspects, reports to it. Among the information published by this institute is a report that includes the priority activities according to the accident rate. After consulting the data for the year 2019, the manufacture of metal products among the activities with the greatest impact on the accident rate (severity) are found, group to which the mechanical engineer belongs, as well as different associated manufacturing processes [5].
Taking into account government regulations, the curricula introduce workshop and laboratory practices. Practices that in many cases involve significant risks as may be the case of manufacturing engineering. Safety is a Required subject to be taught [6] which should be used by the students for their application in their own learning during the development of these practices. However, although there are studies that investigate how safety affects worker performance [7], and proposals aimed at reducing the accident rate [8], it is not known how different Spanish universities approach the subject and whether they promote a preventive culture.

The aim of this paper is to analyse training in the area of occupational health and safety in engineering degrees and its relationship with the field of manufacturing engineering. Analysing the coordination between subjects and the timing of training in Occupational Health and Safety.

2. Methodology
To carry out the analysis, the most relevant Spanish universities in the field of manufacturing engineering will be studied, analysing the specific degrees associated with this field. For this purpose, the classification offered by the Academic Ranking of World Universities (ARWU) published for the first time in 2003 and popularly known as the Shanghai Ranking, will be used to evaluate the quality of more than 1,000 universities in the world, among which Spain is found with a total of 40. It uses six indicators to measure among which are the number of students and employees who have been awarded Nobel Prizes or the Fields Medal, number of most cited researchers according to Clarivate Analytics, number of articles published in the journal Nature and the journal Science and the number of articles indexed in Science Citation Index and the Social Science Citation Index and per capita production [9].

In addition, the data provided by Quacquarelli Symonds, known as QS World University Ranking, which has been publishing comparative data on university performance since 2004, among others, will be analysed based on the result of the academic reputation based on a survey of more than 100,000 experts, on which 40% of the weighting is based, the employer reputation based on a survey of 10,000 employers with a weighting of 10% of the total, 20% weighting is based on the faculty/student ratio and another 20% on the number of citations per faculty evaluated over a five-year period plus 5% for the international faculty ratio and the last 5% for the international student ratio [10] as shown figure 1.

![Figure 1. Methodology.](image-url)
With the information obtained from both sources, it is intended to know the preventive culture that exists in the different selected universities. At the same time, it will be necessary to carry out a study of the approach given to the subject of Occupational Risk Prevention in the study plans and its relationship with the legislation in force in this area.

3. Results and Discussion
In order to be able to locate the population affected by the study, the existing university offer in Spain is evaluated in which there are 786 Degrees in the field of Engineering and Architecture composed of a total of 229,510 students, which represents 17.74% of the total number of students enrolled in all the degrees according to data provided by the Ministry of Universities 2020 of the Government of Spain, of which 91.3% were carried out in public universities and the remaining 8.7% in private universities [11].

Once the population affected by the study is known, we now move on to the results obtained in each of the rankings consulted. Starting with the Academic Ranking of World Universities (ARWU) - Shanghai Ranking – 2020 where table 1 shows the position of the top ten Spanish universities, the degrees they offer, the subjects that include occupational risk prevention concepts, the type of subject, i.e., whether it is required or elective, the year in which it is taught and the number of European Credit Transfer System (ECTS) credits each one of them has.

University Ranking Position	Degree	Subject	Type	Year	ECTS
Autonomous University of Barcelona [12] 201/300	Mechanical Engineering	Industrial Production Systems	Required	3rd	3
	Industrial Organization Engineering	Quality, Safety and Environmental Management	Required	3rd	6
	Industrial Design and Product Development Engineering	Prevention Methodology in the Design and Marketing Sector	Elective	4th	6
	Industrial Design and Product Development Engineering	Prevention and Safety in the Design and Marketing Sector	Elective	4th	6
	Industrial Design and Product Development Engineering	Prevention Technology in the Design and Marketing Sector	Elective	3rd	6
Polytechnic University of Valencia [13] 301/400	Mechanical Engineering	Prevention Methodology in the Mechanical Sector	Elective	4th	6
	Mechanical Engineering	Prevention Methodology in the Mechanical Sector	Elective	4th	6
	Mechanical Engineering	Prevention Technology in the Mechanical Sector	Elective	3rd	6
Industrial Organization Engineering	Safety and Occupational Risk Prevention. Basic Legislation for Industrial Companies	Elective	4th	4.5	
Industrial Technologies Engineering	Occupational Risk Prevention	Elective	4th	4.5	
University of the Basque Country [14] 301/400	Engineering in Process and Product Innovation	Organizational Engineering	Required	3rd	6
	Industrial Organization Engineering	Engineering Projects Management, Health and Safety and Ergonomics	Required	4th	6
	Industrial Technology Engineering	Engineering Projects	Required	4th	6
University of Oviedo [15] 401/500	Industrial Technologies Engineering	Occupational Risk Prevention	Elective	4th	6
Table 1. (Continued) Top ten Spanish universities ranked in the Shanghai Ranking.

University	Field	Course	Type	Rank	Credits
University of Seville [16]	Industrial Organization Engineering	Analysis and Prevention of Labor Risks	Elective	4th	4.5
	Industrial Technologies Engineering	Integral Project of Industrial Plants	Elective	4th	4.5
		Analysis and Prevention of Labor Risks	Elective	4th	4.5
	Industrial Design Engineering and Product Development	Occupational Health and Safety	Elective	4th	6
		Product Engineering Projects	Required	4th	6
University of Zaragoza [17]	Mechanical Engineering	Occupational Risk Prevention Engineering	Required	4th	6
		Project Office	Required	4th	6
Polytechnic University of Madrid [18]	Industrial Design Engineering and Product Development	Safety and Health at Work	Elective	4th	3
	Mechanical Engineering	Occupational Health and Safety	Elective	4th	3
	Industrial Technologies Engineering	Quality Management, Prevention and Sustainability	Elective	4th	3
University of Navarra [19] [19]	Industrial Design Engineering and Product Development	Quality Management Systems	Required	4th	6
	Industrial Organization Engineering	Quality Management Systems	Required	4th	6
	Industrial Technologies Engineering	Quality Management Systems	Required	4th	6
	Mechanical Engineering	Quality Management	Required	4th	6
University of Vigo [20] 501/600	Industrial Organization Engineering	Quality, Safety and Sustainability Management	Required	3rd	6
		Technical Office	Elective	4th	6
	Industrial Technologies Engineering	Safety and Industrial Hygiene	Required	4th	6
		Technical Office	Elective	4th	6
	Mechanical Engineering	Safety and Industrial Hygiene	Required	4th	6
		Technical Office	Elective	4th	6
		Safety and Industrial Hygiene	Required	4th	6
		Technical Office	Elective	4th	6
		Safety and Industrial Hygiene	Required	4th	6
		Technical Office	Elective	4th	6
		Safety and Industrial Hygiene	Required	4th	6
University Miguel Hernández [21] 601/700	Mechanical Engineering	Industrial Safety	Elective	4th	4.5

Following the data obtained from the QS World University Ranking, table 2 shows the results in which only the differences with the previous ranking are shown in the position it occupies.
Table 2. Top 10 Spanish universities ranked in the QS World University Ranking.

University Ranking Position	Degree	Subject	Type	Year	ECTS
Autonomous University of Barcelona/188 [12]	Industrial Technologies Engineering	Technical Office	Required	4th	3
University of Navarra/245 [19]	Mechanical Engineering	Technical Office	Required	4th	3
University of Navarra/245 [19]	Mechanical Engineering	Quality and Integrated Systems Management Quality / Safety / Environment	Elective	4th	6
Carlos III University of Madrid [22] 298	Mechanical Engineering	Occupational Health and Safety	Elective	4th	6
Polytechnic University of Catalonia [23] 300	Mechanical Engineering	Occupational Health and Safety	Elective	4th	6
Polytechnic University of Valencia/336 [13]	Mechanical Engineering	Occupational Health and Safety	Elective	4th	6
University of Zaragoza/432 [17]	Mechanical Engineering	Occupational Health and Safety	Elective	4th	6
Polytechnic University of Madrid/435 [18]	Mechanical Engineering	Integrated Management of Quality, Environment and Occupational Hazards	Elective	3rd	3
Polytechnic University of Madrid/435 [18]	Mechanical Engineering	Integrated Management of Quality, Environment and Occupational Hazards	Elective	4th	3
Polytechnic University of Madrid/435 [18]	Mechanical Engineering	Technical Office	Required	4th	6
University of the Basque Country	Mechanical Engineering	Project Management	Not subject specified		
University of Oviedo	Industrial Organization Engineering	Occupational Risk Prevention Projects	Upcoming implementation		
University of Oviedo	Mechanical Engineering	Projects and Technical Office	Not subject specified		
University of Seville	Industrial Technologies Engineering	Projects	Not subject specified		
University of Zaragoza	Industrial Technologies Engineering	Safety and Risk Prevention in Industrial Processes	Not currently offered		
Polytechnic University of Madrid	Industrial Organization Engineering	No subject included			
Polytechnic University of Catalonia	Industrial Design Engineering and Product Development	No subject included			
Polytechnic University of Catalonia	Industrial Technologies Engineering	No subject included			

The comparison between the two rankings adds little considering that they coincide in 60% with respect to the universities involved and the rest of the parameters analysed are the same for both.

Finally, a third table, table 3, contains additional information on the different universities that participate in both rankings but have not been included in the study for different reasons shown in the table.

Table 3. Additional Information on Universities.

University	Degree	Subject	Comments
University of the Basque Country	Mechanical Engineering	Project Management	Not subject specified
University of Oviedo	Industrial Organization Engineering	Occupational Risk Prevention Projects	Upcoming implementation
University of Oviedo	Mechanical Engineering	Projects and Technical Office	Not subject specified
University of Seville	Industrial Technologies Engineering	Projects	Not subject specified
University of Zaragoza	Industrial Technologies Engineering	Safety and Risk Prevention in Industrial Processes	Not currently offered
Polytechnic University of Madrid	Industrial Organization Engineering	No subject included	
Polytechnic University of Catalonia	Industrial Design Engineering and Product Development	No subject included	
Polytechnic University of Catalonia	Industrial Technologies Engineering	No subject included	
Within the information provided by both tables, it should be noted that only the engineering specialties considered as industrial have been taken into account. However, occupational risk prevention does appear in other fields such as aerospace engineering or automotive engineering.

Examples are the University of Seville with the elective subject taken in the fourth year called Analysis and Prevention of Labour Risks and 4.5 ECTS in aerospace engineering. Also, the case of Automotive Engineering of Polytechnic University of Catalonia with the subjects Project Methodology, Management and Orientation and Occupational Risk Prevention, both elective courses in the fourth year and 6 ECTS each.

Analysing the rest of the degrees under study, it is observed that there are certain universities where there are specific mentions, as is the case at the Polytechnic University of Valencia, specifically the School of Design Engineering, which recognized the need of companies and created the mention in prevention, consisting of 18 credits, divided into three subjects: Technology of Prevention 6 credits, Methodology of Prevention 6 credits, and Safety and Prevention 6 credits[26,27], although they do not enable according to current legislation. At other times, it is a matter of individual topics within a subject as in the case of the Projects or Technical Office course, which includes some topics related to occupational risk prevention regulations, industrial regulations and, on occasion, the performance of health and safety studies.

But in one way or another, these concepts can be seen to be contemplated in the third and fourth courses where the student has already been able to experience laboratory practices, as advised by Europe [28], without prior knowledge of occupational risk prevention except those learned in previous formative cycles such as secondary school [29].

None of the Universities contemplates introducing risk prevention as a transversal subject prior to the beginning of the laboratory practice. Taking into account that the objective of laboratory practices for a student is that students acquire their own skills, broadening their knowledge, deepening and consolidating the theoretical foundations, not only will they not have them, but it will not be one of the habits and skills that are considered of vital importance in their professional future [30]. A fact that should also be addressed not only from the personal point of view of safety, but should be extended to different concepts with which it is closely related, such as productive efficiency or quality [31]. Both bring a revaluation to the meaning of safety to the point of considering a company that does not contemplate high safety standards as a non-competitive company [32].

Furthermore, the type of subject indicates whether the subject is required or elective, which means, based on the data provided in the table, that less than half are required subjects. This means that more than half of the students who study engineering do not have any knowledge of occupational risk prevention since there is no obligation to study it.

Considering the number of ECTS (European Credit Transfer System) credits, it can be seen that in the most favourable case a total of 6 credits are assigned and in the most unfavourable case only 3 credits, which translates into 2.5% of the total number of credits required for an engineer to obtain his degree and 12.5% of the minimum content of the training program focused on the performance of higher level functions established by the Spanish legislation that will allow them to carry out preventive activities in a company [33].

4. Conclusions

According to the results and discussion section, the training received by future engineers in the area of occupational risk prevention is far from what can be considered sufficient to face the risks to which they will be exposed in their professional development. Nor is the preventive culture guaranteed, since it has been demonstrated that in some cases it is possible to obtain the degree without having any contact with the subject. These shortages do not allow them to know the relationship between safety and productive efficiency and between safety and quality, which are so valuable for the exercise of their profession.

In addition, the new training paradigms consider training in competencies, specific and transversal. The latter competences allow the development of activities that are common to all engineering, including those related to the prevention of occupational risks. This suggests the inclusion of occupational risk
prevention as a transversal subject in case the competent organization, either the Government or the Autonomous Community, does not do so and to overcome the barriers that make it difficult, such as the unknown of the subject by the teaching staff or the lack of interest due to the insufficient sensibilization of the professional development of the engineer.

References
[1] International Labour Organization. 2012 About the ILO (http://www.ilo.org/global/about-the-il/lang--en/index.htm) accessed 15 February 2021
[2] World Health Organization. Who we are (https://www.who.int/about/who-we-are) accessed 15 February 2021
[3] European Agency for Safety and Health at Work. About EU-OSHA - Safety and health at work - EU-OSHA (https://osha.europa.eu/en/about-eu-osha) accessed 15 February 2021
[4] State Agency Official State Journal. BOE.es - Documento BOE-A-1995-24292 (https://www.boe.es/eli/es/l/1995/11/08/31) accessed 15 February 2021
[5] National Institute for Occupational Safety and Health. Priority activities according to the accident rate. Year 2019. Madrid: 2020
[6] Cerezo-Narváez A, de los Ríos Carmenado I, Pastor-Fernández A, Yagüe Blanco JL, Otero-Mateo M. 2019 Project management competences by teaching and research staff for the sustained success of engineering education. Educ Sci 9
[7] Nahrgang JD, Morgeson FP, Hofmann DA. 2011 Safety at Work: A Meta-Analytic Investigation of the Link Between Job Demands, Job Resources, Burnout, Engagement, and Safety Outcomes. J Appl Psychol 96 pp 71–94
[8] Zacharatos A, Barling J, Iverson RD. 2005 High-performance work systems and occupational safety. J Appl Psychol 90 pp 77–93
[9] ShanghaiRanking Consultancy 2020 Academic Ranking of World Universities. (http://www.shanghairanking.com) accessed 15 February 2021
[10] Quacquarelli Symonds Limited. Top Universities (https://www.topuniversities.com) accessed 15 February 2021
[11] Ministry of Universities. Facts and Figures of the Spanish University System. Publication 2019-2020
[12] UAB. Autonomous University of Barcelona (UAB) (https://www.uab.cat/web/universitat-autonoma-de-barcelona-1345467954774.html) accessed 23 February 2021
[13] UPV. Polytechnic University of Valencia UPV (http://www.upv.es/) accessed 24 February 2021
[14] UPV/EHU. University of the Basque Country- UPV/EHU n.d. (https://www.ehu.eus/es/web/estudiosdegrado-gradukoikasketak/grados-actual) accessed 24 February 2021
[15] University of Oviedo (https://www.uniovi.es/estudios/grados) accessed 24 February 2021
[16] University of Seville (https://www.us.es/estudiar/que-estudiar/oferta-de-grados) accessed 24 February 2021
[17] University of Zaragoza (https://academico.unizar.es/oferta-estudios) accessed 24 February 2021
[18] Polytechnic University of Madrid-UPM (https://www.upm.es/Estudiantes/Estudios_Titulaciones/EstudiosOficialesGrado) accessed 24 February 2021
[19] University of Navarra (https://www.unav.edu/grados) accessed 24 February 2021
[20] University of Vigo (http://captacion.uvigo.es/gl/por-ambito/enxenaria-e-arquitectura/) accessed 24 February 2021
[21] University Miguel Hernández (https://www.umh.es/contenido/Estudios/Grado/datos_es.html) accessed 24 February 2021
[22] Carlos III University of Madrid. UC3M (https://www.uc3m.es/grafo/estudios) accessed 24 February 2021
[23] Polytechnic University of Catalonia UPC (https://www.upc.edu/ca/graus/) accessed 24 February 2021
2021

[24] University of Alcalá UAH (https://www.uah.es/es/estudios/estudios-oficiales/grados/#Ingenieria-y-Arquitectura) accessed 24 February 2021

[25] University of Salamanca USAL (https://www.usal.es/) accessed 24 February 2021

[26] Polytechnic University of Valencia Degree in Industrial Design Engineering and Product Development 2020. (http://www.upv.es/titulaciones/GIDIDP/menu_1012938c.html) accessed 19 February 2021

[27] Polytechnic University of Valencia Degree in Mechanical Engineer 2020. (http://www.upv.es/titulaciones/GIM/menu_1015238c.html) accessed 19 February 2021

[28] European Agency for Safety and Health at Work 2010 Challenges and opportunities for the integration of occupational risk prevention in university education. in university education. Summary of a report (https://osha.europa.eu/es/publications/factsheet-91-challenges-and-opportunities-mainstreaming-osh-university-education) accessed 17 February 2021

[29] García AB 2013 Occupational Safety and Health in Schools: Analysis of Education Systems. Rev Educ pp 37–64

[30] Leiserson C, Masi B, Resto C, Yue DKP 2004 Development of engineering professional abilities in a co-curricular program for engineering sophomores Conference and Exposition, Engineering Researchs New Heights (Salt Lake City, UT; United States) (ASEE Annu. Conf. Proc) pp 3789–801

[31] Grimaldi J V., Simonds RH. 1999 Industrial safety, its management (México City: Alfaomega)

[32] Chávez Donoso S 1996 Re-thinking security as a competitive advantage (Viña Del Mar, Chile: Samuel Chavez Donoso)

[33] State Agency Royal Decree 39/1997 of January 17 1997 approving the Prevention Services Regulations vol. 27