Acromegaly is associated with increased cardiovascular morbidity and mortality. 49 acromegaly patients were evaluated for presence of cardiovascular risk factors and manifestations using 2D-Echocardiography, strain, strain-rate, carotid intima media thickness (CIMT) and flow mediated dilatation (FMD) and correlated with disease activity. 32 patients with growth hormone (GH) level >1 ng/ml were considered active. Patients with active disease have more LV dysfunction as assessed by strain(p-0.031) and strain rate(p-0.001); trend towards lower ejection fraction(p-0.11) with significant correlation to GH(cc/C0^0.252,p-0.05). Patient with active disease have reduced FMD(p- 0.042); with no difference in prevalence of cardiovascular risk factors and CIMT in relation to disease activity.

© 2021 Cardiological Society of India. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Fasting lipid profile, fasting blood sugar, glycosylated hemoglobin, serum creatinine, hemoglobin along with basal GH, 60 min GH after 75 g of oral glucose, Insulin like growth factor-1 were measured. Those with growth hormone levels of >1 ng/ml at 60 min of glucose loading were considered active.

A detailed 2-dimensional echocardiography was done in all patients as per recommendations from American Society of Cardiology. TDI was applied at medial and lateral mitral annulus and E/E’ was assessed. Left ventricular longitudinal strain and strain rate were measured using tissue doppler imaging. CIMT was measured at far wall of common carotid artery using 1 cm length proximal to carotid sinus, measured on 3 views on both side and the average was taken. FMD of brachial artery was imaged above antecubital fossa using proximal compression with sphygmomanometer cuff inflated to atleas 50 mm Hg above systolic pressure for 5 min. ECG gated brachial artery diameter is obtained from 2D-imaging at baseline and upon 60 s of cuff release. A linear array transducer of 7 MHz in longitudinal plane was kept inplase throughout the study, position reaffirmed by nearby anatomical landmarks (Fig. 1).

2.2. Statistical analysis

Data were entered using the statistical package SPSS version 20. Data were summarized using descriptive statistics: mean, standard deviation, number and percentage for qualitative values. Statistical differences between groups were tested using the Chi Square test for qualitative variables, independent sample t test for quantitative normally distributed variables while the Nonparametric Mann Whitney test will be used for quantitative variables which are not

| Table 1 | Baseline characteristics and cardiovascular risk factors in relation to disease activity. |
|---------|-------------------------------------------------------------------------------------|
|         | TOTAL (n = 49) | GH < 1 (n = 17) | GH > 1 (n = 32) | P value |
| Age     | 37.63 (11.19) | 39.47 (11.14)  | 36.65 (11.30)  | 0.4076  |
| Male    | 28             | 8               | 20              | 0.299   |
| Female  | 21             | 9               | 12              |         |
| Hypertension | 15         | 6               | 9               | 0.604   |
| Diabetes Mellitus | 10        | 1               | 9               | 0.117   |
| IGF     | 5              | 3               | 2               | 0.192   |
| HbA1C   | 6.19 (1.63)    | 5.77 (1.00)     | 6.41 (1.85)     |         |
| Dyslipidemia |          |                  |                 |         |
| Low density lipoprotein LDL (mg/dl) | 100.35 (30.76) | 106.52 (33.62) | 96.96 (29.10) | 0.308   |
| LDL 130–160 | 6          | 3               | 3               | 0.132   |
| LDL >160 | 3            | 2               | 1               |         |
| Triglycerides-TG (mg/dl) | 151.32 (77.40) | 144.23 (67.47) | 155.09 (82.98) | 0.645   |
| TG >199 | 9              | 4               | 5               | 0.501   |
| High Density Lipoprotein-HDL (mg/dl) | 40.07 (10.7) | 38.70 (11.39) | 41.73 (9.32) | 0.321   |
| HDL>40Male, >50 Female | 29          | 10              | 19              | 0.361   |
| HDL>40Male, >50 Female | 20          | 7               | 13              |         |
| Total Cholesterol | 171.57 (34.89) | 174.05 (42.02) | 170.21 (31.12) | 0.720   |
| Tobacco | 5              | 2               | 3               |         |
| Systolic BP (mmHg) | 125.61 (16.04) | 120 (12.24)     | 129.89 (16.17) | 0.034   |
| Diastolic BP (mmHg) | 77.55 (9.19) | 77.65 (7.52)    | 77.50 (10.08)   | 0.958   |
| Body Mass Index (BMI) | 28.91 (4.96) | 30.09 (5.09)    | 28.28 (4.85)    | 0.228   |
| BMI < 22.9 | 6          | 2               | 4               | 0.153   |
| BMI 23–24.9 | 6          | 0               | 6               |         |
| BMI >25  | 37             | 15              | 22              |         |
| Creatinine | 0.89 (0.22) | 0.87 (0.14)    | 0.91 (0.25)     | 0.533   |
| Disease Duration | 9.00 (6.64) | 13.7 (7.96)    | 6.5 (4.12)      | <0.001  |
| GH-0    | 18.32 (16.45) | 14.44 (0.42)   | 18.63 (17.33)   | <0.001  |
| GH-60   | 11.81 (15.91) | 8.26 (0.17)    | 17.94 (16.74)   | <0.001  |
| IGF     | 561.02 (386.14) | 186.95 (262.13) | 773 (264.76)    | <0.001  |

*IGT-Impaired Glucose tolerance, IGF- Insulin like growth factor-1, GH- Growth Hormone.*
normally distributed. Correlation coefficient was calculated with regard to growth hormone levels. P-values less than or equal to 0.05 will be considered statistically significant.

3. Results

Detail Baseline characteristics and cardiovascular risk factors in relation to disease activity are shown in Table 1. Diabetes mellitus and Hypertension was seen in 20.4% and 30.6% respectively. Majority of the patients were obese (BMI ≥25). There was no difference in lipid parameters in relation to disease activity.

LV mass (224.8 ± 61.9 gm) and LV mass index (120.8 ± 31.7 gm/m) were significantly higher in acromegaly patients compared to reference range for general population.12 LV mass and LV mass index showed trend towards higher value in disease active group than in controlled disease. Significant correlation was seen between LV mass and growth hormone levels (p-0.015). Interventricular septal thickness was higher in disease active group than control group. E/E' was non-significantly higher in active disease group (9.1 ± 3.4 vs 8.3 ± 1.8; p-0.378). There was no difference in lipid parameters in relation to disease activity.

LV mass (224.8 ± 61.9 gm) and LV mass index (120.8 ± 31.7 gm/m) were significantly higher in acromegaly patients compared to reference range for general population.12 LV mass and LV mass index showed trend towards higher value in disease active group than in controlled disease. Significant correlation was seen between LV mass and growth hormone levels (p-0.015). Interventricular septal thickness was higher in disease active group than control group. E/E' was non-significantly higher in active disease group (9.1 ± 3.4 vs 8.3 ± 1.8; p-0.378). LV ejection fraction showed trend towards lower value in active group (57.76 ± 7.54 vs 54.59 ± 8.54; p-0.112).

LV-Left Ventricle, FMD-Flow mediated dilatation, CIMT-Carotid Intima Media Thickness.

Table 2

| Parameter                  | TOTAL       | GH < 1      | GH > 1      | P Value   |
|----------------------------|-------------|-------------|-------------|-----------|
| Interventricular Septum    | 12.85 (1.60)| 12.29 (1.57)| 13.15 (1.70)| <0.001    |
| Posterior Wall             | 11.82 (1.77)| 11.35 (1.80)| 12.07 (1.83)| 0.175     |
| LV Diastolic Diameter      | 47.08 (5.04)| 46.23 (5.41)| 47.53 (4.86)| 0.398     |
| LV Systolic Diameter       | 26.24 (4.70)| 25.41 (4.00)| 26.68 (5.04)| 0.372     |
| LV Mass                    | 224.8 (61.9)| 208.6 (77.1)| 233.4 (81.4)| 0.325     |
| LV Mass Index              | 120.8 (31.7)| 112.8 (40.0)| 125.0 (26.1)| 0.203     |
| E/E' Septal                | 0.088 (0.023)| 0.083 (0.018)| 0.091 (0.034)| 0.378    |
| Ejection Fraction %        | 55.69 (7.54)| 57.76 (4.48)| 54.59 (8.54)| 0.112     |
| Strain                     | 16.96 (3.13)| 18.27 (1.99)| 16.26 (3.41)| 0.031     |
| Strain Rate                | 1.09 (0.18)| 1.20 (0.14)| 1.03 (0.16)| 0.001     |
| Brachial artery pre         | 38.94 (9.57)| 39.17 (5.84)| 38.81 (11.14)| 0.903    |
| Brachial artery post        | 42.26 (10.10)| 43.00 (5.92)| 41.85 (11.81)| 0.713    |
| FMD                        | 8.54 (3.59)| 9.96 (2.86)| 7.78 (3.75)| 0.042     |
| CIMT                       | 6.97 (1.65)| 6.61 (1.25)| 7.17 (1.81)| 0.268     

Endothelial Dysfunction: Mean CIMT was 6.97 ± 1.65 mm with no significant difference between patients of active and inactive disease group (6.61 ± 1.25 vs 7.17 ± 1.81; p-0.268). Brachial artery FMD was significantly less in patients with active disease (9.96 ± 2.86 vs 7.78 ± 3.75; p-0.042). Brachial artery FMD showed significant correlation with growth hormone levels with correlation coefficient of −0.300 (p-0.036). CIMT showed non-significant trend with growth hormone (0.149; p-0.307) (Table 3 and Fig. 3).

4. Discussion

This study shows the prevalence of cardiovascular risk factors in acromegaly patients. Diabetes was seen in 20.4% and impaired glucose tolerance in 10.2%, which is similar to Colao et al.11 Hypertension is seen in 30% of patients with no significant difference in prevalence in relation to disease activity, though systolic blood pressure was higher in patients with active disease (p-0.034).
reported prevalence of hypertension in acromegalic patients ranges from 18 to 60%, with a mean prevalence of about 35%. There was no difference in lipid profile and BMI in either group. Berg C et al has observed similar findings.  

LV mass and LV mass index was significantly higher in acromegaly patients compared to reference range for general population as observed in earlier studies. We observed a trend towards higher LV mass in active disease group, though not statistically significant. A significant regression of LV mass with disease control has been noted by others. LV function as assessed by strain and strain rate was significantly less in patients with active disease compared to controlled disease. LV ejection fraction has significant correlation with growth hormone levels with trend towards lower value in active patients. Colao A et al also observed significant improvement in LV ejection fraction with disease control; whereas no significant difference was observed by Bruch C et al. This is the largest study evaluating strain in acromegaly to the best of our knowledge. Di Bello V et al have reported impaired strain and strain rate in acromegaly patients which improved with treatment.  

Occurrence of LV systolic dysfunction in acromegaly is observed with long standing active disease. Systolic dysfunction observed in our trial is likely because of long disease duration in active group before consulting tertiary centre. LV diastolic dysfunction as assessed by E/E' showed a trend towards improvement in inactive disease group, a significant improvement was reported by Bruch C et al.  

Flow mediated dilatation of brachial artery was significantly less in disease active patients as observed by Brevetti G et al. The precise mechanism of endothelial dysfunction in acromegaly is not well understood. Morphological and functional alterations of vascular smooth muscle cells may lead to impaired vaso-reactivity of the brachial artery. Growth hormone excess may play a role in generating endothelial dysfunction. Baykan et al has observed impairment of brachial artery FMD compared to healthy controls. CIMT was not different in either group as also observed by Brevetti G et al.  

There was significant correlation of LV mass, LV ejection fraction, strain, strain rate and FMD (all p<0.05). This suggests even partially controlled acromegaly may have lesser cardiovascular manifestations, with those who are in good control or cured benefiting the most.  

The study has some limitations. Patients are enrolled in either group unlike Colao A et al, where only disease active patients were enrolled and followed after successful treatment. Also we did not consider duration of remission in controlled disease group and its implications. This may be the reason for not observing significant difference in cardiovascular risk factors and LV mass, although trend was observed.  

In conclusion, acromegaly patients with active disease have significant left ventricular systolic dysfunction and impaired flow mediated dilatation compared to patients with controlled disease. There was no significant difference in prevalence of cardiovascular risk factors and CIMT in relation to disease activity.  

References

1. Katznelson L, Atkinson JL, Cook DM, et al. American association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly: 2010 update: executive summary. Endocr Pract. 2011;17(4):636–646.
2. Berg C, Petersenn S, Lahner H, et al. Cardiovascular risk factors in patients with uncontrolled and long-term acromegaly: comparison with matched data from the general population and the effect of disease control. J Clin Endocrinol Metab. 2010;95(8):3648–3656.
3. Brevetti G, Marzullo P, Silvestro A, et al. Early vascular alterations in acromegaly. J Clin Endocrinol Metab. 2002;87(7):3174–3179.
4. Colao A, Marzullo P, Di-Somma C, et al. Growth hormone and the heart. Clin Endocrinol. 2001;54(2):137–154.
5. Stelmachowska-Banar M, Zielinski G, Zdunowski P, et al. The impact of transphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly. Neurol Neurochir Pol. 2011;45:329–334.
6. Hradec J, Kral J, Janota T, et al. Regression of acromegalic left ventricular hypertrophy after lanreotide (a slow-release somatostatin analog). Am J Cardiol. 1999;83:1506–1509.
7. Toumani JD, Evangelopoulos ME, Ilias I, et al. Left ventricular dysfunction reversed after treatment of active acromegaly? Ptsytary. 2011 Mar;14(1):75–79.
8. Bruch C, Herrmann B, Schmerrmund A, et al. Impact of disease activity on ventricular performance in patients with acromegaly. Am Heart J. 2002;144(3):538–543.
9. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.
10. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial dependent flow mediated dilatation of the brachial artery. J Am Coll Cardiol. 2002;39:257–265.
11. Colao A, Ferone D, Marzullo P, et al. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev. 2004;25(1):102–152.
12. Ohtsuka H, Komiya I, Aizawa T, et al. Hypertension in acromegaly: hereditary hypertensive factor produces hypertension by enhancing IGF-I production. Endocr J. 1995;42(6):781–787.
13. Colao A, Cuocolo A, Marzullo P, et al. Is the acromegalic cardiomyopathy reversible? Effect of 5-year normalization of growth hormone and insulin-like growth factor I levels on cardiac performance. J Clin Endocrinol Metab. 2001;86(4):1551–1557.
14. Di Bello V, Bogazzi F, Di Cori A, et al. Myocardial systolic strain abnormalities in patients with acromegaly: a prospective color Doppler imaging study. J Endocrinol Invest. 2006;29(6):544–550.
15. Baykan M, Erem C, Gedikli O, et al. Impairment in flow-mediated vasodilatation of the brachial artery in acromegaly. Med Prin Pract. 2009;18(3):228–232.