Abstract

This paper presents an implementation of multilayer feed forward neural networks (NN) to optimize CMOS analog circuits. For modeling and design recently neural network computational modules have got acceptance as an unorthodox and useful tool. To achieve high performance of active or passive circuit component neural network can be trained accordingly. A well trained neural network can produce more accurate outcome depending on its learning capability. Neural network model can replace empirical modeling solutions limited by range and accuracy. [2] Neural network models are easy to obtain for new circuits or devices which can replace analytical methods. Numerical modeling methods can also be replaced by neural network model due to their computationally expansive behavior. [2][10][20]. The pro–posed implementation is aimed at reducing resource requirement, without much compromise on the speed. The NN ensures proper functioning by assigning the appropriate inputs, weights, biases, and excitation function of the layer that is currently being computed. The concept used is shown to be very effective in reducing resource requirements and enhancing speed.

References

- NEURAL NETWORKS – A COMPREHENSIVE FOUNDATION SIMON HAYKIN.
- ANN for RF and Microwave Design-From theory to practice Q. J. Ziang and K. C.
Artificial Neural Network for Performance Modeling and Optimization of CMOS Analog Circuits

Gupta.
- B. Hassinbi, D. G. Stork, and G. J. Wolff, "Optimal brain surgeon and general network pruning," in Proc. IEEE Int. Joint Conf. Neural Netw., 1992, vol. 2, pp. 441–444.
- B. Widrow and R. Winter, "Neural nets for adaptive iterative and adaptive pattern recognition," Computer, vol. 21, no. 3, pp. 25–39, Mar. 1988.
- K. Fukushima, S. Miyake, and T. Ito, "Neocognitron: A neural network model for a mechanism of visual pattern recognition," IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 826–834, 1983.
- S. Grossberg, E. Mingolla, and D. Todorovic, "A neural network architecture for preattentive vision," IEEE Trans. Biomed. Eng., vol. 36, no. 1, pp. 65–84, Jan. 1989.
- L. M. Reyneri, "Implementation issues of neuro-fuzzy hardware: Going towards HW/SW codesign," IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 176–194, Jan. 2003.
- M. Cristea and A. Dinu, "A new neural network approach to induction motor speed control," in Proc. IEEE Power Electron. Specialist Conf., 2001, vol. 2, pp. 784–788.
- Y. J. Chen and D. Plessis, "Neural network implementation on a FPGA," in Proc. IEEE Africon Conf., 2002, vol. 1, pp. 337–342.
- M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, "Fast neural net-works without multipliers," IEEE Trans. Neural Netw., vol. 4, no. 1, pp. 53–62, Jan. 1993.
- B. Noory and V. Groza, "A recon?gurable approach to hardware im-plementation of neural networks," in Can. Conf. Electr. Comput. Eng., 2003, pp. 1861–1863.
- J. Zhu, G. J. Milne, and B. K. Guntner, "Towards an FPGA based re-con?gurable computing environment for neural network implementa-tions," Inst. Elect. Eng. Proc. Artif. Neural Netw., vol. 2, no. 470, pp. 661–666, Sep. 1999.
- R. H. Turner and R. F. Woods, "Highly ef?cient limited range mul-tipliers for LUT-based FPGA architectures," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 10, pp. 1113–1117, Oct. 2004.
- K. M. Hornick, M. Stinchcombe, and H. white, "Multilayer feedfor-ward neural networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 141–154, 1985.
- P. Vas, "Sensorless Vector and Direct Torque Control," Oxford, U.K.: Oxford Univ. Press, 1998.
- V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
- C. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.: Oxford Univ. Press, 1995.
- F. L. P. Na, F. Bellas, R. Duro, and M. S. Simon, "Using adaptive arti?cial neural networks for reconstructing irregularly sampled laser doppler velocimetry signals," IEEE Trans. Instrum. Meas., vol. 55, no. 3, pp. 916–922, Jun. 2006.
- C. Lin, "Training nu-support vector regression: Theory and algo-rithms," Neural Computation, vol. 14, pp. 1959–1977, 2002.
- M. Sorensen, "Functional consequences of model complexity in hy-brid neural-microelectronic systems," Ph. D. dissertation, Georgia Inst. Technol., Atlanta, 2005.
- M. L. Hines and N. T. Carnevale, "The NEURON simulation environ-ment," Neural Comp., vol. 9, no. 6, pp. 1179–1209, 1997.
- CMOS Analog Circuit Design – Phillip E. Allen, Douglas R. Holberg.
Artificial Neural Network for Performance Modeling and Optimization of CMOS Analog Circuits

Index Terms

Computer Science
Artificial Intelligence

Keywords
Artificial Neural Network CMOS Analog Circuit Optimization