Treatment of Depression with Quantitative Electroencephalography (QEEG) of the TQ-7 Neurofeedback System Increases the Level of Attention of Patients

Valdenilson Ribeiro Ribas*, Mariana Verissimo De Souza†, Viviane Wisnievski Tulio‡, Mariana De Souza Pavani§, Gislaine Azzolin¶, Renata De Melo Guerra Ribas, Dieílita Carla Lopes De Oliveira†, Jean de Almeida Nóbrega* and Hugo André De Lima Martins*1

1Postgraduate degree in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco (UFPE), Recife/PE, Brazil
2Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife/PE, Brazil
3Department of Psychology, Pontifical Catholic University of Paraná (PUCPR), Curitiba/PR, Brazil
4Department of Pedagogy, State University of Campinas (UNICAMP), Campinas/SP, Brazil
5Department of Psychology, Tuiuti University of Paraná, Curitiba/PR, Brazil
6Department of Nutrition, Federal University of Pernambuco (UFPE), Recife/PE, Brazil
7Department of Psychology, Catholic University of Pernambuco (UNICAP), Recife/PE, Brazil
8Department of Electronic Engineering, Campina Grande/Paraíba, Brazil
9Postgraduate degree in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco (UFPE), Recife/PE, Brazil

Abstract

Introduction: Among the symptoms of depression, impairment in the level of attention has been a concern because of the risk of accidents.

Objective: The aim of this study was to evaluate changes in the level of attention of patients with depression treated by neurofeedback.

Method: Forty-one patients, 13 male and 28 female, were evaluated. The evaluation was divided into three steps. In the first, the Learning Curve (TLC) research protocol of the TQ-7 system was used; in the second, before treatment, the level of attention was evaluated using the Digit Symbol, d2, Digit Span in correct/inverse order, and the Paced Auditory Serial Addition Test and, in the last, it was evaluated after treatment. The results were analyzed using the paired t-test, expressed as means ± SEM with p-values ≤ 0.05.

Results: Focus has improved for women and men by 0.429 and 13.461 (p-value<0.001 for both), sustained attention improved by 39.07 (p-value=0.033) and 69.61 (p-value<0.001), and resistance to interference improved by 0.4 and 2.24 (p-value = 0.005 for both), respectively. Short-term memory improved significantly just for the women (0.68; p-value <0.001).

Conclusion: The level of attention increases in patients with depression when treated by QEEG using the neurofeedback TQ-7 system.

Keywords: Depression - Quantitative Electroencephalography (QEEG); Neurofeedback; Attention.

Introduction

Depression is characterized by a feeling of deep sadness associated with physiological and cognitive symptoms [1]. Both the ICD-10 and the American Psychiatric Association in their statistical manual of mental illness (DSM-V) characterize depression as a set of symptoms that include depressed mood (sadness, hopelessness), loss of interest and pleasure for previously satisfactory activities, and decreased energy, leading to a significant lack of enthusiasm that interferes with the life of the individual [2,3]. However, in relation to the etiology, most of the scientific community shares the idea that depression has multifactorial causes [4] that can originate from endogenous (neurobiological, genetic) [5], exogenous (psychosocial) [6] or traumatic factors (shock, letdown or a tumor) [7]. A biochemical alteration in the brain caused by a deficiency of serotonin [8], especially in the synaptic cleft, is implicated in the psychogenesis of neurobiological nature, possibly causing an imbalance of both mood and sense of well-being in the individual.

This study focuses on problems of attention due to the possibility of accidents. Even though there are several theories related to the functioning of attention in the literature, Mateer & Mapou proposed a model that integrates all the previously proposed theories [9]. They established that attention is divided into two cognitive factors: distribution and attention capacity [10]. The deployment/distribution of attention, the ability to channel attention to specific stimuli and sustain the focus on these stimuli, is divided into three aspects. The first is the stage of wakefulness (arousal), and refers to the level at which the individual is awake, sleepy, torporous or comatose [11]. The second aspect is focused attention, which concerns the individual’s ability to select the stimulus of interest from several stimuli. The third aspect is sustained attention, which is determined by the individual’s ability to concentrate on the selected stimulus during the time of interest [12]. The union of these abilities demonstrates the full functioning dimension of human attention with characteristics that add alertness, focus on attention, maintaining focus, information storage, mental

*Corresponding author: Valdenilson Ribeiro Ribas, Postgraduate degree in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco (UFPE), Recife/PE, Brazil. Tel: 558133395420; E-mail: ribas.professor@gmail.com

Received April 04, 2017; Accepted May 08, 2017; Published May 11, 2017

Citation: Ribas VR, De Souza MV, Tulio VW, Pavan MD, Azzolin G, et al. (2017) Treatment of Depression with Quantitative Electroencephalography (QEEG) of the TQ-7 Neuro-feedback System Increases the Level of Attention of Patients. J Neurol Disord 5: 340. doi:10.4172/2329-6895.1000340

Copyright: © 2017 Ribas VR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
information processing and resisting interference [29]. However, these skills may be impaired if there is interference from intervening variables such as stress. Although there are studies demonstrating the difficulty of attention due to depression, there are no findings in the literature investigating the treatment of depression and consequently improvement in attention using The Learning Curve (TLC) technique and the neurofeedback TQ-7 system [13]. Thus, the aim of this study was to evaluate changes in the level of attention of patients with depression resulting from treatment using quantitative electroencephalography (QEEG) of the neurofeedback TQ-7 system.

Methods

Subjects

Thirteen male and 28 female patients from the Brain and Neurofeedback Clinic in Recife were evaluated. Subjects were submitted to clinical evaluations under standard room conditions at a temperature of 22° ± 2°C. All the evaluations were performed in a neutral manner, that is, an agreement was reached with each patient so that no symptoms would be revealed before the QEEG examination based on the protocol of The Learning Curve (TLC) Trainer’s QEEG (TQ-7) system. The evaluation was divided into three steps. TLC research protocol of the TQ-7 system was used in the first; in the second stage, the level of attention of patients was evaluated before treatment and in the last stage, the level of attention was evaluated after treatment. Patients were informed about the application of attention tests the day before and all subjects agreed to sleep at 8:00 p.m. Each patient was submitted to a total of 40 sessions of neurofeedback of one hour and a half each over twenty weeks. The Digit symbol, d2, Digit Span in correct and inverse order and the Paced Auditory Serial Addition (PASAT) tests were used to assess attention. The inclusion criteria were a clinical diagnosis of depression, signing of written consent forms and age greater than 18. Patients with other medical diagnosis of a psychiatric condition and those unable to follow the treatment process were not included.

TQ-7 System Specifications

The TRAINERS’ QEEG (TQ-7) was organized by Peter Van Deusen [13] and is a system consisting of an amplifier, called Q-wiz, with four simultaneous channels of 24-bit resolution and a maximum sampling rate of 512 samples per second; this means that signals of up to 256 Hz (half the sampling rate) are acquired. Each channel has a 0.2 Hz high-pass filter to eliminate frequencies below this value. Thus, the frequency range of each channel varies between 0.2 Hz and 256 Hz. The TQ-7 uses the Bioexplorer program for signal analysis. Bioexplorer is a software from CyberEvolution Inc for real time biological signals acquisition, processing, display, recording and playback. It permits the user to mount graphically a setup (also called a “design”) for processing raw signals from the Q-wiz amplifier interconnecting various processing, display and audio objects for biofeedback. The processing objects include various types of low-pass, bandpass, high-pass filters, Fast Fourier Transforms (FFT’s), mathematical and logical operations. The audio and display objects include display bars with automatic and manual thresholds, graphical trends, power spectrum, audio and MIDI playback, video player and flash game players, all of them controlled by processing objects.

A standard was established for TLC investigation protocol of the TQ-7 system [13,14] in relation to the expected conformation of depression symptoms. In TLC protocol for the TQ-7 system, it is possible to identify a pattern of brain electrical activity that signals the presence of symptoms of depression named by Van Deusen as Reversal 13. It was demonstrated that within this category it is possible to find specific symptoms for two types of depression: depression with symptoms of hopelessness and symptoms of agitated depression [13].

The symptoms of depression with hopelessness are: sadness, loss or significant decline of interest in performing activities previously considered pleasurable, social withdrawal, altered appetite, changes in sleep quality, slowing of speech and in some cases mutism, fatigue, guilty feelings, cognitive disorders and thoughts related to death. These symptoms are associated to a reversal or asymmetry of alpha waves (8-12 Hz) [13,15,16]. Thus, the importance of the right hemisphere, represented by eight even points (Fp1, F3, F7, C3, T3, P3, T5 and O1) as alpha waves emit less energy compared to beta waves [18]. This same ideal alpha pattern is expected in the posterior region of the brain at five points (T3, P3, P4 and T6) when compared to the anterior region also at five points (F7, F3, Fz, F4 and F8) giving a total of 26 points, divided in two groups of 13 [13].

The symptoms of agitated depression are irritation, impatience, overemotional and difficulty concentrating and paying attention with subjects having a struggle to create a routine and maintain it. These symptoms are linked to reversals of beta waves (15-23 Hz) [13], which are expected to be around 5% higher in the left hemisphere (Fp1, F3, F7, C3, T3, P3, T5 and O1) and in the anterior brain (F7, F3, Fz, F4 and F8) compared to the right hemisphere (Fp2, F4, F8, C4, T4, P4, T6 and O2) and posterior portion of the brain (T5, P3, Pz, P4 and T6) [13].

From this expected profile, training protocols were set up taking into account the individual needs of each client. For example, if the 10-20 EEG System identified alpha inversions, reversals or asymmetry [13] in the P4, T6 and O2 regions of the right hemisphere, that is, a lower percentage of alpha waves compared to the P3, T5 and O1 regions of the left hemisphere, a protocol would be established to increase alpha percentages in these deficient regions. However, since depression is not a single-cause disease, other areas of the brain related to other emotional states need to be trained. These may include anxiety control by inhibiting beta waves in a range that produces anxiety, hypervigilance, fear, insecurity or even panic (23-38 Hz), especially in the T3 and T4 regions near the amygdalas and in the posterior areas of the brain such as those mapped as P3, P4, T5, T6, O1 and O2 by the 10-20 system. Another emotional state that might be trained is related to deficient restorative sleep due to lack of control of physical relaxation in the sensory-motor areas C3, Cz and C4. Training would increase the sensory-motor rhythm (12-16 Hz) and inhibit high beta (23-38 Hz) as well as prioritize an increase in beta waves (13-21 Hz) and reductions in Delta (2-4 Hz), Theta (4-8 Hz) and Alpha waves (8-12 Hz) in the Pp1, Pp2, F3, F4, F7, F8, Fz and Cz regions with the ultimate aim of increasing the level of concentration and attention. The attention theory of Mateer and Mapou (1996) [9,10,19,20] guided this study. The deployment/distribution of attention can be evaluated in tasks of fast exploration of target identification with the Digit Symbol, Trail Making and d2 tests and others. The Digit Symbol and d2 tests were used in this experiment to evaluate focus and maintaining the focus, respectively [20]. The Digit Symbol test requires the subject to pair symbols with their respective numbers from 1 to 9 within 1 minute and 30 seconds. Whereas in the d2 test, the individual should cross out the letter d when it has one or two lines above or below it on a specific form of 14 lines with 47 letters on each including distractors [9].
Attention capacity/encoding refers to the situation where the individual can capture and store data in order to process them mentally while resisting external interference [11]. The Correct Order Digit test starts with a 2-digit sequence that increases progressively. The subject is asked to repeat this sequence correctly. This is an indirect way of measuring the amount of information that the subject is able to retain. The Reverse Order Digit test is similar to the Correct Order Digit test but the subject must repeat the sequence of digits in reverse order. For example, if the sequence is 1-9-3, the individual should say 3-9-1 [20]. In this test, in addition to retaining information in the memory, the subject must also mentally manipulate this information; the subject remembers the sequence, reverses the order, and says the new order out loud. The Paced Auditory Serial Addition test (PASAT) is a test that evaluates the mental capacity of the subject to process information as well as to resist divided attention [9]. This resistance to external interference is the third sector that should be evaluated to verify attention capacity. In this test, the subject must sum dictated numbers. The examiner says two numbers, and the individual must add them up and say the answer (for example, for 9, 8 the client should say 17). When the examiner says the next number, the subject should add it on to the last number of the previous pair, that is, eight and not its sum of the previous two numbers. This test demands that the person is able to mentally process information and, at the same time, resist interference [9,19].

The groups

This longitudinal cross-sectional study (before and after) was performed in subjects with ages ranging from 32 to 67 years old, divided into two groups: female patients (n = 28) and male patients (n = 13). The Chi-Square Distribution was used and the Simple Random Method (90% confidence level with 10% probability of error) [21].

\[n = \frac{\chi^2 * N * P * Q}{d^2 * (N - 1) + \chi^2 * P * Q}, \ n = \text{sample size to be calculated.} \]

\[\chi^2 = \text{Chi-Square (3,8416);} \]

\[a = 10\% = 0,1 \Rightarrow \text{Level of Significance with (1 -} \ a = 90\% = 0,9 \Rightarrow \text{Trust level;} \]

\[N = \text{Total number of male patients (15);} \]

\[N = \text{Total number of female patients (40);} \]

\[P = 0,5 = 50\% \text{ to succeed;} \]

\[Q = 0,5 = 50\% \text{ of failure;} \]

\[d^2 = 0,1 = 10\% \text{ (Sampling error).} \]

Therefore:

\[n = \frac{3,8416 * 15 * 0,5 * 0,5}{(0,1)^2 * (14) + 3,8416 * 0,5 * 0,5} = \frac{14,406}{0,14 + 0,9604} = \frac{14,406}{1,1004} = 13,09 \Rightarrow 13 \text{ male patients} \]

\[n = \frac{3,8416 * 40 * 0,5 * 0,5}{(0,1)^2 * (39) + 3,8416 * 0,5 * 0,5} = \frac{38,41}{0,39 + 0,9604} = \frac{38,41}{1,3504} = 28,44 \Rightarrow 28 \text{ female patients} \]

Data analysis

The individually applied attention tests were analyzed using the paired t-test and the results are expressed as mean ± standard error of the mean (SEM) and presented in table. Significance was set for p-values ≤ 0.05.

Results

Assessment of the level of attention

Attention focus evaluation - Digit Symbol Test

There were significant improvements (p-value <0.001 for both) in the focus of attention of female (before: 44.46 ± 1.35; after: 44.89 ± 1.37) and male subjects (before: 47.08 ± 2.42; after: 60.54 ± 0.93) with neurofeedback training (Table 1).

Sustained attention - d2 Test

Sustained attention improved significantly with neurofeedback training in both female (before: 377.86 ± 10.07; after: 416.93 ± 11.8) and male (before: 389.62 ± 13.20; after: 459.23 ± 9.31) subjects (p-value = 0.033 and p-value <0.001, respectively; Table 1).

Auditory attention or Short-term memory - Correct Order Digit Span test

Only female subjects (before: 8.36 ± 0.17; after: 9.04 ± 0.10) presented better short-term memory after training compared to before training with neurofeedback (p-value <0.001) (Table 1).

Mental manipulation - (Reverse Order Digit Span test)

Female (before: 4.57 ± 0.15; after: 4.68 ± 0.14) and male subjects (before: 5.92 ± 0.31; after: 7.54 ± 0.62) presented higher results in the reverse order Digit Span test after training with neurofeedback compared to the results prior to training. However, no statistically significant improvements were found with neurofeedback training (p-value = 0.083 and p-value = 0.082, respectively).

Resistance to interference - Paced Auditory Serial Addition test (PASAT)

Female (before: 7.21 ± 0.28; after: 7.61 ± 0.24) and male subjects (before: 6.38 ± 0.42; after: 8.62 ± 0.43) showed greater resistance to interference after training with neurofeedback compared to before training (p-value = 0.005) (Table 1).

Discussion

This study found increased attention with better sustained attention, auditory attention/short-term memory and resistance to interference in patients of both genders with hopelessness and agitated depression trained using the TQ-7 system of TLC neurofeedback technique [13]. Although the mental manipulation capacity presented higher values in the reverse order Digit Span test for both genders, no statistically significant difference was found. Perhaps, this result is related to the low number of subjects enrolled in this study as the result is very close to the significance level of p-value <0.05. Added to the results found in the attention tests, there was also a congruence in the patients’ reports regarding the reduction of DSM-V symptoms associated with depression and reversal or asymmetry of alpha and beta waves using the neurofeedback TQ-7 system of TLC technique [13,14]. This study corroborates the findings of Simkin et al. [22] on the question of treating depression even though the methodological processes used were different. Simkin et al. used neurofeedback with low-resolution tomography (LORETA) 32 due to physiological restrictions linked to possible patterns captured by the human electroencephalogram assessed using the standard statistical chart of the normal curve called the z-score [23] validated by Thatcher et al. [24]. However, in this study...
we used the standard TQ-7 system in TLC protocol which is specific for depression, that is, asymmetry [18,25] or reversal category [13]. Regardless of the neurofeedback system used, several studies in the area of neurophysiology [13,22,24,26] have already shown that brains are organized by means of rhythmic oscillations expressed in different frequency ranges produced by the constant firing of the neurons. The constant changes in the patterns of these brain waves seem to be directly related to mental states and these changes are only possible due to neuronal neuroplasticity, which can be accessed using the electroencephalogram [27].

With QEEG it is possible to observe several patterns that include optimal states of psychic balance, but also states of fear, anxiety, panic, anger, impatience and depression. According to Fisher, these states arise from developmental trauma disorders [27,28], above all, from affective regulation problems. These patients live in the absence of the mother [27]. The infant’s early developing right hemisphere has deep connections to the limbic and autonomic nervous systems and is dominant for human stress response, and in this manner the attachment relationship facilitates the expansion of the child’s coping capacities [29]. Thus, these patients find it difficult to develop the sense of self, and brain training with neurofeedback may help build new circuits that minimize fear, shame, and anger [27], that is, impaired brain development can affect emotional control, control of verbal or behavioral impulses and neurocognition such as intelligence, memory, perception and attention. In this sense, this study demonstrated that, among the neurocognitive impairments caused in a brain with depression, the attention, indeed, was affected. However, after 40 sessions of brain training with neurofeedback, it was possible to reestablish a high level of distribution and attention capacity in these patients. Although all patients were asked to sleep at 8:00 the day before the attention tests were applied, it is difficult to verify whether this really happened. As data on this subject are scarce in the literature, it is still difficult to compare these results with other researchers. It is therefore important that further research is carried out with larger cohorts to confirm the results found in this study.

References
1. WHO (1993) The ICD-10 classification of mental and behavioral disorders: Diagnostic criteria for research, WHO, Geneva.
2. WHO (2004) International statistical classification of diseases and health related problems: The ICD-10. World Health Organization, Geneva.
3. Rosenblat JD, McIntyre RS (2017) Treatment recommendations for DSM-5-defined mixed features. CNS Spectr 22: 147-154.
4. Rosenblat JD, Gregory JM, Carvalho AF, McIntyre RS (2016) Depression and disturbed bone metabolism: A narrative review of the epidemiological findings and postulated mechanisms. Curr Mol Med. 16: 165-78.
5. Zandio M, Ferinn M, Cuesta MJ (2002) Neurobiology of depression. An Sist Sanit Navar. 25: 43-62.
6. Stein DS, Munir KM, Karweck AJ, Davidson EJ, Stein MT (2017) Developmental regression, depression and psychosocial stress in an adolescent with down syndrome. J Dev Behav Pediatr 34: 216-8.
7. Siracuse BL, Gorgy G, Ruskjn J, Beebe KS (2016) What is the incidence of suicide in patients with bone and soft tissue cancer? Suicide and sarcoma. Clin Orthop Relat Res 475: 1439-1445.
8. Weinstein JJ, Rogers BP, Taylor WD, Boyd BD, Cowan RL, et al. (2015) Effects of acute tryptophan depletion on raphe functional connectivity in depression. Psychiatry Res. 23: 164-171.
9. Ribas RDMG, Ribas VR, De Lima Martins HA, Ribas VR, De Oliveira Carneiro SM, et al. (2010) Stress effects on food handler attention in a public hospital in Recife-PE, Brazil. Dement Neurocyst. 4: 325-31.
10. Ribas VR, Martins H, Amorim GG, Guerra-Ribas R, Almeida C, et al. (2010) Air traffic control activity increases attention capacity in air traffic controllers. Dement Neurocyst. 4: 250-255.
11. Meneses E, Guerra-Ribas R, Siebra G, Andrade P, Almeida C, et al. (2009) Parents’ children with high school present a high level of attention. Neurobiol 72: 93-99.
12. Oliveira J, Ribas V, Moraes K, Siqueira C, Santos Ribas K, et al. (2010) Attention level in students of a sesi paratibe’s private school in pernambuco that work in the daytime as assemblers of a bicycle industry and study at night: study of case. Revista Neurobiol. 73: 23-30.
13. Ribas VR, Ribaes RDMG, Martins HLAD (2016) The learning curve in neurofeedback of peter van deusen: A review article. Dementia & Neuropsychol. 10: 98-103.
14. Lomen-Hoerth C, Murphy J, Langmore S, Kramer J, Olney R, et al. (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 60: 1094-1097.
15. Baehr E, Rosenfeld J, Baehr R (1997) The clinical use of an alpha asymmetry neurofeedback protocol in the treatment of depression: Two case studies. Journal of Neurotherapy 293: 10-23.
16. Baehr E, Rosenfeld JP, Baehr R, Earnest C (1998) Comparison of two EEG asymmetry indices in depressed patients vs. normal controls. Int J Psychophysiol. 31: 89-92.
17. Baehr E, Rosenfeld JP, Baehr R (2001) Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years’ post therapy. Journal of neurotherapy 4: 11-18.
18. Davidson RJ, Schaffer CE, Saron C (1985) Effects of lateralized presentations of faces on self-reports of emotion and EEG asymmetry in depressed and non-depressed subjects. Psychophysiology 22: 353-364.
19. Dos Santos AJ, Cavalcanti EV, Da Silva MJ, Da Silva Dias JM, Dos Santos NP, et al. (2011) attention Level in Musicians that Study the Musical Score. Dement Neurocyst. 74: 43-50.
20. Ribeiro PV, Ribas VR, Ribaes RdMG, Do Monte Silva KK, De Albuquerque EE, et al. (2011) Deaf individuals who work with computers present a high level of visual attention. Dementia & Neuropsychol: 5: 123-128.
21. Montgomery DC, Rungar GC, Hubele NF (2009). Engineering statistics: John Wiley & Sons, New Jersey, United States.
22. Simkin DR, ThATCHer RW, Lubar J (2014) Quantitative EEG and neurofeedback in children and adolescents: anxiety disorders, depressive disorders, comorbid...
addiction and attention-deficit/hyperactivity disorder and brain injury. Child and Adolescent Psychiatric Clinics of North America 23: 427-464.

23. Thatcher RW (2008) Z-score EEG biofeedback: Conceptual foundations. Neuroconnections Newsletter. 9.

24. Thatcher R, North D, Biver C (2005) Evaluation and validity of a LORETA normative EEG database. Clin EEG Neurosci. 36: 116-122.

25. Davidson RJ (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20: 125-151.

26. Duffy FH, Hughes JR, Miranda F, Bernad P, Cook P (1994) Status of quantitative EEG (QEEG) in clinical practice. Clin Electroencephalogr. 25: 6-22.

27. Fisher SF (2014) Neurofeedback in the treatment of developmental trauma: Calming the fear-driven brain: WW Norton & Company, NY, USA.

28. Connolly S, Sakai C (2011) Brief trauma intervention with Rwandan genocide-survivors using Thought Field Therapy. Int J Emerg Ment Health. 13: 161.

29. Schore AN (2001) Effects of a secure attachment relationship on right brain development, affect regulation and infant mental health. Infant Mental Health Journal. 22: 7-66.