RESEARCH ARTICLE

Perioperative changes in left ventricular systolic function following surgical revascularization

Michael C. Downey1,2*, Matthew Hooks1,2, Amy Gravely3, Niyada Naksuk4, Melissa Buelt-Gebhardt3, Selma Carlson1,2, Venkat Tholakanahalli1,2, Selçuk Adabag1,2

1 Division of Cardiology, Minneapolis VA Health Care System, Minneapolis, MN, United States of America, 2 Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America, 3 Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America, 4 Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America

* downe089@umn.edu

Abstract

Background

Nearly 1/3rd of patients undergoing coronary artery bypass graft surgery (CABG) have left ventricular systolic dysfunction. However, the extent, direction and implications of perioperative changes in left ventricular ejection fraction (LVEF) have not been well characterized in these patients.

Methods

We studied the changes in LVEF among 549 patients with left ventricular systolic dysfunction (LVEF <50%) who underwent CABG as part of the Surgical Treatment for Ischemic Heart Failure (STICH) trial. Patients had pre- and post-CABG (4 month) LVEF assessments using identical cardiac imaging modality, interpreted at a core laboratory. An absolute change of >10% in LVEF was considered clinically significant.

Results

Of the 549 patients (mean age 61.4±9.55 years, and 72 [13.1%] women), 145 (26.4%) had a >10% improvement in LVEF, 369 (67.2%) had no change and 35 (6.4%) had >10% worsening of LVEF following CABG. Patients with lower preoperative LVEF were more likely to experience an improvement after CABG (odds ratio 1.36; 95% CI 1.21–1.53; per 5% lower preoperative LVEF; \(p<0.001\)). Notably, incidence of postoperative improvement in LVEF was not influenced by presence, nor absence, of myocardial viability (25.5\% vs. 28.3\% respectively, \(p = 0.67\)). After adjusting for age, sex, baseline LVEF, and NYHA Class, a >10% improvement in LVEF after CABG was associated with a 57\% lower risk of all-cause mortality (HR: 0.43, 95\% CI: 0.26–0.71).
Conclusions
Among patients with ischemic cardiomyopathy undergoing CABG, 26.4% had >10% improvement in LVEF. An improvement in LVEF was more likely in patients with lower preoperative LVEF and was associated with improved long-term survival.

Introduction
Coronary artery bypass graft (CABG) surgery improves the long-term survival of patients with left main and/or multi-vessel coronary artery disease with reduced left ventricular (LV) systolic function [1]. Nearly 1/3rd of patients undergoing CABG have LV systolic dysfunction with ejection fraction <50% [2]. Although there is reason to expect that reduction of myocardial ischemia and recovery of hibernating myocardium through coronary revascularization would result in improvement of LV systolic function, there is relatively little data to support this assertion [3]. Prior single-center, retrospective studies in this area were limited by patient selection bias and imaging studies that were not performed systematically at pre-determined time points after CABG [4–6]. Since left ventricular ejection fraction (LVEF) is an important clinical variable guiding therapeutic decisions, and offering prognostic information, it is important to characterize the extent, direction and implications of LVEF changes following CABG [7–9]. In this study, we assessed perioperative changes in LVEF among patients randomized to CABG in the Surgical Treatment for Ischemic Heart Failure (STICH) trial [10–12].

Materials and methods
Patient population
The STICH trial had 2 hypotheses and included 2,136 patients with LV systolic dysfunction, and coronary artery disease amendable to CABG [13]. The 1st hypothesis included 1,212 patients randomized to CABG plus guideline-directed medical therapy versus medical therapy alone. At 10-year follow-up, patients assigned to CABG had significantly lower rates of all-cause mortality, cardiovascular mortality, and hospitalizations compared to those assigned to medical therapy [12]. The 2nd hypothesis included 1,000 patients randomized to either CABG with surgical ventricular restoration (SVR) or CABG alone. The results showed that addition of SVR to CABG made no difference in outcomes [10].

From the 1,000 patients enrolled in the trial to test the 2nd hypothesis (CABG with SVR vs. CABG alone) 770 (77%) had an LVEF assessment at baseline and 4 months postoperatively, interpreted at a STICH core laboratory [10–12]. All patients had evidence of systolic dysfunction (LVEF <50%) before CABG [14]. We excluded patients who had suboptimal image quality (n = 181). Additionally, any patients where there was a mismatch between the pre- and postoperative imaging modality were excluded (n = 40). The final cohort for this post-hoc analysis included 549 patients who underwent CABG (+/- SVR), had pre- and postoperative LVEF assessment via identical imaging modalities with good-excellent image quality, evaluated at a STICH core laboratory.

Imaging assessment of LVEF
In the STICH trial, LVEF was determined by echocardiography (echo), cardiac magnetic nuclear resonance imaging (CMR), or radionucleotide imaging (RN), as previously described.
Interpretation of the acquired images was performed at central core laboratories. The readers were blinded to the patients’ clinical information and treatment assignment. The preoperative LVEF assessment was required within 3 months of trial entry.

Definition of LVEF change
Change in LVEF (ΔLVEF) was defined as: Postoperative LVEF−Preoperative LVEF. LVEF assessment via echo has been reported to have a test-retest reliability of ±5%, predisposing analyses conducted at lower thresholds to type I errors [15]. As such, in this analysis we defined clinically significant ΔLVEF as $>10\%$.

Myocardial viability
Although myocardial viability testing was initially a requirement for all patients, the STICH trial protocol was subsequently revised to make it optional as it proved to be an impediment to patient enrollment. Viability testing was done using either single-photon emission computed tomography or dobutamine stress echo, depending on the availability of the technique and expertise at recruiting centers. The interpretation and analysis of the viability studies were done at core laboratories as previously described [3].

Statistical analysis
Categorical variables are reported as frequency (%) and continuous variables as mean +/- standard deviation. The patients were classified as "Improved LVEF," "Decreased LVEF," and "Unchanged LVEF" based on ΔLVEF $>10\%$ ($>5\%$ in sensitivity analysis). Relationships between variables of interest and categories of ΔLVEF were tested with chi-square tests for categorical variables and ANOVA for continuous variables. We utilized logistic regression analysis to examine the predictors of EF improvement. All variables that had a p-value ≤0.10 in univariable analysis were entered into a multivariable logistic regression model (S1 Table). Utilizing backwards elimination, and a more restrictive p-value of ≤0.05, we reached the final multivariable model [16]. Kaplan-Meier survival analysis was performed to illustrate all-cause mortality in relation to perioperative LVEF improvement $>10\%$. The survival curves were compared using log-rank test. Multivariable Cox regression analysis was used to assess the hazard ratio (HR) of all-cause mortality associated with perioperative LVEF improvement. Survival analysis was adjusted for all covariates which were significantly different between patients with vs. without improved LVEF. Analyses were performed using SAS® 9.4. All analyses were 2-sided and a p-value <0.05 was taken as significant.

Ethics approval
All data used in this study has been de-identified according to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) 164.514 Privacy Rule. The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments. As this study is analyzing de-identified, publicly-available data, it is exempt from Institutional Review Board approval; but the Research and Development Committee of the Minneapolis Veterans Affairs Medical Center approved this analysis.

Consent to participate and publish
Informed consent and consent to publish were obtained from all individual participants as a required component of enrollment in the STICH trial [13].
Results

The baseline characteristics of the 549 study patients who underwent CABG (+/- SVR) are shown in Table 1. Mean patient age (±SD) was 61.4 (±9.6) years, and 72 (13.1%) were women. A total of 258 (47.0%) patients underwent concurrent CABG with SVR. LVEF assessment was made by echo in 273 (49.7%), CMR in 191 (34.8%), and RN in 85 (15.5%) of the patients (Table 1).

Perioperative changes in LVEF

Following CABG, 145 (26.4%) patients had improvement in LVEF >10%, 369 (67.2%) had no change, and 35 (6.4%) had decrease in LVEF >10% (Fig 1). For the patients who experienced LVEF improvement, the mean LVEF increased from 25.1% (±9.1%) to 42.8% (±10.9%). Among those with worsening of LVEF, the mean LVEF decreased from 36.5% (±7.5%) to 20.5% (±6.5%).

Table 1. Baseline and intraoperative characteristics of study patients by change in LVEF.

Variable	All Patients	Improved LVEF	Unchanged LVEF	Decreased LVEF	P-Value
N = 549	N = 145	N = 369	N = 35		
Age, years	61.43 ± 9.55	62.2 ± 9.6	61.23 ± 9.54	60.38 ± 9.51	0.47
Women, n (%)	72 (13.1)	21 (14.5)	48 (13.0)	3 (8.6)	0.65
Caucasian, n (%)	506 (92.2)	134 (92.4)	339 (91.9)	33 (94.3)	0.87
Imaging Modality					
Echo, n (%)	273 (49.7)	58 (40.0)	196 (53.1)	19 (54.3)	0.005
CMR, n (%)	191 (34.8)	60 (41.4)	115 (31.2)	16 (45.7)	
RN, n (%)	85 (15.5)	27 (18.6)	58 (15.7)	0 (0.0)	
Preoperative EF	28.59 ± 9.11	25.08 ± 9.05	29.22 ± 8.67	36.52 ± 7.51	<0.001
History of MI, n (%)	472 (86.0)	123 (84.8)	318 (86.2)	31 (88.6)	0.83
History of diabetes, n (%)	171 (31.2)	44 (30.3)	117 (31.7)	10 (28.6)	0.90
History of hypertension, n (%)	294 (53.6)	72 (49.7)	209 (56.6)	13 (37.1)	0.05
Body mass index	27.15 ± 4.2	27.2 ± 4.49	27.17 ± 4.13	26.81 ± 3.72	0.88
NYHA class III/IV, n (%)	235 (42.8)	72 (49.7)	151 (40.9)	12 (34.3)	0.11
Creatinine	1.12 ± 0.37	1.13 ± 0.41	1.11 ± 0.32	1.21 ± 0.6	0.34
Beta-blocker, n (%)	485 (88.3)	127 (87.6)	328 (88.9)	30 (85.7)	0.81
ACE-I or ARB, n (%)	487 (88.7)	125 (86.2)	333 (90.2)	29 (82.9)	0.23
Aspirin, n (%)	435 (79.2)	113 (77.9)	296 (80.2)	26 (74.3)	0.64
Clopidogrel, n (%)	40 (7.3)	13 (9.0)	25 (6.8)	2 (5.7)	0.65
Digoxin, n (%)	88 (16.0)	17 (11.7)	66 (17.9)	5 (14.3)	0.22
Diuretic loop, n (%)	319 (58.1)	87 (60.0)	208 (56.4)	24 (68.6)	0.33
K sparing diuretic, n (%)	211 (38.4)	56 (38.6)	144 (39.0)	11 (31.4)	0.68
Nitrate, n (%)	316 (57.6)	82 (56.6)	213 (57.7)	21 (60.0)	0.93
Pulse	71.96 ± 12.24	73.3 ± 14.09	71.3 ± 11.41	73.26 ± 12.33	0.20
Systolic BP	120.23 ± 17.08	118.95 ± 17.31	120.94 ± 16.89	118.03 ± 18.07	0.36
No. of distal anastomoses	3.12 ± 1.06	3.12 ± 0.96	3.13 ± 1.08	3.06 ± 1.24	0.93
No. of diseased vessels	2.17 ± 0.78	2.19 ± 0.83	2.17 ± 0.75	2.17 ± 0.82	0.96
Total bypass time, min	116.44 ± 45.98	120.17 ± 45.06	115.9 ± 46.87	106.36 ± 39.44	0.28
Aortic cross-clamp time, min	75.84 ± 32.14	77.45 ± 30.99	75.74 ± 32.69	70.18 ± 31.53	0.51
CABG + SVR, n (%)	258 (47.0)	84 (57.9)	164 (44.4)	10 (28.6)	0.002

Abbreviations: ACE-I = angiotensin converting enzyme inhibitor, ARB = angiotensin receptor blocker, BP = blood pressure, CABG = coronary artery bypass graft, CMR = cardiac magnetic resonance, Echo = transthoracic echocardiogram, K = potassium, LVEF = left ventricular ejection fraction, MI = myocardial infarction, No. = number, NYHA = New York Heart Association, RN = Radionuclide, SVR = surgical ventricular restoration

https://doi.org/10.1371/journal.pone.0277454.t001
Notably, there was an inverse association between preoperative LVEF and the likelihood of LVEF improvement >10% (Fig 2). Of the patients with preoperative LVEF $\leq 20\%$, 42.2% (n = 43) had >10% LVEF improvement. As preoperative LVEF increased, there was a stepwise decline in the incidence of LVEF improvement (Fig 2). The converse occurred with LVEF worsening >10%. As the preoperative LVEF increased, there was a stepwise increase in the
incidence of LVEF worsening (Fig 2). A flow diagram of pre- and postoperative LVEF are shown in Fig 3.

In multivariate logistic regression analysis, preoperative LVEF and SVR were independent predictors of LVEF improvement >10% following CABG. The odds of LVEF improvement were 1.36 times higher (95% CI 1.21–1.53; p < 0.001) per 5% decrease in preoperative LVEF (Table 2).

Effect of myocardial viability on LVEF improvement

A total of 217 (39.5%) patients had preoperative myocardial viability test. Of these, 157 (72.4%) showed myocardial viability and 60 (27.7%) did not. Improvement in LVEF occurred among patients with myocardial viability (Fig 3).

![Sankey flow diagram of change in LVEF pre- to post-CABG. Pre-CABG LVEF by binned percentage ranges on the left axis, and Post-CABG LVEF comparably on the right axis. Flow follows left to right. Paratheses on axis represent total number of patients within each bin. Color of flow represents subgroup’s perioperative change in LVEF. Abbreviations: CABG = coronary artery bypass graft, LVEF = left ventricular ejection fraction.](https://doi.org/10.1371/journal.pone.0277454.g003)

Table 2. Multivariate logistic regression for independent predictors of >10% increase in LVEF.

Variable	OR	95% CI	P-value
Preoperative LVEF	1.36*	(1.21–1.53)	<0.001
SVR	1.76	(1.18–2.61)	0.005

*Represents the odds of >10% perioperative increase in LVEF improvement per each decrease of 5% percentage points change in preoperative LVEF. Abbreviations: CABG = coronary artery bypass graft, LVEF = left ventricular ejection fraction, SVR = surgical ventricular restoration.
in 40 (25.5%) of patients with myocardial viability versus 17 (28.3%) patients without myocardial viability (p = 0.67).

Perioperative change in LVEF and survival

Over a mean 3.7 (±1.2) years of follow-up, 21/145 (14.5%) vs. 93/404 (23.0%) of patients with or without a ΔLVEF >10% died, respectively. This translated to a significantly lower risk of all-cause mortality in patients with a perioperative LVEF improvement >10% compared to those with unchanged or decreased LVEF (p = 0.027) (Fig 4). After adjusting for age, sex, baseline LVEF, and NYHA Class, perioperative LVEF improvement >10% was associated with a 57% lower risk of all-cause mortality (HR: 0.43, 95% CI: 0.26–0.71) compared to those with unchanged or decreased LVEF.

In a competing risk analysis, perioperative LVEF improvement >10% was not associated with the risk of heart failure death (HR: 0.78, 95% CI 0.35–1.71; p = 0.53) or sudden cardiac death (SCD) (HR: 0.62, 95% CI 0.26–1.50; p = 0.29), though the statistical power of these analyses was low (36 and 33 total deaths, respectively).

Sensitivity analysis

A sensitivity analysis was performed wherein ΔLVEF was redefined as >5%. In this analysis, 240 (43.7%) patients experienced improvement in LVEF, 220 (40.1%) had no change and 89 (16.2%), had worsening of LVEF. The results were otherwise similar to the main analysis.

Discussion

In this post-hoc analysis of the STICH trial 326% of the patients with ischemic cardiomyopathy randomized to CABG had a perioperative increase in LVEF >10%, 67% had no change and 6% had a decline in LVEF >10%. The independent predictors of LVEF improvement were
preoperative LVEF (inverse association) and concurrent SVR. However, myocardial viability was not a factor. Notably, perioperative LVEF improvement >10% conferred a significant mortality benefit relative to those in whom LVEF remained unchanged or worsened.

As postoperative LVEF assessment is not routinely performed after CABG, prior investigations in this area have largely been limited to single center, retrospective studies with modest sample size [17]. Koene et al. [4], evaluated 375 patients wherein half of the patients had a preoperative LVEF <50%. Utilizing a ΔLVEF >5% cut off, 24% of patients had improvement in LVEF (vs. > 40% of the patients in the current analysis). Patients with a preoperative LVEF <50% were more likely to have LVEF improvement; while those with preoperative LVEF >50% were more likely to experience a decline in LVEF [4]. Papestiev et al., prospectively evaluated 47 patients (27 with preoperative LVEF >50%) and found that ΔLVEF >5% occurred in 53.2% of patients. LVEF improvement of >5% was significantly more likely if LVEF <50%, and preoperative LVEF was inversely associated with perioperative LVEF improvement [6].

Similarly, in two cohort studies limited to preoperative LVEF <35%, CABG was associated with increases in LVEF [18, 19]. Finally, within a cohort with LVEF <50% (mean LVEF = 32%), Cornel et al. observed a ΔLVEF >5% in 19% of patients at 3 months, which increased to 31% at twelve months [20]. Cumulatively, these prior works have shown LVEF improvement in patients who had preoperative LV systolic dysfunction but a higher risk of LVEF decline in individuals with a preoperatively normal LVEF [4–6, 18–20].

In this analysis, we found that a perioperative LVEF improvement >10% afforded a 57% reduction in all-cause mortality after CABG. These results are similar to a 39% reduction in mortality following ΔLVEF ≥10% over a two year interval found in a contemporary analysis by Perry et al. [21]. Interestingly, within the hypothesis 1 cohort, while both CABG and ΔLVEF >10% reduced long term mortality, these effects were independent of the other [21]; suggesting that the mortality benefit afforded by CABG was not directly associated with improvement in LVEF and vice versa. Important differences between the work by Perry et al. and the current study include the timing of postoperative LVEF assessment (4 months vs. 24 months) as well as systematic pathophysiological differences between patients included in hypothesis 1 analysis (Perry et al.) vs. hypothesis 2 (current analysis) analysis of the STICH trial. All patients within the hypothesis 2 arm of STICH had evidence of dominant anterior wall akinesia or dyskinesia [a requirement to be eligible for SVR], versus only 12% of patients in the hypothesis 1 arm [22].

While SVR was identified as an independent predictor of ΔLVEF >10% and reduced mortality risk, the principle analysis of the hypothesis 2 data from the STICH trial did not find a mortality benefit with SVR beyond that provided by CABG alone [10]. This absence of direct effect of SVR on mortality suggests that while SVR may increase the odds of ΔLVEF >10%, it is only by achieving a ΔLVEF >10% the mortality benefit is realized; SVR itself is neither necessary nor sufficient to improve mortality in the absence of LVEF improvement.

In this study, we did not observe a protective effect of LVEF improvement on the incidence of SCD, but the analysis lacked statistical power. Previous studies have shown that improvement in LVEF is associated with reduced risk of SCD [23–25]. Our results build on a previous analysis of SCD from the STICH trial by Rao et al. [26]. Analyzing all 1,411 patients who underwent CABG across the STICH trial, Rao et al. observed 113 occurrences of SCD over 5 years for an 8.5% 5-year cumulative incidence of SCD [26]. Notably, SCD risk was greatest in the postoperative window from 30–90 days. Additionally, while lower preoperative LVEF predicted increased risk of perioperative SCD, increased preoperative end-systolic volume index and B-type natriuretic peptide were the most robust independent predictors of SCD risk [26]. Given the highest risk of SCD was within the first 3 months of CABG, post-CABG LVEF assessments at 4 months, as in current analysis, would fail to capture the LVEF change within...
most individuals experiencing SCD [27, 28]. Future studies with more proximal postoperative LVEF assessments may better assess how ΔLVEF affects SCD risk.

Limitations
This post-hoc analysis of a large randomized clinical trial data has several limitations. First, Caucasian men comprised >80% of the study patients. Caution is recommended when extending these results to women and minorities. Second, postoperative imaging captured an incomplete subset (77%) of the patients enrolled in the STICH trial [11]. Part of this deficit is attributable to mortality within 4 months of CABG, prior to assessment of postoperative LVEF [14, 26]. However, since 4 months was set in the study protocol prior to randomization, a systematic bias in patient selection for imaging studies is unlikely. Third, even though a majority of LVEF assessment was by echo, two other imaging modalities were also used, creating the possibility of inter-modality differences in LVEF. It has been previously demonstrated that while substantive variation can occur between modalities, no one modality consistently over or underestimates LVEF [29]. To protect against inter-modality differences this analysis only included data from patients with identical pre- and postoperative imaging modalities. Fourth, longitudinal interval data of LVEF was not available. However, a recent analysis of data from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) demonstrated that LVEF may oscillate over time in a portion of patients with cardiomyopathy. Those with initial increase in LVEF may then experience a subsequent decrease in LVEF, and vice versa [30]. Future studies investigating if a postoperative ΔLVEF >10% is sustained would be interesting. Finally, guideline-directed medical therapy has evolved since the era of the STICH trial. With the discovery of angiotensin receptor-neprilysin inhibitors [31] and sodium-glucose cotransporter 2 inhibitors [32] further increases in the proportion of patients experiencing LVEF and improved mortality are expected.

Conclusions
In conclusion, approximately 25% of the patients with ischemic cardiomyopathy undergoing CABG experienced a >10% perioperative improvement in LVEF. The likelihood of LVEF improvement was inversely proportional to the preoperative LVEF. Improvement in LVEF was not influenced by the presence nor absence of myocardial viability. Improvement in LVEF was associated with better long-term survival. These results further build on the understanding of CABG associated perioperative change in LVEF by identifying the inverse relationship between improvement in LVEF and preoperative LVEF, which can further inform patient-physician decision marking around CABG.

Supporting information
S1 Table. Odds ratios of battery of potential predictors for LVEF improvement. (DOCX)
S2 Table. Pre- and post-CABG LVEF by imaging modality. (DOCX)

Author Contributions
Conceptualization: Michael C. Downey, Matthew Hooks, Amy Gravely, Niyada Naksuk, Selma Carlson, Venkat Tholakanahalli, Selçuk Adabag.
Data curation: Melissa Buelt-Gebhardt.
Funding acquisition: Selçuk Adabag.

Investigation: Michael C. Downey, Amy Gravely, Selçuk Adabag.

Methodology: Michael C. Downey, Matthew Hooks, Amy Gravely, Niyada Naksuk, Selma Carlson, Selçuk Adabag.

Project administration: Selçuk Adabag.

Supervision: Selçuk Adabag.

Validation: Matthew Hooks, Amy Gravely, Niyada Naksuk, Selma Carlson, Venkat Tholakanahalli, Selçuk Adabag.

Visualization: Michael C. Downey, Amy Gravely, Selçuk Adabag.

Writing – original draft: Michael C. Downey, Matthew Hooks, Amy Gravely, Niyada Naksuk, Melissa Buelt-Gebhardt, Selma Carlson, Venkat Tholakanahalli, Selçuk Adabag.

Writing – review & editing: Michael C. Downey, Matthew Hooks, Amy Gravely, Niyada Naksuk, Melissa Buelt-Gebhardt, Selma Carlson, Venkat Tholakanahalli, Selçuk Adabag.

References

1. Rihal CS, Raco DL, Gersh BJ, Yusuf S. Indications for Coronary Artery Bypass Surgery and Percutaneous Coronary Intervention in Chronic Stable Angina: Review of the Evidence and Methodological Considerations. Vol. 108, Circulation. American Heart Association; 2003. p. 2349–45.

2. Sun LY, Tu J V, Bader Eddeen A, Liu PP. Prevalence and Long-Term Survival After Coronary Artery Bypass Grafting in Women and Men With Heart Failure and Preserved Versus Reduced Ejection Fraction. J Am Heart Assoc [Internet]. 2018 Jun 19; 7(12):e008902. Available from: https://doi.org/10.1161/JAHA.118.008902 PMID: 29909401

3. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction. N Engl J Med [Internet]. 2011 Apr 4; 364(17):1617–25. Available from: https://doi.org/10.1056/NEJMoa1100358 PMID: 21463153

4. Koene RJ, Kealhofer JV, Adabag S, Vakil K, Florea VG. Effect of coronary artery bypass graft surgery on left ventricular systolic function. J Thorac Dis. 2017 Feb; 9(2):262–70. https://doi.org/10.21037/jtd.2017.02.09 PMID: 28275473

5. Vakil K, Florea V, Koene R, Kealhofer JV, Anand I, Adabag S. Effect of Coronary Artery Bypass Grafting on Left Ventricular Ejection Fraction in Men Eligible for Implantable Cardioverter–Defibrillator. Am J Cardiol. 2016; 117(6):957–60. https://doi.org/10.1016/j.amjcard.2015.12.029 PMID: 26803382

6. Papesiev V, Jovev S, Sokarovski M, Risteski P, Andova V, Zdraveski V, et al. Changes of Left Ventricular Systolic Function in Patients Undergoing Coronary Artery Bypass Grafting. Open access Maced J Med Sci. 2019 Nov; 7(21):3574–8. https://doi.org/10.3889/oamjms.2019.849 PMID: 32010379

7. Adabag S, Carlson S, Gravely A, Buelt-Gebhardt M, Madjid M, Naksuk N. Improvement of left ventricular function with surgical revascularization in patients eligible for implantable cardioverter-defibrillator. J Cardiovasc Electrophysiol. 2022 Feb; 33(2):244–51. https://doi.org/10.1111/joc.15315 PMID: 34897883

8. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Vol. 136, Circulation. American Heart Association; 2017. p. e137–61.

9. Garcia S, Marston N, Sandoval Y, Pierpont G, Adabag S, Brenes J, et al. Prognostic value of 12-lead electrocardiogram and peak troponin I level after vascular surgery. J Vasc Surg. 2013 Jan; 57(1):166–72. https://doi.org/10.1016/j.jvs.2012.06.084 PMID: 22975335

10. Jones RH, Velazquez EJ, Michler RE, Sopko G, Oh JK, O’Connor CM, et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med. 2009 Apr; 360(17):1705–17. https://doi.org/10.1056/NEJMoa0900559 PMID: 19329820

11. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. Coronary-Artery Bypass Surgery in Patients with Left Ventricular Dysfunction. N Engl J Med [Internet]. 2011 Apr 4; 364(17):1607–16. Available from: https://doi.org/10.1056/NEJMoa1100356 PMID: 21463150
12. Velazquez EJ, Lee KL, Jones RH, Al-Khalid HR, Hill JA, Panza JA, et al. Coronary-Artery Bypass Surgery in Patients with Ischemic Cardiomyopathy. N Engl J Med. 2016 Apr; 374(16):1511–20. https://doi.org/10.1056/NEJMoA1602001 PMID: 27040723

13. Velazquez EJ, Lee KL, O’Connor CM, Oh JK, Bonow RO, Pohost GM, et al. The rationale and design of the Surgical Treatment for Ischemic Heart Failure (STICH) trial. J Thorac Cardiovasc Surg [Internet]. 2007 Dec; 134(6):1540–7. Available from: https://pubmed.ncbi.nlm.nih.gov/18023680 https://doi.org/10.1016/j.jtcvs.2007.09.007 PMID: 18023680

14. Michler RE, Rouleau JL, Al-Khalid HR, Bonow RO, Pellikka PA, Pohost GM, et al. Insights from the STICH trial: Change in left ventricular size after coronary artery bypass grafting with and without surgical ventricular reconstruction. J Thorac Cardiovasc Surg. 2013 Nov; 146(5):1139–1145.e6. https://doi.org/10.1016/j.jtcvs.2012.09.007 PMID: 23111018

15. Gottdiener JS, Livengood SV, Meyer PS, Chase GA. Should echocardiography be performed to assess effects of antihypertensive therapy? Test-retest reliability of echocardiography for measurement of left ventricular mass and function. J Am Coll Cardiol. 1995 Feb; 25(2):424–30. https://doi.org/10.1016/0735-1097(94)00375-z PMID: 7829797

16. Garcia S, Ko B, Adabag S. Contrast-induced nephropathy and risk of acute kidney injury and mortality after cardiac operations. Ann Thorac Surg. 2012 Sep; 94(3):772–6. https://doi.org/10.1016/j.atvs.2012.04.089 PMID: 22835553

17. Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Vol. 124, Circulation. American Heart Association; 2011. p. 2610–42.

18. Elefteriades JA, Tolis G, Levi E, Mills LK, Zaret BL. Coronary artery bypass grafting in severe left ventricular dysfunction: Excellent survival with improved ejection fraction and functional state. J Am Coll Cardiol [Internet]. 1993; 22(5):1411–7. Available from: https://www.sciencedirect.com/science/article/pii/073510979390551B https://doi.org/10.1016/0735-1097(93)90551-b PMID: 8227799

19. Haxhibeqiri-Karabdic I, Hasanovic A, Kabil E, Straus S. Improvement of ejection fraction after coronary artery bypass grafting surgery in patients with impaired left ventricular function. Med Arch (Sarajevo, Bosnia Herzegovina). 2014/10/15. 2014 Oct; 68(5):332–4. https://doi.org/10.5455/medarh.2014.68.332-334 PMID: 25568566

20. Corneli JH, Bax JJ, Elhendy A, Maat AP, Kimman GJ, Geleijnse ML, et al. Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J Am Coll Cardiol. 1998 Apr; 31(5):1002–10. https://doi.org/10.1016/s0735-1097(98)00067-9 PMID: 9562000

21. Perry AS, Mann DL, Brown DL. Improvement of ejection fraction and mortality in ischaemic heart failure. Heart [Internet]. 2021 Feb 1; 107(4):326 LP–331. Available from: http://heart.bmj.com/content/107/4/326.abstract

22. Jones RH, White H, Velazquez EJ, Shaw LK, Pietrobon R, Panza JA, et al. STICH (surgical treatment for ischemic heart failure) trial enrollment. J Am Coll Cardiol. 2010 Aug; 56(6):490–8. https://doi.org/10.1016/j.jacc.2009.11.102 PMID: 20670760

23. Adabag AS, Maron BJ. Implications of arrhythmias and prevention of sudden death in hypertrophic cardiomyopathy. Ann Noninvasive Electrocardiol [Internet]. 2007 Apr; 12(2):171–80. Available from: https://pubmed.ncbi.nlm.nih.gov/17593187

24. Adabag S, Langsetmo L. Sudden cardiac death risk prediction in heart failure with preserved ejection fraction. Hear Rhythm. 2020 Mar; 17(3):358–64. https://doi.org/10.1016/j.hrthm.2019.12.009 PMID: 31838199

25. Adabag S, Patton KK, Buxton AE, Rector TS, Ensrud KE, Vakil K, et al. Association of Implantable Cardioverter Defibrillators With Survival in Patients With and Without Improved Ejection Fraction: Secondary Analysis of the Sudden Cardiac Death in Heart Failure Trial. JAMA Cardiol [Internet]. 2017 Jul 1; 2(7):767–74. Available from: https://pubmed.ncbi.nlm.nih.gov/28724134 https://doi.org/10.1001/jamacardio.2017.1415 PMID: 28724134

26. Rao MP, Al-Khatib SM, Pokorney SD, She L, Romanov A, Nicolau JC, et al. Sudden Cardiac Death in Patients With Ischemic Heart Failure Undergoing Coronary Artery Bypass Grafting. Circulation [Internet]. 2017 Mar 21; 135(12):1136–44. Available from: https://doi.org/10.1161/CIRCULATIONAHA.116.026075

27. Vakil K, Taimeh Z, Sharma A, Abidi KS, Colvin M, Luepker R, et al. Incidence, predictors, and temporal trends of sudden cardiac death after heart transplantation. Hear Rhythm. 2014 Oct; 11(10):1684–90.
28. Vakil K, Kealhofer J V, Atraies MC, Garcia S, McFalls EO, Kelly RF, et al. Long-Term Outcomes of Patients Who Had Cardiac Arrest After Cardiac Operations. Ann Thorac Surg. 2016 Aug; 102(2):512–7. https://doi.org/10.1016/j.athoracsur.2016.01.092 PMID: 27112647

29. Pellikka PA, She L, Holly TA, Lin G, Varadarajan P, Pai RG, et al. Variability in Ejection Fraction Measured By Echocardiography, Gated Single-Photon Emission Computed Tomography, and Cardiac Magnetic Resonance in Patients With Coronary Artery Disease and Left Ventricular Dysfunction. JAMA Netw Open [Internet]. 2018 Aug 31; 1(4):e181456–e181456. Available from: https://doi.org/10.1001/jamanetworkopen.2018.1456 PMID: 30646130

30. Carlson S, Gravely A, Adabag S. Trajectory of left ventricular ejection fraction among individuals eligible for implantable cardioverter-defibrillator. Pacing Clin Electrophysiol. 2021 May; 44(5):800–6. https://doi.org/10.1111/pace.14168 PMID: 33438234

31. McMurray JJ V, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014 Sep; 371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077 PMID: 25176015

32. McMurray JJ V, Solomon SD, Inzucchi SE, Keber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med [Internet]. 2019 Sep 19; 381(21):1995–2008. Available from: https://doi.org/10.1056/NEJMoa1911303 PMID: 31535829