Morphologic and biomechanical changes of rat oesophagus in experimental diabetes

Yan-Jun Zeng, Jian Yang, Jing-Bo Zhao, Dong-Hua Liao, En-Ping Zhang, Hans Gregersen, Xiao-Hu Xu, Hong Xu, Chuan-Qing Xu

Abstract

AIM: To study morphologic and biomechanical changes of oesophagus in diabetes rats.

METHODS: Diabetes was induced by a single injection of streptozotocin (STZ). The type of diabetes mellitus induced by parenteral STZ administration in rats was insulin-dependent (type I). The samples were excised and studied in vitro using a self-developed biomaterial test machine.

RESULTS: The body mass was decreased after 4 d with STZ treatment. The length of esophagus shortened after 4, 7, 14 d. The opening angle increased after 14 d. The shear, longitudinal and circumferential stiffness were obviously raised after 28 d of STZ treatment.

CONCLUSION: The changes of passive biomechanical properties reflect intra-structural alteration of tissue to a certain extent. This alteration will lead to some dysfunction of movement. For example, tension of esophageal wall will change due to some obstructive disease.

INTRODUCTION

Esophagus is a distensible muscular tube that connects pharynx and stomach. The function of the esophagus is to transport food by peristaltic movement, which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. Esophagus has been studied by radiography,[1] concurrent videofluoroscopy and manometry,[2,3] high-frequency ultrasonography,[4-6] and endoscopic sclerotherapy.[7,8] Motility disorders,[9] bolus transport,[10,11] systemic sclerosis,[12] pain,[13] wall distensibility,[14] impedance planimetric characterization[15] and the effects of epidermal growth factor[16] on esophagus have been reported in many papers. Since the function of esophagus is mainly mechanical, our work was focused on providing quantitative measurement of passive biomechanical properties of esophagus. Many investigations on biomechanics of esophagus are available in the literature[16,17]. Gregersen et al. studied strain distribution in the layered wall,[18,19] relation between pressure and cross-sectional area,[20] and other biomechanical properties[21-23] of esophagus. A more recent work used a novel ultrasound technique to study the biomechanics of the human esophagus in vivo[24]. Patel represented biomechanical and sensory parameters of the human esophagus at four levels[25]. Researchers have done a lot biomechanical studies on gastrointestinal tract such as intestine,[26,27] small intestine,[28-32] ileum,[33] duodenum,[34] and large intestine.[35,36]

Most previous studies have explained the relationship between the diabetes and gastrointestinal tract function.[37,38] Some researches studied relationship between esophageal dysfunction and neuropathy,[39] oesophagus scintigraphy,[40] and the relationship between esophageal motility and transit[41] in diabetic patients. More recently, Jorgensen reported tension-strain relations and morphometry of rat small intestine in experimental diabetes[42]. Zhao introduced the remodeling of zero-stress state of small intestine in streptozotocin-induced diabetic rats[43].

This paper presents the effect of experimental diabetes on the morphologic and biomechanical properties of the esophagus. The result of this study indicated that experimental type I diabetes caused significant changes in the passive biomechanical properties in the rat esophagus.

MATERIALS AND METHODS

Materials

Diabetes was induced by a single injection of streptozotocin (STZ). The form of diabetes mellitus induced by parenteral STZ administration in rats was insulin-dependent (type I). Twenty-seven rats were divided into 4 groups according to the survival time after STZ treatment: 4 d (n = 7), 7 d (n = 7), 14 d (n = 7), 28 d (n = 6). Another 8 rats were used as normal controls. The samples were taken from the middle part of esophagus. Two rings were cut from each end of the sample to measure the geometric parameters of the no-load state and the opening angle at zero-stress state. The remaining part was excised and studied in vitro using a self-developed biomaterial test machine.

Methods

Using this machine, the esophagus was stepwise elongated and inflated and continuously twisted in circumferential-longitudinal direction. In the normal controls and 28 d of diabetes group, after the intact esophagus was tested, the mucosa and muscular layers were separated using microsurgery and tested in the same loading procedure as mentioned above. The esophagus was treated as a membrane when the stress and strain were calculated, the longitudinal and circumferential stresses were considered to be evenly distributed along the wall thickness while the radial stress and other transverse shear stresses were...
ignored. The torque vs twist-angle relation was approximately linear at a specified pressure and longitudinal stretch ratio. Thus, the shear modulus can be computed by the torque, twist angle and polar moment of inertial at this state. However, the shear modulus varied greatly with the changing inflation pressure and longitudinal stretch ratio.

RESULTS

Type 1 diabetes could induce the following effect on the biomechanical and morphologic properties of esophagus: body weight and morphology, shear modulus, circumferential and longitudinal stress-strain relationship, stress-strain relationship of muscle layer and mucosa layer.

Body weight and morphology

The body mass kept a steady increase in the control rats. But it went down after 4 d in the diabetes rat (Figure 2A). The length of esophagus in vivo obviously declined after 4, 7, 14 d, but it would return to normal level after 28 d (Figure 2B). The mass per unit length in vitro changed little (Figure 2C). In the intact esophagus, the opening angle increased after 14 d of STZ treatment (Figure 2D).

Shear modulus

Changes of elastic shear moduli in the course of diabetes development at longitudinal stretch ratio $\lambda_{zz} = 1.5$ and various transmural pressure are shown in Figure 3A. Elastic shear modulus would rise with increased transmural pressure. Especially when transmural pressure was more than 0.25 kPa, the shear moduli for various transmural pressure were remarkably different. And diabetes has notably affected the shear modulus. This effect showed that shear moduli are obviously increased after 28 d.

Changes of elastic shear modulus in the course of diabetes development at transmural pressure $P = 1$ kPa and various longitudinal stretch ratio are pictured in Figure 3B. Elastic shear modulus would rise with increased longitudinal stretch ratio. Shear moduli were remarkably different at various longitudinal stretch ratios. And diabetes has notably affected the shear modulus. This effect demonstrated that shear moduli were obviously increased after 28 d of STZ treatment.

Circumferential and longitudinal stress-strain relationship

Figure 4A shows the changes of circumferential stress-strain relationship in the course of diabetes development at longitudinal stretch ratio $\lambda_{zz} = 1.5$ and various transmural pressure. All curves of experimental group inclined to left side except that after 4 d. The curve after 28 d was on the most left side. The circumferential stiffness increased after 7, 14, 28 d of diabetes.

The changes of longitudinal stress-strain relationship in the course of diabetes development at transmural pressure $P = 0.25$ kPa and various longitudinal stretch ratio are pictured in Figure 4B. The stress-strain curve after 28 d was obviously inclined to left side. So the longitudinal stiffness notably increased after 28 d.

Stress-strain relationship of muscle layer and mucosa layer

The circumferential stress-strain relationship of muscle layer and mucosa layer in the process of inflation at a longitudinal stretch ratio of 1.5 is pictured in Figure 5A. And the experimental diabetes was after 28 d. For muscle layer, there was no obvious difference between the control and diabetes groups. For mucosa layer, the stress-strain curve moved to left side in parallel. So circumferential stiffness of mucosa layer with diabetes was larger than that of control.

Figure 5B shows longitudinal stress-strain relationship of muscle layer and mucosa layer in the process of elongation at a transmural pressure of 0.25 kPa. For muscle layer, there was no obvious difference between control and diabetes groups. There was no notable difference for mucosa layer either.

Figure 1 Simplified diagram of biomaterial test machine. 1: Linear stage, 2: Torque transducer, 3: Organ bath, 4: Specimen, 5: Force transducer, 6: Motor for axial rotation, 7: Pressure transducer, 8: Infusion channel, 9: Motor for linear stage, 10: Rails for linear stage, 11: CCD camera, 12: Plastic rod.

Figure 2 Changes of body mass and esophagus morphology and opening angle at zero-stress state in the process of diabetes development. Dunner's test result: significant difference vs normal control ($^*P<0.05$). A: Change of body mass, B: Change of in vivo length, C: Change of mass per unit length, D: Change of opening angle.
DISCUSSION
A large number of studies have discovered that diabetes can affect the movement of oesophagus. Transportation of oesophagus may delay or slow down, and movement of esophagus cannot coordinate.

This dysfunction of movement can be a result of muscle and nerve cooperative failure39-41,44-47. Histologic research has proved that diabetes can destroy vagus nerve48. Though there are many papers on movement and function of oesophagus in diabetes, few data on morphologic and passive biomechanical properties are seen. The change of passive biomechanical properties reflects intra-structural alteration of tissue to a certain extent. This alteration will result in some dysfunction of movement, for example, tension of esophageal wall will change due to some obstructive disease49,50, and therefore, it is necessary to study biomechanics and morphology together.

The body mass is decreased in rat with diabetes. This is consistent with other studies43,51. Diabetes will lead to hyperplasia of some organs. Hyperplasia of esophagus is less frequent than that of small intestine52,53. Diabetes has caused rise of the opening angle of small intestine44, also it is seen for esophagus.

In this paper, the shear, longitudinal and circumferential stiffnesses were obviously elevated after 28 d with STZ treatment. Jorrensen42, Liu54 and Zhao51 have discovered that stiffness is raised in diabetes in small intestine, blood vessel and arterial wall. We can draw a conclusion that the changes of passive biomechanical properties reflect intra-structural alteration of tissue to a certain extent. This alteration will lead to some dysfunction of movement.

REFERENCES
1 Grishaw EK, Ott DJ, Frederick MG, Gelfand DW, Chen MY. Functional abnormalities of the esophagus: a prospective analysis of radiographic findings relative to age and symptoms. Am
tension in the human esophagus. *Am J Physiol Gastrointest Liver Physiol* 2002; 282: G683-689

23 Drewes AM, Pedersen J, Liu W, Arendt-Nielsen L, Gregersen H. Controlled mechanical distension of the human esophagus: sensory and biomechanical findings. *Scand J Gastroenterol* 2003; 38: 27-35

24 Takeda T, Kassab G, Liu J, Puckett JL, Mittal RR, Mittal RK. A novel ultrasound technique to study the biomechanics of the human esophagus in vivo. *Am J Physiol Gastrointest Liver Physiol* 2002; 282: G785-793

25 Patel RS, Rao SS. Biomechanical and sensory parameters of the human esophagus at four levels. *Am J Physiol* 1998; 275(2 Pt 1): G187-191

26 Dou Y, Lu X, Zhao J, Gregersen H. Morphometric and biomechanical remodelling in the intestine after small bowel resection in the rat. *Neurogastroenterol Motil* 2002; 14: 43-53

27 Dou Y, Gregersen S, Zhao J, Zhuang F, Gregersen H. Morphometric and biomechanical intestinal remodeling induced by fasting in rats. *Dig Dis Sci* 2002; 47: 1158-1168

28 Dou Y, Gregersen S, Zhao J, Zhuang F, Gregersen H. Effect of re-feeding after starvation on biomechanical properties in rat small intestine. *Med Eng Phys* 2001; 23: 557-566

29 Zhao J, Yang J, Vinter-Jensen L, Zhuang F, Gregersen H. The morphometry and biomechanical properties of the rat small intestine after systemic treatment with epidermal growth factor. *Neurogastroenterol Motil* 2002; 13: 719-733

30 Liao D, Yang J, Zhao J, Zeng Y, Vinter-Jensen L, Gregersen H. The effect of epidermal growth factor on the incremental Young’s moduli in the rat small intestine. *Med Eng Phys* 2003; 25: 413-418

31 Zhao J, Yang J, Vinter-Jensen L, Zhuang F, Gregersen H. Biomechanical properties of esophagus during systemic treatment with epidermal growth factor in rats. *Ann Biomed Eng* 2003; 31: 700-708

32 Zeng YJ, Qiao AK, Yu JD, Zhao JB, Liao DH, Xu XH, Hans G. Collagen fiber angle in the submucosa of small intestine and its application in Gastroenterology. *World J Gastroenterol* 2003; 9: 804-807

33 Yang J, Zhao JB, Zeng YJ, Gregersen H. Biomechanical properties of ileum after systemic treatment with epithelial growth factor. *World J Gastroenterol* 2003; 9: 2278-2283

34 Gao C, Zhao J, Gregersen H. Histomorphometry and strain distribution in pig duodenum with reference to zero-stress state. *Dig Dis Sci* 2000; 45: 1500-1508

35 Gao C, Gregersen H. Biomechanical and morphological properties in rat large intestine. *J Biomech* 2000; 33: 1089-1097

36 Yang J, Zhao J, Zeng Y, Vinter-Jensen L, Gregersen H. Morphological properties of zero-stress state in large intestine during systemic EGF treatment. *Dig Dis Sci* 2003; 48: 442-448

37 Murtaugh JE. Diabetes mellitus: the general practitioner’s perspective. *Clin Exp Optom* 1999; 82: 74-79

38 Verne GN, Sninsky CA. Diabetes and the gastrointestinal tract. *Gastroenterol Clin North Am* 1998; 27: 861-874

39 Kinekawa F, Kubo F, Matsuda K, Fujita Y, Tomita T, Uchida N, Ishioka M. Relationship between esophageal dysfunction and neuropathy in diabetic patients. *Am J Gastroenterol* 2001; 96: 2026-2032

40 Westin L, Lilja B, Sundkvist G. Esophageal scintigraphy in patients with diabetes mellitus. *Scand J Gastroenterol* 2000; 35: 1200-1208

41 Holloway RH, Tippet MD, Horowitz M, Maddox AF, Moten J, Russo A. Relationship between esophageal motility and transit in patients with type 1 diabetes mellitus. *Am J Gastroenterol* 1999; 94: 3150-3157

42 Jorgensen CS, Ahrensberg JM, Gregersen H, Flyberg A. Tension-strain relations and morphology of rat small intestine in experimental diabetes. *Dig Dis Sci* 2001; 46: 960-967

43 Zhao J, Sha H, Zhou S, Tong X, Zhuang FY, Gregersen H. Remodeling of zero-stress state of small intestine in streptozocin-induced diabetic rats. Effect of gliclazide. *Dig Liver Dis* 2002; 34: 707-716

44 Karayalcin B, Karayalcin U, Aburano T, Nakajima K, Hisada K, Morise T, Okada T, Takeda R. Esophageal clearance scintigraphy, in diabetic patients-a preliminary study. *Ann Nucl
Med 1992; 6: 89-93
45 Sundkvist G, Hillarp B, Lilja B, Ekberg O. Esophageal motor function evaluated by scintigraphy, video-radiography and manometry in diabetic patients. Acta Radiol 1989; 30: 17-19
46 Clouse RE, Lustman PJ, Reidel WL. Correlation of esophageal motility abnormalities with neuropsychiatric status in diabetics. Gastroenterology 1986; 90(5 Pt 1): 1146-1154
47 Rathmann W, Enck P, Frieling T, Gries FA. Visceral afferent neuropathy in diabetic gastroparesis. Diabetes Care 1991; 14: 1086-1089
48 Smith B. Neuropathology of the oesophagus in diabetes mellitus. J Neurol Neurosurg Psychiatry 1974; 37: 1151-1154
49 Gregersen H, Giversen IM, Rasmussen LM, Tottrup A. Biomechanical wall properties and collagen content in the partially obstructed opossum esophagus. Gastroenterology 1992; 103: 1547-1551
50 Mittal RK, Ren J, McCallum RW, Shaffer HA Jr, Sluss J. Modulation of feline esophageal contractions by bolus volume and outflow obstruction. Am J Physiol 1990; 258(2 Pt 1): G208-215
51 Zhao J, Lu X, Zhuang F, Gregersen H. Biomechanical and morphometric properties of the arterial wall referenced to the zero-stress state in experimental diabetes. Biorheology 2000; 37: 385-400
52 Mayhew TM, Carson FL, Sharma AK. Small intestinal morphology in experimental diabetic rats: a stereological study on the effects of an aldose reductase inhibitor (ponalrestat) given with or without conventional insulin therapy. Diabetologia 1989; 32: 649-654
53 Zoubi SA, Williams MD, Mayhew TM, Sparrow RA. Number and ultrastructure of epithelial cells in crypts and villi along the streptozotocin-diabetic small intestine: a quantitative study on the effects of insulin and aldose reductase inhibition. Virchows Arch 1995; 427: 187-193
54 Liu SQ, Fung YC. Changes in the rheological properties of blood vessel tissue remodeling in the course of development of diabetes. Biorheology 1992; 29: 443-457

Edited by Zhu LH Proofread by Chen WW and Xu FM