Association of Myometrial Invasion With Lymphovascular Space Invasion, Lymph Node Metastasis, Recurrence, and Overall Survival in Endometrial Cancer: A Meta-Analysis of 79 Studies With 68,870 Patients

Jianzhang Wang†, Ping Xu†, Xueying Yang‡, Qin Yu†, Xinxin Xu†, Gen Zou† and Xinmei Zhang†

†Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China, ‡Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China

Background: Myometrial invasion has been demonstrated to correlate to clinicopathological characteristics and prognosis in endometrial cancer. However, not all the studies have the consistent results and no meta-analysis has investigated the association of myometrial invasion with lymphovascular space invasion (LVSI), lymph node metastasis (LNM), recurrence, and overall survival (OS). Therefore, a meta-analysis was performed to evaluate the relationship between myometrial invasion and clinicopathological characteristics or overall survival in endometrial cancer.

Materials and Methods: A search of Pubmed, Embase, and Web of Science was carried out to collect relevant studies from their inception until June 30, 2021. The quality of each included study was evaluated using Newcastle–Ottawa scale (NOS) scale. Review Manager version 5.4 was employed to conduct the meta-analysis.

Results: A total of 79 articles with 68,870 endometrial cancer patients were eligible including 9 articles for LVSI, 29 articles for LNM, 8 for recurrence, and 37 for OS in this meta-analysis. Myometrial invasion was associated with LVSI (RR 3.07; 95% CI 2.17–4.35; p < 0.00001), lymph node metastasis (LNM) (RR 4.45; 95% CI 3.29–6.01; p < 0.00001), and recurrence (RR 2.06; 95% CI 1.58–2.69; p < 0.00001). Deep myometrial invasion was also significantly related with poor OS via meta-synthesis of HRs in both univariate survival (HR 3.36, 95% CI 2.35–4.79, p < 0.00001) and multivariate survival (HR 2.00, 95% CI 1.59–2.53, p < 0.00001). Funnel plot suggested that there was no significant publication bias in this study.

Conclusion: Deep myometrial invasion correlated to positive LVSI, positive LNM, cancer recurrence, and poor OS for endometrial cancer patients, indicating that myometrial invasion was a useful evaluation criterion to associate with clinical outcomes and prognosis of endometrial cancer since depth of myometrial invasion can be assessed.
INTRODUCTION

Endometrial cancer is the most prevalent gynecological malignancy in developed countries (1) and the sixth most common cancer in women with continuously increasing incidence and associated mortality (2). Myometrial invasion, lymphovascular space invasion (LVSI), lymph node metastasis (LNM), and recurrence are the important molecular events and clinical behaviors for endometrial cancer. Among them, myometrial invasion is the quietly early action of cancer cells. In addition, three-dimensional ultrasound and magnetic resonance imaging are applied for preoperative assessment of the depth of myometrial invasion (3), and frozen sections are used for intraoperative estimation (4). It is meaningful to classify patients with initial stages as low-risk or high-risk patients for surgical planning when the above diagnostic methods are becoming more accurate with a better specificity and sensitivity. Therefore, it deserves more attention on myometrial invasion in endometrial cancer.

Myometrial invasion is defined as the invasion of endometrial cancer cells into myometrium. The depth of invasion is critical to the evaluation of surgical-pathological staging. According to the International Federation of Gynecology and Obstetrics (FIGO) staging system, stage IA includes those tumors with myometrial invasion of less than 50% or without myometrial invasion, and stage IB refers to more than 50% of invasion into myometrium. Although the underlying mechanism of myometrial invasion is still unclear, it is one of critical considerations for the surgery types and therapeutic methods. This is because accumulated evidences show that myometrial invasion is related to LVSI, LNM, recurrence, and OS of endometrial cancer in different reports. However, there are some different sounds, and not all the studies share the similar results. Specifically, there were more patients with positive LVSI in superficial myometrial invasion group when compared to deep myometrial invasion group (5); there was no statistically significant difference for positive LNM between superficial and deep myometrial invasion groups (6). In addition, there was no statistically significant difference for recurrence between superficial and deep myometrial invasion groups (7, 8). Therefore, a further study is valuable.

Currently, it is still a mystery whether the above non-uniform results change our previous conclusions and consensus. Until now, there is no aggregated estimate about the relationship between myometrial invasion and LVSI, LNM, recurrence, and OS. This meta-analysis is aiming to further elucidate whether myometrial invasion correlates to LVSI, LNM, recurrence, and OS based on the data available so far. The meta-analysis of multiple clinical studies will provide comprehensive descriptions about myometrial invasion not only from the past to the present but also from clinicopathological characteristics to prognostic value. We hope that the study also could provide us more certainty and confidence in mention and further investigation of myometrial invasion of endometrial cancer.

MATERIALS AND METHODS

Literature Search Strategy

Literature was searched from Pubmed, Embase, and Web of Science from their inception until June 2021. The study published only in English was further considered. The main search terms were formulated as follows: “endometrial cancer”, “endometrial carcinoma”, “endometrial tumor”, “uterine carcinoma”, “uterine cancer”, “endometrial neoplasms”, “myometrial invasion”, “myometrial infiltration”, “clinicopathological factors”, “lymphovascular space invasion”, “lymph node metastasis”, “prognostic marker”, “prognosis”, “overall survival”, “recurrence”, and “relapse”.

Inclusion and Exclusion Criteria

The study had to meet the following inclusion criteria: (1) the patients only had endometrial cancer; (2) enough data about clinicopathological factors (myometrial invasion, LVSI, LNM, or recurrence) and/or related information to extract hazard ratio (HR) and standard error (SE) of lnHR for OS; (3) article was published in English. The exclusion criteria included the following terms: (1) reviews, meta-analysis, animal experiments, and case reports; (2) republished articles; (3) incomplete and unpublished studies; (4) the study did not meet the design. Two reviewers independently reviewed the literatures according to the predefined strategy and criteria. The articles were screened with two researchers independently (JW and PX). The disagreements were further settled through discussion and resolved by a third investigator when necessary.

Data Extraction and Quality Assessment

Two investigators (JW and PX) were assigned to assess the eligibility of all studies. Moreover, a third investigator (XZ) resolved the disagreements when necessary. The following information from each study was extracted: first author, publication year, the region of the study population, the number of participants, design type. For LVSI, LNM and recurrence, and the numbers in case and control groups were extracted respectively. For OS, HR estimate with 95% confidence interval (CI) for OS was extracted. The quality of included studies was assessed using Newcastle–Ottawa scale (NOS) scale, and the score of the quality ranged from 0 to 9.
Data Analysis
Version 5.4 software of Review Manager was applied for this meta-analysis. Risk ratio (RR) with 95% CI was pooled to investigate the association between myometrial invasion and clinicopathological features (LVSI, LNM, and recurrence). HR with 95% CI was combined to study the effect of myometrial invasion on OS. The HR was extracted directly when the HR with 95% CI was reported. SE was calculated using the equation: \(SE_{lnHR} = (lnUpperCI - lnLowerCI)/3.92 \) (9). If the article did not provide direct HR while Kaplan–Meier survival curve was shown, Engauge Digitizer software was performed to acquire HR with SE (10). A random-effects model was conducted if significant heterogeneity (\(p \leq 0.1, I^2 > 50\% \)) was shown. Publication bias was evaluated by the shape of funnel plot. Statistically significant difference was pointed out when a \(p \) value was less than 0.05.

RESULTS
Study Search Results
The predefined search strategy identified 1,385 records. After screening of titles and abstracts, 1,058 records were excluded including 35 non-English papers, 18 duplicated records, 208 review/meta/letter/abstract, 19 animal studies, and 778 irrelevant literature. Full text of 327 articles was assessed, and 248 records were excluded including 8 studies with the same included literature. Full text of 327 articles was assessed, and 248 records were excluded including 8 studies with the same included literature. Eight studies including 1,649 patients were included. During the analysis, we found that there was no significant between-study heterogeneity (\(I^2 = 16\%; \ p = 0.30 \)), and fixed-effects model was used. Myometrial invasion was significantly associated with the recurrence of endometrial cancer since the risk ratio was 2.06 (CI 95% 1.58–2.69, \(p < 0.00001 \)) (Figure 3). Therefore, deep myometrial invasion is associated with higher risk of endometrial cancer recurrence.

Myometrial Invasion Is Associated With OS in Endometrial Cancer
Thirty-seven studies including 9,416 patients examined the association between myometrial invasion and OS in endometrial cancer. The pooled HRs of all-cause mortality with >1/2 myometrial invasion compared to <1/2 myometrial invasion were evaluated using random-effects model, and the results are presented in Figure 4. Pooled HRs of OS for univariate and multivariate analyses (HR 3.36, 95% CI 2.35–4.79, \(p < 0.00001 \), and HR 2.00, 95% CI 1.59–2.53, \(p < 0.00001 \), respectively) showed that the group with deep myometrial invasion was related with a higher risk of OS than the group with less than 1/2 myometrial invasion. Therefore, deep myometrial invasion is associated with poor survival in endometrial cancer.

Publication Bias of Included Studies
Funnel plot was applied for the assessment of publication bias in the literature, and tests for funnel plot asymmetry were applied only when there were at least 10 studies included in a meta-analysis. The shape of the funnel plot for the included 29 studies on the association between myometrial invasion and LNM was not significantly asymmetrical, indicating that there was no significant publication bias (Figure 5A). The results also show that no obvious publication bias was indicated in all included studies investigating myometrial invasion on OS in both univariate and multivariate analyses (Figures 5B, C).

DISCUSSION
Although there are many studies showing that myometrial invasion is definitely correlated to LVSI, LNM, recurrence, and OS, and we have reached an agreement that myometrial invasion is absolutely critical in the development of endometrial cancer, there are some inequable results, which makes us more or less feel lack confidence about that. Therefore, we searched all the studies about the relationship between myometrial invasion and clinicopathological characteristics (LVSI, LNM, and recurrence) or OS and conducted this meta-analysis.
Author	Year	Study period	Country	N	Design	Outcomes	Quality
Wang et al.	2014	2013-2000	China	263	R Univar-HR, Multi-HR	LNM, Multi-HR	7
Fejfi et al.	2019	2009-2019	Turkey	92	R Univar-HR		6
Cheng et al.	2019	2011-2012	China	113	R Multi-HR		7
Cuyan et al.	2019	2001-2016	Turkey	172	R Multi-HR		7
Erkaya et al.	2017	2007-2015	Turkey	500	R Multi-HR		6
Ghezzi et al.	2010	2000-2009	Turkey	336	R Univar-HR, Multi-HR	LNM, Multi-HR	7
Güneş et al.	2019	2007-2017	Turkey	762	R LNM		6
Hasenbohl et al.	2005	1997-2002	Japan	109	R Multi-HR		7
Hiura et al.	2010	1987-2002	Japan	284	R Multi-HR		6
Ino et al.	2006	1992-2001	Japan	90	R Multi-HR		6
Jorge et al.	2016	2010-2012	USA	25,907	R LVSi		8
Kang et al.	2014	2000-2006	South Korea	967	R LNM		7
Koskas et al.	2013	2002-2010	France	305	R LVSi		6
Kwon et al.	2009	1996-2000	Canada	314	R LNM		7
Kyo et al.	2006	1995-2002	Japan	70	R Multi-HR		6
Larson et al.	1996	1987-1995	USA	125	R LNM		6
Lee et al.	2009	2002-2008	South Korea	834	R LNM		8
Lee et al.	2016	2000-2013	South Korea	172	R LNM		7
Li et al.	2018	2010-2013	China	143	R Multi-HR		7
Li et al.	2019	2010-2016	China	874	R LNM, Multi-HR		6
Li et al.	2019	2014-2019	China	388	R LNM		7
Lin et al.	2019	2006-2013	Taiwan	337	R Univar-HR, Multi-HR		6
Lindahl et al.	1994	1980-1987	Sweden	251	R Multi-HR		6
Machida et al.	2018	2008-2015	USA	611	R LVSi		6
Mahdi et al.	2015	2005-2012	USA	140	R LNM		6
Matsuo et al.	2015	2000-2013	USA	703	R LVSi		6
Mhawech-Faucegilla et al.	2012	2000-2010	USA	279	R Multi-HR		8
Miyamoto et al.	2013	1996-2005	Japan	84	R Univar-HR, Multi-HR		6
Nakamura et al.	2011	2007-2011	Japan	106	P Multi-HR		7
Neal et al.	2016	2005-2012	USA	205	R Univar-HR		7
Njelstad et al.	2015	2001-2011	Norway	539	R LNM		8
Nomura et al.	2006	1975-2004	Japan	841	R LNM		7
Ohno et al.	2005	1995-2002	Japan	70	P Multi-HR		8
Panggdl et al.	2010	1999-2007	Thailand	136	R LVSi, Rec		7
Patel et al.	2007	1989-2003	Canada	107	R Univar-HR		7
Pifer et al.	2020	2017-2019	USA	438	R LVSi		8
Sahin et al.	2019	2007-2016	Turkey	185	R Rec		8
Sal et al.	2016	2000-2008	Turkey	59	R Multi-HR		6
San et al.	2018	2007-2016	Turkey	280	R LNM		7
Schink et al.	1991	1979-1988	USA	142	R Multi-HR		7
Scott et al.	2017	2003-2009	Canada	849	R Multi-HR		8
Shen et al.	2020	2006-2013	China	263	R Univar-HR, Multi-HR		7
Siesto et al.	2020	2009-2015	Italy	363	R Univar-HR, Multi-HR		6
Sigurdsson et al.	1998	1964-1985	Iceland	203	R Multi-HR		6
Solmany et al.	2015	1995-2012	Turkey	827	R LNM		7
Ståberg et al.	2019	2010-2017	Sweden	969	P LNM, Multi-HR		8
Steikema et al.	2017	1994-2014	Netherlands	88	P Univar-HR		8

(Continued)
The presence of LVSI is significantly associated with pelvic and paraaortic lymph node metastasis, recurrence, and poor prognosis (86, 87). As for lymph node metastasis, it is one of the evaluation criteria for the surgical-pathological staging and therapeutic schedule and is an extremely important determinant of the outcome. We paid extra attention to recurrence because it is uniformly associated with poor survival. Compared to LVSI, LNM, and recurrence, myometrial invasion is a much earlier molecular event and could be the initial driving force for the further progress of cancer cells. In addition, the depth of myometrial invasion before surgery can be accessed. Therefore, we should not only dig deeper into the underlying molecular mechanism but also pay more attention to the relevant clinical study. Since there are many studies about the relationship between myometrial invasion and clinicopathological characteristics (LVSI, LNM, and recurrence) or OS while not all the reports are consistent, we thereby pooled all the eligible studies and performed this meta-analysis.

Seventy-nine studies with a total of 68,870 endometrial cancer patients were finally included for this meta-analysis. Among them, nine studies with a total of 28,904 endometrial cancer patients were for LVSI. The pooled result showed patients with deeper myometrial invasion of endometrial cancer into myometrium (>1/2) were more prone to LVSI. As for LNM, 29 studies including 31,262 endometrial cancer patients were eligible for analysis, and the results demonstrated that deeper myometrial invasion is associated with the tendency of LNM in endometrial cancer. Furthermore, myometrial invasion was significantly associated with the recurrence of endometrial cancer according to the meta-analysis of eight studies including 1,649 patients. Since LVSI, LNM, and recurrence are

TABLE 1 | Continued

Author Year	Study period	Country	N	Design	Outcomes	Quality*
Tanaka et al. (70)	2013	NR Japan	354	R	Multi-HR	6
Tang et al. (71)	1998	1979–1996 Japan	310	R	LNM	6
Tasjkin et al. (72)	2017	2011–2014 Turkey	279	R	LNM	7
Taskiran et al. (73)	2006	1982–2002 Turkey	461	R	LNM	8
Todo et al. (74)	2013	2000–2008 Korea	261	R	LNM	6
Tuomi et al. (75)	2017	2007–2013 Finland	929	R	Rec	7
Urabe et al. (76)	2014	1990–2010 Japan	366	R	Univar-HR, Multi-HR	6
Vargas et al. (77)	2014	1988–2010 USA	19329	R	LNM	8
Wakayama et al. (78)	2018	2006–2013 Japan	189	R	Multi-HR	6
Yabushita et al. (79)	2001	1986–1995 Japan	36	R	Rec	6
Yamada et al. (80)	2021	2014–2015 Japan	67	P	Univar-HR	7
Yokoyama et al. (81)	1997	1988–1996 Japan	60	R	LNM	6
Zanfagnin et al. (82)	2019	1999–2008 USA	85	R	LNM	7
Zhang et al. (83)	2012	1989–2006 China	621	R	LNM	7
Zhao et al. (84)	2015	2007–2008 China	188	R	Multi-HR	7
Zhao et al. (85)	2019	NR China	89	R	Univar-HR, Multi-HR	6

R, Retrospectively study; P, prospectively study; LVSI, lymphovascular space invasion; LNM, lymph node metastasis; Univar-HR, HR in univariate analysis; Multi-HR, HR in multivariate analysis. *The quality was assessed using Newcastle–Ottawa scale (NOS) scale.
FIGURE 2

Meta-analysis of the association between myometrial invasion and LNM in endometrial cancer.

Study or Subgroup	Events	Total	M-H. Random. 95% CI	M-H. Fixed. 95% CI
> 1/2	< 1/2			
Akbayir 2012	149	317	3.8%	3.43 [1.97, 5.97]
Alltunpulluk 2014	52	9	1.5%	17.25 [2.33, 127.70]
Aoyama 2019	64	133	3.3%	5.34 [2.35, 12.14]
Bendifallah 2015	124	76	4.0%	2.79 [1.83, 4.26]
Celinkaya 2014	97	150	2.6%	9.79 [2.98, 32.21]
Gunakan 2019	290	473	3.8%	9.46 [5.58, 16.04]
Kang 2014	304	653	4.3%	1.31 [1.12, 1.53]
Kwon 2009	99	215	3.7%	4.18 [2.23, 7.81]
Larson 1996	48	77	2.9%	6.42 [2.28, 18.06]
Lee 2009	241	593	4.0%	6.32 [4.26, 9.37]
Lee 2016	33	139	3.2%	5.27 [2.25, 12.30]
Li 2019	288	586	4.0%	2.36 [1.56, 3.55]
Li 2019 (2)	112	276	3.6%	8.63 [4.42, 16.81]
Mahdi 2015	65	149	3.3%	3.27 [1.46, 7.32]
Njalstad 2015	197	342	3.4%	8.68 [4.15, 18.17]
Nomura 2006	245	596	2.6%	15.20 [5.35, 43.23]
Rychlik 2020	393	84	3.3%	0.82 [0.37, 1.83]
San 2018	191	49	4.0%	1.49 [0.98, 2.26]
Schink 1991	40	102	3.2%	4.37 [1.65, 10.30]
Solmaj 2015	325	502	3.8%	5.41 [3.16, 9.26]
Stalberg 2019	417	542	4.1%	2.87 [2.00, 4.12]
Tang 1998	119	191	2.9%	14.45 [5.28, 39.55]
Taskiran 2006	179	282	4.0%	7.23 [4.75, 11.02]
Tagk 2017	27	150	2.9%	7.91 [2.84, 22.01]
Todo 2013	78	203	3.8%	2.88 [1.64, 5.05]
Vargas 2014	4967	14362	4.3%	4.68 [4.15, 5.29]
Yokoyama 1997	24	36	2.2%	7.50 [1.80, 31.27]
Zannagin 2019	53	32	4.1%	1.07 [0.74, 1.56]
Zhang 2012	103	518	3.2%	12.21 [5.20, 28.70]
Total (95% CI)	9425	21837	100.0%	4.45 [3.29, 6.01]
Total events	1823	984		

Heterogeneity: Tau² = 0.54; Chi² = 346.17, df = 28 (P < 0.00001); I² = 92%
Test for overall effect: Z = 9.72 (P < 0.00001)

FIGURE 3

Meta-analysis of the association between myometrial invasion and recurrence in patients with endometrial cancer.

Study or Subgroup	Events	Total	M-H. Fixed. 95% CI	M-H. Fixed. 95% CI
> 1/2	< 1/2			
Ayhan 1994	85	9	10.4%	3.13 [1.38, 7.08]
Chen 2001	16	37	1.9%	4.63 [0.94, 22.74]
Panggidi 2010	66	60	8.4%	1.82 [0.66, 5.02]
Pradhan 2012	12	44	7.6%	1.00 [0.33, 3.02]
Sahin 2019	118	67	12.3%	1.23 [0.49, 3.09]
Tuomi 2017	255	674	45.0%	2.44 [1.68, 3.52]
Van der Putten 2015	59	22	11.7%	0.97 [0.39, 2.40]
Yabushita 2001	15	21	2.7%	2.10 [0.40, 11.07]
Total (95% CI)	626	1023	100.0%	2.06 [1.58, 2.69]
Total events	112	89		

Heterogeneity: Chi² = 8.34, df = 7 (P = 0.30); I² = 16%
Test for overall effect: Z = 5.34 (P < 0.00001)
Univariate analysis

Study or Subgroup	log(Hazard Ratio)	SE	Weight	Hazard Ratio	Hazard Ratio
Abbink 2018	0.9439	0.3487	7.4%	2.57 [1.30, 5.09]	
Akiyama-Abe 2013	2.2513	0.4916	5.8%	9.50 [3.62, 24.90]	
Chen 2020	-0.2231	0.4359	6.4%	0.80 [0.34, 1.88]	
Ghezzi 2010	1.6487	0.3823	7.0%	5.20 [2.46, 11.00]	
Ino 2006	1.4085	0.7076	4.0%	4.09 [1.02, 16.37]	
Lin 2019	1.6312	0.4343	6.4%	5.11 [2.18, 11.97]	
Miyamoto 2013	2.4738	0.7914	3.5%	11.87 [2.52, 55.98]	
Neal 2016	0.3646	0.4911	5.8%	1.44 [0.55, 3.77]	
Patel 2007	0.4866	0.4793	6.0%	1.63 [0.64, 4.17]	
Rychlik 2020	-0.0513	0.412	6.7%	0.95 [0.42, 2.13]	
Shen 2020	1.997	0.3648	7.0%	7.37 [3.47, 15.68]	
Siest 2020	1.4351	0.3774	7.1%	4.20 [2.00, 8.80]	
Stekema 2017	0.6313	0.3788	7.1%	1.83 [0.89, 3.95]	
Urabe 2014	2.596	0.4196	6.6%	13.41 [5.89, 30.52]	
Yamada 2021	1.6586	0.8671	3.1%	5.25 [0.96, 28.73]	
Zhao 2019	1.0519	0.0824	10.0%	2.86 [2.44, 3.36]	

Total (95% CI): 100.0% 3.36 [2.35, 4.79]

Heterogeneity: Tau² = 0.32; Chi² = 54.55, df = 15 (P < 0.00001); I² = 73%

Test for overall effect: Z = 6.69 (P < 0.00001)

Multivariate analysis

Study or Subgroup	log(Hazard Ratio)	SE	Weight	Hazard Ratio	Hazard Ratio
Abbink 2018	0.01	0.3537	4.7%	1.01 [0.50, 2.02]	
Abu-Zaed 2018	-0.4797	0.5421	3.0%	0.62 [0.21, 1.79]	
Akiyama-Abe 2013	0.8065	0.5515	3.0%	2.24 [0.76, 6.60]	
Bonatz 1999	0.8196	0.4786	3.5%	2.27 [0.89, 5.80]	
Cheng 2019	0.7174	0.4888	1.6%	2.05 [0.39, 10.82]	
Cuylen 2018	1.3863	0.6278	2.5%	4.00 [1.17, 13.69]	
Erkaya 2017	1.1694	0.4169	4.1%	3.22 [1.42, 7.29]	
Ghezzi 2010	0.5306	0.4237	4.0%	1.70 [0.74, 3.90]	
Hasengaowa 2005	2.3437	0.914	1.4%	10.42 [1.74, 62.50]	
Hiura 2010	0.6387	0.6629	2.3%	1.89 [0.52, 6.94]	
Kyu 2006	0.157	0.6929	2.2%	1.17 [0.30, 4.55]	
Li 2018	-0.137	0.6692	2.3%	0.87 [0.23, 3.24]	
Li 2019	0.9933	0.4403	3.8%	2.70 [1.14, 6.40]	
Lin 2019	1.2149	0.6191	2.5%	3.37 [1.00, 11.34]	
Lindah 1994	1.0647	0.3357	4.9%	2.90 [1.50, 5.60]	
Mhawech-Faucelliga 2012	0.7227	0.3953	4.3%	2.06 [0.95, 4.47]	
Miyamoto 2013	3.1482	1.5949	0.5%	23.29 [1.02, 530.67]	
Nakamura 2011	-0.3813	0.4873	3.4%	0.68 [0.26, 1.77]	
Ohno 2005	0.7174	0.9149	1.4%	2.05 [0.34, 12.31]	
Sai 2016	-0.8326	0.5979	1.2%	0.18 [0.02, 1.09]	
Scott 2017	-0.1744	0.2944	4.9%	0.84 [0.43, 1.64]	
Shen 2020	0.6813	0.5095	3.3%	2.01 [0.74, 5.46]	
Siest 2020	0.2624	0.4434	3.8%	1.30 [0.55, 3.10]	
Sigurdsson 1998	1.7561	0.4164	4.1%	5.79 [2.56, 13.09]	
Stalberg 2019	0.4447	0.2447	6.1%	1.56 [0.97, 2.52]	
Tanaka 2013	1.3029	0.3726	4.5%	3.68 [1.77, 7.64]	
Urabe 2014	1.1464	0.5005	3.3%	3.15 [1.18, 8.39]	
Wakyamaya 2018	0.0206	0.7155	2.1%	1.02 [0.25, 4.15]	
Zhao 2015	1.6569	0.4596	3.7%	5.24 [2.13, 12.91]	
Zhao 2019	0.9062	0.1057	7.7%	2.47 [2.01, 3.04]	

Total (95% CI): 100.0% 2.00 [1.59, 2.53]

Heterogeneity: Tau² = 0.17; Chi² = 59.64, df = 29 (P = 0.0007); I² = 51%

Test for overall effect: Z = 5.86 (P < 0.00001)

FIGURE 4 | Meta-analysis of the association between myometrial invasion and overall survival in endometrial cancer patients according to HR from univariate or multivariate survival analyses.
independent prognostic factors for endometrial cancer patients, myometrial invasion would also be a prognostic factor. As it turned out, the group with deep myometrial invasion was related with a greater risk of OS than the group with less than 1/2 myometrial invasion based on not only univariate survival analysis but also multivariate survival analysis. Therefore, the results indicate that myometrial invasion is associated with LVSI, LNM, recurrence, and OS with much more confidence. Combined with preoperative assessment of the depth of myometrial invasion, now we know more information in regard to LVSI, LNM, recurrence, and OS of these patients before surgery, which suggests that we should especially pay more attention to myometrial invasion in clinical practice, and its underlying mechanism also deserves further investigation.

Potential limitations exist in this study, and meta-analysis without the classification of endometrial cancer is the obvious one. In the past, dualistic classification is the leading theory for the classification, which divides endometrial cancer into type I and type II tumors (88). According to histology, WHO classified endometrial cancer into the following subtypes: endometrioid, serous, mucinous, clear-cell, mixed, squamous-cell, transitional-cell, small-cell, and undifferentiated carcinomas (89). Among them, endometrioid carcinoma and serous carcinoma account for the majority. In this study, we check all the included 79 articles and found that histologic type was not only confined to endometrioid subtype although endometrioid carcinoma is the most common one. And 53 articles of the included 79 studies did not exclude other histologic types, so we did not further conduct the analysis based on histological classification. Recently, endometrial cancer is categorized into four genomic types: DNA polymerase epsilon (POLE) (ultramutated), microsatellite-instable (MSI) (hypermutated), copy-number low (endometrioid), and copy-number high (serous-like) tumors as the quick development of next-generation sequencing (90). The above genomic classification can facilitate the treatment tailored to specific subgroups and potentially enable the delivery of precision medicine to endometrial cancer patients.

Apart from classification, other potential limitations still exist in this study: (1) The data from the included studies were from the published articles instead of the original information of individual patient; (2) most included articles are the retrospective studies, and the evidence level is lower than that of prospective randomized clinical trial; (3) one of inclusion criteria is that article was published in English and negative results not being reported, which increase the risk of publication bias; (4) the number of included studies is relatively small, especially for LVSI and recurrence, which may cause biased results; (5) the heterogeneity of aggregated results was significant, and the random-effects model was applied.

CONCLUSION

In summary, a large scale and comprehensive meta-analysis of the association between myometrial invasion and other clinicopathological characteristics and prognosis is provided in the present study. Our results show that myometrial invasion is associated with LVSI, LNM, recurrence, and OS, indicating that deep myometrial invasion is a useful evaluation criterion to associate with poor clinical outcomes and prognosis in endometrial cancer patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article-supplementary material. Further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
JW, PX, and XZ: conceptualization. JW, PX, and XY: data curation and original draft writing. QY, XX, and GZ: statistical analysis. JW and XZ: manuscript review and editing. All authors contributed to the article and approved the submitted version.

REFERENCES
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660
2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA Cancer J Clin (2020) 70(1):7–30. doi: 10.3322/caac.21590
3. Christensen JW, Dueholm M, Hansen ES, Marinovskij E, Lundorf E, Ortoft G. Assessment of Myometrial Invasion in Endometrial Cancer Using Three-Dimensional Ultrasound and Magnetic Resonance Imaging. Acta Obstet Gynecol Scand (2016) 95(1):55–64. doi: 10.1111/aogs.12806
4. Karatasli V, Cakir I, Sahin H, Ayaz D, Sanci M. Preoperative Magnetic Resonance Imaging Replace Intraoperative Frozen Sectioning in the Evaluation of Myometrial Invasion for Early-Stage Endometrial Carcinoma? Ginekol Pol (2019) 90(3):128–33. doi: 10.5063/GP/2019.0023
5. Watanabe T, Homma R, Kojima M, Nomura S, Furukawa S, Soeda S, et al. Prediction of Lymphovascular Space Invasion in Endometrial Cancer Using the 55-Gene Signature Selected by DNA Microarray Analysis. PloS One (2019) 14(9):e0223178. doi: 10.1371/journal.pone.0223178
6. Rychlik A, Zapardiel I, Baquedano L, Martinez Maestre MA, Querleu D, Coronado Martin PJ. Clinical Relevance of High-Intermediate Risk Endometrial Cancer According to European Risk Classification. Int J Gynecol Cancer (2020) 30(10):1528–34. doi: 10.1136/ijgjc-2020-001693
7. Pradhan M, Davidson B, Abeler VM, Danielsen HE, Trope CG, Kristensen JW and XZ: manuscript review and editing. All authors curation and original draft writing. QY, XX, and GZ: statistical analysis. JW and XZ: manuscript review and editing. All authors contributed to the article and approved the submitted version.

This study was supported by National Natural Science Foundation of China (Grant numbers: 81802591 and 81974225) and National Key R&D Program of China (Grant number: 2017YFC1001202).

FUNDING

Invasion, Lymphovascular Space Invasion and Lymph Node Metastasis. J Obstet Gynecol Can (2015) 35(4):397–402. doi: 10.1016/j.jogc.2015.09.0027
16. Ambros RA, Kurrig RJ. Combined Assessment of Vascular and Myometrial Invasion as a Model to Predict Prognosis in Stage I Endometrioid Adenocarcinoma of the Uterine Corpus. Cancer (1992) 69(6):1424–31. doi: 10.1002/1097-0142(19920315)69:6<1424::AID-CNC2820096203>3.0.CO;2-5
17. Aoyama T, Takano M, Miyamoto M, Yoshikawa T, Kato K, Sakamoto T, et al. Pretreatment Neutrophil-To-Lymphocyte Ratio Was a Predictor of Lymph Node Metastasis in Endometrial Cancer Patients. Oncology (2019) 96(5):259–67. doi: 10.1159/000491784
18. Ayhan A, Tuncer ZS, Tuncer R, Yuce K, Kucukali T. Risk Factors for Recurrence in Clinically Early Endometrial Carcinoma: An Analysis of 183 Consecutive Cases. Eur J Obstet Gynecol Reprod Biol (2013) 163(1):133–7. doi: 10.1016/j.ejogrb.2012.10.001
19. Bendifallah S, Canlorbe G, Laas E, Huguet F, Coutant C, Hudry D, et al. A Predictive Model Using Histopathologic Characteristics of Early-Stage Type I Endometrial Cancer to Identify Patients at High Risk for Lymph Node Metastasis. Ann Surg Oncol (2015) 22(13):4224–32. doi: 10.1245/s10434-015-4546-6
20. Bonatz G, Luttes J, Hamann S, Mettler L, Parwaresch R. Immunohistochemical Assessment of P170 Provides Prognostic Information in Endometrial Carcinoma. Histopathology (1999) 34(1):43–50. doi: 10.1046/j.1365-2559.1999.00564.x
21. Capozzi VA, Sozzi G, Ucella S, Ceni V, Cianciolo A, Gambino G, et al. Novel Preoperative Predictive Score to Evaluate Lymphovascular Space Involvement in Endometrial Cancer: An Aid to the Sentinel Lymph Node Algorithm. Int J Gynecol Cancer (2020) 30(6):806–12. doi: 10.1136/ijgjc-2019-001016
22. Cetinkaya K, Atalay F, Bacinoğlu A. Risk Factors of Lymph Node Metastases With Endometrial Carcinoma. Asian Pac J Cancer Prev (2014) 15(15):6533–5. doi: 10.7314/apjcp.2014.15.15.6533
23. Chen CA, Cheng WF, Lee CN, Wei LH, Chu JS, Hsieh FJ, et al. Cytosol Vascular Endothelial Growth Factor in Endometrial Carcinoma: Correlation With Disease-Free Survival. Gynecol Oncol (2001) 80(2):207–12. doi: 10.1006/gyno.2000.6048
24. Chen HH, Ting WH, Sun HD, Wei MC, Lin HH, Hsiaco SM. Predictors of Survival in Women With High-Risk Endometrial Cancer and Comparisons of Sandwich Versus Concurrent Adjuvant Chemotherapy and Radiotherapy. Int J Environ Res Public Health (2020) 17(16):5941. doi: 10.3390/ijerph17165941
25. Cheng L, Zhao T, Li S, Wang Y, Fei H, Meng F. Overexpression of HPIP as a Biomarker for Metastasis and Prognosis Prediction in Endometrial Cancer Patients. J Clin Lab Anal (2019) 33(8):e22959. doi: 10.1002/jcla.22959
26. Cuylan ZF, Oz M, Ozkan NT, Comert GK, Sahin H, Turan T, et al. Prognostic Factors and Patterns of Recurrence in Lymphovascular Space Invasion Positive Women With Stage IIIC Endometrioid Endometrial Cancer. J Obstet Gynecol Res (2018) 44(6):1140–9. doi: 10.1111/jog.13615
27. Erkaya S, Oz M, Topçu HO, Sirvan AL, Gungor T, Meydanli MM. Is Lower Uterine Segment Involvement a prognostic Factor in Endometrial Cancer? Turk J Med Sci (2017) 47(1):300–6. doi: 10.3980/tjms.1602-137
28. Ghezzi F, Cromi A, Sietet G, Giudici S, Serati M, Formenti G, et al. Prognostic Significance of Preoperative Plasma Fibrinogen in Endometrial Cancer. Gynecol Oncol (2010) 119(2):309–13. doi: 10.1016/j.ygyno.2010.07.014
29. Gunakan E, Atan S, Haberal AN, Kucukdikal IA, Gocek E, Ayhan A. A Novel Prediction Method for Lymph Node Involvement in Endometrial Cancer: Machine Learning. Int J Gynecol Cancer (2019) 29(2):320–4. doi: 10.1136/ijgc-2018-00033
30. Hashengaw, Kodama J, Kusumoto T, Shinyo Y, Seki N, Hirayama T, Prognostic Significance of Syndecan-1 Expression in Human Endometrial Cancer. Ann Oncol (2005) 16(7):1109–15. doi: 10.1093/annonc/mdi224
31. Hiura M, Nogawa T, Matsumoto T, Yokoyama T, Shiroyama Y, Wroblewski J. Long-Term Survival in Patients With Para-Aortic Lymph Node Metastasis With Systematic Retroperitoneal Lymphadenectomy Followed by Adjunct Chemotherapy in Endometrial Carcinoma. Int J Gynecol Cancer (2010) 20 (6):1000–5. doi: 10.1111/j.1365-2583.2010.02888.x

32. Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidozako K, et al. Indoleamine 2,3-Dioxygenase Is A Novel Prognostic Indicator for Endometrial Cancer. Br J Cancer (2006) 95(11):1555–61. doi: 10.1038/sj.bjc.6603477

33. Kong S, Hou YJ, Tergas A, Burke WM, Huang Y, Hu JC, et al. Magnitude of Risk for Nodal Metastasis Associated With Lymphovascular Space Invasion for Endometrial Cancer. Gynecol Oncol (2016) 140(3):387–93. doi: 10.1016/j.ygyno.2016.01.002

34. Kang S, Lee JM, Lee JK, Kim JW, Cho CH, Kim SM, et al. A Web-Based Nomogram Predicting Para-Aortic Nodal Metastasis in Incompletely Staged Patients With Endometrial Cancer: A Korean Multicenter Study. Int J Gynecol Cancer (2014) 24(3):513–9. doi: 10.1097/IGC.0000000000000090

35. Koskas M, Bassot K, Graesslin O, Aristizabal P, Barranger E, Clavel-Chapelon F, et al. Impact of Lymphovascular Space Invasion-Positive Endometrioid Endometrial Cancer Surgically Conduction to the Uterus. Int J Gynecol Cancer (2018) 28(2):208–19. doi: 10.1097/IGC.0000000000001191

36. Matsuo K, Garcia-Sayre J, Medeiros F, Casabar JK, Machida H, Moeini A, et al. Impact of Depth andExtent of Lymphovascular Space Invasion on Lymph Node Metastasis and Recurrence Patterns in Endometrial Cancer. J Surg Oncol (2015) 112(6):669–76. doi: 10.1002/jso.24094

37. Mahwach-Faucergia P, Wang D, Syriac S, Godoy H, Dupont N, Liu S, et al. Synuclein-Gamma (SNCG) Protein Expression Is Associated With Poor Outcome in Endometrial Adenocarcinoma. Gynecol Oncol (2012) 124 (1):148–52. doi: 10.1016/j.ygyno.2011.09.037

38. Miyamoto T, Suzuki A, Asaka R, Ishikawa K, Yamada Y, Kobara H, et al. Immunohistochemical Expression of Core 2 Beta1,6-N-Acetylgalactosaminyl Transferase 1 (CZGnT1) in Endometrioid-Type Endometrial Carcinoma: A Novel Potential Prognostic Factor. Histopathology (2013) 62(7):986–93. doi: 10.1111/his.12107

39. Nakamura K, Hongo A, Kodama J, Hiramatsu Y. The Measurement of SUVmax of the Primary Tumor Is Predictive of Prognosis for Patients With Endometrial Cancer. Gynecol Oncol (2011) 123(1):82–7. doi: 10.1016/j.ygyno.2011.06.026

40. Neal SA, Graybill WS, Garrett-Mayer E, McDowell ML, McLean VE, Watson CH, et al. Lymphovascular Space Invasion in Uterine Corpus Cancer: What Is Its Prognostic Significance in the Absence of Lymph Node Metastases? Gynecol Oncol (2016) 142(2):278–82. doi: 10.1016/j.ygyno.2016.05.037

41. Njolstad TS, Trovik J, Hveem TS, Kjaereng ML, Kildal W, Pradhan M, et al. DNA Ploidy in Curettage Specimens Identifies High-Risk Patients and Lymph Node Metastasis in Endometrial Cancer. Br J Cancer (2015) 112(10):1665–64. doi: 10.1038/bjc.2015.123

42. Nohno O, Ohno S, Suzuki K, Nami M, Inagawa H, Soma G, et al. The Role of Cycllooxygenase-2 in Immunomodulation and Prognosis of Endometrial Carcinoma. Int J Cancer (2005) 114(5):696–701. doi: 10.1002/jic.20777

43. Panggi K, Cheewakriangkrai C, Khamnornpong S, Siriaunkgul S. Factors Related to Recurrence in Non-Obese Women With Endometrial Endometrioid Adenocarcinoma. Int J Gynecol Cancer (2016) 26(3):512–5. doi: 10.1097/IGC.0000000000000820

44. Yi P, Yin H, Meng F, Liu S, Liu H, Ma R. High TRIM44 Expression in Endometrial Cancer. Pathol Res Pract (2018) 214(7):27–31. doi: 10.1016/j.prp.2018.03.007

45. Li M, Wu S, Xie Y, Zhang X, Wang Z, Zhi Y, et al. Cervical Invasion, Lymphovascular Space Invasion, and Ovarian Metastasis As Predictors of Lymph Node Metastasis and Poor Outcome on Stages I to III Endometrial Cancers: A Single-Center Retrospective Study. World J Surg Oncol (2018) 16(1):57. doi: 10.1186/s12957-018-1273-2

46. Lee J, Kong TW, Park J, Chang SJ, Ryu HS. Predicting Model of Lymph Node Metastasis Using Preoperative Tumor Grade, Transvaginal Ultrasound, and Serum CA-125 Level in Patients With Endometrial Cancer. Int J Gynecol Cancer (2016) 26(9):1630–5. doi: 10.1097/IGC.0000000000001615

47. Lin YJ, Hu YW, Twu NF, Liu YM. The Role of Adjuvant Radiotherapy in Stage I Endometrial Cancer: A Single-Institution Outcome. Taiwan J Obstet Gynecol (2019) 58(3):604–9. doi: 10.1016/j.tjog.2019.07.005

48. Lindahl B, Ranstant J, Willen R. Five Year Survival Rate in Endometrial Carcinoma Stages I–II: Influence of Degree of Tumour Differentiation, Age, Myometrial Invasion and DNA Content. Br J Obstet Gynaecol (1994) 101(7):621–5. doi: 10.1111/j.1471-0528.1994.tb13654.x

49. Machida H, Hom MS, Adams CL, Eckhardt SE, Garcia-Sayre J, Mikami M, et al. Intrauterine Manipulator Use During Minimally Invasive Hysterectomy and Risk of Lymphovascular Space Invasion in Endometrial Cancer. Int J Gynecol Cancer (2018) 28(2):208–19. doi: 10.1097/IGC.0000000000001181

50. Mahdi H, Jernigan A, Nutter B, Michener C, Rose PG. Lymph Node Metastasis and Pattern of Recurrence in Clinically Early Stage Endometrial Cancer With Positive Lymphovascular Space Invasion. J Gynecol Oncol (2015) 26(3):208–13. doi: 10.3802/jgo.2015.26.3.208

51. Matsuo K, Garcia-Sayre J, Medeiros F, Casabar JK, Machida H, Moeini A, et al. Impact of Depth and Extent of Lymphovascular Space Invasion on Lymph Node Metastasis and Recurrence Patterns in Endometrial Cancer. J Surg Oncol (2015) 112(6):669–76. doi: 10.1002/jso.24094
References

66. Sigurdsson K, Sigurdardottir B, Steinson S, Benediktsdottir K, Sigurvinsson T, Sigvaldason H. Survival and Prognostic Factors of Endometrial Cancer Patients in Iceland 1964-1995: Can Attendance at Population-Based Pap-Smear Screening Affect Survival? Int J Cancer (1998) 79(2):166–74. doi:10.1002/(sici)1097-0215(19980417)79:2<166::aid-ijic12-3.0.co;2-8

67. Solmaz U, Mat E, Dereli M, Turan V, Gungorduk K, Hasdemir P, et al. Lymphovascular Space Invasion and Cervical Stroma Invasion Are Independent Risk Factors for Nodal Metastasis in Endometrioid Endometrial Cancer. Aust N Z J Obstet Gynaecol (2015) 55(1):81–6. doi:10.1111/ajno.12321

68. Stiekema A, Lok C, Korse CM, van Driel WJ, van der Noort V, Kenter GG, et al. Occult Lymph Node Metastases Detected by Cytokeratin 19. Int J Cancer (2018) 40(3):812. doi: 10.1002/ijc.314332

69. Stalberg K, Bjurberg M, Borgfeldt C, Carlson J, Dahm-Kahler P, Flotev-Lundström A, et al. Lymphovascular Space Invasion as a Predictive Factor for Lymph Node Metastases and Survival in Endometrioid Endometrial Cancer - a Swedish Gynecologic Cancer Group (SweGCG) Study. Acta Oncol (2019) 58(11):1628–33. doi:10.1080/02841079.2019.1643036

70. Tanaka Y, Terai Y, Kawaguchi H, Fujiwara S, Yoo S, Tsuchida T, et al. Prognostic Impact of EMT (Epithelial-Mesenchymal-Transition)-Related Protein Expression in Endometrial Cancer. Cancer Biol Ther (2013) 14(1):13–9. doi:10.4161/cbt.22625

71. Taskin S, Sukur YE, Varli B, Koyuncu K, Seval MM, Ates C, et al. Nomogram With Potential Clinical Use to Predict Lymph Node Metastasis in Endometrial Cancer Patients Diagnosed Incidentally by Postoperative Pathological Assessment. Arch Gynecol Obstet (2017) 296(4):803–9. doi:10.1007/s00404-017-4477-7

72. Taskiran C, Yuce K, Geyik PO, Kucukali T, Ayhan A. Predictability of Retroperitoneal Lymph Node Metastasis by Using Clinicopathologic Variables in Surgically Staged Endometrial Cancer. Int J Gynecol Cancer (2006) 16(3):1342–7. doi:10.1111/j.1525-1438.2006.00534.x

73. Todo Y, Choi HJ, Kang S, Kim JW, Nam JH, Watari H, et al. Clinicopathological Factors Predicting Retroperitoneal Lymph Node Metastasis and Survival in Endometrial Cancer. Jpn J Clin Oncol (1998) 28(11):673–8. doi:10.1093/jjco/28.11.673

74. Urabe R, Hachisuga T, Kurita T, Kagami S, Kawagoe T, Matsuura Y, et al. Prognostic Significance of Overexpression of P53 in Uterine Endometrioid Adenocarcinoma. Int J Gynecol Cancer (2012) 22(8):1373–7. doi:10.1097/IGC.0b013e318269f68e

75. Zhao J, Liu T, Yu G, Wang J. Overexpression of HARP1 Correlated With Clinicopathological Characteristics and Unfavorable Prognosis in Endometrial Cancer. Tumour Biol (2015) 36(2):1299–306. doi:10.1007/s13277-014-2761-8

76. Zhang C, Wang C, Feng W. Clinicopathological Risk Factors for Pelvic Lymph Node Metastasis in Clinical Early-Stage Endometrioid Endometrial Adenocarcinoma. Int J Gynecol Cancer (2012) 22(8):1373–7. doi:10.1097/IGC.0b013e318269f68e

77. Sadozye AH, Harrand RL, Reed NS. Lymphovascular Space Invasion as a Risk Factor in Early Endometrial Cancer. Curr Oncol Rep (2016) 18(14):24. doi:10.1007/s11912-016-0505-1

78. Bokhman JV. Two Pathogenetic Types of Endometrial Carcinoma. Gynecol Oncol (1983) 15(1):10–7. doi:10.1016/0090-8258(83)90111-7

79. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Positive Prognostic Factor in Endometrial Carcinoma and Associated With Cancer Cell Proliferation, Migration and Invasion. Breast Cancer Res Treat (2019) 173(3):281–8. doi:10.1007/s10549-018-6481-8

80. Dong Y, Cheng Y, Tian W, Zhang H, Wang Z, Li X, et al. An Externally Validated Nomogram for Predicting Lymph Node Metastasis of Presumed Stage I and II Endometrial Cancer. Front Oncol (2019) 9:1218. doi: 10.3389/fonc.2019.01218

81. Wang et al. Myometrial Invasion in Endometrial Cancer

Immunohistochemistry Predict Recurrence in Node-Negative Endometrial Cancer. Gynecol Oncol (2001) 80(2):139–44. doi:10.1006/gyno.2000.6067

82. Solomon S, Tsuji H, Yamamoto M, Tsujikawa T, Kiyono Y, Okazawa H, et al. Prognostic Value of 16E2-18F-Fluoro-17β-Estradiol Positron Emission Tomography as a Predictor of Disease Outcome in Endometrial Cancer: A Prospective Study. J Nucl Med (2021) 62(5):636–42. doi:10.2967/jnumed.120.244319

83. Yokoyama Y, Maruyama H, Sato S, Saito Y. Risk Factors Predictive of Para-Aortic Lymph Node Metastasis in Endometrial Carcinomas. J Obstet Gynaecol Res (1997) 23(2):179–87. doi:10.1111/j.1447-0756.1997.tb00829.x

84. Sadozye AH, Harrand RL, Reed NS. Lymphovascular Space Invasion as a Risk Factor in Early Endometrial Cancer. Curr Oncol Rep (2016) 18(14):24. doi:10.1007/s11912-016-0505-1

85. Zhao J, Liu T, Yu G, Wang J. Overexpression of HARP1 Correlated With Clinicopathological Characteristics and Unfavorable Prognosis in Endometrial Cancer. Tumour Biol (2015) 36(2):1299–306. doi:10.1007/s13277-014-2761-8

86. Zhang C, Wang C, Feng W. Clinicopathological Risk Factors for Pelvic Lymph Node Metastasis in Clinical Early-Stage Endometrioid Endometrial Adenocarcinoma. Int J Gynecol Cancer (2012) 22(8):1373–7. doi:10.1097/IGC.0b013e318269f68e

87. Sadozye AH, Harrand RL, Reed NS. Lymphovascular Space Invasion as a Risk Factor in Early Endometrial Cancer. Curr Oncol Rep (2016) 18(14):24. doi:10.1007/s11912-016-0505-1

88. Bokhman JV. Two Pathogenetic Types of Endometrial Carcinoma. Gynecol Oncol (1983) 15(1):10–7. doi:10.1016/0090-8258(83)90111-7

89. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial Cancer. Lancet (2005) 366(9484):491–505. doi:10.1016/S0140-6736(05)67063-8

90. Murali R, Soslow RA, Weigelt B. Classification of Endometrial Carcinoma: More Than Two Types. Lancet Oncol (2014) 15(7):e268–78. doi: 10.1016/S1470-2045(13)70591-6

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.