Diversity sampling is an implicit regularization for kernel methods

Michaël Fanuel* Joachim Schreurs* Johan A.K. Suykens*

February 21, 2020

Abstract

Kernel methods have achieved very good performance on large scale regression and classification problems, by using the Nyström method and preconditioning techniques. The Nyström approximation – based on a subset of landmarks – gives a low rank approximation of the kernel matrix, and is known to provide a form of implicit regularization. We further elaborate on the impact of sampling diverse landmarks for constructing the Nyström approximation in supervised as well as unsupervised kernel methods. By using Determinantal Point Processes for sampling, we obtain additional theoretical results concerning the interplay between diversity and regularization. Empirically, we demonstrate the advantages of training kernel methods based on subsets made of diverse points. In particular, if the dataset has a dense bulk and a sparser tail, we show that Nyström kernel regression with diverse landmarks increases the accuracy of the regression in sparser regions of the dataset, with respect to a uniform landmark sampling. A greedy heuristic is also proposed to select diverse samples of significant size within large datasets when exact DPP sampling is not practically feasible.

1 Introduction

Kernel methods often rely on low rank approximations to deal with large scale datasets. This paper addresses the special case of Nyström approximation that is defined hereafter. Namely, let $k(x, y) > 0$ be a continuous and strictly positive definite kernel. Given data $\{x_i \in \mathbb{R}^d\}_{i \in [n]}$, kernel methods rely on the entries of the Gram matrix $K = [k(x_i, x_j)]_{i,j}$. To deal with large scale problems, one often samples a subset of landmarks $\mathcal{C} \subseteq [n]$ and defines a $n \times |\mathcal{C}|$ sampling matrix C obtained by selecting the columns of the identity matrix indexed by \mathcal{C}. This is useful to select rectangular and squared submatrices as follows: $K_{\mathcal{C}} = KC$ and

*KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium. email: michael.fanuel@kuleuven.be
\(K_{CC} = C^T KC \). Then, the \(n \times n \) kernel matrix \(K \) is approximated by a low rank Nyström approximation

\[
L(K, C) = K_C K_C^{-1} K_C^T,
\]

which involves inverting \(K_{CC} \). However, this submatrix can be ill-conditioned. In practice, this happens especially when \(C \) is sampled uniformly at random and for the Gaussian kernel \(k(x, y) = \exp(-\|x - y\|^2/\sigma^2) \), that is used in this paper. We argue here that a sampling of \(C \) which yields a good performance is closely related to the diversity of the set of landmarks. In this work, the diversity of \(C \) is measured by the value of \(\text{det}(K_{CC}) \). This is intuitively understood thanks to the connection between determinant and volume \([13]\). We claim that selecting a diverse sample implicitly regularizes the corresponding submatrix. This is illustrated on the \textit{Housing} dataset in Figure 1 where the Nyström approximation error and condition number of \(K_{CC} \) are given for several \(C \) of identical cardinality, associated with different diversities. Additional technical details are given in Section 3. The empirical findings described in Section 3 indicate that Nyström-based kernel methods are improved if the landmarks are both diverse and yield an accurate kernel approximation. To illustrate this statement, we use a greedy swapping algorithm, namely Algorithm \(1 \) (blue line in Figure 1), which allows for obtaining a sample of landmarks with a given diversity. It is worth mentioning that different other methods exist to sample diverse landmarks, such as volume sampling \([8]\), greedy methods \([7]\), Determinantal Point Processes (DPP) \([13]\), etc. The example of Figure 1 illustrates the connection between diversity, regularization and Nyström approximation error. Namely, we sample repeatedly subsets of the same size by using Uniform, Ridge Leverage Score (RLS) and DPP sampling (defined hereafter), which yield samples with an increasing diversity. Figure 1 shows that the corresponding kernel submatrices have an increasing least eigenvalue, a decreasing Nyström approximation error and a decreasing condition number. This highlights the implicit regularization due to diversity. Among diverse sampling methods, DPPs provide a natural probabilistic framework for diversity sampling. Their elegant definition allows to derive results formalizing our empirical observations about the interplay between regularization and diversity. Let us briefly define them in the simplest setting, while a more complete overview can be found in \([13]\).

1.1 DPP sampling

Let \(L \) be a \(n \times n \) positive definite symmetric matrix, called L-ensemble. Then, the probability that a subset \(C \subseteq [n] \) is sampled is defined as follows

\[
\Pr(Y = C) = \frac{\text{det}(L_{CC})}{\text{det}(I + L)}.
\]

In this paper, we define \(L = K/\alpha \) with \(\alpha > 0 \) and denote the associated process \(DPP_L(K/\alpha) \). Classically, an alternative viewpoint deals with the inclusion probabilities as given by \(\Pr(C \subseteq Y) = \text{det}(P_{CC}) \), where

\[
P = K(K + \alpha I)^{-1},
\]
Figure 1: Nyström approximation for the Housing dataset with parameters given in Table 1. The condition number, smallest and largest eigenvalues of K_{CC}, relative Frobenius norm of the approximation error of $\hat{K} = L(K,C)$ are plotted versus the sample diversity. The larger $\det(K_{CC})$, the more diverse the subset. Error bars are standard deviations over 10 simulations.

is the marginal kernel associated L-ensemble $L = K/\alpha$. The diagonal of this soft projector matrix (2) yields the so-called Ridge Leverage Scores (RLS) of the data points:

$$\ell_i = P_{ii} \text{ for } i \in [n],$$

which have been used in order to sample landmarks points in various works [16, 9, 1] in the context of Nyström approximations. RLS can be considered as a measure of importance or ‘outlierness’ of a data point. The sum of the RLS yields the effective dimension $d_{\text{eff}}(K/\alpha)$ which is also the expected size $d_{\text{eff}}(K/\alpha) = \mathbb{E}_C[|C|]$ if $C \sim \text{DPP}_L(K/\alpha)$. Since the subset size $|C|$ in itself also a random variable, it is also customary to use k-DPPs which are DPPs conditioned on a given subset size k. (see also [14]).

The following two sections motivate the impact of the regularity of K_{CC} in two applications. Firstly, a better kernel approximation yields an improvement of the performance of unsupervised kernel methods such as Kernel Principal Component Analysis (KPCA) [20, 21] and Kernel k-means [24]. Secondly, the conditioning of K_{CC} is also important for large-scale supervised learning methods – based on Nyström approximation – as the convergence and accuracy of iterative solvers depends often of the condition number. Finally, sampling with a diverse method spread the points more over the full dataset. This is especially important for accuracy in less populated or ‘outlying’ regions in the dataset. We now give a short overview of how the Nyström approximation is used to speed up kernel PCA and kernel ridge regression.

1.2 Kernel PCA

The Nyström method is used to develop a more computationally efficient approximate kernel PCA algorithm [21]. Let \mathcal{H} be the Reproducing Kernel Hilbert Space associated to k and assume that the data is sampled from a distribu-
tion ρ such that $\mathbb{E}_{X \sim \rho}[f(X)] = 0$ for all $f \in \mathcal{H}$. We recall that Kernel PCA is a principal component analysis in a RKHS, i.e. it consists in finding the directions of maximum variance. Indeed, let $k_x(\cdot) = k(x, \cdot)$ and let the empirical covariance operator $C = \frac{1}{n} \sum_{i=1}^{n} k_{x_i} \otimes k_{x_i}$. Also, we define the subspace $\mathcal{H}_C = \text{span}\{k_x, \text{ s.t. } i \in C\}$. Then, the optimization problem
\[
\sup_{f \in \mathcal{H}} \langle f, Cf \rangle_{\mathcal{H}} \text{ s.t. } ||f||_{\mathcal{H}} = 1 \text{ and } f \in \mathcal{H}_C,
\]
corresponds to a Nyström approximation of KPCA if $C \subset [n]$. The empirical estimation of KPCA involves the eigendecomposition of the matrix
\[
M = K_{CC}^{-1/2} K_C^\top K_C K_{CC}^{-1/2},
\]
sharing its non-zero eigenvalues with $\frac{1}{n} M$. Let $(\hat{\lambda}_t, v_t)_{t=1}^{|C|}$ be eigenpairs of $\frac{1}{n} M$ sorted in descending order. KPCA aims to construct the orthogonal projector $P_C = \sum_{t=1}^c \alpha_t \otimes k(x, \cdot)$ with $c \leq |C|$. Clearly, the conditioning of K_{CC} is important for this task in view of the definition of M. The reconstruction error for c components assesses the quality of the approximation and is given by:
\[
\hat{R}(P_C) = \frac{1}{n} \text{tr}(K) - \frac{1}{n} \sum_{t=1}^c u_t^\top M u_t = \sum_{t=1}^n \hat{\lambda}_t - \sum_{t=1}^c \hat{\lambda}_t, \quad (3)
\]
where $(\hat{\lambda}_t, v_t)_{t=1}^n$ are eigenpairs of $\frac{1}{n} K$. A small reconstruction error is then achieved thanks to an accurate Nyström approximation as detailed in Section 2.2.

1.3 Regression

In approximate Kernel Ridge Regression (KRR), the regressor is obtained from given input-output pairs $\{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i \in [n]}$ by solving
\[
f^\star = \arg \min_{f \in \mathcal{H}_C} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \gamma ||f||_{\mathcal{H}}^2, \quad \text{with } \gamma > 0,
\]
where $\mathcal{H}_C = \text{span}\{k(x_i, \cdot) \mid i \in C\}$ and $C \subseteq [n]$. The regressor is $f^\star(\cdot) = \sum_{i \in C} \alpha_i k(x_i, \cdot)$ with
\[
\alpha^\star = (K_{C}^\top K_C + n \gamma K_{CC})^{-1} K_{C}^\top y. \quad (4)
\]
The condition number of (4) crucially depends on the magnitude of the least eigenvalue of K_{CC} which plays the role of regularization term. Notice that the full KRR is simply obtained by replacing \mathcal{H}_C by \mathcal{H} in (1.3).

Stability of the expected risk The first consequence of an accurate Nyström approximation is that the expected risk of approximate KRR is upper bounded by a controllable constant as it is explained in Section 2.3. This means that the training problem can not be dramatically affected by the Nyström approximation.
Uniform test error A second consequence is directly related to the diversity of the landmarks and is illustrated in Figure 2. Namely, Figure 2 shows the training dataset which consists of 1000 sampled points generated as follows: \(x_i \sim \mathcal{N}(0,I) \) and \(y_i = \mathbf{e}^\top_1 x_i + b + \epsilon_i \) with iid \(\epsilon_i \sim \mathcal{N}(0,\sigma^2) \), with \(\sigma = 0.1 \) and \(b = 20 \). The corresponding \(y_i \) values are visualized by the color of the points. Landmarks are then sampled by using uniform and DPP sampling. Uniform sampling oversamples the dense parts, while a diverse sampling algorithm samples spreads the points over the full dataset. A kernel ridge regressor with Gaussian kernel is trained by using (1.3), where the optimal regularization parameter \(\gamma > 0 \) is determined using cross-validation. Figure 2c shows the Mean Absolute Percentage Error (MAPE) in function of the ridge leverage scores of the test set, where each dot corresponds to the MAPE in the corresponding bin of the histogram. This stratification of the dataset allows to visualize how the regressor performs in dense (small RLS) and sparser (large RLS) groups of the dataset.

![Image](image.png)

(a) Uniform sampling.
(b) k-DPP sampling.
(c) RLS and binned MAPE.

Figure 2: Toy example of regression. In 2c, a histogram of RLS distribution and the MAPE test error in each bin are displayed.

Diverse sampling has a consistently better performance than uniform sampling, where the difference is more apparent for high leverage scores. This is especially important when sampling from datasets with long tail RLS distributions. Hence, in the case of diverse sampling, we emphasize that the percentage error is more uniform on the support of the dataset while the regressor makes a smaller error on points with larger leverage score compared to regressors obtained with uniform sampling, while the total MAPE shows only a minor difference. Additional illustrations of this effect are given in Section 3. Naturally, diverse sampling is less important if there is no long tail of in the RLS distribution.

We now want to emphasize why diverse sampling is important, especially in stratified datasets. Recently, there has been a lot of interest in not only predicting well in the majority of the data, but also for specific outlying points [23, 17, 6]. These outlying points can e.g. correspond to serious diseases in a medical dataset, being less common than mild diseases. Incorrectly classifying these outliers could lead to significant harm to patients. The performance in these subpopulations is often overlooked. This is because aggregate performance measures such as MSE

\[\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]
or sensitivity can be dominated by larger subsets, obscuring the fact that there may be an unidentified subset of cases where the performance is poor. These stratifications often occur in datasets with a long tail, i.e. the data distribution of each class is viewed as a mixture of distinct subpopulations [10]. For example, images of dogs include different species photographed from different perspectives and under different conditions (such as close-ups, in the woods and during the rain). A long-tailed mixture distribution will have some subpopulations from which just a few or only a single one example was observed. When using sampling algorithms, it is therefore necessary to select points out of each subpopulation to achieve close-to-optimal generalization error. One expects that, before seeing the dataset, the learning algorithm does not know the frequencies of subpopulations and may not be able to predict accurately on a subpopulation without observing any examples from it. By making sure the selected subset is diverse enough, there is a higher chance of every subpopulation being included in the sample. In [10], it is argued that datasets with long tails are a possible reason why interpolating models or models that achieve zero error rate on the training data, can still generalize [5, 15, 4]. These hidden stratifications motivate the search for better loss functions. We therefore propose an unsupervised approach, where the loss function is determined on two parts of the data: the bulk and tail of the data. The bulk and tail of the data correspond to points with low and high outlyingness respectively, where the outlyingness is measured by the ridge leverage scores. By splitting the loss function into two parts, one can identify if the model is not only focusing on the majority data but also performing well in ‘outlying’ subpopulations.

The rest of the paper includes theoretical results in Section 2 and numerical experiments in Section 3. The proofs and dataset description are given in appendix. Another application, namely kernel k-means, and additional numerical experiments can be found in supplementary material.

2 Main results: Implicit regularization

On expectation, the largest and smallest eigenvalues of several matrices obtained by DPP sampling can be bounded, showing indeed that the spectrum of those submatrices are likely to be under control. This is formalized in Theorem 1, where we denoted by \odot the entry-wise product between matrices.

Theorem 1 (Implicit regularization). Let $C \sim DPP_L(K/\alpha)$ and let C be a sampling matrix associated to the set C. Then, we have

$$E_C \left[CK_C^{-1} C^\top \right] = (K + \alpha I)^{-1}, \text{ and } E_C \left[CK_C C^\top \right] = P_{(2)} \odot K,$$

with $P_{(2)} = \text{Diag}(\ell) + \ell \ell^\top - P \odot P \succeq 0$.

Notice that $P_{(2)}$ is positive semi-definite. Furthermore, if $\text{diag}(K) = 1$ as in the case of the Gaussian kernel, the largest eigenvalue

$$\lambda_{\max}(E_C \left[CK_C C^\top \right]) \leq \lambda_{\max}(P_{(2)}) \leq \|\ell\|_\infty + \|\ell\|_2^2,$$

(5)
is bounded in terms of the leverage scores. This is a direct consequence of a Corollary 2 in [2], namely the spectrum of $A \circ B$ is majorized by the spectrum of A if A and B are symmetric and positive semidefinite with $\text{diag}(B) = 1$. It is noticeable that the largest eigenvalue of the expected kernel submatrix is under control for DPP sampling. Indeed, other sampling schemes are not known to yield similar guarantees. Again, if $\text{diag}(K) = 1$, the trace of $E_C [C^T K CC]$ is the expected size of the sample, $d_{\text{eff}}(K/\alpha)$, which gives then another an upper bound for $\lambda_{\text{max}}(E_C [CKCC C^T])$. We observe empirically that the latter yields a much larger upper bound compared to (5). Importantly, the scale parameter $\alpha > 0$ both controls the size of the sample and regularizes the subkernels matrix in the following sense:

$$\lambda_{\text{max}}(E_C [CKCC C^T]) \leq \alpha^{-1}.$$

These results on expectation can be instructive since we expect concentration about the mean. Indeed, Permantle and Peres showed that strong Rayleigh measures – generalizing DPPs – obey Gauss-Poisson concentration bounds [18]. Corollary [1] is then a direct consequence of that concentration result. For convenience, we write $w_C = C^T w$, where C is the sampling matrix associated to $C \subseteq \{1, \ldots, n\}$.

Corollary 1 (Regularization with high probability). Let $C \sim \text{DPP}_L(K/\alpha)$ and $w \in \mathbb{R}^n$ such that $\|w\|_2 = 1$. Then, we have

$$|w_C^T K^{-1} CC - w^T (K + \alpha I)^{-1} w| \leq \frac{\sqrt{48n \log(\frac{2}{\delta})}}{\lambda_{\text{min}}(K)}.$$

with probability at least $1 - \delta$.

A drawback of Corollary [1] is that the bound hereabove depends of the inverse of $\lambda_{\text{min}}(K)$ which may be a large number. The result may be improved by finding a better upper found on the Lipschitz constant of the function $f(C) = w_C^T KCC^{-1} w_C$. We refer to the proof of Corollary [1] for more details.

2.1 Nyström approximation

The subset obtained thanks to a DPP sampling is not only yielding a regular kernel submatrix, Corollary [2] states that it produces a good Nyström approximation. It also gives a natural connection between the projector

$$\mathbb{P}_{\text{range}(K_{1/2} C)} = K^{1/2} C(KCC)^{-1} C^T K^{1/2},$$

and the marginal kernel [2].

Corollary 2 (Expected Nyström approximation). Let $C \sim \text{DPP}_L(K/\alpha)$. Then, we have an expression for the Nyström error on expectation

$$E_C [K - L(K,C)] = \alpha P, \quad \text{and} \quad E_C [\mathbb{P}_{\text{range}(K_{1/2} C)}] = P.$$
As a straightforward consequence of Corollary 2, the nuclear norm of the
approximation error is simply \(E_C[\text{Tr}(K - L(K, C))] = \alpha d_{\text{eff}}(K/\alpha) \), since \(K \succeq L(K, C) \). To the best of our knowledge, only a weaker result about the accuracy of the Nyström approximation \[14\] related to \(k \)-DPPs exists in the literature.

2.2 Unsupervised kernel methods

Theorem 2 states that the ‘distance’ of \(K \) to a \(k \)-dimensional subspace is well approximated by the ‘distance’ of \(L(K, C) \) to the same subspace, on expectation.

Theorem 2 (Expected projection-cost preservation). Let \(C \sim DPP_L(K/\alpha) \) and \(X \) an orthogonal projector on a \(k \)-dimensional subspace. Denote \(L = L(K, C) \). Then we have

\[
\text{Tr}(K - XXK) \leq E_C[\text{Tr}(L - XLX)] + c(\alpha) \leq \text{Tr}(K - XXK) + \min\{\alpha k, c(\alpha)\},
\]

where \(c(\alpha) = \alpha d_{\text{eff}}(K/\alpha) \).

A direct application of the above theorem is KPCA. Namely, the projector \(X^* \) onto the leading \(k \) components is obtained by

\[
\min_{X \in \Pi_k} \text{Tr}(K - XXK),
\]

where \(\Pi_k \) is the set of \(n \times n \) projectors of rank \(k \). Then, the result Theorem 2 is a stability result relating the objective functions of KPCA with and without Nyström approximation. Empirical experiments can be found in supplementary material.

2.3 Kernel Ridge Regression

A simple consequence of Corollary 2 is that the expected risk of KRR approximated by Nyström method with DPP sampling cannot be arbitrary larger than the risk corresponding to the full KRR. Namely, let the outputs be \(y_i = z_i + \epsilon_i \) where \(\epsilon_i \) are iid \(\mathcal{N}(0, \sigma^2) \) and let the solution of KRR be \(\hat{z}_K = (K + n\gamma I)^{-1}y \). The expected risk is then defined as \(\mathcal{R}(\hat{z}_K) = E_C\|\hat{z}_K - z\|^2_2 \). Then, we can give a bound on the risk of KRR associated to the Nyström approximation.

Theorem 3 (Expected risk bound). Let \(C \sim DPP_L(K/\alpha) \), then we have

\[
E_C \left[\sqrt{\frac{\mathcal{R}((\hat{z}_L(K, C))}{\mathcal{R}(\hat{z}_K)}} \right] \leq 1 + \frac{\alpha}{n\gamma} d_{\text{eff}}(K/\alpha).
\]

The upper bound in Theorem 3 tends to 1 as \(\alpha \to 0 \) since \(d_{\text{eff}}(K/\alpha) \leq n \). This consistently shows that the larger is the number of landmarks, the closest is the risk of approximate KRR from the full KRR. Notice that the increase in the risk is also mitigated by the regularization parameter.
Preconditioners Rudi et al. [19] propose a preconditioning of the linear system (4) of the form

$$B^\top (K_C^\top K_C + n\gamma K_{CC}) B (B^{-1} \alpha) = B^\top K_C^\top y$$

(6)

where B is obtained by solving $BB^\top = (K_{CC} D_{CC} K_{CC} + n\gamma K_{CC})^{-1}$, thanks to a Cholesky decomposition, where D_{CC} is an appropriate diagonal matrix. In the case of the uniform sampling of C, the authors of [19] propose $D_{CC} = (n/|C|)I_{CC}$. For RLS sampling, they argue for $D_{CC} = \text{Diag}(\ell_C)$, where ℓ_C contains the so-called ridge leverage scores. We emphasize that the computation of B indeed crucially depends on the magnitude of the least eigenvalue of K_{CC}. It is then interesting to sample diverse landmarks so that K_{CC} is likely to be regular. A natural motivation for choosing $D_{CC} = \text{Diag}(\ell_C)$ from the DPP viewpoint is given in Corollary 3. This result naturally follows from Lemma 1, which can also be found in the context of Monte-Carlo integration [3] with projective DPPs.

Lemma 1. Let $C \sim \text{DPP}_L(K/\alpha)$ and v and $w \in \mathbb{R}^n$. Then, we have the identities

$$E_C [v^\top C w] = v^\top \text{Diag}(\ell) w,$$

and

$$V_C [v^\top C w] = (v \circ w)^\top \left(\text{Diag}(\ell) - P \circ P \right) (v \circ w).$$

Corollary 3 then motivates the approximation of $K_C^\top K_C$ in (4) by $K_{CC} D_{CC} K_{CC}$.

Corollary 3. Let $C \sim \text{DPP}_L(K/\alpha)$ and $K_C = KC$. Then, the following identity holds: $E_C [K_C \text{Diag}(\ell_C)^{-1} K_C^\top] = K^2$.

A formula for the variance can also be obtained thanks to Lemma 1. Again, using DPP sampling with inverse leverage score preconditioning has the advantage that K_{CC} is likely to be regular, in contrast with leverage score sampling.

3 Experimental results

In this section, we illustrate the effect of sampling a subset C with small or large $\det(K_{CC})$ on a number of public datasets. A swapping algorithm, described in Algorithm 1, is used to determine subsets of size $|C| = k$ with a given log-determinant d_p, such that $|\log(\det(K_{CC})) - d_p| \leq \epsilon$ and where $\epsilon > 0$ is a numerical tolerance. The methods swaps points in and out of an initial subset, so that the swapped point is accepted if the determinant of the new submatrix is closer to the desired determinant d_p. If the determinant of the subset is too small, we sample a new candidate by using (approximate) leverage scores sampling. Otherwise, if the determinant is too large, we use inverse leverage scores sampling. The size of the subset is chosen to be the effective dimension

$$k = \sum_{i=1}^n \ell_i,$$

where $\{\ell_i\}_{i=1}^n$ are the ridge leverage scores with regularization parameter $\alpha = \lambda n$. The same ridge leverage scores are used in the greedy swapping algorithm. The algorithm stops if the desired precision is reached or the number of iterations exceeds 2000, whichever happens earlier. For large-scale problems, the ridge leverage scores are approximated using Recursive Ridge Leverage Sampling (RRLS) [10] with n_{RRLS} points. The size of the subset is chosen to be the effective dimension of the
approximate RLS with regularization parameter \(\alpha = \lambda n \). The same approximate RLS are used in the greedy swapping algorithm, where the maximum iterations is now equal to 5000.

Settings In the sequel, a Gaussian kernel with bandwidth \(\sigma \) is used after standardizing the data. All the simulations are repeated 10 times, the averaged is displayed and the errorbars show the 0.05 and 0.95 quantile. The datasets and hyperparameters are given in Table 1. In the first case-studies, the following exact algorithms are used to sample \(k \) landmarks: Uniform sampling (Unif.), Ridge Leverage Score sampling (RLS) [9] and k-DPP [12]. For a fair comparison, we chose to use k-DPP rather than DPP so that the number of landmarks is always constant and equal to the expected subset size of the associated DPP. In the large-scale experiments: Unif., RRLS and the greedy swapping method are compared.

```plaintext
input: Matrix \( K \succ 0 \), sample size \( k \), ridge leverage scores \( \{\ell_i\}_{i=1}^n \), preferred log-determinant \( d_p \) and precision \( \epsilon > 0 \).
initialization: Sample an initial subset \( |C| = k \) uniformly at random. Determine the Cholesky decomposition \( R \), with \( K_{CC} = R^T R \).
repeat:
  Determine the log-determinant \( d = 2 \sum_{i=1}^k \log(R_{ii}) \).
  if: \( |d - d_p| \leq \epsilon \)
    break
  if: \( d < d_p \)
    Sample a new point \( \tilde{c} \) out of the remaining subset with \( p_i \sim \ell_i \)
  otherwise:
    Sample a new point \( \tilde{c} \) out of the remaining subset with \( p_i \sim 1 - \ell_i \)
    Swap a uniform selected point out of \( C \) with the newly sampled \( \tilde{c} \), which gives the new subset \( \tilde{C} \)
    Do a rank-1 update to the Cholesky decomposition, which gives \( \tilde{R} \) and determine \( \tilde{d} = 2 \sum_{i=1}^k \log(\tilde{R}_{ii}) \).
  if: \( |\tilde{d} - d_p| \leq |d - d_p| \)
    Keep the swapped point and update \( R = \tilde{R}, C = \tilde{C} \)
return \( C \).
Algorithm 1: Greedy Swapping Algorithm based on the (approximated) ridge leverage scores.
```

Nyström approximation The impact of diversity on the Nyström approximation is illustrated on the **Housing**, **Abalone**, **codRNA** and **MiniBooNE datasets**.\(^1\) The condition number of \(K_{CC} \), its largest/smallest eigenvalues and the accuracy of the Nyström approximation are plotted as a function of the determinant in Figure 4. For completeness, the largest and smallest eigenvalues of \(K_{CC} \) are

\(^1\)https://www.cs.toronto.edu/~delve/data/datasets.html, https://archive.ics.uci.edu/ml/index.php
also given in the appendix. The accuracy of the approximation is evaluated by calculating $\|K - \hat{K}\|_F / \|K\|_F$ with $\hat{K} = KC(K_{CC} + \varepsilon I_{CC})^{-1}C^T K$ with $\varepsilon = 10^{-12}$ for numerical stability. Afterwards, the following algorithms are used to sample k landmarks: Uniform sampling (Unif.), exact ridge leverage score sampling (RLS) [9] and k-DPP [12]. The results in Figure 1 show that the 3 sampling algorithms follow the general trend of the greedy swapping algorithm, namely, we have to following empirical observations: 1) Sampling a more diverse subset results in a smaller condition number $\kappa(K_{CC})$. This is mainly because a larger determinant corresponds to a larger $\lambda_{\text{min}}(K_{CC})$. Indeed, diverse sampling is a computational regularization. 2) Sampling a diverse subset gives a more accurate Nyström approximation. In practice, we observe that RLS sampling yield effectively more diverse samples compared to uniform sampling. Notice that in the presence of outliers, taking samples with an extremely large $\det(K_{CC})$ thanks to the Greedy Swapping Algorithm might increase the error on the Nyström approximation as it explained in Supplementary Material. The results for the large-scale experiments are visualized on Figure 3. The accuracy of the approximation is now evaluated by averaging the Frobenius norm error $\|K - \hat{K}\|_F$ over 50 subsets of size 3000.

\[\text{(a) MiniBooNE: error} \]

\[\text{(b) codRNA: error} \]

Figure 3: Large-scale Nyström approximation results. The Frobenius norm of the approximation error of $\hat{K} = L(K,C)$ is plotted versus the sample diversity. The larger $\det(K_{CC})$, the more diverse the subset.

Kernel PCA The numerical experiments are done on the Breast Cancer (B. Cancer), Australian Credit (A. Credit), Adult and Covertype datasets. The condition number, smallest/largest eigenvalues of K_{CC} and the reconstruction error are plotted as a function of the determinant. The averaged results are visualized in Figure 4. Information about the datasets and hyperparameters used for the experiments is given in Table 1 in appendix. Empirically, sampling a more diverse subset results in a smaller reconstruction error and a smaller
Figure 4: KPCA results. The condition number, minimum eigenvalues and reconstruction error using half of the components are plotted as a function of $\det(K_{CC})$.

Figure 5: Large-scale KPCA results. The condition number and reconstruction error using half of the components are plotted as a function of $\det(K_{CC})$.

Regression and Stratification of the error

To conclude, we verify the usefulness of diversity for a supervised learning task. The dataset is split in 50% training data and 50% test data, so to make sure the train and test set have similar RLS distributions. The test RLS distribution is visualized in Figure 6. The regression experiment is repeated on the Abalone, Wine Quality, Bike Sharing (Bike S.) and YearPredictionMSD (Year) datasets by using KRR. The MAPE of the kernel ridge regression is calculated as a function of $\det(K_{CC})$. To evaluate the performance, the dataset is stratified, i.e., the test set is divided into ‘bulk’ and ‘tail’ as follows: the bulk corresponds to test points where the RLS are smaller than or equal to the 70% quantile, while the tail of the data corresponds to test points where the ridge leverage score is larger than the 70% quantile. The regularization parameter γ is determined by using cross-validation. The results in Figure 7 show that the 3 sampling algorithms follow the general trend of the greedy swapping algorithm. Again here, sampling a more diverse subset, results in a better conditioning of the kernel sub-matrix. Diverse sampling has comparable performance for the bulk data, while performing much better.
Figure 6: Regression results. The histogram of the RLS of the test set and minimum and maximum eigenvalues of K_{CC} versus $\det(K_{CC})$, accompanying Figure 7.

in the tail of the data. This confirms the expectations from the regression toy example. The results for the large-scale experiments are visualized on Figure 8, where the Symmetric MAPE (SMAPE) is shown in the bulk and tail of the data.

Preconditioner A natural idea is to consider iterative methods to solve the system in (4) because of their simplicity and low iteration cost. The speed and accuracy of convergence of the conjugate gradient method depends on the condition number of the linear system \[11\], which makes the use of diverse samplings in combination with iterative methods particularly interesting. This is illustrated on the Parkinson, and Pumadyn8FM datasets\(^1\). The condition number of the preconditioned system is measured, where the preconditionner given in (6) is used in combination with uniform sampling, RLS and k-DPP in combination with the preconditioner defined in (6). The ridge regularization parameter is equal to $\lambda = 10^{-10}$ to illustrate the impact of diversity on badly conditioned systems. From the results in Figure 9 we see empirically that sampling a more diverse subset, results in a better conditioning of the linear system.
Figure 7: Regression results. The condition number and MAPE on the test set are plotted as a function of $\text{det}(K_{CC})$. A small MAPE corresponds to a large accuracy.

4 Conclusions

In this paper, the interest of sampling diverse landmarks in the context of Nyström approximation was illustrated. Our empirical findings relating regularization and diversity are partly supported by theoretical results. In the context of Kernel Ridge Regression, an extra contribution of the paper consists in proposing the use of the Ridge Leverage Score distribution in order to assess the uniformity of the performance of the regressor.

Acknowledgments

EU: The research leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program / ERC Advanced Grant E-DUALITY (787960). This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the contained information. Research Council KUL: Optimization frameworks for deep kernel machines C14/18/068. Flemish
Figure 8: Large-scale Regression results. The SMAPE on the bulk and tail of the test set versus the sample diversity. The larger $\det(K_{CC})$, the more diverse the subset.

Figure 9: Preconditioning results. The condition number of the linear system before and after the preconditioning is plotted for Uniform, RLS and k-DPP sampling. From left to right, the condition number before and after preconditioning, for Parkinson and Pumadyn8FM datasets, respectively.

A Proofs

Proof of Theorem 1 Without loss of generality, we put $\alpha = 1$.
(i) Then, we first prove $E_C[CK_{CC}^{-2}C^\top] = (K + \alpha I)^{-1}$. The matrix inversion lemma yields

$$\det \begin{pmatrix} K_{CC} & C^\top w \\ u^\top C & 1 \end{pmatrix} = \det(K_{CC}) \left[1 - u^\top C K_{CC}^{-1} C^\top w \right] = \det \left(K_{CC} - C^\top w u^\top C \right).$$
This simplifies to
\[u_c^\top K_c^{-1} w_c = 1 - \frac{\det(K_{cc} - C^\top w u^\top C)}{\det(K_{cc})}. \]

By taking the expectation on both sides, we find
\[
\mathbb{E}_c \left[u_c^\top K_c^{-1} w_c\right] = 1 - \frac{\det(\mathbb{I} + K - w u^\top)}{\det(\mathbb{I} + K)} = u^\top (\mathbb{I} + K)^{-1} w,
\]
where we used \(\sum_{c \subseteq [n]} A_{cc} = \mathbb{I} + A \) with \(A \) a square matrix.

(ii) Secondly, we prove that
\[
\mathbb{E}_c \left[u_c^\top C C^\top K C^\top v\right] = P(2) \circ K.
\]
We first calculate by using the marginal kernel
\[
\mathbb{E}_c[1_{i \in C} 1_{j \in C}] = 1_{i=j} \times P_{ii} + 1_{i \neq j} \times \det P_{\{i,j\}\{i,j\}} = 1_{i=j} \times P_{ii} + (P_{ii} P_{jj} - P_{ij}^2).
\]
The result follows from the following formula
\[
\mathbb{E}_c[u^\top C C^\top K C^\top v] = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}_c[u_i 1_{i \in C} K_{ij} 1_{j \in C} v_j],
\]
and by using the linearity of the expectation.

\[\square\]

Proof of Corollary 1. We follow the proof strategy of [14].

Let \(f(C) = w_c^\top K_c^{-1} w_c \) a function viewed as \(f : \{0,1\}^n \rightarrow \mathbb{R} \). We quote now a simplified result from [18] related to strong Rayleigh measures which generalize in particular DPPs.

Theorem 4 (Thm 3.2 in cite). Let \(\mathbb{P} \) be strong Rayleigh. Let \(f : \{0,1\}^n \rightarrow \mathbb{R} \) be 1-Lipschitz with respect to the Hamming distance. Then,
\[\mathbb{P}(|f - \mathbb{E} f| > a) \leq 5 \exp(-a^2/(48n)). \]

Let \(\delta \geq 5 \exp(-a^2/(48n)) \). This means \(a \geq (48n \log(5/\delta))^{1/2} \). Then, with probability less than \(\delta \),
\[|f - \mathbb{E} f| > \ell a \geq \ell \sqrt{48n \log(5/\delta)}. \]

We now need to calculate an upper bound on the Lipschitz constant of \(f \) with respect to the Hamming distance. To do so, it is sufficient to consider two binary vectors \(C \) and \(C' \in \{0,1\}^n \) differing of one digit. Say that \(f(C) \geq f(C') \geq 0 \). Then, we have
\[|f(C) - f(C')| \leq f(C) - f(C') \leq w_c^\top K_c^{-1} w_c \leq 1/\lambda_{\min}(K) = d_H(C, C')/\lambda_{\min}(K), \]
since \(\|w\|_2 = 1 \) and where \(d_H(C, C') \) is the Hamming distance between the binary vectors \(C \) and \(C' \). The final result follows by taking \(\ell = 1/\lambda_{\min}(K) \). \[\square\]
Proof of Theorem 2. Since X is an orthogonal projector and $L_C \preceq K$, we have $\text{Tr}(XL_C X) \leq \text{Tr}(KKX)$, which yields

$$\text{Tr}(K - XKKX) \leq \text{Tr}(L_C - XL_C X) + \text{Tr}(K - L_C) = \text{Tr}(K) - \text{Tr}(XL_C X).$$

By taking the expectation over $C \sim DPP(K/\alpha)$ on both sides of the above inequality, and by using $E_C(L_C) = K - \alpha P$, we obtain

$$\text{Tr}(K - XKKX) \leq \mathbb{E}_C[\text{Tr}(L_C - XL_C X)] + \alpha d_{\text{eff}}(K/\alpha) = \text{Tr}(K) + \alpha \text{Tr}(XPX).$$

Finally, by using that X is a projector, it holds that $\text{Tr}(XPX) \leq \text{Tr}(X) = k$ since $P \preceq I$. Also, we have $\text{Tr}(XPX) \leq \text{Tr}(P) = d_{\text{eff}}(K/\alpha)$, so that the final bound is obtained.

Proof of Theorem 3. The risk $R(\hat{z}) = \frac{1}{n} \mathbb{E}_\epsilon \|\hat{z} - z\|^2$ is decomposed in terms of bias and variance $R(\hat{z}) = \text{bias}^2(K) + \text{var}(K)$, where the bias reads

$$\text{bias}(K) = \sqrt{n\gamma^2 z^\top (K + n\gamma I)^{-2} z}$$

and the variance is

$$\text{var}(K) = \frac{\sigma^2}{n} \text{Tr}[K^2(K + n\gamma I)^{-2}].$$

Firstly, since $L_C \preceq K$, it holds that $\lambda_{\ell}(L_C) \leq \lambda_{\ell}(K)$ for all ℓ and $\text{var}(L_C) \preceq \text{var}(K)$. Then, we can give an upper bound for $\text{bias}(L_C)$. The 2-norm submultiplicativity gives

$$\|(L_C + n\gamma I)^{-1} - (K + n\gamma I)^{-1}\|^2 \leq \|(L_C + n\gamma I)^{-1}(K - L_C)\|^2 \|(K + n\gamma I)^{-1} z\|^2 \leq \frac{\text{Tr}(K - L_C)}{n\gamma} \|(K + n\gamma I)^{-1} z\|^2.$$

Hence, by using the triangle inequality and the bound hereabove, it holds that

$$\sqrt{z^\top (L_C + n\gamma I)^{-2} z} \leq \|(K + n\gamma I)^{-1} z\|^2 + \|(L_C + n\gamma I)^{-1} z - (K + n\gamma I)^{-1} z\|^2 \leq (1 + \frac{\text{Tr}(K - L_C)}{n\gamma}) \sqrt{z^\top (K + n\gamma I)^{-2} z}.$$

The result follows by taking the expectation over $C \sim DPP_L(K/\alpha)$.

Proof of Lemma 4. This result is a direct consequence of the two following identities: $\mathbb{E}_C[1_{i \in C}] = P_{ii}$, and

$$\mathbb{E}_C[1_{i \in C} 1_{j \in C}] = 1_{i=j} \times P_{ii} + (P_{ij} P_{jj} - P_{ij}^2).$$
Table 1: Datasets and parameters used for the experiments on the Nyström approximation.

Dataset	Task	n	d	σ	λ	$d_{\text{eff}}(n\lambda)$	n_{RRLS}
Housing	Kernel approx.	506	13	5	10^{-6}	186	/
MiniBooNE	Kernel approx.	130065	50	8	10^{-6}	462	8000
codRNA	Kernel approx.	331152	8	8	10^{-6}	1204	8000
B. Cancer	KPCA	569	30	10	10^{-6}	158	/
A. Credit	KPCA	690	14	5	10^{-6}	371	/
Adult	KPCA	48842	110	8	10^{-6}	1202	8000
Covertype	KPCA	581012	54	20	10^{-6}	3665	10000
Abalone	KRR	4177	8	1	10^{-4}	294	/
Wine Quality	KRR	6497	11	2	10^{-4}	555	/
Bike S.	KRR	17389	16	1	10^{-4}	2732	8000
Year Pred.	KRR	515345	90	10	10^{-4}	4217	10000
Parkinson	Prec.	5875	20	5	10^{-6}	738	/
Pumadyn8FM	Prec.	8192	25	5	10^{-6}	296	/

A.1 Parameters and dataset descriptions

The parameters and datasets used in the simulations can be found in Table 1. When a subset is sampled from k-DPP, the number of landmarks is fixed to $k = d_{\text{eff}}(n\lambda)$, where the effective dimension corresponds to the expected subset size for $\text{DPP}_L(K/(n\lambda))$.

B Supplementary Material

Setting In the performance plots displayed in the sequel, i.e., Figures 11, 12, 13, 14, 15, 16 and 17, the results are plotted on a logarithmic scale, averaged over 10 trials and the errorbars show the 0.05 and 0.95 quantile. Recall that the larger the $\log(\det(K_{CC}))$, the more diverse the subset. The computer used for the small-scale simulations has 8 processors 3.40GHz and 15.5 GB of RAM. Large scale experiments on Covertype and Year PredictionMSD were done on the Vlaams Super Computer (VSC). The implementation of the algorithms is done with matlabR2018b.

B.1 Additional case study: Clustering

The performance of diverse kernel approximation methods is evaluated for a clustering task using kernel k-means with Nyström approximation [24]. Samples with different diversities are sampled, afterwards Algorithm 2 of Wang et al. [24]
is used to cluster the dataset, where the target dimension $s = k$ is always equal to the number of desired clusters. The clustering performance is evaluated by the normalized mutual information (NMI) \[22\], the NMI gives a value between 0 and 1, where 1 represents perfect correlation between the ground truth and the clustering outcome. We first illustrate the effect of using a diverse sampling on a toy example. In Figure [10], we show a very imbalanced dataset consisting of 5 Gaussian bumps with a different number of points and different variances. Uniform sampling often only selects landmarks from 3 out of the 5 clusters, whereas a k-DPP samples landmarks out of every cluster. Consequently, kernel k-means algorithm with Nyström approximation can be improved by using diverse sampling. It is important to note that the superior performance is due to the histogram of ridge-leverage scores with $\gamma = 10^{-4}$ (measure of outlyingness) having a long tail (cfr. Figure [6]) together with the different clusters being heavily imbalanced. Next, we demonstrate the effect of diverse sampling on the Glass, Breast Cancer and Australian Credit datasets of Table 2. The condition

Table 2: Information on the datasets and parameters used in the clustering experiments.

Dataset	n	d	σ	λ	$d_{\text{eff}}(n\lambda)$	# Clusters
Glass	214	9	9	10^{-4}	24	7
Cancer	569	30	3	10^{-4}	363	2
Credit	690	14	2	10^{-4}	456	2

number, smallest/largest eigenvalues of K_{CC} and NMI is plotted as a function of the determinant. The averaged results are visualized in Figure [11]. Information on the datasets and hyperparameters used for the experiments is given in Table 2. Sampling a diverse subset gives a more accurate clustering. Similar as for the kernel approximation experiments, in the presence of outliers, taking samples with an extremely large $\text{det}(K_{CC})$ thanks to the Greedy Swapping Algorithm might decrease the accuracy as for the Glass dataset.

B.2 Supplementary numerical experiments

Several additional illustrations, obtained with the main methodology as in the manuscript, on the datasets given in Table 3 are given in the sequel. Nyström approximation error in Figures [12] and [17], Kernel PCA in Figure [13] and Kernel Ridge Regression in Figures [15] and [16]. In most of the tasks illustrated in those figures, a larger diversity yields an improved performance. Let us discuss some particular cases.

Kernel approximation As it was mentioned already hereabove, in the presence of outliers, a very diverse subsample can produced a poor kernel approximation. This can be viewed in Figure [12], where the greedy algorithm is able to
select subsets with a very large diversity. The randomized sampling methods that we studied empirically here did not suffer from this issue.

KRR By using the same methodology as in the manuscript, the Mean Absolute Percentage Error is calculated both in the bulk and in the tail of the leverage score distribution of the test set. Notice that uniform sampling can often reduce the MAPE in the bulk of the data, while diverse sampling yields a larger improvement in the tail of the distribution (cfr. Figure 15e).

Table 3: Datasets and parameters used for the experiments on the Nyström approximation.

Dataset	Task	n	d	σ	λ	$d_{\text{eff}}(n\lambda)$
Stock	Kernel approx.	950	10	5	10^{-6}	119
Abalone	Kernel approx.	4177	8	10	10^{-6}	37
Bank 8FM	Kernel approx.	8192	8	10	10^{-6}	95
Parkinson	KPCA	5875	20	10	10^{-6}	219
Wine Quality	KPCA	6497	11	10	10^{-6}	133
Housing	KRR	506	13	3	10^{-4}	110
Parkinson	KRR	5875	20	3	10^{-4}	343
Figure 10: Illustration of sampling methods on an artificial clustering problem. Uniform sampling oversamples dense parts, and does not select landmark points in every cluster. k-DPP sampling overcomes this limitation, resulting in better clustering performance.
Figure 11: Clustering results. The condition number and NMI are plotted as a function of $\log(\det(K_{CC}))$. A large NMI corresponds to a good accuracy.
Figure 12: Kernel approximation results. The condition number, smallest and largest eigenvalues of K_{CC}, relative Frobenius norm of the Nyström approximation error versus $\log(\det(K_{CC}))$.

Figure 13: Results accompanying Figures 3 and 5. The smallest and largest eigenvalues of K_{CC} are plotted as a function of $\log(\det(K_{CC}))$.

23
Figure 14: KPCA results. The condition number and reconstruction error using half of the components are plotted as a function of $\log(\det(K_{CC}))$.

Figure 15: Regression results. The condition number and MAPE on the test set are plotted as a function of $\log(\det(K_{CC}))$.

Figure 16: Results accompanying Figure 8. The condition number as a function of $\log(\det(K_{CC}))$ and the approximate RLS distribution are visualized.
Figure 17: Results accompanying Figure 3. The condition number of K_{cc} versus the sample diversity.
References

[1] F. Bach, *Sharp analysis of low-rank kernel matrix approximations*, in COLT Conference on Learning Theory, 2013, pp. 185–209.

[2] R. Bapat and V. Sunder, *On majorization and Schur products*, Linear Algebra and its Applications, 72 (1985), pp. 107 – 117.

[3] R. Bardenet and A. Hardy, *Monte Carlo with Determinantal Point Processes*, Annals of Applied Probability, (2019).

[4] M. Belkin, D. J. Hsu, and P. Mitra, *Overfitting or perfect fitting? risk bounds for classification and regression rules that interpolate*, in Advances in Neural Information Processing Systems, 2018, pp. 2300–2311.

[5] M. Belkin, S. Ma, and S. Mandal, *To understand deep learning we need to understand kernel learning*, arXiv preprint arXiv:1802.01396, (2018).

[6] V. Chen, S. Wu, A. J. Ratner, J. Weng, and C. Ré, *Slice-based learning: A programming model for residual learning in critical data slices*, in Advances in neural information processing systems, 2019, pp. 9392–9402.

[7] A. Civril and M. Magdon-Ismail, *On selecting a maximum volume sub-matrix of a matrix and related problems*, Theoretical Computer Science, 410 (2009), pp. 4801 – 4811.

[8] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, *Matrix approximation and projective clustering via volume sampling*, in Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, Society for Industrial and Applied Mathematics, 2006, pp. 1117–1126.

[9] A. El Alaoui and M. Mahoney, *Fast randomized kernel ridge regression with statistical guarantees*, in Advances in Neural Information Processing Systems 28, 2015, pp. 775–783.

[10] V. Feldman, *Does learning require memorization? a short tale about a long tail*, arXiv preprint arXiv:1906.05271, (2019).

[11] D. S. Kershaw, *The incomplete cholesky—conjugate gradient method for the iterative solution of systems of linear equations*, Journal of computational physics, 26 (1978), pp. 43–65.

[12] A. Kulesza and B. Taskar, *k-DPPs: Fixed-size determinantal point processes*, in Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 1193–1200.

[13] A. Kulesza and B. Taskar, *Determinantal point processes for machine learning*, Foundations and Trends in Machine Learning, 5 (2012), pp. 123–286.
[14] C. Li, S. Jegelka, and S. Sra, *Fast DPP sampling for Nyström with application to kernel methods*, in Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16, 2016, pp. 2061–2070.

[15] T. Liang and A. Rakhlin, *Just interpolate: Kernel" ridgeless" regression can generalize*, arXiv preprint arXiv:1808.00387, (2018).

[16] C. Musco and C. Musco, *Recursive sampling for the Nyström method*, in Advances in Neural Information Processing Systems 30, 2017, pp. 3833–3845.

[17] L. Oakden-Rayner, J. Dunnmon, G. Carneiro, and C. Ré, *Hidden stratification causes clinically meaningful failures in machine learning for medical imaging*, arXiv preprint arXiv:1909.12475, (2019).

[18] R. Pemantle and Y. Peres, *Concentration of lipschitz functionals of determinantal and other strong rayleigh measures*, Combinatorics, Probability and Computing, 23 (2014), pp. 140–160.

[19] A. Rudi, R. Camoriano, and L. Rosasco, *Less is more: Nyström computational regularization*, in Advances in Neural Information Processing Systems 28, 2015, pp. 1657–1665.

[20] B. Schölkopf, A. Smola, and K.-R. Müller, *Nonlinear component analysis as a kernel eigenvalue problem*, Neural computation, 10 (1998), pp. 1299–1319.

[21] N. Sterge, B. Sriperumbudur, L. Rosasco, and A. Rudi, *Gain with no Pain: Efficient Kernel-PCA by Nyström Sampling*, arXiv preprint arXiv:1907.05226, (2019).

[22] A. Strehl and J. Ghosh, *Cluster ensembles—a knowledge reuse framework for combining multiple partitions*, Journal of machine learning research, 3 (2002), pp. 583–617.

[23] F. J. Valverde-Albacete and C. Peláez-Moreno, *100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradox*, PloS one, 9 (2014), p. e84217.

[24] S. Wang, A. Gittens, and M. W. Mahoney, *Scalable kernel K-means clustering with Nyström approximation: relative-error bounds*, The Journal of Machine Learning Research, 20 (2019), pp. 431–479.