Hydatid cyst of the gallbladder: A systematic review of the literature

Roberto Gómez, Yousef Allaoua, Rafael Colmenares, Sergio Gil, Pilar Roquero, José M Ramia

AIM
To evaluate all the references about primary gallbladder hidatidosis looking for best treatment evidence.

METHODS
Search: 1966-2015 in MEDLINE, Cochrane Library, SciELO, and Tripdatabase. Key words: "gallbladder hydatid disease" and "gallbladder hydatid cyst". We found 124 papers in our searches but only 14 papers including 16 cases were about hydatid cyst of the gallbladder (GBHC).

RESULTS
Eight cases of GBHC were women and seven men. One not mentioned. Median age was 48.3 years. The most frequent clinical symptom was abdominal pain (94%) usually in the right upper quadrant. Ultrasound was performed in ten patients (62.5%) but in most cases a combination of several techniques was performed. The location of the cysts was intravesicular in five patients. Five patients presented GBHC and liver hydatid cysts. Two patients presented cholelithiasis and one choledocholithiasis. The most frequent surgical technique was cholecystectomy by laparotomy (81.25%). Simultaneous surgery of liver cysts was carried out in five cases. Eleven patients did not present postoperative complications, but one died. The mean hospital stay was seven days. No recurrence of GBHC was recorded.

CONCLUSION
In GBHC, the most frequent symptom is right hypocondrium pain (evidence level V). Best diagnostic methods are ultrasound and computed tomography (level V, grade D). Suggested treatment is open cholecystectomy and postoperative albendazole (level V, grade D) obtaining good clinical results and none relapses.

Key words: Hydatid cyst; Gallbladder; Cholecystectomy; Review; Hydatidosis

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

Hydatid disease is a zoonotic infection found all over the world, which is caused by the larval stage of parasites of the *Echinococcus* species. *Echinococcus granulosus* is the most frequent (95% of cases); other species such as *Echinococcus multilocularis* are rare (5%). Hydatid disease is endemic in cattle-raising regions like the Mediterranean countries, Africa, South America, Middle East, Australia and New Zealand. Echinococcus granulosus lives in the intestine of dogs and other wild canines, which are the definitive hosts. Humans are accidentally infected via the fecal-oral route. Larval embryos pass through the intestinal wall and reach the liver through the portal system. Subsequently, through the liver and lungs, parasites reach the arterial circulation and may spread through the rest of the organs. The larvae can remain and develop into hydatid cyst anywhere in the body, but liver (70%) and lungs (20%) are the most commonly affected sites.

Primary hydatid cyst of the gallbladder (GBHC) is an exceptional location for hydatidosis, and its pathogenesis is not completely clear. While the literature on liver hydatid disease is abundant, references to the primary involvement of the gallbladder are limited to clinical cases and so it is difficult to reach meaningful conclusions. In this paper we present a systematic review of the literature on GBHC published to date.

MATERIALS AND METHODS

Search strategy

We introduced the following keywords in the MEDLINE (PubMed), Tripdatabase, SciELO and Cochrane Library databases: “gallbladder hydatid disease (GHD)” and “gallbladder hydatid cyst (GHC)” without restrictions on publication date or author until 31 December 2015. The first selection of papers was made after reading title and abstract, and in case of doubt, after reading the full text. A flowchart is shown in Figure 1.

Our results were as follows: (1) zero results in SciELO; (2) 2 results for both searches (GHD and GHC) in the Cochrane Library: Neither met the inclusion criteria; (3) 21 results for GHD and 17 for GHC in Tripdatabase. After review, none were found to be related to the topic; and (4) 137 results for GHD and 138 for GHC in MEDLINE. Since the overlap between search results was 99%, we used the latter search with 138 results; of them, only 14 (10.14%) met the selection criteria for this study.

These 14 papers included 16 clinical cases covering a wide range of clinical, diagnostic and therapeutic aspects of GBHC. These characteristics are summarized in Tables 1-4.

In the next step, to assess the quality of the selected studies we used the rating scale described by Manterola et al., which assesses each publication individually depending on the type of study, the size of the sample and whether it is justified, and the methodology used. A mean score of all the selected studies is produced ranging from 6 to 36 points, with a quality cut-off score of 18 points. The mean score in our review was 10.3; however, due to the rarity of GBHC and the few studies of this issue published, we selected all the papers available.

We also carried out a qualitative analysis of the selected papers and their conclusions, based on the classical levels of evidence and grades of recommendation proposed in Cook et al. and Sackett.

RESULTS

Eight cases of GBHC were women and seven men. The sex of one patient was not specified. Median age was 48.3 years (range: 27-76). The most frequent clinical manifestation was abdominal pain (15/16) (94%) (Table 1), in the right upper quadrant in 13 patients (81.25%), in the epigastrium in four (25%), (three of whom combined upper quadrant pain in right hypochondrium and epigastric pain), and finally diffuse abdominal pain in two (12.5%). In one case, no data on abdominal pain were included (6.25%). Three patients presented vomiting and two had nausea; no information on nausea or vomiting was reported in the rest of patients. Three patients had fever, four were fever-free, and no data on fever were available for the remaining nine patients. Four patients had jaundice, five did not, and no data were available in seven cases. As regards past medical history, two patients had been previously diagnosed with hydatid disease and one had had hepatitis.

On physical examination (Table 1), four patients presented abdominal tenderness, three hepatomegaly,
two abdominal distension, and one a palpable mass. Serological information was available in only five cases (Table 2). Levels of alkaline phosphatase and bilirubin were high in four patients, normal in one, and no information was recorded for the other eleven. In the cases in which they were specified, alkaline phosphatase levels were between 140 and 465 IU/L and bilirubin between 5.6 and 10.2 mg/dL. Echinococcus serology was performed in four cases, being positive in three and negative in one.

Image diagnostic methods are described in Table 2. Abdominal ultrasound (US) was performed in ten patients (62.5%), abdominal computed tomography (CT) in nine (56.25%), and magnetic resonance imaging (MRI) in three (18.75%). In most cases a combination of several techniques was performed: US + CT + MRI in three (56.25%), and magnetic resonance imaging (MRI) in three (18.75%). In most cases a combination of several techniques was performed: US + CT + MRI in three cases, US + CT in three others; so four cases underwent US alone and three CT alone. The location of the cysts was intravesicular in five patients. Five patients presented

Table 1 Clinical data
Ref.
Noomene et al[9], 2013
Ertem et al[9], 2012
Krasniqi et al[9], 2010
Murtaza et al[9], 2008
Sabat et al[9], 2008
Wani et al[9], 2005
Pitiakoudis et al[9], 2006
Safioleas et al[9], 2004
Safioleas et al[9], 2004
Sabat et al[9], 2008
Raza et al[9], 2003
Kapoor et al[9], 2000
Cangiotti et al[9], 1994
Rigas et al[9], 1979
Barón Urbano et al[9], 1978

Table 2 Radiological and analytical studies
Ref.
Noomene et al[9], 2013
Ertem et al[9], 2012
Krasniqi et al[9], 2010
Murtaza et al[9], 2008
Sabat et al[9], 2008
Wani et al[9], 2005
Kapoor et al[9], 2000
Cangiotti et al[9], 1994
Rigas et al[9], 1979

CT: Computed tomography; MRI: magnetic resonance imaging; E. granulosus: Echinococcus granulosus.
GBHC and liver hydatid cysts. Two patients presented cholelithiasis and one choledocholithiasis.

The data on therapeutic management are displayed in Table 3. One patient received preoperative albendazole for two weeks, but no data on the other fifteen were available. The most frequent surgical technique was cholecystectomy by laparotomy (81.25%), performed in 13 patients; laparoscopic cholecystectomy was performed in two cases (12.5%), in one of them a previous endoscopic retrograde cholangiopancreatography (ERCP) was done and received a biliary stent; in the last patient, cholecystectomy was not performed, only ERCP and biliary stenting (6.25%). Cholecystectomies were total in 14 cases (93.3%) and subtotal in the patient treated preoperatively with albendazole (6.7%). Simultaneous surgery of liver hydatid cysts was carried out in five cases: Cystopericystectomy in three cases, enucleation in one, and in the other the surgical technique was not specified except for the fact that access was made by thoracotomy. Eleven patients did not present postoperative complications: One presented fever, atelectasis and pleural effusion, and another multiple organ failure and death. No data regarding postoperative outcome were recorded in three cases. The pathological examination (Table 4) was performed in nine patients. In three, the presence of Echinococcus granulosus was confirmed microscopically.

The mean hospital stay was seven days (range: 1-12 d). Seven patients were treated postoperatively with varying doses of albendazole. In nine cases follow-up after the postoperative period was recorded, for a mean period of 38 mo (range: 1-120 mo); no recurrence of GBHC was recorded.

DISCUSSION

Hydatidosis is a disease caused by the larva of the genus *Echinococcus*, within which *Echinococcus granulosus* is the most common species. Although cases have been diagnosed all over the world as a result of increased intercontinental migration, areas in which the incidence is significantly higher include the Mediterranean Sea,

Table 3 Therapeutical strategies

Ref.	Preoperative albendazole	Treatment	Liver hydatidosis	Intraoperative treatment cyst	Intraoperative findings
Noomene et al\(^{[5]}\), 2013	No	ERCP + Stent Laparoscopic cholecystectomy	No	No	Biliary sludge and stones in ampulla seen in ERCP
Ertem et al\(^{[6]}\), 2012	No	Cholecystectomy by laparotomy	No	No	Gallbladder cyst with inflammatory changes
Krasniqi et al\(^{[7]}\), 2010	No	Cholecystectomy by laparotomy	Yes	No	Calcified primary gallbladder cyst
Murtaza et al\(^{[8]}\), 2008	Yes (2 wk)	Subtotal Cholecystectomy by laparotomy	No	Yes	Biliary communication into the cyst closed with sutures
Sabat et al\(^{[9]}\), 2008	No	Cholecystectomy by laparotomy	No	Yes (aspiration + hypertonic solution cleaning)	-
Wani et al\(^{[10]}\), 2005	No	Cholecystectomy by laparotomy	No	No	-
Pitiakoudis et al\(^{[11]}\), 2006	No	Cholecystectomy by laparotomy	No	Yes	-
Safioleas et al\(^{[12]}\), 2004	No	Cholecystectomy by laparotomy	No	No	5 cm × 4 cm cyst
Safioleas et al\(^{[13]}\), 2004	No	Cholecystectomy by laparotomy	No	No	3 cm × 4 cm cyst
Safioleas et al\(^{[14]}\), 2004	No	Cholecystectomy by laparotomy	No	No	5 cm × 4 cm cyst
Kumar et al\(^{[15]}\), 2004	No	Cholecystectomy by laparotomy	Yes	Cysts segment IV and V. Cystopericystectomy segment IV + PAIR segment VII	Cyst invading segment IV. Communication between cyst and gallbladder
Raza et al\(^{[16]}\), 2003	No	Cholecystectomy by laparotomy	Yes	Right Lobe Enucleation	In gallbladder: Stones and daughter vesicles
Kapoor et al\(^{[17]}\), 2000	No	NO. ERCP + Stent Sl. Right lobe.	No	No	-
Cangiotti et al\(^{[18]}\), 1994	No	Cholecystectomy by laparotomy	No	No	-
Rigas et al\(^{[19]}\), 1979	No	Cholecystectomy by laparotomy	No	No	-
Barón Urbano et al\(^{[20]}\), 1978	No	Cholecystectomy by laparotomy	Yes	Segment IV. Done by thoracotomy	Enlarged liver. Cholangitis. Daughter vesicles in cystic conduct lumen

ERCP: Endoscopic retrograde cholangiopancreatography.
Table 4 Pathology, postoperative course and follow-up

Ref.	Pathologic study	Stay	Postoperative treatment	Morbidity	Follow-up
Neomene et al[9], 2013	Cysts in gallbladder. Chronic inflammation	1	Albendazole 400 mg/d	No	
Ertem et al[6], 2012	Cyst in gallbladder	4	No		6 mo
Krasniqi et al[6], 2010	Calcified cyst 7 cm × 5 cm located in gallbladder mucosa	7	Albendazole 400 mg/d, 42 d	No	5 yr
Murtaza et al[3], 2008	Gallbladder cyst with wall of 5 mm. Daughter vesicles	2 mo	No		
Sabat et al[9], 2008	Gallbladder cyst with wall of 5 mm. Daughter vesicles	10 yr	No		
Barón et al[4], 2013	Gallbladder cyst with wall of 5 mm. Daughter vesicles	7	No		6 yr
Kumar et al[6], 2004	Gallbladder cyst with wall of 5 mm. Daughter vesicles	10	Albendazole 2 mo	Yes: Fever, atelectasis and pleural effusion	4 yr
Raza et al[6], 2003	Gallbladder cyst with wall of 5 mm. Daughter vesicles	12	Albendazole 800 mg/d, 4 mo	No	2 yr
Kapoor et al[9], 2000	Gallbladder cyst with wall of 5 mm. Daughter vesicles	7	No		6 yr
Caniottini et al[10], 1994	Gallbladder cyst with wall of 5 mm. Daughter vesicles	10	Albendazole 10 mg/kg per day	Yes: Sepsis, Multiorgan failure. Death	1 yr
Rigas et al[11], 1979	Gallbladder cyst with wall of 5 mm. Daughter vesicles	7	No		1 yr
Barón et al[4], 1978	Gallbladder cyst with wall of 5 mm. Daughter vesicles	10	Albendazole 10 mg/kg per day	Yes: Sepsis, Multiorgan failure. Death	1 yr

Africa, South America, Middle East, Australia and New Zealand. Hydatid disease is prevalent in pastoral areas where cattle and dogs are in close contact. Dogs are the definitive hosts; they excrete eggs in their feces, and humans become intermediate hosts through accidental feco-oral infection[2,21]. The reviews of Dziri et al[21,22] and Gomez I Gavara et al[11] concluded that many questions about liver hydatidosis still lack evidence-based answers. In 2016, PAIR or surgery, systematic or selective preoperative ERCP, the best surgical approach (conservative or radical), type of technique (laparoscopic or laparotomy), and the use of albendazole all remain topics for debate[2-13].

GBHC is an extremely rare entity, even in places where hydatid disease is endemic. Primary involvement is even less common. It is essential to differentiate primary GBHC from secondary invasion of the gallbladder caused by daughter vesicles of primary liver hydatid disease. GBHC can be located within the vesicle or on its outer surface. GBHC pathogenesis is not very well documented; one of the most accepted hypotheses is infestation through the bile duct, although this explanation is unconvincing in cases of superficial cysts, and also often requires prior hepatic involvement. Larval spread through the lymphatic system after intestinal absorption is possible and may explain the intraluminal cysts. Other routes, such as contamination of gallbladder after surgery for hepatic hydatid cyst, should also be considered[6].

In this evidence-based systematic review we have attempted to answer questions about the symptoms, diagnosis and treatment of GBHC. The main limitation is the lack of published series; all the reviewed papers are clinical cases, and so we are unable to reach an acceptable level of evidence. The most common symptom in GBHC is pain in the right upper quadrant[4-6,10-16]. Suspicion of GBHC is established by ultrasound and/or CT[3-13,15]. The involvement of the gallbladder is usually an incidental finding in patients being examined for liver hydatid cysts[4-6,10-12,14-16]. The most common therapeutic approach is cholecystectomy by laparotomy and postoperative albendazole[4-6,12,14-16], Few cases present postoperative complications, and the recurrence of hydatid disease is practically zero[3-12,15]. In conclusion, three main conclusions can be drawn regarding the clinical diagnosis and treatment of GBHC: (1) the most common clinical finding is right upper quadrant pain with a very low level of evidence (level V, grade D recommendation); (2) the most useful diagnostic methods are diagnostic ultrasound and CT with a very low level of evidence (level V, grade D recommendation); and (3) the recommended treatment is cholecystectomy by laparotomy plus albendazole in the postoperative period. This strategy achieves good results: There is no postoperative recurrence in the subsequent months of follow-up, with a very low level of evidence (level V, grade D recommendation).

To our knowledge, this is the first literature review that focuses on the clinical, diagnostic and therapeutic aspects of GBHC. The lack of published cases on the topic and the fact that all the papers included deal with clinical cases impeded us from achieving a higher level of evidence in the results. More studies are needed, especially randomized controlled trials, in order to reach meaningful conclusions.

COMMENTS

Background

Primary gallbladder hidatidosis is an unfrequent disease. No systematic reviews have been done before.

Research frontiers

Obtaining best clinical evidence to treat primary gallbladder hydatidosis.

Applications

Future cases and publications will have a systematic review to treat these
Peer-review

Hydatid disease of the gallbladder is very rare, from this point of view this systematic review has some interest.

REFERENCES

1. Gomez I, Gavara C, Lopez-Andujar R, Belda Ibáñez T, Ramia Ángel JM, Moya Herraez A, Orbis Castellanos F, Pareja Ibars E, San Juan Rodríguez F. Review of the treatment of liver hydatid cysts. World J Gastroenterol 2015; 21: 124-131 [PMID: 25574085 DOI: 10.3748/wjg.v21.i1.124]

2. Ramia-Angel JM, Gasz A, de la Plaza-Llansas R, Quinones-Sampedro J, Sancho E, Garcia Parreno J. Hidatidosis of the spleen. Pol Przegl Chir 2011; 83: 271-275 [PMID: 22166480 DOI: 10.2478/v10035-011-0042-4]

3. Noomene R, Ben Maamer A, Bouhafa A, Haoues N, Oueslati SM, Tiberio G. Primary hydatid cyst of the gallbladder: an unusual localization diagnosed by magnetic resonance imaging (MRI). Pan Afr Med J 2013; 14: [PMID: 23504393 DOI: 10.11604/panmj.2013.14.15.1424]

4. Ertem M, Aytaç E, Karaduman Z. Cystic hydatid disease of the gallbladder. Turk J Gastroenterol 2012; 23: 825-826 [PMID: 23864475 DOI: 10.4318/tjg.2012.0440]

5. Krasnigi A, Limani D, Gashi-Luci L, Spahija G, Dreshaj IA. Krasniqi A, Barhate KP, Deshmukh MP. Cholecysto-hydatid cyst fistula. J Coll Physicians Surg Pak 2008; 18: 778-780 [PMID: 19032895]

6. Sabat SB, Barhate KP, Deshmukh MP. Cholecysto-hydatid cyst fistula. J Ultrasound Med 2008; 27: 299-301 [PMID: 18204023]

7. Wani RA, Malik AA, Chowdri NA, Wani KA, Naqash SH. Primary extrahepatic abdominal hydatidosis. Int J Surg 2005; 3: 125-127 [PMID: 17462273 DOI: 10.1016/j.ijsu.2005.06.004]

8. Pittakoudis MS, Tsaroucha AK, Deftereos S, Laftsidis P, Prassopoulos P, Simopoulos CE. Primary hydatid disease in a retroplaced gallbladder. J Gastrointestinal Liver Dis 2006; 15: 383-385 [PMID: 17205152]

9. Safioleas M, Stamoulis I, Theocharis S, Moulakakis K, Makris S, Kostakis A. Primary hydatid disease of the gallbladder: a rare clinical entity. J Hepatobiliary Pancreat Surg 2004; 11: 352-356 [PMID: 15549437 DOI: 10.1007/s00534-004-0915-6]

10. Kumar A, Upadhyaya DN, Singh S, Kumar M, Ansari MA. Cholecysto-hydatid cyst fistula. Indian J Gastroenterol 2004; 23: 76-77 [PMID: 15176546]

11. Raza MH, Harris SH, Khan R. Hydatid cyst of gallbladder. Indian J Gastroenterol 2003; 22: 67-68 [PMID: 12696832]

12. Kapoor A, Sarma D, Gandhi D. Sonographic diagnosis of a ruptured primary hydatid cyst of the gallbladder. J Clin Ultrasound 2000; 28: 51-52 [PMID: 10602107 DOI: 10.1002/(SICI)1097-009[6(200001)28:1<51::AID-JCU9>3.0.CO;2-8]

13. Cangiotti L, Muesian P, Begni A, de Cesare V, Pouchér A, Giuliani SM, Tiberio G. Unusual localizations of hydatid disease: a 18 year experience. G Chir 1994; 15: 83-86 [PMID: 8060784]

14. Rigas AM, Karatzas GM, Markidis NC, Bonikos DS, Sotiropoulou GG, Skalkeas G. Primary hydatid cyst of the gallbladder. Br J Surg 1979; 66: 406 [PMID: 466022 DOI: 10.1002/hsj.1800660069]

15. Barón Urbano C, Diego Estévez M, Pascual Montero J, Suberviola Gómez E. [Ectopia of the gallbladder associated with hepatic hydatidosis]. Rev Esp Enferm Apar Dig 1978; 53: 691-698 [PMID: 725197]

16. Manterola C, Astudillo P, Arias E, Claros N. [Systematic reviews of the literature: what should be known about them]. Cir Esp 2013; 92: 149-155 [PMID: 23504377 DOI: 10.1016/j.ciresp.2011.07.009]

17. Manterola C, Vial M, Pineda V, Sanhueza A. Systematic Review of Literature with Different Types of Designs. Int J Morphol 2009; 27: 1179-1186 [DOI: 10.4067/S0717-95022009000400035]

18. Cook DJ, Guyatt GH, Laupacis A, Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 1992; 102: 3058-3118 [PMID: 1395818]

19. Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 1989; 95: 2S-4S [PMID: 2914516]

20. Dziri C, Haouet K, Fingerhut A. Treatment of hydatid cyst of the liver: where is the evidence? World J Surg 2004; 28: 731-736 [PMID: 15457348 DOI: 10.1007/s00268-004-7516-2]

21. Dziri C, Haouet K, Fingerhut A, Zaouache A. Management of cystic echinococcosis complications and dissemination: where is the evidence? World J Surg 2009; 33: 1266-1273 [PMID: 19350321 DOI: 10.1007/s00268-009-9982-9]

P- Reviewer: Abbassoglu O, Nari GA, Roman A
S- Editor: Gong ZM L- Editor: A E- Editor: Li D
