Extracting the Top-Quark Width from Non-Resonant Production

Christian Herwig,1,* Tomáš Ježo,2,+ and Benjamin Nachman3,†

1Department of Physics and Astronomy, 209 S 33rd St, Philadelphia, PA 19104, USA
2Physics Institute, Universität Zürich, Zürich, Switzerland
3Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

INTRODUCTION

Even though the top quark was discovered over 20 years ago [1, 2] and its mass has been measured with a sub-percent precision [3], direct measurements of its width Γ_t have an uncertainty of 50% or worse [4–6]. Indirect measurements of Γ_t using single top-quark production are more precise, but also require additional modeling assumptions [7, 8]. In the context of the Standard Model (SM), the relationship between the top-quark mass and Γ_t is known at next-to-next-to-leading order (NNLO) in the strong coupling constant with an uncertainty of a few percent [9–11]. Improving the precision of Γ_t can therefore provide a stringent test of the SM.

The current methods for measuring Γ_t perform template fits to invariant mass spectra that peak near the top-quark mass. Due to their cleaner event signatures, the lepton+jets and dilepton decays from $t\bar{t}$ production are used for the fits and the most sensitive observable is m_{tt}: the invariant mass of a charged lepton and a jet originating from a b quark (b jet). While the location of the m_{tt} peak is linearly sensitive to the top-quark mass, the measured width around the peak depends sub-linearly on Γ_t. This is because the measured width is dominated by the unmeasured neutrino momentum and the fragmentation of the b quark, not by Γ_t.

We propose a new method1 for measuring Γ_t that is linearly sensitive to Γ_t. The idea is motivated by recent proposals to measure the Higgs boson width from non-resonant production [16–19], which has interesting beyond the Standard Model (BSM) sensitivity [20–27] and has lead to measurements by the CMS [28–31] and ATLAS [32] Collaborations. Similarly, we propose to study the $WWbb$ cross section far from the $t\bar{t}$ resonance peak, using a method that can be linearly sensitive to Γ_t. Furthermore, this approach may be sensitive to BSM physics that only affects the non-resonant part of the spectrum. Such modifications could be due to interference effects from complex phases or from new decay channels that are kinematically inaccessible at the resonance peak.

EXISTING CALCULATIONS AND MEASUREMENTS

Calculations of the top-quark width at next-to-leading order (NLO) in the strong coupling constant were first performed in Refs. [33–35]. More recently, the NNLO computation of the total width has been completed [9–11], followed by fully differential calculations of the decay rate [36, 37]. At leading order (LO), the dependence of the width on the top-quark mass is given by

$$\Gamma_t^{LO} = \frac{G_F m_t^3}{8\sqrt{2}\pi} \left(1 - \frac{m_W^2}{m_t^2} \right)^2 \left(1 + 2 \frac{m_W^2}{m_t^2} \right),$$ (1)

assuming $|V_{tb}| = 1$ and neglecting the b-quark mass [33]. For a top-quark mass of 172.5 GeV the predicted width is 1.322 GeV, including NNLO QCD, finite b-quark and W masses, and NLO electroweak corrections [36].

The width of the top quark has been measured at the Tevatron and the Large Hadron Collider (LHC) using several approaches. Direct measurements, based on the reconstructed top-quark mass distribution in events with top-quark pairs were made by the CDF [4], ATLAS [5], and CMS [6] Collaborations, with Ref. [5] obtaining the most precise value of $\Gamma_t = 1.76 \pm 0.33$ (stat.) $^{+0.79}_{-0.58}$ (syst.) using this method. The D0 [7] and CMS [8] Collaborations have each determined the width indirectly, via a combination of the t-channel single-top cross section and measurement of the branching fraction ratio $BR(t \to Wb)/BR(t \to Wq)$. The most precise estimate

1 Similar ideas were recently discussed in Ref. [12–14]. The key difference with respect to this analysis are that these studies (I) were performed at parton-level only, (II) do not propose a physical observable for measuring the cross-section, and (II) do not extract any results with LHC data (and in the case of Ref. [12], are for e^+e^-). A related idea using b-jet charge asymmetries in pp collisions was proposed in Ref. [15]. While a promising proposal, this latter study does not yet include reconstruction effects.
from Ref. [8] finds $\Gamma_t = 1.36 \pm 0.02$ (stat.) $^{+0.14}_{-0.11}$ (syst.), with the restrictive assumption that $\mathcal{BR}(t \to Wq) = 1$.

SENSITIVITY OF THE ATLAS MEASUREMENT

Recently, the ATLAS Collaboration reported a differential cross section measurement of events with two charged leptons ($\ell = e, \mu$) and two b-jets, in an observable sensitive to both top-quark pair (tt) and single top-quark (tWb) production [38]. The measurement probed the interference between tt and tWb by comparing the data with state-of-the-art interference models [39–42]. The target observable was the minimax pairing of lepton-jet invariant masses $m_{b\ell}$,

$$m_{b\ell}^{\text{minimax}} = \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\},$$

where the labeling of leptons and b-tagged jets is arbitrary. For values of $m_{b\ell}^{\text{minimax}} > \sqrt{m_t^2 - m_W^2}$, the top-quark pair process at LO enters only through off-shell effects and tWb contributions become important. In this high-$m_{b\ell}^{\text{minimax}}$ region, the NLO calculation of $bb\ell\nu + 2\ell$-ν-$t\bar{t}$ including interference effects [43–48] and parton showering [42], provides an excellent description of the data.

The advent of such calculations enable these data to constrain other properties of the top quark. Specifically, modifications to the top-quark width impact the $m_{b\ell}^{\text{minimax}}$ spectrum. The origin of this dependence is twofold.

First, the cross section of events with $m_{b\ell}^{\text{minimax}}$ considerably greater than $\sqrt{m_t^2 - m_W^2}$ has a contribution from top-quark pair production diagrams, where at least one of the top (anti-)quarks is produced off-shell. The width impacts the size of this contribution directly through the top-quark lineshape, which can be described as a Breit-Wigner distribution:

$$\frac{d\sigma}{dm_{b\ell}} \sim \frac{1}{(m_{b\ell}^2 - m_t^2)^2 + m_t^2 \Gamma_t^2}.$$ (3)

Integrating over both top-quark resonances, the fraction of off-shell events is found to be linearly dependent on the width [49].

Second, the “tail” cross-section is also enhanced by tWb diagrams containing only one top-(anti-)quark propagator. While this is a smaller overall contribution than that of top-quark pairs, the W boson and b quark not originating from a top quark often satisfy $m_{W\ell b} > m_t$, so that a comparatively large fraction of such events have $m_{b\ell}^{\text{minimax}} > \sqrt{m_t^2 - m_W^2}$. For this reason, width variations affect the relative importance of these two classes of diagrams and thus the shape itself of the $m_{b\ell}^{\text{minimax}}$ observable.

In Ref. [38], the fractional contribution of $WWbb$ events to 15 bins of $m_{b\ell}^{\text{minimax}}$ was reported, including many measurements with $m_{b\ell}^{\text{minimax}} > \sqrt{m_t^2 - m_W^2}$. Despite the measurement not considering a width uncertainty, the unfolded result would only be impacted through migrations in the response matrix, and the effect is thus expected to be negligible. For comparison, the uncertainty due to unfolding with different interference schemes is < 5% in most bins, despite the predictions leading to raw differences of 50% or more for large values of $m_{b\ell}^{\text{minimax}}$.

SIGNAL MODELS AND EVENT SELECTION

The primary calculation used to model the W^+W^-bb signal is the b_babar_41 [42] generator implemented in POWHEG BOX RES [50]. It includes NLO QCD corrections and matching with the parton shower (PS) based on the POWHEG method [51, 52]. The process is described in terms of exact matrix elements for $pp \to \ell^+\nu\ell^-\bar{\nu}bb$, dominated by top-pair topologies with leptonic W-boson decays, with massive b quarks provided by the OPEN-LOOPS program [53]. The b_babar_41 generator combines for the first time: consistent NLO+PS treatment of top-quark resonances, including quantum corrections to top-quark propagators and off-shell top-quark decay chains; exact spin correlations at NLO, interference between NLO radiation from top-quark production and decays, full NLO accuracy in $t\bar{t}$ production and decays; NLO accuracy in b-quark kinematics; access to phase-space regions with unresolved b quarks and/or jet vetoes.

The nominal event sample was obtained using the NNPDF30_nlo_as_0118 Parton Distribution Function (PDF) set and the input top-quark mass value $m_t = 172.5$ GeV. Additional samples were generated with a range of top-quark widths $\Gamma_t \in \{0.66, 1, \Gamma_t^{\text{SM}} \} = 1.66, 2\}$ GeV (with $m_t = 172.5$ GeV and $\Gamma_t^{\text{SM}} = 1.3328$ GeV) to enable the extraction of the best-fit value from data, with a range of top-quark mass values $m_\ell \in \{171.5, 172.5, 173.5\}$ GeV (with $\Gamma_t = \Gamma_t^{\text{SM}}$) in order to estimate the uncertainty due to the top-quark mass, and a range of α_S values in the PDF $\alpha_S \in \{0.115, 0.118, 0.121\}$ (with $m_t = 172.5$ GeV and $\Gamma_t = \Gamma_t^{\text{SM}}$) to explore the uncertainty due to variation of scale of the shower evolution. The central renormalization and factorization scales are set to the geometric average of transverse masses of the top quark and anti-top quark, and the value of hdamp is always set equal to the input value of the top-quark mass. The samples include all possible combinations of different family final state leptons (corresponding to the channel 7 setting). Events also feature additional weights due to standard 7-point scale variation and due to PDF variation.

The value of Γ_t^{SM} is the NLO top-quark width calculated by b_babar_41 from all the other input values.
Up to three hardest emissions are kept with the allrad 1 setting, one from the production process and one from each of the top-quark resonances, and matching to PYTHIA 8.2 makes use of both the POWHEGHOOKS and POWHEGHOOKSBB4L [54] vetoes, and A14 set of tuned parameters [55]. In the samples with $\alpha_S \in \{0.115, 0.121\}$ the SpaceShower alphaSValue parameter of shower evolution in PYTHIA 8.2 is set correspondingly.

In addition, a LO calculation of the $W^+W^-b\bar{b}$ process is examined, calculated by Madgraph5_aMC@NLO 2.6.4 with up to 2 extra jets, matched to a parton shower implemented in PYTHIA 8.240. This sample of events was simulated using the NNPDF23_nlo_as_0118 PDF set, the A14 set of tuned parameters, $m_t = 172.5 \text{ GeV}$, and $\Gamma_t \in \{0.66, 1, 1.33, 1.66, 2\} \text{ GeV}$. Alternative samples were produced with α_S varied as described above, as well as with alternative top-quark mass hypotheses $m_t \in \{170, 175\} \text{ GeV}$.

Event samples are analyzed and compared to data using the selection criteria of Ref. [38] as implemented in the Rivet toolkit [56]. Briefly, leptons and jets are reconstructed at particle-level with selections based upon the acceptance of the ATLAS detector. Leptons are dressed with nearby photons and are required to have transverse momentum $p_T > 28 \text{ GeV}$ and pseudorapidity $|\eta| < 2.47 (2.5)$ for electrons (muons). Jets are reconstructed with the anti-k_T algorithm using a radius parameter of $R = 0.4$ [57–59] and considered in the analysis only if $p_T > 25 \text{ GeV}$ and $|\eta| < 2.5$. They are b-tagged if a B-hadron with $p_T > 5 \text{ GeV}$ is found within the jet cone. Events are selected which have two leptons, two b-tagged jets, with same-flavor lepton events vetoed if the dilepton mass $m_{\ell\ell} < 10 \text{ GeV}$ or satisfies $|m_{\ell\ell} - m_Z| < 15 \text{ GeV}$.

The b_bar_41 simulation produces events with different-flavor leptons and must be corrected to account for same-flavor contributions. The ee and $\mu\mu$ contribution is obtained by re-weighting the generated $e\mu$ events which satisfy same-flavor $m_{\ell\ell}$ requirements. Good closure of this technique is found using the LO Madgraph5_aMC@NLO simulation, which includes all leptonic decays of the W boson. Further, the contribution of di-τ events (with fully leptonic τ decays) is found to be negligible and is not considered.

TOP-QUARK WIDTH EXTRACTION

Using the experimental data of Ref. [38] and the signal models described above, the top-quark width is extracted by minimizing the following χ^2 statistic:

$$\chi^2 = \sum_{i,j}(d_i - m_i) \cdot V_{ij}^{-1} \cdot (d_j - m_j),$$

where d_i is the measured, normalized, differential cross section indexed by bins of $m_{\ell\ell}^{\text{minimax}}$ and m_i is the corresponding prediction. The covariance matrix V_{ij} gives the uncertainty on the unfolded data, including bin-to-bin correlations. The measurements with $m_{\ell\ell}^{\text{minimax}} < 160 \text{ GeV}$ are only weakly sensitive to variations in Γ_t and are thus excluded from Eq. 4.

For each systematic uncertainty, the differential cross section is computed separately for a set of test widths Γ_1. To interpolate between generated samples, the calculated yields are fit as a function of the top-quark width to obtain a parameterized prediction $m_i = F_i(\Gamma_1)$, individually for each bin i. Choosing the functions F_i to be quadratic in Γ_1 is found to fit the calculated predictions well for each bin of $m_{\ell\ell}^{\text{minimax}}$. Thus, given the data and choice of signal model, the statistic may be written explicitly as a function of the width $\chi^2 = \chi^2(\Gamma_1 | d, m)$. By minimizing this function with respect to Γ_1, the best-fit value of the width may be extracted.

UNCERTAINTIES

Uncertainties stemming from the precision of the experimental measurement, from choices in signal modeling, and from the limited number of generated events are each considered. Pseudo-experiments are used to assess the experimental uncertainty, where pseudo-data are drawn from a multivariate gaussian distribution with mean and covariance matrix given by d_i and V_{ij}. For each pseudo-experiment a random dataset d_i^{pseudo} is drawn from this distribution and a new value of Γ_1 is extracted by minimizing $\chi^2(\Gamma_1 | d_i^{\text{pseudo}}, m_i)$. The experimental uncertainty is calculated as the 1σ range of extracted widths from the pseudo-experiment distribution.

Theoretical uncertainties are assessed on the b_bar_41 signal model by generating event samples with alternative input parameters. The nominal simulated sample with alternative weight sets is used to estimate the uncertainty due to the choice of PDF as well as renormalization and factorization scales. The PDF uncertainty is assessed as the standard deviation of widths extracted over the set of 100 eigenvector variations of the NNPDF30_nlo_as_0118 PDF set. The scale uncertainty is the maximum pairwise difference between the widths extracted with the nominal and varied scales.

For top-quark mass and α_s variations, independent samples of events are generated. To minimize the impact of statistical variations across samples and make optimal use of all generated events, the systematic uncertainty dependence is extracted in a fit, writing

$$m_i(\alpha_s, m_t) = \hat{m}_i(\alpha_s^{\text{SM}}, m_t^{\text{SM}}) + \hat{a}_i(\alpha_s - \alpha_s^{\text{SM}}) + \hat{b}_i(m_t - m_t^{\text{SM}}).$$

Further, the fitted coefficients \hat{a}_i, \hat{b}_i are constrained to vary quadratically in $m_{\ell\ell}^{\text{minimax}}$ to reduce unphysical, statistical fluctuations. The post-fit yields for m_t and α_s variations are then used to re-weight the nominal
m_{minimax} spectra for each value of the top-quark width and to extract the χ^2-minimizing value for each variation.

An uncertainty due to the finite number of simulated events is estimated from an ensemble of pseudo-experiments where the predicted yields for all bins of each value of the top-quark width are varied within their uncertainties. A width is obtained for each trial to assess the impact on the final extracted parameter.

For the $\text{MG5}_{\text{aMC@NLO}}$ signal model, an identical set of uncertainties are assessed, employing the same estimation methods, with the following modification: the NNPDF23nloas0119 PDF set is used as the nominal value for this sample. The top-quark mass uncertainty is assessed using samples with $m_t = 170.175$ GeV, interpolating to obtain the same 1 GeV variations as used above.

The nominal $b_b b\bar{b} 4l$ prediction is compared to ATLAS data in Figure 1. Predictions for alternate values of the top-quark width are also shown, as well as the theoretical uncertainty on the nominal estimate. A summary of the uncertainties on the width extracted using both signal models is presented in Table I. Changes to the top-quark width are found to produce larger variations in the relative fraction of events in the m_{minimax} tail for samples generated using $\text{MG5}_{\text{aMC@NLO}}$ than $b_b b\bar{b} 4l$. As a result, the impact of uncertainties on the extracted width parameter is generally smaller when using the LO simulation, despite the impact on the normalized differential cross section being similar. This effect leads to a smaller uncertainty due to scale variations, among others, in the LO sample than in the more accurate $b_b b\bar{b} 4l$ calculation.

The most precise direct measurement of $(1.76^{+0.86}_{-0.76}$ GeV) [5].

TABLE I. Uncertainty on the top-quark width extracted for data, with individual contributions shown from experimental, theoretical, and statistical sources.

Uncertainty [GeV]	$b_b b\bar{b} 4l$	$\text{MG5}_\text{aMC@NLO}$
Experimental	+0.27/-0.26	+0.20
PDF	±0.06	±0.04
Scale	±0.10	±0.06
m_t	±0.03	±0.03
α_s	±0.06	±0.04
Combined	±0.14	±0.10
Simulation Stats.	±0.04	±0.04
Total	±0.30	±0.22

RESULTS

Using the $b_b b\bar{b} 4l$ signal description, a top-quark width of 1.28 ± 0.30 GeV is extracted (1.33 ± 0.29 GeV expected), as shown in Figure 2. A width is also extracted using the leading order $\text{MG5}_\text{aMC@NLO}$ simulation, obtaining 1.18 ± 0.22 GeV (1.33 ± 0.23 GeV expected). These measurements are more precise than the previously obtained 1 GeV variations as used above.

FIG. 1. The m_{minimax} spectrum predicted using $b_b b\bar{b} 4l$ is shown for various values of the top-quark width. Data from the unfolded ATLAS measurement are included for comparison. The grey band shows the theoretical uncertainty for the simulated sample corresponding to the predicted SM value of the width.

FIG. 2. Observed and expected top-quark widths for the $b_b b\bar{b} 4l$ and $\text{MG5}_\text{aMC@NLO}$ signal models.

These results can also be interpreted into a limit on the BSM decays of the top-quark through the relation

$$\text{BR}(t \to \text{BSM}) < \frac{\Gamma_{1}^{\text{ext}} + \Gamma_{1}^{\text{SM}}}{\Gamma_{1}^{\text{ext}}},$$

where Γ_{1}^{SM} is the SM partial width for $t \to Wb$ and Γ_{1}^{ext} is the (one-sided) upper limit on the top-quark width at the 95% confidence level. The limit is $\text{BR}(t \to \text{BSM}) < 29\%$ using the $b_b b\bar{b} 4l$ model (30% expected) and 18% using the $\text{MG5}_\text{aMC@NLO}$ model (26% expected).
expected). Model-specific BSM constraints are also possible for processes which have a significant effect in the off-shell region defined by high $m^{\min\max}_H$. For example, a charged Higgs H^+ produced via its $b\bar{b}H^+$ coupling and then decaying via $\tau\nu$ would preferentially enhance this region. However, limits from this measurement are not as strong as direct searches [60–62] because of the penalties from the τ decay to e/μ.

CONCLUSIONS

In conclusion, we present a novel method to directly measure the top-quark width and have provided a first estimate using the technique based on a recent measurement of top-quark properties by the ATLAS Collaboration. The estimate of 1.28 ± 0.31 GeV obtained using the POWHEG BOX RES calculation is in good agreement with the Standard Model prediction of 1.32 GeV and more precise than existing direct measurements. Future measurements with more data and in combination with other extractions will be able to provide robust constraints on the top sector of the SM.

We would like to thank Till Eifert, Silvia Ferrario Ravasio, Jay Howarth, Elliot Lipeles, and Stefano Pozzorini for careful reading and suggestions on the manuscript. We would also like to thank Stefan Prestel for a clarifying conversation about the Pythia treatment of resonances. B.N. is supported by the DOE under contract DE-AC02-05CH11231. C.H. is supported by the University of Zürich under the contract DE-AC02-05CH11231. C.H. is supported by the Swiss National Science Foundation under contract BSCGI0-157722.

* herwig@sas.upenn.edu
† tomas.jezo@physik.uzh.ch
‡ bpmachman@lbl.gov

[1] F. Abe et al. (CDF), “Observation of top quark production in $p\bar{p}$ collisions,” Phys. Rev. Lett. 74, 2626–2631 (1995), arXiv:hep-ex/9503002 [hep-ex].

[2] S. Abachi et al. (DO), “Observation of the top quark,” Phys. Rev. Lett. 74, 2632–2637 (1995), arXiv:hep-ex/9503003 [hep-ex].

[3] “First combination of Tevatron and LHC measurements of the top-quark mass,” (2014), arXiv:1403.4427 [hep-ex].

[4] T. Aaltonen et al. (CDF), “Direct Measurement of the Total Decay Width of the Top Quark,” Phys. Rev. Lett. 111, 202001 (2013), arXiv:1308.4050 [hep-ex].

[5] M. Aaboud et al. (ATLAS), “Direct top-quark decay width measurement in the $t\bar{t}$ lepton+jets channel at $\sqrt{s}=8$ TeV with the ATLAS experiment,” Eur. Phys. J. C78, 129 (2018), arXiv:1709.04207 [hep-ex].

[6] CMS Collaboration, “Bounding the top quark width using final states with two charged leptons and two jets at $\sqrt{s} = 13$ TeV,” CMS-PAS-TOP-16-019 (2016).

[7] V. Abazov et al. (D0), “An Improved determination of the width of the top quark,” Phys. Rev. D85, 091104 (2012), arXiv:1201.4156 [hep-ex].

[8] V. Khachatryan et al. (CMS), “Measurement of the ratio $B(t \to Wb)/B(t \to Wq)$ in pp collisions at $\sqrt{s} = 8$ TeV,” Phys. Lett. B736, 33–57 (2014), arXiv:1404.2292 [hep-ex].

[9] Andrzej Czarnecki and Kirill Melnikov, “Two-loop qcd corrections to top quark width,” Nuclear Physics B 544, 520–531 (1999).

[10] K. G. Chetyrkin, R. Harlander, T. Seidensticker, and M. Steinhauser, “Second order qcd corrections to $\Gamma(t \to ub)$,” Phys. Rev. D 60, 114015 (1999), arXiv:hep-ph/9906273 [hep-ph].

[11] I. Blokkland, A. Czarnecki, M. Ślusarczyk, and F. Tkachov, “Heavy-to-light-quark decays with two-loop accuracy,” Phys. Rev. Lett. 93, 062001 (2004), arXiv:hep-ph/0403221 [hep-ph].

[12] S. Liebler, G. Moortgat-Pick, and A. S. Papanastasiou, “Probing the top-quark width through ratios of resonance contributions of $e^+e^- \to W^+W^-b\bar{b}$,” JHEP 03, 099 (2016), arXiv:1511.02350 [hep-ph].

[13] A. Baskakov, E. Boos, and L. Dudko, “Model independent top quark width measurement using a combination of resonant and non resonant cross sections,” Phys. Rev. D98, 116011 (2018), arXiv:1807.11193 [hep-ph].

[14] A. Baskakov, E. Boos, and L. Dudko, “On the top-quark width measurement using a combination of resonant and non resonant cross sections,” Proceedings, 25th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 2017): Yaroslav, Russia, EPJ Web Conf. 158, 04007 (2017).

[15] P. Giardino and C. Zhang, “Probing the top-quark width using the charge identification of b jets,” Phys. Rev. D96, 011901 (2017), arXiv:1702.06996 [hep-ph].

[16] N. Kauer and G. Passarino, “Inadequacy of zero-width approximation for a light Higgs boson signal,” JHEP 08, 116 (2012), arXiv:1206.4803 [hep-ph].

[17] F. Caola and K. Melnikov, “Constraining the Higgs boson width with ZZ production at the LHC,” Phys. Rev. D88, 054024 (2013), arXiv:1307.4035 [hep-ph].

[18] J. M. Campbell, R. K. Ellis, and C. Williams, “Bounding the Higgs width at the LHC using full analytic results for $gg \to e^+e^-\mu^+\mu^-$,” JHEP 04, 060 (2014), arXiv:1311.3589 [hep-ph].

[19] J. M. Campbell, R. K. Ellis, and C. Williams, “Bounding the Higgs width at the LHC: Complementary results from $H \to WW$,” Phys. Rev. D89, 053011 (2014), arXiv:1312.1628 [hep-ph].

[20] C. Englert and M. Spannowsky, “Limitations and Opportunities of Off-Shell Coupling Measurements,” Phys. Rev. D90, 053003 (2014), arXiv:1405.0285 [hep-ph].

[21] G. Cacciapaglia, A. Deandrea, G. Rochelle, and J. Flament, “Higgs couplings: disentangling New Physics with off-shell measurements,” Phys. Rev. Lett. 113, 201802 (2014), arXiv:1406.1757 [hep-ph].

[22] A. Azatov, C. Grojean, A. Paul, and E. Salvioni, “Taming the off-shell Higgs boson,” Zh. Eksp. Teor. Fiz. 147, 410–425 (2015), [J. Exp. Theor. Phys.120,354(2015)], arXiv:1406.6338 [hep-ph].

[23] M. Ghezzi, G. Passarino, and S. Uccirati, “Bounding
the Higgs Width Using Effective Field Theory,” *Proceedings, 12th DESY Workshop on Elementary Particle Physics: Loops and Legs in Quantum Field Theory (LL2014)*: Weimar, Germany, April 27-May 2, 2014, PoS LL2014, 072 (2014), arXiv:1405.1925 [hep-ph].

[24] M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonnert, F. Krauss, and T. Plehn, “Mass Effects in the Higgs-Gluon Coupling: Boosted vs Off-Shell Production,” *JHEP* **02**, 038 (2015), arXiv:1410.5806 [hep-ph].

[25] J. S. Gainer, J. Lykken, K. T. Matchev, S. Mrenna, and M. Park, “Beyond Geocloning: Constraining Higher Dimensional Operators in $H \to 4\ell$ with Off-Shell Production and More,” *Phys. Rev. D91*, 035011 (2015), arXiv:1403.4951 [hep-ph].

[26] C. Englert, Y. Soreq, and M. Spannowsky, “Off-Shell Higgs Probe of Naturalness,” *Phys. Rev.* **121**, no. 7, 079902 (2018), arXiv:1710.02149 [hep-ph].

[27] D. Goncalves, T. Han, and S. Mukhopadhyay, “Off-Shelf Higgs Probe of Naturalness,” *Phys. Rev. Lett.* **120**, 111801 (2018), [Erratum: Phys. Rev. Lett.121,no.7,079902(2018)], arXiv:1701.02149 [hep-ex].

[28] V. Khachatryan et al. (CMS), “Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs,” *Phys. Lett. B736*, 64–85 (2014), arXiv:1405.3455 [hep-ex].

[29] V. Khachatryan et al. (CMS), “Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width,” *JHEP* **09**, 051 (2016), arXiv:1605.02329 [hep-ex].

[30] V. Khachatryan et al. (CMS), “Limits on the Higgs boson lifetime and width from its decay to four charged leptons,” *Phys. Rev. D92*, 072010 (2015), arXiv:1507.06656 [hep-ex].

[31] A. M. Sirunyan et al. (CMS), “Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\sqrt{s} = 13$ TeV,” *JHEP* **11**, 047 (2017), arXiv:1706.09936 [hep-ex].

[32] M. Aaboud et al. (ATLAS), “Constraints on off-shell Higgs boson production and the Higgs boson total width in $ZZ \to 4\ell$ and $ZZ \to 2\ell 2\nu$ final states with the ATLAS detector,” *Phys. Lett. B786*, 223–244 (2018), arXiv:1808.01191 [hep-ex].

[33] M. Jeżabek and J.H. Kühn, “QCD corrections to semileptonic W or Z transitions: the POWHEG method,” *JHEP* **07**, 029 (2008), arXiv:0805.3067 [hep-ph].

[34] W. Hollik, J. M. Lindert, and D. Pagani, “NLO corrections to squark-squark production and decay at the LHC,” *JHEP* **03**, 139 (2013), arXiv:1207.1071 [hep-ph].

[35] F. Demartin, B. Maier, F. Maltoni, K. Makwari, and M. Zarø, “WH associated production at the LHC,” *Eur. Phys. J. C 77*, 34 (2017), arXiv:1607.05862 [hep-ph].

[36] T. Jeżo, J. M. Lindert, P. Nason, C. Oleari, and S. Pozzorini, “An NLO+PS generator for $t\bar{t}$ and Wp production and decay including non-resonant and interference effects,” *Eur. Phys. J. C76*, 691 (2016), arXiv:1607.04538 [hep-ph].

[37] G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos, and M. Worek, “Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order,” *JHEP* **02**, 083 (2011), arXiv:1012.4230 [hep-ph].

[38] A. Denner, S. Dittmaier, S. Kallweit, and S. Pozzorini, “NLO QCD corrections to WWbb production at hadron colliders,” *Phys. Rev. Lett.* **106**, 052001 (2011), arXiv:1012.3975 [hep-ph].

[39] A. Denner, S. Dittmaier, S. Kallweit, and S. Pozzorini, “NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders,” *JHEP* **10**, 110 (2012), arXiv:1207.5018 [hep-ph].

[40] G. Heinrich, A. Maier, R. Nisius, J. Schlenk, and J. Winter, “NLO QCD corrections to $W \rightarrow t\nu Z$ production with leptonic decays in the light of top quark mass and asymmetry measurements,” *JHEP* **06**, 158 (2014), arXiv:1312.6659 [hep-ph].

[41] R. Frederix, “Top Quark Induced Backgrounds to Higgs Production in the $WW^\ast \rightarrow ll\nu\nu$ Decay Channel at Next-to-Leading-Order in QCD,” *Phys. Rev. Lett.* **112**, 082002 (2014), arXiv:1311.4893 [hep-ph].

[42] F. Cascioli, S. Kallweit, P. Maierhöfer, and S. Pozzorini, “A unified NLO description of top-pair and associated Wt production,” *Eur. Phys. J. C74*, 2783 (2014), arXiv:1312.0546 [hep-ph].

[43] N. Kauer and D. Zeppenfeld, “Finite width effects in top quark production at hadron colliders,” *Phys. Rev. D65*, 040201 (2002), arXiv:hep-ph/0107181 [hep-ph].

[44] T. Jeżo and P. Nason, “On the Treatment of Resonances in Next-to-Leading Order Calculations Matched to a Parton Shower,” *JHEP* **12**, 065 (2015), arXiv:1509.09071 [hep-ph].

[45] H. Schulz, and F. Siegert, “Rivet Higgs Coupling Measurements in BSM scenarios,” *JHEP* **05**, 145 (2015), arXiv:1410.5440 [hep-ph].

[46] C. Li, R. J. Oakes, and T. Yuan, “QCD corrections to $t \rightarrow W^+ b$, b, Phys. Rev. D 43, 3759–3762 (1991).

[47] J. Gao, C. Li, and H. Zhu, “Top Quark Decay at Next-to-Next-to Leading Order in QCD,” *Phys. Rev. Lett.* **110**, 042001 (2013), arXiv:1210.2808 [hep-ph].

[48] M. Brucherseifer, F. Caola, and K. Melnikov, “$O(\alpha_s^2)$ corrections to fully-differential top quark decays,” *JHEP* **04**, 059 (2013), arXiv:1301.7133 [hep-ph].

[49] M. Aaboud et al. (ATLAS), “Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” *Phys. Rev. Lett.* **121**, 152002 (2018), arXiv:1806.04667 [hep-ex].

[50] S. Frixione, E. Laenen, P. Motylinski, C. D. White, and B. R. Webber, “Single-top hadroproduction in association with a W boson,” *JHEP* **07**, 029 (2008), arXiv:0805.3067 [hep-ph].

[51] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method,” *JHEP* **11**, 070 (2007), arXiv:0709.2092 [hep-ph].

[52] F. Cascioli, P. Maierhöfer, and S. Pozzorini, “Scattering Amplitudes with Open Loops,” *Phys. Rev. Lett.* **108**, 111601 (2012), arXiv:1111.5206 [hep-ph].

[53] F. Ferrario Ravasio, T. Jeżo, P. Nason, and C. Oleari, “A theoretical study of top-mass measurements at the LHC using NLO+PS generators of increasing accuracy,” *Eur. Phys. J. C78*, 458 (2018), arXiv:1801.03944 [hep-ph].

[54] ATLAS Collaboration, “ATLAS Run 1 Pythia 8 tunes,” ATL-PHYS-PUB-2014-021 (2014).
user manual,” Comput. Phys. Commun. 184, 2803–2819 (2013), arXiv:1003.0694 [hep-ph].

[57] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-
k_t jet clustering algorithm,” JHEP 04, 063 (2008),
arXiv:0802.1189 [hep-ph].

[58] M. Cacciari and G. P. Salam, “Dispelling the N^3 myth
for the k_t jet-finder,” Phys. Lett. B641, 57–61 (2006),
arXiv:hep-ph/0512210 [hep-ph].

[59] M. Cacciari, G. P. Salam, and G. Soyez, “Fast-
Jet User Manual,” Eur. Phys. J. C72, 1896 (2012),
arXiv:1111.6097 [hep-ph].

[60] M. Aaboud et al. (ATLAS), “Search for charged Higgs
bosons decaying via $H^\pm \to \tau^\pm \nu_\tau$ in the τ+jets and
τ+lepton final states with 36 fb$^{-1}$ of pp collision data
recorded at $\sqrt{s} = 13$ TeV with the ATLAS experiment,”
JHEP 09, 139 (2018), arXiv:1807.07915 [hep-ex].

[61] M. Aaboud et al. (ATLAS), “Search for charged Higgs
bosons decaying into top and bottom quarks at $\sqrt{s} = 13$
TeV with the ATLAS detector,” JHEP 11, 085 (2018),
arXiv:1808.03599 [hep-ex].

[62] V. Khachatryan et al. (CMS), “Search for a charged
Higgs boson in pp collisions at $\sqrt{s} = 8$ TeV,” JHEP 11,
o18 (2015), arXiv:1508.07774 [hep-ex].