STATISTICAL MODELING OF NUCLEAR SYSTEMATICS

J. W. CLARK

Department of Physics, Washington University, St. Louis, MO 63130 USA
E-mail: jwc@wuphys.wustl.edu

E. MAVROMMATIS, S. ATHANASSOPOULOS, A. DAKOS

Physics Department, University of Athens, GR-15771 Athens, Greece
E-mail: emavrom@cc.uoa.gr

K. GERNOTH

Department of Physics, UMIST, P. O. Box 88, Manchester M60 1QD, United Kingdom
E-mail: k.a.gernoth@umist.ac.uk

Statistical modeling of data sets by neural-network techniques is offered as an alternative to traditional semiempirical approaches to global modeling of nuclear properties. New results are presented to support the position that such novel techniques can rival conventional theory in predictive power, if not in economy of description. Examples include the statistical inference of atomic masses and β-decay halflives based on the information contained in existing databases. Neural network modeling, as well as other statistical strategies based on new algorithms for artificial intelligence, may prove to be a useful asset in the further exploration of nuclear phenomena far from stability.

1 Introduction

There is currently a strong incentive for the development of global models of nuclear properties, driven by the production of many new nuclei at radioactive beam facilities and by the needs of complex reaction-network calculations involved in models of nucleosynthesis. At the same time, recent developments in statistical analysis and inference, especially those based on neural-network and other adaptive techniques, present novel opportunities for global modeling that exploit the rich collection of nuclear data currently available. With suitable coding of input and output variables, multilayer feedforward neural networks with pairwise couplings, trained by backpropagation and related algorithms, are capable of learning from examples in the nuclear database and making predictions for properties of “novel” nuclides outside the training set. Neural network models have been developed for a number of properties, including atomic masses, neutron separation energies, ground state spins and parities, branching probabilities into different decay channels, and halflives for β^- decay. In terms of predictive accuracy, as measured on test nuclei not seen during training, neural-network models can compete with traditional phenomenological and semi-microscopic global models, although the number of adjustable parameters (connection weights) is generally much larger.
Special attention is called to the study in which neural networks were constructed to learn and predict whether a nuclide is stable in its ground state, and if not, to generate the branching probabilities among α-, β−, electron-capture (lumped with β+-decay), and fission decay modes. Global network models were created which show remarkable quantitative performance in comparison with the capabilities of standard theoretical approaches. In fitting and prediction of the probabilities of occurrence of the six modes (including stability) in nuclides belonging to the training set and to the test set reserved for prediction, trained networks display errors below 5% and 15%, respectively, as measured by the average, over the relevant sets, of the maximum departure of the output branching probabilities from their target values.

Here we report improved results for two applications, namely to construction of the atomic-mass table and to determination of β−-decay lifetimes. The procedures involved in neural-network statistical modeling based on multilayer feedforward networks trained by example (“multilayer perceptrons”) have been thoroughly documented in Ref. 4, which also discusses the strengths and weaknesses of this approach. Rather than repeat such information, we shall simply indicate the places where essential modifications are made.

The new experiments on learning and prediction of atomic masses with multilayer perceptrons are based on a new input coding scheme and a modified backpropagation training algorithm that helps the system avoid local minima of the cost surface. The results show much better extrapability (i.e. predictive accuracy for new nuclei away from the stable valley) than has been found in earlier neural-network studies. Moreover, this improvement is achieved with a greatly reduced number of connection weights. These findings encourage a redoubled effort toward developing reliable mass predictors.

Earlier work on β-decay is also refined, to good effect. Multilayer feedforward networks trained to predict β-decay half-lives from Z, N, and the Q-value of the decay are now performing within the range of accuracy attained by conventional quantum-mechanical models.

2 Global Models of Atomic-Mass Data

A neural-network model will here consist of a collection of neuron-like units arranged in layers, with information flowing only in the forward direction through connections between the units in successive layers. Input data (e.g. values of Z and N) are encoded in the activities of the input-layer units; the activities of units in the succeeding layers are updated in sequence; and a coded version of the value computed by the network for the property in question (e.g. the mass excess) appears in the activities of the output-layer units.

The architecture of a given net is summarized in the notation \((I + H_1 + H_2 + \cdots + H_L + O)[P]\), where \(I, H_i, \) and \(O\) are integers that indicate, respectively, the numbers of neuron-like units in the input layer, the \(i\)th intermediate (or “hidden”) layer, and the output layer. The total number of connection-weight and bias parameters is denoted by \(P\).

Once the gross architecture (number of layers, number of units in each layer)
is specified, the behavior of the network – in particular, its response to each input pattern, each example from the database – is entirely determined by the real-number weights of the connections between the units (and the biases of the units). As the system is exposed to a set of training patterns, these weights (and biases) are incrementally altered so as to minimize a cost function. Ordinarily the cost function is taken as the sum of the squared difference between target and actual output activity, the sum being carried out over all output units and over all patterns in the training ensemble.

The standard training algorithm accomplishing this goal is called “vanilla” backpropagation, a gradient-descent optimization routine which includes a “momentum” term to permit rapid learning without wild oscillations in weight space. In our most recent mass studies, we institute a modification in the weight-update rule that recursively allows earlier patterns of the current epoch (the current pass through the training set) to exert greater influence on the training than is the case for vanilla backpropagation. Experience has shown that this new learning rule generally yields improved results (though not in all instances).

In supervised training of neural networks, there is always the question of when to terminate the process. If the network is trained for too short a period, the training data will be poorly fitted. On the other hand, if the training is continued too long, generalization to new examples (i.e., prediction) will suffer, since the “overtrained” network will be specialized to the peculiarities of the training set that has been employed. Thus some reasonable compromise must be struck between the requirements of an accurate fit and good prediction. In the current round of computer experiments, we have adopted the following stopping criterion. A given training run consists of a relatively large number of epochs, specified beforehand. During such a run, we not only record the cost function for the patterns in the training set, we also monitor the cost function for a separate validation set of nuclei whose masses are known. The “trained” network model resulting from a given run is taken as the one with connection weights yielding the smallest value of the cost function on the validation set, over the full course of the run. While the members of the validation set are not used in the weight updates of the backpropagation learning rule, vanilla or modified, they clearly do influence the choice of model. Therefore, accuracy on the validation set cannot strictly be regarded as a measure of predictive performance, although in practice it may nevertheless provide a useful (and probably faithful) indicator of this aspect of the model. To obtain an unimpeachable measure of predictive performance, still a third set of examples is needed: a test set that is never referred to during the training process.

We are now ready to specify the data sets used in our current mass studies. The primary set is a database designated MN consisting of 1323 “old” (O) experimental masses which the 1981 Möller-Nix model were designed to reproduce, together with 351 “new” (N) experimental masses that lie mostly beyond the edges of the 1981 data collection as viewed in the $N - Z$ plane. This database, with this segmentation, has been used in previous mass-modeling exercises with neural nets. As discussed in Ref. 12, the O and N data sets were formed to quantify the extrapolation capability (extrapability) of different global models of atomic masses. In creating neural-network models, the old (O) masses constitute the training set,
while the new (N) masses are employed as a validation set or – in the earlier treat-
ments – as a test set (or prediction set). In addition to the MN database, we make
use of another data set composed of the mass-excess values of 158 newer nuclides
drawn from the NUBASE evaluation of nuclear and decay properties; generally
these nuclides reside still further from the stable valley than those of the N subset.
This secondary data set, which we call NB, has been used exclusively as a test
set; it is not consulted during the training phase. A third set of examples, which
also remains untouched during the training process, consists of 10 “even newer”
nuclides of rare-earth elements; their masses have recently been measured with the
ISOLTRAP mass spectrometer \[13\]. We label this last set ISO.

Three different input coding schemes are relevant to our considera-
tions. In the first\[4\],\[5\],\[6\],\[8\], the input layer consists of sixteen “on-off” units having activity levels 0
or 1. Eight units for \(Z\) and eight for \(N\) serve to encode the proton and neutron
numbers in binary and permit the treatment of \(Z\) and \(N\) values up to 255, which
is more than sufficient to cover the interesting physical range of input patterns
\(\nu = (Z, N)\). This scheme facilitates learning of quantal properties (pairing, shell
structure) that depend on the integral nature of \(Z\) and \(N\). The second scheme
utilizes analog coding of \(Z\) and \(N\) in terms of the activities of only two analog input
neurons, which, however, are aided by two further on-off input units that encode the
parity (even or odd) of \(Z\) and \(N\). Thus the network is again given information about
the integral character of \(Z\) and \(N\). In the third scheme, the 16-unit binary-coding
input array of the first design is supplemented by two additional units encoding \(Z\)
and \(N\) in analog.

For all three choices of input coding, the mass computed by the network is
represented by the activity of a single analog output unit. Three different prescrip-
tions have been used to scale the activities of the analog units in the input and
output layers to the interval \([0,1]\); the details, not particularly relevant here, will be
presented elsewhere. We need only remark that proper attention to the dynamical
ranges of the \(Z\), \(N\), and mass-excess variables allows more precise study of new
nuclei far from the stability line.

Quantitative judgments of network performance in learning, validation, and
prediction are made in terms of two different measures, evaluated separately for the
three data sets specified above. The chief quality measure is the root-mean-square
deviation \(\sigma_{\text{rms}}\) of the network-generated mass values from their corresponding ex-
perimental target values. This is of course the standard quality measure adopted
in global modeling of atomic masses. We also observe that it is just the square
root of the quantity that one seeks to minimize by the backpropagation algorithm
or one of its relatives. The second quality measure considered here (“recalled pat-
terns”) is the number of patterns (nuclidic examples) for which the mass-excess
value generated by the model deviates from experiment by no more that 5%.

Another general question that arises in neural-network applications is that of
optimal architecture. We have made no attempt at systematic optimization of ar-
chitecture, following instead an empirical (or “trial-and-error”) approach. However,
in a few cases we have implemented a simple procedure for eliminating (“pruning”)
unimportant connections. Connections whose omission does not increase the cost
function beyond a small threshold amount are deleted, and the resulting trimmed
Table 1: Comparison of neural-network models of atomic mass data with other models based on conventional nuclear theory. Learning (fitting) and generalization (prediction) refer to the database MN[1323(O)-351(N)].

Model	Learning Mode	Validation (v) or Prediction (p) Mode		
	σ_{rms} (MeV)	Recalled Patterns	σ_{rms} (MeV)	Recalled Patterns
(16+10+10+10+1) [401]	0.393	1172/1323	3.575 (v)	246/351
(18+10+10+10+1) [421]	0.331	1187	2.199 (v)	272
(4+10+10+10+1)*[281]	0.491	1141	1.416 (v)	280
(4+10+10+10+1) †[281]	0.617	1095	1.209 (v)	284
(4+10+10+10+1) †[281]	0.453	1242	1.200 (v)	298
(18+10+10+10+1) [421]	0.828	—	5.981 (p)	—
(4+40+1)[245]	1.068	—	3.036 (p)	—
Möller et al. [14]	0.673	—	0.735 (p)	—

A substantial number of computer experiments have been carried out for networks with various architectures and for networks with the same architecture but different random choices of initial weights. The first five rows of Table 1 give performance measures for some of the best network models emerging from these studies. The model identified with two asterisks is in fact a pruned (and retrained) version of the network marked with a single asterisk. The model indicated with a cross gives the best neural-net representation of atomic-mass systematics created to date, judging by the accuracy of its outputs for the N set of “new” nuclei. The relevant performance measures for this data set – here considered as a validation set – appear in the last two columns of Table 1.

The net (4+10+10+10+1) †[281] appears to be distinctly superior to the neural-network models from earlier studies that used the O nuclei of the MN database as a training set. The best models from two such investigations are included in Table 1. The network listed in row 6, having architecture (18 + 10 + 10 + 10 + 1)[421], was constructed by Gernoth et al. using vanilla back-propagation, with binary encoding of Z and N together with analog encoding of the atomic mass number A and the neutron excess N−Z. The three-layer net (4 + 40 + 1)[245] was provided by Kalman, who employed analog coding of Z and N and auxiliary parity units for these variables. The input patterns were pre-processed by singular-value decomposition, and the network was trained with a Powell-update conjugate-gradient optimization algorithm.

The gold standard of quality in global mass modeling is presently set by the macroscopic/microscopic theoretical treatment of Möller, Nix, and collaborators, for which rms values are entered in the last row of Table 1. Let us consider the
rms error figures for the “cross” network model, in comparison with this standard. The result $\sigma_{\text{rms}} = 1.200$ MeV for the performance of the “cross” model on the N set is roughly double the comparable Möller-Nix value. Although this would still be regarded as quite respectable performance, we must recall that the N set was allowed to exert some influence on the training process. On the other hand, the NB set of “newer” nuclides does qualify as a legitimate test set and indeed provides a strong test of the extrapability of the models we have developed. The value of σ_{rms} obtained for the NB set with network $(4 + 10 + 10 + 10 + 1)^{[281]}$ is 1.462 MeV, which is to be compared with the figure 0.697 MeV attained by the FRDM macroscopic/microscopic model of Ref. 14. Another strong test of the predictive quality of our models is possible for 10 rare-earth nuclides of the ISO set, which are not contained in the O, N, or NB sets. The rms error for these nuclides is found to be 0.963 MeV and 0.500 MeV for the “cross” network and for the FRDM model, respectively. Based on these tests, it should be evident that the current generation of neural-network models of the mass table represents a significant advance toward extrapability levels competitive with those reached by the best traditional global models rooted in quantum theory.

3 Global Models of β^--Decay Halflives

Neural-network statistical methodology is being applied to the systematics of nuclear decay, and in particular to the the important problem of predicting the halflives $T_{1/2}$ of nuclear ground states that decay 100% by the β^- mode. A first effort in this direction is described in Ref. 10. We present here some results of a continuation of this work.

Since the relevant experimental halflives vary over 26 orders of magnitude, the target variable in these studies is taken to be $\ln T_{1/2}$. Vanilla backpropagation, involving a mean-square cost function, logistic activation functions, and a momentum term in the update rule is employed for on-line training of a variety of multilayer feedforward models. The cost function is

$$C = \frac{1}{N} \sum_{\nu=1}^{N} \left(\ln \frac{T_{\text{exp}}^{1/2}(\nu)}{T_{\text{model}}^{1/2}(\nu)} \right)^2,$$

(1)

where ν indexes the examples (input patterns) in the relevant set of N samples. Each training run involves a pre-set number of epochs, and the weights that are kept after each run are taken as those yielding the best (smallest) value of the “Klapdor” error measure $\langle x \rangle_K$ achieved for the training set during the run. Referring for example to Staudt et al. [1], this error measure is defined as

$$\langle x \rangle_K = \frac{1}{N} \sum_{\nu=1}^{N} x_\nu, \quad x_\nu \equiv \left[\frac{T_{\text{exp}}^{1/2}(\nu)}{T_{\text{model}}^{1/2}(\nu)} \right] >,$$

(2)

where the sum is performed over the training or test set as appropriate and the symbol $[a, b]_>$ stands for the ratio formed from its arguments a, b in such a way that it is always larger than 1.
Table 2: Assessment of the ability of the selected neural-network model of type (17 + 10 + 1)[191] to reproduce experimental values of β^--decay half-lives, in comparison with traditional models of Möller et al.17 and Homma et al.16. For good performance, the quantities $M^{(10)} = 10^{M}$ and $\sigma^{(10)}_M$ should be as small as possible.

$T_{1/2}$ (sec)	Learning M^{(10)}_M	Learning $\sigma^{(10)}_M$	Prediction M^{(10)}_M	Prediction $\sigma^{(10)}_M$	Möller et al. M^{(10)}_M	Möller et al. $\sigma^{(10)}_M$	Homma et al. M^{(10)}_M	Homma et al. $\sigma^{(10)}_M$	
	o-o	1.15	2.27	2.05	2.31	0.59	2.91	1.75	4.96
	o-e	1.07	2.03	1.08	2.38	0.59	2.64	0.60	2.24
	e-e	1.61	1.71	1.79	2.71	3.84	3.08	1.15	2.36
< 10	o-o	1.17	2.25	2.26	5.42	0.76	8.83	1.89	4.60
	o-e	1.04	1.91	1.19	2.44	0.78	4.81	0.92	3.84
	e-e	1.19	2.09	1.31	2.30	2.50	4.13	1.01	2.93
< 100	o-o	1.18	2.18	1.76	5.19	2.33	49.19	3.15	10.51
	o-e	1.05	1.93	1.12	3.15	1.11	9.45	1.07	4.29
	e-e	1.19	1.97	0.98	2.67	2.61	4.75	1.13	3.58
< 1000	o-o	1.19	2.13	2.22	6.25	3.50	72.02	3.02	10.25
	o-e	0.98	1.99	1.22	5.50	2.77	71.50	1.10	5.55
	e-e	1.14	1.95	0.93	4.78	6.86	58.48	1.39	6.10

The raw database used in the beta-decay modeling experiments consists of all pertinent data available in early 1995 from the Brookhaven National Nuclear Data Center, encompassing a total of 766 examples of single-mode decay by the β^- channel. The half-lives in this collection range from 0.15×10^{-2} sec for $^{35}_{11}$Na to 0.2932×10^{24} sec for $^{143}_{48}$Cd. In our most recent modeling efforts, we have narrowed attention to the subset of cases in which the decay is from the ground state and has a lifetime not longer than 10^6 y. Thus we delete all examples with longer lifetimes, as well as a few examples of isomeric decays, arriving at a truncated data set of 692 nuclides, of which 518 are reserved for training and 174 are used to test predictive acuity. This choice of database permits reasonable comparisons to be made with the results from traditional global models of β^--halflives (see Refs. 16 and 17 and literature cited therein).

We implement binary coding of Z and N at the input layer, choosing the same scheme as used in some of the mass models. To the operative bank of 16 on-off neurons, we append an additional analog input unit that encodes the Q-value of the decay as a floating-point variable. A single analog output unit generates the coded value of $\ln T_{1/2}$ that the network computes for the input nuclide. Among the many network models constructed and tested, we single out for further attention a network with architecture (17 + 10 + 1)[191], which demonstrated, overall, the best behavior in the predictive mode. Table 2 provides a detailed comparison of the performance of this model with state-of-the-art conventional global models recently developed by Homma et al.16 and Möller et al.17 The figures of merit that have been adopted for the models evaluated in this table are those quoted by Möller et al.17, namely the quantity $M^{(10)} = 10^{M}$ derived from the mean error

$$M = \frac{1}{N} \sum_{\nu=1}^{N} \log_{10} r_{\nu} , \quad r_{\nu} = \frac{T_{1/2}^{\text{model}}(\nu)}{T_{1/2}^{\text{exp}}(\nu)} , \quad (3)$$
along with the quantity $\sigma_{M}^{(10)} = 10^{\sigma_{M}}$ derived from the standard deviation

$$\sigma_{M} = \left[\frac{1}{N} \sum_{\nu=1}^{N} (r_{\nu} - M)^2 \right]^{1/2}$$

from the mean. Ideally, both measures should be as small as possible. The comparison is broken down according to odd-odd, odd-even/even-odd, and even-even nuclear subclasses and according to different experimental lifetime ranges. The level of performance displayed by the neural-network model is similar to (and in some cases better than) that of the traditional models. Two caveats should accompany any appraisal of the relative merits of neural-net and conventional approaches. On the one hand, comparison is hindered by the lack of a clear distinction between the aspects of fitting and prediction in the traditional treatments; and on the other, by the fact that the neural-network model has many more adjustable parameters than the traditional models. At any rate, the good performance of the $17+10+1$ network model is clearly demonstrated in detailed comparisons with the experimental β^{-}-halflives of a set of 10 Cu isotopes and of a set of 10 nuclides found on or near the r-process path. Typically, agreement well within an order of magnitude is obtained – and usually within a factor 2.

These new findings suggest that it may be fruitful to seek further improvements of network performance in the β-lifetime problem and to extend the approach to other decay modes, notably α-decay.

Acknowledgments

This research has been supported in part by the U. S. National Science Foundation under Grant No. PHY-9900173.

References

1. J. Hertz, A. Krogh, and R. G. Palmer, *Introduction to the Theory of Neural Computation* (Addison-Wesley, Redwood City, CA, 1991).
2. J. W. Clark, *Phys. Med. Biol.* 36, 1259 (1991).
3. S. Haykin, *Neural Networks: A Comprehensive Foundation* (McMillan, New York, 1994).
4. J. W. Clark, T. Lindenau, and M. L. Ristig, *Scientific Applications of Neural Nets*, Lecture Notes in Physics Vol. 522 (Springer-Verlag, Heidelberg, 1999).
5. S. Gazula, J. W. Clark, and H. Bohr, *Nucl. Phys.* A540, 1 (1992).
6. K. A. Gernoth, J. W. Clark, J. S. Prater, and H. Bohr, *Phys. Lett.* B300, 1 (1993).
7. K. A. Gernoth and J. W. Clark, *Comput. Phys. Commun.* 88, 1 (1995).
8. J. W. Clark, S. Gazula, K. A. Gernoth, J. Hasenbein, J. Prater, and H. Bohr, in *Recent Progress in Many-Body Theories*, Vol. 3, T. L. Ainsworth, C. E. Campbell, B. E. Clements, and E. Krotscheck, eds. (Plenum, New York, 1992), p. 371.
9. K. A. Gernoth and J. W. Clark, *Neural Networks* B8, 291 (1995).
10. E. Mavrommatis, A. Dakos, K. A. Geroth, and J. W. Clark, Condensed Matter Theories, Vol. 13, J. da Providencia and F. B. Malik, eds. (Nova Science Publishers, Commack, NY, 1998), p. 423.
11. P. Möller and J. R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).
12. P. Möller and J. R. Nix, J. Phys. G 20, 1681 (1994).
13. D. Beck et al., Nucl. Phys. A626, 343c (1997).
14. P. Möller, J. R Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
15. A. Staudt, E. Bender, K. Muto, and H. V. Klapdor, At. Data Nucl. Data Tables 44, 80 (1990).
16. H. Homma, E. Bender, M. Hirsch, K. Muto, H. V. Klapdor-Kleingrothaus and T. Oda, Phys. Rev. C 54, 2972 (1996).
17. P. Möller, J. R. Nix and K. L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).