WW domains mediate protein-protein interactions through binding to short proline-rich sequences. Two distinct sequence motifs, PPXXY and PPLP, are recognized by different classes of WW domains, and another class binds to phospho-Ser-Pro sequences. We now describe a novel Pro-Arg sequence motif recognized by a different class of WW domains using data from oriented protein-protein interaction screening, phage-expression cloning, and *in vitro* binding experiments. The prototype member of this group is the WW domain of formin-binding protein 30 (FBP30), a p53-regulated molecule whose WW domains bind to Pro-Arg-rich cellular proteins. This new Pro-Arg sequence motif re-classifies the organization of WW domains based on ligand specificity, and the Pro-Arg class now includes the WW domains of FBP21 and FE65. A structural model is presented which rationalizes the distinct motifs selected by the WW domains of YAP, Pin1, and FBP30. The Pro-Arg motif identified for WW domains often overlaps with SH3 domain motifs within protein sequences, suggesting that the same extended proline-rich sequence could form discrete SH3 or WW domain complexes to transduce distinct cellular signals.

Many signaling events in eukaryotic cells involve the assembly of large protein-protein complexes. These diverse associations are mediated through interactions of a limited number of modular signaling domains such as the SH2,1 SH3, PDZ, and PTB domains and their respective ligands (1, 2). Particular families of domains occasionally share affinity for related ligands. For example, both SH2 and PTB domains can bind phosphotyrosine-containing substrates, while FHA domains, 14-3-3 proteins, and certain WW domains bind phosphoserine/phosphothreonine-containing proteins (3). Recently, several unrelated signaling modules have been identified that specifically recognize proline-rich ligands. These include WW and EVH1 domains in addition to the canonical member of this group, the SH3 domain (4–7). WW domains are encoded as 38–40-amino acid long modules in single copy or tandem repeats in over 25 signaling proteins. WW domain-containing proteins include those implicated directly or indirectly in a variety of human diseases such as Liddle’s syndrome, Duchenne muscular dystrophy, Huntington’s disease, and Alzheimer’s disease (6, 8, 9). Named after two highly conserved tryptophan residues characteristically spaced either 22 or 23 residues apart, WW domains participate in a variety of cellular processes, including ubiquitin-mediated protein degradation (10, 11), viral budding (12, 13), RNA splicing (14, 15), transcriptional co-activation (16–18), and mitotic regulation (19, 20). Recently another WW domain-containing protein, FBP30, was identified as one of the major genes up-regulated by p53 in thymocytes undergoing programmed cell death following γ-irradiation (21). Despite their general importance in normal and disease states, most of the molecular targets recognized by different WW domains *in vivo* remain unidentified.

Sudol and colleagues (22) have proposed a classification of WW domains based on their proline-based ligand specificity. In this scheme, Group I WW domains recognize and bind the motif PPXY, as typified by the prototype WW domain in YAP, whereas Group II WW domains bind a PPLP motif, as observed for the WW domains in formin-binding protein (FBP)-11. A third class of WW domains bind sequences rich in Pro, Gly, and Met residues, although the exact amino acid sequence motif they recognize is not known. A fourth class of WW domain-containing proteins has recently been found that appears to bind Pro residues preceded by phosphoserine (23).

In the present study we used oriented peptide library screening, phage-expression cloning, peptide binding studies, and protein affinity interactions in cell lysates to identify a new motif that defines and re-classifies a novel group of WW domains that specifically recognize and bind to proline-arginine-rich motifs. The prototype member of this group is the first of two WW domains present within the protein FBP30, the sequence of which is reported here. Other members of the Pro-Arg motif-binding class include the WW domains of FBP21 and FE65 and the second WW domain of FBP30. We present a structural model for WW domains that rationalizes Pro-Arg motif selection, and show that many ligands for this novel class of WW domains also bind to the Src- and phosphoinositol 3-kinase-like family of SH3 domains.

MATERIALS AND METHODS

Cloning of FBP30—A partial cDNA for FBP30 containing the first WW domain (FBP30 WW-A) was obtained by screening a mouse random-primed cDNA expression library for formin-binding proteins, as described previously (24). To obtain additional FBP30 sequence, a mouse limb bud cDNA expression library (24) and a NIH3T3 cDNA

A Novel Pro-Arg Motif Recognized by WW Domains

Mark T. Bedford, Dilara Sarbassova, Jian Xu, Philip Leder, and Michael B. Yaffe

(Received for publication, November 12, 1999, and in revised form, January 7, 2000)
library cloned into XZap (courtesy of Ari Elson) were screened with the partial cDNA insert of FB30 obtained above. 5' Rapid amplification of cDNA ends was employed to obtain a putative start codon using a mouse 11-day embryo cDNA library (CLONTECH, Palo Alto, CA) and the primers: 5'-gaactccgtgtgctggtaacg-3' (first round of PCR) and 5'- cccggtggagagagctgcaggatagg-3'. Sequences of the two (overlapping) tag clones (GenBank accession numbers AA240645 and AA175408) were sequenced to obtain the stop codon and the poly(A) tail.

Construction, Purification, and Labeling of Fusion Proteins—GST fusion proteins containing the isolated FB30 WW-A, WW-B, or a fusion of the WW-A and -B domains were generated by PCR and subcloned into pGex-2TK. PCR primers were 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3', flanked by BamHI and EcoRI sites. PCR primers for FB30 WW-B were 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3', flanked by BamHI sites. The resulting PCR fragment also contains an EcoRI and a HindIII site. The fusion of WW-A and -B domains used the PCR primers 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3' flanked by HindIII sites for FB30 WW-A and the resulting PCR fragment was then cloned into the HindIII site of pFB30 WW-B. The amino acid sequence of FB30 WW-B fused to GST is: KRRKLQDAA-

Fluorescence Polarization Assays—For measurements of peptide binding affinity, FB30 WW-A and YAP WW-GST fusion proteins were exchanged into phosphate-buffered saline using NAP-10 Sephadex G-25 columns (Amersham Pharmacia Biotech). Protein concentrations were determined by BCA assay (Pierce) using BSA as standard. Fluorescence polarization anisotropy was measured using a Pan Vera Beacon 2000 Variable Temperature Fluorescence Polarization System. Low fluorescence buffers and reagents (Pan Vera Corp.) were used throughout.

Cell Culture and in Vitro Binding Assays—PC12 cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% horse serum, 5% fetal calf serum, and antibiotics (50 units/ml penicillin and 50 μg/ml streptomycin). For radio-labeling, 100-cm2 dishes of 70% confluent cells were switched to 3 ml/plate of 97.5% methionine-free Dulbecco's modified Eagle's medium supplemented with 100 μCi of Trans35S-label (NEN Life Science Products) for 6 h. Cells were lysed by the addition of 1 ml of Tris-buffered saline, pH 7.4, containing 1 mM MgCl2, 1 mM CaCl2, 4 mM EDTA, and 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma). Lysates were precleared by incubation with beads containing bound GST for 3 h at 4 °C, and the supernatants then incubated with beads containing equal amounts of immobilized GST WW domain fusion proteins or GST alone overnight at 4 °C with rocking, in the presence or absence of 100 μM competing peptides. A typical experiment involved 500 μl of lysteate incubated with 25 μl of beads containing ~70 μg of fusion protein. The beads were washed three times with phosphate-buffered saline + 0.5% Nonidet P-40, resuspended in sample buffer, and analyzed by SDS-PAGE and autoradiography. 293 cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and antibiotics (50 units/ml penicillin and 50 μg/ml streptomycin) for immunological studies.

Phage Library Expression Screening—Expression screening was performed using a random-prime mouse limb cDNA library in λ phage, whose construction has been described previously (24). The expression library was infected into BL21(DE3) (pLysE) and plated at a density of 200,000 plaques/22-cm2 dish. When plaques reached 0.5–1 mm in diameter, the plates were overlaid with nitrocellulose filters previously saturated with 10 mM isopropl-1-thio-β-D-galactopyranosidase and allowed to grow for another 6 h at 37 °C. Filters were blocked for 1 h at room temperature in TBS-T (4.7 mM NaCl, 2.7 mM KCl, 25 mM Tris, pH 8.0, and 0.1% non-fat milk) followed by semi-dry transfer onto Immobilon-P membrane (Millipore). Blots were washed for 1 h at 120 rpm in TBS-T containing 1% non-fat dry milk, then incubated TBS-T containing 1% milk containing 0.5 × 106 cpm of 32P-labeled probe/ml overnight at 4 °C. Filters were washed for 4 times for 15 min each. Autoradiography gave strong signals after an overnight exposure with an intensifying screen. After plaque purification, positive phage were excised as plaques by infecting into the Cre-carrying Escherichia coli strain (Novagen). The resulting phage were then inoculated in TBS-T containing 1% milk and 0.5 × 106 cpm of 32P-labeled probe/ml overnight at 4 °C, and then washed 4 times for 15 min each. Autoradiography gave strong signals after an overnight exposure with an intensifying screen. After plaque purification, positive phage were excised as plaques by infecting into the Cre-carrying Escherichia coli strain (Novagen). The resulting phage were then transformed into BL21(DE3) (pLysE) for fusion protein analysis.

Phage Display Library Construction—For the construction of the phage display library, the plasmid containing the YAP WW domain was ligated into the expression vector pCDM8 (Novagen) and transformed into E. coli strain BM25.8, as recommended by the manufacturer (Novagen). The YAP WW domain library cloned into pCDM8 was screened with the partial cDNA insert of FB30 WW-A, WW-B, or a fusion of the WW-A and -B domains were generated by PCR and subcloned into pGex-2TK. PCR primers were 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3', flanked by BamHI and EcoRI sites. PCR primers for FB30 WW-B were 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3', flanked by BamHI sites. The resulting PCR fragment also contains an EcoRI and a HindIII site. The fusion of WW-A and -B domains used the PCR primers 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3' flanked by HindIII sites for FB30 WW-A and the resulting PCR fragment was then cloned into the HindIII site of pFB30 WW-B. The amino acid sequence of FB30 WW-B fused to GST is: KRRKLQDAA-EQLKQYENATPKGWSCHWRDRHYFVNYEQGSSEQFFDPG-

Library Construction—Phage display libraries were constructed by using a phage display system developed by the University of California at San Francisco (24). Plasmid DNA encoding the YAP WW domain was ligated into the expression vector pCDM8 (Novagen) and transformed into E. coli strain BM25.8, as recommended by the manufacturer (Novagen). The YAP WW domain library cloned into pCDM8 was screened with the partial cDNA insert of FB30 WW-A, WW-B, or a fusion of the WW-A and -B domains were generated by PCR and subcloned into pGex-2TK. PCR primers were 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3', flanked by BamHI and EcoRI sites. PCR primers for FB30 WW-B were 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3', flanked by BamHI sites. The resulting PCR fragment also contains an EcoRI and a HindIII site. The fusion of WW-A and -B domains used the PCR primers 5'-gtggaagcttggatctgcttgtaaactc-3' and 5'-gtggaagcttggatctgcttgtaaactc-3' flanked by HindIII sites for FB30 WW-A and the resulting PCR fragment was then cloned into the HindIII site of pFB30 WW-B. The amino acid sequence of FB30 WW-B fused to GST is: KRRKLQDAA-EQLKQYENATPKGWSCHWRDRHYFVNYEQGSSEQFFDPG-

**Fluorescence polarization anisotropy was measured using a Pan Vera Beckon 2000 Variable Temperature Fluorescence Polarization System. Low fluorescence buffers and reagents (Pan Vera Corp.) were used throughout. WW domain proteins were serially diluted (0–171 μM) to a final volume of 150 μl in phosphate-buffered saline in 8 × 50-mm borosilicate glass tubes with 40 μl of peptides (100 μM final concentration), mixed, and fluorescence polarization measured at 22 °C after a 120-s delay with a 16-s integration. A time course of binding showed peak saturation within 120 s. Background fluorescence was measured for each sample prior to peptide addition. At least three binding curves were measured for each of the WW domains to their optimal peptides. Binding data was analyzed by assuming that fluorescence polarization anisotropy was a linear function of ligand binding, and that each WW domain contained a single peptide-binding site as verified by Scatchard analysis. Curves were fit to the equation, Lf/Ltot = Lf/(Lb + Lf), where Lf is bound ligand, Ltot is total ligand, Lb is free ligand, and Lf/Lb is the dissociation constant in closed form using nonlinear regression analysis (Kaleidograph). Control experiments showed negligible binding of GST alone to either peptide even at 100 μM concentration.
ity purification on beads containing immobilized GST-FBP30 WW-A (above) except that the hybridization solution contained 1.3 × 10^6 cpm of 32P-labeled probe/ml.

Molecular Modeling—Atomic coordinates for the NMR structure of the YAP WW domain (kindly provided by H. Oschkinat) and the high resolution x-ray structure of the Pin1 WW domain (PDB accession code 1PIN (43)) were used for modeling the FBP30 WW-A domain. Threading was optimized using SwissPdbViewer 3.1 (28). Modeling was performed using ProModII (28, 29) and energy minimized with Gromos96 using 200 cycles of steepest descent followed by 300 cycles of conjugate gradient minimization. The final structure demonstrated excellent backbone and side chain superpositions with the base model, and yielded nearly identical overall structures regardless of whether YAP or Pin1 was used as the starting model. All ϕ and ψ angles fall within acceptable regions of the Ramachandran plot. Molecular surfaces were generated and displayed and electrostatic potentials calculated using GRASP (30). For display, structures were rendered using PovRay.

RESULTS

Cloning of FBP30—A number of WW domain containing proteins have been identified based on their in vitro ability to interact with formin, a morphogenic protein involved in limb and kidney development. Collectively referred to as FBPs, this group consists of four members which contain multiple WW domains (FBP11, 21, 23/28, and 30) that were identified by screening a mouse limb expression library for proteins that interacted with the formin homology 1 domain (FH1 or proline-rich domain) (24). The initial FBP30 clone identified in the screen contained a single WW domain near its amino terminus, denoted FBP30 WW-A (Fig. 1A; accession number AAC52478). A fusion protein containing this WW domain linked to the COOH terminus of glutathione S-transferase (GST) was seen to interact with a wide variety of proteins in PC12 and 293 cell lysates (cf. Fig. 5).

Northern blot analysis of poly(A) selected RNA revealed that the FBP30 transcript is ubiquitously expressed although it is most abundant in spleen and thymus (data not shown and Ref. 21) and that it co-migrates with the 28 S ribosomal RNA. Extension cloning was subsequently performed to obtain additional FBP30 coding sequence based on the initial WW-containing clone that had been identified by screening for formin-binding proteins. The sequence shown in Fig. 1B was obtained by combining sequence data from mouse limb bud and NIH3T3 cDNA library screening, 5′-rapid amplification of cDNA ends to obtain a putative start site and two expressed sequence tag clones (GenBank accession numbers AA240645 and AA175408) to obtain the stop codon and the poly(A) tail. The resulting 4748-base cDNA codes for a protein of 1077 amino acids that contain a second WW domain, denoted FBP30 WW-B, 385 amino acids COOH-terminal to the previously identified WW domain as well as 3 proline-rich regions (Fig. 1, A and B). It is important to note that we have not yet independently confirmed that our cDNA contains the initiating methionine at the extreme 5′ end, although no additional sequence was obtained despite multiple attempts at 5′-rapid amplification of cDNA ends. Depraetere and Golstein (21) recently published a partial sequence of FBP30 containing the first proline-rich region and WW-A domain based on their finding that FBP30 is a major

![Fig. 1. The sequence of FBP30.](http://www.jbc.org/)

A, schematic diagram of the domain structure of FBP30. The WW domains (solid shading) and Pro-rich regions (hatched shading) are indicated. B, the amino acid sequence of FBP30. Sequences of the WW domains are shown in bold, and Pro-rich regions are underlined. The partial murine FBP30 sequence reported by Depraetere and Golstein (21) is shown below, where minus (−) indicates amino acid identity and discrepant amino acids are explicitly indicated.
p35-regulated protein in lethally irradiated thymocytes as detected by Representational Difference Analysis. A Pfam search of the entire FBP30 sequence failed to reveal any additional protein-interaction domains other than the two WW domains.

The WW Domains of FBP30 Belong to a Class of WW Domains That Recognize the Core Motif Pro-Pro-Arg in Oriented Peptide Library Screening—To investigate the amino acid sequence recognized by the FBP30 WW-A domain and compare this with the sequence motif that binds to the WW domain from YAP (33, 34), we screened GST fusions of each WW domain using a peptide library oriented on a fixed proline residue. As shown in Fig. 2A, the FBP30 WW-A domain selected an additional Pro or an Arg residue in the Pro^{−1} position, and showed strong selection for Arg in the Pro^{−1} position. This finding suggests the new motif, (P/R)PR, as optimal for FBP30 WW-A domain recognition. In contrast, the YAP WW domain selected Leu or Pro in the Pro^{−1} position, weakly selected for Pro in the Pro^{−1} position, and showed strong selection for Tyr in the Pro^{−2} position. This (L/P)PPY motif deduced for the YAP WW domain by peptide library screening is in excellent agreement with the PPXY motif previously obtained for the YAP WW domain by alanine scanning mutagenesis and single peptide binding studies (33–35). In contrast, the Pro- and Arg-based motif we obtained for the FBP30 WW domain appears novel.

In order to learn whether this Pro-Arg motif was common to other WW domains, GST fusion proteins containing the WW domains from FBP21, FE65 (36, 37), and the first and third WW domains from NEDD4 (10, 38) were screened using the Pro-oriented peptide library (data not shown). Like the FBP30 WW-A domain, both the FBP21 and FE65 WW domains displayed strong selection for Arg in the Pro^{−1} position (Table I). In contrast, no Arg selection was observed for either of the NEDD WW domains (data not shown).

The second WW domain within FBP30, FBP30 WW-B was also investigated. Like the FBP30 WW-A domain, the WW-B domain also selected for Pro-Arg based peptides, as did a protein containing a GST fusion of both the FBP30 WW-A and WW-B domains (Table I). All of the WW domains that selected for Arg in the Pro^{−1} position also showed moderate selectivity for an additional Pro in the Pro^{−1} position, as well as faint selection for aromatic residues or Pro in the Pro^{−2} position. A crude estimate of binding affinity based on the amounts of total peptide library retained by the GST WW fusion proteins suggested that the FBP30 WW-A, FE65, and FBP21 WW domains bound to peptides at least 4-fold more tightly than the FBP30 WW-B domain.

The other well characterized family of modular signaling domains that bind to Pro-rich peptides containing Arg residues are SH3 domains. In order to contrast the sequence specificity for WW domain binding with the Pro-based peptide specificity selected by SH3 domains, we examined the binding of these WW domains to a Pro-X-Pro oriented peptide library biased for the PXXP consensus motif recognized by SH3 domains (39). As shown in the left panel of Fig. 2B, the FBP30A WW domain appeared to orient on the first fixed Pro residue, selecting for Pro or Ile in the Pro^{−1} position, Arg in the Pro^{−1} position, and Pro or Ala in the Pro^{−2} position, suggesting a PPR or PPRPP-based motif. Similar selection for this core PPR motif was also seen when the WW domains from FBP21 and FE65 were screened with this PXXP library (Table I). The FE65 WW domain demonstrated additional selection for Phe and aliphatic side chain containing residues in the Pro^{−2} position. In contrast to the PPR motif we identified for these FBPs and FE65, the YAP WW domain appeared to orient on either of the two fixed proline residues in the library, selecting for Tyr in the
a peptide library containing only a fixed Tyr residue. As seen in the left panel of Fig. 2B, the YAP WW domain could bind and orient on these Tyr-containing peptides, selecting for Leu or Pro in the Tyr position and Pro in the Tyr position.

To refine any additional sequence specificity for the other WW domains extending beyond the core PPR-based motif, the WW domains of FBP30, FBP21, and FE65 were screened with a peptide library oriented on the core PPR sequence (Table II). The overall extent of peptide binding we observed to these WW domains was quite large, approximately 10–20-fold larger than that observed using a library in which proline was the sole orienting residue, further supporting the PPR-based motif and suggesting that additional selection beyond this PPR core would likely be modest at best. The FBP30 WW-A, FBP21, and FE65 WW domains extending beyond the core PPR-based motif, the Pro in the Tyr position and Pro in the Tyr position.

Since these proteins were selected using a GST fusion containing both WW domains of FBP30 as a probe, it was possible that each WW domain had a particular affinity for a specific ligand. To test this, we determined the ability of the isolated FBP30 WW-B domain probe and the FBP30 WW-A domain probe (lanes 3, 6, WBP-15, -17, and -13 (lanes 8) known to bind to an alternative set of WW domains over the FBP30 WW-B domain in ligand binding ability. This suggests that within the FBP30 WW-A&B domain fusion used to screen the expression library, the FBP30 WW-A domain likely dominated ligand binding ability.

Identification of FBP30 WW Domain-Binding Proteins by Phage Library Expression Screening—A phage expression strategy was employed to investigate protein targets for the FBP30 class of WW domains (Fig. 3), and determine if the Pro-Arg motifs we had identified by peptide library screening were also present in naturally occurring ligands. In order to screen both WW domains simultaneously, the two WW domains of FBP30 (which are 358 amino acids apart) were engineered to within 24 amino acids of each other and fused to GST. An expression library screen with this GST fusion protein revealed specific interacting plaques. Fifteen of these were selected at random for plaque purification, and the pure phage then used to infect a bacterial strain harboring the Cre gene. This allows recombination to occur at loxP sites in the phage, generating pET vectors containing the inserts of interest fused downstream from a T7 gene 10 antigen tag (Novagen). The resulting 15 plasmid DNAs were isolated, sequenced, and found to encode 7 distinct proteins, all with extensive proline-rich tracts (Fig. 3; see below).

Since these proteins were selected using a GST fusion containing both WW domains of FBP30 as a probe, it was possible that each WW domain had a particular affinity for a specific ligand. To test this, we determined the ability of the isolated FBP30 WW-A and WW-B domains to bind to each of the WW domain-binding proteins (WBPs) we had identified by phage expression screening. In addition, we included a control protein (WBP-7) known to bind to an alternative set of WW domains from the formin-binding protein FBP11 through a PPLP motif (40). Bacterial extracts from cells overexpressing the individual T7 gene 10-WBP fusion proteins were analyzed by SDS-PAGE followed by transfer to polyvinylidene difluoride membranes. Identical membranes were then probed using 32P-labeled GST WW domains from FBP30 A&B, FBP30 WW-A alone, FBP30 WW-B alone, and FBP11 A&B (Fig. 3A). All the WBPs we had isolated by phage expression bound to both the FBP30 WW-A&B domain probe and the FBP30 WW-A domain probe (lanes 1–8). In contrast, the isolated FBP30 WW-B domain probe bound more weakly overall, recognizing predominantly only WBP-15, -17, and -13 (lanes 3, 6, and 8). This suggests that within the FBP30 WW-A&B domain fusion used to screen the expression library, the FBP30 WW-A domain likely dominated over the FBP30 WW-B domain in ligand binding ability.

The WW domains of FBP11 demonstrated extremely strong binding to the WBP-7 protein, Fig. 3, lane 9, a proline-rich ligand which completely failed to bind to the FBP30 WW do-
motifs, which seems unlikely based on the peptide library data in Table I and previous characterization of the FBP11 WW motif (40), or more likely, that separate sequence motifs for each of these WW domains lie within the proline-rich portions of these proteins.

Table II
Refinement of Pro-Arg motifs for a class of WW domains

	–2	–1	Pro	Pro	Arg	+1	+2
FBP30 WW-A	R(1.7)	P(1.3)	P	P	R	x	R(1.6)
FBP30 WW-B	P(1.4)	R(1.8)	P	P	R	K(1.3)	R(1.5)
FBP30 WW-A&B	P(1.1)	R(1.1)	P	P	R	I(1.2)	R(1.9)
FBP21	R(1.6)	P(1.2)	P	P	R	x	x
FE65	P(1.3)	P(1.2)	P	P	R	x	R(1.4)

The FBP30 WW-A Domain Binds a PPR Peptide with High Affinity—To determine if these Pro-Arg type of motifs were indeed responsible for the interactions of WWPs with the WW domains of FBP30, we proceeded to measure and contrast binding affinities of PPR- and PXPR-based peptides to the FBP30 WW-A and the YAP WW domains (Fig. 4). The Pro-Arg peptide from WBP-11 with the sequence PGPRGPRPPPR and the Pro-Tyr peptide SGHPGTTPPPPPYTGV from the YAP WW ligand WBP-1 (34) were synthesized with fluorescein tags attached to their amino termini via an aminohexanoic acid linker, and peptide binding measured by fluorescence polarization anisotropy. The kinetics of binding was rapid, reaching equilibrium within 2 min (Fig. 4, A and B, insets). The FBP30 WW-A domain demonstrated very strong binding to the Pro-Arg peptide, whereas only weak binding to the Pro-Tyr peptide was observed even at 100 μM FBP30 WW-A concentration (Fig. 4A). In contrast, the YAP WW domain strongly bound to the Pro-Tyr peptide and showed minimal binding to the Pro-Arg peptide (Fig. 4B). Analysis of fluorescence polarization as a function of protein concentration yielded a K_{d} for the FBP30 WW-A domain binding to the PPR-based peptide of 14.9 μM, and a K_{d} for the YAP WW domain binding to the PIPPY-based peptide of 5.4 μM, with excellent curve fits (Fig. 4, C and D). These binding constants compare quite favorably with those of
SH3 domains, which typically bind to their proline-rich sequences with K_d values of 10–200 μM. Smaller versions of these peptides containing less than 6 residues were also capable of binding to each of their respective domains, although the binding was weaker, and did not reach saturation even at 100 μM concentrations (data not shown). The most likely explanation for this observation is that extended peptides, particularly those rich in proline residues, reduce the entropic penalty of binding, perhaps by stabilizing a polyproline-II helix conformation.

The PPR-based Peptide Can Disrupt the Association of FBP30 WW-A Domain with Proteins in PC12 Cell Lysates—To verify the selectivity and specificity of PPR and PY-sequence motifs for different WW domains, we investigated the binding of the FBP30-A and YAP WW domains to endogenous proteins within lysates of 35S-labeled PC12 cells in the presence and absence of competing peptides. As shown in Fig. 5, the WW domain of FBP30A bound to numerous proteins within the lysates. The molecular mass of these ranged from ~20 to 120 kDa (lane 1). This binding could be competitively inhibited by the presence of 100 μM of the PPR peptide from WBP-11 during the binding reactions, but not by the PY peptide from WBP-1 (lanes 2 and 3). In contrast, the YAP WW domain bound most strongly to a protein with molecular mass of ~43 kDa (lane 4), whose binding was unaffected by the PPR peptide, but was completely abolished by competition with the PY peptide (lanes 5 and 6).

A Structural Model for Pro-Arg Selection—Although the structural basis for Pro-Arg selection by this class of WW domains is unknown, insight comes from molecular modeling studies (Fig. 6). Two WW domain structures have been solved to date, an NMR structure of the YAP WW domain bound to its cognate ligand (54), and a high-resolution x-ray structure of Pin1, a protein containing both a WW domain and a proline isomerase (43). The WW domains in both structures adopt an essentially identical fold, a three-stranded β-sheet with a large shallow hydrophobic binding surface. In the YAP structure, the region that strongly interacts with prolines in the PPXY ligand motif (particularly the Pro residue shown in bold), is formed from the side chains of Thr17, Tyr27, and Trp39 (44), and is shaded green in the left panel of Fig. 6A. In the Pin1 WW domain, the corresponding hydrophobic surface is formed from Ser16, Tyr28, and Trp34, and fortuitously binds a polyethylene glycol molecule from the crystallization solution, effectively demarcating the binding pocket (43) (Fig. 6A, right panel). Fig. 6B shows the structure of the FBP30 WW-A domain (blue) modeled on the high-resolution x-ray structure of the Pin1 WW domain (yellow) by threading and energy minimization (“Materials and Methods”). The structures are nearly superimposable, with excellent backbone and side chain fits.

The molecular surfaces for all three WW domains, shaded by electrostatic potential are shown in Fig. 6C. The YAP WW domain has an electrostatically neutral surface flanking the shallow peptide binding groove, with the Tyr residue in the PPXY motif stabilized by interactions with Leu46 and His82 (44). In both the Pin1 and FBP30 WW-A domains, this tyrosine pocket is eliminated by substitution of a bulky aromatic residue (Phe in the case of Pin1 and Tyr in the case of FBP30) for Leu46, and substitution of a Trp residue for His82 in FBP30, indicating why these WW domains preserve Pro recognition, but not Tyr selection. In sharp contrast to the neutral/hydrophobic surface of YAP, the peptide binding groove of Pin1 is flanked by a positively charged region at one end, and a negatively charged region at the other, indicated by blue and red arrows, respectively, in the middle panel of Fig. 6C. This charge distribution explains precisely why the optimal ligand for the Pin1 WW domain is known...
Interestingly, the location of these regions at either end of the responsible for binding the Arg residues in the PPR motif. COOH- to NH2-orientations, as seen with SH3 ligands (45–47). PPR-based ligands might bind in both NH2- to COOH- and by expression cloning. Furthermore, this analysis suggests that and PRPR that we observed in the FBP30 WW ligands isolated but not the PPR peptide (lane 6) competed with protein binding (lane 1) proteins to the FBP30 WW domain (lane 1). In contrast, the PY peptide (lane 3) but not the PPR peptide (lane 5) competed with protein binding to the YAP WW domain (lane 4), which predominantly binds to a single major band migrating at ~46 kDa. The positions of molecular mass markers are indicated on the left with sizes in kDa.

The Fyn SH3 and p85 SH3 Domains Can Bind Directly to a Subset of the FBP30A Ligand Proteins—The Pro-Arg motif we derived for this novel class of WW domains can be found within a number of proteins, often lying in Pro-Arg sequences recognized by certain SH3 domains (46–49). The Pro-Arg peptide from WBP-11 (Fig. 4), for example, was found to bind to the Fyn SH3 domain with a K_d of ~90 μM by fluorescence polarization anisotropy (data not shown). To investigate whether SH3 domains and this new class of WW domains can, in fact, bind similar ligands, we performed “far Western” blotting experiments using the set of FBP30 WW-A ligands we identified by phage-expression screening (Fig. 3). As shown in Fig. 7A, both the Fyn and p85 SH3 domains bound to several of these FBP30 WW-A ligands, interacting strongly with WBP-13, -14, -15, and -17. The exposure shown for the p85 SH3 probe (bottom panel) was only one-fifth that for the Fyn SH3 domain probe (middle panel), although the probes had identical specific activity. These results demonstrate that proteins containing Pro-Arg-rich stretches can bind to both WW and SH3 domains, and

suggests that these WBP proteins have even higher affinity for the p85 SH3 than for the Fyn SH3 domain.

To further investigate the shared specificity of these WW and SH3 domains, far-Western blotting was performed on endogenous FBP30 WW-A ligands isolated from unlabeled PC12 cell lysates using GST-FBP30 WW-A beads (Fig. 7B). Both the radiolabeled FBP30 WW-A and Fyn SH3 probes were found to recognize many of the same protein bands. Similar results were also obtained using a radiolabeled p85 SH3 domain (data not shown). In this experiment far Western blotting identified only a subset of the total FBP30 WW-A-associating ligands shown in Fig. 5. This likely results from the higher sensitivity that affinity purification provides for native ligands compared with far Western blotting which involves refolding of denatured proteins following electrophoresis and transfer to blotting membranes.

DISCUSSION

A Pro-Arg Motif Recognized by the WW Domains of FBP30—Based on data from oriented peptide library screening, phage-expression cloning, affinity measurements of peptide binding, and competition studies for binding of WW domains to cellular ligands, we have identified a new binding motif, the Pro-Arg motif, recognized by a subgroup of WW domains. The prototype members of this class are the WW domains of FBP30, particularly the NH2-terminal WW domain, WW-A. Depraetere and Golstein (21) demonstrated strong sequence conservation of this portion of the FBP30 molecule between mouse, rat, and humans, suggesting that it performs an essential function. Since FBP30 gene expression is induced upon γ-irradiation in a p53-dependent manner, and p53-driven transcription is essential for γ-irradiation induced cell death (50), these authors hypothesized that FBP30 may play an important role in the apoptotic process. Our elucidation of the Pro-Arg binding motif for the WW domains of FBP30 should assist in the determination of physiological ligands that are involved in this or other aspects of FBP30 function.

The FBP30 sequence presented here extends that reported by Depraetere and Golstein (21) and reveals an additional WW domain and 2 additional proline-rich regions. The largest cDNA that Depraetere and Golstein (21) assembled was 2.5 kilobases, although they noted that the size of the FBP30 transcript detected in T-cells was ~4 kilobases. The additional FBP30 sequence presented here resolves this discrepancy.

Curiously, the first Pro-rich sequence within FBP30 contains a PPRP sequence motif 47-amino acid NH2-terminal to the WW-A domain, suggesting the possibility of an intramolecular association, a fact that was also noted by Depraetere and Golstein (21) strictly on the basis of its proline-rich content. Preliminary experiments reveal that an FBP30 fragment containing this segment and the WW-A domain of the FBP30 molecule does, in fact, behave as a compact folded structure. Ultimate verification of this intramolecular association, along with confirmation of our structural model for the WW-A domain is being attempted through crystallographic analysis and mutational studies that are currently in progress.

Ligand Targets of FBP21 and FE65 Are Consistent with Pro-Arg Motif Selection—In addition to the WW domains of FBP30, we also identified the PPR motif as the optimal ligand selected by the FBP21 and FE65 WW domains. Previous work has shown that the FBP21 protein is a component of the splicingosomal complex A, where it can associate with the proline-rich regions in the splicing factors U1C, SmB, SmB′, and SF1/ mBBP (15). The original motif proposed for FBP21 binding on the basis of ligand sequence alignments was a Pro-Gly-Met-

2 M. B. Yaffe, X. Z. Zhou, and K. P. Lu, unpublished data.

3 M. B. Yaffe, unpublished data.
A Novel Proline-Arginine Motif for WW Domains

Re-evaluation of the binding experiments described in that paper, in light of the current data, reveals that an RPP and/or a PPR sequence was present in all of the fusion peptides of SmB examined. Furthermore, all of the splicing factors that interact with FBP21 are found to contain PPR motifs within their sequences. To directly investigate the importance of Arg residues within these Pro-Gly-Met-rich sequences, biotinylated peptides were synthesized containing either the wild-type FBP21-interacting peptide from SmB (sequence PGMRPPPFP�MRPPRP, Ref. 15) or the same peptide with Ala substituted for each Arg, and used in far Western blotting experiments with the WW domains of FBP21 and FBP30. Both peptides contained the identical sequence of Pro, Gly, and Met residues. The WW domains of FBP21 and FBP30 showed strong interaction with the wild-type peptide, but were completely unable to interact with the Arg→Ala mutant peptide despite the persistence of Pro, Gly, and Met residues, verifying the critical role of the Arg residues within Pro-rich sequences in FBP21 and FBP30 WW domain binding (data not shown).

The FE65 protein is an adaptor molecule containing a single WW domain and 2 PTB domains that interacts with the β-amyloid precursor protein and the mammalian homolog of Drosophila enabled (Mena) (36). Sudol and colleagues (36) originally proposed a PPLP motif for this WW domain, since it bound to PPLP-containing sequences in proteins such as Mena during cDNA expression library screening. Using a membrane-

Based peptide binding assay, these authors dutifully noted, however, that substitution of Arg or Lys for Leu in the PPLP motif increased the affinity of the FE65 WW domain for peptides (36). An elegant series of experiments by Espanel and Sudol (22) now makes it clear that the optimal FE65 WW domain ligands contain either a hexa-proline sequence or a PPR-based motif. Thus, the new Pro-Arg motif we have identified can retrospectively rationalize the previous ligand selection observed for FBP21 and FE65 WW domains, and suggests that these WW domains be re-grouped into the Pro-Arg binding class. The fact that the FE65 can also bind to PPLP sequences, albeit more weakly, suggests that this may be an example of a dual specificity WW domain. In summary, our data support a re-categorization of WW domains into 4 classes based on their ligand specificity, as originally proposed by Sudol and colleagues (Table III). In this scheme, class I WW domain molecules recognize the motif PPXY, class II WW domains recognize PPLP, class III WW domains recognize PPR, and class IV WW domains recognize phospho-Ser-Pro.

The PPR Motif May Allow Ligand Sharing between WW- and SH3 Domain-containing Proteins—The Pro-Arg motifs we have identified as optimal ligands for these WW domains are often found within, flanking, or partially overlapping consensus Pro/Arg sequences that are recognized by SH3 domains (Fig. 7; c.f. Refs. 45, 46, and 49). Many SH3 domains are known to bind to Pro-rich motifs containing Arg residues either NH2-terminal

Fig. 6. Structural basis for proline motif selectivity by different WW domains. *A.* regions of ligand contact with the YAP and Pin1 WW domains. Molecular surfaces for each domain were constructed using GRASP. The regions of the YAP WW domain that interact with the proline residues in the PPXY are shaded green (44), as is the corresponding region in Pin1 (40). In the Pin1 structure, this surface fortuitously bound a molecule of polyethylene glycol from the crystallization solution, shown in stick representation. B, modeling the WW domain of FBP30 WW-A based on the Pin1 WW domain structure. The structure of the WW-A domain of FBP30 was modeled by threading the sequence onto that of the high-resolution x-ray structure of Pin1 (36% amino acid identity and 68% homology allowing for conservative substitutions), followed by energy minimization (“Materials and Methods”). The resulting structure for the FBP30 WW domain (blue) is nearly superimposable with that of Pin1 (yellow). Note that many regions appear as only a single chain colored in a mixture of yellow and blue. C, differences in surface electrostatic potential for different WW domains rationalize ligand specificity. The molecular surfaces for the YAP, Pin1, and FBP30 WW domains are shown shaded by electrostatic potential. Red indicates negative charge, blue indicates positive charge. The region surrounding the proline binding surface of the YAP WW domain is neutral, whereas in Pin1WW it is flanked at opposite ends by regions of positive and negative charge (blue and red arrows, respectively). The proline-binding surface of the predicted FBP30 WW-A domain structure is flanked at both ends by negative charge density (red arrows). The optimal amino acid motifs recognized by each WW domain are listed beneath each structure. Note that the distribution of neutral, basic, and acidic residues within each motif exactly matches the complimentary charge distribution of the corresponding WW domain molecular surface. All WW domains in panels A, B, and C are shown in the same orientation.
Fyn and p85 SH3 domains. Blot overlay analysis of the WBP fusion probes. A, mains. performed using 32P-radiolabeled FBP30 WW-A or Fyn SH3 domain transferred to Immobilon membranes. Blot overlay analysis was then performed using 32P-radiolabeled FBP30 WW-A or Fyn SH3 domain probes.

The new Pro-Arg rich motif we describe for WW domains lends strong support to a general model in which different classes of WW domains and SH3 domains compete for binding to particular ligand targets based on unique Pro-rich sequence motifs (40, 51). A limited version of this model was first advanced by Chan et al. (24) who showed that the PPLP motif recognized by the class II WW domain of FBP11 was also recognized by the SH3 domain of Abl. The consensus motif for the Abl SH3 domain, PXX0XXPXX0P, however, lacks any Arg or Lys residues (θ represents aromatic amino acids, ϕ represents aliphatic amino acids) and differs significantly from that of most SH3 domains, which require arginine or lysine residues flanking or within the PXX0 core (40). The new PPR motif we describe here, which is recognized by the WW domains of FBP30, FBP21, and FE65 and by the SH3 domains of Fyn and p85, significantly expands the range of ligands that could interact with both WW and SH3 domain-containing proteins. Finally, the new Pro-Arg motif we have identified may provide an additional potential means for regulating WW and SH3 interactions, since Arg modification by methyltransferases has recently been found to disrupt SH3, but not WW domain binding. Work in progress should shed additional light on this and other mechanisms through which this PPR class of WW domains and SH3 domain interactions are regulated.

References—We gratefully thank Dr. Lewis C. Cantley for continued encouragement, support, and comments throughout this study, and German G. Leparc for critical reading of the manuscript and assistance with figure construction.

Note Added in Proof—While this manuscript was in press, Komuro et al. (Komuro, A., Kato, S. (1999) J. Biol. Chem. 274, 36513–36519) reported that the WW domain of Npw38 binds to a Pro-Gly-Arg motif.

Table III

Class	Motif	WW domains	Ref.
Class I	PXXY	YAP, PDGF-R, Dystrophin	NEDD4 WW-3
Class II	PPLP	FBP11 WW-A, FBP11 WW-B	
Class III	PPR	FBP30, FBP21, FE65	This paper
Class IV	phosho-SP	Pin1, NEDD4 WW-2	23

Fig. 7. FBP30 WW domain ligands can also bind to SH3 domains. A, WBP proteins obtained by expression cloning can bind to the Fyn and p85 SH3 domains. Blot overlay analysis of the WBP fusion proteins obtained by expression cloning was performed using 32P-radiolabeled FBP30 WW-A (top), Fyn (middle), or p85 (bottom) SH3 domain probes as in Fig. 3. Lane identity is the same as that listed in the legend to Fig. 3. The exposure shown for the p85 SH3 probe is one-fifth that for the other two probes. B, endogenous FBP30 WW-A-binding proteins from PC12 cell lysates are also recognized by the Fyn SH3 domain. PC12 cell lysates were affinity purified using GST-FBP30 WW-A beads as described previously, analyzed by SDS-PAGE, and transferred to Immobilon membranes. Blot overlay analysis was then performed using 32P-radiolabeled FBP30 WW-A or Fyn SH3 domain probes.

Acknowledgments—We gratefully thank Dr. Lewis C. Cantley for continued encouragement, support, and comments throughout this study, and German G. Leparc for critical reading of the manuscript and assistance with figure construction.

References

1. Kariyau, J., and Cowburn, D. (1997) Annu. Rev. Biophys. Biomol. Struct. 26, 259–288
2. Pawson, T. (1995) Nature 373, 573–580
3. Yaffe, M. B., and Cantley, L. C. (1999) Nature 402, 30–31
4. Nishimura, K., Ebel, F., Frank, R., Reinhard, M., Dommann, R., Carl, U. D., Walter, U., Gertler, F. B., Wehland, J., and Chakraborty, T. (1997) EMBO J. 16, 5433–5444
5. Ren, R., Mayer, B., Cichetti, P., and Baltimore, D. (1993) Science 259, 1157–1161
6. Sudol, M. (1996) Prog. Biophys. Mol. Biol. 65, 113–132
7. Kay, B. N., Williamson, M. P., and Sudol, M. (2000) FASEB J. 14, 231–241
8. Rentschler, S., Linn, H., Deininger, K., Bedford, M. T., Expanel, X., and Sudol, M. (1999) Biol. Chem. 380, 431–442
9. Faber, P. W., Barnes, G. T., Srinidhi, J., Chen, J., Gussella, J. F., and Macarthur, M. R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1927–1931
10. Staub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J., and Rotin, D. (1996) EMBO J. 15, 2371–2380
11. Wang, G., Yang, J., and Huibregtse, J. M. (1999) Mol. Cell. Biol. 19, 342–352
12. Craven, R. C., Hardy, R. N., Paragas, J., Palese, P., and Wise, J. W. (1999) J. Virol. 73, 3359–3365
13. Harty, R. N., Paragas, J., Sudol, M., and Palese, P. (1999) J. Virol. 73, 2921–2929
14. Wang, H. Y., Lin, W., Dyck, J. A., Yeakley, J. M., Songyang, Z., Cantley, L. C., and Xu, X. D. (1998) J. Cell Biol. 140, 737–750
15. Bedford, M. T., Reed, R., and Leder, P. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 10692–10697
16. Gavva, N. R., Gavva, R., Ermekev, K., Sudol, M., and Shen, C.-K. J. (1997) J. Biol. Chem. 272, 24105–24108
17. Yagi, R., Chen, L. P., Shiragawa, K., Murakami, Y., and Ito, Y. (1999) EMBO J. 18, 2551–2562
18. Waragai, M., Lammers, C. H., Takeuchi, S., Imafuku, I., Udagawa, Y., Kanazawa, I., Kawahata, M., Meuradain, M. A., and Okazawa, H. (1999) Hum. Mol. Genet. 8, 977–987
19. Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stuktenberg, P. T., Rahfeld, J. U., Xu, J., Kuang, J., Kirschner, M. W., Fischer, G., Cantley, L. C., and Lu, K. P. (1997) Science 278, 1957–1960
20. Shen, M., Stuktenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998) Genes Dev. 12, 706–720
21. Depraetere, V., and Golstein, P. (1999) Cell Death Differ. 6, 883–888
22. Expanel, X., and Sudol, M. (1999) J. Biol. Chem. 274, 17284–17289
23. Lu, P. J., Zhou, X. Z., Shen, M., and Lu, K. P. (1999) Science 283, 1325–1328
24. Donald, M. E. (1998) Methods Enzymol. 303, 1437–1474
25. Kapeller, P., Prasad, K. V., Janssen, O., Hou, W., Schaffhausen, B. S., Rudd, C. E., and Cantley, L. C. (1994) J. Biol. Chem. 269, 1927–1933
26. Kaelin, W. G., Jr., Krek, W., Sellers, W. R., DeCaprio, J. A., Ajchenbaum, F., Fuchs, C. S., Chittenden, T., Li, V., Farmham, P. J., Blanar, M. A., Livingston, D. M., and Flemington, E. K. (1992) Cell 70, 351–364
27. Yaffe, M. B., and Cantley, L. C. (1999) Methods Enzymol.; in press
28. Guex, N., and Peitsch, M. C. (1997) Electrophoresis 18, 2741–2723
29. Peitsch, M. C. (1996) Biochem. Soc. Trans. 24, 274–279
30. Nicholls, A., Sharp, K. A., and Honig, B. (1991) Proteins 11, 281–296
31. Kerppola, T. K. (1994) in Current Protocols in Molecular Biology (Ausbel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds) Vol. 1, p. 4.2.8, John Wiley and Sons, New York
32. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Finn, R. D., and Sonnhammer, E. L. (1999) Nucl. Acids Res. 27, 260–262
33. Linn, H., Ermekev, K. S., Rentschler, S., Sparks, A. B., Kay, B. K., and Sudol, M. T. Bedford et al., submitted for publication.
34. Chen, H. I., and Sudol, M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7819–7823
35. Chen, H. I., Einbond, A., Kwak, S.-J., Linn, H., Koepf, E., Peterson, S., Kelly, J. W., and Sudol, M. (1997) J. Biol. Chem. 272, 17070–17077
36. Ernabove, K. S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., and Sudol, M. (1997) J. Biol. Chem. 272, 32869–32877
37. Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Dulio, A., and Russo, T. (1995) J. Biol. Chem. 270, 30853–30856
38. Kumar, S., Tomooka, Y., and Noda, M. (1992) Biochem. Biophys. Res. Commun. 185, 1155–1161
39. Grabs, D., Slepnev, V. I., Songyang, Z., David, C., Lynch, M., Cantley, L. C., and De Camilli, P. (1997) J. Biol. Chem. 272, 13419–13425
40. Bedford, M. T., Chan, D. C., and Leder, P. (1997) EMBO J. 16, 2376–2383
41. Banerji, J., Sands, J., Strominger, J. L., and Spies, T. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1540–1544
42. Trompeter, H. I., Brand, I. A., and Soling, H. D. (1989) FEBS Lett. 253, 63–66
43. Macias, M. J., Hyvonen, M., Baraldi, E., Schultz, J., Sudol, M., Saraste, M., and Oshchinat, H. (1996) Nature 382, 646–649
44. Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W., and Schreiber, S. L. (1994) Cell 76, 933–945
45. Feng, S., Chen, J. K., Yu, H., Simon, J. A., and Schreiber, S. L. (1994) Science 266, 1241–1277
46. Lim, W. A., Richards, F. M., and Fox, R. O. (1994) Nature 372, 375–379
47. Alexandropoulos, K., Cheng, G., and Baltimore, D. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 3110–3114
48. Sparks, A. B., Rider, J. E., Hoffman, N. G., Fowlkes, D. M., Quillam, L. A., and Kay, B. K. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1540–1544
49. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993) Nature 362, 847–849
50. Sudol, M. (1996) Trends Biochem. Sci. 1, 161–163
51. Irustra, P. M., and DiMaio, D. (1998) EMBO J. 17, 6912–6923
52. Kanelis, V., Farrow, N. A., Kay, L. E., Rotin, D., and Forman-Kay, J. D. (1998) Biochem. Cell Biol. 76, 341–350
53. Deleted in proof
A Novel Pro-Arg Motif Recognized by WW Domains
Mark T. Bedford, Dilara Sarbassova, Jian Xu, Philip Leder and Michael B. Yaffe

J. Biol. Chem. 2000, 275:10359-10369.
doi: 10.1074/jbc.275.14.10359

Access the most updated version of this article at http://www.jbc.org/content/275/14/10359

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 52 references, 26 of which can be accessed free at http://www.jbc.org/content/275/14/10359.full.html#ref-list-1