Archaea, bacteria and termite, nitrogen fixation
and sustainable plants production

Wenli SUN1a, Mohamad H. SHAHRAJABIAN1a, Qi CHENG1,2*

1Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China; Sunwenli@caas.cn; hesamshahrajabian@gmail.com

2Hebei Agricultural University, College of Life Sciences, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQis for BioAI-Manufacturing, Baoding, Hebei 071000, China; chengqi@caas.cn (*corresponding author)

a,bThese authors contributed equally to the work

Abstract

Certain bacteria and archaea are responsible for biological nitrogen fixation. Metabolic pathways usually are common between archaea and bacteria. Diazotrophs are categorized into two main groups namely: root-nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as \textit{Azospirillum}, \textit{Cupriavidus}, and some sulfate reducing bacteria, and symbiotic diazotrophs such \textit{Rhizobium} and \textit{Frankia}. Three types of nitrogenase are iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V) or iron only (Fe). The Mo-nitrogenase have a higher specific activity which is expressed better when Molybdenum is available. The best hosts for \textit{Rhizobium leguminosarum} are \textit{Pisum}, \textit{Vicia}, \textit{Lathyrus} and \textit{Lens}; Trifolium for \textit{Rhizobium trifolii}; Phaseolus vulgaris for \textit{Rhizobium phaseoli}; Medicago, Melilotus and Trigonella for \textit{Rhizobium meliloti}; Lupinus and Ornithopus for Lupini, and \textit{Glycine max} for \textit{Rhizobium japonicum}. Termites have significant key role in soil ecology, transporting and mixing soil. Termite gut microbes supply the enzymes required to degrade plant polymers, synthesize amino acids, recycle nitrogenous waste and fix atmospheric nitrogen. The positive effects of \textit{Arbuscular mycorrhizal} (AM) fungi such as growth promotion, increased root length, leaf area, stem diameter, transplant performance and tolerance to stresses have been reported previously.

\textbf{Keywords:} Archaea; Azotobacter; bacteria; nitrogenase; nitrogen fixation; termite

Introduction

Nitrogen is a key factor in protein and nucleic acids and all organisms need nitrogen (Benavides \textit{et al.}, 2013). Moreover, nitrogen is the major limiting nutrient for plant biomass production in environment (Nardi \textit{et al.}, 2002). It is the most important parameters for the synthesis of amino acids, DNA, RNA and proteins (Fowler \textit{et al.}, 2013; Rago \textit{et al.}, 2019). Several processes such as nitrogen fixation, dissimilatory nitrate reduction to ammonia, nitrification, anammox, and denitrification carried out by microbes. Biological nitrogen fixation is called the most critical biological process in the world (Kizilkaya, 2009). Bacteria and archaea inhabit the most inhospitable environments and have unique roles in metabolic pathways and genes to cope with different environmental conditions (Smith-Moore and Grunden, 2018). They are fund inhabiting the...
rhizosphere with numerous interactions with the plant host (Odelade and Babalola, 2019). So, this review explores various unique beneficial microbes, especially archaea, bacteria, and their especial roles in the environment according to acquisition of nutrients for plant growth and improve productivity.

Nitrogen

Nitrogen (N) is a vital parameter for crop productivity (Egamberdieva and Kucharova, 2008; Broumadet et al., 2010; Soleymani et al., 2011 a,b). Nitrogen is most important limiting nutrient for crop production and plant productivity in many parts of the world (Mitchell et al., 2018; Sun et al., 2019). It is also a main part in chlorophyll as well as key parameter in amino acids and protein (Olson and Kurtz, 1982; Hammad and Ali, 2014; Kumar et al., 2017; Mahato and Kafle, 2018). One of the most important nutrient cycles in ecosystem is biological nitrogen cycle which includes four main processes, namely, nitrogen fixation, mineralization (decay), nitrification and denitrification (Mao et al., 2011; Xiao et al., 2019). The most important functional genes are *nifH*, *amoA*, and *nosZ* genes which are participate in encoding key enzymes in nitrogen fixation, ammonia oxidation and complete denitrification, respectively (Ruiz-Rueda et al., 2009; Bru et al., 2011; Orr et al., 2011). Mao et al. (2011) indicated that utilization of nitrogen fertilizer many have both short-term environmental problems, and long-term impact on the global biogeochemical cycles via altering the soil microbial community structure and abundance. The global nitrogen cycle represents the transformation of nitrogen gases and nitrogen-containing compound which consists of microbial-driven processes, such as assimilation, ammonification, nitrification, denitrification, nitrogen fixation and anaerobic oxidation (You et al., 2009).

Nitrogen fixation

Nitrogen fixation has also significant role in biochemical pathways which play an important role in controlling oceanic nitrogen inventory (Ohkuma et al., 1996; LaRoche and Breitbarth, 2005; Sylvia et al., 2005; Cotta et al., 2014). Without any doubt, nitrogen fixation is an ancient way which is essential for surviving life, and play a key role during the beginning of microbial life when abiotic nitrogen sources become scarce (Raymond et al., 2004; Gaby and Buckley, 2014). Nitrogenase plays an important part in global nitrogen cycle (Soleymani et al., 2012; Shahrajabian and Soleymani, 2017), and understanding of nitrogenase expression and regulation is important to utilize potential diazotrophs under various ecological niches to gain agricultural and environmental sustainability at the same time (Kargi and Ozmihci, 2002; Suyal et al., 2018). Nitrogen fixation is divided into two parts abiotic methods (lightning), and biotic (nitrogen fixers) to fix nitrogen to the ground. In the abiotic fixation, N$_2$ would have been oxidized with CO$_2$ by lightning, and then NO gets converted to soluble nitrosyl hydride (HNO) (Navarro-Gonzalez et al., 2011). In the Ocean, dissolved N$_2$ would have been converted into NO$_3^-$ and NO$_2^-$(Mancinelli and Mckay, 1998). Certain bacteria and archaea are responsible for biological nitrogen fixation. Although, there is large atmospheric reservoir, bioavailability of nitrogen mostly relies on biological nitrogen fixation (BNF) (Prayitno and Rolfe, 2010). Two main drivers of universal nitrogen cycling are ammonia-oxidizing bacteria (AOB), and archaea (AOA) (Long et al., 2012). Metabolic pathways usually are common between archaea and bacteria (Smith-Moore and Grunden, 2018; Odelade et al., 2019), and almost all genes involved in this process are founder under these domains (Tatusov et al., 2003). It has been found that a lone bilayer lipid which makes the cell structural formation of archaea is very close to the bacterial cell which is gram-positive within prokaryota (Makarova et al., 2001). One of the most important proteins which are common to both archaea and gram-positive bacteria are glutamine synthetase I and Hsp70 (Makarova et al., 2001; Hugenholtz, 2002; Koch, 2003). Nitrogen fixation is energetically expensive because it consumes 16 moles of ATP per mole of N fixed (Aisalbie and Deslippe, 2013). Nitrogen fixation also has been considered as the limiting factor for both crop and natural ecosystem productivity which has shown scholars the importance of this process in agricultural system (Dixon and Kahn, 2004). Relying on chemical fertilizer,
especially nitrogen may lead to both serious health issues and environmental concern (Shahrajabian et al., 2011; Soleymani and Shahrajabian, 2012). Nitrogenase is an ATP-hydrolyzing, redox-active complex of two component proteins, the dinitrogen reductase γ and homodimer (NifH protein), and the dinitroge αβ heterotetramer, where α is NifD, and β is NifK proteins (Raymond et al., 2004). The molybdenum nitrogenase is an oxygen sensitive complex dinitrogenase (NifDK heterotetramer), and dinitrogen reductase (NifH homodimer) (Ortiz-Marquez et al., 2014). MoFe-S₇ metal cluster is the active site for dinitrogen reduction for α, however, is some organisms Mo is replaced by either Fe or V, which is called Anf and Vnf, respectively instead of Nif (Raymond et al., 2004). It has been reported that FeMo nitrogenase has been recognized to be more efficient in binding dinitrogen and reducing it to ammonia compare with alternative nitrogenase (Nif>Vnf>anf) (Joeger and Bishop, 1988; Miller and Eady, 1988). Via the enzyme nitrogenase, microorganisms catalyze nitrogen fixation, which has been highly conserved throughout evolution (Hrynkieicz et al., 2019). All Nfixers carry the nif(nitrogen fixation) genes, which encoded the nitrogenase complex (Argandona et al., 2005). Nitrogenase is definitely sensitive to oxygen, which is why a specific oxygen barrier is formed around the infected cells by a cell layer which may reduce oxygen level in nodule cortex (Ribeiro et al., 2015). Keshri et al. (2013) also reported that the key functional genes namely cbbL, nifH, amoA, and apsA involved in various nutrient cycling. The genes which encoding of enzymes in nitrification process are ammonium monoxygenase (amo), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductase (nar), whereas those that conduct denitrification consist of nitrate reductases (nirK, nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ) (Brauman et al., 2015). The genes which are most commonly used as functional markers to assess both the nitrification and denitrification processes are amo, nifK, nirS and nosZ (Levy-Booth et al., 2014). The nif operon includes the nitrogenase structural gene nifH1, which has been sequenced to provide a large database from different environments (Zehr et al., 2003; Argandona et al., 2005). The additional of external organic matter provides a good source of energy and nutrients to support growth, because many of the microorganisms participating in N₂ fixation are heterotrophic or mixotrophic (Rahav et al., 2016; Tang et al., 2017). Also, nifH has been used as a molecular marker to determine diazotroph indices, which encodes a nitrogenase iron protein (Che et al., 2018; Chen et al., 2019). The characterization of diazotroph communities by nifH genes could be a potential indirect approach to the assessment of levels of biological N fixation in soils (Reardon et al., 2014). Tsøy et al. (2016) stated that in most nitrogen-fixing bacteria NifA is the master regulator of nitrogen fixation as it works in relationship with the RNA-polymerase sigma factor RpoN (Sullivan et al., 2002; Sciotti et al., 2003). Both phosphorus (P) deficiency and potassium (K) deficiency resulted in significant decreases in nifH gene expression and N₂-fixation activity, and P deficiency exhibited more restricted impacts (Tang et al., 2017). Dinitrogen reductase (azoferredoxin), and dinitrogenase (molybdoferredoxin) are two principal subunits of the nitrogenase complex (Hageman and Burris, 1978), and Nif (nitrogen fixing) proteins NifH (γ-homodimeric azoferredoxin), and NifD/K (αβ heterotetramericmolybdoferredoxin) are the structural components of these subunits (Kneip et al., 2007). Three types of nitrogenase are iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V) or iron only (Fe) (Bishop et al., 1986; Chisnell et al., 1988; Bishop and Premakumar, 1992). The Mo-nitrogenase has a higher specific activity which is expressed better when Mo is available (Eady, 2003; Betancourt et al., 2008). Although, all bacteria which have role in nitrogen fixation possess the Mo-nitrogenase, but just some of them have the genes for the V- and Fe-nitrogenase or both (Bellenger et al., 2014). Tsøy et al. (2016) noted that all known nitrogenases need a FeS-cluster and some other metal-dependent cofactors for transduction. The most common metal-dependent cofactor is the molybdenum-dependent nitrogenase which is encoded by the nifHDK genes (Barns et al., 1996; Sabra et al., 2000; Kneip et al., 2007; Boyd and Peters, 2013; Offre et al., 2013; Ulyshen, 2015). Other notable nitrogenases are vanadium- and iron-dependent nitrogenases encoded by the vnfHDK and antHDK genes, respectively (Rehder, 2000; Herridge et al., 2008; Seefeldt et al., 2009; Hartmann and Barnum, 2010). There are different ways of nitrogen fixing from unavailable gaseous forms in the atmosphere to usable forms for plants and other organisms.
Diazotrophs are categorized into two main groups namely: root-nodule bacteria and plant growth-promoting rhizobacteria (PGPR). Root-nodule bacteria consist of rhizobia and Frankia. Rhizobia which include alpha- and betaproteobacteria enter into a symbiotic association with legumes and Frankia with actinorhizal plants. Some other plants develop endosymbiotic interactions with nitrogen-fixing cyanobacteria (Nostoc). PGPRs consist of proteobacteria (alpha-, beta-, and gammaproteobacteria), actinobacteria, bacilli, and cyanobacteria (Chain et al., 2003; Papineau et al., 2005; Kneip et al., 2007; Philippot et al., 2007; Shridhar, 2012; Mus et al., 2016). The oxidation of ammonia is done by ammonia oxidizers (both archaea and bacteria), and the nitrite produced is finally oxidized by nitrite-oxidizing bacteria. In bacteria, ammonia is oxidized to nitrite via the intermediate hydroxylamine and the enzyme hydroxylamine oxidoreductase (HAO). Functional characterization of upregulated and downregulated selected proteins during low temperature N depletion is shown in Table 1. Homologs of the nifH is indicted in Table 2.

Table 1. Functional characterization of upregulated and downregulated selected proteins during low temperature N depletion condition by *Pseudomonas palleroniana*N26 as revealed by LC-MS/MS analysis (Suyal et al., 2018)

Genes	Proteins	Biological functions
nifA	Nitrogenase iron protein	Nitrogen fixation
nifA	*nif*-specific regulatory protein	Activation of most *nif* operons
nifL	Nitrogen fixation regulatory protein	Regulation of nitrogen fixation
nifB	FeMo cofactor biosynthesis protein	Biosynthesis of the iron-molybdenum cofactor
nifD	Nitrogenase molybdenum-iron protein	Nitrogen fixation
nifK	Nitrogenase molybdenum-iron protein	Nitrogen fixation
nirS	Nitrite reductase	Nitrite reduction
hemE	Uroporphyrinogen decarboxylase	Porphyrin biosynthesis
guaA	GMP synthase	Purine biosynthesis
pyrG	CTP synthase	Glutamine metabolic process
polA	DNA polymerase I	DNA replication
pheT	Phenylalanine-tRNA ligase beta subunit	Phenylalanyl-tRNA aminoacylation
groEL	60 kDa Dachperonin	Protein refolding
gyrB	DNA gyrase subunit B	DNA topological change
rplE	50S ribosomal protein L1	Ribosomal large subunit assembly
rpsF	30S ribosomal protein S6	Translation
secA	Protein translocase subunit SecA	Protein transport
Table 2. Homologs of the nifH gene can be divided into five main phylogenetic clusters

Cluster	Description
I	Contains a diverse group of nifH genes primarily from aerobic and facultatively anaerobic organisms which belong to phyla including Proeobacteria, Cyanobacteria, Firmicutes and Actinobacteria (Chien and Zinder, 1994)
II	Contains nifH genes that are almost exclusively found in obligate anaerobes including methanogenic Archaea, Treponema, Clostridium and sulfate-reducing and sulfur-reducing species of Deltaproteobacteria (Chien and Zinder, 1994)
III	Contains nifH genes that are almost exclusively found in obligate anaerobes including methanogenic Archaea, Treponema, Clostridium and sulfate-reducing and sulfur-reducing species of Deltaproteobacteria (Chien and Zinder, 1994)
IV, V	Contain paralogous genes which do not participate in nitrogen fixation (Souillard et al., 1988; Fujia et al., 1992; Raymond et al., 2004; Nomata et al., 2006; Staples et al., 2007).

Diazotrophs

Diazotrophs have a vital role in fixing atmospheric nitrogen (N) in terrestrial ecosystems (Koskey et al., 2017; Wang et al., 2017; Xiao et al., 2020). The estimate areas of biological nitrogen fixation and related factors controlling BNF is done by diazotrophic distribution (Ratten et al., 2015; Lin et al., 2018; Yang et al., 2019), which contributes to the sustainability of agricultural ecosystems (Reed et al., 2011). Diazotrophic community structure and diversity also mostly correlated with soil pH (Feng et al., 2018). Mosiander et al. (2012) showed that the free-living diazotrophs contributing to nitrogen fixation changes considerably and is mostly dependent on the soil nitrogen content. Diazotrophs are highly diverse and include members of α-, β-, and δ-Proteobacteria, Firmicutes, Cyanobacteria, and Archaea (Rosch et al., 2002; Reardon et al., 2014). Diazotrophs include free living bacteria, such as Azospirillum, Cupriavidus, and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia (Knoth et al., 2013; Sellstedt and Richau, 2013; Yin et al., 2018). Dixon and Kahn (2004) found that diazotrophs are found in a broad diversity of habitats: free-living in water and soil, symbiotic association in termite guts, associative symbioses with grasses, cyanobacterial symbioses with different plants, actinorhizal relationship with woody plants, and root-nodule symbioses with legumes. Biological nitrogen fixation by diaotrophic bacteria in seagrass rhisosphere and leaf epiphytic community is also another considerable source of this process (Hemmina and Duarte, 2000; Welsh, 2000; Lee et al., 2007; Garcias-Bonet et al., 2016). Nitrogen fixing plants can provide diverse impacts on diazotrophs under both nitrogen limitation or saturation (Biswa and Gresshoff, 2014; Xiao et al., 2020). A range of diazotrophic plant growth-promoting rhizobacteria which meaningfully boost the vegetative growth and final grain yield, participate in interactions with C₃ and C₄ crop plants such as rice, wheat, maize, sugarcane and cotton (Kennedy et al., 2004). The combination of intracellular symbiotic nitrogen fixation, may lead to increase rates of photosynthesis and presence of supplementary plant growth factors in cereals and other non-
legumes (Evans, 1983; Gillis et al., 1989; Fuentes-Ramirez et al., 1993; Sevilla et al., 2001; Momose et al., 2013; Dent and Cocking, 2017). Xiao et al. (2020) concluded that diazotroph abundance may respond to differences in the density with leguminous plants. Ke et al. (2019) revealed that soil compartment and different inoculation treatments were the main factors affecting the distribution of the diazotrophic community. Pereira et al. (2013) noted that two important parameters which may affect diazotroph communities are temperature and soil moisture in different seasons. Che et al. (2018) also noted that among all environmental factors, the soil moisture, organic carbon, available phosphorus, and inorganic nitrogen contents could be the main drivers of diazotroph distribution. Agronomic practices may also have impact on soil diazotrophs, such as application of nitrogen fertilizer which may reduce the diversity of diazotrophs (Tan et al., 2003). It has been reported that nitrogen supply is closely connected to soil diazotrophs, which shows the nitrogen supply capacity of soil (Dixon and Kahn, 2004; Reed et al., 2011). Chen et al. (2014) showed that the unicellular diazotrophs are important N$_2$ fixers and contributed significantly to N$_2$ fixation in the tropical marginal seas. Chen et al. (2019) also confirmed that diazotrophic activity of heterotrophic Proteobacteria should be considered as an important part of nitrogen cycle in oceanic systems. Trichodesmium spp. and diatom-symbiotic Calothrix rhizosoleniae and Richelia intracellularis are important marine diazotrophs (Capone et al., 1997; Gomez et al., 2005), and it is believed that most of the biological nitrogen fixation in the ocean is performed by them (Foster et al., 2007; Shiozaki et al., 2014). The best hosts for Rhizobium leguminosarum are pismum, vicia, lathyrus and lens; Trifolium for R. trifolii, Phascolosus vulgaris, P. angustifolia for R. phaseoli; Medicago, Melilotus and Trigonella for R. meliloti; Lupinus and Ornithus for Lupini, and Glycine max for R. japonicum. LaRoche and Breithbarth (2005) found that Tricho SEMium is one of the superior marine diazotrophs. Microbial domains comparisons are indicated in Table 3.

Table 3. Microbial domains comparisons (Wang et al., 2007)

Property	Bacteria	Archaea	Fungi
Cell membrane	Made up of peptidoglycan and lipids are linked via ester molecule	Made up of pseudo-peptidoglycan and lipids are linked via ether molecule	Made up of different structures and lipids are linked via ester molecule
Gene structure and configuration	Chromosomes are circular, translation and transcription are unique	Chromosomes are circular, translation and transcription are similar to eukaryotes (fungi)	Chromosomes are multiple and linear, translation and transcription are similar to archaea
Structure of internal cell	The nucleus or organelles has no membrane bound	The nucleus or organelles has no membrane bound	There is membrane bound nucleus and organelles
Metabolic reaction	There are several, including aerobic and anaerobic respiration, photosynthetic, autotrophic reactions and fermentation	There are several with methanogenic reaction specifically unique to this domain	Cellular respiration, fermentation and photosynthetic reaction
Reproduction	Reproduction is asexual and transfer of genes is horizontal	Reproduction is asexual and transfer of genes is horizontal	Reproduction is sexual and asexual

Free-living and symbiotic nitrogen fixing bacteria are a) archaee which have two divisions, methanosarcinales, and methanobacteriales, b) bacteria which consists of divisions namely cyanobacteria, actinobacteria, proteobacteria, firmicutes (Clostridia), bacteroidetes/chlorobiales, spirochaetales and chloroflexi (Kniepit et al., 2007). Phylogenetic affinities of symbiotic and non-symbiotic nitrogen fixing bacteria. Azotobacter species (Azotobacter vinelandii and A. chroococcum) are free-living, aerobic heterotrophic diazotrophs that rely on an adequate supply of reduced C compounds like sugars for energy (Kennedy et al., 2004). Azospirillum species aerobic heterotrophs that fix N$_2$ under microaerobic conditions (Roper and Ladha,1995), which grow widely in the rhizosphere of gramineous plants (Kennedy and Tchan, 1992). Acetobacter (Gluconacetobacter) diazotrophicus is an acid-tolerant endophyte which grows best on sucrose-
rich medium (James et al., 1994). Azorhizobium caulinodans increased the dry weight and N content of wheat plants in a green house experiment (Matthews et al., 2001). Herbaspirillum is an endophyte which colonises sugarcane, rice, maize, sorghum and other cereals (James et al., 2000). Biology and potential role of some diazotrophs are shown in Table 4.

Table 4. Biology and potential role of some diazotrophs promoting crop production (Kenndey et al., 2004)

Diazotrophs	Condition for BNF	Habitat	Energy source	Mechanism of effect
A. chroococcum	Aerobic	Rhizosphere	Organics in soil	BNF
Clostridium spp.	Anaerobic	Soil saprophyte	Organics in soil	BNF
Azospirillum spp.	Microaerobic	Rhizosphere, mildly Endophytic in roots, stems and leaves	Organics in soil, root exudates and plant tissue	BNF, PGP
H. seropedicae	Microaerobic	Endophytic, rhizosphere	Root exudates	BNF, PGP
Azoarcus sp.	Microaerobic	Endophytic	Root exudates	BNF
A. vietnamiensis	-	Rhizosphere, endophytic	Organics in soil and root exudates	BNF, PGP
R. leguminosarum bv. Trifolii	-	Endophytic in roots	Root exudates	PGP
R. etlibv. phaseoli	-	Endophytic in roots	Root exudates	PGP
A. caulinodans	Microaerobic	Endophytic in roots	Root exudates	PGP
A. diazotrophicus	Microaerobic	Endophytic in roots, stems and leaves	Root exudates and plant tissue	BNF

BNF, Biological nitrogen fixation; PGP, plant growth promotion.

Termites

Termites are insects belonging to the order Isoptera (Gomathi et al., 2018). Termites often divided into two broad classes, a) those that nest in and feed on a single source of dead plant material such as felled dead wood for the whole lifespan of the colony, and those that forage outside the nest (Higashi et al., 1992; Tokuda et al., 2012; Sapountzis et al., 2016). Soil-feeding species are able to feed on nitrogenous soil components such as peptides, proteins and amino acid (Kappler and Brune, 2000; Brune, 2001), while wood-feeding termites can thrive on nutrient-poor materials (Tayasu et al., 1994). It has been reported that the soil organic matter in the termitosphere is significantly more stable and protected from the intense mineralization compared to the control soil (Brauman, 2000). Unlike reported results, Majeed et al. (2012) found that wood-feeding termites were able to take up atmospheric N\textsubscript{2}O. Symbiotic nitrogen (N\textsubscript{2}) fixation occurs in a wide variety of trees, and the endosymbionts in legume trees and in the non-legume genus Parasponia (Ulmaceae) are rhizobia (Sprent and Parsons, 2000). Wood-eating termites feed on a diet highly deficient in nitrogen (Frohlich et al., 2007). Curtis and Waller (1998) deduced that termites nitrogenase activity was highest in autumn and spring. Ulyshen (2015) found that by accelerating the release of nutrients immobilized in fungal tissues and promoting N\textsubscript{2} fixation by free-living and endosymbiotic prokaryotes, saproxylic insects have potential to influence N dynamic in forests. Termites have been used as a biological pointer to evaluate both quality and fertility of soil, because of their important role in nitrogen fixation, methanogenesis, soil transportation, nutrient circulation and acetogenesis (Dawes, 2010; Brauman et al., 2015; Enagbonma and Babalola, 2019). They have been also known as gold mine of bacterial communities (Benndorf et al., 2018; Devi and Thakur, 2018; Kumar et al., 2018; Enagbonma and Babalola, 2019). N\textsubscript{2}-fixing activity has been showed in the termite gut, because wood-feeding termites must supplement their food with nitrogen (Breznake et al., 1973; French et al., 1976; Bentley, 1984). It could be accomplished with the aid of nitrogen-fixing bacterial isolates, such as Enterobacter, Desulfovibrio, and Treponema species (Breznak et al., 1973; Kuhnigk et al., 1996; Lilburn et al., 2001).
Table 5. Examples of timber producing nitrogen fixing legume trees (Allen and Allen, 1981)

Species	Some uses
Caesalpinioideae	
Melanoxylon brauna	Construction; tannin
Erythrophleum suaveolens	Construction; charcoal
Campsiandra laurifolia	Construction; starch (seeds); medicinal
Mimosoideae	
Acacia senegal	Tools; charcoal; gum Arabic; fodder
Albizia lebbeck	Construction; shade; fodder
Anadenanthera colubrine	Construction; gum; hallucinogenic drugs
Enterolobium cyclocarpum	Construction; tannin (pods); soap; drugs
Papilionoideae	
Andira inermis	Construction; ornament; shade; drugs
Hymenolobium excelsum	Construction
Robinia pseudoacacia	Construction; toxins; reclamation
Swartzia madagascariensis	Construction; fodder
Xantherocercis madagascariensis	Construction; edible fruit

Termite gut microbes supply the enzymes required to degrade plant polymers, synthesize amino acids, recycle nitrogenous waste and fix atmospheric nitrogen (N_2) (Bignell, 2000; Brune and Ohkuma, 2010; Sapountzis et al., 2016). It has been reported that termites depend on a range of microflora in their guts to promote digestion of the plant material (Gomathi et al., 2018). Sprent and Parsons (2000) found that the success depends on both their ability to fix N_2 symbiotically, but also on a range of other adaptations as well as flooding and drought tolerance, mycorrhizal formation, cluster root production and herbivore defenses. Fall et al. (2001) showed that termite mound soil has nearly more than two times calcium and phosphorus, and approximately five times carbon and nitrogen, as well as 50 times ammonia and organic matter than other soil experiments. *Microtermes, Nasutitermes,* and *Macrotermes* are main termites of forest vegetation (Gomathi et al., 2018). Some examples of timber producing nitrogen fixing legume trees are shown in Table 5. Examples of non-nodulated legumes used for timber are shown in Table 6. N_2 (C_2H_2) fixation in termites is presented in Table 7. N_2 (C_2H_2) fixation in other insects is indicated in Table 8.

Table 6. Examples of non-nodulated legumes used for timber (Sprent and Parsons, 2000)

Species	Some uses
Caesalpinioideae	
Caesalpinia echinata	Construction; dyes
Gleditsia triacanthos	Construction (local); fodder, drugs
Parkinsonia aculeata	Carving; fodder; ornamental
Mimosoideae	
Adenanthera pavonina	Construction; jewelry (seeds); drugs
Parkia biglobosa	Construction; food; fodder
Tetrapleura tetraptera	Construction; food; drugs
Papilionoideae	
Dipteryx odorata	Construction; food; gum
Vataria guianensis	Construction (local); drugs
Zollernia falcata	Construction; drugs; tannins
Table 7. $N_2 (C_2H_2)$ fixation in termites (Mertins, 1973)

Termite	Caste	Diet
Coptotermes formosanus	Worker	Wood (colony)
	Soldier	Wood (colony)
Reticulitermes flavipes	Worker	Wood (colony)
	Soldier	Wood (colony)
Zootermopsis sp.	Reproductive nymphs and workers	Wood (colony)
Cryptotermes brevis	Reproductive nymphs	Moist filter paper (12h)

Table 8. $N_2 (C_2H_2)$ fixation in other insects (Mertins, 1973)

Insect	Common name
Acyrthosiphon pisum	Pea aphid
Attagenus megatoma	Black carpet beetle
Blattella germanica	German cockroach
Camponotus sp.	Carpenter ant
Dermestes maculates	Spider beetle
Drosophila melanogaster	Fruit fly
Lasioderma serricorne	Cigarette beetle
Mezium americanum (adults and larvae)	Spider beetle
Musca domestica	House fly
Oncopeltus fasciatus	Milkweed bug
Periplaneta americana	American cockroach
Rhyzopertha dominica	Lesser grain borer
Tenebrio molitor (Larvae)	Yellow mealworm
Tribolium confusum	Confused flour beetle
Trogoderma inclusum	Large cabinet beetle

N_2 fixing bacteria, especially members of *Clostridia*, *Spirochaetes* and gram-negative *proteobacteria* including members of genera *Desulfovibrio*, *Enterobacter* and *Rhizobia* have a large phylogenic diversity of nitrogenase reductase ($nifH$) genes in xylophagous termite guts (Breznak, 2002; Frohlich et al., 2007; Ngugi and Brune, 2011). The termite gut is ideal for denitrification activities such as N_2O to N_2 (Braker, 2011), because its gut constitutes a specific microhabitat with both physical and chemical conditions like an alkaline pH with oxygen and hydrogen gradients (Brune et al., 1995). Garba et al. (2011) found that the soil amended with termite mound soils resulted in better plant height, as well as an increase in leave number, fruits, and dry matter than those plants grown on unamended soil in fields under the cultivation of *Solanum lycopersicum*. Miyagawa et al. (2011) concluded that termite improved the growth of *Oryza sativa* L., and *Phaseolus vulgaris* L. Batalha et al. (1995) noted that combined use of 200 g of *termite mound material with NPK led to a substantial increase in *Solanum melongena* production. Watson (1977) reported that *Lolium perenne* gave higher dry-matter yields with substrates derived from termite mounds than the comparable soil. Bama and Ravindran (2018) concluded that combined use of termite mound materials and inorganic fertilization significantly increase the Zea mays growth and yield. Kisa et al. (2006) showed that termite mound materials consisting of *Pseudomonas monteilii* species enhanced the *ectomycorrhizal* development between *Acacia holosericea* and *Scleroderma dictyosporum*. Suzuku et al. (2007) observed that combining sandy soil with termite mound materials at a proportion of 120 Mg/ha improved porosity and transformed the pore size distribution, thus causing a stepping up in the obtainable water content for the crop growth.
Archaea

Soils in all terrestrial ecosystems are habitat of broad diversity of bacteria, archaea, fungi, annelids, insects as well as plants and algae. Archea is the smallest independently living, single-celled organisms on the earth, and it requires carbon to provide the building blocks for cell materials, as archaeae are distributed in many environments such as soil (Aislabie and Deslippe, 2013). Archea was considered as extremophile bacteria until it was introduced as the third domain of life by Woese and Fox (1977). Archaea plays an important impact in the global geochemical cycles in the world, because it constitutes a principle proportion of the microbial biomass (Offre et al., 2013). The methanogenic Archaea bring a broadened viewpoint to the field of nitrogen fixation, and at least which also found in diazotrophic methanogens present in Bacteria (\textit{heiH}, D, K, E, N and \textit{X}), besides, most nitrogenase in methanogens are belong to the molybdenum type (Leigh, 2000). The Archea differences with bacteria are in having isoprene lipids conjugated by ether bonds to glycerol-1-phosphate in their membranes, they lack peptidoglycan in their cell walls, and also their informational proteins are more similar to eukaryotes than to bacteria (Spang et al., 2017). Zhao et al. (2020) concluded that the functional genes of the archaeal community were mostly involved in nitrogen cycles, and it has principal role in biological soil cruts. The most important soil microbes’ roles in soil ecosystems are physical support, raw materials, growth medium for plants, buffering water flows, nutrient cycling, recycling of wastes and detoxification, filtering of contaminants, habitat for biodiversity, biological control of pests, weeds and pathogens, carbon storage and regulation of green house gas emissions (Dominati et al., 2010). The reduction of atmospheric nitrogen gas to ammonium just happened by existence of bacteria and archaea (Aislabie and Deslippe, 2013). Three kingdoms of Archaea on the basis of phylogenetically divisions are presented in Table 9. Nitrogen fixing species in the Archaea is shown in Table 10. General characteristics of methanogenic Archaea are shown in Table 11. Distribution and phylogenetic affiliation of nonextremophilic Archaea is shown in Table 12.
Table 9. Three kingdoms of Archaea on the basis of phylogenetically divisions (Barns et al., 1996; Luo and Wasserfallen, 2001; Reysenbach et al., 2000)

Kingdom	Description
1 - Crenarchaeota	Mostly hyperthermophiles including hyperthermophilic genera Thermoproteus and Pyrodictium as well as thermoacidophilic genera Sulfolobus, Acidianus and Desulfurococcus.
2 - Euryarchaeota	Phenotypically more diverse collection of microorganisms including hyperthermophilic genera Thermoplasma, Thermococcus and the sulfate-reducing Archaeoglobus, the extreme halophiles, the strictly anaerobic methanogens.
3 - Korarchaeota	Momentarily represented by several, as yet uncultured species.

Table 10. Nitrogen fixing species in the Archaea (Leigh, 2000)

Domain	Species
Methanococcales	Methanococcus thermolithotrophicus
	Methanococcus maripaludis
Methanomicrobiales	Methanosarcina barkeri
Methanobacteriales	Methanospirillum hungatei
	Methanobacterium bryantii

Table 11. General characteristics of methanogenic Archaea

Order	Genus	Morphology	Substrates	Temperature (°C)
Methanobacteriales	Methanobacterium	Long rods	H₂+CO₂, formate	35-40
	Methanobrevibacter	Short rods	H₂+CO₂, formate	30-38
	Methanosaphaera	Cocci	Methanol+H₂ (both needed)	36-40
	Methanothermus	Rods	H₂+CO₂	83-88
Methanococcales	Methanococcus (medophilic sp.)	Irregular cocci	H₂+CO₂, pyruvate+CO₂, formate	35-40
	Methanococcus (thermophilic sp.)	Irregular cocci	H₂+CO₂	88
Methanomicrobiales	Methanomicrobium	Short rods	H₂+CO₂, formate	40
	Methanogenium	Irregular cocci	H₂+CO₂, formate	30-57
	Methanospirillum	Spirilla	H₂+CO₂, formate	30-40
	Methanoplanus	Plate-shaped cells	H₂+CO₂, formate	32-40
	Methanoculleus	Coccus	H₂+CO₂, formate	37-60
Methanosarcinales	Methanosarcina	Large irregular cocci in packets	H₂+CO₂, methanol, methylamines, acetate	35-50
	Methanolobus	Irregular cocci in aggregates	Methanol, methylamines	30-40
	Methanohalobium	Irregular cocci	Methanol, methylamines	50
	Methanococcoides	Irregular cocci	Methanol, methylamines	23-35
	Methanohalophilus	Irregular cocci	Methanol, methylamines, methyl sulfides	26-36
	Methanothrix	Long rods to filaments	Acetate	35-60
Methanopyrales	Methanopyrus	Rods in chains	H₂+CO₂	100
Table 12. Distribution and phylogenetic affiliation of nonextremophilic Archaea

Distribution	Phylogenetic affiliation
Marine Habitats	
Surface and deep waters (up to 3000 m)	Crenarchaeota, Euryarchaeota
Temperate coastal sediments (12 m)	Crenarchaeota, Euryarchaeota
Low-temperature deep-sea sediments (1500 to 4500 m)	Crenarchaeota, Euryarchaeota
Temperate microbial mats at deep-sea hydrothermal vent	Crenarchaeota, Euryarchaeota
Antarctic low-temperature surface waters	Crenarchaeota, Euryarchaeota
Salt marsh	Euryarchaeota
Associated with Marine Metazoans	
Gut of abyssal holothurians **Oneirophantamutilabits** (4870 m)	Crenarchaeota
Digestive tract of fish	Crenarchaeota, Euryarchaeota
Tissues of sponge Axinella Mexicana (10-20 m)	Crenarchaeon, **Crenarchaeota symbiosum**
Freshwater Habitats	
Lake sediments	Crenarchaeota, Euryarchaeota
Terrestrial Habitats	
Soils	Crenarchaeota, Euryarchaeota
Subsurface paleosol (188 m)	Crenarchaeota
Contaminated aquifer	Crenarchaeota, Euryarchaeota
Rice roots	Crenarchaeota, Euryarchaeota

Fungi

The legumes-Rhizobium symbiosis is the most efficacious system for nitrogen fixation, the bacteria will interact with leguminous plant in the host specific way and form nitrogen fixing root bacteria (Volpin and Kapunik, 1994; de Faria _et al._, 2010). The positive effects of Arbuscular mycorrhizal (AM) fungi such as growth promotion, increased root length, leaf area, stem diameter, transplant performance and tolerance to stresses have been reported previously (Gohre and Pazkowski, 2006; Guether _et al._, 2009; Kafkas and Ortas, 2009; Sharma _et al._, 2009; Kiers _et al._, 2011; Sharma _et al._, 2011; Sharma _et al._, 2012). AM fungi are vital in ecological agriculture, and they generally characterized by short life cycles of arbuscules and also frequent and rapid colonization of new roots and the emergence of vesicles in the oldest colonizing units (Alexander _et al._, 1988; Smith and Read, 1997; Azcon-Aguilar _et al._, 2002; Singh and Adholeya, 2004). Volpin and Kalpunik (1994) described that *Glycine max*, *Pisum sativum*, *Medicago sativa*, *Cicer arietinum*, *Psophocarpus tetragonolobus* inoculated with *Azospirillum* and *Rhizobium* showed increase in early nodulation, enhancement nodule on main root, total nodule number, nodule weight and nodule specific activity in nitrogen fixation process. Ingraffia _et al._ (2019) proved the role of *Arbuscular mycorrhizal* fungi (AMF) in driving biological interactions amongst neighboring plants as they are obligate soil biotrophs (Guisande-Collazo _et al._, 2016). Two main endosymbioses for legume plants are a) with soil fungi, forming phosphorus acquiring arbuscular mycorrhiza, and b) with nitrogen-fixing bacteria leading to the formation of nitrogen-fixing root nodules (Manchanda and Garg, 2007). One of the most characteristic of mycorrhizal symbiosis is improving root nodulation and N₂ fixation by boosting the uptake of main nutrients or affecting legume-Rhizobium symbiosis (Barea _et al._, 2005; Saia _et al._, 2014), and of course its significant influence on biological nitrogen fixation (Puschel _et al._, 2017). Xie _et al._ (2019) showed that *P. liquidambaris* promotes peanut nodulation and nitrogen fixation which is useful in building a sustainable agricultural system. Veselaj _et al._ (2018) concluded that the combination of application of *Rhizobium leguminosarum* and *arbuscular mycorrhizae* fungi is a sustain way to provide a
significantly higher yield for non-saline plants. Bauer et al. (2012) found the importance of soil microbial communities because of impact of AMF and N\textsubscript{2}-fixers on both community structure and crop productivity.

Azotobacter

The Azotobacteriaceae consists of two genera which is *Azomonas* sp. and *Azobacter* sp. Azotobacter has significant roles in availability of some nutrients like Nitrogen, Phosphorus, Sulphur and carbon via boosting mineralization of organic residues (Fekete et al., 1989; Levaet al., 2008; Rojas-Tapias et al., 2013). *Azotobacter* genus belongs to the γ-subclass of the *Proteobacteria* (Tchan and New, 1984; Becking, 2004) which constitutes seven species namely, *A. chroococcum*, *A. vinelandii*, *A. beijerinckii*, *A. pastalii*, *A. armeniacus*, *A. nigricans*, and *A. salinestri* (Jimenez et al., 2011). *A. chroococcum* is the most inhabiting various soils (Balandreau, 1986; Tchan and New, 1984; Dobereiner, 1995; Martyniuk and Martyniuk, 2003). These free-living aerobic bacteria found in soils dominantly, and its populations influenced by soil physico-chemical such as organic matter, pH, temperature, soil moisture and depth and also microbiological interactions (Kizilkaya, 2009; Chowdhury-Paul et al., 2018; Nag et al., 2018). It is able to fix at least 10 mg N per gram of carbohydrate, and although, it is an obligate aerobic bacterium, is can grow under low O\textsubscript{2} (Tejera et al., 2005).

It has been reported that *Azotobacter* are much available in the rhizosphere of plants than in surrounding soil, and this abundance mostly depends of crop species (Sariv and Ragoviv, 1963; Garg et al., 2001; Aquilanti et al., 2004; Jnawali et al., 2015; Inomura et al., 2017; Rodrigues et al., 2018). Several studies have shown the microbial secretion of stimulating hormones, like auxins, cytokinins and gibberellins (Azcon and Barea, 1975; Martinez Toledo et al., 1989; Salmeron et al., 1990; Gonzales-Lopez et al., 1991). Azotobacter also benefit soil fertility by reducing the toxic level of soil accumulated phenolic acids (Gauri et al., 2012). Like *A. pastalii* which can be found just in the rhizosphere of a grass (*Paspalum notatum*), the occurrence of other Azotobacter species in more restricted in the environment (Tchan and New, 1984; Dobereiner, 1995). It was first described by Dobereiner and Pedrosa (1975). The increase in final yield of maize by *Azotobacter* inoculation because of nitrogen fixation has been reported (Mrkovacki and Milic, 2001; Wani et al., 2013).

Table 13. Azotobacteriaceae classification

Azotobacteriaceae	
Azomonas sp. (non-cyst forming)	*A. sagilis*
	A. insignis
	A. macrocytogenes
Azobacter sp. (cyst forming)	*A. chroococcum*
	A. vinelandii
	A. beijerinckii
	A. nigricans
	A. armeniacus
	A. pastalii

Azotobacter vinelandii is a gram-negative bacterium, capable of fixing nitrogen in various environments (Sadoff, 1975), and it used to consider as a model for different studies such as biochemical physiology and genetics (Dixon and Kahn, 2004; Yu and Ullrich, 2018). It is known to produce alginate under aerobic environment (Jarman, 1979; Horan et al., 1981; Annison and Couperwhite, 1986; Clementi, 1997; McRose et al., 2019). *A. vinelandii* showed nearly constant respiration rates and insignificant decreases in nitrogen activity, even when O\textsubscript{2} concentrations ranging from 30 to 100% air saturation (Post et al., 1983; Boiardi, 1994; Liu et al., 2004). Sabra et al. (2000) suggested that the production of alginate, mainly capsule on the cell surface,
forms a productive barrier for O$_2$ transfer into the cell. Several studies have showed that *Azotobacter* strains could increase seed germination and primarily seedling growth (Shino Suzuki et al., 2002; Gholamiet al., 2009). *Azotobacter* sp. produces chemical substances which have been similar Gibberelic acid (GA$_3$), and 3-indole acetic acid (IAA) (Sivaskthi et al., 2017). Martinez-Toledo et al. (1985) reported that in natural habitats, where crop plants are not influenced by nitrogen stress, *A. chroococcum* could be of the main importance in production of stimulatory factors. Kizilkaya (2008) introduced *A. chroococcum* strains as the key way to achieve sustainable agricultural production of spring wheat. The important and effects of *A. chroococcum* strains and AM fungi on host plants have been reported in previous researches (Savenkova et al., 1999; Kumar et al., 2006; Sharma and Kumar, 2008; Kumar and Sharma, 2009; Sharma et al., 2012; Dutt et al., 2013a,b; Khudhur and Askar, 2013; Sharma et al., 2014; Velmourougane et al., 2019). It has been proved that *A. chroococcum* has been found to be the most efficacious in nitrogen fixing and also in phytohormone production (IAA) (Ravikumar et al., 2004). Romero-Perdomo et al. (2017) proved that *Azotobacter chroococcum* AC1 and AC10 showed a viable alternative to improve final cotton yield as well as lowering the nitrogen fertilizer dose and let to reduce the environmental deterioration connected with nitrogen pollution. Din et al. (2019) found that *Aspergillus niger* (*A. niger*) and *Azotobacter* may replace expensive and harmful chemical fertilizers with both eco-friendly and cost-effective biofertilizers. Mittal et al. (2011) reported that great benefits of *A. chroococcum* in nitrogen fixing for cotton crops in arid and semi-arid tropical regions. Aminpanah and Firouzi (2019) also found that inoculation of seeds with a combination of *A. lipoferum* and *A. chroococcum*, increase rice grain yield and a thousand grain weight. Application of *Azospirillum* spp. and *Azotobacter* spp. increased the growth and final yield of strawberry under hydroponic condition compare to the control treatment (Rueda et al., 2016). *Azotobacter* can be an appropriate option for nitrogen demand and best alternative to nitrogen fertilizer in wheat cultivation which may lead to higher productivity (Mahato and Kafle, 2018).

Bacteria

Nitrogen fixation by microbes also found in root sheaths of cereals and tropical grasses (Kirchhofet al., 1997; Gutierrez-Zamora and Martinez-Romo, 2001; Rosenblueht and Martinez-Romo, 2004; Patra et al., 2006; Chowdhury et al., 2007; Montanez et al., 2008 Bergmann et al., 2009; Davis et al., 2010; Burbanoet al., 2011; Sessitsher et al., 2012; Vitouseket al., 2013; Ritchie and Raina, 2016). All grasses, especially C4 grasses show the highest potential for barboringdiazotrophs (James, 2000; Reis et al., 2001; Davis et al., 2010; Treseder et al., 2012). Biological nitrogen fixation in depends on different types of species (Marques et al., 2017; Barazettiet al., 2019). Muangthonget al. (2015) found that *Novosphingobium* *sediminicola* and *Ochrobactrum intermedium* which were isolated form the leaves of chewing sugarcane plants are capable of to get significant nitrogen concentrations when growing in nitrogen free sand. Legume Nodulation Bacteria (LNB) divided into six general which are *Agrobacterium*, *Rhizobium*, *Bradyrhizobium*, *Sinorhizobium*, *Burkholderia* and *Herbaspirillum* (Mwangi et al., 2011). The genus *Azospirillum*, which belong to the family Rhodospirillaceae of the class Alphaproteobacteria, is known as a representative nitrogen fixing bacterium containing plant-growth promoting properties (Bashan and de-Bashan, 2010), and almost all of them dwell in aquatic environments (Kwak and Shin, 2016). Zhang et al. (2020) observed that nitrogen fixing bacteria can improve the quality of compost and may result in meaningful reduction in N- and C- losses. Bahulkaret al. (2014) reported that the most important nitrogen-fixing bacteria related to Switchgrass were *Rhizobium* and *Methyllobacterium* species of the alphaproteobacteria, *Burkholderia* and *Azoarcus* species of the betaproteobacteria and *Desulfuromona* and *Geobacter* species of the deltaproteobacteria. Hara et al. (2019) found that the main important nitrogen fixing bacteria in sorghum roots are bradyrhizobia which resemble photosynthetic *B. oligotrophicum* S58 and non-nodulating *Bradyrhizobium* sp. S2321. The unique role of *Bradyrhizobium* members have been reported in nitrogen fixation of sugarcane (Thaweenut et al., 2011; Fischer et al., 2012; Rosenbluether et al., 2018), and sweet potato (Terakado-Tonookaet al., 2008). Zhang et al. (2020)
noted that the higher C/N promote the relative abundance of nitrogen fixing bacteria like *Thermoactinomyces*, *Planifilum*, *Flavobacterium*, *Bacillaceae*, *Pseudomonas*, *Sphingobacterium*, *Paenibacillus*, *Bacillus* and *Thermobifida*. Meaningful influence of both arbuscular mycorrhizal fungi (AMF) and N$_{2}$-fixer on crop production and community structure which has proved the essential role of soil microbial communities (Xiao *et al*., 2010; Bauer *et al*., 2012; Goss and de Varennes, 2012; Abd-Alla *et al*., 2014; Mbarki *et al*., 2017; Hu *et al*., 2019; Thioub *et al*., 2019; Xu *et al*., 2019; Massa *et al*., 2020). AMF biofertilizer usage can increase continuous cropping of American ginseng growth by boosting the AMF inoculation rate, promoting plant-uptake of essential elements such as nitrogen and phosphorus and by increasing soil-borne pathogens (Johnson, 2010; Smith *et al*., 2011; Bucking and Kafle, 2015; Liu *et al*., 2020). Arbuscular mycorrhizal fungi is also beneficial to ameliorate the negative effects of a stressful environment (Levy *et al*., 1983; Goicoechea *et al*., 2005; Jebara *et al*., 2010; Ruiz-Lozano *et al*., 2012; Garg and Pandey, 2016; Li *et al*., 2016; Verzeaux *et al*., 2017; Zhang *et al*., 2019). It has been proved that AMF can influence plant competition interaction between co-occurring plant species which may represent the vital role of mycorrhizal symbionts for sustainable crop management strategies (Raimam *et al*., 2007; Nafady *et al*., 2018; Bahadur *et al*., 2019). The most important nitrogen fixing bacteria is shown in Table 14. Association of cereals and nitrogen-fixing PGPR are shown in Table 15.

Table 14. The most important nitrogen fixing bacteria (La Rue, 1977)

Family	Genera
Thiorhodaceae (Chromatiaceae)	*Thiocapsa*, *Chromatium*
Athiorhodaceae (Rhodospirillaceae)	*Rhodospirillum*, *Rhodopseumonas*
Hyphomicrobiaceae	*Rhodomicrobium*
Chlorobacteriaceae	*Chlorobium*
Spirillaceae	*Desulfovibrio*, *Desulfotomaculum*
Azotobacteriaceae	*Azotobacter*, *Beijerinckii*, *Dexii*
Entrobacteriaceae	*Klebsiella*, *Escherichia*, *Enterobacter*
Corynebacteriaceae	*Corynebacterium*
Bacillaceae	*Bacillus*, *Clostridium*

Table 15. Association of cereals and nitrogen-fixing PGPR (Santi *et al*., 2013)

Cereals	Diazotroph inoculants
Wheat	*H. seropedicae*
	Azospirillum sp.
	Azotobacter sp.
Maize	*Burkholderia* sp.
	Azospirillumbrasilense
Rice	*Azoarcus*
	Burkholderia
	A. *vietnamiensis*
	Gluconacetobacterdiazotrophicus
	Herbaspirillumseropedicae
	Serratia marcescens
Conclusions

Nitrogen availability often restricts biological productivity in ecosystems. Nitrogen is the most important element for all forms of life, because it is found in nucleic acids, proteins and chlorophyll, and all forms of live bacteria, fungi, green plants and animals of all kinds can not grow and work unless they get nitrogen in an acceptable form. The sole usage of chemical fertilizer, especially nitrogen may have many unfavorable impacts on not only human and environmental health, but also on green house gasses and negative influence on the ozone layer. Nitrogen gas is abundant, but unreachable to majority of organisms. Nitrogen fixation involves formation of ammonium from N_2, which needs a high input of energy. Biological nitrogen fixation utilizes the enzyme nitrogenase and ATP to fix nitrogen. Nitrogenase contains a Fe-protein and a Mo-Fe-protein and other metal cofactors. Soil diazotrophs possess the function of fixing atmospheric N_2 into biologically available ammonium in ecosystems. In Aechaea, nitrogen fixation has been reported in some methanogens such as *Methanobacteriales*, *Methanococcales*, and *Methanosarcinales*. Within Bacteria, nitrogen fixation is much more extensively distributed and has been seed in phyla *Actinobacteria*, *Bacteroidetes*, *Cyanobacteria*, *Chlorobi*, *Chloroflexi*, *Firmicutes*, and *Proteobacteria*. nifH is the gene that encodes the nitrogenase which is the major structural protein that catalyzes the N_2 fixation reaction. The most important requirements for nitrogen fixation is a nitrogenase enzyme system, a source of adenosive triphosphate (ATP), a source of reducing power, a protective system for the enzyme from oxygen inactivation, and the rapid removal of nitrogen fixed from the site of nitrogen-fixation to prevent inhibition of the nitrogenase. The key element to improve environmental sustainability is recognizing the importance to improve the biophysical systems which support both short and long-term quality of all aspects of life on the earth with complete understanding of both health and diversity of natural ecosystems. Termite and its bacteria may lead to increase the soil fertility, improved plant growth, increased final crop yield and promote both better health and healthy environment. While, application of chemical fertilizer may lead to soil degradation and reduced crop yield which are the main reason of starvation. In all tropical and subtropical biomes, termites have a leading role in nitrogen mineralization. Two kinds of termites namely soil-feeding and humus-feeding termites normally thrive on nitrogen in soil substances, while, grass- and weed-feeding termites depend on the symbiotic bacterial communities in their gut for biological nitrogen fixation. The utilize of *Azotobacter* sp. presents a sustainable way to replace chemical fertilizer and even pesticides, which may lead to lower production cost, increase the productivity, reducing environmental pollution in the agricultural systems which heavily depend on chemical fertilizer and pesticides. This important bacterium is an obligate aerobic which can also grow in low O_2 situation. The most important ecological parameters which affect the spreading of termites are mean annual rainfall, mean number of rain days, atmospheric humidity and temperature, altitude, vegetation, soil type natural enemies and other related organisms. To have sustainable agriculture, replacing expensive chemical nitrogen fertilizers with environmentally friendly ways is the most accepted practice.

Authors’ Contributions

All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Key R&D Program of China (Research grant 2019YFA0904700).
Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014). Synergistic interaction of *Rhizobium leguminosarum* bv. *viciae* and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (*Vicia faba* L.) in alkaline soil. Microbiological Research 169:49-58. https://doi.org/10.1016/j.micres.2013.07.007

Abdollahi M, Soleymani A, Shahrajabian MH (2018). Evaluation of yield and some of physiological indices of potato cultivars in relation to chemical, biological and manure fertilizers. Cercetari Agronomice in Moldova 51(2):53-66. https://doi.org/10.2478/caca-2018-0016

Aislabie J, Deslippe JR (2013). Soil microbes and their contribution to soil services. Soil microbes and their contribution to soil service. In: Dymond JR (Ed). Ecosystem Services in New Zealand- cCnditions and Trends. Mannaki Whenua Press, Lincoln, New Zealand.

Alexander T, Toth R, Meier R, Weber H (1988). Dynamics of arbuscule development and degeneration in onion, bean and tomato with references to vesicular-arbuscular mycorrhizal in grasses. Canadian Journal of Botany 67:2505-2513. https://doi.org/10.1139/b89-320

Allen ON, Allen EK (1981). The Leguminosae. University of Wisconsin Press, Madison, WI, pp 812. https://doi.org/10.1002/fedr.4910950119

Aminpanah H, Firozzi S (2019). Fertilizer management using plant growth-promoting rhizobacteria in rice fields. International Journal of Agricultural Management and Development 9(1):67-76.

Annison G, Couperwhite I (1986). Effect of limiting substrate concentration, growth rate and aeration on alginate composition and production by *Azotobacter vinelandii* in continuous culture. Food Hydrocoll 1:101-111. https://doi.org/10.1016/s0268-005x(86)80012-1

Aquilianti L, Favilli F, Clementi F (2004). Comparison of different strategies for isolation and preliminary identification of *Azotobacter* from soil samples. Soil Biology and Biochemistry 36:1475-1483. https://doi.org/10.1016/j.soilbio.2004.04.024

Argandona M, Fernandez-Carazo R, Llamas I, Martinez-Checa F, Caba JM, Quesada E, Moral AD (2005). The moderately halophilic bacterium *Halomonas maura* is a free-living diazotroph. FEMS Microbiol Letters 244:69-74. https://doi.org/10.1016/j.femsle.2005.01.019

Azcon R, Barea JM (1975). Synthesis of auxins, gibberellins and cytokinins by *Azotobacter vinelandii* and *Azotobacter beijerinckii* related to effects produced on tomato plants. Plant and Soil 43:609-619. https://doi.org/10.1007/b01928522

Azcon-Aguilar C, Jaizve-Vega MC, Calvet C (2002). The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogen. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (Eds). Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Birkhauser Verlag AG, Basel, Switzerland, pp 187-197. https://doi.org/10.1007/978-3-0348-8117-3-15

Bahadur A, Jin Z, Long X, Jiang S, Zhang Q, Pan J, ... Feng H (2019). Arbuscular mycorrhizal fungi alter plant interspecific interaction under nitrogen fertilization. European Journal of Soil Biology 93:103094. https://doi.org/10.1016/j.ejsoil.2019.103094

Bahlulikar RA, Torres-Jerez I, WorleyE, Craven K, Udvardi MK (2014). Diversity of nitrogen-fixing bacteria associated with Switchgrass in the native tallgrass prairie of Northern Oklahoma. Applied and Environmental Microbiology 80(18):5636-5643. https://doi.org/10.1128/aem.02091-14

Balandreau J (1986). Ecological factors and adaptive process in N₂-fixing bacterial populations of the plant environment. Plant and Soil 90:73. https://doi.org/10.1007/bf02277388

Bama PS, Ravindran AD (2018). Influence of combined termite mound materials and inorganic fertilizers on growth parameters of maize under non sterilized pot culture study. Elixir Applied Zoology 125:52303-52305.
Barea JM, Werner D, Azcon-Guilar C, Azcon R (2005). Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Dordrecht: Springer, pp 199-222. https://doi.org/10.1007/1-4020-3544-6-10

Barns SM, Delwiche CF, Palmer JD, Pace NR (1996). Perspectives on archael diversity, thermophily and monophony from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the USA 93:9188-9193. https://doi.org/10.1073/pnas.93.17.9188

Barazetti AR, Simionato AS, Navarro MOP, dos Santos IMO, Modolon F, de Lima Andreata MF, ... Andrade G (2019). Formulations of arbuscular mycorrhizal fungi inoculums applied to soybean and corn plants under controlled and field conditions. Applied Soil Ecology 142:25-33. https://doi.org/10.1016/j.apsoil.2019.05.015

Bashan Y, De-Bashan LE (2010). How the plant growth-promoting bacterium *Azospirillum* promotes plant growth: a critical assessment. Advances in Agronomy 108:77-136. https://doi.org/10.1007/s0065-2113(10)08002-8

Batalha L, Da Silva Filho D, Martius C (1995). Using termite nests as a source of organic matter in agrosilvicultural production systems in Amazonia. Scientia Agricola 52:318-325. https://doi.org/10.1590/s0103-90161995000200019

Bauer JT, Kleczeewski NM, Bever JD, Clay K, Reynolds HL (2012). Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities. Oecologia 170:1089-1098. https://doi.org/10.1007/s00442-012-236-3

Becking J (2006). The family Azotobacteraceae. Prokaryotes 6:759-783. https://doi.org/10.1007/0-387-30746-x-26

Bellenger JP, Xu Y, Zhang X, Morel FMM, Kraepiel AML (2014). Possible contribution of alternative nitrogenase to nitrogen fixation by asymbiotic N$_2$-fixing bacteria in soils. Soil Biology and Biochemistry 69:413-420. https://doi.org/10.1016/j.soilbio.2013.11.015

Benavides M, Aristegui J, Agwain NSR, Alvarez-Salgado XA, Alvarez M, Troupin C (2013). Low contribution of N$_2$ fixation to new production and excess nitrogen in the subtropical northeast Atlantic margin. Deep-Sea Research I 81:36-48. https://doi.org/10.1016/j.dsr.2013.07.004

Benndorf R, Guo H, Sommerwerk E, Weigel C, Garcia-Altares M, Martin K, ... Poulsen M (2018). Natural products from actinobacteria associated with fungus-growing termites. Antibiotics 7:83. https://doi.org/10.3390/antibiotics7030083

Bentley BL (1984). Nitrogen fixation in termites: fate of newly fixed nitrogen. Journal of Insect Physiology 40:653-655. https://doi.org/10.1016/0022-1910(84)90050-7

Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M (2009). Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. Western North American Naturalist 69:105-114. https://doi.org/10.3398/064.069.0102

Betancourt DA, Loveless TM, Brown JW, Bishop PE (2008). Characterization of diazotrophs containing Mo-independent nitrogenase, isolated from diverse natural environments. Applied and Environmental Microbiology 74:3471-3480. https://doi.org/10.1128/aem.02694-07

Bignell DE (2000). Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (Eds). Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht, Springer, pp 189-208. https://doi.org/10.1007/978-94-017-3223-9-9

Bishop PE, Premakumar R, Dean DR, Jacobson MR, Chnisnell JR, Rizzo TM, Kopczynski J (1986). Nitrogen fixation by *Azotobacter vinelandii* strains having deletions in structural genes for nitrogenase. Science 232:92-94. https://doi.org/10.1126/science.232.4746.92

Bishop PE, Premakumar R (1992). Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans DJ (Eds). Biological Nitrogen Fixation. Chapman & Hall, New York, pp 736-762.
Brauman A (2000). Effect of gut transit and mound deposit on soil organic matter transformation in the soil feeding termite: a review. European Journal of Soil Biology 36:117-125. https://doi.org/10.1016/s1164-5563(00)01058-x

Brauman A, Majeed MZ, Buatois B, Robert A, Pablo AL, Miambi (2015). Nitrous oxide (N₂O) emissions by termites: does the feeding guild matter? PLoS One 10(12):e0144340. https://doi.org/10.1371/journal.pone.0144340

Breznak JA, Brill WJ, Mertins JW, Coppell HC (1973). Nitrogen fixation in termites. Nature 244:577-580.

Breznak JA (2002). Phylogenetic diversity and physiology of termite gut spirochetes. Integrative and Comparative Biology 42:313-319. https://doi.org/10.1093/icb/42.2.313

Broumand P, Rezaei A, Soleymani A, Shahrajabian MH, Noory A (2010). Influence of forage clipping and top dressing of nitrogen fertilizer on grain yield of cereal crops in dual purpose cultivation system. Research on Crops 11(3):603-613. https://doi.org/10.2134/agronj2010.0447

Bru D, Ramette A, Saby NP, Dequiedt S, Ranjard L, Jolivet C, ... Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME Journal 5:532-542. https://doi.org/10.1038/ismej.2010.130

Brune A, Emerson D, Breznak JA (1995). The termite gut microflora as an oxygen sink – microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61:2681-2687. https://doi.org/10.1128/aem.61.7.2681.1995

Brune A, Okhuma M (2010). Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (Eds). Biology of Termites: a Modern Synthesis. Dordrecht, Springer, pp 439-475. https://doi.org/10.1007/978-90-481-3977-4-16

Bucking H, Kafle A (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587-612. https://doi.org/10.3390/agronomy5040587

Burbano CS, Liu Y, Rosner KL, Deinum VM, Caballero-Mellado J, Reins-hold-Hurek B, Hurek T (2011). Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environmental Microbiology Reports 3:383-389. https://doi.org/10.1111/j.1758-2229-2010.00238.x

Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997). Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221-1229. https://doi.org/10.1126/science.276.5316.1221

Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, ... Arp D (2003). Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotrophy Nitrosomonas europaea. Journal of Bacteriology 185:2759-2773. https://doi.org/10.1128/jb.185.9.2759-2773.2003

Chen Y-LL, Chen H-Y, Lin Y-H, Yong T-C, Taniuchi Y, Tuo S-H (2014). The relative contributions of unicellular and filamentous diazotrophs to N₂ fixation in the South China Sea and the upstream Kuroshio. Deep-Sea Research I 85:56-71. https://doi.org/10.1016/j.dsr.2013.11.006

Chien YT, Zinder SH (1994). Cloning, DNA-sequencing, and characterization of a nifD-homologous gene from the archaean methano satricina barkeri-227 which resembles nifD from the eubactierium Clostridium pasteurianum. Journal of Bacteriology 176:6590-6598. https://doi.org/10.1128/jb.176.11.6590-6598.1994

Chisnell JR, Premakumar R, Bishop PE (1988). Purification of the second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology 170:27-33. https://doi.org/10.1128/jb.170.1.27-33.1988

Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007). Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus a perennial grass of thar desert, India. Microbiol Ecology 54:82-90. https://doi.org/10.1016/j.mce.2007.06.017

Clement F (1997). Alginate production by Azotobacter vinelandii. Critical Reviews in Biotechnology 17:327-361. https://doi.org/10.3109/07388559709146618
Cotta SR, Dias ACF, Marricel IE, Andreote FD, Seldin L, Elas JFV (2014). Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Applied and Environmental Microbiology 80(20):6437-6445. https://doi.org/10.1128/aem.01778-14

Curtis AD, Waller DA (1998). Seasonal patterns of nitrogen fixation in termites. Functional Ecology 12:803-807. https://doi.org/10.1046/j.1365-2435.1998.00248.x

Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, DeLucia EH (2010). Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus giganteusagro-ecosystem. Ecosystems 13:144-156. https://doi.org/10.1007/s10021-009-9306-9

Dawes TZ (2010). Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biology and Biochemistry 42:1825-1834. https://doi.org/10.1016/j.soilbio.2010.06.023

De Faria SM, Diedhiou AG, Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques C (2010). Evaluation the nodulation status of leguminous species from the Amazonian forest of Brazil. Journal of Experimental Botany 62:3119-3127. https://doi.org/10.1093/jxb/erq142

Dent D, Cocking E (2017). Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agricultura and Food Security 6:7. https://doi.org/10.1038/s41165-016-0084-2

Dev R, Thakur R (2018). Screening and identification of bacteria for growth promoting traits from termite mound soil. Journal of Pharmacognosy and Phytochemistry 1:1. https://doi.org/10.1016/j.jphc.2018.e00323

Dobereiner J, Day JM (1975). Nitrogen fixation in rhizosphere of grasses. In: Stewart WDP (Ed). Nitrogen Fixation by Free-Living Microorganisms. Cambridge University Press, pp 39-56.

Dobereiner J (1995). Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nannipieri P (Eds). Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London, pp 134-141.

Dominati E, Patterson M, MacKay A (2010). A framework for classifying and quantifying natural capital and ecosystem services of soils. Ecological Economics 69:1858-1868. https://doi.org/10.1016/j.ecolecon.2010.05.002

Dong H, Li W, Eneji AE, Zhang D (2012). Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research 126:137-144. https://doi.org/10.1016/j.fcr.2011.10.005

Dutt S, Sharma SD, Kumar P (2013a). Inoculation of apricot seedlings with indigenous arbuscular mycorrhizal fungi in optimum phosphorus fertilization for quality growth attributes. Journal of Plant Nutrition 36:15-31. https://doi.org/10.1080/01904167.2012.732648

Dutt S, Sharma SD, Kumar P (2013b). Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (Prunus armeniaca L.). Scientia Horticulturae 155:97-104. https://doi.org/10.1016/j.scienta.2013.03.012

Eady RR (2003). Current status of structure function relationships of vanadium nitrogenase. Coordination Chemistry Reviews 237:23-30. https://doi.org/10.1016/s0010-8554(02)00248-5

Egamberdieva D, Kucharova Z (2008). Cropping effects on microbial population and nitrogenase activity in saline arid soil. Turkish Journal of Biology 32:85-90.

Evans JR (1983). Nitrogen and photosynthesis in the flag leaf of wheat. Plant Physiology 72:297-302.

Enagbonma BJ, Babalola OO (2019). Environmental sustainability: a review of termite mound soil material and its bacteria. Sustainability 11:3847. https://doi.org/10.3390/su11143847

Fall S, Brauman A, Chotte J-L (2001). Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different feeding habits in Senegal: Cubitermesniokoloensis and Macrotermes bellicosus. Applied Soil Ecology 17:131-140. https://doi.org/10.1007/s13213-019-1439-2

Fekete FA, Lanzi RA, Beaulieu JB, Longcope DC, Sulya AW, Hayes RN, Mabbutt GA (1989). Isolation and preliminary characterization of hydroxamic acids formed by nitrogen-fixing Azotobacter chroococcum B-8. Applied and Environmental Microbiology 55(2):298-305. https://doi.org/10.1128/aem.55.2.298-305.1989
Feng M, Adams JM, Fan K, Shi Y, Sun R, Wang D, ... Chu H (2018). Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology and Biochemistry 126:151-158. https://doi.org/10.1016/j.soilbio.2018.08.021

Fischer D, Pfützner B, Schmid M, Simeos-Araujo JL, Reis VM, Pereira W, ... Hartmann A (2012). Molecular characterization of the diazotrophic bacterial community uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83-99. https://doi.org/10.1007/s11104-011-0812-0

Foster R, Subramaniam A, Mahaffey C, Carpenter E, Capone D, Zehr J (2007). Influence of the Amazon plume on distribution of free-living and symbiotic cyanobacteria in the western tropical North Atlantic Ocean. Limnol. Oceanogr 52(2):517-532. https://doi.org/10.1007/s11104-011-1023-4

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis LJ, ... Voss M (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621):20130164. https://doi.org/10.1098/rstb.2013.0164

French JRJ, Turner GL, Bradbury JF (1976). Nitrogen fixation by bacteria from the hindgut of termites. Journal of General Microbiology 95:202-206.

Frohlich J, Koustiane C, Kampfer P, Rossello-Mora R, Valens M, Berchtold M, ... Konig H (2007). Occurrence of rhizobia in the gut of the higher termite Nasutitermes nigriceps. Systematic and Applied Microbiology 30:68-74. https://doi.org/10.1016/j.syapm.2006.03.001

Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993). Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant and Soil 154(2):145-150. https://doi.org/10.1007/bf00012519

Fuhita Y, Takahashi Y, Chuganji M, Matsubara H (1992). The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant and Cell Physiology 33:81-92. https://doi.org/10.1093/oxfordjournals.pcp.a078224

Gaby JC, Buckley DH (2014). A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database. https://doi.org/10.1093/database/bau001

Garba M, Cornelis WM, Steppe K (2011). Effect of termite mound material on the physical properties of sandy soil and on the growth characteristics of tomato (Solanum lycopersicum) in semi-arid Niger. Plant and Soil 338:451-466. https://doi.org/10.1007/s11104-010-0558-0

Garcia-Bonet N, Arrieta JM, Duarte CM, Marba N (2016). Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquatic Botany 131:57-60. https://doi.org/10.1016/j.aquabot.2016.03.002

Garg SK, Bhatnagar A, Kalla A, Narula N (2001). In vitro nitrogen fixation, phosphate solubilization, survival and nutrient release by Azotobacter strains in an aquatic system. Bioresource Technology 80:101-109. https://doi.org/10.3354/meps07714

Garg N, Pandey R (2016). High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecology 21:57-67. https://doi.org/10.1016/j.fuineco.2016.04.001

Gauri SS, Mandal SM, Dey S, Pati BR (2012). Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB1. Bioresource Technology 126:350-353. https://doi.org/10.1016/j.biortech.2012.09.097

Gholami S, Shahsavani S, Nezarat S (2009). The effect of plant growth promoting rhizobacteria (PGRP) on germination, seedling growth and yield of maize. International Journal of Biological Life Sciences 1(1):35-40. https://doi.org/10.15258/ijblls.2015.43.3.04

Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, ... De Ley J (1989). Acetobacter diazotrophicus, a nitrogen-fixing acid bacterium associated with sugarcane. International Journal of Systematic Bacteriology 48:327.

Gohrhe V, Paszkowski U (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115-1122. https://doi.org/10.1007/s00425-006-0225-0

Gosiocechea N, Merino S, Sanchez-Diaz M (2005). Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journal of Plant Physiology 162:27-35. https://doi.org/10.1016/j.jplph.2004.03.011

Gomathi V, Ramakrishna A, Ramasamy K (2018). Microbial diversity and fungal symbiont of termite ecosystem. International Journal of Current Microbiology and Applied Sciences 7(12):3283-3295. https://doi.org/10.20546/ijcmas.2018.712.380
Gomez F, Furuya K, Takeda S (2005). Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. Journal of Plankton Research 27:323-330. https://doi.org/10.1016/j.jplankt.2004.04.002

Gonzalez-Lopez J, Martinez Toledo MV, Reina S, Salmeron V (1991). Root exudates of maize on production of auxins, gibberellins, cytokinins, amino acids and vitamins by Azotobacter chroococcum chemically defined media and dialyzed soil media. Toxicology and Environmental Chemistry 33:69-78.

Goss MJ, de Varennes A (2012). Soil disturbance reuces the efficacy of mycorrhizal associations for early soybean growth and N₂ fixation. Soil Biology and Biochemistry 34:1167-1173. https://doi.org/10.1016/j.soilbio.2012.03.016

Gutierrez-Zamora ML, Martinez-Romero E (2001). Natural endophytic association between Rhizobium etli and maize (Zea mays L.). Journal of Biotechnology 91:117-126. https://doi.org/10.1016/S0168-1656(01)00739-9

Higashi M, Abe T, Burns TP (1992). Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society B: Biological Sciences 249:303-308. https://doi.org/10.1098/rspb.1992.0119

Hrynkiewicz K, Patz S, Ruppel S (2019). Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. Journal of Advanced Research 19:1-10. https://doi.org/10.1016/j.jare.2019.05.002

Hu J, Lin X, Bentivenga SP, Hou X-Y, Ji B (2019). Intraradical and extratradical communities of AM fungi associated with alfalfa respond differently to long-term phosphorus fertilization. Flora 258:151424. https://doi.org/10.31274/farmprogressreports-180814-2517

Hugenholtz P (2002). Exploring prokaryotic diversity in the genomic era. Genome Biology 3(2):1-8. https://doi.org/10.1186/1128-0209-3-2-review0003

Ingraffia R, Amato G, Frenca AS, Giambalvo D (2019). Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N₂ fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLOS ONE 14(3):e0213672. https://doi.org/10.1371/journal.pone.0213672

Inomura K, Bragg J, Follows MJ (2017). A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. The ISME Journal 11:166-175. https://doi.org/10.1038/ismej.2016.97

James EK, Reis VM, Olivares FL, Baldani II, Dobereiner J (1994). Infection of sugar cane by the nitrogen-fixing bacterium Azotobacter diazotrophicus. Journal of Experimental Botany 45:757-766. https://doi.org/10.21203/rs.3.rs-103042/v1

James EK (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research 65:197-209.
James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000). Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (Eds). The Quest for Nitrogen Fixation in Rice. International Rice Research Institute, Los Banos, pp 119-140.

James EK (2017). Nitrogen fixation. In: Encyclopedia of Applied Plant Sciences. Edition 2, Chapter 124, Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00124-6

Jarman TR (1979). Bacterial alginate synthesis. In: Barkeley US (Ed). Microbial Polysaccharides and Polysaccharases. Academic Press, London, United Kingdom, pp 35-50.

Jebara S, Drevon JJ, Jehara M (2010). Modulation of symbiotic efficiency and nodular antioxidant enzyme activities in two Phaseolus vulgaris genotypes under salinity. Acta Physiologica Plantarum 32:925-932. https://doi.org/10.1007/s11738-010-0480-3

Ji R, Kappler A, Brune A (2000). Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biology and Biochemistry 32:1281-1291. https://doi.org/10.1016/s0038-0717(00)00046-8

Ji R, Brune A (2001). Transformation and mineralization 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthogonathus. Biology and Fertility of Soils 33:166-174. https://doi.org/10.1009/ijs.064969-0

Jimenez DJ, Montana JS, Martinez MM (2011). Characterization of free nitrogen fixing of the genus Azotobacter in organic vegetable-grown Colombian soils. Brazilian Journal of Microbiology 42:846-858. https://doi.org/10.1590/s1517-83822011000300003

Jnawali AD, Ojha RB, Mahabatta S (2015). Role of Azotobacter in soil fertility and sustainability- a review. Advances in Plants & Agriculture Research 2(6):250-253.

Joerger RD, Bishop PE (1988). Bacterial alternative nitrogen fixation systems. Critical Reviews in Microbiology 16:1-14. https://doi.org/10.3109/10408418809104465

Kafkas S, Ortas I (2009). Various mycorrhizal fungi enhance dry weights, P and Zn uptake of four Pistacia species. Journal of Plant Nutrition 32:146-159. https://doi.org/10.1080/01904160802609005

Kargi F, Ozmihci S (2002). Performance of azotobacter supplemented activated sludge in biological treatment of nitrogen deficient wastewater. Process Biochemistry 38:57-64. https://doi.org/10.1016/s0032-9592(02)00055-9

Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M (2019). Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Systematic and Applied Microbiology 42:248-260. https://doi.org/10.1016/j.syapm.2018.10.010

Kennedy IR, Tchan Y (1992). Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant and Soil 141:93-118. https://doi.org/10.3724/sp.j.1011.2010.00089

Kennedy IR, Choudhury ATMA, Kecskes ML (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry 36:1229-1244. https://doi.org/10.1106/1471-2180.10.36

Keshri J, Mishra A, Jha B (2013). Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics. Microbiological Research 168:165-173. https://doi.org/10.1010/1574-6941.2006.00089.x
Kizilkaya R (2008). Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum. Ecological Engineering 33:150-156. https://doi.org/10.1016/j.ecoleng.2008.02.011

Kizilkaya R (2009). Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. Journal of Environmental Biology 30(1):73-82. https://doi.org/10.1007/bf00709658

Kneip C, Lockhart P, Vo B, Maier UG (2007). Nitrogen fixation in eukaryotes- new models for symbiosis. BMC Evolutionary Biology 7:55. https://doi.org/10.1186/1471-2148-7-55

Knot JL, Kim SH, Ertl GJ, Dory SJ (2013). Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytopologist. https://doi.org/10.1111/nph.12536

Koch AL (2003). Were Gram-positive rods the first bacteria? Trends in Microbiology 11:166-170. https://doi.org/10.1016/s0966-842x(03)00063-5

Koskey G, Mburu SW, Njeru EM, Kimiti JM, Ombi O, Maingi JM (2017). Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of Eastern Kenya. Frontiers in Plant Science 8:443. https://doi.org/10.3389/fpls.2017.00443

Kuhnigk T, Branche J, Krekeler D, Cypionka H, Konig H (1996). A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology 19:139-149. https://doi.org/10.1016/s0723-2020(96)80039-7

Kumar P, Joolka NK, Sharma SD (2006). Indigenous arbuscular mycorrhiza in apple orchards of north-western Himalayan region. Haryana Journal of Horticultural Sciences 35:207-210.

Kumar P, Sharma SD (2009). Correlation of AM spore number, percent root colonization and Azotobacter count with plant growth, fruit yield and leaf nutrient content of Royal Delicious apple. Environment and Ecology 27(4B):2107-2111. https://doi.org/10.1016/b978-0-444-63987-5.00021-9

Kumar U, Pannearselvam P, Govindasamy V, Vithalkumar L, Senthilkumar M, Banik A, Annapurna K (2017). Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecological Engineering 101:227-236. https://doi.org/10.1016/j.ecoleng.2017.02.010

Kumar P, Tilak M, Sivakumar K, Saranya K (2018). Studies on the assessment of major nutrients and microbial population of termite mound soil. International Journal of Forestry and Crop Improvement 9:13-17. https://doi.org/10.15740/has/ijfci/9.1/13-17

Kwak Y, Shin JH (2016). First Azospirillum genome from aquatic environments: whole-genome sequence of Azospirillum thiophilum BV-S7, a novel diazotroph harboring a capacity of sulfur-chemolithotrophy from a sulfide spring. Marine Genomics 25:21-22. https://doi.org/10.1016/j.margen.2015.11.001

La Rue TA (1977). The bacteria. In: Hardy RWF, Silver WS (Eds). A Treaties on Dinitrogen Fixation. Section III, Biology. Wiley-Interscience Pub., London, Sydney, Toronto pp 19-63.

LaRoche J, Breitbarth E (2005). Importance of the diazotrophs as a source of new nitrogen in the ocean. Journal of Sea Research 53:67-91. https://doi.org/10.1016/s11-56-607-9066-3

Lee KS, Park SR, Kim YK (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350:144-175. https://doi.org/10.1016/j.jembe.2007.06.006

Leigh JA (2000). Nitrogen fixation in methanogens: the archaeal perspective. Current Issues in Molecular Biology 2(4):125-131. https://doi.org/10.1016/j.jembe.2007.06.013

Lévai L, Veres S, Bókonyi N, Gajdos É (2008). Can wood ash and biofertilizer play a role in organic agriculture? AgronomistGlasnic 3:263-271.

Levy Y, Dodd J, Krikun J (1983). Effect of irrigation, water salinity and rootstock on the vertical distribution of vesicular-arbuscular mycorrhiza in citrus roots. New Phytopologist 95:397-403.

Levy-Booth DJ, Prescott CE, Grayston SJ (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry 75:11-25. https://doi.org/10.1016/j.soilbio.2014.03.021

Li M, Li H, Wang K, Shi L, Liu J, Zhang L (2016). Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress. Environmental Chemistry 35:2344-2352.

Lilburn TG, Kim KS, Ostrom KR, Byczek JR, Leadbetter JA, Breznak JA (2001). Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495-2498. https://doi.org/10.1126/science.1060281
Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, ... Ding W (2018). Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic ultisol. Soil Biology and Biochemistry 123:218-228. https://doi.org/10.1016/j.soilbio.2018.05.018

Liu H-L, Zhou H-N, Xing W-M, Zhao J-F, Li S-X, Huang J-F, Bi R-C (2004). A resolution crystal structure of the bacterioferritin from Azotobacter vinelandii. FEBS Letters 573:93-98. https://doi.org/10.1016/j.febslet.2004.07.054

Liu N, Shao C, Sun H, Liu Z, Guan Y, Wu L, ... Zhang B (2020) Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquiesfolius L.) growth under the continuous cropping regime. Geoderma 363:114155. https://doi.org/10.1016/j.geoderma.2019.114155

Long X, Chen C, Xu Z, Oren R, He J-Z (2012). Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biology and Biochemistry 46:163-171. https://doi.org/10.20944/preprints202008.0300.v2

Luo Y, Wasserfallen A (2001). Gene transfer systems and their applications in Archaea. Systematic and Applied Microbiology 24:15-15. https://doi.org/10.1016/s0706-0549(00)00128-3

Majed MZ, Miambi E, Robert A, Bernoux M, Brauman A (2012). Xylophagous termites: a potential sink for atmospheric nitrous oxide. European Journal of Soil Biology 53:121-125. https://doi.org/10.1016/j.ejsobi.2012.10.002

Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Molecular Biology Reviews 65:44-79. https://doi.org/10.1128/mmbrr.65.1.44-79.2001

Martyniuk S, Martyniuk M (2003). Occurrence of Azotobacter spp. in some polish soils. Polish Journal of environmental Studies 12(3):371-374. https://doi.org/10.1007/978-3-662-06083-4-15

Marta Sanna, Cesaro P, Todeschini V, Capprao J, Scarafoni A, Cantamessa S, ... Bona E (2020). Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Applied Soil Ecology 113:54-62. https://doi.org/10.1016/j.apsoil.2017.01.011

Martinez-Toledo MV, Moreno J, De la Rubia T, Gonzalez-Lopez J (1989). Root exudates of Zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant and Soil 110:149-152. https://doi.org/10.1007/bf021808213

Martyriuk S, Martyriuk M (2003). Occurrence of Azotobacter spp. in some polish soils. Polish Journal of environmental Studies 12(3):371-374. https://doi.org/10.1007/978-3-662-06083-4-15

Massa N, Cesaro P, Todeschini V, Capprao J, Scarafoni A, Cantamessa S, ... Bona E (2020). Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Applied Soil Ecology 113:54-62. https://doi.org/10.1016/j.apsoil.2017.01.011

Martinez-Toledo MV, Moreno J, De la Rubia T, Ramos-Cormenzana A (1985). Isolation and characterization of Azotobacter chroococcum from the roots of Zea mays. FEMS Microbiology Ecology 31:197-203. https://doi.org/10.1007/bf02184353
Miller RW, Rady RR (1988). Molybdenum and vanadium nitorgenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Biochemical Journal 256:429-432. https://doi.org/10.1042/bj2560429

Mittal A, Yadav A, Singh G, Anand RC, Aggarwal NK (2011). Comparative nitrogen fixation by mesophilic (HTS) vis-à-vis thermotolerant mutants (HTR) of Azotobacter chroococcum at high temperature and their effect on cotton biomass. Jundishapur Journal of Microbiology 4(2):105-114.

Miyagawa S, Koyama Y, Kokubo M, Matsushita Y, Adachi Y, Sivilay S, ... Oba S (2011). Indigenous utilization of termite mounds and their sustainability in a rice growing village of the Central Plain of Laos. Journal of Ethnobiology and Ethnomedicine 7:24. https://doi.org/10.1186/1746-4269-7-24

Moisander PH, Cheshire LA, Braddy J, Calandrino ES, Hoffman M, ... Paerl HW (2012). Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology 79:800-811. https://doi.org/10.1111/j.1574-6941.2011.01264.x

Momose A, Hiyama T, Nishimura K, Ishizaki N, Ishikawa S, Yamamoto M, ... Ohyama T (2013). Characteristics of nitrogen fixation and nitrogen release from diazotrophic endophytes isolated from sugarcane stems. Bull Fac Agric Niigata Univ 66(1):1-9. https://doi.org/10.1023/a:1016529015349

Montanez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2008). Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biology and Fertility of Soils 45:253-263. https://doi.org/10.1007/s00374-008-0322-2

Mrkovacki N, Milic V (2001). Use of Azotobacter chroococcum as potentially useful in agricultural application. Annals of Microbiology 51:145-159. https://doi.org/10.2298/zmspn0201023m

Muangthong A, Youpensuk S, Rerkasem B (2015). Isolation and characterization of endophytic nitrogen fixing bacteria in sugarcane. Tropical Life Sciences Research 26(1):41-51.

Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, ... Peters JW (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology 82(13):3698-3710. https://doi.org/10.1128/acm.01055-16

Mwangi SN, Kariuki JK, Boga H, Kahindi JHP, Muigai A, Odee D, Mwenda GM (2011). Genetic diversity and symbiotic efficiency of legume nodulating bacteria from different land use systems in Taita Taveta, Kenya. Tropical and Subtropical Agroecosystems 13:109-118.

Nafady NA, Hassan EA, Abd-Alla MH, Bagy MMK (2018). Effectiveness of eco-friendly arbuscular mycorrhizal fungi biofertilizer and bacterial feather hydrolysate in promoting growth of Vicia faba in sandy soil. Biocatalysis and Agricultural Biotechnology 16:140-147. https://doi.org/10.1016/j.bcab.2018.07.024

Nag NK, Dash B, Gupta SB, Khokher D, Soni R (2018). Evaluation of stress tolerance of Azotobacter isolates. Biologia 64(1):82-93. https://doi.org/10.6001/biologia.v64i1.3662

Nardi JB, Mackie RI, Dawson JO (2002). Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystem? Journal of Insect Physiology 48:751-763. https://doi.org/10.1016/s0022-1910(02)00105-1

Navarro-Gonzalez R, McKay CP, Mvondo DN (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61-64. https://doi.org/10.1038/35083537

Ngugi DK, Brune A (2011). Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environmental Microbiology 14:860-871. https://doi.org/10.1111/j.1462-2920.2011.02648.x

Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006). A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis-reconstitution of chlorophyllide a reductase with purified x-protein (bchX) and yz-protein (bchY-bchZ) from Rhodobacter capsulatus. The Journal of Biological Chemistry 281:15021-15028. https://doi.org/10.1074/jbc.m601750200

Odelade KA, Barbalola OO (2019). Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research and Public Health 16:3873. https://doi.org/10.3390/ijerph16203873

Offre P, Spang A, Schleper C (2013). Archaea in biogeochemical cycles. Annual Review of Microbiology 67:437-457. https://doi.org/10.1146/annurev-micro-092412.155614

Ohkuma M, Noda S, Usami R, Horikoshi K, Kudo T (1996). Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology 62(8):2747-2752. https://doi.org/10.1128/aem.62.8.2747-2752.1996
Olson RA, Kurtz LT (1982). Crop nitrogen requirements, utilization and fertilization. In: Stephenson FJ (Ed). Nitrogen in Agricultural Soils. American Society of Agronomy, Madison, WI, pp 567-604.

Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011). Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soil. Applied and Environmental Microbiology 77:911-919. https://doi.org/10.1128/aem.01250-10

Ortiz-Marquez JCF, Nascimento MD, Curartli L (2014). Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metabolic Engineering 23:154-164. https://doi.org/10.1016/j.menbe.2014.03.022

Papineau D, Mojisij S, Karhu JA, Marty B (2005). Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chemical Geology 216(1-2):37-58. https://doi.org/10.1016/j.chemgeo.2004.10.009

Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, ... Le Roux X (2006). Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacteria communities in grassland soils. Environmental Microbiology 8:1005-1016. https://doi.org/10.1111/j.1462-2920.2006.00992.x

Pereira MES, Schloter-Hai B, Schloter M, Salles J (2013). Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS One 8:e74500. https://doi.org/10.1371/journal.pone.0074500

Philippot K, Hallin S, Schloter M (2007). Ecology of denitrifying bacteria in agricultural soil. Advances in Agronomy 96:249-305. https://doi.org/10.1016/j.agen.2007.07.002

Post E, Kleiner D, Oelze J (1983). Whole cell respiration nitrogenase activities in \textit{Azotobacter vinelandii} growing in oxygen controlled continuous culture. Archives of Microbiology 134:68-72.

Prayitno J, Rolfe B (2010). Characterization of endophytic diazotroph bacteria isolated from rice. HAYATI Journal of Biosciences 17(2):73-78. https://doi.org/10.4308/hjb.17.4.173

Puschedel D, Janouskova M, Voriskova A, Grynderlova H, Vosatka M, Jansa J (2017). \textit{Arbuscular mycorrhiza} stimulates biological nitrogen fixation in two \textit{Medicago spp} through improved phosphorus acquisition. Frontiers in Plant Science 8:390. https://doi.org/10.1016/j.agen.2007.07.002

Rago L, Zecchin S, Villa F, Goglio A, Corsini A, Cavalca L, Schievano A (2019). Bioelectrochemical nitrogen fixation (e-BNF): electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry 125:105-115. https://doi.org/10.1016/j.bioelechem.2018.10.002

Rahav E, Giannetto MJ, Bar-Zeev E (2016). Contribution of mono and polysaccharides to heterotrophic \textit{N2} fixation at the eastern Mediterranean coastline. Scientific Report 6:27858. https://doi.org/10.1038/srep27858

Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP, ... Andrade G (2007). Interaction among free-living N-fixing bacteria isolated from \textit{Drosedarillosa} var. \textit{villosa} and AM fungi (\textit{Glomus clarum}) in rice (\textit{Oryza sativa}). Applied Soil Ecology 35:25-34. https://doi.org/10.1016/j.apsoil.2006.05.013

Ratten J-M, LaRoche J, Desai DK, Shelley RU, Landing WM, Boyle E, ... Langlois R (2015). Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic. Deep-Sea Research II 116:332-341. https://doi.org/10.1016/j.dsr2.2014.11.012

Ravikumar S, Kathiresan K, Ignatiammal STM, Selvam MB, Shanthy S (2004). Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. Journal of Experimental Marine Biology and Ecology 312:5-17. https://doi.org/10.1016/j.embev.2004.03.006

Raymond J, Sieffert JL, Staples CR, Blankenship RE (2004). The natural history of nitrogen fixation. Molecular Biology and Evolution 21(3):541-554. https://doi.org/10.1093/molbev ms047

Reardon CL, Gollany HT, Wuest SB (2014). Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations. Soil Biology and Biochemistry 69:406-412. https://doi.org/10.1016/j.soilbio.2013.10.038

Reed SC, Cleveland CC, Townsend AR (2011). Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution and Systematics 42:489-512. https://doi.org/10.1146/annurev-ecolsys-102710-145034

Rehder D (2000). Vanadium nitrogenase. Journal of Inorganic Biochemistry. 80:133-136. https://doi.org/10.1016/s0162-0134(00)00049-0

Reis VM, dos Reis PB, Quesada DM, de Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001). Biological nitrogen fixation associated with tropical pasture grasses. Australian Journal of Plant Physiology 28:837-844. https://doi.org/10.1017/pp0179
Reyesenbach AL, Ehringer M, Hersherger K (2000). Microbial diversity at 83 °C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and Korarchaeota coexist. Extremophiles 4:61-67. https://doi.org/10.1007/s007920050008

Ribeiro CW, Alloing G, Mandon K, Frendo P (2015). Redox regulation of differentiation in symbiotic nitrogen fixation. Biochimica et Biophysica Acta 1850:1469-1478. https://doi.org/10.1016/j.bbadis.2014.11.018

Ritchie ME, Raima R (2016). Effects of herbivores on nitrogen fixation by grass endophytes, legume symbionts and free-living soil surface bacteria in the Serengeti. Pedobiologia 59:233-241. https://doi.org/10.1016/j.pedobi.2016.09.001

Rodrigues MA, Ladeira LC, Arrobas M (2018). Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy 93:88-94. https://doi.org/10.1016/j.eja.2018.01.002

Romero-Perdomo F, Abril J, Camelo M, Moreno-Galan A, Pastrana I, Rojas-Tapias D, Bonilla R (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): effect in reducing N fertilization. Revista Argentina De Microbiologia 49(4):377-383. https://doi.org/10.1016/j.ram.2017.04.006

Rojas-Tapias D, Ortiz-Vera M, Rivera D, Kloeper J, Bonilla R (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Universitas Scientiarum 18(2):129-139. https://doi.org/10.11144/javeriana.sc18-2.etmp

Roper MM, Ladha JK (1995). Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Plant and Soil 174:211-224. https://doi.org/10.1007/978-94-011-0053-3-10

Rosch C, Mergel A, Bothe H (2002). Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Applied and Environmental Microbiology 68:3818-3829. https://doi.org/10.1128/aem.68.8.3818.2002

Rosenblueth M, Martinez-Romero E (2004). Rhizobiumetli maize populations and their competitiveness for root colonization. Archives of Microbiology 181:337-344. https://doi.org/10.1007/s00203-004-0661-9

Rosenblueth M, Ormeno-Orrillo E, Lopez-Lopez A, Rogel MA, Reyes-Hernandez BJ, Martinez-Romero JC, ... Martinez-Romero E (2018). Nitrogen fixation in cereals. Frontiers in Microbiology 9:1794. https://doi.org/10.3389/fmicb.2018.01794

Rueda D, Valencia G, Soria N, Rueda BB, Kundapur RR, Selvanayagam M (2016). Effect of Azospirillum spp. and Azotobacter spp. on the growth yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. Journal of Applied Pharmaceutical Science 6(01):048-054. https://doi.org/10.7324/japs.2016.600108

Ruiz-Rueda O, Hallin S, Baneras L (2009). Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiology Ecology 67:308-319. https://doi.org/10.1111/j.1574-6941.2008.00615x

Ruiz-Lozano JM, Porcez R, Aszon C, Aroca R (2012). Regulation by arbuscular mycorrhizas of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany 63(11):4033-4044. https://doi.org/10.1093/jxb/ers126

Sabia W, Zeng A-P, Lunsdorf H, Deckwer W-D (2000). Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Applied and Environmental Microbiology 66(9):4037-4044. https://doi.org/10.1128/aem.66.9.4037-4044.2000

Sadoff HL (1975). Encystment and germination in Azotobacter vinelandii. Bacteriology Review 39:516-539.

Sant C, Bogusz D, Franche C (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany 111:743-767. https://doi.org/10.1093/aob/mct048

Sapountzis P, de Verges J, Rousk K, Cilliers M, Vorster BJ, Poulsen M (2016). Potential for nitrogen fixation in the fungus-growing termite symbiosis. Frontiers in Microbiology 7:1993. https://doi.org/10.3389/fmicb.2016.01993

Sariv Z, Ragoiv B (1963). The influence of the maize on the dynamic of Azotobacter in the soil. Soil Plant 13:273-277.

Savenkova L, Gerberga Z, Kizhlo Z, Stegantseva E (1999). Effect of phosphate supply and aeration on poly-β-hydroxybutyrate production in Azotobacter chroococcum. Process Biochemistry 34:109-114. https://doi.org/10.1016/s0032-9592(98)00070-3
Seesitsch A, Hardoim P, Doering J, Wilharter A, Krause A, Woyke T, ... Reinhold-Hurek B (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant Microbe Interactions 25:28-36. https://doi.org/10.1094/mpmi-08-11-0204

Sevilla M, Burris RH, Guanpala N, Kennedy C (2001). Comparison of benefit to sugarcane plant growth and \[^{15}\text{N}_2\] incorporation following inoculation of sterile plants with \textit{Acetobacter diazotrophicus} wild-type and \textit{Nif}-mutant strains. Molecular Plant-Microbe Interact 14(3):358-366. https://doi.org/10.1094/mpmi.2001.14.3.358

Sciotti MA, Chanfon A, Hennecke H, Fischer HM (2003). Disparate oxygen responsiveness of two regulatory cascades that control expression of symbiotic genes in \textit{Bradyrhizobium japonicum}. Journal of Bacteriology 185:5639-5642. https://doi.org/10.1128/jb.185.18.5639-5642.2003

Seeefeldt IC, Hoffman BM, Dean DR (2009). Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry 78:701-722. https://doi.org/10.1146/annurev.biochem.78.070907.103812

Sellstedt A, Richau KH (2013). Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters 342:179-186. https://doi.org/10.1111/j.1574-6968.2011.02116

Shahrajabian MH, Soleymani A, Naranjani L (2011). Grain yield and forage characteristics of forage sorghum under different plant densities and nitrogen levels in second cropping after barley in Isfahan, Iran. Research on Crops 12(1):68-76. https://doi.org/10.9734/ijpss/201732460

Shahrajabian MH, Soleymani A (2017). Responses of physiological indices of forage sorghum under different plant populations in various nitrogen fertilizer treatments. International Journal of Plant and Soil Science 15(2):1-8. https://doi.org/10.9734/ijpss/2017/32460

Shahrajabian MH, Khoshkkharam M, Sun W, Cheng Q (2019). Exploring responses of berseem clover cultivars in low input cultivation management for agricultural sustainability. World Scientific News 131:197-206.

Sharma SD, Kumar P (2008). Relationship of arbuscular mycorrhizal fungi and Azotobacter with plant growth, fruit yield, soil and leaf nutrient status of mango orchards in north-western Himalayan region of India. Journal of Applied Horticulture 10:172-176. https://doi.org/10.3785/jah.2008.v10i02.34

Sharma SD, Kumar P, Patel VB (2009). Indigenous AM fungi and \textit{Azotobacter chroococcum} isolates, and their screening from citrus seedlings at different levels of inorganic fertilizers application. Indian Journal of Horticulture 64:183-189.

Sharma SD, Kumar P, Bhardwaj SK, Yadav SK (2011). Screening and selecting novel AM fungi and \textit{Azotobacter} strain for inoculating apple under soil solarization and chemical disinfestations with mulch practices for sustainable nursery management. Scientia Horticulturae 130(1):164-174. https://doi.org/10.1016/j.scienta.2011.06.032

Sharma SD, Sharma NC, Sharma CL, Kumar P, Chandel A (2012). \textit{Glomus}-Azotobacter symbiosis in apple under reduced inorganic nutrient fertilization for sustainable and economic orcharding enterprise. Scientia Horticulturae 146:175-181. https://doi.org/10.1016/j.scienta.2014.02.015

Sharma SD, Kumar P, Yadav SK (2014). \textit{Glomus-Azotobacter} association affects phenology of mango seedlings under reduced soil nutrient supply. Scientia Horticulturae 173:86-91. https://doi.org/10.1016/j.scienta.2011.pse

Suzuki S, He Y, Oyaizu H (2002). Indole-3-acetic acid production in \textit{Pseudomonas fluorescence} and its association with suppression of creeping bent grass brown patch. Current Microbiology 47(2):138-143. https://doi.org/10.1007/s00284-002-3968-2

Shiozaki T, Chen Y-LI, Lin Y-H, Taniuchi Y, Shu D-S, Furuya K, Chen H-Y (2014). Seasonal variations of unicellular diazotroph groups A and B, and \textit{Trichodesmium} in the northern South China Sea and neighboring upstream Kuroshio current. Continental Shelf Research 80:20-31. https://doi.org/10.1016/j.csr.2012.02.015

Shridhar BS (2012). Review: nitrogen fixing Microorganisms. International Journal ofMicrobiological Research 3(1):46-52. https://doi.org/10.1016/j.ijmr.2012.04.156

Singh R, Adholeya A (2004). Interaction between arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria. Mycorrhiza News 15:16-17.

Sivasakthi S, Saranraj P, Sivasakthivelan P (2017). Biological nitrogen fixation by \textit{Azotobacter} sp.- A review. Indo-Asian Journal of Multidisciplinary Research 3(5):1274-1284.

Smith SE, Read DJ (1997). Growth and carbon economy of VA mycorrhizal plants. In: Mycorrhizal Symbiosis. Snd et. Academic, London, pp 105-125. https://doi.org/10.1016/6978-012652840-4/5005-x

Smith SE, Jakobsen I, Gmnlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050-1057. https://doi.org/10.1104/pp.111.174581

29
Smith-Moore C, Grunden AM (2018). Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnology Advances 36:1900-1916. https://doi.org/10.1016/j.biotechadv.2018.07.007

Soleymani A, Shahrabjalian MH, Naranjani L (2011a). Changes in qualitative characteristics and yield of three cultivars of Berseem clover intercropped with forage corn in low input farming system. Journal of Food, Agriculture and Environment 9(1):345-347.

Soleymani A, Shahrabjalian MH, Naranjani L (2011b). Study the effect of plant densities and nitrogen fertilizers on yield, yield components and grain protein of grain sorghum. Journal of Food, Agriculture and Environment 9(3&4):244-246. https://doi.org/10.47176/jcpp.9.4.22255

Soleymani A, Shahrabjalian MH (2012a). Forage yield and quality in intercropping of forage corn with different cultivars of berseem clover in different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment 10(1):602-604.

Soleymani A, Shahrabjalian MH (2012b). Effects of different levels of nitrogen on yield and nitrate content of four spring onion genotypes. International Journal of Agriculture and Crop Sciences 4(4):179-182. https://doi.org/10.5539/jk.v4n4p75

Souillard N, Magot M, Possot O, Sibold L (1988). Nucleotide sequence of regions homologous nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcusthermolithotrophicus and Methanobacteriumivanovii: evolutionary implications. Journal of Molecular Evolution 27:65-76. https://doi.org/10.1007/bf02099731

Spang A, Caceres EF, Ettema TJG (2017). Genomic exploration of the diversity, ecology and evolution of the archaeal domain of life. Science357. https://doi.org/10.1126/science.aaf3883

Sprent JI, Parsons R (2000). Nitrogen fixation in legume and non-legume trees. Field Crops Research 65:183-196. https://doi.org/10.3410/e72834424.79358292

Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhopadhyay B, Blankenship RE (2007). Expression and association of group IV nitrogenase nifD and nifH homologs in the non-nitrogen-fixing archaean Methanocaldococcus jannaschii. Journal of Bacteriology 189:7392-7398. https://doi.org/10.1128/jb.00876-07

Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, ... Ronson CW (2002). Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. Journal of Bacteriology. 184:3086-3095. https://doi.org/10.1128/jb.184.11.3086-3095.2002

Sun W, Shahrabjalian MH, Cheng Q (2019). Anise (Pimpinella anisum l.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biology 5(1673688):1-25. https://doi.org/10.1080/23311205.2019.1673688

Suyal DC, Kumar S, Joshi D, Soni R, Goel R (2018). Quantitative proteomics of psychrotrophic diazotroph in response to nitrogen deficiency and cold stress. Journal of Proteomics 187:235-242. https://doi.org/10.1016/j.jprot.2018.08.005

Suzuki S, Noble AD, Ruaysoongnern S, Chinabut N (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management 21:37-49. https://doi.org/10.1080/15324908601087430

Tatsuo RL, Fodorova ND, Jackson JD, Jacobs JD, Kiyutin B, Koonin EV, ... Nikolskaya AN (2003). The COG database: An updated version includes eukaryotes. BMC Bioinformatics 4:41. https://doi.org/10.1186/1471-2105-4-41

Tayasu I, Sugimoto A, Wada E, Abe T (1994). Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81:229-231. https://doi.org/10.1007/bf015729.198003
Tchan YT, New PB (1984). Genus I Azotobacter. In: Krieg NR, Holt JG (Eds). Bergeys Manual of Determinative Bacteriology, Vol. I. Williams & Wilkins, Baltimore, USA, pp 220-229.

Tejera N, Lluch C, Martinez-Toledo MV, Gonzalez-Lopez J (2005). Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant and Soil 270:223-232. https://doi.org/10.1007/s11104-004-1522-7

Terakado-Tonooka J, Owaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008). Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes and Environments 23:89-93. https://doi.org/10.1264/jme.22.23.89

Thaweenut N, Hachsuka Y, Ando S, Yanagisawa S, Yoneyama T (2011). Two seasons' study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant and Soil 338:435-449. https://doi.org/10.1007/s11104-010-0557-1

Thioub M, Ewusi-Mensah N, Sarkodie-Addo J, Adjei-Gyapong T (2019). Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol. Soil and Tillage Research 192:174-186. https://doi.org/10.1016/j.still.2019.05.001

Timothy CE (1999). The presence of nitrogen fixing legumes in terrestrial communities: Evolutionaty vs ecological considerations. Biogeochemistry 46:233-246. https://doi.org/10.1007/bf01007581

Tokuda G, Watanabe H, Hojo M, Fujita M, Nakayama K, Miyagi M, ... Arioka M (2012). Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes nakasagoensis. Journal of Insect Physiology 58:147-154. https://doi.org/10.1016/j.jinsphys.2011.10.012

Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, ... Waldrop MP (2012). Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7-18. https://doi.org/10.1007/s10533-011-9636-5

Tsoy OV, Ravcheev DA, Cuklina J, Gelfand MS (2016). Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria. Frontiers in Microbiology 7:1343. https://doi.org/10.2172/1427520

Ulyshen MD (2015). Insect-mediated nitrogen dynamics in decomposing wood. Ecological Entomology 40(1):97-112. https://doi.org/10.1111/een.12264

Veselaj E, Sallaku G, Balliu A (2018). Tripartite relationships in legume crops are plant-microorganism-specific and strongly influenced by salinity. Agriculture 8:117. https://doi.org/10.3390/agriculture8080117

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261-5267. https://doi.org/10.1128/aem.00062.07

Wang Y, Li H, Li J, Li X (2017). The diversity and co-occurrence patterns of diazotrophs in the steppes of Inner Mongolia. Catena 157:130-138. https://doi.org/10.1016/j.catena.2017.05.006

Watson J (1977). The use of moulds of the termite Macrotermes natalensis (gerstacker) as a soil amendment. European Journal of Soil Science 28:664-672. https://doi.org/10.1111/j.1365-2389.1977.tb02273.x

Welsh DT (2000). Nitrogen fixation in seagrass meadows Regulation, plant-bacteria interactions and significance to primary productivity. Ecology Letters 3:58-71. https://doi.org/10.1046/j.1461-0248.2000.00148.x

Woese CR, Fox GE (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the US 74:5088-5090. https://doi.org/10.1073/pnas.74.11.5088
Xiao T-J, Yang Q-S, Ran W, Xu G-H, Shen Q-R (2010). Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agricultural Sciences in China 9(4):528-535. https://doi.org/10.1016/s1671-2927(09)60126-7

Xiao Z, Rasmann S, Yue L, Lian F, Zou H, Wang Z (2019). The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment 696:133984. https://doi.org/10.1016/j.scitotenv.2019.133984

Xiao D, Tan Y, Liu X, Yang R, Zhang W, He X, ... Wang K (2020). Responses of soil diazotrophs to legume species and density in a karst grassland, southwest China. Agriculture, Ecosystems and Environment 288:106707. https://doi.org/10.1016/j.agee.2019.106707

Xie X-G, Zhang F-M, Yang T, Chen Y, Li X-G, Dai C-C (2019). Endophytic fungus drives nodulation and N$_2$ fixation attributable to specific root exudates. MBio 10:e00728-19. https://doi.org/10.1128/mbio.00728-19

Xu H, Shao H, Lu Y (2019). Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicology and Environmental Safety 182:109476. https://doi.org/10.1016/j.ecoenv.2019.109476

Yang L, Bai J, Zeng N, Zhou X, Liao Y, Lu Y, ... Cao W (2019). Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation. Applied Soil Ecology 136:11-20. https://doi.org/10.1016/j.apsoil.2018.12.015

Yin Y, Gu J, Wang X, Zhang K, Hu T, Ma J, Wang Q (2018). Impact of copper on the diazotroph abundance and community composition during swine manure composting. Bioresource Technology 255:257-265. https://doi.org/10.1016/j.biortech.2018.01.120

You J, Das A, Dolan EM, Hu Z (2009). Ammonia-oxidizing archaea involved in nitrogen removal. Water Research 43:1801-1809. https://doi.org/10.1016/j.watres.2009.01.016

Yu SS, Ulrich M (2018). Interaction of nitrogen fixation and alginate synthesis of Azotobacter vinelandii isolated from Myanmar mangrove. International Journal of Plant Biology and Research 6(2):1088.

Zehr JP, Jenkins BD, Short SM, Steward GF (2003). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5:539-554. https://doi.org/10.1046/j.1462-2920-2003-00451.X

Zhang X, Han C, Gao H, Cao Y (2019). Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanisms for growth with arbuscular mycorrhizal fungi under salinity stress. Plant Physiology and Biochemistry 141:20-29. https://doi.org/10.1016/j.plaphy.2019.05.013

Zhang W, Yu C, Wang X, Hai L, Hu J (2020). Increased abundance of nitrogen fixing by higher C/N ration reduces the total losses of N and C in cattle manure and corn stover mix composting. Waste Management 103:416-425. https://doi.org/10.1016/j.wasman.2020.04.034

Zhang W, Yu C, Wang X, Hai L (2020). Increased abundance of nitrogen transforming bacteria by higher C/N ration reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technology 297:122410. https://doi.org/10.1016/j.biortech.2019.122410

Zhao L, Liu Y, Yuan S, Li Z, Sun J, Li X (2020). Development of archael communities in biological soil crusts along a revegetation chronosequences in the Tengger Desert, north central China. Soil and Tillage Research 196:204443. https://doi.org/10.1016/j.still.2019.104443

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.