Extrinsic and intrinsic determinants of nerve regeneration

Toby A. Ferguson¹,2 and Young-Jin Son¹,3

Abstract
After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.

Keywords
regeneration, spinal cord injury, sprouting, transplants, neurotrophic factor, PTEN, SOCS3

Introduction
Understanding the mechanisms of axonal regeneration and improving human recovery after nervous system injury has been a long-standing goal of the neuroscience and medical community at least since the time of Cajal if not longer. Injured peripheral axons mount a robust regenerative response, and functional recovery in humans is possible, although such recovery is often limited by the long distance that regenerating peripheral axons must grow. After central nervous system (CNS) injury, axonal regeneration is less successful and often only limited recovery is possible. In a series of now famous nerve transplantation studies, David and Aguayo demonstrated that peripheral nerve grafts support robust growth of some central axon populations.¹ The initial understanding of these experiments emphasized the growth-inhibitory nature of the CNS environment, and subsequent work has elucidated multiple myelin and proteoglycan growth-inhibiting components found in the CNS.² However, attempts to improve axonal regeneration and functional recovery by ablating these inhibitory molecules by either pharmacologic or genetic manipulations have met with only minimal (proteoglycan-based inhibitors) or no success (myelin-based inhibitors).³–⁵ Therefore, a modern interpretation of Aguayo and Bray’s famous experiments would suggest that the intrinsic growth state varies among neuronal populations and likely determines the ability of a neuron to either overcome an inhibitory environment or avail themselves of a growth-permissive environment. Indeed, removal of general, growth-suppressing genes notably improves regeneration of neuronal populations refractory to regeneration.⁶ Therefore, in this review we will discuss critical factors affecting the ability of injured peripheral and central neurons to generate an effective growth response. We will emphasis recent findings that suggest the possibility of modulating a neuron’s growth response to injury.

Molecular signaling of axon injury
Calcium
In order to generate a successful response to injury, injured axons must first detect axonal damage. Local axonal...
damage triggers both rapid calcium-based and slower retrograde transport-based signals.

Extracellular calcium enters a damaged axon, elevates axoplasmic calcium concentration, and may trigger rapid growth cone formation in Aplysia. Acute axotomy of cultured mammalian neurons also triggers an increase in calcium concentration in the distal tip of the damaged axon. Subsequently, a calcium wave is retrogradely propagated to the soma by voltage-dependent sodium channel activation of a transient calcium current. Calcium transients also correlate with regenerative growth and this growth depends, in part, on a dual leucine kinase-1 (DLK-1), a conserved member of the mitogen-activated protein kinase (MAPK) pathway, in Caenorhabditis elegans. This kinase has also been found to be required for growth cone formation and regeneration throughout the C. elegans life cycle and in drosophila. In mice, depletion of DLK-1 sensory neuron outgrowth in vitro and phosphorylation of c-Jun in vivo are reduced. The effect of DLK-1 may be mediated by enhancement of CCAAT/enhancer-binding protein-1 (C/EBP-1) mRNA stability. Calcium, therefore, quickly signals acute axonal injury and, in part, initiates a regenerative response through DLK-1.

Retrograde signals of axonal injury

In addition to the calcium-generated injury response, slower, retrogradely transported proteins also signal axonal injury to the cell body. Best characterized of these molecules are the importins. After injury, local axonal synthesis of β1-importin allows assembly of a macromolecular complex and retrograde transport of nuclear localization sequence (NLS)-containing cargo to the nucleus of sensory neurons. Excess exogenous NLS peptide slows regenerative growth. Multiple importin-binding cargos have been identified, but in neurons, translocation of vimentin-bound MAP kinase extracellular signal-regulated kinase (ERK) and the transcription factor CREB2 clearly suggest retrograde transported cargo signal injury to the cell body. At least in sensory neurons, the initiation and loading of cargo appear dependent on axonal Ran-binding protein 1 (RanBP1). Other possible signals include Smads, which are also regulated after peripheral nerve injury. At least one, Smad1, appears important for initiation or maintenance of sensory neurite outgrowth. Wallenda, the drosophila homologue of DLK, is required for injury signaling and is regulated by an E3 ubiquitin ligase highwire. Retrograde transport of a c-Jun NH2-terminal kinase (JNK) scaffolding protein, Sunday Driver, multiple JNK signaling molecules, and ATF3 have also been observed. Given the observed variable growth competence of CNS and peripheral nervous system (PNS) neurons to regenerate, it is possible that neuronal populations signal damage with differing efficacy. Nonetheless, it is clear that retrograde signals participate in signaling axonal damage and aid initiation of a growth response.

Neuronal cell death and regeneration

In order to regenerate, a neuron must survive the severing of its axon. During development, axotomy has been clearly linked to cell death. However, in the adult CNS, survival and regeneration appear distinct. After optic nerve axotomy, many retinal ganglion neurons survive axotomy if a peripheral nerve graft is placed near the neurons. However, only a small number of these surviving neurons regenerate into the graft. In addition, overexpression of bcl-2, an antiapoptotic gene, in retinal ganglion cells (RGCs) improves survival but does not substantially increase axon growth into a peripheral nerve graft. Thus, although neuronal survival is a necessary prerequisite for regeneration, survival itself does not confer a neuron with the ability to regenerate.

Extrinsic modulation of the neuronal growth response

The intrinsic growth capacity of an injured neuron is largely influenced by the external environment. Some of the important extrinsic signals are presented in the following sections, and intrinsic drivers of regeneration are considered next.

Cytokines

After axonal injury in vivo, the inflammatory environment contributes substantially to the neuronal injury response. Local inflammation near central or peripheral neuronal cell bodies elicits improved axonal growth, as first demonstrated by injecting either *Corynebacterium* or activated macrophages into lumbar sensory neurons and measuring axonal regeneration after dorsal root crush. Macrophages also appear to play a similar key role in augmentation of CNS axonal growth. After injury of the optic nerve, macrophage-derived oncomodulin produced following the injection of zymosan or after lens injury promotes RGC regeneration. In addition, ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are likely important in the retinal ganglion cell injury response as CNTF and LIF null animals failed to regenerate optic nerve axons after combined optic nerve crush and lens injury. Despite this observation, purified, exogenous cytokines only moderately improve CNS regeneration. Recent important experiments have provided a possible explanation for these observations. In particular, suppressor of cytokine signaling (SOCS) proteins may importantly limit the effectiveness of endogenous and exogenous cytokines in stimulating CNS regeneration. SOCS proteins are cytoplasmic inhibitors of JAK-STAT signaling.
was markedly improved using viral-mediated delivery of Cre (Cre recombinase) to the retina of SOCS3-/- mice prior to optic nerve crush. The successful regeneration correlated with a reversal of mTOR pathway activity. Concurrent deletion of gp130 and SOCS3 also abrogated successful regeneration, suggesting that cytokine-mediated gp130 activation is required. Furthermore, STAT3 phosphorylation was severely decreased in these animals. Finally, viral-mediated overexpression of SOCS3 abrogates optic axon regeneration into a peripheral nerve graft. Together these observations suggest that CNTF and LIF may successfully initiate axonal regeneration in RGCs if the JAK-STAT signaling cascade is suitably activated. Likewise in sensory neurons, SOCS3 overexpression inhibits neurite outgrowth, at least in part, through inhibition of STAT3 signaling. Thus, while inflammation may clearly promote regeneration under certain circumstances, this response is also curtailed by neuronal expression of SOCS proteins, and in certain CNS neurons, this suppression may be powerful enough to limit regenerative growth.

Neurotrophins

Neurotrophins and neurotrophic factors critically regulate the developmental cell survival and differentiation. In vitro, exogenous neurotrophin application increases axon growth of multiple neuron types. However, the in vivo role of individual neurotrophins in regeneration is less clear and likely complex. After peripheral nerve injury, Schwann cell production of multiple neurotrophins dramatically increases and is thought to be important for regeneration. Importantly, elevated levels of neurotrophins do not persist in chronic axotomy. In agreement with this observation, addition of exogenous brain-derived neurotrophic factor (BDNF) or glial-cell derived neurotrophic factor (GDNF) after acute or chronic sciatic nerve injury increased axon sprout formation at the injury site but did not increase the number of successfully regenerated motor neurons. However, exogenous administration of either BDNF or GDNF after chronic injury did improve motor axon regeneration. Therefore, neurotrophin-dependent axon sprout formation after injury may not necessarily equate to successful regeneration and only in certain circumstances are BDNF and GDNF important for peripheral axonal regeneration.

In multiple studies, exogenous neurotrophins delivered to the injured CNS have demonstrated increased axon growth. However, in these studies, either regeneration of axons has been modest or distinguishing long-distance axonal regeneration from sprouting of uninjured axons has been difficult. Most impressive have been studies of neurotrophin application after dorsal root crush. After crush injury, dorsal root axons regenerate within the peripheral nerve root but stall shortly after entering the CNS, perhaps because of rapid presynaptic differentiation at the CNS/PNS border. However, on intrathecal application of nerve growth factor (NGF), neurotrophin-3 (NT-3), or GDNF, dorsal root axons reinnervated the dorsal horn and partially reestablished sensory function. Similarly, systemic artemin not only allowed dorsal root ganglion (DRG) axon growth across the dorsal root entry zone but also restored both nociceptive and sensorimotor function. Furthermore, after artemin administration (but not Nogo receptor blockade), DRG axons regenerated to topographically appropriate region of the spinal cord dorsal horn. BDNF was not effective in this model. These observations suggest exogenous neurotrophins may be useful in promoting functional recovery after injury of DRG central processes. However, addition of exogenous neurotrophins does not define a biologic role for these molecules, which is likely complex and dependent on cell type. For example, cell-specific deletion of TrkB, the cognate BDNF receptor, from retina demonstrated that a model of toxic injury loss of TrkB from glial cells was as deleterious as loss of TrkB from neurons. Therefore, TrkB signaling in glial cells may be as important for RGC protection as neuronal TrkB signaling. Furthermore, loss of TrkB signaling in glial cells impaired glial proliferation and dedifferentiation after toxic insult. Clearly, defining both the biologic and possible therapeutic roles for neurotrophins in regeneration will require carefully designed experiments that address the functions of neurotrophins and their receptors within both neurons and glial cells.

Glia-associated growth inhibitors

Experiments of the last two decades have well characterized exogenous neuronal growth inhibitors and recent reviews exist. Of these, the best described extrinsic growth-inhibitory molecules include the following: myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte-myelin glycoprotein (OMgp). These molecules are synthesized by oligodendrocytes and distributed in the myelin ensheathing CNS axons. All three myelin inhibitors bind to the glycosylphosphatidylinositol-anchored Nogo-66 receptor (NgR1), which is expressed by many CNS neurons. NgR1 antagonist treatment enhanced neurite outgrowth from DRG cells in co-culture model. Other receptors have also been implicated in mediating the inhibitory effect, including NgR2 and the paired immunoglobulin-like receptor B (PirB). The other major group molecules that inhibit neural regeneration are the chondroitin sulfate proteoglycan (CSPG) inhibitors. Chondroitin 6-sulfate proteoglycans are produced by astrocytes and associated with glial scar, which plays a major role in the regenerative failure after CNS injury. Neuroglycan 2 (NG2), aggrecan, brevican, neurocan, vesicant, and phosphacan are all different members of CSPG family of extracellular matrix molecules. The inhibitory property of CSPG has been attributed to its glycosaminoglycan (GAG) side chains, and
enzymatic removal of GAG chains by chondroitinase ABC (ChABC) has been shown to promote axon regeneration both in vitro and in vivo.3,63–66 Recently, a transmembrane protein tyrosine phosphatase, PTP\textsubscript{r}, was identified as a high-affinity receptor of CSPG, which mediates its inhibitory effect.67 Despite convincing in vitro data on the role of these growth-inhibitory molecules, knockout of the three myelin inhibitory proteins,4 or the NgR,68 has not improved corticospinal tract axonal regeneration. Enzymatic removal of CSPG or genetic deletion of PTPl\textsubscript{σ}1,69 modestly improved axonal growth, although it is unclear if the observed growth is long-tract axonal regeneration or sprouting of spared axons. Thus, while the myelin and proteoglycan inhibitory molecules play some role in limiting axonal growth, additional limitations on axonal regenerative growth likely exist.

Intrinsic modulation of neuronal growth response

Endogenous growth suppressors

Discouraged by the poor regeneration observed after removal of myelin-based extrinsic growth inhibitors, investigators have attempted to define endogenous inhibitors of axonal regeneration. Early successes have focused on the molecule phosphatase and tensin homologue (PTEN) deleted on chromosome 10. Originally discovered as a tumor suppressor,2 PTEN deletion has been recently shown to dramatically increase postembryonic regeneration after injury in RGCs and corticospinal neurons in the CNS70,71 and axon outgrowth in the PNS.72 Loss of PTEN likely results in phosphatidylinositol (3,4,5)-trisphosphate (PIP\textsubscript{3}) accumulation, deregulation of AKT signaling, and likely increases regeneration through multiple downstream signaling effectors (for recent review see Ref. 6). Of particular note, administration of rapamycin (a known inhibitor of the mTOR pathway) significantly impaired PTEN deletion–mediated regeneration4 and, additionally, deletion of the endogenous mTOR inhibitor; tuberous sclerosis complex-1 (TSC1) also increased regeneration after optic nerve crush.70 These important observations suggest that the impressive CNS regeneration observed in these experiments depends, at least in part, on the ability of the neuron to initiate new protein synthesis needed to manufacture the raw material required for axonal regeneration. However, TSC-deleted regeneration was not as robust as PTEN-mediated regeneration suggesting some importance of signaling not dependent on new protein synthesis. Despite the substantial growth observed with PTEN deletion, regenerating axons did not reach the lateral geniculate. At least in RGCs, true target reinnervation will likely only result with combinatorial treatments including PTEN deletion, activation of inflammation, and elevation of cyclic adenosine monophosphate (cAMP).75

Also downstream from PTEN but likely independent of the mTOR pathway, glycogen synthesis kinase (GSK) also importantly regulates axon growth. Pharmacological PTEN inhibition increases phospho-AKT (pAKT) and pGSK-3β levels and neurite outgrowth suggesting one effector of PTEN inhibition–mediated outgrowth is GSK-3β.74 GSK-3 integrates multiple extracellular signals to modulate axon formation and elongation both at the cell body and growth cone.6 Neurotrophin-dependent inactivation of GSK-3β increases adenomatous polyposis coli (APC)75 or collapsin response mediator protein-2 (CRMP-2)76 stabilization of microtubules and increases axon elongation in developing neurites. Interestingly, basal GSK-3β activity likely prevents ongoing axon formation.77 More recent data suggest that GSK-3β likely plays a similar role in adult neurons and spinal cord injury.80 However, GSK-3β may also respond to myelin inhibitors and, therefore, may regulate growth in a more complex fashion.81

Cyclic nucleotides

Loss of neuronal cAMP, in part, accounts for developmental loss of regenerative ability,82 and spinal cord injury results in reduction of neuronal cAMP levels.83 Raising cAMP levels in a poorly regenerating zebrafish axons improved regeneration.84 Exogenous db-cAMP injection into dorsal root ganglia improves axonal growth into a spinal cord lesion,85 and local injection of a phosphodiesterase inhibitor (which elevates cAMP levels) improves axonal regeneration and functional recovery after spinal cord injury66 or regeneration after peripheral nerve injury.87 It is unclear if cAMP’s salutary effect on in vivo axon growth occurs at the axon tip, cell body, or both. Certainly, the effects of growth inhibitors at the growth cone are dependent on the neuronal levels of cAMP. When levels are high, the effect on the growth cone is chemorepulsion, whereas when they are low, the effect is chemotraction, whereas interestingly, regeneration of spinal axons of lamprey is accelerated by exogenous cAMP, even though these axons do not appear to have classic growth cones.91

In regenerating zebrafish axons, cAMP dependent–regeneration required DLK-1 kinase.9 Moreover, cAMP modulates expression of SOCS molecules in the retina, which are known to limit cytokine-induced growth, and may provide an additional mechanism by which cyclic nucleotides augment regeneration.75 These studies suggest that cAMP prepares the neuron for a regenerative response.

Transcription factors

In response to injury, some neurons dramatically alter their patterns of gene expression and switch to a regenerative...
phenotype, whereas other neuronal populations do not substantially alter their gene expression or abort an early regenerative response and thus fail to regenerate an axon. The coordinate regulation of these responses is likely controlled by multiple transcription factors and recent experiments have begun to elucidate both the basis of a successful regenerative phenotype after injury and the concomitant loss of regenerative ability that often occurs developmentally in CNS axons.

A study of developmentally regulated RGC genes revealed that multiple members of the Krüppel-like factors (KLFs) are present and developmentally regulated in RGCs and, therefore, putative regulators of axon growth.93 KLFs are a family of zinc-finger-containing transcription factors that regulate diverse biological processes.94 KLF-4 and KLF-9 expression increase at birth but KLF-6 and KLF-7 decrease, suggesting that these molecules may control the growth potential of retinal ganglion neurons. Indeed, deletion of KLF-4 improves neurite growth in vitro and optic nerve regeneration after crush in vivo.93 In addition, optic axons successfully regenerate in adult zebrafish and increase their expression of KLF6a and KLF7a after injury. Furthermore, simultaneous knockdown of both these molecules impaired RGC outgrowth.93 Interestingly, KLF knockdown impaired regeneration-dependent expression of alpha 1 tubulin, which is likely important for axon extension.96 These observations demonstrate that the regenerative competence of neurons is actively regulated by groups of functionally interrelated transcription factors but during development and after injury. Furthermore, manipulation of these factors can improve neuronal regenerative potential.

However, it is likely that the complex control of the regenerative response is an ‘all or none’ phenomenon, but instead discrete aspects of regeneration are likely controlled by separate transcription factors. STAT3, as part of the JAK-STAT signaling pathway, is activated after peripheral but not central axon lesion97 and pharmaceutical blockade of STAT3 activation after peripheral nerve injury prevents CNS axon growth normally observed after a conditioning lesion.98 These observations suggest that STAT3 plays a critical role in the neuronal response to injury. However, recent experiments have importantly refined the role of STAT3 in regeneration. After selective deletion of sensory neuron STAT3, the initiation of peripheral regeneration after nerve transection stalled but subsequent axonal elongation was unaffected. In addition, STAT3 overexpression in DRGs increased sprout formation after dorsal column lesion but did not lead to persistent axonal growth.99 Finally, STAT3 overexpression also increased neurite outgrowth of cerebellar granule cells in vitro.100 Therefore, STAT3 importantly regulates the initiation but not continuation of axonal regeneration in both central and peripheral axons. In general, these observations suggest that individual signaling pathways and downstream transcription factors may control discrete phases of the regenerative process.

Interestingly, some transcription factors increase after injury but appear to limit the regeneration response. Nuclear factor IL-3 (NFIL3) regulation increases in sensory neurons after injury but represses CREB-mediated transcription and expression of regeneration-associated genes such as arginase and GAP-43, thereby likely limiting the regenerative response.101 More recently, NFIL3 has been shown to also repress expression of genes activated by C/EBP family members.102 Therefore, even successfully regenerating neurons may endogenously limit their growth response.

Other notable transcription factors include members of the Jun and Fos families, components of the transcription factor AP-1 and ATF3. Cre-mediated c-jun deletion in the CNS impaired regeneration of facial motor axons, abrogated upregulation of several other regeneration-associated molecules, and impaired microglial activation.103 ATF3 increases after peripheral nerve axotomy in motor and sensory neurons.104 Expression may also be seen in corticospinal neurons with intracortical but not spinal cord lesions.105 Thalamic nuclei that have grown into a peripheral nerve graft,106 or zebrafish retina, which can successfully regenerate axons.107 Transgenic overexpression of ATF3 in dorsal root ganglia increased the regenerative capacity of peripheral DRG axons suggesting ATF3 expression may help determine the regenerative state of sensory neurons.108

Effectors of axonal regeneration

After injury in the CNS, cut axons may attempt to regenerate. However, despite these attempts, damaged axons do not regenerate to significant distances. Axonal growth failure is a result of both the neuron’s poor intrinsic growth potential and the growth-inhibitory environment of the injured CNS. Recent studies of intrinsic growth regulators have emphasized the importance of new protein synthesis and axonal transport as critical determinants of regeneration, and other studies have emphasized regeneration-associated molecules that correlate with successful regeneration. Therefore, the many growth-associated molecules that are regulated by intrinsic determinants of regeneration likely play a critical and specific role in the regenerative process and some are highlighted in the following sections.

Conditioning lesions

If a cut regenerating axon is reinjured more proximally, it will grow at a greater rate than if the axon suffered only one injury. This is the classic conditioning lesion.109 Most remarkably, sciatic nerve transection prior to a dorsal column lesion of the ascending sensory neuron projections remarkably improved regeneration within the injured CNS.110 Subsequent studies found a substantial increase in cAMP in injured DRG and that db-cAMP injections
partially replicate the effect of a conditioning lesion. Interestingly, interleukin (IL)-6 injections also mimic this response but IL-6 is not required for a conditioning lesion effect. More recent experiments have found that cultured superior cervical ganglia neurons did not respond to conditioning lesions if gp130 was deleted. One downstream effect of a conditioning lesion is increased transport of tubulin and actin. However, in poorly regenerating RGCs, axonal transport of cytoskeleton proteins decreases 10-fold unless axons encounter and regenerate into a peripheral nerve grafts. Although not fully understood, the improved regeneration observed after conditioning lesion most importantly emphasizes the critical role that neuronal growth state plays in successful regeneration, even in the injured CNS and further suggests that associated differences in axonal transport may play a role in growth efficacy.

Growth-associated proteins

After sciatic nerve transection, at least an estimated 240 genes in DRG undergo dramatic up or down regulation, including a number of transcription factors that undergo early change after injury. Presumably, this coordinated response regulates genes critical for conversion of a neuron to a growth-promoting phenotype and, therefore, successful axonal regeneration. Of these growth-associated genes, GAP-43 is best known, although its precise function is unclear. Cell type–specific overexpression of GAP-43 in transgenic mice did not induce axonal regeneration in these cells, although short-distance sprouting did occur. These findings can be interpreted to imply that GAP-43 is important in the generation of growth cones but this is not sufficient to induce regeneration. However, when GAP-43 and cytoskeleton-associated protein of 23 kDa (CAP-23) were overexpressed together, DRG axons were able to regenerate after spinal cord transection. In transgenic zebrafish, a GAP-43 promoter element that triggered expression of GAP-43 during axon development did not do so during regeneration of optic nerve. Thus, the signaling pathways for axon elongation during regeneration may be different from those during axon development.

Cytoskeletal proteins

During development, growth cones are found at the growing tips of axons and consist of filopodia and lamellipodia. Embedded in these structures are cell surface receptors that translate surface binding into the intracellular signals that regulate axon elongation, turning, and growth inhibition. The role of cytoskeletal elements in adult neuron regeneration is less clear, although presumably important. During CNS regeneration in mammals, growth cones are poorly formed, with a bullet-like appearance and dystrophic axon retraction bulbs are commonly observed. During peripheral nerve regeneration, synthesis of tubulin and actin is increased but neurofilament is downregulated suggesting that microtubules and actin microfilaments are critical for regeneration. Importantly, in the CNS, only axons regenerating into a peripheral nerve graft express tubulin, suggesting that the CNS environment may limit the expression of cytoskeletal elements important for axon extension. In a morphologic analysis of regenerating axons, Ertuk and colleagues found that microtubules in retraction bulbs were not arrayed along the longitudinal axis of the axon in contrast to axons without retraction bulbs. Local administration of taxol, a microtubule-stabilizing agent, interfered with retraction bulb formation after dorsal column lesion and increased in vitro neurite outgrowth on myelin. After optic nerve crush, local taxol administration in combination with lens injury notably increased axon growth, perhaps through reduction of local CSPG production. Similarly, after peripheral conditioning and dorsal column lesions, sensory axons grew into glial scar after local taxol administration possibly because of decreased TGF-β1 signaling and CSPG production. Surprisingly, regenerative axon elongation does not appear to require a microtubule-organizing center. Thus, it may be that microtubules (MTs) assembled locally in a growing axon and are important for regeneration and responsive to local inhibitory molecules.

Cell adhesion molecules

In the CNS and PNS, regenerating axons often grow on cell surfaces. In the PNS, cell adhesion molecules embedded in the Schwann cell membrane are thought to contribute to the success of regeneration, whereas in the injured CNS, the cellular environment and their respective cell adhesion molecules are a complex mix of growth-inhibitory and growth-promoting molecules, which, on balance, are thought to impede regeneration. The molecules of the Schwann cell membrane are thought to facilitate axonal regeneration that includes neuronal cadherin (NCAD) and L1, among others. NCAD, L1, and neuronal cell adhesion molecule (NCAM) are thought to be important for embryonic neurite growth on astrocytes in the CNS. After injury, adult PNS neurons and glia increase expression of these growth-associated cell adhesion molecules, but in the CNS, poorly regenerating neurons such as RGCs or corticospinal neurons do not reexpress these molecules after injury. In zebrafish, the regenerative abilities of different neurons correlated with expression of the homophilic cell adhesion molecule L1 and NCAD. Furthermore, L1 knockdown in motor neurons impaired axonal regeneration. Thus, adhesion molecules are able to help overcome an inhibitory environment and tip the balance to favor axon regeneration. Following this logic, forced expression of cell adhesion molecules improves CNS recovery after injury. For example, increased L1 or L1 and GAP-43 expression improved
Purkinje cell regeneration into a peripheral nerve graft,146 and virally mediated L1 expression at the site of spinal cord injury stabilized the corticospinal tract, enhanced the growth of 5-HT axons, and correlated with moderate functional improvement.147 In conclusion, earlier reports demonstrated that after spinal cord injury in adult rats, treatment with soluble L1-Fc promotes axon regeneration and functional recovery.148 Therefore, the ability of neurons to express complimentary cell adhesion molecules on their surface is likely one important intrinsic determinant of their regenerative ability.

Summary and conclusions

The injured human CNS has only limited ability to recover after injury and little of this recovery appears to correlate with true, long-distance axonal regeneration. Studies carefully delineating the multiplicity of glial-inhibitory molecules and their axonal receptors generated widespread enthusiasm that removal of these molecules would improve both recovery and long-distance axonal regeneration. However, such removal does not appear to have had a dramatic effect on either functional recovery or long-distance axonal regeneration. More recent experiments suggest that robust long-distance regeneration potential declines developmentally and may be further suppressed after injury. Strikingly, removal of an array of growth suppressor molecules allows robust, long-distance axonal growth, presumptively by activating a regenerative response not normally accessible to most injured CNS neurons. These observations again provide hope that rational manipulation of the injured CNS will provide successful treatments after CNS injury. However, given the inherent glial and neuronal complexity of the injured CNS, it is unlikely that a single treatment approach will repair the CNS after injury. Instead, combination treatments will be increasingly prominent and treatment approach will repair the CNS after injury. Instead, complex treatments into growth cones.

References

1. David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. *Science* 1981; 214: 931–933.

2. Yiu G, He Z. Gliial inhibition of CNS axon regeneration. *Nat Rev Neurosci* 2006; 7: 617–627.

3. Bradbury EJ, Moon LDF, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. *Nature* 2002; 416: 636–640.

4. Lee JK, Geoffroy CG, Chan AF, et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. *Neuron* 2010; 66: 663–670.

5. Lee JK, Chow R, Xie F, Chow SY, Tolentino KE, Zheng B. Combined genetic attenuation of myelin and semaphorin-mediated growth inhibition is insufficient to promote serotonergic axon regeneration. *J Neurosci* 2010; 30: 10899–10904.

6. Park KK, Liu K, Hu Y, Kanter JL, He Z. PTEN/mTOR and axon regeneration. *Exp Neurol* 2010; 223: 45–50.

7. Ziv NE, Spira ME. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. *J Neurosci* 1997; 17: 3568–3579.

8. Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. *FASEB J* 2004; 18: 1934–1936.

9. Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD. Calcium and cyclic AMP promote axonal regeneration in *Caenorhabditis elegans* and require DLK-1 kinase. *J Neurosci* 2010; 30: 3175–3183.

10. Hammarlund M, Nix P, Hauth L, Jorgensen EM, Bastiani M. Axon regeneration requires a conserved MAP kinase pathway. *Science* 2009; 323: 802–806.

11. Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA. Protein turnover of the Wallenda/HLA kinase regulates a retrograde response to axonal injury. *J Cell Biol* 2010; 191: 211–223.

12. Itoh A, Horiuchi M, Bannerman P, Pleasure D, Itoh T. Impaired regenerative response of primary sensory neurons in ZPK/DLK gene-trap mice. *Biochem Biophys Res Commun* 2009; 383: 258–262.

13. Yan D, Wu Z, Chisholm AD, Jin Y. The DLK-1 kinase promotes mRNA stability and local translation in *C. elegans* synapses and axon regeneration. *Cell* 2009; 138: 1005–1018.

14. Hanz S, Perlson E, Willis D, et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. *Neuron* 2003; 40: 1095–1104.

15. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. *Neuron* 2005; 45: 715–726.

16. Lai K, Zhao Y, Ch‘ng TH, Martin KC. Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. *Proc Natl Acad Sci U S A* 2008; 105: 17175–17180.

17. Yudin D, Hanz S, You S, et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. *Neuron* 2008; 59: 241–252.
18. Zou H, Ho C, Wong K, Tessier-Lavigne M. Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. *J Neurosci* 2009; 29: 7116–7123.

19. Okuyama N, Kiryu-Seo S, Kiyama H. Altered expression of Smad family members in injured motor neurons of rat. *Brain Res* 2007; 1132: 36–41.

20. Cavalli V, Kujala P, Klumperman J, Goldstein LSB. Sunday Driver links axonal transport to damage signaling. *J Cell Biol* 2005; 168: 775–787.

21. Lindwall C, Kanje M. Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p-e-Jun and ATF3 in adult rat sensory neurons. *Mol Cell Neurosci* 2005; 29: 269–282.

22. Vidal-Sanz M, Bray GM, Villegas-Perez MP, Thanos S, Aguayo AJ. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. *J Neurosci* 1987; 7: 2894–2909.

23. Inoue T, Hosokawa M, Morikawa K, Ohashi Y, Fukuda Y. Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. *J Neurosci* 2002; 22: 4468–4477.

24. Lu X, Richardson PM. Inflammation near the nerve cell body enhances axonal regeneration. *J Neurosci* 1991; 11: 972–978.

25. Yin Y, Cui Q, Li Y, et al. Macrophage-derived factors stimulate optic nerve regeneration. *J Neurosci* 2003; 23: 2284–2294.

26. Yin Y, Henzl MT, Lorber B, et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. *Nat Neurosci* 2006; 9: 843–852.

27. Yin Y, Cui Q, Gilbert H, et al. Oncomodulin links inflammation to optic nerve regeneration. *Proc Natl Acad Sci U S A* 2009; 106: 19587–19592.

28. Leibinger M, Müller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. *J Neurosci* 2009; 29: 14334–14341.

29. Müller A, Hauk TG, Leibinger M, Marienfeld R, Fischer D. Exogenous CNTF stimulates axon regeneration of retinal ganglion cells partially via endogenous CNTF. *Mol Cell Neurosci* 2009; 41: 233–246.

30. Leaver SG, Cui Q, Plant GW, et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. *Gene Ther* 2006; 13: 1328–1341.

31. Lunde PK, Sejersted OM. Intracellular calcium signalling in striated muscle cells. *Scand J Clin Lab Invest* 1997; 57: 559–568.

32. Narazaki M, Fujimoto M, Matsumoto T, et al. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. *Proc Natl Acad Sci U S A* 1998; 95: 13130–13134.

33. Smith PD, Sun F, Park KK, et al. SOCS3 deletion promotes optic nerve regeneration in vivo. *Neuron* 2009; 64: 617–623.

34. Hellsström M, Muhling J, Ehler EM, et al. Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons. *Mol Cell Neurosci* 2010; 46: 507–515.

35. Miao T, Wu D, Zhang Y, et al. Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. *J Neurosci* 2006; 26: 9512–9519.

36. Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. *Mol Neurobiol* 2006; 33: 155–179.

37. Chen Z, Yu W, Strickland S. Peripheral regeneration. *Annu Rev Neurosci* 2007; 30: 209–233.

38. Höke A, Gordon T, Zochodne DW, Sulaiman OAR. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. *Exp Neurol* 2002; 173: 77–85.

39. Boyd JG, Gordon T. A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. *Eur J Neurosci* 2002; 15: 613–626.

40. Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. *Exp Neurol* 2003; 183: 610–619.

41. Hendriks WT, Ruitenber RJ, Blits B, Boer GJ, Verhaagen J. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. *Prog Brain Res* 2004; 146: 451–476.

42. Hollis ER, Jamshidi P, Löw K, Blesch A, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. *Proc Natl Acad Sci U S A* 2009; 106: 7215–7220.

43. Di Maio A, Skuba A, Himes BT, et al. In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. *J Neurosci* 2011; 31: 4569–4582.

44. Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. *Nature* 2000; 403: 312–316.

45. Wang R, King T, Ossipov MH, et al. Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury. *Nat Neurosci* 2008; 11: 488–496.

46. Harvey P, Gong B, Rossomando AJ, Frank E. Topographically specific regeneration of sensory axons in the spinal cord. *Proc Natl Acad Sci U S A* 2010; 107: 11585–11590.

47. Harada C, Guo X, Namekata K, et al. Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. *Nat Commun* 2011; 2: 189.

48. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. *Neuron* 1994; 13: 805–811.
49. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. *Neuron* 1994; 13: 757–767.

50. Chen MS, Huber AB, van der, Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. *Nature* 2000; 403: 434–439.

51. GrandPré T, Nakamura F, Vartanian T, Strittmatter SM. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. *Nature* 2000; 403: 439–444.

52. Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans. *Nature* 2000; 403: 383–384.

53. Kottis V, Thibault P, Mikol D, et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. *J Neurochem* 2002; 82: 1566–1569.

54. Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. *Nature* 2002; 417: 941–944.

55. Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. *Nature* 2001; 409: 341–346.

56. Domeniconi M, Cao Z, Spencer T, et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. *Neuron* 2002; 35: 283–290.

57. Venkatesh K, Chivatakarn O, Lee H, et al. The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. *J Neurosci* 2005; 25: 808–822.

58. Atwal JK, Pinkston-Gosse J, Syken J, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. *Science* 2008; 322: 967–970.

59. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. *J Neurosci* 1991; 11: 3398–3411.

60. Davies SJ, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. *J Neurosci* 1999; 19: 5810–5822.

61. Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. *Nat Rev Neurosci* 2009; 10: 235–241.

62. Fawcett JW, Asher RA. The glial scar and central nervous system repair. *Brain Res Bull* 1999; 49: 377–391.

63. Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. *J Neurosci* 1998; 18: 5203–5211.

64. Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. *Exp Neurol* 2002; 176: 221–228.

65. Grimpe B, Pressman Y, Lupa MD, Horn KP, Bunge MB, Silver J. The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces. *Mol Cell Neurosci* 2005; 28: 18–29.

66. Steinmetz MP, Horn KP, Tom VJ, et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. *J Neurosci* 2005; 25: 8066–8076.

67. Shen Y, Tenney AP, Busch SA, et al. PTStopa is a receptor for chondroitin sulfateproteoglycan an inhibitor of neural regeneration. *Science* 2009; 326: 592–596.

68. Zheng B, Atwal J, Ho C, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. *Proc Natl Acad Sci U S A* 2005; 102: 1205–1210.

69. Fry EJ, Chagnon MJ, López-Vales R, Tremblay ML, David S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. *Glia* 2010; 58: 423–433.

70. Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. *Science* 2008; 322: 963–966.

71. Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. *Nat Neurosci* 2010; 13: 1075–1081.

72. Christie KJ, Webber CA, Martinez JA, Singh B, Zochodne DW. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. *J Neurosci* 2010; 30: 9306–9315.

73. Kurimoto T, Yin Y, Omura K, et al. Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. *J Neurosci* 2010; 30: 15654–15663.

74. Arevalo M, Rodríguez-Tébar A. Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75NTR inhibit glycogen synthase kinase-3beta and stimulate axonal growth. *Mol Biol Cell* 2006; 17: 3369–3377.

75. Zhou F, Zhou J, Dedhar S, Wu Y, Snider WD. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. *Neuron* 2004; 42: 897–912.

76. Yoshimura T, Kawano Y, Arimura S, Kawabata S, Kikuchi MT. A novel role for myelin-associated glycoprotein as an antigen for monoclonal antibody IN-1. *Nature* 2000; 403: 434–439.

77. Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active F-actin function. *Cell* 2002; 102: 1205–1210.

78. Fry EJ, Chagnon MJ, López-Vales R, Tremblay ML, David S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. *Glia* 2010; 58: 423–433.

79. Zhou F, Zhou J, Dedhar S, Wu Y, Snider WD. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. *Neuron* 2004; 42: 897–912.
80. Dill J, Wang H, Zhou F, Li S. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 2008; 28: 8914–8928.
81. Alabed YZ, Pool M, Ong Tone S, Sutherland C, Fournier AE. GSK3 beta regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci 2010; 30: 5635–5643.
82. Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 2001; 21: 4731–4739.
83. Pearse DD, Pereira FC, Marcillo AE, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004; 10: 610–616.
84. Bhatt DH, Otto SJ, Depoister B, Fetcho JR. Cyclic AMP-induced repair of zebrafish spinal cords. Science 2004; 305: 254–258. Doi:10.1126/science.1098439.
85. Qiu J, Cai D, Dai H, et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 2002; 34: 895–903.
86. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A 2004; 101: 8786–8790.
87. Udina E, Ladak A, Furey M, Brushart T, Tyreman N, Gordon T. Rolipram-induced elevation of cAMP or chondroitinase ABC breakdown of inhibitory proteoglycans in the extracellular matrix promotes peripheral nerve regeneration. Exp Neurol 2010; 223: 143–152.
88. Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM. cAMP-dependent growth cone guidance by netrin-1. Neuron 1997; 19: 1225–1235.
89. Song HJ, Ming GL, Poo MM. cAMP-induced switching in turning direction of nerve growth cones. Nature 1997; 388: 275–279.
90. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a CAMP-dependent mechanism. Neuron 1999; 22: 89–101.
91. Jin L, Zhang G, Jamison C, Takano H, Haydon PG, Selzer ME. Axon regeneration in the absence of growth cones: acceleration by cyclic AMP. J Comp Neurol 2009; 515: 295–312.
92. Park KK, Hu Y, Muhling J, et al. Cytokine-induced SOCS expression is inhibited by cAMP analogue: impact on regeneration in injured retina. Mol Cell Neurosci 2009; 41: 313–324.
93. Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability. Science 2009; 326: 298–301.
94. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev 2010; 90: 1337–1381.
95. Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 2007; 312: 596–612.
96. Veldman MB, Bemben MA, Goldman D. Tubal1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Mol Cell Neurosci 2010; 43: 370–383.
97. Schwaiger FW, Hager G, Schmitt AB, et al. Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 2000; 12: 1165–1176.
98. Qiu J, Cafferty WBJ, McMahon SB, Thompson SWN. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci 2005; 25: 1645–1653.
99. Bareyre FM, Garzorzi N, Lang C, Misgeld T, Bunning H, Kerschensteiner M. In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A 2011; 108: 1–16.
100. Smith RP, Lerc-Haner JK, Pardinas JR, Buchel WJ, Bixby JL, Lemmon VP. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse. Mol Cell Neurosci 2011; 46: 32–44.
101. MacGillavry HD, Stam FJ, Sassen MM, et al. NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci 2009; 29: 15542–15550.
102. MacGillavry HD, Cornelis J, van der, Kallen LR, et al. Genome-wide gene expression and promoter binding analysis identifies NFIL3 as a repressor of C/EBP target genes in neuronal outgrowth. Mol Cell Neurosci 2011; 46: 460–468.
103. Raivich G, Bohatschek M, Da Costa C, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 2004; 43: 57–67.
104. Tsujino H, Kondo E, Fukuoka T, et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 2000; 15: 170–182.
105. Mason MRJ, Lieberman AR, Anderson PN. Corticospinal neurons up-regulate a range of growth-associated genes following intracortical, but not spinal, axotomy. Eur J Neurosci 2003; 18: 789–802.
106. Chaisuksunt V, Campbell G, Zhang Y, Schachner M, Lieberman AR, Anderson PN. Expression of regeneration-related molecules in injured and regenerating striatal and nigral neurons. J Neurocytol 2003; 32: 161–183.
107. Saul KE, Koke JR, García DM. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 2000; 15: 170–182.
108. Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 2011; 31: 11629–11638.
109. Chaisuksunt V, Campbell G, Zhang Y, Schachner M, Lieberman AR, Anderson PN. Expression of regeneration-related molecules in injured and regenerating striatal and nigral neurons. J Neurocytol 2003; 32: 161–183.
110. Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 2007; 27: 7911–7920.
111. McQuarrie IG, Grafstein B, Gershon MD. Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res 1977; 132: 443–453.
110. Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999; 23: 83–91.

111. Cao Z, Gao Y, Bryson JB, et al. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci 2006; 26: 5565–5573.

112. Hyatt Sachs H, Rohrer H, Zigmond RE. The conditioning lesion effect on sympathetic neurite outgrowth is dependent on gp130 cytokines. Exp Neurol 2010; 223: 516–522.

113. McQuarrie IG, Jacob JM. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush. J Comp Neurol 1991; 305: 139–147.

114. McKerracher L, Vidal-Sanz M, Essagian C, Aguayo AJ. Selective impairment of slow axonal transport after optic nerve injury in adult rats. J Neurosci 1990; 10: 2834–2841.

115. McKerracher L, Vidal-Sanz M, Aguayo AJ. Slow transport rates of cytoskeletal proteins change during regeneration of axotomized retinal neurons in adult rats. J Neurosci 1990; 10: 641–648.

116. Costigan M, Befort K, Karchewski L, et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002; 3: 16.

117. Stam FJ, MacGillavry HD, Armstrong NJ, et al. Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur J Neurosci 2007; 25: 3629–3637.

118. Skene JH, Willard M. Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J Neurosci 1981; 1: 419–426.

119. Doster SK, Lozano AM, Aguayo AJ, Willard MB. Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron 1991; 6: 635–647.

120. Bomze HM, Bulsara KR, Iskandar BJ, Caroni P, Skene JH. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 2001; 4: 38–43.

121. Kusik BW, Hammond DR, Udvadia AJ. Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn 2010; 239: 482–495.

122. Tetzlafl W, Alexander SW, Miller FD, Bisby MA. Response of facial and spinal sensory neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 1991; 11: 2528–2544.

123. McKerracher L, Essagian C, Aguayo AJ. Marked increase in beta-tubulin mRNA expression during regeneration of axotomized retinal ganglion cells in adult mammals. J Neurosci 1993; 13: 5294–5300.

124. Ertürk A, Hellal F, Enes J, Bradke F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 2007; 27: 9169–9180.

125. Sengottuvel V, Leibinger M, Pfeiffer M, Andreadaki A, Fischer D. Taxol facilitates axon regeneration in the mature CNS. J Neurosci 2011; 31: 2688–2699.

126. Hellal F, Hurtado A, Ruschel J, et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 2011; 331: 928–931.

127. Stiess M, Magelli N, Kaptein LC, et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 2010; 327: 704–707.

128. Nathaniel EJ, Pease DC. Regenerative changes in rat dorsal roots following Walerian degeneration. J Ultrastruct Res 1963; 52: 533–549.

129. Scherer SS, Easter SS. Degenerative and regenerative changes in the trochlear nerve of goldfish. J Neurocytol 1984; 13: 519–565.

130. Busch SA, Horn KP, Cuasquet FX, et al. Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury. J Neurosci 2010; 30: 255–265.

131. Bixby JL, Lilien J, Reichardt LF. Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J Cell Biol 1988; 107: 353–361.

132. Kleitman N, Simon DK, Schachner M, Bunge RP. Growth of embryonic retinal neurites elicited by contact with Schwann cell surfaces is blocked by antibodies to L1. Exp Neurol 1988; 102: 298–306.

133. Seilheimer B, Schachner M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol 1988; 107: 341–351.

134. Wood PM, Schachner M, Bunge RP. Inhibition of Schwann cell myelination in vitro by antibody to the L1 adhesion molecule. J Neurosci 1990; 10: 3635–3645.

135. Tomaselli KJ, Neugebauer KM, Bixby JL, Lilien J, Reichardt LF. N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron 1988; 1: 33–43.

136. Neugebauer KM, Tomaselli KJ, Lilien J, Reichardt LF. N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. J Cell Biol 1988; 107: 1177–1187.

137. Kanemaru K, Okubo Y, Hirose K, Iino M. Regulation of neurite growth by spontaneous Ca2+ oscillations in astrocytes. J Neurosci 2007; 27: 8957–8966.

138. Martini R, Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J Cell Biol 1988; 106: 1735–1746.

139. Shibuya Y, Mizoguchi A, Takeichi M, Shimada K, Ide C. Localization of N-cadherin in the normal and regenerating nerve fibers of the chicken peripheral nervous system. Neuroscience 1995; 67: 253–261.
141. Bates CA, Becker CG, Miotke JA, Meyer RL. Expression of polysialylated NCAM but not L1 or N-cadherin by regenerating adult mouse optic fibers in vitro. *Exp Neurol* 1999; 155: 128–139.

142. Chaisuksunt V, Zhang Y, Anderson PN, et al. Axonal regeneration from CNS neurons in the cerebellum and brainstem of adult rats: correlation with the patterns of expression and distribution of messenger RNAs for L1, CHL1, c-jun and growth-associated protein-43. *Neuroscience* 2000; 100: 87–108.

143. Becker T, Bernhardt RR, Reinhard E, et al. Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. *J Neurosci* 1998; 18: 5789–5803.

144. Liu Q, Londraville RL, Azodi E, et al. Up-regulation of cadherin-2 and cadherin-4 in regenerating visual structures of adult zebrafish. *Exp Neurol* 2002; 177: 396–406.

145. Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M. L1.1 is involved in spinal cord regeneration in adult zebrafish. *J Neurosci* 2004; 24: 7837–7842.

146. Zhang Y, Bo X, Schoepfer R, et al. Growth-associated protein GAP-43 and L1 act synergistically to promote regenerative growth of Purkinje cell axons in vivo. *Proc Natl Acad Sci U S A* 2005; 102: 14883–14888.

147. Chen J, Wu J, Apostolova I, et al. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. *Brain* 2007; 130: 954–969.

148. Roonprapunt C, Huang W, Grill R, et al. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury. *J Neurotrauma* 2003; 20: 871–882.