Neural Inverse Transform Sampler

Henry Li, Yuval Kluger
Density Estimation
Density Estimation
Density Estimation
Ideal Properties
Ideal Properties

Flexible Density Approximation
Ideal Properties

Flexible Density Approximation

Tractable Evaluation

Input → Output $p(\cdot)$
Ideal Properties

Flexible Density Approximation

Tractable Evaluation

Fast Sampling

Input

Output \(p(\cdot) \)

Generate, , or
Flexible Density Approximation

\[p(x = \theta) \propto f(x, \theta) \]
Flexible Density Approximation

\[p(x = \text{cat}) \propto f(x, \theta) \]

Positivity

\[p(x) \geq 0 \quad x \in A \]

Easy
Flexible Density Approximation

\[p(x = \quad) \propto f(x, \theta) \]

\[p(x) \geq 0 \quad x \in A \]

\[\int_A p(x) dx = 1 \]

Positivity

Integration to Unity

General case: NP Hard!
Integration Trick (in 1D)

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx} f(x) \quad \text{for all } x \in A.$$
Integration Trick (in 1D)

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx} f(x) \quad \text{for all } x \in A.$$

Then, if $A \in [a, b]$,

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$
Integration Trick (in 1D)

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx} f(x) \quad \text{for all } x \in A.$$

Then, if $A \in [a, b],$

$$\int_a^b f(x) dx = F(b) - F(a).$$
Integration Trick (in 1D)

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx} f(x) \quad \text{for all } x \in A.$$

Then, if $A \in [a, b],$

$$\int_a^b f(x) \, dx = F(b) - F(a).$$
Integration Trick

$$CDF(x = \cdots) \propto \mathbf{F}(x, \theta)$$

$$\int_a^b p(x) \, dx = \int_a^b \frac{F'(x)}{F(b) - f(a)}$$
Tractable Evaluation

\[\text{cdf}(x = ____) \propto F(x, \theta) \]

Input \rightarrow Output \ p(______) \

\[
\int_a^b p(x) dx = \int_a^b \frac{F'(x)}{F(b) - f(a)}
\]
Fast Sampling

(Inverse Transform Method.) Two step process:

1. draw $z \sim \text{Unif}[0, 1]$

2. compute $x = \text{cdf}^{-1}(z)$
Lemma 3. (Gradient Theorem) Let $F : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuously differentiable function and $\varphi : [a, b] \rightarrow \mathbb{R}^n$ be a curve in \mathbb{R}^n, where $a, b \in \mathbb{R}$ and $\varphi(a), \varphi(b)$ are the endpoints of the curve. Then

$$\int_{\varphi[a,b]} \nabla F \cdot dr = F(\varphi(b)) - F(\varphi(a)). \quad (12)$$
Neural Inverse Transform Sampler

\[\text{cdf}(x = \text{cat}) \propto F(x, \theta) \]

\[F_\theta(x, y) \]

\[\nabla_x | y = c \]

\[y = c \]

\[x = A \]

\[x = B \]

\[f_\theta(x, y) \]

\[Z_{f_\theta | y = c}^{-1} \]

\[\nu_\theta(x | y) \]
Results

Table 2. Test log likelihood for UCI datasets and BSDS300, with error bars corresponding to two standard deviations. The table is split into two halves: the upper half denotes flow-based models, and the lower half denotes autoregressive continuous density models. NITS-CONV is only applied to BSDS300, as the convolutional architecture is only readily applicable to images.

Model	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
MAF	0.30 ± 0.01	9.59 ± 0.02	-17.39 ± 0.02	-11.68 ± 0.44	156.36 ± 0.28
TAN	0.48 ± 0.01	11.19 ± 0.02	-15.12 ± 0.02	-11.01 ± 0.48	157.03 ± 0.07
NAF	0.62 ± 0.02	11.91 ± 0.13	-15.09 ± 0.40	**-8.86 ± 0.15**	157.73 ± 0.04
B-NAF	0.61 ± 0.01	12.06 ± 0.02	-14.71 ± 0.02	-8.95 ± 0.07	157.36 ± 0.03
FFJORD	0.46 ± 0.01	8.59 ± 0.12	-14.92 ± 0.08	-10.43 ± 0.04	157.40 ± 0.19
SOS	0.60 ± 0.01	11.99 ± 0.41	-15.15 ± 0.10	-8.90 ± 0.11	157.48 ± 0.41
NSF	**0.66 ± 0.01**	13.09 ± 0.02	-14.01 ± 0.03	-9.22 ± 0.48	157.31 ± 0.28
RealNVP	0.17 ± 0.01	8.33 ± 0.14	-18.71 ± 0.02	-13.84 ± 0.52	153.28 ± 1.78
MADE MoG	0.40 ± 0.01	8.47 ± 0.02	-15.15 ± 0.02	-12.27 ± 0.47	153.71 ± 0.28
NITS-MLP (Ours)	**0.66 ± 0.01**	**13.20 ± 0.01**	**-12.93 ± 0.02**	-10.85 ± 0.02	155.91 ± 0.21
NITS-CONV (Ours)	-	-	-	-	**163.35 ± 0.22**
Results

Table 2. Test log likelihood for UCI datasets and BSDS300, with error bars corresponding to two standard deviations. The table is split into two halves: the upper half denotes flow-based models, and the lower half denotes autoregressive continuous density models. NITS-CONV is only applied to BSDS300, as the convolutional architecture is only readily applicable to images.

Model	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
MAF	0.30 ± 0.01	9.59 ± 0.02	-17.39 ± 0.02	-11.68 ± 0.44	156.36 ± 0.28
TAN	0.48 ± 0.01	11.19 ± 0.02	-15.12 ± 0.02	-11.01 ± 0.48	157.03 ± 0.07
NAF	0.62 ± 0.02	11.91 ± 0.13	-15.09 ± 0.40	-8.86 ± 0.15	157.73 ± 0.04
B-NAF	0.61 ± 0.01	12.06 ± 0.02	-14.71 ± 0.02	-8.95 ± 0.07	157.36 ± 0.03
FFJORD	0.46 ± 0.01	8.59 ± 0.12	-14.92 ± 0.08	-10.43 ± 0.04	157.40 ± 0.19
SOS	0.60 ± 0.01	11.99 ± 0.41	-15.15 ± 0.10	-8.90 ± 0.11	157.48 ± 0.41
NSF	0.66 ± 0.01	13.09 ± 0.02	-14.01 ± 0.03	-9.22 ± 0.48	157.31 ± 0.28
REALNVP	0.17 ± 0.01	8.33 ± 0.14	-18.71 ± 0.02	-13.84 ± 0.52	153.28 ± 1.78
MADE MOG	0.40 ± 0.01	8.47 ± 0.02	-15.15 ± 0.02	-12.27 ± 0.47	153.71 ± 0.28
NITS-MLP (OURS)	0.66 ± 0.01	13.20 ± 0.01	-12.93 ± 0.02	-10.85 ± 0.02	155.91 ± 0.21
NITS-CONV (OURS)	-	-	-	-	163.35 ± 0.22
Results

Table 1. Negative log likelihood (in bits/dim) for CIFAR-10. The table is split into halves, with discretized density models above and continuous density models below. We obtain competitive results among both types of models.

Model	CIFAR-10
PIXEL CNN	3.14
GATED PIXEL CNN	3.03
ROW PIXEL RNN	3.00
PIXEL CNN++	2.92
IMAGE TRANSFORMER	2.90
PIXELSNAIL	2.85
DISCRETE NITS-CONV (Ours)	2.94
REALNVP	3.49
GLOW	3.35
FLOW++	3.08
NITS-CONV (Ours)	2.97

Figure 2. Randomly generated images from DISCRETE NITS-CONV (top left) and NITS-CONV (top right). Compare with competing discretized and continuous density models, Pixel CNN (bottom left) and Flow++ (bottom right), respectively.
Results

Table 1. Negative log likelihood (in bits/dim) for CIFAR-10. The table is split into halves, with discretized density models above and continuous density models below. We obtain competitive results among both types of models.

Model	CIFAR-10
Pixel CNN	3.14
Gated Pixel CNN	3.03
Row Pixel RNN	3.00
Pixel CNN++	2.92
Image Transformer	2.90
PixelSNAIL	2.85
Discrete NITS-CONV (Ours)	2.94
REALNVP	3.49
Glow	3.35
Flow++	3.08
NITS-CONV (Ours)	**2.97**

Figure 2. Randomly generated images from DISCRETE NITS-CONV (top left) and NITS-CONV (top right). Compare with competing discretized and continuous density models, Pixel CNN (bottom left) and Flow++ (bottom right), respectively.
In Summary: Integration Trick

\[\int_a^b p(x) \, dx = \int_a^b \frac{F'(x)}{F(b) - f(a)} \]
In Summary: Inverse Transform Method

1. draw $z \sim \text{Unif}[0, 1]$

2. compute $x = \text{cdf}^{-1}(z)$