A description of a Drinfeld module with class number \(h = 1 \) and rank 1

Victor Bautista-Ancona\(^1\), Javier Diaz-Vargas\(^1\), José Alejandro Lara Rodríguez\(^1\), and Francisco X. Portillo-Bobadilla\(^2\)

\(^1\)Universidad Autónoma de Yucatán
\(^2\)Universidad Autónoma de la Ciudad de México

August 8, 2018

Abstract

We work with detail the Drinfeld module over the ring

\[A = \mathbb{F}_2[x, y]/(y^2 + y = x^3 + x + 1). \]

The example in question is one of the four examples that come from quadratic imaginary fields with class number \(h = 1 \) and rank one.

We develop specific formulas for the coefficients \(d_k \) and \(\ell_k \) of the exponential and logarithmic functions and relate them with the product \(D_k \) of all monic elements of \(A \) of degree \(k \). On the Carlitz module, \(D_k \) and \(d_k \) coincide, but this is not true in general Drinfeld modules. On this example, we obtain a formula relating both invariants. We prove also using elementary methods a theorem due to Thakur that relate two different combinatorial symbols important in the analysis of solitons.

1 Introduction.

Let \(\mathbb{F}_q \) be a finite field of characteristic \(p \) and \(K \) a function field over \(\mathbb{F}_q \). After we choose \(\infty \), a fixed infinite place of \(K \), let \(A \) be the ring
of regular functions outside of ∞ and let K_{∞} be its completion. Now take C_{∞} to be the completion of an algebraic closure of K_{∞}.

Let $C_{\infty}\{\tau\}$ be the ring of twisted polynomials, i.e., the noncommutative ring of polynomials $\sum a_i \tau^i$ with coefficients in C_{∞} such that $\tau z = z^q \tau$. A twisted polynomial $f = a_0 + a_1 \tau + \cdots + a_d \tau^d \in C_{\infty}$ is identified with the F_q-linear endomorphism of C_{∞},

$$z \mapsto f(z) = a_0 z + a_1 z^q + \cdots + a_d z^{q^d}.$$

A Drinfeld A-module of rank one is a F_q-algebra homomorphism $\rho: A \to C_{\infty}\{\tau_p\}$ injective, for which $\rho(a) = a \tau^0 + \text{higher order terms in } \tau$. The action $a \cdot z = \rho(a)(z)$ of A in C_{∞} makes C_{∞} into an A-module, and hence the name “Drinfeld module”.

For each Drinfeld module ρ we associate an exponential entire function e defined for a power series in all C_{∞} by

$$e(z) = \sum_{i=0}^{\infty} \frac{z^{q^i}}{d_i}.$$

The linear term in this exponential function satisfy the following fundamental functional equation

$$e(az) = \rho_a(e(z)), \quad (1)$$

for $z \in C_{\infty}$ and $a \in A$, where ρ_a stands for $\rho(a)$.

The Carlitz module, defined by Carlitz [1] in 1935, is given by the F_q-algebra homomorphism $C : F_q[t] \to C_{\infty}\{\tau\}$ determined by $C_t = t + \tau^q$. Equation (1) produces $e(tz) = te(z) + e(z)^q$. It follows that

$$\sum_{i=0}^{\infty} \frac{(t^{q^i} - t)z^{q^i}}{d_i} = \sum_{i=0}^{\infty} \frac{z^{q^{i+1}}}{d_i^i}.$$

By equating coefficients we get a unique solution $d_n = [n]d_{n-1}^q$ where $[n] = (t^{q^n} - t)$ and $d_0 = 1$. Therefore, $d_n = [n][n-1]^q \cdots [1]^q$ and it is easily seen that d_n is the product of all monic polynomials of degree n.

Since $e(z)$ is periodic, it can not have a global inverse, but we may formally derive an inverse $\log(z)$ for $e(z)$ as a power series around the origin. By definition $e(\log(z)) = z$. Since $e(z)$ satisfies the functional equation $e(tz) = te(z) + e(z)^q$, it follows that $tz = \log(te(z)) +$
log(e(z)^q). Replacing log(z) for z we obtain t log(z) = log(tz) + log(z^q).
Let log(z) = \sum z^q/\ell_i. Then
\[
\sum_{i=0}^{\infty} \frac{(t - t^q)}{\ell_i} \cdot z^{q^i} = \sum_{i=0}^{\infty} \frac{z^{q^i+1}}{\ell_i}
\]
It follows that \(\ell_{i+1} = -[i + 1]\ell_i \). Therefore \(\ell_i = (-1)^i[i][i - 1] \cdots [1] \).

We follow the ideas developed in the Carlitz module case, but applied to the Drinfeld module over \(A = F_2[x, y]/(y^2 + y = x^3 + x + 1) \). We explore specific ways to understand the mentioned example, which is one of four examples provided from imaginary quadratic fields with class number \(h = 1 \) [4] and rank 1. The formulas obtained are compared with the Theorem 4.15.4 of [5] and are related to solitons, as exposed in Chapter 8 of the same reference, and Theorem 3 of the article [6].

2 Action of the Drinfeld module on the variables \(x \) and \(y \).

In our example, we have \(d_\infty = 1 \), \(v_\infty(x) = -2 \), \(v_\infty(y) = -3 \), and using that \(\deg(a) = -v_\infty(a)d_\infty \forall a \in A \), it follows that \(\deg(x) = 2 \) and \(\deg(y) = 3 \).

Based on it, the Drinfeld Module \(\rho \) is determined by its values in \(x \) and \(y \) (actually, it is enough to know its value in one element \(a \in A \), see 2.5 in [5]). According to the aforementioned degrees and that the unique sign in our example is +1, we obtained that
\[
\rho_x = x + x_1 \tau + \tau^2,
\rho_y = y + y_1 \tau + y_2 \tau^2 + \tau^3
\]
with \(x_1, y_1, y_2 \in A \). Now, using the commutative property of the Drinfeld module \(\rho_x \rho_y = \rho_y \rho_x \) and equaling on degree 1, we get
\[
x_1(y^2 + y) = y_1(x^2 + x).
\]
Next, using the equation on the curve \(y^2 + y = x^3 + x + 1 \) and dividing, we obtain
\[
y_1 = x_1 \left(x + 1 + \frac{1}{x^2 + x} \right).
\]
This implies that $x^2 + x \mid x_1$ and $y^2 + y \mid y_1$. Assuming that $x_1 = x^2 + x$, it is also obtained that $y_1 = y^2 + y$. Now, equaling on degree 2, one has the equation

$$ (x^4 + x)y_2 = -y_1x_1^2 + y_1^2x_1 + (y^4 + y). \quad (2) $$

But, we can use the identities

$$ y^4 + y = (y^2 + y)^2 + y^2 + y $$
$$ = (y^2 + y)(y^2 + y + 1) $$
$$ = (y^2 + y)(x^3 + x) $$
$$ = (y^2 + y)(x^2 + x)(x + 1) $$

and

$$ x^4 + x = (x^2 + x)(x^2 + x + 1). $$

So dividing the equation (2) by $x_1 = x^2 + x$, and substituting the values x_1 and y_1, we get

$$ y_2(x^2 + x + 1) = (y^2 + y)(x^2 + x + y^2 + y) + (y^2 + y)(x + 1) $$
$$ = (y^2 + y)(y^2 + y + x^2 + 1) $$
$$ = (y^2 + y)(x^3 + x^2 + x). $$

Thus, clearing y_2, we have $y_2 = x(y^2 + y)$, as it is known in the literature \[3\].

3 Exponential and Logarithm coefficients.

We find recursive formulas for the coefficients of both the exponential $e(z)$ and the logarithmic $\log(z)$ functions associated to Drinfeld module in A.

Write

$$ e(z) = \sum_{i=0}^{\infty} \frac{z^{2i}}{d_i} = \sum_{i=0}^{\infty} a_i z^{2^i} $$

and

$$ \log(z) = \sum_{i=0}^{\infty} \frac{z^{2^i}}{\ell_i} = \sum_{i=0}^{\infty} b_i z^{2^i} $$

where $a_i = d_i^{-1} y$ $b_i = \ell_i^{-1}$. Using that

$$ e(xz) = \rho_x(e(z)) $$
$$ = xe(z) + [1]_x e^2(z) + e^4(z) $$
where \([1]_x = x^2 + x\). Then, working both sides of the equality:

\[
e(xz) + xe(z) = [1]_x e^2(z) + e^4(z),
\]

we have on the left side:

\[
e(xz) + xe(z) = \sum_{j=0}^{\infty} (x^{2j} + x) a_j z^{2j}
= \sum_{j=0}^{\infty} [j]_x a_j z^{2j}
= [1]_x a_1 z^2 + \sum_{j=2}^{\infty} [j]_x a_j z^{2j},
\]

where \([j]_x := x^{2j} + x\). Now, developing the right side, we get:

\[
[1]_x e^2(z) + e^4(z) = [1]_x \sum_{i=0}^{\infty} a_i^2 z^{2i+1} + \sum_{i=0}^{\infty} a_i^4 z^{2i+2}.
\]

From where, by setting \(j = i + 1\) in the first sum, and \(j = i + 2\) in the second sum, we obtain:

\[
[1]_x e^2(z) + e^4(z) = [1]_x \sum_{j=1}^{\infty} a_{j-1}^2 z^{2j} + \sum_{j=2}^{\infty} a_{j-2}^4 z^{2j}
= [1]_x a_0^2 z^2 + \sum_{j=2}^{\infty} ([1]_x a_{j-1}^2 + a_{j-2}^4) z^{2j}.
\]

Comparing equations (3) and (4), recursive formulas are obtained

\[
a_1 = a_0^2
a_j = \frac{[1]_x a_{j-1}^2 + a_{j-2}^4}{[j]_x} \text{ for } j \geq 2.
\]

Subsequently, we assume that \(a_0 = 1\), i.e., the exponential is normalized. Notice that if we do not normalize the coefficients, the exponential function varies by a factor given by the initial term. If we denote \(e(z, a_0)\) to this exponential function, it is easy to see that

\[
e(z, a_0) = a_0 e(z),
\]

where \(e(z)\) is the normalized exponential.
Now, in terms of the d_j’s (assuming also, the normalization of the exponential), the recursive formula is as follows:

\[
d_1 = d_0^2 = 1
\]

\[
d_j = \frac{[j]_x d_{j-1} d_{j-2}}{[1]_x d_{j-2}^2 + d_{j-1}^2} \quad \text{for} \quad j \geq 2.
\] (7)

Similarly, for the logarithm function, we have that

\[
x \log(z) = \log (\rho_x(z)) = \log (xz + [1]_x z^2 + z^4) = \log(xz) + \log([1]_x z^2) + \log(z^4),
\]

from which it follows that

\[
x \log(z) + \log(xz) = \log([1]_x z^2) + \log(z^4).
\]

So, we developed the left side to

\[
x \log(z) + \log(xz) = \sum_{j=0}^{\infty} (x^{2j} + x) b_j z^{2j} = \sum_{j=1}^{\infty} [j]_x b_j z^{2j}.
\] (8)

Note that $[0]_x = 0$. The right side must be

\[
\log([1]_x z^2) + \log(z^4) = \sum_{i=0}^{\infty} [1]_x^{2i} b_i z^{2i+1} + \sum_{i=0}^{\infty} b_i z^{2i+2}.
\]

Again, by setting $j = i + 1$ in the first sum, and $j = i + 2$ in the second sum, we obtain

\[
\log([1]_x z^2) + \log(z^4) = [1]_x b_1 z^2 + \sum_{j=2}^{\infty} ([1]_x^{2j-1} b_{j-1} + b_{j-2}) z^{2j}.
\] (9)

Comparing the terms in the equations (8) and (9), we obtain the recursive formulas:

\[
b_1 = b_0
\]

\[
b_j = \frac{[1]_x^{2j-1} b_{j-1} + b_{j-2}}{[j]_x} \quad \text{for} \quad j \geq 2.
\] (10)
Now again, if \(\log(z, b_0) \) is the logarithmic function with initial term \(b_0 \), and \(\log(z) = \log(z, 1) \) is the normalized logarithm, by the recursion formula, we deduce the relation:

\[
\log(z, b_0) = b_0 \log(z).
\]

(11)

In terms of values \(\ell_i \)'s, the recursions are as follows:

\[
\ell_1 = \ell_0
\]

\[
\ell_j = \frac{\lfloor j \rfloor \ell_{j-1} \ell_{j-2}}{[1]^2_j \ell_{j-2} + \ell_{j-1}} \text{ for } j \geq 2.
\]

4 Formulae for computing \(\rho_a \).

The first formula is recursive and is in the spirit of the proposition 3.3.10 in [2].

Assume that \(\rho_a = \sum_{k=0}^d \rho_{a,k} \tau^k \) with \(d = \deg(a) \). We will use again commutativity \(\rho_x \rho_a = \rho_a \rho_x \) and the explicit expression: \(\rho_x = x + [1]_x \tau + \tau^2 \). Then, multiplying

\[
\rho_x \rho_a = (x + [1]_x \tau + \tau^2) \left(\sum_{k=0}^d \rho_{a,k} \tau^k \right)
\]

\[
= \sum_{k=0}^d \left(x \rho_{a,k} \tau^k + [1]_x \rho_{a,k}^2 \tau^{k+1} + \rho_{a,k}^4 \tau^{k+2} \right)
\]

and multiplying

\[
\rho_a \rho_x = \left(\sum_{k=0}^d \rho_{a,k} \tau^k \right) (x + [1]_x \tau + \tau^2)
\]

\[
= \sum_{k=0}^d \left(x^{2^k} \rho_{a,k} \tau^k + [1]_x^{2^k} \rho_{a,k} \tau^{k+1} + \rho_{a,k}^4 \tau^{k+2} \right).
\]

By comparing terms a recursive formula is obtained

\[
\rho_{a,0} = a \quad \text{ (first term in recursion)}
\]

\[
\rho_{a,1} = a^2 + a \quad \text{ (comparing degree } k = 1 \text{)}
\]

\[
\rho_{a,k} = \frac{[1]_x^{2^{k-1}} \rho_{a,k-1} + \rho_{a,k-2}}{[k]_x} + \frac{[1]_x \rho_{a,k-1}^2 + \rho_{a,k-2}}{[k]_x}, \text{ for } k \geq 2.
\]
Note the similarity to the recursive formulas for \(a_j \)'s and \(b_j \)'s in the previous section, equations (5) and (10). The same phenomenon occurs in the Carlitz module, but in such a case, there is only a single summand.

Another way to calculate \(\rho_a \), is based on the use of the exponential and the logarithm functions and their formal development as power series. We know that

\[
\exp(a \log(z)) = \rho_a(\log(z)) = \rho_a(z).
\]

Using power series as in the previous section, we get to

\[
\rho_a(z) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}^2 a_j^2 \right) z^{2k} = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} \frac{a_j^2}{d_j \ell^{2j}_{k-j}} \right) z^{2k}.
\]

The combinatorial terms in the sum, are the ones that D. Thakur used to develop his alternative perspective on solitons [6].

We introduce the following notation for the following pages:

\[
p_k(w) := \left\{ \frac{w^j}{q^k} \right\} := \sum_{j=0}^{k} \frac{w^j}{d_j \ell^{2j}_{k-j}}.
\]

Hence, using that \(\rho_a = \sum \rho_{a,k} \tau^k \) is a monic polynomial in \(\tau \) of degree \(\deg(a) \), we have that

\[
p_k(a) = \rho_{a,k} = \begin{cases} 0, & \text{if } \deg(a) < k \\ 1, & \text{if } \deg(a) = k. \end{cases}
\]

5 Comparing the polynomials \(p_k(w) \) and \(e_k(w) \).

We define the following sets

\[
A_{<k} := \{ a \in A : \deg(a) < k \}
\]
\[
A_k := \{ a \in A : \deg(a) = k \}
\]
and the polynomial

\[e_k(w) = \prod_{a \in A_{<k}} (w + a). \]

Clearly, as every element of \(A_{<k} \) is a root of \(p_k(w) \), we have that

\[R_k(w) := \frac{p_k(w)}{e_k(w)} \]

is a polynomial. In addition, as \(p'_k(w) = a_k = \ell_k^{-1} \neq 0 \), \(p_k(w) \) and \(R_k(w) \) have no double roots.

In order to calculate the polynomial \(R_k(w) \), suppose

\[p_k(w) = \sum_{i=0}^{k} A_{k,i} w^{2^i} \]

and

\[e_k(w) = \sum_{i=0}^{k-1} B_{k,i} w^{2^i}. \] \(\tag{12} \)

Then, we have the following result:

Theorem 5.1. \(R_k(w) = \frac{1}{d_k} e_k(w) + C \), where \(C = \frac{1}{d_{k-1}} + \frac{B_{2,k-2}^2}{d_k} \).

Proof. Only for the purpose of this proof, suppose \(k \) is fixed and write \(A_i = A_{k,i} \) and \(B_i = B_{k,i} \). Now, directly dividing \(p_k \) between \(e_k \), using that \(e_k \) is monic, the first term of the quotient ratio is \(A_k w^{2k-1} \). Then, in the first line of the waste division, we have:

\[
A_k B_{k-2} w^{2k-1+2^{k-2}} + A_k B_{k-3} w^{2k-1+2^{k-3}} + \cdots + A_k B_0 w^{2k-1+1} + A_{k-1} w^{2k-1} + \text{lower terms}.
\]

This implies that the next term of the quotient is \(A_k B_{k-2} w^{2k-2} \), and therefore, multiplying by the summands of \(e_k \), after cancelation of the term \(A_k B_{k-2} w^{2k-1+2^{k-2}} \), new summands will be incorporated into the residue in the positions corresponding to the powers:

\[w^{2k-1}, w^{2k-2+2^{k-3}}, \ldots, w^{2k-2+1}. \]

Hence, all the new terms fall into the “lower terms” of the waste division with exception of the coefficient on \(w^{2k-1} \). This coefficient is \(A_{k-1} + A_k B_{2,k-2}^2 \).
When continuing the division and cancelling the terms of the form $A_k B_j w^{2^{k-1} + 2^j}$ for $j < k - 2$, the terms equal or higher to $w^{2^{k-1}}$ are not affected. This ensures that the obtained quotient is:

$$A_k w^{2^{k-1}} + A_k B_{k-2} w^{2^{k-2}} + A_k B_{k-3} w^{2^{k-3}} + \cdots + A_k B_0 w + A_{k-1} + A_k B_{k-2}^2.$$

The result follows, using that $A_k = d_k^{-1}$ and $A_{k-1} = d_{k-1}^{-1}$.

6 Coefficient Formulas for $e_k(w)$.

For $k \geq 2$, set

$$t_k = \begin{cases} x^{\frac{k}{2}}, & \text{if } k \text{ is even} \\ y x^{\frac{k-3}{2}}, & \text{if } k \text{ is odd}. \end{cases}$$

Now, it is clear that $\deg(t_k) = k$ and that the set $\{1, t_2, \ldots, t_{k-1}\}$ is a basis of the vector space $A_{<k}$. Define $D_k := e_k(t_k) = \prod_{a \in A_k} a$. Thus for $k \geq 3$,

$$e_k(w) = \prod_{a \in A_{<k}} (w + a) = \prod_{a \in A_{<k-1}} (w + a) \prod_{a \in A_{k-1}} (w + a)$$

$$= \prod_{a \in A_{<k-1}} (w + a) \prod_{a \in A_{<k-1}} (w + t_{k-1} + a)$$

$$= e_{k-1}(w) e_{k-1}(w + t_{k-1}) = e_{k-1}^2(w) + D_{k-1} \cdot e_{k-1}(w).$$

Developing the right side of the equation (13), we find recursive formulas for the coefficients $B_{k,i}$ in (12):

$$e_{k-1}^2(w) + D_{k-1} \cdot e_{k-1}(w) = \left(\sum_{i=0}^{k-2} B_{k-1,i} w^{2^i} \right)^2 + D_{k-1} \left(\sum_{i=0}^{k-2} B_{k-1,i} w^{2^i} \right)$$

$$= \sum_{i=1}^{k-1} B_{k-1,i-1}^2 w^{2^i} + \sum_{i=0}^{k-2} D_{k-1} B_{k-1,i} w^{2^i}.$$

Indeed, we have

$$B_{k,0} = D_{k-1} B_{k-1,0} = D_{k-1} D_{k-2} \cdots D_2$$

$$B_{k,i} = D_{k-1} B_{k-1,i} + B_{k-1,i-1}^2$$

$$B_{k,k-1} = B_{k-1,k-2} = \cdots = B_{2,1} = 1.$$
Before developing explicit formulas for the coefficients $B_{k,i}$, we introduce the following symbols:

$$[1]_w = w^2 + w$$
$$[k]_w = w^{2k} + w.$$

It is not difficult to prove that these symbols satisfy the following:

Lemma 6.1. Properties of the symbol $[k]_w$.

1) $[k]_{2i}^2 = [k]_{w2i}$
2) $[1][k]_w = [k][1]_w$
3) $[k]_{w_1+w_2} = [k]_{w_1} + [k]_{w_2}$
4) $[k + 1]_w = [k]_{w}^2 + [1]_w$
5) $[k]_w = \sum_{i=0}^{k-1} [1]_{2i}^2$.

Notice that $e_k(w)$ is a polynomial on $[1]_w$ of degree 2^{k-2}. Set

$$e_k(w) = \sum_{i=0}^{k-2} T_{k,i}[1]_{w}^2.$$

Next, we will find specific formulas for the coefficients $T_{k,i}$’s. First, define the following functions:

$$S_{n,r}(x_1, x_2, \cdots, x_n) = \sum_{n \geq i_1 > i_2 > \cdots > i_r \geq 1} \prod_{j=1}^{r} x_{i_j}^{n-j+1-i_j}.$$

We have the following lemma:

Lemma 6.2. Properties of the sums $S_{n,r}(x_1, x_2, \cdots, x_n)$.

1) $S_{n,0}(x_1, \ldots, x_n) = 1$
2) $S_{n,1}(x_1, \ldots, x_n) = x_n + x_{n-1}^2 + \cdots + x_1^{2^{n-1}}$
3) $S_{n+1,r}(x_1, \ldots, x_{n+1}) = S_{n,r}^2(x_1, \ldots, x_n) + x_{n+1}S_{n,r-1}(x_1, \ldots, x_n)$

Proof. The first two assertions are immediate.

For the third, note that:

$$S_{n,r}^2(x_1, \ldots, x_n) = \left(\sum_{n \geq i_1 > i_2 > \cdots > i_r \geq 1} \prod_{j=1}^{r} x_{i_j}^{n-j+1-i_j} \right)^2$$

$$= \sum_{n \geq i_1 > i_2 > \cdots > i_r \geq 1} \prod_{j=1}^{r} x_{i_j}^{2n+1-j+1-i_j}.$$

(14)
On the other hand,

\[x_{n+1} S_{n,r-1}(x_1, \ldots, x_n) = x_{n+1} \sum_{n \geq i_1 > i_2 > \cdots > i_{r-1} \geq 1} \prod_{j=1}^{r-1} x_{i_j}^{n-j+1-i_j} \]

\[\sum_{n \geq i_1 > i_2 > \cdots > i_{r-1} \geq 1} x_{n+1} \prod_{j=1}^{r-1} x_{i_j}^{n-j+1-i_j}. \]

(15)

Now, making \(i_1 = n + 1 \) and \(i_{j+1} = i_j \) (moving the variable \(j \) to \(j+1 \)), we obtain that (15) becomes

\[\sum_{n+1=i_1 > i_2 > \cdots > i_{r-1} \geq 1} \prod_{j=1}^{r} x_{i_j}^{n+1-j+1-i_j}. \]

(16)

Notice that the variable \(x_{i_j} \) with exponent \(n-j+1-i_j \) in (15) coincide with the variable \(x_{i_{j+1}} \) with exponent \(n+1-j+1-i_{j+1} \) in (16).

Now, clearly the sum of (14) and (16) proves the lemma.

Proposition 6.3. For

\[e_k(w) = \sum_{i=0}^{k-2} T_{k,i}[1]^2 \]

is satisfied that

\[T_{k,i} = S_{k-2,k-2-1}(D_2, D_3, \ldots, D_{k-1}), \]

where \(D_i = e_i(t_i) \).

Proof. Using the identity

\[e_{k+1}(w) = e_k^2(w) + D_k e_k(w), \]

for \(k \geq 2 \),

we obtain the following recursive equations

\[T_{k+1,0} = D_k T_{k,0} \]

\[T_{k+1,i} = T_{k,i-1}^2 + D_k T_{k,i} \]

\[T_{k+1,k-1} = 1 \]

Then, from induction suppose that the proposition is valid for \(T_{k,i} \),

using the recursive form we get
\[T_{k+1,i} = T_{k,i-1}^2 + D_k T_{k,i} \]
\[= S_{k-2,k-2-(i-1)}^2 (D_2, D_3, \ldots, D_{k-1}) + D_k S_{k-2,k-2-i-1} (D_2, D_3, \ldots, D_{k-1}) \]
\[= S_{k-2,k-1-i}^2 (D_2, D_3, \ldots, D_{k-1}) + D_k S_{k-2,k-1-i-1} (D_2, D_3, \ldots, D_{k-1}) \]
\[= S_{k-1,k-1-i} (D_2, D_3, \ldots, D_k). \]

The last equality follows from lemma (6.2). Now, the result follows from verifying that the coefficients \(T_{k,i} \) coincide with \(S_{k-2,k-2-i} (D_2, D_3, \ldots, D_{k-1}) \) for some first small values of \(k \).

For simplicity, set \(S_{k-2,k-2} := S_{k-2,k-2-i} (D_2, D_3, \ldots, D_{k-1}). \)

Corollary 6.4. The coefficients of the polynomial
\[e_k(w) = \sum_{i=0}^{k-1} B_{k,i} w^{2^i} \]
are given by the formulas
\[B_{k,k-1} = T_{k,k-2} = S_{k-2,0} = 1 \]
\[B_{k,i} = T_{k,i} + T_{k,i-1} = S_{k-2,k-2-i} + S_{k-2,k-1-i}, \text{ for } 1 \leq i \leq k-2 \]
\[B_{k,0} = T_{k,0} = S_{k-2,k-2} = D_{k-1} D_{k-2} \cdots D_2. \]

Proof. Note that
\[e_k(w) = \sum_{i=0}^{k-2} t_{k,i} [1^2] w \]
\[= \sum_{i=0}^{k-2} T_{k,i} \left(w + w^2 \right)^{2^i} \]
\[= T_{k,k-2} w^{2^{k-1}} + \sum_{i=1}^{k-2} (T_{k,i} + T_{k,i-1}) w^{2^i} + T_{k,0} w. \]

\[\square \]

7. Relationship among the values \(d_k, \ell_k \) y \(D_k \).

Basically, these relationships are corollary of theorem (5.1) and the explicit expression of the coefficients \(B_{k,i} \) developed in the previous section.
If we evaluate the polynomial equality
\[p_k(w) = \frac{e_2^2(w)}{d_k} + C e_k(w) \]
(17)
in \(w = t_k \), we get that
\[1 = \frac{D_k^2}{d_k} + C D_k. \]
Solving for \(C \), we obtain
\[C = \frac{1}{D_k} + \frac{D_k}{d_k} = \frac{d_k + D_k^2}{D_k d_k}. \]
(18)
Now, using the definition of \(C \) in (5.1), we also have that
\[C = \frac{1}{d_{k-1}} + \frac{1 + D_{k-1}^2 + D_{k-2}^4 + \cdots + D_{2}^{2k-2}}{d_k}, \]
since
\[B_{k,2} = (1 + D_{k-1}^2 + D_{k-2}^4 + \cdots + D_{2}^{2k-3})^2, \]
from corollary 6.4 and part 2) of lemma 6.2.
Multiplying by \(D_k d_k \), we obtain
\[C D_k d_k = \frac{D_k d_k}{d_{k-1}} + D_k \left(1 + D_{k-1}^2 + D_{k-2}^4 + \cdots + D_{2}^{2k-2} \right) \]
and using (18), we have
\[d_k + D_k^2 = \frac{D_k d_k}{d_{k-1}} + D_k \left(1 + D_{k-1}^2 + D_{k-2}^4 + \cdots + D_{2}^{2k-2} \right). \]
From where,
\[d_k \left(1 + \frac{D_k}{d_{k-1}} \right) = D_k(1 + D_k + D_{k-1}^2 + \cdots + D_{2}^{2k-2}), \]
so eventually we get
\[d_k = \frac{D_k d_{k-1}}{d_{k-1} + D_k} \left(1 + D_k + D_{k-1}^2 + \cdots + D_{2}^{2k-2} \right) \]
(19)
\[= \frac{D_k d_{k-1}}{d_{k-1} + D_k} \cdot B_{k+1,k-1}. \]
Now, using the recursive formula (7) is easy to see that
\[d_2 = [1]_x \]
and also

\[D_2 = e_2(t_2) = [1]_{t_2} = [1]_x, \]

equation \((19)\) gives a recursive procedure to calculate \(d_k\), in terms of values \(D_i\)’s with \(2 \leq i \leq k\).

Now, equating the coefficients of the linear terms of the polynomials in \((17)\), we obtain that

\[\frac{1}{\ell_k} = CD_{k-1}D_{k-2} \cdots D_2 \]

and using \((18)\), we conclude that

\[\ell_k = \frac{d_k d_k}{(d_k + D_2^2)(D_{k-1}D_{k-2} \cdots D_2)}. \]

We summarize the above discussion in the main result of the article.

Theorem 7.1. Recursive formulas to compute \(\ell_k\) and \(d_k\) values in terms of \(D_k\)'s.

1) \(d_2 = D_2\).

2) \(d_k = \frac{d_k d_{k-1}}{d_{k-1} + D_k} \left(1 + D_k + D_{k-1}^2 + \cdots + D_k^2 \cdots D_2^2\right)\).

3) \(\ell_k = \frac{d_k d_k}{(d_k + D_2^2)(D_{k-1}D_{k-2} \cdots D_2)}\).

Acknowledgements

Francisco Portillo thanks Conacyt for financial support for a year sabbatical stay at Universidad Autónoma de Yucatán under the project grant #261761.

References

[1] L. Carlitz. On certain functions connected with polynomials in a Galois field. *Duke Math. J.*, 1(2):137–168, 1935.

[2] D. Goss, *Basic Structures of Function Field Arithmetic*. 2nd Edition, Springer-Verlag, (1998).

[3] D. R. Hayes, *Explicit Class Field Theory in Global Function Fields*, in “Studies in Algebra and Number Theory”, (G.C. Rota, Ed.) pp. 173-217, Academic Press, San Diego 1979.
[4] R. E. MacRae, *On unique factorization in certain rings of algebraic functions* J. Algebra 17 (1971), 77-91.

[5] D. S. Thakur, *Function Field Arithmetic*, World Scientific Publishing Co. Pte. Ltd. (2004).

[6] D. S. Thakur, *An Alternate Approach to Solitons for $F_q[t]$* Journal of Number Theory 76, 301-319 (1999).