Intermediate phase in molecular networks and solid electrolytes

M. Micoulaut
Laboratoire de Physique Théorique des Liquides
Universite Pierre et Marie Curie, Boite 121,
4, place Jussieu 75252 Paris Cedex 05 France

Abstract
There is growing evidence that electronic and molecular networks present some common universal properties, among which the existence of a self-organized intermediate phase. In glasses, the latter is revealed by the reversibility window obtained from complex calorimetric measurements at the glass transition. Here we focus on amorphous networks and we show how this intermediate phase can be understood from a rigidity percolation analysis on size increasing clusters. This provides benchmarks and guidance for an electromechanical analogy with high temperature super conductors.

1 Introduction
In the recent years, more and more studies devoted to the understanding of the metal-insulator transition (MIT) have stressed the possible existence of a self-organized electronic phase\[1, 3\] that may explain the superconducting state. In these studies, in addition to the prediction or the measurement of a critical dopant concentration \(n_{c1}\), it is noteworthy to stress that although the mobile charge carrier concentration should tend to zero at the MIT and therefore also the interaction between the carriers, the temperature \(T_c\) should tend to zero, in contrast with current observation. Moreover, a second anomalous behavior is observed at a concentration \(n_{c2}\) from the superconducting phase to the non-superconductive Fermi liquid. This second transition is much more abrupt and seems first order in character\[4\]. Illustrative examples of these behaviors can be found in LSCO (\(La_{2-x}Sr_xCuO_4\)) from measurements of the filling factors by Meissner volume (i.e. measuring the fraction of the material that is super conductive) and the transition temperature \(T_c(x)\) with respect to Sr concentration\[5\]. The nature of this intermediate phase in the dopant region \(n_{c1} < n < n_{c2}\) therefore still needs to be understood. However, beyond the details of modelling\[6\], a general consensus emerge, which puts forward the idea of the formation of modulated spatial patterns of mesoscopic length scale as being responsible for HTSC\[3, 6\].

Much more simpler examples of self-organization and the existence of an intermediate phase can be provided by network glasses\[7\]. Here, instead of following the concentration of mobile carriers, focus is made on elastic deformations of an amorphous network. Thus, instead of MIT, percolative stiffness transitions\[8\] are obtained
upon changing the number of possible deformations which in turn can be related to the connectivity of the molecular network. In order to describe these deformations, one simple and elegant idea is to translate the covalent interatomic valence forces of the atoms in bond-stretching n^c_α and bond-bending mechanical constraints n^c_β, using (mean-field) Maxwell constraint counting\[9\]. A very particular point is reached when the number of mechanical constraints $n_c = n^c_\alpha + n^c_\beta$ per atom equals the degrees of freedom per atom in 3D, i.e. $n_c = 3$ (corresponding to optimal glass formation)\[10\]. This result has been obtained independently from rigidity percolation by Thorpe\[11\] on disordered networks, showing that the number of zero frequency solutions (floppy modes) f of the dynamical matrix of the network equals $f = 3 - n_c$. The enumeration of constraints has been performed on a network of N atoms composed of n_r atoms that are r-fold coordinated yielding $n^c_\alpha = r/2$ bond-stretching constraints and $n^c_\beta = 2r - 3$ bond-bending constraints for a r-fold coordinated atom. The vanishing of the number of floppy modes is obtained when the mean coordination number of the network reaches the critical value of 2.4, identified with an elastic stiffness transition\[12\]. This point defines the transition between a floppy network which can be deformed without any cost in energy and a stressed rigid network which has more constraints than degrees of freedom. At the mean coordination number of 2.4, the network is isostatic. This new phase transition has been studied with considerable success in chalcogenides both in experiments and numerical simulations\[13\]. Applications of rigidity theory have also been reported in various fields such as granular matter, biology and computational science\[14\]. However, in the more recent years it has been shown that there should be two transitions\[15\] instead of the previously reported single transition suggesting that the mean-field constraint counting alone may be insufficient to describe completely the network change. Results on Raman scattering and measurements of the kinetics of the glass transition using modulated differential scanning calorimetry (MDSC) have indeed provided evidence\[15, 16\] for two vibrational thresholds thus defining a stress-free intermediate phase (isostatically rigid) in between the floppy and the stressed rigid phases, for which independent evidence is obtained from numerical simulations\[17\].

In this paper, we will construct a systematic approach that enables us to perform constraint counting on size increasing structures thus permitting to take into account medium range order effects such as small rings. In doing this, we show that these small rings mostly control the values of the critical coordination numbers and the width of the intermediate phase. The construction will also show how isostatic regions and self-organization influence the absolute magnitude of the width. The simplest case that can be built up corresponds to Group IV chalcogenide glasses of the form B_xA_{1-x} with coordination numbers $r_A = 2$ and $r_B = 4$ defining the mean coordination number $\bar{r} = 2 + 2x$. Size-increasing cluster approximations (SICA) have been used in order to generate medium range order (MRO) from sets of clusters on which we have realized constraint counting. The results show two transitions. A first one at which the number of floppy modes vanishes and a second one (a “stress transition”) beyond which stress in the structure can not be avoided anymore out of ring structures. In between, this
defines an almost stress-free network structure for which the rate of isostatic regions can be computed. We will extend these results on solid electrolytes for which percolative conductivity should be detected.

2 Size increasing cluster approximations and constraint counting

Size increasing cluster approximations (SICA) have been first introduced to describe the medium and intermediate range order in amorphous semi-conductors[18] but their usefulness has been also stressed for the description of the formation of quasi-crystals[19] and fullerenes[20]. This approach emphasizes the rapid convergence of significant MRO structures to a limit value when the size of the considered clusters is increasing. Ideally, the infinite size cluster distribution would yield the exact statistics of MRO in the structure. The construction of these clusters is realized in Canonical Ensemble with particular energy levels corresponding to bond creation between short range order molecules (basic units) which are used as building blocks from step \(l = 1 \) (corresponding here to the reported mean-field approach[4]) to arbitrary \(l \). This construction should be realized at the formation of the network, when \(T \) equals the fictive temperature \(T_f \)[21].

Since we expect to relate the width of the intermediate phase with the ring fraction, we will restrict our present study to Group IV chalcogenides of the form \(Si_xSe_{1-x} \). For the latter, there is strong evidence that at the stoichiometric concentration \(x = 0.33 \) a substantial amount of edge-sharing \(SiSe_{4/2} \) tetrahedra[22] can be found. Therefore, we select basic units such as the \(A_2 \) (i.e. \(Se_2 \)) chain fragment and the stoichiometric \(BA_{4/2} \) molecule (e.g. \(SiSe_{4/2} \)). These basic units have respective probabilities \(1 - p \) and \(p = 2x/(1-x) \), \(x \) being the concentration of the Group IV atoms. We associate the creation of a chain-like \(A_2 - A_2 \) structure (see Table I) with an energy state of \(E_1 \), isostatic \(A_2 - BA_2 \) bondings with an energy gain of \(E_2 \) and corner-sharing (CS) and edge-sharing (ES) \(BA_{4/2} \) tetrahedra or any ring structure respectively with \(E_3 \) and \(E_4 \). The probabilities of the different clusters have statistical weights \(g(E_i) \) which can be regarded as the degeneracy of the corresponding energy level and correspond to the number of equivalent ways a cluster can be constructed. Examples of statistical weights for the step \(l = 2 \) are shown in Table I and in Refs[18, 19].

Due to the initial choice of the basic units, the energy \(E_2 \) will mostly determine the probability of isostatic clusters since this quantity is involved in the probability of creating the isostatic \(BA_4 \) cluster (a \(A_2 - BA_{4/2} \) bonding). As a consequence, if we have \(E_2 \ll E_1, E_3, E_4 \), the network will be mainly isostatic in the range of interest.

The calculation of the number of bond-bending \(n_c^\alpha \) and bond-stretching mechanical constraints \(n_c^\beta \) per atom is performed on each cluster by Maxwell counting and redundant constraints in ring structures are removed following the procedure described by Thorpe[11]. It is obvious from the construction that all the cluster probabilities will depend only on two parameters (i.e. the factors \(e_1/e_2 \) and \(e_3/e_2 \)) and eventually \(e_4/e_2 \).
if one considers the possibility of edge-sharing (ES) tetrahedra or rings. One of the two factors has to be composition dependent since a conservation law for the concentration of B atoms \(x^{(l)}\) has to be fulfilled at any step \(l\) of the construction [23]:

\[
x^{(l)} = x
\]

(1)

This means that either the fictive temperature \(T_f\) or the energies \(E_i\) depend on \(x\) [21], but here only the \(e_i(x)\) dependence is relevant for our purpose. Of course, when the step \(l\) will increase, the number of isomers will also increase among those also the number of different types of rings. The construction has been realized up to the step \(l = 4\) which already creates clusters of MRO size. For each step \(l\), we have determined either \(e_1/e_2\) or \(e_3/e_2\) solving equ. [22] and computed the total number of constraints \(n^l_c\):

\[
n^l_c = \frac{\sum_{i=1}^{N_i} n_{c(i)}p_i}{\sum_{i=1}^{N_i} N_i p_i}
\]

(2)

where \(n_{c(i)}\) and \(N_i\) are respectively the number of constraints and the number of atoms of the cluster of size \(l\) with probability \(p_i\). Once the factors become composition dependent, it is possible to find for which concentration \(x\) (or which mean coordination number \(\bar{r}\)) the system reaches optimal glass formation where the number of floppy modes \(f = 3 - n^l_c\) vanishes.

3 Results

Various possibilities can be studied within this framework. The simplest case which can be investigated at the very beginning is the random bonding case which is obtained when the cluster probabilities \(p_i\) are only given by their statistical weights (in other words, the factors \(e_i\) are set to one). A single solution is obtained for the glass optimum point defined by \(f = 0\) at all SICA steps, in the mean coordination number range [2.231,2.275], slightly lower than the usual mean-field value of 2.4. Since there is only one solution, no intermediate phase in the case of random bonding is found.

Self-organization can be obtained by starting from a floppy cluster of size \(l\) (e.g. a chain-like structure made of a majority of A atoms), and allowing the agglomeration of a new basic unit onto this cluster to generate the cluster of size \(l + 1\) only if the creation of a stressed rigid region can be avoided on this new cluster. The latter occurs when two \(BA_{4/2}\) basic units are joined together. With this rather simple rule, upon increasing \(\bar{r}\) one accumulates isostatic rigid regions on the size increasing clusters because \(BA_{4/2}\) units are only accepted in \(A_2-BA_{4/2}\) isostatic bondings with energy \(E_2\). Alternatively, we can start from a stressed rigid cluster which exist at higher mean coordination number \((\bar{r} \leq 2.67)\) and follow the same procedure but in opposite way, i.e. we allow only bondings which lead to isostatic rigid regions, excluding systematically the possibility of floppy \(A_2-A_2\) bondings. In the case of self-organized clusters, the simplest case to be studied is the case of dendritic clusters, when ring creation is avoided. For an infinite size \(l\), this would permit to recover the results from Bethe lattice solutions or Random
Bond Models\cite{24} for which rings are also excluded in the thermodynamic limit\cite{25}. A single transition for even \(l \) steps at exactly the mean-field value \(\bar{r} = 2.4 \) is obtained whereas for the step \(l = 3 \), there is a sharp intermediate phase defined by \(f = 0 \) (still at \(\bar{r} = 2.4 \)) and the vanishing of floppy regions (i.e. \(e_1/e_2 \) is zero) at \(\bar{r} = 2.382(6) \). The probability of floppy, isostatic rigid and stressed rigid clusters as a function of the mean coordination number has been computed and shows that the network is entirely isostatic at the point where \(f = 0 \) (solid line, fig. 1).

The intermediate phase shows up if a certain amount of medium range order (MRO) is allowed. This is realized in the SICA construction by setting the quantity \(e_4/e_2 \) non-zero, i.e. edge-sharing (ES) tetrahedra \(BA_4/2 \) leading to four-membered rings \(B_2A_4 \) can now be created at the growing cluster steps. Two transitions are now obtained for every SICA step. The first one is still located at \(\bar{r}_{c1} = 2.4 \) (see fig. 1). There, the number of floppy modes \(f \) vanishes. The second one is located at \(\bar{r}_{c2} \). When starting from a floppy network close to \(\bar{r} = 2 \) and requiring self-organization (in this case, allowing only floppy or isostatic bondings), this point corresponds to the network composition beyond which stressed rigid regions outside of ring structures, which are created by the dendritic connection of at least two \(BA_4/2 \) units can not be avoided anymore. We call this point the “stress transition”. We show in fig. 1 the \(l = 2 \) result where \(f = 0 \) at \(\bar{r}_{c1} = 2.4 \) for different fractions of ES tetrahedra, defining an intermediate phase \(\Delta \bar{r} \). It is noteworthy to stress that the first transition at \(\bar{r}_{c1} \) corresponding to Phillips’ glass optimum does not depend on the ES fraction, as well as the fraction of stressed rigid clusters in the structure. To ensure continuous deformation of the network when B atoms are added and keeping the sum of the probability of floppy, isostatic rigid and stressed rigid clusters equal to one, the probability of isostatic rigid clusters connects the isostatic solid line at \(\bar{r}_{c2} \). Stressed rigid rings first appear in the region \(\bar{r}_{c1} < \bar{r} < \bar{r}_{c2} \) while chain-like stressed clusters (whose probability is proportional to \(e_3 \)) occur only beyond the stress transition, when \(e_3 \neq 0 \). This means that within this approach, when \(\bar{r} \) is increased, stressed rigidity nucleates through the network starting from rings, as ES tetrahedra. It appears from fig. 1 that the width \(\Delta \bar{r} = \bar{r}_{c2} - \bar{r}_{c1} \) of the intermediate phase increases with the fraction of ES. We have represented the width as a function of the overall MRO fraction at the rigidity transition in fig. 2 which shows that \(\Delta \bar{r} \) is almost an increasing function of the ES fraction as seen from the result at SICA step \(l = 4 \). Here, there is only a small difference between allowing only four-membered rings (ES) (lower dotted line) or rings of all sizes (upper dotted line) in the clusters. Concerning the nature of the structure in the intermediate phase, one can see from fig. 1 and the insert of fig. 2 that the probability of isostatic clusters is maximum in the window \(\Delta \bar{r} \), and almost equal to 1 for the even SICA steps, providing evidence that the molecular structure in the window is almost stress-free. Furthermore, the latter can be extremely broad if a high amount of edge-sharing is allowed. For a fraction of ES \(\eta \) is close to one, molecular stripes emerge in the structure which are isostatic and every addition of new B atoms lowers the amount of remaining A-chains by converting them in ES \(BA_4/2 \) stripes. These molecular stripes are stress-free only if their size is infinite.

5
4 Application to chalcogenides

As mentioned above, chalcogenide glasses are the first systems which have been carefully studied in the context of self-organization. SICA provides therefore a benchmark to check the results obtained. To be specific, Raman scattering has been used [27, 28] as a probe to detect elastic thresholds in binary Si_xSe_{1-x} and Ge_xSe_{1-x} or ternary $Ge_xAs_xSe_{1-2x}$ glasses [29]. Changes in the germanium or silicon corner sharing mode chain frequencies have been studied with mean coordination number \bar{r} of the glass network. These frequencies exhibit a change in slope at the mean coordination number $\bar{r}_{c1} = 2.4$ and a first order jump at the second transition \bar{r}_{c2}. In germanium systems, the second transition is located around the mean coordination number of 2.52 whereas $\bar{r}_{c2} = 2.54$ in Si based systems. For both systems, a power-law behavior in $\bar{r} - \bar{r}_{c2}$ is detected for $\bar{r} > \bar{r}_{c2}$ and the corresponding measured exponent is very close to the one obtained in numerical simulations of stressed rigid networks [26]. Moreover, a clear correlation between these results and the vanishing of the non-reversing heat flow ΔH_{nr} (the part of the heat flow which is thermal history sensitive) in MDSC measurements has been shown [27, 28].

The SICA approach shows that the width $\Delta \bar{r}$ of the intermediate phase increases mostly with the fraction of ES tetrahedra. We stress that the width should converge to a lower limit value of $\Delta \bar{r}$ compared to the step $l = 2$, therefore one can observe the shift downwards when increasing l from 2 to 4. This limit value is in principle attained for $l \to \infty$, or at least for much larger steps than $l = 4$ [30]. For Si-Se, $\Delta \bar{r} = 0.14$ is somewhat larger than for Ge-Se ($\Delta \bar{r} = 0.12$) consistently with the fact that the number of ES is higher in the former [28].

5 Application to solid electrolytes

One interesting field of application of cluster construction and constraint counting algorithms is the area of fast ionic conductors (FIC) [31, 32], which has recently gained attention because of potential applications of these solid electrolytes in all solid state electrochemical devices and/or miniaturized systems such as solid state batteries. This has been made possible by substitution of more polarizable sulfur atoms, replacing the oxygen in usual oxide glasses and has led to a substantial increase of the conductivity [33], as high as $10^{-3} \Omega^{-1}.cm^{-1}$, three orders of magnitude higher than the conductivity of analogous oxide glasses [34]. Surprisingly, the extension of constraint theory from network glasses (as Si_xSe_{1-x}) to FIC has been only reported for a few oxide glasses [35, 36]. As a consequence, percolative effects have not been studied so far with the network change in FIC, although it seems fundamental for the understanding of the mobile alkali cations’ motion. Since the conductivity of the semi-conductor is proportional to
the mobility μ, which in turn is related to the deformation of the network\[37\], and the free carrier concentration n_L by $\sigma = \mu n_L e$, one may expect that the mobility in a floppy FIC should be substantially higher compared to the cation mobility in a stressed rigid network. This means that the conductivity σ should display some particular behavior in the stress-free intermediate phase and at the two transitions.

One can extend the SICA approach to the present case by considering the simplest binary conducting glass, which is of the form $(1 - x)SiX_2 - xM_2X$ with X an atom of Group VI (X=O,S,Se) and M an alkali cation (M=Li,Na,K,...). The local structure can be obtained from NMR measurements and is mainly made of so-called Q^3 and Q^4 units\[38\]. The former corresponds to the usual silica tetrahedron made of one silicon and four Group VI atoms at the corner [e.g. $SiSe_4\frac{4}{2}$] while the latter has one oxygen atom ionically bonded to the alkali cation [e.g. $SiSe_5\frac{5}{2}Na\frac{3}{2}$] (fig. 3).

Then, the probabilities can be evaluated for different steps of cluster sizes following the procedure described in the previous sections. It appears that the creation of a $Q^4 - Q^4$ connection leads to a stressed rigid cluster if the number of constraints is computed, while the $Q^4 - Q^3$ and $Q^3 - Q^3$ connections yield respectively isostatically stressed and floppy clusters. The SICA results show again that the intermediate phase shows up if a non-zero fraction of small rings is allowed in the structure, as displayed in fig. 4. Here in contrast with chalcogenides, the glass optimum corresponding to the vanishing of the number of floppy modes represents the upper limit of the intermediate phase, which is consistent with the fact that one starts from an almost stressed rigid molecular network at low modifier concentration. Increase of the alkali content leads to an increase of floppiness. In the oxide system $(1 - x)SiO_2 - xM_2O$, the width Δx should be very small or zero since the fraction of ES in the oxide systems is almost zero\[21\]. Still, percolative effects are expected at the concentration $x = 0.2$ corresponding to the transition from rigid to floppy networks. In sulfur and selenide glasses such as $(1 - x)SiS_2 - xNa_2S$, the width should be much broader because of the existence of a high amount of edge-sharing tetrahedra in the SiS_2 or $SiSe_2$ base networks\[39\]. In the sulfur base glass, ^{29}Si NMR have shown that the rate of ES should be about 0.5, slightly higher than in the selenide analogous system\[10\]. As a result, one should observe a window of about $\Delta x = 0.09$. Unfortunately, results on these systems are only available for an alkali concentration $x > 0.2$\[11\]. However, in the different silica based glasses, a rigidity transition has been observed\[42\] at the concentration $x = 0.2$ which should provide guidance for forthcoming studies in this area.

Finally, temperature effects should be observable close to this transition. Since the concentration of alkali free carriers n_L depends on the temperature (the higher the temperature, the higher n_L), an increase of the temperature T should lead to a decrease of the number of network constraints, the fraction of intact bond-stretching constraints n^α of the alkali atom being proportional to $1 - n_L$. Consequently, a shift of the mechanical threshold ($f = 0$) to the higher concentrations should result from an increase of T.

7
6 Summary

In this article, we have shown how stress change in molecular systems can be understood from the combination of cluster construction and constraint counting. We have found that there is a single transition from floppy to rigid networks in a certain number of structural possibilities. An intermediate phase intervenes when a fraction of non-zero molecular isostatic stripes are allowed, which makes this new phase globally stress-free. The similarity of this new phase with the superconducting filamentary phase in HTSC[3] but also in biological networks[14] is striking and should be worked out in more depth in the future.

Acknowledgements It is pleasure to acknowledge ongoing discussions with R. Kerner, G.G. Naumis, M.F. Thorpe and Y. Vaills. LPTL is Unité de Recherche associée au CNRS n. 7600.

References

[1] J.H. Scon, C. Kloc and B. Batlogg, Nature (London) 408 (2001) 549; Science 293 (2001) 2432
[2] M.S. Osofsky, R.J. Soulen, J.H. Claasen, G. Trotter, H. Kim and J.S. Horowitz, Phys. Rev. Lett. 87 (2001) 197004
[3] J.C. Phillips, Phys.Rev.Lett. 88 (2002) 216401
[4] J.C. Phillips, Philos. Mag. 82 (2002) 783
[5] T. Schneider and H. Keller, Phys. Rev. Lett. 86 (2001) 4899
[6] V.J. Emery and S.A. Kivelson, Phys. Rev. C 209 (1993) 597
[7] S.R. Elliott; Physic of amorphous materials, Wiley & Sons, New York 1989
[8] M. Tatsumisago, B.L. Halfap, J.L. Green, S.M. Lindsay and C.A. Angell, Phys. Rev. Lett. 64 (1990) 1549
[9] J.C. Phillips, J. Non-Cryst. Solids 34 (1979) 153
[10] J.C. Phillips, J. Non-Cryst. Solids 43 (1981) 37
[11] M.F. Thorpe, J. Non-Cryst. Solids 57 (1983) 355
[12] H. He and M.F. Thorpe, Phys. Rev. Lett. 54 (1985) 2107
[13] U. Senapati and A.K. Varshneya, J. Non-Cryst. Solids 185 (1995) 289; T. Wagner and S. Kasap, Phil. Mag. B 74 (1996) 667
[14] see Rigidity theory and applications, M.F. Thorpe, P.M. Duxbury Eds. Fundamental Materials Research Series, Plenum Press/Kluwer Academic 1999
[15] X. Feng, W.J. Bresser and P. Boolchand, Phys. Rev. Lett. 78 (1997) 4422

[16] D. Selvenathan, W.J. Bresser, P. Boolchand, Phys. Rev. B61 (2000) 15061

[17] M.F. Thorpe, D.J. Jacobs, M.V. Chubynsky and J.C. Phillips, J. Non-Cryst. Solids 266-269 (2000) 859

[18] M. Micoulaut, R. Kerner and D.M. dos Santos-Loff, J. Phys. Cond. Matt. 7 (1995) 8035

[19] R. Kerner and D.M. dos Santos-Loff, Phys. Rev. B37 (1988) 3881

[20] R. Kerner, K. Penson and K.H. Bennemann, Europhys. Lett. 19 (1992) 363

[21] F.L. Galeener, D.B. Kerwin, A.J. Miller and J.C. Mikkelsen Jr., Phys. Rev. B47 (1993) 7760

[22] M. Micoulaut, Physica B212 (1995) 43

[23] P.J. Bray, S.A. Feller, G.E. Jellison and Y.H. Yun, J. Non-Cryst. Solids 38-39 (1980) 93

[24] D.J. Jacobs and M.F. Thorpe, Phys. Rev. Lett. 80 (1998) 5451

[25] M.F. Thorpe, D.J. Jacobs and M.V. Chubynsky in Rigidity theory and applications, edited by Plenum press/Kluwer Academic 1999

[26] D.S. Franzblau and J. Tersoff, Phys. Rev. Lett. 68 (1992) 2172

[27] P. Boolchand and W.J. Bresser, Phil. Mag. B80 (2000) 1757

[28] P. Boolchand and M.F. Thorpe, Phys. Rev. B50 (1994) 10366

[29] Y. Wang, P. Boolchand and M. Micoulaut, Europhys. Lett. 52 (2000) 633

[30] M. Micoulaut, J. Molec. Liquids 71 (1997) 107

[31] Z. Jinfeng and S. Mian-Zeng, Materials for solid state batteries, ed. B.V.R. Chowdari and S. Radhakrishna (1986) p. 487

[32] S.W. Martin, Eur. J. Solid. St. Inorg. Chem. 28 (1991) 163

[33] S.W. Martin, J.A. Sills, J. Non-Cryst. Solids 135 (1991) 171

[34] S. Sahami, S. Shea and J. Kennedy, J. Electrochem. Soc. 132 (1985) 985

[35] M. Zhang and P. Boolchand, Science 266 (1994) 1355

[36] R. Kerner and J.C. Phillips, Solid State Comm. 117 (2000) 47

[37] L.F. Peroni, R.J. Elliott, R.A. Barrio and K. Kaski, Phys. Rev. B50 (1994) 9868
[38] J.F. Stebbins, J. Non-Cryst. Solids 106 (1988) 359

[39] H. Eckert, J. Kennedy, A. Pradel and M. Ribes, J. Non-Cryst. Solids 113 (1989) 187

[40] A. Pradel, V. Michel-Lledos, M. Ribes and E. Eckert, Chem. Mater. 5 (1993) 377

[41] A. Pradel, J. Taillades, M. Ribes and H. Eckert, J. Non-Cryst. Solids 188 (1995) 75

[42] Y. Vaills, G. Hauret, Y. Luspin, J. Non-Cryst. Solids 286 (2001) 224
List of Tables

1. The four clusters generated at step $l = 2$ with their unrenormalized probabilities and their number of mechanical constraints. The factors e_i are Boltzmann factors involving bond energies and the fictive temperature, $e_i = \exp[-E_i/T_f]$.

List of Figures

1. Probability of finding floppy, isostatic rigid and stressed rigid clusters as a function of mean coordination number \bar{r} at SICA step $l = 2$ for different fractions of edge-sharing. The solid line corresponds to the dendritic case where no rings are allowed ($e_4 = 0$). The broken lines correspond to situations with a fraction of ES at the stress transition of $\eta = 0.156, 0.290$ and 0.818. The filled squares indicate the point \bar{r}_c at which the stress transition occurs in the case $\eta = 0.156$.

2. Width of the intermediate phase $\Delta \bar{r}$ as a function of the fraction of ring clusters at the rigidity transition for $l = 2$ (solid line), $l = 3$ (dashed line) and $l = 4$ (dotted lines). At step $l = 2$, the non-zero width comes only from the edge-sharing $BA_{4/2}$ tetrahedra. For $l > 2$, different rings sizes $(4, 6, 8)$ have been taken into account. The lower dotted line corresponds to the intermediate phase at $l = 4$ if only ES are allowed as stressed rigid fragments. The upper dotted line is the same quantity but allowing any ring structure. The insert shows the probability of isostatic clusters with mean coordination number \bar{r} for $l = 4$ (dotted line) and $l = 3$ (dashed line). The shaded region of $l = 4$ represents the intermediate phase.

3. The two local structures of the fast ionic conducting $(1-x)SiX_2-xM_2X_3$ ($X = O, S, Se; M = Li, Na, K$) glasses, denoted as Q^4 and Q^3 units, with respective probabilities $1 - p$ and $p = 2x/(1 - x)$.

4. Width of the intermediate phase Δx as a function of the rate of edge-sharing (ES) in the base glass. The insert shows the solutions x_{c1} and x_{c2} obtained from SICA analysis, again as a function of ES.
| symbol | mechanical nature | probability | n_c |
|--------|------------------|------------------|------|
| A_4 | floppy | $4(1 - p)^2 e_1$ | 2.0 |
| BA_4 | isostatic | $16p(1 - p)e_2$ | 3.0 |
| B_2A_4 | stressed | $16p^2e_3$ | 3.67 |
| B_2A_4 | stressed | $72p^2e_4$ | 3.33 |

Table 1: The four clusters generated at step $l = 2$ with their unrenormalized probabilities and their number of mechanical constraints. The factors e_i are Boltzmann factors involving bond energies and the fictive temperature, $e_i = \exp[-E_i/T_f]$.
Figure 1: Probability of finding floppy, isostatic rigid and stressed rigid clusters as a function of mean coordination number \bar{r} at SICA step $l = 2$ for different fractions of edge-sharing. The solid line corresponds to the dendritic case where no rings are allowed ($\epsilon = 0$). The broken lines correspond to situations with a fraction of ES at the stress transition of $\eta = 0.156$, 0.290 and 0.818. The filled squares indicate the point \bar{r}_c at which the stress transition occurs in the case $\eta = 0.156$.
Figure 2: Width of the intermediate phase $\Delta \bar{r}$ as a function of the fraction of ring clusters at the rigidity transition for $l = 2$ (solid line), $l = 3$ (dashed line) and $l = 4$ (dotted lines). At step $l = 2$, the non-zero width comes only from the edge-sharing $BA_{4/2}$ tetrahedra. For $l > 2$, different rings sizes (4, 6, 8) have been taken into account. The lower dotted line corresponds to the intermediate phase at $l = 4$ if only ES are allowed as stressed rigid fragments. The upper dotted line is the same quantity but allowing any ring structure. The insert shows the probability of isostatic clusters with mean coordination number \bar{r} for $l = 4$ (dotted line) and $l = 3$ (dashed line). The shaded region of $l = 4$ represents the intermediate phase.

Figure 3: The two local structures of the fast ionic conducting $(1 - x)SiX_2 - xM_2X$, ($X = O, S, Se; M = Li, Na, K$) glasses, denoted as Q^4 and Q^3 units, with respective probabilities $1 - p$ and $p = 2x/(1 - x)$.
Figure 4: Width of the intermediate phase Δx as a function of the rate of edge-sharing (ES) in the base glass. The insert shows the solutions x_{c1} and x_{c2} obtained from SICA analysis, again as a function of ES.