Mechanisms of antimicrobial resistance in finfish aquaculture environments

Claudio D. Miranda1, Alfredo Tello2 and Patricia L. Keen3 *

1 Department of Aquaculture, Universidad Católica del Norte, Coquimbo, Chile
2 Institute Tecnologico del Salmon, WITESAL de SalmonChile, Puerto Montt, Chile
3 Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada

*Correspondence: Patricia L. Keen, Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada. e-mail: patricia.keen@ece.ubc.ca

INTRODUCTION

Through a continuous process of expansion, intensification, and diversification, aquaculture has become the fastest-growing food industry in the world (Booth et al., 2010). With production of new species and the expansion of the production of current species to new geographical locations, the risk of disease and need for treatment continues to increase. This risk is compounded by the uncertainties introduced by global climate change, which may affect the emergence and dynamics of new and existing pathogens (Tirado et al., 2010), and consequently the use of antimicrobials and the prevalence of antimicrobial resistance.

The major concern surrounding the use of antimicrobials in aquaculture is considered to be the potential to favor the development of a reservoir of antimicrobial resistance genes (ARGs) that may be eventually transferred to clinically relevant bacteria (FAO/OIE/WHO, 2006). So far, lack of data, methodological constraints, and the complexity of characterizing exposure pathways have prevented the derivation of quantitative estimates of the risk that this may pose to public health. Nevertheless, there is consensus in the scientific community and international organizations concerned with human health, animal health, and food security that steps should be taken to minimize it (FAO/OIE/WHO, 2006; Smith, 2008; Heuer et al., 2009; WHO, 2011). On a global scale, several of the major classes of antimicrobials are being used or have been used in aquaculture. Among these are sulphonamides, penicillins, macrolides, quinolones, phenicols, and tetracyclines (Sapkota et al., 2008), all of which are listed as critically or highly constrained, and their frequency of occurrence. Thus, knowledge of ARGs from aquaculture environments is important to design and prioritize monitoring programs that may generate data that eventually becomes relevant for performing quantitative risk assessments and develop sound treatment strategies to control fish disease. Within this general scope, we provide this article as an overview of the molecular mechanisms, genomic context, and prevalence of quinolone, tetracycline, and phenicol resistance genes that have been reported to occur in aquaculture environments.

ANTIMICROBIAL RESISTANCE GENES IN AQUACULTURE ENVIRONMENTS

Quinolones (i.e., oxolinic acid, flumequine, and enrofloxacin), tetracyclines [i.e., oxytetracycline (OTC) and phenicols (i.e., florfenicol)] are among the most widely used antimicrobial compounds in aquaculture, and they have been used extensively to control bacterial fish disease in salmon farming [SERNAPESCA (Chile), 2009; Burridge et al., 2010; Rico et al., 2012]. Although the use of quinolones in salmon farming currently accounts for less than 1% of the overall use of antimicrobials, they continue to be used in aquaculture production in several Asian countries [SERNAPESCA (Chile), 2009; Burridge et al., 2010; Rico et al., 2012]. Quinolones, tetracyclines, and phenicols have been reported to be selective for a variety of ARGs and tend to occur in mobile genetic elements that favor their dissemination (i.e., transposons, plasmids, and integrons; Clokie et al., 2000; Choopa and Roberts, 2001; Kümmerer, 2004; Schwartz et al., 2004; Roberts, 2005).

QUINOLONE RESISTANCE

The protein targets of quinolones are the bacterial enzymes, DNA gyrase and topoisomerase IV. DNA gyrase is a tetrameric enzyme...
encoded by the gyrA and gyrB genes, and its main activity is to catalyze the negative supercoiling of bacterial DNA. Topoisomerase IV is also a tetrameric enzyme and it is encoded by the parC and parE genes; its function is to decatenate and relax the activity of daughter replicons following DNA replication (Anderson et al., 1998; Hawley, 2003).

The acquisition of quinolone resistance is primarily due to chromosomal mutations in topoisomerase genes (i.e., gyrA, gyrB, parC, and parE) and mutations that reduce drug accumulation by decreasing uptake or increasing efflux (Drlica and Zhao, 1997; Ruiz, 2003). Additionally, at least three mechanisms of quinolone resistance are known to be plasmid encoded: (1) Qrr proteins; (2) AAC(6′)-Ib-cr aminoglycoside acetyltransferases; and (3) QepA and OqxAB efflux pumps. Qrr proteins protect DNA gyrase and type IV topoisomerase from quinolone inhibition (Trans and Jacoby, 2002; Jacoby, 2005) and the AAC(6′)-Ib-cr determinant acetylates several fluoroquinolones. Plasmid-encoded QepA and OqxAB are active efflux pumps that may extrude hydrophilic fluoroquinolones such as enrofloxacin (Li, 2005; Poirel et al., 2008, 2012; Cattor and Nordmann, 2009; Rodriguez-Martinez et al., 2011).

Various point mutations in the quinolone resistance-determining regions of the gyrA and/or parC genes have been detected in quinolone-resistant strains of the fish pathogens Aeromonas hydrophila, Vibrio anguillarum, and V. parahaemolyticus (Okuda et al., 1999; Rodkhun et al., 2008; Lukkana et al., 2012). Levels of quinolone resistance in Gram-negative bacteria are suggested to be high when associated with point mutations in both the gyrA and parC genes, whereas only an intermediate level of resistance is associated with point mutations in the gyrA gene only. However, high-level resistance to enolinc acid associated with a single mutation in the gyrA gene has been reported for strains of the fish pathogen Aeromonas salmonicida, Edwardsiella tarda, and Photobacterium damsela (Opperdoes and Sørum, 1994; Ota-Urriza et al., 2002; Kim et al., 2005, 2011; Ozanne et al., 2011).

The extensive administration of quinolones in fish farming has been linked to increased mutations in DNA gyrase and topoisomerase IV in quinolone-resistant fish pathogens such as Yersinia ruckeri, Vibrio anguillarum, and V. parahaemolyticus (Okuda et al., 1999; Rodkhun et al., 2008; Lukkana et al., 2012). The genes qrr, aac(6′)-Ib-cr, and qrs, the putative enzymatic inactivating aac(6′)-Ib-cr and the efflux pump gene oxyA among strains isolated from non-polluted and fish farm-impacted marine sediments in Chile. Jiang et al. (2012) found a high prevalence of qrr and qrs genes in Escherichia coli strains recovered from Chinese farmed fish while qrrD and aac(6′)-Ib-cr genes occurred less frequently. Han et al. (2012) found 17 strains encoding chromosomal mutations in gyrA, 11 strains encoding mutations in parC, and a few strains carrying the qrs1-like and qrs2 genes among 33 Aeromonas spp. isolated from diseased fish and from water samples. The identification of Qrr determinants in Aeromonas spp. suggests that they may act as an environmental reservoir of qrr genes, as already described for tet genes (Rhoedes et al., 2000; Schmidt et al., 2001a). Some qrr genes have also been described in the Vibriobaccaeae family and it is suggested that water-borne Vibriibaccaeae may constitute a natural reservoir for Qrr-like quinolone-resistance determinants (Poirel et al., 2005; Cattor and Nordmann, 2009). Evidence suggests that qrr-plasmids are most commonly integron associated and carry multiple resistance determinants, providing resistance to several classes of antimicrobials, including beta-lactams and aminoglycosides (Li, 2005).

TETRACYCLINE RESISTANCE

Oxytetracycline is a broad-spectrum bacteriostatic antimicrobial, active against a wide variety of Gram-positive and Gram-negative bacteria, which is extensively used in fish farming. Tetracyclines bind reversibly to the 70S ribosome of prokaryotes and block protein synthesis (Chopra, 1985; Roberts, 1996).

Mechanisms of tetracycline resistance include active efflux, ribosomal protection, ribosomal RNA mutations, and tetracycline inactivation (Speer and Salyers, 1989; Salyers et al., 1996; Burdett, 1991; Levy, 1992; Speer et al., 1992; Taylor and Chau, 1996). Tetracycline resistance in fish farm-associated bacteria has been found to be mainly mediated by one or more of the Tet family of proton-dependent efflux pumps or via ribosomal protection by cytoplasmic proteins found widely in Gram-negative bacteria (Roberts, 2005; Roberts et al., 2012).

Several tet determinants have been identified in fish farm bacteria from a number of geographical locations and fish species (DePaola et al., 1988; Adams et al., 1998; Rhodes et al., 2000; Schmidt et al., 2001a; Furushita et al., 2003; Miranda et al., 2003; Akinbawale et al., 2007; Seyfried et al., 2010, Gao et al., 2012). The genes tet(A), tet(B), tet(E), tet(H), tet(L), tet(S), and tet(T) were found in tetracycline-resistant bacteria isolated from Chilean salmon farms (Miranda et al., 2003). Recently, Seyfried et al. (2010) detected the presence of tet(A), tet(B), tet(D), tet(E), tet(G), tet(M), tet(O), tet(Q), and tet(W) genes in mediated and non-mediated feed samples and water samples from non-commercial fish farms in the United States. Similarly, Jun et al. (2004) found a high prevalence of tet(A) and tet(D) genes associated with mobile plasmids and tet(B) and tet(G) genes associated with non-mobile elements in Edwardsiella tarda strains isolated from fish farms in Korea. Nonaka et al. (2007) found a high incidence of tet(M)-carrying Vibrio strains in fish farms and Agerova et al. (2007) detected tet(E) in Aeromonas strains from Danish fish farms associated with large plasmids capable of horizontal transfer to Erwinia chrysanthemi. Nawaz et al. (2009) found a high prevalence of tet(B) and, to a lesser extent, tet(A), tet(C) and the co-occurrence of tet(A) and tet(B) in Erwinia coli isolated from farm-raised catfish. Kim et al. (2004) reported the occurrence of tet(M) and tet(S) in tetracycline-resistant bacteria from fish farms in Korea and Nonaka and Suzuki (2002) found the novel OTC-resistance determinant tet(S) in a Vibrio strain isolated from cultured yellowtail (Seriola quinquefinilata).

The spread of tet genes is often facilitated by their location on mobile genetic elements, such as plasmids and transposons (Roberts, 1994; DePaola and Roberts, 1995; Chopra and Roberts, 1985).
R-plasmids carrying the combinations of the resistance gene cassettes isolates of various OTC-resistant isolates of farms by conjugation and Adams et al. (1998) reported that variable OTX-resistant isolates of Aeromonas salmonicida transferred R-plasmids carrying the tet(A) gene to environmental and clinical isolates of Aeromonas spp. Class I integrons harboring different combinations of the resistance gene cassettes apr(3)Ia, aac(6’)-Ib, dfrA1, adaA1, and pncI and tet genes were also detected in a large number of plasmid bearing Aeromonas spp. strains isolated from tilapia, trout, and koi cultures in South Africa (Jacobs and Chenia, 2007). In Edwardsiella ictaluri strains isolated from diseased freshwater catfish in Vietnam, Dung et al. (2009) found the tet(A) gene associated with a high-molecular weight plasmid belonging to the IncK group. In addition, all strains were able to transfer their tet(A)-carrying plasmids to Escherichia coli recipients. Several studies have also reported the co-occurrence of tetracycline- and sulphonamide resistances genes. Agero and Petersen (2007) showed that tet(59) and sul2 genes located on plasmids of different sizes to be common among clinically distinct Acinetobacter spp. from fish farms in Thailand. Su et al. (2011) detected the genes tet(A), tet(C), and the sulphonamide-resistance gene, sul2, in more than 50% of the strains of Enterobacteriaceae they isolated from fish farms in China. Gao et al. (2012) recently reported the co-occurrence of tetracycline- and sulphonamide-resistance genes in Bacillus species isolated from aquaculture farms in China.

PHENICOL RESISTANCE
Florfenicol is a synthetic fluorinated analog of chloramphenicol whose bacteriostatic activity is based on a reversible binding to the 50S subunit of 70S bacterial ribosomes that prevents peptide elongation (Schwarz et al., 2004). The replacement of a hydroxyl group with a fluorine atom protects florfenicol from inactivation by chloramphenicol acetyltransferases (CATs), a common mechanism of bacterial resistance to chloramphenicol (Shaw and Leslie, 1991; Schwarz et al., 2004). The effectiveness of florfenicol against a number of relevant fish pathogens makes it a very valuable drug for the fish farming industry (Fukui et al., 1987; Nordmo et al., 1994; Samuels el al., 1998, 2003; Bruun et al., 2000; Gaunt et al., 2003; McGinnis et al., 2005; Michel et al., 2005; Samuels and Bergh, 2004). Mechanisms of resistance to florfenicol include specific and non-specific drug transporters, RNA methyltransferases, and specific hydrolases (Paulsen et al., 1996; Schwarz et al., 2004; Poole, 2005; Long et al., 2006; Tao et al., 2012). Genes floR and fexA belong to the major facilitator superfamily and code for efflux proteins that export florfenicol out of the cell (Schwarz et al., 2004). The gene cfr, which has been shown to be an RNA methyltransferase that belongs to the recently discovered radical S-adenosylmethionine (SAM) superfamily of proteins (Sofia et al., 2001), inhibits ribose methylation and thereby causes resistance to florfenicol, chloramphenicol, and clindamycin (Long et al., 2006).

Most studies of florfenicol resistance in fish farming have reported the occurrence of the floR gene. Dang et al. (2007) detected the floR gene in tetracycline-resistant bacteria isolated from aquaculture sites in China, and Ishida et al. (2010) detected the floR gene in four strains of Gram-negative bacteria isolated from fish farms in Africa. In North America, McIntosh et al. (2008) reported the occurrence of Aeromonas salmonicida strains carrying a conjugative IncA/C plasmid harboring floR, sul2, and tet genes that were transferable to Aeromonas hydrophila and Edwardsiella tarda. Welch et al. (2009) detected IncA/C plasmid-mediated florfenicol resistance in the catfish pathogen Edwardsiella ictaluri, and Gordon et al. (2008) reported a multiresistant Aeromonas briae strain carrying a plasmid harboring the floR, tet, sul, and stx1-strb resistance genes. A relatively recent study showed that many florfenicol-resistant bacterial strains isolated from Chilean salmon farms carried the floR gene, whereas others possessed non-specific efflux pumps that conferred florfenicol resistance (Fernández-Alarcon et al., 2010). In fish farm impacted marine sediments, Buschmann et al. (2012) recently reported the occurrence of several strains containing plasmid-borne floR, tet, and qnr genes.

PRIORITIZING RESEARCH AND POLICY NEEDS
The studies discussed in the previous sections support the hypothesis that fish farms represent a reservoir of diverse ARGs, many of which may be readily mobilized by lateral gene transfer. Given the extent of global aquaculture and its fast-paced growth, it is imperative that research needs with regards to the use of antimicrobials and the emergence and potential spread of antimicrobial resistance are prioritized. This research should form the basis of sound, science-based policies that contribute to the sustainability of the aquaculture industry and minimize risks to public health. Further studies are needed to explore the prevalence of antimicrobial resistance in zoonotic fish pathogens such as Aeromonas hydrophila, Edwardsiella tarda, Mycobacterium fortuitum, Mycobacterium marinum, Photobacterium damselae, Pseudomonas fluorescens, and Streptococcus iniae (Austin and Austin, 2012). Moreover, there are important knowledge gaps regarding the co-occurrence of antimicrobial-resistant bacteria from aquaculture environments with human pathogens throughout production cycles and across a range of aquaculture environments, the transfer rate of resistance genes between aquaculture and clinically relevant bacteria under field or semi-field conditions, and the epidemiology of antimicrobial resistance in areas of intense aquaculture activity.

Good management strategies can make a significant contribution to minimize the use of antimicrobials in fish and the emergence and spread of antimicrobial resistance in aquaculture environments. Among these precautionary practices are the use of “good quality” fish stocks, reducing stocking densities, maintaining overall good environmental conditions (e.g., dissolved O2 levels), the implementation of proper biosecurity measures, the development of effective vaccines and vaccination programs, and
the rotation of antimicrobial compounds in the treatment of fish disease. Although the use of antimicrobials in human medicine places constraints on the type of antimicrobial that may be used in veterinary medicine, the rotation of antimicrobials in aquaculture may play an important role in reducing the chances of selection, co-selection, and dissemination of antimicrobial resistance. In this context, it is also important that efforts are directed toward creating incentives for the development and registration of antimicrobials for aquaculture use in addition to implementation of antimicrobial stewardship practices.

REFERENCES

Adams, C. A., Austin, M., Mole, P. G., and McIntosh, D. (1998). Molecular characterization of plasmid-mediated oxytetracycline resistance in Aeromonas salmonicida. J. Appl. Microbiol. 84, 4194–4201.

Agoro, Y., Braun, M. S., Dalgaard, I., and Larsen, J. L. (2007). The tetracycline resistance determinant tetR is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 266, 47–52. doi: 10.1016/j.aquaculture.2007.01.012

Agoro, Y., and Petersen, A. (2007). The tetracycline resistance determinant tetR and the sulfonamide resistance gene sulI are common among resistant Aeromonas spp. isolated from integrated fish farms in Thailand. J. Appl. Microbiol. 103, 25–27. doi: 10.1111/j.1365-2672.2007.03454.x

Anderson, C. A., Austin, M. D., and Barton, M. D. (2007). Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J. Appl. Microbiol. 103, 2063–2073. doi: 10.1111/j.1365-2672.2007.03454.x

Andersson, V., Gootz, T. D., and Barton, M. D. (2007). Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J. Appl. Microbiol. 103, 2063–2073. doi: 10.1111/j.1365-2672.2007.03454.x

Bucknall, L., Wei, S., Cabello, F., Piarroux, L., and Bostock, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23. doi: 10.1016/j.aquaculture.2010.05.030

Buchmann, A. H., Tomova, A., Lopez, A., Makladan, M. A., Hyperique, L. A., Ivanova, L., et al. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS ONE 7:e42724. doi: 10.1371/journal.pone.0042724

Carlton, V., and Nordmann, P. (2008). Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr. Med. Chem. 16, 3238–3254. doi: 10.2174/09298670878357879

Carter, V., and Nordmann, P. (2008). Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr. Med. Chem. 16, 3238–3254. doi: 10.2174/09298670878357879

Clore, V., and Ward, D. (2000). Antimicrobial resistance patterns in aerobic bacteria isolated from a South African tilapia aquaculture system. Afr. J. Microbiol. Res. 44, 2858–2860. doi: 10.5897/AJMR10.840

DePaola, A., Flynn, P. A., McPherson, R. M., and Levy, S. B. (1988). Photocleavage and genotypic characterization of tetracycline- and oxytetracycline resistant Aeromonas hydrophila from cultured channel catfish (Ictalurus punctatus) and their environments. Appl. Environ. Microbiol. 54, 1861–1865.

DePaola, A., and Roberts, M. C. (1995). Class D and E tetracycline resistance determinants in Gram-negative fish and pond bacteria. Mol. Cell. Probes 9, 311–315. doi: 10.1016/0890-8576(95)00079-2

DePaola, A., and Zhao, X. L. (1997). DNA gels, topoisomerase IV, and the 4-quinolones. Mol. Biol. Rev. 61, 375–392.

Deng, T. T., Han, J. E., Kim, J. H., Cheresca, C. H., Peng, H., and Barton, M. D. (2007). Diversity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. J. Appl. Microbiol. 103, 25–27. doi: 10.1111/j.1365-2672.2007.03454.x

Dibela, K., and Zhao, X. L. (1997). DNA gels, topoisomerase IV, and the 4-quinolones. Mol. Biol. Rev. 61, 375–392.

Fukui, H., Fujihara, Y., and Kano, T. (1987). In vitro and in vivo antibacterial activities of florfenicol, a new fluorinated analog of shikimic acid, against fish pathogens. Fish Pathol. 22, 201–207. doi: 10.1016/j.fishpath.2002.02.004

Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., and Xu, L. (2012). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 46, 2355–2364. doi: 10.1016/j.watres.2011.02.004

Garratt, P., Endris, R., Khoo, L., Leard, T., Jack, S., Sattar, T., et al. (2003). Preliminary assessment of the tolerance and efficacy of florfenicol against Edwardsiella ictaluri administered to food to channel catfish. J. Aquat. Anim. Health 15, 239–247. doi: 10.3775/033-022

Gilders, A., Porteiro, M. C., Blanco, M. V., Vela, A. L., Lisón, P., Moreno, M. A., et al. (2004). Analysis of the gyrA gene of clinical levofloxacin-resistant isolates with reduced suscepti- bility to quinolones. Appl. Environ. Microbiol. 70, 399–402. doi: 10.1128/AEM.70.1.399-402.2004

Gutiérrez, M., Arpin, C., Capduquey, M., Dubois, V., Cambrelot, C., and Quentin, C. N. (2001). Expression, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 222–280. doi: 10.1128/MMBR.65.2.222-280.2001

Han, J. E., Kim, J. H., Cheresca, C. H., Shen, S. P., Han, J. W., Choi, J. Y., and Barlow, J. J., et al. (2012). First description of the quinol-like (qnrS5) gene and analysis
of quinolone resistance-determining regions in merkle Aeromonas spp. from diseased fish and water. Rev. Microbiol. 163, 73–79. doi: 10.1007/752
Hawkey, P. M. (2003). Mechanisms of quinolone action and microbial response. J. Antimicrob. Chemother. 51, 29–35. doi: 10.1093/jac/dkg297
Hoeve, O. E., Kreue, H., Gravel, K., Calcagno, F., Karunamgall, L., and Angulo, F. J. (2003). Human health consequences of use of antimicro-
biotic agents in aquaculture. Clin. Infect. Dis. 49, 1248–1253. doi: 10.1086/380367
Ishida, Y., Ahmed, A. M., Mahfouz, A. A., et al. (2010). Molecular analysis of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Egypt. J. Vet. Med. Sci. 72, 727–734. doi: 10.1292/jvms.09-0358
Izumi, S., Kehrenberg, C., Ulep, D. M., and Nishino, T. (1999). Sequence of tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol. Lett. 237, 147–156. doi: 10.1111/j.1365-2958.2004.05899.x
Kümmerer, K. (2004). Resistance in the environment. J. Antimicrob. Chemother. 54, 511–520. doi: 10.1093/jac/dkh325
Levy, S. B. (1992). Active efflux mechanisms for antimicrobial resis-
tance. Antimicrob. Agents Chemother. 36, 695–703. doi: 10.1128/AAC.36.4.695
Li, X. Z. (2005). Quinolone resistance in bacteria: emphasis on plasmid-
mediated resistance. Curr. Opin. Microbiol. 8, 594–599. doi: 10.1016/j.mib.2005.09.050
Long, K. S., Poehlsgaard, J., Kehren-
berg, C., and Brokken, E. (2003). The Chromatix methyltransfer-
ase confers resistance to quinol-
ones, lincosamides, streptogramins, pleuromutilins, and streptogramin B antibacterials. Antimicrob. Agents Chemother. 47, 2459–2464. doi: 10.1128/AAC.47.5.2459-2464.2003
Nonaka, L., and Suzuki, S. (1994). Florfenicol in Atlantic salmon, Salmo salar, in Norway: implications for the control of disease. J. Fish Dis. 17, 453–463. doi: 10.1111/j.1365-2761.1994.00036.x
Nonaka, L., Ikeno, K., and Suzuki, S. (2002). Chloramphenicol and florfenicol susceptibility of fish bacteria. Fish Pathol. 37, 259–266. doi: 10.1111/j.1949-6591.2002.tb00251.x
Paulsen, I. T., Brown, M., and Skurray, R. (1996). Protein-dependent multi-
drug efflux systems. FEMS Microbiol. Rev. 18, 39–75. doi: 10.1111/j.1574-6976.1996.tb00251.x
Roberts, M. C. (1994). Epidemiology of tetracycline resistance-determin-
ing mechanisms. Trends Microbiol. 2, 235–242. doi: 10.1016/0966-842X(94)90100-9
Roberts, M. C. (2006). Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 30, 1–24. doi: 10.1111/j.1574-6976.2005.00126.x
Sheets, P. G., and Ayres, A. O. (1997). Antimicrobial resistance mechanisms in fish. Antimicrob. Agents Chemother. 41, 10–17. doi: 10.1128/AAC.41.1.10-17.1997
Simpson, T., Reilly, A., and Enders, D. (2005). Fluoroquinolone-resistant quinolone resistance determinants. J. Antimicrob. Chemother. 56, 1118–1121. doi: 10.1093/jac/dki171
Stokes, T. C. (2010). Transferable multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida. J. Antimicrob. Chemother. 65, 3883–3890. doi: 10.1093/jac/dkq452
Tang, D., Liu, Y. H., Jiang, H. X., et al. (2011). Molecular characterization of quinolone-resistant genes tet(M) and tet(S) in bacteria from marine aqua-
culture sites. J. Fish Dis. 34, 463–471. doi: 10.1111/j.1365-2761.2010.00662.x
Tang, D., Liu, Y. H., Wang, J. E., et al. (2004). Detection of quinolone-resistant genes in Phen-
abacterium denitrificans subsp. piscicida strains by targeting-induced local lesions in genomes. J. Fish Dis. 26, 463–471. doi: 10.1111/j.1365-2761.2003.00662.x
Zhang, X. H., Zeng, Z. L., Xu, G. L., et al. (2012). Prevalence and characterization of quinolone resistance determinants in Aeromonas hydrophila isolated from fish farms in Egypt. J. Appl. Microbiol. 112, 1221–1228. doi: 10.1111/j.1365-2672.2012.05039.x
Izumi, S., Kehrenberg, C., Ulep, D. M., and Nishino, T. (2003). Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Aeromonas Agrotech. J. 47, 483–488. doi: 10.1128/AAC.47.3.483-488.2003
Nawae, M., Khan, A. A., Khan, S., Yang, K., Kendahl, K., and Stedje, R. (2008). Molecular characterization of quinolone-resistant genes and integrons from chum salmon strains of Escherichia coli isolated from fish farm. J. Antimicrob. Chemother. 63, 553–559. doi: 10.1093/jac/dkn024
Nonaka, L., Ikeno, K., and Suzuki, S. (2007). Distribution of tetracycline resistance gene tet(M), in Gram-
positive and Gram-negative bacteria isolated from salmon and seawater at a coastal aquaculture site in Japan. Microbiol. Environ. 22, 355–364. doi: 10.124ym.22.555
Nonaka, L., and Suzuki, S. (2002). New Mg2+-dependent oxytrna-
cysteine resistance determinant Tsr 34 in Vibrio isolates from marine fish intestine contents. Aeromonas Agrotech. J. 38, 1500–1502. doi: 10.1128/AAC.46.5.1500-1502.2002
Nordström, R., Varma, K. J., Suther-
lund, E. H., and Brönken, E. S. (1994). Flerofloxacin in Atlantic salmon, Salmo salar L.: field evalua-
tion of efficacy against furunculosis in Norway. J. Fish Dis. 17, 239–
244. doi: 10.1111/j.1365-2761.1994.80021.x
Okada, J., Hayakawa, E., Nishimichi, M., and Nishino, T. (1999). Sequence analysis of the gyrA and parC homologues of a wild type strain of Vibrio parahaemolyticus and its florofloxacin-resistant mutants. Aeromonas Agrotech. J. 45, 1196–1192.
Oppoﬁuss, H., and Forum, H. (1994). gyrA mutations in quinolone-
resistant isolates of the fish pathogen Aeromonas salmonicida. Antimicrob. Agents Chemother. 38, 2490–2494. doi: 10.1128/AAC.38.10.2490-2494
Ortmann, B., Benjamin, R., Tipton, D., and Davis, J. (2005). Molecular cloning of the gyrA gene and char-
acterization of its mutation in clinical isolates of quinolone-resistant Edwardsiella tarda. Zool. Anz. 244, 259–266. doi: 10.1016/j.za.2005.07.030
Poirel, L., Caroton, V., and Nordmann, P. (2012). Plasmid-mediated quinolone resistance: interactions between human, animal, and environmental ecologies. Front. Microbiol. 3, 24. doi: 10.3389/fmicb.2012.00024
Poirel, L., Lared, A., Rodríguez-
Martínez, J. M., and Nordmann, P. J. (2005). Flerofloxacin as a pos-
sible source of Quin-like quinolone resistance determinants. J. Antimicrob. Chemother. 56, 1118–1121. doi: 10.1093/jac/dki171
Poirel, L., Caroton, V., and Nordmann, P. (2008). Plasmid-mediated quinolone resistance in bacteria. Curr. Opin. Microbiol. 11, 575–580. doi: 10.1016/j.mib.2008.07.013
Poirel, L., Cattoir, V., and Nordmann, P. (2012). Plasmid-mediated quinolone resistance: interactions between human, animal, and environmental ecologies. Front. Microbiol. 3, 24. doi: 10.3389/fmicb.2012.00024
Aquaculture practices and potential human health risk: current knowledge and future priorities. Environ. Sci. 36, 1213–1220. doi: 10.1016/j.envsci.2008.06.009

Schmidt, A. S., Bruun, M. S., Larsen, J. L., and Dalgaard, J. (2003). Characterization of class 1 integrons associated with blp-sequences in clinical Aeromonas salmonicida isolates from various geographical areas. J. Antimicrob. Chemother. 47, 757–763. doi: 10.1093/jac/dgf735

Schwarz, S., Kehrenberg, C., Doubelt, R., and Clokie, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28, 519–542. doi: 10.1016/j.femsre.2004.04.001

KORNAPOLGA (Chile). (2009). Informe De Usos de Antimicrobianos 2009. Report available at: http://www.sorapoxa.cl/disenos.php?option=com_historial&Itemid=246&func=com_remository&Itemid=246&func=

Shah, S. Q., Nielsen, H., Bottolfson, K., Copleman, D. L., and Sermon, H. (2012). DNA sequence and topoisomerase IV mutations in the motB gene in a clinical aeromonad isolated from a salmonid in Norwegian. Microb. Drug Resist. 18, 207–214. doi: 10.1089/mdr.2011.0142

Shaw, W. V., and Leslie, A. G. (1995). Chloramphenicol acetyltransferase and its homologues. Ann. Rev. Bacteriol. 20, 383–396. doi: 10.1146/annurev.bb.20.060191.002051

Smith, P. (2008). Aquaculture and florfenicol resistance in Salvelinus fontinalis. FEMS Microbiol. Lett. 284, 563–569. doi: 10.1111/j.1574-6968.2008.01301.x

Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., and Frank, J. M. (2010). Climate change and food safety: a review. Food Res. Int. 43, 1745–1750. doi: 10.1016/j.foodres.2010.07.003

Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., and Frank, J. M. (2010). Chloramphenicol and florfenicol resistance in salmonid fish. Front. Microbiol. 1, 3–13. doi: 10.3389/fmicb.2012.00384

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 April 2013; paper pending publication: 30 May 2013; accepted: 29 July 2013; published online: 22 August 2013.

Citation: Miranda CD, Tello A and Keen PL (2013) Mechanisms of antimicrobial resistance in fish aquaculture environments. Front. Microbiol. 4:253. doi: 10.3389/fmicb.2013.00253

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology. Copyright © 2013 Miranda, Tello and Keen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided that the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction in any medium is permitted which does not comply with these terms.