AO Piscium (RA=22h 55min 17.99s DEC=-03 10' 40.0" J2000.) is an intermediate polar, that is a subclass of cataclysmic systems in which the white dwarf is magnetized enough to module the accretion. Furthermore, the period of rotation (or spin) of the white dwarf is shorter than the orbital period and there is an accretion disc. AO Psc is one of the brightest cataclysmic, with a V mag as high as 13.2.

The orbital period is $P_{\text{orb}} = 3.59$ hr, the rotation period of the white dwarf is $P_{\text{rot}} = 805$ s and the accretion X-ray beam is reprocessed on the secondary star atmosphere, giving rise to a synodic modulation with the period P_{syn} such that:

$$\frac{1}{P_{\text{syn}}} = \frac{1}{P_{\text{orb}}} - \frac{1}{P_{\text{rot}}}$$

i.e. $P_{\text{syn}} = 859$ s (Patterson & Price, 1981, Motch & Pakull, 1981, van Amerongen et al., 1985 (hereafter vA85), Taylor et al, 1997).

All these periodicities are visible by photometry as modulations in the light curves, the synodic modulation being usually the strongest one.

Figure 1. Upper light curve: AO Psc, Lower: the check star shifted by -0.2 mag. The error bars are the quadratic sum of the 1-sigma statistical uncertainties on the variable/check star and on the comparison star.

Photometric observations of AO Psc were carried out over eleven seasons, from 2004 to 2014, with a 203 mm f/6.3 Schmidt-Cassegrain telescope, a Clear filter and a SBIG
ST7E camera (KAF401E CCD). The exposures were 60 s long. The images were dark substracted (using master darks of the same duration than the images and at the same temperatures) and flat corrected (MaximDL software program). For the aperture differential photometry (AstroMB software package), the comparison star is GSC 5238-462. A check star, GSC 5238-347, is used to compare the standard deviations to the statistical uncertainties so as to make sure that the systematic errors are low. An example of a light curve is given Figure 1. A total of 8744 images were obtained over 74 nights.

Table 1: Results of the fits and cycle counts

Season	t_{syn}	N_{syn}	t_{rot}	N_{rot}	t_{orb}	N_{orb}	A_0	A_{syn}	A_{rot}	A_{orb}
2004	322.3748 ± 10	(a)	323.2710 ± 22	(b)	346.3534 ± 68	(c)	2.614 ± 0.002	-0.120 ± 0.001	-0.054 ± 0.001	0.033 ± 0.002
2005	612.6533 ± 7	29.209 ± 25	31.050 ± 40	701.2596 ± 40	2.372 ± 0.001	-0.117 ± 0.001	0.063 ± 0.001			
2006	970.4400 ± 12	36.002 ± 13	38.393 ± 49	970.5857 ± 49	1.800 ± 0.001	0.017 ± 0.001	0.068 ± 0.001			
2007	1301.5420 ± 9	33.317 ± 36	41.424 ± 39	1296.6073 ± 39	2.179 ± 0.001	-0.044 ± 0.001	0.091 ± 0.001			
2008	1709.5149 ± 18	41.052 ± 15	34.884 ± 9	1681.6001 ± 9	2.573 ± 0.001	-0.036 ± 0.001	0.062 ± 0.001			
2009	2041.5198 ± 16	33.408 ± 21	38.630 ± 44	2041.5900 ± 44	2.406 ± 0.001	-0.029 ± 0.001	0.080 ± 0.001			
2010	2415.5229 ± 30	37.634 ± 22	44.327 ± 33	2415.5044 ± 33	2.499 ± 0.002	-0.032 ± 0.002	0.075 ± 0.001			
2011	2744.5262 ± 17	33.106 ± 16	31.548 ± 23	2744.5315 ± 23	2.199 ± 0.001	-0.041 ± 0.001	0.100 ± 0.001			
2012	3140.4698 ± 38	39.842 ± 35	42.052 ± 13	3126.5269 ± 13	2.553 ± 0.001	-0.028 ± 0.001	0.063 ± 0.001			
2013	3489.5265 ± 10	35.124 ± 51	37.453 ± 61	3559.3922 ± 61	2.893 ± 0.001	-0.049 ± 0.001	0.083 ± 0.001			
2014	3836.4857 ± 11	34.913 ± 72	37.236 ± 72	3865.5218 ± 72	2.046 ± 0.001	-0.067 ± 0.001	0.087 ± 0.001			

The magnitudes as a function of time t are fitted by the following $H(t)$ function:

$$H(t) = A_0 + H_{\text{syn}}(t) + H_{\text{rot}}(t) + H_{\text{orb}}(t)$$

where A_0 is a constant, $H_{\text{syn}}(t)$ is the synodic modulation:

$$H_{\text{syn}}(t) = A_{\text{syn}}[\cos(\pi(t - t_{\text{syn}})/P_{\text{syn}})]^2$$
$H_{\text{rot}}(t)$ is the rotation modulation:

$H_{\text{rot}}(t) = A_{\text{rot}} \left[\cos(\pi(t - t_{\text{rot}})/P_{\text{rot}}) \right]^2$

and $H_{\text{orb}}(t)$ is the orbital modulation:

$H_{\text{orb}}(t) = A_{\text{orb}} [1 + \cos(2\pi(t - t_{\text{orb}})/P_{\text{orb}})]$

The $H(t)$ function is fitted to the observations owing to a Monte Carlo method to test the parameters relative to the timing and, for each trial, the amplitudes are determined by a least squares method. The magnitudes are weighted with the uncertainties.

Each Monte Carlo run is made of 10 millions trials. The averages and standard deviations for 10 runs are given in Table 1, along with the number of cycles, Nxxx.

In 2007 the synodic and rotation modulations become fainter, especially the synodic one, and the orbital modulation and the non-modulated part A_0 become brighter, as shown Figures 2-5.

![Figure 2](image1.png)

Figure 2. The amplitude A_{syn}

![Figure 3](image2.png)

Figure 3. The amplitude A_{rot}

![Figure 4](image3.png)

Figure 4. The amplitude A_0

![Figure 5](image4.png)

Figure 5. The amplitude A_{orb}

The times of maxima of the synodic modulation may be fitted with the function $T_{\text{OM}}(n) = T_{\text{syn}} + P_{\text{syn}} n + b_{\text{syn}} n^2$. There are 26 such maxima (9 from vA85, 1 from KS88, 5 from W03 and 11 from this paper). With only the data from vA85 and of W03, there is an ambiguity in the cycle count and two fits are possible (W03). Indeed, the residuals (weighted with the uncertainties) are then 8.1 s for the Fit 1 of W03 and 10.4
s for the Fit 2. But adding the data presented here allow lifting the ambiguity: 8.9 s for the Fit 1, 15.6 s for the Fit 2. Adding the measurement of KS88 gives 9.2 s and 15.4 s respectively. Therefore, the cycle count of the Fit 1 of W03 is the right one.

The fit of the 2004-14 synodic maxima gives $b_{syn} = -(2.544 \pm 0.043) \times 10^{-13}$ day. This is larger (smaller in absolute value) that the fits of W03, themselves larger than the ones of KS88 and of vA85. All the 26 maxima are then fitted with a supplementary term, $\gamma_{syn} n^3$. Furthermore, they are corrected for the leap seconds due to the Earth rotation slowing down (Eastman et al, 2010). For T_{syn} in 1982 this correction is 21 s, for the first maximum the correction is 19 s, 35 s for the last one. T_{syn} is to be expressed in HJD, the corrections are then between -2 s and +14 s. The barycentric effect of Jupiter and Saturn is neglected as it is only ± 4 s and cyclic (unlike the leap seconds that keep accumulating), and the other general relativistic corrections are much smaller. The least squares method gives:

\[b_{syn} = -3.020.10^{-13} \text{ day} \]
\[\gamma_{syn} = 1.44.10^{-21} \text{ day}. \]

The fit is also done with a Monte Carlo method, so as to have a result that is independent from the least squares method and to evaluate the uncertainties. For a Monte Carlo run, T_{syn}, P_{syn}, b_{syn} and γ_{syn} are chosen each in its own range; for γ_{syn} the range is $[-10, +10].10^{-21}$. 10 millions trials are computed for a run. The averages and standard deviations of 10 runs are:

\[T_{syn} = 2,445,174.181,13(2) \ HJD \]
\[P_{syn} = 0.009,938,498,0(4) \ \text{day} \]
\[b_{syn} = -3.031(8).10^{-13} \ \text{day} \]
\[\gamma_{syn} = 2.13(44).10^{-21} \ \text{day}. \]

Therefore the spinning up is slowing down. The derivative of the period is:

\[\dot{P}_{syn} = 2b_{syn}/P_{syn} = -6.10.10^{-11} \]

and the secondary derivative of the period is:

\[\ddot{P}_{syn} = 6\gamma_{syn}/P_{syn}^2 = 1.30.10^{-16} \ \text{day}^{-1}. \]

This gives the time scale:

\[\tau = P_{syn}/(2\dot{P}_{syn}) = -223 \ \text{kyr} \]

and the breaking index:

\[n = P_{syn}\ddot{P}_{syn}/\dot{P}_{syn}^2 = 346. \]

(By comparison, for FO Aqr, one has from W03: $\tau = 194$ kyr, $n = -6431$).

There are 7 orbital maxima from vA85 and one from KS88. In order to fit them with the 11 orbital minima presented here, they are corrected by adding $P_{orb}/2$. A Monte Carlo method (rather than a least squares method, so as to evaluate the uncertainties) gives the ephemeris, for the orbital minima, taking into account the leap seconds:

\[t(n) = T_{orb} + P_{orb}n \]

with:

\[T_{orb} = 2,444,864.21809(1) \ HJD \]
\[P_{orb} = 0.149,625,502,2(1) \ \text{day} \]

This is within the error bars of the ephemeris of KS88, with a better precision. An ephemeris with a quadratic term was also searched for, but with no significant improvement.

As the rotation modulation is related to the synodic modulation and the orbital period, the number of rotations of the white dwarf may be calculated unambiguously. The results are given in Table 1 at (b).
References:

Eastman J., Siverd R. and Gaudi B.S., 2010, PASP 122 935.
Kaluzny J. and Semeniuk I., 1988, IBVS 3145.
Motch C. and Pakull M.W., 1981, A&A 101 L9.
Patterson J. and Price C.M., 1981, ApJ 243 L83.
Taylor P., Beardmore A.P., Norton A.J., Osborne J.P. and Watson M.G., 1997, MNRAS 289 349.
van Amerongen S., Kraakman H., Damen E., Tjemkes S. and van Paradijs J., 1985, MNRAS 215 45.
Williams G., 2003, PASP 115 618.