Discovery of an extremely bright submillimeter galaxy at z=3.93

J.-F. Lestrade¹, F. Combes³, P. Salomé¹, A. Omont², F. Bertoldi³, P. André⁴, and N. Schneider⁴

¹ Observatoire de Paris, LERMA, CNRS, 61 Av. de l’Observatoire, F-75014, Paris, France
² Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris 06, 98bis Boulevard Arago, F-75014, Paris, France
³ Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
⁴ Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp - CNRS -, Université Paris Diderot, 91191 Gif-sur-Yvette Cedex, France

Received 2 September 2010; accepted 13 October 2010

ABSTRACT

Serendipitously we have discovered a rare, bright submillimeter galaxy (SMG) with a flux density of 30 ± 2 mJy at λ = 1.2 mm, using MAMBO2 at the IRAM 30-meter millimeter telescope. Although no optical counterpart is known for MM18423+5938, we were able to measure the redshift \(z = 3.92960 \pm 0.00013 \) from the detection of CO lines using the IRAM Eight MxIR Receiver (EMIR). In addition, by collecting all available photometric data in the far-infrared and radio to constrain its spectral energy distribution, we derive the FIR luminosity \(4.8 \times 10^{12} \text{Jy}\cdot\text{beam}^{-1} \) and mass \(6.0 \times 10^{10} \text{M}_\odot \) for its dust, allowing for a magnification factor \(m \) caused by a probable gravitational lens. The corresponding star-formation rate is \(8.3 \times 10^2 \text{M}_\odot \text{yr}^{-1} \). The detection of three lines of the CO rotational ladder, and a significant upper limit for a fourth CO line, allow us to estimate an H\(_\text{2}\) mass of between 1.9 \(\times 10^{11} \text{M}_\odot \) and 1.1 \(\times 10^{12} \text{M}_\odot \). The two lines C\(_\text{i}(P_2-\text{P}_0)\) and C\(_\text{i}(P_2-\text{P}_1)\) were clearly detected and yield a \([\text{C}\text{I}]/\text{H}_2\) number abundance of between 1.4 \(\times 10^{-5} \) and 8.0 \(\times 10^{-7} \). Upper limits are presented for emission lines of HCN, HCO\(^+\), HNC, H\(_2\)O, and of other molecules. The moderate excitation of the CO lines is indicative of an extended starburst, and excludes the dominance of an AGN in heating this high-z SMG.

Key words. Galaxies: evolution - Galaxies: high-redshift - Galaxies: ISM - Infrared: galaxies - Submillimeter: galaxies

1. Introduction

Deep blank-field millimeter and submillimeter surveys of small fields (∼1 deg\(^2\)) have revealed many dusty, starburst submillimeter galaxies (SMGs) over the past decade with flux densities of a few to about ten mJy at λ = 1.2 mm (e.g. Bertoldi et al. 2007, Greve et al. 2008), and higher at λ = 850\(\mu\)m owing to dust emissivity (e.g. Smail et al. 1997). Recently, the South Pole Telescope survey, less deep but much larger in sky coverage (87 deg\(^2\)), has found 47 brighter SMGs with flux densities between 11 and 65 mJy at λ = 1.4 mm (Vieira et al. 2010). Whereas redshifts of SMGs are crucial to study their physical properties, most of these dust-obscured galaxies have very faint or no optical counterparts, making measurements of spectroscopic redshift extremely difficult or impossible (e.g. Smail et al. 2002).

These dust-enshrouded star-forming galaxies are expected to be at high redshifts and are identified with the most massive galaxies assembled during an energetic early phase of galaxy formation. Their abundance appears to peak at \(z \sim 2.5 \) (Chapman et al. 2005, Wardlow et al. 2010). Their star formation rate is prodigious at up to \(10^3 \text{M}_\odot \text{yr}^{-1} \), and the underlying starburst activity is believed to result from mergers (Blain et al. 2002).

Lestrade et al. (2009) discovered serendipitously a rare, bright point source, MM18423+5938, at λ = 1.2 mm (30 mJy) by mapping 50 separate fields totalling a sky area of 0.5 deg\(^2\) with the MAMBO2 bolometer camera (Kreysa et al. at the IRAM 30-meter millimeter telescope. Subsequently, some of us (PA and NS) searched but did not find local CO in the direction of the source suggesting not a young stellar object but an SMG instead, despite the Vieira et al.’s cumulative source count that yields a chance as low as ∼7% of finding a 30 mJy SMG. MM18423+5938 is detected at 70 \(\mu\)m but undetected at 24 \(\mu\)m in MIPS/Spitzer images. It is in neither the 2MASS catalogue, nor the NVSS VLA catalogue (\(S_{\text{1.4GHz}} < 2.5\text{mJy} \)), and no optical and X-ray identifications are found in catalogues searched with NED (MM18423+5938 is however outside the SDSS footprint).

All these photometric data are summarized in Table 2.

We show in this Letter that MM18423+5938 is a bright, high-redshift SMG. We present in Sect. 2 our IRAM/EMIR spectroscopic observations of MM18423+5938 at millimeter wavelengths that yielded our detections of CO and C\(_\text{i}\), and upper limits for other molecular species. In Sect. 3, we model the data to infer the dust and gas content of MM18423+5938 and its general properties. To compute distances and luminosities, we adopt the Λ-CDM concordance cosmological model, \(h_0 = 71 \text{km/s/Mpc} \), \(\Omega_M = 0.27 \), and \(\Omega_\Lambda = 0.73 \) (Hinshaw et al. 2009).

2. Observations and data analysis

Lestrade et al. (2009) detected MM18423+5938 with a high but uncertain integrated flux density of 30–60 mJy, given that it was located close to the border of their MAMBO map. We reobserved MM18423+5938 with MAMBO at the IRAM 30-m telescope in the off-wobbler-switching mode on 2010 January 16 using the map coordinates (\(\theta_{2000} = 18^h42^m22.5^s \pm 0.2^s \) and \(\delta_{2000} = 59^\circ38‘300”\pm2” \)) and measured \(30 \pm 2 \text{ mJy} \) at \(\lambda = 1.2 \text{ mm} \).

MM18423+5938 is located close to the border of the archived MIPS/Spitzer maps centered on the star GJ725AB (AOR 4199424). We determined the flux densities of the star GJ725AB and MM18423+5938 at 70 \(\mu\)m and 24 \(\mu\)m by means of aperture photometry, scaling with the stellar photometric flux densities of GJ725AB predicted by the NextGen stellar atmo-
spherical model (Allard et al. 2001). We note a difference of 9°, i.e. at the 3σ level, between the positions of the source in our MAMBO map (Lestrade et al. 2009) and the archived 70 μm MIPS Spitzer map, which is not understood.

To measure the redshift of MM18423+5938, we used the strategy of observation developed by Weiss et al. (2009) with the multi-band heterodyne receiver Eight Mixer Receiver (EMIR) at the IRAM 30-m telescope. The 3mm setup (E090) of EMIR provides 7.43 GHz of instantaneous, dual linear polarization bandwidth. The entire frequency range from 77.7 to 115.8 GHz in the 3mm band can be searched with six tunings spaced to provide 0.5 GHz overlap. This range corresponds to 0 < z < 0.48 and 1 < z < 10 for the CO lines between (J=1-0) and (J=8-7). Observations were conducted from 2010 July 29th to August 2nd with precipitable vapor comprised between 3 and 7 mm and with standard system temperatures of 110K for the E090 setup. Data were processed with 16 units of the Wide band Line Multiple Autocorrelator (WILMA) providing a spectral resolution of 2 MHz for the E090 setup. The observations were conducted in wobbler-switching mode, with a switching frequency of 1 Hz and an azimuthal wobbler throw of 100°. Pointing and focus offsets were determined once every two hours and found to be stable. Calibration was done every 6 minutes using the standard hot/cold load absorber. The data were reduced with the CLASS software.

![Table 1. Photometry available for MM18423+5938](image)

Band	S_ν (mJy)	Ref
1.4 GHz	< 2.5	NVSS
3 mm	2±0.5	this work
2 mm	9±3	this work
1.2 mm	30±2	this work
100 μm	<600	IRAS
60 μm	<100	IRAS
70 μm	31±4	Spitzer/MIPS
24 μm	<0.6	Spitzer/MIPS
B V R I	B mag > 21	NED (DSS)

![Fig. 1. The three CO rotational lines detected, and the two C_1 lines. The vertical scale is T_{mb}, in mK.](image)

![Fig. 2. Available photometric data for MM18423+5938 (Table 1). These are superimposed upon our dust emission model (full red curve) based on the Milky Way dust model by Desert et al (1990) adapted for our source at z=3.93. It consists of three components; the large grains at T_d=45K, containing most of the mass (dotted line), the very small grains at hotter temperature (dot-dash), and the PAH (dashed line).](image)

We started to scan the whole 3mm band by integrating data for ~ 2 hrs for each tuning. We discovered unambiguously a line at 93.52 GHz after 20 minutes of integration during our third tuning on the second night, and continued to integrate dual polarisation data for 1.5 hr in total to reach an rms noise level of T_{mb}=0.8 mK in 60 km s^{-1} channels (Fig. 1 left-hand top panel). At this stage, we successively assumed that this line could be CO(1-0), CO(2-1), ... to calculate for each of these assumptions the corresponding redshift and predict the frequencies of the higher J transitions accessible in the 2mm band of EMIR (setup E150 from 127 to 176 GHz). We then tuned to these frequencies with the E150 setup and swiftly detected a line at 140.26 GHz that corresponds to CO(6-5) at z = 3.92960 ± 0.00013, in addition to the line at 93.52 GHz for CO(4-3). This identification of the CO transitions and determination of the redshift of MM18423+5938 were carried out during the same night of July 30/31 in ~ 6 hours. The rest of the allocated time (15 hours) was used to search for CO(7-6) (detected), CO(9-8) (undetected, consequently CO(10-9) was not searched), and for other species, C_1 (two lines detected), and HCN & HNC(5-4), LiH(1-0) & HCO^+ and H_2O, H_2O_2, CO(5-4), CS(8-7), and CS(9-8) (all undetected but interesting upper limits are discussed below, see Table 3). Two CO lines (5-4 and 8-7) unfortunately are in the atmospheric O lines opacity domains and could not be observed. The spectra were of high quality, stable, and flat. Their mean levels measure the continuum flux densities at 2mm and 3mm (Table 1) owing to the excellent weather conditions (precipitable water vapor ~ 4 mm).

Figure displays the three CO lines detected, along with the two C_1 lines. Spectra were smoothed to a resolution of 30-50 km/s. Gaussian models were fitted to the lines and the results are reported in Table 2. Line widths found are normal albeit small suggesting that we are observing a galaxy seen rather face-on.

3. Results

3.1. Dust emission

The photometric data are collected in Table 1. To model these data in Fig 2 we choose to use the well-established Milky Way dust model of Desert et al (1990) as a template. This model consists of three main components, PAH and both very small and large grains, and the emissivity slope is assumed to be β=2. The large dust grains are dominant in mass and their tempera-

1 http://www.iram.es/IRAMES/mainWiki/EmirforAstronomers
Table 2. Observed line parameters

Line	ν_{obs} [GHz]	T_{mb} [mK]	S_{α} [mJy]	ΔV_{FWHM} [km s^{-1}]	I [Jy km s^{-1}]	V* [km s^{-1}]	L'/m/10^{10} [K m/s]
CO(4–3)	93.5249	5.3 ± 0.6	26.7 ± 3.2	175 ± 20	4.95 ± 0.5	0 ± 8	19.7±2
CO(6–5)	163.6342	4.2 ± 0.9	21.5 ± 4.6	172 ± 27	3.9 ± 0.5	11 ± 11	5.0±0.6
CO(7–6)	99.8378	1.9 ± 0.6	9.6 ± 3.3	225 ± 55	2.3 ± 0.5	-50 ± 24	8.0±1.7
CO(10–9)	164.1802	4.2 ± 1.2	21.5 ± 5.1	184 ± 49	4.2 ± 0.8	8 ± 19	5.3±1.1

Quoted errors are statistical errors from Gaussian fits. The systematic calibration uncertainty is 10%.

The velocity is given relative to z=3.929605.

3.2. CO lines

The CO SED of MM18423+5938 in Fig. 3 indicates moderate line excitation, peaking only at J=5; CO SEDs peak at J=6 or 7 in local starbursts such as M82 and NGC253 (Weiss et al 2007), peak at higher J in AGN-dominated sources, e.g. J=10 in APM0827, and reach a plateau for J > 8 in Mrk231 (van der Werf et al 2010). We ran several LVG models, to constrain the H2 volumic density and the kinetic temperature (cf Combes et al 1999). The moderate excitation implies a regime of low temperature and/or density. The gas kinetic temperature is taken to be equal to the dust temperature (T_d=45K). When models are run with higher T_d, they all imply n(H2) lower than 10^5 cm^{-3}, which is not realistic for CO(7-6)-emitting clouds. Our estimate is therefore T_d=45K, constrained by the Rayleigh-Jeans part of the emission. The very small grains are made of two temperature components, ~ 80 and ~ 130K, constrained by the 70μm Spitzer measurement and the robust relationship between L_{L'}^{CO(3–2)} and L_{FIR} found by Iono et al (2009). A single temperature component for the small grains in the model was tried but the resulting L_{FIR} is significantly inconsistent with this relationship. The total mass of the dust required by this model is M_{dust}=6.010^8/m M_☉, and for a gas-to-dust mass ratio of 150, we infer that M_{gas}=9.210^11/m M_☉. We suspect there is a gravitational lens along the line of sight, with an amplification factor m, or these values would be implausibly at least one order of magnitude larger than for rare hyperluminous objects. We derive the total FIR luminosity L_{FIR} = 4.810^{14}/m L_☉ and the star-formation rate SFR = 8.310^4/m M_☉/yr, by applying the relation of Kennicutt (1998).

3.3. Atomic carbon lines

The two lines C II(7P1_0–P0_0) and C II(7P2_0–P1_0) were clearly detected. They have comparable central velocity and line width (Table 2), implying that they originate from the same region in the source. The relation between the integrated C II(7P1_0–P0_0) brightness temperature and the beam averaged C I column density with the usual assumption of the optically thin limit is given by

\[N_{CI} = \frac{8\pi k T_{ex}}{hc^4 A_{10}} Q(T_{ex}) \frac{1}{5} \int T_{mb} dv, \]

where \(Q(T_{ex}) = 1 + 3e^{-T_{ex}/T_{CI}} + 5e^{-T_{ex}/T_{CI}} \) is the C I partition function, and \(T_{CI} = 23.6 \) K and \(T_{CI} = 62.5 \) K are the energies above the ground state. When dealing with high-z sources, we can use the definition of the line luminosity (e.g. Solomon et al. 1997) and derive the C I mass via (cf Weiss et al 2003, 2005)

\[M_{CI} = 1.902 \times 10^{-4} Q(T_{ex}) e^{-23.6/T_{ex}} L_{CI(7P1–P0_0)}[M_☉]. \]

The mass estimated from the higher-excitation line is expressed in an analogous way, and we can then deduce that

\[\frac{L_{CI(7P2–P1_0)}}{L_{CI(7P1–P0_0)}} = 2.087 e^{-38.9/T_{ex}}, \]

where line luminosities are given in Table 2. The derived \(T_{ex} \) is 33.9 K. The mass of atomic carbon thus amounts to \(M_{CI} = 1.010^8/m M_☉ \). Given our lower and upper limits to the H2 mass from the CO lines, the [C II]/[H2] number abundance is between 1.4 10^{-5} and 8.0 10^{-5}. This is somewhat higher than the average [C II]/[H2] number abundance found in comparable star-forming objects (e.g. Barvainis et al. 1997, Pety et al. 2004, Weiss...
et al. 2003, 2005, Riechers et al. 2009, Danielson et al. 2010). In these latter estimates, although the observed L_{CO}/L_{IR} values are comparable, the [CII]/[H2] abundances are somewhat dissimilar because of the various CO-to-H2 conversion factors adopted by these authors. Abundance lower than 1.8 × 10^{-6} has been reported (Casey et al. 2010). The contribution of the atomic carbon to the cooling is low, L_{CII}/L_{IR} = 2.5 × 10^{-5}, comparable to that of nearby star-forming galaxies (Gerin & Phillips 2000).

3.4. Other lines

We searched for high-density tracers, such as HCN, HNC, and HCO+, in particular their lowest available level, i.e. J=5−4. The upper limits found (Table 3) confirm that, on average, the H2 density is not high, as found by our LVG models of the CO line excitation. The HCN luminosity is higher than one third of the CO luminosity in local AGN-dominated objects (Imanishi et al. 2004), and we note that our 3σ upper limits (Table 3) (limiting the number abundance of between 1.4 × 10^4 and 8.0 × 10^4 when the limits on the H2 mass derived from the CO lines are used. In this high-z SMG, the CO-to-CO luminosity ratio is consistent with those of other high-z galaxies.

The moderate CO line excitation found excludes a dominant AGN in MM18423+5938, unlike Mrk231 where CO is excited up to J=13 (van der Werf et al. 2010). This moderate excitation favors an extended gas disk (typically 3kpc), rather than a compact nuclear starburst (300pc) and consequently a high CO-to-H2 conversion ratio. This high-redshift SMG, with a star formation efficiency of L_{IR}/L_{CO}=2400, is comparable to the lower-z submillimeter galaxies studied by Greve et al. (2005).

Acknowledgments. Based on observations carried out with the IRAM 30m telescope, IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The authors are grateful to the IRAM staff for their support, and to the referee for helpful comments.

References

Allard, F., Hauschildt, P. H., Alexander, D. R., et al. 2001, ApJ, 556, 357
Bertral, F., Carilli, C., Aravena, M. et al. 2007, ApJSS, 172, 132
Blain A.W., Smail I., Ivison R.J., et al. 2002, PRR, 369, 111
Casey C.M., Chapman S.C., Daddi E. et al. 2009, MNRAS 400, 670
Casoli F., Gerin M., Encrenaz P.J., Combes F., 1994, A&A, 287, 716
Chapman, S. C., Blain, A. W., Smail, I., Ivison, R. J., 2005, ApJ, 622, 772
Combes, F., Wiikind T., 1997, ApJL, 486, L79
Combes, F., Maoli, R. & Omont, A., 1999, A&A, 345, 369
Danielson A., Swinbank, A., Smail, I. et al., 2010, MNRAS, arXiv1008.3183
Desert F.X., Boulanger F., Puget J-L., 1990, A&A, 237, 215
Encrenaz P., Combes F., Casoli F. et al., 1993, A&A, 273, L19
Gerin, M., Phillips T.G. 2000, ApJ, 537, 644
Greve. T.R., Bertoldi, F., Smail, I. et al.: 2005, MNRAS, 359, 1165
Greve. T.R., Pope, A., Scott D. et al. 2008, MNRAS, 389, 1489
Hinshaw G., Weiland J.L., Hill R.S. et al: 2009, ApJS 180, 225
Imanishi, M., Nakashima, K., Kuno, N., Kohno, K. 2004, AJ 128, 2037
Iono, D., Wilson, C. D., Yun, M.S. et al: 2009, ApJ, 695, 1537
Kennicutt, R.: 1998, ARAA 36, 189
Kreyts, E., Gemen, H.P., Gromke. J. et al., 1998, SPIE, 3357, 319
Lestrade, J.-F., Wyatt M.C., Bertoldi F. et al. 2009, A&A, 506, 145
Petry, J., Beelen, A., Cox, P. et al., 2004, A& A 428, L21
Riechers D.A., Weiss A., Walter F. et al.: 2006, ApJ, 649, 635
Riechers D.A., Walter F., Bertoldi F. et al. 2009, ApJ 703, 1398
Riechers D.A., Capak P.L., Carilli C. et al. 2010, ApJ, 720, 431 press
Smail, I., Ivison, R.J., Blain, A.W., 1997, ApJL, 490, L5
Smail, I., Ivison, R.J., Blain, A.W., & Kneib, J.P. 2002, MNRAS, 331, 495
Solomon PM., Downes D., Radford S. J. E., Barrett. J. W.: 1997, ApJ 478, 144
Tacconi L.J., Neri R., Chapman S.C. et al.: 2006, ApJ 640, 228
van der Werf, P., Isaak K., Meijerink R. et al.: 2010, A&A 518, L42
Vieira J.D., Crawford T.M., Switzer E.R. et al, 2010, ApJ 719, 763
Wagg J., Wilner, D. J., Neri, R., Downes, D., Wicklind, T.: 2006, ApJ 651, 46
Wallace J.L., Smail I., Coppen K.E.K. et al.: 2010, MNRAS, arXiv: 1006.2137
Weiss A., Henkel C., Downes D., Walter F., 2003, A&A, 409, L41
Weiss A., Downes D., Henkel, C., Walter, F., 2005, A&A, 429, L25
Weiss A., Downes D., Neri R., et al. 2007, A&A 467, 955
Weiss A., Ivison R.J., Downes D. et al. 2009, ApJ, 705, L45

Table 3. Upper limits

Line	\(\nu_{obs}\)	\(S_\nu(3\sigma)\)	\(L'_{I}/10^{10}\)
CO(9–8)	210.344	< 10.0	< 1.4
13CO(4–3)	89.412	< 10.0	< 8.1
HCN & HNC(5–4)	90.0	< 7.0	< 5.5
LiH(1–0) & HCO+(5–4)	90.0	< 7.0	< 5.5
H$_2$O(1,1,0–1,0,1)	112.978	< 10.0	< 5.0
H$_2$O(2,1,1–2,0,2)	152.554	< 12.0	< 3.3
CS(8–7)	79.488	< 11.7	< 11.2
CS(9–8)	89.420	< 7.6	< 5.6

4. Discussion and conclusion

We have found that the brightest SMG in the North, MM18423+5938, is at a redshift \(z = 3.92960 \pm 0.00013\). This source is part of an extremely interesting population of similar ob-