Noncommutative Network Models

Joe Moeller

UC Riverside

National Institute of Standards and Technology

This work was produced in part on occupied Cahuilla and Tongva land.

ACT2021
16 July
Outline

Noncommutative network models, Mathematical Structures in Computer Science, 2020. arXiv:1804.07402

- Network models
- Eckmann–Hilton for network models
- Kneser graphs
- Graph products of monoids
- Free undirected network models
Species

Definition

Let S denote the **symmetric groupoid**, the category consisting of sets $n = \{1, \ldots, n\}$ for objects ($0 = \emptyset$), and bijections for the morphisms.

Notice, all morphisms are automorphisms. This is a skeleton of FinBij, the maximal subgroupoid in FinSet.

Definition ([Joy81])

A **combinatorial species** is a functor $F : S \to \text{Set}$.

Example

$SG : S \to \text{Set}$ by $SG(n) = \text{the set of simple graphs with } n \text{ nodes}$.
Network models

Definition ([BFMP20])

A network model is a symmetric lax monoidal functor of the form $(F, \sqcup) : (S, +) \to (\text{Mon}, \times)$.

“overlay” $\sqcup_n : F(n) \times F(n) \to F(n)$

and “disjoint union” $\sqcup_{m,n} : F(m) \times F(n) \to F(m + n)$

Example

- simple graphs
- directed edges
- multiple edges
- edge colors
- hypergraphs
- Petri nets

Nonexample

acyclic graphs
Operad from a network model

The original motivation for network models is to construct operads modeling network design:

\[
\text{NetMod} \xrightarrow{\int} \text{SMC} \xrightarrow{U} \text{Oprd}
\]
Constructing network models

Construction

You can get a network model from any monoid. There's a functor $\text{Mon} \to \text{NetMod}$ given by $M \mapsto (n \mapsto M(n/2))$.

Example

- $M = (\mathbb{B}, +)$ recovers the simple graphs network model.
- $M = (\mathbb{N}, +)$ gives graphs with multiple (indistinguishable) edges.
- $M = (2^X, \cup)$ gives graphs with edges labeled in X.

But notice different edge components automatically commute with each other:

$\quad 1 \overset{m_1}{\rightarrow} 2 \quad \cup \quad 4 \overset{m_2}{\rightarrow} 3$

$= \quad 1 \overset{m_1}{\rightarrow} 2 \quad \cup \quad 4 \overset{m_2}{\rightarrow} 3$

$\quad (m_1, 0, 0, 0, 0, 0) \cup (0, m_2, 0, 0, 0, 0)$

$= \quad (0, m_2, 0, 0, 0, 0) \cup (m_1, 0, 0, 0, 0, 0)$

Can we define $\Gamma_M : S \to \text{Set}$ by $\Gamma_M(n) = \bigsqcup^{(n)}_2 M$?
Eckmann–Hilton for network models

Disjoint components must commute with each other: Let $a \in F(m)$ and $b \in F(n)$. Then

$$(a \sqcup \emptyset) \sqcup (\emptyset \sqcup b) = (a \sqcup \emptyset) \sqcup (\emptyset \sqcup b)$$

$$= (\emptyset \cup a) \sqcup (b \cup \emptyset)$$

$$= (\emptyset \cup b) \sqcup (a \cup \emptyset)$$
So what this means is that we want to define Γ_M to be $n \mapsto \bigsqcup_{(n)} M/\sim$ where \sim tells us to impose commutativity for edge components which are disjoint. Let's take a look at the first few levels to see how this relation looks.

\begin{align*}
0 & \mapsto 1, \quad 1 \mapsto 1, \quad 2 \mapsto M, \quad 3 \mapsto \bigsqcup M, \\
4 & \mapsto \bigsqcup M/\langle a_{1,2}b_{3,4} = b_{3,4}a_{1,2}, a_{1,3}b_{2,4} = b_{2,4}a_{1,3}, a_{1,4}b_{2,3} = b_{2,3}a_{1,4} \rangle \\
5 & \mapsto \bigsqcup M/\langle a_{1,2}b_{3,4} = b_{3,4}a_{1,2}, a_{1,2}b_{3,4} = b_{3,4}a_{1,2}, a_{1,2}b_{3,5} = b_{3,5}a_{1,2}, \quad a_{1,3}b_{2,4} = b_{2,4}a_{1,3}, a_{1,3}b_{2,5} = b_{2,5}a_{1,3}, a_{1,3}b_{4,5} = b_{4,5}a_{1,3}, \quad a_{1,4}b_{2,3} = b_{2,3}a_{1,4}, a_{1,4}b_{2,5} = b_{2,5}a_{1,4}, a_{1,4}b_{3,5} = b_{3,5}a_{1,4}, \quad a_{1,5}b_{2,3} = b_{2,3}a_{1,5}, a_{1,5}b_{2,4} = b_{2,4}a_{1,5}, a_{1,5}b_{3,4} = b_{3,4}a_{1,5}, \quad a_{2,3}b_{4,5} = b_{4,5}a_{2,3}, a_{2,4}b_{3,5} = b_{3,5}a_{2,4}, a_{2,5}b_{3,4} = b_{3,4}a_{2,5} \rangle \end{align*}
So what this means is that we want to define Γ_M to be $n \mapsto \coprod_{(n)} M/\sim$ where \sim tells us to impose commutativity for edge components which are disjoint. Let’s take a look at the first few levels to see how this relation looks.

$3 \mapsto \coprod \quad M$

$4 \mapsto \coprod M/\langle \quad \rangle$

$5 \mapsto \coprod M/\langle \quad \rangle$
Graph products of monoids

Definition ([Gre90, Vel01])

Let G be a graph with N nodes, and M_i a family of N monoids. The **graph product** is the monoid

$$G(M_i) = \coprod M_i / \langle a_k b_\ell = b_\ell a_k \text{ if } (k, \ell) \in G \rangle.$$

Define $IC : \text{SimpleGrph} \to \text{Cat}$ by

Let $D : IC(G) \to \text{Mon}$ be the diagram

$$\begin{array}{cccc}
M_1 & \to & M_1 \times M_2 & \leftarrow & M_2 \\
\downarrow & & \downarrow & & \downarrow \\
M_1 \times M_4 & \to & M_1 \times M_3 & \leftarrow & M_2 \times M_3 \\
\uparrow & & \uparrow & & \uparrow \\
M_4 & \leftarrow & M_3 & \leftarrow & \\
\end{array}$$

Proposition (M.)

$$G(M_i) \cong \text{colim}D.$$
Now for a given monoid M we define a network model $\Gamma_M: (S, +, 0) \to (\text{Mon}, \times, 1)$ by $n \mapsto KG_{n,2}(M)$.

Theorem (M.)

Γ_M defined above is a network model. Moreover, we have an adjunction

\[
\begin{array}{ccc}
\Gamma & \cong & \text{ev}_2 \\
\downarrow & & \downarrow \\
\text{Mon} & & \text{NetMod}^+ \\
\end{array}
\]

where NetMod^+ is the subcategory of NetMod of network models with trivial involution (thanks to Mike Shulman for pointing out a mistake in the original).

Network models with trivial involution are essentially “undirected network models” (thanks Mike Shulman).
J. C. Baez, J. Foley, J. Moeller, and B. S. Pollard.
Network models.
Theory and Applications of Categories, 35(20):700–744, 2020.
Available at http://www.tac.mta.ca/tac/volumes/35/20/35-20abs.html.

Elisabeth R. Green.
Graph Products of Groups.
PhD thesis, University of Leeds, 1990.

André Joyal.
Une théorie combinatoire des séries formelles.
Advances in Mathematics, 42:1–82, 1981.

Joe Moeller.
Noncommutative network models.
Mathematical Structures in Computer Science, 30(1):14–32, 2020.

Joe Moeller and Christina Vasilakopoulou.
Monoidal Grothendieck construction.
Theory and Applications of Categories, 35(31):1159–1207, 2020.
Antonio Veloso da Costa.
Graph products of monoids.
Semigroup Forum, 63:247–277, 2001.