Biomarkers of tissue turnover and systemic inflammation are associated with disease severity and activity in patients with hidradenitis suppurativa

Signe Holm Nielsen, Solveig Skovlund Groen, Yiqiu Yao, Astrid-Helene Ravn Jørgensen, Valdemar Wendelboe Nielsen, Morten Karsdal, Kristoffer Gehring, Anne-Christine Bay-Jensen, Simon Francis Thomsen

PII: S0022-202X(22)01905-4
DOI: https://doi.org/10.1016/j.jid.2022.08.049
Reference: JID 3558

To appear in: The Journal of Investigative Dermatology

Received Date: 21 April 2022
Revised Date: 5 August 2022
Accepted Date: 16 August 2022

Please cite this article as: Nielsen SH, Groen SS, Yao Y, Ravn Jørgensen A-H, Nielsen VW, Karsdal M, Gehring K, Bay-Jensen A-C, Thomsen SF, Biomarkers of tissue turnover and systemic inflammation are associated with disease severity and activity in patients with hidradenitis suppurativa, The Journal of Investigative Dermatology (2022), doi: https://doi.org/10.1016/j.jid.2022.08.049.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
Title Page

Title: Biomarkers of tissue turnover and systemic inflammation are associated with disease severity and activity in patients with hidradenitis suppurativa

Signe Holm Nielsen¹,²*, Solveig Skovlund Groen²,³*, Yiqiu Yao³, Astrid-Helene Ravn Jørgensen³, Valdemar Wendelboe Nielsen³, Morten Karsdal², Kristoffer Gehring², Anne-Christine Bay-Jensen², Simon Francis Thomsen³,⁴

1. Biomedicine and Biotechnology, Technical University of Denmark, Lyngby, Denmark
2. ImmunoScience, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark
3. Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark
4. Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark

*Shared first-authorship

Corresponding author:

Signe Holm Nielsen, Herlev Hovedgade 207, DK-2730 Herlev, Denmark, E-mail: shn@nordicbio.com

Twitter Handle: @SigneHNPhD

Short title: Biomarkers of severity in hidradenitis suppurativa
To the Editor

Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition of the follicular epithelium occurring predominantly in the axillae, inframammary folds, groins and buttocks (Gansevoort et al. 2011). Dependent on the disease severity, various pharmacologic and surgical interventions to prevent and treat new lesions, as well as remove existing inflammatory nodules, abscesses, and sinus tracts, can be initiated. Biomarkers reflecting disease severity and activity of HS could potentially aid the need for better tools to diagnose HS as well as determine treatment effects (Blok et al. 2016). Here both imaging and blood-based techniques have been proposed. For imaging, ultrasound (US) is the most well-characterized method, while other methods such as medical infrared thermography (MIT) and optical coherence tomography (OCT) are emerging methods which demonstrate higher degree of accuracy compared to US (Grand et al. 2019).

The extracellular matrix (ECM) of the skin results in generation of protein fragments released into the blood, which can be quantified as blood-based biomarkers. Such biomarkers reflect scarring and fibrosis of the skin and could be potential emerging targets for HS (Dengjel et al. 2020; Sand et al. 2018). Collagens are the most abundant ECM proteins of the body, where type I, III, IV, VI and VII are the most well described in the skin. Type I and III collagen are primarily found in the dermis, type IV collagen is located in the basement membrane by the junction of epidermis and dermis, type VI collagen is located throughout the dermis, while type VII collagen is known as an anchoring fibril, stabilizing the lower part of the dermo-epidermal basement membrane to the underlying dermis (Dobrota et al. 2021; Sand et al. 2018). In addition to collagens, the interfilament protein vimentin plays a role in macrophage and fibroblast differentiation and keratinocyte differentiation in wound healing (Mortensen et al. 2015), while S100A9, a subunit of calprotectin (S100A8/A9),
contributes to the epithelial cell function including keratinocyte differentiation (Iotzova-Weiss et al. 2015).

We hypothesized that serological biomarkers of ECM remodelling linked to chronic inflammation are upregulated in patients diagnosed with HS compared to healthy subjects and associated with disease severity and activity, and systemic inflammation.

Serum samples were collected from a previously well-characterized cohort of 331 consecutive, newly referred patients with HS attending a tertiary referral center (Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark) from 2018-2020 (Nielsen et al. 2021). Written informed consent was obtained. Patients were grouped based on their disease severity defined by Hurley stages; mild = Hurley I (n=148), moderate = Hurley II (n=145), and severe = Hurley III (n=38) and information on clinical characteristics was obtained by examination and interview. Disease activity was measured by Hidradenitis Suppurativa Score (HSS) (Sartorius et al. 2009). The study was approved by the Scientific Ethics Committee of the Capital Region of Denmark, Hillerød, Denmark in compliance with the Helsinki Declaration of 1975 (H-21003878). Serum samples from healthy donors were acquired by BioIVT (London, UK). We examined the competitive ELISA biomarkers C1M, C3M, C4M, C5M, C7M, VICM, CPa9-HNE, C4G, PRO-C3, PRO-C4 and PRO-C6 (Supplementary Table 1). All biomarkers are validated for human serum. The inter- and intra-assay coefficients of variation are >15% and 10% respectively for all assays.

A total of 331 patients with HS (228 women and 93 men) with a mean age of 39.98 years (SD=13.93) were included, together with 16 healthy donors (10 women and 6 men) with a mean age of 35.19 years (SD=7.43) as reference (Table 1).

C1M was significantly higher in patients with Hurley stage II and III compared to stage I (p=0.043 and <0.0001 respectively), and between Hurley stage II and III (p<0.0001). C3M and C4M were
significantly elevated in patients with Hurley stage II and III, compared to Hurley stage I (p=0.014 and 0.001; p=0.0001 and p<0.0001, respectively). No significant differences were detected for C5M. C7M, was significantly elevated in Hurley stage III compared to Hurley stage I and II (p=0.0003 and p=0.0042 respectively). The macrophage activity biomarker, VICM, was significantly higher in patients with Hurley stage II and III compared to stage I (p=0.0167 and p<0.0001 respectively), and between Hurley stage II and III (p=0.0152). The human neutrophil activity biomarker, CPa9-HNE, was significantly higher in Hurley stage III compared to Hurley stage I (p=0.0019). No significant differences were detected between Hurley stages for the biomarkers C4G, PRO-C3, PRO-C4 and PRO-C6 (Figure 1A-K). Spearman’s correlations were performed. Correlations between Rho=0.2-0.4 were considered weak, Rho=0.4-0.6 were considered moderate, while Rho=0.6-0.8 were considered strong correlations. C1M, C3M, C4M, C7M, CPa9-HNE and PRO-C4 were moderately-strongly related to the HSS score (r=0.414, p<0.0001 to r=0.233, p<0.0001, respectively. Supplementary Figure 1). C1M, C3M and PRO-C4 all showed weak positive correlations (r=0.122, p=0.026 to r=0.138, p=0.012), while PRO-C3 presented a weak negative correlation to number of boils in the past month (r=-0.204, p=0.0002, Supplementary Figure 2).

We evaluated a biomarker panel of ECM turnover and systemic inflammation in a large, well-characterized cohort of HS patients with aim to identify potential blood-based biomarkers for HS. There is a need for HS biomarkers to help understand the pathogenesis and to monitor the disease progression. This need is crucial for use in clinical trials, but also to advance knowledge of the biological complexity behind HS. The evaluated biomarkers in this study represent proteins located in dermis, epidermis, and the epidermal basement membrane, reflecting the individual skin compartments remodeled during HS progression. A balanced ECM is necessary to preserve skin integrity and tissue homeostasis (Dengjel et al. 2020; Nisar et al. 2019). Using biomarkers which can detect a local skin manifestation of a systemic disease in circulation, may identify disease
phenotypes (Martorell et al. 2020). Of particular interest are the findings of biomarkers associated with disease severity and disease activity. Inflammatory biomarkers, such as ESR, neutrophils, and CRP, have previously been proposed as biomarkers of disease severity and efficacy of treatment, but with mixed results (Mekkes and Bos 2008; Van Rappard and Mekkes 2012). While it may be difficult to relate serum levels of these inflammatory markers to HS, it may be the burden of both inflammatory and fibrotic factors which contribute to the skin tissue turnover in HS. Measuring end products of tissue destruction, which are the downstream effect of the inflammatory signals, may facilitate better monitoring of tissue turnover.

In summary, this is, to our knowledge, the first study to evaluate novel ECM biomarkers and systemic inflammation in patients with HS. The findings indicate an association between biomarkers of tissue turnover and disease severity and activity. Such biomarkers may be utilized to assess patients’ eligibility to targeted treatments and fill the medical need for biomarkers in clinical management and trials.
DATA AVAILABILITY STATEMENT

All data from this study are included in this article. Data are kept on file and are not publicly available due to privacy data legislation. Requests can be directed to the corresponding author.

ORCIDs

Signe Holm Nielsen (ORCID:0002-4612-1014)

Solveig Skovlund Groen (ORCID:N/A)

Yiqiu Yao (ORCID:0000-0002-4849-2767)

Astrid-Helene Ravn Jørgensen (ORCID:0000-0002-4256-116X)

Valdemar Wendelboe Nielsen (ORCID:0000-0002-7395-6009)

Morten Karsdal (ORCID:0000-0001-5026-8740)

Kristoffer Gehring (ORCID: N/A)

Anne-Christine Bay-Jensen (ORCID:0000-0001-7952-9297)

Simon Francis Thomsen (ORCID:0000-0002-4838-300X)
CONFLICT OF INTEREST STATEMENT

SHN, MAK and ACBJ are full-time employees at Nordic Bioscience A/S. Nordic Bioscience is a privately-owned, small–medium size enterprise (SME) partly focused on the development of biomarkers. None of the authors received fees, bonuses or other benefits for the work described in the manuscript. SHN, MAK and ACBJ hold stocks in Nordic Bioscience A/S.

ACKNOWLEDGEMENTS

We are grateful for the excellent laboratory technical support of Line Lilleskov, Mie Håkan, Sabiha Nuri, Marie Berantzino and Mahnaz J. Lanuza, and analysis support from Helena Port Linares.

This work was supported by the Danish Research Foundation “Den Danske Forskningsfond” and the Danish Innovation Foundation (Innovationsfonden).

AUTHOR CONTRIBUTIONS STATEMENT

Conceptualization: SHN, SSG, ACBJ, SFT; Data Curation: SFT; Formal Analysis: SHN, SSG, ACBJ, MK, SFT; Investigation: SHN, SSG, YY, AHRJ, VWN, KG, SFT; Methodology: SHN, SFT; Resources: SHN, SSH, YY, AHRJ, VWN, MK, KG, ACBJ, SFT; Supervision: ACBJ, SFT; Visualization: SHN, SSG, ACBJ, SFT; Writing Original Draft Preparation: SHN; Writing – Review and Editing: SHN, SSG, YY, AHRJ, VWN, MK, KG, ACBJ, SFT.
References

Blok JL, Li K, Brodmerkel C, Horvátovich P, Jonkman MF, Horváth B. Ustekinumab in hidradenitis suppurativa: Clinical results and a search for potential biomarkers in serum. Br. J. Dermatol. Blackwell Publishing Ltd; 2016;174(4):839–46

Dengjel J, Bruckner-Tuderman L, Nyström A. Skin proteomics—analysis of the extracellular matrix in health and disease. Expert Rev. Proteomics. Taylor & Francis; 2020;17(5):377–91

Dobrota R, Jordan S, Juhl P, Maurer B, Wildi L, Bay-Jensen AC, et al. Circulating collagen neo-epitopes and their role in the prediction of fibrosis in patients with systemic sclerosis: a multicentre cohort study. Lancet Rheumatol. Elsevier Ltd; 2021;3(3):e175–84 Available from: http://dx.doi.org/10.1016/S2665-9913(20)30385-4

Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93–104 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21289597

Grand D, Navrazhina K, Frew JW. A Scoping Review of Non-invasive Imaging Modalities in Dermatological Disease: Potential Novel Biomarkers in Hidradenitis Suppurativa. Front. Med. Frontiers Media SA; 2019;6:253 Available from: /pmc/articles/PMC6851050/

Iotzova-Weiss G, Dziunycz PJ, Freiberger SN, Läuchli S, Hafner J, Vogl T, et al. S100A8/A9 Stimulates Keratinocyte Proliferation in the Development of Squamous Cell Carcinoma of the Skin via the Receptor for Advanced Glycation-End Products. PLoS One. Public Library of Science; 2015;10(3):e0120971 Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120971
Martorell A, Jfri A, Koster SBL, Gomez-Palencia P, Solera M, Alfaro-Rubio A, et al. Defining hidradenitis suppurativa phenotypes based on the elementary lesion pattern: results of a prospective study. J. Eur. Acad. Dermatol. Venereol. J Eur Acad Dermatol Venereol; 2020;34(6):1309–18 Available from: https://pubmed.ncbi.nlm.nih.gov/31919904/

Mekkes JR, Bos JD. Long-term efficacy of a single course of infliximab in hidradenitis suppurativa. Br. J. Dermatol. Br J Dermatol; 2008;158(2):370–4 Available from: https://pubmed.ncbi.nlm.nih.gov/18047504/

Mortensen JH øg, Godsken LE lbjerg, Jensen MD am, Van Haafften WT obias, Klinge LG abriels, Olinga P, et al. Fragments of Citrullinated and MMP-degraded Vimentin and MMP-degraded Type III Collagen Are Novel Serological Biomarkers to Differentiate Crohn’s Disease from Ulcerative Colitis. J. Crohns. Colitis. 2015;9(10):863–72

Nielsen VW, Holm JG, Jørgensen AHR, Yao Y, Ring HC, Thomsen SF. Liver enzyme levels are associated with markers of systemic inflammation, disease severity, and metabolic syndrome in patients with hidradenitis suppurativa. Heal. Sci. reports. Health Sci Rep; 2021;4(3) Available from: https://pubmed.ncbi.nlm.nih.gov/34553080/

Nisar S, Roberson JL, Carney BC, Alkhalil A, Moffatt LT, Shupp JW. Further Histological and Cellular Characterization of Hidradenitis Suppurativa in 11 Patients. Eplasty. HMP Global; 2019;19:e21 Available from: /pmc/articles/PMC6916621/

Van Rappard DC, Mekkes JR. Treatment of severe hidradenitis suppurativa with infliximab in combination with surgical interventions. Br. J. Dermatol. Br J Dermatol; 2012;167(1):206–8 Available from: https://pubmed.ncbi.nlm.nih.gov/22229974/

Sand JMB, Lamy P, Juhl P, Siebuhr AS, Iversen L V., Nawrocki A, et al. Development of a Neo-
Epitope Specific Assay for Serological Assessment of Type VII Collagen Turnover and Its Relevance in Fibroproliferative Disorders. Assay Drug Dev. Technol. 2018;16(2):adt.2017.820 Available from: http://online.liebertpub.com/doi/10.1089/adt.2017.820

Sartorius K, Emtestam L, Jemec GBE, Lapins J. Objective scoring of hidradenitis suppurativa reflecting the role of tobacco smoking and obesity. Br. J. Dermatol. Br J Dermatol; 2009;161(4):831–9 Available from: https://pubmed.ncbi.nlm.nih.gov/19438453/
TABLES

Table 1. Patient characteristics in relation to Hurley stage.

	Healthy controls	Hurley stage 1 n=148	Hurley stage 2 n=145	Hurley stage 3 n=38	Total HS n=331	P-value																										
Age, years, mean (SD)	35.19 (7.43)	37.15 (13.73)	40.88 (13.16)	49.62 (15.15)	39.98 (13.93)	0.002																										
Age at onset of HS, mean (SD)	- (11.48)	24.25 (11.48)	24.32 (11.15)	28.38 (17.57)	24.75 (12.22)	0.785																										
Duration of HS, mean (SD)	- (11.41)	9.22 (12.12)	16.69 (12.00)	21.24 (13.00)	15.52 (12.19)	<0.00																										
Sex, n (%)						1																										
Females	10 (63)	113 (76)	103 (71)	13 (34)	228 (69)	<0.00																										
Males	6 (37)	35 (24)	42 (29)	25 (66)	93 (31)	0.01																										
BMI, mean (SD), kg/m²	- (6.60)	28.79 (6.70)	29.77 (6.71)	27.83 (6.71)	29.11 (6.70)	0.157																										
Smoking, n (%)						0.034																										
Never	-	41 (28)	29 (20)	1 (3)	71 (22)																											
Former	-	29 (20)	35 (24)	9 (24)	73 (22)																											
Current	-	77 (52)	81 (56)	28 (73)	186 (56)																											
	-	1.62 (1.93)	3.13 (3.68)	2.57 (3.75)	2.39 (3.11)	0.0003																										
-----------------------------	----------	-------------	-------------	-------------	-------------	---------																										
Boils in the past month,	-	6.22 (2.62)	6.61 (2.55)	8.45 (2.19)	6.65 (2.62)	<0.00 1																										
mean (SD)																																
Pain (VAS), mean (SD)	-	7.80 (5.90)	19.86 (13.61)	56.00 (27.19)	18.62 (19.83)	<0.00 1																										
HSS, mean (SD)																																
Systolic blood pressure																																
Diastolic blood pressure																																
Previously diagnosed																																
comorbidities																																
Hypertension, n (%)	-	17 (11.49%)	13 (8.97%)	7 (18.42%)	37 (11.18%)	0.255																										
Diabetes, n (%)	-	5 (3.38%)	9 (6.21%)	9 (23.68%)	23 (6.95%)	0.0001																										
Arthritis, n (%)	-	11 (7.43%)	13 (8.97%)	5 (13.16%)	29 (8.76%)	0.534																										
Inflammatory Bowel Disease,	-	8 (5.41%)	15 (10.34%)	2 (5.26%)	25 (7.55%)	0.237																										
n (%)																																
Asthma, n (%)	-	6 (4.05%)	5 (3.45%)	0 (0%)	11 (3.32%)	0.459																										
COPD, n (%)		1 (0.68%)	3 (2.07%)	3 (9.68%)	7 (2.11%)	0.022																										
-------------	-------------	-----------	-----------	-----------	-----------	-------																										
Current treatment, n (%)																																
Topical azelaic acid		18 (12.16)	11 (7.59)	3 (7.89)	32 (9.67)	0.386																										
Topical clindamycin		29 (19.59)	17 (11.72)	5 (13.16)	51 (15.41)	0.162																										
Oral tetracyclines		7 (4.73)	11 (7.59)	7 (18.42)	25 (7.55)	0.017																										
Oral clindamycin + rifampicin		2 (1.35)	3 (2.07)	1 (2.63)	6 (1.81)	0.830																										
Biologics (anti-TNF)		1 (0.68)	7 (4.83)	0 (0%)	8 (2.42)	0.041																										
Inflammatory blood biomarkers																																
CRP, mg/L		3.52 (3.72)	5.88 (7.48)	20.13	6.46	<0.00																										
ESR, mm/h		10.30	14.18	(27.40)	(11.85)	01																										
		(8.50)	(14.08)	31.51	14.46																											
	NLR	Hemoglobin (10^9/L)	Leucocytes (10^9/L)	Basophils (10^9/L)	Eosinophils (10^9/L)	Lymphocytes (10^9/L)	Monocytes (10^9/L)	Neutrophils (10^9/L)	NLR	Hemoglobin	Leucocytes	Basophils	Eosinophils	Lymphocytes	Monocytes	Neutrophils	NLR	Hemoglobin	Leucocytes	Basophils	Eosinophils	Lymphocytes	Monocytes	Neutrophils								
----------------	------------------	--------------------	---------------------	--------------------	---------------------	---------------------	---------------------	---------------------	-----	------------	------------	-----------	-------------	----------------	------------	----------------	-----	------------	------------	-----------	-------------	----------------	------------	---------------	-----	------------	------------	-----------	-------------	----------------	------------	---------------
	-	2.29 (0.93)	2.37 (0.96)	3.46 (1.69)	2.46 (1.12)	<0.00	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Hemoglobin	-	8.66 (0.77)	8.74 (0.92)	8.75 (1.12)	8.70 (0.88)	<0.00	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Leucocytes	-	7.47 (2.23)	8.67 (2.96)	10.82	8.38 (2.86)	0.307	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Basophils	-	0.05 (0.03)	0.05 (0.03)	0.07 (0.03)	0.05 (0.03)	<0.00	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Eosinophils	-	0.19 (0.19)	0.20 (0.15)	0.23 (0.18)	0.20 (0.17)	0.004	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Lymphocytes	-	2.13 (0.71)	2.38 (0.82)	2.29 (0.63)	2.26 (0.76)	<0.00	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Monocytes	-	0.55 (0.15)	0.62 (0.24)	0.74 (2.84)	0.61 (0.22)	0.127	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
Neutrophils	-	4.58 (1.65)	5.34 (2.24)	5.24 (2.25)	0.004	<0.00	0.1	0.1	0.13	0.86	0.74	0.67	0.05	0.05	<0.00	0.05	<0.00	0.1	<0.00	0.05	<0.00	<0.00	0.1	<0.00								
	eGFR mL min⁻¹ 1.73m²	Blood glucose, mean (SD), mmol/L	Triglycerides, mmol/L	LDL, mmol/L	HDL, mmol/L	ALAT (U/L)	ALP (U/L)																									
------------------------	----------------------	----------------------------------	----------------------	-------------	-------------	------------	-----------																									
	-	86.64 (10.88)	-	2.55 (0.84)	1.45 (0.54)	22.56 (10.55)	71.31 (27.46)																									
		85.99 (10.72)	2.59 (0.84)	1.50 (0.54)	1.30 (0.36)	27.12 (19.50)	76.08 (74.00)																									
		88.32 (11.58)	2.18 (0.87)	1.32 (0.51)	1.32 (0.51)	20.32 (10.79)	91.00 (28.47)																									
		86.35 (10.86)	2.52 (0.85)	1.37 (0.47)	1.37 (0.47)	24.29 (15.31)	75.95 (27.03)																									
		0.323	0.0001	0.318	0.015	0.047	<0.00 01																									

Categorical variables are written as number (percentage), while continuous variables are mean (standard deviation). Statistical differences between the clinical and patient demographics were calculated by a Kruskal-Wallis test. BMI, body mass index; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; HS, hidradenitis suppurativa; NLR, neutrophil-to-lymphocyte ratio; eGFR, estimated glomerular filtration rate; HSS, hidradenitis suppurativa score; COPD; Chronic obstructive pulmonary disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; ALAT, alanine aminotransferase; ALP, alkaline phosphatase.
Figure Legends

Figure 1. Levels of extracellular matrix biomarkers measured in serum from HS patients in Hurley stage I (n=148), Hurley stage II (n=145) and Hurley stage III (n=38). A-E) Serum levels measuring degradation of type I collagen (C1M), type III collagen (C3M), type IV collagen (C4M), type V collagen (C5M) and type VII collagen (C7M), F) Serum levels of citrullinated degradation of vimentin (macrophage activity), G) Serum levels of calprotectin (S100A9) degraded by human neutrophil elastase (Neutrophil activity), H) Serum levels of type IV collagen degraded by granzyme B (T-cell activity), I) Serum levels of type III collagen formation, J) Serum levels of type IV collagen turnover, 7S domain, and K) Serum levels of type VI collagen formation. Dotted lines represent the IQR of the healthy subjects included as reference. Statistical differences were calculated using an ANCOVA corrected for age and gender. Significance threshold was set at \(p<0.05 \), and data are presented as mean with 95% CI. Significance levels: \(*p<0.05\), **\(p\leq 0.01\), ***\(p\leq 0.001\), ****\(p<0.0001\).
Type I collagen degradation

Type III collagen degradation

Type IV collagen degradation

Type V collagen degradation

Type VII collagen degradation

Citrullinated vimentin degradation (Macrophage activity)

Calprotectin degradation (Neutrophil activity)

Type IV collagen degradation (T-cell activity)

Type III collagen formation

Type IV collagen formation

Type VI collagen formation

- Hurley Stage I
- Hurley Stage II
- Hurley Stage III
Supplementary Table 1. Description of measured biomarkers.

Biomarker	Description	Reference
C1M	Neo-epitope of MMP-2, -9, -13 mediated degradation of type I collagen (alpha 1 chain)	(Leeming et al. 2011)
C3M	Neo-epitope of MMP-9 mediated degradation of type III collagen	(Vassiliadis et al. 2011)
C4M	Neo-epitope of MMP-2, -9, -12 mediated degradation of type IV collagen (alpha 1 chain)	(Sand et al. 2013)
C5M	Neo-epitope of MMP-2,9 mediated degradation of type V collagen	(Veidal et al. 2012)
C7M	Neo-epitope of type MMP-13 mediated degradation of type VII collagen	(Sand et al. 2018)
VICM	Neo-epitope of MMP-2, 8 and trypsin mediated degradation of citrullinated vimentin	(Vassiliadis et al. 2012)
Cpa9-HNE	Neo-epitope of human neutrophil elastase (HNE) mediated degradation of calprotectin (S100A9)	(Mortensen et al. 2022)
C4G	Neo-epitope of granzyme B mediated degradation of type IV collagen	(Jensen et al. 2020)
PRO-C3	Released N-terminal pro-peptide of type III collagen	(Nielsen et al. 2013)
PRO-C4	Internal epitope in the 7S domain of type IV collagen	(Leeming et al. 2012)
PRO-C6	C-terminal of released C5 domain of type VI collagen α3 chain (endotrophin)	(Sun et al. 2015)
References

Jensen C, Sinkeviciute D, Madsen DH, Önnerfjord P, Hansen M, Schmidt H, et al. Granzyme B degraded type IV collagen products in serum identify melanoma patients responding to immune checkpoint blockade. Cancers (Basel). 2020;12(10):1–15

Leeming D, He Y, Veidal S, Nguyen Q, Larsen D, Koizumi M, et al. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers. 2011;16(7):616–28

Leeming DJ, Nielsen MJ, Dai Y, Veidal SS, Vassiliadis E, Zhang C, et al. Enzyme-linked immunosorbent serum assay specific for the 7S domain of Collagen Type IV (P4NP 7S): A marker related to the extracellular matrix remodeling during liver fibrogenesis. Hepatol. Res. 2012;42(5):482–93

Mortensen JH, Sinkeviciute D, Manon-Jensen T, Domislovid V, Mccall K, Thudium CS, et al. A specific calprotectin neo-epitope (CPa9-HNE) in serum from inflammatory bowel disease patients is associated with neutrophil activity and endoscopic severity. J. Crohn’s Colitis. 2022; Available from: https://academic.oup.com/ecco-jcc/advance-article/doi/10.1093/ecco-jcc/jjac047/6550845

Nielsen MJ, Nedergaard AF, Sun S, Veidal SS, Larsen L, Zheng Q, et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am. J. Transl. Res. 2013;5(3)

Sand JMB, Lamy P, Juhl P, Siebuhr AS, Iversen L V., Nawrocki A, et al. Development of a Neo-Epitope Specific Assay for Serological Assessment of Type VII Collagen Turnover and Its Relevance in Fibroproliferative Disorders. Assay Drug Dev. Technol. 2018;16(2):adt.2017.820 Available from: http://online.liebertpub.com/doi/10.1089/adt.2017.820

Sand JM, Larsen L, Hogaboam C, Martinez F, Han M, Røssel Larsen M, et al. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis--validation of two novel biomarker assays. PLoS One. 2013;8(12):e84934

Sun S, Henriksen K, Karsdal MA, Byrjalsen I, Rittweger J. Collagen Type III and VI Turnover in Response to Long-Term Immobilization. PLoS One. 2015;10(12):e0144525

Vassiliadis E, Rasmussen LM, Byrjalsen I, Larsen D, Chaturvedi R, Hosbond S, et al. Clinical evaluation of a matrix metalloproteinase-12 cleaved fragment of titin as a cardiovascular serological biomarker. J. Transl. Med. 2012;10(1):140 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22768802

Vassiliadis E, Veidal SS, Barascuk N, Mullick JB, Clausen RE, Larsen L, et al. Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis. BMC Dermatol. BioMed Central Ltd; 2011;11(1):6 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3072322&tool=pmcentrez&rendertype=abstract

Veidal SS, Larsen D V, Chen X, Sun S, Zheng Q, Bay-jensen A, et al. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin. Biochem. The Canadian Society of Clinical Chemists; 2012;45(7–8):541–6 Available from: http://dx.doi.org/10.1016/j.clinbiochem.2012.02.007
Supplementary Figures

Supplementary Figure 1. Association between biomarker levels, Hurley stages and HSS illustrated by scatter plots. A-E) Serum levels measuring degradation of type I collagen (C1M), type III collagen (C3M), type IV collagen (C4M), type V collagen (C5M) and type VII collagen (C7M), F) Serum levels of citrullinated degradation of vimentin (macrophage activity), G) Serum levels of calprotectin (S100A9) degraded by human neutrophil elastase (Neutrophil activity), H) Serum levels of type IV collagen degraded by granzyme B (T-cell activity), I) Serum levels of type III collagen formation, J) Serum levels of type IV collagen turnover, 7S domain, and K) Serum levels of type VI collagen formation. Grey circles = Hurley stage I, Green triangles = Hurley stage II and Blue squares = Hurley stage III.

Supplementary Figure 2. Heatmap showing Spearman’s correlations between the measured biomarkers, clinical and biochemical parameters; Age, body mass index (BMI), estimated glomerular filtration rate (eGFR), alanine aminotransferase (ALAT), alkaline phosphatase (ALP), neutrophils and hidradenitis suppurativa score (HSS). Spearman rank correlation was used to determine correlations. Significance levels: *<0.05; **p≤0.01, ***p≤0.001.