SOME OSTROWSKI’S TYPE INEQUALITIES FOR FUNCTIONS
WHOSE SECOND DERIVATIVES ARE s−CONVEX IN THE
SECOND SENSE AND APPLICATIONS

ERHAN SET∗■, MEHMET ZEKI SARIKAYA■, AND M. EMIN OZDEMIR■

Abstract. Some new inequalities of Ostrowski type for twice differentiable
mappings whose derivatives in absolute value are s−convex in the second sense
are given. Applications for special means are also provided.

1. INTRODUCTION

In 1938, Ostrowski proved the following integral inequality [12]:

Theorem 1. Let \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \((a, b)\) whose
derivative \(f' : (a, b) \rightarrow \mathbb{R} \) is bounded on \((a, b)\), i.e., \(\|f'\|_\infty = \sup_{t \in (a, b)} |f'(t)| < \infty \).

Then, the inequality holds:

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(t)dt \right| \leq \left[\frac{1}{4} + \frac{(x-a+b)^2}{(b-a)^2} \right] (b-a) \|f'\|_\infty
\]

for all \(x \in [a, b] \). The constant \(\frac{1}{4} \) is sharp in the sense that it cannot be replaced by
a smaller one.

For some applications of Ostrowski’s inequality see ([1]-[4]) and for recent results
and generalizations concerning Ostrowski’s inequality see ([1]-[8]).

The class of \(s \)-convexity in the second sense is defined in the following way [9]:
a function \(f : [0, \infty) \rightarrow \mathbb{R} \) is said to be \(s \)-convex in the second sense if

\[
f(tx + (1-t)y) \leq t^s f(x) + (1-t)^s f(y)
\]

for all \(x, y \in [0, \infty) \), \(t \in [0, 1] \) and some fixed \(s \in (0, 1] \). This class is usually denoted by \(K^2_s \).

In [10], Dragomir and Fitzpatrick proved the Hadamard’s inequality for \(s \)-convex functions in the second sense:

Theorem 2. Suppose that \(f : [0, \infty) \rightarrow [0, \infty) \) is an \(s \)-convex function in the
second sense, where \(s \in (0, 1) \), and let \(a, b \in [0, \infty) \), \(a < b \). If \(f \in L^1([a, b]) \), then
the following inequalities hold:

\[
2^{s-1} f\left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{s+1}.
\]

1991 Mathematics Subject Classification. 26A15, 26D07, 26D15, 26D10.

Key words and phrases. Ostrowski’s inequality, convex function, \(s \)-convex function, special
means.

∗corresponding author.
Lemma 1. Let \(f \) be a twice differentiable mapping on \((a, b)\) and \(f'' \) be bounded, i.e., \(\| f'' \|_\infty = \sup_{t \in (a, b)} |f''(t)| < \infty \). Then we have the inequality:

\[
(1.2) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt - (x - \frac{a+b}{2}) f'(x) \right| \\
\leq \left[\frac{1}{24} (b-a)^2 + \frac{1}{6} (x - \frac{a+b}{2})^2 \right] \| f'' \|_\infty \\
\leq \frac{(b-a)^2}{6} \| f'' \|_\infty
\]

for all \(x \in [a, b] \).

Corollary 1. Under the above assumptions, we have the mid-point inequality:

\[
(1.3) \quad \left| f\left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{(b-a)^2}{24} \| f'' \|_\infty
\]

In this article, we establish new Ostrowski’s type inequalities for \(s \)-convex functions in the second sense and using this results we note some applications to special means.

2. Main Results

In order to establish our main results we need the following Lemma.

Lemma 1. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^0 \) with \(f'' \in L_1[a, b] \), then

\[
(2.1) \quad \frac{1}{b-a} \int_a^b f(u) du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \\
= \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)a) dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)b) dt
\]

Proof. By integration by parts, we have the following identity

\[
(2.2) \quad I_1 = \int_0^1 t^2 f''(tx + (1-t)a) dt \\
= \frac{t^2}{(x-a)} f'(tx + (1-t)a) \bigg|_0^1 - \frac{2}{x-a} \int_0^1 t f'(tx + (1-t)a) dt \\
= \frac{f'(x)}{(x-a)} - \frac{2}{x-a} \left[f(tx + (1-t)a) \bigg|_0^1 - \frac{1}{x-a} \int_0^1 f(tx + (1-t)a) dt \right] \\
= \frac{f'(x)}{(x-a)} - \frac{2f(x)}{(x-a)^2} + \frac{2}{(x-a)^2} \int_0^1 f(tx + (1-t)a) dt
\]
Using the change of the variable $u = tx + (1-t)a$ for $t \in [0, 1]$ and by multiplying the both sides \(2.2\) by $\frac{(x-a)^3}{2(b-a)}$, we obtain

\begin{equation}
(x-a)^3 \cdot \frac{1}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)a) \, dt = \frac{(x-a)^2 f'(x)}{2(b-a)} - \frac{(x-a)f(x)}{b-a} + \frac{1}{b-a} \int_a^x f(u) \, du
\end{equation}

Similarly, we observe that

\begin{equation}
(b-x)^3 \cdot \frac{1}{2(b-a)} \int_0^1 t^2 f''(tx + (1-t)b) \, dt = -\frac{(b-x)^2 f'(x)}{2(b-a)} - \frac{(b-x)f(x)}{b-a} + \frac{1}{b-a} \int_x^b f(u) \, du
\end{equation}

Thus, adding \(2.3\) and \(2.4\) we get the required identity \(2.1\).

The following result may be stated:

Theorem 4. Let $f : I \subset [0, \infty) \to \mathbb{R}$ be a twice differentiable function on I^* such that $f'' \in L_1[a, b]$ where $a, b \in I$ with $a < b$. If $|f''|$ is $s-$convex in the second sense on $[a, b]$ for some fixed $s \in (0, 1]$, then the following inequality holds:

\begin{equation}
\left| \frac{1}{b-a} \int_a^b f(u) \, du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right|
\leq \frac{1}{2(b-a)} \left\{ \left[\frac{|f''(x)|}{s+3} + \frac{2 |f''(a)|}{(s+1)(s+2)(s+3)} \right] (x-a)^3 + \left[\frac{|f''(x)|}{s+3} + \frac{2 |f''(b)|}{(s+1)(s+2)(s+3)} \right] (b-x)^3 \right\}
\end{equation}

for each $x \in [a, b]$.

Proof. From Lemma 1 and since $|f''|$ is $s-$convex, then we have

\begin{align*}
\left| \frac{1}{b-a} \int_a^b f(u) \, du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right|
\leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)a)| \, dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)b)| \, dt
\leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(x)| + (1-t)^s |f''(a)|| \, dt
+ \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(x)| + (1-t)^s |f''(b)|| \, dt
= \frac{(x-a)^3}{2(b-a)} \int_0^1 (t^{s+2} |f''(x)| + t^2(1-t)^s |f''(a)|) \, dt
+ \frac{(b-x)^3}{2(b-a)} \int_0^1 (t^{s+2} |f''(x)| + t^2(1-t)^s |f''(b)|) \, dt
\end{align*}
\[
\begin{align*}
&= \frac{(x - a)^3}{2(b - a)} \left[\frac{|f''(x)|}{s + 3} + \frac{2 |f''(a)|}{(s + 1)(s + 2)(s + 3)} \right] \\
&+ \frac{(b - x)^3}{2(b - a)} \left[\frac{|f''(x)|}{s + 3} + \frac{2 |f''(b)|}{(s + 1)(s + 2)(s + 3)} \right] \\
&= \frac{1}{2(b - a)} \left\{ \left[\frac{|f''(x)|}{s + 3} + \frac{2 |f''(a)|}{(s + 1)(s + 2)(s + 3)} \right] (x - a)^3 \\
&+ \left[\frac{|f''(x)|}{s + 3} + \frac{2 |f''(b)|}{(s + 1)(s + 2)(s + 3)} \right] (b - x)^3 \right\}
\end{align*}
\]
where we have used the fact that
\[
\int_0^1 t^{s+2} dt = \frac{1}{s+3} \quad \text{and} \quad \int_0^1 t^2(1-t)^s dt = \frac{2}{(s+1)(s+2)(s+3)}
\]
This completes the proof. \(\square\)

Corollary 2. We choose \(|f''(x)| \leq M, M > 0\) in Theorem 4 then we have

\[
(2.6) \quad \left| \frac{1}{b-a} \int_a^b \left[f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right] \right| \\
\leq 3M \left(\frac{s^2+3s+4}{(s+1)(s+2)(s+3)} \right) \left[\frac{1}{24} (b-a)^2 + \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \right] \\
\leq M \left(\frac{b-a)^2}{2} \left(\frac{s^2+3s+4}{(s+1)(s+2)(s+3)} \right) \right).
\]

Here, by simple computation shows that

\[
(x - a)^3 + (b - x)^3 = (b - a) \left[\frac{(b-a)^2}{4} + 3 \left(x - \frac{a+b}{2} \right)^2 \right].
\]

Remark 1. If in Corollary 2 we choose \(s = 1\), then we recapture the inequality (1.2).

Corollary 3. If in Corollary 2 we choose \(x = \frac{a+b}{2}\), then we get the mid-point inequality

\[
\left| \frac{1}{b-a} \int_a^b \left[f(u)du - f\left(\frac{a+b}{2} \right) \right] \right| \leq M \left(\frac{b-a)^2}{2} \left(\frac{s^2+3s+4}{(s+1)(s+2)(s+3)} \right) \right).
\]

Theorem 5. Let \(f : I \subset [0, \infty) \rightarrow \mathbb{R}\) be a twice differentiable function on \(I^o\) such that \(f'' \in L_1[a, b]\) where \(a, b \in I\) with \(a < b\). If \(|f''|^{\frac{q}{p}}\) is \(s\)-convex in the second sense on \([a, b]\) for some fixed \(s \in (0, 1]\), \(p, q > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\), then the following inequality holds:

\[
(2.7) \quad \left| \frac{1}{b-a} \int_a^b \left[f(u)du - f(x) + \left(x - \frac{a+b}{2} \right) f'(x) \right] \right| \\
\leq \frac{(x - a)^3}{2(b - a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^{\frac{q}{p}} + |f''(a)|^{\frac{q}{p}}}{s+1} \right) \frac{1}{q} \\
+ \frac{(b - x)^3}{2(b - a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^{\frac{q}{p}} + |f''(b)|^{\frac{q}{p}}}{s+1} \right) \frac{1}{q}
\]

for each \(x \in [a, b]\).
Proof. Suppose that \(p > 1 \). From Lemma 1 and using the Hölder inequality, we have

\[
\left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \\
\leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)a)| dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1-t)b)| dt \\
\leq \frac{(x-a)^3}{2(b-a)} \left(\int_0^1 t^{2p} dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)a)|^q dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^3}{2(b-a)} \left(\int_0^1 t^{2p} dt \right)^{\frac{1}{p}} \left(\int_0^1 |f''(tx + (1-t)b)|^q dt \right)^{\frac{1}{q}}.
\]

Since \(|f''|^q\) is \(s\)-convex in the second sense, then we have

\[
\int_0^1 |f''(tx + (1-t)a)|^q dt \leq \int_0^1 \left[t^s |f''(x)|^q + (1-t)^s |f''(a)|^q \right] dt \\
= \frac{|f''(x)|^q + |f''(a)|^q}{s+1}
\]

and

\[
\int_0^1 |f''(tx + (1-t)b)|^q dt \leq \int_0^1 \left[t^s |f''(x)|^q + (1-t)^s |f''(b)|^q \right] dt \\
= \frac{|f''(x)|^q + |f''(b)|^q}{s+1}.
\]

Therefore, we have

\[
\left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \\
\leq \frac{(x-a)^3}{2(b-a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^q + |f''(a)|^q}{s+1} \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^3}{2(b-a)} \left(\frac{1}{2p+1} \right)^{\frac{1}{p}} \left(\frac{|f''(x)|^q + |f''(b)|^q}{s+1} \right)^{\frac{1}{q}}
\]

where \(\frac{1}{p} + \frac{1}{q} = 1 \), which is required. \(\square \)

Corollary 4. Under the above assumptions we have the following inequality:

\[
(2.8) \quad \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \\
\leq \frac{3M}{(2p+1)^{\frac{1}{q}}} \left[\frac{2}{s+1} \right]^{\frac{1}{q}} \left[\frac{(b-a)^2}{24} + \frac{1}{2} \left(x - \frac{a + b}{2} \right)^2 \right].
\]

This follows by Theorem 2 choosing \(|f''(x)| \leq M, M > 0\).

Corollary 5. With the assumptions in Corollary 4, one has the mid-point inequality:

\[
\left| \frac{1}{b-a} \int_a^b f(u)du - f \left(\frac{a + b}{2} \right) \right| \leq \frac{(b-a)^2}{8 (2p+1)^{\frac{1}{q}}} \left(\frac{2}{s+1} \right)^{\frac{1}{q}} M.
\]
This follows by Corollary 4 choosing \(x = \frac{a + b}{2} \).

Corollary 6. With the assumptions in Corollary 4, one has the following perturbed trapezoid-like inequality:

\[
\left| \int_a^b f(u)du - \frac{(b-a)}{2} [f(a) + f(b)] + \frac{(b-a)^2}{4} (f'(b) - f'(a)) \right| \\
\leq \frac{(b-a)^3}{2(2p+1)^\frac{1}{2}} \left(\frac{2}{s+1} \right)^{\frac{1}{2}} M.
\]

This follows using Corollary 4 with \(x = a, x = b \), adding the results and using the triangle inequality for the modulus.

Theorem 6. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a twice differentiable function on \(I^o \) such that \(f'' \in L_1[a, b] \) where \(a, b \in I \) with \(a < b \). If \(|f''|^q \) is \(s \)-convex in the second sense on \([a, b] \) for some fixed \(s \in (0, 1] \) and \(q \geq 1 \), then the following inequality holds:

\[
(2.9) \quad \left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \\
\leq \frac{(x-a)^3}{2(b-a)} \left(\frac{1}{3} \right)^{\frac{1}{2}} \left(\frac{|f''(x)|^q}{s+3} + \frac{2 |f''(a)|^q}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{2}} \\
+ \frac{(b-x)^3}{2(b-a)} \left(\frac{1}{3} \right)^{\frac{1}{2}} \left(\frac{|f''(x)|^q}{s+3} + \frac{2 |f''(b)|^q}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{2}}
\]

for each \(x \in [a, b] \).

Proof. Suppose that \(q \geq 1 \). From Lemma 4 and using the well known power mean inequality, we have

\[
\left| \frac{1}{b-a} \int_a^b f(u)du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \\
\leq \frac{(x-a)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1 - t)a)| dt + \frac{(b-x)^3}{2(b-a)} \int_0^1 t^2 |f''(tx + (1 - t)b)| dt \\
\leq \frac{(x-a)^3}{2(b-a)} \left(\int_0^1 t^2 dt \right)^{\frac{1}{2}} \left(\int_0^1 t^2 |f''(tx + (1 - t)a)|^q dt \right)^{\frac{1}{2}} \\
+ \frac{(b-x)^3}{2(b-a)} \left(\int_0^1 t^2 dt \right)^{\frac{1}{2}} \left(\int_0^1 t^2 |f''(tx + (1 - t)b)|^q dt \right)^{\frac{1}{2}}.
\]

Since \(|f''|^q \) is \(s \)-convex in the second sense, we have

\[
\int_0^1 t^2 |f''(tx + (1 - t)a)|^q dt \leq \int_0^1 \left[t^{s+2} |f''(x)|^q + t^2 (1 - t)^s |f''(a)|^q \right] dt \\
= \frac{|f''(x)|^q}{s+3} + \frac{2 |f''(a)|^q}{(s+1)(s+2)(s+3)}
\]
and
\[\int_0^1 t^2 \left| f''(tx + (1-t)b) \right|^q \, dt \leq \int_0^1 \left[t^{s+2} \left| f''(x) \right|^q + t^2 (1-t)^s \left| f''(b) \right|^q \right] \, dt \]
\[= \frac{\left| f''(x) \right|^q}{s+3} + \frac{2 \left| f''(b) \right|^q}{(s+1)(s+2)(s+3)}. \]

Therefore, we have
\[\left| \frac{1}{b-a} \int_a^b f(u) \, du - f(x) - \left(x - \frac{a+b}{2} \right) f'(x) \right| \]
\[\leq \frac{(x-a)^3}{2(b-a)} \left(1 - \frac{1}{3} \right)^{\frac{1}{4}} \left(\frac{\left| f''(x) \right|^q}{s+3} + \frac{2 \left| f''(a) \right|^q}{(s+1)(s+2)(s+3)} \right) \]
\[+ \frac{(b-x)^3}{2(b-a)} \left(1 - \frac{1}{3} \right)^{\frac{1}{4}} \left(\frac{\left| f''(x) \right|^q}{s+3} + \frac{2 \left| f''(b) \right|^q}{(s+1)(s+2)(s+3)} \right). \]

\[\square \]

Corollary 7. Under the above assumptions we have the following inequality
\[\left| \frac{1}{b-a} \int_a^b f(u) \, du - f(x) - \left(x - \frac{a+b}{2} \right) f'(x) \right| \]
\[\leq M \left(\frac{3 \left(s^2 + 3s + 4 \right)}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{4}} \left[\frac{(b-a)^2}{24} + \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \right]. \]

This follows by Theorem 6, choosing \(|f''(x)| \leq M, M > 0. \)

Corollary 8. With the assumptions in Corollary 7 one has the mid-point inequality:
\[\left| \frac{1}{b-a} \int_a^b f(u) \, du - f \left(\frac{a+b}{2} \right) \right| \leq M \left(\frac{3 \left(s^2 + 3s + 4 \right)}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{4}} \frac{(b-a)^2}{24}. \]

This follows by Corollary 4 choosing \(x = \frac{a+b}{2}. \)

Remark 2. If in Corollary 3 we choose \(s = 1 \) and \(q = 1 \), then we have the following inequality:
\[\left| \frac{1}{b-a} \int_a^b f(u) \, du - f \left(\frac{a+b}{2} \right) \right| \leq M \frac{(b-a)^2}{24} \]
which is the inequality (1.3).

Corollary 9. With the assumptions in Corollary 4 one has the following perturbed trapezoid like inequality:
\[\left| \int_a^b f(u) \, du - \left(\frac{b-a}{2} \right) \left[f(a) + f(b) \right] + \frac{(b-a)^2}{4} \left(f'(b) - f'(a) \right) \right| \]
\[\leq \frac{(b-a)^3}{6} \left(\frac{3 \left(s^2 + 3s + 4 \right)}{(s+1)(s+2)(s+3)} \right)^{\frac{1}{4}} M. \]

This follows using Corollary 4 with \(x = a, \ x = b, \) adding the results and using the triangle inequality for the modulus.
Remark 3. All of the above inequalities obviously hold for convex functions. Simply choose \(s = 1 \) in each of those results to get desired results.

The following result holds for \(s \)-concave.

Theorem 7. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a twice differentiable function on \(I^o \) such that \(f'' \in L_1[a, b] \) where \(a, b \in I \) with \(a < b \). If \(|f''|^{q} \) is \(s \)-concave in the second sense on \([a, b] \) for some fixed \(s \in (0, 1) \), \(p, q > 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \), then the following inequality holds:

\[
(2.10) \quad \left| \frac{1}{b-a} \int_{a}^{b} f(u) du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \leq \frac{2^{(s-1)/q}}{(2p + 1)^{1/p} (b-a)} \left(\frac{(x - a)^3}{2} \left| f'' \left(\frac{x + a}{2} \right) \right| + \left(b - x \right)^3 \left| f'' \left(\frac{b + x}{2} \right) \right| \right)
\]

for each \(x \in [a, b] \).

Proof. Suppose that \(q > 1 \). From Lemma 11 and using the Hölder inequality, we have

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(u) du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \leq \frac{(x - a)^3}{2(b-a)} \int_{0}^{1} t^2 |f''(tx + (1-t)a)| dt + \frac{(b-x)^3}{2(b-a)} \int_{0}^{1} t^2 |f''(tx + (1-t)b)| dt
\]

\[
\leq \frac{(x - a)^3}{2(b-a)} \left(\int_{0}^{1} t^{2p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} |f''(tx + (1-t)a)|^q dt \right)^{\frac{1}{q}}
\]

\[
+ \frac{(b-x)^3}{2(b-a)} \left(\int_{0}^{1} t^{2q} dt \right)^{\frac{1}{q}} \left(\int_{0}^{1} |f''(tx + (1-t)b)|^q dt \right)^{\frac{1}{q}}.
\]

Since \(|f''|^q \) is \(s \)-concave in the second sense, using the inequality 1.1

\[
(2.11) \quad \int_{0}^{1} |f''(tx + (1-t)a)|^q dt \leq 2^{s-1} \left| f'' \left(\frac{x + a}{2} \right) \right|^q
\]

and

\[
(2.12) \quad \int_{0}^{1} |f''(tx + (1-t)b)|^q dt \leq 2^{s-1} \left| f'' \left(\frac{b + x}{2} \right) \right|^q.
\]

A combination of (2.11) and (2.12) inequalities, we get

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(u) du - f(x) + \left(x - \frac{a + b}{2} \right) f'(x) \right| \leq \frac{2^{(s-1)/q}}{(2p + 1)^{1/p} (b-a)} \left(\frac{(x - a)^3}{2} \left| f'' \left(\frac{x + a}{2} \right) \right| + \left(b - x \right)^3 \left| f'' \left(\frac{b + x}{2} \right) \right| \right).
\]

This completes the proof. \(\Box \)
Corollary 10. If in (2.10), we choose \(x = \frac{a + b}{2} \), then we have
\[
\left| \frac{1}{b - a} \int_a^b f(u) du - f \left(\frac{a + b}{2} \right) \right| \leq \frac{2^{(s-1)/q} (b - a)^2}{16 (2p + 1)^{1/p}} \left[\left| f'' \left(\frac{3a + b}{4} \right) \right| + \left| f'' \left(\frac{a + 3b}{4} \right) \right| \right].
\]
For instance, if \(s = 1 \), then we have
\[
\left| \frac{1}{b - a} \int_a^b f(u) du - f \left(\frac{a + b}{2} \right) \right| \leq \frac{(b - a)^2}{16 (2p + 1)^{1/p}} \left[\left| f'' \left(\frac{3a + b}{4} \right) \right| + \left| f'' \left(\frac{a + 3b}{4} \right) \right| \right].
\]

3. Applications to Some Special Means

Let us recall the following special means:

(1) The arithmetic mean:
\[A = A(x, y) := \frac{x + y}{2}, \quad x, y \geq 0; \]

(2) The Identric mean:
\[I = I(x, y) := \begin{cases} \frac{x}{e^{y/x}} & \text{if } x = y, \\ \frac{1}{e} \left(\frac{u^p}{x^{p+1}} \right)^{1/2} & \text{if } x \neq y \end{cases}, \quad x, y > 0; \]

(c) The generalized log-mean:
\[L_p = L_p(a, b) := \begin{cases} x & \text{if } x = y, \\ \left[\frac{u^{p+1} - x^{p+1}}{(p+1)(p-1)x} \right]^{1/2} & \text{if } x \neq y \end{cases}, \quad p \in \mathbb{R} \setminus \{-1, 0\}; \quad x, y > 0. \]

The following simple relationship is well known in the literature
\[I \geq A. \]

It is known that \(L_p \) is monotonic nondecreasing in \(p \in \mathbb{R} \) with \(L_0 := I \).

Now, using the results of Section 2, we give some applications to special means of positive real numbers.

In [11], the following example is given: Let \(0 < s < 1 \) and \(u, v, w \in \mathbb{R} \). We define a function \(f : [0, \infty) \to \mathbb{R} \)
\[f(t) = \begin{cases} u & \text{if } t = 0, \\ vt^s + w & \text{if } t > 0. \end{cases} \]

If \(v \geq 0 \) and \(0 \leq w \leq u \), then \(f \in K^2_s \). Hence, for \(u = w = 0, \quad v = 1 \), we have \(f : [0, 1] \to [0, 1] \), \(f(t) = t^s, \quad f \in K^2_s \).

Proposition 1. Let \(0 < a < b \) and \(s \in (0, 1) \). Then we have the results:
\[
\left| L^s_p(a, b) - x^s + s(x - A) x^{s-1} \right| \leq 3M \left(\frac{s^2 + 3s + 4}{(s + 1)(s + 2)(s + 3)} \right) \left[\frac{1}{24} (b - a)^2 + \frac{1}{2} (x - A)^2 \right]
\]
\[
\leq \frac{(b - a)^2}{2} \left(\frac{s^2 + 3s + 4}{(s + 1)(s + 2)(s + 3)} \right).
\]
for all $x \in [a, b]$. If in the first inequality of (3.1) we choose $x = A$, we get

$$|L^s_x(a, b) - A^s| \leq \frac{M}{8} \left(\frac{3M}{2(2p + 1)^{1/p}} \left(\frac{3(s^2 + 3s + 4)}{(s + 1)(s + 2)(s + 3)} \right)^{1/q} \left[\frac{1}{24} (b-a)^2 + \frac{1}{2} (x-A)^2 \right] \right)$$

for all $x \in [a, b]$. If in the first inequality of (3.2) we choose $x = A$, we get

$$|L^s_x(a, b) - A^s| \leq \frac{M}{8(2p + 1)^{1/p}} \left(\frac{2}{s + 1} \right)^{1/q} (b-a)^2.$$

Proof. The inequality of (3.1) follows from (2.6) applied to the s–convex function in the second sense $f : [0, 1] \to [0, 1]$, $f(x) = x^s$. The details are omitted. \hfill \square

Proposition 2. Let $0 < a < b$, $q > 1$ and $s \in (0, 1)$. Then we have the results:

(3.2) \[|L^s_x(a, b) - x^s + s(x-A)x^{s-1}| \leq \frac{3M}{8(2p + 1)^{1/p}} \left(\frac{2}{s + 1} \right)^{1/q} (b-a)^2 \] for all $x \in [a, b]$. If in the first inequality of (3.2) we choose $x = A$, we get

$$|L^s_x(a, b) - A^s| \leq \frac{M}{8} \left(\frac{3(s^2 + 3s + 4)}{(s + 1)(s + 2)(s + 3)} \right)^{1/q} (b-a)^2.$$

Proof. The proof of (3.2) is similar to that of (3.1), using the inequality (2.5). \hfill \square

Proposition 3. Let $0 < a < b$, $q > 1$ and $s \in (0, 1)$. Then we have the results:

(3.3) \[|L^s_x(a, b) - x^s + s(x-A)x^{s-1}| \leq M \left(\frac{3(s^2 + 3s + 4)}{(s + 1)(s + 2)(s + 3)} \right)^{1/q} \left[\frac{1}{24} (b-a)^2 + \frac{1}{2} (x-A)^2 \right] \] for all $x \in [a, b]$. If in (3.3) we choose $x = A$, we get

$$|L^s_x(a, b) - A^s| \leq \frac{M}{24} \left(\frac{3(s^2 + 3s + 4)}{(s + 1)(s + 2)(s + 3)} \right)^{1/q} (b-a)^2.$$

Proof. The proof is similar to that of Proposition 1 using Corollary 1. \hfill \square

Proposition 4. Let $0 < a < b$, $p > 1$ and $s \in (0, 1)$. Then we have the result:

$$|\ln I - \ln A| \leq \frac{2(s-1/3)(b-a)^2}{(2p + 1)^{1/p}} \left[\frac{1}{(3a + b)^2} - \frac{1}{(a + 3b)^2} \right].$$

Proof. The inequality follows from (2.13) applied to the concave function in the second sense $f : [a, b] \to \mathbb{R}$, $f(x) = \ln x$. The details are omitted. \hfill \square

REFERENCES

[1] M. Alomari and M. Darus, Some Ostrowski’s type inequalities for convex functions with applications, RGMIA, 13(1) (2010), Article 3[ONLINE: http://ajmaa.org/RGMIA/v13n1.php]

[2] M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski’s inequalities for functions whose derivatives are s–convex in the second sense, RGMIA, 12 (2009), Supp., No., 15.

[3] P. Cerone, S.S. Dragomir and J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll., 1(1) (1998), Article 4.

[4] S.S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.

[5] M.Z. Sarıkaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, Vol. LXXIX, 1 (2010), 129-134.
SOME INTEGRAL INEQUALITIES FOR s–CONVEX FUNCTIONS

[6] E. Set, M.E. Özdemir and M.Z. Sarıkaya, New inequalities of Ostrowski’s type for s–convex functions in the second sense with applications, arXiv:1005.0702v1(submitted).

[7] M.E. Özdemir, H. Kavurmaci and E. Set, Ostrowski’s type inequalities for (α, m)–convex functions, submitted.

[8] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On the integral inequalities for mappings whose second derivatives are convex and applications, arXiv:1005.0701v1(submitted).

[9] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeineter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23(1978), 13-20.

[10] S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s–convex functions in the second sense, Demonstration Math. 32(4), (1999), 687-696.

[11] H. Hudzik and L. Maligranda, Some remarks on s–convex functions, Aequationes Math. 48 (1994), 100-111.

[12] A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert. Comment. Math. Hel, 10 (1938), 226–227.

■ Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey
E-mail address: erhanset@yahoo.com

▼ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
E-mail address: sarikayamz@gmail.com

■ Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey
E-mail address: emos@atauni.edu.tr