Phytochemical profiling of antimicrobial and potential antioxidant plant: *Nepeta cataria*

Ali Nadeem¹,², Hira Shahzad³,⁴, Bashir Ahmed¹*, Tudor Muntean², Maaz Waseem⁵ and Aisha Tabassum⁶

¹Plant Pathology Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan, ²Department of Plant Biology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States, ³International Centre for Public Health (ICPH), New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States, ⁴Clinical Epigenetics Lab, University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan, ⁵Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan, ⁶Department of Biochemistry, University of Sialkot, Sialkot, Pakistan

Traditional and phytochemical studies have confirmed the richness and diversity of medicinal plants such as *Nepeta cataria* (*N. cataria*), but more studies are needed to complete its metabolite profiling. The objective of this research was to enhance the metabolomic picture and bioactivity of *N. cataria* for better evaluation. Phytochemical analysis was performed by bio-guided protocols and gas chromatography-mass spectrometry (GC/MS). For this, solvents such as methanol, ethanol, water, acetone, and hexane were used to extract a wide number of chemicals. Antibacterial analysis was performed using the 96-well plate test, Kirby Bauer’s disk diffusion method, and the resazurin microdilution test. Antioxidant activity was determined by the DPPH assay and radical scavenging capacity was evaluated by the oxygen radical absorbance capacity (ORAC) assay. GC/MS analysis revealed a total of 247 identified and 127 novel metabolites from all extracts of *N. cataria*. Water and acetone extracts had the highest identified metabolites (*n* = 79), whereas methanol extract was the highest in unidentified metabolites (*n* = 48). The most abundant phytochemicals in methanol extract were 1-isopropylcyclohex-1-ene (*concentration = 27.376*) and bicyclo [2.2.1] heptan-2-one (*concentration = 20.437*), whereas in ethanol extract, it was 9,12,15-octadecatrienoic acid (*concentration = 27.308*) and 1-isopropylcyclohex-1-ene (*concentration = 25.854*). An abundance of 2 methyl indoles, conhydrin, and coumarin was found in water extracts; a good concentration of eucalyptol was found in acetone extract; and 7,9-di-tert-butyl-1-oxaspiro is the most abundant phytochemicals in hexane extracts. The highest concentration of flavonoids and phenols were identified in hexane and methanol extracts, respectively. The highest antioxidant potential (DPPH assay) was observed in acetone extract. The ethanolic extract exhibited a two-fold higher ORAC than the methanol extract. This examination demonstrated the inhibitory effect against a set of microbes and the presence of polar and non-polar constituents of *N. cataria*.
The results of this study provide a safe resource for the development of food, agriculture, pharmaceutical, and other industrial products upon further research validation.

KEYWORDS

Nepeta cataria, gas chromatograph/mass spectrometry (GC/MS), antibacterial susceptibility testing (AST), antioxidants, phytochemicals

Introduction

The *Nepeta* genus belongs to the family Lamiaceae, which is rich in bioactive secondary metabolites. The word Cataria was derived from the Latin word for cat, "Cathus." *N. cataria* is a perennial herb that grows to a height of 50–100 cm (Scott, 2003). It has been found predominately in the regions of southern and eastern Europe, the Middle East, Central Asia, and China. Bioactive compounds of *N. cataria* have prehistorically been used and have a wide range of biological activities, including analgesic, anti-asthmatic, anti-cancer, anti-inflammatory, and antimicrobial properties. *Nepeta cataria* essential oil and metabolites have important applications in the pharmaceutical, agrochemical, and food industries (Sharma et al., 2021). Researchers found them to be antifungal, antibacterial (Bandh and Kamili, 2011; Sharma et al., 2019), antioxidant (Adiguzel et al., 2009), insecticidal, anti-inflammatory, anti-nociceptive, and potentially spasmytic (Pargaien et al., 2020; Giarratana et al., 2017). Essential oils, flavonoids, phenolic acid, steroids, terpenoids, and terpenoid hydrocarbons have all been found in this plant.

Nepeta cataria has widely been used to treat diarrhea because of spasmytic and myorelaxant metabolites in its extracts (Gilani et al., 2009). Essential oils of *N. cataria* have a promising impact on raw materials of industrial food importance (Frolova et al., 2020). Studies established the presence of nepetalactones in catnip essential oil by TLC and GC–MS analysis. Using GC/MS analysis, three populations of *N. cressifolia* and four populations of *N. nuda* were studied (Sharma et al., 2021).

Essential oils and flavonoids have typically been linked to the therapeutic benefits of *Nepeta* species. Prior investigations on the essential oils of *N. cataria* identified nepetalactones as a major constituent (Mamadaliyeva et al., 2017; Sharma et al., 2019). In a recent study, water-based extracts of *N. cataria* significantly inhibited herpes virus replication in humans (Hinkov et al., 2020). Previously, *N. cataria* has been used to alleviate symptoms of bronchial asthma, bronchitis, and bronchial congestion. The traditional herbal medicine derived from these along with other medicinal plants may have multiple applications, including symptom relief for people with COVID-19 and the development of effective antiviral medicines. During the severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic, also termed COVID-19, leaves of *N. cataria* were used to alleviate symptoms of the disease (Khan et al., 2021). Essential oils from *Nepeta* species that naturally produce nepetalactones can be synthesized in other regions and then be distilled to serve as a natural source of efficient *Aedes aegypti* repellent for effective dengue prevention (Reichert et al., 2019). Previous studies demonstrate that *N. cataria* essential oils effectively reduced liver damage caused by acetaminophen and enhanced mRNA expression of uridine diphosphate glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) and decreased CYP2E1 activity (Tan et al., 2019). It has been shown that *N. cataria* and its derivatives have been used to treat gastrointestinal and respiratory disorders. They have also been reported for their effective antibacterial, antiviral, and antioxidant activities (Sharma et al., 2019). Porcine reproductive and respiratory syndrome virus (PPRSV) affects pigs and causes reproductive failure in developing pigs. According to the findings of a study, the load of PRRSV could be greatly reduced by using *N. cataria* hydrosol. It is strongly recommended that further research be conducted into the antiviral processes and characteristics of these plant hydrosols, both in vitro and in vivo (Kaewprom et al., 2017).

Recent research has been focused on the essential oils and antibacterial properties of plants, as they have been utilized to increase the shelf life of foods and in traditional medicine (Ergün, 2021; Özkan et al., 2021). Numerous studies demonstrate that the antibacterial and antifungal properties of *N. cataria* are mostly attributable to the essential oil constituents. Surprisingly, less is known about the antimicrobial activity of catnip essential oil. In these investigations, the antimicrobial activity of catnip essential oil was investigated on a limited number of bacteria or fungi (Angelini et al., 2006; Suschke et al., 2007; Bourrel et al., 2011).

In the past two decades, the antioxidant effect of the essential oils and/or extracts of medicinal and aromatic plants has received considerable attention. Therefore, these extracts can be employed as safe and effective synthetic preservative replacements. Natural antioxidants have been investigated extensively for their ability to protect organisms and cells against oxidative stress-induced damage, which is believed to be a cause of aging, degenerative illnesses, and cancer (Sharma et al., 2019). It has been known for some time that plant extracts and/or...
essential oils possess antioxidant properties. However, less is known about the antioxidant activity of the essential oil or extract of *N. cataria*.

In another study, aromatic and medicinal plants from Turkey have been characterized and reported on the antibacterial and antioxidant activities of *N. cataria*’s essential oil, methanol extract, and its essential oil composition. They also highlighted essential oil to contain 4αβ, 7α, 7β-nepetalactone, 4αo, 7α, 7αβ-nepetalactone, 1,8-cineole, and elemol as major oil constituents in *N. crassifolia* (Dabiri and Sefidkon, 2003), while 7β-nepetalactone, 4αα, 7α, 7αβ-nepetalactone, pulegone, and piperitenone oxide were identified in *N. nuda* (Narimani et al., 2017). Research studies focused mainly on essential oil extracts of *N. cataria*, which indicated a need to study its metabolites in polar and nonpolar solvents. Our team was motivated to explore the constituents of *N. cataria*, based on polarity, via minor adjustments to already established lab protocols.

Materials and methods (experimental)

Plant collection

Nepeta cataria was collected from Swat (Himalayas), Khyber Pakhtunkhwa, Pakistan (35°22′22″N, 72°10′60.00″E), locally named as catnip mint/catmint (in northern Pakistan) and Badranj boya (in central Pakistan). Species verification and identification were done at the National Herbarium, and they confirmed and identified it as *N. cataria*. Furthermore, it was cleaned, rinsed, dried, and preserved at the Antimicrobial Biological Laboratory (AMBL), International Islamic University Islamabad, Islamabad, Pakistan.

Plant extraction and filtration

Nepeta cataria’s stem and leaves were rinsed, dried, and grounded in a fine powder by a lab grinder carefully. Fine powder was soaked separately in methanol, ethanol, water, acetone, and hexane using 1:10 ratio for 24–48 h at room temperature, to increase the maximum solubility. Filtrations and extraction were done using Whatman’s # 41 and rota-evaporator at Stockbridge Medicinal and Aromatic Lab, University of Massachusetts Amherst, USA. Extracts were labeled and aliquoted in glass vials at 4°C until further use.

Phytochemical analysis

Qualitative analysis

Saponins and phenolic compounds, water-soluble and insoluble phenols, alkaloid flavonoids, poly-steroids, terpenoids, cardiac glycosides, free and combined anthraquinones, tannins, and alkaloids were chemically identified in all plant extracts (Prabhavathi et al., 2016).

Quantitative analysis—Phenols and flavonoids

Concentrations of phenols and flavonoids were identified in all extracts of *N. cataria* via established protocols previously explained in Nadeem et al. (2021).

GC/MS analysis of *N. cataria* extracts

The GC/MS is the widely adopted technique for the detection of biologically active compounds, i.e., metabolites. A set of extracts, methanol, ethanol, water, acetone, and hexane were subjected to GC/MS analysis to detect bioactive phytochemicals. Phytochemical compounds were identified and presented with their compound names, molecular formulas, molecular weight, and retention times (RT) using NIST Library 17.

Metabolic profiling of *N. cataria* extracts was conducted via GC/MS (Bruker Scion 456 GC, EVOQ triple quadrupole GC-MS/MS). A column of 15 m was used with a diameter and film thickness of 0.25 mm. The flow rate of helium as a carrier gas was 1.5 ml/min. For gas chromatography, temperature conditions were 45°C for 3 min, 250°C at 8°C/min for 10 min. Injection volume was 1 µl [varying split ratio (5:1/15:1/20:1), range (45–350 m/z)]. Automated Mass Spectral Deconvolution and Identification System (AMDIS) Software MSWS 8 for GC/MS and NIST library were used for compilation of all results.

Antibacterial activity

Bacterial cultures (Table 1) were grown on a tryptic soy broth (TSB) medium (Thermo Fisher Scientific, USA) (Nadeem et al., 2021). To evaluate antibacterial susceptibility testing (AST) of *N. cataria* extracts, three different methods were used, i.e., 96-well test, Kirby-Bauer disk diffusion, and resazurin-based well plate microdilution method.

The 96-well plate method

In each well of a 96-well microtiter plate, 100 µl of plant extract and TSB media were used. Each plant extract was checked at five bacterial concentrations (i.e., 1,000, 500, 250, 125, and 62.5 µg) for optimum antimicrobial potential. Only TSB medium was added to negative control well to ensure sterility of media. A single negative control lacked plant extract to observe normal bacterial growth. Microtiter plates were incubated for 24 h before reading at 570 nm. Chloramphenicol as standard was used to evaluate the results. Bacterial inhibition was calculated.
TABLE 1 Microbial profile of bacterial ingredients used in the antimicrobial analysis.

Microorganism	Accession number	Strain
Escherichia coli	ATCC_25922	Gram negative
Klebsiella oxytoca	ATCC_43863	
Salmonella enterica	ATCC_14028	
Shigella sonnei	ATCC_25931	
Citrobacter freundii	ATCC_8090	
Bacillus subtilis	ATCC_6051	Gram positive
Lactococcus lactis	ATCC_LMO230	
Listeria monocytogenes	ATCC_LM21	
Micrococcus luteus	ATCC_4698	
Staphylococcus aureus	ATCC_25923	

Bacterial inhibition via the following formula:

\[
\text{Bacterial inhibition} = \frac{\text{OD in control} - \text{OD in treatment}}{\text{OD in control}} \times 100
\]

Kirby-Bauer disk diffusion method

Solidified agar plates were used to analyze the antimicrobial potential of *N. cataria* extracts. Paper disks of 10 mm were soaked in 20 µl extracts, then placed on prepared culture plates and incubated for 24 h at a 25–35°C temperature. Paper disks (10 mm) were soaked in 20 µl of distilled water as a negative control to avoid any influence on bacterial growth (Sarin and Bafna, 2012). Aseptic conditions were maintained via working in a laminar flow. All extracts were tested in biological triplicates, and results were represented as average values of inhibition zones in mm ± standard deviation.

Resazurin-based well plate microdilution method

Resazurin solution was prepared (121.5 mg resazurin powder in 18 ml of ddH2O) and mixed for 1 h (pH = 7.4). TSB liquid medium and *N. cataria* extracts (100 µl each) were added to each well. Plant extract was added in serial dilution to separate wells. Each well was supplied with 106 CFU/ml of bacterial inoculum. Double negative control well was supplied with TSB media only. Single negative control well was supplied with TSB media and bacterial culture. Plates were incubated overnight and then 20 µl of resazurin was added to each well and incubated for another 4 h. Absorbance at 550–590 nm was read via spectrophotometer (SPECTRA MAX M2e plate reader) (Packialakshmi and Naziya, 2014).

DPPH antioxidant assay

The Bersuder (Edewor and Usman, 2011) method was used for antioxidant determination via DPPH radical scavenging assay. All solvent extracts were mixed with DMSO addition and DPPH-ethanol reagent was made separately. Plant-DMSO mix was saturated with DPPH-ethanol reagent for 6 h. Negative control was prepared by dissolving ascorbic acid in DMSO (50–500 µmol/L), which was used to generate calibration curve with 517 nm absorbance read via SPECTRA MAX M2e plate reader (Packialakshmi and Naziya, 2014).

Oxygen radical absorbance capacity assay protocol

Various dilutions of methanolic and extracted samples were mixed with buffered saline (10 mM, pH 7.6). Decaying of fluorescein induced by AAPH was compared to Trolox (positive control) over 120 min to evaluate the antioxidant activity via the SPECTRAMAX M2e Plate reader. Results were presented as µM Trolox Equivalent/100 µl of plant extract.

Statistical analysis

The results of all the experiments were analyzed under a complete randomized design (CRD) with three replications for each treatment. Results were statistically analyzed using GraphPad Prism and Microsoft Office Excel 2016 version. Means were calculated, and one-way analysis of variance (ANOVA) test was performed for multiple comparisons of all the mean values. Mean differences were calculated by least significant difference (LSD) at 0.05 probability.

Results

Nepeta cataria contains medicinally important phytochemicals along with many unknown metabolites that need further studies (Elshikh et al., 2016; Mir et al., 2016). High antioxidant activity was exhibited in acetone extract of *N. cataria*. Moreover, high flavonoid content was found in water and hexane extracts, and methanol extracts were specifically rich in phenols.

Preliminary phytochemical analysis

Qualitative phytochemical analysis of *N. cataria*

Saponins were found in the methanol-based extracts of *N. cataria*. Phenols were positive in all extracts and showed
Qualitative analysis of phytochemicals in polar and non-polar extracts of *Nepeta cataria*. List of phytochemicals from (i) to (xi) were identified in various polar and non-polar extracts. The 2-D structure of phytochemicals are supported via PubChem.

Water-soluble phenols were present in all the polar solvents only. Water insoluble phenols were identified in the ethanol, acetone, and hexane-based extracts. A qualitative test for flavonoids was carried out, and the development of intense yellow color indicates presence of flavonoids (Figure 1). A qualitative test for terpenoids was conducted by observing a reddish-brown coloration development, which confirms the positive test results in all extracts. Cardiac glycosides were indicated via development of green-blue color. Acetone-based extracts were positive only. Free anthraquinones were present in all extracts of *N. cataria* except hexane-based extract. Combined anthraquinones were only present in methanol-based extract of *N. cataria*. Qualitative tests for tannins were found positive only in extraction of polar solvents. Alkaloids were present in all the extracts of *N. cataria*.

DPPH antioxidant activity

Presence of antioxidants was determined in *N. cataria* extracts in a set of different extractions and was measured spectrophotometrically, results were drawn as μmol of ascorbic acid equivalents/L, and the results are given in Figure 2A. The presence of antioxidants was found in the following order: acetone extracts > water extracts > ethanol extracts > methanol extracts > hexane extracts.

Total flavonoid and phenol content

The flavonoids in polar and non-polar extracts of *N. cataria* were quantified in terms of μg of catechin equivalents/ml. Hexane and water-based extracts showed high levels of flavonoids as compared to acetone, methanol, and ethanol-based extracts. Flavonoid results are summarized in Figure 2B. Several other studies prove the presence of flavonoids in *N. cataria* extract and indicate therapeutic potential for lung cancer because of its flavonoid content (Naguib et al., 2012; Yang et al., 2020).

The methanol, ethanol, water, acetone, and hexane extracts of *N. cataria* were examined in terms of μg of gallic acid equivalents per ml to quantify levels of total phenols. Methanol, acetone, and ethanol-based extracts showed the maximum presence of phenols as compared to water and hexane-based extracts. The order of phenolics (Figure 2C) presence in the sample was found as follows:

Methanol extracts > Ethanol extracts > Acetone extracts

> Water extracts > Hexane extracts.

ORAC assay on *N. cataria* extracts

Oxygen radical absorbance capacity was performed to study the antiradical activity in methanol and ethanol extract of *N. cataria*. Results showed two-fold higher ORAC in ethanolic
Quantitative analysis of phytochemicals (A) DPPH mediated antioxidant activity, (B) flavonoids concentration, (C) phenols concentration, (D) oxygen radical absorbance capacity values.

Determination of antibacterial activity

Percentage growth inhibition by 96-well method

Percentage growth inhibition of each tested bacteria, viz., Shigella sonnei, Bacillus subtilis, Klebsiella oxytoca, Escherichia coli, Salmonella enterica, Micrococcus luteus, and Staphylococcus aureus (S. Lactococcus lactis, Listeria monocytogenes, and Citrobacter freundii). Percentage growth inhibition of bacterial isolates is given in Figure 3.

Kirby-Bauer disk diffusion method

Kirby-Bauer disk diffusion method was followed to measure the antimicrobial efficacy of plant extracts by the zone of inhibition (mm) in vitro conditions on solidifying agar media. Chloramphenicol was used as a standard and zone of inhibition was >25 mm for all strains according to CLSI guidelines (Humphries et al., 2018).

Resazurin-based well plate microdilution method

The resazurin method was used to check the antimicrobial efficacy of each prepared plant extract against tested bacterial agents. Chloramphenicol was used as a positive control at 6.25–100 µl/ml dose levels, and data on percentage bacterial growth inhibition was recorded. Plant extract of N. cataria showed a varied efficacy against all the tested bacterial isolates compared to the positive and negative control, and results are presented in Figure 4.

GC/MS analysis of N. cataria

The GC/MS analysis of a methanolic extract of N. cataria showed (68 identified phytochemicals + 48 unmatched) chemicals (Table 2). Analysis of ethanol-based extracts confirmed the existence of 79 known phytochemical constituents, while 31 unmatched chemicals were detected (Table 3). Water-based extracts of N. cataria contain 28 known phytochemicals, while 11 unmatched chemicals were also detected (Table 4). Acetone-based extract confirmed the existence of 13 known compounds’ extract, while 9 chemical
constituents were unmatched (Table 5). Analysis of hexane-based extracts confirmed the presence of 9 known chemical constituents, while 8 unmatched chemicals were detected, as given in Table 6. GC/MS spectral chromatograms of all the solvent-based extracts are given in Figure 5 along with the most abundant metabolite in each extract. In methanol, water, and acetone extract, 1-isopropylcyclohex-1-ene was the most abundant phytochemical. The most abundant metabolite in ethanol extract is 9,12,15-octadecatrienoic acid, and the most abundant phytochemical in hexane extract is 7,9-di-tert-butyl-1-oxaspiro (Figure 5).

Discussion

One of the most well-known species in the genus Nepeta is N. cataria. Several studies have performed qualitative identification of phytochemical constituents from leaves and flowers of N.
TABLE 2 GC/MS analysis of a methanol extract of *N. cataria* using NIST 17 Library showed (68 identified phytochemicals + 48 unmatched) chemicals, arranged according to concentration present.

Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
1-Isopropylcyclohex-1-ene	C₉H₁₆	27.376	124.22	12.402	Methanol
Bicyclo[2.2.1]heptan-2-one	C₇H₁₀O	20.437	110.15	7.728	Methanol
Gamma-Sitosterol	C₂₉H₄⁰O	8.626	414.7	33.566	Methanol
Eucalyptol	C₁₀H₁₈O	8.505	154.249	5.112	Methanol
n-Hexadecanoic acid	C₁₆H₃₂O₂	7.973	256.4241	20.364	Methanol
No match	–	6.419	–	6.933	Methanol
9,12,15-Octadecatrienoic acid	C₁₈H₃₀O₂	6.401	278.43	22.304	Methanol
1-Isopropylcyclohex-1-ene	C₉H₁₆	6.144	124.22	13.699	Methanol
1,6-Octadien-3-ol, 3,7-dimethyl	C₁₀H₁₈O	5.855	154.25	9.981	Methanol
Ethyl 2,5-methyl-5-vinyltet	C₁₃H₂₂O₄	5.845	242.3114	6.551	Methanol
Beta-Sitosterol	C₂₉H₄⁰O	5.461	414.71	32.541	Methanol
No match	–	4.148	–	13.303	Methanol
No match	–	3.893	–	22.205	Methanol
Pentane, 1-chloro-5-methyl	C₅H₁₁Cl	3.739	106.594	10.696	Methanol
No match	–	3.063	–	12.903	Methanol
No match	–	3.008	–	13.718	Methanol
Bicyclo[3.1.0]hexane-2-undec	C₆H₁₀	2.974	82.14	13.804	Methanol
No match	–	2.786	–	26.376	Methanol
Alpha-Amyrin	C₃₀H₄⁰O	2.691	426.729	33.062	Methanol
Pregnan-18-ol, 20-methyl-20	C₂₂H₃₉NO	2.64	333.6	13.916	Methanol
No match	–	2.619	–	11.726	Methanol
No match	–	2.43	–	14.296	Methanol
No match	–	2.074	–	21.141	Methanol
No match	–	2.021	–	14.919	Methanol
No match	–	1.975	–	25.235	Methanol
Caryophyllene oxide	C₂₀H₂₄O	1.916	220.35	15.129	Methanol
No match	–	1.807	–	11.016	Methanol
No match	–	1.659	–	34.964	Methanol
No match	–	1.498	–	16.925	Methanol
No match	–	1.447	–	14.094	Methanol
No match	–	1.436	–	27.233	Methanol
No match	–	1.43	–	35.912	Methanol
2H-1-Benzopyran-2-one, 7-methyl	C₁₃H₁₅NO₂	1.381	217.26	18.071	Methanol
Uvaol	C₂₀H₃₉O₂	1.365	442.7	36.319	Methanol
No match	–	1.326	–	35.143	Methanol
Trans-Z-alpha-Bisabolene	C₁₅H₂₄	1.312	204.35	16.216	Methanol
Ursolic aldehyde	C₃₀H₄⁰O₂	1.302	440.7	34.718	Methanol
No match	–	1.279	–	7.678	Methanol
No match	–	1.245	–	17.965	Methanol
Methyl 8,11,14-heptadecatriene	C₂₁H₃₆O₂	1.22	320.5093	22.864	Methanol
No match	–	1.179	–	12.826	Methanol
Phyto	C₂₀H₄⁰O	1.179	128.1705	21.998	Methanol
No match	–	1.148	–	13.285	Methanol
No match	–	1.08	–	13.897	Methanol
No match	–	1.013	–	28.209	Methanol
No match	–	0.997	–	35.231	Methanol

(Continued)
Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
Octadecanoic acid	C₁₈H₃₆O₂	0.97	284.48	22.623	Methanol
Hexadecanoic acid, methyl est	C₁₇H₃₄O₂	0.954	270.5	19.887	Methanol
No match	–	0.937	–	12.007	Methanol
Methyl 8,11,14-heptadecatriene	C₂₁H₃₆O₂	0.92	320.509	21.853	Methanol
Betulin	C₃₀H₅₀O₂	0.91	442.72	35.472	Methanol
1,1,4a-Trimethyl-5,6-dimethyl	C₁₂H₂₄	0.891	204.35	33.896	Methanol
Coumarin	C₆H₄O₂	0.878	146.1427	13.867	Methanol
No match	–	0.875	–	12.736	Methanol
2H-1-Benzopyran-2-one, 7-methyl	C₁₃H₁₅NO₂	0.826	217.26	17.04	Methanol
No match	–	0.823	–	16.173	Methanol
Methyl 2-hydroxy-octadec-9-en-2-one	C₁₆H₃₂O₃	0.744	272.42	26.101	Methanol
No match	–	0.717	–	13.206	Methanol
(1R,7S, E)-7-Isopropyl-4,10-dodecadiene	C₁₅H₂₄O	0.702	220.3505	17.243	Methanol
No match	–	0.688	–	35.27	Methanol
Campesterol	C₂₈H₄₈O	0.657	400.68	32.877	Methanol
Urs-12-en-28-al	C₃₆H₄₈O	0.654	424.7	35.305	Methanol
2-Butyl-5-methyl-3-2-methyl	C₂₈H₄₈O	0.645	222.37	14.281	Methanol
Caryophylla-4(12),8(13)-dien	C₂₈H₄₈O	0.632	220.350	16.429	Methanol
endo-Borneol	C₂₈H₄₈O	0.623	154.25	8.246	Methanol
1-Methyl-2-methylene-cyclohexene	C₉H₁₈	0.622	110.197	14.61	Methanol
No match	–	0.616	–	27.717	Methanol
Caryophylla-4(12),8(13)-dien	C₂₈H₄₈O	0.603	220.350	17.45	Methanol
Stigmasterol	C₂₅H₄₈O	0.595	412.69	33.091	Methanol
No match	–	0.585	–	14.134	Methanol
No match	–	0.579	–	13.446	Methanol
Tritetracontane	C₃₄H₆₈	0.574	605.2	27.798	Methanol
No match	–	0.566	–	15.531	Methanol
(3S,3αS,7R,9αS)-1,1,7-Triocatadecane	C₃₄H₆₈	0.562	204.3511	19.087	Methanol
Megastigmatriene	C₁₇H₂₈O	0.56	190.28	16.78	Methanol
No match	–	0.553	–	12.88	Methanol
No match	–	0.549	–	11.886	Methanol
Urs-12-en-28-oic acid, 3-hyd	C₃₀H₄₈O₃	0.546	456.7	35.636	Methanol
No match	–	0.545	–	22.421	Methanol
No match	–	0.543	–	12.559	Methanol
3,5-Dimethylcyclohex-1-ene-4-one	C₈H₁₄	0.542	110.2	14.226	Methanol
Eicosanoic acid	C₂₀H₄₀O₂	0.515	312.5304	25.775	Methanol
No match	–	0.486	–	13.019	Methanol
Oleic-12-en-3-ol, acetate,	C₁₈H₃₂O₂	0.486	468.8	32.724	Methanol
Alpha-Tocospiro A	C₂₈H₅₀O₄	0.484	462.7	30.208	Methanol
Cyclohexene,1-propynyl-	C₈H₁₄	0.483	124.22	11.611	Methanol
Alpha-Tocospiro B	C₂₈H₅₀O₄	0.463	462.7049	30.023	Methanol
No match	–	0.447	–	11.436	Methanol
No match	–	0.447	–	12.434	Methanol
Phenol, 2,4-bis 1-methyl-1-p	C₉H₁₂O	0.445	330.5	26.725	Methanol

(Continued)
cateria extract as well as oils from the plant (Edewor and Usman, 2011; Reichert et al., 2018; Azizian et al., 2021). The antibacterial of *N. cataria* from previous research likewise demonstrated sufficient antibacterial activity against *S. aureus*, *K. pneumoniae* and *S. typhi* (Mukhtar and Singh, 2019). The results from our studies corroborate the results exhibited in previous studies. In addition to *N. cataria*, other species of the *Nepta* genus have also been studied extensively for their phytochemical analysis, and among all species, *N. cataria* is the most promising of all species (Azizian et al., 2021).

Several studies corroborate our findings and indicate high DPPH activity in acetone extracts while others exhibit versatile results (Dienaita et al., 2018). Some studies presented more efficient DPPH activity in methanol, 70% ethanol and others in aqueous extract of *N. cataria* (Kraujalis et al., 2011; Mihaylova et al., 2013; Dienaita et al., 2018). Modernized extraction protocols, i.e., ultrasound-based microextraction, are being used to maximize output of phenolic compounds from methanol extract of *N. cataria*, which corroborates with our study (Hajmohammadi et al., 2021). Several other studies also indicate rosmarinic acid as a prominent phenolic compound in *N. cataria* extracts (Hadi et al., 2017).

Water extracts of *N. cataria* exhibit reasonable ORAC activity as per different studies (Dienaita et al., 2018; Baranauskiene et al., 2019). Another study showed excellent radical scavenging properties of *N. cataria* via FRAP assay, which improves the confidence in this plant (Duda et al., 2015).

Among all the treatments, ethanol-based extracts of *N. cataria* showed maximum percentage inhibition of all the tested bacteria at 1,000–250 µg/ml concentration, followed by methanolic extracts at 1,000 and 500 µg/ml dose levels and water-based extracts at 1,000 and 500 µg/ml dose levels. In contrast, acetone and hexane-based extracts of *N. cataria* did not significantly inhibit all the tested bacterial isolates compared to control treatments. Many studies provide insights for the use of *N. cataria* extract in inhibition of *S. aureus* and *B. subtilis* and its oil as a topical treatment of respiratory tract infections (Suschke et al., 2007; Bandh and Kamili, 2011). MIC values indicated that the ethanol-based extract of all *N. cataria* extracts showed maximum inhibition of *B. subtilis*, followed by *C. freundii* and *M. luteus*. At the same time, methanol-based extracts also showed maximum efficacy against *S. sonnei*, *E. coli*, *M. luteus*, and *C. freundii*. Water, acetone, and hexane-based extracts were almost equally effective against tested bacterial isolates, as given in Table 7. Studies indicate promising effect of *N. cataria* extract as antibacterial agent against *S. aureus*, *K. pneumoniae*, and *Salmonella typhi* (Edewor and Usman, 2011). Considering resazurin methodology, by

Table 2 (Continued)

Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
11,11-Dimethyl-4,8-dimethyl	C₂₁H₂₀O	0.429	220.35	16.954	Methanol
No match	–	0.419	–	–	Methanol
Tricyclo [20.8.0.07,16] tria	C₃₀H₅₂O₂	0.413	444.7	18.261	Methanol
No match	–	0.394	–	–	Methanol
1,5,7-Octatrien-3-ol, 3,7-dimethyl	C₁₃H₂₀O	0.39	152.233	8.782	Methanol
2-Pentadecanone, 6,10,14-trin	C₁₆H₂₆O	0.386	268.4778	18.826	Methanol
11,14-Octadecadienoic acid	C₁₈H₃₂O₂	0.364	280.4	22.811	Methanol
No match	–	0.363	–	–	Methanol
Caryophylla-4(12),8(13)-dien	C₁₅H₂₀O	0.358	220.3505	15.937	Methanol
No match	–	0.356	–	–	Methanol
5-Cholesten-3-ol, 24-methyl	C₂₀H₃₄O	0.344	400.7	31.863	Methanol
No match	–	0.325	–	–	Methanol
No match	–	0.323	–	–	Methanol
No match	–	0.322	–	–	Methanol
Neophytadiene	C₁₉H₃₀	0.313	278.5	18.782	Methanol
No match	–	0.304	–	–	Methanol
2-Furamethanol, 5-ethenyle	C₁₉H₂₈O₂	0.287	170.2487	6.078	Methanol
9,12-Hexadecadienoic acid, m	C₁₇H₂₈O	0.273	252.39	21.796	Methanol
Beta-Guaiiene	C₂₁H₂₄	0.271	204.351	32.882	Methanol
6-Hydroxy-4,4,7a-trimethyl-5	C₁₃H₂₀O₃	0.258	196.24	17.648	Methanol
Bicyclo [2.2.1] heptane, 7,7-dimethyl	C₈H₁₆	0.24	124.22	9.955	Methanol
2-Cyclohexene-1-one, 3-methyl	C₁₀H₁₆O	0.23	110.15	11.529	Methanol
Hentriacontane	C₃₁H₆₄	0.188	436.85	28.969	Methanol
Methyl octade-6,9-dien-12-y	C₁₈H₃₂O₂	0.149	280.4	15.763	Methanol
TABLE 3 GC/MS analysis of ethanol extract of *N. cataria* using NIST 17 Library showed (79 identified phytochemicals + 31 unmatched) chemicals, arranged according to concentration present.

Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
No match	–	57.084	–	2.058	Ethanol
No match	–	42.916	–	2.039	Ethanol
9,12,15-Octadecatrienoic acid	C_{18}H_{30}O_{2}	27.308	278.43	17.266	Ethanol
1-Isopropylcyclohex-1-ene	C_{9}H_{16}	25.854	124.22	11.456	Ethanol
1-Isopropylcyclohex-1-ene	C_{9}H_{16}	14.94	124.22	9.585	Ethanol
1-Isopropylcyclohex-1-ene	C_{9}H_{16}	13.741	124.22	9.33	Ethanol
Beta-Sitosterol	C_{29}H_{50}O	13.312	414.71	24.939	Ethanol
n-Hexadecanoic acid	C_{16}H_{32}O_{2}	10.3	256.42	19.386	Ethanol
Alpha-Amyrin	C_{30}H_{50}O	6.667	426.72	25.504	Ethanol
No match	–	4.606	–	16.278	Ethanol
Urs-12-en-28-ol	C_{20}H_{30}O	4.295	462.7	23.833	Ethanol
Methyl 13,14-octadecadienoate	C_{19}H_{34}O_{2}	3.793	294.47	13.689	Ethanol
Octadecanoic acid	C_{18}H_{32}O_{2}	3.65	284.48	17.464	Ethanol
Hexadecanoic acid, ethyl est	C_{18}H_{32}O_{2}	3.315	306.5	21.626	Ethanol
Ethyl 9,12,15-octadecatrieno	C_{20}H_{34}O_{2}	3.068	128.70	16.907	Ethanol
Phytol	C_{20}H_{40}O	2.94	146.14	9.646	Ethanol
1-Chlorosulfonyl-3-methyl-1-	C_{9}H_{14}ClNO_{3}S	2.175	251.73	15.242	Ethanol
Ursolic aldehyde	C_{28}H_{44}O_{2}	1.95	440.7	11.165	Ethanol
No match	–	1.756	–	15.716	Ethanol
No match	–	1.66	–	9.685	Ethanol
4,4,8-Trimethylcyclo [6.3.]	C_{15}H_{26}O_{2}	1.458	238.36	18.101	Ethanol
No match	–	1.456	–	15.943	Ethanol
2H-1-Benzopyran-2-one, 7-met	C_{12}H_{20}O_{2}	1.381	217.26	16.049	Ethanol
No match	–	1.199	–	9.727	Ethanol
Hentriacontane	C_{30}H_{64}	1.197	436.85	20.74	Ethanol
Tetracontane, 3,5,24-trimeth	C_{31}H_{68}	1.194	605.2	20.201	Ethanol
6-Octadecynoic acid, methyl	C_{18}H_{32}O_{2}	1.149	296.48	24.253	Ethanol
Eicosanoic acid	C_{20}H_{40}O_{2}	1.138	312.53	19.118	Ethanol
Sulfurous acid, butyl tetrad	C_{21}H_{44}O_{3}S	1.134	376.6	23.243	Ethanol
Uvaol	C_{20}H_{40}O_{2}	1.125	442.7	24.513	Ethanol
Bicyclo [3.1.0] hexane-2-undec	C_{16}H_{30}	1.108	82.14	12.837	Ethanol
Tetracosamethyl-cyclododecas	C_{34}H_{62}	1.095	224.425	27.703	Ethanol
No match	–	0.864	–	12.821	Ethanol
Octadecanoic acid, 17-methyl	C_{20}H_{40}O_{2}	0.982	312.5	17.68	Ethanol
No match	–	0.939	–	12.875	Ethanol
Methyl 2-hydroxy-octadeca-9,	C_{18}H_{32}O_{3}	0.895	308.5	21.548	Ethanol
2H-1-Benzopyran-2-one, 7-met	C_{19}H_{32}NO_{2}	0.893	217.26	12.956	Ethanol
No match	–	0.864	–	11.045	Ethanol
No match	–	0.865	–	13.906	Ethanol
No match	–	0.836	–	15.628	Ethanol
[1,1′-Bicyclopropyl]-2-octan	C_{22}H_{40}O_{2}	0.823	322.5	16.857	Ethanol
11,14-Octadecadecanoic acid, Betulin	C_{25}H_{40}O_{2}	0.819	280.4	21.561	Ethanol
Betulin	C_{25}H_{40}O_{2}	0.802	442.72	33.839	Ethanol

(Continued)
Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
No match	–	0.772	–	19.585	Ethanol
5-Hydroxymethylfurfural	C₆H₁₀O₃	0.768	126.11	6.985	Ethanol
No match	–	0.754	–	12.601	Ethanol
No match	–	0.742	–	11.881	Ethanol
No match	–	0.727	–	12.675	Ethanol
Urs-12-en-28-oic acid, 3-hyd	C₃₀H₄₈O₃	0.722	456.7	23.776	Ethanol
Sulfurous acid, butyl tetrad	C₁₂H₂₁O₂S	0.667	376.6	22.185	Ethanol
No match	–	0.665	–	11.947	Ethanol
Alpha-Tocospiro A	C₂₉H₄₈O₄	0.654	462.7	22.498	Ethanol
Oleic Acid	C₁₈H₃₄O₂	0.653	282.47	16.515	Ethanol
Tricyclo [20.8.0.0⁶,16] tria	C₁₉H₂₄O₄	0.647	304.38	25.158	Ethanol
No match	–	0.643	–	11.217	Ethanol
Stigmasterol	C₂₉H₄₈O	0.63	412.69	24.507	Ethanol
Methyl 10,11-tetradecadienoa	C₁₅H₂₆O₂	0.573	238.366	10.069	Ethanol
Sulfurous acid, butyl tridec	C₁₇H₃₂O₂S	0.572	320.5	22.897	Ethanol
No match	–	0.562	–	12.242	Ethanol
24-Noroleana-3,12-diene	C₂₉H₄₈O	0.537	394.676	31.418	Ethanol
No match	–	0.534	–	9.47	Ethanol
No match	–	0.517	–	22.775	Ethanol
Cholestan-3-ol, 2-methylene-	C₂₉H₄₈O	0.515	400.7	15.446	Ethanol
Tetracontane, 3,5,24-trimeth	C₄₃H₈₈O	0.506	605.2	25.112	Ethanol
No match	–	0.501	–	26.914	Ethanol
2-Methylindoline	C₉H₁₁N	0.49	133.19	6.58	Ethanol
No match	–	0.481	–	16.473	Ethanol
3,7,11,15-Tetramethyl-2-Hexa	C₂₉H₄₈O	0.457	394.676	31.418	Ethanol
No match	–	0.435	–	10.634	Ethanol
1-Heptatriacotanol	C₂₉H₅₂O	0.432	537	13.943	Ethanol
No match	–	0.424	–	13.177	Ethanol
1R,4S,7S,11R-2,2,4,8-Tetrame	C₁₅H₂₆O	0.419	222.366	31.553	Ethanol
Sulfurous acid, butyl tridec	C₁₇H₃₂O₂S	0.399	320.5	24.233	Ethanol
No match	–	0.395	–	16.248	Ethanol
No match	–	0.375	–	25.618	Ethanol
No match	–	0.369	–	23.972	Ethanol
6-Hydroxy-4,4,7a-trimethyl-5	C₁₂H₁₆O₃	0.367	196.24	16.663	Ethanol
Ethyl 9 cis, 11 trans-octad	C₁₂H₂₀O₂	0.34	310.515	17.345	Ethanol
Tau-Cadinol	C₁₀H₁₆O₂	0.335	222.37	12.143	Ethanol
24(13)-Benzofuranone, 5,6,7,7	C₁₁H₁₆O₂	0.319	180.244	10.757	Ethanol
Glycine, N-[3alpha, 5beta]	C₇H₁₃NO₃Si	0.313	519.8	24.109	Ethanol
Tetracontane, 3,5,24-trimeth	C₂₉H₄₈O	0.304	605.2	20.193	Ethanol
2-Pentadecane, 6,10,14-tri	C₁₀H₂₀O₂	0.298	268.478	17.839	Ethanol
Neophytadiene	C₁₀H₁₆O	0.294	278.5	25.337	Ethanol
2-Pentadecane, 6,10,14-tri	C₁₀H₂₀O₂	0.286	268.478	14.346	Ethanol
2,4-Diaryl-2,5-dimethyl-3	C₈H₁₆O₄	0.284	144.12	3.404	Ethanol
n-Propyl 9,12-hexadecadienoa	C₁₀H₁₈O₂	0.262	294.5	11.116	Ethanol
Tetradecanoic acid	C₁₄H₂₈O₂	0.25	228.3709	13.552	Ethanol

(Continued)
TABLE 3 (Continued)

Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
10,10-Dimethyl-2,6-dimethyl	C13H14	0.199	204.35	12.067	Ethanol
Ergost-5-en-3-ol (3beta)-	C29H48O	0.18	400.7	24.141	Ethanol
Fumaric acid, ethyl 2-methyl	C10H14O2	0.179	198.22	11.356	Ethanol
Tritractonate	C40H68	0.177	605.2	22.18	Ethanol
Aralene, 1,2,3,3a,4,5,6,7-oc	C25H34	0.17	204.35	15.056	Ethanol
(4aS,7S,7aR)-4,7-Dimethyl-2	C20H32O2	0.169	166.217	10.885	Ethanol
cis-5,8,11,14,17-Eicosapenta	C20H32O2	0.148	302.5	13.276	Ethanol
Carbamic acid, N-[1,1-bis tr]	C12H2N2O4	0.124	260.33	13.319	Ethanol
Bicyclo [4.4.0] dec-1-ene, 2-i	C21H14	0.116	204.35	11.54	Ethanol
2-Cyclohexen-1-one, 4,5-dime	C12H10O	0.113	124.18	10.585	Ethanol
12-Methyl-E, E-2,13-octadecad	C16H30O	0.113	280.489	11.164	Ethanol
Stigmasterol	C29H48O	0.102	412.69	24.241	Ethanol
2-Cyclohexen-1-one, 3-methyl	C12H10O	0.083	110.15	8.592	Ethanol
Megastigmatrienone	C31H44O	0.081	190.28	11.924	Ethanol
2,4-Dihydroxy-2,5-dimethyl-3	C8H10O4	0.032	144.12	3.23	Ethanol
Cyclopentanecarboxylic acid	C6H10O2	0.008	114.14	9.434	Ethanol
2-Methylindoline	C7H11N	0.133	183.19	8.12	Ethanol

using combined extractions of all solvents in DMSO, *N. cataria* plant extract at the dose level of 12.5 µg/ml showed maximum inhibition of all the bacterial strains, followed by 6.25 µg/ml. The antibacterial screening of the *N. cataria* from other studies also exhibited sufficient evidence of antibacterial activity against *S. aureus*, *K. pneumoniae*, and *S. typhi* (Morombaye et al., 2018). GC/MS analysis of methanol and ethanol revealed the presence of betulin extracts, which is a promising antitumorigenic candidate and escalates the importance of *N. cataria* in cancer treatment (Liu et al., 2009). Arachidic acid (eicosanoic acid) is used to produce detergents, photographic materials, and lubricants. Caryophyllene oxide is a potential preservative used in food, drugs, and cosmetics. It also displays anti-inflammatory and anti-carcinogenic properties (Salaria et al., 2020). Uvaol also displays anti-inflammatory properties and antioxidant effects (Botelho et al., 2019). Campesterol found in methanol extracts is phytosterol, used in growth induction in animals, commonly abused anabolic steroid in sports can also reduce the absorption of cholesterol in intestine by targeting transporter protein, minimizing the effect of cardiovascular disease (Choudhary and Tran, 2011). Phytol in ethanol has been investigated for its potential anxiolytic, metabolism-modulating, cytotoxic, antioxidant, autophagy- and apoptosis-inducing, anticinocceptive, anti-inflammatory, immune-modulating, and antimicrobial effects (Islam et al., 2018). Phytol is likely the most abundant acyclic isoprenoid compound present in the biosphere and its degradation products have been used as biogeochemical tracers in aquatic environments (Rontani and Volkman, 2003). Phytol is used in the fragrance industry and is used in cosmetics, shampoos, toilet soaps, household cleaners, and detergents (McGinty et al., 2010). Coumarin (2H-1-benzopyran-2-one) in methanol and ethanol is famous for pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, anti-viral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties (Venugopala et al., 2013). Similarly in water extracts, 2-methylindole is used as an intermediate to synthesize dyes, pigments, and pharmaceuticals. Conhydrin is a poisonous alkaloid, when ingested interruption with the central nervous system, paralyzing respiratory muscles and causing failure (Hotti and Rischer, 2017). Likewise, extracts of hexane contain eucalyptol, an active ingredient as a cough suppressant as it controls mucus secretion from airway and asthma via anti-inflammatory cytokines (Juergens, 2014). Hexane soluble constituents confirmed to identification of 7, 9-di-tert-butyl-1-oxaspiro which is used against skin diseases, gonorrhea, migraine, intestinal parasites, and warts (Sharif et al., 2015), and dibutyl phthalate is used in making flexible plastics. In addition to this, several other studies indicate presence of nepetalactone and other terpenoids as essential components of oil extracts of *N. cataria* (Handjieva et al., 2011; Sharma et al., 2019). This study gave a thorough brief of antibacterial and antioxidant activity and its constituents. Present methodology can be beneficial in devising and exploring different bioactive
TABLE 4 GC/MS analysis of water extract of N. cataria using NIST 17 Library showed (79 identified phytochemicals + 31 unmatched) chemicals, arranged according to concentration present.

Compound	Mol. formula	Amount/Conc.%	Mol. weight (g/mol)	RT (Min)	Extract
1-Isopropylcyclohex-1-ene	C₉H₁₆	22.387	124.22	10.657	Water
7-Methylhexahydrocyclopenta	C₆H₁₀O₂	5.399	154.21	11.265	Water
2H-1-Benzopyran-2-one, 7-met	C₁₃H₁₁NO₂	5.336	217.26	14.95	Water
(R)-(-)-14-Methyl-8-hexadecy	C₁₇H₃₄O	5.106	254.4513	10.79	Water
No match	–	4.917	–	15.825	Water
Benzofuran, 2,3-dihydro-	C₇H₈O	4.002	120.15	8.48	Water
Hydro coumarin	C₄H₄O₂	3.699	148.1586	10.843	Water
Bicyclo [3.1.0] hexane-2-undec	C₆H₁₀	3.1	82.14	12.831	Water
No match	–	2.942	–	13.861	Water
Coumarin	C₂H₄O₂	2.265	146.1427	11.545	Water
Cyclopentane carboxylic acid,	C₆H₁₀O₂	2.165	114.14	10.486	Water
13-Tetradec-11-yn-1-ol	C₁₄H₂₄O	2.146	208.34	11.581	Water
No match	–	1.738	–	11.098	Water
No match	–	1.63	–	14.825	Water
No match	–	1.472	–	15.575	Water
(S-2-1R,4R)-4-Methyl-2-oxo	C₄H₆O₃	1.274	102.0886	12.723	Water
(4R,4aR,7S,7aR)-4,7-Dimethyl	C₁₀H₁₈O	1.17	154.25	11.326	Water
Homovanillyl alcohol	C₅H₁₀O₂	1.118	168.19	12.621	Water
2-Cyclohexene-1-one, 4-3-hyd	C₁₃H₁₈O₂	0.997	208.2967	13.984	Water
No match	–	0.932	–	13.036	Water
2-Methylindoline	C₉H₁₁N	0.825	133.19	8.353	Water
(E)-2,6-Dimethylcyclo-3,7-die	C₁₀H₁₈O₂	0.67	170.25	8.078	Water
No match	–	0.562	–	11.045	Water
Ethanolone, 1-2-hydroxyphenyl	C₈H₁₈O₂	0.559	136.15	11.463	Water
2-Methoxy-4vinyl phenol	C₉H₁₈O₂	0.53	9.845	Water	
6-Hydroxy-4,4,7a-trimethyl-5	C₁₁H₁₈O₃	0.496	196.24	15.394	Water
No match	–	0.469	–	3.652	Water
No match	–	0.437	–	5.652	Water
No match	–	0.404	–	16.262	Water
3-Acetylthymine	C₅H₆N₂O₂	0.402	126.1133	13.283	Water
3-Oxo-4-phenylbutyronitrile	C₁₀H₈NO	0.371	159.18	8.215	Water
No match	–	0.337	–	4.368	Water
7-Oxabicyclo [4.1.0] heptan-3-	C₈H₁₂O₂	0.295	114.14	16.821	Water
n-Hexadecanoic acid	C₁₆H₃₂O₂	0.263	256.4241	17.288	Water
1H-Pyrrole-2,5-dione, 3-ethyl	–	0.25	–	8.69	Water
1,7-Octadiene-3,6-diol, 2,6-	C₁₄H₁₈O₂	0.238	170.25	9.271	Water
Conhydrin	C₉H₁₇NO	0.212	143.23	7.847	Water
Methyl 7,8-octadecadienoate	C₁₉H₃₄O₂	0.206	294.4721	12.898	Water
1H-Indene, 1-ethylideneoctah	C₁₁H₁₀	0.07	142.2	14.737	Water

Compounds that can be exploited for the constructing novel antimicrobial agents for alternative therapeutic intervention against several bacterial and viral infections after processing. It may also help to treat different antibiotic-resistant pathogens. Its chemicals if used in pharmacology industries can serve as indigenous, cheaper, and readily available source.

Conclusion

Many aspects of plants were studied, but complete metabolomic profiling and identification of unmatched chemicals remain a question mark. MS-MS analysis of plant metabolites should be considered for knowing the medicinal
TABLE 5 GC/MS analysis of an acetone-based extract of *N. cataria* using NIST 17 Library showed (12 identified phytochemicals + 9 unmatched) chemicals, arranged according to concentration present.

Compound	Mol. formula	Amount/conc. %	Mol. weight (g/mol)	RT (Min)	Extract
Oxime-, methoxy-phenyl-	C₈H₉NO₂	2.849	151.16	3.685	Acetone
1-Isopropylcyclohex-1-ene	C₁₅H₂₆O	29.552	124.22	8.206	Acetone
Caryophyllene oxide	C₁₁H₁₅O	6.868	220.35	11.452	Acetone
(+)-2-Bornanone	C₁₀H₁₆O	8.365	152.23	5.984	Acetone
n-Hexadecanoic acid	C₁₆H₃₃O₂	5.337	256.424	17.237	Acetone
No match		3.443	-	10.391	Acetone
Endo-Borneol	C₁₄H₂₃O	3.083	154.25	6.191	Acetone
Hotrienol	C₁₃H₁₆O	2.947	152.23	7.692	Acetone
No match		2.573	-	13.475	Acetone
(E)-2,6-Dimethylcta-3,7-die	C₁₃H₁₈O₂	2.572	170.25	6.217	Acetone
No match		2.57	-	8.885	Acetone
Cyclopentanecarboxylic acid	C₈H₁₃O₂	2.496	114.14	8.04	Acetone
No match		2.289	-	9.631	Acetone
No match		2.038	-	8.424	Acetone
No match		2.007	-	8.53	Acetone
No match		1.947	-	8.127	Acetone
No match		1.844	-	9.297	Acetone
Eucalyptol	C₁₂H₂₄O	1.513	154.249	5.004	Acetone
No match		1.196	-	7.749	Acetone
Cyclohexane, 1-propyl-	C₁₉H₂₈O	1.093	124.22	7.507	Acetone
alpha-methyl- alpha-[4-methyl]	C₁₃H₂₁NO₂	1.026	129.16	5.292	Acetone
1,7-Octadiene-3,6-diol, 2,6-dimethyl	C₁₃H₂₅O₂	0.819	170.25	7.049	Acetone

TABLE 6 GC/MS analysis of a hexane-based extract of *N. cataria* using NIST 17 Library showed (9 identified phytochemicals + 8 unmatched) chemicals, arranged according to concentration present.

Compound	Mol. formula	Amount/Conc. %	Mol. weight (g/mol)	RT (Min)	Extract
(+)-2-Bornanone	C₁₀H₁₆O	6.809	152.23	9.187	Hexane
Methyl 6,9,12,15,18-heneicos		11.008	-	16.663	Hexane
1,2-Benzenedicarboxylic acid	C₈H₁₀O₄	8.551	166.14	10.181	Hexane
Dibutyl phthalate	C₁₂H₁₂O₄	5.877	278.34	21.611	Hexane
No match		5.199	-	12.947	Hexane
No match		4.075	-	12.537	Hexane
No match		3.969	-	19.713	Hexane
endo-Borneol	C₁₁H₁₄O	3.719	154.25	9.774	Hexane
Benzophenone	C₁₂H₁₀O	3.591	182.217	17.321	Hexane
No match		3.472	-	18.437	Hexane
No match		3.172	-	12.675	Hexane
Tetracontane, 3,5,24-trimeth	C₁₉H₳₅O	2.939	605.2	8.975	Hexane
No match		2.756	-	12.391	Hexane
Benzoic acid, 4-ethoxy-, eth	C₁₀H₁₄O₃	2.535	194.23	15.905	Hexane
7,9-Di-tert-butyl-1-oxaspiro	C₁₇H₂₄O₅	1.956	276.4	20.957	Hexane
No match		1.421	-	12.21	Hexane
No match		1.176	-	17.73	Hexane
FIGURE 5

(A) GC/MS chromatogram of set of extracts of Nepeta cataria showing peaks of metabolites in each extract. (B) The 2-D structures of important phytochemicals are retrieved via PubChem. i. Betulin was most abundant phytochemical in methanol and ethanol (ME), ii. Uvol in ethanol, iii. 2-methyl Indole in water, iv. Eucalyptol in acetone and methanol (AM) and v. 7,9-Di-ter-butyl-1-oxaspiro is most abundant phytochemical in hexane extract.

TABLE 7 Antimicrobial efficacy of N. cataria extracts against a set of gram-negative and gram-positive bacterial strains.

Bacterial pathogens	Zone of inhibition (mm)	Methanol	Ethanol	Water	Acetone	Hexane	Chloramphenicol
Gram negative							
E. coli	15 ± 0.1	14 ± 0.1	12 ± 0.1	0	14 ± 0.1	25 ± 0.1	
K. oxytoca	14 ± 0.2	14 ± 0.1	16 ± 0.1	14 ± 0.2	13 ± 0.3	26 ± 0.1	
S. enterica	13 ± 0.1	14 ± 0.1	0	0	0	0	
S. sonnei	15 ± 0.2	15 ± 0.1	0	16 ± 0.2	14 ± 0.1	26 ± 0.1	
C. perfringens	15 ± 0.2	22 ± 0.4	12 ± 0.1	12 ± 0.2	11 ± 0.1	25 ± 0.2	
Gram positive							
B. subtilis	14 ± 0.1	21 ± 0.5	0	0	14 ± 0.2	31 ± 0.1	
L. lactis	0	0	0	13 ± 0.1	0	25 ± 0.2	
L. monocytogenes	13 ± 0.1	14 ± 0.2	13 ± 0.1	13 ± 0.1	0	25 ± 0.2	
M. luteus	15 ± 0.2	16 ± 0.2	16 ± 0.1	16 ± 0.2	0	26 ± 0.1	
S. aureus	13 ± 0.1	13 ± 0.1	0	0	0	20 ± 0.1	

potential of unknown and novel plant metabolites. Data compilation and individual chemical studies need a larger scale with a set of skills to combat emerging diseases. Yet, to the best of our knowledge, the concluded information, reported results, and this research is comprehensive to the best of our scale, our team tried to achieve.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.
Author contributions

Practical performance and data compilation were performed solely by AN. Experimental assistance for GC/MS, and antibacterial analysis was given by BA. Data analysis was performed by HS. Manuscript drafting and proofreading were conducted by HS, in assistance with MW and AT. All authors contributed to the study design and implementation. All authors contributed to the article and approved the submitted version.

Funding

The authors acknowledge the Higher Education Commission, Government of Pakistan, for funding part of the research under the International Research Support Initiative Program (IRSIP) at the University of Massachusetts, USA.

Acknowledgments

The authors acknowledge the Higher Education Commission, Government of Pakistan and University of Massachusetts, USA, for providing us with the research facilities and support to publish this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Adiguzel, A., Ozer, H., Sokmen, M., Gulluce, M., Sokmen, A., Klic, H., et al. (2009). Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Polish J. Microbiol. 58, 69-76. Available at: www.microbiology.pl/pjm

Angelini, P., Pagiotti, R., Menghini, A., and Vianello, B. (2006). Antimicrobial activities of various essential oils against foodborne pathogenic or spoilage moulds. Ann. Microbiol. 56, 65-69. doi: 10.1007/BF03174972

Atrizian, T., Alirezaei, A., Hassan, A., Bahadori, S., and Sonboli, A. (2021). Phytochemical analysis of selected Nepeta species by HPLC-ESI-MS/MS and GC-MS methods and exploring their antioxidant and antifungal potentials. J. Food Meas. Charact. 15, 2417-2429. doi: 10.1007/s11694-021-0819-8

Bandh, S., and Kamili, A. (2011). Evaluation of antimicrobial activity of aqueous extracts of Nepeta cataria Cellular and Humoral Immune Responses following Immunization with Surface/excretory secretory Antigens of Abomasal Nematodes of Sheep View project BOOK PROJECTS View project. Artic. J. Pharm. Res. Available online at: https://www.researchgate.net/publication/235769154 (accessed July 14, 2022).

Baranauskienė, R., Bendziuvienė, V., Ragazinkienė, O., and Venskutonis, P. R. (2019). Essential oil composition of five Nepeta species cultivated in Lithuania and evaluation of their bioactivities, toxicity and antioxidant potential of hydrodistillation residues. Food Chem. Toxicol. 129, 269-280. doi: 10.1016/j.fct.2019.04.039

Botello, R. M., Tenorio, I. P. G., Silva, A. L. M., Tanabe, E. L. L., Pires, K. S. N., Gonçalves, C. M., et al. (2019). Biomechanical and functional properties of trophoblast cells exposed to Group B Streptococcus in vitro and the beneficial effects of ultrasound treatment. Biochim. Biophys. Acta Gen. Subj. 1863, 1417–1428. doi: 10.1016/j.bbagrm.2016.06.012

Bourrel, C., Perineau, F., Michel, G., and Bessiere, J. M. (2011). Catnip (Nepeta cataria L.) essential oil: analysis of chemical constituents, bacteriostatic and fungicidal properties. J. Essent. Oil Res. 5, 159-167.

Choudhary, S., and Tran, L. (2011). Phytosterols: perspectives in human nutrition and clinical therapy. Curr. Med. Chem. 18, 4557–4567. doi: 10.2174/092986711797287593

Dabiri, M., and Sefidkon, F. (2003). Chemical composition of Nepeta crassifolia Boiss. and Buhse oil from Iran. Flavour Fragr. J. 18, 225–227. doi: 10.1002/jff.1199

Dernaite, L., Pakaliskiene, M., Matius, A. A., Pereira, C. V., Pakaliskas, A., and Venskutonis, P. R. (2018). Valorization of six Nepeta species by assessing the antioxidant potential, phytochemical composition and bioactivity of their extracts in cell cultures. J. Funct. Foods 45, 512–522. doi: 10.1016/j.jff.2018.04.004

Duda, S. C., Mártinghács, L. A., Dezimirean, D., Duda, M., Márgiósos, R., and Boba, O. (2015). Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: effect of harvest time and plant species. Ind. Crops Prod. 77, 499–507. doi: 10.1016/j.indcrop.2015.09.045

Edewor, I. T., and Uman, A. L. (2011). Phytochemical and antibacterial activities of leaf extracts of Nepeta cataria. African J. Pure Appl. Chem. 5, 503–506. doi: 10.5897/AJPAC11.074

Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., et al. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 38, 1015–1019. doi: 10.1007/s10529-016-2079-2

Ergün, Z. (2021). Seed oil content and fatty acid profiles of endemic Phoenix theophrasti greuter, Phoenix roebelenii o’Brien, Phoenix canariensis hort. ex chaubaud, and Phoenix dactylifera1 grown in the same locality in Turkey. Turk. J. Agric. For. 45, 557–564. doi: 10.9766/tarf-2103-34

Frolova, N., Ukhanets, A., Koroblyova, O., and Voskodhikovsky, V. (2020). Plants of Nepeta cataria var. citridora Beck. and essential oils from them for food industry. Potravin. J. Food Sci. 13, 449–455. doi: 5219/1109

Giarratana, F., Muscolino, D., Zitto, G., Lo Presti, V., Rao, R., Chiofalo, V., et al. (2017). Activity of Catmint (Nepeta cataria) essential oil against Anisakis larvae. Trop. Biomed. 34, 22–31.

Gilani, A. H., Shah, A. J., Zuhair, A., Khalid, S., Khan, J., Ahmed, A., et al. (2009). Chemical composition and mechanisms underlying the spasmodic and bronchodilatory properties of the essential oil of Nepeta cataria L. J. Ethnopharmacol. 121, 405–411. doi:10.1016/j.jep.2008.11.004

Hadi, N., Sefidkon, F., Shojaieyran, A., Siler, B., and Jafari, A. A., Anicic, N., et al. (2017). Phenolics’ composition in four endemic Nepeta species from Iran cultivated under experimental field conditions: the possibility
the exploitation of Nepeta germain. Ind. Crops Prod. 95, 475–484. doi: 10.1016/j.indcrop.2016.10.059

Hajemohammadi, M. R., Najafi Ali, Pashaki, S., Rajab Dizavandi, Z., and Amini, A. (2021). Ultrasound-assisted vesicle-based microextraction as a novel method for determination of phenolic acid compounds in Nepeta cataria L. samples. J. Iran. Chem. Soc. 18, 1559–1566. doi: 10.1007/s13738-020-02131-6

Handjiev, N. V., Popov, S. S., and Evstatieva, L. N. (2011). Constituents of essential oils from Nepeta cataria L., N. grandiflora M.B. and N. nuda L. 8, 639–643. doi: 10.1016/j.jhpharm.1995.9701032

Hinkov, A., Angelova, P., Marchev, A., Hodchev, Y., Tirovkov, V., Dragolova, D., et al. (2020). Nepeta nuda spp. nuda L. water extract: inhibition of replication of some strains of human alpha herpes virus (genus simplex virus) in vitro, mode of action and NMR-based metabolomics. J. Herb. Med. 21, 100334. doi: 10.1016/j.thermed.2020.100334

Hott, H., and Rischer, H. (2017). The killer of Socrates: cocaine and related alkaloids in the plant kingdom. Molecule. 22, 1612. doi: 10.3390/molecules22111962

Humphries, R. M., Ambler, I., Mitchell, S. L., Castanheira, M., Dingle, T., Hindler, J. A., et al. (2018). CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 56, e1934–e1. doi: 10.1128/JCM.01934-17

Islam, M. T., Ali, S. E., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., et al. (2018). Phytol. a review of biomedical activities. Food Chem. Toxicol. 121, 82–94. doi: 10.1016/j.fct.2018.03.016

Juergens, U. R. (2014). Anti-inflammatory properties of the monoterpene 18- cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res. (Stuttg). 64, 638–646. doi: 10.1007/s00439-013-27369-9

Kaewprom, K., Chen, Y. H., Lin, C. F., Chiao, M. T., and Lin, C. N. (2017). Antiviral activity of Thymus vulgaris and Nepeta cataria hydrosols against porcine reproductive and respiratory syndrome virus. Thai J. Vet. Med. 47, 25–33.

Khan, T., Khan, M. A., Mushwani, Z., ur, R., Ullah, N., and Nadhman, A. (2021). Therapeutic potential of medicinal plants against COVID-19: the role of antiviral medicinal metabolites. Biocat. Agric. Biotechnol. 31, 101890. doi: 10.1016/j.bcab.2020.101890

Krajuja, P., Rimantas Venckutonis, P., and Ragazinskienė, O. (2011). “Antioxidant activities and phenolic composition of extracts from nepeta plant species,” in Proceedings of the 6th Baltic Conference on Food Science and Technology.

Liu, H., Wang, S., Cai, B., and Yao, X. (2009). Anticancer activity of compounds isolated from Engelhardia serrata Stem Bark. Pharm. Biol. 47, 475–477. doi: 10.3109/138802009890928

Lucas-Abellán, C., Mercader-Ros, M. T., Zafrilla, M. P., Fortea, M. J., Gahalád, J. A., and Núñez-Delcán, E. (2008). ORAC-fluorescent assay to determine the oxygen radical absorbance capacity of reaverolized complexed in cyclodextrins. J. Agric. Food Chem. 56, 2225–2239. doi: 10.1021/jf0731088

Mamadalieva, N. Z., Akramov, D. K., Ovidi, E., Tuezii, A., Nahar, L., Azimova, S. S., et al. (2017). Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: ethnopharmacology, essential oils composition, and biological activities. Medicine. 4, 8. doi: 10.3390/medicines4010008

McGinty, D., Letizia, C. S., and Api, A. M. (2010). Fragrance material review on Caralluma fimbriyata. J. Perfum. Sci. Res. 4, 8. doi: 10.3390/jsr4010008

Mihaylova, D., Popova, A., and Deseva, I. N. (2013). In vitro antioxidant activity and phenolic composition of Nepeta cataria L. extracts. Int. J. Agric. Sci. Technol. 1, 74–79.

Mir, M. A., Parihar, K., Tabasum, U., Kumar, E., Mir, A., and Amin Mir, M. (2016). Estimation of alkaloid, saponin and flavonoid content in various extracts of Crocus sativus. J. Med. Plants Stud. 4, 171–174.

Morombyae, S. M., Kangog, M., Revathi, G., Nyereere, A., Ochora, J., Morombyae, S. M., et al. (2018). Evaluation of the antimicrobial effect of Nepeta cataria and Basella alba against clinically resistant Acinetobacter baumannii in Nairobi, Kenya. Adv. Microb. Life Sci. 8, 790–803. doi: 10.1556/AM/2018.010052

Mukhtar, H. M., and Singh, G. P. (2019). Pharmacognoistic and phytochemical investigations of aerial parts of Nepeta cataria Linn. Asian J. Pharm. Pharmacol. 5, 810–815. doi: 10.31024/ajpp.2019.5.4.23

Nadem, A., Ahmed, B., Shahzad, H., Craker, L. E., and Muntean, T. (2021). Verbacum Thapsus (Mullein) versatile polarity extracts: GC-MS analysis, phytochemical profiling, anti-bacterial potential and anti-oxidant activity. Res. Artic. Pharmacoc. J. 13, 1488–1497. doi: 10.5530/jp.2021.13.189

Naghiu, A. M. M., Ebrahim, E. M., Aly, H. F., Metawaa, H. M., Mahmoud, A. H., Mahmoud, E. A., et al. (2012). Phytochemical screening of Nepeta cataria extracts and their in vitro inhibitory effects on free radicals and carbohydrate-metabolising enzymes. Nat. Product Res. 26, 2196–2198. doi: 10.1080/17486419.2011.53542

Narimani, R., Moghadam, M., Ghasemi Firbalouti, A., and Mojarah, S. (2017). Essential oil composition of seven populations belonging to two Nepeta species from Northwestern Iran. Int. J. Food Prop. 20, 2272–2279. doi: 10.1080/10992912.2017.1369104

Ozkan, K., Karadag, A., and Sagdic, O. (2021). Determination of the in vitro bioaccessibility of phenolic compounds and antioxidant capacity of Juniper berry (Juniperus drupacea Labill.) pectum. Turk. J. Agric. For. 45, 290–300. doi: 10.3906/tar-2009-2

Pacikalamshii, N., and Nazia, S. (2014). Phytochemical and antimicrobial screening of the polar and non-polar solvent extract of Caralluma fimbryata. Int. J. Pure Appl. Biosci. 3, 32–37. doi: 10.3126/ijjab.v2i3.10796