Effects of feeding level on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum)

Youngjun Na1, Dong Hua Li1, Yongjun Choi1, Kyoung Hoon Kim2,3, and Sang Rak Lee1,*

Objective: Two experiments were conducted to determine the effects of feeding level on nutrient digestibility and enteric methane (CH4) emissions in growing goats and Sika deer.

Methods: Three growing male goats (initial body weight [BW] of 22.4±0.9 kg) and three growing male deer (initial BW of 20.2±4.8 kg) were each allotted to a respiration-metabolism chamber for an adaptation period of 7 d and a data collection period of 3 d. An experimental diet was offered to each animal at one of three feeding levels (1.5%, 2.0%, and 2.5% of BW) in a 3×3 Latin square design. The chambers were used for measuring enteric CH4 emission.

Results: Nutrient digestibility decreased linearly in goats as feeding level increased, whereas Sika deer digestibility was not affected by feeding level. The enteric production of CH4 expressed as g/kg dry matter intake (DMI), g/kg organic matter intake, and % of gross energy intake decreased linearly with increased feeding level in goats; however, that of Sika deer was not affected by feeding level. Six equations were estimated for predicting the enteric CH4 emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: CH4 (g/d) = 6.2 (±14.1)+10.2 (±7.01)×DMI (kg/d)+0.0048 (±0.0275)×dry matter digestibility (DMD, g/kg)–0.0070 (±0.0187)×neutral detergent fiber digestibility (NDFD; g/kg). For Sika deer, equation 4 was found to be of the highest accuracy: CH4 (g/d) = –13.0 (±30.8)+29.4 (±3.93)×DMI (kg/d)+0.046 (0.094)×DMD (g/kg)–0.0363 (±0.0636)×NDFD (g/kg).

Conclusion: Increasing the feeding level increased CH4 production in both goats and Sika deer, and predictive models of enteric CH4 production by goats and Sika deer were estimated.

Keywords: Capra hircus hircus; Cervus nippon hortulorum; Methane; Greenhouse Gas; Feeding Level

INTRODUCTION

Enteric methane (CH4) production in ruminants is recognized as one of the major sources of greenhouse gas emissions associated with agriculture [1]. Although a large number of goats and Sika deer inhabit East Asia [2], few studies have estimated enteric CH4 production of goats and Sika deer. Enteric CH4 production by ruminants is generally influenced by various dietary factors such as the forage-to-concentrate ratio [3], carbohydrate type [2,4], forage processing [5], fat addition [6], and ionophore addition [7]. Fundamentally, because enteric methane production is a part of the energy utilization process of ruminants, the amount of feed intake has been suggested as the major factor driving enteric CH4 production. Changes of feed intake level affect passage rate and rumen fermentation characteristics and, thereby, can alter nutrient digestibility and CH4 production of the animal [8]. Therefore, the aims of the present study were i) to determine the effects of feeding level on nutrient digestibility and enteric CH4 production and ii) to estimate the for the respective enteric CH4 produc-
tion prediction equations for growing goats and Sika deer.

MATERIALS AND METHODS

Experiments were conducted to determine the nutrient digestibility and enteric CH$_4$ and CO$_2$ emissions in goats (*Capra hircus hircus*) and Sika deer (*Cervus nippon hortulorum*) in accordance with the Institutional Animal Care and Use Committee of Konkuk University.

Animals, diets, and experimental design

Three growing male goats (initial body weight [BW] of 22.4±0.9 kg) and three growing male deer (initial BW of 20.2±4.8 kg) were used in this study. Each animal was housed individually in a respiration-metabolism chamber as described by Li et al [9] for a diet adaptation period of 7 d and a data collection period of 3 days [10,11]. The same experimental diet was prepared and used for both goat and deer experiments (Table 1), and animals were randomly assigned to one of three feeding levels (1.5%, 2.0%, or 2.5% of BW), which were applied in a 3×3 Latin square design. Experimental diets were fed daily at 1100 h, and water and mineral block (containing 3,250 K IU/kg vitamin A, 500 K IU/kg vitamin D, 2,500 IU/kg vitamin K, 200 mg/kg vitamin B$_6$, 200 mg/kg vitamin B$_2$, 250 μg/kg vitamin B$_12$, 3,500 mg/kg niacin, 9,000 mg/kg choline chloride, 48,000 mg/kg methionine, 10,200 mg/kg glycine, 100 mg/kg β-carotene, 254 g/kg calcium, 38 g/kg phosphorus, 4,000 mg/kg manganese, 9,050 mg/kg zinc, 4,500 mg/kg iron, 200 mg/kg iodine, 45 mg/kg cobalt, 11,000 mg/kg magnesium, 2,300 mg/kg copper, 92 mg/kg selenium) were freely accessible. Sampling unit was feces which collected daily (n = 3 d/animal). Total fecal samples were collected at 1000 h and immediately dried for subsequent chemical analysis. Digestibility coefficients were calculated by the following formula: nutrient digestibility (%) = [nutrient intake (g) – nutrient in the fecal (g)]/nutrient intake (g)×100. Experimental unit was animal (n = 3 animals/treatment).

Chemical analysis

Feed ingredients and fecal samples were analyzed in duplicate for dry matter (DM), organic matter (OM), crude protein (CP), and ether extract as described by AOAC [12]. Neutral detergent fiber (NDF) was analyzed using heat stable α-amylase (Sigma A3306; Sigma Chemical Co., St. Louis, MO, USA) according to the method described by Van Soest et al [13]. Gross energy (GE) was analyzed using a bomb calorimeter (C5000; IKA, Staufen, Germany).

Gas production measurement

A respiration-metabolism chamber system was used to measure enteric CH$_4$ and CO$_2$ production [9], and a gas flow meter (GF557, Aalborg Instruments & Controls Inc., Orangeburg, NY, USA) and a sample pump (Columbus Instruments, Columbus, OH, USA) were used to collect inlet and outlet gas samples. Collected gas samples were passed through a desiccant (CaSO$_4$) before the samples flew into the gas analyzer. A non-dispersive infrared gas analyzer (VA-3000; Horiba Stec Co., Kyoto, Japan) was used to analyze the concentrations of CH$_4$ and CO$_2$.

Statistical analysis

All variables were analyzed using SAS PROC MIXED (Version 9.2; SAS Institute Inc., Cary, NC, USA). The statistical model included treatment as a fixed effect and animal and period as random effects. The orthogonal polynomial contrast was tested using the CONTRAST statement to examine the linear and quadratic effects of feeding level on the response variables. Significant differences were declared at p<0.05, and trends were defined at 0.05≤p<0.10. SAS PROC REG (Version 9.2; SAS Institute Inc., USA) was used to estimate simple and multiple linear equations. Equations were evaluated based on the root mean square error (RMSE), adjusted-R2, and the p-value.

RESULTS

Dry matter intake (DMI) of both goats and Sika deer increased linearly (p<0.05) as feeding level increased (Table 2). The DM, OM, CP, and neutral detergent fiber digestibility (NDFD) of goats decreased linearly (p<0.05) as the feeding level increased. However, the DM, OM, CP, and NDFD of Sika deer did not differ significantly among feeding level treatment groups.

In goats, enteric emission of CH$_4$ expressed as g/d and g/kg BW$^{0.75}$ increased linearly (p<0.05) with increasing feeding level (Table 3); however, when expressed as g/kg DMI, g/kg organic matter intake (OMI), and % of gross energy intake (GEI), it decreased linearly (p<0.05) with increasing feeding level. No difference in enteric CH$_4$ production when expressed as g/kg digested dry matter intake (DDMI) and g/kg digested organic matter intake (DOMI) was observed among feeding

Table 1. Ingredients and nutrient composition of experiment diets

Items	Experimental diet
Ingredients (%; DM basis)	
Ground corn	25.5
Soybean meal	24.5
Tall fescue, hay	50.5
Nutrient composition	
DM (%)	89.3
OM (%) DM	92.1
CP (%) DM	16.0
NDF (%) DM	44.0
GE (MJ/kg DM)	15.9

DM, dry matter; OM, organic matter; CP, crude protein; NDF, neutral detergent fiber; GE, gross energy.
levels. In Sika deer, enteric emission of CH$_4$ expressed as g/d and g/kg BW$^{0.75}$ increased linearly (p<0.05) with increasing feeding level, while it was not affected by feeding level when expressed as g/kg DMI, g/kg OMI, or % of GEI. In goats, CO$_2$ production expressed as g/d and g/kg BW$^{0.75}$ increased linearly (p<0.05) with increasing feeding level, and in Sika deer, enteric CO$_2$ production expressed as g/kg was not affected by feeding level. However, CO$_2$ production expressed as g/kg BW$^{0.75}$ increased linearly (p<0.01) with increasing feeding level.

For goats, the model that used the DMI, DM digestibility (DMD), and NDFD as independent variables (equation 1), was most accurate (Table 4; R2 = 0.69, RMSE = 1.05, and p = 0.096), whereas for Sika deer, the model that used the DMI, DMD, and NDFD as independent variables, was most accurate (R2 = 0.95, RMSE = 0.98, and p = 0.001).

DISCUSSION

The amount of feed intake is fundamentally important for animals because it directly affects animal productivity. In general, feeding level and nutrient digestibility in ruminants are negatively correlated [14,15] because a change in feeding level can alter the passage rate and fermentation pattern of the reticulo-rumen [16]. In the current experiment, the nutrient

Items	Feeding level (% of BW)	p-value				
	1.5	2.0	2.5	SEM	Linear	Quadratic
Dry matter intake (g)						
Goats						
Sika deer						
Digestibility (%)						
Goats						
Sika deer						

BW, body weight; SEM, standard error of the mean; DM, dry matter; OM, organic matter; CP, crude protein; NDF, neutral detergent fiber.

Items	Feeding level (% of BW)	SEM	p-value			
	1.5	2.0	2.5	Linear	Quadratic	
Goats						
Sika deer						
CH$_4$ production						
CH$_4$ (g/d)						
CH$_4$ (g/kg BW$^{0.75}$)						
CH$_4$ (% of GEI)						
CH$_4$ (g/kg DMI)						
CH$_4$ (g/kg OMI)						
CH$_4$ (g/kg DOMI)						
CO$_2$ production						
CO$_2$ (g/d)						
CO$_2$ (g/kg BW$^{0.75}$)						

BW, body weight; SEM, standard error of the mean; CH$_4$, methane; GEI, gross energy intake; DMI, dry matter intake; DDMI, digested dry matter intake; OMI, organic matter intake; DOMI, digested organic matter intake; CO$_2$, carbon dioxide.
digested by intermediate-type and grass/roughage eaters, it seems that the overall effect of feeding level on enteric CH₄ production can be diminished in Sika deer. In both goats and Sika deer, enteric CH₄ production expressed as g/kg DDMI and g/kg DOMI did not differ statistically. Although digestibility is difficult to measure and requires complex equipment, Na et al [3] reported that digested nutrient intake is a critical factor that explains CH₄ production in goats and Sika deer. Therefore, digested nutrient intake can be used as a CH₄ prediction factor when the experimental condition allows. Mineral salt supplementation can influence the enteric methane emission and methanogenic archaea population in rumen [30]. In the current study, mineral block intake did not measure, however, it appears that the effect of mineral block was slight because the animals can freely access to the mineral block.

The models that used nutrient digestibility as a factor exhibited the greatest accuracy in this as well as other experiments [3,31]. However, equations 3 and 4, which used the DMI as the only factor, can also be used to predict enteric CH₄ because the model without digestibility is more practical. To our knowledge, only one other study has predicted CH₄ production in goats and Sika deer. Therefore, the models evaluated in the current study contribute to our understanding of enteric CH₄ emissions in Sika deer.

CONCLUSION

Nutrient digestibility of goats decreased linearly as the feeding level increased, whereas the digestibility of Sika deer was not affected by feeding level. The enteric production of CH₄ expressed as g/kg DDMI, g/kg OMI, and % of GEI decreased linearly with increasing feeding levels in goats. However, enteric production of CH₄ expressed as g/kg DDMI, g/kg OMI, and % of GEI in Sika deer were not affected by feeding level.

CONFLICT OF INTEREST

We certify that there is no conflict of interest with any financial
organization regarding the material discussed in the manuscript.

ACKNOWLEDGMENTS

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio Industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (314010-4).

REFERENCES

1. Intergovernmental Panel on Climate Change. 2006 IPCC guidelines for national greenhouse gas inventories. Kamiyama-guchi, Japan: Intergovernmental Panel on Climate Change; 2006.
2. Robinson PH, Udén P, Wiseman J, Mateos GG. Some suggestions and guidelines for preparation of manuscripts for submission for consideration for publication. Anim Feed Sci Technol 2007;134:181-8.
3. Na Y, Li DH, Lee SR. Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (Capra hircus hircus) and Sika deer (Cervus nippon hortulorum). Asian-Australas J Anim Sci 2017;30:967-72.
4. Moe PW, Tyrrell HF. Methane production in dairy cows. J Dairy Sci 1979;62:1583-6.
5. Okine EK, Mathison GW, Hardin RT. Effects of changes in frequency of reticular contractions on fluid and particulate passage rates in cattle. J Anim Sci 1989;67:3388-96.
6. Jeong C-D, Mamuad LL, Kim S-H, et al. Effect of soybean meal and soluble starch on biogenic amine production and microbial diversity using in vitro rumen fermentation. Asian-Australas J Anim Sci 2015;28:50-7.
7. Goodrich RD, Garrett JE, Gast DR, et al. Influence of monensin on the performance of cattle. J Anim Sci 1980;58:1484-98.
8. Shaver RD, Nytes AJ, Satter LD, Jorgensen NA. Influence of amount of feed intake and forage physical form on digestion and passage of prebloom alfalfa hay in dairy cows. J Dairy Sci 1986;69:1545-59.
9. Li DH, Kim BK, Lee SR. A respiration-metabolism chamber system for measuring gas emission and nutrient digestibility in small ruminant animals. Rev Colomb Cienc Pecu 2010;23:444-50.
10. Omed HM. Studies of the relationships between pasture type and quality and the feed intake of grazing sheep [PhD thesis]. Bangor, UK: University College of North Wales; 1986.
11. Cardinal R, Calomeni GD, Cônsolo NRB, et al. Influence of polymer-coated slow-release urea on total tract apparent digestibility, ruminal fermentation and performance of Nellore steers. Asian-Australas J Anim Sci 2017;30:34-41.
12. AOAC International, Cunniff P. Official methods of analysis of AOAC International. Arlington, VA: AOAC International; 1995.
13. Van Soest PJ, Robertson JR, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97.
14. Blaxter KL, Wainman FW. The utilization of food by sheep and cattle. J Agric Sci 1961;57:419-25.
15. Watson CJ, Davidson WM, Kennedy JW, Robinson CH, Muir GW. Digestibility Studies with ruminants: XII. The comparative digestive powers of sheep and steers. Sci Agric 1948;28:357-74.
16. Terry RA, Tilley JMA. Volatile fatty acid determinations on sheep rumen liquor. Exp Prog Grassld Res Inst 1961;13:79-80.
17. Fenner H, Dickinson FN, Barnes HD. Relationship of digestibility and certain rumen fluid components to level of feed intake and time of sampling after feeding. J Dairy Sci 1967;50:334-44.
18. Ammann AP, Cowan RL, Mothershead CL, Baumgardt BR. Dry matter and energy intake in relation to digestibility in white-tailed deer. J Wildl Manage 1973;2:195-201.
19. Drozdz A, Osiecki A. Intake and digestibility of natural foods by roe-deer. Acta Theriol (Warsz) 1973;18:81-91.
20. Koch RM, Jung HG, Crouse JD, Varel VH, Cundiff LV. Growth, digestive capability, carcass, and meat characteristics of Bison bison, Bos taurus, and Bos × Bison. J Anim Sci 1995;73:1271-81.
21. Richmond RJ, Hudson RJ, Christopherson RJ. Comparison of forage intake and digestibility by bison, yak and cattle [Internet]. Agric Bull; 1976. Available from: http://agris.fao.org/agrisearch/search.do?recordID=CA19770190262
22. Galbraith JK, Mathison GW, Hudson RJ, McAllister TA, Cheng K-J. Intake, digestibility, methane and heat production in bison, wapiti and white-tailed deer. Can J Anim Sci 1998;78:681-91.
23. Islam M, Abe H, Hayashi Y, Terada F. Effects of feeding Italian ryegrass with corn on rumen environment, nutrient digestibility, methane emission, and energy and nitrogen utilization at two intake levels by goats. Small Rumin Res 2000;38:165-74.
24. Hofmann RR. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 1989;78:443-57.
25. Sauvant D, Giger-Reverdin S. Variations in the production of CH₄, per unit of digestible organic matter intake. Proc Xle ISRP; 2009, pp. 350-1.
26. Beauchemin KA, McGinn SM. Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Can J Anim Sci 2006;86:401-8.
27. Blaxter KL, Clapperton JL. Prediction of the amount of methane produced by ruminants. Br J Nutr 1965;19:511-22.
28. Dewhurst RJ, Evans RT, Scollan ND, et al. Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of ruminant function. J Dairy Sci 2003;86:2612-21.
29. Pinares-Pañño CS, Waghorn GC, Machmüller A, et al. Methane emissions and digestive physiology of non-lactating dairy cows...
fed pasture forage. Can J Anim Sci 2007;87:601-13.
30. Li X, Liu C, Chen Y, et al. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows. Anim Sci J 2017;88:1049-57.

31. Patra AK, Lalhriatpuii M. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agric Ecosyst Environ 2016;215:89-99.