SCABIOSA COLUMBARIA: A REVIEW OF ITS MEDICINAL USES, PHYTOCHEMISTRY, AND BIOLOGICAL ACTIVITIES

ALFRED MAROYI*

Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: amaroyi@ufh.ac.za

Received: 02 May 2019, Revised and Accepted: 14 June 2019

ABSTRACT

Scabiosa columbaria is a perennial herb widely used as herbal medicine throughout its distributional range in tropical Africa, Asia, and Europe. This study is aimed at providing a critical review of the biological activities, phytochemistry, and medicinal uses of *Scabiosa columbaria*. Documented information on biological activities, medicinal uses, and phytochemistry of *S. columbaria* was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, ScienceDirect, Elsevier, PubMed, and Web of Science. Additional information on the biological activities, phytochemistry, and medicinal uses of *S. columbaria* was gathered from pre-electronic sources such as books, journals, articles, theses, and scientific publications sourced from the university library. This study showed that the aerial parts, leaves, roots, stems, and the whole plant parts of *S. columbaria* are used as colic, love charm and for magical purposes, and as herbal medicine for eye problems, heartburn, respiratory problems, wounds, female infertility, venereal diseases, skin infections, and menstrual problems. Phytochemical compounds identified from the aerial parts and roots of *S. columbaria* are glycoside scabiosin, loganic, sveroside, palmitic acid, phthalic acid, diisooctyl phthalate, bis-(ethylhexyl) phthalate, and dibutyl phthalate. Pharmacological research revealed that *S. columbaria* extracts and compounds have antibacterial, antifungal, and antiprotozoan activities. Future research should focus on evaluating the phytochemical, pharmacological, and toxicological properties of *S. columbaria* crude extracts as well as compounds isolated from the species.

Keywords: *Caprifoliaceae*, *Dipsacaceae*, Ethnopharmacology, Herbal medicine, Indigenous pharmacopeia, *Scabiosa columbaria*.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i8.34229

INTRODUCTION

Scabiosa columbaria L. is a member of the *Dipsacaceae* or teasel family. Although the species is often included in the family *Caprifoliaceae* in some classification systems [1-3], the phylogenetic analyses of both the chloroplast and nuclear genomes as well as their combination show that *Dipsacaceae* is a monophyletic group [4-11]. The *Dipsacaceae* family contains about 300 species of annual and perennial herbs or shrubs that have been recorded mainly in the Mediterranean Basin, with about 20% distributed in Asia, Eastern and Southern Africa [7,1,12]. The genus *Scabiosa* L. has been recorded in Europe, primarily in the Mediterranean Basin (five species and two species complexes that include about 14 taxa), Asia (12 species), and Eastern and Southern Africa (eight species) [13]. The species of *Scabiosa* are mainly annuals; others are perennials, with some of the species characterized by woody rootstocks [14]. Several species of the genus *Scabiosa* are widely used in the food, cosmetic, and pharmaceutical industries [15]. The biological activities of *Scabiosa* species include antibacterial, analgesic, anti-diabetic, hepatoprotective, anti-inflammatory, antifungal, antioxidant, antiviral, and anti-parasitic and these pharmacological activities are closely related to its high content of phenolic compounds, and these activities corroborate the beneficial properties of these medicinal plants [16].

Research by Van Wyk [17] showed that the leaves and roots of *S. columbaria* L. have commercial potential as colic and herbal medicine for heartburn in South Africa. Moreover, the roots and whole plants of *S. columbaria* are sold as herbal medicines in informal herbal medicine markets in 66.7% of the provinces in South Africa, that is, in the Eastern Cape [18], Gauteng [19-22], KwaZulu-Natal [23], Limpopo [24], Mpumalanga [22], and Northern Cape [25] Provinces. Williams [19] categorized *S. columbaria* as a fast-selling and popular herbal medicine, with its roots purchased at least once a day in the Witwatersrand herbal medicine informal market in the Gauteng Province in South Africa. Research by Williams et al. [26] showed that 58% of informal herbal medicine shops in the Gauteng Province were selling the whole plants of *S. columbaria* in 1995 at prices ranging from R77.5 to R98.6/kg (US$21.3–US$27.2). *S. columbaria* has been incorporated into the traditional material medicin in South Africa and is included in the book “medicinal plants of South Africa,” a photographic guide to the most commonly used plant medicines in the country, with a potential contribution to primary health care of local communities in South Africa. Therefore, this is the rationale behind the current study, aimed at providing a critical review of the ethnomedicinal uses, phytochemistry, and biological activities of *S. columbaria* as well as exploring the potential of the species as herbal medicine.

BOTANICAL DESCRIPTION OF S. COLUMBARIA

S. columbaria is native to Southern, East and North Africa, temperate Asia and Europe [27-46]. In Europe, *S. columbaria* has been recorded exclusively in semi-dry or dry grasslands, a vegetation type which has been drastically reduced in the Swiss lowlands, and to a lesser extent in the Pre-alps and the Swiss Jura mountains, due to land-use changes and transformation processes in the last decades [47]. In Italy, *S. columbaria* has been recorded in grasslands, arid pastures, nutrient poor habitats, grazed, and mown calcareous grasslands [48]. *S. columbaria* is considered endangered in the Netherlands [49,50], the Pre-alps and the Swiss Jura mountains in Northern Switzerland [51]. In Africa, *S. columbaria* has been recorded in open woodland, grassland, Bushveld, sandy flats, rocky slopes, mountain slopes, and valleys at an altitude ranging from 5 m to 3475 m above sea level [28,33,34]. The genus name “Scabiosa” is derived from the word scabies meaning “to scratch” because, in medieval times, the species was used as an herbal medicine for scabies, skin sores, and other skin infections [52]. The specific epithet, “columbaria” is a Latinized word meaning “dove-like or dove-colored” in reference to some flower forms of the genus name “Scabiosa” [46,52]. Two infra species of *S. columbaria* are recognized,
namely *S. columbaria* subsp. *banatica* (Waldst. and Kit.) Diklic, and *S. columbaria* subsp. *Caespitosa* Jamzad. The common English names of *S. columbaria* include butterfly blue and wild scabious [53].

S. columbaria is a perennial evergreen herb up to 1 m in height with annual branches developing from persistent fleshy roots [52,53]. The leaves are ob lanceolate in shape, thin-textured, slightly hairy, and variable in shape with characteristically lobed margins forming a rosette on the ground. The basal leaves have serrated margins, while those higher on the stems have deeply lobed margins. The long, slender, erect, and seldom branched stems have a terminal head of small flowers which are surrounded by bristly bracts. The flowers are compact, pink, and sometimes white or lilac in color [52].

MEDICINAL USES OF S. COLUMBARIA

The aerial parts, leaves, roots, stems, and the whole plant parts of *S. columbaria* are used as herbal medicines against 20 human diseases in Southern Africa and Europe (Table 1). *S. columbaria* is mainly used as colic, love charm, and for magical purposes, and as an herbal medicine for eye problems, heartburn, respiratory problems, wounds, female infertility, venereal diseases, skin infections, and menstrual problems (Fig. 1). In Lesotho, the roots of *S. columbaria* are mixed with those of *Diconoma anomala* Sond. or leaves of *Asclepias humilis* (E. Mey.) Schltr. and rhizome of *Gunniera perpensa* L. or those of *Searsia divaricata* (Eckl. & Zeyh.) Moffett and *Cussonia paniculata* Thumb. as herbal medicine for menstrual problems [54-59]. The roots of *S. columbaria* are mixed with those of *S. divaricata* and *C. paniculata* and used as colic [54]. The roots of *S. columbaria* are mixed with those of Aster bakerianus Burtt Davy ex C.A.Sm. as herbal medicine for skin rash [60,61] and roots of *S. columbaria* are mixed with those of *D. anomala*, *Helichrysum caespititium* (DC.) Sond. ex Harv. and *Zantedeschia albomaculata* (Hook.) Baill. as herbal medicine for venereal diseases [59,62,63]. Apart from its usage as herbal medicine, *S. columbaria* is also used as a leafy vegetable in Italy [64].

PHYTOCHEMISTRY OF S. COLUMBARIA

The compound glycoside scabiosin has been isolated from the roots of *S. columbaria* [66] while Horn et al. [73] identified two iridoid glycosides, namely, loganin and sweroside from the roots of *S. columbaria*. Vinitska [93] isolated palmitic acid, phthalic acid, diisooctyl phthalate, bis-(ethylhexyl) phthalate, and dibutyl phthalate from the aerial parts of *S. columbaria*. Horn et al. [73] evaluated the antibacterial activities of the compounds loganin and sweroside isolated from the roots of *S. columbaria* against *Bacillus cereus*, *Bacillus pumilus*, *Bacillus subtilis*, *Cussonia paniculata*, *D. anomala*, *Helichrysum caespititium*, *Kaliya caespititium*, *Leucadendron caesiatum*, *Plectranthus caesiatum*, *Scabiosa columbaria* and *Zantedeschia albomaculata* (Hook.) Baill. as herbal medicine for venereal diseases [59,62,63]. Apart from its usage as herbal medicine, *S. columbaria* is also used as a leafy vegetable in Italy [64].

Table 1: Medicinal uses of Scabiosa columbaria

Medicinal use	Parts of the plant used	Country	References	
Abdominal pains	Roots and stems	Lesotho	[65]	
Augmentation of labor	Roots	Lesotho	[54,60]	
Broncho-sedative, fluidizing, purifying, and	Roots	Italy	[48]	
dialagogue				
Chills	Roots	Italy	[48]	
Colic	Leaves and roots	South Africa and Swaziland	[52,53,66-69]	
Menstrual problems	Roots mixed with *Searsia divaricata* (Eckl. and Zeyh.) *Moffett* and *Cussonia paniculata* Thumb	Lesotho	[54]	
Constipation	Whole plant	Turkey	[70]	
Diuretic	Whole plant	Turkey	[70]	
Eye problems	Leaves and roots	South Africa and Swaziland	[67,67,71]	
Female infertility	Roots	Lesotho and South Africa	[52,57,60,66,67,72-75]	
Heartburn	Leaves and roots	South Africa and Swaziland	[52,53,68,69]	
High blood pressure	Roots	Lesotho	[76,77]	
Love charm and magical purposes		South Africa and Swaziland	[68,71,78,79]	
Menstrual problems	Leaves, roots, and stems	Lesotho, South Africa, and	[52,65,67,68,72,74,76,77,80]	
Menstrual problems	Roots mixed with *Diconoma anomala* Sond. and leaves of *Asclepias humilis* (E. Mey.) Schltr. and rhizome of *Gunniera perpensa* L.	Lesotho	[54,55,59]	
Menstrual problems	Roots mixed with leaves of *Asclepias humilis* (E. Mey.) Schltr. and rhizome of *Gunniera perpensa* L.	Lesotho	[56-58]	
Menstrual problems		Lesotho	[54]	
Menstrual problems	Leaves and roots	Lesotho	[57,60,76,77]	
Menstrual problems	Aerial parts, leaves, and roots	Iberian Peninsula and	[76,77,82-84]	
Respiratory problems, diphtheria, and flu	Leaves, roots, and stems	Lesotho	[48,79,85]	
Skin infections (acariosis, dermatitis, eczema, follicular acne, fungus-borne skin disease, measles, and rash)	Roots mixed with *Aster bakerianus* Burtt Davy ex C.A.Sm.	Lesotho	[60,61]	
Skin rash	Leaves and roots	Lesotho	[76,86]	
Uterine disorders	Roots mixed with *D. anomala*, *Helichrysum caespititium* (DC) Sond. ex Harv. and *Zantedeschia albomaculata* (Hook.) Baill.	Lesotho	[59,62,63]	
Veneral sores	Roots	Lesotho and South Africa	[53,54,60,66,67,72,77,81,87,88]	
Wounds	Leaves, roots, and whole plant	South Africa and Turkey	[53,70,89-92]	
Maroyi

Asian J Pharm Clin Res, Vol 12, Issue 8, 2019, 10-14

Micrococcus kristinae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Serratia marcescens at concentrations of 0.001 mg/ml–1.0 mg/ml. The compound sweroside showed moderate activities at a concentration of 1.0 mg/ml against all tested pathogens with the exception of S. marcescens [73].

BIOLGICAL ACTIVITIES OF S. COLUMBARIA EXTRACTS

From literature, only antibacterial [77,88], antifungal [88], and antiprotozoan [89] activities were identified.

Antibacterial activities
Van Vuuren and Naidoo [88] evaluated antibacterial activities of aqueous and a mixture of methanol and dichloromethane (1:1) leaf and root extracts of S. columbaria against bacterial pathogens associated with urogenital or sexually transmitted infections which included Gardnerella vaginalis, Neisseria gonorrhoeae, Oligella ureolytica, and Ureaplasma urealyticum using the microdilution technique with ciprofloxacin (0.01 mg/ml) as a positive control. The extracts exhibited activities with minimal inhibitory concentration (MIC) values ranging from 2.0 mg/ml to >16.0 mg/ml which were higher than 0.1 mg/ml exhibited by the control [88]. Seleteng-Kose [77] evaluated the antibacterial activities of aqueous and organic root extracts of S. columbaria against Citrobacter freundii, Enterobacter hormaenidis, K. pneumoniae, Moraxella catarrhalis, Mycobacterium fortuitum, Mycobacterium smegmatis, and S. aureus using microdilution technique using ciprofloxacin (0.01 mg/ml) as a positive control. The extracts showed activities against all tested microorganisms with the exception of Mycobacterium fortuitum and Mycobacterium smegmatis, exhibiting MIC values ranging from 1.3 mg/ml to >8.0 mg/ml [77].

Antifungal activities
Van Vuuren and Naidoo [88] evaluated antifungal activities of aqueous and a mixture of methanol and dichloromethane (1:1) leaf and root extracts of S. columbaria against fungal pathogen associated with urogenital or sexually transmitted infections, Candida albicans using the microdilution technique with amphotericin B (0.1 mg/ml) as a positive control. The extracts showed activities against all tested microorganisms with the exception of Mycobacterium fortuitum and Mycobacterium smegmatis, exhibiting MIC values ranging from 1.3 mg/ml to >8.0 mg/ml [77].

Antiprotozoan activities
Van Vuuren and Naidoo [88] evaluated antiprotozoal activities of aqueous and a mixture of methanol and dichloromethane (1:1) leaf and root extracts of S. columbaria against protozoan pathogen associated with urogenital or sexually transmitted infections, Trichomonas vaginalis using the microdilution technique with ciprofloxacin (0.01 mg/ml) as a positive control. The extracts exhibited activities with MIC values ranging from 3.0 mg/ml to >16.0 mg/ml which were higher than 0.1 mg/ml exhibited by the control [88].

CONCLUSION

The diverse medicinal uses of S. columbaria documented throughout the distributional range of the species and the scientific evidence of its phytochemistry and biological activities indicates its potential as herbal medicine. The preliminary pharmacological activities carried out so far are directly or indirectly involved in the protection against the growth of undesirable microbes. There is a need for further research on the phytochemistry, pharmacological, and toxicological activities of the crude extracts and compounds isolated from the species. Future research should also focus on the clinical significance of the pharmacological properties, cytotoxicity, and toxicity using in vivo models. The biological potency of such phytochemicals and crude extracts need to be evaluated aimed at exploring the potential of the species as herbal medicine.

ACKNOWLEDGMENTS

I would like to express my gratitude to the Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare for financial support to conduct this study.

AUTHORS’ CONTRIBUTIONS

The author declares that this work was done by the author named in this article.

CONFLICTS OF INTEREST

The author declares that they have no conflicts of interest.

REFERENCES

1. Mostafa EN, Sedigheh NS. Palynological study of some Iranian species of Scabiosa L. (Caprifoliaceae). Bangladesh J Plant Taxonomy 2016;23:215-22.
2. Erarslan ZB, Yeşil Y. The anatomical properties of Scabiosa atropurpurea L. (Caprifoliaceae). Istanbul J Pharm 2018;48:1-5.
3. Guacchio ED, Cennamo P, Caputo P. The Linnaean names in Scabiosa (Caprifoliaceae: Dipsacoideae). Taxon 2018;67:422-36.
4. Zhang WH, Chen ZD, Kj JH, Chen YC, Aandtang HB. Phylogeny of the Dipsacales. S.L. based on chloroplast trnL-F and ndhF sequences.
Res 2018;11:70-7.
60. Schmitz MO. Wild Flowers of Lesotho. Roma: ESSA; 1982.
61. Mhlongo LS, Van Wyk BE. Zulu medicinal ethnobotany: New records from the Amaranthe area of KwaZulu-Natal, South Africa. S Afr J Bot 2019;122:266-90.
62. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Edinburgh: E ande S Livingstone; 1962.
63. Maroyi A. Phytochemical and ethnopharmacological review of *Heteropsis natatalensis*. Asian J Pharm Clin Res 2019;12:8-15.
64. Guarnera PM, Savo V. Wild food plants used in traditional vegetable mixtures in Italy. J Ethnopharmacol 2016;185:202-34.
65. Magomere E, Chatanga P, Raditladi T, Makara M, Tarirai C. Ethnobotanical study and conservation status of local medicinal plants: Towards a repository and monograph of herbal medicines in Lesotho. Afr J Tradit Complement Altern Med 2016;13:143-56.
66. Watt JM, Brandwijk MG. Suto (Basuto) medicines. Bantu Stud 1927;2:73-100.
67. Hutchings A, Scott AH, Lewis G, Cunningham AB. Zulu Medicinal Plants: An Inventory. Pietermaritzburg: University of Natal Press; 1996.
68. Long C. Swaziland’s Flora: siSwati Names and Uses. Mbambane, Swaziland: Swaziland National Trust Commission; 2005. Available from: http://www.sntc.org.sz/index.asp. [Last accessed on 2019 Apr 14].
69. Van Wyk BE, Gericie N. Peoples’ Plants: A Guide to Useful Plants of Southern Africa. Pretoria: Briza Publications; 2007.
70. Karaköse M, Karaköse GÇ. Medicinal and aromatic plants of Esenli (Giresun) forest planning unit. Int J Second Metab 2017;4:285-305.
71. Cocks ML, Dold AP. Cultural significance of biodiversity: The role of medicinal plants in urban African cultural practices in the Eastern Cape, South Africa. J Ethnobiol 2006;26:60-81.
72. Pooley E. A Field Guide to Wild Flowers of KwaZulu-Natal and the Eastern Regions. Durban: Natal Flora Publication Trust; 1998.
73. Horn MM, Drewes SE, Brown NJ, Munro OQ, Meyer JJ, Mathekga AD, et al. Transformation of naturally-occurring 1,9-trans-9,5-cis sweroside to all trans sweroside during acetylation of sweroside aglycone. Phytochemistry 2001;57:51-6.
74. Steenkamp V. Traditional herbal remedies used by South African women for gynaecological complaints. J Ethnopharmacol 2003;86:97-108.
75. Abdillahi HS, Van Staden J. Application of medicinal plants in maternal healthcare and infertility: A South African perspective. Planta Med 2013;79:59-1.
76. Kose LS, Moteetee A, Van Vuuren S. Ethnobotanical survey of medicinal plants used in the Masere district of Lesotho. J Ethnopharmacol 2015;170:184-200.
77. Seleteng-Kose L. Evaluation of Commonly used Medicinal Plants of Maseru District in Lesotho for their Ethnobotanical Uses, Antimicrobial Properties and Phytochemical Compositions. PhD Thesis. Johannesburg: University of Johannesburg; 2017.
78. Gerstner J. A preliminary checklist of Zulu names of plants with short notes. Bantu Stud 1939;13:307-26.
79. Zukulu S, Dold T, Abbott T, Raimondo D. Medicinal and charm plants of Pondoland. Pretoria: South African National Biodiversity Institute; 2012.
80. Thornton-Barnett SR. Ancestral Pharmacopoeias: A Paleoethnobotanical Assessment of Plant use in the Western Free State, South Africa. MSc Dissertation. Texas: Texas State University; 2013.
81. Seleteng-Kose L, Moteetee A, Van Vuuren S. Medicinal plants used for the treatment of sexually transmitted infections in the Maseru district, Lesotho: Antimicrobial validation, phytochemical and cytotoxicity studies. S Afr J Bot 2019;122:457-66.
82. Rigat M, Bonet MA, Garcia S, Garnatje T, Vallès J. Studies on pharmaceutical ethnobotany in the high river ter valley (Pyrenees, Catalonia, Iberian Peninsula). J Ethnopharmacol 2007;113:267-77.
83. Rigat M, Vallès J, Iglesias J, Garnatje T. Traditional and alternative natural therapeutic products used in the treatment of respiratory tract infectious diseases in the eastern Catalan Pyrenees (Iberian peninsula). J Ethnopharmacol 2013;148:411-22.
84. Pinto DC, Rahmouni N, Beghdja N, Silva AMS. Scabiosa genus: A rich source of bioactive metabolites. Medicines (Basel) 2018;5:e110.
85. Agelet A, Vallès J. Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part I. General results and new or very rare medicinal plants. J Ethnopharmacol 2001;77:57-70.
86. Moteetee A, Kose LS. Medicinal plants used in Lesotho for treatment of reproductive and post reproductive problems. J Ethnopharmacol 2016;194:827-49.
87. Hutchings A. Zulu Medicinal Plants. Pietermaritzburg: University of Natal Press; 1996.
88. van Vuuren SF, Naidoo D. An antimicrobial investigation of plants used traditionally in Southern Africa to treat sexually transmitted infections. J Ethnopharmacol 2010;130:552-8.
89. Grierson DS, Afolayan AJ. An ethnobotanical study of plants used traditionally in Southern Africa to treat sexually transmitted infections. J Ethnopharmacol 2011;130:552-8.
90. Mabona U. Antimicrobial Activity of Southern African Medicinal Plants with Dermatological Relevance. MSc Dissertation. Johannesburg: University of the Witwatersrand; 2013.
91. Mabona U, Van Vuuren SF. Southern African medicinal plants used to treat skin diseases. S Afr J Bot 2013;87:175-93.
92. Twyley D, Lall N. African plants with dermatological and ocular relevance. In: Kuete V, editor. Toxicological Survey of African Medicinal Plants. London: Elsevier, 2014. p. 493-512.
93. Vinnitska RB. Studies of phthalates pigeon scabious (Scabiosa columbaria L.). Farm Zh 2018;1:59-63.