Supplementary Materials
for
Nonorthogonal Tight-Binding Model with
H–C–N–O Parameterization

Mikhail M. Maslov, Alexei I. Podlivaev, Konstantin P. Katin

National Research Nuclear University “MEPhI”,
Kashirskoe sh. 31, Moscow 115409, Russia
Research Institute for the Development of Scientific and Educational Potential of Youth,
Aviatorov str. 14/55, Moscow 119620, Russia

Correspondence to: Mikhail M. Maslov (E-mail: Mike.Maslov@gmail.com)
Table S1. The binding energies (eV/atom) for various \(\text{H}_2\text{C}_n\text{N}_m\text{O}_k \) molecules calculated within the NTBM1 model along with the corresponding experimental values and the values calculated using AM1/PM3/PM7 and the set of the model parameters from Ref. [Zhao J, Lu JP. Phys. Lett. A. 2003;319:523-529.]. The experimental and AM1/PM3 values are taken from the original PM3 work [Stewart JJP. J. Comp. Chem. 1989;10:221-264.]. The AM1/PM3 binding energies for the carbon dimer, imidogene and \(C_{60} \) fullerene are obtained using GAMESS program package [Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. J. Comp. Chem. 1993;14:1347-1363.]. The PM7 binding energies are obtained using MOPAC2012 [Stewart JJP, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2012).], and experimental values for \(C_2 \) and \(C_{60} \) are taken from NIST database [Computational Chemistry Comparison and Benchmark DataBase http://cccbdb.nist.gov/].

Formula	Name	Exper.	PM3	PM7	AM1	Zhao-Lu	Present work
1	Hydrogen	2.240	2.530	2.934	2.353	2.421	2.364
CH	Methylidyne	1.721	1.625	1.791	1.664	1.903	1.816
CH₂	Methylene, triplet	2.618	2.859	2.813	2.784	2.801	2.690
CH₃	Methyl radical	3.147	3.201	3.221	3.185	3.336	3.145
CH₄	Methane	3.422	3.380	3.392	3.344	3.664	3.339
C₂	Carbon, dimer	3.120	1.778	3.043	2.688	5.575	3.090
C₂H₂	Acetylene	4.221	4.259	4.189	4.214	4.838	4.483
C₂H₃	Vinyl	3.778	3.832	3.792	3.733	4.021	3.838
C₂H₄	Ethylene	3.863	3.832	3.852	3.834	4.169	3.900
C₂H₅	Methylmethylene	3.300	3.312	3.382	3.318	3.570	3.433
C₂H₆	Ethyl	3.553	3.600	3.603	3.595	3.738	3.557
C₂H₇	Ethane	3.634	3.622	3.623	3.618	3.872	3.602
C₃	Carbon, trimer	4.544	4.390	4.744	4.307	5.015	4.663
C₂H₄	Allene	4.159	4.150	4.213	4.156	4.526	4.265
C₂H₅	Cyclopropene	4.031	4.019	4.050	3.978	4.191	3.937
C₂H₆	Propyne	4.166	4.192	4.156	4.173	4.587	4.292
C₂H₇	Allyl	3.949	3.952	3.996	3.957	4.188	3.994
C₂H₈	Cyclopropane	3.891	3.874	3.894	3.867	4.036	3.805
C₂H₉	Propene	3.929	3.921	3.932	3.920	4.179	3.933
C₃H₃	i-Propyl radical	3.708	3.757	3.756	3.751	3.888	3.701
C₃H₄	Propane	3.739	3.734	3.732	3.737	3.957	3.707
C₃H₅	1-Methylcycloprop-1-ene	4.042	4.046	4.064	4.014	4.200	3.969
C₃H₆	Bicyclobutane	4.070	3.995	4.010	3.956	4.092	3.881
C₃H₇	1,2-Butadiene	4.126	4.130	4.169	4.134	4.427	4.186
C₃H₈	1-Butyne	4.123	4.140	4.114	4.132	4.465	4.201
C₃H₉	2-Butyne	4.144	4.165	4.141	4.156	4.484	4.216
C₄H₈	Cyclobutene	4.132	4.131	4.133	4.096	4.250	4.059
C₄H₉	Methylene-cyclopropane	4.087	4.102	4.129	4.088	4.269	4.052
C₄H₁₀	1,3-Butadiene	4.182	4.160	4.177	4.165	4.436	4.206
C₄H₁₁	1-Butene	3.953	3.946	3.953	3.951	4.180	3.947
1	2	3	4	5	6	7	8
-----	--------------------------------	-------	-------	-------	-------	-------	-------
C₂H₆	cis-2-Butene	3.959	3.961	3.967	3.960	4.182	3.892
C₂H₆	Cyclobutane	3.928	3.966	3.960	3.956	4.079	3.936
C₃H₆	Isobutane	3.968	3.964	3.973	3.956	4.176	3.948
C₃H₆	trans-2-Butene	3.963	3.966	3.970	3.964	4.182	3.765
C₃H₈	Isobutyl	3.805	3.840	3.835	3.830	3.960	3.767
C₅H₁₀	n-Butane	3.802	3.798	3.795	3.804	4.006	3.756
C₅H₁₀	Isobutane	3.808	3.799	3.797	3.799	4.000	4.453
C₆H₆	Cyclopentadiene	4.448	4.449	4.447	4.429	4.591	3.986
C₆H₈	1,2-Dimethylcyclopropane	4.061	4.060	4.071	4.033	4.203	4.092
C₆H₈	Methylene cyclobutane	4.119	4.150	4.154	4.132	4.271	4.168
C₆H₁₀	1, cis-3-Pentadiene	4.152	4.145	4.145	4.146	4.378	4.185
C₆H₆	Cyclopentene	4.188	4.206	4.198	4.206	4.350	4.001
C₆H₈	Bicycl(2.1.0)-pentane	4.091	4.089	4.092	4.062	4.164	4.151
C₆H₁₂	1,4-Pentadiene	4.131	4.127	4.141	4.133	4.368	3.951
C₆H₈	Spiropentane	4.068	4.072	4.087	4.047	4.143	4.160
C₆H₁₀	1, trans-3-Pentadiene	4.155	4.145	4.156	4.147	4.381	3.956
C₆H₁₀	1-Pentene	3.967	3.964	3.968	3.972	4.182	3.951
C₆H₁₀	2-Methyl-1-butene	3.977	3.975	3.979	3.972	4.178	3.952
C₆H₁₀	2-Methyl-2-butene	3.981	3.987	3.991	3.981	4.178	3.948
C₆H₁₀	3-Methyl-1-butene	3.971	3.963	3.966	3.965	4.174	3.961
C₆H₁₀	cis-2-Pentene	3.972	3.974	3.978	3.978	4.183	3.883
C₆H₁₀	cis-Dimethylcyclopropane	3.948	3.948	3.953	3.938	4.094	3.992
C₆H₁₀	Cyclopentane	4.005	4.021	4.010	4.035	4.170	3.957
C₆H₁₀	trans-2-Pentene	3.975	3.977	3.980	3.980	4.183	3.799
C₇H₁₂	2-Methylbutane	3.845	3.838	3.836	3.841	4.032	3.778
C₇H₁₂	Neopentane	3.853	3.842	3.841	3.834	4.023	3.811
C₇H₁₂	n-Pentane	3.840	3.839	3.836	3.848	4.038	4.764
C₇H₆	Benzene	4.737	4.723	4.725	4.729	4.899	4.635
C₇H₈	Fulvene	4.637	4.605	4.609	4.582	4.774	4.402
C₈H₈	1,3-Cyclohexadiene	4.363	4.378	4.379	4.387	4.544	4.116
C₈H₁₀	2,3-Dimethyl-1,3-butadiene	4.137	4.128	4.138	4.119	4.332	4.180
C₈H₁₀	Cyclohexene	4.169	4.179	4.175	4.194	4.341	4.128
C₈H₁₀	1,5-Hexadiene	4.112	4.109	4.120	4.118	4.335	4.048
C₈H₁₀	1,2-Dimethylcyclobutene	4.113	4.122	4.122	4.093	4.228	3.983
C₈H₁₀	Bicyclopentylpropyl	4.082	4.068	4.086	4.059	4.171	3.988
C₈H₁₂	Cyclohexane	4.023	4.027	4.018	4.045	4.166	3.840
C₈H₁₂	n-Hexane	3.867	3.867	3.864	3.878	4.060	4.556
C₈H₆	Cycloheptatriene	4.512	4.514	4.526	4.526	4.695	4.467
C₈H₈	Norbornadiene	4.464	4.467	4.466	4.441	4.576	4.603
C₈H₈	Toluene	4.602	4.596	4.599	4.595	4.751	4.125
C₈H₁₂	Norbornane	4.161	4.164	4.154	4.165	4.272	3.854
C₈H₁₂	n-Heptane	3.888	3.889	3.885	3.901	4.076	4.363
C₈H₈	Cubane	4.405	4.500	4.468	4.399	4.325	4.738
C₈H₈	Styrene	4.713	4.702	4.708	4.703	4.876	4.504
C₈H₁₀	Ethylbenzene	4.506	4.500	4.502	4.502	4.657	4.146
C₈H₁₂	Bicycl(2.2.2)-octane	4.155	4.163	4.154	4.179	4.286	3.869
C₈H₁₀	n-Octane	3.904	3.905	3.901	3.918	4.089	3.892
C₁₀H₂₀	n-Nonane	3.916	3.918	3.914	3.932	4.099	3.882
Table S1. (continued)

1	2	3	4	5	6	7	8
C_{10}H_{14}	Azulene	4.917	4.898	4.903	4.890	5.044	4.958
C_{14}H_{10}	Naphthalene	5.007	4.996	4.998	4.996	5.115	5.029
C_{12}H_{16}	Adamantane	4.269	4.273	4.263	4.288	4.368	4.252
C_{17}H_{10}	Anthracene	5.137	5.125	5.127	5.123	5.218	5.157
C_{14}H_{10}	Phenanthrene	5.147	5.137	5.138	5.133	5.227	5.167
C_{20}	Buckminsterfullerene	6.918	6.790	6.776	6.673	6.590	6.954
OH	Hydroxyl radical	2.193	2.334	2.242	2.380	2.356	2.076
H_{2}O	Water	3.182	3.118	3.182	3.202	3.387	2.859
CO	Carbon monoxide	5.540	5.395	5.365	5.091	4.607	5.059
HCO	H-C=O	3.908	4.193	4.095	4.073	3.836	3.965
CH_{2}O	Formaldehyde	3.886	3.973	3.881	3.945	4.250	4.114
CH_{3}O	Methanol	3.497	3.524	3.503	3.561	3.775	3.579
C_{2}H_{3}O	Acetaldehyde	3.999	4.027	4.008	4.010	4.259	4.043
C_{2}H_{4}O	Ethylene oxide	3.831	3.803	3.823	3.809	4.076	3.923
C_{3}H_{6}O	Ethanol	3.688	3.690	3.686	3.719	3.923	3.711
C_{3}H_{6}O	Acetone	4.038	4.044	4.053	4.026	4.251	4.005
C_{3}H_{6}O	Propanal	4.010	4.027	4.012	4.022	4.241	4.026
C_{4}H_{8}O	Trimethylene oxide	3.896	3.929	3.923	3.924	4.150	4.004
C_{4}H_{8}O	Isopropanol	3.786	3.782	3.793	3.796	3.988	3.763
C_{3}H_{6}O	Furan	4.598	4.578	4.586	4.544	4.709	4.728
C_{4}H_{8}O	2-Butenal	4.231	4.244	4.238	4.238	4.484	4.263
C_{5}H_{10}O	Butanal	4.008	4.027	4.014	4.029	4.222	4.017
C_{6}H_{10}O	Tetrahydrofuran	3.992	4.016	4.008	4.040	4.188	4.091
C_{6}H_{8}O	Diethyl ether	3.805	3.803	3.801	3.819	4.027	3.879
C_{6}H_{8}O	1,3-Butadiene	3.847	3.837	3.847	3.838	4.022	3.784
C_{6}H_{10}O	Cyclopentanone	4.240	4.212	4.263	4.209	4.394	4.227
C_{6}H_{10}O	Tetrahydrofuran	4.010	4.021	4.017	4.047	4.194	4.088
C_{6}H_{12}O	3-Pentanol	3.866	3.862	3.864	3.879	4.054	3.837
C_{6}H_{8}O	Phenol	4.712	4.708	4.709	4.709	4.855	4.734
C_{6}H_{10}O	Cyclohexanone	4.209	4.225	4.223	4.233	4.377	4.204
C_{7}H_{10}O	Benzaldehyde	4.858	4.864	4.850	4.859	5.027	4.894
C_{7}H_{10}O	Anisole	4.554	4.547	4.553	4.550	4.722	4.650
C_{8}H_{10}O	1-Naphthol	4.972	4.970	4.972	4.965	5.074	4.997
C_{10}H_{10}O	2-Naphthol	4.983	4.971	4.973	4.969	5.073	4.995
O_{2}	Oxygen(triplet)	2.559	2.650	2.743	3.144	2.181	2.471
H_{2}O_{2}	Hydrogen peroxide	2.751	2.841	2.727	2.782	3.083	2.579
CO_{2}	Carbon dioxide	5.525	5.393	5.386	5.320	5.465	5.074
CH_{2}O_{2}	Formic acid	4.180	4.213	4.171	4.239	4.437	4.079
C_{2}H_{2}O_{2}	Acetic acid	4.164	4.157	4.158	4.162	4.378	3.994
C_{2}H_{2}O_{2}	Ethylene glycol	3.738	3.744	3.821	3.797	3.962	3.790
C_{2}H_{2}O_{2}	beta-Propiolactone	4.349	4.363	4.316	4.365	4.606	4.268
C_{2}H_{2}O_{2}	Proponic acid	4.126	4.118	4.119	4.129	4.328	3.981
C_{2}H_{2}O_{2}	Methyl acetate	4.085	4.070	4.080	4.079	4.320	4.072
C_{4}H_{2}O_{2}	Diacetyl	4.288	4.307	4.305	4.276	4.486	4.255
C_{4}H_{2}O_{2}	Diethyl peroxide	3.689	3.672	3.681	3.668	3.920	3.737
C_{4}H_{2}O_{2}	Acetylacetone	4.256	4.259	4.272	4.242	4.441	4.226
C_{4}H_{2}O_{2}	p-Benzooquinone	4.967	4.975	4.964	4.952	5.170	5.010
C_{4}H_{6}O_{2}	Benzoic acid	4.882	4.871	4.871	4.876	5.033	4.804
Table S1. (continued)

1	2	3	4	5	6	7	8
C₄H₇O₃	Malic anhydride	5.088	5.063	5.026	4.997	5.255	4.930
C₅H₉O₄	Acetic anhydride	4.351	4.344	3.627	4.333	4.606	4.230
NH	Imidogen	1.703	1.960	1.826	1.874	-	1.577
NH₂	Amidogen	2.462	2.608	2.507	2.565	-	2.384
NH₃	Ammonia	3.019	2.934	2.946	2.979	-	2.871
CN	Cyanide	3.874	3.353	3.879	3.648	-	3.592
CHN	Hydrogen cyanide	4.366	4.355	4.401	4.384	-	4.302
CH₄N	Methyl amine anion	3.316	3.379	3.561	3.297	-	3.339
CH₃N	CH₃-NH	3.269	3.339	3.282	3.290	-	3.268
CH₃N	Methylamine	3.385	3.383	3.372	3.397	-	3.370
C₂H₅N	Acetonitrile	4.241	4.224	4.261	4.253	-	4.187
C₂H₆N	Methyl isocyanide	4.135	3.997	4.111	4.028	-	4.026
C₂H₇N	Ethyleneimine(Azirane)	3.690	3.683	3.679	3.675	-	3.570
C₂H₈N	Ethylamine	3.581	3.585	3.580	3.597	-	3.562
C₂H₉N	Dimethylamine	3.560	3.566	3.550	3.556	-	3.558
C₂H₁₀N	Acrylonitrile	4.545	4.508	4.548	4.540	-	4.537
C₂H₁₁N	Ethyl cyanide	4.187	4.156	4.180	4.183	-	4.117
C₂H₁₂N	Isopropylamine	3.695	3.691	3.687	3.693	-	3.652
C₂H₁₃N	Trimethylamine	3.650	3.665	3.649	3.634	-	3.646
C₂H₁₄N	n-Propylamine	3.684	3.688	3.683	3.702	-	3.660
C₂H₁₅N	Pyrrole	4.446	4.441	4.444	4.386	-	4.475
C₂H₁₆N	Pyrrolidine	3.899	3.933	3.913	3.928	-	3.917
C₂H₁₇N	t-Butylamine	3.767	3.757	3.755	3.747	-	3.701
C₂H₁₈N	Pyridine	4.678	4.695	4.690	4.689	-	4.704
C₂H₁₉N	Aniline	4.566	4.564	4.564	4.567	-	4.589
C₂H₂₀N	Phenyl cyanide	5.037	5.014	5.030	5.031	-	5.033
NO	Nitrogen oxide	3.251	3.399	3.236	3.694	-	3.375
HNCO	Hydrogen isocyanate	4.527	4.430	4.518	4.429	-	4.528
CH₂NO	Formamide	3.911	3.891	3.908	3.913	-	3.943
C₂H₂NO	Dimethylformamide	3.936	3.932	3.929	3.904	-	3.953
NO₂	Nitrogen dioxide	3.218	3.347	3.412	3.549	-	3.493
HNO₂	Nitrous acid, trans	3.263	3.221	3.315	3.486	-	3.127
CH₄NO₂	Nitromethane	3.553	3.540	3.548	3.503	-	3.733
CH₅NO₂	Methyl nitrite	3.540	3.498	3.561	3.639	-	3.635
C₂H₆NO₂	Glycine	4.001	4.011	3.999	4.035	-	3.863
C₂H₇NO₂	1-Nitropropane	3.778	3.767	3.771	3.757	-	3.851
C₂H₈NO₂	2-Nitropropane	3.788	3.768	3.773	3.749	-	3.839
C₂H₉NO₂	Alanine	4.049	4.015	4.008	4.028	-	3.884
C₂H₁₀NO₂	1-Nitrobutane	3.822	3.816	3.818	3.811	-	3.877
C₂H₁₁NO₂	2-Nitrobutane	3.835	3.815	3.822	3.805	-	3.869
C₂H₁₂NO₂	Nitrobenzene	4.628	4.631	4.619	4.597	-	4.729
C₂H₁₃NO₂	2-Nitrotoluene	4.524	4.536	4.525	4.504	-	4.596
NO₃	Nitrate radical	2.955	2.891	2.841	2.779	-	3.065
HNO₃	Nitric acid	3.238	3.289	3.256	3.284	-	3.210
C₂H₅NO₃	Ethyl nitrate	3.646	3.644	3.654	3.647	-	3.712
C₂H₆NO₃	Nitroethanol	3.797	3.743	3.734	3.755	-	3.878
N₂	Nitrogen	4.881	4.499	4.165	4.638	-	4.788
N₂H₂	Diazene	3.170	3.150	3.089	3.219	-	3.251
Table S1. (continued)

	1	2	3	4	5	6	7	8
N₂H₄	Hydrazine	2.955	2.971	3.009	3.021	-	2.911	
CH₃N₂	Methylhydrazine	3.289	3.311	3.328	3.314	-	3.257	
C₂N₂	Cyanogen	5.329	5.289	5.354	5.393	-	5.393	
C₂H₆N₂	1,1-Dimethylhydrazine	3.464	3.482	3.490	3.449	-	3.425	
C₂H₅N₂	1,2-Dimethylhydrazine	3.457	3.480	3.487	3.458	-	3.433	
C₂H₄N₂	Dicyanoacetylene	5.630	5.619	5.630	5.679	-	5.882	
C₂H₃N₂	Fumaronitrile	5.028	5.002	5.048	5.057	-	5.021	
C₂H₅N₂	Pyridazine	4.534	4.580	4.592	4.583	-	4.517	
C₂H₆N₂	Pyrimidine	4.619	4.658	4.648	4.632	-	4.534	
C₂H₅N₂	Pyrazine	4.619	4.652	4.630	4.631	-	4.590	
C₂H₆N₄	n-Nitrodimethylamine	3.601	3.585	3.599	3.511	-	3.758	
C₂H₅N₂	Para nitroaniline	4.492	4.507	4.501	4.478	-	4.584	
C₂H₅N₄	1,1-Dinitroethane	3.729	3.705	3.696	3.652	-	3.873	
C₂H₅N₄	1,1-Dinitropropane	3.779	3.768	3.764	3.731	-	3.899	
C₂H₅N₄	1,3-Dinitropropane	3.796	3.781	3.788	3.759	-	3.957	
C₂H₅N₄	2,2-Dinitropropane	3.782	3.771	3.763	3.720	-	3.858	
C₂H₅N₄	1,1-Dinitrobutane	3.828	3.811	3.808	3.784	-	3.914	
C₂H₅N₄	1,4-Dinitrobutane	3.839	3.824	3.832	3.812	-	3.962	
C₆H₆N₂	m-Dinitrobenzene	4.545	4.551	4.529	4.486	-	4.702	
N₃	Azide	3.450	3.348	3.335	3.328	-	3.454	
HN₃	Hydrazoic acid	3.458	3.404	3.426	3.399	-	3.606	
C₂H₅N₄	1,1,1-trinitropropane	3.772	3.745	3.737	3.678	-	3.874	
C₂H₅N₄	2,4,6-Trinitrotoluene	4.394	4.414	4.398	4.335	-	4.581	
C₂H₅N₄	Glycerol trinitrate	3.742	3.716	3.729	3.704	-	3.822	
CH₃N₄	[1-H]Tetrazole	3.988	3.948	4.018	3.804	-	3.970	
CN₃O₅	Tetranitromethane	3.582	3.622	3.549	3.467	-	3.719	
Table S2. The bond lengths (in Angstroms) for various \(\text{H}_2\text{C}_n\text{N}_m\text{O}_n \) molecules calculated within the NTBM1 model along with the corresponding experimental values and the values calculated using AM1/PM3/PM7 and the set of the model parameters from Ref. [Zhao J, Lu JP. Phys. Lett. A. 2003;319:523-529.]. The experimental and AM1/PM3 values are taken from the original PM3 work [Stewart JJP. J. Comp. Chem. 1989;10:221-264.]. The AM1/PM3 bond lengths for the cubane \(\text{C}_8\text{H}_8 \), imidogen NH, and amidogen NH\(_2\) are obtained using GAMESS program package [Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. J. Comp. Chem. 1993;14:1347-1363.]. The PM7 bond lengths are obtained using MOPAC2012 [Stewart JJP, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2012).], and experimental values for cubane, imidogen, and amidogen are taken from NIST database [Computational Chemistry Comparison and Benchmark DataBase http://cccbdb.nist.gov/].

Formula	Name	Bond type	Exper.	PM3	PM7	AM1	Zhao-Lu	Present work			
			1	2	3	4	5	6	7	8	9
\(\text{H}_2 \)	Hydrogen	H-H	0.741	0.699	0.76	0.677	0.745				0.745
\(\text{CH} \)	Methylidyne	CH	1.120	1.088	1.08	1.106	1.089	1.081			
\(\text{CH}_3 \)	Methylene, triplet	CH	1.029	1.064	1.02	1.063	1.079	1.080			
\(\text{CH}_4 \)	Methane	CH	1.094	1.087	1.08	1.112	1.089	1.099			
\(\text{C}_2 \)	Carbon, dimer	CC	1.242	1.189	1.17	1.164	1.159	1.230			
\(\text{C}_2\text{H}_2 \)	Acetylene	CC	1.203	1.190	1.21	1.195	1.201	1.226			
\(\text{C}_2\text{H}_4 \)	Ethylene	CC	1.339	1.322	1.33	1.326	1.319	1.327			
\(\text{C}_2\text{H}_6 \)	Ethane	CC	1.536	1.504	1.53	1.500	1.542	1.476			
\(\text{C}_3\text{H}_4 \)	Allene	CC	1.308	1.297	1.30	1.298	1.312	1.323			
\(\text{C}_3\text{H}_6 \)	Cyclopropene	\(\text{C}_2\text{C}_3\)	1.509	1.484	1.50	1.489	1.585	1.537			
\(\text{C}_3\text{H}_6 \)	Propyne	\(\text{C}_2\text{C}_3\)	1.296	1.314	1.32	1.318	1.297	1.326			
\(\text{C}_3\text{H}_6 \)	Propyne	\(\text{C}_2\text{H}\)	1.072	1.073	1.04	1.069	1.065	1.074			
\(\text{C}_3\text{H}_6 \)	Propyne	\(\text{C}_2\text{C}_3\)	1.206	1.191	1.21	1.197	1.206	1.235			
\(\text{C}_3\text{H}_6 \)	C=C	\(\text{C}_2\text{H}\)	1.056	1.064	1.03	1.060	1.064	1.079			
\(\text{C}_3\text{H}_6 \)	Cyclopropane	\(\text{C}_2\text{C}_3\)	1.459	1.433	1.43	1.427	1.492	1.446			
\(\text{C}_3\text{H}_6 \)	Propene	\(\text{C}_2\text{H}\)	1.105	1.098	1.10	1.121	1.099	1.106			
\(\text{C}_3\text{H}_6 \)	Propene	C=C	1.336	1.328	1.34	1.331	1.327	1.341			
\(\text{C}_3\text{H}_6 \)	Propene	C–C	1.501	1.480	1.43	1.476	1.545	1.479			
\(\text{C}_3\text{H}_6 \)	Propene	\(\text{C}_2\text{H}\)	1.085	1.098	1.09	1.118	1.091	1.096			
\(\text{C}_3\text{H}_6 \)	Propene	HC	1.090	1.097	1.09	1.103	1.096	1.098			
\(\text{C}_3\text{H}_6 \)	Propene	HC	1.091	1.087	1.08	1.098	1.096	1.104			
Table S2. (continued)

1	2	3	4	5	6	7	8	9
C₂H₆	Propane	CC	1.526	1.512	1.53	1.507	1.557	1.495
	C₂H₅	1.115	1.108	1.10	1.122	1.097	1.104	
	C₂H₄	1.096	1.097	1.10	1.117	1.093	1.101	
C₃H₆	Bicyclobutane	C₃C₂	1.498	1.507	1.52	1.510	1.599	1.552
		C₃C₃	1.497	1.481	1.49	1.495	1.544	1.517
		C₃H₂	1.071	1.083	1.06	1.079	1.062	1.074
		C₃H₁	1.093	1.095	1.08	1.105	1.084	1.092
C₄H₆	2-Butyne	C₄C₃	1.213	1.193	1.21	1.198	1.211	1.242
		C₄C₂	1.467	1.432	1.43	1.425	1.494	1.447
		CH	1.115	1.098	1.10	1.121	1.099	1.107
C₅H₆	1,3-Butadiene	C₅C₄	1.344	1.331	1.33	1.335	1.335	1.347
		C₅C₃	1.467	1.456	1.46	1.451	1.526	1.475
C₅H₈	1-Butene	C₅C₄	1.347	1.328	1.34	1.331	1.326	1.338
		C₅C₂	1.508	1.489	1.50	1.484	1.564	1.500
C₆H₈	Cyclobutane	CC	1.548	1.542	1.55	1.543	1.613	1.541
		CH	1.105	1.100	1.09	1.110	1.086	1.094
C₆H₈	Isobutene	C₆C₄	1.330	1.333	1.34	1.336	1.335	1.355
		C₆C₃	1.507	1.487	1.50	1.484	1.562	1.500
C₆H₁₀	n-Butane	C₆C₄	1.533	1.512	1.53	1.507	1.556	1.492
		C₆C₃	1.533	1.521	1.53	1.514	1.576	1.517
C₆H₁₀	Isobutane	CC	1.525	1.520	1.53	1.514	1.572	1.514
C₆H₈	1,4-Pentadiene	C₆C₄	1.339	1.328	1.33	1.331	1.325	1.338
		C₆C₃	1.511	1.489	1.50	1.484	1.568	1.502
C₇H₁₂	Neopentane	CC	1.539	1.527	1.54	1.521	1.584	1.532
		CH	1.120	1.098	1.09	1.116	1.092	1.099
C₈H₆	Benzene	CC	1.399	1.391	1.39	1.395	1.424	1.407
		CH	1.084	1.095	1.08	1.100	1.091	1.095
C₉H₆	Fulvene	C₉C₄	1.476	1.471	1.48	1.476	1.569	1.504
		C₉C₃	1.355	1.355	1.35	1.363	1.359	1.376
		C₉C₂	1.470	1.478	1.48	1.483	1.547	1.480
		C₉C₁	1.349	1.331	1.33	1.332	1.338	1.358
C₁₀H₁₀	Cyclohexene	C₁₀C₂	1.335	1.334	1.33	1.337	1.333	1.348
		C₁₀C₁	1.504	1.487	1.49	1.483	1.562	1.506
		C₁₀C₄	1.515	1.521	1.53	1.517	1.573	1.507
		C₁₀C₃	1.550	1.519	1.53	1.514	1.570	1.490
C₁₀H₁₂	Cyclopentane	CC	1.536	1.521	1.54	1.515	1.575	1.506
		CH	1.121	1.107	1.11	1.121	1.096	1.104
C₁₂H₈	Cubane	CC	1.571	1.568	1.58	1.576	1.649	1.570
		CH	1.097	1.088	1.06	1.086	1.073	1.082
C₂₀[60]	[60]Fullerene	CC	1.458	1.457	1.46	1.464	1.530	1.481
		CC	1.401	1.383	1.38	1.385	1.418	1.412
OH	Hydroxyl radical	OH	0.970	0.937	0.97	0.949	0.985	0.982
H₂O	Water	OH	0.957	0.951	0.96	0.961	0.960	0.974
CO	Carbon monoxide	CO	1.128	1.135	1.14	1.171	1.156	1.110
CH₃O	Formaldehyde	CO	1.208	1.202	1.21	1.227	1.207	1.190
		CH	1.116	1.091	1.10	1.110	1.088	1.109
Table S2. (continued)

1	2	3	4	5	6	7	8	9
CH₄O	Methanol	CO	1.425	1.395	1.42	1.410	1.380	1.343
		CH	1.094	1.097	1.09	1.119	1.089	1.103
		OH	0.945	0.949	0.97	0.964	0.962	0.978
C₂H₂O	Furan	CO	1.362	1.378	1.38	1.395	1.410	1.334
		C₂C₂	1.361	1.373	1.37	1.380	1.349	1.401
O₂	Oxygen, triplet	O=O	1.216	1.169	1.14	1.086	1.215	1.230
H₂O₂	Hydrogen peroxide	O=O	1.475	1.482	1.43	1.300	1.405	1.397
		OH	0.950	0.945	0.99	0.983	0.968	0.991
CO₂	Carbon dioxide	CO	1.162	1.181	1.17	1.189	1.157	1.202
CH₂O₂	Formic acid	C=O	1.202	1.211	1.20	1.230	1.265	1.273
		C–O	1.343	1.344	1.35	1.357	1.229	1.293
		OH	0.972	0.953	0.99	0.971	0.960	0.980
C₂H₄O₂	3-Benzophenone	C₂=O₂	1.477	1.487	1.49	1.479	1.499	1.480
		C₂C₂	1.322	1.335	1.33	1.338	1.363	1.360
		CO	1.222	1.217	1.21	1.236	1.272	1.252
NH	Imidogen	NH	1.036	0.974	0.98	0.988	-	1.044
NH₂	Amidogen	NH	1.024	0.987	0.99	0.996	-	1.014
NH₃	Ammonia	NH	1.012	0.999	0.99	0.998	-	1.012
CN	Cyanide	CN	1.175	1.157	1.14	1.148	-	1.157
CHN	Hydrogen cyanide	CN	1.154	1.156	1.15	1.160	-	1.166
		CH	1.063	1.070	1.04	1.069	-	1.069
CH₃N	Methylamine	CN	1.474	1.469	1.47	1.432	-	1.394
		NH	1.011	0.999	1.01	1.000	-	1.011
C₂H₃N	Acetonitrile	CC	1.458	1.440	1.44	1.439	-	1.421
		CH	1.104	1.098	1.10	1.120	-	1.108
CH₃N	Methyl isocyanide	CN–	1.124	1.433	1.41	1.395	-	1.376
		CH	1.101	1.097	1.11	1.125	-	1.101
		CN	1.166	1.181	1.18	1.181	-	1.165
C₂H₅N	Trimethylamine	CN	1.451	1.480	1.48	1.445	-	1.433
C₂H₆N	Pyrrole	CN	1.370	1.397	1.39	1.392	-	1.367
		C₂C₂	1.382	1.390	1.39	1.402	-	1.405
		C₂C₃	1.417	1.390	1.40	1.402	-	1.445
NO	Nitrogen oxide	NO	1.151	1.127	1.13	1.115	-	1.177
HNCO	Hydrogen isocyanate	NH	0.987	0.985	0.99	0.985	-	0.994
		CN	1.207	1.251	1.22	1.232	-	1.223
		CO	1.171	1.181	1.17	1.202	-	1.172
CH₂NO	Formamide	CN	1.376	1.413	1.39	1.367	-	1.309
		NH	1.002	0.994	0.99	0.986	-	1.010
		CH	1.102	1.102	1.09	1.114	-	1.091
		CO	1.193	1.217	1.21	1.243	-	1.254
NO₂	Nitrogen dioxide	NO	1.197	1.181	1.18	1.159	-	1.205
HNO₃	Nitric acid	N=O	1.206	1.203	1.21	1.195	-	1.270
		N–O	1.405	1.410	1.41	1.333	-	1.272
		OH	0.960	0.953	1.00	0.982	-	0.981
Table S2. (continued)

	2	3	4	5	6	7	8	9
N\textsubscript{2}	Nitrogen	NN	1.094	1.098	1.11	1.106	-	1.135
N\textsubscript{2}H\textsubscript{4}	Hydrazine	NN	1.449	1.440	1.45	1.378	-	1.321
	NH		1.022	1.001	1.02	1.014	-	1.013
C\textsubscript{2}N\textsubscript{2}	Cyanogen	CN	1.154	1.159	1.15	1.162	-	1.179
	CC		1.389	1.382	1.39	1.384	-	1.398
N\textsubscript{3}	Azide	NN	1.181	1.174	1.18	1.177	-	1.218
Table S3. The valence angles (in degrees) for various $H_xC_{y}N_{m}O_{n}$ molecules calculated within the NTBM1 model along with the corresponding experimental values and the values calculated using AM1/PM3/PM7 and the set of the model parameters from Ref. [Zhao J, Lu JP. Phys. Lett. A. 2003;319:523-529.]. The experimental and AM1/PM3 values are taken from the original PM3 work [Stewart JJP. J. Comp. Chem. 1989;10:221-264]. The PM7 valence angles are obtained using MOPAC2012 [Stewart JJP, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2012)].

Formula	Name	Angle type	Exper.	PM3	PM7	AM1	Zhao-Lu	Present work
CH$_2$	Methylene, triplet	HCH	144.7	144.7	175.5	148.3	113.0	140.1
C$_2$H$_4$	Ethylene	HCC	121.2	123.1	123.6	122.7	123.7	122.0
C$_2$H$_6$	Ethane	HCC	110.9	111.6	114.1	110.7	111.0	110.4
C$_3$H$_4$	Allene	HCC	120.9	122.3	123.6	122.3	124.4	123.1
C$_5$H$_4$	Cyclopentene	HCC$_2$	149.9	151.5	153.6	151.9	154.6	154.0
C$_4$H$_4$	Propyne	HCC	111.0	110.7	111.9	110.5	112.0	111.8
C$_6$H$_6$	Propene	CCC	124.3	123.4	123.6	124.3	127.4	127.7
C$_4$H$_8$	Propane	CCC	112.4	111.7	111.2	111.8	113.8	115.5
C$_5$H$_6$	Bicyclobutane	C$_2$H$_2$	121.7	120.0	120.4	122.0	133.8	133.4
C$_6$H$_6$	2-Butyne	HCC	110.7	110.7	111.7	110.6	112.1	112.0
C$_6$H$_6$	1,3-Butadiene	CCC	122.9	122.3	122.7	123.4	127.2	126.7
C$_6$H$_6$	1-Butene	CCC	123.8	122.6	122.8	123.4	127.0	126.8
C$_6$H$_6$	Isobutene	C$_2$H$_2$	122.4	122.1	122.5	122.4	123.4	122.6
C$_{10}$H$_{10}$	n-Butane	CCC	112.8	111.6	111.0	111.6	113.3	114.5
C$_6$H$_8$	1,4-Pentadiene	C–C=C	115.5	123.1	123.4	123.9	127.0	126.6
C$_{12}$H$_{12}$	Neopentane	HCC	110.0	111.3	111.3	110.3	110.2	109.6
C$_{10}$H$_{10}$	Cyclohexene	C$_2$H$_2$C$_4$	21.8	27.8	28.8	27.2	24.4	24.0
H$_2$O	Water	HOH	104.5	107.7	104.6	103.5	128.4	112.7
CH$_2$O	Formaldehyde	HCO	121.8	121.8	121.2	122.2	119.0	117.2
CH$_3$O	Methanol	HCO	108.5	112.2	110.4	110.9	107.3	107.3
C$_2$H$_2$O	Furan	CCC	110.7	110.2	106.4	110.1	107.5	105.9
H$_2$O$_2$	Hydrogen peroxide	HOO	94.8	96.5	97.7	96.0	107.3	103.8
CH$_2$O$_2$	Formic acid	OCO	124.9	117.1	121.6	117.6	117.6	134.9
C$_5$H$_8$O$_2$	p-Benzoquinone	CCC	121.1	121.6	121.4	121.9	120.6	121.0
NH$_3$	Ammonia	HNH	106.7	108.1	110.1	109.1	-	120.1
CH$_3$N	Methylamine	HNC	112.0	109.8	111.4	111.3	-	119.8
C$_2$H$_3$N	Acetonitrile	HCC	109.5	110.4	111.9	110.1	-	112.2
C$_3$H$_5$N	Methyl isocyanide	HCN	109.1	109.7	110.9	110.1	-	108.1
Table S3. (continued)

1	2	3	4	5	6	7	8	9
C₃H₇N	Trimethylamine	CNC	110.9	112.3	110.6	113.0	-	118.4
C₅H₅N	Pyrrole	CNC	107.7	109.7	108.8	108.8	-	112.5
HNCO	Hydrogen isocyanate	CNH	128.1	123.7	137.9	127.2	-	179.8
		OCN	180.0	168.7	166.9	166.7	-	180.0
CH₃NO	Formamide	OCN	123.8	118.5	119.6	121.9	-	119.3
NO₂	Nitrogen dioxide	ONO	136.0	137.8	139.7	136.4	-	151.1
HNO₃	Nitric acid	O=N=O	130.0	132.7	131.6	129.0	-	121.0
		NOH	102.0	109.0	108.9	109.7	-	106.2
N₂H₄	Hydrazine	HNN	112.0	106.5	105.5	107.4	-	116.2
		HNNH	90.0	180.3	106.4	180.2	-	101.3
Geometries of the peptides employed in this study optimized at the B3LYP/6-311G level of theory

Bradykinin

C	7.4124056373	-0.8107633345	1.3524528185
C	3.9419327292	0.6202533156	1.7733270579
C	1.6450083034	-2.8184826584	-0.6919016673
C	3.7104686532	1.7270804666	0.4670894266
C	0.1312392570	-0.4566925276	-0.1492059101
C	2.3740563641	-1.5346390049	-0.2304717991
C	3.204545040	2.8625282474	4.9286424782
C	-0.5341560201	-6.3796206366	-0.7657525317
C	-10.5679037071	-2.9201786267	0.1178945667
C	-0.3410587576	-6.6939323247	-2.2125052728
C	3.7595443537	-1.5147726050	-2.2402995964
C	1.6504124476	-0.3448906667	-2.2106302938
C	2.0977044326	2.7861406384	5.7680166241
C	3.8483035531	4.1121261452	4.9343219116
C	-0.6178660506	-5.7475808243	-3.2242611041
C	-0.5498577398	-7.5086808366	0.2641758655
C	4.4092827494	-0.3324477743	-2.6082170520
C	2.2970550986	0.8364731562	-2.5755262976
C	3.6807556851	0.8470366102	-2.7755365698
C	1.6447481782	3.7065827130	6.5986944991
C	3.3976820740	5.1436190697	5.7092621797
C	-0.3295310424	-0.0982629586	-4.6887368887
C	2.2963116262	4.9420334080	6.9807931985
C	-0.0948746424	-0.8245145529	-6.7159508053
H	7.7828351934	1.1320723423	0.9216633453
H	-0.6891133606	-6.1184799180	1.6691760027
H	-0.2136956495	2.5993688215	-0.8767868063
H	-10.5619892098	2.6835266808	-2.2699671633
H	-9.3966192465	3.2578371363	-3.3568369254
H	3.3977319795	-3.4744106491	0.1094401722
H	5.8618953751	0.9000157303	2.4823755557
H	1.3848758916	1.3191560671	2.6354953128
H	1.4416681784	-5.6155852037	-0.4368419297
H	-9.4271037902	-4.2248107734	1.2793023616
H	-8.5939894516	-3.5644492986	-0.0720055972
H	-12.5418676620	-2.7903178774	0.5790511427
H	-11.8946570847	-4.3607511538	0.8160413037
H	0.3392102715	-6.8178808899	-7.1403948975
H	0.9970468946	-5.6986045061	-2.6504670408
H	-0.395829087	-2.8206491126	-6.8293971349
H	-0.3095113986	-3.5754644755	-3.6684324348
H	-5.6725084466	5.2619884665	-2.2916942768
H	-6.1228206978	6.6116295324	-0.3840161216
H	-4.4567972925	6.2161327569	0.0574987292
H	-1.4441212989	3.5939991399	-2.4290901447
H	-5.1643603262	4.7614583092	1.7688168296
H	-6.7497327972	5.0571011029	1.5862237262
H	-5.8696179688	2.7961363650	0.7207599068
H	-7.5250789479	3.4183503062	0.7924762768
H	0.0744338112	5.4062690432	-2.9338234918
H	-0.5843691123	6.3981716950	-1.6309229754
H	-4.0353593390	6.1837422108	-0.3805943347
Bradykinin (continued)			

H -3.3722951437	7.0186840856 -1.9633512328		
H -1.8646601182	5.8853199202 -4.3629915948		
H -1.6118992882	7.4438580744 -3.5721706114		
H -8.8402232300	2.8703545387 -0.5123435958		
H 4.3504692575	-4.5493856228 2.1037594476		
H -7.4666484798	0.8320496893 -1.0505633330		
H -8.1505455007	0.8384141301 -2.6741450342		
H 3.7860017096	-5.0478233335 1.8627741478		
H 2.6696923092	-3.6873528745 4.4297819207		
H 4.4577788892	-2.8162574248 5.8207751542		
H 5.7003235835	-3.6304242262 4.8659933909		
H 8.1755317110	-1.3979612296 3.9359390207		
H 4.0666026781	-1.1775528103 4.0734513207		
H -9.7980090742	0.6197972154 -0.0801939997		
H -10.4584576203	0.5262007833 -1.7025060637		
H -0.4035949789	1.9622867079 1.5372489788		
H -0.3817608690	3.6949421533 1.8627741478		
H 5.7253854466	-0.5996152396 0.0770191283		
H -9.1619025066	-1.5507334842 -2.1251363172		
H -8.4932668179	-1.4591918722 -0.4910989292		
H 0.8980861069	-2.133682388 0.2504393397		
H 3.9159226463	2.7444197574 2.1361084168		
H 7.6606116759	-0.7833854465 2.4209129681		
H 7.8059626020	-1.7288573426 0.9269449095		
H 0.7067169464	-2.8393286291 -2.2503802635		
H 2.2250574177	-3.6771915874 -2.0426172254		
H 4.7903586034	1.6257198060 4.2138087414		
H 3.2656197451	0.7925478982 4.4198140558		
H -1.4957058595	-5.8606147446 -0.6883026056		
H -1.0050520450	-7.7209886756 -2.3784814707		
H 0.6787261535	-2.2546651785 -2.3287568281		
H 4.3374004533	-2.4198777302 -2.1095459030		
H 0.5754275326	-0.3518917794 -2.0671065605		
H 1.589651169	1.7206121092 5.7772863131		
H 4.7019022851	4.2824362217 4.2885276803		
H -1.6593365936	-5.4234953988 -3.1490343259		
H -0.0097240652	-4.8747049928 -2.9855173769		
H 5.4794913106	-0.3387950736 -2.7731891861		
H 1.7285262175	1.7494156561 -2.7066250075		
H 4.1816760119	1.7645185313 -3.0557985199		
H 0.7889223947	3.5428667573 7.2403054891		
H 3.8986178821	6.1017235459 5.7470853821		
H -1.0128298633	-6.8981429604 -5.0138814859		
H 0.6946763774	-6.4998558063 -4.7763850552		
H 1.9468971009	5.7406094432 7.2389366841		
Colistin			
Colistin (continued)			
----------------------	-----------------	-----------------	
H 3.2498978216 -0.3864879939 4.5126242292	H -5.9687683441 3.0177801426 -1.1160855010		
H 4.8412648206 -2.1739156982 4.4441639505	H -0.1356305776 -1.2998038101 -2.488128256		
H 1.1287090119 3.2274382237 0.1670645032	H -0.2802078029 -1.3618079072 -0.7366248937		
H 6.4345857231 -4.603579799 -0.9697478365	H -7.279436192 4.3955211744 9.5026225046		
H 0.9330366821 1.3008177362 -1.7203351464	H -5.6520392646 4.8391113259 8.9844988971		
H 1.8804103586 -2.1549931115 5.6075126309	H -6.5035469610 3.5062488994 8.1993189072		
H 2.0789308788 -0.7652723201 6.6805327644	H 1.6093824112 0.3628340675 -6.9005786231		
H 0.5525568116 -1.0087401896 5.8257324116	H -0.0012777966 -0.3638685349 -6.8678186860		
H 2.2680890728 1.5406264694 5.7913114314	H 0.4655685465 0.7352037120 -5.5811019867		
H 0.8172034397 1.4556070351 4.7878146244	H -2.8066414187 0.9389722296 7.2010439492		
H 2.3700347473 1.8758205443 4.0633657879	H -4.3541097175 0.2525408662 3.2598868074		
H -0.4084463431 3.9142640495 2.6778726334	H -2.9039884030 -0.7626300277 3.1342849095		
H 1.3382625504 3.6513712434 2.6196348942	H -6.4881899936 5.2916912743 -2.0768756765		
H 6.6404373204 -1.1339552902 5.8141365088	H -6.3821156628 5.9838809662 -0.4590835655		
H 6.2784518158 -2.7697159832 6.3757295300			
Geometries of the peptides employed in this study optimized within the NTBM1 model

Bradykinin

O	-3.96260455	3.05143124	-1.12237337
C	-7.03116095	3.94023427	-3.14735128
N	-1.51275856	5.14294274	5.50054077
C	5.07173156	-2.58787301	0.22742707
C	1.59718056	-2.85851179	2.24720448
O	8.04068275	0.54150537	1.35942520
C	2.23406285	3.98515188	0.10460174
N	3.49976417	0.44045303	0.75793462
C	-1.09353134	-3.98981096	-0.2659246
C	0.24084143	-7.44859247	1.25251273
N	-1.23151834	-8.83690426	0.04931048
C	-3.03036671	4.94224289	-1.8107491
N	-5.63912063	3.99715112	-0.98171407
C	-4.72431253	-2.48791883	2.40122969
C	-0.42155837	3.26798902	0.05648896
O	-9.40979447	2.73637755	-2.8435906
C	2.39741870	-3.58963658	0.31437913
C	5.38785764	0.49124549	1.95460713
C	2.12636838	2.15463227	2.2970162
N	-10.35030820	-1.76054100	-0.4659018
C	-3.38431227	-5.64586702	-0.57820491
N	-9.53838589	-3.81599915	0.42043041
O	-11.76190791	-3.51452459	0.49664189
N	-0.63800084	-5.12535153	-5.4820559
C	-0.40766957	-0.03800210	-7.49042064
C	-0.32209026	-3.72078071	-7.45819631
C	-5.45103192	4.97553181	-1.24083415
C	-5.52341495	5.85727093	0.0052622
C	-1.69563495	4.31320153	-1.78397944
O	-6.06473464	4.96583197	1.10547353
C	-6.69229005	3.76793223	0.43443142
O	-0.86069093	5.17452338	-2.72840453
C	-2.99184108	6.29595380	-2.32740796
C	-4.13653629	4.28433534	-1.40256762
C	-1.65643174	4.63549543	-3.01820830
C	-7.32550541	5.35372871	-1.97147127
C	-1.20374164	4.26012680	-0.36878350
C	-8.52573904	2.67198843	-1.72319377
C	3.88274363	3.70266647	2.29526889
O	-8.19592458	1.21154474	-1.38666345
C	3.74706255	-4.19140380	3.73306647
C	4.56524400	-3.14225537	4.63615436
C	4.86082837	-2.02008549	3.76342338
O	-9.43084824	0.40220605	-1.07657658
C	0.01825895	3.07563039	1.44124214
C	5.24025164	-1.90831818	1.29994066
C	2.58517557	-3.36345960	1.61831518
C	5.98464460	-0.61162733	1.22756227
C	-9.16628211	-1.06682926	-0.84362125
C	1.49819603	3.08088238	1.56524911
C	1.18615148	-3.27278467	-0.42153865
C	3.56019232	2.09642238	2.52291517
C	7.44291309	-0.66276818	1.63123189
C	4.14539304	0.97296886	1.71980212
C	1.55941181	-2.89989818	-1.85791121
C	3.83958228	2.00238559	4.01952879
C	0.12723015	-4.33919630	-0.39017846
C	2.35337538	-1.62409093	-1.98467475
C	3.22236452	3.11750026	8.25882235
C	-0.70586669	-6.62943540	-0.77104678
C	-10.48866446	-3.03619218	0.15843797

-17-
Bradykinin (continued)

H	-3.08791336	6.98937166	-1.47789416
H	-1.79286711	6.55436780	-4.09711900
H	-1.12198412	7.31908695	-2.63243513
H	-9.10599819	3.08557973	-0.88416124
H	4.45745269	-4.41672742	1.68825738
H	-7.52887736	1.20052399	-0.51169236
H	-7.66496082	0.75798672	-2.3850607
H	4.27428018	-5.15047686	3.85109241
H	2.68915774	-4.34324269	3.99395902
H	3.62117484	-2.76905246	5.35676891
H	5.20078865	-3.58208218	5.20333836
H	5.91950177	-1.78832192	3.94143852
H	4.24461264	-1.11517929	3.87404094
H	-9.0591032	0.81730362	-0.17222460
H	-10.14044225	0.49880667	-1.91530566
H	-0.41344676	2.11750983	1.74543841
H	-0.41402615	3.90694023	1.99124761
H	5.97568232	-0.30511598	0.16800164
H	-8.78474059	-1.53112746	-1.7718945
H	-8.41297093	-1.19063598	-0.04343910
H	0.75595805	-2.39415376	0.08398972
H	3.94926836	3.05183503	2.13892715
H	7.58444315	-0.81607160	2.71861279
H	8.01950902	-1.37948493	1.02548141
H	0.61907073	-2.78269878	-2.42032364
H	2.12152320	-3.73792439	-2.29709716
H	4.93292637	2.02767012	4.15536272
H	3.46931070	1.03297233	4.38863052
H	-1.65014579	-6.11641099	-0.53960651
H	-1.56004604	-7.76377400	-2.37546297
H	0.21914576	-7.61958959	-2.44460853
H	4.28468774	-2.60304820	-2.26844134
H	0.62241239	-3.1475712	-1.74834116
H	1.63423321	1.89103852	5.68627621
H	4.65723357	4.62830301	4.17480903
H	-1.85733087	5.49545361	-3.11101625
H	-0.12154991	-5.13533453	-2.89372195
H	5.55013797	-0.48621423	-2.58299519
H	1.90626423	1.79240428	-2.06475000
H	4.37043084	1.71876025	-2.49129248
H	0.66452535	3.73024407	7.05084117
H	3.67463668	6.45557834	5.54804202
H	-1.32332933	-7.00789870	-4.98539576
H	0.43422995	-6.71308505	-4.72906573
H	1.68040270	6.01660218	6.99475107
Colistin (continued)

H	3.18326175	-0.42938841	4.47458330
H	4.90410898	-2.27089087	4.46894167
H	1.21025180	3.34022801	0.08152991
H	6.56669028	-4.47497786	-0.95461541
H	0.11939144	1.13037817	-1.49511114
H	1.80910781	-2.11070814	5.53231180
H	2.09810664	-0.72483885	6.63117316
H	0.50399394	-0.91780052	5.83212748
H	2.37449639	1.50953309	5.76486167
H	0.88529663	1.54562552	4.76967249
H	2.48769164	1.81483774	4.00832368
H	-0.43130257	3.87794571	2.58514305
H	1.35110329	3.74459911	2.58931077
H	6.62247063	-1.21948503	5.81304797
H	6.30715603	-2.90371212	6.34028325
H	7.78805643	-2.51927109	5.40374372
H	5.55391364	-4.59527960	4.68845049
H	6.98740735	-4.33282699	3.64337367
H	5.33818026	-4.13496097	2.97065357
H	1.04703862	3.70375242	-1.95347926
H	0.64288352	3.18169713	-3.59692499
H	4.12585769	-5.84851758	0.26605293
H	5.80662789	-5.82834903	0.88851105
H	5.48254111	-4.40656709	-5.28938716
H	-2.30736977	0.52126238	-0.96769406
H	3.01722573	2.85960389	-2.84048515
H	2.44230312	1.56298105	-1.72761429
H	-5.44709792	6.27350470	6.89809381
H	-6.96638033	4.09867790	5.41281854
H	-5.43276995	3.97379445	6.31831153
H	3.30534653	-0.65559092	-5.48587252
H	0.61789650	6.06620240	2.50297383
H	-0.26961557	5.75978278	0.96496942
H	-4.41667457	5.38597060	4.66988507
H	-5.92031239	5.46208398	3.71377031
H	2.83253867	-5.22013017	-3.99153247
H	3.10768780	-5.05291235	-5.75124831
H	-4.01171703	1.66531702	0.43459666
H	-2.58772238	-2.04944144	-2.60566500
H	-2.63068870	-1.90198650	-0.82376228
H	4.90040572	-7.10577767	-1.73612112
H	6.55823175	-7.16419309	-1.03392239
H	-7.42652463	6.45232132	8.27540805
H	-8.23732153	5.15406887	7.35979954
H	0.49792883	-1.77303060	-5.03178961
H	-6.53662578	4.32341103	1.41314443
H	-4.01014004	3.19942284	4.42492016
H	-5.56259608	2.99337389	3.55050639
H	-2.83616267	-0.50650957	0.82945539
H	-7.27221949	7.81787915	6.34262233
H	-7.95052901	6.61792740	5.19796148
H	-6.32219876	7.31472227	4.91552567
H	4.64159073	-6.94436908	-3.90632061
H	4.79627225	-6.82628019	-5.69579544
H	-7.15590948	3.39659807	-0.79197576

-20-