SYSTEMATIC REVIEW

Interpreting estimates of coronavirus disease 2019 (COVID-19) vaccine efficacy and effectiveness to inform simulation studies of vaccine impact: a systematic review [version 1; peer review: awaiting peer review]

Natsuko Imai1, Alexandra B. Hogan1, Lucy Williams1, Anne Cori1,2, Tara D. Mangal1, Peter Winskill1, Lilith K. Whittles1, Oliver J. Watson1, Edward S. Knock1,2, Marc Baguelin1,2, Pablo N. Perez-Guzman1, Katy A.M. Gaythorpe1, Raphael Sonabend1, Azra C. Ghani1, Neil M. Ferguson1,2

1MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
2National Institute for Health Research Health Protection Research Unit in Modelling and Health Economics, Imperial College London, London School of Hygiene and Tropical Medicine, Public Health England, London, UK

Abstract
Background: The multiple efficacious vaccines authorised for emergency use worldwide represent the first preventative intervention against coronavirus disease 2019 (COVID-19) that does not rely on social distancing measures. The speed at which data are emerging and the heterogeneities in study design, target populations, and implementation make it challenging to interpret and assess the likely impact of vaccine campaigns on local epidemics. We reviewed available vaccine efficacy and effectiveness studies to generate working estimates that can be used to parameterise simulation studies of vaccine impact.

Methods: We searched MEDLINE, the World Health Organization's Institutional Repository for Information Sharing, medRxiv, and vaccine manufacturer websites for studies that evaluated the emerging data on COVID-19 vaccine efficacy and effectiveness. Studies providing an estimate of the efficacy or effectiveness of a COVID-19 vaccine using disaggregated data against SARS-CoV-2 infection, symptomatic disease, severe disease, death, or transmission were included. We extracted information on study population, variants of concern (VOC), vaccine platform, dose schedule, study endpoints, and measures of impact. We applied an evidence synthesis approach to capture a range of plausible and consistent parameters for vaccine efficacy and effectiveness that can be used to inform and explore a variety of vaccination strategies as the COVID-19 pandemic evolves.
Results: Of the 602 articles and reports identified, 53 were included in the analysis. The availability of vaccine efficacy and effectiveness estimates varied by vaccine and were limited for VOCs. Estimates for non-primary endpoints such as effectiveness against infection and onward transmission were sparse. Synthesised estimates were relatively consistent for the same vaccine platform for wild-type, but was more variable for VOCs.

Conclusions: Assessment of efficacy and effectiveness of COVID-19 vaccines is complex. Simulation studies must acknowledge and capture the uncertainty in vaccine effectiveness to robustly explore and inform vaccination policies and policy around the lifting of non-pharmaceutical interventions.

Keywords
COVID-19, vaccine, efficacy, effectiveness, simulation studies, modelling

This article is included in the Coronavirus (COVID-19) collection.
Introduction

It took just over a year from when the World Health Organization declared the coronavirus disease 2019 (COVID-19) epidemic to be a global pandemic for multiple vaccines to be authorised for emergency use\(^{1,2}\) with many more in the pipeline\(^3\). The rapid development of vaccines using a variety of technology platforms (Table 1) has been remarkable and provides the first preventative mass intervention against COVID-19 that does not rely on economically damaging social distancing measures.

Randomised controlled trials (RCTs) of COVID-19 vaccines have demonstrated high efficacy against symptomatic infection, with a range of primary endpoint efficacy estimates reported between 95.0% (95% confidence interval (CI): 90.3 – 97.6) for Pfizer (BNT162b2) and 50.7% (95% CI: 36.0 – 62.0) for CoronaVac. These studies have also demonstrated higher efficacy against severe outcomes (including hospitalisation and death)\(^4-10\). Whilst direct comparison of these estimates is not possible (due to differences in trial design, endpoint definitions of symptomatic disease, and the epidemiological setting in which the trials were undertaken), they can be useful to assess the likely impact of vaccine introductions on local epidemics. However, the vaccine efficacy measured in tightly controlled RCTs is not always observed under “real-world” conditions\(^11,13\). Thus, as vaccines have been rolled-out, real-world data on their effectiveness against symptomatic infection, severe disease, asymptomatic infection\(^11\) and onward transmission\(^13,14\) are emerging.

Synthesising these data is challenging given the speed with which data are emerging and the different study designs. Furthermore, global vaccine deployment means that target populations will be highly heterogeneous even at national level. Achieved coverage can vary by age, sex, ethnicity, comorbidities, and socio-economic background, all of which are known risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and/or more severe COVID-19 disease outcomes\(^15-16\). Even within RCTs, COVID-19 vaccine efficacy has varied by human immunodeficiency virus (HIV) status\(^17\) or dosing strategy\(^6\). Additionally, countries may adopt alternative roll-out strategies from those tested in RCTs. For example, the United Kingdom (UK) adopted a 12-week gap between vaccine doses based on early data suggesting that relatively high efficacy against symptomatic disease is conferred by the first dose in order to prioritise wider delivery of the first dose\(^18,19\) and other countries such as Canada, Norway, and Denmark, are now taking a similar approach\(^20-22\). Conversely, due to delays in vaccine delivery for countries participating in the COVAX Facility, a longer gap between first and second doses may be inevitable\(^23\). Coupled with this variability, the emergence of multiple variants of concern (VOCs) that carry mutations in the spike protein\(^24\) mean that the effectiveness of the current vaccines could be reduced (notably against B.1.351, P.1, and B.1.617.2 which were first identified in South Africa\(^25\), Brazil\(^26\), and India\(^27\), respectively). Whilst data on the vaccine efficacy against these VOCs remains limited, laboratory-based neutralisation assays are suggestive of a likely reduction for some, but not all, of the vaccines\(^23,29\).

As countries continue mass vaccination campaigns, policymakers must carefully consider the implications of different strategies. Optimal vaccination strategies are critically dependent on vaccine effectiveness, availability, roll out speed, and uptake. Relaxation of non-pharmaceutical interventions (NPIs) must be carefully balanced against progress in vaccination to prevent a surge in case numbers whilst population immunity remains below herd immunity threshold\(^20,24\). Simulation studies can provide useful insights into highly uncertain

Table 1. Overview of coronavirus disease 2019 (COVID-19) vaccine platforms\(^5,22,31\).

Platform	Overview	Leading candidates (subtype)
Whole viruses		
a) Live attenuated	• Uses a weakened or inactivated form of the disease-causing pathogen to trigger an immune response.	Serum Institute of India (a)
b) Inactivated	• Live attenuated viruses can still grow and replicate in the host but do not cause disease.	Sinovac Biotech, “CoronaVac”, China (b)
		Sinopharm, “BIBP” and “WIBP”, China (b)
Viral vector	• DNA encoding the spike protein is inserted into an Adenovirus vector.	AstraZeneca-Oxford, UK
	• Viral vector can then infect host cells, which produce the spike protein against which an immune response is triggered.	Johnson & Johnson, USA
		Sputnik V, Russia
Nucleic mRNA	• Induces the host cells to produce SARS-CoV-2 antigen spike proteins coded in the RNA\(^2\).	Pfizer-BioNTech, USA/Germany Moderna, USA
	• Potential for rapid and flexible vaccine updates against VOCs\(^1\).	
Protein subunit	• Uses the SARS-CoV-2 spike protein present on the surface of the virus.	Novavax, USA
	• Adjuvants are added to the vaccine to stimulate a robust immune response.	

\(^1\)Single dose vaccine. \(^2\)RNA = ribonucleic acid. \(^3\)VOC = variants of concern.
medium-term dynamics of SARS-CoV-2 transmission under different vaccine prioritisation and NPI lifting strategies, capturing inherent uncertainties in vaccine characteristics.34–37

Here we review the emerging data on COVID-19 vaccine efficacy and effectiveness, taking into consideration the study population, VOCs in circulation, and vaccine platforms. We take an evidence synthesis approach to capture a range of plausible and consistent parameters that can be used to inform and explore a variety of vaccination strategies. This article is reported inline with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.38

Methods

Literature review

We searched MEDLINE with no language restrictions up to 10 May, 2021, using the following search strategy for the title and abstract: (“Pfizer” OR “BNT162b2” OR “AstraZeneca” OR “ChadOx1” OR “Moderna” OR “mRNA-1273” OR “Janssen” OR “Ad26.COV2.S” OR “Gam-COVID-Vac” OR “Sputnik V” OR “Ad26” OR “Ad5” OR “Novavax” OR “NVX-CoV2373” OR “Sinovac” OR “CoronaVac” OR “Sinopharm” OR “COVID-19 vaccination”) AND (“effectiveness” OR “phase 4” OR “efficacy” OR “impact” OR “reduction” OR “reduced risk” OR “real-world effect” OR “vaccine effect” OR “rollout”) AND (“COVID-19” OR “SARS-CoV-2” OR “nCov-19” OR “ncov-2019”). We also searched MedRxiv using the same search terms using the R package medrxiv version 0.0.5.39 We searched the World Health Organization’s Institutional Repository for Information Sharing for “COVID-19 vaccines” and restricted to documents in English only.40 Vaccine manufacturer websites were also searched for any press releases reporting COVID-19 vaccine efficacy or effectiveness. The search was supplemented by reviewing the reference list of relevant papers. Finally, all reports on vaccine effectiveness released on the UK government’s website were also reviewed.41 The review protocol was not registered at PROSPERO ahead of data extraction. All records were imported into the Covidence systematic review software and deduplicated (v2014, accessed 2021). Study title and abstracts were initially screened by one reviewer (NI) and full texts meeting the inclusion criteria were reviewed (NI).

Inclusion criteria

Studies providing an estimate of the efficacy or effectiveness of a COVID-19 vaccine using disaggregated data against SARS-CoV-2 infection, symptomatic disease, severe disease, death, or transmission were eligible for review. Studies assessing protection in a specific patient setting e.g. amongst patients with liver damage, were excluded. Press releases were included for review if results were not already available as a pre-print manuscript or peer-reviewed paper. Studies were grouped by unique vaccine for the evidence synthesis.

Data collection

A single reviewer (NI) extracted summary data on study type (clinical trial or effectiveness study), study location, vaccine type, efficacy or effectiveness by endpoint given as percentage vaccine efficacy, odds ratio, or risk ratio (infection, symptomatic disease, severe disease, death, or transmission), variant, number of doses, timing at which efficacy or effectiveness was assessed, and whether it was assessed in a particular subgroup.

Evidence synthesis

Although the primary endpoint of clinical trials is typically efficacy against symptomatic COVID-19 disease, optimising vaccination strategies requires consideration of broader transmission dynamics and the full natural history of disease from infection to recovery or death. We therefore consider vaccine efficacy42 against four endpoints: i) any infection (including asymptomatic); ii) symptomatic infection; iii) severe disease requiring hospitalisation (including admission to intensive care units or resulting in death); and iv) infectiousness of breakthrough infections in vaccinated individuals.

Where only a single efficacy estimate was available, we use that value. Where several trials and/or effectiveness studies report values, we present the range of these values and use the unweighted mean value across studies as our central estimate. Efficacy or effectiveness estimates within care home populations were excluded from the calculation of the mean value as these study populations are highly vulnerable and experienced high attack rates early in the pandemic, making estimates non-representative. Efficacy estimates from non-standard dosing regimes e.g. the low/standard dosing reported in the ChAdOx1 trial were also excluded.

Based on the extracted values, we apply a data synthesis approach to generate working estimates. First, we assume that efficacy after two doses is never lower than after one dose for a multidose vaccine. Second, to ensure consistency between the endpoints we assume that efficacy against severe disease is greater than or equal to efficacy against symptomatic disease across all vaccine types.34–36 Third, we assume that efficacy against B.1.351 and P.1, but not B.1.1.7, is never higher than that for wild-type SARS-CoV-2 (the variant originally in circulation that contains no major mutations) based on data on neutralising antibody levels.39,42–44 Estimates for VOCs with immune escape properties (B.1.351, P.1, and P.2) were grouped together. These three conditions were applied across all estimates.

Where data are not yet available, we first assume that the mechanism of action of the vaccines is similar. Specifically, to estimate vaccine efficacy or effectiveness (VE) against e.g. severe disease or infectiousness we maintain the same incremental relationships as observed for vaccines for which these data are available. For example, if data on efficacy against severe disease for B.1.1.7 are not available but are available for B.1.1.7 symptomatic infection, wild-type symptomatic infection, and wild-type severe disease, then we assume that the ratio of the odds of symptomatic and severe B.1.1.7 efficacy is the same as that for wild-type (WT).

\[
\text{odds}(VE) = \frac{VE}{1 - VE}
\]
We make a similar assumption for the difference in efficacy between first and second doses. If there was not enough information available to calculate these ratios, we assumed that: i) the odds of the vaccine efficacies for B.1.1.7 were the midpoint between those for wild-type and B.1.351; ii) that the efficacy for first and second dose was the same; or iii) efficacy against the same endpoint was the same for the different variants.

Second, in the absence of data, we assume that efficacies against symptomatic disease and infection are the same⁴⁵,⁴⁶. Third, for the AstraZeneca vaccine, immunogenicity data shows no significant boosting effect from the second dose⁷,⁸. Furthermore, efficacy after the first AstraZeneca dose against symptomatic disease was not significantly different to efficacy after the second dose in clinical trials⁹. Thus, in the absence of data we therefore assume that first and second dose efficacy for viral vector vaccines is the same.

Additionally, in our analysis we impose a minimum and maximum vaccine efficacy against any endpoint of 0% and 99% respectively. We do not consider the duration of vaccine-induced immunity as data are not yet available to assess this. We did not undertake a risk of bias assessment as the aim of the review was to collate and synthesise all available efficacy and effectiveness estimates. All values are rounded to the nearest percent. Analysis was conducted using R version 4.0.3⁹ and Microsoft Excel.

Results

We identified 602 potentially relevant studies or reports, 53 of which were included after full-text screening (Figure 1).

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of study selection.

![PRISMA flow diagram](image-url)
The Underlying data file\(^6\) summarises efficacy/effectiveness values reported from clinical trials and observational effectiveness studies. Figure 2 and Table 2 give our summary estimates of vaccine effectiveness by endpoint, vaccine type, dose, and SARS-CoV-2 variant. There were 16 studies reporting clinical trial results, 36 effectiveness studies, and 1 observational study.

AstraZeneca-Oxford (viral vector)
We identified 12 eligible studies on vaccine efficacy or effectiveness for the AstraZeneca vaccine (Figure 3) which directly informed 8 out of 24 possible estimates in our evidence synthesis (Table 2). We estimated a 64%, 76%, and 99%, efficacy after two doses for wild-type against any infection, symptomatic disease, and severe disease, respectively, and a 43% efficacy against B.1.1.7 transmission.

The most data points were available for estimates of efficacy against symptomatic disease after two doses (n = 13) ranging from 62.1% (95% CI: 41.0, 75.7) to 90.0% (67.4, 97.0) against the wild-type variant\(^6\). The latter estimate was from a low-dose/standard-dose regime which was excluded from our final evidence synthesis. We also excluded the most recent UK-based clinical trial from our synthesis which reported a vaccine efficacy against disease caused by non-B.1.1.7 variants of 84.1% (95% CI: 71 – 91%). This was because inspection of the results indicated that over half of the samples in that post-hoc stratification were not sequenced and that efficacy was much lower in unsequenced samples\(^5\). In comparison, only one estimate of efficacy against severe disease after two doses was available compared to six estimates after one dose. Estimates for protection against transmission are still scarce with only two estimates.
Table 2. Summary of vaccine efficacy and effectiveness synthesis showing by vaccine, endpoint, dose, and variant, the number of studies with data, the mean, and the final synthesised estimate. All values are rounded to the nearest percent. WT = wild-type variant. AZ = AstraZeneca, PF = Pfizer, J&J = Janssen. *Note that J&J is a single dose product.

Platform	Vaccine	Endpoint	Dose	variant	No. of studies	Efficacy (%)	Type	Reasoning	
vector	AZ	any infection	one	WT	1	64	informed	-	
			one	B.1.1.7	1	60	informed	-	
			one	B.1.351/P.1	0	10	assumed	assumed same as symptomatic infection	
			two	WT	0	64	assumed	unlikely second dose VE would be lower, assumed same as first dose	
			two	B.1.1.7	0	77	assumed	assumed same as symptomatic infection	
			two	B.1.351/P.1	0	10	assumed	assumed same as symptomatic infection	
		symptomatic disease	one	WT	1	76	informed	-	
			one	B.1.1.7	2	65	informed	-	
			one	B.1.351/P.1	0	10	assumed	assumed same first and second dose efficacy	
			two	WT	0	76	assumed	unlikely that second dose has lower efficacy, assume same as first	
			two	B.1.1.7	2	77	informed	-	
			two	B.1.351/P.1	1	10	assumed	-	
		severe disease	one	WT	0	99	assumed	capped to upper limit of 99	
			one	B.1.1.7	3	79	informed	-	
			one	B.1.351/P.1	0	78	assumed	assumed that ratio of odds was the same as WT difference between symptomatic and severe disease	
			two	WT	0	99	assumed	capped to upper limit of 99	
			two	B.1.1.7	0	79	assumed	assumed same first and second dose efficacy	
			two	B.1.351/P.1	0	78	assumed	assumed that ratio of odds was the same as WT difference between symptomatic and severe disease; assumed same first and second dose efficacy	
		transmission	one	B.1.1.7	2	43	informed	-	
			two	B.1.1.7	0	43	assumed	assumed same first and second dose efficacy	
J&J*	any infection	one	WT	1	66	informed	-		
			one	B.1.1.7	0	63	assumed	assumed odds(VE) was midway between WT and B.1.351	
			one	B.1.351/P.1	0	59	assumed	assumed same as symptomatic infection	
		symptomatic disease	one	WT	3	73	informed	-	
			one	B.1.1.7	0	67	assumed	assumed odds(VE) was midway between WT and B.1.351	
			one	B.1.351/P.1	2	59	informed	-	
Platform	Vaccine	Endpoint	Dose	variant	No. of studies	Efficacy (%)	Type	Reasoning	
----------	---------	----------	------	---------	----------------	--------------	------	-----------	
		severe disease	one	WT	3	83	informed	-	
		one	B.1.1.7	0	80	assumed	-		
		one	B.1.351/P.1	2	78	assumed	-		
Sputnik V		any infection	one	WT	0	74	assumed	assumed same as symptomatic infection	
		one	B.1.1.7	0	60	assumed	assumed same as AZ (same vaccine platform)		
		one	B.1.351/P.1	0	10	assumed	assumed same as AZ (same vaccine platform)		
		two	WT	0	92	assumed	assumed same as symptomatic infection		
		two	B.1.1.7	0	88	assumed	assumed same as symptomatic infection		
		two	B.1.351/P.1	0	31	assumed	assumed same as symptomatic infection		
		symptomatic disease	one	WT	1	74	informed	-	
		one	B.1.1.7	0	65	assumed	assumed same as AZ (same vaccine platform)		
		one	B.1.351/P.1	0	10	assumed	assumed same as AZ (same vaccine platform)		
		two	WT	2	92	informed	-		
		two	B.1.1.7	0	88	assumed	assumed same odds ratio as WT one and two doses		
		two	B.1.351/P.1	0	31	assumed	assumed same odds ratio as WT one and two doses		
		severe disease	one	WT	0	99	assumed	assumed same as AZ (same vaccine platform)	
		one	B.1.1.7	0	79	assumed	assumed same as AZ (same vaccine platform)		
		one	B.1.351/P.1	0	78	assumed	assumed same as AZ (same vaccine platform)		
		two	WT	0	99	assumed	assumed upper limit of 99, not lower than first dose		
		two	B.1.1.7	0	94	assumed	assumed same odds ratio as WT symptomatic disease one and two doses		
		two	B.1.351/P.1	0	93	assumed	assumed same odds ratio as WT symptomatic disease one and two doses		
		transmission	one	B.1.1.7	0	43	assumed	assumed same as AZ (same vaccine platform)	
		two	B.1.1.7	0	43	assumed	assumed same as AZ (same vaccine platform)		
mRNA PF		any infection	one	WT	11	50	informed	-	
		one	B.1.1.7	5	63	informed	-		
		one	B.1.351/P.1	0	17	assumed	assumed same as symptomatic infection		
		two	WT	10	84	informed	-		
		two	B.1.1.7	3	87	informed	-		
		two	B.1.351/P.1	0	88	assumed	assumed same as symptomatic infection		
Platform	Vaccine	Endpoint	Dose	variant	No. of studies	Efficacy (%)	Type	Reasoning	
------------	---------	---------------	------	-------------	----------------	--------------	----------	--	
		symptomatic	one	WT	4	67	informed	-	
		disease	one	B.1.1.7	9	61	informed	-	
			one	B.1.351/P.1	1	17	informed	-	
			two	WT	6	95	informed	-	
			two	B.1.1.7	7	89	informed	-	
			two	B.1.351/P.1	2	88	informed	-	
		severe disease	one	WT	4	77	informed	-	
			one	B.1.1.7	9	79	informed	-	
			one	B.1.351/P.1	0	17	assumed	assumed same as symptomatic infection one dose (as cannot be lower)	
			two	WT	8	91	informed	-	
			two	B.1.1.7	4	98	informed	-	
			two	B.1.351/P.1	0	91	assumed	assumed same as WT	
	Moderna	transmission	one	B.1.1.7	2	49	informed	assumed same odds ratio as for symptomatic disease one vs two doses	
			two	B.1.1.7	0	90	assumed	-	
	Moderna	any infection	one	WT	3	79	informed/assumed	estimate from mRNA vaccine studies that did not differentiate PF vs Mod	
			one	B.1.1.7	0	63	assumed	assumed same as PF	
			one	B.1.351/P.1	0	17	assumed	assumed same as PF	
			two	WT	3	86	informed/assumed	estimate from mRNA vaccine studies that did not differentiate PF vs Mod	
			two	B.1.1.7	0	87	assumed	assumed same as PF	
			two	B.1.351/P.1	0	88	assumed	assumed same as PF	
		symptomatic	one	WT	1	59	informed/assumed	estimate from mRNA vaccine studies that did not differentiate PF vs Mod	
		disease	one	B.1.1.7	0	61	assumed	assumed same as PF	
			one	B.1.351/P.1	0	17	assumed	assumed same as PF	
			two	WT	1	94	informed	-	
			two	B.1.1.7	0	89	assumed	assumed same as PF	
			two	B.1.351/P.1	0	88	assumed	assumed same as PF	
Platform	Vaccine	Endpoint	Dose	Variant	No. of studies	Efficacy (%)	Type	Reasoning	
----------	---------	----------	------	---------	----------------	--------------	------	-----------	
		severe disease	one	WT	1	64	informed/assumed	estimate from mRNA vaccine studies that did not differentiate PF vs Mod	
				B.1.1.7	0	79	assumed	assumed same as PF	
				B.1.1.7	0	17	assumed	assumed same as PF	
				B.1.1.7	0	99	assumed	assumed same as PF	
				B.1.351/P.1	0	91	assumed	assumed same as PF	
				B.1.351/P.1	0	49	assumed	assumed same as PF	
				B.1.1.7	2	86	informed	capped at upper limit of 99	
				B.1.1.7	2	96	informed	capped at upper limit of 99	
				B.1.351/P.1	2	53	informed	capped at upper limit of 99	
				B.1.351/P.1	2	89	informed	capped at upper limit of 99	
		transmission	one	WT	0	83	assumed	assumed same as symptomatic infection	
				B.1.1.7	0	54	assumed	assumed same as symptomatic infection	
				B.1.1.7	0	43	assumed	assumed same as symptomatic infection	
				B.1.1.7	0	96	assumed	assumed same as symptomatic infection	
				B.1.351/P.1	0	86	assumed	assumed same as symptomatic infection	
				B.1.351/P.1	0	53	assumed	assumed same as symptomatic infection	
				B.1.1.7	2	43	informed	capped at upper limit of 99	
				B.1.1.7	2	96	informed	capped at upper limit of 99	
				B.1.351/P.1	2	53	informed	capped at upper limit of 99	
				B.1.351/P.1	2	89	informed	capped at upper limit of 99	
		symptomatic disease	one	WT	0	83	assumed	assumed same as odds ratio as for symptomatic infection one vs two doses	
				B.1.1.7	0	54	assumed	assumed same as odds ratio as for symptomatic infection one vs two doses	
				B.1.1.7	0	43	assumed	assumed same as odds ratio as for symptomatic infection one vs two doses	
				B.1.1.7	0	96	assumed	assumed same as odds ratio as for symptomatic infection one vs two doses	
				B.1.351/P.1	0	86	assumed	assumed same as odds ratio as for symptomatic infection one vs two doses	
				B.1.351/P.1	0	53	assumed	assumed same as odds ratio as for symptomatic infection one vs two doses	
				B.1.1.7	2	43	informed	capped at upper limit of 99	
				B.1.1.7	2	96	informed	capped at upper limit of 99	
				B.1.351/P.1	2	53	informed	capped at upper limit of 99	
				B.1.351/P.1	2	89	informed	capped at upper limit of 99	
	subunit	symptomatic disease	one	WT	1	96	informed	capped at upper limit of 100%	
	subunit			B.1.1.7	1	99	informed	capped at upper limit of 100%	
	subunit			B.1.1.7	1	99	informed	capped at upper limit of 100%	
	subunit	severe disease	one	WT	1	96	informed	capped at upper limit of 100%	
	subunit			B.1.1.7	1	99	informed	capped at upper limit of 100%	
	subunit			B.1.1.7	1	99	informed	capped at upper limit of 100%	
Platform	Vaccine	Endpoint	Dose	variant	No. of studies	Efficacy (%)	Type	Reasoning	
------------------	-------------	-----------------	------	---------	----------------	--------------	------	---	
whole virus	CoronaVac	any infection	one	WT	0	50	assumed	assumed same as symptomatic infection	
			one	B.1.1.7	0	50	assumed	assumed same as symptomatic infection	
			one	B.1.351/P.1	0	50	assumed	assumed same as symptomatic infection	
			two	WT	0	67	assumed	assumed same as symptomatic infection	
			two	B.1.1.7	0	60	assumed	assumed same as symptomatic infection	
			two	B.1.351/P.1	0	50	assumed	assumed same as symptomatic infection	
symptomatic		disease	one	WT	0	50	assumed	assumed same as B.1.351 first dose as applying odds ratio of WT severe disease results in lower VE than for B.1.351	
			one	B.1.1.7	0	50	assumed	assumed same as B.1.351 first dose as applying odds ratio of WT severe disease results in lower VE than for B.1.351	
			one	B.1.351/P.1	1	50	informed	informed -	
			two	WT	3	67	informed	informed -	
			two	B.1.1.7	0	60	assumed	assumed odds(VE) was midway between WT and B.1.351	
			two	B.1.351/P.1	0	50	assumed	unlikely that second dose has lower efficacy, assume same as first	
severe disease			one	WT	1	51	informed	informed -	
			one	B.1.1.7	0	50	assumed	assumed same as symptomatic disease as applying odds ratio of WT severe disease results in lower VE than symptomatic disease	
			one	B.1.351/P.1	0	50	assumed	assumed same as symptomatic disease as applying odds ratio of WT severe disease results in lower VE than symptomatic disease	
			two	WT	2	92	informed	informed -	
			two	B.1.1.7	0	87	assumed	assumed odds(VE) was midway between WT and B.1.351	
			two	B.1.351/P.1	0	73	assumed	assumed same as "mixed" first dose which is a mix of B.1.351 and P.1 but with unknown ratio	
Sinopharm	BIBP	any infection	one	WT	0	50	assumed	assume same as Coronavac same vaccine platform	
			one	B.1.1.7	0	50	assumed	assume same as Coronavac same vaccine platform	
			one	B.1.351/P.1	0	50	assumed	assume same as Coronavac same vaccine platform	
			two	WT	0	67	assumed	assume same as Coronavac same vaccine platform	
			two	B.1.1.7	0	60	assumed	assume same as Coronavac same vaccine platform	
			two	B.1.351/P.1	0	50	assumed	assume same as Coronavac same vaccine platform	
Platform	Vaccine	Endpoint	Dose	variant	No. of studies	Efficacy (%)	Type	Reasoning	
----------	---------	--------------------------	------	-----------	----------------	--------------	--------	---	
		symptomatic disease	one	WT	0	50	assumed	assume same as Coronavac same vaccine platform	
			one	B.1.1.7	0	50	assumed	assume same as Coronavac same vaccine platform	
			one	B.1.351/P.1	0	50	assumed	assume same as Coronavac same vaccine platform	
			two	WT	1	78	informed		
			two	B.1.1.7	0	60	assumed	assume same as Coronavac same vaccine platform	
			two	B.1.351/P.1	0	50	assumed	assume same as Coronavac same vaccine platform	
		severe disease	one	WT	0	51	assumed	assume same as Coronavac same vaccine platform	
			one	B.1.1.7	0	50	assumed	assume same as Coronavac same vaccine platform	
			one	B.1.351/P.1	0	50	assumed	assume same as Coronavac same vaccine platform	
			two	WT	1	79	informed	-	
			two	B.1.1.7	0	87	assumed	assume same as Coronavac same vaccine platform	
			two	B.1.351/P.1	0	73	assumed	assume same as Coronavac same vaccine platform	
Figure 3. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the AstraZeneca vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.

available from the same study. There were insufficient data to inform estimates of protection against transmission for wild-type or B.1.351. Finally, only one estimate of efficacy against B.1.351, against symptomatic disease after two doses (10.0%, 95% CI: -77.0, 55.0), was identified. This informed 2 of the 24 possible synthesised estimates (Underlying data).

Sputnik V (viral vector)
Only one eligible study was identified for Sputnik V (Figure 4) which reported an efficacy against wild-type symptomatic disease after one and two vaccine doses of 73.6% (95% CI: 13.1, 91.9) and 91.6% (95% CI: 85.6, 95.2) respectively. This informed 2 of the 24 possible synthesised estimates (Underlying data). An effectiveness study reported a 79.4% efficacy for Sputnik Light, the first component of Sputnik V which is now authorised as a single dose product in Russia. No data on efficacy against VOCs were available. Other endpoint estimates were assumed to be the same as AstraZeneca ChAdOx1, which is also a viral vector vaccine. We thus estimated a 92%, 92%, and 99% efficacy after two doses for wild-type against any infection, symptomatic disease, and severe disease respectively. There were not enough data to inform estimates of protection against transmission for wild-type or B.1.351.

Johnson & Johnson (viral vector)
Two studies reported efficacy and effectiveness estimates for the single dose Johnson & Johnson vaccine which informed 5 of the 12 possible estimates (Figure 5 and Table 2). We estimated a 66%, 73%, 83%, efficacy for wild-type against any infection, symptomatic disease, and severe disease respectively. Five estimates for efficacy against symptomatic disease were identified ranging from 66.9% (95% CI: 59.0, 73.4) to 76.7% (95% CI: 30.3, 95.3). No data were available for efficacy against transmission, therefore we assumed this to be the same as for AstraZeneca. There were not enough data to inform estimates of protection against transmission for wild-type or B.1.351.

Pfizer-BioNTech (mRNA)
We identified 27 eligible studies on vaccine efficacy or effectiveness for the Pfizer vaccine (Figure 6) which directly informed 14 of the 24 synthesised estimates (Table 2). We estimated 84%, 95%, and 95%, efficacy after two doses against wild-type for any infection, symptomatic disease, and severe disease, and 90% efficacy against B.1.1.7 transmission.

The majority of data available described estimates of efficacy against symptomatic disease after two doses (n = 15) ranging from 91.3% (95% CI: 89.0, 75.7) to 99.3% (95.3, 99.9) against the wild-type variant. Similarly to AZ, there were not enough data to inform estimates of protection against transmission for wild-type or B.1.351. For all other endpoints there were 13 to 16 estimates available to inform our evidence synthesis. However, estimates against non-B.1.1.7 variants
Figure 4. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the Sputnik V vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.

Figure 5. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the Johnson&Johnson vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.
were scarce with only one press release and a Qatari effectiveness study reporting estimates for B.1.351. In our synthesis we assumed that the efficacy against severe disease reported by Vasilieou et al. was 80%, estimated from the weighted average (by the number of observations) of efficacy from 21 days onwards.

Moderna (mRNA)
Available efficacy and/or effectiveness data for Moderna were not as comprehensive compared to Pfizer with only a single study reporting efficacy estimates for symptomatic (94.1%, 95% CI: 89.3, 96.8) and severe disease (100%, 95% CI: NA) after two doses for wild-type (Figure 7). In our synthesis, we therefore used the mean value from effectiveness studies that did not differentiate between the mRNA vaccines (Pfizer or Moderna) to inform our estimates for wild-type against any infection, symptomatic disease, severe disease, and transmission respectively.

Novavax (protein subunit)
We identified two eligible studies on vaccine efficacy for the Novavax vaccine (Figure 8) which informed 8 of the 24 estimates (Table 2). We estimated a 96%, 96%, and 99% efficacy after two doses against wild-type for any infection, symptomatic disease, and severe disease respectively. There were not enough data to inform estimates of protection against transmission for any non-wild type variant.

CoronaVac (whole virus)
We identified four eligible studies for the CoronaVac vaccine (Figure 9) which informed 4 of the 24 possible estimates (Table 2). We estimated 67%, 67%, and 92% efficacy after two doses against wild-type for any infection, symptomatic disease, and severe disease. There were not enough data to inform estimates of protection against transmission for any variant.

Sinopharm (whole virus)
Only two eligible studies were identified for the Sinopharm BIBP vaccine (Figure 10) which reported efficacy after two doses against symptomatic and severe disease of 78.1% (64.8, 86.3) and 79.0% (95% CI: 26.0, 94.0) respectively. This informed 2 of the 24 possible synthesised estimates with...
Figure 7. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the Moderna vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.

Figure 8. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the Novavax vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.
Figure 9. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the CoronaVac vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.

Figure 10. Summary of reported first and second dose vaccine efficacy and effectiveness estimates for the Sinopharm BIBP vaccine for, from left to right: i) any infection; ii) symptomatic disease; iii) severe disease; and iv) transmission. Red points show estimates for the wild-type (WT), yellow for a mix of variants, turquoise for B.1.1.7, and navy for B.1.351, P.1, or P.2.
the remainder assumed to be the same as CoronaVac (Table 2). We estimated a 67%, 78%, and 79% efficacy after two doses against wild-type for any infection, symptomatic disease, and severe disease respectively. There were not enough data to inform estimates of protection against transmission for any variant. No studies were identified reporting results for the WIBP vaccine.

Discussion

This review and evidence synthesis provides an overview of the currently available vaccine efficacy and effectiveness estimates for COVID-19 across multiple vaccine trials and platforms capturing the differences and considerable uncertainty in the protective impact of vaccines. We found the largest number of studies for the AstraZeneca and Pfizer vaccines whilst estimates for Sputnik V and Sinopharm were the most limited. For some vaccines, estimates relied on manufacturer press releases rather than peer-reviewed papers which limited its interpretation. Furthermore, efficacy estimates against VOCs, particularly B.1.351 and P.1 are limited. This is partly due to their more recent emergence compared to B.1.1.7, but also the lack of systematic sequencing in many affected countries. Thus variant-specific estimates are difficult to assess and are often reported as a mix of variants\(^9\). Our evidence synthesis suggests that efficacy estimates for the same vaccine platform are relatively consistent for wild-type, but there is greater variability for VOCs.

Assessment of efficacy and effectiveness of any vaccine is complex, especially for SARS-CoV-2 where our knowledge of the pathogen and the immune response is still evolving. Adding to this complexity is the emergence of new VOCs, some of which carry mutations allowing a degree of immune escape\(^24,30\). With COVID-19 vaccines being rolled out globally on an unprecedented scale, heterogeneities such as demographics and comorbidities between different populations will also impact vaccine effectiveness\(^8\). With some countries prioritising delivery of the first dose to as many individuals as possible over delivery of the second\(^38,30\), understanding how protection may differ after each dose of vaccine (for a multi-dose product) is also crucial. Furthermore, while most countries have focused on minimising COVID-19 mortality, or reducing pressures on the health system\(^41,65\) by vaccinating the elderly, at least one country has prioritised younger adults who contribute most to transmission\(^66\). A nuanced understanding of how each vaccine acts is therefore important in accurately assessing how effective these strategies may be.

Stringent lockdown measures have been implemented by countries in response to rising case numbers and the threat to hospital capacity. Most countries, including the UK, Israel, and the USA, have adopted strategies that minimise COVID-19 deaths and hospitalisations by prioritising the elderly and vulnerable populations most at risk\(^33,67,68\). For this approach, it is important to understand how vaccine efficacy against symptomatic COVID-19 differs from efficacy against severe COVID-19, which is more likely to require hospitalisation. Conversely, strategies adopted by Indonesia and China aim to minimise transmission by prioritising the younger working population who contribute most to transmission\(^90-71\). This can be an effective strategy if efficacy in older age groups is poor and/or vaccines can prevent infection or reduce the infectiousness of breakthrough cases in vaccinated individuals\(^74\). Assessment of the extent to which vaccination can prevent SARS-CoV-2 infection varies by study and for many vaccines direct estimates are not yet available. Early effectiveness studies from Israel have suggested high efficacy of 94% against asymptomatic infection after two doses of the Pfizer vaccine\(^72\). In the UK, 56% (95% CI: 19 – 76) effectiveness against any infection 28 days after the first dose of Pfizer or AstraZeneca\(^73\) amongst care home residents and a 72% (95% CI: 58 – 86) and 86% (95% CI: 76 – 97) effectiveness against asymptomatic and symptomatic infection amongst healthcare workers has been reported after the first and second dose of the Pfizer vaccine respectively\(^79\). Vaccine effectiveness in reducing the infectiousness of a vaccinated individual if they are infected is not typically reported in clinical trials\(^84\). Recent effectiveness studies have estimated a 30% reduction in risk of infection amongst household members of vaccinated healthcare workers in Scotland\(^81\) and that one dose of AstraZeneca and Pfizer provided 47% and 49% protection respectively against onward transmission in England. A population-wide study from Israel found decreased viral loads amongst infected vaccinated individuals suggestive of a reduction in infectiousness\(^77\). Robust estimates of vaccine efficacy against infection and transmission will be vital in understanding the potential success of a reduced transmission strategy.

Most clinical trials were planned and undertaken before the emergence of VOCs and studies that specifically address efficacy against variants are sparse. Interpreting efficacy results for VOCs typically requires polymerase chain reaction (PCR)-sequencing of cases. If vaccination reduces viral loads in breakthrough cases, as suggested by clinical trials and effectiveness studies for AstraZeneca\(^81\) and Pfizer\(^85\), it will make samples more difficult to sequence. This increases the possibility of missing variant-specific samples in the vaccine arm which could lead to overestimation of efficacy, as may have occurred in the Emory et al. study\(^81\). Nonetheless, studies that systematically sequence cases are valuable and should be considered wherever possible. The recent emergence of the B.1.617.2 variant first identified in India\(^27\) has contributed to the surge in cases in India and is now the cause of an increasing proportion of new cases in the UK\(^76,77\). Effectiveness studies have shown no significant difference in effectiveness of the Pfizer and AstraZeneca vaccines after the second dose compared to B.1.1.7. However there was a substantial decrease in effectiveness after a single dose of 33.2% (95% CI: 8.3, 51.4) compared to 49.2% (95% CI: 42.6%, 55.0) and 32.9% (95% CI: 19.3, 44.3) compared to 51.4% (95% CI: 47.3, 55.2) for the Pfizer and AstraZeneca vaccines respectively\(^78\). Especially for countries opting to delay delivery of the second dose in order to deliver as many
first doses as possible, emerging data and continued assessment of vaccine effectiveness against VOCs are crucial in determining the optimal vaccination strategy.

The duration of follow-up in clinical trials and effectiveness studies is not yet sufficient to robustly estimate the duration of vaccine-induced immunity. How waning of immunity may affect the design of booster campaigns being considered to mitigate the potential impact of VOCs19 will be a critical factor shaping the trajectory of the pandemic in the coming one or two years. Longitudinal cohort studies are needed to better assess the duration of both natural and vaccine-induced immunity.

Until results of forthcoming studies on efficacy against VOCs, transmission, and infection are available20,21, simulation studies must acknowledge and capture current uncertainty in order to robustly explore and inform vaccination policies and policy around the lifting of NPIs. Finally, it is important to note that this overview, at the time of writing, represents our best interpretation of the available efficacy and effectiveness data. As more results from clinical trials and effectiveness studies become available, available evidence should be re-evaluated.

Data availability

Underlying data

Figshare: Interpreting estimates of coronavirus disease 2019 (COVID-19) vaccine efficacy and effectiveness to inform simulation studies of vaccine impact. https://doi.org/10.6084/m9.figshare.1486927222.

Reporting guidelines

Figshare: PRISMA checklist for ‘Interpreting estimates of coronavirus disease 2019 (COVID-19) vaccine efficacy and effectiveness to inform simulation studies of vaccine impact: a systematic review’ https://doi.org/10.6084/m9.figshare.14883717.v123.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
