Diversity and use of medicinal plants for traditional women's health care in Northern Banyumas, Indonesia

WAHYU UTAMININGRUM1*, NOFRANTI1, DWI HARTANTI1,**

1Department of Clinical and Community Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto. Jl. KH. Ahmad Dahlan, Banyumas 53182, Central Java, Indonesia. Tel./fax: +62-281-636751, *email: wahyuutaminingrum@ump.ac.id
2Mandiangin Community Health Center. Jl. Abdul Manan No. 8, Mandiangin, Koto Selayan, Bukittinggi 26111, West Sumatra, Indonesia
3Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto. Jl. KH. Ahmad Dahlan, Banyumas 53182, Central Java, Indonesia. **email: dwhartanti@ump.ac.id

Abstract. Utaminingrum W, Nofrianti, Hartanti D. 2022. Diversity and use of medicinal plants for traditional women's health care in Northern Banyumas. Biodiversitas 23: 1970-1976. This study aimed to record the diversity and utilization of medicinal plants for maintaining women's health in Northern Banyumas (Central Java, Indonesia) using qualitative and quantitative approaches. Semi-structured interviews with 97 informants were conducted to collect data on local plant names, plant parts, herbal preparation, and application of plants used for traditional women's health care. The value and importance of the plants to the people in the surveyed areas were quantitatively determined by the species use-value (SUV), the relative frequency of citation (RFC), and fidelity level (FL). The local community cited 21 plant species belonging to 10 families. The most frequently used plant part, preparation, and application were fruits and rhizomes (32.6% each), infusion (83.7%), and oral (88.4%), respectively. There were four use-category of the plants, i.e., post-partum, pre-menstrual syndrome, lactation stimulant, and leukorrhoea. The most valuable plants were Curcuma longa L., Piper betle L., and Kaempferia galanga L. with SUV of 0.41, 0.34, and 0.21, respectively. The C. longa and P. betle were also recorded as the most important plants with RFC values of 0.63 and 0.40. These findings confirm the status of Zingiberaceae as the main component of jamu (traditional medicine) to maintain women's health.

Keywords: Baturraden, ethnomedicine, medicinal plants, Sumbang, traditional medicines, women's health care

Abbreviations: FL: fidelity level, RFC: relative frequency of citation, SUV: species use-value,

INTRODUCTION

People in Indonesia, particularly those living in the rural area and from the lower-middle class, commonly consumed jamu, the Indonesian traditional medicine, to maintain health and cure ailments. Their jamu intake was in the form of self-made herbal preparations from plants around their living place (Elfahmi et al. 2014; Isnawati et al. 2019). The particular use of jamu for maintaining the overall health and beauty caring of women is an interesting benefit of jamu. Numerous jamu formulations are specially dedicated to every step of the womanhood life cycle (Jun et al. 2021; Siahhaan et al. 2021).

There are numerous ethnobotanical studies covering this topic worldwide. Some recent examples include the utilization of plants by Brazilian women, Arabic women in Mecca (Saudi Arabia), Menoua women in Cameroon, and Chinese women in Chaoshan (China) for treating pregnancy, menstruation, and the related conditions (Yemele et al. 2015; Yazbek et al. 2016; Alqethami et al. 2017; Li et al. 2017). In Indonesia, such studies are also conducted in Bangkalan (East Java) on Madurese people, Seluma (Bengkuwu) on Serawai people, Solok (West Sumatra) on Minangkabau people, and Upper Left Kampar (Riau) (Rahayu et al. 2020; Silalahi et al. 2020; Muslichah et al. 2021; Susandarini et al. 2021).

Compared to other regions in Java, the biodiversity in the slope of Mt. Slamet, the area where the sub-districts of Baturraden and Sumbang are located, is considered high. The area's biological richness in terms of hornworts, pteridophytes, Javanese endemic palms, begonias, and Saurauia have been reported (see Praptosuwiry0 2013; Efendi 2019; Zulkarnaen et al. 2019; Helmanto et al. 2020; Siagian et al. 2021). Further, several ethnomedicinal studies have described the use of plants for treating diabetes and diarrhea in the area of Northern Banyumas (Permatasari et al. 2011; Utaminingrum et al. 2020). To the best of our knowledge, there is an absence of ethnobotanical studies related to women's health care conducted in Northern Banyumas, Central Java, Indonesia so this study is designed to document the diversity of medicinal plants used for women's health care in the sub-districts of Baturraden and Sumbang.

MATERIALS AND METHODS

Study area

The study was conducted in all villages in the sub-districts of Baturraden (Karangmangu, Karangsalam, Karang tengah, Kebumen, Ketenger, Kutasari, North Kemutug, Pamijen, Pandak, Purwosari, Rempoah, and
South Kemutug), and Sumbang (Banteran, Ciberem, Datar, East Banjarsari, Gandatapa, Karangcegak, Karanggintung, Karangturi, Kawungcarang, Kebanggan, Kedungmalang, Kotayasa, Limpakuwus, Sikapat, Silado, Sumbang, Susukan, Tambaksogra, and West Banjarsari), Banyumas, Central Java, Indonesia. The study area is located between 7°14’-7°40’ N latitude and 109°12’-109°30’ E longitude, which cover the total area of 98.95 km², bordered by Tegal and Pemalang Regencies in the north, Purbalingga Regency in the east, North Purwokerto and Kembrangan sub-districts in the south, and Kedungbanteng subdistrict in the west. The northern parts of the study area are covered by the Gunung Slamet protected forest, while the southern parts are productive farmland with corn and rice as the main crop (Figure 1).

Procedures

The ethical approval of the protocol of this study was issued by the Ethical Commission of Faculty of Medicine and Health Sciences, Universitas Jendral Soedirman (Ref: 187/KEPK/XI/2016). There were 97 people interviewed in this study during January-March 2017. The inclusion criteria for participant selection were familiar with the utilization of plants for medicinal purposes, literate, aged 17 years old or older, and residing in the studied areas. The number of informants of each village was proportional to their respective population. The demographic characteristics of the informants have been described in our previous publication (see Utamingrum et al. 2020).

The semi-structured interview was conducted to collect the ethnomedicinal data from the informants after written informed consent was obtained. The questionnaire followed the model used in the Research on Medicinal Plants and Traditional Indonesian Medicines (RISTOJA, Riset Tumbuhan Obat dan Jamu) 2015 as the guide for the interview. It addressed the traditional use of the plants, including local name, disorder treated, plant part used, mode of preparation, and application route. The informants were requested to mention all the medicinal uses of plants they knew. However, only the plant species used for maintaining women’s health care were reported in this study. The plants mentioned in the survey were collected and further identified in the Laboratory of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Central Java, Indonesia (see Utamingrum et al. 2020).

Data analysis

The data of medicinal plants were alphabetically listed according to their accepted name in The World Flora Online (http://www.worldfloraonline.org/) and compared to those in the POWO (Plants of the World Online, https://powo.science.kew.org/). The disorder was grouped according to the Economic Botany Data Collection Standard nomenclature. Each ethnomedicinal data were statistically described using Microsoft Excel 2010 functions. The quantitative indices used in this study were SUV, RFC, and FL, which were calculated following (Zenderland et al. 2019) and (Mechchate et al. 2020).

\[
SUV = \frac{\sum U_i}{N}
\]

\[
RFC = \frac{FC}{N}
\]

\[
FL = \frac{Ip}{FC} \times 100
\]

Where \(U_i \) is the number of total uses of a given plant species, \(N \) is the number of real informants, \(FC \) is the number of informants mentioning any uses of a given species, and \(Ip \) is the number of informants citing the particular use a given species.

![Figure 1. Map of the study area in sub-districts of Baturraden and Sumbang sub-districts, Banyumas District, Central Java, Indonesia](image-url)
RESULTS AND DISCUSSION

There were ten families with 21 plant species used for women's health care by the Northern Banyumas. Families with multiple plant species were Zingiberaceae, Leguminosae, Piperaceae, and Apioceae, while families with multiple uses were Zingiberaceae, Leguminosae, Piperaceae, Apioceae, and Rutaceae (Table 1, Figure 2).

SUV represents the relative importance of plants in a given community. This study suggested that *Curcuma longa* L., *Piper betle* L., *Kaempferia galanga* L., *Centella asiatica* (L.) Urb., *Citrus aurantiifolia* (Christm.) Swingle, and *Curcuma zanthorrhiza* Roxb. were considered as the most important plants for woman's health care. On the other hand, the higher RFC of a given plant value indicates that the community is perceived as more valuable. The *C. longa*, *P. betle*, *C. aurantiifolia*, *Alyxia reinwardtii* Blume, *Tamarindus indica* L., and *K. galanga* were recorded as the most valuable plants in sub-districts of Baturraden and Sumbang (Figure 3).

While SUV represents the overall importance of a given species, FL indicates its importance for a particular use. The high FL means that the majority of the informants use a plant in the same way for treating a specific disorder (Khan et al. 2014). Four conditions related to women's health care were treated with medicinal plants in the studied areas. The FL values of 100% for some plants were recorded in the use category of lactation stimulation and post-partum (Figure 4).

The fruits and rhizomes were the most commonly used plant parts in the studied area. Most plant materials were used as the polyherbal formulation. The people of Baturraden and Sumbang mainly prepared the plant materials into an infusion, which is made by slowly boiling them in water for a short time. Tea, prepared by pouring boiling water onto the plant materials, was also consumed. Most herbal preparations were taken by oral route, and a small number of topical preparations were in the forms of poultice and tea (Figure 5).

![Figure 2](image2.png)

Figure 2. The profile of family of plants used for woman's health care

![Figure 3](image3.png)

Figure 3. The plants with the highest relative frequency of citation and species use-value used for the woman’s health care

![Figure 4](image4.png)

Figure 4. Profile of FL and number of plants used for each disorder related to women’s health care

![Figure 5](image5.png)

Figure 5. The profile of (A) plant part, (B) herbal preparation, (C) preparation, and (D) route of administration of plants used for women's health care
Family	Plant species name	Local name	SUV	RFC	Life form	Use category (FL)	Plant part	Herbal preparation	Preparation	Application
Acanthaceae	Clinacanthus nutans (Burm.f.) Lindau	Ketumpang	0.05	0.06	Shrub	Post-partum (33%)	Leaves	Polyherbal	Infusion	Oral
Apiaceae	Centella asiatica (L.) Urn.	Panegoang	0.16	0.12	Herb	Post-partum (17%)	Leaves	Polyherbal	Infusion	Oral
Apiaceae	Foeniculum vulgare Mill.	Adas	0.03	0.04	Herb	Post-partum (50%)	Fruits	Polyherbal	Infusion	Oral
Apocynaceae	Alyxia reinwardtii Blume	Palosari	0.05	0.28	Tree	Post-partum (56%), pre-menstrual syndrome (41%)	Barks	Polyherbal	Infusion	Oral
Lauraceae	Cinnamomum burmannii (Nees & T.Nees) Blume	Kayu manis jangan	0.05	0.15	Tree	Post-partum (13%)	Barks	Polyherbal	Infusion	Oral
Leguminosae	Desmodium triflorum (L.) DC.	Jarem	0.07	0.08	Shrub	Post-partum (25%)	Leaves	Polyherbal	Infusion	Oral
Leguminosae	Parkia timorianna (DC.) Merr.	Dawang	0.01	0.02	Tree	Post-partum (100%)	Seeds	Polyherbal	Infusion	Oral
Leguminosae	Senna occidentalis (L.) Link	Senting	0.03	0.01	Tree	Lactation stimulant (100%)	Leaves	Monoherbal	Boiling	Oral
Leguminosae	Tamarindus indica L.	Asem	0.06	0.27	Tree	Post-partum (96%), pre-menstrual syndrome (92%)	Fruits	Polyherbal	Infusion	Oral
Phyllanthaceae	Sauropus androgynus (L.) Merr.	Katuk	0.02	0.06	Shrub	Lactation stimulant (100%)	Leaves	Monoherbal	Boiling	Oral
Piperaceae	Piper betle L.	Sirlh	0.34	0.40	Herb	Leucorrhoea (56%)	Leaves	Monoherbal	Infusion, tea	Topical
Piperaceae	Piper cubeba Vahl.	Kemukas	0.03	0.04	Herb	Post-partum (50%)	Fruits	Polyherbal	Infusion, tea	Oral
Piperaceae	Piper nigrum L.	Merica	0.08	0.15	Herb	Post-partum (30%)	Fruits	Polyherbal	Infusion	Oral
Poaceae	Oryza sativa L.	Beras	0.06	0.05	Herb	Post-partum (20%)	Seeds	Polyherbal	Poultice	Topical
Rutaceae	Citrus aurantiifolia (Christm.) Swingle	Jeruk nipis	0.14	0.38	Tree	Post-partum (70%), pre-menstrual syndrome (65%)	Fruits	Polyherbal	Infusion	Oral
Zingiberaceae	Anomos compactum Sol. ex Maton	Kapulaga	0.06	0.09	Herb	Post-partum (22%)	Rhizomes	Polyherbal	Infusion	Oral
Zingiberaceae	Boesenbergia rotunda (L.) Mansf.	Temukunci	0.01	0.01	Herb	Lactation stimulant (100%)	Rhizomes	Monoherbal	Boiling	Oral
Zingiberaceae	Curcuma longa L.	Kunir	0.41	0.63	Herb	Post-partum (46%), pre-menstrual syndrome (39%)	Rhizomes	Polyherbal	Infusion	Oral
Zingiberaceae	Curcuma zanthorrhiza Roxb.	Temulawak	0.13	0.16	Herb	Post-partum (13%)	Rhizomes	Polyherbal	Infusion	Oral
Zingiberaceae	Kaempferia galanga L.	Kencur	0.21	0.20	Herb	Post-partum (37%)	Rhizomes	Polyherbal	Infusion, oral, topical poultice	Oral, topical
Zingiberaceae	Zingiber zerumbet (L.) Rosco ex Sm.	Lempuyang	0.05	0.05	Herb	Post-partum (40%)	Rhizomes	Polyherbal	Infusion	Oral
Discussion

The superior use of Leguminosae for women’s health care has been reported worldwide. It was the most frequently cited family for maintaining conditions related to women’s health in Brazil (Yazbek et al. 2016). Most galactogenic plants used by Berhoum (Algeria) people were from Leguminosae, with *Trigonella foenum-graecum* L. as the most valuable plant for the community (Madani et al. 2017). German and Italian mainly consumed *Galega officinalis* L. based products to stimulate breastmilk production in mothers (Salatino et al. 2017). In Ipoh (Malaysia), *Glycine max* (L.) Merr. derived products were popular as alternative medications for menopause-related symptoms (Mar et al. 2015). On the other hand, Zingiberaceae seems popular as midwifery plants in Southeast Asia. The versatility of Zingiberaceae in traditional medicine has been long recognized particularly in Indonesia and Malaysia (Razak et al. 2017; Silalahi et al. 2020). There were 16 Zingiberaceae species used for 14 medicinal use categories, while two species were used for treating diarrhea in Baturraden (Permatasari et al. 2012; Suparman et al. 2012). However, the diversity of women’s healthcare-related plants in this study is lower than in other places. For example, people in Himalayan Poonch (Pakistan) used 39 plants of 20 families for cosmetic purposes only (Shaheen et al. 2014), 111 plants of 101 genera belonging to 50 families were used for traditional maternal healthcare in Katsina, Nigeria (Kankara et al. 2015).

The high SUV and RFC showed by *C. longa*, *P. betle*, *K. galanga*, and *C. aurantiifolia* demonstrate that those plants are employed for many uses and known by many people. *Curcuma longa* and *K. galanga* are members of Zingiberaceae, which has been noted as the essential ingredient of traditional herbal medicines (*jamu*) in Indonesia (Widyowati and Agi 2018). Furthermore, the anti-inflammatory, analgesic, and antioxidant activities of *C. longa* and its bioactive compounds, curcuminoid, have been well-proven, which might explain its versatile traditional uses (Hewlings and Kalman 2017; Rauf et al. 2018). *Piper betle* is commonly associated with its essential oil, which has shown benefits in treating microbial-related conditions (Madhumita et al. 2019). The anti-inflammatory activity of *K. galanga* extracts, particularly the isopimarane diterpenes, might underline its importance in traditional medications (Jagdish et al. 2016; Tungcharoen et al. 2020). The essential oils and flavonoids in *C. aurantiifolia* are considered the main active constituents. The fruit juice’s acidity also plays a vital role in improving the herbal preparations’ taste and stability. The better solubility in water, and a lower pH are particularly beneficial for non-polar bioactive compounds (Spadaro et al. 2012; Xu et al. 2016; Kharat et al. 2017).

The plant used for post-partum treatment with FL of 100% was *Parkia timoriana* (DC.) Merr., subsequently followed by *T. indica* and *C. aurantiifolia* with FL values of 96% and 70%, respectively. The exclusive use of *P. timoriana* in post-partum conditions might be related to its phytosterols content, which has shown pre-clinical benefits to both mother and offspring when supplemented during pregnancy and lactation (Rideout et al. 2015; Sale et al. 2021). *Tamarindus indica* might be similar to that of *C. aurantiifolia*. Their uses are particularly for the supporting ingredients in the polyherbal formulations by facilitating a better solubility of the active ingredients and a more appreciable taste. Both plant materials were also found with the highest FL values of 92% and 65% in the use category of pre-menstrual syndrome.

In the lactation stimulation category, *Boesenbergia rotunda* (L.) Mansf., *Senna occidentalis* (L.) Link, and *Sauropus androgynus* (L.) Merr. had FL values of 100%. *Sauropus androgynus* is a well-known plant for traditional stimulation of breast milk production, in which its efficacy has been clinically proven. The increased breastmilk production was likely related to prolactin stimulation (Hayati et al. 2016; Primadhani, 2021). *Piper betle* is the only plant used for leucorrhea topical treatment with an FL of 39%. The plant species can inhibit the growth of patient-isolated *Candida albicans* (C.P.Robin) Berkhout, in which hydroxychavicol is considered the compound responsible for the activity (Ali et al. 2010; Septiyan 2018).

As in this study, the widespread use of fruits was also reported elsewhere. For example, fruits of four species of *Citrus* were used by people in Nuevo Leon (Mexico) as food flavoring, while West Bank (Palestine) people used juice of *Citrus limon* L. to treat psoriasis (Estrada-Castillón et al. 2014; Shawahna and Jaradat 2017). All the rhizomes used by the locals in this study were from the
Zingiberaceae family, which has also been reported in northern Angola (Pompernaier et al. 2018). Only 5. *occidentalis*, *P. betle*, and *B. rotunda* were used for oral monoperal herbal preparation. The polyherbal formulations used in the Sumbang sub-district consisted of two to 13 plant species, mainly containing *C. longa* and used for post-partum treatments (Table 2). Utamingrung et al. (2021) cited only a polyherbal formulation to treat pre-menstrual syndrome in the Baturraden sub-district. The polyherbal formulation is commonly associated with better efficacy, fewer side effects, and better preparation taste (Parasuraman et al. 2014; Dragos and Gilca 2018; Karole et al. 2019). Some plants in Northern Banyumas, i.e., *Amomum compactum* Sol. ex Maton, *Cinnamomum burmannii* (Nees & T.Nees) Blume, *Piper nigrum* L., *C. aurantiifolia*, and *T. indica*, might be used for improving the taste or the aroma of the oral preparation of the polyherbal formulations. Palm sugar and rock candy as a sweetener is commonly practiced in Sumbang sub-district.

The dominant use of water-extract-based herbal preparations was also practiced in East Sikkim (India) and Southern Tanzania for the topical fungal infection medication (Mbunde et al. 2016; Tamang et al. 2022). This study also revealed that *S. occidentalis* and *S. androgyynos* leaves and *B. rotunda* rhizomes were cooked and served as a soup (*sayur bening*). A similar method of use and indication of *S. androgyynos* as the soup is also reported in Bantul (Yogyakarta) (Budiarti and Kintoko 2021). People in North Banyumas likely used herbal preparations specific to the purpose. While they mainly used infusion to maintain women’s health, they primarily utilized decoction to treat diabetes and directly ate them directly to stop diarrhea (Permatasari et al. 2011; Utamingrung et al. 2020).

Our study concludes that the people of Northern Banyumas utilize 21 plant species belonging to 10 families to maintain the woman’s health. *Curcuma longa* and *P. betle* are the most valuable and important species. The *K. galanga* and *C. zanthorrhiza* are also popularly used. Most of the plants are prepared as the polyherbal formulation and consumed orally in the form of infusion. Hence, our study confirms the importance of Zingiberaceae in *jama*, particularly for women’s health care.

ACKNOWLEDGEMENTS

The authors would like to thank all the informants in Baturraden and Sumbang sub-districts, Banyumas District, Central Java, Indonesia for the valuable information they shared.

REFERENCES

Ali I, Khan FG, Sari KA, Gupta BD, Satti NK, Dutt P, Afrin F, Qazi GN, Khan IA. 2010. In vitro antifungal activity of hydroxychavicol isolated from *Piper betle* L. *BMC Microbiol* 9: 7. DOI: 10.1186/1476-0711-9-7.

Alqetahmi A, Hawkins JA, Teizidor-Tonei I. 2017. Medicinal plants used by women in Mecca: Urban, Muslim and gendered knowledge. *J Ethnobiol Ethnomed* 13: 62. DOI: 10.1186/s13002-017-0193-4.

Budiarti NIS, Kintoko K. 2021. Ethnomedicine study: Katuk leaves (*Saururus androgyynos* (L.) Merr.) for breast milk booster in Sumberan Ngestiharjo Kasihan Bantul. Intl J Islam Med 2: 91-104. DOI: 10.5516/IJIM.VIII.21.

Dragos D, Gilca M. 2018. Taste of phytocompounds: A better predictor for ethnopharmacological activities of medicinal plants than the phytochemical class? *J Ethnopharmacol* 229: 129-146. DOI: 10.1016/j.jep.2018.03.034.

Efendi M. 2019. Native Begonia in Baturraden Botanic Gardens, Central Java. Biodiversitas 5: 13-17. DOI: 10.13057/biunn/dn050103.

Elfahmi E, Woordenbag HJ, Kaysier O. 2014. *Jama*: Indonesian traditional herbal medicine towards rational phytopharmacological use. *J Herb Med* 4: 51-73. DOI: 10.1016/j.jhermed.2014.01.002.

Estrada-Castillón E, Garza-López M, Villareal-Quintanilla JA, Salinas-Rodríguez MM, Soto-Mata BE, González-Rodríguez, H, González-Urbie DU, Cantú-Silva I, Carrillo-Parrá A, Cantú-Ayala C. 2014. Ethnobotany in Rayones, Nuevo León, México. *J Ethnobiol Ethnomed* 10: 62. DOI: 10.1186/1746-4296-10-62.

Hayati A, Arumntygas EL, Indriyani S, Hakim L. 2016. Local knowledge of katuk (*Saururus androgyynos* (L.) Merr) in East Java, Indonesia. *Int J Curr Pharm Res* 7: 210-215.

Helmanto H, Zulkarnaen RN, Fikriyana N, Nisyawati N, Robiansyah I. 2020. Population status of *Saururus* spp. in Slamet Mountain, Central Java, *IOP Conf Ser Earth Environ Sci* 528: 012009. DOI: 10.1088/1755-1315/528/1/012009.

Hewlings SJ, Kalman DS. 2017, Curcumin: A review of its effects on human health. *Foods* 6: 92. DOI: 10.3390/foods6100092.

Isnawati A, Gitawati R, Raini M, Alegantina A, Setianingtyas V. 2019. Indonesian basic health survey: Self-medication profile for diarrhoea with traditional medicine. *Afr Health Sci* 19: 2365-2371. DOI: 10.4314/ahs.v19i3.9.

Jagadesh PC, Katha KP, Mudgal J, Namprath GH. 2016. Extraction, characterization and evaluation of *Kaempferia galanga* L. (Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats. *J Ethnopharmacol* 194: 434-439. DOI: 10.1016/j.jep.2016.10.010.

Jun P, Rahmat E, Han CH, Yang C, Kang Y. 2021. Traditional Chinese medicine and traditional Indonesian medicine: A comparative review of herbal medicines restricted in pregnancy. *Chin J Integr Med* 27: 794-800. DOI: 10.1007/s11655-021-3487-7.

Kankara SS, Ibrahim MH, Mustafa M, Go R. 2015. Ethnobotanical survey of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria. *South Afr J Bot* 97: 165-175. DOI: 10.1016/j.sajb.2015.01.007.

Karole S, Shrivastava S, Thomas S, Soni B, Khan S, Dubey J, Dubey SP, Khan N, Jain DK. 2019. Polyherbal formulation concept for synergetic action: A review. *J Drug Deliv Ther* 9: 453-466. DOI: 10.22270/jddt.v9i3.2339.

Khan I, AbdElsalam NM, Fouad H, Tariq A, Ullah R, Adnan M. 2014. Application of ethnobotanical indices on the use of traditional medicines against common diseases. *Evid-Based Complement Altern Med* 2014: 635371. DOI: 10.1155/2014/635371.

Kharat M, Du Z, Zhang G, McLemens DJ. 2017. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. *J Agric Food Chem* 65: 1525-1532. DOI: 10.1021/acs.jafc.6b04815.

Li DL, Zheng XL, Duan L, Deng SW, Ye W, Wang AH, Xing FW. 2017. Ethnobotanical survey of herbal tea plants from the traditional markets in Chaoshan, China. *J Ethnopharmacol* 205: 195-206. DOI: 10.1016/j.jep.2017.02.040.

Madani S, Amel B, Noui H, Djamel S, Hadjer H. 2017. An ethnobotanical survey of galactogogenic plants of the Berhoun District (MSlia, Algeria). *J Intercult Ethnopharmacol* 6: 311-315. DOI: 10.5455/jice.20170811073514.

Madhumita M, Guha P, Nag A. 2019. Extraction of betel leaves (*Piper betle* L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. *Ind Crops Prod* 138: 111578. DOI: 10.1016/j.indcrop.2019.111578.

Mar SO, Malik F, Rahu SHS, Chua CT, Sidhu SS, Sandheep S. 2015. Use of alternative medications for menopause-related symptoms in three major ethnic groups of Ipolh, Perak, Malaysia. *Asia Pac J Public Heal* 27: 195S-25S. DOI: 10.17711/1010395515886457.

Mbande MN, Innocen E, Mabiki F, Andersson PG. 2016. Ethnobotanical survey and toxicity evaluation of medicinal plants used for fungal remedy in the Southern Highlands of Tanzania, *J Intercult Ethnopharmacol* 6: 84-96. DOI: 10.5455/jice.20161222103956.
Mechetche H, Es-safi I, Jawhari FZ, Bari A, Grafov A, Bousta D. 2020. Ethnobotanical survey about the management of diabetes with medicinal plants used by diabetic patients in Region of Fez-Meknes, Morocco. Ethnobot Res Appl 19: 12. DOI: 10.32859/era.19.12.1-28.

Muslichah S, Azizaningsih R, Indriyani S, Arumungtya EL. 2021. Ethnobotanical study of postnatal medicinal plants in the ethnic Madurese in Bangkalan Regency, East Java, Indonesia. Ind J Forensic Med Toxicol 15: 4247-4255.

Parasuraman S, Thing GS, Dhanaraj SA. 2014. Polyherbal formulation: Concept of Ayurveda. Pharmacogn Rev 8: 73-80. DOI: 10.4103/0973-7847.134422.

Permatasari D, Diniatik D, Hartanti D. 2011. Studi etnofarmakologi obat tradisional sebagai anti diare di Kecamatan Baturadad Kabupaten Banyumas. Pharmacy 8: 44-64. [Indonesian]

Pompermaier L, Marascoo S, Adesso S, Moniz I, Schwaiger S, Neinhuis C, Stuppner H, Lautenschläger T. 2018. Medicinal plants of Northern Angola and their anti-inflammatory properties. J Ethnopharmacol 216: 26-36. DOI: 10.1016/j.jep.2018.01.019.

Praptsowut TY. 2013. The rare pteridophytes of Mt. Slamet with three species new records for Java. Floribunda 4: 138-146. DOI: 10.32556/floribunda.v4i6.2013.103.

Primadhani U. 2020. How to increase prolactine levels of breastfeeding mother with consumption katuk (Sauropus androgynus (L.) leaf). Eureka Herba Indones 2(8): 109-112. DOI: 10.37273/ehi.v2i2.30.

Rahayu S, Oktapianti R, Matondang I. 2020. Ethnobotany survey of medicinal plants used for traditional maternal healthcare by Serawai Tribe, Seluma District, Bengkulu Province, Indonesia. J Curr Med Res Opin 3(5): 441-448. DOI: 10.15520/jmro.v3i04.275.

Rauf A, Imran M, Orhan IE, Bawaizer S. 2018. Health perspectives of a bioactive compound curcumin: A review. Trends Food Sci Technol 74: 34-45. DOI: 10.1016/j.tifs.2018.01.016.

Razak NIA, Othman R, Pahang JT. 2017. Ethnobotanical study on plant materials used in Malay traditional post-partum bath (mandi serom) among Malay midwives in Kedah. In: Saan R, Abbas M (eds). Proceedings of the Second International Conference on the Future of ASEAN (ICOFA). Springer, Singapore. DOI: 10.1007978-981-10-8471-3_88.

Rideout TC, Movsesian C, Tsai YT, Iqbal A, Raslawsky A, Patel MS. 2015. Maternal phytosterol supplementation during pregnancy and lactation modulates lipid and lipoprotein response in offspring of apo-deficient mice. J Nutr 145: 1728-1734. DOI: 10.3945/jn.115.215061.

Salatino S, Giacomelli L, Carnevali I, Giacomelli E. 2017. The role of natural galactagogues during breast feeding: Focus on a Galega officinalis based food supplement. Minerva Pediatr 69: 531-537. DOI: 10.23736/S00026-4946.16.04797-6.

Sale MSM, Jalil J, Zanabalabidin S, Asmadi AY, Mustafa NH, Kamisah Y. 2021. Genus Parksia: Phytochemical, medicinal uses, and pharmacological properties. Intl J Mol Sci 22: 618. DOI: 10.3390/ijms22020618.

Septiyana R. 2018. Uji aktivitas anti-jamur ekstrak etanolik daun sirih (Piper betle L.) terhadap Candida albicans ATCC 10231 dan Candida albicans hasil isolasi penderita keputihan. J Farmasies 2: 31-37. DOI: 10.32583/farmasies.v2i12.199. [Indonesian]

Shaheen H, Nazir J, Firdous SS, Khalid AUR. 2014. Cosmetic ethnobotany practiced by tribal women of Kashmir Himalayas. Avicenna J Phytomed 4: 239-250.

Shawwaha R, Jaradat NA. 2017. Ethnopharmacological survey of medicinal plants used by patients with psoriasis in the West Bank of Palestine. BMC Complement Altern Med 17: 4. DOI: 10.1186/s12906-016-1503-4.

Siagian AUM, Ariyanti NS, Djuita NR. 2021. Diversity of hornwort in Mount Slamet (Central Java). Floribunda 6: 264-272. DOI: 10.32556/floribunda.v6i7.2021.357.

Siahaan OG, Sibarani R, Lubis S, Purwoko A. 2021. Herbal medicines for women and children’s health in Tipang Village, District Humbang Hasundutan, North Sumatera. Gac Sanit 35: S564-S566. DOI: 10.1016/j.gaceta.2021.10.010.

Sillalhi M, Khairiah A, Nisyawati. 2020. Ethnomedical plants and practices related to pregnancy, childbirth, and post-partum healthcare of Minangkabau ethnic group, West Sumatra, Indonesia. Biodiversitas 21: 4597-4605. DOI: 10.30595/medisains.v18i2.7169. [Indonesian]

Spadaro F, Costa R, Circosta C, Occhiuto F. 2012. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil. Nat Prod Commun 7: 1523-1526. DOI: 10.1177/1934578X1207010128.

Suparman S, Diniatik D, Kusumamunggingrum D, Yulianto Y. 2012. Studi etnobotani tumbuhan sub kelas Rosidae dan penggunaannya sebagai obat tradisional di Kecamatan Baturadad Kabupaten Banyumas. Sains Teknologi 8: 1-8. [Indonesian]

Susandarini R, Khasahah U, Rosalina N. 2021. Ethnobotanical study of plants used as food and for maternal health care by the Malays communities in Kampar Kiri Hulu, Riau, Indonesia. Biodiversitas 22: 3111-3120. DOI: 10.30595/medisains.v18i2.72020163.

Tamang S, Singh A, Bussmann RW, Shulka V, Nautiyal MC. 2022. Ethno-medicinal plants of tribal people: A case study in Pakyong subdivision of East Sikkim, India. Acta Ecol Sin In press. DOI: 10.1016/j.chinaes.2021.08.013.

Tangcharoens, Wattanapromsakul C, Tansakul P, Nakamura S, Matsuda H, Tewtrakul S. 2020. Anti-inflammatory effect of isopimarane diterpenoids from Kaempferia galangal. Phytochemistry 34: 612-623. DOI: 10.1002/ppt.6549.

Utaminingrum W, Noftirati, Hartanti D. 2020. Ethnemedicinal survey of traditional antidiabetic plants in Baturraden and Sumbang. Medisains J Ilm Ilmu-timu Kesehat 18: 43-51. DOI: 10.30595/medisains.v18i2.7169. [Indonesian]

Utaminingrum W, Noftirati, Hartanti D. 2021. Ethnopharmacological study of the polyherbal formula in Baturraden, Indonesia. Suranaree J Sci Technol 28: 1-8.

Widyowati R, Agil M. 2018. Chemical constituents and bioactivities of several Indonesian plants typically used in jamu. Chem Pharm Bull 66: 506-518. DOI: 10.1248/cpb.c17-00983.

Xu JJ, Yang R, Ye LH, Cao J, Cao W, Hu SS, Peng LQ. 2016. Application of ionic liquids for elution of bioactive flavonoid glycosides from lime fruit by miniaturized matrix solid-phase dispersion. Food Chem 204: 167-175. DOI: 10.1016/j.foodchem.2016.02.012.

Yazbek PB, Tezoto J, Casasas F, Rodrigues E. 2016. Plants used during maternity, menstrual cycle and other women's health conditions among Brazilian cultures. J Ethnopharmacol 179: 331-331. DOI: 10.1016/j.jep.2015.12.054.

Yemele MD, Telefo PB, Lienou LL, Tagne SR, Fodouop CSP, Goka CS, Lemfack MC, Moundipa FP. 2015. Ethnobotanical survey of medicinal plants used for pregnant women's health conditions in Menoua division-West Cameroon. J Ethnopharmacol 160: 14-31. DOI: 10.1016/j.jep.2014.11.017.

Zenderland J, Hart R, Bussmann RW, Zambrana NYP, Sikharulidze S, Kvikidze Z, Kikodze D, Chelidze D, Khutsishvili M, Batasatsashvili K. 2019. The use of ‘Use Value': Quantifying importance in ethnobotany. Econ Bot 63: 293-303. DOI: 10.1007/s12231-019-09480-1.

Zulkarnaen RN, Nisyawati N, Witono JR. 2019. Population study and habitat preferences of Pinang Jawa (Pinanga javana) in Mt. Slamet, Central Java, Indonesia. Biodiversitas 20: 712-718. DOI: 10.30575/biodiv/v200314.