The integration of immune checkpoint inhibitors with VEGF targeted agents in advanced gastric and gastroesophageal adenocarcinoma: a review on the rationale and results of early phase trials

Anwaar Saeed1*, Robin Park2 and Weijing Sun1

Abstract
Several targeted therapies have shown efficacy in patients with advanced gastric cancer (GC) and gastroesophageal junction adenocarcinoma (GEJC), including anti-angiogenic agents and immune checkpoint inhibitors. Ramucirumab, an anti-VEGFR2 antibody, has shown efficacy in GC, but the benefits are limited, in part due to MET-mediated resistance. Other VEGF targeted agents like VEGF tyrosine kinase inhibitors (TKIs) with broad multi-kinase inhibitory spectrum like regorafenib and cabozantinib have also shown modest single agent activity in early phase trials. For immune checkpoint inhibitors, pembrolizumab (anti-PD-1) monotherapy confers survival advantage as 3rd line therapy for the PD-L1 expressing GC and GEJC population and has been approved for use in this setting. Extensive tumor microenvironment immune modulatory effects from antiangiogenic agents have been demonstrated from preclinical data which support the clinical study rationale of dual blockade of VEGF and immune checkpoint. In addition, FDA has approved combinations of anti-VEGF/VEGFR with anti-PD-1/PD-L1 agents in hepatocellular carcinoma and renal cell carcinoma. Promising clinical activity has been demonstrated in patients with refractory GC/GEJC when treated with dual blockade combination with antiangiogenic agents and immune checkpoint inhibitors like PD-1/PD-L1 inhibitors in several phase I/II trials. This review highlights the trials investigating these novel combinations as well as their preclinical rationale.

Keywords: Combination therapy, Angiogenesis, Immune checkpoint inhibitor, Gastric cancer, Esophageal cancer, Gastroesophageal cancer, Programmed death-1, Programmed death ligand-1, Cytotoxic lymphocyte antigen-4, Vascular endothelial growth factor

Background
Despite immune checkpoint inhibitors (IO) demonstrating durable responses and prolonged survival across multiple tumor types, the proportion of metastatic cancer patients who benefit from IO remains limited including in gastric and gastroesophageal cancer (GC/GEJC). Of note, given the similar underlying pathogenesis and genomic alterations between GC and GEJC, they have been considered and managed as one clinical entity and thus will be discussed here as one cancer type [1]. In locally advanced and metastatic GC/GEJC, although monotherapy IO has demonstrated benefit in the subset of patients with mismatch-repair/microsatellite...
instability high (MMR/MSI-H) as well as in the 3rd line setting in patients with high programmed death ligand-1 (PD-L1) expression, benefit is largely limited in the rest of the population [2, 3]. A great effort has been focused on developing novel strategies to extend clinical benefit to non-responder populations, and one of the strategies is the combination of IO with other systemic therapeutic modalities such as molecularly targeted agents.

Primary resistance to IO therapy is explained in part by the immune suppressive nature of the tumor microenvironment (TME). The immune suppressive TME is characterized by increased infiltration of immunosuppressive cells including regulatory T cells (Treg), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), particularly of the tumor-promoting M2 phenotype, all of which consequently decrease the activity of immune effector cells such as cytotoxic T cells and helper T cells via multiple mechanisms such as production of immune suppressive cytokines and chemokines as well as derangement of metabolic pathways [4]. While the biological mechanisms leading to the establishment of the immune suppressive TME is multifactorial and complex, one of the best understood and most important mechanisms among them has been the effects of neo-angiogenesis [5].

The best-established biological mediator of tumor angiogenesis with concomitant immune suppressive effects is vascular endothelial growth factor (VEGF), a cytokine induced by local tissue hypoxia and acidosis, which promotes the growth of defective and leaky tumor vasculature [6]. In addition to the indirect effects on anti-tumor immunity by hindering the tumor infiltration of immune effector cells via its effects on the vasculature, VEGF has direct local and systemic immune suppressive effects [7, 8]. For example, VEGF is associated with increased infiltration of Treg, MDSCs, and M2 type TAMs into the tumor stroma and anti-VEGF therapy leads to reversal of these immune suppressive mechanisms [9–12]. Therefore, anti-VEGF therapy is associated with ‘normalization’ of the TME and has the potential to reverse therapeutic resistance to IO and is a promising therapeutic partner in a combination regimen.

Combination VEGF and PD-1/PD-L1 axis blockade has shown benefit in various tumors and is emerging as a promising combination strategy. A prominent and successful example is the IMBrave150 trial, in which bevacizumab (anti-VEGF-A) with atezolizumab (anti-PD-L1) demonstrated superior overall survival (OS) over sorafenib, the standard of care first-line systemic therapy for metastatic hepatocellular carcinoma (HCC) [13]. Furthermore, preliminary results of phase I/II trials of the multi-cohort COSMIC-312 trial has demonstrated promising potential of cabozantinib, a multi-receptor tyrosine kinase (TKI) inhibitor with VEGF inhibitory activity in combination with atezolizumab in metastatic HCC, non-small cell lung cancer, renal cell cancer (RCC), and prostate cancer [14–17]. Herein, we summarize the pre-clinical evidence supporting the synergy of anti-VEGF and anti-PD-1/PD-L1 in metastatic GC/GEJC and review the results of ongoing clinical trials evaluating this regimen to demonstrate that this emerging combination treatment has promising potential to advance the treatment paradigm of metastatic GC/GEJC.

Search methodology

A systematic review was conducted according to PRISMA guidelines with the last search update being on December 17, 2020. The search was conducted in PubMed as well as major conference proceedings (ASCO, ESMO) using the following search query: (gastric cancer OR esophageal cancer OR gastroesophageal cancer OR gastroesophageal junction cancer OR esophageal adenocarcinoma) AND (VEGF OR anti-VEGF OR VEGF TKI) OR (IO OR ICI OR immune therapy OR anti-PD-1 OR anti-PD-L1). Additionally, clinicaltrials.gov was searched to identify ongoing trials that have not yet published reports. Studies were included if it evaluated a combination checkpoint inhibitor and VEGF targeted agent in a clinical trial setting in advanced GC/GEJC patients and reported efficacy or toxicity outcomes. Studies were excluded if it evaluated monotherapy checkpoint inhibitor or VEGF targeted agent, if it was a protocol-only publication without data, or if it reported overlapping data. In the latter case, the study with the most recent and/or most comprehensive data was included.

The initial search identified a total of 1125 studies. After review by title and abstract, 45 studies remained. Additionally, 3 studies were added via reference review. Following full-text review, 7 studies were included in the final review. 12 additional studies were identified via clinicaltrials.gov.

Antiangiogenic therapy in gastroesophageal cancers

Bevacizumab was tested in the first line setting in treatment of metastatic GC patients in combination with chemotherapy compared with chemotherapy alone. The combination showed advances in response rates (46% vs 37%) and PFS (6.7 vs 5.3 months). Unfortunately, the benefit of OS was not statistically significant (12.1 vs 10.1 months) [18].

On the other hand, the survival benefit was demonstrated with ramucirumab, the anti-VEGFR2 antibody, either as monotherapy versus best supportive care (5.2 vs 3.8 months) or in combination with paclitaxel versus paclitaxel alone (9.6 vs 7.4 months) in the second-line setting, which validated the role of VEGF/VEGFR-2...
signaling as an important therapeutic target in advanced GC/GEJC and esophageal adenocarcinomas [19, 20].

In addition, VEGFR TKIs have also been explored in patients with GC/GEJC. Regorafenib, was tested in the phase II randomized placebo-controlled trial (INTEGRATE). The trial enrolled 147 evaluable patients. A significant improvement was seen in median PFS, 2.6 versus 0.9 months favoring regorafenib with a hazard ratio of 0.4 [21].

Cabozantinib, another multi-TKI inhibitor targeting VEGFR2, MET, RET, and AXL showed broad single agent activity in multiple solid tumors including gastric cancer, and is currently FDA approved for patients with RCC and HCC after progression on sorafenib. A Phase 2 randomized discontinuation trial evaluated the efficacy and safety of cabozantinib in 526 patients with 9 tumor types, including a cohort of 21 patients with GC. Patients received cabozantinib 100 mg orally once daily over a 12-week lead-in phase. ORR, the primary endpoint of the lead-in phase at week 12 for the GC cohort was 10% and the disease control rate was 33%. The most common grade 3 or higher adverse events included fatigue, diarrhea, hypertension, and palmar-plantar erythrodysesthesia [22]. (Table 1).

Immune checkpoint inhibitor agents in gastroesophageal cancers

Anti-PD-1 ± anti-CTLA-4 agents

The phase IIB KEYNOTE-028 trial was the first study to demonstrate the safety and treatment response of the anti-PD-1 antibody pembrolizumab in unresectable esophageal cancer patients with PD-L1 expression who received two or more lines of prior treatment (ORR 30, median duration of response (mDOR) 15 months) [23]. This study was followed by the phase II KEYNOTE-059 trial which confirmed the efficacy of pembrolizumab in the PD-L1+ population (ORR 15.5%, mDOR 16.3 months) and led to the FDA approval of pembrolizumab in PD-L1+ advanced GC/GEJC patients who progressed on two or more lines of therapy. Of note, favorable results were seen only in the PD-L1+ and not in the PD-L1-population with PD-L1 expression assessed by the combined positive score (CPS) [3].

The phase I/II CheckMate-032 trial demonstrated the potential efficacy of nivolumab alone or in combination with ipilimumab (ORR 12%, 24%; 12-month OS 39%, 35% in N and N+1 respectively) in advanced GC/GEJC patients who progressed on at least one line of previous therapy [24]. Additionally, in the ATTRACTION-2 trial, nivolumab demonstrated superior median OS (5.3 vs. 4.1 months, P < 0.0001) and 12-month OS rate (26.2 vs. 10.9%) in biomarker non-selected patients with relapsed or refractory unresectable GC/GEJC in an Asian population leading to the nivolumab’s approval in Japan, Taiwan, and South Korea [25].

On the other hand, trials of anti-PD-1 agents have also shown comparably disappointing results, suggesting novel strategies are necessary to overcome primary or secondary resistance to therapy. For instance, the phase III KEYNOTE-062 trial failed to demonstrate the superiority of pembrolizumab compared to chemotherapy in the frontline setting with pembrolizumab failing to show superiority to chemotherapy even in the PD-L1 > 10% CPS group [26]. Furthermore, the phase II KEYNOTE-180 trial demonstrated a disappointing tumor response of pembrolizumab in the third line setting (ORR 5.2%) in GEJ cancer [27]. Likewise, the phase III KEYNOTE-181 trial failed to show improved OS of pembrolizumab over chemotherapy in the intention-to-treat population of patients with unresectable or advanced stage esophageal cancer who progressed on first line therapy [28]. Lastly, the phase III KEYNOTE-061 trial failed to show OS benefit of pembrolizumab over chemotherapy in the second line setting in non-selected GC/GEJC population [29].

Despite the underwhelming results of anti-PD-1 therapy alone in the frontline settings, anti-PD-1 therapy in combination with chemotherapy has demonstrated favorable results in selected populations. Namely, the phase III KEYNOTE-590 trial demonstrated the superior median OS (median OS 12.4 vs 9.8 months; HR, 0.73, 95% CI, 0.62–0.86) and PFS (median 6.3 vs 5.8 months; HR 0.65; 95% CI, 0.55–0.76) of pembrolizumab with chemotherapy versus chemotherapy alone in the overall population which was comprised of 73% esophageal squamous cell carcinoma and 27% esophageal adenocarcinoma. Of note, the OS benefit (median 13.5 vs 9.4 months; HR 0.62; 95% CI, 0.49–0.78) and PFS (median 7.5 vs 5.5 months; HR 0.51; 95% CI, 0.41–0.65) was greater in the CPS ≥ 10 subpopulation [30]. Similarly, nivolumab with chemotherapy demonstrated superior efficacy compared to chemotherapy alone in the phase III CheckMate-649 trial. Of note, the patient population comprised solely of GC/GEJC patients and enriched with the subgroup of patients with PD-L1 CPS > 5% constituting > 50% of the total study population. Nivolumab plus chemotherapy demonstrated superior median OS in the overall population (HR 0.80, 99.3% CI, 0.68–0.94). Of note and as expected, toxicity was higher in the nivolumab plus chemotherapy group (grade 3–4 treatment-related adverse events, 59 vs. 44%) [31]. Taken together, these studies suggest that in selected populations, appropriate combination regimens with IO therapy may overcome therapeutic resistance. (Table 1).
In a phase I/II trial (NCT02340975) of advanced stage GC/GEJC patients who progressed on first-line therapy, durvalumab alone or in combination with tremelimumab showed modest anti-tumor and survival outcomes (ORR 0%, 7.4%; 12-month OS, 4.6%, 37% for durvalumab and durva plus treme respectively) [32]. Another PD-L1 inhibitor, avelumab, was explored in the phase III JAVELIN Gastric 300 trial comparing avelumab vs physician’s choice of chemotherapy. This trial did not meet

Table 1 Selected trials for monotherapy checkpoint inhibitor and VEGF TKI in unresectable gastroesophageal cancer

Trial	Interventions	Phases	Treatment setting	Results
NCT00548548	Bevacizumab + CTx versus CTx	III	1st line	ORR: 46 versus 37%
PFS: 6.7 versus 5.3 mo				
OS: 12.1 versus 10.1 mo				
Most common grade 3–4 AE: neutropenia (35%), anemia (10%), anorexia (8%)				
REGARD	Ramucirumab versus BSC			
Ranucirumab + CTx versus CTx	III	2nd line	ORR: 10%	
PFS: 6.9 versus 5.8 mo				
OS: 13.4 versus 11.1 mo				
RAINBOW	Regorafenib versus placebo	II	2 or fewer lines of Tx	ORR: 10%
PFS: 6.7 versus 5.3 mo				
OS: 13.8 versus 11.6 mo				
KEYNOTE-59	Pembrolizumab	II	3rd line	
PD-L1+	ORR: 15.5%			
mDOR: 16.3 mo				
Grade 3–4 AE: 17.8%				
KEYNOTE-62	Pembrolizumab or Pembrolizumab + CTx versus CTx	III	1st line	mOS: 10.6 versus 11.1 mo (CPS 1 or higher)
PFS: 6.9 versus 6.4 mo (CPS 1 or higher)				
Grade 3–4 AE: 17% versus 73% versus 69% (Pembro versus Pembro + CTx versus CTx)				
KEYNOTE-180	Pembrolizumab	II	3rd line	Overall ORR: 9.9%
mDOR: NR (1.9–14.4 mo)				
Grade 3–4 AE: 12.4%				
KEYNOTE-61	Pembrolizumab versus Paclitaxel	III	2nd line	mOS: 9.1 versus 8.3 mo
mPFS: 1.5 versus 4.1 mo				
Grade 3–5 AE: 14% versus 35%				
KEYNOTE-181	Pembrolizumab versus CTx	III	2nd line	mOS: 9.3 versus 6.7 mo (CPS 10 or higher)
Grade 3–5 AE: 18.2% versus 40.9%				
KEYNOTE-590	Pembrolizumab + CTx versus CTx	III	1st line	mOS: 12.4 versus 9.8 mo
mDOR: 8.3 versus 6.0 mo				
Discontinuation rates due to AE: 19% versus 12%				
CheckMate-649	Nivolumab + CTx versus CTx	III	1st line	mOS: 13.8 versus 11.6 mo (overall)
mOS: 14.0 versus 11.3 mo (CPS 1 or higher)				
mOS: 14.4 versus 11.1 mo (CPS 3 or higher)				
Grade 3–4 AE: 59% versus 44%				
CheckMate-32	Nivolumab w/o ipilimumab	I/II	2nd line	ORR 12%, 24%
12-mo OS: 39%, 35%				
Grade 3–4 AE: 17% versus 47% versus 27%*				
ATTRACTION-2	Nivolumab versus placebo	III	2nd line	mOS: 5.3 versus 4.1 mo
12-mo OS: 26.2 versus 10.9%				
Grade 3–4 AE: 10% versus 4%				
JAVELIN Gastric 300	Avelumab versus CTx	III	3rd line	mOS: 4.6 versus 5.0 mo
PFS: 1.4 versus 2.7 mo				
ORR: 2.2 versus 4.3%				
Grade 3–4 AE: 9.2% versus 31.6%				
NCT02340975	Durvalumab w/o ipilimumab	I/II	2nd line	ORR: 0%, 7.4%
12-mo OS: 4.6%, 37%
Grade 3–4 AE: 17% versus 4%, versus 42% versus 16%** |

* Nivolumab only versus Nivolumab 1 mg/kg + ipilimumab 3 mg/kg versus nivolumab 3 mg/kg + ipilimumab 1 mg/kg
** Durvalumab + tremelimumab in 2nd line setting versus durvalumab only versus tremelimumab only versus durvalumab + tremelimumab in 3rd line setting

Anti-PD-L1 ± anti-CTLA-4 agents

In a phase I/II trial (NCT02340975) of advanced stage GC/GEJC patients who progressed on first-line therapy, durvalumab alone or in combination with tremelimumab showed modest anti-tumor and survival outcomes (ORR 0%, 7.4%; 12-month OS, 4.6%, 37% for durvalumab and durva plus treme respectively) [32]. Another PD-L1 inhibitor, avelumab, was explored in the phase III JAVELIN Gastric 300 trial comparing avelumab vs physician’s choice of chemotherapy. This trial did not meet
its endpoint for improvement in OS or PFS compared to chemotherapy in the third line setting for advanced GC/GEJC [33]. Subgroup analysis based on certain molecular markers like PD-L1 was not done as in several trials that explored PD-1 inhibitors. Collectively, the overall outcome of monotherapy with PD-L1 and PD-1 inhibitors suggest that combinatorial approaches with appropriate partners would potentially lead to better efficacy and survival in this patient population. (Table 1).

Angiogenesis and the tumor immune microenvironment
There is extensive evidence that angiogenesis pathways are able to foster an immune suppressive tumor microenvironment (TME) in various ways including through direct suppression of antigen presenting cells and immune effector cells or through augmentation of immune suppressive cells such as Treg, MDSCs, and TAMs.

VEGF-driven angiogenesis involving its cognate receptors VEGFR1-3 is among the most important angiogenic factors associated with multi-pronged immune suppressive effects in the TME [34–36]. For example, binding of VEGF to its receptors on DCs inhibits their maturation and antigen presentation and induces PD-L1 expression on the cell surface [37]. Furthermore, increased VEGF levels lead to inhibition of cytotoxic T cell trafficking, proliferation, and effector function [9, 38, 39]. In addition, VEGF drives the expansion of Tregs and MDSCs as well as TAMs in the TME [40]. Moreover, angiogenic pathways other than VEGF have also been shown to contribute to immune suppression in the TME. For example, Ang-2 is a cytokine ligand of the receptor Ang1/Tie2, which modulates VEGF-mediated angiogenesis [41, 42]. Ang-2 expression leads to increased endothelial adhesion of TIE-2 expressing monocytes/macrophages and stimulates their production of immunosuppressive cytokines such as IL-10 [43, 44].

In turn, targeting VEGFR using various approaches including VEGF multi-TKIs have been found to promote an immune permissive TME by normalizing vascularization and reducing MDSCs (CD11b+, Gr1+) [49]. PI3K signaling was also found to be hampered by cabozantinib, which impaired the release of cytokines by prostate cancer cells; which in turn prompted expression of MDSC genes responsible for tumor suppressive activity. The negative modulatory impact on Gr1+MDSCs was associated with an increase in CD8+ T cell tumor infiltration in prostate tumors, which endorses the antagonistic activity of Gr1+MDSCs on the CD8+ population of T cells.

In addition to cabozantinib, other VEGF TKIs have shown immunomodulatory effects in both in vitro and in vivo studies, further supporting the potential role of VEGF TKIs in combination IO therapy. For instance, lenvatinib has been associated with reduced of TAMs in multiple tumor models and increased tumor infiltration of interferon-γ producing CD8+ T cells as well as memory T cells [50–52]. Furthermore, regorafenib has also been associated with decreased infiltration of TAMs and increased M1 macrophages in colorectal tumor models [53] (Fig. 1).

Combined targeting of VEGFR2 and immune checkpoint inhibition in gastroesophageal cancers

Anti-PD-1/PD-L1 combinations with VEGFR2 monoclonal antibody
Recent data showed encouraging activity with ramucirumab plus nivolumab, ramucirumab plus pembrolizumab, and ramucirumab plus durvalumab in GC/GEJC patients.

The results of the phase I/II NivoRam study were recently presented [54]. In this trial, ramucirumab plus nivolumab was evaluated in the 2nd line setting for
advanced gastric cancer patients. Primary endpoints were dose limiting toxicities (DLT) and 6-month PFS. Patients underwent evaluation of PD-L1 using the CPS score and 44% were determined to be PD-L1+ with a cutoff of 1 or higher. Six patients were evaluated in the phase I part while an additional 40 patients were subsequently added in the phase II part. ORR was 26.7% and disease control rate (DCR) was 62.2%. No dose limiting toxicities were observed in the phase I part. The 6-month PFS was 37.4% (90% confidential intervals: 25.7–49.2%), which met the primary endpoint of the phase II section.

The similar combination of ramucirumab plus pembrolizumab was recently explored in a multi-cohort phase Ib trial in 3 tumor types including previously treated GC/GEJC (n = 41). The primary endpoints were DLTs and adverse event incidence. Tumors were evaluated for PD-L1 TPS, MMR/MSI, and HER2 statuses. The combination showed manageable safety profile with favorable ORR of 7% and DCR of 44% [55]. Furthermore, ramucirumab in combination with durvalumab was evaluated in a single-arm phase Ia trial which included three cancer types including GC/GEJC (n = 29). This regimen demonstrated a promising tumor response (ORR 21%) and survival (OS 2.6 months; PFS 12.4 months) [56]. (Table 2).

Anti-PD-1/PD-L1 combinations with VEGFR multi-TKIs

The combination of VEGFR TKI plus checkpoint inhibitors has been explored in single arm studies and showed early signals of promising efficacy, in various tumor types including GC/GEJC.

A relevant example is the VEGFR multi-TKI regorafenib plus nivolumab in chemotherapy-refractory gastric cancer which yielded ORR of 44% compared to ORR of 3% previously seen with regorafenib alone in the INTEGRATE trial [57]. Furthermore, median PFS and
OS were 5.6 and 12.3 months respectively. The incidence of grade 3 or higher treatment-related adverse events was 40% in the overall population with rash, proteinuria, and palmoplantar erythrodysesthesia the most common among them.

Lenvatinib (VEGFR multi-TKI) was also recently combined with pembrolizumab in chemo-refractory and chemo-naïve gastric and gastroesophageal adenocarcinoma patients (14 pts were chemo naïve and 15 pts were chemo refractory) and yielded a primary end-point of ORR of 69% and DCR of 100%. Median PFS was 6.9 months in the overall study population [18, 58]. In this study, tumor specimens were evaluated for MMR/MSI, HER2, EBV, PD-L1 CPS, and TMB statuses. The combination regimen demonstrated a favorable toxicity profile with no grade 4 or 5 treatment-related adverse events.

NCT number	Status	Interventions	Phases	Treatment setting	Results
NCT02999295	Completed	Nivolumab + ramucirumab	Phase 1/2	2nd line	ORR: 26.7%
DCR: 62.2%					
Grade 3–4 AE: 33/46					
No deaths					
NCT03406871	Active, not recruiting	Nivolumab + regorafenib	Phase 1	3rd line	ORR: 44%
mPFS: 5.6 mo					
mOS: 12.3 mo					
Grade 3–4 AEs: 20/50					
3 DLTs with Rego 160 mg					
NCT02572687	Active, not recruiting	Durvalumab + ramucirumab	Phase 1	2nd line	ORR: 21%
mOS: 2.6 mo					
mPFS: 12.4 mo					
Grade 3–4 AE: 37.9%					
NCT02443324	Active, not recruiting	Pembrolizumab + ramucirumab	Phase 1	4th line	ORR: 7%
DCR: 44%					
Grade 3–4 AE: 11/29					
NCT03609359	Active, not recruiting	Pembrolizumab + lenvatinib	Phase 2	1st of 2nd line	ORR: 69%
DCR: 100%					
mPFS: 6.9 mo					
Grade 3–4 AE: 14/29					
No Gr 4–5 AE					
NCT02942329	Unknown	SHR1210 + apanitin	Phase ½	2nd line	ORR: 16%
DCR: 78%					
Grade 3–4 AE: 20/33*					
4/43 DLTs					
NCT03539822	Recruiting	Cabozantinib + durvalumab	Phase 1/2	3rd line	ORR: 25%
DCR: 85%					
Median time to progression: 16 weeks					
No DLTs					
NCT04267549	Recruiting	Sintilimab + apanitin + chemotherapy	Phase 2	2nd line	Not yet reported
NCT04182724	Recruiting	Camrelizumab + apanitin + nab-paclitaxel	Phase 1/2	2nd line	Not yet reported
NCT04006821	Recruiting	Camrelizumab + apanitin	Phase 2	2nd line	Not yet reported
NCT0395017	Recruiting	Rucaparib + ramucirumab + nivolumab	Phase 1/2	2nd line	Not yet reported
NCT03966118	Recruiting	Avelumab + ramucirumab + paclitaxel	Phase 2	2nd line	Not yet reported
NCT03813784	Recruiting	SHR-1210 + capecitabine + oxaliplatin then shr-1210 + apanitin versus capecitabine + oxaliplatin	Phase 3	1st line	Not yet reported
NCT03797326	Recruiting	Pembrolizumab + lenvatinib	Phase 2	3rd line	Not yet reported
NCT03603756	Recruiting	SHR-1210 + apanitin + chemotherapy	Phase 2	1st line	Not yet reported
NCT03475953	Recruiting	Regorafenib + avelumab	Phase 1/2	2nd line	Not yet reported
NCT03321630	Recruiting	Lenvatinib + pembrolizumab	Phase 2	2nd line	Not yet reported
NCT03170960	Recruiting	Cabozantinib + atezolizumab	Phase 1/2	2nd line	Not yet reported
NCT02734004	Active, not recruiting	MEDI4736 + olaparib ± bevacizumab	Phase 1/2	2nd line	Not yet reported

* Toxicity results of overall population including patients with hepatocellular cancer patients. Grade 3–4 AEs represent incidence of patients receiving recommended phase II trial dose
and grade 3 events occurring in 48% of patients. The
most common grade 3 treatment-related adverse events
were hypertension, proteinuria, and thrombocytopenia.
Apatinib (VEGFR2 inhibitor) in combination with
SHR-1210 (anti-PD-1 antibody) has also been evaluated
in a phase I/II, multi-cohort trial with advanced gastric
and hepatocellular cancer patients. The primary end-
point of this trial was overall survival at 6 and 12 months.
Interim results showed moderate overall toxicity with
incidence of DLTs in the overall population of 26.7%
(4/43) and grade 3–4 adverse events of 60% (20/33) in
patients who received the recommended phase II dose.
The confirmed objective response was 16% (4/25) in the
GC/GEJC population and DCR 78% [59].
Saeed et al. are currently testing caboza	

Challenges and future directions
Although both VEGFR inhibitors and PD-1/PD-L1 inhibitors
have demonstrated some activity as single agents
in the treatment of GC and GEJC, the mechanisms by
which the VEGFR plus PD-1/PD-L1 targeting combina-
tions lead to benefit and predictors of response to therapy
need further investigations. To date, PD-L1 expression,
high TMB and MSI-High status correlated with treat-
ment response and improved survival from monotherapy
with PD-1/PD-L1 blockade. Both PD-L1 expression using
the CPS score and MSI status have also been validated as
predictors of response to PD-1 plus chemotherapy combina-

tions in this population as per the CheckMate-649
trial, KEYNOTE-590, and others. Ongoing and future tri-

Conclusion
Antiangiogenic therapy in GC/GEJC patients appears to
be a promising option to overcome resistance to IO ther-

Acknowledgements
None.

Authors’ contributions
Conceptualization, AS and WS; investigation, AS and RP; writing—original
draft preparation, AS and RP; writing—review and editing, AS, RP and WS;
visualization, AS; supervision, AS and WS All authors have read and agreed to
the published version of the manuscript.

Funding
The authors did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors for this research.

Availability of data and materials
Not applicable.
References

1. Kim J, Bowley R, Munagall AJ, Robertson AG, Odze RD, Cherniack AD, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.

2. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596 (Epub 2015 May 30).

3. Fuchs CS, Doi T, Jang RW, Muro K, Sato T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical JOURNAL-059 trial. JAMA Oncol. 2018;4(5):e180013. https://doi.org/10.1001/jamaoncol.2018.0013.

4. Binnie RW, Roberts EW, Kensten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

5. Girao NA, Sanchez-Salas R, Peske JD, Vano Y, Machado M, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.

6. Apetrei CI, Chen DS, Ferrara N. VEGF in signaling and disease: beyond angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996;2(9):992–7. https://doi.org/10.1038/nm0996-992.

7. Sorbo M, Calabrese C, Netti PA, D’Andrea A, Cimino M, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212(2):139–48. https://doi.org/10.1084/jem.20140559 (Epub 2015 Jan 10).

8. Gabrilovich DI, Ishida T, Oyama T, Tan S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66.

9. Gabrilovich DI, Chen HL, Gogis KR, Cunningham HT, Mney GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103. https://doi.org/10.1038/nm0996-1096.

10. Maenhout SK, Thelemans K, Aerts JL. Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. Oncol Immunol. 2014;3(10):956879. https://doi.org/10.4161/21624011.2014.956879.
study. JAMA Oncol. 2019;5(4):546–50. https://doi.org/10.1001/jamaoncol.2018.5441.

28. Kojima T, Shah MA, Muro K, Francois E, Adenis A, Hsu C-H, et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol. 2020;38:4503.

29. Fuchs CS, Dzugiroglu M, Bang Y-J, Di Bartolomeo M, Mandalà M, Ryu M-H, et al. Pembrolizumab versus paclitaxel for previously treated patients with PD-L1-positive advanced gastric or gastroesophageal junction cancer (GC). update from the phase III KEYNOTE-061 trial. J Clin Oncol. 2020;38(15):4503.

30. Kato K, Sun JM, Shah MA, Enzinger PC, Adenis A, Doi T, et al. LB48-P Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: the phase 3 KEYNOTE-990 study. Ann Oncol. 2020;31:1192–3.

31. Moehler M, Shibata K, Garrido M, Salman P, Shen L, Wyrwicz L, et al. Blockade of a target molecule or an emerging therapy with pembrolizumab in previously treated patients with advanced esophageal cancer, gastric cancer, or esophageo-gastric junction cancer (EUG2017-028). Epub 2019 Mar 20.

32. Hendry SA, Farnsworth RH, Solomon B, Achen MG, Stacke RS, Fox SB. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front Immunol. 2016;7:621. https://doi.org/10.3389/fimmu.2016.00621.

33. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013;73(10):2943–8. https://doi.org/10.1158/0008-5472.CAN-12-4534 (Epub 2013 Feb 25).

34. Curlet TJ, Wei S, Dong H, Alvazez X, Cheng P, Motttram P, et al. Blockade of B7–H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9(5):562–7. https://doi.org/10.1038/nm863 (Epub 2003 Apr 21).

35. Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. ImmunoL Res. 2001;23(2–3):263–72. https://doi.org/10.1385/IR:23-2-263.

36. Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G. Epothilone B7–H1 improves myeloid dendritic cell-mediated antitumor immunity. Cancer Res. 1996;56(5):1111–7.

37. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenic opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–40. https://doi.org/10.1038/nrclinonc.2018.29 (Epub Mar 6).

38. De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003;9(6):789–95. https://doi.org/10.1038/nm871 (Epub 2003 May 12).

39. De Palma M, Venneri MA, Galili R, Sergi Sergi L, Politi LS, Sampadesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8(3):211–26. https://doi.org/10.1016/j.ccr.2005.08.002.

40. Coffelt SB, Chen YY, Muthana M, Welford AF, Tal AO, Scholz A, et al. Angiopoietin 2 stimulates Tie2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol. 2011;187(1):4183–90. https://doi.org/10.4049/jimmunol.1002802 (Epub 2011 Mar 2).

41. Wu X, Li J, Connolly EM, Liao X, Ouyang J, Giobbie-Hurder A, et al. Combined anti-VEGF and anti-CTLA-4 therapy elicits humoral immunity to galectin-1 which is associated with favorable clinical outcomes. Cancer Immunol. 2017;16(5):446–54. https://doi.org/10.1158/2326-6066.CCR-16-0385 (Epub 2017 May 4).

42. Illangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions. Cytokine. 2019;122:125–39. https://doi.org/10.1016/j.cyto.2015.12.013.

43. Benkhoucha M, Santiago-Raber ML, Schneiter G, Chofflon M, Funakoshi T, Nakamura T, et al. Pembrolizumab plus durvalumab in patients with advanced non-small-cell lung cancer, gastric/gastro-oesophageal junction cancer (EUG2017-028). Epub 2019 Mar 20.

44. Nakazawa Y, Kawano S, Matsui S, Funahashi Y, Tohyma O, Muto H, et al. Multitargeting strategy using lenvatinib and pembrolizumab maximizing antiangiogenesis activity in a preclinical cancer model. Cancer Sci. 2015;106(2):201–7. https://doi.org/10.1111/cas.12581 (Epub 2015 Feb 4).

45. Harada P, Arai T, Muto H, Hori T, Akiyama MK, Uchida K, et al. Phase II/III study of lenvatinib plus pembrolizumab in patients with advanced non-small-cell lung cancer, gastric/gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1b/2 trial. Lancet Oncol. 2020;21(6):809–20. https://doi.org/10.1016/S1470-2045(20)30270-0 (Epub 2020 Apr 28).

46. Fukuoka S, Hara H, Nakamura T, Kojima T, Kawazoe A, Asayama M, et al. Pembrolizumab and durvalumab for previously treated advanced non-small-cell lung cancer. Eur J Cancer. 2020;137:272–84.

47. Fukuoka S, Hara H, Nakamura T, Kojima T, Kawazoe A, Asayama M, et al. Combined anti-VEGF and anti-CTLA-4 therapy elicits humoral immunity to galectin-1 which is associated with favorable clinical outcomes. Cancer Immunol. 2017;16(5):446–54. https://doi.org/10.1158/2326-6066.CCR-16-0385 (Epub 2017 May 4).

48. Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543(7647):728–32. https://doi.org/10.1038/nature21676 (Epub 2017 Mar 20).

49. Fukuoka S, Hara H, Nakamura T, Kojima T, Kawazoe A, Asayama M, et al. Pembrolizumab and durvalumab in patients with advanced non-small-cell lung cancer, gastro/gastro-oesophageal junction cancer (EUG2017-028). Epub 2019 Mar 20.
59. Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 Antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin Cancer Res. 2019;25(2):515–23. https://doi.org/10.1158/0783-472X.CCR-18-2484 (Epub 018 Oct 22).

60. Saeed A, Phadnis M, Park R, Sun W, Al-Rajabi RMT, Baranda JC, et al. Cabozantinib (cabo) combined with durvalumab (durva) in gastroesophageal (GE) cancer and other gastrointestinal (GI) malignancies: preliminary phase Ib CAMILLA study results. J Clin Oncol. 2020;38(15):4563.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.