Morphological description and molecular identification of *Myxobolus dajiangensis* n. sp. (Myxozoa: Myxobolidae) from the gill of *Cyprinus carpio* in southwest China

Miao-miao Wang, Jin-ye Zhang and Yuan-jun Zhao

Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China

ABSTRACT

Background. Myxosporean diversity is a hot topic since they are difficult to accurately identify and classify. Many *Myxobolus* parasites have been named as *Myxobolus koi* because of their similar morphological features with the species originally reported. However, the distinctions in fine morphological features, host specificity, and molecular data have given rise to the attention of researchers.

Methods. The classical morphometric and histological methods were used to describe the *Myxobolus dajiangensis* n. sp. in morphology. The common techniques in modern molecular biology and the methods of phylogenetic analyses were combined to identify the species.

Results. Plasmodia of interlamellar-vascular type were found in the vascular network of gill lamellae. Mature myxospores of *M. dajiangensis* n. sp. were elongated and pyriform from the frontal view. The myxospores were 14.8 ± 0.4 (13.9–15.6) µm in length, 8.0 ± 0.5 (7.2–9.1) µm in width, and 5.5 µm in thickness. The two polar capsules were pyriform and slightly different in length. The length of the larger polar capsules was 8.0 ± 0.4 (7.1–8.8) µm, and it was 7.4 ± 0.4 (6.1–8.0) µm for the smaller ones. The width of both polar capsules was 2.5 ± 0.2 (2.0–3.2) µm. The polar filaments within the polar capsules were each coiled nine to 11 turns. Comparative analysis of both the morphological and molecular data between the present species and other similar species revealed that the present species is a novel species, *Myxobolus dajiangensis* n. sp. Also, *M. koi* (FJ710800) was misidentified and the congener with *M. dajiangensis* n. sp., depending on the secondary structures of SSU rRNA and phylogenetic analysis. Moreover, the cryptic species existed in the *M. koi* parasites.

INTRODUCTION

Since their discovery in the early 19th century, myxozoans have attracted great attention. To date, more than 2,600 myxozoan species, representing approximately 20% of cnidarians, have been described worldwide (*Okamura, Hartigan & Naldoni, 2018; Eiras et al., 2021*).
Among them, over 900 nominal species belong to the genus *Myxobolus* Bütschli, 1882. They are diverse and widespread ([Eiras et al., 2021](#)). Although the taxonomic methods for myxozoans are improved continuously, it is still challenging to identify many species with similar morphology ([Kaur & Singh, 2012](#)), which leads to the mistake of species identification and the emergency of cryptic species, thus hiding the diversity of myxosporean to a certain extent ([Eszterbauer, 2002; Bartošová-Sojková et al., 2014; Hartikainen et al., 2016; Liu, 2014; Liu, Yang & Zhao, 2016](#)).

Myxobolus koi Kudo, 1919 is originally isolated from the connective tissue of the gill filament of *Cyprinus carpio* Linnaeus, 1758 in Japan and named (1920). Subsequently, a series of information about those parasites named *M. koi*, including the characteristics in morphology, geographical distribution, their hosts, pathogenicity, and therapeutic methods, have been taken notes successively by lots of scientists ([Nakai, 1926; Hoshina, 1952; Akhmerov, 1960; Shul’mán, 1966; Crawshaw & Sweeting, 1986; Chen & Ma, 1998; Rukyani, 1990; Yokoyama et al., 1997; Camus & Griffin, 2010; Liu, 2014](#)). Moreover, the morphometric and molecular data, hosts, and localities are collected in Table 1, indicating that some data are not inconsistent between the *M. koi* originally reported and later published. [Nakai (1926)](#) has detailedly described the tissue parasitic pattern, plasmodium development, and spore morphological characteristics of a new species “so-called *Myxobolus koi*” with the same scientific name, which is also isolated from the same site of the same host. However, the two sets of morphometric data provided by both Kudo and Nakai are not overlapped. Furthermore, [Egusa (1978, 1983)](#) has researched all previous data and also pointed out the morphological differences between the *M. koi* originally reported by Kudo and published later by Nakai. To the best of our knowledge, the different species with quite a resemblance in morphology can parasitize the same site of the same host. For example, *Myxobolus paratoyamai* [Kato et al., 2017](#), *Myxobolus toyamai* Kudo, 1917, *Myxobolus tanakai* [Kato et al., 2017](#), *Myxobolus parakoi* [Liu et al., 2019](#), and *M. koi* all parasitize the gill lamellae of *C. carpio* ([Kato et al., 2017; Liu, Zhang & Zhao, 2019; Yokoyama & Ogawa, 2015; Zhang et al., 2020](#)). Therefore, the species recorded independently by Kudo and Nakai are probably homonymous and heterogeneous despite their similarity in morphology and infecting the same site of the same host. In addition, the members of the genus *Myxobolus* are of host highly specificity, while the hosts of *M. koi* recorded by [Akhmerov (1960), Shul’mán (1966) and Chen & Ma (1998)](#) are extensive (Table 1). Until 2009, Makoto and Hiroshi have uploaded the first SSU rDNA sequence (Accession No. FJ710800) to GenBank. So far, six sequences of SSU rDNA for *M. koi* have been submitted in GenBank, and one is provided by our research team. Based on morphological taxonomy, SSU rRNA secondary structure, and phylogenetic analysis of several known *M. koi* parasites, previous research has shown that *M. koi* (FJ710800) should be a different organism from the other *M. koi* species ([Zhang et al., 2020](#)). Therefore, the fact is inferred that two or more species may be assigned as *M. koi* because of various reasons, such as the incomplete description of original species in morphology and the limitation of research technologies.

In the present study, some *Myxobolus* samples, which were collected from the gills of *C. carpio* in Chongqing and Guizhou and morphologically similar to *M. koi*, and their
Table 1 Morphometric comparison of the present species with morphologically similar species.

Species names	SL (µm)	SW (µm)	ST (µm)	PCL (µm)	PCW (µm)	PCT (µm)	NFC	Cyst (mm)	Host	Locality	Accession No.	Reference		
Myxobolus dajiangensis n. sp.	14.8 ± 0.4 (13.9–15.6)	8.0 ± 0.4 (7.3–9.1)	5.5	7.8 ± 0.5 (6.1–8.8)	2.5 ± 0.2 (2.0–3.2)	4.0	9–11	0.2–0.8	C. carpio	China	MW675333	Present study		
M. koi	14–16	8–9	5–6	8–9	2.5–3	–	–	0.23	C. carpio	Japan	–	Kado (1920)		
M. koi	10–13	6–7	6	5–7	2–2.5	–	–	0.18	C. carpio	Japan	–	Nakai (1926)		
M. koi	10.3–13.4	6.0–7.6	5.8–6.8	5.4–7.2	2.4–2.9	–	–	0.1–1	C. carpio	Japan	–	Hoshina (1952)		
M. koi	13–16	6–8	6.5	7–9	2–3	–	–	–	C. carpio	Russia	Japan	–	Akhmerov (1960)	
M. koi	14–16	7–9	5–6.7	7–9	–	–	–	0.25	C. carpio	Russia	Korea	Japan	–	Shul’man (1966)
M. koi	14.1 ± 0.9 (11.7–16.1)	7.1 ± 0.6 (6.0–8.0)	6.6 ± 0.5 (5.1–7.9)	7.5 ± 0.7 (5.8–8.6)	3.0 ± 0.3 (2.4–3.6)	–	9	0.17 × 0.08	C. carpio	Britain	–	Crawshaw & Sweeting (1986)		
M. koi	13.3 (12.5–15)	7.9 (7.0–9.0)	6.8 (6–8)	6.9 (6.7–7.4)	2.2 (2.0–2.7)	–	7–8	>1	C. carpio	Japan	–	Yokoyama et al. (1997)		
M. koi	13.5 (12.0–15.0)	6.3 (5.7–7.5)	5.8 (5.0–6.5)	6.8 (5.9–7.2)	2.1 (1.6–2.3)	–	7–8	About 0.1	C. carpio	Japan	–	Yokoyama et al. (1997)		
M. koi	14.4 (13.2–15.6)	7.0 (6.6–7.8)	5.5 (4.8–6.2)	9.1 (8.4–9.6)	2.6 (2.4–3.0)	–	9–10	0.2–0.3	C. carpio and others	China	–	Chen & Ma (1998)		
M. koi	15.4 (14.5–16.5)	8.3 (7.1–9.0)	–	10.1 (9.0–10.9)	3.1 (2.5–3.5)	–	9–11	–	C. carpio	USA	FJ841887	Camus & Griffin (2010)		
M. koi	14.1 ± 0.5 (13.0–15.0)	7.0 ± 0.4 (6.0–8.0)	6.0 ± 0.2 (5.8–6.6)	7.5 ± 0.4 (7.0–8.3)	2.8 ± 0.2 (2.4–3.1)	–	9–10	0.6–2.3	C. carpio	China	FJ725077	Liu (2014)		
M. paraskei	16.0 ± 0.8 (14.6–17.7)	7.8 ± 0.8 (6.7–9.8)	–	8.7 ± 0.5 (7.8–9.9)	3.0 ± 0.2 (2.6–3.6)	–	11–12	–	C. carpio	China	MH196558	Liu, Zhang & Zhao (2019)		
M. tanakai	17.2 (15.4–18.6)	6.8 (6.3–8.4)	6.3 (5.9–6.8)	8.7 (7.6–9.4)	2.4 (2.0–2.7)	–	8–10	0.55 ± 0.42	C. carpio	Japan	LC228235	Kato et al. (2017)		
M. orissae	13.0–19.5	4.9–8.1	–	6.5–11.8	1.6–3.4	–	–	–	C. carpio	India	–	Haldar, Sanyal & Mukhopadhyaya (1996)		

Notes.

Abbreviations: SL, spore length; SW, spore width; ST, spore thickness; PCL, polar capsule length; PCW, polar capsule width; PCT, polar capsule thickness; NFC, number of polar filament coils; A, Acanthorhodeus; H, Hypophthalmichthys; S, Squaliobarbus. Others include A. chankaensis Dybowsky, 1872; C. caspio haematopterus Temminck & Schlegel, 1846, Carassius auratus, Carassius auratus auratus Linnaeus, 1758, Cirrhinus molitorella Valenciennes, 1844, Clarion botrachus Linnaeus, 1758, H. molitrix, Hypelleotris swinhonis Günther, 1873, S. curriculus, Sarcocheilichthys parvis Nichols, 1930, Semilabeo prochilus Sauvage & Dubey de Thiersant, 1874 and Vari-corninus simus Sauvage & Dubey de Thiersant, 1874; –, data not available.
relationship with the related species including *M. koi* were comprehensively analyzed and defined as a new species *Myxobolus dajiangensis* n. sp.

MATERIALS & METHODS

New species
The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: D94613DA-E0C5-43A2-824B-9A6848A7C4C0. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

Sample collection
Nine common carp, *C. carpio*, were collected from Chenjiaqiao Farmer’s Market, Shapingba District, Chongqing, and Golden Wharf Farmer’s Market, Bijiang District, Tongren, Guizhou, China, respectively. The fish measured between 11.6 cm to 15.9 cm in length. All fish were immediately transported to the laboratory for the parasitological examination. This study was approved by the Animal Care and Use Committee of the Key Laboratory of Animal Biology of Chongqing (Permit number: Zhao-20191010-01) and performed according to the recommendations in the Guide for the Care and Use of Animals at the Key Laboratory of Animal Biology of Chongqing, China.

Fish examination and morphological identification
The tissues and organs of the fish, including the gills, muscle, liver, intestine, and other organs were dissected. Samples were observed by the naked eyes and microscopy. Several small cysts were isolated from the infected gill lamellae (Fig. 1). The cysts were pierced with a fine needle to release the myxospores, which were then diluted with distilled water. The specimens were treated and identified as previously described ([Zhao, Ma & Song, 2001](http://www.journals.org/)). The morphological structure of the myxospores was observed, photographed, and determined using a Leica DM6000B microscope (Leica Microsystems, CMS GmbH, Germany) at 1,000× magnification. CorelDRAW 11 and Photoshop CS6 were used to illustrate our findings.

Histological analysis
The infected gills were fixed in Bouin’s solution for 24 h, then dehydrated in a graded ethanol series, hyalinized in xylene, and embedded in paraffin wax. Tissue sections (5–6 µm) were stained by hematoxylin and eosin (H & E).

DNA extraction, polymerase chain reaction (PCR), and sequencing
Genomic DNA of fresh myxospores from cysts was extracted using a DNeasy Blood & Tissue Kit (QIAGEN, Düsseldorf, Germany) following the manufacturer’s instructions.
The SSU rDNA primers were as follows: 18E - 5′CTG GTT GAT CCT GCC AGT-3′ (Hillis & Dixon, 1991) and 18R - 5′CTA CGG AAA CCT TGT TAC G-3′ (Whipps et al., 2003). PCR was performed using a Veriti™ 96-Well Thermal Cycler (Applied Biosystems, Singapore) in a 20 µL reaction system consisting of 7.2 µL dd H2O, 6 µL 2× Taq Master Mix, 0.5 µL each primer, and 5.8 µL genomic DNA. Briefly, after an initial denaturation at 94 °C for 90 s, the amplifications were carried out with 35 cycles of 94 °C for 20 s, 58 °C for 20 s, and 72 °C for 2 min, followed by an extra extension at 72 °C for 5 min and held at 12 °C. 3 µL PCR amplicon was subjected to electrophoresis on 1% agarose gel stained with GoldView™ Nuclear Staining Dyes. PCR products were purified with the DNA Agarose Gel Extraction Kit (OMEGA Bio-Tek, Norcross City, GA, USA) and inserted into a pMD18-T vector (TAKARA, Otsu, Japan). The target nucleotide sequences were sent to the TSINGKE (Chongqing, China) for bidirectional sequencing.

Molecular and phylogenetic analysis
The pairwise sequence similarities were calculated using BLASTn from GenBank. Multiple sequence alignments and divergences were carried out using MEGA6 with default parameters (Tamura et al., 2013). The predicted secondary structures, based on free energy minimization, were constructed for the selected species using RNA structure 5.2 with default settings. The obtained structures were displayed and manually adjusted using RNAViz 2.0 (Zhang et al., 2015). Three hypervariable regions of SSU rRNA (V4, V6 and V7) were selected to study their variability.

A total of 59 valid SSU rDNA sequences of Myxobolus species with over 94% similarity from Cyprinidae fishes in GenBank were selected and used for phylogenetic relationship analysis. Kudoa quadricornis (Whipps et al., 2003) and Kudoa alliaria Shulman et Kovaleva, 1979 were used as outgroups. A Bayesian inference (BI) tree was conducted using MrBayes 3.12 (Ronquist & Huelsenbeck, 2003). Maximum likelihood (ML) analyses were performed with RAxML HPC software (Stamatakis, Hoover & Rougemont, 2008) with 1,000 bootstrap
replicates using the GTR + G model. Trees were initially examined in FigTree v1.4.2, then edited and annotated in Adobe Photoshop. The secondary structure model was available at the European ribosomal RNA database (Peer et al., 2000).

RESULTS

Myxobolus dajiangensis n. sp. (Figs. 1–2)
Phylum: Cnidaria Hatschek, 1888
Class: Myxosporea Bütschli, 1881
Order: Bivalvulida Shulman, 1959
Family: Myxobolidae Thélohan, 1892
Genus: Myxobolus Bütschli, 1882

Taxonomic summary
Type host: Cyprinus carpio
Site of infection: gill lamellae
Prevalence of infection: 100% (5/5) in Chongqing; 25% (1/4) in Guizhou.
Type locality: Chenjiaqiao, Shapingba District, Chongqing (29°30′N, 106°27′E), and Bijiang District, Tongren, Guizhou (27°71′N, 109°19′E), China.
Deposition of type materials: Syntype specimens (No. 202101) were deposited at the Collection Center of Type-specimens, Chongqing KLAB, Chongqing Normal University, China.
Etymology: The species was named after the main river flowing through the collection locality, Tongren City, Guizhou, China.
Vegetative stage: Many spherical whitish cysts, 0.2–0.8 mm in diameter, were located in the gill filaments (Fig. 1).

Morphological description: All the myxospores were mature. Vegetative spores were not observed in this study. The mature myxospores were elongated and pyriform in the frontal view, tapered towards an acuminate anterior end, rounded posterior end, and leptosomatic in the sutural view (Fig. 2). The myxospores were $14.8 \pm 0.4 \ (13.9–15.6)$ μm in length, $8.0 \pm 0.5 \ (7.3–9.1)$ μm in width ($n = 60$), and 5.5μm in thickness ($n = 1$). The two polar capsules were slightly unequal in length. The length of the larger one was $8.0 \pm 0.4 \ (7.1–8.8)$ μm, the smaller one was $7.4 \pm 0.4 \ (6.1–8.0)$ μm, and the width of both polar capsules was $2.5 \pm 0.2 \ (2.0–3.2)$ μm ($n = 60$). Polar filaments were coiled with approximately 10 turns (ranging from 9 to 11) and perpendicularly situated to the longitudinal axis of the polar capsule. The aspect ratio of the myxospore was 1:0.5, and the aspect ratio of the polar capsule was 1:0.3. Moreover, the ratio of myxospore length to polar capsule length was 1:0.5. The ratio of the myxospore width to polar capsule width was 1:0.3. The structures, including the intercapsular appendix, mucous envelope, iodinophilous vacuole and sutural edge marking were not observed (Fig. 2).

Histology

No remarkable external clinicopathological features were observed for the examined fish. Host responses to the infection led gill lamellae to expand to accommodate the plasmodia (an outer tissue consisting of epithelium cells and pillar cells). An abundance of plasmodia was observed in the secondary lamellae and a large plasmodium in the gill lamellae pushed and deformed the gill lamellae on both sides (Figs. 1 and 3). Any pseudoeosinophil cells and distinct inflammatory responses were not observed at the infection sites.

Molecular and phylogenetic analysis

Two SSU rDNA sequences with 1,885 nt and 1,969 nt were successfully obtained from Chongqing and Guizhou, respectively. These sequences were deposited in GenBank, and Table 1 lists the accession numbers. The alignment results indicated that the present species had a 100% similarity with *M. koi* (FJ710800), which was also derived from the gills of *C. carpio*. There was a similarity of less than 98% with other myxosporeans, including a 97.76% similarity with *M. tanakai* (LC228236), a 97.37% similarity with *M. parakoi* (MH196558), a 97.33% similarity with *M. koi* (MH196560), a 97.32% similarity with *M. koi* (MH196560), a 97.03% similarity with *M. koi* (FJ841887), and a 96.87% similarity with *M. koi* (KT240127).

Compared with other species similar in morphology, the secondary structures of SSU rRNA of our specimens coincided with those of *M. koi* (FJ710800). However, they were not the same as those of SSU rRNA of *M. koi* parasites (MH196560, FJ841887, KT240127, and KJ725077), *M. parakoi*, *M. tanakai* and *Myxobolus orissae* (*Haldar, Samal & Mukhopadhyaya, 1996*) (Fig. 4). The left internal bulges of H23_1 to the V4 of the present species were the same as those of *M. parakoi*, but bigger than those of *M. koi* parasites (MH196560, FJ841887, KT240127, and KJ725077), *M. tanakai* and *M. orissae*. The second internal bulges of H23_1 to the present species were smaller than those of *M. koi*.
Figure 3 Histological section of the infected gill stained with Hematoxylin & Eosin. (A) Plasmodium (P) of Myxobolus dajiangensis n. sp. shows the interlamellar-vascular type and involves in the neighboring gill lamellae in C. carpio. (B) An enlargement of (A). F, gill filament.

parasites (MH196560, FJ841887, KT240127, and KJ725077), M. tanakai, and M. orissae, except for M. parakoi. The third internal bulges of H23_1-2 in the studied species and M. koi (FJ710800) were smaller than those of other similar species in morphology. The lateral bulges of H23_1-2 showed no difference with these of M. parakoi and M. tanakai but differed from those of M. koi parasites (MH196560, FJ841887, KT240127, and KJ725077) and M. orissae. There was an internal bulge in H43_3 in the V7 of the present species and
Figure 4 The secondary structures of SSU rRNA V4, V6 and V7 of *Myxobolus dajiangensis* n. sp. and similar species in morphology. Items in bold represent the SSU rRNA secondary structures of *Myxobolus dajiangensis* n. sp. and *M. koi* submitted by our research team in the present study.

DISCUSSION

A holistic approach integrating molecular data, phenotypic features, tissue tropism and host specificity to identify and describe species has been widely accepted (Zhao et al., 2013; Fiala, Bartošová-Sojková & Whipps, 2015; Liu, Yang & Zhao, 2016; Liu, Zhang & Zhao, 2019). Morphologically, although the mature myxospores of the present species closely resembles *M. koi*, *M. tanakai*, *M. orissae*, and *M. parakoi*, which all parasitize in *C. carpio* except for *M. orissae*, the morphological structural features are inconsistent more or less. The present species resembles *M. koi* with their elongated pyriform spores but...
Figure 5 ML and BI phylogenetic tree based on SSU rDNA sequences of *Myxobolus dajiangensis* n. sp. and its closely related *Myxobolus* species. Numbers given at nodes of branches are bootstrap support (BS) and Bayesian posterior probabilities (PP). The species in the present study is indicated in bold. //, shortened to one-third of the original length.

Full-size DOI: 10.7717/peerj.13023/fig-5

has a narrower front end compared with the original *M. koi* reported by *Kudo* (1920) and described later by *Camus & Griffin* (2010). Moreover, unlike the *M. koi* originally reported by *Kudo* (1920) and *Camus & Griffin* (2010), the polar capsules of the present species are full of the myxospore cavity in the sutural view (Fig. 2). The myxospore of the present species is significantly shorter compared with *M. tanakai* (Table 1). The two polar capsules of the present species also differs in length compared with corresponding polar capsules of *M. parakoi* (Table 1). In addition to the morphometric differences between the present species and *M. orissae* as well as their hosts are also various (Table 1). Therefore, the present species is considered as a novel species in morphology and host. Molecularly, several reports have indicated that intraspecies molecular criteria are less than 1% (*Molnár et al.*, 2012). In the present study, the SSU rDNA divergence is 0.000 between *M. koi* (FJ710800) and the present species. The secondary structures in the V4, V7, and V6 regions of the SSU rRNA of *M. koi* (FJ710800) and the present species are also identical. All of these suggest that *M. koi*
(FJ710800) should be attributed to the present species, while not *M. koi* although there is no its morphological data reported. However, divergences of SSU rDNA gene between the present species and other closely related species, namely *M. tanakai* (LC228235, LC228236), *M. parakoi* (MH196558) and *M. koi* (MH196560, FJ841887, KT240127, and KJ725077), range from 2.2% to 2.7%, which fall out of the intraspecific divergent criteria. As for the secondary structures in the V4, V7, and V6 regions of the SSU rRNA, the present species is remarkably different those of the closely related species (Fig. 5). Phylogenetically, *M. koi* (FJ710800) and the present species group independently and have no sister relationship with other sequences of *M. koi*, which further proves that *M. koi* (FJ710800) and the present species are the congener and different organisms with *M. koi* (Fig. 5). In addition, the gathering pattern of the present species and the related species in the phylogenetic tree is consistent with that of their myxospore shapes. In a word, morphological and molecular data as well as phylogenetic result all indicate that the present species was different from the other closely related species and recognized as a new species, named *Myxobolus dajiangensis* n. sp. *M. koi* (FJ710800) is misidentified and the congener with the present species. Also, our analyses of the secondary structure indicates that V4 H23_1-2 and V7 H43_4 are valid markers and can be used as barcoding to identify these morphologically similar *Myxobolus* species with *Myxobolus dajiangensis* n. sp.

Histologically, the present species can be designated as intralamellar-vascular type according to the guidelines proposed by Molnár (2002). Its intralamellar location seems to be one of the most common types of plasmodium development. There are many myxosporeans of this type, such as *M. koi* with the small-cysts type, *Myxobolus macrocapsularis* Reuss, 1906 and *Myxobolus muellericus* Molnár, 2006 (Yokoyama et al., 1997; Molnár, 2002, Molnár et al., 2006, Molnár, Cech & Székely, 2011). Our result has shown that a myxobolid infection structurally destroys the gill lamellae by the plasmodia. Therefore, *M. dajiangensis* n. sp. might destroy the functional respiratory surface of the gills if the infection was serious enough (Abdel-Baki et al., 2014).

In summary, *Myxobolus dajiangensis* n. sp. is a new species, based on the morphological and molecular data. This study provides the foundational data for figuring out the cryptic species of *M. koi*. Histologically, *Myxobolus dajiangensis* n. sp. is a potential threat to its host.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The present work was supported by grants from the National Natural Science Foundation of China (Nos. 31970409 and 31601845), projects of Chongqing Science and Technology Commission (No. cstc2021jcyj-msxmX0731) and Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJ1400515). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31970409, 31601845.
Chongqing Science and Technology Commission: cstc2021jcyj-msxmX0731.
Science and Technology Research Program of Chongqing Municipal Education Commission: KJ1400515.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Miao-miao Wang performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Jin-ye Zhang conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
• Yuan-jun Zhao conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:
The sequences are available at GenBank: MW675333 and MW675334.

Data Availability
The following information was supplied regarding data availability:
The raw measurements, BI tree and ML tree are available in the Supplementary Files.

New Species Registration
The following information was supplied regarding the registration of a newly described species:
Publication LSID: urn:lsid:zoobank.org:pub:D94613DA-E0C5-43A2-824B-9A6848A7C4C0
Myxobolus dajiangensis n. sp. LSID:
urn:lsid:zoobank.org:act:0B2B80F6-E984-4558-B48F-A33675D4FEA0

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.13023#supplemental-information.

REFERENCES
Abdel-Baki AA, Sakran T, Zayed E, Al-Quraishy S. 2014. Seasonal fluctuation and histopathology of Henneguya ghaffari (Myxozoa: Myxosporea) infection in the gills of the Nile perch. Lates niloticus, in the River Nile: a new locality record. Parasitology Research 113:1459–1463 DOI 10.1007/s00436-014-3786-z.
Akhmerov AK. 1960. Myxospordia of fishes of the Amur River Basin. Rybnoe Khozyaistvo Vnutrikh Vodoemov Latviiskoi SSR 5:239–308 (In Russian).

Bartošová-Sojková P, Hrabcová M, Pecková H, Patra S, Kodádková A, Jurajda P, Tyml T, Holzer AS. 2014. Hidden diversity and evolutionary trends in malacosporean parasites (Cnidaria: Myxozoa) identified using molecular phylogenetics. International Journal for Parasitology 44(8):565–577 DOI 10.1016/j.ijpara.2014.04.005.

Camus AC, Griffin MJ. 2010. Molecular characterization and histopathology of Myxobolus koi infecting the gills of a koi, Cyprinus carpio, with an amended morphological description of the agent. Journal of Parasitology 96(1):116–124 DOI 10.1645/GE-2113.1.

Chen QL, Ma CL. 1998. Myxozoa, Myxosporea. In: Fauna Sinica. Vol. 528. Beijing: Science Press (In Chinese).

Crawshaw MT, Sweeting RA. 1986. Myxobolus koi Kudo, 1919: a new record for Britain. Journal of Fish Diseases 9(5):465–467 DOI 10.1111/j.1365-2761.1986.tb01041.x.

Egusa S. 1978. The infectious diseases of fishes. Koseisha Koseikaku 554 (In Japanese).

Egusa S. 1983. Myxobolosis of common carp fry. In: Egusa S, ed. Fish pathology (Infectious diseases and parasitic diseases. Koseisha Koseikaku. 257–260 (In Japanese).

Eiras JC, Cruz CF, Saraiva A, Adriano EA. 2021. Synopsis of the species of Myxobolus (Cnidaria, Myxozoa, Myxosporea) described between 2014 and 2020. Folia Parasitologica 2021(68):012 DOI 10.14411/fp.2021.012.

Eszterbauer E. 2002. Molecular biology can differentiate morphologically indistinguishable myxosporean species: Myxobolus elegans and M. hungaricus (Short communication). Acta Veterinaria Hungarica 50(1):59–62 DOI 10.1556/avet.50.2002.1.8.

Fiala I, Bartošová-Sojková P, Whipp CM. 2015. Classification and phylogenetics of myxozoa. In: Okamura B, Gruhl A, Bartholomew JL, eds. Myxozoan evolution, ecology and development. Berlin: Springer, 111–123 DOI 10.1007/978-3-319-14753-6_5.

Haldar DP, Samal KK, Mukhopadhyaya D. 1996. Studies on protozoan parasites of fishes in Orissa: Eight species of Myxobolus Bütschli (Myxozoa: Bivalvulida). Journal of the Bengal Natural History Society 16:3–24.

Hartikainen H, Bass D, Briscoe AG, Knipe H, Green AJ, B Okamura. 2016. Assessing myxozoan presence and diversity using environmental DNA. International Journal for Parasitology 46(12):781–792 DOI 10.1016/j.ijpara.2016.07.006.

Hillis DM, Dixon MT. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66(4):411–453 DOI 10.1086/417338.

Hoshina T. 1952. Notes on some myxosporidian parasites of fishes of Japan. Journal of Tokyo University of Fisheries 39(1):69–89.

Kato E, Kasai A, Tomochi H, Li YC, Sato H. 2017. Four Myxobolus spp. (Myxosporea: Bivalvulida) from the gill lamellae of common carp (Cyprinus carpio) and Japanese silver crucian carp (Carassius langsdorffii) in the western part of Japan, with the description of three new species (M. tanakai n. sp. M. paratoyamai n. sp. and M. ginsbuna n. sp.). Parasitology Research 116:2427–2441 DOI 10.1007/s00436-017-5545-4.
Kaur H, Singh R. 2012. A synopsis of the species of Myxobolus Butschli, 1882 (Myxozoa: Bivalvulida) parasitising Indian fishes and a revised dichotomous key to myxosporean genera. Systematic Parasitology 81:17–37 DOI 10.1007/s11230-011-9321-z.

Kudo RR. 1920. Studies on myxosporidia: a synopsis of genera and species of myxospordia. Illinois Biological Monographs 5(3-4):1–265.

Liu Y. 2014. Taxonomy of the genus Myxobolus (Myxozoa: Myxosporea) with identification of some Myxobolus species in China. D. Phil. PhD Thesis, Huazhong Agriculture University, Wuhan, China (In Chinese).

Liu XC, Yang CZ, Zhao YJ. 2016. Redescription of Myxobolus honghuensis Liu et al., 2012 and identification on its genetic related species. Acta Hydrobiologica Sinica 40(2):351–357 (In Chinese).

Liu XH, Zhang DD, Yang CZ, Zhao YJ. 2016. Redescription of Myxobolus honghuensis Liu et al., 2012 and identification on its genetic related species. Acta Hydrobiologica Sinica 40(2):351–357 (In Chinese).

Molnár K. 2002. Site preference of fish myxosporeans in the gill. Diseases of Aquatic Organisms 48(3):197–207.

Molnár K, Cech G, Székely C. 2011. Histological and molecular studies of species of Myxobolus Bütschli, 1882 (Myxozoa: Myxospora) in the gills of Abramis, Blicca and Vimba spp. (Cyprinidae), with the redescription of M. macrocapsularis Reuss, 1906 and M. bliccae Donec & Tozyyakova, 1984. Systematic Parasitology 79(2):109–121 DOI 10.1007/s11230-011-9292-0.

Molnár K, Eszterbauer E, Marton S, Székely C, Eiras JC. 2012. Comparison of the Myxobolus fauna of common barbel from Hungary and Iberian barbel from Portugal. Diseases of Aquatic Organisms 100(3):231–248 DOI 10.3354/dao02469.

Molnár K, Eszterbauer E, Székely C. 2006. Comparative morphological and molecular studies on Myxobolus spp. infecting chub from the river Danube, Hungary, and description of M. muellericus sp. n. Diseases of Aquatic Organisms 73:46–61 DOI 10.3354/dao073049.

Nakai N. 1926. Eine neue Myxosporidienart aus den Kiemen des Karpfens. Journal of the Imperial Fisheries Institute 22(1):11–20 (In Japanese).

Okamura B, Hartigan A, Naldoni J. 2018. Extensive uncharted biodiversity: the parasite dimension. Integrative and Comparative Biology 58(6):1132–1145 DOI 10.1093/icb/icy039.

Peer YV, Rijk PD, Wuyts J, Winkelmans T, Wachter RD. 2000. The European small subunit ribosomal RNA database. Nucleic Acids Research 28(1):175–176 DOI 10.1093/nar/28.1.175.

Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574 DOI 10.1093/bioinformatics/btg180.
Rukyani A. 1990. Histopathological changes in the gills of common carp (Cyprinus carpio L.) infected with the myxosporean parasite Myxobolus koi (Kudo, 1920). Asian Fisheries Science 3:337–341.

Shul’man SS. 1966. Myxosporidia of the USSR. 240. Moscow, Russia: Nauka Publishers.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Webserver. Systematic Biology 57(5):758–771 DOI 10.1080/10635150802429642.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12):2725–2729 DOI 10.1093/molbev/mst197.

Whipp S, Adlard RD, Bryant MS, Lester RJG, Findlay V, Kent ML. 2003. First report of three Kudoa species from Eastern Australia: Kudoa thyrsites from mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa minithyrsites sp. nov. from sweeper (Pempheris ypsilichnus). Journal of Eukaryotic Microbiology 50(3):215–219 DOI 10.1111/j.1550-7408.2003.tb00120.x.

Yokoyama H, Inoue D, Kumamaru A, Wakahayashi H. 1997. Myxobolus koi, (Myxozoa: Myxosporea) forms large- and small-type ‘cysts’ in the gills of common carp. Fish Pathology 32(4):211–217 DOI 10.3147/fsp.32.211.

Yokoyama H, Ogawa K. 2015. The resurrection of Myxobolus toyamai with a validation of a stunted polar capsule based on morphological evidence. Parasitology International 64(4):43–47 DOI 10.1016/j.parint.2015.01.008.

Zhang JY, Liu XH, Wu MQ, Zhao YJ. 2020. Redescription and phylogeny of Myxobolus tanakai Kato others. Acta Hydrobiology Sinica 44(4):904–910 (In Chinese) DOI 10.7541/2020.107.

Zhao YJ, Li NN, Tang FH, Dong JL. 2013. Remarks on the validity of Myxobolus ampullicapsulatus and Myxobolus honghuensis (Myxozoa: Myxosporea) based on SSU rDNA sequences. Parasitology Research 112(11):3817–3823 DOI 10.1007/s00436-013-3569-y.

Zhao YJ, Ma CL, Song WB. 2001. Illustrated guide to the identification of pathogenetic protozoa in mariculture-II Diagnostic methods for the myxosporean. Journal of Ocean University of Qingdao 31(5):681–688 (In Chinese).

Zhang Y, Zhao YJ, Wang Q, Tang FH. 2015. New comparative analysis based on the secondary structure of SSU-rRNA gene reveals the evolutionary trend and the family-genus characters of mobilida (Ciliophora, Peritrichia). Current Microbiology 71(2):259–267 DOI 10.1007/s00284-015-0848-0.