Supporting information for article:

The susceptibility of disulfide bonds towards radiation damage may be explained by S···O interactions

Rajasri Bhattacharyya, Jesmita Dhar, Shubhra Ghosh Dastidar, Pinak Chakrabarti and Manfred S. Weiss
Table S1 Charges\(a\) on the S atom and the total energy\(b\) of the system (as calculated using Hartree-Fock theory with basis set 6-31++G(2d,2p)) at different values of \(\theta\) and \(\phi\), and S···O distance of 3.08 Å\(c\).

\(\phi\) (°)	\(0\) (°)\(a\)	\(45\)	\(0\)
-60\(b\)	0.0	0.63	5.02
	(-0.297, 0.005)	(-0.187, -0.063)	(-0.233, 0.066)
0	0.94	3.89	
	(-0.163, -0.084)	(-0.192, 0.038)	
+50	0.31	2.01	
	(-0.074, -0.070)	(-0.066, -0.158)	

\(a\) The charges on distant and neighboring S atoms (S\(_\gamma\)' and S\(_\gamma\), respectively) are given in parenthesis.

\(b\) \((\text{ERHF})\) (a.u) obtained from the program was first converted into kcal/mol. The value at a given \((\theta, \phi)\) was then expressed relative to that at \((90°, -60°)\), i.e., \(\Delta E = \text{ERHF}(\theta, \phi) - \text{ERHF}(90°, -60°)\).

\(c\) Calculations were also done at two distances on either side of 3.08 Å, and the resulting charges are: (-0.319, 0.014) at 2.9 Å and (-0.284, -0.001) at 3.2 Å.
Table S2 Charges on the S atoms and energy of interaction when the amide group is rotated about the C=O axis, keeping the disulphide moiety fixed (using DFT/B3LYP/6-31G++(2d,2p) level of theory).

Position	Dihedral angle(°)\(a\)	Charge on distant S atom	Charge on proximal S atom
1	-12	-0.155	0.026
2	-42	-0.154	0.019
3	-72	-0.151	-0.001
4	-102	-0.146	0.001
5	-132	-0.142	-0.011
6	-162	-0.143	-0.002
7	-180(or +180)	-0.139	-0.002
8	+150	-0.138	0.016
9	+120	-0.151	0.013
10	+90	-0.148	0.001
11	+60	-0.151	0.015
12	+30	-0.157	0.031
13	0	-0.157	0.029

\(a\) The virtual dihedral angle is defined by S\(_γ\)∙∙∙O-C-CH\(_3\). The position 1 corresponds to what is shown in Fig. 2.

Table S3 Second order perturbation theory analysis of the Fock matrix in NBO basis (using Hartree-Fock theory) of the model shown in Fig. 2 representing elastase.

S\(_γ\)∙∙∙O distance (Å)	Donor (i)	Type	Acceptor (j)	Type	E(2)\(^a\) (kcal/mol)	\(\varepsilon(j)-\varepsilon(i)\)\(^b\) (a.u)
2.9	O	LP (1)	S\(_γ\)-S\(_γ'\)	σ*	1.42	1.25
		LP (2)			0.18	0.72
3.08	O	LP (1)	S\(_γ\)-S\(_γ'\)	σ*	0.62	1.25
		LP (2)			0.08	0.71
3.2	O	LP (1)	S\(_γ\)-S\(_γ'\)	σ*	0.35	1.25
		LP (2)			0.05	0.71

\(^a\) E(2) means energy of hyperconjugative interaction (stabilization energy). The default threshold of 0.05 kcal/mol was used.

\(^b\) Energy difference between donor (i) and acceptor (j) NBO orbitals.