Interrupted CAG expansions in \textit{ATXN2} gene expand the genetic spectrum of frontotemporal dementias

Clémence Fournier1,†, Vincent Anquetil1,†, Agnès Camuzat1,2, Sandrine Stirati-Buron3, Véronique Sazdovitch5, Laura Molina-Porcel4,5, Sabrina Turbant1,5, Daisy Rinaldi1,6, Raquel Sánchez-Valle4,7, Mathieu Barbier1, Monwena Latouche1,2, Neuro-CEB Neuropathology Network, Giovanni Stevanin1,2,8, Danielle Seilhean1,5, Alexis Brice1,8, Charles Duyckaerts1,8, Charles Duyckaerts1,8 and Isabelle Le Ber1,6,*

\textbf{Keywords:} Frontotemporal dementia, Frontotemporal lobar degeneration, TDP-43, Ataxin 2, Amyotrophic lateral sclerosis, C9orf72, SCA2, GRN, Corticobasal degeneration, Corticobasal syndrome

Spinocerebellar ataxia type 2 (SCA2) is due to a CAG repeat expansion in \textit{Ataxin-2} gene (\textit{ATXN2}), encoding a polyglutamine (polyQ) stretch. Thirty-four or more uninterrupted (pure) CAG repeats are associated with cerebellar ataxia, slow saccades, and parkinsonism, beginning before 60 years \cite{1}. SCA2 is associated with neuronal loss in the cerebellum, \textit{substantia nigra}, striatum and globus pallidus; and intranuclear aggregation of polyglutamine stretches, labelled by 1C2 antibody, in the cerebellum \cite{2}. When interrupted by CAA motifs, full CAG expansions produce isolated levodopa-responsive parkinsonism \cite{3}. On the other hand, intermediate alleles greater than 26 \cite{4}, and up to 39 CAG repeats \cite{5}, represent a strong risk factor for amyotrophic lateral sclerosis (ALS) associated with neuronal TDP-43 (TAR DNA binding Protein 43) inclusions. \textit{ATXN2} contribution to TDP-43-proteinopathies has been studied mostly in ALS. We evaluated the contribution of \textit{ATXN2} in 31 patients with frontotemporal lobar degeneration (FTLD) and pathologically proven TDP-43 inclusions (FTLD-TDP) without known related mutation (Supplementary methods, Additional file 1: Table S1).

One patient (patient 5, Additional file 1: Table S1) carried a 39 CAG expansion interrupted by four CAA motifs (CAG\textsubscript{8}–CAA–CAG\textsubscript{4}–CAA–CAG\textsubscript{4}–CAA–CAG\textsubscript{9}–CAA–CAG\textsubscript{10}), and a 27 CAG intermediate allele (CAG 8–CAA–CAG\textsubscript{4}–CAA–CAG\textsubscript{4}–CAA–CAG\textsubscript{8}) (Supplementary results). The patient developed agrammatism, word omissions and dysarthria, suggestive of nonfluent primary progressive aphasia, at age 70 (Supplementary results). Brain imaging revealed frontal, left peri-sylvian and parietal atrophy; cerebellum was normal (Fig. 1 a-d). At age 73, the association of marked frontal executive dysfunction (planning, attention, inhibition, mental flexibility deficits), ideomotor apraxia (praxis score: 4/23), akinetic-rigid parkinsonism, with asymmetric fronto-temporo-parietal atrophy, was consistent with a frontal-behavioral subtype of corticobasal syndrome (CBS) \cite{6}. He had no cerebellar syndrome. He died at age 77. No information about the patient’s family was available.

A post-mortem examination was performed (Supplementary methods and results). Both 39 and 27 CAG alleles were found in all studied brain structures (frontal cortex, striatum, mesencephalon, occipital cortex, cerebellum) (Additional file 1: Figure S1 and Figure S2). Macroscopic examination revealed marked atrophy of frontal, temporal lobes, Ammon’s horn (CA1) and the subiculum. Neuronal loss and gliosis, associated with a superficial laminar spongiosis, were severe in the superficial layers of the middle frontal gyrus, motor cortex, supramarginal gyrus, CA1 and the subiculum. The pons (including the \textit{locus coerulesc}), the cerebellum (Fig. 1e) and the dentate nucleus were normal. TDP-43,
pTDP-43, p62 and ubiquitin immunohistochemistry revealed small round cytoplasmic inclusions, sometimes glial, more abundant in the superficial layers of the middle frontal gyrus, motor cortex, and supramarginal gyrus (Fig. 1e-j). Rare pTDP-43 ‘cat eye’ intranuclear inclusions were detected (Fig. 1i). The presence of TDP-43 positive cytoplasmic inclusions, mainly distributed in the upper layers of the cortex, lead to the diagnosis of type A FTLD-TDP [7]. Few cytoplasmic inclusions were found in the dentate gyrus (Fig. 1f). Scarce TDP-43 and pTDP43 positive neurites were present, mainly in the frontal cortex and the supramarginal gyrus (Fig. 1g-i). No skein like inclusions were observed in the hypoglosal nucleus. Ubiquitin and p62 immunohistochemistry did not reveal inclusion in the cerebellum. No intranuclear inclusions were detected with 1C2 antibodies. No alpha-synuclein immunostaining was noted in the substantia nigra. Ataxin2 immunohistochemistry revealed granular cytoplasmic staining in Purkinje cells of the cerebellum and in neurons of spinal cord, similar to that found in an ALS case with intermediate 32 CAG expansion, and weak diffuse cytoplasmic staining in some neurons of the frontal cortex (Additional file 1: Figure S3).

The presentation by CBS, without cerebellar ataxia, or cerebellum lesions on imaging and pathological examination (Fig. 1b, e), was clearly distinct from SCA2 phenotype. The neuropathology, characterized by pTDP-43-positive inclusions in the neocortex, but no cerebellar lesions or 1C2 inclusions, was also different from SCA2 patients (Additional file 1: Table S2). The phenotype was distinct from the late levodopa-responsive parkinsonism associated with interrupted expansions [3, 8]. Lastly, Lewy bodies and 1C2-positive inclusions in substantia nigra, pontine nuclei and cerebellum, described in few parkinsonian patients [9], were absent in our case. This study shows that ATXN2 phenotypes are not restricted to cerebellar ataxia, parkinsonism and ALS, but are expanded to pure isolated FTLD phenotypes. Although a coincidental occurrence of FTLD-TDP and ATXN2 mutation cannot be formally excluded, all known FTLD and ALS genes were normal in our patient. More importantly, an interrupted ATXN2 expansion was previously identified in a patient with FTD-ALS and type B FTLD-TDP pathology [10], both cases thus strongly support the causative genetic link between FTLD-TDP and ATXN2.

The clinical variability of ATXN2 expansions is not fully explained. In most repeat expansion disorders,
somatic mosaicism of the expanded alleles contributes to the clinical expression. Conversely to pure ATXN2 expansions, no (or a low level of) brain mosaicism was observed in this case, probably because interrupted expansions are more stable than pure ones. Interrupted expansions are also more stable than uninterrupted ones across meiosis [3]. It possibly confers a risk of anticipation lower than in pure CAG repeats, which should be considered in genetic counselling. Interrupted and pure expansions may have selective topographic toxicity involving preferentially the subcortical or the neocortical structures, causing either isolated parkinsonism or cortical syndromes. Distinct composition and/or localization of CAAs within interrupted expansions could, in turn, be associated with different patterns of neurodegeneration. Finally, the phenotype might be directly impacted by the modification of RNA secondary structure of ATXN2 transcripts including one or more CAA. CAA motif interruptions decrease the stability of CAG hairpin as indicated by higher ΔG in predicted secondary structure (Additional file 1: Figure S2). These differences can influence the set of RNA-binding proteins interacting with ATXN2 RNAs, and possibly interfere with RNA processing, localization or translation in specific brain structures [11].

Our patient’s peculiar phenotype could be related to the 27 intermediate allele, which composition is similar that of ALS patients carrying 27 CAG alleles [12]. However he did not have ALS symptoms, and we could not evidence selective loss of Purkinje cells in cerebellar vermis [13], motor neurons alterations, nor cytoplasmic filamentous pTDP-43 inclusions in motor cortex and vermis [13], motor neurons alterations, nor cytoplasmic not evidence selective loss of Purkinje cells in cerebellar vermis. However he did not have ALS symptoms, and we could not evidence selective loss of Purkinje cells in cerebellar vermis [13], motor neurons alterations, nor cytoplasmic filamentous pTDP-43 inclusions in motor cortex and vermis [13]. As such, our patient's phenotype is more likely related to the 39 repeat expansion.

Finally, our patient showed a rather unusual lesion pattern, characterized by FTLD-TDP type A, distinct both from pure or interrupted expansions and intermediate alleles, that expands neuropathological hallmarks associated with ATXN2 expansions (Additional file 1: Table S3). TDP-43 inclusions were described in one patient carrying 42 pure ATXN2 expansion carrier [15], as well as in SCA3, SCA7 and Huntington’s diseases, three other CAG expansion disorders. Together, these studies and ours provide robust arguments that common TDP-43 related pathways can be involved, not only in FTLD and ALS, but also in several CAG expansion disorders including interrupted ATXN2 expansion disease. Based on the present study, it is difficult to assert how interrupted or pure expansions modify the cellular localization of TDP-43 in neurons. However, it has been evidenced that ATXN2 protein ortholog associates with TDP-43, induces its mislocalization and modifies its toxicity in yeast and drosophila models [4].

In summary, this case sheds new light on the significance of ATXN2 in the spectrum of FTLD and TDP-43 pathologies and raises new challenges in the strategy that has to be applied to reach the molecular diagnosis of FTLD. It enlarges the mutation spectrum of isolated FTLD, showing that ATXN2 should be analyzed in FTLD patients, or more largely in TDP-43 cases without known FTLD mutations, even in absence of personal or familial history of cerebellar ataxia, ALS or parkinsonism.

Additional file

Additional file 1: Supplementary methods, cohorts description, molecular analyses and immunostaining. (DOCX 17641 kb)

Abbreviations

ALS: Amyotrophic Lateral Sclerosis; ATXN2: Ataxin-2; CBS: CorticoBasal Syndrome; CT scan: Computed Tomography scan; FTLD: FrontoTemporal Lobar Degeneration; MRI: Magnetic Resonance Imaging; PolyQ: Polyglutamine; RNA: Ribonucleic Acid; SC2A: SpinoCerebellar Ataxia type 2; SCA3: SpinoCerebellar Ataxia type 3; SCA7: SpinoCerebellar Ataxia type 7; SPECT: Single Photon Emission Computed Tomography; TDP-43: TAR DNA binding Protein 43; pTDP-43: Phospho-TAR DNA binding Protein 43

Acknowledgments
The authors thank the Brain Donation Program of the Brain Bank “Neuro-CEB” Brain Bank (Neuro-CEB BB-0033-00011) run by a consortium of patient associations; ARSEP (association for research on multiple sclerosis), CSC (association for research on cerebellar ataxias), France Parkinson, France Alzheimer and LEOMA-Vaincre Alzheimer; and the Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain, for sample and data procurement and Dr. Ellen Gelpi (IDIBAPS Brain Bank and Institute of Neurology, Medical University of Vienna) for helpful suggestions. The Neuro-CEB Neuropathology network includes: Dr Franck Letournel (CHU Angers), Pr Anne Vital (CHU Bordeaux), Pr Françoise Chapon (CHU Caen), Pr Catherine Godfraind (CHU Clermont-Ferrand), Pr Claude-Allan Maureau (CHU Lille), Dr Vincent Deramecourt (CHU Lille), Dr David Meyronnet (CHU Lyon), Dr Nathalie Streichenberger (CHU Lyon), Dr André Mausse de Paula (CHU Marseille), Pr Valérie Rguaz (CHU Montpellier), Dr Fanny Vandenbos-Burel (Nice), Pr Charles Duyskaerts (CHU PS Paris), Dr Danielle Selhane (CHU PS Paris), Dr Véronique Sadzovitch (CHU PS Paris), Dr Serge Milin (CHU Poitiers), Dr Dan Christian Chiffoleau (CHU Rennes), Pr Annie Laquerrière (CHU Rouen), Dr Béatrice Lannes (CHU Strasbourg).

Availability of data and material

Brain tissues and data were provided by the Brain Bank “Neuro-CEB” Brain Bank (GIE Neuro-CEB BB-0033-00011) and the Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain.

Funding
The research leading to these results has received funding from the program "Investissements d’avenir” ANR-10-IAIHU-06 (funding research facilities). This work was funded by the Programme Hospitalier de Recherche Clinique (PHRC FTLD-exome, promotion AP-HP, to ILB, funding data collection and analyses), the 7th framework programme of the European Union (NEUROMICS, to AB, funding data collection and analyses).

Authors contributions

CD, DS, CF, VS, LMP: pathologic assessments; CF, AC, VA, MB: molecular analyses; CD, DS, VS, ST, LMP: brain bank coordination, preparation and delivery of tissues; SSB, RVS: clinical evaluation of the patients; CF, VA, CD, ILB: redaction of the manuscript; AB, ML, GS: critical revisions of the manuscript; ILB, CD: supervision of the study. All authors read and approved the final manuscript.

Ethics approval and consent to participate

All tissue samples were obtained according to French and Spanish Legislation with transfer authorization. The informed consent for post-mortem and genetic studies were signed by the patients or by their legal
representatives in their name, as approved by local ethics committees and allowed by Spanish and French law and by the French Ministry of Social Affairs and Health (AC-2013-1887, DC2015-2566, AC-2015-2576). Consent for publication of the results have been obtained.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Instituto du Cerveau et la Moelle épineière (ICM), Sorbonne Université, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France. 2 École Pratique des Hautes Etudes – EPHE, FSL research University, 75014 Paris, France. 3 Département de médecine gériatrique, Centre hospitalier Rives de Seine, Courbevoie, France. 4 Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain. 5 Laboratoire de Neuropathologie Escourroule, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France. 6 Department of Neurology, AP-HP - Hôpital Pitié-Salpêtrière, Reference center for rare or early dementias, Institute of Memory and Alzheimer Disease (IM2A), Paris, France. 7 Alzheimer disease and other Cognitive Disorders Unit, Department of Neurology, Hospital Clinic, Barcelona, Spain. 8 Reference center for neurogenetics, Departement of Genetics, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France.

Received: 14 May 2018 Accepted: 14 May 2018
Published online: 30 May 2018

References
1. Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J et al (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118(Pt 6):1573–1581
2. Koyano S, Yagishita S, Kuroiwa Y, Tanaka F, Uchihara T (2014) Neuropathological staging of spinocerebellar ataxia type 2 by semiquantitative 1C2-positive neuron typing. Nuclear translacation of cytoplasmic 1C2 underlies disease progression of spinocerebellar ataxia type 2. Brain Pathol 24:599–606. https://doi.org/10.1111/bpa.12146
3. Charles P, Camuzat A, Benammar N, Sellal F, Destée A, Bonnet A-M et al (2007) Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69:1970–1975
4. Elden AC, Kim H-J, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1073. https://doi.org/10.1038/nature09320
5. Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM (2014) Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol 71(12):1529–1534. https://doi.org/10.1001/jamaneurol.2014.2082
6. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503. https://doi.org/10.1212/WNL.0b013e31827f0fd1
7. Mackenzie IR, Neumann M, Babiorie A, Sampathum DH, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol (Berl) 122:111–113. https://doi.org/10.1007/s00401-011-0986-2
8. Kim J-M, Hong S, Kim GP, Choi YJ, Kim YK, Park SS et al (2007) Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch Neurol 64:1510–1518
9. Takao M, Aoyama M, Ishikawa K, Sakiyama Y, Yomono H, Saito Y et al (2011) Spinocerebellar ataxia type 2 is associated with Parkinsonism and Lewy body pathology. BMJ Case Rep. 1:2011. https://doi.org/10.1136/bcr.01.2011.3685
10. Baumler D, East ZS, Tseu B, Zeman A, Hilton D, Talbot K et al (2014) FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol (Berl) 128:597–604. https://doi.org/10.1007/s00401-014-1277-z
11. Sobczak K, Krzyzosiak WJ (2005) CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem 280:3898–3910
12. Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L et al (2011) PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PloS One 6:e17951. https://doi.org/10.1371/journal.pone.0017951
13. Tan RH, Kril JJ, McGinley C, Hassan M, Masuda-Suzukake M, Hasegawa M et al (2016) Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions. Ann Neurol 79:295–305. https://doi.org/10.1002/ana.24665
14. Hart MP, Brettschneider J, Lee VMY, Trojanowski JQ, Giger AD (2012) Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathol (Berl) 124:221–230. https://doi.org/10.1007/s00401-012-0985-5
15. Toyoshima Y, Tanaka H, Shimohata M, Kimura K, Morita T, Kakita A et al (2011) Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol (Berl) 122:375–378. https://doi.org/10.1007/s00401-011-0862-7