DACCOR - Detection, characterization, and reconstruction of repetitive regions in bacterial genomes

Alexander Seitz Corresp. 1, Friederike Hanssen 1, Kay Nieselt 1

1 Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Eberhard-Karls-Universität Tübingen, Tübingen, Germany

Corresponding Author: Alexander Seitz
Email address: alexander.seitz@uni-tuebingen.de

The reconstruction of genomes using mapping-based approaches with short reads experiences difficulties when resolving repetitive regions. These repetitive regions in genomes result in low mapping qualities of the respective reads, which in turn lead to many unresolved bases. Currently, the reconstruction of these regions is often based on modified references in which the repetitive regions are masked. However, for many references, such masked genomes are not available or are based on repetitive regions of other genomes. Our idea is to identify repetitive regions in the reference genome de novo. These regions can then be used to reconstruct them separately using short read sequencing data. Afterward, the reconstructed repetitive sequence can be inserted into the reconstructed genome. We present the program DACCOR, which performs these steps automatically. Our results show an increased base pair resolution of the repetitive regions in the reconstruction of Treponema pallidum samples, resulting in fewer unresolved bases.
DACCOR - Detection, characterization, and reconstruction of repetitive regions in bacterial genomes

Alexander Seitz¹, Friederike Hanssen¹, and Kay Nieselt¹

¹Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Eberhard-Karls-Universität Tübingen

Corresponding author: Alexander Seitz¹
Email address: alexander.seitz@uni-tuebingen.de

ABSTRACT

The reconstruction of genomes using mapping-based approaches with short reads experiences difficulties when resolving repetitive regions. These repetitive regions in genomes result in low mapping qualities of the respective reads, which in turn lead to many unresolved bases. Currently, the reconstruction of these regions is often based on modified references in which the repetitive regions are masked. However, for many references, such masked genomes are not available or are based on repetitive regions of other genomes. Our idea is to identify repetitive regions in the reference genome de novo. These regions can then be used to reconstruct them separately using short read sequencing data. Afterward, the reconstructed repetitive sequence can be inserted into the reconstructed genome. We present the program DACCOR, which performs these steps automatically. Our results show an increased base pair resolution of the repetitive regions in the reconstruction of Treponema pallidum samples, resulting in fewer unresolved bases.

INTRODUCTION

The reconstruction of a genome from sequencing reads can be achieved using a de novo assembly, where overlaps of the reads are identified and thus extended into longer continuous sequences called contigs. Alternatively, if a closely related reference genome is available, the reads can be mapped against this genome, where the reconstruction is based on the consensus of the reads for each base.

For the mapping-based approach, programs such as BWA (Li and Durbin, 2009) or Bowtie2 (Langmead and Salzberg, 2012) are used to align short reads generated by Next-Generation-Sequencing (NGS) technologies to a known reference genome (Veeramah and Hammer, 2014). The consensus sequence of the aligned reads can then be used to generate the genomic sequence of the newly sequenced sample, assuming that the sample was sequenced with a sufficient coverage depth. This allows for the fast identification of short insertions, deletions, and single nucleotide variations (SNVs) or single-nucleotide polymorphism (SNP). The mapping programs typically calculate a score for each aligned read that corresponds to the quality of the alignment (Li et al., 2008). The score quantifies the probability that a read is placed at the correct genomic position. Reads with a low mapping quality can be filtered out to remove reads that might stem from contaminations or were sequenced with low sequencing quality (Smith et al., 2008). Besides bad quality reads, also reads mapping to repetitive regions could yield low-quality scores if they cannot be mapped to a unique position. Filtering of reads with low mapping qualities would also include these reads. This filtering is often conducted in the context of ancient DNA (aDNA) (Bos et al., 2016), so that for such samples the repetitive regions of the respective reconstructed genomes are generally affected, resulting in many unknown (N) characters. Also, de novo assembly approaches have problems to reconstruct repetitive regions, at least those that are significantly longer than the read lengths (Simpson and Durbin, 2012).

However, repetitive regions play an essential role in many genomes (Shapiro and von Sternberg, 2005). Hundreds to thousands of such regions are present in prokaryotic and eukaryotic chromosomes (Treangen
The human genome, for example, consists of approximately 50% repetitive regions (International Human Genome Sequencing Consortium, 2001). Tandem repeat regions in bacteria appear to be associated with outer membrane proteins, which suggests that they help pathogens to adapt to their hosts (Denoeud and Vergnaud, 2004). In the case of the bacterium Treponema pallidum, repetitive sequences in the arp gene are used to distinguish between the subspecies that cause veneral syphilis (Treponema pallidum pallidum), nonverenal yaws (Treponema pallidum pertenue), and bejel (Treponema pallidum endemicum), which is not possible using serological tests (Harper et al., 2008).

New sequencing technologies, like the Illumina SLR platform, PacBio, or Oxford Nanopore, can create long reads that can span most repetitive regions to resolve them (Huddleston et al., 2014). However, it is not always possible to apply these technologies to DNA samples. For example, in aDNA projects, the average extracted fragment length is approximately 44 to 72 base pairs (Sawyer et al., 2012). Sequencing these fragments with long read technology would not result in any information gain, as even Illumina short read technologies can sequence the whole fragment. Short DNA fragments are not limited to aDNA. They also appear in the sequencing of hard to cultivate pathogens, like Treponema pallidum (Arora et al., 2016).

To better resolve the repetitive regions using short reads, researchers often first mask duplicated and low-complexity regions prior to read mapping (Frith et al., 2010). One example would be the human reference genome, where a masked version is already available (UCSC, 2014). If no masked genome is available, programs like RepeatMasker (Smitt et al., 1996) can identify these regions and create a masked reference. RepeatMasker uses libraries of known repetitive regions and compares them to the input sequence. While this allows masking of the genome, de novo identification of repetitive regions is not possible.

A program that can identify repetitive regions de novo is VMatch (Kurtz, 2003). It uses suffix-arrays (Weiner, 1973) to identify the repetitive regions. VMatch has been applied in multiple genome projects for annotation of repetitive regions (e.g., by Lindow and Krogh (2005)), as well as masking tasks (Assuncao et al., 2010). Of course, there are other de novo repeat finding programs, like RepeatExplorer (Novák et al., 2013), a galaxy-based web tool, or RepARK (Koch et al., 2014), which is based on the sequencing reads and not on the respective reference genome. So far, no tool exists that allows users to combine repeat identification and genome reconstruction from NGS data.

The general idea of our approach first starts with a de novo identification of all repetitive regions in a given reference genome. Reads from NGS data are then mapped against the reference genome as well as all identified repetitive regions individually, to reconstruct them. To increase the base pair resolution of the reconstructed genome for each sample, the individually reconstructed repetitive regions are then used to replace the corresponding reconstructed repetitive regions of the full genome. All of these steps are combined in a fully automatic tool which we call DACCOR (Detection charACterization and reConstruction of Repetitive regions in genomes).

METHODS

DACCOR consists of three major steps (see central column of Figure 1). It first conducts a de novo identification of all repetitive regions for a given reference genome. For each identified repetitive region and each NGS data sample, the respective sequence is then reconstructed using the mapping-based pipeline EAGER. For each sample, EAGER is also used to reconstruct a full genome. Finally, all repetitive regions in the reconstructed genome are replaced by the individually reconstructed repetitive sequences.

To create an integrated version to identify repetitive regions, our de novo approach uses a k-mer based approach, similar to WindowMasker (Morgulis et al., 2005). The workflow to identify these regions can be split up into six steps (see left part of Figure 1). In the first step, the reference genome is divided into all its k-mers and all non-unique k-mers are stored. In the second step, matching k-mer pairs overlapping at \((k - 1)\) positions are combined into \((k + 1)\)-mers and stored again. This second step is repeated until all maximal unique repetitive regions are identified. Afterward, low complexity regions, e.g., long regions consisting only of the same base, are identified. This step is necessary, as the size of the currently identified repetitive regions is increased by one in each iteration (step 2). Thus, in the end, these regions are represented as two different repetitive regions, even though they are completely identical. This third step identifies and combines them to get the maximal repetitive regions.

In the following two steps, repetitive regions with mismatches are identified. Here, a mismatch-marker representing any unknown base is added to the end of all currently identified maximally exact repetitive
Figure 1. Workflow of the repeat reconstruction pipeline DACCOR. First, all repetitive regions in a given reference genome are identified. DACCOR comes with its own de novo repeat identification tool, which is separated into six steps. However, DACCOR is not limited to this approach and it can be exchanged with any other repeat identification tool. Afterward, each repetitive region is reconstructed separately using EAGER. Finally, the individually reconstructed regions are combined with the reconstruction of the full genome by replacing the corresponding base pairs in the reconstructed genome with the ones of the reconstructed repetitive regions. This leads to an increased base pair resolution of these regions.
To be able to automatically assemble a genome with all its repetitive regions, the subprogram pipeline connects the described subprograms identify, reconstruct, and combine. To evaluate our method, we applied DACCOR to four bacterial genomes of various lengths and repetitiveness, namely Treponema pallidum subsp. pallidum str. Nichols, Mycobacterium leprae TN, Escherichia coli str. K-12 substr. W3110, and the genome of Shigella flexneri 2a str. 301, without its plasmids (see Table 1 for RefSeq IDs). We first compared the step of the identification of repetitive regions with VMatch, allowing for one mismatch in repetitive regions of a minimum length of 101 base pairs (the length of typical Illumina HiSeq reads). We then applied our proposed reconstruction method to 106 syphilis samples published by Arora et al. (2016) (70 samples), Pinto et al. (2016) (25 samples), Sun et al. (2016) (10 samples), as well as read data from the reference genome (see Table 1 for SRA project IDs) to reconstruct the sequences of the 16S and 23S rRNA, which are duplicated in the bacterium T. pallidum. For this, we first used DACCOR to identify all repetitive regions with at most five mismatches and a minimal length of 101 base pairs in the T. pallidum genome. We also reconstructed the full genomes of the samples using the standard EAGER pipeline. This allowed us to compare our reconstruction of the two genes to the reconstruction generated by the standard method using the full genome as a reference. To identify specific variations in either copy of the genes, we searched for heterozygous positions in the individual reconstructions of the extracted sequences that show an allele frequency between 25% and 75%.

Finally, we applied the full DACCOR pipeline to reconstruct the whole genomes, including the identified repetitive regions, of two syphilis samples. For this we chose two samples from Arora et al. (2016), one with a moderate coverage (AR1, 7X, SRR3268681) and one with a very high coverage (AR2, 157X, SRR3268682). These two samples were also assembled using the de novo assembler SPAdes (version 3.11.1) (Bankevich et al., 2012), in order to compare repeat resolution approach to a pure de novo assembly. For this assembly, the reads were adapter clipped and quality trimmed to a minimum

Table 1. Published reference genomes and NGS data used in this study.

Bacterium	RefSeq ID
Treponema pallidum subsp. pallidum str.	NC_021490.2
Mycobacterium leprae TN	NC_002677.1
Escherichia coli str. K-12 substr. W3110	NC_007779.1
Shigella flexneri 2a str. 301	NC_004337.2

Publication	SRA Project ID
Arora et al. (2016)	PRJNA313497
Pinto et al. (2016)	PRJNA322283
Sun et al. (2016)	PRJNA305961
Table 2. Comparison of the identified repetitive positions in different bacterial genomes of DACCOR and VMatch, which was seen as the golden truth to evaluate against. Both programs were run allowing for one mismatch and reporting only regions of at least 101 bp. The k-mer size for DACCOR was set to 17.

	T. pallidum	S. flexneri	E. coli	M. leprae
true positives	22,382	376,669	107,456	74,406
true negatives	1,116,478	4,211,322	4,535,106	3,192,194
false positives	0	354	463	131
false negatives	773	18,857	3,307	1,472
accuracy (%)	99.93	99.58	99.92	99.95

Phred-quality of 20, prior to the assembly. The resulting contigs were then mapped against the reference genome with BWA MEM, using MADAM (Seitz and Nieselt, 2017). All bases in the reference genome where contigs mapped were counted as resolved bases and the ones where no contig mapped as unresolved. They were then compared with the results of EAGER without repeat resolution and DACCOR with repeat resolution.

If not specified differently, all programs were run with default parameters.

RESULTS

We first evaluated the identification of repetitive regions by comparing these to the ones identified by VMatch. This comparison (see Table 2) shows that the results of both programs are almost identical. We considered VMatch as the “golden truth” and could, therefore, compute an accuracy for the repetitive regions reported by DACCOR. We achieved an excellent accuracy with over 99% in all tested cases with only very few false negatives as well as false positives.

Next, we reran DACCOR with a higher sensitivity allowing for up to five mismatches in repetitive regions of lengths at least 101 base pairs. These results of the different bacterial genomes (see Table 3) show that the S. flexneri genome contains by far the most repetitive regions (1,249 compared to 29 in T. pallidum, 242 in E. coli, and 190 in M. leprae). It also contains the longest repetitive region of the four bacteria (5,383 compared to 3,283, 3,141, and 2,578 respectively). The average lengths of the repetitive regions are quite similar in all four bacteria (between 570 and 823 base pairs). The genome of T. pallidum contains 29 repetitive regions, of which 14 are different. It is apparent that 13 of those 14 are contained precisely twice whereas one is contained three times. This distinction is not as apparent in the other genomes, where more regions have to be contained more than twice. The number of repetitive regions that can be identified when allowing for up to five mismatches also varies between the different bacteria.

There are 127 of regions containing mismatches in the S. flexneri genome, whereas there are only 47 in the genome of E. coli, 9 in M. leprae, and 1 in T. pallidum. Overall 8.3% of the S. flexneri genome is comprised of repetitive regions. The genomes of E. coli and M. leprae are comprised of 2.4% and 2.3% repetitive regions respectively, and only 2.0% of the T. pallidum genome is repetitive.

Next we assessed the runtime of DACCOR, which was calculated on a server with four Intel(R)

Table 3. Statistics of identified repetitive regions using four different bacterial genomes for a k-mer size of 17, at most five mismatches, and a minimum length of 101 base pairs.

	T. pallidum	S. flexneri	E. coli	M. leprae
genome size [bp]	1,139,633	4,607,202	4,646,332	3,268,203
# repetitive regions	29	1,249	242	190
different repetitive regions	14	482	104	76
max length of repetitive regions	3,283	5,383	3,141	2,578
average length	823	570	706	643
repetitive regions with mismatches	1	127	47	9
sum of repetitive bases	23,892	660,261	160,897	119,871
% of genome repetitive (non overlapping)	2.0	8.3	2.4	2.3
Figure 2. Runtime of DACCOR in relation to the number of identified repetitive bases. The dashed line represents the regression for 1 mismatch, the solid line for 5 mismatches.

The runtime linearly correlates with the number of identified repetitive bases (see Figure 2). After an initial preprocessing step, DACCOR identifies about 14,000 repetitive bases per minute (using one mismatch). The runtime of DACCOR correlates mainly with the repetitiveness of the genome (see Figure 2), i.e., with the number of repetitive bases that are identified in the respective genome. When allowing more mismatches, a slight increase in runtime is also noted. The k-mer size does not influence the runtime (see supplementary Figure 2). We compared the runtime of DACCOR with Vmatch. DACCOR identifies repetitive regions with several mismatches faster than VMatch, however for repetitive regions with few

Figure 3. Histogram of resolved bases (as fraction relative to the length of the respective gene) of the 16S rRNA (a) and 23S rRNA (b) in 106 clinical syphilis samples (Arora et al., 2016; Pinto et al., 2016; Sun et al., 2016). The number of resolved base pairs, when mapping against each copy of the gene individually in comparison to the standard mapping-based approach using both copies, has been computed.
Table 4. SNPs in the 16S and 23S rRNAs of *T. pallidum* identified after extracting the repetitive region. The number of variant positions is the number of all positions where at least one sample shows some kind of genetic variation. Out of those positions, the site-specific positions refer to variant positions that appear to be different in the two copies of the respective gene (allele frequency between 25 and 75%) in at least one sample.

	16S rRNA	23S rRNA
length of gene	1,495	2,900
number of variant positions	36	46
number of site-specific positions	30	43

mismatches. VMatch is faster (see supplementary Figure 3).

When analyzing the results of DACCOR on the genome of *T. pallidum*, the two longest identified repetitive regions in the *T. pallidum* genome correspond to the 16S and 23S rRNAs, respectively. Thus one region contains one operon of a gene. We extracted these regions and used them as two independent references for their reconstruction of all samples published by Arora et al. (2016), Pinto et al. (2016), and Sun et al. (2016). We mapped all of the sequencing reads against each copy of the gene individually, reconstructed them for each sample, and counted the number of resolved bases in each copy. This number was compared to the number of resolved bases in the two copies of the respective gene when mapping against the whole genome without repeat resolution. We then computed the difference between these two numbers and divided by the length of the gene. With our approach, we could improve the base pair resolution (see Figure 3) by a median value of 82.7% for the 16S and 87.4% for the 23S rRNA (see Supplementary Figure 4 for a detailed plot for each sample). It shows that the percentage of the resolved base pairs was at least as high when mapping only against the extracted sequences, compared to the mapping against the whole genome for all analyzed samples. This means that we do not lose resolution when mapping only against these sequences. On the other hand, 99 out of 106 and 103 out of 106 samples in the 16S and 23S rRNA, respectively, gain information up to an improvement of 100% of the sequence of the respective gene. In these most extreme cases, not a single base could be reconstructed without DACCOR, whereas with it 100% of the gene could be reconstructed.

Using the individual reconstructions of the 16S rRNA and the 23S rRNA gene sequences, we also tried to identify SNVs or SNPs that are specific for only one copy of the respective gene. Hereafter we refer to these variations using the term SNP, though we cannot confirm that the variation is present to a minimum degree within a population (for example \(\geq 1\% \)). The results of this analysis identified 36 positions that have a SNP call in at least one of the 106 samples for the 16S rRNA (see Table 4). Of those 36 positions, 30 show evidence for a site-specific SNP in at least one of all analyzed clinical samples. There are two positions (884 and 888 relative to the start of the 16S rRNA), which show site-specific variance in about 20% of the samples (see supplementary Tables 1 and 2).

Table 5. Statistics for the assembly with SPAdes of the two clinical syphilis samples (*AR1* and *AR2* from Arora et al. (2016)). The sample column specifies the postprocessing step: “filtered” refers to contigs of 1,000 bp or more and “mapped” are only those contigs that could be mapped against the reference genome of *T. pallidum*.

sample	# contigs	N50	avg contig length	\(\geq 1,000 \)	\(\geq 10,000 \)	longest
AR1	43,162	247	245.9	396	1	10,286
AR1 mapped	1,137	978	696.61	174	1	10,286
AR1 filtered	396	1,941	1,895.61	396	1	10,286
AR1 filtered mapped	174	2,433	2,235.41	174	1	10,286
AR2	278,193	278	254.02	1,589	38	75,865
AR2 mapped	852	17,810	1,527.99	105	38	75,865
AR2 filtered	1,589	1,670	1,981.73	1,589	38	75,865
AR2 filtered mapped	105	20,441	10,693.95	105	38	75,865
Table 6. Enhanced genome resolution of two clinical syphilis samples (AR1 and AR2 from Arora et al. (2016)). EAGER indicate the results using only the full genome as a reference without the extra repeat resolution of DACCOR and SPAdes the results of the de novo assembly. Here the “filtered” stands for the results using only contigs of length ≥ 1000 bp. The values refer to the repetitive regions only, including the margin regions (in total 30,330 bp).

Sample	mean coverage	Method	#N	%N
AR1	7X	EAGER	23,348	76.98
		SPAdes	12,459	41.08
		SPAdes filtered	17,336	57.16
		DACCOR	4,473	14.75
AR2	157X	EAGER	17,549	57.86
		SPAdes	9,247	30.49
		SPAdes filtered	14,858	48.99
		DACCOR	964	3.18

positions where at least one sample has a SNP. Of these 46, 43 show evidence for site-specific SNPs in at least one sample. Here, one position (2,003) shows evidence for site-specificity in 37% of the samples. Additionally, nine positions show site-specificity in at least 15% of the T. pallidum samples.

Finally, we compared the mapping-based approach that is used by DACCOR and EAGER with the de novo assembly approach using SPAdes. For this, we used two clinical syphilis samples (AR1 and AR2), which had medium and high genome resolution in the study of Arora et al. (2016). Table 5 shows standard assembly statistics using various postprocessing methods on the contigs of the two samples. For the comparison of SPAdes with EAGER and DACCOR (see Table 6), we used all contigs of SPAdes that mapped against the reference genome. For the medium covered sample AR1, 85.3% of the repetitive regions could be resolved, compared to the 58.8% with SPAdes, and 23.0% using EAGER without DACCOR. For the high coverage sample AR2, 96.8% of the repetitive bases could be resolved, compared to the 42.1% using the standard mapping-based approach and 69.5% with the de novo assembly. Using only contigs greater or equal to 1,000 bp resulted in less resolved bases in the repetitive regions.

DISCUSSION AND CONCLUSIONS

We have developed DACCOR, an approach to increase the base pair resolution of repetitive regions during the mapping-based reconstruction of full genomes using short reads. For this, we first identify the repetitive regions of a given reference genome de novo. These regions are then used as individual reference sequences for the mapping of short reads of NGS samples. Finally, a new draft genome is created by combining the reconstructed repetitive regions with the rest of the genome that has been reconstructed using a standard mapping-based approach.

Our de novo identification of repetitive regions uses a k-mer based approach. The choice of k is important for the identification of repetitive regions. For de novo assembly based on de Bruijn graphs, the optimum value for k depends on the genome length, the coverage, the quality, and the length of the reads (Zerbino and Birney, 2008). In the case of different read lengths, as often observed in aDNA projects, it has been shown that using multiple different k-mers improves the assembly (Seitz and Nieselt, 2017). Other approaches choose an optimal k-mer size so that the uniqueness is maximized (Gardner and Hall, 2013). However, as we want to identify repetitive regions, we do not want to choose a k-mer size to maximize uniqueness. In our approach, the k-mer size defines the minimum length of the repetitive regions that can be identified in the first step. Thus, a k-mer size as small as possible should be used to be able to identify all putative repetitive regions. However, very small k-mer sizes lead to an exponential increase in the runtime, due to the increasing number of random occurrences of these small k-mers that have to be accounted for. On the other hand, the k-mer size should also not be longer than half the length of the input reads, as repetitive regions with one mismatch of the same length as the reads could otherwise not be identified. Therefore, we propose a minimum size for k of 17.

To identify all repetitive k-mers, all possible k-mers are stored in the first step of the identify...
subprogram of DACCOR. Those that are not repetitive are removed after the screening. Nonetheless, this results in high memory usage if the genome contains many repetitive regions. For the example of S. flexneri, we observed a memory footprint of 8 GB with a k-mer size of 17.

The comparison between DACCOR and VMATCH showed that VMATCH is slightly more sensitive, probably due to its suffix array approach. A possibility to increase the sensitivity of DACCOR would be to elongate all identified repetitive regions based on a local alignment. In principle, DACCOR could also use VMATCH, as well as other repeat finding methods, to replace our de novo repeat finder. However, to automate this, further adaptions would be necessary.

When mapping short reads from typical NGS data, a number of approaches recommend to use genomes as references whose repetitive regions are masked (Tarailo-Graovac and Chen, 2009). However, this may be problematic, because repetitive regions often overlap and can be quite complex. An example for this is the arp gene of T. pallidum (see Figure 4). It contains several overlapping repetitive regions. It can be seen that the region labeled repeat_3 is partly repetitive with itself. Thus a masking of one of the repetitive regions would mask most of itself. Additionally, the masking of the second occurrence of repeat_1 would also mask most of both occurrences of repeat_3. When masking the first occurrence of repeat_1, the masking of either occurrence of repeat_2 would also mask part of the unmasked region of repeat_1. Thus, masking of repetitive regions could result in either losing genome information or leaving repetitive regions unmasked. We, therefore, propose to use the identified individual repetitive regions as separate references for the mapping and merge all individually reconstructed regions into a common draft genome.

Since the de novo identification of repetitive regions in genomes, using these then as individual references for the mapping and merging all reconstructed genomic regions into a final draft genome requires many different steps, our primary goal of DACCOR was to present an entirely automatic procedure encompassing all these steps. DACCOR makes use of EAGER, a pipeline for the automatic reconstruction of genomic data sets. For highly identical repetitive regions, each copy is stored as individual sequences together with a margin at the 5' and 3' end of the region. We propose to set the margin to the length of the longest read that will be used in the mapping.

Using DACCOR, we have shown that a higher base pair resolution in repetitive regions, compared to the reconstruction using the standard mapping-based approach, can be achieved. In the standard approach, reads that can be mapped to different locations result in a mapping quality of zero, which in turn decreases the genotyping quality (McKenna et al., 2010). Additionally, our results show that de novo assembly also cannot reconstruct all repetitive regions completely, even though the results are better than the standard mapping-based approach without repeat resolution. By mapping to the repetitive region only, these reads have a higher mapping quality, a higher genotype quality, and thus result in more resolved positions. However, one has to acknowledge that other unresolved bases that may stem from a lack of coverage or low sequencing quality, cannot be resolved with our approach. In the case of the two syphilis samples, we could show that the majority of unresolved bases in repetitive regions could be resolved. The remaining unresolved bases are either outside of the identified repetitive regions or without read support within the regions. Furthermore, we have shown that using DACCOR, the identification of SNPs in repetitive regions can be improved. This is especially useful for the 23S rRNA, as it is known to play a role in the antibiotics resistance of this bacterium (Arora et al., 2016).
In conclusion, we have developed an entirely automatic pipeline that first conducts a de novo repeat identification in bacterial genomes and then uses the repetitive regions for an enhanced mapping of short read NGS data. Increasing the resolution of a draft genome affects many downstream analyses, such as population genetics or phylogenetic analyses. For future improvements, we plan to reduce the runtime and memory usage by adjusting our data structure and by adding more parallelization to some of the computing steps. With this, we hope to eventually be able to identify repetitive regions also in large eukaryotic genomes, like the human genome.

SOFTWARE AVAILABILITY

We have developed an automated software pipeline, written in Java, which allows other researchers to use our methodology. This pipeline is available on github:

https://github.com/Integrative-Transcriptomics/Daccor

REFERENCES

Arora, N., Schuenemann, V. J., Jäger, G., Peltzer, A., Seitz, A., Herbig, A., Strouhal, M., Grillová, L., Sánchez-Busó, L., Kühnert, D., Bos, K. I., Davis, L. R., Mikalová, L., Bruijsten, S., Komercík, P., French, P., Grant, P. R., Pando, M. A., Vaulet, L. G., Fermepin, M. R., Martínez, A., Centurion Lara, A., Giacani, L., Norris, S. J., Smajs, D., Bosshard, P. P., González-Candelas, F., Nieselt, K., Krause, J., and Bagheri, H. C. (2016). Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nature Microbiology, 2(December):16245.

Assuncao, A. G. L., Herrero, E., Lin, Y.-F., Huettel, B., Talukdar, S., Smaczniak, C., Immink, R. G. H., van Eldik, M., Fiers, M., Schat, H., and Aarts, M. G. M. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 107(22):10296–10301.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. a., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. a., and Pevzner, P. a. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5):455–477.

Bos, K. I., Herbig, A., Sahl, J., Waglechner, N., Fournier, M., Forrest, S. A., Klunk, J., Schuenemann, V. J., Poinar, D., Kuch, M., Golding, G. B., Dutour, O., Keim, P., Wagner, D. M., Holmes, E. C., Krause, J., and Poinar, H. N. (2016). Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife, 5(JANUARY 2016):1–11.

Denoeud, F. and Vergnaud, G. (2004). Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains: a web-based resource. BMC bioinformatics, 5:4.

Frith, M. C., Hamada, M., and Horton, P. (2010). Parameters for accurate genome alignment. BMC bioinformatics, 11(1):80.

Gardner, S. N. and Hall, B. G. (2013). When whole-genome alignments just won’t work: KSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS ONE, 8(12).

Harper, K. N., Liu, H., Ocampo, P. S., Steiner, B. M., Martin, A., Levert, K., Wang, D., Sutton, M., and Armelagos, G. J. (2008). The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunology and Medical Microbiology, 53(3):322–332.

Huddleston, J., Ranade, S., Malig, M., Antonacci, F., Chaisson, M., Hon, L., Sudmant, P. H., Graves, T. a., Alkan, C., Dennis, M. Y., Wilson, R. K., Turner, S. W., Korf, J., and Eichler, E. E. (2014). Reconstructing complex regions of genomes using long-read sequencing technology. Genome research, 24(11):1688–1696.

International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822):860–921.

Koch, P., Platzer, M., and Downie, B. R. (2014). RepARK - de novo creation of repeat libraries from whole-genome NGS reads. Nucleic Acids Research, 42(9).

Kurtz, S. (2003). The Vmatch large scale sequence analysis software. Ref Type: Computer Program, 412.
Smitt, A., Hubley, R., and Green, P. (1996). RepeatMasker Open-3.0. http://www.repeatmasker.org.

Zerbino, D. R. and Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.

Wainer, P. (1973). Linear pattern matching algorithms.

Veeramah, K. R. and Hammer, M. F. (2014). The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet, 15(3):149–162.

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altschuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9):1297–1303.

Morgulis, A., Gertz, E. M., Schäffer, A. A., and Agarwala, R. (2005). WindowMasker: window-based masker for sequenced genomes. Bioinformatics, 22(2):134–141.

Novák, P., Neumann, P., Pech, J., Steinhaisl, J., and MacAs, J. (2013). RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 29(6):792–793.

Peltzer, A., Jäger, G., Herbig, A., Seitz, A., Kniep, C., Krause, J., and Nieselt, K. (2016). EAGER: Efficient Ancient Genome Reconstruction. Genome Biology, 17(1):60.

Pinto, M., Borges, V., Antelo, M., Pinheiro, M., Nunes, A., Azevedo, J., Borrego, M. J., Mendonça, J., Carpinteiro, D., Vieira, L., and Gomes, J. P. (2016). Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nature microbiology, 2(10):16190.

Sawyer, S., Krause, J., Guschanski, K., Savolainen, V., and Pääbo, S. (2012). Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE, 7(3).

Seitz, A. and Nieselt, K. (2017). Improving ancient DNA genome assembly. PeerJ, 5:e3126.

Shapiro, J. A. and von Sternberg, R. (2005). Why repetitive DNA is essential to genome function. Biological reviews of the Cambridge Philosophical Society, 80(2):227–50.

Simpson, J. T. and Durbin, R. (2012). Efficient de novo assembly of large genomes using compressed data structures. Genome Research, 22(3):549–556.

Smith, A. D., Xuan, Z., and Zhang, M. Q. (2008). Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 9(1):128.

Smitt, A., Hubley, R., and Green, P. (1996). RepeatMasker Open-3.0. http://www.repeatmasker.org.

Sun, J., Meng, Z., Wu, K., Liu, B., Zhang, S., Liu, Y., Wang, Y., Zheng, H., Huang, J., and Zhou, P. (2016). Smith, A. D., Xuan, Z., and Zhang, M. Q. (2008). Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 9(1):128.

Sun, J., Meng, Z., Wu, K., Liu, B., Zhang, S., Liu, Y., Wang, Y., Zheng, H., Huang, J., and Zhou, P. (2016). Tracing the origin of Treponema pallidum in China using next-generation sequencing. Oncotarget, 7(28).

Tarailo-Graovac, M. and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, (SUPPL. 25):1–14.

Treangen, T. J., Abraham, A. L., Touchon, M., and Rocha, E. P. (2009). Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews, 33(3):539–571.

UCSC (2014). HGDownload. http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/, (accessed: 2017-12-19).

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altschuler, D., Gabriel, S., and DePristo, M. A. (2013). From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Number SUPL.43.

Veeramah, K. R. and Hammer, M. F. (2014). The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet, 15(3):149–162.

Weiner, P. (1973). Linear pattern matching algorithms. Switching and Automata Theory, 1973. SWAT ’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11.

Zerbino, D. R. and Birney, E. (2008). Velvet: Algorithms de novo short read assembly using de Bruijn graphs. Genome Research, 18(5):821–829.