Withanolides with Antibacterial Activity from *Nicandra john-tyleriana*

Fátima Gutiérrez Nicolás,† Guadalupe Reyes,‡ Marcela C. Audisio,‡ María L. Uriburu,‡ Segundo Leiva González,§ Gloria E. Barboza,*† and Viviana E. Nicotra*†

†Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
‡Instituto de Investigaciones para la Industria Química (INIQUI-CONICET), Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta, Argentina
§Museo de Historia Natural, Universidad Privada Antenor Orrego de Trujillo, CC 1075, Trujillo, Peru

Supporting Information

ABSTRACT: Eleven new withanolides (1−11) were isolated and characterized from the aerial parts of *Nicandra john-tyleriana*. Five of these withanolides have an unmodified skeleton (1−5), two are acnistins (6, 7), and four are withajardins (8−11). These new isolates were fully characterized using a combination of spectroscopic techniques (including multidimensional NMR) and mass spectrometry. All compounds were evaluated for their antibacterial activity against *Bacillus*, *Enterococcus*, *Escherichia*, *Listeria*, *Pseudomonas*, and *Staphylococcus* strains.

Withanolides comprise a group of naturally occurring C28 steroids based on an ergostane skeleton, in which C-26 and C-22, or C-26 and C-23, are oxidized in order to form a δ- or γ-lactone. Biogenetic transformations of withanolides can produce highly modified compounds in both the steroid nucleus and side chain, including the formation of additional rings. Their chemistry and occurrence have been the subject of several reviews.1−4

Nicandra Adans. (Solanaceae) is a small genus comprising three species. Two of these are *Nicandra john-tyleriana* S. Leiva & Pereyra, which grows in the northern Andean region of the Department San Martín (Prov. Otuzco, ca. 3000 m), and *Nicandra yacheriana* S. Leiva, from the “lomas” of the Department Arequipa (Prov. Caravelí, ca. 600 m), both endemic in Peru.5 The third species in this group is the well-known and most widespread species of the genus, *Nicandra physalodes* (L.) Gaertn., which occurs in a region from Peru to northern Argentina, as well as being found as a ruderal species in tropical and subtropical areas worldwide.6 Species in this genus are vigorous annual herbs with showy pale violet bell-shaped corollas with a white throat and sagittate calyx. The three above-mentioned species are distinguished by their floral and fruit characters.5b

A family of aromatic D-ring withanolides and withanolides with an unmodified skeleton has been isolated from *N. physalodes*,7 with some of these compounds having exhibited interesting biological activities such as insecticidal7a or potential anticancer properties.8

In the present investigation into the withanolides of the genus *Nicandra*, reported is the isolation of 11 new withanolides from *N. john-tyleriana* (1−11). Antibacterial activity has been previously reported for the ethanolic extract of *N. john-tyleriana* against *Escherichia, Pseudomonas, Proteus*, and *Staphylococcus* bacteria.9 In order to determine the antimicrobial activity, all compounds obtained in the present study were evaluated against different strains of *Bacillus, Enterococcus*, *Escherichia, Listeria, Pseudomonas*, and *Staphylococcus* by utilizing a disk diffusion method and bioautography. Finally, the most active compounds were tested by direct contact against the most sensitive bacteria cells.10

Received: October 21, 2014
Published: February 10, 2015
RESULTS AND DISCUSSION

Withanolides with an Unmodified Skeleton. The dichloromethane extract of the aerial parts of *N. john-tylerianna* was subjected to chromatographic purification and gave 11 new withanolides (1−11). Of these, HRESIMS of 16α-hydroxyjaborosalactone A (1) showed a quasimolecular ion [M + 1].

Table 1. 1H NMR Data of Compounds 1−5 in CDCl₃

position	1	2	3	4	5
2	6.03 dd (10.0, 2.8)	6.04 dd (10.0, 2.8)	5.90 dd (10.1, 2.5)	5.95 dd (10.2, 2.8)	5.90 dd (10.2, 2.5)
3	6.85 ddd (10.0, 6.2, 2.3)	6.87 ddd (10.0, 6.1, 2.3)	6.63 ddd (10.1, 5.0, 2.2)	6.68 ddd (10.2, 5.2, 2.2)	6.63 ddd (10.2, 5.1, 2.2)
4α	1.91 dd (18.9, 6.2)	1.94 m	2.10 dd (19.8, 5.0)	2.53 dd (19.9, 5.2)	2.12 m
4β	2.99 dt (18.9, 2.8)	3.01 dt (19.0, 2.8)	3.33 dt (19.8, 2.5)	3.53 dt (19.9, 2.8)	3.32 dt (19.7, 2.5)
6	3.13 d (2.5)	3.17 d (2.6)	3.70 t (2.5)	4.06 t (2.7)	3.71 t (2.6)
7α	1.33 m	1.37 m	1.49 m	1.55 m	1.50 m
7β	2.03 m	2.01 m	1.80 brt (13.3)	2.08 m	1.81 m
8	1.57 dd (11.4, 3.9)	1.76 cd (11.0, 3.7)	1.96 m	1.98 m	1.96 m
9	1.19 td (11.4, 4.1)	1.34 m	1.97 m	2.12 m	1.97 m
11α	2.05 m	2.20 m	2.41 m	2.47 m	2.35 m
11β	1.42 m	1.56 m	1.38 m	2.15 m	1.39 m
12α	1.93 m	2.02 m	2.03 m	2.06 m	2.03 m
12β	1.29 m	1.55 m	1.70 m	1.73 m	1.72 m
14	1.36 m	1.43 m	1.68 m	1.74 m	1.68 m
15α	1.72 td (13.3, 8.3)	2.23 m	2.23 dd (17.8, 7.1)	2.25 dd (18.1, 7.4)	2.24 dd (17.8, 7.3)
15β	1.50 m	1.87 m	1.89 t (17.8)	1.90 m	1.89 m
16	4.11 t (7.0)	1.12 dd (17.8, 6.3)	1.96 m	2.01 m	1.99 m
17	0.73 s	0.89 s	0.93 s	0.93 s	0.92 s
18	1.25 s	1.28 s	1.35 s	1.41 s	1.34 s
19	2.13 m	2.40 m	2.39 m	2.38 m	2.39 m
20	1.02 d (6.6)	1.03 d (7.0)	1.04 d (7.0)	1.05 d (7.1)	1.02 d (6.9)
21	4.72 ddd (11.6, 4.6, 3.6)	5.10 ddd (12.9, 5.8, 3.4)	5.13 ddd (13.3, 8.9, 3.5)	5.19 ddd (13.0, 5.3, 3.5)	5.00 ddd (13.0, 6.1, 3.1)
22	2.44 m	2.44 m	2.46 dd (17.8, 13.3)	2.47 m	2.39 m
23α	2.37 m	2.14 dd (17.6, 3.3)	2.17 m	2.15 m	2.10 m
23β	4.40 d (12.5)	4.38 d (13.6)	4.39 d (12.7)	4.39 d (13.9)	1.88 s
27a	4.34 d (12.5)	4.35 d (13.6)	4.35 d (12.7)	4.36 d (13.9)	4.36 d (13.9)
27b	2.02 s	2.04 s	2.05 s	2.05 s	1.93 s

Chemical shifts (δ) downfield from TMS, J couplings (in parentheses) in Hz, run at 400.13 MHz.
confirmed by the signals at δ 203.4 (C-1), 129.4 (C-2), 144.4 (C-3), 62.1 (C-5), and 63.2 (C-6) in the 13C NMR spectrum (Table 3). A β-orientation of the 5,6-epoxy function was supported by the chemical shifts of C-5 and C-6 as well as the small value of the coupling constant between H-6α and H-7β (2.5 Hz).11 Regarding the side chain, an α,β-unsaturated δ lactone was established, although its NMR data [12] δ: 79.3 (C-1), 30.0 (C-2), 154.0 (C-3), 125.3 (C-4), 167.4 (C-5); δ: 4.72 s (J = 11.6, 4.6, 3.6 Hz, H-22), 2.02 s (H-1); the absence of a singlet signal corresponding to H-27 at the high-field region of the 1H NMR spectrum, and the appearance of two doublets at δ 4.40 δ (J = 12.5 Hz) and 4.34 δ (J = 12.5 Hz) suggested the presence of an isolated C-27 hydroxy methyl group. The 13C NMR spectrum showed only four methyl groups, at δ 13.2, 15.0, 13.6, and 20.0, corresponding to C-18, C-19, C-21, and C-28, respectively, and the methylene signal at δ 57.5 confirmed the presence of a hydroxy group at C-27. Compound 1 exhibited 1H and 13C NMR data closely resembling those of jaborosalactone A isolated initially from Jaborosa integripetiolata12 but differering only in the substitution pattern of ring D. The signal at δ 4.11 t (J = 7.0 Hz) in the 1H NMR spectrum in conjunction with the 13C NMR data of ring D suggested an α-hydroxy substitution at C-16, and the location of this group was supported by HMBC correlations between the signals of H-16 and H-14, C-15, and C-17 at δ 53.3, 37.6, and 61.2, respectively. The α-orientation of the hydroxy group at C-16 was confirmed by the NOE observed between H-16 and the resonance corresponding to H-1α (δ 0.73), while the β-orientation of the side chain at C-17 was established by the 1H NMR chemical shift of the angular methyl group H-18 and by the cross-correlation peak observed between H-16 and the signal corresponding to H-22 in the NOESY experiment. The structure of 1 was elucidated as (17R,20S,22R)-5β,6β-epoxy-16α,27-dihydroxy-1-oxothio-2,24-dien-26,22-olide.

16-Oxojaborosalactone A (2) revealed a molecular formula of C28H32O8 by HRESIMS, with the 1H and 13C NMR data (Tables 1 and 2) being closely comparable to those of 16α-hydroxojaborosalactone A (1). The only difference between 2 and 1 was the absence of signals corresponding to the oxygenated methine (C-16, δH 4.11 and δC 76.5) in I and the appearance of the keto carbonyl signal at δC 217.2 in 2, thus suggesting the presence of a keto group at C-16, with this assumption being confirmed by the cross-correlation peaks between H-15 (δ 2.23 m and 1.87 m), H-17 (δ 1.96 m), and H-20 (δ 2.40 m) and C-16 in the HMBC experiment. The structure of 2 was elucidated as (17R,20S,22R)-5α,6α-epoxy-27-hydroxy-1,16-dioxothio-2,24-dien-26,22-olide.

The 1H and 13C NMR spectra of 16-oxojaborosalactone D (3) and 16-oxojaborosalactone E (4) were closely related to those of 2 (Tables 1 and 2). The almost identical 13C NMR data for rings C and D and the side chain of compounds 2–4 indicated that structural differences were restricted to substituents in rings A and B. Furthermore, the presence of a 1-oxo-2-ene functionality in ring A was evident for the three compounds. The 1H and 13C NMR data of 3 were consistent with a 5α,6β-diol typical of many withanolides,11 and the small couplings in the H-6 resonance at δ 3.70 t (J = 2.5 Hz) confirmed the axial orientation (β) of the 6-hydroxy group. Moreover, the 13C NMR spectrum revealed the expected

Table 2. 13C NMR Data of Compounds 1–11a

position	10	9	8	7	6	5	4	3	2	1
14	129.4	144.5	33.0	62.1	62.3	31.2	29.4	44.6	48.4	23.3
13	129.2	141.2	32.9	60.0	63.0	31.2	28.9	44.1	48.3	23.3
12	128.8	141.3	35.8	77.2	74.2	33.7	28.9	43.5	47.2	22.9
11	128.6	141.2	37.2	79.9	74.3	33.6	28.4	43.3	47.0	22.1
10	128.8	144.4	30.5	72.0	73.8	33.5	27.8	42.8	45.7	19.8
9	129.2	144.5	30.0	71.2	74.1	33.4	27.7	42.3	45.4	19.5
8	128.6	141.2	30.5	72.0	74.0	33.3	27.6	42.2	45.1	19.2
7	128.8	141.3	30.0	71.2	74.0	33.2	27.5	42.0	44.8	18.9
6	128.6	144.4	29.5	70.7	73.9	33.1	27.4	41.7	44.5	18.6
5	129.2	144.5	29.0	70.3	73.8	33.0	27.3	41.4	44.2	18.3
4	128.8	141.2	28.5	69.8	73.6	32.9	27.2	41.1	43.9	18.0
3	141.2	141.2	28.0	69.5	73.4	32.8	27.1	40.8	43.7	17.7
2	144.4	144.5	27.5	69.2	73.3	32.7	26.9	40.5	43.5	17.4
1	144.8	144.8	27.0	68.9	73.2	32.6	26.8	40.2	43.3	17.1

aChemical shifts (δ) downfield from TMS, run at 100.03 MHz. bCDCl3. cC,D2N. d(DCl3)2CO.
Table 3. 1H NMR Data of Compounds 6–11a

position	6	7	8	9	10	11
2	6.02 dd (100.0, 2.9)	5.90 dd (103.3, 2.7)	6.02 dd (100.0, 2.8)	5.71 dd (101.0, 2.6)	5.93 dd (101.0, 2.8)	6.03 dd (100.0, 2.9)
3	6.85 ddd (100.0, 6.1, 2.3)	6.61 ddd (103.5, 2.3)	6.86 ddd (100.0, 6.2, 2.3)	6.59 ddd (101.0, 5.0, 2.3)	6.66 ddd (101.0, 5.1, 2.2)	6.87 ddd (100.0, 6.1, 2.2)
4α	1.91 dd (19.0, 6.1)	2.06 dd (19.8, 5.1, 0.7)	1.92 dd (19.1, 6.2)	2.08 m	2.51 dd (20.1, 5.2)	1.95 m
4β	2.98 dt (19.0, 2.9)	3.30 dt (19.8, 2.7)	2.99 dt (19.1, 2.8)	3.32 dt (19.7, 2.3)	3.53 dt (20.1, 2.8)	3.02 dt (19.2, 2.7)
6	3.13 d (2.5)	3.66 brs	3.14 d (2.5)	3.63 brs	4.03 t (2.7)	3.17 d (2.7)
7α	1.34 m	1.51 m	1.33 m	1.52 m	1.56 m	1.40 m
7β	2.04 m	1.70 m	2.03 m	1.76 m	2.05 m	2.01 m
8	1.57 m	1.73 m	1.58 m	1.79 m	1.74 m	1.77 m
9	1.21 m	1.81 m	1.23 m	1.93 m	2.02 m	1.38 m
11α	2.05 m	2.24 m	2.07 m	2.27 m	2.36 m	2.28 m
11β	1.27 m	1.29 m	1.43 m	1.29 m	1.30 m	1.58 m
12α	1.78 m	1.80 m	1.81 m	1.84 m	1.83 dt (12.6, 3.4)	1.97 m
12β	1.29 m	1.47 m	1.43 m	1.49 m	1.63 dd (12.6, 3.8)	1.61 m
14	1.37 m	1.61 m	1.42 m	1.60 m	1.75 m	1.48 m
15α	1.72 m	1.73 m	1.73 m	1.70 m	1.76 m	2.22 m
15β	1.52 m	1.52 m	1.55 m	1.57 m	1.56 m	1.85 m
16	4.14 brt (6.9)	4.13 brt (6.8)	4.06 brt (7.2)	4.02 brt (7.7)	4.07 brt (7.0)	
17	1.09 dd (11.6, 6.1)	1.16 dd (11.6, 6.1)	1.40 m	1.49 m	1.48 m	2.03 m
18	0.69 s	0.73 s	0.69 s	0.78 s	0.74 s	0.84 s
19	1.24 s	1.31 s	1.24 s	1.30 s	1.38 s	1.28 s
20	2.32 m	2.32 m	2.13 m	2.07 m	2.16 m	2.28 m
21a	2.63 ddd (13.9, 8.8, 1.9)	2.64 ddd (13.9, 8.6, 1.6)	2.15 m	2.28 m	2.21 m	2.15 m
21b	1.21 m	1.24 m	1.51 m	1.50 m	1.54 m	1.52 m
22	5.05 brs	5.08 brs	4.69 brt (3.2)	4.66 brt (3.5)	4.71 brt (3.4)	5.56 brt (3.5)
23α	2.15 brd (14.0)	2.16 brd (13.2)	2.21 brd (15.0)	2.31 m	2.24 d (14.6)	2.05 m
23b	1.69 m	1.73 m	2.05 m	1.92 m	2.07 m	1.94 m
27	1.47 s	1.47 s	1.13 s	1.09 s	1.15 s	1.13 s
28	1.18 s	1.20 s	1.25 s	1.17 s	1.27 s	1.27 s
OH-C24				3.93 s		
OH-C16				3.70 d (5.8)		

aChemical shifts (δ) downfield from TMS, J couplings (in parentheses) in Hz, run at 400.13 MHz. bCDCl$_3$. c(CD$_3$)$_2$CO.

chemical shifts for signals of carbons C-5 and C-6 at δ 77.2 and 74.2, respectively. The 1H and 13C NMR data of 4 were consistent with a 5α,6β-dihydropyridine arrangement. Thus, the signal at δ 4.06 t (J = 2.7 Hz) was assigned to the equatorial H-6, with the unusually high chemical shift observed for H-4 and H-22 at δ 5.05 and two singlets at δ 148.9, 122.1, 166.9, 12.4, and 20.5 assigned to the C-22–C-28 positions, respectively. The structure of compound 5 was determined as (17R,20S,22R)-5α,6β-dihydroxy-1,16-dioxowitha-2,24-dien-26,22-olide.

Acnistins. *Nicandra john-tyleriana* afforded acnistins I (6) and J (7). Acnistins are characterized by a bicyclic side chain involving C-21 and the lactone ring, where C-21 is directly bonded to C-24 via a C–C bond. These withanolide types have been isolated previously from several genera of the tribe Physalideae (*Acnistus*, *Discopodium*, *Dunalia*, *Tubocapsicum*). Acnistin I (6), C$_{23}$H$_{38}$NaO$_6$, showed a peak at m/z 493.2557, corresponding to [M + Na]$^+$ in the HRESIMS, and the 1H and 13C NMR data of rings A–D (Tables 2 and 3) were closely related to those of compound 1, indicating a 1-oxo-2-ene-5β,6β-epoxy substitution pattern in rings A/B and the presence of an α-hydroxy group at C-16. Regarding the side chain, the NMR spectroscopic data of withanolide 6 closely resembled those of acnistins A–H$^{13–15}$ from the following observations: (i) the 1H NMR spectrum revealed the characteristic signal corresponding to the carbonyl hydrogen H-22 at δ 5.05 and two singlets at δ 1.47 and 1.18 assigned to H$_3$-27 and H$_3$-28, respectively; (ii) the absence of a signal for...
CH$_2$-21 and the presence of strong cross-correlation peaks of H-22 with the methylene carbon at δ 38.6 (C-21) and the quaternary carbon at δ 46.9 (C-24) and of H-21a (δ 2.63) with C-22 (δ 85.9), C-23 (δ 39.0), C-24, and C-25 (δ 76.7) in the HMBC experiment suggested a C-21-C-24 bond; (iii) the signals at δ 85.9 (C-22), 46.9 (C-24), 76.7 (C-25), 178.7 (C-26), 25.1 (C-27), and 20.1 (C-28), observed in the 13C NMR spectrum, were in agreement with a side chain acsinctin arrangement; (iv) the R configuration of C-25 was established from the NOE observed between H$_3$-27 and H-23a (δ 2.15s) (see the Supporting Information). Thus, the structure of 6 was elucidated as (17R,20S,22R,24R,25R)-5β,6β-epoxy-16α-24-dihydroxy-21,24-cycloergost-2-en-1-one. Compound 7 revealed a molecular formula of C$_{28}$H$_{40}$O$_{8}$ by HRESIMS, with its 1H and 13C NMR spectra being very similar to those of 6 (Tables 2 and 3).

The 13C NMR spectrum indicated that the only difference between 6 and 7 was in the substitution pattern at C-5 and C-6. Instead of the signals corresponding to the epoxy group at δ 62.0 (C-5) and 63.2 (C-6) in 6, the spectrum of 7 showed two signals at δ 77.5 (C-5) and 74.4 (C-6) typical of a 5α-6β-diol. Furthermore, the multiplicity and the chemical shift of H-6 (δ 3.66 brs) were in good agreement with the β-orientation of the hydroxy group at C-6. Spectroscopic NMR assignments were confirmed from the COSY, HSQC, and HMBC spectra. The structure of 7 was determined as (17R,20S,22R,24R,25R)-5α,6β,16α,25-tetrahydroxy-21,24-cycloergost-2-en-1-one. Withajarinds. The four new withajardins F–I (8–11) were isolated from N. john-tyleriana. Withajarinds have been previously isolated only from the Deprea27 and Tubocapsicum16b,18 genera. They exhibit a bicyclic side chain involving C-21 and the lactone ring, but, in contrast with the acsinctins, C-21 is bonded to C-25 instead of C-24.

Withajardin F (8) revealed a molecular formula of C$_{28}$H$_{40}$O$_{8}$ by HRESIMS. The 1H and 13C NMR data of rings A–D (Tables 2 and 3) were closely related to those of compounds 1 and 6, indicating a 1-oxo-2-ene-β,β-epoxy substitution pattern in rings A/B, the presence of a hydroxy group at C-16 with an α-orientation, and the side chain at C-17 with a β-orientation. With respect to the side chain, compound 8 exhibited 1H and 13C NMR spectra closely related to those of the withajarindos tuboanosigen and Ab. The characteristic NMR spectroscopic data for this side chain were the signals at δ 4.69 (brt, $J = 3.2$ Hz), 1.13 s, and 1.25 s, assigned to H-22, H$_{-}$27, and H$_{2}$-28, respectively, in the 1H NMR spectrum, and with the key cross-correlation peaks observed between the signal corresponding to H-21a (δ 2.15s) and the signals at δ 38.5 (C-20), 47.2 (C-25), 61.6 (C-17), and 177.7 (C-26) in the HMBC experiment, thus confirming the characteristic C-21–C-24 bond of the withajardin skeleton. The 13C NMR spectrum of 8 was in agreement with the structure proposed. Regarding the configuration of C-24, the NOE observed between H$_2$-28 and H-12β (δ 1.43 m) supported the S configuration at this position (see the Supporting Information). The 1H and 13C NMR spectra of compound 8 were run in pyridine-d_5 in order to correlate the chemical shifts with those of tuboanosigen-p-bromobenzoate, a compound for which X-ray analysis has been performed.18 The observed differences between both spectra were in good agreement with compound 8 having the opposite configuration at C-24 (Table 2). Accordingly, the structure of 8 was elucidated as (17R,20S,22R,24S,25R)-5β,6β-epoxy-16α,24-di hydroxy-21,25-cycloergost-2-en-1-one.

The 1H and 13C NMR spectra of withajarind G (9) and H (10) were closely related to those of 8 (Tables 2 and 3), showing patterns typical of the withajardin arrangement at the side chain, for the resonances of carbons 17–28 and their protons. The almost identical 13C NMR data for rings C and D and the side chain of compounds 8–10 indicated that structural differences were restricted to substituents in rings A and B.

The 1H and 13C NMR spectra of 9 revealed a 1-oxo-2-ene-β,β-di hydroxy substitution pattern from the characteristic signals corresponding to C-1–C-6 and the corresponding protons. Pseudomonas was the only genus that had the same as those isolated from Tubocapsicum anomalum but distinct from those isolated from N. physaloides.16,18 In the latest phylogenetic classifications for the family Solanaceae, none of these genera have been placed in any particular tribe. It would be premature to use the present phytochemical evidence to draw any chemotaxonomic conclusions at the present time. A comprehensive phytochemical and molecular study of both genera is still required.

The potential antibacterial activity of all the compounds described above was evaluated in vitro against strains of Bacillus, Enterococcus, Escherichia, Listeria, Pseudomonas, and Staphylococcus by different bioassay techniques. Compounds 2 and 6 showed significant antibacterial activity against Bacillus cereus using a disc-diffusion technique and the bioautographic TLC assay. The antibacterial activity of compound 2 was also quantified by direct contact against B. cereus BAC1 cells. This compound exerted bactericidal and bacteriostatic effects at 1000 ppm and close to 750 ppm, respectively (Figure 1).

EXPERIMENTAL SECTION

General Experimental Procedures

Optical rotations were measured on a JASCO P-1010 polarimeter. The UV spectra were obtained using a Shimadzu-260 spectrophotometer, and IR spectra were produced using a Nicolet 5-SXC spectrophotometer. NMR spectra were recorded on a Bruker AVANCE II AV-400 operating at 400.13 MHz for 1H and 100.63 MHz for 13C, while 2D spectra (COSY, HSQC, HMBC, and NOESY) were obtained using standard Bruker software. Chemical shifts are given in ppm (δ) downfield from the TMS internal standard. HRESIQTOFMS were determined on a
Fraction II was separated by preparative TLC with CH$_2$Cl$_2$-EtOAc (1:9). Preparative TLC of fraction VI with EtOAc gave n and the solvent was evaporated at reduced pressure. The residue was evaporated to dryness at reduced pressure. The residue (2.86 g) was collected in (14.8 mg). Compound [M + Na$^+$] 529.2557 (calcd for C$_{28}$H$_{38}$NaO$_6$, 529.2527).

Extraction and Isolation. The dry and pulverized aerial parts of *N. john-tyleriana* (ca. 267 g) were exhaustively extracted with EtOH, and the solvent was evaporated at reduced pressure. The residue was defatted by partition in n-hexane–MeOH–H$_2$O (10:3:1), with the resultant MeOH–H$_2$O phase being washed with n-hexane (3 × 100 mL) and MeOH evaporated at reduced pressure. The residue was diluted with H$_2$O and extracted with CH$_2$Cl$_2$ (3 × 100 mL). The CH$_2$Cl$_2$ extract was dried over anhydrous Na$_2$SO$_4$, filtered, and evaporated to dryness at reduced pressure. The residue (2.86 g) was chromatographed initially on a silica gel column, using a mixture of CH$_2$Cl$_2$–MeOH of increasing polarity as eluent, to afford 255 fractions. Then, fractions with similar TLC profiles were combined to form eight pooled fractions (I–VIII). Fraction I was purified by preparative TLC with n-hexane–EtOAc (1:9) to yield (in order of elution) compounds 2 (10.2 mg), 6 (5.4 mg), and 11 (5.0 mg). Fraction II was separated by preparative TLC with CH$_2$Cl$_2$–MeOH (8:5:1.5) to obtain compound 4 (8.3 mg). Fraction III was subjected to preparative TLC with EtOAc, yielding compounds 1 (19.2 mg) and 8 (21.4 mg). Fraction IV was processed by TLC with CH$_2$Cl$_2$–MeOH (8:2) to afford compound 8 (17.0 mg) and an impure fraction, which was further separated by preparative TLC with n-hexane–EtOAc (1:9) as eluent to yield compound 5 (14.8 mg). Compound 10 (12.2 mg) was purified from fraction V by preparative TLC using n-hexane–EtOAc (1:9). Preparative TLC of fraction VI with EtOAc gave compound 3 (2.4 mg), and preparative TLC of fraction VII with EtOAc gave compounds 3 (3.6 mg) and 7 (15.5 mg). Finally, compounds 7 (25 mg) and 9 (7.0 mg) were obtained by preparative TLC with CH$_2$Cl$_2$–MeOH (8:2) from fraction VIII.

Biological Activity Assays. Microorganisms and Media. The test organisms used in this study were as follows: Staphyloccocus aureus.
ATCC29213, Enterococcus faecium SM21, Pseudomonas aeruginosa, Escherichia coli CS, Listeria monocytogenes 01/155, L. monocytogenes 00/110, L. monocytogenes 00/270, Bacillus cereus BC1, B. cereus 8, B. cereus 1, B. cereus BC3, and S. subtilis. The strains were obtained from the culture collection of the Applied Bacteriology Laboratory of INIQUI (Salta, Argentina) and were activated on Mueller-Hinton broth (Britania), at 37 °C for 72 h, without any special atmosphere. When a solid medium was needed, 1.5% w/v of agar was used.

Disk Diffusion Method. The compounds were seeded onto paper disks 0.5 mm in diameter to a final concentration of 2000 ppm. Bacteria were grown in Mueller-Hinton broth, and an aliquot of 100 μL was added to a Petri dish with a concentration of 10^6 CFU/mL. The disks were put into contact with bacteria for 16 h at 25 °C to allow diffusion of the compounds. Then, the plates were incubated at 37 °C for 24–48 h and examined to determine the presence or absence of inhibition halos. All experiments were carried out in triplicate. Disks used as negative controls contained methanol or chloroform, and the positive control was chloramphenicol (30 μg).

Bioautography. Using a modification of the assay described by Chomnawang et al., the compounds at 2000 ppm in TLC development were covered with 5 mL of medium (BHI with 1.5% w/v of agar) containing an aliquot of 200 μL with a concentration of 10^6 CFU/mL of Bacillus cereus and Staphylococcus aureus. The plates were incubated at 37 °C for 24 h, and the areas of inhibition were compared with the positive control containing chloramphenicol (30 μg).

Microplate Direct Contact. This assay was carried out in order to quantify the biological effect of compound 2 on the indicator strain B. cereus BAC1. Cells from overnight cultures grown in MH broth were diluted in peptone water in order to obtain a suspension of ca. 10^6 CFU/mL. The effects of the pure compounds at different concentrations (from 2000 ppm to 500 ppm) on the indicator strain were analyzed in the following manner. Thus, 96-well microplates were used, and the different concentrations of pure compound were put in direct contact with the indicator strain suspensions at a 1:10 ratio at 37 °C for 1, 2, and 3 h. Viable indicator cells were determined by plating in duplicate using MH (1.5%, w/v) agar. The plates were incubated at 37 °C for 24 h.

Associated Content

Supporting Information

1H and 13C NMR spectra of compounds 1–11 and the relevant NOE and HMBC correlations of 6 and 8. This material is available free of charge via the Internet at http://pubs.acs.org.

Author Information

Corresponding Authors

*(G. E. Barboza) Tel/Fax: +54-351-433-2104. E-mail: gbarboza@imbiv.unc.edu.ar.

*(V. E. Nicotra) Tel/Fax: +54-351-535-3864. E-mail: vnicotra@lqcf.unc.edu.ar.

Notes

The authors declare no competing financial interest.

Acknowledgments

This work was supported by grants from CONICET (PIP 2012-2014, Resol. 1675/12), SeCyT-UNC (2012-2013, 05/C608), and FONCYT (PICT 2775 & 0694). F.G.N. thanks CONICET (Argentina) for a fellowship. NMR assistance by G. Boneto is gratefully acknowledged. We thank Dr. P. Hobson for helpful comments.

References

(1) Ray, A. B.; Gupta, M. In Progress in the Chemistry of Organic Natural Products; Herz, W.; Kirby, G. W.; Moore, R. E.; Steglich, W.; Tamm, Ch., Eds.; Springer-Verlag: Vienna, 1994; Vol. 63, pp 1–106.

(2) Veleiro, A. S.; Oberti, J. C.; Burton, G. In Studies in Natural Products Chemistry, Bioactive Natural Products (Part L); Atta-ur-Rahman, Ed.; Elsevier Science Publishers: Amsterdam, 2005; Vol. 32, pp 1019–1052.

(3) Chen, L.; He, H.; Qu, F. Nat. Prod. Rep. 2011, 28, 705–740.

(4) Misico, R. I.; Nicotra, V.; Oberti, J. C.; Barboza, G.; Gil, R. K.; Burton, G. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A. D.; Falk, H.; Kobayashi, J., Eds.; Springer-Verlag: Vienna, 2011; Vol. 94, pp 127–229.

(5) (a) Leiva, S.; Pereyra, E.; Arnolda 2007, 14, 40–52. (b) Leiva, S. Arnolda 2010, 17, 25–31.

(6) Hunziker, A. T. The Genera of Solanaceae Illustrated: According to a New System; A. R. G. Rantner Verlag K.-G.: Ruggell, Germany, 2001; Vol. 16, p 500.

(7) (a) Nallabandov, O.; Yamamoto, R. T.; Fraenkel, G. S. J. Agric. Food Chem. 1964, 12, 55–59. (b) Bates, R. B.; Eckert, D. J. Am. Chem. Soc. 1972, 94, 8258–8260. (c) Begley, M. J.; Cromeib, L.; Ham, P. J.; Whiting, D. A. J. Chem. Soc., Chem. Commun. 1972, 1250–1251.

(8) (b) Leiva, S.; Pereyra, E.; Arnolda 2007, 14, 40–52. (b) Leiva, S. Arnolda 2010, 17, 25–31.

(9) (a) Luis, J. G.; Echeverri, F.; García, F.; Rojas, M. J.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(10) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(11) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(12) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(13) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(14) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(15) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(16) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(17) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(18) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.

(19) (a) Luis, J. G.; Echeverri, F.; García, V. F.; Collier, S. M. J. Nat. Prod. 2000, 63, 512–513.
(20) Säkkinen, T.; Bohs, L.; Olmstead, R. G.; Knapp, S. BMC Evol. Biol. 2013, 13, 214−229.
(21) Chomnawang, M. T.; Surassmo, S.; Nukoolkam, V. S.; Gritsanapan, W. J. Ethnopharmacology 2005, 101, 330−333.