Generalized Hodge dual for torsion in teleparallel gravity

Peng Huang1 and Fang-Fang Yuan2

1School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275, China
2School of Physics, Nankai University, Tianjin 300071, China

Abstract

For teleparallel gravity in four dimensions, Lucas and Pereira have shown that a generalized Hodge dual for torsion tensor can be defined with coefficients determined by mathematical consistency. In this note, we extend their approach to general dimensions. We find that the generalized Hodge dual must be defined twofold, while the first Hodge dual operation coincides exactly with that of LP, the second Hodge dual operation needs new definition required by consistency.

*Electronic address: huangp46@mail.sysu.edu.cn
†Electronic address: ffyuan@nankai.edu.cn
I. INTRODUCTION

Teleparallel gravity is a gauge theory for the translation group. Although the central role in this theory is played by torsion rather than curvature, it is in fact equivalent to general relativity \[1\]. In contrast with those internal (Yang-Mills-type) gauge theories, teleparallel gravity is generally associated with soldered bundles where the spacetime (external) and gauge (internal) indices can be transformed into each other through tetrad fields \(e^a_\mu\). Due to this property, one can construct more types of scalar from torsion tensor than the usual internal gauge theories where no transformation between external and internal indices happens. For example, in internal gauge theories, a scalar can be constructed as \(F^A_{\mu\nu}F_{A\mu\nu}\) with \(A\) the internal index and \(\mu\nu\) the spacetime indices; however, in teleparallel gravity, in addition to term \(T^{a\mu\nu}T_{a\mu\nu} = T^a_{\mu\nu}\epsilon_{a}^{\lambda}T_{\lambda\mu\nu}\) that corresponds to \(F^A_{\mu\nu}F_{A\mu\nu}\), terms like \(T^{a\mu\nu}T_{\mu\lambda\nu} = T^{\lambda\mu\nu}T_{\mu\lambda\nu}\) and \(T^{\mu}_{\lambda\nu}T^\nu_{\lambda\nu} = T^\mu_{\mu}T^\nu_{\nu}\) are also possible.

The appearance of new scalar terms in teleparallel gravity makes the definition of Hodge dual for torsion tensor, the gauge field strength of the translation group, a nontrivial question. Nevertheless, in the case of \(D = 3 + 1\) teleparallel gravity, Lucas and Pereira \[2\] (partially based on the investigation in \[3\]) had proposed an approach to find this generalization for the torsion tensor. In their approach, similar to the case of Yang-Mills theories in \(D = 3 + 1\) spacetime where the Hodge dual of Yang-Mills field strength \(F^A_{\mu\nu}\) is defined as \((\ast F)^{A}_{\mu\nu} = \frac{1}{2}h\epsilon_{\mu\nu\rho\sigma}F^{A\rho\sigma}[1]\), they speculated that the generalized Hodge dual for torsion in \(D = 3 + 1\) should have the form as

\[
(\ast T)^{\lambda}_{\mu\nu} = h\epsilon_{\mu\nu\rho\sigma}\left(\frac{a}{2}T^{\lambda\rho\sigma} + aT^{\rho\lambda\sigma} + cT^{\rho}_{\theta\phi}g^{\lambda\sigma}\right),
\]

(1)

the first term is just as that in Yang-Mills theories, the second and third term appear due to new possibilities of index contraction, furthermore, the factor \(\frac{1}{2}\) in the first term is needed to remove equivalent terms of the summation. Then, for the generalized Hodge dual of a \(k\)-form to be consistent, it should obey the following property

\[
\ast \ast A^k = (-1)^{(k(D-k)+(D-s)/2)} A^k,
\]

(2)

[1] In this definition, we write the parentheses explicitly to remind reader that the indices \(A_{\mu\nu}\) denote the indices of the Hodge dual of field strength, \(\ast F\), which should not be confused with the indices \(A_{\mu\nu}\) in the field strength \(F\) in \(F^A_{\mu\nu}\).
with D the dimension of the spacetime and s the metric signature, in the case of $D = 4$ and $s = 2$, (2) implies that

$$(\star \star T)^{\lambda}_{\mu \nu} = -T^{\lambda}_{\mu \nu}. \quad (3)$$

Roughly speaking, (1) and (3) tell that, with appropriate factors, the operation of Hodge dual square maps differential form back to itself. This key constraint will eventually enable one to determine the unknown coefficients in definition (1). In this way, a consistent definition for the generalized dual torsion in $D = 3 + 1$ has been found in [2].

The primary motivation of the present work is to extend the above idea to general dimensions with $D \geq 2 + 1$. We will show that, the extension is not so straightforward as expected, in fact, no solution will exist for the constraint equation, see (24) and (30) below. We ultimately find that two basic requirements suffice to lead to a new definition which is applicable to general dimensional teleparallel gravity. Firstly, one still has to impose the key property (2) of a consistent Hodge dual. Secondly, we demand that, with the wedge product of the torsion tensor and its generalized Hodge dual, the standard Lagrangian of teleparallel gravity should be naturally reproduced.

The structure of this paper is as follows. In the next section, we explain the procedure of [2] in detail to obtain the $D = 3 + 1$ generalized Hodge dual torsion. We then explicitly show in section III that a straightforward generalization fails in $D = 2 + 1$. In section IV, a possible solution to this problem is given for the teleparallel gravity in general dimensions. We conclude our discussion in section V.

II. GENERALIZED HODGE DUAL FOR TORSION IN $D = 3 + 1$: A DETAILED DERIVATION

Since we aim to extend the method of [2] to general dimensions, it would be instructive to fill in the detail of this process as outlined there. This will prove to be necessary especially when one realizes that the generalization turns out to be not so straightforward. To streamline the exposition, we denote the generalized Hodge dual $(\star T)^{\lambda}_{\mu \nu}$ as $B^{\lambda}_{\mu \nu}$. Thus according to the definition in (1), we have

$$B^{\gamma \delta} = \frac{1}{h} \epsilon^{\gamma \delta \alpha \beta} \left(\frac{a}{2} T^{\lambda}_{\alpha \beta} + a T^{\lambda}_{\alpha \beta} + c T^{\tau \gamma}_{\alpha \tau g} g^{\lambda}_{\beta} \right), \quad (4)$$

$$B^{\gamma \delta} = \frac{1}{h} \epsilon^{\gamma \delta \alpha \beta} \left(\frac{a}{2} T^{\gamma}_{\alpha \beta} + a T^{\gamma}_{\alpha \beta} + c T^{\tau \gamma}_{\alpha \tau g} g^{\gamma}_{\beta} \right), \quad (5)$$
\[B^{\theta \gamma} = \frac{1}{\hbar} \epsilon^{\gamma \alpha \beta} \left(\frac{a}{2} T_{\theta \alpha \beta} + a T_{\alpha \theta \beta} + c T^{\tau}_{\alpha \tau \theta \beta} \right). \] (6)

On the other hand, we have

\[(\star \star T)^{\lambda \pi \chi}_\pi = (\star B)^{\lambda \pi \chi}_\pi = h \epsilon_{\pi \chi \gamma \delta} \left(\frac{a}{2} B^{\lambda \gamma \delta} + a B^{\gamma \lambda \delta} + c B^{\beta \gamma}_\theta g^{\lambda \delta} \right). \] (7)

Inserting (4)-(6) into (7), we arrive at

\[(\star \star T)^{\lambda \pi \chi}_\pi = (\star B)^{\lambda \pi \chi}_\pi = h \epsilon_{\pi \chi \gamma \delta} \left[\frac{a}{2} \epsilon^{\gamma \delta \alpha \beta} \left(\frac{a}{2} T^{\lambda}_{\alpha \beta} + a T^{\lambda}_{\alpha \beta} + c T^{\tau}_{\alpha \tau \theta \beta} g^{\lambda \delta} \right) \right. \]
\[+ \frac{a}{\hbar} \epsilon^{\lambda \delta \alpha \beta} \left(\frac{a}{2} T^{\gamma}_{\alpha \beta} + a T^{\gamma}_{\alpha \beta} + c T^{\tau}_{\alpha \tau \theta \beta} g^{\gamma \delta} \right) \]
\[+ \frac{c}{\hbar} \epsilon^{\gamma \theta \alpha \beta} \left(a T^{\alpha \theta \beta} + a T^{\alpha \theta \beta} + c T^{\tau}_{\alpha \tau \theta \beta} g^{\gamma \delta} \right) \]
\[= \epsilon_{\pi \chi \gamma \delta} \epsilon^{\gamma \delta \alpha \beta} \left(\frac{a^2}{4} T^{\lambda}_{\alpha \beta} + \frac{a^2}{2} T^{\lambda}_{\alpha \beta} + \frac{ac}{2} T^{\tau}_{\alpha \tau \theta \beta} g^{\lambda \delta} \right) \]
\[+ \epsilon_{\pi \chi \gamma \delta} \epsilon^{\lambda \delta \alpha \beta} \left(\frac{a^2}{2} T^{\gamma}_{\alpha \beta} + a^2 T^{\gamma}_{\alpha \beta} + ac T^{\tau}_{\alpha \tau \theta \beta} g^{\gamma \delta} \right) \]
\[+ \epsilon_{\pi \chi \gamma \delta} \epsilon^{\gamma \theta \alpha \beta} \left(\frac{ac}{2} T^{\alpha \theta \beta} + ac T^{\alpha \theta \beta} + c^2 T^{\tau}_{\alpha \tau \theta \beta} g^{\gamma \delta} \right). \] (8)

The general formula for the products of Levi-Civita symbols reads

\[\epsilon_{i_1 \ldots i_k \ i_{k+1} \ldots i_n} \epsilon^{i_1 \ldots i_k \ j_{k+1} \ldots j_D} = (-1)^{(D-s)/2} k! (D-k)! \delta_{i_{k+1} \ldots i_n}^{j_{k+1} \ldots j_D} \] (9)

with \(D \) the spacetime dimension and \(s \) the signature of the metric (in present case \(D = 4 \) and \(s = 2 \)). Taking advantage of this fact, we get the following useful expressions

\[\epsilon_{\pi \chi \gamma \delta} \epsilon^{\gamma \delta \alpha \beta} = -2 (\delta^\alpha_\pi \delta^\beta_\chi - \delta^\beta_\pi \delta^\alpha_\chi), \] (10)
\[\epsilon_{\pi \chi \gamma \delta} \epsilon^{\lambda \delta \alpha \beta} = - \left(\delta^\lambda_\pi \delta^\alpha_\chi \delta^\beta_\gamma + \delta^\alpha_\pi \delta^\beta_\chi \delta^\gamma_\lambda + \delta^\beta_\pi \delta^\gamma_\chi \delta^\lambda_\alpha - \delta^\alpha_\pi \delta^\gamma_\chi \delta^\lambda_\beta - \delta^\beta_\pi \delta^\lambda_\chi \delta^\gamma_\alpha - \delta^\lambda_\pi \delta^\gamma_\chi \delta^\alpha_\beta \right), \] (11)
\[\epsilon_{\pi \chi \gamma \delta} \epsilon^{\gamma \theta \alpha \beta} = - \left(\delta^\theta_\pi \delta^\alpha_\chi \delta^\beta_\delta + \delta^\alpha_\pi \delta^\beta_\chi \delta^\delta_\gamma + \delta^\beta_\pi \delta^\delta_\chi \delta^\gamma_\alpha - \delta^\alpha_\pi \delta^\delta_\chi \delta^\gamma_\beta - \delta^\beta_\pi \delta^\gamma_\chi \delta^\delta_\alpha - \delta^\gamma_\pi \delta^\delta_\chi \delta^\alpha_\beta \right). \] (12)

it’s apparent that the spacetime dimension \(D \) will come into the final result from term \(\epsilon_{\pi \chi \gamma \delta} \epsilon^{\lambda \delta \alpha \beta} \cdot ac T^{\tau}_{\alpha \tau \theta \beta} g^{\gamma \delta} \).

Then, with (10)-(12), we can simplify (8) to

\[(\star \star T)^{\lambda \pi \chi}_\pi = -(2a^2 - ac)T^{\lambda \pi \chi}_\pi - (2a^2 + ac)T^{\lambda \pi \chi}_\pi \]
\[- [2a^2 + (D-3)ac] (T^{\tau}_{\pi \chi} \delta^\lambda_\pi - T^{\tau}_{\pi \chi} \delta^\lambda_\tau). \] (13)

By recalling the basic property of a Hodge dual operator as in (3), we get the following
constraint equations

\[
\begin{cases}
2a^2 - ac = 1, \\
2a^2 + ac = 0, \\
2a^2 + (D - 3)ac = 0.
\end{cases}
\]

(14)

In \(D = 3 + 1 \) case, the problem boils down to solving two equations as

\[
\begin{cases}
2a^2 - ac = 1, \\
2a^2 + ac = 0.
\end{cases}
\]

(15)

The solution can be found to be \(a = \frac{1}{2}, c = -1 \) \(^2\).

All in all, the generalized Hodge dual torsion we are looking for is

\[
(\star T)^{\lambda}_{\mu \nu} = h\epsilon_{\mu \nu \rho \sigma} \left(\frac{1}{4} T^{\lambda \rho \sigma} + \frac{1}{2} T^{\mu \lambda \sigma} - T^{\theta \rho \theta} g^{\lambda \sigma} \right),
\]

(16)

and a consistency check is that this definition can be used to reproduce the Lagrangian of teleparallel gravity.

It should be stressed that although one necessarily has \(D = 3 + 1 \) here, we retain the constant \(D \) in the above derivation to track that how the spacetime dimension comes into play. By closely examining the \(D = 2 + 1 \) case in the subsequent section, it will become clear that the main obstacle to a straightforward generalization of the above procedure could be precisely attributed to the nontrivial role of the spacetime dimension.

III. THE \(D = 2 + 1 \) CASE: A NAIVE APPROACH AND ITS PROBLEM

Our work grows out of an effort to study the properties of a generalized Hodge dual in the \(D = 2 + 1 \) case which we expatiate upon in this section. By analogy with the previous discussion, a generalized Hodge dual for torsion in \(D = 2 + 1 \) could be defined as

\[
(\star T)^{\lambda}_{\mu} = h\epsilon_{\mu \rho \sigma} \left(\frac{\alpha}{2} T^{\lambda \rho \sigma} + \alpha T^{\mu \lambda \sigma} + cT^{\theta \rho \theta} g^{\lambda \sigma} \right).
\]

(17)

\(^2\) \(a = -\frac{1}{2}, c = 1 \) should not be chosen as a solution since it’s not a generalization of the usual expression as that in \((\star F)^{A}_{\mu \nu} = \frac{1}{2} h\epsilon_{\mu \nu \rho \sigma} F^{A \rho \sigma}\).
As before, the relative factor in front of the first two terms is necessary to remove equivalent terms coming from the summation. By denoting \((\star T)\lambda\mu\) as \(B^\lambda\mu\), we have

\[
B^{\gamma\lambda} = \frac{1}{h} \epsilon^{\gamma\alpha\beta} \left(\frac{a}{2} T^\lambda_{\alpha\beta} + aT^\lambda_{\alpha\beta} + cT^\tau_{\alpha\tau} g^\lambda_{\beta} \right),
\]

(18)

\[
B^{\gamma\lambda} = \frac{1}{h} \epsilon^{\lambda\alpha\beta} \left(\frac{a}{2} T^\gamma_{\alpha\beta} + aT^\gamma_{\alpha\beta} + cT^\tau_{\alpha\tau} g^\gamma_{\beta} \right),
\]

(19)

\[
B^\theta\theta = \frac{1}{h} \epsilon^{\theta\alpha\beta} \left(\frac{a}{2} T^\theta_{\alpha\beta} + aT^\theta_{\alpha\beta} + cT^\tau_{\alpha\tau} g^\theta_{\beta} \right).
\]

(20)

On the other hand, we have

\[
(\star \star T)\lambda\pi\chi = (\star B)\lambda\pi\chi = h\epsilon_{\pi\chi\gamma}(aB^{\lambda\gamma} + aB^\gamma\lambda + cB^\theta\phi g^{\lambda\gamma}).
\]

(21)

Because of the absence of equivalent terms of the summation here, one has the same factors in front of the first two terms which is totally different from the case in \(D = 3 + 1\).

Inserting (18), (19) and (20) into (21), one can find that two successive operations of generalized Hodge dual lead to

\[
(\star \star T)^\lambda\pi\chi = (\star B)^\lambda\pi\chi = h\epsilon_{\pi\chi\gamma}(aB^{\lambda\gamma} + aB^\gamma\lambda + cB^\theta\phi g^{\lambda\gamma}).
\]

(22)

For the \(D = 2+1\) case here, we have \(D = 3, s = 1\), thus (2) implies that \((\star \star T)^\lambda_{\mu\nu} = -T^\lambda_{\mu\nu}\). Therefore, the constraint equations for the coefficients are given as

\[
\begin{align*}
2a^2 - ac &= 1, \\
2a^2 + ac &= 0, \\
2a^2 + (D - 3)ac &= 0.
\end{align*}
\]

(23)

This means that we have to solve the equation set

\[
\begin{align*}
2a^2 - ac &= 1, \\
2a^2 + ac &= 0, \\
2a^2 &= 0.
\end{align*}
\]

(24)
Since no solution could be found, we arrive at the conclusion that a naive implementation of the approach in [2] does not work for $D = 2 + 1$ case. In fact, generally the absence of meaningful solution to the constraint equation will always exist except in the special $D = 3 + 1$ case. However, as we shall show in the next section, a consistent generalized Hodge dual could indeed be given for the torsion tensor in general dimensions. The new definition will also be in accord with the standard Lagrangian of teleparallel gravity.

IV. GENERAL DIMENSIONS: TOWARDS A NEW DEFINITION

For the torsion tensor in general dimensions with Lorentzian signature, we start with the following definition of a generalized Hodge dual

$$(\ast T)^\lambda_{\alpha_1...\alpha_{D-2}} = \hbar \epsilon_{\alpha_1...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T^{\lambda\mu\nu} + a T^{\lambda\nu\mu} + c T^{\theta\mu\nu} g^\lambda_{\nu} \right).$$

(25)

It can be easily checked that this definition go back to (1) when the spacetime comes to the $D = 3 + 1$ case. Accordingly we have

$$(\ast T)^{\lambda_{\alpha_1...\alpha_{D-2}}} = \frac{1}{\hbar} \epsilon^{\alpha_1...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T_{\mu\nu}^{\lambda} + a T^{\lambda}_{\mu\nu} + c T^{\theta}_{\mu\nu} g^\lambda_{\nu} \right),$$

(26)

$$(\ast T)^{\alpha_1...\alpha_{D-2}} = \frac{1}{\hbar} \epsilon^{\lambda...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T_{\mu\nu}^{\alpha_1} + a T^{\alpha_1}_{\mu\nu} + c T^{\theta}_{\mu\nu} g^{\alpha_1}_{\nu} \right),$$

(27)

$$(\ast T)^{\alpha_1...\alpha_{D-2}} = \frac{1}{\hbar} \epsilon^{\alpha_1\theta\alpha_3...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T_{\mu\nu}^{\theta\alpha_1} + a T^{\theta}_{\mu\nu} + c T^{\rho}_{\mu\nu} g_{\rho\nu} \right).$$

(28)

Two successive operations of generalized Hodge dual lead to

$$\big(\ast \ast T\big)^{\lambda}_{\alpha_3...\alpha_{D-2}} = [\big(\ast T\big)]^{\lambda}_{\alpha_3...\alpha_{D-2}}$$

$$= \hbar \epsilon_{\alpha_3...\alpha_{D-2}...\alpha_{D-2}} \left(\big(T \big)^{\lambda_{\alpha_1...\alpha_{D-2}}} \cdot a \cdot \frac{1}{(D-2)!} + \big(T \big)^{\alpha_1...\alpha_{D-2}...\alpha_{D-2}} \cdot a \cdot \frac{1}{(D-3)!} \right)$$

$$+ \big(T \big)^{\alpha_1\theta\alpha_3...\alpha_{D-2}} g^{\alpha_3...\alpha_4} \cdot c \cdot \frac{1}{(D-3)!}$$

$$= \hbar \epsilon_{\alpha_3...\alpha_{D-2}...\alpha_{D-2}} \left[\frac{1}{\hbar} \epsilon^{\alpha_1...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T_{\mu\nu}^{\lambda} + a T^{\lambda}_{\mu\nu} + c T^{\theta}_{\mu\nu} g^\lambda_{\nu} \right) \right] \cdot a \cdot \frac{1}{(D-2)!}$$

$$+ \frac{1}{\hbar} \epsilon^{\lambda...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T_{\mu\nu}^{\alpha_1} + a T^{\alpha_1}_{\mu\nu} + c T^{\theta}_{\mu\nu} g_{\rho}^{\alpha_1} \right) \cdot a \cdot \frac{1}{(D-3)!}$$

$$+ \frac{1}{\hbar} \epsilon^{\alpha_1\theta\alpha_3...\alpha_{D-2}\mu\nu} \left(\frac{a}{2} T_{\mu\nu}^{\theta\alpha_1} + a T^{\theta}_{\mu\nu} + c T^{\rho}_{\mu\nu} g_{\rho\nu} \right) g^{\alpha_3...\alpha_4} \cdot c \cdot \frac{1}{(D-3)!}. \quad (29)$$

The coefficients $\frac{1}{(D-2)!}, \frac{1}{(D-3)!}$ are included here to remove the equivalent terms of the summation.
From the basic formula (2), we see that for any 2-form in any dimensional Lorentzian manifold, two operations of Hodge dual always result in minus the 2-form, i.e. $(\star \star T)_{\mu \nu} = -T_{\mu \nu}$. Through a similar manipulation as in the previous sections, we arrive at:

\[
\begin{align*}
2a^2 - ac &= 1, \\
2a^2 + ac &= 0, \\
2a^2 + (D - 3)ac &= 0.
\end{align*}
\] (30)

This equation set is apparently spacetime dimension dependent, and generally has no solution unless in the special $D = 3 + 1$ case, thus the original definition (1) could not be directly extended to a spacetime in general dimensions. Nevertheless, it’s clear that, as a gauge theory, teleparallel gravity certainly deserve a Hodge dual for its gauge field strength, i.e. the torsion tensor, as always happens in usual internal gauge theories. Thus, that no solution exists for the constraint equation (30) in general spacetime dimensions does not mean no-go to give a generalized Hodge dual for the torsion tensor, but imply that a new definition of the generalized Hodge dual is needed. Furthermore, this new generalized Hodge dual for torsion tensor in teleparallel gravity must come back to $D = 3 + 1$ case exactly.

To see what the new generalized Hodge dual would be, let’s first notice the fact that the action of teleparallel gravity described in language of differential form involves only one Hodge dual operation of the field strength. Meanwhile, its Lagrangian is known to assume the following form which is independent of the spacetime dimension

\[
L = h \left(\frac{1}{4} T_{\lambda \mu \nu} T^{\lambda \mu \nu} + \frac{1}{2} T_{\lambda \mu \nu} T^{\mu \lambda \nu} - T^{\theta \rho}_{\mu \theta} T^{\rho \mu}_{\rho} \right).
\] (31)

This is actually a constraint to ensure its equivalence to general relativity, and virtually determines the coefficients in (25) which are necessarily the same as the $D = 3 + 1$ case: $a = \frac{1}{2}, c = -1$. In other words, the first Hodge dual operation on torsion tensor in teleparallel gravity must be defined as

\[
(\star T)^{\lambda}_{\alpha_1 \ldots \alpha_D \ldots -2} = h \epsilon_{\alpha_1 \ldots \alpha_D \ldots -2 \mu} \left(\frac{1}{4} T^{\lambda \mu \nu} + \frac{1}{2} T^{\mu \lambda \nu} - T^{\theta \rho}_{\mu \theta} g^{\rho \nu} \right).
\] (32)

Let’s now recall another constraint imposed by mathematical consistency that two successive operations of generalized Hodge dual should map torsion tensor back to itself, i.e. the key property (2). In order to satisfy this condition and insist on (32) at the same time, the second operation of generalized Hodge dual must be defined appropriately. When this is
trivially realized in $D = 3 + 1$, i.e., define the second Hodge dual with the same parameters as that in the first Hodge dual, its realization in spacetime with general dimensions is not so straightforward, otherwise pathologies will appear as that have been shown in \(^{(24)}\) and \(^{(30)}\).

We are now ready to get the second operation of generalized Hodge dual. It would be convenient to introduce three new coefficients: A, B and C. If we reserve the original coefficients a, c for the moment, two operations of the Hodge dual lead to the following expression

\[
(\star \star T)^\lambda_{\alpha\beta} = \left[(\star T)^{\lambda\alpha_1...\alpha_{D-2}}_\alpha \cdot a \cdot \frac{1}{(D - 2)!} \cdot A + (\star T)^{\alpha_1\lambda\alpha_2...\alpha_{D-2}}_\mu \cdot a \cdot \frac{1}{(D - 3)!} \cdot B \right. \\
+ 1 \cdot h^{\alpha_1...\alpha_{D-2}\mu\nu} \left(\frac{1}{2} a T^\lambda_{\mu\nu} + a T^\lambda_{\mu\nu} + c T^\lambda_{\mu\nu} \right) \cdot a \cdot \frac{1}{(D - 2)!} \cdot C \\
+ \left. 1 \cdot h^{\alpha_1\beta\alpha_2...\alpha_{D-2}\mu\nu} \left(\frac{1}{2} a T^\alpha_{\mu\nu} + a T^\alpha_{\mu\nu} + c T^\alpha_{\mu\nu} + c T^\alpha_{\mu\nu} \right) \cdot c \cdot \frac{1}{(D - 3)!} \cdot C \right].
\]

(33)

After a similar calculation as before, we get

\[
\begin{cases}
 a^2(A + B) - ac \cdot C = 1, \\
 a^2(A + B) + ac \cdot C = 0, \\
 -ac \cdot A + [(D - 2)ac + 2a^2] \cdot B = 0.
\end{cases}
\]

(34)

It is reassuring that a solution could indeed be found once we insert the values of a, c. Concretely the results are

\[
\begin{cases}
 A = \frac{2(D - 3)}{D - 2}, \\
 B = \frac{2}{D - 2}, \\
 C = 1.
\end{cases}
\]

(35)

To sum up, in order to be compatible with constraint from physical requirement that teleparallel gravity is equivalent to general relativity, and be consistent with mathematical requirement that two successive operations of generalized Hodge dual map the torsion tensor back to itself, both \(^{(2)}\) and \(^{(32)}\) should be taken seriously when one try to construct the
generalized Hodge dual for torsion tensor in teleparallel gravity. Under this consideration, we have shown that the generalized Hodge dual must be defined twofold, the first operation of generalized Hodge dual is defined in spacetime dimension independent way as

$$(\ast T)_{\alpha_1...\alpha_{D-2}} = h\epsilon_{\alpha_1...\alpha_{D-2}\mu\nu}(\frac{1}{4}T^{\lambda\mu\nu} + \frac{1}{2}T^{\mu\lambda\nu} - T^{\theta\mu\nu})$$

while the second operation of generalized Hodge dual must defined in spacetime dimension dependent way as

$$(\ast \ast T)_{\alpha_1\beta} = [\ast(\ast T)]_{\alpha_1\beta}$$

$$= h\epsilon_{\alpha_1\alpha_2...\alpha_{D-2}}[\frac{1}{(D-2)^2(D-4)!} \cdot (\ast T)_{\lambda_1...\lambda_{D-2}} + \frac{1}{(D-2)!} \cdot (\ast T)_{\alpha_1\lambda_2...\alpha_{D-2}} - \frac{1}{(D-3)!} \cdot (\ast T)_\theta^{\alpha_1\beta_3...\alpha_{D-2}}g^{\lambda_3\beta_2}]$$

Note that for a general Euclidean spacetime, each of the basic formulas (2) and (9) involves an extra sign, so we will essentially get the same results as the Lorentzian case.

V. CONCLUSION

As a gauge theory for the translation group, teleparallel gravity deserves a Hodge dual for its gauge field strength, the torsion tensor, as that always happens in usual internal gauge theories. However, that the internal and external indices in this theory can be transformed into each other, which leads to appearance of new terms in the possible Hodge dual, makes introducing a generalized Hodge dual operator a nontrivial work.

In the context of four dimensional teleparallel gravity, such a definition for the torsion tensor has been proposed in [2]. Nevertheless, it has been explicitly showed that a naive implementation of their approach runs into trouble in general spacetime dimensions, see (24) and (30). Since the Lagrangian of teleparallel gravity takes a form which is independent of spacetime dimension, a key property of any consistent Hodge dual demands a new definition for the second operation of a generalized Hodge dual in general dimensions. This possible generalization for the torsion tensor has finally been obtained, see (36) and (37).

One should notice that, the form of generalized Hodge dual present here is model dependent. If we take New General Relativity [4], a generalized teleparallel model with three arbitrary parameters that $\mathcal{L} = h\left(a_1 T_{\lambda\mu\nu} T^{\lambda\mu\nu} + a_2 T_{\lambda\mu\nu} T^{\mu\lambda\nu} + a_3 T^{\theta\mu\nu} g^{\lambda\nu} \right)$, instead of teleparallel gravity considered in this work, one would apparently confront new constraint equation
instead of (31), and get a different definition of the generalized Hodge dual for torsion tensor. Nevertheless, despite with different theory taken into consideration, the approach to get the consistent generalized Hodge dual is the same.

For further study, the generalized Hodge dual for Riemann tensor in general dimensions may be investigated along the same line (which deserves a separate treatment). Furthermore, in view of the discussion in [3], the relevant self dual teleparallel gravity is worth of further research. Thirdly, it may be possible to use the generalized Hodge dual to reproduce the Lagrangian of conformally invariant teleparallel gravity [5–8]. Finally, our work may have interesting connections with some other previous studies in [9–12].

[1] R. Aldrovandi and J. G. Pereira, “Teleparallel Gravity : An Introduction,” Springer, Dordrecht (2013).
[2] T. G. Lucas and J. G. Pereira, “Hodge Dual for Soldered Bundles,” J. Phys. A 42 (2009) 035402 [arXiv:0811.2066 [gr-qc]].
[3] V. C. de Andrade, A. L. Barbosa and J. G. Pereira, “Gravitation and duality symmetry,” Int. J. Mod. Phys. D 14 (2005) 1635 [gr-qc/0501037].
[4] K. Hayashi and T. Shirafuji, “New General Relativity,” Phys. Rev. D 19, 3524 (1979) [Addendum-ibid. D 24, 3312 (1982)].
[5] J. W. Maluf and F. F. Faria, “Conformally invariant teleparallel theories of gravity,” Phys. Rev. D 85 (2012) 027502 [arXiv:1110.3095 [gr-qc]].
[6] Z. Haghani, T. Harko, H. R. Sepangi and S. Shahidi, “Weyl-Cartan-Weitzenboeck gravity as a generalization of teleparallel gravity,” JCAP 1210 (2012) 061 [arXiv:1202.1879 [gr-qc]].
[7] J. B. Formiga, J. B. Fonseca-Neto and C. Romero, “An Extension of Teleparallelism and the Geometrization of the Electromagnetic Field,” Phys. Rev. D 87 (2013) 6, 067702 [arXiv:1302.0900 [gr-qc]].
[8] K. Bamba, S. D. Odintsov and D. Sáez-Gómez, “Conformal symmetry and accelerating cosmology in teleparallel gravity,” Phys. Rev. D 88, 084042 (2013) [arXiv:1308.5789 [gr-qc]].
[9] Y. N. Obukhov and J. G. Pereira, “Metric affine approach to teleparallel gravity,” Phys. Rev. D 67 (2003) 044016 [gr-qc/0212080].
[10] R. da Rocha and W. A. Rodrigues, Jr, “Rigorous Formulation of Duality in Gravitational
Theories,” J. Phys. A 43 (2010) 205206 [arXiv:0910.2021 [math-ph]].

[11] G. Kofinas and E. N. Saridakis, “Teleparallel equivalent of Gauss-Bonnet gravity and its modifications,” arXiv:1404.2249 [gr-qc].

[12] C. -Q. Geng, L. -W. Luo and H. -H. Tseng, “Teleparallel Gravity in Five Dimensional Theories,” arXiv:1403.3161 [hep-th].