MIXED RESOLUTIONS AND SIMPLICIAL SECTIONS

AMNON YEKUTIELI

Abstract. We introduce the notions of mixed resolutions and simplicial sections, and prove a theorem relating them. This result is used (in another paper) to study deformation quantization in algebraic geometry.

0. Introduction

Let K be a field of characteristic 0. In this paper we present several technical results about the geometry of K-schemes. These results were discovered in the course of work on deformation quantization in algebraic geometry, and they play a crucial role in [Ye3]. This role will be explained at the end of the introduction. The idea behind the constructions in this paper can be traced back to old work of Bott [Bo, HY].

Let $\pi: Z \to X$ be a morphism of K-schemes, and let $U = \{ U_{(0)}, \ldots, U_{(m)} \}$ be an open covering of X. A simplicial section σ of π, based on the covering U, consists of a family of morphisms $\sigma_i: \Delta^q_K \times U_i \to Z$, where $i = (i_0, \ldots, i_q)$ is a multi-index; Δ^q_K is the q-dimensional geometric simplex; and $U_i := U_{(i_0)} \cap \cdots \cap U_{(i_q)}$. The morphisms σ_i are required to be compatible with π and to satisfy simplicial relations. See Definition 5.1 for details. An important example of a simplicial section is mentioned at the end of the introduction.

Another notion we introduce is that of mixed resolution. Here we assume the K-scheme X is smooth and separated, and each of the open sets $U_{(i)}$ in the covering U is affine. Given a quasi-coherent O_X-module M we define its mixed resolution $\text{Mix}_U(M)$. This is a complex of sheaves on X, concentrated in non-negative degrees. As the name suggests, this resolution mixes two distinct types of resolutions: a de Rham type resolution which is related to the sheaf P_X of principal parts of X and its Grothendieck connection, and a simplicial-Cech type resolution which is related to the covering U. The precise definition is too complicated to state here – see Section 4.

Let $C^+(\text{QCoh} O_X)$ denote the abelian category of bounded below complexes of quasi-coherent O_X-modules. For any $M \in C^+(\text{QCoh} O_X)$ the mixed resolution $\text{Mix}_U(M)$ is defined by totalizing the double complex $\bigoplus_{p,q} \text{Mix}^q_U(M^p)$. The derived category of K-modules is denoted by $D(\text{Mod} K)$.

Theorem 0.1. Let X be a smooth separated K-scheme, and let $U = \{ U_{(0)}, \ldots, U_{(m)} \}$ be an affine open covering of X.

Date: 8 December 2005.
Key words and phrases. Simplicial set, sheaf, differentials, resolutions.
Mathematics Subject Classification 2000. Primary: 14F10; Secondary: 18G30, 16E45, 18G10.
This work was partially supported by the US - Israel Binational Science Foundation.
(1) There is a functorial quasi-isomorphism \(\mathcal{M} \to \text{Mix}_U(\mathcal{M}) \) for \(\mathcal{M} \in \text{C}^+(\text{QCoh}\mathcal{O}_X) \).

(2) Given \(\mathcal{M} \in \text{C}^+(\text{QCoh}\mathcal{O}_X) \), the canonical morphism \(\Gamma(X, \text{Mix}_U(\mathcal{M})) \to \text{R}\Gamma(X, \text{Mix}_U(\mathcal{M})) \) in \(\text{D}(\text{Mod} K) \) is an isomorphism.

(3) The quasi-isomorphism in part (1) induces a functorial isomorphism \(\Gamma(X, \text{Mix}_U(\mathcal{M})) \cong \text{R}\Gamma(X, \mathcal{M}) \) in \(\text{D}(\text{Mod} K) \).

This is repeated as Theorem 4.15 in the body of the paper. Note that part (3) is a formal consequence of parts (1) and (2).

A useful corollary of the theorem is the following (see Corollary 4.16). Suppose \(\mathcal{M} \) and \(\mathcal{N} \) are two complexes in \(\text{C}^+(\text{QCoh}\mathcal{O}_X) \), and \(\phi : \text{Mix}_U(\mathcal{M}) \to \text{Mix}_U(\mathcal{N}) \) is a \(K \)-linear quasi-isomorphism. Then

\[
\Gamma(X, \phi) : \Gamma(X, \text{Mix}_U(\mathcal{M})) \to \Gamma(X, \text{Mix}_U(\mathcal{N}))
\]

is a quasi-isomorphism.

Here is the connection between simplicial sections and mixed resolutions.

Theorem 0.2. Let \(X \) be a smooth separated \(K \)-scheme, let \(\pi : Z \to X \) be a morphism of schemes, and let \(U \) be an affine open covering of \(X \). Suppose \(\sigma \) is a simplicial section of \(\pi \) based on \(U \). Let \(\mathcal{M}_1, \ldots, \mathcal{M}_r, \mathcal{N} \) be quasi-coherent \(\mathcal{O}_X \)-modules, and let

\[
\phi : \prod_{i=1}^r \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}_i) \to \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{N})
\]

be a continuous \(\mathcal{O}_Z \)-multilinear sheaf morphism on \(Z \). Then there is an induced \(K \)-multilinear sheaf morphism

\[
\sigma^*(\phi) : \prod_{i=1}^r \text{Mix}_U(\mathcal{M}_i) \to \text{Mix}_U(\mathcal{N})
\]

on \(X \).

In the theorem, the continuity and the complete pullback \(\pi^* \) refer to the dir-inv structures on these sheaves, which are explained in Section 1. A more detailed statement is Theorem 4.22 in the body of the paper.

Let us explain, in vague terms, how Theorem 0.2 or rather Theorem 5.2 is used in the paper [Ye3]. Let \(X \) be a smooth separated \(n \)-dimensional \(K \)-scheme. As we know from the work of Kontsevich [Ko], there are two important sheaves of DG Lie algebras on \(X \), namely the sheaf \(\mathcal{T}_{\text{poly}, X} \) of poly derivations, and the sheaf \(\mathcal{D}_{\text{poly}, X} \) of poly differential operators. Suppose \(U \) is some affine open covering of \(X \). The inclusions \(\mathcal{T}_{\text{poly}, X} \to \text{Mix}_U(\mathcal{T}_{\text{poly}, X}) \) and \(\mathcal{D}_{\text{poly}, X} \to \text{Mix}_U(\mathcal{D}_{\text{poly}, X}) \) are then quasi-isomorphisms of sheaves of DG Lie algebras (cf. Theorem 4.1). The goal is to find an \(L_\infty \) quasi-isomorphism

\[
\Psi : \text{Mix}_U(\mathcal{T}_{\text{poly}, X}) \to \text{Mix}_U(\mathcal{D}_{\text{poly}, X})
\]

between these sheaves of DG Lie algebras. Having such an \(L_\infty \) quasi-isomorphism pretty much implies the solution of the deformation quantization problem for \(X \).

Let \(\text{Coor} X \) denote the coordinate bundle of \(X \). This is an infinite dimensional bundle over \(X \), endowed with an action of the group \(\text{GL}_n(K) \). Let \(\text{LCC} X \) be the quotient bundle \(\text{Coor} X / \text{GL}_n(K) \). In [Ye4] we proved that if the covering \(U \) is fine
enough (the condition is that each open set \(U_{i,j} \) admits an étale morphism to \(\mathbb{A}^n_k \)), then the projection \(\pi : \text{LCC} X \to X \) admits a simplicial section \(\sigma \).

Now the universal deformation formula of Kontsevich [Ko] gives rise to a continuous \(L_\infty \) quasi-isomorphism
\[
\mathcal{U} : \hat{\pi}^\ast (\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{T}_{\text{poly},X}) \to \hat{\pi}^\ast (\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{D}_{\text{poly},X})
\]
on \text{LCC} X. This means that there is a sequence of continuous \(\mathcal{O}_{\text{LCC} X} \)-multilinear sheaf morphisms
\[
\mathcal{U}_r : \prod^r \hat{\pi}^\ast (\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{T}_{\text{poly},X}) \to \hat{\pi}^\ast (\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{D}_{\text{poly},X}),
\]
r \geq 1, satisfying very complicated identities. Using Theorem 5.2 we obtain a sequence of multilinear sheaf morphisms
\[
\sigma^\ast (\mathcal{U}_r) : \prod^r \text{Mix}_{\mathcal{U}_r} (\mathcal{T}_{\text{poly},X}) \to \text{Mix}_{\mathcal{U}_r} (\mathcal{D}_{\text{poly},X})
\]
on \(X \). After twisting these morphisms suitably (this is needed due to the presence of the Grothendieck connection; cf. [Ye2]) we obtain the desired \(L_\infty \) quasi-isomorphism \(\Psi \).

We believe that mixed resolutions, and the results of this paper, shall have additional applications in algebraic geometry (e.g. algebro-geometric versions of results on index theorems in differential geometry, cf. [NT]; or a proof of Kontsevich’s famous yet unproved claim on Hochschild cohomology of a scheme [Ko Claim 8.4]).

1. Review of Dir-Inv Modules

We begin the paper with a review of the concept of dir-inv structure, which was introduced in [Ye2]. A dir-inv structure is a generalization of adic topology.

Let \(C \) be a commutative ring. We denote by \(\text{Mod} C \) the category of \(C \)-modules.

Definition 1.1.

1. Let \(M \in \text{Mod} C \). An inv module structure on \(M \) is an inverse system \(\{F^i M\}_{i \in \mathbb{N}} \) of \(C \)-submodules of \(M \). The pair \((M, \{F^i M\}_{i \in \mathbb{N}}) \) is called an inv \(C \)-module.

2. Let \((M, \{F^i M\}_{i \in \mathbb{N}}) \) and \((N, \{F^i N\}_{i \in \mathbb{N}}) \) be two inv \(C \)-modules. A function \(\phi : M \to N \) is said to be continuous if for every \(i \in \mathbb{N} \) there exists \(i' \in \mathbb{N} \) such that \(\phi(F^{i'} M) \subset F^i N \).

3. Define \(\text{Inv Mod} C \) to be the category whose objects are the inv \(C \)-modules, and whose morphisms are the continuous \(C \)-linear homomorphisms.

There is a full and faithful embedding of categories \(\text{Mod} C \hookrightarrow \text{Inv Mod} C \), \(M \mapsto (M, \{\ldots, 0, 0\}) \).

Recall that a directed set is a partially ordered set \(J \) with the property that for any \(j_1, j_2 \in J \) there exists \(j_3 \in J \) such that \(j_1, j_2 \leq j_3 \).

Definition 1.2.

1. Let \(M \in \text{Mod} C \). A dir-inv module structure on \(M \) is a direct system \(\{F_j M\}_{j \in J} \) of \(C \)-submodules of \(M \), indexed by a nonempty directed set \(J \), together with an inv module structure on each \(F_j M \), such that for every \(j_1 \leq j_2 \) the inclusion \(F_{j_1} M \hookrightarrow F_{j_2} M \) is continuous. The pair \((M, \{F_j M\}_{j \in J}) \) is called a dir-inv \(C \)-module.

2. Let \((M, \{F_j M\}_{j \in J}) \) and \((N, \{F_k N\}_{k \in K}) \) be two dir-inv \(C \)-modules. A function \(\phi : M \to N \) is said to be continuous if for every \(j \in J \) there exists \(k \in K \) such that \(\phi(F_j M) \subset F_k N \), and \(\phi : F_j M \to F_k N \) is a continuous homomorphism between these two inv \(C \)-modules.
(3) Define $\text{Dir Inv Mod } C$ to be the category whose objects are the dir-inv C-modules, and whose morphisms are the continuous C-linear homomorphisms.

An inv C-module M can be endowed with a dir-inv module structure $\{F_j M\}_{j \in J}$, where $J := \{0\}$ and $F_0 M := M$. Thus we get a full and faithful embedding $\text{Inv Mod } C \rightrightarrows \text{Dir Inv Mod } C$.

Inv modules and dir-inv modules come in a few “flavors”: trivial, discrete and complete. A discrete inv module is one which is isomorphic, in $\text{Inv Mod } C$, to an object of $\text{Mod } C$ (via the canonical embedding above). A complete inv module is an inv module $(M, \{F^i M\}_{i \in \mathbb{N}})$ such that the canonical map $M \to \varprojlim_{i \to \infty} F^i M$ is bijective. A discrete (resp. complete) dir-inv module is one which is isomorphic, in $\text{Dir Inv Mod } C$, to a dir-inv module $(M, \{F_j M\}_{j \in J})$, where all the inv modules $F_j M$ are discrete (resp. complete), and the canonical map $\varprojlim_j F_j M \to M$ in $\text{Mod } C$ is bijective. A trivial dir-inv module is one which is isomorphic to an object of $\text{Mod } C$. Discrete dir-inv modules are complete, but there are also other complete modules, as the next example shows.

Example 1.3. Assume C is noetherian and c-adically complete for some ideal c. Let M be a finitely generated C-module, and define $F^i M := c^{i+1} M$. Then $\{F^i M\}_{i \in \mathbb{N}}$ is called the c-adic inv structure, and of course $(M, \{F^i M\}_{i \in \mathbb{N}})$ is a complete inv module. Next consider an arbitrary C-module M. We take $\{F_j M\}_{j \in J}$ to be the collection of finitely generated C-submodules of M. This dir-inv module structure on M is called the c-adic dir-inv structure. Again $(M, \{F_j M\}_{j \in J})$ is a complete dir-inv C-module. Note that a finitely generated C-module M is discrete as inv module iff $c^i M = 0$ for $i \gg 0$; and a C-module is discrete as dir-inv module iff it is a direct limit of discrete finitely generated modules.

The category $\text{Dir Inv Mod } C$ is additive. Given a collection $\{M_k\}_{k \in K}$ of dir-inv modules, the direct sum $\bigoplus_{k \in K} M_k$ has a structure of dir-inv module, making it into the coproduct of $\{M_k\}_{k \in K}$ in the category $\text{Dir Inv Mod } C$. Note that if the index set K is finite and each M_k is a nonzero discrete inv module, then $\bigoplus_{k \in K} M_k$ is a discrete dir-inv module which is not trivial. The tensor product $M \otimes_C N$ of two dir-inv modules is again a dir-inv module. There is a completion functor $M \mapsto \hat{M}$. (Warning: if M is complete then $\hat{M} = M$, but it is not known if \hat{M} is complete for arbitrary M.) The completed tensor product is $M \hat{\otimes}_C N := M \hat{\otimes}_C N$. Completion commutes with direct sums: if $M \cong \bigoplus_{k \in K} M_k$ then $\hat{M} \cong \bigoplus_{k \in K} \hat{M}_k$. See [Y22] for full details.

A graded dir-inv module (or graded object in $\text{Dir Inv Mod } C$) is a direct sum $M = \bigoplus_{k \in \mathbb{Z}} M_k$, where each M_k is a dir-inv module. A DG algebra in $\text{Dir Inv Mod } C$ is a graded dir-inv module $A = \bigoplus_{k \in \mathbb{Z}} A^k$, together with continuous C-(bi)linear functions $\mu : A \times A \to A$ and $d : A \to A$, which make A into a DG C-algebra. If A is a super-commutative associative unital DG algebra in $\text{Dir Inv Mod } C$, and \mathfrak{g} is a DG Lie algebra in $\text{Dir Inv Mod } C$, then $A \hat{\otimes}_C \mathfrak{g}$ is a DG Lie Algebra in $\text{Dir Inv Mod } C$.

Let A be a super-commutative associative unital DG algebra in $\text{Dir Inv Mod } C$. A DG A-module in $\text{Dir Inv Mod } C$ is a graded object M in $\text{Dir Inv Mod } C$, together with continuous C-(bi)linear functions $\mu : A \times M \to M$ and $d : M \to M$, which make M into a DG A-module in the usual sense. A DG A-module Lie algebra in $\text{Dir Inv Mod } C$ is a DG Lie algebra \mathfrak{g} in $\text{Dir Inv Mod } C$, together with a continuous C-bilinear function $\mu : A \times \mathfrak{g} \to \mathfrak{g}$, such that such that \mathfrak{g} becomes a DG A-module,
and
\[[a_1\gamma_1, a_2\gamma_2] = (-1)^{i_2j_2} a_1a_2 [\gamma_1, \gamma_2] \]
for all \(a_k \in A_{i_k} \) and \(\gamma_k \in g_{i_k} \).

All the constructions above can be geometrized. Let \((Y, \mathcal{O})\) be a commutative ringed space over \(K\), i.e. \(Y\) is a topological space, and \(\mathcal{O}\) is a sheaf of commutative \(K\)-algebras on \(Y\). We denote by \(\text{Mod}\mathcal{O}\) the category of \(\mathcal{O}\)-modules on \(Y\).

Example 1.4. Geometrizing Example 1.3, let \(X\) be a noetherian formal scheme, with defining ideal \(I\). Then any coherent \(O_X\)-module \(M\) is an inv \(O_X\)-module, with system of submodules \(\{I^{i+1}M\}_{i\in\mathbb{N}}\), and \(M \cong \hat{M}\); cf. [EGA I]. We call an \(O_X\)-module dir-coherent if it is the direct limit of coherent \(O_X\)-modules. Any dir-coherent module is quasi-coherent, but it is not known if the converse is true. At any rate, a dir-coherent \(O_X\)-module \(M\) is a dir-inv \(O_X\)-module, where we take \(\{F_jM\}_{j\in J}\) to be the collection of coherent submodules of \(M\). Any dir-coherent \(O_X\)-module is then a complete dir-inv module. This dir-inv module structure on \(M\) is called the \(I\)-adic dir-inv structure. Note that a coherent \(O_X\)-module \(M\) is discrete as inv module iff \(I^iM = 0\) for \(i \gg 0\); and a dir-coherent \(O_X\)-module is discrete as dir-inv module iff it is a direct limit of discrete coherent modules.

If \(f : (Y', \mathcal{O}') \to (Y, \mathcal{O})\) is a morphism of ringed spaces and \(M \in \text{Dir Inv Mod} \mathcal{O}\), then there is an obvious structure of dir-inv \(\mathcal{O}'\)-module on \(f^*M\), and we define \(f^*M := \hat{f}^*\hat{M}\). If \(M\) is a graded object in \(\text{Dir Inv Mod} \mathcal{O}\), then the inverse images \(f^{-1}\mathcal{O}\) and \(f^{-1}\mathcal{O}'\) are graded objects in \(\text{Dir Inv Mod} \mathcal{O}'\). If \(\mathcal{G}\) is a sheaf of topological \(R\)-modules, then \(f^{-1}\mathcal{G}\) is a sheaf of topological \(f^{-1}R\)-modules.

Example 1.5. Let \((Y, \mathcal{O})\) be a ringed space and \(V \subset Y\) an open set. For a dir-inv \(\mathcal{O}\)-module \(M\) there is an obvious way to make \(\Gamma(V, M)\) a dir-inv \(\mathcal{O}\)-module. If \(M\) is a complete inv \(\mathcal{O}\)-module then \(\Gamma(V, M)\) is a complete inv \(\mathcal{O}\)-module. If \(V\) is quasi-compact and \(M\) is a complete dir-inv \(\mathcal{O}\)-module, then \(\Gamma(V, M)\) is a complete dir-inv \(\Gamma(V, \mathcal{O})\)-module.

2. Complete Thom-Sullivan Cochains

From here on in \(K\) is a field of characteristic 0. Let us begin with some abstract notions about cosimplicial modules and their normalizations, following [HS] and [HY]. We use the notation \(\text{Mod}K\) and \(\text{DGMod}K\) for the categories of \(K\)-modules and DG (differential graded) \(K\)-modules respectively. Let \(\Delta\) denote the category with objects the ordered sets \([q] := \{0, 1, \ldots, q\}\), \(q \in \mathbb{N}\). The morphisms \([p] \to [q]\) are the order preserving functions, and we write \(\Delta_p^q := \text{Hom}_\Delta([p], [q])\). The \(i\)-th co-face map \(\partial^i : [p] \to [p+1]\) is the injective function that does not take the value \(i\); and the \(i\)-th co-degeneracy map \(s^i : [p] \to [p - 1]\) is the surjective function that takes the value \(i\) twice. All morphisms in \(\Delta\) are compositions of various \(\partial^i\) and \(s^i\).

An element of \(\Delta_p^q\) may be thought of as a sequence \(i = (i_0, \ldots, i_p)\) of integers with \(0 \leq i_0 \leq \cdots \leq i_p \leq q\). Given \(i \in \Delta_p^m, j \in \Delta_p^m\), and \(\alpha \in \Delta_p^q\), we sometimes write \(\alpha(i) := i \circ \alpha \in \Delta_p^m\) and \(\alpha*(j) := \alpha \circ j \in \Delta_p^q\).

Let \(C\) be some category. A cosimplicial object in \(C\) is a functor \(C : \Delta \to C\). We shall usually refer to the cosimplicial object as \(C = \{C^p\}_{p\in\mathbb{N}}\), and for any \(\alpha \in \Delta_p^q\),
the corresponding morphism in C will be denoted by $\alpha^*: C^p \to C^q$. A simplicial object in C is a functor $C: \Delta \op \to C$. The notation for a simplicial object will be $C = \{C_p\}_{p \in \mathbb{N}}$ and $\alpha^*: C_q \to C_p$.

Suppose $M = \{M^q\}_{q \in \mathbb{N}}$ is a cosimplicial K-module. The standard normalization of M is the DG module $N M$ defined as follows: $N^q M := \bigcap_{i=0}^{q-1} \text{Ker}(s^i: M^q \to M^{q-1})$. The differential is $\partial := \sum_{i=0}^{q-1} (-1)^i \partial^i: N^q M \to N^{q+1} M$. We get a functor $N: \Delta \text{Mod } K \to \text{DGMod } K$.

For any q let Δ^q_C be the geometric q-dimensional simplex $\Delta^q_C := \text{Spec } K[t_0, \ldots, t_q]/(t_0 + \cdots + t_q - 1)$.

The i-th vertex of Δ^q_C is the K-rational point x such that $t_i(x) = 1$ and $t_j(x) = 0$ for all $j \neq i$. We identify the vertices of Δ^q_C with the ordered set $[q] = \{0, 1, \ldots, q\}$.

For any $\alpha: [p] \to [q]$ in Δ there is a unique linear morphism $\alpha: \Delta^q_C \to \Delta^p_C$ extending it, and in this way $\{\Delta^q_C\}_{q \in \mathbb{N}}$ is a cosimplicial scheme.

For a K-scheme X we write $\Omega^p(X) := \Gamma(X, \Omega^p_{X/K})$. Taking $X := \Delta^q_C$ we have a super-commutative associative unital DG K-algebra $\Omega(\Delta^q_C) = \bigoplus_{p \in \mathbb{N}} \Omega^p(\Delta^q_C)$, that is generated as K-algebra by the elements $t_0, \ldots, t_q, dt_0, \ldots, dt_q$. The collection $\{\Omega(\Delta^q_C)\}_{q \in \mathbb{N}}$ is a simplicial DG algebra, namely a functor from $\Delta \op$ to the category of DG K-algebras.

In [HY] we made use of the Thom-Sullivan normalization $\hat{N} M$ of a cosimplicial K-module M. For some applications (specifically [Ye3]) a complete version of this construction is needed. Recall that for $M, N \in \text{Dir Inv Mod } K$, we can define the complete tensor product $N \hat{\otimes} M$. The K-modules $\Omega^p(\Delta^q_C)$ are always considered as discrete inv modules, so $\Omega(\Delta^q_C)$ is a discrete dir-inv DG K-algebra.

Definition 2.1. Suppose $M = \{M^q\}_{q \in \mathbb{N}}$ is a cosimplicial dir-inv K-module, namely each $M^q \in \text{Dir Inv Mod } K$, and the morphisms $\alpha^*: M^p \to M^q$, for $\alpha \in \Delta^q_C$, are continuous K-linear homomorphisms. Let

$$\hat{N}^q M = \prod_{l=0}^{\infty} \left(\Omega^q(\Delta^l_C) \hat{\otimes} M^l \right)$$

be the submodule consisting of all sequences (u_0, u_1, \ldots), with $u_l \in \Omega^q(\Delta^l_C) \hat{\otimes} M^l$, such that

$$(1 \otimes \alpha^*)(u_k) = (\alpha_\ast \otimes 1)(u_l) \in \Omega^q(\Delta^l_C) \hat{\otimes} M^l$$

for all $k, l \in \mathbb{N}$ and all $\alpha \in \Delta^l_C$. Define a coboundary operator $\partial: \hat{N}^q M \to \hat{N}^{q+1} M$ using the exterior derivative $d: \Omega^q(\Delta^l_C) \to \Omega^{q+1}(\Delta^l_C)$. The resulting DG K-module $(\hat{N} M, \partial)$ is called the complete Thom-Sullivan normalization of M.

The K-module $\hat{N} M = \bigoplus_{q \in \mathbb{N}} \hat{N}^q M$ is viewed as an abstract module. We obtain a functor

$$\hat{N}: \Delta \text{ Dir Inv Mod } K \to \text{DGMod } K.$$

Remark 2.4. In case each M^l is a discrete dir-inv module one has $\Omega^q(\Delta^l_C) \hat{\otimes} M^l = \Omega^q(\Delta^l_C) \otimes M^l$, and therefore $\hat{N} M = \hat{N} M$.

The standard normalization $N M$ also makes sense here, via the forgetful functor $\Delta \text{ Dir Inv Mod } K \to \Delta \text{ Mod } K$. The two normalizations \hat{N} and N are related as follows. Let $\int_{\Delta^l}: \Omega(\Delta^l_C) \to K$ be the K-linear map of degree $-l$ defined by
integration on the compact real l-dimensional simplex, namely $\int_{\Delta^l} \frac{dt_1 \wedge \cdots \wedge dt_l}{t_l} = \frac{1}{l!}$ etc. Suppose each dir-inv module M^q is complete, so that using \cite[Proposition 1.5]{Ye2} we get a functorial \mathbb{K}-linear homomorphism

$$\int: \Omega(\Delta^l_k) \hat{\otimes} M^l \to \mathbb{K} \hat{\otimes} M^l \cong M^l.$$

Proposition 2.5. Suppose $M = \{M^q\}_{q \in \mathbb{N}}$ is a cosimplicial dir-inv \mathbb{K}-module, with all dir-inv modules M^q complete. Then the homomorphisms \int_{Δ^l} induce a quasi-isomorphism

$$\int_{\Delta^l}: \hat{\tilde{N}}M \to NM$$

in $\text{DGMod} \mathbb{K}$.

Proof. This is a complete version of \cite[Theorem 1.12]{HY}. Let Δ^l be the simplicial set $\Delta^l := \text{Hom}_\Delta([-],[l])$; so its set of p-simplices is Δ^l_p. Define C_l to be the algebra of normalized cochains on Δ^l, namely

$$C_l := \text{NHom}_\text{Sets}(\Delta^l, \mathbb{K}) \cong \text{Hom}_\text{Sets}(\Delta^l, \mathbb{K}).$$

Here Δ^l_{nd} is the (finite) set of nondegenerate simplices, i.e. those sequences $i = (i_0, \ldots, i_p)$ satisfying $0 \leq i_0 < \cdots < i_p \leq l$. As explained in \cite[Appendix A]{HY} we have simplicial DG algebras $C = \{C_l\}_{l \in \mathbb{N}}$ and $\Omega(\Delta^l_k) = \{\Omega(\Delta^l_k)\}_{l \in \mathbb{N}}$, and a homomorphism of simplicial DG modules $\rho: \Omega(\Delta^l_k) \to C$.

It turns out (this is work of Bousfield-Gugenheim) that ρ is a homotopy equivalence in $\Delta^l \text{op} \text{DGMod} \mathbb{K}$, i.e. there are simplicial homomorphisms $\phi: C \to \Omega(\Delta^l_k)$, $h: C \to C$ and $h': \Omega(\Delta^l_k) \to \Omega(\Delta^l_k)$ such that $1 - \rho \circ \phi = h \circ d + d \circ h$ and $1 - \phi \circ \rho = h' \circ d + d \circ h'$.

Now for $M = \{M^q\} \in \Delta \text{Dir Inv Mod} \mathbb{K}$ and $N = \{N_q\} \in \Delta^l \text{op} \text{Mod} \mathbb{K}$ let $N \hat{\odot}_{\text{\Lambda}^l} M$ be the complete version of \cite[formula (A.1)]{HY}, so that in particular $\Omega(\Delta^l_k) \hat{\odot}_{\text{\Lambda}^l} M \cong \hat{\tilde{N}}M$ and $C \hat{\odot}_{\text{\Lambda}^l} M \cong NM$. Moreover

$$\rho \hat{\odot}_{\text{\Lambda}^l} 1_M = \int_{\Delta^l}: \hat{\tilde{N}}M \to NM.$$

It follows that \int_{Δ} is a homotopy equivalence in $\text{DGMod} \mathbb{K}$. \hfill \Box

Suppose $A = \{A^q\}_{q \in \mathbb{N}}$ is a cosimplicial DG algebra in $\text{Dir Inv Mod} \mathbb{K}$ (not necessarily associative nor commutative). This is a pretty complicated object: for every q we have a DG algebra $A^q = \bigoplus_{i \in \mathbb{Z}} A^q_i$ in $\text{Dir Inv Mod} \mathbb{K}$. For every $\alpha \in \Delta^l_p$ there is a continuous DG algebra homomorphism $\alpha^* : A^\ell \to A^p$, and the α^* have to satisfy the simplicial relations.

Anyhow, both $\tilde{N}A$ and NA are DG algebras. For $\tilde{N}A$ the DG algebra structure comes from that of the DG algebras $\Omega(\Delta^l_k) \otimes A^l$, via the embeddings \cite{LZ}. In case each A^l is an associative super-commutative unital DG \mathbb{K}-algebra, then so is $\tilde{N}A$. Likewise for DG Lie algebras. (The algebra NA, with its Alexander-Whitney product, is very noncommutative.)

Assume that each A^q_i is complete, so that the integral $\int_{\Delta^l}: \tilde{N}A \to NA$ is defined. This is not a DG algebra homomorphism. However:
Proposition 2.6. Suppose $A = \{A^q\}_{q \in \mathbb{N}}$ is a cosimplicial DG algebra in $\text{Dir Inv Mod} \mathbb{K}$, with all A^q complete. Then the homomorphisms \int_{Δ} induce an isomorphism of graded algebras

$$H(\int_{\Delta}) : H^\wedge \tilde{N}A \xrightarrow{\sim} HNA.$$

Proof. This is a complete variant of [HY, Theorem 1.13]. The proof is identical, after replacing "\otimes" with "$\hat{\otimes}$" where needed; cf. proof of previous proposition. \[\Box \]

Remark 2.7. If A is associative then presumably \int_{Δ} extends to an A_∞ quasi-isomorphism $\tilde{N}A \to NA$.

3. Commutative Čech Resolutions

In this section \mathbb{K} is a field of characteristic 0 and X is a noetherian topological space. We denote by \mathbb{K}_X the constant sheaf \mathbb{K} on X. We will be interested in the category $\text{Dir Inv Mod} \mathbb{K}_X$, whose objects are sheaves of \mathbb{K}-modules on X with dir-inv structures. Note that any open set $V \subset X$ is quasi-compact.

Let $X = \bigcup_{i=0}^{m} U(i)$ be an open covering, which we denote by U. For any $i = (i_0, \ldots, i_q) \in \Delta^m_q$ define $U_i := U(i_0) \cap \cdots \cap U(i_q)$, and let $g_i : U_i \to X$ be the inclusion. Given a dir-inv \mathbb{K}_X-module \mathcal{M} and natural number q we define a sheaf $C^q(U, \mathcal{M}) := \prod_{i \in \Delta^m_q} g_i^* g_i^{-1} \mathcal{M}$.

This is a finite product. For an open set $V \subset X$ we then have

$$\Gamma(V, C^q(U, \mathcal{M})) = \prod_{i \in \Delta^m_q} \Gamma(V \cap U_i, \mathcal{M}).$$

For any i the \mathbb{K}-module $\Gamma(V \cap U_i, \mathcal{M})$ has a dir-inv structure. Hence $\Gamma(V, C^q(U, \mathcal{M}))$ is a dir-inv \mathbb{K}-module. If \mathcal{M} happens to be a complete dir-inv \mathbb{K}_X-module then $\Gamma(V, C^q(U, \mathcal{M}))$ is a complete dir-inv \mathbb{K}-module, since each $V \cap U_i$ is quasi-compact.

Keeping V fixed we get a cosimplicial dir-inv \mathbb{K}-module $\{\Gamma(V, C^q(U, \mathcal{M}))\}_{q \in \mathbb{N}}$.

Applying the functors N^q and \tilde{N}^q we obtain \mathbb{K}-modules $N^q \Gamma(V, C(U, \mathcal{M}))$ and $\tilde{N}^q \Gamma(V, C(U, \mathcal{M}))$. As we vary V these become presheaves of \mathbb{K}-modules, which we denote by $N^q \mathbb{C}(U, \mathcal{M})$ and $\tilde{N}^q \mathbb{C}(U, \mathcal{M})$.

Recall that a simplex $i = (i_0, \ldots, i_q)$ is nondegenerate if $i_0 < \cdots < i_q$. Let Δ^m_{nd} be the set of non-degenerate simplices inside Δ^m_q.

Lemma 3.1. For every q the presheaves

$$N^q \mathbb{C}(U, \mathcal{M}) : V \mapsto N^q \Gamma(V, C(U, \mathcal{M}))$$

and

$$\tilde{N}^q \mathbb{C}(U, \mathcal{M}) : V \mapsto \tilde{N}^q \Gamma(V, C(U, \mathcal{M}))$$

are sheaves. There is a functorial isomorphism of sheaves

$$N^q \mathbb{C}(U, \mathcal{M}) \cong \prod_{i \in \Delta^m_{\text{nd}}} g_i^* g_i^{-1} \mathcal{M},$$

(3.2)
and functorial embeddings of sheaves

\begin{equation}
\hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M}) \hookrightarrow \prod_{l \in \mathbb{N}} \prod_{i \in \Delta^n} g_{i*} g_{i}^{-1} (\Omega^q(\Delta^n_k) \otimes \mathcal{M})
\end{equation}

and

\begin{equation}
\mathcal{M} \hookrightarrow \hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M}).
\end{equation}

\textbf{Proof.} Since \{\mathcal{C}^q(U, \mathcal{M})\}_{q \in \mathbb{N}} is a cosimplicial sheaf we get the isomorphism \cite{32}.

As for \(\hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M})\), consider the sheaf \(\Omega^q(\Delta^n_k) \otimes \mathcal{M}\) on \(X\). Take any open set \(V \subset X\) and \(i \in \Delta^n_m\). Since \(V \cap U_i\) is quasi-compact we have

\[\Omega^q(\Delta^n_k) \otimes \Gamma(V \cap U_i, \mathcal{M}) \cong \Gamma(V \cap U_i, \Omega^q(\Delta^n_k) \otimes \mathcal{M}) = \Gamma(V, g_{i*} g_{i}^{-1} (\Omega^q(\Delta^n_k) \otimes \mathcal{M})).\]

By Definition \ref{def:1} there is an exact sequence of presheaves on \(X\):

\[
0 \to \hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M}) \to \prod_{l \in \mathbb{N}} \prod_{i \in \Delta^n} g_{i*} g_{i}^{-1} (\Omega^q(\Delta^n_k) \otimes \mathcal{M}) \\
\xrightarrow{1 \otimes \alpha - \alpha \otimes 1} \prod_{k,l \in \mathbb{N}} \prod_{i \in \Delta^n} g_{i*} g_{i}^{-1} (\Omega^q(\Delta^n_k) \otimes \mathcal{M}).
\]

Since the presheaves in the middle and on the right are actually sheaves, it follows that \(\hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M})\) is also a sheaf.

Finally the embedding \cite{34} comes from the embeddings \(\mathcal{M} \hookrightarrow \Omega^q(\Delta^n_k) \otimes \mathcal{M}\), \(w \mapsto 1 \otimes w\).

Thus we have complexes of sheaves \(\text{NC}(U, \mathcal{M})\) and \(\hat{\mathcal{N}} \mathcal{C}(U, \mathcal{M})\). There are functorial homomorphisms \(\mathcal{M} \to \text{NC}(U, \mathcal{M})\) and \(\mathcal{M} \to \hat{\mathcal{N}} \mathcal{C}(U, \mathcal{M})\). Note that the complex \(\Gamma(X, \text{NC}(U, \mathcal{M}))\) is nothing but the usual global Čech complex of \(\mathcal{M}\) for the covering \(U\).

\textbf{Definition 3.5.} The complex \(\hat{\mathcal{N}} \mathcal{C}(U, \mathcal{M})\) is called the \textit{commutative Čech resolution} of \(\mathcal{M}\).

The reason for the name is that \(\hat{\mathcal{N}} \mathcal{C}(U, \mathcal{O}_X)\) is a sheaf of super-commutative DG algebras, as can be seen from the next lemma.

\textbf{Lemma 3.6.} Suppose \(\mathcal{M}_1, \ldots, \mathcal{M}_r, \mathcal{N}\) are dir-inv \(\mathbb{K}_X\)-modules, and \(q_1, \ldots, q_r \in \mathbb{N}\). Let \(q := q_1 + \cdots + q_r\). Suppose that for every \(l \in \mathbb{N}\) and \(i \in \Delta^n\) we are given \(\mathbb{K}\)-multilinear sheaf maps

\[
\phi_{q_1, \ldots, q_r, i} : (\Omega^{q_1}(\Delta^n_k) \otimes (\mathcal{M}_1|_{U_i})) \times \cdots \times (\Omega^{q_r}(\Delta^n_k) \otimes (\mathcal{M}_r|_{U_i})) \to \Omega^q(\Delta^n_k) \otimes (\mathcal{N}|_{U_i})
\]

that are continuous (for the dir-inv module structures), and are compatible with the simplicial structure as in Definition \ref{def:1}. Then there are unique \(\mathbb{K}\)-multilinear sheaf maps

\[
\phi_{q_1, \ldots, q_r} : \hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M}_1) \times \cdots \times \hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{M}_r) \to \hat{\mathcal{N}}^q \mathcal{C}(U, \mathcal{N})
\]

that commute with the embeddings \(\hat{\mathcal{N}}^q\).

\textbf{Proof.} Direct verification. \(\square\)
Lemma 3.7. Let $\mathcal{M}_1, \ldots, \mathcal{M}_r, \mathcal{N}$ be dir-inv \mathbb{K}_X-modules, and $\phi : \prod M_i \to \mathcal{N}$ a continuous \mathbb{K}-multilinear sheaf homomorphism. Then there is an induced homomorphism of complexes of sheaves

$$\phi : \hat{\mathcal{N}}C(U, \mathcal{M}_1) \otimes \cdots \otimes \hat{\mathcal{N}}C(U, \mathcal{M}_r) \to \hat{\mathcal{N}}C(U, \mathcal{N}).$$

Proof. Use Lemma 3.6. \qed

In particular, if \mathcal{M} is a dir-inv \mathcal{O}_X-module then $\hat{\mathcal{N}}C(U, \mathcal{M})$ is a DG $\hat{\mathcal{N}}C(U, \mathcal{O}_X)$-module.

If $\mathcal{M} = \bigoplus_p \mathcal{M}^p$ is a graded dir-inv \mathbb{K}_X-module then we define

$$\hat{\mathcal{N}}C(U, \mathcal{M})^i := \bigoplus_{p+q=i} \hat{\mathcal{N}}^qC(U, \mathcal{M}^p)$$

and

$$\hat{\mathcal{N}}C(U, \mathcal{M}) := \bigoplus_i \hat{\mathcal{N}}C(U, \mathcal{M})^i.$$

Due to Lemma 3.7 if \mathcal{M} is a complex in $\text{Dir Inv Mod} \mathbb{K}_X$, then $\hat{\mathcal{N}}C(U, \mathcal{M})$ is also a complex (in $\text{Mod} \mathbb{K}_X$), and there is a functorial homomorphism of complexes $\mathcal{M} \to \hat{\mathcal{N}}C(U, \mathcal{M})$.

Theorem 3.8. Let X be a noetherian topological space, with open covering $U = \{U_i\}_{i=0}^m$. Let \mathcal{M} be a bounded below complex in $\text{Dir Inv Mod} \mathbb{K}_X$, and assume each \mathcal{M}^p is a complete dir-inv \mathbb{K}_X-module. Then:

1. For any open set $V \subset X$ the homomorphism

$$\Gamma(V, \int_{\Delta} : \Gamma(V, \hat{\mathcal{N}}C(U, \mathcal{M})) \to \Gamma(V, \mathcal{N}C(U, \mathcal{M}))$$

is a quasi-isomorphism of complexes of \mathbb{K}-modules.

2. There are functorial quasi-isomorphism of complexes of \mathbb{K}_X-modules

$$\mathcal{M} \to \hat{\mathcal{N}}C(U, \mathcal{M}) \overset{\Delta}{\longrightarrow} \mathcal{N}C(U, \mathcal{M}).$$

Proof. (1) Lemma 3.1 and Proposition 2.5 imply that for any p the homomorphism of complexes

$$\Gamma(V, \int_{\Delta} : \Gamma(V, \hat{\mathcal{N}}C(U, \mathcal{M}^p)) \to \Gamma(V, \math{N}C(U, \mathcal{M}^p))$$

is a quasi-isomorphism. Now use the standard filtration argument (the complexes in question are all bounded below).

(2) From (1) we deduce that

$$\Gamma(V, \int_{\Delta} : \Gamma(V, \hat{\mathcal{N}}C(U, \mathcal{M})) \to \Gamma(V, \math{N}C(U, \mathcal{M}))$$

is a quasi-isomorphism. Hence

$$\int_{\Delta} : \hat{\mathcal{N}}C(U, \mathcal{M}) \to \mathcal{N}C(U, \mathcal{M})$$

is a quasi-isomorphism of complexes of sheaves.

It is a known fact that $\mathcal{M}^p \to \mathcal{N}C(U, \mathcal{M}^p)$ is a quasi-isomorphism of sheaves (see [Ha] Lemma 4.2). Again this implies that $\mathcal{M} \to \mathcal{N}C(U, \mathcal{M})$ is a quasi-isomorphism. And therefore the homomorphism $\mathcal{M} \to \hat{\mathcal{N}}C(U, \mathcal{M})$ coming from (3.4) is also a quasi-isomorphism. \qed
Now let us look at a separated noetherian formal scheme \(\mathfrak{X} \). Let \(\mathcal{I} \) be some defining ideal of \(\mathfrak{X} \), and let \(X \) be the scheme with structure sheaf \(\mathcal{O}_X := \mathcal{O}_{\mathfrak{X}}/\mathcal{I} \). So \(\mathfrak{X} \) and \(X \) have the same underlying topological space. Recall that a \(\mathcal{I} \)-coherent \(\mathcal{O}_X \)-module is a quasi-coherent \(\mathcal{O}_X \)-module which is the union of its coherent sub-modules.

Corollary 3.10. Let \(\mathfrak{X} \) be a noetherian separated formal scheme over \(\mathbb{K} \), with defining ideal \(\mathcal{I} \) and underlying topological space \(X \). Let \(U = \{ U(i) \}_{i=0}^m \) be an affine open covering of \(X \). Let \(\mathcal{M} \) be a bounded below complex of sheaves of \(\mathbb{K} \)-modules on \(X \). Assume each \(\mathcal{M}^p \) is a \(\mathcal{I} \)-coherent \(\mathcal{O}_X \)-module, and the coboundary operators \(\mathcal{M}^p \to \mathcal{M}^{p+1} \) are continuous for the \(\mathcal{I} \)-adic dir-inv structures (but not necessarily \(\mathcal{O}_X \)-linear). Then:

1. The canonical morphism
 \[
 \Gamma(X, \tilde{\mathcal{N}}C(U, \mathcal{M})) \to R\Gamma(X, \tilde{\mathcal{N}}C(U, \mathcal{M}))
 \]
 in \(D(\text{Mod} \ \mathbb{K}) \) is an isomorphism.
2. There is a functorial isomorphism
 \[
 \Gamma(X, \tilde{\mathcal{N}}C(U, \mathcal{M})) \cong R\Gamma(X, \mathcal{M})
 \]
 in \(D(\text{Mod} \ \mathbb{K}) \).

Proof. (1) Consider the commutative diagram

\[
\begin{array}{ccc}
\Gamma(X, \tilde{\mathcal{N}}C(U, \mathcal{M})) & \xrightarrow{\Gamma(X, \delta)} & \Gamma(X, \mathcal{NC}(U, \mathcal{M})) \\
\downarrow & & \downarrow \\
R\Gamma(X, \tilde{\mathcal{N}}C(U, \mathcal{M})) & \xrightarrow{R\Gamma(X, \delta)} & R\Gamma(X, \mathcal{NC}(U, \mathcal{M}))
\end{array}
\]

in \(D(\text{Mod} \ \mathbb{K}) \), in which the vertical arrows are the canonical morphisms. By part (1) of the theorem (with \(V = X \)) the top arrow is a quasi-isomorphism. And by part (2) the bottom arrow is an isomorphism. Hence it is enough to prove that the right vertical arrow is an isomorphism.

Using a filtration argument we may assume that \(\mathcal{M} \) is a single \(\mathcal{I} \)-coherent \(\mathcal{O}_X \)-module. Now \(\Gamma(X, \mathcal{NC}(U, \mathcal{M})) \) is the usual Čech resolution of the sheaf \(\mathcal{M} \) with respect to the covering \(U \) (cf. equation 3.2). So it suffices to prove that for all \(q \) and \(i \in \Delta^0 \) the sheaves \(g_i, g_i^{-1} \mathcal{M} \) are \((X, -) \)-acyclic.

First let’s assume \(\mathcal{M} \) is a coherent \(\mathcal{O}_X \)-module. Let \(U_i \) be the open formal subscheme of \(\mathfrak{X} \) supported on \(U_i \). Then \(g_i^{-1} \mathcal{M} \) is a coherent \(\mathcal{O}_{U_i} \)-module, and both \(g_i : U_i \to \mathfrak{X} \) and \(U_i \to \text{Spec} \ \mathbb{K} \) are affine morphisms. By [EGA I, Theorem 10.10.2] it follows that \(g_i, g_i^{-1} \mathcal{M} = Rg_i, g_i^{-1} \mathcal{M} \), and also

\[
\Gamma(U_i, g_i^{-1} \mathcal{M}) = R\Gamma(U_i, g_i^{-1} \mathcal{M}) \cong R\Gamma(X, Rg_i, g_i^{-1} \mathcal{M}) \cong R\Gamma(X, g_i, g_i^{-1} \mathcal{M}).
\]

We conclude that \(H^j(X, g_i, g_i^{-1} \mathcal{M}) = 0 \) for all \(j > 0 \).

In the general case when \(\mathcal{M} \) is a direct limit of coherent \(\mathcal{O}_X \)-modules we still get \(H^j(X, g_i, g_i^{-1} \mathcal{M}) = 0 \) for all \(j > 0 \).

(2) By part (2) of the theorem we get a functorial isomorphism \(R\Gamma(X, \mathcal{M}) \cong R\Gamma(X, \tilde{\mathcal{N}}C(U, \mathcal{M})) \). Now use part (1) above. \(\square \)
4. Mixed Resolutions

In this section \mathbb{K} is a field of characteristic 0 and X is a finite type \mathbb{K}-scheme. Let us begin by recalling the definition of the sheaf of principal parts \mathcal{P}_X from

Recall that a connection ∇ on an \mathcal{O}_X-module M is a \mathcal{O}_X-linear homomorphism $\nabla : M \to \Omega^1 \otimes_{\mathcal{O}_X} M$ satisfying the Leibniz rule $\nabla(fm) = d(f) \otimes m + f \nabla(m)$ for local sections $f \in \mathcal{O}_X$ and $m \in M$.

Definition 4.1. Consider the de Rham differential $d_{X^2/X} : \mathcal{O}_{X^2} \to \Omega^1_{X^2/X}$ relative to the morphism $p_2 : X^2 \to X$. Since $\Omega^1_{X^2/X} \cong p_1^* \Omega^1_X = p_1^{-1} \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{O}_{X^2}$ we obtain a \mathbb{K}-linear homomorphism $d_{X^2/X} : \mathcal{O}_{X^2} \to p_1^* \Omega^1_X$. Passing to the completion along the diagonal $\Delta(X)$ we get a connection of \mathcal{O}_X-modules

$$\nabla_{p_2} : \mathcal{P}_X \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{P}_X$$

called the Grothendieck connection.

Note that the connection ∇_{p_2} is $p_2^{-1} \mathcal{O}_X$-linear. It will be useful to describe ∇_{p_2} on the level of rings. Let $U = \text{Spec } C \subset X$ be an affine open set. Then

$$\Gamma(U, \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{P}_X) \cong \Omega^1_C \otimes C \cong \Omega^1_C \otimes \mathcal{O}_X,$$

the I-adic completion, where $I := \ker(C \otimes C \to C)$. And $\nabla_{p_2} : \mathcal{C} \otimes C \to \Omega^1_C \otimes C$ is the completion of $d \otimes 1 : C \otimes C \to \Omega^1_C \otimes C$.

As usual the connection ∇_{p_2} of (4.2) induces differential operators of left \mathcal{O}_X-modules

$$\nabla_{p_2} : \Omega^i_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \to \Omega^{i+1}_X \otimes_{\mathcal{O}_X} \mathcal{P}_X$$

for all $i \geq 0$, by the rule

$$\nabla_{p_2}(\alpha \otimes b) = d(\alpha) \otimes b + (-1)^i \alpha \wedge \nabla_{p_2}(b).$$

Theorem 4.4. Assume X is a smooth n-dimensional \mathbb{K}-scheme. Let \mathcal{M} be an \mathcal{O}_X-module. Then the sequence of sheaves on X

$$0 \to \mathcal{M} \xrightarrow{\text{mult} \otimes 1} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M} \xrightarrow{\nabla_{p_2} \otimes 1 \mathcal{M}} \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M} \xrightarrow{\ldots} \Omega^n_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M} \to 0$$

is exact.

Proof. The proof is similar to that of \[Theorem 4.5\]. We may restrict to an affine open set $U = \text{Spec } B \subset X$ that admits an étale coordinate system $s = (s_1, \ldots, s_n)$, i.e. $\mathbb{K}[s] \to B$ is an étale ring homomorphism. It will be convenient to have another copy of B, which we call C; so that $\Gamma(U, \mathcal{P}_X) = B \otimes C$, the I-adic completion, where $I := \ker(B \otimes C \to B)$. We shall identify B and C with their images inside $B \otimes C$, and denote the copy of the element s_i in C by r_i. Letting $t_i := r_i - s_i \in B \otimes C$ we then have $t_i = s_i - s_i \otimes 1$ in our earlier notation. Note that $\Omega^i_{\mathbb{K}[s]} \subset \Omega^i_B$ is a sub DG algebra, and $B \otimes_{\mathbb{K}[s]} \Omega^i_{\mathbb{K}[s]} \to \Omega^i_B$ is a bijection.

By definition

$$\Gamma(U, \Omega_X \otimes_{\mathcal{O}_X} \mathcal{P}_X) \cong \Omega^1_B \otimes_B (B \otimes C) \cong \Omega^1_B \otimes C.$$
The differential ∇_p on the left goes to the differential $d_B \otimes 1_C$ on the right. Consider the sub DG algebra $\Omega_{K[s]} \otimes C \subset \Omega_B \otimes C$. We know that $K \to \Omega_{K[s]}$ is a quasi-isomorphism; therefore so is $C \to \Omega_{K[s]} \otimes C$.

Because $t_i + s_i = r_i \in C$ we see that $C[s] = C[t] \subset B \otimes C$. Therefore we obtain C-linear isomorphisms

$$\Omega^p_{K[s]} \otimes C \cong \Omega^p_{K[s]} \otimes_{K[s]} C[s] = \Omega^p_{K[s]} \otimes_{K[s]} C[t].$$

So there is a commutative diagram

$$
\begin{array}{c}
0 \\
\downarrow \\
C \\
\downarrow \\
\Omega^1_{K[s]} \otimes_{K[s]} C[t] \\
\downarrow \\
\cdots \\
\downarrow \\
\Omega^n_{K[s]} \otimes_{K[s]} C[t] \\
\downarrow \\
0
\end{array}
$$

in which the top tow is continuously C-linearly split, and the vertical arrow are bijections. Hence the bottom row is split exact. Comparing this to (4.6) we conclude that for any \mathcal{O}_X-module \mathcal{M} the sequence (4.6) is transformed to the commutative diagram

$$
\begin{array}{c}
0 \\
\downarrow \\
C \\
\downarrow \\
\Omega^1_{K[s]} \otimes_{K[s]} C[t] \\
\downarrow \\
\cdots \\
\downarrow \\
\Omega^n_{K[s]} \otimes_{K[s]} C[t] \\
\downarrow \\
0
\end{array}
$$

in which the top tow is continuously C-linearly split, and the vertical arrow are bijections. Hence the bottom row is split exact. Comparing this to (4.6) we conclude that the sequence of right \mathcal{O}_U-modules

$$
0 \to \mathcal{O}_U \xrightarrow{\mathcal{P}_X|_U} \mathcal{P}_X|_U \xrightarrow{\nabla_p} (\Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{P}_X)|_U \xrightarrow{\nabla_p} \cdots (\Omega^n_X \otimes_{\mathcal{O}_X} \mathcal{P}_X)|_U \to 0
$$

is split exact.

Therefore it follows that for any \mathcal{O}_X-module \mathcal{M} the sequence (4.6) is split exact. □

Let us now fix an affine open covering $U = \{U_{(0)}, \ldots, U_{(m)}\}$ of X.

Let $\mathcal{I}_X = \text{Ker}(\mathcal{P}_X \to \mathcal{O}_X)$. This is a defining ideal of the noetherian formal scheme $(\mathfrak{X}, \mathcal{O}_X) := (X, \mathcal{P}_X)$. So \mathcal{P}_X is an inv module over itself with the \mathcal{I}_X-adic inv structure. Given quasi-coherent \mathcal{O}_X-modules \mathcal{M} and \mathcal{N}, the tensor product $\mathcal{N} \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}$ is a dir-coherent \mathcal{P}_X-module, and so it has the \mathcal{I}_X-adic dir-inv structure. See Example 1.24. In particular

$$
\Omega_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M} = \bigoplus_{p \geq 0} \Omega^p_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}
$$

becomes a dir-inv $K[X]$-module.
Lemma 4.8. $\Omega_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}$ is a DG Ω_X-module in Dir Inv Mod \mathbb{K}_X, with differential $\nabla_{\mathcal{P}} \otimes 1_{\mathcal{M}}$.

Proof. Because $\nabla_{\mathcal{P}} \otimes 1_{\mathcal{M}}$ is a differential operator of \mathcal{P}_X-modules, it is continuous for the I_X-adic dir-inv structure. See [Ye2, Proposition 2.3]. □

Henceforth we will write $\nabla_{\mathcal{P}}$ instead of $\nabla_{\mathcal{P}} \otimes 1_{\mathcal{M}}$.

Definition 4.9. Let \mathcal{M} be a quasi-coherent \mathcal{O}_X-module. For any $p, q \in \mathbb{N}$ define

$$\operatorname{Mix}^{p,q}_U(\mathcal{M}) := \hat{\mathbb{N}}^qC(U, \Omega^p_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}).$$

The Grothendieck connection $\nabla_{\mathcal{P}} : \Omega^p_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M} \to \Omega^{p+1}_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}$ induces a homomorphism of sheaves

$$\nabla_{\mathcal{P}} : \operatorname{Mix}^{p,q}_U(\mathcal{M}) \to \operatorname{Mix}^{p+1,q}_U(\mathcal{M}).$$

We also have $\partial : \operatorname{Mix}^{p,q}_U(\mathcal{M}) \to \operatorname{Mix}^{p,q+1}_U(\mathcal{M})$. Define

$$\operatorname{Mix}^i_U(\mathcal{M}) := \bigoplus_{p+q=i} \operatorname{Mix}^{p,q}_U(\mathcal{M}),$$

$$\operatorname{Mix}_U(\mathcal{M}) := \bigoplus_i \operatorname{Mix}^i_U(\mathcal{M})$$

and

$$(4.10) \quad d_{\text{mix}} := \partial + (-1)^q\nabla_{\mathcal{P}} : \operatorname{Mix}^{p,q}_U(\mathcal{M}) \to \operatorname{Mix}^{p+1,q}_U(\mathcal{M}) \oplus \operatorname{Mix}^{p,q+1}_U(\mathcal{M}).$$

The complex $(\operatorname{Mix}_U(\mathcal{M}), d_{\text{mix}})$ is called the mixed resolution of \mathcal{M}.

There are functorial embeddings of sheaves

$$(4.11) \quad \mathcal{M} \subset \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M} \subset \hat{\mathbb{N}}^0C(U, \Omega_X^0 \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}) = \operatorname{Mix}^{0,0}_U(\mathcal{M})$$

and

$$(4.12) \quad \operatorname{Mix}^{p,q}_U(\mathcal{M}) \subset \prod_{l \in \mathbb{N}} \prod_{i \in \Delta^p} g_{i*}^{-1}(\Omega^q(\Delta^i_k) \otimes (\Omega^p_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}));$$

see Lemma 3.1.

Proposition 4.13. (1) $\operatorname{Mix}_U(\mathcal{O}_X)$ is a sheaf of super-commutative associative unital DG \mathbb{K}-algebras. There are two \mathbb{K}-algebra homomorphisms $p^*_1, p^*_2 : \mathcal{O}_X \to \operatorname{Mix}^0_U(\mathcal{O}_X)$.

(2) Let \mathcal{M} be a quasi-coherent \mathcal{O}_X-module. Then $\operatorname{Mix}_U(\mathcal{M})$ is a left DG $\operatorname{Mix}_U(\mathcal{O}_X)$-module.

(3) If \mathcal{M} is a locally free \mathcal{O}_X-module of finite rank then the multiplication map

$$\operatorname{Mix}_U(\mathcal{O}_X) \otimes_{\mathcal{O}_X} \mathcal{M} \to \operatorname{Mix}_U(\mathcal{M})$$

is an isomorphism.

Proof. By by Lemmas 3.1 and 3.7 □

Note that $d_{\text{mix}} \circ p^*_2 : \mathcal{O}_X \to \operatorname{Mix}_U(\mathcal{O}_X)$ is zero, but $d_{\text{mix}} \circ p^*_1 \neq 0$.
Proposition 4.14. Let M_1,\ldots,M_r,N be quasi-coherent O_X-modules. Suppose
\[
\phi : \prod_{i=1}^r (\Omega_X \otimes_{O_X} P_X \otimes_{O_X} M_i) \to \Omega_X \otimes_{O_X} P_X \otimes_{O_X} N
\]
is a continuous Ω_X-multilinear sheaf morphism of degree d. Then there is a unique K-multilinear sheaf morphism of degree d
\[
\tilde{NC}(U,\phi) : \text{Mix}_U(M_1) \times \cdots \times \text{Mix}_U(M_r) \to \text{Mix}_U(N)
\]
which is compatible with ϕ via the embedding \([4.12]\).

Proof. This is an immediate consequence of Lemma 3.7. \qed

Suppose we are given $M \in C^+(\text{QCoh} O_X)$. Define
\[
\text{Mix}_U(M) := \bigoplus_{p+q=i} \text{Mix}_U^q(M^p)
\]
with differential
\[
d_{\text{mix}} + (-1)^q d_M : \text{Mix}_U^q(M^p) \to \text{Mix}_U^{q+1}(M^p) \oplus \text{Mix}_U^q(M^{p+1}).
\]

Theorem 4.15. Let X be a smooth separated K-scheme, and let $U = \{U(0),\ldots,U(m)\}$ be an affine open covering of X.

1. There is a functorial quasi-isomorphism $M \to \text{Mix}_U(M)$ for $M \in C^+(\text{QCoh} O_X)$.
2. Given $M \in C^+(\text{QCoh} O_X)$, the canonical morphism $\Gamma(X,\text{Mix}_U(M)) \to R\Gamma(X,\text{Mix}_U(M))$ in $D(\text{Mod} K)$ is an isomorphism.
3. The quasi-isomorphism in part (1) induces a functorial isomorphism $\Gamma(X,\text{Mix}_U(M)) \cong \Gamma(X,M)$ in $D(\text{Mod} K)$.

Proof. (1) Write $N := \Omega_X \otimes_{O_X} P_X \otimes_{O_X} M$. A filtration argument and Theorem 4.4 show that the inclusion $M \to N$ is a quasi-isomorphism. Next we view N as a bounded below complex in $\text{Dir Inv Mod} K_X$. By Theorem 3.8(2) we have a quasi-isomorphism $N \to \tilde{NC}(U,N) = \text{Mix}_U(M)$.

(2) This is due to Corollary 3.10(1), applied to the formal scheme (X,P_X) and the complex N of dir-coherent P_X-modules defined above.

(3) This assertion is an immediate consequence of parts (1) and (2). \qed

Corollary 4.16. In the situation of the theorem, suppose $M,N \in C^+(\text{QCoh} O_X)$ and $\phi : \text{Mix}_U(M) \to \text{Mix}_U(N)$ is a K-linear quasi-isomorphism. Then
\[
\Gamma(X,\phi) : \Gamma(X,\text{Mix}_U(M)) \to \Gamma(X,\text{Mix}_U(N))
\]
is a quasi-isomorphism.

Proof. Consider the commutative diagram
\[
\begin{array}{ccc}
\Gamma(X,\text{Mix}_U(M)) & \xrightarrow{\Gamma(X,\phi)} & \Gamma(X,\text{Mix}_U(N)) \\
\downarrow & & \downarrow \\
R\Gamma(X,\text{Mix}_U(M)) & \xrightarrow{R\Gamma(X,\phi)} & R\Gamma(X,\text{Mix}_U(N))
\end{array}
\]
in $\mathcal{D}(\text{Mod } \mathbb{K})$. By part (2) of the theorem the vertical arrows are isomorphisms. Since ϕ is an isomorphism in $\mathcal{D}(\text{Mod } \mathbb{K}_X)$ it follows that the bottom arrow is an isomorphism. \hfill \Box

Given a quasi-coherent \mathcal{O}_X-module \mathcal{M} and an integer i define
$$G^i \text{Mix}_U(\mathcal{M}) := \bigoplus_{q \geq i} \text{Mix}_U^q(\mathcal{M}).$$
Then $\{G^i \text{Mix}_U(\mathcal{M})\}_{i \in \mathbb{Z}}$ is a descending filtration of $\text{Mix}_U(\mathcal{M})$ by subcomplexes, satisfying $G^i \text{Mix}_U(\mathcal{M}) = \text{Mix}_U(\mathcal{M})$ for $i \ll 0$ and $\bigcap_i G^i \text{Mix}_U(\mathcal{M}) = 0$. For any i
$$\text{gr}_G^i \text{Mix}_U(\mathcal{M}) := G^i \text{Mix}_U(\mathcal{M}) / G^{i+1} \text{Mix}_U(\mathcal{M}).$$
The functor $\text{gr}_G^i \text{Mix}_U : \text{QCoh} \mathcal{O}_X \to \text{Mod } \mathbb{K}_X$
is additive, but we do not know whether it is exact. The next theorem asserts this in a very special case.

Consider the sheaves of DG Lie algebras $\mathcal{T}_{\text{poly},X}$ and $\mathcal{D}_{\text{poly},X}$ as complexes of quasi-coherent \mathcal{O}_X-modules (cf. [Ye3, Proposition 3.18]). According to [Ye1, Theorem 0.4] there is a quasi-isomorphism
$$\mathcal{U}_1 : \mathcal{T}_{\text{poly},X} \to \mathcal{D}_{\text{poly},X}.$$

Theorem 4.17. For any i the homomorphism of complexes
$$\text{gr}_G^i \text{Mix}_U(\mathcal{U}_1) : \text{gr}_G^i \text{Mix}_U(\mathcal{T}_{\text{poly},X}) \to \text{gr}_G^i \text{Mix}_U(\mathcal{D}_{\text{poly},X})$$
is a quasi-isomorphism.

Proof. Given a point $x \in X$ choose an affine open neighborhood V of x which admits an étale morphism $V \to \mathbb{A}^n_k$. By [Ye2, Theorem 4.11] the map of complexes
$$\mathcal{U}_1|_V : \mathcal{T}_{\text{poly},X}|_V \to \mathcal{D}_{\text{poly},X}|_V$$
is a homotopy equivalence in $C^+(\text{QCoh } \mathcal{O}_V)$. Since $\text{gr}_G^i \text{Mix}_U$ is an additive functor we see that $\text{gr}_G^i \text{Mix}_U(\mathcal{U}_1)|_V$ is a quasi-isomorphism. \hfill \Box

Remark 4.18. We know very little about the structure of the sheaves $\hat{\mathcal{N}}^q C(U, \mathcal{M})$, even when $\mathcal{M} = \mathcal{O}_X$. Cf. [HS].

5. Simplicial Sections

Let X be a \mathbb{K}-scheme, and let $X = \bigcup_{i=0}^m U(i) \to X$. We denote this covering by \mathcal{U}. For any multi-index $i = (i_0, \ldots, i_q) \in \Delta^n_k$ we write $U_i := \bigcap_{j=0}^i U(j)$, and we define the scheme $U_q := \prod_{i \in \Delta_q^n} U_i$. Given $\alpha \in \Delta^n_q$ and $i \in \Delta_q^n$ there is an inclusion of open sets $\alpha_\ast : U_i \to U_{\alpha_\ast(i)}$. These patch to a morphism of schemes $\alpha_\ast : U_q \to U_p$, making $\{U_q\}_{q \in \mathbb{N}}$ into a simplicial scheme. The inclusions $g(i) : U(i) \to X$ induce inclusions $g_q : U_q \to X$ and morphisms $g_q : U_q \to X$; and one has the relations $g_p \circ \alpha_\ast = g_q$ for any $\alpha \in \Delta^n_q$.

Definition 5.1. Let $\pi : Z \to X$ be a morphism of \mathbb{K}-schemes. A simplicial section of π based on the covering \mathcal{U} is a sequence of morphisms
$$\sigma = \{\sigma_q : \Delta^n_q \times U_q \to Z\}_{q \in \mathbb{N}}$$
satisfying the following conditions.
Figure 1. An illustration of a simplicial section σ based on an open covering $U = \{U_i\}$. On the left we see two components of σ in dimension $q = 0$; and on the right we see one component in dimension $q = 1$.

(i) For any q the diagram

$$
\begin{array}{ccc}
\Delta^q_K \times U_q & \xrightarrow{\sigma_q} & Z \\
p_2 \downarrow & & \downarrow \pi \\
U_q & \xrightarrow{g_q} & X
\end{array}
$$

is commutative.

(ii) For any $\alpha \in \Delta^p_K$ the diagram

$$
\begin{array}{ccc}
\Delta^p_K \times U_p & \xrightarrow{\sigma_p} & Z \\
1 \times \alpha^* \downarrow & & \downarrow \sigma_q \\
\Delta^q_K \times U_q & \xrightarrow{\alpha \times 1} & \Delta^q_K \times U_q
\end{array}
$$

is commutative.

Given a multi-index $i \in \Delta^m_q$ we denote by σ_i the restriction of σ_q to $\Delta^q_K \times U_i$. See Figure 1 for an illustration.

As explained in the introduction, simplicial sections arise naturally in several contexts, including deformation quantization.

Let A be an associative unital super-commutative DG K-algebra. Consider homogeneous A-multilinear functions $\phi : M_1 \times \cdots \times M_r \to N$, where M_1, \ldots, M_r, N are DG A-modules. There is an operation of composition for such functions: given
functions $\psi_i : \prod_i L_{i,j} \to M_i$ the composition is $\phi \circ (\psi_1 \times \cdots \times \psi_r) : \prod_i L_{i,j} \to N$. There is also a summation operation: if $\phi_j : \prod_i M_i \to N$ are homogeneous of equal degree then so is their sum $\sum_j \phi_j$. Finally, let $d : \prod_i M_i \to \prod_i M_i$ be the function

$$d(m_1, \ldots, m_r) := \sum_{i=1}^r \pm (m_1, \ldots, d(m_i), \ldots, m_r)$$

with Koszul signs. All the above can of course be sheafified, i.e. A is a sheaf of DG algebras on a scheme Z etc.

As before let $\pi : Z \to X$ be a morphism if \mathbb{K}-schemes, and let $U = \{U_{(i)}\}$ be an open covering of X. Suppose σ is a simplicial section of π based on U. We consider Ω^n_X as a discrete inv \mathbb{K}_X-module, and $\Omega_X = \bigoplus_{p \geq 0} \Omega^p_X$ has the \bigoplus dir-inv structure. Likewise for $\Omega_Z = \bigoplus_{p \geq 0} \Omega^p_Z$.

Suppose \mathcal{M} is a quasi-coherent \mathcal{O}_X-module. Then, as explained in Section 4, $\Omega_Z \otimes_{\mathcal{O}_X} \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M})$ is a DG Ω_Z-module on Z, with the Grothendieck connection ∇_p. And $\text{Mix}_U(\mathcal{M})$ is a DG $\text{Mix}_U(\mathcal{O}_X)$-module on X, with differential d_{mix}.

Theorem 5.2. Let $\pi : Z \to X$ be a morphism of schemes, and suppose σ is a simplicial section of π based on an open covering U of X. Let $\mathcal{M}_1, \ldots, \mathcal{M}_r, \mathcal{N}$ be quasi-coherent \mathcal{O}_X-modules, and let

$$\phi : \prod_{i=1}^r (\Omega_Z \otimes_{\mathcal{O}_Z} \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}_i)) \to \Omega_Z \otimes_{\mathcal{O}_Z} \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{N})$$

be a continuous Ω_Z-multilinear sheaf morphism on Z of degree k. Then there is an induced $\text{Mix}_U(\mathcal{O}_X)$-multilinear sheaf morphism of degree k

$$\sigma^*(\phi) : \text{Mix}_U(\mathcal{M}_1) \times \cdots \times \text{Mix}_U(\mathcal{M}_r) \to \text{Mix}_U(\mathcal{N})$$

on X with the following properties:

(i) The assignment $\phi \mapsto \sigma^*(\phi)$ respects the operations of composition and summation.

(ii) If $\phi = \pi^*(\phi_0)$ for some continuous Ω_X-multilinear morphism

$$\phi_0 : \prod_{i=1}^r (\Omega_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}_i) \to \Omega_X \otimes_{\mathcal{O}_X} \mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{N}$$

then $\sigma^*(\phi) = \tilde{\text{NC}}(U, \phi_0)$.

(iii) Assume that

$$\nabla_p \circ \phi - (-1)^k \phi \circ \nabla_p = \psi$$

for some continuous Ω_Z-multilinear sheaf morphism

$$\psi : \prod_{i=1}^r (\Omega_Z \otimes_{\mathcal{O}_Z} \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{M}_i)) \to \Omega_Z \otimes_{\mathcal{O}_Z} \pi^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{N})$$

of degree $k + 1$. Then

$$d_{\text{mix}} \circ \sigma^*(\phi) - (-1)^k \sigma^*(\phi) \circ d_{\text{mix}} = \sigma^*(\psi).$$

Before the proof we need an auxiliary result.
Lemma 5.3. Let A and B be complete DG algebras in $\text{Dir Inv Mod} \mathbb{K}$, and let $f^* : A \to B$ be a continuous DG algebra homomorphism. To any DG A-module M in $\text{Dir Inv Mod} \mathbb{K}$ we assign the DG B-module $f^*M := B \hat{\otimes}_A M$. Then to any continuous A-multilinear function $\phi : \prod_i M_i \to N$ we can assign a continuous B-multilinear function $f^*(\phi) : \prod_i f^*(M_i) \to f^*(N)$. This assignment is functorial in f^*, and respects the operations of composition and summation. If ϕ and ψ are such continuous A-multilinear functions, homogeneous of degrees k and $k+1$ respectively and satisfying
\[d \circ \phi - (-1)^k \phi \circ d = \psi, \]
then
\[d \circ f^*(\phi) - (-1)^k f^*(\phi) \circ d = f^*(\psi). \]

Proof. This is all straightforward, except perhaps the last assertion. For that we make the calculations. By continuity and multilinearity it suffices to show that
\[(d \circ f^*(\phi))(\beta) - (-1)^k (f^*(\phi) \circ d)(\beta) = f^*(\psi)(\beta) \]
for $\beta = (\beta_1, \ldots, \beta_r)$, with $\beta_i = b_i \otimes m_i$, $b_i \in B^{p_i}$ and $m_i \in M^{q_i}$. Then
\[(d \circ f^*(\phi))(\beta) = d(\pm b_1 \cdots b_r \cdot \phi(m_1, \ldots, m_r)) \]
\[= \pm d(b_1 \cdots b_r) \cdot \phi(m_1, \ldots, m_r) \pm b_1 \cdots b_r \cdot d(\phi(m_1, \ldots, m_r)) \]
with Koszul signs. Since
\[d(\beta_i) = d(b_i) \otimes m_i \pm b_i \otimes d(m_i) \]
we also have
\[(f^*(\phi) \circ d)(\beta) = \sum_i \pm f^*(\phi)(\beta_1, \ldots, d(\beta_i), \ldots, \beta_r) \]
\[= \sum_i \left(\pm b_1 \cdots b_i \cdots b_r \cdot \phi(m_1, \ldots, m_r) \right) \]
\[\pm b_1 \cdots b_r \cdot \phi(m_1, \ldots, d(m_i) \cdots m_r) \]
\[= \pm d(b_1 \cdots b_r) \cdot \phi(m_1, \ldots, m_r) \pm b_1 \cdots b_r \cdot \phi(d(m_1, \ldots, m_r)). \]
Finally
\[f^*(\psi)(\beta) = \pm b_1 \cdots b_r \cdot \psi(m_1, \ldots, m_r), \]
and the signs all match up.

Proof of the theorem. For a sequence of indices $i = (i_0, \ldots, i_l) \in \Delta_+^n$ let us introduce the abbreviation $Y_i := \Delta^n_{i_0} \times U_i$, and let $p_2 : Y_i \to U_i$ be the projection. The simplicial section σ restricts to a morphism $\sigma_i : Y_i \to Z$.

By Lemma 5.3 applied with respect to the DG algebra homomorphism $\sigma_i^* : \Omega^{-1} Y_i \to \Omega Y_i$, there is an induced continuous ΩY_i-multilinear morphism
\[\sigma_i^* (\phi) : \prod_j \left(\Omega X \hat{\otimes}_{\sigma_i^{-1} \Omega Y_i} \sigma_i^{-1} (\Omega Z \hat{\otimes} \mathcal{O} \pi^\omega \mathcal{M} j) \right) \]
\[\to \Omega Y_i \hat{\otimes}_{\sigma_i^{-1} \Omega Y_i} \sigma_i^{-1} (\Omega Z \hat{\otimes} \mathcal{O} \pi^\omega \mathcal{N} j) \]

Now for any quasi-coherent \mathcal{O}_X-module \mathcal{M} we have an isomorphism of dir-inv DG ΩY_i-modules
\[\Omega Y_i \hat{\otimes}_{\sigma_i^{-1} \Omega Y_i} \sigma_i^{-1} (\Omega Z \hat{\otimes} \mathcal{O} \pi^\omega \mathcal{M} j) \cong \Omega Y_i \hat{\otimes} \mathcal{O}_{Y_i} P^I_2 (\mathcal{P} \hat{\otimes} \mathcal{O}_X \mathcal{M}). \]
Under the DG algebra isomorphism $p_2^*\Omega_Y \cong \Omega(\Delta_k^t) \otimes \Omega_U$, there is a dir-inv DG module isomorphism

$$p_2^*\left(\Omega_Y \otimes_{\mathcal{O}_Y} p_2^*(P_X \otimes_{\mathcal{O}_X} \mathcal{M})\right) \cong \Omega(\Delta_k^t) \otimes (\Omega_X \otimes_{\mathcal{O}_X} P_X \otimes_{\mathcal{O}_X} \mathcal{M})|_{U_i}.$$

Thus we obtain a family of morphisms

$$\sigma_i^*(\phi) : \prod_{j=1}^r \left(\Omega(\Delta_k^t) \otimes (\Omega_X \otimes_{\mathcal{O}_X} P_X \otimes_{\mathcal{O}_X} \mathcal{M}_j)|_{U_i}\right) \rightarrow \Omega(\Delta_k^t) \otimes (\Omega_X \otimes_{\mathcal{O}_X} P_X \otimes_{\mathcal{O}_X} \mathcal{N})|_{U_i}$$

indexed by i and satisfying the simplicial relations. Now use Lemma 3.6 to obtain $\sigma^*(\phi)$. Properties (i-iii) follow from Lemma 5.7.

References

[EGA I] A. Grothendieck and J. Dieudonné, “Éléments de Géométrie Algébrique I,” Springer, Berlin, 1971.

[EGA IV] A. Grothendieck and J. Dieudonné, “Éléments de Géométrie Algébrique IV,” Publ. Math. IHES 32 (1967).

[Bo] R. Bott, “Lectures on Characteristic Classes and Polarizations”, Lecture Notes in Math. 279, Springer, Berlin, 1972.

[Ha] R. Hartshorne, “Algebraic Geometry,” Springer-Verlag, 1977.

[HY] R. Hüb and A. Yekutieli, Adelic Chern forms and applications, Amer. J. Math. 121 (1999), 797-839.

[HS] V. Hinich and V. Schechtman, Deformation theory and Lie algebra homology II, Algebra Col. 4 (1997), 291-316.

[Ko] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216.

[NT] R. Nest and B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math. 5 (2001), no. 4, 599-635.

[Ye1] A. Yekutieli, The Continuous Hochschild Cohomology of a Scheme, Canadian J. Math. 54 (2002), 1319-1337.

[Ye2] A. Yekutieli, Continuous and Twisted L-infinity Morphisms, to appear in J. Pure Appl. Algebra, eprint [math.QA/0502137](http://arxiv.org)

[Ye3] A. Yekutieli, Deformation Quantization in Algebraic Geometry, Adv. Math. 198 (2005), 383-432 (Michael Artin Volume).

[Ye4] A. Yekutieli, An Averaging Process for Unipotent Group Actions, eprint [math.AG/0505170](http://arxiv.org)

Department of Mathematics, Ben Gurion University, Be’er Sheva 84105, Israel.

E-mail address: amyekut@math.bgu.ac.il