Viscosities, Free Energies of Activation and their Excess Properties in the Binary Mixtures of Some Monoalkanolamines with Acetonitrile between 303.15 and 323.15 K: Experimental and Correlative Approach

Muhammad A. R. Khan*, M. Mehedi Hasan Rocky*, Md. Ariful Islam, Faisal I. Chowdhury*, M. Shamsuddin Ahmed and Shamim Akhtar*
Department of Chemistry, University of Chittagong, Chattogram-4331, Bangladesh
*Department of Natural Science, Port City International University, Chattogram, Bangladesh.

Abstract

Viscosities (η) of three binary non-aqueous systems of ACN + MEA, + MMEA and + MEEA have been measured in the whole range of compositions at temperatures ranging between 303.15 and 323.15 K at an interval of 5 K. At different compositions, deviations in viscosity (Δη), free energy (ΔG‡) of activation for viscous flow along its excess values (ΔG‡E) were calculated from experimental ρ and η data. For all systems, η vs. x2 initially changed very slowly, but with the increment of solute concentration η were found to rise quite rapidly. The values of Δη were largely positive and they formed a sharp maximum invariably at the highly alkanolamine-rich regions. All positive values of Δη followed the increasing order as: ACN + MMEA > ACN + MEA > ACN + MEEA. The order of ΔG‡E at the maximum point was ACN + MMEA > ACN + MEA > ACN + MEEA. For the correlative model, zero parameter relations: Bingham, Kendall- Munroe, Gambill, and Eyring relations, one parameter relations: Hind, Grunberg-Nissan, Frenkel, Katti-Chaudhri, Tamura Kurata and two as well as three parameter-based models: Heric, Ausländer, McAllister (3-body) and McAllister (4-body) Equation and the Jouyban-Acree model (JA) were employed to correlate viscosities. Ausländer equation fit the best for: ACN + MEA. McAllister 4-body fit the best for ACN + MMEA and ACN + MEEA. All the above results were attempted to be interpreted in terms of the strength and order of self-association, intra- as well as intermolecular hydrogen bonding via OH···O or OH···N and the effect due to steric hindrance of the concerned alkanolamine molecules and interstitial accommodation of ACN into alkanolamine network.

Keywords: Viscosity, Deviation in viscosity, Excess free energy of activation for viscous flow, Correlative model, Alkanolamine, Cross H-bonding.

1. Introduction

Nowadays, global warming is a burning environment issue. Greenhouse gases, especially, CO₂ were responsible. Due to human activities, emission of CO₂ is increasing day by day [1]. Scientists all over the world are ceaselessly trying to find the ways to get rid of this problem. For carbon capture [2], utilization and storage (CCUS) and to make effective absorption columns they amass data of...
alkanolamine systems [3–5]. A good number of pure alkanolamines, important physical properties, such as density, viscosity, thermal conductivity and heat capacity have already been studied [6–15]. Density, viscosity and some excess properties of aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), monomethylethanolamine (MMEA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA), ethyldiethanolamine (EDEA), diethylethanolamine (DEEA) have been studied by several researchers [16,17,26,27,18–25]. Also, densities and viscosities of aqueous solutions of some blended amines have been reported [28–30]. These observations of these data are in agreement with our findings. Our goal is to fill the gap between present status and scientists’ expectations for research and development. For this purpose, we combat with CO₂ (searching absorber for making carbon capture machine) to reduce carbon level at atmosphere.

This report is a continuation of our systematic study on thermodynamic, optical and transport properties of binary mixtures of organic liquids including alkanols, amines, alkanolamines, etc. in aqueous and non-aqueous media [31–40]. We have reported densities, excess molar volumes, apparent molar volumes, partial molar volumes, thermal expansivities and their excess and/or deviation properties of alkanolamine in aqueous media [27]. At present, we are going to extend our study of alkanolamines in non-aqueous media where a literature survey revealed that no work has yet to be done with alkanolamines except for the paper we reported earlier about volumetric properties and refractive indices [41]. In this paper, we are going to report viscosities (η), deviation in viscosities (Δη), the free energy of activation for viscous flow (ΔG‡) and their excess (ΔG‡E) properties for the binary mixtures of ACN + MEA, ACN + MMEA and ACN + MEEA between 303.15 K and 323.15 K at 5 K interval. Liquid viscosity depends upon temperature which was pointed out first by J. deGuzmann Carrancio in 1913. It requires the requisite amount of energy to surmount the barrier in the flow process. The activation energy for viscous flow varies with molecular interactions present in the components of the liquids/liquid mixtures. It has been observed that significant specific interactions are present in the aqueous solutions of such bipolar compounds. For this reason, η, Δη, ΔG‡ and ΔG‡E have been discussed with a range of temperatures.

Viscosity is a very useful property for the design of transport and process equipment in the chemical industries [42]. With the increased popularity of process and reservoir simulators, there is always an acute need for consistent and reliable data for viscosity calculations. Many correlations and prediction methods have until now been developed for the estimation of the viscosity of liquid mixtures. Generally, there are two different types of methods for this purpose: one is the predictive approach and the other is the correlative approach [43]. Correlative approaches usually lead to better results, even though some optimization techniques should be involved for the determination of interaction parameters (one or more). There are also other methods for estimating the viscosity of liquid mixtures that can be classified as semi-theoretical and empirical models [44]. A comparison of experimental data with their calculated values from various theoretical models of liquid mixtures is very useful from different points of view: i) it suggests which model is more suitable to the characteristics of the liquid system, ii) it may indicate which part should be improved in the equation and iii) it may allow the identification of some models as a convenient reference for the deviations observed [45]. In the present investigation, theoretical viscosities of non-aqueous binary systems: ACN + MEA, + MMEA and + MEEA have been evaluated using six standard models and the relative merits were analyzed. These estimations were made from correlative methods involving zero parameter relations: Bingham, Kendall- Munroe, Gambill, and Eyring relations; one parameter relations: Hind, Grunberg-Nissan, Frenkel, Wijk, Katti-Chaudhri, Tamura Kurata and two and three parameter based models: Heric, Ausländer, McAllister (3-body) and McAllister (4-body) equation and the Jouyban-Acree model (JA) were employed to correlate viscosities on the basis of experimental data.
2. Experimental Section

Acetonitrile (ACN) and different alkanolamines were used for the preparation of the binary solution. Monomethylethanolamine (MMEA) and monoethylethanolamine (MEEA) were procured from Merck-Schuchardt and monoethanolamine (MEA) was obtained from Aldrich Chemical Co. Ltd. Table 1 lists the specification of chemicals used in the present study.

Liquids	Molecular Formula	Source	CAS No.	Initial Purity (Mass Fraction) %	Molar Mass (g·mol⁻¹)	B.P. in °C
Acetonitrile (ACN)	C₂H₃N	Aldrich	75-05-8	>99.5	41.0519	82
Monoethanolamine (MEA)	C₂H₇NO	Aldrich	141-43-5	>99	61.0831	170
Monometylethanolamine (MMEA)	C₃H₉NO	Merck	109-83-1	>98	75.1097	259
Monoethylethanolamine (MEEA)	C₄H₁₁NO	Merck	110-73-6	>97	89.1362	169-170

ACN and MEA were used without further treatment but MMEA and MEEA were used after distillation. The middle portion of distillation was taken to prepare solutions. All the chemicals were kept under molecular sieves (4 Å) for 2-3 weeks prior to use.

Solutions of different alkanolamines with ACN at different compositions were made by the method of dilution using a Metler Toledo (Model: SAG285) electronic balance with an accuracy of ± 0.01 mg. In order to measure the viscosity of binary solutions at different compositions, the amount of each component used was later converted into its mole fraction. Special caution was taken to prevent evaporation and also the introduction of moisture into the experimental samples. Viscosities were measured using an automated SVM 3000 Anton Paar rotational Stabinger Viscometer. The temperature was adjusted automatically and calibrated with Millikelvin Thermometer, MKT controlled up to ± 0.005 K. Reproducibility of viscosity measurement was estimated less than ± 0.35 %.

In order to correlate measured \(\eta \), general polynomial equation has been used:

\[
\eta = \sum_{i=0}^{n} a_i x_2^i
\]
(1)

Here, \(a_i \) is the fitting coefficient and \(x_2 \) be the mole fraction of alkanolamines.

The theoretical viscosities \(\eta_{id} \) of the mixtures were calculated by using the relation,

\[
\eta_{id} = \exp \left(x_1 \ln \eta_1 + x_2 \ln \eta_2 \right)
\]
(2)

The deviation in viscosity \((\Delta \eta) \) was then calculated by subtracting the theoretical viscosity from the observed value of \(\eta \), i.e,

\[
\Delta \eta = \eta - \eta_{id}
\]
(3)

And deviation in viscosity, \(\Delta \eta \), has been correlated by Redlich-Kister polynomial equation of the
form:
\[\Delta \eta = x_2 (1 - x_2) \sum_{i=0}^{n} A_i (1 - 2x_2)^{i-1} \]
(4)

with standard deviation, \(\sigma \), that has been calculated as follows:
\[\sigma(Y) = \left[\frac{\sum \left(\eta_{exp} - \eta_{cal} \right)^2}{n - p} \right]^{\frac{1}{2}} \]
(5)

Here, \(A_i \) is the i-th fitting coefficient and the other terms have their usual significance. And \(Y \) represents \(\eta \) or \(\Delta \eta \), \(n \) the number of measurements and \(p \) the number of coefficients.

Eyring and co-workers [46] using absolute reaction rate theory and partition functions, correlated viscosity (\(\eta \)) as follows:
\[\eta = \frac{kN}{V_m} \exp \frac{\Delta G^\ddagger}{RT} \]
(6)

where, \(\Delta G^\ddagger \) = Free energy of activation per mole for viscous flow, \(k \) = Planck’s constant, \(N \) = Avogadro’s number, \(V_m \) = The molar volume for pure liquids or mixture, \(R \)=Molar gas constant and \(T \)=Absolute temperature. Since, \(\Delta G^\ddagger = \Delta H^\ddagger - T \Delta S^\ddagger \), eq. (37) reduces to,
\[\ln \left(\frac{\eta_{exp}}{\eta_{cal}} \right) = \frac{\Delta H^\ddagger}{RT} \frac{\Delta S^\ddagger}{R} \]
(7)

where, \(\Delta H^\ddagger \) = The enthalpy of activation for mole and \(\Delta S^\ddagger \) The entropy of activation per mole for viscous flow. A plot \(\ln \left(\frac{\eta_{exp}}{\eta_{cal}} \right) \) vs. \(\frac{1}{T} \) will give a straight line. The slope and intercept \(\Delta H^\ddagger \) and \(\Delta S^\ddagger \) can be easily calculated. And the free energy of activation (\(\Delta G^\ddagger \)) for viscous flow has been calculated by using the simple thermodynamic relation,
\[\Delta G^\ddagger = \Delta H^\ddagger - T \Delta S^\ddagger \]
(8)

And the excess free energy of activation (\(\Delta G^{\ddagger E} \)) for viscous flow was calculated as:
\[\Delta G^{\ddagger E} = \Delta G^\ddagger - (x_1 \Delta G^\ddagger_1 + x_2 \Delta G^\ddagger_2) \]
(9)

3. Results and discussion

3.1. Viscosities (\(\eta \))

The viscosities, \(\eta \), of pure acetonitrile and alkanolamines at different temperatures along with their available literature values are given in Table 2.
Table 2: Experimental values with literature

Temp. T / K	ACN	MEA	MMEA	MEEA				
	This Work*	Lit.#	This Work*	Lit.#	This Work*	Lit.#		
303.15	3.324	0.3308[47]	152.4	15.200[54]	89.60	8.535[57]	98.43	9.64[60]
	0.3307[48]	0.3307[49]						
	0.35[50]	0.326[51]						
	0.3485[52]	0.333[53]						
308.15	3.185	0.3165[48]	123.1	11.966[54]	72.81	7.014[57]	79.34	7.96[60]
	0.319[53]	0.3285[52]						
313.15	3.077	0.2991[47]	100.7	9.702[54]	60.50	5.841[57]	65.30	6.51[60]
	0.3035[48]	0.3005[49]						
	0.3102[52]							
318.15	2.932	0.2912[48]	83.3	7.914[54]	50.91	4.919[57]	54.54	5.32[60]
323.15	2.822	0.2720[47]	69.59	6.89[55]	43.03	4.186[57]	45.89	4.28[60]
	0.2746[49]							

*Units: $10^4 \eta / \text{kg m}^{-1}\text{s}^{-1}$, *Units: $\eta / \text{cP or mPa.s}$ (1 cP = 1 mPa.s = $10^{-3} \text{kg} \cdot \text{m}^{-1}\text{s}^{-1}$)

The observed η values agreed quite satisfactorily with the available literature data. η for the binary mixtures of ACN+MEA, + MMEA and +MEEA measured between 303.15 K and 323.15 K at 5 K intervals are summarized in Table 3.
Table 3: Viscosities, $\eta \times 10^4$ kg m$^{-1}$ s$^{-1}$ and deviations in viscosities, $\Delta \eta \times 10^4$ kg m$^{-1}$ s$^{-1}$ of ACN + MEA, + MMEA and + MEEA systems for different molar ratios at different temperatures.

x_2	η (303.15)	$\Delta \eta$ (303.15)	H (308.15)	$\Delta \eta$ (308.15)	η (313.15)	$\Delta \eta$ (313.15)	η (318.15)	$\Delta \eta$ (318.15)	η (323.15)	$\Delta \eta$ (323.15)
0.0000	0.3324	0.0000	0.3185	0.0000	0.3077	0.0000	0.2932	0.0000	0.2822	0.0000
0.0576	0.4563	0.0420	0.4183	0.0252	0.4046	0.0024	0.4031	0.0475	0.3785	0.0391
0.0877	0.3655	-0.0994	0.3569	-0.0819	0.3432	-0.0747	0.3296	-0.0637	0.3175	-0.0563
0.1465	0.3561	-0.2261	0.3652	-0.1789	0.3397	-0.1732	0.3074	-0.1713	0.3014	-0.1499
0.1959	0.5062	-0.1970	0.4954	-0.1563	0.4499	-0.1595	0.4023	-0.1625	0.3850	-0.1437
0.2492	0.8148	-0.0475	0.7532	-0.0386	0.6768	-0.0572	0.6085	-0.0667	0.5649	-0.0623
0.3005	1.2425	0.1932	1.1084	0.1533	0.9934	0.1156	0.8971	0.0955	0.8165	0.0772
0.3509	1.7764	0.5041	1.5518	0.4036	1.3906	0.3440	1.2560	0.3072	1.1295	0.2606
0.3999	2.3945	0.8598	2.0661	0.6926	1.8511	0.6095	1.6668	0.5489	1.4879	0.4711
0.4516	3.1438	1.2735	2.6905	1.0314	2.4082	0.9212	2.1561	0.8270	1.9144	0.7144
0.4990	3.9119	1.6698	3.3307	1.3578	2.9754	1.2210	2.6462	1.0886	2.3409	0.9441
0.5504	4.8266	2.0973	4.0917	1.7112	3.6427	1.5437	3.2130	1.3631	2.8326	1.1855
0.5998	5.7813	2.4843	4.8827	2.0311	4.3264	1.8327	3.7834	1.6009	3.3247	1.3951
0.6490	6.8023	2.8225	5.7227	2.3094	5.0395	2.0788	4.3678	1.7946	3.8249	1.5657
0.6990	7.9092	3.0905	6.6242	2.5267	5.7875	2.6267	4.9697	1.9277	4.3345	1.6826
0.7498	9.1042	3.2519	7.5840	2.6505	6.5615	2.3533	5.8507	1.9751	4.8438	1.7229
0.8008	10.3751	3.6222	8.5864	2.6421	7.3416	2.3140	6.1850	1.9082	5.3365	1.6614
0.8501	11.6725	3.8033	9.5874	2.4696	8.0881	2.1170	6.7522	1.7082	5.7855	1.4814
0.8999	13.0542	2.6625	10.6257	2.0871	8.8237	1.7196	7.3004	1.3417	6.2023	1.1532
0.9499	14.5165	1.9344	11.6909	1.4405	9.5320	1.0743	7.8182	0.7741	6.5737	0.6471
1.0000	15.2400	0.0000	12.3100	0.0000	10.0730	0.0000	8.3300	0.0000	6.9590	0.0000

ACN + MMEA

0.000 0.332 0.000 0.319 0.000 0.308 0.000 0.293 0.000 0.282 0.000
0.049 0.383 -0.008 0.366 -0.006 0.355 -0.002 0.345 0.008 0.331 0.009
0.098 0.461 0.001 0.434 0.001 0.413 0.000 0.395 0.007 0.376 0.007
0.150 0.551 0.006 0.513 0.004 0.479 -0.002 0.448 -0.002 0.423 -0.002
0.199 0.640 0.001 0.595 0.002 0.550 -0.006 0.504 -0.013 0.473 -0.012
0.247 0.746 -0.004 0.693 0.003 0.636 -0.006 0.578 -0.016 0.539 -0.014
0.296	0.893	0.011	0.826	0.021	0.756	0.012	0.684	0.000	0.634	0.001
0.350	1.128	0.076	1.034	0.082	0.941	0.069	0.849	0.053	0.780	0.048
0.400	1.455	0.213	1.314	0.200	1.187	0.174	1.067	0.148	0.970	0.131
0.449	1.900	0.440	1.690	0.391	1.509	0.336	1.349	0.292	1.213	0.253
0.500	2.519	0.792	2.203	0.679	1.942	0.577	1.723	0.500	1.531	0.428
0.550	3.277	1.245	2.825	1.046	2.459	0.878	2.161	0.753	1.901	0.640
0.599	4.201	1.807	3.576	1.498	3.075	1.241	2.677	1.054	2.332	0.887
0.650	5.279	2.450	4.444	2.009	3.780	1.648	3.259	1.384	2.814	1.156
0.700	6.440	3.104	5.374	2.526	4.527	2.052	3.868	1.705	3.316	1.415
0.750	7.612	3.682	6.307	2.979	5.272	2.402	4.468	1.975	3.807	1.631
0.800	8.712	4.079	7.175	3.284	5.959	2.628	5.017	2.142	4.253	1.759
0.850	9.595	4.128	7.864	3.311	6.502	2.634	5.446	2.128	4.599	1.740
0.900	10.080	3.635	8.230	2.905	6.789	2.299	5.670	1.843	4.777	1.500
0.944	10.020	2.582	8.157	2.056	6.730	1.620	5.623	1.290	4.736	1.047
1.000	8.960	0.000	7.281	0.000	6.047	0.000	5.091	0.000	4.303	0.000

ACN + MEEA

0.0000	0.3324	0.0000	0.3185	0.0000	0.3077	0.0000	0.2932	0.0000	0.2822	0.0000
0.0499	0.4280	0.0344	0.3815	0.0076	0.3517	-0.0067	0.3233	-0.0160	0.3010	-0.0233
0.1000	0.5141	0.0476	0.4616	0.0223	0.4220	0.0044	0.3873	-0.0055	0.3581	-0.0149
0.1500	0.6117	0.0591	0.5633	0.0474	0.5159	0.0293	0.4769	0.0223	0.4424	0.0136
0.1997	0.7361	0.0822	0.6896	0.0843	0.6314	0.0651	0.5861	0.0605	0.5453	0.0528
0.2498	0.8996	0.1247	0.8448	0.1337	0.7697	0.1097	0.7131	0.1045	0.6628	0.0964
0.2998	1.1080	0.1901	1.0290	0.1939	0.9299	0.1610	0.8555	0.1512	0.7911	0.1400
0.3501	1.3660	0.2775	1.2450	0.2633	1.1140	0.2174	1.0150	0.1991	0.9302	0.1810
0.3997	1.6700	0.3823	1.4900	0.3386	1.3210	0.2777	1.1890	0.2458	1.0780	0.2177
0.4495	2.0220	0.4976	1.7650	0.4136	1.5530	0.3382	1.3840	0.2930	1.2380	0.2495
0.4986	2.4150	0.6147	2.0680	0.4855	1.8100	0.3987	1.5980	0.3386	1.4110	0.2774
0.5500	2.8720	0.7293	2.4200	0.5531	2.1100	0.4587	1.8480	0.3844	1.6110	0.3027
0.6001	3.3620	0.8229	2.7980	0.6048	2.4360	0.5116	2.1210	0.4266	1.8280	0.3236
0.6463	3.8540	0.8846	3.1810	0.6366	2.7680	0.5519	2.4010	0.4616	2.0510	0.3397
0.7000	4.4760	0.9141	3.6720	0.6480	3.1950	0.5839	2.7620	0.4929	2.3410	0.3532
x_2	ΔG^f	ΔG^{fE}	ΔG^i	ΔG^{iE}	ΔG^j	ΔG^{jE}	ΔG^k	ΔG^{kE}		
------	--------------	----------------	-------------	----------------	------------	---------------	------------	---------------		
0.000	9.561	0.000	9.628	0.000	9.694	0.000	9.761	0.000		
0.058	10.332	0.198	10.411	0.225	10.489	0.252	10.568	0.278		
0.088	9.850	-0.583	9.934	-0.543	10.018	-0.503	10.102	-0.463		
0.147	9.861	-1.157	9.906	-1.141	9.950	-1.125	9.995	-1.109		
0.196	10.718	-0.792	10.708	-0.818	10.699	-0.843	10.690	-0.868		
0.249	11.866	-0.174	11.824	-0.219	11.781	-0.263	11.738	-0.308		
0.301	12.894	0.344	12.839	0.300	12.784	0.256	12.729	0.213		
0.351	13.775	0.723	13.716	0.688	13.657	0.653	13.597	0.619		
0.400	14.519	0.979	14.458	0.955	14.397	0.932	14.336	0.908		
0.452	15.206	1.151	15.143	1.139	15.080	1.127	15.017	1.115		
0.499	15.765	1.240	15.699	1.237	15.634	1.234	15.568	1.231		
0.550	16.313	1.275	16.242	1.281	16.171	1.286	16.100	1.292		
0.600	16.792	1.263	16.714	1.274	16.636	1.286	16.558	1.297		
0.649	17.231	1.213	17.144	1.228	17.057	1.243	16.970	1.258		
0.699	17.647	1.131	17.548	1.147	17.449	1.164	17.350	1.180		

Table 4: Free energy, ΔG^f/kJ.mol$^{-1}$ and excess free energy, ΔG^{fE}/kJ.mol$^{-1}$ of activation for ACN + MEA, + MMEA and + MEEA systems for different molar ratios at different temperatures.
0.750	18.041	1.020	17.927	1.035	17.814	1.050	17.700	1.064	17.587	1.079
0.800	18.411	0.883	18.280	0.893	18.149	0.904	18.017	0.914	17.886	0.925
0.850	18.747	0.728	18.596	0.731	18.444	0.734	18.292	0.737	18.141	0.740
0.900	19.065	0.551	18.890	0.543	18.714	0.534	18.538	0.526	18.362	0.518
0.950	19.362	0.350	19.158	0.327	18.954	0.303	18.750	0.280	18.546	0.257
1.000	19.511	0.000	19.317	0.000	19.123	0.000	18.930	0.000	18.736	0.000

ACN + MMEA

0.000	9.561	0.000	9.628	0.000	9.694	0.000	9.761	0.000	9.828	0.000
0.049	9.957	-0.061	10.047	-0.027	10.136	0.007	10.226	0.042	10.316	0.076
0.098	10.473	-0.004	10.530	0.010	10.587	0.023	10.645	0.037	10.702	0.050
0.150	10.979	0.021	11.000	0.010	11.020	-0.001	11.041	-0.012	11.061	-0.023
0.199	11.416	0.004	11.415	-0.017	11.414	-0.038	11.413	-0.059	11.412	-0.081
0.247	11.854	-0.007	11.843	-0.026	11.833	-0.046	11.822	-0.066	11.811	-0.085
0.296	12.358	0.036	12.343	0.024	12.328	0.012	12.313	-0.001	12.298	-0.013
0.350	12.995	0.176	12.974	0.170	12.953	0.164	12.932	0.158	12.911	0.152
0.400	13.679	0.391	13.646	0.384	13.613	0.378	13.579	0.372	13.546	0.366
0.449	14.394	0.648	14.344	0.637	14.294	0.625	14.244	0.614	14.194	0.602
0.500	15.149	0.927	15.079	0.908	15.009	0.888	14.939	0.869	14.869	0.849
0.550	15.857	1.176	15.767	1.148	15.677	1.121	15.588	1.093	15.498	1.065
0.599	16.531	1.386	16.422	1.351	16.313	1.316	16.204	1.281	16.096	1.246
0.650	17.156	1.540	17.030	1.499	16.904	1.459	16.777	1.418	16.651	1.377
0.700	17.708	1.625	17.567	1.581	17.426	1.537	17.284	1.493	17.143	1.450
0.750	18.181	1.635	18.027	1.590	17.874	1.546	17.720	1.501	17.566	1.457
0.800	18.574	1.562	18.410	1.519	18.247	1.476	18.083	1.433	17.919	1.390
0.850	18.873	1.393	18.701	1.354	18.530	1.315	18.358	1.276	18.186	1.237
0.900	19.054	1.109	18.878	1.077	18.702	1.045	18.526	1.013	18.349	0.981
0.944	19.090	0.739	18.913	0.717	18.737	0.695	18.560	0.672	18.383	0.650
1.000	18.877	0.000	18.709	0.000	18.542	0.000	18.374	0.000	18.206	0.000
Table 5: Coefficients, a_i, of Equation 1, expressing viscosities, η, free energies, ΔG^\ddagger and standard deviation, σ, (Eqn. 5) of ACN + MEA, + MMEA and + MEEA systems for different molar ratios at different temperatures.

System	Property	T (K)	a_0	a_1	a_2	a_3	a_4	σ
ACN + MEA	$\eta \times 10^4$ (kg m$^{-1}$s$^{-1}$)	303.15	0.8077	-8.2322	38.2826	-22.5375	7.7414	4.17E-5
		308.15	0.6674	-5.8806	27.6451	-11.0418	1.3867	1.75E-5
		313.15	0.6407	-5.4882	24.5311	-7.2159	19.2798	2.76E-5
		318.15	0.6719	-6.2051	27.5541	-15.0915	1.3672	1.93E-5
		323.15	0.6029	-5.1792	22.8934	-10.7547	0.6737	1.71E-5
	ΔG^\ddagger	303.15	10.4039	-13.4186	111.3908	-162.8560	74.8970	0.2279
		308.15	10.5724	-14.8026	114.3943	-165.5960	75.6073	0.2203
Temperature (K)	ACN + MMEA (kg·m\(^{-1}\)·s\(^{-1}\))	ACN + MMEA (kJ mol\(^{-1}\))	ACN + MMEA	ACN + MMEA	ACN + MMEA	ACN + MMEA		
----------------	--	-------------------------------	------------	------------	------------	------------		
303.15	0.4873	9.7304	-11.970	13.5459	-10.3941	7.2301		
308.15	0.3766	-0.1212	9.7304	-11.970	13.5459	-10.3941		
313.15	0.2956	0.8826	9.7304	-11.970	13.5459	-10.3941		
318.15	0.2413	1.1868	9.7304	-11.970	13.5459	-10.3941		
323.15	0.2244	0.8826	9.7304	-11.970	13.5459	-10.3941		

ΔG‡ (kJ mol\(^{-1}\))

Temperature (K)	ACN + MMEA (kJ mol\(^{-1}\))	ACN + MMEA	ACN + MMEA	ACN + MMEA	ACN + MMEA
303.15	-1.1970	13.5459	-10.3941	7.2301	0.0241
308.15	-0.1212	9.7304	-11.970	13.5459	-10.3941
313.15	0.8826	9.7304	-11.970	13.5459	-10.3941
318.15	1.1868	9.7304	-11.970	13.5459	-10.3941
323.15	0.8826	9.7304	-11.970	13.5459	-10.3941

η (10^4)

Temperature (K)	ACN + MMEA (kg·m\(^{-1}\)·s\(^{-1}\))	ACN + MMEA (kJ mol\(^{-1}\))	ACN + MMEA	ACN + MMEA	ACN + MMEA	
303.15	9.7015	6.5661	7.4635	9.0951	-14.0582	
308.15	9.8353	5.4789	10.5936	4.3567	-11.6421	
313.15	9.9690	4.3912	13.7264	-0.3858	-9.2242	
318.15	10.1027	3.3045	16.8549	-5.1229	-6.8084	
323.15	10.2365	2.2165	19.9886	-9.8667	-4.3897	0.0459

ΔG‡ (kJ mol\(^{-1}\))

Temperature (K)	ACN + MMEA (kJ mol\(^{-1}\))	ACN + MMEA	ACN + MMEA	ACN + MMEA	ACN + MMEA	
303.15	9.7015	6.5661	7.4635	9.0951	-14.0582	
308.15	9.8353	5.4789	10.5936	4.3567	-11.6421	
313.15	9.9690	4.3912	13.7264	-0.3858	-9.2242	
318.15	10.1027	3.3045	16.8549	-5.1229	-6.8084	
323.15	10.2365	2.2165	19.9886	-9.8667	-4.3897	0.0459
Correlating the concentration dependence of η with the polynomial Equation 1, relevant coefficients and standard deviations as obtained by Eqn. 5 are shown in Table 5.

![Graphs showing viscosity vs. mole fraction](image)

Figure 1: Viscosities, η of (a) ACN + MEA, (b) ACN + MMEA, (c) ACN + MEEA systems against mole fraction, x_2 at 303.15 K (●), 308.15 K(▲), 313.15 K(●), 318.15 K (×) and 323.15 K(■) and (d) comparative curves of ACN + MEA(●), + MMEA(●) and + MEEA(■) at 303.15 K and curves of ACN + MEA (●), + MMEA (▲) and + MEEA(×) at 323.15 K for different molar ratios. Solid lines represent polynomial fitting values.

The values of η have been plotted in Figure 1(a-c). From Figure 1(a), it can be observed that with the addition of MEA to ACN, the initial rise of η up to $x_2 = 0.25$ was apparently very poor and the effect of temperature on η also seemed to be small. On further addition of MEA, η rose sharply, and with the rising of concentration of MEA, temperature effect increased. On the other hand, Figure 1(b) shows that η for the mixtures of ACN+MMEA ran almost linearly up to about $x_2 = 0.3$, and likewise, the effect of temperature also appeared to be insignificant in this region. But beyond that, η increased in a forking manner up to $x_2 = 0.85$ and afterwards a well-defined maximum was formed nearly at $x_2 = 0.9$. Then, again η decreased to reach its value. Thus, at all concentrations where, $x_2 > 0.8$, isotherms of η showed significant variations for this particular system. As Figure 1(c) shows, the addition of MEEA to ACN η initially went close up to $x_2 = 0.25$ as in ACN + MEA. Above this concentration, η rose again rather sharply but this time forming concave curves with respect to the composition axis. With ACN+MMEA, the effect of temperature on η was also quite large in the solute-rich region. Figure 1(d) is plotted to show the comparative curves of η vs. x_2 at 303.15 K and 323.15 K. For the present systems, the following characteristics were observed: (a) Up to $x_2 = 0.25$, viscosities apparently were very close to each other with more or less linear fashion for all the systems. But, beyond this composition η curves were well separated from each other. (b) For the mixtures of ACN+MMEA, the formation of a maximum was distinct at $x_2 = 0.9$, but there was no maximum for
ACN+MEEA. (c) The increasing order of η was as follows: ACN + MEA > ACN+MMEA > ACN+MEEA. (d) $\frac{d\eta}{dx_2}$ values were negative for all the systems and large in magnitude, especially above $x_2 \approx 0.6$.

As alkanolamines were generally associated, viscosities of the pure liquids under the present investigation were thought to be influenced mainly by the following factors: strength of self-association, molar mass, size and shape of the molecules/flowing species as well as their steric hindrance. While the first four factors were said to enhance the viscosity of these aminoethanols, the last one was usually reduced η by decreasing the capacity of self-association. It is well known that the steric hindrance due to alkyl groups in the alkanolamines follows the order: $\text{H} < -\text{CH}_3 < -\text{C}_2\text{H}_5$. Considering structural features for MEA, MMEA and MEEA, their self-association though thought to be comparable, steric hindrance affected the respective η values significantly. Eventually, the order of variation η has to follow: ACN + MEA > ACN+MMEA > ACN+MEEA.

3.2. Deviations in viscosity ($\Delta\eta$)

Deviations in viscosity ($\Delta\eta$) for the systems of ACN + MEA, + MMEA and + MEEA were calculated according to Eqn. 3 at different temperatures between 303.15 K to 323.15 K as presented in Table 3. All the $\Delta\eta$ values were fitted well to the Redlich-Kister equation (Eqn. 4). The coefficients along with the standard deviations (Eqn. 5) are as listed in Table 6. Figure 2(a-c) represents the plots of $\Delta\eta$ of ACN + MEA, + MMEA and + MEEA, respectively at different temperatures as a function of mole fraction of alkanolamines.

In the highly ACN-rich region [Figure 2(a)], the magnitudes of $\Delta\eta$ were small negative with a shallow minimum nearly at $x_2 = 0.1$. Then, $\Delta\eta$ rose sharply and showed well defined maximum at $\sim x_2 = 0.75$. The variation patterns of $\Delta\eta$ for ACN + MMEA and ACN + MEEA [Figure 2(b-c)] were somehow more or less similar in nature. In both cases, changes in $\Delta\eta$ with solute concentration were found apparently negligible, particularly at lower mole fractions of solutes. The (+)ve $\Delta\eta$ rose sharply after $x_2 = 0.4$ and $x_2 = 0.2$ exhibiting maxima at $\sim x_2 = 0.85$ and 0.7 for ACN+MMEA and ACN+MEEA, respectively. The effect of temperature was noticeable at or around the maximum. Figure 2(d) shows the plots of deviations in viscosity at 303.15 K against the mole fraction of alkanolamines for comparison. The order of increasing $\Delta\eta$ at least at the composition of maximum was: ACN+MMEA > ACN+MEA > ACN+MEEA. It was thought that in the solute-rich region alkanolamines were associated through H-bonding via OH···O or OH···N, favourably at low temperatures. But, at higher temperatures, these associated structures became mostly segregated or broken down into smaller species, so that all the η values were lowered down. Previously, Kipkemboi and Easteal [47] have found that the addition of BuOH or tert-butylation to H$_2$O made viscosities to rise sharply to form large maxima, but the maxima were at compositions, which were usually in the highly water-rich regions. They have explained this by the formation of the so-called ‘associated complexes’ via H-bonding of solutes with water. Earlier [48,49] the concept of ‘associated complex’ formation was also used to describe the viscosity maxima observed for aqueous mixtures of different organic solutes. However, for the present systems, all the $\Delta\eta$ vs. x_2 curves were showing their asymmetric sharp maxima in the solute-rich regions. Obviously, some factors other than cross H-bonding between acetonitrile and alkanolamines might have to reinforce them. In this regard, any factor that favoured the formation of bulkier species in the solute-rich region should be considered important. At this stage, due to the interstitial accommodation effect, there was a high possibility of the formation of bulkier species, whereby the smaller ACN molecules were to remain trapped inside the network structures of alkanolamines so that, all the flowing species were not only becoming bulkier but were also showing the tendency to flow as a whole. Therefore, $\Delta\eta$ vs. x_2 curves were characterized by sharp maxima and they were all in the solute-rich regions of the respective alkanolamines as found experimentally. Again, though MEA was the most associated solute followed by MMEA and MEEA, the flowing species formed with MMEA (due to interstitial accommodation effect) seemed to be the largest as
well as the most bulky. That is why high maxima followed this order: ACN + MMEA > ACN + MEA. On the other hand, due to greater steric hindrance by the –CH₂-CH₃ group of MEEA all the binary flowing species of the system of ACN + MEEA seemed to be least structured. Therefore, for this system the height of maxima of $\Delta\eta$ vs. x_2 curves decreased drastically compared to those of ACN + MEA and ACN + MMEA.

![Figure 2: Deviation in viscosities, $\Delta\eta$ of (a) ACN + MEA, (b) ACN + MMEA, (c) ACN + MEEA systems against mole fraction, x_2 at 303.15 K (●), 308.15 K (▲), 313.15 K (◆), 318.15 K (●) and 323.15 K (■) and (d) comparative curves of ACN + MEA (◆), + MMEA (●) and + MEEA (■) at 303.15 K and curves of ACN + MEA (●), + MMEA (▲) and + MEEA (×) at 323.15 K for different molar ratios. Solid lines represent polynomial fitting values.](image)

3.3. Free energy of activation for viscous flow, ΔG^f and their excess values, ΔG^{fE}

Free energies (ΔG^f) and excess free energies (ΔG^{fE}) of activation for viscous flow for the systems, ACN + MEA, + MMEA and + MEEA, for different molar ratios at different temperatures, are as listed in Table 4. All the ΔG^f vs. x_2 isothermal were fitted to approximate polynomial equations (like Eqn.1 where η is replaced by G^f), whereas ΔG^{fE} have been fitted to the Redlich-Kister equation (as like Eqn.4 where $\Delta\eta$ is replaced by ΔG^{fE}). The relevant coefficients along with the standard deviations of ΔG^f and ΔG^{fE} are listed in Tables 5 and 6, respectively.
Table 6: Coefficients, A_i, of Equation 4, expressing deviation in viscosities, ($\Delta \eta$), excess free energies, (ΔG^{E}) and standard deviation, (σ), of Eqn. 5 of ACN + MEA, + MMEA and + MEEA systems for different molar ratios at different temperatures.

System	Property	T(K)	A_0	A_1	A_2	A_3	A_5	σ
ACN + MEA	$\Delta \eta.10^4$ (kg.m$^{-1}$.s$^{-1}$)	303.15	6.8537	-16.3982	2.4248	-4.9654	15.0868	0.0586
		308.15	5.5469	-13.7228	2.9539	-2.5044	9.4887	0.0340
		313.15	4.9571	-12.9202	3.1560	0.4444	5.3375	0.0194
		318.15	4.4104	-11.3870	1.6173	2.3187	3.9379	0.0254
		323.15	3.8194	-10.0413	1.6538	2.3864	2.8282	0.0234
	ΔG^{E} (kJ.mol$^{-1}$)	303.15	5.4038	-4.5904	-18.5539	-6.4221	16.0168	0.2317
		308.15	5.3892	-5.1536	-18.9482	-5.1585	16.9098	0.2314
		313.15	5.3745	-5.7169	-19.3426	-3.8946	17.8030	0.2314
		318.15	5.3599	-6.2801	-19.7368	-2.6308	18.6958	0.2316
		323.15	5.3453	-6.8432	-20.1309	-1.3672	19.5886	0.2321
ACN + MMEA	$\Delta \eta.10^4$ (kg.m$^{-1}$.s$^{-1}$)	303.15	3.1564	-16.1036	26.6242	-14.2787	0.0470	0.0009
		308.15	2.7077	-13.1277	20.9981	-11.0126	0.0073	0.0004
		313.15	2.3014	-10.8415	16.3633	-8.0517	0.0071	0.0002
		318.15	1.9944	-9.2573	12.9440	-5.4629	0.0001	0.0002
		323.15	1.7088	-7.7482	10.4226	-4.0971	-0.0080	0.0002
ACN + MMEA	ΔG^{E} (kJ.mol$^{-1}$)	303.15	3.6121	-9.8565	2.5528	3.6185	2.0904	0.0420
		308.15	3.5505	-9.7227	1.8340	3.8253	3.1247	0.0334
		313.15	3.4889	-9.5890	1.1150	4.0322	4.1591	0.0248
		318.15	3.4274	-9.4553	0.3962	4.2391	5.1934	0.0163
		323.15	3.3658	-9.3216	-0.3227	4.4460	6.2278	0.0081
ACN + MEEA	$\Delta \eta.10^4$ (kg.m$^{-1}$.s$^{-1}$)	303.15	2.4721	-4.6729	0.9834	2.2705	0.0111	0.0003
		308.15	1.9510	-2.8015	0.3424	0.6280	-0.0064	0.0004
		313.15	1.6010	-2.4179	1.0777	-0.5941	-0.0105	0.0004
		318.15	1.3586	-1.8262	1.0918	-1.2855	0.0042	0.0002
		323.15	1.1126	-1.0537	0.3826	-1.3230	-0.0060	0.0002
ACN + MEEA	ΔG^{E} (kJ.mol$^{-1}$)	303.15	3.1680	-0.8279	-3.6335	1.5249	3.6937	0.0149
		308.15	3.0061	-0.3308	-2.4021	-0.2418	1.0797	0.0060
		313.15	2.8443	0.1662	-1.1708	-2.0086	-1.5341	0.0030
		318.15	2.6825	0.6632	0.0606	-3.7755	-4.1478	0.0118
		323.15	2.5207	1.1602	1.2918	-5.5422	-6.7614	0.0207
Figure 3: Free energy of activation, ΔG^\ddagger of (a) ACN + MEA, (b) ACN + MMEA, (c) ACN + MEEA systems against mole fraction, x_2 at 303.15 K (●), 308.15 K(▲), 313.15 K(♦), 318.15 K(●) and 323.15 K(■) and (d) comparative curves of ACN + MEA (●), + MMEA (▲) and + MEEA (●) at 303.15 K and curves of ACN + MEA (●), + MMEA (▲) and + MEEA (●) at 323.15 K for different molar ratios. Solid lines represent polynomial fitting values.

Figs. 3(a-c) and 4(a-c) represent the variations of ΔG^\ddagger and $\Delta G^{\ddagger E}$ at different temperatures against mole fractions, x_2 for ACN + MEA, ACN + MMEA and ACN + MEEA, respectively. Fig. 3(d) and 4(d) show the comparisons of ΔG^\ddagger and $\Delta G^{\ddagger E}$ at 303.15 K, for these systems, respectively. From Figs. 3(a-d) and 4(a-d), the following characteristics are observed. All the variational patterns of ΔG^\ddagger for the systems were quite similar except for ACN + MMEA, where an ill-defined maximum was observed at the extremely solute-rich region as in Fig. 3(a-c). In all cases, ΔG^\ddagger rose gradually and the temperature effect was significant in the extremely solute-rich region. Figure 3(d) shows all the lines gradually rising in a similar fashion with some exceptions. For ACN + MEA, with the addition of MEA into ACN, the $\Delta G^{\ddagger E}$ value decreased forming a negative lobe with its minimum at $x_2 \approx 0.1$. Afterwards, it rose and formed a positive lobe with a maximum at $x_2 \approx 0.65$. Also, it formed three temperature invariant points at $x_2 = 0.25, 0.6$ and 0.8; otherwise, the effect of temperature was only prominent at the maximum and minimum compositions. For ACN + MMEA system, initially $\Delta G^{\ddagger E}$ ran almost linearly up to $x_2 = 0.25$; beyond this concentration, it rose to give a sharp maximum at $x_2 = 0.8$ and
then fell. The temperature effect was more or less significant at or around the maximum. In the case of ACN + MEEA, a single positive lobe with a maximum at $x_2 = 0.55$ was formed with two temperature invariant points at $x_2 \sim 0.35$ and 0.85. With the temperature rise the values of ΔG^{IE} decreased, i.e., $\Delta \Delta G^{IE} / \delta T$ was negative. Also, at their maxima the values of ΔG^{IE} followed: ACN + MMEA > ACN + MEA > ACN + MEEA.

The positive ΔG^f as well as ΔG^{IE} could be regarded as an additional energy barrier, which the molecules must have to surmount to set them in the flow process. For all the above systems, the larger positive ΔG^{IE} thus led to suggest that for each of the systems, the additional energy barriers were reasonably higher, especially in its alkanolamine-rich regions. Here, due to the interstitial incorporation of smaller ACN into the associated structures of alkanolamines, the flowing species formed were quite bulkier. As a result, they had to encounter larger resistance to flow which was always greater than what was ideally expected.

![Excess free energy of activation](image)

Figure 4: Excess free energy of activation, ΔG^{IE} of (a) ACN + MEA, (b) ACN + MMEA, (c) ACN + MEEA systems against mole fraction, x_2 at 303.15 K (●), 308.15 K (▲), 313.15 K (♦), 318.15 K (●) and 323.15 K (■) and (d) comparative curves of ACN + MEA (▲), + MMEA (♦) and + MEEA (■) at 303.15 K and curves of CN + MEA (●), + MMEA (●) and + MEEA (×) at 323.15 K for different molar ratios. Solid lines represent Redlich-Kister polynomial fitting values.
4. Correlative models

Based upon the linear function of composition (expressed as - volume fraction, mole fraction or mass fraction) ideal mixing relations of the liquid mixture viscosity with zero parameters are given. Models of these kinds found in the literature are Bingham, Kendall-Munroe, Gambill, and Eyring relations. The proposed relations are represented as follows.

Bingham relation (BH):

\[y = x_1 y_1 + x_2 y_2 \] \hspace{1cm} (10)

For mixture viscosity, Kendall-Munroe (KM) proposed the following relation:

\[\ln y = x_1 \ln y_1 + x_2 \ln y_2 \] \hspace{1cm} (11)

where, \(x_1 \) and \(x_2 \) are the mole fractions of the mixture, which holds good for several cases of mixtures consisting of non-polar and non-associated liquids.

Gambill relation (GM)

\[y^{1/3} = x_1 y_1^{1/3} + x_2 y_2^{1/3} \] \hspace{1cm} (12)

Eyring (ER)

\[\ln \eta V = x_1 \ln (\eta_1 V_1) + x_2 \ln (\eta_2 V_2) \] \hspace{1cm} (13)

Where, \(x_1 \) and \(x_2 \) represent the mole fractions of two components and \(y_1 \) and \(y_2 \) represent their viscosities in the pure state.

One parameter-based model is as follows:
For \(\eta \), the Grunberg and Nissan (GN) model suggest [50] the following relation:

\[\ln y = x_1 \ln y_1 + x_2 \ln y_2 + x_1 x_2 G_{12} \] \hspace{1cm} (14)

Where, \(G_{12} \) is an adjustable parameter. As \(G_{12} \) is dependent on the composition of the mixture and temperature, this model is widely applicable with reasonable accuracies, except for aqueous solutions. The temperature variation of this interaction coefficient is found to be similar to that of pure liquid viscosity.

Hind, McLaughlin and Ubbelohde [51] attempted to describe the viscosities of binary liquid mixtures in terms of viscosities of pure liquid components, their mole fraction, and a single parameter attributed to the interaction between them. In literature, the proposed relation is known as Hind’s equation (HND) as shown below:

\[y = x_1^2 y_1 + x_2^2 y_2 + 2x_1 x_2 H_{12} \] \hspace{1cm} (15)

Here, \(H_{12} \) represents an interaction parameter.

Frenkel (FR)

\[\ln y = x_1^2 \ln y_1 + x_2^2 \ln y_2 + x_1 x_2 F_{12} \] \hspace{1cm} (16)

Wijk (WJ)
In this equation, the notation is the same as in the earlier equations. Additionally, ϕ_1 and ϕ_2 are the volume fractions of the components 1 and 2 in the mixture. The interaction coefficient T_{12} is constant at a chosen temperature.

Here, G_{12}, H_{12}, F_{12}, W_{12}, K_{12}, and K_{12} are adjustable parameters for GN, HND, FR, WJ, KC, TK models, respectively and all the symbols have their usual meaning.

Two and three parameter-based models: The two-parameter Heric equation (HRC) is of the following form [52]:

$$
\ln \eta V = x_1 \ln (\eta_1 V_1) + x_2 \ln (\eta_2 V_2) + x_1 x_2 K_{12}
$$

(18)

The McAllister’s multi-body interaction model [53] based on the Eyring theory [54,55] of absolute reaction rates have been widely used to correlate η and v. The McAllister three-body model (MAC3) has been defined as:

$$
\ln y = x_1^2 \ln y_1 + x_2^2 \ln y_2 + x_1 \ln M_1 + x_2 \ln M_2 - \ln (x_1 M_1 + x_2 M_2) + x_1 x_2 \{H_{12} + \\
H_{21}(x_1 - x_2)\}
$$

(20)

where, H_{12} and H_{21} are the requisite adjustable parameters.

The Jouyban-Acree model (JA) [57,58] is used for correlating the viscosities of liquid mixtures at various temperatures. The equation is proposed to be

$$
\ln y_m = x_1 \ln y_{1,T} + x_2 \ln y_{2,T} + x_1 x_2 \sum [j_i (x_1 - x_2)^i] / T
$$

(24)
Table 7: Different correlative models parameter

Systems	T / K	BH	GM	KM	ER				
		σ(%)	AAD%	σ(%)	AAD%	σ(%)	AAD%	σ(%)	AAD%
ACN + MEA	303.15	235.17	153.542	49.476	28.017	32.909	28.665	31.373	27.296
	308.15	192.975	129.278	41.172	24.604	30.110	26.307	28.394	24.859
	313.15	169.806	111.804	39.630	24.464	30.646	26.747	28.967	25.283
	318.15	153.033	98.772	39.017	23.933	31.162	27.150	29.526	25.654
	323.15	131.998	85.058	35.313	22.867	30.144	26.301	28.414	24.752
ACN + MMEA	303.15	122.503	88.935	29.206	25.399	29.202	21.750	28.663	21.287
	308.15	103.659	76.001	26.377	23.160	28.575	21.413	28.003	20.869
ACN + MEEA	313.15	90.640	66.701	24.740	21.637	27.514	20.559	26.895	20.050
	318.15	81.094	59.606	23.645	20.562	26.698	20.135	26.056	19.675
	323.15	71.060	52.581	22.160	19.294	25.821	19.514	25.136	19.017

Systems	T / K	GN	HND	F12	FR					
		σ(%)	AAD%	η12	σ(%)	AAD%	F12	σ(%)	AAD%	
ACN + MEA	303.15	2.328	40.732	20.392	0.259	28.899	16.583	1.975	40.732	20.392
	308.15	2.231	35.323	18.689	0.557	28.706	16.904	1.798	35.323	18.689
	313.15	2.261	37.426	19.943	0.946	38.450	22.184	1.696	37.426	19.943
	318.15	2.211	38.702	19.898	1.069	43.352	24.314	1.552	38.702	19.898
	323.15	2.196	37.036	19.630	1.159	44.417	25.797	1.435	37.036	19.630
ACN + MMEA	303.15	3.017	45.509	33.839	2.134	57.161	43.247	2.054	45.509	33.839
	308.15	2.880	41.875	31.468	1.993	53.195	40.561	1.860	41.875	31.468
	313.15	2.701	39.035	29.359	1.794	48.961	37.388	1.661	39.035	29.359
	318.15	2.561	37.076	27.604	1.617	45.999	35.017	1.481	37.076	27.604
	323.15	2.420	34.471	25.763	1.469	42.430	32.527	1.307	34.471	25.763
ACN + MEEA	303.15	1.028	2.646	2.154	-0.365	18.725	12.426	1.107	2.646	2.154
	308.15	0.905	2.479	2.039	-0.089	15.366	10.863	0.916	2.479	2.039
	313.15	0.952	2.989	1.695	0.192	9.121	6.367	0.825	2.989	1.695
	318.15	0.946	3.765	1.782	0.337	5.973	4.171	0.708	3.765	1.782
	323.15	0.810	4.404	2.438	0.368	5.928	4.300	0.534	4.404	2.438

Systems	T / K	WJK	KC	TK						
		σ(%)	AAD%	σ(%)	AAD%	T12	σ(%)	AAD%		
ACN + MEA	303.15	0.858	40.732	20.392	2.151	39.291	19.920	-0.232	21.408	12.471

where, \(y_{mT} \), \(y_{1,T} \), and \(y_{2,T} \) are the \(\eta \) values at temperature \(T \) for the mixture, components 1 and components 2, respectively, and \(j \) is the relevant model constant.

Correlating ability of each of Eqsns. 10-24 was tested by calculating the percentage of standard deviation, \(\sigma \) and AAD between the experimental and calculated viscosities. The percentage of standard deviation, \(\sigma \) and AAD were calculated for the binary systems: ACN + MEA, + MMEA and + MEEA. The relevant coefficients of Equations 10-24 were obtained by the non-linear regression analysis. Table 7 summarizes all the results obtained. The \(\sigma \) values for the systems are as shown in Figure 5(a-c). Comparison of all these values indicated that the McAllister (4-body) and the Ausländer equations correlated the viscosities excellently. For the systems ACN+MEEA, all the six models were observed outstanding estimation of \(\eta \) values and for ACN+ME system, Ausländer equation predicted \(\eta \) the best. The McAllister (4-body) equation fit the best for: ACN + MMEA and ACN + MEA. The McAllister (4-body) equation for correlating \(\nu \) was better than the results obtained from the McAllister (3-body) equation. It is also to remark that, \(Z_{122} \) parameter in McAllister’s formula represents values practically transitional to the \(Z_{1112} \) and \(Z_{2221} \) parameters except at 323.15 K for ACN+MEA system.

Table 7: Different correlative models parameter

- **Systems**: ACN + MEA, ACN + MMEA, ACN + MEEA
- **T / K**: Various temperatures (303.15 to 323.15 K)
- **BH, GM, KM, ER, GN, HND, F12, FR, WJK, KC, TK**: Correlative models parameters
- **σ(%)**: Standard deviation
- **AAD%**: Average absolute deviation
- **η12**: Viscosity parameter
- **AAD%**: Average absolute deviation
- **F12**: Correlation coefficient
- **σ(%)**: Standard deviation
- **AAD%**: Average absolute deviation
- **T12**: Viscosity parameter
- **σ(%)**: Standard deviation
- **AAD%**: Average absolute deviation
| Systems | T / K | HRC | ACN + MMEA | ACN + MEEA | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | H12 | H21 | σ(%) | AAD % | Z1112 | Z1122 | AAD % | MAC4 | AUS | AAD % |
| ACN + MEA | 303.15 | 2.147 | -0.645 | 33.457 | 15.701 | 1.927 | 10.621 | 33.457 | 15.701 |
| | 308.15 | 2.063 | -0.740 | 29.152 | 14.272 | 1.502 | 7.881 | 29.152 | 14.272 |
| | 313.15 | 2.057 | -0.642 | 31.679 | 15.724 | 1.408 | 6.600 | 31.679 | 15.724 |
| | 323.15 | 2.002 | -0.775 | 28.578 | 14.469 | 1.214 | 5.934 | 28.578 | 14.469 |
| ACN + MEEA | 303.15 | 1.664 | -4.166 | 7.409 | 4.025 | 0.415 | 20.096 | 7.409 | 4.025 |
| | 308.15 | 1.625 | -4.021 | 7.258 | 4.125 | 0.390 | 16.227 | 7.258 | 4.125 |
| | 313.15 | 1.566 | -3.795 | 6.419 | 3.626 | 0.378 | 12.890 | 6.419 | 3.626 |
| | 318.15 | 1.535 | -3.582 | 5.888 | 3.071 | 0.368 | 10.422 | 5.888 | 3.071 |
| | 323.15 | 1.481 | -3.422 | 5.680 | 2.951 | 0.351 | 8.569 | 5.680 | 2.951 |
| ACN + MEEA | 303.15 | 1.439 | 0.368 | 4.373 | 2.804 | 1.749 | 4.281 | 4.373 | 2.804 |
| | 308.15 | 1.331 | 0.419 | 3.472 | 2.129 | 1.552 | 3.467 | 3.472 | 2.129 |
| | 313.15 | 1.262 | 0.108 | 3.209 | 1.695 | 1.253 | 3.262 | 3.209 | 1.695 |
| | 318.15 | 1.222 | 0.014 | 3.536 | 1.690 | 1.093 | 2.899 | 3.536 | 1.690 |
| | 323.15 | 1.136 | 0.161 | 4.727 | 2.326 | 1.026 | 3.261 | 4.727 | 2.326 |

Systems	T / K	Z1112	Z1122	Z2212	σ(%)	AAD %	A21	B12	B21	AAD %	MAC4	AUS	AAD %
ACN + MEA	303.15	0.811	6.296	10.550	25.318	11.699	0.709	1.053	-0.107	11.135	5.547		
	308.15	0.656	5.748	8.566	18.438	8.802	0.751	1.045	-0.101	8.770	4.236		
	313.15	0.499	6.114	7.036	16.436	7.900	0.890	1.080	-0.129	9.289	3.919		
	318.15	0.409	6.183	5.614	16.644	7.932	1.130	1.331	-0.151	11.253	4.447		
	323.15	0.358	5.562	4.903	14.076	6.831	1.086	1.100	-0.142	9.844	3.867		
ACN + MEEA	303.15	0.549	2.256	17.504	3.764	2.348	0.132	-0.245	0.940	5.518	3.539		
	308.15	0.540	1.891	14.336	2.982	1.910	0.131	-0.254	1.100	5.032	3.357		
	313.15	0.498	1.707	11.450	2.815	1.773	0.137	-0.254	1.133	4.602	3.015		
	318.15	0.442	1.606	9.203	3.584	2.102	0.148	-0.253	1.087	4.454	2.997		
	323.15	0.420	1.423	7.629	3.457	2.005	0.153	-0.255	1.147	4.038	2.758		
ACN + MEEA	303.15	0.843	3.544	4.846	2.056	0.965	1.012	2.743	0.044	4.413	2.344		
	308.15	0.871	2.691	4.047	1.080	0.629	1.196	3.235	0.062	1.496	0.808		
	313.15	0.794	2.189	3.760	2.125	1.055	0.728	1.681	0.180	0.642	0.321		
	318.15	0.764	1.798	3.363	3.438	1.633	0.555	1.164	0.325	2.551	1.286		
	323.15	0.728	1.561	2.767	4.745	2.291	1.041	2.349	0.151	2.797	1.546		

Systems	j	$j1$	$j2$	$j3$	σ(%)	MAAD%
ACN + MEA	679.903	-403.437	-1321.527	-1232.844	10.531	4.759
ACN + MEEA	469.416	-1108.349	133.819	-117.874	5.129	3.609
ACN + MEEA	353.180	-44.216	-266.090	-33.026	2.323	1.897

Journal of Applied Science & Process Engineering
Vol. 9, No. 1, 2022

e-iSSN: 2289-7771

1121
Fitting capabilities of simple polynomial equations and viscosity correlations were tested for different degrees of polynomials by calculating the standard percentage deviation, $\sigma%', as:

$$\sigma% = \left[\frac{1}{n-p} \sum \left(100 \times \frac{y_{exp} - y_{cal}}{y_{exp}} \right)^2 \right]^{1/2}$$ \hspace{1cm} (25)

Here, y_{cal} and y_{exp} refer to calculated and experimental ρ, η, and ν. n is the number of data used at each temperature, p is the number of coefficients taken.

The suitability and efficacy of each of the models are expressed by measuring the average absolute deviation percentage, AAD%, as computed as follows:

$$\text{AAD}% = \frac{100}{n} \sum \left(\frac{|y_{exp} - y_{cal}|}{y_{exp}} \right)$$ \hspace{1cm} (26)

Here, y_{cal} and y_{exp} refer to calculated and experimental ρ, η, or ν and n is the number of data used at each temperature.

Mean average absolute deviation percentage, MAAD%: Calculated by taking the temperature average of AAD%s for each system.

Figure 5: Comparative standard percentage deviation, $\sigma %$, for different correlative models: (a) Bingham (BH), Gambill (GM), Kendall- Munroe (KM), and Eyring relations (ER); (b) Grunberg-
Nissan (GN), Hind (HND), Frenkel (FR), Wijk (WJK), Katti-Chaudhri (KC), Tamura Kurata (TK) and (c) Heric (HRC), McAllister (3-body) (MAC3), McAllister (4-body) (MAC4), Ausländer (AUS), and the Jouyban-Acree (JA) models of ACN + MEA, + MMEA and + MEEA systems at 303.15 K.

5. Conclusions

Dynamic viscosities η for binary non-aqueous systems, (i) ACN + MEA, (ii) ACN + MMEA and (iii) ACN + MEEA were measured in the range, $0 \leq x_2 \leq 1$, at 5 different temperatures between 303.15 and 323.15 K. From experimental data of η deviations in viscosities ($\Delta \eta$) were calculated. To get the relevant coefficients (α_i / A_i) and σ, η was correlated to 5-parameter polynomials, whereas, $\Delta \eta$ was fitted to the Redlich-Kister type equations. ΔG_f^η and ΔG_f^{IE} of activation for viscous flow for the studied systems for different molar ratios at different temperatures are also derived. The experimental η were tested to some correlative models (Bingham, Kendall- Munroe, Gambill, and Eyring relations, Hind, Grunberg-Nissan, Frenkel, Wijk, Katti-Chaudhri, Tamura Kurata, Heric, Ausländer, McAllister (3-body) and McAllister (4-body) Equations and the Jouyban-Acree model).

Initially, η vs. x_2 varied very closely, but with the increasing amount of alkanolamines, η lines separated widely. The order of increasing η was: ACN + MEA > ACN + MMEA > ACN + MEEA. Whereas, $\Delta \eta$ lines exhibit slight/no minima in the ACN-rich region but show large maxima in the solute-rich region and vary accordingly.

Analysis of the above results revealed that, when the alkanolamines under consideration were mixed with liquid ACN, all effects due to intra- and intermolecular hydrogen bonding, the substitution of aminic hydrogens by alkyl groups had significantly influenced all types of interactions as well as the structural integrity of the heteromolecular complexes/species formed.

Finally, considerations of all such factors led to conclude that, self-association through both intra- & intermolecular H-bonding of the solutes, cross H-bonding between the ACN and alkanolamines and interstitial accommodation of the ACN into the cavities of the structural networks of associated components, i.e., the alkanolamines were mainly responsible for the variations in all the properties studied.

References

[1] T. Ping, Y. Dong, S. Shen, (2020). Densities, viscosities and spectroscopic study of partially CO2-loaded nonaqueous blends of 2-butoxyethanol with 2-(ethylamino)ethanol and 2-(butyramino)ethanol at temperatures of (293.15 to 353.15) K, J. Mol. Liq. 312, 113389. https://doi.org/10.1016/j.molliq.2020.113389.
[2] K.A. Mumford, Y. Wu, K.H. Smith, G.W. Stevens, (2015). Review of solvent based carbon-dioxide capture technologies, Front. Chem. Sci. Eng. 9, 125–141. https://doi.org/10.1007/s11705-015-1514-6.
[3] M. Fang, N. Yi, W. Di, T. Wang, Q. Wang, (2020). Emission and control of flue gas pollutants in CO2 chemical absorption system – A review, Int. J. Greenh. Gas Control. 93, https://doi.org/10.1016/j.ijggc.2019.102904.
[4] J.G. Vitillo, B. Smit, L. Gagliardi, (2017). Introduction: Carbon Capture and Separation, Chem. Rev. 117, 9521–9523. https://doi.org/10.1021/acs.chemrev.7b00403.
[5] J.P. Nicot, I.J. Duncan, (2012). Review: Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration, Greenh. Gases Sci. Technol. 2, 352–368. https://doi.org/10.1002/ghg.
[6] A.L. Kohl, R. (1997), Richard B., Nielsen, Gas purification., 1395.
[7] T. Chakravarty, U.K. Phukan, R.H. Weilund, (1985). Reaction of acid gases with mixtures of amines, Chem. Eng. Prog.; (United States). 81:4.
[8] B.P. Mandal, M. Kundu, S.S. Bandyopadhyay, (2003). Density and Viscosity of Aqueous Solutions of (N -Methyldiethanolamine + Monoethanolamine), (N -Methyldiethanolamine + Diethanolamine), (2-Amino-2-
methyl-1-propanol + Monoethanolamine), and (2-Amino-2-methyl-1-propanol + Diethanolamine), 703–707.

[9] M.H. Li, K.P. Shan, (2002). Densities and solubilities of solutions of carbon dioxide in water + monoethanolamine + N-methyl diethanolamine, J. Chem. Eng. Data, 37, 288–290. https://doi.org/10.1021/je00007a002.

[10] O.F. Dawodu, A. Meisen, (1996). Degradation of Alkanolamine Blends by Carbon Dioxide, Can. J. Chem. Eng. 74, 960–966. https://doi.org/10.1002/cjce.5450740620.

[11] B. Messaoudi, E. Sada, (1996). Absorption of Carbon Dioxide into Loaded Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol, J. Chem. Eng. JAPAN. 29, 534–537. https://doi.org/10.1252/JCEJ.29.534.

[12] S. Xu, Y.W. Wang, F.D. Otto, A.E. Mather, (1996). Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions, Chem. Eng. Sci. 51, 841–850. https://doi.org/10.1016/0009-2509(95)00327-4.

[13] R.M. DiGuillo, R.J. Lee, S.T. Schaeffer, L.L. Brasher, A.S. Teja, (1992). Densities and Viscosities of the Ethanolamines, J. Chem. Eng. Data, 37, 239–242. https://doi.org/10.1021/je00006a028.

[14] R.M. DiGullio, W.L. McGregor, A.S. Teja, (2002). Thermal conductivities of the ethanolamines, J. Chem. Eng. Data. 37, 242–245. https://doi.org/10.1021/je00006a029.

[15] Y. Maham, L.G. Hepler, A.E. Mather, A.W. Hakin, R.A. Marriott, (1997). Molar heat capacities of alkanolamines from 299.1 to 397.8 K: Group additivity and molecular connectivity analyses, J. Chem. Soc. Faraday Trans. 93, 1747–1750. https://doi.org/10.1039/a607568a.

[16] H. Touhara, S. Okazaki, F. Okino, H. Tanaka, K. Ikari, K. Nakamish, (1982). Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives, J. Chem. Thermodyn. 14, 145–156. https://doi.org/10.1016/0021-9614(82)90026-X.

[17] Y. Maham, T.T. Teng, L.G. Hepler, A.E. Mather, (1994). Densities, excess molar volumes, and partial molar volumes for binary mixtures of water with monoethanolamine, diethanolamine, and triethanolamine from 25 to 80°C, J. Solution Chem. 23, 195–205. https://doi.org/10.1007/1BF00973546.

[18] E.B. Rinker, D.W. Oelschlager, A.T. Colussi, K.R. Henry, O.C. Sandall, (1994). Viscosity, Density, and Surface Tension of Binary Mixtures of Water and N-Methyldiethanolamine and Water and Diethanolamine and Tertiary Mixtures of These Amines with Water over the Temperature Range 20–100°C, J. Chem. Eng. Data. 39, 392–395. https://doi.org/10.1021/je00014a046.

[19] F.I. Chowdhury, M.A.R. Khan, M.A. Saleh, S. Akhtar, (2013). Volumetric properties of some water + monoalkanolamine systems between 303.15 and 323.15 K, J. Mol. Liq. 182, 7–13. https://doi.org/10.1016/j.molliq.2013.03.006.

[20] Y. Maham, T.T. Teng, L.G. Hepler, A.E. Mather, (2002). Volumetric properties of aqueous solutions of monoethanolamine, mono- and diethanolamines at temperatures from 5 to 80 °C I, Thermochim. Acta. 386, 111–118. https://doi.org/10.1016/S0040-6031(01)00812-7.

[21] Y Maham, Y., Teng, T. T., Mather, A. E., & Hepler, L. G. (1995). Volumetric properties of (water+ diethanolamine) systems. Canadian Journal of Chemistry, 73(9), 1514-1519. https://doi.org/10.1139/v95-187.

[22] L. Lebrette, Y. Maham, T.T. Teng, L.G. Hepler, A.E. Mather, (2002). Volumetric properties of aqueous solutions of mono, and diethanolamines at temperatures from 5 to 80 °C II, Thermochim. Acta. 386, 119–126. https://doi.org/10.1016/S0040-6031(01)00813-9.

[23] Y. Maham, L. Lebrette, A.E. Mather, (2002). Viscosities and excess properties of aqueous solutions of mono- and diethanolamines at temperatures between 298.15 and 353.15 K, J. Chem. Eng. Data. 47, 550–553. https://doi.org/10.1021/je015528d.

[24] T.T. Teng, Y. Maham, L.G. Hepler, A.E. Mather, (1994). Viscosity of Aqueous Solutions of N-Methyl diethanolamine and of Diethanolamine, J. Chem. Eng. Data. 39, 290–293. https://doi.org/10.1021/je00014a021.

[25] F.Q. Zhang, H.P. Li, M. Dai, J.P. Zhao, J.P. Chao, (1995). Volumetric properties of binary mixtures of water with ethanolamine alkyl derivatives, Thermochim. Acta. 254, 347–357. https://doi.org/10.1016/0040-
[26] M. Pagé, J.-Y. Huot, C. Jolicoeur, (1993). A comprehensive thermodynamic investigation of water–ethanolamine mixtures at 10, 25, and 40 °C, Can. J. Chem. 71, 1064–1072. https://doi.org/10.1139/v93-142.

[27] M.H. Li, Y.C. Lie, (2002). Densities and Viscosities of Solutions of Monoethanolamine + N-methyl diethanolamine + Water and Monoethanolamine + 2-Amino-2-methyl-1-propanol + Water, J. Chem. Eng. Data. 39, 444–447. https://doi.org/10.1021/JE00015A009.

[28] C.H. Hsu, M.H. Li, (1997). Densities of Aqueous Blended Amines, J. Chem. Eng. Data. 42, 502–507. https://doi.org/10.1021/je960356f.

[29] C.H. Hsu, M.H. Li, (1997). Viscosities of aqueous blended amines, J. Chem. Eng. Data. 42, 714–720. https://doi.org/10.1021/je970029r.

[30] D.P. Hagewiesche, S.S. Ashour, H.A. Al-Ghawas, O.C. Sandall, (1995). Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine, Chem. Eng. Sci. 50, 1071–1079. https://doi.org/10.1016/0009-2509(94)00489-E.

[31] Chowdhury, F. I., Akhtar, S., & Saleh, M. A. (2009). Densities and excess molar volumes of tert-butanol with n-butyliamine, di-n-butyliamine and tri-n-butyliamine. Physics and Chemistry of Liquids, 47(6), 681-692. https://doi.org/10.1080/003191090903131526.

[32] F.I. Chowdhury, M.A. Saleh, (2014). Viscosities and deviations in viscosity of tert-butanol with n-butyliamine, di-n-butyliamine and tri-n-butyliamine, J. Mol. Liq. 191, 156–160. https://doi.org/10.1016/J.MOLLIQ.2013.11.013.

[33] M.S. Rahman, F.I. Chowdhury, M.S. Ahmed, M.M.H. Rocky, S. Akhtar, (2014). Density and viscosity for the solutions of 1-butanol with nitromethane and acetonitrile at 303.15 to 323.15 K, J. Mol. Liq. 190, 208–214. https://doi.org/10.1016/J.MOLLIQ.2013.11.011.

[34] F.I. Chowdhury, M.U. Khandaker, H. Zabed, M.R. Karim, H.A. Kassim, A.K. Arof, (2017). Thermodynamics of Viscous Flow of tert-Butanol with Butylamines: UNIFAC–VISCO, Grunberg–Nissan and McAllister Three Body Interaction Models for Viscosity Prediction and Quantums Chemical (DFT) Calculations, J. Solut. Chem. 2017 465. 46, 1104–1120. https://doi.org/10.1007/S10953-017-0624-9.

[35] F.I. Chowdhury, S. Akhtar, M.A. Saleh, (2010). Viscosities and excess viscosities of aqueous solutions of some diethanolamines, J. Mol. Liq. 155, 1–7. https://doi.org/10.1016/J.MOLLIQ.2010.03.015.

[36] M.A.R. Khan, M. Sohel, M.A. Islam, F.I. Chowdhury, S. Akhtar, (2021). Refractive Indices of Aqueous Solutions of Isomeric Butylamines at 303.15 K: Experimental and Correlative Approach, J. Appl. Sci. Process Eng. 8, 1020–1030. https://doi.org/10.33736/JASPE.3962.2021.

[37] F.I. Chowdhury, M.A.R. Khan, M.A. Saleh, S. Akhtar, (2013). Volumetric properties of some water + monoalkanolamine systems between 303.15 and 323.15 K, J. Mol. Liq. 182, 7–13. https://doi.org/10.1016/J.MOLLIQ.2013.03.006.

[38] Chowdhury, F. I., Akhtar, S., & Saleh, M. A. (2009). Densities and excess molar volumes of aqueous solutions of some diethanolamines. Physics and Chemistry of Liquids, 47(6), 638-652. https://doi.org/10.1080/00319100802620538.

[39] F.I. Chowdhury, S. Akhtar, M.A. Saleh, M.U. Khandaker, Y.M. Amin, A.K. Arof, (2016). Volumetric and viscometric properties of aqueous solutions of some monoalkanolamines, J. Mol. Liq. 223, 299–314. https://doi.org/10.1016/J.MOLLIQ.2016.08.033.

[40] M.A.R. Khan, M.M.H. Rocky, F.I. Chowdhury, M. Shamsuddin Ahmed, S. Akhtar, (2019). Molecular interactions in the binary mixtures of some monoalkanolamines with acetonitrile between 303.15 and 323.15, J. Mol. Liq. 277, 681–691. https://doi.org/10.1016/J.MOLLIQ.2018.12.136.

[41] M.A.R. Khan, M.M.H. Rocky, F.I. Chowdhury, M. Shamsuddin Ahmed, S. Akhtar, (2019). Molecular interactions in the binary mixtures of some monoalkanolamines with acetonitrile between 303.15 and 323.15, J. Mol. Liq. 277, 681–691. https://doi.org/10.1016/j.molliq.2018.12.136.

[42] M.N. Roy, R.K. Das, A. Bhattacharjee, (2008). Density and viscosity of acrylonitrile + cinnamaldehyde, + anisaldehyde, and + benzaldehyde at (298.15, 308.15, and 318.15) K, J. Chem. Eng. Data. 53, 1431–1435.
[43] W. Cao, K. Knudsen, A. Fredenslund, P. Rasmussen, (1993). Group- Contribution Viscosity Predictions of Liquid Mixtures Using UNIFAC-VLE Parameters, *Ind. Eng. Chem. Res.* 32, 2088–2092. https://doi.org/10.1021/ie00021a034.

[44] W.D. Monnery, W.Y. Svreck, A.K. Mehrotra, (1995). Viscosity: A Critical Review, *Can. J. Chem. Eng.* 73, 3–40. https://doi.org/10.1002/cjce.5450730103

[45] E.D. Dikio, G. Vilakazi, P. Ngoy, (2013). Density, dynamic viscosity and derived properties of binary mixtures of m-xylene, o-xylene, and p-xylene, with pyridine at T = 293.15, 303.15, 313.15 and 323.15 K, *J. Mol. Liq.* 177, 190–197. https://doi.org/10.1016/j.molliq.2012.10.021.

[46] H. Eyring, (2004). Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates, *J. Chem. Phys.* 4, 283. https://doi.org/10.1063/1.1749836.

[47] M.D.C. Grande, J. Álvarez Juliá, C.R. Barrero, C.M. Marschoff, (2021). Viscosity measurements of the binary mixture ethyl lactate+acetonitrile from 283.15 to 323.15 K. Activation parameters and their connection with molecular interactions, *Phys. Chem. Liq.* 59, 104–112. https://doi.org/10.1080/00319104.2019.1683831.

[48] P. Droliya, D. Chand, A. Nain, (2020). Experimental and theoretical studies of transport and optical properties of binary mixtures of acetonitrile with some alkyl methacrylates at temperatures from 298.15 to 318.15 K, *Indian J. Chem. -Section A.* 59, 1457–1469. **ISSN 0975-0975**

[49] H.C. Ku, C.H. Tu, (1998). Density and viscosity of binary mixtures of propan-2-ol, 1-chlorobutane, and acetonitrile, *J. Chem. Eng. Data.* 43, 465–468. https://doi.org/10.1021/je9702403.

[50] O. Ciocirlan, (2018). Viscosities of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and Its Binary Mixtures with Dimethyl Sulfoxide and Acetonitrile, *J. Chem. Eng. Data.* 63, 4205–4214. https://doi.org/10.1021/acs.jced.8b00684.

[51] P.S. Nikam, L.N. Shirsat, M. Hasan, (1998). Density and viscosity studies of binary mixtures of acetonitrile with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15) K, *J. Chem. Eng. Data.* 43, 732–737. https://doi.org/10.1021/je980028e.

[52] R. Abraham, M. Abdulkhedar, C. V. Asokair, (1997). Ultrasonic investigation of molecular interaction in binary mixtures of ketones with methanol/toluene, *Acoust. Lett.* 20, 236–245.

[53] M.I. Aralaguppi, C. V. Jadar, T.M. Aminabhavi, (1996). Density, refractive index, viscosity, and speed of sound in binary mixtures of 2-ethoxyethanol with dioxane, acetonitrile, and tetrahydrofuran at (298.15, 303.15, and 308.15) K, *J. Chem. Eng. Data.* 41, 1307–1310. https://doi.org/10.1021/je960133t.

[54] U.R. Kapadi, D.G. Hundiwale, N.B. Patil, M.K. Lande, (2002). Viscosities, excess molar volume of binary mixtures of ethanolamine with water at 303.15, 308.15, 313.15 and 318.15 K, *Fluid Phase Equilib.* 201, 335–341. https://doi.org/10.1016/S0378-3812(02)00095-X.

[55] X.X. Li, G.C. Fan, Z.L. Zhang, Y.W. Wang, Y.Q. Lu, (2013). Density and viscosity for binary mixtures of diethylene glycol monobutyl ether with monoethanolamine, diethanolamine, and triethanolamine from (293.15 to 333.15) K, *J. Chem. Eng. Data.* 58, 1229–1235. https://doi.org/10.1021/je4000372.

[56] D. Ma, C. Zhu, T. Fu, X. Yuan, Y. Ma, (2019). Volumetric and viscometric properties of binary and ternary mixtures of monoethanolamine, 2-(diethylamino) ethanol and water from (293.15 to 333.15) K, *J. Chem. Thermodyn.* 138, 350–365. https://doi.org/10.1016/j.jct.2019.06.032.

[57] X. Yin, Y. Dong, T. Ping, S. Shen, (2021). Densities, Viscosities, and Excess/Deviation Properties of the Ternary System 2-(Methylamino)ethanol + Dimethyl Sulfoxide + Water and the Binary Subsystems, *J. Chem. Eng. Data.* 66, 3543–3556. https://doi.org/10.1021/acs.jced.1c00414.

[58] X. Shi, C. Li, H. Guo, S. Shen, (2019). Density, Viscosity, and Excess Properties of Binary Mixtures of 2-(Methylamino)ethanol with 2-Methoxyethanol, 2-Ethoxyethanol, and 2-Butoxyethanol from 293.15 to 353.15 K, *J. Chem. Eng. Data.* 64, 3960–3970. https://doi.org/10.1021/acs.jced.9b00364.

[59] E. Álvarez, D. Gómez-Díaz, M.D. La Rubia, J.M. Navaza, (2006). Densities and viscosities of aqueous ternary mixtures of 2-(methylamino)ethanol and 2-(ethylamino)ethanol with diethanolamine,
triethanolamine, N-methyldiethanolamine, or 2-amino-1-methyl-1-propanol from 298.15 to 323.15 K, J. Chem. Eng. Data. 51, 955–962. https://doi.org/10.1021/je050463q.

[60] D. Pandey, M.K. Mondal, (2021). Viscosity, density, and derived thermodynamic properties of aqueous 2-(ethylamino)ethanol (EAE), aqueous aminoethylethanolamine (AEAA), and its mixture for post-combustion CO2 capture, J. Mol. Liq. 332, 115873. https://doi.org/10.1016/j.molliq.2021.115873.

[61] Y. Dong, T. Ping, X. Shi, S. Shen, (2020). Density, viscosity and excess properties for binary mixtures of 2-(ethylamino)ethanol and 2-(butylamino)ethanol with 2-butoxyethanol at temperatures from (293.15 to 353.15) K, J. Mol. Liq. 312, 113351. https://doi.org/10.1016/j.molliq.2020.113351.

[62] P.K. Kipkemboi, A.J. Easteal, (1994). Densities and viscosities of binary aqueous mixtures of nonelectrolytes: tert-butyl alcohol and tert-butylamine, Can. J. Chem. 72, 1937–1945. https://doi.org/10.1139/v94-247.

[63] S. Paez, M. Contreras, (1989). Densities and Viscosities of Binary Mixtures of 1-Propanol and 2-Propanol with Acetonitrile, J. Chem. Eng. Data. 34, 455–459. https://doi.org/10.1021/je00058a025.

[64] L. Grunberg, A.H. Nissan, (1949). Mixture law for viscosity [21], Nature. 164, 799–800. https://doi.org/10.1038/164799b0.

[65] Hind, R. K., McLaughlin, E., & Ubbelohde, A. R. (1960). Structure and viscosity of liquids. Camphor+pyrene mixtures. Transactions of the Faraday Society, 56, 328-330. https://doi.org/10.1039/tf9605600328.

[66] E.L. Heric, J.G. Brewer, (1967). Viscosity of Some Binary Liquid Nonelectrolyte Mixtures, J. Chem. Eng. Data. https://doi.org/10.1021/je60035a028.

[67] R.A. McAllister, (1960). The viscosity of liquid mixtures, AIChE McAllister, R. A. (1960). The viscosity of liquid mixtures. AIChE Journal, 6(3), 427-431. https://doi.org/10.1002/aic.690060316.

[68] Eyring, H. (1936). Viscosity, plasticity, and diffusion as examples of absolute reaction rates. The Journal of chemical physics, 4(4), 283-291. https://doi.org/10.1063/1.1749836.

[69] W. Kauzmann, H. Eyring, (1940). The Viscous Flow of Large Molecules, J. Am. Chem. Soc. 62, 3113–3125. https://doi.org/10.1021/ja01868a059.

[70] G. Ausländer, (1964). The properties of mixtures: Part I, Br. Chem. Eng. 9, 618–619.

[71] A. Jouyban, A. Fathi-Azarbayjani, M. Khoubnasabjafari, W.E. Acree, (2005). Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model, Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. ISSN 0975-0975

[72] Jouyban, A., Soleymani, J., Jafari, F., Khoubnasabjafari, M., & Acree, W. E. (2013). Mathematical representation of viscosity of ionic liquid+ molecular solvent mixtures at various temperatures using the Jouyban–Acree model. Journal of Chemical & Engineering Data, 58(6), 1523-1528.. https://doi.org/10.1021/je301057g.