ORIGINAL ARTICLE

Genome of ‘Ca. Desulfovibrio trichonymphae’, an \(H_2 \)-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut

Hirokazu Kuwahara\(^1\), Masahiro Yuki\(^2\), Kazuki Izawa\(^1\), Moriya Ohkuma\(^2,3\) and Yuichi Hongoh\(^1,3\)

\(^1\)Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan; \(^2\)Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan and \(^3\)Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan

The cellulolytic protist \textit{Trichonympha agilis} in the termite gut permanently hosts two symbiotic bacteria, ‘\textit{Candidatus Endomicrobium trichonymphae}’ and ‘\textit{Candidatus Desulfovibrio trichonymphae}’. The former is an intracellular symbiont, and the latter is almost intracellular but still connected to the outside via a small pore. The complete genome of ‘\textit{Ca. Endomicrobium trichonymphae}’ has previously been reported, and we here present the complete genome of ‘\textit{Ca. Desulfovibrio trichonymphae}’. The genome is small (1,410,056 bp), has many pseudogenes, and retains biosynthetic pathways for various amino acids and cofactors, which are partially complementary to those of ‘\textit{Ca. Endomicrobium trichonymphae}’. An amino acid permease gene has apparently been transferred between the ancestors of these two symbionts; a lateral gene transfer has affected their metabolic capacity. Notably, ‘\textit{Ca. Desulfovibrio trichonymphae}’ retains the complex system to oxidize hydrogen by sulfate and/or fumarate, while genes for utilizing other substrates common in desulfovibrios are pseudogenized or missing. Thus, ‘\textit{Ca. Desulfovibrio trichonymphae}’ is specialized to consume hydrogen that may otherwise inhibit fermentation processes in both \textit{T. agilis} and ‘\textit{Ca. Endomicrobium trichonymphae}’. The small pore may be necessary to take up sulfate. This study depicts a genome-based model of a multipartite symbiotic system within a cellulolytic protist cell in the termite gut.

\textit{The ISME Journal} (2017) 11, 766–776; doi:10.1038/ismej.2016.143; published online 1 November 2016

Introduction

Termites require symbioses with gut microbes, in order to digest dead plant matter and obtain nitrogenous compounds (Brune, 2014; Hongoh, 2011). Members of phylogenetically basal (‘lower’) termite taxa harbour in their guts a dense community of protists, bacteria and archaea. The protists generally establish a symbiotic relationship with multiple species of prokaryotes, which reside in their cytoplasm, nucleoplasm or attach onto the cell surface (Brune, 2014; Sato \textit{et al.}, 2014). Although metagenome, metatranscriptome and metabolome analyses of the microbiota in the gut of lower termites have been performed (Tartar \textit{et al.}, 2009; Do \textit{et al.}, 2014; Tokuda \textit{et al.}, 2014), the functions of individual microbial species and their interrelationships mostly remain unclear. In particular, the multipartite symbiotic system comprising cellulolytic protists and their multiple prokaryotic endo- and/or ectosymbionts has not been characterized in detail.

\textit{Trichonympha agilis}, a cellulolytic parabasalid protist that is present in the gut of the termite \textit{Reticulitermes speratus}, hosts two bacterial symbionts, ‘\textit{Candidatus Endomicrobium trichonymphae}’ phylotype Rs-D17 (class \textit{Endomicrobia}; Stingl \textit{et al.}, 2005; Ohkuma \textit{et al.}, 2007) and ‘\textit{Candidatus Desulfovibrio trichonymphae}’ phylotype Rs-N31 (class \textit{Deltaproteobacteria}; Sato \textit{et al.}, 2009). The cellular association between \textit{T. agilis} and these two bacteria species is permanent: ca. 4,000 and 1,800 cells of ‘\textit{Ca. Endomicrobium trichonymphae}’ and ‘\textit{Ca. Desulfovibrio trichonymphae}’, respectively, always inhabit the \textit{T. agilis} cell in specific subcellular locations, as shown in Figures 1a and b (Sato \textit{et al.}, 2009). These bacteria account for ca. 4% and 2% of the total prokaryotic cells in the \textit{R. speratus} gut, respectively (Sato \textit{et al.}, 2009).
The complete genome sequence of the uncultured, intracellular symbiont ‘Ca. Endomicrobium trichonymphae’ (1.15 Mb, including plasmids) was previously obtained using a whole genome amplification (WGA) technique (Hongoh et al., 2008a). Its small genome showed the potential to synthesize various amino acids and cofactors and to ferment monosaccharides to acetate, lactate, ethanol, CO₂ and H₂ (Hongoh et al., 2008a).

‘Ca. Desulfovibrio trichonymphae’ is uncultured and was previously considered to be an intracellular symbiont (Sato et al., 2009). However, transmission electron microscopy (TEM) of Trichonympha globo-losa in the gut of the termite Incisitermes marginipennis revealed that its Desulfovibrio symbionts are localized in deep invaginations of the host (Trichonympha) plasma membrane that are open to the exterior of the host cell (Strassert et al., 2012). Our re-examination showed that ‘Ca. Desulfovibrio trichonymphae’ phylotype Rs-N31 cells were almost completely buried in the host cytoplasm but still connected to the outside through a small pore (Figures 1c and d). Analyses using the reverse transcription polymerase chain reaction (RT-PCR)
showed that ‘Ca. Desulfovibrio trichonymphae’ phylotype Rs-N31 transcribed the dsrAB and apsA genes that are responsible for sulfate reduction and hynA for hydrogen oxidation (Sato et al., 2009). No other information on the functions of ‘Ca. Desulfovibrio trichonymphae’ has been available hitherto.

In this study, we attempted to acquire the complete genome sequence of ‘Ca. Desulfovibrio trichonymphae’ phylotype Rs-N31, in order to predict its functions and roles in the symbioses with T. agilis and ‘Ca. Endomicrobium trichonymphae’ phylotype Rs-D17. Our results provide a genome-based model of a tripartite symbiotic system within a cellulolytic protist cell in the termite gut.

Materials and methods

Termites, Fluorescence in situ hybridization (FISH) and TEM analysis

The wood-feeding termite R. speratus (family Rhinotermitidae) was collected in Saitama Prefecture, Japan. After rearing with cellulose powder for three days, worker termites were subjected to experiments. FISH and TEM were performed as described previously (Sato et al., 2009, 2014). The wood-feeding termite Hodotermopsis sjostedti (family Termitidae) was collected in Kagoshima Prefecture, Japan.

Collection of ‘Ca. Desulfovibrio trichonymphae’ cells and WGA

The gut of R. speratus was removed from a worker termite, and the gut contents were suspended in buffer solution U (Trager, 1934). A single cell of T. agilis was physically isolated using a TransferMan NK2 micromanipulator (Eppendorf, Hamburg, Germany) with a glass capillary. The collected T. agilis cell was washed several times in buffer and dissected into the anterior and posterior parts using the micromanipulator equipped with a Feather blade handle MF-130S and a K-730 micro-blade. The anterior part containing ‘Ca. Desulfovibrio trichonymphae’ cells was collected in a 0.2 ml PCR tube and subjected to WGA, using the illustra GenomiPhi HY DNA Amplification Kit (GE Healthcare, Little Chalfont, UK), as described previously (Hongoh et al., 2008a, b).

Genome analysis

Sequencing libraries for the ‘Ca. Desulfovibrio trichonymphae’ genome were prepared using the TruSeq DNA PCR-free Sample Prep Kit and the Nextera Mate Pair Sample Prep Kit (Illumina, San Diego, CA, USA). Sequencing was performed using the MiSeq Reagent Kit v3 (600 cycles) on an Illumina MiSeq platform. The generated reads were processed for adapter and quality trimming using programs cutadapt and prinseq, respectively (Martin, 2011; Schmieder and Edwards, 2011). The reads were assembled into contigs, using SPAdes 3.0 (Bankevich et al., 2012), and the contigs and the mate-pair reads were used to generate scaffolds with SCARPA 0.241 (Donmez and Brudno, 2013). Finding and functional annotation of genes were performed using MiGAP (http://www.migap.org), and the result was curated manually. Pseudogenes were manually identified as described previously (Hongoh et al., 2008a). Metabolic pathways were reconstructed using the KEGG automatic annotation server (KAAS; Moriya et al., 2007). Genes were assigned to functional categories based on non-supervised orthologous groups (NOG) (Powell et al., 2014). Clustered regularly interspaced short palindromic repeat (CRISPR) loci were identified using CRISPRFinder (Grissa et al., 2007).

Phylogenetic analysis and codon adaptation index (CAI) calculation

Maximum-likelihood trees were constructed using MEGA6 (Tamura et al., 2013). Sequences were aligned using MUSCLE (Edgar, 2004) with manual corrections, and ambiguously aligned sites were removed using Gblocks (Talavera and Castresana, 2007). CAI was calculated using CAIcal (Puigbo et al., 2008). The gene coding for AroP was identified by a BLAST search using the aroP gene of ‘Ca. Endomicrobium trichonymphae’ phylotype Rs-D17 as the query, in our ongoing genome analysis of ‘Candidatus Endomicrobium sp.’. HsTcC-Em16 from a single cell of Trichonympha sp. HsTcC in the gut of the termite H. sjostedti.
Results

Morphology of 'Ca. Desulfovibrio trichonymphae' phylotype Rs-N31
We re-investigated the morphology of 'Ca. Desulfovibrio trichonymphae' phylotype Rs-N31 associated with T. agilis cells in the gut of R. speratus. TEM analysis showed that the majority of the 'Ca. Desulfovibrio trichonymphae' cells were coccoid, embedded in the peripheral region of the host cytoplasm, and connected to the outside through a small pore with a diameter of 41.4 ± 5.1 nm (mean ± s.d., n = 14; Figures 1c and d). When 'Ca. Desulfovibrio trichonymphae' cells were present deeper inside the host cytoplasm, the surrounding host membrane extended like tubes, which connected adjacent 'Ca. Desulfovibrio trichonymphae' cells to each other (Supplementary Figure S1). The tube-like structures possibly lead to the exterior, although not confirmed. The bacterium possessed inner and outer membranes, and its lipopolysaccharide layer was not prominent (Figure 1d).

General features of the 'Ca. Desulfovibrio trichonymphae' genome
We reconstructed the complete genome sequence of 'Ca. Desulfovibrio trichonymphae' phylotype Rs-N31 with no gaps or ambiguous nucleotide sites, from a WGA product of the anterior part of a single T. agilis cell. The genome consisted of a circular chromosome of 1,410,056 bp (Supplementary Figure S2); no plasmids were found. The chromosome contains 1082 putative protein-coding sequences (CDSs), two rRNA operons, and 49 tRNA genes corresponding to codons for all 20 amino acids (Table 1). In addition, 188 pseudogenes were identified (Supplementary Table S2) and classified into NOG (Supplementary Figure S3). Of the 188 pseudogenes, 55 (29.3%) were assigned to category [V] (defense mechanisms) including DNA restriction-modification systems (Supplementary Figure S3). A remnant of the CRISPR region was identified. The biosynthetic pathway for lipidA is missing as seen in a free-living relative, Desulfovibrio desulfuricans ATCC 27774, and several other genes involved in lipopolysaccharide biosynthesis are pseudogenized (Supplementary Table S2).

A maximum-likelihood tree based on concatenated sequences of 30 ribosomal proteins showed that D. desulfuricans ATCC 27774 was the closest relative to 'Ca. Desulfovibrio trichonymphae' among the genome-sequenced bacteria, and these two bacteria clustered with Lawsonia intracellularis PHE/MN1-00, which is an intracellular pathogen of swine intestine that causes proliferative enteropathy (Mcorist et al., 1995; Supplementary Figure S4). The genome size of 'Ca. Desulfovibrio trichonymphae' is approximately half that of D. desulfuricans ATCC 27774, and similar to that of L. intracellularis PHE/MN1-00 (Table 1). The G+C content (55%) was comparable with that of D. desulfuricans ATCC 27774 and much higher than that of L. intracellularis PHE/MN1-00 (Table 1).

Carbon and energy metabolism
Predicted metabolic pathways of 'Ca. Desulfovibrio trichonymphae' are outlined in Figure 2. The genome retains pathways for gluconeogenesis, non-oxidative pentose phosphate biosynthesis, and a partial tricarboxylic acid (TCA) cycle, allowing the biosynthesis of various compounds including amino acids, cofactors, nucleotides, and peptidoglycans. In addition, 'Ca. Desulfovibrio trichonymphae' encodes genes for tricarboxylate transporter (TctABC), which possibly imports citrate (Winnen et al., 2003). Citrate can be converted to 2-oxoglutarate, which is a precursor of amino acids.

Genes coding for glucokinase, diphosphate-fructose-6-phosphate 1-phosphotransferase, and pyruvate kinase are pseudogenized; the bacterium has lost the glycolytic pathway (Figure 2). Consistently, it lacks genes for mannose permease, which are commonly found in the genomes of desulfovibrios.

Table 1 General features of the 'Ca. Desulfovibrio trichonymphae' phylotype Rs-N31 and other genomes

	'Ca. Desulfovibrio trichonymphae' Rs-N31	Desulfovibrio desulfuricans ATCC 27774	Lawsonia intracellularis PHE/MN1-00	'Ca. Endomicrobium trichonymphae' Rs-D17
Life style	surface-embedded symbiont	free-living	intracellular pathogen	Intracellular symbiont
Chromosome size (bp)	1,410,056	2,873,437	145,761	1,255,857
Plasmid size (bp)	none	none	27,048; 39,794; 194,553	11,650; 5,701; 5,362
CDS	1062	2,356	3,340	776
GC (%)	54.8	58.1	33.1	35.2
rRNA genes	6	9	6	3
tRNA genes	49	52	43	45
Pseudogenes	188	–	–	121
Coding density (%)	79.8	83.0	83.7	66.9

The ISME Journal
In addition, the genome lacks the genes for lactate dehydrogenases, and genes for lactate utilization proteins (LutABC) and lactate permease are pseudogenized; thus, it cannot use lactate as an electron donor nor a carbon source although this ability is common in desulfovibrios (Heidelberg et al., 2004; Keller and Wall, 2011). A gene coding for a candidate pyruvate transporter, LctP-2 (Meyer et al., 2014), is absent. Pathways for using malate, fumarate, and/or succinate as carbon sources were not found. Since the genome encodes genes involved in conversion of acetate to acetyl-CoA, and acetyl-CoA plus CO₂ to pyruvate, the main carbon sources appear to be acetate and CO₂ (Badziong et al., 1979). Genes coding for the complete components of F₀F₁-ATPase, dissimilatory sulfite reductase, fumarate reductase and several hydrogenases were found, while genes for formate dehydrogenase and alcohol dehydrogenase are absent. These indicate that the bacterium generates energy via anaerobic respiration using H₂ as the electron donor and sulfate and/or succinate as the electron acceptors (Figures 2 and 3).

Hydrogen metabolism

Predicted mechanisms to oxidize H₂ in ‘Ca. Desulfovibrio trichonymphae’ are shown in Figure 3. ‘Ca. Desulfovibrio trichonymphae’ has genes for three hydrogenases: periplasmic (NiFe) hydrogenase (HynAB) and two membrane-bound H⁺-translocating (NiFe) hydrogenase complexes (CooFHKLMUX and EchABCDEF) that have active sites facing the cytoplasm. Considering the consistent supply of H₂ from the host hydrogenosomes and formation of H⁺-membrane potential by the action of HynAB, it is likely that one or both of the membrane-bound hydrogenases oxidize H₂ with inward H⁺-translocation (Pereira et al., 2011). This should be coupled with the formation of a reduced form of ferredoxin and/or nicotinamide adenine dinucleotide (NADH), which are required to fix CO₂ and also possibly to reduce sulfate (Figure 3; Ramos et al., 2015). Genes for (FeFe) hydrogenase and (NiFeSe) hydrogenase are absent (Supplementary Tables S2 and S3).

The genome encodes genes for periplasmic cytochrome c class III (c₃), membrane-bound high-molecular-weight cytochrome c (HmcABCDEF) and membrane-bound Hdr-like menaquinol oxidoreductase (DsrMKJOP). These transmit electrons produced by the action of HynAB to the dissimilatory sulfite reductase subunit DsrC (Figure 3; Keller and Wall, 2011). The genome possesses genes for the biosynthesis of menaquinone, which is an electron carrier in the plasma membrane.

‘Ca. Desulfovibrio trichonymphae’ retains genes for sodium:sulfate symporter, dissipatory sulfite reductase (AprAB), quinone-modifying oxidoreductase (QmoABC), heterodisulfide reductase (HdrABC) and Hdr-coupled NADH dehydrogenase (FlixABCDE) (Ramos et al., 2015) (Figure 3 and Supplementary Table S3). Thus, ‘Ca. Desulfovibrio trichonymphae’ most likely has the ability to reduce sulfate to sulfide, which can be assimilated into cysteine and/or diffused toward the outside of the cell (Grein et al., 2013). In addition, the bacterium has genes for membrane-bound cytochrome c nitrite reductase (NrfAH),
which protects sulfate-reducing activity from strong inhibition caused by nitrite (Greene et al., 2003).

The genome possesses genes for fumarate reductase (FrdABCD), fumarase, aspartase, and anaerobic C₄-dicarboxylate (fumarate, succinate, malate and aspartate) antiporter (DcuA). Since in other parabasalids, such as Trichomonas vaginalis, malate is produced in the cytoplasm as a metabolic intermediate in its fermentation process (Müller et al., 2012), ‘Ca. Desulfovibrio trichonymphae’ possibly takes up malate from the host T. agilis cell, converts it to fumarate, conducts fumarate respiration, and exports succinate (Figure 3; Ullmann et al., 2000).

We performed RT-PCR for cooH, echE, hdra, frdA and nrfA, to verify expressions of each of these genes. All of their transcripts were detected. Transcripts of the dsrAB, aprA (apsA) and hynA genes were detected previously (Sato et al., 2009). Thus, the sulfate-reducing system using H₂ as an electron donor is probably functional. The gene for the redox-sensing transcriptional repressor Rex, which downregulates the expression of genes and operons for sulfate respiration (Ravcheev et al., 2012; Christensen et al., 2015), is pseudogenized. The predicted regulon governed by Rex in desulfovibrios includes genes for sulfate adenyltransferase and adenylate kinase, and operons for dsrAB, aprAB, dsrMKJOP, qmoABC, cooFHKLUX and F,F₁-ATP synthase subunits, according to the RegPrecise database (Novichkov et al., 2013). These genes might be constitutively expressed.

Biosynthesis of amino acids, cofactors and nucleotides
‘Ca. Desulfovibrio trichonymphae’ retains biosynthetic pathways for 18 amino acids and possesses genes for transporters of methionine (MetNIQ), aromatic amino acids (AroP), and branched-chain amino acids and possibly threonine (LivKHMGF) (Figure 2). Among the 18 amino acids, five (asparagine, cystein, glutamine, proline and serine) cannot be synthesized by ‘Ca. Endomicrobium trichonymphae’ (Hongoh et al., 2008a). Conversely, ‘Ca. Desulfovibrio trichonymphae’ does not possess biosynthetic pathways for methionine and threonine, both of which can be provided by ‘Ca. Endomicrobium trichonymphae’ (Hongoh et al., 2008a); thus, the capacity of amino acid biosynthesis is partially complementary (Supplementary Table S4). Furthermore, ‘Ca. Desulfovibrio trichonymphae’ has the potential to synthesize various cofactors, including heme and cobalamin (vitamin B₁₂) (Figure 2). The cofactor-biosynthesis capacity is also partially complementary with that of ‘Ca. Endomicrobium trichonymphae’ (Supplementary Table S5). ‘Ca. Desulfovibrio trichonymphae’ retains nucleotide biosynthetic pathways. Genes for nitrogen fixation and transporters for ammonium or urea are absent.

Comparative genome analysis
We classified genes into NOG and compared the genome of ‘Ca. Desulfovibrio trichonymphae’ with D. desulfuricans ATCC 27774, L. intracellularis
PHE/MN1-00, and ‘Ca. Endomicrobium trichonymphae’ (Figure 4 and Supplementary Figure S5). As in ‘Ca. Endomicrobium trichonymphae’, the number of genes involved in signal transduction is reduced, and genes for motility and chemotaxis are missing or pseudogenized; ‘Ca. Desulfovibrio trichonymphae’ has lost its motility, which is normally a characteristic of the genus Desulfovibrio including L. intracellularis. ‘Ca. Desulfovibrio trichonymphae’ should thus be vertically transmitted and have no free-living phase. The proportion of genes categorized in energy production and conversion (C), amino acid transport and metabolism (E), and coenzyme transport and metabolism (H) were similar to or higher than that found in D. desulfuricans ATCC 27774, and much higher than in L. intracellularis (Figure 4).

‘Ca. Desulfovibrio trichonymphae’ shared 906 CDSs with D. desulfuricans ATCC 27774, while 176 and 1,450 CDSs were unique in the former and the latter, respectively (Supplementary Figure S6). Among them, genes for superoxide dismutase and cytochrome bd are missing in the ‘Ca. Desulfovibrio trichonymphae’ genome, and genes coding for dye-decolorizing peroxidase, catalase, and rubredoxin-oxygen oxidoreductase are pseudogenized (Supplementary Table S6). Thus, the ability to detoxify oxygen is compromised in ‘Ca. Desulfovibrio trichonymphae’, and the bacterium cannot use oxygen as an electron acceptor unlike certain desulfovibrios (Kuhnigk et al., 1996; Cypionka, 2000). This is in contrast to D. desulfuricans ATCC 27774, which can grow even at 18% O₂ (Lobo et al., 2007).

Lateral gene transfer (LGT)

Genes of ‘Ca. Desulfovibrio trichonymphae’ showing the highest sequence similarity to those of non-desulfovibrio bacteria are listed in Supplementary

Figure 4 Non-supervised orthologous groups (NOG) classification of genes in the genomes of ‘Ca. Desulfovibrio trichonymphae’ phylotype Rs-N31 and reference organisms.
Table S7. Among them, the aromatic amino acid permease AroP was phylogenetically closest to those of ‘Ca. Endomicrobium trichonymphae’ and ‘Ca. Endomicrobium sp.’ HsTcC-Em16 (Supplementary Figure S7A). The codon adaptation indices (CAI) of aroP were 0.69 and 0.73 in ‘Ca. Desulfovibrio trichonymphae’ and ‘Ca. Endomicrobium trichonymphae’, respectively. These values were within the range of 95% confidence intervals (0.65–0.79 and 0.69–0.82, respectively; Supplementary Table S7). These indicate that an LGT of aroP has occurred between the ancestor of ‘Ca. Desulfovibrio trichonymphae’ and the common ancestor of the endosymbiotic Endomicrobium species, and that the LGT was not a very recent event. The putative malate/succinate antiporter DcuA, which plays a crucial role in fumarate respiration (Ullmann et al., 2000), and the fumarate reductase subunits were probably acquired through LGT (Supplementary Table S7 and Supplementary Figures S7B and C).

Discussion

The present study revealed that ‘Ca. Desulfovibrio trichonymphae’ retains the complex system required to oxidize H₂ by sulfate and/or fumarate in spite of its reduced genome size. In contrast, the bacterium has lost the ability to utilize other electron donors common in desulfovibrios, such as lactate, formate, and ethanol. The corruption of the repressor gene rex suggested that ‘Ca. Desulfovibrio trichonymphae’ constitutively expresses genes for sulfate respiration. Since the protist host and the co-inhabiting ‘Ca. Endomicrobium trichonymphae’ most probably generate H₂ during the fermentation of sugars (Yamin, 1980; Odelson and Breznak, 1985; Hongoh et al., 2008a; Zheng et al., 2016), we suggest that interspecies H₂ transfer is one of the driving forces for the evolution of this tripartite symbiosis. Consistently, ‘Ca. Desulfovibrio trichonymphae’ cells are localized immediately adjacent to hydrogenosome-like compartments (Figure 1; Sato et al., 2009), organelles that produce H₂ (Müller et al., 2012).

Although the H₂ partial pressure in the protist-inhabiting portion (paunch) of agarose-embedded termite guts is extremely high (for example, 15–30 kPa in Reticulitermes santonensis), the H₂-emission rate of living termites is 30 to 50 fold lower (Ebert and Brune, 1997; Pester and Brune, 2007). In addition, the H₂ partial pressure steeply decreases toward the peripheral gut region (Ebert and Brune, 1997; Pester and Brune, 2007). These indicate that H₂ is rapidly removed by H₂-oxidizers, especially in the gut of living termites, and imply that competition for H₂ can occur among those microbes. Indeed, exogenously-supplied H₂ greatly enhances the methanogenic activity of the termite Zootermopsis angusticollis and Reticulitermes flavipes, both of which harbour methanogens that produce CH₄ from H₂ and CO₂ in their gut (Messer and Lee, 1989; Ebert and Brune, 1997). Therefore, it is tempting to infer that an ancestor of ‘Ca. Desulfovibrio trichonymphae’ might have colonized the surface of a Trichonympha cell for an abundant H₂ supply, and subsequently evolved into a vertically transmitted, almost intracellular symbiont. The small pore may be necessary for sulfate uptake from the outside of the host protist cell. The colonization on the Trichonympha cells should also have eliminated the cost and need for its own motility that is otherwise required to keep the bacterium at nutritionally optimal sites in the gut and to prevent washout from the gut.

The removal of H₂ by ‘Ca. Desulfovibrio trichonymphae’, in turn, likely benefits the protist host and the co-inhabiting ‘Ca. Endomicrobium trichonymphae’ by decreasing the inhibitory effect of H₂ against their fermentation processes. The fact that all the T. agilis cells in the R. speratus gut harbour ‘Ca. Desulfovibrio trichonymphae’ strongly suggests that they have a mutualistic relationship. On the other hand, certain Trichonympha species do not possess Desulfovibrio symbionts (Strassert et al., 2012). Other endo- and/or ectosymbionts might substitute the role of ‘Ca. Desulfovibrio trichonymphae’. Otherwise, since H₂ diffuses rapidly in the gut environment, a portion of the gut protist community might not need to house H₂-oxidizers if there are enough H₂-oxidizing activities in total in the gut. Thus, the need for cellular association between a protist and H₂-oxidizers might also depend on the total abundance of H₂-oxidizers in the gut.

Trichonympha-associated Desulfovibrio phylotypes are not monophyletic (Supplementary Figure S8), implying that independent acquisitions of Desulfovibrio symbionts by Trichonympha protists have occurred (Sato et al., 2009; Strassert et al., 2012; Ikeda-Ohtsubo et al., 2016). Trichonympha collaris in the gut of Zootermopsis nevadensis harbours rod-shaped Desulfovibrio ectosymbionts, which are laterally attached to the host cell surface (Ikeda-Ohtsubo et al., 2016). The Desulfovibrio ectosymbionts of Trichonympha globulosa are held by invaginations much deeper than those of T. collaris (Ikeda-Ohtsubo et al., 2016; Strassert et al., 2012). These might be in intermediate stages in the evolution to the nearly intracellular symbiont like ‘Ca. Desulfovibrio trichonymphae’ phylotype Rs-N31. Since the concentration of sulfate in the termite gut is not high (for example 0.00–0.01 mM in R. speratus and 0.09–0.33 mM in H. sjostedti) (Sato et al., 2009), the supply of malate from the host cytoplasm for fumarate respiration may be another driving force for the symbioses between these Trichonympha and Desulfovibrio species.

Interestingly, T. collaris harbours a third symbiont, ‘Candidatus Adiutrix intracellularis’, in addition to an Endomicrobium endosymbiont and the Desulfovibrio ectosymbiont (Ikeda-Ohtsubo et al., 2016). ‘Ca. Adiutrix intracellularis’ is an intracellular symbiont, which belongs to the ‘Rs-K70 group’, a
Genes required for the fumarate respiration of transferred between the ancestors of acid transporter nitrogen sources. Interestingly, the aromatic amino
trichonymphae et al. (Hongoh et al., 2008b). The synthesized methionine, in turn, can be provided through the host cytoplasm to ‘Ca. Desulfovibrio trichonymphae’, which possesses the transporter MetINQ. Whereas ‘Ca. Desulfovibrio trichonymphae’ probably takes up amino acids, including methionine, also from the gut lumen through the small pore, provision of nitrogen sources from the host cytoplasm without competition seems to be beneficial to the bacterium. Thus, the complementary supply of nitrogenous compounds may be another driving force for the evolution of this symbiosis. It remains unknown how such compounds are released to the host cytoplasm from these symbiotic bacteria; the protist host may digest the symbionts like exogenously supplied bacterial cells (Odelson and Breznak, 1985).

Because the gene for ammonium transporter is pseudogenized in ‘Ca. Endomicrobium trichonymphae’ (Hongoh et al., 2008a) and absent in ‘Ca. Desulfovibrio trichonymphae’, amino acids should be their primary nitrogen sources. Interestingly, the aromatic amino acid transporter aroF gene has obviously been laterally transferred between the ancestors of ‘Ca. Desulfovibrio trichonymphae’ and the endosymbiotic endomicrobia. Genes required for the fumarate respiration of ‘Ca. Desulfovibrio trichonymphae’ may have also been laterally acquired from other bacterial lineages (Supplementary Table S7). It has been suggested that ‘Ca. Adiutrix intracellularis’ laterally acquired genes required for its reductive acetogenesis (Ikeda-Ohtsubo et al., 2016). Thus, LGT plays important roles in the symbiotic system in the termite gut.

In conclusion, our analyses of the complete genomes of the two symbionts ‘Ca. Desulfovibrio trichonymphae’ and ‘Ca. Endomicrobium trichonymphae’ unveiled an elaborate mutualism within the protist cell. A schematic tripartite symbiosis is depicted in Figure 5. The gut protists phagocytose wood particles, hydrolyze the cellulose and hemicellulose to monosaccharides, and ferment the monosaccharides to acetate, CO₂ and H₂ (Odelson and Breznak, 1985; Yamin, 1980). A portion of the monosaccharides are imported by ‘Ca. Endomicrobium trichonymphae’ and fermented to acetate, CO₂, ethanol, and H₂ (Hongoh et al., 2008a). The produced acetate is the main carbon and energy source of the termite host (Brune, 2014). ‘Ca. Desulfovibrio trichonymphae’ takes up the generated H₂ as the energy source and acetate and CO₂ as the carbon sources. Malate, produced during the fermentation process of the protist, enables ‘Ca. Desulfovibrio trichonymphae’ to oxidize H₂ even when sulfate is unavailable. The removal of H₂ should promote the fermentation processes of the protist and ‘Ca. Endomicrobium trichonymphae’. The protist provides these bacteria with the metabolites and the habitat, and in turn, obtains various amino acids and cofactors. Future studies of the functions of the uncultivable protist host are needed to fill the picture describing this complex symbiotic system.

Conflict of Interest

The authors declare no conflict of interest.
References

Badziong W, Ditter B, Thauer RK. (1979). Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch Microbiol 123: 301–305.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477.

Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12: 168–180.

Christensen GA, Zane GM, Kazakov AE, Li X, Rodionov DA, Novichkov PS et al. (2015). Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH. J Bacteriol 197: 29–39.

Cyponka H. (2000). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54: 827–848.

Do TH, Nguyen TT, Nguyen TN, Lo QG, Nguyen C, Kimura K et al. (2014). Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J Biosci Bioeng 118: 665–671.

Donmez N, Brudno M. (2013). SCARPA: scaffolding reads with practical algorithms. Bioinformatics 29: 428–434.

Ebert A, Brune A. (1997). Hydrogen concentration profiles at the axic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63: 4039–4046.

Edgar RC. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. (2003). Nitrite reductase activity of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5: 607–617.

Grein F, Ramos AR, Venceslau SS, Pereira IAC. (2013). Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochim Biophys Acta 1827: 145–160.

Grissa I, Vergnaud G, Pourcel C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: W52–W57.

Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF et al. (2004). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554–559.

Hongoh Y. (2011). Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68: 1311–1325.

Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T et al. (2008a). Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105: 5555–5560.

Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD et al. (2008b). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322: 1108–1109.

Ikedo-Ohtsubo W, Stenström JF, Köhler T, Mikaelyan A, Gregor I, McHardy AC et al. (2016). ‘Candidatus Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoaacetogen. Environ Microbiol 18: 2548–2564.

Inoue JI, Saita K, Noda S, Okhuma M. (2007). Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6: 1925–1932.

Keller KL, Wall JD. (2011). Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbiol 2: 1–17.

Kuhnigk T, Branke J, Krökerler D, Cyponka H, König H. (1996). A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19: 139–149.

Lobo SAL, Melo AMP, Carita MN, Teixeira M, Saraiva LM. (2007). The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett 581: 433–436.

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBNet J 17: 10–12.

Mcorist S, Gebhart CJ, Boid R, Barns SM. (1995). Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacterial 45: 820–823.

Messer AC, Lee MJ. (1989). Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18: 275–284.

Meyer B, Kuehl JV, Price MN, Ray J, Deutschbauer AM, Arkin AP et al. (2014). The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-FloX and Rnf. Environ Microbiol 16: 3463–3486.

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanemasa Y. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: W182–W185.

Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB et al. (2012). Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76: 444–495.

Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA et al. (2013). RegPrecise 3.0-a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom 14: 745.

Odelson DA, Breznak JA. (1985). Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microb 49: 614–621.
Odelson DA, Breznak JA. (1985). Cellulase and other polymer-hydrolyzing activities of Trichomitus termopsidis, a symbiotic protozoan from termites. Appl Environ Microb 49: 622–626.

Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D et al. (2015). Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiont spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci USA 112: 10224–10230.

Ohkuma M, Sato T, Noda S, Uy S, Kudo T, Hongoh Y. (2007). The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60: 467–476.

Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS. (2011). CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3: 38.

Ramos AR, Grein F, Oliveira GP, Venceslau SS, Keller KL, Wall JD et al. (2015). The FlxABC-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 17: 2288–2305.

Trager W. (1934). The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol Bull 66: 182–190.

Ullmann R, Gross R, Simon J, Unden G, Kroger A. (2000). Transport of C4-dicarboxylates in Wolinella succinogenes. J Bacteriol 182: 5757–5764.

Winnen B, Hvorp DN, Saier MH. (2003). The tricarboxylate transporter (TTT) family. Res Microbiol 154: 457–465.

Yamin MA. (1980). Cellulose metabolism by the termite flagellate Trichomitus termopsidis. Appl Environ Microb 39: 859–863.

Zheng H, Dietrich C, Radek R, Brune A. (2016). Endomicrobium proavitum, the first isolate of Endomicrobium class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Microbiol 18: 191–204.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/