Bioactivity of essential oils from cultivated winter savory, sage and hyssop

MILICA AČIMOVIĆ1,*, MARINA TODOSIJEVIĆ2, ANA VARGA3, BILJANA KIPROVSKI1, VELE TEŠEVIC2, IVANA ČABARKAPA3, AND VLADIMIR SIKORA1

1Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia
2University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
3University of Novi Sad, Institute of Food Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
*Corresponding author: milica.acimovic@ifvcns.ns.ac.rs

Received: April 23, 2019
Accepted: August 6, 2019
Published on-line: October 25, 2019
Published: December 25, 2019

Species of the Lamiaceae family have enjoyed a rich tradition of use for flavoring, food preservation, and medicinal purposes, due to their curative and preventive properties. Cultivated winter savory (Satureja montana L.), sage (Salvia officinalis L.) and hyssop (Hyssopus officinalis L.) are produced for seed, herb, and essential oil. Dominant compounds in S. montana essential oil were carvacrol (43.2%) and thymol (28.4%), while cis-thujone (27.1%) and camphor (19.3%), followed by trans-thujone and 1,8-cineole were the major compounds in S. officinalis essential oil. As for H. officinalis essential oil, cis- and trans-pinocamphone (41.1% and 20.5%, respectively) were the most abundant compounds, followed by β-pinene. S. montana essential oil exhibit the highest antimicrobial properties, as well as antioxidant capacity, compared to other tested essential oils. Furthermore, H. officinalis essential oils showed higher antioxidant activity than that of S. officinalis. The aim of this investigation was to determine the composition and bioactivity of essential oils of mentioned varieties. Presented results show that S. montana essential oil could be proposed as a valuable source of natural preservatives.

Key words: Satureja montana; Salvia officinalis; Hyssopus officinalis; antibacterial; antioxidant

http://dx.doi.org/10.5937/leksir1939011A

1. INTRODUCTION

Species of the family Lamiaceae have a long and a rich tradition of use for flavoring, food preservation, and medicinal purposes, due to their curative and preventive properties (Carović-Stanko et al., 2016). The majority of aromatic species belong to the Lamiaceae family, which is one of the largest families among the dicotyledons (Venkateshappa and Sreenath, 2013).

Winter savory (Satureja montana) is well known as a medicinal herb, mainly as a muscle pain reliever, tonic, and carminative agent in order to treat stomach and intestinal disorders such as cramps, nausea, indigestion, and diarrhea (Tepe and Cilkiz, 2016). It has a strong and spicy taste, and therefore it is used as a flavoring agent in salads, soups, sauces, stews, and lentil dishes (Wesołowska et al., 2014).

Sage (Salvia officinalis) has been used for culinary purposes as spice and preservative throughout history, but today it is commonly used to flavor meat, seafood, and cheese (Mapes and Xu, 2014). In traditional medicine, sage has been used to treat mild dyspepsia (such as heartburn and bloating), excessive sweating, age-related cognitive disorders, and inflammations in the throat and skin (Ghorbani and EsmaeiliZadeh, 2017).

Sage leaf (Salvia officinalis folium) has been listed in European Pharmacopoeia and many others (Ph. Eur. 7.0., 2010). Despite its slightly bitter taste and minty flavor, hyssop (Hyssopus officinalis) is commonly used for centuries to produce flavors and fragrances in food, mainly sauces, and seasonings, and in bitters and liqueurs (Dehghanzadeh et al., 2012). Apart from this, it is used in folk medicine as a carminative, tonic, antiseptic, expectorant and cough reliever (Fathiazad et al., 2011).

Because of bioactive components in their essential oils, characterized by specific taste and fragrance, mentioned plants are popular today in the concept of functional food. In recent years, many research studies have been conducted to find new biological effects of plants including antioxidant, antimicrobial, anticancer, hypoglycemic and hypolipidemic effects. Sage represents a most common medicinal plant that is cultivated and collected from natural habitats. However, S. montana and especially, H. officinalis, are rarely cultivated and their natural habitats are constricted to sparse population area. Due to the extensive harvest of these plants in their natural habitats, comparison of quality and biological activity of essential oil between cultivated and wild plants is important to
all parties which use these species.

Bearing in mind numerous properties of savoury, sage and hyssop, the aim of this paper was to determine chemical composition and content, as well as biological activity of essential oils of these plants grown in our collection and to compare these findings to available literature data.

2. MATERIALS AND METHODS

2.1. Plant material

As a part of medicinal plants collection of the Institute of Field and Vegetable Crops in Novi Sad, located in Bački Petrovac, at the Department for Alternative Crops and Organic Production, winter savoury (S. montana L., variety "Domaci"), sage (S. officinalis L., variety "Primorska") and hyssop (H. officinalis L., variety "Domaci ljubičasti") are produced for essential oil extraction. Above-ground parts of selected plants were collected in July 2017. Voucher specimens were confirmed and deposited at the Herbarium of the Department of Biology and Ecology (BUNS Herbarium), Faculty of Sciences, University of Novi Sad. Voucher specimens were referenced as 2-1561 (S. montana), 2-1548 (S. officinalis) and 2-1567 (H. officinalis).

2.2. Essential oil extraction

Dried samples of winter savoury, sage and hyssop were subjected to hydro-distillation using an all-glass Clevenger-type apparatus to extract essential oils according to the method outlined by the European Pharmacopoeia (Ph. Eur. 7.0, 2010). In order to extract the essential oils, 100 g of the plant material was placed in 1 L conical flask and connected to the Clevenger apparatus. Distilled water was added to the flask (500 mL) and heated to the boiling point. The steam in combination with the essential oils was distilled into a graduated cylinder for 4 h and then separated from the aqueous layer. Essential oils were kept refrigerated until further analysis.

2.3. GC and GC-MS analysis

The gas chromatographic-mass spectrometric analysis was performed using an Agilent 6890 gas chromatograph coupled with an Agilent 5973 Network transmission quadrupole mass spectrometer (Agilent, Santa Clara, USA), in positive ion-electron impact (EI) mode. The separation of individual compounds was achieved using non-polar HP-5 fused silica capillary column with 30 m × 0.25 mm i.d., 0.25 µm film thickness. The GC oven temperature was programmed from 60 °C to 285 °C at a rate of 3 °C/min. Helium was used as carrier gas; inlet pressure was 20.3 kPa; linear velocity was 1 mL/min at 210 °C. Injector temperature: 250 °C; injection mode: splitless. MS scan conditions: MS source temperature, 230 °C; MS Quad temperature, 150 °C; energy, 70 eV; mass scan range, 40–550 amu. The identification of components was carried out on the basis of retention indices followed by comparison with reference spectra (Wiley and NIST databases) and literature data.

2.4. Antibacterial activity

The antimicrobial activity was evaluated using control strains obtained from the American Type Culture Collection. Four Gram-positive bacteria: Bacillus cereus (ATCC 11778), Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 12228), and four Gram-negative bacteria: Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 27853), Salmonella enteritidis (ATCC 13076), and Proteus hauseri (ATCC 13315). The activity of essential oils was tested by a modified broth microdilution method according to the National Committee for Clinical Laboratory Standards (CLSI, 2012). A serial doubling dilution of the tested essential oils was prepared in a 96-well microtiter plates over

Table 1. The essential oil composition of winter savoury (S. montana).

#	Compound namea	RIb	%m/m
1	α-thujene	924	0.6
2	α-pinene	932	0.6
3	n.i.	942	tr
4	camphene	946	0.3
5	1-ocen-3-ol	975	0.4
6	β-pinene	975	0.2
7	myrcene	989	1.1
8	α-phellandrene	1004	0.2
9	δ-3-carene	1010	0.1
10	α-terpinene	1015	1.7
11	p-cymene	1024	8.9
12	limonene	1027	0.5
13	1,8-cineole	1029	0.3
14	cis-β-ocimene	1036	tr
15	γ-terpinene	1057	7.5
16	cis-sabinene hydrate	1065	0.5
17	terpinolene	1088	tr
18	n.i.	1099	0.1
19	linalool	1100	0.5
20	cis-thujone	1106	tr
21	camphor	1143	tr
22	trans-pinocamphone	1159	tr
23	borneol	1163	0.4
24	cis-pinocamphone	1172	0.1
25	terpinen-4-ol	1175	0.5
26	α-terpineol	1189	0.1
27	carvacrol, methyl ether	1242	0.4
28	n.i.	1282	tr
29	thymol	1292	28.4
30	carvacrol	1301	43.2
31	α-copaene	1375	tr
32	β-bourbonene	1384	tr
33	trans-caryophyllene	1419	1.4
34	β-copaene	1429	tr
35	aromadendrene	1439	tr
36	α-humulene	1453	tr
37	γ-murolene	1477	0.1
38	viridiflorene	1496	0.1
39	n.i.	1501	tr
40	β-bisabolene	1510	0.7
41	γ-cadinene	1515	0.1
42	δ-cadinene	1524	0.2
43	n.i.	1578	tr
44	caryophyllene oxide	1583	0.3
45	n.i.	1904	tr
46	n.i.	1931	tr
47	n.i.	2147	tr
48	n.i.	2164	tr

a n.i. stands for not identified compounds; *tr* - traces.

b RI, retention indices as determined on HP-5 column using homologous series of C₅-C₂₀ alkanes.
Table 2. The essential oil composition of sage *S. officinalis*.

#	Compound namea	RI	%m/m
1	cis-salvane	846	0.4
2	trans-salvane	856	tr
3	n.i.	918	tr
4	tricycene	922	0.1
5	α-thujene	925	0.1
6	α-pinene	932	3
7	camphene	947	4.6
8	sabineone	972	0.1
9	β-pinene	976	1.6
10	myrcene	989	0.8
11	α-phellandrene	1005	tr
12	α-terpinene	1016	0.2
13	p-cymene	1024	0.4
14	limonene	1028	4.4
15	1,8-cineole	1031	11.5
16	γ-terpinene	1057	0.4
17	cis-sabineone	1066	0.1
18	terpinolene	1088	0.2
19	trans-sabineone	1103	0.1
20	linalool	1108	0.3
21	cis-thujone	1110	27.1
22	trans-thujone	1119	12.3
23	α-campholenal	1126	tr
24	iso-3-thujanol	1138	0.1
25	n.i.	1143	tr
26	camphor	1147	19.3
27	trans-pinocamphene	1159	tr
28	bornol	1164	0.9
29	terpinen-4-ol	1175	0.4
30	α-terpinol	1188	tr
31	n.i.	1196	tr
32	bornyl acetate	1284	0.5
33	trans-sabinylacetate	1291	0.1
34	trans-carylacetate	1337	tr
35	trans-caryophyllene	1419	1.7
36	n.i.	1438	tr
37	α-humulene	1454	2.4
38	9-epi-trans-caryophyllene	1461	tr
39	viridiflorene	1496	tr
40	caryophyllene oxide	1582	0.3
41	viridiflorol	1591	3.4
42	n.i.	1598	0.1
43	humulene epoxide II	1609	0.7
44	n.i.	1630	tr
45	n.i.	1673	0.1
46	n.i.	1781	tr
47	n.i.	1806	tr
48	isopimara-9(11),15-diene	1913	tr
49	n.i.	1932	tr
50	n.i.	2001	tr
51	manool	2061	1.9
52	n.i.	2094	tr

Norterpnes: 0.4
Monoterpenic hydrocarbons: 15.9
Oxigenated monoterpenes: 72.7
Sesquiterpene hydrocarbons: 7.5
Oxigentepid sesquiterpene: 1
Diterpene hydrocarbon: tr
Oxigenated diterpene: 1.9

Total identified 99.6

a n.i. stands for not identified compounds; tr - traces.
b RI, retention indices as determined on HP-5 column using homologous series of C10-C30 alkanes.

c Sage essential oil had 52 compounds, where the major compounds were cis-thujone with 27.1% and camphor with 19.3%, followed by trans-thujone with 12.3%, and 1,8-cineole with 11.5% (Table 2). Other abundant compounds presented in amount above 1% were: camphene (4.6%), limonene (4.4%), viridiflorol (3.4%), α-pinene (3.0%), α-humulene (2.4%), manool (1.9%), trans-caryophyllene (1.7%) and β-pinene (1.6%). Qualitative analysis of the essential oil showed that *S. officinalis* variety “Primorska” belonged to Chemotype A, which is rich in cis-thujone and camphor (Cvetković et al., 2015). However, the sum of toxic thujones, cis- and trans-thujone, was high (39.4%) according to the Perry et al. (1999) who classified in the range of 454.4-0.22 μL/mL in inoculated Mueller-Hinton broth (MHB, HiMedia). The mixture was discharged from the last well in a row (100 μL). The test was performed in a total volume of 110 μL/mL with a final microbial concentration of 106 CFU/mL per well. The plate was incubated for 24 h at 37 °C. The same tests were performed simultaneously for growth control (MHB + test organism), sterility control (MHB + test oil), and positive control (MHB + gentamicin+ test organism). Gentamicin was prepared in sterile water and diluted in MHB to obtain concentrations in a range of 16 to 0.016 μg/mL. Additionally, susceptibility to gentamicin was confirmed using a quantitative assay for determining the MIC (gentamicin Test Strip Liofilchem®) according to the manufac-

2.5. Antioxidant activity

Total potential antioxidant activity of tested essential oils was assessed based on their scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH-test) free radicals (Panda 2012). Re-

3. RESULTS AND DISCUSSION

3.1. Chemical characterization of essential oils

Gas chromatographic and mass spectrometric analysis of the essential oil of winter savory (*S. montana*) showed 48 compounds, which represent 99.5% of the essential oil. The dominant compounds (higher than 5%) in the essential oil were carvacrol with 43.2% and thymol with 28.4%, followed by p-cymene (8.9%) and γ-terpinene (7.5%) (Table 1). Nevertheless, γ-terpinene and p-cymene are precursors of thymol and carvacrol and therefore some authors proposed that they are produced by a similar mechanism (Papadatou et al., 2015). Variety “Domaci” in general can be classified as phenol-rich chemotype since carvacrol and thymol are the most abundant compounds (Bezić et al., 2009).
Research Article

The essential oil composition of sage

Table 3. The essential oil composition of sage S. officinalis.

#	Compound namea	RIb	%m/m
1	n.i.	881	tr
2	α-thujene	868	tr
3	β-thujene	853	tr
4	terpinen-4-ol	821	tr
5	thujene 2,4(10)-diene	812 tr	
6	sabine 2	812	tr
7	δ-cadinene	812	tr
8	γ-cadinene	812	tr
9	δ-cadinene 4	812	tr
10	δ-cadinene 5	812	tr
11	δ-cadinene 6	812	tr
12	δ-cadinene 7	812	tr
13	δ-cadinene 8	812	tr
14	δ-cadinene 9	812	tr
15	δ-cadinene 10	812	tr
16	δ-cadinene 11	812	tr
17	δ-cadinene 12	812	tr
18	δ-cadinene 13	812	tr
19	δ-cadinene 14	812	tr
20	δ-cadinene 15	812	tr
21	δ-cadinene 16	812	tr
22	δ-cadinene 17	812	tr
23	δ-cadinene 18	812	tr
24	δ-cadinene 19	812	tr
25	δ-cadinene 20	812	tr
26	δ-cadinene 21	812	tr
27	δ-cadinene 22	812	tr
28	δ-cadinene 23	812	tr
29	δ-cadinene 24	812	tr
30	δ-cadinene 25	812	tr
31	δ-cadinene 26	812	tr
32	δ-cadinene 27	812	tr
33	δ-cadinene 28	812	tr
34	δ-cadinene 29	812	tr
35	δ-cadinene 30	812	tr
36	δ-cadinene 31	812	tr
37	δ-cadinene 32	812	tr
38	δ-cadinene 33	812	tr
39	δ-cadinene 34	812	tr
40	δ-cadinene 35	812	tr
41	δ-cadinene 36	812	tr
42	δ-cadinene 37	812	tr
43	δ-cadinene 38	812	tr
44	δ-cadinene 39	812	tr
45	δ-cadinene 40	812	tr
46	δ-cadinene 41	812	tr
47	δ-cadinene 42	812	tr
48	δ-cadinene 43	812	tr
49	δ-cadinene 44	812	tr
50	δ-cadinene 45	812	tr
51	δ-cadinene 46	812	tr
52	δ-cadinene 47	812	tr
53	δ-cadinene 48	812	tr
54	δ-cadinene 49	812	tr
55	δ-cadinene 50	812	tr
56	δ-cadinene 51	812	tr
57	δ-cadinene 52	812	tr
58	δ-cadinene 53	812	tr
59	δ-cadinene 54	812	tr

The results of antimicrobial activity of essential oil from the leaves of S. officinalis grown in Serbia confirmed the activity against B. subtilis, S. aureus, E. coli and S. enteritidis in two different concentrations; 1% and 2%, in comparison to ampicillin (Miladinović and Miladinović, 2000). While, the essential oil of S. officinalis from Portugal showed very weak antimicrobial activity (Miguél et al., 2011). The same was concluded for S. officinalis essential oil from Greece that was lacking a notice-able antibacterial action since the MIC values recorded against all pathogens (Klebsiella oxytoca, K. pneumonia and E. coli) were above 150 µg/mL (Fournomiti et al., 2015).

H. officinalis has been traditionally used for its antiseptic prop-

a n.i. stands for not identified compounds; tr - traces.

b RI, retention indices as determined on HP-5 column using homologous series of C\textsubscript{15}-C\textsubscript{30} alkanes.
Table 4. Antimicrobial properties of essential oils, MIC and MBC [µL/mL].

	S. montana	S. officinalis	H. officinalis	Streptomycin	Gentamicin			
	MIC	MBC	MIC	MBC	MIC	MIC		
Bacillus cereus (ATCC 11778)	1.77	3.55	113.62	227.25	14.20	28.40	1	0.19
Escherichia coli (ATCC 8739)	1.77	3.55	56.81	113.62	227.25	227.25	4	2
Enterococcus faecalis (ATCC 29212)	1.77	7.10	454.50	454.50	454.50	454.50	96	8
Pseudomonas aeruginosa (ATCC 27853)	3.55	3.55	113.62	227.25	454.50	454.50	16	1
Salmonella enteritidis (ATCC 13076)	3.55	7.10	113.62	113.62	227.25	227.25	2	0.5
Staphylococcus aureus (ATCC 25923)	3.55	3.55	113.62	113.62	227.25	227.25	3	0.38
Staphylococcus epidermidis (ATCC 12228)	3.55	3.55	113.62	113.62	227.25	227.25	>1024.00	0.094
Proteus hauseri (ATCC 13315)	3.55	3.55	454.50	454.50	227.25	454.50	6	1

Properties in the treatment of infectious disorders (Mahboubi et al., 2011). Some previous studies showed the significant activity of H. officinalis essential oil against Gram-positive bacteria (Baj et al., 2018; De Martino et al., 2009; Mahboubi et al., 2011). Other reported that H. officinalis essential oil MIC ranged from 15.625 to 250 µL/mL depending on bacterial strains (Özer et al., 2006).

3.3. Antioxidative activity

S. montana showed the highest antioxidant capacity when compared to other tested species (Table 5). H. officinalis and S. officinalis followed with 1.5 and 3-fold lower antioxidant activity, respectively. All available literature mostly performed DPPH-test on extracts of analyzed plants and only a few of them used essential oils, as it was the case in our research.

Table 5. Antioxidative activity of cultivated savory, sage and hyssop essential oils.

Species	IC₅₀ [µg/mL]
Satureja montana	17.0±0.1
Salvia officinalis	50.0±0.4
Hyssopus officinalis	24.0±0.2

If compared with literature data, S. montana essential oil tested in this study has greater antioxidant capacity than other S. montana plants collected in nature (Cavar et al., 2008; Coutinho de Oliveira et al., 2012), or compared with other Satureja species: 32 µg/mL in S. ciliaca (Ozkan et al., 2007) and 185.5 µg/mg in S. cuneifolia (Oke et al., 2007). DPPH-test of S. officinalis essential oil showed lower antioxidant capacity than those from published data which reported IC₅₀ activity as 1.78 µg/L (Bozin et al., 2007). Results from other studies varied for H. officinalis: 16.37 µg/mL (Kizil et al., 2010) and 156.6 mg/mL (Džamić et al., 2013).

CONCLUSION

With on-going use of an artificial preservative in the food industry, in addition to the challenge of microbial resistance, there is growing concern over side effects of these compounds. Alternatives such as the use of herbal essential oils in food preservation that have no side effects and sometimes even positive effects have to be considered. According to the presented results, S. montana essential oils could be proposed as an invaluable source of natural preservatives. Despite cultivation practice, our results showed that essential oils obtained from commercially grown varieties have high biological activity and could be used instead of plants grown in nature. In this way, more raw materials could be produced without effect on natural gene pool and habitats of these species.

ACKNOWLEDGMENTS

Financial support by the Serbian Ministry of Education and Science (Project No. TR 31025) for this work is gratefully acknowledged.

REFERENCES

Baj, T., Korona-Glowniak, I., Kowalski, R. and Malm, A. (2018). Chemical composition and microbiological evaluation of essential oil from Hyssopus officinalis L. with white and pink flowers, Open Chemistry 16(1): 317–323.
Benbelaïd, F., Khadir, A., Abdoune, M. A., Bendahou, M., Muselli, A. and Costa, J. (2014). Antimicrobial activity of some essential oils against oral multidrug-resistant Enterococcus faecalis in both planktonic and biofilm state, *Asian Pacific Journal of Tropical Biomedicine* 4(6): 463–472.

Besić, N., Šamanić, I., Dunkić, V., Besendorfer, V. and Puizina, M. (2000). Essential oil composition of wild-growing Salvia officinalis L. from Dalmatia, *Croatian Journal of Food Science and Technology* 5(1): 9–15.

Bezić, N., Šamanić, I., Dunkić, V., Besendorfer, V. and Puizina, M. (2000). Essential oil composition of wild-growing Salvia officinalis L. from Dalmatia, *Croatian Journal of Food Science and Technology* 5(1): 9–15.

Bezić, N., Šamanić, I., Dunkić, V., Besendorfer, V. and Puizina, M. (2000). Essential oil composition of wild-growing Salvia officinalis L. from Dalmatia, *Croatian Journal of Food Science and Technology* 5(1): 9–15.

Buzia, F., Diedrich, D., Herak Cupti, M. and Satovic, Z. (2016). Medicinal plants of the family Lamiaceae as functional foods—a review, *Czech Journal of Food Science* 34(5): 377–390.

Čavarić, M., Ristić, M. S., Tešević, V. and Marin, P. D. (2013). Composition of essential oils, *Journal of Essential Oil Research* 25(2): 97–100.

Čavarić, M., Ristić, M. S., Tešević, V. and Marin, P. D. (2013). Composition of essential oils, *Journal of Essential Oil Research* 25(2): 97–100.

Čavarić, M., Ristić, M. S., Tešević, V. and Marin, P. D. (2013). Composition of essential oils, *Journal of Essential Oil Research* 25(2): 97–100.

Čavarić, M., Ristić, M. S., Tešević, V. and Marin, P. D. (2013). Composition of essential oils, *Journal of Essential Oil Research* 25(2): 97–100.
Özer, H., Sökmen, M., Güllüce, M., Adıgüzel, A. and Kılıç, H., Şahin, F., Sökmen, A. and Barış, . (2006). In vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of *Hyssopus officinalis* L. ssp. *angustifolius*, *Italian Journal of Food Science* 18(1): 73–83.

Ozkan, G., Simsek, B. and Kuleasan, H. (2007). Antioxidant activities of *Satureja ciliaca* essential oil in butter and in vitro, *Journal of Food Engineering* 79(4): 1391–1396.

Papadatou, M., Argyropoulou, C., Grigoriadou, C. and Maloupa, E. (2015). Essential oil content of cultivated *Satureja* spp. in Northern Greece, *NVEO - Natural Volatiles & Essential Oils* 2(1): 37–48.

Perry, N. B., Anderson, R. E., Brennan, N. J., Douglas, M. H., Heaney, A. J., McGimpsey, J. A. and Smallfield, B. M. (1999). Essential oils from dalmatian sage (*Salvia officinalis* L.): variations among individuals, plant parts, seasons, and sites, *Journal of Agricultural and Food Chemistry* 47(5): 2048–2054.

Ph. Eur. 7.0. (2010). *European Pharmacopoeia* 7.0., Council of Europe, Strasbourg.

Raal, A., Orav, A. and Arak, E. (2007). Composition of the essential oil of *Salvia officinalis* L. from various European countries, *Natural Product Research* 21(5): 406–411.

Tepe, B. and Cilkiz, M. (2016). A pharmacological and phytochemical overview on *Satureja*, *Pharmaceutical Biology* 54(3): 375–412.

Venkateshappa, S. M. and Sreenath, K. P. (2013). Potential medicinal plants of Lamiaceae, *American International Journal of Research in Formal, Applied & Natural Sciences* 13(239): 82–87.

Wesołowska, A., Grzeszczuk, M. and Jadczak, D. (2014). Influence of harvest term on the content of carvacrol, *p*-cymene, *γ*-terpinene and *β*-caryophyllene in the essential oil of *Satureja montana*, *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* 42(2): 392–397.

Xu, J., Zhou, F., Ji, B.-P., Pei, R.-S. and Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against *Escherichia coli*, *Letters in Applied Microbiology* 47(3): 174–179.