

Practical experience of construction of concrete pavement using non-conditional aggregates

P Krivenko¹, O Kovalchuk¹,² and O Boiko¹

¹ Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, 03037 Povitroflotskyi Avenue, 31, Kyiv, Ukraine

² Email: kovalchuk.oyu@gmail.com

Abstract. The ways of involving iron ore tailings in road construction are shown in this paper on example of alkali-activated slag cements used as a binding material. The results of the study showed that in case of the alkali-activated slag cements the compacted concrete mixtures for bases could incorporate up to 40 % of iron ore tailings, and with addition of up to 10 % of fly ash by mass – up to 60 % by mass with providing the required compressive strength (>2 MPa) and coefficient of softening (in water) (not lower than 0.8). The results suggested to show that with increase in quantities of the alkaline component the strength tended to increase, and that addition of fly ash was favourable in terms of consistency of the concrete mixture and time of workability retention. The concrete with 100 % replacement of fine aggregate by iron ore tailings exhibited compressive strength of 30 MPa and the concrete mixture had a consistency of classes S3-S4 as per EN 206-1:2000. This concrete mixture of optimal composition was used as paving in the construction of a pilot road (length 50 m, width 4 m, and thickness 0.3 m) in Qianxi (Tianshan, P.R.China).

1. Introduction

The accumulation of industrial waste requires increased attention in connection with the growing costs for their safe storage. As a rule, mining and processing plants are storing the industrial waste in open-type sludge pool, which leads to increased danger due to contact with the environment.

Iron ore tailings are presented by heavy metals, solids, mill reagents and sulphur compounds. Storing the iron ore tailings in the open area or throwing into the sea and rivers has the potential of causing water pollution [1, 2].

Yellishetty et al. [3] studied the use of iron ore tailings from Goa in India as an aggregate in concrete. The composition of the concrete was in different proportions using mine aggregate (12.5 mm – 20 mm in size), sand and cement as the binder. The results concluded that the aggregate component of the mine wastes conforms to the Indian Standard Specifications for quality standards of aggregates. The use of mine wastes for 100 % replacement for both fine and coarse aggregates will avoid the use of natural sand and natural granite quarry completely. Further study into this will bring much more improvement and economy in concrete production.

Replacement of natural fine aggregate by the iron ore tailings in 100 % quantities significantly decreased the workability and compressive strength of the material [4-6]. Also showed, when the replacement level was no more than 40 %, for 90 days standard cured specimens, the mechanical behaviour of the tailings mixes was comparable to that of the control mix.
Another way of utilization of iron ore tailings in building materials is using waste as a component of green ECC (Engineered Cementitious Composite). Increasing the replacement of cement beyond 40 % replacement ratio reduces the compressive strength, but content TIO in 10–32 % reduction in energy consumption and 29–63 % reduction in carbon dioxide emissions in green ECC compared with typical ECC [7, 8].

However, use of iron ore tailings as a component traditional cements and concretes are complicated due to minor quantities of used waste. Alternative way of utilization of hazardous wastes is using it in alkali-activated cement and concretes on their basis.

Scientific school SRIBM named after V.D. Glukhovsky more than 50 years follows an entirely new concept of the development of cements by modelling the natural processes of mineral formation in order to obtain a durable hardening stone using aluminium silicate raw materials of technogenic origin and compounds of sodium and potassium [9-12]. The obtained cements open up new possibilities for using a large amount of waste of different origin in the composition of both cement and concrete. This is explained by the fact that the alkaline component actively interacts with the waste, forming a series of zeolite-like new formation and low-basic calcium hydrosilicates. The physical-mechanical properties of alkali-activated cements have fairly high values in comparison with traditional cements, as well as immobilizing ability [13-15].

According to obtained results [16-17, 19-20], was investigated using of iron ore tailings as a component of alkali-activated slag foamed concrete and determined that concrete with IOT 35 % by mass can reached 2.56 MPa in standard curing condition. The result demonstrates the effective using of AAC for the production of high-performance structural materials.

Purpose of work. Safety utilization of iron ore tailings as component of alkali-activated cements and concretes on their based for construction of compacted grounds and roads.

2. Raw materials and test methods

Iron ore tailings (IOT), fly ash (FA) and the blast furnace granulated slag (BFGS) with a glass content not less than 85 % by mass and specific surface 450 m2/kg (by Blaine) were used as main components of alkali-activated cement and concretes. The chemical composition of raw materials is given in Table 1.

Name	SiO$_2$	TiO$_2$	Al$_2$O$_3$	Fe$_2$O$_3$	FeO	MgO	CaO	Na$_2$O	K$_2$O	SO$_3$
IOT (China)	74.2	0.3	5.3	5.7	2.8	5.8	1.2	1.5	-	-
FA (China)	57.8	0.7	18.6	8.4	2.2	8.0	0.9	1.9	0.4	-
BFGS (China)	36.1	0.8	12.0	0.5	8.0	40.1	0.3	0.5	0.5	-

Sodium silicate pentahydrate (TU 2145-001-52257004-2002) and soda ash (GOST 5100-85) were used as alkaline components.

The mix composition of raw materials under study have prepared in mixer with supplementary addition of 8-9 % of water. Specimens of compacted soils have moulded according to STO 26233397 MOSAVTODOR.1.1.1.01-2013 in metal molds (Figure 1).

For sandy and clayey soils with the largest grain size and aggregates less than 5 mm, the shape of the specimens is taken as a cylinder with diameter $d = 50$ mm and height $h = 50$ mm. The load on the compaction sample to 30 MPa is lifted for 5-10 seconds. Moulding is carried out for 3 minutes under static pressure (30 ± 0.3) MPa. The compressive strength test was carried out on the 28 days age in normal conditions ($t = 20 \pm 2$ °C, humidity 95 ± 5 %).
After 7 days of normal hardening the specimens were fully saturated with water for 2 days. The softening coefficient was determined by the formula:

$$K_{sc} = \frac{R_w}{R_d}$$ \hspace{1cm} (1)

where R_w is compressive strength of saturated specimen, MPa; R_d – compressive strength of normal hardening specimen, MPa.

Mix composition of compacted soils and alkali-activated concretes are represented in Table 2 and Table 3, respectively.

![Figure 1. Moulding of specimens for tests by pressing method.](image)

Table 2. Mix composition of compacted soils using of iron ore tailings

Marking	Cement composition, % by mass	IOT, % by mass	Soil, % by mass	FA, % by mass	Crushed stone 0-5 mm, % by mass	Water content, % by mass
S - 1	9.6	40	50	-	-	9
S - 2	9.6	50	40	-	-	8
S - 4	9.6	70	20	-	-	8
S - 5	9.6	40	25	-	25	9
S - 6	9.6	50	15	25	-	-
S - 7	9.6	60	5	25	-	-
S - 8	9.2	40	25	-	25	8
S - 9	19.2	40	40	-	-	9
S - 10	19.2	40	30	10	-	9
S - 11	19.2	40	30	10	-	9
S - 12	9.2	40	15	10	25	8
S - 13	19.2	60	10	10	-	8
S - 14	19.2	40	15	-	25	8
Table 3. Mix composition high volume iron ore tailings alkali-activated concretes

Name	Concrete mix composition, kg/m³	Cement composition	Crushed stone	IOT	5-10	10-20	H₂O		
		BFGS	FA	Soda Ash	Sodium silicate	LST			
DF-3	407	-	17.7	17.7	2.2	904	816	-	165
DF-4	390	-	17.7	35.5	2.2	907	818	-	157
DF-5	296	-	13.5	36.7	1.7	889	314	584	191
DF-6	305	76	17.4	34.8	2.1	888	280	520	155
DF-7	285	-	6.0	9.0	1.5	894	316	588	220
DF-8	280	-	12.3	12.3	1.5	924	834	-	227

3. Results and discussion

At the first stage of the studies mix compositions of compacted soils using iron ore tailings were developed and their physical-mechanical characteristics were determined. The results are shown in Table 4.

Table 4. Physical-mechanical properties of high volume iron ore tailings alkali-activated concretes

Marking	Average density, kg/m³	Softening coefficient	Compressive strength (normal condition), MPa, after days	
			7	28
S - 1	2181	0.83	1.45	2.87
S - 2	2111	0.76	0.78	1.33
S - 3	2117	-	0	0
S - 4	-	-	-	-
S - 5	2280	0.49	1.20	2.40
S - 6	-	-	-	-
S - 7	-	-	-	-
S - 8	2193	0.58	1.43	3.29
S - 9	2264	0.43	1.14	2.62
S - 10	2136	1.10	0.90	2.07
S - 11	2136	0.57	0.90	2.07
S - 12	2188	1.00	1.10	2.53
S - 13	2057	1.10	1.50	3.10
S - 14	2227	1.23	1.30	2.99

According to the obtained results, using iron ore tailings in quantity of 60 % by mass of the compacted soil does not allow achieving of the hardening stone with the required water resistance. However, it was found that the optimal amount of waste in the mix composition is 40 % by mass achieving the compressive strength of the hardening stone to 3 MPa. The addition of crushed stone (composition S-8) in an amount of 25 % by mass increased the strength to 3.29 MPa which corresponds to the requirements of [9] for stratum of compacted soil in the lower layer. The addition of fly ash allowed increasing the water resistance of the hardening stone from 0.49 to 1.1 due to the compaction of the structure of the hardening stone and the reduction in the number of pores capable of passing into the water, which also affects its strength. The increasing of compressive strength was possible due to using mixture of alkaline components (sodium silicate and soda ash). The compressive strength and water resistance of specimens on the early stages of hardening were significantly increased.

However, using iron ore tailings in large quantities is possible not only in the basis of the road, but also into the roadway. The nature of the waste allows us to use it as a full-fledged component instead
of river sand. In the course of the work, concrete mix compositions with high content of waste (40 % by mass) were developed. The composition of the developed concrete is given in Table 5.

Table 5. Physical-mechanical properties of high volume iron ore tailings alkali-activated concretes

Name	Slump., cm	Density of concrete, kg/m³	Compressive strength, MPa, days			
			3	7	14	28
DF-3	7	2330	19.3	23.3	29.4	32.3
DF-4	3	2307	26.1	28.6	33.7	38.0
DF-5	4	2329	18.6	22.7	27.5	29.0
DF-6	7	2282	20.0	26.1	30.1	32.6
DF-7	5	2322	10.0	11.9	17.3	16.7
DF-8	5	2293	11.1	15.5	18.4	21.3

The analysis of the obtained results showed that using of TOI waste in concrete composition up to 40 % (by mass per 1 m³ of concrete mix) allows to reach strength of 38 MPa for 28 days, while the plasticity of the concrete mixture is P1, P2, which is quite good an indicator. Adding fly ash in quantity up to 20 % (by mass) reduces the consumption of slag and allows achieving a similar plasticity of the mixture with less water.

According to the obtained results, the composition of alkali-activated concrete (DF-6) was recommended for the construction of a roadway in industrial conditions in Qianxi (Tangshan, China). In the process of approbation, a roadway with a length of 50 m, a width of 4 m and a height of 0.3 m were made. The process of preparation of the concrete mixture was carried out on the basis of the existing concrete mixing plant (CMP) is shown in Figure 2.

The components of the alkali-activated concrete were mixed with a two-shaft impeller forced action mixer with a working capacity of 1.2 m³. The finished concrete mixture was transported to the construction site by means of concrete mixers with a drum capacity of 12 m³. The time of transporting the concrete mixture to the construction site was 20-30 minutes. However, the mobility of the concrete mix (DF-6 composition) is 4 hours, which allows to significantly increase the distance between the CMP and the construction site. The concrete mix was consolidated with the deep-seated vibrators (Figure 3), and the surface was levelled with a screed (Figure 4).
Figure 3. Vibration of concrete mix

Figure 4. Surface leveling

The surface of concrete was grouted to eliminate defects using a trowel machine (Figure 5). This process was possible after 24-36 hours depending on the slump of the concrete mix. Trowelling at early age led to large deformations of the surface.

At night, a “greenhouse” type covering was used which heated the concrete with electric lamps (Figure 6) to maintain the temperature and creating optimal conditions for hardening. The temperature at the surface of the concrete was in the range 15-18 °C.

Figure 5. Trowelling of concrete mix surface

Figure 6. Normal hardening of alkali-activated concrete at night

The compressive strength of finished roadway on 28 days is 28-30 MPa taking into account the fact that slump of concrete mix was P4-P5.

4. Conclusion
1) Compacted soils were developed which contain 40 % IOT by mass to be used for road basis. The compressive strength of hardening stone is 3.29 MPa that meets the requirement of the standard.
2) Possibility if utilization of iron ore tailings in alkali-activated concretes including 40 % waste by mass (full sand replacement) and preparation of concrete mix in industrial condition was investigated. The compressive strength of concrete to 30 MPa is achieved using concrete mix with high mobility (P5-P5).
Acknowledgments
The authors would like to acknowledge the accorded financial support of the Ministry of Education and Science of Ukraine (#0119U002580, topic “Development of technological methods of prevention and break of alkaline corrosion of concrete using active aggregates”).

References
[1] McKinnon E 2002 The environmental effects of mining waste disposal at Lihir Gold Mine JREEH 1(2) 40-50
[2] Bumanis G, Bajare D and Goljandin D 2017 Performance Evaluation of Cement Mortar and Concrete With Incorporated Micro Fillers Obtained By Collision Milling in Disintegrator Ceram. - Silikaty, 61(3) 1-10
[3] Yellishetty M, Karpe V, Reddy E, Subhash K N and Ranjith P G 2008 Reuse of iron ore mineral wastes in civil engineering constructions: A case study RCR 52(11) 1283-89
[4] Zhao S, Fan J and Sun W 2014 Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete CBM 50 540-48
[5] Kochetov G, Prihna T, Kovalchuk O and Samchenko D 2018 Research of the treatment of depleted nickel-plating electrolyte by the ferritization method EEJET 3/6(93) 52-60
[6] Labrincha J et al 2017 From NORM by-products to building materials. Naturally Occurring Radioactive Materials in Construction: Integrating Radiation Protection in Reuse (COST Action TU1301 NORM4BUILDING) Woodhead Publishing 183-252
[7] Huang X, Ranade R and Li V C 2013 Feasibility study of developing green ECC using iron ore tailings powder as cement replacement JMCE 25 923-31
[8] Bondarenko O, Guzii S, Zaharchenko K and Novoselenko E 2015 Development of protective materials based on glass- and slag-containing portland cement structures EEJET 6/11(78) 41-47
[9] Runova R, Gots V, Rudenko I, Konstantynovskyi O and Lastivka O 2018 The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes MATEC 230 03016
[10] Kovalchuk O, Grabovich V and Govdun Ya 2018 Alkali-activated cements mix design for concretes application in high corrosive conditions MATEC 230 03007
[11] Velandia D F, Lynsdale C J, Provis J L and Ramirez F 2018 Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4-activated high volume fly ash concretes Cem. Concr. Compos.
[12] Krivenko P, Petropavlovsky O, Kovalchuk O, Pasko A and Lapovska S 2018 Design of the composition of alkali-activated Portland cement using mineral additives of technogenic origin EEJET 4/6 94 6-15
[13] Krivenko P V, Kovalchuk O Yu, Kyrchyok V I and Guzii S G 2015 Sulfate resistance of alkali-activated cements MSF 865 95-106 DOI: 10.4028/www.scientific.net/MSF.865.95
[14] Garcia-Lodeiro I, Taboada V C, Fernández-Jiménez A and Palomo Á 2017 Recycling Industrial By-Products in Hybrid Cements: Mechanical and Microstructure Characterization Waste and Biomass Valorization 8 (5) 1433-40
[15] Savchuk Y, Plugin A, Lyuty V, Pluhin O and Borziak O 2018 Study of influence of the alkaline component on the physico-mechanical properties of the low clinker and clinkerless waterproof compositions MATEC 230 03018
[16] Junzhel L, Yuzel T, Qiubai S and Changsheng P 2015 Research on iron ore tailing improving Compressive Strength of Alkali-activated Slag Foamed concrete Proc. 5th Int. Conf. on Civil Eng. and Trans. (ICCET 2015) 1371-75
[17] Bernal S A and Provis J L 2014 Durability of alkali-activated materials: Progress and perspectives J. Am. Ceram. Soc. 97 997–1008
[18] STO 26233397 MOSAVTODOR.1.1.1.01-2013
[19] Fernández-Jiménez A, Garcia-Lodeiro I, Maltseva O and Palomo A 2019 Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals J. Am. Ceram. Soc.

[20] Ke X, Criado M, Provis J L and Bernal S A 2018 Slag-Based Cements That Resist Damage Induced by Carbon Dioxide ACS Sustain. Chem. Eng.