Kanishka Perera*, Ratnasingham Shivaji, and Inbo Sim

A class of semipositone p-Laplacian problems with a critical growth reaction term

https://doi.org/10.1515/anona-2020-0012
Received December 26, 2017; accepted October 14, 2018.

Abstract: We prove the existence of ground state positive solutions for a class of semipositone p-Laplacian problems with a critical growth reaction term. The proofs are established by obtaining crucial uniform $C^{1,\alpha}$ a priori estimates and by concentration compactness arguments. Our results are new even in the semilinear case $p = 2$.

Keywords: critical semipositone p-Laplacian problems, ground state positive solutions, concentration compactness, uniform $C^{1,\alpha}$ a priori estimates

MSC: Primary 35B33, Secondary 35J92, 35B09, 35B45

1 Introduction

Consider the p-superlinear semipositone p-Laplacian problem

$$
\begin{cases}
-\Delta_p u = u^{q-1} - \mu & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^N, $1 < p < N$, $p < q < p^*$, $\mu > 0$ is a parameter, and $p^* = Np/(N-p)$ is the critical Sobolev exponent. The scaling $u \mapsto \mu^{1/(q-1)} u$ transforms the first equation in (1.1) into

$$
-\Delta_p u = \mu^{(q-p)/(q-1)} \left(u^{q-1} - 1 \right),
$$

so in the subcritical case $q < p^*$, it follows from the results in Castro et al.[1] and Chhetri et al.[2] that this problem has a weak positive solution for sufficiently small $\mu > 0$ when $p > 1$ (see also Unsurangie [3], Allegretto et al.[4], Ambrosetti et al.[5], and Caldwell et al.[6] for the case when $p = 2$). On the other hand, in the critical case $q = p^*$, it follows from a standard argument involving the Pohozaev identity for the p-Laplacian (see Guedda and Véron [7, Theorem 1.1]) that problem (1.1) has no solution for any $\mu > 0$ when Ω is star-shaped. The purpose of the present paper is to show that this situation can be reversed by the addition of lower-order terms, as was observed in the positone case by Brézis and Nirenberg in the celebrated paper [8]. However, this extension to the semipositone case is not straightforward as $u = 0$ is no longer a subsolution, making it much harder to find a positive solution as was pointed out in Lions [9]. The positive solutions that we obtain here are ground states, i.e., they minimize the energy among all positive solutions.

*Corresponding Author: Kanishka Perera, Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA, E-mail: kperera@fit.edu
Ratnasingham Shivaji, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: shivaji@uncg.edu
Inbo Sim, Department of Mathematics, University of Ulsan, Ulsan 680-749, Republic of Korea, E-mail: ibsim@ulsan.ac.kr

Open Access. © 2019 K. Perera et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License.
We study the Brézis-Nirenberg type critical semipositone \(p \)-Laplacian problem

\[
\begin{aligned}
-\Delta_p u &= \lambda u^{p-1} + u^{p^*-1} - \mu \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

where \(\lambda, \mu > 0 \) are parameters. Let \(W^{1,p}_0(\Omega) \) be the usual Sobolev space with the norm given by

\[
||u||^p = \int_\Omega |\nabla u|^p \, dx.
\]

For a given \(\lambda > 0 \), the energy of a weak solution \(u \in W^{1,p}_0(\Omega) \) of problem (1.2) is given by

\[
I_\mu(u) = \int_\Omega \left(\frac{|\nabla u|^p}{p} - \frac{\lambda u^p}{p} - \frac{u^{p^*}}{p^*} + \mu u \right) \, dx,
\]

and clearly all weak solutions lie on the set

\[
\mathcal{N}_\mu = \left\{ u \in W^{1,p}_0(\Omega) : u > 0 \text{ in } \Omega \text{ and } \int_\Omega |\nabla u|^p \, dx = \int_\Omega \left(\lambda u^p + u^{p^*} - \mu u \right) \, dx \right\}.
\]

We will refer to a weak solution that minimizes \(I_\mu \) on \(\mathcal{N}_\mu \) as a ground state. Let

\[
\lambda_1 = \inf_{u \in W^{1,p}_0(\Omega) \setminus \{0\}} \frac{\int_\Omega |\nabla u|^p \, dx}{\int_\Omega |u|^p \, dx}
\]

be the first Dirichlet eigenvalue of the \(p \)-Laplacian, which is positive. We will prove the following existence theorem.

Theorem 1.1. If \(N \geq p^2 \) and \(\lambda \in (0, \lambda_1) \), then there exists \(\mu^* > 0 \) such that for all \(\mu \in (0, \mu^*) \), problem (1.2) has a ground state solution \(u_\mu \in C^{1,1}(\bar{\Omega}) \) for some \(\alpha \in (0, 1) \).

The scaling \(u \mapsto \mu^{-1/(p^*-p)} u \) transforms the first equation in the critical semipositone \(p \)-Laplacian problem

\[
\begin{aligned}
-\Delta_p u &= \lambda u^{p-1} + \mu \left(u^{p^*-1} - 1 \right) \quad \text{in } \Omega \\
u &= 0 \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{aligned}
\]

into

\[
-\Delta_p u = \lambda u^{p-1} + u^{p^*-1} - \mu^{(p^*-1)/(p^*-p)},
\]

so as an immediate corollary we have the following existence theorem for problem (1.4).

Theorem 1.2. If \(N \geq p^2 \) and \(\lambda \in (0, \Lambda_1) \), then there exists \(\mu^* > 0 \) such that for all \(\mu \in (0, \mu^*) \), problem (1.4) has a ground state solution \(u_\mu \in C^{1,\alpha}(\bar{\Omega}) \) for some \(\alpha \in (0, 1) \).

We would like to emphasize that Theorems 1.1 and 1.2 are new even in the semilinear case \(p = 2 \).

The outline of the proof of Theorem 1.1 is as follows. We consider the modified problem

\[
\begin{aligned}
-\Delta_p u &= \lambda u^{p-1} + u^{p^*-1} - \mu f(u) \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

where \(f \) is a nonlinear term.
where \(u_+(x) = \max \{ u(x), 0 \} \) and

\[
 f(t) = \begin{cases}
 1, & t \geq 0 \\
 1 - |t|^{p-1}, & -1 < t < 0 \\
 0, & t \leq -1.
 \end{cases}
\]

Weak solutions of this problem coincide with critical points of the \(C^1 \)-functional

\[
 I_\mu(u) = \int_\Omega \left(\frac{|
abla u|^p}{p} - \frac{\lambda u^p}{p} - \frac{u^{p^*}}{p^*} \right) \, dx + \mu \left[\int_{\{u < 0\}} u \, dx + \mu \int_{\{-1 < u < 0\}} \left(u - \frac{|u|^{p-1} u}{p} \right) \, dx \left(1 - \frac{1}{p} \right) |\{u \leq -1\}| \right], \quad u \in W^{1,p}_0(\Omega),
\]

where \(|\cdot|\) denotes the Lebesgue measure in \(\mathbb{R}^N \). Recall that \(I_\mu \) satisfies the Palais-Smale compactness condition at the level \(c \in \mathbb{R} \), or the (PS)\(_c\) condition for short, if every sequence \(\{ u_j \} \subset W^{1,p}_0(\Omega) \) such that \(I_\mu(u_j) \to c \) and \(I'_\mu(u_j) \to 0 \), called a (PS)\(_c\) sequence for \(I_\mu \), has a convergent subsequence. As we will see in Lemma 2.1 in the next section, it follows from concentration compactness arguments that \(I_\mu \) satisfies the (PS)\(_c\) condition for all

\[
 c < \frac{1}{N} S^{N/p} \left(1 - \frac{1}{p} \right) \mu \, |\Omega|,
\]

where \(S \) is the best Sobolev constant (see (2.1)). First we will construct a mountain pass level below this threshold for compactness for all sufficiently small \(\mu > 0 \). This part of the proof is more or less standard. The novelty of the paper lies in the fact that the solution \(u_\mu \) of the modified problem (1.5) thus obtained is positive, and hence also a solution of our original problem (1.2), if \(\mu \) is further restricted. Note that this does not follow from the strong maximum principle as usual since \(-\mu f(0) < 0\). This is precisely the main difficulty in finding positive solutions of semipositone problems (see Lions [9]). We will prove that for every sequence \(\mu_j \to 0 \), a subsequence of \(u_{\mu_j} \) is positive in \(\Omega \). The idea is to show that a subsequence of \(u_{\mu_j} \) converges in \(C^1_0(\overline{\Omega}) \) to a solution of the limit problem

\[
 \begin{aligned}
 -\Delta_p u &= \lambda u^{p-1} + u^{p^*-1} \quad \text{in } \Omega \\
 u &> 0 \quad \text{in } \Omega \\
 u &= 0 \quad \text{on } \partial \Omega.
 \end{aligned}
\]

This requires a uniform \(C^{1,a}(\overline{\Omega}) \) estimate of \(u_{\mu_j} \) for some \(a \in (0, 1) \). We will obtain such an estimate by showing that \(u_{\mu_j} \) is uniformly bounded in \(W^{1,p}_0(\Omega) \) and uniformly equi-integrable in \(L^p(\Omega) \), and applying a result of de Figueiredo et al.[10]. The proof of uniform equi-integrability in \(L^p(\Omega) \) involves a second (nonstandard) application of the concentration compactness principle. Finally, we use the mountain pass characterization of our solution to show that it is indeed a ground state.

Remark 1.3. Establishing the existence of solutions to the critical semipositone problem

\[
 \begin{aligned}
 -\Delta_p u &= \mu \left(u^{p-1} + u^{p^*-1} - 1 \right) \quad \text{in } \Omega \\
 u &> 0 \quad \text{in } \Omega \\
 u &= 0 \quad \text{on } \partial \Omega
 \end{aligned}
\]

for small \(\mu \) remains open.
2 Preliminaries

Let

\[
S = \inf_{u \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p \, dx}{\mu \left(\frac{1}{p} \int_{\Omega} |u|^p \, dx \right)^{p/p'}}
\]

be the best constant in the Sobolev inequality, which is independent of \(\Omega\). The proof of Theorem 1.1 will make use of the following compactness result.

Lemma 2.1. For any fixed \(\lambda, \mu > 0\), \(I_\mu\) satisfies the (PS)_c condition for all

\[
c < \frac{1}{N} S^{N/p} - \left(1 - \frac{1}{p}\right) \mu |\Omega|.
\]

Proof. Let \((u_j)\) be a (PS)_c sequence. First we show that \((u_j)\) is bounded. We have

\[
I_\mu(u_j) = \int_{\Omega} \left(\frac{|\nabla u_j|^p}{p} - \frac{\lambda |u_j|^{p-1} u_j}{p} \right) \, dx + \mu \left[\int_{\{u_j \leq 0\}} u_j \, dx \right] + \mu \left[\int_{\{u_j > 0\}} \left(1 - \frac{1}{p}\right) u_j \, dx \right] = c + o(1)
\]

and

\[
I'_\mu(u_j)v = \int_{\Omega} \left(|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v - \lambda |u_j|^{p-1} v - u_j^{p-1} v \right) \, dx + \mu \left[\int_{\{u_j \leq 0\}} v \, dx \right] + \mu \left[\int_{\{u_j > 0\}} \left(1 - |u_j|^{p-1}\right) v \, dx \right] = o(1) \|v\| \quad \forall v \in W_0^{1,p}(\Omega).
\]

Taking \(v = u_j\) in (2.4), dividing by \(p\), and subtracting from (2.3) gives

\[
\frac{1}{N} \int_{\Omega} u_j^{p'} \, dx \leq c + \left(1 - \frac{1}{p}\right) \mu |\Omega| + o(1) \left(\|u_j\| + 1\right),
\]

and it follows from this, (2.3), and the Hölder inequality that \((u_j)\) is bounded in \(W_0^{1,p}(\Omega)\).

Since \((u_j)\) is bounded, so is \((u_{j+})\), a renamed subsequence of which then converges to some \(v \geq 0\) weakly in \(W_0^{1,p}(\Omega)\), strongly in \(L^q(\Omega)\) for all \(q \in [1, p^*)\) and a.e. in \(\Omega\), and

\[
|\nabla u_{j+}|^p \, dx \xrightarrow{w^*} \kappa, \quad u_{j+}^{p'} \, dx \xrightarrow{w^*} v
\]

in the sense of measures, where \(\kappa\) and \(v\) are bounded nonnegative measures on \(\overline{\Omega}\) (see, e.g., Folland [11]). By the concentration compactness principle of Lions [12, 13], then there exist an at most countable index set \(I\) and points \(x_i \in \overline{\Omega}, i \in I\) such that

\[
\kappa \geq |\nabla v|^p \, dx + \sum_{i \in I} \xi_i \delta_{x_i}, \quad v = v^{p'} \, dx + \sum_{i \in I} v_i \delta_{x_i},
\]

(2.7)
where \(\kappa_i, v_i > 0 \) and \(v_i^{p'/p} \leq \kappa_i/S \). We claim that \(I = \emptyset \). Suppose by contradiction that there exists \(i \in I \). Let \(\varphi : \mathbb{R}^N \to [0,1] \) be a smooth function such that \(\varphi(x) = 1 \) for \(|x| \leq 1 \) and \(\varphi(x) = 0 \) for \(|x| \geq 2 \). Then set

\[
\varphi_{i,\rho}(x) = \varphi\left(\frac{x-x_i}{\rho} \right), \quad x \in \mathbb{R}^N
\]

for \(i \in I \) and \(\rho > 0 \), and note that \(\varphi_{i,\rho} : \mathbb{R}^N \to [0,1] \) is a smooth function such that \(\varphi_{i,\rho}(x) = 1 \) for \(|x-x_i| \leq \rho \) and \(\varphi_{i,\rho}(x) = 0 \) for \(|x-x_i| \geq 2\rho \). The sequence \((\varphi_{i,\rho} u_i) \) is bounded in \(W_0^{1,p}(\Omega) \) and hence taking \(\nu = \varphi_{i,\rho} u_i \) in (2.4) gives

\[
\int_{\Omega} \left(\varphi_{i,\rho} |\nabla u_i|^p + u_i |\nabla u_i|^{p-2} \nabla u_i \cdot \nabla \varphi_{i,\rho} - \lambda \varphi_{i,\rho} u_i^p - \varphi_{i,\rho} \nu^p + \mu \varphi_{i,\rho} u_i \right) dx = o(1). \tag{2.8}
\]

By (2.6),

\[
\int_{\Omega} \varphi_{i,\rho} |\nabla u_i|^p dx \to \int_{\Omega} \varphi_{i,\rho} dx, \quad \int_{\Omega} \varphi_{i,\rho} u_i^p dx \to \int_{\Omega} \varphi_{i,\rho} dx.
\]

Denoting by \(C \) a generic positive constant independent of \(j \) and \(\rho \),

\[
\left| \int_{\Omega} \left(u_i |\nabla u_i|^{p-2} \nabla u_i \cdot \nabla \varphi_{i,\rho} - \lambda \varphi_{i,\rho} u_i^p + \mu \varphi_{i,\rho} u_i \right) dx \right| \leq C \left(\frac{1}{\rho} + \mu \right) \left(I_j^{1/p} + I_j \right),
\]

where

\[
I_j := \int_{\Omega \cap B_{2\rho}(x_i)} u_i^p dx \to \int_{\Omega \cap B_{2\rho}(x_i)} v^p dx \leq C \rho^p \left(\int_{\Omega \cap B_{2\rho}(x_i)} v^p dx \right)^{p/p'},
\]

So passing to the limit in (2.8) gives

\[
\int_{\Omega} \varphi_{i,\rho} dx - \int_{\Omega} \varphi_{i,\rho} dx \leq C \left[(1 + \mu \rho) \left(\int_{\Omega \cap B_{2\rho}(x_i)} v^p dx \right)^{1/p'} + \int_{\Omega \cap B_{2\rho}(x_i)} v^p dx \right].
\]

Letting \(\rho \to 0 \) and using (2.7) now gives \(\kappa_i \leq v_i \), which together with \(v_i > 0 \) and \(v_i^{p'/p} \leq \kappa_i/S \) then gives \(v_i \geq S^{N/p} \). On the other hand, passing to the limit in (2.5) and using (2.6) and (2.7) gives

\[
v_i \leq N \left[c + \left(1 - \frac{1}{p} \right) \mu |\Omega| \right] < S^{N/p}
\]

by (2.2), a contradiction. Hence \(I = \emptyset \) and

\[
\int_{\Omega} u_i^p dx \to \int_{\Omega} v^p dx. \tag{2.9}
\]

Passing to a further subsequence, \(u_j \) converges to some \(u \) weakly in \(W_0^{1,p}(\Omega) \), strongly in \(L^q(\Omega) \) for all \(q \in [1, p') \), and a.e. in \(\Omega \). Since

\[
|u_j^{p-1} (u_j - u)| \leq u_j^{p-1} + u_j^{p-1} |u| \leq \left(2 - \frac{1}{p'} \right) u_j^{p-1} + \frac{1}{p'} |u|^{p'}
\]

by Young’s inequality,

\[
\int_{\Omega} u_j^{p-1} (u_j - u) dx \to 0
\]

by (2.9) and the dominated convergence theorem. Then taking \(\nu = u_j - u \) in (2.4) gives

\[
\int_{\Omega} |\nabla u_j|^{p-2} \nabla u_j \cdot \nabla (u_j - u) dx \to 0,
\]

so \(u_j \to u \) in \(W_0^{1,p}(\Omega) \) for a renamed subsequence (see, e.g., Perera et al.[14, Proposition 1.3]).
The infimum in (2.1) is attained by the family of functions

$$u_\varepsilon(x) = \frac{C_{N,p} \varepsilon^{(N-p)/p^*}}{(\varepsilon + |x|^{(p-1)/(N-p)})^p}, \quad \varepsilon > 0$$

when $\Omega = \mathbb{R}^N$, where the constant $C_{N,p} > 0$ is chosen so that

$$\int_{\mathbb{R}^N} |\nabla u_\varepsilon|^p \, dx = \int_{\mathbb{R}^N} u_\varepsilon^p \, dx = S^{N/p}.$$

Without loss of generality, we may assume that $0 \in \Omega$. Let $r > 0$ be so small that $B_{2r}(0) \subset \Omega$, take a function $\psi \in C^\infty_0(B_{2r}(0), [0, 1])$ such that $\psi = 1$ on $B_r(0)$, and set

$$\tilde{u}_\varepsilon(x) = \psi(x) u_\varepsilon(x), \quad v_\varepsilon(x) = \frac{\tilde{u}_\varepsilon(x)}{\left(\int_{\Omega} \tilde{u}_\varepsilon^p \, dx\right)^{1/p^*}},$$

so that $\int_{\Omega} v_\varepsilon^p \, dx = 1$. Then we have the well-known estimates

$$\int_{\Omega} |\nabla v_\varepsilon|^p \, dx \leq S + C \varepsilon^{(N-p)/p}, \quad (2.10)$$

$$\int_{\Omega} v_\varepsilon^p \, dx \geq \begin{cases} \frac{1}{C} \varepsilon^{p-1}, & N > p^2, \\ \frac{1}{C} \varepsilon^{p-1} |\log \varepsilon|, & N = p^2, \end{cases} \quad (2.11)$$

where $C = C(N, p) > 0$ is a constant (see, e.g., Drábek and Huang [15]).

3 Proof of Theorem 1.1

First we show that I_μ has a uniformly positive mountain pass level below the threshold for compactness given in Lemma 2.1 for all sufficiently small $\mu > 0$. Let v_ε be as in the last section.

Lemma 3.1. There exist $\mu_0, \rho, c_0 > 0, R > \rho$, and $\beta < \frac{1}{N} S^{N/p}$ such that the following hold for all $\mu \in (0, \mu_0)$:

(i) $\|u\| = \rho \Rightarrow I_\mu(u) \geq c_0$,

(ii) $I_\mu(t v_\varepsilon) \leq 0$ for all $t \geq R$ and $\varepsilon \in (0, 1]$,

(iii) denoting by $\Gamma = \{ y \in C([0, 1], W^{1,p}_0(\Omega)) : y(0) = 0, \ y(1) = R v_\varepsilon \}$ the class of paths joining the origin to $R v_\varepsilon$,

$$c_0 \leq c_\mu := \inf_{y \in \Gamma} \max_{u \in y([0,1])} I_\mu(u) \leq \beta - \left(1 - \frac{1}{p}\right) \mu |\Omega|$$

for all sufficiently small $\varepsilon > 0$,

(iv) I_μ has a critical point u_μ at the level c_μ.

Proof. By (1.3) and (2.1),

$$I_\mu(u) \geq \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_1}\right) \|u\|^p - \frac{S^{p^*/p}}{p^*} \|u\|^{p^*} - \left(1 - \frac{1}{p}\right) \mu |\Omega|,$$

and (i) follows from this for sufficiently small $\rho, c_0, \mu > 0$ since $\lambda < \lambda_1$.

Since \(\nu_\varepsilon \geq 0 \),
\[
I_\mu(t\nu_\varepsilon) = \frac{t^p}{p} \int_{\Omega} \left(|\nabla \nu_\varepsilon|^p - \lambda \nu_\varepsilon^p \right) \, dx - \frac{t^p}{p} + \mu t \int_{\Omega} \nu_\varepsilon \, dx
\]
for \(t \geq 0 \). By the Hölder’s and Young’s inequalities,
\[
\mu t \int_{\Omega} \nu_\varepsilon \, dx \leq \mu t |\Omega|^{1-1/p} \left(\int_{\Omega} \nu_\varepsilon^p \, dx \right)^{1/p} \leq C_\lambda \mu^{p/(p-1)} + \frac{\lambda t^p}{2^p} \int_{\Omega} \nu_\varepsilon^p \, dx,
\]
where
\[
C_\lambda = \left(1 - \frac{1}{p} \right) \left(\frac{2}{\lambda} \right)^{1/(p-1)} |\Omega|,
\]
so
\[
I_\mu(t\nu_\varepsilon) \leq \frac{t^p}{p} \int_{\Omega} \left(|\nabla \nu_\varepsilon|^p - \frac{\lambda}{2} \nu_\varepsilon^p \right) \, dx - \frac{t^p}{p} + C_\lambda \mu^{p/(p-1)}.
\]

Then by (2.10) and for \(\varepsilon, \mu \in (0, 1) \),
\[
I_\mu(t\nu_\varepsilon) \leq (S + C) \frac{t^p}{p} - \frac{t^p}{p^*} + C_\lambda,
\]
from which (ii) follows for sufficiently large \(R > \rho \).

The first inequality in (3.1) is immediate from (i) since \(R > \rho \). Maximizing the right-hand side of (3.2) over \(t \geq 0 \) gives
\[
c_\mu \leq \frac{1}{N} \left(\int_{\Omega} \left(|\nabla \nu_\varepsilon|^p - \frac{\lambda}{2} \nu_\varepsilon^p \right) \, dx \right)^{N/p} + C_\lambda \mu^{p/(p-1)},
\]
and (2.10) and (2.11) imply that the integral on the right-hand side is strictly less than \(S \) for all sufficiently small \(\varepsilon > 0 \) since \(N > p^2 \) and \(\lambda > 0 \), so the second inequality in (3.1) holds for sufficiently small \(\mu > 0 \).

Finally, (iv) follows from (i)–(iii), Lemma 2.1, and the mountain pass lemma (see Ambrosetti and Rabinowitz [16]).

Next we show that \(u_\mu \) is uniformly bounded in \(W_0^{1,p}(\Omega) \) and uniformly equi-integrable in \(L^p(\Omega) \), and hence also uniformly bounded in \(C^{1,\alpha}(\overline{\Omega}) \) for some \(\alpha \in (0, 1) \) by de Figueiredo et al. [10, Proposition 3.7], for all sufficiently small \(\mu \in (0, \mu_0) \).

Lemma 3.2. There exists \(\mu^* \in (0, \mu_0] \) such that the following hold for all \(\mu \in (0, \mu^*) \):

(i) \(u_\mu \) is uniformly bounded in \(W_0^{1,p}(\Omega) \),

(ii) \(\int \frac{|u_\mu|^p}{p} \, dx \to 0 \) as \(|E| \to 0 \), uniformly in \(\mu \),

(iii) \(u_\mu \) is uniformly bounded in \(C^{1,\alpha}(\overline{\Omega}) \) for some \(\alpha \in (0, 1) \).

Proof. We have
\[
I_\mu(u_\mu) = \int_{\Omega} \left(\frac{|\nabla u_\mu|^p}{p} - \frac{\lambda u_\mu^p}{p} - \frac{u_\mu^{p^*}}{p^*} \right) \, dx + \mu \left[\int_{\{u_\mu > 0\}} u_\mu \, dx \right.
\]
\[
\left. + \int_{\{-1 < u_\mu < 0\}} \left(u_\mu - \frac{|u_\mu|^{p-1} u_\mu}{p} \right) \, dx - \left(1 - \frac{1}{p} \right) |\{u_\mu \leq -1\}| \right] = c_\mu
\]
(3.3)
and
\[
\mathcal{I}_\mu^*(u_\mu) v = \int_\Omega \left(|\nabla u_\mu|^{p-2} \nabla u_\mu \cdot \nabla v - \lambda u_\mu^{p-1} v - u_\mu^{p+1} v \right) dx + \mu \left[\int_{\{u_\mu > 0\}} v \, dx \right] + \int_{\{-1 < u_\mu < 0\}} \left(1 - |u_\mu|^{p-1} \right) v \, dx = 0 \quad \forall v \in W_0^{1,p}(\Omega). \tag{3.4}
\]

Taking \(v = u_\mu \) in (3.4), dividing by \(p \), and subtracting from (3.3) gives
\[
\frac{1}{N} \int_\Omega u_\mu^p \, dx \leq c_\mu + \left(1 - \frac{1}{p} \right) \mu \, |\Omega| \leq \beta
\tag{3.5}
\]
by (3.1), and (i) follows from this, (3.4) with \(v = u_\mu \), and the Hölder inequality.

If (ii) does not hold, then there exist sequences \(\mu_j \to 0 \) and \((E_j) \) with \(|E_j| \to 0 \) such that
\[
\lim_{E \to E_j} \int |u_{\mu_j}|^p \, dx > 0. \tag{3.6}
\]

Since \((u_{\mu_j}) \) is bounded by (i), so is \((u_{\mu_j}) \), a renamed subsequence of which then converges to some \(u \geq 0 \) weakly in \(W_0^{1,p}(\Omega) \), strongly in \(L^q(\Omega) \) for all \(q \in [1, p^* \} \) and a.e. in \(\Omega \), and
\[
|\nabla u_{\mu_j}|^p \, dx \overset{w^*}{\to} \kappa, \quad u_{\mu_j}^p \, dx \overset{w^*}{\to} v
\tag{3.7}
\]
in the sense of measures, where \(\kappa \) and \(v \) are bounded nonnegative measures on \(\overline{\Omega} \). By Lions [12, 13], then there exist an at most countable index set \(I \) and points \(x_i \in \overline{\Omega}, i \in I \) such that
\[
\kappa \geq |\nabla v|^p \, dx + \sum_{i \in I} \kappa_i \delta_{x_i}, \quad v = v^p \, dx + \sum_{i \in I} v_i \delta_{x_i},
\tag{3.8}
\]
where \(\kappa_i, v_i > 0 \) and \(v_i^{p/p^*} \leq \kappa_i/S \). Suppose \(I \) is nonempty, say, \(i \in I \). An argument similar to that in the proof of Lemma 2.1 shows that \(\kappa_i \leq v_i \), so \(v_i \geq S^{N/p} \). On the other hand, passing to the limit in (3.5) with \(\mu = \mu_j \) and using (3.7) and (3.8) gives \(v_i \leq N \beta < S^{N/p} \), a contradiction. Hence \(I = \emptyset \) and
\[
\int_\Omega u_{\mu_j}^p \, dx \to \int_\Omega v^p \, dx.
\]

As in the proof of Lemma 2.1, a further subsequence of \((u_{\mu_j}) \) then converges to some \(u \in W_0^{1,p}(\Omega) \), and hence also in \(L^p(\Omega) \), and a.e. in \(\Omega \). Then
\[
\int_{E_j} |u_{\mu_j}|^p \, dx \leq \int_\Omega \left(|u_{\mu_j}|^p - |u|^p \right) \, dx + \int_{E_j} |u|^p \, dx \to 0,
\]
contradicting (3.6).

Finally, (iii) follows from (i), (ii), and de Figueiredo et al. [10, Proposition 3.7].

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We claim that \(u_\mu \) is positive in \(\Omega \), and hence a weak solution of problem (1.2), for all sufficiently small \(\mu \in (0, \mu_*). \) It suffices to show that for every sequence \(\mu_j \to 0 \), a subsequence of \(u_{\mu_j} \) is
positive in Ω. By Lemma 3.2 (iii), a renamed subsequence of u_{μ_j} converges to some u in $C_0^1(\overline{\Omega})$. We have

$$I_{\mu_j}(u_{\mu_j}) = \int_\Omega \left(\frac{|\nabla u_{\mu_j}|^p}{p} - \frac{\lambda u^p_{\mu_j}}{p} - \frac{u^{p_+}}{p^+} \right) dx + \mu_j \left[\int_{\{u_{\mu_j} > 0\}} u_{\mu_j} - \int_{\{-1 < u_{\mu_j} < 0\}} u_{\mu_j} \right] + \frac{|u_{\mu_j}|^{p-1}|u_{\mu_j}|}{p} dx - (1 - \frac{1}{p}) \left[\{u_{\mu_j} \leq -1\} \right] = c_{\mu_j} \geq c_0$$

by (3.1) and

$$I_{\mu_j}(u_{\mu_j}) v = \int_\Omega \left((|\nabla u_{\mu_j}|^{p-2} \nabla u_{\mu_j} \cdot \nabla v - \lambda u_{\mu_j}^{p-1} v - u_{\mu_j}^{p-1} v) dx + \mu_j \left[\int_{\{u_{\mu_j} > 0\}} v dx \right] + \frac{|u_{\mu_j}|^{p-1}|u_{\mu_j}|}{p} dx - (1 - \frac{1}{p}) \left[\{u_{\mu_j} \leq -1\} \right] = c_{\mu_j} \geq c_0$$

and passing to the limits gives

$$\int_\Omega \left(\frac{|\nabla u|^p}{p} - \frac{\lambda u^p}{p} - \frac{u^{p_+}}{p^+} \right) dx \geq c_0$$

and

$$\int_\Omega \left((|\nabla u|^{p-2} \nabla u \cdot \nabla v - \lambda u^{p-1} v - u^{p-1} v) dx = 0 \forall v \in W_0^{1,p}(\Omega),$$

so u is a nontrivial weak solution of the problem

$$\begin{cases}
-\Delta_p u = \lambda u^{p-1} + u^{p-1} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{cases}$$

Then $u > 0$ in Ω and its interior normal derivative $\partial u/\partial \nu > 0$ on $\partial \Omega$ by the strong maximum principle and the Hopf lemma for the p-Laplacian (see Vázquez [17]). Since $u_{\mu_j} \to u$ in $C_0^1(\overline{\Omega})$, then $u_{\mu_j} > 0$ in Ω for all sufficiently large j.

It remains to show that u_{μ_j} minimizes I_{μ} on \mathcal{N}_{μ_j} when it is positive. For each $w \in \mathcal{N}_{\mu_j}$, we will construct a path $y_w \in \Gamma$ such that

$$\max_{u \in y_w([0,1])} I_{\mu_j}(u) = I_{\mu_j}(w).$$

Since

$$I_{\mu_j}(u_{\mu_j}) = c_{\mu_j} \leq \max_{u \in y_w([0,1])} I_{\mu}(u)$$

by the definition of c_{μ_j}, the desired conclusion will then follow. First we note that the function

$$g(t) = I_{\mu_j}(tw) = \frac{t^p}{p} \int_\Omega (|\nabla w|^p - \lambda w^p) dx + \frac{t^{p^+}}{p^+} \int_\Omega w^{p^+} dx + \mu t \int_\Omega w dx, \quad t \geq 0$$

has a unique maximum at $t = 1$. Indeed,

$$g'(t) = t^{p-1} \int_\Omega (|\nabla w|^p - \lambda w^p) dx - t^{p^+ - 1} \int_\Omega w^{p^+} dx + \mu \int_\Omega w dx$$

$$= (t^{p-1} - t^{p^+ - 1}) \int_\Omega (|\nabla w|^p - \lambda w^p) dx + (1 - t^{p^+ - 1}) \mu \int_\Omega w dx$$

and
since $w \in \mathbb{N}_\mu$, and the last two integrals are positive since $\lambda < \lambda_1$ and $w > 0$, so $g'(t) > 0$ for $0 \leq t < 1$, $g'(1) = 0$, and $g'(t) < 0$ for $t > 1$. Hence
\[
\max_{t \leq 0} I_{\mu}(t w) = I_{\mu}(w) > 0
\]
since $g(0) = 0$. In view of Lemma 3.1 (ii), now it suffices to observe that there exists $\tilde{R} > \max \{1, R\}$ such that
\[
I_{\mu}(\tilde{R} u) = \frac{\tilde{R}^p}{p} \int_\Omega (|\nabla u|^p - \lambda u^p) \, dx - \frac{\tilde{R}^{p^*}}{p^*} \int_\Omega u^{p^*} \, dx + \mu \tilde{R} \int_\Omega u \, dx \leq 0
\]
for all u on the line segment joining w to v_ε since all norms on a finite dimensional space are equivalent.

Acknowledgement: The third author was supported by the National Research Foundation of Korea Grant funded by the Korea Government (MEST) (NRF-2015R1D1A3A01019789).

References

[1] Alfonso Castro, Djairo G. de Figueiredo, and Emer Lopera. Existence of positive solutions for a semipositone p-Laplacian problem. *Proc. Roy. Soc. Edinburgh Sect. A*, 146(3):475–482, 2016.

[2] M. Chhetri, P. Drábek, and R. Shivaji. Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems. *Proc. Roy. Soc. Edinburgh Sect. A*, 145(5):925–936, 2015.

[3] S. Unsurangie. *Existence of a solution for a wave and elliptic Dirichlet problem*. PhD thesis, University of North Texas, Denton, 1988.

[4] W. Allegretto, P. Nistri, and P. Zecca. Positive solutions of elliptic nonpositone problems. *Differential Integral Equations*, 5(1):95–101, 1992.

[5] A. Ambrosetti, D. Arcoya, and B. Buffoni. Positive solutions for some semi-positone problems via bifurcation theory. *Differential Integral Equations*, 7(3-4):655–663, 1994.

[6] Scott Caldwell, Alfonso Castro, Ratnasingham Shivaji, and Sumalee Unsurangsie. Positive solutions for classes of multi-parameter elliptic semipositone problems. *Electron. J. Differential Equations*, pages No. 96, 10 pp. (electronic), 2007.

[7] Mohammed Guedda and Laurent Véron. Quasilinear elliptic equations involving critical Sobolev exponents. *Nonlinear Anal.*, 13(8):879–902, 1989.

[8] Haïm Brézis and Louis Nirenberg. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. *Comm. Pure Appl. Math.*, 36(4):437–477, 1983.

[9] P.-L. Lions. On the existence of positive solutions of semilinear elliptic equations. *SIAM Rev.*, 24(4):441–467, 1982.

[10] Djairo G. de Figueiredo, Jean-Pierre Gossez, and Pedro Ubilla. Local “superlinearity” and “sublinearity” for the p-Laplacian. *J. Funct. Anal.*, 257(3):721–752, 2009.

[11] Gerald B. Folland. *Real analysis*. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition, 1999. Modern techniques and their applications, A Wiley-Interscience Publication.

[12] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. *Rev. Mat. Iberoamericana*, 1(1):145–201, 1985.

[13] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. II. *Rev. Mat. Iberoamericana*, 1(2):45–121, 1985.

[14] Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan. *Morse theoretic aspects of p-Laplacian type operators*, volume 161 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2010.

[15] Pavel Drábek and Yin Xi Huang. Multiplicity of positive solutions for some quasilinear elliptic equation in \mathbb{R}^N with critical Sobolev exponent. *J. Differential Equations*, 140(1):106–132, 1997.

[16] Antonio Ambrosetti and Paul H. Rabinowitz. Dual variational methods in critical point theory and applications. *J. Functional Analysis*, 14:349–381, 1973.

[17] J. L. Vázquez. A strong maximum principle for some quasilinear elliptic equations. *Appl. Math. Optim.*, 12(3):191–202, 1984.