Metabolic and genomic analysis elucidates strain-level variation in *Microbacterium* spp. isolated from chromate contaminated sediment

Michael W Henson, Jorge W Santo Domingo, Peter S Kourtev, Roderick V Jensen, James A Dunn, Deric R Learman

Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing *Microbacterium* spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates’ phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes.
Metabolic and genomic analyses elucidate strain-level variation in *Microbacterium* spp. isolated from chromate contaminated sediment.

Michael W. Henson, Jorge W. Santo Domingo, Peter S. Kourtev, Roderick V. Jensen, James A. Dunn, and Deric R. Learman

1. Institute for Great Lakes Research, Department of Biology, Central Michigan University, Mt. Pleasant, MI, 48859, USA
2. National Risk Management Research Laboratory, Environmental Protection Agency, Cincinnati, OH, 45268, USA
3. Department of Biology, Central Michigan University, Mt. Pleasant, MI, 48859, USA
4. Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA

Corresponding author:

Deric R. Learman,

Mailing address: Department of Biology, 217 Brooks Hall, Central Michigan University, Mt. Pleasant, MI, 48859, U.S.A., Phone: (989) 774-4409.

Email address: deric.learman@cmich.edu
Abstract.

Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing *Microbacterium* spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana). Despite the isolates’ phylogenetic similarity (i.e., identical 16S rRNA gene sequences), they exhibited varying chromate responses, both in terms of their chromate resistance levels and their chromate reducing potential: two of the strains were resistant to high levels of chromate and were able to quickly reduce chromate, while the other two were resistant to lower levels of chromate and showed limited chromate reduction capabilities. In addition, the four isolates exhibited considerable variation in their genomic metabolic potential, growth rates, and metabolic fingerprinting. The variation was evident both across all 4 isolates, as well as within the fast and slow reducers. Though no chromate-related genes (e.g. *chrA* and *chrR*) were found in the automated annotation, customized database searches did return putative *chrR*-like genes. Taken together, the discrepancies between the four isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes.

Introduction.

Chromium (Cr) has become a major environmental pollutant due to its extensive use in industrial and mining industries (Barak et al. 2006; Brose & James 2010; Cheng et al. 2012). Chromium is the second most common contaminant at U.S. Department of Energy sites, and without proper remediation could persist at dangerous levels well past a 1000 years from now (Okrent & Xing 1993; Riley et al. 1992). Further, chromium is of particular concern because of its solubility in water and potential risk to drinking water, as well as, the potential to inhibit the natural microbial communities engaged in the bioremediation of other pollutants (Bååth 1989;
Gough et al. 2008; Gough & Stahl 2011; Kourtev et al. 2009; Nakatsu et al. 2005; Said & Lewis 1991). As such, chromium contamination of soil and water pose risks to the United States and other industrial nations without proper remediation (Ackerley et al. 2004a; Beller et al. 2013; Cheng et al. 2012; He et al. 2010).

Within the environment, chromium mainly persists in two forms: Cr(III) and Cr(VI) (Bartlett 1991). Cr(VI) is highly toxic, soluble, and can be easily transported across cell membranes of both eukaryotic and prokaryotic organisms via sulfate and other active transporters (Ackerley et al. 2004b; Cheng et al. 2012). Conversely, Cr(III) is sparingly soluble, thermodynamically stable, and found in oxide, hydroxide, and sulfate minerals, or complexed by organic matter (Barak et al. 2006; Brose & James 2010; Oze et al. 2007; Oze et al. 2004; Viti et al. 2013). While the natural oxidation of Cr(III) is only mediated by a select number of abiotic substrates (e.g. manganese oxides and hydrogen peroxide), Cr(VI) reduction can be driven by various bacterial and abiotic factors (e.g. iron(II) and hydrogen sulfides) (Brose & James 2010; Oze et al. 2004; Viti et al. 2013). Chromium (VI) compounds are highly toxic, mutagenic, and possibly carcinogenic. Many microorganisms have been found to possess various mechanisms to reduce Cr(VI), which has potential impacts on bioremediation strategies (Suzuki et al. 1992).

Several bacterial species have been isolated and characterized detailing their unique mechanisms to reduce and resist Cr(VI) (Chovanec et al. 2012; Diaz-Perez et al. 2007; Field et al. 2013; He et al. 2010; Silver & Phung 2005). While certain bacteria can reduce Cr(VI) under anaerobic conditions (Beller et al. 2013; Chovanec et al. 2012; Lovley et al. 1993; Sheik et al. 2012), other bacteria possess soluble enzymes that facilitate reduction under aerobic conditions (Ackerley et al. 2004a; Barak et al. 2006; Cheung & Gu 2007; Gonzalez et al. 2005; Park et al. 2000). In addition, bacteria can also utilize an efflux pump to aid resistance to chromate. ChrA,
part of the CHR superfamily, is a chromium transport protein that has been linked to Cr(VI) resistance. The mechanism of this efflux pump has been determined by examining two model organisms, *Cupravidus metallidurans* and *Pseudomonas aeruginos* (Cervantes & Ohtake 1988; Cervantes et al. 1990). In an *in silico* study, Ramirez-Diaz et al. (2008) identified 135 ChrA orthologs that were dominated by *Proteobacteria* representatives.

Previous studies have shown that chromate reduction under aerobic conditions can be catalyzed by soluble NADH/NADPH dependent oxidoreductases. Two of these chromate reductases have been well studied: ChrR in *Pseudomonas putida* (Park et al. 2000) and YieF in *Escherichia coli* (Barak et al. 2006). ChrR uses one and two electron transfers to reduce Cr(VI) to Cr(V), a reactive intermediate, and then a second electron transfer to generate Cr(III). While the reactive intermediate can re-oxidize into Cr(VI) (in the presence of oxygen), ChrR uses quinone reductase activity to help protect cells against reactive oxygen species (ROS) production (Ackerley et al. 2004a; Cheung & Gu 2007; Gonzalez et al. 2005). YieF, a sequence homolog of ChrR, utilizes a four electron transfer to reduce Cr(VI) to Cr(III). The reductive mechanism of YieF also produces ROS similar to ChrR, however, at a much lower rate (Ackerley et al. 2004b; Ramirez-Diaz et al. 2008).

Members of the the genus *Microbacterium* have been shown to reduce chromate, however, the genes involved are not fully resolved. Indeed this is the case for *Microbacterium sp.* SUCR140 (Soni et al. 2014), *Microbacterium sp.* chr-3 (Focardi et al. 2014), and *Microbacterium sp.* CR-07 (Liu et al. 2012) have been shown to be effective reducers of chromate. Another example is the case for *M. laevaniformans* strain OR221 (Brown et al. 2012), a metal resistant bacterium which has been described, however, its genome does not contain an annotated *chrR* or *yieF*. Here, we conducted a combined genomic, metabolic, and physiological
analysis of chromate reducing bacteria from the *Microbacterium* genus. Though the isolates were identical at the 16S rRNA level, we found considerable inter-strain genomic, metabolic, and Cr(VI) reduction and resistance variability. This, taken together with their ability to resist and reduce high amounts of chromate, makes these isolates an interesting case study on microdiversity within highly related taxa as well as on chromate reduction.

Methods & Materials.

Sample Collection and Isolation.

Soil was collected in Seymour, IN from a Department of Transportation site known to have contamination from chromium, lead, and organic solvents (Kourtev et al. 2006; Nakatsu et al. 2005). Bill Jervis from the Indiana Department of Transport provided site access (no permit was required) and the project did not involve endangered or protected species. Bacterial strains were isolated from the contaminated soil as described in Kourtev *et al.* (Kourtev et al. 2009). Briefly, isolates were enriched on 50% tryptic soy agar (TSA) and 0.25 mM Cr(VI). Colonies were picked from the TSA plates and placed in 50% TSB with .25mM Cr(VI). Individual isolates were grown at varying amounts of chromate enriched TSA and Tryptic soy broth (TSB). The isolates were allowed to grow and then selected based on their varying abilities to resist and reduce Cr(VI). Isolates were maintained on 50% TSA with 2mM Cr(VI) as well as in 30% glycerol stocks stored at -80°C to help preserve active pure cultures.

DNA Extraction.
Bacterial isolates used in this study (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) were grown in 250 ml of 50% TSB amended with 2 mM potassium chromate (K_2CrO_4). Following inoculation, isolates were incubated at 30°C, 225 rpm for 24-72 hours. Cells were harvested by centrifuging the cultures in 250 ml Nalgene bottles at 8000 x g for 18 minutes. The supernatant was removed and the pellet was washed with autoclaved nanopure water following the same procedure. Cell pellets were extracted using the FastDNA® Spin Kit (MP Biomedical, Santa Ana, CA) with one modification. Before extraction, cell pellets were resuspended in autoclaved nanopure water before 200 µl was transferred to the Lysis Matrix tube provided by the kit. DNA samples were recovered in 100 µl of DES solution and stored at -20°C.

Chromate Resistance and Reduction Experiments.

All growth and reduction experiments were conducted in 50% TSB at 30 °C with shaking at 225 rpm. Chromium was added when needed in the form of K_2CrO_4. To test the ability of isolates to reduce Cr(VI), chromate was added to the medium to a final concentration of 2mM. Cultures, inoculated from -80 °C stocks, were grown overnight and then used to subculture fresh medium to an initial OD_{600} of 0.004. Cultures were prepared in triplicates for each growth and reduction experiment. OD_{600} and Cr(VI) reduction for each culture were measured at 6, 12, 24, 48, 72, 96, and 120 hours. A Cr(VI) reduction assay was performed as described by Urone et al. (1955), with minor modifications. Briefly, one mL of each culture was centrifuged at 7000 rpm for seven minutes to remove biomass. Ten µL of the supernatant were added to 966 µL of deionized water to which 3.40 µL of sulfuric acid was added. 1,5-Diphenylcarbazide (20 µL) was added to the sample and allowed to set for 10 minutes for full color development. Readings
were taken on a Cary UV-Vis spectrophotometer (Agilent technologies, Santa Clara, CA) at 540
nm. Negative (uninoculated) controls of 50% TSB with 2 mM K$_2$CrO$_4$ were used to determine
TSB-specific abiotic reduction of Cr(VI). Growth was measured on a UV-Vis spectrophotometer
(Varian Cary 50, Agilent) at 600 nm. In addition, relative Cr(VI) reduction rates were calculated
following Zhu et al., (2008).

Resistance determinations were performed in 5 ml of 50% TSB to which K$_2$CrO$_4$ was
added to final concentrations of 5, 10, 20, 40, 60, 80, and 100 mM. Cultures were prepared in
triplicates for each resistance experiment and the OD$_{600}$ was taken at 0 and 96 hours. Growth was
determined against an abiotic control.

Metabolic Screening.

All four isolates were screened for their metabolic potential using Biolog’s GP2 plates
(Hayward, CA) following the manufacturer’s protocol with minor modifications. Specifically,
isolates were grown on Biolog Universal Growth (BUG) agar (Biolog, Hayward, CA) at 30°C
after which biomass was transferred to 25 ml of inoculating fluid (IF) (Biolog, Hayward, CA)
containing sodium thioglycolate to achieve an OD$_{600}$ between 0.68-0.75. An aliquot (150 µl) was
placed into each well and then the plates were incubated for 22 hours at 30°C. Plates were read
using Biolog’s OmniLog program (version 1.2.01) which corrects for any difference in OD$_{600}$.
Absorbance values were converted to 0(-) for negative, 1(+) for positive, and .05(+/-) for
borderline by the Biolog OmniLog program. Replicates with a minimum of two positives or
borderlines or one positive and one borderline were considered positive for the metabolite. A
total of 95 metabolites were tested per isolate (Table S6). To ease data analysis, metabolites were
grouped into 6 guilds (Zak et al. 1994): 1) carbohydrates, 2) carboxylic acids, 3) amino acids, 4)
amines and amides, 5) polymers and 6) miscellaneous. The total number of positives for each
guild were then calculated for each isolate and plotted using Principal Components Analysis
(PCA) in PAST3 (Harper & Ryan 2001).

Sequencing, De Novo Assembly, and Analysis.

Whole genome shotgun sequencing was performed by multiplexing the genomic DNA
onto one lane using the Illumina HiSeq 2000 platform with 100 bp paired end reads using V2
chemistry at Cincinnati Children’s Hospital Medical Center’s Genetic Variation and Gene
Discovery Core facility. Raw Illumina genomic reads were trimmed of their adapter sequences
using the default setting of the program Trimmomatic (version 0.27) (Lohse et al. 2012).
Trimmed reads were checked for quality using FastQC (version 0.10.2; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and then trimmed for quality using
the fastx_trimmer (-Q33 -l 70) and fastx_quality_filter (-Q33 -q 30 -p 50) functions of the FastX
toolkit program (version 0.13.2) (http://hannonlab.cshl.edu/fastx_toolkit/). To determine the
appropriate range of Kmer length for assembly, the program KmerGenie (version 1.5856) was
used (Chikhi & Medvedev 2013; Zerbino & Birney 2008). Cleaned pair end reads were
assembled using the default setting of the assembly programs Velvet (version 1.2.10) (Zerbino &
Birney 2008) and AbySS (version 1.3.6) (Simpson et al. 2009) at a range of Kmer surrounding
the estimated Kmer size from KmerGenie. A third assembly was completed using the raw pair-
end reads and the integrated a5 pipeline assembly (Tritt et al. 2012). This pipeline automates the
processes of data cleaning, error correction, contig assembly, scaffolding, and quality control.
The draft assemblies were compared and the best assembly picked for each isolate based on their
total contigs, N50, genome size, max contig length, and mean contig length. AbySS assemblies
for all four isolates were used for all downstream analyses (Table S3). The average coverage of
each genome was > 200X, with each assembly containing 30 – 81 contigs (Table S2). The
contigs from the selected assembly were annotated and analyzed using the Departments of
Energy’s Joint Genome Institutes IMG program (Markowitz et al. 2012). Utilizing IMG’s
annotation data, Pfam categories and their broad category gene counts for the respective
genomes were extracted and normalized based on the sum of each row. Principal Component
Analysis (PCA) was then performed using PAST3. All protein coding genes from the annotated
draft isolate genomes were submitted to the Pacific Northwest National Laboratory’s Species
Parallel and Orthology Solver (SPOCS) for analysis to determine pairs of orthologous and
paraorthologous proteins between the closely related isolates (Curtis et al. 2013).

Analysis of Genomes for the Presence of Chromate-related Genes.

To increase the potential for finding chromate related genes, assembled contigs from the
four representative isolate genomes were searched against a protein database of chromate related
genes acquired from the UniprotKB database (http://www.uniprot.org/). Three databases were
downloaded containing the chromate related protein sequences of ChrA (efflux pump), ChrR
(reductase), and YieF (reductase). Databases were obtained from text-based queries within the
UniprotKB database. Because IMG based annotations did not return any chromate-related genes,
assembled contigs were searched manually against individual databases with the BLASTX
algorithm using a minimum e-value cutoff of 1e-05. Resultant nucleotide sequences with
_corresponding hits were translated using the translation tool from ExPAsy (http://expasy.org/)
and examined to see if the sequences were found within a larger open reading frame (ORF). For
each sequence, the top sequence corresponding to an annotated protein with the highest bit and query coverage was selected. The resultant amino acid sequence was searched using the protein BLAST tool from NCBI to further validate the gene candidate based on domain hits as shown within BLAST. Sequences were further scrutinized by examining the top resultant hit within the IMG using their alignment tools and gene neighborhood viewer.

Phylogenetic trees of the putative genes were made by using classic chrR and yieF genes downloaded from UniProtKB as well as from the top hits from homology searches within IMG. The protein sequences were aligned using ClustalW. A phylogenetic tree was then constructed using Maximum likelihood (bootstrap= 50) within the software MEGA (version 6.06) (Tamura et al. 2007).

Data Deposit.

This BioProject has been deposited at DDBJ/EMBL/GenBank under the accession PRJNA236112.

Results & Discussion.

Bacterial isolation and characterization of chromate resistance and reduction.

Four bacterial strains isolated from chromium contaminated soil samples (collected in Seymour, IN) were studied for their ability to resist and reduce Cr(VI). When introduced to Cr(VI), each isolate was able to grow and survive in a minimum of 2 mM chromate but differences in their growth were noted. Overall, three isolates (Cr-K20, Cr-K29, and Cr-K32) grew to relatively dense cultures (OD ≥ 4.0) and had similar growth rates whether grown
aerobically with or without Cr(VI) (Fig. 1A-D and Table S1). In contrast, Cr-K1W doubled in optical density when grown without Cr(VI) and it reached exponential growth earlier than the other isolates (Fig. 1A). When experiments were done with Cr(VI), Cr-K1W was also able to maintain a stable stationary phase for over 100 hours, which was not observed for the other isolates under similar conditions. Chromate toxicity appeared to have the greatest effect on Cr-K1W when compared to the other three isolates.

The isolates also had different abilities to reduce and resist chromate stress. Cr-K29 and Cr-K32 were capable of reducing 2 mM chromate within 48 hours (Fig. 1C-D) and had the relatively fastest reduction rates (Table S1), while resisting up to 100 mM of chromate. Conversely, Cr-K1W and Cr-K20 were only able to resist up to 10 mM and reduced less than 1.2 mM of chromate after 120 hours (Fig. 1A-B). These two isolates also had the lowest relative Cr(VI) reduction rates. Taken together, a connection between reduction and resistance was evident. Chromate resistance has been shown to be connected to the efflux pump gene chrA, part of the CHR superfamily, (e.g. Diaz-Perez et al. 2007; Henne et al. 2009a; Ramirez-Diaz et al. 2008), which can provide a wide range of resistance, 0.3 mM to 200 mM (Viti et al. 2013).

However, the link between reduction and resistance in these isolates may point to the importance of a Cr(VI) reductive mechanism and other non-chromate specific responses in aiding resistance, instead of Cr(VI) resistance being driven solely by an efflux pump.

Metabolic fingerprinting of the isolates.

Metabolic fingerprinting found variation between that isolates that is comparable to their growth differences. A survey of 95 potential metabolites showed a core group of 32 metabolites
used among all four isolates. Furthermore, isolates Cr-K1W and Cr-K20 shared the ability to use an additional seven metabolites, while Cr-K29, Cr-K20, and Cr-K32 shared the ability to use 16 additional metabolites (Fig. S1). Of the four isolates, Cr-K20 had the most unique combination of metabolites utilized (n=16). Both Cr-K29 and Cr-K32 exhibited the largest amount of overlap in substrate utilization, which may be related to why these isolates had very similar growth patterns (Fig. 1 B, C). The growth patterns of Cr-K1W and Cr-K20 were unique when compared to the other isolates, which was mirrored by their metabolic fingerprint. Of the six-substrate guilds, Carbohydrates and the Miscellaneous guilds exerted the greatest influence on separating Cr-K1W and Cr-K20 from Cr-K29 and Cr-K32. The four remaining substrate guilds (Amines/Amides, Carboxylic acids, Amino Acids, and Polymers) appeared to help separate Cr-K1W away from the other three isolates (Fig. 2).

Genomic characterization of chromate reducing isolates.

The four draft genomes obtained in this study had lengths between 3.79 - 3.91 Mbp with a GC content of ~ 68% (Table S2 and S3). Analysis of the 16S rRNA genes indicated that all four isolates had identical (1,405 bp) 16S rRNA sequences, and that they are *Microbacterium* sp. (*Actinobacteria* phylum), specifically members of the *Microbacterium oxydans* clade (Fig. S2). Gene annotation of the four genomes documented between 3,616 and 3,806 predicted protein coding genes (Table S2). Genomes were assessed to be nearly complete with all genomes containing the 35 universal single copy marker genes (Raes et al. 2007) (Table S4).

Analysis of the genomes indicated that the four taxonomically closely-related chromium reducing *Microbacterium* isolates have a surprising amount of inter-strain genomic variation. A
broad based genome comparison of the four isolates showed that they share a large predicted protein core made up of 2810 proteins (Fig. S3). In addition to the protein core, isolates Cr-K29 and Cr-K32 shared an additional 602 predicted proteins while isolates Cr-K1W and Cr-K20 shared 854 predicted proteins (Fig. S3). When the annotated genomes were analyzed by Principal Component Analysis, using annotated Pfam proteins (Table S5), a similar grouping pattern was observed (Fig. 3). Of the 21 Pfam categories, Carbohydrate Transport and Metabolism, Transcription, and Inorganic Ion Transport and Metabolism, General Function, and Function Unknown were the most important factors separating the annotated draft genomes (Fig. 2). Genome analysis also confirmed the presence of certain metabolic genes that connect to the metabolic fingerprinting. For example, the genome of all four isolates contained genes needed to utilize sucrose (glycosidases, Starch and sucrose metabolism KEGG pathway) and all four isolates were able of doing so. Further, annotated genes for arabinose (L-arabinose isomerase and L-ribulose 5-phosphate 4-epimerase, Pentose and glucuronate interconversions KEGG pathway) and xylose metabolism (xylose isomerase, Pentose and glucuronate interconversions KEGG pathway) were only found for Cr-K1W and Cr-K20 and these were the only two isolates capable of utilizing those substrates.

Bacterial chromate stress has been shown to impact broad metabolic functions. For example, a proteomics study of *Arthobacter* FB 24 demonstrated that, when the bacterium was exposed to chromate, a large number of proteins involved in metabolism (e.g., carbohydrate, energy production, and amino acid transport and metabolism) had altered expression (Henne et al. 2009b). In *S. oneidensis* MR-1, chromate stress response caused variation in iron and sulfur transport genes and also DNA repair genes (Brown et al. 2006). Few genomic differences that related to sulfate transport are evident in the examined *Microbacterium* genomes. The faster
reducers, K-29 and K-32, did have two additional genes that are related to iron transport (ABC-type Fe$^{3+}$ transport system, permease component and siderophore synthetase component). Thus these may be related to their increased ability to thrive in high chromate conditions.

Genomic annotations related to chromate reduction and resistance.

The genomes of the four isolates examined contain putative chromate reductases. An automated IMG annotation of the isolate draft genomes failed to identify chromate reductases or resistant genes. Consequently, custom searches were performed to further examine the genomes for chromate related genes. Manual BLASTX searches were performed using the UniprotKB databases for ChrA, ChrR, and YieF. The search with known chromate transporters, ChrA homologues, returned no hits within any of the four isolate assembled draft genomes. While past studies have found that the efflux pump gene, chrA, can provide chromate resistance (e.g. Diaz-Perez et al. 2007; Henne et al. 2009a; Ramirez-Diaz et al. 2008), the lack this gene could suggest that other efflux pump genes may be exporting chromate. The genome of each of the isolates did contain two metal associated efflux pumps (e.g., arsenite efflux pump and cation/multidrug efflux pump). Alternatively, the physiological link between reduction and resistance could suggest that Cr(VI) reduction is responsible for providing resistance to these isolates.

Curated genome searches were able to identify multiple putative chromate reductases. BLASTX searches against the ChrR UniprotKB database returned a hit in all four isolate genomes. The identified genes were homologues (50-51% identity) to a ChrR reductase in *Thermus scotoductus* (Opperman et al. 2008). These gene are classified as oxidoreductases and
part of the Old Yellow Enzyme family as classified by IMG. Analysis of Cr-K32’s protein (microk32_01893, 2529442617) using IMG’s homolog toolkit, showed a 100% homology to the protein found in Cr-K29 (microk29_00100, 2529452261) and 89% in Cr-K20 (microk20_02158, 2529450446) but only 35% percent identity to the protein found in Cr-K1W. Since the sequence homology of the protein found in Cr-K1W was low, additional searches within this genome were conducted. The genome of Cr-K1W did have a protein identified as an NADH:FMN oxidoreductase from the Old Yellow Enzyme family (cellulok1w_02457, 2529446915) that shared 100% homology to the chrR-like gene found in Cr-K20. Comparison of the four closest homologs’ gene neighborhoods within IMG showed high similarity of gene composition near the NADH:FMN oxidoreductase despite the varying percent identity (Fig S4). Further, jackhmmer searches (http://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch), of the aligned genes found 51% protein identity, 68% similarity, with an e-value of 3E-100 to Thermus scotaductus’ chromate reductase.

A similar curated search with YieF (ChrR sequence homologue) was also able to identify putative chromate reductases. The top result from a BLASTX search using the YieF databases identified a predicted flavoprotein in each of the individual isolates. Alignment of the four individual isolate genes within IMG’s Homology toolkit revealed high degrees of sequence similarity with Cr-K1W (cellulok1w_02457, 2529446915) and Cr-K20 (microk20_03386, 2529451669) having 100% homology and Cr-K29 (microk29_00694, 2529452855) and Cr-K32 (microk32_00074, 2529440805) having 98% homology to one another. In addition, the genes were also homogenous (65% for Cr-K29 and Cr-K32 and 69% for Cr-K1W and Cr-K20) to a predicted chromate reductase (ARUE_c41610) in an Arthrobacter sp. (Niewerth et al. 2012). Gene neighborhoods of the resultant genes did not show as much conservation compared the
putative ChrR-like genes, with only a small areas around the gene being shared between the fastest reducers (Cr-K32 and Cr-K29) and slower reducers (Cr-K1W and Cr-K20) but no shared genes between all four (Fig. S5).

Automated annotations of the isolate genomes failed to provide any putative chromate reductases, however, custom database searches were more successful. Each genome did contain genes with sequence homology to the chromate reductases, \textit{chrR} and \textit{yieF}, of non-model organisms. The putative \textit{chrR}-like genes found in the isolates are homologous to a \textit{chrR} gene (GenBank accession number AM902709) found in \textit{T. scotoductus}, which has been experimentally shown to reduce chromate (Opperman et al. 2008). The putative \textit{yieF} genes found in the isolates were found to be homologous to an annotated chromate reductase in \textit{Arthrobacter sp.} RUE61a, a known chromate reducer. Despite being found in all four isolates, the genes did showed sequence variability between the four isolates. Isolates Cr-K29 and Cr-K32 are the faster reducers and their putative genes share more sequence homology when compared to Cr-K1W and Cr-K20, the slower reducers. Phylogenetic trees of both the putative ChrR and YieF genes also displayed this variability with slow reducers or fast reducers being more closely related to one another (Figure S6 and S7). Neither putative gene was found to group with known chromate reducers, however, this may be an artifact of the lack of known chromate specific genes \textit{Microbacterium}. While the reasons for the variable ability for each isolate to reduce chromate are still not well understood, the differences observed between the isolates may be related to sequence similarity, expression, or genome content. Further work with these genes may help illuminate their potential for chromate reduction.

\textbf{Conclusion.}
Understanding microdiversity is vital for the systematic understanding of how bacterial strains, and also populations, can impact biogeochemical processes (Fuhrman & Campbell 1998; Jaspers & Overmann 2004; Johnson et al. 2006). Previous studies have documented genomic variation among closely related strains, which some term “ecotypes” (e.g. Hunt et al. 2008; Rocap et al. 2003; Welch et al. 2002). Depending on the bacterium, inter-strain variation can have an impact on microbial function (Coleman & Chisholm 2010; Martiny et al. 2006) and at times this connection to function is nonexistent or not as clear (Meyer & Huber 2014; Simmons et al. 2008; Wilmes et al. 2010). Though a “core” metabolic and genomic structure was seen among the four isolates, our data suggests that Cr(VI) reduction discrepancies within these isolates could be related to strain-level genetic and metabolic variation. Further, chromate resistance may be intertwined with the ability of an organism to reduce and transport chromate as well as the type of stress response the organism might have. Fundamentally, the genomic variation between these isolates may point to bacterial adaptation in response to long-term exposure to multiple contaminants [e.g lead, Cd] including Cr(VI). Further analysis of these discrepancies may help define a Cr(VI) reduction mechanism within these isolates, and will lead to a greater understanding of the importance of inter-strain variation in microbial communities.

Acknowledgements.

We would like to thank Dr. C. Titus Brown, Dr. Ian Dworkin, and Dr. Istvan Albert for consultation on computational methods during the MSU Next Generation Sequencing course. The U.S. Environmental Protection Agency, through its Office of Research and Development, collaborated in the research described herein. Any opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the agency; therefore, no official
endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.
References.

Ackerley DF, Gonzalez CF, Keyhan M, Blake R, and Matin A. 2004a. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology 6:851-860. DOI 10.1111/j.1462-2920.2004.00639.x

Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan A, and Matin A. 2004b. Chromate-reducing properties of soluble Flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology 70:873-882. Doi 10.1128/Aem.70.2.873-882.2004

Bååth E. 1989. Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution 47:335-379. 10.1007/bf00279331

Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, Francis AJ, and Matin A. 2006. Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Applied and Environmental Microbiology 72:7074-7082. Doi 10.1128/Aem.01334-06

Bartlett RJ. 1991. Chromium Cycling in Soils and Water - Links, Gaps, and Methods. Environmental Health Perspectives 92:17-24.

Beller HR, Han RY, Karaoz U, Lim H, and Brodie EL. 2013. Genomic and Physiological Characterization of the Chromate-Reducing, Aquifer-Derived Firmicute Pelosinus sp. Strain HCF1. Applied and Environmental Microbiology 79:63-73. Doi 10.1128/Aem.02496-12

Brose DA, and James BR. 2010. Oxidation-Reduction Transformations of Chromium in Aerobic Soils and the Role of Electron-Shuttling Quinones. Environmental Science & Technology 44:9438-9444.

Brown SD, Palumbo AV, Panikov N, Arlyawansa T, Klingeman DM, Johnson CM, Land ML, Utturkar SM, and Epstein SS. 2012. Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a Bacterium Tolerant to Metals, Nitrate, and Low pH. Journal of Bacteriology 194:3279-3280. 10.1128/JB.00474-12

Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, and Thompson DK. 2006. Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054-1071. 10.1074/mcp.M500394-MCP200

Cervantes C, and Ohtake H. 1988. Plasmid-determined resistance to chromate in Pseudomonas aeruginosa. FEMS Microbiology Letters 56:173-176. http://dx.doi.org/

Cervantes C, Ohtake H, Chu L, Misra TK, and Silver S. 1990. Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. Journal of Bacteriology 172:287-291.

Cheng Y, Holman H-Y, and Lin Z. 2012. Remediation of Chromium and Uranium Contamination by Microbial Activity. Elements 8:107-112.

Cheung KH, and Gu JD. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation 59:8-15. DOI 10.1016/j.ibiod.2006.05.002

Chikhi R, and Medvedev P. 2013. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 10.1093/bioinformatics/btt310

Chovanec P, Sparacino-Watkins C, Zhang N, Basu P, and Stolz JF. 2012. Microbial reduction of chromate in the presence of nitrate by three nitrate respiring organisms. Frontiers in Microbiology 3:416. Doi 10.3389/Fmicb.2012.00416

Coleman ML, and Chisholm SW. 2010. Ecosystem-specific selection pressures revealed through comparative population genomics. Proceedings of the National Academy of Sciences of the United States of America 107:18634-18639. 10.1073/pnas.1009480107
Curtis DS, Phillips AR, Callister SJ, Conlan S, and McCue LA. 2013. SPOCS: software for predicting and visualizing orthology/paralogy relationships among genomes. *Bioinformatics* 29:2641-2642. DOI 10.1093/bioinformatics/btt454

Diaz-Perez C, Cervantes C, Campos-Garcia J, Julian-Sanchez A, and Riveros-Rosas H. 2007. Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. *Febs Journal* 274:6215-6227.

Field E, Gerlach R, Viamajala S, Jennings L, Peyton B, and Apel W. 2013. Hexavalent chromium reduction by *Cellulomonas* sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. *Biodegradation* 24:437-450. 10.1007/s10532-012-9600-7

Focardi S, Pepi M, and Focardi SE. 2014. Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. In: Chamy R, and Rosenkranz F, eds. *Biodegradation - Life of Science*: InTech.

Fuhrman JA, and Campbell L. 1998. Marine ecology - Microbial microdiversity. *Nature* 393:410-411. Doi 10.1038/30839

Gonzalez CF, Ackerley DF, Lynch SV, and Matin A. 2005. ChrR, a soluble quinone reductase of *Pseudomonas putida* that defends against H2O2. *Journal of Biological Chemistry* 280:22590-22595. DOI 10.1074/jbc.M501654200

Gough HL, Dahl AL, Nolan MA, Gaillard J-F, and Stahl DA. 2008. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake. *Journal of Geophysical Research: Biogeosciences* 113:G02017. 10.1029/2007jg000566

Gough HL, and Stahl DA. 2011. Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. *Isme Journal* 5:543-558. Doi 10.1038/Ismej.2010.132

Harper D, and Ryan P. 2001. PAST: paleontological statistics software package for education and data analysis. *Palaeontol Electronica* 4:1-9.

He M, Li X, Guo L, Miller SJ, Rensing C, and Wang G. 2010. Characterization and genomic analysis of chromate resistant and reducing *Bacillus cereus* strain SJ1. *BMC Microbiology* 10:221

Henne KL, Nakatsu CH, Thompson DK, and Konopka AE. 2009a. High-level chromate resistance in *Arthrobacter* sp strain FB24 requires previously uncharacterized accessory genes. *BMC Microbiology* 9:199. Doi 10.1186/1471-2180-9-199

Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen SL, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, and Konopka AE. 2009b. Global Proteomic Analysis of the Chromate Response in *Arthrobacter* sp Strain FB24. *Journal of Proteome Research* 8:1704-1716. Doi 10.1021/Pr800705f

Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, and Polz MF. 2008. Resource partitioning and sympatric differentiation among closely related bacterioplankton. *Science* 320:1081-1085. Doi 10.1126/Science.1157890

Jaspers E, and Overmann J. 2004. Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophyslogenies. *Applied and Environmental Microbiology* 70:4831-4839. Doi 10.1128/Aem.70.8.4831-4839.2004

Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, and Chisholm SW. 2006. Niche partitioning among *Prochlorococcus* ecotypes along ocean-scale environmental gradients. *Science* 311:1737-1740. Doi 10.1126/Science.1118052

Kourtev PS, Nakatsu CH, and Konopka A. 2006. Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms. *Applied and Environmental Microbiology* 72:628-637. Doi 10.1128/Aem.72.1.628-637.2006

Kourtev PS, Nakatsu CH, and Konopka A. 2009. Inhibition of nitrate reduction by chromium(VI) in anaerobic soil microcosms. *Applied and Environmental Microbiology*.
Liu ZM, Wu Y, Lei CF, Liu PM, and Gao MY. 2012. Chromate reduction by a chromate-resistant bacterium, Microbacterium sp. World Journal of Microbiology & Biotechnology 28:1585-1592. 10.1007/s11274-011-0962-5

Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, and Usadel B. 2012. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic acids research 40:W622-W627. Doi 10.1093/Nar/Gks540

Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, and Goodwin S. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336-344.

Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang JH, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, and Kyrpides NC. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic acids research 40:D115-D122. Doi 10.1093/Nar/Gkr1044

Martiny AC, Coleman ML, and Chisholm SW. 2006. Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation. Proceedings of the National Academy of Sciences of the United States of America 103:12552-12557. Doi 10.1073/Pnas.0601301103

Meyer JL, and Huber JA. 2014. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. The ISME journal 8:867-880. 10.1038/ismej.2013.206

Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, and Konopka A. 2005. Soil Microbial Community Responses to Additions of Organic Carbon Substrates and Heavy Metals (Pb and Cr). Applied and Environmental Microbiology 71:7679-7689. 10.1128/aem.71.12.7679-7689.2005

Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, and Fetzenr S. 2012. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics 13. 10.1186/1471-2164-13-534

Okrent D, and Xing LM. 1993. Future Risk from a Hypothesized Rcra Site Disposing of Carcinogenic Metals Should a Loss of Societal Memory Occur. Journal of Hazardous Materials 34:363-384. Doi 10.1016/0304-3894(93)85099-Z

Opperman DJ, Piater LA, and van Heerden E. 2008. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. Journal of Bacteriology 190:3076-3082. Doi 10.1128/Jb.01766-07

Oze C, Bird DK, and Fendorf S. 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Science of the United States of America 104:6544–6549.

Oze C, Fendorf S, Bird DK, and Coleman RG. 2004. Chromium geochemistry in serpintinized ultramafic rocks and serpintine soils from the Franciscan complex of California. American Journal of Science 304:67-101.

Park CH, Keyhan M, Wielinga B, Fendorf S, and Matin A. 2000. Purification to Homogeneity and Characterization of a Novel Pseudomonas putida Chromate Reductase. Applied and Environmental Microbiology 66:1788-1795. 10.1128/aem.66.5.1788-1795.2000

Raes J, Korbel JO, Lercher MJ, von Mering C, and Bork P. 2007. Prediction of effective genome size in metagenomic samples. Genome Biology 8:R10 Doi 10.1186/Gb-2007-8-1-R10

Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, and Cervantes C. 2008. Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321-332. DOI 10.1007/s10534-007-9121-8

Riley RG, Zachara JM, and Wobber FJ. 1992. Chemical Contaminants on DOE Lands and Selection of Contaminants Mixtures for Subsurface Science Research. Washington, D.C., U.S.A.: Department of Energy (Report DOE/ER-0547T).
Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahrlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, and Chisholm SW. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042-1047. Doi 10.1038/Nature01947

Said WA, and Lewis DL. 1991. Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Applied and Environmental Microbiology 57:1498-1503.

Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, and Krumholz LR. 2012. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure. Plos One 7:e40059. DOI 10.1371/journal.pone.0040059

Silver S, and Phung LT. 2005. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology & Biotechnology 32:587-605.

Simmons SL, Dibartolo G, Denef VJ, Goltsman DS, Thelen MP, and Banfield JF. 2008. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS biology 6:e177. 10.1371/journal.pbio.0060177

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, and Birol I. 2009. ABySS: A parallel assembler for short read sequence data. Genome Research 19:1117-1123. 10.1101/gr.089532.108

Soni SK, Singh R, Awasthi A, and Kalra A. 2014. A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environmental Pollution Research 21:1971-1979. 10.1007/s11356-013-2098-7

Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, and Okazaki M. 1992. Nad(P)H-Dependent Chromium(Vi) Reductase of Pseudomonas ambigua G-1 - a Cr(V) Intermediate Is Formed During the Reduction of Cr(Vi) to Cr(III). Journal of Bacteriology 174:5340-5345.

Tamura K, Dudley J, Nei M, and Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution 24:1596-1599. 10.1093/molbev/msm092

Tritt A, Eisen JA, Facciotti MT, and Darling AE. 2012. An Integrated Pipeline for de Novo Assembly of Microbial Genomes. Plos One 7:e42304. 10.1371/journal.pone.0042304

Urone PF. 1955. Stability of Colorimetric Reagent for Chromium, S-Diphenylcarbazide, in Various Solvents. Analytical Chemistry 27:1354-1355. Doi 10.1021/AC60104a048

Viti C, Marchi E, Decorosi F, and Giovannetti L. 2013. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiology Reviews 38:633-659. 10.1111/1574-6976.12051

Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HLT, Donnenberg MS, and Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 99:17020-17024. Doi 10.1073/Pnas.252529799

Wilmes P, Bowen BP, Thomas BC, Mueller RS, Denef VJ, Ver Berkmoes NC, Hettich RL, Northen TR, and Banfield JF. 2010. Metabolome-proteome differentiation coupled to microbial divergence. mBio 1. 10.1128/mBio.00246-10

Zak JC, Willig MR, Moorhead DL, and Wildman HG. 1994. Functional diversity of microbial communities: A quantitative approach. Soil Biology and Biochemistry 26:1101-1108. http://dx.doi.org/10.1016/0038-0717(94)90131-7

Zerbino DR, and Birney E. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18:821-829. 10.1101/gr.074492.107
Zhu WJ, Chai LY, Ma ZM, Wang YY, Mao HJ, and Zhao K. 2008. Anaerobic reduction of hexavalent chromium by bacterial cells of *Achromobacter* sp. strain Ch1. *Microbiological Research* 163:616-623. Doi 10.1016/J.Micres.2006.09.008
Comparison of the isolates ability to grow and reduce chromate

Figure 1. Individual isolate growth in the presence of chromate (Black fill) and chromate reduction (Gray fill) as compared to growth without chromate (No fill). Controls are labeled in each graph with an asterisk. A) Cr-K1W =diamond; B) Cr-K29 =triangle; C) Cr-K32=circle; D) Cr-K20=square (n=3, error bars are SD).
2

PCA of metabolic fingerprinting

Figure 2. Principal Component Analysis plot of the four isolates based on their ability to utilize a metabolic substrate.
PCA of Pfam categories

Figure 3. Principal Component Analysis of 21 Pfam categories from IMG annotations of the four Microbacterium sp. genomes. Top five eigenvalues were then plotted as the vectors after analysis.