Omni-Lie algebroids *

Z. Chen and Z.-J. Liu
Department of Mathematics and LMAM
Peking University, Beijing 100871, China
email: chenzhuo@math.pku.edu.cn, liuzj@pku.edu.cn

Abstract

A generalized Courant algebroid structure is defined on the direct sum bundle $\mathcal{D}E \oplus \mathcal{J}E$, where $\mathcal{D}E$ and $\mathcal{J}E$ are the gauge Lie algebroid and the jet bundle of a vector bundle E respectively. Such a structure is called an omni-Lie algebroid since it is reduced to the omni-Lie algebra introduced by A.Weinstein if the base manifold is a point. We prove that any Lie algebroid structure on E is characterized by a Dirac structure as the graph of a bundle map from $\mathcal{J}E$ to $\mathcal{D}E$.

1 Introduction

The notion of omni-Lie algebras was introduced by Weinstein [21] by defining some kind of algebraic structures on $\mathfrak{gl}(V) \oplus V$ for a vector space V. Such an algebra is not a Lie algebra but all possible Lie algebra structures on V can be characterized by its Dirac structures. This is why the term omni is used here. The omni-Lie algebra can be regarded as the linearization of the Courant algebroid structure on $TM \oplus T^*M$ at a point and are studied from several aspects recently ([2], [8], [19]).

Our purpose is to generalize the omni-Lie algebra from a vector space to a vector bundle E in order to characterize all possible Lie algebroid structures on E. It will be seen that the omni-Lie algebroid is of the form $E = \mathcal{D}E \oplus \mathcal{J}E$, where $\mathcal{D}E$ and $\mathcal{J}E$ denote the gauge algebroid and the jet bundle of E respectively.

An important fact to be discussed in Section 2 is that $\mathcal{D}E$ and $\mathcal{J}E$ can regarded as E-dual bundles for each other, i.e., there is a non-degenerate E-valued pairing between these two vector bundles. As a maximal isotropic and integrable subbundle of \mathcal{E}, a Dirac structure in the omni-Lie algebroid turns out to be a Lie algebroid with a representation on E. We prove that there is a one-to-one correspondence between a Dirac structure coming from a bundle map $\mathcal{J}E \to \mathcal{D}E$ and a Lie algebroid (local Lie algebra) structure on E when rank(E) ≥ 2 (E is a line bundle).

Let’s fix some notations firstly. In this paper, M denotes a smooth manifold, 1_C the identity map for any set C and $E \xrightarrow{\pi} M$ a vector bundle. Before going to construct an omni-Lie algebroid, let us review some related notions. Assume that the readers are familiar

0 Keywords: gauge Lie algebroid, jet bundle, omni-Lie algebroid, Dirac structure, local Lie algebra.

0 MSC: 17B66.

* Research partially supported by NSFC(19925105) and CPSF(20060400017).
with Lie algebroids, which unify the structures of a Lie algebra and the tangent bundle of a manifold (please see [14] for more details). The notion of Leibniz algebras was introduced by Loday [13] as follows:

Definition 1.1. A Leibniz algebra is a vector space L with a bilinear operation (not necessarily skew-symmetric) $\{\cdot,\cdot\} : L \times L \to L$ such that the following identity holds:

$$\{X,\{Y,Z\}\} = \{\{X,Y\},Z\} + \{Y,\{X,Z\}\}, \quad \forall X,Y,Z \in L.$$

• **Courant algebroids and Dirac structures.** The Courant bracket on the sections of $T = TM \oplus T^* M$ was introduced by Courant [3]:

$$[x_1 + \alpha_1, x_2 + \alpha_2] = [x_1, x_2] + \mathcal{L}_{x_2}\alpha_1 - \mathcal{L}_{x_1}\alpha_2 - \frac{1}{2} d(\langle x_1, \alpha_2 \rangle - \langle x_2, \alpha_1 \rangle).$$

For the inner product defined by $(x_1 + \alpha_1, x_2 + \alpha_2)_+ = \frac{1}{2}(\langle x_1, \alpha_2 \rangle + \langle x_2, \alpha_1 \rangle)$, a Dirac structure is a maximal isotropic subbundle $L \subset T$ whose sections are closed under the Courant bracket. The Dirac structures include not only Poisson and presymplectic structures, but also foliations on M. A Dirac structure is also a Lie algebroid on M, whose bracket and anchor are the restrictions of the Courant bracket and the projection on TM. The properties of Courant’s bracket are the basis for the definition of a Courant algebroid ([12], [18]). Recently, several applications of the Courant algebroid and the Dirac structure have been found in different fields, e.g., gerbes and generalized complex geometry (see [2], [6] for more details). By introducing a non skew-symmetric bracket,

$$\{x_1 + \alpha_1, x_2 + \alpha_2\} \triangleq [x_1, x_2] + \mathcal{L}_{x_2}\alpha_1 - \mathcal{L}_{x_1}\alpha_2 + d\langle x_2, \alpha_1 \rangle,$$

the pair $(\Gamma(T), \{\cdot,\cdot\})$ turns out to be a Leibniz algebra with the following nice properties.

$$\rho \{e_1, e_2\} = [\rho(e_1), \rho(e_2)],$$

$$\{e_1, fe_2\} = f \{e_1, e_2\} + \rho(e_1)(f)e_2,$$

$$\{e_1, e_1\} = d(e_1)_+,$$

$$\rho(e_1)(e_2, e_3)_+ = \{(e_1, e_2), e_3\}_+ + (e_2, \{e_1, e_3\})_+,$$

for all $e_i \in \Gamma(T)$, $f \in C^\infty(M)$, where $\rho : T \to TM$ is the projection. Thus a Courant algebroid is a Leibniz algebroid ([7]) and the twisted bracket ([10]) is known as the Dorfman bracket ([5]). This bracket is mentioned in [12] and the Leibniz rule is shown in [16].

• **Omni-Lie algebras.** Motivated by an integrability problem of the Courant bracket, A. Weinstein gives a linearization of the Courant bracket at a point [21]. Let V be a vector space. Weinstein’s bracket is defined on the direct sum $\mathcal{E} = \mathfrak{gl}(V) \oplus V$:

$$[[\xi_1, v_1], \xi_2, v_2]] \triangleq ([\xi_1, \xi_2], \frac{1}{2}(\xi_1(v_2) - \xi_2(v_1))).$$

This bracket does not satisfy the Jacobi identity. He called $\mathcal{E} = \mathfrak{gl}(V) \oplus V$ with the bracket above an omni-Lie algebra because of the following property:

Theorem 1.2. [21] There is a one-to-one correspondence between a Lie algebra structure on V and a Dirac structure in \mathcal{E} coming from a linear map in $\text{Hom}(V, \mathfrak{gl}(V))$.

2
Here a Dirac structure is a subspace of \mathcal{E} closed under the bracket $[,]$ and maximal isotropic with respect to the V-valued nondegenerate symmetric bilinear form:

$$((\xi_1, v_1), (\xi_2, v_2))_V \triangleq \frac{1}{2}(\xi_1(v_2) + \xi_2(v_1)).$$

That is, every Lie algebra structure on V can be characterized by a Dirac structure, which is similar to a Poisson structure on a manifold.

Local Lie algebras and Jacobi manifolds.

A Lie algebroid is a special case of local Lie algebras in the sense of Kirillov [9]. Recall that a local Lie algebra is a vector bundle E whose section space $\Gamma(E)$ has a \mathbb{R}-Lie algebra structure $[\cdot, \cdot]_E$ with the local property, supp$[u, v] \subset$ supp$u \cap$ suppv, for all $u, v \in \Gamma(E)$, which is also called a Jacobi-line-bundle if rank$E = 1$. In particular, M is called a Jacobi manifold if the trivial bundle $M \times \mathbb{R}$ is a local Lie algebra, which is equivalent to that there is a triple (M, Λ, X), where Λ is a bi-vector field and X is a vector field on M such that $[\Lambda, \Lambda] = 2X \wedge \Lambda$ and $[\Lambda, X] = 0$ ([11]).

In [20], the Courant bracket was extended to the direct sum of the vector bundle $TM \times \mathbb{R}$ with its dual bundle, the jet bundle $J^1 = T^*M \times \mathbb{R}$. From this way, it allows one to interpret many structures encountered in differential geometry in terms of Dirac structures such as homogeneous Poisson manifolds, Jacobi structures and Nambu manifolds.

The jet bundle of a vector bundle. For a vector bundle $E \xrightarrow{\nabla} M$, one can define its 1-jet vector bundle $J^1 E$ by taking an equivalence relation in $\Gamma(E)$:

$$u_1 \sim u_2 \iff u_1(m) = u_2(m) \quad \text{and} \quad d\langle u_1, \xi \rangle_m = d\langle u_2, \xi \rangle_m, \quad \forall \xi \in \Gamma(E^*).$$

$(J^1 E)_m$ is the collection of all equivalence classes. So any $u \in (J^1 E)_m$ has a representative $u \in \Gamma(E)$ such that $\mu = [u]_m$. There are several equivalent descriptions for jet bundles (see [1] and the references thereof). It is shown in [4] that for any Lie algebroid E, each k-order jet bundle $J^k E$ inherits a natural Lie algebroid structure. Let \mathfrak{p} be the projection which sends $[u]_m$ to $u(m)$. It is known that $\text{Ker} \mathfrak{p} \cong \text{Hom}(TM, E)$ and there is an exact sequence, referred as the jet sequence of E:

$$0 \longrightarrow \text{Hom}(TM, E) \xrightarrow{e} J^1 E \xrightarrow{\partial} E \longrightarrow 0. \quad (2)$$

Moreover, $\Gamma(J^1 E)$ is isomorphic to $\Gamma(E) \oplus \Gamma(T^*M \otimes E)$ as a \mathbb{R}-vector space and any $u \in \Gamma(E)$ has a lift $[u] \in \Gamma(J^1 E)$ such that

$$[fu] = f[u] + df \otimes u, \quad \forall f \in C^\infty(M). \quad (3)$$

The gauge algebroid of a vector bundle. For a vector bundle $E \xrightarrow{\nabla} M$, its gauge Lie algebroid $\mathfrak{D}E$ is just the gauge Lie algebroid of the frame bundle $F(E)$, which is also called the covariant differential operator bundle of E (see [14 Example 3.3.4] and [15]). Here we treat each element \mathfrak{d} of $\mathfrak{D}E$ at $m \in M$ as a \mathbb{R}-linear operator $\Gamma(E) \rightarrow E_m$ together with some $x \in T_m M$ (which is uniquely determined by \mathfrak{d} and called the anchor of \mathfrak{d}) such that

$$\mathfrak{d}(fu) = f(m)\mathfrak{d}(u) + x(f)u(m), \quad \forall f \in C^\infty(M), u \in \Gamma(E).$$

It is known that $\mathfrak{D}E$ is a transitive Lie algebroid over M ([10]). The anchor of $\mathfrak{D}E$ is given by $\alpha(\mathfrak{d}) = x$ and the Lie bracket $[,]_{\mathfrak{D}}$ of $\Gamma(\mathfrak{D}E)$ is given by the usual commutator of two operators. The corresponding exact sequence,

$$0 \longrightarrow \mathfrak{g}(E) \xrightarrow{\mathfrak{i}} \mathfrak{D}E \xrightarrow{\alpha} TM \longrightarrow 0, \quad (4)$$

3
is usually called the Artiyah sequence. The embedding maps e and i in above two exact sequences will be ignored somewhere if there is no confusion.

2 The E-Duality Between $\mathcal{D}E$ and \mathcal{J}^1E

Definition 2.1. Let A and E be two vector bundles over M. A vector bundle $B \subset \text{Hom}(A, E)$ is called an E-dual bundle of A if the E-valued pairing $\langle \cdot, \cdot \rangle_E : A \times_M B \to E$, $\langle a, b \rangle_E \triangleq b(a)$ (where $a \in A$, $b \in B$) is nondegenerate.

It is easy to see that B is an E-dual bundle of A if and only if A is an E-dual bundle of B. In this section we show that the first jet bundle \mathcal{J}^1E of a vector bundle $E \xrightarrow{q} M$ is an E-dual of $\mathcal{D}E$ with some nice properties. Let us now illustrate a procedure that will yield a new exact sequence from the Artiyah sequence [4]. First we consider the dual sequence

$$0 \to T^*M \xrightarrow{\alpha^*} (\mathcal{D}E)^* \xrightarrow{\beta^*} E \to E^* \to 0.$$

Applying the functor $"- \otimes E"$, the right end becomes $E \otimes E^* \otimes E \cong E \otimes \text{gl}(E)$. Then using the decomposition $\text{gl}(E) \cong \text{sl}(E) \oplus \mathbb{R}1_E$, we are able to get a pull-back diagram:

$$0 \to T^*M \otimes E \xrightarrow{\epsilon} \mathcal{J}E \xrightarrow{\beta} E \to E \otimes E^* \to 0 \quad (5)$$

$$0 \to T^*M \otimes E \xrightarrow{\alpha^* \otimes 1_E} (\mathcal{D}E)^* \otimes E \xrightarrow{\beta^* \otimes 1_E} E \otimes \text{sl}(E) \oplus E \to 0.$$

Here the right down arrow I is the canonical embedding of E into $E \otimes \text{sl}(E) \oplus E$ and $\mathcal{J}E$ is the pull-back of $(\mathcal{D}E, 1, 1)$. In other words, for each $m \in M$,

$$\mathcal{J}E = \{ \nu \in \text{Hom}(\mathcal{D}E, E) | \nu(\Phi) = \Phi \circ \nu(1_E), \ \forall \Phi \in \text{gl}(E) \}.$$

Moreover, the maps ϵ and β in Diagram (5) are given respectively by:

$$\epsilon(\eta)(\mathcal{D}) = \eta \circ \alpha(\mathcal{D}), \ \forall \mathcal{D} \in \mathcal{D}E, \ \eta \in \text{Hom}(TM, E);$$

$$\beta(\nu) = \nu(1_E), \ \forall \nu \in \mathcal{J}E.$$

It is easy to see that $\mathcal{J}E$ is E-dual to $\mathcal{D}E$ and it is called the standard E-dual bundle of $\mathcal{D}E$. Analogously, one can define the standard E-dual bundle of $\mathcal{J}E$, denoted by $\mathcal{J}E$, which is given in the following pull-back diagram.

$$0 \to E^* \otimes E \xrightarrow{i} \mathcal{J}E \xrightarrow{\alpha} TM \to TM \otimes TM \to 0 \quad (6)$$

$$0 \to E^* \otimes E \xrightarrow{\beta^* \otimes 1} (\mathcal{J}E)^* \otimes E \xrightarrow{\epsilon^* \otimes 1} TM \otimes \text{sl}(E) \oplus TM \to 0.$$

In other words,

$$\mathcal{J}E \triangleq \{ \delta \in \text{Hom}(\mathcal{J}E, E) | \exists x \in TM, \ \delta(\eta) = \eta(x), \ \forall \eta \in \text{Hom}(TM, E) \}.$$
There is a canonical isomorphism as follows:

\[(\cdot) : \mathcal{D}E \cong \mathcal{D}E \quad \text{s.t.} \quad \nu'(\vartheta) = \nu(\vartheta), \quad \forall \vartheta \in \mathcal{D}E, \ \nu \in \mathcal{J}E. \quad (7)\]

Under this isomorphism, the Atiyah sequence \[8\] is isomorphic to the first row in Diagram \[9\]. Moreover, there is a canonical isomorphism between the jet bundle of \(E\) and the standard \(E\)-dual bundle of \(\mathcal{D}E\).

Theorem 2.2. \(\mathcal{J}^1E\) is canonically isomorphic to \(\mathcal{J}E\).

Proof. We should define a bijective linear map \(\sim : \mathcal{J}^1E \to \mathcal{J}E\) such that the following diagram commutes:

\[
\begin{array}{cccccc}
0 & \longrightarrow & \text{Hom}(TM, E) & \overset{e}{\longrightarrow} & \mathcal{J}^1E & \overset{\mathcal{D}}{\longrightarrow} & E & \longrightarrow 0 \\
& & \downarrow & & \downarrow & & 1_E & \\
0 & \longrightarrow & \text{Hom}(TM, E) & \overset{\epsilon}{\longrightarrow} & \mathcal{J}E & \overset{\beta}{\longrightarrow} & E & \longrightarrow 0.
\end{array}
\]

For each \(\mu \in (\mathcal{J}^1E)_m\), \(p(\mu) = e \in E_m\), if \(\mu = |u|_m\), for some \(u \in \Gamma(E)\), then we define \(\tilde{\mu} \in (\mathcal{J}E)_m\) by

\[
\tilde{\mu}(\vartheta) = \widetilde{|u|_m}(\vartheta) \triangleq \vartheta u, \quad \forall \vartheta \in \mathcal{D}E_m. \quad (9)
\]

To see that the RHS of \[8\] is well defined, we need the following two lemmas.

Lemma 2.3. As Lie algebroids over \(M\), \(\mathcal{D}E\) and \(\mathcal{D}E^\ast\) are isomorphic via \((\cdot)^\sim\) defined by

\[
\langle \vartheta^\sim \phi, u \rangle = \alpha(\vartheta) \langle \phi, u \rangle - \langle \phi, \vartheta u \rangle, \quad \forall \vartheta \in \Gamma(\mathcal{D}E), \ u \in \Gamma(E), \ \phi \in \Gamma(E^\ast). \quad (10)
\]

This fact comes from the isomorphism between the principal frame bundles \(F(E)\) and \(F(E^\ast)\) by sending a frame to its dual frame. For this reason, we can identify \(\mathcal{D}E^\ast\) with \(\mathcal{D}E\) such that both \(\vartheta \phi\) and \(\vartheta u\) make sense, where \(\vartheta\) depends on what is put after it. Notice that, by this convention, if one treats \(\Phi \in \mathfrak{gl}(E)\) as in \(\mathfrak{gl}(E^\ast)\), it should be \(-\Phi^\ast\).

Lemma 2.4. Let \(u \in \Gamma(E)\) and suppose that \(u(m) = 0\). Then for any \(\vartheta \in (\mathcal{D}E)_m\), one has

\[
\langle \vartheta u \rangle^\uparrow = u_* (\alpha(\vartheta)) - 0_* (\alpha(\vartheta)). \quad (11)
\]

Here by \(e^\uparrow = \frac{d}{dt}|_{t=0} e \in T_mE (e \in E_m)\) we denote the vertical tangent vector and by \(0_*\) we mean the canonical inclusion of \(TM\) into \(TE\).

Proof. The RHS of \[11\] is clearly a vertical tangent vector of \(T_mE\). Thus we need only to show that the results of the two hand sides acting on an arbitrary fiber-wise linear function, say \(l_\phi\), for some \(\phi \in \Gamma(E^\ast)\), are equal. We see that

\[
\langle \vartheta u \rangle^\uparrow (l_\phi) = \langle \vartheta u, \phi(m) \rangle = \alpha(\vartheta) \langle u, \phi \rangle - \langle u(m), \vartheta \phi \rangle \quad \text{(by \[11\])}
\]

\[
= \alpha(\vartheta) \langle u, \phi \rangle = (u_*(\alpha(\vartheta)))l_\phi \]

\[
= (u_* (\alpha(\vartheta)) - 0_* (\alpha(\vartheta)))l_\phi.
\]

This completes the proof.

\[\square\]
Now we continue to prove Theorem 2.2. Suppose that \(\mu \in (\mathfrak{J}^1 E)_m \) has two representatives \(u^1, u^2 \in \Gamma(E) \), i.e., \(\mu = [u^1]_m = [u^2]_m \). This means that
\[
u1(m) = \nu2(m), \quad \nu1m(x) = \nu2m(x), \quad \forall x \in T_m M.
\]
To guarantee \(\bar{\mu} \) is well-defined, we need to show that \(\mathfrak{d}(\nu1) = \mathfrak{d}(\nu2) \) holds for all \(\mathfrak{d} \in (\mathcal{D}E)_m \). In fact, let \(v = u^1 - u^2 \in \Gamma(E) \), which satisfies: \(v(m) = 0 \) and \(v|_m = 0|_m \). Then the lemma above claims that \((\mathfrak{d}v)^1 = 0 \), so that \(\bar{\mu} \) is well-defined. Moreover, by Definition (3), we have
\[
\bar{\mu}(\Phi) = \Phi(e) = \Phi(\mathfrak{J}(1_m)), \quad \forall \Phi \in \mathfrak{gl}(E_m),
\]
and hence \(\bar{\mu} \) is indeed an element of \((\mathfrak{J}E)_m \). Clearly \(\mathfrak{J} \) is a morphism of vector bundles.

The next step is to prove that \(\mathfrak{J} \) is a commutative diagram. But we first need the meaning of the embedding map \(\mathfrak{e} : \text{Hom}(TM, E) \hookrightarrow \mathfrak{J}E \). Take a local trivialization \(E|_U \cong U \times E_m \) for some open neighborhood \(U \cong \mathbb{R}^k \) \((k = \dim(M)) \) containing \(m = 0 \). Then for any \(\eta \in \text{Hom}(TM, E)_m \), define a local section \(u \in \Gamma(E|_U) \) by
\[
u(p) = (p, \mathfrak{e}(\eta))(p), \quad \forall p \in U,
\]
where \(\mathfrak{e}(\eta) \) denotes the tangent vector from point 0 to point \(p \). Then \(u \) is a representative of \(\mathfrak{e}(\eta) \). Following Lemma 2.4, we get
\[
\mathfrak{e}(\eta)(\mathfrak{d}) = \widetilde{\nu}(\mathfrak{d}) = \mathfrak{d}(u) = \eta(\mathfrak{d}) = \mathfrak{e}(\eta)(\mathfrak{d}), \quad \forall \mathfrak{d} \in \mathcal{D}E.
\]
This means that the left square is commutative. The right square is commutative from the fact that
\[
\beta(\bar{\mu}) = \bar{\mu}(1_m) = \mathfrak{p}(\mu), \quad \forall \mu \in \mathfrak{J}^1 E.
\]
Thus the proof of the theorem is finished. ■

By means of this theorem we identify \(\mathfrak{J}E \) with \(\mathfrak{J}E \) from now on. Therefore any element \(\mu \in (\mathfrak{J}^1 E)_m = (\mathfrak{J}E)_m \) can be considered as a linear map from \((\mathcal{D}E)_m \) to \(E_m \) satisfying
\[
\mu(\Phi) = \Phi \circ \mu(1_m), \quad \forall \Phi \in \mathfrak{gl}(E_m).
\]
Consequently, the jet sequence (2) has a new interpretation such that the projection \(\mathfrak{p} \) and the embedding \(\mathfrak{e} \) of \(\text{Hom}(TM, E) \) into \(\mathfrak{J}E \) are given by
\[
\mathfrak{p}(\mu) = \mu(1_m), \quad \mathfrak{e}(\eta)(\mathfrak{d}) \equiv \eta \circ \alpha(\mathfrak{d}), \quad \forall \mathfrak{d} \in (\mathcal{D}E)_m,
\]
By the canonical isomorphism (7), we can regard \(\mathcal{D}E \) as a subbundle of \(\text{Hom}(\mathfrak{J}E, E) \) and as the standard \(E \)-dual bundle of \(\mathfrak{J}E \). Therefore, there is an \(E \)-pairing between \(\mathfrak{J}E \) and \(\mathcal{D}E \) by setting:
\[
\langle \mu, \mathfrak{d} \rangle_E \equiv \check{\mu}(\mathfrak{d}) = \mathfrak{d}(u), \quad \forall \mu \in \mathfrak{J}E, \ \mathfrak{d} \in \mathcal{D}E,
\]
where \(u \in \Gamma(E) \) satisfies \(\mu = [u]_m \). Particularly, one has
\[
\langle \mu, \Phi \rangle_E = \Phi \circ \mathfrak{p}(\mu), \quad \forall \Phi \in \mathfrak{gl}(E), \ \mu \in \mathfrak{J}E;
\]
\[
\langle \eta, \mathfrak{d} \rangle_E = \eta \circ \alpha(\mathfrak{d}), \quad \forall \eta \in \text{Hom}(TM, E), \ \mathfrak{d} \in \mathcal{D}E.
\]
Similarly, DE^* and JE^* are E^*-dual for each other. Meanwhile, there is also a T^*M-pairing between JE and JE^* given by

$$\langle \mu, \varsigma \rangle_{T^*M} \triangleq d \langle u, \phi \rangle, \quad \forall \mu \in (JE)_m, \varsigma \in (JE^*)_m,$$

where $u \in \Gamma(E)$, $\phi \in \Gamma(E^*)$ satisfy $\mu = [u]_m$, $\varsigma = [\phi]_m$ respectively. Combining with the isomorphism given in Lemma 2.3, we can describe the relations among these four vector bundles by the following diagram:

![Diagram](image)

The relations above are similar to the following dual relations, where TE and TE^* are usual dual as two vector bundles over $T M$.

![Diagram](image)

The following diagram is a typical double vector bundle, by which and the duality theory of double vector bundles (see [14]) one can explain clearly the relationship between Diagrams (16) and (17).

![Diagram](image)

3 Omni-Lie Algebroids and Dirac Structures

Since the gauge Lie algebroid DE has a natural representation on E, there is the Lie algebroid cohomology coming from the complex $(\Gamma(\text{Hom}(\wedge \cdot DE, E)), d)$. In fact, one can check that

$$du = [u] \in \Gamma(JE) \subset \Gamma(\text{Hom}(DE, E)), \quad \forall u \in \Gamma(E).$$

Furthermore, we claim that $\Gamma(JE)$ is an invariant subspace of the Lie derivative L_d for any $d \in \Gamma(\mathcal{D}E)$, which can be defined by the Leibnitz rule as follows:

$$\langle L_d \mu, \Phi \rangle_E \triangleq d \langle \mu, \Phi \rangle_E - \langle \mu, [d, \Phi]_E \rangle, \quad \forall \mu \in \Gamma(JE), \Phi \in \Gamma(\mathcal{D}E).$$

Actually, it is easy to check that

$$\langle L_d \mu, \Phi \rangle_E = \Phi \circ d \circ p(\mu), \quad \forall \Phi \in \Gamma(gl(E)), \quad \Rightarrow \quad p(L_d \mu) = d \circ p(\mu). \quad (19)$$

This implies that $L_d \mu \in \Gamma(JE)$ by (14).
Now let $E = D E \oplus J E$, which has a nondegenerate symmetric 2-form from the E-duality:

$$(\mathfrak{d} + \mu, r + \nu)_E \equiv \frac{1}{2} (\langle \mathfrak{d}, \nu \rangle_E + \langle \mathfrak{r}, \mu \rangle_E), \quad \forall \mathfrak{d}, r \in DE, \, \mu, \nu \in JE.$$

We define the Dorfman bracket on $\Gamma(E)$, similar to that one mentioned in Section 1,

$$\{\mathfrak{d} + \mu, r + \nu\} \triangleq [\mathfrak{d}, r]_D + \mathcal{L}_\mathfrak{d} \nu - \mathcal{L}_r \mu + \mathfrak{d} \langle \mu, r \rangle_E,$$

and call the quadruple $(E, \{\cdot, \cdot\}, (\cdot, \cdot)_E, \rho)$ an omni-Lie algebroid, where ρ is the projection of E onto DE. Comparing with the Courant algebroid, we can prove that an omni-Lie algebroid has the similar properties as follows:

Theorem 3.1. With the notation above, an omni-Lie algebroid satisfies the following properties, where α is the projection from DE to TM in [4]. For all $X, Y, Z \in \Gamma(E), f \in C^\infty(M)$,

1) $(\Gamma(E), \{\cdot, \cdot\})$ is a Leibniz algebra,

2) $\rho \{X, Y\} = [\rho(X), \rho(Y)]_D$,

3) $\{X, fY\} = f \{X, Y\} + (\alpha \circ \rho(X))(f)Y$,

4) $\{X, X\} = \mathfrak{d} \langle X, X \rangle_E$,

5) $\rho(X)(Y, Z)_E = (\{X, Y\}, Z)_E + (Y, \{X, Z\})_E$.

When $E = M \times \mathbb{R}, \, E \cong (TM \times \mathbb{R}) \oplus (T^*M \times \mathbb{R})$, the structure above is studied by Wade in [20]. The simplest case is that $E = V$, a vector space. Then $E \cong \mathfrak{gl}(V) \oplus V$ and the structure is isomorphic to Weinstein’s omni-Lie algebra. A similar algebraic structure was defined in [17] and named as a generalized Lie bialgebra.

Definition 3.2. A Dirac structure in the omni-Lie algebroid E is a subbundle $L \subset E$ being maximal isotropic with respect to $(\cdot, \cdot)_E$ and its section space $\Gamma(L)$ is closed under the bracket operation $\{\cdot, \cdot\}$.

Proposition 3.3. A Dirac structure L is a Lie algebroid with the restricted bracket and anchor map $\alpha \circ \rho$. Moreover, $\rho|_L : L \to DE$ gives a representation of L on E.

This fact is easy to be checked by the theorem above. Next we are going to study some special Dirac structures and generalize Theorem 1.2 of Weinstein from a vector space to a vector bundle. As we shall see, this includes two special cases, namely the jet algebroid of a Lie algebroid and the 1-jet algebroid of a Jacobi manifold. First let us mention the following basic fact, for which the proof is merely some calculations and is ignored.

Lemma 3.4. Given a bundle map $\pi : J E \to DE$, then its graph

$$L_\pi = \{(\pi(\mu), \mu) | \mu \in JE\} \subset E$$

is a Dirac structure if and only if

1) π is skew-symmetric, i.e., $\langle \pi(\mu), \nu \rangle_E = -\langle \pi(\nu), \mu \rangle_E$, $\forall \mu, \nu \in JE$;
2) the following equation holds for all $\mu, \nu \in \Gamma(\mathfrak{J}E)$.

$$\pi [\mu, \nu]_{\pi} = [\pi(\mu), \pi(\nu)]_{\mathfrak{D}},$$

where the bracket $[\cdot, \cdot]_{\pi}$ on $\Gamma(\mathfrak{J}E)$ is defined by:

$$[\mu, \nu]_{\pi} \triangleq \mathcal{L}_{\pi(\mu)}\nu - \mathcal{L}_{\pi(\nu)}\mu - d\langle \pi(\mu), \nu \rangle_E.$$ (21)

Moreover, such a Dirac structure induces a Lie algebroid $(\mathfrak{J}E, [, ,]_{\pi}, \alpha \circ \pi)$.

Lemma 3.5. For the Lie algebroid $\mathfrak{J}E$ induced from a Dirac structure L_{π} given above, then the following statements are equivalent.

1) $\alpha \circ \pi \circ d : \Gamma(E) \to \mathcal{X}(M)$ induces a bundle map $E \to TM$.

2) $\alpha \circ \pi \circ e = 0$ (i.e., $\pi(\text{Im}\ e) \subset \text{Im}\ \alpha$).

3) $\text{Hom}(TM, E)$ is an ideal of $\mathfrak{J}E$.

4) The quotient Lie algebroid structure on $E \cong \mathfrak{J}E/\text{Im}(e)$ is given by

$$\rho_E = \alpha \circ \pi \circ d, \quad [u, v]_E = p[d\mu, d\nu]_\pi = \pi(d\mu)v, \quad \forall u, v \in \Gamma(E).$$ (22)

Here the bundle maps e, α, i and p are given in exact sequences $\{\mathfrak{J}\}$ and $\{D\}$.

Proof.

1) \Rightarrow 2) Recall Eqn.$\{\mathfrak{J}\}$ and observe that for all $f \in C^\infty(M), u \in \Gamma(E)$,

$$\alpha \circ \pi \circ d(fu) = f\alpha \circ \pi(d\mu) + \alpha \circ \pi \circ e(df \otimes u),$$

this implication is obvious.

2) \Rightarrow 3) For any $\eta \in \Gamma(\text{Hom}(TM, E))$ and $\mu \in \Gamma(\mathfrak{J}E)$, we have

$$p[\eta, \mu]_\pi = p(\mathcal{L}_{\pi(\eta)}\mu - \mathcal{L}_{\pi(\mu)}\eta - d\langle \pi(\eta), \mu \rangle_E) = \langle \pi(\eta), d\mu \rangle_E - \langle \pi(\eta), \mu \rangle_E$$

using (19).

$$= \langle \pi(\eta), d\mu \rangle_E - \langle \pi(\eta), \mu \rangle_E = (d\mu \circ \alpha \circ \pi \circ e)(\eta),$$

since $d\mu \circ \alpha \circ \pi \circ e \in \Gamma(\text{Hom}(TM, E))$. So condition 2) implies that $\rho_E \circ \pi \circ d = 0$, as required.

3) \Rightarrow 4) This implication is obvious.

4) \Rightarrow 1) For all $u, v \in \Gamma(E), f \in C^\infty(M)$, we have

$$[u, fv]_E = \pi(d\mu)(fv) = (\alpha \circ \pi \circ d\mu)(f)v + f\pi(d\mu)v \in \langle \pi, \cdot \rangle_E,$$

This shows that the anchor of the Lie algebroid E should be $\alpha \circ \pi \circ d$, which must be a bundle map. ■

Suppose that a Lie algebroid $(E, [, ,]_E, \rho_E)$ is reduced from a bundle map π satisfying the conditions in Lemma 3.5, it is not difficult to see that the anchor $\rho_E : E \to TM$ can be lift to a Lie algebroid morphism by setting

$$\hat{\rho}_E : \mathfrak{J}E \to \mathfrak{D}(TM), \quad \hat{\rho}_E[u]_m = [\rho_E(u), \cdot](m), \quad \forall u \in \Gamma(E).$$
Moreover, one has the following commutative diagram such that all the arrows are Lie algebroid morphisms.

$$
\begin{array}{ccccccc}
0 & \longrightarrow & \mathfrak{gl}(E) & \longrightarrow & \mathcal{D}E & \longrightarrow & TM & \longrightarrow & 0 \\
& & \downarrow{(\rho_E)^*} & & \downarrow{\pi} & & \downarrow{\rho_E} & & \\
0 & \longrightarrow & \text{Hom}(TM, E) & \longrightarrow & \mathcal{J}E & \longrightarrow & E & \longrightarrow & 0 \\
& & \downarrow{-1} & & \downarrow{\tilde{\rho}_E} & & \downarrow{\rho_E} & & \\
0 & \longrightarrow & \mathfrak{gl}(TM) & \longrightarrow & \mathcal{D}(TM) & \longrightarrow & TM & \longrightarrow & 0.
\end{array}
$$

Now we have two representations of $\mathcal{J}E$ on $T^*M \otimes E \cong \text{Hom}(TM, E)$: (1) the adjoint representation since $\text{Hom}(TM, E)$ is an ideal of $\mathcal{J}E$ by Lemma 3.5; (2) the tensor representation of π and $\tilde{\rho}_E$ in the above diagram by identifying $\mathcal{D}(TM)$ with $\mathcal{D}(T^*M)$. After some straightforward computations, we have

Corollary 3.6. The above two representations of $\mathcal{J}E$ on $T^*M \otimes E$ are equivalent.

Conversely, one can get the above diagram from a Lie algebroid E over M.

Lemma 3.7. From a Lie algebroid $(E, [\cdot, \cdot]_E, \rho_E)$ one can get Diagram (23) by constructing a Dirac structure L_π in \mathcal{E} such that

$$
\pi(du) = [u, \cdot]_E, \quad \forall \ u \in \Gamma(E).
$$

Here $[u, \cdot]_E$ denotes the corresponding derivation of E.

Proof. Since $\Gamma(\mathcal{J}E) \cong \Gamma(E) \oplus \Gamma(T^*M \otimes E)$, for a Lie algebroid $(E, [\cdot, \cdot]_E, \rho_E)$, one can define a map $\pi : \Gamma(\mathcal{J}E) \rightarrow \Gamma(\mathcal{D}E)$ such that (24) holds and for all $f \in C^\infty(M), u \in \Gamma(E)$, set

$$
\pi(df \otimes u) = \pi(df(u) - dfu) = [fu, \cdot]_E = f[u, \cdot]_E.
$$

Then it is easy to check that π is $C^\infty(M)$-linear and hence it well defines a morphism of vector bundles $\mathcal{J}E \rightarrow \mathcal{D}E$. By fact that any section of $\mathcal{J}E$ can be written as a linear combination of the elements with form fdu as well as the property of anchor:

$$
[u, fv]_E = f[u,v]_E + ((\rho_E u) f) v, \quad \forall u, v \in \Gamma(E), \ f \in C^\infty(M),
$$

we can check that the π-bracket $[\cdot, \cdot]_\pi$ on $\Gamma(\mathcal{J}E)$ defined by (21) satisfies the following properties:

1. $[du_1, du_2]_\pi = d[u_1, u_2]_E$;
2. $[du_1, \omega \otimes u_2]_\pi = \chi_{\rho_E(u_1)}(\omega \otimes u_2 + \omega \otimes [u_1, u_2]_E$;
3. $[\omega_1 \otimes u_1, \omega_2 \otimes u_2]_\pi = \langle \omega_2, \rho_E(u_1) \rangle (\omega_1 \otimes u_2) - \langle \omega_1, \rho_E(u_2) \rangle (\omega_2 \otimes u_1)$,

where $u_i \in \Gamma(E), \omega_i \in \Omega(M)$. It is easy to see that these relations imply that Eqt. (20) is valid and hence L_π is a Dirac structure. Moreover, one can check that $\alpha \circ \pi \circ \phi = 0$. Thus, by Lemma 3.5 the proof is completed. ■
Remark 3.8. Actually, it is already known to construct the jet Lie algebroid and a representation on E from a given Lie algebroid E (see [4]). Our discoveries include that: (1) the Lie algebroid structure of $\mathfrak{J}E$ is written clearly in form [21] by means of π and can be characterized by a Dirac structure; (2) we find another representation $\hat{\rho}_E$ related to π as showing in diagram [23] and Corollary 3.6.

The follows are two special cases for $E = TM$ with the usual Lie algebroid structure and $E = T^*M$ with the Lie algebroid structure coming from a Poisson structure.

Corollary 3.9. There is a canonical Lie algebroid isomorphism $\hat{\iota}_TM : \mathfrak{J}(TM) \cong \mathcal{D}(TM)$ with the following commutative diagram:

$$
\begin{array}{cccccc}
0 & \rightarrow & \mathfrak{gl}(TM)^{op} & \rightarrow & \mathfrak{J}(TM) & \rightarrow & TM & \rightarrow & 0 \\
& & \downarrow \phi(TM) & & \downarrow \hat{\iota}_TM & & \downarrow 1_{TM} & & \\
0 & \rightarrow & \mathfrak{gl}(TM) & \rightarrow & \mathcal{D}(TM) & \rightarrow & TM & \rightarrow & 0.
\end{array}
$$

Corollary 3.10. Let (M, Π) be a Poisson manifold. Then there is a Lie algebroid morphism $\hat{\Pi} : \mathfrak{J}(T^*M) \rightarrow \mathcal{D}(TM)$ such that the following diagram commutes.

$$
\begin{array}{cccccc}
0 & \rightarrow & \text{Hom}(TM, T^*M) & \rightarrow & \mathfrak{J}(T^*M) & \rightarrow & T^*M & \rightarrow & 0 \\
& & \downarrow \Pi & & \downarrow \hat{\Pi} & & \downarrow \Pi & & \\
0 & \rightarrow & \mathfrak{gl}(TM) & \rightarrow & \mathcal{D}(TM) & \rightarrow & TM & \rightarrow & 0.
\end{array}
$$

In particular, $\mathfrak{J}(T^*M) \cong \mathcal{D}(TM)$ if M is a symplectic manifold.

Now we mention the main result of this paper as follows:

Theorem 3.11. If $\text{rank}(E) \geq 2$, then there is a one-to-one correspondence between Lie algebroid structures on E and Dirac structures in \mathcal{E} coming from bundle maps $\mathfrak{J}E \rightarrow \mathcal{D}E$.

Proof. One direction is true by Lemma 3.7. For the converse direction, we assume that L_π is a Dirac structure coming from a skew-symmetric bundle map $\pi : \mathfrak{J}E \rightarrow \mathcal{D}E$ given in Lemma 3.4. We claim that if $\text{rank}(E) \geq 2$, then $\alpha \circ \pi \circ \iota = 0$. By equalities (14) and (15), it is seen that $\alpha \circ \pi \circ \iota = 0$ is equivalent to

$$
(\pi(\eta), \mathfrak{J})_E = 0, \quad \forall \eta, \mathfrak{J} \in \text{Hom}(TM, E).
$$

Taking $\eta = \omega_1 \otimes e_1$, $\mathfrak{J} = \omega_2 \otimes e_2$, for any $\omega_1, \omega_2 \in T^*M$, $e_1, e_2 \in E$, we have

$$
\langle \pi(\omega_1 \otimes e_1), \omega_2 \otimes e_2\rangle_E = \langle \alpha \circ \pi(\omega_1 \otimes e_1), \omega_2 \rangle e_2 = -\langle \alpha \circ \pi(\omega_2 \otimes e_2), \omega_1 \rangle e_1.
$$

Since $\text{rank}(E) \geq 2$, e_1 and e_2 can be independent so that the coefficients ahead of them must be zero. This means that (20) is true. Finally, by Lemma 3.5, we know that E has an induced Lie algebroid structure.

Example 3.12. Given a Lie algebroid $(E, [\cdot, \cdot], \rho)$, $\text{rank}(E) \geq 2$, with the Dirac structure L_π as shown above. For a bundle map $N : E \rightarrow E$, i.e., $N \in \Gamma(\mathfrak{gl}(E)) \subset \Gamma(\mathcal{D}E)$, the Nijenhuis torsion of N is defined by, $\forall u, v \in \Gamma(E)$,

$$
T^N(u, v) \triangleq N[u, v]^N - [Nu, Nv], \quad \text{where} \quad [u, v]^N = [Nu, v] + [u, Nv] - N[u, v].
$$
We define a twisted bundle map \(\pi \circ \tilde{N} - \text{ad}_N \circ \pi : \mathfrak{J}E \to \mathcal{D}E \), where \(\tilde{N} : \mathfrak{J}E \to \mathfrak{J}E \), \([u] \mapsto [Nu]\), is the lift of \(N \). Then the following three statements are equivalent.

1) The graph of \(\pi \circ \tilde{N} - \text{ad}_N \circ \pi \) is a Dirac structure.

2) \((E, [,]_N, \rho \circ N)\) is a Lie algebroid.

3) \([T^N(u, v), w] + T^N([u, v], w) + \text{c.p.} = 0, \ \forall u, v, w \in \Gamma(E)\).

In particular, \(N \) is a Nijenhuis operator if and only if \(T^N = 0 \).

Example 3.13. Let \(E = M \times V \) be a trivial vector bundle, where \(\dim V \geq 2 \). In this case,

\[
\mathcal{D}E = (M \times \mathfrak{gl}(V)) \oplus TM, \quad \mathfrak{J}E = \text{Hom}(TM, M \times V) \oplus (M \times V).
\] (27)

One can check that any skew-symmetric bundle map \(\pi : \mathfrak{J}E \to \mathcal{D}E \) is determined by a pair of bundle maps \((\theta, \Omega)\), where \(\theta : M \times V \to TM \) and

\[
\Omega : M \times V \to M \times \mathfrak{gl}(V), \quad \Omega(v_1)(v_2) + \Omega(v_2)(v_1) = 0, \ \forall v_1, v_2 \in V,
\]

such that

\[
\pi(n, v) = (\Omega(v) - n \circ \theta, \theta(v)), \quad \forall (n, v) \in \text{Hom}(TM, M \times V) \oplus (M \times V).
\]

Moreover, the graph of \(\pi \) is a Dirac structure if and only if, \(\forall v_1, v_2, v_3 \in V \) (as constant sections of \(E \)),

\[
\theta \circ \Omega(v_1, v_2) = [\theta(v_1), \theta(v_2)], \quad \Omega(v_1, \Omega(v_2, v_3)) + L_{\theta(v_1)}\Omega(v_2, v_3) + \text{c.p.} = 0.
\] (28) (29)

The reduced Lie algebroid structure on \(E \) is given by the anchor \(\theta \) and

\[
[u, v]_E = \Omega(u, v) + L_{\theta(u)}v - L_{\theta(v)}u, \quad \forall u, v \in C^\infty(M, V).
\] (30)

In particular, \(\Omega \) is constant if and only if \(E \) is an action Lie algebroid coming from the action of Lie algebra \((V, \Omega)\) on \(M \) by \(\theta \).

From now on we consider the line bundle case. The next example shows that Equation

\[26\] is not always true for a skew-symmetric bundle map \(\pi : \mathfrak{J}E \to \mathcal{D}E \) if \(\text{rank}(E) = 1 \).

Example 3.14. Suppose that \(E \) is the trivial bundle \(M \times \mathbb{R} \). Then \(\mathfrak{J}E \cong T^*M \times \mathbb{R} \) and \(\mathcal{D}E \cong TM \times \mathbb{R} \). For a skew-symmetric bivector field \(\Lambda \in \Gamma(\wedge^2TM) \), define a map \(\pi : \mathfrak{J}E \to \mathcal{D}E \) : \((\xi, t) \mapsto (\Lambda^2(\xi), 0)\) by means of the map \(\Lambda^2 : T^*M \to TM \). It is easy to see that \(\pi \) is skew-symmetric but \(\alpha \circ \pi \circ e = \Lambda^2 \neq 0 \).

In fact, we can also construct a Dirac structure for a Jacobi-line-bundle as doing in Lemma \[3.7\] But it needs more calculations because there is no anchor in this case.

Lemma 3.15. From a Jacobi-line-bundle \((E, [\cdot, \cdot]_E)\), one can construct a Dirac structure \(L_\pi \) in \(\mathcal{E} \) such that \(\pi(du) = [u, \cdot]_E, \ \forall u \in \Gamma(E) \).
Proof. We still define \(\pi \) by Eq.(24) and show that \(\pi \) is really a bundle map and takes values in \(\Gamma(\mathfrak{D}E) \). Since all calculations are local, without losing the generality, one can assume that \(E = M \times \mathbb{R} \) and identify \(\Gamma(E) \) with \(C^\infty(M) \). By the result in [9], there exists a pair \((\Lambda, X) \), where \(\Lambda \) is a smooth bivector field and \(X \) is a smooth vector field such that
\[
[f, g]_E = \Lambda(df, dg) + fX(g) - gX(f), \quad \forall \ f, g \in C^\infty(M).
\]
Thus we have two expressions of \(\pi \):
\[
\pi(\text{d}u)v = [u, v]_E = \Lambda(\text{d}u, \text{d}v) + uX(v) - vX(u);
\]
\[
\pi(\text{d}f \otimes u)(v) = [fu, v]_E - f[u, v]_E = u\Lambda(df, \text{d}v) - uvX(f).
\]
Therefor we have, for any \(h \in C^\infty(M) \),
\[
\pi(\text{d}u)(hv) = h\pi(\text{d}u)v + (\Lambda^1(\text{d}u) + uX)(h)v;
\]
\[
\pi(\text{d}f \otimes u)(hv) = h\pi(\text{d}f \otimes u)v + u\Lambda^1(\text{d}f)(h)v,
\]
which mean that both \(\pi(\text{d}u) \) and \(\pi(\text{d}f \otimes u) \in \Gamma(\mathfrak{D}E) \). Using these formulas, it is also easy to check that \(\pi \) is a bundle map. Next we prove that \(L_\pi \) is a Dirac structure. By some simple calculations, we get \(\text{d}[u, v]_E = \text{d}[u, v]_E, \quad \forall \ u, v \in \Gamma(E) \), which implies that
\[
\pi(\text{d}[u, v]_E)(w) = \pi(\text{d}[u, v]_E)(w)
\]
\[
= \pi([u, v]_E, w)_E = [[u, w]_E, v]_E + [u, [v, w]_E]_E
\]
\[
= \pi(\text{d}[u, v]_E)_E(w), \quad \forall \ w \in \Gamma(E).
\]
Since any local section of \(\mathfrak{J}E \) can be written as a linear combination of elements of the form \(f \text{d}u \), the above equality implies that Eq.(20) is valid.

For a line bundle, we have the following theorem analogous to Theorem 3.11. The difference is that the quotient structure on \(E \) can not be claimed directly since \(\alpha \circ \pi \circ \varepsilon \) may be not zero in this case.

Theorem 3.16. For any line bundle \(E \), there is a one-to-one correspondence between local Lie algebra structures on \(E \) and Dirac structures in \(\mathcal{E} \) coming from bundle maps \(\mathfrak{J}E \to \mathfrak{D}E \). In particular, Dirac structure \(L_\pi \) corresponds to a Lie algebroid structure of \(E \) if and only if \(\alpha \circ \pi \circ \varepsilon = 0 \).

Proof. One implication is shown in Lemma 3.15. For the converse part, let us show that a Dirac structure \(L_\pi \) of the line bundle \(E \) determines a local Lie algebra structure \((E, [\cdot, \cdot]_E) \) by setting
\[
[u, v]_E \triangleq \text{p}[\text{d}[u, v]_\pi] = \pi(\text{d}u)v, \quad \forall \ u, v \in \Gamma(E).
\]
It clearly satisfies the local condition. Moreover, we have
\[
\text{d}[u, v]_E = \text{d}\pi(\text{d}u)v = \mathfrak{L}_{\pi(\text{d}u)}\text{d}v = [\text{d}u, \text{d}v]_\pi.
\]
To see that \([\cdot, \cdot]_E \) enjoys the Jacobi identity, we compute, for all \(u, v, w \in \Gamma(E) \),
\[
[[u, v]_E, w]_E = \pi(\text{d}[u, v]_E)w = \pi([\text{d}u, \text{d}v]_\pi)w
\]
\[
= [\pi(\text{d}u), \pi(\text{d}v)]_\mathfrak{D}(w) \quad \text{(since } L_\pi \text{ is a Dirac structure)}
\]
\[
= [u, [v, w]]_E - [v, [u, w]]_E.
\]
The last statement of the theorem is already implied by Lemma 3.5.

Finally, notice that \(\alpha \circ \pi \circ \varepsilon : \Gamma(E) \to \Gamma(TM) \) is generally not a bundle map for a Jacobi-line bundle. But it plays a similar role as the anchor of a Lie algebroid as follows:
Corollary 3.17. For a Jacobi-line bundle and \((E, [,]_E)\), one has
\[[u, f v]_E = f[u, v]_E + ((\alpha \circ \pi \circ d \alpha) f) v, \quad \forall u, v \in \Gamma(E), \quad f \in C^\infty(M). \]

This equation follows directly from formula (31). In fact, the only obstruction for a Jacobi-line bundle to be a Lie algebroid is that \(\alpha \circ \pi \circ d \alpha\) is not a bundle map.

References

[1] R. Almeida and A. Kumpera, Structure produit dans la catégorie des algèbroids de Lie, An Acad. Bra. Ciênc. 53(1981), 247-250.

[2] H. Bursztyn, G. Cavalcanti, M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, arXiv:math.DG/0509640.

[3] T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319(1990), 631-661.

[4] M. Crainic and R. L. Fernandes, Secondary characteristic classes of Lie algebroids, Lect. Notes. Phys., 662(2005), 157-176.

[5] I. Ya. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A 125 (1987), 240-246.

[6] M. Gualtieri, Generalized Complex Geometry, PhD thesis, St John’s College, University of Oxford, Nov. 2003.

[7] R. Ibáñez, M. de León, J.C. Marrero and E. Padrón, Leibniz algebroid asociated with a Nambu-Poisson structure, J. Phys. A 32(1999), 8129-8144.

[8] Kinyon, K. and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. math., 123(2001), 525-550.

[9] A. Kirillov, Local Lie algebras, Russian Math. Surveys, 31(1976), 55-76.

[10] Y. Kosmann-Schwarzbach and K. Mackenzie, Differential operators and actions of Lie algebroids, Contemp. Math., 315(2002), 213-233.

[11] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures et Appl., 57 (1978), 453-488.

[12] Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45(1997), 547-574.

[13] J. L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. J. 5(1998), 263-276.

[14] K. Mackenzie, General theories of Lie groupoids and Lie algebroids, Cambridge University Press, 2005.

[15] K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73(2)(1994),415-452.
[16] D. Roytenberg, *Courant algebroids, derived brackets and even symplectic supermanifolds*, PhD thesis, UC Berkeley, 1999, [arXiv:math.DG/9910078](http://arxiv.org/abs/math.DG/9910078).

[17] Y.-J. Tan and Z.-J. Liu, Generalized Lie bialgebras, *Comm. Alg.* 26(7) (1998), 2293-2319.

[18] K. Uchino, Remarks on the definition of a Courant algebroid, *Lett. Math. Phys.* 60(2002): 171-175.

[19] K. Uchino, Courant brackets on noncommutative algebras and omni-Lie algebras, [arXiv:math.SG/0604101](http://arxiv.org/abs/math.SG/0604101).

[20] A. Wade, Conformal Dirac structures, *Lett. Math. Phys.* 53(2000), 331-348.

[21] A. Weinstein, Omni-Lie algebras, Microlocal analysis of the Schrodinger equation and related topics (Kyoto, 1999). No. 1176(2000), 95-102.