Clinical Characteristics and Risk of Second Primary Lung Cancer After Cervix Cancer: A Population-Based Study

Chengyuan Qian¹#, Hong Liu¹#, Yan Feng¹#, Shenglan Meng², Dong Wang¹, Mingfang Xu¹∗

#These authors contributed equally to this work and should be considered co-first authors

1 Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China

2 Department of Thoracic surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China

*Correspondence: Mingfang Xu, xusiyi023@126.com. Cancer Center, Daping Hospital, Army Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, People’s Republic of China, Tel +86 236 875 7152, Fax +86 236 889 4062

Running title: Second Primary Lung Cancer in Cervical Cancer survivors
Abstract

Background: Lung cancer as a second primary malignancy is increasingly common, but the clinical characteristics of second primary non-small cell lung cancer after cervix cancer (CC-NSCLC) in comparison with first primary non-small cell lung cancer (NSCLC1) is unknown.

Methods: The Surveillance, Epidemiology and EndResults (SEER) cancer registry between 1998 and 2010 was used to conduct a large population-based cohort analysis. Demographic and clinical characteristics as well as prognostic data were systematically analyzed. We further compared overall survival (OS) in the two cohorts. Risk factors of secondary primary lung cancer in cervical cancer patients were also analyzed.

Results: 557 (3.52%) had developed second primary lung cancer after cervix cancer and 451 were eligible for inclusion in the final analyses. In comparison to NSCLC1, patients with CC-NSCLC had a higher rate of squamous cell carcinoma (SCC) (36.59% vs. 19.07%, p<0.01). Median OS was longer for CC-NSCLC than for NSCLC1 before propensity score matching (PSM) (16 vs. 13months) but there was no significant difference after PSM. High-risk factors in cervical cancer to developing CC-NSCLC include: 50-79 years old, black race (OR 1.417; 95%CI 1.095-1.834; p<0.05) and history of radiotherapy (OR 1.392; 95%CI 1.053-1.841; p<0.05).

Conclusion: 50-79 years old, black race and history of radiotherapy were independent risk factors of second primary lung cancer in cervical cancer patient. CC-NSCLC
patients had distinctive clinical characteristics and a better prognosis compared with NSCLC1 patients.

Keyword: lung cancer, cervical cancer, second primary cancer, SEER
Introduction

Cervical cancer is the fourth most common cancer worldwide, with an estimated 310,000 annual deaths globally. However, improvements in early detection and cancer treatment have led to long survival among cervical cancer patients. Subsequently, the possibility for patients to develop a subsequent primary cancer becomes a more important consideration, with a 17% higher rate of cancer than general population in female. What's more, cervix cancer survivors had more than double the rate of lung cancer. As a matter of fact, from 1975 to 2001, 756,467 people in the United States have developed a second solid cancer, representing almost 8 percent of the current cancer survivor population. Subsequent malignancies in cancer survivors now constitute 18% of all cancer diagnosis in the US SEER cancer registries.

In particular, lung cancer as a second primary malignancy is increasingly common. Indeed, lung cancer is the leading cause of cancer incidence and mortality around the world, with 2.1 million new lung cancer cases and 1.8 million deaths predicted in 2018, representing 18.4% cancer deaths. Among women, lung cancer constitutes one of the 3 most commonly diagnosed cancers besides breast and colorectal cancers. Notably, lung cancer incidence rates are now higher among young women than among young men in non-Hispanic whites and Hispanics Americans. As regards both cervical cancer and lung cancer, approximately 10% of cervical cancer survivors have developed a second malignancy, in which lung cancer accounts for one of the largest numbers. However, risk factors of secondary primary lung cancer in cervical cancer patients are not known. Similarly, differences between CC-NSCLC...
and NSCLC on clinical characteristics and survival have not been studied. Consequently, there is a crucial need to characterize the lung cancer disease in this specific subgroup as regards both their high incidence rates. Thereby, our study aims to focus on clinical differences between CC-NSCLC and NSCLC1 as well as risk factors for secondary primary lung cancer in patients with cervical cancer.

Methods

Ethical Statement

The study was approved by the Research Ethics Committee of Daping Hospital. Data obtained from SEER database did not require informed patient consent because cancer is a reportable disease in the United States.

Population

We identified cervical cancer cases and NSCLC cases from the SEER program of the National Cancer Institute (http://seer.cancer.gov/). The cohort was composed of adult patients who were pathologically confirmed with cervical cancer or NSCLC from the SEER database from 1998 to 2010. This SEER program released a 18 population-based cancer registries of incidence rate and survival rate in United States, covering about 28% of the general population. Exclusion criteria were: confirmed by autopsy, unknown age of diagnosis, unknown marriage status, undetermined grade of disease, unknown stage of disease, unknown pathological type. A total of 173272 NSCLC1 patients, 15809 cervical cancer patients and 451 CC-NSCLC patients were eligible for inclusion in the final
analyses. Domestic status was recorded as follows: never married as “unmarried”, married as married or unmarried but having domestic partner; separated, divorced and widowed status were classified as “other”. Except for squamous cell neoplasm and adenocarcinoma, other histology types were recorded as “other”, including NSCLC not otherwise specified (NSCLC-NOS).

Statistical analysis

Categorical measurements were described as count and percentage, while continuous measurements were presented as mean (median) and range. The chi-square was used to compare the categorical measurements while the t test was used for continuous ones. Survival data were measured from the lung cancer date of diagnosis to the date of all-cause death or the last follow-up. Cumulative survival curves were generated by the Kaplan-Meier method. Differences in survival were compared using the log-rank (Mantel-Cox) tests. PSM was used to balance the difference from baseline characteristics between CC-NSCLC and NSCLC1 groups. According to 1 to 3 matches, 449 CC-NSCLC patients were matched successfully. After PSM, there were 449 cases in the CC-NSCLC group and 1347 cases in the NSCLC1 group, and there were no significant differences in histology, age at lung cancer diagnosis, race, year of lung cancer diagnosis, stage of lung cancer, marital status, radiotherapy records, chemotherapy records, surgery records and grade between the two groups. Logistic multiple regression analysis was performed to identify independent risk factors and odds ratios (OR) of second primary lung cancer in cervical cancer patient. All p values were
two-sided, with p < 0.05 considered statistically significant. The incidence of second primary lung cancer was compared to the literature. All the analyses were done using SPSS statistical software, version 23 (IBM Corp, Armonk, NY).

Results

Patients Characteristics

A total of 15809 cervical cancer patients and 173272 NSCLC1 patients between 1998 and 2010 were involved. 557 patients (3.52%) were diagnosed with second primary non-small cell lung cancer after cervix cancer (CC-NSCLC) and 451 patients with complete information were eligible for inclusion in the final analyses. The demographic and clinic-pathologic features of NSCLC1 and CC-NSCLC patients are listed in Table 1. There are significant differences in histology, age at diagnosis, race, year at diagnosis, marital and cause of death between CC-NSCLC and NSCLC1. No significant was detected in stage, radiotherapy records, chemotherapy records, surgery records and grade. The mean time to NSCLC diagnosis was 57 months after cervical cancer, with a range of 12–192 months. The mean age of cervical cancer diagnosis was 58.2 years whereas the mean age at CC-NSCLC diagnosis was 62.9 years. The majority of CC-NSCLC were adenocarcinomas (38.36%) while 36.59% were SCC and 25.1% were other. Of the 173272 NSCLC1 patients in the database, a vast majority was adenocarcinomas (49.05%), and 19.07% of patients were SCC while 31.89% of patients were other. The proportion of SCC in CC-NSCLC patients was apparently higher than that in NSCLC1 patients (36.59% vs. 19.07%). The difference in pathologic type distribution between these two cohorts is significant (p<0.01).
Clinical features in CC-NSCLC patients

The impact of demographic characteristics and clinical features of cervical cancer on pathological types and clinical stages of lung cancer in CC-NSCLC patients are listed in Table 2. Latency, stage, histology, radiotherapy records, chemotherapy records and grade of cervical cancer were associated with pathological types of lung cancer, rather than race, age at cervical cancer diagnosis, year of cervical cancer diagnosis, marital status, surgery records. There was no significant correlation between clinical factors of cervical cancer and stages of lung cancer in CC-NSCLC patients.

The impact of demographic characteristics and clinical features of cervical cancer on the cause of death in CC-NSCLC patients are listed in Table 3. Latency, age at diagnosis, stage, histology, marital status, radiotherapy records, chemotherapy records, surgery records and grade were associated with the causes of death, rather than race and year of cervical cancer diagnosis. Patients with a latency \leq 1 year were more likely to die of cervical cancer, and those with a latency > 5 years were more likely to survive. Married patients with young age, regional stage, treated by radiation or chemotherapy, died more often from cervical cancer. Patients with cervical adenocarcinoma, well or moderately differentiated in terms of histological grade and treated by surgery were more likely to survive. Lung cancer was the most common cause of death (44.8%).
Risk factors of secondary primary lung cancer in cervical cancer patients

High-risk factors of developing secondary primary lung cancer in cervical cancer patients include: age between 50 and 79 years old, black race and history of radiotherapy. All significant independent factors from logistic multiple regression analysis to develop second primary lung cancer are shown in Table 4.

Survival Analysis

The median OS was 16 months (range, 1-191 months) vs. 13 months (range, 1-227 months) in CC-NSCLC patients and NSCLC1 patients before PSM, whereas 16 months vs. 17 months after PSM. The difference was significant before PSM (p < 0.05) but no significant after PSM (p > 0.05). Figure 1 shows the survival curves of CC-NSCLC and NSCLC1 before and after PSM. OS was longer for CC-NSCLC vs. NSCLC1 before PSM but no significant difference after PSM.

Stage was strongly associated with OS. Median OS of localized, regional and distant CC-NSCLC was 52.0, 25.0, and 8.0 m (p < 0.0001). Pathological type was another important prognostic factor for OS. Unsurprisingly, patients with adenocarcinoma had much longer OS than those with SCC or other (22.0, 16.0, and 11.0 m respectively (p < 0.01)). Young patients had superior OS in comparison with patients older than 80. The latter had a median OS of 7 months. Differentiation was also an important prognostic factor. mOS of CC-NSCLC patients with grade I+II, grade III+IV and unknown differentiation were respectively 45, 13 and 10 m (p < 0.01). Patients who had surgery had a better prognosis (70 vs. 10 m, p < 0.01, and
those who had radiation had a worse prognosis (13 vs. 121m, p < 0.01) (Figure2).

Discussion

Over the past three decades, advances in early detection and treatment of cervix cancer have resulted in significant survival improvement among cervical cancer patients. Such survival after a cervical cancer diagnosis are higher than they have ever been, due to improvements in cancer therapy and current emerging issues concern long-term events in survivors, with notably the occurrence of second cancer. Patients will develop subsequent primary cancers as a result of shared lifestyle and genetic factors, as well as the first cancer treatment. In particular, lung cancer accounts for one of the largest numbers in cervical cancer survivors who had developed a second malignancy. However, risk factors for secondary primary lung cancer in patients with cervical cancer are poorly known. Similarly, it is unknown if the clinical features of cervical cancer have an impact on the pathological types and stages of secondary lung cancer. Furthermore survival data are lacking as regards differences in terms of prognosis between NSCLC1 and CC-NSCLC. To the best of our knowledge, our study is the first to focus on CC-NSCLC, with the aim to objective differences between CC-NSCLC and NSCLC1 besides the goal to identify risk factors for secondary primary lung cancer in patients with cervical cancer.

Subsequently, our article provides answers to these various issues. First and foremost, CC-NSCLC patients are younger with earlier stages. The proportion of SCC in CC-NSCLC patients was significantly higher than in NSCLC1 patients (36.59% vs. 19.07%). If CC-NSCLC patients seemed to have a better prognosis, no significant
difference was found after PSM. Cervical cancer patients who developed secondary primary lung cancer had several characteristics including 50-79 years old, black race, and history of radiotherapy.

Concerning epidemiologic data, the incidence of lung cancer differs according to geographical region and over time. In particular, both incidence and mortality from lung cancer continue to increase sharply in China 10,11. Our results suggest that the incidence of lung cancer among cervical cancer survivors in our cohort (3.52%) was significantly higher in comparison to rates reported in the literature. According to the region-specific incidence Age-Standardized Rates by Sex for Cancers of the Lung in 2018, female in Northern American have the highest incidence, which is 30.7 per 100,0001.

In our cohort, CC-NSCLC patients were younger than NSCLC1 patients, and displayed earlier stages, which may be due to more frequent medical examinations. Squamous cell lung carcinoma was the most common histologic subtype before the 1990s. Currently, adenocarcinoma has become the most common histologic subtype of lung cancer in men and women 12,13. Although adenocarcinoma (38.36%) remains the most common histologic subtype in CC-NSCLC patients, the proportion of SCC is significantly higher among NSCLC1 patients (36.59% vs. 19.07%). SCC accounts for 19.07% of NSCLC1 patients in our study similarly to data from literature 14. The high proportion of SCC in cervical cancer patients may be due to the history of chemo-radiation therapy as well as confounding factors such as unclear primary and cervical cancer metastasis.

Besides, it has to be noted that since 2006, the incidence of second primary lung cancer
among cervical cancer patients has drastically increased in our study, which cannot be entirely explained by the increase of lung cancer rates. Indeed, more reasons are required to explain the increased incidence of second primary lung cancer in cervical cancer patients. Interestingly, there was no difference in the number of patients undergoing surgery, chemotherapy and radiotherapy between the two groups. The cancer-related death rate of CC-NSCLC patients was significantly lower than in NSCLC1 patients (56.54% vs. 69.39%), and the survival rate was significantly higher in CC-NSCLC patients than in NSCLC1 patients (25.50% vs. 10.83%), with longer OS for CC-NSCLC patients. However, there was no significant difference in prognosis after PSM between CC-NSCLC and NSCLC1. We infer that the better prognosis of CC-NSCLC before PSM may be due to earlier stages and the young age of the patients. Patients with surgical records, without radiotherapy records had a significant better prognosis. This phenomenon can be partly explained by the fact that more patients in the early stage receive surgical treatment and more patients in the late stage receive radiotherapy. Therefore, cervical cancer patients with high risk factors including 50-79 years old, black race, and history of radiotherapy should be reexamined with chest CT scan more frequently for early diagnosis of second primary lung cancer.

As regards the impact of cervical cancer patients clinical features on pathological types of lung cancer, our study highlight that the incidence of SCC is higher in blacks than whites in CC-NSCLC patients (45.0% vs. 36.1%), which is consistent with literature as previous studies have reported that higher incidence of SCC was observed among Black males and females in comparison to white people15. Lung squamous cancer is
more common in patients with a longer latency, regional stage and history of cervical squamous cell carcinoma. Thereby, some patients diagnosed with lung SCC may be metastatic from cervical cancer. In addition, patients with a history of chemo-radiation therapy also have a higher rate of SCC. A study16 shows that radiation penetrates epidermis sufficiently to cause irreversible DNA damage in cells located beneath the epidermis causing squamous cell carcinoma. Cervical cancer variables do not affect the stage of CC-NSCLC patients.

Chemotherapy and radiation were proven risk factors for the development of second malignancies among cancer survivors17. Traditionally, radiation exposure is considered as one of the most important risk factor for cancer development. Radiation and chemotherapy treatments have a crucial role in the treatment of early cervical cancer, decreasing the risk of cancer recurrence and improving survival, but such treatments are also associated to an increased risk of second malignancies after exposure, especially, in long-term smokers18-21. However, no significant high standardized incidence ratios were observed among the radiation group in a large population-based study using SEER data. The authors explained that a half of the patients were none/unknown status of radiotherapy which could explained such results17. In our population-based study using SEER data, significant high incidence ratios were observed in radiation group. With the improvement of radiotherapy technology, the application of Intensity-modulated radiation therapy (IMRT) and 3dimensional conformal radiation therapy (3D- CRT) has become more and more common22,23. Our data cannot assess whether IMRT and 3D-CRT will increase the risk of second primary tumor. No significant SIR was
detected in surgical treatment group.

Finally, our study has several limitations including notably the lack of biological data including PD-L1 status. We failed to collect this crucial data as biomarker analysis has not been universalized in clinical practice until very recent years. Consequently, further studies are warranted for targetable driver mutations and PD-L1 in CC-NSCL. Furthermore, our study did not include the interactions of all possible risk factors on cervical cancer patients. Furthermore, the main limitation of the SEER data, like any retrospective study of treatment effects, is the lack of randomness in treatment regimens, which leads to confounding factors, and result may be biased and interpreted with caution despite the use of PSM to remedy this defect.

Conflicts:

The authors declare no potential conflicts of interest.

Funding information
This work was supported by grants from the National Natural Science Foundation of China (NSFC) No. 81502241

References
1. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68, 394-424(2018).
2. Siegel R. L., Miller K. D., Jemal A. Cancer Statistics, 2017. CA: a cancer journal for clinicians 67, 7-30(2017).
3. Jin J. Screening for Cervical Cancer. JAMA 320, 732(2018).
4. Mariotto A. B., Rowland J. H., Ries L. A., Scoppa S., Feuer E. J. Multiple cancer prevalence: a growing challenge in long-term survivorship. Cancer Epidemiol Biomarkers Prev 16, 566-571(2007).
5. Fraumeni Jr JF C. R., Edwards BK, Tucker MA. Introduction. In: Curtis RE, Freedman
DM, Ron E, Ries LAG, Hacker DG, Edwards BK, et al., editors New malignancies among cancer survivors: SEER cancer registries, 1973-2000. *Bethesda: National Cancer Institute (NIH Publ No. 05-5302)* (2006).

6. Jemal A., Miller K. D., Ma J., Siegel R. L., Fedewa S. A., Islami F. *et al.* Higher Lung Cancer Incidence in Young Women Than Young Men in the United States. *N Engl J Med* **378**, 1999-2009 (2018).

7. Zang R., Shi J. F., Lerut T. E., Wang L., Liu C. C., Brunelli A. *et al.* Ten-Year Trends of Clinicopathologic Features and Surgical Treatment of Lung Cancer in China. *Ann Thorac Surg* (2019).

8. Hayat M. J., Howlader N., Reichman M. E., Edwards B. K. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. *Oncologist* **12**, 20-37 (2007).

9. Bright C. J., Reulen R. C., Winter D. L., Stark D. P., McCabe M. G., Edgar A. B. *et al.* Risk of subsequent primary neoplasms in survivors of adolescent and young adult cancer (Teenage and Young Adult Cancer Survivor Study): a population-based, cohort study. *Lancet Oncol* **20**, 531-545 (2019).

10. Li J., Yang F., Li X., Zhang M., Fu R., Yin X. *et al.* Characteristics, survival, and risk factors of Chinese young lung cancer patients: the experience from two institutions. *Oncotarget* **8**, 89236-89244 (2017).

11. Liu S., Chen Q., Guo L., Cao X., Sun X., Chen W. *et al.* Incidence and mortality of lung cancer in China, 2008-2012. *Chin J Cancer Res* **30**, 580-587 (2018).

12. Travis W. D., Brambilla E., Noguchi M., Nicholson A. G., Geisinger K., Yatabe Y. *et al.* International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. *Proc Am Thorac Soc* **8**, 381-385 (2011).

13. Lortet-Tieulent J., Soerjomataram I., Ferlay J., Rutherford M., Weiderpass E., Bray F. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. *Lung Cancer* **84**, 13-22 (2014).

14. Barta J. A., Powell C. A., Wisnivesky J. P. Global Epidemiology of Lung Cancer. *Ann Glob Health* **85** (2019).

15. Zhong Y. J., Wen Y. F., Wong H. M., Yin G., Lin R., Yang S. Y. Trends and Patterns of Disparities in Burden of Lung Cancer in the United States, 1974-2015. *Front Oncol* **9**, 404 (2019).

16. Faurschou A., Haedersdal M., Poulsen T., Wulf H. C. Squamous cell carcinoma induced by ultraviolet radiation originates from cells of the hair follicle in mice. *Exp Dermatol* **16**, 485-489 (2007).

17. Berrington de Gonzalez A., Curtis R. E., Kry S. F., Gilbert E., Lamart S., Berg C. D. *et al.* Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. *Lancet Oncol* **12**, 353-360 (2011).

18. Withrow D. R., Morton L. M., Curtis R. E., Schonfeld S. J., Berrington de Gonzalez A. Radiotherapy for ductal carcinoma in situ and risk of second non-breast cancers. *Breast Cancer Res Treat* **166**, 299-306 (2017).

19. Taylor C., Correa C., Duane F. K., Aznar M. C., Anderson S. J., Bergh J. *et al.* Estimating the Risks of Breast Cancer Radiotherapy: Evidence From Modern Radiation Doses to the
20. Wei J. L., Jiang Y. Z., Shao Z. M. Survival and chemotherapy-related risk of second primary malignancy in breast cancer patients: a SEER-based study. *Int J Clin Oncol* **24**, 934-940(2019).

21. Swerdlow A. J., Higgins C. D., Smith P., Cunningham D., Hancock B. W., Horwich A. *et al.* Second cancer risk after chemotherapy for Hodgkin's lymphoma: a collaborative British cohort study. *J Clin Oncol* **29**, 4096-4104(2011).

22. Lin Y., Chen K., Lu Z., Zhao L., Tao Y., Ouyang Y. *et al.* Intensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysis. *Radiat Oncol* **13**, 177(2018).

23. Naik A., Gurjar O. P., Gupta K. L., Singh K., Nag P., Bhandari V. Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: A randomized prospective study. *Cancer Radiother* **20**, 370-376(2016).

24. Aguilar E. J., Ricciuti B., Gainor J. F., Kehl K. L., Kravets S., Dahlberg S. *et al.* Outcomes to first-line pembrolizumab in patients with non-small cell lung cancer and very high PD-L1 expression. *Ann Oncol*(2019).

25. Pan Y., Zhang Y., Ye T., Zhao Y., Gao Z., Yuan H. *et al.* Detection of Novel NRG1, EGFR, and MET Fusions in Lung Adenocarcinomas in the Chinese Population. *J Thorac Oncol*(2019).

26. Lindeman N. I., Cagle P. T., Aisner D. L., Arcila M. E., Beasley M. B., Bernicker E. H. *et al.* Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. *J Thorac Oncol* **13**, 323-358(2018).
Table 1. Demographic and clinic-pathological characteristics of patients with CC-NSCLC and NSCLC before and after PSM

Comparisons	Before PSM	After PSM	P-value		
	NSCLC1	CC-NSCLC			
N	173272	451	<0.001		
			0.168		
Histology	84986 (49.05%)	173 (38.36%)	943 (42.00%)	173 (38.53%)	
	33035 (19.07%)	165 (36.59%)	714 (31.80%)	163 (36.30%)	
	55251 (31.89%)	113 (25.00%)	588 (26.19%)	113 (25.17%)	
Age at lung cancer diagnosis	<0.001				
	1288 (0.74%)	13 (2.88%)	66 (2.94%)	13 (2.90%)	
	9007 (5.20%)	56 (12.42%)	255 (11.36%)	55 (12.25%)	
	26110 (15.07%)	109 (24.17%)	540 (24.05%)	109 (24.28%)	
	47576 (27.46%)	121 (26.83%)	609 (27.13%)	121 (26.95%)	
	57203 (33.01%)	117 (25.94%)	596 (26.55%)	116 (25.84%)	
≥80	32088 (18.52%)	35 (7.76%)	<0.001	179 (7.97%)	35 (7.80%)
Race			0.47		
White	145404 (83.92%)	338 (74.94%)	1662 (74.03%)	336 (74.83%)	
Black	17839 (10.30%)	80 (17.74%)	379 (16.88%)	80 (17.82%)	
Other	10029 (5.79%)	33 (7.32%)	204 (9.09%)	33 (7.35%)	
Year of lung cancer Diagnosis	<0.001		0.851		
1998-2000	24574 (14.18%)	15 (3.33%)	65 (2.90%)	15 (3.34%)	
2001-2005	71076 (41.02%)	107 (23.73%)	520 (23.16%)	106 (23.61%)	
2006-2010	77622 (44.80%)	329 (72.95%)	1660 (73.94%)	328 (73.05%)	
Stage at lung cancer diagnosis	0.11		0.988		
Localized	39467 (22.78%)	121 (26.83%)	597 (26.59%)	121 (26.95%)	
Regional	44937 (25.93%)	115 (25.50%)	578 (25.75%)	115 (25.61%)	
Distant	88868 (51.29%)	215 (47.67%)	1070 (47.66%)	213 (47.44%)	
Marital status	<0.001		0.985		
Never married	18512 (10.68%)	94 (20.84%)	462 (20.58%)	93 (20.71%)	
Married	73728 (42.55%)	185 (41.02%)	930 (41.43%)	184 (40.98%)	
Divorced or Separated or Widowed	81032 (46.77%)	172 (38.14%)	853 (38.00%)	172 (38.31%)	
Radiation records	0.258		0.793		
No	104795 (60.48%)	261 (57.87%)	1310 (58.35%)	259 (57.68%)	
Yes	68477 (39.52%)	190 (42.13%)	935 (41.65%)	190 (42.32%)	
Chemotherapy	0.523		0.753		
No	104363 (60.23%)	265 (58.76%)	1302 (58.00%)	264 (58.80%)	
Yes	68909 (39.77%)	186 (41.24%)	943 (42.00%)	185 (41.20%)	
Surgery records	0.117		0.898		
No	121139 (69.91%)	300 (66.52%)	1502 (66.90%)	299 (66.59%)	
Yes	52133 (30.09%)	151 (33.48%)	743 (33.10%)	150 (33.41%)	
Grade	0.345		0.94		
I-II	41501 (23.95%)	115 (25.50%)	587 (26.15%)	115 (25.61%)	
III-IV	52840 (30.50%)	146 (32.37%)	702 (31.27%)	144 (32.07%)	
Unknown	78931 (45.55%)	190 (42.13%)	956 (42.58%)	190 (42.32%)	
Cause of death or alive	<0.001		<0.001		
Lung cancer	120106 (69.32%)	202 (44.79%)	1481 (65.97%)	201 (44.77%)	
Cervical cancer	113 (0.07%)	53 (11.75%)	12 (0.53%)	52 (11.58%)	
Alive	18763 (10.83%)	115 (25.50%)	377 (16.79%)	115 (25.61%)	
Other	34290 (19.79%)	81 (17.96%)	375 (16.70%)	81 (18.04%)	

NSCLC1 = non-small cell lung cancer, CC-NSCLC = control non-small cell lung cancer, PSM = propensity score matching.
Cervical cancers	Lung cancers	P value	Lung cancers	P value						
	Total	AC(%)	SCC(%)	Other(%)	Localized(%)	Regional(%)	Distant(%)	Localized(%)	Regional(%)	Distant(%)
	451	173	165	113	121	115	215	115	215	215
Latency	<0.05	>0.05	<0.05	>0.05						
≤1year	100	42	31	27	37	23	40	23	40	40
>1year, ≤5years	187	57	69	61	43	48	96	48	96	96
>5years, ≤10years	117	51	47	19	27	34	56	34	56	56
>10years	47	23	18	6	14	10	23	10	23	23
Race	≥0.05	>0.05	≥0.05	≥0.05						
White	338	127	122	89	97	84	157	84	157	157
Black	80	29	36	15	16	23	41	23	41	41
Other	33	17	7	9	8	8	17	8	17	17
Age at cervical cancer diagnosis	>0.05	>0.05	>0.05	>0.05						
25-39	35	13	15	7	8	10	17	10	17	17
40-49	77	20	33	24	16	19	42	19	42	42
50-59	133	61	39	33	32	35	66	35	66	66
60-69	124	53	43	28	39	33	52	33	52	52
70-79	68	21	28	19	20	17	31	17	31	31
≥80	14	5	7	2	6	1	7	1	7	7
Year of cervical cancer Diagnosis	>0.05	>0.05	>0.05	>0.05						
1998-2000	112	36	43	33	28	30	54	30	54	54
2001-2005	216	84	81	51	62	51	103	51	103	103
2006-2010	123	53	41	29	31	26	58	26	58	58
Stage at CC cancer diagnosis	<0.001	>0.05	>0.05	>0.05						
localized	213	103	61	49	60	57	96	57	96	96
regional	238	70	104	64	61	58	119	58	119	119
Histology	p<0.001	>0.05	>0.05	>0.05						
AC	89	49	15	25	20	24	45	24	45	45
SCC	335	111	146	78	94	85	156	85	156	156
other	27	13	4	10	7	6	14	6	14	14
Marital status	≥0.05	>0.05	>0.05	>0.05						
Never married	94	33	38	23	19	24	51	24	51	51
Married	185	82	57	46	50	48	87	48	87	87
Divorced or Separated or Widowed	172	58	32	44	52	45	77	45	77	77
Radiation records	<0.001	>0.05	>0.05	>0.05						
No	151	78	37	36	82	70	148	70	148	148
Yes	300	95	128	77	39	45	67	45	67	67
Chemotherapy records	<0.001	>0.05	>0.05	>0.05						
No	247	117	74	56	55	46	103	46	103	103
Yes	204	56	91	57	66	69	112	69	112	112
Surgery records	>0.05	>0.05	>0.05	>0.05						
No	194	56	87	51	69	63	125	63	125	125
Yes	257	117	78	62	52	52	90	52	90	90
Grade	≤0.05	>0.05	>0.05	>0.05						
I-II	180	77	69	34	55	48	77	48	77	77
III-IV	162	51	64	47	33	37	92	37	92	92
Unknown	109	45	32	32	33	30	46	30	46	46

Table 2. Impact of demographic and clinical features of cervical cancer on pathological stage of lung cancer
Cervical cancers	Cause of death or alive	Total Lung and Bronchus(%)	Cervix uteri(%)	Alive(%)	Other(%)	P-value
Total		451	202 (44.8)	53 (11.8)	115 (25.5)	81 (18.0)
Latency						
≤1year		100	42 (42.0)	18 (18.0)	12 (12.0)	28 (28.0)
>1year- ≤5years		187	86 (46.0)	24 (12.8)	42 (22.5)	35 (18.7)
>5years- ≤10years		117	54 (46.2)	9 (7.7)	40 (34.2)	14 (12.0)
>10years		47	20 (42.6)	2 (4.3)	21 (44.7)	4 (8.5)
Race						<0.05
White		338	153 (45.3)	43 (12.7)	85 (25.1)	57 (16.9)
Black		80	35 (43.8)	8 (10.0)	18 (22.5)	19 (23.8)
Other		33	14 (42.4)	2 (6.1)	12 (36.4)	5 (15.2)
Age at cervical cancer diagnosis						<0.001
25-39		35	7 (20.0)	10 (28.6)	15 (42.9)	3 (8.5)
40-49		77	35 (45.5)	11 (14.3)	19 (24.7)	12 (15.5)
50-59		133	61 (45.9)	16 (12.0)	38 (28.6)	18 (13.5)
60-69		124	55 (44.4)	11 (8.9)	33 (26.6)	25 (20.1)
70-79		68	37 (54.4)	3 (4.4)	8 (11.8)	20 (29.4)
≥80		14	7 (50.0)	2 (14.3)	2 (14.3)	3 (21.4)
Year of cervical cancer diagnosis						>0.05
1996-2000		112	51 (45.5)	14 (12.5)	26 (23.2)	21 (18.8)
2001-2005		216	104 (48.1)	27 (12.5)	55 (25.5)	30 (13.9)
2006-2010		123	47 (38.2)	12 (9.8)	34 (27.6)	30 (24.4)
Stage at breast cancer diagnosis						<0.05
Localized		213	96 (45.1)	12 (5.6)	67 (31.5)	38 (17.8)
Regional		238	106 (44.5)	41 (17.2)	48 (20.2)	43 (18.1)
Histology						p=0.05
AC		89	32 (36.0)	7 (7.9)	33 (37.1)	17 (19.0)
SCC		335	155 (46.3)	41 (12.2)	80 (23.9)	59 (17.6)
Other		27	15 (55.6)	5 (18.5)	2 (7.4)	5 (18.5)
Marital status						<0.05
Never married		94	44 (46.8)	7 (7.4)	26 (27.7)	17 (18.1)
Married		185	75 (40.5)	29 (15.7)	56 (30.3)	25 (13.5)
Divorced or Separated or Widowed		172	83 (48.3)	17 (9.9)	33 (19.2)	39 (22.7)
Radiation records						<0.05
Yes		300	134 (44.7)	46 (15.3)	64 (21.3)	56 (18.7)
No		151	68 (45.0)	7 (4.6)	51 (33.8)	25 (16.6)
Chemotherapy records						<0.05
Yes		204	85 (41.7)	37 (18.1)	47 (23.0)	35 (17.2)
No		247	117 (47.4)	16 (6.5)	68 (27.5)	46 (18.6)
Surgery records						<0.05
Yes		257	110 (42.8)	24 (9.3)	83 (32.3)	40 (15.6)
No		194	92 (47.4)	29 (14.9)	32 (16.5)	41 (21.1)
Grade						<0.05
I-II		180	73 (40.6)	18 (10.0)	60 (33.3)	29 (16.1)
III-IV		162	82 (50.6)	24 (14.8)	32 (19.8)	24 (14.8)
Unknown		109	47 (43.1)	11 (10.1)	23 (21.1)	28 (25.7)

Table 3. Impact of demographic and clinical features of cervical cancer on the death in CC-NSCLC patients
Comparasions	Cervical cancer	CC-NSCLC	OR (95% CI)	P-value
Histology				>0.05
AC	3705	89 (19.73%)		
SCC	10506	335 (74.28%)	1.137(0.890-1.454)	
Other	1147	27 (5.99%)	0.832(0.533-1.297)	
Age				<0.05
25-39	5101 (33.21%)	35 (7.76%)		
40-49	4413 (28.73%)	77 (17.07%)	2.410(1.609-3.609)	
50-59	2680 (17.45%)	133 (29.49%)	6.458(4.398-9.483)	
60-69	1588 (10.34%)	124 (27.49%)	9.956(6.712-14.767)	
70-79	993 (6.47%)	68 (15.08%)	8.464(5.470-13.099)	
≥80	583 (3.80%)	14 (3.10%)	2.761(1.427-5.342)	
Race				<0.05
White	11492 (74.83%)	338 (74.94%)		
Black	1716 (11.17%)	80 (17.74%)	1.417(1.095-1.834)	
Other	2150 (14.00%)	33 (7.32%)	0.432(0.300-0.622)	
Year				>0.05
1998-2000	4008 (26.10%)	112 (24.83%)		
2001-2005	6224 (40.53%)	216 (47.89%)	1.177(0.929-1.492)	
2006-2010	5126 (33.38%)	123 (27.27%)	0.819(0.627-1.069)	
Stage				>0.05
Localized	9123 (59.40%)	213 (47.23%)		
Regional	6235 (40.60%)	238 (52.77%)	0.877(0.684-1.124)	
Marital status				>0.05
Unmarried	4480 (29.17%)	94 (20.84%)		
Married	7371 (47.99%)	185 (41.02%)	1.165(0.898-1.510)	
Divorced or Separated or Widowed	3507 (22.84%)	172 (38.14%)	1.391(1.062-1.822)	
Surgery records				>0.05
No	4687 (30.52%)	194 (43.02%)		
Yes	10671 (69.48%)	257 (56.98%)	0.998(0.768-1.267)	
Radiation records				<0.05
No	7820 (50.92%)	151 (33.48%)		
Yes	7538 (49.08%)	300 (66.52%)	1.392(1.053-1.841)	
Chemotherapy records				>0.05
No	9904 (64.49%)	247 (54.77%)		
Yes	5454 (35.51%)	204 (45.23%)	0.989(0.764-1.280)	
Grade				>0.05
I-II	6100 (39.72%)	180 (39.91%)		
III-IV	4485 (29.20%)	162 (35.92%)	1.057(0.847-1.319)	
Unknown	4773 (31.08%)	109 (24.17%)	0.814(0.634-1.045)	

Table 4. Risk factors of secondary primary lung cancer in cervical cancer patients
Figure Legends

Figure 1 mOS for CC-NSCLC and NSCLC1 before and after PSM. Left, Kaplan Meier survival curves indicated that patients with CC-NSCLC had significantly longer survival than NSCLC1 patients before PSM (16 vs. 13 months; p<0.05). Right, Kaplan-Meier survival curves indicated that patients with CC-NSCLC had no significant extension in survival relative to NSCLC1 patients after PSM (16 vs. 15 months; p>0.05).

Figure 2 Influence of stage, pathological type, age, surgical records, radiotherapy records and differentiation grade on OS in CC-NSCLC. Kaplan-Meier survival curves indicated that the mOS of CC-NSCLC patients with localized, regional, and distant staging were 52.0, 25.0, and 8.0 months, respectively (p < 0.0001); Kaplan-Meier survival curves indicated that the mOS of CC-NSCLC patients with adenocarcinoma, SCC and other were 22.0, 16.0, and 11.0 months, respectively (p < 0.01); Kaplan-Meier survival curves indicated that the mOS of CC-NSCLC in young patients had superior OS in comparison with patients older than 80 (p < 0.05); Kaplan-Meier survival curves indicated that the mOS of CC-NSCLC patients underwent surgical resection had significantly longer survival than those did not undergo resection (70 vs. 10 months; P<0.0001); Kaplan-Meier survival curves indicated that the mOS of CC-NSCLC patients underwent radiotherapy had significantly shorter survival than those did not undergo radiotherapy (13 vs. 21 months; P<0.01); Kaplan-Meier survival curves indicated that the mOS of CC-NSCLC patients with grade I+II, grade III+IV and unknown differentiation were respectively 45, 13 and 10 months (p < 0.0001).
Figure