WELL–POSEDNESS AND BLOW–UP FOR AN INHOMOGENEOUS SEMILINEAR PARABOLIC EQUATION

Mohamed Majdoub

Abstract. We consider the large-time behavior of sign-changing solutions of the inhomogeneous equation
$u_t - \Delta u = |x|^\alpha |u|^p + \zeta(t) w(x)$ in $(0, \infty) \times \mathbb{R}^N$, where $N \geq 3$, $p > 1$, $\alpha > -2$, ζ, w are continuous functions such that $\zeta(t) = t^\sigma$ or $\zeta(t) \sim t^\sigma$ as $t \to 0$, $\zeta(t) \sim t^m$ as $t \to \infty$. We obtain local existence for $\sigma > -1$. We also show the following:

- If $m \leq 0$, $p < \frac{N-2m+\alpha}{N-2m-2}$ and $\int_{\mathbb{R}^N} w(x)dx > 0$, then all solutions blow up in finite time;
- If $m > 0$, $p > 1$ and $\int_{\mathbb{R}^N} w(x)dx > 0$, then all solutions blow up in finite time;
- If $\zeta(t) = t^\sigma$ with $-1 < \sigma < 0$, then for $u_0 := u(t = 0)$ and w sufficiently small the solution exists globally.

We also discuss lower dimensions. The main novelty in this paper is that blow up depends on the behavior of ζ at infinity.

Mathematics subject classification (2010): 35K05, 35A01, 35B44.

Keywords and phrases: Inhomogeneous parabolic equation, global existence, finite time blow-up, differential inequalities, forcing term depending of time and space, critical Fujita exponent.

REFERENCES

[1] J. Aguirre and J. Giacomoni, The shape of blow-up for a degenerate parabolic equation, Differ. Integral Equ., 14 (2001), 589–604.
[2] B. Ben Slimene, S. Tayachi and F. B. Weissler, Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations, Nonlinear Analysis, 152 (2017), 116–148.
[3] C. Bandle, H. A. Levine and Qi S. Zhang, Critical Exponents of Fujita Type for Inhomogeneous Parabolic Equations and Systems, Journ. of Math. Anal. and App., 251 (2000), 624–648.
[4] K. Deng and H. A. Levine, The role of critical exponents in blowup theorems, the sequel, J. Math. Anal. Appl., 243 (2000), 85–126.
[5] J. Dixon and S. McKef, Weakly singular discrete Gronwall inequalities, Z. angew. Math. Mech., 64 (1986), 535–544.
[6] M. J. Esteban and J. Giacomoni, Existence of global branches of positive solutions for semilinear elliptic degenerate problems, J. Math. Pures Appl., 79 (2000), 715–740.
[7] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sec. IA Math. 13 (1966), 109–124.
[8] V. A. Galaktionov and J. L. Vázquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst., 8 (2002), 399–433.
[9] J. Giacomoni, Some results about blow-up and global existence to a semilinear degenerate heat equation, Rev. Mat. Complut., 11 (1998), 325–351.
[10] Y. Han, Blow-up phenomena for a reaction diffusion equation with special diffusion process, Applicable Analysis (2020), doi:10.1080/00036811.2020.1792447.
[11] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503–505.
[12] B. Hu, Blow Up Theories for Semilinear Parabolic Equations, Springer, Berlin (2011).
[13] M. Jleli, T. Kawakami and B. Samet, Critical behavior for a semilinear parabolic equation with forcing term depending of time and space, J. Math. Anal. Appl. 486 (2020), 123931.
[14] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Urálceva, *Linear and quasilinear equations of parabolic type*, Amer. Math. Soc., Transl. Math. Monographs, Providence, R. I. (1968).

[15] H. A. Levine, *The role of critical exponents in blowup theorems*, SIAM Rev., 32 (1990), 269–288.

[16] H. A. Levine and P. Meier, *The value of the critical exponent for reaction-diffusion equations in cones*, Arch. Rational Mech. Anal., 109 (1989), 73–80.

[17] A. V. Martynenko and A. F. Tedeev, *Cauchy problem for a quasilinear parabolic equation with a source term and an inhomogeneous density*, Comput. Math. Math. Phys., 47 (2007), 238–248.

[18] A. V. Martynenko and A. F. Tedeev, *On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source*, Comput. Math. Math. Phys., 48 (2008), 1145–1160.

[19] E. Mitidieri and S. I. Pohozaev, *A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities*, Proc. Steklov Inst. Math., 234 (2001), 3–383.

[20] C. A. Stuart, *A critically degenerate elliptic Dirichlet problem, spectral theory and bifurcation*, Nonlinear Analysis, 190 (2020), Article ID 111620.

[21] Z. Tan, *Reaction-diffusion equations with special diffusion processes*, Chin. J. Contemp. Math., 22 (2001), 371–382; translation from Chin. Ann. Math., Ser. A, 22 (2001), 597–607.

[22] G. D. Yemgne and M. Majdoub, *Blow up and global existence of solutions to a Hardy-Hénon equation with a spatial-temporal forcing term*, submitted.

[23] Yuan-Wei Qi, *The critical exponents of parabolic equations and blow-up in \mathbb{R}^n*, Proceedings of the Royal Society of Edinburgh, 128A (1998), 123–136.

[24] P. Quittner and P. Souplet, *Superlinear parabolic problems*, Birkhäuser Verlag, Basel (2007), xii+584.

[25] S. Tayachi, *Uniqueness and non-uniqueness of solutions for critical Hardy-Hénon parabolic equations*, J. Math. Anal. Appl., 488 (2020), 123976.

[26] Q. S. Zhang, *A new critical phenomenon for semilinear parabolic problem*, J. Math. Anal. Appl., 219 (1998), 123–139.

[27] Q. S. Zhang, *Blow up and global existence of solutions to an inhomogeneous parabolic system*, J. Differential Equations, 147 (1998), 155–183.

[28] X. Wang, *On the Cauchy problem for reaction-diffusion equations*, Transactions of the American Mathematical Society, 337 (1993), 549–590.