Managing osteoarthritis pain with smart technology: a narrative review

Running head: Osteoarthritis and Smart Technology

Alisa J. Johnson¹; Shreela Palit¹; Ellen L. Terry¹,²; Osheeca J. Thompson¹; Keesha Powell-Roach¹,²; Brenda W. Dyal²; Margaret Ansell³; Staja Q. Booker¹,²

¹ Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
² Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
³ George A. Smathers Libraries, Health Science Center Libraries, University of Florida, Gainesville, FL, USA

Corresponding Author: Staja Q. Booker, PhD, RN

University of Florida, College of Nursing; PO Box 100197, Gainesville, FL, USA 32610

bookers@ufl.edu

ORCID ID: 0000-0001-8934-1335
Abstract

Osteoarthritis (OA) is a highly prevalent musculoskeletal condition worldwide. Over 300 million individuals are affected by OA, and pain is the most common and challenging symptom to manage. While many new advances have led to improved OA-related pain management, smart technology offers additional opportunities to further enhance symptom management. This narrative review identifies and describes the current literature focused on smart technology for pain management in persons with OA. In collaboration with a health sciences librarian, an interdisciplinary team of clinician-scientists searched multiple databases (e.g., PubMed, CINAHL, Embase) which generated 394 citations for review. After inclusion criteria were met, data were extracted from seven studies reporting on varied smart technologies, including mobile health, wearables, and eHealth tools to measure or manage pain. Our review highlights the dearth of research in this critical area, the implications for clinical practice and technology development, and future research needs.

Keywords: osteoarthritis, chronic pain, smart technology, mHealth, self-management, digital technology

Key messages:

- Osteoarthritis is a prevalent musculoskeletal condition that requires multimodal management.
- Smart technology can enhance monitoring and management of pain in osteoarthritis.
- Evidence indicates the potential benefits of smart technology for pain management; more research is warranted.
Introduction

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and physical disability affecting an estimated 303 million people worldwide (1, 2). The prevalence and incidence of OA has increased significantly over the past century (3), which has been particularly evident in high- and middle-income countries (4). For example, in the U.S., a reported 140 billion dollars were spent on OA-related medical costs in 2013 (5). Despite recent medical advances and an increased focus on lifestyle approaches for self-managing OA-related symptoms (6), managing OA-related pain remains extremely challenging (7). This is likely due to the dynamic and biopsychosocial nature of OA-related pain (8), which results in wide inter-individual variability in pain (9). Furthermore, constraints in access to healthcare services and the current global hesitancy towards prescribing opioids for long-term pain management, add to the challenge of effective pain management in OA (10-12). Therefore, improved chronic pain management models relative to OA are needed which provide cost-efficient and accessible interventions for chronic pain management (13). Smart technology that is tailored to patients’ medical needs may overcome the current barriers and gaps in healthcare by providing remote assistance in monitoring, controlling, and treating OA-related chronic pain (14). Smart technology is defined as an internet-connected and inter-connected electronic or automated device or system that is responsive and/or reactive to real-time data input (5, 15). Harnessing smart technology is the next step in the optimization of personalized and precision medicine in patients with chronic OA-related pain.

The past decade has yielded immense advances in the volume and innovation of digital technologies for OA management (15), including smart technology. These technologies typically include a smart design interface via artificial intelligence, machine learning, and big data cloud computing and require interactive engagement with the end users (e.g., patients, providers) (15).
As outlined by Solomon & Rudin, smart technologies include virtual reality, mobile health (mHealth; e.g., smartphones, smartwatches, tablets, or other internet-enabled devices), wearables (e.g., smartwatches, smart clothing), digital therapeutics, and voice assistants (15). Indeed, the U.S. national public health agenda for OA recommends health care providers promote self-management through digital means like mHealth and wearable devices along with traditional options such as self-directed online programs (16). Smart technology empowers individuals, regardless of age, to actively engage in disease management strategies and decision-making processes that foster improved quality of life. The role of smart technology in disease self-management has been documented in chronic illness (17), gout (18), rheumatoid arthritis (19), and juvenile idiopathic arthritis (JIA) (20). For example, in an international study among adults ages 45-54 years, researchers reported that over 50% of people with rheumatic and musculoskeletal disorders were aware of mHealth self-management apps and 42% were currently using these apps mainly to self-monitor various health indicators, disease progression, and to directly communicate and interact with their health care provider (21). While there are approximately 280 smart applications for chronic pain self-management, as of the year 2017, most are limited in terms of their functionality and do not offer comprehensive self-management capabilities (22).

The potential benefits of digital health technologies, including smart technologies, in rheumatology have been noted (15), including a significant moderate effect on pain reduction in OA (54). Still, many challenges persist in widespread utilization of smart technologies for health and OA-related pain management. One of the most common and pervasive is the “digital divide”, which limits access and use by older adults; racial/ethnic minorities; and individuals who are economically disadvantaged, in rural environments, with low health literacy, and cognitive and functional impairments (23). A second major limitation is the lack of best practice standards for
digital healthcare technologies (15), and promotion of technology for self-management in clinical guidelines. Despite these shortcomings, ‘enabled’ technologies hold much promise for improved patient care and health outcomes through innovative treatment and education delivery platforms, advanced monitoring of symptoms and treatment responses, and real-time communication with healthcare providers. To date, few reviews have assessed the available research focused on smart technology for OA pain self-management. Therefore, the purpose of this narrative review is to synthesize and understand the current literature on management of OA pain across the lifespan using smart technology to guide future research and clinical applications.

Methods

Study Design

This narrative review aimed to describe the use of smart technology for pain management in patients with osteoarthritis (OA). The guiding question for this narrative review was “How has smart technology been used for self-management of OA-related pain?”

Search Strategy

For this narrative review, a systematic search strategy was developed by a health science librarian (initials blinded), in collaboration with the research team, to comprehensively search the literature. We defined smart technology as intelligent (and intuitive) and connected digital technologies which actively used interactive, adaptive, and responsive self-monitoring analysis and reporting technology. This eliminated technologies that are static (e.g., pre-programmed web-based self-management programs, electronic health records). The search strategies developed used a combination of keywords, MeSH terms, and controlled vocabulary related to the core concepts
of OA, smart technologies, pain, pain management or self-management. Searched databases included PubMed, Embase, CINAHL, PsycINFO, and Web of Science with no date limits (through July 2020) and an English language filter; full search strategies are available upon request. Search results (N= 342) were uploaded into Covidence software (Melbourne, Australia) for de-duplication and review.

Study Selection

The review process was completed in Covidence and conducted in two steps: 1) title and abstract review and 2) full-text review. Each article was assessed for eligibility and inclusion by two reviewers. All reviewers were assigned an equal number of titles and articles to review at both steps. Articles were selected based on the following inclusion criteria: (1) original quantitative and qualitative studies on OA, (2) uses smart technology for pain and symptom management, and (3) any age group. Articles were excluded if they were study protocols, literature reviews, focused on total joint replacement, or did not included pain as a primary or secondary outcome. Discrepancies in study inclusion were resolved after agreement was reached through team discussion. Once discrepancies from the title and abstract review were resolved, a full-text review was performed in the same manner. Final verification and quality control were performed by the first and last author.

Data Extraction

Data was extracted from included articles by members of the research team and added to a data extraction table. The data extraction table included: (1) authors, (2) study title, (3) date study was performed, (4) study design, (5) participant age group, (6) type of smart technology used, (7) results, and (8) reported limitations. Data abstraction was limited to descriptive data, therefore,
there were no discrepancies during the data abstraction process as no analysis of the extracted data was performed.

Results

Our initial search yielded a total of 394 potential articles. After removing 62 duplicates, 332 articles were screened, with 259 articles removed following the title and abstract screening. The full text review was conducted on the remaining 73 articles, of which, 65 did not meet our inclusion criteria. Studies were excluded for the following reasons: (1) incorrect patient population (e.g., rheumatoid arthritis, JIA, general musculoskeletal pain conditions not specific to OA), (2) did not use smart technology (e.g., static online self-management programs with no smart technology interface), (3) wrong study design (e.g., reviews, study protocols), (4) published abstracts without corresponding full-text manuscript, and (5) non-English language.

Eight studies met the inclusion criteria for full-text review (Table 1). Of the four quantitative studies included, two were randomized controlled trials (RCTs) (24, 25), and two were pilot studies (26, 27), which examined the effects and feasibility of different mobile health (mHealth) smart technology applications for pain and symptom self-management among individuals with OA. Each of the quantitative studies relied on technology-assisted assessments of symptoms and intervention delivery, using applications downloaded to smart phones or tablets. Four qualitative studies were included in this review and focused on the perspectives of physicians and patients in regards to using smart technology to assist with pain self-management (28-31). Participants in all studies were adults over 18 years of age. While we aimed to include studies with younger samples (e.g., adolescents), literature specific to OA in children and adolescents was not found. This is not surprising given the relatively low occurrence rate of OA in younger populations.
Males and females were both represented in the studies. Two pilot studies (26, 27), and three qualitative studies (28, 30, 31), included a larger percentage of females than males; otherwise, study samples were balanced across genders. The reported sample sizes ranged from 9-162 participants. Included studies were conducted in the U.S. (24, 26, 27), England (29, 31), Australia (28), Canada (30), and the Netherlands (25).

Quantitative studies include two RCTs and two pilot studies, employing apps downloaded to either a smartphone or tablet and/or wearable devices/sensors. Pronk and colleagues examined the effects of the PainCoach app on participants’ opiate use and self-reported pain following total knee replacement (25). The PainCoach app was downloaded to patients’ smartphone or tablet and provided patients with targeted recommendations for pain medication use, exercise, and rest based on participant input. Findings indicated the PainCoach app reduced opiate consumption and increased pain reduction rate during activity compared to the control group (25). In a second study, researchers examined the effects of a downloadable app for smartphones or tablets (i.e., Hinge Health digital care program), which included sensor-guided exercise therapy, education, cognitive behavioral therapy, weight loss, and psychosocial support for chronic knee pain (24). The Hinge Health program was shown to significantly reduce clinical pain compared to the control group at the end of the 12-week program (24). In a pilot study, researchers assessed the attitudes and perceptions of older adults with knee OA towards a smartwatch app that was designed to collect ecological momentary assessments (EMAs) of OA symptoms, and found that the majority of participants (n=19) positively assessed the technology (26). Participants also indicated interest in the capabilities of the smartwatch to perform other health tracking functions and its potential use as a communication tool with healthcare providers (26). Researchers piloting wearable technology (i.e. Fitbit Charge 2), combined with motivational interviewing, among adults (n=22) with OA,
found the mHealth self-management intervention to be feasible and showed initial benefits for improving pain-related symptoms in OA (i.e., sleep disturbance) (27). While few in number, these four studies provide initial support for the integration of smart technology for improved pain management outcomes in OA.

Four qualitative studies were included and explored patient and physician attitudes towards and experiences with self-management apps and wearable technology for OA-related pain (28-31). A qualitative study using semi-structured interviews among community-dwelling adults with OA-related pain found that older adults value apps for self-management, while recognizing the need for digital technology to be aligned with patients’ preferences and clinician involvement (28). In a focus group of 21 participants with knee OA, participants reported that wearables provided a helpful mechanism to more objectively describe and explain a subjective experience such as pain. Many felt empowered by the opportunity to be able to control and improve their health with access to real-time feedback (31). Another study assessing both patient (n=4) and physician (n=4) perspectives found contrasting views (30). Patients felt pain was as an important factor in their overall health and were open towards smart technology for self-management. In contrast, physicians viewed OA-related pain as a relatively minor health problem and did not endorse its proactive management and were skeptical of technology-driven self-management (30). In an exploratory study of clinicians’ (n=30) opinions towards a smart pressure-sensing insole (Flexifoot), the authors reported all clinicians were in support of the smart technology as a self-management tool that could be used to complement existing clinical tools, providing objective feedback to promote more effective patient-provider communication leading to improved outcomes (29). Both physicians and patients endorsed the use of smart technology with a few notable drawbacks. Among older adults there is a willingness to use self-management apps,
however it is coupled with the need for personalization and the fear that constant engagement will lead to ruminating thoughts about pain (28). When paired with current methods, such as self-report, wearable technologies provide more thorough functionality data to health care providers (29). Although smart technology is an innovative way to include patient’s in their care, future developments should be mindful of the target audience and assess wearables for cost and clinical effectiveness (29).

Discussion

OA is a leading cause of chronic musculoskeletal pain and disability (32). Self-management is a vital component of effective pain and symptom management in persons with OA (33-35), and is strongly recommended in current clinical treatment guidelines (2, 36). Patient-centered care requires that patients become knowledgeable about their disease and its treatment, as well as the provision of readily available tools and technologies that can assist with pain and symptom management. Using smart technologies introduces an innovative approach for managing a challenging public health concern, chronic pain. The use of smart technology to promote support self-management in OA is promising (25, 27), with patients expressing positive views towards technology for advancing self-management and improving clinician-patient interactions (31). However, barriers to implementation remain (30), signifying a need to elicit end-users’ perspectives and to integrate such technologies into clinical practice guidelines.

In the current review we identified eight studies that assessed the use of smart technologies for OA-related pain management. Specifically, two studies examined smartphones and tablet applications and two studies assessed wearable devices/sensors (e.g., Fitbit and Gear S3 Smartwatch). The use of the applications led to increased exercise, reduced pain levels, and
decreased opioid use. Of the studies using wearable sensors, one study assessed the feasibility and efficacy of mHealth self-management intervention designed to improve sleep outcomes in older adults with OA (27), and the second study examined the attitudes and perceptions of older adults when using a smartwatch (26). Zaslavsky and colleagues found improvement in sleep outcomes (i.e., insomnia and acceptance of sleep difficulties) and 22 out of 24 participants completed the study over the 19-week period (27). Overall positive views of the smartwatch technology and wearables which provided an opportunity to communicate their pain in a succinct and descriptive way (26, 31). Yet, authors noted several concerns and areas for improvement regarding usability (e.g., accessibility issues, notification design, and use of intuitive assessment scales) (26).

The effective implementation of mHealth applications for OA management will require the development of applications that are easy to use, accessible, and meet physician expectations as well as patient needs (30). Designers of smart technology should include easy communication between the individual and the technology (37). The nature and content of the training may also be a barrier to use of smart technology (time required to learn to use the device, how to use, how to interpret) (38). Further, additional smart technologies for self-management exist in terms of chronic pain more generally, or specifically to musculoskeletal and/or rheumatic conditions (e.g., JIA), especially in the case of adolescents and young adults.

Implications

Gaps and Opportunities for Research

The present study is a narrative review focused on the current literature regarding smart technology applied to OA self-management across the lifespan. Our search revealed a dearth of knowledge regarding this important topic. We identified four quantitative and three qualitative
studies addressing the use of smart technology for pain and symptom management in OA, with all studies including only adults. While the risk for OA is substantially lower among children and adolescents, it is important to consider how this technology can be adapted effectively across the lifespan. This will be especially important as cases of OA increase due to trauma survival and increased life expectancy.

Older adults are the fastest growing population worldwide, (39) when compared with younger adults, older adults may be less likely to adopt new technology such as smartwatches or other wearables (38). Inclusion of older adults in clinical trials of smart technology for OA is particularly important considering that they are predominantly affected by OA pain and disability (40). Parker and colleagues(41), conducted several focus groups with older adults to identify barriers in the use of mHealth technology for pain management and several barriers identified included product affordability and lack of familiarity with mHealth devices. The authors noted a significant number of older adults lacked prior exposure to mHealth technology, but this barrier could be overcome with access and exposure to mHealth devices via community-based programs. Manini and colleagues found that older adults use of a smartwatch by design may be familiar enough to overcome learning barriers and promote the use of smartwatches for OA pain assessment (26). Prior studies included in this review highlight the positive attitude older adults have towards mHealth applications (26). Yet, few intervention trials have focused on smart technology for OA symptoms among older adults. Future research is needed to determine preferences and acceptability, as well as effectiveness, of smart technology as part of an integrative treatment strategy for OA pain and symptom management.

Given our review focused solely on OA, a condition predominantly impacting mid-life to older adults, this restricted our ability to gauge the use of smart technology for pain self-
management among adolescents and young adults, thus limiting our capacity to examine use from a lifespan perspective. Arguably, understanding implementation of these methods for pain and pain-related symptoms (e.g., sleep disturbance, disability), over the life course holds significant value for public health. Though beyond the scope of the current review, there is evidence to suggest digital technology can serve as an effective tool among children and adolescents with chronic musculoskeletal pain (42). Extending this review to musculoskeletal pain more broadly (e.g., inclusion of JIA), may yield more information about the utilization and efficacy of smart technology for pain self-management tools that are available and effective for individuals across generations.

Gaps and Opportunities for Clinical Practice

Smart technology appears to be a promising tool that may be used to improve OA-related pain outcomes (Figure 1). While studies provide preliminary evidence that these technologies have a positive impact on OA-related symptoms (i.e., decreasing opioid use, decreased pain, and improved sleep), there are several important considerations for clinical practice. First, wearable smart devices (wearable, smartphones, and tables) may be cost prohibitive or simply inaccessible for some patients, which could exacerbate health care disparities. Data from the 2012 Health Information National Trends Survey (HINTS) revealed that patients of low socioeconomic status were engaging less frequently with electronic health (43). Second, studies investigating the long-term use of smart technology are needed to determine if patient compliance in use and benefits are maintained. Third, it is critical that patient preferences and clinical guidelines be addressed in the application of smart technologies for OA. Fourth, patients may need booster sessions to improve implementation and compliance in use of the smart technology over the long-term, including
training in the use of such technologies. Finally, health care providers can devise ways to incorporate the output from the smart technology device to communicate ways to continue to improve the patient-related outcomes between visits. Importantly, for continuity of care and real-time assessment, it will be critical that smart devices are linked to electronic health records (EHRs)/electronic medical records (EMRs) in order to capture the dynamic patterns of pain and can serve as an important source of health outcome data. Optimization of smart technologies for OA will require an interdisciplinary approach, integrating the expertise of pain specialists, rheumatologists, primary care providers, patients, engineers, information technologists, and nurses with informatics training.

Gaps and Opportunities for Technological Advancement

Technological advances provide us with opportunities for self-management interventions that are cost effective for the medical community and convenient for patients, such as the expansion of wearable devices and mobile apps for smartphones. These technologies are readily available and can be accessed anywhere or anytime (untethered). The convenience of untethered apps and wearables creates opportunities for self-monitoring and reporting, including OA-related pain, physical activity, and analgesic adherence. Mobile and Internet/computer-based interventions have been used successfully for the education of health issues such as weight loss (44-46), asthma (47), and diabetes (48, 49). However, there is scant research on developing evidence-based mobile apps or wearables focused on OA and investigating their effectiveness in OA management. To fill this gap, future research is needed on incorporating Artificial Intelligence (AI) and adaptive nanotechnology for diagnosis, monitoring and managing pain symptoms of OA and for the evaluation of effectiveness of regenerative and precision pain treatment (50).
Specifically, research must explore how to use AI and machine learning to leverage the responsiveness and adaptability of smart technologies to automate data-driven interventions.

Future directions should also look to extend beyond direct pain management but also to use smart technology to monitor, track, and manage pain-related events, such as falls and opioid-related overdoses. For example, given that a significant proportion of older adults with chronic musculoskeletal pain also report recurrent falls (51), smart technology that include mechanisms for motion capture (52) and include sensors to monitor gait and fall risk in people with severe, disabling OA is a novel use of technology. Additionally, smart orthotic devices and other smart clothing technology may also support individuals with hip, knee, and foot OA (53).

Limitations

Although a systematic process was used to search and review the literature, this was a narrative review; therefore we did not perform quality assessments of the studies as typically done in systematic reviews and meta-analyses. The limited number of studies, various types of smart technology utilized, and outcome measurements limits the conclusions drawn and the opportunity to conduct a meta-analysis or qualitative meta-synthesis. This narrative review identifies and describes the current literature focused on smart technology for pain management in persons with OA. The use of various types of smart technology in health-related topics (i.e. tracking adherence, management of health conditions, and provider-patient communication) is becoming more popular among researchers and clinicians. Our inclusion criteria for pain management in OA precluded the examination of literature related to the use of smart technology for other health related conditions. Since this is a rapidly evolving area of research/interest, it is likely that studies have been published since our original search. Rather, at this stage in the genesis of smart technology, a narrative review
of the types and ways that technology has been employed for pain management in OA is more appropriate.

Conclusion

The future of technology is now. Real-world application of smart technologies is quickly becoming an integral part of daily life including those with chronic conditions such as OA. This review highlights the potential for smart technology to improve pain in OA. However, there are some current pitfalls that limit large scaling to various technologies. More RCTs as well as pragmatic clinical trials are needed to better understand the usability, feasibility, efficacy, effectiveness and safety of smart technologies and their integration into routine care. In conclusion, self-management of chronic OA-related pain may be positively augmented by smart technology.

Funding: Research reported in this publication was supported by the University of Florida Clinical and Translational Science Institute, which is supported in part by the NIH National Center for Advancing Translational Sciences under award number UL1TR001427; NIH/NIAMS K23AR076463 (SQB); NIH/NINDS K22NS102334 (ELT); NIH/NHLBI K01HL153210 (KPR); and NIH/NIA P30AG59297-01 (SQB, KPR); NIH/NIA T32AG049673 (SP, KPR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflicts of Interest: The authors have declared no conflicts of interest.

Data Availability Statement: No new or original data were generated or analyzed in support of this research.
References

1. Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis and cartilage. 2020;28(3):242-8.

2. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis & Rheumatology. 2020;72(2):220-33.

3. Wallace JJ, Worthington S, Felson DT, Jurmain RD, Wren KT, Maijanen H, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences. 2017;114(35):9332.

4. Brennan-Olsen SL, Cook S, Leech MT, Bowe SJ, Kowal P, Naidoo N, et al. Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. BMC musculoskeletal disorders. 2017;18(1):271.

5. Tian S, Yang W, Grange JML, Wang P, Huang W, Ye Z. Smart healthcare: making medical care more intelligent. Global Health Journal. 2019;3(3):62-5.

6. Garver MJ, Focht BC, Taylor SJ. Integrating lifestyle approaches into osteoarthritis care. J Multidiscip Healthc. 2015;8:409-18.

7. Malfait A-M, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nature Reviews Rheumatology. 2013;9(11):654-64.

8. Fillingim RB. Individual differences in pain: understanding the mosaic that makes pain personal. Pain. 2017;158 Suppl 1(Suppl 1):S11-s8.
9. Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis and cartilage. 2017;25(12):1926-41.

10. Choojaturo S, Sindhu S, Utriyaprasit K, Viwatwongkasem C. Factors associated with access to health services and quality of life in knee osteoarthritis patients: a multilevel cross-sectional study. BMC Health Services Research. 2019;19(1):688.

11. Owens B. Opioid prescriptions down but some patients fear doctors now too strict. CMAJ. 2019;191(19):E546-E7.

12. Manjiani D, Paul DB, Kunnumpurath S, Kaye AD, Vadivelu N. Availability and utilization of opioids for pain management: global issues. Ochsner J. 2014;14(2):208-15.

13. Peppin JF, Cheatle MD, Kirsh KL, McCarberg BH. The Complexity Model: A Novel Approach to Improve Chronic Pain Care. Pain Medicine. 2015;16(4):653-66.

14. Papi E, Murtagh GM, McGregor AH. Wearable technologies in osteoarthritis: a qualitative study of clinicians' preferences. BMJ Open. 2016;6(1):e009544-e.

15. Solomon DH, Rudin RS. Digital health technologies: opportunities and challenges in rheumatology. Nature Reviews Rheumatology. 2020;16(9):525-35.

16. Alliance OA, Foundation A, Prevention CfDCa. A national public health agenda for osteoarthritis: 2020 update.; 2020.

17. Buck HG, Shadmi E, Topaz M, Sockolow PS. An integrative review and theoretical examination of chronic illness mHealth studies using the Middle-Range Theory of Self-care of Chronic Illness. Research in Nursing & Health. 2020;n/a(n/a).
18. Nguyen AD, Baysari MT, Kannangara DR, Tariq A, Lau AY, Westbrook JI, et al. Mobile applications to enhance self-management of gout. International journal of medical informatics. 2016;94:67-74.

19. Ikeda K, Sekiguchi N, Hirai T, Tanji K, Zushi A, Inoue M, et al. Securely collecting multidimensional health information from patients with rheumatoid arthritis using smart device technology: Beneficial effect for physicians and patients. Musculoskeletal care. 2018;16(4):494-9.

20. Coda A, Sculley D, Santos D, Girones X, Brosseau L, Smith DR, et al. Harnessing interactive technologies to improve health outcomes in juvenile idiopathic arthritis. Pediatric Rheumatology. 2017;15(1):40.

21. Najm A, Lempp H, Gossec L, Berenbaum F, Nikphorou E. Needs, Experiences, and Views of People With Rheumatic and Musculoskeletal Diseases on Self-Management Mobile Health Apps: Mixed Methods Study. JMIR mHealth and uHealth. 2020;8(4):e14351.

22. Laloo C, Shah U, Birnie KA, Davies-Chalmers C, Rivera J, Stinson J, et al. Commercially Available Smartphone Apps to Support Postoperative Pain Self-Management: Scoping Review. JMIR mHealth and uHealth. 2017;5(10):e162.

23. Brodie M, Flournoy RE, Altman DE, Blendon RJ, Benson JM, Rosenbaum MD. Health Information, The Internet, And The Digital Divide. Health Affairs. 2000;19(6):255-65.

24. Mecklenburg G, Smittenaar P, Erhart-Hledik JC, Perez DA, Hunter S. Effects of a 12-Week Digital Care Program for Chronic Knee Pain on Pain, Mobility, and Surgery Risk: Randomized Controlled Trial. Journal of medical Internet research. 2018;20(4):e156.
25. Pronk Y, Peters MCWM, Sheombar A, Brinkman J-M. Effectiveness of a Mobile eHealth App in Guiding Patients in Pain Control and Opiate Use After Total Knee Replacement: Randomized Controlled Trial. JMIR mHealth and uHealth. 2020;8(3):e16415-e.

26. Manini TM, Mendoza T, Battula M, Davoudi A, Kheirkhahan M, Young ME, et al. Perception of Older Adults Toward Smartwatch Technology for Assessing Pain and Related Patient-Reported Outcomes: Pilot Study. JMIR mHealth and uHealth. 2019;7(3):e10044.

27. Zaslavsky O, Thompson HJ, McCurry SM, Landis CA, Kitsiou S, Ward TM, et al. Use of a Wearable Technology and Motivational Interviews to Improve Sleep in Older Adults With Osteoarthritis and Sleep Disturbance: A Pilot Study. Research in gerontological nursing. 2019;12(4):167-73.

28. Bhattarai P, Newton-John TRO, Phillips JL. Apps for pain self-management of older people's arthritic pain, one size doesn't fit all: A qualitative study. Archives of gerontology and geriatrics. 2020;89:104062.

29. Lin D, Papi E, McGregor AH. Exploring the clinical context of adopting an instrumented insole: a qualitative study of clinicians’ preferences in England. BMJ Open. 2019;9(4):e023656.

30. Barber T, Sharif B, Teare S, Miller J, Shewchuk B, Green LA, et al. Qualitative study to elicit patients' and primary care physicians' perspectives on the use of a self-management mobile health application for knee osteoarthritis. BMJ Open. 2019;9(1):e024016.

31. Belsi A, Papi E, McGregor AH. Impact of wearable technology on psychosocial factors of osteoarthritis management: a qualitative study. BMJ Open. 2016;6(2):e010064-e.

32. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for
195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789-858.

33. Albert SM, Musa D, Kwoh CK, Hanlon JT, Silverman M. Self-care and professionally guided care in osteoarthritis: racial differences in a population-based sample. Journal of aging and health. 2008;20(2):198-216.

34. Booker S, Herr K, Tripp-Reimer T. Patterns and Perceptions of Self-Management for Osteoarthritis Pain in African American Older Adults. Pain medicine (Malden, Mass). 2018.

35. Johnson AJ, Sibille KT, Cardoso J, Terry EL, Powell-Roach KL, Goodin B, et al. Patterns and correlates of self-management strategies for osteoarthritis related pain among older non-Hispanic Black and non-Hispanic White adults. Arthritis Care & Research. 2020;n/a(n/a).

36. Bannuru R, Osani M, Vaysbrot E, Arden N, Bennell K, Bierma-Zeinstra S, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and cartilage. 2019.

37. Cabrita M, Tabak M, Vollenbroek-Hutten MM. Older Adults' Attitudes Toward Ambulatory Technology to Support Monitoring and Coaching of Healthy Behaviors: Qualitative Study. JMIR Aging. 2019;2(1):e10476-e.

38. Lee C, Coughlin JF. PERSPECTIVE: Older Adults' Adoption of Technology: An Integrated Approach to Identifying Determinants and Barriers. Journal of Product Innovation Management. 2015;32(5):747-59.

39. Control CfD, Prevention. Trends in aging--United States and worldwide. MMWR Morbidity and mortality weekly report. 2003;52(6):101.

40. Palazzo C, Nguyen C, LeFevre-Colau M-M, Rannou F, Poiraudeau S. Risk factors and burden of osteoarthritis. Annals of Physical and Rehabilitation Medicine. 2016;59(3):134-8.
41. Parker SJ, Vasquez R, Chen EK, Henderson CR, Pillemer K, Robbins L, et al. A Comparison of the Arthritis Foundation Self-Help Program across three race/ethnicity groups. Ethnicity & Disease. 2011;21(4):444-50.

42. Palermo TM, de la Vega R, Murray C, Law E, Zhou C. A digital health psychological intervention (WebMAP Mobile) for children and adolescents with chronic pain: results of a hybrid effectiveness-implementation stepped-wedge cluster randomized trial. Pain. 2020;161(12):2763-74.

43. Kontos E, Blake KD, Chou WY, Prestin A. Predictors of eHealth usage: insights on the digital divide from the Health Information National Trends Survey 2012. Journal of medical Internet research. 2014;16(7):e172.

44. Lee W, Chae YM, Kim S, Ho SH, Choi I. Evaluation of a mobile phone-based diet game for weight control. Journal of telemedicine and telecare. 2010;16(5):270-5.

45. Turner-McGrievy G, Tate D. Tweets, Apps, and Pods: Results of the 6-month Mobile Pounds Off Digitally (Mobile POD) randomized weight-loss intervention among adults. Journal of medical Internet research. 2011;13(4):e120.

46. Turner-McGrievy GM, Beets MW, Moore JB, Kaczynski AT, Barr-Anderson DJ, Tate DF. Comparison of traditional versus mobile app self-monitoring of physical activity and dietary intake among overweight adults participating in an mHealth weight loss program. Journal of the American Medical Informatics Association : JAMIA. 2013;20(3):513-8.

47. Liu WT, Huang CD, Wang CH, Lee KY, Lin SM, Kuo HP. A mobile telephone-based interactive self-care system improves asthma control. European Respiratory Journal. 2011;37(2):310.
48. Kirwan M, Vandelanotte C, Fenning A, Duncan MJ. Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. Journal of medical Internet research. 2013;15(11):e235.

49. Pal K, Eastwood SV, Michie S, Farmer A, Barnard ML, Peacock R, et al. Computer-Based Interventions to Improve Self-management in Adults With Type 2 Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2014;37(6):1759.

50. Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, et al. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Current rheumatology reports. 2020;22(4):12.

51. Stubbs B, Eggermont L, Patchay S, Schofield P. Older adults with chronic musculoskeletal pain are at increased risk of recurrent falls and the brief pain inventory could help identify those most at risk. Geriatrics & gerontology international. 2015;15(7):881-8.

52. Banach M, Wasilewska A, Dlugosz R, Pauk J. Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings. Technology and Health Care. 2018;26(S2):671-7.

53. Underwood S, editor. Smart clothing and disability: wearable technology for people with arthritis 2009.

54. Safari R, Jackson J, Sheffield D. Digital self-management interventions for people with osteoarthritis: Systematic review with meta-analysis. J Med Internet Res. 2020;22(7):e15365.

Figure 1. Smart technology applications for osteoarthritis
Smart technologies are internet-connected and inter-connected electronic or automated device or system that is responsive and/or reactive to real-time data input.

Figure 1. Smart technology applications for osteoarthritis
Table 1. Review of Included Studies (N= 8)

Type of Smart Technology	Study Design	Population	Findings	Major Limitations	Reference
Mobile Application,	RCT	n=97	No differences in pain scores between intervention and control groups. Compared with controls, the intervention group used less opiates and more adjuvant analgesics. With continued use of the app (>14 days post TKR) compared with the control group the active app users had faster reduction of pain score during activity, and faster reduction of pain scores at night, less opiate use and more adjuvant analgesic use.	Study not blinded, participants knew if they were in the control or intervention group. Small sample size, study was underpowered. Cost effectiveness of app was not investigated.	Pronk et al (2020)
Smartphone or tablet	(Interventional Clinical Trial)	Adults, age 18 and older			
Wearable technology	Two-armed, RCT	n=162	Primary outcomes: KOOS and KOOS Pain both improved significantly more in the intervention group vs. control	Did not investigate long-term outcomes; not all individuals reported chronic pain; did not evaluate risk factors for drop outs	Mecklenburg et al (2018)
(bluetooth-powered		Adults, age 18 and older; mean 46 (SD = 12) years	Secondary outcomes: VAS pain, VAS stiffness, surgery chance over 1, 2, and 5 years, all were significantly better in the intervention group. Digital care program group had a significantly greater reduction in KOOS Pain compared to the control group		
exercise leg sensors),					
Mobile Application,					
Smartphone or tablet					

https://mc.manuscriptcentral.com/rheumap
Wearable technology (Smartwatch), Mobile Application	Pilot study, focus group	n=19 Adults, age 65 and older	Evaluation of PROMPT app and smartwatch via focus groups. Themes were coded, and subthemes emerged, most participants expressed enthusiasm for wearing the smartwatch, despite its weight and lack of other desired features	Focus group pts were recruited locally and might not represent broader population of older adults - more smartphone ownership. Results are based on a single focus group session. Only assessed usability with pain reporting.	Manini et al (2019)
Mobile Application, Smartphone or tablet	Qualitative study	Family physicians (n=4) and patients with KOA (n=5)	Patient and physician views very different; patients concerned about pain and health outcomes, physicians did not feel OA needed to be aggressively or proactively managed.	Small sample, did not reach saturation	Barber et al (2019)
Mobile Application, Smartphone or tablet	Qualitative study	n=16 Adults, age 65 and older	The increasing integration of smartphones and apps into the sphere of chronic disease self-management, coupled with increasing willingness among older people to engage with these technologies, offers opportunities to harness the ability of these modern-day approaches in helping older people better manage their pain.	Small sample size, based in Australia, and sampling bias.	Bhattarai et al (2020)
Study Type	Participants	Sample Characteristics	Results	References	
------------	--------------	------------------------	---------	------------	
Wearable technology (orthotics) Qualitative Feasibility n=30 Adults, age 21-57	Participants supported the use of feedback for rehabilitation, screening and evaluation of treatment progress/success purposes. Flexifoot use by patients was encouraged as a self-management tool that may motivate them by setting attainment goals. The data interface should be secure, concise and visually appealing. The measured parameters of Flexifoot, its duration of wear and frequency of data output would all depend on the rationale for its use. The clinicians and patients must collaborate to optimize the use of Flexifoot for long-term monitoring of disease for patient care in clinical practice.	Clinicians were unable to use the device themselves prior to the interviews and responses were based on one single demonstration and explanation of the tool. Clinicians had a varied level of experience and familiarity of wearable technologies between them, influencing their perspectives.	Lin et al (2019)		
Wearable technology, Mobile Application Pilot study n=24 Adults, age 65 and older	Improvements of 1.2 (p=0.04) and 2.5 (p=0.02) points in the Insomnia Severity Index and Acceptance of Sleep Difficulties scores, respectively were found over the 19-week period. mHealth intervention was feasible and acceptable in older adults with sleep disturbance due to OA pain.	Self-report bias, no control group, smartphones were required which may limit generalizability to a different sample	Zaslavsky et al (2019)		
Wearable technology Qualitative Study n=21 Adults, age 45-65	Twenty-one patients with knee osteoarthritis reported positive attitudes towards wearable technology on self-management of osteoarthritis.	Unbalanced gender representation (19 women, 2 men). Participants did not try to wear wearable technology.	Belsi et al (2016)		