The Status Gradient of Trends in Social Media

Rahmtin Rotabi
Department of Computer Science
Cornell University
Ithaca, NY, 14853
rahmtin@cs.cornell.edu

Jon Kleinberg
Department of Computer Science
Cornell University
Ithaca, NY, 14853
kleinber@cs.cornell.edu

Abstract

An active line of research has studied the detection and representation of trends in social media content. There is still relatively little understanding, however, of methods to characterize the early adopters of these trends: who picks up on these trends at different points in time, and what is their role in the system? We develop a framework for analyzing the population of users who participate in trending topics over the course of these topics’ lifecycles. Central to our analysis is the notion of a status gradient, describing how users of different activity levels adopt a trend at different points in time. Across multiple datasets, we find that this methodology reveals key differences in the nature of the early adopters in different domains.

Introduction

An important aspect of the everyday experience on large online platforms is the emergence and spread of new activities and behaviors, including resharing of content, participation in new topics, and adoption of new features. These activities are described by various terms — as trends in the topic detection and social media literatures, and innovations by sociologists working on the diffusion of new behaviors (Rogers 1995).

An active line of recent research has used rich Web datasets to study the properties of such trends on online settings, and how they develop over time (e.g. (Adar et al. 2004) (Gruhl et al. 2004) (Liben-Nowell and Kleinberg 2008) (Leskovec, Adamic, and Huberman 2007) (Dow, Adamic, and Friggeri 2013) (Goel, Watts, and Goldstein 2012) (Aral, Muchnik, and Sundararajan 2009) (Backstrom et al. 2006) (Wu et al. 2011)). The analyses performed in this style have extensively investigated the temporal aspects of trends, including patterns that accompany bursts of on-line activity (Kleinberg 2002) (Kumar et al. 2003) (Crane and Sornette 2008) (Yang and Leskovec 2011), and the network dynamics of their spread at both local levels (Backstrom et al. 2006) (Leskovec, Adamic, and Huberman 2007) and global levels (Liben-Nowell and Kleinberg 2008) (Dow, Adamic, and Friggeri 2013) (Goel, Watts, and Goldstein 2012).

An issue that has received less exploration using these types of datasets is the set of distinguishing characteristics of the participants themselves — those who take part in a trend in an on-line domain. This has long been a central question for sociologists working in diffusion more broadly: who adopts new behaviors, and how do early adopters differ from later ones (Rogers 1995)?

Key question: Who adopts new behaviors, and when do they adopt them? When empirical studies of trends and innovations in off-line domains seek to characterize the adopters of new behaviors, the following crucial dichotomy emerges: is the trend proceeding from the “outside-in,” starting with peripheral or marginal members of the community and being adopted by the high-status central members; or is the innovation proceeding from the “inside-out,” starting with the elites and moving to the periphery (Abrahamson and Rosenkopf 1997) (Becker 1970) (Crossan and Apaydin 2010) (Daft 1978) (Pampel 2002)?

Note that this question can be framed at either a broader population level or a more detailed network structural level. We pursue the broader population-level framing here, in which it is relevant to any distinction between elite and more peripheral members of a community, and not necessarily tied to measures based on network structure.

There are compelling arguments for the role of both the elites and the periphery in the progress of a trend. Some of the foundational work on adopter characteristics established that early adopters have significantly higher socioeconomic status in aggregate than arbitrary members of the population (Deutschmann 1962) (Rogers 1961); elites also play a crucial role — as likely opinion leaders — in the two-step flow theory of media influence (Katz and Lazarsfeld 1955). On the other hand, a parallel line of work has argued for the important role of peripheral members of the community in the emergence of innovations; Simmel’s notion of “the stranger” who brings ideas from outside the mainstream captures this notion (Simmel 1908), as does the theory of change agents (McLaughlin 1990) (Valente 2012) and the power of individuals who span structural holes, often from the periphery of a group (Burt 2004) (Krackhardt 1997).

This question of how a trend flows through a population — whether from high-status individual to lower-status ones, or vice versa — is a deep issue at the heart of diffusion processes. It is therefore natural to ask how it is reflected in the
adoption of trends in on-line settings. The interesting fact, however, is that there is no existing general framework or family of measures that can be applied to user activity in an on-line domain to characterize trends according to whether they are proceeding from elites outward or peripheral members inward. In contrast to the extensive definitions and measures that have been developed to characterize temporal and network properties of on-line diffusion, this progress of adoption along dimensions of status is an issue that to a large extent has remained computationally unformulated.

The present work: Formulating the status gradient of a trend. In this paper, we define a formalism that we term the status gradient, which aims to take a first step toward characterizing how the adopter population of a trend changes over time with respect to their status in the community. Our goal in defining the status gradient is that it should be easy to adapt to data from different domains, and it should admit a natural interpretation for comparing the behavior of trends across these domains.

We start from the premise that the computation of a status gradient for a trend should produce a time series showing how the status of adopters in the community evolves over the life cycle of the trend. To make this concrete, we need (i) a way of assessing the status of community members, and (ii) a way of identifying trends.

While our methods can adapt to any way of defining (i) and (ii), for purposes of the present paper we operationalize them in a simple, concrete way as follows. Since our focus in the present paper is on settings where the output of the community is textual, we will think abstractly of each user as producing a sequence of posts, and the candidate trends as corresponding to words in these posts. (The adaptation to more complex definitions of status and trends would fit naturally within our framework as well.)

- We will use the activity level of each user as a simplified proxy for their status: users who produce more content are in general more visible and more actively engaged in the community, and hence we can take this activity as a simple form of status. The current activity level of a user at a time \(t \) is the total number of posts they have produced up until \(t \), and their final activity level is the total number of posts they have produced overall.

- We use a burst-detection approach for identifying trending words in posts (Kleinberg 2002). Thus, for a given trending word \(w \), we have a time \(\beta_w^* \) when it entered its burst state of elevated activity. When thinking about a trending word \(w \), we will generally work with "relative time" in which \(\beta_w \) corresponds to time 0.

We could try to define the status gradient simply in terms of the average activity level (our proxy for status) of the users who adopt a trend at each point in time. But this would miss a crucial point: high-activity users are already overrepresented in trends simply because they are overrepresented

\[\text{in all of a site’s activities. This is, in a sense, a consequence of what it means to be high-activity. And this subtlety is arguably part of the reason why a useful definition of something like the status gradient has been elusive.} \]

Our approach takes this issue into account. We provide precise definitions in the following section, but roughly speaking we say that the status gradient for a trending word \(w \) is a function \(f_w \) of time, where \(f_w(t) \) measures the extent to which high-activity users are overrepresented or underrepresented in the use of \(w \), relative to the baseline distribution of activity levels in the use of random words. The point is that since high-activity users are expected to be heavily represented in usage of both \(w \) and of "typical" words, the status gradient is really emerging from the difference between these two.

Overview of Approach and Summary of Results

We apply our method to a range of on-line datasets, including Amazon reviews from several large product categories (McAuley and Leskovec 2013), Reddit posts and comments from several active sub-communities (Tan and Lee 2015), posts from two beer-reviewing communities (Danescu-Niculescu-Mizil et al. 2013), and paper titles from DBLP and Arxiv.

We begin with a self-contained description of the status gradient we compute, before discussing the detailed implementation and results in subsequent sections. Recall that for purposes of our exposition here, we have an on-line community containing posts by users; each user’s activity level is the number of posts he or she has produced; and a trending word \(w \) is a word that appears in a subset of the posts and has a burst starting at a time \(\beta_w \).

Perhaps the simplest attempt to define a status gradient would be via the following function of time. First, abusing terminology slightly, we define the activity level of a post to be the activity level of the post’s author. Now, let \(P_w(t) \) be the set of all posts at time \(t + \beta_w^* \) containing \(w \), and let \(g_w(t) \) be the median activity level of the posts in \(P_w(t) \).

Such a function \(g_w \) would allow us to determine whether the median activity level of users of the trending word \(w \) is increasing or decreasing with time, but it would not allow us to make statements about whether this median activity level at a given time \(t + \beta_w \) is high or low viewed as an isolated quantity in itself. To make this latter kind of statement, we need a baseline for comparison, and that could be provided most simply by comparing \(g_w(t) \) to the median activity level \(g^* \) of the set of all posts in the community.

The quantity \(g^* \) has an important meaning: half of all posts are written by users of activity level above \(g^* \), and half are written by users of activity level below \(g^* \). Thus if \(g_w(t) < g^* \), it means that the users of activity level at most \(g_w(t) \) are producing half the occurrences of \(w \) at time \(t + \beta_w \), but globally are producing less than half the posts in the community overall. In other words, the trending word \(w \) at time \(t \) is being overproduced by low-activity users and underproduced by high-activity users; it is being adopted mainly by the periphery of the community. The opposite
holds true if $g_w(t) > g^*$. Note how this comparison to g^* allows us to make absolute statements about the activity level of users of w at time $t + \beta_w$ without reference to the activity at other times.

This then suggests how to define the status gradient function $f_w(t)$ that we actually use, as a normalized version of $g_w(t)$. To do so, we first define the distribution of activity levels $H : [0, \infty) \rightarrow [0, 1]$ so that $H(x)$ is the fraction of all posts whose activity level is at most x. We then define

$$f_w(t) = H(g_w(t)).$$

This is the natural general formulation of our observations in the previous paragraph: the users of activity level at most $g_w(t)$ are producing half the occurrences of w at time $t + \beta_w$, but globally are producing an $f_w(t)$ fraction of the posts in the community overall. When $f_w(t)$ is small (and in particular below $1/2$), it means that half the occurrences of w at time $t + \beta_w$ are being produced by a relatively small slice of low-activity users, so the trend is being adopted mainly by the periphery; and again, the opposite holds when $f_w(t)$ is large.

Our proposal, then, is to consider $f_w(t)$ as a function of time. Its relation to $1/2$ conveys whether the trend is being overproduced by high-activity or low-activity members of the community, and because it is monotonic in the more basic function $g_w(t)$, its dynamics over time show how this effect changes over the life cycle of the trend w.

Summary of Results. We find recurring patterns in the status gradients that reflect aspects of the underlying domains. First, for essentially all the datasets, the status gradient indicates that high-activity users are overrepresented in their adoption of trends (even relative to their high base rate of activity), suggesting their role in the development of trends.

We find interesting behavior in the status gradient right around time 0, the point at which the burst characterizing the trend begins. At time 0, the status gradient for most of the sites we study exhibits a sharp drop, reflecting an influx of lower-activity users as the trend first becomes prominent. This is a natural dynamic; however, it is not the whole picture. Rather, for datasets where we can identify a distinction between consumers of content (the users creating posts on the site) and producers of content (the entities generating the primary material that is the subject of the posts), we generally find a sharp drop in the activity level of consumers at time 0, but not in the activity level of producers. Indeed, for some of our largest datasets, the activity levels of the two populations move inversely at time 0, with the activity level of consumers falling as the activity level of producers rises. This suggests a structure that is natural in retrospect but difficult to discern without the status gradient: in aggregate, the onset of a burst is characterized by producers of rising status moving in to provide content to consumers of falling status.

We now provide more details about the methods and the datasets where we evaluate them, followed by the results we obtain.

Data Description

Throughout this paper, we will study multiple on-line communities gathered from different sources. The study uses the three biggest communities on Amazon.com, several of the largest sub-reddits from reddit.com, two large beer-reviewing communities that have been the subject of prior research, and the set of all papers on DBLP and Arxiv (using only the title of each).

- Amazon.com, in addition to allowing users to purchase items, hosts a rich set of reviews; these are the textual posts that we use as a source of trends. We take all the reviews written before December 2013 for the top 3 departments: TV and Movies, Music, and Books (McAuley and Leskovec 2013).
- Reddit is one of the most active community-driven platforms, allowing users to post questions, ideas and comments. Reddit is organized into thousands of categories called sub-reddits; we study 5 of the biggest text-based sub-reddits. Our Reddit data includes all the Reddit posts and comments posted before January 2014 (Tan and Lee 2015). Reddit contains a lot of content generated by robots and spammers; heuristics were used to remove this content from the dataset.
- The two on-line beer communities include reviews of beers from 2001 to 2011. Users on these two platforms describe a beer using a mixture of well-known and newly-adopted adjectives (Danescu-Niculescu-Mizil et al. 2013).
- DBLP is a website with bibliographic data for published papers in the computer science community. For this study we only use the title of the publications.
- Arxiv is a repository of on-line preprints of scientific papers in physics, mathematics, computer science, and an expanding set of other scientific fields. As with DBLP, we use the titles of the papers uploaded on Arxiv for our analysis, restricting to papers before November 2015. We study both the set of all Arxiv papers (denoted Arxiv All), as well as subsets corresponding to well-defined sub-fields. Two that we focus on in particular are the set of all statistics and computer science categories, denoted Arxiv stat- cs, and astrophysics — denoted Arxiv astro-ph — as an instance of a large sub-category of physics. In this study we only use papers that use \author and \title for including their title and their names.

More specific details about these datasets can be found in Table I.

Details of Methods

In this section we describe our method for finding trends and then how we use these to compute the status gradient. We run this method for each of these datasets separately so we can compare the communities with each other. In each of these communities, users produce textual content, and so for unity of terminology we will refer to the textual output in any of these domains (in the form of posts, comments, reviews, and publication titles) as a set of documents;
Dataset	Authors	Documents
Amazon Music	971,186	71,726,645
Amazon Movies and TV	846,915	14,391,833
Amazon Books	1,715,479	23,625,228
Reddit music	969,895	5,873,797
Reddit movies	930,893	1,054,4109
Reddit books	392,000	2,575,104
Reddit worldnews	1,196,638	16,091,492
Reddit gaming	1,811,850	33,868,254
Rate Beer	29,265	2,854,842
Beer Advocate	343,285	2,908,790
DBLP	1,510,698	2,781,522
Arxiv astro-ph	83,983	167,580
Arxiv stats-cs	63,128	71,131
Arxiv All	326,102	717,425

Table 1: Number of authors and documents in the studied datasets.

Similarly, we will refer to the producers of any of this content (posters, commenters, reviewers, researchers) as the authors. For Amazon, Reddit, and the beer communities we use an approach that is essentially identical across all the domains; the DBLP and Arxiv datasets have a structure that necessitates some slight differences that we will describe below.

Finding Trends

As discussed above, the trends we analyze are associated with word bursts — words that increase in usage in a well-defined way. We compute word bursts using an underlying probabilistic automaton as a generative model, following [Kleinberg 2002]. These word bursts form the set of trends on which we then base the computation of status gradients.

For each dataset (among Amazon, Reddit, and the beer communities), and for each word \(w \) in the dataset, let \(\alpha_w \) denote the fraction of documents in which it appears. We define a two-state automaton that we imagine to probabilistically generate the presence or absence of the word \(w \) in each document. In its “low state” \(q_0 \) the automaton generates the word with probability \(\alpha_w \), and in its “high state” \(q_1 \) it generates the word with probability \(c_D \alpha_w \) for a constant \(c_D > 1 \) that is uniform for the given dataset \(D \). Finally, it transitions between the two states with probability \(p \). (In what follows we use \(p = 0.1 \), but other values give similar results.)

Now, for each word \(w \), let \(f_{w,1}, f_{w,2}, \ldots, f_{w,n} \) be a sequence in which \(f_{w,i} \) denotes the fraction of documents in week \(i \) that contain \(w \). We compute the state sequence \(S_{w,1}, S_{w,2}, \ldots, S_{w,n} \) (with each \(S_{w,i} \in \{q_0, q_1\} \)) that maximizes the likelihood of observing the fractions \(f_{w,1}, f_{w,2}, \ldots, f_{w,n} \) when the automaton starts in \(q_0 \). Intuitively, this provides us with a sequence of “low rate” and “high rate” time intervals that conform as well as possible to the observed frequency of usage, taking into account (via the transition probability \(p \)) that we do not expect extremely rapid transitions back and forth between low and high rates. Moreover, words that are used very frequently throughout the duration of the dataset will tend to produce state sequences that stay in \(q_0 \), since it is difficult for them to rise above their already high rate of usage.

A burst is then a maximal sequence of states that are all equal to \(q_1 \), and the beginning of this sequence corresponds to a point in time at which \(w \) can be viewed as “trending.” The weight of the burst is the difference in log-probabilities between the state sequence that uses \(q_1 \) for the interval of the burst and the sequence that stays in \(q_0 \).

To avoid certain pathologies in the trends we analyze, we put in a number of heuristic filters; for completeness we describe these here. First, since a word might produce several disjoint time intervals in the automaton’s high state, we focus only on the interval with highest weight. For simplicity of phrasing, we refer to this as the burst for the word. (Other choices, such as focusing on the first or longest interval, produce similar results.) Next, we take a number of steps to make sure we are studying bursty words that have enough overall occurrences, and that exist for more than a narrow window of time. The quantity \(c_D \) defined above controls how much higher the rate of \(q_1 \) is relative to \(q_0 \); too high a value of \(c_D \) tends to produce short, extremely high bursts that may have very few occurrences of the word. We therefore choose the maximum \(c_D \) subject to the property that the median number of occurrences of words that enter the burst state is at least 5000. Further, we only consider word bursts of at least eight weeks in length, and only for words that were used at least once every three months for a year extending in either direction from the start of the burst.

With these steps in place, we take the top 500 bursty words sorted by the weight of their burst interval, and we use these as the trending words for building the status gradient. With our heuristics in place, each of these words occurred at least 200 times. For illustrative purposes, a list of top 5 words for each dataset is shown in Table 2.

Computing the Status Gradient

Now we describe the computation of the status gradient. This follows the overview from earlier in the paper, with one main change. In the earlier overview, we described a computation that used only the documents containing a single bursty word \(w \). This, however, leads to status gradients (as functions of time) that are quite noisy. Instead, we compute a single, smoother aggregate status gradient over all the bursty words in the dataset.

Essentially, we can do this simply by merging all the time-stamped documents containing any of the bursty words, including each document with a multiplicity corresponding to the number of bursty words it contains, and shifting the timestamp on each instance of a document with bursty word \(w \) to be relative to the start of the burst for \(w \). Specifically, each of the bursty words \(w \) selected above has a time \(\beta_w \) at which its burst interval begins. For each document containing \(w \), produced at time \(T \), we define its relative time to be \(T - \beta_w \) — i.e. time is shifted so that the start of the burst is at time 0. (Time is measured in integer numbers of weeks for all of our datasets except DBLP and Arxiv, where it is measured in integer numbers of years and months, respectively.)
Now we take all the documents and we bucket them into groups that all have the same relative time: for each document produced at time T containing a bursty word w, we place it in the bucket associated with its relative time $T - \beta_w$. From here, the computation proceeds as in the overview earlier in the paper: for each relative time t, we consider the median activity level $g(t)$ of all documents in the bucket associated with t. This function $g(t)$ plays the role of the single-word function $g_w(t)$ from the overview, and the computation continues from there.

Final and Current Activity Levels. The computation of the status gradient involves the activity levels of users, and there are two natural ways to define this quantity, each leading to qualitatively different sets of questions. The first is the *final activity level*: defining each user’s activity level to be the lifetime number of documents they produced. Under this interpretation, an author will have the same activity level, we need to be careful about a subtlety. If we directly adapt the method described so far, we run into the problem that users’ current activity levels are increasing with time, resulting in status gradient plots that increase monotonically for a superficial reason. To handle this issue, we compare documents containing bursty words with documents which were written at approximately the same time. Document d written at time t_d that has a bursty word will be compared to documents written in the same week as d. We say that the *fractional rank* of document d is the fraction of documents written in the same week t_d whose authors have a smaller current activity level than the author of d. Note that the fractional rank is independent of the trending word; it depends only on the week. Now that each document has a score that eliminates the underlying monotone increase, we can go back to the relative time domain and use the same method that we employed for the final activity level, but using the fractional rank instead of the final activity level. Note that in this computation we thus have an extra level of indirection — once for finding the fractional rank and a second time for computing the status gradient function.

As it turns out, the analyses using final and current activity levels give very similar results; due to this similarity,

Table 2: The top 5 words and bigrams that our algorithm finds using the burst detection method. Words in parenthesis are stop words that got removed by the algorithm.

Column	Words	Bigrams	
Dataset	Amazon Music	anger, metallica, coldplay, limp, kanye	st-anger, green-day, limp-bizkit, 50-cent, x-y
	Amazon Movies and TV	lohan, lindsay, sorcerers, towers, gladiator	mean-Girls, rings-trilogy, lindsay-lohan, matrix-reloaded, two-towers
	Amazon Books	kindle, vinci, bush, phoenix, potter	da-Vinci, john-kerry, harry-potter, twilight-book, fellowship-(of-the)-ring
	Reddit Music	daft, skrillex, hipster, radiohead, arcade	daft-punk, get-lucky, chance-rapper, mumford-(&)-sons, arctic-monkeys
	Reddit movies	batman, bane, superman, bond, django	pacific-rim, iron-man, man-(of)-steel, guardians-(of-the)-galaxy, dark-knight
	Reddit books	hunger, nook, borders, gatsby, twilight	hunger-games, shades-(of)-grey, gone-girl, great-gatsby, skin-game
	Reddit worldnews	israel, hamas, isis, gaza, crimea	north-korea, chemical-weapons, human-shields, iron-dome, civilian-casualties
	Reddit gaming	gta, skyrim, portal, diablo, halo	gta-v, last-(of)-us, mass-effect, bioshock-infinite, wii-u
	Rate Beer	cigar, tropical, winter, kernel, farmstead	cigar-city, black-ipa, belgian-yeast, cask-handpump, hop-front
	Beer Advocate	finger, tulip, pine, funk, roast	lacing-s, finger-head, moderate-carbonation, poured-tulip, head-aroma
	DBLP	parallel, cloud, social, database, objectoriented	—
	Arxiv astro-ph	chandra, spitzer, asca, kepler, xmmnewton	—
	Arxiv stats-cs	deep, channels, neural, capacity, convolutional	—
	Arxiv All	learning, chandra, xray, spitzer, bayesian	—

2If a document contains multiple bursty words, we place it in multiple buckets. Also, to reduce noise, in a post-processing step we combine adjacent buckets if they both have fewer than a threshold number of documents θ, and we continue this combining process iteratively from earlier to later buckets until all buckets have at least θ documents. In our analysis we use $\theta = 1500$. activity level is to define it instantaneously at any time t to be the number of documents the author has produced up to time t. This reflects the author’s involvement with the community at the time he or she produced the document, but it does not show his or her eventual activity in the community.

Performing the analysis in terms of the final activity level is straightforward. For the analysis in terms of the current activity level, we need to be careful about a subtlety. If we directly adapt the method described so far, we run into the problem that users’ current activity levels are increasing with time, resulting in status gradient plots that increase monotonically for a superficial reason. To handle this issue, we compare documents containing bursty words with documents which were written at approximately the same time. Document d written at time t_d that has a bursty word will be compared to documents written in the same week as d. We say that the *fractional rank* of document d is the fraction of documents written in the same week t_d whose authors have a smaller current activity level than the author of d. Note that the fractional rank is independent of the trending word; it depends only on the week. Now that each document has a score that eliminates the underlying monotone increase, we can go back to the relative time domain and use the same method that we employed for the final activity level, but using the fractional rank instead of the final activity level. Note that in this computation we thus have an extra level of indirection — once for finding the fractional rank and a second time for computing the status gradient function.

As it turns out, the analyses using final and current activity levels give very similar results; due to this similarity,
we focus here on the computation and results for the final activity level.

Bigrams. Thus far we have performed all the analysis using trends that consist of single words (unigrams). But we can perform a strictly analogous computation in which the trends are comprised of bursty two-word sequences (bigrams), after stop-word removal. Essentially all aspects of the computation remain the same. The top 5 bigrams that the algorithm finds are shown in Table 2. The results for bigrams in all datasets are very similar to those for unigrams, and so in what follows we focus on the results for unigrams.

DBLP and Arxiv. Compared to other datasets that we use in this study, DBLP and Arxiv have a different structure in ways that are useful to highlight. We will point out two main differences.

First, documents on DBLP/Arxiv generally only arrive in yearly/monthly increments, rather than daily or weekly increments in the other datasets, and so we perform our analyses by placing documents into buckets corresponding to years/month rather than weeks. In our heuristics for burst detection on DBLP, we require a minimum burst length of 3 years (in place of the previous requirement of 8 weeks). We found it was not necessary to use any additional minimum-length filters.

The second and more dramatic structural difference from the other datasets is that a given document will generally have multiple authors. To deal with this issue, we adopt the following simple approach: We define the current and final activity level of a document as the highest current and final activity level, respectively, among all its authors. Note, however, that a document still contributes to the activity level of all its authors.

We observe that the bursty words identified for these datasets appear in at least 70 documents each instead of the minimum 200 we saw for the other datasets. We scaled down other parameters accordingly, and did not compute bursty bigrams for DBLP and Arxiv.

Results

Now that we have a method for computing status gradients, we combine the curves $f_{w}(t)$ over the top bursty words in each dataset, as described above, aligning each bursty word so that time 0 is the start of its burst, β_{w}. In the underlying definition of the status gradient, we focus here on the final activity level of users; the results for current user activity are very similar.

Dynamics of Activity Levels

The panels of Figure 1 show the aggregate status gradient curves for the three Amazon categories, four of the subreddits, and one of the beer communities. (Results for the other subreddits and beer communities are similar.)

\[\text{Figure 1: The status gradients for datasets from Amazon, Reddit, and an on-line beer community, based on the final activity level of users and a ranked set of 500 bursty words for each dataset.}\]
As functions of time, these status gradients show strong contrasts with the corresponding plots for the activity levels of users (consumers).

The plots in Figure 1 exhibit two key commonalities.

- First, they lie almost entirely above the line \(y = \frac{1}{2} \). Recalling the definition of the status gradient, this means that high-activity individuals are using bursty words at a rate
\textit{greater} than what their overall activity level would suggest. That is, even relative to their already high level of contribution to the site, the most active users are additionally adopting the trending words.

- However, there is an important transition in the curves right at relative time \(t = 0 \), the point at which the burst begins. For most of these communities there is a sharp drop, indicating that the aggregate final activity level of users engaging in the trend is abruptly reduced as the trend begins. Intuitively, this points to an influx of lower-activity users as the trend starts to become large. This forms interesting parallels with related phenomena in cases where users pursue content that has become popular (Aizen et al. 2004; Byers, Mitzenmacher, and Zervas 2012).

This pair of properties — overrepresentation of high-activity users in trends (even relative to their general activity level); and an influx of lower-activity users at the onset of the trend — are the two dominant dynamics that the status gradient reveals. Relative to these two observations, we now identify a further crucial property, the distinction between producers and consumers.
Producers vs. Consumers

We noted that the academic domains we study exhibit a considerably different status gradient. On DBLP (Figure 2), the activity level of authors rises to a maximum very close to relative time $t = 0$, indicating an influx of high-activity users right at the start of a trend. Arxiv stats-cs shows the same effect, and the other Arxiv datasets show a time-shifted version of this pattern, increasing through time 0 and reaching a maximum shortly afterward. (This time-shifting of Arxiv relative to DBLP may be connected to the fact that Arxiv contains preprints while DBLP is a record of published work, which may therefore have been in circulation for a longer time before the formal date of its appearance.)

This dramatic contrast to the status gradients in Figure 1 highlights the fact that there is no single “obvious” behavior at time $t = 0$, the start of the trend. It is intuitive that low-activity users should rush in at the start of a trend, as they do on Amazon, Reddit, and the beer communities; but it is also intuitive that high-activity users should arrive to capitalize on the start of a trend, as they do on DBLP and Arxiv. A natural question is therefore whether there is an underlying structural contrast between the domains that might point to further analysis.

Here we explore the following contrast. We can think of the users on Amazon, Reddit, and the beer communities as consumers of information: they are reviewing or commenting on items (products on Amazon, generally links and news items on Reddit, and beers on the beer communities) that are being produced by entities outside the site. DBLP and Arxiv are very different: its bibliographic data is tracking the activities of producers — authors who produce papers for consumption by an audience. Could this distinction between producers and consumers be relevant to the different behaviors of the status gradients?

To explore this question, we look for analogues of producers in the domains corresponding to Figure 1 if the status gradient plots in that figure reflected populations of consumers, who are the corresponding producers in these domains? We start with Amazon; for each review, there is not just an author for the review (representing the consumer side) but also the brand of the product being reviewed (serving as a marker for the producer side). We can define activity levels for brands just as we did for users, based on the total number of reviews this brand is associated with, and then use this in the Amazon data to compute status gradients for brands rather than for users.

The contrasts with the user plots are striking, as shown in Figure 5 and consistent with what we saw on DBLP and Arxiv: the status gradients for producers on Amazon go up at time $t = 0$, and for two of the three categories (Music and Movies/TV), the increase at $t = 0$ is dramatic. This suggests an interesting producer-consumer dynamic in bursts on Amazon, characterized by a simultaneous influx of high-activity brands and low-activity users at the onset of the burst: the two populations move inversely at the trend begins. Intuitively, the onset of a burst is characterized by producers of rising activity level moving in to provide content to consumers of falling activity level.

We can look for analogues of producers in the other two domains from Figure 1 as well. For Rate Beer, each review is accompanied by the brand of the beer, and computing status gradients for brands we find a mild increase at $t = 0$ here too — as on Amazon, contrasting sharply with the drop at $t = 0$ for the user population. For Reddit, it is unclear whether there is a notion of a “producer” as clean as brands in the other domains, but for Reddit World News, where most posts consist of a shared link, we can consider the domain of the link as a kind of producer of the information. The status gradient for domains on Reddit World News is noisy over time, but we see a generally flat curve at $t = 0$; while it does not increase at the onset of the trend, it again contrasts sharply with the drop at $t = 0$ in the user population.

Posters vs. Commenters

As a more focused distinction, we can also look at contrasts between different sub-populations of users on certain of the sites. In particular, since the text we study on Reddit comes from threads that begin with a post and are followed by a sequence of comments, we can look at the distinction between the status gradients of posters and commenters.

We find (Figure 4) that high-activity users are overrepresented more strongly in the bursts in comments than in posts; this distinction is relatively minimal long before the burst, but it widens as the onset of the burst approaches, and the drop in the status gradient at $t = 0$ is much more strongly manifested among the posters than the commenters. This is consistent with a picture in which lower-activity users initiate threads via posts, and higher-activity users participate through comments, with this disparity becoming strongest as the trend begins.

![Figure 4: A comparison between the status gradients computed from posts, comments, and the union of posts and comments on a large sub-reddit (gaming).](image)
Life stages

As a final point, we briefly consider a version of the dual question studied by Danescu-Niculescu-Mizil et al (2013) — rather than tracking the life cycles of the words, as we have done so far, we can look at the life cycles of the users and investigate how they use bursty words over their life course on the site. One reason why it is interesting to compare to this earlier work using a similar methodology is that we are studying a related but fundamentally different type of behavior from what they considered. The word usage that they focused on can be viewed as lexical innovations, or novelties, in that they are words that had never been used before at all in the community. Here, on the other hand, we are studying trending word usage through the identification of bursts — the words in our analysis might have been used a non-zero number of times prior to the start of the burst, but they grew dramatically in size when the burst began, thus constituting trending growth. It is not at all clear a priori that users’ behavior with respect to bursty words over their lifetime should be analogous to their behavior with respect to novelties, but we can investigate this by adapting the methodology from Danescu-Niculescu-Mizil et al (2013).

Here is how we set up the computation. First, we remove any authors (together with the documents they have written) if their final activity level is less than 10, since their life span is too short to analyze. Then, we find four cut-off values that divide authors into quintiles — five groups based on their final activity level such that each group has produced a fifth of the remaining documents. We focus on the middle three of these quintiles: three groups of different final activity levels who have each collectively contributed the same amount of content.

We then follow each author over a sequence of brief life stages, each corresponding to the production of five documents. For each life stage and each quintile we find the average number of bursty words per document they produce. We find that the aggregate use of bursty words over user life cycles can look different across different communities. A representative sampling of the different kinds of patterns can be seen in Figure 5. For many of the communities, we see the pattern noted by Danescu-Niculescu-Mizil et al, but adapted to bursty words instead of lexical innovations — the usage increases over the early part of a user’s life cycle but then decreases at the end. For others, such as Reddit gaming shown in the figure, users have the highest rate of adoption of bursty words at the beginning of their life cycles, and it decreases steadily from there. As with our earlier measures, these contrasts suggest the broader question of characterizing structural differences across sites through the different life cycles of users and the trending words they adopt.

Conclusions

In this paper, we have a proposed a definition, the status gradient, and shown how it can be used to characterize the adoption of a trend across a social media community’s user population. In particular, it has allowed us to study the following contrast, which has proven elusive in earlier work: are trends in social media primarily picked up by a small number of the most active members of a community, or by a large mass of less central members who collectively account for a comparable amount of activity? Our goal has been to develop a clean, intuitive computational formulation of this question, in a manner that makes it possible to compare results across multiple datasets. We find recurring patterns, including a tendency for the most active users to be even further overrepresented in trends, and a contrast between the underlying dynamics for consumers versus producers of information.

Because this work proposes an approach that is suitable in many contexts, it also suggests a wide range of directions for further work. In particular, we have studied how the activity level of users participating in a trend changes over time, but there are many parameters of the trend that vary as time unfolds, and it would be interesting to track several of these at once and try to identify relationships across them. It would also be interesting to try incorporating the notion of the status gradient into formulations for the problem of starting or influencing a cascade, building on theoretical work on this topic (Domingos and Richardson 2001; Kempe, Kleinberg, and Tardos 2003).

Acknowledgments

We thank Cristian Danescu-Niculescu-Mizil for valuable discussions, Paul Ginsparg and Julian McAuley for their generous help with the Arxiv and Amazon dataset respectively, and Jack Hessel and Chenhao Tan for the Reddit...
dataset. This research was supported in part by a Simons Investigator Award, an ARO MURI grant, a Google Research Grant, and a Facebook Faculty Research Grant.

References

[Abrahamson and Rosenkopf 1997] Abrahamson, E., and Rosenkopf, L. 1997. Social network effects on the extent of innovation diffusion: A computer simulation. Organizational Science 8(3).

[Adar et al. 2004] Adar, E.; Zhang, L.; Adamic, L. A.; and Lukose, R. M. 2004. Implicit structure and the dynamics of blogspace. In Workshop on the Weblogging Ecosystem.

[Aizen et al. 2004] Aizen, J.; Huttenlocher, D.; Kleinberg, J.; and Novak, A. 2004. Traffic-based feedback on the Web. PNAS 101.

[Aral, Muchnik, and Sundararajan 2009] Aral, S.; Muchnik, L.; and Sundararajan, A. 2009. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. PNAS.

[Backstrom et al. 2006] Backstrom, L.; Huttenlocher, D.; Kleinberg, J.; and Lan, X. 2006. Group formation in large social networks: Membership, growth, and evolution. In Proceedings of ACM SIGKDD.

[Becker 1970] Becker, M. H. 1970. Sociometric location

[Burt 2004] Burt, R. S. 2004. Structural holes and good ideas. American Journal of Sociology 110(2).

[Byers, Mitzenmacher, and Zervas 2012] Byers, J. W.; Mitzenmacher, M.; and Zervas, G. 2012. The groupon effect on yelp ratings: a root cause analysis. In Proceedings of EC.

[Crane and Sornette 2008] Crane, R., and Sornette, D. 2008. Robust dynamic classes revealed by measuring the response function of a social system. PNAS.

[Crossan and Apaydin 2010] Crossan, M., and Apaydin, M. 2010. A multi-dimensional framework of organizational innovation: A systematic review of the literature. Journal of Management Studies 47(6).

[Daft 1978] Daft, R. L. 1978. A dual-core model of organizational innovation. Academy of Management Journal 21(2).

[Danescu-Niculescu-Mizil et al. 2013] Danescu-Niculescu-Mizil, C.; West, R.; Jurafsky, D.; Leskovec, J.; and Potts, C. 2013. No country for old members: user lifecycle and linguistic change in online communities. In Proceedings of WWW.

[Deutschmann 1962] Deutschmann, P. 1962. Communication and adoption patterns in an Andean village. Technical report, Programa Interamericano de Información Popular.

[Domingos and Richardson 2001] Domingos, P., and Richardson, M. 2001. Mining the network value of customers. In Proceedings of ACM SIGKDD.

[Dow, Adamic, and Friggeri 2013] Dow, P. A.; Adamic, L. A.; and Friggeri, A. 2013. The anatomy of large facebook cascades. In Proceedings of ICWSM.

[Goel, Watts, and Goldstein 2012] Goel, S.; Watts, D.; and Goldstein, D. 2012. The structure of online diffusion networks. In Proceedings of EC.

[Gruhl et al. 2004] Gruhl, D.; Guha, R. V.; Liben-Nowell, D.; and Tomkins, A. 2004. Information diffusion through blogspace. In Proceedings of WWW.

[Katz and Lazarsfeld 1955] Katz, E., and Lazarsfeld, P. 1955. Personal Influence. Free Press.

[Kempe, Kleinberg, and Tardos 2003] Kempe, D.; Kleinberg, J.; and Tardos, E. 2003. Maximizing the spread of influence through a social network. In Proceedings of ACM SIGKDD. ACM.

[Kleinberg 2002] Kleinberg, J. 2002. Bursty and hierarchical structure in streams. In Proceedings of ACM SIGKDD.

[Krackhardt 1997] Krackhardt, D. 1997. Organizational viscosity and the diffusion of innovations. Journal of Mathematical Sociology 22(2).

[Kumar et al. 2003] Kumar, R.; Novak, J.; Raghavan, P.; and Tomkins, A. 2003. On the bursty evolution of blogspace. In Proceedings of WWW.

[Leskovec, Adamic, and Huberman 2007] Leskovec, J.; Adamic, L.; and Huberman, B. 2007. The dynamics of viral marketing. ACM Transactions on the Web.

[Liben-Nowell and Kleinberg 2008] Liben-Nowell, D., and Kleinberg, J. 2008. Tracing information flow on a global scale using internet chain-letter data. PNAS.

[McAuley and Leskovec 2013] McAuley, J. J., and Leskovec, J. 2013. From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. In Proceedings of WWW.

[McLaughlin 1990] McLaughlin, M. W. 1990. The Rand change agent study revisited: Macro perspectives and micro realities. Educational Researcher 19(9).

[Pampel 2002] Pampel, F. C. 2002. Inequality, diffusion, and the status gradient in smoking. Social Problems.

[Rogers 1961] Rogers, E. 1961. Characteristics of agricultural innovators and other adopter categories. Technical Report 882, Agricultural Experimental Station, Wooster OH.

[Rogers 1995] Rogers, E. 1995. Diffusion of Innovations. Free Press, fourth edition.

[Simmel 1908] Simmel, G. 1908. The Sociology of Georg Simmel. Free Press (translated by Kurt H. Wolf).

[Tan and Lee 2015] Tan, C., and Lee, L. 2015. All who wander: On the prevalence and characteristics of multi-community engagement. In Proceedings of WWW.

[Valente 2012] Valente, T. 2012. Network interventions. Science 337(49).

[Wu et al. 2011] Wu, S.; Hofman, J. M.; Mason, W. A.; and Watts, D. J. 2011. Who says what to whom on twitter. In Proceedings of the WWW.

[Yang and Leskovec 2011] Yang, J., and Leskovec, J. 2011. Patterns of temporal variation in online media. In Proceedings of WSDM).