Prevotella Contributing to the Individual Respons E of e of FOLFOX in Colon Cancer

Fengguo Xu (✉ fengguoxu@cpu.edu.cn)
Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
https://orcid.org/0000-0001-9999-0128

Xiaoying Hou
China Pharmaceutical University

Weihua Chu
China Pharmaceutical University

Hongzhi Du
Hubei University of Chinese Medicine

Yiqiao Gao
China Pharmaceutical University

Ruiqi Sun
China Pharmaceutical University

Siuyan Qin
China Pharmaceutical University

Yuan Tian
China Pharmaceutical University

Pei Zhang
China Pharmaceutical University

Zunjian Zhang
China Pharmaceutical University

Research

Keywords: Individualized efficacy, FOLFOX, Colon cancer, Fecal microbiome, Prevotella

DOI: https://doi.org/10.21203/rs.3.rs-142740/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract
While FOLFOX has been the preferred chemotherapeutic strategy in colon cancer treatment, the limited response rate has seriously restricted its application in clinic. The underlying mechanisms of the individual response of FOLFOX remain to be elucidated. In this study, pharmacomicrobiomics integrated with pharmacometabolomics was applied to disentangle the key role of specific gut bacteria and microbiota derived metabolites involved. As a result, significant variation of chemotherapy efficacy was observed in tumor bearing mice after FOLFOX administration. 16S rRNA gene sequencing analysis revealed the relative abundance of Staphylococcus, Jeotgalicoccus, Sphingomonas significantly increased in the FOLFOX sensitive group, whereas Prevotella was higher in the non sensitive individuals. Meanwhile, verification study on FOLFOX combined with bacteria colonization indicates that Prevotella could attenuate the anti cancer efficacy of FOLFOX in vivo. Furthermore, gut derived metabolite 3-Oxocholic acid (3-Oxo) identified by metabolomics approach was confirmed to associate with Prevotella in fecal samples. In addition, preliminary functional exploration suggested that 3-Oxo could reverse the anti cancer effect of FOLFOX and promote malignant progression. Taken together, integrated pharmacomicrobiomics and pharmacometabolomics revealed that Prevotella and related metabolite 3-Oxo may be responsible for individualized FOLFOX efficacy, which provides novel predictive biomarkers for FOLFOX precise medicine as well as targets for colon cancer therapy.

Full-text
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures
Figure 1

Recognition of S and NS individuals after FOLFOX treatment. (a) Schematic diagram of the recognition of individual difference after FOLFOX treatment in CT26 colon cancer xenograft model. (b) The effects of FOLFOX on the body weight of tumor-bearing mice. (c, d) FOLFOX treatment could inhibit the tumor development. There is no obvious difference on body weight (e) and tumor volume (f) in S and NS group before FOLFOX administration. RTV (g), inhibition rate (h) and Ki67 levels (i) of S (n=8) and NS (n=9) group at the end of the experiment (day12). Data was expressed as mean ± SD. The p values < 0.05 were considered statistically significant, *p <0.05, **p <0.01, ***p <0.001.
Figure 2

Screening of potential bacterial genus contributing to individualized FOLFOX response. a c The α diversity indexes of Chao1 $p = 0.1729$, Shannon $p =$ and Simpson $p = 0.1177$ of gut microbiota between S and NS groups. Taxonomic distribution of bacteria from S and NS group at phylum level (d) and genus level (e). (f-i) Comparison of relative abundance of significantly changed bacterial species.
between S and NS mice. (j) Differently abundant of KEGG pathways in S and NS mice were visualized using linear discriminant analysis effect size (LEfSe) analysis.

Figure 3

Effects of aerobic bacteria transplantation on FOLFOX efficacy. (a) Change of mice body weight across the experiment. Tumor volume (b) and relative tumor volume (c, d) were measured throughout the experiment. Inhibition rate: Model vs. FOLFOX (45.25% ABX vs. ABX FOLFOX (75.39%); ABX Sta vs. ABX Sta FOLFOX (67.66%); ABX Jeo vs. ABX Jeo FOLFOX (63.56%); ABX Sph vs. ABX Sph FOLFOX (59.95%). (e) Ki67 levels were compared in Model vs. FOLFOX group, ABX vs. ABX FOLFOX group, ABX Sta vs. ABX Sta FOLFOX group, ABX Jeo vs. ABX Jeo FOLFOX group, and ABX Sph vs. ABX Sph.
FOLFOX group. Data was expressed as mean ± SD. The p values < 0.05 were considered statistically significant, * p <0.05, ** p <0.01, *** p <0.001.

Figure 4

Effects of anaerobic bacteria transplantation on FOLFOX efficacy. (a) Change of mice body weight across the experiment. Tumor volume (b) and relative tumor volume (c, d) were recorded throughout the experiment. Inhibition rate: Model vs. FOLFOX (33.35 ABX vs. ABX FOLFOX (50.88%); ABX Pre vs. ABX Pre FOLFOX (27.04%). e) Ki67 levels were compared in Model vs. FOLFOX group, ABX vs. ABX FOLFOX group, ABX Pre vs. ABX Pre FOLFOX group Data was expressed as mean ± SD. The p values < 0.05 were considered statistically significant, *p<0.05, **p<0.01.
Figure 5

3-Oxo may be the key metabolite responsible for gut microbiota mediated FOLFOX efficacy. Relative abundance of indole 3-carboxylic acid (a), 3-oxocholic acid b and phenylalanyl-asparagine c was significantly associated with the level of prevotella as measured by the Spearman's correlations analysis. (d) Concentrations of 3-Oxo in fecal samples from Model (n=20), ABX (n=20) and Prevotella (n=20) group, respectively. Data was expressed as mean ± SD. The p values < 0.05 were considered statistically significant, *p<0.05, **p<0.01.
Figure 6

Effects of 3-Oxo on CT 26 migration as well as on the anti cancer effect of FOLFOX.

- **Figure 6a, b**: The effect of 3-Oxo on CT 26 proliferation was evaluated by MTT (72 h) and colon formation assay (7 days).

- **Figure 6c, d**: 3-Oxo could attenuate the anti proliferation effect of FOLFOX (72h, 7days).

- **Figure 6e-f**: The effect of 3-Oxo on CT-26 migration was evaluated by wound healing assay and transwell chambers.

- **Figure 6g**: 3-Oxo could induce the secretion of IL-1β and TNF-α in macrophages. Data was expressed as mean ± SD of three
independent experiments. The p values < 0.05 were considered statistically significant, *p<0.05, **p<0.01, ***p<0.001.

Figure 7

Overview of the current study. Pharmacodynamic evaluation was used to identify individualized S and NS mice after FOLFOX treatment. Pharmacomicrobiomics was used integrated with pharmacometabolomics to identify biomarkers in fecal samples mediating FOLFOX efficacy. Prevotella and 3-Oxocholic acid were finally confirmed for contributing to individualized FOLFOX response.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterial.pdf