Reactions of $B_2(o$-tolyl)$_4$ with Boranes: Assembly of the Pentaborane(9), HB$[B(o$-tolyl)$]_4$ with Boranes: Assembly of the Pentaborane(9), HB$[B(o$-tolyl)$](\mu$-H)$]_4$

Karlee L. Bamford, Zheng-Wang Qu,* and Douglas W. Stephan*

Abstract: Reactions of the diborane(4) $B_2(o$-tolyl)$_4$ and monohydridoboranes are shown to give $B(o$-tolyl)$_4$ and $(o$-tolyl)BR$_2$ ($R_2 = (C_6H_4)_{3}o$, cat 4, pin 5, (C$_6$F$_5$)$_3$, 6) as the major products. The corresponding reaction with BH$_4$ sources gives complex mixtures, resulting from hydrirde/aryl exchange, dimerization and borane elimination. This led to the isolation of the first tetra-substituted pentaborane(9) HB$[B(o$-tolyl)$]_4$ (8). The reaction pathways are probed experimentally and by computations.

The chemistry of boron reagents continues to be of widespread interest, affording applications in complex organic syntheses,[1] optoelectronics,[2] materials,[3] and boron cluster chemistry.[4] Our interest in boron compounds stems from syntheses,[1] optoelectronics,[2] materials,[3] and boron cluster chemistry.[4] Our interest in boron compounds, stems from syntheses,[1] optoelectronics,[2] materials,[3] and boron cluster chemistry.[4] While the Lewis acidity of boranes can be directly exploited to activate H$_2$,[16] later that same year, Yamaguchi and co-workers reported the first diborane(4) in 1988,[13] earlier reduction chemistry on Mes$_2$BF failed to generate B$_2$Mes$_4$,[14] perhaps as a consequence of steric crowding. Nonetheless, in 1992 Power and co-workers[15] isolated the diboranes(4), B$_2$([R]Mes)$_4$ (R = OMe, Ph, CH$_2$SiMes$_2$). Such tetraaryl-stabilized species (Figure 1a)

![Figure 1. a) Known tetraaryl-substituted diboranes(4), and b) hydrido-substituted aryldiboranes(4).](https://example.com/figure1)

remained largely unexplored, until 2017 when Yamashita and co-workers developed a one-pot synthesis of the tetraaryldiborane(4), B$_2$([R]Mes)$_4$ and demonstrated its ability to activate H$_2$.[16] Later that same year, Yamaguchi and Pieris[17] described the ability of the dithieno-diborin to similarly react with H$_2$. In 2018, Erker and co-workers[18] reported the synthesis of the disymmetric tetrasubstituted diborane(4) Ph(C$_6$HR(C$_6$F$_5$)(SiMes$_2$))BB(C$_6$F$_5$)$_2$, while the Yamashita group reported the reactions of B$_2$([R]tolyl)$_4$ with CO, nitriles, azobenzene, and pyridazine.[19] Most recently, Yamashita and co-workers have also reported the reduction of B$_2$([R]tolyl)$_4$ affording a dianion which behaves as a diarylboryl anion equivalent.[20] In related work on boron nucleophiles and diboranes(4), Yamashita’s group also reported a doubly hydride-bridged tetraborane(6) species.[21]

An even more elusive subset of aryldiboranes(4) are hydrido-substituted derivatives. Tamao and Matsuo used extreme steric demands[22] to prepare the butterfly and twisted geometries of dihydridodiboranes(4) (Figure 1b).
The paucity of sterically unencumbered hydridodiboranes[23] suggests species of formulae B2HAr3 or B2H2Ar2 are reactive. Herein we specifically target the generation of hydridodiboranes via reactions of B2(o-tolyl)4 (1) with secondary boranes and BH3-sources. These reactions are shown to proceed via aryl/hydride exchange while subsequent reactions of the generated hydridodiboranes(4) prompt boron cluster formation. In the case of BH3·SMe2, the reaction with 1 gives an unprecedented tetraaryl-pentaborane(9). The reaction pathways are probed both experimentally and computationally.

The combination of 1 and one of the monohydridoboranes, (HB(C6H4)2), HBcat, HBpin, or HB(CF3)2, in a 1:1 ratio in benzene afforded two major products after 12 h as evidenced by NMR spectroscopy.[24] An 11B NMR signal at 72.6 ppm, common to all reactions, was unambiguously confirmed to arise from B(o-tolyl)32 via independent synthesis and crystallographic characterization (Figure 2a). The second products were identified as (o-tolyl)B(C8H14)(3),[25] (o-tolyl)Bcat (4),[26] (o-tolyl)Bpin (5),[27] and (o-tolyl)B(CF3)2 (6),[28] respectively, based on known spectroscopic data. In the case of 4, this was also confirmed by X-ray crystallography (Figure 2b).

In a similar fashion, reactions of 1 with two equivalents of either HBcat or HBpin gave two major products. The product common to both reactions is [H2B(o-tolyl)]2 (7) which gives a 11B signal at 19 ppm (vide infra). In addition, 4 or 5 are observed as respective products (Scheme 1).

The formation of 3–6 demonstrates substituent/hydride redistribution upon combination of 1 with a monohydridoborane. However, as the corresponding diborane(4) product B2H(o-tolyl)2 is not observed, further reactivity should account for the formation of 2 and 7.

The corresponding reaction of 1 with one equivalent of BH3·SMe2 (2 M in THF) in toluene was monitored by NMR spectroscopy. After 16 h, 1 was consumed and major 11B signals at 72.4, 3.0, −0.3, −4.6, −8.3 and −46.8 ppm were observed. While the first of these resonances arises from 2, workup afforded the isolation of a product 8 in 24 % relative yield,[29] which accounts for the 11B NMR signals at −4.6 and −46.8 (d, J11B = 167 Hz) ppm.

A crystallographic study of 8 revealed it is a square-pyramidal 2,3,4,5-substituted pentaborane(9), B5H5(o-tolyl)4 (Figure 3). The basal boron atoms have terminal o-tolyl substituents with bridging hydrides, while the apical boron bears a terminal hydride. The four equivalent B–B distances in the basal plane are each 1.834(2) Å, while those to the apical boron are 1.691(3) Å, resulting in a displacement of the apical boron from the basal plane of 1.086 Å. This structure and the strongly shielded 11B chemical shift of the apical boron are consistent with the three-dimensional aromaticity[30] of nido-pentaboranes(9), presumably accounting for the high stability of 8. Indeed, compound 8 shows no evidence of reaction after prolonged heating at 110°C in toluene solution (Figures S30, S31). These observations are consistent with the known stability of the parent pentaborane(9), B5H9.[31] In a related sense, compound 8 showed no reaction with D2 (1 atm) even after heating to 110°C for 24 hours (Figures S32, S33). This behavior is parallel to that of B5H9 under base-free thermolysis.[31,32]

Compound 8 is, to our knowledge, a unique example of a tetrasubstituted pentaborane(9)[33] and the first example in...
intermediate borane/SMe₂ adducts are kinetically reactive.

Instead, ¹¹B NMR data reveal a mixture of precursor(s) to BH₃·SMe₂, suggesting the unassigned signals arise from species that act as reducers the intensity of these peaks and affords information. Interestingly, addition of THF to this mixture reduces the intensity of these peaks and affords no trace of precursor(s) to BH₃·SMe₂. Thus, we attribute these respective signals to analogous to those seen in the reaction mixture of 1 and H₂. Noting that our data unambiguously affirmed the downfield resonance arises from 2, we re-examined this reaction in both hexane and C₆D₆, finding no spectroscopic difference. Given the propensity of diaryl(hydrido)boranes to dimerize, we suggest 7 and 9 are indeed formed from reaction of 1 and H₂ (4 atm) and this accounts for the ¹¹B signals at 18.6 and 28.5 ppm, respectively (Figures S16, S17). This view was further supported by our DFT-computed[39] chemical shifts (see Supporting Information) for 2, 4, 7, 8, and 9 (Δcalc = 73.0; 37.0; 21.3; -5.6; -44.3; 28.7 ppm) that agree well with experimental values. These revised assignments indicate that neither 7 nor 9 are present in the original reaction mixture of 1/BH₃·SMe₂. However, addition of excess SMe₂ to the 1/H₂ reaction mixture showed loss of the ¹¹B signals at 18.6 and 28.5 ppm and the appearance of signals at -0.3 and -8.3 ppm analogous to those seen in the reaction mixture of 1 and BH₃·SMe₂. Thus, we attribute these respective signals to (o-tolyl)BH·SMe₂ (10) and (o-tolyl)BH₂·SMe₂ (11), a view consistent with our DFT-computed[39] chemical shifts (Δcalc = -1.5; -5.6 ppm).

Performing the reaction of 1 with neat BH₃·SMe₂ in THF afforded no trace of 2, rather 8 and HB(o-tolyl)·THF are formed.[50] In contrast, repeating the reaction of 1 with neat BH₃·SMe₂, in the total absence of THF, afforded no trace of 8. Instead, ¹¹B NMR data reveal a mixture of 2 in addition to two new strong signals at 2.3 and -22.6 ppm (see Supporting Information). Interestingly, addition of THF to this mixture reduces the intensity of these peaks and affords 8 after 24 h, suggesting the unassigned signals arise from species that act as precursor(s) to 8. Collectively, these data suggest that intermediate borane/SMe₂ adducts are kineticly reactive in the presence of THF, prompting o-tolyl/hydride exchange.

These reactions are unexpeectedly complex given the simplicity of the reagents involved. Nonetheless, the ability of sterically unhindered aryl(hydrido)boranes[48] and diboranes[44] to scramble substituents or aggregate via hydride bridges, results in complex mixtures. In addition, the presence of THF or SMe₂ also induces equilibria for Lewis adduct formations with less encumbered boron centers. Despite these complexities, dispersion-corrected DFT calculations were performed at the PW6B95-D3/ COSMO-RS// TPS-D3 + COSMO level (see Supporting Information)[51] to garner some insight into the reactions of 1 with hydridoboranes. In the case of 1 and HBcat in toluene (Scheme 2), initial ary/hydride exchange is 1.9 kcal mol⁻¹ endergonic over a moderate free energy barrier of 20.0 kcal mol⁻¹ (via transition structure TSA) affording the product 4 and the transient hydridodiborane(4) H(o-tolyl)BB(o-tolyl)₃ (A). Dimerization of A giving (A)₂, is -16.6 kcal mol⁻¹ exergonic over a barrier of only 5.7 kcal mol⁻¹ (via TSAd). This dimer needs only 7.6 kcal mol⁻¹ to eliminate the experimentally observed species 2 and the computed by-product, H₂B₃(o-tolyl)₃ (Ad). While the precise fate of Ad is uncertain, further reaction with borane or diborane(4) species in solution could account for the minor unidentified by-products in the reaction mixture.

Given that reactions of 1 and hydridoboranes are computed to provide access to triboron species, it is tempting to suggest such species react with hydridodiboranes(4) to give the observed pentaborane(9) species where the degree of substitution is under thermodynamic control. Alternatively, the established nucleophilicity of sp²–sp³ diboranes[53] suggests THF or SMe₂ enhances disproportionation of hydridodiboranes(4), prompting delivery of “BH” to (C)₂ affording 8. This latter view is consistent with reports by Kodama and Perry that the sp²–sp³ diborane B₃H₆(PMe₃)₂ effects expansion of boron hydride clusters by nominal diborane cleavage into BH₃(PMe₃) and “BH(PMe₃)₂”.[42]

Analogous computations for the reaction of 1 and BH₃·SMe₂ showed an even more complex array of possibilities (see Supporting Information), such as ary/hydride exchange reactions, dimerization of hydrido-boron species and subsequent elimination of boranes. Nonetheless it is interesting to note that our DFT calculations infer triboron intermediates may react with diboranes, affording further thermodynamically favored aggregates such as the observed pentaborane(9) (see Supporting Information). Certainly, we can infer that the availability of additional hydrides in the reactions of BH₃ sources favors the generation of reactive intermediates that are central to the formation of 8.

In summary, we have shown that transient hydridodiboranes generated via reactions of the diborane(4) 1 with secondary boranes are highly reactive, providing a complex mixture of products including the known species 2–7, in addition to higher boron-aggregates. In the corresponding
reaction of 1 and BH₃-sources, the borane 2, the hydridoboranes 10 and 11 and the pentaborane 8 were identified among the products. These reactions demonstrated that hydride/aryl exchange, dimerization, and borane elimination reactions unlock avenues to the pentaborane(9) species 8. This latter product represents the only known polyaryl pentaborane(9) and the first to be assembled from borane and diborane(4) components.

Supporting information for this article is given via a link at the end of the document and crystallographic data is deposited in CCDC 2049552, 2049553 and 2049554.

Acknowledgements

The authors thank NSERC of Canada for financial support. D.W.S. is grateful for the award of a Canada Research Chair and to the Guggenheim Foundation for the award of a 2020 fellowship. K.L.B is grateful for the award of an Alexander Graham Bell Canada Graduate Scholarship. Z.W.O is grateful to the DFG (project SPP1807 and Gottfried Wilhelm Leibniz prize to Prof. Stefan Grimme) for financial support. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: boron · cluster · diborane(4) · metathesis · pentaborane(9)

[1] a) B. C. Das, D. P. Ojha, S. Das, N. S. Hosmane, T. Evans, Handbook of Boron Science: With Applications in Organonutrients Catalysis, Materials and Medicine, Vol. 4, World Scientific, Singapore, 2019, pp. 145–165; b) S. J. Kaltia, F. Cheng, Y.-H. Huang, Adv. Synth. Catal. 2020, 362, 2778–2800; c) N. Kumar, R. R. Reddy, N. Egbahiehe, A. Masarwa, Chem. Commun. 2020, 56, 13–25; d) T. Taniguchi, Eur. J. Org. Chem. 2019, 6308–6319; e) Y. Shirai, Adv. Chem. 2019, 5, 2291–2293; f) M. Wang, Z. Shi, Chem. Rev. 2020, 120, 7348–7398.

[2] S. K. Mellerup, S. Wang, Trends Chem. 2019, 1, 77–89.

[3] H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Chem. Soc. Rev. 2020, 49, 4135–4165.

[4] a) T. N. Gribanova, R. M. Minyaev, V. I. Minkin, A. I. Boldyrev, Struct. Chem. 2020, 31, 2105–2128; b) J. Yan, W. Yang, Q. Zhang, Y. Yan, Chem. Commun. 2020, 56, 11720–11734.

[5] G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124–1126.

[6] P. Spies, G. Erker, G. Kehr, K. Bergander, R. Frohlich, S. Grimme, D. W. Stephan, Chem. Commun. 2007, 5072–5074.

[7] a) J. M. Farrell, J. A. Hatnean, D. W. Stephan, J. Am. Chem. Soc. 2012, 134, 15728–15731; b) J. M. Farrell, R. T. Posaratananan, D. W. Stephan, Chem. Sci. 2015, 6, 2010–2015.

[8] P. Eisenberger, B. P. Bestvater, E. C. Keske, C. M. Crudden, Angew. Chem. Int. Ed. 2015, 54, 2467–2471; Angew. Chem. 2015, 127, 2497–2501.

[9] a) A. R. Jupp, D. W. Stephan, Trends Chem. 2019, 1, 35–48; b) D. W. Stephan, Science 2016, 354, aaf7229.

[10] Y. Shoji, N. Tanaka, K. Mikami, M. Uchiyama, T. Fukushima, Nat. Chem. 2014, 6, 498–503.

[11] K. L. Bamford, Z. W. Qu, D. W. Stephan, J. Am. Chem. Soc. 2019, 141, 6180–6184.

[12] E. C. Neeve, S. J. Geier, I. A. Mkhalid, S. A. Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091–9161.

[13] R. Hunold, J. Allwohn, G. Baum, W. Massa, A. Berndt, Angew. Chem. Int. Ed. Engl. 1988, 27, 961–963; Angew. Chem. 1988, 100, 961–963.

[14] J. E. Leffler, E. Dolan, T. Tanigaki, J. Am. Chem. Soc. 1965, 87, 927–928.

[15] A. Moezzi, M. M. Olmstead, R. A. Bartlett, P. P. Power, Organometallics 1992, 11, 2383–2388.

[16] N. Tsukahara, H. Asakawa, K. H. Lee, Z. Lin, M. Yamashita, J. Am. Chem. Soc. 2017, 139, 2593–2596.

[17] T. Araki, M. Hirai, A. Wakamiki, W. E. Piers, S. Yamaguchi, Chem. Lett. 2017, 46, 1714–1717.

[18] F. G. X. Tao, C. G. Danilue, G. Kehr, G. Erker, Angew. Chem. Int. Ed. 2018, 57, 14570–14574; Angew. Chem. 2018, 130, 14778–14782.

[19] a) Y. Katsuma, N. Tsukahara, L. Wu, Z. Lin, M. Yamashita, Angew. Chem. Int. Ed. 2018, 57, 6109–6114; Angew. Chem. 2018, 130, 6217–6222; b) Y. Katsuma, L. Wu, Z. Lin, S. Akiyama, M. Yamashita, Angew. Chem. Int. Ed. 2019, 58, 317–321; Angew. Chem. 2019, 131, 323–327.

[20] S. Akiyama, K. Yamada, M. Yamashita, Angew. Chem. Int. Ed. 2019, 58, 11806–11810; Angew. Chem. 2019, 131, 11932–11936.

[21] a) Y. G. H. Kisi, M. Yamashita, Dalton Trans. 2019, 48, 5496–5499.

[22] a) Y. Shoji, T. Matsuo, D. Hashizume, H. Fujeno, K. Tanaka, K. Tamao, J. Am. Chem. Soc. 2010, 132, 8258–8260; b) Y. Shoji, T. Matsuo, D. Hashizume, M. J. Gutmann, H. Fujeno, K. Tanaka, K. Tamao, J. Am. Chem. Soc. 2011, 133, 11058–11061; c) Y. Shoji, S. Kaneda, H. Fujeno, K. Tanaka, K. Tamao, D. Hashizume, T. Matsuo, Chem. Lett. 2014, 43, 1587–1589.

[23] a) W. Bürfitt, H. Nöth, H. Pommerechen, Angew. Chem. Int. Ed. Engl. 1980, 19, 56; Angew. Chem. 1980, 99, 549–551; b) J. J. Ritter, Adv. Organomet. Chem. 1972, 10, 237–272; c) R. W. Auten, C. A. Kraus, J. Am. Chem. Soc. 1952, 74, 3398–3401.

[24] Upon removal of the solvent and trituration with pentane, a small amount of an insoluble unidentified precipitate was observed. See Supporting Information.

[25] V. Fasano, J. Cid, R. J. Procter, E. Ross, M. J. Ingleson, Angew. Chem. Int. Ed. 2018, 57, 13293–13297; Angew. Chem. 2018, 130, 13477–13481.

[26] A. Del Grossi, R. G. Pritchard, C. A. Muryn, M. J. Ingleson, Organometallics 2010, 29, 241–249.

[27] J. W. Clair, T. J. Rettenmaier, R. Snelling, W. Bryks, J. Banwell, W. T. Wipke, B. Singaram, J. Org. Chem. 2011, 76, 9602–9610.

[28] H. Matsuo, M. Aoki, T. Naka, Tosoh Finechem Corporation, Japan, Japan, 2019.

[29] As the reaction stoichiometry is not presently understood, the percentage yield was calculated assuming starting material 1 is the limiting reagent and that 1 and product 8 are in 1:1 stoichiometry.
In our hands, the 1/H₂ reaction showed previously undocumented signals at $\delta(1\text{H}) = 4.3$, -23.9, and -38.5 ppm. We tentatively attribute these to 1,2,3-substituted pentaborane(9), $\text{B}_5\text{H}_6(\text{o-tolyl})_3$ based on the computed signals at $\delta(C_0) = 0.8$, 16.3, and 38.4 ppm.

[37] a) D. J. Parks, R. E. von H. Spence, W. E. Piers, Angew. Chem. Int. Ed. Engl. 1995, 34, 809–811; Angew. Chem. 1995, 107, 895–897; b) D. J. Parks, W. E. Piers, G. P. A. Yap, Organometallics 1998, 17, 5492–5502; c) C. D. Entwistle, T. B. Marder, P. S. Smith, J. A. K. Howard, M. A. Fox, S. A. Mason, J. Organomet. Chem. 2003, 680, 165–172.

[38] a) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; b) T. Ziegler, G. Schreckenbach, J. Phys. Chem. 1995, 99, 606–611; c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[40] a) R. Köster, G. Bruno, Justus Liebig’s Ann. Chem. 1960, 629, 89–103; b) M. F. Lappert, M. R. Litzow, J. B. Pedley, T. R. Spalding, H. Noth, J. Chem. Soc. A 1971, 383–385.