Sampling Lovász local lemma for general constraint satisfaction solutions in near-linear time

Kun He
Institute of Computing Technology, CAS
University of Chinese Academy of Sciences
Beijing, China
hekun@ict.ac.cn

Chunyang Wang
State Key Laboratory for Novel Software Technology
Nanjing University
Nanjing, China
wcyysai@smail.nju.edu.cn

Yitong Yin
State Key Laboratory for Novel Software Technology
Nanjing University
Nanjing, China
yinyt@nju.edu.cn

Abstract—We give a fast algorithm for sampling uniform solutions of general constraint satisfaction problems (CSPs) in a local lemma regime. The expected running time of our algorithm is near-linear in n and a fixed polynomial in Δ, where n is the number of variables and Δ is the max degree of constraints. Previously, up to similar conditions, sampling algorithms with running time polynomial in both n and Δ only existed for the almost atomic case, where each constraint is violated by a small number of forbidden local configurations.

Index Terms—sampling, constraint satisfaction problem, Lovász Local Lemma

I. INTRODUCTION

Constraint satisfaction problems (CSPs) are one of the most fundamental objects in computer science. A CSP is described by a collection of constraints defined on a set of variables. Formally, an instance of constraint satisfaction problem, called a CSP formula, is denoted by $\Phi = (V, Q, C)$. Here, V is a set of $n = |V|$ variables; $Q \triangleq \bigotimes_{v \in V} Q_v$ is a product space of all assignments of variables, where each Q_v is a finite domain of size $q_v \triangleq |Q_v| \geq 2$ over where the variable v ranges; and C gives a collection of local constraints, such that each $\mathbf{c} \in C$ is a constraint function $c : \bigotimes_{v \in \text{vbl}(\mathbf{c})} Q_v \to \{\text{True}, \text{False}\}$ defined on a subset of variables, denoted by $\text{vbl}(\mathbf{c}) \subseteq V$. An assignment $x \in Q$ is called satisfying for Φ if

$$\Phi(x) \triangleq \bigwedge_{\mathbf{c} \in C} c(\mathbf{x}_{\text{vbl}(\mathbf{c})}) = \text{True}. $$

The followings are some key parameters of a CSP formula $\Phi = (V, Q, C)$:

- domain size $q = q_\Phi \triangleq \max_{\mathbf{c} \in C} |Q_\mathbf{c}|$;
- width $k = k_\Phi \triangleq \max_{\mathbf{c} \in C} |\text{vbl}(\mathbf{c})|$;
- constraint degree $\Delta = \Delta_\Phi$ where $\Delta_\Phi \triangleq \max_{\mathbf{c} \in C} |\{\mathbf{c}' \in C \mid \text{vbl}(\mathbf{c}) \cap \text{vbl}(\mathbf{c}') \neq \emptyset\}|$;
- violation probability $p = p_\Phi \triangleq \max_{\mathbf{c} \in C} \mathbb{P}[\neg \mathbf{c}]$, where \mathbb{P} denotes the law for the uniform assignment, in which each $v \in V$ draws its evaluation from Q_v uniformly and independently at random.

The famous Lovász Local Lemma (LLL) [1] provides a sufficient criterion for the satisfiability of Φ. Specifically, a satisfying assignment for a CSP formula Φ exists if

$$ep\Delta \leq 1. $$

Due to a lower bound of Shearer [2], such “LLL condition” for the existence of satisfying solution is essentially tight if only knowing p and Δ. On the other hand, the algorithmic or constructive LLL seeks to find a solution efficiently. A major breakthrough was the Moser-Tardos algorithm [3], which guarantees to find a satisfying assignment efficiently under the LLL condition in (1).

The sampling LLL. We are concerned with the problem of sampling Lovász Local Lemma, which has drawn considerable attention in recent years [4]–[15]. In the context of CSP, it seeks to provide an efficient sampling algorithm for (nearly) uniform generation of satisfying assignments for the CSP’s in an LLL-like regime. This sampling LLL problem is closely related to the problem of estimating the volume of solution spaces or the partition functions of statistical physics systems, and is motivated by fundamental tasks, including

A full version of the paper is available at https://arxiv.org/abs/2204.01520.

This work is supported by National Key R&D Program of China 2018YFB1003202. Kun He is supported by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDA27000000, the National Natural Science Foundation of China Grants No. 6200231, 61832003.
probabilistic inferences in graphical models [5] and the
network reliability problems [4], [16], [17].

This problem of sampling LLL turns out to be com-
putationally more challenging than the traditional al-
gorithmic LLL, which requires constructing an arbi-
trary satisfactory assignment, not necessarily following the
correct distribution. For example, when used as a
sampling algorithm, the Moser-Tardos algorithm can
only guarantee correct sampling on restrictive classes of
CSPs [4]. Due to the computational lower bounds shown
in [14], [18], a strengthened LLL condition with \(c \geq 2: \)
\[
p\Delta^c \leq 1, \quad (2)
\]
is necessary for the tractability of sampling LLL, even
restricted to typical specific sub-classes of CSPs, such as
CNF or hypergraph coloring. Here \(\leq \) ignores the lower-
order terms and the constant factor.

In a seminal work of Moitra [5], a very innovative
algorithm was given for sampling almost uniform k-
CNF solutions assuming an LLL condition \(p\Delta^{60} \leq 1. \)
This sampling algorithm was based on deterministic
approximate counting by solving linear programs on
properly factorized formulas and has a running time of
\(n^{\text{poly}}(k, \Delta). \) This LP-based approach was later extended to
hypergraph coloring [6] and random CNF formulas [7], and
finally in a work of Jain, Pham and Vuong [12] to all
CSPs satisfying a substantially improved LLL condition
\(p\Delta^7 \leq 1. \) All these deterministic approximate counting
based algorithms suffered from an \(n^{\text{poly}}(k, \Delta) \) time cost.

Historically, rapidly mixing Markov chains have been
the canonical sampling algorithms, and often have near-
linear time efficiency. However, for sampling LLL, there
used to be a fundamental barrier for Markov chains.
That is, despite the ubiquity of solutions, the solution
space of CSPs may be highly disconnected through the
transition of local Markov chains.

This barrier of disconnectivity was circumvented in
a breakthrough of Feng et al. [9], in which a rapidly
mixing projected random walk was simulated efficiently
on a subset of variables constructed using the mark-
ing/unmarking strategy invented in [5]. Assuming an
LLL condition \(p\Delta^{20} \leq 1, \) this new algorithm could
generate an almost uniform k-CNf solution using a time
cost within \(\text{poly}(k, \Delta) \cdot n^{1.0001}, \) which is close to linear in
the number of variables \(n. \) By observing that this mark-
ing/unmarking of variables was, in fact a specialization
in the Boolean case of compressing variables’ states, this
Markov chain based fast sampling approach was general-
ized in [10] to CSPs beyond the Boolean domain, specif-
ically, to all almost atomic CSPs (which we will explain
later), assuming an LLL condition \(p\Delta^{50} \leq 1. \) This bound
was remarkably improved to \(p\Delta^{7.04} \leq 1 \) in another work
of Jain, Pham and Vuong [11] through a clever witness-
tree-like information percolation analysis of the mixing
time, which was also used later to support a perfect
sampler through the coupling from the past (CFTP) in
[13] with a further improved condition \(p\Delta^{5.71} \leq 1. \)

All these fast algorithms for sampling LLL are re-
stricted to the (almost) atomic CSPs, in which each
constraint \(c \) is violated by exactly one (or very few)
forbidden assignment(s) on \(\text{vbl}(c). \)

Challenges for general CSP. New techniques are
needed for fast sampling LLL for general CSPs. All
existing fast algorithms for sampling LLL relied on
some projection of the solution space to a much smaller
space where the barrier of disconnectivity could be
circumvented because the images of the projection might
collide and were well connected. In order to efficiently
simulate the random walk on the projected space and
to recover a random solution from a random image, one
would hope that the CSP formula were well "factorized"
into small clusters most of the time because many con-
straints had already been satisfied for sure given the cur-
rent image, which was indeed the case for fast sampling
LLL for atomic CSPs [9]–[11], [13]. But for general non-
atomic CSPs, it may no longer be the case, because now
a bad event (violation of a constraint) may be highly non-
elementary, and hence is no longer that easy to avoid
cleanly after projection, which breaks the factorization.

It is possible that the non-atomicity of general CSPs
might have imposed greater challenges to the sampling
LLL than to its constructive counterpart. To see this, note
that general CSPs can be simulated by atomic ones: by
replacing each general constraint \(c \) having \(N \) forbidden
assignments on \(\text{vbl}(c) \), with \(N \) atomic constraints on the
same \(\text{vbl}(c) \) each forbidding one assignment. Such simu-
lation would increase the constraint degree \(\Delta \) by a factor
of at most \(N \) and also decrease the violation probability
\(p \) by a factor of \(N. \) For the classic LLL condition (1)
where \(p \) and \(\Delta \) are homogeneous, this would not change
the LLL condition; but the regime for the sampling LLL
captured by (2) would be significantly reduced, since
there \(p \) and \(\Delta \) are necessarily not homogeneous due to
the lower bounds in [14], [18]. This situation seems to
suggest that the non-atomicity of general CSPs might
impose bigger challenges to the sampling LLL than to
the existential/constructive LLL.

Indeed, prior to our work, it was not known for
general CSPs with unbounded width \(k \) and degree
\(\Delta \), whether the sampling problem is polynomial-time
tractable under an LLL condition like (2).
A. Our results

In this paper, we answer the above open question positively. We give a new algorithm that departs from all prior fast samplers based on Markov chains and achieves, for the first time, a fast sampling of almost uniform satisfying solutions for general CSPs in a local lemma regime.

As in the case of algorithmic LLL [3], [19], we assume an abstraction of constraint evaluations, because arbitrary constraint functions defined on a super-constant number of variables can be highly nontrivial to express and evaluate. Specifically, we assume the following evaluation oracle for checking whether a constraint is already satisfied by a partially specified assignment.

Assumption 1 (evaluation oracle). There is an evaluation oracle for \(\Phi = (V, Q, C) \) such that given any constraint \(c \in C \), any assignment \(\sigma \in Q_\Lambda \) specified on a subset \(\Lambda \subseteq \text{vbl}(c) \) of variables, the oracle answers whether \(c \) is already satisfied by \(\sigma \), i.e. \(c(\tau) = \text{True} \) for all \(\tau \in Q_{\text{vbl}(c)} \) that \(\tau_\Lambda = \sigma_\Lambda \).

For specific classes of CSPs, e.g., k-CNF or hypergraph coloring, such an oracle is easy to realize.

Assuming such an oracle for constraint evaluations, we give the following fast, almost uniform sampler for general CSPs in a local lemma regime. Recall the parameters \(q, k, p, \Delta \) of a CSP formula \(\Phi \).

Theorem 1.1 (informal). There is an algorithm such that given as input any \(\epsilon \in (0, 1) \) and any CSP formula \(\Phi = (V, Q, C) \) with \(n \) variables satisfying

\[
q^2 \cdot k \cdot p \cdot \Delta^7 \leq \frac{1}{150e^3},
\]

the algorithm terminates within \(\text{poly}(q, k, \Delta) \cdot n \log \left(\frac{n}{\epsilon} \right) \) time in expectation and outputs an almost uniform sample of satisfying assignments for \(\Phi \) within \(\epsilon \) total variation distance.

The formal statement of the theorem is in Theorem V.1 (for termination and correctness of sampling) and in Theorem VI.1 (for efficiency of sampling). In fact, we prove this perfect sampler first, and then realize the FPTAS assumed in Theorem I.2 using Monte Carlo experiments, which introduces a bounded bias to the sampling and gives us the approximate sampler claimed in Theorem I.1.

For concrete classes of CSPs defined by simple local constraints, it is no surprise to see that the probability \(\mathbb{P}[-c | \sigma] \) almost always has an easy-to-compute closed-form expression, in which case we have a perfect sampler without assuming the oracles in Assumption 1 and in Theorem I.2.

The followings are two examples of non-atomic CSPs which admit linear-time perfect samplers.

Example 1.3 (\(\delta \)-robust k-SAT). The \(n \) variables are Boolean, each clause contains exactly \(k \) literals, and a clause is satisfied if and only if at least \(\delta k \) of its literals have the outcome True.

- For \(\delta \)-robust k-SAT with variable degree \(d \) (each variable appears in at most \(d \) clauses) satisfying

\[
0 < \delta < \frac{1}{2}, \quad k \geq \frac{32 \ln k + 28 \ln d + 40}{(1 - 2\delta)^2},
\]

a perfect sample of uniform satisfying solutions is returned within expected time \(\text{poly}(k, d) \cdot n \).

Example 1.4 (\(\delta \)-robust hypergraphs q-coloring). Each vertex is colored with one of the \(q \) colors, each hyperedge
is k-uniform and is satisfied if and only if there are no $(1 - \delta)k$ vertices with the same color.

- For k-uniform hypergraphs on n vertices with maximum vertex degree d satisfying

 $$(1 - \delta)k \geq 15, \quad q \geq \frac{7d^{\frac{7}{1+3d}} \cdot (6.1)^{\frac{1}{1+3d}}}{(1 - \delta)^{1.25}},$$

 a perfect sample of uniform satisfying coloring is returned within expected time $\mathrm{poly}(q,k,d) \cdot n$.

2) Marginal sampler: The core component of our sampling algorithm is a marginal sampler for drawing from marginal distributions. Let $\mu = \mu_v$ denote the uniform distribution over all satisfying assignments for Φ, and for each $v \in V$, let μ_v denote the marginal distribution at v induced by μ.

Theorem 1.5 (informal). There is an algorithm such that given as input any $\epsilon \in (0,1)$, any CSP formula $\Phi = (V,Q,C)$ satisfying (3), and any $v \in V$, the algorithm returns a random value $x \in Q_v$ distributed approximately as μ_v within total variation distance ϵ, within $\mathrm{poly}(q,k,\Delta,\log(1/\epsilon))$ time in expectation.

This marginal sampler is also perfect under the same assumption as in Theorem 1.2. Another byproduct of this marginal sampler is the following algorithm for probabilistic inference.

Theorem 1.6 (informal). There is an algorithm such that given as input any $\epsilon, \delta \in (0,1)$, any CSP formula $\Phi = (V,Q,C)$ satisfying (3), and any $v \in V$, the algorithm returns for every $x \in Q_v$ an ϵ-approximation of the marginal probability $\mu_v(x)$ within $\mathrm{poly}(q,k,\Delta,1/\epsilon,\log(1/\delta))$ time with probability at least $1 - \delta$.

The above two theorems are formally restated and proved in [20, Section 6].

By a self-reduction, the sampling and inference algorithms in Theorems 1.5 and 1.6 remain to hold for the marginal distributions μ_v^σ conditional on a feasible partially specified assignment σ, as long as the LLL condition (3) is satisfied by the new instance Φ^σ obtained from pinning σ onto Φ.

Both the above algorithms for marginal sampling and probabilistic inference are local algorithms whose costs are independent of n. Previously, in order to simulate or estimate the marginal distribution of a variable, it was often necessary to generate a full assignment on all n variables, or at least pay no less than that. One might have asked the following natural question:

Can these locally defined sampling or inference problems be solved at a local cost?

However, decades have passed, and only recently has such a novel local algorithm been discovered for marginal distributions in infinite spin systems [21], which is also our main source of inspiration.

B. Technique overview

As we have explained before, non-atomicity of constraints causes a barrier for the current Markov chain based algorithms [9]–[11], [13], [15]. There is another family of sampling algorithms, which we call “resampling based” algorithms [4], [22]–[25]. These algorithms use resampling of variables to fix the assignment until it follows the right distribution, morally like the Moser-Tardos algorithm, and they are not as affected by disconnectivity of solution space as Markov chains, but here a principle to ensure the correct sampling is to resample the variables that the algorithm has observed and conditioned on, which also causes trouble on non-atomic constraints, because to ensure such constraints are satisfied, the algorithm has to observe too many variables, whose resampling would cancel the progress of the algorithm.

We adopt a new idea of sampling, which we call the recursive marginal sampler. It is somehow closer to the resampling based algorithms than to the Markov chains, but thanks to its recursive nature, the algorithm avoids excessive resampling. This algorithm is inspired by a recent novel algorithm of Anand and Jerrum [21] for perfectly sampling in infinite spin systems, where a core component is such a marginal sampler that can draw a spin according to its marginal distribution.

Now let us consider the uniform distribution μ over all satisfying assignments of a CSP formula $\Phi = (V,Q,C)$, and its marginal distribution μ_v at a variable $v \in V$, say over domain $Q_v = [q]$. To sample from this μ_v over $[q]$, an idea is to exploit the so-called “local uniformity” property [26], which basically says that μ_v should not be far from a uniform distribution over $[q]$ in total variation distance when Φ satisfies some local lemma condition. Therefore, a uniform sample from $[q]$ already gives a coarse sample of μ_v. It remains to boost such a coarse sampler to a sampler with arbitrary precision.

By the local uniformity, there exists a $\theta < \frac{1}{q}$ close enough to $\frac{1}{q}$, such that

$$\forall x \in [q], \quad \mu_v(x) \geq \theta. \quad (4)$$

The marginal distribution μ_v can then be divided as

$$q \theta \cdot U + (1 - q \theta) \cdot D,$$
where \(\mathcal{U} \) is the uniform distribution over \([q]\) and \(\mathcal{D} \) gives a distribution of "overflow" mass such that:

\[
\forall x \in [q], \quad D(x) = \frac{\mu(x) - \theta}{1 - q\theta}.
\]

Sampling from \(\mu \) can then follow this strategy: with probability \(q\theta \), the algorithm falls into the "zone of local uniformity" and returns a uniform sample from \(\mathcal{U} \); with probability \(1 - q\theta \), the algorithm falls into the "zone of indecision" and has to draw a sample from this overflow distribution \(\mathcal{D} \), which can be done by constructing a Bernoulli factory that accesses \(\mu \) as an oracle. But wait, if we had such an oracle for \(\mu \) in the first place, why would sampling from \(\mu \) even be a problem?

The above "chicken or egg" paradox is somehow resolved by a simple observation: if enough many other variables had already been sampled correctly, say with outcome \(X \), then assuming a strong enough LLL condition, there is a good chance that the resulting formula \(\Phi^X \) was "factorized" into small clusters, from where a standard rejection sampling on \(\Phi^X \) would be efficient for sampling from \(\mu^X \), and overall from \(\mu \). Therefore, the sampling strategy is now corrected as: after falling into the "zone of indecision" and before trying to draw from the overflow distribution \(\mathcal{D} \), the algorithm picks another variable \(u \) whose successful sampling might help factorize \(\Phi \), and recursively apply the marginal sampler at \(u \) to draw from \(u \)'s current marginal distribution first. The only loose end now is that the LLL condition is not self-reducible, meaning it is not invariant under arbitrary pinning. We adopt the idea of "freezing" constraints used in [12] to guide the algorithm to pick variables for sampling. The LLL condition is replaced by a more refined invariant condition that guarantees for each variable picked for sampling, the same local uniformity as in (4) to persist throughout the algorithm, and also guarantees a good chance of factorization while there are no other variables to pick. To bound the fast convergence of the recursive sampler, in [21] the strategy was to show that the branching process given by the recursion tree always has decaying offspring number in expectation given the worst-case boundary condition, which is not true here. Instead, we apply a more average-case style analysis. Interestingly, some of our analysis and the LLL condition resemble those in [12] for a deterministic approximate counting algorithm with time complexity \(n^{\text{poly}(k, \lambda, \log q)} \).

II. Notations for CSP

We recall the definition of CSP formula \(\Phi = (V, Q, C) \) in Section I. We use \(\Omega = \Omega_{\Phi} \) to denote the set of all satisfying assignments of \(\Phi \), and use \(\mu = \mu_{\Phi} \) to denote the uniform distribution over \(\Omega \). Recall that \(\mathbb{P} \) denotes the law for the uniform product distribution over \(Q \). For \(C \subseteq C \), denote \(\forall \mathcal{C} \subseteq C \), \(\forall \mathcal{C} \mathbb{P}(\mathcal{C}) \mathcal{C} = \cup_{c \in C} \mathbb{P}(c) \); and for \(\Lambda \subseteq V \), denote \(\Omega_{\Lambda} \mathcal{C} = \bigotimes_{c \in \Lambda} \mathcal{C} Q \). We introduce a notation for partial assignments.

Definition II.1 (partial assignment). Given a CSP formula \(\Phi = (V, Q, C) \), define:

\[
Q^* \mathcal{C} = \bigotimes_{v \in V} (\mathcal{Q}_v \cup \{\ast, \ast\}),
\]

where \(\ast \) and \(\ast \) are two special symbols not in any \(\mathcal{Q}_v \).

Each \(\sigma \in Q^* \) is called a partial assignment.

In a partial assignment \(\sigma \in Q^* \), each variable \(v \in V \) is classified as follows:

- \(\sigma(v) \in Q_v \) means that \(v \) is accessed by the algorithm and assigned with the value \(\sigma(v) \in Q_v \);
- \(\sigma(v) = \ast \) means that \(v \) is just accessed by the algorithm but unassigned yet with a value in \(Q_v \);
- \(\sigma(v) = \ast \) means that \(v \) is unaccessed by the algorithm and hence unassigned with any value.

Furthermore, we use \(\Lambda(\sigma) \subseteq V \) and \(\Lambda^+(\sigma) \subseteq V \) to respectively denote the sets of assigned and accessed variables in a partial assignment \(\sigma \in Q^* \), that is:

\[
\Lambda(\sigma) \mathcal{C} = \{v \in V \mid \sigma(v) \in Q_v\}, \Lambda^+(\sigma) \mathcal{C} = \{v \in V \mid \sigma(v) \neq \ast\}.
\]

Given any partial assignment \(\sigma \in Q^* \) and variable \(v \in V \), we further denote by \(\sigma_{\mu \sim x} \) the partial assignment obtained from modifying \(\sigma \) by replacing \(\sigma(v) \) with \(x \in Q_v \cup \{\ast\} \).

A partial assignment \(\tau \in Q^* \) is said to extend a partial assignment \(\sigma \in Q^* \) if \(\Lambda(\sigma) \subseteq \Lambda(\tau) \), \(\Lambda^+(\sigma) \subseteq \Lambda^+(\tau) \), and \(\sigma, \tau \) agree with each other over all variables in \(\Lambda(\sigma) \). A partial assignment \(\sigma \in Q^* \) is said to satisfy a constraint \(c \in C \) if \(c \) is satisfied by all full assignments \(\tau \in Q \) that extend \(\sigma \). A partial assignment \(\sigma \in Q^* \) is called feasible if there is a satisfying assignment \(\tau \in \Omega \) that extends \(\sigma \).

Given any feasible partial assignment \(\sigma \in Q^* \) and any \(S \subseteq V \), we use \(\sigma_S \) to denote \(\bigotimes_{v \in S} \mathcal{C} \sigma(v) \) and \(\mu^S_\sigma \) to denote the marginal distribution induced by \(\mu \) on \(S \) conditional on \(\sigma \). For each \(\tau \in Q_S \), we have \(\mu^S_\sigma(\tau) = \mathbb{P}_{X \sim \mu} [X_S = \tau | \forall \sigma \in \Lambda(\sigma), X(v) = \sigma(v)] \). We further write \(\mu^\sigma = \mu^S_\sigma \). Similar notation is used for the law \(\mathbb{P} \) for the uniform product distribution over \(Q \). For \(\sigma \in Q^* \) and any event \(A \subseteq Q \), we have \(\mathbb{P}[A | \sigma] = \mathbb{P}[X \in A | \forall \sigma \in \Lambda(\sigma), X(v) = \sigma(v)] \).

III. The Sampling Algorithm

We give our main algorithm for sampling almost uniform satisfying assignments for a CSP formula. Our presentation uses notations defined in Section II.
A. The main sampling algorithm

Our main sampling algorithm takes as input a CSP formula \(\Phi = (V, Q, C) \) with domain size \(q = q_\Phi \), width \(k = k_\Phi \), constraint degree \(\Delta = \Delta_\Phi \), and violation probability \(p = p_\Phi \), where the meaning of these parameters are as defined in Section I.

We suppose that the \(n = |V| \) variables are enumerated as \(V = \{v_1, v_2, \ldots, v_n\} \) in an arbitrary order. The CSP formula \(\Phi = (V, Q, C) \) is presented to the algorithm by the evaluation oracle in Assumption 1. Also assume that given any \(c \in C \) (or \(v \in V \)), the \(\text{vbl}(c) \) (or \(\{c \in C \mid v \in \text{vbl}(c)\} \)) can be retrieved.

The main algorithm (Algorithm 1) is the same as the main sampling frameworks in [6], [12]. A partial assignment \(X \in Q^* \) is maintained, initially as the empty assignment \(X = \emptyset^V \).

1) In the 1st phase, at each step it adaptively picks (in a predetermined order) a variable \(v \) that has enough “freedom” because it is not involved in any easy-to-violate constraint given the current \(X \), and replaces \(X(v) \) with a random value drawn by a subroutine MarginSample according to the correct marginal distribution \(\mu_X^\sigma \).

2) When no such variable with enough freedom remains, the formula is supposed to be “factorized” enough into small clusters and the algorithm enters the 2nd phase, from where the partial assignment constructed in the 1st phase is completed to a uniform random satisfying assignment by a standard RejectionSampling subroutine.

A key threshold \(p' \) for the violation probability is fixed as below:

\[
p' = \left(18c^2 q^2 k_\Phi^{\Delta_\Phi} \right)^{-1},
\]

which satisfies \(p' > p = p_\Phi \), assuming the LLL condition in (3).

For the ease of exposition, we assume an oracle for approximately deciding whether a constraint becomes too easy to violate given the current partial assignment.

Assumption 2. There is an oracle such that given any partial assignment \(\sigma \in Q^* \) and any constraint \(c \in C \), the oracle distinguishes between the two cases: \(\mathbb{P}[-c \mid \sigma] > p' \) and \(\mathbb{P}[-c \mid \sigma] < 0.99p' \), and answers arbitrarily and consistently if otherwise. That is the answer to the undefined case \(\mathbb{P}[-c \mid \sigma] \in [0.99p', p'] \) can be either “yes” or “no” but remains the same for the same \(\sigma_{\text{vbl}(c)} \).

Such an oracle is clearly implied by the FPTAS for violation probability assumed in Theorem I.2 and will be explicitly realized in Section VI. For now, with respect to such an oracle, the classes of easy-to-violate constraints and their involved variables are defined as follows.

Definition III.1 (frozen and fixed). Assume Assumption 2. Let \(\sigma \in Q^* \) be a partial assignment.

- A constraint \(c \in C \) is called \(\sigma \)-frozen if it is reported \(\mathbb{P}[-c \mid \sigma] > p' \) by the oracle in Assumption 2. Denote by \(C^\sigma_\text{frozen} \) the set of all \(\sigma \)-frozen constraints:

\[
C^\sigma_\text{frozen} = \{ c \in C \mid c \text{ is reported by the oracle to satisfy } \mathbb{P}[-c \mid \sigma] > p' \}.
\]

- A variable \(v \in V \) is called \(\sigma \)-fixed if \(v \) is accessed in \(\sigma \) or is involved in some \(\sigma \)-frozen constraint. Denote by \(V^\sigma_{\text{fix}} \) the set of all \(\sigma \)-fixed variables:

\[
V^\sigma_{\text{fix}} = \Lambda^+(\sigma) \cup \bigcup_{c \in C^\sigma_\text{frozen}} \text{vbl}(c).
\]

Similar ideas of freezing appeared in previous works on sampling and algorithmic LLL [12], [27].

Remark III.2 (one-sided error for frozen/fixed decision). By the property of the oracle in Assumption 2, any constraint \(c \in C \) with \(\mathbb{P}[-c \mid \sigma] > p' \) must be in \(C^\sigma_\text{frozen} \) and any variable \(v \in V \) involved in such a constraint must be in \(V^\sigma_{\text{fix}} \); conversely, any \(\sigma \)-frozen constraint \(c \in C^\sigma_\text{frozen} \) must have \(\mathbb{P}[-c \mid \sigma] \geq 0.99p' \) and any unaccessed \(\sigma \)-fixed variable \(v \in V^\sigma_{\text{fix}} \) must be involved in at least one of such constraints.

Algorithm 1: The sampling algorithm

Input: a CSP formula \(\Phi = (V, Q, C) \);
Output: a uniform random satisfying assignment \(X \in \Omega_k \);
1. \(X \leftarrow \emptyset^V \);
2. for \(i = 1 \) to \(n \) do
3. if \(v_i \) is not \(X \)-fixed then
4. \(X(v_i) \leftarrow \text{MarginSample}(\Phi, X, v_i) \);
5. \(X_{\setminus \Lambda(X)} \leftarrow \text{RejectionSampling}(\Phi, X, V \setminus \Lambda(X)) \);
6. return \(X \);

The following invariant is satisfied in the for loop in Algorithm 1 (formally proved in Lemma V.3). The correctness of the MarginSample subroutine is guaranteed by this invariant.

Condition III.3 (invariant for MarginSample). The following holds for the input tuple \((\Phi, \sigma, v) \):

- \(\Phi = (V, Q, C) \) is a CSP formula, \(\sigma \in Q^* \) is a feasible partial assignment, and \(v \in V \) is a variable;
v is not σ-fixed and σ(v) = ⊤, and for all u ∈ V, σ(u) ∈ Qu ∪ \{⊥\};
• P[¬c | σ] ≤ p’q for all c ∈ C.

The correctness of Algorithm 1 follows from the correctness of MarginSample and RejectionSampling for sampling from the correct marginal distributions, which is formally proved in Theorem V.1.

In fact, the sampling in Algorithm 1 is perfect. It will only become approximate after the oracle in Assumption 2 realized by a Monte Carlo program that may bias the sampling.

B. The rejection sampling

We first introduce RejectionSampling, which is a standard procedure. Our rejection sampling takes advantages of simplification and decomposition of a CSP formula.

A simplification of \(\Phi = (V, Q, C) \) under partial assignment \(\sigma \in Q^* \), denoted by \(\Phi^\sigma = (V^\sigma, Q^\sigma, C^\sigma) \), is a new CSP formula such that \(V^\sigma = V \setminus Λ(\sigma) \) and \(Q^\sigma = Q_{V \setminus Λ(\sigma)} \), and the \(C^\sigma \) is obtained from \(C \) by:

1) removing all the constraints that have already been satisfied by \(\sigma \);
2) for the remaining constraints, replacing the variables \(v \in Λ(\sigma) \) with their values \(\sigma(v) \).

It is easy to see that \(\mu_{\Phi^\sigma} = \mu_{V^\Lambda(\sigma)}^\sigma \) for the uniform distribution \(\mu_{\Phi^\sigma} \) over satisfying assignments of \(\Phi^\sigma \).

A CSP formula \(\Phi = (V, Q, C) \) can be naturally represented as a (multi-)hypergraph \(H_\Phi \), where each variable \(v \in V \) corresponds to a vertex in \(H_\Phi \) and each constraint \(c \in C \) corresponds to a hyperedge \(vbl(c) \) in \(H_\Phi \). We slightly abuse the notation and write \(H_\Phi = (V, C) \).

Let \(H_i = (V_i, C_i) \) for \(1 \leq i \leq K \) denote all \(K \geq 1 \) connected components in \(H_\Phi \), and \(\Phi_i = (V_i, Q_{V_i}, C_i) \) their formulas. Obviously \(\Phi = \Phi_1 ∪ \Phi_2 ∪ ⋯ \Phi_K \) with disjoint \(\Phi_i \), and \(\mu_\Phi \) is the product of all \(\mu_{\Phi_i} \). Also \(\mu_S \) on a subset of variables \(S \subseteq V \) is determined only by those components with \(V_i \) intersecting \(S \).

Our rejection sampling algorithm for drawing from a marginal distribution \(\mu_S^\sigma \) is given in Algorithm 2. The correctness of this algorithm is folklore. We state without proof.

Theorem III.4. On any input \((\Phi, \sigma, S)\) as specified in Algorithm 2, RejectionSampling terminates with probability 1, and upon termination it returns an assignment \(X_S \in Q_S \) distributed as \(\mu_S^\sigma \).

C. The marginal sampler

We now introduce the the core part of our sampling algorithm, the MarginSample subroutine. This procedure is a “marginal sampler”: it can draw a random value for a variable \(v \in V \) according to its marginal distribution \(\mu_v^\sigma \). Our marginal sampling algorithm is inspired by a recent novel sampling algorithm of Anand and Jerrum for infinite spin systems [21].

For each variable \(v \in V \), we suppose that an arbitrary order is assumed over all values in \(Q_v \); we use \(q_v \equiv |Q_v| \) to denote the domain size of \(v \) and fix the parameters \(\theta_v, \eta \) as \(\theta_v \equiv \frac{1}{q_v} - η - ζ \) and \(ζ \equiv \frac{1}{q_v} - η - ξ \) where

\[
\begin{align*}
\eta &= (1 - ep'q)^{-\delta} - 1 \\
ζ &= (8eqln3)^{-1}
\end{align*}
\]

(6)

Note that \(ζ < \frac{1}{q_v} - η \) is guaranteed by the LLL condition in (3), and hence \(\theta_v, \eta > 0 \).

The MarginSample subroutine for drawing from a marginal distribution \(\mu_v^\sigma \) is given in Algorithm 3.

Algorithm 2: RejectionSampling(\(\Phi, \sigma, S \))

Input: a CSP formula \(\Phi = (V, Q, C) \), a feasible partial assignment \(\sigma \in Q^* \), and a subset \(S \subseteq V \setminus Λ(\sigma) \) of unassigned variables in \(\sigma \);

Output: an assignment \(X_S \in Q_S \) distributed as \(\mu_S^\sigma \);

1. find \(\{H_i^\sigma = (V_i^\sigma, C_i^\sigma) \} \mid 1 \leq i \leq K, H_i^\sigma \cap S = \emptyset \} \), i.e., all the connected components in \(H_{\Phi^\sigma} \) which intersect \(S \) where \(\Phi^\sigma \) denotes the simplification of \(\Phi \) under \(\sigma \);
2. for \(1 \leq i \leq K \) do
 3. repeat
 4. generate \(X_{V_i^\sigma} \in Q_{V_i^\sigma} \) uniformly and independently at random;
 5. until all the constraints in \(C_i^\sigma \) are satisfied;
3. return \(X_S \) where \(X \) is the concatenation of all \(X_{V_i^\sigma} \);

Algorithm 3: MarginSample(\(\Phi, \sigma, v \))

Input: a CSP formula \(\Phi = (V, Q, C) \), a feasible partial assignment \(\sigma \in Q^* \), and a variable \(v \in V \);

Output: a random \(x \in Q_v \) distributed as \(\mu_v^\sigma \);

1. choose \(r \in [0, 1) \) uniformly at random;
2. if \(r < q_v \cdot \theta_v \) then // \(r \) falls into the zone of local uniformity
 3. return the \([r/\theta_v]-\)th value in \(Q_v \);
3. else // \(r \) falls into the zone of indecision
 4. return MarginOverflow(\(\Phi, \sigma_{\Phi \setminus v}, v \));

An invariant satisfied by Algorithm 3 guarantees that \(\theta_v \) always lower bounds the marginal probability with
gap ς. This is formally proved in Section IV by a “local uniformity” property (Corollary IV.3).

Proposition III.5. Assuming Condition III.3 for the input (Φ, σ, v), it holds that $\min_{x \in Q_0} \mu_0^v(x) \geq \theta_o + \varsigma$.

Therefore, the function D constructed below is a well-defined distribution over Q_0:

$$\forall x \in Q_0, \quad D(x) \doteq \frac{\mu_0^v(x) - \theta_v}{1 - q_v \cdot \theta_v}. \quad (7)$$

Consider the following thought experiment. Partition $[0, 1)$ into $(q_0 + 1)$ intervals I_1, I_2, \ldots, I_q, and I', where $I_i = [(i - 1)\theta_o, i\theta_o)$ for $1 \leq i \leq q_0$ are of equal size θ_o, and $I' = [q_0\theta_o, 1)$ is the remaining part. We call $\bigcup_{i=1}^{q_0} I_i = [0, q_0\theta_o)$ the “zone of local uniformity” and $I' = (q_0\theta_o, 1)$ the “zone of indecision”.

Drawing from μ_0^v can then be simulated as: first drawing a uniform random $r \in [0, 1)$, if $r < q_0\theta_v$, i.e. it falls into the “zone of local uniformity”, then returning the i-th value in Q_0 if $r \in I_i$; if otherwise $r \in I'$, i.e. it falls into the “zone of indecision”, then returning a random value drawn from the above D. It is easy to verify that the generated sample is distributed as μ_0^v. And this is exactly what Algorithm 3 is doing, assuming that the subroutine MarginOverflow$(\Phi, \sigma_{\neg \varsigma}, v)$ correctly draws from D.

Algorithm 4: MargIn Overflow(Φ, σ, v)

Input: a CSP formula $\Phi = (V, Q, C)$, a feasible partial assignment $\sigma \in Q^*$, and a variable $v \in V$;

Output: a random $x \in Q_0$ distributed as $D \doteq \frac{1}{(1-q_v \cdot \theta_v)}(\mu_0^v - \theta_v)$;

1. $u \leftarrow \text{NextVar} (\sigma)$ where NextVar (σ) is defined as in (8);
2. if $u \not\in \bot$ then
 3. choose $r \in [0, 1)$ uniformly at random;
 4. if $r < q_u \cdot \theta_v$ then // r falls into the zone of local uniformity
 5. $\sigma(u) \leftarrow [r/\theta_v]$-th value in Q_u;
 6. else // r falls into the zone of indecision
 7. $\sigma(u) \leftarrow \text{MarginOverflow} (\Phi, \sigma_{\neg \varsigma}, u)$;
 /∗ Lines 4 to 7 together draw $\sigma(u)$ according to $\mu_{u^{\text{partial}}}^v$ */
8. return MarginOverflow(Φ, σ, v);
9. else
10. sample a random $x \in Q_0$ according to $D \doteq \frac{1}{(1-q_v \cdot \theta_v)}(\mu_0^v - \theta_v)$ using a Bernoulli factory that accesses RejectionSampling$(\Phi, \sigma, \{v\})$ as an oracle;
11. return x;

We define a class of variables that are candidates for sampling with priority in the recursion.

Definition III.6 ($*$-influenced variables). Let $\sigma \in Q^*$ be a partial assignment. Let $H^\sigma = H_{fix}^{\sigma} = (V^\sigma, C^\sigma)$ be the hypergraph for simplification Φ^σ. Let H_{fix}^σ be the sub-hypergraph of H^σ induced by $V^\sigma \cap V_{fix}^\sigma$.

- Let $V^*_\sigma \subseteq V^\sigma \cap V_{fix}^\sigma$ be the set of vertices belong to the connected components in H_{fix}^σ that contain any v with $\sigma(v) = *$.
- Let $V_{\varsigma_{\text{inf}}}^* \subseteq V^\sigma \cap V_{fix}^\sigma$ be the vertex boundary of V_{ς}^* in H^σ where $V_{\varsigma_{\text{inf}}}^* \doteq \{ u \in V^\sigma \mid \exists c \in C^\sigma, v \in V^*_\sigma : u, v \in vbl(c) \}$.

Define $\text{NextVar} (\sigma)$ as

$$\begin{cases} \sigma_i \in V_{\varsigma_{\text{inf}}}^* \text{ with smallest } i \text{ if } V_{\varsigma_{\text{inf}}}^* \neq \emptyset, \\ \bot \quad \text{ otherwise.} \end{cases} \quad (8)$$

With this construction of $\text{NextVar} (\cdot)$, we describe the MarginOverflow subroutine in Algorithm 4.

This sounds silly because if such oracle for μ_0^v were efficient we would have been using it to output a sample for μ_0^v in the first place, which is exactly the reason why we ended up trying to draw from D.

Nevertheless, such Bernoulli factory for sampling from D may serve as the basis of a recursion, where sufficiently many variables with enough “freedom” would have been sampled successfully in their zones of local uniformity during the recursion, and hence the remaining CSP formula would have been “factorized” into small connected components, in which case an oracle for μ_0^v would be efficient to realize by the RejectionSampling$(\Phi, \sigma, \{v\})$, and the Bernoulli factory for D could apply.

Based on a variable u is a good candidate for sampling if it currently has enough “freedom” (since u is not σ-fixed) and can “influence” the variables that we are
trying to sample in the recursion (which are marked by ⋆) through a chain of constraints in the simplification of \(\Phi \) under the current \(\sigma \). Such variables are enumerated by NextVar (\(\sigma \)).

The idea of Algorithm 4 is simple. In order to draw from the overflow distribution \(\mathcal{D} \) for a variable \(v \in V \): if there is another candidate variable \(u = \text{NextVar} (\sigma) \) that still has enough freedom so its sampling might be easy, and also is relevant to the sampling at \(v \) or its ancestors, we try to sample \(u \)'s marginal value first (hopefully within its zone of local uniformity and compensated by a recursive call for drawing from its margin overflow); and if there is no such candidate variable to sample first, we finally draw from \(\mathcal{D} \) using the Bernoulli factory.

The following invariant is satisfied by the MarginOverflow subroutine called within the MarginSample subroutine and the MarginOverflow itself (formally proved in Lemma V.3).

Condition III.7 (invariant for MarginOverflow). The following holds for the input tuple \((\Phi, \sigma, v)\):

- \(\Phi = (V, Q, C) \) is a CSP formula, \(\sigma \in Q^* \) is a feasible partial assignment, and \(v \in V \) is a variable;
- \(\sigma(v) = \ast \);
- \(\mathbb{P}[\neg c \mid \sigma] \leq p'q \) for all \(c \in C \).

The following marginal lower bound follows from the “local uniformity” property (Corollary IV.3) in the same way as in Proposition III.5 and is formally proved in Section IV.

Proposition III.8. Assuming Condition III.7 for the input \((\Phi, \sigma, v)\), it holds that \(\min_{x \in Q_v} \mu^\sigma_v(x) \geq \theta_v + \zeta \) and for \(u = \text{NextVar} (\sigma) \), if \(u \neq \bot \) then it also holds that \(\min_{x \in Q_u} \mu^\sigma_u(x) \geq \theta_u + \zeta \).

The Bernoulli factory used in Algorithm 4 is achieved by a combination of existing constructions (to be specific, the Bernoulli factory for subtraction in [28], composed with the linear Bernoulli factory in [29] and the Bernoulli race in [30]), given access to an oracle for drawing from the marginal distribution \(\mu^\sigma_v \), which is realized by RejectionSampling(\(\Phi, \sigma, \{v\} \)) in Algorithm 2. The description of the Bernoulli factory and the proof of its correctness and efficiency can be found in [20, Appendix A].

IV. Preliminary on Lovász Local Lemma

The following is the asymmetric Lovász Local Lemma stated in the context of CSP.

Theorem IV.1 ([1]). Given a CSP formula \(\Phi = (V, Q, C) \), if there is a function \(x : C \to (0, 1) \) such that:

\[
\forall c \in C : \quad \mathbb{P}[\neg c \mid \sigma] \leq x(c) \prod_{e' \in C} (1 - (1 - x(c'))) \quad (9)
\]

then

\[
\mathbb{P} \left[\bigwedge_{c \in C} \neg c \right] \geq \prod_{c \in C} (1 - x(c)) > 0.
\]

When the condition (9) is satisfied, the probability of any event in the uniform distribution \(\mu \) over all satisfying assignments can be well approximated by the probability of the event in the product distribution. This was observed in [26]:

Theorem IV.2 ([26]). Given a CSP formula \(\Phi = (V, Q, C) \), if (9) holds, then for any event \(A \) that is determined by the assignment on a subset of variables \(\forall v \in A \subseteq V \),

\[
\Pr_{\mu}[A] = \mathbb{P}[A \mid \bigwedge_{c \in C} \neg c] \leq \mathbb{P}[A] \prod_{c \in C} (1 - x(c))^{-1},
\]

where \(\mu \) denotes the uniform distribution over all satisfying assignments of \(\Phi \) and \(\mathbb{P} \) denotes the law of the uniform product distribution over \(Q \).

The following “local uniformity” property is a straightforward corollary to Theorem IV.2 by setting \(x(c) = ep \) for every \(c \in C \) (and the lower bound is calculated by \(\mu_v(x) = 1 - \sum_{y \in Q_v \setminus \{x\}} \mu_v(y) \)).

Corollary IV.3 (local uniformity). Given a CSP formula \(\Phi = (V, Q, C) \), if \(ep^\eta < 1 \), then for any variable \(v \in V \) and any value \(x \in Q_v \), it holds that

\[
\frac{1}{q_v} \left((1 - e^{\eta})^{-1} - 1 \right) \leq \mu_v(x) \leq \frac{1}{q_v} + \left((1 - e^{\eta})^{-1} - 1 \right).
\]

Recall \(p' \) defined in (5) and \(\theta_v, \xi, \eta \) defined in (6). The following corollary implied by the “local uniformity” property simultaneously proves Proposition III.5 and Proposition III.8.

Corollary IV.4. For any CSP formula \(\Phi = (V, Q, C) \) and any partial assignment \(\sigma \in Q^* \), if

\[
\forall c \in C, \quad \mathbb{P}[\neg c \mid \sigma] \leq p'q,
\]

then \(\sigma \) is feasible, and for any \(v \in V \setminus \Lambda(\sigma) \) and any \(x \in Q_v \),

\[
\theta_v + \xi \leq \mu_v^\sigma(x) \leq \theta_v + 2\eta + \zeta.
\]
V. Correctness of Sampling

In this section, we prove the correctness of Algorithm 1. All theorems in this section assume the setting of parameters in (5) and (6), and the oracles in Assumption 1 and Assumption 2.

Theorem V.1. On any input CSP formula $\Phi = (V, Q, C)$ satisfying (3), Algorithm 1 terminates with probability 1, and returns a uniform random satisfying assignment of Φ upon termination.

Remark V.2 (perfectness of sampling). Note that the sampling in above theorem is perfect: Algorithm 1 returns a sample that is distributed exactly as the uniform distribution μ over all satisfying assignments of Φ. Later in Section VI, the oracle assumed in Assumption 2 will be realized by a Monte Carlo routine, which will further generalize the sampling algorithm to assume nothing beyond an evaluation oracle, in a price of a bounded bias introduced to the sampling.

The following lemma guarantees that the invariants in Condition III.3 and Condition III.7 are satisfied respectively by the inputs to Algorithm 3 and Algorithm 4.

Lemma V.3. During the execution of Algorithm 1 on a CSP formula $\Phi = (V, Q, C)$ satisfying (3):

1) whenever MarginSample(Φ, X, v) is called, Condition III.3 is satisfied by its input (Φ, X, v);
2) whenever MarginOverflow(Φ, σ, v) is called, Condition III.7 is satisfied by its input (Φ, σ, v).

Before proving this lemma, we show that these invariants can already imply the correctness of MarginSample, which is critical for the correctness of the main sampling algorithm (Algorithm 1).

Theorem V.4. The following holds for Algorithm 3 and Algorithm 4:

1) Assuming Condition III.3, MarginSample(Φ, σ, v) terminates with probability 1, and it returns a random value $x \in Q_o$ distributed as $\mu_{v_o}^*$ upon termination.
2) Assuming Condition III.7, MarginOverflow(Φ, σ, v) terminates with probability 1, and upon termination it returns a random value $x \in Q_o$ distributed as the $\mathcal{D} = \frac{\mu_{v_o}^* - \theta_o}{1 - q_o \theta_o}$ defined in (7).

The proof of Theorem V.4 is left to [20, Section 5].

We then verify the invariant conditions claimed in Lemma V.3. Before that, we formally define the sequence of partial assignments that evolve in Algorithm 1.

Definition V.5 (partial assignments in Algorithm 1). Let $X^0, X^1, \ldots, X^n \in Q^*$ denote the sequence of partial assignments, where $X^0 = \emptyset$ and for every $1 \leq i \leq n$, X^i is the partial assignments X in Algorithm 1 after the i-th iteration of the for loop in Lines 1-4.

Lemma V.6. For the X^0, X^1, \ldots, X^n in Definition V.5, it holds for all $0 \leq i \leq n$ that X^i is feasible and

$$\forall c \in C, \quad P[\neg c \mid X^i] \leq p'q.$$

Lemma V.7. Assume Condition III.7 for (Φ, σ, v). For any $u \in V$, if u is not σ-fixed, then (Φ, σ_{u-a}, v) and (Φ, σ_{u-a}, u) satisfy Condition III.7 for any $a \in Q_u \cup \{\ast\}$.

Both proofs of Lemma V.6 and Lemma V.7 can be found in [20, Section 5]. The invariant of Condition III.3 for MarginSample stated in Lemma V.3-(1) follows easily from Lemma V.6. The invariant of Condition III.7 for MarginOverflow stated in Lemma V.3-(2) follows from Lemmas V.3-(1) and V.7. Because by (Φ, σ, v) satisfies Condition III.3, we have (Φ, σ_{u-a}, v) satisfies Condition III.7. In addition, during the execution of MarginOverflow(Φ, τ, v) where $\tau = \sigma_{u-a}$, the algorithm will only change an input partial assignment τ to τ_{u-a} for those vertices u that are not τ-fixed and for $a \in Q_u \cup \{\ast\}$. Lemma V.3 is proved.

Combining Lemma V.3 and Theorem V.4, we prove the correctness of MarginSample (Algorithm 3), assuming the LLL condition in (3) for the input CSP in the main algorithm (Algorithm 1).

The correctness of RejectionSampling (Algorithm 2) has already been established in Theorem III.4.

The correctness of the main sampling algorithm (Algorithm 1) then follows from the correctness of these two main subroutines, with details left to [20, Section 5].

VI. Efficiency of Sampling

In this section, we show the efficiency of Algorithm 1 under the LLL condition in (3).

Algorithm 1 assumes accesses to the following oracles for a class of constraints C, both of which receive as input a constraint $c \in C$ and a partial assignment $\sigma \in Q^*$ upon queries:

- Eval(c, σ): the evaluation oracle in Assumption 1, which decides whether $P[c \mid \sigma] = 1$, that is, whether c is already satisfied by σ;
- Frozen(c, σ): the oracle for frozen decision in Assumption 2, which distinguishes between the two cases $P[\neg c \mid \sigma] > p'$ and $P[\neg c \mid \sigma] < 0.99p'$, where p' is the threshold defined in (5), and answers arbitrarily and consistently if otherwise.

The complexity of our sampling algorithm is measured in terms of the queries to the two oracles Eval(\cdot) and
Frozen(-), and the computation costs. We prove the following theorem.

Theorem VI.1. Given as input a CSP formula $\Phi = (V, Q, C)$ satisfying (3), Algorithm 1 in expectation costs $O(q^2k^2\Delta^10n)$ queries to Eval(-), $O(k\Lambda^7n)$ queries to Frozen(-), and $O(q^2k^3\Delta^10n)$ in computation.

Together with the correctness of Algorithm 1 stated in Theorem V.1, this proves the main theorem for perfect sampling (Theorem I.2), since any query to the oracle Frozen(-) can be resolved in poly(q, k) time assuming total variation distance from the output of Algorithm 1 (P + Eval βc times whether in computation. represents the number of queries to log (Φ), can be distinguished with high probability C can be resolved in and a partial assignment σ.

Remark VI.2 (Monte Carlo realization of frozen decision). The oracle Frozen(-) can be realized probabilistically through the Monte Carlo method. Upon any query on a constraint c and a partial assignment σ, the two extreme cases $P[\neg c | \sigma] > p'$ and $P[\neg c | \sigma] < 0.99p'$ can be distinguished with high probability $(1 - \delta)$ by independently testing for $O(\frac{1}{p'} \log \frac{1}{\delta})$ times whether the constraint c is satisfied by a randomly generated assignment over $\forall b(c)$ consistent with σ. We further apply a memoization to guarantee the consistency of the oracle as required in Assumption 2. The resulting algorithm is called Algorithm 1’ and is formally described in Section VI-C.

This Monte Carlo realization of the Frozen(-) oracle introduces a bounded bias to the resulting sample and turns the perfect sampler in Theorem VI.1 to an approximate sampler Algorithm 1’, which no longer assumes any nontrivial machinery beyond evaluating constraints.

Theorem VI.3. Given as input an $\epsilon \in (0, 1)$ and a CSP formula Φ satisfying (3), Algorithm 1’ in expectation costs $O(q^2k^2\Delta^11n \log (\frac{\Delta}{\epsilon}))$ queries to Eval(-) and $O(q^2k^3\Delta^11n \log (\frac{\Delta}{\epsilon}))$ in computation, and outputs within ϵ total variation distance from the output of Algorithm 1 on input Φ.

Together with the correctness of Algorithm 1 stated in Theorem V.1, this proves the main theorem (Theorem I.1) of the paper.

A **notation for complexity bound:** Throughout the section, we adopt the following abstract notation for any complexity bound. A complexity bound is expressed as a formal bi-variate linear function:

$$t(x, y) = \alpha \cdot x + \beta \cdot y + \gamma,$$

where α represents the number of queries to Eval(-), β represents the number of queries to Frozen(-), and γ represents the computation costs.

A. Efficiency of MarginSample

We now prove the following upper bound on the expected running time of MarginSample (Algorithm 3), which is expressed in the form of (10).

Let $T_{MS}(\Phi, \sigma, v)$ be the random variable that represents the complexity of MarginSample(Φ, σ, v) when Condition III.3 is satisfied by (Φ, σ, v).

Theorem VI.4. Assume $8ep\Lambda^3 \leq 0.99p'$ and let X^0, X^1, \ldots, X^n be the random sequence in Definition V.5. Assume the convention that $T_{MS}(\Phi, X^{t-1}, v_t) = 0$ when v_t is X^{t-1}-fixed. For any $1 \leq t \leq n$, we have

$$E[T_{MS}(\Phi, X^{t-1}, v_t)] \leq O(q^2k^2\Lambda^10 \cdot x + 480k\Lambda^7 \cdot y + O(q^3k^3\Lambda^10),$$

where expectation is taken over both X^{t-1} and the randomness of MarginSample algorithm.

The proof of Theorem VI.4 is left to [20, Section 6.5].

B. Efficiency of RejectionSampling

Here, we focus on $X = X^n$, the partial assignment obtained after all n iterations of the for loop in Line 2 of Algorithm 1, and passed to the RejectionSampling (Algorithm 2) as input, as formally defined in Definition V.5.

For partial assignment $\sigma \in Q^*$, let $T_{Rej}(\sigma)$ be the random variable representing the complexity of RejectionSampling($\Phi, \sigma, V \setminus \Lambda(\sigma)$) in form of (10).

We show the following bound on the expectation of $T_{Rej}(X)$ on the random partial assignment $X = X^n$, whose proof can be found in [20, Section 6.6].

Theorem VI.5. Assume $8ep\Lambda^3 \leq 0.99p'$, where p' is fixed as in (5).

$$E[T_{Rej}(X)] \leq 10\Lambda^5n \cdot x + O(qk\Lambda^5n),$$

where expectation is taken over both X and the randomness of RejectionSampling algorithm.

C. Efficiency of the main sampling algorithm

The proof of Theorem VI.1 then follows from combining Theorem VI.4 and Theorem VI.5. The proof of Theorem VI.3 follows by setting up Algorithm 1’ that does the followings. Set the parameters as:

$$\delta = 0.005 \quad \text{and} \quad N = \left\lfloor \frac{\ln (4 \times 10^3k\Lambda^7n\epsilon^{-2})}{0.33p'\delta^2} \right\rfloor.$$

Algorithm 1’ simply executes Algorithm 1 on input Φ, with the oracle Frozen(-) replaced by the following explicitly implemented Monte Carlo subroutine:
• Given as input any constraint $c \in C$ and any partial assignment $\sigma \in Q^\ell$, repeat for N times:
 - generate an assignment $Y \in Q^\ell(c)$ on $vbl(c)$ uniformly at random consistent with σ;
 - check whether $c(Y) = \text{True}$ by querying $\text{Eval}(c, Y)$;
• let Z be the number of times within N trials that $c(Y) = \text{False}$, and return $I[Z/N > 0.995\rho]$.
The detailed proof can be found in [20, Section 6.7].

Acknowledgment

We thank Weiming Feng and Kewen Wu for helpful discussions. Kun He wants to thank Xiaoming Sun for his support in doing this work. Yitong Yin wants to thank Vishesh Jain for pointing to the notion of robust CSPs.

References

[1] P. Erdős and L. Lovász, "Problems and results on 3-chromatic hypergraphs and some related questions," Infinite and finite sets, volume 10 of Colloquia Mathematica Societatis János Bolyai, pp. 609–628, 1975.
[2] J. B. Shearer, "On a problem of Spencer," Combinatorica, vol. 5, no. 3, pp. 241–245, 1985.
[3] R. A. Moser and G. Tardos, "A constructive proof of the general Lovász local lemma," J. ACM, vol. 57, no. 2, p. 11, 2010.
[4] H. Guo, M. Jerrum, and J. Liu, "Uniform sampling through the Lovász local lemma," J. ACM, vol. 66, no. 3, pp. Art. 18, 31, 2019.
[5] A. Moitra, "Approximate counting, the Lovasz local lemma, and inference in graphical models," J. ACM, vol. 66, no. 2, pp. 10:1–10:25, 2019. (Conference version in STOC’17).
[6] H. Guo, C. Liao, P. Lu, and C. Zhang, "Counting hypergraph colorings in the local lemma regime," SIAM Journal on Computing, vol. 48, no. 4, pp. 1397–1424, 2019.
[7] A. Galanis, L. A. Goldberg, H. Guo, and K. Yang, "Counting solutions to random CNF formulas," in ICALP, vol. 168 of LIPIcs, pp. 53:1–53:14, 2020.
[8] D. G. Harris, "New bounds for the moser-tardos distribution," Random Structures & Algorithms, vol. 57, no. 1, pp. 97–131, 2020.
[9] W. Feng, H. Guo, Y. Yin, and C. Zhang, "Fast sampling and counting k-sat solutions in the local lemma regime," Journal of the ACM (JACM), vol. 68, no. 6, pp. 1–42, 2021.
[10] W. Feng, K. He, and Y. Yin, "Sampling constraint satisfaction solutions in the local lemma regime," in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1565–1578, 2021.
[11] V. Jain, H. T. Pham, and T. D. Vuong, "On the sampling lovász local lemma for atomic constraint satisfaction problems," CoRR, vol. abs/2102.08342, 2021.
[12] V. Jain, H. T. Pham, and T. D. Vuong, "Towards the sampling lovász local lemma," in 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pp. 173–183, IEEE, 2021.
[13] K. He, X. Sun, and K. Wu, "Perfect sampling for (atomic) lovász local lemma," CoRR, vol. abs/2107.03932, 2021.
[14] A. Galanis, H. Guo, and J. Wang, "Inapproximability of counting hypergraph colourings," arXiv preprint arXiv:2017.05486, 2021.
[15] W. Feng, H. Guo, and J. Wang, "Improved bounds for randomly colouring simple hypergraphs," arXiv preprint arXiv:2202.05554, 2022.
[16] H. Guo and M. Jerrum, "A polynomial-time approximation algorithm for all-terminal network reliability," SIAM J. Comput., vol. 48, no. 4, pp. 964–978, 2019.
[17] H. Guo and K. He, "Tight bounds for popping algorithms," Random Structures Algorithms, vol. 57, no. 2, pp. 371–392, 2020.
[18] I. Bezáková, A. Galanis, L. A. Goldberg, H. Guo, and D. Stefankovič, "Approximation via correlation decay when strong spatial mixing fails," SIAM J. Comput., vol. 48, no. 2, pp. 279–349, 2019.
[19] N. J. A. Harvey and J. Vondrák, "An algorithmic proof of the Lovász local lemma via resampling oracles," in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1327–1345, IEEE Computer Soc., Los Alamitos, CA, 2015.
[20] K. He, C. Wang, and Y. Yin, "Sampling lovász local lemma for general constraint satisfaction solutions in near-linear time," arXiv preprint arXiv:2204.01520, 2022.
[21] K. Anand and M. Jerrum, "Perfect sampling in infinite spin systems via strong spatial mixing," CoRR, vol. abs/2106.15992, 2021.
[22] J. A. Fill and M. Huber, "The randomness recycler: a new technique for perfect sampling," in FOCS, pp. 503–511, IEEE, 2000.
[23] W. Feng, N. K. Vishnoi, and Y. Yin, "Dynamic sampling from graphical models," in STOC, pp. 1070–1081, ACM, 2019.
[24] M. Jerrum, "Fundamentals of partial rejection sampling," arXiv preprint arXiv:2106.07744, 2021.
[25] W. Feng, H. Guo, and Y. Yin, "Perfect sampling from spatial mixing," Random Structures and Algorithms, 2022.
[26] B. Haeupler, B. Saha, and A. Srinivasan, "New constructive aspects of the Lovász local lemma," J. ACM, vol. 58, no. 6, p. 28, 2011. (Conference version in FOCS’10).
[27] J. Beck, "An algorithmic approach to the Lovász local lemma," Random Struct. Algorithms, vol. 2, no. 4, pp. 343–365, 1991.
[28] c. Nacu and Y. Peres, "Fast simulation of new coins from old," Ann. Appl. Probab., vol. 15, no. 1A, pp. 93–115, 2005.
[29] M. Huber, "Nearly optimal Bernoulli factories for linear functions," Comb. Probab. Comput., vol. 25, no. 4, pp. 577–591, 2016.
[30] S. Dughmi, J. D. Hartline, R. Kleinberg, and R. Niazadeh, "Bernoulli factories and black-box reductions in mechanism design," in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 158–169, ACM, New York, 2017.