Reptilian assemblages in the wetlands of Amboli hill complex, northern Western Ghats, Maharashtra, India during the monsoon season

Sachinkumar R. Patil 1 & Kiran Choudaj 2

1 Department of Zoology, Jaysingpur College, Jaysingpur, Kolhapur District, Maharashtra 416101, India.
2 Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
1 srp_zoo@yahoo.co.in (corresponding author), 2 kiranchoudaj@gmail.com

Abstract: We studied the reptilian diversity in and around five man-made wetlands in Amboli hill complex of the northern Western Ghats, in the monsoon seasons from 2011 to 2015. During the study we recorded 37 reptile species: 26 snakes, 10 lizards, and one turtle. Several endemic, range-restricted and newly-described species were recorded. We recorded the Indian Black Turtle *Melanochelys trijuga*, which is under ‘Near Threatened’ category of IUCN Red List 2020. We observed the greatest species richness at Gavase and Dhangarmola wetlands, followed by Khanapur, Yarandol, and Ningudage.

Keywords: Anthropogenic activities, biodiversity hotspot, exotic vegetation, man-made wetlands.
INTRODUCTION

India is home to approximately 610 species of reptiles, about 50% of which are endemic (Khandekar et al. 2021). Reptile diversity of the northern Western Ghats (WG) in Kaas (Maharashtra part) comprises 57 species (Chickane & Bhosale 2012), while the Gujarat part comprises 65 species (Patel et al. 2018), the central WG contain 71 species (Ganesh et al. 2013) and certain parts of southern WG 46 species (Chandramouli & Ganesh 2010).

Wetlands provide important habitats for fish, amphibians, reptiles, and birds. Although not all reptiles are completely dependent on water bodies, some prefer to live on the edges due to the abundance of prey. One study of European reptiles noted 17 species at Romanian shore (Florina et al. 2015). Some reptiles are permanently dependent on wetlands and some are ephemerals (Griffin & Channing 1991). In India, Vyas et al. (2012) reported 25 species of reptiles in and around the five man-made wetlands in Gujarat. As of 2012, 117 species of reptiles were recorded from Maharashtra (Dasgupta et al. 2012). Several reptile studies have been done in India, but there remains a deficiency of information regarding reptiles in wetlands. The present project focused on the study of reptiles in and around wetlands in the northern WG.

MATERIALS AND METHODS

Study area

The present study was carried in the Ajara Tehsil, located in the southern part of Kolhapur district, Maharashtra (Figure 1). It is located on the eastern edge of the Western Ghats, where the hill ranges run north-south. The forests mainly belong to 3B/C2 – southern moist mixed deciduous forests and 2A/C2 – west coast semi-evergreen - mixed forests, as classified by Champion & Seth (1968). Recently, the state government of Maharashtra declared Ajara forest as a ‘conservation reserve’. This declaration will help in conservation of both the habitat and its wildlife. The current study was carried in five man-made wetlands built under a ‘watershed development program’ by the government of Maharashtra with the aim of supplying water for agriculture and consumption (Table 1).

Methods

Reptiles were recorded using visual the encounter
survey (Campbell & Christman 1982) and time-constrained method (Eekhout 2010). The survey was carried in the monsoon season, from 2011–2015. In this survey, we walked along the edge of the wetlands and searched for reptiles in and around the sampling locations. The survey was carried out in the morning from 0830 to 1000 h; each wetland was surveyed five times per monsoon season. Every survey was carried out for 90 minutes; all the observations were carried out by a single observer. Rarefaction curve was generated based on the number of sightings in the survey; along with it opportunistic sightings were used for preparation of checklist. Reptiles were photographed using a DSLR camera (Canon 600D); identification characters were based on consultation of standard literature (Daniel 2002; Das 2008; Whitaker & Captain 2008). For nomenclature, we followed Khandekar et al. (2021), effecting other nomenclatural updates from recent publications (Ganesh et al. 2020, 2021; Mallik et al. 2020, 2021; Deepak et al. 2021; Gowande et al. 2021). Jaccard’s similarity index of species richness between wetlands was calculated using PAST software (Hammer et al. 2001).

RESULTS AND DISCUSSION

Overall 37 reptile species, belonging to 13 families (Table 2) were recorded. Colubridae was the most diverse family, comprising 16 species. Out of 37 species, 26 were snakes, 10 were lizards, and one was a turtle. The highest number of species were recorded from Gavase and Dhangarmola (36 species), followed by Khanapur (25 species), and Yarandol (22 species), while the lowest was from Ningudage (13 species). Jaccard’s similarity index on presence-absence data of species shows that Gavase and Dhangarmola are more similar in their reptilian species richness (Figure 2). The alpha and beta diversity values of the sampling sites are given in Tables 3 and 4, respectively.

The results of Whittaker’s B-diversity for reptiles (Table 3) showed that the species composition and abundance of reptiles are comparable at Gavase and Dhangarmola, whereas Khanapur was slightly different from the rest. However, a high degree of dissimilarity was observed between Gavase and Ningudage, which may be due to the variation in the anthropogenic disturbance levels among these reservoirs. Whittaker’s B-diversity for reptiles indicates that the selected sites for the present study can be significantly categorized on the basis of ecological status.

Diversity indices for reptiles (Table 4) at Gavase freshwater reservoir computed from 139 individuals which belong to 24 taxa resulted in values having a lower dominance index (0.084). On the other hand, Ningudage water body value, computed based on 29 individuals, which belong to 9 taxa resulted in readings with the maximum dominance value (0.291). The sampling sites here arranged in the ascending order of dominance (D) index are Gavase (0.084) <Dhangarmola (0.1) <Khanapur (0.104) <Yarandol (0.182) <Ningudage (0.291).

On the results obtained above, the species richness was observed highest at Gavase water body while lowest was noted at Ningudage water body. Furthermore, based on trends, diversity indices observed from present study indicate three different categories of reservoirs: those in Gavase & Dhangarmola in category I, Khanapur water body in category II, and Yarandol & Ningudage in category III. The results obtained for Shannon (D), Simpson (1-D), and Shannon’s evenness value indicates that previous three were similar values. Additionally, the latter two showed quite similar index ratios.

The Shannon (H), Simpson (1-D), and Shannon’s evenness indices for reptilian diversity at all the reservoirs in descending order are Gavase, Dhangarmola, Khanapur,
Table 2. List of reptile species recorded at the five wetlands.

Common, scientific name	A	B	C	D	E
Typhlopidae					
1 Typhlops acutus (Duméril & Bibron, 1844)	+	+	-	-	+
Uropeltidae					
2 Uropeltis macrolepis (Peters, 1862)	+	+	+	+	-
Pythonidae					
3 Python molurus (Linnaeus, 1758)	+	+	-	-	-
Erycidae					
4 Eryx johnii (Russell, 1801)	+	+	-	+	-
5 Eryx conicus (Schneider, 1801)	+	+	+	+	-
Colubridae					
6 Pythonidae					
7 Python molurus (Linnaeus, 1758)	+	+	+	+	-
8 Python molurus (Linnaeus, 1758)	+	+	+	+	-
9 Python molurus (Linnaeus, 1758)	+	+	+	+	-
10 Python molurus (Linnaeus, 1758)	+	+	+	+	-
11 Python molurus (Linnaeus, 1758)	+	+	+	+	-
12 Python molurus (Linnaeus, 1758)	+	+	+	+	-
13 Python molurus (Linnaeus, 1758)	+	+	+	+	-
14 Python molurus (Linnaeus, 1758)	+	+	+	+	-
15 Python molurus (Linnaeus, 1758)	+	+	+	+	-
16 Python molurus (Linnaeus, 1758)	+	+	+	+	-
17 Python molurus (Linnaeus, 1758)	+	+	+	+	-
18 Python molurus (Linnaeus, 1758)	+	+	+	+	-
19 Python molurus (Linnaeus, 1758)	+	+	+	+	-
20 Python molurus (Linnaeus, 1758)	+	+	+	+	-
21 Python molurus (Linnaeus, 1758)	+	+	+	+	-
22 Python molurus (Linnaeus, 1758)	+	+	+	+	-
23 Python molurus (Linnaeus, 1758)	+	+	+	+	-
24 Python molurus (Linnaeus, 1758)	+	+	+	+	-
25 Python molurus (Linnaeus, 1758)	+	+	+	+	-
26 Python molurus (Linnaeus, 1758)	+	+	+	+	-
27 Python molurus (Linnaeus, 1758)	+	+	+	+	-
28 Python molurus (Linnaeus, 1758)	+	+	+	+	-
29 Python molurus (Linnaeus, 1758)	+	+	+	+	-
30 Python molurus (Linnaeus, 1758)	+	+	+	+	-
31 Python molurus (Linnaeus, 1758)	+	+	+	+	-
32 Python molurus (Linnaeus, 1758)	+	+	+	+	-
33 Python molurus (Linnaeus, 1758)	+	+	+	+	-
Reptilian assemblages in the wetlands of Amboli hill complex

Patil & Choudaj

Figure 3. Rarefaction curve of species richness at wetlands. Note: Blue lines indicate 95% confidence interval estimated by bootstrapping.

Yarandol, and Ningudage. Individual rarefaction curves for all reservoirs are in Figure 3.

The study of reptilian fauna revealed that minimum individuals were observed at Ningudage water body. On that basis, a rarefaction curve was drawn that indicates that Gavase reservoir has maximum richness while Yarandol and Ningudage water bodies are at minimum richness levels. The results obtained from this method are similar to that of Shannon and Simpson indices.

Reyni’s diversity profile for all reservoirs is depicted in Figure 4. The investigation of Reyni’s diversity profile for reptiles indicates that the Gavase is at the top with respect to distribution of species; followed by Dhangarmola and Khanapur. Computed lines of Dhangarmola and Khanapur water bodies intersect each other and hence one cannot compare these sites. Since the computed line of Ningudage is steeper, it indicates the uneven distribution of species in that site.

Gavase and Dhangarmola wetlands showed the highest species richness among all wetlands and have the highest species similarity. Both these wetlands are in the same hill range; located on hillslopes covered with forest from three sides and anthropogenic disturbances are low. Khanapur wetland is also located in the same hilly range, but vegetation surrounding the wetland is a monoculture plantation of *Acacia auriculiformes*, and anthropogenic activities were observed. Despite its similarity and proximity with the above two wetlands, Khanapur wetland showed reduced species compared to above-mentioned wetlands. Exotic plants reduce reptilian diversity (Martin & Murray 2011), and *Acacia auriculiformes* might have reduced richness of reptile
Reptilian assemblages in the wetlands of Amboli hill complex

Reservoir/Indices	Taxa S	Individuals	Dominance D	Simpson_1-D	Shannon_H	Evenness $e^{H/S}$
Gavase	24	139	0.084	0.916	2.758	0.657
Lower	17	139	0.0899	0.8683	2.344	0.5336
Upper	23	139	0.1316	0.9096	2.652	0.6956
Dhangarmola	22	106	0.1	0.9	2.613	0.62
Lower	15	106	0.0899	0.8637	2.29	0.5541
Upper	22	106	0.1362	0.9101	2.652	0.7221
Yarandol	11	48	0.182	0.818	1.945	0.636
Lower	11	48	0.0885	0.8307	2.054	0.6263
Upper	18	48	0.1684	0.9106	2.607	0.8233
Khanapur	18	74	0.104	0.896	2.513	0.686
Lower	14	74	0.0869	0.855	2.21	0.5877
Upper	20	74	0.1446	0.9131	2.661	0.7741
Ningudage	9	29	0.291	0.709	1.627	0.565
Lower	9	29	0.0916	0.8038	1.895	0.6718
Upper	15	29	0.1962	0.9084	2.53	0.8804

Table 4. Whittaker’s B-Diversity of reptiles among the study sites.

Reservoirs	Gavase	Dhangarmola	Yarandol	Khanapur	Ningudage
Gavase	0				
Dhangarmola	0.0435	0			
Yarandol	0.3714	0.3333	0		
Khanapur	0.1429	0.1	0.2414	0	
Ningudage	0.4546	0.4194	0.3	0.3333	0

Figure 4. Renyi’s diversity profile for reptiles for individual study sites.
species at the Khanapur wetlands. Yarandol and Ningudage wetlands are located away from forest area; anthropogenic activities were considerably high due to their location near the human settlement.

The study reconﬁrmed that different reptile taxa occupy various microhabitats. Among all the taxa, three species are burrowing snakes—Grypophyllops acutus, Eryx johnii, and Eryx conicus—all these were recorded under leaf litter. Keelback snakes such as Fowlea piscator, Amphiesma stolatum, and Rhabdophis plumbicolor were recorded from water bodies and fringes. Six species of arboreal snakes were observed at the study site, viz: Boiga forsteni, Boiga beddomei, Ahaetulla oxyrhyncha, Ahaetulla sahyadrensis, Craspedocephalus gramineus, and C. malabaricus. Boiga trinagata, Lycodon striatus, and Lycodon travancoricus are terrestrial and arboreal in habit. Lizards, except Monilesaurus rouxii are predominantly ground-dwelling. However, Calotes vulturnus was frequently found on the trunks of trees. But for these arboreal agamids, all other species of lizards were found under leaf litter and beneath crevices of fallen logs on ground and crevices of rocks. This aspect was studied to prove that non-aquatic reptiles will also beneﬁt by conserving certain ear-marked wetlands. During the survey only one turtle species Melanochelys trijuga was found, which is under the ‘Near Threatened’ category of IUCN Red List (Ahmed et al. 2020); aquatic in habit. We opine that other aquatic turtles known from this region, such as Lissarmys punctata and Nilssonia leithi could not be recorded due to lack of intensive aquatic sampling in the water bodies.

The present study area in the Ajara range is just 30 airline km away from Amboli, site of several previous herpetological expeditions that reported many new lizards and snakes, including Melanopodium khoarei, Rhabdops aquaticus, Dendrelaphis girii, Caliophis castoe, Hemidactylus varadgiri and several new species of Cnemaspis (Vogel & van Rooijen 2011; Smith et al. 2012; Gower et al. 2016; Giri et al. 2017; Seyyed et al. 2018; Chaitanya et al. 2019; Deepak et al. 2021). However, these species could not be recorded during the present study, likely due to the easterly position of the Ajara range compared to Amboli, which is situated well within the Western Ghats.

It is to be acknowledged that man-made constructions of wetlands, especially as a result of damming, have proven to be counter-productive for biodiversity conservation in the Western Ghats (Mohite & Samant 2012). However, scientiﬁcally-informed management interventions consisting of artiﬁcial creating or propagation of wetlands will help in biodiversity conservation. It is thus concluded that man-made wetlands do support a sizeable amount of reptilian diversity. Awareness about the biodiversity value of wetlands among the citizens is therefore necessary for its conservation. Based on these results, we recommend intensive biodiversity studies in the far larger Hidkal Reservoir, situated 40 airline km west of Ajara Tehsil, abutting the state boundary in Karnataka.

REFERENCES

Ahmed, M.F., P. Praschag, A. de Silva, I. Das, S. Singh & P. de Silva (2020). Melanochelys trijuga. The IUCN Red List of Threatened Species 2020.e.T13039A511745. Downloaded on 31 March 2021.

Campbell H.W. & S.P. Christman (1982). Field techniques for herpetofaunal community analysis. In: Scott N.J. Jr. (ed.), Herpetological Communities. Wildlife Research Report 13: 193–200.

Champion, H.G. & S.K. Seth (1968). A Revisited Survey of Forest Types of India, Govt. of India Press, New Delhi, 404 pp.

Chaitanya, R., I. Agarwal, A. Lajmi & A. Khandekar (2019). A novel member of the Hemidactylus brookii complex (Squamata: Gekkonidae) from the Western Ghats of Maharashtra, India. Zootaxa 4646(2): 236–250.

Chandraramouli, S.R. & S.R. Ganesh (2010). Herpetofauna of southern Western Ghats, India – Reinvestigated after decades. Taprobana 2: 72–85. https://doi.org/10.4038/taprob.v2i2.3145

Chikane S. & H.S. Bhosale (2012). Reptiles of Kaas, Northern Western Ghats, Maharashtra, India, with notes on habitat preferences, abundances and threats. Sauria 34(3): 3–15.

Daniel, J.C. (2002). The book of Indian reptiles and amphibians. BNHS, Oxford University Press, 178 pp.

Das, I. (2008). A photographic guide to snakes and other reptiles of India. Om Book International, New Delhi, 144 pp.

Dasgupta, G., B.H.C.K. Murthy & S. Raha (2012). REPTILIA. Zoological Survey of India, Fauna of Maharashtra, State Fauna Series, 20(Part 1): 189–238.

Deepak, V., S. Narayanran, P.P. Mohapatra, S.K. Dutta, G.M. Selvan, A. Khan, K. Mahlow & F. Tillack (2021). Revealing two centuries of confusion: new insights on nomenclature and systematic position of Argyrogena fasciolata (Shaw, 1802) (auct.), with description of a new species from India (Reptilia: Squamata: Colubridae). Vertebrate Zoology 71: 253–316.

Eekhout, X. (2010). Samling Amphibians and Reptiles, pp 530-557. In: Eyman, J., J. Dagreef, C. Hauser, J.C. Monje, Y. Samyn & D. Vanden (eds.). Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. Abc Taxa, 653 pp.

Florina, S., B. Elena, S. Paul, S. Diana, R. Laurentiu & D. Cogalniceanu (2015). The impact of dam construction on amphibians and reptiles. Study case – Iron Gates I. Analele Ştiinţifice ale Universității „Alexandru Ioan Cuza” din Iași, s. Biologie animală. LXI. 19–24.

Ganesh, S.R., S.R. Chandramouli, S. Rachakonda & P. Gowrishankar (2013). Reptiles of the Central Western Ghats, India — a reappraisal and revised checklist, with emphasis on the Agumbe plateau. Russian Journal of Herpetology 20: 181–189.

Ganesh, S.R., N.S. Achyuthan, S.R. Chandramouli & G. Vogel (2020). Taxonomic revision of the Boiga ceylonensis group (Serpentes: Colubridae): re-examination of type specimens, redefinition of nominate taxa and an updated key. Zootaxa 4779(3): 301–322.

Ganesh, S.R., A. K. Mallik, N.S. Achyuthan, K. Shanker & G. Vogel (2021). A new species of Boiga (Serpentes: Colubridae) from the Southern Western Ghats of India with a molecular phylogeny and expanded characterisation of related species. Zootaxa 4981(3): 449–468.

Giri, V.B., V. Deepak, A. Captain, A. Das, S. Das, K. P. Rajkumar, R. L.
Rathish & D. Gower (2017). A new species of Rhabdops Boulenger, 1893 (Serpentes: Natricinae) from the northern Western Ghats region of India. Zootaxa 4319(1): 27–52.

Gowande, G., S. Pal, D. Jablonski, R. Mashoor, P.U. Phansalkar, P.M. Dsouza, A. Jayarajan & K. Shanker (2021). Molecular phylogenetics and taxonomic reassessment of the widespread agamid lizard Calotes versicolor (Daudin, 1802) (Squamata, Agamidae) across South Asia. Vertebrate Zoology 71: 669-696.

Gower, D.J., V. B. Giri, A. Captain & M. Wilkinson (2016). A reassessment of Melanophidium Günther, 1864 (Squamata: Uropeltidae) from the Western Ghats of peninsular India, with description of a new species. Zootaxa 4085(4): 481–503.

Griffin, M. & A. Channing (1991). Wetland associated reptiles and amphibians of Namibia—a national review. In: (Simmons, R.E., C.J. Brown & M. Griffin (eds.). The Status and Conservation of Wetlands in Namibia, Madoqua 17: 221–225.

Hammer, O., D.A.T. Harper & P.D. Ryan (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 1–9.

Khandekar, A., P. Roy & K. Kunte (eds.) (2021). Reptiles of India, v. 1.25. Indian Foundation for Butterflies. https://www.indianreptiles.org/

Mallik, A.K., A.N. Srikanthan, S.P. Pal, P.M. D’Souza, K. Shanker & S.R. Ganesh (2020). Disentangling vines: a study of morphological crypsis and genetic divergence in vine snakes (Squamata: Colubridae: Ahaetulla) with the description of five new species from Peninsular India. Zootaxa 4874(1): 1–62.

Mallik, A.K., A.N. Srikanthan, S.R. Ganesh, S.P. Vijayakumar, P.D. Campbell, A. Malhotra & K. Shanker (2021). Resolving pitfalls in pit viper systematics—a multi-criteria approach to species delimitation in pit vipers (Reptilia, Viperidae, Crotalinae) of Peninsular India reveals cryptic diversity. Vertebrate Zoology 71: 577–619.

Martin, L.J. & B.R. Murray (2011). A predictive framework and review of the ecological impacts of exotic plant invasions on reptiles and amphibians. Biological Reviews of the Cambridge Philosophical Society 86(2): 407–419. https://doi.org/10.1111/j.1469-185X.2010.00152.x

Mohite, S.A., & J.S. Samant (2012). Impact of land use changes on riparian habitats in Panchganga river system. Proceeding of International Conference SWRD-M 2012, 203–207pp.

Patel, H., R. Vyas, V. Naik, B. Dudhatra & S.K. Tank (2018). Herpetofauna of the Northern Western Ghats of Gujarat, India. Zoology and Ecology 28: 213–223. https://doi.org/10.1080/21658005.2018.1499237

Sayyed A., R.A., Pyron & R. Dileepkumar (2018). Four new species of the genus Cnemaspis Strauch, (Sauria: Gekkonidae) from the northern Western Ghats, India. Amphibian & Reptile Conservation 12(2) [General Section]: 1–29 (e157).

Smith, E.N., H. Ogale, V. Deepak & V.B. Giri (2012). A new species of coral-snake of the genus Calliophis (Squamata: Elapidae) from the west coast of peninsular India. Zootaxa 3437(1): 51–68.

Vogel, G., & J. Van Rooijen (2011). A new species of Dendrelaphis (Serpentes: Colubridae) from the Western Ghats, India. Taprobanica 3(2): 77–85.

Vyas, R., B.M. Parasharya & J.J. Jani (2012). Herpetofaunal diversity in and around selected man-made wetlands of central and northern Gujarat, India. Reptile Rap 14: 21–26.

Whitaker R. & A. Captain (2008). Snakes of India, The Field Guide. Draco Books, Tamil Nadu, 495 pp.
Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds
Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davadar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajiv Jayavel, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajesh S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor DT, Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praween, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gobabeb Tamiru, Sudan, Professor of Ornithology, Sudan, USA

Mammals
Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anuruddh Chowdhury, Guwahati, Assam, India
Dr. Dave Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Anne Piga, Wild Cat Network, Germany
Dr. Shomita Mukherjee, SACON, Anakatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharia, HNG University, Patan, Gujarat, India
Dr. R. Spargaro, Società Oranoidi Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justos Joshua, Green Future Foundation, Trichirappalli, Tamil Nadu, India
Dr. R. S. Barman, The American College, Madurai, Tamil Nadu, India
Dr. Paulo Bates, Harison Institute, Kent, UK
Dr. Jim Sandersen, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Chad Dallander, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Buddhnivasi Kannapathy Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines
Dr. Anirudha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Jan T.D. Caldec, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Taylor D. Devlin, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Rayanna D. Gudigar, Wildlife Information Liaison Development Society, Karnataka, India
Dr. Peter J. Schoch, Kew, West Sussex, UK (Mycology)
Dr.(speedy)S, University of Oregon, Eugene, USA (Veterinary)
Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davadar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajiv Jayavel, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajesh S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor DT, Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praween, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gobabeb Tamiru, Sudan, Professor of Ornithology, Sudan, USA

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to: The Managing Editor, JoTT, c/o Wildlife Information Liaison Development Society, No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalappad Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
ravi@threatenedtaxa.org
New host plant records of Fig Wax Scale Ceroplastes rusci (Linnaeus, 1758) (Aristolochiaceae), a new distribution record for Maharashtra state of India
– Ashish Ravindra Bhoyar, Swapnil Nandgawe, Syed Abrar Ahmed & Saduram Madavi, Thongam, Pp. 20686–20688

Photographic record of Armillaria mellea a bioluminescent fungi from Lonavala in Western Ghats, India
– Swandan R. Patil & Shubham V. Yadav, Pp. 20692–20694

Response & Reply
Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)
– Pandi Karthik, Pp. 20695–20697

Reply to the “Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)” by P. Karthik
– S.R. Chandramouli, R.S. Naveen, S. Sureshmarimuthu, S. Babu, P. Karunakaran & Honnavalli N. Kumara, Pp. 20698–20700

Book Review
Conservation Kaleidoscope: People, Protected Areas and Wildlife in Contemporary India
– L.A.K. Singh, Pp. 20701–20702