Introducing an Analysis in Finite Fields

Hélio M. de Oliveira and Ricardo M. Campello de Souza

Universidade Federal de Pernambuco UFPE
C.P.7800 - 50.711-970 - Recife - PE, Brazil
E-mail: {hmo,ricardo}@ufpe.br

Abstract - Looking forward to introducing an analysis in Galois Fields, discrete functions are considered (such as transcendental ones) and MacLaurin Interpolation. A new derivative over finite fields is defined which is based on the Hasse Derivative and is referred to as negacyclic Hasse derivative. Finite field Taylor series and \(a \)-adic expansions over \(GF(p) \), \(p \) prime, are then considered. Applications to exponential and trigonometric functions are presented. Theses tools can be useful in areas such as coding theory and digital signal processing.

1. INTRODUCTION

One of the most powerful theories in mathematics is the Real Analysis [1]. This paper introduces new tools for Finite Fields which are somewhat analogous to classical Analysis. Finite fields have long been used in Electrical Engineering [2], yielding challenging and exciting practical applications including developing space communication and compact discs (CD). Such a theory is the basis of areas like algebraic coding, and is related, to various degrees, to topics such as cryptography, spread-spectrum and signal analysis by finite field transforms [3,4]. Some new and unexpected applications of this framework are currently under development which include bandwidth efficient code division multiplex [5]. Hereafter we adopt the symbol \(:= \) to denote equal by definition, the symbol \(\equiv \) to denote a congruence mod \(p \) and \(K[x] \) a polynomial ring over a field \(K \).

2. FUNCTIONS OVER GALOIS FIELDS

For the sake of simplicity, we consider initially Galois Fields \(GF(p) \), where \(p \) is an odd prime.

Functions: Let \(\alpha \) be an element of \(GF(p) \) of order \(N \).

i) One of the simplest mapping is the "affine function" which corresponds to a straight line on a finite field, e.g. \(a(x)=3x+4 \), \(x \in GF(5) \).

\[
\begin{array}{cccc}
x & 0 & 1 & 2 & 3 & 4 \\
a(x) & 4 & 2 & 0 & 3 & 1 \\
\end{array}
\]

There exists \(p(p-1) \) linear \(GF(p) \)-functions.

ii) Exponential function: \(a^j \), \(i=0,1,...,N-1 \).

e.g. letting \(\alpha^2=2 \), the exponential function \(2^x \)
corresponds to \(2^i \pmod{5} \).

\[
\begin{array}{cccc}
i & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

It is also interesting to consider "shortened" functions in which indexes are reduced modulo \(p-k \) for \(0<k<p \).

\[
i = 0 \quad 1 \quad 2 \quad 3 \quad | \quad 4 \quad \text{indexes } i \pmod{4}
1 \quad 2 \quad 4 \quad 3 \quad \text{repeat.}
\]

Notice that \((\forall x) \ 2^x \equiv 0 \) and \((\forall i) \ 2^x \neq 0 \).

Composite functions can also be generated as usual.
For instance, the function \(\begin{array}{cccc}
i & 0 & 1 & 2 & 3 & 4 \\
\end{array}\)

\[
1 \quad 4 \quad 1 \quad 3 \quad 2
\]
corresponds to \(2^3x^4 \pmod{5} = 2^x \circ (3x + 4) \).

Therefore inverse functions over \(GF(p) \) can be defined as usual, i.e., a function \(a(x) \) has an inverse \(a^{-1}(x) \) if and only if \(a(x) \circ a^{-1}(x)=x \pmod{p} \).

There are \(p! \) inversive \(GF(p) \)-functions. The inverse of \(a(x)=3x+4 \) is \(a^{-1}(x)=2x+2 \pmod{5} \).

Since the characteristic of the field is different from 2, we can define the odd and even component of a function, respectively, as:

\[
o(x):=\frac{a(x)+a(-x)}{2} \quad \text{and} \quad e(x):=\frac{a(x)-a(-x)}{2}.
\]

An even (respectively odd) function has \(o(x)=0 \) (respectively \(e(x)=0 \)).

The \(2^x \) exponential function defined over \(GF(5) \) has \(x=0 \quad 1 \quad 2 \quad 3 \quad 4 \quad x=0 \quad 1 \quad 2 \quad 3 \quad 4 \quad o(x)=3 \quad 3 \quad 3 \quad 2 \quad 2 \quad e(x)=3 \quad 4 \quad 1 \quad 1 \quad 4 \).

iii) \(k \)-Trigonometric functions

A trigonometry in Finite Fields was recently introduced [6]. Let \(G(q) \) be the set of Gaussian integers over \(GF(q) \), i.e., \(G(q):=\{a+ib, a,b \in GF(q)\} \), where \(q=p^r \), \(p \) being an odd prime, and \(j=-1 \) is a quadratic non-residue in \(GF(q) \). With the usual complex number operations, we have then that \(GF:=\langle G(q), \oplus, \odot \rangle \) is a field.

Definition 1

Let \(\alpha \) have multiplicative order \(N \) in \(GF(q) \). The \(G(q) \)-valued \(k \)-trigonometric functions \(\cos_k(\cdot) \) and \(\sin_k(\cdot) \) are:

\[
\cos_k(\alpha^i) := \frac{1}{2}(\alpha^i + \alpha^{-i}) \quad \text{and} \quad \sin_k(\alpha^i) := \frac{1}{2i}(\alpha^i - \alpha^{-i}) \quad i.k=0,1,...,N-1.
\]

The properties of the unit circle hold, i.e.,

\[
\sin_k^2(\alpha^i) + \cos_k^2(\alpha^i) = 1 \pmod{p}.
\]

We consider now \(k \)-trigonometric functions with \(\alpha=3 \) an element of order 6 in \(GF(7) \). A pictorial representation of the \(k \)-cos-function on this finite field is presented in the sequel. There exists several \(k \)-cos: \(\{\cos_k(\cdot)\} \), \(k=0,1,...,5 \). In order to clarify the symmetries, half of the elements of \(GF(p) \) are considered positive
and the other half assumes negative values. Therefore, we represent the Galois field elements as the set \{0, \pm 1, \pm 2, ..., \pm(p-1)/2\}.

The \cos(i) over GF(7) assumes the following values (k,j=0,1,...,5):

\begin{align*}
\cos(0) &= 1 1 1 1 1 1 = 1 1 1 1 1 1 (\text{mod } 7) \\
\cos(1) &= 1 4 3 6 3 4 = 1 -3 3 -1 3 -3 (\text{mod } 7) \\
\cos(2) &= 1 3 3 1 3 3 = 1 3 3 1 3 3 (\text{mod } 7) \\
\cos(3) &= 1 6 1 6 1 6 = 1 -1 1 -1 1 -1 (\text{mod } 7) \\
\cos(4) &= 1 3 3 1 3 3 = \cos(2) \\
\cos(5) &= 1 4 3 6 3 4 = \cos(1)
\end{align*}

Figure 1. Pictorial representation of \cos(i) in GF(7).

The "doughnut ring" representation is well suitable for handling with the cyclic structure of finite fields. The envelope does not exists: It just gives some insight on the concept of different "frequencies" on each carrier (oscillatory behavior). We define \pi on GF(p) as

\[(\pi) := (p-1)/2. \]

Clearly, \cos(i+(\pi)) = -\cos(i).

We shall see that any function from GF(p) to GF(p) defined by \[N \mid p-1 \] points can be written as a polynomial of degree \(N-1 \) (i.e., \(N \) indeterminates), e.g., \[z = x + 1 (\text{mod } 5) \] (indexes \(i \) mod 4).

Generally there are \(N \) unknown coefficients, \[f(i) = a_0 + a_1 i^1 + a_2 i^2 + ... + a_{N-1} i^{N-1} \mod p, \]
and such a decomposition corresponds to the (finite) MacLaurin series with the advantage that there are no errors.

3. DETERMINING THE SERIES

Given a function \(f(i) \), the only polynomial "passing through" all pair of points \(\{i, f(i)\} \) can be found by solving a Linear System over GF(p) [7]. For instance, the 1-cos function over GF(5) leads to:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & \ni_0 \\
1 & 1 & 1 & 1 & \ni_1 \\
1 & 2 & 4 & 3 & \ni_2 \\
1 & 3 & 4 & 2 & \ni_3
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
4 \\
0
\end{pmatrix} \mod 5.
\]

Another way to find out the coefficients of the polynomial expansion is by using Lagrange's interpolation formula [8].

\[
L(i) = \frac{(i-1)(i-2)(i-3)}{(0-1)(0-2)(0-3)} + \frac{(i-0)(i-2)(i-3)}{(2-0)(2-1)(2-3)} \mod 5.
\]

Therefore

\[\cos_1(i) \equiv 1 -2i - i^2 + 2i^3 \mod 5. \]

Identically, the 1-sin function [6] can be expanded:

\[
\begin{pmatrix}
i & 0 & 1 & 2 & 3 \\
\sin_1 & 0 & j3 & 0 & j2
\end{pmatrix}
= j(i^3 - i^2 - 2i) \mod 5.
\]

Euler's formula over a Galois field proved in [6] can also be verified in terms of series:

\[
\cos(i) + j\sin(i) = (1 - 2i - i^2 + 2i^3) - (i^3 - i^2 - 2i) = \frac{1}{2} \mod 5.
\]

Those results hold despite \(\sqrt{-1} = 2 \ mod 5! \)

The unicity of the series decomposition can be established by:

Proposition 1. Given a function \(f \) defined by its values \(f(x), \forall x \in \mathbb{GF}(p) \), there exist only one Maclaurin series for \(f \).

Proof. Letting \(f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{p-1} x^{p-1} \mod p \)
then \(f(0) = a_0 \) and we have the following linear system
The function derivative introduces a serious drawback, namely the derivatives of order greater or equal to the characteristic of the field vanish. Let $a(x) = \sum_{i=0}^{N-1} a_i x^i$ where $(\forall i) a_i \in GF(p), x$ is a dummy variable. Then the derivatives $a^{(0)}(x)=0$ and $a^{(0)}(x)=0$ $(\forall i \geq p)$ no matter the coefficients. A more powerful concept of derivative over a finite field was introduced a long time ago (see [9]):

Definition 2. The Hasse derivative of a polynomial function $a(x) = \sum_{i=0}^{N-1} a_i x^i$ is defined by

$$a^{[r]}(x) = \sum_{i=0}^{N-1} \binom{i}{r} a_i x^{i-r} \text{ with } \binom{i}{r} = 0 \text{ for } i < r.$$

Clearly the classical Newton-Leibnitz derivative yields

$$a^{(r)}(x) = \sum_{i=0}^{N-1} i(i-1) \ldots (i-r+1) a_i x^{i-r}.$$

It follows that $\frac{1}{r!} a^{(r)}(x) = a^{[r]}(x)$.

The Hasse derivative has been successfully used on areas where finite fields play a major role such as coding theory [10].

In the following, we introduce a new concept of derivative in a finite field. In order to exploit its cyclic structure, a polynomial ring $GF(p)[x]$ is required. Let 1 be the constant function $f(x)=1 \forall x \in GF(p)$.

Conventional Hasse derivative considers polynomial modulo $x^p - 1$ so that $\frac{d}{dx} 1 \equiv 0$. On the other hand, the fact that $\binom{i}{r} = 0$ $\forall i < r$ does not allow to handle with negative powers of x.

In contrast with Hasse derivative which always decreases the degree of the polynomial, we introduce a new concept of negacyclic Hasse derivative considering the polynomial ring $GF(p)[x]$ reduced modulo $x^{p-1} + 1$ [11]. Thus, the degree of $a(x)$ is $deg a(x) = p - 2$. The derivative of a constant no longer vanishes and the degree of the polynomial function is preserved! Over $GF(7)$, for instance, we deal with polynomials of degree 5 and assume

$$\frac{d}{dx} \frac{d (-x^6)}{dx} = x^5 \mod 7 \text{ (negacyclic)}$$

$$(\text{Lagrange's remainder).}$$

On a finite field, Taylor series developed around an arbitrary point $\beta \in GF(p)$ can be considered according to

$$a(x) = a(\beta) + a^{[1]}(\beta)(x-\beta) + \frac{a^{[2]}(\beta)}{2!}(x-\beta)^2 + \ldots + a^{[p-1]}(\beta)(x-\beta)^{p-1}.$$

It is interesting that working with $x^p - 1 \equiv 0 \text{ i.e., } deg a(x) = p - 1$, we have

$$R_p = \frac{a^{[p]}(\zeta)}{p!} (x-\beta)^p \equiv 0 \text{ (Section 4) and the series is finite (no rounded error, although } \zeta \text{ is unknown).$$

Now let the β-adic expansion of $a(x)$ be $a(x) = b_0 + b_1 (x - \beta) + b_2 (x - \beta)^2 + \ldots + b_{N-1} (x - \beta)^{N-1}$ with $b_0 = a(\beta)$. It follows from Definition 2 that

$$a^{[r]}(x) = \sum_{i=r}^{N-1} \binom{i}{r} b_i x^{i-r} \text{ so that } a^{[r]}(\beta) = \binom{r}{r} b_r.$$

The unicity of the Taylor Finite Field series follows directly from [12]:

Unicity. Let K be a field and $K[x]$ be a ring of polynomials over such a field. The β-adic expansion of a polynomial $a(x)$ over a ring $K[x]$ is unique.
Any function \(a(x) \) over \(\text{GF}(p) \) of degree \(N-1 \) can be written, for any element \(\beta \in \text{GF}(p) \), as
\[
a(x) = \sum_{i=0}^{N-1} a^{(i)}(\beta)(x - \beta)^i
\]
without error or approximations. For instance, the \(2^x \) \(\text{GF}(3) \)-function can be developed as \(2^x = 1 + 2x + 2x^2 \mod 3 \) (McLaurin series).

Therefore,
\[
(2^x)^{[1]} = 2 + x \mod 2 \quad ; \quad (2^x)^{[2]} = \frac{1}{2!} = 2 \mod 3.
\]

Letting \(2^x = b_0 + b_1(x - \beta) + b_2(x - \beta)^2 \mod 3 \)
then \(2^i = (b_0 - \beta b_1 + \beta^2 b_2) + (b_1 - 2\beta b_2)x + b_2 x^2 \mod 3 \)
with \(b_0 = 2^\beta \mod 3 \).

The \(\beta \)-adic expansions \(\mod p=3 \) are:
\[
2^x = 1 + 2x + 2x^2 \quad \text{0-adic}
\]
\[
2^x = 2 + 2(x - 1)^2 \quad \text{1-adic}
\]
\[
2^x = 1 + (x - 2) + 2(x - 2)^2 \quad 2\text{-adic}.
\]

Indeed, \(\forall \beta \),
\[
\frac{a(x) - a(\beta)}{x - \beta} = a^{[1]}(\beta) + \sum_{i=2}^{N-1} a^{[i]}(\beta)(x - \beta)^{i-1},
\]
so one can, by an abuse, interpret the Hasse derivative as a "solution" of an "0/0-indetermination" over \(\text{GF}(p) \):
\[
a^{[1]}(\beta) \equiv \frac{a(x) - a(\beta)}{x - \beta} \mod \beta.
\]

6. APPLICATIONS: EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

Let us consider classical (real) series:
\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
\]
\[
\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots
\]
\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots
\]

As an example, we consider the ring \(\text{GF}(p)[x] \) with \(x^p = 1 \) so negacyclic Hasse derivatives can be used. Since \(\deg a(x) = p-2 \) we truncate the series yielding
\[
(e^x)^{[1]} = 1 + x + 4x^2 + 6x^3 + 5x^4 + x^5 \mod 7,
\]
\[
(\cos x)^{[1]} = 1 + 4x^2 + 5x^4 \mod 7,
\]
\[
(\sin x)^{[1]} = x + 6x^3 + 5x^5 \mod 7.
\]
The finite field Euler constant \(e \) and the exponential function can be interpreted as follows:
\[
(e^x)^{[1]} \equiv (e^x)_p,
\]
so that
\[
(e^x)^{[r]} \equiv (e^x)_p^r, \quad r \geq 1.
\]
\[
e = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{(p-2)!} \mod p.
\]

Therefore \(e^i = 1 + i + 4i^2 + 6i^3 + 5i^4 + i^5 \mod 7 \).
\[
i^0 = 0 \quad i^1 = 1 \quad i^2 = 2 \quad i^3 = 3 \quad i^4 = 4 \quad i^5 = 5 \mod 7.
\]
\[
i^0 = 1 \quad i^1 = 4 \quad i^2 = 6 \quad i^3 = 1 \quad i^4 = 4 \quad i^5 = 6.
\]

In order to introduce trigonometric functions, it is possible to consider the complex \(j = \sqrt{-1} \) since -1 is a quadratic non-residue for \(p=3 \) (mod 4) and pick \(e^{j\theta} \) so that new "e-trigonometric" sin and cos functions are:
\[
\cos(i) = 3 \exp(i) \equiv 1 + 4i^2 + 5i^4 \mod 7,
\]
\[
\sin(i) = 3 \exp(i) \equiv i + 6i^2 + i^3 \mod 7.
\]

It is straightforward to verify that \(\cos(i) \) is even and \(\sin(i) \) is an odd function. The negacyclic Hasse derivative yields:
\[
\sin^{[1]}(i) = \cos(i) \quad \text{and} \quad \cos^{[1]}(i) = -\sin(i).
\]

We have two kinds of trigonometric functions over a finite field: the \(k \)-trigonometric ones and these new \(e \)-trigonometric functions. Unfortunately, \(\cos(i) \) and \(\sin(i) \) do not lie on the unit circle, i.e., \(\sin^2 i + \cos^2 i \neq 1 \) (mod \(p \)). The "number \(e^\theta \) is not a "natural" element of the field (in contrast with the real case). However, the \(k \)-trigonometric case is defined using an element of the field and presents a lot of properties. Nevertheless, derivatives formulae of \(k \)-trigonometric functions are not related as usual trigonometric derivatives.

These results can be generalized so as to define hyperbolic functions over finite fields, \(p \) odd, according to the series developments:
\[
\forall i \in \text{GF}(p)
\]
\[
cosh(i):= 1 + \frac{i^2}{2!} + \frac{i^4}{4!} + \frac{i^6}{6!} + \ldots + \frac{i^{p-3}}{(p-3)!}
\]
and
\[
\sinh(i):= i + \frac{i^3}{3!} + \frac{i^5}{5!} + \frac{i^7}{7!} + \ldots + \frac{i^{p-2}}{(p-2)!}
\]

Indeed \(\sinh(i) + \cosh(i) = \exp(i) \).

We recall the convention \(\alpha^\infty = 0 \) (\(\forall \alpha \in \text{GF}(p) \) [7]. The idea is to consider an extended Galois Field by appending a symbol \(-\infty \) as done for the Real number set ([1], def.1.39). \(\forall \alpha \in \text{GF}(p) \):
\[
x^\alpha = -\infty \quad x(\pm \infty) = \infty \quad \text{and} \quad x(\infty) = 0.
\]

Therefore, other functions such as an hyperbola \(1/x \) can also be defined.
\[
i^\alpha = 0 \quad i = 1 \quad i^2 = 2 \quad 3 \quad 4
\]
\[
i/0 = -\infty \quad 1 \quad 3 \quad 2 \quad 4.
\]

Finally, it is interesting to consider "log" functions over a Galois field as the inverse of exponential. We have then
\[
i^\log_2(0) = 0 \quad 1 \quad 2 \quad 3 \quad 4
\]
\[
i/\log_2(1) = 0 \quad 1 \quad 3 \quad 2.
\]

\(\log_2(0) \) and \(\log_2(1) \) give the expected values. MacLaurin series cannot be derived as usual. Moreover, the \((e^\iota) \) function does not have an inverse so \((\ln x) \) is not defined, although \(\log_\alpha x \) exists, for any primitive element \(\alpha \).
7. INTEGRAL OVER A FINITE FIELD

We evaluate the sum of the \(n \)th power of all the \(p \) elements of GF(\(p \)). It is also assumed that \(0^0 = 1 \), since that \(f(0)=a_0 \).

\[
0 + 1 + 2 + 3 + \ldots + (p - 1) = \sum_{i=0}^{p-1} i = \frac{p(p-1)}{2}
\]

...\[
0 + 1 + 2 + 3 + \ldots + (p - 1)^2 = \sum_{i=0}^{p-1} i^2 = \frac{p(p-1)(2p-1)}{6}
\]

\[\newcommand*{\r}{\mathop{\sum}}\]

Lemma 1. (\(n \)th power summation).

\[
\sum_{x=0}^{p-1} x^n = \begin{cases} 0 & \text{if } n = p - 1 \\ p-1 & \text{otherwise} \end{cases}
\]

proof. Letting \(S_n := 1^n + 2^n + 3^n + \ldots + (p - 1)^n \) the \(n \)th summation, if \(n=0,1,2,3,(p-1) \) the case is \(n=0 \) apart, \(\left\lbrack \begin{array}{c} n + 1 \\ 1 \end{array} \right\rbrack S_1 + \left\lbrack \begin{array}{c} n + 1 \\ 2 \end{array} \right\rbrack S_2 + \ldots + \left\lbrack \begin{array}{c} n + 1 \\ n \end{array} \right\rbrack S_n = p^n - 1 - p = 0 \)

so that \(n \neq p - 1 \) implies \(S_i = S_{i+1} = \ldots = S_{p} = 0 \) (mod \(p \)).

Definition 3: The definite integral over GF(\(p \)) of a function \(f \) from 0 to \(p-1 \) is

\[
\mathcal{I} = \int_{0}^{p-1} f(\alpha) d \alpha = \sum_{\alpha=0}^{p-1} f(\alpha).
\]

Proposition 2. The integral of a function \(f \) presenting a series

\[
a(x) = \sum_{i=0}^{p-1} a_i x^i
\]

is given by

\[
\int_{0}^{p-1} f(x) \, dx = (p-1)a_{p-1} \text{ mod } p.
\]

proof. Substituting the series of \(f \) in the integral definition and applying Lemma 1,

\[
\mathcal{I} = \sum_{\alpha=0}^{p-1} \sum_{i=0}^{p-1} a_i \alpha^i = \sum_{i=0}^{p-1} a_i \sum_{x=0}^{p-1} x^i = \sum_{i=0}^{p-1} a_i (p-1) \delta_{i,p-1}
\]

where \(\delta_{ij} \) is the Kronecker delta (1 if \(i=j \), 0 otherwise).

Corollary. If a function \(f \) defined \(\forall \alpha \in \text{GF}(p) \) admits an inverse, then the \((p-1)^{th}\) coefficient of its series vanishes.

The condition \(a_{p-1} \equiv 0 \) (mod \(p \)) is a necessary condition but not a sufficient one to guarantee that \(f \) is invertible. In fact the integral vanishes since all the images are distinct (the sum of all the elements of the field).

Proposition 3. Let \(f \) and \(g \) be functions defined for every element of GF(\(p \)). Denoting by \(\{a_i\} \) and \(\{b_j\} \) the coefficients of their respective MacLaurin series, then

\[
\int_{0}^{p-1} f(\alpha) g(\alpha) \, d\alpha = \int_{0}^{p-1} f(k) g(k) \, dk = \frac{1}{p} \sum_{i=0}^{p-1} a_i b_{p-1-i}
\]

proof. Substituting the series of \(f \) and \(g \) in the sum and changing the order of sums, we have

\[
\sum_{k=0}^{p-1} f(k) g(k) = \sum_{i,j=0}^{p-1} a_i b_j \sum_{k=0}^{p-1} k^{i+j}.
\]

The proof follows from Lemma 1 and the fact that the inverse \((p-1)^{-1} = p-1 \text{ mod } p \).

In order to evaluate the integral over another "interval of GF(\(p \))", we consider:

\[
\int_{0}^{N} f(\alpha) \, d\alpha = \sum_{\alpha=0}^{N} f(\alpha) = \sum_{a=0}^{N} a_i S_N(i),
\]

where \(S_N(i) := \sum_{x=0}^{i} x \).

A table with the values of \(S_M(i) \) over GF(5) is shown below.

\(i \)	\(i=0 \)	\(i=1 \)	\(i=2 \)	\(i=3 \)	\(i=4 \)
\(S_0(i) \)	1	0	0	0	0
\(S_1(i) \)	2	1	1	1	1
\(S_2(i) \)	3	3	0	4	2
\(S_3(i) \)	4	1	4	1	3
\(S_4(i) \)	0	0	0	0	4

Another interesting result establishes a link between Hasse derivatives and the Finite Field Fourier Transform [13].

The Galois field function obtained by an image element permutation of \(f \) is here referred to as an \(f \)-permutation.

Proposition 4. The coefficients of the McLaurin series expansion of a given signal \(f \) are exactly the inverse finite field Fourier transform (FFFT) of an \(f \)-permutation.

Proof. Given the 0-adic development \(a(x) \) of a discrete function \(f \), we consider then the finite field Fourier transform pair: \(a \times A \) where the FFFT is from GF(\(p \)) to GF(\(p \)), and \(A^{\alpha} = a(\alpha) \sum_{j=0}^{p-1} \alpha^j \). Since \(a(x) \) is used to interpolate the discrete function \(f(\cdot) \), for any given \(i \) there exist \(j \in \{-x,0,1,\ldots,p-2\} \) such that \(f(\alpha) = a(\alpha^j) = A \).

8. CONCLUSIONS

The main point of this paper is to introduce the background of new tools useful for Engineering applications involving finite fields. A number of discrete functions is analyzed including a brief look at transcendental functions over Galois Fields. Finite field (FF) derivatives are considered, which in turn...
leads to Finite Field Taylor Series. A brief introduction to FF integration is also presented. Clearly many other extensions and applications do exist.

Acknowledgments - The authors wish to thank Prof. V.C. da Rocha Jr. (Universidade Federal de Pernambuco) for introducing us Hasse derivatives.

References

[1] - W. Rudin, "Principles of Mathematical Analysis", McGraw-Hill, 1964.

[2] - R.J. McEliece, "Finite Fields for Computer Scientists and Engineers", Kluwer Ac. Pub., 1987.

[3] - R.M. Campello de Souza, A.M.P. Léo and F.M.R. Alencar, "Galois Transform Encryption", 2nd Int. Symp. on Communication Theory and Applications, Ambleside, England, 1993.

[4] - J.L. Massey, "The Discrete Fourier Transform in Coding and Cryptography", Info. Theory Workshop, ITW, 1998, CA: San Diego, Feb. 9-11.

[5] - H.M. de Oliveira, R.M. Campello de Souza and A.N. Kauffman, "Efficient multiplex for band-limited channels: Galois-Field Division Multiple Access", WCC'99, Proc. of Coding and Cryptography, pp.235-241, Paris, France, 1999.

[6] - R.M. Campello de Souza, H.M. de Oliveira, A.N. Kauffman and A.J.A. Paschoal, "Trigonometry in Finite Fields and a new Hartley Transform", IEEE International Symposium on Information Theory, ISIT, MIT Cambridge, MA, THB4: Finite Fields and Appl., p.293, 1998.

[7] - S. Lin and D.J. Costello Jr., "Error Control Coding: Fundamentals and Applications", NJ: Prentice-Hall, 1983.

[8] - R.W. Hamming, "Numerical Methods for Scientists and Engineers", McGraw-Hill, 1962.

[9] - J.L. Massey, N. von Seemann and P.A. Schoeeller, "Hasse Derivatives and Repeated-root Cyclic Codes", IEEE International Symposium on Information Theory, ISIT, Ann Arbor, USA, 1986.

[10] - V.C. da Rocha, Jr., "Digital Sequences and the Hasse Derivative", Third Int. Symp. On Communication Theory and Applications, Lake District., 95, pp.299-306.

[11] - W.W. Peterson and E.J. Weldon Jr., "Error Correcting Codes", Cambridge, Mass.: MIT press, 1972.

[12] - S. Lang, Linear Algebra, Addison-Wesley Pub. Co., 1966.

[13] - "Transform Techniques for Error-Control Codes", IBM J. Res. Develop., 23, n.3, pp. 299-314, May, 1979.