Effects of Adipocyte Expansion on Cardiovascular System and Ongoing Debate over Obesity Paradox

Yukiteru Nakayama,1 MD and Katsuhito Fujiu,1,2 MD

(Int Heart J 2019; 60: 499-502)

In the last few decades, the prevalence of obesity, traditionally defined as a body mass index (BMI) being equal to or greater than 30 kg/m², has risen dramatically in both industrialized and less industrialized countries across the world.1,2 Obesity increases the risk of developing cardiovascular diseases and has been strongly associated with increased mortality.3,4 As such, the meta-analysis reported by H. Chen, et al in this journal is feasible showing that excess weight is associated with an increased risk of sudden death due to cardiovascular diseases.5 Here we outline the effects of adipose tissue expansion on the cardiovascular system.

Adipocytes uptake lipids and store them in the form of triglycerides within lipid droplets to prevent ectopic lipid deposition and lipotoxicity in other cell types, while adipocytes release fatty acids and glycerol to target tissues in need of energy. When caloric excess continues to exceed energy expenditure, overnutrition yields adiposity. In adult visceral adipose tissue, the capacity of adipogenesis is impaired, and adipocyte hypertrophy is more likely induced instead of hyperplasia.5,6 In the step of adipose expansion, extracellular matrix remodeling is required and leads to mechanical stress and hypoxia in this tissue.7,8 It has become evident that white adipose tissues are not merely organs that passively store excess energy as a reservoir, but also secrete a variety of hormones and communicate with innate and adaptive immune systems in their interstitials for homeostasis.9,10 Dysfunctional adipocytes with hypertrophy modulate the adipokine secretome and lead to inflammation.

Adiponectin, one of the representative adipokines, has pleiotropic properties favorable for the cardiovascular system, although its expression is reduced in hypertrophic adipocytes and plasma levels are decreased in obesity.11,12 Circulating adiponectin exerts vasodilating actions on systemic vascular walls through activation of 5'-AMP-activated protein kinase (AMPK) and restored endothelial nitric oxide synthase (eNOS) coupling, as well as adiponectin derived from perivascular adipose tissue in a paracrine manner.12,13 Anti-inflammatory effects of adiponectin to inhibit endothelial activation and monocyte attachment by inhibition of nuclear factor kappa-B (NF-κB) pathway contribute to protection from atherosclerotic injury.14 Regarding cardiac functions, adiponectin secreted from adipose tissue and partly epicardial fat exerts anti-inflammatory effects on cardiomyocytes,15 which suppresses myocardial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity by preventing membrane translocation of Ras-related C3 botulinum toxin substrate 1 (RAC1) and p47phox via AMPK dependent and independent pathways, thus maintaining the myocardial redox state. Loss of these beneficial actions on the cardiovascular system in obese patients might render them susceptible to ischemic events and deleterious arrhythmogenesis.

Leptin secreted from white adipose tissue in response to lipid storage acts on the satiety centers in the brain to suppress food intake and promote energy expenditure.16 It has recently been observed that leptin engages presynaptic potentiation of γ-aminobutyric acid (GABA) release to inhibit orexigenic agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of hypothalamus for the regulation of appetite,17 and that leptin increases lipolysis via the activation of sympathetic neuronal projections onto adipocytes in adipose tissue.18 However, the regulatory circuits in the central nervous system have an inherent complexity. AgRP neurons and proopiomelanocortin (POMC) neurons in the ARC modulate second-order neurons cooperatively, and the contribution of AgRP neurons and POMC neurons to sympathetic nerve activation differ in different sites of the body from the fat depot to the kidney, the adrenal gland, and other subserving organs.19,20 In addition, the anorexic effects of leptin in obesity turn to be blunted, known as leptin resistance, whereby leptin’s effects of increasing sympathetic nerve activity are preserved, although the underlying mechanism of selective leptin resistance remains elusive. Hyperleptinemia induced autonomic activation and endothelial dysfunction in obesity dismiss nitric oxide production as a beneficial effect of leptin and might be associated with adverse cardiovas-
Adipocyte-mediated sympathetic nerve system (SNS) activation. Circulating leptin from adipocytes in obesity reach out to the ARC in the hypothalamus, and the signals are transmitted through sympathetic nerves to each organ. Adipocytes in obesity decrease adiponectin expression, and they also secrete increased levels of inflammatory cytokines and neprilysin, which cleaves natriuretic peptides. Red arrows indicate the modulation in obesity patients.

Figure.

Leptin-mediated sympathetic nerve system (SNS) activation. Circulating leptin from adipocytes in obesity reach out to the ARC in the hypothalamus, and the signals are transmitted through sympathetic nerves to each organ. Adipocytes in obesity decrease adiponectin expression, and they also secrete increased levels of inflammatory cytokines and neprilysin, which cleaves natriuretic peptides. Red arrows indicate the modulation in obesity patients.
These promising findings might deepen future perception about the relationship between obesity and cardiovascular diseases.

Disclosures

Conflicts of interest: None.

References

1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390: 2627-42.

2. Twig G, Yaniv G, Levine H, et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N Engl J Med 2016; 374: 2430-40.

3. Anne D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 2016; 353: i2156.

4. Chen H, Deng Y, Li S. Relation of body mass index categories with risk of sudden cardiac death. Int Heart J 2019; 60: 624-30.

5. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 2019 (in press).

6. Kursawe R, Eszlinger M, Narayan D, et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes 2010; 59: 2288-96.

7. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol 2015; 208: 501-12.

8. Okonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol 2019; 16: 83-99.

9. Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009; 15: 914-20.

10. Pirzgalska RM, Seixas E, Seidman JS, et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 2017; 23: 1309-18.

11. Caselli C, D’Amico A, Cabiati M, Prescinjone T, Del Ry S, Giannessi D. Back to the heart: the protective role of adi- ponecin. Pharmacol Rep 2014; 82: 9-20.

12. Margaritis M, Antonopoulous AS, Digby J, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponecin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013; 127: 2209-21.

13. Woodward L, Akoumianakis I, Antoniades C. Unravelling the adiponectin paradox: novel roles of adiponecin in the regulation of cardiovascular disease. Br J Pharmacol 2017; 174: 4007-20.

14. Greenstein AL, Khvandi K, Withers SB, et al. Local inflammation and hypoxia abolish the protective anticorrelat properties of perivascular fat in obese patients. Circulation 2009; 119: 1601-70.

15. Antonopoulous AS, Margaritis M, Verheule S, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPARγ adiponecin signalling. Circ Res 2016; 118: 842-55.

16. Caron A, Lee S, Elmqquist JK, Gautron L. Leptin and brain-adipose crosstalks. Nat Rev Neurosci 2018; 19: 153-65.

17. Xu J, Bartolome CL, Low CS, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 2018; 556: 505-9.

18. Zeng W, Pirzgalska RM, Pereira MMA, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 2015; 163: 84-94.

19. Rahmouni K. Cardiovascular regulation by the arcuate nucleus of the hypothalamus: Neurocircuity and signaling systems. Hypertension 2016; 67: 1064-71.

20. Bell BB, Harlan SM, Morgan DA, Guo DF, Rahmouni K. Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin. Mol Med 2018; 8: 1-12.

21. Jia G, Aroor AR, Sowers JR. The role of mineralocorticoid receptor signalling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc Res 2017; 113: 1055-63.

22. Bentley-Lewis R, Adler GK, Perlstein T, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab 2007; 92: 4472-5.

23. Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 2008; 14: 1370-6.

24. Yoshida S, Ishizawa K, Auyzawa N, et al. Local mineralocorti- coid receptor activation and the role of Rac1 in obesity-related diabetic kidney disease. Nephron Exp Nephrol 2014; 126: 16-24.

25. Nagase M, Fujita T. Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol 2013; 9: 86-98.

26. Hall JE, de Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 2015; 116: 991-1006.

27. Asferg CL, Nielsen SJ, Andersen UB, et al. Relative atrial natriuretic peptide deficiency and inadequate renin and angiotensin II suppression in obese hypertensive men. Hypertension 2013; 62: 147-53.

28. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 2014; 4: 416-29.

29. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 2008; 40: 442-5.

30. Mazurek T, Zhang L, Zalewski A, et al. Human epididymal adi- pose tissue is a source of inflammatory mediators. Circulation 2013; 108: 2460-6.

31. Khawaja T, Greer C, Chokshi A, et al. Epididymal fat volume in patients with left ventricular systolic dysfunction. Am J Cardiol 2011; 108: 397-401.

32. Shah R, Gayet E, Januzzi JL, et al. Body mass index and mor- tality in acutely decompensated heart failure across the world: a global obesity paradox. J Am Coll Cardiol 2014; 63: 778-85.

33. Powell-Wiley TM, Ngwa J, Kebede S, et al. Impact of Body Mass Index on Heart Failure by Race/Ethnicity From the Get With The Guidelines-Heart Failure (GWTG-HF) Registry. JACC Heart Fail 2018; 6: 233-42.

34. Khalid U, Ather S, Bavishi C, et al. Pre-morbid body mass in- dex and mortality after incident heart failure: the ARIC Study. J Am Coll Cardiol 2014; 64: 2743-9.

35. Chandra A, Neeland JJ, Berry JD, et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol 2014; 64: 997-1002.

36. Tsujimoto T, Kajo H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol 2017; 70: 2739-49.

37. Lavie CJ, Arena R, Alpert MA, Milani RV, Ventura HO. Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol 2018; 15: 45-56.

38. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-Neillprinyl inhibition versus enalapril in heart failure. N Engl J Med 2014; 371: 993-1004.

39. Zinnman B, Wanner C, Lachin JM, et al. Empagliflozin, cardio- vascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117-28.
40. Standeven KF, Hess K, Carter AM, et al. Neprilysin, obesity and the metabolic syndrome. Int J Obes (Lond) 2011; 35: 1031-40.
41. Packer M. Leptin-Aldosterone-Neprilysin Axis: Identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation 2018; 137: 1614-31.