Mitochondrial function as a therapeutic target in heart failure

Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.

Published in:
Nature reviews cardiology

DOI:
10.1038/nrcardio.2016.203

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Brown, D. A., Perry, J. B., Allen, M. E., Sabbah, H. N., Stauffer, B. L., Shaikh, S. R., Cleland, J. G. F., Colucci, W. S., Butler, J., Voors, A. A., Anker, S. D., Pitt, B., Pieske, B., Filippatos, G., Greene, S. J., & Gheorghiade, M. (2017). Mitochondrial function as a therapeutic target in heart failure. Nature reviews cardiology, 14(4), 238-250. https://doi.org/10.1038/nrcardio.2016.203

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mitochondrial function as a therapeutic target in heart failure

David A. Brown, Justin B. Perry, Mitchell E. Allen, Hani N. Sabbah, Brian L. Stauffer, Saame Raza Shaikh, John G. F. Cleland, Wilson S. Colucci, Javed Butler, Adriaan A. Voors, Stefan D. Anker, Bertram Pitt, Burkert Pieske, Gerasimos Filippatos, Stephen J. Greene and Mihai Gheorghiade

Abstract | Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.

Heart failure (HF) is associated with substantial clinical burden and economic costs worldwide. The disease is particularly prevalent in elderly individuals, in whom the incidence and associated costs are projected to double over the next 20 years. Economic costs associated with the management of patients with HF is estimated at >US$30 billion annually in the USA alone, and accounts for roughly 2–3% of total healthcare spending globally. Despite these enormous costs, mortality from HF remains high. Death from HF within 5 years of diagnosis is common despite current optimal medical therapy. Mortality and rehospitalization within 60–90 days after discharge from hospital can be as high as 15% and 35%, respectively. These event rates have largely not changed over the past 15 years, despite implementation of evidence-based therapy. HF rehospitalization rates also remain high, with care typically focused on symptomatic relief. Patients with HF are often designated as having either reduced ejection fraction (HFrEF), or preserved ejection fraction (HfP EF). Patients with HfP EF also have poor prognosis after the first diagnosis. Regardless of the HF etiology, novel treatments that improve intrinsic cardiac function remain elusive.

Advances in the treatment of ischaemic and valvular heart disease have clearly improved patient survival. The residual cardiac dysfunction and associated comorbidities, however, have led, in the long-term, to the development of HF with attendant poor quality of life. Commonly prescribed HF medications, although beneficial in promoting some symptom relief, often do not fully address the underlying causes of progressive left ventricular dysfunction. Most standard-of-care pharmacological approaches to HF act by reducing workload on the failing heart and, in doing so, attempt to rebalance energy supply and energy demand, albeit to a lower level. Hallmarks of current therapies include modulation of neurohormonal abnormalities, unloading the heart (that is, vasodilatation), and/or reducing the heart rate — all important determinants of reducing myocardial oxygen consumption. β-Blockers, ivabradine, and antagonism of the renin–angiotensin–aldosterone system all act in concert to reduce myocardial energy requirements and attenuate or prevent further adverse cardiac remodelling. Although these therapies have improved survival in patients with chronic ambulatory HFrEF over the past 2–3 decades, death and poor quality of life continue to adversely affect this ever-increasing...
A roundtable meeting was held in Stresa, Italy on 23 October 2015 to discuss the multifaceted problem of insufficient energy production in HF, and the role it has in progressive left ventricular dysfunction. This meeting was attended by academics, clinicians, and representatives from the pharmaceutical industry. The meeting focused on mitochondrial dysfunction as the source of energy deprivation in HF, and how correction of mitochondrial dysfunction using emerging novel therapies might lead to functional improvement of the HF phenotype. This Consensus Statement summarizes the findings from that roundtable discussion.

Bioenergetics of the beating heart
Aristotle considered the heart to be the body’s furnace, radiating energy in the form of heat. Given the astounding energetic cost of cardiac function, this concept is not far from the truth. Humans produce and consume roughly their body weight in ATP (about 65 kg) every single day. The heart accounts for only ~0.5% of body weight, but is responsible for roughly 8% of ATP consumption. This high energy flux is dynamic: the heart stores only enough energy to support pumping for a few heart beats, turning over the entire metabolite pool approximately every 10 s even at resting heart rates. As the most metabolically active organ in the body, the heart possesses the highest content of mitochondria of any tissue. Mitochondria comprise 25–30% of cell volume across mammalian species, with only the myofilaments being more densely packed within cardiac myocytes. The high mitochondrial content of cardiomyocytes is needed to meet the enormous energy requirement for contraction and relaxation (which is also an active process). About 90% of cellular ATP is utilized to support the contraction–relaxation cycle within the myocardium. ATP-dependent release of actin from myosin is required for both contraction and relaxation (which is also an active process). About 90% of cellular ATP is utilized to support the contraction–relaxation cycle within the myocardium. ATP-dependent release of actin from myosin is required for both contraction and relaxation (which is also an active process). About 90% of cellular ATP is utilized to support the contraction–relaxation cycle within the myocardium. ATP-dependent release of actin from myosin is required for both contraction and relaxation (which is also an active process).

The vast majority of phase III trials in patients with HF conducted in the past decade have been negative, arguably for the same reasons discussed above. Furthermore, a relative underinvestment in cardiovascular drug development, as well as strategic abandonment by pharmaceutical companies of new therapies for which the risks are perceived to be higher than the rewards, have also contributed to slow development of drugs for HF. Moreover, the development of effective therapies for HFP EF is imperative to treat this patient population, but the variability in HFP EF phenotypes (such as age, and the presence of diabetes mellitus or hypertension), and the difficulty in establishing reliable preclinical models of HFP EF, also hinder progress. Despite these obstacles, ample opportunity exists to improve HF treatments, provided the focus is directed towards cardiomyocytes and their intrinsic function.

patient population. This unmet need is probably not going to be met by drugs that modulate neurohormonal abnormalities and lower heart rates, because further intervention along these axes is likely to be counterproductive as hypotension and bradycardia become limiting factors. The search for more effective and complementary therapy for this patient population must be focused on improving the intrinsic function of the viable, but dysfunctional, cardiac unit — the cardiomyocytes. The novel therapy must be haemodynamically neutral (no decrease in blood pressure or heart rate) and must target the myocardium as the centrepiece of the therapeutic intervention. The vast majority of phase III trials in patients with HF conducted in the past decade have been negative, arguably for the same reasons discussed above. Furthermore, a relative underinvestment in cardiovascular drug development, as well as strategic abandonment by pharmaceutical companies of new therapies for which the risks are perceived to be higher than the rewards, have also contributed to slow development of drugs for HF. Moreover, the development of effective therapies for HFP EF is imperative to treat this patient population, but the variability in HFP EF phenotypes (such as age, and the presence of diabetes mellitus or hypertension), and the difficulty in establishing reliable preclinical models of HFP EF, also hinder progress. Despite these obstacles, ample opportunity exists to improve HF treatments, provided the focus is directed towards cardiomyocytes and their intrinsic function.
linked to cardiomyocyte injury and death and, therefore, to disease progression. Abnormal mitochondria are a major source of reactive oxygen species (ROS) production, which can induce cellular damage. Abnormal mitochondria can promote programmed cell death through the release of cytochrome c into the cytosolic compartment and activation of caspases. Therefore, mitochondria directly influence ongoing cell injury and death. Mitochondrial abnormalities have also been implicated in aberrant cellular calcium homeostasis, vascular smooth muscle pathology, myofilibrillar disruption, and altered cell differentiation, all important issues in cardiovascular disease, including HF.

Mitochondria in cardiomyocytes

Mitochondria are primarily located within subsarcolemmal, perinuclear, and intrafibrillar regions of the cardiomyocyte. Although they are symbiotic partners with the other cellular compartments, mitochondria are in many ways discrete entities. Mitochondrial dynamics in the form of fission, fusion, and autophagy are highly regulated processes that are essential for energy production and structural integrity of the organelles.

Therapies by bolstering mitochondrial energy production. ACE, angiotensin-converting enzyme; ARB, angiotensin II-receptor blocker; ETC, electron transport chain; HFrEF, heart failure with preserved ejection fraction; HFpEF, heart failure with reduced ejection fraction; ROS, reactive oxygen species.

Figure 1 *Energy supply–demand matching in health and heart failure.* The delicate balance between cardiac demands for energy and supply of energy is tipped in heart failure, in which energy supply cannot match demand. Next-generation therapeutics can improve on existing standard-of-care

CONSENSUS STATEMENT

Contributors to energy demand	Contributors to energy supply
Synthesis, transport, phosphorylation, pumps	Glycolysis
Heart rate	Mitochondria (oxidative phosphorylation)
Relaxation	
made in specialized ribosomes or ‘mitoribosomes’, which are physically attached to the mitochondrial inner membrane.

Many inherited familial cardiomyopathies (both adult and paediatric) are associated with mtDNA mutations. In humans, mitochondria are maternally inherited, owing to high mitochondrial density in the egg and the active degradation of mitochondria in the sperm during fertilization. The proximity of mtDNA to sites of mitochondrial ROS generation, poor repair mechanisms, and a lack of protective histones combine to make mtDNA particularly susceptible to oxidative injury and mutation.

Mitochondrial genetics contribute to cardiomyopathies by expressing mutant proteins that influence energy homeostasis. With 1,000–10,000 genes per mitochondria (polyploidy), mitochondrial genetics operate on population-based (instead of Mendelian) principles. Mutated mtDNA is found alongside nonmutated copies, leading to mitochondrial ‘heteroplasmy’. The extent of heteroplasmy in mutated mtDNA influences the susceptibility to inherited mitochondrial disease.

Mutated mtDNA can be found in 1 in 200 individuals, a frequency that is 20-fold higher than the incidence of mitochondrial disease. This mismatch indicates that healthy individuals often harbour mutated mtDNA that has no observable phenotypic consequences until a certain mutation threshold is reached. Although very early in preclinical development, various innovative approaches to reduce the extent of heteroplasmy using genome editing might ultimately lead to effective therapy for HF caused by genetic mitochondrial disease. Given that mitochondrial abnormalities, such as increased ROS production, altered mitochondrial energetics, and impaired mitochondrial ion homeostasis, are observed in genetic mitochondrial diseases as well as HF, innovative approaches that target mitochondrial dysfunction might share efficacy across these diseases.

Heart failure is a bioenergetic disease

The ‘myocardial power grid’ consists of mitochondrial ATP supply that transfers energy throughout the cell along intracellular phosphotransfer buffering systems. Mitochondria utilize carbon sources from food substrates, which are catabolized and passed through the Krebs cycle and are then channelled through a series of redox reactions along the inner mitochondrial membrane. The oxidation of these substrates creates a proton electrochemical gradient, predominantly in the form of mitochondrial membrane potential ($\Delta \Psi_m$). Protons that re-enter the mitochondrial matrix through complex V (mitochondrial ATP synthase) liberate energy that phosphorylates ADP, regenerating ATP. Newly synthesized ATP is rapidly transferred out of mitochondria and energy is subsequently distributed throughout the cell via reversible phosphate exchange networks, primarily catalysed by creatine kinase and adenylate kinase-associated reactions.

The evidence that HF involves impaired cellular energy production and transfer is considerable (Table 1). Among studies that have directly examined energetics in human HF, all but three noted some form of bioenergetic impairment in the failing heart. This decrement in bioenergetics is reflected by a decrease in cellular ATP, phosphocreatine (PCr), or the PCr/ATP ratio. Impaired bioenergetics affect patients with HFrEF and those with HFpEF (Table 1).

Although it is difficult to tell from the heterogeneous patient population included in Table 1, the progression to HF is likely to be associated with a gradual decline in bioenergetic reserve capacity that ultimately reaches a critical threshold, after which endogenous mechanisms can no longer compensate for faltering energy supply. Attempts to improve bioenergetics in HF tend to focus on mitochondrial energy production as a target, because direct augmentation of myocardial creatine with oral creatine supplementation is thwarted by a decreased capacity to transport creatine into the failing cardiomyocytes. Skeletal muscles also show mitochondrial dysfunction in HF, contributing to the exercise intolerance that characterizes the HF state. Abnormal mitochondrial function has also been reported in patients with renal insufficiency, and in patients with insulin resistance. Given that patients with HF often manifest both renal insufficiency and insulin resistance, treating...
Mitochondrial dysfunction in HF derives benefits that go beyond improving cardiac function (Fig. 3).

Several interventions are currently being tested in clinical trials to stimulate mitochondrial biogenesis in HF. These include epicatechin and resveratrol, which are naturally-occurring polyphenols found in foods such as red wine, green tea, and dark chocolate. Preclinical HF models suggest that these molecules are biologically active51–53, and some success in improving cardiac function has been reported in small trials of patients with myocardial infarction54. Larger trials in patients with HF are required.

Mitochondrial substrate selectivity

Substrate utilization in the failing heart has been extensively reviewed previously55–60. Overall, altered substrate metabolism seems to be centrally involved in HF, although the direction of the metabolic alterations is complex and is likely to depend on the particular stage of HF progression and differences in the availability of substrate (whether the heart is in a ‘fed’ or ‘fasted’ state)58,59.

The heart utilizes different substrates simultaneously to produce energy. Mitochondrial fatty acid oxidation (FAO) is the predominate substrate used in the healthy adult human heart, being responsible for 60–80% of substrate metabolism in the healthy adult human heart, being responsible for 60–80% of ATP production.

Table 1 | Bioenergetic changes in human heart failure

Patient characteristics (n)	ATP	PCr	PCr/ATP	Notes
NYHA class II (29), class III (8)218	NR	NR	↓	Decrease in PCr/ATP ratio in patients with HfPEF
NYHA class I (10), class III (8), class IV (1)219	NR	NR	↓	Decrease in PCr/ATP ratio in HCM correlated with presence of fibrotic areas in myocardium of left ventricle
LVH (20); LVH and CHF (10); no LVH (10)210	↓	↓	↓	Decrease in ATP flux through CK; 30% decrease in PCr/ATP ratio
NYHA class I (1), class II (7), class III (7), class III–IV (1), class IV (1)211	↓	↓	NR	—
HCM gene mutations in MHC7 (16), TNNT2 (8), or MYBPC2 (7) (3)12	NR	NR	↓	30% reduction in patients with HCM compared with controls; reduction similar in all groups
HHD (NYHA class 0 (10))	=	=	↓	* No change in ATP in AS or HHD; 35% decrease in ATP in DCM
AS (NYHA class II [7], class III [3])	=	↓	NR	* 28% decrease in PCr in AS, 51% in DCM, no change in HHD
DCM (NYHA class II [1], class III [9])133	↓	↓	NR	* 25% decrease in PCr/ATP ratio in HHD
AS (10); five followed up234	NR	NR	↓	Decrease in PCr/ATP before aortic valve repair
HHD (11)235	NR	NR	↓	—
Chronic mitral regurgitation (22)216	NR	NR	↓	—
HCM (14)213	NR	NR	↓	—
DCM (43 total; 6 restrictive cardiomyopathy, 10 normal systolic and diastolic function; 24 cold preserved from transplantations)238	↓	NR	NR	Decrease in ATP in DCM
Al (9; NYHA class average 2.44) or AS (13; NYHA class average 2.77)210	NR	NR	↓	* Significant reduction in PCr/ATP ratio in patients with AS; trend towards a reduction in patients with Al
DCM (23; NYHA class average 2.7)240	NR	NR	↓	* Significant decrease in PCr/ATP ratio for all patients in NYHA class III, but not those in class I or II
AS (41)241	↓	↓	NR	—
Severe AS (27)242	NR	NR	↓	Hand-grip strength tests (marker of cardiac health) employed in patients
HCM (19)245	NR	NR	↓	—
DCM and CHF (NYHA class I [1], class II [3], class III [4])244	NR	NR	=	No change with dobutamine infusion
DCM (9), HCM (8)245	NR	NR	↓	Decreased PCr/ATP ratio in HCM, but not DCM
CAD (14), DCM (19 total; NYHA class II [4], class III [4], class II–III [7], class III–IV [4])246	NR	NR	↓	* Decreased PCr/ATP ratio in DCM
DCM (19), ICM (11)247	=	NR	NR	* Trend for decreased PCr/ATP ratio in CAD
Aortic valve disease (6), AI (8)248	NR	NR	↓	* Relationship exists between severity of HF and decrease in PCr/ATP ratio
DCM (20)249	NR	NR	↓	—
DCM (6), severe LVH (6), mild LVH (5)250	NR	NR	=	No change in PCr/ATP ratio in LVH or DCM

Al, aortic insufficiency; AS, aortic stenosis; CAD, coronary artery disease; CHF, congestive heart failure; CK, creatine kinase; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; HfPEF, heart failure with preserved ejection fraction; HHD, hypertensive heart disease; ICM, insertable cardiac monitor; LVH, left ventricular hypertrophy; NR, not reported; PCr, phosphocreatine.
Dysfunctional mitochondrion

Heart
- Progressive worsening of heart failure state
- Deteriorating LV systolic function and contractility
- Impaired LV diastolic function/relaxation

Skeletal muscle
- Exercise intolerance
- Weakness/fatigue
- Insulin resistance

Kidney
- Renal dysfunction/impairment
- Poor control of blood pressure

Figure 3 | Mitochondrial contribution across multifaceted symptoms of heart failure. Aberrant mitochondrial energy production is involved in many symptoms commonly found in patients with heart failure, including skeletal muscle dysfunction and renal pathologies. LV, left ventricular.

Cardiac ATP production, followed by lesser contributions from glucose, lactate, and ketone bodies. However, the heart can shift the relative contribution of these substrates in an effort to adapt to varying physiological conditions. Under conditions of low oxygen content, such as ischaemia and HF, ATP content is thought to decrease by as much as 40%. In HF, fatty acid oxidation and the oxidative capacity of the mitochondria decline, and no longer maintain sufficient levels of ATP, especially during conditions of increased cardiac workload such as exercise. The failing heart shifts its predominant fuel source from mitochondrial FAO toward glycolytic pathways. This switch is most apparent in late and end-stage HF, and is 30% more energetically efficient in the failing heart, because more ATP is produced per mole of oxygen during carbohydrate oxidation. Numerous studies investigating FAO, glucose oxidation, and (to a lesser extent) ketone body oxidation have aimed to establish a metabolic phenotype, underlying molecular mechanisms, and potential therapeutic targets of the failing heart.

The reduction in fatty acid uptake and FAO that occurs during HF might be owing to dysregulated molecular mechanisms responsible for fatty acid metabolism. For example, the level of peroxisome proliferator-activated receptor-α (PPARα), a transcription factor highly expressed in the heart and responsible for fatty acid transport into the mitochondria and peroxisomes, has been reported to be downregulated in both animal models and humans with HF. Similarly, tissue from animals and humans with HF has reduced activity of the transcription factor responsible for mitochondrial biogenesis, PPARγ co-activator (PGC)-1α. Because these transcription factors have a critical role in the regulation of cardiac mitochondrial energy production, these data suggest that decreased PPARα and PGC-1α activity might be an important precursor leading to impaired FAO during HF. Therefore, further inhibition of FAO to increase glycolytic flux via PPARα and/or PGC-1α is a plausible therapeutic target. Small-molecule regulators of PGC-1α are needed, and animal models overexpressing the transcription factor are inherently problematic, ostensibly owing to increased mitochondrial biogenesis-induced cardiomyopathy. Similarly, PPARa antagonists in animal models of HF have yielded inconclusive data, whereas clinical PPARα ligands are reportedly safe, but their efficacy in a HF population is currently unknown. Although the safety of PPARα ligands is promising, further evidence demonstrating their efficacy in both animal models and humans with HF is needed.

Levels of circulating free fatty acids might be higher in the failing heart than under healthy conditions owing to hormonal stimulation. The rise in serum catecholamine levels increases plasma free fatty acid concentrations, and subsequently stimulates FAO. As a result, reducing the availability of circulating free fatty acids via transient adrenergic antagonists might be a viable therapy to inhibit FAO and increase glycolytic ATP production. Traditionally, β-adrenergic receptor antagonists are used in HF owing to their negative inotropic effects that reduce cardiac workload and spare oxygen by decreasing sympathetic activity. Many, such as carvedilol, have been clinically shown to lessen infarct size after ischaemia by decreasing sympathetic activity, followed by inhibition of mitochondrial fatty acid uptake and increased glucose oxidation.

Malonyl-CoA endogenously regulates fatty acid concentrations by controlling the activity of carnitine O-palmitoyltransferase (CPT) 1, a rate-limiting enzyme in mitochondrial fatty acid uptake. When intracellular levels of malonyl-CoA are increased, CPT1 is inhibited and mitochondrial fatty acid uptake is stopped. The intracellular concentration of malonyl-CoA is dependent on the balance between its synthesis via acetyl-CoA carboxylase and degradation via malonyl-CoA decarboxylase. Therefore, the upregulation of acetyl-CoA carboxylase or inhibition of malonyl-CoA decarboxylase would increase intracellular malonyl-CoA levels, and prevent mitochondrial uptake of free fatty acids to reduce FAO. As expected, inhibiting malonyl-CoA decarboxylase in animal models has reportedly improved cardiac function after ischaemia, reduced cardiac FAO, and increased glycolytic flux. Studies of malonyl-CoA decarboxylase inhibitors in patients with HF are needed.

Trends in glucose oxidation across the spectrum of HF are more variable, particularly among animal models of HF. Compensatory substrate switching towards glucose use has been observed in both animal models and humans, with a higher contribution coming from glycolysis. Stimulating mitochondrial glucose oxidation, either directly or by inhibiting fatty acid catabolism, has been suggested as a viable therapeutic strategy to compensate for the energetically ‘starved’ failing heart.

Ketone body metabolism also seems to be altered in HF. Ketones are formed in the liver via fatty acid metabolism, and provide a small substrate pool for oxidation within the myocardium. In conditions such as diabetes or starvation, ketone catabolism is upregulated in response to lowered insulin availability and higher fatty acid levels. Studies have reported increased ketone utilization in the severely failing heart in humans. Further research is needed to understand the role of ketone oxidation in the failing myocardium, and to determine
Mitochondria. Enzyme complexes responsible for energy production are packed into the mitochondrial inner membrane, often with the help of phospholipids such as cardiolipin. Failing mitochondria often display altered morphology, decreased ATP-generating capacity, heightened production of reactive oxygen species (ROS), abnormal cardiolipin levels, and impaired supercomplexes.

Increased ROS production

Cellular ROS production occurs when ROS formation outpaces or exhausts compensatory signals and overwhets endogenous scavenging systems. ROS are produced at several different sites within cells, both within and outside of mitochondria (reviewed in detail previously). Mitochondrial ROS production occurs at various sites along the inner mitochondrial membrane and as in the mitochondrial matrix by components of the ETC and the Krebs cycle, respectively. ROS production is typically low under normal physiological conditions, and is kept in check by intracellular and intramitochondrial scavenging systems. Pathological ROS levels in the heart typically occur when ROS production outpaces endogenous scavenging capacity. ROS (and other associated reactive intermediates) can damage proteins and lipids, trigger cell-death cascades, and evoke synchronized collapses in the cellular energy grid. Heightened mitochondrial ROS production and downstream ROS-mediated damage has been reported in patients with HF, as well as in preclinical models of the disease.

Although ROS are typically associated with pathological states, ROS levels in the heart per se are best characterized by the term ‘hormesis’: small amounts can evoke adaptive signalling and create beneficial, compensatory responses. Modest production of ROS has been shown to mediate beneficial myocaridal signalling involved in physiological responses such as (transient) sympathetic drive, many pre conditioning paradigms, cardiac mitochondrial quality control, and exercise. Exercise training is known to augment endogenous ROS-scavenging mechanisms in the heart, restore bioenergetic efficiency in porcine models of HFpEF, and improve symptoms and quality of life in trials involving patients with HFrEF. Consistent with the ROS hormesis concept, several studies have noted that administration of high doses of ROS scavengers can abolish the beneficial effects of exercise, including humans taking oral vitamin C or E supplements.

Mitochondrial production of ROS depends on the mitochondrial membrane potential. Increased expression of mitochondrial uncoupling proteins in HF might be a compensatory mechanism to reduce ROS by uncoupling the respiratory chain.
Abnormalities of mitochondrial ETC

Decrements in individual electron transport complexes, particularly complex I and/or IV activity, have been observed in animal models129 and humans15 with HF. Electron transport system proteins seem to aggregate into functional supercomplexes130–132, and a loss of mitochondrial supercomplexes, which is postulated to have a causal role in mitochondrial ROS generation133, has been noted in HF134.

Several approaches are being developed to improve the efficiency of the ETC in HF. The coenzyme Q (ubiquinol/ubiquinone CoQ) pool comprises a redox-cycling coenzyme found in the ETC. CoQ is typically synthesized de novo and undergoes a two-electron reduction from substrates fed into complexes I and II, and is then oxidized as it donates electrons into complex III. As a redox cycler, the ubiquinol/ubiquinone couple can both accept and donate electrons, depending on the redox potential155. Incomplete, one-electron reduction of CoQ produces semiquinone, itself a highly reactive radical. A reduced CoQ pool could potentially feed electrons ‘backwards’ towards complex I, which results in reverse electron transfer and ROS generation156. Decreased circulating CoQ has been observed in patients with HF157,158, with an inverse correlation observed between plasma CoQ and mortality159. In the Q-SYMBIO trial160, the efficacy of CoQ was tested in a small (n = 420), double-blind, placebo-controlled study in patients with HF and showed a reduction in mortality after 2 years of treatment. Although the Q-SYMBIO trial was fairly small, the promising findings triggered interest in the development of other CoQ analogues that more effectively target mitochondria. New quinone conjugates that are tethered to lipophilic, cationic triphenylphosphonium moieties, such as MitoQ, SkQ, and other plastoquinones, might improve the delivery of CoQ to mitochondria161–163, and have shown some promise in preclinical models of HF164. A potential problem with the use of these compounds is that they are self-limiting, in that they can depolarize mitochondria and inhibit mitochondrial respiration at high concentrations165. Several short-chain synthetic CoQ analogues are also in development, including EPI-743 (REF. 166) and idebenone167. These compounds have shown promise in small trials of genetic mitochondrial disease148–149, but have not yet been tested in larger trials of human HF.

Aberrant mitochondrial membrane phospholipids in HF are integrally involved in ETC dysfunction. A membrane phospholipid integral to optimal function of the ETC and whose content and composition are altered in HF is cardiolipin. Cardiolipin resides in the inner mitochondrial membrane (FIG. 4) and, unlike most phospholipids that have two acyl tails, cardiolipin has four acyl chains. In mammalian hearts, these chains are enriched with linoleic acid (18:2), and Cardiolipin decrements are observed in both paediatric150 and adult151,152 patients with HF. Cardiolipin is essential for the activity of ETC complexes, membrane transporters, mitochondrial ion homeostasis, and ROS production153. Given that most mitochondrial complexes associated with energy production are oligomers composed of many subunits, cardiolipin is proposed to act as molecular ‘glue’ holding these subunits together154–156. Approaches that target cardiolipin are likely to improve electron transport across the ETC and, in doing so, might be beneficial in treating HF.

A compound that targets cardiolipin in the mitochondria that is currently in clinical development is the cell-permeable peptide MTP-131 (also called elamipretide or Bendavia). An analogue of MTP-131 (SS-31) was serendipitously discovered by Szeto and Schiller in attempts to identify small peptides with opioid-receptor binding properties157. MTP-131 has no discernible opioid-receptor activity158, but was found to localize to the inner mitochondrial membrane159, reduce myocardial ischaemia–reperfusion injury162,163,164, improve renal function165,166, and restore skeletal muscle function167. MTP-131 is not a direct ROS scavenger164, and is postulated to act by interfering with cardiolipin168 to interrupt the vicious cycle of ROS-mediated cardiolipin oxidation and subsequent loss of energetic169,170. MTP-131-mediated improvements in mitochondrial energetics have been observed across a number of different tissues in animal models of disease, including the myocardium169,171,172. Of note, MTP-131 can improve mitochondrial bioenergetics by improving respiratory supercomplex formation (D. A. Brown, unpublished work).

MTP-131 is currently being investigated in several phase II clinical trials. Preclinical studies in mouse models of HF have demonstrated efficacy using MTP-131. In a mouse model of HF induced by aortic constriction, MTP-131 improved left ventricular function, reduced hypertrophic remodelling, and restored mitochondrial function167. In complementary studies, MTP-131 administration substantially reduced maladaptive remodelling, preserved cardiac function, lowered β-adrenergic-mediated calcium overload, and restored mitochondrial protein expression168–170. A substantial
CONSENSUS STATEMENT

improvement in cardiac function with MTP-131 has been demonstrated in a porcine model of HFP EF171 and a canine model of HFrEF172. Beneficial improvements in ejection fraction were associated with improved activity or expression of mitochondrial complex enzymes I, IV, and V, and a normalization of cardiolipin levels172. As the HF syndrome influences many different tissues [FIG. 3], the evidence that MTP-131 also improves skeletal muscle function, exercise capacity, and renal function adds to the promise of this emerging therapy171,173,174.

Blockers of the MPTP

The mitochondrial permeability transition pore (MPTP) is a nonspecific pore that opens in response to increased calcium levels and oxidative challenge, and is associated with ROS production, apoptotic cell death, and mitochondrial dysfunction. Increased proclivity of MPTP opening occurs in both acute and chronic heart disease, and numerous preclinical studies have demonstrated efficacy in cardiac pathology with MPTP blockers, such as cyclosporin, NIM811, and TRO40303 (reviewed previously172,173). Although the opening of the MPTP has historically been thought of as a pathological event leading to cell death, studies now suggest that transient MPTP opening might be a physiological ‘reset’ mechanism to prevent mitochondrial calcium overload. Rare, transient openings of the MPTP have been observed in individual mitochondria of primary cardiomyocytes186. Small, brief MPTP openings were found to be more frequent in HF cardiomyocytes, and were associated with transient mitochondrial depolarization and mitochondrial calcium release. If opening of these pores might be a normal compensatory mechanism akin to ‘pressure release valves’, the concept of treating HF by blocking them becomes increasingly difficult. Ongoing uncertainty regarding the molecular identity of the MPTP further complicates the development of novel therapies that act on the pore176,181–185. The MPTP seems to be comprised of ATP synthase (complex V) dimers and to be gated by mitochondrial matrix calcium content via cyclophillin D186,187.

Clinical studies have failed to demonstrate efficacy in most188,189, but not all190,191, studies; however, most of these studies focused on reducing acute cardiac ischaemia–reperfusion injury and not in limiting left ventricular dysfunction in HF. Chronic administration of cyclosporin has been linked with renal pathology and immunosuppression192,193, and cyclosporin was found to evoke systemic hypertension in porcine models of HFP EF194. Accordingly, cyclosporin is not an appropriate approach for the long-term management of HF. Further work with alternative MPTP blockers is needed to determine whether inhibiting or delaying MPTP opening is a clinically plausible approach to alter the progression of HF.

Cellular/mitochondrial ion homeostasis

Aberrant handling of several different ions within the mitochondria has been observed, mostly in animal models of HF. Heightened levels of free iron can increase ROS through Fenton chemistry. Changes in cellular iron handling have been noted in HF195, and orally-available iron chelators such as deferiprone seem to redistribute iron from tissues, including the mitochondrial space, into the circulation196. Although a potential exists to treat HF by chelating cellular iron, no study to date has shown functional improvements of the failing heart, although several clinical trials are currently underway.

Impaired cellular calcium handling that leads to decrements in excitation–contraction coupling is noted across HF aetiologies, and contributes to poor cardiac mechanics and to arrhythmogenesis197–200. Mitochondria can directly influence cellular calcium dynamics, because many of the membrane-bound pumps required for cytosolic calcium release and removal are energy-dependent and ROS-dependent. Altered calcium handling has been implicated in HFP EF, in which abnormal calcium dynamics impair relaxation. Short-term administration of ivabradine to slow the heart rate led to modest benefits in patients with HFP EF; ostensibly by providing more time for calcium-dependent relaxation201. The vast majority of calcium resequstration into the sarcoplasmic reticulum, obligatory for diastolic relaxation, occurs through SERCA2a, which has been shown to be downregulated in HF202–204. Overexpressing SERCA2a has shown promise in animal models of HF205,206, although several barriers (such as the development of neutralizing antibodies) still exist before gene transfer realizes its full translational potential207. Furthermore, increased ROS can oxidize proteins associated with the ryanodine receptor calcium-release channel, which can lead to calcium leaking out of the sarcoplasmic reticulum during diastole208. Increased intracellular sodium levels in HF209–212 also contribute to poor calcium handling through mechanisms involving sodium–calcium exchange. Given that calcium is central to maintaining bioenergetic supply–demand matching213, sodium overload alters cellular and mitochondrial calcium fluxes and impairs bioenergetic supply–demand matching in HF214. Although very early in development, inhibitors of the mitochondrial sodium–calcium–(lithium) exchanger215, such as CGP-37157, have been shown to improve cardiac function in preclinical models of HF216,217. Inhibiting the sarcolemmal sodium–calcium exchanger might also be a promising approach, as demonstrated in a preclinical model of HFP EF218.

Another compound in clinical development to improve cardiac efficiency in HF is omecamtiv mecarbil (CK-1827452). This drug increases the calcium sensitivity of the myofilaments219, which prolongs the duration of systole in animal models and in human HF220–222. Two substantial phase Ib, double-blind, randomized studies comparing omecamtiv mecarbil and placebo have been conducted. In the ATOMIC-HF trial223, omecamtiv mecarbil was administered for 48 h intravenously to patients with acute HF. Overall, the study was neutral (with some evidence of a symptomatic benefit at higher doses), but suggested omecamtiv mecarbil was safe. In the COSMIC-HF trial224, an oral formulation of omecamtiv mecarbil was associated with improvements in cardiac function over 20 weeks, with an effect that persisted for 4 weeks after stopping the drug, suggesting that improved function had produced favourable structural remodelling. Despite the promise of omecamtiv mecarbil, concerns about elevated levels of serum
tropin245, metabolic inefficiency246, and impaired cardiac relaxation247 must be assessed by larger clinical trials to understand fully whether this approach can improve prognosis in HF.

Conclusions

The vast majority of HF trials over the past decade have been neutral, and event rates remain unacceptably high. Perhaps most alarming, no proven therapies exist for patients with worsening chronic HF or HFpEF — populations that collectively comprise the majority of the total HF population. Moreover, although systemic blockade of maladaptive neurohormonal responses has improved outcomes in HFpEF, these agents also lower blood pressure and/or heart rate, and development of new haemodynamically active drugs for stepwise addition to existing therapies raises safety and tolerability concerns. Therefore, an ideal novel therapy would be haemodynamically neutral and target the myocardium as the centrepiece of the therapeutic mechanism. In this context, overwhelming evidence from both preclinical and clinical studies indicates bioenergetic insufficiency in HF. Studies using preclinical models of the disease continue to advance our understanding of the cellular and molecular mechanisms that contribute to poor bioenergetics of the failing heart. Considerable potential exists to fill this unmet need, mitigate the economic burdens, and reduce symptoms in patients with HF by focusing on the development of new therapeutic modalities that target mitochondrial abnormalities in HF.

1. Jessup, M. et al. 2009 focused update: ACC/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 119, 1797–2016 (2009).

2. Hunt, S. A., Abraham, W. T., Chin, M. H. &慰角, R. 2009 ACCF/AHA guideline for the evaluation and management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the American Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112, e154-e235 (2005).

3. Wilcox, J. E. et al. Targeting the Heart in heart failure: myocardial recovery in heart failure with reduced ejection fraction. JACC Heart Fail. 3, 661–669 (2015).

4. Braunwald, E., Chieffo, M. R. & Auricchio, A. What are the costs of heart failure? Eur. Heart J. 31, 125–137 (2010).

5. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62, e1–e123 (2013).

6. McDonald, K. et al. Mitochondrial Group in Chronic Heart Failure. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur. Heart J. 33, 1750–1757 (2012).

7. Bayeva, M., Gheorghie, M. & Ardelt, H. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol. 61, 599–610 (2013).

8. Neely, J. R., Liebermeister, H., Battersby, E. J. & Morgan, H. E. Effect of pressure development on oxygen consumption by isolated rat heart. Am. J. Physiol. 212, 804–814 (1967).

9. Gheorghie, M. et al. Developing new treatments for heart failure: focus on the heart. Circ. Heart Fail. 9, e002737 (2016).

10. Vaduganathan, M., Butler, J., Pitt, B. & Gheorghie, M. Contemporary drug development on oxygen consumption by isolated rat heart. J. Am. Coll. Cardiol. 63, 1333–1347 (1989).}

11. Downey, J. M. & Cohen, M. V. Why do we still not have cardioprotective drugs? Circ. J. 73, 1171–1177 (2009).

12. Senn, M., Gavazzi, A., Gheorghie, M. & Butler, J. Heart failure at the crossroads: moving beyond blaming stakeholders to targeting the heart. Eur. J. Heart Fail. 17, 760–763 (2015).

13. Fordyce, C. B. et al. Cardiovascular drug development: is it dead or just hibernating? J. Am. Coll. Cardiol. 65, 1567–1582 (2015).

14. Amidon, S. & Amidon, T. The Sublime Engine: A Biography of the Human Heart. (Rodale Books, 2011).

15. Tornroth-Horsefield, S. & Neutze, R. Opening and closing the metabolic gate. Proc. Natl. Acad. Sci. USA 105, 19565–19566 (2008).

16. Balaban, R. S. Cardiac energy metabolism homostasis: a fable. J. Mol. Cell. Cardiol. 34, 1259–1271 (2002).

17. Barth, E., Stammer, G., Speiser, B. & Schaper, J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell. Cardiol. 24, 669–681 (1992).

18. Schaper, J. Meser, E. & Stammer, G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from humans. Circ. Res. 56, 577–591 (1985).

19. Opie, L. The Heart. Physiology: From Cell to Circulation 3rd edn, (Lippincott-Raven, 1998).

20. Balaban, R. S. Domestication of the cardiac mitochondrion for energy conversion. J. Mol. Cell. Cardiol. 6, 832–841 (2009).

21. Balaban, R. S. The role of signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim. Biophys. Acta 1787, 1334–1341 (2009).

22. Suliman, H. B. & Pandadosi, C. A. Mitochondrial quality control as a therapeutic target. Pharmacol. Rev. 68, 20–48 (2016).

23. Lesnekov, E. J., Chen, O. & Hoppel, C. L. Mitochondrial metabolism in aging heart. Circ. Res. 118, 1595–1611 (2016).

24. Gotthieb, R. A. & Bernstein, D. Mitochondrial remodeling: rearranging, recycling, and reprogramming. Cell Calcium 60, 88–101 (2016).

25. Shirinb, O. S., Song, M. & Dorn, G. W. II. How cardiac energy metabolism communicates cellular energetic signals to ATP-sensitivity potassium channels. Proc. Natl Acad. Sci. USA 98, 7623–7628 (2001).

26. Wu, F., Zhang, J. & Beard, D. A. Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism. Proc. Natl Acad. Sci. USA 106, 7145–7148 (2009).

27. Neubauer, S. & the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 119, 1797–2016 (2009).

28. Leiniers, H. & the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 119, 1797–2016 (2009).

29. Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

30. Ott, M., Amunts, A. & Brown, A. Organization and regulation of mitochondrial protein synthesis. Annu. Rev. Biochem. 85, 77–101 (2016).

31. Bates, M. G. et al. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur. Heart J. 33, 3023–3035 (2012).

32. Marcus, L. Specificity of the origin of eukaryotic organelles, criteria for proof. Symm. Soc. Exp. Biol. 29, 21–38 (1975).

33. Sato, M. & Salo, M. A. Mitochondrial DNA mutations in heart failure. Eur. J. Heart Fail. 1567–1582 (2015).

34. Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402 (2005).

35. Bauman, S. R., Williams, S. L., Pinto, M., Peralta, S. & Moreau, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

36. Reddy, P. et al. Striatal dopamine flux and mitochondrial abnormalities in the germline by genome editing. Cell 161, 459–469 (2015).

37. Pauli, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 495, 632–637 (2013).

38. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 148–151 (1961).

39. Carrasco, A. et al. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc. Natl Acad. Sci. USA 98, 7623–7628 (2001).

40. Wu, F., Zhang, J. & Beard, D. A. Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism. Proc. Natl Acad. Sci. USA 106, 7145–7148 (2009).

41. Neubauer, S. et al. Downregulation of the Na+-carnitine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100, 1867–1870 (1999).

42. Abouzagla, K. et al. Reduced in vivo skeletal muscle oxygen consumption in patients with chronic heart failure — a study using Near Infrared Spectrophotometry (NIRS). Eur. J. Heart Fail. 10, 652–657 (2008).

43. Eirin, A. et al. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Circ. Res. 105, 461–472 (2009).

44. Anderson, E. J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 13, 573–581 (2009).
Dyck, J. R. et al. Enhanced calcium antagonism, disruption of lipid metabolism and increased myocardial substrate metabolism in heart failure. Circ. Res. 87, V40–V48 (1995).

Tripodi, A. et al. Sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J. Am. Coll. Cardiol. 54, 1747–1762 (2009).

Menon, B. et al. Expression of the cytoplasmic domain of β1 integrin induces apoptosis in adult rat ventricular myocytes (ARVM) via the involvement of caspase-8 and mitochondrial pathway. Basic Res. Cardiol. 101, 485–493 (2006).

Rosca, M. G. & Hoppel, C. L. Mitochondrial dysfunction in failing heart. Physiol. Rev. 81, 627–672 (2001).

Leger, B. et al. Chronic formidated administration reduces cardiac mitochondrial protein synthesis and oxidative machinery in mice. Int. J. Cardiol. 146, 270–272 (2010).

Izem-Mexiane, M. et al. Cathecolamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am. J. Physiol. Heart Circ. Physiol. 302, H665–H674 (2012).

Nagasaka, S. et al. Protein kinase A catalytic subunit alters cardiac mitochondrial and glucose potential via the formation of reactive oxygen species. Circ. J. 71, 429–436 (2007).

Ritemondo, A. et al. The energetic receptor-stimulated apoptosis in cardiac mitochondria is mediated by reactive oxygen species/γ-ECN-terminal kinase-dependent activation of the mitochondrial pathway. Circ. Res. 92, 136–148 (2003).

Communal, C. et al. Mitochondria: a novel target for the treatment of cardiac disease. J. Clin. Invest. 106, 847–856 (2000).

Sarma, S., Ardehali, H. & Gheorghiade, M. Enhancing the metabolic substrate: PPAR-α agonists in heart failure. J. Am. Coll. Cardiol. 45, 31–45 (2012).

Jaswal, S. J. et al. Keap1 and NRF2: the guardians of cellular redox homeostasis. J. Biomed. Biotechnol. 2013, 1353–1350 (2011).

Igarashi, N. et al. Role of mitochondrial dysfunction in cardiac remodeling: a novel therapeutic target for heart failure. Biochim. Biophys. Acta 1813, 1353–1350 (2011).

Feldman, D. S., 国木, C. A., Abraham, W. T. & Bristow, M. R. Mechanisms of disease: β-adrenergic receptors — alterations in signal transduction and pharmacogenomics in heart failure. Nat. Clin. Pract. Cardiovasc. Med. 2, 475–483 (2005).

Murphy, E. & Steenbergen, C. Mechanisms underlying heart failure with preserved ejection fraction: role of β-adrenergic receptor antagonists in heart failure. Circ. Res. 98, 2120–2122 (1999).

Laudet, L., Calderari, B. & Pacher, P. Pathophysiological mechanisms of cathecolamine and cocaine-mediated cardiac dysfunction. Heart Fail. Rev. 19, 815–824 (2014).

Brown, D. A., Sabbah, H. N. & Shaikh, S. R. Redox- and β-adrenergic receptor-stimulated apoptosis in cardiac mitochondria: a novel therapeutic target for the treatment of cardiac disease. Cardiovasc. Med. 11, 475–487 (2005).

Murphy, E. & Steenbergen, C. Cardiac substrate metabolism in the normal and failing heart. Circ. Res. 94, 1197–1204 (2004).

Remondino, A. et al. Mitochondrial dysfunction, redox and cardiovascular disease. Curr. Pharm. Des. 16, 270–272 (2010).

Murphy, E. & Steenbergen, C. Mechanisms underlying heart failure with preserved ejection fraction. Circ. Res. 107, 1813–1817 (2010).

Brown, D. A., Jeu, K. N., Sparagana, C. G., Musch, T. I. & Moore, R. L. Exercise training preserves coronary flow and reduces infarct size following ischemia-reperfusion in rat heart. J. Appl. Physiol. 95, 2510–2518 (2003).

Brown, D. A. & Moore, R. L. Perspectives in innate and acquired cardioprotection: cardioprotection achieved through exercise. J. Appl. Physiol. 103, 1894–1899 (2002).

Ellederman, J. F. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J. Am. Coll. Cardiol. 58, 1780–1791 (2011).

Pradhan, D. A., Huang, S. S., Parthasarathy, S. & Sipahi, I. Inflammation as a unifying hypothesis for the development of cardiovascular disease. JAMA 301, 2249–2257 (2009).

Murphy, E. & Steenbergen, C. Cardiovascular disease and exercise training: is there anything new? J. Clin. Invest. 123, 275–280 (2008).

Brown, D. A. et al. Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NAPDH oxidase and mitochondria. Cardiovasc. Res. 98, 47–55 (2013).

Brown, D. A., Menon, B. et al. Mitochondria: a promising target for the treatment of cardiac disease. IUBMB Life http://dx.doi.org/10.1002/iub.1253 (2014).

Stanley, W. C. et al. Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am. J. Physiol. Heart Circ. Physiol. 289, H524–H530 (2005).

Dyck, J. R. et al. Malonyl coenzyme A decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am. J. Physiol. Heart Circ. Physiol. 289, H524–H530 (2005).

Kobayashi, K. et al. A mitochondrial pro-apoptotic activator of the mitochondrial permeability transition pore. J. Clin. Invest. 119, 1365–1376 (2009).

Murphy, E. & Steenbergen, C. Mitochondrial dysfunction and antioxidant-related clinical implications. J. Mol. Cell. Cardiol. 45, 1135–1150 (2007).

Brown, D. A., Moore, R. L. Exercise training preserves coronary flow and reduces infarct size following ischemia-reperfusion injury. J. Appl. Physiol. 91, 1223–1236 (2001).

Zubair, S., Menon, B. et al. Mitochondrial dysfunction and proteins as targets for decreasing cardiac ischemia/reperfusion injury. Pharmacol. Ther. 140, 258–266 (2013).

Murphy, E. et al. Mitochondria as a drug target in ischemic heart disease. Heart Fail. Rev. 19, 535–549 (2014).

Nickel, A. C. et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 22, 472–484 (2015).

Yasuda, S., Dagenais, G., Tardif, J. C. & Sleight, P. Vitamin E supplementation and cardiovascular events in high-risk patients. Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med. 342, 154–160 (2000).

Tujita, K. et al. Effects of edaravone on reperfusion injury in patients with acute myocardial infarction. J. Card. Fail. 10, 46–52 (2004).

Escoberes, N. et al. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates left ventricular remodeling in aged rats. J. Mol. Cell. Cardiol. 77, 136–146 (2014).
ConsenSUS STATEMENT

123. Javadov, S. et al. Mitochondria-targeted antioxidant promotes contractile properties and mitochondrial function of skeletal muscle in aged rats. Oncotarget 6, 39469–39481 (2015).

124. Di Giuseppe, A. F. et al. Supercritical targeting of mitochondrial superoxide in hypertensive rats. Circ. Res. 107, 106–116 (2010).

125. Long, E. et al. Sulfate, 5-OH-2-Br, Bosnajz, Z. & Nilakantan, V. SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recorded in vitro. Free Radic. Biol. Med. 49, 1550–1560 (2010).

126. Koyama, H. et al. Antioxidants improve the phenotype of dyslipidemia and muscle fatigue in mitochondrial superoxide dismutase-deficient mice. Molecules 18, 1383–1393 (2013).

127. Kawakami, S. et al. EUK-8, prevents murine dilated cardiomyopathy. J. Clin. 73, 2125–2134 (2009).

128. van Veggel, P. et al. EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J. Am. Coll. Cardiol. 48, 826–836 (2006).

129. Rosca, M., Minkler, P. & Hoppel, C. L. Cardiac mitochondria in heart failure: normal cardioprotective capacity and muscle fatigue. J. Am. Soc. Nephrol. 21, 161–167 (2010).

130. Rosca, M. et al. Restoration of respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13, 805–815 (2004).

131. Acin-Perez, R. et al. Coenzyme Q10 attenuates matrix I injury and inhibits superoxide generation in myocardial infarction. Biochim. Biophys. Acta 1807, 1559–1570 (2011).

132. Acin-Perez, R. et al. A reduction of supercomplex assembly restores respiratory function in hearts from cardiomyopathic hamsters. J. Antioxid. Redox Signal. 19, 1469–1480 (2015).

133. Rosca, M. G. et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc. Res. 80, 30–39 (2008).

134. Nichols, D. G. & Ferguson, S. J. Bioenergetics 4th edn (Academic, 2015).

135. Chouhanis, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

136. Maran, A. E., Barbero, G., Falasca, A. I., Lenaz, G. & Genova, M. L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. J. Antioxid. Redox Signal. 19, 601–615 (2008).

137. Sato, K. et al. Mitochondria-targeted therapies for myocardial ischemia-reperfusion injury. Biochim. Biophys. Acta 38, 805–815 (2009).

138. Sato, K. et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic myocardial injury. J. Am. Soc. Nephrol. 22, 1041–1052 (2011).

139. Siegel, M. P. et al. Mitochondria-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Age Cell 12, 765–771 (2013).

140. Brown, D. A. J. Reduction of early reperfusion injury with the mitochondria-targeting cytoprotective peptide bendavia. J. Cardiovasc. Pharmacol. Ther. 19, 121–132 (2013).

141. Birk, A. V. et al. Mitochondria-targeted cardioprotective peptide improves cardiac function and reduces the rate of infarct expansion in long-term post-infarction heart failure. Circ. Res. 99, 1169–1176 (2006).

142. Birk, A. V. et al. The mitochondria-targeted compound SS-31 re-energizes ischemic myocardium by interacting with cardiolipin. J. Am. Soc. Nephrol. 24, 1250–1261 (2013).

143. Dai, D. et al. Mitochondria-targeted antioxidant peptide ameliorates hypertensive cardiac dysfunction. J. Am. Coll. Cardiol. 58, 75–82 (2011).

144. Dai, D. et al. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondria-targeted peptide. Circ. Res. 102, 1029–1038 (2008).

145. Smith, R. A. et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann. NY Acad. Sci. 1147, 224–239 (2008).

146. Skulachev, V. P. et al. An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta 1787, 437–461 (2009).

147. Graham, D. et al. Mitochondria-targeted antioxidant MitoQ improves endothelial function and attenuates cardiovascular hypertrophy. Hypertension 52, 322–328 (2009).

148. Lyamzaev, K. et al. Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic platelet and palmitate. Pharm. Res. 28, 2883–2889 (2011).

149. Enns, G. M. Treatment of mitochondrial disorders: an update. J. Child. Neurol. 29, 1225–1240 (2014).

150. Jaber, S. & Polster, M. B. Idebenone and newsmain, S. & Antioxidant, protective, or electron carrier? J. Bioenerg. Biomembr. 47, 111–118 (2015).
CONSENSUS STATEMENT

Primessnig, U., Liu, T., Brown, D. A. & O'Rourke, B. Role of Greenberg, B., Cleland, J. G., Maack, C., Pieske, B., Belevych, A. E., Gorski, P. A., Ceholski, D. K. & Hajjar, R. J. Altered Brown, D. A. & Cascio, W. E. ‘Leaky’ ryanodine for cardiovascular diseases. endoplasmic reticulum calcium ATPase: a potent target Cell. Metab. receptors and sudden cardiac death. Heart failure, I: experimental studies. for systolic heart failure: a double-blind, placebo-controlled, Pharmacol. Sci. expressing lentivirus improves myocardial function J. Mol. Cell. Cardiol. 107, 844–854 (2009).

Novel pathomechanisms of Cardiovasc. Res. 115–118 (1995).

Elevated myocardial metabolism in patients with aortic valve disease Mol. Cell. Biochem. and Zensun. A.A.V. has received consultancy fees and/or P-magnetic resonance spectroscopy. Circulation 31, 453–462 (1997).

Cardiac myosin activators in systolic heart failure: more of force production in isolated cardiomyocytes and Circ. Heart Fail. 8, 766–775 (2015).

Detection of low phosphocreatine of force production in isolated cardiomyocytes and Cardiovasc. Res. 248, 835–846 (2010).

Cardiac myosin activators in systolic heart failure: more to increase contractility in heart failure 1444–1455 (2016).

Magnetic resonance imaging. Circulation 117, 290–298 (2008).

Circulation 338, 1776–1782 (1999).

Circulation 87, 1782–1803 (2003).

Elevated myocardial metabolism in patients with hypertrophic Hypertrrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired myocardial energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 41, 1763–1772 (2003).

Circulation 97, 225–233 (2009).

Smith, C. S., Bottomley, P. A., Schulman, S. P., Nagy, L. & Rajagopalan, B. Mitral regurgitation: comparison with Tl-201 myocardial imaging. Circ. Heart Fail. 7, 1088–1095 (2014).

Circulation 86, 1147–1152 (1992).

Imaging. Circulation 97, 225–233 (2009).

Protein Design Laboratories, Sanofi-Aventis, Sigma Tau, Pharmaceuticals, Palatin Technologies, Pericor Therapeutics, and Zensun. A.A.V. has received consultancy fees and/or research grants from Aegerion, Bayer, Boehringer Ingelheim, Cardiocell, Celladon, Novartis, Relypsa, Tevana, Z Pharma, and B.Pieske reports speaker's bureau and/or advisory/ steering committee honoraria from Abbott Vascular, AstraZeneca, Bayer Healthcare, Novartis Pharmaceuticals, Pfizer, Servier, and Stealth BioTherapeutics. B.C. has received research support from the NIH (R01 HL081292 and R01 HL08708). B.L.S. is supported by research grants from the NIH (1RO1 AG026829, 2R01 AG026829-02, and 1R01 AG026829) and by Stealt BioTherapeutics. B.L.S. is supported by research grants from the NIH (R01 HL125647, R15 HL122922, and R01 AG03873). J.B. has received research support from the NIH and the European Union. A.A.V. is supported by a grant from the European Commission (FP7-242209-BIOSTAFCH).

Author contributions D.A.B. wrote the manuscript, and all authors approved it and edited it before submission.

Competing interests statement D.A.B. has received consulting income from Stealth BioTherapeutics. F.C.R. reports consultation with Amgen, biocartis, N.V. reports consultation with Amgen, Bayer, Boehringer Ingelheim, Biotronik, GSK, Medtronic, Novartis, Servier, Singulex, Spingotech, Tevana, Vifor, and Z Pharma. B.Pieske reports speaker’s bureau and/or advisory/ steering committee honoraria from Abbott Vascular, AstraZeneca, Bayer Healthcare, Novartis Pharmaceuticals, Pfizer, Servier, and Stealth BioTherapeutics. M.G.C. has been a consultant for Abbott Laboratories, Astellas, AstraZeneca, Bayer HealthCare, CorThera, Cytokinetics, Debiopharm, ErrekaPro Terapeutici, GlaxoSmithKline, Ikaria, Johnson & Johnson, Medtronic, Merck, Mitsubishi, Otsuka Pharmaceutical, Palatin Technologies, Pericon Therapeutics, Protein Design Laboratories, Sanofi-Aventis, Sigma Tau, Solvay, Teva Pharmaceutical Industries, and Tevena Therapeutics. The other authors declare no competing interests.

This work is licensed under a Creative Commons Attribution 4.0 International License. Author or any other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line if, the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.