Characteristics of a radish mutant with longer siliques

Jun Fu · Xiaomin Yu · Zhengrong Li · Die Jin · Jinjin Zhu · Yuxin Zhu · Mingru Liu · Yanni Yin · Shisheng Li

Received: 14 February 2022 / Accepted: 12 September 2022 / Published online: 25 September 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract The silique is an important organ in plant reproduction and maintains biodiversity among species; however, little is known about the regulation of radish (Raphanus sativus L.) silique development. In this study, we conducted research on the radish long siliques (ls) mutant and wild-type (WT) radish and compared their morphological and molecular markers. The results showed that the mutant obtained by ethyl methane sulfonate treatment had the following stable characteristics: the lengths of mutant and WT siliques were 20.50 and 9.10 cm, respectively; and the ovule number per silique of the mutant and WT was 9.5 and 4.5, respectively. Polymerase chain reaction (PCR) analysis revealed abundant polymorphisms between the ls mutant and WT in HZ001, SRC9-022, and OIL2F11 simple-sequence repeat molecular markers, and the expression of LS1 and LS2 (RsNAC66). Arabidopsis thaliana-transformed plants with RsNAC66 overexpression were obtained by the floral dip method. Quantitative PCR showed that LS2 (RsNAC66) was more highly expressed in transformed lines than in WT, and the expression of LS2 (RsNAC66) in the transformed lines was higher in siliques than leaves. Phenotypic analysis revealed abnormal ovule numbers and shoots, and altered plant height in the transformed plant. Phenotypic and gene expression analyses showed that LS2 (RsNAC66) plays an important role on silique length and the number of seeds per silique. Together, the results showed that the radish ls mutant is specific and stable, and thus constitutes an excellent research resource for improving the seed yield of radishes.

Keywords Silique · Mutant · Overexpression · Phenotype · Radish

Introduction

Radish (Raphanus sativus L.) is one of the most important and widely cultivated vegetables worldwide. The fleshy root is one of its edible parts, and the Chinese radish is highly productive and resistant...
to storage. The radish cultivation area in China is approximately $1.2 \times 10^6 \text{ m}^2$, accounting for about 40% of the world’s cultivated area and 47% of the world’s total production (Wang 2016). In the process of long-term evolution, cultivation, and breeding, new uses for radishes have gradually emerged, including as a food source (where the leaves and siliques are edible) and cover crop (oilseed radish); radish has thus received increasing attention from researchers. Radish seeds contain high amounts of lipids and active substances (Kim et al., 2014), among which sulforaphane is a natural active substance with antitumor activity (Zhao et al., 2011). However, the low yield of radish seeds limits their versatility and value. There have been few studies on the mechanisms of radish seed yield and silique development. Zhai et al. (2016) showed that 5,777 differentially expressed genes appeared in radish ovules within 15 days before and after artificial pollination, including auxin-response factor, Leafy cotyledon 1, somatic embryogenesis receptor kinase, and other important regulatory genes involved in embryogenesis. These results provide an important reference for understanding the early embryonic development process of radish.

Our group previously revealed the developmental process of radish siliques and ovules through morphological analysis (Li et al., 2018b, a). The ovule development of radishes is similar to that of oilseed rape (Brassica napus) (Uyttewaal et al., 2008; Li et al., 2018b, a). Under normal conditions, the average seed yield of radish per mu (0.067 hectare) is 50 kg (Li 1992), which is significantly lower than that of similar economic crops such as oilseed rape. The low seed yield severely affects the ability to multi-purpose the radish.

In this study, we identified mutation traits in a radish mutant with a long silique (ls), based on a mutant pool constructed by ethyl methanesulfonate (EMS) mutagenesis (Li et al., 2019). The results showed that the number of seeds per silique in the mutant was significantly increased compared to wild-type (WT) radish, and there were significant differences in molecular markers and gene expression related to silique development between the radish ls mutant and WT. In addition, the radish silique-related gene RsNAC66 was transformed into Arabidopsis, and phenotypic analysis showed that it may increase silique length and ovule number per silique.

Results

Phenotypic traits of the radish ls mutant

Our research group previously established a radish mutagenesis system and constructed a radish mutant pool (Li et al., 2019); after many years of self-fertilization, they were used to screen the radish ls mutant with stable silique and ovule phenotypes (Fig. 1). There were significant differences between the ls

![Fig. 1](image-url) Comparison between ls mutants and WT radish. Radish ls mutants (B, mature; C, young) with longer siliques and WT radish (A, mature; D, young) with normal siliques
mutant and WT radish in silique length and number of seeds per silique (Fig. 2A–F). Specifically, the average length of silique in the ls mutant was 20.50 cm, compared to 9.10 cm in the WT radish (Fig. 2G), and the average number of seeds per silique in the radish ls mutant was 9.5, whereas the average number of ovules of WT radish was 4.5 (Fig. 2H). The statistical results showed that the siliques in the radish ls mutant were 2.3 times longer than those of WT radish, and there was a greater number of seeds per silique in the ls mutant than WT, indicating that the ls mutant not only has a longer silique than WT radishes but also a significantly higher number of ovules per silique. The radish ls mutant, with its significantly increased

Fig. 2 Comparison on silique ovules between ls mutants and WT radish. A: Siliques of radish ls mutant (upper) and WT radish (bottom); B, C: Ovule distribution in the silique is shown for the radish ls mutant and WT radish (lower and upper panels, respectively); D: The process of silique development in radish ls mutant (left) and WT radish (right); E, F: siliques of radish ls mutant (E) and WT radish (F); G, H: Statistical results of the comparison of silique length (G) and number of ovules (H) between radish ls mutants with longer siliques and WT radish. Bar = 2.5 cm in A, D, E and F; Bar = 0.15 cm in B and C.
number of seeds per silique, has great research value and is an important experimental material for studying radish ovule formation and improving radish seed yield.

Detection of silique-related molecular markers and gene expression in the radish ls mutant

The results of screening of 42 simple-sequence repeat (SSR) molecular markers related to crop traits have been published (see Materials and Methods), and showed that the amplification products of the SSR molecular marker primers HZ001, SRC9-022, and OI12F11 were different between WT and ls mutant radishes. There were also abundant polymorphisms in the ls mutant and WT radish molecular markers (Fig. 3A). The bands of WT radish amplified by molecular markers HZ001 and SRC9-022 primers were faint (Fig. 3A). By contrast, amplification of the radish ls mutant by the molecular marker OI12F11 did not produce bands (Fig. 3A). The LS1 gene was derived from the BnaA09g39480D sequence of the B. napus gene (Shen et al., 2019) through sequence alignment by Blast (LR778317), and the LS2 gene was designed from the radish gene (XM_018634088) sequence obtained by homologous alignment in the National Center for Biotechnology Information database. Semi-quantitative polymerase chain reaction (PCR) results showed that the expression of LS1 and LS2 in the silique of the radish ls mutant was lower than that in WT radish (Fig. 3B). In addition, there were clear differences in the expression of LS1 and LS2 between mutant and WT radish cotyledons.

Verification and qualification of Arabidopsis-transformed plants overexpressing LS2 (RsNAC66)

Transformed Arabidopsis lines overexpressing LS2 (RsNAC66) were screened using amplification fragments of the kanamycin gene by PCR (Fig. 4A). The semi-quantitative PCR results showed that the expression of LS2 (RsNAC66) was significantly enhanced in the transgenic plants (Fig. 4B, C). Relative expression of the LS2 (RsNAC66) gene in the transgenic lines (lines 3, 5, 7, 9) was upregulated to different degrees compared to WT, and increased 6,054-, 2,427-, 2-, and 99-fold in the siliques of lines 3, 5, 7, and 9, respectively (Fig. 4C). These results showed that the expression of LS2 (RsNAC66) was significantly increased in the overexpressed lines.

Statistical analyses of the phenotypic characteristics of A. thaliana-transformed plants overexpressing LS2 (RsNAC66)

Statistical analyses showed that the average plant height of A. thaliana transgenic lines 3 and 7 was higher than that of WT (P<0.05; Fig. 5A). There was no significant difference in plant height between transformed lines 9 and WT (P>0.05). A. thaliana transgenic line 5 showed abnormal bolting (Fig. 5B), and early bolting and flowering were observed during first 6 weeks of A. thaliana growth. The average silique
length and number of ovule per silique of transgenic *A. thaliana* were measured and analyzed (Fig. 5C–F). Among them, the silique length of transgenic lines 3 and 7 was longer than that of WT (*P* < 0.05, Tab.S1). There were more ovules per silique in lines 3, 7, and 9 than in WT (*P* < 0.01, Tab.S1).

Detection and analyses of the expression of silique development-related genes

AP2, OPT4, and Atsus2 are silique development regulatory genes (Kunst et al., 1989; Bowman et al., 1989; Chai et al., 2011; Huang et al., 2013; Niu et al., 2002; Ohto et al., 2005). The heterologous expression of *LS2 (RsnAC66)* affects the development of *Arabidopsis* siliques. We further examined the correlation between the those genes related to silique development. As shown in Fig. 5, the relative expression of *AP2* in the transgenic lines was upregulated in siliques, as well as 6-, 17-, 1- and twofold in the four tested transgenic lines (3, 5, 7, and 9), respectively (Fig. 5G). *OPT4* and *Atsus2* were both expressed at high levels in the four tested transgenic lines (3, 5, 7, and 9). The high expression and function of *LS2 (RsnAC66)* in siliques suggest that the *AP2, OPT4* and *Atsus2* coordinated with *LS2 (RsnAC66)* in the regulation of silique development.

Discussion

Comparison of morphology and detection of molecular markers and gene expression showed that the radish *ls* mutant induced by EMS was stable, and the number of ovules per silique was significantly higher than that of WT (Fig. 2B, C, D, G). The radish *ls* mutant is an important resource to improve the seed yield of radish. Studies on the variation and regulation of silique length in radish have not been conducted. At present, applied research on the development of molecular markers in radish is mainly focused on purity and germplasm identification (Qiu et al., 2014; Li et al., 2018b, a; Wang et al., 2019; Yang et al., 2019). Therefore, this study can only refer to other morphology-related molecular markers of radish and genes, and to markers related to the
numbers of silique and ovules in other crops, to detect this radish *ls* mutant. Through polymorphism screening of the above 42 SSR molecular marker primers, three pairs of primers with clear amplification conditions and polymorphism were screened, indicating that the above three pairs of SSR molecular markers were universal in radish, turnip rape, and oilseed rape. Based on the sequence information of silique length regulatory genes in oilseed rape (Zhou et al., 2017; Sheng et al., 2019), we obtained the homologous sequence of silique length regulatory genes in radish through homology comparison, and found that the expression of these genes was significantly different between the *ls* mutant and WT radish.

NAC (NAM, ATAF, CUP) is one of the largest families of transcription factors in plants. The N-terminal has a highly conserved NAC domain, while the C-terminal has high diversity in the structural characteristics of NAC transcription factors (Munir et al., 2020). After constructing *RsNAC66* overexpression transgenic lines in *A. thaliana*, the phenotypes of the transformants were analyzed by morphological and statistical methods (Fig. 5). Among the 11 *Arabidopsis* transgenic lines, abnormalities in silique length, ovule number per silique and plant height were observed. Quantitative analysis of *RsNAC66* expression confirmed high expression of the *RsNAC66* gene in transgenic *Arabidopsis* siliques. The expression of the *AP2* gene, which is related to ovule development in *A. thaliana*, was quantitatively analyzed, and found to be significantly upregulated in transgenic lines. These results showed that *RsNAC66* had an effect on silique and ovule development, and increased silique length and ovule number per silique were observed in transgenic lines with high *RsNAC66* expression compared to WT. The expression of *AP2* in silique was also upregulated in transgenic lines with high *RsNAC66* expression, indicating that they both participated in the regulation of silique and ovule development.

![Figure 5](image_url)
Materials and Methods

Experimental materials and primers

The radish ls mutant with a longer silique based on EMS mutagenesis, as reported by Li et al. (2019), and the WT radish with a normal silique and A. thaliana (Columbia-0), were used in this study. ls mutant was selected from mutated WT radish(Duanye-13 radish) by EMS mutagenesis and then self-hybridization for at least five generations. The above plant materials were obtained from the germplasm resource bank of Hangzhou Radish Research and Development Center of Huanggang Normal University. The primers for molecular markers and related genes were as follows: primers 1–9 were selected according to the primer sequence information related to the bolting of radish published by Yang et al. (2019) and the molecular markers related to the number of seeds per silique of B. napus published by Zhang et al. (2012). Thirty-three pairs of primers corresponding to SSR molecular markers distributed in A01, A03, and A09 linkage groups, which are associated with silique length quantitative trait loci, were screened with primers 10–42 (Wang et al., 2011; Zhang et al., 2012; Yin et al., 2015; Yang et al., 2019). Through homologous comparison of the length-related gene sequence of silique in B. napus published by Shen et al. (2019), the radish gene sequence was obtained, and primers 43 and 44 were designed from this sequence. The primer sequence used in this experiment is shown in Table 1. The primers were synthesized by GenScript Biotech Corporation (Piscataway, NJ, USA).

Phenotypic statistical analyses of radish and Arabidopsis

After the bolting and flowering of plants, abnormal traits of silique were observed, and the silique length of radish was measured by tape measure and ImageJ software (NIH, Bethesda, MD, USA). Siliques were treated with 8 mol/L sodium hydroxide solution to observe the distribution and number of ovules in siliques. Arabidopsis material was taken at week 14 and three phenotypic traits were recorded: plant height, silique length, and ovule number per silique.

Extraction, amplification, and detection of DNA and RNA and PCR

Genomic DNA was extracted from the samples using the Plant Genomic DNA Kit (DP305-02; Tiangen Biotech, Beijing, China). Using the HiPure Plant RNA Mini Kit (R4151-02; Magen Biotechnology, Guangzhou, China), RNA was extracted from the radish mutant, WT radish, Arabidopsis, and transgenic A. thaliana. The quality of DNA and RNA were analyzed by agarose gel (1%) electrophoresis. The extracted RNA was reverse-transcribed into cDNA using the PrimeScript RT Reagent Kit (RR047A; Takara Bio, Shiga, Japan) as a template for PCR.

The PCR amplification system included 2×Taq PCR Master Mix (12.5 μL), DNA (0.5 μL), 10 μmol/L primers (1 μL), and ddH2O (10 μL). The amplification procedure was as follows: pre-denaturation at 94°C (3 min), 35 cycles of denaturation at 56°C (30 s), annealing at 56°C for 30 s, extension at 72°C (1 min), final extension at 72°C (5 min), and maintenance at 4°C. The PCR products were separated by 1% agarose gel electrophoresis.

Construction of the RsNAC66 overexpression vector

The cDNA sequence of RsNAC66 was used, along with the specific primers LSS-F(ActagggtctcGaccATGAACATATCAGTAAACGGA) and LSS-R(ActagggtctcTACCGCTAGTGTGACGATGGCGTCGT) for PCR amplification. The PCR product was subjected to agarose gel electrophoresis, the 978 bp electrophoretic fragment was cut out, and the target fragment was recovered using the TIANgel Midi Purification Kit (DP209-03; Tiangen).

The empty plasmid was digested with BsaI-HF and ligated to the above target fragment with T4 DNA ligase, and transformed into E. coli DH5α competent cells. After culture, it was coated on LB solid medium plates with kanamycin and cultured overnight in a constant temperature incubator at 37°C. The primers LSS (Test +)(AAGAGGAGACCATTCCACACGGA) and LSS-R(ActagggtctcTACCGCTAGTGTGACGATGGCGTCGT) were used for colony PCR detection, and the fragment size was about 416 bp. Positive plaque was confirmed by sequencing, and single bacterial colonies were selected for shaking culture.

The plasmid with tagert fragment was extracted using a plasmid extraction kit, and Sanger sequencing
Name Of Primer	Forward primer (5' → 3')	Reverse primer (5' → 3')
1 HZ001	CAGATCCGGAGGGAGTTGGGA	TTTCTCTATCCCCCTGGTTTCC
2 HZ002	ACTTCCCCGGACCTTAAGA	GCATCGCCAAGGACAGAAGA
3 HZ003	GTGGCCGAGTAGATGTTGTG	TGGCAATAAGCTTTCTCGGTCT
4 HZ004	CGAAGTTGCGCTTTTCAATT	AGTGCTGAGAAGGCTCGGAT
5 HZ005	GCTCTTCTAGCCCCGAGAT	CGATCTGCTATGGGAGATTT
6 BoGMS1413	TGCTCGTCTCTTACTACCT	TGCCTCTCTCCGTCAATAGT
7 SRC9-022	TTGTTGGGCTCTCTCTGCTGCT	TCGAGGCAACCACATGCGGGT
8 SSC9-005	GCAGCAGTTTGGTTTCAAGT	CAGCCCTTGGTCTAGACACT
9 Ss2066	ATATAGGGCAAGGCTTACAG	CCAGAAACCTTCTGAACTTT
10 BoE667	TACACTCCCCTCGTACCGTCTA	ATCTGCTCTCTCCGTCAATAGT
11 KBRH139B23	ATCTCATGTTGCTACCCGCCA	AATTCCAAACACACAGCAAGA
12 RaG09	CACAGCGGAGTTGTTGAGCAG	GATGACTGCTCTGGTCAAGC
13 BRMS056	GATCAACTACGCCAAGAGAGAG	CGTGAAGCTAGAACTGAGAAG
14 OI12F11	AAGACTCTTCAGGCTACACTT	ATCTGCTCTCTCCGTCAATAGT
15 BoC64	GCGATTTTCCTTTCTCCAGTT	ATCTGCTCTCTCCGTCAATAGT
16 ENA28	GGAGCTTGGGGTTGTATAGA	CTTCTGACACCCCTGTTTT
17 BRMS303	ATCTACACCCGAACTGGAAAA	CGTGAAGCTAGAACTGAGAAG
18 BoE368	GGAGTTGGAGGTGCTAAGT	GGGCTTTTCTTCTACTAACCT
19 RaE11	GGAGCGCAGAGAGAGGAGAGAG	CAAAAACTTCTCAGAAAAAGC
20 BRMS269-2	ATTTTTCAACGGCTTCTCTCTGT	GGTGAGCTAGCTCTGCAAACTACT
21 BRMS043	GCGATTTCTTTCTCTCAGTT	ATCTGCTCTCTCCGTCAATAGT
22 BoE76	GGCATCTGTCTACTGCAGT	ATCTGCTCTCTCCGTCAATAGT
23 BoE320	CACAGACGAAACCTAAACT	CATCCGCTGAGACACTGCTCG
24 BRMS042	TCGGAAATTGGATAAGAATTC	GGATCAGTTATCTGCCACCAAA
25 B126.3	GGAAGATTTCAAGCTGAGT	GTTGGGTTGCTTGTATCATC
26 BRMS042-2	AGCTGCCAGCATCAAGAAAGAGA	TTTCTCTTCTCTCGGAAAAATG
27 BRMS050	AACTTTGCTCTCTACTGATTT	TTTCTTTTCTTCTTCTCTAGTC
28 BoE887	CCTTCCACGCGACAGAGA	TCGAAAAAGAAGAAAGACAGGA
29 BoE073	GTCGCTGATTCACACACCAA	GAAGGACGGAGAGAGTGAAGA
30 OI10D08	TCCGCAACAGTCTGATGCTC	CTTTCTTCTTCTCTCTCTCAG
31 KBRH143K20	CAAATGTCCTCAAGACACATAAC	CTAAGCGCAATTGGGTTTCC
32 BoE828	ATGGCGCTTCAATCTCTTTT	TGCTGCTGCCAGCCTGACAC
33 BoE338	AGGAAGGAAAGAAGAGCAAGAC	TACAGGCCCTAAGAGGACACA
34 BoE032	CTCTACCCGATCATCAAGAAC	GTAGAGAATGGGAGAGACCT
35 BoE334	GAGAAGGCGGTTGATGACGA	TAAAGCTCAAACACACAGAG
36 BoE075	GGTGCTGCCAAGGAGAGAACAT	AAGGCTTGATGGCACCACACC
37 nia-ssr039	GCAATGACACCAAAGAAGGAAA	GGTGCTGCTGATAGTTGACCA
38 BoE851	TCATTCTTCTGCAGTCCACTQ	AGGGGTTTGGATCTCTGGA
39 BoE390	GTTGGCGCTATCCGTTAAGAGG	CGCCTGGTCTGCTCGGACTCC
40 BRMS016	TCCGCTATCAATGGGCTAAAGC	CGATGTTGACATTATTGGGGCG
41 ENA27	AAGAGCACAAGAGAGAGAGGC	TTGAAATCCAATGAGATTGAC
42 BoE974	TGAATCGACGGAGGAAAGGAGA	TTTGGCGGATGAGGACACAGAG
43 LSI	GTACGATCAAACAGCCGCTCA	AAGAGCGCCAAGCAGTAGATG
44 LS2	TGGAGGCCAGGAAGAAAGAAGA	TCACTGCAGTGAGGCGAACGA
was performed. The sequencing primer was NOS-R (ATCATCGCAAGACCGCCAG), and the sequence was consistent with the target fragment sequence; thus, the overexpression vector was successfully constructed. The extracted plasmids were confirmed by restriction endonuclease digestion with EcoRI/HindIII.

Genetic transformation and resistance screening in *A. thaliana*

The plasmid with the target fragment was transformed into competent cells of *Agrobacterium tumefaciens*, and the flowering *A. thaliana* WT was transformed by the floral dip method. The seeds were collected and seeded on MS solid medium containing kanamycin, and positive plants were identified by PCR; positive plants with *RsNAC66* overexpression were screened.

Semi-quantitative PCR

The expression of *RsNAC66* in plants was first detected by semi-quantitative PCR. The reaction system consisted of 2× Taq PCR MasterMix (12.5 μL), cDNA (0.5 μL), forward primer (1 μL), reverse primer (1 μL), and ddH$_2$O (10 μL) in a total volume of 25 μL. The PCR amplification procedure was as follows: 95°C for 3 min; 35 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 1 min; and 72°C for 5 min. After semi-quantitative PCR amplification, 1% agarose gel electrophoresis was used for detection. The reference gene primer sequences used were Atactin-F: GGA GCT GAG AGA GAT TCC GTTG and Atactin-R: GGT GCA ACC ACC TTG ATC TT; the specific primer sequences for *RsNAC66* were Rsls376-F: CAA GTG CCT CCT GGC TTT AG and Rsls376-R: GCA TGA TCC AGT CGG ATT TT.

Real-time quantitative PCR

Quantitative fluorescence PCR was performed using the 7500 instrument (Applied Biosystems, Foster City, CA, USA). TB Green Premix Ex Taq (Tli RNase H Plus) (RR420A; Takara) was used as the fluorescence quantification kit. The reaction system of 10 μL consisted of TB Green Premix Ex Taq (5 μL), forward primer (0.2 μL), reverse primer (0.2 μL), Rox Reference Dye II (0.2 μL), cDNA (1 μL), and ddH$_2$O (3.4 μL). The reaction procedure for real-time fluorescence quantification was as follows: holding stage: 50°C for 2 min and 95°C for 10 min; cycling stage (40 cycles): 95°C for 15 s and 56°C for 1 min; and melting curve stage: 95°C for 15 s, 56°C for 1 min, 95°C for 15 s and 56°C for 15 s. The data were processed by the 2$^{−ΔΔCt}$ method and plotted using GraphPad Prism 9 (GraphPad Software Inc., La Jolla, CA, USA). The specific primer sequences for *AP2*, *OPT4*, and *Atsus2* were AP2-F: AGCGACACA ACCCTCAACAG and AP2-R: CCAGATGTGCTA AAGACGGAG; AtOPT4-F: CTATGGATACATGAG TATGGCAACAAG and AtOPT4-R: GATAGAGTT TAACTGCCACCATGC; *Atsus2* F: TAGTGGTAC AGAACCACGCACACATTCTG and Atsus2 R: GTC TCAAAAGAAGCTGACCAAAGGTAGCTG.

Statistical analyses

Each experiment was repeated at least three times. One-way ANOVA (SPSS/13) was used to test significant differences between controls and mutants in all replications. P values were analyzed using Student’s t-test.

Acknowledgements

This work supported by Special Project for Development of Science and Technology in Local by Central Guidance(2018YYD019) and Young outstanding talent project of Huanggang City.

Author contributions

Conceived and designed the experiments: Fu Jun, Yu Xiaomin and Li Shisheng. Performed the experiments: Fu Jun, Li Zhengrong, Jin Die, Zhu Jinjin and Yin Yanni. Analyzed the data: Yu Xiaomin, Li Zhengrong, Jin Die and Zhu Jinjin. Original Draft Preparation: Fu Jun, Li Zhengrong, Jin Die and Li Shisheng. All authors read and approved the final manuscript.

Funding

The authors have not disclosed any funding.

Declarations

Conflicts of interest

The authors declare no conflicts of interest.

References

Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in *Arabidopsis*. Plant Cell 1(1):37–52

Chai J, Qiang Y, Jia R, Mao J, Qu S, Yu J (2011) AtSUS3 with RNA interference affects sucrose synthase gene family expression and siliques maturation in Arabidopsis thaliana. Scientia Sinica Vitae 41(8):615–625

 Springer
Conaway C, Wang C, Pittman B, Pittman B, Yang Y, Schwartz J, Tian D, McIntee E, Hecht S, Chung F (2007) Phenethyl isothiocyanate and sulforaphane and their N-acetyl-cysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65:8548–8557

Huang H-Y et al (2013) BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Mol Plant 6(2):456–469

Kim KH, Moon E, Kim SY, Choi SU, Lee JH, Lee KR (2014) 4-Methylthio-butanyl derivatives from the seeds of *Raphanus sativus* and their biological evaluation on anti-inflammatory and antitumor activities. J Ethnopharmacol 151(1):503–508

Kinuthia Karanja B, Xu L, Wang Y, et al (2017) Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (*Raphanus sativus* L.). Peerj 5(12):e4172

Kunst L et al (1989) AP2 Gene Determines the Identity of Perianth Organs in Flowers of *Arabidopsis thaliana*. Plant Cell 1(12):1195–1208

Li JC, Li SS, Zhang NN, Xv JB, Fang YP, Xiang J (2018a) Screening and identification of SSR molecular markers for purity identification of white radish. Molecular Plant Breeding 16(8):2525–2532

Li SS, Xiang J, Fang YP, Li JC (2018b) Developmental characteristics of siliques and structural comparison of embryo from oil radish. Northern Horticulture 408(9):8–13

Li S, Zhang N, Li J, Xiang J (2019) A new male sterile line of “Duanye-13” radish produced by ethyl methanesulfonate mutagenesis. Genet Resour Crop Evol 66:981

Li B (1992) Several ways of radish propagation. Seed 1:3

Munir N, Chen Y, Chen X et al (2020) Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression patterns during somatic embryogenesis in *Dimocarpus longan* Lour. Plant Physiol Biochem 157:169–184

Niu X, Helenijaris Tim, Bate Nicholas J (2002) Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. The Plant Cell 14(10):2565–2575. https://doi.org/10.1105/tpc.003400

Ohoto Masa-aki, Fischer Robert L, Goldberg Robert B, Nakamura Kenzo, Harada John J (2005) Control of seed mass by APETALA2. Proceedings of the National Academy Sci 102(8):3123–3128

Qiu Y, Li XX, Li QX, Chen YC, Shen D, Wang HP, Song JP (2014) Establishment of the molecular identification for radish germplasm using SSR markers. Journal of Plant Genetic Resources 15(3):648–654

Shen W, Qin P, Yan M, Li B, Wu Z, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J (2019) Fine mapping of a siliqua length- and seed weight-related gene in *Brassica napus*. Theor Appl Genet 132:2985–2996

Sun QQ, Wu J, Cheng F, Wang XW, Liang JL, Shen SX (2016) QTL Mapping of self-compatibility, siliqua and seeds-associated traits in *Brassica rapa*. Scientia Agricultura Sinica 49(13):2449–2458

Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H (2008) Characterization of *Raphanus sativus* pentatricopeptide repeat proteins encoded by the fertility restorer locus for ogura cytoplasmic Male Sterility. Plant Cell 20:3331–3345

Wang FY (2016) Problems and countermeasures of radish industry development in China. Journal of Chinese Agricultural Mechanization 37(11):188–191

Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y, Wang Q, Cheng F, Wang X, Wu J (2011) A sequence-based genetic linkage map as a reference for *Brassica rapa* pseudo-chromosome assembly. BMC Genomics 12:239

Wang CN, Huang ZY, Li M, Zhang H, Fan WQ, Hua DP (2019) Application of SSR marker technique in hybrid seed purity identification of radish Hybrid “Qi Xing.” Seed 38(3):132–134

Yang P, Shu C, Xu J, Wu J, Liu K (2012) Identification of a major QTL for siliqua length and seed weight in oilseed rape (*Brassica napus* L.). Theor Appl Genet 125:285–296

Yang F, Ran ML, Li XM, Chen L, Yong XP, Ran K (2019) Genetic diversity of radish (*Raphanus sativus* L.) with different bolting-resistance based on SSR markers. Jiangsu Agric Sci 47(4):123–127

Yin T, 2015, QTL mapping of major plant-type traits related to plant height and siliqua length in *Brassica napus* L., PhD diss., Southwest University.

Zhai L, Liang X, Wang Y, Zhu X, Feng H, Li Chao, Luo X, Everlyne M M, Liu Liwang (2016) Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (*Raphanus sativus* L.). Scientific Reports. https://doi.org/10.1038/srep21652

Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per siliqua as a single Mendelian factor in *Brassica napus* L. Theo Appl Genet 125:695–705

Zhang Z, Xie Q, Jobe TO, Kau AR, Wang C, Li Y, Qiu B, Wang Q, Mendoza-Cózatl DG, Schroeder JI (2016) Identification of AtOPT4 as a Plant Glutathione Transporter. Mol Plant 9(3):481–484

Zhao GL, Hao R, You H, Zhu Y, Luo YB (2011) Fatty acid composition and antioxidant activity of 8 kinds of radish (*Raphanus sativus* L.) germplasm. China Oils and Fats 38(12):73–76

Zhou QH, Zhou C, Zheng W, Fu DH (2017) Genome wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (*Raphanus sativus* L.). Peerj 5(12):e4172

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.