Radio and X-ray observations of an exceptional radio flare in the extreme \(z = 4.72 \) blazar GB B1428+4217

M. A. Worsley\(^1\), A. C. Fabian\(^1\)*, G. G. Pooley\(^2\) and C. J. Chandler\(^3\)

\(^1\)Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
\(^2\)Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE
\(^3\)National Radio Astronomy Observatory, 1003 Lopezville Road, PO Box 0, Socorro, New Mexico 87801, USA

20 March 2022

ABSTRACT
We report on the extreme behaviour of the high redshift blazar GB B1428+4217 at \(z = 4.72 \). A continued programme of radio measurements has revealed an exceptional flare in the lightcurve, with the 15.2 GHz flux density rising by a factor \(~3\) from \(~140\) mJy to \(~430\) mJy in a rest-frame timescale of only \(~4\) months – much larger than any previous flares observed in this source. In addition to new measurements of the 1.4–43 GHz radio spectrum we also present the analysis and results of a target-of-opportunity X-ray observation using \textit{XMM-Newton}, made close to the peak in radio flux. Although the X-ray data do not show a flare in the high energy lightcurve, we are able to confirm the X-ray spectral variability hinted at in previous observations. GB B1428+4217 is one of several high-redshift radio-loud quasars that display a low energy break in the X-ray spectrum, probably due to the presence of excess absorption in the source. X-ray spectral analysis of the latest \textit{XMM-Newton} data is shown to be consistent with the warm absorption scenario which we have hypothesized previously. Warm absorption is also consistent with the observed X-ray spectral variability of the source, in which the spectral changes can be successfully accounted-for with a fixed column density of material in which the ionization state is correlated with hardness of the underlying power-law emission.

Key words: galaxies: active – galaxies: individual: GB B1428+4217 – X-rays: galaxies.

1 INTRODUCTION

Blazars are some of the most extreme extragalactic sources known: powerful, radio-loud active galactic nuclei (AGN) in which the relativistic jet is aligned with the observer’s line of sight. Their spectral energy distribution (SED) is dominated by beamed, non-thermal continuum emission from the jet and has a characteristic double-humped shape, with synchrotron radiation from the jet dominating at low energies, and Compton up-scattered emission dominating at high energies. In BL Lac objects (the lower-luminosity class of blazars), the beamed synchrotron emission can peak in the soft X-ray regime, with the second peak dominating the TeV range. For flat-spectrum radio-quasars (FSRQs; the most luminous blazars), the beamed synchrotron emission can peak dominating at high energies. In BL Lac objects (the lower-luminosity class of blazars), the beamed synchrotron emission can peak in the soft X-ray regime, with the second peak dominating the TeV range. For flat-spectrum radio-quasars (FSRQs; the most luminous blazars), the beamed synchrotron emission can peak dominating at high energies. In BL Lac objects (the lower-luminosity class of blazars), the beamed synchrotron emission can peak in the soft X-ray regime, with the second peak dominating the TeV range. For flat-spectrum radio-quasars (FSRQs; the most luminous blazars), the beamed synchrotron emission can peak dominating at high energies.

In addition to their extreme luminosity and characteristic SED, blazars often show spectacular broad-band variability, in both absolute brightness and spectral shape. Flares in flux of several tens of per cent have been observed in the radio to TeV regimes in several sources, on timescales of minutes to years depending on wavelength. Blazars show strong, core-dominated and highly-polarised radio emission, strongly supportive of the relativistic jet interpretation. Blazars are usually unresolved although very long baseline interferometry (VLBI) can often reveal superluminal motion on milliarcsecond scales within the nucleus, again consistent with the presence of a relativistic jet.

GB B1428+4217, at a redshift of \(z = 4.72 \), shows an unexpected flattening of the X-ray power-law continuum at soft X-ray energies. This was first seen in \textit{ROSAT} and \textit{BeppoSAX} observations \cite{Boller00, Fabian01a}, and subsequently confirmed with \textit{XMM-Newton} \cite{Worsley04a}. A flattening in the X-ray spectral index below observed energies of \(~1\) keV has been observed in several other high-redshift, radio-loud sources, e.g.: RBS 315 at \(z = 2.69 \) \cite{Piconcelli05, PMN05, PMN05b, RX1028, RS16, RX1028, RX1028, RX1028}, RX J1028.6–0844 at \(z = 4.28 \) \cite{Yuan03, Yuan05}; PMN J1451–1512 at \(z = 4.76 \) \cite{Yuan05}; PKS B1830–211 at \(z = 2.51 \) \cite{deRosa05}; and PKS 2126–0158 at \(z = 3.27 \) \cite{Fiore03, Ferrero03}. Although low energy miscalibrations in \textit{ASCA} were initially proposed as an explanation \cite{Grupe04}, the large number of high-quality

XMM-Newton observations have shown beyond doubt that the effect is real in several objects; that said, a number of XMM-Newton observations have also shown that several other high-redshift and radio-loud quasars show no evidence of spectral flattening (Fiore et al. 2003; Kronge et al. 2004; 2006; Piconcelli et al. 2005). A trend toward spectral flattening with increasing redshift has also been seen in several studies of radio-loud objects (e.g. Cappi et al. 1997; Fiore et al. 1998; Reeves & Turner 2003; Bassett et al. 2004).

The origin of the spectral depression is not fully understood, and, whilst the spectral shape of GB1428+4217 (and other sources) has been repeatedly characterised using an absorbed power-law model, there is not yet sufficient evidence to be certain that intrinsic absorption is the solution. Both Galactic and intergalactic absorption can be effectively discarded as viable solutions given the high column densities required and, critically, by the fact that the phenomenon has not been observed in radio-quiet objects at comparable redshifts (Shemmer et al. 2005; Vignali et al. 2005), which would be expected to be similarly affected by absorption systems lying along the line of sight (O’Flaherty & Jakobsen 1997; Fabian et al. 2001b; Worsley et al. 2004b). The remaining possibilities are absorption intrinsic to the source or an underlying spectral break in the power-law continuum; however, neither explanation can yet be ruled-out in any of the cases of soft X-ray flattening.

As discussed by Fabian et al. (2001b), an underlying break in the continuum could arise in a number of situations. The hard X-ray component of the blazar SED is believed to be due to inverse Compton scattering of seed photons by electrons in the relativistic jet. A spectral break can arise through a low-energy cut-off in the electron population or by a sharply peaked seed photon distribution. Both mechanisms are rather speculative given our limited knowledge of the processes which are important in blazar emission and difficult to reconcile with the sharpness of the X-ray break, which occurs over a range of only a few keV in the rest-frame. An intrinsic absorber, with a column density of $N_H \sim 10^{22}–10^{23} \text{cm}^{-2}$, remains the most self-consistent explanation for the soft X-ray flattening although very little is known about the nature or origin of the material, which, given the lack of the effect in radio-quiet sources, seems to be closely linked to the presence of jets in these young AGN. X-ray data alone have been unsuccessful in breaking the degeneracy between a cold (neutral) absorber or one that is warm (ionized). In some cases, e.g. for PMN J0525–3343 and RX J1028.6–0844, optical observations have been able to rule-out cold absorption from the lack of a Lyman-limit system at the redshift of the quasar which the presence of emission at rest-frame wavelengths shortward of 912 Å. The lack of such a system in an object means the column density in neutral hydrogen must be $N_H \lesssim 3 \times 10^{17} \text{cm}^{-2}$, significantly less than the X-ray implied $N_H \sim 10^{22}–10^{23} \text{cm}^{-2}$.

In this paper we present the analysis and results from continued radio monitoring of GB1428+4217, in particular, the details of an exceptional flare in the lightcurve which has seen the 15.2 GHz flux increase by a factor of ~ 3 in only ~ 4 months in the rest-frame of the source. We also report the findings of a recent XMM-Newton target-of-opportunity observation performed close to the peak in the radio lightcurve and discuss the X-ray luminosity and spectral evolution displayed by this source. A broad-band radio spectrum is also presented. We adopt $H_0 = 71 \text{km s}^{-1} \text{Mpc}^{-1}$, $\Omega_M = 0.27$ and $\Omega_{\Lambda} = 0.73$ (Spergel et al. 2003). Errors are quoted at the 1σ (68 per cent) level unless stated otherwise. Also note that any X-ray fluxes quoted are always corrected for Galactic absorption but are not corrected for any intrinsic absorption unless stated otherwise.

2 PREVIOUS OBSERVATIONS

GB1428+4217 was discovered by Hook & McMahon (1993) as part of a survey to identify FSRQs with red optical counterparts (GB1428+4217 has $R = 20.9$ with $B – R > 3.40$). It is at a redshift of $z = 4.72$, making it one of the most distant X-ray sources known. The blazar has an inverted radio-spectrum, with a 1.4–9 GHz spectral index of $\alpha_{1.4–9} = –0.4$ ($\nu \propto \nu^{-\alpha}$). Imaging revealed a core-dominated source with a high level of polarisation (5.5 per cent at 1.5 GHz; Condon et al. 1998). The optical spectrum reveals broad emission lines due to Lyα, Nλ, Siλ/Oλ blend and Cλ (Hook & McMahon 1993). We will first summarise the findings of previous X-ray and radio observations, before we move on to present the latest results and a joint discussion of the spectrum and variability.

2.1 X-ray spectrum

An X-ray counterpart was found in an archival ROSAT Position Sensitive Proportional Counter (PSPC) observation taken in 1992. Subsequent observations were performed with the ROSAT High Resolution Imager (HRI; Fabian et al. 1997) and ASCA (Fabian et al. 1998). The inferred isotropic X-ray luminosity exceeded 10^{42} erg s$^{-1}$ which suggested highly beamed emission. The 0.5–10 keV data were consistent with a hard power-law spectrum, with a photon index of $\Gamma = 1.29 \pm 0.05$ and an upper limit to any intrinsic absorption at the redshift of the quasar of $4.5 \times 10^{-22} \text{cm}^{-2}$ (90 per cent confidence); however, the authors noted that the SIS instrument alone did point to some excess absorption – a column density of $(1.3 \pm 0.6) \times 10^{23} \text{cm}^{-2}$ for $\Gamma = 1.43 \pm 0.12$. Excess absorption was confirmed with a further ROSAT PSPC observation, which found a power-law index of $\Gamma = 1.4 \pm 0.2$ and a column density of $N_{H}^{\text{cold}} = (1.52 \pm 0.28) \times 10^{22} \text{cm}^{-2}$ (90 per cent errors) at $z = 4.72$ (Bohmer et al. 2000). Further observations with BeppoSAX also measured $\Gamma = 1.45 \pm 0.10$ power-law and excess absorption of $N_{H}^{\text{cold}} = 7.8 \pm 0.7 \times 10^{22} \text{cm}^{-2}$ (90 per cent errors; Fabian et al. 2001a).

Warm absorption was first suggested by Fabian et al. (2001a) following the BeppoSAX observations. In addition to modelling the results of that observation, the authors also fitted the previous ASCA and ROSAT data. A marginally consistent set of parameters were found with a column density of $(2–3) \times 10^{23} \text{cm}^{-2}$ and an ionization parameter $\xi \sim 300$. XMM-Newton observations (Worsley et al. 2004a) confirmed the presence of soft X-ray spectral flattening, with a column density of $N_{H}^{\text{cold}} \sim (1.4–1.6) \times 10^{22} \text{cm}^{-2}$ if cold, or up to $N_{H}^{\text{warm}} \sim 10^{25} \text{cm}^{-2}$ with an ionization parameter $\xi \sim 100$, if due to a warm absorber. Interestingly, the XMM-Newton data showed a distinct change in the spectral index of the source, both from the earlier observations as well in the ~ 7 d (rest-frame) between the two XMM-Newton exposures. The first observation indicated

\[N_{H}^{\text{cold}} \sim (1.4–1.6) \times 10^{22} \text{cm}^{-2} \text{ if cold, or up to } N_{H}^{\text{warm}} \sim 10^{25} \text{cm}^{-2} \text{ with an ionization parameter } \xi \sim 100, \text{ if due to a warm absorber.} \]
Radio and X-ray observations of an exceptional radio flare in the extreme $z = 4.72$ blazar GB B1428+4217

2.2 X-ray variability

No clear variability was noted between the original ROSAT PSPC detection in 1992 and the ROSAT HRI and ASCA observations during 1996 and 1997: all were consistent with a 0.1–2.4 keV soft X-ray flux of $\sim 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, with no significant evidence for any differences (Fabian et al. 1999). However, a series of four ROSAT HRI observations from 1997 December 12 until 1998 January 23 showed substantial X-ray variability, with the 0.1–2.4 keV flux increasing from $(0.6 \pm 0.1) \times 10^{-12}$ to $(1.1 \pm 0.1) \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ between the third and fourth exposure – a period of only 2.4 d in the rest-frame of the source (Fabian et al. 1999). Subsequent ROSAT PSPC observations then identified 25 per cent variability on a rest-frame timescale of ~ 18 h (Boller et al. 2000). Furthermore, the mean 0.1–2.4 keV flux during the observation was $(2.7 \pm 0.6) \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, 3 times the previous ROSAT and ASCA measurements in this band. A cautionary note must be attached to these PSPC measurements, which were amongst the final observations of the ROSAT satellite which experienced some detector anomalies and the development of a large gain hole in the PSPC instrument, although careful data reduction techniques (refer to Boller et al. 2000) should mean the results were not significantly affected. The BeppoSAX-measured 2–10 keV flux and spectral shape imply a 0.1–2.4 keV flux of $\sim 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, indicating a decrease back to the level seen prior to the ROSAT PSPC observation. The two XMM-Newton exposures of 2002 December 09 and 2003 January 17 measured 0.1–2 keV fluxes of $(1.17 \pm 0.04) \times 10^{-12}$ and $(0.85 \pm 0.02) \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ respectively, consistent with other measurements but revealing a 30 per cent decrease in the 7 d (rest-frame) between the XMM-Newton observations.

In the hard X-ray band, ASCA and BeppoSAX (Fabian et al. 1999, 2001b) measured consistent 2–10 keV fluxes of 2.5×10^{-12} and 2.76×10^{-12} erg cm$^{-2}$ s$^{-1}$. The two XMM-Newton exposures measured 2–10 keV fluxes of $(1.21 \pm 0.06) \times 10^{-12}$ and $(1.08 \pm 0.03) \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ respectively. These were ~ 2–2.5 times lower than the earlier measurements and indicating a 10 per cent decrease in only 7 d (rest-frame) between the XMM-Newton observations (note that this decrease is much less than the ~ 30 per cent fall seen for the soft X-ray band because of the distinct change in the spectral shape of the source between the two observations: see Section 2.1). We will present soft and hard band X-ray lightcurves shortly, following the details and results of the new XMM-Newton measurements.

2.3 Radio properties

Fabian et al. (1997) collated various radio measurements for GB B1428+4217 and present the SED of the source, noting the flat radio spectrum, high level of polarisation and indications of 5 GHz variability. An intensive monitoring programme was carried out between 1998 April and December using the Ryle Telescope at Cambridge at 15.2 GHz. The programme formed part of a radio and X-ray variability study, although the radio observations were somewhat later than the ROSAT HRI exposures carried out in 1997 December and 1998 January (Fabian et al. 1999). The Ryle data revealed significant 15.2 GHz variability, with a flux increase from ~ 100 mJy to ~ 140 mJy in a rest-frame period of only ~ 20 d. The flare ended abruptly mid-way through the observing programme, with the flux decreasing back to ~ 105 mJy within a fraction of a day in the rest-frame. The lightcurve also shows strong variability at the 15 per cent level with a rest-frame timescale of only ~ 2 d.

3 NEW RADIO OBSERVATIONS

The Ryle telescope has been used to measure the 15.2 GHz radio flux of GB B1428+4217 on a regular basis since the monitoring programme in 1997-8 (for details of the observing method see Pooley & Fender 1997). The lightcurve is shown in Fig 3a). Measurements after the 1997-8 programme, although sparse, indicated no significant behaviour beyond the variability that had already been observed until that point. The flux decreased to only 70 mJy before starting to climb. In less than 6 months (rest-frame), the flux peaked at ~ 210 mJy before dropping suddenly to 140 mJy. The source then began to steadily grow in flux – the start of a flare of an enormous magnitude that has continued to the present. By 2005 August, the 15.2 GHz flux had reached ~ 430 mJy, a factor ~ 3 increase in only ~ 4 months (rest-frame). The lightcurve continues to show intra-day variations of ~ 10 per cent, with several ‘micro-flares’ visible in the primary flare.

A radio spectrum was obtained on 2005 October 14 with the Very Large Array (VLA) at 1.425, 4.86, 8.46, 22.46 and 43.34 GHz, and almost simultaneously at 15.2 GHz with the Ryle Telescope, shortly after the peak flux density at 15.2 GHz (flux densities at this frequency are of Stokes’ I + Q; all VLA measurements are of Stokes’ I). The data and spectrum are given in Table 1 and Fig. 2 respectively. The absolute flux calibration for the VLA data was done using 3C286 and the measured flux densities at each frequency are given in Table 1. The flux measurements include an uncertainty in the calibration of 5 per cent for the three lowest frequencies and 10 per cent for the remainder.

Frequency (GHz)	GB B1428+4217 flux density (mJy)	3C286 calibrator flux density (Jy)
1.425	171 ± 9	14.70
4.86	273 ± 14	7.47
8.46	348 ± 17	5.20
15.2	380 ± 38	3.50
22.46	367 ± 37	2.52
43.34	290 ± 29	1.45
4 NEW XMM-NEwTON OBSERVATIONS

4.1 Data reduction

Following the extraordinary increase in 15.2 GHz flux, XMM-Newton was used to perform a target-of-opportunity (ToO) X-ray observation co-incident with the radio brightening. Various details of the observation, which was carried out during XMM-Newton revolution 1005, are given in Table 2. The European Photon Imaging Camera (EPIC) pn, MOS-1 and MOS-2 instruments were active. Data were reduced using the XMM-Newton Science Analysis System (SAS) version 6.4.0-6.5.0. Periods of background flaring were excluded using a lightcurve extracted from the whole pn/MOS chip in each case. Raw events were filtered in the recommended3 way.

Spectra were produced from events extracted from circular regions centred on the source. Radii of approximately 45 and 75 arcsec were used for the pn and MOS, respectively. Background spectra were formed using events from nearby source-free regions on the same chip as the source. The regions used had respective radii of approximately 130 and 170 arcsec for the pn and MOS. The SAS tasks ARFGEN and RMFGEN were used to generate the appropriate response matrices. Background-corrected spectra were produced for each instrument and grouped to a minimum of 20 counts in each energy channel.

4.2 X-ray lightcurve

Figs. 1(b) and 1(c) show X-ray lightcurves to match the radio data shown in Fig. 1(a). Measurements of the X-ray flux in the soft 0.1–2.4 keV and hard 2–10 keV bands (corresponding to rest-frame energies of ∼0.6–14 and ∼11–57 keV, respectively) are shown. The measurements are taken from the various observations described in Section 2.2 and the new XMM-Newton data (2005 June 05). This observation had 0.1–2.4 and 2–10 keV fluxes of \((0.70 \pm 0.02) \times 10^{-12}\) and \((1.27 \pm 0.04) \times 10^{-12}\) erg cm\(^{-2}\) s\(^{-1}\), respectively. The X-ray lightcurve illustrates the strong variations in flux that have been seen throughout the various observations of the source (see Section 2.2 for details and references). The latest XMM-Newton data do not show any evidence of variability within the observation; however, the 0.1–2.4 and 2–10 keV fluxes are different to those measured in the previous XMM-Newton observations.

There appears to be no obvious correlation between the X-ray and radio lightcurves, although the sparse sampling of the lightcurves does not allow us to rule anything out. Interestingly, one would not necessarily expect a correlation with zero time-lag, particularly since blazar emission is dominated by beamed radiation from a relativistic jet. Continued monitoring in both radio and

3 (FLAG==0) && (PATTERN==4) && (PI IN [150,15000]) and (4XMMELEM && (PATTERN==12) && (PI IN [200,10000]) for the pn and MOS cameras, respectively. See the XMM-Newton Science Operations Centre document XMM-SOC-CAL-TN-0018.
X-ray wavebands over the coming years may reveal correlations which are not clear with the present data.

4.3 X-ray spectrum

XSPEC version 11.3 was used for spectral fitting, which was done for the pn, MOS-1 and MOS-2 data jointly. A simple power-law model, fitted at energies > 1 keV, is a good match to the spectrum, with a reduced chi-squared of $\chi^2 = 1.024$ for $\\nu = 316$ degrees of freedom (the probability of the model not representing the data, $1 - \text{Pr}(H_0)$, is ~ 63 per cent and there is therefore no significant evidence to suggest the model is unacceptable). However, when the same model is applied to the full energy range, the fit is unacceptable (at the 99.998 per cent level), with $\chi^2_{\text{red}} = 1.359$.

Re-fitting the simple power-law model to the full energy range also leads to an unacceptable fit (at the 99.7 per cent level), with $\chi^2_{\text{red}} = 1.187$.

Soft X-ray spectral flattening is once again evident, and we use a power-law plus intrinsic cold absorption model (using ZWABS in XSPEC; Morrison & McCammon 1983). A joint analysis was performed with the earlier XMM-Newton data taken in 2002 December and 2003 January (XMM-Newton revolutions 549 and 569), respectively; the details are included in Table 2. Table 4 shows the results of various combinations of free and fixed parameters in the analysis. Allowing Γ to vary along with both N_H^cold and the ionization parameter $\\xi$ (this is a fixed $\\xi = 0$ in the cold absorber models) results in a good fit with $\chi^2_{\text{red}} = 0.985$. Fixing Γ results in a poorer fit with $\chi^2_{\text{red}} = 1.059$, although the evidence for an unacceptable fit is only at the 91.7 per cent level. Allowing $\\xi$ and Γ to vary whilst maintaining a fixed N_H^warm provides a very good description of the data, with $\chi^2_{\text{red}} = 0.987$ and reasonable values for the fits to the individual data-sets. A fixed column density of absorption with ionisation state and underlying power-law variations seems the more physically plausible situation and is also consistent with the X-ray spectral variation which we will describe next.

5 X-RAY SPECTRAL VARIABILITY

The X-ray lightcurves (Figs. 1(a) and 1(b)) show strong amplitude variations but also show differences between the 0.1–2.4 and 2–10 keV behaviour. The (0.1–2.4)/(2–10) keV flux ratio was ~ 0.5 and then ~ 0.4 during the ASCA and BeppoSAX observations. The ratio was much larger during the later XMM-Newton observations, with more evidence of spectral variation between the revolution 549 and 569 observations, with the ratio falling from 0.97 ± 0.06 to 0.78 ± 0.03. The revolution 1005 data indicate a value of 0.55 ± 0.02, close to that seen in the earlier observations.

Here, we have used a simple soft/hard band flux ratio to characterise the spectral variation but the evolution can also be well-described by a change in the underlying power-law slope with a fixed column density of absorption. Fig. 4 shows the X-ray spectra of the three XMM-Newton observations and clearly indicates a hardening of the power-law photon index in moving from the revolution 549 to the 569 and 1005 data.

Fig. 5 shows the confidence contours in the power-law slope Γ and the column density N_H^cold of an intrinsic neutral absorber, as measured by the ROSAT PSPC, BeppoSAX and the three XMM-Newton observations. Interestingly, the fixed-N_H^cold but varying-Γ scenario (Table 4(d)), is marginally consistent with all the data-sets. The spectral variations can be explained through variations in the photon index with a fixed absorber column density of $\sim 1.4 \times 10^{22}$ cm$^{-2}$. These variations, however, do not seem to be correlated with changes in the normalization of the power-law (which is presumably indicated by the 2–10 keV lightcurve in Fig. 4(c)).

The spectral variation can also be explained successfully in the warm absorber scenario. The most self-consistent situation is that of a fixed-N_H^warm but varying-Γ and varying-$\\xi$, i.e. the column density of the absorber remains fixed whilst the ionization state increases with the hardness of the irradiating power-law; indeed, $\\xi$ seems to increase with the hardening Γ from revolutions 549, 569 and 1005 (Table 4). This trend can also be visualised in Fig. 6 which shows the X-ray spectrum hardening between the data from XMM-Newton revolutions 549, 569 and 1005.

4 Galactic cold absorption of $N_H^\text{Gal} = 1.40 \times 10^{20}$ cm$^{-2}$ (Elvis et al. 1994), applied using WABS in XSPEC; Morrison & McCammon 1983, is included in all spectral models.
Table 3. Spectral fits to a power-law plus intrinsic cold absorption model (inclusive of Galactic cold absorption of $N_{\text{HI}}^{\text{Gal}} = 1.40 \times 10^{20}$ cm$^{-2}$). The fits use different combinations of parameters which were fixed to be the same for the separate observations, and those which were free to vary independently. The χ^2_ν and degrees of freedom ν is shown for the total fit and also when the model is applied to the individual data set alone.

Revolution	Γ	$N_{\text{HI}}^{\text{cold}}$ (10^{22} cm$^{-2}$)	Total χ^2_ν	Individual χ^2_ν
(a) Γ and $N_{\text{HI}}^{\text{cold}}$ independent:				
549	1.89 ± 0.04	1.61 ± 0.28	0.831	185
569	1.76 ± 0.02	1.67 ± 0.16	0.991	1117
1005	1.49 ± 0.02	0.95 ± 0.15	1.081	484
(b) Γ and $N_{\text{HI}}^{\text{cold}}$ fixed:				
549			1.189	185
569	1.67 ± 0.01	1.40 ± 0.10	1.170	1121
1005	2.12 ± 0.15		1.245	484
(c) Γ fixed; $N_{\text{HI}}^{\text{cold}}$ independent:				
549		0.51 ± 0.17	1.031	185
569	1.67 ± 0.01	1.15 ± 0.13	1.111	1119
1005	2.12 ± 0.15		1.245	484
(d) Γ independent; $N_{\text{HI}}^{\text{cold}}$ fixed:				
549	1.86 ± 0.27		0.835	185
569	1.73 ± 0.02	1.4 ± 0.1	0.999	1119
1005	1.53 ± 0.02		1.095	484

Table 4. Spectral fits to a power-law plus intrinsic warm absorption model (inclusive of Galactic cold absorption of $N_{\text{HI}}^{\text{Gal}} = 1.40 \times 10^{20}$ cm$^{-2}$). The fits use different combinations of parameters which were fixed to be the same for the separate observations, and those which were free to vary independently. The χ^2_ν and degrees of freedom ν is shown for the total fit and also when the model is applied to the individual data set alone.

Revolution	Γ	$\log_{10}(N_{\text{H}}^{\text{warm}}/\text{cm}^{-2})$	$\log_{10}(\xi/\text{erg cm s}^{-1})$	Total χ^2_ν	Individual χ^2_ν
(a) Γ, $N_{\text{H}}^{\text{warm}}$ and ξ independent:					
549	1.89 ± 0.06	22.34 ± 0.21	< -1	0.834	185
569	1.77 ± 0.04	22.37 ± 0.15	$-0.04 ± 1.04$	0.985	1114
1005	1.55 ± 0.04	22.90 ± 0.67	$2.03 ± 0.44$	1.061	484
(b) Γ fixed; $N_{\text{H}}^{\text{warm}}$ and ξ independent:					
549	21.82 ± 0.50	< -1		0.992	185
569	1.70 ± 0.03	22.24 ± 0.13	$-0.04 ± 0.96$	1.059	1127
1005	> 23	1.84 ± 0.26		1.153	484
(c) Γ and ξ independent; $N_{\text{H}}^{\text{warm}}$ fixed:					
549	1.91 ± 0.06	$-0.96 ± 0.30$		0.836	185
569	1.77 ± 0.02	22.34 ± 0.04	$-0.18 ± 1.04$	0.987	1126
1005	1.51 ± 0.02	1.44 ± 0.15		1.071	484

A fixed $\log_{10}(N_{\text{H}}^{\text{warm}}/\text{cm}^{-2}) \sim 22.5$ absorber is consistent with all the data-sets, with the underlying power-law softening from $\Gamma \sim 1.4$ to ~ 1.9, and then hardening back to ~ 1.5 during the BeppoSAX and the three XMM-Newton observations. A trend is also seen in the ionization parameter, which decreases from $\log_{10}(\xi/\text{erg cm s}^{-1}) \sim 1.5$ to ~ 0.8, and then increases to 1.6.

6 CONCLUSIONS

- We have observed an exceptional flare in the 15.2 GHz radio lightcurve of GB1428+4217. The flux density has grown by a factor of ~ 3 in a rest-frame timescale of only ~ 4 months. The radio lightcurve also shows intra-day variations on the ~ 10 per cent level, consistent with previous observations.
- Target-of-opportunity X-ray observations with XMM-Newton do not see any evidence of a flare in the X-ray lightcurve, although the source continues to show ~ 10–25 per cent variability on rest-frame timescales of hours to days.
- The ToO observations are able to confirm the unusual X-ray spectrum of the source, which is well-described by a hard ($\Gamma \sim 1.4–1.9$) power-law with a large amount ($\sim 10^{22}–10^{23}$ cm$^{-2}$) of intrinsic absorption (refer to Worsley et al. 2004a). The present data are unable to discriminate between a cold (neutral) or warm (ionized) absorption (a third possibility, of a spectral break in the power-law continuum, is discussed in detail in our previous paper).
- Previous XMM-Newton observations hinted at spectral variations in the source. These have been confirmed with the ToO data, which reveals that the photon index of the X-ray power-law has hardened from $\Gamma \sim 1.7–1.9$, to $\Gamma \sim 1.5$. Interestingly, there is no clear evidence for a change in the column density of the absorption.
Radio and X-ray observations of an exceptional radio flare in the extreme $z = 4.72$ blazar GB B1428+4217

7

Figure 3. Unfolded X-ray spectra, in νF_ν space, from the XMM-Newton revolution 549 (open black circles), 569 (solid grey diamonds) and 1005 (solid black stars) observations. A power-law plus intrinsic cold absorption model was used to unfold the spectra and is shown as a solid line in each case.

Figure 4. Confidence contours (68, 90 and 99 per cent) in the photon index Γ and the cold absorber column density N_{H}^{cold}. The BeppoSAX and ROSAT PSPC data (Fabian et al. 2001a, Boller et al. 2000) are shown, along with results from XMM-Newton revolutions 549, 569 and 1005 (Worsley et al. 2004a, this paper). The data are all marginally consistent with a constant N_{H}^{cold} model in which Γ varies widely, although the column densities implied by the revolution 569 and 1005 data disagree at the 90 per cent level.

in either the cold or ionized absorber scenario. The spectral variations, including all previous data from other telescopes, are consistent with a scenario in which the column density of an ionized absorber remains fixed whilst the ionization state increases with the hardening of the power-law emission.

7 ACKNOWLEDGMENTS

Based on observations with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). MAW acknowledges support from PPARC. ACF thanks the Royal Society for support. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The authors would also like to thank the referee for helpful comments and suggestions.

REFERENCES

Bassett L. C., Brandt W. N., Schneider D. P., Vignali C., Chartas G., Garmire G. P., 2004, AJ, 128, 523
Boller T., Fabian A. C., Brandt W. N., Freyberg M. J., 2000, MNRAS, 315, L23
Cappi M., Matsuoka M., Comastri A., Brinkmann W., Elvis M., Palumbo G. G. C., Vignali C., 1997, ApJ, 478, 492
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
de Rosa A. et al., 2005, A&A, 438, 121
Elvis M., Lockman F. J., Fassnacht C., 1994, ApJS, 95, 413
Fabian A. C., Brandt W. N., McMahon R. G., Hook I. M., 1997, MNRAS, 291, L5
Fabian A. C., Celotti A., Iwasawa K., Ghisellini G., 2001a, MNRAS, 324, 628
Fabian A. C., Celotti A., Iwasawa K., McMahon R. G., Carilli C. L., Brandt W. N., Ghisellini G., Hook I. M., 2001b, MNRAS, 323, 373
Fabian A. C., Celotti A., Pooley G., Iwasawa K., McMahon R. G., Hoenig M. D., 1999, MNRAS, 308, L6
Fabian A. C., Iwasawa K., McMahon R. G., Celotti A., Brandt W. N., Hook M., 1998, MNRAS, 295, L25
Ferland G. J., Korista K. T., Verner D. A., Ferguson J. W.,Kingdon J. B., Verner E. M., 1998, PASP, 110, 761
Grupe D., Mathur S., Wilkes B., Elvis M., Osmer P., 2006, AJ, 131, 55
Grupe D., Mathur S., Wilkes B., Osmer P., 2004, ApJ, 492, 79
Fiore F., Elvis M., Maiolino R., Nocelli F., Siemiginowska A., Stratta G., D’Elia V., 2003, A&A, 409, 57
Fossati G., Maraschi L., Celotti A., Comastri A., Ghisellini G., 1998, MNRAS, 299, 433
Fiore F., Elvis M., Giommi P., Padovani P., 1998, ApJ, 492, 79
Fiore F., Elvis M., Maiolino R., Nocelli F., Siemiginowska A., Stratta G., D’Elia V., 2003, A&A, 409, 57
Gerhard O. E., Mathur S., Wilkes B., Osmer P., 2006, AJ, 131, 55
Hook I. M., McMahon R. G., 1998, MNRAS, 294, L7
Morrison R., McCammon D., 1983, ApJ, 270, 119
O’Flaherty K. S., Jakobsen P., 1997, ApJ, 479, 673
Piconcelli E., Guainazzi M., 2005, A&A, 442, L53
Piconcelli E., Guainazzi M., Cappi M., Jimenez-Bailon E., Schar
tel N., 2005, A&A, 432, 835
Pooley G. G., Fender R. P., 1997, MNRAS, 292, 925
Reeves J. N., Turner M. J. L., 2000, MNRAS, 316, 234
Shemmer O., Brandt W. N., Vignali C., Schneider D. P., Fan X.,
Richards G. T., Strauss M. A., 2005, ApJ, 630, 729
Spergel D. N. et al., 2003, ApJS, 148, 175
Vignali C., Brandt W. N., Schneider D. P., Kaspi S., 2005, AJ,
129, 2519
Worsley M. A., Fabian A. C., Celotti A., Iwasawa K., 2004a, MN-
RAS, 350, L67
Worsley M. A., Fabian A. C., Turner A. K., Celotti A., Iwasawa
K., 2004b, MNRAS, 350, 207
Yuan W., Fabian A. C., Celotti A., McMahon R. G., Matsuoka M.,
2005a, MNRAS, 358, 432
Yuan W., Fabian A. C., Worsley M. A., McMahon R. G., 2005b,
MNRAS, submitted
Yuan W., Matsuoka M., Wang T., Ueno S., Kubo H., Mihara T.,
2000, ApJ, 545, 625