Group VIA PLA$_2$ (iPLA$_2\beta$) Is Activated Upstream of p38 Mitogen-activated Protein Kinase (MAPK) in Pancreatic Islet \(\beta\)-Cell Signaling\(^{1,5}\)

Received for publication, July 22, 2011, and in revised form, December 21, 2011. Published, JBC Papers in Press, December 22, 2011, DOI 10.1074/jbc.M111.285114

Haowei Song\(^1\), Mary Wohltmann\(^1\), Min Tan\(^1\), Shunzhong Bao\(^1\), Jack H. Ladenson\(^1\), and John Turk\(^1,3\)

From the \(^4\)Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, and the \(^6\)Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110

**Background:** Group VIA Phospholipase A$_2$ (iPLA$_2\beta$) is activated in \(\beta\)-cell signaling.

**Results:** \(\beta\)-Cell p38 MAPK is activated by an iPLA$_2\beta$-dependent mechanism and participates in insulin secretion and apoptosis.

**Conclusion:** p38 MAPK is a downstream effector of iPLA$_2\beta$ activation in \(\beta\)-cells.

**Significance:** Understanding how insulin secretion is impaired and \(\beta\)-cell apoptosis occurs could suggest therapeutic strategies for type 2 diabetes mellitus.

Type 2 diabetes mellitus (T2DM)\(^2\) is increasingly prevalent and is associated with obesity and cardiovascular disease (1–5). Overt T2DM is preceded by a period of insulin resistance during which euglycemia is maintained by compensatory hypersecretion of insulin by pancreatic islet \(\beta\)-cells (6,7). Hyperglycemia ensues when \(\beta\)-cells can no longer sustain such hypersecretion (7–10) because of defective glucose-induced insulin secretion by residual \(\beta\)-cells and loss of ~50% of \(\beta\)-cell mass at the onset of T2DM (10–14).

\(\beta\)-Cells sense the extracellular glucose concentration and modulate insulin secretion accordingly by processes that involve import of extracellular d-glucose by GLUT2 transporters and conversion to glucose 6-phosphate by glucokinase (15–18). Kinetic properties of these proteins cause the rate of d-glucose entry into glycolysis to be proportional to its extracellular concentration (17,18). Subsequent glycolytic and mitochondrial metabolism generate metabolic signals, including a rise in [ATP] relative to free [ADP] that causes closure of \(\beta\)-cell plasma membrane K$_{\text{ATP}}$ channels (19–21). The resultant rise in membrane potential activates voltage-operated Ca\(^{2+}\) channels that mediate extracellular Ca\(^{2+}\) entry into \(\beta\)-cells (22,23). This increases intracellular [Ca\(^{2+}\)] which activates Ca$^{2+}$-sensitive effectors (e.g. Ca$^{2+}$/calmodulin-dependent protein kinase II) (24) that trigger insulin exocytosis.

These events are modulated by many other processes that include operation of other ion channels and pumps that affect membrane potential (25–27), mitochondrial reducing equivalents shuttles (28–32), and K$_{\text{ATP}}$-independent processes activated by glucose (33–34). Elevating \(\beta\)-cell AMP also amplifies secretion (35–36), and \(\beta\)-cell signaling involves phospholipid hydrolysis and accumulation of phospholipid-derived mediators (36–44).

---

\(^{1}\)This work was supported, in whole or in part, by National Institutes of Health Grants R37-DK34388, P41-RR00954, P60-DK20579, and P30-DK56341.

\(^{2}\)The abbreviations used are: T2DM, type 2 diabetes mellitus; PLA$_2\varepsilon$, endoplasmic reticulum; iPLA$_2\beta$, Group VIA PLA$_2$; MS/MS, tandem mass spectrometry; OE, overexpressing; SERCA, sarco(endo)plasmic reticulum ATPase; BEL, bromoelocol lactone; KB-R, Krebs-Ringer bicarbonate buffer; ESI, electrospray ionization; CREB, cAMP-response element-binding protein.
Stimulating islets with d-glucose induces hydrolysis of phospholipids and accumulation of nonesterified arachidonic acid (45, 46) by processes that require glucose metabolism (47) but not Ca \(^{2+}\) influx (45–47) and that amplify the glucose-induced rise in \(\beta\)-cell \([\text{Ca}^{2+}]\) (48, 49). Among participants in these events is a phospholipase \(A_2 (PLA_2)\) that does not require \(\text{Ca}^{2+}\) for catalytic activity, is activated by a rise in [ATP]/[ADP], and is inhibited by a bromoeno lactone (BEL) suicide substrate that blocks glucose-induced arachidonate release by \(\beta\)-cells and blunts rises in \(\beta\)-cell \([\text{Ca}^{2+}]\) and insulin secretion (49–51).

This \(\text{PLA}_2\) activity is expressed by pancreatic islets and insulinoma cells from several species (50–55). When the cDNA for this \(\text{PLA}_2\) was cloned from islet libraries (53, 54), it was found to represent an enzyme now designated Group VIA \(\text{PLA}_2 (\text{iPLA}_2,\beta)\) (56) that was the first recognized member of a potatoin-like phospholipase (PNPLA) lipase family with important metabolic functions (57). Participation of \(\text{iPLA}_2,\beta\) in glucose-induced insulin secretion is reflected by the fact that secretion is impaired by its genetic deletion, by suppressing its expression, or by its pharmacologic inhibition (58–62). Moreover, overexpressing \(\text{iPLA}_2,\beta\) in insulinoma cells and mice amplifies insulin secretion (58, 62), and genetic \(\text{iPLA}_2,\beta\) deficiency in mice increases sensitivity to diet-induced diabetes by impairing compensatory insulin hypersecretion (61).

Apoptosis is now considered an important contributor to \(\beta\)-cell loss in T2DM and can be induced by ER stress (13, 14), which results in \(\text{iPLA}_2,\beta\) activation in many cells (63–68). Reported observations suggest that \(\text{iPLA}_2,\beta\) may either protect \(\beta\)-cells from or sensitize \(\beta\)-cells to apoptosis (65, 66, 69–72), and this may reflect the fact that ER stress responses (e.g. the unfolded protein response) initially mitigate stress by triggering compensatory repair mechanisms (73–76). These pathways result in apoptosis only when stress is overwhelming and/or prolonged (76). \(\text{iPLA}_2,\beta\) may play similar dual roles in \(\beta\)-cell stress responses and is reported to protect against staurosporine-induced \(\beta\)-cell apoptosis (69, 70). In contrast, \(\text{iPLA}_2,\beta\) promotes \(\beta\)-cell apoptosis induced by the sarco(endo)plasmic reticulum (SERCA) inhibitor thapsigargin, which causes ER stress by reducing ER \(\text{Ca}^{2+}\) content (65, 66, 71, 72). Under these conditions, \(\text{iPLA}_2,\beta\) has clearly been shown to be activated (63–68).

Both glucose-induced insulin secretion and ER stress-induced apoptosis are important \(\beta\)-cell stimulus response events that are affected during the evolution of T2DM. Because \(\text{iPLA}_2,\beta\) participates in both processes, understanding its position in \(\beta\)-cell signaling pathways could suggest strategies to preserve \(\beta\)-cell secretion and to prolong \(\beta\)-cell survival and thereby to prevent or retard development of T2DM. Little is known about downstream events affected by \(\text{iPLA}_2,\beta\) activation, but mitogen-activated protein kinases (MAPKs) often mediate cellular responses to extracellular stimuli or stressors (77). We report here that p38 MAPK is activated in an \(\text{iPLA}_2,\beta\)-dependent manner in \(\beta\)-cells during both glucose-induced insulin secretion and ER stress-induced apoptosis.

**Experimental Procedures**

**Materials**—Rainbow molecular mass standards, PVDF membrane, and Triton X-100 were obtained from Bio-Rad; SuperSignal West Femto Substrate was from Thermo Fisher; Coomassie reagent and SDS-PAGE supplies were from Invitrogen; collagenase, protease inhibitor mixture, thapsigargin, common reagents, and salts were from Sigma; bovine serum albumin (BSA; fatty acid-free, fraction V) was from MP Biomedicals (Solon, OH); forskolin was from Calbiochem; synthetic phospholipids used as internal standards in mass spectrometric analyses were from Avanti Polar Lipids (Alabaster, AL); racemic BEL and BEL enantiomers were from Cayman Chemical (Ann Arbor, MI); arachidonic acid was from NuChek Prep (Elysian, MN); p38 MAPK inhibitors PD169316 and SB203580 were from BIOMOL (Plymouth Meeting, PA); and solvents for sample preparation and mass spectrometric analyses were from Fisher. Krebs-Ringer bicarbonate buffer (KRB) contained 115 mM NaCl, 24 mM NaHCO\(_3\), 5 mM KCl, 1 mM MgCl\(_2\), 2.5 mM CaCl\(_2\), and 25 mM HEPES (pH 7.4).

**Cell Culture**—INS-1 rat insulinoma cells that had been stably transfected to overexpress \(\text{iPLA}_2,\beta\) and mock-transfected INS-1 cells were generated as described (58) and cultured in RPMI 1640 medium containing 11 mM glucose, 10% fetal calf serum, 10 mM Hepes buffer, 2 mM glutamine, 1 mM sodium pyruvate, 50 mM β-mercaptoethanol, 100 units/ml penicillin, and 100 μg/ml streptomycin. The medium was exchanged every 2 days, and the cell cultures were split once a week. Cells were grown to 80% confluence and harvested after treatment as indicated in the figure legends or under “Results.” All incubations were performed at 37 °C under an atmosphere of 95% air, 5% CO\(_2\).

**Immunoblotting Analyses**—Cells were harvested and sonicated, and an aliquot (30 μg) of lysate protein was analyzed by SDS-PAGE (4–20% Tris-glycine gel, Invitrogen), transferred onto Immobilon-P polyvinylidene difluoride membranes (Bio-Rad), and processed for immunoblotting analyses as described (60). The targeted factors and the primary antibody (from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA) unless otherwise indicated) concentrations were as follows: phosphorylated p38 (p-p38) (1:500), p38 (1:500), \(\text{iPLA}_2,\beta\) (T-14) (1:2000), pMKK3/6 (1:1000), β-actin (1:10,000; Sigma). The secondary antibody concentration was 1:10,000. Immunoreactive bands were visualized by enhanced chemiluminescence (ECL).

**Assessment of Apoptosis by Flow Cytometry**—INS-1 cell apoptosis was determined essentially as described (69), using an Annexin-V-FLUOS staining kit (Roche Applied Science) according to the manufacturer’s instructions. Briefly, harvested cells were washed with PBS and resuspended in Annexin-VFLUOS labeling solution (100 μl). After incubation (10–15 min, 15–25 °C), cells were transferred to fluorescence-activated cell sorting (FACS) tubes and diluted 1:5 with buffer provided in the kit. Fluorescence in cells was analyzed with a FACScan flow cytometer (BD Biosciences) at an excitation wavelength of 488 nm, and data were processed with WinMDI 2.9 software.

**Ceramide Analyses by Electrospray Ionization (ESI) MS/MS—** Lipids were extracted from INS-1 cells under acidic conditions, as described (78, 79). Briefly, cells were harvested and collected by centrifugation, and extraction buffer (2:2:1.8 (v/v/v) chloroform, methanol, 20 mM LiCl) containing 500 ng of C8-ceramide ([M + Li]\(^{+}\) m/z 432) internal standard was added to the cell pellet. After vortex-mixing and centrifugation (800 × g), the organic (lower) layer was collected, concentrated to dryness.
under nitrogen, and reconstituted in a chloroform/methanol mixture (1:1) containing 0.6% LiCl. The abundances of individual ceramide species relative to the C8-ceramide internal standard were measured by ESI/MS/MS scanning for constant neutral loss of 48, which reflects elimination of water and formaldehyde from [M + Li]+, a loss characteristic of ceramide-Li+ adducts upon low energy collisionally activated dissociation ESI/MS/MS (79). The measured quantities of individual ceramide molecular species were normalized to lipid phosphorus content, which was determined as described (66).

Insulin Secretion by Isolated Pancreatic Islets or INS-1 Cells—Genetically modified mice with disrupted iPLA2β genes (iPLA2β-null) and their wild type littermates were generated as described (61), as were transgenic mice that overexpress iPLA2β in β-cells under control of the rat insulin-1 promoter (62). All animal procedures were performed according to protocols approved by the Washington University School of Medicine Animal Studies Committee. Male mice (4–5 weeks of age) were anesthetized (ketamine/xylazine, 0.75 μl/g body weight) before euthanasia by cervical dislocation. The abdomen was incised, and the pancreas was harvested and used to prepare isolated pancreatic islets as described (80). Mouse islets or INS-1 cells were counted and used in experiments (30 islets or 0.2 million INS-1 cells/incubation) to measure insulin secretion ex vivo. Islets or cells were rinsed with KRB medium containing 0.1% BSA without glucose and placed in silanized glass tubes (12 × 75 mm) in that buffer, through which 95% air, 5% CO2 was bubbled before incubations. Tubes were capped and incubated (37 °C, 30 min, shaking water bath). Buffer was then replaced with KRB medium containing either 0 or 20 mm glucose and 0.1% BSA with or without forskolin (2.5 μM), and samples were incubated for 30 min. Secreted insulin was measured by radioimmunoassay.

Statistical Analyses—Results are presented as mean ± S.E. Data were evaluated by unpaired, two-tailed Student’s t test for differences between two conditions or by analysis of variance with appropriate post hoc tests for larger sets (66). Significance levels are described in the figure legends, and a p value of < 0.05 was considered statistically significant.

RESULTS

Level of p38 MAPK Phosphorylation Increases with iPLA2β Expression Level in INS-1 Insulinoma Cells and Isolated Pancreatic Islets—The intensity of a band recognized by an antibody directed at the doubly phosphorylated, activated form of p38 MAPK (81) relative to that of a band representing total p38 MAPK on Western blotting analyses was found to be greater in INS-1 cells that had been stably transfected to overexpress iPLA2β compared with cells transfected with empty vector (Fig. 1A and B), and this is also true of islets from transgenic mice that overexpress iPLA2β in β-cells compared with islets from wild-type mice (Fig. 1C). These observations indicate that increased expression of iPLA2β is associated with increased p38 MAPK phosphorylation in β-cells, and one possibility is that this might reflect an effect of iPLA2β reaction products, such as arachidonic acid, to stimulate p38 MAPK phosphorylation.

Arachidonic Acid induces p38 MAPK Phosphorylation in INS-1 Cells—As illustrated in supplemental Fig. S1, when INS-1 insulinoma cells are incubated with exogenous arachidonic acid, a material recognized by an antibody directed at activated, doubly phosphorylated p38 MAPK accumulates in a time- and arachidonate concentration-dependent manner, although there is no observable change in signal for total p38 MAPK under these conditions. This indicates that arachidonic acid can induce phosphorylation of p38 MAPK.

Stimulation of INS-1-OE Cells with d-Glucose Increases p38 MAPK Phosphorylation, and This Is Prevented by iPLA2β Inhibitor BEL—Stimulating INS-1 cells or pancreatic islet β-cells with d-glucose is known to result in iPLA2β activation as reflected by product release and subcellular redistribution of the enzyme (55, 58–62), and the compound BEL is an effective inhibitor of iPLA2β activity (82–84). To determine whether p38 MAPK phosphorylation is affected under these conditions, INS-1–OE cells were stimulated with 20 mM d-glucose (Fig. 2) in the presence or absence of BEL, and p38 MAPK phosphorylation was assessed in Western blotting experiments like those in Fig. 1 and supplemental Fig. S1 in which the intensity of the band recognized by an antibody directed against doubly phosphorylated p38 MAPK is compared with that of the band representing total immunoreactive p38 MAPK. These experiments revealed that 20 mM d-glucose increases p38 MAPK phosphorylation in INS-1–OE cells and that this is prevented by the iPLA2β inhibitor BEL (Fig. 2). In the context of the findings in Fig. 1 and supplemental Fig. S1, observations illustrated in Fig. 2 suggest that iPLA2β activation that occurs in INS-1 cells stimulated with d-glucose results in p38 MAPK phosphorylation and activation and raise the question of whether this is of functional significance in the insulin secretory response to glucose in which iPLA2β is known to be involved (58–62).

Insulin Secretion Is Amplified by Overexpression of iPLA2β in INS-1 Insulinoma Cells and in Isolated Pancreatic Islets, and This Is Prevented by Pharmacologic Inhibition of p38 MAPK—Glucose-induced insulin secretion from isolated pancreatic islets and INS-1 cells is associated with iPLA2β activation, is suppressed by pharmacologic inhibition or genetic ablation of iPLA2β activity, and is amplified by overexpression of iPLA2β, particularly in the presence of agents that increase β-cell levels of CAMP (55, 58–62), as illustrated in Fig. 3. Fig. 3A demonstrates that pancreatic islets from wild-type mice exhibit robust insulin secretion when stimulated with 20 mM d-glucose and the adenylyl cyclase activator forskolin, and this is also true for islets of transgenic mice that overexpress iPLA2β in β-cells. In addition, the latter exhibit an amplified insulin secretory response compared with the former, as reported previously (62), and this is also true for the INS-1 cells in Fig. 3B.

We have reported previously that INS-1 cells transfected with empty vector exhibit poor insulin secretory responses to glucose and that glucose responsiveness is greatly amplified by overexpressing iPLA2β so that the responses of the insulinoma cells more closely resemble that of native islets (58). Similarly, in the experiments illustrated in Fig. 3B, the secretory responses of iPLA2β-overexpressing INS-1 cells also more closely resemble those of native wild type islets (see Fig. 3A) than do responses of INS-1 cells transfected with empty vector.
To examine the possibility that p38 MAPK activation might be involved in the amplifying effect of iPLA₂/H9252 overexpression on insulin secretion, we examined effects of pharmacologic inhibition of p38 MAPK activity with the compound PD169316 (85), and substantial inhibition of insulin secretion induced by 20 mM glucose and forskolin is observed with both islets (Fig. 3A) and INS-1 cells (Fig. 3B) incubated with PD169316. These observations are consistent with the possibility that p38 MAPK activation participates in the amplification of insulin secretion that occurs when iPLA₂/H9252 is overexpressed in H9252-cells. In addition, the fact that Fig. 3A demonstrates that the p38 MAPK inhibitor PD169316 greatly attenuates insulin secretion induced by 20 mM glucose and forskolin from wild type islets indicates that p38 MAPK also participates in the signaling pathway activated by glucose and forskolin in β-cells with normal endogenous levels of iPLA₂β expression that have not been genetically manipulated to overexpress iPLA₂β.

**Pharmacologic Inhibition of p38 MAPK Results in Attenuation of Ceramide Accumulation in β-Cells in Which ER Stress Is Induced by Treatment with Thapsigargin**—Another stimulus that is known to result in iPLA₂β activation in a variety of cells, including β-cells, vascular smooth muscle cells, and macrophages, is induction of ER stress by depleting ER Ca²⁺ content with the SERCA inhibitor thapsigargin (63–68, 71, 72). This is associated with iPLA₂β activation, as reflected by product generation and subcellular redistribution of the enzyme (63–68, 71, 72). Many cells, including β-cells and macrophages, undergo apoptosis under these conditions (63–67, 71, 72). Thapsigargin-induced apoptosis of H9252-cells is associated with ceramide accumulation that occurs as a consequence of transcriptional up-regulation of neutral sphingomyelinase, and these events require iPLA₂β activation and are blocked by pharmacologic inhibition or genetic ablation of iPLA₂β and are amplified by iPLA₂β overexpression (65, 71, 72).

If p38 MAPK activation is a general consequence of iPLA₂β activation in H9252-cells, then it is possible that p38 MAPK participates in the induction of ceramide accumulation and subsequent apoptosis of β-cells induced by ER stress. To explore this possibility, we examined the effects of pharmacologic inhibition of p38 MAPK activity with PD169316 (85) on these events. Fig. 4 illustrates that thapsigargin does induce ceramide accumulation (Fig. 4, A and B) in parental INS-1 cells transfected with vector only (Vector). In C, the densitometric ratios of the bands for phospho-p38 and total p38 are plotted for pancreatic islets isolated from transgenic (TG) mice that overexpress iPLA₂β in β-cells or from wild type (WT) mice. Mean values (n = 3) are plotted in B and C, and S.E. values (error bars) are indicated. The p value for the comparison in B is 0.0001, and that for the comparison in C is 0.039.
iPLA₂β Activates β-Cell p38 MAP Kinase

with only vector (Fig. 4C), as demonstrated by ESI/MS/MS constant neutral loss scanning measurements with an internal standard (65, 79), and this effect is amplified by iPLA₂β overexpression (Fig. 4D) and attenuated by PD169316 (Fig. 4, C and D). These observations are consistent with the possibility that iPLA₂β-mediated p38 MAPK activation is involved in the chain of events triggered by induction of ER stress in β-cells that leads to accumulation of ceramide.

Thapsigargin-induced Apoptosis of INS-1-OE Cells Is Attenuated by p38 MAPK Inhibitor PD169316—As indicated above, inducing ER stress in INS-1 cells is associated with iPLA₂β activation, ceramide accumulation, and apoptosis. This apoptotic response is amplified by overexpression of iPLA₂β and attenuated by pharmacologic inhibition or genetic ablation of iPLA₂β activity (63, 65–67, 71, 72). Because p38 MAPK activation appears to occur as a consequence of iPLA₂β activation and to participate in thapsigargin-induced ceramide accumulation in β-cells, it is possible that p38 MAPK participates in the induction of apoptosis by ER stress. To examine this possibility, we determined the effects of pharmacologic inhibition of p38 MAPK activity with PD169316 (85) on thapsigargin-induced apoptosis of INS-1-OE cells, as reflected by phosphatidylserine externalization visualized with Annexin IV binding and FACS

(69). As illustrated in Fig. 5, thapsigargin-induced INS-1-OE cell apoptosis is attenuated by PD169316.

Induction of ER Stress in INS-1-OE Cells with Thapsigargin Increases p38 MAPK Phosphorylation, and This Is Prevented by p38 MAPK Inhibitor PD169316 in a Concentration-dependent Manner—The findings in Figs. 4 and 5 indicate that the p38 MAPK inhibitor PD169316 attenuates thapsigargin-induced ceramide accumulation in and apoptosis of INS-1 cells. This implies that thapsigargin should induce activation of p38 MAPK in INS-1 cells, as reflected by its increased phosphorylation, and that this should be attenuated by PD169316 within

FIGURE 2. Glucose stimulates p38 MAPK phosphorylation in INS-1-OE cells, and this is prevented by the iPLA₂β inhibitor BEL. Stably transfected INS-1 cells that overexpress iPLA₂β were preincubated (1 h, 37 °C) with BEL (10 μM) or DMSO vehicle alone. The medium was then replaced by fresh medium containing 20 mM or no D-glucose without or with BEL (10 μM), and the cells were again incubated (30 min, 37 °C). At the end of that incubation interval, cell lysates were prepared and analyzed by SDS-PAGE and immunoblotting with antibody directed at phosphorylated p38 MAPK or total p38 MAPK as in Fig. 1. The figure displays mean values (n = 3) for the densitometric ratios of the bands for phospho-p38 and total p38, and S.E. values (error bars) are indicated. *, p < 0.05 for the value at the indicated condition versus that for 20 mM glucose with BEL.

FIGURE 3. Secretagogue-induced insulin secretion from INS-1 insulinoma cells and pancreatic islets increases with iPLA₂β expression level and is suppressed by pharmacologic inhibition of p38 MAPK. In A, pancreatic islets isolated from wild-type mice (WT; blue or yellow bars) or from transgenic mice (TG; red or green bars) that overexpress iPLA₂β in islet β-cells were preincubated (1 h, 37 °C) with the p38 MAPK inhibitor (85) PD169316 (20 μM) (yellow or green bars) or vehicle (blue or red bars) and then placed in fresh KR8 medium containing 0 or 20 mM D-glucose without or with 2.5 mM forskolin and incubated (30 min, 37 °C). In B, similar experiments were performed with INS-1 insulinoma cells stably transfected with empty vector (V; blue or yellow bars) or with a construct that causes overexpression of iPLA₂β (OE; red or green bars) that were incubated without (blue or red bars) or with (yellow or green bars) PD169316 and with 0 or 20 mM D-glucose and 0 or 2.5 mM forskolin, as in A. At the end of the incubation period, aliquots of medium were removed for measurement of insulin content as described under “Experimental Procedures.” Mean values are displayed, and S.E. values (error bars) are indicated (n = 3). *, p < 0.05 for the comparison of the indicated condition and the analogous condition in which incubation was performed in the presence of PD169316.
the concentration range shown to attenuate thapsigargin-induced ceramide accumulation and apoptosis.

To examine this possibility, INS-1-OE cells were treated with thapsigargin in the presence of various concentrations of PD169316, and p38 MAPK phosphorylation was assessed in Western blotting experiments as in Fig. 3. These experiments revealed that incubating INS-1-OE cells with thapsigargin increases p38 MAPK phosphorylation and that this effect is attenuated in a concentration-dependent manner by PD169316 (Fig. 6). Substantial and significant inhibition of thapsigargin-induced p38 MAPK phosphorylation was observed at a PD169316 concentration of 5 μM, and essentially complete inhibition was observed at a concentration of 20 μM.

This corresponds to the range in which functional effects of PD169316 were observed on insulin secretion (Fig. 3), ceramide accumulation (Fig. 4), and apoptosis (Fig. 5), respectively. A second p38 MAPK inhibitor (SB203580) also inhibited thapsigargin-induced p38 MAPK phosphorylation (supplemental Fig. S2) but was less potent than PD169316, and at the concentrations required to achieve adequate inhibition, SB203580 exerted cytotoxic effects that precluded its use in experiments examining apoptosis, as also reported by others (85). Thapsigargin also induced an increase in p38 MAPK phosphorylation in INS-1 cells transfected with empty vector that do not overexpress iPLA₂β, and this was also suppressed by PD169316 (supplemental Fig. S3A). Thapsigargin also increased apoptosis in these cells, and that response too was suppressed by PD169316 (supplemental Fig. S3B), as was thapsigargin-induced ceramide accumulation (Fig. 4). The findings in supplemental Fig. S3 and Fig. 4 thus indicate that p38 MAPK

**FIGURE 4.** Induction of ER stress with thapsigargin induces ceramide accumulation in INS-1 cells, and this is prevented by pharmacologic inhibition of p38 MAPK. INS-1 insulinoma cells stably transfected with a construct that causes overexpression of iPLA₂β (OE) or with empty vector (V) were preincubated (1 h, 37 °C) with the p38 MAPK inhibitor PD169316 (5 μM) or with vehicle diluent alone and then placed in fresh KRB medium without or with thapsigargin (1 μM). At the end of the incubation period, cells were collected, homogenized, and extracted by a modified Bligh-Dyer method. The extract was admixed with internal standard C8-ceramide, concentrated, reconstituted, infused in a solution to which Li⁺ had been added, and analyzed by ESI/MS/MS scanning for constant neutral loss (CNL) of 48 from [M + Li]+ ions as described under “Experimental Procedures.” Quantitation of each ceramide species was achieved by dividing the ion current at the m/z value for that species by the ion current of the internal standard at m/z 432.5 and interpolating from a calibration curve. This value was then normalized to the measured lipid phosphorus content of the sample. A and B, representative CNL spectra from INS-1 cells incubated only with vehicle or with 1 μM thapsigargin, respectively. In C and D, mean values (n = 3) for the normalized total amount of ceramide species under the indicated conditions are displayed for INS-1 cells that are transfected with empty vector (C) or that stably overexpress iPLA₂β (D), and S.E. values (error bars) are indicated. *, p < 0.05 for the comparison of the indicated condition versus the analogous condition in which incubation was performed in the presence of PD169316.
participates in the signaling pathway activated by thapsigargin in β-cells with normal endogenous levels of iPLA₂β that have not been genetically manipulated to overexpress iPLA₂β, although the magnitudes of these responses are larger in cells that do overexpress iPLA₂β.

The Thapsigargin-induced Increase in p38 MAPK Phosphorylation in INS-1 Cells Is Prevented by iPLA₂β Inhibitor BEL, and This Is Reversed by Adding Exogenous Arachidonic Acid—Inducing ER stress in INS-1 cells induces ceramide accumulation and apoptosis, and both effects are prevented by the iPLA₂β inhibitor BEL (65, 71, 72) and the p38 MAPK inhibitor PD169316 (Figs. 4 and 5). Glucose-induced p38 MAPK phosphorylation in β-cells is suppressed by the iPLA₂β inhibitor BEL (Fig. 2), and β-cell p38 MAPK phosphorylation is stimulated by the iPLA₂β reaction product arachidonic acid (supplemental Fig. S2) or by overexpression of iPLA₂β (Fig. 1). These findings suggest that activation of iPLA₂β in β-cells results in subsequent activation of p38 MAPK that is dependent on iPLA₂β activity.

To test this possibility, the effects of the iPLA₂β inhibitor BEL on thapsigargin-induced p38 MAPK activation and phosphorylation in β-cells were examined. As illustrated in Fig. 7, BEL suppressed thapsigargin-induced p38 MAPK phosphorylation in INS-1-OE cells. In addition, inhibition of p38 MAPK phosphorylation by BEL was reversed by the addition of the iPLA₂β reaction product arachidonic acid (Fig. 7). Examination of the effects of BEL enantiomers separately indicated that (S)-BEL but not (R)-BEL inhibited thapsigargin-induced p38 MAPK phosphorylation (supplemental Fig. S4). Because (S)-BEL preferentially inhibits iPLA₂β, whereas (R)-BEL preferentially inhibits iPLA₂γ (86), the findings in supplemental Fig. S4 are consistent with the hypothesis that β-cell iPLA₂β is the
BEL-sensitive enzyme involved in signaling pathways that result in p38 MAPK phosphorylation.

Together, the findings in Figs. 4–7 and supplemental Figs. S1–S4 indicate that iPLA₂β activation that occurs in INS-1 cells treated with thapsigargin results in p38 MAPK phosphorylation and activation, and a mechanism whereby that could occur is via activation of an upstream kinase for which p38 MAPK is a substrate.

Upstream Protein Kinases and Small GTP-binding Proteins

Are Involved in iPLA₂β-mediated Activation of p38 MAPK in INS-1 Cells—Recent reports indicate that iPLA₂β is involved in activation of the Rho family small G proteins Rac1 and Cdc42 in macrophages and vascular smooth muscle cells and that this requires conversion of arachidonic acid released by iPLA₂β to 12/15-lipoxygenase products (87–89). Rac1 and Cdc42 are known to bind to the protein kinase myosin light-chain kinase-1 (MLK1), and this can result in p38 MAPK phosphorylation via the action of the protein kinase MEK3 (90–92). Alternatively, Rac1 and Cdc42 can promote p38 MAPK phosphorylation via interaction with p21-activated kinases family member protein kinases (93, 94). These observations raise the possibility that the signaling sequence that is activated in β-cells stimulated with thapsigargin might involve sequential iPLA₂β activation, arachidonic acid release and oxygenation, and Rho family G-protein activation, followed by activation of MLK1 and MEK3 and then phosphorylation of p38 MAPK.

To examine these possibilities, we first determined whether treating INS-1 cells with thapsigargin results in MEK3 phosphorylation, and Fig. 8A illustrates that this is the case and that the iPLA₂β inhibitor BEL prevents this effect, suggesting that iPLA₂β participates in this signaling cascade. To examine the potential involvement of small G proteins in these processes, we determined effects of Clostridium difficile toxin B, which modifies and inhibits small G proteins of the Rho family via its glucosyltransferase activity (95). Toxin B alone increases phosphorylation of p38 MAPK in HaCaT cells (96), and this is also true for INS-1 cells, although toxin B also blocks the effect of thapsigargin to stimulate p38 MAPK phosphorylation in INS-1 cells (Fig. 8B). These findings indicate that in INS-1 cells treated with thapsigargin, the protein kinase MEK3 is activated, which is known to act as an upstream kinase in p38 MAPK phosphorylation in other cells (90–92). The observations in Figs. 7 and 8 thus indicate that inhibiting iPLA₂β with BEL blocks thapsigargin-induced phosphorylation of both MEK3 and p38 MAPK.
in INS-1 cells, which suggests that sequential activation of iPLA₂β, MEK3, and p38 MAPK occurs in INS-1 cells treated with thapsigargin.

**DISCUSSION**

This is the first report of which we are aware that demonstrates participation of p38 MAPK in downstream signaling events that follow iPLA₂β activation in β-cells. Fig. 9 provides a schematic summary of the findings reported here and places them in the context of previous observations on the participation of iPLA₂β in β-cell signaling and events involved in glucose-induced insulin secretion and in ER stress-induced β-cell apoptosis. Both processes are critically involved in the development of T2DM (8–14).

As summarized in Fig. 9, d-glucose induces insulin secretion by a process that involves its transport into the β-cell and glycolytic and mitochondrial metabolism to yield signals that include a rise in the ratio of [ATP]/[ADP] that causes closure of Kᵦᵢ₃₆ channels in the β-cell plasma membrane (15–21). This causes a rise in membrane potential, activation of voltage-operated Ca²⁺ channels, influx of Ca²⁺ from the extracellular space, and a rise in [Ca²⁺] in cytoplasm and other intracellular compartments, which activates Ca²⁺-sensitive effectors that trigger insulin exocytosis (21–24). d-Glucose also stimulates hydrolysis of arachidonic acid from β-cell membrane phospholipids under these conditions (44–47), and this is mediated at least in part by iPLA₂β (49–52), which may be activated by a rise in [ATP]/[ADP] (50, 51). That this process contributes to the glucose-induced rise in β-cell cytosolic [Ca²⁺] and amplifies the insulin secretory response is reflected by the facts that genetic or pharmacologic suppression of iPLA₂β activity impairs glucose-induced insulin secretion and the rise in β-cell cytosolic [Ca²⁺] (49–52, 58–62) and that iPLA₂β overexpression in β-cells augments both the rise in [Ca²⁺] and secretion (58, 62).

The mechanism by which iPLA₂β activation amplifies insulin secretion is incompletely understood, but recent observations indicate that modulation of Kᵥ2.1 voltage-operated K⁺ channel activity in the β-cell plasma membrane may be involved (62, 97–98). After d-glucose-induced depolarization of the plasma membrane by the sequence of events described above, Kᵥ2.1 channels are activated and serve to repolarize the membrane and limit the duration of the glucose-induced action potential and of the rise in cytosolic [Ca²⁺] (98).

Accordingly, genetic deletion of Kᵥ2.1 channels in mice results in prolongation of the action potential and [Ca²⁺] transient and in amplification of glucose-induced insulin secretion from isolated islets and in a corresponding improvement of glucose tolerance in Kᵥ2.1-null mice (98). Arachidonic acid attenuates β-cell Kᵥ2.1 activity, and genetic deletion or pharmacologic inhibition of iPLA₂β eliminates the glucose-induced
diminution of β-cell Kv2.1 activity that occurs otherwise (97). Moreover, overexpression of iPLA2β in insulinoma cells or islets amplifies the effect of glucose to reduce Kv2.1 activity, and islets from transgenic mice that overexpress iPLA2β exhibit a phenotype that resembles that of Kv2.1-null mice and is characterized by prolonged glucose-induced action potentials and amplified insulin secretory responses that are associated with improved glucose tolerance (62, 97–98).

In this context, it is of interest that several findings reported here suggest the possibility that some downstream effects of iPLA2β in β-cells (e.g. Kv2.1 channel modulation) might be mediated by arachidonic acid-induced p38 MAPK activation. These findings include the facts that: 1) D-glucose activates p38 MAPK (Fig. 2); 2) this effect is mimicked by overexpression of iPLA2β (Fig. 1) or the addition of arachidonic acid (supplemental Fig. S1) and suppressed by the iPLA2β inhibitor BEL (Fig. 2); and 3) D-glucose-induced insulin secretion is suppressed by a p38 MAPK inhibitor (Fig. 3) or BEL (49–52, 55, 58–61). Consistent with our observations that arachidonic acid activates p38 MAPK in β-cells, arachidonic acid has also been reported to activate p38 MAPK in a variety of other cells and to affect insulin sensitivity by that mechanism (99, 100). Kv2.1 channel activity in neurons is regulated by graded phosphorylation-dephosphorylation events at residues that include MAPK consensuses sites (101–102), and p38 MAPK-catalyzed phosphorylation at residue Ser800 of the Kv2.1 channel is required for oxidant-induced apoptosis of neurons (103).

Similarly, iPLA2β-mediated p38 MAPK activation appears to be involved in ER stress-induced β-cell apoptosis (Figs. 4–8) because inhibition of either iPLA2β (65, 71, 72) or p38 MAPK attenuates the apoptotic response to SERCA inhibition with thapsigargin (Fig. 5), and inhibition of iPLA2β also prevents ER stress-induced p38 MAPK activation (Figs. 7 and 8). Induction of ER stress in β-cells results in iPLA2β phosphorylation at residue Tyr616, its association with the ER-resident chaperone protein calnexin (68), and catalytic activation of iPLA2β (63–67).

**FIGURE 9. Schematic diagram of signaling pathways in β-cells in which iPLA2β participates.** Signals that induce iPLA2β activation in insulin-secreting β-cells include 1) incubation with concentrations of D-glucose sufficient to stimulate insulin secretion and 2) incubation with SERCA inhibitors (e.g. thapsigargin) that deplete ER Ca2+ content, induce ER stress, and trigger β-cell apoptosis. Activation of iPLA2β occurs in signaling pathways involved both in D-glucose-stimulated insulin secretion and in SERCA inhibitor-induced apoptosis because both sets of responses are attenuated by pharmacologic or genetic reductions in iPLA2β activity, and, conversely, both are amplified by iPLA2β overexpression. The involvement of iPLA2β in insulin secretion may reflect the effect of one of its products, arachidonic acid, to inhibit membrane Kv2.1 channel activity and thereby to prolong the D-glucose-induced action potential in β-cells (62). Amplification of ceramide generation by iPLA2β may represent a component of its participation in apoptosis (65, 71). Data presented in the current paper indicate that p38 MAPK is activated during both glucose-stimulated insulin secretion and SERCA inhibitor-induced apoptosis in β-cells and that this event is downstream of and requires prior iPLA2β activation. Data here and in other studies (87–89) suggest that intermediate events between iPLA2β activation and p38 MAPK activation include arachidonic acid release, its enzymatic oxygenation to bioactive eicosanoids (e.g. 12/15-lipoxygenase products), activation of Rho family small G-proteins (e.g. Rac1 and Cdc42), and activation of MAPK kinases (e.g. MEK3).
iPLA$_2$$\beta$ Activates $\beta$-Cell p38 MAP Kinase

Events downstream of iPLA$_2$$\beta$ in the signaling pathway that links induction of ER stress in $\beta$-cells and apoptosis include ceramide accumulation, and this appears to be required for induction of $\beta$-cell apoptosis (65, 71, 72, 104). This requirement is reflected by the fact that suppressing ceramide generation by pharmacologic inhibition or molecular biologic knockdown of neutral sphingomyelinase greatly diminishes the apoptotic response of $\beta$-cells to SERCA inhibition (65, 71, 72, 104). Findings reported here indicate that p38 MAPK activation is also required for ER stress-induced ceramide generation in $\beta$-cells because ceramide accumulation is prevented by inhibition of p38 MAPK (Fig. 4), just as it is inhibited by BEL (65, 71, 72).

This could reflect effects of p38 MAPK on transcriptional cascades because ER stress-induced ceramide accumulation in $\beta$-cells involves transcriptional up-regulation of the enzyme neutral sphingomyelinase (71, 72), and p38 MAPK is known to affect other transcriptional events (100, 105). In other settings, iPLA$_2$$\beta$ activation is also known to participate in stimulus-induced transcriptional up-regulation, including angiotensin II-induced RGS2 up-regulation in vascular smooth muscle cells (87) and encephalomyocarditis virus-induced inducible nitric-oxide synthase induction in macrophages (106). CREB phosphorylation occurs downstream of iPLA$_2$$\beta$ activation in both of those cases and is required for transcriptional activation to occur (87, 106). CREB is also a recognized downstream target of p38 MAPK (105).

In summary, as illustrated in Fig. 9, findings reported here indicate that activation of iPLA$_2$$\beta$ in $\beta$-cells that occurs during the processes of glucose-induced insulin secretion and ER stress-induced apoptosis is associated with activation of p38 MAPK and that this is prevented by the iPLA$_2$$\beta$ inhibitor BEL (Figs. 2, 7, and 8) and mimicked by arachidonic acid (supplemental Fig. S1), which is released from $\beta$-cell membrane phospholipids by the action of iPLA$_2$$\beta$ (44–52). Moreover, adding exogenous arachidonic acid reverses the inhibition of thapsigargin-induced p38 MAPK phosphorylation by BEL (Fig. 7).

In addition, p38 MAPK appears to be required for the functional responses of insulin secretion and apoptosis in these settings because these events are prevented or attenuated by pharmacologic inhibition of p38 MAPK (Figs. 3–5). These observations suggest that p38 MAPK activation is among the signaling events that lie downstream of iPLA$_2$$\beta$ activation in $\beta$-cells. Recent reports indicate that small GTP-binding proteins of the Rho family, including Rac and Cdc42, are activated downstream of iPLA$_2$$\beta$ by eicosanoids in signaling pathways (88, 89). Rac1 and Cdc42 are upstream activators of p38 MAPK in a number of settings (105), and small G proteins of the Rho class may also lie downstream of iPLA$_2$$\beta$ in $\beta$-cell signaling and participate in p38 MAPK activation via upstream kinases (Fig. 8), thus representing a link between iPLA$_2$$\beta$ action and p38 MAPK activation (Fig. 9).

Others have recently reported that in cultured prostate cancer cells, inhibition of iPLA$_2$$\beta$ with BEL or (S)-BEL results in activation of p38 MAPK (107). This stands in contrast to our findings in $\beta$-cells that inhibition of iPLA$_2$$\beta$ with BEL or (S)-BEL prevents activation of p38 MAPK otherwise induced by stimulation with $\alpha$-glucose or by induction of ER stress with thapsigargin. Our findings point to an activating effect of iPLA$_2$$\beta$ action on p38 MAPK in $\beta$-cells, whereas reported data point to an opposite effect in prostate cancer cells.

What explains these different patterns of responses in the two cell types is not clear at present, but differential effects of the products of iPLA$_2$$\beta$ action, which include free fatty acids and 2-lysoosphospholipids, via interaction with different sets of effectors may occur in the two cell types. Alternatively or in addition, iPLA$_2$$\beta$ may act on a different set of substrates in distinct membranous compartments in the two cell types to produce opposing responses.

Acknowledgments—We thank Robert Sanders for assistance in preparing the manuscript and its figures and Alan Bohrer for technical assistance.

REFERENCES

1. Mahler, R. I., and Adler, M. L. (1999) Type 2 diabetes mellitus. Update on diagnosis, pathophysiology, and treatment. J. Clin. Endocr. Metab. 84, 1165–1171
2. Hosain, P., Kawar, B., and El Nahas, M. (2007) Obesity and diabetes in the developing world. A growing challenge. N. Engl. J. Med. 356, 213–215
3. Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993) Adipose expression of tumor necrosis factor-$\alpha$. Direct role in obesity-linked insulin resistance. Science 259, 87–91
4. Ogdon, C. L., Carroll, M. D., Curtin, L. R., Lamb, M. M., and Flegal, K. M. (2010) Prevalence of high body mass index in US children and adolescents. JAMA 303, 242–249
5. Laing, S. P., Swerdlow, A. J., Slater, S. D., Burden, A. C., Morris, A., Waugh, N. R., Gatling, W., Bingley, P. J., and Patterson, C. C. (2003) Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 46, 760–765
6. Shulman GI. (2000) Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176
7. Kahn B. (1998) Type 2 diabetes: When insulin secretion fails to compensate for insulin resistance. Cell 92, 593–596
8. Gerich, J. E. (1998) The genetic basis of type 2 diabetes mellitus. Impaired insulin secretion versus impaired insulin sensitivity. Endo Rev. 19, 491–503
9. Weyer, C., Bogardus, C., Mott, D. M., and Pratley, R. E. (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787–794
10. Klöppel, G., Löh, M., Habich, K., Oberholzer, M., and Heitz, P. U. (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv. Synth. Pathol. Res. 4, 110–125
11. Stefan, Y., Orci, L., Malaisse-Lagae, F., Perrelet, A., Patel, Y., and Unger, R. H. (1982) Quantitation of endocrine cell content in the pancreas of non-diabetic and diabetic humans. Diabetes 31, 694–700
12. Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., and Butler, P. C. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110
13. Oyadomari, S., Araki, E., and Mori, M. (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7, 335–345
14. Araki, E., Oyadomari, S., and Mori, M. (2003) Impact of endoplasmic reticulum stress pathway on pancreatic beta cells and diabetes mellitus. Exp. Biol Med. 228, 1213–1217
15. Ashcroft, S. J. (1980) Glucoreceptor mechanisms and the control of insulin secretion versus impaired insulin sensitivity. Diabetologia 15, 356–359
16. Meglasson, M. D., and Matschinsky, F. M. (1986) Pancreatic islet glucose sensing: Signal generator in pancreatic beta cells and hepatocytes. Diabetes 39, 1165–1171
17. Garvey, W. T. (1992) Glucose transport and NIDDM. Diabetes Care 15, 396–417
18. Matschinsky, F. M. (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta cells and hepatocytes. Diabetes 39, 1165–1171
467–652
19. Cook, D. L., Hales, C. N. (1984) Intracellular ATP directly blocks K⁺ channels in pancreatic β-cells. Nature 311, 271–273
20. Kakei, M., Kelly, R. P., Ashcroft, S. I., and Ashcroft, F. M. (1986) The ATP sensitivity of K⁺ channels in rat pancreatic β-cells is modulated by ADP. FEBS Lett. 208, 63–66
21. Ghosh, A., Ronner, P., Cheong, E., Khalid, P., and Matschinsky, F. M. (1991) The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet β-cells in the isolated perfused rat pancreas. J. Biol. Chem. 266, 22887–22892
22. Arkhammar, P., Nilsson, T., Rorsman, P., and Berggren, P. O. (1987) Inhibition of ATP-regulated K⁺ channels precedes depolarization-induced increase in cytoplasmic free Ca²⁺ concentration in pancreatic beta cells. J. Biol. Chem. 262, 5448–5454
23. Misler, S., Barnett, D. W., Pressel, D. M., Gillis, K. D., Scharp, D. W., and Falke, L. C. (1992) Stimulus-secretion coupling in β-cells of human islets of Langerhans. Evidence for a critical role for Ca²⁺ entry. Diabetes 41, 662–670.
24. Easom RA. (1999) CaM kinase II. A protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes 48, 675–684
25. Dukes, I. D., Roe, M. W., Worley, J. F., and Philipson, L. H. (1997) Glucose-induced alterations in beta cell cytoplasmic Ca²⁺ involving the coupling of intracellular Ca²⁺ stores and plasma membrane ion channels. Curr. Opin. Endocrinol. Diabetes Obes. 4, 262–271
26. Gilon, P., Arreduani, A., Galliy, P., Gromada, J., and Henquin, J. C. (1999) Uptake and release of Ca²⁺ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca²⁺ concentration triggered by Ca²⁺ influx in the electrically excitable pancreatic beta cell. J. Biol. Chem. 274, 20197–20205
27. Dukes, I. D., Roe, M. W., Worley, J. F., and Philipson, L. H. (1997) Glucose-induced alterations in beta cell cytoplasmic Ca²⁺ involving the coupling of intracellular Ca²⁺ stores and plasma membrane ion channels. Curr. Opin. Endocrinol. Diabetes Obes. 4, 262–271
28. Brown, L. J., MacDonald, M. J., Lenn, D. A., and Moran, S. M. (1994) Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains. J. Biol. Chem. 269, 13563–13566
29. MacDonald MJ. (1995) Feasibility of a mitochondrial pyruvate-malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J. Biol. Chem. 270, 20051–20058
30. Eto, K., Tsunamoto, Y., Terauchi, Y., Sugiyama, Y., Kishiimoto, T., Taka-hashi, N., Yamauchi, M., Kubota, N., Murayama, S., Aizawa, T., Akanuma, Y., Aizawa, S., Kasai, H., Yazaki, Y., and Kadowaki, T. (1999) Inhibition of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283, 981–985
31. Ramanadham, S., Wolf, M. J., Jett, P. A., Gross, R. W., and Turk, J. (1994) Characterization of an ATP-stimulatable, Ca²⁺-independent phospholipase A₂ and protein kinase C-dependent phosphorylation of the α-subunit. J. Biol. Chem. 274, 20008–20008
32. Wollheim, C. B. (2000) Beta cell mitochondria in the regulation of insulin secretion. A new culprit in type II diabetes. Diabetes 49, 1565–1573
33. Wolf, B. A., Pasquale, S. M., and Turk, J. (1991) Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochim. Biophys. Acta 1125, 280–291
34. Ramanadham, S., Gross, R., and Turk, J. (1992) Arachidonic acid induces an increase in cytosolic calcium concentration in single pancreatic islet beta cells. Biochem. Biophys. Res. Commun. 184, 647–653
35. Ramanadham, S., Gross, R. W., Han, X., and Turk, J. (1993) Inhibition of arachidonate release by secretagogue-stimulated pancreatic islets suppresses both insulin secretion and the rise in beta cell cytosolic calcium concentration. Biochemistry 32, 337–346
iPLA$_2$β Activates β-Cell p38 MAP Kinase

70. Seleznov, K., Zhao, C., Zhang, X. H., Song, K., and Ma, Z. A. (2006) Calcium-independent phospholipase A$_2$, localized in and protects mitochondria during apoptotic induction by staurosporine. J. Biol. Chem. 281, 22275–22288

71. Lei, X., Zhang, S., Bohrer, A., Bao, S., Song, H., and Ramanadham, S. (2007) The group VIA calcium-independent phospholipase A$_2$ participates in ER stress-induced INS-1 insulinoma cell apoptosis by promoting ceramide generation via hydrolysis of sphingomyelin by neutral sphingomyelinase. Biochemistry 46, 10170–10185

72. Lei, X., Zhang, S., Bohrer, A., and Ramanadham, S. (2008) Calcium-independent phospholipase A$_2$ (iPLA$_2$β)-mediated ceramide generation plays a key role in the cross-talk between the endoplasmic reticulum (ER) and mitochondria during ER stress-induced insulin-secreting cell apoptosis. J. Biol. Chem. 283, 34819–34832

73. Ron, D., and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529

74. Ma, Y., Brewer, J. W., Diehl, J. A., and Hendershot, L. M. (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318, 1351–1365

75. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000) Perk is essential for translation regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904

76. Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11, 372–380

77. Cargnello, M., and Roux, P. P. (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50–83

78. Hsu, F. J., and Turk, J. (2002) Characterization of ceramides by low energy collisional-activated dissociation tandem mass spectrometry with negative-ion electrospray ionization. J. Am. Soc. Mass Spectrom. 13, 558–570

79. Hsu, F. J., Turc, J., Stewart, M. E., and Downing, D. T. (2002) Structural studies on ceramides as lithiated adducts by low energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 13, 680–695

80. Song, H., Wohltmann, M., Bao, S., Ladenson, J. H., Semenkovich, C. F., and Turk, J. (2010) Mice deficient in Group VIB phospholipase A$_2$ (iPLA$_2$γ) exhibit relative resistance to obesity and metabolic abnormalities induced by a Western diet. Am. J. Physiol. Endocrinol. Metab. 298, E1097–E1114

81. Bordin, S., and Whitfield, D. (2003) Cutting edge. Proliferating fibroblasts respond to collagenous C1q with phosphorylation of p38 mitogen-activated protein kinase and apoptotic features. J. Immunol. 170, 667–671

82. Song, H., Ramanadham, S., Bao, S., Hsu, F. F., and Turk, J. (2006) A bromoelastin lactone suicide substrate inactivates Group VIA phospholipase A$_2$ by generating a diffusible bromomethyl ketocacid that alkylates cysteine thiois. Biochemistry 45, 1061–1073

83. Hazen, S. L., Zupan, L. A., Weiss, R. H., Getman, D. P., and Gross, R. W. (1993) Structural determinants of haloenol lactone-mediated suicide inhibition of canine myo-inositol hexakisphosphate phosphatase. Biochemistry 45, 1061–1073

84. Moon, S. H., Jenkins, C. M., Mancuso, D. J., Turk, J., and Gross, R. W. (2008) Arachidonic acid release induced by thapsigargin or ionophore is ablated in aortic smooth muscle cells from mice null for Ca$^{2+}$-independent phospholipase A$_2$. J. Biol. Chem. 283, 33975–33987

85. Song, H., Mohsen, H., Bao, S., and Turk, J. (2010) Effects of ER stress on Group VIA PLA$_2$ (iPLA$_2$β) in beta cells include tyrosine phosphorylation and increased association with calnexin. J. Biol. Chem. 285, 33843–33857

86. Jenkins, C. M., Han, X., Mancuso, D. J., and Gross, R. W. (2002) Identification of calcium-independent phospholipase A$_2$ (iPLA$_2$β) beta, and not iPLA$_2$γ, as the mediator of arginine vasopressin-induced arachidonic
acid release in A-10 smooth muscle cells. Enantioselective mechanism-based discrimination of mammalian iPLA₂β. J. Biol. Chem. 277, 32807–32814
87. Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) Group VIA phospholipase A₂ (iPLA₂β) participates in angiotensin II-induced transcriptional up-regulation of regulator of G-protein signaling-2 in vascular smooth muscle cells. J. Biol. Chem. 282, 25278–25289
88. Xie, Z., Gong, M. C., Su, W., Xie, D., Turk, J., and Guo, Z. (2010) Role of calcium-independent phospholipase A₂ in high glucose-induced activation of RhoA, Rho kinase, and CPI-17 in cultured vascular smooth muscle cells and vascular smooth muscle hypercontractility in diabetic animals. J. Biol. Chem. 285, 8629–8638
89. Nikolic, D. M., Gong, M. C., Turk, J., and Post, S. R. (2007) A scavenger receptor-mediated macrophage adhesion requires coupling of calcium-independent phospholipase A₂ and 12/15-Lipoxygenase to Rac and Cdc42 activation. J. Biol. Chem. 282, 33405–33411
90. Zhang, S., Han, J., Sells, M. A., Chernoff, J., Knaus, U. G., Ulevitch, R. J., and Bokoch, G. M. (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270, 23934–23936
91. Bagrodia, S., Dérijard, B., Davis, R. J., and Cerione, R. A. (1995) Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 270, 27995–27998
92. Tibbles, L. A., Ing, Y. L., Kiefer, F., Chan, J., Iscove, N., Woodgett, J. R., and Lassam, N. J. (1996) MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J. 15, 7026–7035
93. Martin, G. A., Bollag, G., McCormick, F., and Abo, A. (1995) A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 14, 1970–1978
94. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., and Lim, L. (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46
95. Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M., and Aktories, K. (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503
96. Cheng, H., Kartenbeck, J., Kabsch, K., Mao, X., Marquès, M., and Alonso, A. (2002) Stress kinase p38 mediates EGFR transactivation by hyperosmolar concentrations of sorbitol. J. Cell. Physiol. 192, 234–243
97. Jacobson, D. A., Weber, C. R., Bao, S., Turk, J., and Philippson, L. H. (2007) Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J. Biol. Chem. 282, 7442–7449
98. Jacobson, D. A., Kuznetsov, A., Lopez, J. P., Kash, S., Ammiāla, C. E., and Philippson, L. H. (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab. 6, 229–235
99. Hii, C. S., Huang, Z. H., Bilney, A., Costabile, M., Murray, A. W., Rathjen, D. A., Der, C. I., and Ferrante, A. (1998) Stimulation of p38 phosphorylation and activation by arachidonic Acid in HeLa Cells, HL60 promyelocytic leukemic cells, and human neutrophils. Stimulation of p38 phosphorylation and activation by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils. Evidence for cell type-specific activation of mitogen-activated protein kinases. J. Biol. Chem. 273, 19277–19282
100. Talukdar, I., Szeszel-Fedorowicz, W., and Salati, L. M. (2005) Arachidonic acid inhibits the insulin induction of glucose-6-phosphate dehydrogenase via p38 MAP kinase. J. Biol. Chem. 280, 40660–40667
101. Park, K. S., Mohapatra, D. P., Misonou, H., and Trimmer, J. S. (2006) Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313, 976–979
102. Tiran, Z., Peretz, A., Attali, B., and Elson, A. (2003) Phosphorylation-dependent regulation of Kv2.1 channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase e. J. Biol. Chem. 278, 17509–17514
103. Redman, P. T., He, K., Hartnett, K. A., Jefferson, B. S., Hu, L., Rosenberg, P. A., Levitan, E. S., and Aizenman, E. (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc. Natl. Acad. Sci. U.S.A. 104, 3568–3573
104. Lei, X., Zhang, S., Barbour, S. E., Bohrer, A., Ford, E. L., Koizumi, A., Papa, F. R., and Ramanadham, S. (2010) Spontaneous development of endoplasmic reticulum stress that can lead to diabetes mellitus is associated with higher calcium-independent phospholipase A₂ expression. A role for regulation by SREBP-1. J. Biol. Chem. 285, 6693–6705
105. Zarubin, T., and Han, J. (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15, 11–18
106. Moran, J. M., Buller, R. M., McHowat, J., Turk, J., Wohltmann, M., Gross, R. W., and Corbett, J. A. (2005) Genetic and pharmacologic evidence that calcium-independent phospholipase A₂ regulates virus-induced inducible nitric-oxide synthase expression by macrophages. J. Biol. Chem. 280, 28162–28168
107. Sun, B., Zhang, X., Yonz, C., and Cummings, B. S. (2010) Inhibition of calcium-independent phospholipase A₂ activates p38 MAPK signaling pathways during cytostasis in prostate cancer cells. Biochem. Pharmacol. 79, 1727–1735