THE INTRINSIC ABUNDANCE RATIO AND X-FACTOR OF CO ISOTOPOLOGUES IN L 1551
SHIELDED FROM FUV PHOTODISSOCIATION

SHENG-JUN LIN, YOSHITO SHIMAJI, CHIHOMI HARA, SHI-HING LAI, FUMITAKA NAKAMURA, KOJI SUGITANI, RYOEI KAWABE, YOSHIKI KITAMURA, ATSUSHI YOSHIDA, HIDEFUMI TATEI, TOSHIYA AKASHI, AYA E. HIGUCHI, AND TAKASHI TSUKAGOSHI

1 Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan; shjlin@gapp.nthu.edu.tw, slai@phys.nthu.edu.tw
2 Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d’Astrophysique, CEA Saclay, F-91951 Gif-sur-Yvette, France
3 The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033, Japan
4 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-888, Japan
5 Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501, Japan
6 SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-888, Japan
7 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
8 Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1, Okayama, Meguro-ku, Tokyo 152-8551, Japan
9 College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan

Received 2015 August 21; revised 2016 May 1; accepted 2016 May 5; published 2016 July 29

ABSTRACT
We investigate the intrinsic abundance ratio of 13CO to C18O and the X-factor in L 1551 using the Nobeyama Radio Observatory (NRO) 45 m telescope. L 1551 is chosen because it is relatively isolated in the Taurus molecular cloud shielded from FUV photons, providing an ideal environment for studying the target properties. Our observations cover ~40’ × 40’ with a resolution of ~30”, which make up maps with the highest spatial dynamical range to date. We derive the X13CO/C18O value on the sub-parsec scales in the range of ~3–27 with a mean value of 8.0 ± 2.8. Comparing to the visual extinction map derived from the Herschel observations, we found that the abundance ratio reaches its maximum at low AV (i.e., AV ~ 1–4 mag), and decreases to the typical solar system value of 5.5 inside L 1551 MC. The high X13CO/C18O value at the boundary of the cloud is most likely due to the selective FUV photodissociation of C18O. This is in contrast with Orion-A where internal OB stars keep the abundance ratio at a high level, greater than ~10. In addition, we explore the variation of the X-factor, because it is an uncertain, but widely used, quantity in extragalactic studies. We found that the X-factor XN, which is consistent with previous simulations. Excluding the high density region, the average X-factor is similar to the Milky Way average value.

Key words: ISM: abundances – ISM: clouds – ISM: individual objects (L1551) – photon-dominated region (PDR)

1. INTRODUCTION
The ultraviolet (UV) radiation plays a crucial role in many processes of the interstellar medium (ISM), such as photoelectric heating, grain charging, photoionization, and photodissociation of molecules (Bethell et al. 2007), in which the far-ultraviolet (FUV; 6 eV < hν < 13.6 eV) radiation from massive stars or the interstellar radiation field (ISRF) influences the structure, chemistry, thermal balance, and evolution of the neutral ISM (Hollenbach & Tielens 1997). Therefore, studying these influences helps to understand the process of star formation. The FUV emission selectively dissociates CO rare isotopologues more effectively than CO, owing to different levels of self-shielding effects (van Dishoeck & Black 1988; Warin et al. 1996; Liszt 2007; Visser et al. 2009; Shimajiri et al. 2014, 2015). For the FUV emission with energy high enough to photodissociate 12CO, it rapidly becomes optically thick when it penetrates into molecular clouds. In contrast, the self-shielding effect of 18CO is relatively less significant because of the shift of its absorption lines and its low abundance. Therefore, the FUV emission with energy above the 18CO dissociation level is expected to penetrate relatively deeper into a molecular cloud, and the abundance ratio of 13CO and C18O, X13CO/C18O, will increase when the self-shielding effect of 18CO does not yet dominate. When the self-shielding effect of both 13CO and C18O become important, the abundance ratio should decrease toward the intrinsic abundance value, which is derived from abundances of the elements, 12C, 13C, 16O, and 18O. The intrinsic value may vary depending on the distance to the Galactic center (Wilson 1999).

The X13CO/C18O has been observed in regions with various conditions. In the typical massive star-forming regions, where the ISM is filled up with diffuse FUV flux from OB stars, the measurements of X13CO/C18O are usually higher than the intrinsic value. Shimajiri et al. (2014) measured X13CO/C18O in the Orion-A giant molecular cloud (Orion-A GMC) and found that the X13CO/C18O of most regions are a factor of two greater than 5.5, the typical value in the solar system. It is possible that besides the interstellar FUV radiation, embedded OB stars provide strong FUV radiation so that the distance of the penetration will increase. Another possibility is that the higher temperature in the massive cores will also change the fractionation of 12C and 13C (Röllig & Ossenkopf 2013). In the intermediate-mass star-forming regions, Kong et al. (2015) showed that the intensity ratio of 13CO (J = 2–1) to 18CO (J = 2–1), which is equivalent to X13CO/C18O for the optically thin case, rises to a peak of up to ~40 at AV ~ 5 mag, then decreases to ~4.5 with increasing AV in the southeast of the California molecular cloud. Although the trend is consistent with the theoretical expectations, the peak occurs at somewhat higher extinction; Warin et al. (1996) showed that the peak is at AV ~ 1–3 mag for regions with various densities from 102 to 105 cm−3. In the low-mass star-forming regions, Lada et al. (1994) observed a part of the IC 5146 filament and found that
the $X_{\text{CO}}/X_{\text{C}^{18}\text{O}}$ value is considerably greater than 5.5 in the outer parts ($A_V \lesssim 10$ mag).

LDN 1551 (hereafter L 1551) is a relatively isolated nearby star-forming region located at a distance of 160 pc (Snell 1981; Bertout et al. 1999) at the south end of the Taurus–Auriga–Perseus molecular cloud complex. Two small clusters of young stellar objects (YSOs) were detected in L 1551. One contains two embedded Class I sources, L 1551 IRS 5 (hereafter IRS 5) and L 1551 NE (hereafter NE), and the other is a group of more evolved YSOs (hereafter HL Tau group) located at the north of IRS 5 and NE. The IRS 5/NE cluster co-hosts a parsec-scale bipolar outflow (Snell et al. 1980), which is likely mixed from outflows of each source (Moriarty-Schieven et al. 2006). Several Herbig-Haro objects along the outflows have been identified with different origins (Devine et al. 1999). Another east–west redshifted outflow was found later (Moriarty-Schieven & Wannier 1991; Pound & Bally 1991), but since IRS 5 and NE are two binary systems (Looney et al. 1997; Reipurth et al. 2002; Chou et al. 2014; Takakuwa et al. 2014) the origin of this east–west outflow is still questionable (Moriarty-Schieven et al. 2006; Stojimirović et al. 2006). The HL Tau group contains HL Tau, XZ Tau, LkHα 358, and V1213 Tau. The jets and outflows of the HL Tau group were detected in optical observations (Mundt et al. 1990; Burrows et al. 1996). In addition to the protostars, a gravitationally bound starless core, L 1551 MC, is found at the northwestern side of the IRS 5/NE cluster, which may have started the gravitational collapse or could be supported by magnetic fields of ~160 μG (Swift et al. 2005, 2006). Since L 1551 does not contain OB stars, L 1551 is a suitable target for studying the FUV influence only from the interstellar radiation.

In this paper, we aim to study the variation of $X_{\text{CO}}/X_{\text{C}^{18}\text{O}}$ under the influence of the interstellar FUV radiation. In contrast to previous studies, we observed 12CO ($J = 1–0$), 13CO ($J = 1–0$), and C18O ($J = 1–0$) lines using the 25-BEam Array Receiver System (BEARS) receiver equipped on the Nobeyama Radio Observatory (NRO) 45 m telescope to obtain data that could resolve the sub-parsec-scale with complete coverage from the outskirt of the cloud into its dense region. We also use Herschel archival data to obtain a visual extinction map of up to $A_V \sim 70$ mag in order to examine the variation of $X_{\text{CO}}/X_{\text{C}^{18}\text{O}}$ with the FUV attenuation. In Section 2, we describe our NRO observations and Herschel data. In Section 3, we present the 12CO, 13CO, and C18O maps of L 1551, and then derive the excitation temperature and optical depths of the 13CO and C18O lines and the column densities of these molecules. In Section 4, we discuss the dependence of the abundance ratio of 13CO to C18O on visual extinction, A_V, the influence of FUV radiation, and the X-factor in L 1551. At the end, we summarize our results in Section 5.

2. OBSERVATIONS AND DATA REDUCTION

2.1. NRO 45 m Observations

We observed the L 1551 star-forming region using the 45 m telescope at NRO. Three molecular lines were observed: 12CO ($J = 1–0$; 115.27120 GHz), 13CO ($J = 1–0$; 110.20135 GHz), and C18O ($J = 1–0$; 109.78218 GHz). The 12CO data has been published in Yoshida et al. (2010). The observations were carried out between 2007 and 2010 (Table 1). The telescope has beam sizes (HPBW), θ_{HPBW}, of 15″ at 115 GHz, and of 16″ at 110 GHz. The main-beam efficiencies, η_{mb}, were measured as 32% in the 2007–2008 season at 115 GHz, 38% in the 2009–2010 season at 110 GHz, and 43% in the 2009 season at 110 GHz. These efficiencies were measured every season by NRO staff with a superconductor-insulator-superconductor receiver, S100, and acousto-optical spectrometers. The front end is BEARS, which has 25 beams configured in a 5-by-5 array with a beam separation of 41″ (Sunada et al. 2000). BEARS is operated under double-sideband (DSB) mode with each beam connected to a set of 1024 channel auto-correlators (ACs) at the back end. We set each set of ACs to a bandwidth of 32 MHz and a resolution of 37.8 kHz (Sorai et al. 2000), corresponding to velocity resolutions of ~0.1 km s$^{-1}$ at the rest frequencies of the three lines. We calibrated the variations in both beam efficiency and sideband ratio of the 25 beams with the values from the NRO website. These values were measured by NRO staff every season through measurements of bright sources with S100 in SSB mode.

For the observations, we used the on-the-fly (OTF) mapping technique (Sawada et al. 2008). The antenna is driven at a constant speed to continuously scan our observing region toward L 1551. To get rid of artificial scanning patterns in the results, we scanned the observed regions twice, one in R.A. and one in decl. directions, and then combined the OTF maps in the two orthogonal directions by PLAIT algorithm (Emerson & Greaves 1988). The antenna pointing was checked every ~60–70 minutes by observing the SiO maser source NML-Tau, and the pointing accuracy was about 3″ during the observations. Figures 1(a)–(c) show the observed areas of 12CO, 13CO, and C18O, covering 44′′ × 44′′, 42′′ × 43′′, and 30′′ × 30′′, respectively.

The data were converted in terms of the main-beam brightness temperature in units of K, $T_{\text{mb}} = T^*_{A}\eta_{\text{mb}}$, where T^*_{A} is the antenna temperature in units of K. In order to maximize the energy concentration ratio, we applied a spheroidal function with $m = 6$ and $\alpha = 1$ (Schwab 1984) to convolve the OTF data, and then obtained three-dimensional (α, δ, ν_{LSR}) final cube data. Adopting Nyquist sampling for the 45 m telescope, we set the spatial grid size to 7″5, and the final effective beam sizes, θ_{eff}, are 21″8 for 12CO and 22″2 for 13CO and C18O. The rms noise σ levels are 1.23 K for 12CO, 0.94 K for 13CO, and 0.67 K for C18O in T_{mb} for a velocity resolution of 0.1 km s$^{-1}$. To achieve higher signal-to-noise ratios, we further convolved all maps with Gaussians to make channel maps, integrated intensity maps, mean velocity maps, and velocity dispersion maps, and the effective beam size of each map is written in its figure caption. We summarize the parameters for each line in Table 1.

2.2. Herschel Column Density and Dust Temperature Maps

We used the Herschel Science Archival SPIRE/PACS image data (Observation ID: 1342202250/1342202251, Quality: level 2 processed) of 160, 250, 350, and 500 μm to make dust temperature (T_{dust}) and column density maps in a similar way to Könyves et al. (2010). Since the 70 μm emission does not seem to be detected except toward IRS 5/NE and the HL Tau group, we used only four bands (500, 350, 250, and 160 μm).

At first, we made convolutions for all Herschel images (other than the 500 μm image) to smooth their resolutions to the 500 μm resolution of 36″ by using the IDL package developed by Aniano et al. (2011). Then, we resampled, up down, all of the images (other than the 250 μm) to the same grid size of the 250 μm image (6″) and derived a spectral
energy distribution (SED) at each position of the 250 \(\mu m \) image. Here, we adopted an area of \(\sim 3' \times 3' \), centered at (R.A. \(\alpha_{2000} \), decl. \(\delta_{2000} \)) = \((4^h30^m34.9^s, +18^\circ28'55''/') \), as an area of the zero point of the surface brightness for the L 1551 cloud.

Assuming a single temperature of the dust emission, the graybody SED fitting was performed with a function of

\[
I_\nu = B_\nu(T_{\text{dust}})(1 - e^{-\tau_\nu}),
\]

where \(\nu \) infers the frequency, \(B_\nu \) expresses Planck’s law, \(I_\nu \) is the observed surface brightness, and \(\tau_\nu \) is the dust optical depth. \(\tau_\nu \) can be expressed as \(\kappa_\nu \Sigma \), where \(\kappa_\nu \) is the dust opacity per unit mass and \(\Sigma \) is the surface mass density. We adopted

\[
\kappa_\nu = 0.1 \left(\frac{\nu}{1000 \text{ GHz}} \right)^{\beta} \text{ cm}^2 \text{ g}^{-1},
\]

where \(\beta = 2 \), following Könyves et al. (2010).

We carried out the SED fitting at each point where the dust emission was detected as greater than three times the rms noise level, which was measured in the area of the zero point of the surface brightness at all these four bands. In cases in which the SED fitting failed or the surface brightness was not high enough for SED fitting at some points, we set NaN there. As the data weight of the SED fitting, we adopted \(1/\sigma^2 \), where \(\sigma^2 \) is the square sum of the rms noise and the calibration uncertainties of surface brightness (15% at 500, 350, and 250 \(\mu m \) from Griffin et al. 2010; 20% at 160 \(\mu m \) from Poglitsch et al. 2010). The dust temperature of each pixel was derived from the above SED fitting, and the result is shown in Figure 1(f). We used a \(\chi^2 \) statistic to determine the goodness of the SED fitting per pixel (Press et al. 2007). For the SED fitting, each \(\chi^2 \) statistic has a \(\chi^2 \) distribution with two degrees of freedom, and then the probability Q gives a quantitative measure for the goodness. In most of the inner region of the L 1551 cloud, the SED fitting seems good (the probability Q \(\sim 0.8 \)), while in the region around YSOs and toward the outskirts, the fitting seems bad with small probability Q. The badness around YSOs may be due to multiple-temperature components presenting in the SED.

To obtain a column density map with a higher resolution of 18'' (Figure 1(d)), we derived the column density directly from the 250 \(\mu m \) surface brightness (\(\tau_{250,\mu m} \ll 1 \) from previous fitting) adopting the dust temperature of the SED fitting with a lower resolution of 36'' (Könyves et al. 2010).

3. RESULTS

3.1. 12CO (J = 1–0) Emission Line

Figure 1(a) shows the integrated intensity map of 12CO (J = 1–0) integrated in the \(v_{1,\text{SR}} \) range from \(-15 \) to \(20 \) km s\(^{-1} \) for pixels, with its signal-to-noise ratio greater than three. The 12CO emission is distributed all over the observed area. A sharp edge at the southeast of the mapping area can be recognized. Moriarty-Schieven et al. (2006) suggested that the stellar winds from massive stars, Betelgeuse and Rigel in the Ori-Eridanus supershell, possibly compressed the edge of the L 1551 molecular cloud. Two elongated structures, which are extended in the southwest–northeast direction and centered on the Class I source IRS 5, are identified as the molecular outflows ejected from IRS 5 and another embedded Class I source NE (Snell et al. 1980; Moriarty-Schieven et al. 2006; Stojimirović et al. 2006).

3.2. 13CO (J = 1–0) Emission Line

Figure 1(b) shows the integrated intensity map of 13CO (J = 1–0) integrated in the \(v_{1,\text{SR}} \) range from \(-15 \) to \(20 \) km s\(^{-1} \) for pixels, with its signal-to-noise ratio greater than three. The overall distribution of 13CO is consistent with those in previous studies of 13CO carried out with the position switching mode of the FCRAO 14 m (Stojimirović et al. 2006) and NRO 45 m (Yoshida et al. 2010) telescopes. There is a cavity structure at the northeast of NE and a U-shaped wall structure at the southwest of IRS 5. In addition, two intensity peaks can be seen toward IRS 5 and NE. These structures are not recognized in the 12CO maps.

3.3. C\(^{18}\)O (J = 1–0) Emission Line

Figure 1(c) shows the integrated intensity map of C\(^{18}\)O (J = 1–0), integrated in the \(v_{1,\text{SR}} \) range from \(-15 \) to \(20 \) km s\(^{-1} \) for pixels, with its signal-to-noise ratio greater than three. The C\(^{18}\)O emission line is likely to trace the inner part of the regions traced by 12CO and 13CO. The overall distribution of C\(^{18}\)O is consistent with those in previous studies of C\(^{18}\)O carried out with the OTF mode of the Kitt Peak 12 m telescope (Swift et al. 2005) and the position switching mode of the NRO 45 m (Yoshida et al. 2010) telescope.

Table 1

Molecular line	\(^{12}\)CO (J = 1–0)	\(^{13}\)CO (J = 1–0)	C\(^{18}\)O (J = 1–0)
Rest frequency (GHz)	115.2712	110.20135	109.78218
Primary beam HPBW (\(''\))	~15	~16	~16
Frequency resolution (kHz)	37.8	37.8	37.8
Main-beam efficiency	0.32	0.38	0.43
Observation	2007 Dec–2008 Jun	2009 Dec–2010 Feb	2009 Feb–2009 May
Scan mode	OTF	OTF	OTF
Mapping area (arcmin\(^2\))	44 \(\times \) 44	42 \(\times \) 43	30 \(\times \) 30
Pixel grid size (\(''\))	7.5	7.5	7.5
Effective beam size (\(''\))	21.8	22.2	22.2
Velocity resolution (km s\(^{-1}\))	0.1	0.1	0.1
Typical noise level in \(T_{\text{mb}} \) (K)	1.23	0.94	0.67
3.4. Column Densities of the 13CO and C18O Gas and Abundance Ratio of 13CO to C18O

In order to derive the optical depths and column densities of 13CO and C18O, we assume that (1) 12CO ($J = 1–0$) is optically thick, (2) 13CO and its rarer isotopic species trace the same component, and (3) these three lines reach local thermal equilibrium. Thus, the temperature of 12CO ($J = 1–0$) can be treated as the excitation temperature, T_{ex}, of 13CO ($J = 1–0$) and C18O ($J = 1–0$) for deriving the optical depths and column densities of 13CO and C18O. In order to make a direct comparison between the different lines, we smooth all of the data so that they have the same effective beam size of 30″

Figure 1. L 1551 maps of integrated intensity and derived properties. The integrated intensity maps of (a) 12CO ($J = 1–0$), (b) 13CO ($J = 1–0$), and (c) C18O ($J = 1–0$) in $v_{LSR} = [−15 \text{ km s}^{-1}, 20 \text{ km s}^{-1}]$ in units of K km s^{-1} with effective beam sizes of 24″, 25″, and 25″, respectively. The crosses denote the Class I sources NE, and IRS 5, and the Class I/II source HL Tau. The circles denote XZ Tau, LkHα 358, and V1213 Tau. The black ellipse denotes the starless core L 1551 MC. The blue and white ellipses denote a U-shaped wall structure, and the magenta one denotes a cavity structure. The linear scale of 0.1 pc is shown in the bottom-left corner of each panel. (d) The column density map of H$_2$ in units of cm$^{-2}$ with an effective beam size of 18″, derived from Herschel data. (e) The excitation temperature map in units of K with an effective beam size of 30″, derived from 12CO ($J = 1–0$) peak intensities. (f) The dust temperature map in units of K with an effective beam size of 36″. Each beam size is denoted by the white ellipses in the bottom-right corner of each panel.
temperature. First, if the 12CO spectrum has only one velocity component, which usually happens in the quiescent ambient region, the single-Gaussian fitting may give an adequate result. If the residual of the fitting at the peak velocity is less than 3σ, we take the peak intensity to calculate the excitation temperature. Second, if the single-Gaussian fitting fails, we apply a double-Gaussian fitting to separate the ambient and outflow components. Except the regions around NE, only one redshifted or blueshifted component appears. We identify the component of which the peak velocity is similar to the peak velocity of 13CO and C18O spectra as the ambient component and the other component as the outflow component, if (1) the residuals of the fitting at both the peak velocities are less than 3σ and (2) the velocity ranges of the two Gaussian components at half maximum are not overlapped with each other. The later criterion is included because the determination of the peak intensity of the ambient component could be affected by the close outflow component. In some cases, the peak 12CO intensity is even smaller than the peak 13CO intensity, which is not physical and is rejected. Third, for the remaining spectra, the velocity structure seems to contain three or more components. Since our goal is to obtain the peak intensity of the ambient gas, we only apply a single Gaussian to one peak having the peak velocity closest to the ambient gas velocity determined from the 13CO and C18O spectra at the same position. We fix the peak velocity of this single Gaussian as the mean value of the 13CO and C18O peak velocities and we only fit the Gaussian within a narrow velocity range bracketed by the two local minima around the peak. Following the above procedure, we obtain the estimate of the excitation temperature from the peak intensity of the fitted Gaussian to the ambient 12CO emission.

Figure 1(e) shows the excitation temperature map derived from the following equation with the previous assumption (1) and the beam filling factor of one (e.g., Pineda et al. 2010; Kong et al. 2015)

$$ T_{\text{ex}} = \frac{h\nu_{\text{CO}}}{k} \left[\log \left(1 + \frac{h\nu_{\text{CO}}/k}{T_{\text{mb},12\text{CO}} + J_0(T_{\text{bg}})} \right) \right]^{-1} K $$

$$ = 5.53 \left[\log \left(1 + \frac{5.53}{T_{\text{mb},12\text{CO}} + 0.818} \right) \right]^{-1} K, \quad (3) $$

where $T_{\text{mb},12\text{CO}}$ is the peak intensity of 12CO ($J = 1-0$) in units of K from the above fitting, $J_0(T) = \frac{h\nu/k}{\exp(h\nu/kT) - 1}$ is the effective radiation temperature (Ulich & Haas 1976), and $T_{\text{bg}} = 2.7$ K is the temperature of cosmic microwave background radiation. Hereafter, we call this excitation temperature derived from Equation (3), T_{CO}. We then obtain the optical depths, τ, of the 13CO ($J = 1-0$) and C18O ($J = 1-0$) emission and the column densities, N, of the 13CO and C18O gas using the following equations (e.g., Lada et al. 1994; Kawamura et al. 1998)

$$ \tau_{\text{CO}} = -\log \left(1 - \frac{T_{\text{mb},12\text{CO}}/\phi_{\text{CO}}}{\exp(5.29/T_{\text{ex}}) - 1} - 0.164 \right), \quad (4) $$

$$ N_{\text{CO}} = 2.42 \times 10^{14} \frac{\tau_{\text{CO}} \text{FWHM}_{\text{CO}} T_{\text{ex}}}{1 - \exp(-5.29/T_{\text{ex}})} \text{cm}^{-2}, $$

$$ N_{\text{C}^{18}\text{O}} = 2.42 \times 10^{14} \frac{\tau_{\text{C}^{18}\text{O}} \text{FWHM}_{\text{C}^{18}\text{O}} T_{\text{ex}}}{1 - \exp(-5.29/T_{\text{ex}})} \text{cm}^{-2}, $$

where $T_{\text{mb},12\text{CO}}$ and $T_{\text{mb},C^{18}\text{O}}$ are the peak intensities in K, FWHM$_{\text{CO}}$ and FWHM$_{C^{18}\text{O}}$ are the FWHMs in km s$^{-1}$, and ϕ_{CO} and $\phi_{C^{18}\text{O}}$ are the beam filling factors. The beam filling factors can be expressed as $\phi = \theta_{\text{source}}^2/(\theta_{\text{source}}^2 + \theta_{\text{beam}}^2)$, where θ_{source} and θ_{beam} are the source size and the effective beam size, respectively. In molecular clouds, the C18O emission is usually considered to trace the dense cores, clumps, and/or filaments. On the other hand, the 13CO emission traces more extended regions than C18O. In the case of the Taurus molecular cloud, Tachihara et al. (2002) and Qian et al. (2012) found that both the typical 13CO and C18O core size are ~ 0.1 pc. Since the effective beam sizes we used here are 30″4 (corresponding to 0.023 pc at the distance of 160 pc), which is much smaller than the typical core size, we can assume the emission of our sources fill up the beam and the beam filling factors become ~ 0.95. Therefore, we simply adopt ϕ_{CO} and $\phi_{C^{18}\text{O}}$ as 1.

Figures 2(a) and (b) show the optical depth maps of 13CO ($J = 1-0$) and C18O ($J = 1-0$), respectively. For the 13CO ($J = 1-0$) emission, its optical depth is more than 1.5 at the center of L 1551, and drops to less than one at the outer edge. For the C18O ($J = 1-0$) emission, its optical depth is less than 0.8 in the whole region, suggesting that the C18O ($J = 1-0$) emission is fully optically thin in L 1551.

Figures 2(c) and (d) show the column density maps of 13CO and C18O, respectively. The cavity structure and the U-shaped wall structure can be seen in the 13CO column density map. The C18O column density map shows that C18O concentrate in the region surrounded by IRS 5, NE, and L 1551 MC. Moreover, the U-shaped wall structure is also seen in the C18O column density map as a low column density part.

We can derive the abundances from $X_{\text{CO}} = N_{\text{CO}}/N_{\text{H}_2}$ and $X_{C^{18}\text{O}} = N_{C^{18}\text{O}}/N_{\text{H}_2}$ with the H$_2$ column density derived from the FIR dust continuum images. Because we adopt the dust temperature map with an effective beam size of 36″ (see Section 2.2), we convolve the N_{CO} and $N_{C^{18}\text{O}}$ maps with Gaussians to degrade their resolutions down to 36″ (corresponding to 0.027 pc at the distance of 160 pc). Figures 3(a) and (b) show the abundance maps of 13CO and C18O, respectively. The mean and standard deviation of X_{CO} and $X_{C^{18}\text{O}}$ are $(3.1 \pm 1.2) \times 10^{-6}$ and $(3.1 \pm 1.2) \times 10^{-7}$, respectively. We can see N_{H_2} peaks toward IRS 5, NE, and L 1551 MC in Figure 1(d) and $N_{C^{18}\text{O}}$ also concentrates in the above regions in Figure 2(d), but the peaks of $N_{C^{18}\text{O}}$ are not as obvious as N_{H_2}. As a result, the $X_{C^{18}\text{O}}$ map shows low values in the above three regions, which means the C18O depletion occurs at these regions. It is reasonable for the depletion at L 1551 MC because we find that L 1551 MC is dense and cold in Figures 1(d) and (f). For IRS 5 and NE, the dust temperature at the envelop of protostars is higher than in other regions, but the dust temperature is still
less than the CO evaporation temperature of 20–25 K and the H$_2$ column density is very high compared with other regions; therefore, the envelop of protostars also shows C18O depletion. On the other hand, the low X_{CO} value also appears at the C18O depletion region; however, the low X_{CO} value derived in this region may not show the real situation because 13CO and dust emission may not trace exactly the same layer in the line of sight (see Section 4.2).

The abundance ratio of 13CO to C18O can be directly derived from $X_{^{13}CO}/X_{C^{18}O} = N_{^{13}CO}/N_{C^{18}O}$. Figure 3(d) shows the spatial variation of $X_{^{13}CO}/X_{C^{18}O}$. The $X_{^{13}CO}/X_{C^{18}O}$ value ranges from \sim3 to \sim27 in the whole region, and the mean and standard deviation of the abundance ratios are 8.1 ± 2.8. Spatially, the $X_{^{13}CO}/X_{C^{18}O}$ value in the outskirts of the cloud is more than \sim8 and drops to less than 5.5 around L 1551 MC, except for the HL Tau group and the southwest blueshifted outflow lobe with the brightest 12CO integrated intensity.

4. DISCUSSION

4.1. Selective Photodissociation of C18O

To study the influence of interstellar FUV radiation on $X_{^{13}CO}/X_{C^{18}O}$, we remove the outflow regions to avoid the influence from outflow activities for later discussion. We define the outflow regions by the regions where the 12CO integrated intensities in either blueshifted or redshifted parts are higher than 3σ (see Figure 3(f)); here we regard -15 to 5.5 and 7.9 to 20 km s$^{-1}$ as the blueshifted and redshifted outflow velocity ranges, respectively. Moreover, to avoid the influence from underestimation of $X_{C^{18}O}$ by C18O depletion, we also remove the region where the $X_{C^{18}O}$ value is less than the ISM standard value of 1.6 \times 10$^{-7}$ (Frerking et al. 1982; Ford & Shirley 2011; shown by the gray contour in Figure 3(b)). In the other words, we remove the region where the C18O depletion factor = 1.6 \times 10$^{-7}$/X18O > 1.
Figure 3 shows the abundance map excluding the outflow and C18O depletion regions. We can see that the spatial variation of the X^{13}CO/C^{18}O value is outside-in decreasing and the minimum of the X^{13}CO/C^{18}O value coincides with the dense part in L 1551 (see the H2 column density map in Figure 1(d) as a comparison). This spatial variation might be caused by the penetration capability of interstellar FUV radiation, which is related to the visual extinction, A_V. In order to investigate the dependence of the abundance ratio on the visual extinction within the molecular cloud, we derived the A_V map from the H2 column density map with a relation from Bohlin et al. (1978),

\[A_V = \frac{N_{H_2}}{9.4 \times 10^{20} \text{ cm}^{-2}}. \]

Figure 3(c) shows the derived A_V map. Since we adopt the dust temperature map with an effective beam size of 36'' (see Section 2.2), we convolve the abundance ratio maps with Gaussians to degrade their resolutions down to 36'' (corresponding to 0.027 pc at the distance of 160 pc).

Figure 4(a) shows the correlation between the X^{13}CO/C^{18}O value and the A_V value. The X^{13}CO/C^{18}O value is higher than the typical solar system value of 5.5 in the A_V range less than 10 mag, and then decreases down to \sim 5.5 with an increasing A_V value, suggesting that the dependence of the abundance ratio on the A_V value is significant. Although the sample of A_V \sim 2 mag is sparse because we derived the abundance ratio from the detections with both ^{13}CO (J = 1–0) and C^{18}O (J = 1–0) more than 5\sigma, we can still see that the maximum of...
the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value occurs between $A_V \sim 1$–4 mag. To figure out the averaged trend of the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value, we averaged the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value in 2.5 mag A_V bins. The averaged $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value reaches the maximum of 10.3, which is \sim2 times more than 5.5 in the A_V range less than 2.5 mag. Theoretical studies predict that in the mean ISRF, the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ maximum occurs at $A_V \sim 1$–3 mag and reaches \sim5–10 times the intrinsic abundance ratio, and then decreases toward the intrinsic abundance ratio when A_V further increases (Warin et al. 1996); that is, the selective photodissociation of C^{18}O appears at $A_V \sim 1$–3 mag. Our maximum of the averaged $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value is only \sim2 times 5.5, and our maximum of the non-averaged $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value just barely reaches 27.7, which is \sim5 times 5.5. Since the model calculations in Warin et al. (1996) only considered the non-turbulent uniform density model, our lower maximum $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value may be caused by non-uniform density distributions. Another example is shown by Lada et al. (1994) who derived a similar correlation in a filament of IC 5146 (see Figure 19 in Lada et al. 1994), which is also a low-mass star-forming region. They found that the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ ratio at $A_V < 10$ mag is \sim3 times 5.5 and then decreases to \sim5.5 at $A_V > 10$ mag. Note that the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ peak positions in the A_V axes in L1551 and IC 5146 are different. Although Lada et al. (1994) used the Near-Infrared Color Excess (NICE) technique to derive A_V and we used the graybody SED fitting and Equation (8) to derive A_V, both the NICE method and our method are based on the assumption that $R_V = A_V/E(B-V) = 3.1$. Thus these differences may be owing to the different beam sizes between our data or the other different physical conditions.

As seen in Figure 1(c), the C^{18}O emission is rather weak or not detected at the periphery of the cloud, in which a higher $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value is expected. On the other hand, the C^{18}O emission is strong at these regions. Since we only calculated the $X_{13\text{CO}}/X_{\text{C}^{18}\text{O}}$ value as the signal-to-noise ratio of both 13CO and C^{18}O greater than five (see Section 3.4), we may only sample the positions with high C^{18}O abundance. In order to check this possibility, we can estimate the upper limit of the
$X_{\text{CO}}/X_{\text{C}^{18}\text{O}}$ value by using the ^{18}O emission with the signal-to-noise ratio of three and assuming FWHM of ^{18}O as the value at the outskirts in Figure 1(c) (~ 0.18 km s$^{-1}$) at the region where the ^{18}O emission is weak ($\lesssim 5\sigma$ level noise), but the ^{13}CO emission is still strong ($\gtrsim 5\sigma$ level noise). Then the $X_{\text{CO}}/X_{\text{C}^{18}\text{O}}$ value can reach ~ 45 at these regions, which is ~ 8 times 5.5.

4.2. Influence of the Excitation Temperature

In order to derive the optical depths and column densities, we assumed that the ^{12}CO, ^{13}CO, and ^{18}O lines trace the same region, and derived the excitation temperature, T_{CO}, using the peak intensity of ^{13}CO ($J = 1-0$). However, the three lines may trace different regions, and T_{CO} could not be used as the excitation temperatures of ^{12}CO ($J = 1-0$) and ^{18}O ($J = 1-0$). To investigate the influence of the excitation temperature, we re-estimate the abundance ratio by using the dust temperature (shown in Figure 1(f)), T_{dust}, as the excitation temperature of ^{13}CO or/^{18}O. Since the thermal emission from dust is usually optically thin and can trace inner regions, the ^{13}CO or/^{18}O may trace the same region as dust. We found that T_{dust} is generally smaller than T_{CO} in the inner region of L 1551 and T_{dust} in the area we calculated, and the abundance ratio has a mean value of 13.2 ± 0.7 K; thus, there is a possibility that the ^{12}CO emission and the dust emission may trace different regions in the inner region of L 1551. The 2H$_2$ column density traced by the dust emission is also a very useful measure to examine whether the CO lines trace the same region as the dust or not. In fact, we can see the distributions of the N_{H_2} map and the $N_{^{13}\text{CO}}$ map are similar, compared to the $N_{\text{C}^{18}\text{O}}$ map. Thus, we assume the excitation temperature of ^{13}CO is the dust temperature, but we try both T_{CO} and T_{dust} for ^{13}CO for comparison. On the other hand, since Stojimirović et al. (2006) used the two rotational transitions of ^{12}CO ($J = 1-0$ and 3–2) to derive a mean excitation temperature of the main NE/IRS 5 outflow to be 16.5 K, which is generally higher than T_{CO}, we also use this temperature for comparison. Therefore, we compare the derived abundance ratios under the following four assumptions:

1. $T_{\text{ex},^{13}\text{CO}} = T_{\text{CO}}$ and $T_{\text{ex},^{18}\text{O}} = T_{\text{CO}}$ (Original)
2. $T_{\text{ex},^{13}\text{CO}} = T_{\text{dust}}$ and $T_{\text{ex},^{18}\text{O}} = T_{\text{dust}}$
3. $T_{\text{ex},^{13}\text{CO}} = T_{\text{CO}}$ and $T_{\text{ex},^{18}\text{O}} = T_{\text{dust}}$
4. $T_{\text{ex},^{13}\text{CO}} = T_{\text{dust}}$ and $T_{\text{ex},^{18}\text{O}} = 16.5$ K.

Each panel in Figure 4 shows the correlation between $X_{\text{CO}}/X_{^{18}\text{O}}$ and A_{ν} under one of the above four assumptions. The mean and standard deviation of the abundance ratios are 8.0 ± 2.8, 8.4 ± 3.1, 9.5 ± 3.2, and 7.6 ± 2.9 under these four assumptions respectively.

The dependence of the $X_{\text{CO}}/X_{^{18}\text{O}}$ value on the A_{ν} value under assumptions (2) and (4) is consistent with that under the original assumption (1). We notice that the $X_{\text{CO}}/X_{^{18}\text{O}}$ value at $A_{\nu} \gtrsim 5$ under assumption (4) is slightly lower than that in assumption (1), which reveals that a higher excitation temperature will derive a lower abundance ratio. Actually, T_{CO} used in Figure 4(a), has a mean value of 15.3 ± 1.9 K. Even if we use 16.5 K as the excitation temperature in assumption (4), we still obtain almost the same trend in the correlation between $X_{\text{CO}}/X_{^{18}\text{O}}$ and A_{ν}. This, thus, derivation of the abundance ratio is not sensitive to the excitation temperature. In the case of assumption (3), the trend of $X_{\text{CO}}/X_{^{18}\text{O}}$ is similar to those under the other assumptions in the A_{ν} range less than 10 mag, but the $X_{\text{CO}}/X_{^{18}\text{O}}$ value increases in the A_{ν} range more than 10 mag. In fact, the ambient region in which the A_{ν} value is larger than 10 mag corresponds to L 1551 MC in which the dust temperature is less than ~ 10 K. Since the only difference between assumptions (2) and (3) is the excitation temperature of ^{13}CO, this behavior can be interpreted as follows. The excitation temperature of ^{13}CO in L 1551 MC is underestimated in the case of $T_{\text{ex}} = T_{\text{dust}}$, and thus the column density of ^{13}CO is overestimated. This suggests that the ^{13}CO line does not trace the dense region of L 1551 MC traced by the dust emission: L 1551 MC cannot be recognized in the ^{13}CO integrated intensity map of Figure 1(b).

Consequently, even when we take into account the uncertainties in the excitation temperature estimation, our results still lead to the same conclusion. That is, the $X_{\text{CO}}/X_{^{18}\text{O}}$ value reaches ~ 11 at the low A_{ν} value ($A_{\nu} \sim 1–4$ mag), which is indeed larger than the solar system value, and decreases toward the solar system value in the high A_{ν} value ($A_{\nu} \sim 5–20$ mag) except in the case of the low (~ 10 K) excitation temperature for the ^{13}CO line.

4.3. Comparison between the L 1551 Molecular Cloud and the Orion-A Giant Molecular Cloud

Orion-A GMC is located at a distance of 400 pc (Menten et al. 2007; Sandstrom et al. 2007; Hirota et al. 2008) and is under strong influence of the FUV emission from the Trapezium cluster and NU Ori (Shimajiri et al. 2011). Several photon dissociation regions (PDRs) have been identified from comparison of the distributions of the 8 μm, 1.1 mm, and ^{12}CO ($J = 1-0$) line emission (Hollenbach & Tielens 1997; Shimajiri et al. 2011, 2013). Shimajiri et al. (2014) found that the abundance ratios of ^{13}CO to ^{18}O in PDRs and non-PDRs are both higher than 5.5, and concluded that these high abundance ratios are due to the selective FUV photodissociation of ^{18}O. In order to investigate the influence of the different environments on the abundance ratio of ^{13}CO to ^{18}O, we compare the abundance ratio between L 1551 and Orion-A.
Figure 5 shows the $X_{\text{\text{12}}\text{CO}}/X_{\text{\text{CO18O}}}$ value as a function of $N_{\text{\text{\text{C}^{18}O}}}$ for L 1551 and Orion-A (both the PDR and non-PDR regions). The data of Orion-A are from Shimajiri et al. (2014). Here, Shimajiri et al. (2014) used the $\text{\text{C}^{18}O}$ column density to estimate the total column density. Although the $\text{\text{C}^{18}O}$ column density and the A_V value do not have a perfect linear relation because of the selective photodissociation (Ferking et al. 1982), we can still consider that the higher column density is generally corresponding to the higher A_V value and vice versa. Our results show that the abundance ratio in L 1551 is generally lower than that in Orion-A. The mean $X_{\text{\text{12}}\text{CO}}/X_{\text{\text{CO18O}}}$ value in L 1551 is 8.0 ± 2.8 in contrast to 16.5 ± 0.07 in PDRs and 12.3 ± 0.02 in non-PDRs in Orion-A (Shimajiri et al. 2014). For the non-PDRs of Orion-A, the $X_{\text{\text{12}}\text{CO}}/X_{\text{\text{CO18O}}}$ value has a maximum in the low $N_{\text{\text{\text{C}^{18}O}}}$ regime ($<5 \times 10^{15}$ cm$^{-2}$), and then decreases to \sim0.1 in the high $N_{\text{\text{\text{C}^{18}O}}}$ regime (see Figures 7(d)–(g) in Shimajiri et al. 2014). This trend is similar to the result of L 1551 but the selective photodissociation of $\text{\text{C}^{18}O}$ in L 1551 only occurs at the outskirts ($A_V \sim 1–4$ mag, see Figure 4(a)). However, even at the high column density, the abundance ratio is still about two times higher than 5.5 in Orion-A, because of the presence of the embedded OB stars in the cloud. In other words, the FUV strength in Orion-A is higher than that in L 1551, which is the environmental difference between L 1551 and Orion-A. In the Orion-A, the FUV radiation from the embedded OB stars is likely to penetrate the whole cloud. For the PDRs of Orion-A, the stronger FUV radiation causes the even higher convergence value of \sim15.

4.4. CO-to-H_2 Conversion Factor across the L 1551 Molecular Cloud

Measurements of the mass distribution in molecular clouds help to understand their physical and chemical characteristics. However, in the ISM, the most abundant molecular species, H_2, is difficult to observe because H_2 lacks its electric-dipole moment and it is hard for its quadruple transition to occur in the typical molecular cloud environment. The secondary abundant molecular species, CO, is not the case, because CO is much easier to observe and the ^{12}CO ($J = 1–0$) emission is considered to be the most available mass tracer. Thus, the CO-to-H_2 conversion factor, also called the “X-factor,” is defined as,

$$X_{\text{factor}} = \frac{N_{\text{H}_2}}{W_{12\text{CO}}} \text{cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s},$$

where $W_{12\text{CO}}$ is the integrated intensity of the ^{12}CO ($J = 1–0$) emission. Bolatto et al. (2013) showed that the averaged X-factor $= 2 \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s with $\pm30\%$ uncertainty in the Milky Way disk. Nevertheless, the X-factor can vary by a factor of \sim100 in different regions, because ^{12}CO ($J = 1–0$) is often optically thick (Lee et al. 2014). For example, Pineda et al. (2010) measured X-factor \sim(1.6–12) $\times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s in the Taurus molecular cloud, Lee et al. (2014) measured X-factor $\sim3 \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s in the Perseus molecular cloud, and Kong et al. (2015) measured X-factor $\sim2.53 \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s in the southeastern part of the California molecular cloud. These discrepancies are also found in ISM numerical simulations, which show that the X-factor is likely dependent on extinction, volume density, temperature, metallicity, turbulence, star formation feedback, and so on (Shetty et al. 2011a, 2011b; Lee et al. 2014; Clark & Glover 2015). Even within a molecular cloud, the X-factor can still vary with a wide range. On the other hand, the variation of the X-factor of the ^{13}CO and $\text{\text{C}^{18}O}$ can be smaller (see Appendix D).

Hereafter, we calculate the X-factor for pixels in Figure 1(a) with the signal-to-noise ratio of the ^{13}CO integrated intensity greater than three. Figure 6 shows the correlation between the $W_{12\text{CO}}$ value and the A_V value, and the points are color-coded by $T_{\text{ex}} = T_{\text{CO}}$. We can see that there are multiple trends. The averaged X-factor of the whole region is 1.08$^{+1.45}_{-0.42} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s. This is about a factor of two smaller than the average X-factor in the Milky Way, but the dispersion still covers the average X-factor in the Milky Way. In order to reveal these different trends, although we have already defined two regions, the ambient and outflow components, in the previous discussion, we divide into more regions based on the previous division here: (a) the diffuse component, which is the ambient component excluding the L 1551 MC component, (b) the L 1551 MC component, which is the green polygon in Figures 3(f), and (c) the outflow component, which is the same as that defined in Section 4.1. In each panel, we use the chi-square fitting method with errors in both coordinates to find the best-fit line.

The diffuse component (Figure 6(a)) shows a relatively narrow distribution, compared with the other two regions, and the fitted X-factor $= 1.24^{+0.81}_{-0.41} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s is similar to the fitted X-factor of the whole region and is the same order of magnitude as the average X-factor in the Milky Way. The L 1551 MC component (Figure 6(b)), however, shows a more extended distribution and a larger fitted X-factor $= 5.59^{+3.30}_{-1.85} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s. This is due to the fact that the ^{13}CO emission is optically thick and thus saturated in this dense starless core. The outflow component (Figure 6(c)) has a fitted X-factor $= 7.43^{+1.17}_{-0.24} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s, which is smaller than that of the diffuse component, but shows three different distributions. Two of the distributions are extended and have shallow slopes in the correlation, which belong to the outflow region overlapped with IRS 5 and NE shown in Figure 3(f) as two green incomplete circles and marked in panel (c) of Figure 6. The ^{13}CO emission from the IRS 5 and NE regions is likely saturated because the H_2 column densities of IRS 5 and NE are comparable to that of L 1551 MC ($N_{\text{H}_2} \sim 10^{22}$ cm$^{-2}$). The other narrow distribution belongs to the remaining outflows and dominates the fitting of the X-factor, which may be due to the fact that the entrained energy more strongly excites the ^{13}CO emission and makes its high excitation temperature. Consequently, in the low A_V range ($A_V \leq 10$ mag), the X-factor of the diffuse component is consistent with the Milky Way average value, and the X-factor of the outflow component is smaller. However, in L 1551 MC ($A_V \geq 3$ mag), the X-factor becomes larger and has a large dispersion.

Figure 7 shows the correlation between the X-factor and the A_V value, and the points are color-coded by T_{ex}. We can see that the X-factor of the whole region is dependent on A_V with a fitted power law, X-factor $\propto N_{H_2}^{0.101 \pm 0.01}$. In particular, the L 1551 MC component has a well-correlated distribution (less dispersion of the power index), X-factor $\propto N_{H_2}^{0.064 \pm 0.004}$. A similar distribution but a shallower power law, X-factor $\propto N_{H_2}^{0.7}$, was also found by Kong et al. (2015) in the southeastern part of the California molecular cloud excluding the hot region around the massive star LkHα 101. However, in Perseus, Lee et al. (2014)
Figure 6. Correlation between the visual extinction, A_V, and the integrated intensity of 12CO ($J = 1-0$), $W_{^{12}CO}$. The gray dots denote all of the data points in the map. The color-coded dots show the data points in the labeled regions, and the color represents the excitation temperature, T_{ex}. The black contours indicate the surface density of the color-coded points at the 15%, 45%, and 75% levels of the maximum surface density in each panel.

Figure 7. Correlation between the visual extinction, A_V, and the X-factor. The gray dots denote all data points in the map. The color-coded dots show the data points in the labeled regions, and the color represents the excitation temperature, T_{ex}. The blue contours indicate the surface density of the color-coded points at the 5%, 15%, 45%, and 75% levels of the maximum surface density of all data.
found two characteristic features: the X-factor steeply decreases at $A_V \lesssim 3$ mag and gradually increase at $A_V \gtrsim 3$ mag. The steeply decreasing trend is likely due to the sharp transition from CII/CI to CO, but this steeply decreasing trend does not appear in our results. The ISM numerical simulations performed by Shetty et al. (2011a) suggests that the transition behavior is dependent on the volume density. They simulated molecular clouds with uniform density distribution from 10^2 to 10^5 cm$^{-3}$ and initial turbulence, and showed that the low density case has the decreasing trend with a wider A_V range compared to the high density case. For the highest density case in their simulation ($n \sim 10^7$ cm$^{-3}$), the result only shows one characteristic trend, X-factor $\propto N_{\text{H}_2}$, which means the 12CO emission is saturated (optically thick) to be constant and then the X-factor directly relates to N_{H_2}, which is consistent with our results. In L 1551, we do not find the decreasing trend even at the low A_V range, which indicates the FUV strength in L 1551 is less than that in Perseus. Under the mean ISRF, 12CO is self-shielded at $A_V \sim 0.5$ mag (Röllig & Ossenkopf 2013; Szücs et al. 2014), which may be the case in L 1551.

Figure 8 shows the correlation between the X-factor and the T_{ex} value, and the points are color-coded by A_V. Our data do not show obvious correlated distributions. However, an inverse power law, X-factor $= 2 \times 10^{20} (T_{\text{ex}}/10^{-0.7}$, was found in the southeastern part of the California cloud (Kong et al. 2015), which is consistent with X-factor $\propto T_{\text{ex}}^{-0.5}$ in simulations of Shetty et al. (2011b). Although this relation passes through the diffuse component of L 1551, we cannot confirm this relationship due to the narrow temperature range of our data.

Figure 9 shows the correlation between the X-factor and the 12CO velocity dispersion, $\sigma_{^{12}\text{CO}}$, and the points are color-coded by T_{ex}. The simulations predict that X-factor $\propto \sigma_{^{12}\text{CO}}^{1.5}$ (Shetty et al. 2011b). However, our data do not have a correlated distribution. Kong et al. (2015) also found no correlation in the southeastern part of the California cloud.

5. SUMMARY

We have carried out wide-field OTF observations in the 12CO, 13CO, and C18O ($J = 1$–0) lines toward the L 1551 molecular cloud using the BEARS receiver of the NRO 45 m telescope. The main results are summarized as follows.

1. The abundance ratio of 13CO to C18O ($X_{^{13}\text{CO}}/X_{C^{18}\text{O}} = N_{^{13}\text{CO}}/N_{C^{18}\text{O}}$) is derived to be ~ 3–27. The mean value is 8.0 ± 2.8. We can see a spatially decreasing trend in the $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$ map from the outskirts to the dense part of L 1551, the starless core L 1551 MC.

2. We found that the $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$ value reaches its maximum in $A_V = 1$–4 mag. and then decreases down to about the typical solar system value of 5.5 in the high A_V value, suggesting that the selective photodissociation of C18O from the interstellar FUV radiation occurs in L 1551. PDR theoretical models with the mean ISRF suggest that the selective photodissociation of C18O causes the increase of $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$ value up to ~ 5–10 times the intrinsic value in the low A_V regions with ~ 1–3 mag. However, in L 1551, the average $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$ value in 2.5 mag bins reaches its maximum value of 10.3, which is ~ 2 times 5.5 in the A_V range less than 2.5 mag.

3. The mean of the excitation temperatures of 13CO and C18O derived from 12CO in the non-outflow regions is 15.3 ± 1.9 K. Even if we consider the higher excitation temperature of $T_{\text{ex},^{12}\text{CO}} = T_{\text{ex},C^{18}\text{O}} = 16.5$ K or assume $T_{\text{ex},^{13}\text{CO}} = T_{\text{dust}}$, we also find a similar trend in $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$. Therefore, our results described in item 2 are not sensitive to the uncertainties in the excitation temperature determination.

4. The trends in the $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$ variations L 1551 and Orion-A are similar to each other. That is, both $X_{^{13}\text{CO}}/X_{C^{18}\text{O}}$ values reach their maximums at a low
Figure 9. Correlation between the velocity dispersion of 12CO ($J = 1-0$), $\sigma_{^{12}\text{CO}}$, and the X-factor. The gray dots denote all data points in the map. The color-coded dots show the data points in the labeled regions, and the color represents the excitation temperature, T_{ex}. The blue contours indicate the surface density of the color-coded points at the 5%, 15%, 45%, and 75% levels of the maximum surface density of all data.

Figure 10. L 1551 velocity channel maps of 12CO ($J = 1-0$) in units of K. The numbers in the top-left corners denote the central LSR velocities of the individual channels in units of km s$^{-1}$. The effective beam sizes are 30$''$. The linear scale of 0.25 pc is shown at the bottom-left corner of the first panel.
$N_{\text{C}^{18}\text{O}}$ value, and then decrease as the $N_{\text{C}^{18}\text{O}}$ value increases; however, the $X_{\text{CO}}/X_{\text{C}^{18}\text{O}}$ value in Orion-A converges to a higher value than that in L 1551. This is due to the FUV radiation from the embedded OB stars.

5. We calculated that the averaged X-factor $= 1.08^{+1.47}_{-0.42} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s, which is somewhat smaller but consistent with the Milky Way average value of $\sim 2 \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s.

6. The X-factor of the different regions in L 1551 has a large variation. For the diffuse region, we found an X-factor $= 1.24^{+0.81}_{-0.41} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s, which is similar to the Milky Way average value. For the outflow region, we found a smaller X-factor $= 7.43^{+1.17}_{-0.24} \times 10^{19}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s. The region of L 1551 MC has a larger X-factor $= 5.59^{+3.30}_{-1.85} \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s with a large dispersion because of the saturation of the ^{12}CO emission. For the whole region, we found a correlation between the X-factor and the A_V value with X-factor $\propto N_{\text{H}_2}^{1.01 \pm 0.01}$ at $A_V = \sim 0.2$–70 mag which is due to the saturation of the ^{12}CO emission.

The 45 m radio telescope is operated by the Nobeyama Radio Observatory, a branch of the National Astronomical Observatory of Japan. Part of this work was achieved using the grant of NAOJ Visiting Fellow Program supported by the
Research Coordination Committee, National Astronomical Observatory of Japan (NAOJ). S.J.L. and S.P.L. acknowledge support from the Ministry of Science and Technology of Taiwan with Grants MOST 102-2119-M-007-004-MY3.

APPENDIX A

VELOCITY STRUCTURE OF THE 12CO ($J = 1$–0) EMISSION LINE

Figure 10 shows the velocity channel maps of 12CO ($J = 1$–0). In the velocity range from -8 to 6 km s^{-1}, an extended elongated emission can be recognized at the southwest of IRS 5. This component is identified as the blueshifted lobe of the outflows ejected from IRS 5 and NE (Emerson et al. 1984; Moriarty-Schieven et al. 2006; Stojimirović et al. 2006). In the velocity range from 4 to 10 km s^{-1}, a narrower elongated structure appears at the northeast of IRS 5 and through NE, which could still be a mix of the outflows from both sources. In the velocity range from 2 to 6 km s^{-1}, a clam-shaped emission shows up around the HL Tau group, which is identified as the collective outflows from the HL Tau group (Mundt et al. 1990; Stojimirović et al. 2006; Yoshida et al. 2010). This outflow structure extends to $\sim 14\text{ km s}^{-1}$ in the redshifted lobe. In the velocity range from 10 to 20 km s^{-1}, there is an emission between NE and the HL Tau group. This component is located between the redshifted outflows from IRS 5 and NE and the collective outflows from the HL Tau group (Stojimirović et al. 2006), which could be the result of the outflow interaction. In the velocity range from 8 to 16 km s^{-1}, another narrow elongated emission is distributed in the east–west direction pointing back to IRS 5 and NE, but the origin of this east–west outflow is still unclear (Moriarty-Schieven & Wannier 1991; Pound & Bally 1991; Reipurth et al. 2002; Stojimirović et al. 2006). At 10 km s^{-1}, a diffused emission with an intensity of ~ 2–4 K is distributed at the southeast of the L 1551 molecular cloud, and this is part of the ambient gas in Taurus (Yoshida et al. 2010). At 8 km s^{-1}, two individual small cores with an extent of $\sim 3''$–$5''$ at the northern side probably are not associated with the L 1551 molecular cloud because their velocity of $\sim 8\text{ km s}^{-1}$ is different from the systemic velocity of $\sim 6\text{ km s}^{-1}$ in L 1551 (see the 6 km s^{-1} panel in Figure 10).

Figures 11 (a) and (d) show 12CO mean velocity and velocity dispersion maps, respectively. The mean velocity over the whole region is $6.6 \pm 0.44\text{ km s}^{-1}$ (Yoshida et al. 2010). We calculate that the mean velocity dispersion toward all of the observed area is $0.44 \pm 0.35\text{ km s}^{-1}$. Note that the velocity dispersion at the area of the outflows (~ 0.5–4.0 km s^{-1}) is relatively higher than the mean value toward the overall observed area.
APPENDIX B
VELOCITY STRUCTURE OF THE 13CO ($J = 1$–0) EMISSION LINE

Figure 12 shows the velocity channel maps of 13CO ($J = 1$–0). In the velocity range from 4.25 to 7.25 km s$^{-1}$, we can see the U-shaped wall clearly at the southwest of IRS 5, which is distributed around the southwestern blueshifted lobe of the outflows traced in 12CO and extending to the outside of those outflows. Note that although the U-shaped wall seems to surround the blueshifted outflows, its velocity covers both redshifted and blueshifted ranges, which may hint that the blueshifted outflow axis is almost parallel to the plane of sky. In the velocity range from 6.25 to 7.25 km s$^{-1}$, we can see the cavity at the northeast of NE. At the velocity of 6.25 km s$^{-1}$, we can see a narrow filamentary structure sticking out from IRS 5 and extending toward L 1551 MC and beyond. At the velocity of 6.75 km s$^{-1}$, the 13CO emission is distributed over the whole region, which is consistent to the centroid velocity of 6.7 ± 0.21 km s$^{-1}$ measured by Yoshida et al. (2010). At the velocity of 7.75 km s$^{-1}$, we can barely see an east–west elongated structure corresponding to the east–west outflow seen in the 12CO map.

Figure 13 (b) shows the 13CO mean velocity map. The cavity is clearly seen in the blueshifted velocities with respect to the mean velocity of 6.7 km s$^{-1}$. Because the cavity is on top of the redshifted outflows from IRS 5/NE, we speculate that the gas on the cavity region is pushed toward us by the redshifted outflows. There is a redshifted streamer ($v_{\text{LSR}} \gtrsim 6.8$ km s$^{-1}$, see the black dashed line in Figure 11 (b)) at the southwest of the narrow filamentary structure (see the gray dashed line in Figure 11 (b)) and at the north of east–west outflow. However, the integrated intensity of this streamer is very low in Figure 11, and thus this component is not discussed hereafter. Figure 11 (e) shows the 13CO velocity dispersion map. The velocity dispersion of the U-shaped wall (~ 0.4–0.7 km s$^{-1}$) is relatively higher than the mean value in the overall observed area (0.20 ± 0.09 km s$^{-1}$).

APPENDIX C
VELOCITY STRUCTURE OF THE C18O ($J = 1$–0) EMISSION LINE

Figure 13 shows the velocity channel maps of C18O ($J = 1$–0). These maps show a filamentary structure in the northwest–southeast direction in the velocity range from...
6.25 km s\(^{-1}\) to 7.25 km, and L 1551 MC traced by \(\text{NH}_3\) coincides with this filament (Swift et al. 2005). This filamentary structure can also be recognized in the \(^{13}\text{CO}\) channel maps (the 6.25 km s\(^{-1}\) panel of Figure 12) and the \(\text{H}_2\) column density map (Figure 1(d)). A U-shaped wall structure is present in the velocity range from 6.75 km s\(^{-1}\) to 7.05 km, which coincides with the redshifted part of the U-shaped wall traced in \(^{13}\text{CO}\). Another fainter filamentary structure can be seen in the velocity range from 7.05 to 7.35 km s\(^{-1}\), and its position is just above the upper arm of the U-shaped wall. Figures 11(c) and (f) are the \(^{13}\text{CO}\) mean velocity and the velocity dispersion maps, respectively. Within the U-shaped wall, the integrated intensity becomes low and the gas is mostly blueshifted (see Figure 1(c)).
APPENDIX D
RELATIONSHIP BETWEEN CO ISOTOPES AND H$_2$ COLUMN DENSITY

Figures 14 and 15, respectively, show the correlation between the W_{12} value, the integrated intensity of the 13CO ($J = 1$–0) emission, and the A_V value, and the W_{18} value, the integrated intensity of the C18O ($J = 1$–0) emission, and the A_V value, in which the points are color-coded by $T_{ex} = T_{CO}$. In order to make a direct comparison with their column density, we only plot the same regions where the pixels have their signal-to-noise ratio greater than five (see Section 3.4). The fitted X-factor of the 13CO and C18O emission are $7.48_{-0.64}^{+0.18} \times 10^{20}$ and $7.23_{-0.44}^{+0.30} \times 10^{21}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s$^{-1}$, respectively. In Figures 14 and 15, the distribution of points in each panel is similar to that for 12CO, but has a narrower distribution because their optical depths are smaller than that of the 12CO emission. Especially for the C18O emission, since $\tau_{C^{18}O} < 0.8$, even the distribution of L 1551 MC has a linear correlation, compared to the 12CO and 13CO.

REFERENCES

Aniano, G., Draine, B. T., Gordon, K. D., & Sandstrom, K. 2011, PASP, 123, 1218
Bertout, C., Robichon, N., & Arenou, F. 1999, A&A, 352, 574
Bethell, T. J., Zweibel, E. G., & Li, P. S. 2007, ApJ, 667, 437
Bolatto, A. D., Wolffe, J. S., Watson, A. M., et al. 1996, ApJ, 473, 437
Chou, T.-L., Takakuwa, S., Chen, Y., Hasegawa, N., & Ho, P. T. P. 2014, ApJ, 796, 70
Clark, P. C., & Glover, S. C. O. 2015, MNRAS, 452, 2057
Devine, D., Reipurth, B., & Bally, J. 1999, AJ, 118, 972
Emerson, D. T., & Graeve, R. 1988, A&A, 190, 205
Emerson, J. P., Harris, S., Jennings, R. E., et al. 1984, ApJL, 278, L49
Ford, A. B., & Shirley, Y. L. 2011, ApJ, 728, 144
Fried, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, LL3
Hirota, T., Ando, K., Kushima, T., et al. 2008, PASJ, 60, 961
Hollenbach, D. J., & Tielens, A. G. G. M. 1993, ARA&A, 31, 179
Kawamura, A., Onishi, T., Yonekura, Y., et al. 1998, ApJS, 117, 387
Kong, S., Lada, C. J., Lada, E. A., et al. 2015, ApJ, 805, 58
Könyves, V., Andrés, P., Men'shchikov, A., et al. 2010, A&A, 518, LL106
Lee, M.-Y., Stanimirović, S., Wolffe, M. G., et al. 2014, ApJ, 784, 80
Looney, L. W., Mundy, L. G., & Welch, W. J. 1997, ApJL, 484, L17
Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515
Moriarty-Schieven, G. H., Johnstone, D., Bally, J., & Jenness, T. 2006, ApJ, 645, 357
Moriarty-Schieven, G. H., & Wannier, P. G. 1991, ApJL, 373, L23
Mundt, R., Buehrke, T., Solf, J., Ray, T. P., & Raga, A. C. 1990, A&A, 232, 37
Nakamura, F., Okumura, S., & Shimajiri, Y. 2003, ApJ, 605, 227
Nakamura, F., Okumura, S., & Shimajiri, Y. 2004, ApJ, 602, 357
Ohashi, N., & Ho, P. T. P. 2014, ApJ, 786, 70
Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010, ApJ, 721, 686
Poglitsch, A., Waegels, C., Geis, N., et al. 2010, A&A, 518, LL2
Pound, M. W., & Bally, J. 1991, ApJ, 373, 705
Price, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007, Numerical Recipes (Cambridge: Cambridge Univ. Press)
Qian, L., Li, D., & Goldsmith, P. F. 2012, ApJ, 760, 147
Reipurth, B., Rodríguez, L. F., Anglada, G., & Bally, J. 2002, AJ, 124, 1045
Röllig, M., & Ossenkopf, V. 2013, A&A, 550, AA56
Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., & Plambeck, R. L. 2007, ApJ, 677, 1161
Sawada, T., Reda, N., Sunada, K., et al. 2008, PASJ, 60, 445
Schawb, F. R. 1984, in Optimal Gridding of Visibility Data in Radio Interferometry, Indirect Imaging, ed. J. A. Robert (Cambridge: Cambridge Univ. Press), 333
Shetty, R., Glover, S. C., Dullemond, C. P., & Klessen, R. S. 2011a, MNRAS, 412, 1686
Shetty, R., Glover, S. C., Dullemond, C. P., et al. 2011b, MNRAS, 415, 3253
Shimajiri, Y., Kawabe, R., Takakuwa, S., et al. 2011, PASJ, 63, 105
Shimajiri, Y., Kitamura, Y., Nakamura, F., & Yonekura, Y. 2011, ApJL, 737, L17
Shimajiri, Y., Kitamura, Y., Saito, M., et al. 2014, A&A, 564, AA68
Shimajiri, Y., Sakai, T., Tsukagoshi, T., et al. 2013, ApJ, 774, LL20
Snell, R. L. 1981, ApJS, 45, 121
Snell, R. L., Loren, R. B., & Plambeck, R. L. 1980, ApJ, 239, L17
Sorai, K., Sunada, K., Okumura, S. K., et al. 2000, Proc. SPIE, 4015, 86
Stojimirović, I., Narayan, G., Snell, R. L., & Bally, J. 2006, ApJ, 649, 280
Sunada, K., Yamaguchi, C., Nakai, N., et al. 2000, Proc. SPIE, 4015, 237
Swift, J., Welch, W. J., & Di Francesco, J. 2005, ApJ, 620, 823
Swift, J. J., Welch, W. J., & Di Francesco, J., & Stojimirović, I. 2006, ApJ, 637, 392
Szähl, L., Glover, S. C. O., & Klessen, R. S. 2014, MNRAS, 445, 4055
Tachihara, K., Onishi, T., Mizuno, A., & Fukui, Y. 2002, A&A, 385, 909
Takakuwa, S., Saito, M., Saigo, K., et al. 2014, ApJ, 796, 1
Ulrich, B. L., & Haas, R. W. 1976, ApJS, 30, 247
van Dishoeck, E. F., & Black, J. H. 1988, ApJ, 334, 771
Visser, R., van Dishoeck, E. F., & Black, J. H. 2009, A&A, 503, 323
Warin, S., Benayoun, J. J., & Viala, Y. P. 1996, A&A, 308, 535
Wilson, T. L. 1999, RPPh, 62, 1686
Wong, T., Telesco, C. M., Snell, R. L., & Bally, J. 2005, ApJL, 620, L17
Yoshida, A., Kitamura, Y., Shimajiri, Y., & Kawabe, R. 2010, ApJ, 718, 1019