Crystal Structure of 2-(4-Hydroxy-3-Methoxyphenyl)-6-(4-Hydroxy-3-Methoxystyryl)-1-Methyl-2, 3-Dihydropyridine-4 (1H)-One by X-Ray Powder Diffraction

1Bahjat A. Saeed, 2Kawkab Y. Saour, 3Rita S. Elias and 4Deng Xiaodi
1Department of Chemistry, College of Education, University of Basrah, Iraq
2Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Iraq
3Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Iraq
4National Lab. for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China

Abstract: Problem statement: The studied dihydropyridone was synthesized for the first time via the microwave assisted reaction of curcumin and methylamine and it is important to support the mechanism by the crystal structure. Approach: The crystal structure of the title compound was determined using high resolution x-ray diffraction. PowderSolve program was used to solve the structure while the refinement was done in material studio Reflex module. Results: The findings obtained with high-resolution x-ray powder diffraction and molecular location methods based on simulated annealing algorithm after Rietveld refinement showed that the monoclinic unit cell was a = 13.4925 Å, b = 12.8162 Å, c = 11.5231 Å, α = 90.000°, β = 99.0401°, γ = 90.000°; cell volume = 1967.85 Å³ and space group P 21/a with 4 molecules in a unit cell. Conclusion/Recommendations: Powder diffractometry could be a powerful tool for determining crystal structures for organic molecules.

Key words: Dihydropyridone, x-ray powder diffraction, rietveld refinement, PowderSolve, treor

INTRODUCTION

Dihydropyridones are important intermediates for synthesis of natural products, particularly alkaloids and many approaches to their synthesis have been developed (Donohoe et al., 2009; Comins and Ollinger, 2001; Song et al., 2007; Saito et al., 2009; Dieter and Guo, 2009; MacDonald and Burnell, 2009). Sugiyama et al. (1970) were synthesized the dihydropyridone 2, 3-dihydro-1, 2-diphenyl-6-(2-phenylethenyl)-4-pyridone from the reaction of 6-methyl-1, 2-diphenyl-2, 3-dihydro-4-pyridone with benzaldehyde. In a previous study (Elias et al., 2008) we reported the synthesis of a series of dihydropyridones that structurally related to that synthesized by Sugiyama et al. (1970), by the reaction of curcumin and amines or amine acetates under microwave irradiation in an approach that seems unexpected.

In this study we report the crystal structure of the compound 2-(4-hydroxy-3-methoxyphenyl)-6-(4-hydroxy-3-methoxystyryl)-1-methyl-2, 3-dihydropyridine-4(1H)-one (Fig. 1). The compound is yellow powder and difficult to crystallize. Powder x-ray diffraction is the method of choice for characterizing the structures if solids are not available as suitable single crystals. Over past decade, Structure Determination from Powder Diffraction (SDPD) has matured into a technique that is widely and successfully used in the context of organic, inorganic and organometallic compounds (David and Shankland, 2008; Bail, 2005).

Fig. 1: Molecular structure of the studied compound
MATERIALS AND METHODS

The compound was synthesized according to previously described procedure (Elias et al., 2008). High resolution x-ray powder diffraction data was collected on an MXPI8A-HF (MAC science, Japan) diffractometer with Cu-Kα (1.540593 Å) radiation at room temperature. The tube voltage and the tube current were 50 kV and 200 MA respectively. The 2θ scan range was from 3 to 80° with a step size of 0.02° and counting time of 3 sec per step. The powder diffraction pattern was auto indexed using Treor 90 with Powder X software (Dong, 1999). PowdeSolve software (Engel et al., 1999) was used to solve the structure using simulated annealing method. The refinement was done in material studio Reflex module.

RESULTS

The crystallographic details are summarized in Table 1. The final positional parameters are listed in Table 2. Figure 2 shows a plot of the refined diffraction pattern. The agreement factors were $R_{wp} = 13.04\%$ and $R_p = 9.97\%$.

The representation of the crystal system with four molecules in the unit cell is shown in Fig. 3.

Table 1: Summary of crystallographic data

Molecular formula	C$_{21}$H$_{24}$N$_4$O$_5$
Formula weight	381
Crystal system	Monoclinic
Space group	P2$_1$/a
Cell constants (Å)	
a	13.4925
b	12.8162
c	11.5231
α	90.000
β	99.040
γ	90.0000
Volume (Å3)	1967.8
Z	4
R_{wp}	13.04%
R_p	9.97%

R_{wp} and R_p defined as functions of the agreement factors.

$\overline{R_{wp}} = \sqrt{\left(\sum_{i=1}^{N}(F_i - F_{calc})^2 / \sum_{i=1}^{N}F_i^2\right)}$ and $R_p = \sqrt{\left(\sum_{i=1}^{N}(F_i - F_{calc})^2 / \sum_{i=1}^{N}(F_i + F_{calc})^2\right)}$.

Fig. 2: Plot of the refined diffraction pattern

Table 2: Functional atomic coordinates of non-hydrogen atoms

Atom	X	Y	Z
C1	-0.55377	-0.13412	0.16650
C2	-0.64498	-0.16366	0.09690
C3	-0.70239	0.01524	0.0495
C4	-0.58729	0.04622	0.10928
C5	-0.25736	-0.02958	0.17332
C6	-0.68199	-0.26311	0.08840
C7	-0.49599	-0.21276	0.22790
C8	-0.39298	-0.18870	0.26630
C9	-0.56729	0.16135	0.12066
C10	-0.47592	0.20379	0.16299
C11	-0.45838	0.30932	0.17574
C12	-0.36050	0.34609	0.20154
C13	-0.33650	0.45664	0.27994
C14	-0.41887	0.52733	0.16621
C15	-0.52393	0.49013	0.16143
C16	-0.53706	0.37745	0.16322
C17	-0.59087	0.55483	0.14951
C18	-0.27878	0.27299	0.24327
C19	-0.32223	0.47437	0.36207
C20	-0.38555	0.44208	0.43548
C21	-0.36653	0.45667	0.55566
C22	-0.27750	0.50485	0.60629
C23	-0.21031	0.53984	0.53293
C24	-0.23438	0.52347	0.41282
C25	-0.25958	0.51576	0.72579
C26	-0.12137	0.58725	0.58368
C27	-0.07361	0.65267	0.50887

Table 3: Torsion angels (°)

Torsion angel	Angel
C6-C1-C2-C3	4.50
C6-C1-C2-O1	-176.00
C6-C1-C2-O1	-177.40
C6-C1-C2-O1	2.00
C6-C1-C2-C3	-2.50
C6-C1-C2-C3	179.50
C6-C1-C2-C3	160.90
C6-C1-C2-C3	-21.10
C6-C1-C2-C3	-2.30
C6-C1-C2-C3	178.20
C6-C1-C2-C3	3.90
C6-C1-C2-C3	-172.70
C6-C1-C2-C3	174.70
C6-C1-C2-C3	-161.80
C6-C1-C2-C3	21.70
C6-C1-C2-C3	-178.50
C6-C1-C2-C3	-169.70

The overall shape of the molecule is illustrated in Fig. 4. Torsion angels, bond lengths and bond angels are gathered in Table 3-5 respectively.
DISCUSSION

The molecule is twisted about the bond C14-C20, the value of the torsion angle C15-C14-C20-C25 is -108.2°. The phenyl rings are essentially planar (Table 3).

The six-membered central ring twisted about C12-N13-C14 and adopts half chair conformation. The angles of the torsion bonds C16-C15-C14-N13 and C17-C12-N13-C14 are 29.1 and 7.4 respectively. The phenyl group at C14 (Fig. 4) is oriented axially with respect to the pyridone ring; accordingly the torsion angle C16-C15-C14-C20 has the value 93.8°. On the other hand the styryl group at C-12 oriented equatorially and adopts a roughly coplanar conformation with the conjugated system of the pyridone ring through the system C10-C11-C12-C17-C16-O18. The values of the torsion angles within this system namely: O18-C16-C17-C12, C16-C17-C12-C11, C17-C12-C11-C10 and C12-C11-C10-C5 are 179.3, 172.4, 10.4 and 185.5° respectively. This coplanarity which support effective conjugation is confirmed by the observed bond lengths C16-C17 and C10-C11 (1.455 and 1.377Å respectively) which are decreased compared to C15-C16 and C14-C15 (1.488 and 1.511 Å respectively) as could be shown in Table 4.

Meanwhile the double bonds C12-C17 and C10-C11 (1.365 and 1.366 Å respectively) become longer compared to the C=C bond in ethylene which is 1.334-1.339 Å (Choi, 1997). The bond length of C12-C17 is comparable to the value of the corresponding bond in 1,3-cyclohexendione in its crystalline enol form measured by inelastic incoherent neutron scattering spectra (Hudson et al., 2004), which is 1.361 Å. To less degree of agreement (but of reasonable similarity) are other bonds on this compound corresponding to the bonds C14-C15, C15-C16, C16-C17 and C16-O18 which are 1.448, 1.531, 1.532 and 1.241 Å respectively. The torsion angels between geminal protons H39 and H40 and the proton H38 are 40.1 and -81.9°. This supports the assignment of the two peaks that appear in 1H NMR spectrum of the studied compound which appear as two doublets of doublets at 2.42 ppm (J = 16 and 4 Hz) and at 2.84 ppm (J = 16 and 7 Hz) (Elias et al., 2008). The distortion of the pyridone ring forces the protons H39 and H40 to adopt two different torsion angles with the O18 atom. The observed values of these torsion angles are -82.1 and 30.3° respectively. The measured angels are gathered in Table 5.

CONCLUSION

The study demonstrates that structure determining from powder diffractometry could be a powerful tool.
for determining crystal structures for organic molecules.

ACKNOWLEDGEMENT

We wish to express our deep thanks to Dr. Cheng Dong the author of the Powder X software for his essential and valuable help.

REFERENCES

Bail, A.L., 2005. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffract. J., 20: 316-326. DOI: 10.1154/1.2135315
Choi, C.H.M.K., 1997. Conformational Information from Vibrational Spectra of Styrene, trans-Stilbene and cis-Stilbene. J. Phys. Chem., 101: 3823-3831. DOI: 10.1021/jp970620v
Comins, D.L. and C.G. Ollinger, 2001. Inter-and intramolecular Horner-Wadsworth-Emmons reactions of 5-(diethoxyphosphoryl)-1-acetyl-2-alkyl(aryl)-2, 3-dihydropyridones. Tet. Lett., 42: 4115-4118. DOI: 0040-4039/01
David, W.I.F. and K. Shankland, 2008. Structure determination from powder diffraction data. Acta Cryst., 64: 52-64. DOI: 10.1107/S0108767307051355
Dieter, R.K. and F. Guo, 2009. Conjugate addition of n-carbamoyl-4-pyridones with organometallic reagents. J. Org. Chem., 74: 3843-3848. DOI: 10.1021/jo9000327q
Dong, C., 1999. Powder X: Windows-95-based program for powder X-Ray diffraction data processing. J. Applied Cryst., 32: 838-848. DOI: 10.1107/S0021889899003039
Donohoe, T.J., M.J. Connolly and L. Walton, 2009. Regioselective nucleophilic addition to pyridinium salts: A new route to substituted dihydropyridines. Org. Lett., 11: 5562-5565. DOI: 10.1021/ol902402v
Elias, R.S., B.A. Saeed, K.Y. Saour and N.A. Al-Masoudi, 2008. Microwave assisted synthesis of dihydropyridines derived from curcumin. Tet. Lett., 49: 3049-3051. DOI: 10.1016/j.tetlet.2008.03.064
Engel, G.E., S. Wilke, O. Konig, K.D. M. Harris and F.J. Leusen, 1999. PowderSolve-a complete package for crystal structure solution from powder diffraction patterns. J. Applied. Cryst., 32: 1169-1179. DOI: 10.1107/S0021889999009930
Hudson, B.S., D.A. Bradem, D.G. Allis, T. Jenkins and S. Baronov et al., 2004. The Crystalline Enol of 1, 3-cyclohexanedione and its complex with benzene: Vibrational spectra, simulation of structure and dynamics and evidence for cooperative hydrogen bonding. J. Phys. Chem., 108: 7356-7363. DOI: 10.1021/jp048613b
MacDonald, F.K. and D.J. Burnell, 2009. 2, 3-Dihydropyridones and 2, 3-dihydro-4-pyridinones by cyclizations of α,β-unsaturated 1,3-diketones. J. Org. Chem., 74: 6973-6979. DOI: 10.1021/jo901355e
Saito, A., J. Kasai, Y. Odaira, H. Fukaya and H. Hanzawa, 2009. Synthesis of 2,3-Dihydroquinolin-4(1H)-ones through Catalytic Metathesis of ω-Alkynylanilines and aldehydes. J. Org. Chem., 74: 5644-5647. DOI: 10.1021/jo900857c
Song, D., A. Rostami and F.G. West, 2007. Domino Electrocyclization/azide-capture/schmidt rearrangement of dienones: One-step synthesis of dihydropyridines from simple building blocks. J. Am. Chem. Soc., 129: 12019-12022. DOI: 10.1021/ja071041z
Sugiyama, N., M. Yamamoto and Ch. Kashima, 1970. The reactions of dihydropyridines (II). Bull. Chem. Soc. Jap., 43: 3937-3938. DOI: 10.1246/bcsj.43.3937