Osteoporotic fractures among foreign-born individuals: a national Swedish study

P. Wändell 1 • X. Li 2 • A. C. Carlsson 1,3 • J. Sundquist 2,4,5 • K. Sundquist 2,4,5

Abstract

In this national study of osteoporotic fractures in foreign-born individuals, we found a lower risk of osteoporotic fractures in general among foreign-born individuals compared with Swedish-born, especially in immigrants from southern Europe. A higher risk was found among some groups, i.e. men and women from Bosnia and Iraq and men from Lebanon.

Introduction

The aim of this study was to analyse risk of osteoporotic fractures in foreign-born individuals compared with Swedish-born individuals.

Methods

This was a nationwide study of individuals 50 years of age and older (N = 2,775,736). Osteoporotic fractures were defined as at least one registered diagnosis of fractures in the hip, humerus, forearm or vertebrae, in the National Patient Register between January 1, 1998, and December 31, 2012. Cox regression analysis was used to estimate the relative risk (hazard ratios (HR) with 99% confidence intervals (CI)) of incident osteoporotic fractures in foreign-born compared with Swedish-born individuals. The Cox regression models were stratified by sex and adjusted for age, comorbidities and sociodemographic status.

Results

A total of 362,899 osteoporotic fractures were registered (96,847 among men and 266,052 among women), with hip fractures dominating (54.0% among men, 42.6% among women). Fully adjusted HRs (99% CI) were for all immigrant men 0.75 (99% CI, 0.73–0.78) and women 0.83 (99% CI, 0.81–0.84), with significantly lower HRs among most groups but with higher HRs in certain countries. For the specific fractures, higher HRs were found for lower forearm fractures for men from Asia and for vertebral fractures among women from Asia.

Conclusions

We observed a generally lower risk of osteoporotic fractures among first-generation immigrants, with few exceptions.

Keywords

Forearm fractures • Gender • Hip fractures • Humerus fractures • Immigrants • Neighbourhood • Osteoporotic fractures • Socioeconomic status • Vertebral fractures

Introduction

The number of osteoporotic fractures is on the rise worldwide owing to an increasing elderly population. Osteoporotic fractures [1], most often including hip fractures, forearm fractures and vertebral fractures but also humerus fractures [2], are also associated with a significant all-cause mortality and increasing healthcare costs, especially in developed countries.
Osteoporotic fractures are especially high in Northern Europe. In a Norwegian study from the capital Oslo, the incidence of hip and forearm fractures was shown to be higher than in studies in other countries [9].

With an increasing number of immigrants in Europe during the last decades, the health and disease patterns in this group are of major interest. In Sweden, the proportion of first-generation immigrants, i.e. foreign-born individuals, in the population is around 17% [10]. As regards osteoporotic fractures in Sweden, the risk of hip fractures is shown to be lower among foreign-born compared with Swedish-born individuals [11, 12] and also of distal forearm fractures in first- and second-generation immigrants [13]. However, knowledge about other osteoporotic fractures in specific immigrant groups is scarce. In an earlier study on hip fractures, the incidence rates in individuals of Japanese ancestry living on Oahu, Hawaii, were on the same level as in Japanese living in Okinawa, Japan, but around half of that in Caucasians [14].

The aim of this study was to analyse national Swedish data as regards risk of osteoporotic fractures, including hip fractures, forearm fractures, vertebral fractures and forearm fractures, in several groups of first-generation immigrants compared with Swedish-born individuals. We hypothesise that the risk will be lower in general and in many groups of first-generation immigrants.

Methods

Design

In the present study, we used the Total Population Register and the National Patient Register (NPR). We included individuals aged 50 years of age and older to study first-generation immigrants compared with Swedish-born individuals. The follow-up period ran from January 1, 1998, until hospitalisation/out-patient treatment of an osteoporotic fracture at age of diagnosis of 50 years or more, death, emigration or the end of the study period on December 31, 2012, whichever came first. Out-patient diagnoses were included nationwide from 2001 and onwards from specialist open care but not primary health care as these diagnoses are not included in the NPR. We used a unique pseudonymized serial number for each individual which helped us to avoid double-counting.

Outcome variable

Osteoporotic fractures: humerus fractures (S42.2-S42.4), lower forearm fractures (S52.5 and S52.6), hip fractures (S72.0-S72.2), vertebral fractures (S12 (including S12.0-S12.9), S22.0 and S22.1, S32.0, T08)

Co-morbidities

We also identified co-morbidities according to ICD-10 for the following hospital diagnoses during the entire study period: malignant neoplasms (C00-C97), endocrine disorders (including thyrotoxicosis E05, hyperparathyroidism E21, hypopituitarism E23.0, primary ovarian failure E28.3, testicular hypofunction E29.1), diabetes (E10-E14), alcoholism (F10), hypertension (I10-I19), cerebrovascular diseases (I60-69), COPD (J40-J47), liver disease (K70-K76), intestinal malabsorption (K90), rheumatoid arthritis (M05 and M06) and systemic connective tissue disorders (M30-M36).

Demographic and socioeconomic variables

Age was used as a continuous variable in the analysis.

Educational attainment was categorised as ≤ 9 years (partial or complete compulsory schooling), 10–12 years (partial or complete secondary schooling) and > 12 years (attendance at college and/or university).

Geographic region of residence was included in order to adjust for possible regional differences in hospital admissions and was categorised as (1) large cities with surrounding regions, (2) southern Sweden (southern and middle part of Sweden) and (3) northern Sweden (the five most northern regions). Large cities were defined as municipalities with a population of > 200,000 and comprised the three largest cities in Sweden: Stockholm, Gothenburg and Malmö. Southern Sweden and northern Sweden included both rural regions and smaller towns, and the geographic boundary between northern and southern Sweden was set at the river Dalälven, which by tradition is regarded to be the natural boundary to northern Sweden.

Neighbourhood deprivation

Neighbourhood socioeconomic status (NSES): This index was categorised into four groups: more than one standard deviation (SD) below the mean (low deprivation level or high SES), more than one SD above the mean (high deprivation level or low SES) and within one SD of the mean (moderate SES or moderate deprivation level) used as reference group and also unknown neighbourhood SES [15].

Statistical analysis

Baseline data are presented with continuous variables as mean and standard deviations and categorical variables as counts and percentages. We used Cox regression analysis to estimate
the risk (hazard ratios (HR) with 99% confidence intervals (CI)) of incident osteoporotic fractures in different first-generation immigrant groups compared with the control group, i.e. Swedish-born, during the follow-up time. All analyses were stratified by sex. Three models were used: model 1 with adjustment for age and region of residence in Sweden; model 2 with adjustment for age, region of residence in Sweden, educational level, marital status and neighbourhood SES, to examine to what extent SES explained the association between country of birth and fracture incidence; and model 3 as model 2 but with the inclusion of relevant co-morbidities, to examine if other diagnoses explained the association between country of birth and osteoporotic fracture incidence.

Results

Baseline data are shown in Table 1 and 2, with a total of 2,775,736 individuals 50 years of age and above included, i.e. 325,991 foreign-born (164,492 men, 161,499 women), and 2,449,745 Swedish-born (1,370,750 men, 1,311,995 women) (data for all men and women, respectively, in Supplementary Table 1). A total of 362,899 osteoporotic fractures were registered, i.e. 96,847 among men and 266,052 among women. Out of the fractures, hip fractures were most common, 54.0% among all osteoporotic fractures among men and 42.6% among women. However, among Swedish-born, the rate of hip fractures out of all studied osteoporotic fractures was more common than among foreign-born, while low forearm fractures were less common. Most fractures were noted in the age interval 70–79 years of age, i.e. 34.4% among men and 34.3% among women. Co-morbidities were, in general, more common among individuals with osteoporotic fractures than without, also among Swedish- and foreign-born women, with the exception of cancer among Swedish-born women (Table 1 and 2).

Having a higher educational level showed higher risk for fractures, especially among foreign-born individuals (Table 3 and 4). The risk was lower in individuals living in southern or northern Sweden compared with the large cities and for married individuals. Regarding co-morbidities, estimates were increased for most co-morbidities, except for hypertension (lower among Swedish-born men and women, and non-significant among foreign-born men and women), but decreased for cancer among Swedish-born women and non-significant for intestinal malabsorption and systematic connective tissue disorders for foreign-born men. Highest HRs were seen for alcoholism, for both Swedish-born men and women and foreign-born men and women (HRs 2.21–3.15).

In Table 5 the fracture risk in general for osteoporotic fractures for men and women is shown, with lower risk in general for all foreign-born individuals (number of all individuals and cases in Supplementary Table 2; with numbers in relation to stay in Sweden in Supplementary Table 3). Most regions or specific countries showed lower risks compared with Swedish-born men and women; however with non-significant estimates in full models for men from Baltic countries in general, Northern America and Russia. For specific countries (Supplementary Table 4), higher risks in all models were found among men from Iraq; in models 1–3, the HRs (99% CI) were 1.36 (1.02–1.80), 1.77 (1.34–2.35) and 1.79 (1.35–2.37), respectively. In models 2 and 3, the HRs were among men from Bosnia, 1.82 (1.32) and 1.78 (1.29–2.46), respectively, and, in the fully adjusted model (Model 3) in men from Lebanon, 1.51 (1.01–2.27). Among women (Supplementary Table 5), a higher risk was found only in models 2 and 3 and among women from Norway; the HRs were 1.07 (1.01–1.13) and 1.05 (1.00–1.11), respectively. Risks with fully adjusted models for the specific osteoporotic fractures are shown in Table 6 with a higher risk of forearm fractures among men from Asia and, for vertebral fractures, among women from Asia. Even if risk estimates were similar for the specific fractures in relation to all osteoporotic fractures, however, with fewer statistically significant results, this was most evident for vertebral fractures, and to some extent for humerus and forearm fractures. As regards specific countries (Supplementary Tables 6 and 7), a significantly higher risk (shown as HR; 99% CI) was found for lower forearm and hip fractures for men from Bosnia (1.78; 1.03–3.06), Turkey (1.52; 1.02–2.25), Lebanon (2.39; 1.26–4.53 and Iraq (1.85; 1.12–3.05).

Discussion

The main results of this study were that the risk of osteoporotic fractures in general was lower among first-generation men and women compared with Swedish-born. A higher risk was only observed in some specific groups, i.e. consistently so in men from Iraq in all statistical models and, for specific fractures the in fully adjusted models, in men from Asia (for distal forearm fractures) and in women from Asia (for vertebral fractures).

The risk of osteoporotic fractures is very high in northern Europe, hence, why a lower risk among first-generation immigrants compared with Swedish-born is not surprising. This is also shown in earlier Swedish studies of hip fractures [11, 12] and distal forearm fractures [13]. Furthermore, a lower risk of forearm fractures among Asian immigrants in Norway has also been found [9].

The earlier Swedish studies of hip fractures included individuals from 16 years [11] and 50 years of age [12], respectively, and with data from 1987–1999 [11] to 1987–2002 [12], respectively. In the 2010 study by Albin et al. [11], the risk was lower among all foreign-born individuals; the overall odds ratio (OR) was 0.82, with a higher risk only among men from Iceland/Norway, OR 1.13, and a similar risk among
Subtype of events	Swedish-born		Foreign born					
	Population	Osteoporotic	Population	Osteoporotic				
	No.	%	No.	%	No.	%	No.	%
Humerus fractures	13,261 14.8	1188 16.7						
Low forearm fractures	14,575 16.2	1731 24.3						
Hip fractures	49,256 54.9	3058 43.0						
Vertebral fractures	12,641 14.1	1137 16.0						
Age (years)								
50–59	447,600 39.3	19,037 21.2	84,859 51.6	2338 32.9				
60–69	294,690 25.9	20,190 22.5	49,845 30.3	2198 30.9				
70–79	249,602 21.9	31,363 35.0	23,566 14.3	1956 27.5				
≥ 80	145,858 12.8	19,143 21.3	6222 3.8	622 8.7				
Educational level								
≤ 9	547,053 48.1	47,220 52.6	91,861 55.8	3155 44.3				
10–12	228,003 20.0	17,517 19.5	26,942 16.4	1541 21.7				
> 12	362,694 31.9	24,996 27.9	45,689 27.8	2418 34.0				
Region of residence								
Large cities	365,628 32.1	31,476 35.1	60,548 36.8	3553 49.9				
Southern Sweden	527,435 46.4	41,544 46.3	44,195 26.9	2594 36.5				
Northern Sweden	244,687 21.5	16,713 18.6	59,749 36.3	967 13.6				
Marital status								
Married	885,874 77.9	67,169 74.9	130,075 79.1	5032 70.7				
Not married	251,876 22.1	22,564 25.1	34,417 20.9	2082 29.3				
Neighbourhood deprivation								
Low	182,199 16.0	12,925 14.4	13,247 8.1	784 11.0				
Middle	599,642 52.7	49,077 54.7	47,381 28.8	2760 38.8				
High	124,103 10.9	10,758 12.0	18,417 11.2	1056 14.8				
Unknown	231,806 20.4	16,973 18.9	85,447 51.9	2514 35.3				
Hospital diagnosis of COPD	88,840 7.8	10,508 11.7	11,426 6.9	1061 14.9				
Hospital diagnosis of diabetes	142,412 12.5	13,142 14.6	19,215 11.7	1259 17.7				
Hospital diagnosis of alcoholism	35,820 3.1	5387 6.0	4714 2.9	615 8.6				
Hospital diagnosis of stroke	175,183 15.4	21,042 23.4	17,257 10.5	1628 22.9				
Hospital diagnosis of hypertension	298,500 26.2	25,293 28.2	34,051 20.7	2278 32.0				
Hospital diagnosis of cancer	303,808 26.7	26,894 30.0	28,206 17.1	1981 27.8				
Hospital diagnosis of liver disease	11,585 1.0	1307 1.5	1518 0.9	141 2.0				
Hospital diagnosis of endocrine disorders	9076 0.8	937 1.0	1208 0.7	99 1.4				
Hospital diagnosis of systemic connective tissue disorders	16,489 1.4	1839 2.0	1255 0.8	106 1.5				
Hospital diagnosis of rheumatoid arthritis	13,796 1.2	1635 1.8	1245 0.8	134 1.9				
Hospital diagnosis of intestinal malabsorption	2711 0.2	308 0.3	158 0.1	12 0.2				
All	113,7750 100.0	89,733 100.0	16,4492 100.0	7114 100.0				

COPD chronic obstructive pulmonary disease
women from Denmark compared with Swedish-born women, OR 0.98. In the 2015 study by Johansson et al. [12], the overall risk among foreign-born individuals was around half of that of Swedish-born. Besides, even if the incidence increased slightly by time after immigration, it remained on a substantially lower level than among Swedish-born. In comparison with the present study, where we included individuals from 50 years of age and older, we also found lower risks of

Table 2

| Subtype of events | Swedish-born Population | Events | | | Foreign-born Population | Events |
|-------------------------|-------------------------|--------|--------|-------------------------|--------|
| | No. % | | No. % | | No. % | |
| Total population | 1,311,995 35.2 | 245,486 15.0 | 161,499 35.2 | 20,566 12.2 |
| Humerus fractures | 46,627 19.0 | | 902 19.0 | | 10,640 33.1 |
| Low forearm fractures | 76,395 31.1 | | 8,371 40.7 | | 6,871 40.7 |
| Hip fractures | 106,460 43.4 | | 6,814 33.1 | | 14,797 7.2 |
| Vertebral fractures | 16,004 6.5 | | 1,479 7.2 | | 1,479 7.2 |

| Age (years) | Swedish-born Population | Events | | | Foreign-born Population | Events |
|-------------------------|-------------------------|--------|--------|-------------------------|--------|
| | No. % | | No. % | | No. % | |
| 50–59 | 461,985 35.2 | 47,241 19.2 | 7,306 45.2 | 5,205 25.3 |
| 60–69 | 318,812 24.3 | 55,061 22.4 | 49,818 30.8 | 6,559 31.9 |
| 70–79 | 311,110 23.7 | 84,807 34.5 | 29,230 18.1 | 6,480 31.5 |
| ≥ 80 | 220,088 16.8 | 58,377 23.8 | 9,452 5.9 | 2,326 11.3 |

| Educational level | Swedish-born Population | Events | | | Foreign-born Population | Events |
|-------------------------|-------------------------|--------|--------|-------------------------|--------|
| | No. % | | No. % | | No. % | |
| ≤ 9 | 700,005 53.4 | 147,279 60.0 | 95,597 59.2 | 10,991 53.4 |
| 10–12 | 363,200 27.7 | 61,709 25.1 | 35,611 22.1 | 5,391 26.2 |
| > 12 | 248,790 19.0 | 36,498 14.9 | 30,291 18.8 | 4,184 20.3 |

| Region of residence | Swedish-born Population | Events | | | Foreign-born Population | Events |
|-------------------------|-------------------------|--------|--------|-------------------------|--------|
| | No. % | | No. % | | No. % | |
| Large cities | 434,045 33.1 | 86,752 35.3 | 62,655 38.8 | 9,919 48.2 |
| Southern Sweden | 612,897 46.7 | 114,481 46.6 | 49,162 30.4 | 7,651 37.2 |
| Northern Sweden | 265,053 20.2 | 44,253 18.0 | 49,682 30.8 | 2,996 14.6 |

| Marital status | Swedish-born Population | Events | | | Foreign-born Population | Events |
|-------------------------|-------------------------|--------|--------|-------------------------|--------|
| | No. % | | No. % | | No. % | |
| Married | 1,069,274 81.5 | 186,477 76.0 | 141,416 87.6 | 16,677 81.1 |
| Not married | 242,721 18.5 | 59,009 24.0 | 20,083 12.4 | 3,889 18.9 |

| Neighbourhood deprivation | Swedish-born Population | Events | | | Foreign-born Population | Events |
|----------------------------|-------------------------|--------|--------|-------------------------|--------|
| | No. % | | No. % | | No. % | |
| Low | 194,570 14.8 | 34,053 13.9 | 13,981 8.7 | 2,200 10.7 |
| Middle | 713,264 54.4 | 136,888 55.8 | 55,067 34.1 | 8,886 43.2 |
| High | 152,496 11.6 | 29,300 11.9 | 19,752 12.2 | 2,835 13.8 |
| Unknown | 251,665 19.2 | 45,245 18.4 | 72,699 45.0 | 6,645 32.3 |
| Hospital diagnosis of COPD| 106,912 8.1 | 24,390 9.9 | 12,911 8.0 | 2,620 12.7 |
| Hospital diagnosis of diabetes | 127,633 9.7 | 26,916 11.0 | 15,769 9.8 | 2,593 12.6 |
| Hospital diagnosis of alcoholism | 13,516 1.0 | 3692 1.5 | 2,011 1.2 | 0.52 2.5 |
| Hospital diagnosis of stroke | 177,517 13.5 | 44,891 18.3 | 16,777 10.4 | 3,692 18.0 |
| Hospital diagnosis of hypertension | 356,966 27.2 | 77,779 31.7 | 41,217 25.5 | 7,279 35.4 |
| Hospital diagnosis of cancer | 279,069 21.3 | 50,671 20.6 | 25,922 16.1 | 4,088 19.9 |
| Hospital diagnosis of liver disease | 10,065 0.8 | 2222 0.9 | 1241 0.8 | 0.22 1.1 |
| Hospital diagnosis of endocrine disorders | 28,512 2.2 | 6430 2.6 | 3,139 1.9 | 0.56 2.7 |
| Hospital diagnosis of systemic connective tissue disorders | 37,356 2.8 | 8689 3.5 | 3,287 2.0 | 0.67 3.3 |
| Hospital diagnosis of rheumatoid arthritis | 31,845 2.4 | 7543 3.1 | 3,202 2.0 | 0.68 3.3 |
| Hospital diagnosis of intestinal malabsorption | 4177 0.3 | 895 0.4 | 302 0.2 | 0.64 0.3 |

COPD chronic obstructive pulmonary disease
hip fractures among all foreign-born men and women with fully adjusted HRs of 0.70 and 0.78, respectively. In our present study, we had the opportunity to provide more granularity in terms of country of origin and type of fractures, with a significantly lower risk in foreign-born individuals from most regions of the world.

In a recent study of ours on distal forearm fractures, individuals from 20 years of age and older were included and with the same follow-up as in the present study. In that study, the fully adjusted HR among all foreign-born men and women was 0.95, with an increased risk by region for men from Asia; the fully adjusted HR for men born in Asia was 1.17. Notably, an increased risk for specific countries in all models was found in men from Bosnia, Poland, Turkey and Iraq and in women from Iraq. Besides, the HRs among second-generation immigrants overall were on a similar level as in first-generation immigrants. In the present study, we found a lower overall risk of distal forearm fractures among immigrants; the fully adjusted HRs were 0.89 among men and 0.93 among women, respectively, with a significantly lower risk among men from most regions of the world, except among men from Asia; the fully adjusted HR for men born in Asia was 1.43. The risk was significantly lower only in women from Southern Europe and North and Latin America. Thus, the results for our two studies are quite similar, but with a slightly lower relative risk compared to Swedish-born men and women when only including individuals of 50 years of age and above, compared with those of 20 years of age and above.

The osteoporotic risk was especially low among immigrants from southern Europe. One question is whether higher 25-hydroxyvitamin D levels could be of importance, but the 25-hydroxyvitamin D levels have actually been shown to be higher in northern Europe, which could be owed to a higher intake of fish and vitamin D supplements [16, 17]. Otherwise the 25-hydroxyvitamin D levels have been shown to be low, or actually very low, among non-Western immigrants to the

| Table 3 Incidence of osteoporotic fractures in Swedish-born and foreign-born men expressed as hazard ratios (HR) with 99% confidence intervals (99% CI) |
|---|-----------------|-----------------|
| Birth year | 0.94 | 0.94 |
| Time of stay in Sweden (ref. ≥ 30 years) | 0.93 | 0.93 |
| Unknown | 0.94 | 0.85 | 1.04 |
| < 10 | 1.82 | 1.54 | 2.14 |
| 10–19 | 0.95 | 0.82 | 1.10 |
| 20–29 | 0.85 | 0.77 | 0.93 |
| Educational level (ref. ≤ 9 years) | | 0.93 |
| 10–12 | 1.03 | 1.00 | 1.05 | 1.26 | 1.14 | 1.38 |
| > 12 | | 1.19 | 1.10 | 1.29 |
| Region of residence (ref. Large cities) | | 0.85 | 0.78 | 0.93 |
| Southern Sweden | 0.71 | 0.69 | 0.73 | 0.85 | 0.78 | 0.93 |
| Northern Sweden | 0.49 | 0.48 | 0.51 | 0.35 | 0.31 | 0.39 |
| Marital status (ref. Married) | 0.72 | 0.70 | 0.73 | 0.78 | 0.72 | 0.84 |
| Neighbourhood deprivation (ref. Low) | | |
| Middle | 1.11 | 1.08 | 1.15 | 1.01 | 0.90 | 1.13 |
| High | 1.14 | 1.10 | 1.19 | 1.02 | 0.88 | 1.16 |
| Unknown | 0.57 | 0.55 | 0.59 | 0.71 | 0.62 | 0.80 |
| Hospitalization of COPD | 1.40 | 1.36 | 1.45 | 1.57 | 1.43 | 1.73 |
| Hospitalization of diabetes | 1.15 | 1.12 | 1.18 | 1.19 | 1.09 | 1.30 |
| Hospitalization of alcoholism | 2.57 | 2.46 | 2.68 | 3.15 | 2.77 | 3.59 |
| Hospitalization of stroke | 1.42 | 1.38 | 1.45 | 1.53 | 1.40 | 1.66 |
| Hospitalization of hypertension | 0.89 | 0.87 | 0.91 | 1.03 | 0.96 | 1.11 |
| Hospitalization of cancer | 1.10 | 1.08 | 1.12 | 1.25 | 1.16 | 1.35 |
| Hospitalization of liver disease | 1.21 | 1.11 | 1.31 | 1.24 | 0.96 | 1.60 |
| Hospitalization of endocrine disorders | 1.23 | 1.12 | 1.35 | 1.43 | 1.07 | 1.91 |
| Hospitalization of rheumatoid arthritis | 1.50 | 1.39 | 1.61 | 1.81 | 1.41 | 2.33 |
| Hospitalization of intestinal malabsorption | 1.49 | 1.27 | 1.75 | 1.35 | 0.59 | 3.07 |
| Hospitalization of systemic connective tissue disorders | 1.14 | 1.06 | 1.22 | 1.07 | 0.81 | 1.41 |

*Fully adjusted: COPD: Chronic obstructive pulmonary disease
Nordic countries [18]. Peak bone mass develops during childhood and early adulthood and is thus dependent on factors during this period in life, i.e. levels of physical activity and vitamin D, and also of dietary factors [19]. These factors are also of importance to maintain bone quality during later life. The effect of low 25-hydroxyvitamin D levels in adult immigrants could be expected only to modulate the risk of osteoporosis later in life, and supplements with vitamin D and calcium may prevent fractures among the elderly population [20].

Another factor of importance could be the “healthy migrant” effect, i.e. that migrants tend to have a better health status than their compatriots in the country of origin [21]. This might be true for several groups, especially for migrants from other Nordic or European countries or migrants from North America.

In addition, hormone replacement therapy in women may lower the fracture risk [22]; this treatment, however, is given more restrictively due to increased health risks, such as breast cancer [23], stroke and venous thromboembolism [24]. We had no information on differences in hormone replacement therapy between Swedish and immigrant women.

It is interesting that the risk was higher in some specific groups, i.e. for osteoporotic fractures in men from Iraq, and for distal forearm fractures in fully adjusted models in men from Asia, especially from countries in the Middle East region, and for vertebral fractures in fully adjusted models in women from Asia. Interestingly, the Iraqi group has the highest rate of refugees in Sweden together with the Bosnian group [25], and Middle Eastern countries have been war-torn. The higher risk in some specific countries could indicate that environmental factors are important for the global differences concerning incidence of osteoporotic fractures. Furthermore, an increased fracture risk in foreign-born men and women was observed during the first 10 years of stay in Sweden. However, there are racial/ethnic differences in bone

Table 4 Incidence of osteoporotic fractures in Swedish-born and foreign-born women expressed as hazard ratios (HR) with 99% confidence intervals (99% CI)

	Born in Sweden	Foreign born
	HR* 99% CI	HR* 99% CI
Birth year	0.94 0.94 0.94	0.93 0.93 0.93
Time of stay in Sweden (ref. ≥ 30 years)		
Unknown	0.85 0.80 0.90	
< 10	1.38 1.20 1.59	
10–19	0.80 0.71 0.90	
20–29	0.82 0.77 0.87	
Educational level (ref. ≤ 9 years)		
10–12	1.03 1.02 1.05	1.20 1.14 1.26
> 12	1.01 0.99 1.03	1.20 1.14 1.27
Region of residence (ref. Large cities)		
Southern Sweden	0.80 0.79 0.81	0.78 0.74 0.82
Northern Sweden	0.64 0.63 0.66	0.42 0.39 0.44
Marital status (ref. Married)	0.86 0.85 0.87	0.91 0.86 0.96
Neighbourhood deprivation (ref. Low)		
Middle	1.03 1.01 1.05	1.05 0.98 1.12
High	1.03 1.00 1.05	0.99 0.91 1.07
Unknown	0.72 0.70 0.73	0.66 0.61 0.71
Hospitalization of COPD	1.28 1.26 1.31	1.36 1.28 1.45
Hospitalization of diabetes	1.07 1.05 1.09	1.08 1.01 1.15
Hospitalization of alcoholism	2.21 2.10 2.32	2.58 2.26 2.94
Hospitalization of stroke	1.18 1.16 1.20	1.27 1.20 1.34
Hospitalization of hypertension	0.95 0.94 0.97	1.02 0.98 1.07
Hospitalization of cancer	0.98 0.97 0.99	1.06 1.01 1.12
Hospitalization of liver disease	1.24 1.17 1.32	1.17 0.96 1.42
Hospitalization of endocrine disorders	1.14 1.10 1.18	1.16 1.03 1.31
Hospitalization of rheumatoid arthritis	1.36 1.31 1.40	1.50 1.34 1.68
Hospitalization of intestinal malabsorption	1.29 1.17 1.42	1.65 1.16 2.36
Hospitalization of systemic connective tissue disorders	1.09 1.06 1.13	1.13 1.01 1.27

*Fully adjusted; COPD: Chronic obstructive pulmonary disease
metabolism [26, 27], which could indicate genetic factors as being important. However, the present study could not address if the differences in fracture rates are related to race/ethnicity, genetic factors or environmental/societal factors, including lifestyle and dietary factors.

There are certain limitations with this study. We performed many statistical analyses, but subsequently used 99% CI to partly compensate for multiple testing. However, we consider the overall results to be more valid, and results for specific regions of the world, and especially for specific countries, should be interpreted with more caution. We chose to include fractures of the hip, forearm, vertebrae and humerus as osteoporotic fractures, as these are often considered to be the most important and relevant osteoporotic fractures [2]. Sometimes, other fractures could also be included [4], e.g. fractures of the pelvis, rib, tibia, fibula, clavicle, scapula, sternum or other femoral fractures.

Fractures are mostly treated at emergency departments of hospitals hence why the coverage could be regarded as high, even if fractures in some cases in northern Sweden are treated at some specific primary healthcare centres. Besides, vertebral fractures are most probably under-reported, but also most probably on the same level in Swedish- and foreign-born individuals. For some of the co-morbidities, the results might have been biased, as COPD, diabetes and hypertension are mostly treated in primary care, and the NPR does not include diagnoses from primary care [28]. Otherwise, the validity of Swedish patient registers is regarded to be high [29].

In conclusion, we found a lower risk of osteoporotic fractures among foreign-born individuals compared with Swedish-born, with some exceptions. A higher risk was found among some specific groups of foreign-born individuals, i.e. men from Iraq, and also for specific fractures for distal

| Table 5 Incidence of osteoporotic fractures in foreign-born men and women vs Swedish-born men and women, respectively, expressed as hazard ratios (HR) with 99% confidence intervals (99% CI) |
|---------------------------------|-----------------|-----------------|-----------------|
| | Obs. | Model 1 | Model 2 | Model 3 |
| **Men** | | HR | 99% CI | HR | 99% CI | HR | 99% CI |
| Sweden | 89,733 | 1 | 1 | 1 | 1 |
| All foreign born | 7114 | 0.68 | 0.65 0.70 | 0.74 0.72 0.77 | 0.75 0.73 0.78 |
| Nordic countries | 3563 | 0.74 | 0.70 0.78 | 0.82 0.78 0.86 | 0.81 0.77 0.85 |
| Southern Europe | 266 | 0.33 | 0.28 0.39 | 0.40 0.33 0.47 | 0.43 0.36 0.51 |
| Western Europe | 826 | 0.59 | 0.54 0.66 | 0.66 0.59 0.72 | 0.67 0.61 0.74 |
| Eastern Europe | 530 | 0.60 | 0.53 0.68 | 0.61 0.54 0.70 | 0.64 0.57 0.73 |
| Baltic countries | 336 | 0.86 | 0.73 1.00 | 0.91 0.78 1.07 | 0.91 0.78 1.06 |
| Central Europe | 516 | 0.69 | 0.61 0.78 | 0.69 0.61 0.78 | 0.71 0.62 0.80 |
| Africa | 91 | 0.54 | 0.40 0.73 | 0.62 0.46 0.84 | 0.65 0.48 0.88 |
| Northern America | 183 | 0.76 | 0.62 0.94 | 0.86 0.69 1.06 | 0.86 0.70 1.07 |
| Latin America | 96 | 0.45 | 0.34 0.61 | 0.51 0.38 0.68 | 0.56 0.42 0.75 |
| Asia | 587 | 0.78 | 0.69 0.87 | 0.92 0.82 1.04 | 0.97 0.86 1.09 |
| Russia | 115 | 0.95 | 0.73 1.24 | 0.96 0.74 1.26 | 0.95 0.73 1.24 |

Women		Model 1	Model 2	Model 3	
Sweden	245,486	1	1	1	
All foreign born	20,566	0.78	0.72 0.79	0.83 0.81 0.84	0.83 0.81 0.84
Nordic countries	12,821	0.84	0.81 0.86	0.89 0.82 0.86	0.88 0.87 0.91
Southern Europe	402	0.34	0.29 0.39	0.39 0.30 0.39	0.41 0.34 0.45
Western Europe	2580	0.73	0.69 0.77	0.78 0.69 0.78	0.78 0.74 0.82
Eastern Europe	926	0.67	0.61 0.73	0.69 0.61 0.74	0.71 0.63 0.76
Baltic countries	851	0.80	0.72 0.88	0.84 0.72 0.88	0.84 0.76 0.93
Central Europe	1207	0.77	0.71 0.84	0.79 0.71 0.84	0.79 0.72 0.85
Africa	58	0.60	0.42 0.88	0.69 0.47 1.00	0.71 0.49 1.03
Northern America	462	0.76	0.66 0.86	0.82 0.72 0.94	0.82 0.72 0.94
Latin America	210	0.57	0.47 0.70	0.64 0.47 0.69	0.65 0.52 0.77
Asia	729	0.73	0.66 0.82	0.81 0.66 0.82	0.83 0.73 0.90
Russia	308	0.87	0.74 1.02	0.89 0.76 1.05	0.89 0.75 1.04

Model 1: adjusted for age and region of residence in Sweden; model 2: adjusted for age, region of residence in Sweden, educational level, marital status, and neighbourhood deprivation; model 3: model 2 + comorbidities.
forearm fractures in men from Asia, especially from the Middle East region, and for vertebral fractures in women from Asia. On the other hand, an especially lower risk was found among immigrants from southern Europe. Different factors could be of importance for the differences being found, and further studies on risk factors of osteoporotic fractures among immigrants are warranted. Furthermore, studies of second-generation immigrants could be of value.

Acknowledgements We thank Patrick Reilly for language editing.

Funding information Open access funding provided by Karolinska Institute. This work was supported by ALF funding awarded to Jan Sundquist and Kristina Sundquist and by grants from the Swedish Research Council (awarded to Kristina Sundquist).

Compliance with Ethical Standards

Conflicts of Interest None.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was not applicable, as the study was based on anonymised data from registers. The study was approved by the regional ethics boards at Karolinska Institutet and Lund University. The authors are not allowed to share the used data from the data sources being used.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and

	Humerus fractures	Low forearm fractures	Hip fractures	Vertebral fractures								
	HR	99% CI										
Men												
Sweden												
All foreign-born	0.74	0.68	0.81	0.89	0.83	0.96	0.70	0.66	0.74	0.77	0.70	0.84
Nordic countries	0.77	0.68	0.87	0.88	0.79	0.98	0.81	0.75	0.86	0.79	0.70	0.90
Southern Europe	0.55	0.37	0.80	0.46	0.32	0.66	0.36	0.27	0.49	0.49	0.32	0.74
Western Europe	0.64	0.50	0.82	0.79	0.64	0.96	0.59	0.51	0.69	0.85	0.68	1.07
Eastern Europe	0.70	0.53	0.94	0.93	0.75	1.16	0.44	0.35	0.55	0.69	0.51	0.93
Baltic countries	1.05	0.72	1.53	1.23	0.86	1.74	0.83	0.66	1.03	0.94	0.61	1.44
Central Europe	0.78	0.58	1.05	0.87	0.67	1.13	0.63	0.52	0.76	0.70	0.50	0.98
Africa	0.45	0.21	1.00	0.98	0.61	1.56	0.48	0.27	0.84	0.62	0.30	1.30
Northern America	0.67	0.37	1.23	0.48	0.24	0.93	1.10	0.84	1.42	0.78	0.43	1.39
Latin America	0.47	0.23	0.96	0.87	0.55	1.37	0.36	0.21	0.64	0.53	0.25	1.10
Asia	0.84	0.62	1.13	1.43	1.18	1.74	0.72	0.58	0.89	0.89	0.66	1.21
Russia	1.03	0.52	2.01	1.05	0.54	2.06	0.88	0.61	1.27	1.19	0.62	2.29
Women												
Sweden												
All foreign-born	0.76	0.72	0.79	0.93	0.90	0.96	0.78	0.76	0.81	0.93	0.86	1.01
Nordic countries	0.80	0.76	0.85	0.97	0.93	1.01	0.87	0.83	0.91	0.95	0.86	1.05
Southern Europe	0.39	0.28	0.54	0.47	0.38	0.58	0.36	0.27	0.47	0.51	0.30	0.85
Western Europe	0.74	0.65	0.84	0.94	0.86	1.02	0.72	0.65	0.79	0.85	0.68	1.05
Eastern Europe	0.55	0.44	0.69	0.91	0.80	1.03	0.49	0.40	0.61	0.85	0.60	1.22
Baltic countries	0.80	0.64	1.02	1.05	0.89	1.24	0.77	0.66	0.90	0.87	0.59	1.26
Central Europe	0.79	0.66	0.94	0.88	0.78	1.00	0.66	0.57	0.77	0.95	0.71	1.28
Africa	0.48	0.19	1.25	0.81	0.48	1.36	0.67	0.32	1.40	0.80	0.19	3.32
Northern America	0.78	0.57	1.08	0.67	0.51	0.88	0.98	0.81	1.18	0.96	0.59	1.55
Latin America	0.59	0.39	0.91	0.75	0.57	0.98	0.47	0.30	0.75	0.57	0.24	1.34
Asia	0.64	0.50	0.82	0.97	0.84	1.13	0.59	0.47	0.75	1.48	1.07	2.05
Russia	1.07	0.76	1.51	1.09	0.83	1.43	0.69	0.52	0.91	1.07	0.60	1.91

*Fully adjusted.
Bold figures denote statistically significant values.
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

References

1. Cauley JA, Chalhoub D, Kassem AM, Fuleihan Gel H (2014) Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol 10:338–351
2. Abtahi S, Driessen JHM, Vestergaard P, van den Bergh J, Boonen A, de Vries F, Burden AM (2019) Secular trends in major osteoporotic fractures among 50+ adults in Denmark between 1995 and 2010. Osteoporos Int 30:2217–2223
3. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733
4. Hemlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136
5. Wang XF, Seeman E (2012) Epidemiology and structural basis of racial differences in fragility fractures in Chinese and Caucasians. Osteoporos Int 23:411–422
6. Johnell O, Kanis JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15:897–902
7. Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G (2017) Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int 28:1531–1542
8. Bow CH, Cheung E, Cheung CL, Xiao SM, Loong C, Soong C, Tan KC, Luckey MM, Cauley JA, Fujiwara S, Kung AW (2012) Ethnic difference of clinical vertebral fracture risk. Osteoporos Int 23:879–885
9. Loftus CM, Frihagen F, Meyer HE, Nordsletten L, Melhuus K, Falch JA (2008) Epidemiology of distal forearm fractures in Oslo, Norway. Osteoporos Int 19:781–786
10. Statistics Sweden (2016) Foreign-born persons in Sweden by country of birth, age and sex. Year 2000 - 2015. Statistics Sweden, Stockholm. http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START_BE_BEO101_BEO101E/UtriikesFoddaR/?txrid=bd4a34c1bd89-4621-8bd4-606e8809678a
11. Aalbin B, Hjelm K, Elmstahl S (2016) Lower prevalence of hip fractures in foreign-born individuals than in Swedish-born individuals during the period 1987-1999. BMC Musculoskelet Disord 11:203
12. Johansson H, Oden A, Lorentzon M, McCloskey E, Kanis JA, Harvey NC, Karlsson MK, Mellstrom D (2015) Is the Swedish FRAX model appropriate for Swedish immigrants? Osteoporos Int 26:2617–2622
13. Wändell P, Li X, Carlsson AC, Sundquist J, Sundquist K (2020) Distal forearm fractures in immigrant groups: a national Swedish study. Bone 138:115508
14. Ross PD, Norimatsu H, Davis JW, Yano K, Wasnich RD, Fujiwara S, Hosoda Y, Melton LJ 3rd (1991) A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians. Am J Epidemiol 133:801–809
15. Zoller B, Li X, Sundquist J, Sundquist K (2013) Neighbourhood deprivation and hospitalization for atrial fibrillation in Sweden. Europace 15:1119–1127
16. Lips P (2007) Vitamin D status and nutrition in Europe and Asia. J Steroid Biochem Mol Biol 105:620–625
17. Lips P (2010) Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 121:297–300
18. Wangdell PE (2013) Population groups in dietary transition. Food Nutr Res 57:21668
19. Sandhu SK, Hampson G (2011) The pathogenesis, diagnosis, investigation and management of osteoporosis. J Clin Pathol 64:1042–1050
20. Avenell A, Mak JC, O’Connell D (2014) Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev:CD000227. https://doi.org/10.1002/14651858.CD000227.pub4
21. Kennedy S, Kidd MP, McDonald JT, Biddle N (2015) The Healthy Immigrant Effect: Patterns and Evidence from Four Countries. J Int Migr Integr 16:317–332
22. Dasarathy J, Labrador H (2018) Bone Health in Women. Prim Care 45:643–657
23. Beral V, Million Women Study C (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427
24. Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333
25. Wändell P, Carlsson AC, Li X, Gasevic D, Amlov J, Holmzijn MJ, Sundquist J, Sundquist K (2018) Heart failure in immigrant groups: a cohort study of adults aged 45 years and over in Sweden. Scand Cardiovasc J 52:292–300
26. Gutierrez OM, Farwell WR, Kermah D, Taylor EN (2011) Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos Int 22:1745–1753
27. Redmond J, Jariou LM, Zhou B, Prentice A, Schoenmakers I (2014) Ethnic differences in calcium, phosphate and bone metabolism. Proc Nutr Soc 73:340–351
28. Carlsson AC, Wändell P, Osby U, Zarrinkoub R, Wettermark B, Ljunggren G (2013) High prevalence of diagnosis of diabetes, depression, anxiety, hypertension, asthma and COPD in the total population of Stockholm, Sweden - a challenge for public health. BMC Public Health 13:670
29. Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, Heurgren M, Olausson PO (2011) External review and validation of the Swedish national inpatient register. BMC Public Health 11:450

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.