Common and Distinct Neural Patterns of Attention-Deficit/Hyperactivity Disorder and Borderline Personality Disorder: A Multimodal Functional and Structural Meta-analysis

Nanfang Pan, Song Wang, Kun Qin, Lei Li, Ying Chen, Xun Zhang, Han Lai, Xueling Suo, Yajing Long, Yifan Yu, Shiyu Ji, Joaquim Radua, John A. Sweeney, and Qiyong Gong

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) have partially overlapping symptom profiles and are highly comorbid in adults. However, whether the behavioral similarities correspond to shared neurobiological substrates is not known.

METHODS: An overlapping meta-analysis of 58 ADHD and 66 BPD whole-brain articles incorporating observations from 3401 adult patients and 3238 healthy participants was performed by seed-based d mapping. Brain maps were subjected to meta-analytic connectivity modeling and data-driven functional decoding analyses to identify associated neural circuit alterations and relations to behavioral dimensions.

RESULTS: Both groups exhibited hypoactivated abnormalities in the left inferior parietal lobule, and altered clusters of the bilateral superior temporal gyrus were disjunctive in ADHD and BPD. No overlapping structural abnormalities were found. Multimodal alterations of ADHD were located in the right putamen and of BPD in the left orbitofrontal cortex.

CONCLUSIONS: The transdiagnostic neural bases of ADHD and BPD in temporoparietal circuitry may underlie overlapping problems of behavioral control, while disorder-specific substrates in frontostriatal circuitry may account for their distinguishing features in motor and emotion domains, respectively.

https://doi.org/10.1016/j.bpsc.2022.06.003

Attention-deficit/hyperactivity disorder (ADHD), manifested in clinical features of inattention, hyperactivity, and impulsivity (1), is a common neurodevelopmental disorder persisting into adulthood and impacting 2.5% of adults worldwide (2,3). Borderline personality disorder (BPD) is also characterized by behavioral impulsivity and affective dysregulation that contributes to interpersonal instability and severe stigma (4), with a prevalence of 1.3% in the general population (5). ADHD and BPD frequently co-occur within the adult clinical population and in relatives owing to shared familial and heritable risk factors (6,7). Approximately 38% of BPD cases have comorbid ADHD (8), and the lifetime comorbidity of BPD is 33% among ADHD patients (9). Individuals diagnosed with childhood ADHD are at increased risk for BPD in adulthood (7), and the presence of BPD in individuals with ADHD may lead to unfavorable treatment outcome (10).

Overlapping clinical characteristics of ADHD and BPD consist of impulsive behaviors and emotional instability (11,12). Behavioral disinhibition has been recognized as a shared functional impairment in ADHD and BPD, in which impulsivity is a prominent psychopathological dimension characterized by premature and ill-considered actions in both conditions (8,13). Accordingly, anomalies of prefrontal-striatal activity reflected the neuropathological mechanism of impulsivity domain in ADHD (14,15), and disturbances in prefrontal-parietal circuitry might be responsible for response disinhibition when considering BPD samples (16). The other core area of symptomatic overlap is emotional instability—hasty and inflated alterations in affective states (17), centering on dysfunctional frontoparieto-limbic systems (18,19). Though sharing these similarities, individuals with BPD tend to have trouble controlling emotions related to their inner experience (20), while the affective and motoric hyperreactivity of ADHD patients is often a response to external events (21,22).

A neuroimaging meta-analysis of ADHD has suggested that volumetric reduction of the orbitofrontal and temporal cortices and blunted activation of inferior frontal gyrus (IFG), temporal, and striatal substrates have relevance to impairments in executive functions in adulthood (23,24). In BPD, gray matter reduction and hyperactivation of the amygdala contributed to disturbed emotion processing as a hallmark of BPD (25), coupled with brain abnormalities in the orbitofrontal, dorsal prefrontal, and striatal regions linked to behavioral disinhibition (13,26). Thus, ADHD and BPD may have shared neural substrates apart from those behavioral similarities, indicating a transdiagnostic phenotype following a common
Psychopathological pathway (7, 27). Individuals with common neural markers may confer high risks for the comorbid condition, and additional attention is warranted to achieve a more effective treatment response in clinical management (11, 28). Identifying their disjunctive neural mechanisms may potentially facilitate differential diagnosis. Regarding insufficient studies investigating their comorbidities and making comparisons directly (8, 29, 30), a systematic understanding of the conjunctive and disjunctive neural alterations with these disorders remains to be established. Overlapping and comparative metanalytic approaches offer a promising approach for addressing this issue.

Herein, we performed a multimodal meta-analysis of functional and structural neuroimaging studies to map the common and disorder-specific brain abnormalities in adults with ADHD and BPD (25, 31, 32). Obtained neural markers were then subjected to metanalytic connectivity modeling (MACM) and data-driven functional decoding analyses to identify the associated neural circuit alterations and their relation to behavioral dimensions (33, 34).

METHODS AND MATERIALS

Literature Selection and Database Construction

Prior to obtaining any dataset, we preregistered our metaanalytic plan on the Open Science Framework (registration doi: 10.17605/OSF.IO/KFZQN). We performed a comprehensive literature search in PubMed, Web of Science, and Embase for whole-brain functional magnetic resonance imaging (fMRI) or voxel-based morphometry (VBM) studies based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria before March 2, 2021 (35). Studies were included in the meta-analysis if they compared adult patients with ADHD or BPD (ages 18–65 years) with healthy individuals on blood oxygen level-dependent signals or gray matter volume (GMV) (details of the search and article eligibility criteria in the Supplemental Methods).

A total of 124 whole-brain articles were included in the current meta-analysis (ADHD-fMRI, 45 articles [proportion of cognitive/emotion experiments = 31/16]; BPD-fMRI, 52 articles [proportion of cognitive/emotion experiments = 19/33]; ADHD-VBM, 14 articles; BPD-VBM, 14 articles; one article reported parallel anatomic and functional findings and three articles enrolling duplicated samples were excluded in further analysis). These articles incorporated eligible observations from 3401 adult patients (ADHD, 1816; BPD, 1585) and 3238 healthy participants (procedures of literature search and included articles in Figure 1 and Table S1). All included studies were evaluated for quality and limitation to infer the importance of these findings with a 12-point Imaging Methodology Quality Assessment Checklist (36) (for details, see the Supplemental Methods).

We extracted peak coordinates for brain functional or structural abnormalities and corresponding t values from those articles. Then, we coded each study with sample size, mean age, and sex ratio, as well as for parameters of scanner (i.e.,

Figure 1. Flowcharts of the literature search and selection criteria for articles on attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) in the meta-analysis. Panel (A) shows the literature search for articles on fMRI, and panel (B) for article on the VBM method. DTI, diffusion tensor imaging; fMRI, functional magnetic resonance imaging; ROI, region of interest; rs-fMRI, resting-state functional magnetic resonance imaging; SBM, surface-based morphometry; VBM, voxel-based morphometry.
Multimodal Neural Patterns Underlying ADHD and BPD

tesla and slice thickness), statistical approach (i.e., kernel smoothing and multiple corrections), and reported clusters. For patient groups, the proportion receiving psychiatric medication and comorbid conditions were recorded. The task and corresponding Research Domain Criteria construct and domain were labeled for included fMRI studies (details of database construction in the Supplemental Methods and Table S2) (37). We pooled effect-size brain maps from all categories of fMRI experiments for the following rationales (37–39). A task paradigm has the presumed association with particular psychological processing that attributes to specific neural substrates (37), while a brain region may underlie tasks of different categories (40,41), indicating that not only one-to-many, but also many-to-one theory reflects the nature of the relationship between task paradigms and neural circuits. Pooling findings across experiments might be an objective approach that facilitates the comprehensive investigation of brain functional abnormalities of clinical populations (37,42).

Overlapping Meta-analysis

To investigate brain functional and structural abnormalities of individuals with ADHD and BPD, we conducted a multimodal meta-analysis with Seed-based d Mapping with Permutation of Subject Images toolbox (SDM-PSI, version 6.21; https://www.sdmproject.com/). Voxelwise effect-size brain maps were reconstructed accommodating the peak coordinates and corresponding statistical values in the preprocessing (31,43). We created mean effect-size maps across studies and experiments with covarying age and sex in random-effect general linear models separately for modalities and disorders to estimate the meta-analytical case-control difference (44).

To evaluate the converging neural substrates within and across disorders and imaging modalities, we performed the overlapping analysis following separate disorder- and modality-specific analyses to obtain conjunctive and comparative findings (38,45). A comparative coordinate-based meta-analytic approach could identify both common and distinct patterns of two disorders, and it has the potential to inform the emergence of diagnostic biomarkers for comorbid conditions (31,46). To avoid the likelihood that the false positive rate is higher than a preferred degree in the worst-case scenario, the SDM adjusts the raw union of probabilities to the desired threshold (45). To threshold the statistical maps of neural abnormalities of ADHD and BPD, we applied the familywise error rate correction with threshold-free cluster enhancement statistics at p < .05 and cluster size >10 voxels to control for multiple comparisons and obtain robust findings (detailed introduction of SDM-PSI and procedures of overlapping analysis in the Supplemental Methods) (32).

Meta-analytic Connectivity Modeling

Meta-analytic coactivation analysis examines regions that typically are active in prior imaging research with those found to be abnormal in a clinical or psychophysiological study (47,48), allowing for a practical interpretation of the interaction across the whole brain and adding complementary information to task-related and resting-state functional connectivity studies (33,49,50). We delineated the coactivated neural circuits of identified peaks by extracting the peak coordinates and integrated findings of articles that reported activation in the seed regions to yield a convergent coactivation brain map in the Neurosynth package (http://www.neurosynth.org) (51). A 5-mm sphere was created for peaks of the identified clusters to search the candidate coactivated brain regions with the false discovery rate correction (p < .01) to reduce the false positive connectomes (33). To characterize neural coactivation at the large-scale network level, we overlaid the coactivation patterns into the default mode network (DMN), central executive network (CEN), dorsal attention network, ventral attention network (VAN), somatomotor network, visual network, and cortical affective network (52,53) and calculated the similarity of coactivation patterns to these networks (introduction of Neurosynth and details of MACM and related analysis in the Supplemental Methods) (33).

Functional Decoding

Functional decoding analysis allows for a data-driven understanding to bridge the gap between psychophysiological functioning and MRI-derived brain alterations (54,55). We used Neurosynth to decode the pooled neural anomalies, as it currently contains a large-scale neuroimaging database and encodes articles with interactive psychological terms (34). The Pearson correlation coefficients of psychological terms were calculated between the term-based activation maps and our modeled brain maps (54), and we recorded the terms with the top 10 highest correlation coefficients (55). Furthermore, we gathered the correlation coefficients of five behavioral domains (i.e., action, cognition, emotion, interoception, and perception) derived from a paradigm taxonomy and presented with their relative proportions (56,57) to determine the most prominent behavioral domain related to suprathreshold brain regions (details of functional decoding and behavioral domains in the Supplemental Methods and Table S3).

Ancillary Analyses

We conducted separate disorder- and modality-specific analyses to supplement with overlapping analysis. Meta-regression analysis was employed to examine the potential role of demographic factors and medication status at the whole-brain level (23). Following the main meta-analyses, we extracted the Hedges’ g imputations for peak coordinates of clusters and performed Spearman’s correlation, Mann-Whitney U, and Kruskal-Wallis H tests to explore the modulatory effects of confounding variables (57). For fMRI studies, we calculated the contribution of included experiments attributed to each Research Domain Criteria domain for identified clusters based on Hedges’ g imputations. Additionally, we conducted cognition and emotion subgroup analyses to investigate specific brain functional profiles. Publication bias and between-study heterogeneity were assessed via funnel plots, Egger’s test, and I² statistics (details of ancillary analyses in the Supplemental Methods) (44).

RESULTS

Sample Characteristics

Among 122 eligible studies in the meta-analysis, no statistical difference between patient groups was noted in the sample
size-weighted \(t \) tests in age (fMRI: \(t_{594} = 0.510, p = .611 \); VBM: \(t_{594} = 0.052, p = .969 \)), but BPD studies consisted of a larger proportion of females than ADHD studies in both modalities (fMRI: \(t_{594} = 11.027, p < .001 \); VBM: \(t_{594} = 5.621, p < .001 \)). The proportion of medicated patients did not differ by diagnosis \((\chi^2 = 0.020, p = .889) \) (Table 1).

Overlapping Analysis Across Disorders

The overlapping analysis indicated that functional abnormalities of the left inferior parietal lobule (IPL) were conjunctive in ADHD and BPD cases (peak coordinates: \(-40, -50, 52; Z = 4.454; k = 23\); shared hypoactivation pattern), and those of the left anterior superior temporal gyrus (STG)/temporal pole (peak coordinates: \(-48, -2, -14; Z = 3.688; k = 82\)) and right posterior STG (peak coordinates: \(52, -38, 18; Z = 4.255; k = 44\)) (Table 2 and Figure 2) were disjunctive (reduced response in ADHD but hyperactivation in BPD). The meta-analytic connectivity of the left IPL mainly overlaid on the CEN (% relative distribution [%RD]: 12.13%), the left STG on the DMN (%RD: 15.49%), and the right STG on the VAN (%RD: 10.60%) (Figure 2; Table S5). The convergent findings of the left IPL and right STG were predominantly correlated with the action domain (% correlation coefficient: 47.33% and 27.61%, respectively), while the left STG/temporal pole was linked to the cognition domain (% correlation coefficient: 39.82%) (Figure 2; Table S6). No conjunctive or disjunctive brain structural abnormalities were found between ADHD and BPD, though both structural patterns involved a part of the left orbitofrontal cortex (OFC) that had different specific anatomic locations (Table 3).

Overlapping Analysis Across Modalities

In ADHD, multimodal conjunction analysis revealed that the cluster in the right putamen (peak coordinates: \(30, 10, 4; Z = 4.585; k = 145\)) exhibited both blunted functional activation and decreased GMV in contrast with control subjects, while those of the left OFC/anterior cingulate cortex (ACC) converged in multimodality in individuals with BPD (peak coordinates: \(-4, 34, -10; Z = 4.044; k = 56\)) (Table 2 and Figure 3). When overlaying the findings of MACM analysis, the coactivation pattern of the right putamen was largely located in the VAN and that of the left OFC in the DMN (%RD: 11.79% and 23.15%, respectively) (Figure 3; Table S5). The multimodal abnormality of ADHD was predominantly associated with the action domain, while that of BPD was associated with the perception domain (% correlation coefficient: 48.75% and 36.53%, respectively) (Figure 3; Table S6). No disjunctive findings in multimodality were found in either ADHD or BPD.

Ancillary Analyses

Separate analyses of ADHD cases alone compared with healthy individuals demonstrated hypoactivation in regions including the bilateral IFG/insula/STG, bilateral IPL, left supplementary motor area, right cerebellum, and left OFC and GMV reduction in the right putamen, left OFC, and right supramarginal gyrus (SMG). Patients with BPD exhibited hyperactivation in the bilateral STG, right precuneus, left superior frontal gyrus, and right parahippocampal gyrus/amygdala; reduced activation in left superior parietal lobule/IPL and ventral ACC; and GMV reduction in the left OFC and left middle occipital gyrus relative to control subjects (Table 3). Coactivation patterns in MACM analysis are shown in Table S5 and Figure S1, as anomalies of ADHD mainly coactivated with the CEN, while those of BPD linked with the VAN. Functional decoding analysis revealed that most of the identified clusters of ADHD were primarily associated with the action domain,

Table 1. Characteristics of Included Sample

	ADHD HC	ADHD-matched	BPD HC	BPD-matched
Number of articles	45	52		
Total sample size	981	953	1110	1081
Age, mean, years	27.9	28.0	29.0	28.3
Female, %	32.7%	37.4%	86.3%	86.3%
Taking medication, %	27.9%	–	34.7%	–

Table 2. Common and Distinct Brain Abnormalities of ADHD and BPD

Contrast/Brain Region	BA Coordinates (x, y, z)	Z Value	p Value	Cluster Size
(ADHD vs. HC) vs. (BPD vs. HC) in fMRI				
Conjunction: L inferior parietal lobule	(40, -40, -50, 52)	4.454	.026	23
Disjunction: L anterior superior temporal gyrus/temporal pole	(21, -48, -2, -14)	3.688	.001	82
(ADHD vs. HC) vs. (BPD vs. HC) in sMRI				
Disjunction or conjunction: None				
fMRI vs. sMRI in ADHD				
Conjunction: R putamen	(48, 30, 10, 4)	-4.585	.003	145
fMRI vs. sMRI in BPD				
Conjunction: L orbitofrontal/anterior cingulate cortex	(11, -4, 34, -10)	-4.044	.016	56

Suprathreshold clusters were identified at FWE rate correction with \(P_{FWE} < .05 \) and cluster size >10 voxels. Breakdown clusters are shown in Table S4.
while those of BPD were diverse (Table S6 and Figure S2). The top 10 psychophysical terms correlated with those brain abnormalities to infer its main functioning are shown in Table S7, as the left IPL of overlapping analysis predominately correlated with “retention” and “execution,” the left STG correlated with “music” and “speak,” the right STG correlated with “pain” and “listening,” and the right putamen, from distinct multimodal analysis, correlated with “sensation” and “motor” and left OFC with “decision” and “value.”

Meta-regression analysis revealed that sex modulated the neuropathological processing in the right putamen in ADHD and that in the left cerebellum and right ACC in BPD. Additionally, the medication status modulated structural alterations of the right putamen, SMG, and left OFC in ADHD, but no significant clusters were identified in the fMRI modality. In BPD, medication status was associated with structural patterns in the right insula and functional patterns in the left amygdala (details and findings of age in Table S8). The modulatory effects of medication status on brain structural patterns of ADHD and BPD overlapped in the right putamen/insula. Among confounding variables of interest, sex and age played critical roles in identified clusters (20 out of 25 clusters and 7 out of 25 clusters, respectively) (Table S9). The Research Domain Criteria domain of cognitive systems was prevalent in functional profiles of ADHD (all contributions >38%), and the differences of contributions did not reach statistical significance within disorders for any clusters (Table S10). In subgroup analysis for fMRI studies, ADHD samples exhibited hypoactivations in the right cerebellum, bilateral insula, left supplementary motor area, left superior frontal gyrus, right IPL, and right striatum relative to healthy control subjects in the cognition category, while BPD cases showed functional abnormalities in the right para-hippocampal gyrus, right STG, right inferior temporal gyrus, and left ACC in the emotion category (Table S11). Interstudy heterogeneity was not significant among all identified clusters according to I^2 statistics (all $I^2 < 10\%$) (details and publication bias results in Table S12).

DISCUSSION

The current multimodal meta-analysis provides a comprehensive delineation of the similarities and differences in the neural bases of ADHD and BPD in adulthood underlying their shared and distinct clinical features. Following up on overlapping functional patterns centered on the left IPL and bilateral STG, the identified clusters coactivated with the CEN, DMN, and VAN in the large-scale MACM analysis and data-driven functional decoding indicated that these patterns mainly corresponded to the action and cognition domains. Structural abnormalities of both disorders emerged in the left...
Psychiatry: CNNI

Biological disinhibition derived from alterations in the frontostriatal model was constructed based on the view that behavioral condition of ADHD and BPD in clinical settings. The prior responsible for the psychopathological model of the comorbid ADHD vs. HC in fMRI

Contrast/Brain Region BA MNI Coordinates (x, y, z) Z p Value Cluster Size
ADHD vs. HC in fMRI

BA	MNI Coordinates (x, y, z)	Z p Value	Cluster Size	
L inferior frontal gyrus/insula/superior temporal gyrus	47/48	−52, 12, 10	6.163 .001	3626
R inferior frontal gyrus/insula/superior temporal gyrus	38/47/48	32, 18, −2	6.178 .001	2165
R inferior parietal lobule	39/40	44, −58, 50	5.628 .002	654
L supplementary motor area	6	−2, 4, 58	5.382 .001	632
R cerebellum	37	36, −50, −36	4.541 .002	380
L orbitofrontal cortex	10	−38, 58, −2	4.373 .018	80
L inferior parietal lobule	40	−40, −48, 48	5.110 .012	52

BPD vs. HC in fMRI

Contrast/Brain Region BA MNI Coordinates (x, y, z) Z p Value Cluster Size

BA	MNI Coordinates (x, y, z)	Z p Value	Cluster Size	
R superior temporal gyrus	22/42/48	58, −38, 18	5.475 .001	1386
L inferior frontal gyrus/insula/superior temporal gyrus	7/40	−26, −54, 58	5.469 .001	350
L ventral anterior cingulate cortex	11/25	−6, 36, −6	4.937 .009	160
Cerebellum	−	2, −60, −36	4.592 .042	12

ADHD vs. HC in sMRI

Contrast/Brain Region BA MNI Coordinates (x, y, z) Z p Value Cluster Size

BA	MNI Coordinates (x, y, z)	Z p Value	Cluster Size	
R putamen	48	28, 4, 8	5.722 .001	420
L orbitofrontal cortex	11	0, 46, −26	5.060 .027	57
R supramarginal gyrus	40	62, −44, 34	4.329 .045	22

BPD vs. HC in sMRI

Contrast/Brain Region BA MNI Coordinates (x, y, z) Z p Value Cluster Size

BA	MNI Coordinates (x, y, z)	Z p Value	Cluster Size	
L orbitofrontal cortex	11	−6, 40, −14	5.134 .002	540
L middle occipital gyrus	17/18	−20, −98, 4	5.118 .007	190

Supratreshold clusters were identified at FWE rate correction with pFWE < .05 and cluster size >10 voxels. Breakdown clusters are shown in Table S4.

Table 3. Disorder-Specific Brain Abnormalities of ADHD and BPD

OFC, yet without shared profiles. The multimodal meta-analysis demonstrated that converging brain functional and structural alterations were located in the right putamen in ADHD and in the left OFC in BPD, with linkage to the VAN and DMN and predominant involvement of the action and perception domains, respectively. These findings shed light on the similarities and divergences of brain alterations associated with ADHD and BPD in multimodal dimensions, which may facilitate mechanistic understanding of the two disorders, provide potential information about the basis for their shared behavioral features, and in the longer term, potentially facilitate differential diagnosis and provide interventional targets for treatment discovery programs.

Common Neural Abnormalities in ADHD and BPD

The overlapping functional abnormality in the left IPL may be responsible for the psychopathological model of the comorbid condition of ADHD and BPD in clinical settings. The prior model was constructed based on the view that behavioral disinhibition derived from alterations in the frontostriatal circuitry and attention deficits were triggered by those in frontoparietal systems (58). However, considering symptomatic overlaps of ADHD and BPD, we rephrased the model given that the reduced activation of the left IPL is linked with deficits in attention (59), which serve as the bases of disinhibitory control and impulsivity in healthy populations, individuals with ADHD, and individuals with BPD (15,25,60,61). As a key node in the CEN (62), the IPL serves as a multidimensional integrator binding cognitive and affective information processing (63,64). Abnormalities of the IPL may indicate the executive network disruption in the neuropathological processing underlying cognitive control and decision making (65). Findings of the left IPL in a transdiagnostic approach may contribute to problems of reduced attentional control and behavioral disinhibition that are associated with both ADHD and BPD (2,15,66).

The overlapping but disjunctive functional patterns in the bilateral STG have relevance to the cognition and action domains, and their coactivated brain regions are largely instantiated in VAN and DMN. A hypoactivated STG/temporal pole in adults with ADHD impinged on cognition as a result of dysfunctional temporal processing (24), and a hyperresponsive
bilateral STG has been linked to impaired cognitive processing (25,67). Specifically, regions of the STG engage in action observation that contributes to regulating motor actions and impulsivity (68–70), and the STG has connections with limbic systems underlying the integration of emotion processing (71). As above, although functional abnormalities of ADHD and BPD overlapped in the STG and were anchored to the cognition and action realms, the inverse activation direction suggests diverse psychopathological mechanisms in the two disorders (72,73). Clarifying the differential behavioral effects of these two patterns of abnormality may represent a promising direction for future studies (74).

Both ADHD and BPD cases exhibited a GMV decrease in the medial OFC that coactivated with the DMN, yielding different locations (the gyrus rectus and part of the ACC, respectively) and functional decoding (interoception and emotion domains). One role of the OFC is to flexibly adjust adaptive behaviors through reward processing to optimize goal-directed action (75,76). For correlated psychophysical terms in Neurosynth, the OFC cluster of ADHD was mainly associated with “craving” and that of BPD with “value” and “decision.” Thus, while the OFC is impacted in both disorders, somewhat different regions are involved with potential differences in behavioral aspect (1,29). The lack of converging structural alterations seems in conflict with the common phenomenon that ADHD co-occurs with BPD (8), regarding the fact that neuroimaging researchers selectively and exclusively enroll ADHD and BPD cases to emphasize case-control differences at the expense of the representativeness (23).

Distinct Multimodal Abnormalities in ADHD Versus BPD

The divergent brain functional and structural alterations of ADHD and BPD were located in the right putamen and left OFC/ACC, respectively. The connectivity between the OFC and striatum accounts for reinforcement learning and behavioral flexibility (15,77). Notably, high trait impulsivity, as a transdiagnostic symptom shared by ADHD and BPD, has been associated with decreased functional activation and integrity of myelination in circuitry including the medial OFC/ACC and striatum (78,79). In the MACM analysis, the coactivated spatial pattern of the right putamen for ADHD cases is closely aligned with the VAN, which partially explains their maladaptive cognitive and emotional processing of external stimuli and dysfunctions of inhibitory control in ADHD (65). The coactivated network of the left OFC for BPD individuals was most similar to DMN, which may account for the associated loss of dynamic control for attention reorienting between internal and external events (80). Functional decoding indicated that the cluster of the putamen was anchored on the action domain...
and the OFC on the perception domain. Striatal alterations in individuals with ADHD may contribute to their dysfunction in the bottom-up processing of behavioral control regarding its role in the action realm (31,81), while the abnormal OFC pattern in individuals with BPD underlies their processing emotional events, alexithymia, and integrating emotional experience with adaptive action planning—potentially contributing to their increased risk for impulsive self-injury (82,83). Notably, our disjunctive findings should be interpreted with caution regarding the possibility that differences in task paradigms restricted us from a comprehensive understanding toward neural substrates of ADHD and BPD, and regarding the possibility that those distinct abnormalities would be identified in both disorders as more unbiased evidence emerged.

Disorder-Specific Abnormalities in ADHD and BPD

In functional alteration patterns, individuals with ADHD showed hypoactivation in the bilateral IFG/insula/STG. Psychological functions of the IFG have been generally recognized as a brake on affective processing and behavioral actions (84,85), which is of clinical relevance for the dysfunction of inhibition and executive control in ADHD (86). Among individuals with ADHD and comorbid BPD, microstructural abnormalities of IFG co-occurring with limbic alterations were linked to dysfunctional emotion regulation and other behavioral features (30). In BPD cases, abnormalities were found in the left superior frontal gyrus, superior parietal lobule, and right parahippocampal gyrus/amygdala. Psychological functions of frontal components correspond to top-down cognitive control and emotion regulation, of parietal ones to behavioral integration and social mentalizing, and of limbic substrates to salience detection and emotion processing (15,20). These regions together comprise a fronto-parieto-limbic circuitry that accounts for emotion regulation (19). In addition, patterns of GMV reduction were also found in brain regions of the right putamen and SMG in ADHD and the left middle occipital gyrus in BPD. Given the predominant linkage with the action domain, the SMG contributes to action reprogramming for rapid adaptation to external alterations and to maintaining the memory flow of serial orders (87,88). Apart from relating to visuospatial functioning, the middle occipital gyrus processes the category-selective attention via facial recognition (89). Notably, large-scale mega-analyses revealed that reduced volume of subcortical regions was not found in adults, but rather was found only in children with ADHD compared with typically developing control subjects, suggesting a neuro-pathological model of altered subcortical trajectories (90,91).

Potential Role of Medication Status

The meta-regression analysis revealed that modulated brain structural alterations of ADHD and BPD overlapped in the right putamen/insula pertaining to current medication treatment. The putamen is a potential therapeutic target for ADHD given its role in behavioral inhibition and control (92), and psychotropic treatment was linked to neural responses in the insula in individuals with BPD (93). While individual relation of imaging to particular medications is not possible for a meta-analysis such as ours, these findings highlight the potential value of studying how treatments typically provided to patients with ADHD and patients with BPD may modulate these particular brain regions to reduce behavioral disturbances.

Limitations

First, our findings may not generalize to pediatric or geriatric populations. Because pediatric BPD is not well studied compared with pediatric ADHD, only articles recruiting adult participants were included in the meta-analysis. Second, the representativeness of our transdiagnostic findings might be weakened due to study issues such as differences in sex ratios or differences in the use of emotional and cognitive fMRI task paradigms between the two disorders of interest. Differences in sex ratios of included samples result from different susceptibility of sex populations in community samples (4,94), and various predominant clinical manifestations contribute to biased research interest and differences in task paradigms (6). Adding sex to covariates in the meta-analysis may reconcile the concern, but further studies accounting for the general clinical presentation of those disorders might be of great interest. Finally, data to permit direct association of brain alterations and behavior at the individual level were not available, so we used data-driven approaches to provide suggestive behavioral linkages with our regional brain findings.

Conclusions

The current meta-analysis, to our knowledge, is the first to investigate the multimodal transdiagnostic neural patterns of ADHD and BPD, and it includes data-driven functional decoding and meta-analytic connectivity approaches. Our study depicts a comprehensive presentation of common and distinct neural bases of ADHD and BPD, which indicates shared abnormal patterns in the temporoparietal profile and distinct patterns in frontostriatal circuitry. These findings provide novel transdiagnostic information regarding two psychiatric conditions that share clinical features of behavioral disinhibition and affective reactivity (6). Understanding of the distinct disrupted neurocircuits with each disorder could help establish better pathophysiological models and facilitate differential diagnosis. Further, the transdiagnostic and disorder-specific neural bases of illness have the potential to serve as therapeutic targets in the development of novel treatments for ADHD and BPD, and to better understand mechanisms for their high comorbidity rates and overlapping symptom profiles (92,93), which is one of the goals of psychoradiology (95–98).

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81621003 [to QG], 82027808 [to QG], and 31800963 [to SW]), the National Natural Science Foundation (Grant No. 81820108018 [to JAS and QG]), and the Key Research and Development Project of Science and Technology at Department of Sichuan Province (Grant No. 2021YFS0242 [to LL]).

We deeply appreciate all the authors of the included studies who responded to our requests for further information.

JAS is a consultant for VeraSci. All other authors report no biomedical financial interests or potential conflicts of interest.

Protocel preregistration: Open Science Framework: https://osf.io/kfzqn.
Multimodal Neural Patterns Underlying ADHD and BPD

ARTICLE INFORMATION
From the Huaxi MR Research Center (NP, SW, KQ, LL, YC, XZ, HL, XS, YL, YY, SJ, JAS), Department of Radiology, West China Hospital of Sichuan University; Functional and Molecular Imaging Key Laboratory of Sichuan Province (NP, SW, KQ, LL, YC, XZ, HL, XS, YL, YY, SJ, JAS), Department of Radiology (QG), West China Hospital of Sichuan University; and Research Unit of Psychoradiology (NP, SW, KQ, LL, YC, XZ, HL, XS, YL, YY, SJ), Chinese Academy of Medical Sciences, Chengdu; and Department of Radiology (QG), West China Xiamen Hospital of Sichuan University, Xiamen, China; Imaging of Mood- and Anxiety-Related Disorders Group (JR), Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centre de Investigacion Biomèdica en Red de Salud Mental, Barcelona, Spain; Department of Psychosis Studies (JR), Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom; and the Department of Psychiatry (JAS), University of Cincinnati, Cincinnati, Ohio.

NP and SW contributed equally to this work as joint first authors.

Address correspondence to Qiyong Gong, M.D., Ph.D., at qiyonggong@hmrrc.org.cn, or Song Wang, Ph.D., at wangs_psy@163.com.

Received Feb 25, 2022; revised Jun 2, 2022; accepted Jun 3, 2022.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.bpsc.2022.06.003.

REFERENCES
1. American Psychiatric Association (2013): Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC: American Psychiatric Press.

2. Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Conrod PJ, et al. (2013): The origin of attention deficit/hyperactivity disorder. Nat Rev Genet 14:12-25.

3. Leitenmayer P, Pillen M, Brüggemann U, Stenger V, Schmitz C, Schmitz-Lodder J, et al. (2014): Prevalence and correlates of adult attention-deficit/hyperactivity disorder: A German population-based study of 2 million Swedes. Mol Psychiatry 19:29–38.

4. Leichsenring F, Leibing E, Kruse J, New AS, Leweke F (2011): Potential therapeutic targets of stimulant drugs in adults: A systematic review. Biol Psychiatry 70:182–190.

5. Waluk OR, Youssef MF, Lieb K, Feige B, Kleindienst N, Ebner-Priemer U, et al. (2016): Attention-deficit/hyperactivity disorder potentially aggravating factor in borderline personality disorder. Br J Psychiatry 197:260–266.

6. O'Malley GK, McHugh L, Mac Giollaibhui N, Bramham J (2016): Characterizing adult attention-deficit/hyperactivity-disorder and comorbid borderline personality disorder: ADHD symptoms, psychopathology, cognitive functioning and psychosocial factors. Eur Psychiatry 31:29–36.

7. Bardossy S, Faraone SV, Cortese S, Kerridge BT, Pallanti S, Wang S, Blanco C (2012): The lifetime impact of attention deficit hyperactivity disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Psychol Med 42:875–884.

8. O'Malley GK, McHugh L, Mac Giollaibhui N, Bramham J (2016): Characterizing adult attention-deficit/hyperactivity-disorder and comorbid borderline personality disorder: ADHD symptoms, psychopathology, cognitive functioning and psychosocial factors. Eur Psychiatry 31:29–36.

9. Bernardi S, Faraone SV, Cortese S, Kerridge BT, Pallanti S, Wang S, Blanco C (2012): The lifetime impact of attention deficit hyperactivity disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Psychol Med 42:875–884.

10. Tyryp R, Reed GM, Crawford MJ (2015): Classification, assessment, prevalence, and effect of personality disorder. Lancet 385:717–726.

11. Weiner L, Perouzd N, Weibel S (2019): Attention deficit hyperactivity disorder and borderline personality disorder in adults: A review of their links and risks. Neuropsychiatr Dis Treat 15:3115–3129.

12. Moukhtarian TR (2019): Investigation in the overlap of ADHD and borderline personality disorder: A multi-modal approach. King’s College London, United Kingdom: Doctoral Thesis.

13. Sebastián A, Jung P, Krause-Utz A, Lieb K, Schmahl C, Tüschner O (2014): Frontal dysfunctions of impulse control - A systematic review in borderline personality disorder and attention-deficit/hyperactivity disorder. Front Hum Neurosci 8:698.

14. Szekely E, Szedre GP, Sharp W, Leibenluft E, Shaw P (2017): Defining the neural substrate of the adult outcome of childhood ADHD: A multimodal neuroimaging study of response inhibition. Am J Psychiatry 174:867–876.

15. Buckholtz JW, Meyer-Lindenberg A (2012): Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron 74:990–1004.

16. Albert J, López-Martín S, Arza R, Palomares N, Hoyos S, Carreté L, et al. (2019): Response inhibition in borderline personality disorder: Neural and behavioral correlates. Biol Psychol 143:32–40.

17. Moukhtarian TR, Mintah RS, Moran P, Asherson P (2018): Emotion dysregulation in attention-deficit/hyperactivity disorder and borderline personality disorder. Borderline Personal Disord Emot Dysregul 5:9.

18. Posner J, Kass E, Hulverson L (2014): Using stimulants to treat ADHD-related emotional lability. Curr Psychiatry Rep 16:478.

19. Morawetz C, Riedel MC, Salo T, Berboth S, Eickhoff SB, Laird AR, Kohn N (2020): Multiple large-scale neural networks underlying emotion regulation. Neurosci Biobehav Rev 116:382–395.

20. van Zutphen L, Siep N, Jacobs GA, Goebel R, Amrzt A (2015): Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder: A critical review of fMRI studies. Neurosci Biobehav Rev 51:64–76.

21. Philippsen A (2006): Differential diagnosis and comorbidity of attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) in adults. Eur Arch Psychiatry Clin Neurosci 256(Suppl 1):42–46.

22. Shaw P, Stringaris A, Nigg J, Leibenluft E (2014): Emotion dysregulation in attention deficit hyperactivity disorder. Am J Psychiatry 171:276–283.

23. Lukito S, Norman L, Carlisi C, Radua J, Hart H, Simonoff E, Rubia K (2020): Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychol Med 50:894–919.

24. Cortese S, Castellanos FX, Eickhoff CR, D’Acunto G, Masi G, Fox PT, et al. (2016): Functional decoding and meta-analytic connectivity modeling in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 80:896–904.

25. Schulze L, Schmah C, Nieffeld I (2016): Neural correlates of disturbed emotion processing in borderline personality disorder. A multimodal meta-analysis. Biol Psychiatry 79:97–106.

26. Zhang X, Suo X, Yang X, Lai H, Pan N, He M, et al. (2022): Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Transl Psychiatr 12:28.

27. Fusar-Poli P, Solmi M, Brondino N, Davies C, Chae C, Politi P, et al. (2019): Transdiagnostic psychiatry: A systematic review. World Psychiatry 18:192–207.

28. Dittrich I, Philippsen A, Matthies S (2021): Borderline personality disorder (BPD) and attention deficit hyperactivity disorder (ADHD) revisited – a review-update on common grounds and subtle distinctions. Borderline Personal Disord Emot Dysregul 8:22.

29. Moukhtarian TR, Reinhard I, Morillas-Romero A, Ryckaert C, Mowlem F, Bozhilova N, et al. (2020): Wandering minds in attention-deficit/hyperactivity disorder (ADHD) revisited – an implementation for SDM. Neuroimage 186:174–184.

30. Rüsch N, Behrend I, Morillas-Romero A, Ryckaert C, Mowlem F, Bozhilova N, et al. (2020): Wandering minds in attention-deficit/hyperactivity disorder (ADHD) revisited – an implementation for SDM. Neuroimage 186:174–184.

31. Serra P, Vázquez-Martínez A, Vázquez-Cerdà S, Vázquez-Martínez P (2007): Inferior frontal white matter microstructure and patterns of psychopathology, cognitive functioning and psychosocial factors. Eur Psychiatry 31:29–36.

32. Albajes-Eizagirre A, Solanes A, Vieta E, Radua J (2019): Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM. Neuroimage 186:174–184.

33. Li T, Wang L, Camilleri JA, Chen X, Li S, Stewart JL, et al. (2020): Mapping common grey matter volume deviation across child and adolescent samples: A convolutional neural network approach. Neuroimage 224:117099.
adolescent psychiatric disorders. Neurosci Biobehav Rev 115:273–284.

34. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011): Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8:665–670.

35. Knobloch K, Yoon U, Vogt PM (2011): Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J Cranio-maxillofacial Surg 39:91–92.

36. Shepherd AM, Matheson SL, Laurens KR, Carr VJ, Green MJ (2012): Systematic meta-analysis of insula volume in schizophrenia. Biol Psychiatry 72:775–784.

37. Janin D, Moser DA, Doucet GE, Ljung MI, Rasmussen A, Lee WH, et al. (2020): Shared neural phenotypes for mood and anxiety disorders: A meta-analysis of 226 task-related functional imaging studies. JAMA Psychiatry 77:172–179.

38. Chavanne AV, Robinson OJ (2021): The overlapping neurobiology of impaired and pathological anxiety: A meta-analysis of functional neural activation. Am J Psychiatry 178:156–164.

39. Müller V, Cieslik EC, Serbanescu I, Laird AR, Fox PT, Eickhoff SB (2017): Altered brain activity in unipolar depression revisited: Meta-analyses of neuroimaging studies. JAMA Psychiatry 74:47–55.

40. Price CJ, Friston KJ (2005): Functional ontologies for cognition: The systematic definition of structure and function. Cogn Neuropsychol 22:262–275.

41. Pessoa L (2014): Understanding brain networks and brain organization. Phys Life Rev 11:400–435.

42. van den Heuvel MP, Sporns O (2019): A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci 20:435–446.

43. Al bathing Eizagirre A, Solanes A, Fullana MA, Ioannidis JPA, Fusar-Poli P, Torrent C, et al. (2019): Meta-analysis of voxel-based neuroimaging studies using seed-based d mapping with permutation of subject images (SDM-Psi). J Vis Exp 153:59841.

44. Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Kohnhaus DM, Cardon N, Surguladze S (2012): A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry 27:605–611.

45. Radua J, Romeo M, Mataix-Cols D, Fusar-Poli P (2013): A general approach for combining voxel-based meta-analyses conducted in different neuroimaging modalities. Curr Med Chem 20:462–466.

46. Wise T, Radua J, Via E, Cardon N, Abe Q, Adams TM, et al. (2017): Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Mol Psychiatry 22:1455–1463.

47. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009): Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29:14496–14505.

48. Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, et al. (2012): Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. Neuroimage 60:2389–2398.

49. Chen T, Becker B, Camilleri J, Wang L, Yu S, Eickhoff SB, Feng C (2018): A domain-general brain network underlying emotional and cognitive interference processing: Evidence from coordinate-based and functional connectivity meta-analyses. Brain Struct Funct 223:3813–3840.

50. Noonor KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, Moreno AL, et al. (2012): The NKI-Rockland Sample: A model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152.

51. Robinson JL, Laird AR, Glahn DC, Lavoal WR, Fox PT (2010): Meta-analytic connectivity modeling: Delineating the functional connectivity of the human amygdala. Hum Brain Map 31:173–184.

52. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. (2011): The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165.

53. Castellanos FX, Proal E (2012): Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends Cogn Sci 16:17–26.

54. Poldrack RA (2011): Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron 72:692–697.

55. Ge R, Liu X, Long D, Frangou S, Vila-Rodriguez F (2021): Sex effects on cortical morphological networks in healthy young adults. Neuroimage 233:117945.

56. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, et al. (2005): BrainMap taxonomy of experimental design: Description and evaluation. Hum Brain Mapp 25:185–198.

57. Poeppel TB, Donges MR, Mokros A, Rupprecht R, Fox PT, Laird AR, et al. (2019): A view behind the mask of sanity: Meta-analysis of aberrant brain activity in psychopaths. Mol Psychiatry 24:463–470.

58. Amsten AFT, Rubia K (2012): Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry 51:356–367.

59. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K (2013): Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70:185–198.

60. Pullo AA, Wudarczyk O, Kohls G, Bzdok D, Herpertz-Dahlmann B, Konrad K (2020): Meta-analytic evidence for a joint neural mechanism underlying response inhibition and state anger. Hum Brain Mapp 41:3147–3160.

61. Tiego J, Testa R, Bellgrove MA, Pantelis C, Whittle S (2018): A hierarchical model of inhibitory control. Front Psychol 9:1339.

62. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Churchill JA, et al. (2011): Functional network organization of the human brain. Neuron 72:665–678.

63. Gottlieb J (2007): From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron 53:9–16.

64. Buschman TJ, Miller EK (2007): Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862.

65. Menon V (2011): Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci 15:483–506.

66. Gavazzi G, Rossi A, Orsolini S, Diciotti S, Giovannelli F, Salvadori E, et al. (2019): Impulsivity trait and proactive cognitive control: An fMRI study. Eur J Neurosci 49:1171–1179.

67. Ruocco AC, Amirthavasagam S, Choi-Kain LW, Mcmain SF (2013): Neural correlates of negative emotionality in borderline personality disorder: An activation-likelihood-estimation meta-Analysis. Biol Psychiatry 73:153–160.

68. Pan N, Wang S, Zhao Y, Lai H, Qin K, Li J, et al. (2021): Brain gray matter structure associated with trait impulsivity: A systematic review and voxel-based meta-analysis. Hum Brain Mapp 42:2214–2235.

69. Van Overwalle F, Baetens K (2009): Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage 48:564–584.

70. Ing A, Slåmøg PG, Chu C, Tay N, Biondo F, Robert G, et al. (2019): Identification of neurobehavioural symptom groups based on shared brain mechanisms. Nat Hum Behav 3:1306–1318.

71. Olson IR, Plotzker A, Ezzat Y (2007): The enigmatic temporal pole: A review of findings on social and emotional processing. Brain 130:1718–1731.

72. Sebastian A, Retz W, Tüscher O, Tumer D (2019): Violent offending in borderline personality disorder and attention deficit/hyperactivity disorder. Neuropharmacology 156:107565.

73. Lampe K, Konrad K, Kroner S, Fast K, Kunert HJ, Herpertz SC (2007): Neuropsychological and behavioural disinhibition in adult ADHD compared to borderline personality disorder. Psychol Med 37:1717–1729.

74. Lai H, Kong X, Zhao Y, Pan N, Zhang X, He M, et al. (2022): Patterns of a structural covariance network associated with dispositional optimism during late adolescence. Neuroimage 251:119009.

75. Maia TV, McClelland JL (2004): A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa gambling task. Proc Natl Acad Sci U S A 101:16075–16080.
Multimodal Neural Patterns Underlying ADHD and BPD

76. Jonker FA, Jonker C, Scheltens P, Scherder EJA (2015): The role of the orbitofrontal cortex in cognition and behavior. Rev Neurosci 26:1–11.

77. Balleine BW, O'Doherty JP (2010): Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–65.

78. Ziegler G, Hauser TU, Moutoussis M, Bullmore ET, Goodyer IM, Fonagy P, et al. (2019): Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat Neurosci 22:992–999.

79. Diekhof EK, Nerenberg L, Falkai P, Dechent P, Baudewig JJ, Gruber O, Dechent P (2012): Impulsive personality and the ability to resist immediate reward: An fMRI study examining interindividual differences in the neural mechanisms underlying self-control. Hum Brain Mapp 33:2768–2784.

80. Vossel S, Weidner R, Driver J, Friston KJ, Fink GR (2012): Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling. J Neurosci 32:10637–10648.

81. Lenzi F, Cortese S, Harris J, Masi G (2018): Neuroscience and Biobehavioral Reviews Pharmacotherapy of emotional dysregulation in adults with ADHD: A systematic review and meta-analysis. Neurosci Biobehav Rev 84:359–367.

82. Niedtfeld I, Schulze L, Kirsch P, Herpertz SC, Bohus M, Schmahl C (2010): Affect regulation and pain in borderline personality disorder: A possible link to the understanding of self-injury. Biol Psychiatry 68:383–391.

83. Schnell K, Dietrich T, Schnitker R, Daumann J, Herpertz SC (2007): Processing of autobiographical memory retrieval cues in the neural personality disorder. J Affect Disord 97:253–259.

84. Aron AR, Robbins TW, Poldrack RA (2014): Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn Sci 18:177–185.

85. Bari A, Robbins TW, Andrea Q, Robbins TW, Bari A, Robbins TW (2013): Inhibition and impulsivity: Behavioral and neural basis of response control. Prog Neurobiol 108:44–79.

86. Barkley RA (1997): Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol Bull 121:65–94.

87. Hartwigsen G, Siebner HR (2015): Joint contribution of left dorsal premotor cortex and supramarginal gyrus to rapid action reprogramming. Brain Stimul 8:945–952.

88. Guidali G, Pisoni A, Bolognini N, Papagno C (2019): Keeping order in the brain: The supramarginal gyrus and serial order in short-term memory. Cortex 119:89–99.

89. Tu S, Gju J, Martens U, Zhang Q (2013): Category-selective attention modulates unconscious processes in the middle occipital gyrus. Conscious Cogn 22:479–485.

90. Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, et al. (2019): Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176:531–542.

91. Hoogman M, Braiten J, Hibar DP, Mennes M, Zwiers MP, Schwenen LSJ, et al. (2017): Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. Lancet Psychiatry 4:310–319.

92. Albajara Saenz A, Villemontex T, Massat I, Aenz AAS, Villemontex T, Massat I (2019): Structural and functional neuroimaging in attention-deficit/hyperactivity disorder. Dev Med Child Neurol 61:399–405.

93. Marceau EM, Meulidijk D, Townsend ML, Solowij N, Grenyer BFSS (2018): Biomarker correlates of psychotherapy outcomes in borderline personality disorder: A systematic review. Neurosci Biobehav Rev 94:166–178.

94. Ramtekkar UP, Reiersen AM, Todorov AA, Todd RD (2010): Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: Implications for DSM-V and ICD-11. J Am Acad Child Adolesc Psychiatry 49:213–217.

95. Lui S, Zhou X, Sweeney J, Gong Q (2016): Psychoradiology: The frontier of neuroimaging in psychiatry. Radiology 281:357–372.

96. Gong Q (2020): Psychoradiology: Neuroimaging Clinics of North America. New York: Elsevier Inc, 1–123.

97. SUO X, Zuo C, Lan H, Pan N, Zhang X, Kerrp GJ, et al. (2022): COVID-19 vicarious traumatization links functional connectome to general distress. Neuroimage 255:119185.

98. Li F, Sun H, Biswal BB, Sweeney JA, Gong Q (2021): Artificial intelligence applications in psychoradiology. Psychoradiology 1:94–107.