Scientific Paper Recommendation Systems: a Literature Review of recent Publications

Christin Katharina Kreutz · Ralf Schenkel

Received: date / Accepted: date

Abstract Scientific writing builds upon already published papers. Manual identification of publications to read, cite or consider as related papers relies on a researcher’s ability to identify fitting keywords or initial papers from which a literature search can be started. The rapidly increasing amount of papers has called for automatic measures to find the desired relevant publications, so-called paper recommendation systems.

As the number of publications increases so does the amount of paper recommendation systems. Former literature reviews focused on discussing the general landscape of approaches throughout the years and highlight the main directions. We refrain from this perspective, instead we only consider a comparatively small time frame but analyse it fully.

In this literature review we discuss used methods, datasets, evaluations and open challenges encountered in all works first released between January 2019 and October 2021. The goal of this survey is to provide a comprehensive and complete overview of current paper recommendation systems.

Keywords Paper Recommendation System · Publication Suggestion · Literature Review

1 Introduction

The rapidly increasing number of publications leads to a large amount of time on searching for relevant related work [7]. Keyword based search options are insufficient to find relevant papers [8,9,10], they require some form of initial knowledge about a field. Oftentimes, users’ information needs are not explicitly specified [53] which impedes this task further.

To close this gap, a plethora of paper recommendation systems have been proposed recently [34,36,83,99,112]. These systems should fulfill different functions: for junior researchers systems should recommend a broad variety of papers, for senior ones the recommendations should align more with their already established interests [9] or help them discover relevant interdisciplinary research [95]. In general paper recommendation approaches positively affect researchers’ professional lives as they enable finding relevant literature more likely and faster [47].

As there are many different approaches, their objectives and assumptions are also diverse. A simple problem definition of a paper recommendation system could be the following: given one paper recommend a list of papers fitting the source paper [64]. This definition would not fit all approaches as some specifically do not require any initial paper to be specified but instead observe a user as input [34]. Some systems recommend sets of publications fitting the queried terms only if they are observed together [57,58], most of the approaches suggest a number of single publications as their result [34,36,83,112]. Most approaches assume that all required data to run a system to be present already [34,112] but some works [36,83] explicitly crawl general publication information or even abstracts and keywords from the web.

In this literature review we observe papers recently published in the area of scientific paper recommendation between and including January 2019 and October...
We strive to give comprehensive overviews on their utilised methods as well as their datasets, evaluation measures and open challenges of current approaches. Our contribution is 4-fold:

- We propose a novel multidimensional characterisation of current paper recommendation approaches.
- We compile a list of recently used datasets in evaluations of paper recommendation approaches.
- We compile a list of recently used evaluation measures for paper recommendation.
- We analyse existing open challenges and identify current novel problems in paper recommendation which could be specifically helpful for future approaches to address.

In the following Section 2 we describe the general problem statement for paper recommendation systems before we dive into the literature review in Section 3. Section 4 gives insight into datasets used in current work. In the following Section 5 different definitions of relevance, relevance assessment as well as evaluation measures are analysed. Open challenges and objectives are discussed in detail in Section 6. Lastly Section 7 concludes this literature review.

2 Problem Statement

Over the years different formulations for a problem statement of a paper recommendation system have emerged. In general they should specify the input for the recommendation system, the type of recommendation results, the point in time when the recommendation will be made and which specific goal an approach tries to achieve. Additionally, the target audience should be specified.

As input we can either specify an initial paper [20], keywords [112], a user [34], a user and a paper [5] or more complex information such as user-constructed knowledge graphs [104]. Users can be modelled as a combination of features of papers they interacted with [17, 19], e.g. their clicked [24] or authored publications [20]. Papers can for example be represented by their textual content [83].

As types of recommendation we could either specify single (independent) papers [24] or a set of paper which is to be observed in its full form [58]. A study by Beierle et al. [10] found that existing digital libraries recommend between three and ten single papers, in their case the optimal number of suggestions to display users was five to six.

As for the point in time, most work focuses on immediate recommendation of papers. Only few approaches also consider delayed suggestion via newsletter for example [53].

In general, recommended papers should be relevant in one way or another to achieve certain goals. They could e.g. be related to an initial paper [20] or publications which should be read [104].

Different target audiences for example junior or senior researcher have different demands from paper recommendation systems [9]. Usually paper recommendation approaches target single users but there are also works which strive to recommend papers for sets of users [105, 106].

3 Literature Review

In this chapter we first clearly define the scope of our literature review (see Sect. 3.1) before we conduct a meta analysis on the observed papers (see Sect. 3.2). Afterwards our categorisation or lack thereof is discussed in depth (see Sect. 3.3), before we give short overviews of all paper recommendation systems we found (see Sect. 3.4) and some other relevant related work (see Sect. 3.5).

3.1 Scope

To the best of our knowledge the literature reviews by Bai et al. [9], Li and Zou [55] and Shahid et al. [87] are the most recent ones targeting the domain of scientific paper recommendation systems. They were accepted for publication or published in 2019 so they only consider paper recommendation systems up until 2019 at most. We want to bridge the gap between papers published after their surveys were finalised and current work so we only focus on the discussion of publications which appeared between January 2019 and October 2021 when this literature search was conducted.

We conducted our literature search on the following digital libraries: ACM [2] dblp [3] Google Scholar [4] and Springer [5]. Titles of considered publications had to contain either paper, article or publication as well as some form of recommend. Papers had to be written in English to be observed. We judged relevance of retrieved publications by observing titles and abstracts if the title alone did not suffice to assess their topical relevance. In

1 The most recent surveys [9, 55, 87] focusing on scientific paper recommendation appeared in 2019 such that this time frame is not yet covered.

2 https://dl.acm.org/
3 https://dblp.uni-trier.de/
4 https://scholar.google.com/
5 https://link.springer.com/
addition to these papers found by systematically searching digital libraries, we also considered their referenced publications if they were from the specified time period and of topical fit. For all papers their date of first publication determines their publication year. E.g. for journal articles we consider the point in time when they were first published online instead of the data on which they were published in an issue, for conference articles we consider the date of the conference instead a later date when they were published online.

We refrain from including works in our study which do not identify as scientific paper recommendation systems such as Wikipedia article recommendation [66] [74] [80] or general news article recommendation [29] [40] [88]. Citation recommendation systems [83] [85] [118] are also out of scope of this literature review. Even though citation and paper recommendation can be regarded analogously [12] we argue the differing functions of citations [31] and tasks of these recommendation systems [63] should not be mixed with the problem of paper recommendation. We also consciously refrain from discussing the plethora of more area-independent recommender systems which could be adopted to the domain of scientific paper recommendation.

Our literature research resulted in 76 relevant papers. We found 12 manuscripts which do not present paper recommendation systems but are relevant works for the area nonetheless, they are discussed in Section 3.3. This left 64 publications describing paper recommendation systems for us to analyse in the following.

Type	Venue	#p
Journal	IEEE Access	5
Journal	Scientometrics	2
Journal	PeerJ CS	2
Conference	WWW	2
Conference	ChineseCSCW	2
Conference	CSCWWD	2

Table 1 Top most common venues where relevant papers were published together with their type and number of papers (#p).

3.3 Categorisation

3.3.1 Former Categorisation

The already mentioned three most recent [9] [55] [87] and one older but highly influential [14] literature reviews in scientific paper recommendation utilise different categorisations to group approaches. Beel et al. [14] categorise observed papers by their underlying recommendation principle in stereotyping, content-based filtering, collaborative filtering, co-occurrence, graph based, global relevance and hybrid models. Bai et al. [9] only utilise the classes content-based filtering, collaborative filtering, graph-based methods, hybrid methods and other models. Li and Zou [55] use the categories content-based recommendation, hybrid recommendation, graph-based recommendation and recommendation based on deep learning. Shahid et al. [87] label approaches by the criterion they identify relevant papers with: content, metadata, collaborative filtering and citations.

The four predominant categories thus are content-based filtering, collaborative filtering, graph-based and hybrid systems. Most of these categories are defined sharply but graph-based approaches are not always characterised concisely: Content-based filtering (CBF) methods are said to be ones where user interest is inferred by observing their historic interactions with papers [9] [14] [55]. Recommendations are composed by observing features of papers and users [5]. In collaborative filtering (CF) systems the preferences of users similar to a current one are observed to identify likely relevant publications [9] [14] [55]. Current users’ past interactions need to be similar to similar users’ past interactions [9] [14]. Hybrid approaches are ones which combine multiple types of recommendations [9] [14] [55].

Graph-based methods can be characterised in multiple ways. A very narrow definition only encompasses ones which observe the recommendation task as a link prediction problem or utilise random walk [5]. Another less strict definition identifies these systems as ones which construct networks of papers and authors and then apply some graph algorithm to estimate relevance [9]. Another definition specifies this class as one using graph
metrics such as random walk with restart, bibliographic coupling or co-citation inverse document frequency [101]. Li and Zhou [53] abstain from clearly characterising this type of systems directly but give examples which hint that in their understanding of graph-based methods somewhere in the recommendation process, some type of graph information e.g. bibliographic coupling or co-citation strength, should be used. Beel et al. [14] as well as Bai et al. [9] follow a similar line, they characterise graph-based methods broadly as ones which build upon the existing connections in a scientific context to construct a graph network.

When trying to classify approaches by their recommendation type, we encountered some problems:

1. We have to refrain from only utilising the labels the works give themselves (see Table 2 for an overview of self-labels of works which do classify themselves). Works do not necessarily (clearly) state, which category they belong to [26][46][57]. Another problem with self-labeling is authors’ individual definitions of categories while disregarding all possible ones (as e.g. seen with Afsar et al. [1] or Ali et al. [5]). Mis-definition or omitting of categories could lead to an incorrect classification.

2. When considering the broadest definition of graph-based methods many recent paper recommendation systems tend to belong to the class of hybrid methods. Most of the approaches [3][43][45][54][53][100][112] utilise some type of graph structure information as part of the approach which would classify them as graph-based but as they also utilise historic user-interaction data or descriptions of paper features (see e.g. Li et al. [5] who describe their approach as network-based while using a graph structure, textual components and user profiles) which would render them as either CF or CBF also.

Thus we argue the former categories do not suffice to classify the particularities of current approaches in a meaningful way. So instead, we introduce more dimensions by which systems could be grouped.

3.3.2 Novel Categorisation

Recent paper recommendation systems can be categorised in 20 different dimensions by data and methods, which are part of the approach:

- Personalisation (Personal.): The approach produces personalised recommendations.
- Input: The approach requires some form of input, either a paper (p), keywords (k), user (u) or something else, e.g. an advanced type of input (o). Hybrid forms are also possible. In some cases the input is not clearly specified throughout the paper so it is unknown (?).
- Title: The approach utilises titles of papers.
- Abstract: The approach utilises abstracts of papers.
- Keyword: The approach utilises keywords of papers.
- Text: The approach utilises some type of text of papers which is not clearly specified as titles, abstracts or keywords. In the evaluation this approach might utilise specified text fragments of publications.
- Citation: The approach utilises citation information, e.g. numbers of citations or co-references.
- Historic interaction (Interaction): The approach uses some sort of historic user-interaction data, e.g. previously authored, cited or liked publications. An approach can only include historic user-interaction data if it also somehow contains user profiles.
- User profile (User): The approach constructs some sort of user profile or utilises profile information.
- Popularity: The approach utilises some sort of popularity indication, e.g. CORE rank, numbers of citations or number of likes.
Key phrase: The approach utilises key phrases.
Embedding: The approach utilises some sort of text or graph embedding technique, e.g. BERT or Doc2Vec.
Topic model (TM): The approach utilises some sort of topic model, e.g. LDA.
Knowledge graph (KG): The approach utilises or builds some sort of knowledge graph.
Graph: The approach actively builds or directly uses a graph structure, e.g. a knowledge graph or scientific heterogeneous network. Utilisation of a neural network is not considered in this dimension.
Meta-path (Path): The approach utilises meta-paths.
Random Walk (with Restart) (RW(WR)): The approach utilises Random Walk or Random Walk with Restart.
Advanced machine learning (AML): The approach utilises some sort of advanced machine learning component in its core such as a neural network. Utilisation of established embedding methods which themselves use neural networks (e.g. BERT) are not considered in this dimension.
Crawling: The approach conducts some sort of web crawling step.
Cosine similarity (cosine): The approach utilises cosine similarity at some point.

Of the observed paper recommendation systems, six were general systems or methods which were only applied on the domain of paper recommendation. 54, 57, 115, 115. Two were targeting explicit set-based recommendation of publications where only all papers in the set together satisfy users’ information needs 57, 58, two recommend multiple papers 59, 67 (e.g. on a path 59), all the other approaches focused on recommendation of single papers. Only two approaches focus on recommendation of papers to user groups instead of single users 105, 106. Only one paper 53 supports subscription-based recommendation of papers, all other approaches solely regarded a scenario in which papers were suggested straight away.

Table 3 classifies the observed approaches according to the afore discussed dimensions.

3.4 Paper Recommendation Systems

The 64 relevant works identified in our literature search are described in this section. We deliberately refrain from trying to structure the section by classifying papers by an arbitrary dimension and instead point to Table 3 to identify those dimensions in which a reader is interested to navigate the following short descriptions. The works are ordered by the surname of the first author and ascending publication year. An exception to this rule are papers presenting extensions of previous approaches with different first authors. These papers are ordered to their preceding approaches.

Ahmedi et al. 3 propose a personalised approach which can also be applied to more general recommendation scenarios which include user profiles. They utilise Collaborative Topic Regression to mine association rules from historic user interaction data.

Alfarhood and Cheng 14 introduce Collaborative Attention Autoencoder, a deep learning-based model for general recommendation targeting the data sparsity problem. They apply probabilistic matrix factorisation while also utilising textual information to train a model which identifies latent factors in users and papers.

Ali et al. 13 construct PR-HNE, a personalised probabilistic paper recommendation model based on a joint representation of authors and publications. They utilise graph information such as citations as well as co-authorships, venue information and topical relevance to suggest papers. They apply SBERT and LDA to represent author embeddings and topic embeddings respectively.

Bereczki 17 models users and papers in a bipartite graph. Papers are represented by their contents’ Word2Vec or BERT embeddings, users’ vectors consist of representations of papers they interacted with. These vectors are then aggregated with simple graph convolution.

Bulut et al. 20 focus on current user interest in their approach which utilises k-Means and KNN. Users’ profiles are constructed from their authored papers. Recommended papers are the highest cited ones from the cluster most similar to a user. In a subsequent work they extended their research group to again work in the same domain. Bulut et al. 19 again focus on users’ features. They represent users as the sum of features of their papers. These representations are then compared with all papers’ vector representations to find the most similar ones. Papers can be represented by TF-IDF, Word2Vec or Doc2Vec vectors.

Chaudhuri et al. 23 use indirect features derived from direct features of papers in addition to direct ones in their paper recommendation approach: keyword di-
Table 3 Indications whether works utilise the specific data or methods. Papers describing the same approach without extension of the methodology (e.g. only describing more details or an evaluation) are regarded in combination with each other.

versification, text complexity and citation analysis. In an extended group Chaudhuri et al. \cite{24} later propose usage of more indirect features such as quality in paper recommendation. Users’ profiles are composed of their clicked papers. Subsequently they again worked on an approach in the same area but in a slightly smaller group. Chaudhuri et al. \cite{22} propose the general Hybrid Topic Model and apply it on paper recommendation. It learns users’ preferences and intentions by combining LDA and Word2Vec. They compute user’s interest from probability distributions of words of clicked papers and dominant topics in publications.
Chen and Ban [25] introduce CPM, a recommendation model based on topically clustered user interests mined from their published papers. They derive user need models from these clusters by using LDA and pattern equivalence class mining. Candidate papers are then ranked against the user need models to identify the best-fitting suggestions.

Collins and Beel [24] propose the usage of their paper recommendation system Mr. DLib as a recommender as-a-service. They compare representing papers via Doc2Vec with a key phrase-based recommender and TF-IDF vectors.

Du et al. [27] introduce HNPR, a heterogeneous network method using two different graphs. The approach incorporates citation information, co-author relations and research areas of publications. They apply random walk on the networks to generate vector representations of papers.

Du et al. [28] propose Polar++, a personalised active one-shot learning-based paper recommendation system where new users are presented articles to vote on before they obtain recommendations. The model trains a neural network by incorporating a matching score between a query article and the recommended articles as well as a personalisation score dependant on the user.

Guo et al. [34] recommend publications based on papers initially liked by a user. They learn semantics between titles and abstracts of papers on word- and sentence-level, e.g. with Word2Vec and LSTMs to represent user preferences.

Habib and Afzal [35] crawl full texts of papers from CiteSeer. They then apply bibliographic coupling between input papers and a clusters of candidate papers to identify the most relevant recommendations. In a subsequent work Afzal again used a similar technique. Ahmad and Afzal [2] crawled papers from CiteSeerX. Cuisine similarity of TF-IDF representations of key terms from titles and abstracts is combined with co-citation strength of paper pairs. This combined score then ranks the most relevant papers the highest.

Haruna et al. [36] incorporate paper-citation relations combined with contents of titles and abstracts of papers to recommend the most fitting publications for an input query corresponding to a paper.

Hu et al. [38] present ADRCR, a paper recommendation approach incorporating author-author and author-paper citation relationships as well as authors’ and papers’ authoritiveness. A network is built which uses citation information as weights. Matrix decomposition helps learning the model.

Hua et al. [39] propose PAPR which recommends relevant paper sets as an ordered path. They strive to overcome recommendation merely based on similarity by observing topics in papers changing over time. They combine similarities of TF-IDF paper representations with random-walk on different scientific networks.

Jing and Yu [41] build a three-layer graph model which they traverse with random-walk with restart in an algorithm named PAFRWR. The graph model consists of one layer with citations between papers’ textual content represented via Word2Vec vectors, another layer modelling co-authorships between authors and the third layer encodes relationships between papers and topics contained in them.

Kanakia et al. [42] build their approach upon the MAG dataset and strive to overcome the common problems of scalability and cold-start. They combine TF-IDF and Word2Vec representations of the content with co-citations of papers to compute recommendations. Speedup is achieved by comparing papers to clusters of papers instead of all other single papers.

Kang et al. [43] crawl full texts of papers from CiteSeer and construct citation graphs to determine candidate papers. Then they compute a combination of section-based citation and key phrase similarity to rank recommendations.

Kong et al. [45] present VOPRec, a model combining textual components in form of Doc2vec and Paper2vec paper representations with citation network information in form of Struc2vec. Those networks of papers connect the most similar publications based on text and structure. Random walk on these graphs contributes to the goal of learning vector representations.

Li et al. [53] base their recommendation on lately accessed papers of users as they assume future accessed papers are similar to recently seen ones. They utilise a sliding window to generate sequences of papers, on those they construct a GNN to aggregate neighbouring papers to identify users’ interests.

Li et al. [52] present HNTA a paper recommendation method utilising heterogeneous networks and changing user interests. Paper similarities are calculated with Word2Vec representations of words recommended for each paper. Changing user interest is modelled with help of an exponential time decay function on word vectors.

Li et al. [54] utilise user profiles with a history of preferences to construct heterogeneous networks where
they apply random walks on meta-paths to learn personalised weights. They strive to discover user preference patterns and model preferences of users as their recently cited papers.

Lin et al. [56] utilise authors’ citations and years they have been publishing papers in their recommendation approach. All candidate publications are matched against user-entered keywords, the two factors of authors of these candidate publications are combined to identify the overall top recommendations.

Liu et al. [52] explicitly do not require all recommended publications to fit the query of a user perfectly. Instead they state the set of recommended papers fulfils the information need only in the complete form. Here they treat paper recommendation as a link prediction problem incorporating publishing time, keywords and author influence. In a subsequent work, part of the previous research group again observes the same problem. In this work Liu et al. [58] propose an approach utilizing numbers of citations (author popularity) and relationships between publications in an undirected citation graph. They compute Steiner trees to identify the sets of papers to recommend.

Lu et al. [59] propose TGMF-FMLP, a paper recommendation approach focusing on the changing preferences of users and novelty of papers. They combine category attributes (such as paper type, publisher or journal), a time-decay function, Doc2Vec representations of the papers’ content and a specialised matrix factorisation to compute recommendations.

Ma et al. [61] introduce HIPRec, a paper recommendation approach on heterogeneous networks of authors, papers, venues and topics specialised on new publications. They use the most interesting meta-paths to construct significant meta-paths. With these paths and features from these paths they train a model to identify new papers fitting users. Together with another researcher Ma further pursued this research direction. Ma and Wang [60] propose HGRRec, a heterogeneous graph representation learning-based model working on the same network. They use meta-path-based features and Doc2Vec paper embeddings to learn the node embeddings in the network.

Manju et al. [60] attempt to solve the cold-start problem with their paper recommendation approach coding social interactions as well as topical relevance into a heterogeneous graph. They incorporate belief propagation into the network and compute recommendations by applying random walk.

Mohamed Hassan et al. [65] adopt an existing tag prediction model which relies on a hierarchical attention network to capture semantics of papers. Matrix factorisation then identifies the publications to recommend.

Nair et al. [67] propose C-SAR, a paper recommendation approach using a neural network. They input GloVe embeddings of paper titles into their Gated Recurrent Union model to compute probabilities of similarities of papers. The resulting adjacency matrix is input to an association rule mining a priori algorithm which generates the set of recommendations.

Nishioka et al. [70, 71] state serendipity of recommendations as their main objective. They incorporate users’ tweets to construct profiles in hopes to model recent interests and developments which did not yet manifest in users’ papers. They strive to diversity the list of recommended papers. In more recent work Nishioka et al. [72] explained their evaluation more in depth.

Rahdari and Brusilovsky [74] observe paper recommendation for participants of scientific conferences. Users’ profiles are composed of their past publications. Users control the impact of features such as publication similarity, popularity of papers and its authors to influence the ordering of their suggestions.

Renuka et al. [81] propose a paper recommendation approach utilising TF-IDF representations of automatically extracted keywords and key phrases. They then either use cosine similarity between vectors or a clustering method to identify the most similar papers for an input paper.

Sakib et al. [84] present a paper recommendation approach utilising second-level citation information and citation context. They strive to not rely on user profiles in the paper recommendation process. Instead they measure similarity of candidate papers to an input paper based on co-occurred or co-occurring papers. In a follow-up work with a bigger research group Sakib et al. [85] combine contents of titles, keywords and abstracts with their previously mentioned collaborative filtering approach. They again utilise second-level citation relationships between papers to find correlated publications.

Shahid et al. [89] utilise in-text citation frequencies and assume a reference is more important to a referencing paper the more often it occurs in the text. They crawl papers from CiteSeerX to retrieve the top 500 citing papers. In a follow-up work with a partially different research group Shahid et al. [88] evaluate the previously presented approach with a user study.

Sharma et al. [90] propose IBM PARSe, a paper recommendation system for the medical domain to reduce the number of papers to review for keeping an existing knowledge graph up-to-date. Classifiers identify new papers from target domains, named entity recognition finds relevant medical concepts before papers’ TF-IDF
vectors are compared to ones in the knowledge graph. New publications most similar to already relevant ones with matching entities are recommended to be included in the knowledge base.

Subathra and Kumar [93] constructed a paper recommendation system which applies LDA on Wikipedia articles twice. Top related words are computed using pointwise mutual information before papers are recommended for these top words.

Tang et al. [99] introduce CGPrec, a content-based and knowledge graph-based paper recommendation system. They focus on users’ sparse interaction history with papers and strive to predict papers on which users are likely to click. They utilise Word2Vec and a Double Convolutional Neural Network to emulate users’ preferences directly from paper content as well as indirectly by using knowledge graphs.

Tanner et al. [101] consider relevance and strength of citation relations to weigh the citation network. They fetch citation information from the parsed full texts of papers. On the weighted citation networks they run either weighted co-citation inverse document frequency, weighted bibliographic coupling or random walk with restart to identify the highest scoring papers.

Tao et al. [102] use embeddings and topic modelling to compute paper recommendations. They combine LDA and Word2Vec to obtain topic embeddings. Then they calculate most similar topics for all papers using Doc2Vec vector representations and afterwards identify the most similar papers. With PageRank on the citation network they re-rank these candidate papers.

Waheed et al. [103] propose CNRN, a recommendation approach using a multilevel citation and authorship network to identify recommendation candidates. From these candidate papers ones to recommend are chosen by combining centrality measures and authors’ popularity. Highly correlated but unrelated Shi et al. [91] present AMHG, an approach utilising a multilayer perceptron. They also construct a multilevel citation network as described before with added author relations. Here they additionally utilise vector representations of publications and recency.

Wang et al. [105] introduce a knowledge-aware path recurrent network model. An LSTM mines path information from the knowledge graphs incorporating papers and users. Users are represented by their downloaded, collected and browsed papers, papers are represented by TF-IDF representations of their keywords.

Wang et al. [104] require users to construct knowledge graphs to specify the domain(s) and enter keywords for which recommended papers are suggested. From the keywords they compute initially selected papers. They apply Doc2Vec and emotion-weighted similarity between papers to identify recommendations.

Wang et al. [105] regard paper recommendation targeting a group of people instead of single users and introduce GPMF_ER. They employ a two-step process which first individually predicts papers for users in the group before recommended papers are aggregated. Here users in the group are not considered equal, different importance and reliability weights are assigned such that important persons’ preferences are more decisive of the recommended papers. Together with a different research group two authors again pursued this definition of the paper recommendation problem. Wang et al. [106] recommend papers for groups of users in an approach called GPMF_ER. As with the previous approach they compute TF-IDF vectors of keywords of papers to calculate most similar publications for each user. Probabilistic matrix factorisation is used to integrate these similarities in a model such that predictive ratings of all users and papers can be obtained. In the aggregation phase the number of papers read by a user is determined to replace the importance component.

Xie et al. [111] propose JTIE, an approach incorporating contents, authors and venues of papers to learn paper embeddings. Further, directed citation relations are included into the model. Based on users’ authored and referenced papers personalised recommendations are computed. They consider explainability of recommendations. In a subsequent work part of the researchers again work on this topic. Xie et al. [110] specify on recommendation of papers from different areas for user-provided keywords or papers. They use hierarchical LDA to model evolving concepts of papers and citations as evidence of correlation in their approach.

Yang et al. [112] incorporate the age of papers and impact factors of venues as weights in their citation network-based approach named PubTeller. Papers are clustered by topic, the most popular ones from the clusters most similar to the query terms are recommendation candidates. In this approach, LDA and TF-IDF are used to represent publications.

Yu et al. [113] propose ICN, a general collaborative memory network approach. User and item embeddings are composed by incorporating papers’ neighbourhoods and users’ implicit preferences.

Zhang et al. [115] propose W-Rank, a general approach weighting edges in a heterogeneous author, paper and venue graph by incorporating citation relevance and author contribution. They apply their method on paper recommendation. Network- (via citations) and semantic-based (via AWD) similarity between papers is combined for weighting edges between papers, harmonic counting defines weights of edges between au-
thors and papers. A HITS-inspired algorithm computes the final authority scores. In a subsequent work in a slightly smaller group they focus on a specialised approach for paper recommendation. Here Zhang et al. \[116\] strive to emulate a human expert recommending papers. They construct a heterogeneous network with authors, papers, venues and citations. Citation weights are determined by semantic- and network-level similarity of papers. Lastly, recommendation candidates are re-ranked while combining the weighted heterogeneous network and recency of papers.

Zhao et al. \[117\] present a personalised approach focusing on diversity of results which consists of three parts. First LFM extracts latent factor vectors of papers and users from the users’ interactions history with papers. Then BERT vectors are constructed for each word of the papers, with those vectors as input and the latent factor vectors as label a BiGRU model is trained. Lastly, diversity and a user’s rating weights determine the ranking of recommended publications for the specific user.

3.5 Other relevant Work

We now briefly discuss some papers which did not present novel paper recommendation approaches but are relevant in the scope of this literature review nonetheless.

3.5.1 Surrounding Paper Recommendation

Here we present two works which could be classified as ones to use on top of or in combination with existing paper recommendation systems: Lee et al. \[48\] introduce LIMEADE, a general approach for opaque recommendation systems which can for example be applied on any paper recommendation system. They produce explanations for recommendations as a list of weighted interpretable features such as influential paper terms.

Beierle et al. \[16\] use the recommendation-as-a-service provider Mr. DLib to analyse choice overload in user evaluations. They report several click-based measures and discuss effects of different study parameters on engagement of users.

3.5.2 (R)Evaluations

The following three works can be grouped as ones which provide (r)evaluations of already existing approaches. Their results could be useful for the construction of novel systems: Ostendorff \[73\] suggests considering the context of paper similarity in background, methodology and findings sections instead of undifferentiated textual similarity for scientific paper recommendation.

Mohamed Hassan et al. \[64\] compare different text embedding methods such as BERT, ELMo, USE and InferSent to express semantics of papers. They perform paper recommendation and re-ranking of recommendation candidates based on cosine similarity of titles.

Le et al. \[12\] evaluate the already existing paper recommendation system Mendeley Suggest, which provides recommendations with different collaborative or content-based approaches. They observe different usage behaviours and state utilisation of paper recommendation systems does positively effect users’ professional lives.

3.5.3 Living Labs

Living labs help researchers conduct meaningful evaluations by providing an environment, in which recommendations produced by experimental systems are shown to real users in realistic scenarios \[12\]. We found three relevant works for the area of scientific paper recommendation: Beel et al. \[12\] proposed a living lab for scholarly recommendation built on top of Mr. DLib, their recommender-as-a-service system. They log users’ actions such as clicks, downloads and purchases for related recommended papers. Additionally, they plan to extend their living lab to also incorporate research grant or research collaborator recommendation.

Gingstad et al. \[33\] propose ArXivDigest, an online living lab for explainable and personalised paper recommendations from arXiv. Users can either be suggested papers while browsing their website or via email as a subscription-type service. Different approaches can be hooked into ArXivDigest, the recommendations generated by them can then be evaluated by users. A simple text-based baseline compares user-input topics with articles. Target values of evaluations are users’ clicked and saved papers.

Schaer et al. \[86\] held the Living Labs for Academic Search (LiLAS) where they hosted two shared tasks: dataset recommendation for scientific papers and ad-hoc multi-lingual retrieval of most relevant publications regarding specific queries. To overcome the gap between real-world and lab-based evaluations they allowed integrating participants’ systems into real-world academic search systems, namely LIVIO and GESIS Search.

3.5.4 Multilingual/Cross-lingual Recommendation

The previous survey by Li and Zhou \[55\] identifies cross-language paper recommendation as a future research direction. The following two works could be useful for this aspect: Keller and Munz \[44\] present their results of participating on the CLEF LiLAS challenge where they
tackled recommendation of multilingual papers based on queries. They utilised a pre-computed ranking approach, Solr and pseudo-relevance feedback to extend queries and identify fitting papers.

Safaryan et al. [82] compare different already existing techniques for cross-language recommendation of publications. They compare word by word translation, linear projection from a Russian to an English vector representation, VecMap alignment and MUSE word embeddings.

3.5.5 Related Recommendation Systems

Some recommendation approaches are slightly out of scope of pure paper recommendation systems but could still provide inspiration or relevant results: Ng [69] proposes CBRec, a children’s book recommendation system utilising matrix factorisation. His goal is to encourage good reading habits of children. The approach combines readability levels of users and books with TF-IDF representations of books to find ones which are similar to ones which a child may have already liked.

Patra et al. [75] recommend publications relevant for datasets to increase reusability. Those papers could describe the dataset, use it or be related literature. The authors represent datasets and articles as vectors and use cosine similarity to identify the best fitting papers. Re-ranking them with usage of Word2Vec embeddings results in the final recommendation.

4 Datasets

As the discussed paper recommendation systems utilise different inputs or components of scientific publications and pursue slightly different objectives, datasets to experiment on are also of diverse nature. We do not consider datasets of approaches which do not evaluate [57] or do not evaluate the actual paper recommendation [2,23,35,79,81]. We also do not discuss datasets where only the data sources are mentioned but no remarks are made regarding the size or composition of the dataset [18,99] or ones where we were not able to identify actual numbers [30]. Table 6 gives an overview of datasets used in the evaluation of the considered discussed methods. Many of the datasets are unavailable only few years after publication of the approach. Most approaches utilise their own modified version of a public dataset which makes exact replication of experiments hard. In the following the main underlying data sources and publicly available datasets are discussed. Non-publicly available datasets are briefly described in Table 6.

4.1 dblp based datasets

The dblp computer science bibliography (dblp) is a digital library offering metadata on authors, papers and venues from the area of computer science and adjacent fields [51]. They provide publicly available short-time stored daily and longer-time stored monthly data dumps.

The dblp + Citations v1 dataset builds upon a dblp version from 2010 mapped on AMiner. It contains 1,632,442 publications with 2,327,450 citations.

The dblp + Citations v11 dataset builds upon dblp. It contains 4,107,340 papers, 245,204 authors, 16,209 venues and 36,624,464 citations.

Descriptions of non-public datasets based on dblp (dblp + IEEE + ACM + Pubmed, DBLP paths, DBLP-Citation-network f. AMiner, dblp, DBLP + Citations v8, DBLP-REC, dblp + AMiner KG, dblp + AMiner + venue) can be found in Table 5.

4.2 SPRD based datasets

The Scholarly Paper Recommendation Dataset (SPRD) was constructed by collecting publications written by 50 researchers of different seniority from the area of computer science which are contained in dblp from 2000 to 2006 [96,97,55]. The dataset contains 100,351 candidate papers extracted from the ACM Digital Library as well as citations and references for papers. Relevance assessments of papers relevant to their current interests of the 50 researchers are also included.

A subset of SPRD, SPRD_Senior, which contains only the data of senior researchers can also be constructed [94].

4.3 CiteULike based datasets

CiteULike [18] was a social bookmarking site for scientific papers. It contained papers and their metadata. Users were able to include priorities, tags or comments for papers on their reading list. There were daily data dumps available from which datasets could be constructed.

Citeulike-a [107] contains 5,551 users, 16,980 papers with titles and abstracts from 2004 to 2006 and their 204,986 interactions between users and papers. Papers are represented by their title and abstract.

6 https://dblp.uni-trier.de/xml/
7 https://www.aminer.org/citation
8 https://www.db.moc.1.kyoto-u.ac.jp/~sugiyama/SchPaperRecData.html
9 https://github.com/js05212/citeulike-a
Table 4 Overview of datasets utilised in most recent related work with (unofficial) names, public availability of the possibly modified dataset which was used (A?), and a list of papers it was used in. Datasets are grouped by their underlying data source if possible.

Name	A?	Used by
DBLP + Citations v1	✓	Yang et al. [12]
DBLP + Citations v8	✓	Ma and Wang [69], Ma et al. [61]
dblp + IEEE + ACM + Pulomed	✓	Ali et al. [5], Bulat et al. [50]
DBLP paths	✓	Hua et al. [39]
DBLP-Citation-network f. AMiner	✓	Jing and Yu [31]
dblp	✓	Li et al. [54]
DBLP-REC	✓	Shi et al. [71]
dblp + AMiner KG	✓	Wang et al. [108]
dblp + AMiner + venue	✓	Xie et al. [111]
SPRD	✓	Chen and Han [73]
SPRD	✓	Haruna et al. [66], Sakib et al. [84], Sakib et al. [83]
Citeulike-a	✓	Ahmedi et al. [11], Alfarhood and Cheng [3], Guo et al. [14], L et al. [46], Mohammed Hassan et al. [52], Tang et al. [59], Yu et al. [110], Zhao et al. [111]
Citeulike-t	✓	Alfarhood and Cheng [3]
Citeulike_huge	×	Lu et al. [59]
Citeulike_medium	×	Wang et al. [106]
Citeulike_tiny	×	Wang et al. [106]
ACM paths	×	Hua et al. [39]
ACM citation network V8	×	Nishioka et al. [70], Nishioka et al. [71], Nishioka et al. [72]
Scopus_tiny	×	Chandhuri et al. [22], Li et al. [51], Xie et al. [110]
ScienceDirect+Scopus	×	Xie et al. [110]
AMiner	×	Li et al. [54]
AMiner + Wanfang	×	Du et al. [27]
AMiner_tiny	×	Du et al. [27]
AMiner_huge	×	Waheed et al. [101]
ACM_C-D	×	Xie et al. [110]
AAN_original	✓	Nair et al. [69]
AAN_modified	×	L et al. [46]
AAN_tiny	×	Tanner et al. [110]
Newspaper	×	Collins and Beel [20]
CiteSeer_tiny	×	Kang et al. [43]
CiteSeer_medium	×	Shahid et al. [59]
CiteSeer_tiny	×	Shahid et al. [57]
Patents_tiny	×	Du et al. [28]
Patents	×	Xie et al. [110]
ACM_H-I	×	Xie et al. [110]
Hep-TH graph	×	Liu et al. [59]
arXiv Hep-TH	×	Zhang et al. [111]
MSA	×	Yang et al. [12], Zhang et al. [113], Kang et al. [43]
MAG 2017	×	Zhang et al. [113]
MAG 2018	×	Kanakia et al. [42]
BBC	✓	Afzar et al. [11]
PRSDDataset	✓	Guo et al. [14], L et al. [46]
Physical Review A	×	Kong et al. [53]
ACL selection network	×	Tao et al. [105]
prostate cancer	×	Afzar et al. [11]
Peltarian	×	Berezki [47]
Jabref	×	Collins and Beel [20]
DM	×	Hu et al. [25]
Graphs	×	Xie et al. [110]
SCHOLAT	×	Li et al. [52]
IEEE Xplore	×	Lin et al. [56]
KGs	×	Wang et al. [106]
Wanfang	×	Kang et al. [43]
Watson*for Genomics	×	Sharma et al. [90]
Wikipedia	×	Subathra and Kumar [24]
LibraryThing	×	Zhao et al. [113]

Citeulike-t [107][10] contains 7,947 users, 25,975 papers and 134,860 user-paper interactions. Papers are represented by their pre-processed title and abstract.

The description of a non-public dataset based on CiteUlike (Citeulike_huge, Citeulike_medium, Citeulike_tiny) can be found in Table 5.

4.4 ACM based datasets

The ACM Digital Library (ACM) is a semi-open digital library offering information on scientific authors, papers, citations and venues from the area of computer science[11]. They offer an API to query for information.

[10] https://github.com/js05212/citeulike-t
[11] https://dl.acm.org/
4.5 Scopus based datasets

Scopus is a semi-open digital library containing meta-data on authors, papers and affiliations in different scientific areas. They offer an API to query for data.

Table 5 Description of private datasets utilised in most recent related work with unofficial names. Datasets are grouped by their underlying data source if possible. We used the following abbreviations: user(s) u, paper(s) p, interaction(s) i, author(s) a, venue(s) v, reference(s) r, citation(s) c, term(s) t.

Name	Description	Used by
CiteSeer	u’s browsed p prior to first email from ScienceDirect, p metadata from Scopus, 4,392 recommendation sessions (emails with clicks on p, u’ browsing history)	528,224 p, a, r, discipline tags
Scopus	u: data from Mar 2017 to Oct 2018, 0.1% click-through rate	800 input p from Related-Article Recommendation Dataset from Sowiport
Sowiport	1,100 p, 10 sets of relevant p	152,586 p, 15,708 a, 127,630 keywords, 7653 v, c, discipline labels
AMiner	2,070,699 p, 264,250 v, 1,507,147 a, r35,959 t, 9398 u relations	29,000 r, reference(s), citation(s), term(s)
AMiner + Wanfang	4 mio p, 3 sets: data from 2018 and 2019 (221,070 p, 503,945 a), mathematical analysis (98,702 p, 117,183 a), image processing (49,006 p, 107,200 a)	350,000 c, 428 journals, 29,000 r, reference(s), citation(s)
AMiner_tiny	188 input p, 10 candidate p for each input	3,600 r, reference(s), citation(s), term(s)
AMiner_huge	2,092,156 p, 1,712,433 a, 8,024,869 c, 4,258,615 co-authorships	354,693 keywords, 11,397 u, publication years, 152,586 a, 127,630 keywords, 7653 v, c, discipline labels
ACM H-I	70,090 patents with ownership from 2017, r, ACM CSS tags	107,290 keywords, 503,945 a, 127,630 keywords, 7653 v, c, discipline labels
AAN_graph	43,380 p from AMiner, a, ACM CSS tags	9398 u, reference(s), citation(s), term(s)
AAN_modified	21,455 p from 312 v from NLP, 17,342 a, 113,967 c	29,000 r, reference(s), citation(s), term(s)
Hep-TH	2082 p (ids, titles, publication year), 8194 c, avg. 7.87 c per p, a, v	800 input p from Related-Article Recommendation Dataset from Sowiport
AAN_tiny	21,455 p from 312 v from NLP, 17,342 a, 113,967 c	354,693 keywords, 11,397 u, publication years, 152,586 a, 127,630 keywords, 7653 v, c, discipline labels
RARD_tiny	u: data from Mar 2017 to Oct 2018, 0.1% click-through rate	800 input p from Related-Article Recommendation Dataset from Sowiport
Sowiport	1,100 p, 10 sets of relevant p	152,586 p, 15,708 a, 127,630 keywords, 7653 v, c, discipline labels
HEP_TH	21,455 p from 312 v from NLP, 17,342 a, 113,967 c	354,693 keywords, 11,397 u, publication years, 152,586 a, 127,630 keywords, 7653 v, c, discipline labels
MAG 2017	101,205 p, 190,146 c in 300 conferences	354,693 keywords, 11,397 u, publication years, 152,586 a, 127,630 keywords, 7653 v, c, discipline labels
MAG 2018	based on MAG Azure database from Oct 2018, 206,676,892 p	354,693 keywords, 11,397 u, publication years, 152,586 a, 127,630 keywords, 7653 v, c, discipline labels

Table 5 Description of private datasets utilised in most recent related work with unofficial names. Datasets are grouped by their underlying data source if possible. We used the following abbreviations: user(s) u, paper(s) p, interaction(s) i, author(s) a, venue(s) v, reference(s) r, citation(s) c, term(s) t.
4.6 AMiner based datasets

ArnetMiner (AMiner) is an open academic search system modelling the academic network consisting of authors, papers and venues from all areas. They provide an API to query for information.

Descriptions of non-public datasets based on AMiner (AMiner, AMiner + Wanfang, AMiner_tiny, AMiner_huge, ACM C-D) can be found in Table 5.

4.7 AAN based datasets

The ACL Anthology Network (AAN) is a networked database containing papers, authors and citations from the area of computational linguistics. It consists of three networks representing paper-citation relations, author-collaboration relations and the author-citation relations. The original dataset contains 24,766 papers and 124,857 citations.

Descriptions of non-public datasets based on AAN (AAN_modified, AAN_tiny) can be found in Table 5.

4.8 Sowiport based datasets

Sowiport was an open digital library containing information on publications from the social sciences and adjacent fields. It contained author names, keywords and venue titles by which the constructed social network could be traversed by users. Sowiport cooperated with the recommendation-as-a-service system Mr. DLib.

Descriptions of non-public datasets based on Sowiport (Sowiport, RARD_tiny) can be found in Table 5.

4.9 CiteSeerX based datasets

CiteSeerX is a digital library focused on metadata and full-texts of open access literature. It is the overhauled form of the former digital library CiteSeer.

Descriptions of non-public datasets based on CiteSeerX (CiteSeer, CiteSeer_tiny, CiteSeer_medium) can be found in Table 5.

4.10 Patents based datasets

The Patents dataset provides information on patents and trademarks granted by the United States Patent and Trademark Office.

Descriptions of non-public datasets based on Patents (Patents_tiny, Patents, ACM H-I) can be found in Table 5.

4.11 Hep-TH based datasets

The original unaltered Hep-TH dataset stems from the area of high energy physics theory. It contains papers in a graph which were published between 1993 and 2003. It was released as part of KDD Cup 2003.

Descriptions of non-public datasets based on Hep-TH (Hep-TH graph, arXiv Hep-TH) can be found in Table 5.

4.12 MAG based datasets

The Microsoft Academic Graph (MAG) was an open scientific network containing metadata on academic communication activities. Their heterogeneous graph consists of nodes representing fields of study, authors, affiliations, papers and venues.

Descriptions of non-public datasets based on MAG (MSA, MAG 2017, MAG 2018) can be found in Table 5.

4.13 Others

The following datasets have no common underlying data source: The BBC dataset contains 2,225 BBC news articles which stem from 5 topics. PRSDataset contains 2,453 users, 21,940 items and 35,969 pairs of users and items.

Descriptions of all other non-public datasets can be found in Table 5.

5 Evaluation

Due to the vast differences in approaches and datasets used to apply the methods, there is also a spectrum of used evaluation measures and objectives. In this section
first we observe different notions of relevance of recommended papers and individual assessment strategies for relevance. Afterwards we analyse commonly used evaluation measures and list ones which are only rarely encountered in evaluation of paper recommendation systems. Lastly we shed light on the different types of evaluation which authors conducted.

In this discussion we again only consider paper recommendation systems which also evaluate their actual approach. We disregard approaches which do evaluate other properties [2, 23, 35, 79, 81, 116] or contain no evaluation [57]. Thus we observe 54 different approaches in this analysis.

5.1 Relevance and Assessment

Relevance of recommended publications can be evaluated against multiple target values: clicked papers [22, 53, 99], references [111, 110], references of recently authored papers [54], papers an author interacted with in the past [16], degree-of-relevancy which is determined by citation strength [89], a ranking based on future citation numbers [115] as well as papers accepted [24] or deemed relevant by authors [36, 83].

Assessing the relevance of recommendations can also be conducted in different ways: the top n papers recommended by a system can be judged by either a referee team [104] or single persons [24, 70, 71]. Other options for relevance assessment are the usage of a dataset with user ratings [36, 83] or emulation of users and their interests [1, 54].

Table 6 holds information on utilised relevance indicators and target values which indicate relevance for the 54 discussed approaches. Relevancy describes the method that defines which of the recommended papers are relevant:

- Human rating: The approach is evaluated using assessments of real users of results specific to the approach.
- Dataset: The approach is evaluated using some type of assessment of a target value which is not specific to the approach but from a dataset. The assessment was either conducted for another approach and reused or it was collected independent of an approach.
- Papers: The approach is evaluated by some type of assessment of a target value which is directly generated from the papers contained in the dataset such as citations or their keywords.

The target values in Table 6 describe the entities which the approach tried to approximate:
- Clicked: The approximated target value is derived from users’ clicks on papers.
- Read: The approximated target value is derived from users’ read papers.
- Cited: The approximated target value is derived from cited papers.
- Liked: The approximated target value is derived from users’ liked papers.
- Relevancy: The approximated target value is derived from users’ relevance assessment of papers.
- Other: The approximated target value is derived from other entities, e.g. papers with identical references or interest.

Only three approaches evaluate against multiple target values [19, 28, 99]. Six approaches (11.11%) utilise clicks of users, only one approach (1.85%) uses read papers as target value. Even though cited papers are not the main objective of paper recommendation systems but rather citation recommendation systems, this target was approximated by 13 (24.07%) of the observed systems. Ten approaches (18.52%) evaluated against liked papers, 15 (27.78%) against relevant papers and 13 (24.07%) against some other target value.

5.2 Evaluation Measures

We differentiate between commonly used and rarely used evaluation measures for the task of scientific paper recommendation. They are described in the following sections. Table 6 holds indications of utilised evaluation measures for the 54 discussed approaches. Measures are the methods used to evaluate the approach’s ability to approximate the target value which can be of type precision, recall, F1 measure, nDCG, MMR, MAP or another one.

Out of the observed systems, twelve approaches [1, 26, 28, 46, 55, 61, 65, 67, 70, 71, 72, 102, 111, 110] (22.22%) only report one single measure, all others report at least two different ones.

5.2.1 Commonly Used Evaluation Measures

Bai et al [9] identify precision (P), recall (R), F1, nDCG, MMR and MAP as evaluation features which have been used regularly in the area of paper recommendation systems. Table 7 gives usage percentages of each of these measures in observed related work.

Alfarhood and Cheng [1] argue against the use of precision when utilising implicit feedback. If a user gives no feedback for a paper it could either mean disinterest or that a user does not know of the existence of the specific publication.
5.2.2 Rarely used Evaluation Measures

We found a plethora of rarer used evaluation measures which have either been utilised only by the work they were introduced in or to evaluate few approaches. Our analysis in this aspect might be highly influenced by the narrow time frame we observe. Novel measures might require more time to be adopted by a broader audience. Thus we differentiate between novel rarely used evaluation measures and ones where authors do not explicitly
Measure	Used by	Description
Average precision | 104 | area under precision-recall curve
Receiver operating characteristic | 119 | plot of true positives against false positives
AUC | 51-79 | area under receiver operating characteristic curve
Computation time | 24-26 | time to compute recommendation list
DCG | 22-23 | summed up relevancy divided by logarithm of rank + 1
Click-through-rates | 22-23 | percentage of Clicks on recommendations
Reward | 1-55 | weighted sum of interactions of users with recommendations, e.g. clicked and saved papers
Spearman correlation coefficient | 29-44 | correlation between ranks of paper lists
Hit ratio | 105-113 | percentage of relevant items in top k recommendations
Accuracy | 101 | percentage of relevant papers which the approach identified
Specificity | 101 | true negative rate
Mean absolute error | 105 | average difference between real and predicted values
Root mean square error | 105 | expected squared difference between real and predicted values
Fallout | 105 | percentage of irrelevant recommendations out of all irrelevant papers
Support | 101 | frequency of occurrences of set
TopN | 101 | probability that target keywords are encountered in first n recommended papers
FindN | 101 | number of target keywords which are encountered in first n recommended papers
Coverage | 112 | method’s ability to discover the long tail of papers
Popularity | 112 | average logarithm of the number of ratings of papers in recommendation,
Indra-list similarity | 112 | indicates novelty of results
Average paper popularity | 112 | paper popularity divided by number of recommendations
Serendipity score | 101-112 | dissimilarity between recommended papers, smaller value indicates more diverse recommendation
Success rate | 105 | number of recommendations / 2 × number of keywords
Number of recommended papers | 105 | size of set of recommended papers

Table 8 Overview of rare existing measures used in evaluations of observed approaches.

claim they are novel. A list of rare but already defined evaluation measures can be found in Table 8. In total 25 approaches (46.3%) did use an evaluation measure not considered common.

Novel rarely used Evaluation Measures. In our considered approaches we only encountered three novel evaluation measures: Recommendation quality as defined by Chaudhuri et al. [24] is the acceptance of recommendations by users rated on a Likert scale from 1 to 10.

\[\text{TotNP}_{EU} \] is a measure defined by Manju et al. [30] specifically introduced for measuring performance of approaches regarding the cold start problem. It indicates the number of new publications suggested to users with a prediction value above a certain threshold.

\[\text{TotNP}_{AVG} \] is another measure defined by Manju et al. [30] for measuring performance of approaches regarding the cold start problem. It indicates the average number of new publications suggested to users with a prediction value above a certain threshold.

5.3 Evaluation Types

Evaluations can be classified into different categories. We follow the notion of Beel and Langer [15] who differentiate between user studies, online evaluations and offline evaluations. They define user studies as ones where users’ satisfaction with recommendation results is measured by collecting explicit ratings. Online evaluations are ones where users do not explicitly rate the recommendation results; relevancy is derived from e.g. clicks.

In offline evaluations a ground truth is used to evaluate the approach.

From the 54 observed approaches we found four using multiple evaluation types [27,43,57,59,104]. Twelve (22.22%) were conducting user studies which describe the size and composition of the participant group [21]. Only two approaches [26,30] (3.7%) in the observed papers were evaluated with an online evaluation. We found 44 approaches (81.48%) providing an offline evaluation. Offline evaluations being the most common form of evaluation is unsurprising as this tendency has also been observed in an evaluation of general scientific recommender systems [21]. Offline evaluations are fast and do not require users [21]. Nevertheless the margin by which this form of evaluation is conducted could be rather surprising.

A distinction in lab-based vs. real world user studies can be conducted [14,15]. User studies where participants rate recommendations according to some criteria and are aware of the study are lab-based, all others are considered real world studies. Living labs [33,12,86] for example enable real world user studies. On average the lab-based user studies were conducted with 17.83 users.

Table 9 holds information on the number of participants for all studies as well as the composition of groups in terms of seniority.

For offline evaluation, they can either be ones with an explicit ground truth given by a dataset containing user rankings, implicit ones by deriving user interactions such as liked or cited papers or expert ones with...
manually collected expert ratings [15]. We found 22 explicit offline evaluations (40.74%) corresponding to ones using datasets to estimate relevance (see Table 6) and 21 implicit offline evaluations (38.89%) corresponding to ones using paper information to identify relevant recommendations (see Table 6). We did not find any expert offline evaluations.

6 Open Challenges and Objectives

All paper recommendation approaches which were considered in this survey could have been improved in some way or another. Some papers did not conduct evaluations which would satisfy a critical reader, others could be more convincing if they compared their methods to appropriate competitors. The possible problems we encountered within the papers can be summarised in different open challenges, which papers should strive to overcome. We separate our analysis and discussion of open challenges in those which have already been described by previous literature reviews (see Section 6.1) and ones we identify as new or emerging problems (see Section 6.2). Lastly we briefly discuss the presented challenges (see Section 6.3).

6.1 Challenges Highlighted in Previous Works

In the following we will explain possible shortcomings which were already explicitly discussed in previous literature reviews [9,14,87]. We regard these challenges in light of current paper recommendation systems to identify problems which are nowadays still encountered.

6.1.1 Neglect of User Modelling

Neglect of user modelling has been described by Beel et al. [14] as identification of target audiences’ information needs. They describe the trade-off between specifying keywords which brings recommendation systems closer to search engines and utilising user profiles as input.

Currently only some approaches consider users of systems to influence the recommendation outcome, as seen with Table 6 users are not always part of the input to systems. Instead many paper recommendation systems assume that users do not state their information needs explicitly but only enter keywords or a paper. With paper recommendation systems where users are not considered, the problem of neglecting user modelling still holds.

6.1.2 Focus on Accuracy

Focus on accuracy as a problem is described by Beel et al. [14]. They state putting users’ satisfaction with recommendations on a level with accuracy of approaches does not depict reality. More factors should be considered.

Only over one fourth of current approaches do not only report precision or accuracy but also observe more diversity focused measures such as MMR. We also found usage of less widespread measures to capture different aspects such as popularity, serendipity or click-through-rate.

6.1.3 Translating Research into Practice

The missing translation of research into practice is described by Beel et al. [14]. They mention the small percentage of approaches which are available as prototype as well as the discrepancy between real world systems and methods described in scientific papers.

Only four of our observed approaches definitively must have been available online at any point in time [26, 12, 80, 70]. We did not encounter any of the more complex approaches being used in widespread paper recommendation systems.

6.1.4 Persistence and Authority

Beel et al. [14] describe the lack of persistence and authority in the field of paper recommendation systems as one of the main reasons why research is not adapted in practice.

The analysis of this possible shortcoming of current work could be highly affected by the short time period from which we observed works. We found several groups publishing multiple papers as seen in Table 10 which corresponds to 29.69% of approaches. The most papers a group published was three so this amount still cannot fully mark a research group as authority in the area.

6.1.5 Cooperation

Problems with cooperation are described by Beel et al. [14]. They state even though approaches have been proposed by multiple authors building upon prior work is rare. Corporations between different research groups are also only encountered sporadically.

Here again we want to point to the fact that our observed time frame of less than three years might be too short to make substantive claims regarding this aspect. Table 11 holds information on the different numbers of authors for papers and the percentage of papers out
of the 64 observed ones which are authored by groups of this size. We only encountered little cooperation between different co-author groups (see Haruna et al. [30] and Sakib et al. [83] for an exception). There were several groups not extending their previous work [115,116]. We refrain from analysing citations of related previous approaches as our considered period of less than three years is too short for all publications to have been able to be recognised by the wider scientific community.

6.1.6 Information Scarcity

Information scarcity is described by Beel et al. [14] as researchers’ tendency to only provide insufficient detail to re-implement their approaches. This leads to problems with reproducibility.

Many of the approaches we encountered did not provide sufficient information to make a re-implementation possible: with Afsar et al. [1] it is unclear how the knowledge graph and categories were formed, Collins and Beel [29] do not describe their Doc2Vec enough, Liu et al. [58] do not specify the extraction of keywords for papers in the graph and Tang et al. [99] do not clearly describe their utilisation of Word2Vec. In general, of the 64 observed ones which are authored by groups of this size. We only encountered little cooperation between different co-author groups (see Haruna et al. [30] and Sakib et al. [83] for an exception). There were several groups not extending their previous work [115,116]. We refrain from analysing citations of related previous approaches as our considered period of less than three years is too short for all publications to have been able to be recognised by the wider scientific community.

6.1.6 Information Scarcity

Information scarcity is described by Beel et al. [14] as researchers’ tendency to only provide insufficient detail to re-implement their approaches. This leads to problems with reproducibility.

Many of the approaches we encountered did not provide sufficient information to make a re-implementation possible: with Afsar et al. [1] it is unclear how the knowledge graph and categories were formed, Collins and Beel [29] do not describe their Doc2Vec enough, Liu et al. [58] do not specify the extraction of keywords for papers in the graph and Tang et al. [99] do not clearly describe their utilisation of Word2Vec. In general, of the 64 observed ones which are authored by groups of this size. We only encountered little cooperation between different co-author groups (see Haruna et al. [30] and Sakib et al. [83] for an exception). There were several groups not extending their previous work [115,116]. We refrain from analysing citations of related previous approaches as our considered period of less than three years is too short for all publications to have been able to be recognised by the wider scientific community.

6.1.7 Cold Start

Pure collaborative filtering systems encounter the cold start problem as described by Bai et al. [9] and Shahid et al. [87]. If new users are considered, no historical data is available, they cannot be compared to other users to find relevant recommendations.

While this problem still persists, most current approaches are no pure collaborative filtering based recommendation systems (see Section 3.3.1). Systems using deep learning could overcome this issue [55]. There are approaches specifically targeting this problem [56,91], some [56] also introduced specific evaluation measures (totNP_EU and avgNP_EU) to quantify systems’ ability to overcome the cold start problem.

6.1.8 Sparsity or Reduce Coverage

Bai et al. [9] state the user-paper-matrix being sparse for collaborative filtering based approaches. Shahid et al. [87] also mention this problem as the reduce coverage problem. This trait makes it hard for approaches to learn relevancy of infrequently rated papers.

Again, while this problem is still encountered, current approaches mostly are no longer pure collaborative filtering based systems but instead utilise more information (see Section 3.3.1). Using deep learning in the recommendation process might reduce the impact of this problem [56].

6.1.9 Scalability

The problem of scalability was described by Bai et al. [9]. They state paper recommendation systems should be
able to work in huge, ever expanding environments where new users and papers are added regularly.

A few approaches [35, 43, 83, 104] contain a web crawling step which directly tackles challenges related to outdated or missing data. Some approaches [24, 58] evaluate the time it takes to compute paper recommendations which also indicates their focus on this general problem. But most times scalability is not explicitly mentioned by current paper recommendation systems. There are several works [39, 42, 91, 103, 111] evaluating on bigger datasets with over 1 million papers and which thus are able to handle big amounts of data. Sizes of current relevant real-world data collections exceed this threshold many times over (see e.g. PubMed with over 33 million papers [22] or SemanticScholar with over 203 million papers [23]). Kanakia et al. [42] explicitly state scalability as a problem their approach is able to overcome. Instead of comparing each paper to all other papers they utilise clustering to reduce the number of required computations. They present the only approach running on several hundred million publications. Nair et al. [67] mention scalability issues they encountered even when only considering around 25,000 publications and their citation relations.

6.1.10 Privacy

The problem of privacy in personalised paper recommendation is described by Bai et al. [9]. Shahid et al. [87] also mention this as a problem occurring in collaborative filtering approaches. An issue is encountered when sensitive information such as habits or weaknesses that users might not want to disclose is used by a system. This leads to users’ having negative impressions of systems. Keeping sensitive information private should therefore be a main goal.

In the current approaches, we did not find a discussion of privacy concerns. Some approach even explicitly utilise likes [79] or association rules [3] of other users while failing to mention privacy altogether. In approaches not incorporating any user data, this issue does not arise at all.

6.1.11 Serendipity

Serendipity is described by Bai et al. [9] as an attribute often encountered in collaborative filtering [14]. Usually paper recommender systems focus on identification of relevant papers even though also including not obviously relevant ones might enhance the overall recommendation. Junior researchers could profit from stray recommendations to broaden their horizon, senior researchers might be able to gain knowledge to enhance their research. The ratio between clearly relevant and serendipitous papers is crucial to prevent users from losing trust in the recommender system.

A main objective of the works of Nishioka et al. [70, 71, 72] is serendipity. Other approaches do not mention this aspect.

6.1.12 Unified Scholarly Data Standards

Different data formats of data collections is mentioned as a problem by Bai et al. [9]. They mention digital libraries containing relevant information which needs to be unified in order to use the data in a paper recommendation system. Additionally the combination of datasets could also lead to problems.

Many of the approaches we observe do not consider data collection or preparation as part of the approach, they often only mention the combination of different datasets as part of the evaluation (see e.g. Du et al. [27], Li et al. [53] or Xie et al. [110]). An exception to this general rule are systems which contain a web crawling step for data (see e.g. Ahmad and Afzal [2] or Sakib et al. [83]). Even with this type of approaches the combination of datasets and their diverse data formats is not identified as a problem.

6.1.13 Synonymy

Shahid et al. [87] describe the problem of synonymy encountered in collaborative filtering approaches. They define this problem as different words having the same meaning.

Even though there are still approaches (not necessarily CF ones) utilising basic TF-IDF representations of papers [2, 39, 81, 90], nowadays this problem can be bypassed by using a text embedding method such as Doc2Vec or BERT.

6.1.14 Gray Sheep

Gray sheep is a problem described by Shahid et al. [87] as an issue encountered in collaborative filtering approaches. They describe it as some users not consistently (dis)agreeing with any reference group.

We did not find any current approach mentioning this problem.

6.1.15 Black Sheep

Black sheep is a problem described by Shahid et al. [87] as an issue encountered in collaborative filtering ap-
proaches. They describe it as some users not (dis)agreeing with any reference group.

We did not find any current approach mentioning this problem.

6.1.16 Shilling attack

Shilling attacks are described by Shahid et al. \[87\] as a problem encountered in collaborative filtering approaches. They define this problem as users being able to manually enhance visibility of their own research by rating authored papers as relevant while negatively rating any other recommendations.

Although we did not find any current approach mentioning this problem we assume maybe it is no longer highly relevant as most approaches are no longer pure collaborative filtering ones. Additionally from the considered collaborative filtering approaches no one explicitly stated to feed relevance ratings back into the system.

6.2 Emerging Challenges

In addition to the open challenges discussed in former literature reviews by Bai et al. \[9\], Beel et al. \[14\] and Shahid et al. \[87\] we identified the following problems and derive desirable goals for future approaches from them.

6.2.1 User Evaluation

Paper recommendation is always targeted at human users. But oftentimes an evaluation with real users to quantify users’ satisfaction with recommended publications is simply not conducted \[79\]. Conducting huge user studies is not feasible \[35\]. So sometimes user data to evaluate with is fetched from the presented datasets \[36, 83\] or user behaviour is artificially emulated \[1, 17, 54\]. Noteworthy counter-example\[24\] are the studies by Bult et al. \[20\] who emailed 50 researchers to rate relevancy of recommended articles or Chaudhuri et al. \[24\] who asked 45 participants to rate their acceptance of recommended publications. Another option to overcome this issue is utilisation of living labs as seen with ArXivDigest \[33\], Mr. DLib’s living lab \[12\] or LiLAS for the related tasks of dataset recommendation for scientific publications and multi-lingual document retrieval \[86\].

Desirable goal. Paper recommendation systems targeted at users should always contain a user evaluation with a description of the composition of participants.

\[24\] For a full list of approaches conducting user studies see Table \[9\].

6.2.2 Target audience

Current works mostly fail to clearly characterise the intended users of a system altogether and the varying interests of different types of users are not examined in their evaluations. There are some noteworthy counter-examples: Alsar et al. \[1\] mention cancer patients and their close relatives as intended target audience. Bereczki \[17\] identifies new users as a special group they want to recommend papers to. Hua et al. \[39\] consider users which start diving into a topic which they have not yet researched before. Sharma et al. \[90\] name subject matter experts incorporating articles into a medical knowledge base as their target audience. Shi et al. \[91\] clearly state use cases for their approach which always target users which are unaware of a topic but already have one interesting paper from the area. They strive to recommend more papers similar to the first one.

User characteristics such as registration status of users are already mentioned by Beel et al. \[14\] as a factor which is disregarded in evaluations. We want to extend on this point and highlight the oftentimes missing or inadequate descriptions of intended users of paper recommendation systems. Traits of users and their information needs are not only important for experiments but should also be regarded in the construction of an approach. The targeted audience of a paper recommendation system should influence its suggestions. Bai et al. \[9\] highlight different needs of junior researchers which should be recommended a broad variety of papers as they still have to figure out their direction. They state recommendations for senior researchers should be more in line with their already established interests. Sugiyama and Kan \[95\] describe the need to help discover interdisciplinary research for this experienced user group. Most works do not recognise possible different functions of paper recommendation systems for users depending on their level of seniority. If papers include an evaluation with real persons, they e.g. mix Master’s students with professors but do not address their different goals or expectations from paper recommendation \[70\]. Chaudhuri et al. \[24\] have junior, experienced and expert users as participants of their study and give individual ratings but do not calculate evaluation scores per user group. In some studies the exact composition of test users is not even mentioned (see Table \[9\]).

Desirable goal. Definition and consideration of a specific target audience for an approach and evaluation with members of this audience. If there is no specific person group a system should suit best, this should be discussed, executed and evaluated accordingly.
6.2.3 Recommendation Scenario

Suggested papers from an approach should either be ones to read [104,41], to cite or fulfill another specified information need such as help patients in cancer treatment decision making [1]. Most work does not clearly state which is the case. Instead, recommended papers are only said to be related [4,26], relevant [1,16,21,25,33,39,42,45,53,54,100,110,112], satisfactory [39,58], suitable [19], appropriate and useful [20,83] or a description which scenario is tackled is skipped altogether [3,34,36,79].

In rare cases if the recommendation scenario is mentioned there is the possibility of it not perfectly fitting the evaluated scenario. This can e.g. be seen in the work of Jing and Yu [41] where they propose paper recommendation for papers to read but evaluate papers which were cited. Cited papers should always be ones which have been read beforehand but the decision to cite papers can be influenced by multiple aspects [31].

Desirable Goal. The clear description of the recommendation scenario is important for comparability of approaches as well as the validity of the evaluation.

6.2.4 Fairness/Diversity

Anand et al. [8] define fairness as the balance between relevance and diversity of recommendation results. Only focusing on fit between the user or input paper and suggestions would lead to highly similar results which might not be vastly different from each other. Having diverse recommendation results can help cover multiple aspects of a user query instead of only satisfying the most prominent feature of the query [8]. In general, more diverse recommendations provide greater utility for users [72].

Most of the current paper recommendation systems do not consider fairness but some approaches specifically mention diversity [24,70,71,72], while striving to recommend relevant publications. Thus these systems consider fairness.

Over one fourth of considered approaches with an evaluation report MMR as a measure of their system’s quality. This at least seems to show researchers’ awareness of the general problem of diverse recommendation results.

Desirable Goal. Diversification of suggested papers to ensure fairness of the approach.

6.2.5 Complexity

Paper recommendation systems tend to become more complex, convoluted or composed of multiple parts. We observed this trend by regarding the classification of current systems compared to previous literature reviews (see Section 3.3.1). While systems’ complexity increases, users’ interaction with the systems should not become more complex. If an approach requires user interaction at all, it should be as simple as possible. Users should not be required to construct sophisticated knowledge graphs [104] or enter multiple rounds of keywords for an approach to learn their user profile [22].

Desirable Goal. Maintain simplicity of usage even if approaches become more complex.

6.2.6 Explainability

Confidence in the recommendation system has already been mentioned by Beel et al. [14] as an example of what could enhance users’ satisfaction but what is overlooked in approaches in favour of accuracy. This aspect should be considered with more vigour as the general research area of explainable recommendation has gained immense traction [114]. Gingstad et al. [33] regard explainability as a core component of paper recommendation systems. Xie et al. [111] mention explainability as a key feature of their approach but do not state how they achieve it or if their explanations satisfy users. Suggestions of recommendation systems should be explainable to enhance their trustworthiness and make them more engaging [62]. Here, different explanation goals such as effectiveness, efficiency, transparency or trust and their influence on each other should be considered [10]. If an approach uses neural networks [22,34,46,53] it is often times impossible to explain why the system learned, that a specific suggested paper might be relevant.

Lee et al. [48] introduce a general approach which could be applied to any paper recommendation system to generate explanations for recommendations. Even though this option seems to help solve the described problem it is not clear how valuable post-hoc explanations are compared to systems which construct them directly.

Desirable Goal. The conceptualisation of recommendation systems which comprehensively explain their users why a specific paper is suggested.

6.2.7 Public Dataset

Current approaches utilise many different datasets (see Table 4). A large portion of them are built by the authors such that they are not publicly available for others to use as well [1,28,106]. Part of the approaches already use open datasets in their evaluation but a large portion still does not seem to regard this as a priority (see Table 5). Utilisation of already public data sources or
construction of datasets which are also published and remain available thus should be a priority in order to support reproducibility of approaches.

Desirable Goal Utilisation of publicly available datasets in the evaluation of paper recommendation systems.

6.2.8 Comparability

From the approaches we observed many identified themselves as paper recommendation ones but only evaluated against systems, which are more general recommendation systems or ones utilising some same methodologies but not from the sub-domain of paper recommendation (seen with e.g. Guo et al. [34], Tanner et al. [101] or Yang et al. [112]). While some of the works might claim to only be applied on paper recommendation and be of more general applicability (see e.g. the works by Ahmedi et al. [3] or Alfarhood and Cheng [1]) we state that they should still be compared to ones, which mainly identify as paper recommendation systems as seen in the work of Chaudhuri et al. [22]. Only if a more general approach is compared to a paper recommendation approach, its usefulness for the area of paper recommendation can be fully assessed.

Several times, the baselines to evaluate against are not even other works but artificially constructed ones [2, 35] or no other approach at all [20].

Desirable Goal. Evaluation of paper recommendation approaches, even those which are applicable in a wider context, should always be against at least one paper recommendation system to clearly report relevance of the proposed method in the claimed context.

6.3 Discussion

From the already existing problems, several of them are still encountered in current paper recommendation approaches. Users are not always part of the approaches so users are not always modelled but this also prevents privacy issues. Accuracy seems to still be the main focus of recommendation systems. Novel techniques proposed in papers are not available online or applied by existing paper recommendation systems. Approaches do not provide enough details to enable re-implementation.

Other problems mainly encountered in pure collaborative filtering systems such as the cold start problem, sparsity, synonymy, gray sheep, black sheep and shilling attacks do not seem to be as relevant anymore. We observed a trend towards hybrid models, this recommendation system type can overcome these issues. These hybrid models should also be able to produce serendipitous recommendations.

Unifying data sources is conducted often but nowadays it does not seem to be regarded as a problem. With scalability we encountered the same. Approaches are oftentimes able to handle millions of papers, here they do not specifically mention scalability as a problem they overcome but they also mostly do not consider huge datasets with several hundreds of millions of publications.

Due to the limited scope of our survey we are not able to derive substantive claims regarding cooperation and persistence. We found around 30% of approaches published by groups which authored multiple papers and very few collaborations between different author groups.

As for the newly introduced problems part of the observed approaches conducted evaluations with users, on publicly available datasets and against other paper recommendation systems. Many works considered a low complexity for users.

Target audiences in general were rarely defined, the recommendation scenario was mostly not described. Diversity was considered by few. Overall the explainability of recommendations was dismissed.

To conclude, there are many challenges which are not constantly considered by current approaches. They define the requirements for future works in the area of paper recommendation systems.

7 Conclusion

This literature review of publications targeting paper recommendation between January 2019 and October 2021 provided comprehensive overviews of their methods, datasets and evaluation measures. We showed the need for a richer multi-dimensional characterisation of paper recommendation as former ones no longer seem sufficient in classifying the increasingly complex approaches. We also revisited known open challenges in the current time frame and highlighted possibly under-observed problems which future works could focus on.

Efforts should be made to standardise or better differentiate between the varying notions of relevancy and recommendation scenarios when it comes to paper recommendation. Future work could try revaluate already existing methods with real humans and against other paper recommendation systems. This could for example be realised in an extendable paper recommendation benchmarking system similar to the in a living lab environments ArXivDigest [33], Mr. DLib’s living lab [12] or LiLAS [86] but with the additional property that it also provides build-in offline evaluations. As fairness and explainability of current paper recommendation systems have not been tackled widely, those aspects
should be further explored. Another direction could be the comparison of multiple rare evaluation measures on the same system to help identify those which should be focused on in the future. As we observed a vast variety in datasets utilised for evaluation of the approaches (see Table 1), construction of publicly available and widely reusable ones would be worthwhile.

References

1. Afsar, M.M., Crump, T., Far, B.H.: An exploration on-demand article recommender system for cancer patients information provisioning. In: E. Bell, F. Keshk (eds.) Proceedings of the Thirty-Fourth International Florida Artificial Intelligence Research Society Conference, North Miami Beach, Florida, USA, May 17-19, 2021 (2021). DOI 10.32473/flairs.v34i1.128339. URL https://doi.org/10.32473/flairs.v34i1.128339

2. Ahmad, S., Afzal, M.T.: Combining metadata and co-citations for recommending related papers. Turkish J. Electr. Eng. Comput. Sci. 28(4), 1519–1534 (2020). DOI 10.3906/elk-1908-19. URL https://doi.org/10.3906/elk-1908-19

3. Ahmed, L., Rexhepi, E., Bytyçi, E.: Using association rule mining to enrich user profiles with research paper recommendation. Int. J. Com. Dig. Sys. (2021)

4. Afteh, M., Cheng, J.: Collaborative attentive autoencoder for scientific article recommendation. In: M.A. Wani, T.M. Khoshgoftaar, D. Wang, H. Wang, N. Seliya (eds.) 18th IEEE International Conference On Machine Learning And Applications, ICMLA 2019, Boca Raton, FL, USA, December 16-19, 2019, pp. 168–174. IEEE (2019). DOI 10.1109/ICMLA.2019.00034. URL https://doi.org/10.1109/ICMLA.2019.00034

5. Ali, Z., Qi, G., Muhammad, K., Ali, B., Abro, W.A.: Paper recommendation based on heterogeneous network embedding. Knowl. Based Syst. 210, 106438 (2020). DOI 10.1016/j.knosys.2020.106438. URL https://doi.org/10.1016/j.knosys.2020.106438

6. Alzoghbi, A., Ayala, V.A.A., Fischer, P.M., Lausen, G.: PubRec: Recommending publications based on publicly available meta-data. In: R. Bergmann, S. Görg, G. Müller (eds.) Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier, Germany, October 7-9, 2015, CEUR Workshop Proceedings, vol. 1458, pp. 11–18. CEUR-WS.org (2015). URL http://ceur-ws.org/Vol-1458/DOICRC69_alzoghbi.pdf

7. Amami, M., Faiz, R., Stella, F., Pasi, G.: A graph based approach to scientific paper recommendation. In: A.P. Sheth, A. Ngonga, Y. Wang, E. Chang, D. Slezak, B. Franczyk, R. Alt, X. Tao, R. Unland (eds.) Proceedings of the International Conference on Web Intelligence, Leipzig, Germany, August 23-26, 2017, pp. 777–782. ACM (2017). DOI 10.1145/3106426.3106479. URL https://doi.org/10.1145/3106426.3106479

8. Anand, A., Chakraborty, T., Das, A.: Fairsharing: Balancing relevance and diversity for scientific paper recommendation. In: J.M. Jose, C. Hauff, I.S. Altingövéde, D. Song, D. Albakour, S.N.K. Watt, J. Tait (eds.) Advances in Information Retrieval - 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10193, pp. 753–757 (2017). DOI 10.1007/978-3-319-56608-5_76. URL https://doi.org/10.1007/978-3-319-56608-5_76

9. Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., Xia, F.: Scientific paper recommendation: A survey. IEEE Access 7, 9324–9339 (2019). DOI 10.1109/ACCESS.2018.2890388. URL https://doi.org/10.1109/ACCESS.2018.2890388

10. Balog, K., Radlinski, F.: Measuring recommendation explanation quality: The conflicting goals of explanations. In: J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen, Y. Liu (eds.) Proceedings of the 43rd ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25–30, 2020, pp. 329–338. ACM (2020). DOI 10.1145/3397271.3401032. URL https://doi.org/10.1145/3397271.3401032

11. Beel, J., Carevic, Z., Schaible, J., Neusch, G.: RARD: the related-article recommendation dataset. D Lib Mag. 23(7/8) (2017). DOI 10.1045/july2017-beel. URL https://doi.org/10.1045/july2017-beel

12. Beel, J., Collins, A., Kopp, O., Dietz, L.W., Knoth, P.: Online evaluations for everyone: Mr. dlib’s living lab for scholarly recommendations. In: L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, D. Hiemstra (eds.) Advances in Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14-18, 2019, Proceedings, Part II, Lecture Notes in Computer Science, vol. 11438, pp. 213–219. Springer (2019). DOI 10.1007/978-3-030-15719-7_27. URL https://doi.org/10.1007/978-3-030-15719-7_27

13. Beel, J., Dinesh, S., Mayr, P., Carevic, Z., Jain, R.: Stereotype and most-popular recommendations in the digital library sowipo. In: M. Gáde, V. Trkulja, V. Petras (eds.) Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017), Berlin, Germany, March 13–15, 2017, Schriften zur Informationswissenschaft, vol. 70, pp. 96–108. Verlag Werner Hübsch (2017). DOI 10.18452/1441. URL https://doi.org/10.18452/1441

14. Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: a literature survey. Int. J. Digit. Libr. 17(4), 305–338 (2016). DOI 10.1007/s10799-015-0156-0. URL https://doi.org/10.1007/s10799-015-0156-0

15. Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In: S. Kapidakis, C. Mazurek, M. Werla (eds.) Research and Advanced Technology for Digital Libraries - 19th International Conference on Theory and Practice of Digital Libraries, TPDL 2015, Poznań, Poland, September 14–18, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9316, pp. 153–168. Springer (2015). DOI 10.1007/978-3-319-24592-8_12. URL https://doi.org/10.1007/978-3-319-24592-8_12

16. Beierle, F., Aizawa, A., Collins, A., Beel, J.: Choice overload and recommendation effectiveness in related-article recommendations. Int. J. Digit. Libr. 21(3), 231–246 (2020). DOI 10.1007/s10799-019-00270-7. URL https://doi.org/10.1007/s10799-019-00270-7

17. Berekicz, M.: Graph neural networks for article recommendation based on implicit user feedback and content. Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS) (2021)

18. Bogers, T., van den Bosch, A.: Recommending scientific articles using citeulike. In: P. Pu, D.G. Bridge,
Scientific Paper Recommendation Systems: a Literature Review of recent Publications

25

7. URL

12.

Scientific Paper Recommendation Systems: A Literature Review of recent Publications 25

29. Feng, S., Meng, J., Zhang, J.: News recommendation

28. Du, Z., Tang, J., Ding, Y.; POLAR++: active one-

27. Du, N., Guo, J., Wu, C.Q., Hou, A., Zhao, Z., Gan, D.; Recommendation of academic papers based on heterogeneous information networks. In: 17th IEEE/ACIS International Conference on Computer Systems and Applications, AICCSA 2020, Antalya, Turkey, November 2-5, 2020, pp. 1–6. IEEE (2020). DOI 10.1109/AICCSA50499.2020.9316516. URL https://doi.org/10.1109/AICCSA50499.2020.9316516

26. Collins, A., Beel, J.: Document embeddings vs. keyphrases vs. terms for recommender systems: A large-scale online evaluation. In: M. Bonn, D. Wu, J.S. Downie, A. Martaus (eds.) 19th ACM/IEEE Joint Conference on Digital Libraries, JCDL 2019, Champaign, IL, USA, June 2-6, 2019, pp. 130–133. IEEE (2019). DOI 10.1109/JCDL.2019.00027. URL https://doi.org/10.1109/JCDL.2019.00027

25. Chen, J., Ban, Z.; Academic Paper Recommendation Based on Clustering and Pattern Matching, pp. 171–182. Springer (2019). DOI 10.1007/978-981-32-9298-7_4

24. Chaudhuri, A., Sinhababu, N., Sarma, M., Samanta, D.; Hidden features identification for designing an efficient research article recommendation system. Int. J. Digit. Libr. 22(2), 233–249 (2021). DOI 10.1007/s00799-021-00301-2. URL https://doi.org/10.1007/s00799-021-00301-2

23. Chaudhuri, A., Sarma, M., Samanta, D.; Advanced feature identification towards research article recommendation: A machine learning based approach. In: TEN-CON 2019 - 2019 IEEE Region 10 Conference (TEN-CON), Kochi, India, October 17-20, 2019, pp. 7–12. IEEE (2019). DOI 10.1109/TENCON.2019.8929386. URL https://doi.org/10.1109/TENCON.2019.8929386

22. Chaudhuri, A., Samanta, D., Sarma, M.: Modeling user behaviour in research paper recommendation system. CoRR abs/2107.07831 (2021). URL https://arxiv.org/abs/2107.07831

21. Champiri, Z.D., Asemi, A., Salim, S.S.B.; Meta-analysis of evaluation methods and metrics used in context-aware scholarly recommender systems. Knowl. Inf. Syst. 61(2), 1147–1178 (2019). DOI 10.1007/s10115-019-1632-5. URL https://doi.org/10.1007/s10115-019-1632-5

20. Bulut, B., Kaya, B.; A paper recommendation system based on user interest and citations. In: 2019 1st International Informatics and Software Engineering Conference (UBMYK), pp. 1–5 (2019). DOI 10.1109/UBMYK48245.2019.8965533

19. Bulut, B., Gündoğan, E., Kaya, B., Albajli, R., Kaya, M.; User’s Research Interests Based Paper Recommendation System: A Deep Learning Approach. In: TENCON 2020 - 2020 IEEE Region 10 Conference (TEN-CON), Kochi, India, October 17-20, 2020, pp. 1–6. IEEE (2020). DOI 10.1109/TENCON.2020.9045/march2015-hienert. URL https://doi.org/10.1109/TENCON.2020.9045/march2015-hienert

18. Bulut, B., Kaya, B., Kaya, M.; A paper recommendation system based on user interest and citations. In: 2019 1st International Informatics and Software Engineering Conference (UBMYK), pp. 1–5 (2019). DOI 10.1109/UBMYK48245.2019.8965533

17. Gingstad, K., Jekteberg, Ø.; Arxivdigest: A living lab for personalized scientific literature recommendation. In: M. d’Aquin, S. Dietze, C. Hauff, É. Curry, P. Cudré-Mauroux (eds.) CKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, pp. 3393–3396. ACM (2020). DOI 10.1145/3340531.3417417. URL https://doi.org/10.1145/3340531.3417417

16. Habib, R., Afzal, M.T.; Sections-based bibliographic coupling for research paper recommendation. Scientometrics 119(2), 643–656 (2021). DOI 10.1007/s11192-019-03053-8. URL https://doi.org/10.1007/s11192-019-03053-8

15. Hua, S., Chen, W., Li, Z., Zhao, P., Zhao, L.; Path-based academic paper recommendation. In: Proceedings of the 3rd ACM International Conference on Digital Libraries, June 23-26, 1998, Pittsburgh, PA, USA, pp. 89–98. ACM (1998). DOI 10.1145/276675.276685. URL https://doi.org/10.1145/276675.276685

14. Guo, G., Chen, B., Zhang, X., Liu, Z., Dong, Z., He, X.; Leveraging title-abstract attentive semantics for paper recommendation. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, TheThirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 67–74. AAAI Press (2020). URL https://aaai.org/ojs/index.php/AAAI/article/view/5335

13. Hienert, D.; Digital library research in action: Supporting information retrieval in sowiport. D Lib Mag. 21(3/4) (2015). DOI 10.1045/march2015-hienert. URL https://doi.org/10.1045/march2015-hienert

12. Hu, D., Ma, H., Liu, Y., He, X.; Scientific paper recommendation using author’s dual role citation relationship. In: Z. Shi, S. Vadera, E. Chang (eds.) Intelligent Information Processing X - 11th IFIP TC 12 International Conference, IIP 2020, Hangzhou, China, July 3-6, 2020, Proceedings, IFIP Advances in Information and Communication Technology, vol. 581, pp. 121–132. Springer (2020). DOI 10.1007/978-3-030-46931-3_12. URL https://doi.org/10.1007/978-3-030-46931-3_12

11. Hua, S., Chen, W., Li, Z., Zhao, P., Zhao, L.; Path-based academic paper recommendation. In: Z. Huang, W. Beek, H. Wang, R. Zhou, Y. Zhang (eds.) Proceedings of the 20th ACM Conference on Computer Systems - WISE 2020 - 21st International Conference, Amsterdam, The Netherlands, October 20-24, 2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12343, pp. 343–356. Springer
24. URL
22. URL

Kreutz and Schenkel

49. Lee, J., Lee, K., Kim, J.G.: Personalized academic

47. Le, M., Kayal, S., Douglas, A.: The impact of rec-

46. L, H., Liu, S., Pan, L.: Paper recommendation based on

45. Kong, Y., Hou, A., Zhao, Z., Guo, D.: A hybrid approach

43. Kang, Y., Hou, A., Zhao, Z., Guo, D.: A hybrid approach

41. Jing, S., Yu, S.: Research of paper recommendation sys-

52. Kanakia, A., Shen, Z., Eide, D., Wang, K.: A scal-

42. Kanakia, A., Shen, Z., Eide, D., Wang, K.: A scal-

40. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

39. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

38. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

37. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

36. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

35. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

34. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

33. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

32. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

31. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

30. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

29. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

28. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

27. Ji, Z., Wu, M., Yang, H., Armendáriz-Inigo, J.E.: Tem-

26. Kreutz and Schenkel

25. Kreutz and Schenkel

24. URL

22. URL

21. URL
62. McInerney, J., Lacker, B., Hansen, S., Higley, K., Bouchard, H., Gruson, A., Mehrzad, R.: Explore, exploit, and explain: personalizing explainable recommendation with bandits. In: S. Pera, M.D. Ekstrand, X. Amatriain, J. O’Donovan (eds.) Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, pp. 31–39. ACM (2018). DOI 10.1145/3240323.3240354. URL https://doi.org/10.1145/3240323.3240354

63. Medic, Z., Snapjer, J.: A survey of citation recommendation tasks and methods. J. Comput. Inf. Technol. 28(3), 183–205 (2020). URL http://cit.eprints.org/index.php/CIT/article/view/5160

64. Mohamed Hassan, H.A., Sansonetti, G., Gasparetti, F., Micarelli, A., Beel, J.: Bert, elmo, USE and infersent encoders: The panacea for research-paper recommendation? In: M. Tkalcic, S. Pera (eds.) Proceedings of ACM RecSys 2019 Late-Breaking Results co-located with the 13th ACM Conference on Recommender Systems, RecSys 2019 Late-Breaking Results, Copenhagen, Denmark, September 16-20, 2019, CEUR Workshop Proceedings, vol. 2431, pp. 6–10. CEUR-WS.org (2019). URL http://ceur-ws.org/Vol-2431/paper2.pdf

65. Mohamed Hassan, H.A., Sansonetti, G., Micarelli, A.: Tag-aware document representation for research paper recommendation (2020)

66. Moskalenko, O., Sáez-Trumper, D., Parra, D.: Scalable recommendation of wikipedia articles to editors using representation learning. In: T. Bogers, M. Koolen, C. Petersen, B. Mobasher, A. Tuzhilin, O.S. Shalom, D. Jannach, J.A. Konstan (eds.) Proceedings of the Workshops on Recommendation in Complex Scenarios and the Impact of Recommender Systems co-located with 14th ACM Conference on Recommender Systems (RecSys 2020). Online, September 25, 2020, CEUR Workshop Proceedings, vol. 2697. CEUR-WS.org (2020). URL http://ceur-ws.org/Vol-2697/paper1_complexrec.pdf

67. Nair, A.M., Benny, O., George, J.: Content based scientific article recommendation system using deep learning techniques. In: V. Suma, Z. Baig, H. Wang (eds.) Inventive Systems and Control, pp. 965–977. Springer Singapore, Singapore (2021)

68. Ng, Y.: Research paper recommendation based on content similarity, peer reviews, authority, and popularity. In: 32nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA, November 9-11, 2020, pp. 47–52. IEEE (2020). DOI 10.1109/ICTAI0040.2020.00018. URL https://doi.org/10.1109/ICTAI50040.2020.00018

69. Ng, Y.K.: CBRec: a book recommendation system for children using the matrix factorisation and content-based filtering approaches. International Journal of Business Intelligence and Data Mining 16(2), 129–149 (2020). DOI 10.1504/IJBIDM.2020.104738. URLhttps://www.inderscienceonline.com/doi/abs/10.1504/IJBIDM.2020.104738

70. Nishioka, C., Hauke, J., Scherp, A.: Research paper recommender system with serendipity using tweets vs. diversification. In: A. Jatowt, A. Maeda, S.Y. Syn (eds.) Digital Libraries at the Crossroads of Digital Information for the Future - 21st International Conference on Asia-Pacific Digital Libraries, ICADL 2019, Kuala Lumpur, Malaysia, November 4-7, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11853, pp. 63–70. Springer (2019). DOI 10.1007/978-3-030-34058-2_7. URL https://doi.org/10.1007/978-3-030-34058-2_7

71. Nishioka, C., Hauke, J., Scherp, A.: Towards serendipitous research paper recommender using tweets and diversification. In: A. Douzet, A. Isaac, K. Golub, T. Aslberg, A. Jatowt (eds.) Digital Libraries for Open Knowledge - 23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, September 9-12, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11799, pp. 339–343. Springer (2019). DOI 10.1007/978-3-030-30760-8_29. URL https://doi.org/10.1007/978-3-030-30760-8_29

72. Nishioka, C., Hauke, J., Scherp, A.: Influence of tweets and diversification on serendipitous research paper recommender systems. PeerJ Comput. Sci. 6, e273 (2020). DOI 10.7717/peerj-cs.273. URL https://doi.org/10.7717/peerj-cs.273

73. Ostendorf, M.: Contextual document similarity for content-based literature recommender systems. CoRR abs/2008.00202 (2020). URL https://arxiv.org/abs/2008.00202

74. Ostendorf, M., Breitinger, C., Gipp, B.: A qualitative evaluation of user preference for link-based vs. text-based recommendations of wikipedia articles. CoRR abs/2109.07791 (2021). URL https://arxiv.org/abs/2109.07791

75. Patra, B.G., Maroufy, V., Soltanalianzadeh, B., Deng, N., Zheng, W.J., Roberts, K., Wu, H.: A content-based literature recommendation system for datasets to improve data reusability — a case study on gene expression omnibus (geo) datasets. Journal of Biomedical Informatics 104, 103399 (2020). DOI https://doi.org/10.1016/j.jbi.2020.103399. URL https://www.sciencedirect.com/science/article/pii/S1532046420300277

76. Radev, D.R., Joseph, M.T., Gibson, B., Muthukrishnan, P.: A Bibliometric and Network Analysis of the field of Computational Linguistics. Journal of the American Society for Information Science and Technology (2009)

77. Radev, D.R., Muthukrishnan, P., Qazvinian, V.: The ACL anthology network corpus. In: Proceedings, ACL Workshop on Natural Language Processing and Information Retrieval for Digital Libraries. Singapore (2009)

78. Radev, D.R., Muthukrishnan, P., Qazvinian, V., Abujbara, A.: The acl anthology network corpus. Language Resources and Evaluation pp. 1–26 (2013). DOI 10.1007/s10579-012-9211-2. URL http://dx.doi.org/10.1007/s10579-012-9211-2

79. Rahdari, B., Brusilovsky, P.: User-controlled hybrid recommendation for academic papers. In: Proceedings of the 24th International Conference on Intelligent User Interfaces: Companion, Marina del Ray, CA, USA, March 16-20, 2019, pp. 99–100. ACM (2019). DOI 10.1145/3308557.3308717. URL https://doi.org/10.1145/3308557.3308717

80. Rahdari, B., Brusilovsky, P., Thaker, K., Barria-Pineda, J.: Knowledge-driven wikipedia article recommendation for electronic textbooks. In: C. Alario-Hoyos, M.J. Rodríguez-Triana, M. Scheffel, I.A. Sánchez, S. Dennerlein (eds.) Addressing Global Challenges and Quality Education - 15th European Conference on Technology Enhanced Learning, EC-TEL 2020, Heidelberg, Germany, September 14-16, 2020, pp. 47–52. IEEE (2020). DOI 10.1109/ICTAI50040.2020.00018. URL https://doi.org/10.1109/ICTAI50040.2020.00018

81. Rahdari, B., Brusilovsky, P., Thaker, K., Barria-Pineda, J.: Knowledge-driven wikipedia article recommendation for electronic textbooks. In: C. Alario-Hoyos, M.J. Rodríguez-Triana, M. Scheffel, I.A. Sánchez, S. Dennerlein (eds.) Addressing Global Challenges and Quality Education - 15th European Conference on Technology Enhanced Learning, EC-TEL 2020, Heidelberg, Germany, September 14-16, 2020, pp. 47–52. IEEE (2020). DOI 10.1109/ICTAI50040.2020.00018. URL https://doi.org/10.1109/ICTAI50040.2020.00018
81. Renuka, S., Raj Kiran, G.S.S., Rohit, P.: An unsupervised content-based article recommendation system using natural language processing. In: I. Jeena Jacob, S. Kolanapally Shammu, G. S. P. Ramdruth, P. Falkowski-Gilski (eds.) Data Intelligence and Cognitive Informatics, pp. 165–180. Springer Singapore, Singapore (2021)

82. Safaryan, A., Filchenkov, P., Yan, W., Kutuzov, A., Nikishina, I.: Semantic recommendation system for bilingual corpus of academic papers. In: W.M.P. van der Aalst, V. Batagelj, A. Buzmakov, D.I. Ignatov, A.A. Kalenkova, M.Y. Khachay, O. Kolpova, A. Kutuzov, S.O. Kuzelev, I.A. Lonmazova, N.V. Loukachevitch, I. Makarov, A. Napoli, A. Pancenko, P.M. Pardalos, M. Pellino, A.V. Savchenko, E. Tutubalina (eds.) Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Skolkovo, Moscow, Russia, October 15-16, 2020 Revised Supplementary Proceedings, Communications in Computer and Information Science, vol. 1357, pp. 22–36. Springer (2020). DOI 10.1007/978-3-030-71214-3_3 https://doi.org/10.1007/978-3-030-71214-3_3

83. Sakib, N., Ahmad, R.B., Ahsan, M., Based, M.A., Haruna, K., Haider, J., Gurusamy, S.: A hybrid personalized scientific paper recommendation approach integrating public contextual metadata. IEEE Access 9, 83080–83091 (2021). DOI 10.1109/ACCESS.2021.3086964 URL https://doi.org/10.1109/ACCESS.2021.3086964

84. Sakib, N., Ahmad, R.B., Haruna, K.: A collaborative approach toward scientific paper recommendation using citation context. IEEE Access 8, 51246–51255 (2020). DOI 10.1109/ACCESS.2020.2980589 https://doi.org/10.1109/ACCESS.2020.2980589

85. Samad, A., Islam, M.A., Iqbal, M.A., Aleem, M.: Centrality-based paper citation recommender system. EAI Endorsed Trans. Ind. Networks Intell. Syst. 6(19), e2 (2019). DOI 10.4108/tei.13-6-2019.159121 URL https://doi.org/10.4108/tei.13-6-2019.159121

86. Schaefer, P., Breuer, T., Castro, L.J., Wolff, B., Schäible, J., Tavakolpoursaleh, N.: Overview of ilias 2021 - living labs for academic search (extended overview). In: G. Faggioli, N. Ferro, A. Joly, M. Maistro, F. Piroi (eds.) Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st - to - 24th, 2021, CEUR Workshop Proceedings, vol. 2936, pp. 1668–1699. CEUR-WS.org (2021). URL http://ceur-ws.org/Vol-2936/paper-143.pdf

87. Shahid, A., Afzal, M.T., Abdarr, M., Basiri, M.E., Zhou, X., Yen, N.Y., Chang, J.: Insights into relevant knowledge extraction techniques: a comprehensive review. J. Supercomput. 76(3), 1605–1733 (2020). DOI 10.1007/s11227-019-03009-y. URL https://doi.org/10.1007/s11227-019-03009-y

88. Shahid, A., Afzal, M.T., Alharbi, A., Alijuaid, H., Al-Otaibi, S.: In-text citation’s frequencies-based recommendations of relevant research papers. PeerJ Comput. Sci. 7, e524 (2021). DOI 10.7717/peerj-cs.524. URL https://doi.org/10.7717/peerj-cs.524

89. Shahid, A., Afzal, M.T., Saleem, M.Q., Idrees, M.S.E., Omer, M.K.: Extension of direct citation model using in-text citations. Computers, Materials & Continua 66(3), 3121–3138 (2021). DOI 10.32604/cmc.2021.013809. URL http://www.techscience.com/cmc/v66n3/41078

90. Sharma, B., Willis, V.C., Huitner, C.S., Beatty, K., Snowden, J.L., Xue, S., South, B.R., Jackson, G.P., Weeraratne, D., Michelinii, V.: Predictive article recommendation using natural language processing and machine learning to support evidence updates in domain-specific knowledge graphs. JAMIA Open 3(3), 332–337 (2020). DOI 10.1093/jamiaopen/oaa028. URL https://doi.org/10.1093/jamiaopen/oaa028

91. Shi, H., Ma, W., Zhang, X., Jiang, J., Liu, Y., Chen, S.: A hybrid paper recommendation method by using heterogeneous graph and metadata. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pp. 1–8. IEEE (2020). DOI 10.1109/IJCNN48605.2020.9206733. URL https://doi.org/10.1109/IJCNN48605.2020.9206733

92. Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B.P., Wang, K.: An overview of microsoft academic service (MAS) and applications. In: A. Gangemi, S. Leonardi, A. Panconesi (eds.) Proceedings of the 24th International Conference on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22, 2015 - Companion Volume, pp. 243–246. ACM (2015). DOI 10.1145/2704098.2704389. URL https://doi.org/10.1145/2704098.2704389

93. Subathra, N., Kumar, P.N.: Recommending research article based on user queries using latent dirichlet allocation. In: V.S. Reddy, V.K. Prasad, J. Wang, K.T.V. Reddy (eds.) Soft Computing and Signal Processing, pp. 163–175. Springer Singapore, Singapore (2020)

94. Sugiyama, K., Kan, M.: Scholarly paper recommendation via user’s recent research interests. In: J. Hunter, C. Lagoze, C.L. Giles, Y. Li (eds.) Proceedings of the 2010 Joint International Conference on Digital Libraries, JCDL 2010, Gold Coast, Queensland, Australia, June 21-25, 2010, pp. 29–38. ACM (2010). DOI 10.1145/1816123.1816129. URL https://doi.org/10.1145/1816123.1816129

95. Sugiyama, K., Kan, M.: Serendipitous recommendation for scholarly papers considering relations among researchers. In: G. Newton, M.J. Wright, L.N. Cassel (eds.) Proceedings of the 2011 Joint International Conference on Digital Libraries, JCDL 2011, Ottawa, ON, Canada, June 13-17, 2011, pp. 307–310. ACM (2011). DOI 10.1145/1998076.1998133. URL https://doi.org/10.1145/1998076.1998133

96. Sugiyama, K., Kan, M.: Exploiting potential citation papers in scholarly paper recommendation. In: J.S. Downie, R.H. McDonald, T.W. Cole, R. Sanderson, F. Shipman (eds.) 13th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13, Indianapolis, IN, USA, July 22 - 26, 2013, pp. 153–162. ACM (2013). DOI 10.1145/2467696.2467701. URL https://doi.org/10.1145/2467696.2467701

97. Sugiyama, K., Kan, M.: A comprehensive evaluation of scholarly paper recommendation using potential citation papers. Int. J. Digit. Libr. 16(2), 91–109 (2015). DOI 10.1007/s00799-014-0122-2. URL https://doi.org/10.1007/s00799-014-0122-2

98. Symeonidis, P., Kirjackaja, L., Zanker, M.: Session-based news recommendations using simrank on multimodal graphs. Expert Syst. Appl. 180, 115028 (2021). DOI 10.1016/j.eswa.2021.115028. URL https://doi.org/10.1016/j.eswa.2021.115028

99. Tang, H., Liu, B., Qian, J.: Content-based and knowledge graph-based paper recommendation: Exploring user preferences with the knowledge graphs for scientific paper recommendation. Concurr. Comput. Pract.
Scientific Paper Recommendation Systems: a Literature Review of recent Publications

100. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Y. Li, B. Liu, S. Sarawagi (eds.) Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pp. 990–998. ACM (2008). DOI 10.1145/1401890.1402008. URL https://doi.org/10.1145/1401890.1402008

101. Tanner, W., Akbas, E., Hasan, M.: Paper recommendation based on citation relation. In: C. Baru, J. Huan, L. Khan, X. Hu, R. Ak, Y. Tian, R.S. Bargc, C. Zaniolo, K. Lee, Y.F. Ye (eds.) 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, December 9-12, 2019, pp. 3053–3059. IEEE (2019). DOI 10.1109/BigData47090.2019.9006200. URL https://doi.org/10.1109/BigData47090.2019.9006200

102. Tao, M., Yang, X., Gu, G., Li, B.: Paper Recommendation Based on LDA and PageRank, pp. 571–584. Springer (2020). DOI 10.1007/978-981-15-8101-4_51

103. Waheed, W., Imran, M., Raza, B., Malik, A.K., Khat- tak, H.A.: A hybrid approach toward research paper recommendation using centrality measures and author ranking. IEEE Access 7, 33145–33158 (2019). DOI 10.1109/ACCESS.2019.2900520. URL https://doi.org/10.1109/ACCESS.2019.2900520

104. Wang, B., Weng, Z., Wang, Y.: A novel paper recommendation method empowered by knowledge graph: for research beginners. CoRR abs/2103.08819 (2021). URL https://arxiv.org/abs/2103.08819

105. Wang, G., Zhang, X., Wang, H., Chu, Y., Shao, Z.: Group-oriented paper recommendation with probabilistic matrix factorization and evidential reasoning in scientific social networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems pp. 1–15 (2021). DOI 10.1109/TSMC.2021.3072426

106. Wang, H., Chen, B., Li, W.: Collaborative topic regression with social regularization for tag recommendation. In: F. Rossi (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 5-9, 2013, pp. 2719–2725. IJCAI/AAAI (2013). URL http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/7006

107. Xie, Y., Sun, Y., Bertino, E.: Learning domain semantics and cross-domain correlations for paper recommendation. In: F. Díaz, C. Shah, T. Suel, P. Castells, R. Jones, T. Sakai (eds.) SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pp. 706–715. ACM (2021). DOI 10.1145/3404835.3462975. URL https://doi.org/10.1145/3404835.3462975

110. Xie, Y., Wang, S., Pan, W., Tang, H., Sun, Y.: Embedding based personalized new paper recommendation. In: Y. Sun, D. Liu, H. Liao, H. Fan, L. Gao (eds.) Computer Supported Cooperative Work and Social Computing, pp. 558–570. Springer Singapore, Singapore (2021)

111. Yu, M., Hu, Y., Li, X., Zhao, M., Xu, T., Liu, H., Xu, L., Yu, R.: Paper recommendation with item-level collaborative memory network. In: C. Douligeri, D. Kara- giannis, D. Apostolou (eds.) Knowledge Science, Engineering and Management - 12th International Conference, KSEM 2019, Athens, Greece, August 28-30, 2019, Proceedings, Part I, Lecture Notes in Computer Science, vol. 11775, pp. 141–152. Springer (2019). DOI 10.1007/978-3-030-29551-6_13. URL https://doi.org/10.1007/978-3-030-29551-6_13

114. Zhang, Y., Chen, X.: Explainable recommendation: A survey and new perspectives. Found. Trends Inf. Retr. 14(1), 1–101 (2020). DOI 10.1561/1500000066. URL https://doi.org/10.1561/1500000066

115. Zhang, Y., Wang, M., Gottward, F., Saberi, M., Chang, E.: Ranking scientific articles based on bibliometric networks with a weighting scheme. Journal of Informetrics 13(2), 616–634 (2019). DOI https://doi.org/10.1016/j.joi.2019.03.013. URL https://www.sciencedirect.com/science/article/pii/S1751157718302390

116. Zhu, Y., Lin, Q., Lu, H., Shi, K., Qiu, P., Niu, Z.: Towards expert preference on academic article recommendation using bibliometric networks. In: W. Lu, K.Q. Zhu (eds.) Trends and Applications in Knowledge Discovery and Data Mining, pp. 11–19. Springer International Publishing, Cham (2020)

117. Zhao, X., Kang, H., Feng, T., Meng, C., Nie, Z.: A hybrid model based on LFM and bigru toward research paper recommendation. IEEE Access 8, 188628–188640 (2020). DOI 10.1109/ACCESS.2020.3031281. URL https://doi.org/10.1109/ACCESS.2020.3031281

118. Zhu, Y., Lin, Q., Lu, H., Shi, K., Qiu, P., Niu, Z.: Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks. Knowl. Based Syst. 215, 106744 (2021). DOI 10.1016/j.knosys.2021.106744. URL https://doi.org/10.1016/j.knosys.2021.106744