FALTINGS EXTENSION AND HODGE-TATE FILTRATION FOR ABELIAN VARIETIES OVER p-ADIC LOCAL FIELDS WITH IMPERFECT RESIDUE FIELDS

TONGMU HE

Abstract. Let K be a complete discrete valuation field of characteristic 0 with not necessarily perfect residue field of characteristic $p > 0$. We define a Faltings extension of \mathcal{O}_K over \mathbb{Z}_p, and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.

Contents

1. Introduction 1
2. Notation 3
3. Review of Hyodo’s Computation of Galois Cohomology Groups of $C(r)$ 3
4. Faltings Extension 6
5. Fontaine’s Injection 8
6. Weak Hodge-Tate Representations 9
7. Hodge-Tate Filtration for Abelian Varieties 10
References 12

1. Introduction

1.1. Let K be a complete discrete valuation field of characteristic 0, with residue field k of characteristic $p > 0$. Let \overline{K} be an algebraic closure of K, G_K the Galois group of \overline{K} over K, C the p-adic completion of \overline{K}. We denote by $C(r)$ the r-th Tate twist. For an abelian variety X over K, we denote its Tate module by $T_p(X)$. When k is perfect and X has good reduction, Tate [Tat67] constructed a canonical G_K-equivariant exact sequence

\begin{equation}
0 \rightarrow H^1(X, \mathcal{O}_X) \otimes_K C(1) \rightarrow \text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1)) \rightarrow H^0(X, \Omega^1_{X/K}) \otimes_K C \rightarrow 0.
\end{equation}

(1.1.1)

In the same paper, Tate also computed the Galois cohomology groups of $C(r)$. He proved in particular that $H^1(G_K, C(r)) = 0$ for any $r \neq 0$, which implies that the sequence (1.1.1) has a G_K-equivariant splitting, and that $H^0(G_K, C(r)) = 0$ for any $r \neq 0$, which implies that the splitting is unique. Tate conjectured that for any proper smooth scheme X over K, there is a canonical G_K-equivariant decomposition (called the Hodge-Tate decomposition)

\begin{equation}
H^0_{et}(X_{\overline{K}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C = \bigoplus_{i=0}^n H^1(X, \Omega^{n-i}_{X/K}) \otimes_K C(i - n).
\end{equation}

(1.1.2)

Then subsequently Raynaud used the semistable reduction theorem to show that any abelian variety over K admits a Hodge-Tate decomposition ([sga72] IX 3.6, 5.6). Afterwards, Fontaine [Fon82] gave a new proof for general abelian varieties. He constructed a canonical map $H^0(X, \Omega^1_{X/K}) \rightarrow \text{Hom}_{\mathbb{Z}_p[G_K]}(T_p(X), C(1))$, by computing $\Omega^1_{\overline{\mathbb{Q}_p}/\mathbb{Q}_p}$ and pulling back differentials. The conjecture of Tate was finally settled by Faltings [Fal88, Fal02] and Tsuji [Tsu99, Tsu02] independently.

When k is not necessarily perfect, Hyodo proved that there is still an exact sequence (1.1.1) for abelian varieties with good reduction, following the same argument as in [Tat67] ([Hyo86] Remark 1). But the sequence does not split in general ([Hyo86] Theorem 3). In this paper, we will construct the exact sequence (1.1.1) for general abelian varieties by generalizing Fontaine’s method to the imperfect residue field case.
We remark that Scholze [Sch13] has generalized the conjecture of Tate to any proper smooth rigid-analytic variety X over C. He proved that there is a canonical filtration (called the Hodge-Tate filtration) \Fil^i on $H^i_{\et}(X, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C$, such that
\begin{equation}
(1.1.3) \quad \Fil^i(H^i_{\et}(X, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C)/ \Fil^{i+1}(H^i_{\et}(X, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C) = H^i(X, \Omega^{n-i}_{X/C}) \otimes_C C(i - n).
\end{equation}

1.2. For any abelian group M, we set
\begin{equation}
(1.2.1) \quad T_p(M) = \text{Hom}_\mathbb{Z}([1/p]/\mathbb{Z}, M), \ V_p(M) = \text{Hom}_\mathbb{Z}([1/p], M).
\end{equation}

In section 4, we construct a Faltings extension of \mathcal{O}_K over \mathbb{Z}_p. It is a canonical exact sequence of C-G_K-modules which splits as a sequence of C-modules (cf. 4.4),
\begin{equation}
(1.2.2) \quad 0 \longrightarrow C(1) \overset{\iota}{\longrightarrow} V_p(\Omega^1_{C/\mathbb{Q}_p}) \overset{\nu}{\longrightarrow} C \otimes_{\mathcal{O}_C} (\mathcal{O}_{K/\mathbb{Q}_p} \otimes_{\mathcal{O}_K} \Omega^1_{\mathcal{O}_K/\mathbb{Z}_p})^\wedge \longrightarrow 0,
\end{equation}
where $(-)^\wedge$ denotes the p-adic completion. Based on Hyodo’s computation of Galois cohomology (cf. 3.8), we will show that the connecting map of the above sequence
\begin{equation}
(1.2.3) \quad \delta : (C \otimes_{\mathcal{O}_C} (\mathcal{O}_{K/\mathbb{Q}_p} \otimes_{\mathcal{O}_K} \Omega^1_{\mathcal{O}_K/\mathbb{Z}_p})^\wedge)^{G_K} \longrightarrow H^1(G_K, C(1))
\end{equation}
is an isomorphism (cf. 4.5).

Following Fontaine, we deduce from the above sequence and its cohomological properties a canonical K-linear injective homomorphism (cf. 5.6)
\begin{equation}
(1.2.4) \quad \rho : H^0(X, \Omega^1_{X/K}) \longrightarrow \text{Hom}_{\mathbb{Z}_p[G_K]}(T_p(X), V_p(\Omega^1_{C/\mathbb{Q}_p})).
\end{equation}

The arguments are essentially the same as in [Fon82].

Our main result can be stated as follows (cf. 7.4, 7.5, 7.6):

Theorem 1.3. For any abelian variety X over K, there is a canonical exact sequence of C-G_K-modules
\begin{equation}
(1.3.1) \quad 0 \longrightarrow H^1(X, \mathcal{O}_X) \otimes_K C(1) \overset{\psi}{\longrightarrow} \text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1)) \overset{\phi}{\longrightarrow} H^0(X, \Omega^1_{X/K}) \otimes_K C \longrightarrow 0
\end{equation}
satisfying the following properties:
(i) Any C-linear retraction of ι in (1.2.2) induces a C-linear section of ϕ. More precisely, we have a commutative diagram
\begin{equation}
(1.3.2) \quad \text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1)) \overset{\phi}{\longrightarrow} H^0(X, \Omega^1_{X/K}) \otimes_K C \quad \pi \quad \rho \quad \text{Hom}_{\mathbb{Z}_p}(T_p(X), V_p(\Omega^1_{C/\mathbb{Q}_p}))
\end{equation}
where ρ is induced by the map (1.2.4) and π is induced by any retraction of ι in (1.2.2).
(ii) The connecting map δ' associated to (1.3.1) fits into a commutative diagram
\begin{equation}
(1.3.3) \quad H^0(X, \Omega^1_{X/K}) \overset{\delta'}{\longrightarrow} H^1(G_K, H^1(X, \mathcal{O}_X) \otimes_K C(1)) \quad \rho \quad \text{Hom}_{\mathbb{Z}_p}(T_p(X), \Omega^1_{C/\mathbb{Q}_p} \otimes_{\mathcal{O}_K} \mathcal{O}_{K/\mathbb{Z}_p}) \overset{\psi'}{\longrightarrow} \text{Hom}_{\mathbb{Z}_p}(T_p(X), C \otimes_{\mathcal{O}_C} (\mathcal{O}_{K/\mathbb{Q}_p} \otimes_{\mathcal{O}_K} \Omega^1_{\mathcal{O}_K/\mathbb{Z}_p})^\wedge)
\end{equation}
where ρ is the map (1.2.4), π' is induced by $-\nu$ of (1.2.2), and the unlabelled arrow is induced by δ^{-1} (1.2.3) and ψ of (1.3.1).

Corollary 1.4. For any abelian variety X over K, the sequence (1.3.1) splits if and only if the image of ρ (1.2.4) lies in $\text{Hom}_{\mathbb{Z}_p[G_K]}(T_p(X), C(1))$. In fact, when it splits, the splitting is unique.

Remark 1.5. Caraiani and Scholze [CS17] have constructed a relative version of Hodge-Tate filtration for proper smooth morphisms of adic spaces. And recently, Abbes and Gros [AG20] have constructed a relative version of Hodge-Tate spectral sequence for projective smooth morphisms of schemes.
2. Notation

2.1. Let \(K \) be a complete discrete valuation field of characteristic 0, with residue field \(k \) of characteristic \(p > 0 \). Let \(\overline{K} \) be an algebraic closure of \(K \), \(G_K \) the Galois group of \(\overline{K} \) over \(K \). Let \(C \) be the \(p \)-adic completion of \(\overline{K} \), \(v_p \) the valuation on \(C \) such that \(v_p(p) = 1 \), \(\| \cdot \|_p \) the absolute value on \(C \) such that \(|p|_p = 1/p \). We fix a complete discrete valuation subfield \(K_0 \) of \(K \) such that \(\mathcal{O}_K/p\mathcal{O}_K = k \) (by Cohen structure theorem, cf. [Gro64] IV 19.8.6). We remark that \(K/K_0 \) is a totally ramified finite extension.

We fix elements \((u_i)_{i \in I} \) of \(\mathcal{O}_K \) such that the reductions \((\pi_i)_{i \in I} \) form a \(p \)-base of \(k \). For each \(i \in I \), we fix elements \((w_{im})_{m \geq 0} \) of \(\mathcal{O}_K \) such that \(w_{im+1} = w_{im} \) and \(w_{i0} = u_i \). We denote by \((e_i)_{i \in I} \) the standard basis of \(\oplus_{i \in I} \mathbb{Z} \).

2.2. For any discrete valuation field \(L \) of characteristic 0, with residue field of characteristic \(p \), we denote by

\[
\hat{\Omega}^1_{\mathcal{O}_L} = (\Omega^1_{\mathcal{O}_L/p})^\wedge
\]

the \(p \)-adic completion of the module of differentials of \(\mathcal{O}_L \) over \(\mathbb{Z}_p \).

For any algebraic extension \(L' \) over \(L \), we set

\[
\hat{\Omega}^1_{\mathcal{O}_L}(\mathcal{O}_{L'}) = \lim_{L_1/L} \hat{\Omega}^1_{\mathcal{O}_{L_1}},
\]

where \(L_1 \) runs through all finite subextensions of \(L'/L \). We remark that \(\hat{\Omega}^1_{\mathcal{O}_L}(\mathcal{O}_{L'}) = \hat{\Omega}^1_{\mathcal{O}_{L_1}}(\mathcal{O}_{L'}) \) for any finite subextension \(L_1 \) of \(L'/L \), and that \(\hat{\Omega}^1_{\mathcal{O}_L}(\mathcal{O}_L) = \hat{\Omega}^1_{\mathcal{O}_{L_1}}(\mathcal{O}_{L_1}) \).

2.3. For any abelian group \(M \), we define

\[
T_p(M) = \lim_{x \to px} M[p^n] = \text{Hom}_Z(\mathbb{Z}[1/p]/\mathbb{Z}, M),
\]

\[
V_p(M) = \lim_{x \to px} M = \text{Hom}_Z(\mathbb{Z}[1/p], M).
\]

Being an inverse limit of \(\mathbb{Z} \)-modules each killed by some power of \(p \), \(T_p(M) \) is a \(p \)-adically complete \(\mathbb{Z}_p \)-module ([Jan88] 4.4). If \(M \) is \(p \)-primary torsion, then \(V_p(M) = T_p(M) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \), and thus it has a natural \(\mathbb{Q}_p \)-module structure. If \(M \) is a \(\mathbb{Z}_p \)-module, then \(T_p(M) = \text{Hom}_{\mathbb{Z}_p}(\mathbb{Q}_p/\mathbb{Z}_p, M) \), \(V_p(M) = \text{Hom}_{\mathbb{Z}_p}(\mathbb{Q}_p, M) \).

We set \(\mathbb{Z}_p(1) = T_p(\mathbb{Q}_p) \), a free \(\mathbb{Z}_p \)-module of rank 1 with continuous \(G_K \)-action. For any \(\mathbb{Z}_p \)-module \(M \) and \(r \in \mathbb{Z} \), we set \(M(r) = M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(1)^{\otimes r} \), the \(r \)-th Tate twist of \(M \). Let \(X \) be an abelian variety over \(K \). We set \(T_p(X) = T_p(X(\overline{K})) \) and \(V_p(X) = V_p(X(\overline{K})) \).

3. Review of Hyodo’s Computation of Galois Cohomology Groups of \(C(r) \)

Lemma 3.1. Let \(B/A \) be a finite extension of discrete valuation rings, whose fraction field extension and residue field extension are both separable. Let \(R \) be a subring of \(A \). Then the canonical map \(B \otimes_A \Omega^1_{A/R} \to \Omega^1_{B/R} \) is injective.

Proof. After replacing \(A \) by its maximal unramified extension in \(B \), we may assume that \(B \) is totally ramified over \(A \). Hence, \(B \) is of the form \(A[X]/(f(X)) \) for some irreducible polynomial \(f \in A[X] \). Let \(x \) be the image of \(X \) in \(B \). Then we have

\[
(\oplus_{i \in I} \mathcal{O}_{K_0})^\wedge \overset{\sim}{\longrightarrow} \Omega^1_{\mathcal{O}_{K_0}}, \ e_i \mapsto d \log u_i, \ \forall i \in I.
\]

Lemma 3.2 ([Hyo86] 4-4). There is an isomorphism of \(\mathcal{O}_{K_0} \)-modules

\[
(\oplus_{i \in I} \mathcal{O}_{K_0})^\wedge \overset{\sim}{\longrightarrow} \Omega^1_{\mathcal{O}_{K_0}}, \ e_i \mapsto d \log u_i, \ \forall i \in I.
\]
Proof. As \((\overline{w})_{i \in I}\) form a \(p\)-base of the residue field of \(O_{K_0}\), we have \(\Omega_{O_{K_0}/\mathbb{Z}_p}^1 \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p\mathbb{Z}_p = \Omega_{K/p}^1 = \bigoplus_{i \in I} k_i\), where \(e_i\) corresponds to \(d \log \overline{w}_i\). Since \(O_{K_0}\) is flat over \(\mathbb{Z}_p\) and \(k\) is formally smooth over \(\mathbb{F}_p\), \(O_{K_0}/p^nO_{K_0}\) is formally smooth over \(\mathbb{Z}_p/p^n\mathbb{Z}_p\) for each \(n \geq 1\) ([Gro64] 0IV 19.7.1, [Sta20] 031L). In particular, \(\Omega_{O_{K_0}/\mathbb{Z}_p}^1 \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p^n\mathbb{Z}_p\) is a projective \(O_{K_0}/p^nO_{K_0}\)-module. Hence, we have an exact sequence

\[
0 \to \Omega_{O_{K_0}/\mathbb{Z}_p}^1 \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p\mathbb{Z}_p \to \Omega_{O_{K_0}/\mathbb{Z}_p}^1 \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p^n\mathbb{Z}_p \to \Omega_{O_{K_0}/\mathbb{Z}_p}^1 \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p^{n-1}\mathbb{Z}_p \to 0,
\]

from which we get isomorphisms \(\bigoplus_{i \in I} O_{K_0}/p^nO_{K_0} \xrightarrow{\sim} \Omega_{O_{K_0}/\mathbb{Z}_p}^1 \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p^n\mathbb{Z}_p\) by induction. The conclusion follows by taking limit over \(n\). \(\square\)

Proposition 3.3 ([Hyo86] 4-2-1). There is an exact sequence of \(O_K\)-modules

\[
0 \to \left(\bigoplus_{i \in I} O_K \right) \overset{\theta}{\to} \hat{\Omega}_{O_K}^1 \to \Omega_{O_K/O_{K_0}}^1 \to 0,
\]

where \(\theta(e_i) = d \log u_i\) for any \(i \in I\).

Proof. The sequence of modules of differentials of \(O_K/O_{K_0}/\mathbb{Z}_p\),

\[
0 \to O_K \otimes_{O_{K_0}} \Omega_{O_{K_0}/\mathbb{Z}_p}^1 \to \Omega_{O_K/O_{K_0}}^1 \to 0,
\]

is exact by 3.1. Passing to \(p\)-adic completions, as \(\Omega_{O_K/O_{K_0}}^1\) is killed by a power of \(p\), we still get an exact sequence ([Sta20] 0BNG). The conclusion follows from 3.2 and the isomorphism \(O_K \otimes_{O_{K_0}} \left(\bigoplus_{i \in I} O_K \right) \overset{\sim}{\to} \left(\bigoplus_{i \in I} O_K \right)^\wedge\) as \(O_K\) is finite free over \(O_{K_0}\). \(\square\)

Lemma 3.4 ([Hyo86] 4-4). Let \(M_0 = \bigcup_{i \in I, m \geq 0} K_0(w_i m) \subseteq \overline{K}\). Then there is an isomorphism of \(O_{M_0}\)-modules

\[
M_0 \otimes_{O_{K_0}} \left(\bigoplus_{i \in I} O_K \right)^\wedge \overset{\sim}{\to} \hat{\Omega}_{O_{K_0}}^1 (O_{M_0}).
\]

Proof. For an integer \(N > 0\) and a finite subset \(J \subseteq I\), let \(L_0 = \bigcup_{j \in J} K_0(w_i N)\). Then by 3.2, \(\left(\bigoplus_{i \in I} O_L \right)^\wedge\) is isomorphic to \(\hat{\Omega}_{O_{K_0}}^1\) by sending \(e_i\) to \(d \log w_i N\) if \(i \in J\), and to \(d \log u_i\) if \(i \notin J\). The conclusion follows by taking colimit over \(J\) and \(N\). \(\square\)

Lemma 3.5 ([Hyo86] 4-7). With the same notation as in 3.4, let \(M\) be a finite extension of \(M_0\). Then there is a canonical exact sequence of \(O_M\)-modules

\[
0 \to O_M \otimes_{O_{M_0}} \hat{\Omega}_{O_{K_0}}^1 (O_{M_0}) \to \hat{\Omega}_{O_{K_0}}^1 (O_M) \to \Omega_{O_M/O_{M_0}}^1 \to 0.
\]

Proof. We notice that \(M_0\) has perfect residue field. Let \(M_{\text{ur}}\) be the maximal unramified subextension of \(M/M_0\), \(f \in O_{M_{\text{ur}}}[X]\) the monic minimal polynomial of a uniformizer \(\varpi\) of \(O_M\). Then we have \(O_M = O_{M_{\text{ur}}}[X]/(f(X))\). For a sufficiently large finite subextension \(L_1\) of \(M_{\text{ur}}/K_0\) such that \(f \in O_{L_1}[X]\), \(L_2 = L_1(\varpi)\) is totally ramified over \(L_1\). The same argument as in 3.3 gives us a canonical exact sequence

\[
0 \to O_{L_2} \otimes_{O_{L_1}} \hat{\Omega}_{O_{K_0}}^1 (O_{L_1}) \to \hat{\Omega}_{O_{K_0}}^1 (O_{L_2}) \to \Omega_{O_{L_2}/O_{L_1}}^1 \to 0.
\]

By taking colimit over \(L_1\), we get an exact sequence

\[
0 \to O_M \otimes_{O_{M_{\text{ur}}}} \hat{\Omega}_{O_{K_0}}^1 (O_{M_{\text{ur}}}) \to \hat{\Omega}_{O_{K_0}}^1 (O_M) \to \Omega_{O_M/O_{M_{\text{ur}}}}^1 \to 0.
\]

A similar colimit argument shows that \(\hat{\Omega}_{O_{K_0}}^1 (O_{M_{\text{ur}}}) = O_{M_{\text{ur}}} \otimes_{O_{M_0}} \hat{\Omega}_{O_{K_0}}^1 (O_{M_0})\). The conclusion follows from (3.5.3). \(\square\)

Proposition 3.6 ([Hyo86] 4-2-2). There is an exact sequence of \(O_{\overline{K}}\)-\(G_K\)-modules which splits as a sequence of \(O_{\overline{K}}\)-modules,

\[
0 \to \overline{K}/a(1) \overset{\vartheta}{\to} \hat{\Omega}_{O_{\overline{K}}}^1 (O_{\overline{K}}) \to \overline{K} \otimes_{O_{\overline{K}}} \left(\bigoplus_{i \in I} O_K \right)^\wedge \to 0,
\]

where \(a = \{ x \in \overline{K} \mid v(x) \geq -1/(p-1) \}\), and \(\vartheta(p^{-k} \otimes (\zeta_n)_m) = d \log \zeta_k\) for any \(k \in \mathbb{N}\). The map \(\overline{K} \otimes_{O_{\overline{K}}} \left(\bigoplus_{i \in I} O_K \right)^\wedge \to \hat{\Omega}_{O_{\overline{K}}}^1 (O_{\overline{K}})\), sending \(p^{-m} \otimes e_i\) to \(d \log w_i\) for any \(i \in I\) and \(m \in \mathbb{N}\), gives a splitting of the sequence.
Proof. With the same notation as in 3.4, let M run through all finite subextensions of \overline{K}/M_0. We get from 3.5 an exact sequence of $\mathcal{O}_{\overline{K}}$-modules

$$
\begin{aligned}
0 & \longrightarrow \mathcal{O}_{\overline{K}} \otimes_{\mathcal{O}_M} \hat{\Omega}_{\mathcal{O}_K}(\mathcal{O}_M) \longrightarrow \hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}}) \longrightarrow \Omega_1^{1}(\mathcal{O}_{\overline{K}/\mathcal{O}_M}) \longrightarrow 0.
\end{aligned}
$$

We identify its first term with $\overline{K} \otimes_{\mathcal{O}_K} (\oplus_{i \in I} \mathcal{O}_K)^\wedge$ by 3.4. Let $\overline{\mathbb{Q}}_p$ be the algebraic closure of \mathbb{Q}_p in \overline{K}, \mathbb{Z}_p the integral closure of \mathbb{Z}_p in $\overline{\mathbb{Q}}_p$. By Fontaine's computation ([Fon82], Théorème 1'), we have an isomorphism of \mathbb{Z}_p-modules

$$
\overline{\mathbb{Q}}_p/a_0(1) \xrightarrow{\sim} \Omega_1^{1}(\mathcal{O}_{\overline{K}/\mathcal{O}_M}),
$$

where $a_0 = \{ x \in \overline{\mathbb{Q}}_p \mid v_p(x) \geq -1/(p-1) \}$, and we have an isomorphism of $\mathcal{O}_{\overline{K}}$-modules

$$
\overline{K}/a(1) \xrightarrow{\sim} \Omega_1^{1}(\mathcal{O}_{\overline{K}/\mathcal{O}_M}),
$$

where $a = \{ x \in \overline{K} \mid v_p(x) \geq -1/(p-1) \}$. Hence, the composition of

$$
\overline{K}/a(1) \xrightarrow{\sim} \mathcal{O}_{\overline{K}} \otimes_{\mathcal{O}_M} \Omega_1^{1}(\mathcal{O}_{\overline{K}/\mathcal{O}_M}) \rightarrow \Omega_1^{1}(\mathcal{O}_{\overline{K}/\mathcal{O}_M}) \rightarrow \hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}})
$$

gives a splitting of (3.6.2). Thus, we obtain the splitting sequence (3.6.1) of $\mathcal{O}_{\overline{K}}$-modules. We notice that the Galois conjugates of ζ_n, w_{im} are of the form $\zeta_n^a, c_{im}^w w_{im}$ respectively, which implies that (3.6.1) is G_K-equivariant. \hfill \Box

3.7. As $\hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}})$ is p-divisible, we have an exact sequence $0 \rightarrow T_p(\hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}})) \rightarrow V_p(\hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}})) \rightarrow \hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}}) \rightarrow 0$. After inverting p, we get an exact sequence

$$
\begin{aligned}
0 & \longrightarrow C(1) \longrightarrow \overline{K} \otimes_{\mathcal{O}_{\overline{K}}} V_p(\hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}})) \longrightarrow \overline{K} \otimes_{\mathcal{O}_{\overline{K}}} \hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}}) \longrightarrow 0,
\end{aligned}
$$

where we identified $\overline{K} \otimes_{\mathcal{O}_{\overline{K}}} T_p(\hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}}))$ with $C(1)$ by (3.6.1).

Theorem 3.8 ([Hyo86] Theorem 1).

(i) The composition of

$$
\begin{aligned}
K \otimes_{\mathcal{O}_K} \hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}}) \xrightarrow{\epsilon} (\overline{K} \otimes_{\mathcal{O}_{\overline{K}}} \hat{\Omega}_1^{1}(\mathcal{O}_{\overline{K}}))^G_K \xrightarrow{\delta} H^1(G_K, C(1)),
\end{aligned}
$$

where ϵ is the canonical map and δ is the connecting map associated to (3.7.1), is an isomorphism. Moreover, for any integer q, the cup product induces an isomorphism

$$
\begin{aligned}
(\wedge^q H^1(G_K, C(1)))^\wedge \xrightarrow{\sim} H^q(G_K, C(q)).
\end{aligned}
$$

(ii) The K-module $H^1(G_K, C)$ is free of rank 1. Moreover, for any integer q, the cup product induces an isomorphism

$$
\begin{aligned}
H^1(G_K, C) \otimes_K (\wedge^{q-1} H^1(G_K, C(1)))^\wedge \xrightarrow{\sim} H^q(G_K, C(q-1)).
\end{aligned}
$$

(iii) For any integers r and q such that $r \neq q$ or $q - 1$, we have $H^q(G_K, C(r)) = 0$.

Remark 3.9. By 3.3 we have an isomorphism

$$
\begin{aligned}
K \otimes_{\mathcal{O}_K} (\oplus_{i \in I} \mathcal{O}_K)^\wedge \xrightarrow{\sim} K \otimes_{\mathcal{O}_K} \hat{\Omega}_1^{1}(\mathcal{O}_K), \quad 1 \otimes e_i \mapsto 1 \otimes d \log u_i, \quad \forall i \in I.
\end{aligned}
$$

By composing it with (3.8.1), we get an isomorphism

$$
\begin{aligned}
K \otimes_{\mathcal{O}_K} (\oplus_{i \in I} \mathcal{O}_K)^\wedge \xrightarrow{\sim} H^1(G_K, C(1)), \quad 1 \otimes e_i \mapsto [f_i],
\end{aligned}
$$

where f_i is a 1-cocycle sending each $\sigma \in G_K$ to $\sigma(1 \otimes (d \log w_{im})_m) - 1 \otimes (d \log w_{im})_m$ in view of (3.7.1).
4. Faltings Extension

Lemma 4.1. Let $M = \bigcup_{i \in I, m \geq 0} K(w_{im}) \subseteq \overline{K}$. Then there is an isomorphism of \mathcal{O}_M-modules
\[
\oplus_{i \in I} M/O_M \simto \Omega^1_{\mathcal{O}_M/O_K}, \quad p^{-m}e_i \mapsto d\log w_{im}, \quad \forall i \in I, m \in \mathbb{N}.
\]

Proof. For any $N \geq 0$, we set $M_N = \bigcup_{i \in I} K(w_{iN})$. Since (π_i) form a p-base of the residue field k, the elements of the form $\prod_{i \in I} w_{iN}^{k_i}$ where $0 \leq k_i < p^N$ with finitely many nonvanishing, are linearly independent over k. Therefore, $\mathcal{O}_{M_N} = \mathcal{O}_K[T_i|_{i \in I}/(T_i^p - u_i)$, where T_i maps to w_{iN}. Hence,
\[
\Omega^1_{\mathcal{O}_{M_N}/\mathcal{O}_K} = \oplus_{i \in I} \mathcal{O}_{M_N}/p^N \mathcal{O}_{M_N} = \oplus_{i \in I} p^{-N} \mathcal{O}_{M_N}/\mathcal{O}_{M_N},
\]
where $p^{-N}e_i$ corresponds to $d\log w_{iN}$. The conclusion follows by taking colimit over N. \hfill \Box

Proposition 4.2. With the same notation as in 4.1, there is an exact sequence of $\mathcal{O}_{\overline{K}}$-modules
\[
0 \longrightarrow \oplus_{i \in I} \overline{K}/\mathcal{O}_{\overline{K}} \longrightarrow \Omega^1_{\mathcal{O}_{\overline{K}}/\mathcal{O}_K} \longrightarrow \overline{K}/b(1) \longrightarrow 0,
\]
where $\theta(p^{-m}e_i) = d\log w_{im}$ for any $i \in I$ and $m \in \mathbb{N}$, and $b = \{x \in \overline{K} \mid v_p(x) \geq -v_p(D_{M/M_i}) - 1/(p-1)\}$, where M_i is the fraction field of the Witt ring with coefficients in the residue field of M, and D_{M/M_i} is the different ideal of M/M_i.

Proof. We notice that M has perfect residue field. Thus, the sequence of modules of differentials of $\mathcal{O}_{\overline{K}}/\mathcal{O}_M/\mathcal{O}_K$,
\[
0 \longrightarrow \mathcal{O}_{\overline{K}} \otimes \mathcal{O}_M \Omega^1_{\mathcal{O}_M/\mathcal{O}_K} \longrightarrow \Omega^1_{\mathcal{O}_{\overline{K}}/\mathcal{O}_K} \longrightarrow \mathcal{O}^1_{\mathcal{O}_{\overline{K}}/\mathcal{O}_M} \longrightarrow 0,
\]
is exact by 3.1. We identify its first term with $\oplus_{i \in I} \overline{K}/\mathcal{O}_{\overline{K}}$ by 4.1. By Fontaine’s computation ([Fon82, Théorème 1’]), we have an isomorphism of $\mathcal{O}_{\overline{K}}$-modules
\[
\overline{K}/b(1) \simto \Omega^1_{\mathcal{O}_{\overline{K}}/\mathcal{O}_M}, \quad p^{-k} \otimes (\zeta_n) \mapsto d\log \zeta_k, \quad \forall k \in \mathbb{N}.
\]
The conclusion follows from (4.2.2). \hfill \Box

Lemma 4.3. The canonical map
\[
K \otimes \mathcal{O}_K (\oplus_{i \in I} \mathcal{O}_K)^\wedge \longrightarrow (C \otimes \mathcal{O}_C (\oplus_{i \in I} \mathcal{O}_C)^\wedge)^{G_K}
\]
is an isomorphism.

Proof. It follows from the following descriptions
\[
(4.3.2) \quad C \otimes \mathcal{O}_C (\oplus_{i \in I} \mathcal{O}_C)^\wedge = \{ (x_i) \in \prod_{i \in I} C \mid \forall N > 0, \exists \text{ finite } J \subseteq I, |x_i|_p < 1/N, \forall i \notin J \},
\]
\[
(4.3.3) \quad K \otimes \mathcal{O}_K (\oplus_{i \in I} \mathcal{O}_K)^\wedge = \{ (x_i) \in \prod_{i \in I} K \mid \forall N > 0, \exists \text{ finite } J \subseteq I, |x_i|_p < 1/N, \forall i \notin J \}.
\]

Theorem 4.4. There is a canonical exact sequence of C-G_K-modules which splits as a sequence of C-modules,
\[
0 \longrightarrow C(1) \overset{\epsilon}{\longrightarrow} V_p(\Omega^1_{\mathcal{O}_{\overline{K}}/\mathcal{O}_K}) \longrightarrow C \otimes \mathcal{O}_C (\mathcal{O}_{\overline{K}} \otimes \mathcal{O}_K \Omega^1_{\mathcal{O}_{\overline{K}}/\mathcal{O}_K})^\wedge \longrightarrow 0,
\]
where $\epsilon(1 \otimes (\zeta_n)) = (d\log \zeta_n)$. There is an isomorphism of C-G_K-modules

Proof. We consider the sequence of modules of differentials of $\mathcal{O}_L/\mathcal{O}_K/\mathbb{Z}_p$, where L/K is a finite subextension of \overline{K}/K, and pass to p-adic completions. Since $\Omega^1_{\mathcal{O}_L/\mathcal{O}_K}$ is killed by a power of p, we still get an exact sequence ([Sta20] 0315, 0BN)
\[
0 \longrightarrow \mathcal{O}_L \otimes \mathcal{O}_K \hat{\Omega}_{\mathcal{O}_K} \longrightarrow \hat{\Omega}_{\mathcal{O}_L} \longrightarrow \Omega^1_{\mathcal{O}_L/\mathcal{O}_K} \longrightarrow 0.
\]
By taking colimit over all such L, we get an exact sequence

$$
\begin{align*}
(4.4.4) & \quad \mathcal{O}_K \otimes_{\mathcal{O}_K} \Omega^1_{\mathcal{O}_K} \xrightarrow{\alpha} \hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K) \xrightarrow{\beta} \mathcal{O}_K^{1/\mathcal{O}_K} \xrightarrow{\gamma} 0.
\end{align*}
$$

Combining with propositions 3.3, 3.6 and 4.2, we get a commutative diagram:

$$
\begin{align*}
(4.4.5) & \quad 0 \longrightarrow \mathcal{O}_K \otimes_{\mathcal{O}_K} (\oplus_{i \in I} \mathcal{O}_K) \xrightarrow{\alpha} \hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K) \xrightarrow{\beta} \mathcal{O}_K^{1/\mathcal{O}_K} \xrightarrow{\gamma} 0
\end{align*}
$$

where the rows and columns are exact, and the middle column splits. We set $D = \text{Ker}(\beta) = \text{Im}(\alpha)$. We see that $\mathcal{O}_K \otimes_{\mathcal{O}_K} (\oplus_{i \in I} \mathcal{O}_K) \xrightarrow{\alpha} \hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K)$ and $\mathcal{O}_K^{1/\mathcal{O}_K} \xrightarrow{\beta} \mathcal{O}_K^{1/\mathcal{O}_K}$ are injective, whose cokernel is killed by a power of p. Now for any $n > 0$, by applying $\text{Hom}_{\mathbb{Z}_p}(\mathbb{Z}_p/p^n \mathbb{Z}_p, -)$ to (4.4.4), we get an exact sequence of $\mathcal{O}_K^{1/\mathcal{O}_K}$-modules

$$
\begin{align*}
(4.4.6) & \quad 0 \longrightarrow D[p^n] \longrightarrow \hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K)[p^n] \longrightarrow \mathcal{O}_K^{1/\mathcal{O}_K} \longrightarrow D/p^n D \longrightarrow \hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K)/p^n \hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K) = 0.
\end{align*}
$$

We notice that the inverse system $(D[p^n])_n$ is Artin-Rees null, and that $(\hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K)[p^n])_n$ satisfies Mittag-Leffler condition. Therefore, by taking the inverse limit of (4.4.6), we get an exact sequence of \mathcal{O}_C-modules

$$
\begin{align*}
(4.4.7) & \quad 0 \longrightarrow T_p(\hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K)) \longrightarrow T_p(\mathcal{O}_K^{1/\mathcal{O}_K}) \longrightarrow D^\wedge \longrightarrow 0.
\end{align*}
$$

By applying $T_p(-)$ to the middle column of (4.4.5), we get $T_p(\hat{\Omega}^1_{\mathcal{O}_K}(\mathcal{O}_K)) = \hat{\alpha}(1)$. On the other hand, we notice that $\oplus_{i \in I} \mathcal{O}_K^{1/\mathcal{O}_K}$ is p-divisible, and that $(\oplus_{i \in I} \mathcal{O}_K^{1/\mathcal{O}_K})_n$ satisfies Mittag-Leffler condition. Therefore, by applying $T_p(-)$ to the right column of (4.4.5), we get an exact sequence of \mathcal{O}_C-modules

$$
\begin{align*}
(4.4.8) & \quad 0 \longrightarrow (\oplus_{i \in I} \mathcal{O}_C)^\wedge \longrightarrow T_p(\mathcal{O}_K^{1/\mathcal{O}_K}) \longrightarrow \hat{\beta}(1) \longrightarrow 0.
\end{align*}
$$

As $\mathcal{O}_K^{1/\mathcal{O}_K}$ is killed by a power of p, the map $\mathcal{O}_K^{1/\mathcal{O}_K} \xrightarrow{\alpha} D^\wedge$ becomes an isomorphism after inverting p. Afterwards, we get from (4.4.7) a canonical exact sequence of C-modules

$$
\begin{align*}
(4.4.9) & \quad 0 \longrightarrow C(1) \longrightarrow V_p(\mathcal{O}_K^{1/\mathcal{O}_K}) \longrightarrow C \otimes_{\mathcal{O}_C} (\mathcal{O}_K^{1/\mathcal{O}_K})\wedge \longrightarrow 0,
\end{align*}
$$

and from (4.4.8) an exact sequence of \mathcal{O}_C-modules

$$
\begin{align*}
(4.4.10) & \quad 0 \longrightarrow C \otimes_{\mathcal{O}_C} (\oplus_{i \in I} \mathcal{O}_C)^\wedge \longrightarrow V_p(\mathcal{O}_K^{1/\mathcal{O}_K}) \longrightarrow C(1) \longrightarrow 0.
\end{align*}
$$

The latter gives a splitting of (4.4.9) and an isomorphism $C \otimes_{\mathcal{O}_C} (\oplus_{i \in I} \mathcal{O}_C)^\wedge \xrightarrow{\sim} C \otimes_{\mathcal{O}_C} (\mathcal{O}_K^{1/\mathcal{O}_K})\wedge$ by sending $1 \otimes e_i$ to $1 \otimes 1 \otimes d\log u_i$ by diagram chasing. We notice that the Galois conjugates of ζ_n, u_{im} are of the form $\zeta_m, c_m w_{im}$ respectively, which implies that (4.4.9) is G_K-equivariant. Hence, (4.4.9) gives us the exact sequence (4.4.1) of C-G_K-modules which splits as a sequence of C-modules.

Corollary 4.5. The canonical map $K \otimes_{\mathcal{O}_K} \hat{\Omega}^1_{\mathcal{O}_K} \to (C \otimes_{\mathcal{O}_C} (\mathcal{O}_K^{1/\mathcal{O}_K})^\wedge)^{G_K}$ is an isomorphism, and the connecting map of the sequence (4.4.1)

$$
\begin{align*}
\delta : K \otimes_{\mathcal{O}_K} \hat{\Omega}^1_{\mathcal{O}_K} \longrightarrow H^1(G_K, C(1))
\end{align*}
$$

is an isomorphism which coincides with (3.8.1). In particular,

$$
\begin{align*}
(4.5.2) & \quad V_p(\mathcal{O}_K^{1/\mathcal{O}_K})^{G_K} = 0.
\end{align*}
$$

Proof. By (3.9.1), (4.4.2) and 4.3, we see that the canonical map $K \otimes_{\mathcal{O}_K} \hat{\Omega}^1_{\mathcal{O}_K} \to (C \otimes_{\mathcal{O}_C} (\mathcal{O}_K^{1/\mathcal{O}_K})^\wedge)^{G_K}$ is an isomorphism. Now (4.5.1) follows from 3.8 (i) and 3.9. And (4.5.2) follows from the fact that $C(1)^{G_K} = 0$. □

Definition 4.6. We call the sequence (4.4.1) the *Faltings extension of \mathcal{O}_K over \mathbb{Z}_p*.
5. Fontaine’s Injection

5.1. For any proper model \mathcal{X} of the abelian variety X over \mathcal{O}_K (i.e., a proper \mathcal{O}_K-scheme whose generic fiber is X), we identify $\mathcal{X}(\mathcal{O}_K)$ with $X(\overline{K})$ by valuative criterion. Pullback of Kähler differentials defines a map

\[(5.1.1) \quad H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \rightarrow \text{Map}_{\mathcal{O}_K}(X(\overline{K}), \Omega^1_{\mathcal{O}/\mathcal{O}_K}), \quad \omega \mapsto (u \mapsto u^*\omega).\]

We notice that $H^0(X, \Omega^1_{X/\mathcal{O}_K}) = K \otimes_{\mathcal{O}_K} H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K})$, and that any differential form over X is invariant under translations. Hence, we can take an integer $r > 0$ big enough, such that for any $\omega \in p^r H^0(X, \Omega^1_{X/\mathcal{O}_K})$ and $u_1, u_2 \in \mathcal{X}(\mathcal{O}_K)$, $(u_1 + u_2)^r \omega = u_1^r \omega + u_2^r \omega$ (cf. [Fon82] Proposition 3). Therefore, (5.1.1) induces a homomorphism of \mathcal{O}_K-modules

\[(5.1.2) \quad \rho_1 : p^r H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \rightarrow \text{Hom}_{\mathcal{O}_K}(X(\overline{K}), \Omega^1_{\mathcal{O}/\mathcal{O}_K}), \quad \omega \mapsto (u \mapsto u^*\omega).\]

We may also assume that $p^r H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K})$ has no p-torsion for further use.

5.2. The functor $V_p(-)$ gives us an injective homomorphism

\[(5.2.1) \quad \rho_2 : \text{Hom}_{\mathcal{O}_K}(X(\overline{K}), \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \rightarrow \text{Hom}_{\mathcal{O}_K}(V_p(X), V_p(\Omega^1_{\mathcal{O}/\mathcal{O}_K}))\]

since $X(\overline{K})$ is p-divisible (cf. [Fon82] 3.5 Lemma 1).

5.3. The composition $\rho_2 \circ \rho_1$ induces a homomorphism of K-modules

\[(5.3.1) \quad H^0(X, \Omega^1_{X/\mathcal{O}_K}) = K \otimes_{\mathcal{O}_K} p^r H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \rightarrow \text{Hom}_{\mathcal{O}_K}(V_p(X), V_p(\Omega^1_{\mathcal{O}/\mathcal{O}_K})).\]

As the category of \mathcal{O}_K-proper models of X is connected, this composition does not depend on the choice of the model and number r (cf. [Fon82] Proposition 4). We conclude by the following lemma that (5.3.1) is injective.

Lemma 5.4 ([Fon82] 3.5 Lemma 1). There is a proper model \mathcal{X} of X such that ρ_1 is injective.

Proof. We follow closely the proof of ([Fon82] 3.5 Lemma 1), which does not essentially use the assumption that the residue field k is perfect. We briefly sketch how to adapt Fontaine’s proof.

1. Let u be the origin of X and d the dimension of X. We first take a closed immersion $X \rightarrow \mathbb{P}^n_K$, and then we take an open immersion $\mathbb{P}^n_K \rightarrow \mathbb{P}^n_{\mathcal{O}_K}$ described later (all the morphisms are over \mathcal{O}_K). Let \mathcal{X} be the scheme theoretic image of the composition $X \rightarrow \mathbb{P}^n_{\mathcal{O}_K}$, which is thus a proper model of X. Let \overline{u} be the special point of the scheme theoretic image of u. It is a k-point. After a linear transformation of coordinates, we can at first choose an open immersion $\mathbb{P}^n_K \rightarrow \mathbb{P}^n_{\mathcal{O}_K}$ such that $\mathcal{O}_{\mathcal{X}, \overline{u}}$ is a $(d+1)$-dimensional regular local ring (cf. [Fon82] 3.6 Lemma 3).

2. The $m_{\mathcal{X}, \overline{u}}$-adic completion of the local ring $\mathcal{O}_{\mathcal{X}, \overline{u}}$ is isomorphic to $\mathcal{O}_K[[T_1, \ldots, T_d]]$, denoted by $\widehat{\mathcal{O}}_{\mathcal{X}, \overline{u}}$. The $m_{\mathcal{X}, \overline{u}}$-adic completion of $\Omega^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K}$ is a free $\widehat{\mathcal{O}}_{\mathcal{X}, \overline{u}}$-module of rank d, denoted by $\widehat{\Omega}^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K}$. The invariance of differential forms over X and the fact that $p^r H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \subseteq H^0(X, \Omega^1_{X/\mathcal{O}_K})$ imply that the canonical map $p^r H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \rightarrow \Omega^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K}$ is injective (cf. [Fon82] 3.7). We remark that the canonical map $\Omega^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K} \rightarrow \widehat{\Omega}^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K}$ is injective as $\Omega^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K}$ is of finite type over the Noetherian local ring $\mathcal{O}_{\mathcal{X}, \overline{u}}$.

3. We have the following commutative diagram

\[(5.4.1) \quad \begin{array}{ccc}
p^r H^0(\mathcal{X}, \Omega^1_{\mathcal{O}/\mathcal{O}_K}) & \xrightarrow{\rho_1} & \text{Hom}_{\mathcal{O}_K}(X(\overline{K}), \Omega^1_{\mathcal{O}/\mathcal{O}_K}) \\
\widehat{\Omega}^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K} & \xleftarrow{\rho'_1} & \text{Map}(\text{Hom}_{\mathcal{O}_K}(\widehat{\mathcal{O}}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K), \Omega^1_{\mathcal{O}/\mathcal{O}_K})
\end{array}\]

where we identify the set of continuous \mathcal{O}_K-algebra homomorphisms from $\widehat{\mathcal{O}}_{\mathcal{X}, \overline{u}}$ to \mathcal{O}_K with a subset of $\mathcal{X}(\overline{K})$. To show the injectivity of ρ_1 it suffices to show that of ρ'_1. More precisely, we need to show that for any nonzero formal differential form $\sum_{i=1}^d a_i(T_1, \ldots, T_d) dT_i$ where $a_i \in \mathcal{O}_K[[T_1, \ldots, T_d]]$, there are $x_1, \ldots, x_d \in m_{\mathcal{X}, \overline{u}}$ such that $\sum_{i=1}^d a_i(x_1, \ldots, x_d) dx_i$ is not zero in $\widehat{\Omega}^1_{\mathcal{O}_{\mathcal{X}, \overline{u}}/\mathcal{O}_K}$.

4. For $d = 1$, suppose $a(T) = \sum_{k \geq 0} a_k T^k$ where $a_k \in \mathcal{O}_K$ not all zero. Let k_0 be the minimal number such that $v_p(a_{k_0})$ is minimal. For a sufficiently large integer N, we take $x = \omega^{1/p^N} \in m_{\mathcal{X}, \overline{u}}$, where ω is a...
uniformizer of O_K, such that $v_p(a_{k_0}x^{k_0}) < v_p(a_{k_0}x^k)$ for any $k \neq k_0$. Let $M = \bigcup_{l,m \geq 0} K(w_{lm}) \subseteq \overline{K}$. The annihilator of dx in $\Omega^1_{O_K(x)/O_M}$ is generated by $p^N x^{p^N - 1}$. As M has perfect residue field, lemma 3.1 implies that the annihilator of dx in $\Omega^1_{O_K(x)/O_M}$ is again generated by $p^N x^{p^N - 1}$. When N is big enough, $\alpha(x)dx$ is not zero in $\Omega^1_{O_K(x)/O_K}$ (cf. [Fon82] 3.7 Lemme 4).

(5) As O_K is an infinite domain, there are formal series $\beta_1, \ldots, \beta_d \in O_K [T]$ without constant term, such that $\sum_{i=1}^d \alpha_i (\beta_1, \ldots, \beta_d) \cdot \beta_i' \in O_K [T]$ is still nonzero. Hence, the general case reduces to the case $d = 1$ (cf. [Fon82] 3.7 Lemme 5).

□

5.5. As X/K is p-divisible, we have a canonical exact sequence

\[0 \longrightarrow T_p(X) \longrightarrow V_p(X) \longrightarrow X(K) \longrightarrow 0. \]

After applying the functor $\text{Hom}_{\mathbb{Z}[G_K]}(-, V_p(\Omega^1_{O_K/O_K}))$, we get an exact sequence

\[0 \longrightarrow \text{Hom}_{\mathbb{Z}[G_K]}(X(K), V_p(\Omega^1_{O_K/O_K})) \longrightarrow \text{Hom}_{\mathbb{Z}[G_K]}(V_p(X), V_p(\Omega^1_{O_K/O_K})) \longrightarrow \text{Hom}_{\mathbb{Z}[G_K]}(T_p(X), V_p(\Omega^1_{O_K/O_K})). \]

Let $f : X(K) \rightarrow V_p(\Omega^1_{O_K/O_K})$ be a G_K-equivariant homomorphism. For any finite extension L/K, we denote by $G_L = \text{Gal}(\overline{K}/L)$ the absolute Galois group of L. Then f maps $X(L)$ to $V_p(\Omega^1_{O_K/O_K})^{G_L}$. We notice that the kernel of the surjection $\Omega^1_{O_K/O_K} \rightarrow \Omega^1_{O_L/O_L}$ is killed by a power of p, which indicates that the map $V_p(\Omega^1_{O_K/O_K}) \rightarrow V_p(\Omega^1_{O_K/O_K})$ is an isomorphism. Now, by applying (5.5.2) to L, we get

\[V_p(\Omega^1_{O_K/O_K})^{G_L} = V_p(\Omega^1_{O_K/O_L})^{G_L} = 0. \]

Hence $f(X(K)) = \bigcup_{L/K} f(X(L)) = 0$, which indicates that we have an injective map (cf. [Fon82] 3.5 Lemma 2)

\[\rho_3 : \text{Hom}_{\mathbb{Z}[G_K]}(V_p(X), V_p(\Omega^1_{O_K/O_K})) \longrightarrow \text{Hom}_{\mathbb{Z}[G_K]}(T_p(X), V_p(\Omega^1_{O_K/O_K})). \]

Remark that any element in the image of $\rho_3 \circ \rho_2 \circ \rho_1$ is \mathbb{Z}_p-linear. All in all, we have generalized Fontaine’s injection ([Fon82] Théorème 2') to the imperfect residue field case.

Theorem 5.6. There is a canonical K-linear injective homomorphism

\[\rho : H^0(X, \Omega^1_{X/K}) \longrightarrow \text{Hom}_{\mathbb{Z}[G_K]}(T_p(X), V_p(\Omega^1_{O_K/O_K})). \]

6. **Weak Hodge-Tate Representations**

Definition 6.1. For any C-G_K-module V of finite dimension, let

\[0 = V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = V \]

be a composition series of V, i.e. V_{i+1}/V_i is an irreducible C-G_K-module for any i. The set of factors $\{V_{i+1}/V_i\}_{0 \leq i < n}$ does not depend on the choice of the composition series by Schreier refinement theorem. We call the multiset

\[\text{wt}(V) = \{ r_i \mid V_{i+1}/V_i \cong C(r_i), \ 0 \leq i < n \} \]

the multiset of weak Hodge-Tate weights of V. If all the factors are Tate twists of C, i.e. $\dim_C V$ equals the cardinality of $\text{wt}(V)$, then we call V a weak Hodge-Tate C-representation of G_K. We denote by \mathcal{C} the full subcategory of finite-dimensional C-G_K-modules formed by weak Hodge-Tate representations.

Proposition 6.2. Let V be a finite-dimensional C-G_K-module.

(i) For any short exact sequence of finite-dimensional C-G_K-modules $0 \rightarrow V' \rightarrow V \rightarrow V'' \rightarrow 0$, we have $\text{wt}(V) = \text{wt}(V') \sqcup \text{wt}(V'')$. In particular, \mathcal{C} is closed under taking subrepresentation, quotient and extension.

(ii) For the dual representation $V^* = \text{Hom}_C(V, C)$, we have $\text{wt}(V^*) = - \text{wt}(V)$.

Proof. The first assertion follows from the basic properties of composition series. The second assertion follows from the basic fact $C(r)^* = C(-r)$. □

Proposition 6.3. For $s \in \mathbb{N}$ and $r \in \mathbb{Z}$, the subrepresentations and quotients of $C(r)^{\oplus s}$ in \mathcal{C} are direct summands of $C(r)^{\oplus s}$ of the form $C(r)^{\oplus t}$ for some $t \in \mathbb{N}$.

Proof. After twisting by $-r$, we may assume that $r = 0$. For any subrepresentation V of $C^\oplus s$, we set $W = C^\oplus s / V$. Consider the following commutative diagram

\[
\begin{array}{c}
0 & \longrightarrow & V^{G_K} \otimes_K C & \longrightarrow & C^\oplus s & \longrightarrow & W^{G_K} \otimes_K C & \longrightarrow & 0.
\end{array}
\]

We see that the first and third vertical maps are injective, because K-linearly independent G_K-invariant elements are also C-linearly independent. But the middle map is identity, which shows that $V = V^{G_K} \otimes_K C$, $W = W^{G_K} \otimes_K C$. Then any splitting of $0 \to V^{G_K} \to K^\oplus s \to W^{G_K} \to 0$ induces a splitting of $0 \to V \to C^\oplus s \to W \to 0$, which completes our proof. \qed

Proposition 6.4. For $s, t \in \mathbb{N}$ and integers r_1, r_2 such that $r_1 - r_2 \neq 1$ or 0, any extension of $C(r_2)^\oplus s$ by $C(r_1)^\oplus t$ in \mathcal{G} is trivial.

Proof. After twisting by $-r_2$, we may assume that $r_2 = 0$ and $r_1 = r \neq 1$ or 0. Given an exact sequence $0 \to C(r)^\oplus t \to V \to C^\oplus s \to 0$, take G_K-invariants, then we obtain an exact sequence

\[
0 = (C(r)^\oplus t)^{G_K} \longrightarrow V^{G_K} \longrightarrow K^\oplus s \longrightarrow H^1(G_K, C(r)^\oplus t) = 0,
\]

from which we get an isomorphism $V^{G_K} \cong K^\oplus s$. Hence $V = C(r)^\oplus t \oplus C^\oplus s$. \qed

7. Hodge-Tate Filtration for Abelian Varieties

7.1. We keep the following simplified notation in this section:

(7.1.1) $G = G_K$, $\Omega = \Omega_{\mathcal{O}_F/\mathcal{O}_K}$;

(7.1.2) $K_I = K \otimes_{\mathcal{O}_K} \Omega_{\mathcal{O}_K} \cong K \otimes_{\mathcal{O}_K} \prod_{i \in I} \mathcal{O}_K$ (by (3.9.1));

(7.1.3) $C_I = C \otimes_{\mathcal{O}_C} (\Omega_{\mathcal{O}_K} \otimes_{\mathcal{O}_K} \prod_{i \in I} \mathcal{O}_K)^\wedge \cong C \otimes_{\mathcal{O}_K} (\prod_{i \in I} \mathcal{O}_C)^\wedge$ (by (4.4.2));

(7.1.4) $E = \text{Hom}_{\mathbb{Z}_p}(T_p(X), C)$, $E^G(1) = \text{Hom}_{\mathbb{Z}_p[G]}(T_p(X), C) \otimes_K C(1) \subseteq E(1)$.

We remark that the Tate module $T_p(X)$ of the abelian variety X is a finite free \mathbb{Z}_p-module. By applying the functor $\text{Hom}_{\mathbb{Z}_p}(T_p(X), -) = E \otimes_C -$ to the Faltings extension (4.4.1), we get an exact sequence of C-G_K-modules

\[
\begin{array}{c}
0 & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1)) & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(T_p(X), V_p(\Omega)) & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(T_p(X), C_I) & \longrightarrow & 0.
\end{array}
\]

\[
\begin{array}{c}
E(1) & = E \otimes_C V_p(\Omega) & = E \otimes_C C_I.
\end{array}
\]

We choose a C-linear retraction of ι in (4.4.1) and denote by

\[
\pi : \text{Hom}_{\mathbb{Z}_p}(T_p(X), V_p(\Omega)) \longrightarrow \text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1))
\]

the induced C-linear homomorphism.

We denote by $\hat{\iota}$ the composition of

\[
\begin{array}{c}
H^0(X, \Omega_{X/K}^1)^{\rho} & \longrightarrow & \text{Hom}_{\mathbb{Z}_p[G]}(T_p(X), V_p(\Omega)) & \longrightarrow & E(1) \longrightarrow & E(1)/E^G(1).
\end{array}
\]

where ρ is the Fontaine's injection (5.6.1).

Lemma 7.2. The canonical map

\[
E^G \otimes_K K_I \longrightarrow (E \otimes_C C_I)^G
\]

is an isomorphism.

Proof. Since E is a finite-dimensional C-vector space, the complete absolute value on C extends to a complete absolute value on E uniquely up to equivalence. We fix such an absolute value and still denote it by $| |_p$. Following (4.3.2) and (4.3.3), the conclusion follows from the following descriptions

\[
\begin{align*}
E \otimes_C C_I &= \{(x_i) \in \prod_{i \in I} E \mid \forall N > 0, \exists \text{ finite } J \subseteq I, |x_i|_p < 1/N, \forall i \notin J, \\
E^G \otimes_K K_I &= \{(x_i) \in \prod_{i \in I} E^G \mid \forall N > 0, \exists \text{ finite } J \subseteq I, |x_i|_p < 1/N, \forall i \notin J\}.
\end{align*}
\]

\qed
Lemma 7.3. The map \(\tilde{\rho} \) is injective, and its image lies in the \(G \)-invariants of \(E(1)/E^G(1) \). Moreover, \(\tilde{\rho} \) does not depend on the choice of \(\pi \). Hence, we have a canonical \(K \)-linear injective homomorphism

\[
(7.3.1) \quad \tilde{\rho} : H^0(X, \Omega^1_{X/K}) \to (E(1)/E^G(1))^G.
\]

Proof. We take a \(K \)-basis \(\{ h_i \} \) of \(E^G \). For any \(\omega \in H^0(X, \Omega^1_{X/K}) \), thanks to 7.2, we denote by \(\sum h_i \otimes \alpha_i \in E^G \otimes_K \mathbb{K}_l \) the image of \(\omega \) in \(\text{Hom}_{K}(T_p(X), \mathbb{C}) \) via Fontaine’s injection \(\rho \) (5.6.1) and (7.1.5). Take any lifting \(\tilde{\beta}_i \in V_p(\Omega) \) of \(\alpha_i \) in the Faltings extension (4.4.1). Consider the element

\[
(7.3.2) \quad \rho(\omega) - \sum h_i \otimes \tilde{\beta}_i \in \text{Hom}_{Z_p}(T_p(X), V_p(\Omega)) = E \otimes_C V_p(\Omega).
\]

In fact, it lies in \(E(1) \). For any \(\sigma \in G \),

\[
(7.3.3) \quad \sigma(\rho(\omega)) - \sum h_i \otimes \tilde{\beta}_i - (\rho(\omega) - \sum h_i \otimes \tilde{\beta}_i) = \sum h_i \otimes (\beta_i - \sigma(\beta_i)) \in E^G(1).
\]

Therefore, \(\rho(\omega) - \sum h_i \otimes \beta_i \) is \(G \)-invariant modulo \(E^G(1) \), i.e., it defines an element in \((E(1)/E^G(1))^G \). Moreover, this element does not depend on the choice of the lifting \(\tilde{\beta}_i \). Indeed, suppose \(\tilde{\beta}_i, \tilde{\beta}'_i \) two liftings of \(\alpha_i \), then \(\beta_i' - \beta_i \in C(1) \) which shows that \((\rho(\omega) - \sum h_i \otimes \beta_i) - (\rho(\omega) - \sum h_i \otimes \beta'_i) \in E^G(1) \). In particular, \(\tilde{\rho} \) does not depend on the choice of \(\pi \).

Now we show the injectivity of \(\tilde{\rho} \). Suppose that \(\rho(\omega) - \sum h_i \otimes \beta_i = \sum h_i \otimes \gamma_i \in E^G(1) \). Then for any \(\sigma \in G \),

\[
(7.3.4) \quad \sum h_i \otimes (\sigma(\beta_i + \gamma_i) - (\beta_i + \gamma_i)) = 0,
\]

which implies that \(\beta_i + \gamma_i \in V_p(\Omega)^G = 0 \) by (4.5.2). Hence \(\rho(\omega) = 0 \), which forces \(\omega \) to be zero since \(\rho \) is injective.

\[\square \]

Theorem 7.4. There is a canonical exact sequence of \(C-G_K \)-modules

\[
(7.4.1) \quad 0 \to H^1(X, \mathcal{O}_X) \otimes_K C(1) \to \text{Hom}_{Z_p}(T_p(X), C(1)) \to H^0(X, \Omega^1_{X/K}) \otimes_K C \to 0.
\]

Proof. We set \(d = \dim X = \dim_{K} H^0(X, \Omega^1_{X/K}) \). Then \(T_p(X) \) is a free \(\mathbb{Z}_p \)-module of rank \(2d \). Lemma 7.3 implies that the weak Hodge-Tate weight 0 of \(E(1) \) has multiplicity \(\geq d \). Let \(X' \) be the dual abelian variety of \(X \), and we set \(E' = \text{Hom}_{Z_p}(T_p(X'), C) \). Due to the fact that \(E' = E(1)^* \) (by Weil pairing) and proposition 6.2, the weak Hodge-Tate weight 1 of \(E(1) \) has multiplicity \(\geq d \). But \(\dim_{C} E(1) = 2d \), which forces these inequalities to be equalities. In particular, \(\tilde{\rho} : H^0(X, \Omega^1_{X/K}) \to (E(1)/E^G(1))^G \) is an isomorphism. Since \(C(1) \) has only trivial extension by \(C^{\otimes d} \) (proposition 6.4), we see that \(C^{\otimes d} \) is a quotient representation of \(E(1) \). By duality again, we see that \(C(1)^{\otimes d} \) is a subrepresentation of \(E(1) \), and thus the canonical injection \((E(1)/E^G(1))^G \otimes_K C \to E(1)/E^G(1) \) is an isomorphism. Therefore, we have a canonical surjection

\[
(7.4.2) \quad E(1) \to H^0(X, \Omega^1_{X/K}) \otimes_K C.
\]

By duality, \(H^1(X, \mathcal{O}_X) \otimes_K C(1) = H^0(X', \Omega^1_{X/K})^* \otimes_K C(1) \) canonically identifies with a subrepresentation of \(E(1) \). Now (7.4.1) follows from the avoidance of \(C(1)^{\otimes d} \) and \(C^{\otimes d} \).

\[\square \]

7.5. Let’s complete the proof of the main theorem 1.3. We choose a retraction of \(\iota \) in the Faltings extension (4.4.1). By our construction, we have the following commutative diagram

\[
(7.5.1) \quad \text{Hom}_{Z_p}(T_p(X), C(1)) \xrightarrow{\phi} H^0(X, \Omega^1_{X/K}) \otimes_K C \xrightarrow{\rho} \text{Hom}_{Z_p}(T_p(X), V_p(\Omega))
\]

where \(\phi \) is the surjection in the Hodge-Tate filtration (7.4.1), \(\pi \) is induced by the chosen retraction, and \(\rho \) is the Fontaine’s injection (5.6.1). Consider the following diagram

\[
(7.5.2) \quad \text{Hom}_{Z_p}(T_p(X), C(1)) \xrightarrow{\phi} H^0(X, \Omega^1_{X/K}) \xrightarrow{d'} H^1(G, H^1(X, \mathcal{O}_X) \otimes_K C(1)) \xrightarrow{\rho} \text{Hom}_{Z_p}(T_p(X), V_p(\Omega)) \xrightarrow{\pi'} \text{Hom}_{Z_p}(T_p(X), C(1))
\]
where δ' is the connecting map associated to (7.4.1), where $-\pi'$ is the surjection in (7.1.5), and where we identify $H^1(X, \mathcal{O}_X)$ with $\text{Hom}_{\mathbb{Z}_p[G]}(T_p(X), C)$ by (7.4.1) and identify $H^1(G, C(1))$ with K_I by (4.5.1), which gives the right vertical arrow. Let $\{h_t\}$ be a K-basis of $H^1(X, \mathcal{O}_X)$. For any $\omega \in H^0(X, \Omega^1_{X/K})$, we write $-\pi' (\rho(\omega)) = \sum h_t \otimes \alpha_t$ by 7.2, where $\alpha_t \in K_I$. Let $\beta_t \in V_p(\Omega)$ be the lifting of α_t via the chosen splitting of the Faltings extension. We see by the diagram (7.5.1) that $\rho(\omega) - \sum h_t \otimes \beta_t$ is a lifting of ω via ϕ. Thus, $\delta'(\omega)$ is represented by the following 1-cocycle
\begin{equation}
(7.5.3) \quad \sigma \mapsto \sum h_t \otimes (\beta_t - \sigma(\beta_t)), \quad \forall \sigma \in G.
\end{equation}

We notice that $\alpha_t \in K_I$ corresponds to a class in $H^1(G, C(1))$ represented by the following 1-cocycle
\begin{equation}
(7.5.4) \quad \sigma \mapsto \sigma(\beta_t) - \beta_t, \quad \forall \sigma \in G.
\end{equation}

In conclusion, the diagram (7.5.2) is commutative.

7.6. Now we can prove the corollary 1.4 to the main theorem. If the sequence (7.4.1) splits, then the ϕ in (7.5.2) is surjective. Hence δ' is zero map, and so is $\pi' \circ \rho$. Thus, the image of the Fontaine's injection ρ lies in $\text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1))$. We easily see that conversely if the image of the Fontaine's injection ρ lies in $\text{Hom}_{\mathbb{Z}_p}(T_p(X), C(1))$, then the sequence (7.4.1) splits. Moreover, the splitting is unique by the avoidance of $C(1)^{\otimes d}$ and $C^{\otimes d}$.

References

[AG20] Ahmed Abbes and Michel Gros, Les suites spectrales de Hodge-Tate, arXiv preprint arXiv:2003.04714 (2020).
[AGT16] Ahmed Abbes, Michel Gros, and Takeshi Tsuji, The p-adic Simpson correspondence, Annals of Mathematics Studies, vol. 193, Princeton University Press, Princeton, NJ, 2016. MR 3444777
[CS17] Ana Caraiani and Peter Scholze, On the generic part of the cohomology of compact unitary Shimura varieties, Ann. of Math. (2) 186 (2017), no. 3, 649–766. MR 3702677
[Fal88] Gerd Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), no. 1, 255–299. MR 924705
[Fal02] ———, Almost étale extensions, Astérisque (2002), no. 279, 185–270, Cohomologies p-adiques et applications arithmétiques, II. MR 1922831
[Fon82] Jean-Marc Fontaine, Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux, Invent. Math. 65 (1981/82), no. 3, 379–409. MR 643559
[Gro04] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259. MR 0173675
[Hyo86] Osamu Hyodo, On the Hodge-Tate decomposition in the imperfect residue field case, J. Reine Angew. Math. 365 (1986), 97–113. MR 826154
[Jan88] Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, 207–245. MR 929536
[Sch13] Peter Scholze, Perfectoid spaces: a survey, Current developments in mathematics 2012, Int. Press, Somerville, MA, 2013, pp. 193–227. MR 3204346
[sga72] Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656
[Sta20] The Stacks project authors, The stacks project, http://stacks.math.columbia.edu, 2020.
[Tat67] J. T. Tate, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 158–183. MR 0231827
[Tsu99] Takeshi Tsuji, p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837
[Tsu02] ———, Semi-stable conjecture of Fontaine-Jannsen: a survey, no. 279, 2002, Cohomologies p-adiques et applications arithmétiques, II, pp. 323–370. MR 1922833

TONGMU HE, INSTITUT DES HAUTES TUDIES SCIENTIFIQUES, 35 ROUTE DE CHARTRES, 91440 BURES-SUR-YVETTE, FRANCE

E-mail address: he@ihes.fr