Single-file diffusion on self-similar substrates

G P Suárez, H O Martín and J L Iguain

Departamento de Física FCEyN and Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Universidad Nacional de Mar del Plata, Deán Funes 3350, 7600 Mar del Plata, Argentina
E-mail: iguain@mdp.edu.ar

Received 28 April 2014
Accepted for publication 14 May 2014
Published 11 July 2014
Online at stacks.iop.org/JSTAT/2014/P07010
doi:10.1088/1742-5468/2014/07/P07010

Abstract. We study the single file diffusion problem on a one-dimensional lattice with a self-similar distribution of hopping rates. We find that the time dependence of the mean-square displacement of both a tagged particle and the center of mass of the system present anomalous power laws modulated by logarithmic periodic oscillations. The anomalous exponent of a tagged particle is one half of the exponent of the center of mass, and always smaller than 1/4. Using heuristic arguments, the exponents and the periods of oscillation are analytically obtained and confirmed by Monte Carlo simulations.

Keywords: diffusion
ArXiv ePrint: 1406.1680
1. Introduction

The origin of the anomalous diffusion on fractal substrates has been well understood for several decades (see, e.g., [1–5]). However, in recent years, it has been repeatedly reported that, on certain kinds of self-similar object, the anomalous diffusion is modulated by logarithmic-periodic oscillations (see, e.g., [6–13]). In all these cases, the time behavior of a single random walk (RW) or a set of non-interacting RWs were studied. The origin of the anomalous diffusion (with or without oscillations) can be found in the self-similar character of the substrate where the particles move.

It is also well known that the anomalous diffusion can also appear in a simple one-dimensional lattice if hard-core interaction between particles is considered, i.e., two particles cannot occupy the same lattice site and a particle cannot cross over another one (the so called single-file diffusion). More specifically, the mean-square displacement (MSD) of a tagged particle behaves as $\Delta x_{HC}^2 - t^{2\nu_{HC}}$ (with $2\nu_{HC} = 1/2$) after a crossover time, which depends on the concentration of particles (see, e.g., [14–19]). Note that, despite hard-core interactions, the center of mass of the system presents a normal behavior. This and similar models are useful to describe several microscopic processes in physics, chemistry and biology (see, e.g., [20–22]).

The aim of the present work is to study the single-file diffusion problem on the one-dimensional lattice with a self-similar distribution of hopping rates introduced in [23]. We find that, for a tagged particle, the MSD presents a global anomalous behavior...
∆^2 x_{HC} - t^{2\nu_{HC}} \) (with \(2\nu_{HC} < 1/2 \)) modulated by log-periodic oscillations. The center of mass also shows anomalous behavior modulated by oscillations.

The paper is organized as follows. In section 2 we describe the substrate where the diffusion takes place. In section 3 we review the analytical solution found for non-interacting particles diffusing in this substrate [23]. In section 4 we derive analytical solutions for the case of many particles interacting through a hard-core potential: we analyzed both the time evolution of the center of mass (section 4.1) and that of a tagged particle (section 4.2). In section 5, we show the results of numerical simulations and compare them with our theoretical predictions: in the oscillatory regime (section 5.1), and in the long time regime (section 5.2). Some final remarks are outlined in section 6.

2. The substrate

We use the self-similar one-dimensional model introduced in [23], which depends on two parameters \(L \) (integer greater than 2) and \(\lambda \) (real positive). See figure 1 and this reference for further details. The particles only jump between nearest-neighbor sites of the lattice. The substrate where the particles diffuse is built in stages and the result of every stage is called a generation. In the zeroth-generation substrate, all the hopping rates are identical (\(q_0 \)). In the first generation, the hopping rates that correspond to every lattice site \(j = pL-(L+1)/2 \), with \(p \) integer, are set to \(q_1 \), while the other hopping rates remain as in the generation zero.

This process is iterated indefinitely and, in general, the generation \(n \) is obtained from the generation \(n - 1 \) after replacing by \(q_n \) the values of the hopping rates which correspond to every lattice site \(j = pL^n-(L^n+1)/2 \), with \(p \) integer. In the limit of an infinite number of iterations \((n \rightarrow \infty) \) we get the model, with a distribution of hopping rates \(q_i \) defined by

\[
\frac{q_0}{q_i} = \frac{q_0}{q_{i-1}} + (1 + \lambda)^{-1} \lambda L^i, \quad \text{for } i = 1, 2, 3... .
\]

3. Non-interacting particles

In order to introduce the procedure used to obtain expressions for the period of the oscillations and the exponent of the MSD, we begin by analyzing the case of non-interacting particles.

As shown in [23], on the substrate obtained after an infinite number of iterations, the diffusion of a single particle is perfectly self-similar. Then, if we consider a set of non-interacting particles performing independent RWs, for length scales between \(\sim L^n \) and \(\sim L^{n+1} \) (\(n = 0, 1, 2, ... \)), everything occurs as in the periodic lattice of the generation \(n \), and the MSD of any tagged particle of the sample
Single-file diffusion on self-similar substrates

\[\Delta x_{N\ell} = \langle [x_{N\ell}(t) - x_{N\ell}(0)]^2 \rangle \] (where \(\langle ... \rangle \) denotes average over RW realizations) as a function of time \(t \) satisfies

\[\Delta^2 x_{N\ell} = 2D_{N\ell}^{(n)} t, \]

where

\[D_{N\ell}^{(n)} = q_0 a^2 / (1 + \lambda)^n \]

is the single particle diffusion constant of the \(n \)th generation substrate. More generally, because of the infinite set of diffusion constants, \(\{ D_{N\ell}^{(n)}; n = 0, 1, 2, ... \} \), for a time \(t > 1/q_0 \), the behavior of \(\Delta^2 x_{N\ell}(t) \) is well described by

\[\Delta^2 x_{N\ell}(t) = t^{2\nu} f(t), \]

where \(f(t) \) is a log-periodic function, which satisfies \(f(t\tau) = f(t) \). The values of the single particle RW exponent \(\nu \) and the logarithmic period \(\tau \) are, respectively [23],

\[\nu = \frac{1}{2 + \frac{\log(1 + \lambda)}{\log L}}, \]

and

\[\tau = (1 + \lambda) L^2. \]
4. Hard-core interactions

If the N particles, which diffuse on the self-similar substrate described above, are not independent but interact with each other, the problem is considerably more complex. In what follows we study the case of hard-core interactions. That is, two particles cannot occupy the same lattice site and a particle cannot cross over another particle. We address first the behavior of the center of mass and then that of a tagged particle.

4.1. Center of mass

In spite of the interactions, the center of mass of the system $\bar{x}(t) = (1/N) \sum_{i=1}^{N} x_i(t)$ mirrors the behavior of an independent particle. For any one-dimensional periodical substrate of period l, the center-of-mass MSD $\Delta^2 \bar{x}(t) = \langle [\bar{x}(t) - \bar{x}(0)]^2 \rangle$ is directly proportional to time t and inversely proportional to N, i.e.,

$$N \Delta^2 \bar{x}(t) = 2D t;$$

a valid relation for times such that $\sqrt{\Delta^2 \bar{x}(t)} > \gamma \ell$. That is, normal diffusion should be observed if time is long enough for the RW to be influenced by the structure periodicity. The constant γ is, roughly speaking, the fraction of ℓ that the center of mass has moved when it began to realize that the substrate is periodic. Both γ and the coefficient D in equation (7) depend on the concentration c of particles and on the manner in which they interact.

When the interactions are of hard-core type, it is found that $D = D_{NI}(1 - c)$ [24] (let us note that the system is equivalent to a chain of N particles), where D_{NI} is the diffusion coefficient of non-interacting particles on the same substrate. In particular, on the n^{th} generation substrate in figure 1,

$$D^{(n)} = D_{NI}^{(n)} (1 - c) = \frac{(1 - c) q_0 \nu^2}{(1 + \lambda)^n},$$

and the MSD of the center of mass will satisfy

$$N \Delta^2 \bar{x}_{HC}(t) = 2D^{(n)} t;$$

for t long enough, i.e., such that $\Delta^2 \bar{x}_{HC}(t) > \gamma^2 L_{2^n}$ (L^n is the period of this substrate).

For hard-core interacting particles, diffusing on the full self-similar substrate, the center-of-mass MSD will behave as in the n^{th} generation substrate for a time longer than $\ell^{(n)}$, given by $\Delta^2 \bar{x}_{HC}(\ell^{(n)}) - \gamma^2 L_{2^n}$ but shorter than $\ell^{(n+1)}$, given by $\Delta^2 \bar{x}_{HC}(\ell^{(n+1)}) - \gamma^2 L_{2^{(n+1)}}$. For times between $\ell^{(n+1)}$ and $\ell^{(n+2)}$, where $\Delta^2 \bar{x}_{HC}(\ell^{(n+2)}) - \gamma^2 L_{2^{(n+2)}}$, it should be that $N \Delta^2 \bar{x}_{HC}(t) = 2D^{(n+1)} t$, and so on. Thus, we expect that the MSD of the center of mass behaves as sketched in figure 2, where the thick red curve represents the function $\Delta^2 \bar{x}_{HC}(t)$. In the same figure, the inclined solid lines represent the normal diffusion of the center of mass in every periodic substrate of the construction in figure 1 (with a coefficient $D^{(n)}$ for the generation n), and were drawn to guide the eyes.

According to equation (8), the ratio between consecutive coefficients results in
\[
\log(N \Delta^2 x_{HC})
\]

Figure 2. Schematic of the center-of-mass MSD as a function of time, shown by the thick red curve (\(a = 1\)). The length of the segment \(bc\) is \(\log(2D^{(1)}) - \log(2D^{(2)}) = \log(1 + \lambda)\), because of equation (8). From the slopes (\(= 1\)) of the full straight lines (representing the normal diffusion behaviors, \(\Delta^2 x_{HC} = 2D^{(n)}t\)), one gets that the segments \(ad\) and \(cd\) have the same length or, equivalently, that \(\log\tau = \log L^2 + \log(1+\lambda)\). The dashed straight line represents the global power law \(\Delta^2 x_{HC} \sim t^{2\tau}\), with \(2\tau = \log L^2 / \log \tau\). More details in the text.

\[
\frac{D^{(n)}}{D^{(n+1)}} = 1 + \lambda,
\]

which implies, as is evident after simple geometrical analysis of figure 2, that both the random walk exponent and the period of the oscillations are the same as for non-interacting particles; i.e.,

\[
\tau = \frac{1}{2 + \frac{\log(1 + \lambda)}{\log L}},
\]

and

\[
\tau = (1 + \lambda) L^2.
\]

4.2. Tagged particle

When \(N\) hard-core interacting particles diffuse in a one-dimensional medium single-file diffusion occurs and, for a periodic substrate, after a transient time, the MSD of a tagged particle of the sample satisfies [16]

\[
\Delta^2 x_{HC}(t) = \frac{2(1-c)}{c\sqrt{\pi}} \frac{a}{\sqrt{D_N t}},
\]

where \(a\) is the lattice spacing.
In an infinite-size system, this anomalous diffusive behavior with a RW exponent \(\nu = 1/2 \) occurs forever, but in a real system, normal diffusion of the tagged particle is recovered after a crossover time, which grows with the system's linear size and decreases with particle concentration [16, 19].

For the substrate we are interested in, i.e., the self-similar lattice in figure 1, the task of capturing the behavior of one tagged particle looks harder. However, the analysis becomes straightforward if we assume that, for a time \(t \) between \(t^{(n)} \) and \(t^{(n+1)} \), the whole system behaves as in the \(n^{th} \)-generation periodic substrate, or, in other words, that every characteristic time \(t^{(n)} \) plays the role of a crossover between two dynamical regimes—each one identical on average to that observed on some of the periodical substrates in figure 1.

With this assumption, and according to equation (13), the MSD of a tagged particle will be

\[
\Delta^2 x_{\text{HC}}(t) = \frac{2(1-c)a}{c\sqrt{\pi}} \sqrt{D_M^{(n)}} t, \quad \text{for } t \text{ between } t^{(n)} \text{ and } t^{(n+1)},
\]

and, more generally, the form of \(\Delta^2 x_{\text{HC}}(t) \) will be as sketched in figure 3: a qualitative plot of a global power-law trend modulated by a log-periodic function, i.e.,

\[
\Delta^2 x_{\text{HC}}(t) = t^{2\nu_{\text{HC}}} g(t), \quad \text{with } g(\tau) = g(t).
\]

In figure 3, the inclined solid line with slope of 1/2 corresponds to the MSD of a tagged particle in the different generations, which approximates the function \(\Delta^2 x_{\text{HC}}(t) \) on the perfect self-similar substrate when \(t \) lies in the appropriate time window. In equation (15), we have made explicit that \(g(t) \) is a log-periodic function with the same logarithmic period \(\tau \) of \(f(t) \) (equations (4) and (6)), as is evident from the fact that for both the center of mass and the tagged particle \(\tau = t^{(n+1)}/t^{(n)} \). The dashed straight line stands for the overall general trend, i.e., \(t^{2\nu_{\text{HC}}} \). As for the center of mass, the exponent \(\nu_{\text{HC}} \) as a function of \(L \) and \(\lambda \) is dictated by the geometry of this figure:
Single-file diffusion on self-similar substrates

\[\nu = -2 \log(l) \log(1), \]

or, according to equation (6),

\[\nu_{HC} = \frac{\nu}{2}. \] (17)

Thus, we conclude that the MSD of a tagged particle shows a general power-law trend (with an exponent that is half that of the center of mass) modulated by log-periodic oscillations (with the same period as the center of mass).

5. Numerical results

5.1. Oscillatory regime

To check the validity of the analytical predictions stated above, we have performed Monte Carlo (MC) simulations, with \(q_0 = 1/2 \) and the distance between nearest-neighbor lattice sites \(a = 1 \). Each lattice site can either be occupied by only one particle or empty. We used a sixth-generation lattice (\(L^6 \) sites) with periodic boundary conditions. This is a self-similar substrate up to a linear scale of \(L^6 \). At \(t = 0 \), \(N \) particles (\(N = cL^6 \)) are distributed at random on the lattice. They then evolve according to the corresponding hopping rates \(q_i \), \(i = 0, ..., 5 \). Because of hard-core interactions, if a particle jumps to an occupied site, it returns to the previous position. The simulations were performed up to time \(t = 10^6 \) and the lattices used were large enough to prevent the MSD of the center of mass reaching the normal diffusion regime given by equation (9) with \(n = 6 \).
The numerical results of the center-of-mass MSD as a function of time are plotted in figure 4 for two sets of parameters, \(L = 5, \lambda = 5 \) and \(L = 3, \lambda = 8 \). The dashed straight lines have slopes \(2\nu \) (with the theoretical values from equation (11)) and serve to confirm that \(\Delta^2 \mathcal{P}(t) \) satisfy modulated power laws with these exponents leading the general trend. The modulations are better observed in the inset, where we have plotted \(\Delta^2 \mathcal{P}/t^{2\nu} \) versus \(t \), using the same data as in the main plot. Those curves were rigidly displaced in the vertical direction to avoid undesirable superposition of the data points. The curvilinear lines are of the form \(A \sin(2\pi \log(t)/\log(\tau)) + A \), with \(A \) and \(\alpha \)-fitted parameters, which corresponds to the first-harmonic approximation of a periodic function, with period \(\log(\tau) \). Note the very good agreement between theory and simulation.

The corresponding Monte Carlo results for the tagged particle are plotted in figure 5. There, the dashed straight lines represent the theoretical overall behavior of \(\Delta^2 \mathcal{P}_{HC}(t) \). Their slopes are \(2\nu_{HC} = \sigma \) (equation (17)), and they were drawn to guide the eyes.

In the inset we have plotted \(\Delta^2 \mathcal{P}_{HC}/t^{\sigma} \) as a function of time with the data of the main plot, and sinusoidal curves with logarithmic period \(\tau \) (equation (12)). Note again the very good theory-simulation agreement.

At very short times the effects of hard-core interactions are not completely present. The Monte Carlo results are different from the predicted analytical behavior (see the insets of figures 4 and 5). As expected, the numerical results not shown here indicate that the length of this transition regime increases when the concentration \(c \) decreases.

5.2. Long time regime

In order to check the validity of equation (14) (where \(D_N^{(n)} \) is given by equation (8)) we build the zeroth, first, and second generation of figure 1 on a finite lattice of \(L = 5 \) sites with periodic boundary conditions. In these cases, equation (14) holds for \(t > t^\prime \).
As mentioned above, at very long times, it is expected that the diffusion of a tagged particle reaches a normal behavior (i.e., $\Delta x \sim t^{1/2}$) due to finite-size system effects [16]. The simulations were performed up to time $t = 3 \times 10^5$, and the size of each lattice was chosen to be large enough in order to avoid the normal regime. In figure 6, one can observe a very good agreement between equation (14) and the numerical results.

Let us remark that, for the first generation, our results are similar to those in [25] (single-file diffusion on a periodical potential). Indeed, if we assume the Arrhenius behaviors $q_0 = A \exp(-E_0/k_B T)$ and $q_1 = A \exp(-E_1/k_B T)$, the MSD of a tagged particle results as in equation (14) with $n = 1$; and the prefactor of \sqrt{t} takes the form $\sqrt{D_{NI}^{(0)}} \mathcal{G}(d/k_B T)$, where T the absolute temperature, k_B the Boltzmann constant, E_0 and E_1 energetic barriers, and $d = E_1 - E_0$.

6. Conclusions

We have studied the single-file diffusion problem on one-dimensional self-similar substrates. The system presents a sub-diffusive behavior modulated by log-periodic oscillation. We have found that the global RW exponent of the center of mass ν (<1/2) is equal to the exponent ν for a single RW (i.e., when there is only one particle diffusing on the same substrate), while for a tagged particle, the global RW exponent ν_{HC} is equal to $\nu / 2$. For both quantities, the oscillations occur with the same period τ. The Monte Carlo results are in very good agreement with the values of ν and τ analytically obtained.

In recent years, many efforts have been dedicated to the study of the single-file diffusion of a tagged particle in a simple one-dimensional lattice where the RW exponent
ν_HC is 1/4 [14–19]. The novelty of this paper is that, by choosing an appropriate value of λ for a given L, it is possible to design a self-similar structure to obtain a predetermined value of ν_HC (<1/4). In this case, the resulting diffusive motion will be modulated by logarithmic periodic oscillations with a period \(\tau = L^{1/2\nu_HC} \).

Acknowledgments

This work was supported by UNMdP and CONICET (PIPs 041 and 431).

References

[1] Havlin S and Ben-Avraham D 1987 Diffusion in disordered media *Adv. Phys.* 36 695–78
[2] Bouchaud J-P and Georges A 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications *Phys. Rep.* 195 127–293
[3] Rammal R and Toulouse G 1983 Random walks on fractal structures and percolation clusters *J. Physique Lett.* 44 13–22
[4] Alexander S and Orbach R 1982 Density of states on fractals: “fractons” *J. Physique Lett.* 43 625–31
[5] Ben-Avraham D and Havlin S 2000 *Diffusion and Reactions in Fractals and Disordered Systems* (Cambridge: Cambridge University Press)
[6] Grabner P J and Woess W 1997 Functional iterations and periodic oscillations for simple random walk on the Sierpinski graph *Stochastic Process. Their Appl.* 69 127–38
[7] Acedo L and Yuste S B 2000 Territory covered by n random walkers on fractal media: the Sierpinski gasket and the percolation aggregate *Phys. Rev. E* 63 011105
[8] Bab M A, Fabricius G and Albano E V 2008 On the occurrence of oscillatory modulations in the power law behavior of dynamic and kinetic processes in fractals *Europhys. Lett.* 81 10003
[9] Bab M A, Fabricius G and Albano E V 2008 Revisiting random walks in fractal media: on the occurrence of time discrete scale invariance *J. Chem. Phys.* 128 044911
[10] Maltz A L, Fabricius G, Bab M A and Albano E V 2008 Random walks in fractal media: a theoretical evaluation of the periodicity of the oscillations in dynamic observables *J. Phys. A: Math. Gen.* 41 495004
[11] Weber S, Klafter J and Blumen A 2010 Random walks on Sierpinski gaskets of different dimensions *Phys. Rev. E* 82 051129
[12] Padilla L, Martín H O and Igain J L 2010 Log-periodic oscillations for diffusion on self-similar finitely ramified structures *Phys. Rev. E* 82 011124
[13] Krön B and Teufel E 2004 Asymptotics of the transition probabilities of the simple random walk on self-similar graphs *Trans. Am. Math. Soc.* 356 393–414
[14] Harris T E 1965 Diffusion with ‘collisions’ between particles *J. Appl. Probab.* 2 323–38
[15] Richards P M 1977 Theory of one-dimensional hopping conductivity and diffusion *Phys. Rev. B* 16 1393–409
[16] van Beijeren H, Kehr K W and Kutner R 1983 Diffusion in concentrated lattice gases. III. Tracer diffusion on a one-dimensional lattice *Phys. Rev. B* 28 5711–23
[17] Lizana L and Ambjörnsson T 2009 Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: tagged particle dynamics *Phys. Rev. E* 80 051103
[18] Manzi S J, Herrera J J T and Pereyra V D 2012 Single-file diffusion in a box: effect of the initial configuration *Phys. Rev. E* 86 061101
[19] Centres P M and Bustingorry S 2010 Effective Edwards–Wilkinson equation for single-file diffusion *Phys. Rev. E* 81 061101
[20] Wei Q-H, Bechinger C and Leiderer P 2000 Single-file diffusion of colloids in one-dimensional channels *Science* 287 625–7
[21] Kärgel J, Ruthven D M and Theodorou D N 2012 *Diffusion in Nanoporous Materials* (Hoboken, NJ: Wiley)
[22] Chung S-H, Anderson O S and Krishnamurthy V V 2010 *Biological Membrane Ion Channels: Dynamics, Structure, and Applications* (New York: Springer)
[23] Padilla L, Martín H O and Igain J L 2009 Log-periodic modulation in one-dimensional random walks *Europhys. Lett.* 85 20008
[24] Terranova G, Martín H O and Aldao C 2005 Exact diffusion coefficient for a chain of beads in one dimension using the Einstein relation *Phys. Rev. E* 72 061108
[25] Taloni A and Marchesoni F 2006 Single-file diffusion on a periodical substrate *Phys. Rev. Lett.* 96 020601

doi:10.1088/1742-5468/2014/07/P07010