A novel test rig development for experimental study of fluid mechanics of hydraulic orifice and/or gaps under high or low temperature conditions

Wenlin Wang1*, Jiabing Xu2, Xin Kong1,3 and Yongming Wu3

1School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China.
2Guilin woodpecker Medical Equipment Co., Ltd, Guilin 541004, China.
3School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.

Abstract. To meet the demand of ever operating in extreme environments of modern high-end vehicles or machineries, it is meaningful to perform basic research on fluid mechanics of hydraulic orifices and/or gaps under high or low temperature conditions. In this study, a novel compact experimental module which integrates the oil, the oil supply mechanism, the testing damping valve with orifices and/or gaps and several sensors was proposed, the experimental module has avoided the bulky method of using a full hydraulic system for oil supply and can be wholly placed into a high/low temperature chamber to undertake experiments; Based on the integrated experimental module, a test rig employing a variable-frequency-motor-driven ball screw driver to excite the testing module was developed. By using the virtual instrument technology, the hardware and software of automatic measurement and control system was further developed, so the automatic control and data collection of the test rig was realized. Final results show that the test rig can conveniently perform fluid mechanics experiments for various hydraulic orifices and/or gaps under high or low temperature conditions with high efficiency, so the test rig can be a very good platform for pertinent basic research works.

1. Introduction

Modern high-end vehicles or machineries using fluid power technologies are more and more required to operate in extreme environments [1, 2], thus, it is significant to perform basic research on fluid mechanics of hydraulic orifices and/or gaps under high or low temperature conditions.

Previous works concerning fluid mechanics of hydraulic orifices were almost conducted under ambient temperature conditions. Ramamurthi et al. [3] studied the flow characteristics of sharp-edged orifices when using demineralized water as the fluids, Huang et al. [4] conducted research on the nature of discharge coefficients of perforated orifices as a new kind of flowmeter, Yu et al. [5] and Tharakan et al. [6] both investigated the effects of back pressure on orifice discharge coefficients. In addition, the existing experimental equipment testing the fluid mechanics of orifices almost use the same mechanism, which employs a full and bulky hydraulic system [7] including the pump, valves and even an accumulator to supply pressure oil to the orifices, and the experiments are also conducted under room temperature conditions.
Thus, in order to do experiments on hydraulic orifices under high or low temperature conditions and avoid the bulky method of using a full hydraulic oil-supply system, a novel compact experimental module which integrates the oil, the oil supply mechanism, the test valve with orifice, several sensors was proposed [8], the experimental module can be wholly placed into a high/low temperature chamber to undertake experiments; Based on the integrated experimental module, a test rig which uses a variable-frequency-motor-driven ball screw driver to excite the testing module was developed. By using the virtual instrument technology, the hardware and software of automatic measurement and control system was further developed, so the automatic control and data collection of the test rig was realized. Final results show that the test rig can conveniently perform fluid mechanics experiments for various hydraulic orifices and/or gaps under high or low temperature conditions with high efficiency, so the test rig can be a very good platform for pertinent basic research works.

2. A novel compact testing module
A novel compact experimental module, as shown in Figure 1, which borrows the idea of a railway hydraulic damper, was proposed [8]. The module integrates the oil, the oil supply mechanism, the testing damping valve with orifices and/or gaps and several sensors.

![Figure 1](image.png)

Figure 1. A novel compact module for testing the fluid mechanics of hydraulic orifices and/or gaps: (a) Cross-section of the module, (b) Damping valve with orifice flow, (c) Damping valve with parallel flat flow, (d) Damping valve with eccentric ring flow, (e) Damping valve with concentric ring flow, (f) Module samples.

In Figure 1(b), the orifice flow through the damping valve Q_1 can be formulated by

$$Q_1 = C_d \left(\frac{\pi}{4} d^2 \right) \sqrt{\frac{2}{\rho} \Delta p}$$ \hspace{1cm} (1)

where C_d is discharge coefficient, d is the orifice diameter, ρ is the oil density and Δp is the differential pressure of the orifice.

The parallel flat flow through the damping valve Q_2, as shown in Figure 1(c), can be formulated by
where μ is dynamic viscosity of the oil; l, b and h are length, width and height of the parallel flat, respectively.

Because the eccentric ring flow through the damping valve Q_4 as shown in Figure 1(d), can be formulated by

$$Q_4 = \frac{\pi d_1^3 h_0}{12 \mu l_1} \left(1 + 1.5 \varepsilon^2\right) \Delta p$$

where d_1 and l_1 are inner diameter and length of the ring, respectively; h_0 is the difference of the inner radius and outer radius of the ring when the ring is concentric; ε is the eccentric rate of the ring, and given by $\varepsilon = e/h_0$, where e is the eccentric value of the ring.

Thus, if make $\varepsilon=0$ in Equation (3), the concentric ring flow through the damping valve Q_3, as shown in Figure 1(e), can be obtained by Equation (3):

$$Q_3 = \frac{\pi d_1^3 h_0^3}{12 \mu l_1} \Delta p$$

For the experimental module is as the size as a damper, it can be readily placed into a high/low temperature chamber to undertake experiments.

3. Test rig development

3.1 The mechanical and drive system

Based on the proposed compact experimental module, the mechanical system has been designed, as shown by Figure 2(a). Basically, the mechanical system includes a stand, a cryostat, a testing module which is placed into the cryostat and a ball screw driver, the ball screw driver is connected with the testing module by a connector with a load sensor.

Figure 2(b) demonstrates the mechanism of the ball screw driver. The worm is driven by an electric motor which is controlled by a frequency changer, so the worm wheel will be driven by the worm, because the worm wheel is fixed with the nut, the nut will be simultaneously driven by the worm wheel, so the lead screw will be driven by the nut. For the lead screw is connected with the testing module, the module will be finally excited.
When controlling the motor by the frequency changer, different driving laws would be obtained, so the testing module would be excited with different velocities, the constant velocity and accelerated velocity are common driving laws adopted.

3.2 The automatic measurement system
An automatic measurement system is developed for automatic experiment control, data acquisition and data post processing, the developed hardware and software are partly shown in Figure 3. The hardware includes the industrial control computer, the data acquisition unit, the filter circuit, the main control circuit, the frequency changer for electric motor control and the control panel.

The software is developed using the LABVIEW platform, Figure 3(b) shows the page for parameter setting, in this page, the law of driving velocity, the temperature for experiment and data acquisition setting can all be set before any experiment.

3.3 System integration
By integrating the proposed testing module, the mechanical system and the automatic measurement system, a test rig for experimental study of fluid mechanics of hydraulic orifice and/or gaps under high or low temperature conditions is finally obtained, the apparatus is shown in Figure 4(a) and its main technical parameters and values are given by Table.1.

As an example, Figure 4(b) shows the tested flow characteristics of a sharped-edged hydraulic orifice under -50℃ temperature conditions, by using the developed test rig.
Parameter	Value	Parameter	Value
Maximum displacement (m)	0.5	Temperature range for testing (℃)	-50→+100
Maximum height for fixing (m)	1.2	Maximum temperature range (℃)	-70→+120
Maximum testing load (kN)	15	Full extension of the module (m)	0.32
Maximum testing speed (m/s)	0.1	Extension for experiment of the module (m)	0.2

4. Conclusions
(1) The proposed novel experimental module compactly integrates the oil, the oil supply mechanism, the testing damping valve with orifices and/or gaps and sensors, so it has avoided the traditional bulky method of using a full hydraulic system for oil supply and can be wholly placed into a high/low temperature chamber to undertake experiments.

(2) By using the virtual instrument technology, the hardware and software of automatic measurement and control system was developed, so the automatic measurement system makes experiments be conducted with high efficiency.

(3) Because various orifices and gaps with different geometric parameters can be designed and conveniently in-bedded in the module, so the test rig developed is actually a versatile and powerful platform for fluid mechanics research.

Acknowledgements
The authors thank financial support from the National Natural Science Foundation of China (NSFC) under Grant No. 11572123 and the Research Fund for High-level Talent of Dongguan University of Technology under Project No. KCYXM2017026.

References
[1] European Committee for Standardization 2013 EN13802: 2013 Railway applications–Suspension Components–Hydraulic Damper. CEN-CENELEC Management Centre, Brussels, Belgium.
[2] Qiao F, Li H P, Yang W J and Cao H F 2011 Brake System of Low Temperature EMU. Journal of Railway Locomotive & Car 31(5): 108–110. (In Chinese)
[3] Ramamurthi K and Nandakumar K 1999 Characteristics of flow through small sharp-edged cylindrical orifices. Flow Measurement and Instrumentation, 10(3): 133–143.
[4] Huang S F, MA T Y and Wang D 2013 Study on discharge coefficient of perforated orifices as a new kind of flowmeter. Experimental Thermal and Fluid Science, 46: 74–83.
[5] Yu B, Fu P F, Zhang T and Zhou H C 2013 The influence of back pressure on the flow discharge coefficients of plain orifice nozzle. International Journal of Heat and Fluid Flow, 44: 509–514.
[6] Tharakan T J and Rafeeqe T A 2016 The role of backpressure on discharge coefficient of sharp edged injection orifices. Aerospace Science and Technology, 49: 269–275.
[7] Liu H, Li C L and Jia R Q 2012 The design of the thin-walled orifice throttling test platform. Development & Innovation of Machinery & Electrical Products, 25(5): 41–43. (In Chinese)
[8] Wang W L, Zhou Z R, Cao X C, Ying Lin, Liang J L and Huang Y B 2019 A compact experimental module for hydraulic orifices and/or gaps fluid mechanics testing under both high and low temperature conditions. China Patent: 201710825931.9. (In Chinese)
[9] Sheng J C 1980 Fluid Mechanics for Fluid Power Engineering China Machine Press, Beijing, China. (In Chinese)
[10] Rabie M G 2009 Fluid Power Engineering The McGraw-Hill Companies, Inc., UAS.