Non-invasive investigation in patients with inflammatory joint disease

Elisabetta Dal Pont, Renata D’Incà, Antonino Caruso, Giacomo Carlo Sturniolo

Abstract

Gut inflammation can occur in 30%-60% of patients with spondyloarthropathies. However, the presence of such gut inflammation is underestimated, only 27% of patients with histological evidence of gut inflammation have intestinal symptoms, but subclinical gut inflammation is documented in two-thirds of patients with inflammatory joint disease. There are common genetic and immunological mechanisms behind concomitant inflammation in the joints and intestinal tract. A number of blood tests, e.g. erythrocyte sedimentation rate, orosomucoid, C-reactive protein, and white cell and platelet counts, are probably the most commonly used laboratory markers of inflammatory disease, however, these tests are difficult to interpret in arthropathies associated with gut inflammation, since any increases in their blood levels might be attributable to either the joint disease or to gut inflammation. Consequently, it would be useful to have a marker capable of separately identifying gut inflammation. Fecal proteins, which are indirect markers of neutrophil migration in the gut wall, and intestinal permeability, seem to be ideal for monitoring intestinal inflammation: they are easy to measure non-invasively and are specific for intestinal disease in the absence of gastrointestinal infections. Alongside the traditional markers for characterizing intestinal inflammation, there are also antibodies, in all probability generated by the immune response to microbial antigens and auto-antigens, which have proved useful in establishing the diagnosis and assessing the severity of the condition, as well as the prognosis and the risk of complications. In short, non-invasive investigations on the gut in patients with rheumatic disease may be useful in clinical practice for a preliminary assessment of patients with suspected intestinal disease.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Biochemical markers; Fecal markers; Inflammatory bowel disease; Intestinal permeability; Serological markers; Spondyloarthropathies

INTRODUCTION

Gut lesions are relatively common in patients with rheumatic disease and approximately 30%-60% patients with spondyloarthropathies have occult intestinal inflammation, which may be related to their ingestion of non-steroidal anti-inflammatory drugs or associated with their rheumatic disease.

Spondyloarthopathies form a group of chronic autoimmune disorders of the joints which include ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease (IBD), and undifferentiated spondyloarthropathies. The prevalence of gut inflammation in ankylosing spondylitis is higher among patients with associated peripheral arthritis than in those with axial involvement alone[1].

Gut inflammation has also been recorded in other spondyloarthropathies. In juvenile chronic arthritis, for instance, when colonoscopy with biopsies of the colonic mucosa and terminal ileum was performed in 12 patients less than 16 years of age, inflammation was observed in 9 patients (75%); gut inflammation could have a
role in the pathogenesis of the disease and persistent synovitis[3].

Two histological types of gut inflammation can be distinguished in spondyloarthropathies, i.e. acute and chronic, based on their morphological characteristics, not on the time of onset or duration of the disease[3]. The acute type resembles acute bacterial enterocolitis, with a well-preserved mucosal architecture. The chronic type resembles chronic ileocolitis and is generally indistinguishable from Crohn’s disease, with a clearly disrupted mucosal architecture. While acute lesions are mainly seen in patients with reactive arthritis, chronic lesions are more prevalent in undifferentiated spondyloarthropathies and ankylosing spondylitis[4].

In a prospective study on 123 patients with spondyloarthropathies who initially underwent endoscopy, intestinal evolution was evaluated by ileocolonoscopy and an evolution to IBD was recorded in 7\% of these patients[5]. Despite the high frequency of gut lesions in patients with joint diseases, only a few patients are symptomatic. In a series described by Cuvelier \textit{et al}[3], only 27\% of patients with histological gut inflammation had intestinal symptoms.

Non-invasive laboratory tests might therefore help to identify rheumatic disease patients with gastrointestinal symptoms who need further investigation. It would be helpful to have inexpensive and manageable tests to facilitate this selection.

GUT-RELATED GENETIC POLYMORPHISMS

There is clinical evidence of a correlation between gut and joint inflammation and the gut could have an important pathogenic role. Remission of joint inflammation has been associated with the disappearance of gut inflammation, and remission of persistent joint inflammation with the disappearance of persistent gut inflammation[6]. Ankylosing spondylitis affects 3\%–10\% of patients with IBD and is thought to have a genetic origin in these patients that differs from that of ‘classic’ ankylosing spondylitis: while 90\% of patients with ‘classic’ ankylosing spondylitis have the human leukocyte antigen B27 phenotype, its prevalence drops to 30\% in patients with ankylosing spondylitis associated with Crohn’s disease. Polymorphisms of the CARD15 gene may act as a genetic trigger because 78\% of patients with Crohn’s disease and symptomatic or asymptomatic sacroileitis carry at least one mutation, as opposed to 48\% of control patients with Crohn’s disease alone[7]. Laukens \textit{et al} confirmed a similar association, finding CARD15 variants in 42\% of patients with spondyloarthropathy and asymptomatic gut inflammation, compared with 7\% of patients with normal gut histology[8].

In a previous study, the frequency of HLA-Bw62 was found to be very high in patients with reactive arthritis and in those with active ankylosing spondylitis and Crohn-like lesions on gut biopsy[9]. A number of proteins are up- or down-regulated in the acute phase of inflammation, and gut inflammation is associated with an acute-phase reaction and the migration of leucocytes to the gut lumen. Several blood tests are used to detect inflammation, however, these tests are unable to discriminate between inflamed joints and inflamed gut[10]. In a study on children with spondyloarthropathies, erythrocyte sedimentation rate (ESR) showed 63% sensitivity and 44% specificity in detecting gut inflammation[10].

Serum levels of human cartilage glycoprotein 39 (also called YKL-40) were recently found to be higher than normal in patients with IBD. More than 60\% of Crohn’s disease patients with extraintestinal manifestations have high serum YKL-40, as opposed to only 3\% of ulcerative colitis patients[11]. We found significantly higher serum levels of YKL-40 in IBD patients with arthropathies than in those without arthropathies or controls \((P < 0.001\) and \(P < 0.01\), respectively). The level of this protein also correlates with the number of joints involved, suggesting that this substance could be used as a disease activity marker in arthritis associated with IBD[12].

Fecal Markers

As serum markers may increase in various conditions, fecal markers might be more specific for gut inflammation. Barabino \textit{et al}[10] compared a number of non-invasive tests for diagnosing intestinal inflammation in children with spondyloarthropathies. Forty-two children with IBD or rheumatologic manifestations associated with gastrointestinal symptoms were investigated by 99mTechnetium-HMPAO labeled white cell scanning, abdominal ultrasound, ESR, fecal occult blood and fecal alpha 1-antitrypsin tests. 99mTechnetium-HMPAO labeled white cell scanning was shown to be the most sensitive (85\%) and specific (100\%) in detecting gut inflammation. White cell scanning combined with the measurement of fecal excretion of labeled white cells was able to quantify inflammation accurately in an additional study: following intravenous administration of 111In-labelled leukocytes, fecal 111In granulocyte excretion correlated significantly with Crohn’s disease activity index \((P < 0.001)\), C-reactive protein (CRP) \((P < 0.001)\) and ESR \((P < 0.001)\). This technique is expensive and time-consuming, however, and involves the use of radiation. Moreover, leukocytes do not survive for long periods in feces due to bacterial degradation[14]. As an alternative, fecal leukocytes can be seen under the microscope, but again, such an evaluation is not practicable because it has to be carried out on fresh stools. Some leukocyte proteins, such as lactoferrin and calprotectin, are more durable and can be used as surrogate markers of the presence of leukocytes in stools. Fecal calprotectin levels have been shown to correlate with intestinal inflammation, as assessed by 111Indium-labelled leukocyte studies on 4-d-old fecal samples and the correlation was maintained, even when
a single stool specimen was examined. A number of neutrophil-derived proteins have been studied in stools, including fecal calprotectin, lactoferrin, lysozyme, elastase and myeloperoxidase. Experience with the analysis of fecal proteins has been gained mainly with calprotectin and lactoferrin. Calprotectin represents 60% of the cytosolic proteins in granulocytes, and is released from cells during cell activation or death, while lactoferrin is a component of the granules in the neutrophilic granulocytes, so their presence in feces is presumably directly proportional to neutrophil migration in the gut lumen. Both calprotectin and lactoferrin are stable in stools for more than 7 d at room temperature.

Determining intestinal inflammation by means of fecal markers is of considerable interest to clinicians in various settings, e.g. to discriminate between patients with organic and functional processes, to monitor disease activity and response to treatment, and to predict relapses in IBD. Both calprotectin and lactoferrin have been found to correlate with intestinal inflammation in studies on patients undergoing colonoscopy for gastrointestinal symptoms or surveillance.

In a recent study, calprotectin and lactoferrin appeared to be equally recommendable as inflammatory disease markers in patients with lower gastrointestinal symptoms and both reflected inflammatory activity in IBD.

Fecal calprotectin and lactoferrin are equally useful in assessing disease activity: calprotectin correlated with endoscopic findings, lactoferrin with histology.

Fecal calprotectin also proved useful in predicting relapses in patients in clinical remission, probably reflecting subclinical activity. Tibble et al. found that fecal calprotectin levels greater than 50 μg/g were a sensitive and specific predictor of relapse in the short term in both ulcerative colitis and Crohn's disease (with 90% sensitivity and 83% specificity). More recently, Costa et al. found that ulcerative colitis patients with fecal calprotectin levels higher than 150 μg/g had a 14-fold relapse risk, while Crohn's disease patients had only a two-fold risk of relapse, which was not statistically significant. D'Incà et al. observed that calprotectin levels beyond 130 mg/kg correlated significantly with the probability of relapse in ulcerative colitis patients (P = 0.000) and colonic Crohn's disease patients (P = 0.02), but not in patients with ileal or ileocolonic disease.

INTESTINAL PERMEABILITY

Permeability refers to the property of a membrane that enables a solute to pass through it by unmediated diffusion due to the membrane's structure, the physical and chemical properties of the solute, and its interaction with the medium or solvent. Intestinal permeability is assessed non-invasively in vivo by measuring the urinary excretion of orally administered hydrolysable, non-toxic and non-degradable probes, e.g. lactulose/mannitol, lactulose/rhamnose, 51Cr-EDTA/rhamnose, or D-xylose.

Bjarnason et al. postulated that a greater intestinal permeability to toxic "non-absorbable" compounds might be responsible for some of the extraintestinal tissue damage common in alcoholic patients. An altered intestinal permeability may also represent the primary defect in patients with arthropathy. An increased antigenic load could result from an altered intestinal permeability, since higher levels of antibodies to Klebsiella pneumoniae have been found in the serum of patients with ankylosing spondylitis, rheumatoid arthritis and IBD. Morris et al. found that small intestinal permeability increased in patients with ankylosing spondylitis taking non-steroidal anti-inflammatory drugs, suggesting that the increased permeability was probably not a primary mucosal lesion, but caused by the medication. De Vos et al. found both acute and chronic inflammation at the macroscopic (30%) and histological (61%) level in the terminal ileum of patients who were seronegative for arthropathy and were not taking non-steroidal anti-inflammatory drugs. Chronic inflammation predominated in ankylosing spondylitis patients, resembling Crohn's disease in one third of patients. Mielants et al. observed a greater gut permeability in rheumatic patients irrespective of whether they were taking non-steroidal anti-inflammatory drugs, indicating that the disrupted permeability is disease-related.

Altered gut permeability was also seen in juvenile chronic arthritides, which are frequently associated with IBD, despite the use of non-steroidal anti-inflammatory drugs (P = 0.210), disease activity (P = 0.24) and type of disease (P = 0.28). The same findings have been reported in various intestinal conditions, such as celiac disease, IBD, infectious gastroenteritis, and food intolerance or allergy. We had the opportunity to study 261 consecutive patients referred with chronic diarrhea and found that the intestinal permeability test and CRP levels were independent predictors of the final diagnosis of an underlying organic small bowel disease. The test correctly identified the presence of organic disease in 80% of patients.

The permeability test is used in Crohn's disease to monitor disease activity and as a predictor of relapse in quiescent Crohn's disease. In active Crohn's enteritis, 95% of patients have an increased intestinal permeability, while in Crohn's colitis this is true of about 50% of patients. Studies in patients with Crohn's disease in remission have shown that an increased intestinal permeability can pinpoint those at significant risk of disease relapse within the next few months.

SEROLOGICAL MARKERS

Sero logical tests focus on several antibodies, the most widely used being perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) and anti-Saccharomyces cerevisiae antibodies (ASCA). p-ANCA were first described in ulcerative colitis patients in 1990, but the exact epitope remains unknown. ASCA are directed against the cellular wall of baking yeast. The specificity of both markers is very high, but their sensitivity is rather low and these tests are consequently
not suitable for screening purposes. Combining the two (p-ANCA and ASCA) may be helpful, however, in the differential diagnosis between ulcerative colitis and Crohn's disease the combination of ASCA+/p-ANCA- is characteristic of Crohn's disease, while ASCA-/p-ANCA+ is characteristic of ulcerative colitis, with a sensitivity that ranges from 30%-64%, a specificity beyond 90% and a positive predictive value between 77% and 96%.[47-49] ASCA positivity has been related to disease severity[50], the risk of having to undergo surgery,[51] and an ideal and/or right colonic localization of the disease.[46,52]

The recent finding that p-ANCA and ASCA can be found in 25%-30% of patients some years before any IBD is diagnosed has shed some light on its pathogenesis[53].

Two studies documented a higher prevalence of ASCA IgA positivity in ankylosing spondylitis,[54,55], adding proof to the conviction that spondyloarthropathies and IBD are immunologically related. Additional serum biomarkers include antibodies against outer membrane porin C (Anti-OmpC), the Pseudomonas fluorescens bacterial sequence I2 (anti-I2), bacterial flagellin (antiCBir1) and the anti-glycan antibodies, i.e. anti-chitobiase IgA (ACCA), anti-laminaribioside IgG (ALCA) and anti-mannobioside (AMCA)[56,57]. Although the data from independent studies vary, combining more than one serological marker has been shown to add clinical value, particularly in predicting a complicated disease behavior, including strictures, fistulas and the need for surgery.

CONCLUSION

Patients with spondyloarthropathies often have inflammation in the gut, especially in the terminal ileum, although only 30% of the patients involved have clinical symptoms.

The frequency of gastrointestinal disease remains poorly understood and should be investigated in all patients with chronic spondyloarthropathy. The early diagnosis and treatment of gut inflammation may make it unnecessary to use drugs that can damage the intestinal mucosa.[58-61]

Biochemical markers are useful in managing gut inflammation, representing a valuable aid in the diagnosis of inflammatory processes and the evaluation of their prognosis.

The ideal marker should be easy to test, repeatable and inexpensive. Currently used blood markers are non-specific and reflect both joint and intestinal inflammation. The fecal markers calprotectin and lactoferrin, and intestinal permeability are more promising tests, as they have a good specificity for intestinal disorders and are straightforward to perform. This is very important, particularly to pinpoint those patients without intestinal symptoms who need to be selected for further, more invasive investigations, and to avoid medication-related complications.

REFERENCES

1. De Keyser F, Elewaut D, De Vos M, De Vlam K, Cuvelier C, Mielants H, Veys EM. Bowel inflammation and the spondyloarthropathies. Rheum Dis Clin North Am 1998; 24: 785-813, ix-x
2. Mielants H, Veys EM, Cuvelier C, De Vos M, Goemaere S, Maertens M, Joos R. Gut inflammation in children with late onset pauciarticular juvenile chronic arthritis and evolution to adult spondyloarthropathy—a prospective study. J Rheumatol 1993; 20: 1567-1572
3. Cuvelier C, Barbatsi M, Mielants H, De Vos M, Roels H, Veys E. Histopathology of intestinal inflammation related to reactive arthritis. Gut 1987; 28: 394-401
4. Mielants H, Veys EM, Cuvelier C, De Vos M, Goemaere S, De Clercq L, Schatteman L, Elewaut D. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J Rheumatol 1995; 22: 2273-2278
5. De Vos M, Mielants H, Cuvelier C, Elewaut A, Veys E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 1996; 110: 1696-1703
6. De Vos M. Review article: joint involvement in inflammatory bowel disease. Aliment Pharmacol Ther 2004; 18 Suppl 4: 36-42
7. Laukens D, Peeters H, Marchal D, Vander Cruyssen B, Mielants H, Elewaut D, Demetter P, Cuvelier C, Van Den Berghe M, Rottiers P, Veys EM, Remaut E, Steidler L, De Keyser F, De Vos M. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn's disease. Ann Rheum Dis 2005; 64: 930-935
8. Mielants H, Veys EM, Joos R, Noens L, Cuvelier C, De Vos M, HLA antigens in seronegative spondyloarthropathies. Reactive arthritis and arthritis in ankylosing spondylitis: relation to gut inflammation. J Rheumatol 1987; 14: 466-471
9. Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut 2006; 55: 426-431
10. Barabino A, Gattorno M, Cabria M, Sormani MP, Occhi M, Villa vecchia G, Gandullia P, Buoncompagni A, Castellano E, Picco P. 99mTc-white cell scanning to detect gut inflammation in children with inflammatory bowel diseases or spondyloarthropathies. Clin Exp Rheumatol 1998; 16: 327-334
11. Vind I, Johansen JS, Price PA, Munkholm P. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease. Scand J Gastroenterol 2003; 38: 599-605
12. Punzi L, Podsiadwiek M, Dłncá R, Zaninotto M, Bernardi D, Pleban M, Sturniolo GC. Serum human cartilage glycoprotein 39 as a marker of arthritis associated with inflammatory bowel disease. Ann Rheum Dis 2003; 62: 1224-1226
13. Saverymuttu SH, Peters AM, Lavender JP, Pepys MB, Hodgson HJ, Chadwick VS. Quantitative fecal indium 111-labeled leukocyte excretion in the assessment of disease in Crohn's disease. Gastroenterology 1983; 85: 1333-1339
14. Guer rant RL, Araujo V, Soares E, Kotloff K, Lima AA, Cooper WH, Lee AG. Measurement of fecal lactoferrin as a marker of fecal leukocytes. J Clin Microbiol 1992; 30: 1238-1242
15. Tibble J, Teahan K, Thjodleifsson B, Roseth A, Sigthorsson G, Bridger S, Foster R, Sherwood R, Fagerhol M, Bjarnason I. A simple method for assessing intestinal inflammation in Crohn's disease. Gut 2006; 55: 1333-1339
16. Reseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol 1999; 34: 50-54
17. Tibble JA, Sigthorsson G, Foster R, Forgacs I, Bjarnason I. Use of surrogate markers of inflammation and Rome criteria to distinguish organic from nonorganic intestinal disease. Gastroenterology 2002; 123: 450-460
18. Sugì K, Saito H, Hira 4, Katsu K. Fecal lactoferrin as a
marker for disease activity in inflammatory bowel disease: comparison with other neutrophil-derived proteins. *Am J Gastroenterol* 1996; 91: 927-934

19 *Kaya*wa M, Saitoh O, Kojima K, Nakagawa K, Tanaka S, Tabata T, Matsuse R, Uchida K, Hoshimoto M, Hirata I, Katsu K. Lactoferrin in whole gut lavage fluid as a marker for disease activity in inflammatory bowel disease: comparison with other neutrophil-derived proteins. *Am J Gastroenterol* 2002; 97: 360-369

20 Roseth AG, Fagerhol MK, Aaland E, Sjönsby H. Assessment of the neutrophil dominating protein calprotectin in feces. A methodological study. *Scand J Gastroenterol* 1992; 27: 793-798

21 *Summerton* CB, Longlands MG, Wiener K, Shreeve DR. Faecal calprotectin: a marker of inflammation throughout the intestinal tract. *Eur J Gastroenterol Hepatol* 2002; 14: 841-845

22 Saitoh O, Kojima K, Kaya*wa* M, Sug*i* K, Tanaka S, Nakagawa K, Teranishi T, Matsuse R, Uch*ida* K, Morikawa H, Hirata I, Katsu K. Comparison of tests for fecal lactoferrin and fecal occult blood for colorectal diseases: a prospective pilot study. *Inter J Med* 2000; 39: 778-782

23 D’*Incà* R, Dal Pont E, Di Leo V, Ferronato A, Fri*es* W, Vettorato MG, Martines D, Sturino GC. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. *Int J Colorectal Dis* 2007; 22: 429-437

24 Lang*horst* J, Ebschrun*er* S, Muller T, Rueffer A, S*pha*n G, Michalsen A, Dobos GJ. Comparison of 4 neutrophil-derived proteins in feces as indicators of disease activity in ulcerative colitis. *Inflamm Bowel Dis* 2005; 11: 1085-1091

25 Tibble JA, Sighthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. *Gastroenterology* 2000; 119: 15-22

26 Costa F, Mumo*lo* MG, C*eccarelli* L, Bellini M, Romano MR, Sterpi C, Ric*hi*u*ti* A, Marchi S, Bot*ta*i M. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. *Gut* 2005; 54: 364-368

27 D’*Incà* R, Dal Pont E, Di Leo V, Benazzato L, Martinato M, Lambogl*ia* F, Oliva L, Sturino GC. Can calprotectin predict relapse risk in inflammatory bowel disease? *Am J Gastroenterol* 2008; 103: 2007-2014

28 Bjarnason I, Peters TJ, Wise RJ. The leaky gut of alcoholism: possible route of entry for toxic compounds. *Lancet* 1984; 1: 179-182

29 Cooper R, Fraser SM, Sturrock RD, Gemmell CG. Raised titres of anti-klebsiella IgA in ankylosing spondylitis, rheumatoid arthritis, and inflammatory bowel disease. *Br Med J* (Clin Res Ed) 1988; 296: 1432-1434

30 Morris AJ, Howden CW, Robertson C, Duncan A, Torley H, Howden BY, McInerny B, Duncan A, Robertson C. Diagnosis of ankylosing spondylitis--primary lesion or drug effect? *J Rheumatol* 1989; 16: 1470-1472

31 De* Vos* M, Cuvelier C, Mielants H, Veys E, Barbier F, Flewaut A. Illeocolonic peritoneal fluid in spondylarthropathy. *Gastroenterology* 1989; 96: 339-344

32 *Mielants* H, Goemaere S, De* Vos* M, Schelstraete K, Goethals K, Maertens M, Ackerman C, Veys E. Intestinal mucosal permeability in inflammatory rheumatic diseases. I. Role of antiinflammatory drugs. *J Rheumatol* 1991; 18: 389-393

33 *Mielants* H, De* Vos* M, Goemaere S, Schelstraete K, Cuvelier C, Goethals K, Maertens M, Ackerman C, Veys E. Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. *J Rheumatol* 1991; 18: 394-400

34 *Pico* P, Gattorno M, Marchese N, Vignola S, Sormani MP, Barbano A, Buoncompagni A. Increased gut permeability in juvenile chronic arthritides. A multivariate analysis of the diagnostic parameters. *Clin Exp Rheumatol* 2000; 18: 773-778

35 Bjarnason I, Maxton D, Reynolds AP, Catt S, Peters TJ, Mensies RS. Comparison of four markers of intestinal permeability in control subjects and patients with coeliac disease. *Scand J Gastroenterol* 1994; 29: 630-639

36 Jenkins RT, Jones DB, Goodacre RL, Collins SM, Coates G, Hunt RH, Bienester J. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases. *Am J Gastroenterol* 1987; 82: 1159-1164

37 Zhang Y, Lee B, Thompson M, Glass R, Cama RI, Figueras D, Gilman R, Taylor D, Stephenson C. Lactulose-mannitol intestinal permeability test in children with diarrhea caused by rotavirus and cryptosporidium. *Diarrhea Working Group, Peru*. *Pediatr Gastroenterol Nutr* 2000; 31: 16-21

38 *Schrander* JJ, Unsalan-Hooyen RW, Forget PP, Jansen J. [51Cr]EDTA intestinal permeability in children with cow’s milk intolerance. *Pediatr Gastroenterol Nutr* 1990; 18: 189-192

39 *Ukabaso* SM, Mann RJ, Cooper BT. Small intestinal permeability to sugars in patients with atopic eczema. *Br J Dermatol* 1984; 110: 649-652

40 Di Leo V, D’*Incà* R, Diaz-Granado N, Fries W, Venturi C, D’Odorico A, Martines D, Sturino GC. Lactulose/mannitol test has high efficacy for excluding organic causes of chronic diarrhea. *Am J Gastroenterol* 2003; 98: 2245-2252

41 Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. *Gastroenterology* 1995; 108: 1566-1581

42 D’Incà R, Di Leo V, Corrao G, Martins D, D’Odorico A, Mestriner C, Venturi C, Longo G, Sturino GC. Intestinal permeability test as a predictor of clinical course in Crohn’s disease. *Lancet* 1993; 341: 1437-1439

43 Saxon A, Shanahan F, Landers C, Ganz T, Targan S. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. *J Allergy Clin Immunol* 1996; 98: 220-230

44 Rump JA, Scholmerich J, Gross V, Roth M, Helfesrieder R, Rautmann A, Lüdemann J, Gross WL, Peter HH. A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn’s disease. *Immunobiology* 1990; 181: 406-413

45 Papp M, Norman GL, Altorjai I, Lakatos PL. Utility of serological markers in inflammatory bowel diseases: gadget or magic? *World J Gastroenterol* 2007; 13: 2028-2036

46 Links* ensen* RK, Mallant-H* ent* RC, Groothuismink ZM, Bakker-Jonges LE, van de Merwe JP, Hooijsak H, van Blomberg BM, Meuwissen SG. Evaluation of serological markers to differentiate between ulcerative colitis and Crohn’s disease: pANCA, ASCA and agglutinating antibodies to anaerobic cocoid rods. *Eur J Gastroenterol Hepatol* 2002; 14: 1013-1018

47 Quin*ton* JF, Sendid B, Reu*maux* D, Duthilleul P, Cortot A, Grandbastien B, Charrier G, Targan SR, Colombel JF, Pou*lan* D. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. *Gut* 1998; 42: 788-791

48 Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. *Am J Gastroenterol* 2001; 96: 730-734

49 Mow WS, Vasilioukas EA, Lin YC, Fleschner PR, Papadakis KA, Taylor KD, Landers CJ, Abreu-Martin MT, Rotter JJ, Yang H, Targan SR. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. *Gastroenterology* 2004; 126: 414-424

50 Forci*one* DG, Rosen MJ, Kiesiel JB, Sands BE. Anti-Saccharomyces cerevisiae antibody (ASCA) positivity is associated with increased risk for early surgery in Crohn’s disease. *Gut* 2004; 53: 1117-1122

51 Zh*oludev* A, Zurakowski D, Young W, Leichtner A,
Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn's disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am J Gastroenterol 2004; 99: 2235-2241

Israel E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, Shoenfeld Y. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 2005; 54: 1232-1236

Hoffman IE, Demetter P, Peeters M, De Vos M, Mielants H, Veys EM, De Keyser F. Anti-saccharomyces cerevisiae IgA antibodies are raised in ankylosing spondylitis and undifferentiated spondyloarthropathy. Ann Rheum Dis 2003; 62: 455-459

Török HP, Glas J, Gruber R, Brumberger V, Strasser C, Kellner H, Märker-Hermann E, Folwaczny C. Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: increased prevalence of ASCA and pANCA. Digestion 2004; 70: 49-54

Peyrin-Biroulet L, Standaert-Vitse A, Branche J, Chamaillard M. IBD serological panels: facts and perspectives. Inflamm Bowel Dis 2007; 13: 1561-1566

Papp M, Altoraj I, Dotan N, Palatka K, Foldi I, Tumpek J, Sipka S, Udvardy M, Dinya T, Lakatos L, Kovacs A, Molnar T, Tulassay Z, Miheller P, Norman GL, Szamosi T, Papp J, Lakatos PL. New serological markers for inflammatory bowel disease are associated with earlier age at onset, complicated disease behavior, risk for surgery, and NOD2/CARD15 genotype in a Hungarian IBD cohort. Am J Gastroenterol 2008; 103: 665-681

Ferrante M, Henckaerts L, Joossens M, Pierik M, Joossens S, Dotan N, Norman GL, Altstock RT, Van Steen K, Rutgeerts P, Van Assche G, Vermeire S. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 2007; 56: 1394-1403

Allison MC, Howatson AG, Torrance CJ, Lee FD, Russell RJ. Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N Engl J Med 1992; 327: 749-754

Sigthorsson G, Tibble J, Hayllar J, Menzies I, Macpherson A, Moots R, Scott D, Gumpel MJ, Bjarnason I. Intestinal permeability and inflammation in patients on NSAIDs. Gut 1998; 43: 506-511

Felder JB, Korelitz BI, Rajapakse R, Schwarz S, Horatagis AP, Gleim G. Effects of nonsteroidal antiinflammatory drugs on inflammatory bowel disease: a case-control study. Am J Gastroenterol 2000; 95: 1949-1954