Prototype-based

Domain Adaptation
Annotations are particularly costly as every pixel has to be labeled.
What is UDA?

UDA: Unsupervised Domain Adaptation

Image:

Label:

test
Domain Adaptation

Bi-directional Contrastive Learning for Domain Adaptive Semantic Semantic Segmentation

Geon Lee, Chanho Eom, Wonkyung Lee, Hyekang Park, and Bumsun Ham*
https://cvlab.yonsei.ac.kr/projects/DASS

Yonsei University
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

- **ECCV 2022**
- **Motivation**

However, they typically focus on reducing the domain discrepancy globally, and fail to keep pixel-level semantics.
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

Contribution

- We introduce a novel contrastive learning framework using bi-directional pixel-prototype correspondences to learn domain-invariant and discriminative feature representations for UDASS.
- We propose a nonparametric approach to generating dynamic pseudo labels. We also present a calibration method to reduce domain biases for pixel-prototype correspondences between target and source domains.
- We set a new state of the art on standard benchmarks for UDASS, and demonstrate the effectiveness of our contrast learning framework.
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

\[
\rho_s(c) = \frac{\sum_p f_s(p)y_s(p, c)}{\sum_p y_s(p, c)}, \quad \rho_T(c) = \frac{\sum_p f_T(p)y_T(p, c)}{\sum_p y_T(p, c)},
\]

\[
\mathcal{L}_{FC} = -\sum_c \sum_p y_T(p, c) \log \frac{\exp \left(s(f_T(p), \rho_s(c))/\tau \right)}{\sum_c \exp \left(s(f_T(p), \rho_s(c))/\tau \right)},
\]

\[
\mathcal{L}_{BC} = -\sum_c \sum_p y_s(p, c) \log \frac{\exp \left(s(f_s(p), \rho_T(c))/\tau \right)}{\sum_c \exp \left(s(f_s(p), \rho_T(c))/\tau \right)}.
\]
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

Dynamic pseudo labels (Sec 3.3)

\[
\begin{align*}
\mu_S(c) &\leftarrow \lambda \mu_S(c) + (1 - \lambda) \rho_S(c) \\
\mu_T(c) &\leftarrow \lambda \mu_T(c) + (1 - \lambda) \rho_T(c) \\
\xi(c) &= \mu_T(c) - \mu_S(c) \\
\rho_{S\rightarrow T}(c) &= \rho_S(c) + \xi(c). \\
y_D(p, c) &= \begin{cases}
1, & \text{if } s(f_T(p), \rho_{S\rightarrow T}(c)) > T \text{ and } c = c' \\
0, & \text{otherwise}
\end{cases} \\
y_T(p, c) &= \begin{cases}
y_D(p, c), & \text{if } y_D(p, c) = 1 \\
y_F(p, c), & \text{if } y_D(p, c') = 0 \text{ for } c' \in \mathcal{C}, \text{ and } y_F(p, c) = 1 \\
0, & \text{otherwise}
\end{cases}
\end{align*}
\]
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

Dynamic pseudo labels (Sec 3.3)

\(y_F : \text{Static} \quad y_D : \text{Dynamic} \quad y_T : \text{Hybrid} \)

- **Static**
 - Ground truth
 - Static label

- **Dynamic**
 - Dynamic label 1
 - Dynamic label 2

- **Hybrid**
 - Hybrid label 1
 - Hybrid label 2

Label fusion
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

- **Experimental Results**
- **GTA5:**

| Split | Methods | Type | road | side | build. | wall | fence | pole | light | sign | veg | terrain | sky | person | rider | car | truck | bus | train | motor | bike | mIoU |
|------------|---------|------|------|------|--------|------|-------|------|-------|------|-----|----------|-----|--------|-------|------|-------|-------|------|------|------|
| Source-only| - | 45.4 | 16.5 | 66.4 | 14.4 | 21.6 | 25.1 | 36.3 | 17.2 | 80.1 | 16.3| 69.1 | 61.4| 24.9 | 86.8 | 28.4 | 4.7 | 4.4 | 40.8 | 27.5 | 35.2 |
| AdaptSeg | AT | 86.5 | 36.0 | 79.9 | 23.4 | 23.3 | 23.9 | 35.2 | 14.8 | 83.4 | 33.3| 75.6 | 58.5| 27.6 | 73.7 | 32.5 | 35.4 | 3.9 | 30.1 | 28.1 | 42.4 |
| CBST | ST | 91.8 | 53.5 | 80.5 | 32.7 | 21.0 | 34.0 | 28.9 | 20.4 | 83.9 | 34.2| 80.9 | 53.1| 24.0 | 82.7 | 30.3 | 35.9 | 16.0 | 25.9 | 42.8 | 45.9 |
| CRST | ST | 91.0 | 55.4 | 80.0 | 33.7 | 21.4 | 37.3 | 32.9 | 24.5 | 83.0 | 34.1| 80.8 | 57.7| 24.6 | 84.1 | 27.8 | 30.1 | 26.9 | 26.0 | 42.3 | 47.1 |
| PLCA | ST | 84.0 | 30.4 | 82.4 | 35.3 | 24.8 | 32.2 | 36.8 | 24.5 | 83.5 | 37.2| 78.6 | 66.9| 32.8 | 85.5 | 40.4 | 48.0 | 8.8 | 29.8 | 41.8 | 47.7 |
| CAG-UDA | ST | 90.4 | 51.6 | 83.8 | 34.2 | 27.8 | 38.4 | 25.3 | 48.4 | 83.4 | 38.2| 78.1 | 58.6| 34.6 | 84.7 | 21.9 | 42.7 | 41.1 | 29.3 | 37.2 | 50.2 |
| FDA | ST | 92.5 | 53.5 | 82.4 | 26.5 | 27.6 | 36.4 | 40.6 | 38.9 | 82.3 | 39.8| 78.0 | 62.6| 34.4 | 84.9 | 34.1 | 53.1 | 16.9 | 27.7 | 46.4 | 50.5 |
| TPPLD | ST | 94.2 | 60.5 | 82.8 | 36.6 | 16.6 | 39.3 | 29.0 | 25.5 | 85.6 | 44.9| 84.4 | 60.6| 27.4 | 84.1 | 37.0 | 47.0 | 31.2 | 36.1 | 46.4 | 51.2 |
| CorDA | ST | 94.7 | 63.1 | 87.6 | 30.7 | 40.6 | 40.2 | 47.8 | 51.6 | 87.6 | 47.0| 89.7 | 66.7| 35.9 | 90.2 | 48.9 | 57.5 | 0.0 | 39.8 | 56.0 | 56.6 |
| ProDA | ST | 87.1 | 55.1 | 78.1 | 45.6 | 43.8 | 44.6 | 52.5 | 53.4 | 89.1 | 44.7| 82.1 | 70.1| 39.1 | 88.4 | 43.8 | 59.1 | 1.0 | 48.7 | 54.4 | 56.5 |
| Ours | ST | 93.5 | 60.2 | 88.1 | 31.1 | 37.0 | 41.9 | 54.7 | 37.8 | 89.9 | 45.5| 89.9 | 72.7| 38.2 | 90.7 | 34.3 | 53.2 | 4.4 | 47.2 | 58.5 | 57.1 |

| Test | Methods | Type | road | side | build. | wall | fence | pole | light | sign | veg | terrain | sky | person | rider | car | truck | bus | train | motor | bike | mIoU |
|------------|---------|------|------|------|--------|------|-------|------|-------|------|-----|----------|-----|--------|-------|------|-------|-------|------|------|------|
| AdaptSeg | AT | 88.5 | 40.4 | 81.0 | 26.3 | 20.6 | 25.6 | 36.0 | 12.9 | 48.4 | 45.5| 87.2 | 63.7| 35.8 | 76.4 | 27.7 | 28.0 | 2.9 | 33.0 | 26.1 | 44.3 |
| CBST | ST | 91.0 | 55.4 | 80.0 | 33.7 | 21.4 | 37.3 | 32.9 | 24.5 | 83.0 | 34.1| 80.8 | 57.7| 24.6 | 84.1 | 27.8 | 30.1 | 26.9 | 26.0 | 42.3 | 47.1 |
| CRST | ST | 93.5 | 57.6 | 84.6 | 39.3 | 24.1 | 25.2 | 35.0 | 17.3 | 85.0 | 40.6| 86.5 | 58.7| 28.7 | 85.8 | 49.0 | 56.4 | 5.4 | 31.9 | 43.2 | 49.9 |
| FDA-MBT | ST | 93.4 | 55.8 | 83.6 | 25.4 | 23.1 | 33.2 | 39.0 | 36.9 | 84.0 | 47.2| 88.8 | 66.3| 40.6 | 87.4 | 26.9 | 49.6 | 12.8 | 35.2 | 42.8 | 51.2 |
| CorDA | ST | 94.2 | 62.9 | 88.1 | 30.2 | 41.2 | 40.1 | 49.1 | 49.9 | 89.1 | 49.1| 90.1 | 69.1| 28.9 | 86.2 | 46.2 | 59.5 | 1.2 | 35.2 | 52.3 | 57.5 |
| ProDA | ST | 88.1 | 57.1 | 81.2 | 46.1 | 45.2 | 41.5 | 55.1 | 56.2 | 86.1 | 45.1| 78.1 | 73.2| 40.1 | 88.8 | 48.7 | 60.1 | 1.1 | 50.3 | 53.1 | 57.6 |
| Ours | ST | 93.8 | 59.7 | 90.1 | 38.0 | 33.4 | 39.9 | 45.3 | 30.5 | 92.2 | 58.2| 94.8 | 47.9| 39.2 | 58.1 | 30.1 | 51.2 | 58.2 | 58.5 | 58.5 |
Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

- Experimental Results
- SYNTHIA:

Methods	Type	road	side	build	wall	fence	pole	light	sign	veg	sky	person	rider	car	bus	motor	bike	mIoU	mIoU*
Source-only	AT	53.4	23.4	73.0	5.5	0.0	25.7	6.6	7.0	77.9	55.3	52.9	21.0	60.9	6.6	21.8	33.7	32.5	37.6
AdaptSeg [43]	AT	84.3	42.7	77.5	-	-	-	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	-	46.7
CBST [58]	ST	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	38.9	42.6
CRST [59]	ST	67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
CAG_UDA [53]	ST	84.7	40.8	81.7	7.8	0.0	35.1	13.3	22.7	84.5	77.6	64.2	27.8	80.9	19.7	22.7	48.3	44.5	51.5
FDA [51]	ST	79.3	35.0	73.2	-	-	19.9	21.0	61.7	82.6	61.4	31.1	83.9	40.8	38.4	51.1	-	52.5	
PLCA [20]	-	82.6	29.0	81.0	11.2	0.2	33.6	24.9	18.3	82.8	82.3	62.1	26.5	85.6	48.9	26.8	52.2	46.8	54.0
TPLD [37]	ST	80.9	44.3	82.2	19.9	0.3	40.6	20.5	30.1	77.2	80.9	60.6	25.5	84.8	41.1	24.7	43.7	47.3	53.5
CorDA [47]	ST	93.3	61.6	85.3	19.6	5.1	37.8	36.6	42.8	84.9	90.4	69.7	41.8	85.6	38.4	32.6	53.9	55.0	62.8
ProDA [52]	ST	87.3	45.1	84.2	36.5	0.0	43.3	54.7	36.0	88.3	83.1	71.5	24.4	88.4	50.1	40.1	45.6	55.1	61.3
Ours	ST	83.8	42.2	85.3	16.4	5.7	43.1	48.3	30.2	89.3	92.1	68.2	43.1	89.7	47.2	42.2	54.2	55.6	62.9
Ablation study

L_{base}	L_{FC}	L_{BC} (w/o cal.)	L_{BC} (w/ cal.)	Source dataset
✓	✓	✓	✓	GTA5
✓	✓	✓	✓	SYNTHIA
✓	✓	✓	✓	49.5
✓	✓	✓	✓	51.2
✓	✓	✓	✓	53.5
✓	✓	✓	✓	55.3
✓	✓	✓	✓	57.1

Table 4: Quantitative results for various pseudo labels of a target domain. We report the densities of static, dynamic, and hybrid pseudo labels and corresponding label accuracies.

Pseudo labels	Density(%)	Accuracy(%)
Static [58]	20.1	98.5
Dyn. (w/o cal.)	22.2	98.6
Dyn. (w/ cal.)	34.3	98.6
Hybrid	42.3	98.8

Fig. 6: Visualization of dynamic pseudo labels. (a-b) Pseudo labels obtained without and with calibrating prototypes of a source domain; (c) Target labels.