Thermalization of acoustic excitations
in a strongly interacting one-dimensional quantum liquid

Jie Lin,1 K. A. Matveev,1 and M. Pustilnik2
1Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
2School of Physics, Georgia Institute of Technology, Atlanta, GA 30332

(Dated: August 16, 2012)

We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature.

PACS numbers: 71.10.Pm

One-dimensional interacting systems [1] are fundamentally different from their higher-dimensional counterparts [2]. Regardless of the statistics of the constituent particles, elementary excitations in one dimension are believed to be bosons [1,3,4], the waves of density. Similar to sound waves in ordinary fluids, bosonic excitations in such a Luttinger liquid [3,4] have linear spectrum at low energies $\omega_q = s|q|$. Here q is the wave number and s is the velocity.

Just as quasiparticles in the Fermi liquid [2], bosons in the Luttinger liquid do not represent exact eigenstates of a generic one-dimensional system. At finite energies, the corresponding effective Hamiltonian should be amended by irrelevant in the renormalization group sense perturbations [3], such as interaction between the bosons. However, a naive attempt to account for this interaction perturbatively immediately leads to difficulties.

Consider, for example, the interaction-induced decay of a boson with wave number q into two bosons with wave numbers q'_1 and q'_2, see Fig. 1(a). The corresponding inelastic scattering rate is given by the Fermi golden rule,

$$\tau_q^{-1} \propto \int dq'_1 dq'_2 \ldots \delta(q - q'_1 - q'_2) \delta(\omega_q - \omega_{q'_1} - \omega_{q'_2}),$$ \hspace{1cm} (1)

where the two δ-functions express the momentum and energy conservation. When all three wave numbers have the same sign, the second δ-function reduces to $s^{-1} \delta(q - q'_1 - q'_2)$, and the rate diverges.

One way around the failure of the perturbation theory is to abandon the effective Luttinger liquid description altogether and approach the problem from the original fermionic perspective [5,6]. Indeed, for noninteracting fermions the spectral weight of the dynamic structure factor (Fourier transform of the density-density correlation function) at a fixed q is spread uniformly over a narrow interval of the width

$$\delta \omega_q = \frac{\hbar^2 q^2}{m_*}$$ \hspace{1cm} (2)

about $\omega = \omega_q$. Here m_* is the effective mass, which for free fermions coincides with the bare mass m, and q is the dimensionless (measured in units of the particle density ρ) wave number. At sufficiently small q, Eq. (2) is applicable to interacting fermions as well [7,8]. The inverse of the width, $1/\delta \omega_q$, provides a natural estimate of the lifetime of bosons in the Luttinger liquid. Since $\delta \omega_q \propto \omega_q^2$, the bosons indeed represent well-defined quasiparticles.

In this Letter we develop an alternative approach, based on the observation that divergences that plague the evaluation of the quasiparticle decay rate in the conventional Luttinger liquid theory can be cured if the boson spectrum is nonlinear, such as

$$\omega_q = s|q|(1 - \xi q^2).$$ \hspace{1cm} (3)

Even for a weak nonlinearity $\xi q^2 \ll 1$, decay of a single boson into two is forbidden by the momentum and energy conservation laws and can only occur virtually. The simplest real scattering process involves two bosons both in the initial and in the final states, see Fig. 1(b), and has a finite rate.

Keeping the nonlinear correction in Eq. (3) is justified only in the limit of strong repulsion, i.e., when the Luttinger liquid parameter $K = \pi \hbar^2 \rho^2 /ms$ is small. Indeed, the correction must exceed the width $\delta \omega_q$ [see Eq. (2)], which can be viewed as an uncertainty in the energy of the Luttinger liquid’s boson. Using the esti-

![FIG. 1: (a) For bosons with a linear spectrum scattering of a single boson (filled circle) into two (open circles) has a divergent rate. (b) For bosons with a nonlinear spectrum the simplest scattering event satisfying the momentum and energy conservation laws involves two bosons both in the initial state (filled circles) and in the final state (open circles). For given q_1 and q_2, the conservation laws yield a unique set q'_1, q'_2, thus leading to a finite transition rate.](image-url)
mate $m_i/m = \sqrt{K}$, valid for $K \ll 1$, we arrive at the condition $\xi q \gg \sqrt{\xi}$. For $K \ll 1$, Eq. (3) is applicable in a broad range of wave numbers $\sqrt{K} \ll \xi q \ll \sqrt{\xi}$, and spectrum nonlinearity has a dramatic effect on inelastic scattering. For the scattering process with two bosons $(q_1$ and q_2) in the initial state and two bosons $(q'_1$ and q'_2) in the final state [see Fig. 1(b)], the conservation laws $q_1 + q_2 = q'_1 + q'_2$ and $\omega_1 + \omega_2 = \omega_{q_1} + \omega_{q_2}$ yield a unique set q_1, q_2 for given q_1, q_2. Moreover, if q_1, q'_1 and q_2, q'_2 belong to the same (say, right-moving) branch of the spectrum [see Fig. 1(b)], the remaining wave number is given by $q_2 \approx -(3\xi/2)q_1^2 q'_2$, i.e., the sign of q_2 is opposite to that of q_1, q'_1, q'_2 and the momentum transferred from the left-moving branch of the spectrum in each act of scattering is parametrically small compared with that redistributed among the three right-moving bosons. Accordingly, the process resembles decay of a single right-moving boson into two. However, unlike for bosons with strictly linear spectrum, the mere presence of the left-moving boson with a very small momentum, as required by the conservation laws, is sufficient to regularize the divergences.

We describe our strongly interacting system by the Hamiltonian

$$H = \sum_l p_l^2/2m + \frac{1}{2} \sum_{l \neq l'} V(x_l - x_{l'})$$

(4)

where p_l and x_l are, respectively, the momentum and position of the lth particle ($l = 1, \ldots, N$), and $V(x)$ is the interaction potential. In the strong repulsion limit (i.e., for $d^2V/dx^2|_{x=1/\rho} \gg \hbar^2/\rho^4/m$, which is equivalent to $K \ll 1$) the particles, regardless of their statistics, form at low energies a periodic chain, the so-called Wigner crystal (see [9] for a review). Although in one dimension quantum fluctuations destroy the true long-range order [10], the interparticle distance remains close to $1/\rho$.

Similar to ordinary crystals, the elementary excitations of the Wigner crystal are phonons. These phonons are nothing but the waves of density, with a typical for low momenta, as required by the conservation laws, is sufficient to regularize the divergences.

We begin the analysis of Eqs. (6)-(7) by considering the relaxation rate of a single high-energy boson. Specifically, we assume that the distribution function N_q differs from its equilibrium form, the Bose distribution $n_q = (e^{\hbar \omega_q/T} - 1)^{-1}$, in the population of a single state with q in the range $T/\hbar s \ll q \ll 1/\sqrt{\xi}$. In this limit $I_{in}[N_q]$ is exponentially suppressed, and Eq. (6) reduces to $\partial N_q/\partial t = -N_q/\tau_q$ with the relaxation rate

$$\tau_q = \frac{\lambda K^2 s}{48 \pi^3} \times \frac{(T/\hbar s)^{1/3}}{(\xi)^{1/3}}$$

(8)

where $a = 32\zeta(3)/3$. Here $\zeta(x)$ is the Riemann’s zeta-function, $\zeta(3) \approx 1.2$. Although Eq. (8) is not directly applicable to thermal bosons with energy of the order of T, setting $q \sim T/\hbar s$ in Eq. (6) results in a correct order-of-magnitude estimate of the typical scattering rate, see Eq. (10) below.
Independently of the initial state, at \(t \to \infty \) the distribution function \(N_q \) relaxes to \(n_q \). In order to study the approach to equilibrium, we substitute

\[
N_q = n_q + q g_q f_q, \quad g_q = \sqrt{n_q(1 + n_q)}
\]

for both positive and negative \(q \). Focusing from now on on \(q > 0 \), we note that Eq. (10) simplifies considerably if

\[
\xi(T/\hbar s)^3 \ll q \ll (T/\hbar s)^{1/3}. \tag{11}
\]

The first inequality in Eq. (11) ensures that contributions from the processes with all bosons but \(q \) on the left-moving branch of the spectrum are exponentially suppressed. The second inequality in Eq. (11) guarantees that the wave number of the only left-moving boson participating in the remaining scattering processes is much smaller than \(T/\hbar s \). Under these conditions, the spectrum in the right-hand side of Eq. (10) can be linearized, which amounts to neglecting corrections of order \(\xi(T/\hbar s)^2 \ll 1 \) [this inequality is implicit in Eq. (11)]. This approximation corresponds to the substitution into Eq. (10)

\[
\delta(\omega_q + \omega_p - \omega_q - \omega_q) \approx \frac{1}{2 \hbar} \left[\delta(p + 0) \delta(q_q + q_q + \delta(q_2 + 0) \delta(q+q, q_0) \right],
\]

where \(\delta(k + 0) \) indicates that \(k \) is an infinitesimal wave number on the left-moving branch. This yields

\[
\frac{df_q}{dt} = -\frac{1}{4 \pi^3} \lambda^2 K^2 s(T/\hbar s) q \int_0^\infty dq_1 \frac{1}{2} \int_0^\infty dq_2 \delta(q - q_1 - q_2) q_1 g_{q_1} q_2 g_{q_2} \left(\frac{f_q}{g_{q_1}} - \frac{f_{q_1}}{g_q} \right)
\]

where \(g_{q_1}, g_{q_2}, \) and \(q_{q_1} \) are given by Eq. (9) with a linearized formula in the right-hand side of Eq. (13) is a remnant of the left-moving boson. Indeed, its wave number \(k \) is either \(p \) or \(q_2 \), see Eq. (12) appears in Eq. (10) in combination \(k\|g_k \), where the factor \(k \) comes from the square of the amplitude \(\langle 3 \rangle \). For \(k\|T/\hbar s \), we have \(g_k = (T/\hbar s)^{\|k\|} \), which gives \(k\|g_k = T/\hbar s \).

Note that the parameter \(\xi \) [see Eq. (3)] does not appear explicitly in Eq. (13). This is consistent with the above result for the relaxation rate of high-energy bosons: \(\tau_0^{-1} \) is independent of \(\xi \) at \(q \ll (T/\hbar s)^3 \), see Eq. (5). Note also that all wave numbers in Eq. (13) are strictly positive: coupling between bosons moving in opposite directions appears only in higher orders in \(\xi(T/\hbar s)^2 \). Accordingly, the right-hand side of Eq. (13) involves only three bosons moving in the same direction. This kind of scattering processes has a divergent rate when the spectrum is taken to be strictly linear from the outset, see Eq. (11) and Fig. (1). While Eq. (13) also corresponds to the limit of vanishing spectrum nonlinearity, it is crucial that the spectrum is linearized after the scattering amplitudes are evaluated and the divergences are regularized.

After integration over \(q_2 \) and \(p \), Eq. (13) assumes the form

\[
\frac{\partial f(x, t)}{\partial t} = -\tau_0^{-1} \int_0^\infty dy \mathcal{G}(x, y)f(y, t), \tag{14}
\]

where \(f(x, t) = f_q(t)_{q=2\pi(T/\hbar s)x} \). The kernel \(\mathcal{G}(x, y) \) is given by

\[
\mathcal{G}(x, y) = \frac{xy(x + y)}{\sinh[\pi(x + y)]} - \frac{xy(x - y)}{\sinh[\pi(x - y)]} + \frac{1}{6} x^2(x^2 + 1) \delta(x - y), \tag{15}
\]

and the typical scattering rate is

\[
\tau_0^{-1} = 2\pi \lambda^2 K^2 s(T/\hbar s)^5. \tag{16}
\]

The integro-differential equation (14–15) can be solved exactly. The solution reads

\[
f(x, t) = \alpha_0 \varphi_0(x) + \int_0^\infty d\nu \alpha_\nu \varphi_\nu(x) e^{-\nu \gamma / \tau_0}, \tag{17}
\]
where \(\eta_{\nu} = \nu^2 (\nu^2 + 1)/6 \) and

\[
\varphi_0(x) = \frac{\sqrt{6\pi}}{\sinh(\pi x)},
\]

\[
\varphi_{\nu}(x) = \frac{1}{\sqrt{(\nu^2 + 1)(4\nu^2 + 1)}} \left\{ \left(2\nu^2 - 1 \right) \delta(x - \nu) + \frac{3x}{\sinh[\pi(x + \nu)]} + \frac{3x}{\sinh[\pi(x - \nu)]} \right\}.
\]

(The singularity in the right-hand side of Eq. (19) is to be understood as the principal value.) The coefficients \(\alpha_0 \) and \(\alpha_{\nu} \) in Eq. (17) are determined by the initial conditions, \(\alpha_{\nu} = \int_{0}^{\infty} dx \varphi_{\nu}(x) f(x, 0) \) for \(\mu = 0, \nu \).

The first term in the right-hand side of Eq. (17) represents a stationary (independent of \(t \)) contribution to \(f(x, t) \). At \(t \to \infty \) Eqs. (9) and (17) yield

\[
\delta N_q = N_q\big|_{t \to \infty} - n_q = \alpha_0 g_q \varphi_0(x)\big|_{x = \hbar s q / 2 \pi T}.
\]

This result has a clear physical meaning. In general, a stationary (equilibrium) solution of the Boltzmann equation \(N_q\big|_{t \to \infty} \) is not unique. All such solutions, however, have the form of the Bose function \(n_q \), parametrized by temperature \(T \). A change of \(T \) by \(\delta T \) generates a correction to \(N_q\big|_{t \to \infty} \), which, to linear order in \(\delta T \), indeed has the form (20) with \(\alpha_0 = \sqrt{\pi/6} (\delta T / T) \). On the other hand, the energy of the system at \(t \to \infty \) coincides with that in the initial non-equilibrium state. Thus, the temperature \(T \), characterizing the equilibrium distribution at \(t \to \infty \) is uniquely determined by the initial conditions. Choosing \(n_q \) as the Bose distribution with this temperature, one ensures that \(\alpha_0 = 0 \) in Eq. (17).

The remaining (time-dependent) term in the right-hand side of Eq. (17) describes approach to equilibrium. At short times, \(t \ll \tau_0 \), only the relaxation modes with \(\nu \gtrsim (\tau_0 / t)^{1/3} \gg 1 \) are affected. Since \(\varphi_{\nu}(x) \approx \delta(x - \nu) \) at \(\nu \gg 1 \), Eq. (17) gives \(f(x, t) \propto e^{-\nu^2 t / \tau_0} \), which describes exponential relaxation with the rate given by the appropriate limit of Eq. (8) \([q \ll (T / \hbar s \xi)^{1/3}, \text{see Eq. (11)}] \).

At \(t \gg \tau_0 \) the high-energy bosons have already relaxed, and thermal bosons (with \(x \sim 1 \) or \(q \sim T / \hbar s \)) have equilibrated among themselves, although at temperature that has not yet reached its equilibrium value. Indeed, at large \(t \) the main contribution to the integral in Eq. (17) comes from small \(\nu \). Approximating \(\varphi_{\nu}(x) \approx -\delta(x - \nu) + \sqrt{6/\pi} \varphi_0(x) \) and \(\eta_{\nu} \approx \nu^2 / 6 \), we find \(\alpha_{\nu} = -f(\nu, 0) \), and Eq. (17) yields

\[
f(x, t) = F(x, t) - \sqrt{6/\pi} \varphi_0(x) \int_{0}^{\infty} d\nu F(\nu, t),
\]

where \(F(x, t) = f(x, 0) e^{-x^2 t / 6 \tau_0} \) corresponds to exponential relaxation with the rate

\[
\tau_0^{-1} = \frac{1}{12\pi} \lambda^2 K^2 s (T / \hbar s)^3 q^2.
\]

The role of the second term in Eq. (21) is to ensure the energy conservation. The corresponding correction to the distribution function [see Eq. (9)] can be cast in the form

\[
\delta N_q = \frac{\partial n_q}{\partial T} \delta T(t), \quad \delta T(t) = -\frac{3\hbar s}{\pi^2} \int_{0}^{\infty} dq f_q(0) e^{-t / \tau_q},
\]

with \(1 / \tau_q \) given by Eq. (22). For generic \(f_q(0) \), the correction to temperature \(\delta T(t) \) exhibits non-exponential dependence on time.

To summarize, elementary excitations of one-dimensional interacting systems are often described in the framework of the effective Luttinger liquid theory. Both the conventional Luttinger liquid theory [134] and its recent extensions [37,15] provide a set of efficient tools for evaluation of various correlation functions. However, none of these approaches is capable of describing the thermalization of bosonic quasiparticles because interaction between bosons with linear spectrum results in a divergent inelastic scattering rate.

In this Letter we demonstrated that the divergences are regularized when the nonlinearity of boson spectrum is taken into account. We derived and solved the Boltzmann equation describing the fastest equilibration process in the system, namely, thermalization of bosons moving in the same direction. The equation describes bosons with a linearized (as opposed to strictly linear) spectrum and results in a finite relaxation rate that scales with temperature as \(T^5 \), see Eq. (16). Our results are applicable to both fermions and bosons with strong long-range repulsion.

The work at Argonne National Laboratory is supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357. K. A. M. and P. M. P. are grateful to the Aspen Center for Physics (NSF Grant No. 1066293), where part of this work was performed. M. P. thanks the Galileo Galilei Institute for Theoretical Physics and the INFN and the Kavli Institute for Theoretical Physics at UCSB (NSF Grant No. PHY11-25915) for their warm hospitality and partial support during the completion of this project.

1. T. Giamarchi, *Quantum Physics in One Dimension* (Clarendon Press, Oxford, 2004).
2. D. Pines and P. Nozières, *The Theory of Quantum Liquids* (Perseus Books, Reading, MA, 1994).
3. F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980); J. Phys. C 14, 2585 (1981).
4. F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981); V. N. Popov, Theor. Math. Phys. 11, 565 (1972).
For Galilean-invariant systems the effective mass m^* satisfies $m/m^* = (4K)^{-1/2}(\rho/s)(\partial s/\partial \rho)$. Since $\partial s/\partial \rho \sim s/\rho$ for $V(x)$ decaying with the distance as a power law, this yields $m^*/m \sim \sqrt{K}$.
In Sec. 1 of this Supplemental Material we derive the dispersion relation for phonons in the Wigner crystal. The derivation of the on-shell amplitude of the leading inelastic scattering process is discussed in detail in Sec. 2. In particular, in Sec. 2.1 we address the screened Coulomb interaction, and in Sec. 2.2 we demonstrate that the amplitude vanishes for integrable models with \(V(x) \propto 1/\sinh^2(cpx) \) and \(V(x) \propto 1/x^2 \). Finally, in Sec. 3 we present the exact solution of the linearized Boltzmann equation.

1. PHONONS IN A WIGNER CRYSTAL

We consider a system of \(N \) identical spinless particles of mass \(m \) described by the Hamiltonian [see Eq. (4) of the Letter]

\[
H = \sum_l \frac{p_l^2}{2m} + \frac{1}{2} \sum_{l,l'} V(x_l - x_{l'}),
\]

where \(p_l \) and \(x_l \) are, respectively, the momentum and position of the \(l \)th particle \((l = 1, \ldots, N) \), and \(V(x) \) is the interaction potential. Expanding the potential energy in Eq. (1.1) to leading order in \(|u_l - u_{l'}| \), we obtain the Hamiltonian of a harmonic chain,

\[
H_0 = \sum_l \frac{p_l^2}{2m} + \frac{1}{2} \sum_{l,l'} V_{l-l'}^{(2)} (u_l - u_{l'})^2,
\]

where we introduced the notation

\[
V_{l}^{(m)} = \left. \frac{d^m V(x)}{dx^m} \right|_{x=l\rho}.
\]

It is convenient to write \(u_l \) and \(p_l \) in the second-quantized representation,

\[
u_l = \sum_q \sqrt{\frac{\hbar}{2mN\omega_q}} (b_q + b_q^\dagger) e^{iql}, \quad (1.4)
\]

\[
p_l = -i \sum_q \sqrt{\frac{\hbar m \omega_q}{2N}} (b_q - b_{-q}^\dagger) e^{iql}, \quad (1.5)
\]

where the phonon creation and annihilation operators satisfy the canonical commutation relation \([b_q, b_{q'}^\dagger] = \delta_{qq'}\). Substitution into Eq. (1.2) then yields

\[
H_0 = \sum_q \hbar \omega_q (b_q^\dagger b_q + 1/2), \quad (1.6)
\]

where the phonon frequencies \(\omega_q \) are given by

\[
\omega_q^2 = \frac{2}{m} \sum_{l=1}^{\infty} V_{l}^{(2)} \left[1 - \cos(ql) \right]. \quad (1.7)
\]

Since Eq. (1.7) does not contain \(\hbar \), the same result can be obtained by solving classical equations of motion.

At small \(q \) and for \(V(x) \) decaying with the distance faster than \(1/x^3 \), Eq. (1.7) reduces to Eq. (3) of the Letter,

\[
\omega_q = |q|(1 - \xi q^2) \quad (1.8)
\]

with

\[
s = \sqrt{\frac{V_{22}}{m}}, \quad \xi = \frac{1}{24} \frac{V_{24}}{V_{22}}, \quad (1.9)
\]

where

\[
V_{mn} = \sum_{l=1}^{\infty} V_{l}^{(m)} l^n. \quad (1.10)
\]

Modifications of Eq. (1.8) for potentials decaying with the distance as \(1/x^3 \) (screened Coulomb potential) and \(1/x^2 \) (Calogero-Sutherland model) are discussed below in Sec. 2.1 and Sec. 2.2 respectively.

2. SCATTERING AMPLITUDE

We start with the general expression for the on-shell scattering amplitude in order \(\hbar^2 \) derived in Ref. [1],

\[
l_{q_1, q_2; q'_1, q'_2} = \frac{\hbar^2}{m^3N} \frac{\Lambda}{(\omega_{q_1, q_2, q'_1, q'_2} \omega_{q_1, q'_2})^{1/2}}, \quad (2.1)
\]

where
\[\Lambda = -\frac{f_3(q_1, q_2) f_3(q_1', q_2')}{\omega_{q_1+q_2}^2 - (\omega_{q_1} + \omega_{q_2})^2} + \frac{f_3(q_2, -q_1') f_3(q_1, -q_2')}{\omega_{q_2-q_1}^2 - (\omega_{q_2} - \omega_{q_1})^2} + \frac{f_3(q_1, -q_1') f_3(q_2, -q_2')}{\omega_{q_2-q_2}^2 - (\omega_{q_2} - \omega_{q_2})^2} + \frac{m}{2} f_4(q_1, q_2, -q_1') \] (2.2)

with

\[f_3(q_1, q_2) = \sum_{l=1}^{\infty} V_i^{(3)} \left\{ \sin[(q_1 + q_2)l] - \sin(q_1l) - \sin(q_2l) \right\}, \] (2.3)
\[f_4(q_1, q_2, q_3) = \sum_{l=1}^{\infty} V_i^{(4)} \left\{ 1 - \cos(q_1l) - \cos(q_2l) - \cos[(q_1 + q_2 + q_3)l] \right\} + \cos((q_1 + q_2)l) + \cos((q_2 + q_3)l) + \cos((q_1 + q_3)l) \right\}. \] (2.4)

Expanding Eqs. (2.2)–(2.4) to first order in \(V \), Equation (2.6) is valid provided that \(|q_1q_2q_1'q_2'| \) are finite, i.e., for interaction potentials decaying with the distance faster than 1\(\times \), we find

\[t_{q_1, q_2; q_1', q_2'} = \frac{\lambda}{N} \frac{\hbar^2 \rho^2}{m} |q_1q_2q_1'q_2'|^{1/2} \] (2.5)

with

\[\lambda = \frac{V_{22}V_{44} - V_{33}^2}{4\rho^2 V_{22}^2} + \frac{V_{33}^2}{16\rho^2 V_{22}^2} \lim_{q,q' \to 0} \left\{ \frac{A'_q q' - A'_q - A'_q q' - \frac{4\rho V_{22} F[A_q]}{V_{33}} F[A_q]}{V_{33} F[A_q]} \right\}. \] (2.6)

Here

\[A_q = \omega_q^2, \quad A'_q = \frac{dA_q}{dq}, \quad B_q = \frac{2}{m\rho} \sum_{l=1}^{\infty} V_i^{(3)} l [1 - \cos(ql)], \] (2.7)

and the functional \(F \) is defined as

\[F[f(q)] = \frac{f(q + q') - f(q) - f(q')}{q + q'}. \] (2.8)

Interestingly, although the right-hand side of Eq. (2.6) depends on the functional form of the interaction potential, it is independent of the interaction strength: multiplication of \(V(x) \) by an arbitrary constant leaves \(\lambda \) invariant.

Equation (2.6) is valid provided that \(V_{nn} \) are finite, i.e., for interaction potentials decaying with the distance faster than 1/\(x \). Further simplification is possible if \(V_{n,n+2} \) are finite as well, i.e., for \(\lim_{x \to \infty} x^3 V(x) = 0 \). Expanding \(A(q) \) and \(B(q) \) in Eq. (2.6) to fourth order in \(q \), we find

\[A_q = s^2 q^2 (1 - 2\xi q^2), \quad B_q = \frac{V_{33} q^2}{m\rho} \left(1 - \frac{V_{33} q^2}{12V_{33}} \right) \] (2.9)

with \(s \) and \(\xi \) given by Eq. (1.9). Substitution of Eq. (2.9) into Eq. (2.6) results in

\[\lambda = \frac{V_{24}V_{44} - V_{33}V_{35}}{4\rho^2 V_{22}V_{24}} \] (2.10)

2.1. Screened Coulomb interaction

We turn now to the important in practice case of the Coulomb potential screened by a remote gate at distance \(d \) from the Wigner crystal,

\[V(x) = \frac{e^2}{|x|} - \frac{e^2}{\sqrt{x^2 + 4d^2}} \] (2.11)

For this potential \(V_{nn} \) are finite and determined by the behavior of the potential at short distances \(x \lesssim d \). For \(pd \gg 1 \) we find

\[V_{nn} = (-1)^n n! e^2 \rho^{n+1} \ln(pd). \] (2.12)

\(V_{n,n+2} \), however, diverge due to slow decay of \(V(x) \) at \(x \gg d \),

\[V_{n,n+2} = (-1)^n (n+2)! e^2 d^2 \rho^{n+3} S, \] (2.13)

where \(S = \sum_{l=1}^{\infty} (n+1)^2 \) is a logarithmically divergent sum. (In writing Eq. (2.13), we neglected the contribution from \(l < l_0 \).) Treating \(S \) as a large, but finite number (or, equivalently, introducing a cutoff \(l < l_0 \) with \(l_0 \gg pd \)), we find \(V_{35}/V_{24} = -5\rho \). Substituting this relation into Eq. (2.10) and taking into account Eq. (2.12), we obtain

\[\lambda = -3/4. \] (2.14)
An accurate derivation of Eq. (2.14) should rely on Eq. (2.6) rather than Eq. (2.10). Even though V_{24} diverges, the dispersion relation can still be cast in the form of Eq. (1.7), but with q-dependent ξ. For small q, $q \ll 1/\rho d \ll 1$, we find

$$\omega_q = s q \left(1 - \xi q^2 \right)$$ \hspace{1cm} (2.15)

with

$$s = \sqrt{2c^2 \rho^3 \mu \ln(\rho d)}, \quad \xi = \frac{(\rho d)^2}{2 \ln(\rho d)} \ln(1/q).$$ \hspace{1cm} (2.16)

In the same limit, the functions A_q and B_q, see Eq. (2.7), are given by

$$A_q = s q^2 (1 - 2 \xi q^2), \quad B_q = -s^2 q^2 (3 - 5 \xi q^2).$$ \hspace{1cm} (2.17)

Substituting Eq. (2.17) into Eq. (2.6) and taking into account Eq. (2.12), we recover Eq. (2.14).

2.2. Integrable models

In integrable models \cite{2} conservation laws forbid a redistribution of momenta between colliding particles. In other words, collisions do not lead to relaxation in such models. This lack of relaxation should not depend on whether the system is described in terms of the bare particles or in terms of the quasiparticles. In accordance with this observation, the amplitude (2.1), as well as the amplitudes of higher-order scattering processes, are expected to vanish for all integrable models. This vanishing of the scattering amplitude also serves as an independent check of the validity of Eqs. (2.6) and (2.10) above.

Consider the potential \cite{2}

$$V(x) = \frac{V_0}{\sinh^2(c\rho x)}.$$ \hspace{1cm} (2.18)

For this potential

$$\frac{\partial^m}{\partial x^m} V(x) = c^m \frac{\partial^m}{\partial c^m} V(x) x^{-m},$$

and Eqs. (1.3) and (1.10) yield

$$V_{mn} = (c\rho)^m \frac{d^m}{dc^m} V_{0,n-m}.$$ \hspace{1cm} (2.19)

Another useful relation,

$$V_{02} = -\frac{1}{2} \frac{d}{dc} V_{00},$$ \hspace{1cm} (2.20)

can be derived by comparing the expansions

$$V_{0n} = 4V_0 \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} l^n m^l e^{-2clm}$$

for $n = 0$ and $n = 2$. Using the identities (2.19) and (2.20), we find

$$\frac{V_{nn}}{(c\rho)^n} = -2 \frac{V_{n-1,n+1}}{(c\rho)^{n-1}} = \frac{\partial^n V_{00}}{\partial c^n},$$ \hspace{1cm} (2.21)

which gives

$$V_{24} V_{44} = V_{33} V_{35} = -\frac{(c\rho)^6}{2} \frac{\partial^3 V_{00}}{\partial c^3} \frac{\partial^4 V_{00}}{\partial c^4}.$$ \hspace{1cm} (2.22)

Substitution into Eq. (2.10) then yields $\lambda = 0$.

At $c \gg 1$ and in the Wigner crystal limit $V_0 \gg h^2 \rho^2 e^2 / mc^2$, the potential (2.18) realizes the Toda lattice model. In this regime

$$V(x) = 4V_0 e^{-2c|\rho|x}$$ \hspace{1cm} (2.23)

and all but $l = 1$ contributions to the sum in Eq. (1.10) can be neglected (this corresponds to the nearest neighbors interaction in the Wigner crystal). With these approximations,

$$V_{mn} = 4V_0 (-1)^n (2c\rho)^m e^{-2c},$$ \hspace{1cm} (2.24)

and the relation $V_{24} V_{44} = V_{33} V_{35}$ is obvious.

At $c \ll 1$ the potential (2.18) becomes

$$V(x) = \frac{\alpha}{x^2}$$ \hspace{1cm} (2.25)

with $\alpha = V_0 (c\rho)^{-2}$ ($\alpha \gg h^2 / mc^2$ in the Wigner crystal regime), which corresponds to the integrable Calogero-Sutherland model \cite{2}. For this potential V_{nn} are finite,

$$V_{nn} = (-1)^n (n+1)! (\pi^2/6) \alpha \rho^{n+2},$$ \hspace{1cm} (2.26)

but $V_{n,n+2}$ diverge, and Eq. (2.10) is inapplicable.

Equation (2.18) can be viewed as a version of Eq. (2.25) with a long-distance cutoff. Importantly, for the Calogero-Sutherland model the sum entering $V_{n,n+2}$ [see Eq. (1.10)] diverges as a power-law rather than logarithmically, as is the case for the screened Coulomb interaction, see Sec. 2.1. Accordingly, the value of λ depends on the cutoff scheme and is not universal. It is therefore important to demonstrate vanishing of the scattering amplitude directly for the Calogero-Sutherland model (2.25) instead of relying on $c \to 0$ limit of Eq. (2.18).

For the potential (2.25) we find

$$A_q = -\frac{1}{4} B_q = s q^2 \left(1 - \frac{q}{2\pi} \right)^2, \quad s^2 = \frac{\alpha \pi^2 \rho^2}{m}.$$ \hspace{1cm} (2.27)

Substituting Eq. (2.27) into Eq. (2.6) and using Eq. (2.26), we indeed find $\lambda = 0$. Note that for the Calogero-Sutherland model

$$\omega_q = \sqrt{A_q} = sq \left(1 - \frac{q}{2\pi} \right)^2,$$ \hspace{1cm} (2.28)

i.e., the nonlinear term in the dispersion relation is quadratic in q rather than cubic as in Eq. (1.8); this property is specific \cite{2} for the inverse-square interaction potential.
3. SOLUTION OF THE LINEARIZED BOLTZMANN EQUATION

Solutions of the equation [see Eqs. (14)–(15) of the Letter]

\[
\frac{\partial}{\partial t} f(x,t) = -\tau_0^{-1} \int_0^\infty dy \mathcal{G}(x,y) f(y,t).
\]

\[\mathcal{G}(x,y) = x y(x+y) + \frac{1}{6} x^2 (x^2 + 1) \delta(x-y) \] (3.1)

have the form \(f(x,t) = \varphi(x) \exp(-\eta t/\tau_0) \), where \(\varphi(x) \) satisfies the integral equation

\[
\eta \varphi(x) = \int_0^\infty dy \mathcal{G}(x,y) \varphi(y).
\] (3.3)

Remarkably, the eigenvalue problem (3.3) can be solved exactly. First, we formally extend \(\varphi(x) \) to negative \(x \) according to

\[
\varphi(-x) = \varphi(x)
\] (3.4)

and rewrite Eq. (3.3) as

\[
\eta \varphi(x) = \frac{1}{6} x^2 (x^2 + 1) \varphi(x) + \int_{-\infty}^\infty dy \frac{x y(x+y)}{\sinh[\pi(x+y)]} \varphi(y),
\] (3.5)

Next, we multiply both sides of Eq. (3.5) by \(e^{i \xi x} \) and integrate over \(x \). This transforms the integral equation (3.5) into a differential equation, which can be written as

\[
(h_\xi^2 + h_\zeta) \tilde{\varphi}(\zeta) = 6 \eta \tilde{\varphi}(\zeta).
\] (3.6)

Here \(\tilde{\varphi}(\zeta) \) is the Fourier transform of \(\varphi(x) \),

\[
\tilde{\varphi}(\zeta) = \tilde{\varphi}(-\zeta) = \int dx e^{i \xi x} \varphi(x),
\] (3.7)

and the operator \(h_\zeta \) is given by

\[
h_\zeta = -\frac{d^2}{d\xi^2} - \frac{3}{2 \cosh^2(\zeta/2)}
\] (3.8)

Equation (3.8) coincides with the Hamiltonian of a particle moving in one dimension in the presence of the reflectionless Pöschl-Teller potential. The corresponding eigenvalue problem,

\[
h_\zeta \psi_\nu(\zeta) = \epsilon \psi_\nu(\zeta),
\] (3.9)

is discussed in detail, e.g., [3]. Even-parity eigenstates of \(h_\zeta \), which are of interest here [see Eq. (3.7)], include the ground state with the eigenvalue \(\epsilon = -1 \),

\[
\psi_{-1}(\zeta) = \frac{1}{\cosh^2(\zeta/2)},
\] (3.10)

and a continuum of states with eigenvalues \(\epsilon = \nu^2 \),

\[
\psi_{\nu^2}(\zeta) = \left(-\frac{d}{d\xi} + \frac{\zeta}{2} \tanh \frac{\zeta}{2} \right) \left(-\frac{d}{d\xi} + \frac{1}{2} \tanh \frac{\zeta}{2} \right) \cos(\nu \xi)
\] (3.11)

Obviously, the eigenstates of \(h_\zeta \), see Eq. (3.9), are also eigenstates of \(h_\zeta^2 + h_\zeta \), see Eq. (3.6). The corresponding eigenvalues are related according to \(\eta = \epsilon (\epsilon + 1) / 6 \), which gives \(\eta_0 = 0 \) for the bound state (\(\epsilon = -1 \)), and \(\eta_\nu = \nu^2 (\nu^2 + 1) / 6 \) for the continuum (\(\epsilon = \nu^2 \)).

Carrying out the inverse Fourier transform of Eqs. (3.10) and (3.11), we find Eqs. (18) and (19) of the Letter,

\[
\varphi_0(x) = \sqrt{6\pi} \frac{x}{\sinh(\pi x)},
\] (3.12)

\[
\varphi_\nu(x) = \frac{1}{\sqrt{(\nu^2 + 1)(4\nu^2 + 1)}} \left\{ (2\nu^2 - 1) \delta(x - \nu) + \frac{3x}{\sinh(\pi(x + \nu))} + \frac{3x}{\sinh(\pi(x - \nu))} \right\},
\] (3.13)

with the singularity in the right-hand side of Eq. (3.13) understood as the principal value.

The eigenfunctions (3.12) and (3.13) are normalized according to

\[
\int_0^\infty dx \varphi_0^2(x) = 1,
\]

\[
\int_0^\infty dx \varphi_\nu(x) \varphi_\nu'(x) = \delta(\nu - \nu')
\] (3.14)

[\(\varphi_0(x) \) is orthogonal to \(\varphi_\nu(x) \) for any \(\nu \)], and form a complete set,

\[
\varphi_0(x) \varphi_0(y) + \int_\nu^\infty d\nu' \varphi_\nu(x) \varphi_\nu(y) = \delta(x - y).
\] (3.15)

Thus, the general solution of Eqs. (3.1)–(3.2) can be written as an expansion in \(\varphi_0 \) and \(\varphi_\nu \),

\[
f(x,t) = \alpha_0 \varphi_0(x) + \int_0^\infty d\nu \alpha_\nu \varphi_\nu(x) e^{-\eta_\nu t/\tau_0},
\] (3.16)

see Eq. (17) of the Letter.

1. K. A. Matveev, A. V. Andreev, and M. Pustilnik, Phys. Rev. Lett. 105, 046401 (2010); Physica B 401, 1898 (2012).
2. B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004).
3. F. Schwabl, Quantum Mechanics, 4th ed. (Springer-Verlag, Berlin, Heidelberg, New York, 2007), Chapter 19.