MHD FLOW OF FRACTIONAL NEWTONIAN FLUID EMBEDDED IN A POROUS MEDIUM VIA ATANGANA-BALEANU FRACTIONAL DERIVATIVES

KASHIF ALI ABRo
Department of Basic Sciences and Related Studies
Mehran University of Engineering and Technology
Jamshoro, Pakistan

ILYAS KHAN*
Faculty of Mathematics and Statistics
Ton Duc Thang University
Ho Chi Minh City, Vietnam

Abstract. The novelty of this research is to utilize the modern approach of Atangana-Baleanu fractional derivative to electrically conducting viscous fluid embedded in porous medium. The mathematical modeling of the governing partial differential equations is characterized via non-singular and non-local kernel. The set of governing fractional partial differential equations is solved by employing Laplace transform technique. The analytic solutions are investigated for the velocity field corresponding with shear stress and expressed in term of special function namely Fox-H function, moreover a comparative study with an ordinary and Atangana-Baleanu fractional models is analyzed for viscous flow in presence and absence of magnetic field and porous medium. The Atangana-Baleanu fractional derivative is observed more reliable and appropriate for handling mathematical calculations of obtained solutions. Finally, graphical illustration is depicted via embedded rheological parameters and comparison of models plotted for smaller and larger time on the fluid flow.

1. Introduction. It is well established fact that the idea of fractional calculus has diverted the attention of scientists and researchers because of its crucial applications for the descriptions of complex system and in different academic disciplines. The modeling via integer-order derivatives does not provide better prediction in comparison to modeling via fractional-order derivatives in the real-world problems. The modelling of physical phenomena via fractional-order derivatives is significant for the control theory [44], pharmacokinetics [42], electrical engineering [22], [25], anomalous diffusion [14], [2], [19], [23], fluids [10], [26], [40], [41], electromagnetism [11], [27], [32], [28], [33], heat transfer [13], [3], [34]. Although fractional derivatives are more suitable than ordinary derivatives to describe a physical phenomenon yet

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.

Key words and phrases. Atangana-Baleanu fractional derivative, magnetohydrodynamics, porous medium, rheological effects.

The author Kashif Ali Abro is highly thankful and grateful to Mehran University of Engineering and Technology, Jamshoro, Pakistan, for generous support and facilities of this research work.

* Corresponding author: Ilyas Khan (ilyaskhan@tdt.edu.vn).

377
some discrepancies in the application of Capotu-Fabrizio, Caputo and Riemann-Liouville fractional derivatives have been vividly pointed out by Atangana et al. [20], [21]. Keeping the drawbacks and pitfalls raised by Atangana et al. [20], [21], Atangana-Baleanu fractional derivatives with the non-singular and non-local kernel introduced a new definition [4]. Inspiring from this new approach to fractional derivatives namely Atangana-Baleanu fractional derivative, the authors noted the key points as: (i) The Caputo-Fabrizio derivative is non-Markovian and the well-known Riemann-Liouville derivative is just Markovian. While, Atangana-Baleanu fractional derivative has at the same time Markovian and Non-Markovian properties. (ii) Caputo-Fabrizio is only exponential decay and Riemann-Liouville derivative is only power law. While Atangana-Baleanu fractional derivative waiting time is at the same time power law, stretched exponential and Brownian motion. (iii) Riemann-Liouville is just power law and scale-invariant, while Atangana-Baleanu fractional derivative’s mean square displacement is a crossover from usual diffusion to sub-diffusion. This means the Atangana-Baleanu fractional derivative is able to describe real-world problems with different scales. For instance, movement of pollution within fractured aquifers, the flow of water within heterogeneous aquifers, the spread of cancer. Muzaffar et al. [35] investigated the helical effects for the fractionalized viscoelastic fluid in helically moved cylinder using Caputo fractional derivative in which study of Newtonian and non-Newtonian fluids is presented for rotational and oscillating flows of circular pipe. Zafar and Fetecau [43] investigated the flow of viscous fluid using Caputo-Fabrizio fractional derivative, here they used integral transforms (Laplace and Fourier sine transforms). Nadeem et al. [36] observed the effects of magnetic field for the flow of a second-grade fluid via Caputo-Fabrizio fractional derivative in presence of radiative heat transfer. Atanagan and Baleanu [15] explored the effects of Groundwater Flow within Confined Aquifer by implementing the Caputo-Fabrizio fractional derivative. Nehad and Ilyas [39] investigated the thermal analysis of a second-grade fluid by using Caputo-Fabrizio fractional derivative. In this study they explored that the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Atangana [16] investigated nonlinear Fisher’s reaction-diffusion by employing the Caputo-Fabrizio derivative and presented the stability and Some numerical simulations. Qasem et al. [37] presented Walter’s Liquid Model-B by applying newly defined approach of Caputo-Fabrizio fractional derivative (CFFD) in which combined analysis of heat and mass transfer together with magnetohydrodynamic (MHD) flow embedded in a porous medium over a vertically oscillating plate is investigated. On the other hand, Algahtani [9] presented the comparison of the model by Allen-Cahn with both Atanagan-Baleanu and Caputo-Fabrizio derivatives in order to see their difference in real world problem. Kashif et al. [29] investigated the Stoke’s second problem for nanofluids by employing newly suggested Atanagan-Baleanu fractional derivative. They considered the model of homogeneous type with nanosized copper (Cu) particles suspended in ethylene glycol (EG). In brevity, the studies can be continued on fractional derivatives but we end here by citing few recent studies [5], [6], [17], [18], [7], [12], [8], [24], [30], [38]. Inspiring and motivating from the above discussed studies, the purpose of this research work is to implement a novel definition of Atangana-Baleanu fractional derivative on electrically conducting viscous fluid embedded in porous medium. The mathematical modeling of governing partial differential equations is characterized via non-singular and non-local kernel. The analytic solutions are investigated for velocity field and shear
stress by invoking Laplace transform satisfying imposed conditions and presented in terms of Fox-H function. The Atangana-Baleanu fractional derivative is observed more reliable and appropriate for handling mathematical calculations of obtained solutions either in presence or absence of magnetic field and porous medium. Finally, graphical illustration is depicted via embedded rheological parameters and comparison of models plotted for smaller and larger time on the fluid flow.

2. Statement of the problem. Assuming an oscillating plate lying in the xy plane in a fixed cartesian coordinate system in which positive y-axis is in the upward direction, a generalized incompressible, electrically conducting, viscous fluid having porous medium is at rest over it at $t = 0$. For time $t = 0^+$, the plate begins to displace in its plane with a time dependent oscillating velocity $u(0, t) = R_0 \sin(\omega t)$ where R_0 is a constant with dimension of dependent oscillating velocity. Due to the tangential stress the fluid is also moved and its velocity is of the form of

$$v = v(y, t) = (u(y, t), 0, 0),$$

For such motions, the continuity equation is identically verified while the motion and constitutive relations generate the suitable governing equations as

$$\frac{\partial u(y, t)}{\partial t} = \nu \frac{\partial^2 u(y, t)}{\partial y^2} - \left(\frac{\phi \nu}{k} - \frac{B_0^2 \sigma}{\rho} \right) u(y, t),$$

where, $\nu, \phi, k, B_0, \sigma, \rho$ are kinematic viscosity, porosity, permeability of the medium, applied magnetic field, electrical conductivity, constant density of the fluid respectively. In this continuation, the imposed initial and boundary conditions are

$$u(0, t) = R_0 \sin(\omega t), u(y, 0) = 0, u(y, t) \to 0, \frac{\partial u(y, t)}{\partial t} \to 0 \text{ as } y \to \infty,$$

In order to investigate the dimensionless of equations (2 – 3), we implement the below dimensionless parameters in which λ has dimension of time. The suitable dimensionless parameters are

$$\gamma = \frac{\nu}{R_0}, \lambda = \frac{\nu}{R_0^2}, y^* = \frac{y}{\gamma}, t^* = \frac{t}{\lambda}, u^* = \frac{u}{R_0}, \tau^* = \frac{\tau}{R_0^2 \rho},$$

Using equation (4) on equations (2 – 3) with newly defined Atangana-Baleanu time fractional operator, we obtain the final expression of governing fractional differential equations with the imposed initial and boundary conditions as $[43]$

$$\mathcal{A}_B \left(\frac{\partial^\alpha u(y, t)}{\partial t^\alpha} \right) + K_{eff} \ u(y, t) = \nu \frac{\partial^2 u(y, t)}{\partial y^2},$$

$$\tau(y, t) = \mu \frac{\partial u(y, t)}{\partial y},$$

$$u(0, t) = R_0 \sin(\omega t), u(y, 0) = 0, u(y, t) \to 0, \frac{\partial u(y, t)}{\partial t} \to 0 \text{ as } y \to \infty,$$

Where, $\frac{1}{K} = \frac{\lambda \phi \nu}{k}, M = \frac{\lambda B_0^2 \sigma}{\rho}, K_{eff} = \left(\frac{1}{k} + M \right)$ and $\mathcal{A}_B \left(\frac{\partial^\alpha u(y, t)}{\partial t^\alpha} \right)$ is the Atangana-Baleanu fractional differential operator of order defined as $[1]$

$$\mathcal{A}_B \left(\frac{\partial^\alpha u(y, t)}{\partial t^\alpha} \right) = \int_0^t E_\alpha \left(-\alpha (z - t)^\alpha \right) \frac{\partial^\alpha u(y, t)}{1 - \alpha} dt, \ 0 < \alpha < 1.$$
3. Investigation of the problem.

3.1. Calculation of velocity field via Atangana-Baleanu fractional differential operator. Taking Laplace transform on Atangana-Baleanu fractional differential equation of velocity field (5) having in mind the imposed conditions (3), we arrive

$$
\left(\frac{\partial^2}{\partial y^2} - \frac{(\nu - K_{eff})s^\alpha - \alpha \beta K_{eff}}{\nu (s^\alpha + \alpha \beta)} \right) \tilde{u}(y, s) = 0,
$$

(9)

Applying the initial and boundary conditions say equations (3), the solution of differential equation (9) is obtained as

$$
\tilde{u}(y, s) = \frac{R_0 \omega}{s^2 + \omega^2} \exp \left(-y \sqrt{\frac{(\nu - K_{eff})s^\alpha - \alpha \beta K_{eff}}{\nu (s^\alpha + \alpha \beta)}} \right),
$$

(10)

developing equation (10) into equivalent form by using series expansion, we have suitable expression as

$$
\tilde{u}(y, s) = \sum_{s_1=1}^{\infty} \sum_{s_2=0}^{\infty} \frac{(-\alpha \beta)^{s_1} \Gamma \left(\frac{s_1}{2} + 1 \right) \Gamma \left(\frac{s_2}{2} + s_3 \right)}{s_3 \Gamma \left(\frac{s_3}{2} - s_2 + 1 \right) \Gamma (s_3 s_2)} \left(\frac{\alpha s_2}{\nu - K_{eff}} \right)^{s_2}.
$$

(11)

inverting equation (11) by Laplace transform and expressing the final version of velocity field in terms of Fox-H function and product of convolution, we have

$$
u(y, t) = R_0 \sin(\omega t) + R_0 \sum_{s_1=1}^{\infty} \left(-y \sqrt{\frac{\nu - K_{eff}}{\nu}} \right)^{s_1} \sum_{s_2=0}^{\infty} \frac{1}{s_2!} \left(\frac{\alpha s_2}{\nu - K_{eff}} \right)^{s_2}
\times \int_0^t \sin \omega(t - z) H_{2,4}^{1,2} \left[-\alpha \beta \left(\frac{-z}{\nu}, 0, (1 - \frac{z}{\nu}, 1) \right), \left(1, 1, (1 - \frac{z}{\nu}, 0), (s_2 - \frac{z}{\nu}, 0), (1 - \alpha s_2, \alpha) \right) \right]
\times t^{\alpha (s_3 + s_2) - 1} dz,
$$

(12)

where, the property of Fox-H function is defined as in literature [31]

$$
\sum_{s_3=0}^{\infty} \frac{(-Z)^{q \Pi_{h=1}^{1} \Gamma (a_h + A_h q)}}{q! \Pi_{h=1}^{1} \Gamma (b_h + B_h q)} = H_{j, k+1}^{1, f} \left[Z \right]_{(a_1, A_1), (1 - a_1, A_1), \ldots, (1 - a_f, A_f), (1 - b_1, B_1), \ldots, (1 - b_g, B_g)}.
$$

(13)

3.2. Calculation of shear stress via Atangana-Baleanu fractional differential operator. Taking Laplace transform on equation of shear stress (6) having in mind the imposed conditions (3) and differentiating the final expression of velocity field with respect to “y” partially, we arrive

$$
\tau(y, s) = -\frac{\mu R_0 \omega}{s^2 + \omega^2} \sqrt{\frac{(\nu - K_{eff})s^\alpha - \alpha \beta K_{eff}}{\nu (s^\alpha + \alpha \beta)}}
\times \exp \left(-y \sqrt{\frac{(\nu - K_{eff})s^\alpha - \alpha \beta K_{eff}}{\nu (s^\alpha + \alpha \beta)}} \right),
$$

(14)
developing equation (14) into equivalent form by using series expansion, we have suitable expression as

\[
\tau(y,s) = -\frac{\mu_0\omega(\sqrt{\nu\beta - K_{eff}})^\alpha}{\sqrt{\nu}(s^2 + \omega^2)} \sum_{s_1=0}^{\infty} \frac{1}{s_1!} \left(-y(\sqrt{\nu\beta - K_{eff}})^\alpha \right)^{s_1} \\
\times \sum_{s_2=0}^{\infty} \frac{1}{s_2!} \left(\frac{K_{eff}\alpha\beta}{\nu\beta - K_{eff}} \right)^{s_2} \sum_{s_3=0}^{\infty} \frac{(-\alpha\beta)^s_3\Gamma\left(\frac{\alpha}{\beta} + \frac{3}{2}\right)\Gamma\left(\alpha + \frac{s_3 + \frac{1}{2}}{2}\right)}{s_3!\Gamma\left(\frac{s_3 + \frac{3}{2}}{2}\right)} y^{s_3+s_2},
\]

(15)

inverting equation (15) by Laplace transform and expressing the final version of shear stress in terms of Fox-H function and product of convolution, we have

\[
\tau(y,t) = -\frac{\mu_0(\sqrt{\nu\beta - K_{eff}})^\alpha}{\sqrt{\nu}} \sum_{s_1=0}^{\infty} \frac{1}{s_1!} \left(-y(\sqrt{\nu\beta - K_{eff}})^\alpha \right)^{s_1} \\
\times \sum_{s_2=0}^{\infty} \frac{1}{s_2!} \left(\frac{K_{eff}\alpha\beta}{\nu\beta - K_{eff}} \right)^{s_2} \int_0^t \sin\omega(t-z) \left(t^\alpha(s_3 + s_2) - 1 \right) dz.
\]

(16)

Indeed, the equations (12) and (16) represent the general solutions of velocity field and corresponding shear stress with non-singular and non-local kernel respectively which satisfies initial and boundary conditions as well. In this continuity, the equations (12) and (16) can immediately generate some unconcealed computations when \(K_{eff} = 0\) is taken into the equations (12) and (16), such solutions have been obtained by [43]. In brevity, the expression of the equations (12) and (16) can also be retrieved in the absence of Atangana-Baleanu fractional differential operator by letting \(\alpha = 1\).

4. Parametric results. In this section, the critical observation is performed to understand the flow behavior of electrically conducting viscous fluid embedded in porous medium with several similarities and differences. The effects of velocity field are analyzed for viscous flow in terms of embedded rheological parameters which are enumerated below

Effects of Atangana-Baleanu fractional differential operator on the velocity field

In order to get some information for the effects of Atangana-Baleanu fractional differential operator on the velocity field, different flow parameters are fixed and Atangana-Baleanu fractional differential operator is varied in Fig. 1. The velocity field is increasing function with respect to increasing Atangana-Baleanu fractional parameter \(\alpha = 0.2, 0.4, 0.6\). Physically, the smaller the values of \(\alpha\), the more rapidly the velocity does not decay. This may be due to fact of fractional order derivatives which examines the complete description of the memory effectively.

Effects of porous medium on the velocity field

Fig. 2 is depicted to shows the influence of porous medium on the velocity field. Here porous medium plays a significant and physical role on the velocity field in presence of magnetic field. It is seen from Fig. 2 that the effect of the porosity is to reduce the velocity field over the boundary. Vividly, increase in the porosity decreases the behavior of fluid flow.
Effects of magnetic field on the velocity field

Figs. 3 illustrate the influence of magnetic field parameter on the velocity field. It is observed that increasing values of the magnetic field parameter declines the velocity field. This is due to fact of Lorentz force because due to the drag force developed by Lorentz force decelerates the fluid flow. This leads to the conclusion that the magnetic field effectively controls flow of fluid over an infinite oscillating plate. On the other hand, reciprocal trend has been observed for fluid flow in comparison with porous flow effects.

Comparison of ordinary and Atangana-Baleanu fractional models

The comparison of analytical solutions of ordinary and Atangana-Baleanu (AB) fractional differential operator is performed on the velocity field for three different times, i.e., smaller time $t = 0.02s$, unit time $t = 1s$ and larger time $t = 5s$ as depicted in Figs. 4, 5 and 6. For the smaller time $t = 0.02s$, the ordinary model moves faster in comparison with Atangana-Baleanu (AB) fractional differential operator. While, for the larger time $t = 5s$, the Atangana-Baleanu (AB) fractional differential operator model moves faster in comparison with ordinary model. It is also noted that an interesting fact is achieved when both ordinary and Atangana-Baleanu (AB) fractional differential operator are analyzed for unit time $t = 1s$, then the both operator have coincident behavior. Meanwhile, the same phenomenon can also be analyzed for shear stress as well.

5. Conclusion. The main findings of this article are enumerated as below

(i). The modeled governing partial differential equations of magnetohydrodynamic viscous fluid in porous have been transformed in dimensionless form using modern method of Atangana-Baleanu (AB) fractional derivatives. The general analytic solutions are investigated for velocity field and shear stress by employing Laplace transform with inversion.

(ii). The velocity field is increasing function with respect to increasing Atangana-Baleanu fractional parameter and magnetic field.

(iii). The effect of the porosity is to reduce the velocity field over the boundary. Moreover, increase in the porosity decreases the behavior of fluid flow.

(iv). The comparison of analytical solutions of ordinary and Atangana-Baleanu (AB) fractional differential operator is performed on the velocity field for three different times, i.e., smaller time $t = 0.02s$, unit time $t = 1s$ and larger time $t = 5s$, in which Atangana-Baleanu (AB) fractional model is swiftest for larger time in comparison with ordinary fluid model.

Acknowledgments. The author Kashif Ali Abro is highly thankful and grateful to Mehran University of Engineering and Technology, Jamshoro, Pakistan, for generous support and facilities of this research work.

REFERENCES

[1] A. Abdon and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, *Thermal Sci.*, 20 (2016), 763–769.

[2] K. A. Abro, S. H. Saeed, N. Mustapha, I. Khan and A. Tassadiq, A Mathematical Study of Magnetohydrodynamic Casson Fluid via Special Functions with Heat and Mass Transfer embedded in Porous Plate, *Malaysian Journal of Fundamental and Applied Sciences*, 14 (2018), 20–38.

[3] K. A. Abro, M. Hussain and M. M. Baig, An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives, *The European Physical Journal Plus*, 132 (2017), 439–451.
Figure 1. Profile of velocity field via Atangana-Baleanu fractional differential operator for fractional parameter.

Figure 2. Profile of velocity field via Atangana-Baleanu fractional differential operator for porous medium.
Figure 3. Profile of velocity field via Atangana-Baleanu fractional differential operator for magnetic field.

Figure 4. Comparative analysis of velocity field via Atangana-Baleanu fractional differential operator verses ordinary differential operator for short time.
Figure 5. Comparative analysis of velocity field via Atangana-Baleanu fractional differential operator versus ordinary differential operator for unit time.

Figure 6. Comparative analysis of velocity field via Atangana-Baleanu fractional differential operator versus ordinary differential operator for larger time.
K. A. Abro, A. A. Memon and A. A. Memon, Functionality of circuit via modern fractional differentiations, Analog Integrated Circuits and Signal Processing, (2018), 1–1.

K. A. Abro, I. Khan and J. F. Gomez-Aguilar, A mathematical analysis of a circular pipe in rate type fluid via Hankel transform, Eur. Phys. J. Plus, 133 (2018), 397–407.

K. A. Abro, M. Hussain and M. M. Baig, Slippage of fractionalized oldroyd-b fluid with magnetic field in porous medium, Progress in Fractional Differentiation and Applications; An international Journal, 3 (2017), 69–80.

K. A. Abro, A. A. Shaikh and S. Dehraj, Exact solutions on the oscillating plate of maxwell fluids, Mehran University Research Journal of Engineering and Technology, 35 (2016), 157–162.

A. K. Abro, A. A. Irfan, M. A. Sikandar and K. Ilyas, On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non integer order derivative, Journal of King Saud University-Science, (2018).

O. J. Algahtani, Comparing the Atangana-Baleann and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons and Fractals, 89 (2016), 552–559.

A. Atanganaa, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467–2480.

A. Atangana and D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J Eng Mech, 142 (2016), D4016005.

A. Atangana, On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Applied Mathematics and Computation, 273 (2016), 948–956.

A. Atangana and B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439–4453.

A. Atangana and S. T. A. Badr, Extension of the RLC electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng, 7 (2015), 1–6.

A. Atangana, On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Applied Mathematics and Computation, 273 (2016), 948–956.

A. Atangana and I. Kocab, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467–2480.

A. Atangana and I. Kocab, Chaos in a simple nonlinear system with Atangana-Baleann derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447–454.

J. F. Gomez-Aguilar, Y. F. Morales-Delgado, M. A. Taneco-Hernandez, D. Baleanu, R. F. Escobar-Jimenez and M. M. Qurashi, Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local kernels, Entropy, 18 (2016), 402–419.

J. Hristov, Derivatives with non-singular kernels from the caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models, Frontiers in Fractional Calculus, 95 (2017), 235–249.

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions, Therm. Sci., 21 (2017), 827–839.

A. A. Kashif, A. M. Anwar and M. A. Uqaili, A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, Eur. Phys. J. Plus, 133 (2018), 113–122.

A. A. Kashif, M. Hussain and M. M. Baig, Influences of magnetic field in viscoelastic fluid, International Journal of Nonlinear Analysis and Applications, 9 (2018), 99–109.
MHD FLOW OF FRACTIONAL NEWTONIAN FLUID EMBEDDED

[27] A. A. Kashif, H. Mukarrum and M. B. Mirza, A mathematical analysis of magnetohydrodynamic generalized Burger fluid for permeable oscillating plate, *Punjab University Journal of Mathematics*, 50 (2018), 97–111.

[28] A. A. Kashif and A. S. Muhammad, Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo-Fabrizio fractional derivative, *Punjab University Journal of Mathematics*, 49 (2017), 113–125.

[29] A. A. Kashif, M. R. Mohammad, K. Ilyas, A. A. Irfan and T. Asifa, Analysis of stokes’ second problem for nanofluids using modern fractional derivatives, *Journal of Nanofluids*, 7 (2018), 738–747.

[30] A. A. Kashif, D. C. Ali and A. A. Irfan, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo-Fabrizio and Atangana-Baleanu fractional derivatives embedded in porous medium, *Journal of Thermal Analysis and Calorimetry*, (2018), 1–11.

[31] A. A. Kashif and K. Ilyas, Analysis of Heat and Mass Transfer in MHD Flow of Generalized Casson Fluid in a Porous Space Via Non-Integer Order Derivative without Singular Kernel, *Chinese Journal of Physics*, 55 (2017), 1583–1596.

[32] I. Khan, A. Gul and S. Shafie, Effects of magnetic field on molybdenum disulfide nanofluids in mixed convection flow inside a channel filled with a saturated porous medium, *Journal of Porous Media*, 20 (2017), 77–82.

[33] I. Khan, Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium, *Journal of Molecular Liquids*, 233 (2017), 442–451.

[34] I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, *Thermal Science*, (2017).

[35] H. L. Muzaffar, A. A. Kashif and A. S. Asif, Helical flows of fractional viscoelastic fluid in a circular pipe, *International Journal of Advanced and Applied Sciences*, 4 (2017), 97–105.

[36] A. S. Nadeem, F. Ali, I. Khan and M. Saqib, A modern approach of Caputo-Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium, *Neural Computing and Applications*, (2016), 1–11.

[37] A. M. Qasem, A. A. Kashif and K. Ilyas, Analytical solutions of fractional walter’s-B fluid with applications, *Complexity*, (2018), Article ID 8918541.

[38] M. Saqib, A. Farhad, K. Ilyas, A. S. Nadeem and S. Sharidan, Convection in ethylene glycol based molybdenum disulfide nanofluid: Atangana-Baleanu frictional derivatives approach, *J Therm Anal Calorim.*, (2018), 1–10.

[39] N. A. Shah and I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives, *Eur Phys J C*, 76 (2016), 1–11.

[40] N. A. Sheikh, F. Ali, I. Khan, M. Gohar and M. Saqib, On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models, *The European Physical Journal Plus*, 132 (2017), 540–558.

[41] N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, *Results in Physics*, 7 (2017), 789–800.

[42] P. Sopasakis, H. Sarimveis, P. Macheras and A. Dokoumetzidis, Fractional calculus in pharmacokinetics, *J. Pharmacokin. Pharmacodyn.*, 45 (2018), 107–114.

[43] A. A. Zafar and C. Fetecau, Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel, *Alexandria Engineering Journal*, 5 (2016), 2789–2796.

[44] L. Zhuo, L. Liu, S. Delghani, Q. C. Yang and D. Xue, A review and evaluation of numerical tools for fractional calculus and fractional order controls, *International Journal of Control*, 90 (2017), 1165–1181.

Received May 2018; revised September 2018.

E-mail address: kashif.abro@faculty.muet.edu.pk
E-mail address: ilyaskhan@tdt.edu.vn