First Report of Molecular Characterization and Phylogeny of Trichuris fossor Hall, 1916 (Nematoda: Trichuridae)

Malorri R. Hughes  
*Portland State University*

Deborah A. Duffield  
*Portland State University*, duffieldd@pdx.edu

Dana K. Howe  
*Oregon State University*

Dee Denver  
*Oregon State University*

Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac

Part of the Biology Commons

Let us know how access to this document benefits you.

Citation Details

Hughes, M. R., Duffield, D. A., Howe, D. K., & Denver, D. R. (2020). First report of molecular characterization and phylogeny of Trichuris fossor Hall, 1916 (Nematoda: Trichuridae). Journal of Nematology, 52, 1-6.

This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
First report of molecular characterization and phylogeny of *Trichuris fossor* Hall, 1916 (Nematoda: Trichuridae)

Malorri R. Hughes*,
Deborah A. Duffield¹,
Dana K. Howe²
and Dee R. Denver²

¹Department of Biology, Portland State University, 1719 SW 10th Ave, SRTC Rm 246, Portland, Oregon, 97201.
²Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, Oregon, 97331.

*E-mail: malorri@pdx.edu

This paper was edited by Zafar Ahmad Handoo.

Received for publication November 7, 2019.

Abstract

Because species of *Trichuris* are morphologically similar and ranges of host preference are variable, using molecular data to evaluate species delineations is essential for properly quantifying biodiversity of and relationships within Trichuridae. *Trichuris fossor* has been reported from *Thomomys* spp. (Rodentia: Geomyidae, ‘pocket gophers’) hosts based on morphological features alone. Partial 18S rRNA sequences for specimens identified as *T. fossor* based on morphology, along with sequences from 26 additional taxa, were used for a phylogenetic analysis. Evolutionary histories were constructed using maximum likelihood and Bayesian inference. In both analyses, the specimens fell within the *Trichuris* clade with 100% support and formed a distinct subclade with 100% support. These results confirm that *T. fossor* is a distinct species and represent the first molecular report for it. Relatedness among species within the family were well resolved in the BI tree. This study represents an initial effort to obtain a more comprehensive view of Trichuridae by including a new clade member, *T. fossor*. A better understanding of Trichuridae phylogeny could contribute to further characterization of host-associations, including species that infect livestock and humans.

Keywords

18S rRNA, Western pocket gophers, *Thomomys*, Trichuridae, *Trichuris*, *Trichuris fossor*, Systematics, Whipworm.
Relationships within Trichuridae have not been well resolved using genetic approaches; results differ depending on the gene(s) sequenced and the approach used for phylogenetic reconstructions (Callejón et al., 2015). Mitochondrial data, primarily cox1, have been commonly used and have allowed for high resolution of closely related lineages; however, it may be less credible to use with Trichuris species due to the degree of hybridization and maternal mitochondrial heredity seen in this genus (Callejón et al., 2015; Doležalová et al., 2015). Nuclear data have provided higher support for relationships than mitochondrial data (Doležalová et al., 2015). The nuclear ITS1-ITS2 genes offer markers that allow closely related species to be detected (Eberhardt et al., 2019) and ITS1-5.8S-ITS2 has been used to show relations among ruminant- and rodent-infecting species (Doležalová et al., 2015). However, the number of variants of RNA genes (including the ITS2 region) makes their utility in disentangling the phylogeny of Trichuris less opportune, particularly given that the amount of ploidy is unknown (Doležalová et al., 2015). The 18S rRNA gene has been used to infer the placement of trichurids within Nematoda as well as to elucidate relationships within Trichuridae and is less prone to result in unclear multiple alignments (Callejón et al., 2013, 2015; Gard- done et al., 2013; Doležalová et al., 2015). To date, both nuclear and mitochondrial data have suggested that Trichuris may be a polyphyletic genus; species or groups within the genus, e.g. T. trichiura and T. suis, may also be polyphyletic (Doležalová et al., 2015).

Trichuris fossor (Hall, 1916) has been reported only from hosts belonging to the genus Thomomys (Wied-Neuwied 1839) (Rodentia: Geomyidae) (Todd and Lepp, 1972; Gardner, 1985; but see Falcón-Ordaz, 1993). Descriptions have been based on morphology and host preference and Trichuris from geomyid hosts have never been sequenced (Eberhardt et al., 2019). The aim of this study was to serve as the first molecular report for T. fossor (Chandler, 1945; Todd and Lepp, 1972; Gardner, 1985).

DNA extraction, amplification, and sequencing were performed on individuals from each host species. Before beginning isolation, nematodes were transferred to 1.5 mL microcentrifuge tubes and repeatedly rinsed with DI water (5 rinses of 1 mL dH₂O) to remove all traces of ethanol. Nematodes were then transferred into fresh PCR tubes and mechanically homogenized before extracting with the DNeasy Blood and Tissue Kit (Qiagen) following the manufacturer’s protocols. Overlapping fragments of 18S rRNA were amplified using the primers G18S4F (5′-GGTTGTCTCAAAGAATTAGCC-3′), 136R (5′-TGATCTCTCTGAGGTTACCTAC-3′), 652F (5′-GAGCCGCCTGTAATTGAGCT-3′), and 847R (5′-CATTCTGGCAATTGCTTCGC-3′) (Callejón et al., 2013). After PCR products were visualized on a 1.5% agarose gel, they were SPRI-purified (Elkin et al., 2001) and prepared for direct end sequencing. Sequencing reactions were processed by the Center for Genome Research and Biocomputing (CGRB; Oregon State University, Corvallis, OR).

Sequences were examined using MEGA v. 7.0.26 (Kumar et al., 2016). Forward and reverse sequences for individual segments were combined by alignment using MUSCLE, followed by combining the two overlapping segments. Low-quality ends were trimmed and a BLAST search against the NCBI nr database was performed. Sequence information from the BLAST match for 26 related taxa was incorporated into a phylogenetic comparison. These additional Trichuris spp. included in the analyses infect dogs, humans, pigs, sheep, and other rodents (murids, cricetids, and arvicolids). Sequences were aligned using MUSCLE, ends were trimmed, and 1,644 base pairs remained. The newly generated sequences were submitted to the GenBank database under accession numbers MT071351, MT071352, MT071353, and MT071354.

Phylogenetic analyses were performed in MEGA v. 7.0.26 (Kumar et al., 2016) and in BEAST2 v. 2.6.1 (Bouckaert et al., 2019). MEGA determined that Kimura 2-parameter with invariant sites and a gamma distribution was the best fit substitution model for this data based on Bayesian information criterion. An evolutionary history was inferred based on this model using the maximum likelihood (ML) method and a consensus tree was generated using 1,000 bootstrapping replicates in MEGA. The Bayesian inference (BI) analysis was prepared in BEAUti v. 2.6.0 (Bouckaert et al., 2019) and performed in BEAST2 v. 2.6.0 (Bouckaert
et al., 2019). The analysis used the HKY substitution model with equal frequencies (K2P + I + G is not available in BEAST2) and ran for 1×10^7 generations. Tracer v 1.7.1 (Rambaut et al., 2018) was used to evaluate convergence and ensure that effective sample size values for each parameter were met (all > 1,000). Tree files were combined in LogCombiner v. 2.6.0 (Bouckaert et al., 2019) and a maximum clade credibility (MCC) tree was constructed using TreeAnnotator v. 2.6.0 (Bouckaert et al., 2019) with posterior probabilities limited 50% and a burn-in percentage of 10%. FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize the MCC tree.

Results and discussion

*Trichuris*, *Trichinella*, and capillariid species represented highly supported (100%) monophyletic groups (Figs. 1, 2). The capillariid and trichurid clades formed sister taxa with 100% support in both analyses. These findings are consistent with previous studies (Feldman and Ramirez, 2014; Borba et al., 2019). Our new sequences fell within the *Trichuris* clade with 100% node support and formed an independent subclade with 100% support in both analyses. Four subclades were present within *Trichuris*: (i) *T. discolor*, *T. ovis*, *T. skrjabini*, *T. leporis*, (ii) *T. triichiura*, *T. suis*, unidentified *Trichuris* sp. (= *T. colobae*, see Cutillas et al., 2014), (iii) *T. vulpis*, *T. muris*, *T. arvicola*, and (iv) the new sequences from *T. fossor*. The composition of previously studied species in subclades 1 to 3 are consistent with results from studies that used nuclear, mitochondrial, and/or concatenated data (Callejón et al., 2013, 2015; Feldman and Ramirez, 2014; Doležalová et al., 2015). In the ML analysis, the relatedness of the *Trichuris* subclades to one another had low (< 70%) support or were unresolved (Fig. 1). The BI analysis offered better resolution among

Figure 1: Bootstrap consensus tree (1,000 replicates) generated using the maximum likelihood method based on the K2P + I + G model. Bootstrap support values of 70% or greater are indicated next to nodes. Hosts are included in parentheses next to the *T. fossor* sequences.
trichurids (Fig. 2). The *T. fossor* subclade was most closely related to the *T. arvicolae*, *T. muris*, and *T. vulpis* subclade; the remaining two subclades were more closely related to one another than to the other two subclades.

The results of the phylogenetic analyses verify that, based on molecular data, *T. fossor* is a distinct species. This is the first report of *T. fossor* from a *T. mazama* host. *Trichuris fossor* from *T. bulbivorus* host was an outgroup to other *T. fossor* specimens in both analyses. In the BI analysis, *T. fossor* from *T. bottae* and *T. talpoides* were sister taxa with the specimen from *T. mazama* as an outgroup. This suggests that variability likely exists among *T. fossor* from different host species, but 18S DNA is not reliable for determining whether genetic distances among *Trichuris* fall within the range of intraspecific variation (Guardone et al., 2013).

This work represents a preliminary step in investigating the phylogeny of *T. fossor*. Examining more molecular data and including different genes will likely show increased resolution of the closest relatives of *T. fossor* and provide a more comprehensive view of this phylogeny. Comparing other markers of nuclear and organellar DNA may be helpful (Doležalová et al., 2015) as well as examining mitochondrial data (e.g. *cox1* gene), especially given there is support that it is more reliable when separating closely related species than that of 18S rRNA (Guardone et al., 2013). Incorporating *T. fossor* from different host species and from different geographic areas will also be valuable as lineages within the *T. fossor* subclade could be uncovered (Callejón et al., 2010).

**Acknowledgments**

The authors sincerely thank Emily Wolfe, Alexandra Gibson, Dr Annie Lindgren, Katherine Carter, Jessica Persinger, Nathan Stewart, Dr Scott Gardner, the professional trappers who donated pocket gopher specimens, and the student volunteers at Portland
State University who assisted with field work, pocket gopher necropsies, and specimen preparation.

References

Borba, V. H., Machado-Silva, J. R., Le Bailly, M. and Ihíguez, A. M. 2019. Worldwide paleodistribution of capillarid parasites: paleoparasitology, current status of phylogeny and taxonomic perspectives. PloS One 14:e0216150, https://doi.org/10.1371/journal.pone.0216150

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matchiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M. A., Wu, C., Xie, D., Zhang, C., Stadler, T. and Drummond, A. J. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650.

Brandt, J. F. (1855), Beiträge sur nähern kenntniss der säugethiere Russlands, Buchdruckerei der Kaiserlichen Akademie der Wissenschaften.

Callejón, R., Cutilias, C. and Nadler, S. A. 2015. Nuclear and mitochondrial genes for inferring Trichuris phylogeny. Parasitology Research 114:4591–9.

Callejón, R., Robles, Md. R., Panei, C. J. and Cutilias, C. 2016. Molecular diversification of Trichuris spp. From Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences. Parasitology Research 115:2933–45.

Callejón, R., Nadler, S., De Rojas, M., Zurita, A., Petrasova, J. and Cutilias, C. 2013. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA. Parasitology Research 112:3933–49.

Callejón, R., De Rojas, M., Nieberding, C., Foronda, P., Feliú, C., Guevara, D. and Cutilias, C. 2010. Molecular evolution of Trichurus muris isolated from different Muridae hosts in Europe. Parasitology Research 107:631–41.

Chandler, A. C. 1945. Trichuris species from California rodents. Journal of Parasitology 31:284–6.

Cutilias, C., Rojas, Md., Zurita, A., Oliveros, R. and Callejón, R. 2014. Trichurus colobae n. sp. (Nematoda: Trichuridae), a new species of Trichurus from Colobus guereza kikyuensis. Parasitology Research 113:2725–32.

Doležalová, J., Oborník, M., Hajdušková, E., Jirků, M., Petřžeková, K. J., Bolechová, P., Cutilias, C., Callejón, R., Jaroš, J., Beránková, Z. and Modrý, D. 2015. How many species of whipworms do we share? Whipworms from man and other primates form two phylogenetic lineages. Folia Parasitologica 62:1–12.

Eberhardt, A. T., Robles, Md. R., Monje, L. D., Beldomenico, P. M. and Callejón, R. 2019. A new Trichuris species (Nematoda: Trichuridae) from capybaras: morphological-molecular characterization and phylogenetic relationships. Acta Tropica 190:244–52.

Elkin, C. J., Richardson, P. M., Fourcade, H. M., Hammon, N. M., Pollard, M. J., Predki, P. F., Gravina, T. and Hawkins, T. L. 2001. High-throughput plasmid purification for capillary sequencing. Genome Research 11:1269–74.

Eydoux, F. and Gervais, P. 1836. Sur le genre Paephagomys et quelques autres rongeurs qui l’voisinent. Magasin de Zoologie Journal, Paris 6:17–24.

Falcón-Ordaz, J. 1993. Estudio taxonómico de los nematodos parasitos de roedores de los géneros Peromyscus y Liomys, de Huehuetla y Atlatlapan, Estado de Hidalgo Ph.D. dissertation, Universidad Nacional Autónoma de México, México.

Feldman, S. H. and Ramirez, M. P. 2014. Molecular phylogeny of Pseudocapillaroides xenopi (Moravec et Cosgrove 1982) and development of a quantitative PCR assay for its detection in aquarium sediment. Journal of the American Association for Laboratory Animal Science 53:668–74.

Feliu, C., Spakulová, M., Casanova, J. C., Renaud, F., Morand, S., Hugot, J. P., Santalla, F. and Durand, P. 2000. Genetic and morphological heterogeneity in small rodent whipworms in southwestern Europe: characterization of Trichurus muris and description of Trichurus arvicola n. sp. (Nematoda: Trichuridae). Journal of Parasitology 86:442–9.

Gardner, S. L. 1985. Helminth parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the description of a new species of Hymenolepis (Cestoda). Canadian Journal of Zoology 63:1463–9.

Gardner, S. L. and Jasmer, D. P. 1983. Heligmosomoides thomomys sp. n. (Nematoda: Heligmosomidae) from Pocket Gophers, Thomomys spp. (Rodentia: Geomyidae), in Oregon and California. Proceedings of the Helminthological Society Washington 50:278–84.

Guardone, L., Deplazes, P., Macchioni, F., Magi, M. and Mathis, A. 2013. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Veterinary Parasitology 197:36–369.

Hall, M. C. 1916. Nematode parasites of mammals of the orders Rodentia, Lagomorpha, and Hyracoidea. Proceedings of the United States National Museum 50:1–258.

Jex, A. R., Nejsum, P., Schwarz, E. M., Hu, L., Young, N. D., Hall, R. S., Korhonen, P. K., Liao, S., Thamsborg, S., Xia, J., Xu, P., Wang, S., Scheerlinck, J., Hofmann, A., Sternberg, P. W., Wang, J. and Gasser, R. B. 2014. Genome and transcriptome of the porcine whipworm Trichurus suis. Nature Genetics 46:701–8.

Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–4.

Linnaeus, C. 1771. Mantissa planitarum altera. Regni Animalis Appendix. Stockholm: Laurentii Salvii.
Merriam, C. H. 1897. Descriptions of eight new pocket gophers of the genus *Thomomys*, from Oregon, California, and Nevada. Proceedings of the Biological Society of Washington 11:213–6.

Rambaut, A., Drummond, A. J., Xie, D., Baele, G. and Suchard, M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901–4, doi: 10.1093/sysbio/syy032.

Richardson, J. 1828. Short characters of a few quadrupeds procured on Capt. Franklin’s late expedition. The Zoological Journal 3:516–20.

Richardson 1829. Fauna Boreali-Americana: part first containing the quadrupeds John Murray Press, London. Reprinted 1974, New York, NY: Arno Press.

Robles, Md. R., Cutillas, C. and Callejón, R. 2018. Morphological-molecular characterization and phylogenetic relationships of a new *Trichuris* species (Nematoda: Trichuridae) parasitic on Holochilus chacarius (Cricetidae: Sigmodontinae) from the Chaco ecoregion (Argentina). Infection, Genetics and Evolution 58:66–76.

Robles, Md. R., Cutillas, C., Javier Panei, C. and Callejón, R. 2014. Morphological and molecular characterization of a new *Trichuris* species (Nematoda: Trichuridae), and phylogenetic relationships of *Trichuris* species of Cricetid Rodents from Argentina. PLoS One 9:e112069.

Roederer, J. G. 1761. Nachrichten von der Trichuriden, der Societät der Wissenschaften in Göttingen. Göttingische Anzeigen von gelehrten Sachen: Unter der Aufsicht der Königliche Gesellschaft der Wissenschaften, Part 25, 1761, pp. 24–245.

Schrank, F. P. V. 1788. Verzeichniß der bisher hinsichtlich bekannter eingeweidewürmer: nebst einer abhandlung über ihre anverwandtschaften, Vol. 2 Akademie der Wissenschaften Austrian Academy of Sciences Press, Strobl.

Todd, K. S. Jr. and Lepp, D. L. 1972. Redescription of *Trichuris fossor* Hall, 1916 (Nematoda: Trichuridae) from the Northern Pocket Gopher, *Thomomys talpoides*. Proceedings of the Helminthological Society of Washington 39:203–5.

Vejl, P., Nechybová, S., Peřinková, P., Melounová, M., Sedlák, V., Vašek, J., Čilová, D., Rylková, K., Jankovská, I., Vadlejch, J. and Langrová, I. 2017. Reliable molecular differentiation of *Trichuris ovis* and *Trichuris discolor* from sheep (*Ovis orientalis aries*) and roe deer (*Capreolus capreolus*) and morphological characterisation of their females: morphology does not work sufficiently. Journal of Parasitology Research 116:2199–210.

Wied-Neuwied, M. Z. P. 1839. Eine neue gattung der wühlmaüse. Acta Physico-Medica Academiae Caesareae Leopoldinae-Carolinae 19:375–84.