Research Article

Phytoplankton response to the massive expansion of *Elodea nuttallii* (Planch.) H.St.John, 1920 in a floodplain lake of the Vistula River (Poland)

Ewa A. Dembowska1,*, Dariusz Kamiński2 and Anna Wojciechowska2

1Chair of Microbiology and Immunobiology, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Poland
2Chair of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland

Author e-mails: dembow@ukw.edu.pl (ED), daro@umk.pl (DK), ankawoj@umk.pl (AW)

*Corresponding author

Abstract

The spread of invasive non-native species, one of the greatest threats to biodiversity and the economy, affects the structure and functions of ecosystems at all levels. At the beginning of the 21st century a rapid expansion of the submerged macrophyte *Elodea nuttallii* was observed in southern and eastern Europe. However, this plant, native to North America, was already recorded in Europe in the first half of the 20th century. Our study aimed to evaluate changes in phytoplankton communities caused by the presence of this new invader. The research was conducted in a large floodplain lake in the Vistula valley (north-central Poland) and involved regular monitoring of the lake’s ecological status using phytoplankton-based methods. Long-term observations enabled us to track the impact of this invasive plant on phytoplankton and to compare the conditions of the phytoplankton community before and after *Elodea nuttallii* invasion. In the first stage of the research (2007–09) massive phytoplankton growth (max. biomass over 90 mg/L) and Cyanobacteria blooms (mainly of *Aphanizomenon flos-aquae*) were noted. Submerged vegetation along the shore was sparse and its development was inhibited by phytoplankton shading. *Elodea nuttallii* was first reported in this lake in 2009, together with native macrophyte species. The second stage of the research was carried out in the years 2013–15, when *E. nuttallii* had already colonised the lake, in some parts occupying the entire bottom surface and almost completely outcompeting native species of submerged macrophytes. As a consequence, the abundance and biomass of phytoplankton decreased. The highest biomass recorded in summer 2013–15 was approximately 4 mg/L. Secchi depth increased from 0.5 m in 2007–08 to 1.6 m in 2015. *Elodea nuttallii* expansion caused a shift from the turbid-water to clear-water state with higher water transparency. Phytoplankton blooms did not develop. The massive growth of *E. nuttallii* seems to have caused positive changes in the lake ecological status. However, *E. nuttallii* is considered to be a highly invasive species, threatening native hydrobionts at various levels of organisation.

Key words: invasive species, Cyanobacteria, functional groups of phytoplankton, water bloom, RDA

Introduction

Invasive, non-native plants have negative impacts on the ecosystems into which they are introduced: they threaten biodiversity and cause changes in
the structure of plant communities, and in extreme cases lead to the extinction of native species (Catford et al. 2012). They owe their success to a number of adaptations, including reproductive characteristics such as the production of a large number of seeds, effective dispersal, easy shoot multiplication (Stiers et al. 2011b), high growth rate (Erhard and Gross 2006), wide tolerance range (Angelstein and Schubert 2008) and allelopathic interactions (van Kleunen et al. 2015; Gao et al. 2017). In recent years the invasion of non-native plant species has intensified due to climate change and globalisation. Once these non-natives are established outside their natural habitat, they can quickly colonise a new area (Pyšek et al. 2009). Invasive species can be more resistant than native species to human impacts and ecosystem degradation. Any disruptions to a given ecosystem and the emergence of new ecological conditions may promote their spread (Lonsdale 1999).

Due to the inability to predict the timing of establishment of new populations of a non-native, it is difficult to assess their environmental impacts, with documented status before and after the invasion. Lake Port Drzewny has been investigated since 2007 (Dembowska et al. 2012). During our long-term phytoplankton research, the presence of *Elodea nuttallii* (Planch.) H.St.John, 1920, a non-native submerged macrophyte, was recorded in the lake. Its appearance was accompanied by rapid quantitative and qualitative changes in the phytoplankton community, and these deviated from previously observed patterns.

Elodea nuttallii is considered to be a highly invasive plant species (Andelković et al. 2016). This plant is rapidly spreading in Central and Eastern Europe (Table 1). This submerged macrophyte was first recorded in Europe in 1914 in the Royal Botanic Gardens in Kew (Cook and Urm-König 1985). Over the next 80 years it spread to many countries in Central and Western Europe (Josefsson 2011). At the turn of the 21st century, having overcome environmental barriers, the species moved further eastward, to locations partly outside its optimal sub-Atlantic climate (Chorna et al. 2006), and beyond its forecasted range (Steen et al. 2019). In Poland it was first recorded in the Vistula River in 2007 (Kamiński 2010).

Elodea nuttallii owes its success to a number of adaptations that facilitate its competition with native species of submerged macrophytes. As a neophyte, it has no natural enemies in Europe. Moreover, it has a wide tolerance range and can survive in different trophic conditions (from eutrophic to meso-oligotrophic) (Zehnsdorf et al. 2015), easily adapting even to the low salinity of some salt marshes and brackish waters (Thouvenot and Thiébaut 2018). In comparison with native species it is more resistant to anthropogenic nutrient inputs that cause eutrophication. Further, temporary nutrient shortage does not slow its growth (Thiébaut 2005). The plant, which tolerates shading and strong sunlight, is also resilient
Table 1. The range and spread of *E. nuttallii* in Europe.

First known occurrence: Year	Country	Literature
1914	England	Cook and Urmi-König 1985
1939	Belgium	Verloove 2006
1941	the Netherlands	Simpson 1990
1950	France	Greulich and Trémolières 2006
1953	Germany	Casper and Krausch 1980
1960	Ireland	Simpson 1984
1964	Belarus	Panasenko and Shcherbakov 2018
1970	Austria	Steen et al. 2019
1974	Denmark	Steen et al. 2019
1980s	Switzerland	Steen et al. 2019
1980	Luxembourg	Steen et al. 2019
1986	Slovakia	Hrivnák et al. 2019
1988	the Czech Republic	Steen et al. 2019
1991	Sweden	Anderberg A 1992
1991	Hungary	Kiraly et al. 2007b
1995	Italy	Steen et al. 2019
1997	Romania	Ciocârlan et al. 1998
2001	Ukraine	Prokopuk and Zub 2019
2007	Slovenia	Kiraly et al. 2007a
2006	Croatia	Kocic et al. 2014
2006	Serbia	Vukov et al. 2008; Andelković et al. 2016
2002	Bulgaria	Georgiev et al. 2019
2006	Norway	Steen et al. 2019
2007	Poland	Kamiński 2010
2017	Albania	Mesterházy 2017
2017	Russia	Panasenko and Shcherbakov 2018

to temporary desiccation (Barrat-Segretain and Cellot 2007). In spring, it starts to grow earlier (at 4 °C) than native plant species and produces strongly branched shoots that shade the lake bottom (Zehndorf et al. 2015), thus limiting the development of native species (Stiers et al. 2011a). It is classified as a fast growing, rapidly spread macrophyte (Hilt et al. 2006) that reproduces vegetatively by the fragmentation of stems (Barrat-Segretain et al. 2002; Barrat-Segretain and Elger 2004; James et al. 2006). *Elodea nuttallii* contains chemical compounds that limit its consumption by herbivores (Erhard et al. 2007), protect the plant against epiphytic algae (Erhard and Gross 2006; Hilt 2008; Hilt and Gross 2008) and inhibit the growth of planktonic algae, including Cyanobacteria (Vanderstukken et al. 2014), responsible for blooms, e.g., *Microcystis aeruginosa* (Wu et al. 2009). Of the allelochemical substances, *E. nuttallii* produces numerous organic compounds such as polyphenols, organic (e.g., fatty) acids, alkaloids, terpenoids and ketones (Gao et al. 2017). Considering its negative impact on the natural environment and economy, *E. nuttallii* has been identified as an invasive species posing a threat to the EU environment (EU 2017).

The main objective of this study was to examine phytoplankton in Lake Port Drzewny during Cyanobacteria blooms (pre-invasion period) and to assess the influence of *E. nuttallii* on the phytoplankton structure (invasion period). We observed Cyanobacteria bloom termination and higher water transparency followed by the shift from turbid- to clear-water state.
Specific objectives included the following: 1) qualitative analysis of the phytoplankton community (phytoplankton species composition) and quantitative analysis of the phytoplankton (abundance and biomass); 2) evaluation of changes in phytoplankton functional groups and biodiversity; 3) assessment of the impact of *E. nuttallii* on water quality parameters (e.g. water transparency, oxygenation, chlorophyll *a* content). We hypothesised that in the turbid state (prior to *E. nuttallii* invasion), phytoplankton would be characterised by higher biological diversity, and that *E. nuttallii* invasion would cause dramatic changes in the phytoplankton community, including in the structure and biomass of Cyanobacteria.

Materials and methods

Description of the study area

The study was conducted in a floodplain lake located in the lower Vistula River valley (Poland). With a length of 1,068 km, the Vistula River is the longest river in Poland, and has a catchment area of 194,000 km². It has all the characteristics of a lowland river over most of its course. The flow rate in the study period ranged from 232 to 6190 m³/s and a slope is approx. 0.18‰.

Lake Port Drzewny (53°01′N; 18°30′E) lies on the right-hand Vistula River bank in Toruń and is connected to the river via a channel at 744.5 km. Formed in the 17th century, at the beginning of the 20th century it was used for timber floating. The construction of the port, which began in 1906, involved deepening the lake in the west and east. The lake served as a Vistula river port even without a shore reinforcement system or freight facilities. In 1934, based on Decision No. 18/34 of January 10, 1934 issued by the Pomeranian Voivode, this water body was declared a protected spawning ground for the Vistula population of pike-perch (*Sander lucioperca* Linnaeus, 1758). The port basin has a length of 1,800 m and a width of 350–390 m. The entry channel is 1,500 m long and 60–70 m wide. The lake surface at the average water level is 59.4 ha in the port basin and 11.4 ha in the entry channel (the total of 70.8 ha). The average depth is 2 m. In the eastern part there are two pits with a depth of approx. 11 m, formed by gravel mining.

Phytoplankton sampling and analysis

Phytoplankton was collected during the growing season, i.e. from April to October, with the following frequency: bimonthly in the years 2007–09, and monthly in the years 2013–15. The sampling site was located at the north-eastern edge of the lake (Supplementary material Figure S1). Samples for the analysis of the phytoplankton species composition were collected with a 10-μm-mesh plankton net in vertical and horizontal hauls and preserved with formalin. For quantitative analysis, non-concentrated samples were...
Phytoplankton response to the massive expansion of *Elodea nuttallii*

Dembowska et al. (2021), *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Phytoplankton abundance was determined under inverted microscope using Utermöhl’s method (1958). Phytoplankton biomass (TPB) was determined volumetrically by comparing single cells’ or colonies’ shapes to geometric solids (Hillebrand et al. 1999; Sun and Liu 2003; Napiórkowska-Krzebietke and Kobos 2016). It was assumed that 1 mm³ of algae is equal to 1 mg (Holmes et al. 1969; Elser and Carpenter 1988). Biovolume is presented as biomass (wet weight) per litre (B; mg/L).

Submerged macrophytes observations

At the same times, yearly observations of submerged macrophytes were carried out. Species distributions in designated transects between the northern and southern shores of the lake were evaluated during the vegetative optimum (the first half of August) in accordance with the ESMI (Ecological State Macrophyte Index) methods (Ciecierska and Kolada 2014) for assessing water quality in inland water bodies.

Measurement of physical and chemical parameters

The following variables were measured *in situ* using a portable probe (WTW MultiLine P4): water temperature (WT; °C), pH, dissolved oxygen concentration (DO; mg/L), oxygen saturation (DO; %), electric conductivity (EC; μS/cm) and water transparency (SD; m) using a Secchi disc. Water for chlorophyll *a* (Chl-*a*) content analysis was collected with each phytoplankton sampling. Chlorophyll *a* content was determined using the Nusch (1980) method. For Chl-*a* content (Chl-*a*; µg/L), water was filtered through a Whatman GF/C glass-fibre filter and extracted with 90% ethanol. Absorbance was measured using a Jasco UV/VIS V-530 spectrophotometer.

Data analysis

The trophic level of the lake was assessed on the basis of Trophic State Index (TSI) (Carlson 1977; Carlson and Simpson 1996). TSI was calculated based on Secchi disc visibility and chlorophyll *a* content.

The Shannon Biodiversity Index (H’) was calculated based on the phytoplankton abundance using Past 4.02 software (Hammer et al. 2001).

The dominant species described in this paper, with biomass exceeding 10%, were classified into functional groups (Fgs), which were marked with alphanumeric codes based on Reynolds (2006) and Padisák et al. (2009). The assumption of the functional classification of phytoplankton was to determine the adaptive characteristics of species, not related to phylogenetic similarity. The number of functional groups was determined in all samples.

The results from all years were compared using the Kruskal-Wallis test and Dunn test (a post-hoc test). The analyses were performed using Past 4.02.
Phytoplankton response to the massive expansion of *Elodea nuttallii*

Dembowska et al. (2021), *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Results

Habitat conditions

In the first stage of the research (2007–09) water transparency was low, ranging from 0.3 m to 2.0 m. (Table S1, Figure 1), with the average value being 0.67 m (N = 32). The lowest water transparency was recorded in summer (Jun–Jul) while the highest, in autumn (Sept–Oct) 2009, i.e. at the end of the growing season. In the second stage of the research (2013–15), water transparency was considerably higher, ranging from 0.4 m to 2.8 m. The average value was almost twice as high and amounted to 1.13 m (N = 23). The lowest water transparency was noted in summer (Jul and Aug) 2013, and the highest in August 2013. The average pH, EC, WT and DO were similar in both study periods.

Carlson TSI calculated from Secchi depth was 67 (50–77) in the pre-invasion period and indicated an advanced eutrophic state (Table S1). The lowest TSI SD values were recorded at the end of October, i.e. at the end of the phytoplankton growing season. The highest values, indicating hypertrophy, were recorded in summer (Jul–Aug) during phytoplankton blooms. During the *E. nuttallii* invasion, the average TSI SD was lower (60), indicating a moderate eutrophic state (Table S1). The highest TSI was recorded in 2013, during the early stages of *E. nuttallii* invasion. In August 2015, marked by very intensive growth of this macrophyte, the TSI SD was...
Phytoplankton response to the massive expansion of *Elodea nuttallii*

Dembowska et al. (2021), *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Figure 2. Scheme of Submerged macrophytes distribution in floodplain lake a) location of research transects (dot – sampling site); b) averaged cover in designated transects in two research periods.

The lowest (45), which is typical of mesotrophic water bodies. The average TSI values calculated from Chl-a content were slightly lower and in both study periods indicated moderate eutrophic conditions. TSI values indicating advanced hypertrophy were recorded in summer of 2008 during intense blooms. The lowest value, indicating mesotrophic conditions, was recorded in October 2014 during *E. nuttallii* invasion.

Submerged macrophytes cover

In the years 2007–09, submerged macrophyte vegetation was poorly developed, covering less than 10% of the bottom (Figure 2). In the designated transects, the presence of *Elodea canadiensis* Michx, 1803, *Potamogeton pectinatus* L, 1753, *Potamogeton crispus* L, 1753, *Potamogeton perfoliatus* L, 1753, *Potamogeton natans* L, 1753, *Ceratophyllum demersum* L, 1753, *Myriophyllum spicatum* L, 1753 was confirmed, while *E. nuttallii* was not encountered. However, in the years 2013–15 the expansion of *E. nuttallii* was obvious. The plant occupied 50 to 80% of the lake surface, forming thick clusters on the bottom and dense mats floating below the surface in the central part of Port Drzewny. Native species of submerged macrophytes were reported sporadically.
Phytoplankton development

Despite differences between the two research stages, the phytoplankton biomass was always indicative of highly eutrophic water bodies. In the pre-invasion period, the average phytoplankton biomass was approximately 25 mg/L (Figure 3). The analysis confirmed the dominance of functional groups H1, J, Lo and P (Tables S1, S2). In summer, harmful algae blooms were noted, mainly of Nostocales (Fg H1, Cyanobacteria), e.g. *Aphanizomenon flos-aquae* Ralfs ex Bornet & Flahault, 1886, *Dolichospermum plantonicum* (Brunnthaler) Wacklin, Hoffmann et Komárek, 2009, *D. flos-aquae* (Brébisson ex Bornet et Flahault) Wacklin, Hoffmann et Komárek, 2009. Cyanobacteria constituted 25% of the total phytoplankton biomass on average. Biodiversity measured as Shannon index in the pre-invasion period was 1.233, and the evenness index was 0.669 (Table S1).

In the subsequent stage, i.e. during *E. nuttallii* invasion, the average phytoplankton biomass was four times lower (approx. 6 mg/L). Although Cyanobacteria constituted almost 37% of the total phytoplankton biomass, they did not form blooms. Their average biomass was 2 mg/L (Tables S1, S2, Figure 3), while the highest, approximately 17 mg/L, was recorded in July 2013, at the early stage of *E. nuttallii* development. With the presence of *E. nuttallii*, the share of algae from functional groups B, C, H1, X3 and Y increased considerably. Functional group Y, which includes large Cryptomonadales, had a similar average biomass before and during *E. nuttallii* invasion, i.e. 1.73 mg/L and 1.76 mg/L, respectively. The Shannon index value was lower during *E. nuttallii* invasion and amounted to 0.888 (although...
Phytoplankton response to the massive expansion of *Elodea nuttallii*

Dembowska et al. (2021), *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Figure 4. Number of functional groups (± SE) in subsequent years. Differences between years are statistically significant (p < 0.05, Kruskal-Wallis test, H = 12.9, df = 5). Letters above bars represent groups that differ from each other according to the post-hoc test (Dunn’s test). Dark boxes indicate the years before the invasion, the light boxes the period during *E. nuttallii* invasion; whiskers – min/max, box – Q1–Q3, line – median, x – mean value, dots – outliers.

the results were not statistically significant), but evenness index was almost the same (0.646) as in the previous period (Table S1).

Statistical analysis demonstrated that the number of functional groups decreased significantly in the years 2013–15 compared to previous years (Figure 4): while in 2007–09 there were 12.5 functional groups on average, in 2014–15 there were only 9.5. This was associated with the emergence of *E. nuttallii*, which soon outcompeted other species. As a consequence, water transparency (SD) increased. This was the only statistically significant variable in the RDA analysis. Higher water transparency explains 6% of the variability of the examined dataset. The vast majority of functional groups were recorded only in the initial part of the research; with the mass development of *E. nuttallii* the number diminished to four groups, namely B, X2, X3 and XpH (Figure 5).

Discussion

Conducted over nearly ten years, our observations in Port Drzewny were aimed at assessing phytoplankton growth under various environmental conditions. Massive development of the non-native submerged plant *E. nuttallii* was a major influencing factor on phytoplankton composition. Many studies from the turn of the 21st century addressed the issue of two alternative stable equilibria and their impact on shallow eutrophic ecosystems (Scheffer and Jeppesen 1998; Perrow et al. 1999; Asaeda et al. 2002; Kelly et al. 2015). In our research we also observed two alternative regimes: turbid- and clear-water state. In the first stage of the research (2007–09), Port Drzewny had characteristics of a shallow turbid lake with phytoplankton
Phytoplankton response to the massive expansion of *Elodea nuttallii*

Dembowska et al. (2021), *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Figure 5. RDA for functional groups identified in the studied dataset and for measured environmental parameters. Only one environmental variable (SD) was significantly important for the variability within the dataset (red vector). It explains 6% of total variability of the dataset//six-percent variability of the dataset. Geometrical figures represent samples from subsequent years (2007, 2008, 2009 – pre-invasion period; 2013, 2014, 2015 during invasion).

dominance, Cyanobacteria blooms, high chlorophyll *a* content and low water transparency (approx. 0.5 m).

The year 2008 was marked by particularly poor water quality (Dembowska et al. 2012), including a large contribution of the potentially toxic Cyanobacteria *A. flos-aquae* to the high phytoplankton biomass. In 2009, *E. nuttallii* was first reported in the lake, although still as an element of previously identified plant communities (Kamiński 2010). However, submerged vegetation covered only a small part of the bottom near the shores.

In 2010, catastrophic floods swept through Central Europe, causing changes in water quality in many aquatic ecosystems. In the studied floodplain lake (Dembowska 2017), water transparency increased suddenly, while submerged macrophyte communities vanished almost completely. Only single, short shoots of *E. nuttallii* were encountered. Initially, the changes were associated exclusively with mechanical turbulences. Nostocales (mainly *A. flos-aquae*), abundant in 2007–09 but very sensitive to water mixing, nearly disappeared. It is also possible that Cyanobacteria that had accumulated in the upper layer of bottom sediments were washed out by flood waters, and that this limited the blooms considerably.

During the second stage of the research (2013–15), symptoms indicating a change to the so-called clear-water alternative stable equilibrium with
elodeid dominance were observed. For example, a fourfold decrease in phytoplankton biomass was observed, and the chlorophyll a content decreased threefold, with an associated significant increase in water transparency. We assume that the conditions for clear-water state were created by the 2010 flood. The flood distributed existing propagules and also provided new vegetative dispersal units of macrophytes (Cellot et al. 1998). This may have resulted both in invasions of non-native macrophyte species and to subsequent periodic changes in the structure and function of phytoplankton (Mihaljević et al. 2009, 2010). Due to climate change, the frequency of extreme floods is increasing. Therefore, higher dynamics between the dominance of macrophytes (including invasive species such as *E. nuttallii*) and the dominance of phytoplankton can be expected.

In 2013, a large share of Cyanobacteria in the phytoplankton was still reported, but in subsequent years both the total phytoplankton biomass and Cyanobacteria biomass decreased dramatically. In the last year of the research, Cyanobacteria were virtually absent from the phytoplankton. At the same time, *E. nuttallii* dominated in the lake, covering the bottom and forming dense clusters in many places. Due to the bottom flatness and shallowness of the lake, the plant easily reached the surface, filling the entire open-water zone.

The number of dominant phytoplankton functional groups during the invasion period decreased. Cryptophytes, classified as Fg Y, turned out to be the most resistant to *E. nuttallii* dominance. The success of *Cryptomonas* sp. div. is based on their ability to use different sources of energy and carbon (mixotrophy) and their ability to move, which facilitates their adaptation to dynamically changing conditions in floodplain lakes. Small flagellates are probably the most representative group of the phytoplankton of floodplain lakes (Görgényi et al. 2019) and the dominant Fg in the invaded ponds (Stiers and Triest 2017).

The decrease in the abundance, biomass, biodiversity and number of functional groups of phytoplankton caused by the massive growth of elodeids has been extensively studied and is well documented in the literature. In our study, the emergence and development of *E. nuttallii* were quite rapid and led to a complete transformation of the phytoplankton structure. The most important effect was inhibited growth of Cyanobacteria, which, prior to *E. nuttallii* invasion, caused harmful blooms (mainly *A. flos-aquae*). Due to their ability to produce cyanotoxins, these Cyanobacteria are undesirable components of phytoplankton communities.

Dense stands of macrophytes can affect phytoplankton abundance directly and indirectly. The direct effects of *E. nuttallii* on phytoplankton include competition and allelopathy (described in the Introduction), which is a well-known area of active research in ecology (e.g. Gao et al. 2017). The competition for nutrients between submerged macrophytes and phytoplankton
Phytoplankton response to the massive expansion of *Elodea nuttallii*

Dembowska et al. (2021), Aquatic Invasions 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

is also well documented (e.g. van Donk et al. 1993; van Donk and van de Bund 2002; Erhard and Gross 2006; Celewicz-Goldyn 2010; Hilt and Lombardo 2010; Haroon and Abdel-Aal 2016; Dembowska et al. 2018).

In addition, there is a wide range of indirect effects of *E. nuttallii* on the environment. Densely growing elodeids provide a perfect habitat for many organisms, and for zooplankton in particular (Perrow et al. 1999; Semenchenko 2008; Kuczyńska-Kippen and Joniak 2016). During *E. nuttallii* invasion, the phytoplankton biomass decreased significantly and community structure changed as well. Small flagellates (Fgs Y, X2, X3) and diatoms (Fgs B, C) had a greater relative share in the phytoplankton biomass. These algae represent R strategists and are good food for zooplankton. Small algae replaced large Dinoflagellata (Fg Lo), colonial Cyanobacteria (Fg H1), and planktonic diatoms and Chlorophyta (Fgs P, J) with branched shapes that prevented them from being consumed by zooplankton.

In conclusion, *E. nuttallii* invasion had a significant effect on the entire biotic community of the lake, in particular on the phytoplankton and native submerged macrophytes. Long-term research on phytoplankton species composition (with a well-documented state before and after the invasion) supports the conclusion that the observed quantitative and qualitative changes in algae species composition are directly related to the invasion of *E. nuttallii*.

Clear-water state is highly desired in eutrophic ecosystems, but the simplification of the community structure caused by the dominance of one macrophyte species has many disadvantages and reduces ecosystem resilience to disturbances. The invasion of *E. nuttallii* also resulted in unfavourable changes in the structure and function of phytoplankton communities. Therefore, the positive effects, such as increased water transparency and the termination of Cyanobacteria blooms, are deceptive.

There are several controversies regarding the assessment of the environmental impact of *E. nuttallii* and durability of the changes. However, it is important to remember that *E. nuttallii* is a non-native plant that grows quickly and outcompetes native species, which might lead to the impoverishment of diversity, simplification of communities, and a threat to the stability of the ecosystem.

Acknowledgements

We are grateful to the editor and two anonymous reviewers for valuable comments on the manuscript and we would like to thank Tim Brombley for linguistic proofreading.

Funding Declaration

This study was partially supported by the Polish Ministry of Science and Higher Education, under the programme “Regional Initiative of Excellence” in 2019–2022 (Grant No. 008/RID/2018/19).
Authors contribution

ED: research conceptualisation; sample design and methodology; investigation and data collection; data interpretation; funding provision; and writing – original draft and editing; DK: research conceptualisation; sample design and methodology; investigation and data collection; data interpretation; writing – original draft and editing; AW: data analysis.

References

Andelković AA, Živković MM, Cvijanović DL, Novković MZ, Marisavljević DP, Pavlović DM, Radulović SB (2016) The contemporary records of aquatic plants invasion through the Danubian floodplain corridor in Serbia. *Aquatic Invasions* 11: 381–395, https://doi.org/10.3391/ai.2016.11.4.04

Anderberg A (1992) *Elodea nuttallii*, new for Sweden. *Svensk Botanisk Tidskrift* 86: 43–45

Angelstein S, Schubert H (2008) *Elodea nuttallii*: uptake, translocation and release of phosphorus. *Aquatic Biology* 3: 209–216, https://doi.org/10.3334/ab00080

Asaeda T, Trung VK, Manatunge J, Bon TV (2002) Modelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts. *Ecological Engineering* 16: 341–357, https://doi.org/10.1016/S0925-8574(00)00120-8

Barrat-Segretain MH, Cellot B (2007) Response of invasive macrophyte species to drawdown. The case of *Elodea* sp. *Aquatic Botany* 87: 255–261, https://doi.org/10.1016/j.aquabot.2006.09.005

Barrat-Segretain MH, Elger A (2004) Experiments on growth interactions between two invasive macrophyte species. *Journal of Vegetation Science* 15: 109–114, https://doi.org/10.1111/j.1654-1103.2004.tb02243.x

Barrat-Segretain MH, Elger A, Sagnes P, Puijalon S (2002) Comparison of three life-history types of invasive *Elodea canadensis* Michx and *Elodea nuttallii* (Planch) H. St. John. *Aquatic Botany* 74: 299–313, https://doi.org/10.1016/S0304-3770(02)00106-7

Carlson RE (1977) A trophic state index for lakes. *Limnology and Oceanography* 22: 361–369, https://doi.org/10.4319/lo.1977.22.2.0361

Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods, North American Lake Management Society, 96 pp

Casper SJ, Krausch H-D (1980) Pteridophyta und Anthophyta. In: Pascher A (ed), Süßwasserflora von Mitteleuropa 23(1). Gustav Fischer Verlag, Stuttgart, New York, pp 201–206

Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Macrophyte species in shallow eutrophic lakes and the evaluation of environmental impacts. *Ecological Engineering* 16: 341–357, https://doi.org/10.1016/S0925-8574(00)00120-8

Cellot B, Mouillot F, Henry CP (1998) Flood drift and propagule bank of aquatic macrophytes in a riverine wetland. *Journal of Vegetation Sciences* 9: 631–640, https://doi.org/10.2307/3237231

Chorna GA, Protopopova VV, Shevera MV, Fedoronchuk MM (2006) *Elodea nuttallii* (Hydrocharitaceae) - novii dlya flori Ukraïni vid. *Ukrainian Botanical Journal* 63(3): 328–332

Ciocârlan V, Sarbu I, Stefan N, Marian T (1998) *Elodea nuttallii* (Hydrocharitaceae) - novii dlya flori Ukraïni vid. *Ukrainian Botanical Journal* 63(3): 328–332

Cicciarelli S, Barbu I, Stefan N, Marian T (1998) *Elodea nuttallii* (Planchon) H. St. John a new species in Romanian flora. *Buletunul Grdinii Botanice Iaşi* 6(1): 215–231

Ciecierska H, Kolada A (2014) ESMI: a macrophyte index for assessing the ecological status of lakes. *Environmental Monitoring and Assessment* 186: 5501–5517, https://doi.org/10.1007/s10661-014-3799-1

Cook CKD, Urimi-König K (1985) A revision of the genus *Elodea* (Hydrocharitaceae). *Aquatic Botany* 21: 111–156, https://doi.org/10.1016/0304-3770(85)90084-1

EU (2017) Commission Implementing Regulation No 1263 of 12 July 2017 updating the list of invasive alien species of Union concern established by Implementing Regulation (EU) 2016/1141 pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council. http://data.europa.eu/eli/reg_impl/2017/1263/official

Dembowska E (2017) The impact of an extreme flood spring/summer 2010 on phytoplankton communities in oxbow lakes (the lower Vistula river, central Poland). *Annales de Limnologie-International Journal of Limnology* 53: 19–26, https://doi.org/10.1051/llmn/2016030

Dembowska E, Glogowska B, Dabrowski K (2012) Dynamics of algae communities in the oxbow lake (Vistula River, Poland). *Archives of Polish Fisheries* 20: 27–37, https://doi.org/10.2478/v10086-012-0004-4

Dembowska E, Mieszczanink T, Napierkowski P (2018) Changes of the phytoplankton community as symptoms of deterioration of water quality in a shallow lake. *Environmental Monitoring and Assessment* 190: 95, https://doi.org/10.1007/s10661-018-6465-1

Elser JJ, Carpenter SR (1988) Predation-driven dynamics of zooplankton and phytoplankton communities in a whole-lake experiment. *Oecologia* 76: 148–154, https://doi.org/10.1007/BF00379613
Erhard D, Gross E (2006) Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany 85: 203–211, https://doi.org/10.1016/j.aquabot.2006.04.002

Erhard D, Pohnert G, Gross EM (2007) Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera. Journal of Chemical Ecology 33: 1646–1663, https://doi.org/10.1007/s10886-007-9307-0

Gao YN, Dong J, Fu QQ, Wang YP, Chen C, Li JH, Li R, Zhou CJ (2017) Allelopathic effects of submerged macrophytes on phytoplankton. Allelopathy Journal 40: 1–22, https://doi.org/10.26651/2017-40-1-1-1062

Georgiev V, Tsoneva S, Kenderov L, Trichkova T, Todorov M, Vladimirov V (2019) Distribution of Elodea nuttallii, an invasive alien species of EU concern, in Bulgaria. Phytologia Balcanica 25(3): 417–423

Greulich S, Trémolières M (2006) Present distribution of the genus Elodea in the Alsatian Upper Rhine floodplain (France) with a special focus on the expansion of Elodea nuttallii St. John during recent decades. Hydrobiologia 570: 249–255, https://doi.org/10.1007/s10750-006-0188-y

Görgényi J, Tóthmérész B, Várbiró G, Abonyi A, Krasznai E, Béres V, Borics G (2019) Contribution of phytoplankton functional groups to the diversity of a eutrophic oxbow lake. Hydrobiologia 830: 287–301, https://doi.org/10.1007/s10750-018-3878-3

Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistical software package for education and data analysis. Paleontologia Electronica 4(1): 4

Haroon AM, Abdel-Aal EI (2016) Chemical composition and in vitro anti-algal activity of Kelly R, Haddock C, Maggs CA, Reid N (2015) Effects of Aquatic Botany 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Hilt S (2008) Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany 85: 252–256, https://doi.org/10.1016/j.aquabot.2006.05.004

Hilt S, Gross E (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432, https://doi.org/10.1016/j.baae.2007.04.003

Hilt S, Lombardo P (2010) Effects of macrophytes on phytoplankton: nutrient uptake versus allelopathy. Verhandlungen des Internationalen Verein Limnologie 30: 1317–1320, https://doi.org/10.1080/03680770.2009.11902323

Hilt S, Gross EM, Hupfer M, Morscheid H, Mühllmann J, Melzer A, Poltz J, Sandrock S, Scharf E-M, Schneider S, van de Weyer K (2006) Restoration of submerged vegetation in shallow eutrophic lakes - A guideline and state of the art in Germany. Limnologica 36: 155–171, https://doi.org/10.1016/j.limno.2006.06.001

Hillebrand H, Dürselen CD, Kirschelt D, Pollinger U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424, https://doi.org/10.1046/j.1222-4764.1999.3520403.x

Holmes RW, Norris R, Smaitya T, Wood EF (1969) Collection, fixation, identification and enumeration of phytoplankton standing stock. In: Anon (ed), Recommended Procedures for Measuring the Productivity of Plankton Standing Stock and Related Oceanic Properties. National Academy of Sciences, Washington, pp 17–46

Hrivnák R, Medvecká J, Baláži P, Bubíková K, Oťaheľová H, Svitok M (2019) Alien aquatic weeds - Alien Species - NOBANIS, http://www.nobanis.org (accessed 04 June 2020)

Hrubý R, Medvecký J, Baláž P, Bubíková K, Oťaheľová H, Svitok M (2019) Alien aquatic plants in Slovakia over 130 years: historical overview, current distribution and future perspectives. Neobiota 49: 37–56, https://doi.org/10.1007/neobiota.49.34318

James CS, Eaton JW, Hardwick K (2006) Responses of three invasive aquatic macrophytes to nutrient enrichment do not explain their observed field displacements. Aquatic Botany 84: 347–353, https://doi.org/10.1016/j.aquabot.2006.01.002

Josefsön M (2011) NOBANIS - Invasive Species Fact Sheet - Elodea canadensis, Elodea nuttallii and Elodea calitrichoides. Online Database of the European Network on Invasive Alien Species - NOBANIS, http://www.nobanis.org (accessed 04 June 2020)

Kamiński D (2010) Elodea nuttallii (Hydrocharitaceae) nowy gatunek w wodach Wisły. Fragmenta Floristica et Geobotanica Polonica 20: 11–15

Kelly R, Harrod C, Maggs CA, Reid N (2015) Effects of Elodea nuttallii on temperate freshwater plants, microalgae and invertebrates: small differences between invaded and uninvaded areas. Biological Invasions 17: 2123–2138.

Kiraly G, Mesterhazy A, Bakan B (2007a) Elodea nuttallii (Planch.) H. St. John, Myosotis laxa Lehm. and Pyrus austriaca Kern., new for Slovenia, as well as other floristic records. Acta Botanica Croatica 73: 123–131

Kocic A, Horvatic J, Jelaska S (2014) Distribution and morphological variations of invasive macrophytes Elodea nuttallii (Planch.) H. St. John and Elodea canadensis Michx in Croatia. Acta Botanica Croatica 73: 437–446, https://doi.org/10.2478/botcro-2014-0011

Kuczyńska-Kippen N, Joniak T (2016) Zooplankton diversity and macrophyte biomass in shallow water bodies of various trophic state. Hydrobiologia 774: 39–51, https://doi.org/10.1007/s10750-015-3295-4
Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. *Ecology* 80: 1522–1536, https://doi.org/10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2

Mesterházy A (2017) (64) *Elodea nuttallii* (Planch.) H. St. John (Hydrocharitaceae). In: Mesterházy A et al., Taxonomical and chorological notes 5. *Studia Botanica Hungarica* 48: 269, https://doi.org/10.17110/StudBot.2017.48.2.263

Mihaljević M, Stević F, Horvatić J, Hackenberger Kutuzović B (2009) Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopáčki Rit Nature Park, Croatia). *Hydrobiologia* 618: 77–88, https://doi.org/10.1007/s10530-008-9550-6

Mihaljević M, Špoljarić D, Stević F, Cvijanović V, Hackenberger Kutuzović B (2010) The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. *Limnologia* 40: 260–268, https://doi.org/10.1016/j.limno.2009.09.001

Napiórkowska-Krzebietke A, Kobos J (2016) Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. *Water Research* 104: 532–546, https://doi.org/10.1016/j.watres.2016.08.016

Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment. *Archiv für Hydrobiologie-Beihfte Ergebnisse der Limnologie* 14: 1–16

Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the *Thiébaut* G (2005) Does competition for phosphate supply explain the invasion pattern of *Elodea nuttallii* (Planch.) H. St. John (Hydrocharitaceae). In: *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02

Mesterházy A (2017) (64) *Elodea nuttallii* (Planch.) H. St. John (Hydrocharitaceae). In: Mesterházy A et al., Taxonomical and chorological notes 5. *Studia Botanica Hungarica* 48: 269, https://doi.org/10.17110/StudBot.2017.48.2.263

Mihaljević M, Stević F, Horvatić J, Hackenberger Kutuzović B (2009) Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopáčki Rit Nature Park, Croatia). *Hydrobiologia* 618: 77–88, https://doi.org/10.1007/s10530-008-9550-6

Mihaljević M, Špoljarić D, Stević F, Cvijanović V, Hackenberger Kutuzović B (2010) The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. *Limnologia* 40: 260–268, https://doi.org/10.1016/j.limno.2009.09.001

Napiórkowska-Krzebietke A, Kobos J (2016) Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. *Water Research* 104: 532–546, https://doi.org/10.1016/j.watres.2016.08.016

Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment. *Archiv für Hydrobiologie-Beihfte Ergebnisse der Limnologie* 14: 1–16

Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. *Hydrobiologia* 621: 1–19, https://doi.org/10.1007/s10750-008-9645-0

Panasenko NN, Shcherbakov AV (2018) *Elodea nuttallii* (Planch.) H. St. John (Hydrocharitaceae), a new potentially invasive species for the Russian flora. *Bulletin of the Moscow Society of Naturalists. Department of Biology* 123(6): 58–59

Perrow MR, Jowitt AJ, Stansfield J, Phillips GL (1999) The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. *Hydrobiologia* 395: 199–210, https://doi.org/10.1023/A:1017005803941

Prokopuk M, Zub L (2019) Peculiarities of species of *Elodea* (Hydrocharitaceae) in the aquatic ecosystems of Ukraine (East Europe). *Phytophyla Balcanica* 25(3): 381–386

Pyšek P, Lambdon PW, Arianoutsou M, Kühn I, Pino J, Winter M (2009) Alien Vascular Plants of Europe. In: Drake JA (ed), *Handbook of Alien Species in Europe*. Springer Science and Business Media, 399 pp, https://doi.org/10.1007/978-1-4020-8280-1_4

Reynolds CS (2006) Ecology of Phytoplankton. Cambridge University Press, 535 pp, https://doi.org/10.1017/CBO9780511542145

Scheffer M, Jeppesen E (1998) Alternative stable state. In: Scheffer M (ed), *Ecology of shallow lakes. Chapman and Hall*, London, 357 pp, https://doi.org/10.1007/978-1-4612-0695-8_31

Semenchenko VP (2008) Role of Macrophytes in the Variability of Zooplankton Community Structure in the Littoral Zone of Shallow Lakes. *Contemporary Problems of Ecology* 1: 257–262, https://doi.org/10.1134/S1995425508020136

Simpson DA (1984) A short history of the introduction and spread of *Elodea Michx.* in the British Isles. *Watsonia* 15: 1–9

Simpson DA (1990) Displacement of *Elodea canadensis* Michx. by *Elodea nuttallii* (Planch.) H. St. John in the British Isles. *Watsonia* 18: 173–177

Steen B, Cardoso AC, Tsiamis K, Nieto K, Engel J, Gervasini E (2019) Modelling hot spot areas for the invasive alien plant *Elodea nuttallii* in the EU. *Management of Biological Invasions* 10: 151–170, https://doi.org/10.3391/mbi.2019.10.1.10

Stiers I, Triest L (2017) Impact of non-native invasive plant species cover on phytoplankton and zooplankton communities in temperate ponds. *Aquatic Invasions* 12: 385–395, https://doi.org/10.3391/ai.2017.12.3.11

Stiers I, Triest L (2011a) Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. *Biological Invasions* 13: 2715–2726, https://doi.org/10.1007/s10530-011-9942-9

Stiers I, Njambuya J, Triest L (2011b) Competitive abilities of invasive *Lagarosiphon major* and native *Ceratophyllum demersum* in monocultures and mixed cultures in relation to experimental sediment dredging. *Aquatic Botany* 95: 161–166, https://doi.org/10.1016/j.aquabot.2011.05.011

Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. *Journal of Plankton Research* 25: 1331–1346, https://doi.org/10.1093/plankt/fbg096

Thébault G (2005) Does competition for phosphate supply explain the invasion pattern of *Elodea* species? *Water Research* 39: 3385–3393, https://doi.org/10.1016/j.watres.2005.05.036

Thouvenot L, Thébault G (2018) Regeneration and colonization abilities of the invasive species *Elodea canadensis* and *Elodea nuttallii* under a salt gradient: implications for freshwater invasibility. *Hydrobiologia* 817: 193–203, https://doi.org/10.1007/s10750-018-3576-1

Utermohl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. *Mitteilungen - Internationale Vereinigung Für Theoretische und Angewandte Limnologie* 9: 1–38, https://doi.org/10.1080/05384680.1958.11904091

Dembowska et al. (2021), *Aquatic Invasions* 16(4): 601–616, https://doi.org/10.3391/ai.2021.16.4.02
van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274, https://doi.org/10.1016/S0304-3770(01)00205-4

van Donk E, Gulati RD, Iedema A, Meulemans JT (1993) Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26, https://doi.org/10.1007/BF00007160

van Kleunen M, Dawson W, Maurel N (2015) Characteristics of successful alien plants. Molecular Ecology 24: 1954–1968, https://doi.org/10.1111/mec.13013

Vanderstukken M, Declerck SAJ, Decaestecker E, Muylaert K (2014) Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii. Freshwater Biology 59: 930–941, https://doi.org/10.1111/fwb.12316

Verloove F (2006) Catalogue of the Neophytes in Belgium (1800-2005). Scripta Botanica Belgica 39. Meise National Botanic Garden of Belgium, 89 pp

Vukov D, Boža P, Igić R, Anačkov G (2008) The distribution and the abundance of hydrophytes along the Danube River in Serbia. Central European Journal of Biology 3: 177–187, https://doi.org/10.2478/s11535-007-0048-4

Wu ZB, Gao YN, Wang J, Liu BY, Zhou QH, Zhang YY (2009) Allelopathic effects of phenolic compounds present in submerged macrophytes on Microcystis aeruginosa Kütz. Allelopathy Journal 23: 403–410

Zehnsdorf A, Hussner A, Eissmann F, Rönice H, Melzer A (2015) Management options of invasive Elodea nuttallii and Elodea canadensis. Limnologica 51: 110–117, https://doi.org/10.1016/j.limno.2014.12.010

Supplementary material

The following supplementary material is available for this article:

Table S1. Main morphological, biological and physico-chemical characteristics of the studied floodplain lake.

Table S2. Percentage share of functional groups in total phytoplankton biomass in 2007–09 and 2013–15.

Figure S1. Location of the investigated floodplain lake in Vistula River valley.

This material is available as part of online article from:
http://www.reabic.net/aquaticinvasions/2021/Supplements/AI_2021_Dembowska_etal_SupplementaryMaterial.pdf