Epilepsy Is a Risk Factor for Sudden Cardiac Arrest in the General Population

Abdennasser Bardai1,2, Robert J. Lamberts3, Marieke T. Blom1, Anne M. Spanjaart1, Jocelyn Berdowski4, Sebastiaan R. van der Staat1, Henk J. Brouwer5, Rudolph W. Koster4, Josemir W. Sander3,7, Roland D. Thijs3,6,7, Hanno L. Tan1,4*

1 Heart Failure Research Center, University of Amsterdam, Amsterdam, The Netherlands, 2Interuniversity Cardiology Institute Netherlands, Utrecht, The Netherlands, 3 SEIN- Epilepsy Institute in The Netherlands Foundation, Heemstede, The Netherlands, 4 Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands, 5 Department of General Practice, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, 6 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands, 7 Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, Queen Square, London, United Kingdom

Abstract

Background: People with epilepsy are at increased risk for sudden death. The most prevalent cause of sudden death in the general population is sudden cardiac arrest (SCA) due to ventricular fibrillation (VF). SCA may contribute to the increased incidence of sudden death in people with epilepsy. We assessed whether the risk for SCA is increased in epilepsy by determining the risk for SCA among people with active epilepsy in a community-based study.

Methods and Results: This investigation was part of the Amsterdam Resuscitation Studies (ARREST) in the Netherlands. It was designed to assess SCA risk in the general population. All SCA cases in the study area were identified and matched to controls (by age, sex, and SCA date). A diagnosis of active epilepsy was ascertained in all cases and controls. Relative risk for SCA was estimated by calculating the adjusted odds ratios using conditional logistic regression (adjustment was made for known risk factors for SCA). We identified 1019 cases of SCA with ECG-documented VF, and matched them to 2834 controls. There were 12 people with active epilepsy among cases and 12 among controls. Epilepsy was associated with a three-fold increased risk for SCA (adjusted OR 2.9 [95%CI 1.1–8.0], p = 0.034). The risk for SCA in epilepsy was particularly increased in young and females.

Conclusion: Epilepsy in the general population seems to be associated with an increased risk for SCA.

Introduction

Epilepsy affects over 50 million individuals worldwide [1]. It is associated with a 2–3 fold risk of premature mortality compared with the general population [2]. A substantial proportion of deaths in epilepsy happen suddenly [3]. If trauma, drowning and a documented status epilepticus are excluded and autopsy does not reveal an anatomical or toxicological cause for death, such deaths are classified as sudden unexpected death in epilepsy (SUDEP) [4]. In the general population the commonest cause of sudden death by far is sudden cardiac arrest (SCA) due to ventricular fibrillation (VF) [5]. It has been postulated that SUDEP at least in some may result from seizure-related SCA [6]. Various possible causes for an association between epilepsy and SCA have been proposed (discussed in [7]). For instance, epilepsy and cardiac arrhythmias are both caused by pathological electrical activity, occurring in the brain and heart, respectively [8–10]. If either epilepsy or SCA results from ion channel dysfunction, these ion channel isoforms may be expressed both in brain and heart, as seen in SCN1A, which encodes neuronal sodium channels [11]. SCN1A mutations cause generalized seizures with febrile seizures plus [11–13]. Yet, SCN1A protein products are not only expressed in the brain, but also in the heart [14–15]. It is thus plausible that dysfunction in such ion channels may cause both epilepsy and SCA. It has not been proven, however, that epilepsy is associated with an increased risk for SCA, as studies aimed at systematically determining the risk for SCA among people with epilepsy are lacking.

The aim of this study was to establish whether epilepsy is associated with an increased risk for SCA. Our study was designed to obtain full coverage in the community, and provide strict confirmation of epilepsy and SCA. To achieve this, we
used a mandatory multiple-source notification system for SCA. This strategy ensured the capture of all SCA cases. Every medical history was then rigorously reviewed for evidence of active epilepsy, so that all people with SCA and epilepsy were identified.

Methods

Setting and study design
This investigation was conducted in a community-based study in the Netherlands: the Amsterdam Resuscitation Studies (ARREST). It was designed to assess the determinants of SCA in the general community [16–18]. Data were retrieved in the study period July 2005–January 2010. It was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants who survived the SCA. The Ethics Committee of the Academic Medical Center Amsterdam approved the study and the use of data from people who died.

Design of ARREST
ARREST is a prospective, community-based study aimed at establishing the genetic and clinical determinants of SCA in the population of a contiguous region (urban and rural communities, ~2.4 million inhabitants) of the Netherlands. Details of the study design are provided elsewhere [16–18]. Briefly, the ARREST research group prospectively collects data of all cardiopulmonary resuscitation efforts in collaboration with all Emergency Medical Services in the region, using a mandatory multiple-source notification system (consisting of personnel at emergency dispatch centers, ambulance services and all 14 area hospitals). This ensures a complete coverage of the study region and an inclusion rate of >95% of all people with out-of-hospital SCA [16]. A data collection infrastructure is used that records all out-of-hospital SCA parameters, from ambulance dispatch to discharge from the hospital or to death. Case inclusion is as follows: after each suspected out-of-hospital SCA, the emergency dispatch center notifies the study office (providing information on the place and circumstances of SCA). Ambulance personnel are mandated to upload ECG recordings to the study office straight after resuscitation, and to provide appropriate information (e.g., whether SCA was witnessed, whether basic life support was provided before arrival of ambulance personnel, whether the patient died at the resuscitation site or was transported to a hospital). If an automated external defibrillator was used, the study center is notified by the dispatch center, ambulance personnel and the user of the automated external defibrillator (a label requesting notification after each use is attached to automated external defibrillators in the study region). The automated external defibrillator ECG recordings are retrieved by ARREST personnel after notification. ECG recordings are used to determine whether VF had occurred. SCA cases are defined as people who had a cardiac arrest in an out-of-hospital setting with ECG-documented VF. Patients with an obvious non-cardiac cause of VF (e.g., trauma, intoxication, drowning, suicide) or those in whom no ECG-documented VF was available (these patients typically had asystole or pulseless electrical activity) are excluded. Medical histories are obtained from the general practitioner (GP) and from hospital. In the Netherlands, every individual has a GP who acts as gatekeeper for medical care. Thus, GPs have a full overview of diagnoses made by medical specialists. Complete medication histories of the year preceding SCA are obtained from community pharmacies. Controls were randomly drawn from the same source community as cases, using the HAG-net-AMC database of general practitioners (GPs). This database contains the complete medical records of ~60,000 people from a large group of GPs in the study area [19]. Each case was matched to up to 5 controls by age, sex, and index date (date of SCA in cases).

Definition of active epilepsy and risk factors
All GP records with the terms “epilepsy” or “epileptic seizure” in the diagnosis list were reviewed by two epileptologists (RDT, JWS). For all cases and controls, epilepsy was confirmed if the diagnosis was established by a neurologist, in accordance with national guidelines [20]. Additional information was requested from the attending neurologist if needed. Only people with a diagnosis of active epilepsy were included in the analysis. Active epilepsy was defined as current treatment with antiepileptic drugs and seizure within the previous 2 years [21]. For all cases and controls, the following established risk factors for SCA were assessed: ischemic cardiovascular disease, heart failure, hypertension, diabetes mellitus, and hypercholesterolemia. This was established from GP records based on a formal diagnosis, or by use of medication.

Statistical analysis
The relative risk for SCA associated with epilepsy was estimated by calculation of the adjusted odds ratios using conditional logistic regression analyses. Covariates that were univariately associated with SCA (at a p<0.1 level) were included in the regression analyses if they changed the point estimate of the association between active epilepsy and SCA by >5%; the only such covariates were heart failure and hypercholesterolemia. In addition, the odds ratio was calculated by including all covariates that univariately associated with SCA (at a p<0.1 level) in the multivariate analysis. Subanalyses were performed using multivariate logistic regression, adjusting for age, gender and risk factors.

Results
We identified 1019 SCA cases with known medical and/or medication use history prior to the SCA; these cases were matched to 2834 controls. The mean age was 63.5 years in cases (76.5% male), and 58.3 years in controls (68.5% male). We confirmed that the established risk factors for SCA were also associated with SCA in our study (Table 1). Twelve cases (1.4%) and 12 controls (0.4%) had a diagnosis of active epilepsy at index date. Epilepsy was associated with an almost three-fold increased risk for SCA (adjusted OR 2.9 [95% CI 1.1–8.0], p = 0.034, model 2, Table 2). Sub-analyses suggests that SCA risk is higher in people with epilepsy aged <50 years (N = 4, adjusted OR youthful 4.6, p = 0.210) compared to patients aged ≥50 years (N = 8, adjusted OR aged 2.4, p = 0.128), and in females (N = 5, adjusted OR females 4.6, p = 0.044) compared to males (N = 7, adjusted OR males 2.0, p = 0.309). Epilepsy characteristics of the cases and controls are given in Table 3.

Discussion
We provide the first systematically collected evidence from a community-based study that epilepsy in the general population is associated with an increased risk for SCA. The major strength of our study is its community-based design, which ensured that selection bias was minimal. The inclusion of people with epilepsy and of SCA was systematic. The point prevalence of active
epilepsy in our control group was 0.4%. This agrees well with previous studies on the prevalence of active epilepsy in the general population and suggests that our study design captured all people with active epilepsy [22]. The design of the study and access to GPs' medical records enabled us to collect comprehensive information on circumstances surrounding death, concomitant diseases, and potential confounders.

We found that epilepsy increases SCA risk but that this excess risk is greater in the young. Given that cardiovascular diseases, by far the most prevalent causes of SCA [5], is less common in young persons, this observation supports the notion that epilepsy is likely to play an important role in SCA risk. Women also had greater excess risk than men, although in the population cardiovascular disease is more prevalent among men.

It is very difficult to study SCA in the general population given the highly unpredictable way in which it occurs, its short duration before death ensues, and its dismal survival rate [23]. ECG-documentation of VF may be the best possible method in a community-based study to ascertain that SCA was due to cardiac causes. Thus, the observed association between VF and epilepsy in ARREST supports the hypothesis that cardiac causes may contribute to SUDEP. SUDEP most frequently occurs in people with chronic epilepsy, poor seizure control, antiepileptic drug polytherapy, young age of onset and a long history of epilepsy [24]. Case-control studies, eyewitness accounts, and ictal recordings suggest that SUDEP is a peri-ictal event likely triggered by a convulsive seizure [7].

Our findings may suggest that the risk for SCA from cardiac causes extends to people with epilepsy patients beyond those with SUDEP. Firstly, SCA risk is increased in the community, i.e., in people with less severe forms of epilepsy. Secondly, in the SUDEP definition, the role of epilepsy as a risk factor for SCA may be underestimated. For instance, an individual with epilepsy who dies suddenly and has acute signs of ischemic heart disease at autopsy is not a SUDEP case, as its definition requires that clear causes for

Table 1. Demographics and distribution of covariates.

Cases	Controls	Cases with epilepsy
N = 1019	N = 2834	N = 12

Sex			
Male	780 (76.5)	1855 (68.5)	7 (58.3)
Female	239 (23.5)	979 (31.5)	5 (41.7)

| Mean age, years (SD) | 63.5 (13.7) | 58.3 (14.5) | 60.0 (16.0) |

Covariates	Cases	Controls	Cases with epilepsy
Active epilepsy	12 (1.4)	12 (0.4)	
Ischemic CVD	443 (43.5)	141 (5.0)	5 (41.7)
CVA or TIA	49 (4.8)	71 (2.5)	1 (8.3)
Hypertension	529 (51.9)	433 (15.3)	7 (58.3)
Diabetes mellitus	219 (21.5)	294 (10.4)	1 (8.3)
Heart failure	199 (19.5)	29 (1.0)	4 (33.3)
Hypercholesterolemia	290 (28.5)	170 (6.0)	6 (30.0)

Data are expressed as number (%) unless otherwise indicated. CVD, cardiovascular disease; CVA, cerebrovascular accident; SD, Standard Deviation; TIA, transient ischemic attack.

doi:10.1371/journal.pone.0042749.t001

Table 2. Epilepsy and risk for sudden cardiac arrest.

	OR* (95% CI)	p-value	OR** (95% CI)	p-value	OR*** (95% CI)	p-value	Univariate analysis
	p-value		p-value		p-value		
Epilepsy	3.3 (1.4–7.5)	p = 0.005	2.8 (0.9–9.0)	p = 0.076	2.9 (1.1–8.0)	p = 0.34	Not applicable
Ischemic CVD	11.2 (8.8–14.3)	p < 0.001	6.7 (5.0–8.8)	p < 0.001	9 (7–11.7)	p < 0.001	
CVA or TIA	1.7 (1.1–2.5)	p = 0.53	0.8 (0.4–1.6)	p < 0.001			
Hypertension	5.8 (4.8–7.0)	p < 0.001	3.7 (2.9–4.7)	p = 0.001			
Diabetes mellitus	2.0 (1.6–2.4)	p = 0.1	0.8 (0.6–1.1)	p < 0.001	1.2 (0.9–1.5)	p = 0.2	
Heart failure	20.5 (13.1–32.1)	p < 0.001	9.9 (5.8–17)	p < 0.001	12.9 (7.9–21.1)	p < 0.001	
Hypercholesterolemia	5.6 (4.5–7.0)	p < 0.001	2.9 (2.2–3.9)	p < 0.001			

Abbreviations as in Table 1.

*Odds Ratios estimated with conditional logistic regression, matched on age, sex, and index date.

**Model 1: Odds Ratios estimated with conditional logistic regression, matched on age, sex, and index date, with all covariates that were univariately associated with SCA (at a p < 0.05 level) included in the regression analyses (ischemic cardiovascular disease, CVA or TIA, hypertension, diabetes mellitus, heart failure and hypercholesterolemia).

***Model 2: Odds Ratios estimated with conditional logistic regression, matched on age, sex, and index date, with covariates that were univariately associated with SCA (at a p < 0.05 level) included in the regression analyses if they changed the point estimate of the association between epilepsy and SCA >5%; the only such covariates were cardiac ischemia, diabetes, and heart failure.

doi:10.1371/journal.pone.0042749.t002
Beesems, Michiel Hulleman, Esther Landman, and Renate van der Venserpolder, Amsterdam, The Netherlands; F.T.M. Smits, MD, Health Center Amsterdam, The Netherlands; J.P.M. Stroucken, MD, Health Center Department of General Practice, Academic Medical Center, University of Amsterdam, The Netherlands; E.C. Kanters, MD, PhD, Academic Medical Center, Amsterdam, The Netherlands; and H.J. Brekenfeld, MD, PhD, Academic Medical Center, University of Amsterdam, The Netherlands.

Analyzed the data: AB RJL MTB AMS JB SvdS HJB RWK JWS RDT HLT. Wrote the paper: AB RDL MTB JB SvdS HJB RWK JWS RDT HLT.

Acknowledgments

The authors greatly appreciate the contribution of E.C. Kanters, MD, Department of General Practice, Academic Medical Center, University of Amsterdam, The Netherlands; J.P.M. Stroucken, MD, Health Center Venerpolder, Amsterdam, The Netherlands; F.T.M. Smits, MD, Health Center Reigersbos, Amsterdam, The Netherlands; Paulien Homma, MD, PhD, Department of General Practice, Academic Medical Center, University of Amsterdam, The Netherlands; Steffie Beesems, Michiel Hulleman, Esther Landman, and Renate van der Meer to the data collection, data entry, and patient follow-up at the Academic Medical Center, and are greatly indebted to the dispatch centers, ambulance paramedics and first responders of Amsterdam en Omstreken, Kennemerland and Noord-Holland Noord for their cooperation and support.

Author Contributions

Analyzed the data: AB RJL MTB AMS JB SvdS HJB RWK JWS RDT HLT. Wrote the paper: AB RDL MTB JB SvdS HJB RWK JWS RDT HLT.
References

1. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367: 1087–1100.
2. Lhatoo SD, Johnson AL, Goodridge DM, MacDonald BK, Sander JW, et al. (2001) Mortality in epilepsy in the first 11–14 years after diagnosis: multivariate analysis of a long-term, prospective, population-based cohort. Ann Neurol 49: 336–344.
3. Ficker DM, So EL, Shen WK, Amorens JF, O’Brien PC, et al. (1998) Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology 51: 1270–1274.
4. Nashef L, So EL, Rydlin P, Tomson T (2012) Unifying the definitions of sudden unexplained death in epilepsy. Epilepsia 53(2): 227–233.
5. Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345: 1473–1482.
6. Sugawara T, Mazaki-Miyazaki E, Ito M, Nagafuji H, Fukuma G, et al. (2001) Identification of a possible pathogenic link between congenital long QT syndrome and sudden unexpected death in epilepsy in a GEFS+ family with an SCN1A mutation. Epilepsia 42: 680–691.
7. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M, et al. (2011) Genome-wide association study identifies a susceptibility locus at 2q24.2 for sudden unexpected death in patients with epilepsy. Epilepsia 52(7): 1129–1135.
8. Rees MI (2010) The genetics of epilepsy - the past, the present and future. Heart Rhythm 7: 117–126.
9. Amin AS, Tan HL, Wilde AA (2010) Cardiac ion channels in health and disease. Neurology 75: 703–705.
10. Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, et al. (2001) Population-based study of the incidence of sudden unexplained death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurology 5: 492–504.
11. Verkerk AO, van Ginneken ACG, van Veen TAB, Tan HL (2007) Effects of heart failure on brain-type Na+ channels in rabbit ventricular myocytes. Europace 9: 521–529.
12. Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345: 1473–1482.
13. Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, et al. (2001) Neuronal sodium-channel alpha1b-subunit mutations in generalized epilepsies with febrile seizures plus. Am J Hum Genet 68: 859–861.
14. Maier SKG, Westenbroek RE, Schenkmann KA, Feigl EO, Scheuer T, et al. (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. P Nat Acad Sci USA 99: 4073–4078.
15. Verberk AO, van Ginkel ACJ, van Veen TAB, Tan HL (2007) Effects of heart failure on brain-type Na+ channels in rabbit ventricular myocytes. Europace 9: 571–577.
16. Incidence, causes and outcome of out-of-hospital cardiac arrest in children: a comprehensive, prospective, community-based study in The Netherlands. J Am Coll Cardiol 57: 1822–1828.
17. Brezza CR, Pazozi R, Bardui A, Marsman RF, de Jong JS, et al. (2010) Genome-wide association study identifies a susceptibility locus at 2q12 for ventricular fibrillation in acute myocardial infarction. Nature Genet 42: 680–691.
18. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M, et al. (2011) Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet 7(6): e1001938.
19. van Doormaal FF, Atalay S, Brouwer HJ, van der Velde EF, Buller HR, et al. (2010) Idiopathic superficial thrombophlebitis and the incidence of cancer in primary care patients. Ann Fam Med 8: 47–50.
20. Epilepsie. Richtlijnen voor diagnostiek en behandeling. Available: http://www.neurologie.nl/uploads/136/454/richtlijn_epilepsie_definitief_2.pdf. Accessed 2012 June 16.
21. Epilepsie. Richtlijnen voor diagnostiek en behandeling. Available: http://www.neurologie.nl/uploads/136/454/richtlijn_epilepsie_definitief_2.pdf. Accessed 2012 June 16.
22. Fassri RN, Beth S, Banfi A, Sillanpaa M (2005) The epidemiology of epilepsy in Europe – a systematic review. Eur J Neurol 12: 243–253.
23. Berdowski J, Berg RA, Tijsken JGP, Koster RQ (2010) Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 81: 1479–1487.
24. Heedorff DC, Tomson T, Benn E, Sander JW, Nilsson L, et al. (2011) Combined analysis of risk factors for SUDEP. Epilepsia 53(2): 249–252.
25. Stollberger C, Fusterer J (2004) Cardiorespiratory findings in sudden unexplained/deceased death in epilepsy (SUDEP). Epilepsia 45: 51–60.
26. Druschky A, Hilz MJ, Hopf P, Platsch G, Radioski-Tröger M, et al. (2001) Intercital cardiac autonomic dysfunction in temporal lobe epilepsy demonstrated by [123I]metaiodobenzylguanidine-SPECT. Brain 124: 2572–2582.
27. Tomson T, Ericson M, Berman C, Lundblad LE (1998) Heart rate variability in patients with epilepsy. Epilepsy Res 39: 77–83.
28. Ronkainen I, Anikorpi H, Huikuri HV, Mylläri VV, Isojarvi JI, et al. (2005) Suppressed circadian heart rate dynamics in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 76: 1382–1386.
29. Stein PK, Kleger RE (1999) Insights from the study of heart rate variability. Ann Rev Med 50: 249–261.
30. Makikalio TH, Huikuri HV, Makikalio A, Sourander LB, Mirranda RD, et al. (2001) Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J Am Coll Cardiol 37: 1395–1402.
31. Jouven X, Enpana JP, Schwartz PJ, Desmus M, Courbon D, et al. (2005) Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 352: 1951–1958.
32. Schouten EG, Dekker JM, Meppelink P, Kok JJ, Vandenbroucke JP, et al. (1991) QT interval prolongation predicts cardiovascular mortality in an apparently healthy community. Circulation 84:1516–1523.
33. Surges R, Taggart P, Sander JW, Walker MC (2010) Too long or too short? New insights into abnormal cardiac repolarization in people with chronic epilepsy and its potential role in sudden unexpected death. Epilepsia 51(5): 738–744.
34. Surges R, Scott CA, Walker MC (2010) Enhanced QT shortening and persistent tachycardia after generalized seizures. Neurology 74: 421–426.
35. Surges R, Adjei P, Kallis C, Ezhuevo J, Scott CA, et al. (2010) Pathologic cardiac repolarization in pharmacoresistant epilepsy and its potential role in sudden unexpected death in epilepsy: a case-control study. Epilepsia 51(2): 233–242.
36. Johnson JN, Hofman N, Haglund CM, Cascino GD, Wilde AA, et al. (2009) Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology 73(3): 224–231.
37. Neufeld G, Lazar JM, Chari G, Kamran H, Akajagbor E, et al. (2009) Cardiac repolarization indices in epilepsy patients. Cardiology 114: 255–260.
38. Broderstone R, Blackhall B, McLellan A (2010) Lengthening of corrected QT interval during epileptic seizures. Epilepsia 51: 221–232.
39. Teh HS, Loo CY, Tan HJ, Raymond AA (2007) The QT interval in epilepsy patients compared to controls. Neurology Asia (suppl 1): 68.
40. Hindocha N, Nashef L, Elmhuse F, Birch R, Zuberi S, et al. (2008) Two cases of sudden unexpected death in epilepsy in a GEFS+ family with an SCN1A mutation. Epilepsia 49: 360–365.
41. Aurliden D, Leven TP, Tauboll E, Gjerstad L (2009) New SCNSA mutation in a SUDEP victim with idiopathic epilepsy. Seizure 2: 158–160.
42. Goldman AM, Glasscock E, You J, Chen TJ, Klassen TL, et al. (2009) Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and Sudden Unexplained Death. Sci Transl Med 1: 2–6.
43. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, et al. (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118: 2230–2245.
44. (1989) Preliminary report: effect of encainide and flecainide on mortality in a placebo-controlled trial of the Cardiac Arrhythmia Suppression Trial II Investigators. N Engl J Med 327: 227–233.
45. (1989) Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arthymia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial II Investigators. N Engl J Med 327: 227–233.
46. Tomson T, Nashef L, Rydlin P (2008) Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol 11: 1021–1031.