Factors associated to potentially inappropriate prescribing in older patients according to STOPP/START criteria: MoPIM multicentre cohort study

Marisa Baré1,2*, Marina Lleal1, Sara Ortonobes3, Maria Queralt Gorgas2,3, Daniel Sevilla-Sánchez4, Nuria Carballo5, Elisabet De Jaime6, Susana Herranz7 and on behalf of the MoPIM study group

Abstract

Objectives: The objectives of the present analyses are to estimate the frequency of potentially inappropriate prescribing (PIP) at admission according to STOPP/START criteria version 2 in older patients hospitalised due to chronic disease exacerbation as well as to identify risk factors associated to the most frequent active principles as potentially inappropriate medications (PIMs).

Methods: A multicentre, prospective cohort study including older patients (≥65) hospitalized due to chronic disease exacerbation at the internal medicine or geriatric services of 5 hospitals in Spain between September 2016 and December 2018 was conducted. Demographic and clinical data was collected, and a medication review process using STOPP/START criteria version 2 was performed, considering both PIMs and potential prescribing omissions (PPOs). Primary outcome was defined as the presence of any most frequent principles as PIMs, and secondary outcomes were the frequency of any PIM and PPO. Descriptive and bivariate analyses were conducted on all outcomes and multilevel logistic regression analysis, stratified by participating centre, was performed on the primary outcome.

Results: A total of 740 patients were included (mean age 84.1, 53.2% females), 93.8% of them presenting polypharmacy, with a median of 10 chronic prescriptions. Among all, 603 (81.5%) patients presented at least one PIP, 542 (73.2%) any PIM and 263 (35.5%) any PPO. Drugs prescribed without an evidence-based clinical indication were the most frequent PIM (33.8% of patients); vitamin D supplement in older people who are housebound or experiencing falls or with osteopenia was the most frequent PPO (10.3%). The most frequent active principles as PIMs were proton pump inhibitors (PPIs) and benzodiazepines (BZDs), present in 345 (46.6%) patients. This outcome was found significantly associated with age, polypharmacy and essential tremor in an explanatory model with 71% AUC.

Conclusions: PIMs at admission are highly prevalent in these patients, especially those involving PPIs or BZDs, which affected almost half of the patients. Therefore, these drugs may be considered as the starting point for medication review and deprescription.

Trial registration number: NCT02830425
Background
Older patients with multiple morbidities and medication requirements pose a challenge to the prescribing physicians. In addition to possible drug-drug or drug-disease interactions, these patients present age-related physiological changes in drug pharmacokinetics and pharmacodynamics, as well as other factors that can influence prescription such as cognitive impairment, functional difficulties or geriatric syndromes [1, 2].

Considering this, the term potentially inappropriate prescribing (PIP) is being widely used to describe a range of situations in which prescribing should be revised, particularly in geriatric patients. PIP includes potentially inappropriate medication (PIM) which, together with polypharmacy, are well-known risk factors for adverse drug events [3, 4], and also includes potential prescribing omissions (PPO), which increase the probability of not taking essential medication [5, 6].

There are several tools to identify and evaluate PIP [7]. Among all, the explicit criteria STOPP/START (Screening Tool of Older Person’s potentially inappropriate Prescriptions / Screening Tool to Alert doctors to Right Treatment) [8], which includes PIMs and PPOs, were the first European criteria and are currently the most used and validated in European elderly people [9]. After the 1st version, containing 84 criteria, a 2nd version with 114 criteria was later developed, expanding the explicit criteria as well as incorporating three implicit criteria [10].

In recent years, many studies have been published using these criteria to assess prescription adequacy in different settings, such as primary care, socio-health centres, nursing homes and hospitals [7, 11–14]. Additionally, several studies have identified factors associated with the number or presence of PIM or PPO, such as polypharmacy, number of morbidities or age, as well as associated PIM or PPO to clinical outcomes such as hospitalization or mortality [15–17].

However, to the best of our knowledge, there are currently no studies evaluating PIP and its associated factors in a cohort of older patients admitted to hospital due to chronic condition exacerbation. This constitutes an especially vulnerable and complex group of patients that come from the community but end up hospitalized, and may present avoidable, inappropriate prescriptions at admission. Moreover, despite the high prevalence of multimorbidity in older patients, there are no studies evaluating a comprehensive list of chronic conditions as possible risk factors for PIP nor any studies focusing on the most frequent active principles as PIMs, which would be really helpful to develop more efficient strategies.

Thus, the objectives of the present analyses are to estimate the frequency of PIMs and PPOs at admission according to STOPP/START criteria (2nd version) and to identify risk factors associated to the most frequent active principles as PIMs, evaluating sociodemographic, clinical and pharmacological variables in older patients admitted to hospital because of an exacerbation of their chronic conditions. These analyses are part of a larger study, named MoPIM (Morbidity, Potentially Inappropriate Medication), with various objectives related to multimorbidity, PIP and adverse drug reactions in these patients.

Methods
Design and setting
A multicentre, prospective cohort study including older patients hospitalized at the internal medicine or geriatric services at five general teaching hospitals in three different regions of Spain between September 2016 and December 2018 was conducted. The detailed protocol was previously published [18].

For the purposes of this study, older patients (≥65 years old) admitted because of an exacerbation of their chronic pathology were included. Patients referred to home hospitalization, admitted because of an acute process, or with a fatal outcome expected at admission were not included.

No written informed consent was deemed necessary for this study, according to the independent ethics committee.

Data acquisition and variables
The following sociodemographic and clinical data was retrieved by the clinical team responsible for the patient: patient’s code, centre, date of birth, sex, functional status just before entering the hospital (Barthel Index) [19], household (alone, with relatives or other people, in a nursing home) and existence of any contact with healthcare services (primary care, emergencies, hospital admission, outpatient care, home care) in the 3 months prior to hospitalization due to exacerbation of any chronic disease. Chronic active conditions were recorded from a consensual list of 64 conditions, which included risk factors and all chronic diseases of the Charlson Comorbidity Index [20].
Regarding pharmacological variables, the number of chronic medications in the electronic prescription at the time of admission and the STOPP/START criteria detected upon admission, with the active principle involved, were collected by the pharmacist of the team. This medication review process is routinely conducted in all participating centres. Medication was only considered chronic if prescribed at least 3 months before admission, and creams, ointments, healing material and over-the-counter medicines were not considered. Active principles were considered individually when registering STOPP/START criteria, regardless of the administered drug combinations.

Sampling and analysis
The estimated sample of 800 patients (see protocol [18]) could not be reached due to organizational reasons in one of the participating centres. Patients included were proportionally distributed to the annual volume of hospitalizations at the internal medicine and/or geriatric services of each centre.

For the purposes of the analyses, age was categorized as 65-74, 75-89, or >89 years and the number of chronic conditions was categorized as 1-7, 8-13 or 14-22. These categorizations were established by using the cutpredi() R function [21], which provides the optimal cut-off points for categorization of quantitative variables based on the relationship between these variables and the outcome (presence of any of the most frequent active principles as PIMs). The Updated Charlson Comorbidity Index [22] was calculated, adjusted by age and categorized by terciles (2-6, 7-8 and 9-14). Barthel Index was categorized as independency (100 points), minimal dependency (60-95), moderate dependency (40-55), severe dependency (20-35) and complete dependency (<20) [23].

Some chronic conditions were grouped according to clinical criteria, as in Baré et al. [24] Eventually, 50 chronic conditions were analysed.

Polypharmacy was defined as the chronic consumption of five or more drugs [25]. On top of that, another categorisation was defined at 10 drugs and patients were therefore classified as presenting ‘oligopharmacy’ (<5 drugs), ‘moderate polypharmacy’ (5-9 drugs), and ‘excess polypharmacy’ (>10 drugs).

All STOPP/START criteria were assessed, except for START criteria 1 (vaccines), due to difficulties of some centres in accessing the information (not registered in the electronic prescription). Regarding the implicit criterion STOPP A1 and given its high frequency, it was divided into the following categories according to the active principle involved: proton pump inhibitors (PPIs), hypolipidemics, analgesics, aspirin, antihypertensives and others.

Descriptive analyses were performed for all variables. Bivariate analyses were conducted to assess possible associations between sociodemographic/clinical variables and PIP related outcomes (any PIM, any PPO, any most frequent active principles as PIMs) by the chi-square test.

Multilevel logistic regression analysis was performed on the primary outcome (presence of any most frequent active principles as PIMs). Hospital centre was set as a level (random effect) in order to account the possibility that in each hospital location, the prescriptive practices of all professionals in each area may be different and lead to some variability in PIP. Explanatory variables (fixed effect) were chosen if \(p < 0.05 \) in the bivariate analysis. The final model was determined by a stepwise algorithm, with a minimal Akaike Information Criteria value, and its Area Under the Curve (AUC) was calculated.

All analyses were performed with R (R Foundation for Statistical Computing, Vienna, v3.6.0).

Results

Description of sociodemographic and clinical data
A consecutive sample of 740 patients aged ≥65 years was obtained, with a mean age of 84.1 years (SD±7.0) and a 53.2% of females. Sociodemographic and clinical variables are summarised in Table 1. The median number of chronic conditions was 8 (interquartile range (IQR) 6-11), ranging from 1 to 22, and the number of chronic prescriptions ranged from 0 to 28, with a median of 10 (IQR 7-13). Most (93.8%) patients presented polypharmacy; precisely, 259 (35%) patients had moderate polypharmacy, and 435 (58.8%) displayed excessive polypharmacy.

Potentially inappropriate prescribing
At least one PIP was reported in 603 (81.5%, 95% confidence interval (CI) 78.5-84.1) patients. The number of PIPs ranged from 0 to 8, with a median of 2 (IQR 1-3).

Regarding PIMs, 542 (73.2%, 95% CI 69.9-76.3) patients presented polypharmacy; precisely, 259 (35%) patients had moderate polypharmacy, and 435 (58.8%) displayed excessive polypharmacy.

Drugs prescribed without an evidence-based clinical indication were the most frequent PIM (STOPP criterion A1, in 33.8% of patients, many of them having multiple PIMs in this criterion, and accounting for 25.7% of the total number of PIMs). Detailed information of the active principles registered within this criterion can be found in Supp. Table 1. Most frequent PIMs are represented in Figure 1A, relative to the total of patients, and all PIMs detected are shown in Supp. Table 2, relative to the total number of PIMs. Regarding the type of
Table 1 Descriptive and bivariate (chi-square test) statistics of sociodemographic and clinical data related to the presence of any PIP, PIM, PPO and most frequent active principles as PIMs (proton pump inhibitors or benzodiazepines), according to STOPP/START criteria. N, % and 95% Confidence Intervals (95% CI) are shown, as well as chi-square p-value.

Sociodemographic and clinical variables	Total	Any STOPP PIM	Any START PPO	Any most frequent active principles as PIMs (PPI/ BZD)				
	N (%)	95% CI	p-value	N (%) 95% CI	p-value	N (%) 95% CI	p-value	
Total	740 (100)	542 (73.2)	69.9‑76.3	263 (35.5) 32.2‑39.1	0.001	345 (46.6)	43.1‑50.2	-
Age								
65‑74	81 (10.9)	52 (64.2)	53.3‑73.8	13 (16.1) 96.25	0.018	26 (32.1)	22.9‑42.9	0.018
75‑89	495 (66.9)	374 (75.6)	71.6‑79.1	186 (37.6) 33.4‑41.9	0.039	243 (49.1)	44.7‑53.5	-
>89	164 (22.2)	116 (70.7)	63.4‑77.2	64 (39.0) 31.9‑46.7	0.039	76 (46.3)	38.9‑54	-
Sex								
Female	394 (53.2)	303 (77.0)	72.5‑80.8	142 (36) 31.5‑40.9	0.016	194 (49.2)	44.3‑54.2	0.128
Male	346 (46.8)	239 (69.1)	64.7‑73.7	121 (35) 30.1‑40.1	0.039	151 (43.6)	38.5‑48.9	-
Barthel Index								
< 20	90 (12.2)	64 (71.1)	61.7‑79.5	24 (26.7) 18.6‑36.6	0.001	39 (43.3)	33.6‑53.6 < 0.001	
20‑35	76 (10.3)	64 (84.2)	74.4‑90.7	31 (40.8) 30.4‑52	0.039	42 (55.3)	44.1‑65.9	-
40‑55	124 (16.8)	99 (79.5)	66.7‑81.8	43 (34.7) 26.9‑43.4	0.039	63 (50.8)	42.1‑59.4	-
60‑95	294 (39.7)	225 (76.5)	71.4‑81	123 (41.8) 36.3‑47.5	0.039	152 (51.7)	46.7‑57.4	-
100	156 (21.1)	96 (61.5)	53.7‑68.8	42 (26.9) 206.3‑44	0.039	49 (31.4)	246.9‑39.1	-
uCCI								
2‑6	280 (37.8)	202 (72.1)	66.6‑77.1	86 (30.7) 25.6‑36.3	0.007	128 (45.7)	40.5‑51.6	0.546
7‑8	279 (37.7)	211 (75.6)	70.3‑80.3	119 (42.6) 37.4‑48.5	0.039	80 (44.2)	37.2‑51.5	-
9‑14	181 (24.5)	129 (71.3)	64.3‑77.4	58 (32) 25.7‑39.2	0.039	137 (49.1)	43.3‑54.9	-
Household								
With relatives / other people	523 (70.7)	381 (72.9)	68.9‑76.5	183 (35) 31.9‑42.9	0.459	60 (49.2)	40.5‑57.9	0.532
Nursing home	95 (12.8)	73 (76.8)	67.4‑84.2	31 (32.6) 24.2‑46.2	0.039	48 (50.5)	40.6‑60.4	-
Alone	122 (16.5)	88 (72.1)	63.6‑79.3	49 (40.2) 31.9‑49	0.039	237 (45.3)	41.1‑49.6	-
Prior exacerbation								
No	225 (30.4)	163 (72.4)	66.3‑77.9	80 (35.6) 29.6‑42.2	0.995	99 (44.2)	37.7‑50.5	0.345
Yes (total)	515 (69.6)	379 (73.6)	69.6‑77.2	183 (35.5) 31.5‑39.8	246 (47.8)	43.5‑52.1	-	
Emergency care	342 (46.2)	251 (73.4)	68.5‑77.8	128 (37.4) 32.5‑42.7	0.32	170 (49.7)	44.4‑55	0.119
Moderate polypharmacy (5‑9)	259 (35.0)	177 (68.3)	62.4‑73.7	98 (37.8) 32.1‑43.9	0.039	106 (40.9)	35.1‑47	-
Excessive polypharmacy (10+)	438 (58.8)	349 (80.2)	76.2‑83.7	146 (33.6) 293.3‑81	0.25	229 (52.6)	47.9‑57.3	-
N° chronic conditions								
1‑7	303 (41.0)	200 (66.0)	60.5‑71.1	102 (33.7) 28.6‑39.2	0.657	124 (40.9)	35.5‑46.5 < 0.001	
8‑13	374 (50.5)	288 (77.0)	72.5‑81	137 (36.6) 31.9‑41.6	0.657	45 (71.4)	59.3‑81.1	-
14‑22	63 (8.5)	54 (85.8)	75.9‑92.3	24 (38.1) 27.1‑50.4	0.657	176 (47.1)	42.1‑52.1	-

PIP: potentially inappropriate prescribing. PIM: potentially inappropriate medication. PPO: potential prescribing omission. PPI: proton pump inhibitor. BZD: benzodiazepine. uCCI: updated Charlson Comorbidity Index.
active principle involved, PIMs related to PPIs (STOPP criteria A1 or F2) were present in 22.6% of the patients. Benzodiazepines (BZDs) for ≥ 4 weeks (STOPP criterion D5) was the second most frequent PIM, found in 31.8% of the patients. And the presence of any PIMs related to BZDs (STOPP criteria D5, G5, K1 or A1 involving BZDs) was found in 32.3%, with a high redundancy between these criteria.

Therefore, the most frequent active principles as PIMs were PPIs and BZDs, with 345 (46.6%) patients having at least one related PIM.

Regarding PPOs, at least one was identified in 263 (35.5%, 95% CI 32.2-39.1) patients, ranging from 0 to 4, with a median number of 0 (IQR 0-1). In total, 188 (25.4%) patients had 1 PPO, 62 (8.4%) had 2, 11 (1.5%) had 3, and 2 (0.3%) had 4 PPOs. The most frequent

![Fig. 1](image-url) % of patients presenting the following STOPP/START criteria. A: Potentially inappropriate medications (PIMs) found in most patients according to STOPP criteria (present in >2% of the patients). Subcategories of criterion A1 are shown in mild grey. B: Potential prescribing omissions (PPOs) found in most patients according to START criteria (present in >1% of the patients).
PPOs relative to the total of patients are summarized in Figure 1B, starting with vitamin D supplement in older people who are housebound or experiencing falls or with osteopenia (START criterion E5, 10.3%), followed by laxatives in patients receiving opioids regularly (H2, 6.8%), beta-blockers with stable systolic heart failure (A8, 5.3%) and ACE inhibitors with systolic heart failure and/or documented coronary artery disease (A6, 5.1%). All PPOs detected are shown in Supp. Table 3, relative to the total number of PPOs.

Factors associated to PIP
Next, we performed a bivariate analysis to uncover the potential relationship of sociodemographic and clinical variables with the prevalence of any PIM, any PPO and any most frequent active principles as PIMs (any PPI/BZD) (Tables 1 and 2).

All the significant variables obtained in the bivariate analysis of the outcome of any PPI/BZD as PIMs were included in a stepwise selection algorithm in order to build a multilevel logistic regression model. This explanatory model (Table 3) obtained a 71% AUC (95% CI 67.4-74.7) and showed contribution of age, polypharmacy, essential tremor and previous fractures excluding hip (not significant but necessary for optimal model). Remarkably, excessively polymedicated patients (>10 drugs) and those suffering from essential tremor were at least twice or trice more likely to have any PPI/BZD as PIMs, respectively (95% CI odds ratio lower limits >2 and >3).

Discussion
Our study found a high proportion of older patients with an elevated rate of multimorbidity and moderate functional impairment, a high prevalence of polypharmacy (93.8%) (much higher than reported for the general Spanish population [26]), and a very high prevalence of excessive polypharmacy (58.8%). These findings are consistent with the inclusion of older patients admitted to hospital due to chronic disease exacerbation.

Regarding PIP, up to 81.5% of the patients met at least one criterion, mainly due to a high prevalence of PIMs (73.2%) instead of PPOs (35.5%). The prevalence of PIMs differs from the estimates of a recent systematic review in which 42.8% of the patients in the community presented at least a PIM, whereas the prevalence of PPOs is very similar [27]. It is plausible that patients in our cohort present a higher prevalence of PIMs due to their polypharmacy, multimorbidity, functional impairment and uncontrolled chronic problems. Besides, another factor could be the application of the STOPP/START criteria version 2, owing to STOPP criteria A (implicit), which may increase PIM detection but could be a possible source of variability too.

An important finding of this study is that the most frequent active principles as PIMs, which were PPIs and BZDs, were present in almost half (46.6%) of the patients, suggesting that actions focused on deprescribing these medications may have a large impact on reducing PIP and, therefore, undesired negative outcomes. Remarkably, many other studies have previously found either BZDs alone [28–30] or together with PPIs [4, 12, 31–33] among the most frequent PIMs.

With respect to PPIs, which are widely prescribed in Spain [34], they were classified as PIMs in 167 patients. PPIs may be related to adverse outcomes, such as fractures [35], hypomagnesaemia [36–39], recurrent C. difficile infection [40, 41], dementia [42, 43], community-acquired pneumonia [44], or severe COVID-19 infection [45–47]. Remarkably, in 160 (95.8%) patients, PPI prescription was assigned to implicit STOPP criterion A1. This situation may explain why other studies did not find a similar prevalence of PPIs as PIMs, since the pharmacists’ judgement becomes more relevant in implicit criteria.

The rest of active principles belonging to STOPP criterion A1 (which was indeed the most frequent PIM) were highly diverse, highlighting the need of more explicit criteria to avoid subjectivity in the screening, maybe at the expense of suppressing criteria about less frequent situations, not to end up with an excessively long list.

Regarding BZDs, they are highly prescribed among older adults in Spain and their use has been increasing lately [48, 49]; however, its prescribing has been found significantly in excess of what the evidence would suggest is appropriate [50]. In fact, BZDs are associated with negative outcomes such as dependence, falls and fractures, cognitive decline or sleep disturbances [51].

Among the registered PPOs, vitamin D in older people who are experiencing falls or osteopenia was not expected to be the most frequent, but this could be partially explained by the strong levels of sun radiation in Spain. Furthermore, we encountered a high rate of patients not taking laxatives when consuming opioids, which could suppose a risk for constipation. The over-the-counter use of these drugs and/or herbal products (due to lack of prize reimbursement in Spain) may be a potential reason for this.

The bivariate analyses showed a significant association of the defined PIP outcomes with some sociodemographic and clinical variables such as age, polypharmacy and number of chronic conditions, which have been previously associated with the presence of PIM and PPO [31, 33, 52, 53]. Regarding specific chronic conditions, a large
Variable	Any STOPP PIM	Any START PPO	Any most frequent active principles as PIMs (PPI/ BZD)			
Amputation	No	530 73.2 0.873	257 35.5 0.869			
	Yes	12 75	6 37.5			
Anaemia	No	285 70.2 0.039	148 36.5 0.567			
	Yes	257 76.9	115 34.4			
Asthma	No	477 72.5 0.191	235 35.7 0.780			
	Yes	65 79.3	28 34.1			
Cardiac arrhythmia	No	218 68.8 0.017	107 33.8 0.379			
	Yes	324 76.6	156 36.9			
Cerebrovascular disease (including hemiplegia)	No	397 71.9 0.164	200 36.2 0.501			
	Yes	145 77.1	63 33.5			
Chronic obstructive pulmonary disease	No	334 71.5 0.166	168 36 0.747			
	Yes	208 76.2	95 34.8			
Chronic gastritis or gastro-oesophageal reflux	No	472 73.1 0.774	219 33.9 0.015			
	Yes	70 74.5	44 46.8			
Chronic renal insufficiency	No	303 72.1 0.439	143 34 0.331			
	Yes	239 74.7	120 37.5			
Chronic thyroid disease	No	435 71.9 0.081	210 34.7 0.318			
	Yes	107 79.3	53 39.3			
Degenerative arthropathy	No	244 68.7 0.008	105 29.6 0.001			
	Yes	298 77.4	158 41			
Dementia	No	416 74.2 0.322	196 34.9 0.544			
	Yes	126 70.4	67 37.4			
Diabetes with complication	No	442 72.8 0.576	221 36.4 0.292			
	Yes	100 75.2	42 31.6			
Diabetes without complication	No	394 73.1 0.884	186 34.5 0.337			
	Yes	148 73.6	77 38.3			
Drug-related conditions	No	491 73 0.577	241 35.8 0.628			
	Yes	51 76.1	22 32.8			
Dyslipidaemia	No	268 70.5 0.086	143 37.6 0.222			
	Yes	274 76.1	120 33.3			
Essential tremor	No	534 73.1 0.286	258 35.3 0.207			
	Yes	8 88.9	5 55.6			
Fibromyalgia	No	536 73.2 0.91	260 35.5 0.907			
	Yes	6 75	3 37.5			
Gallstones (previous hepatic colic)	No	482 72.9 0.565	226 34.2 0.026			
	Yes	60 75.9	37 46.8			
Gout	No	443 73.5 0.774	213 35.3 0.796			
	Yes	99 72.3	50 36.5			
Haematologic disorders	No	517 73.4 0.598	246 34.9 0.133			
	Yes	25 69.4	17 47.2			
Heart failure	No	208 70 0.106	101 34 0.475			
	Yes	334 75.4	162 36.6			
Hypertension	No	90 65.7 0.027	42 30.7 0.186			
	Yes	452 75	221 36.7			
Inflammatory osteoarticular disease	No	509 73.7 0.335	237 34.3 0.008			
	Yes	33 67.3	26 53.1			
Variable	Any STOPP PIM	Any START PPO	Any most frequent active principles as PIMs (PPI/ BZD)			
--	--------------	---------------	---			
	N %	p-value	N %	p-value	N %	p-value
Irritable bowel syndrome	No	531 72.8 0.043	258 35.4 0.489	338 46.4 0.254		
	Yes	11 100 5 45.5	7 63.6 1 25			
Ischaemic heart disease without infarction	No	451 72.7 0.484	223 36 0.581	278 44.8 0.027		
	Yes	91 75.8 40 33.3	67 55.8 1 25			
Migraine	No	541 73.5 0.029	262 35.6 0.659	344 46.7 0.385		
	Yes	1 25 1 25	1 25			
Mild liver disease (incl. chronic hepatitis B or C)	No	516 72.9 0.296	248 35 0.171	327 46.2 0.264		
	Yes	26 81.2 15 46.9	18 56.2			
Moderate or severe liver disease	No	534 74.1 0.002	259 35.9 0.181	342 47.4 0.006		
	Yes	8 42.1 4 21.1	3 15.8			
Myocardial infarction	No	459 73 0.693	231 36.7 0.109	287 45.6 0.197		
	Yes	83 74.8 32 28.8	58 52.3			
Neoplasia	No	469 74.6 0.054	224 35.6 0.923	295 46.9 0.718		
	Yes	73 65.8 39 35.1 50 45				
Neurologic disorder of the central nervous system	No	521 73.6 0.32	254 35.9 0.37	328 46.3 0.451		
	Yes	21 65.6 9 28.1 17 53.1				
Non-ischaemic heart disease	No	366 72.9 0.765	182 36.3 0.555	228 45.4 0.341		
	Yes	176 73.9 81 34	117 49.2			
Non-schizophrenic mental disorders	No	532 73.1 0.426	257 35.3 0.291	341 46.8 0.352		
	Yes	10 83.3 6 50	4 33.3			
Obesity	No	387 70.7 0.01	192 35.1 0.674	253 46.3 0.735		
	Yes	155 80.3 71 36.8 92 47.7				
Osteoporosis	No	458 71.9 0.04	219 34.4 0.101	289 45.4 0.089		
	Yes	84 81.6 44 42.7 56 54.4				
Pancreas disease	No	532 72.9 0.054	259 35.5 0.767	338 46.3 0.136		
	Yes	10 100 4 40	7 70			
Parkinson's disease	No	517 73.2 0.969	252 35.7 0.691	327 46.3 0.45		
	Yes	25 73.5 11 32.4	18 52.9			
Peptic ulcer disease	No	509 73.3 0.812	245 35.3 0.599	325 46.8 0.659		
	Yes	33 71.7 18 39.1 20 43.5				
Peripheral neuropathy or neuritis	No	494 72.8 0.316	243 35.8 0.639	312 45.9 0.222		
	Yes	48 78.7 20 32.8 33 54.1				
Peripheral vascular disease	No	461 72.6 0.330	232 36.5 0.164	295 46.5 0.825		
	Yes	81 77.1 31 29.5	50 47.6			
Post-traumatic stress disorder	No	540 73.3 0.797	261 35.4 0.259	344 46.7 0.644		
	Yes	2 66.7 2 66.7	1 33.3			
Previous fractures (not hip)	No	430 71.5 0.03	207 34.4 0.194	268 44.6 0.021		
	Yes	112 80.6 56 40.3 77 55.4				
Previous hip fracture	No	488 72.5 0.154	231 34.3 0.028	312 46.4 0.651		
	Yes	54 80.6 32 47.8	33 49.3			
Rheumatologic disease	No	522 73.7 0.16	255 36 0.203	332 46.9 0.487		
	Yes	20 62.5 8 25	13 40.6			
Schizophrenia	No	540 73.3 0.797	262 35.5 0.936	343 46.5 0.486		
	Yes	2 66.7 1 33.3 2 66.7				
Sleep apnoea	No	486 72.1 0.026	244 36.2 0.230	305 45.3 0.017		
	Yes	56 84.8 19 28.8 40 60.6				
Tuberculosis	No	536 73.3 0.654	260 35.6 0.889	340 46.5 0.589		
number showed an association, such as anaemia, degenerative arthropathy, sleep apnoea, inflammatory osteoarticular disease and previous hip fracture, among many others.

Finally, when modelling the presence of any PPI/BZD as PIMs, we found out the important role of age and polypharmacy, as expected, but also of two chronic conditions: essential tremor and previous fractures (excluding hip). Although these are not highly prevalent conditions, they have a role in the outcome. In fact, there is increasing evidence of a relationship between PPIs and fractures [35], which, together with the association of BZDs to falls and fractures [51], urges to review both PPIs and BZDs prescribing in these patients. Furthermore, the use of BZDs to treat essential tremor has shown a limited effectiveness [54].

Remarkably, the use of a multilevel logistic regression analysis provides more reliable results compared to conventional regression analyses. The latter consider that records of individual patients are independent of records of other patients. However, this assumption may not hold true in multicentre studies; for instance, different geographical areas may have variability in prescribing tendencies and patient profiles. Therefore, multilevel analyses, which allow to analyse data with a hierarchical structure, are appropriate to take these potential effects into account.

Previous, similar studies have been conducted aiming to find associations between chronic conditions and PIP outcomes. However, most have considered only a few comorbidities or risk factors, such as hypertension, dyslipidaemia, osteoporosis, diabetes or COPD [55, 56] and not a large, comprehensive list. Our findings highlight the need of a wider consideration of chronic conditions to incorporate to regression models, in order to detect subtler yet important associations. Regression models including chronic conditions can be useful to stratify patients according to their associated risk of presenting PIPs and, consequently, to identify which patients require a medication review priority.

Clinical implications

Our results show how older patients admitted to hospital because of chronic conditions exacerbation present a higher prevalence of PIM compared to other cohorts from the community. Even though this study was carried out in a hospital setting, the medication review was performed the day of admission and, consequently, these were previous prescriptions originated from any facility in the whole healthcare system.

Patients with a larger number of chronic conditions have a higher probability of presenting any PIM or any of the most frequent active principles as PIMs (PPI/BZD). With these results, medication review could be more focused on these specific situations and drugs, given that

Table 2 (continued)

Variable	Any STOPP PIM		Any START PPO		Any most frequent active principles as PIMs (PPI/BZD)					
	N	%	p-value	N	%	p-value	N	%	p-value	
Urinary tract stones	No	530	73	0.287	259	35.7	0.582	340	46.8	0.409
	Yes	12	85.7	4	28.6	5	35.7	5	35.7	
Varicose veins	No	421	73.1	0.86	199	34.5	0.291	261	45.3	0.181
	Yes	121	73.8	64	39	84	51.2			
Vertigo	No	483	72.9	0.479	237	35.7	0.731	302	45.6	0.087
	Yes	59	76.6	26	33.8	43	55.8			

*P<0.05 was considered statistically significant and highlighted in bold. PIP: potentially inappropriate prescribing. PIM: potentially inappropriate medication. PPO: potential prescribing omission. PPI: proton pump inhibitor. BZD: benzodiazepine.

Table 3 Multilevel logistic regression model on the outcome of the presence of any most frequent active principles as PIMs (PPI or BZD)

Variable	Any most frequent active principles as PIMs (PPI/BZD) OR (95% CI)
Age 65-74	Reference
Age 75-89	1.75 (1.01, 3.09)
Age 90+	1.96 (1.05, 3.73)
Oligopharmacy (0-4)	Reference
Moderate polypharmacy (5-9)	3.03 (1.42, 7.01)
Excessive polypharmacy (10+)	5.12 (2.43, 11.77)
Essential tremor	19.21 (3.11, 374.95)
Previous fractures (not hip)	1.43 (0.94, 2.16)

PIM: potentially inappropriate medication. OR: odds ratio. CI: confidence interval. PPI: proton pump inhibitor. BZD: benzodiazepine.
it may not always be possible to conduct a medication review in all patients.

Interestingly, Barthel Index was also associated to PIP outcomes, but not in an increasing or decreasing tendency. In all three analysed outcomes (any PIM, any PPO, any PPI/BZD), independent patients or totally dependent ones (100 or <20 Barthel Index) presented the lowest prevalence of inappropriate prescription, whereas the group with highest prevalence of inappropriate prescription was that of severely dependent patients (20-35 Barthel Index). It is therefore possible that the patients at the “extremes” have less PIP because there are more actions directed to medication review in these cases.

These results highlight the need of a thorough medication review in which the hospital pharmacists are integrated within the multidisciplinary geriatric team. With this approach, clinical practice quality could be improved.

Strengths and limitations
The strengths of this study are its multicentre, prospective design in a hospital setting covering different regions of Spain, a team of trained pharmacists integrated in multidisciplinary teams with geriatricians or internal medicine practitioners [57] already familiar with the STOPP/START screening tool, as well as the assurance of high quality and thoroughness in all the gathered clinical and pharmacological data. The study sample size has enough power to estimate the prevalence of PIP, PIM and PPO and is proportional to the volume of admissions of each hospital. Furthermore, the use of a large, comprehensive list of chronic conditions as possible factors associated with PIP as well as an outcome variable that focuses on the presence of the most common misprescriptions are the most powerful strengths of this work.

However, this study also presents some limitations. The application of STOPP/START criteria by different centres and professionals may have induced some biases, especially in those implicit criteria. For this reason, each participating hospital was set as a first level in the multilevel logistic regression model. Moreover, the lack of data on vaccines may affect the prevalence of PPOs. Nonetheless, vaccination is entirely different than the rest of PPOs and therefore the outcome variable excluding vaccines is still clinically and pharmacologically coherent.

Conclusions
The findings of the study confirm that there is a high prevalence of PIP at admission in older, hospitalized patients due to chronic disease exacerbation mainly by the inappropriate prescription of PPIs or BZDs. These drugs have been associated to a set of different chronic conditions as well as age and polypharmacy, giving a starting point for medication review and deprescription. Thus, our study identified a patient profile with higher risk of PIP towards which these actions should be focused. Finally, our results highlight the essentiality of multidisciplinary teams in the clinical management of these patients.

Abbreviations
PIP: Potentially inappropriate prescribing; PIM: Potentially inappropriate medication; PPO: Potentially prescribing omission; BZD: Benzodiazepine; PPI: Proton pump inhibitor; AUC: Area under the curve; IQR: interquartile range; CI: confidence interval.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12877-021-02715-8.

Acknowledgements
The authors acknowledge the dedication and support of the entire MoPIM research group, listed by institution: Parc Taulí University Hospital: Marisa Báre (Institutional Committee for the Improvement of Clinical Practice Adequacy), REDISSEC, Susana Herranz (Acute care Geriatric Unit; REDISSEC), Rosa Jordana (Department of Internal Medicine), Maria Queralt Gorgas (Pharmacy Department, REDISSEC), Sara Ortonobes (Pharmacy Department). Marina Lleal (Institutional Committee for the Improvement of Clinical Practice Adequacy), Celia Corral-Vazquez (Fundación Parc Taulí, REDISSEC), Hospital del Mar Medical Research Institute-IMIM: Elisabet de Jaime (Geriatrics Department), Olivia Fernandez (Pharmacy Department), Maria Sala (Department of Epidemiology and Evaluation, REDISSEC), Miguel Angel Marquez, Marta Arellano, Carlos Clemente and Olga Sabartés (Department of Geriatrics), Núria Carballo and Marta de Antonio (Pharmacy Department), Hospital de Galdakao: Rafael Estrada (Department of Internal Medicine), Maria Olatz Ibarra (Pharmacy Department), Complejo Hospitalario Universitario de Canarias: Candelaria Martin (Department of Internal Medicine), Gloria Julia Nazco (Pharmacy Department), Rubén Hernández (Department of Internal Medicine).

Authors’ contributions
MB conceived and supervised the study, discussed the results, and revised several manuscript versions. ML performed the analysis of the results, participated in the discussion of the results and drafted the manuscript. SO, DF, and NC, participated in medication review, discussion of results and revision of several manuscript versions. MQG helped in the study protocol conception, discussed the results and approved the final version. EdJ and SH participated in patient inclusion, medication review, discussion of the results and revision of the final manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by grants from Instituto de Salud Carlos III-FEDER [PI15/00552] and by the Network for Research into Healthcare in Chronic Diseases, REDISSEC (RD16/0001/0002). These funding bodies had no role in the design of the study, nor in the collection, analysis and interpretation of data nor in writing the manuscript.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Declarations

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki and approved by the clinical research ethics committees of each centre; Comité de Investigación Clínica del Parc Taulí [ID: 20166570] and Comité de Ética de Investigación del Hospital Universitario de Canarias [ID: MBM-MOC-2016-01 (2016-56)]. No written informed consent was deemed necessary for this study.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1Institutional Committee for the Improvement of Clinical Practice Adequacy, Consorci Corporació Sanitària Parc Taulí, Parc Taulí 1, 08208 Sabadell, Catalonia, Spain. 2Health Services Research on Chronic Patients Network (REDISSEC), Sabadell, Spain. 3Pharmacy Department, Consorci Corporació Sanitària Parc Taulí, Sabadell, Spain. 4Pharmacy Department, Consorci Hospitalari de Vic, Vic, Spain. 5Pharmacy Department, Consorci Parc de Salut MAR, Barcelona, Spain. 6Geriatrics Department, Consorci Parc de Salut MAR, Barcelona, Spain. 7Acute Geriatric Unit, Consorci Corporació Sanitària Parc Taulí, Sabadell, Spain.

Received: 7 October 2021 Accepted: 10 December 2021

Published online: 11 January 2022

References

1. Mangoni AA, Jarmuzewska EA. Incorporating pharmacokinetic data into personalised prescribing for older people: challenges and opportunities. Eur Geriatr Med. 2021;12:435–42. https://doi.org/10.1007/s41999-020-00437-5.
2. Hillmer SN, Gnjidic D. Prescribing for frail older people. Aust Prescr. 2017;40:174–8. https://doi.org/10.18773/austprescr.2017.055.
3. Fernández-Reguero R, Fonseca-Azpuru E, López-Colina G, Álvarez-Uriá A, Rodríguez-Avila E, Morís-De-La-Tassa J. Prescripción inadecuada y efectos adversos a medicamentos en pacientes de edad avanzada. Rev Clin Esp. 2011;121:400–6.
4. Hamilton H, Gallagher P, Ryan C, Byrne S, O’Mahony D. Potentially inappropriate medications defined by STOPP criteria and the risk of adverse drug events in older hospitalized patients. Arch Intern Med. 2011;171:1013–9. https://doi.org/10.1001/archinternmed.2011.215.
5. Barry PJ, Gallagher P, Ryan C, O’Mahony D. START (screening tool to alert doctors to the right treatment) an evidence-based screening tool to detect prescribing omissions in elderly patients. Age Ageing. 2007;36:632–8. https://doi.org/10.1093/ageing/afm118.
6. Cadogan CA, Ryan C, Hughes CM. Appropriate Polypharmacy and Medicine Safety: When Many is not Too Many. Drug Saf. 2016;39:109–16. https://doi.org/10.1007/s40264-015-0578-5.
7. Motter FR, Fritzén JS, Hillmer SN, Paniz EV. Potentially inappropriate medication in the elderly: a systematic review of validated explicit criteria. Eur J Clin Pharmacol. 2018;74:679–700. https://doi.org/10.1007/s00228-018-2446-0.
8. Gallagher P, O’Mahony D. STOPP (Screening Tool of Older Persons’ potentially inappropriate Prescriptions): Application to acutely ill elderly patients and comparison with Beers’ criteria. Age Ageing. 2008;37:673–9.
9. Gallagher P, Baezens JP, Topinkova E, Madlova P, Cherubini A, Gasperini B, et al. Inter-rater reliability of STOPP (Screening Tool of Older Persons’ Prescriptions) and START (Screening Tool to Alert doctors to Right Treatment) criteria amongst physicians in six European countries. Age Ageing. 2009;38:603–6. https://doi.org/10.1093/ageing/afp58.
10. O’Mahony D, O’Sullivan D, Byrne S, O’Connor MN, Ryan C, Gallagher P. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015;44:213–8. https://doi.org/10.1093/ageing/afu415.
11. García-Goñiarte F, Bareriola-Júlvez J, Ferreiro-López I, Cruz-Jenoff AJ. Inappropriate drug prescription at nursing home admission. J Am Med Dir Assoc. 2012;13(83):e9–15. https://doi.org/10.1016/j.jamda.2011.02.009.
12. Sevilla-Sánchez D, Mollist-Brunet N, Ambiás-Novellas J, Espuella-Panicot J, Codina-Jané C. Potentially inappropriate medication at hospital admission in patients with palliative care needs. Int J Clin Pharm. 2017;39:1018–30.
13. Moriarity F, Bennett K, Cahir C, Kenny RA, Fahey T. Potentially inappropriate prescribing according to STOPP and START and adverse outcomes in community-dwelling older people: a prospective cohort study. Br J Clin Pharm. 2016;82:849–57. https://doi.org/10.1111/bcp.12995.
14. Prudence G, Maud C, Mélanie M, Bosson JL, Jean-Emmanuel B, Chanoine S, et al. Optimizing medication use in elderly people in primary care: Impact of STOPP criteria on inappropriate prescriptions. Arch Gerontol Geriatr. 2018;75:16–9.
15. Wauters M, Elseviers M, Vaes B, Degryse J, Dalleur Q, Stichele R, Vanden et al. Too many, too few, or too unsafe? Impact of inappropriate prescribing on mortality, and hospitalization in a cohort of community-dwelling oldest old. Br J Clin Pharmacol. 2016;82:1382. doi:https://doi.org/10.1111/bcp.13055.
16. Sevilla-Sánchez D, Mollist-Brunet N, Ambiás-Novellas J, Roure-Poch P, Espaulla-Panicot J, Codina-Jané C. Adverse drug events in patients with advanced chronic conditions who have a prognosis of limited life expectancy at hospital admission. Eur J Clin Pharm. 2017;73:79–89. https://doi.org/10.1007/s00228-016-2136-8.
17. OD Riordan, Aubert CE, Walsh KA, Van Dorland A, Rodonodi N, Du Puy RS, et al. Prevalence of potentially inappropriate prescribing in a subpopulation of older European clinical trial participants: A cross-sectional study. BMJ Open. 2018;8:19003. doi:https://doi.org/10.1136/bmjopen-2017-019003.
18. Baré M, Herranz S, Jordana R, Gorgas MQ, Ortonobes S, Sevilla D, et al. Multimorbidity patterns in chronic older patients, potentially inappropriate prescribing and adverse drug reactions: protocol of the multicentre prospective cohort study MoPIM. BMJ Open. 2020;10:e033322. https:// doi.org/10.1136/bmjopen-2019-033322.
19. Mahoney F, Barthel D. Functional evaluation: the Barthel Index. Md State Med J. 1965;14:61–5.
20. Charlson ME, Peter P, Ales KL, Mackenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40:373–83.
21. Baro I, Arostegui J, Rodríguez-Alvarez MX, Quintana JM. A new approach to categorising continuous variables in prediction models. Proposal and validation. Stat Methods Med Res. 2017;26:2586–602. https://doi.org/10.1177/0962280215601873.
22. Quan H, Li B, Bouris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173:676–82. https://doi.org/10.1093/aje/kwq433.
23. Baztan J, Perez del Molino J, Alaron T, San Cristóbal E, Izquierdo G, Manzarbeitia J. Índice de Barthel: instrumento válido para la valoración funcional de pacientes con enfermedad cerebrovascular. Rev Esp Geriatr Gerontol. 1993;28:32–40.
24. Baré M, Herranz S, Roso-Lloạch A, Jordana R, Víkon C, Lleal M, et al. Multimorbidity patterns of chronic conditions and geriatric syndromes in older patients from the MoPIM multicentre cohort study. BMJ Open. 2021;11:49334. https://doi.org/10.1136/bmjopen-2021-049334.
25. Masnoon N, Shabbik S, Kalsich-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMJ Geriatr. 2017;17:230.
26. Hernández-Rodríguez MA, Sempere-Verdú E, Vicens-Calderón C, González-Rubio F, Miguel-García F, Palop-Larea V, et al. Evolution of polypharmacy in a spanish population (2005-2015): A database study. Pharmacoepidemiol Drug Saf. 2020;29:433–43. https://doi.org/10.1002/pds.4956.
27. Thomas RE, Thomas BC. A Systematic Review of Studies of the STOPP/START 2015 and American Geriatric Society Beers 2015 Criteria in Patients ≥65 Years. Curr Aging Sci. 2019;12:121–54. https://doi.org/10.2174/1874960912666190516039742.
28. Monteiro C, Canário C, Ribeiro MÁ, Duarte AP, Alves G. Medication Evaluation in Portuguese Elderly Patients According to Beers, STOPP/START
Criteria and EU(7)-PIM List – An Exploratory Study. Patient Prefer Adherence. 2020;14:795–802. https://doi.org/10.2147/PPA.S247013.

29. Pardo-Cabello AJ, Manzano-Gamo Y, Zamora-Paradas M, Gutiérrez-Cabello F, Esteve-Fernández D, De Dios J, et al. Potentially inappropriate prescribing according to STOPP-2 criteria among patients discharged from Internal Medicine: prevalence, involved drugs and economic cost. Arch Gerontol Geriatr. 2017;74:150–4. https://doi.org/10.1016/j.archger.2017.10.009.

30. Fernández Regueiro R, Estrada Menéndez C, Morís de la Tassa J. Impact of an intervention program to improve potentially inappropriate prescription in hospitalized elderly patients. Rev Clin Esp. 2019;219:375–85. https://doi.org/10.1016/j.rce.2018.12.012.

31. Bo M, Gibello M, Brunetti E, Boietti E, Sappa M, Falcone Y, et al. Prevalence and predictors of inappropriate prescribing according to the Screening Tool of Older People's Prescriptions and Screening Tool to Alert to Right Treatment version 2 criteria in older patients discharged from geriatric and internal medicine ward. Geriatr Gerontol Int. 2019;19:135–11. https://doi.org/10.1111/ggi.13542.

32. Ryan C, O'Mahony D, Kennedy J, Weedle P, Cottrell E, Heffernan M, et al. Potentially inappropriate prescribing in older residents in Irish nursing homes. Age Ageing. 2013;42:116–120.

33. Mucalo I, Hadžiabdić MO, Brajković A, Lukić S, Marić P, Marinović I, et al. Potentially inappropriate medicines in elderly hospitalised patients according to the EU(7)-PIM list, STOPP version 2 criteria and comprehensive protocol. Eur J Clin Pharmacol. 2017;73:991–9. https://doi.org/10.1007/s00228-017-2246-y.

34. AEMPS - Agencia Española de Medicamentos y Productos Sanitarios. Utilización de medicamentos anticticos y hipotensores en España durante el periodo 2000-2012 (Use of anti-ulcer drugs in Spain during the period 2000-2012). 2014. mox-extension://b299cbf6-a896-4f76-b341-9de6df534601/ enhanced-reader.html?openApp=pdfhttps://https://www.aemps.gob.es%2Fmedicamentos%2Fambuciones%2Fantiulcerosos.pdf.

35. Thong BKS, Ima-Nirwana S, Chin KY. Proton pump inhibitors and fracture risk: a review of current evidence and mechanisms involved. Int J Environ Res Public Health. 2019;16:1571.

36. Kieboom BCT, Kiefe-De Jong JC, Eigelsheim M, Franco OH, Kuipers EJ, Hofman A, et al. Proton Pump Inhibitors and Hypomagnesemia in the General Population: A Population-Based Cohort Study. Am J Kidney Dis. 2015;66:775–82. https://doi.org/10.1053/j.ajkd.2015.05.012.

37. Jaynes M, Kumar AB. The risks of long-term use of proton pump inhibitors: a critical review. Ther Adv Drug Saf. 2018;9:10.17177/20398618090927.

38. Lazarus B, Chen Y, Wilson FP, Sang Y, Chang AR, Coresh J, et al. Proton Pump Inhibitor Use and Risk of Chronic Kidney Disease. JAMA Intern Med. 2016;176:238–46.

39. Al-Aly Z, Maddikuri G, Xie Y. Proton Pump Inhibitors and the Kidney: Implications of Current Evidence for Clinical Practice and When and How to Deprescribe. Am J Kidney Dis. 2020;75:497–507. https://doi.org/10.1053/j.ajkd.2019.07.012.

40. D'Silva KM, Mehta R, Mitchell M, Lee TC, Singhal V, Wilson MG, et al. Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27:697–703.

41. Inghammar M, Svanström H, Voldstedlund M, Melbye M, Hvidt A, Melbæk K, et al. Proton-Pump Inhibitor Use and the Risk of Community-Associated Clostridium difficile Infection. Clin Infect Dis. 2021;72:e1084–9. https://doi.org/10.1093/cid/ciaa.1857.

42. Zhang Y, Liang M, Sun C, Song EJ, Cheng C, Shi T, et al. Proton pump inhibitors use and dementia risk: a meta-analysis of cohort studies. Eur J Clin Pharmacol. 2020;76:139–47. https://doi.org/10.1007/s00228-019-02753-7.

43. Torres-Bondía F, Dakerzada F, Galván L, Buti M, Besanson G, Gill E, et al. Proton pump inhibitors and the risk of Alzheimer’s disease and non-Alzheimer’s dementias. Sci Rep. 2020;10:1–9. https://doi.org/10.1038/s41598-020-78199-0.

44. Nguyen PA, Islam M, Galvin CJ, Chang C-C, An SY, Yang H-C, et al. Meta-analysis of proton pump inhibitors induced risk of community-acquired pneumonia. Int J Qual Heal Care. 2020;32:292–9. https://doi.org/10.1093/ijqhc/mzaa041.

45. Diane Zheng D, Loewenstein DA, Christ SL, Feaster DJ, Lam BL, McCollister KE, et al. Multimorbidity patterns and their relationship to mortality in the US older adult population. PLoS One. 2021;16:e0245053.

46. Li GF, An XX, Yu Y, Jiao LR, Caranotto D, Yu G, et al. Do proton pump inhibitors influence SARS-COV-2 related outcomes? A meta-analysis. Gut. 2020;70:1806–8.

47. Kow CS, Hasan SS. Use of proton pump inhibitors and risk of adverse clinical outcomes from COVID-19: a meta-analysis. J Intern Med. 2021;289:125–8.

48. Torres-Bondía F, De Batlle J, Galván L, Buti M, Barbé F, Pinol-Rippoll G. Trends in the consumption rates of benzodiazepines and benzodiazepine-related drugs in the health region of Lleida from 2002 to 2015. BMC Public Health. 2020;20:1–9. https://doi.org/10.1186/s12889-020-08984-z.

49. AEMPS - Agencia Española de Medicamentos y Productos Sanitarios. Utilización de medicamentos ansiolíticos e hipnóticos en España durante el periodo 2010-2019 [Use of anxiolytic and hypnotic drugs in Spain during the period 2010-2019]. https://www.aemps.gob.es/medicamentos-de-uso-humano/observatorio-de-uso-de-medicamentos/informes-anisolicos-hipnoticos-espana-2010-2018/.

50. Gerlach LB, Wiechers IR, Maust DT. Prescription Benzodiazepine Use among Older Adults: A Critical Review. Harv Rev Psychiatry. 2018;26:264–73.

51. Markota M, Rummans TA, Bostwick JM, Lapid MI. Benzodiazepine Use in Older Adults: Dangers, Management, and Alternative Therapies. Mayo Clin Proc. 2016;91:1632–9. https://doi.org/10.1016/j.mayocp.2016.07.024.

52. Counter D, Millar JWT, McLay J. Hospital readmissions, mortality and potentially inappropriate prescribing: a retrospective study of older adults discharged from hospital. Br J Clin Pharmacol. 2018;84:1757–63. https://doi.org/10.1111/bcp.13607.

53. Hudhira K, Beqi E, Petrela E, Xhafa D, García-Caballos M, Bueno-Cavanillas A. Prevalence and factors associated with potentially inappropriate prescriptions among older patients at hospital discharge. J Eval Clin Pract. 2016;22:707–13. https://doi.org/10.1111/jep.12521.

54. Hedera P, Cibulčík F, Davis T, J. Pharmacotherapy of Essential Tremor. J Cent Nerv Syst. 2013;3:43–55.

55. Mori ALPM, Carvalho RC, Aguiar PM, de Lima MGF, Rossi M da SPN, Carollo JFS, et al. Potentially inappropriate prescribing and associated factors in elderly patients at hospital discharge in Brazil: a cross-sectional study. Int J Clin Pharm. 2017;39:386–393. doi: https://doi.org/10.1007/s11096-017-0433-7.

56. Kara Ö, Anik G, Kızıllarlanoglu MC, Kılıç MK, Varan HD, Sümer F, et al. Potentially inappropriate prescribing according to the STOPP/START criteria for older adults: Aging Clin Exp Res. 2016;28:761–8. https://doi.org/10.4052/015-0475-4.

57. Baruth JM, Gentry MT, Rumans TA, Miller DM, Burton MC. Polypharmacy in older adults: the role of the multidisciplinary team. Hosp Pract. 1995;2020(48):56–62. https://doi.org/10.1080/2148331.2019.1706995.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.