HIGHER RANK GRAPH C^*-ALGEBRAS

ALEX KUMJIAN AND DAVID PASK

Abstract. Building on recent work of Robertson and Steger, we associate a C^*–algebra to a combinatorial object which may be thought of as a higher rank graph. This C^*–algebra is shown to be isomorphic to that of the associated path groupoid. Sufficient conditions on the higher rank graph are found for the associated C^*–algebra to be simple, purely infinite and AF. Results concerning the structure of crossed products by certain natural actions of discrete groups are obtained; a technique for constructing rank 2 graphs from “commuting” rank 1 graphs is given.

Contents

1. Higher rank graph C^*-algebras 2
2. The path groupoid 5
3. The gauge invariant uniqueness theorem 7
4. Aperiodicity and its consequences 9
5. Skew products and group actions 10
6. 2-graphs 13
7. References 14

In this paper we shall introduce the notion of a higher rank graph and associate a C^*–algebra to it in such a way as to generalise the construction of the C^*–algebra of a directed graph as studied in CK, KPRR, KPR (amongst others). Graph C^*–algebras include up to strong Morita equivalence Cuntz–Krieger algebras and AF algebras. The motivation for the form of our generalisation comes from the recent work of Robertson and Steger RS1, RS2, RS3. In RS1 the authors study crossed product C^*–algebras arising from certain group actions on A_2-buildings and show that they are generated by two families of partial isometries which satisfy certain relations amongst which are Cuntz–Krieger type relations RS1, Equations (2), (5) as well as more intriguing commutation relations RS1, Equation (7). In RS2 they give a more general framework for studying such algebras involving certain families of commuting $0 - 1$ matrices. In particular the associated C^*–algebras are simple, purely infinite and generated by a family of Cuntz–Krieger algebras associated to these matrices. It is this framework which we seek to cast in graphical terms to include a wider class of examples (including graph C^*–algebras).

What follows is a brief outline of the paper. In the first section we introduce the notion of a higher rank graph as a purely combinatorial object: a small category Λ gifted with a degree map $d : \Lambda \rightarrow \mathbb{N}^k$ (called shape in RS2) playing the role of the length function. No detailed knowledge of category theory is required to read this paper. The associated C^*–algebra $C^*(\Lambda)$ is defined as the universal C^*–algebra generated by a family of partial isometries $\{s_\lambda : \lambda \in \Lambda\}$ satisfying relations similar to those of KPR (our standing assumption is that our higher rank graphs satisfy conditions analogous to a directed graph being row–finite and having no sinks). We then describe some basic examples and indicate the relationship between our formalism and that of RS2.

In the second section we introduce the path groupoid \mathcal{G}_Λ associated to a higher rank graph Λ (cf. RS3, KPRR). Once the infinite path space Λ^∞ is formed (and a few elementary facts are obtained) the construction...
is fairly routine. It follows from the gauge-invariant uniqueness theorem (Theorem 3.4) that $C^*(\Lambda) \cong C^*(\mathcal{G}_\Lambda)$.

By the universal property $C^*(\Lambda)$ carries a canonical action of T^k defined by

$$\alpha_t(s_\lambda) = t^d(\lambda)s_\lambda$$

called the gauge action. In the third section we prove the gauge-invariant uniqueness theorem, which is the key result for analysing $C^*(\Lambda)$ (cf. BPRS, aHR, see also CK, RS2, where similar techniques are used to prove simplicity). It gives conditions under which a homomorphism with domain $C^*(\Lambda)$ is faithful: roughly speaking, if the homomorphism is equivariant for the gauge action and nonzero on the generators then it is faithful.

This theorem has a number of interesting consequences, amongst which are the isomorphism mentioned above and the fact that the higher rank Cuntz–Krieger algebras of RS2 are isomorphic to C^*–algebras associated to suitably chosen higher rank graphs.

In the fourth section we characterise, in terms of an aperiodicity condition on Λ, the circumstances under which the groupoid \mathcal{G}_Λ is essentially free. This aperiodicity condition allows us to prove a second uniqueness theorem analogous to the original theorem of CK. In §8 and §9 we obtain conditions under which $C^*(\Lambda)$ is simple and purely infinite respectively which are similar to those in [KPR] but with the aperiodicity condition replacing condition (L).

In the next section we show that, given a functor $c: \Lambda \to G$ where G is a discrete group, then as in [KP] one may construct a skew product $G \times_c \Lambda$ which is also a higher rank graph. If G is abelian then there is a natural action $\alpha_c^\natural: \hat{G} \to \text{Aut} C^*(\Lambda)$ such that

$$\alpha_c^\natural(s_\lambda) = \langle \chi, c(\lambda) \rangle s_\lambda;$$

moreover $C^*(\Lambda) \rtimes_{\alpha_c^\natural} \hat{G} \cong C^*(G \times_c \Lambda)$. Comparing (1) and (2) we see that the gauge action α is of the form α^\natural and as a consequence we may show that the crossed product of $C^*(\Lambda)$ by the gauge action is isomorphic to $C^*(\mathbb{Z}^k \times_d \Lambda)$; this C^*–algebra is then shown to be AF. By Takai duality $C^*(\Lambda)$ is strongly Morita equivalent to a crossed product of this AF algebra by the dual action of \mathbb{Z}^k. Hence $C^*(\Lambda)$ belongs to the bootstrap class \mathcal{N} of C^*–algebras for which the UCT applies (see [RS2]) and is consequently nuclear. If a discrete group G acts freely on a k–graph Λ, then the quotient object Λ/G inherits the structure of a k–graph; moreover (as a generalisation of [BS, Theorem 2.2.2]) there is a functor $c: \Lambda/G \to G$ such that $\Lambda \cong G \times_c (\Lambda/G)$ in an equivariant way. This fact allows us to prove that

$$C^*(\Lambda) \rtimes G \cong C^*(\Lambda/G) \otimes K \left(\mathcal{F}(G) \right)$$

where the action of G on $C^*(\Lambda)$ is induced from that on Λ. Finally in §6 a technique for constructing a 2-graph from “commuting” 1-graphs A, B with the same vertex set is given. The construction depends on the choice of a certain bijection between pairs of composable edges: $\theta: (a, b) \mapsto (b', a')$ where $a, a' \in A^1$ and $b, b' \in B^1$; the resulting 2-graph is denoted $A *_{\theta} B$. It is not hard to show that every 2-graph is of this form.

Throughout this paper we let $\mathbb{N} = \{0, 1, \ldots\}$ denote the monoid of natural numbers under addition. For $k \geq 1$ regard \mathbb{N}^k as an abelian monoid under addition with identity 0 (it will sometimes be useful to regard \mathbb{N}^k as a small category with one object) and canonical generators e_i for $i = 1, \ldots, k$; we shall also regard \mathbb{N}^k as the positive cone of \mathbb{Z}^k under the usual coordinatewise partial order: thus $m \leq n$ if and only if $m_i \leq n_i$ for all i where $m = (m_1, \ldots, m_k)$, and $n = (n_1, \ldots, n_k)$ (this makes \mathbb{N}^k a lattice).

We wish to thank Guyan Robertson and Tim Steger for providing us with an early version of their paper RS2; the first author would also like to thank them for a number of stimulating conversations and the staff of the Mathematics Department at Newcastle University for their hospitality during a recent visit.

1. Higher rank graph C^*–algebras

In this section we first introduce what we shall call a higher rank graph as a purely combinatorial object (we do not know whether this concept has been studied before). Our definition of a higher rank graph is modelled on the path category of a directed graph (see §II.7 and Example 1.3). Thus a higher rank graph will be defined to be a small category gifted with a degree map (called shape in RS2) satisfying a certain factorization property. We then introduce the associated C^*–algebra whose definition is modelled on that of the C^*–algebra of a graph as well as the definition of RS2.

Definitions 1.1. A k–graph (rank k graph or higher rank graph) (Λ, d) consists of a countable small category Λ (with range and source maps r and s respectively) together with a functor $d: \Lambda \to \mathbb{N}^k$ satisfying the factorisation property: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there are unique elements
μ, ν ∈ Λ such that λ = μν and d(μ) = m, d(ν) = n. For n ∈ Nk we write \(\Lambda^n := d^{-1}(n) \). A morphism between k-graphs \((Λ_1, d_1)\) and \((Λ_2, d_2)\) is a functor \(f : Λ_1 \to Λ_2 \) compatible with the degree maps.

Remarks 1.2. The factorisation property of \([1,3]\) allows us to identify \(\text{Obj}(Λ) \), the objects of Λ with \(Λ^0 \). Suppose \(λα = μα \) in Λ then by the the factorisation property \(λ = μ \); left cancellation follows similarly. We shall write the objects of Λ as \(u, v, w, \ldots \) and the morphisms as greek letters \(λ, μ, ν, \ldots \). We shall frequently refer to Λ as a k-graph without mentioning d explicitly.

It might be interesting to replace \(N^k \) in Definition \([1,1]\) above by a monoid or perhaps the positive cone of an ordered abelian group.

Recall that \(λ, μ \in Λ \) are composable if and only if \(r(μ) = s(λ) \), and then \(λμ \in Λ \); on the other hand two finite paths \(λ, μ \) in a directed graph may be composed to give the path \(λμ \) provided that \(r(λ) = s(μ) \); so in \([1,3]\) below we will need to switch the range and source maps.

Example 1.3. Given a 1-graph Λ, define \(E^0 = Λ^0 \) and \(E^1 = Λ^1 \). If we define \(s_E(λ) = r(λ) \) and \(r_E(λ) = s(λ) \) then the quadruple \((E^0, E^1, r_E, s_E)\) is a directed graph in the sense of \([KPR, KF]\). On the other hand, given a directed graph \(E = (E^0, E^1, r_E, s_E) \), then \(E^* = \bigcup_{n \geq 0} E^n \), the collection of finite paths, may be viewed as small category with range and source maps given by \(s(λ) = r_E(λ) \) and \(s(λ) = s_E(λ) \). If we let \(d : E^* \to N \) be the length function (i.e. \(d(λ) = n \) if \(λ \in E^n \)) then \((E^*, d)\) is a 1-graph.

We shall associate a \(C^*\)-algebra to a k-graph in such a way that for \(k = 1 \) the associated \(C^*\)-algebra is the same as that of the directed graph. We shall consider other examples later.

Definitions 1.4. The k-graph \(Λ \) is **row finite** if for each \(m \in N^k \) and \(v ∈ Λ^0 \) the set \(Λ^m(v) := \{ λ ∈ Λ^m : r(λ) = v \} \) is finite. Similarly Λ has **no sources** if \(Λ^m(v) \neq ∅ \) for all \(v ∈ Λ^0 \) and \(m ∈ N^k \).

Clearly if \(E \) is a directed graph then \(E \) is row finite (resp. has no sinks) if and only if \(E^* \) is row finite (resp. has no sources). Throughout this paper we will assume (unless otherwise stated) that any k-graph \(Λ \) is row finite and has no sources, that is

\[
0 < \#Λ^n(v) < ∞ \text{ for every } v ∈ Λ^0 \text{ and } n ∈ N^k.
\]

The Cuntz–Krieger relations \([CK, p.253]\) and the relations given in \([KPR, §1]\) may be interpreted as providing a representation of a certain directed graph by partial isometries and orthogonal projections. This view motivates the definition of \(C^*(Λ) \).

Definitions 1.5. Let \(Λ \) be a row finite k-graph with no sources. Then \(C^*(Λ) \) is defined to be the universal \(C^*\)-algebra generated by a family \(\{s_λ : λ ∈ Λ\} \) of partial isometries satisfying:

(i) \(\{s_v : v ∈ Λ^0\} \) is a family of mutually orthogonal projections,
(ii) \(s_{λμ} = s_λ s_μ \) for all \(λ, μ ∈ Λ \) such that \(s(λ) = r(μ) \),
(iii) \(s_λ^* s_λ = s_{s(λ)} \) for all \(λ ∈ Λ \),
(iv) for all \(v ∈ Λ^0 \) and \(n ∈ N^k \) we have \(s_v = \sum_{λ ∈ Λ^n(v)} s_λ s_λ^* \).

For \(λ ∈ Λ \), define \(p_λ = s_λ s_λ^* \) (note that \(p_v = s_v \) for all \(v ∈ Λ^0 \)). A family of partial isometries satisfying (i)–(iv) above is called a \(*\)-**representation** of \(Λ \).

Remarks 1.6.
(i) If \(\{t_λ : λ ∈ Λ\} \) is a \(*\)-representation of Λ then the map \(s_λ ↦ t_λ \) defines a \(*\)-homomorphism from \(C^*(Λ) \) to \(C^*(\{t_λ : λ ∈ Λ\}) \).
(ii) If \(E^* \) is the 1-graph associated to the directed graph \(E \) (see \([1,3]\), then by restricting a \(*\)-representation to \(E^0 \) and \(E^1 \) one obtains a Cuntz–Krieger family for \(E \) in the sense of \([KPR, §1]\)). Conversely every Cuntz–Krieger family for \(E \) extends uniquely to a \(*\)-representation of \(E^* \).
(iii) In fact we only need the relation (iv) above to be satisfied for \(n = e_i \in N^k \) for \(i = 1, \ldots, k \), the relations for all \(n \) will then follow (cf. \([RS2, Lemma 3.2]\)). Note that the definition of \(C^*(Λ) \) given in \([1,7]\) may be extended to the case where there are sources by only requiring that relation (iv) hold for \(n = e_i \) and then only if \(Λ^{e_i}(v) \neq ∅ \) (cf. \([KPR, Equation (2)]\)).
(iv) For \(λ, μ ∈ Λ \) if \(s(λ) \neq s(μ) \) then \(s_λ s_μ^* = 0 \). The converse follows from \([2,11]\).
(v) Increasing finite sums of \(p_u \)'s form an approximate identity for \(C^*(\Lambda) \) (if \(\Lambda^0 \) is finite then \(\sum_{u \in \Lambda^0} p_u \) is the unit for \(C^*(\Lambda) \)). It follows from relations (i) and (iv) above that for any \(n \in \mathbb{N}^k \), \(\{ p_x : d(\lambda) = n \} \) forms a collection of orthogonal projections (cf. [RS2 3.3]); likewise increasing finite sums of these form an approximate identity for \(C^*(\Lambda) \) (see [23]).

(vi) The above definition is not stated most efficiently. Any family of operators \(\{ s_\lambda : \lambda \in \Lambda \} \) satisfying the above conditions must consist of partial isometries. The first two axioms could also be replaced by:

\[
s_{\lambda \mu} = \begin{cases} s_{\lambda \mu} & \text{if } s(\lambda) = r(\mu) \\ 0 & \text{otherwise.} \end{cases}
\]

Examples 1.7.

(i) If \(E \) is a directed graph, then by (i) and (ii) we have \(C^*(E^* \cong C^*(E) \) (see [1,3]).

(ii) For \(k \geq 1 \) let \(\Omega = \Omega_k \) be the small category with objects \(\text{Obj}(\Omega) = \mathbb{N}^k \), and morphisms \(\Omega = \{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \leq n \} \); the range and source maps are given by \(r(m, n) = m \), \(s(m, n) = n \). Let \(d : \Omega \to \mathbb{N}^k \) be defined by \(d(m, n) = n - m \). It is then straightforward to show that \(\Omega_k \) is a \(k \)-graph and \(C^*(\Omega_k) \cong \mathcal{K}(\ell^2(\mathbb{N}^k)) \).

(iii) Let \(T = T_k \) be the semigroup \(\mathbb{N}^k \) viewed as a small category, then if \(d : T \to \mathbb{N}^k \) is the identity map \((T, d) \) is a \(k \)-graph. It is not hard to show that \(C^*(T) \cong C(T^k) \), where \(s_{\lambda \nu} \) for \(1 \leq i \leq k \) are the canonical unitary generators.

(iv) Let \(\{ M_1, \ldots, M_k \} \) be square \(\{0,1\} \) matrices satisfying conditions (H0)–(H3) of [RS2] and let \(A \) be the associated \(C^* \)-algebra. For \(m \in \mathbb{N}^k \) let \(W_m \) be the collection of undecorated words in the finite alphabet \(\mathcal{A} \) of shape \(m \) as defined in [RS2] then let

\[
W = \bigcup_{m \in \mathbb{N}^k} W_m.
\]

Together with range and source maps \(r(\lambda) = o(\lambda), s(\lambda) = t(\lambda) \) and product defined in [RS2, Definition 0.1] \(W \) is a small category. If we define \(d : W \to \mathbb{N}^k \) by \(d(\lambda) = \sigma(\lambda) \), then one checks that \(d \) satisfies the factorisation property, and then from the second part of (H2) we see that \((W, d)\) is an irreducible \(k \)-graph in the sense that for all \(u, v \in W \) there is \(\lambda \in W \) such that \(s(\lambda) = u \) and \(r(\lambda) = v \).

We claim that the map \(s_\lambda \mapsto s_{\lambda, s(\lambda)} \) for \(\lambda \in W \) extends to a \(*\)-homomorphism \(C^*(W) \to \mathcal{A} \) for which \(s_{\lambda \mu} \mapsto s_{\lambda, \mu} \) (since these generate \(\mathcal{A} \) this will show that the map is onto). It suffices to verify that \(\{ s_{\lambda, s(\lambda)} : \lambda \in W \} \) constitutes a \(*\)-representation of \(W \). Conditions (i) and (iii) are easy to check, (iv) follows from [RS2 0.1c,3.2] with \(u = v \in W^0 \). We check condition (ii): if \(s(\lambda) = r(\mu) \) apply [RS2 3.2]

\[
s_{\lambda, s(\lambda)} s_{\mu, s(\mu)} = \sum_{W^d(\rho)(s(\lambda))} s_{\lambda \rho, \mu} s_{\rho, s(\mu)} = s_{\lambda \mu, s(\lambda \mu)}
\]

where the sum simplifies using [RS2 3.1, 3.3]. We shall show below that \(C^*(W) \cong \mathcal{A} \).

We may combine higher rank graphs using the following fact, whose proof is straightforward.

Proposition 1.8. Let \(\Lambda_1, d_1 \) and \(\Lambda_2, d_2 \) be rank \(k_1 \) and \(k_2 \) graphs respectively, then \((\Lambda_1 \times \Lambda_2, d_1 \times d_2) \) is a rank \(k_1 + k_2 \) graph where \(\Lambda_1 \times \Lambda_2 \) is the product category and \(d_1 \times d_2 : \Lambda_1 \times \Lambda_2 \to \mathbb{N}^{k_1 + k_2} \) is given by \(d_1 \times d_2(\lambda_1, \lambda_2) = (d_1(\lambda_1), d_2(\lambda_2)) \in \mathbb{N}^{k_1} \times \mathbb{N}^{k_2} \) for \(\lambda_1 \in \Lambda_1 \) and \(\lambda_2 \in \Lambda_2 \).

An example of this construction is discussed in [RS2 Remark 3.11]. It is clear that \(\Omega_{k+\ell} \cong \Omega_k \times \Omega_\ell \) for \(k, \ell > 0 \).

Definition 1.9. Let \(f : \mathbb{N}^\ell \to \mathbb{N}^k \) be a monoid morphism, then if \((\Lambda, d) \) is a \(k \)-graph we may form the \(\ell \)-graph \(f^*(\Lambda) \) as follows: (the objects of \(f^*(\Lambda) \) may be identified with those of \(\Lambda \) and) \(f^*(\Lambda) = \{ (\lambda, n) : d(\lambda) = f(n) \} \) with \(d(\lambda, n) = n \), \(s(\lambda, n) = s(\lambda) \) and \(r(\lambda, n) = r(\lambda) \).

Examples 1.10.

(i) Let \(\Lambda \) be a \(k \)-graph and put \(\ell = 1 \), then if we define the morphism \(f_i(n) = ne_i \) for \(1 \leq i \leq k \), we obtain the coordinate graphs \(\Lambda_i := f_i^*(\Lambda) \) of \(\Lambda \) (these are \(1 \)-graphs).

(ii) Suppose \(E \) is a directed graph and define \(f : \mathbb{N}^2 \to \mathbb{N} \) by \((m_1, m_2) \mapsto m_1 + m_2 \); then the two coordinate graphs of \(f^*(E^*) \) are isomorphic to \(E^* \). We will show below that \(C^*(f^*(E^*)) \cong C^*(E^*) \cong C(T) \).

(iii) Suppose \(E \) and \(F \) are directed graphs and define \(f : \mathbb{N} \to \mathbb{N}^2 \) by \(f(m) = (m, m) \) then \(f^*(E^* \times F^*) = (E \times F)^* \) where \(E \times F \) denotes the cartesian product graph (see [KP, Def. 2.1]).
Proposition 2.11. Let \(\Lambda \) be a \(k \)-graph and \(f : \mathbb{N}^k \to \mathbb{N}^k \) a monoid morphism, then there is a *-homomorphism \(\pi_f : C^* (f^* (\Lambda)) \to C^* (\Lambda) \) such that \(s_{(\lambda, n)} \mapsto s_{\lambda} \); moreover if \(f \) is surjective, then \(\pi_f \) is too.

Proof. By \[\text{(i)}\] it suffices to show that this is a *-representation of \(f^* (\Lambda) \). Properties (i)–(iii) are straightforward to verify and property (iv) follows by observing that for fixed \(n \in \mathbb{N}^k \) and \(v \in \Lambda^0 \) the map \(f^* (\Lambda)^n (v) \to \Lambda^{f(n)} (v) \) given by \((\lambda, n) \mapsto \lambda \) is a bijection. If \(f \) is surjective, then it is clear that every generator \(s_{\lambda} \) of \(C^* (\Lambda) \) is in the range of \(\pi_f \).

Later in \[3.5\] we will also show that \(\pi_f \) is injective if \(f \) is injective.

2. The path groupoid

In this section we construct the path groupoid \(\mathcal{G}_\Lambda \) associated to a higher rank graph \((\Lambda, d) \) along the lines of \[\text{KPRR}, \S2\]. Because some of the details are not quite the same as those in \[\text{KPRR}, \S2\] we feel it is useful to sketch the construction. First we introduce the following analog of an infinite path in a higher rank graph:

Definitions 2.1. Let \(\Lambda \) be a \(k \)-graph, then

\[\Lambda^\infty = \{ x : \Omega_k \to \Lambda : x \text{ is a } k \text{-graph morphism} \}, \]

is the infinite path space of \(\Lambda \). For \(v \in \Lambda^0 \) let \(\Lambda^\infty (v) = \{ x \in \Lambda^\infty : x(0) = v \} \). For each \(p \in \mathbb{N}^k \) define \(\sigma^p : \Lambda^\infty \to \Lambda^\infty \) by \(\sigma^p (x(m, n)) = x(m + p, n + p) \) for \(x \in \Lambda^\infty \) and \((m, n) \in \Omega \). (Note that \(\sigma^{p+q} = \sigma^p \circ \sigma^q \).)

By our standing assumption \[\[\text{(i)}\] one can show that for every \(v \in \Lambda^0 \) we have \(\Lambda^\infty (v) \neq \emptyset \). Our definition of \(\Lambda^\infty \) is related to the definition of \(W_\infty \), the space of infinite words, given in the proof of \[\text{RS2}, \text{Lemma 3.8}\]. If \(E^* \) is the 1-graph associated to the directed graph \(E \) then \((E^*)^\infty \) may be identified with \(E^\infty \).

Remarks 2.2. By the factorisation property the values of \(x(0, m) \) for \(m \in \mathbb{N}^k \) completely determine \(x \in \Lambda^\infty \).

To see this, suppose that \(x(0, m) \) is given for all \(m \in \mathbb{N}^k \) then for \((m, n) \in \Omega \), \(x(m, n) \) is the unique element \(\lambda \in \Lambda \) such that \(x(0, n) = x(0, m) \).

More generally, let \(\{ n_j : j \geq 0 \} \) be an increasing cofinal sequence in \(\mathbb{N}^k \) with \(n_0 = 0 \), then \(\lambda \in \Lambda^\infty \) is completely determined by the values of \(x(0, n_j) \) (for example one could take \(n_j = jp \) where \(p = (1, \ldots, 1) \in \mathbb{N}^k \)). Moreover, given a sequence \(\{ \lambda_j : j \geq 1 \} \in \Lambda \) such that \(s(\lambda_j) = r(\lambda_{j+1}) \) and \(d(\lambda_j) = n_j - n_{j-1} \) there is a unique \(x \in \Lambda^\infty \) such that \(x(n_j, n_j) = \lambda_j \). For \((m, n) \in \Omega \) we define \(x(m, n) \) by the factorisation property as follows: let \(j \) be the smallest index such that \(n \leq n_j \), then \(x(m, n) \) is the unique element of degree \(n - m \) such that \(\lambda_1 \cdots \lambda_j = \mu x(m, n) \nu \) where \(d(\mu) = m \) and \(d(\nu) = n_j - n \). It is straightforward to show that \(x \) has the desired properties.

We now establish a factorisation property for \(\Lambda^\infty \) which is an easy consequence of the above remarks:

Proposition 2.3. Let \(\Lambda \) be a \(k \)-graph. For all \(\lambda \in \Lambda \) and \(x \in \Lambda^\infty \) with \(x(0) = s(\lambda) \), there is a unique \(y \in \Lambda^\infty \) such that \(x = \sigma^{d(\lambda)} y \) and \(\lambda = y(0, d(\lambda)) \); we write \(y = \lambda x \). Note that for every \(x \in \Lambda^\infty \) and \(p \in \mathbb{N}^k \) we have \(x = x(0, p) \sigma^p x \).

Proof. Fix \(\lambda \in \Lambda \) and \(x \in \Lambda^\infty \) with \(x(0) = s(\lambda) \). The sequence \(\{ n_j : j \geq 0 \} \) defined by \(n_0 = 0 \) and \(n_j = (j-1)p + d(\lambda) \) for \(j \geq 1 \) is cofinal. Set \(\lambda_1 = \lambda \) and \(\lambda_j = x((j-2)p, (j-1)p) \) for \(j \geq 2 \) and let \(y \in \Lambda^\infty \) be defined by the method given in \[\[2.2\] \]. Then \(y \) has the desired properties.

Next we construct a basis of compact open sets for the topology on \(\Lambda^\infty \) indexed by \(\Lambda \):

Definitions 2.4. Let \(\Lambda \) be a \(k \)-graph. For \(\lambda \in \Lambda \) define

\[Z(\lambda) = \{ \lambda x \in \Lambda^\infty : s(\lambda) = x(0) \} = \{ x : x(0, d(\lambda)) = \lambda \}. \]

Remarks 2.5. Note that \(Z(v) = \Lambda^\infty (v) \) for all \(v \in \Lambda^0 \). For fixed \(n \in \mathbb{N}^k \) the sets \(\{ Z(\lambda) : d(\lambda) = n \} \) form a partition of \(\Lambda^\infty \) (see \[\[6.6\] \]) since \(d(\lambda) = n \).

For every \(\lambda \in \Lambda \) we have

\[Z(\lambda) = \bigcup_{r(\mu) = s(\lambda), \ d(\mu) = n} Z(\lambda \mu). \]

We endow \(\Lambda^\infty \) with the topology generated by the collection \(\{ Z(\lambda) : \lambda \in \Lambda \} \). Note that the map given by \(\lambda x \mapsto x \) induces a homeomorphism between \(Z(\lambda) \) and \(Z(s(\lambda)) \) for all \(\lambda \in \Lambda \). Hence, for every \(p \in \mathbb{N}^k \) the map \(\sigma^p : \Lambda^\infty \to \Lambda^\infty \) is a local homeomorphism.
Lemma 2.6. For each $\lambda \in \Lambda$, $Z(\lambda)$ is compact.

Proof. By \square it suffices to show that $Z(v)$ is compact for all $v \in \Lambda^0$. Fix $v \in \Lambda^0$ and let $\{x_n\}_{n \geq 1}$ be a sequence in $Z(v)$. For every m, $x_n(0, m)$ may take only finitely many values (by \square). Hence there is a $\lambda \in \Lambda^m$ such that $x_n(0, m) = \lambda$ for infinitely many n. We may therefore inductively construct a sequence $\{\lambda_j : j \geq 1\}$ in Λ^p such that $s(\lambda_j) = r(\lambda_{j+1})$ and $x_n(0, j\lambda) = \lambda_1 \cdots \lambda_j$ for infinitely many n (recall $p = (1, \ldots, 1) \in \mathbb{N}^k$). Choose a subsequence $\{x_n\}$ such that $x_n(0, j\lambda) = \lambda_1 \cdots \lambda_j$. Since $\{j\lambda\}$ is cofinal, there is a unique $y \in \Lambda^\infty(v)$ such that $y((j-1)p, j\lambda) = \lambda_j$ for $j \geq 1$; then $x_{n_j} \to y$ and hence $Z(v)$ is compact. \qed

Note that Λ^∞ is compact if and only if Λ^0 is finite.

Definition 2.7. If Λ is k-graph then let

$$G_\Lambda = \{(x, n, y) \in \Lambda^\infty \times \mathbb{Z}^k \times \Lambda^\infty : \sigma^i x = \sigma^m y, n = \ell - m\}. $$

Define range and source maps $r, s : G_\Lambda \to \Lambda^\infty$ by $r(x, n, y) = x$, $s(x, n, y) = y$. For $(x, n, y), (y, \ell, z) \in G_\Lambda$ set $(x, n, y)(y, \ell, z) = (x, n + \ell, z)$, and $(x, n, y)^{-1} = (y, -n, x)$; G_Λ is called the path groupoid of Λ (cf. \square).

One may check that G_Λ is a groupoid with $\Lambda^\infty = G^0_\Lambda$ under the identification $x \mapsto (x, 0, x)$. For $\lambda, \mu \in \Lambda$ such that $s(\lambda) = s(\mu)$ define

$$Z(\lambda, \mu) = \{(\lambda z, d(\lambda) - d(\mu), \mu z) : z \in \Lambda^\infty(s(\lambda))\}. $$

We collect certain standard facts about G_Λ in the following result:

Proposition 2.8. Let Λ be a k-graph. The sets $\{Z(\lambda, \mu) : \lambda, \mu \in \Lambda, s(\lambda) = s(\mu)\}$ form a basis for a locally compact Hausdorff topology on G_Λ. With this topology G_Λ is a second countable, r-discrete locally compact groupoid in which each $Z(\lambda, \mu)$ is a compact open bisection. The topology on Λ^∞ agrees with the relative topology under the identification of Λ^∞ with the subset G^0_Λ of G_Λ.

Proof. One may check that the sets $Z(\lambda, \mu)$ form a basis for a topology on G_Λ. To see that multiplication is continuous, suppose that $(x, n, y)(y, \ell, z) = (x, n + \ell, z) \in Z(\gamma, \delta)$. Since $(x, n, y), (y, \ell, z)$ are composable in G_Λ there are $\kappa, \nu \in \Lambda$ and $t \in \Lambda^\infty$ such that $x = \gamma t\kappa$, $y = \nu t\delta$ and $z = \delta t\kappa$. Hence $(x, k, y) \in Z(\gamma \kappa, \nu)$ and $(y, \ell, z) \in Z(\nu, \delta \kappa)$ and the product maps $G^0_\Lambda \cap (Z(\gamma \kappa, \nu) \times Z(\nu, \delta \kappa))$ into $Z(\gamma, \delta)$. The remaining parts of the proof are similar to those given in [KPRR, Proposition 2.6]. \qed

Note that $Z(\lambda, \mu) \cong Z(s(\lambda))$, via the map $(\lambda z, d(\lambda) - d(\mu), \mu z) \mapsto z$. Again we note that in the case $k = 1$ we have $\Lambda = E^*$ for some directed graph E and the groupoid $G_{E^*} \cong GE$, the graph groupoid of E which is described in detail in [KPRR, §2].

Proposition 2.9. Let Λ be a k-graph and let $f : \mathbb{N}^l \to \mathbb{N}^k$ be a morphism. The map $x \mapsto f^*(x)$ given by $f^*(x)(m, n) = (x(f(m), f(n)), n - m)$ defines a continuous surjective map $f^* : \Lambda^\infty \to f^*(\Lambda)^\infty$. Moreover, if the image of f is cofinal (equivalently $f(p)$ is strictly positive in the sense that all of its coordinates are nonzero) then f^* is a homeomorphism.

Proof. Given $x \in f^*(\Lambda)^\infty$ choose a sequence $\{m_i\}$ such that $n_j = \sum_{i=1}^j m_i$ is cofinal in \mathbb{N}^l. Set $n_0 = 0$ and let $\lambda_j \in \Lambda^f(n_j)$ be defined by the condition that $x(n_{j-1}, n_j) = (\lambda_j, n_j)$. We must show that there is an $x' \in \Lambda^\infty$ such that $x'(f(n_{j-1}), f(n_j)) = \lambda_j$. It suffices to show that the the intersection $\cap_j Z(\lambda_1 \cdots \lambda_j) \neq \emptyset$. But this follows by the finite intersection property. One checks that $x = f^*(x')$. Furthermore the inverse image of $Z(\lambda, n)$ is $Z(\lambda)$ and hence f^* is continuous.

Now suppose that the image of f is cofinal, then the procedure defined above gives a continuous inverse for f^*. Given $x \in f^*(\Lambda)^\infty$, then since $f(n_j)$ is cofinal, the intersection $\cap_j Z(\lambda_1 \cdots \lambda_j)$ contains a single point x'. Note that x' depends on x continuously. \qed

For higher rank graphs of the form $f^*(\Lambda)$ with f surjective (see \square), the associated groupoid $G_{f^*(\Lambda)}$ decomposes as a direct product as follows:

Proposition 2.10. Let Λ be a k-graph and let $f : \mathbb{N}^l \to \mathbb{N}^k$ be a surjective morphism. Then

$$G_{f^*(\Lambda)} \cong G_\Lambda \times \mathbb{Z}^{l-k}. $$
Proof. Since \(f \) is surjective, the map \(f^* : \Lambda^\infty \to f^*(\Lambda)^\infty \) is a homeomorphism (see 2.4). The map \(f \) extends to a surjective morphism \(f : \mathbb{Z}^k \to \mathbb{Z}^k \). Let \(j : \mathbb{Z}^k \to \mathbb{Z}' \) be a section for \(f \) and let \(i : \mathbb{Z}'^\ell - k \to \mathbb{Z}' \) be an identification of \(\mathbb{Z}'^\ell - k \) with \(\ker f \). Then we get a groupoid isomorphism by the map

\[
((x, n, y), m) \mapsto (f^* x, i(m) + j(n), f^* y),
\]

where \(((x, n, y), m) \in \mathcal{G}_\Lambda \times \mathbb{Z}'^\ell - k\).

Finally, as in \[RS2\] Lemma 3.8 we demonstrate that there is a nontrivial \(* \)-representation of \((\Lambda, d) \).

Proposition 2.11. Let \(\Lambda \) be a \(k \)-graph then there exists a representation \(\{ S_\lambda : \lambda \in \Lambda \} \) of \(\Lambda \) on a Hilbert space with all partial isometries \(S_\lambda \) nonzero.

Proof. Let \(\mathcal{H} = \ell^2(\Lambda^\infty) \), then for \(\lambda \in \Lambda \) define \(S_\lambda \in \mathcal{B}(\mathcal{H}) \) by

\[
S_\lambda e_y = \begin{cases} e_{\lambda y} & \text{if } s(\lambda) = y(0), \\ 0 & \text{otherwise}, \end{cases}
\]

where \(\{ e_y : y \in \Lambda^\infty \} \) is the canonical basis for \(\mathcal{H} \). Notice that \(S_\lambda \) is nonzero since \(\Lambda^\infty(s(\lambda)) \neq \emptyset \); one then checks that the family \(\{ S_\lambda : \lambda \in \Lambda \} \) satisfies conditions 2.3(i)–(iv).

3. The gauge invariant uniqueness theorem

By the universal property of \(C^*(\Lambda) \) there is a canonical action of the \(k \)-torus \(T^k \), called the **gauge action**: \(\alpha : T^k \to \text{Aut} C^*(\Lambda) \) defined for \(t = (t_1, \ldots, t_k) \in T^k \) and \(s_\lambda \in C^*(\Lambda) \) by

\[
\alpha_t(s_\lambda) = t^{d(\lambda)} s_\lambda
\]

where \(t^m = t_1^{m_1} \cdots t_k^{m_k} \) for \(m = (m_1, \ldots, m_k) \in \mathbb{N}^k \). It is straightforward to show that \(\alpha \) is strongly continuous. As in \[CK\] Lemma 2.2 and \[RS2\] Lemma 3.6 we shall need the following:

Lemma 3.1. Let \(\Lambda \) be a \(k \)-graph. Then for \(\lambda, \mu, \alpha, \beta \in \Lambda \) and \(q \in \mathbb{N}^k \) with \(d(\lambda), d(\mu) \leq q \) we have

\[
S_*^\alpha S_*^\beta = \sum_{\lambda \alpha = \mu \beta, d(\lambda \alpha) = q} s_\alpha s_*^\beta.
\]

Hence every nonzero word in \(s_\alpha, S_*^\mu \) may be written as a finite sum of partial isometries of the form \(s_\alpha S_*^\beta \) where \(s(\alpha) = s(\beta) \); their linear span then forms a dense \(*\)-subalgebra of \(C^*(\Lambda) \).

Proof. Applying [2.3](iv) to \(s(\lambda) \) with \(n = q - d(\lambda) \), to \(s(\mu) \) with \(n = q - d(\mu) \) and using \[2.3\] (ii) we get

\[
S_*^\alpha S_*^\beta = P_{s(\lambda)} S_*^\alpha S_*^\beta P_{s(\mu)} = \left(\sum_{\lambda \alpha = \beta \gamma} s_\alpha S_*^\alpha \left(\sum_{\lambda \alpha = \beta \gamma} s_\gamma S_*^\gamma \right) \right) S_*^\beta = \left(\sum_{\lambda \alpha = \beta \gamma} s_\gamma S_*^\gamma \right) \left(\sum_{\lambda \alpha = \beta \gamma} s_\gamma S_*^\gamma \right).
\]

By [2.3](iv) if \(d(\lambda \alpha) = d(\mu \beta) \) but \(\lambda \alpha \neq \mu \beta \), then the range projections \(p_{\lambda \alpha}, p_{\mu \beta} \) are orthogonal and hence one has \(S_{\lambda \alpha} S_{\mu \beta} = 0 \). If \(\lambda \alpha = \mu \beta \) then \(S_{\lambda \alpha} S_{\mu \beta} = p_v \) where \(v = s(\alpha) \) and so \(s_\alpha S_{\lambda \alpha} s_{\mu \beta} S_*^\beta = s_\alpha p_v S_*^\beta = s_\alpha S_*^\beta \); formula (7) then follows from formula (6). The rest of the proof is now routine.

Following \[RS2\] §4: for \(m \in \mathbb{N}^k \) let \(\mathcal{F}_m \) denote the \(C^* \)-subalgebra of \(C^*(\Lambda) \) generated by the elements \(s_{\lambda \mu} S_*^\nu \) for \(\lambda, \mu, \nu \in \Lambda^m \) where \(s(\lambda) = s(\mu) \), and for \(v \in \Lambda^0 \) denote \(\mathcal{F}_m(v) \) the \(C^* \)-subalgebra generated by \(s_{\lambda \mu} S_*^\nu \) where \(s(\lambda) = v \).

Lemma 3.2. For \(m \in \mathbb{N}^k \), \(v \in \Lambda^0 \) there exist isomorphisms

\[
\mathcal{F}_m(v) \cong K\left(\ell^2(\{ \lambda \in \Lambda^m : s(\lambda) = v \}) \right)
\]

and \(\mathcal{F}_m \cong \bigoplus_{v \in \Lambda^0} \mathcal{F}_m(v) \). Moreover, the \(C^* \)-algebras \(\mathcal{F}_m, m \in \mathbb{N}^k \), form a directed system under inclusion, and \(\mathcal{F}_\Lambda = \cup \mathcal{F}_m \) is an AF \(C^* \)-algebra.
Proof. Fix $v \in \Lambda^0$ and let $\lambda, \mu, \alpha, \beta \in \Lambda^m$ be such that $s(\lambda) = s(\mu)$ and $s(\alpha) = s(\beta)$, then by \ref{iv} we have
\begin{equation}
(s_{\lambda}s_{\mu}^*) (s_{\alpha}s_{\beta}^*) = \delta_{\mu,\alpha}s_{\lambda}s_{\beta}^*,
\end{equation}
so that the map which sends $s_{\lambda}s_{\mu}^* \in F_m(v)$ to the matrix unit $e_{\lambda,\mu}^v \in K(\ell^2(\{\lambda \in \Lambda^m : s(\lambda) = v\}))$ for all $\lambda, \mu \in \Lambda^m$ with $s(\lambda) = s(\mu) = v$ extends to an isomorphism. The second isomorphism also follows from \ref{iv} (since $s(\mu) \neq s(\alpha)$ implies $\mu \neq \alpha$). We claim that F_m is contained in F_n whenever $m \leq n$. To see this we apply \ref{iv} to give
\begin{equation}
s_{\lambda}s_{\mu}^* = s_{\lambda}s_{\mu}^* = \sum_{\Lambda^t(s(\lambda))} s_{\lambda}s_{\gamma}s_{\gamma}^* = \sum_{\Lambda^t(s(\lambda))} s_{\lambda}s_{\gamma}s_{\gamma}^*
\end{equation}
where $\ell = n - m$. Hence the C^*–algebras $F_m, m \in \mathbb{N}^k$, form a directed system as required.

Note that F_Λ may also be expressed as the closure of $\cup_{j=1}^{\infty} F_{jp}$ where $p = (1, \ldots, 1) \in \mathbb{N}^k$.

Clearly for $t \in T^k$ the gauge automorphism α_t defined in \ref{v} fixes those elements $s_{\lambda}s_{\mu}^* \in C^*(\Lambda)$ with $d(\lambda) = d(\mu)$ (since $\alpha_t(s_{\lambda}s_{\mu}^*) = t(d(\lambda) - d(\mu))s_{\lambda}s_{\mu}^*$) and hence F_Λ is contained in the fixed point algebra $C^*(\Lambda)^{\alpha}$. Consider the linear map on $C^*(\Lambda)$ defined by
\[\Phi(x) = \int_{T^k} \alpha_t(x) dt \]
where dt denotes normalised Haar measure on T^k and note that $\Phi(x) \in C^*(\Lambda)^{\alpha}$ for all $x \in C^*(\Lambda)$. As the proof of the following result is now standard, we omit it (see \cite[Proposition 2.11]{cK}, \cite[Lemma 3.3]{RS2}, \cite[Lemma 2.2]{BPRS}).

Lemma 3.3. Let Φ, F_Λ be as described above.

(i) The map Φ is a faithful conditional expectation from $C^*(\Lambda)$ onto $C^*(\Lambda)^{\alpha}$.

(ii) $F_\Lambda = C^*(\Lambda)^{\alpha}$.

Hence the fixed point algebra $C^*(\Lambda)^{\alpha}$ is an AF algebra. This fact is key to the proof of the gauge–invariant uniqueness theorem for $C^*(\Lambda)$ (see \cite[Theorem 2.1]{BPRS}, \cite[Theorem 2.3]{HR}, see also \cite{cK, RS2} where a similar technique is used in the proof of simplicity).

Theorem 3.4. Let B be a C^*–algebra, $\pi : C^*(\Lambda) \to B$ be a homomorphism and let $\beta : T^k \to Aut(B)$ be an action such that $\pi \circ \alpha_t = \beta_t \circ \pi$ for all $t \in T^k$. Then π is faithful if and only if $\pi(p_v) \neq 0$ for all $v \in \Lambda^0$.

Proof. If $\pi(p_v) = 0$ for some $v \in \Lambda^0$ then clearly π is not faithful. Conversely, suppose that π is equivariant and that $\pi(p_v) \neq 0$ for all $v \in \Lambda^0$; we first show that π is faithful on $C^*(\Lambda)^{\alpha} = \bigcup_{j \geq 0} F_{jp}$. For any ideal I in $C^*(\Lambda)^{\alpha}$, we have $I = \bigcup_{j \geq 0} (I \cap F_{jp})$ (see \cite[Lemma 3.1]{cK}, \cite[Lemma 1.3]{ALNR}). Thus it is enough to prove that π is faithful on each F_n. But by \ref{iv} it suffices to show that it is faithful on $F_n(v)$, for all $v \in \Lambda^0$. Fix $v \in \Lambda^0$ and $\lambda, \mu \in \Lambda^n$ with $s(\lambda) = s(\mu) = v$; we need only show that $\pi(s_{\lambda}s_{\mu}^*) \neq 0$. Since $\pi(p_v) \neq 0$ we have
\[0 \neq \pi(p_v^2) = \pi(s_{\lambda}s_{\lambda}s_{\mu}s_{\mu}^*) = \pi(s_{\lambda}^2)\pi(s_{\lambda}s_{\mu}^*)\pi(s_{\mu}). \]

Hence $\pi(s_{\lambda}s_{\mu}^*) \neq 0$ and π is faithful on $C^*(\Lambda)^{\alpha}$. Let $a \in C^*(\Lambda)$ be a nonzero positive element; then since Φ is faithful $\Phi(a) \neq 0$ and as π is faithful on $C^*(\Lambda)^{\alpha}$ we have
\[0 \neq \pi(\Phi(a)) = \pi\left(\int_{T^k} \alpha_t(a) dt \right) = \int_{T^k} \beta_t(\pi(a)) dt; \]

hence, $\pi(a) \neq 0$ and π is faithful on $C^*(\Lambda)$ as required.

Corollary 3.5.

(i) Let (Λ, d) be a k–graph and let G_Λ be its associated groupoid, then there is an isomorphism $C^*(\Lambda) \cong C^*(G_\Lambda)$ such that $s_\lambda \mapsto 1_{Z(\lambda, s(\lambda))}$ for $\lambda \in \Lambda$. Moreover the canonical map $C^*(G_\Lambda) \to C^*(G_\Lambda)$ is an isomorphism.

(ii) Let $\{M_1, \ldots, M_k\}$ be a collection of matrices satisfying (H0)–(H3) of \cite{RS2} and W the k–graph defined in \ref{iv}, then $C^*(W) \cong A$, via the map $s_\lambda \mapsto s_\lambda s(\lambda)$ for $\lambda \in W$.

\[\square \]
(iii) If Λ is a k-graph and $f : \mathbb{N}^k \to \mathbb{N}^k$ is injective then the $*$-homomorphism $\pi_f : C^*(f^*(\Lambda)) \to C^*(\Lambda)$ (see 1.11) is injective. In particular the C^*-algebras of the coordinate graphs Λ_i for $1 \leq i \leq k$ form a generating family of subalgebras of $C^*(\Lambda)$. Moreover, if f is surjective then $C^*(f^*(\Lambda)) \cong C^*(\Lambda) \otimes C(\mathbb{T}^{2-k})$.

(iv) Let (Λ_i, d_i) be k_i-graphs for $i = 1, 2$, then $C^*(\Lambda_1 \times \Lambda_2) \cong C^*(\Lambda_1) \otimes C^*(\Lambda_2)$ via the map $s_{(\lambda_1, \lambda_2)} \mapsto s_{\lambda_1} \otimes s_{\lambda_2}$ for $(\lambda_1, \lambda_2) \in \Lambda_1 \times \Lambda_2$.

Proof. For (i) we note that $s_{\alpha} \mapsto 1_{Z(\alpha s(\Lambda))}$ for $\lambda \in \Lambda$ is a $*$-representation of Λ; hence there is a $*$-homomorphism $\pi : C^*(\Lambda) \to C^*(\mathcal{G}_\Lambda)$ such that $\pi(s_{\lambda}) = 1_{Z(\alpha s(\Lambda))}$ for $\lambda \in \Lambda$ (see 1.6(i)). Let β denote the \mathbb{T}^k-action on $C^*(\mathcal{G}_\Lambda)$ induced by the \mathbb{Z}^k-valued 1-cocycle defined on \mathcal{G}_Λ by $(x, k, y) \mapsto \beta$ (see 1.11.5.1); one checks that $\pi \circ \alpha_t = \beta_t \circ \pi$ for all $t \in \mathbb{T}^k$. Clearly, if $v \in \Lambda^0$ we have $1_{Z(v, v)} \neq 0$; since $\Lambda^\infty(v) = \emptyset$ and π is injective. Surjectivity follows from the fact that $\pi(s_{\lambda}s_{\mu}^*) = 1_{Z(\lambda, \mu)}$ together with the observation that $C^*(\mathcal{G}_\Lambda) = \text{span}(1_{Z(\lambda, \mu)})$. The same argument shows that $C^*_v(\mathcal{G}_\Lambda) \cong C^*(\Lambda)$ and so $C^*_v(\mathcal{G}_\Lambda) \cong C^*(\mathcal{G}_\Lambda)$.

For (ii) we note that there is a surjective $*$-homomorphism $\pi : C^*(\mathcal{G}_\Lambda) \to \mathcal{A}$ such that $\pi(s_{\lambda}) = s_{\lambda s(\Lambda)}$ for $\lambda \in \Lambda$ (see 1.7(iv)) which is clearly equivariant for the respective \mathbb{T}^k-actions. Moreover by [RS2, Lemma 2.9] we have $s_{\alpha v} \neq 0$ for all $v \in \mathcal{A}_0 = \mathcal{A}$ and so the result follows.

For (iii) note that the injection $f : \mathbb{N}^k \to \mathbb{N}^k$ extends naturally to a homomorphism $f : \mathbb{Z}^k \to \mathbb{Z}^k$ which in turn induces a map $\hat{f} : \mathbb{T}^k \to \mathbb{T}^k$ characterised by $\hat{f}(t)^p = f(t)(\mathbb{T}^k)$ for $p \in \mathbb{N}^k$. Let B be the fixed point algebra of the gauge action of \mathbb{T}^k on $C^*(\Lambda)$ restricted to the kernel of \hat{f}. The gauge action restricted to B descends to an action of $\mathbb{T}^k = \mathbb{T}^k/\ker f\mathbb{N}^k$ on B which we denote π. Observe that for $t \in \mathbb{T}^k$ and $(\lambda, n) \in f^*(\Lambda)$ we have

$$
\alpha_t(\pi_f(s_{\lambda n})) = \pi_f(t)(\mathbb{N}^k) = \hat{f}(t)^n s_{\lambda};
$$

hence $\text{Im} \pi_f \subseteq B$ (if $t \in \text{Ker} \hat{f}$ then $\hat{f}(t)^n = 1$). By the same formula we see that $\pi_f \circ \alpha = \sigma \circ \pi_f$ and the result now follows by 3.4. The last assertion follows from part (i) together with the fact that $\mathcal{G}_{\hat{f}^*}(\Lambda) \cong \mathcal{G}_\Lambda \times \mathbb{Z}^{2-k}$ (see 2.10).

For (iv) define a map $\pi : C^*(\Lambda_1 \times \Lambda_2) \to C^*(\Lambda_1) \otimes C^*(\Lambda_2)$ given by $s_{(\lambda_1, \lambda_2)} \mapsto s_{\lambda_1} \otimes s_{\lambda_2}$; this is surjective as these elements generate $C^*(\Lambda_1) \otimes C^*(\Lambda_2)$. We note that $C^*(\Lambda_1) \otimes C^*(\Lambda_2)$ carries a $\mathbb{T}^{k_1+k_2}$-action β defined for $(t_1, t_2) \in \mathbb{T}^{k_1+k_2}$ and $(\lambda_0, \lambda_1) \in \Lambda_1 \times \Lambda_2$ by $\beta(t_1, t_2)(s_{\lambda_0} \otimes s_{\lambda_1}) = \alpha_{t_1} s_{\lambda_1} \otimes \alpha_{t_2} s_{\lambda_2}$. Injectivity then follows by 3.4, since π is equivariant and for $(v, w) \in (\Lambda_1 \times \Lambda_2)^{0}$ we have $p_v \otimes p_w \neq 0$.

Henceforth we shall tacitly identify $C^*(\Lambda)$ with $C^*(\mathcal{G}_\Lambda)$.

Remark 3.6. Let Λ be a k-graph and suppose that $f : \mathbb{N}^k \to \mathbb{N}^k$ is an injective morphism for which H, the image of f, is cofinal. Then π_f induces an isomorphism of $C^*(f^*(\Lambda))$ with its range, the fixed point algebra of the restriction of the gauge action to H^\perp.

4. Aperiodicity and its consequences

The aperiodicity condition we study in this section is an analog of condition (L) used in [KPR]. We first define what it means for an infinite path to be periodic or aperiodic.

Definitions 4.1. For $x \in \Lambda^\infty$ and $p \in \mathbb{Z}^k$ we say that p is a period of x if for every $(m, n) \in \Omega$ with $m + p \geq 0$ we have $x(m + p, n + p) = x(m, n)$. We say that x is periodic if it has a nonzero period. We say that x is eventually periodic if $\sigma^n x$ is periodic for some $n \in \mathbb{N}^k$, otherwise x is said to be aperiodic.

Remarks 4.2. For $x \in \Lambda^\infty$ and $p \in \mathbb{Z}^k$, p is a period of x if and only if $\sigma^m x = \sigma^n x$ for all $m, n \in \mathbb{N}^k$ such that $p = m - n$. Similarly x is eventually periodic, with eventual period $p \neq 0$ if and only if $\sigma^m x = \sigma^n x$ for some $m, n \in \mathbb{N}^k$ such that $p = m - n$.

Definition 4.3. The k-graph Λ is said to satisfy the aperiodicity condition (A) if for every $v \in \Lambda^0$ there is an aperiodic path $x \in \Lambda^\infty(v)$.

Remark 4.4. Let E be a directed graph which is row finite and has no sinks then the associated 1-graph E^* satisfies the aperiodicity condition if and only if every loop in E has an exit (i.e. satisfies condition (L) of [KPR]). However, if we consider the 2-graph $f^*(E^*)$ where $f : \mathbb{N}^2 \to \mathbb{N}$ is given by $f(m_1, m_2) = m_1 + m_2$ then $p = (1, -1)$ is a period for every point in $f^*(E^*)^\infty$ (even if E has no loops).

1This can be also deduced from the amenability of \mathcal{G}_Λ (see 3.3).
Proposition 4.5. The groupoid G_Λ is essentially free (i.e. the points with trivial isotropy are dense in G_Λ^0) if and only if Λ satisfies the aperiodicity condition.

Proof. Observe that if $x \in \Lambda^\infty$ is aperiodic then $\sigma^m x = \sigma^n x$ implies that $m = n$ and hence $x \in \Lambda^\infty = G_\Lambda^0$ has trivial isotropy, and conversely. Hence G_Λ is essentially free if and only if aperiodic points are dense in Λ^∞. If aperiodic points are dense in Λ^∞ then Λ clearly satisfies the aperiodicity condition, for $Z(v) = \Lambda^\infty(v)$ must then contain aperiodic points for every $v \in \Lambda^0$. Conversely, suppose that Λ satisfies the aperiodicity condition, then for every $\lambda \in \Lambda$ there is $x \in \Lambda^\infty(s(\lambda))$ which is aperiodic. Hence the aperiodic points are dense in Λ^∞.

The isotropy group of an element $x \in \Lambda^\infty$ is equal to the subgroup of its eventual periods (including 0).

Theorem 4.6. Let $\pi : C^*(\Lambda) \to B$ be a $*$-homomorphism and suppose that Λ satisfies the aperiodicity condition. Then π is faithful if and only if $\pi(p_v) \neq 0$ for all $v \in \Lambda^0$.

Proof. If $\pi(p_v) = 0$ for some $v \in \Lambda^0$ then clearly π is not faithful. Conversely, suppose $\pi(p_v) \neq 0$ for all $v \in \Lambda^0$; then by Proposition 4.9(i) we have $C^*(\Lambda) = C^*_v(\mathcal{G}_\Lambda)$ and hence from [KPR, Corollary 3.6] it suffices to show that π is faithful on $C_0(\mathcal{G}_\Lambda^0)$. If the kernel of the restriction of π to $C_0(\mathcal{G}_\Lambda^0)$ is nonzero, it must contain the characteristic function $1_{Z(\lambda)}$ for some $\lambda \in \Lambda$. It follows that $\pi(s_\lambda^* s_\lambda) = 0$ and hence $\pi(s_\lambda) = 0$; in which case $\pi(p_{s(\lambda)}) = \pi(s_\lambda^* s_\lambda) = 0$, a contradiction.

Definition 4.7. We say that Λ is cofinal if for every $x \in \Lambda^\infty$ and $v \in \Lambda^0$ there is $\lambda \in \Lambda$ and $n \in \mathbb{N}^k$ such that $s(\lambda) = x(n)$ and $r(\lambda) = v$.

Proposition 4.8. Suppose Λ satisfies the aperiodicity condition, then $C^*(\Lambda)$ is simple if and only if Λ is cofinal.

Proof. By Proposition 4.3(ii) $C^*(\Lambda) = C^*_v(\mathcal{G}_\Lambda)$; since \mathcal{G}_Λ is essentially free, $C^*(\Lambda)$ is simple if and only if \mathcal{G}_Λ is minimal. Suppose that Λ is cofinal and fix $x \in \Lambda^\infty$ and $\lambda \in \Lambda$; then by cofinality there is a $\mu \in \Lambda$ and $n \in \mathbb{N}^k$ so that $s(\mu) = x(n)$ and $r(\mu) = s(\lambda)$. Then $y = \lambda \mu \sigma^n x \in Z(\lambda)$ and y is in the same orbit as x; hence all orbits are dense and \mathcal{G}_Λ is minimal.

Conversely, suppose that \mathcal{G}_Λ is minimal and that $x \in \Lambda^\infty$ and $v \in \Lambda^0$ then there is $y \in Z(v)$ such that x, y are in the same orbit. Hence there exist $m, n \in \mathbb{N}^k$ such that $\sigma^n x = \sigma^m y$; then it is easy to check that $\lambda = y(0, m)$ and n have the desired properties.

Notice that second hypothesis used in the following corollary is the analog of the condition that every vertex connects to a loop and it is equivalent to requiring that for every $v \in \Lambda^0$, there is an eventually periodic $x \in \Lambda^\infty(v)$ with positive eventual period (i.e. the eventual period lies in $\mathbb{N}^k \setminus \{0\}$). The proof follows the same lines as [KPR, Theorem 3.9]:

Proposition 4.9. Let Λ satisfy the aperiodicity condition. Suppose that for every $v \in \Lambda^0$ there are $\lambda, \mu \in \Lambda$ with $d(\mu) \neq 0$ such that $r(\lambda) = v$ and $s(\lambda) = r(\mu) = s(\mu)$ then $C^*(\Lambda)$ is purely infinite in the sense that every hereditary subalgebra contains an infinite projection.

Proof. Arguing as in [KPR, Lemma 3.8] one shows that \mathcal{G}_Λ is locally contracting. The aperiodicity condition guarantees that \mathcal{G}_Λ is essentially free, hence by [A-D, Proposition 2.4] (see also [LS]) we have $C^*(\Lambda) = C^*_v(\mathcal{G}_\Lambda)$ is purely infinite.

5. Skew products and group actions

Let G be a discrete group, Λ a k-graph and $c : \Lambda \to G$ a functor. We introduce an analog of the skew product graph considered in [KPR, §2] (see also [CT]); the resulting object, which we denote $G \times_c \Lambda$, is also a k-graph. As in [KP] if G is abelian the associated C^*-algebra is isomorphic to a crossed product of $C^*(\Lambda)$ by the natural action of G induced by c (more generally it is a crossed product by a coaction — see [Ma, KQR]). As a corollary we show that the crossed product of $C^*(\Lambda)$ by the gauge action, $C^*(\Lambda) \rtimes_\alpha \mathbb{T}^k$, is isomorphic to $C^*(\mathbb{Z}^k \times \Lambda)$, the C^*-algebra of the skew-product k-graph arising from the degree map. It will then follow that $C^*(\Lambda) \rtimes_\alpha \mathbb{T}^k$ is AF and that \mathcal{G}_Λ is amenable.
Definition 5.1. Let G be a discrete group, (Λ, d) a k-graph. Given $c : \Lambda \to G$ a functor then define the skew product $G \times_c \Lambda$ as follows: the objects are identified with $G \times \Lambda^0$ and the morphisms are identified with $G \times \Lambda$ with the following structure maps

$$s(g, \lambda) = (gc(\lambda), s(\lambda)) \quad \text{and} \quad r(g, \lambda) = (g, r(\lambda)).$$

If $s(\lambda) = r(\mu)$ then (g, λ) and $(gc(\lambda), \mu)$ are composable in $G \times_c \Lambda$ and

$$(g, \lambda)(gc(\lambda), \mu) = (g, \lambda\mu).$$

The degree map is given by $d(g, \lambda) = d(\lambda)$.

One must check that $G \times_c \Lambda$ is a k-graph. If $k = 1$ then any function $c : E^1 \to G$ extends to a unique functor $c : E^* \to G$ (as in [KP, §2]). The skew product graph $E(c)$ of E^* is related to our skew product in a simple way: $G \times_c E^* = E(c)^*$. A key example of this construction arises by regarding the degree map d as a functor with values in \mathbb{Z}^k.

The functor c induces a cocycle $\tilde{c} : \mathcal{G}_\Lambda \to G$ as follows: given $(x, \ell - m, y) \in \mathcal{G}_\Lambda$ so that $\sigma^\ell x = \sigma^m y$ then set

$$\tilde{c}(x, \ell - m, y) = c(x(0, \ell))c(y(0, m))^{-1}.$$

As in [KP] one checks that this is well-defined and that \tilde{c} is a (continuous) cocycle; regarding the degree map d as a functor with values in \mathbb{Z}^k, we have $d(x, n, y) = n$ for $(x, n, y) \in \mathcal{G}_\Lambda$. In the following we show that the skew product groupoid obtained from \tilde{c} (as defined in [KP]) is the same as the path groupoid of the skew product (cf. [KP, Theorem 2.4]):

Theorem 5.2. Let G be a discrete group, Λ a k-graph and $c : \Lambda \to G$ a functor. Then $\mathcal{G}_{G \times_c \Lambda} \cong \mathcal{G}_\Lambda(\tilde{c})$ where $\tilde{c} : \mathcal{G}_\Lambda \to G$ is defined as above.

Proof. We first identify $G \times \Lambda^\infty$ with $(G \times_c \Lambda)^\infty$ as follows: for $(g, x) \in G \times \Lambda^\infty$ define $(g, x) : \Omega \to G \times_c \Lambda$ by

$$(g, x)(m, n) = (gc(x(0, m)), x(m, n));$$

it is straightforward to check that this defines a degree-preserving functor and thus an element of $(G \times_c \Lambda)^\infty$.

Under this identification $\sigma^n(g, x) = (gc(x(0, n)), \sigma^n x)$ for all $n \in \mathbb{N}^k$, $(g, x) \in (G \times_c \Lambda)^\infty$. As in the proof of [KP, Theorem 2.4] define a map $\phi : \mathcal{G}_\Lambda(\tilde{c}) \to \mathcal{G}_{G \times_c \Lambda}$ as follows: for $x, y \in \Lambda^\infty$ with $\sigma^x = \sigma^y$ set

$$\phi([x, \ell - m, y]) = [x', \ell - m, y']$$

where $x' = (g, x)$ and $y' = (g\tilde{c}(x, \ell - m, y), y)$. Note that

$$\sigma^m y' = \sigma^m(g\tilde{c}(x, \ell - m, y), y) = \sigma^m(gc(x(0, \ell))c(y(0, m))^{-1}, y) = (gc(x(0, \ell)), \sigma^m y) = (gc(x(0, \ell)), \sigma^x x') = \sigma'(g, x) = \sigma'(x', \ell - m, y'),$$

and hence $(x', \ell - m, y') \in \mathcal{G}_{G \times_c \Lambda}$. The rest of the proof proceeds as in [KP, Theorem 2.4] mutatis mutandis.

Corollary 5.3. Let G be a discrete abelian group, Λ a k-graph and $c : \Lambda \to G$ a functor. There is an action $\alpha^c : \widehat{G} \to \text{Aut}(C^*(\Lambda))$ such that for $\chi \in \widehat{G}$ and $\lambda \in \Lambda$

$$\alpha^c(\chi)(s_\lambda) = (\chi, c(\lambda))s_\lambda.$$

Moreover $C^*(\Lambda) \rtimes_{\alpha^c} \widehat{G} \cong C^*(G \times_c \Lambda)$. In particular the gauge action is of the form, $\alpha = \alpha^d$, and so $C^*(\Lambda) \rtimes_{\alpha} \mathbb{T}^k \cong C^*(\mathbb{Z}^k \times_d \Lambda)$.

Proof. Since $C^*(\Lambda)$ is defined to be the universal C^*-algebra generated by the s_λ’s subject to the relations [F], and α^c preserves these relations it is clear that it defines an action of \widehat{G} on $C^*(\Lambda)$. The rest of the proof follows in the same manner as that of [KP, Corollary 2.5] (see [KP, II.5.7]).

In order to show that $C^*(\Lambda) \rtimes_{\alpha} \mathbb{T}^k$ is AF, we need the following lemma:

Lemma 5.4. Let Λ be a k-graph and suppose there is a map $b : \Lambda^0 \to \mathbb{Z}^k$ such that $d(\lambda) = b(s(\lambda)) - b(r(\lambda))$ for all $\lambda \in \Lambda$, then $C^*(\Lambda)$ is AF.

Proof. For every $n \in \mathbb{Z}^k$ let A_n be the closed linear span of elements of the form $s_\lambda s_\mu^*$ with $b(s(\lambda)) = n$. Fix $\lambda, \mu \in \Lambda$ with $b(s(\lambda)) = b(s(\mu)) = n$ we claim that $s_\lambda^* s_\mu = 0$ if $\lambda \neq \mu$. If $s_\lambda^* s_\mu \neq 0$ then by [F] there are $\alpha, \beta \in \Lambda$ with $s(\lambda) = r(\alpha)$ and $s(\mu) = r(\beta)$ such that $\lambda \alpha = \mu \beta$; but then we have

$$d(\alpha) + n = d(\alpha) + b(s(\lambda)) = b(s(\alpha)) = b(s(\mu)) = d(\beta) + b(s(\mu)) = d(\beta) + n.$$
Thus \(d(\alpha) = d(\beta)\) and hence by the factorisation property \(\alpha = \beta\). Consequently \(\lambda = \mu\) by cancellation and the claim is established. It follows that for each \(v\) with \(b(v) = n\) the elements \(s_\lambda s_\mu^*\) with \(s(\lambda) = s(\mu) = v\) form a system of matrix units and two systems associated to distinct \(v\)'s are orthogonal (see \(3.2\)). Hence we have

\[
A_n \cong \bigoplus_{b(v) = n} \mathcal{K} (\ell^2(s^{-1}(v))).
\]

By an argument similar to that in the proof of Lemma \(3.2\), if \(n \leq m\) then \(A_n \subseteq A_m\) (see equation \([3]\)); our conclusion now follows.

Note that \(A_n\) in the above proof is the \(C^*\)-algebra of a subgroupoid of \(G_\Lambda\) which is isomorphic to the disjoint union

\[
\bigsqcup_{b(v) = n} R_v \times \Lambda^\infty(v)
\]

where \(R_v\) is the transitive principal groupoid on \(s^{-1}(v)\). Since \(G_\Lambda\) is the increasing union of these elementary groupoids, it is an AF-groupoid and hence amenable (see \([R, III.1.1]\)). The existence of such a function \(b : \Lambda^0 \to Z^k\) is not necessary for \(C^*(\Lambda)\) to be AF since there are 1–graphs with no loops which do not have this property (see \([KPR, Theorem 2.4]\)).

Theorem 5.5. Let \(\Lambda\) be a k-graph, then \(C^*(\Lambda) \rtimes_\alpha T^k\) is AF and the groupoid \(G_\Lambda\) is amenable. Moreover, \(C^*(\Lambda)\) falls in the bootstrap class \(\mathcal{N}\) of \([RSc]\) and is therefore nuclear. Hence, if \(C^*(\Lambda)\) is simple and purely infinite (see \(\S 5\)), then it may be classified by its \(K\)-theory.

Proof. Observe that the map \(b : (Z^k \times_d \Lambda)^0 \to Z^k\) given by \(b(n, v) = n\) satisfies

\[
b(s(n, \lambda)) - b(r(n, \lambda)) = b(n + d(\lambda), \lambda) - b(n, r(\lambda)) = n + d(\lambda) - n = d(n, \lambda),
\]

The first part of the result then follows from \(5.2\) and \(5.3\). To show that \(G_\Lambda\) is amenable we first observe that \(G_\Lambda(d) \cong G_{Z^k \times_d \Lambda}\) is amenable. Since \(Z^k\) is amenable, we may apply \([R, Proposition II.3.8]\) to deduce that \(G_\Lambda\) is amenable. Since \(C^*(\Lambda)\) is strongly Morita equivalent to the crossed product of an AF algebra by a \(Z^k\)-action, it falls in the bootstrap class \(\mathcal{N}\) of \([RSc]\). The final assertion follows from the Kirchberg-Phillips classification theorem (see \([K, P]\)).

We now consider free actions of groups on k-graphs (cf. \([KP, \S 3]\)). Let \(\Lambda\) be a k-graph and \(G\) a countable group, then \(G\) acts on \(\Lambda\) if there is a group homomorphism \(G \to \text{Aut} \Lambda\) (automorphisms are compatible with all structure maps, including the degree): write \((g, \lambda) \mapsto g\lambda\). The action of \(G\) on \(\Lambda\) is said to be **free** if it is free on \(\Lambda^0\). By the universality of \(C^*(\Lambda)\) an action of \(G\) on \(\Lambda\) induces an action \(\beta\) on \(C^*(\Lambda)\) such that \(\beta_g s_\lambda = s_{g\lambda}\).

Given a free action of a group \(G\) on a k-graph \(\Lambda\) one forms the quotient \(\Lambda/G\) by the equivalence relation \(\lambda \sim \mu\) if \(\lambda = g\mu\) for some \(g \in G\). One checks that all structure maps are compatible with \(\sim\) and so \(\Lambda/G\) is also a k-graph.

Remark 5.6. Let \(G\) be a countable group and \(c : \Lambda \to G\) a functor, then \(G\) acts freely on \(G \times_c \Lambda\) by \((g, h, \lambda) = (gh, \lambda)\); furthermore \((G \times_c \Lambda)/G \cong \Lambda\).

Suppose now that \(G\) acts freely on \(\Lambda\) with quotient \(\Lambda/G\); we claim that \(\Lambda\) is isomorphic, in an equivariant way, to a skew product of \(\Lambda/G\) for some suitably chosen \(c\) (see \([GT, Theorem 2.2.2]\)). Let \(q\) denote the quotient map. For every \(v \in (\Lambda/G)^0\) choose \(v' \in \Lambda^0\) with \((q(v')) = v\) and for every \(\lambda \in \Lambda/G\) let \(\lambda'\) denote the unique element in \(\Lambda\) such that \(q(\lambda') = \lambda\) and \(r(\lambda') = r(\lambda')\). Now let \(c : \Lambda/G \to G\) be defined by the formula

\[
s(\lambda') = c(\lambda)s(\lambda').
\]

We claim that \(c(\lambda\mu) = c(\lambda)c(\mu)\) for all \(\lambda, \mu \in \Lambda\) with \(s(\lambda) = r(\mu)\). Note that

\[
r(c(\lambda)\mu') = c(\lambda)r(\mu') = c(\lambda)s(\lambda') = c(\lambda)s(\lambda') = s(\lambda');
\]

hence, we have \((\lambda\mu)' = \lambda'(c(\lambda)\mu')\) (since the image of both sides agree under \(q\) and \(r\)). Thus

\[
c(\lambda\mu)s(\mu') = c(\lambda\mu)s(\lambda') = s((\lambda\mu)') = c(\lambda)s(\mu') = c(\lambda)c(\mu)s(\mu')
\]

which establishes the desired identity (since \(G\) acts freely on \(\Lambda\)). The map \((g, \lambda) \mapsto g\lambda'\) defines an equivariant isomorphism between \(G \times_c (\Lambda/G)\) and \(\Lambda\) as required.

The following is a generalization of \([KPR, 3.9, 3.10]\) and is proved similarly.
Theorem 5.7. Let Λ be a k-graph and suppose that the countable group G acts freely on Λ, then
\[C^*(\Lambda) \rtimes_G G \cong C^*(\Lambda/G) \otimes K(\ell^2(G)). \]

Equivalently, if $c : \Lambda' \to G$ is a functor, then
\[C^*(G \times_c \Lambda') \rtimes_G G \cong C^*(\Lambda') \otimes K(\ell^2(G)) \]
where β, the action of G on $C^*(G \times_c \Lambda')$, is induced by the natural action on $G \times_c \Lambda'$. If G is abelian this action is dual to α^* under the identification of \mathbb{B}_G.

Proof. The first statement follows from the second with $\Lambda' = \Lambda/G$; indeed, by Proposition 3.7 there is a functor $c : \Lambda/G \to G$ such that $\Lambda \cong G \times_c (\Lambda/G)$ in an equivariant way. The second statement follows from applying Proposition 3.7 to the natural G-action on $G_{G\times,\Lambda'} \cong G_N(c)$. The final statement follows from the identifications
\[C^*(\Lambda) \rtimes_{\alpha^*} \tilde{G} \cong C^*(G \times_c \Lambda) \cong C^*(\tilde{G}_\Lambda(c)) \]
and [R, II.2.7].

6. 2-graphs

Given a k-graph Λ one obtains for each $n \in \mathbb{N}^k$ a matrix
\[M^\Lambda_n(u, v) = \#\{\lambda \in \Lambda^n : r(\lambda) = u, s(\lambda) = v\}. \]

By our standing assumption the entries are all finite and there are no zero rows. Note that for any $m, n \in \mathbb{N}^k$ we have $M^\Lambda_{m+n} = M^\Lambda_m M^\Lambda_n$ (by the factorization property); consequently, the matrices M^Λ_m and M^Λ_n commute for all $m, n \in \mathbb{N}^k$. If W is the k-graph associated to the commuting matrices $\{M_1, \ldots, M_k\}$ satisfying conditions (H0)–(H3) of [RS2] which was considered in Example 1.7(iv), then one checks that $M^W_m = M^I_m$. Further, if $\Lambda = E^n$ is a 1-graph derived from the directed graph E, then M^Λ_n is the vertex matrix of E.

Now suppose that A and B are 1-graphs with $A^0 = B^0 = V$ such the associated vertex matrices commute. Set $A_0 = \{((\alpha, \beta) \in A \times B : s(\alpha) = r(\beta)\}$ and $B_0 = \{((\beta, \beta) \in B \times A : s(\beta) = r(\alpha)\}$; since the associated vertex matrices commute there is a bijection $\theta : (\alpha, \beta) \mapsto (\beta, \alpha')$ from $A_0 \times B_0$ to $B_0 \times A_0$ such that $s(\alpha) = r(\beta')$ and $s(\beta) = s(\alpha')$. We construct a 2-graph Λ from A, B and θ. This construction is very much in the spirit of [RS2]; roughly speaking an element in Λ of degree (m, n) is given by an element in Λ of degree (m, n) for $(i, j) \in V(m, n)$.

An element in $\Lambda^{(m-n)}$ is given by $v(i, j) \in V$ for $(i, j) \in V(m, n)$, $\alpha(i, j) \in A^1$ for $(i, j) \in V(m-1, n)$ and $\beta(i, j) \in B^1$ for $(i, j) \in V(m, n-1)$ (set $W(m, n) = \emptyset$ if m or n is negative) satisfying the following compatibility conditions wherever they make sense:

i) $r(\alpha(i, j)) = v(i, j)$ and $r(\beta(i, j)) = v(i, j)$
ii) $s(\alpha(i, j)) = v(i+1, j)$ and $s(\beta(i, j)) = v(i, j+1)$
iii) $\theta(\alpha(i, j), \beta(i, j)) = (\beta(i, j), \alpha(i+1, j))$;

for brevity and with a slight abuse of notation we regard this element as a triple (v, α, β) (note that α disappears if $m = 0$ and β disappears if $n = 0$ and v is determined by α and/or β if $mn \neq 0$). Set
\[\Lambda = \bigcup_{(m, n)} \Lambda^{(m-n)} \]
and define $s(v, \alpha, \beta) = v(m, n)$ and $r(v, \alpha, \beta) = v(0, 0)$.

Note that if $\lambda \in A^m$ and $\mu \in B^n$ with $m, n > 0$ such that $s(\lambda) = r(\mu)$ there is a unique element $(v, \alpha, \beta) \in \Lambda^{(m-n)}$ such that $\lambda = (0, 0)\alpha(1, 0) \cdots n(0, m-1, 0)$ and $\mu = (m, 0)\beta(m, 1) \cdots (n-1, 0)$; denote this element λ_{MN}. Further if $\lambda \in A^m$ and $\mu \in B^n$ with $m, n > 0$ such that $s(\lambda) = s(\mu)$ there is a unique element $(v, \alpha, \beta) \in \Lambda^{(m-n)}$ such that $\lambda = (0, 0)\alpha(1, 0) \cdots n(0, m-1, 0)$ and $\mu = (0, 0)\beta(0, 1) \cdots (0, n-1)$; denote this element μ_{MN}. Using these two facts is not difficult to verify that given elements $(v, \alpha, \beta) \in \Lambda^{(m-n)}$ and $(v', \alpha', \beta') \in \Lambda^{(m'-n'\cdot-n')}$.
Finally, we write $A = A \ast \theta B$. It is straightforward to verify that up to isomorphism any 2-graph may be obtained from its constituent 1-graphs in this way.

If $A = B$, then we may take $\theta = \iota$ the identity map. In that case one has $A \ast \iota A \cong f^* (A)$ where $f : \mathbb{N}^2 \to \mathbb{N}$ is given by $f (m, n) = m + n$. Hence, by Corollary 3.3(i) we have $C^* (A \ast \iota A) \cong C^* (A) \otimes C (T)$.

To further emphasise the dependence of the product $A \ast \theta B$ on the bijection $\theta : A^1 \ast B^1 \to B^1 \ast A^1$ consider the following example:

Example 6.1. Let $A = B$ be the 1-graph derived from the directed graph which consists of one vertex and two edges, say $A^1 = \{ e, f \}$ (note $C^* (A) \cong O_2$). Then $A^1 \ast A^1 = \{(e, e), (e, f), (f, e), (f, f) \}$, and we define the bijection θ to be the flip. It is easy to show that $A \ast \theta A \cong A \times A$; hence,

$$C^* (A \ast \theta A) \cong O_2 \otimes O_2 \cong O_2,$$

where the first isomorphism follows from Corollary 3.3(iv) and the second from the Kirchberg-Phillips classification theorem (see [KPR]). But

$$C^* (A \ast \iota A) \cong O_2 \otimes C (T),$$

hence, $A \ast \theta A \not\cong A \ast \iota A$.

References

[AD] C. Anantharaman–Delaroche. Purely infinite C^*-algebras arising from dynamical systems. *Bull. Soc. Math. France*, 125: 199–225, (1997).

[ADR] C. Anantharaman–Delaroche and J. Renault. Amenable groupoids. *To appear.*

[ALNR] S. Adji, M. Laca, M. Nilsen and I. Raeburn. Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups. *Proc. Amer Math. Soc.*, 122: 1133–1141, (1994).

[BPRS] T. Bates, D. Pask, I. Raeburn, W. Szymanski. The C^*-algebras of row–finite graphs. *Submitted.*

[B] O. Bratteli. Inductive limits of finite dimensional C^*–algebras. *Trans. Amer. Math. Soc.*, 171: 195–234, (1972).

[CK] J. Cuntz and W. Krieger. A class of C^*-algebras and topological Markov chains. *Invent. Math.*, 56: 251–268, (1980).

[D] V. Deaconu. Groupoids associated with endomorphisms *Trans. Amer. Math. Soc.*, 347: 1779–1786, (1995).

[GT] J.L. Gross and T.W. Tucker. *Topological graph theory.* Wiley Interscience Series in Discrete Mathematics and Optimization, First edition (1987)

[H] P.J. Higgins. *Notes on categories and groupoids.* van Nostrand Rienhold (1971).

[aHR] A. an Huef and I. Raeburn. The ideal structure of Cuntz-Krieger algebras. *Ergod. Th. and Dyn. Sys.*, 17: 611–624, (1997).

[KQR] S. Kaliszewski, J. Quigg and I. Raeburn. Skew products and crossed products, by coactions. *Preprint.*

[KPRR] A. Kumjian, D. Pask, I. Raeburn, and J. Renault. Groupoids and Cuntz–Krieger algebras. *J. Funct. Anal.*, 144: 505–541, (1997).

[KPR] A. Kumjian, D. Pask, I. Raeburn. Cuntz–Krieger algebras of directed graphs, *Pacific. J. Math.*, 184: 161–174, (1998).

[KP] A. Kumjian and D. Pask. C^*-algebras of directed graphs and group actions, *Ergod. Th. and Dyn. Sys.*, to appear.

[LS] M. Laca and J. Spielberg. Purely infinite C^*–algebras from boundary actions of discrete groups, *J. Reine Angew. Math.*, 480: 125–139, (1996).

[MacL] S. MacLane. Categories for the working Mathematician, Graduate Texts in Mathematics 5, Springer–Verlag, 1971.

[Ma] T. Masuda. Groupoid dynamical systems and crossed product II – the case of C^*-systems. *Publ. RIMS Kyoto Univ.*, 20: 959–970, (1984).

[Mu] P. Muhly. A finite dimensional introduction to Operator algebra, In *Operator algebras and applications (Samos, 1996)*, 313–354, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997.

[P] N.C. Phillips, A classification theorem for nuclear purely infinite simple C^*-algebras. *Preprint.*

[R] J. Renault. A groupoid approach to C^*-algebras. *Lecture Notes in Mathematics*, vol. 793. Springer-Verlag, 1980.

[RS1] G. Robertson and T. Steger. C^*-algebras arising from group actions on the boundary of a triangle building, *Proc. London Math. Soc.*, 72: 613–637, (1996).

[RS2] G. Robertson and T. Steger. Affine buildings, tiling systems and higher rank Cuntz–Krieger algebras, *J. Reine Angew. Math.*, 513: 115–144, (1999).

[RS3] G. Robertson and T. Steger. K–theory for rank two Cuntz–Krieger algebras. *Preprint.*

[RS] J. Rosenberg and C. Schochet. The K"unneth theorem and the universal coefficient theorem for Kasparov’s generalized K–functor. *Duke Math. J.*, 55: 431–474, (1987).

Department of Mathematics (084), University of Nevada, Reno NV 89557–0045, USA.

E-mail address: alex@unr.edu

Department of Mathematics, University of Newcastle, NSW 2308, Australia.

E-mail address: davidp@maths.newcastle.edu.au