Electromagnetohydrodynamic bioconvective flow of binary fluid containing nanoparticles and gyrotactic microorganisms through a stratified stretching sheet

Abdullah Dawar¹, Anwar Saeed², Saeed Islam¹, Zahir Shah³, Wiyada Kumam⁴, & Poom Kumam²

Bioconvection has recently been the subject of dispute in a number of biotechnological fields that depend on fluids and their physical properties. When mixed nanofluids are subjected to heat and mass transmission, the process of bioconvection occurs. This attempt conveys the theoretical analysis of two-dimensional electrically conducting and magnetically susceptible binary fluid containing nanoparticles and gyrotactic microorganisms past a stratified stretching surface. Furthermore binary chemical reaction, thermal radiation, and activation energy are taken into assumptions. The analytical solution based on HAM has been performed. The convergence of HAM is presented with the help of figures. The present study is compared with previously published results and has established an excessive agreement which validate the present study. It is perceived that the presence and absence of an electric field influences the variations in fluid velocities due to presence of magnetic field. The micropolar constant heightens the velocity and microrotation of the fluid flow. The buoyancy parameter and bioconvection Rayleigh number diminish the velocity function while these parameters show dual impact on microrotation function. The skin friction and couple stress escalates with the increasing buoyancy ratio parameter and bioconvection Rayleigh number.

Abbreviations

Symbol	Description
b₁, b₂, d₁, d₂, c₁, c₂	Dimensionless constants
B	Motile density stratification parameter
B₀	Strength of magnetic field
b_c	Chemotaxis constant
C	Concentration
c_p	Heat capacitance
B	Diffusion constant
E₀	Electric field
E	Activation energy parameter

¹Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan. ²Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMITT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand. ³Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan. ⁴Applied Mathematics for Science and Engineering Research Unit (AMSERU), Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand. ⁵Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan. *email: wiyada.kum@rmutt.ac.th; poom.kum@kmutt.ac.th
The expression "nanofluid" refers to the suspended nanoparticles that maximize the combined heat and mass transfer phenomena within a typical fluid. Nanoparticles have fascinated the researchers’ interest in today’s modern era due to their significant importance in the fields of electronics, food science, biosensors, biomeicine, and mechanical engineering. Additionally, the movement of respective nanoparticles in designated structures is strongly dependent on the elementary concepts of cancer treatment, selective drug delivery, chemotherapy, fermentation science, and nano-medicine. It is a well-established fact that the fluids flowing through microchannels in cooling and heating systems are entirely dependent on the heat transfer particles produced by nanofluids. As a result, nanofluid dynamics is a critical term to grasp for all fields concerned with nonmaterial suspensions in some manner in order to achieve optimum productivity. Choi¹ pioneered the concept of nanoparticles with improved thermophysical properties, which was subsequently expanded by a number of scientists. Buongiorno² defined the seven slip mechanisms in nanoparticle movement, focusing on Brownian motion and thermophoresis effects. Hsiao³ examined mixed convection and slip flow in flow of nanofluid configured by a stretched surface in the existence of both electrical and magnetic field aspects. Turkyilmazoglu⁴ presented the heat transformer of several nanofluids containing Ag, Al₂O₃, CuO, Cu, and TiO₂ nanoparticles through a plane wall jet. Hsiao⁵ probed the hydromagnetic nanofluids flow heat and mass transfer through a stretching sheet with magnetic and viscous dissipation effects. In order to investigate the thermophoresis and Brownian movement of the nanoparticles, Ahmed et al.⁶ used the Buongiorno’s model for the stagnation point Maxwell nanofluid flow past...
a rotating disk. Sandeep and Animasaun\(^7\) probed the enhanced thermal transmissions of electrically conducting water based nanofluids containing aluminum alloy nanoparticles with magnetic field impact. The effect of radiation thermal transmission on nanofluid between two pipes with horizontal magnetic field is investigated by Sheikholeslami et al.\(^4\). Shahzadi and Nadeem\(^5\) presented an effective mathematical model for the blood based peristaltic flow containing two different types of nanoparticles past a porous material with velocity slip conditions and magnetic impact. Sandeep et al.\(^6\) addressed the water based nanofluids containing magnetite nanoparticles. Sheikholeslami and Bhatti\(^8\) investigated the heat transmission in a nanofluid over a porous semi-annulus with magnetic field. Raza et al.\(^9\) deliberated the influence magnetic field on Casson fluid flow containing suspended nanoparticles past a nonlinear permeable surface with velocity slip condition. Siavashi et al.\(^{10}\) offered the mixed convection flow of power-law nanofluid containing CuO nanoparticles in a porous enclosure. In addition, the related studies are mentioned in\(^{11–19}\).

The activation energy is described as the least energy needed to initiate a chemical reaction. Spontaneous reactions are chemical reactions that require lower activation energy. Nuclear reactions accompanying both fusion and fission of nuclei are crucial, but they necessitate greater activation energy. The importance of activation energy has a significant impact on nanoparticle movement in simple carrier fluids. Chemical engineering, food manufacturing, and the mechanics of oil water emulsions all have a strong demand for activation energy\(^{20–22}\). Makinde et al.\(^{23}\) analyzed the chemically reactive and thermally radiative unsteady fluid flow over a porous plate. Khan et al.\(^{24}\) presented the features of activation energy and entropy generation in Carreau-Yasuda fluid past an extending sheet with magnetic field. The significance of activation energy on an electrically conducting magnetized third grade fluid containing gyrotactic microorganisms over a stretching sheet was probed by Chu et al.\(^{25}\). Moreover, the related studies can be found in\(^{26–35}\).

Bioconvection has recently been the subject of dispute in a number of biotechnological fields that depend on fluids and their physical properties. When mixed nanofluids are subjected to heat and mass transmission, the process of bioconvection occurs. Kuznetsov\(^{36}\) proposed the bioconvection in a nanofluid having gyrotactic microorganisms. Kuznetsov\(^{37}\) developed the same idea by adding nanoparticles in order to the stability of nanofluid. Xun et al.\(^{38}\) analyzed the bioconvective fluid flow containing gyrotactic microorganisms between two rotating plates. Further studies based on nanofluids containing gyrotactic microorganisms are mentioned in\(^{39–45}\).

Based on the literature review, the theoretical analysis of two-dimensional electrically conducting and magnetically susceptible viscoelastic micropolar nanofluid containing nanoparticles and gyrotactic microorganisms through a stratified stretching sheet has not been performed yet. Thus, the authors have presented the viscoelastic micropolar nanofluid containing nanoparticles and gyrotactic microorganisms through a stratified stretching sheet. Furthermore bioconvection, binary chemical reaction, thermal radiation, and activation energy influences are taken into assumptions.

Problem formulation

Let us assume the incompressible and electrically conducting MHD two-dimensional bioconvective viscoelastic micropolar nanofluid flow containing gyrotactic microorganisms which propagate over a stratified stretching sheet. Microorganisms are brought to become the nanoparticles stable. The nanoparticles do not affect the
microorganisms’ velocity and swimming direction. The stretching velocity of the sheet is assumed as \(\dot{u}_w = \dot{a}x \) along \(x \)-direction, whereas \(\dot{y} \)-direction is normal to the nanofluid flow. Magnetic \(B = (0, B_0, 0) \) and electric \(E = (0, 0, -E_0) \) fields are applied normal to the nanofluid flow. Furthermore, binary chemical reaction, activation energy, thermal radiation, mixed convection, and Joule heating influences are taken into consideration. Figure 1 indicates the physical representation of the flow problem. Following the above assumptions, the leading equations are formulated as:

Continuity equation.

\[
\frac{\partial \dot{u}}{\partial x} + \frac{\partial \dot{v}}{\partial y} = 0,
\]

Momentum equation.

\[
\ddot{u} \frac{\partial \dot{u}}{\partial x} + \dot{v} \frac{\partial \dot{u}}{\partial y} = \left(\frac{k_f}{\dot{\rho}_f} \right) \frac{\partial^2 \dot{u}}{\partial y^2} + \frac{k_f}{\dot{\rho}_f} \frac{\partial N}{\partial y} - \frac{\dot{a}}{\dot{\rho}_f} \left(\frac{\partial \dot{u}}{\partial x} \right) - \frac{\partial \dot{u}}{\partial y} \frac{\partial \dot{u}}{\partial x} + \frac{\partial \dot{u}}{\partial y} \frac{\partial \dot{u}}{\partial y} + \frac{\sigma}{\dot{\rho}_f} \dot{E}_0 \dot{B}_0
\]

\[
- \frac{\sigma}{\dot{\rho}_f} \dot{B}_0 \dot{u} + \frac{1}{\dot{\rho}_f} \left[\dot{\rho}_f \beta^* g \left(\dot{T} - \dot{T}_\infty \right) - \dot{g} \left(\dot{\rho}_p - \dot{\rho}_f \right) \left(\dot{C}_w - \dot{C}_\infty \right) - \dot{y} \dot{g}^* \left(\dot{\rho}_m - \dot{\rho}_f \right) \left(\dot{n} - \dot{n}_\infty \right) \right],
\]

with boundary conditions:

\[
\begin{cases}
\dot{u} = \dot{u}_w = \dot{a}x, \quad \dot{v} = 0 \text{ at } \dot{y} = 0, \\
\dot{u} \to 0 \text{ as } \dot{y} \to \infty,
\end{cases}
\]

The correspondence transformations are defined as:

\[
\begin{align*}
\dot{u} &= \dot{a} x f'(\xi), \quad \dot{v} = -\sqrt{a} v_j f(\xi), \quad \dot{N} = \sqrt{\frac{a}{v_j}} \dot{a} x g(\xi), \\
\theta(\xi) &= \frac{\dot{T} - \dot{T}_\infty}{\dot{T}_w - \dot{T}_0}, \quad \phi(\xi) = \frac{\dot{C}_w - \dot{C}_\infty}{\dot{C}_w - \dot{C}_0}, \quad \chi(\xi) = \frac{\dot{n} - \dot{n}_\infty}{\dot{n}_w - \dot{n}_0}, \quad \xi = \sqrt{\frac{a}{v_j}} \dot{y}.
\end{align*}
\]

Using (4), (1) is identically contented, (2) and (3) are transformed as:

\[
(1 + K)f'''' - f'' + f'' + Kg' - Mf' - \alpha_1 (2f'f'' - f''') + M\dot{E} + \lambda (\theta - N\phi - Rb\chi) = 0,
\]

\[
f(0) = 0, \quad f'(0) = 1, \quad f''''(\infty) = 0,
\]

Angular momentum equation.

\[
\ddot{N} \frac{\partial \dot{N}}{\partial x} + \dot{v} \frac{\partial \dot{N}}{\partial y} = \left(\frac{\gamma_f}{\dot{\rho}_f} \right) \frac{\partial^2 \dot{N}}{\partial y^2} - \frac{k_f}{\dot{\rho}_f} \left(\frac{2\dot{N}}{\partial y} \right) \left(\frac{\partial \dot{u}}{\partial y} \right)
\]

with boundary conditions:

\[
\dot{N} = 0 \text{ at } \dot{y} = 0, \\
\dot{N} \to 0 \text{ as } \dot{y} \to \infty,
\]

Using (4), (7) and (8) are transformed as:
\[
\left(1 + \frac{K}{2}\right)g'' - gf' + fg' - K(2g + f'') = 0, \tag{9}
\]
\[
g(0) = 0, \ g(\infty) = 0. \tag{10}
\]

Temperature equation.

\[
\frac{u}{\partial T}{\partial x} + \bar{v}\frac{\partial T}{\partial y} = \frac{1}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{Q_0}{\rho c_p^{(f)}} \left(T - T_{\infty} \right) - \frac{1}{\rho c_p^{(f)}} \frac{\partial q_r}{\partial y} + \frac{\sigma}{\rho c_p^{(f)}} \left(B_0 \bar{u} - E_0 \right)^2, \tag{11}
\]

with boundary conditions:

\[
\bar{T} = \bar{T}_w = \bar{T}_0 + \bar{b}_1 \bar{x} \text{ at } \bar{y} = 0,
\]
\[
\bar{T} = \bar{T}_{\infty} = \bar{T}_0 + \bar{b}_2 \bar{x} \text{ as } \bar{y} \to \infty.
\] \tag{12}

Here, \(q_r\) is the radiative heat flux and is defined as:

\[
\hat{q}_r = -\frac{4\alpha^{*}}{3k} \frac{\partial T}{\partial \bar{y}}. \tag{13}
\]

Expanding \(T^4\) by mean of Taylor series, we have:

\[
\bar{T}^4 = \bar{T}_{\infty}^4 + 4\bar{T}_{\infty}^3 \left(\bar{T} - \bar{T}_{\infty} \right) + 6\bar{T}_{\infty}^2 \left(\bar{T} - \bar{T}_{\infty} \right)^2 + \cdots \tag{14}
\]

Using (4), (11) and (12) are transformed as:

\[
\left(1 + \frac{4}{3} Rd\right) \theta'' + Pr f \theta' - Pr f' \theta - Pr S \theta' + Pr \delta \theta + M^2 Ec \left[f^2 + E^2 - 2Ef\right] = 0, \tag{15}
\]
\[
\theta(0) = 1 - S, \ \theta(\infty) = 0, \tag{16}
\]

where \(Rd = 4\alpha^{*} \bar{T}_{\infty}^3 / \bar{k} \bar{k}^{*}\) is the thermal radiation parameter, \(Pr = \bar{v} / \bar{u}\) is the Prandtl number, \(S = \bar{b}_2 / \bar{b}_1\) is the thermal stratification parameter, \(Ec = \left(\bar{a} \bar{x} \right)^2 / \left(\bar{c}_p^{(f)} \left(\bar{T}_w - \bar{T}_{\infty} \right) \right)\) is the Eckert number, \(\delta = Q_0 / \bar{a} \left(\bar{c}_p^{(f)} \right)\) is the heat generation parameter.

Concentration equation.

\[
\frac{u}{\partial C}{\partial x} + \bar{v}\frac{\partial C}{\partial y} = D_c \frac{\partial^2 C}{\partial y^2} - k_r \left(C - C_{\infty} \right) \left(\frac{\bar{T}}{\bar{T}_{\infty}} \right)^\pi \exp \left[-\frac{E_a}{k_r T} \right], \tag{17}
\]

with boundary conditions:

\[
\bar{C} = \bar{C}_w = \bar{C}_0 + \bar{d}_1 \bar{x} \text{ at } \bar{y} = 0,
\]
\[
\bar{C} = \bar{C}_{\infty} = \bar{C}_0 + \bar{d}_2 \bar{x} \text{ as } \bar{y} \to \infty. \tag{18}
\]

Using (4), (17) and (18) are transformed as:

\[
\phi'' + Sc \left(f \phi' - f' \phi - Qf' \right) - Sc \sigma \left(1 + \varepsilon \theta \right) \phi \exp \left(\frac{-E}{(1 + \varepsilon \theta)} \right) = 0, \tag{19}
\]
\[
\phi(0) = 1 - Q, \ \phi(\infty) = 0, \tag{20}
\]

where \(Sc = \bar{v} / \bar{D}_c\) is the Schmidt number, \(\sigma = k_r / \bar{a}\) is the reaction rate parameter, \(E = E_a / \bar{k} \bar{T}\) is the activation energy parameter, \(Q = \bar{d}_2 / \bar{d}_1\) is the mass stratification parameter, and \(\varepsilon = \left(\bar{T}_w - \bar{T}_0 \right) / \bar{T}_{\infty}\) is the temperature difference parameter.
Motile density equation.

\[
\hat{\dot{n}} - \hat{\dot{\chi}} + \hat{\dot{n}} = \hat{\dot{D}}_m \frac{\hat{\dot{n}}^2}{\hat{\dot{y}}^2} - \frac{\hat{\dot{b}}_c \hat{\dot{W}}_c}{\hat{\dot{C}}_m - \hat{\dot{C}}_\infty} \left(\frac{\hat{\dot{n}}}{\hat{\dot{y}}} \left(\frac{\hat{\dot{\chi}}}{\hat{\dot{y}}} \right) \right),
\]

(21)

with boundary conditions:

\[
\hat{n} = \hat{n}_w = \hat{n}_0 + \hat{e}_1 \hat{x} \text{ at } \hat{y} = 0,
\]

\[
\hat{n} = \hat{n}_\infty = \hat{n}_0 + \hat{e}_2 \hat{x} \text{ as } \hat{y} \to \infty,
\]

(22)

Using (4), (21) and (22) are transformed as:

\[
\chi'' - Lb(f' - \chi' + Bf') - Pe(\chi'(\Omega' + \chi) + \Omega') = 0,
\]

(23)

with transformed boundary conditions:

\[
\chi(0) = 1 - B, \quad \chi(\infty) = 0,
\]

(24)

where \(Lb = \frac{\nu_f}{\hat{\dot{D}}_m} \) is the bioconvection Lewis number, \(Pe = \frac{\hat{\dot{b}}_c \hat{\dot{W}}_c}{\hat{\dot{D}}_m} \) is the bioconvection Peclet number, \(\Omega = \frac{n_\infty}{(n_w - n_0)} \) microorganisms' concentration difference parameter, and \(B = \frac{e_2}{\epsilon_1} \) is the motile density stratification parameter.

The expressions of skin friction, couple stress, Nusselt number, Sherwood number, and density number can be written as:

\[
C_f = \left[\left(\frac{\mu_f + \frac{\nu_f}{\hat{\dot{u}}}}{\hat{\dot{y}}} \right) + \frac{\nu_f}{\hat{\dot{u}}} \right] \left| \frac{\hat{\dot{u}}}{\hat{\dot{y}}} \right| = 0,
\]

(25)

\[
C_s = \frac{\gamma \frac{\hat{\dot{u}}}{\hat{\dot{y}}} |\hat{\dot{y}} = 0|}{\rho_f \hat{\dot{u} } \hat{\dot{x}}},
\]

(26)

\[
Nu_x = -\hat{x} k \left(\frac{1 + \frac{4 \hat{\dot{u}}}{\hat{\dot{y}}} \hat{\dot{y}}}{k} \right) \frac{\hat{\dot{u}}}{\hat{\dot{y}}} |\hat{\dot{y}} = 0|,
\]

(27)

\[
Sh_x = -\hat{x} D_c \frac{\hat{\dot{u}}}{\hat{\dot{y}}} |\hat{\dot{y}} = 0|,
\]

\[
\frac{\hat{\dot{u}}}{\hat{\dot{y}}} |\hat{\dot{y}} = 0|,
\]

(28)

\[
\frac{\hat{\dot{u}}}{\hat{\dot{y}}} |\hat{\dot{y}} = 0|,
\]

(29)

Using (4), (25)-(29) are transformed as:

\[
S_f = -(1 + K - 3\alpha_1) f''(0).
\]

(30)

where \(S_f = -\frac{1}{2} \sqrt{Re_x} S_x \).

\[
\sqrt{Re_x} C_s = \left(1 + \frac{K}{2} \right) g'(0).
\]

(31)

\[
\frac{Nu_x}{\sqrt{Re_x}} = -\left(1 + \frac{4}{3} RD \right) \theta'(0).
\]

(32)
\[
\frac{Sh_x}{\sqrt{Re_x}} = \phi'(0). \tag{33}
\]
\[
\frac{n_x}{\sqrt{Re_x}} = -\chi'(0). \tag{34}
\]

HAM solution

The linear operators and initial guesses are taken as:

\[
L_f = f''' - f', \quad L_g = g''' - g, \quad L_\theta = \theta''' - \theta, \quad L_\phi = \phi''' - \phi, \quad L_x = \chi''' - \chi,
\]
\[
f_0 = 1 - e^{-\xi}, \quad g_0 = 0, \quad \theta_0 = (1 - S)e^{-\xi}, \quad \phi_0 = (1 - Q)e^{-\xi}, \quad \chi_0 = (1 - B)e^{-\xi},
\]

with

\[
L_f(x_1 + x_2e^\xi + x_3e^{-\xi}) = 0, \quad L_g(x_4e^\xi + x_5e^{-\xi}), \quad L_\theta(x_6e^\xi + x_7e^{-\xi}) = 0,
\]
\[
L_\phi(x_8e^\xi + x_9e^{-\xi}) = 0, \quad L_x(x_{10}e^\xi + x_{11}e^{-\xi}) = 0,
\]

where \(x_1 - x_{11}\) are called constants.

The zeroth order deformation can be written as

\[
(1 - \hat{p}) L_f \left[\hat{f}(\xi; \hat{p}) - \hat{f}_0(\hat{p}) \right] = \hat{p} \hat{n}_f \hat{N}_f \left[\hat{f}(\xi; \hat{p}), \hat{g}(\xi; \hat{p}), \hat{\theta}(\xi; \hat{p}), \hat{\phi}(\xi; \hat{p}), \hat{\chi}(\xi; \hat{p}) \right],
\]

\[
(1 - \hat{p}) L_g \left[\hat{g}(\xi; \hat{p}) - \hat{g}_0(\hat{p}) \right] = \hat{p} \hat{n}_g \hat{N}_g \left[\hat{f}(\xi; \hat{p}), \hat{g}(\xi; \hat{p}), \hat{\theta}(\xi; \hat{p}), \hat{\phi}(\xi; \hat{p}), \hat{\chi}(\xi; \hat{p}) \right],
\]

\[
(1 - \hat{p}) L_\theta \left[\hat{\theta}(\xi; \hat{p}) - \hat{\theta}_0(\hat{p}) \right] = \hat{p} \hat{n}_\theta \hat{N}_\theta \left[\hat{f}(\xi; \hat{p}), \hat{g}(\xi; \hat{p}), \hat{\theta}(\xi; \hat{p}), \hat{\phi}(\xi; \hat{p}), \hat{\chi}(\xi; \hat{p}) \right],
\]

\[
(1 - \hat{p}) L_\phi \left[\hat{\phi}(\xi; \hat{p}) - \hat{\phi}_0(\hat{p}) \right] = \hat{p} \hat{n}_\phi \hat{N}_\phi \left[\hat{f}(\xi; \hat{p}), \hat{g}(\xi; \hat{p}), \hat{\theta}(\xi; \hat{p}), \hat{\phi}(\xi; \hat{p}), \hat{\chi}(\xi; \hat{p}) \right],
\]

\[
(1 - \hat{p}) L_x \left[\hat{\chi}(\xi; \hat{p}) - \hat{\chi}_0(\hat{p}) \right] = \hat{p} \hat{n}_x \hat{N}_x \left[\hat{f}(\xi; \hat{p}), \hat{g}(\xi; \hat{p}), \hat{\theta}(\xi; \hat{p}), \hat{\phi}(\xi; \hat{p}), \hat{\chi}(\xi; \hat{p}) \right].
\]

\(\hat{f}(0; \hat{p}) = 0, \quad \hat{f}'(0; \hat{p}) = 1, \quad \hat{f}'(\infty; \hat{p}) = 0, \quad \hat{g}(0; \hat{p}) = 0, \quad \hat{g}(\infty; \hat{p}) = 0, \quad \hat{\theta}(0; \hat{p}) = 1 - S, \quad \hat{\theta}(\infty; \hat{p}) = 0, \quad \hat{\phi}(0; \hat{p}) = 1 - Q, \quad \hat{\phi}(\infty; \hat{p}) = 0, \quad \hat{\chi}(0; \hat{p}) = 1 - B, \quad \hat{\chi}(\infty; \hat{p}) = 0, \)
where \tilde{N}_f and \tilde{N}_g are auxiliary factors.

The 0th order deformation can be written as:

$$L_f \left[f_n(\xi) - \tilde{F}_n f_{n-1}(\xi) \right] = \tilde{h}_f R_n,$$

$$L_g \left[g_n(\xi) - \tilde{G}_n g_{n-1}(\xi) \right] = \tilde{h}_g R_n,$$

$$L_\phi \left[\phi_n(\xi) - \tilde{\Phi}_n \phi_{n-1}(\xi) \right] = \tilde{h}_\phi R_n,$$

$$L_\omega \left[\omega_n(\xi) - \tilde{\Omega}_n \omega_{n-1}(\xi) \right] = \tilde{h}_\omega R_n,$$

$$L_\varphi \left[\varphi_n(\xi) - \tilde{\varphi}_n \varphi_{n-1}(\xi) \right] = \tilde{h}_\varphi R_n,$$

$$L_\chi \left[\chi_n(\xi) - \tilde{\chi}_n \chi_{n-1}(\xi) \right] = \tilde{h}_\chi R_n.$$
\[
\begin{align*}
 &\hat{L}_n\left[\hat{\lambda}_n(\xi) - \nabla_n \hat{N}_{n-1}(\xi)\right] = \hat{h}_n \hat{R}_n, \\
 &\tilde{f}_n(0) = 0, \quad \tilde{f}_n(0) = 1, \quad \tilde{f}_n(\infty) = 0, \\
 &\tilde{g}_n(0) = 0, \quad \tilde{g}_n(\infty) = 0, \\
 &\tilde{\theta}_n(0) = 0, \quad \tilde{\theta}_n(\infty) = 0, \\
 &\tilde{\phi}_n(0) = 0, \quad \tilde{\phi}_n(\infty) = 0, \\
 &\tilde{\chi}_n(0) = 0, \quad \tilde{\chi}_n(\infty) = 0,
\end{align*}
\]

\[
\begin{align*}
 \hat{R}_{n} &= (1 + K)\hat{f}_{n-1}'' + \sum_{k=0}^{n-1} \tilde{f}_{n-1-k}'' \hat{f}_{n-1-k} - \alpha_1 \sum_{k=0}^{n-1} \left(2\tilde{f}_{n-1-k}' - \tilde{f}_{n-1-k}'' - \tilde{f}_{n-1-k}'\right) \\
 - \frac{2}{k^{2}} \hat{g}_{n-1} + K\tilde{g}_{n}'' - MF\tilde{f}_{n-1} + M\tilde{E} + \hat{\theta}_{n-1} - N\tilde{R}_{n-1} = 0,
\end{align*}
\]

\[
\begin{align*}
 \hat{R}_{n} &= \left(1 + K \frac{2}{2}\right)\hat{g}_{n-1}'' - \sum_{k=0}^{n-1} \tilde{g}_{n-1-k}'' \hat{f}_{k} + \sum_{k=0}^{n-1} \tilde{f}_{n-1-k}'' \hat{g}_{k} - K(2\tilde{g}_{n-1}'' + \tilde{f}_{n-1}''),
\end{align*}
\]

\[
\begin{align*}
 \hat{R}_{n} &= \left(1 + \frac{3}{4} Rd\right)\theta_{n-1}'' - Pr \sum_{k=0}^{n-1} \hat{\theta}_{n-1-k}'' + \sum_{k=0}^{n-1} \tilde{f}_{n-1-k}'' - PrS\tilde{f}_{n-1}'' + Pr \delta\hat{\theta}_{n-1} + M^2E\left(f_{n-1}'' + E^2 - 2Ef_{n-1}'\right),
\end{align*}
\]

\[
\begin{align*}
 \hat{R}_{n} &= \left(1 + \frac{3}{4} Rd\right)\phi_{n-1}'' - Sc \sum_{k=0}^{n-1} \hat{\phi}_{n-1-k}'' + \sum_{k=0}^{n-1} \tilde{f}_{n-1-k}'' \phi_{k} - ScQf_{n-1}'
\end{align*}
\]

\[
\begin{align*}
 \hat{R}_{n} &= Sc\pi \left(1 + \frac{3}{4} Rd\right) \phi_{n-1}'' - \frac{-E}{\left(1 + \frac{3}{4} Rd\right)},
\end{align*}
\]

\[
\begin{align*}
 \hat{R}_{n} &= \hat{\chi}_{n-1}''Lb \sum_{k=0}^{n-1} \tilde{\chi}_{n-1-k}' + \hat{\chi}_{k}' - Lb\tilde{f}_{n-1}'' - Pe \sum_{k=0}^{n-1} \tilde{\chi}_{n-1-k}'' \phi_{k} + \left(\Omega + \hat{\chi}_{n-1}'\right)\phi_{n-1}''.
\end{align*}
\]

For \(\hat{p} = 0 \) and \(\hat{p} = 1 \), we can write:

\[
\begin{align*}
 \hat{f}(\xi, 0) &= \hat{f}_0(\xi), \quad \hat{f}(\xi, 1) = \hat{f}(\xi), \\
 \hat{g}(\xi, 0) &= \hat{g}_0(\xi), \quad \hat{g}(\xi, 1) = \hat{g}(\xi), \\
 \hat{\theta}(\xi, 0) &= \hat{\theta}_0(\xi), \quad \hat{\theta}(\xi, 1) = \hat{\theta}(\xi), \\
 \hat{\phi}(\xi, 0) &= \hat{\phi}_0(\xi), \quad \hat{\phi}(\xi, 1) = \hat{\phi}(\xi), \\
 \hat{\chi}(\xi, 0) &= \hat{\chi}_0(\xi), \quad \hat{\chi}(\xi, 1) = \hat{\chi}(\xi).
\end{align*}
\]

When \(\hat{p} \) varies from 0 to 1, the solutions vary from initial to final. Using Taylor's series to expand the solutions: i.e.
Figure 2. (a) h-- curve for $f''(0)$. (b) h-- curve for $g'(0)$. (c) h-- curve for $\theta'(0)$. (d) h-- curve for $\phi'(0)$. (e) h-- curve for $\chi'(0)$.

a_1	M	$-f''(0)$	Present values
0.0	0.0	1.000000000	1.000000000
0.0	16.0	4.123105625	4.123105625
0.1	16.0	4.346134936	4.346134936
0.2	16.0	4.609772228	4.609772228
0.3	16.0	4.928053803	4.928053803
0.1	4.0	1.054092553	1.054092553
0.1	9.0	3.333333333	3.333333333
0.1	16.0	4.346134936	4.346134936

Table 1. Numerical comparison of the present values with Wakif et al. when $\lambda = Nr = Rb = K = E = 0.0$.

The series (73–77) converges by choosing $p = 1$, i.e.

$$\tilde{f}(\xi, \hat{p}) = \tilde{f}_0(\xi) + \sum_{n=1}^{\infty} \tilde{f}_n(\xi) \hat{p}^n, \quad \tilde{f}_n(\xi) = \frac{\partial^n \tilde{f}(\xi; \hat{p})}{\partial \hat{p}^n}\bigg|_{\hat{p}=0}$$ (73)

$$\tilde{g}(\xi, \hat{p}) = \tilde{g}_0(\xi) + \sum_{n=1}^{\infty} \tilde{g}_n(\xi) \hat{p}^n, \quad \tilde{g}_n(\xi) = \frac{\partial^n \tilde{g}(\xi; \hat{p})}{\partial \hat{p}^n}\bigg|_{\hat{p}=0}$$ (74)

$$\tilde{\theta}(\xi, \hat{p}) = \tilde{\theta}_0(\xi) + \sum_{n=1}^{\infty} \tilde{\theta}_n(\xi) \hat{p}^n, \quad \tilde{\theta}_n(\xi) = \frac{\partial^n \tilde{\theta}(\xi; \hat{p})}{\partial \hat{p}^n}\bigg|_{\hat{p}=0}$$ (75)

$$\tilde{\phi}(\xi, \hat{p}) = \tilde{\phi}_0(\xi) + \sum_{n=1}^{\infty} \tilde{\phi}_n(\xi) \hat{p}^n, \quad \tilde{\phi}_n(\xi) = \frac{\partial^n \tilde{\phi}(\xi; \hat{p})}{\partial \hat{p}^n}\bigg|_{\hat{p}=0}$$ (76)

$$\tilde{\chi}(\xi, \hat{p}) = \tilde{\chi}_0(\xi) + \sum_{n=1}^{\infty} \tilde{\chi}_n(\xi) \hat{p}^n, \quad \tilde{\chi}_n(\xi) = \frac{\partial^n \tilde{\chi}(\xi; \hat{p})}{\partial \hat{p}^n}\bigg|_{\hat{p}=0}$$ (77)

The series (73–77) converges by choosing $p = 1$, i.e.

$$f(\xi) = f_0(\xi) + \sum_{n=1}^{\infty} f_n(\xi)$$ (78)

$$g(\xi) = g_0(\xi) + \sum_{n=1}^{\infty} g_n(\xi)$$ (79)
\(\theta(\xi) = \theta_0(\xi) + \sum_{n=1}^{\infty} \theta_n(\xi) \), \hspace{1cm} (80)

\(\phi(\xi) = \phi_0(\xi) + \sum_{n=1}^{\infty} \phi_n(\xi) \), \hspace{1cm} (81)

Figure 3. (a) Flow profiles for \(f'(\xi) \), \(g(\xi) \), \(\theta(\xi) \), \(\phi(\xi) \), and \(\chi(\xi) \), when \(S = Q = B = 0.2 \). (b) Alteration in \(f'(\xi) \) via \(K \). (c) Alteration in \(g(\xi) \) via \(K \). (d) Alteration in \(\theta(\xi) \) via \(K \). (e) Alteration in \(\phi(\xi) \) via \(K \). (f) Alteration in \(\chi(\xi) \) via \(K \).
HAM convergence. HAM solution is operated to investigate the analytical solution of the present analysis. HAM is associated with the auxiliary parameters \hbar_f, \hbar_g, \hbar_θ, \hbar_ϕ, and \hbar_χ. These parameters are responsible to utilize and control the convergence area of the series solutions. The convergence areas of the velocity, micro-rotation, temperature, concentration, and motile density functions are $-0.1 \leq \hbar_f \leq 0.1$, $-0.75 \leq \hbar_g \leq 0.5$, $-0.5 \leq \hbar_\theta \leq -0.2$, $-0.020 \leq \hbar_\phi \leq -0.005$ and $-0.02 \leq \hbar_\chi \leq 0.05$ (see Fig. 2a–e).

\[
\tilde{\chi}(\xi) = \tilde{\chi}_0(\xi) + \sum_{n=1}^{\infty} \tilde{\chi}_n(\xi),
\]

\begin{align}
\text{(82)}
\end{align}

Figure 4. (a) Alteration in $f'(\xi)$ via Nr. (b) Alteration in $g(\xi)$ via Nr. (c) Alteration in $\theta(\xi)$ via Nr. (d) Alteration in $\phi(\xi)$ via Nr. (e) Alteration in $\chi(\xi)$ via Nr.

Figure 5. (a) Alteration in $f'(\xi)$ via Rb. (b) Alteration in $g(\xi)$ via Rb. (c) Alteration in $\theta(\xi)$ via Rb. (d) Alteration in $\phi(\xi)$ via Rb. (e) Alteration in $\chi(\xi)$ via Rb.
Validation of the present analysis
An analytical scheme called HAM has been focused for the solution of the flow problem. The present analysis has been compared with previously published results by Wakif et al.50, and Eldabe and Ouaf52 and found a great agreement (see Tables 1 and 2).

Results and discussion
In this section, variations in the flow profiles of binary fluid due to embedded parameters defined in Table 3, are displayed with the help of Figures, and discussed in detail. Figure 3a shows the flow profiles of the modeled problem. Here, we have verified the boundary conditions for $f'(\xi)$, $g(\xi)$, $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$. Figure 3b–f show the variation in $f'(\xi)$, $g(\xi)$, $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$ due to K. Here, it is found that the increasing micropolar constant increases the velocity and microrotation functions (see Fig. 3b,c). Physically the greater change in micropolar constant is associated with the fluid viscosity. The higher change in micropolar constants diminishes the binary fluid viscosity due to which the velocity function heightens. Consequently, an increasing impact in velocity function due to micropolar constants is depicted (see Fig. 3b). A similar impact of micropolar constant against microrotation function is shown as in Fig. 3c. In addition, the binary fluid has maximum viscosity when the micropolar constant converges to zero (i.e. $K = 0$). The decreasing impact in temperature, concentration, and motile density functions due to micropolar constant is shown in Figs. 3d–f. Actually, the higher change in micropolar constants reduces the viscosity of the nanoparticles of due to which the temperature and concentration of the nanoparticles reduces. Thus, decreasing impacts in temperature and concentration functions are depicted. A similar impact of micropolar constant against motile density function is depicted (see Fig. 3f). Figures 4a–e show the variation in $f'(\xi)$, $g(\xi)$, $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$ due to Nr. A decreasing impact in velocity
profile is depicted here. This impact is due to the buoyancy forces which lead the velocity function to decrease. However, the microrotation function increases from $0 \leq Nr \leq 1$ while a decreasing impact is depicted as $1 \leq Nr < \infty$. Furthermore, $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$ functions increase with greater Nr. Figure 5a–e show the variation in $f'(\xi)$, $g(\xi)$, $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$ due to Rb. The decreasing impact of Rb on $f'(\xi)$ and $g(\xi)$ is depicted (see Fig. 5a, b). Physically, higher values of Rb heighten the buoyancy forces which conclude the decreasing impact in $f'(\xi)$. However, $g(\xi)$ increases from $0 \leq Rb \leq 1$ while a decreasing impact is depicted as $1 \leq Rb < \infty$. Furthermore, $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$ increase with greater Rb. Figure 6a, b show the variation in $f'(\xi)$ via M in the absence and presence of E. $f'(\xi)$ reduces with greater M in the absence of E. The Lorenz Force which is greater with a larger magnetic field is obviously dependent on the magnetic field. The Lorenz force augments the frictional force in the absence of E, acting as a retarding force that opposes the flow of binary fluid. In the presence of E, the magnetic parameter has increasing impact on velocity profile (see Fig. 6b). Physically, E increases the body force which accelerates the flow velocity. Thus, an increasing conduct is observed here. A similar impact is depicted in 13. Figures 6c, d show the variation in $g(\xi)$ via M in the absence and presence of E. In the absence of E, a decreasing impact of M on $g(\xi)$ is depicted (see Fig. 6c). However, in the presence of E, magnetic field parameter has dual impact on $g(\xi)$ (see Fig. 6d). Figure 7a, b display the variation in $f'(\xi)$ and $g(\xi)$ via E. The greater E increases the velocity function whereas the microrotation function reduces with greater electric field parameter. With larger values of E, the velocity function boosts. Physically, the electric field acts as a decreasing force and lowering the fluid’s frictional strength and thereby increasing the fluid velocity. However, electric field has the opposite effect on microrotation function. Figure 8a–c denote the variation in $\theta(\xi)$, $\phi(\xi)$, and $\chi(\xi)$ via E.

Figure 7. (a) Alteration in $f'(\xi)$ via E. (b) Alteration in $g(\xi)$ via E.
thermal, mass, and motile density stratification parameters, respectively. Physically, the thermal stratification parameter increases the fluid density which results reduction in the temperature function. A decreasing impact of mass, and motile density stratification parameters are also depicted on concentration and motile density functions. Figure 9a–c show the variation in $\theta(\xi)$ due to R_d, E_c, and δ respectively. The influence of R_d on $\theta(\xi)$ is displayed in Fig. 9a. The greater thermal radiation increases the temperature function. Physically, the greater thermal radiation means production of more heat to the fluid flow system. Thus, the greater thermal radiation parameter heightens the temperature function. Figure 9b displays the inspiration of E_c on $\theta(\xi)$. The greater E_c increases the temperature function. Physically, the increasing dissipation improves the thermal conductivity of the binary fluid which consequently enhances the temperature boundary layer thickness. Figure 9c shows the influence of δ on $\theta(\xi)$. The greater δ increases $\theta(\xi)$. Physically, increasing δ releases energy to the fluid flow which accordingly heightens the thermal function. Thus, $\theta(\xi)$ increases with greater δ. Figure 10a–c represent the variation in $\phi(\xi)$ due to σ, E, and S_c respectively. The impact of σ on $\phi(\xi)$ is displayed in Fig. 10a. The greater σ reduces $\phi(\xi)$. Physically, the increasing chemical reaction results the thickening in a concentration boundary layer. With greater σ the term $\sigma (1 + \epsilon \theta)^n \exp \left(\frac{-E}{(1+\epsilon \theta)} \right)$ increases significantly. Thus, the greater chemical reaction parameter declines the concentration function. Figure 10b shows the impact of E on $\phi(\xi)$. $\phi(\xi)$ increases
with greater E. Actually, the greater activation energy heightens the thickness of mass transport boundary layer which consequently increases $\phi(\xi)$. Figure 10c specifies the deviation in $\phi(\xi)$ due to Sc. The greater Sc reduces $\phi(\xi)$. The Schmidt number has opposite relation with mass diffusivity which consequently reduces $\phi(\xi)$. Figure 11a,b show the variation in $\chi(\xi)$ due to Pe, and Lb respectively. The higher Pe reduces $\chi(\xi)$. Physically, the diffusivity of microorganisms declines with greater Pe which consequently reduces $\chi(\xi)$. Figure 11b shows the variation in $\chi(\xi)$ due to Lb. It is found that $\chi(\xi)$ reduces with greater Lb. Figures 12a–d specify the impacts of Nr, Rb, λ, and E on skin friction. The increasing Nr, Rb and E increases the skin friction whereas the increasing λ reduces the skin friction. Figures 13a,d specify the impacts of Nr, Rb, λ, and E on couple stress. The increasing Nr and Rb increases the couple stress whereas the increasing λ and E reduces the couple stress. Figures 14a–f specify the impacts of Ec, δ, K, Rd, M and S on Nusselt number. The increasing K, Rd, and Ec increases the Nusselt number whereas the increasing δ, S and M reduces the Nusselt number. Figure 15a–c specify the impacts of Ec, Sc, and Q on Sherwood number. The increasing Ec and Sc increases the Sherwood number whereas the increasing Q reduces the Sherwood number. Figure 16a–d specify the impacts of Pe, B, Lb and Ω on density number. The greater Lb increases the density number, while Pe, B and Ω have reverse impacts on density number.

Tables 4, 5, 6, 7 and 8 show the numerical values of $-f''(0)$, $g'(0)$, $\theta'(0)$, $\phi'(0)$, and $\chi'(0)$ via different embedded parameters. The outcomes are discussed in Figs. 12, 13, 14, 15, 16.

Conclusion

This analysis has been performed for electrically conducting MHD binary fluid containing nanoparticles and gyrotactic microorganisms through a stratified stretching sheet. The present analysis has been performed in the presence of electric and magnetic fields. An analytical scheme called HAM has been dedicated for the solution
of the flow problem. The present analysis is compared with previously published results and has found a great agreement. The final comments are listed as:

1. The presence and absence of an electric field has affected the binary fluid velocities due to the magnetic field.
2. The velocity and microrotation functions have escalated, while the temperature, concentration, and motile density functions have reduced via microrotation constant.
3. The buoyancy parameter and bioconvection Rayleigh number have reduced the velocity function, while a dual impression of buoyancy parameter and bioconvection Rayleigh number on microrotation function are depicted.
4. The thermal, mass, and density stratification parameters have reduced the temperature, concentration, and motile density functions.
5. The greater chemical reaction parameter and Schmidt number have reduced the concentration function while an opposite behavior is observed via activation energy parameter.
6. The higher bioconvection Peclet and Lewis number have reduced the motile density function.
7. The increasing buoyancy ratio parameter, bioconvection Rayleigh number, and electric parameter have increased the skin friction, whereas the increasing mixed convection parameter have reduced the skin friction.
8. The increasing buoyancy ratio parameter and bioconvection Rayleigh number have increased the couple stress, whereas the increasing mixed convection parameter and electric parameter have reduced the couple stress.

Figure 10. (a) Alteration in $\phi(\xi)$ via ω. (b) Alteration in $\phi(\xi)$ via E. (c) Alteration in $\phi(\xi)$ via Sc.
Figure 11. (a) Alteration in $\chi(\xi)$ via Pe. (b) Alteration in $\chi(\xi)$ via Lb.
Figure 12. (a) C_f versus Nr. (b) C_f versus Rb. (c) C_f versus λ. (d) C_f versus \overline{E}.
Figure 13.

(a) C_s versus N_r.

(b) C_s versus R_b.

(c) C_s versus λ.

(d) C_s versus \bar{E}.

Figure 13. (a) C_s versus N_r. (b) C_s versus R_b. (c) C_s versus λ. (d) C_s versus \bar{E}.
Figure 14. (a) ν versus Ec. (b) ν versus δ. (c) ν versus K. (d) ν versus Rd. (e) ν versus M. (f) ν versus S.
Figure 15. (a) Sh versus Ec. (b) Sh versus Q. (c) Sh versus Sc.
Figure 16. (a) Dn versus Pe. (b) Dn versus B. (c) Dn versus Lb. (d) Dn versus Ω.

Table 4. Numerical values of $-f''(0)$ via different embedded parameters.
Table 5. Numerical values of $g'(0)$ via different embedded parameters.

λ	N_{r}	R_{b}	E_{c}	$g'(0)$
0.1	0.1	0.1	0.1	0.106432
0.2	0.1	0.1	0.1	0.100075
0.3	0.1	0.1	0.1	0.094562
0.1	0.2	0.1	0.1	0.107527
0.1	0.4	0.1	0.1	0.109753
0.1	0.6	0.1	0.1	0.118474
0.1	0.1	0.2	0.1	0.106436
0.1	0.4	0.1	0.1	0.109292
0.1	0.6	0.1	0.1	0.116468
0.1	0.1	0.1	0.2	0.340543
0.1	0.1	0.1	0.3	0.335789
0.1	0.1	0.1	0.6	0.329064

Table 6. Numerical values of $\theta'(0)$ via different embedded parameters.

K	M	R_{d}	S	δ	E_{c}	$\theta'(0)$
0.1	0.1	0.1	0.1	0.1	0.1	1.225757
0.2	0.1	0.1	0.1	0.1	0.1	1.236580
0.3	0.1	0.1	0.1	0.1	0.1	1.246725
0.1	0.2	0.1	0.1	0.1	0.1	1.385975
0.1	0.4	0.1	0.1	0.1	0.1	1.347853
0.1	0.6	0.1	0.1	0.1	0.1	1.339841
0.1	0.1	0.2	0.1	0.1	0.1	1.546853
0.1	0.4	0.1	0.1	0.1	0.1	1.580637
0.1	0.6	0.1	0.1	0.1	0.1	1.625721
0.1	0.1	0.1	0.1	0.1	0.1	1.431547
0.1	0.1	0.1	0.2	0.1	0.1	1.414789
0.1	0.1	0.1	0.3	0.1	0.1	1.397825
0.1	0.1	0.1	0.1	0.1	0.1	1.653368
0.1	0.1	0.1	0.1	0.2	0.1	1.636795
0.1	0.1	0.1	0.3	0.1	0.1	1.613404
0.1	0.1	0.1	0.1	0.1	0.1	1.357437
0.1	0.1	0.1	0.3	0.1	0.1	1.335367

Table 7. Numerical values of $\phi'(0)$ via different embedded parameters.

Sc	Q	E_{c}	$\phi'(0)$
0.1	0.1	0.1	0.357446
0.2	0.1	0.1	0.359881
0.3	0.1	0.1	0.360563
0.1	0.2	0.1	0.247463
0.1	0.3	0.1	0.223853
0.1	0.1	0.1	0.115788
0.1	0.2	0.1	0.125367
0.1	0.3	0.1	0.136352
Table 8. Numerical values of $\chi'(0)$ via different embedded parameters.

Lb	Pe	B	Ω	$\chi'(0)$
0.1	0.1	0.1	0.1	0.368757
0.2	0.1	0.1	0.1	0.379642
0.3	0.1	0.1	0.1	0.386325
0.1	0.1	0.1	0.1	0.224678
0.1	0.2	0.1	0.1	0.214795
0.1	0.3	0.1	0.1	0.204526
0.1	0.1	0.1	0.1	0.904324
0.1	0.1	0.2	0.1	0.896557
0.1	0.1	0.3	0.1	0.885735
0.1	0.1	0.1	0.1	0.886474
0.1	0.1	0.1	0.2	0.868522
0.1	0.1	0.1	0.3	0.846723

References

1. Choi, S.U.S., & Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. 1995 Int. Mech. Eng. Congr. Exhib. San Fr. CA (United States), 12–17 Nov 1995. (1995). https://digital.library.unt.edu/ark:/67531/metadc671104/. Accessed October 2, 2021.
2. Buongiorno, J. Convective transport in nanofluids. J. Heat Transfer. 128, 240–250. https://doi.org/10.1115/1.2150834 (2006).
3. Hsiao, K. L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 98, 850–861. https://doi.org/10.1016/j.applthermaleng.2015.12.138 (2016).
4. Turkyilmazoglu, M. Flow of nanofluid plane wall jet and heat transfer. Eur. J. Mech. - B/Fluids. 59, 18–24. https://doi.org/10.1016/J.EUROMECHFLU.2016.04.007 (2016).
5. Sheikholeslami, M. & Bhatti, M. M. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. J. Braz. Soc. Mech. Sci. Eng. 39, 2535–2560. https://doi.org/10.1007/S40430-017-0727-7 (2017).
6. Ahmed, J., Khan, M. & Ahmad, I. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J. Mol. Liq. 287, 110853. https://doi.org/10.1016/J.MOLLIQ.2019.04.130 (2017).
7. Sandeep, N. Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field. Alexandria Eng. J. 56, 263–269. https://doi.org/10.1016/J.AEJ.2016.12.019 (2017).
8. Sheikholeslami, M., Nimafar, M. & Ganji, D. Nanofluid heat transfer between two pipes considering Brownian motion using AGM. Alexandria Eng. J. 56, 277–283. https://doi.org/10.1016/J.AEJ.2017.01.032 (2017).
9. Shahzadi, I. & Nadeem, S. Impinging of metallic nanoparticles along with the slip effects through a porous medium with MHD. J. Braz. Soc. Mech. Sci. Eng. 39, 1039–1049. https://doi.org/10.1007/S40430-017-0866-X (2017).
10. Sheikholeslami, M. & Bhatti, M. M. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int. J. Heat Mass Transf. 111, 1039–1049. https://doi.org/10.1016/J.HEATMASTRANSFER.2017.04.070 (2017).
11. Raza, J., Farooq, M., Mebarek-Oudina, F. & Mahanthesh, B. Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis. Multidisip. Model. Mater. Struct. 1, 1 (2019).
12. Saadat, N., Khan, A., Akbar, M. & Nadeem, S. Nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J. Therm. Anal. Calorim. 129, 1043–1049. https://doi.org/10.1002/JTAL.21539 (2019).
13. Siavashi, M., Karimi, K., Xiong, Q. & Doranehgard, M. H. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 8, 035102. https://doi.org/10.1063/1.5019218 (2018).
14. Gholamalipour, P., Siavashi, M. & Doranehgard, M. H. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. Int. Commun. Heat Mass Transf. 109, 104367. https://doi.org/10.1016/J.HEATMASTRANSFER.2019.104367 (2019).
15. Goshayeshi, H. R., Safaei, M. R., Goodarzi, M. & Dahari, M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 301, 1218–1226. https://doi.org/10.1016/J.POWTEC.2016.08.007 (2016).
16. Shadloo, M. S., Kimiaeifar, A. & Bagheri, D. Series solution for heat transfer of continuous stretching sheet immersed in a micropolar fluid in the existence of radiation. Int. J. Numer. Methods Heat Fluid Flow. 23, 289–304. https://doi.org/10.1108/1468553131293470 (2015).
17. Mabood, F., Ibrahim, S. M., Rashidi, M. M., Shadloo, M. S. & Lorenzini, G. Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int. J. Heat Mass Transf. 93, 674–682. https://doi.org/10.1016/J.HEATMASTRANSFER.2015.10.014 (2016).
18. Rashidi, M. M., Nasiri, M., Shadloo, M. S. & Yang, Z. Entropy Generation in a Circular Tube Heat Exchanger Using Nanofluids. Effects of Different Modeling Approaches. 38, 853–866. https://doi.org/10.1016/J.IMECHE.G.2016.12.11916 (2017).
19. Acharya, N., Maity, S. & Kundu, P. K. Differential transformed approach of unsteady chemically reactive nanofluid flow over a bidirectional stretched surface in presence of magnetic field. Heat Transf. 49, 3917–3942. https://doi.org/10.1002/HTJ.21815 (2020).
20. Saidj, T., Sagheer, M., Hussain, S. & Bilal, M. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 8, 035102. https://doi.org/10.1063/1.5019218 (2018).
21. Khan, S. U., Waqas, H., Shehzad, S. A. & Imran, M. Theoretical analysis of tangent hyperbolic nanoparticles with combined electrical MHD, activation energy and Wu’s slip feature: a mathematical model. Phys. Scr. 94, 125211. https://doi.org/10.1088/1402-4896/AB399F (2019).
22. Waqas, H., Khan, S. U., Shehzad, S. A. & Imran, M. Significance of the nonlinear radiative flow of microparticle nanoparticles over porous surface with a gyrotactic microorganism, activation energy, and Nield’s condition. Heat Transf. Res. 48, 3230–3256. https://doi.org/10.1002/HTJ.21539 (2019).
Hayat, T., Riaz, R., Aziz, A. & Alsaedi, A. Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a non-linear stretching surface with convective heat and mass conditions. Phys. A Stat. Mech. & Appl. 549, 1. https://doi.org/10.1016/J.PHYSA.2019.124006 (2020).

Awais, M., Kumam, P., Memoona, A., Ali, Z. & Shah, H. A. Impact of activation energy on hyperbolic tangent nanofluid with mixed convection rheology and entropy optimization. Alexandria Eng. J. 60, 1123–1135. https://doi.org/10.1016/J.AEJE.2020.10.036 (2021).

Ali, B., Nie, Y., Hussain, S., Manan, A. & Saqiq, M. T. Unsteady magneto-hydrodynamic transport of rotating Maxwell nanofluid flow on a stretching sheet with Cattaneo-Christov double diffusion and activation energy. Therm. Sci. Eng. Prog. 20, 100720. https://doi.org/10.1016/J.TSEP.2020.100720 (2020).

Debnab, W., Tassaddiq, A., Shah, Z. & Dawar, A. Hall Effect on Radiative Casson Fluid Flow with Chemical Reaction on a Rotating Cone through Entropy Optimization. Entropy 22, 480. https://doi.org/10.3390/ENT20200480 (2020).

Reddy, S. R. R. & P. Bala Anki Reddy, K. Bhattacharyya. Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring-Powell nanofluid flow over a sliding sheet with binary chemical reaction and Arrhenius activation energy. Adv. Powder Technol. 30, 3203–3213. https://doi.org/10.1016/J.APT.2019.09.029 (2019).

Acharya, N. Spectral quasi linearization simulation of radiative nanofluidic transport over a bended surface considering the effects of multiple convective conditions. Eur. J. Mech. - B/Fluids. 84, 139–154. https://doi.org/10.1016/J.EURMECHFLU.2020.06.004 (2020).

Dawar, A., Shah, Z., Tassaddiq, A., Islam, S. & Kumam, P. Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip. Case Stud. Therm. Eng. 25, 100870. https://doi.org/10.1016/J.CSTE.2021.100870 (2021).

Dawar, A., Shah, Z. & Islam, S. Mathematical modeling and study of MHD flow of Williamson nanofluid over a non-linear stretching plate with activation energy. Heat Transf. 50, 2558–2570 (2021).

Kuznetsov, A. V. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 57, 1421–1425. https://doi.org/10.1016/J.ICHMT.2018.08.015 (2010).

Kuznetsov, A. V. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oycytactic microorganisms: oscillatory instability. Nanoscale Res. Lett. 61, 1–13. https://doi.org/10.1186/1556-276X-6-100 (2011).

Xun, S., Zhao, J., Zheng, L. & Zhang, X. Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity. Int. J. Heat Mass Transf. 111, 1001–1006. https://doi.org/10.1016/J.IJHEATMASstr.2017.04.074 (2017).

Abkar, N. S. & Khan, Z. H. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. J. Magn. Magn. Mater. 410, 72–80. https://doi.org/10.1016/J.JMMM.2016.02.075 (2016).

Raju, C. S. K., Hoque, M. M. & Sivasankar, T. Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv. Powder Technol. 28, 575–583. https://doi.org/10.1016/J.APT.2016.10.026 (2017).

Basir, M. F. M., Uddin, M. J., Beg, O. A. & Ismail, A. I. M. Influence of Stefan blowing on nanofluid flow submersed in microorganisms with leading edge accretion or ablation. J. Brazil. Soc. Mech. Sci. Eng. 39, 4519–4532. https://doi.org/10.1007/S40430-017-0877-7 (2017).

Zhao, M., Xiao, Y. & Wang, S. Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms. Int. J. Heat Mass Transf. 126, 95–102. https://doi.org/10.1016/J.IJHEATMASstr.2018.05.030 (2018).

Acharya, N., Bag, R. & Kundu, P. K. Unsteady bioconvecive squeezing flow with higher-order chemical reaction and second-order slip effects. Heat Transf. 30, 5358–5362. https://doi.org/10.1002/HTJ.22137 (2021).

Khan, S. U., Raff, A., Sfahzan, S. A., Abbas, Z. & Iaved, T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys. A Stat. Mech. Its Appl. 527, 121179. https://doi.org/10.1016/J.PHYSA.2019.121179 (2019).

Alzahrani, E. O., Shah, Z., Dawar, A. & Malebary, S. J. Hydromagnetic mixed convective third grade nanomaterial containing gyrotactic microorganisms toward a horizontal stretched surface. Alexandria Eng. J. 58, 1421–1429. https://doi.org/10.1016/J.AEJE.2019.11.013 (2019).

Hayat, T., Muhammad, T., Alsaedi, A. & Mustafa, M. A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo–Christov Heat Flux. PLoS ONE 11, e0155185. https://doi.org/10.1371/JOURNAL.PONE.0155185 (2016).

Alghamdi, M. On Magnetohydrodynamic Flow of Viscoelastic Nanofluids with Homogeneous-Heterogeneous Reactions. Coatings 10, 55. https://doi.org/10.3390/COATINGS10010055 (2020).

Acharya, N. Spectral quasi linearization simulation on the radiative nanofluidic flow over a permeable inclined spinning disk considering the existence of heat source/sink. Appl. Math. Comput. 411, 126457. https://doi.org/10.1016/J.ACMC.2021.126457 (2021).

Zaib, A., Khan, U., Wakif, A. & Zaydan, M. Numerical Entropic Analysis of Mixed MHD Convective Flows from a Non-Isothermal Vertical Flat Plate for Radiative/Tangent Hyperbolic Blood Biofluids Conveying Magnetite Ferroparticles: Dual Similarity Solutions. J. Non-Newtonian Fluid Mech. 267, 5311–5330. https://doi.org/10.1016/J.JNNFM.2020.04.039X (2020).

Wakif, A., Animasaun, I. L., Khan, U., Shah, N. A. & Thumma, T. Dynamics of radiative-reactive Walters-b fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force. Phys. Scr. https://doi.org/10.1088/1402-4866/AC2B4B (2021).

Acharya, N., Das, K. & Kundu, P. K. Framing the effects of solar radiation on magnetohydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms. J. Mol. Liq. 222, 28–37. https://doi.org/10.1016/J.MOLLIQ.2016.07.023 (2016).

Eldabe, N. T. & Ouaf, M. E. M. Chebyshev finite difference method for heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching surface with Ohmic heating and viscous dissipation. Appl. Math. Comput. 177, 561–571. https://doi.org/10.1016/J.ACMC.2005.07.071 (2006).

Aliy, G. & Khan, N. Optimal Homotopy Asymptotic Solution for Cross-Diffusion Effects on Slip Flow and Heat Transfer of Electrical MHD Non-Newtonian Fluid Over a Slendering Stretching Sheet. Int. J. Appl. Comput. Math. 53(5), 1–22. https://doi.org/10.1007/S40819-019-9679-Y (2019).
Acknowledgements
“The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. Moreover, this research project is supported by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005”.

Author contributions
A.D, A.S and Z.S modeled and solved the problem. A.D and A.S wrote the manuscript. A.D, S.I, PK, and W.K contributed in the numerical computations and plotting the graphical results. A.D, A. S and P.K work in the revision of the manuscript. The corresponding author finalized the manuscript after its internal evaluation.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.K. or P.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021