Monte Carlo inference via greedy importance sampling

Dale Schuurmans and Finnegan Southey
Department of Computer Science
University of Waterloo
{dale,fdjsouth}@cs.uwaterloo.ca

Abstract

We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few simple inference tasks and show that it can improve the inference quality of standard MCMC methods, including Gibbs sampling, Metropolis sampling, and Hybrid Monte Carlo. This paper extends previous work which showed how greedy importance sampling could be correctly realized in the one-dimensional case.

1 Introduction

It is well known that general inference and learning with Bayesian networks is computationally hard [DL93, Rot93], and it is therefore necessary to consider restricted architectures [Pea88], or heuristic and approximate algorithms to perform these tasks [JGJS98, Fre98, DL97]. Among the most convenient and successful techniques are stochastic methods which are guaranteed to converge to a correct solution in the limit of large random samples [Mac98, Nea96, Tan93, SP90, Gew89]. These methods can be easily applied to complex inference problems that overwhelm deterministic approaches.

The family of stochastic inference methods can be grouped into the independent Monte Carlo methods (importance sampling and rejection sampling [Mac98, FD94, SP90, Gew89, Hen88]) and the dependent Markov Chain Monte Carlo (MCMC) methods (Gibbs sampling, Metropolis sampling, and Hybrid Monte Carlo) [Mac98, GRS96, Nea93, Tan93]. The goal of all these methods is to simulate drawing a random sample from a target distribution $P(x)$ (generally defined by a Bayesian network or graphical model) that is hard to sample from directly.

In this paper we investigate a simple modification of importance sampling that demonstrates some advantages over independent and dependent-Markov-chain methods. The idea is to explicitly search for important regions in a target distribution P when sampling from a simpler proposal distribution Q. Previous work [Sch99] showed that search could be incorporated in an importance sampler while still maintaining unbiasedness. However, these results were primarily restricted to the one-dimensional case. In this paper we extend these results by introducing a new estimator that can be successfully applied to multidimensional problems, as well as continuous problems.

The motivation behind our approach is simple: Importance sampling simulates drawing a sample from a target distribution P by drawing a sample from a simpler "proposal" distribution Q and then weighting the sample points $x_1, ..., x_t$ according to $w(x_i) = P(x_i)/Q(x_i)$ to ensure that the expected weight of any point x is $P(x)$. The technique is effective when Q approximates P over most of the domain. However, importance sampling fails when Q misses high probability regions of P and systematically yields sample points with small weights. This situation is illustrated in Figure 1. In these cases, the sample will almost always consist of low weight points, but with small probability it will contain some very high weight points— and this combination causes any estimator based on these samples to have high variance (since the effective sample size is reduced). It is therefore critical to obtain sample points from the important regions of P. MCMC methods such as the Metropolis algorithm and Hybrid Monte Carlo attempt to overcome this difficulty by biasing a local random search towards higher probability regions while preserving the asymptotic "fair sampling" properties of the techniques [Nea93, Nea96].

Here we investigate a simpler direct approach where one draws points from a proposal distribution Q but then explicitly searches in P to find points in important regions. The main challenge is to maintain correctness (i.e., unbi-
Importance sampling

- Draw x_1, \ldots, x_n independently according to Q.
- Weight each sample point x_i by $w(x_i) = \frac{P(x_i)}{Q(x_i)}$.
- For a random variable of interest, f, estimate $E_P[f(x)]$ by $\hat{f} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)w(x_i)$.

Figure 2: Importance sampling procedure

$E_P[f(x)]$. Usually the random variable f is simple, like the indicator of some event, but the distribution P is usually not in a form that we can sample from efficiently.

Importance sampling is a useful technique for estimating $E_P[f(x)]$ when P cannot be sampled from directly. The idea is to draw independent points x_1, \ldots, x_n according to a simpler proposal distribution Q, which can be sampled from efficiently, but then weight these points according to $w(x) = P(x)/Q(x)$. Assuming that we can evaluate $P(x)$ at individual sample points, the weighted sample can be computed and used to estimate desired expectations; as shown in Figure 2. The correctness (i.e., unbiasedness) of this procedure is easy to establish. Given a target random variable f with the expected value under P of $E_{P(x)}[f(x)] = \sum_{x \in X} f(x)P(x)$, we can determine that the expected weighted value of f under Q is $E_{Q(x)}[f(x)]w(x) = \sum_{x \in X} f(x)w(x)Q(x) = \sum_{x \in X} f(x)P(x)Q(x) = \sum_{x \in X} f(x)P(x) = E_{P(x)}[f(x)]$, thus yielding an unbiased estimate.1

Unfortunately, for standard inference problems in Bayesian networks it is usually not possible to implement this procedure directly. The problem is that assigning the weights requires the ability to evaluate $P(x)$ at chosen points x, and in Bayesian networks this probability usually corresponds to $P_{BN}(x|e)$ for a vector of observation variables x given evidence variables e. In general, it is not possible to efficiently compute [Coo90] or even approximate [Rot93, DL93] these quantities. However, it is possible to apply a generalized algorithm to attempt inference in these cases. Figure 3 shows the “indirect importance sampling” procedure, which does not assign sample weights in the desired form, but rather assigns indirect weights $u(x)$ that are only a fixed constant multiple β of the desired ratio, i.e., $u(x) = \beta P(x)/Q(x)$, where β need not be known a priori. Here we only need to be able to compute $u(x)$ without having to determine β directly. This relaxation permits efficient calculation of the desired weights in Bayesian network inference, and results in a procedure that is known as the “likelihood weighting” algorithm [SP90]. For example, when evidence is strictly at the leaves, the likelihood weighting proposal distribution corresponds to the prior $Q(x) = P_{BN}(x)$ and the indirect weights are given by $u(x) = P_{BN}(e|x)$, which is easily computed from

1We find it advantageous to first present the discrete case for the purposes of clarity. We consider the continuous case later.
"Indirect" importance sampling (likelihood weighting)

- Draw \(x_1, \ldots, x_n \) independently according to \(Q \).
- Weight each sample point \(x_i \) by \(u(x_i) = \beta P(x_i) \).
- For a random variable of interest, \(f \), estimate
 \[
 \hat{f} = \frac{\sum_{i=1}^{n} f(x_i)u(x_i)}{\sum_{i=1}^{n} u(x_i)}.
 \]

Figure 3: Indirect importance sampling procedure

The drawback of the indirect procedure is that it is not unbiased at small sample sizes. Rather it only becomes unbiased in the large sample limit. To establish the asymptotic correctness of indirect importance sampling, note that we estimate \(E_{P(x)} f(x) \) by the weighted average of \(f \) divided by the sum of indirect weights (Figure 3). It is easy to prove this estimate becomes unbiased because the two weighted averages \(\frac{1}{n} \sum_{i=1}^{n} f(x_i)u(x_i) \) and \(\frac{1}{n} \sum_{i=1}^{n} u(x_i) \) converge to \(\beta E_{P(x)} f(x) \) and \(\beta \) respectively, and thus \(\hat{f} \to E_{P(x)} f(x) \) (under broad technical conditions [Gew89]). For the extensions we discuss below it will always be possible to generalize them in a similar manner so that they can be applied to Bayesian network inference. However, to keep the presentation simple we will focus on the simple version of importance sampling described in Figure 2, and establish unbiasedness for that case.

3 Generalized importance sampling

As previously discussed, importance sampling is an effective estimation technique when \(Q \) approximates \(P \) over most of the domain, but it fails when \(Q \) misses high probability regions of \(P \) (and therefore systematically yields samples with small weights). This problem can occur in Bayesian network inference whenever the evidence is unlikely under the prior distribution, because this causes likelihood weighting to use a proposal distribution that systematically generates points with small weights. For example, when evidence is strictly at the leaves, likelihood weighting uses the proposal distribution \(Q(x) = P_{BN}(x) \), which guarantees that the indirect weights \(u(x) = P_{BN}(e|x) \) will almost always be small. To overcome this problem it is critical to obtain data points from the important regions of \(P \). Our goal is to avoid generating systematically underweight samples by explicitly searching for significant regions in the target distribution \(P \). To do this, and maintain the unbiasedness of the resulting procedure, we develop a simple generalization of importance sampling that can be proved correct.

Consider a procedure where instead of sampling individual points we sample deterministic blocks of points. That is, to each domain point \(x_i \) associate a fixed block \(B_i = \{ x_{i,1}, \ldots, x_{i,b_i} \} \) \textit{a priori}. When \(x_i \) is drawn from the proposal distribution \(Q \) we use it to recover the block \(B_i \) and then add these points to the sample. (We make no restriction on the structure of the blocks, other than they be finite—blocks can overlap and need not contain their initiating \(x_i \)—however we do require that each domain point \(x_i \) deterministically generate the same block \(B_i \).) In this scheme, the final sample is built out of independently sampled blocks of points.

The real issue is how to weight the points. To do this we introduce an auxiliary weighting scheme. For each pair of points \(x_i, x_j \) define the indicator \(I_{ij} \) such that \(I_{ij} = 1 \) if \(x_j \in B_i \) and \(I_{ij} = 0 \) if \(x_j \notin B_i \). Then for every point \(x_j \) appearing in a block \(B_i \) (initiated by \(x_i \)) we associate a nonnegative weight \(\alpha_{ij} \). (Here we think of \(x_i \) as the initiating point and \(x_j \) as one of the successors in its block.) The \(\alpha_{ij} \) weights can be more or less arbitrary except that they must be nonnegative and satisfy the constraint

\[
\sum_{x_i \in X} \alpha_{ij} I_{ij} = 1 \quad (1)
\]

for every \(x_j \). That is, for each destination point \(x_j \), the total of the incoming \(\alpha \)-weight has to sum to 1. (We will see below how this can easily be arranged in real procedures.) Note that a particular point \(x_j \) might appear in several blocks, but this will be of no concern as long as the above constraint is satisfied. To compute the final weight of a point \(x_j \) in a sampled block \(B_i \) we use \(w_i(x_j) = \frac{P(x_j)}{Q(x_j)} \alpha_{ij} \).

In summary, the generalized importance sampling procedure (Figure 4) draws initial points \(x_i \) from \(Q \), builds a sample out of the corresponding blocks \(B_i \), and weight the individual points \(x_j \in B_i \) by \(w_i(x_j) = \frac{P(x_j)}{Q(x_j)} \alpha_{ij} \). Although only loosely constrained in terms of the block structure and auxiliary weighting scheme, it turns out that this procedure always yields an unbiased estimate of \(E_{P(x)} f(x) \) for any random variable of interest, \(f \). To prove this, consider the expected weighted value of \(f \) when sampling initiating points \(x_i \) under \(Q \)

\[
E_{Q(x_i)} \left[\sum_{x_j \in B_i} f(x_j)w_i(x_j) \right]
\]
Thus yielding an unbiased estimate.

This proof is remarkably simple and yet has general implications. One important property of this argument is that it does not depend on how the block decomposition is chosen or how the auxiliary weights are set, so long as they satisfy the above constraints. That is, we could fix any block decomposition and auxiliary weighting scheme, even ones that depended on the target distribution \(P \), without affecting the correctness of the procedure. Intuitively, this holds because once the block structure and weighting scheme are established, unbiasedness is achieved by randomly sampling blocks and assigning fair weights to the points, regardless of the set up. (Of course, we need the blocks to be finite to be able to implement the procedure.)

The generality of this outcome allows us to contemplate alternative sampling procedures that explicitly attempt to construct blocks that have high weight points. We can then use the sampling procedure outlined in Figure 4 to yield unbiased estimates for any random variable \(f \).

4 Greedy importance sampling

It is well known that the optimal proposal distribution for regular importance sampling is just \(Q^*(x) = |f(x)P(x)|/\sum_{x \in X} |f(x)P(x)| \) when estimating an expectation \(E_P(f(x)) \) (which minimizes the variance of the estimate [Eva91, Rub81]). In searching for significant regions in the domain it would appear that one should seek points that have a high value of \(|f(x)P(x)| \) not just \(P(x) \). Our greedy search procedures, therefore, search for points that maximally increase the objective \(|f(x)P(x)| \). In the discrete case we examine a set of immediate neighbors and take a greedy step.

The “greedy” importance sampling procedure outlined in Figure 5 first draws an initial point \(x_1 \) from \(Q \) and then conducts a greedy search in the direction of maximum

\[
\begin{align*}
&= \sum_{x_1 \in X} \sum_{x_2 \in B_1} f(x_2)w_1(x_2)Q(x_1) \\
&= \sum_{x_1 \in X} \sum_{x_2 \in B_1} f(x_2)P(x_2)Q(x_1) \\
&= \sum_{x_1 \in X} \sum_{x_2 \in B_1} f(x_2)P(x_2)\alpha_{ij} \\
&= \sum_{x_1 \in X} I_{ij}f(x_1)P(x_1)\alpha_{ij} \\
&= \sum_{x_1 \in X} f(x_1)P(x_1) \sum_{x_1 \in X} I_{ij} \alpha_{ij} \\
&= \sum_{x_1 \in X} f(x_1)P(x_1) = E_P(f(x))
\end{align*}
\]

“Greedy” importance sampling

- Draw \(x_1, \ldots, x_n \) independently from \(Q \).
- For each \(x_i \), let \(x_{i+1} = x_i \):
 - Compute block \(B_i = \{x_{i+1}, x_{i+2}, \ldots, x_{i+m}\} \) by taking local search steps in the direction of maximum \(|f(x)P(x)| \) until a local maximum or \(m - 1 \) steps.
 - Weight each point \(x_j \in B_i \) by \(w_i(x_j) = \frac{f(x_j)Q(x_j)}{Q(x_j)\alpha_{ij}} \) where \(\alpha_{ij} \) is defined in (2) below.
- Create the final sample from the blocks of points \(x_1, x_2, \ldots, x_{i+1}, \ldots, x_m \).
- For a random variable, \(f \), estimate \(E_P(f(x)) \) by \(\hat{f} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} f(x_i,k)w_i(x_i,k) \).

Figure 5: “Greedy” importance sampling procedure

\[
|f(x)P(x)| \text{ among local neighbors, until either } m - 1 \text{ steps have been taken or a local maximum is encountered. (To break ties we employ a deterministic policy that prevents loops.) A single "block" in the final sample is comprised of a complete sequence captured in one ascending search.}
\]

This procedure is easy to implement in principle. The only challenge is finding ways to assign the auxiliary weights \(\alpha_{ij} \) so that they satisfy the constraint (1). That is, we require that the total incoming \(\alpha \)-weight to any domain point \(x \) be exactly 1. Note that, in principle, to verify (1) for a domain point \(x \), we have to consider every search path that starts at some other point \(x_1 \) and passes through \(x_2 \) within \(m - 1 \) steps. If our search is deterministic (which we assume here) the set of search paths entering \(x \) will form a tree in general. Let \(T_j \) denote the tree of points that lead to \(x \) and let \(\alpha(T_j) = \sum_{x \in T_j} \alpha_{ij} \). This tree will have depth at most \(m \) given the bound on search length. It turns out that it is easy to assign \(\alpha \)-weights to ensure \(\alpha(T_j) = 1 \) using the following recursive scheme.

Fix a parameter \(b \) which serves as a guess of the typical “inward” branching factor of trees in the domain. A complete balanced tree of depth \(m \) with inward branching factor \(b \) will have a number of nodes equal to

\[
S_b = 1 + b + b^2 + \cdots + b^{m-1} = \frac{b^m - 1}{b - 1}
\]

If \(T_j \) were a complete and balanced tree then we could assign a weight \(\alpha_{ij} = 1/S_b \) for every \(x_i \in T_j \) and trivially satisfy the constraint (1). However, \(T_j \) need not be balanced and its internal nodes might have different branching factors. Moreover, we must be able to compute the weights on-line when conducting a search from a single initial point \(x_1 \). Thus, to assign the \(\alpha \)-weights we employ the following local correction scheme: Given a start node \(x_1 \) and a search path \(x_i, x_{i+1}, \ldots, x_{i+k} = x_j \) from \(x_i \) to \(x_j \), we assign an auxiliary weight \(\alpha_{ij} \) by

\[
\alpha_{ij} = \begin{cases}
\beta_{ij} \frac{S_b}{S_b - k} & \text{if } b_1 \neq 0 \\
\beta_{ij} \frac{S_b - k + 2}{S_b} & \text{if } b_1 = 0
\end{cases}
\]

(2)
\[\beta_{ij} = \begin{cases} \frac{1}{b_i b_{i+1} \cdots b_{i+k}} & \text{if } i = j \\ \text{otherwise} & \end{cases} \] (where \(x_{i+k} = x_j \))

where \(b_{i+\ell} \) denotes the inward branching factor of node \(x_{i+\ell} \). This scheme reflects the principle that a node \(x_i \) at a distance \(k \) from the root of \(T_j \) takes responsibility for a complete balanced subtree of height \(m-(k-1) \) below \(x_i \).

It is easy to show that assigning auxiliary weights in this way preserves the desired constraint \(\alpha(T_j) = 1 \). The proof is by induction on the level of the subtrees rooted at internal nodes \(x_i \in T_j \). Let \(T_{ij} \) denote the subtree of \(T_j \) rooted at \(x_i \). We establish that for subtrees at levels \(\ell = 1, 2, \ldots, m \) (moving from the leaves up) that our system of auxiliary weights satisfies the invariant

\[\alpha(T_{ij}) = \beta_{ij} \frac{S_{b,t}}{S_{b,m}} \] (3)

Once this is established, it will trivially follow that \(\alpha(T_j) = \alpha(T_{ij}) = \beta_{ij} \frac{S_{b,t}}{S_{b,m}} = 1 \).

For the base case note that for a subtree \(T_{ij} \) at level 1 (i.e., a leaf) we have \(T_{ij} = \{x_i\} \) and hence \(\alpha(T_{ij}) = \alpha_{ij} = \beta_{ij} / S_{b,m} = \beta_{ij} S_{b,1} / S_{b,m} \), which satisfies (3). Now assume as an induction hypothesis that (3) holds for trees of \(/3;j/3;S_{b,m} \) rooted at \(x_i \). We establish that for subtrees at levels \(\ell = 1, 2, \ldots, m \) (moving from the leaves up) that our system of auxiliary weights satisfies the invariant

\[\alpha(T_{ij}) = \beta_{ij} \frac{S_{b,t}}{S_{b,m}} \] (3)

which satisfies the desired invariant (3).

Thus, we have a general procedure for conducting an explicit search in general spaces, where search paths can merge, and yet our weighting scheme still correctly compensates and yields unbiased estimates.

5 Experiments

To demonstrate the greedy method we conducted a series of experiments in order to gain an understanding of its performance relative to standard techniques. Given the unbiasedness of the candidate methods, the main issue is to assess the variance of the estimators. To measure the performance of the various techniques, we gathered their mean squared error, bias and variance over 1000 repetitions of a given problem. We use root mean squared error (rmse), absolute bias, and standard deviation to give an intuitive measure of an estimator's effectiveness. The methods we compared were greedy importance sampling (GIS), direct sampling from the target distribution (DS), standard importance sampling (IS), rejection sampling (RS), and Metropolis sampling [Naa93, Naa96]. For Metropolis sampling we used a uniform neighborhood proposal distribution.

The first series of experiments we conducted was on simple one-dimensional problems that varied the relationship between \(P, Q \) and \(f \), in order to test the basic correctness of our method. Figure 6 shows that GIS strongly outperforms the other methods across a range of problems in this setting. Interestingly, these experiments also show that it is not always best to sample directly from the target distribution \(P \) when the random variable \(f \) has a substantially different structure. We also tested GIS on a simple multivariate problem, and Table 1 shows that GIS handles multidimensional problems quite well in this simple case.

\(t \)	DS	GIS	IS	Met
100	0.0002	0.0159	0.0848	15.6036
	0.1003	0.1781	0.3477	13.9486
	0.1003	0.1877	0.3579	20.9293
200	0.0013	0.0013	0.0410	18.5112
	0.0696	0.1303	0.2183	13.4202
	0.0696	0.1303	0.2221	22.8641
500	0.0007	0.0013	0.0160	21.7949
	0.0439	0.0819	0.1324	12.7147
	0.0439	0.0819	0.1333	25.2326
700	0.0014	0.0040	0.0110	24.7202
	0.0375	0.0728	0.1135	12.2979
	0.0376	0.0729	0.1140	27.6103
1000	0.0020	0.0014	0.0097	26.1688
	0.0315	0.0609	0.0860	11.9118
	0.0316	0.0609	0.0865	28.7524

Table 1: Discrete two-dimensional experiments: Scaling in estimation sample size \(t \). Distributions are bivariate Gaussians discretized on \(21 \times 21 \) grid. 1000 repetitions.

\(\mu_P = \mu_Q = 0, \Sigma_P = I, \Sigma_Q = 6^2 I, f(x) = -\log(p(x)) \).
Continuous greedy importance sampling

- Draw x_1, \ldots, x_n independently from Q.
- For each x_i, let $x_{i,1} = x_i$:
 - Compute block $B_i = \{x_{i,1}, x_{i,2}, \ldots, x_{i,m}\}$ by taking size ϵ steps in axis direction of increasing $|f(x)P(x)|$ until a local maximum or $m-1$ steps have been reached.
 - Weight each point $x_j \in B_i$ by $w_i(x_j) = \frac{P(x_j)}{Q(x_j)} \alpha_{ij}$ where α_{ij} is defined in (2) above.
- Create the final sample from the blocks of points $x_{1,1}, \ldots, x_{1,m}, x_{2,1}, \ldots, x_{2,m}, \ldots, x_{n,1}, \ldots, x_{n,m}$.
- For a random variable, f, estimate $E_{P(x)} f(x)$ by
 $\hat{f} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} f(x_{i,k}) w_i(x_{i,k})$.

Figure 7: Continuous greedy importance sampling

6 Continuous case

Although the greedy importance sampling technique shows promise for simple discrete problems, it is also important to handle continuous problems defined over the sample space $X = \mathbb{R}^n$. Here, regular importance sampling applies just as well as in the discrete case, using weights determined by the ratio of the probability densities, $w(x) = \frac{p(x)}{q(x)}$ (provided the densities exist); see Figure 7. The unbiasedness of this procedure is easy to establish when the densities exist, since $E_{Q(x)} f(x)w(x) = \int_{\mathbb{R}^n} f(x)w(x)q(x) \mu(dx) = \int_{\mathbb{R}^n} f(x)\frac{p(x)}{q(x)}q(x) \mu(dx) = \int_{\mathbb{R}^n} f(x)p(x) \mu(dx) = E_{P(x)} f(x)$. (Note that we use μ to denote standard Lebesgue measure on \mathbb{R}^n.)

Extending the greedy importance sampling strategy to the continuous case is not hard in principle—however, care must be taken not to “warp” the measure on the sample space or else bias could be introduced into the procedure. To avoid the need to correct for compressing or dilating transformations (by determining Jacobians) we employ a very simple search scheme that takes only fixed size steps (of size ϵ) in axis parallel directions. That is, in n-dimensional Euclidean space, the greedy importance sampling procedure given in Figure 7 first draws an initial point x_i from $q(x)$ and then conducts a search in the direction of maximum $|f(x)p(x)|$ among the $2n$ neighbors of x_i determined by taking steps of size ϵ in each direction from x_i until either $m-1$ steps have been taken or a local maximum is reached. A single “block” in the final sample is comprised of a complete sequence in one ascending search. The remainder of the procedure (computing the α-weights) is implemented as in the discrete case (with the α_{ij}’s satisfying the same constraints). To break ties, we employ a deterministic tie breaking policy that prevents loops.

The intuitive significance of this “grid walk” strategy is that it does not transform the underlying Lebesgue measure of the Euclidean sample space. Instead it leaves the resulting discrete “merges” to be compensated by the α-weighting.
scheme. In fact, except for one step, it is actually quite easy to prove that this continuous version of the greedy importance sampling procedure also yields unbiased estimates:

$$E_{Q(z)} \left[\sum_{z_j \in E_i} f(z_j) w_i(z_j) \right]$$

$$= \int_{R^n} \left[\sum_{z_j \in E_i} f(z_j) \frac{p(z_j)}{q(z_j)} \alpha_{ij} \right] q(z_i) \mu(dx_i)$$

$$= \int_{R^n} \sum_{z_j \in E_i} f(z_j) p(z_j) \alpha_{ij} \mu(dx_i)$$

(see appendix)

$$= \int_{R^n} f(z_j) p(z_j) \sum_{z_i \in E_j} \alpha_{ij} \mu(dx_j)$$

$$= \int_{R^n} f(z_j) p(z_j) \mu(dx_j) = E_{P(z)} f(x)$$

The only significant step in this derivation (4; changing the order of integration) requires an argument that depends on measure theoretic details, and is given in the appendix.

Thus, we have a general procedure for conducting explicit searches in continuous space (in a controlled fashion) that yields unbiased estimates.

7 Continuous experiments

To verify that our continuous greedy importance sampler is in fact correct, we ran a series of simple experiments to determine that the bias was zero (up to sampling error). Figure 2 demonstrates this both for a one dimensional and three dimensional problem. (In fact, these results are for the indirect versions of the importance sampling procedures, which technically are biased since they use the estimator given in Figure 3. However, our results show that this bias can quickly become negligible, and we have found that the indirect estimator significantly reduces variance for both regular and greedy importance sampling. Therefore we report only these results here.)

To gain an understanding of how effective greedy importance sampling performs relative to state of the art techniques on continuous problems, we then conducted a series of simple experiments meant to challenge standard methods. Again, given the (relative) unbiasedness of the candidate methods, the main issue is to assess the variance of the estimators. To measure the performance of the various techniques, we report root mean squared error (rmse), absolute bias, and standard deviation over 1000 repetitions.

n = 1	DS	GIS	IS	Met	HMC	
t = 100	bias	0.003	0.003	0.001	0.197	0.292
	stdev	0.068	0.052	0.092	1.068	0.249
	rmse	0.068	0.052	0.093	1.086	0.383
200	bias	0.050	0.032	0.066	0.793	0.244
	stdev	0.050	0.039	0.066	0.798	0.381
	rmse	0.050	0.039	0.066	0.798	0.381
500	bias	0.001	0.001	0.028	0.028	0.293
	stdev	0.032	0.023	0.040	0.187	0.242
	rmse	0.032	0.023	0.040	0.189	0.381
1000	bias	0.000	0.000	0.010	0.010	0.294
	stdev	0.022	0.016	0.029	0.131	0.241
	rmse	0.022	0.016	0.029	0.131	0.380
2000	bias	0.001	0.000	0.001	0.008	0.293
	stdev	0.016	0.011	0.021	0.072	0.242
	rmse	0.016	0.011	0.021	0.073	0.381

Table 2: Continuous experiments: Scaling in estimation sample size t. Distributions are Gaussians of dimension n = 1 and n = 3. 1000 repetitions. \(\mu_P = \mu_Q = 0, \Sigma_P = I, \Sigma_Q = 6^2 I, f(x) = -\log(p(x)). \)

n = 3	DS	GIS	IS	Met	HMC	
t = 100	bias	0.001	0.324	0.863	2.806	0.961
	stdev	0.118	0.539	1.319	7.031	0.313
	rmse	0.118	0.629	1.576	7.570	1.011
200	bias	0.003	0.164	0.363	0.621	0.961
	stdev	0.086	0.294	0.834	1.673	0.306
	rmse	0.086	0.427	0.909	1.784	1.009
500	bias	0.002	0.056	0.113	0.296	0.962
	stdev	0.056	0.241	0.441	0.901	0.302
	rmse	0.056	0.247	0.455	0.948	1.009
1000	bias	0.000	0.033	0.076	0.123	0.962
	stdev	0.039	0.160	0.287	0.383	0.301
	rmse	0.039	0.163	0.297	0.402	1.008
2000	bias	0.000	0.008	0.030	0.060	0.963
	stdev	0.028	0.111	0.204	0.189	0.300
	rmse	0.028	0.112	0.206	0.198	1.008

Table 3: Continuous multi-dimensional experiments: Scaling in dimension n. Distributions are multivariate Gaussians. 1000 repetitions with estimation samples of size 1000. \(\mu_P = \mu_Q = 0, \Sigma_P = I, \Sigma_Q = 6^2 I, f(x) = -\log(p(x)). \)
Distributions are multivariate Gaussians. We also ran a series of experiments that varied the width of the target distribution (DS), standard importance sampling (IS), Gibbs sampling, Metropolis sampling (Met), and Hybrid Monte Carlo (HMC) [Nea93, Nea96]. For Metropolis sampling we used a Gaussian proposal distribution with covariance \(\Sigma_P = I \), and for GIS we set the step-size \(\epsilon = 1 \), walk-length \(m = 10n \), and \(b = n/2.6 \), where \(n \) is the dimension of the problem.

To test GIS on higher dimensional problems, we investigated a series of multivariate Gaussian problems where the relationship between \(P, Q \) and \(f \) was varied. Here we used a fixed target function \(f(x) = -\log(p(x)) \) (and hence were estimating the differential entropy of the target distribution \(P \) [CT91]). Table 3 shows that GIS can scale up effectively in the number of dimensions, and seems to handle multi-dimensional problems quite well in this simple setting. In fact, Table 3 shows that the advantage demonstrated by GIS actually appears to grow with dimensionality.

We also ran a series of experiments that varied the width of the proposal distribution \(Q \). Table 4 shows that weakening \(Q \) damaged the performance of importance sampling (predictably), while the greedy search seemed to mitigate the effects of a poor \(Q \) to the extent that its detrimental effects are significantly diminished.

Next, to scale up to a slightly more complex task we considered a distribution \(P \) that was a mixture of Gaussians while keeping \(Q \) unimodal. In this case, we once again find that GIS performs reasonably well. Table 5 shows that GIS exhibits good performance on this problem and appears to be converging faster than the other methods as the sample size is increased.

Finally, to attempt a more significant study, we applied GIS to an inference problem in graphical models: recovering the hidden state sequence from a dynamic probabilistic model, given a sequence of observations. Here we considered a simple Kalman filter model which had one state variable and one observation variable per time-step, and used the conditional distributions \(X_t | X_{t-1} \sim N(x_{t-1}, \sigma_t^2) \), \(Z_t | X_t \sim N(x_1, \sigma_2^2) \) and initial distribution \(X_1 \sim N(0, \sigma_2^2) \). The problem was to infer the value of the final state variable \(x_t \) given the observations \(z_1, z_2, ..., z_t \). Table 6 again demonstrates that GIS has a sizeable advantage over standard importance sampling. (In fact, the greedy approach can be applied to “particle filtering” [IB96, KKR95] to obtain further improvements on this task, but space bounds preclude a detailed discussion.)

8 Conclusions

We have introduced a new approach to reducing the variance of importance sampling that is provably unbiased in the multidimensional and continuous cases. Our experimental results, although limited to simple synthetic problems, do suggest the bare plausibility of the approach. It appears that, by capturing a moderate size sample of independent high weight points, greedy importance sampling is able to outperform methods that are unlikely to observe such points by chance. Demonstrating the true effectiveness of the approach on real problems remains to be done.
For future work, an important research issue is to perform a variance analysis of the various procedures to analytically determine their relative advantages. An alternative approach to variance reduction is to use stratified sampling [Bou94]. This is an orthogonal approach to the method pursued in this paper, and incorporating stratified sampling in a greedy search scheme remains an interesting direction for future research. Another approach to variance reduction, specific to inference in Bayesian networks, is to modify the proposal distribution and weighting scheme as individual variables are sampled in the network [CHM96]. Incorporating these ideas might also be a fruitful direction.

A Appendix

Let B_1 be the finite set of points visited by the greedy search procedure when starting at point x_i; let B_j be the finite set of starting points that reach x_j; and let B be the relation $(x_i, x_j) \in B$ if the greedy search process, starting at x_i, reaches x_j. We wish to show that for a function $h(x_i, x_j)$ we can switch the order of integration

$$
\int_{\mathbb{R}^n} \sum_{x_i \in B_1} h(x_i, x_j) \alpha_{ij} \mu(dx_i)
= \int_{\mathbb{R}^n} \sum_{x_i \in B_j} h(x_i, x_j) \alpha_{ij} \mu(dx_j)
$$

where μ is Lebesgue measure on \mathbb{R}^n.

Before addressing the main question, we first consider the underlying measures on the spaces $X_1 = \mathbb{R}^n$, $X_j = \mathbb{R}^n$, and $X_1 \times X_j = \mathbb{R}^{2n}$. Let $\mu_i(\cdot)$ denote the Lebesgue measure on X_i. For each initiating point x_i, we have a conditional measure given by

$$
\mu_{ji}(x_j|x_i) = \begin{cases}
\alpha_{ij} & \text{if } (x_i, x_j) \in B \\
0 & \text{otherwise}
\end{cases}
$$

Note that μ_i and μ_{ji} will define a unique joint measure μ_{ij} on $X_i \times X_j$ via the (generalized) product measure theorem [Ash72, Theorem 2.6.2] (assuming benign technical conditions on B). Although this joint measure might seem a bit peculiar, since μ_i is Lebesgue measure and μ_{ji} is a discrete measure with "impulses" at $x_j \in B_i$ of weight α_{ij}, it nevertheless gives a well-defined measure on $X_i \times X_j$.

We will now show that starting with a uniform measure μ_i on initiating points x_i and passing through the weighted search process, the result will still be a uniform measure μ_j on destination points x_j. That is, the marginal measure μ_j on X_j satisfies $\mu_j(A) = \mu_i(A)$ for all Borel sets A, and hence is also Lebesgue measure.

Lemma 1 For any hypercube $A \subset X_j$ with edge length less than the step size ϵ, $\mu_j(A) = \mu_i(A)$.

Proof Consider some destination point $x_j \in A$. This point will have a predecessor tree of initiating points that reach x_j via the search mechanism. Partition A into a finite collection of equivalence classes A_1, A_2, \ldots, A_K, where the points in each equivalence class share the same predecessor tree topology. That is, the trees in an equivalence class are just shifted versions of one another; sharing the same pattern of axis parallel, fixed step size search offsets. Note that there can only be a finite number of distinct tree topologies given a bounded search depth.

For a given set of equivalent destination points, A_k, consider the shifted pre-images of A_k corresponding to the nodes of the tree, $A_{k1}, A_{k2}, \ldots, A_{kL}$. Note that these sets are disjoint, because the size of A_k's containing cube, A, is smaller than the search step size ϵ.

Now consider the measure that gets assigned to the destination set A_k given the α-weighted measures that are assigned to the initiating sets A_{kl}

$$
\mu_j(A_k) = \sum_{\ell=1}^L \mu_i(A_{kl}) \alpha_{kl}
= \sum_{\ell=1}^L \mu_i(A_k) \alpha_{kl}
$$

since $\mu_i(A_{kl}) = \mu_i(A_k)$ by shift invariance

$$
= \mu_i(A_k) \sum_{\ell=1}^L \alpha_{kl}
= \mu_i(A_k)
$$

since $\sum_{\ell=1}^L \alpha_{kl} = 1$ by construction.

Therefore, since $\mu_j(A_k) = \mu_i(A_k)$ for $k = 1, \ldots, K$ we have $\mu_j(A) = \mu_i(A)$. \qed

From the lemma it quickly follows that $\mu_j(A) = \mu_i(A)$ for any Borel set A, and hence $\mu_j = \mu_i$.

Now note that the conditional measure on X_i given x_j is

$$
\mu_{ij}(x_i|x_j) = \begin{cases}
\alpha_{ij} & \text{if } (x_i, x_j) \in B \\
0 & \text{otherwise}
\end{cases}
$$

Thus, we have that for any joint event $A_i \times A_j$

$$
\int_{A_i} \mu_{ji}(A_j|x_i) \mu_i(dx_i) = \mu_j(A_i \times A_j) = \int_{A_j} \mu_{ij}(A_i|x_j) \mu_j(dx_j)
$$

where μ_i and μ_j are both Lebesgue measure and μ_{ij} and μ_{ji} are as given above. This establishes what we require of the underlying measures.

Finally, returning to the original integration problem, by the (generalized) Fubini's theorem [Ash72, Theorem 2.6.4] we

3Technically we require each A_k to be a Borel set, which imposes another benign technical restriction on the given task.
have that for a function \(h(x_i, x_j) \) (again, satisfying broad technical conditions)

\[
\int_{\mathbb{R}^n} \sum_{x_i \in B_i} h(x_i, x_j) \alpha_{ij} \mu_i (dx_i)
\]

\[
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} h(x_i, x_j) \mu_{ji}(dx_j|x_i) \mu_i (dx_i)
\]

by definition of \(\mu_{ji} \)

\[
= \int_{\mathbb{R}^n} h(x_i, x_j) \mu_{ij}(dx_i, dx_j)
\]

by Fubini's theorem

\[
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} h(x_i, x_j) \mu_{ij}(dx_i, dx_j)
\]

by Fubini's theorem

\[
= \int_{\mathbb{R}^n} \sum_{x_i \in B_i} h(x_i, x_j) \alpha_{ij} \mu_j (dx_j)
\]

by definition of \(\mu_{ij} \)

where both \(\mu_i \) and \(\mu_j \) are Lebesgue measure. This gives the desired result.

Acknowledgements

Research supported by NSERC and MITACS.

References

[Ash72] R. Ash. *Real Analysis and Probability*. Academic Press, San Diego, 1972.

[Bou94] R. Bouckaert. A stratified simulation scheme for inference in Bayesian belief networks. In *UAI*, 1994.

[CHM96] J. Cano, L. Hernandez, and S. Moral. Importance sampling algorithms for the propagation of probabilities in belief networks. *Internat J of Approx Reason*, 15:77–92, 1996.

[Coo90] G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. *Artif Intell*, 42:393–405, 1990.

[CT91] T. Cover and J. Thomas. *Elements of Information Theory*. Wiley, New York, 1991.

[DL93] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is NP-hard. *Artif Intell*, 60:141–153, 1993.

[DL97] P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. *Artif Intell*, 93:1–27, 1997.

[Eva91] M. Evans. Chaining via annealing. *Ann Statist*, 19:382–393, 1991.

[FD94] R. Fung and B. Del Favero. Backward simulation in Bayesian networks. In *UAI*, 1994.

[Fre98] B. Frey. *Graphical Models for Machine Learning and Digital Communication*. MIT Press, Cambridge, MA, 1998.

[Gew89] J. Geweke. Bayesian inference in econometric models using Monte Carlo integration. *Econometrica*, 57:1317–1339, 1989.

[GRS96] W. Gilks, S. Richardson, and D. Spiegelhalter. *Markov chain Monte Carlo in practice*. Chapman and Hall, 1996.

[Hen88] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In *Uncertainty in Artificial Intelligence 2*. Elsevier, 1988.

[IB96] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. In *ECCV*, 1996.

[JKS98] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. In *Learning in Graphical Models*. Kluwer, 1998.

[KKR95] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for dynamic probabilistic networks. In *UAI*, 1995.

[Mac98] D. MacKay. Intro to Monte Carlo methods. In *Learning in Graphical Models*. Kluwer, 1998.

[Nea93] R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. 1993.

[Nea96] R. Neal. *Bayesian Learning for Neural Networks*. Springer, New York, 1996.

[Pea88] J. Pearl. *Probabilistic Reasoning in Intelligence Systems*. Morgan Kaufmann, 1988.

[Roth93] D. Roth. On the hardness of approximating approximate reasoning. In *IJCAI*, 1993.

[Rub81] R. Rubinstein. *Simulation and the Monte Carlo Method*. Wiley, New York, 1981.

[Sch99] D. Schuurmans. Greedy importance sampling. In *NIPS-12*, 1999.

[SP90] R. Shafer and M. Peot. Simulation approaches to general probabilistic inference in belief networks. In *Uncertainty in Artificial Intelligence 5*. Elsevier, 1990.

[Tan93] M. Tanner. *Tools for statistical inference: Methods for exploration of posterior distributions and likelihood functions*. Springer, New York, 1993.