ProfKin: A Comprehensive Web Server for Structure-based Kinase Selectivity Profiling

Zihao Shen
East China University of Science and Technology https://orcid.org/0000-0003-3531-060X

Yu-Hang Yan
Sichuan University https://orcid.org/0000-0002-1331-1241

Shuo Yang
East China University of Science and Technology https://orcid.org/0000-0001-8918-4392

Sang Zhu
Sichuan University https://orcid.org/0000-0003-778-7778

Yuan Yuan
Sichuan University https://orcid.org/0000-0002-5553-3205

Zhiqiang Qiu
Sichuan University https://orcid.org/0000-0003-3839-2946

Huan Jia
Sichuan University https://orcid.org/0000-0003-0558-233X

Ruiqiong Wang
Sichuan University https://orcid.org/0000-0002-5350-6166

Guo-Bo Li (liguobo@scu.edu.cn)
Sichuan University https://orcid.org/0000-0002-4915-6677

Honglin Li
East China University of Science and Technology https://orcid.org/0000-0003-2270-1900

Research article

Keywords: Kinase; Kinase Profiling; Interaction Fingerprints; Web Server; Kinase Inhibitor Selectivity

DOI: https://doi.org/10.21203/rs.3.rs-36477/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Protein kinases are central mediators of signal-transduction cascades and attractive drug targets for therapeutic intervention. Since kinases are structurally and mechanistically related to each other, kinase inhibitor selectivity is often investigated by kinase profiling and considered as an important index for drug discovery. We here describe a versatile web server termed ProfKin for structure-based kinase selectivity profiling, which is based on a kinase-ligand focused database (KinLigDB). It provides all ready-to-use 3D structure coordinates of 4,219 kinase-ligand complex structures covering 297 human kinases and the associated information, particularly including binding site type, binding ligand type, interaction fingerprints, downstream molecules and related human diseases. The web server works via predicting possible binding modes for the query molecule, prioritizing the binding modes guided by an interaction fingerprint analysis method, and giving a list of ranked kinases by a comprehensive index. Users can freely select entire or part of the KinLigDB database, e.g. via subfamily and binding site type, to customize the profiling contents. The superimpositions of the predicted binding poses of the query molecule with reference binding modes can be visually inspected on the website. For each top-ranked kinase, the additional classification attributes and the phylogenetic tree are given simultaneously.

Introduction

Human protein kinases represent one of the largest enzyme families and are functionally integral to signal transduction. Aberrant kinase activity is an important contributor to various human disorders, in particular those involving proliferative or inflammatory responses, such as cancer, psoriasis, rheumatoid arthritis, and neurological diseases [1-5]. Small molecule inhibitors targeting kinases have great therapeutic potentials, which have been continually proved in clinic in recent decade [6]. By June 2020, a total of 61 kinase inhibitors have been approved by United States Food and Drug Administration; meanwhile, a large number of kinase inhibitors are currently in preclinical and clinical development phase [7-9]. Despite an unparalleled success already made in drug discovery targeting kinases, it is still highly desirable to develop more potent and selective kinase inhibitors, particularly for unexploited kinases, which can provide useful chemical tools for target validation as well as drug candidates for therapeutic interventions.

The aim of obtaining potent and selective kinase inhibitors is complicated by structural similarity in the kinase active sites. Kinase selectivity profiling is undoubtedly an efficient strategy for kinase inhibitor discovery, which enables a parallel approach by interrogating query compounds against hundreds of kinases in a single screen; in this paradigm, kinase inhibitor potency and selectivity are determined simultaneously [10]. Besides, kinase selectivity profiling can be used for drug repositioning and polypharmacology [1,11]. To date, a number of experimental methods have been established for kinase selectivity profiling, typically based on kinase catalytic activity or competition binding assays with isolated/purified kinases [12,13]; recently reported methods enabling direct assessment of kinase-inhibitor occupancy in live cells are also of great interest [14,15]. With the increasing number of kinase inhibitors and kinase-inhibitor complex structures, computational methods have been gradually used in
this task [11,16-19], which are complementary to experimental methods that are usually resource-intensive and time-consuming.

Although several established target prediction methods could be used for kinase selectivity profiling [11,20-29], a versatile web server specialized to kinase inhibitor selectivity prediction by structural informatics has been lacking. We hence provide ProfKin, a web server for structure-based kinase selectivity profiling, which is established based on our kinase-ligand complex focused structural and information database (KinLigDB). This database contains 4,219 manually curated kinase-ligand complex structures, corresponding to 396 binding sites of 297 human kinases, covering 106 kinase families, and involves kinase/ligand associated information, particularly including binding site type, binding ligand type, kinase-ligand interaction fingerprints, downstream molecules and related human diseases, which are not intensively assembled in other related structural databases. For the query molecule, ProfKin enables prediction of its possible binding modes with each binding site in the KinLigDB database, comparative analyses of the predicted binding modes with the respective reference binding modes guided by the key interaction features via a weighted interaction fingerprinting method [30], and outputs the top-ranked kinases according to an integrative index of docking and fingerprint similarity scores. The database and prediction results can be freely accessed and downloaded. ProfKin is expected to serve as a useful tool to exploit the potentials of kinase selectivity profiling in lead/drug discovery targeting kinases.

Materials And Methods

2.1 Database construction

As an important prerequisite for structure-based kinase profiling, the kinase-ligand complex-focused database KinLigDB was established through following steps. The keyword “Kinase” was first searched in the Protein Data Bank (PDB, http://www.rcsb.org/) with the restriction of “Home sapiens”, which led to a total of 6,492 human kinase structure entries (by June 30, 2019); all these structure coordinates were downloaded from the PDB. An in-house program was then used to pick out the kinase-ligand complex structures and simultaneously separate protein and ligand coordinates. The resulted complex structures were further checked and corrected by manual inspection, of which the information including kinase name, gene name, alias name, kinase group, kinase family, mutation, downstream molecules, and associated diseases were comprehensively collected from the PDB, KinBase (http://kinase.com/kinbase/), Uniprot (https://www.uniprot.org/), KEGG (https://www.genome.jp/kegg/), TTD (http://bidd.nus.edu.sg/group/cjttd/) and references therein. The kinase-ligand interaction associated information including the binding site type, ligand type, key residues, and binding data were further curated and/or collected from references. To this end, a total of 4,219 complex structures were retained in the KinLigDB database.

The AutoDock Vina program [31] was used as the docking engine for binding pose prediction. All the protein structures were prepared by assigning Gasteiger-Marsili charges and adding polar hydrogens
using the AutoDockTools and then saved in pdbqt format. The binding site information, including the grid center, grid size, and number of docking poses, were generated for each complex structure using an in-house program and stored in configuration file (conf format). The interaction fingerprinting (IFP) method [30] was used to characterize the key kinase-ligand interaction features involving hydrogen-bond acceptor, hydrogen-bond donor, negatively charged center, positively charged center, hydrophobic interactions, face-to-face and edge-to-face π−π stacking interactions. For each kinase-ligand complex, a specific IFP mode was generated and saved in ifp format. All the generated IFP modes will be used as reference modes for later kinase profiling.

2.2 Structure-based kinase profiling approach

The structure-based kinase profiling approach behind the ProfKin web server works via integrating molecular docking and interaction fingerprinting methods, as briefly described below: (i) the MOI inquired by users through the web interface is automatically defined the rotatable bonds, assigned partial charges/polar hydrogens, and transformed into pdbqt format using the AutoDockTools; (ii) the prepared MOI is submitted to execute molecular docking with each binding site in KinLigDB by calling AutoDock Vina, and top-ranked docking poses are generated for each binding site; (iii) for each docking pose, the IFP mode is generated using the same method as above-described for generating the reference IFP modes [30]; (iv) the similarity score between docking pose IFP and the reference IFP modes is calculated as described previously[30]; (v) a comprehensive index (Cvalue), integrating the advantages of docking and IFP similarity scores, is finally calculated and used for kinase ranking and profiling. The combination of complementary molecular docking and IFP methods will probably yield improved prediction results.

2.3 Website development

The ProfKin web server (http://www.lilab-ecust.cn/profkin/) involves two main functions: providing searchable useful archives for kinase details and performing structural-based kinase profiling (Figure 1). It runs on a Linux system with Apache as the HTTP server. The web interfaces are implemented in PHP and JavaScript, which control the display behavior of the web page and respond to the operations performed by the users. The backend was developed using the Python programming language, with a MySQL database for storing the kinase annotations and the task details. The phylogenetic tree describing the kinase distribution of ranked kinases is available for each task using the Kinome Render tool [32]. The superimpositions of docking poses and reference ligands can be visualized and analyzed with a JavaScript-based web applet NGL Viewer [33]. The website requires browsers supporting HTML5 and ES6, and can work well on most of the mainstream browsers, such as Chrome/Chromium-kernel, Opera, Firefox, Edge, IE11, and Safari.

3 Database statistics and access

The current version of KinLigDB contains 4,219 curated kinase-ligand complex structures of 297 human kinases covering 106 kinase families; most of them are related to human diseases. About 75% of these kinases have at least two structures with different ligands, and 92 kinases have ≥10 complex structures,
such as CDK2 (357 entries), MAPK14 (204 entries), PIM1 (141 entries), CHK1 (130 entries), and EGFR (104 entries). Most of ligands are observed to bind in the kinase active sites and act as inhibitors, and some ligands bind adjacent to the active sites or allosteric binding sites to specifically modulate (inhibit, activate, or enhance) the kinase catalytic activity. A total of 396 binding sites were found and defined for the kinases in the database. Notably, 73 kinases have two or more different binding sites; for example, for NTRK1, there are four kinds of binding sites, including type I, type II inhibitor binding sites, and two distinct allosteric binding sites [34-36]. According to the binding features, eight types of ligands were annotated, including type I inhibitor (3167 entries), type II inhibitor (283 entries), type III inhibitor (23 entries), type IV inhibitor (9 entries), competitive inhibitor (554 entries), covalent inhibitor (31 entries), activator (49 entries), and allosteric ligand (103 entries). A total of 2805 kinase-ligand complexes were annotated with the binding data.

4 Database search

The database search module enables users to search and browse all of the data covered without any prerequisite knowledge or experience. Users can retrieve all the kinase-ligand complex entries and associated information via basic annotations, such as PDB code, kinase name, kinase family, kinase group, ligand type, binding site type, downstream molecule, and relevant disease (Figure 2A). For example, searching with the kinase group of “Atypical” will return a list of 303 atypical kinase structure entries (Figure 2B); users can select all or part of these kinase structure entries via the first-column select boxes as a subset database to link to the kinase profiling webpage (Figure 2C). Users can also click on the PDB code to access the detailed information page. The linked page mainly include kinase information (e.g. kinase family/group, mutations, kinase alias, downstream molecules, and associated diseases; Figure 2D) and ligand information (e.g. ligand structure, ligand smiles, ligand type, binding pocket, key residue, and binding data; Figure 2E). All the ready-to-use coordinates of kinases and ligands and their associated information can be downloaded via the ‘DOWNLOAD’ webpage.

5 Kinase profiling

This module enables users to perform kinase profiling prediction for small molecules of interest. Users can upload the query molecule using a mol2 or sdf file, sketch a chemical structure online [37], or input a standard SMILES strings (Figure 3A). It allows users to select entire or part of the KinLigDB database for kinase profiling; for example, users can select one kinase group or family as a database subset to execute kinase profiling prediction (Figure 3B). The advanced options including the cutoff of IFP similarity and Cvalue can be setup by users to customize the specific requirements (Figure 3C). Once all the necessary parameters are given, clicking on the ‘Submit’ tab will start your computation job, and meanwhile the system will send the job id to the email address provided by users (Figure 3D). Usually, one job if running against the entire database may cost 30-40 hours because a series of molecule docking processes will be performed; the time cost is associated with the database size and the complexity of the query molecule (particularly the number of rotatable bonds). The web server will inform users via email when the job is
finished. Users can also check the job schedule/progress using the job id. A help document is provided with more details on the kinase profiling webpage.

As one example, the kinase profiling job was run for the compound (Z)-2',3-dioxo-[2,3'-biindolinylidene]-5'-sulfonic acid, an indirubin derivative, which is a potent CDK2 inhibitor [38]. The profiling results can be visualized and downloaded on the webpage (Figure 4A). The 100 top-ranked kinases for the compound are graphically showed with the additional classification attributes and phylogenetic tree; an additional phylogenetic tree containing all ranked kinases is also given and can be switched over arbitrarily (Figure 4B). In addition to CDK2 that was ranked at the top 3 (Figure 4C), the compound is observed to fit well to the binding sites of multiple kinases, such as TYK2, AurA, and JAK3 (Figure 4C); for example, the compound likely has a similar binding mode with a potent TYK2 inhibitor although their chemical structures are apparently different (Figure 4D-E). Besides, the user can simply click on the kinase name of any records in the result list to start a KinLigDB search on this kinase.

(E) A view of the superimpositions of the top-ranked docking pose with reference kinase ligand; users can drag or zoom the molecules for more views.

Conclusion

This work provided the ProfKin web server as a platform for efficiently analyzing potential binding kinases for molecules of interest guided by structural informatics, with the aim to assist inhibitor development and drug discovery targeting clinically relevant kinases. An important feature of ProfKin is the comparison analyses of predicted binding poses with reference binding modes through the weighted interaction fingerprint method, which is not only suitable for structurally similar ligands but also useful to identify similar binding modes for structurally different ligands that are not easily identified by ligand similarity methods. The manually curated structural and information database is also provided, which could be directly used for developing other kinase profiling methods or platforms. The web server and database are freely accessible for non-commercial users at http://www.lilab-ecust.cn/profkin/. We are also sincerely open to receiving support and advice from users to improve ProfKin's usefulness.

Declarations

Acknowledgments

The authors thank the suggestions and comments from the reviewers.

Authors’ contributions

ZS, YHY, and SY are co-first authors. ZS and SY designed the web server and data visualization. YHY, SZ, YY, ZQ, HJ, and RW collected and curated the database. ZS, GBL and HL wrote this manuscript. All authors edited, read and approved the final manuscript.
Funding

This work was supported by the National Natural Science Foundation of China (81825020 to H. Li, and 81874291 to G.-B. Li), the National Key Research and Development Program (2016YFA0502304 to H. Li), Sichuan Science and Technology Program (2018HH0100 to G.-B. Li), and the Fundamental Research Funds for the Central Universities (to G.-B. Li).

Competing interests

The authors declare that they have no competing interests.

References

1. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig P-A, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz A-K, Gohlke B-O, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tönisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich H-C, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B (2017) The target landscape of clinical kinase drugs. Science 358(6367):eaan4368

2. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 77(5):521-546

3. Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36(7):422-439

4. Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17:353-377

5. Li G-B, Ma S, Yang L-L, Ji S, Fang Z, Zhang G, Wang L-J, Zhong J-M, Xiong Y, Wang J-H, Huang S-Z, Li L-L, Xiang R, Niu D, Chen Y-C, Yang S-Y (2016) Drug Discovery against Psoriasis: Identification of a New Potent FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor, 1-(4-((1H-Pyrazolo[3,4-d]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea, That Showed Potent Activity in a Psoriatic Animal Model. J Med Chem 59(18):8293-8305

6. Fischer PM (2017) Approved and Experimental Small-Molecule Oncology Kinase Inhibitor Drugs: A Mid-2016 Overview. Med Res Rev 37(2):314-367

7. Roskoski R, Jr. (2019) Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 144:19-50

8. Roskoski R, Jr. (2019) Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res 139:395-411

9. Kannaiyan R, Mahadevan D (2018) A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev Anticancer Ther 18(12):1249-1270

10. Goldstein DM, Gray NS, Zarrinkar PP (2008) High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 7(5):391-397
11. Dutta D, Das R, Mandal C, Mandal C (2018) Structure-Based Kinase Profiling To Understand the Polypharmacological Behavior of Therapeutic Molecules. J Chem Inf Model 58(1):68-89
12. Wang Y, Ma H (2015) Protein kinase profiling assays: a technology review. Drug Discov Today 18:1-8
13. Defert O, Boland S (2015) Kinase profiling in early stage drug discovery: sorting things out. Drug Discov Today 18:52-61
14. Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC, Jones LH, Burlingame AL, Taunton J (2017) Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. J Am Chem Soc 139(2):680-685
15. Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, Zimmerman K, Machleidt T, Kirkland TA, Huwiler KG, Ohana RF, Slater M, Otto P, Cong M, Wells CI, Berger BT, Hanke T, Glas C, Ding K, Drewry DH, Huber KVM, Willson TM, Knapp S, Muller S, Meisenheimer PL, Fan F, Wood KV, Robers MB (2018) Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chem Biol 25(2):206-214.e211
16. Ferrè F, Palmeri A, Helmer-Citterich M (2014) Computational methods for analysis and inference of kinase/inhibitor relationships. Front Genet 5:196
17. Li Z, Li X, Liu X, Fu Z, Xiong Z, Wu X, Tan X, Zhao J, Zhong F, Wan X, Luo X, Chen K, Jiang H, Zheng M (2019) KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics 35(24):5354-5356
18. Li X, Li Z, Wu X, Xiong Z, Yang T, Fu Z, Liu X, Tan X, Zhong F, Wan X, Wang D, Ding X, Yang R, Hou H, Li C, Liu H, Chen K, Jiang H, Zheng M (2019) Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation. J Med Chem. DOI: 10.1021/acs.jmedchem.9b00855
19. Merget B, Turk S, Eid S, Rippmann F, Fülle S (2017) Profiling Prediction of Kinase Inhibitors: Toward the Virtual Assay. J Med Chem. 60(1):474-485
20. Chen X, Yan CC, Zhang X, Zhang X, Dai F, Yin J, Zhang Y (2016) Drug-target interaction prediction: databases, web servers and computational models. Brief Bioinform 17(4):696-712
21. Lee A, Lee K, Kim D (2016) Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov. 11(7):707-715
22. Keiser MJ, Roth BL, Armbruster BN, Emsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 25(2):197-206
23. Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, Li H (2013) ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 29(14):1827-1829
24. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, Lai L, Pei J, Li H (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucl Acids Res 45(W1):W356-W360
25. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X, Jiang H (2006) TarFisDock: A web server for identifying drug targets with docking approach. Nucl Acids Res
26. Wang JC, Chu PY, Chen CM, Lin JH (2012) idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucl Acids Res 40(W1):W393-399

27. Kinnings SL, Jackson RM (2011) ReverseScreen3D: A structure-based ligand matching method to identify protein targets. J Chem Inf Model. 51(3):624-634

28. Sydow D, Burggraaf L, Szengel A, van Vlijmen HWT, Ijzerman AP, van Westen GJP, Volkamer A (2019) Advances and Challenges in Computational Target Prediction. J Chem Inf Model 59(5):1728-1742

29. Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y (2020) New techniques and strategies in drug discovery. Chin Chem Lett. DOI: doi.org/10.1016/j.cclet.2020.03.028

30. Li G-B, Yu Z-J, Liu S, Huang L-Y, Yang L-L, Lohans CT, Yang S-Y (2017) IFTPTarget: a customized virtual target identification method based on protein–ligand interaction fingerprinting analyses. J Chem Inf Model. 57:1640-1651

31. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31(2):455-461

32. Chartier M, Chenard T, Barker J, Najmanovich R (2013) Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome tree. PeerJ 1:16

33. Rose AS, Hildebrand PW (2015) NGL Viewer: a web application for molecular visualization. Nucl Acids Res 43(W1):W576-W579

34. Subramanian G, Johnson PD, Zachary T, Rouch N, Zhu Y, Bowen SJ, Janssen A, Duclos BA, Williams T, Javens C, Shalaly ND, Molina DM, Wittwer AJ, Hirsch JL (2019) Deciphering the Allosteric Binding Mechanism of the Human Tropomyosin Receptor Kinase A (hTrkA) Inhibitors. ACS Chem Biol 14(6):1205-1216

35. Bagal SK, Omoto K, Blakemore DC, Bungay PJ, Bilsland JG, Clarke PJ, Corbett MS, Cronin CN, Cui JJ, Dias R, Flanagan NJ, Greasley SE, Grimley R, Johnson E, Fengas D, Kitching L, Kraus ML, McAlpine I, Nagata A, Waldron GJ, Warmus JS (2019) Discovery of Allosteric, Potent, Subtype Selective, and Peripherally Restricted TrkA Kinase Inhibitors. J Med Chem. 62(1):247-265

36. Su H-P, Rickert K, Burlein C, Narayan K, Bukhtiyarova M, Hurzy DM, Stump CA, Zhang X, Reid J, Krasowska-Zoladek A, Tummala S, Shipman JM, Kornienko M, Lemaire PA, Krosky D, Heller A, Achab A, Chamberlin C, Saradjian P, Sauvagnat B, Yang X, Ziebell MR, Nickbarg E, Sanders JM, Bilodeau MT, Carroll SS, Lumb KJ, Soisson SM, Henze DA, Cooke AJ (2017) Structural characterization of nonactive site, TrkA-selective kinase inhibitors. P Natl Acad Sci USA 114(3):E297-E306

37. Bienfait B, Ertl P (2013) JSME: a free molecule editor in JavaScript. J Cheminform 5:24

38. Jautelat R, Brumby T, Schäfer M, Briem H, Eisenbrand G, Schwahn S, Krüger M, Lücking U, Prien O, Siemeister G (2005) From the Insoluble Dye Indirubin towards Highly Active, Soluble CDK2-Inhibitors. ChemBioChem 6(3):531-540
Figures

Figure 1

The main features of ProfKin.
Figure 2

The database search webpages. (A) User interface of database searching; (B) the results of searching with the kinase group of “Atypical”; (C) a side panel that records the PDB codes of the user-chosen complex structures; (D,E) the linked page showing the kinase and ligand information.
Figure 3

The kinase profiling webpage. (A) a menu for uploading the query molecule file, sketching a molecule or pasting a standard SMILES strings; (B) a menu for users to setup the range of the database; (C) advanced options to setup IFP score and C value cutoff; (D) a form of the job information.
Figure 4

The interface for displaying kinase profiling results. (A) a panel showing the basic job details; (B) the additional classification attributes and the phylogenetic tree for the 100 top-ranked kinases; (C) a list of top-ranked target kinases with Cvalue scores and binding site information; (D) extra information of each top-ranked kinase; (E) A view of the superimpositions of the top-ranked docking pose with reference kinase ligand; users can drag or zoom the molecules for more views.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.pdf