Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p+p collisions at $\sqrt{s} = 510$ GeV

U.A. Acharya, A. Adare, C. Aidala, N.N. Ajitanand, R. Akimoto, M. Alfred, N. Apadula, Y. Akiba, R. Alam, T. Arai, H. Asano, K. Atarashi, A. Azadi, S. Banerjee, H. Barish, B. Bathe, A. Bazilevsky, M. Beaumier, S. Beckman, R. Belmont, A. Berdnikov, Y. Berdnikov, D. Black, J.S. Bok, K. Boyle, M.L. Brooks, B. Brylsawskyj, H. Buesching, V. Bumazhnikov, S. Campbell, V. Canoa Roman, C.-H. Chen, C.Y. Chi, M. Chiu, I.J. Choi, J.B. Choi, T. Chujo, Z. Citron, M. Connors, M. Csanàd, T. Csörgő, T.W. Danley, A. Datta, M.S. Daugherity, G. David, K. DeBlasio, K. Dehmelt, A. Denisov, D. Deshpande, E.J. Desmond, L. Ding, A. Dion, J.H. Do, A. Drees, K.A. Drees, J.M. Durham, A. Durum, A. Enokizono, H. En’yo, R. Esha, S. Esumi, B. Fadem, W. Fan, F. Feege, D.E. Fields, M. Finger, M. Finger, J. Fitzgerald, S.L. Fokin, J.E. Frantz, A. Franz, A.D. Frawley, C. Gal, P. Gallus, E.A. Gamez, P. Garg, H. Ge, F. Giordano, A. Glenn, Y. Goto, N. Grau, S.V. Greene, M. Grosse Perdekamp, Y. Gu, T. Gunji, H. Haragawa, T. Hachiya, J.S. Haggerty, K.I. Hahn, H. Hamagaki, S. Han, S. Hasegawa, T.O.S. Haseler, X. He, T.K. Hemmick, C.J. Hill, K. Hill, A. Hodges, R.S. Hollis, K. Homma, B. Hong, T. Hoshino, J. Huang, S. Huang, Y. Ikeda, K. Imai, Y. Imazu, M. Inaba, A. Iordanova, D. Isenhower, I. Ishihara, D. Ivanishchev, B.V. Jacak, S.J. Jeon, M. Jezghani, Z. Ji, J. Jia, J. Jiao, X. Jiang, S.B. Johnson, E. Joo, K.S. Joo, D. Jouan, D.S. Jumper, J.H. Kang, J.S. Kang, D. Kawall, A.V. Kazantsev, J.A. Key, V. Khachatryan, A. Khanzadeev, A. Khatiwada, K. Kihara, C. Kim, D.H. Kim, J.D. Kim, I.-E. Kim, I.-J. Kim, M. Kim, Y.K. Kim, D. Kincses, E. Kistenev, J. Klatsky, D. Kleinjan, P. Kline, T. Koblesky, M. Kofarago, J. Koster, K. Kotov, B. Kurgys, K. Kurita, M. Kurosawa, Y. Kwon, R. Lacey, J.G. Lajoie, A. Lebedev, K.B. Lee, S.H. Lee, M.J. Leitch, M. Leitgab, Y.H. Leung, N.A. Lewis, X. Li, S.H. Lim, M.X. Liu, S. Lőkös, J. Lynch, T. Majorgis, Y.I. Makdisi, M. Makek, A. Manion, V.I. Manko, E. Mannell, M. Mcumber, P.L. McGaughy, D. McGlinnich, C. McKinney, A. Meles, M. Mendoza, B. Meredith, W.J. Metzger, Y. Miake, A.C. Mignerey, A.J. Miller, A. Milov, D.K. Mishra, J.T. Mitchell, I. Mitranvlok, G. Mitsuka, S. Miyasaka, S. Mizuno, P. Montuenga, T. Moon, D.P. Morrison, S.I.O. Morrow, T.V. Moukhnova, B. Mulilo, T. Murakami, J. Murata, M. Mwai, S. Nagamitu, K. Nagashima, J.L. Nagle, M.I. Nagy, I. Nakagawa, H. Nakagomi, K. Nakano, C. Nattrass, S. Nelson, P.K. Netrakanti, M. Nishashi, T. Niida, R. Nishitani, R. Noucie, T. Novák, N. Novitzky, A.S. Nyanin, E.O. O’Brien, C.A. Ogilvie, D.J. Ordjuela Koop, J.D. Osborn, A. Oskarsson, K. Ozawa, R. Pak, V. Pantuev, V. Papavassiliou, S. Park, S. Park, M. Pata, P. Patel, M. Patel, J.-C. Peng, W. Peng, D.V. Perpeletis, J. Petch, P. Petti, C. Pinkenburg, R. Pinson, R.P. Pisani, A. Pun, M.L. Pursche, P.V. Radzhevic, J. Rak, N. Ramasubramanian, I. Ravinovich, K.F. Read, D. Reynolds, V. Riabov, G. Riabov, D. Richford, T. Rim, N. Rivel, D. Roach, S.D. Rohnick, M. Rosati, Z. Rowan, J.G. Rubin, J. Ruchey, N. Saito, T. Sakaguchi, H. Sako, V. Samsonov, T. Sarsour, S. Sato, S. Sawada, C.Y. Scarlett, B. Schaefer, B.K. Schmoll, K. Sedgwick, J. Selee, R. Seidl, A. Sen, S. Seto, P. Sett, A. Sexton, D. Sharma, I. Shein, T.-A. Shihata, K. Shigaki, M. Shimomura, P. Shukla, A. Sickles, C.L. Silva, D. Silvermyr, B.K. Singh, C.P. Singh, V. Singh, M. Slunečka, R.A. Soltz, W. Sondheim, S.P. Sorensen, I.V. Sourikova, P.W. Stankus, M. Stepanov, S.P. Stoll, T. Sugitate, A. Sukhanov, T. Sunita, J. Sun, X. Sun, Z. Sun, S. Suzuki, J. Szilai, A. Takahara, A. Taketani, K. Tanida, M.J. Tannenbaum, S. Tarafdar, A. Taranenko, R. Tienout, A. Timilsina, T. Todoroki, M. Tomasek, H. Torii, R. Towell, R.S. Towell, I. Tserruya, Y. Ueda, B. Ujvari, H.W. van Hecke, M. Vargyas, J. Velkovska, M. Virtus, V. Vrba, E. Vznuzdaev, X.R. Wang, Z. Wang, D. Watanabe, Y. Watanabe, Y.S. Watanabe, F. Wei, S. Whitaker, S. Wolin, C.P. Wong, C.L. Woody, Y. Wu, M. Wosicki, B. Xia, Q. Xu, L. Xue, S. Yalcin, Y.L. Yamaguchi, A. Yanovich, J.H. Yao, I. Yoon, I. Younes, H. Yu, Y. Yuzhakov, I.E. Yushmanov, W.A. Zajc, Z. Zai, Y. Zhai, S. Zharko, L. Zou

1 Abilene Christian University, Abilene, Texas 79699, USA
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, A_{LL}, for charged pions at midrapidity ($|\eta| < 0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s} = 510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction x range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s} = 200$ GeV, which show a nonzero positive contribution of gluon spin to the proton spin.

I. INTRODUCTION

The spin of the proton is known to be $\frac{h}{2}$, yet its decomposition in terms of its constituents, quarks and gluons, is not very well known. Initially, the fixed-target deep-inelastic scattering (DIS) experiments measured the polarized structure function, $g_1(x, Q^2)$, where x is the parton momentum fraction of the proton and Q^2 is the momentum transfer squared, enabling the reconstruction of the quark spin contributions, $\Delta \Sigma(x, Q^2)$, with the help of weak and hyperon decay constants. Early measurements found this contribution to be substantially smaller than expected [1], leading to the so-called spin crisis. In addition to the quark spins, gluon spins as well as the constituents’ orbital angular momenta can contribute to the spin sum rule [2]. Because DIS at low to moderate energies essentially couples through the electromagnetic interaction, it is most sensitive to the quark spin contributions and the gluon spin contributions but then enters via scaling violations.

In contrast, in polarized $p+p$ collisions, for example at the Relativistic Heavy Ion Collider (RHIC), the dominant hard interaction happens via the strong interaction. Therefore, for midrapidity ($|\eta| < 0.35$) hadronic or jet final states with small to intermediate energies, quark-gluon and gluon-gluon interactions are the dominant processes. Consequently, longitudinal-double-spin asymmetries, A_{LL}, are sensitive to the gluon-spin contribution to the proton, $\Delta g(x, Q^2)$. The RHIC jet [3] and pion asymmetry measurements [4, 5] at a center-of-mass energy, \sqrt{s}, of 200 GeV found the first indication of a nonzero gluon-spin contribution to the nucleon spin when the data was analyzed together with the DIS and semi-inclusive DIS results in a global analysis [6, 7]. Subsequently, various measurements at higher collision energy of 510 GeV have confirmed this nonzero gluon polarization [8–10] and those combined with results at $\sqrt{s} = 200$ GeV [11] have extended the parton momentum fraction x coverage to lower values of approximately 10^{-3}.

While the global fits clearly prefer a positive gluon polarization in the probed x range, another direct experimental confirmation would be helpful. The addition of charged pion asymmetries with the help of different fragmentation of up and down quarks [12] into π^\pm provides this possibility. Because up and down quark polarizations are reasonably well known, the ordering of the positive, neutral and negative pion asymmetries immediately informs about the sign of the gluon spin. A positive gluon spin, coupled with the positive up quark polarization and negative down quark polarization would result in π^+ asymmetries to be the largest, followed by π^0 and, then, π^-. The charge-separated pion asymmetry results at $\sqrt{s} = 200$ GeV have already been published [3].

In this paper, we report the charged pion longitudinal double spin asymmetries at $\sqrt{s} = 510$ GeV that were extracted by the PHENIX experiment at midrapidity. The paper is organized as follows. In Sec. II the PHENIX experiment and the detector components relevant for this result are described. In Sec. III the analysis procedure for extracted charged pions and their double spin asymmetries at midrapidity is discussed. In Sec. IV the results are presented. Summary is given in Sec. V.

II. EXPERIMENTAL SETUP

In 2013, the PHENIX experiment at RHIC collected data from longitudinally polarized $p+p$ collisions at $\sqrt{s} = 510$ GeV with an average polarization of ≈ 0.55. An integrated luminosity of 108 pb^{-1} was used for charged pion asymmetry measurements at midrapidity.

The PHENIX detector is described in detail in Ref. [13]. Each of two nearly back-to-back arms of the central spectrometer covers a rapidity range $|\eta| < 0.35$ and an azimuthal range of $\Delta \phi = \frac{\pi}{2}$. The PHENIX de-
Detector elements used in this analysis include the drift chambers (DC), the pad chambers (PC), the ring imaging Čerenkov (RICH) detector and the electromagnetic calorimeters (EMCal). The RICH, filled with CO2 gas radiator, is used for charged-pion identification. The EMCal comprises two different types of calorimeters. Six sectors are constructed with lead-scintillator (PbSc) towers in sampling configuration with depth of 0.85 interaction lengths. Two sectors are made of lead-glass towers with depth of 1.05 nuclear interaction lengths. The silicon-vertex detector was placed around the beam pipe with an acceptance of 5 cm and rapidities between 3.1 to 3.9 to veto charged tracks with mis-reconstructed momenta. The EMCal and the location of deposited energy is required to veto charged tracks with mis-reconstructed momenta. These detectors also provide the momentum information of the tracks. A match between a projected track onto the EMCal and the location of deposited energy is required to veto charged tracks with mis-reconstructed momenta. The silicon-vertex detector was placed around the beam pipe with layers at nominal radii 2.6, 5.1, 11.8, 16.7 cm with an acceptance of $|\eta| < 1$ and $|\Delta \phi | = 0.8\pi$. The total material budget is 0.13 radiation lengths and the detector was not in operation in 2013. This created a large source of electron background from conversions of direct and decay photons.

Additionally, two sets of 64 quartz-crystal radiators attached to photomultipliers located at z positions of ±144 cm and rapidities between 3.1 to 3.9 were used to trigger hard collision events and to select events within ±30 cm of the collision vertex in the asymmetry analysis. These beam-beam-counters and the zero-degree calorimeters were used together to evaluate the luminosities seen by the PHENIX detector. The zero-degree calorimeters comprise three sections of a hadronic calorimeter located at ±18 m from the PHENIX interaction point are also used to monitor the polarization orientation and confirm that the polarization direction of the beams has been rotated to the longitudinal direction.

III. ANALYSIS PROCEDURE

The 2013 configuration was similar to the published results at $\sqrt{s} = 200$ GeV [3] in 2009, except that the hadron-blind detector (HBD) was no longer installed. In 2013, the energy threshold of the trigger was increased by a factor of ≈2–3 compared to in 2009 and events were triggered by particles leaving at least 2.2, 3.7, 4.7 or 5.6 GeV energy deposits in the EMCal for the various trigger types. The lower energy threshold triggers were pre-scaled such that only a fraction of events satisfying the trigger requirements was recorded. An OR of all these triggers was used for the transverse momentum bins in the range $5 \text{ GeV}/c < p_T < 11 \text{ GeV}/c$, where the less pre-scaled higher threshold triggers are dominant. For the highest transverse momentum bin ($11 \text{ GeV}/c < p_T < 15 \text{ GeV}/c$), the 2.2 GeV threshold trigger was not used in order to minimize the background contribution. The trigger efficiency curves as a function of transverse momentum with energy threshold of 3.7 GeV for the PbSc are displayed in Fig. 1 for π^\pm candidates. High p_T charged pions punch through the EMCal with approximately a 50% chance, depositing only a small fraction of their energy corresponding to the minimum-ionizing particles (MIPs) at ≈0.3 GeV due to their low probability of nuclear interactions in the detector. Pre-selection cuts of the energy for π^\pm are blind to the MIPs interactions and consequently result in higher trigger efficiencies than the case where all types of interactions taken into account. Nonetheless, this analysis does not include MIPs, and the approach properly takes into account the p_T dependence of trigger efficiency after applying pre-selection cuts.

![FIG. 1. Trigger efficiency curves of the EMCal-RICH trigger for positively charged (open [blue] squares) and negatively charged (closed [red] circles) pion candidates in the PbSc as a function of the transverse momentum of the track. The energy threshold of the trigger was at 3.7 GeV. Note that a cut on the ratio between cluster energy to reconstructed momentum (E/p) was applied in pre-selection of the π^\pm sample. The charge difference seen at higher p_T originates from the momentum reconstruction which could not be perfectly calibrated in the high rate conditions of the 2013 data taking period.](image-url)
cluster energy and track momentum \((E/p)\) is required to be larger than 0.2 and smaller than 0.8, taking into account that most pions do not deposit all their energy in the electromagnetic calorimeter in contrast to electrons.

For the further rejection of electron background from the charged pion candidates, the probability of a cluster developed via electromagnetic shower processes (shower shape) determined from fitting the well understood electromagnetic shower shape in the EMCal to the cluster. The shower shape was required to be less than 0.1. The succession of the selection criteria on the raw charged particle spectra can be seen in Fig. 2. A clear bump can be seen once the momentum is large enough for pions to emit Čerenkov light. The contribution at momenta below the bump indicates remaining electrons and other accidental coincidences. After applying electron rejection cuts, their contributions are substantially reduced (\(\approx 0.01–0.085\)). The remaining background in the higher transverse momentum range is studied with full MC simulations using PYTHIA\(^{[14]}\) as event generator and GEANT3 \(^{[15]}\) for the detector description as shown in Fig 3.

One can see that at low transverse momenta below 5 GeV/c, the distribution is dominated by electrons, accidental pion coincidences and, to a smaller extent, kaons and protons. At higher transverse momenta, electrons are the dominant, but small compared to pion signals, background until the RICH hit requirement becomes fulfilled by kaons as well. The simulated contributions describe both the signal-dominated region at higher transverse momenta as well as the background-dominated region below 5 GeV/c reasonably well.

The relative size of pion signal and electron backgrounds is then further compared with data by studying the full \(E/p\) range including the electron peak at ratios around unity where it is quite prominent. Based on this comparison, as seen in Fig. 3 the nonpion background is found to be below a few percent. A Gaussian function for the electron peak and an Error function for the pion signal are fit to the \(E/p\) distribution in each \(p_T\) bin. The extracted parameter of the Gaussian was used to scale the electron background from the simulation. As the background level was found to be small, the scaling factor was varied by a factor of two in the background and the effect of the scale variation found to be small.

The selected pions are then separated by spin pattern, which determines whether the protons collided with the same or opposite helicities. These asymmetries are normalized for the fluctuations in luminosity from the bunch crossings with the same \((+++)\) helicity and opposite \((+-\) \(helicity, known as relative luminosity, \(R = L^{++}/L^{-+}\) (\(\approx 1.002\)):

\[
A_{LL} = \frac{1}{P_Y P_B} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}, \tag{1}
\]

where \(P_Y\) and \(P_B\) are the average beam polarizations for the two beams, referred to as Yellow and Blue beam respectively, and \(N\) is the number of charged pions from the bunch crossings with the same and opposite helicities. During the 2013 RHIC running period \(P_Y\) and \(P_B\) were
The uncertainty on the asymmetries based on the background yields evaluated by comparing MC with data. The background asymmetry is estimated based on an electron enhanced data sample, which is found to be consistent with zero. The systematic uncertainty from the background asymmetry is evaluated by varying the background fraction after taking into account the evaluated background asymmetry mentioned above. These systematic uncertainties range from 2×10^{-5} to 10^{-3}.

IV. RESULTS

The resulting final double spin asymmetries are displayed in Fig. 4 as a function of transverse momentum for positive and negative pions and compared to the previously published neutral pions. As can be seen, the results are consistent with the DSSV fit that has considered only the 200 GeV data but not the 510 GeV data. Due to the large statistical uncertainties, the sign of the gluon polarization in the probed x region cannot directly be inferred from the ordering of the asymmetries for the three charges. However, it was found that the present results are consistent with the positive gluon polarization from the global fits. The reason for the comparatively low statistics for charged pions compared to neutral pions is the trigger requirement of having substantial energy deposited in the electromagnetic calorimeter, which happens only for a small fraction of charged pions.

In addition, one can also compare these data to the previously published measurements of charged pions at $\sqrt{s} = 200$ GeV. They are complementary because the hadrons detected at the same transverse momenta but at different center-of-mass energies probe different momentum fraction region. Therefore, the exact same measurement at higher collision energy of $\sqrt{s} = 510$ GeV probes a lower value of x than what was possible with the previously published data at $\sqrt{s} = 200$ GeV. While the experimentally measured transverse momentum contains a convolution of x for both partons and the mo-
V. SUMMARY

In summary, PHENIX has measured the charged pion double spin asymmetries at midrapidity ($|\eta| < 0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s} = 510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in x range $\approx 0.04–0.09$. The asymmetries are found to be consistent with global fits that have included only 200 GeV RHIC data, and a nonzero, positive gluon polarization in the x region probed by RHIC has been found. In the proposed sPHENIX experiment [17], the hadronic calorimeter will greatly enhance triggering efficiency for charged hadrons and, therefore, significantly improve the statistical precision for charged pion measurements and make such direct evaluation of the gluon spin contribution possible.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science,
and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research and SRC(CENuM) Programs through NRF funded by the Ministry of Education and the Ministry of Science and ICT (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

[1] J. Ashman et al. (European Muon Collaboration), “A measurement of the spin asymmetry and determination of the structure function g_1 in deep inelastic muon-proton scattering,” Internal spin structure of the nucleon. Proceedings, Symposium, SMC Meeting, New Haven, USA, January 5-6, 1994, Phys. Lett. B 206, 364 (1988)

[2] R. L. Jaffe and A. Manohar, “The G(1) Problem: Fact and Fantasy on the Spin of the Proton,” Nucl. Phys. B 337, 509 (1990)

[3] L. Adamczyk et al. (STAR Collaboration), “Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 115, 092002 (2015)

[4] A. Adare et al. (PHENIX Collaboration), “Inclusive double-helicity asymmetries in neutral-pion and eta-meson production in $\bar{p} + p$ collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 90, 012007 (2014)

[5] A. Adare et al. (PHENIX Collaboration), “Charged-pion cross sections and double-helicity asymmetries in polarized $p+p$ collisions at $\sqrt{s}=200$ GeV,” Phys. Rev. D 91, 032001 (2015)

[6] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, “Evidence for polarization of gluons in the proton,” Phys. Rev. Lett. 113, 012001 (2014)

[7] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo (NNPDF Collaboration), “A first unbiased global determination of polarized PDFs and their uncertainties,” Nucl. Phys. B 887, 276 (2014)

[8] A. Adare et al. (PHENIX Collaboration), “Inclusive cross section and double-helicity asymmetry for π^0 production at midrapidity in $p+p$ collisions at $\sqrt{s} = 510$ GeV,” Phys. Rev. D 93, 011501 (2016)

[9] J. Adam et al. (STAR Collaboration), “Longitudinal double-spin asymmetries for dijet production at intermediate pseudorapidity in polarized pp collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 98, 032011 (2018)

[10] J. Adam et al. (STAR Collaboration), “Longitudinal double-spin asymmetries for π^0s in the forward direction for 510 GeV polarized pp collisions,” Phys. Rev. D 98, 032013 (2018)

[11] L. Adamczyk et al. (STAR Collaboration), “Measurement of the cross section and longitudinal double-spin asymmetry for di-jet production in polarized pp collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 95, 071103 (2017)

[12] D. de Florian, R. Sassot, M. Epele, R. J. Hernández-Pinto, and M. Stratmann, “Parton-to-Pion Fragmentation Reloaded,” Phys. Rev. D 91, 014035 (2015)

[13] K. Adcox et al. (PHENIX Collaboration), “PHENIX detector overview,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 469 (2003)

[14] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” (2006), J. High Energy Phys. 05 (2006), 026.

[15] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Mairé, A. McPherson, G. Patric, and L. Urban, “GEANT Detector Description and Simulation Tool,” (1994), CERN-W5013, CERN-W-5013, W5013, W-5013.

[16] W. D. Schmidke (The RHIC Polarimetry Group), “RHIC polarization for Runs 9-17,” (2018), https://technotes.bnl.gov/Home/ViewTechNote/209057

[17] W. D. Schmidke (The RHIC Polarimetry Group), “RHIC polarization for Runs 9-17,” (2018), https://indico.bnl.gov/event/3827/attachments/10411/12744/m