ASYMPTOTIC STABILITY FOR KDV SOLITONS IN WEIGHTED H^s SPACES

BRIAN PIGOTT AND SARAH RAYNOR

Abstract. In this work, we consider the stability of solitons for the KdV equation below the energy space, using spatially-exponentially-weighted norms. Using a combination of the I-method and spectral analysis following Pego and Weinstein, we are able to show that, in the exponentially weighted space, the perturbation of a soliton decays exponentially for arbitrarily long times. The finite time restriction is due to a lack of global control of the unweighted perturbation.

1. Introduction

Consider the initial value problem for the Korteweg-de Vries equation (KdV)
\[\begin{align*}
 u_t + u_{xxx} + \partial_x(u^2) &= 0, \\
 u(0,x) &= u_0(x).
\end{align*} \tag{1} \]

This is a well-known nonlinear dispersive partial differential equation modelling the behavior of water waves in a long, narrow, shallow canal. Of particular interest are soliton solutions to this equation, which are special travelling wave solutions of the form
\[Q_{c,x_0}(x,t) = \psi_c(x-ct-x_0) = \frac{3c}{2} \text{sech}^2\left(\frac{\sqrt{c}}{2}(x-ct-x_0) \right). \tag{2} \]

The stability of these solitons has been an area of intense study for many years. One might first be interested in the orbital stability of the soliton. That is, if $u_0(x) - \psi_c(x)$ is small in an appropriate norm, then, for all time there is some $x_0(t)$ so that $u(x,t) - \psi_c(x - x_0(t))$ remains small. The study of orbital stability in the energy space H^1 began with Benjamin [1] and Bona [2]; see also [3]. This work was made systematic by Weinstein [4], who

Date: October 28, 2014.

1991 Mathematics Subject Classification. (Primary) 35Q53, 35B35 (Secondary) 37K40, 35B40, 37K45, 35Q51.

B. Pigott completed this work while a Teacher-Scholar Postdoctoral Fellow at Wake Forest University would like to thank the Department of Mathematics at Wake Forest University for its support.

S. Raynor would like to thank the Simons Foundation for their support during the creation of this work.
established the orbital stability of solitons for nonlinear Schrödinger equations and for generalized KdV equations. One can also study the possibility of orbital stability of solitons in H^s for s not an integer, and in [15] and [16] it was shown that, for $0 < s < 1$, the possible orbital instability of the solitons is at most polynomial in time.

Also of interest is the concept of asymptotic stability, meaning that there exist c_+ and x_+ so that, in some appropriate sense, $u(x,t) - \psi_{c_+}(x - c_+ t - x_+)$ goes to zero as time goes to positive infinity. Asymptotic stability for the Korteweg-deVries equation was first studied by Pego and Weinstein in [15]. In that paper, the authors considered the behavior of solutions to KdV in the weighted space $H_1^a = \{ f \| e^{ax} f(x) \|_{H^1} < +\infty \}$, for appropriate choice of a. In that setting, they were able to conclude that solitons are asymptotically stable and, in fact, converge exponentially to the limiting soliton. Asymptotic stability in the space H^1 was established by Martel and Merle in [3, 4, 10], and in L^2 by Merle and Vega [11] via the Miura transform. More recently, Mizumachi and Tzvetkov [12] have adapted arguments from [15] to establish asymptotic stability for KdV solitons in L^2, with exponential rate of approach in an exponentially weighted space.

In this paper, we consider the case of asymptotic stability in H^s, $0 < s < 1$. It may seem clear that asymptotic stability in L^2 and H^1 should imply the same in the spaces H^s, $0 < s < 1$, but this is not the case. The natural interpolation does not work because H^s functions are not in H^1. Another natural technique to consider is the well-known I-method of Colliander, Keel, Staffilani, Takaoka, and Tao. This has been done, for KdV in [15] and [16] and for the nonlinear Schrödinger equation in [4, 5]. However, the I-method naturally loses an error term which amounts to polynomial growth in time of the computed perturbation. We note that this is an artifact of the technique, and is not believed to be a real property of solutions to KdV.

Our goal here is to remove the polynomial loss of control of the perturbation. To do so, we reconsider the exponentially weighted spaces of Pego and Weinstein. We establish local well-posedness for the exponentially weighted soliton perturbation in a space $X_{s,1/2}^1$ which embeds into the Bourgain space $X_{s,1/2}^1$, partially following the local well-posedness work of Molinet and Ribaud [13, 14], and Guo and Wang [6] on dispersive-dissipative equations. In so doing we establish multilinear estimates that accommodate the presence of the exponential weight. For technical reasons, this requires that $s > 7/8$. We then use the I-method to map our solutions into an exponentially-weighted version of H^1. Finally, we run an iteration scheme to establish global control of the perturbation in H^s and the exponentially weighted space H_s^a, concluding that the soliton is exponentially asymptotically stable in H_s^a for $s > 7/8$. Specifically, we show the following:
Theorem 1. There exist $\epsilon_1 > 0$ and $0 < r < 1$ and for every $T > 0$ there exists $\epsilon_2 > 0$ so that if $\|e^{ay}I_N v(0)\|_{H^1} < \epsilon_1$, $|c(0) - c_0| < \epsilon_1$ and $\|I_N v(0)\|_{H^1} < \epsilon_2$, then there exist piecewise differentiable functions $c(t)$, $\gamma(t)$ and a constant $C > 0$ so that for all $t \in [0, T]$:

(1) $\|e^{ay}I_N v(t)\| = C\epsilon_1 r^t$,

(2) $|\dot{c}| + |\dot{\gamma}| < C\epsilon_1 r^t$, and

(3) $|c(t) - c_0| < 2C\epsilon_1$.

The paper is organized as follows: In section 2, we will set up our notation and establish basic results. In section 3, we will establish some necessary estimates to establish local well-posedness in section 4. In section 5, we will run the iteration scheme and establish the main result of the paper.

2. Notation and Basic Results

We will define the Fourier multiplier operator I_N by $I_N f(\xi) = m_N(\xi) \hat{f}(\xi)$, with m_N a smooth, even, decreasing function of $|\xi|$ which satisfies $m_N(\xi) = 1$ for $|\xi| < N$ and $m_N(\xi) = \frac{|\xi|^{-1}}{N^{N-1}}$ for $|\xi| > 10N$. In this paper, N will be a function of our time-step n, and, in particular

$$N(n) = \kappa \left(\frac{1}{\frac{1}{b} + \eta_1} \right)^a$$

for $\eta_1 > 0$ very small, where $1 > \kappa > \sqrt{1 - \frac{b}{2}}$, and b are defined below.

We define $\tilde{v}_n(t) = I_N v(y, t)$ and $\tilde{w}_n(t) = e^{ay}I_N v(y, t)$, where $y = x - \int_0^t c(s) \, ds - \gamma(t)$, and $c(t)$, $\gamma(t)$ are chosen so that, at each time t, for appropriate value of n, $\|\tilde{w}_n(t)\|_{L^2}$ is minimized. In order to do so, we first need to consider the difference equations satisfied by \tilde{v} and \tilde{w}, and consider their linearizations about the soliton.

Lemma 2.1. The perturbation \tilde{v} satisfies the difference equation

$$\begin{align*}
\tilde{v}_n(t) &= \partial_y (-\partial_y^2 + c_0 - 2\psi_c) \tilde{v}_n + I_{N(n)} \partial_y (v^2) + \partial_y (I_{N(n)} (\tilde{v}_n v) - \psi_c I_{N(n)}(v^2)) \\
&\quad + (\dot{\gamma} \partial_y + \dot{c} \partial_c) I_{N(n)} \psi_c + (\dot{\gamma} + c - c_0) \partial_y \tilde{v}
\end{align*}$$

Moreover, the perturbation $\tilde{w}_n(t)$ satisfies the difference equation

$$\begin{align*}
\tilde{w}_n(t) &= e^{ay} \partial_y (-\partial_y^2 + c_0 - 2\psi_c) e^{-ay} \tilde{w}_n + (c - c_0 - \dot{\gamma})(\partial_y - a) \tilde{w} \\
&\quad - e^{ay} I_{N(n)} \partial_y (v^2) - e^{ay} (\dot{c} \partial_c + \dot{\gamma} \partial_y) I_{N(n)} \psi_c - e^{ay} \partial_y (I_{N(n)} (\psi_c v)) - e^{ay} \partial_y (I_{N(n)} (\psi_c v))
\end{align*}$$

Proof. From [15], we have that

$$v_t = p_y (-\partial_y^2 + c_0 - 2\psi_c) v + \partial_y (v^2) + (\dot{\gamma} \partial_y + \dot{c} \partial_c) \psi_c + (\dot{\gamma} + c - c_0) \partial_y v$$

```latex
\end{document}
```
and
\[w_t = e^{ay}\partial_y(-\partial_y^2 + c_0 - 2u_c)e^{-ay}w + (c - c_0)(\partial_y - a)w + [e^{ay}(\dot{c}\partial_c + \ddot{c}\partial_y)]u_c \\
+ \dot{c}(\partial_y - a)w + e^{ay}\partial_y(c - c_0 + v^2)e^{-ay}w. \]

The result here comes from applying I to each equation. \qed

For fixed $c > 0$, define the operator $A_a = e^{ay}\partial_y(-\partial_y^2 + c - 2\psi_c)e^{-ay}$. We have the following from [15],[17]:

Proposition 1. For $0 < a < \sqrt{\frac{2}{3}}$, the spectrum of A_a in H^1 consists of the following:

1. An eigenvalue of algebraic multiplicity 2 at $\lambda = 0$. A generator of the kernel of A_a is $\zeta_1 = e^{ay}\partial_y\psi_c$, and the second generator of the generalized kernel of A_a is $\zeta_2 = e^{ay}\partial_y\psi_c$.
2. A continuous spectrum S^a parametrized by $\tau \to i\tau^3 - 3a\tau^2 + (c - 3a^2)i\tau - a(c - a^2)$. For any element λ of this continuous spectrum, the real part of λ is at most $b := -a(c - a^2) < 0$.

The spectrum contains no other elements.

We also need to consider the elements of the spectrum to A^*_a, which are $\eta_1 = e^{-ay}[\theta_1\partial_y^{-1}\partial_c\psi_c + \theta_2\psi_c]$, and $\eta_2 = e^{-ay}(\theta_3\psi_c)$, where $\partial_y^{-1}f$ is defined to be $\int_0^\infty f(t)dt$ and θ_1, θ_2 and θ_3 are appropriate constants to obtain the biorthogonality relationship $\langle \zeta_i, \eta_k \rangle = \delta_{jk}$. We will define the L^2 spectral projections $Pw = \sum_{i=1}^2 \langle w, \eta_i \rangle \zeta_i$ and $Qw = w - Pw$ onto the discrete and continuous spectrums of A_a respectively, with respect to the fixed initial value of c, c_0.

Returning to the difference equation (4), for each fixed t we select $\dot{c}_0(t)$ and $\ddot{c}_0(t)$ so that $P\dot{w}_n = 0$, and $Q\dot{w}_n = \dot{w}_n$. Defining $\bar{F} = (c - c_0 - \dot{c})\partial_y - a)\dot{w} - e^{ay}I_N(v)\partial_y(v^2) - e^{ay}(\dot{c}\partial_c + \ddot{c}\partial_y)I_N(v)\psi_c - e^{ay}\partial_y(I_N(v)\psi_c - \dot{c}I_N(v)\psi_c)$, and $\dot{G} = (c - c_0)(\partial_y - a)\dot{w} - e^{ay}I_N(v)\partial_y(v^2) - e^{ay}\partial_y(I_N(v)\psi_c - \dot{c}I_N(v)\psi_c)$, we have that
\[w_t = A_aw + Q\bar{F}, \]

and
\[
A \begin{bmatrix} \dot{c} \\ \dot{c}_0 \end{bmatrix} = \begin{bmatrix} \langle \dot{G}, \eta_1 \rangle \\ \langle \dot{G}, \eta_2 \rangle \end{bmatrix},
\]

where A is the matrix
\[
A = \begin{bmatrix} 1 + \langle e^{ay}(\partial_y\psi_c - \partial_y\psi_{c0}), \eta_1 \rangle - \langle \dot{w}_n, \partial_y\eta_1 \rangle & \langle e^{ay}(\partial_c\psi_c - \partial_c\psi_{c0}), \eta_1 \rangle \\
\langle e^{ay}(\partial_y\psi_c - \partial_y\psi_{c0}), \eta_2 \rangle - \langle \dot{w}_n, \partial_y\eta_2 \rangle & 1 + \langle e^{ay}(\partial_c\psi_c - \partial_c\psi_{c0}), \eta_2 \rangle \end{bmatrix}.
\]
3. Linear and Multilinear Estimates

In this section we will review the construction of the space $X^{s,1/2,1}$ and mention the linear estimates which were developed in [17]. At the end of this section we prove a new bilinear estimate which is then used to establish a multilinear estimate that is necessary for the proof of Theorem 1.

First, we provide a version of the product rule that holds with the multiplier operator I in place of a derivative:

Lemma 3.1. Suppose that $\|e^{ay} f_i\|_{L^2} < \infty$ and $\|I_N \partial_y f_i\|_{L^2} < \infty$ for $i = 1, 2$. Then

$$\|e^{ay} I_N \partial_y (f_1 f_2)\|_{L^2} \leq 2\|I_N f_1\|_{H^1} \|e^{ay} I_N \partial_y f_2\|_{L^2} + 2\|I_N f_2\|_{H^1} \|e^{ay} I_N \partial_y f_1\|_{L^2}.$$

Proof. Define $\omega_R(y) = \chi_{\{y \leq R\}} e^{ay}$, and consider $\|\omega_R I_N \partial_y (f_1 f_2)\|_{L^2}$. Taking the Fourier transform and using duality, we find that this equals

$$\sup_{\|f\|_{L^2} = 1} \left(\int_{\Gamma_4} \int \int \hat{\omega}_R (\xi_1) m(\xi_2 + \xi_3) (\xi_2 + \xi_3) \hat{f}_1(\xi_2) \hat{f}_2(\xi_3) f(\xi_4) \right),$$

where $\Gamma_4 = \{ (\xi_1, \xi_2, \xi_3, \xi_4) \in \mathbb{R}^4 \mid \xi_1 + \xi_2 + \xi_3 + \xi_4 = 0 \}$. Now, either $\xi_2 + \xi_3 \leq 2\xi_2$ or $\xi_2 + \xi_3 \leq 2\xi_3$. In the first case, note that $m(\xi_2 + \xi_3) (\xi_2 + \xi_3) \leq 2m(\xi_2) \xi_2$ by the properties of m, so we have, with $\xi_5 = \xi_2 + \xi_3$ and $\xi_6 = \xi_1 + \xi_5$,

$$\|\omega_R I_N \partial_y (f_1 f_2)\|_{L^2} \leq 2 \sup_{\|f\|_{L^2} = 1} \int_{\Gamma_4} \int \int \hat{\omega}_R (\xi_1) m(\xi_2) (\xi_2 + \xi_3) \hat{f}_1(\xi_2) \hat{f}_2(\xi_3) f(\xi_4)$$

$$= 2 \sup_{\|f\|_{L^2} = 1} \int_{\Gamma_4} \int \int \hat{\omega}_R (\xi_1) (I \partial_y f_1)(\xi_2) \hat{f}_2(\xi_3) f(\xi_4)$$

$$= 2 \sup_{\|f\|_{L^2} = 1} \int_{\xi_1 + \xi_2 + \xi_4 = 0} \hat{f}_2(\xi_3) (\omega_R I \partial_y f_1)\hat{\omega}_R (\xi_5) f(\xi_4)$$

$$= 2 \sup_{\|f\|_{L^2} = 1} \int_{\xi_6 + \xi_4 = 0} (f_2 \omega_R I \partial_y f_1)\hat{\omega}_R (\xi_5) f(\xi_4)$$

$$\leq 2 \sup_{\|f\|_{L^2} = 1} \|f_2 \omega_R I \partial_y f_1\|_{L^2} \|f\|_{L^2}$$

$$= 2 \|f_2 \omega_R I \partial_y f_1\|_{L^2} \|f\|_{L^2}$$

By the symmetry between the two cases, we obtain in total that

$$\|\omega_R I_N \partial_y (f_1 f_2)\|_{L^2} \leq 2\|I_N f_2\|_{H^1} \|e^{ay} I \partial_y f_1\|_{L^2} + 2\|I_N f_1\|_{H^1} \|e^{ay} I \partial_y f_2\|_{L^2}.$$
Now, letting \(R \to \infty \), since \(\chi_{\{y<R\}} |e^{ay}I_N p_y(f_1 f_2)(y)|^2 \) is a pointwise-increasing function in \(R \), by the Lebesgue monotone convergence theorem we see that

\[
\|e^{ay}I_N \partial_y(f_1 f_2)\|_{L^2}^2 = \lim_{R \to \infty} \int \chi_{\{y<R\}} |e^{ay}I_N p_y(f_1 f_2)(y)|^2 dy
\]

\[
= \lim_{R \to \infty} \int \omega_R I_N \partial_y(f_1 f_2)(y)|^2 \]

\[
\leq \lim_{R \to \infty} (2\|I_N f_2\|_{H^1}\|e^{ay}I_N p_y f_1\|_{L^2} + 2\|I_N f_1\|_{H^1}\|e^{ay}I_N p_y f_2\|_{L^2})^2
\]

\[
= (2\|I_N f_2\|_{H^1}\|e^{ay}I_N p_y f_1\|_{L^2} + 2\|I_N f_1\|_{H^1}\|e^{ay}I_N p_y f_2\|_{L^2})^2
\]

as claimed. \(\square \)

We next recall the definition of the space \(X^{s,1/2,1} \). We define the sets \(A_j \) and \(B_k \) by

\[
A_j := \{(\tau, \xi) \in \mathbb{R}^2 \mid 2^j \leq \langle \xi \rangle \leq 2^{j+1}\}, \quad j \geq 0
\]

\[
B_k := \{(\tau, \xi) \in \mathbb{R}^2 \mid 2^k \leq \tau - \xi^3 \leq 2^{k+1}\}, \quad k \geq 0.
\]

For \(s, b \in \mathbb{R} \), the space \(X^{s,b,1} \) is defined to be the completion of the Schwartz class functions in the norm

\[
\|f\|_{X^{s,b,1}} := \left(\sum_{j \geq 0} 2^{2sj} \left(\sum_{k \geq 0} 2^{hk} \|f\|_{L^2(A_j \cap B_k)} \right)^2 \right)^{1/2}
\]

In taking \(b = 1/2 \) we have the following embeddings:

\[X^{s,1/2+} \hookrightarrow X^{s,1/2,1} \hookrightarrow C^0_t H^s_x. \]

We will work primarily in the spaces \(X^{s,1/2,1} \) and \(X^{s,1/2,1} \), so we adopt the notation \(X^s := X^{s,1/2,1} \) and \(Y^s := X^{s,1/2,1} \).

The spaces \(X^s, Y^s \) were used in the case when \(s = 1 \) to prove local well-posedness for the perturbations \(v \) and \(w = e^{ay}v \) in \(H^1(\mathbb{R}) \), see [17]. We review some of the features of these spaces that were used in the aforementioned local well-posedness arguments. Let \(W_1(t) \) denote the standard Airy evolution,

\[
(W_1(t)f)^\sim(\xi) = e^{-it\xi^3} \hat{f}(\xi).
\]

Let \(W_2(t) \) be the linear evolution defined for \(t \geq 0 \) by

\[
(W_2(t)f)^\sim(\xi) = e^{-it\xi^3 - p_a(\xi)t} \hat{f}(\xi),
\]

where \(p_a(\xi) = 3a\xi^2 + a(c_0^2 - a) \). We extend this to all of \(t \in \mathbb{R} \) in defining

\[
(W_2(t)f)^\sim(\xi) = e^{-it\xi^3 - p_a(\xi)|t|} \hat{f}(\xi).
\]
While the Airy evolution $W_1(t)$ is the linear evolution associated with the unweighted perturbation v, the evolution $W_2(t)$ is the linear evolution associated with the weighted perturbation w. A key feature of the space X^s is that it accommodates both of the semigroups $W_1(t)$ and $W_2(t)$, as illustrated in the following linear estimates which are valid for all $s \in \mathbb{R}$:

$$
\|\rho(t)W_1(t)f\|_{X^{s,1/2,1}} \lesssim \|f\|_{H^{s,1}},
$$

and if $0 < a \leq \min(1,c_0)$, then

$$
\|\rho(t)W_2(t)f\|_{X^{s,1/2,1}} \lesssim \|f\|_{H^{s,a}},
$$

Here $\rho : \mathbb{R} \to \mathbb{R}$ is a cutoff function such that

$$
\rho \in C_0^\infty(\mathbb{R}), \quad \text{supp } \rho \subset [-2,2], \quad \rho \equiv 1 \text{ on } [-1,1],
$$

and $\chi_{\mathbb{R}_+}$ is the indicator function for the set $\mathbb{R}_+ := \{t \in \mathbb{R} \mid t \geq 0\}$. The estimates (6), (7) are proved in [7] while the proofs of (8), (9) are given in [17].

Also crucial for the result proved in [17] was the following bilinear estimate, valid for all $s \geq 0$ (see Proposition 3 in [17]):

$$
\|uv\|_{Y^{s}} \lesssim \|u\|_{X^{s}}\|v\|_{X^{s}}.
$$

In the case when $s = 1$ we have the following generalization of this result.

Proposition 2. Let $\alpha_1 \in (3/4,1], \alpha_2 \in (0,1]$ and suppose that $u \in X^{\alpha_1}$, $v \in X^{\alpha_2}$. Then

$$
\|uv\|_{Y^{1}} \lesssim \|u\|_{X^{\alpha_1}}\|v\|_{X^{\alpha_2}}.
$$

Proof. Since we work primarily in frequency space, we define $\widetilde{X}^{s,b,1}$ to be the completion of the Schwartz class functions in the norm

$$
\|f\|_{\widetilde{X}^{s,b,1}} := \left(\sum_{j \geq 0} 2^{sj} \left(\sum_{k \geq 0} 2^{bk} \|f\|_{L^2(A_j \cap B_k)} \right)^2 \right)^{1/2}.
$$

Here $f = f(\tau,\xi)$ is a function of the frequency variables τ and ξ. Adopting the notation $\widetilde{X}^1 = \widetilde{X}^{1,1/2,1}$ and $\widetilde{Y}^1 = \widetilde{X}^{1,-1/2,1}$, the estimate (12) reads

$$
\|\langle \xi_1 \rangle f * g\|_{\widetilde{Y}^1} \lesssim \|f\|_{\widetilde{X}^{\alpha_1}}\|g\|_{\widetilde{X}^{\alpha_2}}.
$$

Following the proof of the standard bilinear estimate (11) we decompose f and g on dyadic blocks as follows: Define $f_{j_1,k_1} := \chi_{A_{j_1}} \chi_{B_{k_1}} f$ and $g_{j_2,k_2} :=$
χ_{A_j}χ_{B_{k_2}} g$. We thus have
\[f = \sum_{j_1 \geq 0} \sum_{k_1 \geq 0} f_{j_1,k_1} \quad \text{and} \quad g = \sum_{j_2 \geq 0} \sum_{k_2 \geq 0} g_{j_2,k_2}. \]

Our goal is to estimate
\[\sum_{j \geq 0} 2^{2j} \left(\sum_{k \geq 0} \sum_{j_1 \geq 0} \sum_{k_1 \geq 0} \sum_{j_2 \geq 0} \sum_{k_2 \geq 0} 2^{-k/2} 2^{j_1} \|f_{j_1,k_1} \ast g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \right)^2. \] (13)

Indeed, we wish to establish an estimate of the form
\[\|f\|_{X_{\alpha_1}^J}^2 \lesssim \|g\|_{X_{\alpha_2}^J}^2. \]

To simplify the exposition we adopt the following notation:
\[F_{j_1,k_1} := 2^{\alpha_1 j_1} 2^{k_1/2} \|f_{j_1,k_1}\|_{L^2}, \quad \text{and} \quad G_{j_2,k_2} := 2^{\alpha_2 j_2} 2^{k_2/2} \|g_{j_2,k_2}\|_{L^2}. \]

The proof is divided into the following cases:

1. At least two of j, j_1, j_2 are less than 20.
2. $j_1, j_2 \geq 20$ and $j < j_1 - 10$.
3. $j, j_1 \geq 20, |j - j_1| \leq 10$.

Case (1). Here we may assume that $j, j_1, j_2 \leq 30$. Applying Young’s inequality followed by Hölder’s inequality yields
\[\|f_{j_1,k_1} \ast g_{j_2,k_2}\|_{L^2} \lesssim 2^{j_1/2} 2^{15k_1/32} 2^{15k_2/32} \|f_{j_1,k_1}\|_{L^2} \|g_{j_2,k_2}\|_{L^2}. \]

After summing in k and summing over j (a finite sum), we find that
\[\lesssim \left(\sum_{j_1 = 0}^{30} \sum_{k_1 \geq 0} 2^{j_1} 2^{15k_1/32} \|f_{j_1,k_1}\|_{L^2} \right)^2 \left(\sum_{j_2 = 0}^{30} \sum_{k_2 \geq 0} 2^{j_2/2} 2^{15k_2/32} \|g_{j_2,k_2}\|_{L^2} \right)^2. \]

Note that the sum in j_2 is finite, so
\[\sum_{j_2 = 0}^{30} \sum_{k_2 \geq 0} 2^{j_2/2} 2^{15k_2/32} \|g_{j_2,k_2}\|_{L^2} \]
\[\leq \left(\sum_{j_2 = 0}^{30} 2^{(1-2\alpha_2)j_2} \right)^{1/2} \left(\sum_{j_2 = 0}^{30} 2^{2\alpha_2 j_2} \left(\sum_{k_2 \geq 0} G_{j_2,k_2} \right)^2 \right)^{1/2} \]
\[\lesssim \|g\|_{X_{\alpha_2}^J}. \]

A similar argument shows that
\[\sum_{j_1 = 0}^{30} \sum_{k_1 \geq 0} 2^{j_1} 2^{15k_1/32} \|f_{j_1,k_1}\|_{L^2} \lesssim \|f\|_{X_{\alpha_1}^J}. \]
which completes the argument.

Case (2). We may assume that $|j_1 - j_2| \leq 1$, since otherwise $f_{j_1} \ast g_{j_2} = 0$ on A_j. For $(\tau_1, \xi_1) \in A_{j_1} \cap B_{k_1}$ and $(\tau_2, \xi_2) \in A_{j_2} \cap B_{k_2}$ we have

$$(\tau_1 + \tau_2) - (\xi_1 + \xi_2)^3 - (\tau_1 - \xi_1^3) - (\tau_2 - \xi_2^3) = -3\xi_1\xi_2.$$

(14)

It follows that $f_{j_1, k_1} \ast g_{j_2, k_2} = 0$ on $A_j \cap B_k$ unless $2^{k_{\text{max}}} \gtrsim 2^{2j_1}2^{j_2} \sim 2^{j+2j_1}$, where $k_{\text{max}} = \max\{k, k_1, k_2\}$.

Suppose that $k = k_{\text{max}}$. In order for $f_{j_1, k_1} \ast g_{j_2, k_2}$ to have low frequency support we require that whenever $(\tau_1, \xi_1) \in \text{supp } f_{j_1, k_1}$, $(\tau_2, \xi_2) \in \text{supp } g_{j_2, k_2}$, ξ_1 and ξ_2 must have opposite signs. It follows that $	ext{supp } f_{j_1}$ and $	ext{supp } g_{j_2}$ are separated by $K \sim 2^n$. In light of Lemma 3.3 in [17], we thus have

$$\|f_{j_1, k_1} \ast g_{j_2, k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{-j/2}2^{-j_1/2}2^{-\alpha_1 j_1}2^{-\alpha_2 j_2} F_{j_1, k_1}G_{j_2, k_2}.$$

Therefore, using $2^{-k/2} \lesssim 2^{-j/2-j_1}$, we have

$$\lesssim \sum_{j \geq 0} \left(\sum_{j_1 \geq j + 11} \sum_{k_1 \geq 0} \sum_{j_2 = j_1 - 1}^{j + 1} \sum_{k_2 \geq 0} 2^{-j_1/2}2^{-\alpha_1 j_1}2^{-\alpha_2 j_2} F_{j_1, k_1}G_{j_2, k_2} \right)^2$$

$$\lesssim \sum_{j \geq 0} 2^{-j/2} \left(\sum_{j_1 \geq 0} \sum_{k_1 \geq 0} \sum_{j_2 \geq 0} \sum_{k_2 \geq 0} 2^{-j_1/8-\alpha_1 j_1}2^{-j_2/8-\alpha_2 j_2} F_{j_1, k_1}G_{j_2, k_2} \right)^2$$

$$\lesssim \|f\|_{X_{\alpha_1}}^2\|g\|_{X_{\alpha_2}}^2.$$

Next we suppose that $k_1 = k_{\text{max}}$. In this case we require $2^{k_1} \gtrsim 2^{j+2j_1}$. We apply Lemma 3.4 from [17] with $K \sim 2^{j_1}$ to see that

$$\|f_{j_1, k_1} \ast g_{j_2, k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{k/2}2^{-j_1}2^{-k_1/2}2^{-\alpha_1 j_1}2^{-\alpha_2 j_2} F_{j_1, k_1}G_{j_2, k_2}.$$

Observe that

$$2^{-k_1/2} \lesssim 2^{-k/16}2^{-7k_1/16} \lesssim 2^{-k/16}2^{-7j_1/16}2^{-7j_1/8}.$$

It follows that

$$\lesssim \sum_{j \geq 0} 2^{-j/16} \left(\sum_{j_1 \geq 0} \sum_{j_2 \geq 0} \sum_{k_1 \geq 0} \sum_{k_2 \geq 0} 2^{-j_1/8-\alpha_1 j_1}2^{-j_2/8-\alpha_2 j_2} F_{j_1, k_1}G_{j_2, k_2} \right)^2$$

$$\lesssim \|f\|_{X_{\alpha_1}}^2\|g\|_{X_{\alpha_2}}^2.$$

Finally we consider the case when $k_2 = k_{\text{max}}$. Since the expression to be estimated is symmetric in (j_1, k_1) and (j_2, k_2), we can argue as in the case where $k_1 = k_{\text{max}}$ to obtain the desired estimate.

Case (3). In this case we may assume that $j_2 \leq j + 11$. In light of (14) we require $2^{k_{\text{max}}} \gtrsim 2^{2j+j_2}$. We begin by assuming that $k = k_{\text{max}}$. Lemma 3.3
from \[17\] gives
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{-j/4} 2^{-\alpha_1 j_1} 2^{-\alpha_2 j_2} F_{j_1,k_1} G_{j_2,k_2}.
\]
Therefore, since \(2^{-k/2} \lesssim 2^{-j-j_2/2}\), we find
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{-j} \left(\sum_{j_1=j-10}^{j+11} \sum_{k_1 \geq 0} \sum_{j_2=0}^{j_1} \sum_{k_2 \geq 0} 2^{j_1(4-\alpha_1+\frac{j_1}{2})} 2^{-j_2(\alpha_2-1/2)} F_{j_1,k_1} G_{j_2,k_2} \right)^2
\]
\[
\lesssim \|f\|_{X^{\alpha_1}}^2 \|g\|_{X^{\alpha_2}}^2,
\]
provided \(\alpha_1 > 3/4\) and \(\epsilon > 0\) is chosen appropriately small.

Suppose that \(k_1 = k_{\max}\), meaning that \(2^{k_1} \gtrsim 2^{j_2+j}\). We apply Lemma 3.4 from \[17\] to estimate
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{k_1/4} 2^{-j_1/4} 2^{-\alpha_1 j_1} 2^{-\alpha_2 j_2} 2^{-k_1/2} F_{j_1,k_1} G_{j_2,k_2}.
\]
After using \(2^{-k_2/2} \lesssim 2^{-j-j_2/2}\)
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{-j} \left(\sum_{j_1 \geq 0} \sum_{k_1 \geq 0} \sum_{j_2 \geq 0} \sum_{k_2 \geq 0} 2^{j_1(-\alpha_1+\frac{j_1}{2})} 2^{-j_2(\alpha_2-1/2)} F_{j_1,k_1} G_{j_2,k_2} \right)^2
\]
\[
\lesssim \|f\|_{X^{\alpha_1}}^2 \|g\|_{X^{\alpha_2}}^2,
\]
again provided \(\alpha_1 > 3/4\) and \(\epsilon > 0\) is chosen to be sufficiently small.

Finally we consider the case for which \(k_2 = k_{\max}\), so that \(2^{k_2} \gtrsim 2^{j_2+j}\).

We divide our analysis into the following two subcases:

(i) \(|j_2 - j| \leq 5\).

(ii) \(|j_2 - j| > 5\).

In case (i) we use Lemma 3.4 from \[17\] to estimate
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{k_1/4} 2^{-j_2/4} 2^{-k_2/2} 2^{-\alpha_1 j_1} 2^{-\alpha_2 j_2} F_{j_1,k_1} G_{j_2,k_2}.
\]
We thus obtain
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{-j} \left(\sum_{j_1 \geq 0} \sum_{k_1 \geq 0} \sum_{j_2 \geq 0} \sum_{k_2 \geq 0} 2^{j_1-3j_2/4} 2^{-\alpha_1 j_1} 2^{-\alpha_2 j_2} F_{j_1,k_1} G_{j_2,k_2} \right)^2
\]
\[
\lesssim \|f\|_{X^{\alpha_1}}^2 \|g\|_{X^{\alpha_2}}^2.
\]
In case (ii) we again use Lemma 3.4 with \(K \sim 2^j\) to estimate
\[
\|f_{j_1,k_1} * g_{j_2,k_2}\|_{L^2(A_j \cap B_k)} \lesssim 2^{k_1/2} 2^{-j_2/2} 2^{-k_2/2} 2^{-\alpha_1 j_1} 2^{-\alpha_2 j_2} F_{j_1,k_1} G_{j_2,k_2}.
\]
Next we estimate
\[2^{-s/2} \lesssim 2^{-k/16} 2^{-7s/16} \lesssim 2^{-k/16} 2^{-7j/8} 2^{-7j/16}. \]
We thus find that
\[
\|\eta\|_{L^2} \lesssim \sum_{j \geq 0} \left(\sum_{j_1 = j-10}^{j+10} \sum_{k_1 \geq 0} \sum_{j_2 = 0}^{j_1} \sum_{k_2 \geq 0} 2^{j_1} 2^{-3j/8} 2^{-15j_2/16} 2^{-\alpha_1 j_1} 2^{-\alpha_2 j_2} F_{j_1, k_1, k_2} \right)^2
\]
\[
\lesssim \sum_{j \geq 0} 2^{-j/8} \left(\sum_{j_1 \geq 0} \sum_{k_1 \geq 0} \sum_{j_2 \geq 0} \sum_{k_2 \geq 0} 2^{j_1 (-\alpha_1 + 9/16)} 2^{j_2 (-\alpha_2 - 15/16)} F_{j_1, k_1, k_2} \right)^2
\]
\[
\lesssim \|f\|_{Y^{1/2}}^2 \|g\|_{Y^{1/2}}^2,
\]
since \(\alpha_1 > 3/4 \).

In the proof of the modified local well-posedness result we will require the following estimate.

Proposition 3. Let \(s > 7/8 \). Suppose that \(u, v \) are spacetime functions such that \(u, v \in X^s \) and \(e^{ay} Iu, e^{ay} Iv \in X^1 \). Then
\[
\left\| e^{ay} \partial_y \left(I(uv) - Iuv \right) \right\|_{Y^1} \lesssim N^{1-s^+} \left(\|e^{ay} Iu\|_{X^1} \|Iv\|_{X^1} + \|Iu\|_{X^1} \|e^{ay} Iv\|_{X^1} \right).
\]

Remark. Since \(s > 7/8 \) we see that (15) implies
\[
\left\| e^{ay} \partial_y \left(I(uv) - Iuv \right) \right\|_{Y^1} \lesssim N^{-1/8^+} \left(\|e^{ay} Iu\|_{X^1} \|Iv\|_{X^1} + \|Iu\|_{X^1} \|e^{ay} Iv\|_{X^1} \right).
\]

Proof of Proposition 3. For a function \(u(t, x) \) of spacetime we let \(u_{N_j} \) denote the function whose Fourier transform is given by \(\hat{u}_{N_j} = \eta_{A_j}(\xi) \hat{u}(\xi) \), where \(\eta_{A_j} \) is a smooth cutoff function adapted to the set \(A_j := \{ \xi \in \mathbb{R} \mid |\xi| \sim N_j \} \) with \(N_j \) dyadic.

We truncate the exponential weight using a spatial cutoff function. Specifically, for \(R > 1 \) we let \(\vartheta_R : \mathbb{R} \to \mathbb{R} \) by
\[
\vartheta_R(y) = \begin{cases} 1, & y < R \\ 0, & y > R, \end{cases}
\]
and define \(\omega_{a,R} := \vartheta_R(y)e^{ay} \). Observe that \(\omega_{a,R} \in H^s(\mathbb{R}) \) for all \(s \in \mathbb{R} \); in particular, it makes sense to speak of the Fourier transform of \(\omega_{a,R} \). Furthermore, we have the following approximation result.

Lemma 3.2. If \(f \in H^1_a(\mathbb{R}) \), then
\[
\lim_{R \to \infty} \|\omega_{a,R} f\|_{H^1} = \|e^{ay} f\|_{H^1}.
\]
Proof. Arguing as in the proof of Lemma 3.1 we find that
\[
\lim_{R \to \infty} \| \omega_{n,R} f \|_{L^2} = \| e^{ay} f \|_{L^2}.
\] (16)

Observe that \(\| e^{ay} f \|_{H^1}^2 = \| e^{ay} f \|_{L^2}^2 + \| e^{ay}(af + fy) \|_{L^2}^2 \). One also checks that
\[
\| \omega_{n,R} f \|_{H^1}^2 = \| \omega_{n,R} f \|_{L^2}^2 + \| \omega_{n,R}(af + fy) \|_{L^2}^2.
\]

In light of this calculation and (16), we obtain the conclusion of the lemma. □

To prove (15) it suffices to show that
\[
\beta \lesssim N^{2-s} \left(N_{12}^{0} N_{3}^{1} \left\| g_{n} I u_{N} \|_{X^1} \right\| I v_{N} \|_{X^1} \right) + N_{12}^{0} N_{3}^{1} \left\| I u_{N} \|_{X^1} \right\| g_{n} I v_{N} \|_{X^1},
\] (17)

where \(g := \omega_{n,R} \). Note that by symmetry we may assume that \(N_{2} \geq N_{3} \). We adopt the notation \(N_{12} \) for \(|\xi_{1} + \xi_{2}| \sim N_{12} \) when \(|\xi_{1}| \sim N_{1} \) and \(|\xi_{2}| \sim N_{2} \). We adopt similar definitions for \(N_{13} \) and \(N_{23} \).

Case (1). \(N_{2} \ll N \). In this case we see that \(m(\xi_{2} + \xi_{3}) - m(\xi_{2})m(\xi_{3}) = 0 \), so the expression to be estimated vanishes.

Case (2). \(N_{2} \gg N \gg N_{3} \). We use the mean value theorem to see that
\[
|m(\xi_{2} + \xi_{3}) - m(\xi_{2})m(\xi_{3})| \lesssim \frac{N_{3}}{N_{2}} m(N_{2})m(N_{3}).
\]

It follows that
\[
\begin{align*}
|g_{N_{1}} (\xi_{2} + \xi_{3}) (m(\xi_{2} + \xi_{3}) - m(\xi_{2})m(\xi_{3}))| & \lesssim \frac{N_{3}}{N_{2}} \left\| g_{N_{1}} (\xi_{2} + \xi_{3}) I u_{N} I v_{N} \right\|_{H^{1}} \\
& \lesssim \frac{N_{3}}{N_{2}} \left(\left\| g_{N_{1}} I u_{N} \|_{X^{3/4+}} \right\| I v_{N} \|_{X^{3/4+}} + \left\| g_{N_{1}} I v_{N} \|_{X^{3/4+}} \right\| I u_{N} \|_{X^{3/4+}} \right) \\
& \lesssim \frac{N_{3}}{N_{2}} \left(\left\| g_{N_{1}} I u_{N} \|_{X^{3/4+}} \right\| I v_{N} \|_{X^{3/4+}} + \left\| g_{N_{1}} I v_{N} \|_{X^{3/4+}} \right\| I u_{N} \|_{X^{3/4+}} \right) \\
& \lesssim \frac{N_{3}}{N_{2}} \left(\left\| g_{N_{1}} I u_{N} \|_{X^{3/4+}} \right\| I v_{N} \|_{X^{3/4+}} + \left\| g_{N_{1}} I v_{N} \|_{X^{3/4+}} \right\| I u_{N} \|_{X^{3/4+}} \right).
\end{align*}
\]

Notice that
\[
\frac{N_{3}}{N_{2}} \left(\frac{N_{3}}{N_{2}} \right)^{1/4} \lesssim \frac{N_{3}^{3/4+}}{N_{2} (N_{12})^{1/4} (N_{3})^{1/4}} \lesssim N^{-1/4+N_{12}^{-1} N_{3}^{0}}.
\]
and

\[\frac{N_3}{N_2(N_{13})^{1/4-\langle N_2 \rangle^{1/4}}} \lesssim \frac{N_3^{3/4+}}{N_2(N_{13})^{1/4-}} \lesssim N^{-1/4+} N_2^0 N_{13}^0. \]

Case (3). \(N_2 \geq N_3 \geq N \). Here we split the expression to be estimated into two terms which are then estimated separately:

\[\| \hat{g}_{N_1} [\xi_2 + \xi_3] (m(\xi_2) + m(\xi_3)) \hat{u}_{N_2} \hat{v}_{N_3} \| Y_1 \]
\[\lesssim \| g_{N_1} [\xi_2 + \xi_3] m(\xi_2 + \xi_3) \hat{u}_{N_2} \hat{v}_{N_3} \| Y_1 \]
\[+ \| g_{N_1} [\xi_2 + \xi_3] \hat{I}_{u_{N_2}} \hat{I}_{v_{N_3}} \| Y_1 \]
\[=: \text{Term I} + \text{Term II}. \]

We estimate Term II as in Case (2) to see that

\[\text{Term II} \lesssim \frac{1}{(N_{12})^{1/4-\langle N_3 \rangle^{1/4-}}} \| g_{N_1} Iu_{N_2} \| X^1 \| Iv_{N_3} \| X^1 \]
\[+ \frac{1}{(N_{13})^{1/4-\langle N_2 \rangle^{1/4-}}} \| g_{N_1} Iv_{N_3} \| X^1 \| Iu_{N_2} \| X^1, \]

which is sufficient. Turning to Term I, we have

\[\text{Term I} \lesssim m(N_{23}) \left(\| g_{N_1} u_{N_2} \| X^3/4 \| v \| X^3/4 + \| g_{N_1} v_{N_3} \| X^3/4 + \| u_{N_2} \| X^3/4 \right) \]
\[\lesssim m(N_{23}) \left(\| g_{N_1} u_{N_2} \| X^{3/4} \| v \| X^{3/4} + \| g_{N_1} v_{N_3} \| X^{3/4} + \| u_{N_2} \| X^{3/4} \right) \]
\[\lesssim \frac{m(N_{23})}{(N_{12})^{1/4-\langle N_2 \rangle^{s-3/4-}}} \| g_{N_1} Iu_{N_2} \| X^1 \| v_{N_3} \| X^s \]
\[\frac{m(N_{23})}{(N_{13})^{1/4-\langle N_2 \rangle^{s-3/4-}}} \| g_{N_1} Iv_{N_3} \| X^1 \| u_{N_2} \| X^s \]
\[\frac{m(N_{23})}{(N_{12})^{1/4-\langle N_2 \rangle^{s-3/4-}}} \| g_{N_1} Iu_{N_2} \| X^1 \| Iv_{N_3} \| X^1 \]
\[\frac{m(N_{23})}{(N_{13})^{1/4-\langle N_2 \rangle^{s-3/4-}}} \| g_{N_1} Iv_{N_3} \| X^1 \| Iu_{N_2} \| X^1, \]

where in the final inequality we have used that \(\| f \| X^s \lesssim \| If \| X^1 \). Observe that since \(N_2 \geq N_3 \) and \(s > 3/4 \) we have

\[\langle N_2 \rangle^{s-3/4-} m(N_3) \gtrsim N_3^{2s-7/4-} N_1^1 \gtrsim N^{s-3/4-}, \]

since \(s > 7/8 \). It follows that

\[\frac{m(N_{23})}{(N_{13})^{1/4-\langle N_2 \rangle^{s-3/4-}}} \lesssim N^{s-3/4-} N_1^0 N_{13}^0 N_{2}^{0}. \]
To estimate the other multiplier expression we first note that if \(N_{23} \gtrsim N_3 \), then \(m(N_{23}) \lesssim m(N_3) \) so that
\[
\frac{m(N_{23})}{(N_{12})^{1/4 - (N_2)(N_3)^{3/4 -}} \lesssim \frac{1}{(N_{12})^{1/4 - (N_3)^{3/4 -}}}
\]
which is acceptable. If \(N_{23} \ll N_3 \), then we must have \(N_2 \sim N_3 \) (with the relevant factors being supported at frequencies of opposite sign), in which case may estimate \((N_3)m(N_2) \gtrsim N^{s-3/4} \). The estimate is then completed as above in (18). \(\square \)

From Proposition 3 we have the following result.

Corollary 1. Under the hypotheses of Proposition 3 we have
\[
\left\| \int_{t_0}^{t_0+\delta} \left\langle e^{ay}I_v, e^{ay}\partial_y \left(I(uv) - Iv \right) \right\rangle_{H^1} dt \right\|_{X^1} \lesssim N^{3/4-s}\|e^{ay}I_v\|_{X^1} \left(\|e^{ay}Iu\|_{X^1} \|Iv\|_{X^1} + \|Iu\|_{X^1} \|e^{ay}Iv\|_{X^1} \right).
\]

Proof. We apply Cauchy-Schwartz together with the embedding \(X^{1,1/2} \hookrightarrow X^{1,1/2,1} \) to see that
\[
\left\| \int_{t_0}^{t_0+\delta} \left\langle e^{ay}I_v, e^{ay}\partial_y \left(I(uv) - Iv \right) \right\rangle_{H^1} dt \right\|_{X^1} \lesssim \|e^{ay}I_v\|_{X^1} \|e^{ay}\partial_y \left(I(uv) - Iv \right)\|_{Y^1} \lesssim N^{3/4-s}\|e^{ay}I_v\|_{X^1} \left(\|e^{ay}Iu\|_{X^1} \|Iv\|_{X^1} + \|Iu\|_{X^1} \|e^{ay}Iv\|_{X^1} \right).
\]
\(\square \)

4. Modified Local Well-Posedness

This section is devoted to the proof of local well-posedness for the \(\tilde{v} \)-equation and the \(\tilde{w} \)-equation. We make the change of variables \(y \mapsto y + \gamma(t) + \int_0^t c(s) ds \) and find that the initial value problem for \(\tilde{v} = I_N v \) is given by
\[
\begin{align*}
\partial_t \tilde{v} + \partial^2_x \tilde{v} + I_N \partial_y (v^2) + \partial_y (\psi_c \tilde{v}) + I_N \partial_y (\psi_c v) + (\gamma \partial_y + \dot{c} \partial_c) I_N \psi_c = 0, \\
\tilde{v}(0, y) = \tilde{v}_0(y).
\end{align*}
\]
(19)

The equation for \(\tilde{w} = e^{ay}I_N v \) is given by the modulation equation
\[
\partial_t \tilde{w} = A \tilde{w} + Q \tilde{F},
\]
where \(A = e^{ay}\partial_y (-\partial^2_y + c_0 - 2\psi_c)e^{-ay}, Q \) is the spectral projection, and
\[
\tilde{F} = (c - c_0 + \dot{\gamma})(\partial_y - a)\tilde{w} - e^{ay}I_N \partial_y (v^2) - e^{ay}(\gamma \partial_y + \dot{c} \partial_c) I_N \psi_c - e^{ay}\partial_y (I_N (\psi_c v) - \psi_c I_N v).
\]
Proposition 4. Let $0 < a < \sqrt{c_0/3}$, $s > 7/8$, and $N > 1$. There is an $r > 0$ such that the following statement holds: If $v_0 \in H^s(\mathbb{R})$ satisfies $\|v_0\|_{H^s} < r$ and $\|\tilde{w}\|_{H^s} < r$, where $\tilde{w} = e^{\delta y} I_N v_0$, then there is a $\delta > 0$ so that the initial value problems (19) and (20) admit solutions $\tilde{v}(t,y), \tilde{w}(t,y)$, respectively, on $[0,\delta]$. Moreover these solutions satisfy

$$\|\tilde{v}\|_{X^s_\delta} \lesssim \|\tilde{w}\|_{H^s}, \quad \text{and} \quad \|\tilde{w}\|_{X^s_\delta} \lesssim \|\tilde{w}\|_{H^s}.$$

Proof. Let $\rho : \mathbb{R} \to \mathbb{R}$ be a smooth cutoff function, as in (10), and let $\rho_s(\cdot) = \rho(\cdot/\delta)$. We begin by rewriting the equation for $\tilde{v}(t,y)$, (19), using Duhamel’s formula:

$$\tilde{v} = W_1(t)\tilde{v}_0 + \int_0^t W_1(t-s) \left(I_N \partial_y (v^2) + 2 \partial_y (\psi_c \tilde{v}) + \partial_y (I_N (\psi_c v) - \psi_c I_N v) \right) ds + \int_0^t W_1(t-s) \left(\partial_y (I_N (\psi_c v) - \psi_c I_N v) - (\gamma \partial_y + c \partial_c) I_N \psi_c \right) ds.$$

We will show that the map Φ given by

$$\Phi \tilde{v} := \rho_s(t) W_1(t)\tilde{v}_0 + \rho_s(t) \int_0^t W_1(t-s) \left(I_N \partial_y (v^2) + 2 \partial_y (\psi_c \tilde{v}) \right) ds + \rho_s(t) \int_0^t W_1(t-s) \left(\partial_y (I_N (\psi_c v) - \psi_c I_N v) - (\gamma \partial_y + c \partial_c) I_N \psi_c \right) ds$$

is a contraction on a small ball in X^s_δ. We estimate $\Phi \tilde{v}$ in X^s_δ using (10) and (7):

$$\|\Phi \tilde{v}\|_{X^s_\delta} \lesssim \|\tilde{v}_0\|_{H^s} + \|I_N \partial_y (v^2)\|_{Y^s_\delta} + \|\partial_y (\psi_c \tilde{v})\|_{Y^s_\delta} + \|\partial_y (I_N (\psi_c v) - \psi_c I_N v)\|_{Y^s_\delta} + \|\gamma \partial_y + c \partial_c\| I_N \psi_c\|_{Y^s_\delta}$$

$$= \|\tilde{v}_0\|_{H^s} + \text{Term I + Term II + Term III + Term IV}.$$

To estimate Term I we first note that

$$\|I_N \partial_y (v^2)\|_{Y^s_\delta} \sim \|\partial_y (v^2)\|_{Y^s_\delta} \lesssim \|v\|_{Y^s_\delta}^2 \sim \|I_N v\|_{X^s_\delta}^2.$$
Finally, for Term IV we recall that from the modulation equations we have
\[16 \] B. PIGOTT AND S. RAYNOR

Recall that for \(\delta, \epsilon > 0 \) sufficiently small we have
\[\| \psi_c \|_{X^1_t} \lesssim \delta^\epsilon. \]
Thus
\[\text{Term II} \lesssim \delta^\epsilon \| \tilde{v} \|_{X^1_t}. \]
Turning to Term III we argue as for Terms I and II to find that
\[\text{Term III} \lesssim \| \partial_y I_N(\psi_c v) \|_{Y^1_t} + \| \partial_y (\psi_c I_N v) \|_{Y^1_t} \lesssim \delta^\epsilon \| \tilde{v} \|_{X^1_t}. \]
Finally, for Term IV we recall that from the modulation equations we have
\[\| \hat{\psi} \|_{L^\infty_t}, \| \hat{\epsilon} \|_{L^\infty_t} \lesssim \| \tilde{w} \|_{X^1_t} \]
so that
\[\text{Term IV} \lesssim \delta^\epsilon \| \tilde{w} \|_{X^1_t}. \]
Taken all together we have
\[\| \Phi \tilde{v} \|_{X^1_t} \lesssim \| \tilde{v}_0 \|_{H^1} + \| \tilde{v} \|_{X^1_t} + \delta^\epsilon \| \tilde{v} \|_{X^1_t} + \delta^\epsilon \| \tilde{w} \|_{X^1_t}. \tag{21} \]
For the \(\tilde{w} \) equation we expand the spectral projection \(Qf = f - \sum_{j=1}^2 (f, \eta_j) \zeta_j \) and make the change of variables \(y \mapsto y - ((3a^2 - c_0)t + \gamma(t) - \int_0^t c(s)ds) \), so that the equation for \(\tilde{w} \) reads
\[
\begin{align*}
\partial_t \tilde{w} + \partial_y^3 \tilde{w} - 3a \partial_y^2 \tilde{w} + a(c_0 - a^2 - c + c_0) \tilde{w} - a \gamma \tilde{w} - c^{a_y} I_N \partial_y (\psi^2) - e^{a_y} (\psi \partial_y + \psi \partial_c) I_N \psi_c - e^{a_y} \partial_y (I_N (\psi_c v) - \psi_c I_N v) + (\bar{F}, \eta_1) \zeta_1 + (\bar{F}, \eta_2) \zeta_2 &= 0.
\end{align*}
\]
Rewriting this equation using Duhamel’s formula leads us to define the following operator
\[
\begin{align*}
\Psi \tilde{w} &= \rho_3(t) W_2(t) \tilde{w}_0 + \rho_3(t) \int_0^t W_2(t - s) \left((2(\partial_y - a) (\rho_3^2 \psi_c \tilde{w}) + a \rho_3^2 \gamma \tilde{w}) ds
\right. \\
&+ \rho_3(t) \int_0^t W_2(t - s) \left(a(c - c_0) \rho_3 \tilde{w} - e^{a_y} I_N \partial_y (\rho_3^2 v^2) \right) ds \\
&+ \rho_3(t) \int_0^t W_2(t - s) \left(- e^{a_y} (\zeta \partial_y + \zeta \partial_c) \rho_3 I_N \psi_c + e^{a_y} \partial_y (I_N (\psi_c v) - \psi_c I_N v) \right) ds \\
&+ \rho_3(t) \int_0^t W_2(t - s) \left(\rho_3 (\bar{F}, \eta_1) \zeta_1 + \rho_3 (\bar{F}, \eta_2) \zeta_2 \right) ds,
\end{align*}
\]
which we hope to show is a contraction on a ball in X^1_s. We estimate $\Psi \tilde{w}$ in X^1_s using (8) and (9), which yields

$$
\|\Psi \tilde{w}\|_{X^1_s} \lesssim \|\tilde{w}\|_{H^1_s} + \| (\partial_y - a) \rho_s^2 \psi \tilde{w}\|_{Y^1_s} + \| \rho_s \gamma \tilde{w}\|_{Y^1_s} + \| (c - c_0) \rho_s \tilde{w}\|_{Y^1_s}
$$

$$
+ \| e^{ay} I_N \rho_s \tilde{w} \|_{Y^1_s} + \| e^{esy} (\gamma \partial_y + \eta \partial_c) \rho_s I_N \psi \|_{Y^1_s}
$$

$$
+ \| e^{ay} \partial_y (I_N (\psi v) - \psi I_N v) \|_{Y^1_s} + \| \rho_s (\tilde{F} \eta_1) \|_{Y^1_s} + \| \rho_s (\tilde{F} \eta_2) \|_{Y^1_s}
$$

$$
= \|\tilde{w}\|_{H^1_s} + \text{Term I} + \text{Term II} + \text{Term III} + \text{Term IV} + \text{Term V} + \text{Term VI} + \text{Term VII} + \text{Term VIII}.
$$

To estimate Term I we use $e^{ay} \partial_y e^{-ay} = \partial_y - a$, $\tilde{v} = e^{-ay} \tilde{w}$, and the bilinear estimate (11) to see that

$$
\text{Term I} = \| e^{ay} \partial_y e^{-ay} \psi \tilde{w}\|_{Y^1_s} = \| e^{ay} \partial_y \psi \tilde{w}\|_{Y^1_s}
$$

$$
\lesssim \| e^{ay} \tilde{v} \partial_y \psi \|_{Y^1_s} + \| e^{ay} \psi \partial_y \tilde{w}\|_{Y^1_s}
$$

$$
\lesssim \| \tilde{w}\|_{X^1_s} \| \psi \|_{X^1_s} + \| e^{ay} \psi \|_{X^1_s} \| \tilde{w}\|_{X^1_s}
$$

$$
\lesssim \delta^* \| \tilde{w}\|_{X^1_s} + \delta^* \| \tilde{w}\|_{X^1_s}.
$$

In estimating Term II we use that $\| \gamma \|_{L^\infty_s} \lesssim \| \tilde{w}\|_{X^1_s}$, which gives

$$
\text{Term II} \lesssim \| \tilde{w}\|_{X^1_s}^2.
$$

In order to estimate Term III we note that

$$
|c(t) - c_0| \leq \int_0^t |\dot{c}(s)| ds \lesssim \int_0^t \| \tilde{w} (s) \|_{H^1_s} ds \lesssim \| \tilde{w}\|_{L^1_t H^1_s}.
$$

Since we are restricted to the interval $[0, \delta]$, Hölder’s inequality gives

$$
|c(t) - c_0| \leq \delta^{1/2} \| \tilde{w}\|_{L^1_t H^1_s} \lesssim \delta^{1/2} \| \tilde{w}\|_{X^1_s}.
$$

It follows that

$$
\text{Term III} \lesssim \| c - c_0 \|_{L^\infty} \| \tilde{w}\|_{X^1_s} \lesssim \| \tilde{w}\|_{X^1_s}^2.
$$

To estimate Term IV we use (15) and (11) to see that

$$
\text{Term IV} \leq \| e^{ay} \partial_y (I_N (\rho_s^2 v^2) - \rho_s^2 I_N v^2) \|_{Y^1_s} + \| e^{ay} \partial_y (I_N v^2) \|_{Y^1_s}
$$

$$
\lesssim \| e^{ay} I_N v \|_{X^1_s} \| I_N v \|_{X^1_s}
$$

$$
= \| \tilde{w}\|_{X^1_s} \| \tilde{v}\|_{X^1_s}.
$$

The estimate for Term V is similar to the one we used for the analogous term in the \tilde{v} equation (term (IV)), yielding

$$
\text{Term V} \lesssim \delta^* \| \tilde{w}\|_{X^1_s}.
$$
Term VI is estimated using (15), (11), and the fact that $\| I_N \psi_x \psi_v \|_{X^1} \lesssim N^{-c}$ with C as large as need be:

Term VI $\leq \| e^{a_y \partial_y} (I_N \psi_x v) - I_N \psi_x I_N v \|_{Y^1} + \| e^{a_y \partial_y} (\psi_x - \psi_e) I_N v \|_{Y^1} + N^{-1/8} \delta^c \| \tilde{w} \|_{X^1} + N^{-1/8} \delta \| \tilde{w} \|_{X^1} + N^{-c} \| w \|_{X^1},$

leaving us with

$$\text{Term VI} \lesssim \delta^c \| \tilde{w} \|_{X^1} + \delta \| \tilde{w} \|_{X^1}.$$

Turning to Terms VII and VIII we recall from Lemma 3.5 in [17] that

$$\| \langle f, \eta_j \rangle \varphi_j \|_{Y^1} \lesssim \| f \|_{Y^1}, \quad j = 1, 2.$$

It follows that

Term VII, Term VIII $\lesssim \| \vec{F} \|_{Y^1} \lesssim \| \tilde{w} \|_{X^1} \| w \|_{X^1} + \| w \|_{X^1} + \| \tilde{w} \|_{X^1} + \| \tilde{w} \|_{X^1}.$$

Altogether, then, we have

$$\| \tilde{w} \|_{X^1} \lesssim \| \tilde{w}_0 \|_{H^1} + \delta \| \tilde{w} \|_{X^1} + \| \tilde{w} \|_{X^1} + \| \tilde{w} \|_{X^1} + \| \tilde{w} \|_{X^1}.$$

Suppose that $\| \tilde{w}_0 \|_{H^1}, \| \tilde{w}_0 \|_{H^1} < r \ll 1$ and let

$$B = \{ \tilde{v}, \tilde{w} \in X^1, \| \tilde{v} \|_{X^1} \leq 2cr, \| \tilde{w} \|_{X^1} \leq 2cr \}.$$

Using the estimates that we have established, it transpires that $\Phi, \Psi : B \to B$ are contractions following the arguments from Proposition 4 of [17]. The desired result follows.

5. Iteration

In this section, we prove the main result of the paper, namely the exponential decay of the weighted perturbation given in Theorem 1. We will prove the result by induction. Define ϵ_n and $\tilde{\gamma}_n$ by (5), and let the variable y be defined accordingly as $y = x - \int_0^t c(s) ds - \gamma(t)$. Let $T > 0$ be given.

Let $\kappa = (\max(1 - b, \frac{3}{4}))^{\frac{1}{2 + \frac{1}{2 + s} + \frac{1}{c}}}$. Let $N(n) = \kappa^{(-\frac{1}{c} + \frac{1}{c})n}$. Now, let ϵ_1 and c_2 be sufficiently small so that, whenever $\| e^{a_y I_N(n) w(t_n)} \|_{H^1} < 2\epsilon_1$ and $|I_N(n) v(t_n)\|_{H^1} < c_2$, it follows that $v(t)$ exists on $[t_0, t_0 + \delta]$, and

$$\| w \|_{X^1} \lesssim C_0 \epsilon_1$$

and

$$\| v \|_{X^1} \lesssim C_0 c_2,$$

(22)

where C_0 is the implicit constant in the conclusion of Proposition 4. Additionally, assume that $c_2 < \frac{b}{10}$. Let $n_0 = \frac{T}{\epsilon}$. Finally, choose ϵ_2 sufficiently small that $C'r^2 \epsilon_2 < c_2$, with r to be expressed later.
We must recall the known control on v. In \cite{16} it is proven that, with $H(f) = \int |\partial_x f|^2 - \frac{2}{3} f^3$,

$$\|\tilde{v}_n(n+1)\|_{H^1}^2 - \|\tilde{v}_n(n)\|_{H^1}^2 = (\|\nabla\tilde{v}_n(n+1)\|_{L^2}^2 - \|\nabla\tilde{v}_n(n)\|_{L^2}^2) H(\psi)$$

Then, since $H(\psi)$ is constant and $(1 - \frac{2}{3} (\|\psi + \tilde{v}_n(n)\|_{L^2})^3)$ is very small ($O(N^{-100})$, e.g.), it suffices to increment $H(\psi + \tilde{v}_n(n))$. It is then found in \cite{16}, as in \cite{18}, that $H(\psi + \tilde{v}_n(n+1)) - H(\psi + \tilde{v}_n(n)) \sim N(n)^{-1+\kappa} \|\tilde{v}_n(n)\|_{H^1}^2$. Therefore, when we increment \tilde{v}_n, we obtain that

$$\|\tilde{v}_{n+1}(n+1)\|_{H^1}^2 - \|\tilde{v}_n(n)\|_{H^1}^2 = \left(N(n+1) \right)^{-1-s} \|\tilde{v}_n(n+1)\|_{H^1}^2 + \|\tilde{v}_n(n+1)\|_{H^1}^2 - \|\tilde{v}_n(n)\|_{H^1}^2$$

$$\lesssim \left(N(n+1) \right)^{-1-s} \left(\left(\frac{N(n+1)}{N(n)} \right)^{1-s} \frac{N(n+1)}{N(n)} - 1 \right) \|\tilde{v}_n(n)\|_{H^1}^2$$

$$\lesssim \left(N(n+1) \right)^{-1-s} \left(\left(\frac{N(n+1)}{N(n)} \right)^{1-s} \frac{N(n+1)}{N(n)} - 1 \right) \|\tilde{v}_n(n)\|_{H^1}^2$$

Therefore, for n large,

$$\|\tilde{v}_{n+1}(n+1)\|_{H^1}^2 \lesssim N(n)^{-1+\kappa} \|\tilde{v}_n(n)\|_{H^1}^2 \leq r \|\tilde{v}_n(n)\|_{H^1}^2,$$

where $r = 1.01 \kappa$ is slightly larger than 1. Hence it follows that

$$\|\tilde{v}_n(n)\|_{H^1}^2 \leq C r^n c_2.$$

Hence it follows that $\|\tilde{v}_n(t)\|_{H^1} < c_2$ on J_n for $0 \leq n \leq n_0$.

With all these preliminaries complete, we can state the induction lemma:
Lemma 5.1. Define $\tilde{w}_n(t,y) = e^{ay}I_{N(n)}v(t,y)$ and $\hat{v}_n(t,y) = I_{N(n)}v(t,y)$ on the time interval $J_n := [t_n, t_{n+1})$, where $t_n = n \delta$. Suppose $\|\hat{w}(0)\|_{H^1} < \epsilon_1$, $\|\hat{v}(0)\|_{H^1} < \epsilon_2$, and $|c(0) - c_0| < \epsilon_1$. Then, for all $n \in \mathbb{N}$, the following hold:

1. Define $c(t)$ inductively starting at $c(0)$ by $c(t) = c(t_n) + \int_{t_n}^t \dot{c}(t)\,dt$ for $t \in [t_n, t_{n+1})$, and similarly for $\gamma(t)$. Then \dot{c}_n and $\dot{\gamma}_n$ are continuous on J_n for all n, and c, γ are continuous functions of t.
2. $|\dot{c}_n(t_n)| < C \epsilon_1 n^\alpha$,
3. $|\dot{\gamma}_n(t_n)| < C \epsilon_1 n^\alpha$,
4. $|c(t_n) - c_0| < C \frac{1}{\delta^\alpha} \epsilon_1$, and
5. $\|\tilde{w}_n(t_n)\|_{H^1} < \epsilon_1 n^\alpha$,

where $C = 2 \max\{2 + \|u\|_{L^\infty} + \|pyu\|_{L^\infty})(\|\eta_1\|_{L^2} + \|\eta_2\|_{L^2} + \|H\|_{\gamma}^2, 1\}$.

Proof. Note that, for $n = 0$, $t = 0$ and $N(0) = 1$, so (4)-(5) are verified by hypothesis. Also note that the smoothness of \dot{c}_n and $\dot{\gamma}_n$ on each J_n is a standard application of the implicit function theorem. Then c and γ are continuous by construction, so (1) holds for all n. Finally, we need to verify (2)-(3) at $n = 0$ in order to begin the induction. Note that

$$\dot{\gamma} = A \left(\begin{bmatrix} \dot{\gamma} \\ \dot{\gamma} \\ \dot{\gamma} \end{bmatrix} \right),$$

where

$$A = \left(\begin{array}{ccc} 1 + \langle e^{ay}(\partial_y \psi_c - \partial_y \psi_{c_0}), \eta_1 \rangle - \langle \dot{w}, \partial_y \eta_1 \rangle & \langle e^{ay}(\partial_y \psi_c - \partial_y \psi_{c_0}), \eta_2 \rangle - \langle \dot{w}, \partial_y \eta_2 \rangle & 1 + \langle e^{ay}(\partial_y \psi_c - \partial_y \psi_{c_0}), \eta_2 \rangle \\ e^{ay}(\partial_y \psi_c - \partial_y \psi_{c_0}, \eta_2) - \langle \dot{w}, \partial_y \eta_2 \rangle & 2 + \langle e^{ay}(\partial_y \psi_c - \partial_y \psi_{c_0}), \eta_2 \rangle \\ \end{array} \right)^{-1}.$$

At any time when $|c - c_0|$ and $\|\tilde{w}_n\|_{H^1}$ are sufficiently small, it follows that $\|A\| \leq 2$, so that

$$\left| \dot{\gamma} \right| \leq 2 \left(\left\| \begin{bmatrix} \dot{\gamma} \\ \dot{\gamma} \end{bmatrix} \right\|_{L^2} \right) \leq 2 \max_{i=1,2} \|\eta_i\|_{H^1} \|\tilde{G}\|_{L^2}.$$

Finally, by Lemma 3.1

$$\|\tilde{G}\|_{L^2} = \|(c - c_0)(\partial_y - \alpha)\tilde{w} - e^{ay}I(v^2)\eta^y - e^{ay}\partial_y[I(uv) - uIv]\|_{L^2} \leq \|c - c_0\|_{H^1} + \|e^{ay}I(v^2)\eta^y\|_{L^2} + \|e^{ay}\partial_y[I(uv) - uIv]\|_{L^2} \leq |c - c_0| \|\tilde{w}\|_{H^1} + \|Iv\|_{H^1} \|e^{ay}I\partial_y v\|_{L^2} + 2\|u\|_{L^\infty} \|e^{ay}I\partial_y v\|_{L^2} + \|\partial_y u\|_{L^\infty} \|e^{ay}pyu\|_{L^2} \leq (|c - c_0| + \|Iv\|_{H^1} + \|u\|_{L^\infty} + \|\partial_y u\|_{L^\infty}) \|\tilde{w}\|_{H^1} \leq (2 + 2\|u\|_{L^\infty} + \|\partial_y u\|_{L^\infty}) \|\tilde{w}\|_{H^1} \leq (2 + 2\|u\|_{L^\infty} + \|\partial_y u\|_{L^\infty}) \|\tilde{w}\|_{H^1}$$

so long as $|c - c_0|$ and $\|Iv\|_{H^1}$ are at most unit size. Therefore (2)-(3) are satisfied at $t = 0$ because of our assumptions on the initial data, given our choice of C above.
It remains to make the inductive step. Assume that, at step \(n \), (1)-(5) are valid. In order to step forward in time, we must first gain some a priori control of the various functions on the interval \(J_n \). Without loss of generality, assume \(\delta \leq 1 \). Select \(\eta \) so that \(24C\epsilon_1 < \eta^2 \) and \(\eta + c_2 < \frac{1}{20} \) (and assume \(\epsilon_2 \) is sufficiently small to allow this). Define \(L(t) = 8C\|\tilde{w}\|_{H^1} + |\dot{c}| + |\gamma| + |c - c_0| \).

Note that at \(t = n \), \(L(n) < 11C\epsilon_1 < \frac{1}{2} \). Hence, by continuity, there is a \(\delta_0 > 0 \) so that \(L(t) < \eta \) on \([t_n, t_n + \delta_0] \). Let \(\delta_1 \) be the largest such \(\delta_0 \) which is at most \(\delta \). We want to show that \(\delta_1 = \delta \). Suppose not; then \(\delta_1 < \delta \). Then \(L(t_n + \delta_1) = \eta \) by continuity. Define \(J = [t_n, t_n + \delta_1] \). On \(J \), as above, we have that \(\dot{c} + \gamma < C\|\tilde{w}\|_{H^1} < \frac{1}{6} \). Moreover, \(|c - c_0(t)| \leq |c(n) - c_0| + \delta_1 \sup_J |\dot{c}| \leq 2C\epsilon_1 + \frac{\eta}{N} \leq \frac{\eta}{20} + \frac{\eta}{2} = \frac{21\eta}{20} \). Finally, we must estimate \(\|\tilde{w}(t_n + \delta_1)\|_{H^1} \).

We have:

\[
\|\tilde{w}(t_n + \delta_1)\|_{H^1}^2 = \|\tilde{w}(t_n)\|_{H^1}^2 + \int_{t_n}^{t_n + \delta_1} \frac{d}{dt}\|\tilde{w}\|_{H^1}^2 \, dt \\
= \|\tilde{w}(t_n)\|_{H^1}^2 + 2\int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, \tilde{w} \rangle_{H^1} \, dt \\
= \|\tilde{w}(t_n)\|_{H^1}^2 + 2\int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, A_\alpha \tilde{w} + QF \rangle_{H^1} \, dt \\
\leq \epsilon_1 + 2\int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, A_\alpha \tilde{w} \rangle_{H^1} \, dt + \int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, QF \rangle_{H^1} \, dt \\
\leq \epsilon_1 - \frac{2b_1 n^2}{64C^2} + \int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, QF \rangle_{H^1} \, dt \\
\leq \frac{\eta^2}{20} - \frac{2b_1 n^2}{64C^2} + \int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, QF \rangle_{H^1} \, dt
\]

by Proposition 5, the inductive hypothesis, the a priori control on \(\tilde{w} \) on \(J \), and the fact that the length of \(J \) is at most 1. It remains to estimate

\[
\int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, QF \rangle_{H^1} \, dt = \int_{t_n}^{t_n + \delta_1} \langle \tilde{w}, Q((c - c_0 - \gamma)(\partial_y - a)\tilde{w} - e^{\alpha_\psi}I_{N(\alpha)}v^2 + e^{\alpha_\gamma}(\dot{c}\partial_y + \gamma \partial_y)I_{N(\alpha)}\psi c \\
- e^{\alpha_\psi}I_{N(\alpha)}(\psi, v) - \psi, I_{N(\alpha)}v)) \rangle_{H^1} \, dt = (I)+(II)+(III)+(IV).
\]

For (I), note that \(Q(\partial_y - a)\tilde{w} = (\partial_y - a)\tilde{w} \), and \(\partial_y \) is anti-symmetric, so (I) = \(\int_{t_n}^{t_n + \delta_1} \|w\|_{H^1}^2 \, dt \), which is at most \(\frac{2b_1 n^2}{64C^2} \), which is certainly
less than $\frac{\eta^2}{20}$. For (II), we have

\[
\begin{align*}
\int J \langle \bar{w}, -e^{au} I_{N(n)} \partial_y (v^2) \rangle dt \\
= \int J \langle \bar{w}, e^{au} \partial_y [I_{N(n)} v^2 - (I_{N(n)} v)^2] \rangle dt + \int J \langle \bar{w}, e^{au} \partial_y (I_{N(n)} v)^2 \rangle dt \\
\leq \int J \langle \bar{w}, e^{-au} \partial_y [I_{N(n)} (v^2 - (I_{N(n)} v)^2)] \rangle dt + \| \bar{w} \|_{X^{1, \frac{1}{2}, 1}} \| e^{au} \partial_y (I_{N(n)} v)^2 \|_{X^{1, \frac{1}{2}, 1}} \\
\leq 2N(n)^{-\frac{1}{4}} \| \bar{w} \|_{X^{1, \frac{1}{2}, 1}} \| \bar{u} \|_{X^{1, \frac{1}{2}, 1}} \| \bar{u} \|_{X^{1, \frac{1}{2}, 1}} + \| \bar{u} \|_{X^{1, \frac{1}{2}, 1}} \| \bar{v} \|_{X^{1, \frac{1}{2}, 1}} \| \bar{v} \|_{X^{1, \frac{1}{2}, 1}} \\
\leq (1 + 2N(n))^{-\frac{1}{4}} \| \bar{w} \|_{X^{1, \frac{1}{2}, 1}} \| \bar{v} \|_{X^{1, \frac{1}{2}, 1}} \\
\leq (1 + 2N(n))^{-\frac{1}{4}} C_0^3 \epsilon_1^2 \eta_2 \\
\leq \frac{1}{5} \frac{C_0^3}{\epsilon_1^2} \eta_2^2 \\
\leq \frac{\eta^2}{20}
\end{align*}
\]

by Corollary 4, Proposition 2 and the local well-posedness estimate 22. For (III), recall that $I_{N(n)} \psi_c - \psi_c = O(N^{-C})$ for C arbitrarily large. So, since $Q(e^{au} \partial_c \psi_c) = Q(e^{au} \partial_y \psi_c) = 0$, we have

\[
\begin{align*}
(III) &= \int J \langle \bar{w}, Q[e^{au}(i \partial_c + \dot{c} \partial_y)((I_{N(n)} - 1) \psi_c - \psi_c) + [\psi_c - \psi_{c0} + \psi_{c0}]) \rangle H^1 dt \\
&= \int J \langle \bar{w}, Q[e^{au}(i \partial_c + \dot{c} \partial_y)((I_{N(n)} - 1) \psi_c - \psi_c) + [\psi_c - \psi_{c0}]) \rangle dt \\
&\leq (1 + \tilde{C} N^{-\tilde{C}}) \int J (|\dot{c}| + |\dot{\psi}|) |c - c_0| || \bar{u} ||_{H^1} dt \\
&\leq \tilde{C} \eta \eta_1 \eta_2 \eta_3 \eta_4 \eta_5 \\
&\leq \frac{\eta^2}{20}
\end{align*}
\]
Finally, for (IV), we have

$$\int_j \langle \tilde{w}, e^{ay} \partial_y (I_{N(n)}(\psi_c v) - \psi_c I_{N(n)}v) \rangle_{H^1} dt$$

$$= \int_j \langle \tilde{w}, e^{ay} \partial_y [I_{N(n)}(\psi_c v) - (I_{N(n)} \psi_c)(I_{N(n)}v)] dt$$

$$+ \int_j \langle \tilde{w}, e^{ay} \partial_y [(I_{N(n)} \psi_c) - \psi_c](I_{N(n)}v) dt$$

$$\leq \| \tilde{w} \|_{X^1, \frac{1}{2}, 1} N^{-\frac{1}{2}} (\| e^{ay} I_{N(n)} \psi_c \|_{X^1, \frac{1}{2}, 1} \| \tilde{v} \|_{X^1, \frac{1}{2}, 1} + \| I_{N(n)} \psi_c \|_{X^1, \frac{1}{2}, 1} \| \tilde{w} \|_{X^1, \frac{1}{2}, 1})$$

$$+ \tilde{C} N^{-\frac{1}{2}} \| \tilde{w} \|_{X^1, \frac{1}{2}, 1} (\| e^{ay} \psi_c \|_{X^1, \frac{1}{2}, 1} \| \tilde{v} \|_{X^1, \frac{1}{2}, 1} + \| \psi_c \|_{X^1, \frac{1}{2}, 1} \| \tilde{w} \|_{X^1, \frac{1}{2}, 1})$$

$$\leq 4 \| \tilde{w} \|_{X^1, \frac{1}{2}, 1} N^{-\frac{1}{2}} (\| \tilde{v} \|_{X^1, \frac{1}{2}, 1} + \| \tilde{w} \|_{X^1, \frac{1}{2}, 1})$$

$$\leq 4C_0 a_0 (\eta^2 + 1)$$

$$\leq \frac{\eta^2}{20}.$$

Adding it all together, we get

$$\| \tilde{w}(t_n + \delta_1) \|^2_{H^1} \leq \frac{\eta^2}{20} - \frac{2b\eta^2}{64C^2} + \frac{\eta^2}{20} + \frac{\eta^2}{20} + \frac{\eta^2}{20} < \frac{\eta^2}{4},$$

so, $$L(t_n + \delta_1) < \frac{\eta^2}{20} + \frac{\eta^2}{20} + \frac{\eta^2}{20} = \eta,$$ and hence $$\delta_1 = \delta.$$
as computed above, we have the following increment:

\[K_n(n+1) - K_n(n) \]

\[= 2 \int_{J_n} \langle \tilde{w}, A_\alpha \tilde{w} \rangle_{H^1} dt + \int_{J_n} \langle \tilde{w}, Q \rangle_{H^1} dt \]

\[= 2 \int_{J_n} \langle \tilde{w}, A_\alpha \tilde{w} \rangle_{H^1} dt + 2 \int_{J_n} \langle \tilde{w}, Q((c - c_0 - \gamma)(\partial_y - a)\tilde{w} - e^{ay}I_{N(n)}\partial_y(v^2) \]

\[+ e^{ay}(i\partial_c + \gamma\partial_y)I_{N(n)}\psi_c - e^{ay}\partial_y(I_{N(n)}(\psi_c v) - \psi_c I_{N(n)}v)) \rangle_{H^1} dt \]

\[= (0) + (I) + (II) + (III) + (IV) \]

We estimate these terms as above. For (0), by Proposition \[1\], this is at most

\[-2b \int_{J_n} \|w\|^2_{H^1} dt. \]

For (I), we get

\[\int_{J_n} (c - c_0)(-a)\|w\|^2_{H^1} dt \leq 4\alpha \int_{J_n} \|w(t)\|^2_{H^1} dt. \]

For (II), we obtain, as above,

\[\int_{J_n} \langle \tilde{w}, e^{ay}I_{N(n)}\partial_y v^2 \rangle_{H^1} dt \leq (1 + 2N(n))^{-\frac{1}{2}}\|\tilde{w}_n\|^2_{X^{1, \frac{3}{4}}} \|\tilde{w}\|_{X^{1, \frac{3}{4}}} \leq C_0 N(n). \]

Then, for (III), we get as above

\[(III) \leq (1 + \tilde{C}N^{-\tilde{C}}) \int_{J_n} (|c| + |\gamma|)(c - c_0)\|\tilde{w}\|_{H^1} dt \leq 2 \int_{J_n} \eta \|\tilde{w}_n(t)\|^2_{H^1} dt. \]

Finally, for (IV), we have, as above, with \(\tau \) a small positive number,

\[(IV) \leq \|\tilde{w}\|_{X^{1, \frac{3}{4}}} \left((N^{\frac{3}{2} - s + \tau})\|\tilde{w}_n\|_{X^{1, \frac{3}{4}}} + N^{\frac{3}{2} - s + \tau}\|v\|_{X^{1, \frac{3}{4}}} \right) \leq 2N(n) + N^{\frac{3}{2} - s + c_0} \sqrt{N(n)}. \]

Notice that \(N(n) \) has been chosen so that \(N(n)^{\frac{3}{2} - s + \kappa} \ll \kappa \leq C_1 \kappa^n \). Therefore, putting everything together, we have that

\[K_n(n+1) - K_n(n) \leq (-2b + 4\alpha) \int_{J_n} \|\tilde{w}_n(t)\|^2_{H^1} dt \]

\[+ (C_0 + 2\tau) N(n) + C_0 \epsilon \kappa^n \sqrt{K_n(n)}. \]

Now, suppose that \(K_n(n) \sim (\epsilon \kappa^n)^2 \). Then by the same argument as in \[17\], it follows that \(K_n(n+1) \leq \max \{ (1 - b), 4 \} K_n(n) \leq \kappa^{\frac{3}{2} - s + \frac{\tau}{2}} K_n(n). \]

Finally, it remains to compare \(K_{n+1}(n+1) \) to \(K_n(n+1) \). By properties of
ASYMPTOTIC STABILITY FOR KDV SOLITONS IN WEIGHTED H^s SPACES

the I_N multiplier, we have that

$$K_{n+1}(n+1) \leq \left(\frac{N(n+1)}{N(n)} \right)^{1-s} K_n(n+1)$$

$$\leq \kappa^{\frac{1-s}{2}} K_n(n+1)$$

$$\leq \kappa^{\frac{1-s}{2}} \kappa^{\frac{2-s}{4}} K_n(n)$$

$$\leq \kappa^{2} K_n(n).$$

On the other hand, if $K_n(n) \ll (\epsilon_1 \kappa^n)^2$, then the largest term on the right hand side is the last one, and we obtain that $K_{n+1}(n+1) \ll (\epsilon_1 \kappa^n)^2$. Then $K_{n+1}(n+1) \ll \kappa^{(\frac{1-s}{2})+(\epsilon_1 \kappa^n)^2}$, which can be taken to be at most $\epsilon_1^2 \kappa^{2(n+1)}$. In either case, after applying the inductive hypothesis, we obtain that $K_{n+1}(n+1) \leq (\epsilon_1 \kappa^{n+1})^2$, so $\|\tilde{w}_{n+1}(n+1)\|_{H^1} \leq \epsilon_1 \kappa^{n+1}$. Hence the inductive step holds and the proof of the lemma is complete. □

To conclude the proof of Theorem 1, let $r = \kappa^{\frac{1}{2}}$. Then (2) and (3) are immediate from the lemma. To conclude (1), note that

$$\|e^{aU}I_1 v(t)\|_{H^1} \leq \|e^{aU}I_N v(t)\|_{H^1} = \|\tilde{w}(t)\|_{H^1}$$

for any N, by the properties of I_N and Lemma 3.2. Hence (1) follows from the last conclusion of the inductive lemma.

References

[1] T. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972), 153–183.
[2] J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. (London) Ser. A, 344 (1975), 363–374.
[3] J. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. (London) Ser. A, 411 (1987), 395–412.
[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm, Commun. Pure. Appl. Anal., 2 (2003), 33–50.
[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst., 9 (2003), 31–54.
[6] Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864–3901.
[7] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447–464.
[8] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., 157 (2001), 219–254.
[9] Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations, revisited, Nonlinearity, 18 (2005), 391–427.
[10] Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391–427.
[11] F. Merle and L. Vega, L^2 stability of solitons for the KdV equation, Int. Math. Res. Not., 13 (2003), 735–753.

[12] T. Mizumachi and N. Tzvetkov, L^2-stability of solitary waves for the KdV equation via Pego and Weinstein's method, preprint, arXiv1403.5321.

[13] L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50 (2001), 1745–1776.

[14] L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not., 37 (2002), 1979–2005.

[15] R. Pego and M. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 2 (1994), 305–349.

[16] B. Pigott, Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations, Commun. Pure. Appl. Anal., 13 (2014), 389–418.

[17] B. Pigott and S. Raynor, Asymptotic stability for KdV solitons in weighted spaces via iteration, Submitted, (2013).

[18] S. Raynor and G. Staffilani, Low regularity stability of solitons for the KdV equation, Commun. Pure. Appl. Anal., 2 (2003), 277–296.

[19] M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math, 39 (1986), 51–67.

Wofford College, pigottbj@wofford.edu

Wake Forest University, raynorsg@wfu.edu