Crossover from weak to strong pairing in unconventional superconductors

D. S. Inosov, J. T. Park, A. Charnukha, Yuan Li, A. V. Boris, B. Keimer, and V. Hinkov

1Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
2Department of Physics, Loughborough University, LE11 3TU Loughborough, United Kingdom
3Department of Physics and Astronomy, University of British Columbia, V6T 122 Vancouver, Canada

Superconductors are classified by their pairing mechanism and the coupling strength, measured as the ratio of the energy gap, 2Δ, to the critical temperature, T_c. We present an extensive comparison of the $2\Delta/k_BT_c$ ratios among many single- and multiband superconductors from simple metals to high-T_c cuprates and iron pnictides. Contrary to the recently suggested universality of this ratio in Fe-based superconductors, we find that the coupling in pnictides ranges from weak, near the BCS limit, to strong, as in cuprates, bridging the gap between these two extremes. Moreover, for Fe- and Cu-based materials, our analysis reveals a universal correlation between the gap ratio and T_c, which is not found in conventional superconductors and therefore supports a common unconventional pairing mechanism in both families. An important consequence of this result for ferropnictides is that the separation in energy between the excitonic spin-resonance mode and the particle-hole continuum, which determines the resonance damping, no longer appears independent of T_c.

PACS numbers: 74.70.Xa 74.25.Jb 74.20.Mn 74.20.-z

I. INTRODUCTION

At present, results of the few existing systematic experimental studies of the pairing strength in iron-arsenide superconductors remain at odds with each other. Some report a more or less universal value of $2\Delta/k_BT_c$, either below 1 or well above 2, the weak-coupling limit of 3.53 predicted by the Bardeen-Cooper-Schrieffer (BCS) theory, whereas others present evidence for a strongly doping-dependent coupling. The reported values of $2\Delta/k_BT_c$ scatter from as low as ~ 3, below the weak-coupling limit, to 10 and above, as summarized in Table I in the Appendix. Hence, should one classify Fe-based superconductors as weakly or strongly coupled? Can they be at all considered as a single family?

To address these questions, we have analyzed all the available energy-gap reports in various Fe-based superconductors and their kin. We put these results into a broader context by comparing them to single- and multiband conventional superconductors, high-T_c cuprates, as well as heavy-fermion compounds and a few other superconducting (SC) materials. More than a hundred of such measurements are listed in Tables I–III (see Appendix).

II. GAP RATIOS

Fe-based superconductors are multiband metals, whose conduction bands are formed almost exclusively by the Fe 3d electrons. Because in the SC state they typically exhibit energy gaps of two sizes, it is illustrative to compare them to other multigap superconductors, such as MgB$_2$, as well as to the high-T_c materials with a single gap. In Fig. 1, the gap ratios, $2\Delta/k_BT_c$, are plotted vs. T_c. For multigap superconductors, we differentiate between the small (Δ_s) and large (Δ_l) energy gaps, which lie below and above the weak-coupling limit, respectively.

First of all, we note that the majority of low-T_c superconductors, including heavy-fermion compounds, such as CeCoIn$_5$, CeCu$_2$Si$_2$, or UPd$_2$Al$_3$, exhibit relatively low gap ratios within $\sim 30\%$ of the BCS limit, according to the latest reports. In conventional superconductors, the gap ratios remain in this narrow range (semielliptical shaded region in Fig. 1) even at higher T_c, as best illustrated by Ba$_{1-x}$K$_x$BiO$_3$ ($T_c = 30\, K$), Rb$_2$CeCoO$_6$ ($T_c = 33\, K$) or MgB$_2$ ($T_c = 39\, K$) with its chemically substituted derivatives. This behavior is in stark contrast to that of unconventional superconductors, such as Fe-based compounds or over- and optimally-doped copper oxides. There, the $2\Delta_s/k_BT_c$ ratios exhibit a statistically significant positive correlation with T_c and for the majority of materials cluster along the $4.0 + 0.06\, K^{-1}\, T_c$ line, shared by both families. This universal behavior could result from a common pairing mechanism in these two families that clearly differentiates them from phonon-mediated superconductors. Underdoped cuprates, however, do not conform to this scaling and exhibit even higher $2\Delta_s/k_BT_c$ ratios (hatched region in Fig. 1) due to the influence of the pseudogap and proximity to the Mott-insulating state. Therefore, we have restricted our collection of cuprates to over- and optimally-doped compounds, where superconductivity is not impaired by any competing phases.

A closer look at the Fe-based superconductors reveals a wide spread of gap ratios, from weak BCS-like values in non-magnetic LiFeAs to twice larger values in high-T_c ferropnictides with strong antiferromagnetic (AFM) correlations, such as optimally-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ (BKFA) or various 1111-compounds. We would like to emphasize that despite all the uncertainties in the published values, these differences are established beyond any doubt, as they have been confirmed by many complementary experiments, at least for several most studied materials (Table I). Therefore, in contrast to the high-T_c cuprates, which can be generally classified as strong-coupling superconductors, Fe-based systems show a larger variability and fill in the wide gap between conventional and cupratelike pairing strengths. The overall trend confirms that the superlinear increase of Δ_s with T_c, suggested in Ref. 4, remains qualitatively valid for all Fe-based compounds in general. However, the absolute values of the gap ratios for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (BFCA), extracted from heat capacity measurements in Ref. 4 (solid line in Fig. 1), appear to be somewhat underestimated in
Fig. 1 (color online). The gap ratios, $2\Delta_\mathrm{c}/k_B T_c$, for different families of single- and two-gap superconductors vs. their critical temperatures at ambient pressure, T_c. The data points summarize most of the recent energy-gap measurements in ferropnictides, high-T_c cuprates, and some conventional superconductors. Each data point is an average of all the available measurements of the corresponding compound by various complementary techniques (see Tables I – III). The error bars represent one standard deviation of this average for repeatedly measured compounds or the experimental errors of single measurements, whenever averaging could not be performed. Such unconfirmed points are shown in lighter colors. Points confirmed in a considerable number of complementary measurements are additionally outlined. The weak-coupling limit, predicted for s-wave superconductors by the BCS theory, is shown by the dotted line. For weakly coupled d-wave superconductors, a slightly higher value of 4.12 is expected (not shown).

Next, we consider the smaller gap, which is found in many multiband superconductors below the BCS limit. For all studied superconductors (both conventional and unconventional), we find somewhat smaller variability of the $2\Delta_\mathrm{c}/k_B T_c$ values, which tend to accumulate close to the $1.3 + 0.02 K^{-1}T_c$ line. The fact that its slope has the same sign as that for the larger gap is consistent with predictions of the Eliashberg theory for interband pairing, suggesting a similar scaling of both gaps with the effective coupling (λ_{eff} in Ref. 27), in contrast to the BCS formalism. Let us now discuss several particular test cases for the above-mentioned trends. The first example comes from the juxtaposition of the stoichiometric conventional superconductor MgB$_2$ ($T_c = 39$ K) and the optimally hole-doped BKFA ($T_{c,\text{max}} = 38.5$ K). Both are multiband superconductors with almost identical critical temperatures, and their two well-separated SC gaps have been extensively measured by various experimental methods, such as angle-resolved photoemission (ARPES), scanning tunneling spectroscopy (STS), point-contact Andreev reflection (PCAR) spectroscopy, muon-spin rotation (μSR), calorimetry, and others (see Table I). By averaging these results, the gap ratios can be determined with a very small uncertainty. The larger gap in MgB$_2$ yields an average $2\Delta_\mathrm{c}/k_B T_c$ ratio of 3.9 ± 0.13, only 10% above the weak-coupling limit. The corresponding ratio for BKFA, however, is 7.0 ± 0.3, almost twice the BCS value. For the smaller gap, we find a qualitatively similar difference.

It is tempting to ascribe this difference to the stronger coupling in ferropnictides in general, but such a scenario is disproved by our second test case, where we compare differently doped Ba-122 materials. Superconductivity in the Ba-122 family can be induced either by a partial substitution of Ba with K or Rb that leads to hole doping of the FeAs layers, or by replacing Fe atoms with Co or Ni within the layers. The end points of both series, corresponding to 100% substitution, are stoichiometric low-T_c superconductors KFe$_2$As$_2$ ($T_c = 4$ K), RbFe$_2$As$_2$ ($T_c = 2.5$ K) and BaNi$_2$As$_2$ ($T_c = 0.68$ K), all characterized by weak coupling. Moreover, BaNi$_2$As$_2$ appears to be a conventional phonon-mediated superconductor. This implies that the $2\Delta_\mathrm{c}/k_B T_c$ ratio must vary continuously with doping within the Ba-122 family — an effect that so far has been directly observed only in the Co-doped series. Fig. 1 suggests this variation to be even stronger (almost twofold) in BKFA, where higher values of T_c can be reached. Indeed, the extensively studied optimally-doped BFCA ($T_c = 25$ K) has an average gap ratio of only 5.4 ± 0.4, in the middle between those of optimally-doped BKFA and weakly coupled superconductors.

To complete our chain of comparisons, we now focus on the high-T_c part of the plot that contains oxypnictides and most of the copper oxides. With the exception of a single, so far unconfirmed, PCAR measurement on Tb-
1111,66 most other works report high values of the gap ratios in La-, Pr-, Nd-, and Sm-based 1111 compounds,14,49–54 with an average around ± 7 ± 1. In high- T_c copper oxides with similar or slightly higher critical temperatures, such as Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ (Bi-2212), comparable ratios of 8.5 ± 0.5 have been reported67–69 (see Table III). A further increase of the $2\Delta/k_BT_c$ ratio towards 10, close to the strong-coupling limit of the Eliashberg theory,70 is observed in Hg-1223 ($T_c = 130$ K) and Hg-1201 ($T_c = 96$ K) cuprates,36 suggesting that the positive correlation between this ratio and T_c is similar to the one we found for Fe-based compounds, could be universal for all unconventional superconductors, including cuprates. Gap ratios in the most recently discovered iron- selenide superconductors$^{71–73}$ ($T_{c,\text{max}} \approx 33$ K) also conform to this general trend$^{74–79}$ and are similar to those of optimally-doped BKFA.

However, we cannot fail to mention some deviations from this trend that are best demonstrated by LiFeAs, the bearer of the highest known $T_c = 18$ K among stoichiometric Fe-based materials, together with its close relative NaFeAs. Despite its relatively high T_c, LiFeAs is characterized by weak coupling barely above the BCS limit,$^{77–79,81}$ possibly related to the absence of notable Fermi surface nesting in its band structure52 or even a different pairing mechanism.37–42,80,81 In NaFeAs, on the contrary, superconductivity with $T_c \approx 10$ K coexists with antiferromagnetism.64 Upon electron doping, the AFM order is destroyed and critical temperatures up to 20 K can be reached, resulting in a phase diagram similar to those of 122-ferropnictides, in which the SC dome envelops an AFM quantum critical point. The SC gap in slightly overdoped NaFe$_{0.95}$Co$_{0.05}$As ($T_c = 18$ K, i.e. coinciding with that of LiFeAs) was recently measured by ARPES,85 resulting in $2\Delta/k_BT_c = 8.3 \pm 0.6$, which is much higher than in LiFeAs. This example illustrates that despite the above-mentioned correlation between the gap ratio and T_c, identical critical temperatures even among Fe-based superconductors can still correspond to $2\Delta/k_BT_c$ values as different as those of MgB$_2$ and optimally-doped BKFA that we compared earlier. The relative role of magnetic correlations, doping-induced inhomogeneities, exotic pairing mechanisms, and other factors possibly leading to this exceptional behavior still remains to be investigated.

III. HEAT-CAPACITY JUMP

Energy-gap measurements are not the only way to quantify the deviation of a superconductor from the weak-coupling limit. Calorimetry provides direct access to the magnitude of the jump, ΔC, in the electronic specific heat at T_c (for a review in iron pnictides, see Ref. 86). In the framework of the BCS theory, it is related to the normal-state Sommerfeld coefficient, γ_n, by $\Delta C/\gamma_nT_c = 1.43$, whereas in conventional superconductors with stronger coupling this ratio was shown to increase monotonically with $2\Delta/k_BT_c$.87 In Fig. 2, we compare the specific-heat-jump ratio reported in some Fe-based superconductors$^{4,15,41,42,88–94}$ For optimally doped BKFA with a relatively high value of T_c, the $\Delta C/\gamma_nT_c$ ratio lies 75% above the BCS limit.15 It exceeds all other values reported for pnictides with lower critical temperatures, confirming the increased deviation from the BCS prediction as T_c increases.

IV. SPIN-RESONANCE MODE: SCALING RELATIONSHIPS

It is remarkable that the largest deviations from the BCS limit are found in those compounds that possess an intense spectrum of spin fluctuations, which are believed to be important for the SC pairing. In contrast to the phonon spectrum, which is to a good approximation insensitive to the SC transition, magnetic excitations originate within the electronic subsystem and may experience drastic changes below T_c, manifest in the spectral weight redistribution and the formation of a spin-resonance mode both in high-T_c cuprates$^{96–97}$ and in ferropnictides.98–115 Such changes could offer a positive feedback effect, stabilizing the SC state and contributing to the excessively large gap amplitudes.

Conversely, the proximity of the spin-excitonic resonance to 2Δ determines its damping by particle-hole scattering,116 hence the behavior of the energy gap discussed above has important consequences for the SC resonant mode. In 122-compounds, its energy, ω_{res}, varies with the out-of-plane component of the momentum, q_z, so that its minimum, reached at $q_z = \pi$, scales linearly with T_c whereas the maximal value at $q_z = 0$ always stays above 4 meV, if extrapolated down to $T_c \rightarrow 0$.98–102 This results in $\omega_{\text{res}}/k_BT_c$ ratios that are plotted in Fig. 3 (a). The ratio stays constant for $q_z = \pi$, but diverges for $q_z = 0$ as $T_c \rightarrow 0$. Because $2\Delta/k_BT_c$
For $q_z = \pi$, the situation with the resonance damping is increasingly suppress the resonance intensity for $q_z = \pi$, leading to its further broadening and suppression. This possibility is consistent with the fact that resonant modes have not so far been reported in either under- or overdoped samples with $T_c < 11$ K.

The described behavior of the gap implies that Fe-based superconductors violate the universality of the $\omega_{res}/2\Delta$ ratio proposed in Ref. 36. Indeed, according to gap values in Fig. 1 and the proportionality $\omega_{res} \approx (4.6 \pm 0.4) k_B T_c$, established in Ref. 98–102, this ratio continuously increases from ~ 0.65 in the optimally doped BKFA to ~ 0.8 in the optimally doped BFCA. Then it approaches unity in compounds with even lower T_c, such as underdoped BFCA or the 11-family, as illustrated by the large red symbols in Fig. 3 (b). The universal ratio of $\omega_{res}/2\Delta = 0.64$ has been interpreted as the result of a fundamental spin-mediated pairing mechanism in unconventional superconductors.36 Therefore, its breakdown in Fe-based systems, which becomes increasingly pronounced for low-T_c compounds (Table V), might be indicative of a variation in the role played by spin fluctuations. Supposedly, they become increasingly less important to the SC pairing as T_c decreases (e.g. due to an interplay with conventional phononic pairing), which can explain the simultaneous increase in $\omega_{res}/2\Delta$ and the reduction of the gap ratio.

Recently we became aware of a new inelastic-neutron-scattering (INS) study17 performed on several overdoped samples of polycrystalline BKFA. The results of this work indicate that the deviation of the $\omega_{res}/2\Delta$ ratio from the “universal” value36 and the suppression of the resonant-mode spectral weight with decreasing T_c, discussed above, also hold on the overdoped side of the phase diagram.

Another recent work18 has lately revealed an enhancement of the antiferromagnetic INS signal in LiFeAs below T_c, resembling an overdamped spin-resonance mode. It is strongly broadened in energy and appears centered around ~ 8 meV, i.e. above $2\Delta \approx 6.1 \pm 0.5$ meV (see Table V). This implies a considerable overlap of the resonance peak with the particle-hole continuum (as in under- or overdoped 122-systems) and a large $\omega_{res}/2\Delta$ ratio of 1.3 ± 0.4, far above the “universal” value of 0.64. The results are consistent with the weak-coupling behavior suggested earlier by the small gap ratios observed in this compound.37–42

Acknowledgments

This work has been supported, in part, by the DFG within the Schwerpunktprogramm 1458, under Grant No. BO3537/1-1, and by the MPI–UBC Center for Quantum Materials. The authors are grateful to L. Boeri, O.V. Dolgov, D.V. Efremov, D. V.Evtushinsky, and R. Osborn for stimulating discussions.
APPENDIX: TABLES

122-family of ferropnictides

Doping level	sample	\(T_c (K) \)	\(\Delta_c \) (meV)	\(2\Delta_c/k_BT_c \)	\(\Delta_s \) (meV)	\(2\Delta_s/k_BT_c \)	Experiment	Method or comment	Reference
\(x = 25\% \) (UD)	FeAs-flux	26	4.0 ± 0.8	3.6 ± 0.7	7.8 ± 0.9	7.0 ± 0.8	ARPES	symmetrization	Nakayama et al. [3]
\(x = 40\% \) (OP)		37	5.8 ± 0.8	3.6 ± 0.5	12.3 ± 0.8	7.7 ± 0.5			
\(x = 29\% \) (UD)	Sn-flux	28	3.7 ± 0.5 *	3.1 ± 0.4 *			PCAR	c-axis Au junction	Zhang et al. [1]
\(x = 28\% \)		31.5	2.3	1.7	9.8	7.2			
\(x = 32\% \) (UD)	FeAs-flux	38.5	3.5	2.2	11	6.6	calorimetry	electronic specific heat	Popovich et al. [15]
\(x = 40\% \)		38	3.6 ± 0.5	2.2 ± 0.3	8.2 ± 0.9	5.1 ± 0.5	STS	peak-to-peak distance	Shan et al. [58]
\(x = 35\% \)		37	3.5	2.0	13.0 ± 0.5	7.8 ± 0.6			
\(x = 36\% \) (Sn-flux)		32 < 4	3 < 4	9.2 ± 1.0	6.7 ± 0.7		Dyne-function fit	Evtushinsky et al. [17]	
\(x = 45\% \) (OD)	Sn-flux	27	2.7 ± 0.7 *	2.3 ± 0.6 *	9.2 ± 0.5 *	7.9 ± 0.4 *	PCAR	ab-plane junction-average	Szabo et al. [46]
\(x = 49\% \)		35.1	3.1	0.7 *	2.8 ± 0.6 *			c-axis Pb junction	Zhang et al. [1]
\(x = 55\% \)	FeAs-flux	32.7	3.3	2.3	6.8	4.8	MSI	penetration depth	Hashimoto et al. [123]
\(x = 77\% \)	Sn-flux	21	2.7 ± 0.3	3.0 ± 0.4			PCAR	c-axis Pb junction	Zhang et al. [1]

KFe\textsubscript{2}As\textsubscript{2}, 100% hole-doped (K-122 or KFA)

N/A	FeAs-flux	4.0					TDR	nodal-gap model	Hashimoto et al. [124]
polycryst.		3.6	0.23 ± 0.03	1.5 ± 0.2	0.53 ± 0.02	3.55 ± 0.13	SANS	3-gap model	Kawano-Furukawa et al. [61]
polycryst.		3.5	0.07	0.46	0.73	4.84			

RbFe\textsubscript{2}As\textsubscript{2}, 100% hole-doped (Rb-122)

| N/A | polycryst. | 2.5 | 0.15 ± 0.02 | 1.4 ± 0.2 | 0.49 ± 0.04 | 4.5 ± 0.4 | | | |

Ba(Fe\textsubscript{1-x}Co\textsubscript{x})\textsubscript{2}As\textsubscript{2}, electron-doped (BFCA)

x = 7.0\% (OP)	FeAs-flux	22							
x = 7.5\%		23							
x = 10\% (OD)	Sn-flux	22.5	1.5	1.6	3.7	3.8			
x = 11.5\%		21.4	1.75	1.9	4.1	4.4	calorimetry		Hardy et al. [89]
x = 4.0\% (UD)		5.8	0.38	1.5	0.86	3.4			
x = 4.5\%		13.3	0.89	1.5	2.2	3.8			
x = 5.0\%		19.5	1.36	1.6	3.5	4.2			
x = 5.5\%		21.5	1.84	2.0	4.4	4.7			
x = 5.7\% (OP)		24.4	1.94	1.9	5.2	5.0			
x = 6.0\%		24.2	1.94	1.8	5.0	4.8			
x = 6.5\% (OD)		23.8	1.78	1.7	4.6	4.5			
x = 7.5\%		22.9	1.81	1.8	4.4	4.5			
x = 7.6\%		21.5	1.84	2.0	3.9	4.2			
x = 9.0\%		20.7	1.62	1.8	3.8	4.3			
x = 11.0\%		13.0	0.89	1.6	2.0	3.6			
x = 11.3\%		11.0	0.83	1.7	1.75	3.7			
x = 11.6\%		9.4	0.54	1.3	1.27	3.1			
x = 12.0\%		5.1	0.25	1.1	0.67	3.1			
x = 6.0\% (UD)		14	4 ± 2 *	7 ± 3 *	8 ± 2 *	13 ± 3 *	STS	peak-to-plane distance	Masee et al. [125]
x = 12.0\% (OD)		20	5 ± 2 *	6 ± 3 *	10 ± 2 *	11 ± 3 *			
x = 6.5\% (OP)	FeAs-flux	24.5	3.3	3.1	5.0	4.7			
x = 4.9\% (UD)		15.8	0.8	1.2	3.0	4.4	MFM	penetration depth	Luan et al. [132]
x = 5.1\%		18.6	1.1	1.4	3.7	4.6			
x = 7.0\% (OP)		22.4	2.5	2.6	6.4	6.6			
x = 8.5\% (OD)		19.6	1.0	1.2	3.2	3.8			
x = 11\%		13.5	0.7	1.2	2.0	3.4			

Continued on next page
1111-family of ferropnictides

Doping level	sample	T_c (K)	Δ_c (meV)	2Δ_c/k_BT_c	Δ_c/k_BT_c	Experiment	Method or comment	Reference							
EuFe$_2$(As$_{1-x}$P$_x$)$_2$, isovalently substituted (EFAP)	x = 18%	(OP) Bridgman	28	—	—	4.7	3.8	optics	optical conductivity	Wu et al. [133]					
Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$, electron-doped (SFCA)	x = 7.5%	(OP) Sn-flux	19.5	1.4	1.7	8.6	10.2	STS	peak-to-peak distance	Park et al. [134]					
x = 12.5%	(OD) FeAs-flux	13.3	1.3	0.3	2.3	0.5	3.7	0.4	6.5	0.7	μSR	penetration depth	Khasanov et al. [135]		
x = 13%	«	15.5	1.8	0.3	2.7	0.5	—	—	PCAR	c-axis Pb & Au junctions	Zhang et al. [1]				
BaNi$_2$As$_2$, 100% electron-doped (BNA)						N/A	Pb-flux	0.68	—	—	0.095	3.24	calorimetry	electronic specific heat	Kurita et al. [5]
LaFeAsO$_{1-y}$F$_y$, electron-doped (La-1111)	x = 8%	(UD) polycryst.	23	3.0	3.0	7.5	7.5	75As-NQR	spin-lattice relax. rate	Kawasaki et al. [49]					
x = 10%	(OP)	26	3.9	0.7	3.5	0.6	—	—	PCAR	BTK-fit	Shui et al. [136]				
«	«	49.5	8.0	3.7	—	—	TRS	photoinduced reflectivity	Mertelj et al. [140]						
PrFeAsO$_{1-y}$F$_y$, electron-doped (Pr-1111)	x = 11%	(UD) polycryst.	45	4.3	2.2	13.7	7.1	75As- & 19F-NMR	Matano et al. [14]						
NdFeAsO$_{1-y}$F$_y$, electron-doped (Nd-1111)	x = 10%	(OP) polycryst.	51	5.1	0.2	2.6	0.1	11.7	1.2	5.7	0.5	15NQR	Pt junctions	Samuely et al. [53]	
SmFeAsO$_{1-y}$F$_y$, electron-doped (Sm-1111)	x = 20%	(OP) monocrist.	51.2	6.45	0.25	3.0	0.2	16.6	1.6	7.7	0.9	PCAR	Au contact, BTK fit	Karpinski et al. [139]	
x = 10%	polycrist.	51.5	3.7	0.4	1.7	0.2	10.5	0.5	4.7	0.2	PCAR	Pt/Ir or Au junctions	Wang et al. [141]		
x = 20%	«	26	6.15	0.45	2.7	0.2	18	3	8	0.3	PCAR	Ag-paste contact	Daghero et al. [51]		
x = 9%	(UD)	42	4.9	0.5	2.7	0.3	15	1	8.3	0.6	—	Au junctions	Chen et al. [142]		
SmFeAsO$_{1-y}$, oxygen-deficient (Sm-1111)	x = 15%	(OP) polycrist.	52	8.25	0.25	3.7	0.1	—	—	STS	d-wave model	Millo et al. [143]			
TbFeAsO$_{1-y}$F$_y$, electron-doped (Tb-1111)	x = 10%	(UD) polycrist.	50	5.0	0.8	23.0	4.3	8.8	0.5	4.1	0.2	PCAR	Au junctions	Yates et al. [66]	
Li$_{1+\delta}$FeAs, undoped (Li-111 or LFA)	N/A	self-flux	18	1.0	0.5	1.3	0.6	3.2	4.1	ARPES	Dynes-function fit	Borisenko et al. [37]			
	«	17	—	—	3.0	0.2	4.1	0.3	SANS+ARPES	penetration depth	Inosov et al. [38]				
	«	16.9	1.2	1.6	2.6	3.6	calorimetry	electronic specific heat	Stockert et al. [42]						
	«	16	—	—	25	3.6	STS	preliminary result	Hanaguri et al. [80]						
	«	17	1.4	0.4	1.9	0.6	2.96	0.05	4.0	0.1	MSI	penetration depth	Imai et al. [7]		
Bridgman	17.5	1.4	0.1	1.9	0.1	2.9	0.2	3.8	0.3	magnetization	lower critical field, $H		c$	Song et al. [40]	
	«	1.2	0.1	1.6	0.1	2.9	0.2	3.8	0.3	lower critical field, $H		ab$	«		
	1.7	2.22	2.8	3.7	TDR	penetration depth	Kim et al. [8]								
polycrist.	17	1.9	2.6	4.4	6.0	75As-NQR	spin-lattice relax. rate	Li et al. [6, 81]							
	«	0.7	1.2	2.3	3.5	calorimetry	electronic specific heat	Wei et al. [41]							
	«	0.6	0.13	1.0	0.4	3.3	1.0	5.4	1.6	magnetization	lower critical field	Sasmal et al. [39]			
NaFe$_{1-x}$Co$_x$As, electron-doped (Na-111)	x = 5%	(OD) self-flux	18	—	—	6.5	0.5	8.3	0.6	ARPES	symmetrization	Liu et al. [85]			

Continued on next page
Table I. Summary of the energy gap measurements in Fe-based superconductors.

The gap values are obtained from the published results of point-contact Andreev-reflection (PCAR) or tunneling spectroscopy, scanning tunneling spectroscopy (STS), angle-resolved photoelectron spectroscopy (ARPES) and optical spectroscopy measurements that directly probe the electronic density of states, as well as indirectly from the calorimetric measurements of the electronic specific heat, magnetization measurements of the lower critical field (H_{c1}), muon-spin-rotation (μSR), small-angle neutron scattering (SANS), microwave surface-impedance (MSI), tunnel-diode resonator (TDR), or magnetic force microscopy (MFM) measurements of the London penetration depth, from the nuclear-magnetic-resonance (NMR) or nuclear-quadrupolar-resonance (NQR) measurements of the spin-lattice relaxation rate, and from the time-resolved femtosecond spectroscopy (FTS) via the temperature-dependence of the photoinduced reflectivity. The error values marked by an asterisk represent the spread of the gap values measured in different points on the sample or using different junctions. They can be therefore larger than the uncertainty of the average.

Doping level	sample	T_c (K)	Δ_c (meV)	$2\Delta_c/k_BT_c$	$2\Delta_c/k_BT_c$	Experiment	Method or comment	Reference		
arsenic-free Fe-based superconductors	FeSe$_{1-x}$, chemically deficient	$x = 15\%$ (OD) polycryst.	8.3	0.38±0.01	1.1±0.02	1.60±0.02	4.45±0.06	μSR	penetration depth	Khasanov et al. [144]
	FeTe$_{1-x}$, isovalently substituted	$x = 50\%$ (OP) Bridgman	14.6	0.51±0.03	0.8±0.05	2.61±0.09	4.15±0.14	μSR	penetration depth	Bendele et al. [145]
		$x = 45\%$ unidirect.	14	2.5	4.1	5.1	8.5	optics	optical conductivity	Homes et al. [148]
		$x = 43\%$ solidificat.	14.2	—	—	3.8	6.2	PCAR	c-axis Au junctions	Park et al. [149]
		$x = 15\%$	14	2.5	3.92	3.7	5.84	calorimetry	electronic specific heat	Hu et al. [150]
	A$_x$(Fe$_{1-x}$Se)$_2$ ($A =$ K, Rb, Cs), heavily electron-doped (highest T_c among arsenic-free Fe-based superconductors)	$x = 2\%$ (OP) self-flux	14.4	—	—	2.7	4.4	calorimetry	electronic specific heat	Günther et al. [147]
		K, $x = 0.7$ (UD) Bridgman	28	1.5	1.3	—	—	optics	optical conductivity	Yuan et al. [74]
		Tl$_{0.63}$K$_{0.37}$	29	—	—	8.5±1.0	6.8±0.8	ARPES	symmetrization	Wang et al. [75]
		Tl$_{0.45}$K$_{0.34}$	28	—	—	8.0	6.6	—	—	Zhao et al. [76]
		K, $x = 0.7$ (OP)	32	—	—	9.0	6.5	—	—	Mou et al. [77]
		Tl$_{0.58}$Rb$_{0.42}$	30	—	—	12.5±2.5	9.1±1.8	—	—	Zhang et al. [78]
		K, $x = 0.8$	31.7	—	—	10.3±2	7.5±1.5	—	—	—

Note: The gap values are obtained from the published results of point-contact Andreev-reflection (PCAR) or tunneling spectroscopy, scanning tunneling spectroscopy (STS), angle-resolved photoelectron spectroscopy (ARPES) and optical spectroscopy measurements that directly probe the electronic density of states, as well as indirectly from the calorimetric measurements of the electronic specific heat, magnetization measurements of the lower critical field (H_{c1}), muon-spin-rotation (μSR), small-angle neutron scattering (SANS), microwave surface-impedance (MSI), tunnel-diode resonator (TDR), or magnetic force microscopy (MFM) measurements of the London penetration depth, from the nuclear-magnetic-resonance (NMR) or nuclear-quadrupolar-resonance (NQR) measurements of the spin-lattice relaxation rate, and from the time-resolved femtosecond spectroscopy (FTS) via the temperature-dependence of the photoinduced reflectivity. The error values marked by an asterisk represent the spread of the gap values measured in different points on the sample or using different junctions. They can be therefore larger than the uncertainty of the average.
Table II. Selected reports of the energy gap measurements in multiband superconductors known before the discovery of high-T_c superconductivity in iron pnictides, as well as in several single-band superconductors. For high-T_c cuprates, see the next table.

Compound	Sample	T_c (K)	Δ_c (meV)	$2\Delta_c/k_BT_c$	$\Delta_s/(k_BT_c)$	Experiment	Method or comment	Reference	
MgB$_2$	polycryst.	39.3	2.8 ± 0.2	1.7 ± 0.2	7 ± 0.5	4.1 ± 0.3	PCAR	Cu junction	Szabó et al. [18]
	monocryst.	38.2	2.9 ± 0.3	1.8 ± 0.2	7.1 ± 0.5	4.3 ± 0.3	Ag paint or In junctions	Gonnelli et al. [19]	
	polycryst.	38.7	3.5 ± 0.4	2.1 ± 0.3	7.5 ± 0.5	4.5 ± 0.3	STS	Dynes-function fit	Giubileo et al. [20]
	thin films	40	2.3	1.3	7.1	4.1	peak-to-peak distance	Iavarone et al. [21]	
	polycryst.	38.8	2.7	1.6	6.2	3.7	Raman 2-gap fit	Chen et al. [22]	
	»	36.5	1.7 ± 0.2	1.1 ± 0.2	5.6 ± 0.2	3.5 ± 0.2	PES	Dynes-function fit	Tsuda et al. [23]
	monocryst.	36	2.3 ± 0.4	1.5 ± 0.3	5.5 ± 0.4	3.5 ± 0.3	ARPES	BCS-function fit	Tsuda et al. [24]
	»	38	1.5 ± 0.5	0.9 ± 0.3	6.5 ± 0.5	3.9 ± 0.3	»	»	Souma et al. [25]
neutron-irradiated	7 – 38	2.0 ± 0.3	3.5 ± 0.3	specific heat, transport and PCAR (review)	Xi [26]				
Mg(B$_{1-x}$C$_x$)$_2$, Mg$_{1-x}$Al$_x$B$_2$ or Mg$_{1-x}$Mn$_x$B$_2$ (chemically substituted MgB$_2$)	C-substituted	1.5 ± 0.5	4.0 ± 0.3	PCAR review	Gonnelli et al. [35]				
	Al-substituted	2.1 ± 0.5	4.2 ± 0.3	»	»	»	»	»	
	Mn-substituted	1.9 ± 0.2	3.7 ± 0.5	»	»	»	»	»	
2H-NbSe$_2$	monocryst.	7.2	0.2 ± 0.2	0.7 ± 0.7	1.2 ± 0.1	3.8 ± 0.3	ARPES	BCS-function fit	Yokoya et al. [152]
	»	»	»	0.8 ± 0.4	2.6 ± 1.3	»	leading edge	Borisenko et al. [153]	
	»	7.1	0.4 ± 0.1	1.2 ± 0.2	1.0 ± 0.2	3.2 ± 0.6	TDR	penetration depth	Fletcher et al. [154]
YNi$_2$B$_4$C	monocryst.	13.77	1.19	2.0	2.67	4.5	calorimetry	electronic specific heat	Huang et al. [155]
	»	14.5	0.31 ± 0.06	1.6 ± 0.3	2.0 ± 0.2	3.2 ± 0.3	PCAR	Mukhopadhyay et al. [156]	
	»	15.2	1.6	2.4	2.8	4.3	INS	phonon line shapes	Weber et al. [157]
R$_2$Fe$_5$Si$_3$ (R = Lu, Sc) or Sc$_5$Ir$_4$Si$_{10}$	Lu$_2$Fe$_5$Si$_3$	5.8	0.3	1.1	1.1	4.4	calorimetry	electronic specific heat	Nakajima et al. [158]
	Sc$_5$Fe$_5$Si$_3$	4.8	0.35	1.7	0.74	3.53	»	»	Tamagai et al. [159]
	Sc$_5$Ir$_4$Si$_{10}$	8.2	0.7	1.9	1.45	4.1	»	»	»
V$_3$Sb	monocryst.	16.5	1.36	1.9	2.6	3.6	MSI	penetration depth	Nefyodov et al. [160]
Ba$_2$Si$_4$	polycryst.	8.1	0.9 ± 0.2	2.6 ± 0.6	1.3 ± 0.1	3.7 ± 0.3	tunneling	BCS-function fit	Noat et al. [161]
Mo$_6$Sb$_7$	polycryst.	2.2	0.24	2.5	0.38	4.0	calorimetry	electronic specific heat	Tran et al. [162]
	»	0.26	2.73	0.43	4.54	»	μSR	penetration depth	Tran et al. [163]
PrOs$_4$Sb$_{12}$ (heavy-fermion superconductor)	monocryst.	1.75	0.09	1.15	0.27	3.5	calorimetry	thermal conductivity	Seyfarth et al. [164]
Nb (highest T_c among elemental superconductors)	polycryst.	9.26	— —	1.5	3.7	PES	Dynes-function fit	Chainani et al. [165]	
Pb	monocryst.	7.2	— —	1.35 ± 0.06	4.3 ± 0.2	neutron spin-echo	phonon lifetimes	Aynajian et al. [166]	
Ba$_{1-x}$K$_x$BiO$_3$	x = 40% (OP) thin films	19	— —	3.0 ± 0.2	3.7 ± 0.5	PCAR	Au junction	Sato et al. [30]	
	»	monocryst.	30.8	— —	5.6 ± 0.7	4.2 ± 0.5	optics	reflectivity	Puchkov et al. [31]
	»	»	30	— —	6.0	4.6	infrared conductivity	Marsiglio et al. [32]	
CeCoIn$_5$ (highest T_c among heavy-fermion superconductors)	monocryst.	2.3	— —	0.46	4.6	PCAR	Au junctions	Park et al. [167]	
UPd$_2$Al$_3$ (heavy-fermion superconductor)	thin film	1.8	— —	0.24	3.0	tunneling	Dynes-function fit	Jourdan et al. [168]	
Sr$_2$RuO$_4$ (presumably a spin-triplet superconductor)	monocryst.	1.5	— —	0.28	4.3	tunneling	BCS-function fit	Suderow et al. [169]	
Compound sample	T_c (K)	Δ (meV)	$2\Delta/k_BT_c$	Method or comment	Reference				
-----------------	----------	----------------	-----------------	------------------	-----------				
Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi-2212 or BSCCO)	(OD)	70	23 ± 3	7.6 ± 1.0	STM + tunneling review	Yu et al. [36]			
	«	87	33 ± 3.5	8.9 ± 1.0	«	«	Lee et al. [69]		
	«	86	33 ± 4	8.8 ± 1.0	ARPES symmetrization + fit	«	«		
	(OD)	92	36 ± 2	9.0 ± 0.5	«	empirical fit	Fedorov et al. [67]		
	« float.-zone	91	32 ± 3	8.1 ± 0.8	ARPEs backfolded dispersion	«	«		
Pb-BSCO (UD) annealed	77	28	8.4	leading edge	Borisenko et al. [68]				
Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+\delta}$ (Bi-2223)	(OD)	110	43 ± 5	9.1 ± 1.0	ARPES leading edge	Ideta et al. [170]			
La$_{2-x}$Sr$_x$CuO$_4$ (LSCO)	(OD) float.-zone	26	8.0 ± 1.0	7.1 ± 0.9	review	Yu et al. [36]			
	«	31	10.5	7.8	optics	«	«		
	x = 0.15 (OP)	39	17.5 ± 1.5	10.3 ± 0.9	ARPES	leading edge	Yoshida et al. [171]		
YBa$_2$Cu$_3$O$_{5+\delta}$ (YBCO)	$\delta = 0.6$ (UD)	63	39.5 ± 1.5	14.4 ± 0.6	review	Yu et al. [36]			
	$\delta = 0.7$ «	67	39.5 ± 1.5	13.6 ± 0.5	«	«			
	$\delta = 0.85$ «	89	39.5 ± 1.5	10.2 ± 0.4	«	«			
Y$_1$Ba$_2$Cu$_3$O$_7$ (Ca-YBCO)	x = 0.10 (OD)	85.5	33 ± 4	8.9 ± 1.1	review	Yu et al. [36]			
	x = 0.15 «	75	26 ± 3	7.0 ± 0.8	«	«			
	« flux method	77	29 ± 3	8.7 ± 1.0	ARPES	peak position	Zabolotnyy et al. [172]		
HgBa$_2$Ca$_2$Cu$_3$O$_{8+\delta}$ (Hg-1223)	(OP)	130	60	10.6	optics	review	Yu et al. [36]		
HgBa$_2$Cu$_4$O$_{8+\delta}$ (Hg-1201)	(OP)	96	44 ± 4	10.6 ± 1.0	review	Yu et al. [36]			
	(UD)	90	22.4	5.8 ± 1.0	optics	Yang et al. [173]			
	UD 78 K – OD 42 K	42–95	6.4 ± 1.0	Raman	Guyard et al. [174]				
Tl$_2$Ba$_2$CuO$_{6+\delta}$ (TI-2201)	(OP)	92.5	43 ± 4	10.7 ± 1.0	review	Yu et al. [36]			
	(OD)	90	37	9.5	optics	«	«		
	«	28	7.2	«	«	Schachinger and Carbotte [175]			
Nd$_{2-x}$Ce$_x$CuO$_{4-\delta}$ (NCCO)	x = 0.15 (OP) float.-zone	22	5.0 ± 1.0	5.2 ± 1.1	ARPES	leading edge	Sato et al. [176]		
Pr$_{2-x}$Ce$_x$CuO$_{4-\delta}$ (PCCO)	x = 0.13 (UD)	17	2.5 ± 0.4	3.5 ± 0.5	tunneling	PbI/PCCO junctions	Dagan et al. [177]		
	x = 0.15 (OP)	19	3.3 ± 0.3	4.0 ± 0.4	«	«	«	«	
	x = 0.16 (OD)	16	2.6 ± 0.4	3.8 ± 0.5	«	«	«	«	
Pr$_{1-x}$La$_x$Ce$_x$CuO$_{4-\delta}$ (PLCCO)	x = 0.11 (OP) float.-zone	26	2.5 ± 0.2	2.2 ± 0.2	ARPES	leading edge	Matsui et al. [178]		
	x = 0.12 (OP) float.-zone	25	3.6 ± 0.2	3.5 ± 0.2	tunneling	Pt/In junctions	Giubileo et al. [179]		
	x = 0.12, 0.15 (OP) float.-zone	13–24	7.2 ± 1.2	6.9 ± 1.2	STS	«	«		
	x = 0.12, 0.15 (OP) float.-zone	13–24	7.2 ± 1.2	6.9 ± 1.2	STS	«	«		
RuSr$_2$GdCu$_2$O$_8$ (Ru-1212)	Ru-1212 polycryst.	30	2.8 ± 0.2	2.2 ± 0.2	PCAR	Pt/In junctions	Piano et al. [182]		
	«	27	6.0 ± 0.5	5.1 ± 0.4	«	«	Calzolari et al. [183]		

Table III. Summary of the energy gap measurements in copper-oxide-based superconductors.
Compound	sample	\(T_c \) (K)	\(\Delta C/\gamma_n T_c \)	Reference
\(\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2 \), hole-doped (BKFA)				
\(x = 32\% \) (OP) \(\text{FeAs-flux} \)	38.5	2.5		Popovich et al. [15]
\(\text{KFe}_2\text{As}_2 \), 100 \% hole-doped (K-122 or KFA)				
N/A	3.5	0.6		Fukazawa et al. [88]
\(\text{Ba(Fe}_{1-x}\text{Co}_x\text{)}_2\text{As}_2 \), electron-doped (BFCA)				
\(x = 7.5\% \) (OD) \(\text{FeAs-flux} \)	21.4	1.6		Hardy et al. [89]
\(x = 5.75\% \) (OP)	24.3	1.6		Hardy et al. [4]
\(x = 5.5\% \) (UD)	22.9	1.5		
\(\text{BaNi}_2\text{As}_2 \), 100 \% electron-doped (BNA)				
N/A				
\(\text{PrFePO} \)				
N/A				
\(\text{LaFePO} \)				
N/A				
\(\text{LaNiAsO}_{1-x}\text{F}_x \)				
\(x = 5.5\% \) (OP)	3.8	1.9		Li et al. [93]
\(\text{Li}_{1.8}\text{FeAs} \), undoped (Li-111 or LFA)				
N/A				
N/A				
\(\text{FeTe}_{1-x}\text{Se}_x \)				
\(x = 43\% \) (OP)	14.7	2.11		Hu et al. [150]
\(\text{K}_x\text{(Fe}_{1-x}\text{Se})_2 \) (KFS)				
\(x = 0.8 \) Bridgman	32	1.93		Zeng et al. [94]

Table IV. Heat-capacity measurements of the specific-heat-jump ratio, \(\Delta C/\gamma_n T_c \), in iron arsenide superconductors (also see Fig. 2).
Table V. Summary of the spin resonance energies (ω_{res}), corresponding onset energies of the particle-hole continuum ($2\Delta_p$), normalized resonance energies (ω_{res}/Δ_p), and the $\omega_{res}/2\Delta_p$ ratios in Fe-based superconductors.

Compound sample	Reference					
Ba$_{1-x}$K$_x$Fe$_2$As$_2$, hole-doped (BKEA)						
$x = 40\%$ (OP) polycryst.	38	14.0 ± 1.0	4.3 ± 0.3	22.9 ± 1.0	61.0 ± 0.5	Christianson et al. [103]
$x = 33\%$ self-flux	15.0 ± 1.0	4.6 ± 0.3	4.9 ± 0.3	22.9 ± 1.0	66.0 ± 0.05	Zhang et al. [102]
Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, electron-doped (BFCA)						
$x = 4\%$ (UD) self-flux	11	4.5 ± 0.5	4.7 ± 0.5	4.4 ± 0.9	10.0 ± 2.0	Christianson et al. [104]
$x = 4.7\%$	17	5.0 ± 0.5	5.7 ± 0.5	4.2 ± 0.6	1.3 ± 0.6	Pratt et al. [105]
$x = 7.5\%$ (OP)	25	7.2 ± 0.5	5.3 ± 0.3	4.2 ± 0.3	23.0 ± 0.9	Inosov et al. [98]
$x = 8\%$ (OD)	22	8.6 ± 0.5	4.5 ± 0.3	4.5 ± 0.3	10.8 ± 0.8	Lumsden et al. [106]
Ba(Fe$_{1-x}$Ni$_x$)$_2$As$_2$, electron-doped (BFNA)						
$x = 3.7\%$ (UD) self-flux	12.2	4.5 ± 0.5	4.8 ± 0.5	unknown (no direct measurements)	Wang et al. [99]	
$x = 4.5\%$ Self-flux	18	5.0 ± 0.5	4.5 ± 0.3	4.2 ± 0.3	0.8 ± 0.17	Park et al. [100]
$x = 5\%$ (OP)	20	7.2 ± 0.5	5.3 ± 0.3	4.2 ± 0.3	23.0 ± 0.9	Chi et al. [107]
$x = 7.5\%$ (OD)	15.5	8.0 ± 0.5	4.6 ± 0.3	4.5 ± 0.4	0.9 ± 0.18	Zhao et al. [109]
BaFe$_2$(As$_{1-x}$P)$_x$, isovalently substituted (BFAP)						
$x = 35\%$ (OP) polycryst.	30	11.5 ± 1.5	4.5 ± 0.6	unknown (no direct measurements)	Ishikado et al. [110]	
LaFeAsO$_1$–$_x$F$_x$, electron-doped (La-1111)						
$x = 8\%$ (OP) polycryst.	29	13.0 ± 1.0	5.2 ± 0.4	20.0 ± 1.2	0.65 ± 0.06	Shamoto et al. [101]
Li$_{1+\delta}$FeAs, undoped (Li-111 or LFA)						
N/A polycryst.	17	8.0 ± 2.0	5.5 ± 1.4	6.1 ± 0.5	1.3 ± 0.4	Taylor et al. [118]
FeTe$_{1-x}$Se$_x$, isovalently substituted (11-family)						
$x = 0.4$ (OP) self-flux	14	6.5 ± 0.5	5.3 ± 0.4	6.9 ± 1.2	0.94 ± 0.18	Qiu et al. [111]
$x = 0.5$ unidirect, solid.	6.2 ± 0.5	5.1 ± 0.4	0.87 ± 0.17	Argyriou et al. [112]		
$x = 0.5$ Bridgman	6.5 ± 0.5	5.3 ± 0.4	0.90 ± 0.17	Wen et al. [113]		
$x = 0.5$ Bridgman	6.5 ± 0.5	5.3 ± 0.4	0.94 ± 0.18	Mook et al. [114, 115]		

* Corresponding author: d.inosov@kf.kf.mpg.de

[1] X. Zhang, Y. S. Oh, Y. Liu, L. Yan, S. R. Saha, N. P. Butch, K. Kirchenbaum, K. H. Kim, J. Paglione, R. L. Greene, and I. Takeuchi, Phys. Rev. B 82, 020515 (2010).

[2] D. V. Evtsushinsky, D. S. Inosov, V. B. Zabotnyy, M. S. Viazovska, R. Khasanov, A. Amato, H.-H. Klauß, H. Luethkens, C. Niedermayer, G. L. Sun, V. Hinkov, C. T. Lin, A. Varykhalov, A. Koitzsch, M. Knupfer, B. Buechner, A. A. Kordyuk, and S. V. Borisenko, New J. Phys. 11, 055069 (2009).

[3] K. Nakayama, T. Sato, P. Richard, Y.-M. Xu, T. Kawahara, K. Umezawa, T. Qian, M. Neupane, G. F. Chen, H. Ding, and T. Takahashi, Phys. Rev. B 83, 020501 (2011).

[4] F. Hardy, P. Burger, T. Wolf, R. A. Fisher, F. Schweiss, P. Adelmann, R. Heid, R. Fromknecht, R. Eder, D. Ernst, H. v. Löhnysen, and C. Meingast, EPL 91, 47008 (2010).

[5] N. Kurita, F. Ronning, Y. Tokiwa, E. D. Bauer, A. Subedi, D. J. Singh, J. D. Thompson, and R. Movshovich, Phys. Rev. Lett. 102, 147004 (2009).

[6] Z. Li, Y. Ooe, X.-C. Wang, Q.-Q. Liu, C.-Q. Jin, M. Ichioda, and G.-Q. Zheng, J. Phys. Soc. Jpn. 79, 083702 (2010).

[7] Y. Imai, H. Takahashi, K. Kitagawa, K. Matsubayashi, N. Nakai, Y. Nagai, Y. Uwakoto, M. Machida, and A. Maeda, J. Phys. Soc. Jpn. 80, 013704 (2011).

[8] H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov, Phys. Rev. B 83, 100502(R) (2011).

[9] M. L. Teague, G. K. Drayna, G. P. Lockhart, P. Cheng, B. Shen, H.-H. Wen, and N.-C. Yeh, Phys. Rev. Lett. 106, 087004 (2011).

[10] A. Koitzsch, D. Inosov, J. Fink, M. Knupfer, H. Escrig, S. V. Borisenko, G. Behr, A. Köhler, J. Werner, B. Büchner, R. Falth, and R. A. Dür, Phys. Rev. B 78, 180506 (2008).

[11] O. K. Andersen and L. Boeri, Ann. Phys. 523, 8 (2011).

[12] A. Charnukha, O. V. Dolgov, A. A. Golubov, Y. Matiks, D. L. Sun, C. T. Lin, B. Keimer, and A. V. Boris, arXiv:1103.0938 unpublished.

[13] A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512 (2008).

[14] K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G.-Q. Zheng, EPL 83, 57001 (2008).

[15] P. Popovich, A. V. Boris, O. V. Dolgov, A. A. Golubov, D. L. Sun, C. T. Lin, R. K. Kremer, and B. Keimer, Phys. Rev. Lett. 105, 027003 (2010).

[16] H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, EPL 83, 47001 (2008).
[17] D. V. Evtyshinsky, D. S. Inosov, V. B. Zabolotnyy, A. Koitzsch, M. Knupfer, B. Buchner, M. S. Viazovska, G. L. Sun, V. Hinkov, A. V. Boris, C. T. Lin, B. Keimer, A. Varykhalov, A. A. Kordyuk, and S. V. Borisenko, Phys. Rev. B 79, 054517 (2009).

[18] P. Szabó, P. Samuely, J. Kačmarčík, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcati, and A. G. M. Jansen, Phys. Rev. Lett. 87, 137005 (2001).

[19] R. S. Gonnelli, D. Daghero, G. A. Ummarino, V. A. Stepanov, J. Jun, S. M. Kazakov, and J. Karpinski, Phys. Rev. Lett. 89, 247004 (2002).

[20] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, and J. Klein, Europhys. Lett. 58, 764 (2002).

[21] M. Iavaroni, G. Karapetrov, A. Menzel, V. Komiczky, H. You, W. K. Kwok, P. Orgiani, V. Ferrando, and X. X. Xi, Appl. Phys. Lett. 87, 242506 (2005).

[22] X. K. Chen, M. J. Konstantinović, J. C. Irwin, D. L. Lawrie, and J. P. Franck, Phys. Rev. Lett. 87, 157002 (2001).

[23] S. Tsuda, T. Yokoya, T. Kiss, Y. Takano, K. Togano, H. Kito, H. Ihara, and S. Shin, Phys. Rev. Lett. 87, 177006 (2001).

[24] S. Tsuda, T. Yokoya, Y. Takano, H. Kito, A. Matsuishi, F. Yin, J. Itoh, H. Harima, and S. Shin, Phys. Rev. Lett. 91, 127001 (2003).

[25] S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.-C. Wang, H. Ding, A. Kamikinski, J. C. Campuzano, S. Sasaki, and K. Kadowaki, Nature (London) 423, 65 (2003).

[26] X. X. Xi, Rep. Prog. Phys. 71, 116501 (2008).

[27] O. V. Dolgov, I. I. Mazin, D. Parker, and A. A. Golubov, Phys. Rev. B 79, 060502 (2009).

[28] W. K. Park and L. H. Greene, J. Phys.: Condens. Matter 21, 103203 (2009).

[29] K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimoka, H. Kogawa, T. C. Kobayashi, C. Gröbel, and F. Steglich, J. Phys. Soc. Jpn. 77, 123711 (2008).

[30] H. Sato, H. Takagi, and S. Uchida, Physica C: Superconductivity 169, 391 (1990).

[31] A. V. Puchkov, T. Timusk, W. D. Mosley, and R. N. Shelton, Phys. Rev. B 50, 4144 (1994).

[32] F. Marsiglio, J. P. Carbotte, A. Puchkov, and T. Timusk, Phys. Rev. B 53, 9433 (1996).

[33] L. Forró and L. Mihály, Rep. Prog. Phys. 64, 649 (2001).

[34] J. Kortus, O. V. Dolgov, R. K. Kremer, and A. A. Golubov, Phys. Rev. Lett. 94, 027002 (2005).

[35] R. S. Gonnelli, D. Daghero, G. A. Ummarino, V. A. Stepanov, J. S. Kim, and R. K. Kremer, Phys. Rev. B 79, 184526 (2009).

[36] D. Daghero, M. Tortello, R. S. Gonnelli, V. A. Stepanov, N. D. Zhigadlo, and J. Karpinski, Phys. Rev. B 80, 060502 (2009).

[37] T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E. Tillman, E. D. Mun, J. Schmalian, S. L. Bud’ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski, Phys. Rev. Lett. 101, 147003 (2008).

[38] P. Samuely, P. Szabó, Z. Pribulová, M. E. Tillman, S. L. Bud’ko, and P. C. Canfield, Supercond. Sci. Technol. 22, 014003 (2009).

[39] R. S. Gonnelli, D. Daghero, M. Tortello, G. A. Ummarino, V. A. Stepanov, R. K. Kremer, J. S. Kim, N. D. Zhigadlo, and J. Karpinski, Physica C: Superconductivity 469, 512 (2009).

[40] A. Charnukha, P. Popovich, Y. Matiks, D. L. Sun, C. T. Lin, A. N. Yaresko, B. Keimer, and A. V. Boris, Nature Commun. 2, 219 (2011).

[41] L. Zhao, H.-Y. Liu, W.-T. Zhang, J.-Q. Meng, X.-W. Jia, G.-D. Liu, X.-L. Dong, G.-F. Chen, J.-L. Luo, N.-L. Wang, W. Lu, G.-L. Wang, Y. Zhou, Y. Zhu, X.-Y. Xu, Z.-Y. Xu, C.-T. Chen, and X.-J. Zhou, Chin. Phys. Lett. 25, 4402 (2008).

[42] L. Shan, Y.-L. Wang, J. Gong, B. Shen, Y. Huang, H. Yang, C. Ren, and H.-H. Wen, Phys. Rev. B 83, 060510 (2011).

[43] L. Shan, Y.-L. Wang, B. Shen, B. Zeng, Y. Huang, A. Li, D. Wang, H. Yang, C. Ren, Q.-H. Wang, S. H. Pan, and H.-H. Wen, Nature Phys. 7, 325 (2011).

[44] L. Wray, D. Qian, H. Hsieh, Y. Xia, L. Li, J. G. Checkelsky, A. Pasupathy, K. K. Gomes, C. V. Parker, A. V. Fedorov, G. F. Chen, J. L. Luo, A. Yazdani, N. P. Ong, N. L. Wang, and M. Z. Hasan, Phys. Rev. B 78, 184508 (2008).

[45] Z. Shermaidin, J. Kanter, C. Baines, M. Bendele, Z. Bukowski, R. Khasanov, H.-H. Klauss, H. Luetkens, H. Maeter, G. Pascua, B. Batlogg, and A. Amato, Phys. Rev. B 82, 144427 (2010).

[46] H. Kawano-Furukawa, C. J. Bowell, J. S. White, R. W. Heslop, A. S. Cameron, E. M. Forgan, K. Khoh, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, R. Cubitt, C. D. Dewhurst, J. L. Gavilano, and M. Zolliker, arXiv:1005.4468.
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. W. Yu, L. Ma, J. B. He, D. M. Wang, T.-L. Xia, G. F. Chen, Z. Li, S. Kawasaki, T. Oka, T. Tabuchi, H. Kito, P. M. Shirage, K. Kihou, N. Takahata, C.-H. Lee, A. Iyo, and H. Eisaki, J. Phys. Soc. Jpn. 78, 083712 (2009).

F. Hardy, T. Wolf, R. A. Fisher, R. Eder, P. Schweiss, P. Adelmann, H. v. Löhneysen, and C. Meingast, Phys. Rev. B 81, 060501(R) (2010).

S. V. Borisenko, A. A. Kordyuk, T. K. Kim, S. Legner, K. A. Yates, K. Morrison, J. A. Rodgers, G. B. S. Penny, J.-W. G. Bos, J. P. Atfield, and L. F. Cohen, New J. Phys. 11, 025015 (2009).

A. V. Fedorov, T. Valla, P. D. Johnson, Q. Li, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 82, 2179 (1999).

J. G. Analytis, J.-H. Chu, A. S. Erickson, C. Kucharczyk, J. T. Park, D. S. Inosov, A. Yaresko, S. Graser, D. L. Sun, Y. Sidis, N. L. Wang, arXiv:1102.1381 (unpublished).

R. Movshovich, and J. D. Thompson, J. Phys.: Condens. Matter 20, 140508 (2008).

S. Chi, J. W. Lynn, A. Schneidewind, S. Li, and P. Dai, Phys. Rev. B 83, 042511 (2011).

J. T. Park, D. S. Inosov, A. Yaresko, S. Graser, D. L. Sun, P. Bourges, Y. Sidis, Y. Li, J.-H. Kim, D. Haug, A. Ivanov, K. Hradil, A. Schneiderwind, P. Link, E. Faulhaber, I. Glavatskyy, C. T. Lin, B. Keimer, and V. Hinkov, Phys. Rev. B 82, 134513 (2010).

S.-I. Shamoto, M. Ishikado, A. D. Christianson, M. D. Lumsden, S. Wakimoto, K. Kodama, A. Iyo, and M. Arai, Phys. Rev. B 82, 172508 (2010).

Y. Shi, H. Ding, and S.-C. Wang, arXiv:1008.3265 (unpublished).

Z. Li, S. Kawasaki, T. Oka, T. Tabuchi, Y. Ooe, M. Ichioda, Z. A. Ren, Z. X. Zhao, J. L. Luo, N. L. Wang, X. C. Wang, Q. Q. Liu, C. Q. Jin, C. T. Lin, and G.-Q. Zheng, J. Phys. Chem. Sol. 72, 492 (2011).

A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evrushinsky, T. K. Kim, I. V. Morozov, M. L. Kulic, R. Follath, G. Behr, B. Büchner, and S. V. Borisenko, Phys. Rev. B 83, 134513 (2011).

P. M. R. Brydon, M. Daghofer, C. Timm, and J. van den Brink, Phys. Rev. B 83, 060501 (2011).

D. R. Parker, M. J. F Smith, T. Lancaster, A. J. Steele, I. Franke, P. J. Baker, E. L. Pratt, M. J. Pitcher, S. J. Blundell, and S. J. Clarke, Phys. Rev. Lett. 104, 057007 (2010).

Z.-H. Liu, P. Richard, K. Nakayama, G.-F. Chen, S. Dong, J.-B. He, D.-M. Wang, T.-L. Xia, K. Umezawa, T. Kawahara, S. Souma, T. Sato, T. Takahashi, T. Qian, Y. Huang, N. Xu, Y. Shi, H. Ding, and S.-C. Wang, arXiv:1008.3265 (unpublished).

J. Paglione and R. L. Greene, Nature Phys. 6, 645 (2010).

J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

H. Fukazawa, Y. Yamada, K. Kondo, T. Saito, Y. Kohori, K. Kuga, Y. Matsumoto, S. Nakatsuji, H. Kito, P. M. Shirage, K. Kihou, N. Takahata, C.-H. Lee, A. Iyo, and H. Eisaki, J. Phys. Soc. Jpn. 78, 083712 (2009).

F. Hardy, T. Wolf, R. A. Fisher, R. Eder, P. Schweiss, P. Adelmann, H. v. Löhneysen, and C. Meingast, Phys. Rev. B 81, 060501(R) (2010).

F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimeczuk, R. Movshovich, and J. D. Thompson, J. Phys.: Condens. Matter 20, 342203 (2008).

J. G. Analytis, J.-H. Chu, A. S. Erickson, C. Kucharczyk, A. Serafin, A. Carrington, C. Cox, S. M. Kaulazarich, H. Hope, and J. R. Fisher, arXiv:0810.5368 (unpublished).

Z. Li, G. Chen, J. Dong, G. Li, W. Hu, D. Wu, S. Su, P. Zheng, T. Xiang, N. Wang, and J. Luo, Phys. Rev. B 78, 060504 (2008).

B. Zeng, B. Shen, G. F. Chen, J. B. He, D. M. Wang, C. H. Li, and H. H. Wen, Phys. Rev. B 83, 144511 (2011).

J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica C: Superconductivity 185, 86 (1991).

H. F. Fong, B. Keimer, P. W. Anderson, D. Reznik, F. Doğan, and I. A. Aksay, Phys. Rev. Lett. 75, 316 (1995).

H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, A. Ivanov, G. D. Gu, N. Koshizuka, and B. Keimer, Nature (London) 398, 588 (1999).

D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis, A. Schneiderwind, K. Hradil, D. Haug, C. T. Lin, B. Keimer, and V. Hinkov, Nature Phys. 6, 178 (2010).

M. Wang, H. Luo, J. Zhao, C. Zhang, M. Wang, K. Marty, S. Chi, J. W. Lynn, A. Schneiderwind, S. Li, and P. Dai, Phys. Rev. B 81, 174524 (2010).

J. T. Park, D. S. Inosov, A. Yaresko, S. Graser, D. L. Sun, P. Bourges, Y. Sidis, Y. Li, J.-H. Kim, D. Haug, A. Ivanov, K. Hradil, A. Schneiderwind, P. Link, E. Faulhaber, I. Glavatskyy, C. T. Lin, B. Keimer, and V. Hinkov, Phys. Rev. B 82, 134503 (2010).

S.-I. Shamoto, M. Ishikado, A. D. Christianson, M. D. Lumsden, S. Wakimoto, K. Kodama, A. Iyo, and M. Arai, Phys. Rev. B 82, 172508 (2010).

C. Zhang, M. Wang, H. Luo, M. Wang, M. Liu, J. Zhao, D. L. Abernathy, K. Marty, M. D. Lumsden, S. Chi, S. Chang, J. A. Rodriguez-Rivera, J. W. Lynn, T. Xiang, J. Hu, and P. Dai, arXiv:1012.4065 (unpublished).

A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosenkranz, M. D. Lumsden, C. D. Malliakas, I. S. Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, and T. Guidi, Nature (London) 456, 930 (2008).

A. D. Christianson, M. D. Lumsden, S. E. Nagler, G. J. Mac-
[147] A. Günther, J. Deisenhofer, C. Kant, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, Supercond. Sci. Technol. 24, 045009 (2011).
[148] C. C. Homes, A. Akrap, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu, Phys. Rev. B 81, 180508 (2010).
[149] W. K. Park, C. R. Hunt, H. Z. Arham, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. D. Gu, and L. H. Greene, arXiv:1005.0190 (unpublished).
[150] J. Hu, T. J. Liu, B. Qian, A. Rotaru, L. Spinu, and Z. Q. Mao, Phys. Rev. B 83, 134521 (2011).
[151] T. Kato, Y. Mizuguchi, H. Nakamura, T. Machida, H. Sakata, and Y. Takano, Phys. Rev. B 80, 180507 (2009).
[152] T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, and H. Takagi, Science 294, 2518 (2001).
[153] S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. Büchner, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey, and H. Berger, Phys. Rev. Lett. 102, 166402 (2009).
[154] J. D. Fletcher, A. Carrington, P. Diener, P. Rodière, J. P. Brison, R. Prozorov, T. Olheiser, and R. W. Giubileo, Phys. Rev. Lett. 98, 057003 (2007).
[155] C. L. Huang, J.-Y. Lin, C. P. Sun, T. K. Lee, J. D. Kim, E. M. Choi, S. I. Lee, and H. D. Yang, Phys. Rev. B 73, 012502 (2006).
[156] S. Mukhopadhyay, G. Sheet, R. Raychaudhuri, and H. Takeya, Phys. Rev. B 72, 014545 (2005).
[157] T. Sato, T. Kamiyama, T. Takahashi, K. Kurahashi, and K. Yamada, Science 291, 1517 (2001).
[158] Y. Nakajima, T. Nakagawa, T. Tamegai, and H. Harima, Phys. Rev. Lett. 100, 157001 (2008).
[159] T. Tamegai, Y. Nakajima, T. Nakagawa, G. J. Li, and H. Harima, Sci. Technol. Adv. Mater. 9, 044206 (2008).
[160] Y. A. Nefyodov, A. M. Shvavev, and M. R. Trunin, Europhys. Lett. 72, 638 (2005).
[161] Y. Noat, T. Cren, P. Toulemonde, A. San Miguel, F. Debontrider, V. Dubost, and D. Rotsch, Phys. Rev. B 81, 104522 (2010).
[162] V. Tran, W. Miller, and Z. Bukowski, Acta Mater. 56, 5694 (2008).
[163] V. H. Tran, A. D. Hillier, D. T. Adroja, and Z. Bukowski, Phys. Rev. B 78, 172505 (2008).
[164] G. Seyfarth, J. P. Brison, M.-A. Méasson, D. Braithwaite, G. Lapertot, and J. Flouquet, Phys. Rev. Lett. 97, 236403 (2006).
[165] A. Chainani, T. Yokoya, T. Kiss, and S. Shin, Phys. Rev. Lett. 85, 1966 (2000).
[166] P. Aynajian, T. Keller, L. Boeri, S. M. Shapiro, K. Habicht, and B. Keimer, Science 319, 1509 (2008).
[167] W. K. Park, L. H. Greene, J. L. Sarrao, and J. D. Thompson, Phys. Rev. B 72, 052509 (2005).
[168] M. Jourdan, M. Huth, and H. Adrian, Nature (London) 398, 47 (1999).
[169] H. Suderow, V. Crespo, I. Guillamon, S. Vieira, F. Servant, P. Lejay, J. P. Brison, and J. Flouquet, New J. Phys. 11, 093004 (2009).
[170] S. Ideta, K. Takashima, M. Hashimoto, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, Y. Nakashima, A. Ino, M. Arita, H. Namatame, M. Taniguchi, K. Ono, M. Kubota, D. H. Lu, Z.-X. Shen, K. M. Kojima, and S. Uchida, Phys. Rev. Lett. 104, 227001 (2010).
[171] T. Yoshida, M. Hashimoto, S. Ideta, A. Fujimori, T. Tanaka, N. Manna, Z. Hussen, Z.-X. Shen, M. Kubota, K. Ono, S. Komiya, Y. Ando, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 103, 037004 (2009).
[172] V. B. Zabolotnyy, S. V. Borisenko, A. A. Kordyuk, J. Geck, D. S. Inosov, A. Koitzsch, J. Fink, M. Knupfer, B. Büchner, S.-L. Drechsler, H. Berger, A. Erb, M. Lambacher, L. Patthey, V. Hinkov, and B. Keimer, Phys. Rev. B 76, 064519 (2007).
[173] J. Yang, J. Hwang, E. Schachinger, J. P. Carbotte, R. P. S. M. Lobo, D. Colson, A. Forget, and T. Timusk, Phys. Rev. Lett. 102, 027003 (2009).
[174] W. Guyard, A. Sacuto, M. Cazayous, Y. Gallais, M. Le Tacon, D. Colson, and A. Forget, Phys. Rev. Lett. 101, 097003 (2008).
[175] E. Schachinger and J. P. Carbotte, Phys. Rev. B 62, 9054 (2000).
[176] T. Sato, T. Kamiyama, T. Takahashi, K. Kurahashi, and K. Yamada, Science 291, 1517 (2001).
[177] Y. Dagan, R. Beck, and R. L. Greene, Phys. Rev. Lett. 99, 147004 (2007).
[178] H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, and K. Yamada, Phys. Rev. Lett. 95, 017003 (2005).
[179] A. M. Cucolo, J. Phys.: Condens. Matter 22, 045702 (2010).
[180] F. C. Niestemski, S. Kunwar, S. Zhou, S. Li, H. Ding, Z. Wang, P. Dai, and V. Madhavan, Nature (London) 450, 1058 (2007).
[181] L. Shan, Y. Huang, Y. L. Wang, S. Li, J. Zhao, P. Dai, Y. Z. Zhang, C. Ren, and H. H. Wen, Phys. Rev. B 77, 014526 (2008).
[182] S. Piano, A. Scarfato, F. Bobba, A. D. Bartolomeo, and A. M. Cucolo, J. Phys.: Condens. Matter 22, 045702 (2010).
[183] A. Calzolari, D. Daghero, R. S. Gonneli, G. A. Ummarino, V. A. Stepanov, R. Masini, M. R. Cimberle, and M. Ferretti, J. Phys. Chem. Sol. 67, 597 (2006).