Extremal results for odd cycles in sparse pseudorandom graphs

Elad Aigner-Horev
Department of Mathematics
University of Hamburg
Bundesstrae 55 D-20146 Hamburg, Germany

Hiêp Hàn
Instituto de Matemática e Estatística
Universidade de São Paulo
Rua do Matão 1010, 05508-090 São Paulo, Brazil

Mathias Schacht
Department of Mathematics
University of Hamburg
Bundesstrae 55 D-20146 Hamburg, Germany

Abstract

We consider extremal problems for subgraphs of pseudorandom graphs. Our results implies that for (n, d, λ)-graphs Γ satisfying

$$\lambda^{2k-1} \ll \frac{d^{2k}}{n} \left(\log n \right)^{-2(k-1)/(2k-1)}$$

any subgraph $G \subseteq \Gamma$ not containing a cycle of length $2k+1$ has relative density at most $\frac{1}{2} + o(1)$. Up to the polylog-factor the condition on λ is best possible and was conjectured by Krivelevich, Lee and Sudakov.

Keywords: odd cycles, extremal graph theory, pseudorandom graphs
1 Introduction and main result

For two graphs G and H, the generalized Turán number, denoted $	ext{ex}(G,H)$, is defined to be the largest number of edges an H-free subgraph of G may have. Here, a graph G is H-free if it contains no copy of H as a (not necessarily induced) subgraph. With this notation, the well known Erdős-Stone theorem reads

$$\text{ex}(K_n,H) = \left(1 - \frac{1}{\chi(H)} + o(1)\right) \binom{n}{2}$$

where $\chi(H)$ denotes the chromatic number of H.

The systematic study of extensions of the Erdős-Stone theorem arising from replacing K_n in (1) with a sparse random or a pseudorandom graph was initiated by Kohayakawa and collaborators (see, e.g., [9,10,11]). For random graphs such extensions were obtained recently in [7,15] (see also [4,14,6,13] for more recent developments).

Here, we continue the study for pseudorandom graphs. Roughly speaking, a pseudorandom graph is a graph whose edge distribution closely resembles that of a truly random graph of the same edge density. One way to formally capture this notion of pseudorandomness is through eigenvalue separation. A graph G on n vertices may be associated with a Boolean $n \times n$ adjacency matrix A. This matrix is symmetric and, hence, all its eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ are real. If G is d-regular, then $\lambda_1 = d$ and $|\lambda_n| \leq d$ by the Perron-Frobenius theorem. The difference in order of magnitude between d and the second eigenvalue $\lambda(G) = \max\{\lambda_2, |\lambda_n|\}$ of G is often called the spectral gap of G. It is well known that the spectral gap provides a measure of control over the edge distribution of G. Roughly, the larger is the spectral gap the stronger is the resemblance between the edge distribution of G and that of the random graph $G(n,p)$, where $p = d/n$. This phenomenon led to the notion of (n,d,λ)-graphs by which we mean d-regular n-vertex graphs satisfying $\lambda(G) \leq \lambda$.

Turán type problems for sparse pseudorandom graphs were studied, e.g. in [11,16,5]. In this paper, we continue in studying extensions of the Erdős-Stone theorem for sparse host graphs and determine upper bounds for the

1 Supported by FAPESP (Proc. 2010/16526-3) and by NUMEC/USP, Núcleo de Modelagem Estocástica e Complexidade of the University of São Paulo.
2 Email: elad.horev|schacht@math.uni-hamburg.de
3 Email: hh@ime.usp.br
generalized Turán number for odd cycles in sparse pseudorandom host graphs, i.e., \(\text{ex}(G, C_{2k+1}) \) where \(G \) is a pseudorandom graph and \(C_{2k+1} \) is the odd cycle of length \(2k + 1 \).

Our work is related to work of Sudakov, Szabó, and Vu [16] who determined \(\text{ex}(G, K_t) \) for a pseudorandom graph \(G \) and \(t \geq 3 \). Their result may be viewed as the pseudorandom counterpart of Turán’s theorem [19].

For any graph \(G \), the trivial lower bound \(\text{ex}(G, C_{2k+1}) \geq e(G)/2 \), where \(e(G) = |E(G)| \), follows from the fact that every graph \(G \) contains a bipartite subgraph with at least half the edges of \(G \). For \(G \cong K_n \), this bound is tight and our result asserts that this bound remains essentially tight for sufficiently pseudorandom graphs.

Theorem 1.1 Let \(k \geq 1 \) be an integer. If \(\Gamma \) is an \((n, d, \lambda)\)-graph satisfying

\[
\lambda^{2k-1} \ll \frac{d^{2k}}{n} \left(\log n \right)^{-2(2k-1)},
\]

then

\[
\text{ex}(\Gamma, C_{2k+1}) = \left(\frac{1}{2} + o(1) \right) \frac{dn}{2}.
\]

For \(k = 1 \), the same problem was studied in [16]. In this case, we obtain the same result which is known to be best possible due to the construction of Alon [1]. For \(k \geq 2 \), Alon’s construction can be extended as to fit for general odd cycles [2]. This implies that for any \(k \geq 2 \), up the polylog-factor, the condition (2) is best possible and confirms a conjecture of Krivelevich, Lee and Sudakov [12]. Theorem 1.1 is a consequence of Theorem 1.2 stated below for the so called *jumbled* graphs. We recall this notion of pseudorandomness which can be traced back to Thomason [18].

Given \(p = p(n) \) and \(\gamma = \gamma(n) \), we say that an \(n \)-vertex graph \(\Gamma \) is \((p, \gamma)\)-*jumbled* if for all disjoint \(X, Y \subset V(\Gamma) \) we have

\[
|e(X, Y) - p|X||Y|\| \leq \gamma \sqrt{|X||Y|}.
\]

The following is our main result.

Theorem 1.2 For every integer \(k \geq 1 \) and every \(\delta > 0 \) there exists a \(\gamma > 0 \) such that for every sequence of densities \(p = p(n) \) there exists an \(n_0 \) such that for any \(n \geq n_0 \) the following holds.

If \(\Gamma \) is an \(n \)-vertex \((p, \beta)\)-*jumbled* graph satisfying

\[
\beta \leq \gamma p^{\frac{1}{1+\frac{1}{2k+1}}} n \log^{-2(k-1)} n,
\]

Then...
then
\[\text{ex}(\Gamma, C_{2k+1}) < \left(\frac{1}{2} + \delta \right) p \left(\frac{n}{2} \right). \]

By the so called \textit{expander mixing lemma} [3,17] an \((n, d, \lambda)-graph\) is \((p, \beta)-jumbled\) with \(p = d/n\) and \(\beta = \lambda\). Hence, Theorem 1.2 indeed implies Theorem 1.1.

2 Sketch of the proof of Theorem 1.2

Theorem 1.2 easily follows from Lemmas 2.1 and 2.2 stated below. To state Lemma 2.1, we employ the following notation.

For a graph \(G\) and disjoint vertex sets \(X, Y \subseteq V(G)\), we write \(G[X, Y]\) to denote the bipartite subgraph of \(G\) induced by the bipartition \(X \cup Y\). For a graph \(R\) and a positive integer \(m\), we write \(R(m)\) to denote the graph obtained by replacing every vertex \(i \in V(R)\) with a set of vertices \(V_i\) of size \(m\) and adding the complete bipartite graph between \(V_i\) and \(V_j\) whenever \(ij \in E(R)\). A spanning subgraph of \(R(m)\) is called an \(R(m)\)-graph. In addition, such a graph, say \(G \subseteq R(m)\), is called \((\alpha, p, \varepsilon)\)-degree-regular if \(\deg_{G[V_i, V_j]}(v) = (\alpha \pm \varepsilon)pm\) holds whenever \(ij \in E(R)\) and \(v \in V_i \cup V_j\).

The following lemma essentially asserts that under a certain assumption of jumbledness, a relatively dense subgraph of a sufficiently large \((p, \beta)\)-jumbled graph contains a degree-regular \(C_\ell(m)\)-graph with large \(m\).

\textbf{Lemma 2.1} For any integer \(\ell \geq 3\), all \(q > 0, \alpha_0 > 0\) and \(0 < \varepsilon < \alpha_0\) there exist a \(\nu > 0\) and a \(\gamma > 0\) such that for every sequence of densities \(p = p(n) \gg \log n/n\) there exists an \(n_0\) such that for every \(n \geq n_0\) the following holds.

Let \(\Gamma\) be an \(n\)-vertex \((p, \beta)\)-jumbled graph with \(\beta = \beta(n) \leq \gamma p^{1+\varepsilon}n\) and let \(G \subseteq \Gamma\) be a subgraph of \(\Gamma\) satisfying \(e(G) \geq \alpha_0 p(n_0)\). Then, there exists an \(\alpha \geq \alpha_0\) such that \(G\) contains an \((\alpha, p, \varepsilon)\)-degree-regular \(C_\ell(\nu n)\)-graph as a subgraph. \(\square\)

Equipped with Lemma 2.1, we focus on large degree-regular \(C_\ell(m)\)-graphs hosted in a sufficiently jumbled graph \(\Gamma\). In this setting, we shall concentrate on odd cycles in \(\Gamma\) that have all but one of their edges in the hosted \(C_\ell(m)\)-graph. The remaining edge belongs to \(\Gamma\). The first part of Lemma 2.2 stated below provides a lower bound for the number of such configurations (see (5)). We now make this precise.

Fix a vertex labeling of \(C_{2k+1}\), say, \((u_k, \ldots, u_1, w, v_1, \ldots, v_k)\). For a jumbled
graph \(\Gamma \) (as in Lemma 2.2), let \(H \subseteq \Gamma \) be a \(C_{2k+1}(m) \)-graph with the corresponding vertex partition \((U_k, \ldots, U_1, W, V_1, \ldots, V_k)\). By \(\mathcal{C}(H, \Gamma) \) we denote the set of all cycles of length \((2k+1)\) of the form \((u'_k, \ldots, u'_1, w', v'_1, \ldots, v'_k)\) such that \(w' \in W, v'_i \in V_i, u'_i \in U_i, v'_k u'_k \in E(\Gamma) \), and all edges other than \(v'_k u'_k \in E(H) \). In other words, a member of \(\mathcal{C}(H, \Gamma) \) is a cycle of \(\Gamma \) of length \(2k+1 \) with the additional requirement that the labeled edge \(v'_k u'_k \) connects the ends of the path of length \(2k \) in \(H \). If \(v'_k u'_k \) is contained in \(H \), then clearly, \(H \) contains a \(C_{2k+1} \).

For a real number \(\mu > 0 \), an edge of \(\Gamma[V_k, U_k] \) is called \(\mu \)-saturated if such is contained in at least \(p(\mu pm)^{2k-1} \) members of \(\mathcal{C}(H, \Gamma) \). A cycle in \(\mathcal{C}(H, \Gamma) \) containing a \(\mu \)-saturated edge is called a \(\mu \)-saturated cycle. We write \(\mathcal{S}(\mu, H, \Gamma) \) to denote the set of \(\mu \)-saturated cycles in \(\mathcal{C}(H, \Gamma) \). To motivate the definition of \(\mu \)-saturated edges, note that we expect that an edge of \(\Gamma[U_k, V_k] \) extends to \((\alpha p)^{2k}m^{2k-1} \) members of \(\mathcal{C}(H, \Gamma) \). For \(\mu \approx \alpha \), a \(\mu \)-saturated edge overshoots this expectation by a factor of \(1/\alpha \).

Lemma 2.2 For any integer \(k \geq 1 \) and all reals \(0 < \nu, \alpha_0 \leq 1, \) and \(0 < \varepsilon \leq \alpha_0/3 \) there exists a \(\gamma > 0 \) such that for every sequence of densities \(p = p(n) \) there exists an \(n_0 \) such that for any \(n \geq n_0 \) the following holds.

If \(\Gamma \) is \((p, \beta)\)-jumbled \(n \)-vertex graphs with

\[
\beta = \beta(n) \leq \gamma p^{1+\frac{1}{k+1}} n \log^{-2(k-1)} n,
\]

then for any \(m \geq \nu n \) and any \(\alpha \geq \alpha_0 \) an \((\alpha, p, \varepsilon)\)-degree-regular \(C_{2k+1}(m) \)-graph \(H \subseteq \Gamma \) satisfies

\[
|\mathcal{C}(H, \Gamma)| \geq (\alpha - 2\varepsilon)^{2k} (pm)^{2k+1}
\]

and

\[
|\mathcal{S}(\alpha + 2\varepsilon, H, \Gamma)| \leq (3\varepsilon)^{2k} (pm)^{2k+1}.
\]

\(\square \)

With Lemma 2.1 and Lemma 2.2 at hand Theorem 1.2 easily follows. Let \(G \) and \(\Gamma \) be as in Theorem 1.2. Using Lemma 2.1 we find an \((\alpha, p, \varepsilon)\)-degree-regular \(C_\ell(n) \)-graph with vertex partition \((U_k, \ldots, U_1, W, V_1, \ldots, V_k)\) as a subgraph of \(G \) where \(\alpha \geq 1/2 \). By (5) we find at least \((\alpha - 2\varepsilon)^{2k} (pm)^{2k+1} \) cycles of the form \((u'_k, \ldots, u'_1, w', v'_1, \ldots, v'_k)\) such that \(w' \in W, v'_i \in V_i, u'_i \in U_i, v'_k u'_k \in E(\Gamma) \) where all but the edge \(v'_k u'_k \) of the cycle is in \(H \). Call such an edge a forbidden edge and we wish to show that the set \(F \subset \Gamma[V_k, U_k] \) of forbidden edges intersects with \(E(H) \) which would prove the existence of a cycle of length \(2k + 1 \) in \(H \subset G \). Choosing \(\varepsilon \) sufficiently small depending on \(\delta \) we obtain

\[
|F| \geq \frac{|\mathcal{C}(H, \Gamma) \setminus \mathcal{S}(\alpha + 2\varepsilon, H, \Gamma)|}{p(\alpha + 2\varepsilon)^{2k-1} (pm)^{2k-1}} \geq \frac{(\alpha - 5\varepsilon)^{2k}}{(\alpha + 2\varepsilon)^{2k-1} pm^2} > \left(\alpha - \frac{\delta}{2} \right) pm.
\]
Hence, with \(\alpha \geq 1/2 \), we derive

\[
|F| + e(H[V_k, U_k]) \geq (2\alpha + \delta/2)pm^2 \geq (1 + \delta/2)pm^2 > e(\Gamma[V_k, U_k])
\]

and \(F \) must intersect \(E(H) \).

References

[1] Alon, N., *Explicit Ramsey graphs and orthonormal labelings*, Electron. J. Combin. 1 (1994), pp. Research Paper 12, approx. 8 pp. (electronic).

[2] Alon, N. and N. Kahale, *Approximating the independence number via the \(\vartheta \)-function*, Math. Programming 80 (1998), pp. 253–264.

[3] Alon, N. and V. D. Milman, \(\lambda_1 \), *isoperimetric inequalities for graphs, and superconcentrators*, J. Combin. Theory Ser. B 38 (1985), pp. 73–88.

[4] Balogh, J., R. Morris and W. Samotij, *Independent sets in hypergraphs*, submitted.

[5] Conlon, D., J. Fox and Y. Zhao, *Extremal results in sparse pseudorandom graphs*, submitted.

[6] Conlon, D., W. Gowers, W. Samotij and M. Schacht, *On the KLR conjecture in random graphs*, submitted.

[7] Conlon, D. and W. T. Gowers, *Combinatorial theorems in sparse random sets*, submitted.

[8] Erdös, P. and A. H. Stone, *On the structure of linear graphs*, Bull. Amer. Math. Soc. 52 (1946), pp. 1087–1091.

[9] Haxell, P. E., Y. Kohayakawa and T. Luczak, *Turán's extremal problem in random graphs: forbidding even cycles*, J. Combin. Theory Ser. B 64 (1995), pp. 273–287.

[10] Kohayakawa, Y., T. Luczak and V. Rödl, *On \(K^4 \)-free subgraphs of random graphs*, Combinatorica 17 (1997), pp. 173–213.

[11] Kohayakawa, Y., V. Rödl, M. Schacht, P. Sissokho and J. Skokan, *Turán's theorem for pseudo-random graphs*, J. Combin. Theory Ser. A 114 (2007), pp. 631–657.

[12] Krivelevich, M., C. Lee and B. Sudakov, *Resilient pancyclicity of random and pseudorandom graphs*, SIAM J. Discrete Math. 24 (2010), pp. 1–16.
[13] Samotij, W., *Stability results for random discrete structures*, to appear in Random Structures & Algorithms.

[14] Saxton, D. and A. Thomason, *Hypergraphs containers*, submitted.

[15] Schacht, M., *Extremal results for random discrete structures*, submitted.

[16] Sudakov, B., T. Szabó and V. H. Vu, *A generalization of Turán's theorem*, J. Graph Theory 49 (2005), pp. 187–195.

[17] Tanner, R. M., *Explicit concentrators from generalized N-gons*, SIAM J. Algebraic Discrete Methods 5 (1984), pp. 287–293.

[18] Thomason, A., *Pseudorandom graphs*, in: *Random graphs ’85 (Poznań, 1985)*, North-Holland Math. Stud. 144, North-Holland, Amsterdam, 1987 pp. 307–331.

[19] Turán, P., *Eine Extremalaufgabe aus der Graphentheorie*, Mat. Fiz. Lapok 48 (1941), pp. 436–452.