The v-number and Castelnuovo–Mumford regularity of graphs

Yusuf Civan

Received: 21 April 2022 / Accepted: 3 August 2022 / Published online: 12 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

We prove that for every integer $k \geq 1$, there exists a connected graph H_k such that $v(H_k) = \text{reg}(H_k) + k$, where $v(G)$ and $\text{reg}(G)$ denote the v-number and the (Castelnuovo–Mumford) regularity of a graph G respectively.

Keywords v-number · Regularity · Collapsibility

1 Introduction

A clutter C on a vertex set $V = \{x_1, \ldots, x_n\}$ is a family of subsets (edges or circuits) of V which are pairwise incomparable with respect to the inclusion. We identify the set of edges with the clutter C itself. When $R = \mathbb{k}[x_1, \ldots, x_n] = \bigoplus_{i=0}^{\infty} R_i$ is a polynomial ring over a field \mathbb{k} with the standard grading, the edge ideal $I(C)$ of the clutter C is defined to be the ideal of R generated by all squarefree monomials $x_e := \prod_{x_i \in e} x_i$ such that $e \in C$.

Consider the minimal free graded resolution of $R/I(C)$ as an R-module:

$$0 \to \bigoplus_j R(-j)^{\beta_{j,i}} \to \cdots \to \bigoplus_j R(-j)^{\beta_1,j} \to R \to R/I(C) \to 0.$$

The Castelnuovo–Mumford regularity or simply the regularity of $R/I(C)$ is defined as

$$\text{reg}_k(C) := \text{reg}_k(R/I(C)) = \max\{j - i : \beta_{i,j} \neq 0\}.$$
Most of the recent work in the area has been focused on either finding applicable bounds on the (Castelnuovo–Mumford) regularity $\text{reg}(\mathcal{C})$ in terms of other parameters or performing exact computation of the regularity in specific cases [2]. Recently, a new invariant associated to the edge ideal $I(\mathcal{C})$ is introduced in [4] to study the asymptotic behavior of the minimum distance of projective Reed–Muller-type codes that we recall next. If \mathcal{C} is a clutter, a subset $A \subseteq V$ is an independent set if $e \cap A$ for every $e \in \mathcal{C}$. Furthermore, a subset $W \subseteq V$ is said to be a vertex cover provided that $V \setminus W$ is an independent set.

When A is an independent set, a vertex $w \in V \setminus A$ is a neighbor of A if $A \cup \{w\}$ contains an edge of \mathcal{C}. We denote by $N_{\mathcal{C}}(A)$, the set of all neighbors of A in \mathcal{C}, and by $A(\mathcal{C})$, the family of all independent sets A such that $N_{\mathcal{C}}(A)$ is a minimal vertex cover.

Definition 1 [4, 8] The v-number of a clutter \mathcal{C} is defined by

$$v(\mathcal{C}) := \min\{|A| : A \in A(\mathcal{C})\}.$$

The subject of three recent papers [5, 8, 12] is the comparison of the v-number and the regularity of graphs. Under suitable restrictions, it is proved that the v-number of a graph G provides a lower bound to $\text{reg}(G)$. On the other hand, Jaramillo and Villarreal [8] show that there exists a graph G satisfying $v(G) = \text{reg}(G) + 1$ (over the field of rationals), and ask whether or not the inequality $v(H) \leq \text{reg}(H) + 1$ holds for every graph H.

We prove that there exist even connected graphs such that their v-numbers are far larger than their regularities.

Theorem 2 For every integer $k \geq 1$, there exists a connected graph H_k such that $v(H_k) = \text{reg}(H_k) + k$.

2 Preliminaries

A simplicial complex X on a vertex set V is simply a family of subsets of V, closed under inclusion such that $\{x\} \in X$ for every $x \in V$. A set $A \in X$ is said to be a face (or a simplex) of X, and the dimension of a face A is $\dim(A) = |A| − 1$. The dimension $\dim(X)$ of a complex X is the maximum dimension of a face in X. A face F of X is said to be a facet of X if it is a maximal face with respect to the inclusion.

For a given face $A \in X$, the deletion and link subcomplexes of X at the face A is defined by $\text{del}(X; A) := \{S \in X : A \cap S = \emptyset\}$ and $\text{lk}(X; A) := \{T \in X : A \cap T = \emptyset\}$ and $T \cup A \in X\}$. When X is a simplicial complex, a subset $S \subseteq V$ is said to be a circuit (minimal non-face) of X if S is not a face of X while any proper subset of S is. We denote by $\mathcal{C}(X)$, the family of all circuits of X. On the other hand, the family of all independent sets of a clutter \mathcal{C} forms a simplicial complex, the independence complex $\text{Ind}(\mathcal{C})$ of

1 Unless otherwise stated, our results are independent of the characteristic of the coefficient field. So, wherever it is appropriate, we drop k from our notation.
Finally, we denote by \(c(X) \) of its circuits is a clutter, and \(X = \text{Ind}(c(X)) \). On the other side, we have that \(c(\text{Ind}(C)) = C \) for a clutter \(C \) on \(V \).

When \(G = (V, E) \) is a (finite and simple) graph, we denote by \(N_G(x) := \{ y \in V : x y \in E \} \), the (open) neighborhood of \(x \) in \(G \), whereas \(N_G[x] := N_G(x) \cup \{ x \} \) is its closed neighborhood. In particular, we set \(N_G(S) := \bigcup_{s \in S} N_G(s) \) for \(S \subseteq V \). The size of the set \(N_G(v) \) is called the degree of \(x \) in \(G \) and denoted by \(\deg_G(v) \). Furthermore, \(\overline{G} \) denotes the complement of the graph \(G \). For a given subset \(S \subseteq V \), the subgraph \(G[S] \) of \(G \) induced by the set \(S \) is the graph on \(S \) with \(E(G[S]) = E \cap (S \times S) \). Finally, we denote by \(K_n, P_n \) and \(C_k \), the complete, path and cycle graphs on \(n \geq 1 \) and \(k \geq 3 \) vertices respectively.

We say that \(G \) is \(H \)-free if no induced subgraph of \(G \) is isomorphic to \(H \). A graph \(G \) is called chordal if it is \(C_r \)-free for every \(r > 3 \). Moreover, a graph \(G \) is said to be co-chordal if its complement \(\overline{G} \) is a chordal graph.

The following provides an inductive bound on the regularity of graphs.

Lemma 3 [6] Let \(G \) be a graph and let \(v \in V \) be given. Then

\[
\text{reg}(G) \leq \max\{\text{reg}(G - v), \text{reg}(G - N_G[v]) + 1\}.
\]

Moreover, \(\text{reg}(G) \) always equals to one of \(\text{reg}(G - v) \) or \(\text{reg}(G - N_G[v]) + 1 \).

A matching in a graph is a subset of edges no two of which share a vertex. An induced matching is a matching \(M \) if no two vertices belonging to different edges of \(M \) are adjacent. The maximum size of an induced matching of \(G \) is known as the induced matching number \(\text{im}(G) \) of \(G \). The induced matching number provides a lower bound to regularity, that is, \(\text{im}(G) \leq \text{reg}(G) \) holds for every graph \(G \) [9]. Finally, if we denote by \(\text{co-chord}(G) \), the least number of co-chordal subgraphs \(G_1, \ldots, G_k \) of \(G \) satisfying \(E(G) = \bigcup_{i=1}^k E(G_i) \), then the inequality \(\text{reg}(G) \leq \text{co-chord}(G) \) holds for every graph \(G \) [14].

3 The \(v \)-number of simplicial complexes and graphs

Using the above stated correspondence between simplicial complexes and clutters, we set \(v(X) := v(\text{c}(X)) \) for every simplicial complex \(X \). We prove that the \(v \)-number of simplicial complexes is closely related to a known parameter appearing in the collapsibility theory of Wegner [13]. In particular, we verify that the \(v \)-number of the independence complex of a graph corresponds to a domination parameter on the underlying graph.

We next rephrase the \(v \)-number in the language of simplicial complexes as follows. Let \(A \in X \) be a face, and define \(U_X(A) := \{ v \in V - A : A \in \text{lk}(X; v) \} \cup A \). Observe that if \(F \in X \) is a facet, then \(U_X(F) = F \).

Proposition 4 \(v(X) = \min\{|A| : A \in X \text{ and } U_X(A) \text{ is a facet of } X\} \) for every simplicial complex \(X \).
The construction of the graph G is denoted by $\gamma_0(X)$ in [11, Section 4].

The number $\beta(X)$ for a simplicial complex X is firstly considered in [7, Theorem 5.4].

The construction of the graph G is due to R. Woodrooffe, and it was devised over a discussion with the author.

 Springer
vertex-wise dominates e (see [10] for details). Furthermore, a ve-dominating set S of G is called minimal, if no proper subset of S is ve-dominating for G. When S is a minimal ve-dominating set for G, every vertex in S has a private neighbor in E. In other words, e is a vertex-wise private neighbor of $s \in S$ if s ve-dominates e while no vertex in $S \setminus \{s\}$ ve-dominates the edge e in G.

The independent vertex-wise domination number and the upper independent vertex-wise domination number of G are defined by

$$i_{ve}(G) := \min\{|S| : S \text{ is an independent vertex-wise dominating set of } G\},$$

$$\beta_{ve}(G) := \max\{|T| : T \text{ is a minimal independent vertex-wise dominating set of } G\}$$

respectively. Notice that the inequality $i_{ve}(G) \leq \beta_{ve}(G)$ holds for every graph G.

Theorem 9 $v(G) = i_{ve}(G)$ for every graph G.

Proof Suppose that $i_{ve}(G) = |S|$, where S is an independent ve-dominating set. Observe that $N_G(S)$ is a vertex cover. Indeed, assume otherwise that there exists an edge $e = xy$ in $G - N_G(S)$. Since S is a ve-dominating set, there exists $s \in S$ such that either $sx \in E$ or $sy \in E$. However, this implies that either $x \in N_G(S)$ or else $y \in N_G(S)$, a contradiction. The fact that $N_G(S)$ is a minimal vertex cover follows, since S is an independent ve-dominating set in G. This shows that $v(G) \leq i_{ve}(G)$.

Next, assume that $v(G) = |A|$ for some independent set A in G. If $f = uv \in E$, we must have that either $u \in N_G(A)$ or else $v \in N_G(A)$, since $N_G(A)$ is a vertex cover. However, this means that A is an independent ve-dominating set in G. Therefore, we conclude that $i_{ve}(G) \leq |A| = v(G)$. \hfill \square

Corollary 10 $\beta_{ve}(G) = \beta(\text{Ind}(G))$ for every graph G.

\[Fig. 1\] The graph G in Remark 8
4 Proof of Theorem 2

We consider a 17-vertex flag triangulation of the dunce hat \([3]\) illustrated as in Fig. 2, where vertices with the same label are identified. Denote by \(D\), the graph whose independence complex is isomorphic to given triangulation.

Observe first that \(\text{reg}(D) = 2\) and \(v(D) = 3\). The latter follows from the fact that neither any vertex nor any edge is a free face of \(\text{Ind}(D)\). For the former, we note that \(C_{12}\) on the vertex subset \(\{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}\) is an induced subgraph of \(D\) so that \(2 = \text{reg}(C_{12}) \leq \text{reg}(D)\). On the other hand, we have \(\text{reg}(D) \leq \text{co-chord}(D) = 2\). Indeed, we set \(V_1 := \{5, 7, 9, 11, 13, 15\}\) and \(V_2 := \{6, 8, 10, 12, 14, 16\}\), and define two graphs \(R_i\) on \(V_1 \cup V_2\) by \(E(R_i) := \{pq \in E(D) : p \in V_i\} \cap E(D)\). We then let \(Q_1\) and \(Q_2\) be the subgraphs of \(D\) on \(V(D)\) with

\[
E(Q_1) := E(R_1) \cup \{uv \in E(D) : u \in \{2, 3\}\},
\]

\[
E(Q_2) := E(R_2) \cup \{xy \in E(D) : x \in \{1, 4\}\}.
\]

It is rather easy to check that both subgraphs \(Q_1\) and \(Q_2\) are co-chordal and satisfy that \(E(D) = E(Q_1) \cup E(Q_2)\).

Now, we construct a graph \(G_n\) for each \(n \geq 2\) as follows. The vertex set of \(G_n\) is given by \(V(G_n) = A_n \cup \bigcup_{i=1}^n B_i\), where \(A_n = \{a_1, \ldots, a_n\}\) with \(G_n[A_n] \cong K_n\),
and \(B_i = \{ y_{i1}^i, \ldots, y_{i17}^i \} \) such that \(D_i := G_n[B_i] \cong D \) via the mapping \(y_{ij}^i \mapsto j \) for \(1 \leq i \leq n \) and \(1 \leq j \leq 17 \). Furthermore, the edge set of \(G_n \) is given by

\[
E(G_n) := E(K_n) \cup \bigcup_{i=1}^n E(D_i) \cup \{ a_i y_1^i : 1 \leq i \leq n \}.
\]

We remark that as the graph \(D_i \) is connected for each \(1 \leq i \leq n \), so is the graph \(G_n \).

Proof of Theorem 2 We initially verify that \(v(G_n) = 3n \) and \(\text{reg}(G_n) = 2n + 1 \) for every \(n \geq 2 \).

Claim 1 1: \(v(G_n) = 3n \) for every \(n \geq 2 \).

Proof of the Claim 1: Firstly, the set \(S_n := \bigcup_{i=1}^n \{ y_{i1}^i, y_{i2}^i, y_{i3}^i \} \) is an independent ve-dominating set in \(G_n \). Since the set \(\{ y_{i1}^i, y_{i2}^i, y_{i3}^i \} \) forms a triangle in \(\text{Ind}(D_i) \) which is a free face of it, the set \(S_n \) is a free face of \(\text{Ind}(G_n) \) from which we conclude that \(v(G_n) \leq 3n \).

Suppose next that \(v(G_n) = i_{ve}(G_n) = |S| \) for some subset \(S \subseteq V(G_n) \). Since \(S \) is an independent set and \(A_n \) induces a complete subgraph, we have that \(|S \cap A_n| \leq 1 \). If \(S \cap A_n = \emptyset \), it then follows that \(|S| \geq 3n \) as \(v(D_i) = i_{ve}(D_i) = 3 \) for each \(i \in [n] \). We may therefore assume that \(S \cap A_n = \{ a_1 \} \) without loss of generality. Since the vertex \(a_1 \) cannot ve-dominate any edge in the induced subgraph \(D_i \), we conclude that \(|S \cap B_i| = 3 \) for each \(2 \leq i \leq n \). On the other hand, if we consider the graph \(L_1 := G_n[B_1 \cup \{ a_1 \}] \), we conclude that \(v(L_1) = i_{ve}(L_1) = 3 \). This readily follows from the fact that neither any vertex nor any edge in \(\text{Ind}(L_1) \) is a free face of it. However, this shows that \(|S \cap V(L_1)| = 3 \); hence, \(|S| = 3n \).

Claim 2 2: \(\text{reg}(G_n) = 2n + 1 \) for every \(n \geq 2 \).

Proof of the Claim 2: We first show that \(\text{reg}(G_n) \leq 2n + 1 \) by applying to Lemma 3 together with an induction on \(n \).

For \(n = 2 \), if we set \(L_2 := G_2[B_2 \cup \{ a_2 \}] \), we have that \(\text{reg}(G_2 - a_1) = \text{reg}(D_1) + \text{reg}(L_2) \). However, since \(\text{deg}_{L_2}(a_2) = 1 \), it follows from [1, Lemma 6.2] that we have either \(\text{reg}(L_2) = \text{reg}(L_2 - a_2) = \text{reg}(B_2) = 2 \) or else \(\text{reg}(L_2) = \text{reg}(L_2 - N_{L_2}[y_1^2]) + 1 \). As a result, we conclude that \(\text{reg}(L_2) \leq 3 \), which in turn implies the upper bound \(\text{reg}(G_2 - a_1) \leq 2 + 3 = 5 \). On the other hand, there is the isomorphism \(G_2 - N_{G_2}[a_1] \cong (D_1 - y_1^1) \cup D_2 \cup \cdots \cup D_n \) so that \(\text{reg}(G_2 - N_{G_2}[a_1]) \leq 2 + 2 = 4 \). Altogether, these imply that \(\text{reg}(G_2) \leq 5 \), which completes the case \(n = 2 \).

For every \(n \geq 3 \), notice the following isomorphisms

\[
G_n - a_1 \cong G_{n-1} \cup D_1,
\]
\[
G_n - N_{G_n}[a_1] \cong (D_1 - y_1^1) \cup D_2 \cup \cdots \cup D_n.
\]
Fig. 3 A vertex decomposable graph R with $v(R) = 1 < 2 = \text{col}(\text{Ind}(R))$

Now, it follows from (11) together with the induction that

\[
\begin{align*}
\text{reg}(G_n - a_1) &= \text{reg}(G_{n-1}) + 2 \leq 2(n - 1) + 1 + 2 = 2n + 1, \\
\text{reg}(G_n - NG_n[a_1]) &= 2n.
\end{align*}
\]

Thus, we conclude that $\text{reg}(G_n) \leq 2n + 1$ for each $n \geq 2$ by Lemma 3. On the other hand, the set

\[M_n := \{a_1a_2\} \cup \{y_i^jy_{17}^j, y_i^jy_9^j : 1 \leq i \leq n\}\]

forms an induced matching in G_n of size $2n + 1$. Therefore, it follows that $2n + 1 \leq \text{im}(G_n) \leq \text{reg}(G_n) \leq 2n + 1$; hence, $\text{reg}(G_n) = 2n + 1$ as claimed.

Finally, in order to complete the proof, we set $H_k := G_{k+1}$ for each $k \geq 1$. It then follows that $v(H_k) = 3k + 3$ and $\text{reg}(H_k) = 2k + 3$; thus, $v(H_k) = \text{reg}(H_k) + k$. □

5 Further comments

We recall that a simplicial complex X is k-collapsible if it can be reduced to the void complex by repeatedly removing a free face of size at most k. The collapsibility number $\text{col}(X)$ of X is the smallest integer k such that it is k-collapsible. The family of k-collapsible simplicial complexes were introduced by Wegner [13], where he also proved that $\text{reg}(X) \leq \text{col}(X)$ holds for every simplicial complex X.

As a result of Corollary 5, the inequality $v(X) \leq \text{col}(X)$ holds for every simplicial complex X. However, it could be strict even for vertex decomposable simplicial complexes. Recall that a simplicial complex X is said to be vertex-decomposable if it is either a simplex or else there exists a vertex z such that $\text{del}(X; z)$ and $\text{lk}(X; z)$ are vertex decomposable, and every facet of $\text{del}(X; z)$ is a facet of X. In the latter, the vertex z is called a shedding vertex of X. Now, for the graph R depicted in Fig. 3, its independence complex is vertex decomposable, while $v(R) = 1 < 2 = \text{col}(\text{Ind}(R))$.

Springer
Finally, we point out that the graph H_k constructed in the proof of Theorem 2 also provides the first example of a connected graph satisfying that $\text{col}(\text{Ind}(H_k)) \geq \text{reg}(H_k) + k$ for every $k \geq 1$ (compare to [11, Theorem 1.1(b)]).

Acknowledgements I would like to thank Rafael Villarreal for his invaluable comments and suggestions during the preparation of this manuscript.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

1. Bıyıkoğlu, T., Civan, Y.: Prime graphs, matchings and the Castelnuovo–Mumford regularity. J. Commut. Algebra 11(1), 1–27 (2019)
2. Bıyıkoğlu, T., Civan, Y.: Castelnuovo–Mumford regularity of graphs. Combinatorica 38(6), 1353–1383 (2018)
3. Boulet, R., Fieux, E., Jouve, B.: Simplicial simple homotopy of flag complexes in terms of graphs. European J. Combin. 31, 161–176 (2010)
4. Cooper, S.M., Seceleanu, A., Tohâneanu, S.O., Vaz Pinto, M., Villarreal, R.H.: Generalized minimum distance functions and algebraic invariants of Geramita ideals. Adv. in Appl. Math. 112, 101940 (2020)
5. Grisalde, G., Reyes, E., Villarreal, R.H.: Induced matchings and the v-number of graded ideals. Mathematics 9(22), 2860 (2021)
6. Dao, H., Huneke, C., Schweig, J.: Bounds on the regularity and projective dimension of ideals associated to graphs. J. Algebraic Combin. 38(1), 37–55 (2013)
7. Hà, H.T., Woodroofe, R.: Results on the regularity of squarefree monomial ideals. Adv. in Appl. Math. 58, 21–36 (2014)
8. Jaramillo, D., Villarreal, R.H.: The v-number of edge ideals. J. Combin. Theory Ser. A 177, 105310 (2021)
9. Katzman, M.: Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A 113, 435–454 (2006)
10. Lewis, J.: Vertex-edge and Edge-vertex Parameters in Graphs. PhD Thesis, Clemson University (2007)
11. Matoušek, J., Tancer, M.: Dimension gaps between representability and collapsibility. Discrete Comput. Geom. 42, 631–639 (2009)
12. Saha, K., Sengupta, I.: The v-number of monomial ideals. J. Algebraic Combin. (2022). https://doi.org/10.1007/s10801-022-01137-y
13. Wegner, G.: d-collapsing and nerves of families of convex sets. Arch. Math. 26, 317–321 (1975)
14. Woodroofe, R.: Matchings, coverings, and Castelnuovo–Mumford regularity. J. Commut. Algebra 6, 287–304 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.