Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays $B \rightarrow K^{(*)}\ell^+\ell^-$

J. P. Lees, V. Poireau, and V. Tisserand  
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP),  
Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France

J. Garra Tico and E. Grauges  
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

A. Palano$^{ab}$  
INFN Sezione di Bari$^a$; Dipartimento di Fisica, Università di Bari$^b$, I-70126 Bari, Italy

G. Eigen and B. Stugu  
University of Bergen, Institute of Physics, N-5007 Bergen, Norway

D. N. Brown, L. T. Kerth, Yu. G. Kolomensky, and G. Lynch  
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

H. Koch and T. Schroeder  
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

D. J. Asgeirsson, C. Hearty, T. S. Mattison, and J. A. McKenna  
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

A. Khan  
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

V. E. Blinov, A. R. Buzylaev, V. P. Druzhinin, V. B. Golubev, E. A. Kravchenko, A. P. Onuchin,  
S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev, and A. N. Yushkov  
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

M. Bondioli, D. Kirkby, A. J. Lankford, and M. Mandelkern  
University of California at Irvine, Irvine, California 92697, USA

H. Atmacan, J. W. Gary, F. Liu, O. Long, and G. M. Vitug  
University of California at Riverside, Riverside, California 92521, USA

C. Campagnari, T. M. Hong, D. Kovalskyi, J. D. Richman, and C. A. West  
University of California at Santa Barbara, Santa Barbara, California 93106, USA

A. M. Eisner, J. Kroseberg, W. S. Lockman, A. J. Martinez, B. A. Schumm, and A. Seiden  
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

D. S. Chao, C. H. Cheng, B. Echenard, K. T. Flood, D. G. Hitlin, P. Ongmongkolkul, F. C. Porter, and A. Y. Rakitin  
California Institute of Technology, Pasadena, California 91125, USA

R. Andreassen, Z. Huard, B. T. Meadows, M. D. Sokoloff, and L. Sun  
University of Cincinnati, Cincinnati, Ohio 45221, USA

P. C. Bloom, W. T. Ford, A. Gaz, U. Nauenberg, J. G. Smith, and S. R. Wagner  
University of Colorado, Boulder, Colorado 80309, USA
In a sample of 471 million $B\bar{B}$ events collected with the BABAR detector at the PEP-II $e^+e^-$ collider we study the rare decays $B \rightarrow K(\ast)\ell^+\ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present $CP$ and lepton-flavor asymmetries for di-lepton masses below and above the $J/\psi$ resonance. We find no evidence for $CP$ or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.

PACS numbers: 13.20.He

I. INTRODUCTION

The decays $B \rightarrow K(\ast)\ell^+\ell^-$ arise from flavor-changing neutral-current processes that are forbidden at tree level in the Standard Model (SM). The lowest-order SM processes contributing to these decays are the photon penguin, the $Z$ penguin and the $W^+W^-$ box diagrams shown in Fig. 1. Their amplitudes are expressed in terms of hadronic form factors and perturbatively-calculable effective Wilson coefficients, $C^\text{eff}_7$, $C^\text{eff}_9$ and $C^\text{eff}_{10}$, which represent the electromagnetic penguin diagram, and the vector part and the axial-vector part of the linear combination of the $Z$ penguin and $W^+W^-$ box diagrams, respectively [1]. In next-to-next-to-leading order (NNLO) at a renormalization scale $\mu = 4.8$ GeV, the effective Wilson coefficients are $C^\text{eff}_7 = -0.304$, $C^\text{eff}_9 = 4.211$, and $C^\text{eff}_{10} = -4.103$ [2].

Non-SM physics may add new penguin and box diagrams, which can contribute at the same order as the SM diagrams [3–5]. Examples of new physics loop processes are depicted in Fig. 2. These contributions might modify the Wilson coefficients from their SM expectations [5–8]. In addition, new contributions from scalar, pseudoscalar, and tensor currents may arise that can modify, in particular, the lepton-flavor ratios [9, 10].

![FIG. 1: Lowest-order Feynman diagrams for $b \rightarrow s\ell^+\ell^-$.](image-url)
II. OBSERVABLES

We report herein results on exclusive partial branching fractions and isospin asymmetries in six bins of $s \equiv m_{\ell\ell}^2$, defined in Table I. We further present results in the $s$ bin $s_0 = 1.0 - 6.0$ GeV$^2$/c$^4$ chosen for calculations inspired by soft-collinear effective theory (SCET) \[11\]. In addition, we report on direct CP asymmetries and the ratio of rates to dimuon and dielectron final states in the low $s$ and high $s$ regions separated by the $J/\psi$ resonance. We remove regions of the long-distance contributions around the $J/\psi$ and $\psi(2S)$ resonances. New BABAR results on angular observables using the same dataset and similar event selection will be reported shortly.

The $B \to K \ell^+\ell^-$ and $B \to K^*\ell^+\ell^-$ total branching fractions are predicted to be $(0.35 \pm 0.12) \times 10^{-6}$ and $(1.19 \pm 0.39) \times 10^{-6}$ (for $s > 0.1$ GeV$^2$/c$^4$), respectively \[5\]. The $\sim 30\%$ uncertainties are due to a lack of knowledge about the form factors that model the hadronic effects in the $B \to K$ and $B \to K^*$ transitions. Thus, measurements of decay rates to exclusive final states are less suited to searches for new physics than rate asymmetries, where many theory uncertainties cancel.

For charged $B$ decays and neutral $B$ decays flavor-tagged through $K^* \to K^+\pi^-$ \[12\], the direct CP asymmetry is defined as

$$A_{CP}^{K^{(*)}} \equiv \frac{B(B \to K^{(*)}\ell^+\ell^-) - B(B \to K^{(*)}\ell^-\ell^+)}{B(B \to K^{(*)}\ell^+\ell^-) + B(B \to K^{(*)}\ell^-\ell^+)}, \quad (1)$$

and is expected to be $\mathcal{O}(10^{-3})$ in the SM. However $A_{CP}^{K^{(*)}}$ may receive a significant enhancement from new physics contributions at the electro-weak scale \[13\].

For $s > 0.1$ GeV$^2$/c$^4$, the ratio of rates to dimuon and dielectron final states is defined as

$$R_{K^{(*)}} \equiv \frac{B(B \to K^{(*)}\mu^+\mu^-)}{B(B \to K^{(*)}e^+e^-)} \quad (2)$$

In the SM, $R_{K^{(*)}}$ is expected to be unity to within a few percent \[14\] for dilepton invariant masses above the dimuon kinematic threshold. In two-Higgs-doublet models, including supersymmetry, these ratios are sensitive to the presence of a neutral Higgs boson. When the ratio of neutral Higgs field vacuum expectation values tan$\beta$ is large, $R_{K^{(*)}}$ might be increased by up to 10% \[10\].

The CP-averaged isospin asymmetry is defined as

$$A_{I}^{K^{(*)}} \equiv \frac{B(B \to K^{(*)}\ell^+\ell^-) - r_e B(B \to K^{(*)}\ell^-\ell^+)}{B(B \to K^{(*)}\ell^+\ell^-) + r_e B(B \to K^{(*)}\ell^-\ell^+)}, \quad (3)$$

where $r_e \equiv \tau_{B^0}/\tau_{B^+} = 1/(1.071 \pm 0.009)$ is the ratio of $B^0$ and $B^+$ lifetimes \[15\]. $A_{I}^{K^{(*)}}$ has a SM expectation of $+6\%$ to $+13\%$ as $s \to 0$ \[14\]. This is consistent with the measured asymmetry $3\pm3\%$ in $B \to K^*\gamma$ \[16\]. A calculation of the predicted $K^{(*)}\ell^+\ell^-$ and $K^{(*)}\ell^-\ell^-$ rates integrated over the low $s$ region yields $A_{I}^{K^{(*)}} = -0.005 \pm 0.020$ \[17,18\]. In the high $s$ region, we may expect contributions from charm-nium states as an additional source of isospin asymmetry. However the measured asymmetries in the $J/\psi K^{(*)}$ and $\psi(2S)K^{(*)}$ modes are all below 5% \[13\].

III. BABAR EXPERIMENT AND DATA SAMPLE

We use a data sample of 471 million $B\bar{B}$ pairs collected at the $T(4S)$ resonance with the BABAR detector \[19\] at the PEP-II asymmetric-energy $e^+e^-$ collider at the SLAC National Accelerator Laboratory. Charged particle tracking is provided by a five-layer silicon vertex tracker and a 40-layer drift chamber in a 1.5 T solenoidal magnetic field. We identify electrons with a CsI(Tl) electromagnetic calorimeter, and muons using an instrumented magnetic flux return. Electron and muon candidates are required to have momenta $p > 0.3$ GeV/c in the laboratory frame. We combine up to three photons with electrons when they are consistent with bremsstrahlung, and do not use electrons that are associated with photon conversions to low-mass $e^+e^-$ pairs. We identify charged kaons using a detector of internally reflected Cherenkov light, as well as dE/dx information from the drift chamber. Charged tracks other than identified $e$, $\mu$ and $K$.

![Figure 2: Examples of new physics loop contributions to $b \to s \ell^+\ell^-$](image-url)

**TABLE I:** The definition of six $s$ bins used in the analysis. Here $m_B$ and $m_{K^{(*)}}$ are the invariant masses of $B$ and $K^{(*)}$, respectively. The low $s$ region is given by $0.10 < s < 8.12$ GeV$^2$/c$^4$, while the high $s$ region is given by $s > 10.11$ GeV$^2$/c$^4$.

| Bin | $s_{\text{min}}$ | $s_{\text{max}}$ |
|-----|-----------------|-----------------|
| Low | 0.10            | 2.00            |
|     | 2.00            | 4.30            |
|     | 4.30            | 8.12            |
| High| 10.11           | 12.89           |
|     | 14.21           | 16.00           |
|     | 16.00           | $(m_B - m_{K^{(*)}})^2$ |
|     | 1.00            | 6.00            |
candidates are treated as pions. Neutral $K^0 \rightarrow \pi^+\pi^-$ candidates are required to have an invariant mass consistent with the nominal $K^0$ mass, and a flight distance from the $e^+e^-$ interaction point that is more than three times its uncertainty.

IV. EVENT SELECTION

We reconstruct $B \rightarrow K^{(*)} l^+ l^-$ signal events in the following eight final states:

- $B^0 \rightarrow K^0_s \mu^+ \mu^-$,
- $B^+ \rightarrow K^+ \mu^+ \mu^-$,
- $B^0 \rightarrow K^0_s e^+ e^-$,
- $B^+ \rightarrow K^+ e^+ e^-$,
- $B^+ \rightarrow K^+ (\rightarrow K^0_s \pi^+) \mu^+ \mu^-$,
- $B^0 \rightarrow K^{*0} (\rightarrow K^0 \pi^-) \mu^+ \mu^-$,
- $B^+ \rightarrow K^+ (\rightarrow K^0 \pi^+) e^+ e^-$,
- $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) e^+ e^-.$

We reconstruct $K^0_S$ candidates in the $\pi^+\pi^-$ final state. We also study the $K^{(*)} h^+ h^-$ final states, where $h$ is a charged track with no particle identification requirement applied, to characterize backgrounds from hadrons misidentified as muons. We use a $K^* e^+\mu^+$ sample to model the combinatorial background from two random leptons. In each mode, we utilize the kinematic variables $m_{ES} = \sqrt{E_{CM}^2 / A - p_B^2}$ and $\Delta E = E_B - E_{CM} / 2$, where $p_B^2$ and $E_B$ are the $B$ momentum and energy in the $T(4S)$ center-of-mass (CM) frame, and $E_{CM}$ is the total CM energy.

For masses $m_{ES} > 5.2$ GeV$/c^2$ we perform one-dimensional fits of the $m_{ES}$ distribution for $K^+ \ell^+ \ell^-$ modes. For $K^* \ell^+ \ell^-$ modes, we include in addition the $K\pi$ mass region $0.72 < m_{K\pi} < 1.10$ GeV/$c^2$ in the fit. We use the sideband $5.20 < m_{ES} < 5.27$ GeV/$c^2$ to characterize combinatorial background shapes and normalizations. For both the $e^+e^-$ and $\mu^+\mu^-$ modes, we veto the $J/\psi (2.85 < m_{\ell\ell} < 3.18$ GeV/$c^2$) and $\psi(2S) (3.59 < m_{\ell\ell} < 3.77$ GeV/$c^2$) mass regions. The vetoed events provide high-statistics control samples that we use to validate the fit methodology.

The main backgrounds arise from random combinations of leptons from semileptonic $B$ and $D$ decays. These combinatorial backgrounds from either $B\overline{B}$ events (referred to as “$B\overline{B}$ backgrounds”) or continuum $q\overline{q}$ events ($e^+e^- \rightarrow q\overline{q}$, $q = u,d,s,c$, referred to as “$q\overline{q}$ backgrounds”) are suppressed using bagged decision trees (BDTs) [20]. We train eight separate BDTs as follows:

- Suppression of $B\overline{B}$ backgrounds for $e^+e^-$ modes in the low $s$ region;
- Suppression of $B\overline{B}$ backgrounds for $\mu^+\mu^-$ modes in the low $s$ region;
- Suppression of $B\overline{B}$ backgrounds for $\mu^+\mu^-$ modes in the high $s$ region;
- Suppression of $q\overline{q}$ backgrounds for $e^+e^-$ modes in the high $s$ region;
- Suppression of $q\overline{q}$ backgrounds for $e^+e^-$ modes in the low $s$ region;
- Suppression of $q\overline{q}$ backgrounds for $\mu^+\mu^-$ modes in the high $s$ region.

The BDT input parameters include the following observables:

- $\Delta E$ of the $B$ candidate;
- The ratio of Fox-Wolfram moments $R_2$ [21] and the ratio of the second-to-zeroth angular moments of the energy flow $L_2/L_0$ [22], both event shape parameters calculated using charged and neutral particles in the CM frame;
- The mass and $\Delta E$ of the other $B$ meson in the event (referred to as the “rest of the event”) computed in the laboratory frame by summing the momenta and energies of all charged particles and photons that are not used to reconstruct the signal candidate;
- The magnitude of the total transverse momentum of the event in the laboratory frame;
- The probabilities that the $B$ candidate and the dilepton candidate, respectively, originate from a single point in space;
- The cosine values of four angles: the angle between the $B$ candidate momentum and the beam axis, the angle between the event thrust axis and the beam axis, the angle between the thrust axis of the rest of the event and the beam axis, and the angle between the event thrust axis and the thrust axis of the rest of the event, all defined in the CM frame.

Figure 3 shows the output distributions of the BDTs for Monte Carlo (MC) simulated signal and combinatorial background for the $e^+e^-$ sample below the $J/\psi$ resonance. The distributions are histograms normalized to unit area. The selections on BDT outputs are further optimized to maximize the statistical significance of the signal events, as shown later.

Another source of background arises from $B \rightarrow D(\rightarrow K^{(*)} \pi^+)\pi$ decays if both pions are misidentified as leptons. Determined from data control samples with high
purity [19], the misidentification rates for muons and electrons are \( \sim 3\% \) and \( \gtrsim 0.1\% \) per candidate, respectively. Thus, this background is only significant for \( \mu^+\mu^- \) final states. We veto these events by requiring the invariant mass of the \( K^{(*)}\pi \) system to be outside the range \( 1.84–1.90 \text{ GeV}/c^2 \) after assigning the pion mass hypothesis to the muon candidates. Any remaining residual backgrounds from this type of contribution are parameterized using control samples obtained from data.

After applying all selection criteria about 85\% of signal events contain more than one \( B \) candidate. These candidates differ typically in one charged or neutral hadron. The average number of candidates per signal event is about six. To choose the best candidate, we define the ratio

\[
\lambda = \frac{P_{s\bar{s}} + P_{s\bar{q}}}{P_{s\bar{B}} + P_{s\bar{q}} + P_{b\bar{B}} + P_{b\bar{q}}},
\]

where \( P_{s\bar{s}} \) and \( P_{b\bar{q}} \) are probabilities calculated from the corresponding \( B\bar{B} \) and \( q\bar{q} \) BDT output distributions for signal and background, respectively. We select the candidate with the largest \( \lambda \) as the best candidate. The probability for a correctly-reconstructed signal event to be selected as the best candidate is mode-dependent and varies between about 80\% and 95\% for \( s \) bins below the \( J/\psi \) mass, while for \( s \) bins above the \( \psi(2S) \) mass it varies between about 60\% and 90\%.

V. SELECTION OPTIMIZATION

To optimize the \( \Delta E \) selection, we simultaneously vary the upper and lower bounds of the \( \Delta E \) interval to find the values that maximize the ratio \( S/\sqrt{S+B} \) in the signal region \( (m_{ES} > 5.27 \text{ GeV}/c^2 \), and for \( K^* \) modes in addition \( 0.78 < m_{K\pi} < 0.97 \text{ GeV}/c^2 \)), where \( S \) and \( B \) are the expected numbers of signal and combinatorial background events, respectively. We perform separate optimizations for dilepton masses below and above the \( J/\psi \) mass. For some modes, the optimization tends to select very narrow intervals, which leads to small signal efficiency. To prevent this, we require the magnitudes of the \( \Delta E \) upper and lower bounds to be 0.04 GeV or larger. (Note that the lower bound is always negative and the upper bound always positive.)

We also optimize the lower bounds on the BDT \( B\bar{B} \) and \( q\bar{q} \) intervals (the upper bounds on these intervals are always 1.0). We perform fits to extract signal yields using the fit model described in Sec. VI. For each mode, the lower bound on the BDT interval is optimized by maximizing the expected signal significance defined as the fitted signal yield divided by its associated uncertainty. We determine these from 500 pseudo-experiments using branching fraction averages [13]. The optimized BDT lower bounds are listed in Tables III and IV for \( K\ell^+\ell^- \) and \( K^*\ell^+\ell^- \), respectively. Figure 4 shows the expected experimental significance in the \( B\bar{B} \) BDT versus the \( q\bar{q} \) BDT plane for \( B^0 \rightarrow K^+\pi^-\mu^+\mu^- \) in bin \( s_2 \). The signal selection efficiency and the cross-feed fraction (defined in Sec. VI) in each mode and bin after the final event selection are also listed in Tables III and IV. The selection efficiencies determined in simulations vary from 11.4 ± 0.2\% for \( K^0_S\pi^+\pi^- \) in \( s_5 \) to 33.3 ± 0.3\% for \( K^+\mu^+\mu^- \) in \( s_5 \), where the uncertainties are statistical.

VI. FIT METHODOLOGY

We perform one-dimensional fits in \( m_{ES} \) for \( K\ell^+\ell^- \) modes and two-dimensional fits in \( m_{ES} \) and \( m_{K\pi} \) for \( K^*\ell^+\ell^- \) modes to extract the signal yields. The probability density function (PDF) for signal \( m_{ES} \) is parametrized by a Gaussian function with mean and width fixed to values obtained from fits to the vetoed \( J/\psi \) events in the data control samples. For \( m_{ES} \), the PDF is a relativistic Breit-Wigner line shape [23]. True signal events are those where all generator-level final-state daughter particles are correctly reconstructed and are selected to form...
FIG. 4: Expected statistical significance of the number of fitted signal events as a function of BDT interval lower bounds for $B^0 \rightarrow K^+\pi^- \mu^+\mu^-$ in bin $s_2$. The star marks the optimized pair of lower bounds.

### TABLE II: Optimized lower bounds on the BDT intervals, signal reconstruction efficiency, and cross-feed fraction, by $K^+\ell^-\bar{\ell}^-$ mode and $s$ bin. The uncertainties are statistical only.

| Mode | $s$ bin | $B\bar{B}$ | $q\bar{q}$ | Efficiency | Cross-feed fraction [%] |
|------|---------|------------|-------------|------------|-------------------------|
| $B^0 \rightarrow K^0_S\pi^-\mu^+\mu^-$ | $s_1$ | 0.20 | 0.80 | 19.9 ± 0.2 | 8.9 ± 0.3 |
| | $s_2$ | 0.70 | 0.85 | 22.2 ± 0.2 | 8.6 ± 0.2 |
| | $s_3$ | 0.20 | 0.85 | 25.2 ± 0.1 | 8.9 ± 0.2 |
| | $s_4$ | 0.70 | 0.70 | 24.3 ± 0.2 | 9.4 ± 0.2 |
| | $s_5$ | 0.70 | 0.80 | 22.2 ± 0.2 | 12.0 ± 0.5 |
| | $s_6$ | 0.75 | 0.80 | 16.6 ± 0.1 | 21.7 ± 0.7 |
| | $s_7$ | 0.50 | 0.85 | 22.7 ± 0.1 | 8.8 ± 0.1 |

| $B^+ \rightarrow K^+\mu^+\mu^-$ | $s_1$ | 0.30 | 0.85 | 21.3 ± 0.2 | 0.3 ± 0.0 |
| | $s_2$ | 0.15 | 0.85 | 27.0 ± 0.2 | 0.3 ± 0.0 |
| | $s_3$ | 0.15 | 0.85 | 30.9 ± 0.1 | 0.3 ± 0.0 |
| | $s_4$ | 0.80 | 0.85 | 31.0 ± 0.2 | 0.4 ± 0.0 |
| | $s_5$ | 0.65 | 0.85 | 33.3 ± 0.3 | 2.1 ± 0.1 |
| | $s_6$ | 0.05 | 0.85 | 30.5 ± 0.2 | 10.4 ± 0.2 |
| | $s_7$ | 0.05 | 0.85 | 13.6 ± 0.1 | 0.3 ± 0.0 |

| $B^0 \rightarrow K^0_S\pi^+\pi^-$ | $s_1$ | 0.25 | 0.80 | 22.1 ± 0.2 | 8.3 ± 0.3 |
| | $s_2$ | 0.25 | 0.80 | 25.2 ± 0.2 | 9.4 ± 0.3 |
| | $s_3$ | 0.65 | 0.80 | 24.3 ± 0.1 | 9.4 ± 0.2 |
| | $s_4$ | 0.50 | 0.85 | 24.1 ± 0.2 | 10.9 ± 0.4 |
| | $s_5$ | 0.15 | 0.85 | 23.0 ± 0.2 | 18.5 ± 0.9 |
| | $s_6$ | 0.25 | 0.70 | 16.5 ± 0.1 | 35.0 ± 1.1 |
| | $s_7$ | 0.85 | 0.85 | 21.3 ± 0.1 | 9.2 ± 0.2 |

| $B^+ \rightarrow K^+\pi^+\pi^-$ | $s_1$ | 0.35 | 0.85 | 22.8 ± 0.2 | 0.4 ± 0.1 |
| | $s_2$ | 0.10 | 0.85 | 28.8 ± 0.2 | 0.4 ± 0.0 |
| | $s_3$ | 0.10 | 0.85 | 30.8 ± 0.1 | 0.5 ± 0.0 |
| | $s_4$ | 0.30 | 0.80 | 32.7 ± 0.2 | 1.1 ± 0.1 |
| | $s_5$ | 0.25 | 0.80 | 31.7 ± 0.3 | 4.3 ± 0.2 |
| | $s_6$ | 0.50 | 0.85 | 25.1 ± 0.2 | 12.0 ± 0.3 |
| | $s_7$ | 0.40 | 0.85 | 29.6 ± 0.1 | 0.5 ± 0.0 |

| Mode | $s$ bin | $B\bar{B}$ | $q\bar{q}$ | Efficiency | Cross-feed fraction [%] |
|------|---------|------------|-------------|------------|-------------------------|
| $B^+ \rightarrow K^0_S\pi^+\mu^+\mu^-$ | $s_1$ | 0.80 | 0.85 | 16.2 ± 0.2 | 4.9 ± 0.2 |
| | $s_2$ | 0.80 | 0.85 | 19.6 ± 0.2 | 7.8 ± 0.3 |
| | $s_3$ | 0.75 | 0.85 | 21.3 ± 0.1 | 10.1 ± 0.2 |
| | $s_4$ | 0.85 | 0.85 | 20.9 ± 0.1 | 13.8 ± 0.3 |
| | $s_5$ | 0.75 | 0.85 | 22.8 ± 0.2 | 31.7 ± 0.6 |
| | $s_6$ | 0.80 | 0.80 | 19.5 ± 0.2 | 61.0 ± 0.9 |
| | $s_7$ | 0.60 | 0.85 | 20.4 ± 0.1 | 8.9 ± 0.2 |

| $B^0 \rightarrow K^0_S\pi^+\ell^+\bar{\ell}^-$ | $s_1$ | 0.45 | 0.70 | 16.6 ± 0.2 | 17.8 ± 0.6 |
| | $s_2$ | 0.85 | 0.85 | 13.7 ± 0.2 | 20.7 ± 0.8 |
| | $s_3$ | 0.55 | 0.85 | 16.0 ± 0.1 | 27.5 ± 0.7 |
| | $s_4$ | 0.85 | 0.85 | 15.4 ± 0.1 | 41.6 ± 0.9 |
| | $s_5$ | 0.80 | 0.45 | 13.1 ± 0.2 | 68.6 ± 1.8 |
| | $s_6$ | 0.60 | 0.85 | 11.4 ± 0.2 | 133.4 ± 2.9 |
| | $s_7$ | 0.70 | 0.85 | 16.0 ± 0.1 | 23.1 ± 0.5 |

| $B^+ \rightarrow K^0_S\pi^-\ell^+\bar{\ell}^-$ | $s_1$ | 0.80 | 0.85 | 16.5 ± 0.2 | 6.8 ± 0.2 |
| | $s_2$ | 0.85 | 0.85 | 18.6 ± 0.2 | 10.9 ± 0.3 |
| | $s_3$ | 0.80 | 0.80 | 18.5 ± 0.1 | 11.2 ± 0.3 |
| | $s_4$ | 0.55 | 0.65 | 21.9 ± 0.2 | 25.6 ± 0.4 |
| | $s_5$ | 0.75 | 0.80 | 19.0 ± 0.2 | 50.4 ± 0.9 |
| | $s_6$ | 0.05 | 0.80 | 15.1 ± 0.2 | 110.9 ± 1.8 |
| | $s_7$ | 0.80 | 0.85 | 19.7 ± 0.1 | 10.8 ± 0.2 |

For the combinatorial background, the $m_{ES}$ PDF is modeled with a kinematic threshold function whose shape is a free parameter in the fits [24], while the $m_{K\pi}$ PDF shape is characterized with the $K^+\pi^+\mu^-\bar{\mu}^+$ sample mentioned in Sec. [V]. We parameterize the combinatorial $m_{K\pi}$ distributions with non-parametric Gaussian kernel density estimator shapes [25] (referred to as the “KEYS PDFs”) drawn from the $K^+\pi^+\mu^-\bar{\mu}^+$ sample in the full $m_{ES}$ fit region. Since the correlation between $m_{K\pi}$ and $\Delta E$ is weak, we accept all $K^+\pi^+\mu^-\bar{\mu}^+$ events within $|\Delta E| < 0.3$ GeV, rather than imposing a stringent $\Delta E$ selection, in order to enhance sample sizes.

Signal cross-feed consists of mis-reconstructed signal events, in which typically a low-momentum $\pi^\pm$ or $\pi^0$ is swapped, added, or removed in the $B$ candidate reconstruction. We distinguish among different categories of cross-feed: “self-cross-feed” is when a particle is swapped within one mode, “feed-across" is when a particle is swapped between two signal modes with the same final-state multiplicity, and “feed-up (down)” is when a particle is added (removed) from a lower (higher) multiplicity $a B$ candidate.
b \to s\ell^+\ell^- mode. We use both exclusive and inclusive b \to s\ell^+\ell^- MC samples to evaluate the contributions of the different categories. The cross-feed m_{ES} distribution is typically broadened compared to correctly reconstructed signal decays. We combine the cross-feed contributions from all sources into a single fit component that is modeled as a sum of weighted histograms with a single overall normalization, which is allowed to scale as a fixed fraction of the observed correctly reconstructed signal yield. This fixed fraction is presented as the “cross-feed fraction” in Tables[3] and [4]. The modeling of cross-feed contributions is validated using fits to the vetoed J/ψK(∗) and ψ(2S)K(∗) events, in which the cross-feed contributions are relatively large compared to all other backgrounds.

Exclusive B hadronic decays may be mis-reconstructed as B \to K(∗)\ell^+\ell^−, since hadrons can be misidentified as muons. Following a procedure similar to that described in Ref. [29], we determine this background by selecting a sample of K(∗)\mu^+\mu^− events, in which the muon is identified as a muon and the hadron is inconsistent with an electron. Requiring identified kaons and pions, we select subsamples of K(∗)\pi^+\pi^−, K(∗)K^+\pi^−, K(∗)\pi^+K^−, and K(∗)K^+K^−. We obtain weights from data control samples where a charged particle’s species can be identified with high precision and accuracy without using particle identification information. The weights are then applied to this dataset to characterize the contribution expected in our fits due to misidentified muon candidates. We characterize the misidentification backgrounds using the KEYS PDFs, with normalizations obtained by construction directly from the weighted data.

Some charmonium events may escape the charmonium vetoes and appear in our fit region. Typically, this occurs when electrons radiate a photon or a muon candidate is a misidentified hadron and the missing energy is accounted for by a low-energy π^± or π^0. The largest background contributions from this source are expected in the K^+\mu^+\mu^− and K^+e^+e^− channels. We model this background using the charmonium MC samples and determine the leakage into s bins on either side of the J/ψ and ψ(2S) resonances. We see a notable charmonium contribution (about five events) for B^0 \to K^+\pi^−\mu^+\mu^− in bin s_3. This leakage is typically caused by aswap between the π^± and π^0 in a single B \to J/ψ(\to \mu^+\mu^-)K\pi^+ candidate, where both the π^+ and π^− are misidentified.

Hadronic peaking background from B \to K^*\pi^0 and B \to K^*\eta in which the π^0 or η decays via Dalitz pairs shows a small peaking component in m_{ES} in bin s_1. Due to the requirement s > 0.1 GeV^2/c^4, contributions of γ conversions from B \to K^*\gamma events beyond the photon pole region are found to be negligible.

**Fit Model for Rate Asymmetries**

Using the PDFs described above, we perform simultaneous fits across different K(∗)\ell^+\ell^- modes. Once efficiency-corrected signal yields are shared across various decay modes, we can extract rate asymmetries directly from the fits. The fitted signal yields in B^+ modes are corrected by the lifetime ratio τ_{B^0}/τ_{B^+}. We also correct the signal yields for B(K^* \to K\pi) in K^* modes and B(K^0_S \to π^+π^−) in the modes with a K^0_S. In the fits for A_{CP}, we share the efficiency-corrected signal yield N_{B^0} as a floating variable for B(qb, q = u, d) events across different flavor-tagging K(∗)\ell^+\ell^- modes by assuming lepton-flavor and isospin symmetries. The efficiency-corrected signal yield N_{B^0} for B(qb) events is then defined by N_{B^0} = N_{B^0} \cdot (1 + A_{CP})/(1 - A_{CP}) and is also shared across corresponding modes. For the lepton-flavor ratios R_{K(∗)}, we share the efficiency-corrected signal yield N_{ee} as a floating variable for the two B \to K^+e^+e^- or B \to K^*e^+e^- modes by assuming isospin symmetry. The efficiency-corrected signal yield N_{ee} shared across the corresponding B \to K^+e^+e^- modes is then defined by N_{\mu\mu} = N_{ee} \cdot R_{K(∗)}. For the isospin asymmetry A_{I(∗)}^K, we share the efficiency-corrected signal yield N_{B^0} as a floating variable for the two B \to K^+e^+e^- or B^+ \to K^+\ell^+\ell^- modes by assuming lepton-flavor symmetry. The efficiency-corrected signal yield N_{B^0} shared across the corresponding B^0 \to K^*e^+e^- modes is then defined by N_{B^0} = N_{B^0} \cdot (1 + A_{I(∗)}^K)/(1 - A_{I(∗)}^K).

**VII. FIT VALIDATION**

We validate the fit methodology with charmonium control samples obtained from the dilepton mass regions around the J/ψ and ψ(2S) resonances that are vetoed in the B \to K(∗)\ell^+\ell^- analysis. We measure the J/ψK(∗) and ψ(2S)K(∗) branching fractions in each final state with the optimized BDT selections in bins s_3 and s_4, respectively. Our measurements agree well with the world averages [15] for all final states. Typical deviations, based on statistical uncertainties only, are less than one standard deviation (σ). The largest deviation, in the K^+\pi^−\mu^+\mu^- mode, is 1.7σ. For J/ψK(∗) modes, the statistical uncertainties are considerably smaller than those of the world averages. We float the Gaussian means and widths of the signal PDFs in the fits for the J/ψK(∗) modes. The associated uncertainties obtained from the fits are then used as a source of systematic variation for the signal PDFs. The typical signal width in m_{ES} is 2.5 MeV/c^2.

We further validate our fitting procedure by applying it to charmonium events to extract the rate asymmetries. The measured CP asymmetries A_{CP}, lepton-flavor ratios R_{K(∗)}, and isospin asymmetries A_{I(∗)} are in good agreement with Standard Model expectations or world averages for A_{I(∗)}.

We also test the methodology with fits to ensembles of datasets where signal and background events are generated from appropriately normalized PDFs (“pure pseudo-experiments”). We perform fits to these pseudo-
experiments in each mode and s bin using the full fit model described previously. For ensembles of 1000 pure pseudo-experiments, the pull distributions for the signal yields show negligible biases. We further fit ensembles of pseudo-experiments in which the signal events are drawn from properly normalized exclusive MC samples (“embedded pseudo-experiments”). The pull distributions for the activity of, and biases related to, the various rate asymmetries also show the expected performance. The pull distributions for $A_{CP}$ and $R_{K^{(*)}}$ for the low and high s regions show minimal biases. For $A_{i}$, we test a series of $A_{i}$ input values ($-0.6$, $-0.3$, $0.0$, $0.3$, $0.6$) in each s bin using pure pseudo-experiments to ensure we obtain unbiased fits under different assumptions of isospin asymmetry. The $A_{i}^{K}$ pulls are generally well-behaved. In the worst case, the test fits for $A_{i}^{K}$ are slightly biased due to very low signal yield expectations in the $K^{0}\ell^+\ell^-$ final states.

VIII. SYSTEMATIC UNCERTAINTIES

Since some systematic uncertainties largely cancel in ratios, it is useful to separate the discussion of systematic uncertainties on partial branching fractions from that on rate asymmetries.

A. Branching Fraction Uncertainties

Systematic uncertainties for branching fractions arise from multiplicative systematic uncertainties involving the determination of the signal efficiency, and from additive systematic uncertainties arising from the extraction of signal yields in the data fits. The multiplicative systematic errors include contributions from the

- Number of $B\pi$ pairs: This uncertainty is 0.6%.
- Tracking efficiency for charged particles: We assign a correlated uncertainty of 0.3% for each lepton, and 0.4% for each charged hadron including daughter pions from $K^{0}_{s}$ decay [27].
- Charged particle identification (PID) efficiencies: We employ a data-driven method to correct PID efficiencies in simulated events. We estimate the systematic uncertainties from the change in signal efficiency for simulated $J/\psi K^{(*)}$ events after turning off the PID corrections. The systematic uncertainties are mode dependent and vary between 0.9% and 1.6%.
- $K^{0}_{s}$ identification efficiency: This is determined as a function of flight distance after applying $K^{0}_{s}$ efficiency corrections. An uncertainty of 0.9% is obtained by varying the $K^{0}_{s}$ selection algorithm.
- Event selection efficiency: We measure the efficiency of the BDT selection in charmonium data control samples and compare with results obtained for exclusive charmonium samples from simulation. We take the magnitude of the deviation from any particular final state and s bin as the uncertainty associated with the BDT lower bounds. If the data and simulation are consistent within the uncertainty, we then take the uncertainty as the systematic uncertainty. The systematic uncertainty is found to vary between 0.3% and 9.1% depending on both the mode and the s bin. Due to a strong correlation between the $\Delta E$ and BDT outputs, uncertainties due to $\Delta E$ are fully accounted for by this procedure.
- Monte Carlo sample size: We find the uncertainty related to the finite size of the MC sample to be of the order of 1% or less for all modes.

The additive systematic uncertainties involve contributions from the

- Signal PDF shapes: We characterize them by varying the PDF shape parameters (signal mean, signal width, and combinatorial background shape and normalization) by the statistical uncertainties obtained in the fits to the $J/\psi$ data control samples for $m_{ES}$ and signal MC events for $m_{K\pi}$.
- Hadronic backgrounds: We characterize them by varying both the normalization by the associated statistical uncertainties and by performing fits with different choices of smoothing parameters for the KEYS PDF shapes.
- Peaking backgrounds from charmonium events and $\pi^0/\eta$ Dalitz decays: We vary the normalization for these contributions by $\pm 25\%$.
- Modeling of $m_{K\pi}$ line shapes of the combinatorial background: We characterize the uncertainties by analyzing data samples selected from the $m_{ES} < 5.27$ GeV/$c^2$ sideband, and simulated events.

Table [V] summarizes all sources of systematic uncertainties considered in the total branching fraction measurements for individual modes. The total systematic uncertainty for the branching fractions is obtained by summing in quadrature the above-described uncertainties from different categories.

B. Systematic uncertainties for the rate asymmetries

For $A_{CP}$, a large portion of the uncertainties associated with the signal efficiency cancel. We find that the only efficiency-related term discussed in Sec. [VIII A] that is not negligible for $A_{CP}$ is the one associated with the PID selection. Amongst the efficiency-related systematics, we
Our measured $A_{\text{CP}}$ central values for $J/\psi K$ and $J/\psi K^*$ are both well below 1% and show minimal detector efficiency effects. Potential, additional $A_{\text{CP}}$ systematic effects from the assumptions of lepton-flavor and isospin symmetry are tested by removing these assumptions.

The systematic uncertainties for the lepton-flavor ratios $R_{K(\ast)}$ are calculated by summing in quadrature the systematic errors in the muon and electron modes. Common systematic effects, such as tracking, $K_S^0$ efficiency, and $B\bar{B}$ counting, yield negligible uncertainties in the ratios. Potential, additional $R_{K(\ast)}$ systematic effects are tested by removing the assumption of isospin symmetry.

For the systematic uncertainties of $A_f$, we sum in quadrature the systematic errors in charged and neutral $B$ modes. Common systematic effects, which include $B\bar{B}$ counting and a large portion of the uncertainties associated with PID and tracking efficiencies, are negligible. Again, additional tests on $A_f$ systematics are performed by relaxing the assumption of lepton-flavor symmetry. Furthermore, as the cross-feed fractions in Tables III and IV are estimated under the assumption of isospin symmetry, we test this systematic effect using cross-feed fractions estimated with different $A_f$ input values.

Our checks on symmetry assumptions described above for $A_{\text{CP}}, R_{K(\ast)}$ and $A_f$ generally show deviations from the original measured values below 20% of the associated statistical uncertainties, and so we do not assign additional uncertainties.

**IX. RESULTS**

We perform fits for each $K^{(\ast)}\ell^+\ell^-$ final state in each $s$ bin listed in Tables III and IV to obtain signal and background yields, $N_{\text{sig}}$ and $N_{\text{bg}}$, respectively. We model the different background components by the PDFs described in Sec. VI. We allow the shape parameter of the $m_{\text{ES}}$ kinematic threshold function of the combinatorial background to float in the fits. For the signal, we use a fixed Gaussian shape unique to each final state, as described previously. We leave the shapes of the other background PDFs fixed. For the peaking background, we fix the absolute normalization. For the cross-feed, we fix the normalization relative to the signal yields.

Figure 5 shows as an example the $m_{\text{ES}}$ distribution for the combined $K^+\ell^+\ell^-$ modes in bin $s_4$, while Fig. 6 shows the $m_{\text{ES}}$ and $m_{K^\ast}$ mass spectra for the combined $K^+\ell^+\ell^-$ modes in bin $s_1$. The cross-feed contributions and the peaking backgrounds are negligible for this fit. The combinatorial background dominates and for $\mu^+\mu^-$ modes misidentified hadrons are the second largest background. From the yields in each $s$ bin we determine the partial branching fractions summarized in Table V. Figure 7 shows our results for the partial branching fractions of the $K^+\ell^+\ell^-$ and $K^*\ell^+\ell^-$ modes in comparison to results from the Belle and CDF Collaborations,28,29 and to the prediction of the Ali et al. model.6,30 Our results are seen to agree with those of Belle and CDF. Our results are also in agreement with the most recent partial branching fraction measurements of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ from LHCb.30

The total branching fractions are measured to be

$$B(B \rightarrow K\ell^+\ell^-) = (4.7 \pm 0.6 \pm 0.2) \times 10^{-7},$$

$$B(B \rightarrow K^*\ell^+\ell^-) = (10.2^{+1.3}_{-1.3} \pm 0.5) \times 10^{-7}.$$  

Here, the first uncertainties are statistical, and the second are systematic. The total branching fractions are shown in Fig. 8 in comparison to measurements from Belle,28 and CDF,29 and predictions from Ali et al.6 and Zhong et al.6,30.

To measure direct $A_{\text{CP}}$, we fit the $B$ and $\bar{B}$ samples in the two $K^+\ell^+\ell^-$ modes and four $K^*\ell^+\ell^-$ modes listed in Sec. IV. We perform the measurements in the full $s$ region, as well as in the low $s$ and high $s$ regions separately. The $B$ and $\bar{B}$ data sets share the same background shape parameter for the kinematic threshold function. Figure 9 shows an example fit for the combined $B \rightarrow K^*\ell^+\ell^-$ modes in the low $s$ region. Table VI summarizes the results. Figure 10 shows $A_{\text{CP}}$ as a function of $s$. Our results are consistent with the SM expectation of negligible direct $A_{\text{CP}}$.

We fit the $e^+e^-$ and $\mu^+\mu^-$ samples in the four $K^+\ell^+\ell^-$ modes and four $K^*\ell^+\ell^-$ modes in the low $s$ and high $s$ regions separately to measure the lepton-flavor ratios.

**TABLE IV: Individual systematic uncertainties [%] for measurements of the total branching fractions in $K^{(\ast)}\ell^+\ell^-$ decays.**

| Mode                          | $R_{K_S^0} \mu^- \mu^-$ | $K^+ \mu^- \mu^-$ | $K^0_{S\ast} \pi^+ e^- e^-$ | $K^{(\ast)}_{\mu^- \mu^+}$ | $K^+ \pi^- \mu^- \mu^-$ | $K^0_{S\ast} \pi^+ e^- e^-$ | $K^{(\ast)}_\ell^+ \ell^- e^- e^-$ |
|-------------------------------|--------------------------|-------------------|-------------------------------|-----------------------------|----------------------------|--------------------------|-----------------------------|
| BB counting                   | $\pm 0.6$                | $\pm 0.6$         | $\pm 0.6$                     | $\pm 0.6$                   | $\pm 0.6$                  | $\pm 0.6$                 | $\pm 0.6$                   |
| Tracking                      | $\pm 1.4$                | $\pm 1.0$         | $\pm 1.0$                     | $\pm 1.4$                   | $\pm 1.4$                  | $\pm 1.4$                 | $\pm 1.4$                   |
| PID                           | $\pm 1.6$                | $\pm 0.3$         | $\pm 0.7$                     | $\pm 0.4$                   | $\pm 1.5$                  | $\pm 0.3$                 | $\pm 0.5$                   | $\pm 1.2$                   |
| $K_S^0$ ID                    | $\pm 0.9$                | $\pm 0.9$         | $\pm 0.9$                     | $\pm 0.9$                   | $\pm 0.9$                  | $\pm 0.9$                 | $\pm 0.9$                   | $\pm 0.9$                   |
| BDT selections                | $\pm 2.2$                | $\pm 1.7$         | $\pm 4.7$                     | $\pm 1.5$                   | $\pm 8.3$                  | $\pm 2.5$                 | $\pm 9.1$                   | $\pm 2.7$                   |
| MC sample size                | $\pm 0.3$                | $\pm 0.3$         | $\pm 0.3$                     | $\pm 0.3$                   | $\pm 0.4$                  | $\pm 0.3$                 | $\pm 0.4$                   | $\pm 0.4$                   |
| Sig. Shape                    | $\pm 0.5$                | $\pm 0.4$         | $\pm 1.5$                     | $\pm 0.4$                   | $\pm 1.5$                  | $\pm 0.7$                 | $\pm 1.5$                   | $\pm 0.7$                   |
| Hadronic                      | $\pm 3.3$                | $\pm 5.8$         | $\pm 3.8$                     | $\pm 3.8$                   | $\pm 2.3$                  | $\pm 1.6$                 | $\pm 1.5$                   | $\pm 1.5$                   |
| Peaking                       | $\pm 0.3$                | $\pm 0.8$         | $\pm 1.2$                     | $\pm 0.8$                   | $\pm 0.7$                  | $\pm 1.7$                 | $\pm 0.8$                   | $\pm 1.2$                   |
| Comb. $m_{K_S}$ shape         | —                        | —                  | —                             | —                           | —                          | —                        | —                           | —                          |
| Total                         | $\pm 4.7$                | $\pm 6.3$         | $\pm 5.4$                     | $\pm 2.2$                   | $\pm 9.3$                  | $\pm 3.9$                 | $\pm 9.5$                   | $\pm 4.0$                   |
hadrons misidentified as muons (green dash-dotted line), and

**FIG. 6**: The (a) $m_{ES}$ spectrum in bin $s_4$ for all $K\ell^+\ell^-$ modes combined showing data (points with error bars), the total fit (blue solid line), signal component (black short-dashed line), combinatorial background (magenta long-dashed line), hadrons misidentified as muons (green dash-dotted line), and the sum of cross-feed and peaking components (red dotted line).

**FIG. 5**: The $m_{ES}$ spectrum in bin $s_4$ for all $K\ell^+\ell^-$ modes combined showing data (points with error bars), the total fit (blue solid line), signal component (black short-dashed line), combinatorial background (magenta long-dashed line), hadrons misidentified as muons (green dash-dotted line), and the sum of cross-feed and peaking components (red dotted line).

**TABLE V**: Measured branching fractions [10$^{-7}$] by mode and $s$ bin. The first and second uncertainties are statistical and systematic, respectively.

| $s$ (GeV$^2$/c$^4$) | $B \rightarrow K\ell^+\ell^-$ | $B \rightarrow K^+\ell^+\ell^-$ |
|--------------------|--------------|-----------------|
|                    | $N_{sig}$    | $B[10^{-7}]$    | $N_{sig}$ | $B[10^{-7}]$ |
| 0.10–2.00          | 20.6$^{+5.9}_{-5.4}$ | 0.71$^{+0.20}_{-0.18}$ | 0.18 | 26.0$^{+7.1}_{-6.4}$ | 1.80$^{+0.52}_{-0.46}$ | ±0.06 |
| 2.00–4.30          | 17.4$^{+4.8}_{-4.4}$ | 0.49$^{+0.15}_{-0.13}$ | ±0.01 | 14.5$^{+3.2}_{-2.8}$ | 0.90$^{+0.33}_{-0.30}$ | ±0.04 |
| 4.30–8.12          | 37.1$^{+8.0}_{-7.5}$ | 0.94$^{+0.20}_{-0.19}$ | ±0.02 | 29.3$^{+9.1}_{-8.2}$ | 1.83$^{+0.56}_{-0.52}$ | ±0.09 |
| 10.11–12.89        | 36.0$^{+8.2}_{-7.6}$ | 0.96$^{+0.20}_{-0.19}$ | ±0.04 | 31.6$^{+8.8}_{-8.1}$ | 1.84$^{+0.52}_{-0.48}$ | ±0.10 |
| 14.21–16.00        | 19.7$^{+6.2}_{-5.6}$ | 0.45$^{+0.15}_{-0.14}$ | ±0.02 | 24.1$^{+5.7}_{-5.2}$ | 1.40$^{+0.36}_{-0.32}$ | ±0.06 |
| >16.00             | 22.3$^{+7.9}_{-7.5}$ | 0.67$^{+0.23}_{-0.21}$ | ±0.05 | 14.1$^{+6.6}_{-6.0}$ | 1.09$^{+0.47}_{-0.42}$ | ±0.06 |
| 1.00–6.00          | 39.4$^{+7.1}_{-6.7}$ | 1.36$^{+0.27}_{-0.24}$ | ±0.03 | 33.1$^{+8.6}_{-7.8}$ | 2.05$^{+0.54}_{-0.48}$ | ±0.07 |

**FIG. 11** shows an example fit for the combined $K\mu^+\mu^-$ and $K\epsilon^+\epsilon^-$ modes in the high $s$ region. Table VII and Fig. 12 show $R_K$ and $R_{K\ell}$ for $s > 0.1$ GeV$^2$/c$^4$. Our results are consistent with unity as expected in the SM.

We fit the data in each $s$ bin separately to determine $A_I$ for the four combined $K\ell^+\ell^-$ and four combined $K^+\ell^+\ell^-$ modes. Figure 13 shows an example fit for bin $s_2$. The results are summarized in Table VIII. Figure 14 shows our measurements as a function of $s$ in compari-

**FIG. 7**: Partial branching fractions for the (a) $K\ell^+\ell^-$ and (b) $K^+\ell^+\ell^-$ modes as a function of $s$ showing BABAR measurements (red triangles), Belle measurements [28] (open squares), CDF measurements [29] (blue solid squares), and the SM prediction from the Ali et al. model [3] with $B \rightarrow K^{(*)}$ form factors [31] (magenta dashed lines). The magenta solid lines show the theory uncertainties. The vertical yellow shaded bands show the vetoed $s$ regions around the $J/\psi$ and $\psi(2S)$.

**FIG. 8**: Total branching fractions for the $K\ell^+\ell^-$ and $K^+\ell^+\ell^-$ modes (red triangles) compared with Belle [28] (open squares) and CDF [29] (blue solid squares) measurements and with predictions from the Ali et al. [3] (light grey bands), and Zhong et al. [6] (dark grey bands) models.
son with those of Belle. The two sets of results are seen to agree within the uncertainties. Our results are also consistent with the SM prediction that $A_{\ell}$ is slightly negative ($\sim -1\%$) except in bin $s_1$, where it is predicted to have a value around $+5\%$.

Our $A_{\ell}$ measurements in the low $s$ region (0.10 < $s$ < 8.12 GeV$^2$/c$^4$) yield

\[ A_{\ell}^{\text{low}}(B \to K^+\ell^+\ell^-) = -0.58^{+0.29}_{-0.37} \pm 0.02 \ [2.1\sigma], \]
\[ A_{\ell}^{\text{low}}(B \to K^*\ell^+\ell^-) = -0.25^{+0.20}_{-0.17} \pm 0.03 \ [1.2\sigma], \]

where the first uncertainty is statistical and the second is systematic. The $A_{\ell}$ significances shown in the square brackets include all systematic uncertainties. We estimate the significance by refitting the data with $A_{\ell}$ fixed to zero and compute the change in log likelihood $\sqrt{2\Delta \ln L}$ between the nominal fit and the null hypothesis fit.

TABLE VI: Measured $A_{CP}$ by mode and $s$ region. The first and second uncertainties are statistical and systematic, respectively. “All” refers to the union of 0.10 < $s$ < 8.12 GeV$^2$/c$^4$ and $s$ > 10.11 GeV$^2$/c$^4$.

| $s$ (GeV$^2$/c$^4$) | $A_{CP}(B^+ \to K^+\ell^+\ell^-)$ | $A_{CP}(B \to K^*\ell^+\ell^-)$ |
|------------------|----------------------------------|----------------------------------|
| All | $-0.03 \pm 0.14 \pm 0.01$ | $0.03 \pm 0.13 \pm 0.01$ |
| 0.10–8.12 | $0.02 \pm 0.18 \pm 0.01$ | $-0.13^{+0.15}_{-0.19} \pm 0.01$ |
| >10.11 | $-0.06^{+0.22}_{-0.21} \pm 0.01$ | $0.16^{+0.18}_{-0.19} \pm 0.01$ |

FIG. 11: $m_{ES}$ fits for $R_K$ in the (a) $Ke^+e^-$ and (b) $K\mu^+\mu^-$ modes in the high $s$ region. Data (points with error bars) are shown together with total fit (blue solid lines), combinatorial background (magenta long-dashed lines), signal (black short-dashed lines), hadronic background (green dash-dotted lines), and the sum of cross-feed and peaking background (red dotted lines).

TABLE VII: Measured $R_{K^{(*)}}$ by mode and $s$ region. The first and second uncertainties are statistical and systematic, respectively. “All” refers to the union of 0.10 < $s$ < 8.12 GeV$^2$/c$^4$ and $s$ > 10.11 GeV$^2$/c$^4$.

| $s$ (GeV$^2$/c$^4$) | $R_K$ | $R_{K^{(*)}}$ |
|------------------|--------|-------------|
| All | $1.00^{+0.01}_{-0.02} \pm 0.07$ | $1.13^{+0.04}_{-0.06} \pm 0.10$ |
| 0.10–8.12 | $0.74^{+0.09}_{-0.31} \pm 0.06$ | $1.06^{+0.48}_{-0.33} \pm 0.08$ |
| >10.11 | $1.43^{+0.05}_{-0.44} \pm 0.12$ | $1.18^{+0.55}_{-0.37} \pm 0.11$ |

FIG. 10: CP asymmetries $A_{CP}$ for $K^{\ell^+\ell^-}$ modes (red solid triangles) and $K^*\ell^+\ell^-$ modes (red open circles) as a function of $s$. The vertical yellow shaded bands show the vetoed $s$ regions around the $J/\psi$ and $\psi(2S)$.
X. CONCLUSION

In summary, we have measured total and partial branching fractions, direct CP asymmetries, lepton-flavor ratios, and isospin asymmetries in the rare decays $B \to K^{(*)}\ell^+\ell^-$ using 471 million $BB$ pairs. These results provide an update to our previous measurements on branching fractions and rate asymmetries excluding the $s < 0.1$ GeV$^2$/c$^4$ region \cite{ref29}. The total branching fractions, $\mathcal{B}(B \to K\ell^+\ell^-) = (4.7 \pm 0.6 \pm 0.2) \times 10^{-7}$ and $\mathcal{B}(B \to K^{*}\ell^+\ell^-) = (10.2^{+1.4}_{-1.3} \pm 0.5) \times 10^{-7}$, are measured with precisions of 13% and 14%, respectively. The partial branching fractions as a function of $s$ agree well with the SM prediction. For $0.10 < s < 8.12$ GeV$^2$/c$^4$, our partial branching fraction results also allow comparisons with SCET based predictions. CP asymmetries for both $B \to K\ell^+\ell^-$ and $B \to K^{*}\ell^+\ell^-$ are consistent with zero and the lepton-flavor ratios are consistent with one, both as expected in the SM. The isospin asymmetries at

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
$s$ (GeV$^2$/c$^4$) & $B \to K\ell^+\ell^-$ & $B \to K^{*}\ell^+\ell^-$ \\
\hline
0.10–2.00 & $-0.51^{+0.49}_{-0.95} \pm 0.04$ & $-0.17^{+0.29}_{-0.24} \pm 0.03$ \\
2.00–4.30 & $-0.73^{+0.58}_{-0.55} \pm 0.03$ & $-0.00^{+0.56}_{-0.36} \pm 0.05$ \\
4.30–8.12 & $-0.32^{+0.27}_{-0.30} \pm 0.01$ & $0.03^{+0.43}_{-0.32} \pm 0.04$ \\
10.11–12.89 & $-0.05^{+0.25}_{-0.29} \pm 0.03$ & $-0.48^{+0.22}_{-0.18} \pm 0.05$ \\
14.21–16.00 & $0.05^{+0.31}_{-0.43} \pm 0.03$ & $0.24^{+0.61}_{-0.39} \pm 0.04$ \\
>16.00 & $-0.93^{+0.83}_{-0.99} \pm 0.04$ & $1.07^{+1.27}_{-0.95} \pm 0.35$ \\
\hline
\end{tabular}
\caption{Measured $A_I$ by mode and $s$ bin. The first and second uncertainties are statistical and systematic, respectively.}
\end{table}

FIG. 13: The $m_{K^0}$ and $m_{B^0}$ fit projections for the (a)\&(b) $K^{(*)}\ell^+\ell^-$ and (c)\&(d) $K^{*0}\ell^+\ell^-$ modes in bin $s_2$. Data (points with error bars) are shown together with total fit (blue solid lines), combinatorial background (magenta long-dashed lines), signal (black short-dashed lines), hadronic background (green dash-dotted lines), and the sum of cross-feed and peaking background (red dotted lines).

FIG. 14: Isospin asymmetry $A_I$ for the (a) $K\ell^+\ell^-$ and (b) $K^{*}\ell^+\ell^-$ modes as a function of $s$ (red triangles), in comparison to results from Belle \cite{ref28} (open squares). The vertical yellow shaded bands show the vetoed $s$ regions around the $J/\psi$ and $\psi(2S)$.
low $s$ values are negative. For $0.10 < s < 8.12$ GeV$^2$/c$^4$ we measure $A_{1}(B \to K^{\ast+} \ell^{-}) = -0.58_{-0.37}^{+0.29} \pm 0.02$ and $A_{1}(B \to K^{\ast+} \ell^{-}) = -0.25_{-0.17}^{+0.20} \pm 0.03$. The isospin asymmetries are all consistent with the SM predictions. All results are in good agreement with those of the Belle, CDF, and LHCb experiments.

XI. ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).

[1] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[2] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, JHEP 0901, 019 (2009).
[3] G. Burdman, Phys. Rev. D 52, 6400 (1995); J. L. Hewett and J. D. Wells, Phys. Rev. D 55, 5549 (1997); Y. G. Xu, R. M. Wang and Y. D. Yang, Phys. Rev. D 74, 114019 (2006); P. Colangelo, F. De Fazio, R. Ferrandes and T. N. Pham, Phys. Rev. D 73, 115006 (2006).
[4] T. Feldmann and J. Matias, JHEP 0301, 074 (2003).
[5] A. Ali, E. Lunghi, C. Greub, and G. Hiller, Phys. Rev. D 66, 034002 (2002).
[6] M. Zhong, Y.-L. Wu, and W.-Y. Wang, Int. J. Mod. Phys. A 18, 1959 (2003).
[7] A. Ali, P. Ball, L. T. Handoko and G. Hiller, Phys. Rev. D 61, 074024 (2000).
[8] A. Khodjamirian, T. Mannel, A. A. Pivovarov and Y. -M. Wang, JHEP 1009, 089 (2010).
[9] A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, D. London and S. U. Sankar, JHEP 1111, 121 (2011); A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh and D. London, JHEP 1111, 122 (2011).
[10] Q.-S. Yan, C.-S. Huang, W. Liao, and S.-H. Zhu, Phys. Rev. D 62, 094023 (2000).
[11] A. Ali, G. Kramer, and G.-H. Zhu, Eur. Phys. J. C 47, 625 (2006).
[12] Charge conjugation is implied throughout except as explicitly noted.
[13] F. Kruger, L. M. Schgal, N. Sinha, and R. Sinha, Phys. Rev. D 61, 114028 (2000) [Erratum-ibid. D 63, 019901 (2001)].
[14] G. Hiller and F. Kruger, Phys. Rev. D 69, 074020 (2004).
[15] K. Nakamura et al. [Particle Data Group], J. Phys. G 37 075021 (2010).
[16] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 70, 112006 (2004).
[17] M. Beneke, T. Feldmann, and D. Seidel, Eur. Phys. J. C41, 173 (2005).
[18] T. Feldmann, 5th Workshop on the CKM Unitary Triangle, Rome (2008).
[19] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[20] L. Breiman, Mach. Learn. 24, 123 (1996); I. Narsky, arXiv:physics/0507157 (2005).
[21] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[22] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 89, 281802 (2002).
[23] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 78, 071103 (2008).
[24] H. Albrecht et al. [ARGUS Collaboration], Z. Phys. C 48, 543 (1990).
[25] K. S. Cranmer, Comput. Phys. Commun. 136, 198 (2001).
[26] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 092001 (2006).
[27] T. Allmendinger, B. Bhuyan, D. N. Brown, H. Choi, S. Christ, R. Covarelli, M. Davier and A. G. Denig et al., arXiv:1207.2849 [hep-ex] (2012).
[28] J.-T. Wei et al. [BELLE Collaboration], Phys. Rev. Lett. 103, 171801 (2009).
[29] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 107, 201802 (2011).
[30] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 108, 181806 (2012).
[31] P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005); Phys. Rev. D 71, 014029 (2005).
[32] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 102, 091803 (2009).