PHYTOCHEMICAL ANALYSIS OF SELECTED INDIAN MEDICINAL PLANTS BY HR-LCMS SPECTRA METHOD

Nateshan Anil¹, ² and Venkateswara Rao Talluri³, 
¹Department of Biotechnology, KL Deemed to be University, Vaddeswaram-522 502, Andhra Pradesh, India.
²Department of Biotechnology, Sreenidhi Institute of Science and Technology, Hyderabad-500056, Telangana, India.
³Prof. TNA Innovation Center, Varsha Biosciences and Technology India Private Limited, Sy.No.253/A, Jiblakpally(V), Dothigudem(GP), Boodhan Pochampally(M), Yadadri District-508284, Telangana, India
Corresponding Author: vrtalluri@gmail.com

ABSTRACT
Due to the widespread use of medicinal plant products in the pharmaceutical and biotechnology field, phytochemical analysis of medicinal plants has become an important and challenging task. Analytical techniques including liquid chromatography coupled with mass spectrometry were found to be an important technique in the analysis of complex bioactive constituents. The present study was aimed at bioactive constituent analysis from select Indian medicinal plants viz., Pongamia pinnata, Dodonea viscosa, Gardenia resinifera and Gymnospora emarginata by (HR)-LCMS (High Resolution- Liquid Chromatography Mass Spectrometry) analysis. The present study confirms presence of important therapeutic secondary metabolites including alkaloids (Hydroxycotinine), Flavonoids (Apiin, Genkwanin, Kaempherol), Coumarin (Lomatin), Carboxylic acid (Quinic acid) and Phenolic compounds (Isoliquiritigenin) in the select Indian medicinal plants.

Keywords: HR-LCMS, Anthelmentic Activity, Antibacterial Activity, Phytochemicals.

INTRODUCTION
The role of bioactive compounds extracted from medicinal plants in maintaining sustainable human health globally is well documented. The traditional medicinal practices including Rigveda (3700 B.C.), Ayurveda, Homeopathy and Unani mentioned the use of medicinal plant products for the cure of various human ailments. In the recent times, many widely used drugs with low side effects were sourced from medicinal plants. There is a great demand for the identification of novel, potent drug molecules from medicinal plant products that are safe with low side effects to treat infections caused by parasites and microbial pathogens.

In the biochemical analysis of plant products, the first step is the identification and isolation of bioactive compounds from the medicinal plants. In the present study, based on the literature survey, four Indian medicinal plants viz., Pongamia pinnata, Dodonea viscosa, Gardenia resinifera, Gymnospora emarginata were selected from Ananthagiri forest of Telangana and their extracts were analyzed using (HR)-LCMS (High-resolution liquid chromatography-mass spectrometry) for the identification of bioactive compounds. Pongamia pinnata also known as karum tree belongs to the family Fabaceae. All the parts of this plant are shown to exhibit various medicinal properties. People suffering from bleeding piles are treated with Pongamia pinnata bark extract and fruits are used as antidiyslipidemic. Oil extracted from seeds is used in the treatment of rheumatism, leucoderma and scabies. The extract of seeds and leaves is shown to have anthelmintic and insecticidal activities.

Dodonea viscosa commonly called hop bush belongs to the family Sapindaceae. This plant is widely used globally for treating various ailments. Leaf and bark extract shows antibacterial activity, antidiabetic activity in rats, anticancer activity against lung and breast cancer cell lines. It is also found to be effective in treating rheumatism, malaria, and snake bites.
Gardenia resinifera belongs to the family Rubiaceae is commonly called Indian boxwood. The various plant parts of it shown different medicinal properties and among them, gum extract from stems is found to show antihyperlipidemic activity and hepatoprotective effects. The leaf extract is used in treating pathogenic bacteria of the mouth. Methanolic extract of leaves is found to be anthelmintic and antispasmodic.11,12 Gymnospora emarginata, commonly called Danthi belongs to the family Celastraceae. The leaf extract is found to be effective in controlling various gram positive and gram negative bacteria 13, in treating different cancers in humans (Hep3b hepatocellular carcinoma, hela; cervical epithelial cancer and A549 human lung adrenal cancer)14 along with antioxidant activity.15

EXPERIMENTAL

Collection of Medicinal Plants
The leaves of Dodonea viscosa, Gymnospora emarginata, Gardenia resinifera and seeds of Pongamia pinnata were collected from Ananthagiri forest Vikarabad District Telangana, India. The plant specimens were submitted to Botany Department, Osmania University, Hyderabad and Botany Department, Kakatiya University, Warangal for the taxonomic identification of plants. One of the plant specimens was identified as Dodonea viscosa (L) Jacq (family Sapindaceae, Voucher number 0073) and deposited in the Department of Botany, Osmania University, Hyderabad. The other three plant specimens were identified as Gymnospora emarginata (family Celastraceae, Voucher number KUW 4529), Gardenia resinifera (family Rubiaceae, Voucher number KUW 4528) and Pongamia pinnata (family Leguminosae, Voucher number KUW4557) and deposited in the Department of Botany, Kakatiya University, Warangal.

Extraction of Bioactive Compounds
The leaves and seeds of select medicinal plants were finely powdered and bioactive compounds were extracted with methanol using a Soxhlet extractor.16 The methanol extracts of Dodonea viscosa, Gymnospora emarginata, Gardenia resinifera and Pongamia pinnata were filtered through Whatman filter paper no 42 individually and concentrated using an evaporator at 40°C and stored at 4°C.

High Resolution -Liquid Chromatography Mass Spectrometry(HR-LCMS) Methodology
The methanolic extracts of Pongamia pinnata, Dodonea viscosa, Gardenia resinifera, Gymnospora emarginata were subjected to (HR)-LCMS analysis individually and chemical fingerprints were prepared using high-resolution liquid chromatography and mass spectrometry (model-G6550A of Agilent technologies) with 0.01% mass resolution17 with following parameters:
1. MS- minimum range 150 (M/Z) and maximum 1000 daltons with scanning rate each per Second.
2. The source parameter for gas chromatography was maintained at 250 ºC with a gas flow of 13 psi/minute.
3. The auxiliary draw speed was 100 µl/minute, eject speed at 100.0 µL/min, draw position offset 0.0 mm wait time after drawing 2.0 s, Sample flush out factor was 5.0.

The following solvent composition was used:

S.No	Channel	Ch.1 Solvent	Name 1	Ch2 Solvent	Selected	Used	Percent
1	A	100.0% Water V.02	0.1% FA in water	100.0%Water V.02	Ch.2	yes	95.00%
2	B	100.0% AcetonitrileV.02	90% ACN +10% H2O+ 0.1% FA	100.0% Acetonitrile V.02	Ch.2	yes	5.00%

RESULTS AND DISCUSSION
The high resolution-liquid chromatography-mass spectrometry analysis (HR)-LCMS of methanolic extract of Pongamia pinnata seeds was found to contain 52 compounds of which, 35 major compounds were confirmed based on their retention time, mass, and molecular formula as shown in Table-1, chromatogram, Figure-1. The chromatogram gives information on the relative concentrations of various compounds eluted as a function of retention time.
The height of the peak indicates the relative concentrations of bioactive compounds. Mass Spectrometer analyses the structure of unknown compounds which are eluted at different times.

The important phytoconstituents confirmed by (HR)-LCMS Analysis were Apiin, Juglone, P-Hydroxyphenylacetic acid, Betaxolol, Artenlic acid, Picrotoxinin, Dihydrodeoxystreptomycin, Isoliquiritigenin, Sterigmatocystin, Hydroxyflutamide, Formononetin, Genkwain, Dicumarol, Vulpinic acid, Lomatin, Chryophanic acid, 9-anthrone Isoliquiritigenin, Dihydrosphingosine. The compounds were also found in other plants which have shown different pharmacological activities. Among them, Juglone a 1-4 naphtha quinone compound found in *Juglans nigra* plant has shown potent antibacterial activity against various species. Vulpinic acid which was also found in lichens has shown anticancer and antibacterial activity. Cucurbitacins have shown anticancer, antidiabetic, anti-inflammatory effects.

Table 1: Bioactive Compounds identified in Methanol Extract of *Pongamia pinnata*

S. No.	Name of the Compound	Formula	Mass	RT (min)	DBDiff (ppm)
1.	Mebeverine metabolite (veratric acid glucuronide)	C_{15}H_{18}O_{10}	358.0855	1.013	12.46
2.	12a-hydroxy-5-deoxydehydromunduserone	C_{19}H_{18}O_{6}	342.1122	1.018	-5.5
3.	6,3'-dimethoxyflavone	C_{17}H_{14}O_{4}	282.0843	4.669	17.36
4.	galnacalpha(1-3)[fucalpha(1-2)]galbeta(1-4)glcnacbeta-sp	C_{30}H_{51}N_{5}O_{20}	801.3232	5.102	-13.06
5.	Apiin	C_{26}H_{26}O_{14}	564.1434	5.786	7.92
6.	beta-erythroidine	C_{16}H_{16}N_{3}O_{3}	273.1365	6.911	-0.01
7.	Juglone	C_{10}H_{6}O_{3}	174.0306	7.218	6.3
8.	p-hydroxyphenylacetic acid	C_{8}H_{8}O_{3}	152.048	7.949	-4.49
9.	betaxolol	C_{18}H_{20}N_{3}O_{3}	307.2123	8.134	8
10.	3a-oh desogestrel	C_{22}H_{32}O_{2}	326.2289	8.322	-13.35
11.	s-adenosylmethionine	C_{15}H_{23}N_{6}O_{3}S	399.1452	8.433	-0.46
12.	Artenlic acid	C_{23}H_{32}O_{7}	418.1967	8.86	5.76
13.	Picrotoxinin	C_{15}H_{16}O_{6}	292.0948	8.861	-0.42
14.	Dihydrodeoxystreptomycin	C_{21}H_{21}N_{7}O_{11}	567.2856	9.305	1.48
15.	trans-3-hydroxycoptine glucuronide	C_{16}H_{23}N_{3}O_{8}	368.1233	9.697	-3.74
16.	Sappanone a 7-methyl ether	C_{17}H_{16}O_{5}	298.0818	9.755	7.8
17.	Isoliquiritigenin	C_{15}H_{12}O_{4}	256.0741	10.145	-2.17
18.	Sterigmatocystin	C_{18}H_{12}O_{6}	324.0612	10.635	6.77
19.	estradiol-17beta-3-sulfate	C_{18}H_{25}O_{3}S	352.1292	10.726	15.46
20.	12a-hydroxy-5-deoxydehydromunduserone	C_{19}H_{18}O_{6}	342.1081	10.798	6.41
21.	Deoxysappanone b trimethyl ether	C_{19}H_{20}O_{5}	328.1277	10.831	10.37
#	Compound	Molecular Formula	Retention Time	Mass	
----	--------------------------------	-------------------	----------------	-------	
22	Hydroxyflutamide	C_{11}H_{13}F_{3}N_{2}O_{4}	292.0718	11.044	-16.02
23	Deoxysappanone b trimethyl ether	C_{19}H_{20}O_{5}	328.1313	11.204	-0.54
24	8,13-dihydroxy-9,11-octadecadienoic acid	C_{18}H_{32}O_{4}	312.2279	11.23	7.03
25	Formononetin	C_{16}H_{12}O_{3}	268.0741	11.24	-1.98
26	n,n-Dideethylchlordpromazine	C_{15}H_{12}C_{1}N_{2}S	290.0594	11.299	17.38
27	Cuneatin methyl ether	C_{18}H_{12}O_{6}	326.0771	11.456	5.92
28	Sterigmatocystin	C_{18}H_{12}O_{6}	324.0615	11.462	5.96
29	Genkwanin	C_{16}H_{12}O_{5}	284.0693	11.613	-3.07
30	5-o-methylvisamminol	C_{16}H_{18}O_{3}	290.1153	11.647	0.51
31	6,3'-dimethoxyflavone	C_{17}H_{14}O_{4}	282.0877	11.675	5.48
32	Chrysophanic acid 9- anthrone	C_{15}H_{12}O_{3}	240.0799	11.736	-5.15
33	Dalbergione, 4-methoxy- 4'-hydroxy-	C_{16}H_{14}O_{4}	270.0902	11.783	-3.64
34	Juglone	C_{10}H_{8}O_{1}	174.0307	11.949	5.66
35	4-hydroxyphenylethanol	C_{8}H_{10}O_{2}	138.0699	11.956	-13.09
36	Warfarin	C_{19}H_{16}O_{4}	308.1033	11.957	5.01
37	i-methyl-4-nitro-5-thio- imidazole	C_{4}H_{3}N_{2}O_{3}S	159.0082	11.963	13.17
38	Dicumarol	C_{19}H_{12}O_{6}	336.0618	11.966	4.83
39	Hydroxyflutamide	C_{11}H_{13}F_{3}N_{2}O_{4}	292.0723	12.27	-17.74
40	Vulpinic acid	C_{19}H_{14}O_{5}	322.0826	12.378	4.78
41	Lomatinit	C_{14}H_{14}O_{4}	246.088	13.113	4.79
42	Methyl robustone	C_{22}H_{22}O_{6}	378.1087	13.513	4.21
43	3'-hydroxy-e,e-dienoestrol	C_{18}H_{16}O_{3}	282.1262	13.525	-2.17
44	Propargite	C_{19}H_{20}O_{4}S	350.1497	13.608	15.66
45	5,7-dimethoxyisoflavone	C_{17}H_{14}O_{4}	282.0911	13.862	-6.78
46	3,5-Pyridinedicarboxylic acid,1,4-dihydro-2,6-dimethyl-4-(3nitrophenyl) -, monomethyl ester	C_{16}H_{16}N_{2}O_{6}	332.1032	13.906	-7.09
47	Benzylbutylphthalate	C_{19}H_{20}O_{4}	312.137	13.929	-2.59
48	Isoliquiritigenin	C_{15}H_{12}O_{4}	256.0746	13.944	-4
49	5c-uglycone	C_{16}H_{16}O_{4}	272.1056	14.318	-2.64
50	Juglone	C_{10}H_{8}O_{3}	174.0307	14.341	6.01
51	Avocadene acetate	C_{19}H_{14}O_{4}	328.2591	14.364	6.83
52	Lomatinit	C_{14}H_{14}O_{4}	246.0878	14.875	5.66

The (HR)-LCMS High-Resolution Liquid Chromatography Mass Spectrometry analysis of methanolic extract of *Dodonea viscosa* spectrum profile (Fig.-2) shows 33 compounds of which 29 major compounds were confirmed based on their retention time, mass and molecular formula.

![Fig-2: (HR)-LCMS Spectrogram of *Dodonea viscosa*](image-url)
The phytochemicals found in the extract including Fraxetin, Hieracin, Desmethylzopiclone, Kaempferol, Tamarixetin, Epothilone A, 4-Hydroxyestrone, 4'-Hydroxypentololglucuronide, Orthothymotinic acid, Dihydrodeoxystreptomycin, Piretanide, Rutin, Irbesartan, Eupatorin were shown in Table-2.

It was also reported that these compounds found in the different species of plants exhibit different pharmacological activities. Among them, Kaempferol was also found in tea, berries and apples exhibits antitumor activity and anti-inflammatory activity.

Fraxetin also found in Fraxinus rhynchophylla has shown antibacterial activity and antioxidant effect. Rutin also found in tea leaves and apples exhibited various pharmacological effects like antidiabetic, anti-inflammatory, antibacterial activity.23-25

Table -2: Bioactive Compounds in Methanol Extract of Dodonea viscosa

S. No.	Name of the Compound	Formula	Mass (ppm)	RT (min)	DBDiff (ppm)
1.	Mebeverine metabolite (Veratric acid glucuronide)	C15 H15 O10	358.0848	1.035	
2.	12a-Hydroxy-5-Deoxydehydroenduplusone	C19 H18 O6	342.1112	1.06	14.62
3.	Fraxetin	C10 H4 O4	208.0347	5.21	-2.49
4.	Hieracin	C15 H16 O7	302.0389	6.281	
5.	Desmethylzopiclone	C16 H15C6N6 O3	374.0807	6.446	12.35
6.	Kaempferol	C15 H10 O6	286.0446	6.546	23.31
7.	Tamarixetin	C16 H12 O7	316.0547	6.678	11.12
8.	Epothilone A	C26 H30 N6 O6	493.2499	6.78	11.36
9.	1-Cyclohexene-1-acrylic acid, 2,6,6-trimethyl-3-oxo-	C12 H16 O3	208.1099	7.707	
10.	4-Hydroxyestrone	C18 H22 O3	286.1539	7.709	0.43
11.	4'-Hydroxypentolol glucuronide	C24 H17 N O9	483.2426	7.71	10.3
12.	6,8,10,12-pentadecatetraenal	C15 H22 O	218.167	7.71	8.74
13.	Orthothymotinic acid	C11 H14 O3	194.0945	7.713	0.32
14.	17alpha-Estradiol 3-D-glucuronide	C24 H32 O8	448.2033	8.024	3.34
15.	4-Hydroxyestrone	C18 H22 O3	286.1573	8.433	14.35
16.	2,4,6-Heptatrienoic acid, 5-methyl-7-(2,6,6-trimethyl-3-oxo-1-cyclohexen-1-yl)-, (2E,4E,6E)-	C17 H22 O3	274.1568	8.438	-1.45
17.	2-Methylene-5-(2,5-Dioxotetrahydrofurane-3-yl)-6-oxo-(10,10,10-Dimethylbicyclo[7:2:0][Undecane]	C18 H24 O4	304.1665	8.446	0.19
18.	thrytropin releasing hormone	C16 H22 N6 O4	362.1699	8.455	3.26
19.	7-hydroxy Tetranor Iprost	C18 H26 O5	322.1779	8.463	0.9
20.	17beta-Estradiol 3-(beta-D-glucuronide)	C24 H32 O8	448.2029	8.515	0.47
21.	16b-Hydroxyestradiol	C18 H22 O3	288.172	8.54	15.13
22.	Gibberellin A44 acid	C20 H28 O6	364.1851	8.558	1.8
23.	2,9-heptadecadien-4,6-diyne-1,8-diol	C17 H24 O2	260.1769	8.604	9.65
24.	5-hydroperoxy-7-[3,5-epidioxy-2-(2-octenyl)-cyclopentyl]-6-hetpenoic acid	C19 H30 O6	354.2031	8.781	2.66
25.	4-Hydroxyestrone	C18 H22 O3	286.1545	9.123	-2.5
26.	Dihydrodeoxystreptomycin	C21 H24 N7 O11	567.2848	9.31	
27.	Gibberellin A15	C20 H32 O5	348.1908	9.444	2.8
28.	Piretanide	C17 H16 N2 O2S	362.0975	9.857	8.12
29.	Alprazolam	C17 H18 Cl N4	308.0897	9.877	-10.73
30.	Rutin	C27 H30 O16	610.151	6.495	
31.	Irbesartan	C25 H24 N6 O	428.2403	8.661	-5.08
The (HR)-LCMS High-Resolution Liquid Chromatography-Mass Spectrometer analysis of *Gardenia resinifera* methanolic extract spectrum profile Fig.-3 shows 43 compounds of which 27 major compounds were confirmed based on their retention time, mass, and molecular formula.

The phytochemicals identified in the extract includes Chlorogenic acid, Ecgonine, Loganin, Kaempferol, Hieracin, Warfarin, Benzylbutylphthalate, Promazine sulfoxide, Quinic acid, Hydroxyhydroquinone, Khayanthone and Bergenin were shown in table -3. Various authors reported different pharmacological activities for these compounds. Among them, Loganin found in *Strychnos nux-vomica L* shows central nervous stimulant activity and anti-inflammatory activity 27. Quinic acid obtained from flowers of *Moringa olifera* exhibited various pharmacological activities including anticancer activity and antibacterial activity 28,29. Genkwanin found in *Callicarpa Americana* revealed various pharmacological activities including anti-inflammatory, antibacterial and anticancer properties.30

The High-Resolution Liquid Chromatography-Mass Spectrometer (HR-LCMS) analysis of *Gymnospora emarginata* methanolic extract spectrum profile Fig.-4 shows 19 compounds of which 15 major compounds were confirmed based on their retention time, mass, and molecular formula.

Table-3: Bioactive Compounds in Methanol Extract of *Garedenia resinifera*

S. No.	Name	Formula	Mass	RT	DB Diff (ppm)
1.	Mebeverine metabolite (Veratric acid glucuronide)	C_{15}H_{18}O_{10}	358.0856	1.042	12.29
2.	3,5-Pyridinedicarboxylic acid, 2,6-dimethyl-4-(3-nitrophenyl)-, mono(2-hydroxyethyl) ester	C_{17}H_{16}N_{2}O_{7}	360.0993	1.043	-9.86
3.	Deoxyelephantopin	C_{19}H_{20}O_{6}	344.1244	1.045	4.53
4.	12a-Hydroxy-5- Deoxydehydrodumunduser one	C_{19}H_{18}O_{6}	342.1115	1.05	-3.28
5.	Bis (2-hydroxypropyl) amine	C_{6}H_{13}N_{3}O_{2}	133.1103	1.14	-0.39
6.	4-Hydroxy-L-threonine	C_{4}H_{6}N_{4}O_{4}	135.0524	1.363	5.47
7.	cis-3-(6-Hydroxy-7-methoxy- 5-benzofuranyl)acrylic acid glucuronide	C_{18}H_{18}O_{11}	410.0763	2.862	20.95
8.	4-Amino-m-cresol	C_{7}H_{6}N_{3}O_{2}	123.0686	4.228	-1.41
---	---				
9.	2-Methoxyresorcinol	C_{10}H_{16}O_{3}	140.0475	4.897	-0.8
10.	Chlorogenic acid	C_{16}H_{18}O_{9}	354.0905	4.902	12.92
11.	Octopamine (p-Hydroxyphenylethanolamine)	C_{6}H_{11}O_{3}	153.0787	5.13	1.76
12.	Ecgonine	C_{9}H_{15}N_{2}O_{3}	185.1048	5.414	2.37
13.	Octopamine (p-Hydroxyphenylethanolamine)	C_{6}H_{11}N_{2}O_{2}	153.0789	5.42	0.28
14.	3-Methylindole	C_{9}H_{9}N	131.0718	5.424	12.69
15.	88-hydroxy-2-Decene-4,6-diyinoic acid	C_{16}H_{10}O_{3}	178.0609	5.771	12.04
16.	2,4-Heptadienial	C_{7}H_{10}O	110.074	5.772	-7.25
17.	3-Methylsuberic acid	C_{6}H_{16}O_{4}	188.1046	5.774	1.32
18.	4-Hydroxyphenylethanol	C_{6}H_{10}O_{2}	138.0683	5.774	-1.47
19.	2,2-dimethyl-4-pentenoic acid	C_{7}H_{13}O_{2}	128.0841	5.775	-2.98
20.	3-heptenal	C_{7}H_{12}O	112.0892	5.782	-3.19
21.	Logannin	C_{17}H_{26}O_{10}	390.148	5.794	11.89
22.	Kaempferol	C_{15}H_{10}O_{6}	286.0448	6.096	10.33
23.	Hieracin	C_{15}H_{10}O_{7}	302.0393	6.143	11.15
24.	Kaempferol	C_{15}H_{10}O_{6}	286.0447	6.485	10.56
25.	Dihydrodeoxystreptomycin	C_{21}H_{41}N_{7}O_{11}	567.284	9.304	4.21
26.	Esmolol	C_{16}H_{25}N_{2}O_{4}	295.1751	10.478	11.12
27.	(3)-Usnic acid	C_{18}H_{16}O_{7}	344.0862	11.344	9.88
28.	Cuneatin methyl ether	C_{18}H_{14}O_{6}	326.0754	11.467	11.21
29.	Warfarin	C_{16}H_{16}O_{4}	308.1015	11.979	10.87
30.	Dalbergione, 4-methoxy-4’-hydroxy-	C_{16}H_{14}O_{4}	270.0886	12.245	2.22
31.	Benzylbutylphthalate	C_{19}H_{20}O_{3}	312.1351	13.894	3.53
32.	12-oxo-9-octadecenoic acid	C_{18}H_{30}O_{3}	294.2158	13.997	12.44
33.	Promazine sulfoxide	C_{17}H_{20}N_{2}O _S	300.1305	14.309	-2.91
34.	Hydroxyhydroquinone	C_{6}H_{6}O_{3}	126.0324	14.324	-5.77
35.	Harderoporphyrin	C_{35}H_{36}N_{4}O_{6}	608.2586	16.188	8.03
36.	Harderoporphyrin	C_{35}H_{36}N_{4}O_{5}	608.2591	16.584	7.18
37.	Khayanthone	C_{12}H_{42}O_{6}	570.2819	16.871	1.66
38.	Quinic acid	C_{7}H_{12}O_{6}	192.063	4.984	1.94
39.	Chlorogenic acid	C_{15}H_{18}O_{8}	354.0945	5.56	1.67
40.	BML-190	C_{25}H_{32}C_{N_{2}}O_{4}	426.1291	5.944	13.03
41.	Logannin	C_{17}H_{26}O_{10}	390.1525	5.945	0.14
42.	Rutin	C_{27}H_{30}O_{16}	610.1526	6.46	1.21
43.	Madecassic acid	C_{30}H_{48}O_{6}	504.344	11.081	2.12

Fig- 4: (HR)-LCMS Spectrogram of Gymnospora emarginata
The phytochemicals found in the extract are Proline, Thiabendazole, Disulfiram, Tamarixetin, Luteoline, Pargyline, Oxendetonmethyl, Naphazoline, Dihydrodeoxystreomptycin (Table-4). These compounds were also shown to be present in other plants and exhibit antimicrobial, antioxidant, anticancer, anti-inflammatory activity.

Table-4: Bioactive Compounds in Methanol Extract of Gymnospora emarginata

S. No.	Name	Formula	Mass	Rt	DB Diff (ppm)
1.	2a-hydroxy-5- deoxydehydromunduser one	C₁₀H₁₈O₆	42.1115	1.047	-3.28
2.	Thiabendazole	C₁₀H₇N₃S	201.0333	4.728	13.87
3.	Disulfiram	C₁₀H₂₀N₂S₄	296.0518	5.921	-2.89
4.	Luteoline	C₁₅H₁₆O₆	286.0441	6.114	12.7
5.	Pargyline	C₁₁H₁₃N	159.1026	6.195	14.1
6.	Tamarixetin	C₁₆H₁₂O₇	316.0541	6.198	13.25
7.	Luteoline	C₁₅H₁₀O₆	286.0443	6.645	12.13
8.	Naphazoline	C₁₄H₁₄N₂	210.115	8.706	3.51
9.	Dihydrodeoxystreptomycin	C₂₁H₄₁N₇O₁₁	567.2839	9.323	4.44
10.	Uroporphyrinogen III	C₄₀H₄₄N₄O₁₆	836.2714	12.105	4.54
11.	Promazine sulfoxide	C₁₇H₂₀N₂O S	300.1301	14.293	-1.49
12.	Hydroxyhydroquinone	C₆H₆O₃	126.0322	14.306	-4.05
13.	1-Methylinosine	C₁₁H₁₄N₄O₅	282.0993	14.699	-10.03
14.	Mometasone Furoate	C₂₇H₃₀C₂₂O₆	520.1406	15.508	2.5
15.	Avobenzone	C₂₀H₂₂O₃	310.1534	15.951	11.41
16.	12beta-Hydroxy-3-oxo-5beta- cholan-24-oic Acid	C₂₄H₂₈O₄	390.2729	18.448	10.55
17.	Hydroxyhydroquinone	C₆H₆O₃	126.0322	18.489	-4.26

CONCLUSION

The Methanolic extract of Pongamia pinnata, Dodonea viscosa, Gardenia resinifera, Gymnospora emarginata revealed the presence of therapeutically important bioactive compounds like flavonoids, glycosides, alkaloids, coumarins, terpenoids, saponins using (HR)-LCMS high-resolution liquid chromatography-mass spectrometer analysis. These bioactive components possess important pharmacological activities and could be useful for treating various human ailments. Further, invitro and insilico studies were planned on these bioactive compounds to identify candidate drug molecules for treating various parasitic diseases including filariasis.

ACKNOWLEDGEMENT

The authors are immensely thankful to the Department of Botany Osmania University, Telangana Department of Botany, Kakatiya University, Telangana for the identification of plant species, Department of Biotechnology, Sreenidhi Institute of Science and Technology, Telangana for the permission to utilize the lab facilities and University Grants Commission (UGC) for the project research grant (Reference no. F.N0:4-5t4/ 2015-16(MRP / UGC-SERO).

REFERENCES

1. A. Balkrishna, R. K. Mishra, A. Srivastava, B. Joshi, R. Marde and U.B. Prajapati, International Journal of Unani and Integrative Medicine, 3, 40(2019).
2. M. M. Pandey, S. Rastogi, A. K. S. Rawat, Evidence-Based Complementary and Alternative Medicine, 6, (2013), https://doi.org/10.1155/2013/376327
3. M. Lahlou, Pharmacology & Pharmacy, 4, 17(2013), https://doi.org/10.4236/pp.2013.43A003
4. A. K. Patra, *Dietary Phytochemicals and Microbes*, Springer, Dordrecht, p.1,32,(2012).
5. D. S. Pawar and S. Nasreen, *Journal of Medicinal Plants Studies*, 6, 173, (2018).
6. V. V. Chopade, A. N. Tankar1, V. V. Pandel, A.R. Tekadel, N.M. Gowekar1, S.R. Bhandari, S. N. Khandake1, *International Journal of Green Pharmacy*, 4 (2008).
7. P. Sowjanya , P. Srinivasa Babu, D. N. Lakshmi, N. Navyasri, Y. Harshini, J. Vyshnavi and M. Prasanth, *Journal of Pharmacognosy Phytochemistry*, 7, 459 (2018).
8. R. Naidoo, M. Patel, Z. Gulube, and I. Fenyvesi, *Journal of Ethnopharmacology*, 144, 711720, https://doi.org/10.1016/j.jep.2012.08.045
9. M. S. Akhtar, M. Ahmed, K. Gulzar and H. Adnan, *Diabetologia Croatica*, 40, 71, (2011).
10. B. Anil Reddy, *Journal of Pharmaceutical Science and Technology*, 1, 1(2009).
11. B. Jhansi Lakshmi and K. Jaganmohanreddy, *Biosciences Biotech Research Communications*, 4, 23(2011).
12. C.P. Khare, Indian Medicinal Plants, Springer, (2007).
13. R. Gupta, M. G. Vairale, R. R. Deshmukh, P. R. Chaudhary, *Indian Journal of Traditional Knowledge*, 9, 713(2010).
14. S. Sagwan, D. V. Rao, R. A. Sharma, *Asian Journal of Pharmaceutical and Clinical Research*, 4, 3(2011).
15. B. Dhanasree, N. S. Basha, *Journal of Pharmacognosy and Phytochemistry*, 4, 123(2015).
16. R. James, *Journal of Microbiology & Biology Education*, 15, 45(2014), https://doi:10.1128/jmbe.v15i1.656
17. J. J. Pitt, *Mass Spectrometry in Clinical Biochemistry Reviews*, 30, 2(2009).
18. Wang Jiayi, Cheng Yuhuan, Wu Rina, Jiang Donghua, Bing Bai, Tan Dehong, Yan Tingcai, Sun Xiyun, Zhang Qi, Wu Zhaoxia, *International Journal of Molecular Science*, 17, 965 (2016), https://doi.org/10.3390/ijms17060965.
19. A. M. Clark, T. M. Jurgens, C. D. Hufford, *Phytotherapy Research*, 4, 11(1990), https://doi.org/10.1002/pr.2650040104
20. N. Kılıç, M. K. Derici, İ. Büyü, S. S. Aydm, A. Süme, D. C. Duman, *Indian journal of Pharmaceutical Education and Research*, 52, 4(2018), https://doi.org/10.5530/jiper.52.4.73
21. M. L. Wein, M. Oethinger, K. Belsner, T. Peters, and R. Marre, *Antimicrobial Agents and Chemotherapy*, 995, 2541, https://doi.org/10.1128/AAC.39.11.2541
22. H. C. Kee, X. Hongtao, US, 2008/0207578 A1, 28(2008).
23. C. Y. Hsu, H. Y. Shih, H. Y. Y. C. Chia, C. H. Lee, H. Ashida, Y. K. Lai, C. F. Weng, *Molecular Nutrition & Food Research*, 58, 1168 (2014), https://doi.org/10.1002/mnfr.201300691
24. H. Javed, M. M. Khan, A. Ahmad, K. Vaibhav, M. E. Ahmad, A. Khan, M. Ashfaq, F. Islam, M. S. Siddiq, M. M. Safhi, F. Islam, *Neuroscience*, 17, 340 (2012).
25. M. K. Araruna, S. A. Brito, M. F. Morais Braga, K. K. Santosh, T. M. Souza, T. R. Leite, J. G. Costa, H. D. Coutinho, *Indian Journal Medical Research*, 135, 252(2012).
26. I. Sarfraz, A. Rasul, F. Jabeen, T. Younis, Md. Kashif, Z. Muhammad, A. Muhammad Ali, *Evidence Based Complementary and Alternative Medicine*, 12, 2975(2012), https://doi.org/10.1007/s00044-029-2573-4
27. S. Muthamil, B.B.Balamurugan, S.K.Pandian, *Front Microbiolology*, 9, 2835(2018), https://doi.org/10.3389/fmib.2018.02835.
28. E. Padmini and L. Inbathamizh, *Asian Journal of Pharmaceutical and Clinical Research*, 6(4), 106(2013).
29. G. Porras, J. Bacsa, H. Tang, C. L. Quave, *Crystals*, 9, 491(2019), https://doi.org/10.3390/cryst9100491.
30. Y. Li, R. Shi, X. Wang, H. Shen, *Current Cancer Drug Targets*, 7, 364(2008), https://doi.org/10.2174/1568090908786241050.