Spin-Hall conductivity of a disordered 2D electron gas with Dresselhaus spin-orbit interaction

A. G. Mal’shukov1 and K. A. Chao2

1Institute of Spectroscopy, Russian Academy of Science, 142190, Troitsk, Moscow oblast, Russia
2Solid State Theory Division, Department of Physics, Lund University, S-22362 Lund, Sweden

(Dated: March 23, 2022)

The spin-Hall conductivity of a disordered 2D electron gas has been investigated for a general spin-orbit interaction. We have found that in the diffusive regime of electron transport, the dc spin-Hall conductivity of a homogeneous system is zero due to impurity scattering when the spin-orbit coupling contains only the Rashba interaction, in agreement with existing results. However, when the Dresselhaus interaction is taken into account, the spin-Hall current is not zero. We also considered the spin-Hall currents induced by an inhomogeneous electric field. It is shown that a time dependent electric charge induces a vortex of spin-Hall currents.

PACS numbers: 72.25.Dc, 71.70.Ej

Spintronics is a fast developing area using the electron spin degrees of freedom in electronic devices1-14. One of the most challenging goals of spintronics is to find a method to manipulate spins by electric fields. The spin-orbit interaction (SOI), which couples the electron momentum and spin, can serve as a spin-charge mediator. There have been several suggestions to use the SOI in semiconductor quantum wells (QW) to create the electron and hole spin currents and to accumulate the spin polarization by applying an electric field parallel15,16,17 or perpendicular18 to the QW. The spin current induced by the parallel electric field and flowing perpendicular to it has been named the spin-Hall effect (see also19). Since the prediction of this effect by Murakami et al.20 and Sinova et al.21, there have been much discussions concerning the effect of nonmagnetic impurity scattering on the spin-Hall conductivity in systems with Rashba spin-orbit coupling. Some groups predicted that the impurity scattering should suppress the spin-Hall effect induced by a homogeneous and static electric field12,13,14,15 even if the mean scattering time \(\tau\) is much longer than \(1/\Delta\), where \(\Delta\) is the spin-orbit splitting of the electron energy (we set \(\hbar = 1\)). This result was confirmed by an analysis of the sum rules in Ref.16. Yet some other groups came to different conclusions17,18,19.

In the present we use the diffusion approximation to derive an expression of the spin-Hall conductivity for a general SOI including both Rashba and Dresselhaus terms. For pure Rashba SOI, as well as for linear Dresselhaus interaction, we found that the dc spin-Hall conductivity of a homogeneous system is zero due to impurity scattering when the spin-orbit coupling contains only the Rashba interaction, in agreement with existing results. However, when the Dresselhaus interaction is taken into account, the spin-Hall current is not zero. We also considered the spin-Hall currents induced by an inhomogeneous electric field. It is shown that a time dependent electric charge induces a vortex of spin-Hall currents.

We consider a typical III-V semiconductor QW with only the lowest subband occupied. The spin-orbit coupling of conduction electrons has the form

\[H_{so} = \hbar k \cdot \sigma, \quad (1) \]

where \(\sigma = (\sigma_x, \sigma_y, \sigma_z)\) is the Pauli matrix vector, and \(\hbar k\) a function of the two-dimensional wave-vector \(\mathbf{k}\). In general, \(\hbar k\) contains both the Dresselhaus and the Rashba terms. The former exists also in bulk crystals20, while the latter appears only in asymmetric QWs.21 For a QW grown along the [001] direction, which is set as the \(z\) axis, the Dresselhaus SOI is given by22

\[h^x_k = \beta k_x (k_y^2 - a^2), \]

\[h^y_k = -\beta k_y (k_x^2 - a^2), \quad (2) \]

where the parameter \(a^2\) is the average of the operator \(-\partial/\partial z\)^2 with respect to the lowest subband wave function. The Dresselhaus SOI in (2) contains terms both linear and cubic in \(\mathbf{k}\). Usually, in heavily doped QWs, for electrons at the Fermi energy both terms are of the same order of magnitude.23 The Rashba interaction has the form21

\[h^x_k = \alpha k_y; \quad h^y_k = -\alpha k_x. \quad (3) \]

Let us apply an electric field along the \(x\) axis, and express it as the gradient of a scalar electric potential \(E = -\nabla V\). This gauge is more convenient for studying the case of finite wave-numbers \(Q\) in the Fourier expansion of \(E\). The one-particle spin-current operator is

\[J^z_j = (\sigma^x v^j + \sigma^y v^j \sigma^z)/4, \]

where the particle velocity is

\[v^i = \frac{k^i}{m^*} + \frac{\partial}{\partial k^i}(h_k \cdot \sigma). \quad (4) \]

This definition has to be used with cautious, since the spin current is not conserving in systems with SOI, as discussed in Ref.24. We are interested in calculating the spin current polarized in \(z\) direction and flowing in \(y\)
direction. Since \mathbf{h}_k in (3) and (2) has no z components the spin-current operator is $J_y^z=\sigma^z h_y/2(m^*)$. We will calculate the corresponding spin-Hall current within the standard linear response theory and denote it as J. So, the initial expression for J is

$$J = -i\epsilon \Omega \sum_{k,k'} \left(\frac{d\omega}{2\pi} \frac{\partial n_F(\omega)}{\partial \omega} (\text{Tr}[G^a(k_-,k',\omega)] \times \right. $$

$$\times J_y^G(k',k_+,\omega + \Omega)) V(\Omega,Q), \quad (5)$$

where $k = k \pm Q/2$, and $n_F(\omega)$ is the Fermi distribution function. In (5) the trace runs through the spin variables, and the angular brackets denote the average over the random distribution of impurities. The terms containing the products of the form $G^a G^a$ and $G^a G^\pi$ are neglected since their contribution to the spin-Hall current is small. For simplicity we assume that in the vicinity of the Fermi energy E_F, the amplitude of impurity elastic scattering is isotropic and momentum-independent. In the quasiclassical approximation, when $E_F/\tau \gg 1$, the average of the product of the retarded and advanced Green functions G^a and G^π can be calculated perturbatively. If we ignore weak localization effects, the perturbation expansion of (5) consists of the so called ladder diagrams. For small Ω and Q these diagrams describe the particle and spin diffusion processes. The spin diffusion also includes the D’yakonov-Perel spin relaxation. Therefore, the spin-Hall current is determined by the combination of spin and particle diffusion propagators.

To calculate and to combine these propagators for arbitrary \mathbf{h}_k, we will follow the formalism of Ref. (25, 26). In (5) the spin-current vertex J_y^z is coupled to the spin-independent potential V. Such a spin-charge coupling has two channels. In the first channel, J_y^G and V are coupled via the spin-independent particle diffusion propagator. This contribution to the spin-Hall current is denoted as J_1. For $\Omega \ll 1/\tau$ and $v_F Q \ll 1/\tau$, where v_F is the Fermi velocity, from (6) we obtain

$$J_1 = \frac{\epsilon \Omega}{2\pi} \Psi D(\Omega,Q) V(\Omega,Q), \quad (6)$$

where $D(\Omega,Q) = (\tau(-i\Omega + DQ^2))^{-1}$ is the particle diffusion propagator. The vertex Ψ is

$$\Psi = \sum_k \text{Tr}[G^\pi(k_+,E_F + \Omega)G^\sigma(k_-,E_F) J_y^z], \quad (7)$$

where $G^\pi, G^\sigma (k,E)$ are the Green functions averaged over random impurity positions.

The second coupling channel is more complicated. The spin current couples first to the spin diffusion-relaxation propagator, which couples to V via the mixing of charge and spin diffusion processes. The mixing of these diffusion processes was pointed out explicitly by Burkov et al. (17). The spin-Hall current due to this channel is denoted as J_2, and is obtained as

$$J_2 = \frac{i \epsilon \Omega}{2\pi} \Psi D(\Omega,Q) M^j D(\Omega,Q) V(\Omega,Q), \quad (8)$$

with the vertices

$$\Psi^j = \sum_k \text{Tr}[G^\pi(k_+,E_F + \Omega)\sigma^j G^\sigma(k_-,E_F) J_y^z]. \quad (9)$$

In (8) the superscripts l and j are summed over x, y, and z. The spin diffusion-relaxation propagator $D^{ij}(\Omega,Q)$ describes diffusion and relaxation of a spin density packet. Therefore, this propagator satisfies the spin diffusion equation for spins polarized in the j-direction when a source creates spins polarized in the i-direction. M^j is the spin-charge mixing, defined as

$$M^j = \frac{1}{4\pi \tau N_0} \sum_k \text{Tr}[G^\pi(k_+,E_F + \Omega) \times \times G^\sigma(k_-,E_F) \sigma^j], \quad (10)$$

where $N_0 = m^*/(2\pi)$ is the 2D density of states. M^j makes the diffusion of spins polarized in j-direction dependent on the charge density distribution. Using (11), for small Ω and Q, one gets from (9), (10) and (11)

$$\Psi = \frac{i \epsilon \Omega}{2\Gamma} e^{imz} Q^m \left(\nabla^k h_k \right) h_k^m v^g Z_k, \quad (12)$$

where $Z_k = (\Gamma^2 + h_k^2)^{-1}$ and $n_k = h_k/h_k$. The over-line in (12) denotes the average over directions of \mathbf{k} which has the magnitude $k = k_F$. In (12) e^{mz} is the antisymmetric tensor with $e^{xyz} = 1$, and all doubly repeated superscripts should be summed over x, y, and z.

$D^{ij}(\Omega,Q)$ satisfies the spin diffusion equation at large Ω and Q. For $\Omega, Q \ll h_{k_F}$ we can neglect in this equation the diffusion and spin precession terms which are proportional to the gradient of the spin propagator. We then have

$$-i\Omega D^{ij}(\Omega,Q) = 2\Gamma \delta^{ij} - \Gamma^{ml} D^{lj}(\Omega,Q), \quad (13)$$

where Γ^{ml} is the spin relaxation matrix element. At low frequency the relaxation term dominates and so $D^{ij}(\Omega,Q)$ is simply given by the inverse of Γ^{ml}, and

$$\Gamma^{ml} = 2\Gamma [\delta^{ml} h_k^2 - h_k^m h_k^l]Z_k. \quad (14)$$
This equation differs by a factor $\Gamma^2 Z_k$ from the standard definition of the spin relaxation matrix, for example, in Ref. [29]. This factor is not unity because we consider the situation that the spin splitting $\Delta=2h_k$ can be comparable to the electron elastic scattering rate 2Γ.

Let us first consider the case of Rashba SOI [30]. We then set $Q^\nu=0$ and $E=-iQ^\nu V$ to calculate Ψ, Ψ^ν and M^ν from (12). In this case both the spin relaxation matrix and the spin diffusion-relaxation propagator are diagonal. Substituting the so calculated Ψ, Ψ^ν, M^ν and D^ν into (10) and (8), the currents J_1 and J_2 are obtained as

$$J_1 = -J_2 = E e^2 \frac{\Delta^2 \Omega}{8\pi 4\Gamma^2 + \Delta^2 \Omega + iDQ^2}.$$

(15)

where $\Delta=2a_k F$. Hence, the total current J_1+J_2 vanishes even for small impurity scattering rate $\Gamma \ll \Delta$, in agreement with the existing results [12,13,14,15,16]. We should mention that in deriving this result for $\Omega \ll \Gamma^\nu$, in the denominator ($-\Omega I+\Gamma^\nu D$) of the spin diffusion-relaxation propagator the frequency term has been removed. If we retain Ω, J_1 and J_2 will cancel each other not exactly, but the accuracy is up to Ω/Γ^ν. As was pointed out by Mishchenko et. al. [13], near the sample boundaries J_2 can also differ from J_1 because of the rapid spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation [31]. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus interaction (2), which has terms both linear and cubic in k. When the cubic interaction is ignored, there is no spin-Hall effect because the linear spatial variation of the spin diffusion propagator. We have ignored this effect by neglecting the gradient terms in the diffusion equation (13). If necessary, in our approach we can consider the boundary problem by substituting into (10) the complete solution $D^\nu(\omega, Q)$ of the spin diffusion equation. Our main goal is, however, to show that the spin current is not zero in the bulk of the sample when the Dresselhaus SOI is taken into account. In this case the total spin accumulation near the sample edge will be determined by a direct inflow of the spin polarization from the bulk.
which has the same form as the equation for the electrostatic screening of the scalar potential V, with $e\sigma_{H}/D$ playing the role of the inverse screening length.

It should be noticed that because of the above mentioned close relationship between the spin-Hall effect and the accumulation of in-plane spin polarization, the latter will also appear as a screening cloud around the external charge. The in-plane polarization, in its turn, can give rise to a z-polarized component via the spin precession term of the diffusion equation. This precession is proportional to $v_{F}Q/I$, which is small in the diffusion approximation and was neglected in [15]. Consequently, the spin-Hall current turns out to be conserved, as one can expect in the absence of the relaxation of z-polarization. On the other hand, in the near vicinity of the vortex core, the precession term becomes more important because of the larger gradient of the electric field. Hence, the accumulation of the z-polarized spin density will be expected in the region of the core. The detailed analysis of this phenomenon is outside the scope of the present paper. It is worthwhile to notice that the core has a macroscopic size about $h\nu_{F}/\Delta$, which is of the order microns. Therefore, the spin accumulation in the vortex core can be observed by, for example, the method of Faraday rotation.

In conclusion, within the quasiclassical perturbation theory we have shown that, in agreement with existing results, impurity scattering reduces the DC spin-Hall current to zero if the SOI is due to the Rashba interaction. On the other hand, the spin-Hall current remains finite for the Dresselhaus SOI. Nevertheless, this current becomes zero if it is induced by a spatially varying DC electric field. The field must be time dependent in order to produce a finite effect. In this case the spin-current flow in the field of a scalar potential has the form of a vortex. The physics of this phenomenon is formally equivalent to the screening of external electric potential by electrons.

We acknowledge useful discussions with E. I. Rashba and E. G. Mishchenko. This work was supported by the Swedish Royal Academy of Science, the Russian Academy of Sciences and the RFBR grant No 030217452.

1. G. A. Prinz, Science 282, 1660 (1998).
2. S. A. Wolf et al., Science 294, 1488 (2001)
3. Awschalom, D. Loss, and N. Samarth, eds., Semiconductor Spintronics and Quantum Computation (Springer-Verlag, Berlin, 2002).
4. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
5. S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).
6. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004); D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald, Q. Niu, Phys. Rev. Lett. 93, 046602 (2004).
7. J. I. Inoue, G. E. W. Bauer, and L.W. Molenkamp, Phys. Rev. B 67, 033104 (2003)
8. V. M. Edelstein, Solid State Commun., 73, 233 (1990)
9. A. G. Mal' shukov, C. S. Tang, C. S. Chu, and K. A. Chao, Phys. Rev. B 68, 233307 (2004)
10. M. Governale, F. Taddei, and R. Fazio, Phys. Rev. B 68, 155324 (2003).
11. M. I. Dyakonov, V. I. Perel, Phys. Lett. A 35, 459 (1971); J. E. Hirsch, Phys. Rev. Lett 83, 1834 (1999).
12. J. I. Inoue, G. E. W. Bauer, and L.W. Molenkamp, Phys. Rev. B 70, 041303 (2004)
13. R. G. Mishchenko, A. V. Shytov, and B. I. Halperin, cond-mat/0406730 (unpublished).
14. O. V. Dimitrova, cond-mat/0405339 (unpublished)
15. R. Raimondi, P. Schwab, cond-mat/0408233 (unpublished)
16. E. I. Rashba, cond-mat/0409476 (2004) (unpublished)
17. A. A. Burkov, A. S. Nunez and A. H. MacDonald, cond-mat/0311328 (2004) (unpublished).
18. O. Chalaev and D. Loss, cond-mat/0407342 (unpublished)
19. K. Nomura et al., cond-mat/0407279 (unpublished).
20. G. Dresselhaus, Phys. Rev. Lett. 100, 086602 (2003).
21. Yu. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984)
22. R. Eppenga, H. F. M. Schuurmans, Phys. Rev. B 37, 10923 (1988).
23. B. Jusserand, D. Richards, H. Peric and B. Etienne, Surf. Sci. 305, 247 (1994); Phys. Rev. Lett. 69, 848 (1992).
24. E. I. Rashba, Phys. Rev. B 68, 241315 (2003).
25. A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, (Dover, New York, 1975)
26. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).
27. M. I. Dy'akonov and V. I. Perel', Sov. Phys. Solid State 13, 3023 (1972) [Fiz. Tverd. Tela 13, 3581 (1971)]; Sov. Phys. JETP 33, 1053 (1971) [Zh. Eksp. Teor. Fiz. 60, 1954 (1971)].
28. A. G. Mal'shukov, K. A. Chao, and M. Willander Phys. Rev. B 57, R2069 (1998).
29. A. G. Mal'shukov, K. A. Chao, and M. Willander, Phys. Rev. Lett. 76, 3794 (1996); Physica Scripta T66, 138 (1996).
30. A. G. Mal'shukov and K. A. Chao Phys. Rev. B 61, R2413 (2000).
31. J. M. Kikkawa, D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).