FRAMED MOTIVIC Γ-SPACES

GRIGORY GARKUSHA, IVAN PANIN, AND PAUL ARNE ØSTVÆR

In memory of Vladimir Voevodsky

ABSTRACT. We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach combines Γ-spaces and Voevodsky’s framed correspondences into the concept of framed motivic Γ-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic Γ-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, \mathbb{A}^1- and σ-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the \mathbb{A}^1-homotopy theory of algebraic varieties.

1. INTRODUCTION

The category Γ of correspondences or multivalued functions on finite sets is of fundamental importance in topology [29]. Following Boardman and Vogt [6], Segal’s work on Γ-spaces gives convenient models for E_∞ spaces — spaces with multiplications that are unital, associative, and commutative up to higher coherent homotopies — and for infinite loop spaces. Segal applied his ideas to prove the celebrated Barratt-Priddy-Quillen theorem identifying the group completion of the disjoint union $\bigsqcup_n B\Sigma_n$ of classifying spaces of symmetric groups with the infinite loop space of \mathbb{S} — the topological sphere. Soon afterwards, Bousfield and Friedlander carried out their homotopical identification of connective spectra and Γ-spaces — an early striking success in the development of stable homotopy theory [7]. Moreover, Γ-spaces have the advantage that they are simple to define, as well as being intrinsically tied to K-theory and topological Hochschild homology [10].

In this paper we introduce the concept of framed motivic Γ-spaces together with a few axioms. The main purpose of our set-up is to advance our practical understanding of infinite loop spaces along with new viewpoints on connective and very effective spectra in the algebro-geometric setting of \mathbb{A}^1-homotopy theory [26], [32]. Voevodsky envisioned this new direction of development in his work on framed correspondences in motivic homotopy theory [34].

2010 Mathematics Subject Classification. 14F42, 55P42.

Key words and phrases. Framed correspondences, Γ-spaces, motivic spaces, framed motivic Γ-spaces, connective and very effective motivic spectra, infinite motivic loop spaces.
Working over a field \(k \), our approach combines Segal’s category \(\Gamma \) with Voevodsky’s symmetric monoidal category \(\text{Sm}/k_+ \) of framed correspondences of level zero \([34]\) — a slight enlargement of \(\text{Sm}/k \), the category of smooth separated schemes of finite type over \(\text{Spec}(k) \).

Recall from \([19]\) that a framed motivic space is a pointed simplicial Nisnevich sheaf on the category of framed correspondences \(\text{Fr}_+(k) \). As noted in \(\S 2 \), \(\text{Sm}/k_+ \), the opposite category \(\Gamma^{\text{op}} \) and \(\text{Sm}/k_+ \), taking values in framed motivic spaces
\[
\mathcal{X}: \Gamma^{\text{op}} \otimes \text{Sm}/k_+ \longrightarrow \mathcal{M}^{\text{fr}}
\]
and call them framed motivic \(\Gamma \)-spaces (see Definition 2.5). We should note that there is a canonically induced faithful functor
\[
\mathcal{M}^{\text{fr}} \longrightarrow \mathcal{M}
\]
obtained from the composite
\[
\text{Sm}/k \longrightarrow \text{Sm}/k_+ \longrightarrow \text{Fr}_+(k).
\]
The definition of framed correspondences invented in \([34]\) uses an algebro-geometric analogue of a framing on the stable normal bundle of a manifold. We shall review additional background on (1), (2), and (3) in \(\S 2 \).

In our quest to carry over Segal’s programme for \(\Gamma \)-spaces to \(\mathbb{A}^1 \)-homotopy theory we begin by formulating some homotopical axioms for framed motivic \(\Gamma \)-spaces. These axioms concern both of the “variables” \(\Gamma^{\text{op}} \) and \(\text{Sm}/k_+ \) in (1). Informally speaking, the pointed finite sets accounts for the \(S^1 \)-suspension whereas the framed correspondences accounts for the \(\mathbb{G}_m \)-suspension in stable motivic homotopy theory. We may and will view \(\Gamma^{\text{op}} \) as the full subcategory of pointed finite sets with objects \(n_+ = \{0, \ldots, n\} \) pointed at 0 for every integer \(n \geq 0 \).

Every \(\Gamma \)-space gives rise to a simplicial functor and hence an associated \(S^1 \)-spectrum; for details, see \([10, \text{Chapter 2}] \). Similarly in the motivic setting, see (9), we show that every \(U \in \text{Sm}/k_+ \) and \(\mathcal{X} \) as in (1) give rise to a presheaf of \(S^1 \)-spectra \(\mathcal{X}(\mathbb{S}, U) \). We refer to \([24]\) for a comprehensive introduction to the homotopical algebra of such presheaves. In Axioms 1.1 below we employ the notions of local equivalences for simplicial presheaves \([24, \text{Chapter 4}] \) and stable local equivalences for presheaves of \(S^1 \)-spectra \([24, \text{Chapter 10}] \).

For \(n \geq 0 \) and every finitely generated field extension \(K/k \) we write \(\hat{\Delta}_K^n \) for the semilocalization of the standard algebraic \(n \)-simplex
\[
\Delta_K^n = \text{Spec}(K[x_0, \ldots, x_n]/(x_0 + \cdots + x_n - 1))
\]
with closed points the vertices \(v_0, \ldots, v_n \in \Delta_K^n \) — see \([32, \text{§3}] \) for the colimit preserving realization functor from simplicial sets to Nisnevich sheaves. We recall that \(v_i \) is the closed subscheme of \(\Delta_K^n \).
defined by \(x_j = 0 \) for \(j \neq i, \ 0 \leq i \leq n \). Following [31, §2] we write \(\hat{\Delta}_K^* \) for the corresponding cosimplicial semilocal scheme.

We are ready to introduce the main objects of study in this paper.

1.1. Axioms. A framed motivic \(\Gamma \)-space \(\mathcal{X} \) is called special if (1)-(5) holds:

1. We have \(\mathcal{X}(0_+, U) = \ast = \mathcal{X}(n_+, \emptyset) \) for all \(n \geq 0 \) and \(U \in \mathrm{Sm}/k_+ \), while for all \(n \geq 1 \) and nonempty \(U \in \mathrm{Sm}/k_+ \) the naturally induced morphism
\[
\mathcal{X}(n_+, U) \rightarrow \mathcal{X}(1_+, U) \times \cdots \times \mathcal{X}(1_+, U)
\]
is a local equivalence of pointed motivic spaces.

2. For all \(n \geq 0 \) and \(U \in \mathrm{Sm}/k_+ \) the framed presheaf of stable homotopy groups
\[
V \mapsto \pi^*_n \mathcal{X}(S, U)(V)
\]
is \(\mathbb{A}^1 \)-invariant, additive and \(\sigma \)-stable (see Remark 1.2).

3. (Cancellation) Let \(G \) denote the cone of the 1-section \(\mathrm{Spec}(k) \rightarrow \mathbb{G}_m \) in \(\Delta^\mathrm{op} \mathrm{Sm}/k_+ \). For all \(n \geq 0 \) and \(U \in \mathrm{Sm}/k_+ \) there is a canonical stable local equivalence
\[
\mathcal{X}(S, G^{\wedge n} \times U) \rightarrow \mathrm{Hom}(G, \mathcal{X}(S, G^{\wedge n+1} \times U)).
\]

4. (\(\mathbb{A}^1 \)-invariance) For all \(U \in \mathrm{Sm}/k_+ \) there is a naturally induced stable local equivalence
\[
\mathcal{X}(S, U \times \mathbb{A}^1) \rightarrow \mathcal{X}(S, U).
\]

5. (Nisnevich excision) For every elementary Nisnevich square in \(\mathrm{Sm}/k \)
\[
\begin{array}{ccc}
U' & \rightarrow & X' \\
\downarrow & & \downarrow \\
U & \rightarrow & X
\end{array}
\]
there is a homotopy cartesian square in the stable local model structure:
\[
\begin{array}{ccc}
\mathcal{X}(S, U') & \rightarrow & \mathcal{X}(S, X') \\
\downarrow & \downarrow & \downarrow \\
\mathcal{X}(S, U) & \rightarrow & \mathcal{X}(S, X)
\end{array}
\]

Moreover, a special framed motivic \(\Gamma \)-space \(\mathcal{X} \) is called very effective if (6) holds and very special if (7) holds.

6. (Suslin contractibility) For all \(U \in \mathrm{Sm}/k_+ \) and any finitely generated field extension \(K/k \), the geometric realization of the simplicial \(S^1 \)-spectrum
\[
\mathcal{X}(S, G \times U)(\hat{\Delta}_K^*)
\]
is contractible.
(7) (Grouplikeness) For all \(U \in \text{Sm}/k_+ \) the Nisnevich sheaf \(\pi^{\text{nis}}_0 \mathcal{X}(1_+, U) \) associated to the presheaf
\[
\pi_0 \mathcal{X}(1_+, U)(V)
\]
of connected components on \(\text{Sm}/k \) takes values in abelian groups.

1.2. Remark. The reader will recognize axioms (1) and (7) as sheaf versions of special and very special Segal \(\Gamma \)-spaces, respectively \[7, 29\]. Axiom (2) makes use of the assumption that \(X \) is a framed motivic \(\Gamma \)-space. A framed presheaf \(F \) is \(\sigma \)-stable if \(F(\sigma V) = \text{id} F(V) \) for all \(V \in \text{Sm}/k \). Here the level 1 explicit framed correspondence \((\{0\} \times V, \mathbb{A}^1 \times V, \text{pr}_{\mathbb{A}^1}, \text{pr}_V) \in \text{Fr}_1(V, V)\) defines a map \(\sigma_V : V \rightarrow V \) in \(\text{Fr}_+ (k) \); see \[19, \S 2\]. \(\mathcal{F} \) is radditive if \(\mathcal{F}(\emptyset) = * \) and \(\mathcal{F}(X_1 \sqcup X_2) = \mathcal{F}(X_1) \times \mathcal{F}(X_2) \) for all \(X_1, X_2 \in \text{Sm}/k \). In (3), \(\mathbb{G} \) is a simplicial object in \(\text{Sm}/k_+ \) with smash product \(\mathbb{G} \wedge^n \) formed in \(\Delta^{op}\text{Sm}/k_+ \) \[19, \text{Notation 8.1}\]. Axioms (2), (3), (4), and (5) are concerned with presheaves of \(S^1 \)-spectra as in \[24, \text{Part IV}\]. Axiom (6) traces back to Suslin’s work on rationally contractible presheaves in \[31\]; see also \[4\] and \[20\].

1.3. Example. An example of a quintessential special framed motivic \(\Gamma \)-space is given by
\[
(n_+, U) \in \Gamma^{op} \boxtimes \text{Sm}/k_+ \mapsto C_+ \text{Fr}(-, n_+ \otimes U) \in \mathcal{M}^{\text{fr}}.
\]
Here Fr refers to stable framed correspondences and \(C_+ \text{Fr}(-, X') \) to the simplicial framed functor \(X \mapsto \text{Fr}(X \times \Delta^n, X') \) — see \[19 \] and \[34\]. By \(K \otimes U \), where \(K \in \Gamma^{op} \) and \(U \in \text{Sm}/k \), we mean the coproduct of copies of \(U \) indexed by the non-based elements in \(K \).

The evaluation functor in (15) associates to every framed motivic \(\Gamma \)-space \(\mathcal{X} \) an object in the category of framed motivic spectra in the sense of \[20, \text{Definition 2.1}\]
\[
\mathcal{X}_{S^1, \mathbb{G}} \in \text{Sp}_{S^1, \mathbb{G}}^{\text{fr}}(k).
\]
Recall that the triangulated category of framed bispectra \(\text{SH}_{\text{nis}}^{\text{fr}}(k) \) whose objects are those of \(\text{Sp}_{S^1, \mathbb{G}}^{\text{fr}}(k) \) is equivalent to the stable motivic homotopy category \(\text{SH}(k) \) via the identity with quasi-inverse the big framed motive functor \[20, \text{Theorem 2.2}\]. The big framed motive functor is closely related to Example 1.3 — for details we refer to \[19, \text{Section 12}\].

For the purposes of this paper it is not necessary to discuss model structures on framed motivic \(\Gamma \)-spaces. Our next definition is inspired by Segal’s homotopy category of \(\Gamma \)-spaces \[29\].

1.4. Definition. The homotopy category of framed motivic \(\Gamma \)-spaces
\[
\mathcal{H}_{\Gamma, \mathbb{G}}(k)
\]
has objects special framed motivic \(\Gamma \)-spaces and with morphisms given by
\[
\mathcal{H}_{\Gamma, \mathbb{G}}(k)(\mathcal{X}, \mathcal{Y}) := \text{SH}_{\text{nis}}^{\text{fr}}(k)(\mathcal{X}_{S^1, \mathbb{G}}, \mathcal{Y}_{S^1, \mathbb{G}}).
\]
In §3 we discuss how $H_{\Gamma,Fr}^r(k)$ relates to the unstable pointed motivic homotopy category $H(k)$ and to connective motivic spectra $SH(k)_{\geq 0}$ via the commutative — up to equivalence of functors — diagram of adjunctions:

$$
\begin{array}{ccc}
H(k) & \xrightarrow{\Sigma^\infty} & SH(k)_{\geq 0} \\
\downarrow_{\Gamma M_{fr}} & & \downarrow_{\Gamma M_{fr}} \\
H_{\Gamma,Fr}^r(k) & \xrightarrow{\Omega S^1, G} & \mathcal{X} \\
\end{array}
$$

Here $\mathcal{X} \in H_{\Gamma,Fr}^r(k)$ is mapped to its underlying motivic space $\mathcal{X}(1_{+}, pt) \in H(k)$ and to its framed motivic spectrum $\mathcal{X}_{S^1, G} \in SH(k)_{\geq 0}$ under the equivalence between $SH_{fr}^r(k)$ and $SH(k)$ in [20]. We refer to Remark 3.2 for the definition of ΓM_{fr} — a version of the big framed motive functor introduced in [19, Section 12].

1.5. **Theorem.** For every infinite perfect field k there is an equivalence of categories

$$
H_{\Gamma,Fr}^r(k) \xrightarrow{\simeq} SH(k)_{\geq 0}
$$

Its quasi-inverse $SH(k)_{\geq 0} \xrightarrow{\simeq} H_{\Gamma,Fr}^r(k)$ takes $\mathcal{E} \in SH(k)_{\geq 0}$ to an explicitly constructed framed motivic Γ-space $\Gamma M_{fr}^{\mathcal{E}} \in H_{\Gamma,Fr}^r(k)$.

Let $SH^{eff}(k)$ be the full subcategory of $SH(k)$ that is generated under homotopy colimits and extensions by motivic \mathbb{P}^1-suspension spectra of smooth schemes. This category is of interest since it gives rise to the very effective slice filtration introduced in [30]. We note $SH^{eff}(k)$ is contained in the triangulated category $SH(k)_{\geq 0}$ — generated under homotopy colimits and extensions by motivic \mathbb{P}^1-suspension spectra $\Sigma^{p,q} U_+$, where $p \geq q$, and $U \in Sm/k$.

We shall study $SH^{eff}(k)$ from the point of view of framed motivic Γ-spaces.

1.6. **Definition.** The homotopy category of very effective framed motivic Γ-spaces

$$
H^{veffr}_{\Gamma,Fr}(k)
$$

is the full subcategory of $H_{\Gamma,Fr}^r(k)$ comprised of very effective special framed motivic Γ-spaces.

We show that Axiom (6) on Suslin contractibility of special framed motivic Γ-spaces captures precisely the difference between $SH^{veff}(k)$ and $SH(k)_{\geq 0}$.

1.7. **Theorem.** For every infinite perfect field k there is an equivalence of categories:

$$
H^{veffr}_{\Gamma,Fr}(k) \xrightarrow{\simeq} SH^{veff}(k)
$$

Finally, we employ Axiom (7) in our recognition principle for infinite motivic loop spaces.
1.8. **Theorem.** For every infinite perfect field \(k \) and every \(\mathcal{E} \in \text{SH}(k) \) there exists a very special framed motivic \(\Gamma \)-space \(\Gamma M^E_{fr} \) and a local equivalence of pointed motivic spaces:

\[
\Gamma M^E_{fr}(1_+, \text{pt}) \simeq \Omega^\infty_S \Omega^\infty_{G_E} \mathcal{E}
\]

(7)

Moreover, if \(\mathcal{X} \) is a very special framed motivic \(\Gamma \)-space then \(\mathcal{X}(1_+, \text{pt}) \) is an infinite motivic loop space.

Guide to the paper. For the convenience of the reader we begin §2 by reviewing background on enriched categories, with the aim of introducing framed motivic \(\Gamma \)-spaces. As prime examples we discuss the motivic sphere spectrum \(S \), algebraic cobordism \(\text{MGL} \), motivic cohomology \(\text{MZ} \), and Milnor-Witt motivic cohomology \(\tilde{\text{MZ}} \). Our main results, Theorems 1.5, 1.7, and 1.8 are shown in §3. Finally, in §4 we record some novel homotopical properties of framed motivic \(\Gamma \)-spaces.

Notation. Throughout the paper we employ the following notation.

\[\begin{align*}
 k, \text{pt} & \quad \text{infinite perfect field of exponential characteristic } e, \spec(k) \\
 \text{Sm}/k & \quad \text{smooth separated schemes of finite type} \\
 \text{Sm}/k_+ & \quad \text{framed correspondences of level zero} \\
 \text{Shv}_*(\text{Sm}/k) & \quad \text{closed symmetric monoidal category of pointed Nisnevich sheaves} \\
 \mathcal{M} & = \Delta^{op}\text{Shv}_*(\text{Sm}/k) \quad \text{pointed motivic spaces, a.k.a. pointed simplicial Nisnevich sheaves} \\
 \text{Fr}_+(k) & \quad \text{the category of framed correspondences} \\
 \text{Pre}^{fr}_+(k) & \quad \text{framed presheaves, a.k.a. presheaves of sets on Fr}_+(k) \\
 i: \text{Sm}/k \rightarrow \text{Fr}_+(k) & \quad \text{the composite functor Sm}/k \rightarrow \text{Sm}/k_+ \rightarrow \text{Fr}_+(k) \\
 S^{s,t}, \Omega^{s,t}, \Sigma^{s,t} & \quad \text{motivic } (s,t)\text{-sphere, loop space, and suspension} \\
 S_+ & \quad \text{pointed simplicial sets}
\end{align*}\]

Our standard convention for motivic spheres is that \(S^1 \simeq \mathbb{P}^1 \simeq T \) and \(S^{1,1} \simeq \mathbb{A}^1 \setminus \{0\} \) as in [26].

Relations to other works. Our approach in this paper is a homage to Segal’s work on categories and cohomology theories [29]. Along the same line we use minimal machinery to achieve concrete models for infinite motivic loop spaces and motivic spectra with prescribed properties. Based on Voevodsky’s notes [34], the machinery of framed motives is developed in [19]. As an application, explicit computations of infinite motivic loop spaces are given as follows: \(\Omega^\infty_S \Sigma^\infty_{\text{gp}}A, A \in \mathcal{M} \), is locally equivalent to the space \(C_+\text{Fr}(A^c)^{\text{gp}} \) (‘gp’ for group completion), where \(A^c \) is a projective cofibrant replacement of \(A \) — see [19, Section 10]. Based on [1, 19, 18, 17], a motivic recognition principle for infinite motivic loop spaces using the language of infinity categories is given in [14].

Acknowledgments. The authors gratefully acknowledge support by the RCN Frontier Research Group Project no. 250399 “Motivic Hopf Equations.” Some work on this paper took place at the Institut Mittag-Leffler in Djursholm and the Hausdorff Research Institute for Mathematics in Bonn; we thank both institutions for providing excellent working conditions, hospitality, and support. Østvær was partially supported by Friedrich Wilhelm Bessel Research Award from the Humboldt Foundation, Nelder Visiting Fellowship from Imperial College London, Professor Ingerid Dal and
2. Framed Motivic Γ-Spaces

We refer to [5] and [13] for the projective motivic model structure on the closed symmetric monoidal category of pointed motivic spaces \mathcal{M}. This model structure is combinatorial, proper, simplicial, symmetric monoidal, and weakly finitely generated. Let $\Delta[\bullet]$ be the standard cosimplicial simplicial set $n \mapsto \Delta[n]$. If there is no likelihood of confusion, we sometimes regard it as a cosimplicial smooth scheme, where each $\Delta[n]$ is regarded as the disjoint union $\bigsqcup_{\Delta[n]} \text{pt}$. The simplicial function object between pointed motivic spaces A and B is given by

$${}\mathcal{S}_\bullet(A, B) = \text{Hom}_{\mathcal{M}}(A \land \Delta[\bullet]_+, B) = \text{Hom}_{\mathcal{M}}(A, B(\Delta[\bullet] \times -)).$$

For every $U \in \text{Sm}/k$ the Yoneda lemma identifies $\mathcal{S}_\bullet(U_+, A)$ with the pointed simplicial set of sections $A(U)$.

Recall $A \in \mathcal{M}$ is finitely presentable if the functor $\text{Hom}_{\mathcal{M}}(A, -)$ preserves directed colimits. For example, the representable pointed motivic space U_+ is finitely presentable for every k-smooth scheme $U \in \text{Sm}/k$.

A collection \mathcal{C} of finitely presentable pointed motivic spaces can be enriched in \mathcal{M} by means of the \mathcal{M}-enriched Hom-functor

$$[A, B](X) := \text{Hom}_{\mathcal{M}}(A, B)(X) = \mathcal{S}_\bullet(A \land X_+, B) = \text{Hom}_{\mathcal{M}}(A \land \Delta[\bullet]_+, B(\Delta[\bullet] \times -)) = \text{Hom}_{\mathcal{M}}(A, B(\Delta[\bullet] \times -)), \quad A, B \in \mathcal{C}, X \in \text{Sm}/k. \quad (8)$$

The enriched composition in \mathcal{C} is inherited from the enriched composition in \mathcal{M}. We write $[\mathcal{C}, \mathcal{M}]$ for the category of \mathcal{M}-enriched covariant functors from \mathcal{C} to \mathcal{M}, and refer to [12, Section 4] for its projective model structure — the weak equivalences and fibrations are defined pointwise.

Voevodsky [34] defined the morphisms in Sm/k_+ by setting

$$\text{Sm}/k_+(X, Y) := \text{Hom}_{\text{Shv}^+(\text{Sm}/k)}(X_+, Y_+), \quad X, Y \in \text{Sm}/k.$$

In case X is connected we have $\text{Sm}/k_+(X, Y) = \text{Hom}_{\text{Sm}/k}(X, Y)_+$ by [34, Example 2.1].

2.1. Lemma. With the notation above we have identifications of constant simplicial sets

$$[U_+, V_+](X) = \text{Hom}_{\mathcal{M}}((U \times X)_+, V_+) = \text{Sm}/k_+(U \times X, V),$$

where $U, V, X \in \text{Sm}/k$.

Proof. By definition we have

$$[U_+, V_+](X) = \text{Hom}_{\mathcal{M}}(U_+, V_+)(X) = \text{Hom}_{\mathcal{M}}((U \times X)_+, V_+).$$

It is evident that $\text{Hom}_{\mathcal{M}}((U \times X)_+, V_+) = \text{Sm}/k_+(U \times X, V)$. \qed
2.2. **Remark.** In fact $\text{Sm}/k_+(-, V)$, $V \in \text{Sm}/k$, is the Nisnevich sheaf associated to the presheaf $U \mapsto \text{Hom}_{\text{Sm}/k}(U, V) \sqcup \text{pt}$.

Our first example is Segal’s category Γ^{op} of pointed finite sets and pointed maps.

2.3. **Example.** As in [19, Section 5] we view Γ^{op} as a full subcategory of \mathcal{M} by sending $K \in \Gamma^{\text{op}}$ to $(\sqcup_{K \times \ast \text{pt}}) = \sqcup_{K}$ — the coproduct is indexed by the non-based elements in K. This turns Γ^{op} into a symmetric monoidal \mathcal{M}-category. Hence $[\Gamma^{\text{op}}, \mathcal{M}]$ is a closed symmetric monoidal category by [9].

We claim that $[\Gamma^{\text{op}}, \mathcal{M}]$ can be identified with the category $\Gamma \mathcal{M}$ of covariant functors from Γ^{op} to \mathcal{M} sending 0_\ast to the basepoint \ast of \mathcal{M} — in this case $\mathcal{C} = \{\sqcup_{K \times \ast \text{pt}} \mid K \in \Gamma^{\text{op}}\}$: An \mathcal{M}-enriched functor $\mathcal{X} \in [\Gamma^{\text{op}}, \mathcal{M}]$ sends $K \in \Gamma^{\text{op}}$ to $\mathcal{X}(\sqcup_{K \times \ast \text{pt}}) \in \mathcal{M}$ and for $K, L \in \Gamma^{\text{op}}$ there is a morphism

$$\alpha_{K,L} : \mathcal{X}(\sqcup_{K \times \ast \text{pt}}) \to \mathcal{X}(\sqcup_{L \times \ast \text{pt}}).$$

Here the motivic space $[\sqcup_{K \times \ast \text{pt}}, \sqcup_{L \times \ast \text{pt}}]$ is given by

$$U \mapsto \Gamma^{\text{op}}(\sqcup_{K \times n(U)_+ \times \{\ast, +\}} \text{pt}, \sqcup_{L \times \ast \text{pt}}),$$

where $n(U)$ is the number of connected components of $U \in \text{Sm}/k$ and $n(U)_+ = \{0, 1, \ldots, n(U)\}$. Since \mathcal{X} takes values in simplicial sheaves it follows that

$$\mathcal{X}(K)(U) = \mathcal{X}(K)(U_1) \times \cdots \times \mathcal{X}(K)(U_{n(U)}),$$

and consequently we have

$$\alpha_{K,L}(U) = \alpha_{K,L}(U_1) \times \cdots \times \alpha_{K,L}(U_{n(U)}).$$

To a morphism $f : K \to L$ in Γ^{op} we associate the morphism $\mathcal{X}(\sqcup_{K \times \ast \text{pt}}) \to \mathcal{X}(\sqcup_{L \times \ast \text{pt}})$ with U-sections

$$\alpha_{K,L}(U_1)(f) \times \cdots \times \alpha_{K,L}(U_{n(U)})(f).$$

Clearly, this yields the identification of $[\Gamma^{\text{op}}, \mathcal{M}]$ with pointed functors from Γ^{op} to \mathcal{M}.

We are passing to the definition of the category of framed motivic spaces \mathcal{M}^{fr} and to its natural enrichment over \mathcal{M}. Let $\text{Fr}_+(k)$ be the category of framed correspondences as in [19, Section 2]. Let $\text{Pr}^{\text{fr}}(k)$ be the category of framed presheaves, that is the category of presheaves of sets on $\text{Fr}_+(k)$. Let $i : \text{Sm}/k \to \text{Sm}/k_+ \to \text{Fr}_+(k)$ be the composite functor. Recall from [19, Section 2] that a framed Nisnevich sheaf on Sm/k is a framed presheaf such that its restriction to Sm/k via the functor i is a Nisnevich sheaf. Let $\text{Shv}^{\text{fr}}(k)$ denote the category of pointed framed Nisnevich sheaves. The morphisms in this category are just morphisms of pointed framed presheaves. The category of framed motivic spaces \mathcal{M}^{fr} is the category of simplicial objects in $\text{Shv}^{\text{fr}}(k)$. There is a canonically induced faithful functor $\iota : \mathcal{M}^{\text{fr}} \to \mathcal{M}$ obtained from the composite $i : \text{Sm}/k \to \text{Sm}/k_+ \to \text{Fr}_+(k)$.

Following [34, Section 6] there is a natural pairing $\text{Sm}/k_+ \times \text{Fr}_+(k) \to \text{Fr}_+(k)$ taking (X,Y) to $X \times Y$ and (f, α) to $f \times \alpha$. In what follows this pairing will be used systematically without referring to it. We also use it in the natural enrichment of \mathcal{M}^{fr} over \mathcal{M}.
First, we can associate a framed Nisnevich sheaf $\mathcal{F}(X \times -)$ to every framed Nisnevich sheaf \mathcal{F} and every $X \in \text{Sm}/k_+$. In detail, given $\alpha \in \text{Fr}_+(U',U)$ put $\alpha^* : \mathcal{F}(X \times U) \rightarrow \mathcal{F}(X \times U')$ to be $(\text{id}_X \times \alpha)^*$. If \mathcal{F} is a pointed framed Nisnevich sheaf then the framed Nisnevich sheaf $\mathcal{F}(X \times -)$ is pointed also.

Second, every morphism $f : X' \rightarrow X$ in Sm/k_+ induces a morphism of framed sheaves $f^* : \mathcal{F}(X \times -) \rightarrow \mathcal{F}(X' \times -)$. Namely, if $U \in \text{Fr}_+(k)$ one sets $f^* : \mathcal{F}(X \times U) \rightarrow \mathcal{F}(X' \times U)$ to be $(f \times \text{id}_U)^*$. If \mathcal{F} is a pointed framed Nisnevich sheaf, then the morphism of framed sheaves $f^* : \mathcal{F}(X \times -) \rightarrow \mathcal{F}(X' \times -)$ is a morphism of pointed framed Nisnevich sheaves.

Finally, similarly to (8), \mathcal{M}^{fr} is naturally enriched over \mathcal{M}. Namely,

$$\mathcal{M}(A,B)(X) := \text{Hom}_{\mathcal{M}}(A,B(\Delta(\bullet) \times -)), \quad A,B \in \mathcal{M}^{fr}, X \in \text{Sm}/k.$$

The enriched composition in \mathcal{M}^{fr} is inherited from the enriched composition in \mathcal{M}.

Our second example is Voevodsky’s category of framed correspondences of level zero.

2.4. Example. We enrich Sm/k_+ in \mathcal{M} by setting

$$[U,V] := \text{Hom}_{\mathcal{M}}(U_+,V_+), \quad U,V \in \text{Sm}/k_+.$$

This turns Sm/k_+ into a symmetric monoidal \mathcal{M}-category with tensor products $U \times V \in \text{Sm}/k$. It follows that $[\text{Sm}/k_+,\mathcal{M}]$ is a symmetric monoidal \mathcal{M}-category [9]. Framed correspondences of level zero form the underlying category of the \mathcal{M}-category Sm/k_+. According to Lemma 2.1 the pointed motivic space $[U,V]$ has Y-sections the constant simplicial set

$$[U,V](Y) = \text{Hom}_{\mathcal{M}}((U \times Y)_+,V_+) = \text{Sm}/k_+(U \times Y,V).$$

Owing to the \mathcal{M}-enrichment every $\mathcal{X} \in [\text{Sm}/k_+,\mathcal{M}]$ gives rise to a morphism

$$[U,V] \rightarrow \text{Hom}_{\mathcal{M}}(\mathcal{X}(U),\mathcal{X}(V)).$$

On Y-sections we obtain a morphism from $[U,V](Y)$ to

$$\text{Hom}_{\mathcal{M}}(\mathcal{X}(U),\mathcal{X}(V))(Y) = S_{\bullet}(\mathcal{X}(U) \wedge Y_+,\mathcal{X}(V)) =$$

$$S_{\bullet}(\mathcal{X}(U),\mathcal{X}(V)(Y \times -)) = \text{Hom}_{\mathcal{M}}(\mathcal{X}(U) \wedge \Delta(\bullet)_+,\mathcal{X}(V)(Y \times -)).$$

The monoidal product $\Gamma^{op} \boxtimes \text{Sm}/k_+$ is the \mathcal{M}-category with objects $\text{Ob}\Gamma^{op} \times \text{Ob}\text{Sm}/k_+$ and

$$[(K,A),(L,B)] = [K,L] \times [A,B].$$

Note that $\Gamma^{op} \boxtimes \text{Sm}/k_+$ is a symmetric monoidal \mathcal{M}-category.

2.5. Definition. (1) A motivic Γ-space is an \mathcal{M}-enriched functor $\mathcal{X} : \Gamma^{op} \boxtimes \text{Sm}/k_+ \rightarrow \mathcal{M}$.

(2) A framed motivic Γ-space is an \mathcal{M}-enriched functor $\mathcal{X} : \Gamma^{op} \boxtimes \text{Sm}/k_+ \rightarrow \mathcal{M}^{fr}$.

2.6. Remark. Let $\Gamma^{op} \times \text{Sm}/k_+$ denote the underlying category of the \mathcal{M}-category $\Gamma^{op} \boxtimes \text{Sm}/k_+$. Every motivic Γ-space $\mathcal{X} : \Gamma^{op} \boxtimes \text{Sm}/k_+ \rightarrow \mathcal{M}$ gives rise to a functor $\mathcal{X} : \Gamma^{op} \times \text{Sm}/k_+ \rightarrow \mathcal{M}$ denoted by the same letter.

Unravelling the previous definition, a framed motivic Γ-space is equivalent to giving the following data:
\(\triangleright\) an \(\mathcal{M}\)-functor \(\mathcal{X} : \Gamma^\text{op} \boxtimes \text{Sm}/k_+ \to \mathcal{M}\);

\(\triangleright\) a functor \(\mathcal{X} : \Gamma^\text{op} \times \text{Sm}/k_+ \to \mathcal{M}\);

\(\triangleright\) the induced functor \(\mathcal{X} : \Gamma^\text{op} \times \text{Sm}/k_+ \to \mathcal{M}\) equals the composite functor \(\Gamma^\text{op} \times \text{Sm}/k_+ \xrightarrow{\mathcal{X}'} \mathcal{M}^\text{fr} \to \mathcal{M}\) such that the canonical morphism

\[[U,V](Y) \to \text{Hom}_{\mathcal{M}}(\mathcal{X}(K,U), \mathcal{X}(K,V)(Y \times -)) \]

factors through \(\text{Hom}_{\mathcal{M}}(\mathcal{X}'(K,U), \mathcal{X}'(K,V)(Y \times -))\) for all \(K \in \Gamma^\text{op}, U,V,Y \in \text{Sm}/k_+\).

2.7. Evaluation Functors. Every motivic \(\Gamma\)-space \(\mathcal{X} \in [\Gamma^\text{op} \boxtimes \text{Sm}/k_+, \mathcal{M}]\) and \(U \in \text{Sm}/k_+\) gives rise to an enriched functor \(\mathcal{X}(U) \in [\Gamma^\text{op}, \mathcal{M}]\). In Example 2.3 we identified \(\mathcal{X}(U)\) with the datum of a pointed functor from \(\Gamma^\text{op}\) to \(\mathcal{M}\). Following [10, Example 2.1.2.1] by the sphere spectrum we mean the inclusion \(S : \Gamma^\text{op} \hookrightarrow S_*\). By taking the left Kan extension along the sphere spectrum \(S : \Gamma^\text{op} \hookrightarrow S_*\) we obtain the evaluation functor with values in motivic \(S^1\)-spectra

\[\text{ev}_{S^1} : [\Gamma^\text{op}, \mathcal{M}] \to \text{Sp}_{S^1}(k) \]

\(\mathcal{X}(U) \to \mathcal{X}(S,U) = (\mathcal{X}(S^0)(U), \mathcal{X}(S^1)(U), \mathcal{X}(S^2)(U), \ldots)\).

We refer to \(\mathcal{X}(S,pt)\) as the underlying motivic \(S^1\)-spectrum of \(\mathcal{X}\).

On the other hand, for \(K \in \Gamma^\text{op}\) we obtain an enriched functor \(\mathcal{X}(K) \in [\text{Sm}/k_+, \mathcal{M}]\) — see Example 2.4. Moreover, for \(U,V \in \text{Sm}/k_+\) there are natural morphisms in \(\mathcal{M}\)

\[V_+ \to [U,U \times V] \to \text{Hom}_{\mathcal{M}}(\mathcal{X}(K)(U), \mathcal{X}(K)(U \times V)) \]

By adjunction we obtain morphisms

\[\mathcal{X}(K)(U) \land V_+ \to \mathcal{X}(K)(U \times V) \quad \text{and} \quad \mathcal{X}(K)(U) \to \text{Hom}_{\mathcal{M}}(V_+, \mathcal{X}(K)(U \times V)). \]

(10)

The simplices of \(G \in \Delta^\text{op}\text{Sm}/k_+\) consist of finite disjoint unions \(G_{m,\leq n}^{\leq \infty}\) of copies of the multiplicative group scheme \(G_m\) and \(pt\). Namely, the simplices are \(G_m, G_m \sqcup pt, G_m \sqcup pt \sqcup pt, \ldots\) (we also refer the reader to [19, Notation 8.1]). As a special case of (10) we have

\[\mathcal{X}(K)(U) \land (G_{m,\leq n}^{\leq \infty})_+ \to \mathcal{X}(K)(U \times G_{m,\leq n}^{\leq \infty}) \quad \text{and} \quad \mathcal{X}(K)(U) \to \text{Hom}_{\mathcal{M}}((G_{m,\leq n}^{\leq \infty})_+, \mathcal{X}(K)(U \times G_{m,\leq n}^{\leq \infty})). \]

(11)

For the smash powers of \(G\) we define the morphisms

\[\mathcal{X}(K)(G^{\leq n}) \land G_+ \to \mathcal{X}(K)(G^{\leq n+1}) \quad \text{and} \quad \mathcal{X}(K)(G^{\leq n}) \to \text{Hom}_{\mathcal{M}}(G_+, \mathcal{X}(K)(G^{\leq n+1})). \]

(12)

to be the geometric realization of

\[\{ \mathcal{X}(K)((G^{\leq n})_t) \land (G_+)_t \to \mathcal{X}(K)((G^{\leq n+1})_t) \} \]

\[l \mapsto \{ \mathcal{X}(K)((G^{\leq n})_t) \land (G_+)_t \to \mathcal{X}(K)((G^{\leq n+1})_t) \} \]
and

\[I \mapsto \{ X(K)((G^m)_I) \to \text{Hom}_\mathcal{M}((G_+)_I, X(K)((G^m+1)_I)) \} \]

obtained from (11). Due to (12) we obtain the evaluation functor with values in motivic G-spectra

\[\text{ev}_G : [\text{Sm}/k_+\text{, }\mathcal{M}] \to \text{Sp}_G(k) \]

(13)

\[X \mapsto X(\mathcal{X}(K)(\text{pt}), X(\mathcal{X}(K)(G)), X(\mathcal{X}(G^2), \ldots)). \]

We refer to [11, Chapter 3, Section 2.3] for a discussion of the category \(\text{Sp}_{S^{1},G}(k) \) of motivic \((S^1, G) \)-bispectra. Its associated homotopy category is equivalent to \(\text{SH}(k) \). Combining (9) and (13) we obtain the evaluation functor:

\[\text{ev}_{S^{1},G} : [\Gamma^{op} \boxtimes \text{Sm}/k_+, \mathcal{M}] \to \text{Sp}_{S^{1},G}(k) \]

(14)

\[\mathcal{X} \mapsto \mathcal{X}_{S^{1},G} = \text{ev}_{S^{1},G}(\mathcal{X}). \]

More precisely, for \(i, j \geq 0 \) we have

\[\text{ev}_{S^{1},G}(\mathcal{X})_{i,j} = X(\mathcal{X}_{S^{1},G}(S^i, G^j)) \in \mathcal{M}. \]

The evident structure maps turn \(\mathcal{X}_{S^{1},G} \) into a motivic \((S^1, G) \)-bispectrum.

In turn, let \([\Gamma^{op} \boxtimes \text{Sm}/k_+, \mathcal{M}^{fr}] \) denote the category of \(\mathcal{M} \)-enriched functors from \(\Gamma^{op} \boxtimes \text{Sm}/k_+ \) to \(\mathcal{M}^{fr} \). Its objects are the framed motivic \(\Gamma \)-spaces following Definition 2.5. If \(\mathcal{X} \) is a framed motivic \(\Gamma \)-space then the structure morphisms

\[X(S^i, G^j) \to \text{Hom}(S^1, X(S^i+1, G^j)) \]

\[X(S^i, G^j) \to \text{Hom}(G_+, X(S^i+1, G^j+1)) \]

are morphisms in \(\mathcal{M}^{fr} \). Therefore \(\mathcal{X}_{S^{1},G} \in \text{Sp}^{fr}_{S^{1},G}(k) \) is a framed motivic \((S^1, G) \)-bispectrum in the sense of [20, Definition 2.1]. Similarly to (14) we obtain the evaluation functor:

\[\text{ev}^{fr}_{S^{1},G} : [\Gamma^{op} \boxtimes \text{Sm}/k_+, \mathcal{M}^{fr}] \to \text{Sp}^{fr}_{S^{1},G}(k) \]

(15)

\[\mathcal{X} \mapsto \mathcal{X}_{S^{1},G} = \text{ev}^{fr}_{S^{1},G}(\mathcal{X}). \]

2.8. Example. For every \(X \in \text{Sm}/k \) we can form the motivic \(\Gamma \)-space with sections

\[(K, U) \mapsto \text{Sm}/k_+(-, K \otimes (X \times U)). \]

Its evaluation is the suspension bispectrum \(\Sigma_{G} \Sigma_{G} X_+ \) of \(X \). Similarly, we can form the special framed motivic \(\Gamma \)-space \(\text{Hom}(X, C_{\text{Fr}}) \) with sections

\[(K, U) \mapsto C_{\text{Fr}}(-, K \otimes (X \times U)). \]

Its underlying motivic \(S^1 \)-spectrum \(\text{Hom}(X, C_{\text{Fr}})(\mathbb{S}, \text{pt}) \) is the framed motive of \(X \) [19].

There is a natural morphism of motivic \(\Gamma \)-spaces

\[\text{Sm}/k_+(-, - \otimes (X \times -)) \to C_{\text{Fr}}(-, - \otimes (X \times -)). \]

(16)
By [19, Theorem 11.1] the evaluation functor in (14) takes the morphism in (16) to a stable motivic equivalence. In particular, the special framed motivic Γ-space $\text{Hom}(pt, C, \text{Fr})$ is a model for the motivic sphere 1.

By linearization we obtain the special framed motivic Γ-space $\text{Hom}(X, C, \mathbb{Z}F)$ with sections

$$(K, U) \mapsto C, \mathbb{Z}F((-K \otimes (X \times U))).$$

The underlying motivic S^1-spectrum $\text{Hom}(X, C, \mathbb{Z}F)(\mathbb{S}, pt)$ is the linear framed motive of X [19].

2.9. Example. Let \mathcal{E} be a motivic symmetric Thom T- or T^2-spectrum with a bounding constant $d \leq 1$ and contractible alternating group action in the sense of [16, Section 1] — the main examples are algebraic cobordism MGL [32] and the T^2-spectra MSL, MSp in [27] (in all of these cases $d = 1$). Under these assumptions there exists a special framed motivic Γ-space $\text{Hom}(X, C, \text{Fr}^\mathcal{E})$ with sections

$$(K, U) \mapsto C, \text{Fr}^\mathcal{E}((-K \otimes (X \times U))).$$

The evaluation $\text{ev}_{\mathcal{E}} : (\text{Hom}(X, C, \text{Fr}^\mathcal{E}))$ agrees with $\mathcal{E} \wedge X_+$ by the proof of [16, Theorem 9.13]. Moreover, $\text{Hom}(X, C, \text{Fr}^\mathcal{E})(\mathbb{S}, pt)$ is the \mathcal{E}-framed motive of X in the sense of [16, Section 9].

Likewise, we obtain the special framed motivic Γ-space $\text{Hom}(X, C, \mathbb{Z}F^\mathcal{E})$, whose underlying motivic S^1-spectrum is the linear \mathcal{E}-framed motive of X defined in [16, Section 9].

2.10. Example. Suppose that \mathcal{A} is a strict category of Voevodsky correspondences in the sense of [15, Definition 2.3] and there exists a functor $\text{Fr}^\mathcal{A}(k) \rightarrow \mathcal{A}$ which is the identity map on objects. Examples include finite Milnor-Witt correspondences Cor [8], finite correspondences Cor [33], and K^0_0-correspondences [36]. We define C, \mathcal{A} to be the very special framed motivic Γ-space with sections the Suslin complex of the Nisnevich sheaf $\mathcal{A}(-, K \otimes U)^{\text{nisl}}$ — sectionwise we have

$$(K, U) \mapsto C, \mathcal{A}((-K \otimes (X \times U)).$$

Note that $\text{Hom}(X, C, \mathcal{A})(\mathbb{S}, pt)$ is the \mathcal{A}-motive of X defined in [15, Section 2], where $\text{Hom}(X, C, \mathcal{A})$ stands for the very special framed motivic Γ-space with sections $(K, U) \mapsto C, \mathcal{A}((-K \otimes (X \times U)).$

2.11. Remark. The motivic Γ-spaces in Examples 2.8, 2.9, and 2.10 share the common trait of factoring through the functor $\otimes: \text{Gr}^\text{op} \otimes \text{Sm}/k_+ \rightarrow \text{Sm}/k_+$.

3. SPECIAL FRAMED MOTIVIC Γ-SPACES AND INFINITE MOTIVIC LOOP SPACES

Let \mathcal{E} be a motivic (S^1, G)-bispectrum. Using the nth weight motivic S^1-spectrum $\mathcal{E}(n)$ of \mathcal{E}—

defined by $\mathcal{E}(n) = \mathcal{E}_{i, n}$ — we write $\mathcal{E} = (\mathcal{E}(0), \mathcal{E}(1), \ldots)$. For integers $p, n \in \mathbb{Z}$ let $\pi_{p,n}^\mathcal{E}$ be the Nisnevich sheaf on Sm/k associated to the presheaf

$$U \mapsto \text{SH}(k)(U_+ \wedge S^{p-n} \wedge G^{\wedge n}, \mathcal{E}).$$

Recall that \mathcal{E} is connective if $\pi_{p,n}^\mathcal{E} = 0$ for all $p < n$. Similarly, a motivic S^1-spectrum $\mathcal{E} \in \text{Sp}_{S^1}(k)$ is connective if $\pi_{n}^\mathcal{E}$ is connective if $\pi_{n}^\mathcal{E} = 0$ for all $n < 0$. For a Nisnevich sheaf F of abelian groups on Sm/k, let F_{-1} denote the Nisnevich sheaf given by $U \mapsto \ker(1^*: F(U \times \mathbb{G}_m) \rightarrow F(U))$.
3.1. **Lemma.** A framed motivic (S^1,\mathbb{G})-bispectrum $\mathcal{E} = (\mathcal{E}(0), \mathcal{E}(1), \ldots)$ in the sense of [20, Section 2] is connective if and only if $\mathcal{E}(n)$ is a connective motivic S^1-spectrum for every $n \geq 0$.

Proof. Without loss of generality we may assume that the underlying motivic bispectrum \mathcal{E} is fibrant (we use here [20, Lemma 2.6]). Writing $|−|$ for the absolute value we have $\pi^{\mathcal{E}}_{p,n} = \pi^{\mathcal{E}}_{p,n}(\mathcal{E}(n))$ if $n \leq 0$, while $\pi^{\mathcal{E}}_{p,n} = \pi^{\mathcal{E}}_{p,n}(\mathcal{E}(0))$ if $n > 0$. Here $\pi^{\mathcal{E}}_{p,n}$ denotes the Nisnevich sheaf associated to \mathcal{E}. The proof of the sublemma in [19, Section 12] shows that

$$\pi^{\mathcal{E}}_{p,n}(\mathcal{E}(0)) = \pi^{\mathcal{E}}_{p,n}(\mathcal{E}(0)) - n.$$

If \mathcal{E} is connective then $\pi^{\mathcal{E}}_{p,n}(\mathcal{E}(n)) = 0$ for all $n \leq 0$ and $p < n$. In particular, for all $s > 0$ and $n \leq 0$, the sheaf $\pi^{\mathcal{E}}_{n}(\mathcal{E}(n))$ is trivial. The converse implication is evident. □

Recall that $Sp_{S^1}(k)$ is naturally enriched in \mathcal{M} — see the proof of [22, Theorem 6.3]. In fact, for $\mathcal{E}, \mathcal{F} \in Sp_{S^1}(k)$ one defines $\mathcal{M}(\mathcal{E}, \mathcal{F})$ as the equalizer of the diagram

$$\prod_n \mathcal{M}(\mathcal{E}_n, \mathcal{F}_n) \longrightarrow \prod_n \mathcal{M}(\mathcal{E}_n, \mathcal{F}_n).$$

(17)

Here we employ the morphism $\mathcal{M}(\mathcal{E}_n, \mathcal{F}_n) \longrightarrow \mathcal{M}(\mathcal{E}_n, \mathcal{F}_n)$ induced by the adjoint of the structure maps of \mathcal{F}, and the canonically induced morphism

$$\mathcal{M}(\mathcal{E}_{n+1}, \mathcal{F}_{n+1}) \rightarrow \mathcal{M}(\mathcal{E}_n \wedge S^1, \mathcal{F}_{n+1}) \cong \mathcal{M}(\mathcal{E}_n, \mathcal{F}_n).$$

We shall refer to $Sp_{S^1}([Sm/k_+, \mathcal{M}])$ as the category of spectral functors — see [20, Section 5]. The objects are S^1-spectra in the closed symmetric monoidal \mathcal{M}-category $[Sm/k_+, \mathcal{M}]$ introduced in Example 2.4. Similarly to (13), see [20, Section 5, (3)], there exists an evaluation functor

$$ev \mathcal{G} : Sp_{S^1}([Sm/k_+, \mathcal{M}]) \rightarrow Sp_{S^1}(k).$$

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. For $\mathcal{X} \in H_{\mathcal{G}}^f(k)$ and $n \geq 0$, see Definition 1.4, the geometric realization functor furnishes the associated \mathcal{M}-enriched functor

$$\mathcal{X}(\mathcal{G}^\wedge n) : = |l \rightarrow \mathcal{X} (\mathcal{G}^\wedge n)| \in [\Gamma_{\mathcal{G}}^\mathcal{M}, \mathcal{M}].$$

Owing to Example 2.3 this is a pointed functor from $\Gamma_{\mathcal{G}}^\mathcal{M}$ to \mathcal{M}. Applying the functor $ev_{\mathcal{G}}$ in (9) yields the motivic S^1-spectrum $ev_{\mathcal{G}}(\mathcal{X}(\mathcal{G}^\wedge n)) = \mathcal{X}(\mathcal{G}^\wedge n)$. By [20, Lemma 2.5] $\mathcal{X}(\mathcal{G}^\wedge n)$ is \mathcal{A}^1-local. Moreover, $\mathcal{X}(\mathcal{S}, \mathcal{G}^\wedge n)$ is sectionwise connective because on every section it is the S^1-spectrum associated to a Γ-space. It follows that $\mathcal{X}(\mathcal{S}, \mathcal{G}^\wedge n)$ is a connective motivic S^1-spectrum for every $n \geq 0$. For the evaluation functor $ev_{\mathcal{S}, \mathcal{G}}$ in (14) we have

$$ev_{\mathcal{S}, \mathcal{G}}(\mathcal{X})(n) = \mathcal{X}(\mathcal{S}, \mathcal{G}^\wedge n).$$

Combined with Lemma 3.1 we conclude that $ev_{\mathcal{S}, \mathcal{G}}(\mathcal{X}) \in SH(k)_{\geq 0}$. Therefore we obtain the induced evaluation functor

$$ev_{\mathcal{S}, \mathcal{G}} : H_{\mathcal{G}}^f(k) \rightarrow SH(k)_{\geq 0}.$$
By the construction of $H_{Fr}^G(k)$ — see Definition 1.4 — the functor $ev_{S^1}^G$ in (18) is fully faithful. It remains to show essential surjectivity — this is the most interesting part of the proof.

Suppose \mathcal{E} is a cofibrant and fibrant symmetric motivic (S^1, G)-bispectrum. Then there exists a framed spectral functor \mathcal{M}^G_{Fr} in the sense of [20, Definition 6.1] such that $ev_{G}(\mathcal{M}^G_{Fr})$ is naturally isomorphic to \mathcal{E} in $SH(k)$ — see [20, Section 6]; in fact, \mathcal{M}^G_{Fr} enables the equivalence between $SH(k)$ and framed spectral functors in [20, Theorem 6.3, Definition 6.5].

We briefly recall the construction of \mathcal{M}^G_{Fr} since it is important for the details of this proof. The motivic spaces $C_i Fr(\mathcal{E}_{i,j})$ conspire into a motivic (S^1, G)-bispectrum $C_i Fr(\mathcal{E})$. For $n \geq 0$ we let $R^n_G C_i Fr(\mathcal{E})$ denote $\text{Hom}(G^\wedge n, C_i Fr(\mathcal{E}[n]))$, where $\mathcal{E}[n]$ is the nth shift of \mathcal{E} in the G-direction. In weight $i \geq 0$ we have the motivic S^1-spectrum

$$R^n_G C_i Fr(\mathcal{E})(i) = \text{Hom}(G^\wedge n, C_i Fr(\mathcal{E}(n+i))).$$

There is a canonical morphism of motivic (S^1, G)-bispectra

$$R^n_G C_i Fr(\mathcal{E}) \to R^{n+1}_G C_i Fr(\mathcal{E}),$$

and we set

$$R^n_G C_i Fr(\mathcal{E}) := \text{colim}(C_i Fr(\mathcal{E}) \to R^1_G C_i Fr(\mathcal{E}) \to R^2_G C_i Fr(\mathcal{E}) \to \cdots).$$

Owing to [20, Claim 2, Section 6] there are stable motivic equivalences

$$\mathcal{E} \to C_i Fr(\mathcal{E}) \to R^n_G C_i Fr(\mathcal{E}).$$

For $n \geq 0$ we define the spectral functor $G^\wedge C_i Fr(\mathcal{E})[n]$ sectionwise by

$$U \mapsto \text{Hom}(G^\wedge n, C_i Fr(\mathcal{E}(n+U))).$$

By construction there is a natural morphism of spectral functors

$$G^\wedge C_i Fr(\mathcal{E})[n] \to G^\wedge C_i Fr(\mathcal{E})[n+1],$$

and we set

$$\mathcal{M}^G_{Fr} := \text{colim}(G^\wedge C_i Fr(\mathcal{E})[0] \to G^\wedge C_i Fr(\mathcal{E})[1] \to \cdots).$$

By [20, Lemma 6.6] there is a morphism of motivic (S^1, G)-bispectra

$$ev_{G}(\mathcal{M}^G_{Fr}) \to R^n_G C_i Fr(\mathcal{E}).$$

In every weight, (19) is a stable local equivalence of motivic S^1-spectra due to [20, Lemma 6.7]. This implies the zigzag of stable motivic equivalences

$$\mathcal{E} \to R^n_G C_i Fr(\mathcal{E}) \leftrightarrow ev_{G}(\mathcal{M}^G_{Fr}),$$

and therefore an isomorphism in $SH(k)$

$$ev_{G}(\mathcal{M}^G_{Fr}) \cong \mathcal{E}. \quad (20)$$
For $U \in \text{Sm}/k_+$ the motivic S^1-spectrum $\mathcal{M}^\infty_{fr}(U)$ is not necessarily a sectionwise Ω-spectrum. However, the said property holds for the framed spectral functor \mathcal{M}^∞_{fr} with sections

$$U \mapsto \Theta^\infty_{S^1}(\mathcal{M}^\infty_{fr}(U)).$$

Here $\Theta^\infty_{S^1}$ is the motivic S^1-stabilization functor defined in [22, Definition 4.2]. By construction there is a canonical morphism

$$\mathcal{M}^\infty_{fr}(U) \rightarrow \mathcal{M}^\infty_{fr}(U).$$

We note that (21) is a sectionwise stable equivalence of motivic S^1-spectra.

Next we use (17) to define the motivic Γ-space $\Gamma \mathcal{M}^\infty_{fr}$ by setting

$$\Gamma \mathcal{M}^\infty_{fr}(n_+, U) := \mathcal{M}(S^{\times n}, \mathcal{M}^\infty_{fr}(U)), \quad n \geq 0, U \in \text{Sm}/k.$$

Here the S^1-spectrum $S^{\times n} := S \times \cdots \times S$ is regarded as a constant motivic S^1-spectrum. For all $U, V \in \text{Sm}/k_+$ and the adjunction (ev_{S^1}, Φ) between Γ-spaces and spectra in [7, Section 5] we have

$$\Gamma \mathcal{M}^\infty_{fr}(n_+, U)(V) = \Phi(\mathcal{M}^\infty_{fr}(U)(V))(n_+) = S_*(S^{\times n}, \mathcal{M}^\infty_{fr}(U)(V)).$$

This expression determines the values of Φ at the S^1-spectrum $\mathcal{M}^\infty_{fr}(U)(V)$. Moreover, the counit $\text{ev}_{S^1} \circ \Phi \rightarrow \text{id}$ induces a morphism of spectral functors

$$\text{ev}_{S^1}(\Gamma \mathcal{M}^\infty_{fr}) \rightarrow \mathcal{M}^\infty_{fr}.$$ \hfill (23)

By construction, $\Gamma \mathcal{M}^\infty_{fr}$ is a framed motivic Γ-space in the sense of Definition 2.5. Moreover, in weight $n \geq 0$, (21) induces a sectionwise stable equivalence of motivic S^1-spectra

$$\text{ev}_G(\mathcal{M}^\infty_{fr})(n) \rightarrow \text{ev}_G(\mathcal{M}^\infty_{fr})(n).$$

In combination with (20) we deduce an isomorphism in $\text{SH}(k)$

$$\text{ev}_G(\mathcal{M}^\infty_{fr}) \cong \mathcal{E}.$$ \hfill (24)

We will show that $\Gamma \mathcal{M}^\infty_{fr}$ satisfies (1)-(4) in Axioms 1.1 and also (5) provided $\mathcal{E} \in \text{SH}(k)_{\geq 0}$.

Clearly we have $\Gamma \mathcal{M}^\infty_{fr}(0_+, U) = * = \Gamma \mathcal{M}^\infty_{fr}(n_+, \emptyset)$ for all $U \in \text{Sm}/k_+$ and $n \geq 0$. Moreover, the canonical sectionwise stable equivalence of cofibrant motivic S^1-spectra

$$S \vee \cdots \vee S \rightarrow S \times \cdots \times S$$

induces — via (17) and (22) — the sectionwise equivalence of motivic spaces

$$\Gamma \mathcal{M}^\infty_{fr}(n_+, U) = \mathcal{M}(S^{\times n}, \mathcal{M}^\infty_{fr}(U)) \rightarrow \mathcal{M}(S^{\times n}, \mathcal{M}^\infty_{fr}(U)) \cong \Gamma \mathcal{M}^\infty_{fr}(1_+, U)^{\times n}.$$

This establishes Axiom (1).

For $U \in \text{Sm}/k_+$ the presheaf of stable homotopy groups $\pi_* \text{ev}_{S^1}(\Gamma \mathcal{M}^\infty_{fr}(U))$ is isomorphic to $\pi_* \mathcal{M}^\infty_{fr}(U)$ if $n \geq 0$ and trivial if $n < 0$ — this follows as in [7, Theorem 5.1]. By (21) there is an isomorphism of presheaves between $\pi_* \mathcal{M}^\infty_{fr}(U)$ and $\pi_* (\mathcal{M}^\infty_{fr}(U))$. Since the former is framed in addition to being \mathbb{A}^1- and σ-invariant, the same holds for $\pi_* \text{ev}_{S^1}(\Gamma \mathcal{M}^\infty_{fr}(U))$. This shows that Axiom (2) holds.
Axioms (3) and (4) hold because M_{fr}^ϕ is a framed spectral functor and the presheaves of stable homotopy groups $\pi_n ev_S(\Gamma M_{fr}^\phi(U))$ of the connective A^1-local motivic S^1-spectrum $ev_S(\Gamma M_{fr}^\phi(U))$ are isomorphic to $\pi_n(M_{fr}^\phi(U))$ for all $n \geq 0$ and $U \in Sm/k_+$.

Axiom (5) holds if we assume $E \in SH(k)_{\geq 0}$. Indeed, the proof of [20, Theorem 6.3] shows $E \wedge U_+ \in SH(k)_{\geq 0}$ is isomorphic to $ev_S(M_{fr}^\phi(\cdot \times U))$ for all $U \in Sm/k_+. Here M_{fr}^\phi(\cdot \times U)$ is the framed spectral functor with sections

$$X \mapsto M_{fr}^\phi(X \times U).$$

By Lemma 3.1 the A^1-local motivic S^1-spectrum $M_{fr}^\phi(U)$ is connective. Indeed, $M_{fr}^\phi(U)$ is the zeroth weight of the framed bispectrum $ev_S(M_{fr}^\phi(\cdot \times U))$ whose weights are A^1-local by [20, Lemma 2.6]. Thus for all $U \in Sm/k_+$ the morphism (23) yields a stable local equivalence of connective motivic S^1-spectra

$$\Gamma M_{fr}(S, U) \rightarrow M_{fr}^\phi(U).$$

We conclude $\Gamma M_{fr}(S, \cdot)$ is a framed spectral functor and the framed motivic Γ-space ΓM_{fr}^ϕ satisfies Nisnevich excision as in Axiom (5). This completes the proof.

3.2. Remark. The proof of Theorem 1.5 shows that a quasi-inverse functor ΓM_{fr} to the equivalence $ev_{S^1,G} : H_{fr}^{G}(\cdot) \rightarrow SH(k)_{\geq 0}$ is given as follows: For $E \in SH(k)_{\geq 0}$ take a functorial cofibrant and fibrant replacement E' in the stable model structure on symmetric motivic (S^1,G)-bispectra. Then map E to the framed motivic Γ-space ΓM_{fr}^ϕ.

With Theorem 1.5 in hand we can prove Theorem 1.7.

Proof of Theorem 1.7. Following [3, Section 3, p. 1131], [30, Section 5] we have

$$SH^{eff}(k) = SH(k)_{\geq 0} \cap SH^{eff}(k),$$

where $SH^{eff}(k)$ is the full subcategory of $SH(k)$ comprised of effective bispectra. For $X \in H_{fr}^{G}(k)$ the evaluation $X^{S^1,G}$ is contained in $SH(k)_{\geq 0}$ due to Theorem 1.5. By Axiom (6) the S^1-spectrum

$$|X^{S^1,G}(\cdot \times U)(\Delta^*_K/k)|$$

is stably contractible for any finitely generated field extension K/k and $U \in Sm/k$. It follows that

$$|X^{S^1,G}(\cdot \times U)(\Delta^*_K/k)|$$

is stably contractible for every $n > 0$. We deduce that $X^{S^1,G} \in SH^{eff}(k)$ and thus $X^{S^1,G} \in SH^{eff}(k)$ by reference to [4, Theorem 4.4] and [20, Definition 3.5, Theorem 3.6].

We have shown the restriction of the equivalence $ev_{S^1,G} : H_{fr}^{G}(\cdot) \rightarrow SH(k)_{\geq 0}$ in Theorem 1.5 to the full subcategory $H_{fr}^{eff}(k)$ takes values in $SH^{eff}(k)$. It remains to show that it is essentially surjective.

Suppose E is a very effective cofibrant and fibrant symmetric motivic (S^1,G)-bispectrum. By Theorem 1.5 there exists a framed motivic Γ-space ΓM_{fr}^ϕ and an isomorphism between $ev_{S^1,G}(\Gamma M_{fr}^\phi)$
and \mathcal{E} in $\text{SH}(k)_{\geq 0}$. Moreover, the proof of Theorem 1.5 shows that for every $U \in \text{Sm}/k_{+}$ there is an isomorphism in $\text{SH}(k)_{\geq 0}$ between $\mathcal{E} \wedge U_{+}$ and $\text{ev}_{S^{1},G}^{\text{fr}}(\Gamma M_{\text{fr}}^{\mathcal{E}}(- \times U))$. Here $\Gamma M_{\text{fr}}^{\mathcal{E}}(- \times U)$ is the framed motivic Γ-space with sections

$$(n_{+},X) \mapsto \Gamma M_{\text{fr}}^{\mathcal{E}}(n_{+},X \times U).$$

Recall that $\text{SH}^{\text{fr}}(k)$ is closed under the smash product in $\text{SH}(k)$ by [30, Lemma 5.6]. In particular we have $\mathcal{E} \wedge U_{+} \in \text{SH}^{\text{fr}}(k)$. To conclude the S^{1}-spectrum

$$\Gamma M_{\text{fr}}^{\mathcal{E}}(\Delta_{k/\mathbb{K}}^{\mathcal{E}})$$

is stably contractible we appeal to [20, Theorem 3.6]. It follows that the framed motivic Γ-space $\Gamma M_{\text{fr}}^{\mathcal{E}}$ is effective, and hence \mathcal{E} is isomorphic to $\text{ev}_{S^{1},G}^{\text{fr}}(\Gamma M_{\text{fr}}^{\mathcal{E}})$ in $\text{SH}^{\text{fr}}(k)$. \square

Suppose \mathcal{E} is a motivic (S^{1},G)-bispectrum with a motivic fibrant replacement \mathcal{E}^{f}. We will write $\Omega_{S^{1}}^{\infty} \Omega_{G}^{\infty} \mathcal{E}$ for the pointed motivic space $\mathcal{E}_{0,0}^{f}$.

3.3. Definition. A pointed motivic space A is an infinite motivic loop space if there exists a motivic (S^{1},G)-bispectrum \mathcal{E} and a local equivalence $A \simeq \Omega_{S^{1}}^{\infty} \Omega_{G}^{\infty} \mathcal{E}$.

3.4. Lemma. Suppose \mathcal{X}^{f} is a very special framed motivic Γ-space. Then the bispectrum $\mathcal{X}_{S^{1},G}^{f}$ obtained from $\mathcal{X}_{S^{1},G}^{f}$ by taking levelwise local fibrant replacements is motivically fibrant. \square

Proof. This follows from [20, Lemma 2.6] since the S^{1}-spectrum associated with a very special Γ-space is an Ω-spectrum after taking levelwise fibrant replacements [10, Corollary 2.2.1.7]. \square

The above brings us to the proof of Theorem 1.8.

Proof of Theorem 1.8. Without loss of generality we may assume $\mathcal{E} \in \text{SH}(k)_{\geq 0}$. Indeed, it follows from [2, p. 374] that for any \mathcal{E} the connective cover $\tau_{\geq 0} \mathcal{E} \rightarrow \mathcal{E}$ yields a sectionwise equivalence

$$\Omega_{S^{1}}^{\infty} \Omega_{G}^{\infty} (\tau_{\geq 0} \mathcal{E}) \rightarrow \Omega_{S^{1}}^{\infty} \Omega_{G}^{\infty} (\mathcal{E}).$$

Now every $\mathcal{E} \in \text{SH}(k)_{\geq 0}$ is isomorphic to $\text{ev}_{S^{1},G}^{\text{fr}}(\Gamma M_{\text{fr}}^{\mathcal{E}})$ for some special framed motivic Γ-space $\Gamma M_{\text{fr}}^{\mathcal{E}}$ — see the proof of Theorem 1.5. For $n \geq 0$ and $U, V \in \text{Sm}/k_{+}$, item (21) yields

$$\Gamma M_{\text{fr}}^{\mathcal{E}}(n_{+},U)(V) = \Phi(M_{\text{fr}}^{\mathcal{E}}(U)(V))(n_{+}) = S_{*}(S^{n},M_{\text{fr}}^{\mathcal{E}}(U)(V)).$$

Here $M_{\text{fr}}^{\mathcal{E}}(U)(V)$ is the Ω-spectrum $\Theta_{S^{1}}^{\mathcal{E}} \cdot M_{\mathcal{E}}^{\mathcal{E}}(U)(V)$ introduced in the proof of Theorem 1.5. It follows that $\Gamma M_{\text{fr}}^{\mathcal{E}}(1_{+},U)(V)$ is the zero space $M_{\mathcal{E}}^{\mathcal{E}}(U)(V)_{0}$ of the Ω-spectrum $M_{\mathcal{E}}^{\mathcal{E}}(U)(V)$. Thus $\pi_{0}M_{\mathcal{E}}^{\mathcal{E}}(U)(V)_{0}$ is an abelian group, and $\pi_{0}^{\text{Nis}} M_{\text{fr}}^{\mathcal{E}}(1_{+},U)$ is a Nisnevich sheaf of abelian groups. This shows that $\Gamma M_{\text{fr}}^{\mathcal{E}}$ is a very special framed motivic Γ-space — see Axiom (7).

By appeal to Lemma 3.4 the bispectrum $\text{ev}_{S^{1},G}^{\text{fr}}(\Gamma M_{\text{fr}}^{\mathcal{E}})^{f}$ obtained by taking levelwise local fibrant replacements is motivically fibrant. Hence there exists a sectionwise equivalence of pointed motivic spaces

$$\Gamma M_{\text{fr}}^{\mathcal{E}}(1_{+},pt)^{f} \simeq \text{ev}_{S^{1},G}^{\text{fr}}(\Gamma M_{\text{fr}}^{\mathcal{E}})_{0,0}^{f} \simeq \Omega_{S^{1}}^{\infty} \Omega_{G}^{\infty} \mathcal{E}.$$
Now suppose \mathcal{X} is a very special framed motivic Γ-space. By Lemma 3.4, $\mathcal{X}^f_{S^1,G}$ is motivically fibrant and we deduce

$$\mathcal{X}^f_{(1,+),\text{pt}} = ev_{S^1,G}(\mathcal{X})^f_{0,0} \simeq \Omega^\infty_{S^1,G} \mathcal{X}^f_{S^1,G}.$$

Since $\mathcal{X}^f_{(1,+),\text{pt}}$ is locally equivalent to $\mathcal{X}^f_{(1,+),\text{pt}}$, then it follows that $\mathcal{X}^f_{(1,+),\text{pt}}$ is an infinite motivic loop space in the sense of Definition 3.3. □

3.5. Remark. Every special framed motivic Γ-space $\mathcal{X} : \Gamma^{op} \boxtimes \text{Sm}/k_+ \to \mathcal{M}$ has a canonically associated very special framed motivic Γ-space with sections $$(n_+,U) \mapsto \Omega^\infty_{S^1} \text{Ex}^\infty \mathcal{X}^f(S^1 \wedge n_+,U).$$

In this expression, Kan’s fibrant replacement functor Ex^∞ is applied sectionwise in S^\bullet.

We finish this section by discussing the diagram (4) of adjoint functors from the introduction:

$$
\begin{array}{ccc}
\mathbf{H}(k) & \xrightarrow{\Sigma^\infty_{S^1,G}} & \mathbf{SH}(k)_{\geq 0} \\
\downarrow & & \downarrow \\
\mathbf{H}^\Gamma_{\text{Fr}}(k) & \leftarrow & \Gamma_{\text{Fr}}
\end{array}
$$

The functor $u : \mathbf{H}^\Gamma_{\text{Fr}}(k) \to \mathbf{H}(k)$ sends a framed motivic Γ-space \mathcal{X} to its underlying motivic space $\mathcal{X}^f_{(1,+),\text{pt}}$. Moreover, $C_*\text{Fr}$ sends a motivic space A to $C_*(A^c \otimes -)$ — the projective cofibrant replacement A^c of A is a filtered colimit of simplicial smooth schemes from $\Delta^{op}\text{Sm}/k_+$. According to [19, Section 11] $C_*\text{Fr}$ is a functor from $\mathbf{H}(k)$ to $\mathbf{H}^\Gamma_{\text{Fr}}(k)$.

The composite functor $ev_{S^1,G} \circ C_*\text{Fr}$ is equivalent to $\Sigma^\infty_{S^1,G}$ due to [19, Section 11]. Theorem 1.8 implies that $u \circ \Gamma_{\text{Fr}}$ is equivalent to $\Omega^\infty_{S^1,G}$. Thus the adjoint pair $(\Sigma^\infty_{S^1,G}, \Omega^\infty_{S^1,G})$ is equivalent to $(ev_{S^1,G} \circ C_*\text{Fr}, u \circ \Gamma_{\text{Fr}})$. Since $(ev_{S^1,G}, \Gamma_{\text{Fr}})$ is an adjoint equivalence by Theorem 1.5, it follows that $(C_*\text{Fr}, u)$ is a pair of adjoint functors.

3.6. Corollary. The diagram of adjoint functors (4) commutes up to equivalence of functors.

4. Further properties of motivic Γ-spaces

Let $\mathcal{X} : \Gamma^{op} \boxtimes \text{Sm}/k_+ \to \mathcal{M}_{\text{Fr}}$ be a framed motivic Γ-space. One has an enriched functor

$$\mathcal{X}^f_{(1,+),\text{pt}} : \text{Sm}/k_+ \to \mathcal{M}^\text{fr}, \quad U \mapsto \mathcal{X}^f_{(1,+),U}.$$

For all $U,V \in \text{Sm}/k_+$ we have the elementary Nisnevich square:

$$
\begin{array}{ccc}
\emptyset & \to & V \\
\downarrow & & \downarrow \\
U & \to & U \sqcup V
\end{array}
$$
If \mathcal{X} is (very) special in the sense of Axioms 1.1, then Axioms (1) and (5) imply the stable local equivalence
$$\mathcal{X}(S, U) \vee \mathcal{X}(S, V) \longrightarrow \mathcal{X}(S, U \sqcup V).$$
(25)

On the other hand, the sectionwise stable equivalence
$$\mathcal{X}(S, U) \vee \mathcal{X}(S, V) \longrightarrow \mathcal{X}(S, U) \times \mathcal{X}(S, V)$$
factors as
$$\mathcal{X}(S, U) \vee \mathcal{X}(S, V) \longrightarrow \mathcal{X}(S, U \sqcup V) \longrightarrow \mathcal{X}(S, U) \times \mathcal{X}(S, V).$$

It follows that the rightmost morphism is a local stable equivalence. This shows the morphism of motivic spaces
$$\mathcal{X}(1_+, U \sqcup V) \longrightarrow \mathcal{X}(1_+, U) \times \mathcal{X}(1_+, V)$$
is a local equivalence, and likewise for
$$\mathcal{X}(1_+, n_+ \otimes U) \longrightarrow \mathcal{X}(1_+, U) \times \cdots \times \mathcal{X}(1_+, U), \quad n \geq 1.$$}%

Here we write $n_+ \otimes U := U \sqcup \cdots \sqcup U \in \text{Sm}/k_+$. Axiom (1) ensures that $\mathcal{X}(1_+, 0_+ \otimes U) = *$ since by definition $0_+ \otimes U := \emptyset$. Moreover, if \mathcal{X} is very special then the Nisnevich sheaf $\pi_0^{\text{nis}} \mathcal{X}(1_+, U)$ takes values in abelian groups due to Axiom (7). We record these observations in the next lemma.

4.1. Lemma. For any very special framed motivic Γ-space \mathcal{X} and $U \in \text{Sm}/k_+$ the functor
$$n_+ \mapsto \mathcal{X}(1_+, n_+ \otimes U)$$
is locally a very special Γ-space.

Let us fix a cofibrant replacement functor $A \longrightarrow A^c$ in the projective motivic model structure on \mathcal{M} in the sense of [5, Section 3], [13] — A^c is a sequential colimit of simplicial schemes in $\Delta^{\text{op}} \text{Sm}/k_+$. For a motivic Γ-space \mathcal{X}, we define the functor $\mathcal{X}(1_+, -) : \mathcal{M} \longrightarrow \mathcal{M}$ by setting
$$\mathcal{X}(1_+, A) := \text{colim}_{(\Delta[n] \times U)_+} \mathcal{X}(1_+, \Delta[n]_+ \otimes U), \quad A \in \mathcal{M}.$$%

Here we identify the pointed motivic space A with colim_{(\Delta[n] \times U)_+} A(\Delta[n] \times U)_+.

A key property of Γ-spaces says that if $f : K \longrightarrow L$ is an equivalence in S_\bullet, then so is $F(f) : F(K) \longrightarrow F(L)$ for every $F : \Gamma^{\text{op}} \longrightarrow S_\bullet$ — see [7, Proposition 4.9], [10, Lemma 2.2.1.3]. The following result is a motivic counterpart of this property.

4.2. Theorem. For any very special framed motivic Γ-space \mathcal{X} the functor
$$\mathcal{X}(1_+, -) : \mathcal{M} \longrightarrow \mathcal{M}, \quad A \mapsto \mathcal{X}(1_+, A^c)$$
takes motivic equivalences to local equivalences of motivic spaces. Hence if \mathcal{X} is a special framed motivic Γ-space, then the functor
$$\mathcal{X}(S, -) : \mathcal{M} \longrightarrow \text{Sp}_n(\mathbb{S}), \quad A \mapsto \mathcal{X}(S, A^c)$$
takes motivic equivalences to stable local equivalences of motivic S^1-spectra.
Our proof of Theorem 4.2 is inspired by Voevodsky’s theory of left derived radditive functors as in [35, Theorem 4.19] — the basic notions we will need in this paper are recalled below. In this context, we note that the category Sm/k_+ has finite coproducts.

Recall that a morphism \(e : A \to X \) in a category \(C \) is a coprojection if it is isomorphic to the canonical morphism \(A \to A \sqcup Y \) for some \(Y \) [35, Section 2]. A morphism \(f : A \to X \) in \(\Delta^{op}C \) is a termwise coprojection if for all \(i \geq 0 \) the morphism \(f_i : A_i \to X_i \) is a coprojection. As observed in [35, Section 2] a morphism \(f : B \to A \) and an object \(X \) conspire into the pushout:

\[
\begin{array}{c}
B \\
\downarrow \\
A
\end{array} \quad \begin{array}{c}
e_B \\
\downarrow \\
e_A
\end{array} \quad \begin{array}{c}
\to B \sqcup X \\
\downarrow \\
A \sqcup X
\end{array}
\]

It follows that there exist pushouts for all pairs of morphisms \((e, f) \) with \(e \) a coprojection whenever \(C \) is a category with finite coproducts — and likewise for pairs of morphisms \((e, f) \) in \(\Delta^{op}C \), where \(e \) is a termwise coprojection. Following [35, Section 2] a square in \(\Delta^{op}C \) is called an elementary pushout square if it is isomorphic to the pushout square for a pair of morphisms \((e, f) \), where \(e \) is a termwise coprojection.

If \(C \) has finite coproducts, then for any commutative square \(Q \) of the form

\[
\begin{array}{c}
B \\
\downarrow \\
A
\end{array} \quad \begin{array}{c}
X \\
\downarrow \\
Y
\end{array}
\]

we define the object \(K_Q \) by the elementary pushout square:

\[
\begin{array}{c}
B \sqcup B \\
\downarrow \\
A \sqcup Y
\end{array} \quad \begin{array}{c}
\to B \otimes \Delta[1] \\
\downarrow \\
K_Q
\end{array}
\]

There is a canonically induced morphism \(p_Q : K_Q \to X \). An important example is the cylinder \(\text{cyl}(f) \) of a morphism \(f : X \to X' \); in terms of the construction above, this is the object associated to the square:

\[
\begin{array}{c}
X \\
\downarrow \\
X
\end{array} \quad \begin{array}{c}
f \\
\downarrow \\
f
\end{array} \quad \begin{array}{c}
X' \\
\downarrow \\
X'
\end{array}
\]

By [35, Lemma 2.9] the natural morphisms \(X' \to \text{cyl}(f) \) and \(\text{cyl}(f) \to X' \) are mutually inverse homotopy equivalences.
4.3. **Lemma.** Suppose X is a special framed motivic Γ-space. Then $X(S, -)$ takes elementary pushout squares in $\Delta^\op \Sm/k_+$ to homotopy pushout squares in the stable local model structure on motivic S^1-spectra.

Proof. Consider the pushout square in $\Delta^\op \Sm/k_+$ with horizontal coprojections:

\[
\begin{array}{ccc}
B & \xrightarrow{e_B} & B \sqcup X \\
\downarrow & & \downarrow \\
A & \xrightarrow{e_A} & A \sqcup X
\end{array}
\]

The associated square of spectra

\[
\begin{array}{ccc}
X(S, B) & \xrightarrow{} & X(S, B \sqcup X) \\
\downarrow & & \downarrow \\
X(S, A) & \xrightarrow{} & X(S, A \sqcup X)
\end{array}
\]

is a homotopy pushout because by (25) it is stably locally equivalent to the pushout square:

\[
\begin{array}{ccc}
X(S, B) & \xrightarrow{} & X(S, B) \vee X(S, X) \\
\downarrow & & \downarrow \\
X(S, A) & \xrightarrow{} & X(S, A) \vee X(S, X)
\end{array}
\]

By definition, an elementary pushout square is isomorphic to the pushout square of morphisms (e, f), where e is a termwise coprojection. It remains to observe that the geometric realization of a simplicial homotopy pushout square of spectra is a homotopy pushout. \hfill \square

4.4. **Corollary.** Suppose X is a special framed motivic Γ-space and

\[
\begin{array}{ccc}
C & \xrightarrow{e} & D \\
\downarrow{f} & & \downarrow \\
C' & \xrightarrow{e'} & D'
\end{array}
\]

is an elementary pushout square in $\Delta^\op \Sm/k_+$ of morphisms (e, f), where e is a termwise coprojection. If $X(S, e)$ is a stable local equivalence of spectra, then so is $X(S, e')$.

Proof of Theorem 4.2. Let Q denote an elementary Nisnevich square in \Sm/k:

\[
\begin{array}{ccc}
U' & \xrightarrow{} & X' \\
\downarrow & & \downarrow \\
U & \xrightarrow{} & X
\end{array}
\]
By applying the cylinder construction and forming pushouts in \(\mathcal{M} \) we obtain the commutative diagram:

\[
\begin{array}{ccc}
U' + & \xrightarrow{\text{cyl}(U' + \to X')} & X' + \\
\downarrow & & \downarrow \\
U + & \xrightarrow{\text{cyl}(U' + \to X')} & U + \sqcup X + \\
\end{array}
\]

Note that \(U' + \to \text{cyl}(U' + \to X') \) is a termwise coprojection and a projective cofibration between projective cofibrant objects of \(\mathcal{M} \). Thus \(s(Q) := \text{cyl}(U' + \to X') \sqcup U + \) is projective cofibrant [21, Corollary 1.1.11] and \(U + \to s(Q) \) is a termwise coprojection. Likewise, applying the cylinder construction to \(s(Q) \to X + \) and setting \(t(Q) := \text{cyl}(s(Q) \to X +) \) we get a projective cofibration

\[
\text{cyl}(Q) : s(Q) \longrightarrow t(Q).
\]

Here \(\text{cyl}(Q) \) is a termwise coprojection and a local equivalence in \(\mathcal{M} \).

In the following we let \(J_{\text{mot}} = J_{\text{proj}} \cup J_{\text{nis}} \cup J_{\mathbb{A}^1} \) where

\[
J_{\text{proj}} = \{ \Delta[n]_+ \wedge U_+ \to \Delta[n]_+ \wedge U_+ \mid U \in \text{Sm}/k, n > 0, 0 \leq r \leq n \},
\]

\[
J_{\text{nis}} = \{ \Delta[n]_+ \wedge s(Q) \coprod_{\partial \Delta[n]_+ \wedge s(Q)} \partial \Delta[n]_+ \wedge t(Q) \to \Delta[n]_+ \wedge t(Q) \mid Q \text{ is an elementary Nisnevich square} \},
\]

\[
J_{\mathbb{A}^1} = \{ \Delta[n]_+ \wedge U \times \mathbb{A}^1_+ \coprod_{\partial \Delta[n]_+ \wedge U \times \mathbb{A}^1_+} \partial \Delta[n]_+ \wedge \text{cyl}(U \times \mathbb{A}^1_+ \to U_+) \to \Delta[n]_+ \wedge \text{cyl}(U \times \mathbb{A}^1_+ \to U_+) \mid U \in \text{Sm}/k \}.
\]

We note that every map in \(J_{\text{mot}} \) is a termwise coprojection. According to [13, Lemma 2.15] a morphism is a fibration with fibrant codomain in the projective motivic model structure if and only if it has the right lifting property with respect to \(J_{\text{mot}} \).

Arguing as in [7, Proposition 4.9] the functor \(\mathcal{X}(1_+, -) \) maps members of \(J_{\text{proj}} \) to local equivalences. We note that \(\mathcal{X}(1_+, -) \) preserves naive simplicial homotopies — if \(A \) is a pointed motivic space then \(\mathcal{X}(1_+, \Delta[1]_+ \otimes A^c) \) is a cylinder object for \(\mathcal{X}(1_+, A^c) \). Axiom (4) implies there is a canonically induced local equivalence

\[
\mathcal{X}(1_+, U \times \mathbb{A}^1_+) \to \mathcal{X}(1_+, \text{cyl}(U \times \mathbb{A}^1_+ \to U)).
\]

Axiom (5) implies the same holds for \(\mathcal{X}(1_+, \text{cyl}(Q)) \).
To show that $\mathcal{X}(1_+, -)$ maps members of J_{nis} to local equivalences, let us start with a cofibration of simplicial sets $K \hookrightarrow L$ and the induced commutative diagram:

\[
\begin{array}{ccc}
K \vee s(Q) & \longrightarrow & L \vee s(Q) \\
\downarrow a_0 & & \downarrow a_1 \\
K \vee t(Q) & \longrightarrow & L \vee t(Q)
\end{array}
\]

Applying Lemma 4.1 to $a_0 = K \vee \text{cyl}(Q)$ implies the induced morphism $\mathcal{X}(1_+, a_0)$ is a local equivalence. The same applies to $a_2 = L \vee \text{cyl}(Q)$ and $\mathcal{X}(1_+, a_2)$. Since \mathcal{X} is very special, Corollary 4.4 shows $\mathcal{X}(1_+, a_1)$ is a local equivalence. Thus $\mathcal{X}(1_+, a_3)$ is a local equivalence and our claim for J_{nis} follows. Likewise, $\mathcal{X}(1_+, -)$ maps members of J_{mot} to local equivalences.

So far we have established that $\mathcal{X}(1_+, -)$ takes members of J_{mot} to local equivalences. For every motivic equivalence $f : A \longrightarrow B$ the induced morphism $f^\ast : A^\ast \longrightarrow B^\ast$ is also a motivic equivalence. It remains to show the canonical morphism

\[
\mathcal{X}(1_+, f^\ast) : \mathcal{X}(1_+, A^\ast) \longrightarrow \mathcal{X}(1_+, B^\ast)
\]

is a local equivalence. To that end we apply the small object argument [21, Theorem 2.1.14].

To begin we note that all the morphisms in J_{mot} have finitely presentable (co)domains. For every pointed motivic space $A \in \mathcal{M}$, let $\alpha : A \longrightarrow \mathcal{L}A$ be the transfinite composition of the \mathcal{K}_0-sequence

\[
A = E^0 \xrightarrow{a_0} E^1 \xrightarrow{a_1} E^2 \xrightarrow{a_2} \ldots
\]

constructed as follows: For $n \geq 0$ we let S_n denote the set of all commutative squares

\[
\begin{array}{ccc}
C & \longrightarrow & E^n \\
g \downarrow & & \downarrow \\
D & \longrightarrow & *
\end{array}
\]

where $g \in J_{\text{mot}}$ and form the pushout:

\[
\begin{array}{ccc}
\bigsqcup_{S_n} C & \longrightarrow & E^n \\
\downarrow \sqcup g & & \downarrow a_0 \\
\bigsqcup_{S_n} D & \longrightarrow & E^{n+1}
\end{array}
\]

This construction is plainly functorial in A. By definition, α is a trivial motivic cofibration in \mathcal{M} belonging to $J_{\text{mot-cell}}$ [21, Definition 2.1.9].
We claim the horizontal morphisms in the commutative diagram
\[
\begin{array}{ccc}
\mathcal{X}(1_+, A^c) & \longrightarrow & \mathcal{X}(1_+, L(A^c)) \\
\downarrow & & \downarrow \\
\mathcal{X}(1_+, f^c) & \longrightarrow & \mathcal{X}(1_+, L(f^c))
\end{array}
\]
are local equivalences: Corollary 4.4 shows $\mathcal{X}(1_+, -)$ maps the cobase change of a member of J_{mot} to a local equivalence — here we use the assumption that \mathcal{X} is very special. Local equivalences are closed under filtered colimits and $\mathcal{X}(1_+, -)$ preserves filtered colimits, so the same holds for members of $J_{\text{mot-cell}}$. Since $L(A^c)$ and $L(f^c)$ are cofibrant and fibrant, $L(f^c)$ is a homotopy equivalence. As noted above $\mathcal{X}(1_+, -)$ preserves naive simplicial homotopies and therefore $\mathcal{X}(1_+, L(f^c))$ is a homotopy equivalence. Thus $\mathcal{X}(1_+, f^c)$ is a local equivalence.

Let MZ be the motivic ring spectrum representing integral motivic cohomology in the sense of Suslin-Voevodsky [32]. Up to inversion of the exponential characteristic e of the base field k, the highly structured category of MZ-modules is equivalent to Voevodsky’s derived category of motives — see [28, Theorem 58] and also [23, Theorem 5.8]. A crucial part of the proof shows that for every $U \in \text{Sm}/k$ the natural assembly morphism
\[
MZ \wedge U_+ \longrightarrow MZ \circ (- \wedge U_+)
\]
is an isomorphism in $\text{SH}(k)[1/e]$. For a Γ-space $F : \Gamma^{\text{op}} \longrightarrow S_*$ the corresponding statement says that the morphism
\[
ev_{S^1}(F) \wedge K \longrightarrow \ev_{S^1}(F(- \wedge K))
\]
is a stable equivalence for every pointed simplicial set $K \in S_*$ — see [7, Lemma 4.1]. We show a similar property for special framed motivic Γ-spaces.

4.5. Theorem. Suppose k is an infinite perfect field of exponential characteristic e. Let $U \in \text{Sm}/k$ be such that U_+ is strongly dualizable in $\text{SH}(k)$, e.g., U is a smooth projective algebraic variety. For every special framed motivic Γ-space \mathcal{X} the natural morphism of bispectra
\[
ev_{S^1,G}(\mathcal{X}) \wedge U_+ = ev_G(\mathcal{X}(S,-)) \wedge U_+ \longrightarrow ev_G(\mathcal{X}(S,- \otimes U)) = ev_{S^1,G}(\mathcal{X}(- \otimes U))
\]
is a stable motivic equivalence. Moreover, for every pointed motivic space $A \in \mathcal{M}$ the natural morphism of bispectra
\[
ev_{S^1,G}(\mathcal{X}) \wedge A^c \longrightarrow ev_{S^1,G}(\mathcal{X}(- \otimes A^c))
\]
is an isomorphism in $\text{SH}(k)[1/e]$.

Proof. Without loss of generality we may assume that \mathcal{X} is very special — see Remark 3.5. We view $\mathcal{X}(1_+, -)$ as an \mathcal{M}-enriched functor from Sm/k_+ to \mathcal{M}.

Recall from §2 the \mathcal{M}-category of finitely presentable motivic spaces $f.\mathcal{M}$. Via an enriched left Kan extension functor the inclusion of \mathcal{M}-categories $\iota : \text{Sm}/k_+ \rightarrow f.\mathcal{M}$ yields the functor
\[
\Upsilon : [\text{Sm}/k_+, \mathcal{M}] \longrightarrow [f.\mathcal{M}, \mathcal{M}].
\]
By expressing $\mathcal{V} \in [\text{Sm}/k_+ \mathcal{M}]$ as a coend

$$\mathcal{V} = \int_{U \in \text{Sm}/k_+} \mathcal{V}(U) \sma [U, -],$$

we obtain

$$\Upsilon(\mathcal{V}) = \int_{U \in \text{Sm}/k_+} \mathcal{V}(U) \sma \iota(U), -].$$

By construction, $\Upsilon(\mathcal{V})(V) = \mathcal{V}(V)$ for all $V \in \Delta^\op \text{Sm}/k_+$. More generally, $\Upsilon(\mathcal{V})(A^c) = \mathcal{V}(A^c)$ for every pointed motivic space $A \in \mathcal{M}$.

Theorem 4.2 implies that $\Upsilon(\mathcal{X}(1_+, -))$ maps motivic weak equivalences of projective cofibrant motivic spaces to local equivalences. Owing to [28, Corollary 56] the G-evaluation of the assembly morphism

$$\Upsilon(\mathcal{X}(1_+, - \otimes S)) \sma U_+ \longrightarrow \Upsilon(\mathcal{X}(1_+, - \otimes S \otimes U))$$

is a stable motivic equivalence between motivic (S^1, G)-bispectra if U_+ is strongly dualizable in $\text{SH}(k)$. Here $\mathcal{X}(1_+, - \otimes S \otimes U)$ is the evaluation at the sphere S of the Γ-space of Lemma 4.1.

Since $\Upsilon(\mathcal{X}(1_+, V)) = \mathcal{X}(1_+, V)$ for all $V \in \Delta^\op \text{Sm}/k_+$ the same holds for the G-evaluation of the morphism

$$\mathcal{X}(1_+, - \otimes S) \sma U_+ \longrightarrow \mathcal{X}(1_+, - \otimes S \otimes U).$$

We denote by $\mathcal{X}(S^n, -), n > 0$, the very special framed motivic Γ-space with sections

$$(k_+, U) \longmapsto \mathcal{X}(S^n \sma k_+, U).$$

Replacing \mathcal{X} with $\mathcal{X}(S^n, -)$, we deduce the stable motivic equivalence of motivic (S^1, G)-bispectra

$$\text{ev}_G(\mathcal{X}(S^n, - \otimes S)) \sma U_+ \longrightarrow \text{ev}_G(\mathcal{X}(S^n, - \otimes S \otimes U)). \quad (28)$$

Combining (28) with [7, Lemma 4.1] we obtain the stable motivic equivalences of motivic (S^1, S^1, G)-trispectra

$$\text{ev}_G(\mathcal{X}(S, - \otimes S)) \sma U_+ \longrightarrow \text{ev}_G(\mathcal{X}(S, - \otimes S \otimes U))$$

and

$$\text{ev}_G(\mathcal{X}(S, -)) \sma U_+ \sma S \longrightarrow \text{ev}_G(\mathcal{X}(S, - \otimes U)) \sma S.$$

For the cofibrant replacements of $\text{ev}_G(\mathcal{X}(S, -)) \sma U_+$ and $\text{ev}_G(\mathcal{X}(S, - \otimes U))$ in $\text{Sp}_{S^1, G}(k)$ we find a stable motivic equivalence between cofibrant motivic (S^1, S^1, G)-trispectra

$$(\text{ev}_G(\mathcal{X}(S, -)) \sma U_+)^c \sma S \longrightarrow \text{ev}_G(\mathcal{X}(S, - \otimes U))^c \sma S.$$

Since $- \sma S^1$ is a Quillen auto-equivalence on $\text{Sp}_{S^1, G}(k)$ we deduce the stable motivic equivalence

$$(\text{ev}_G(\mathcal{X}(S, -)) \sma U_+)^c \longrightarrow \text{ev}_G(\mathcal{X}(S, - \otimes U))^c$$

between cofibrant motivic (S^1, G)-bispectra — see also [22, Theorem 5.1]. Therefore (26) is a stable motivic equivalence.
Recall that \(U_+ \) is strongly dualisable in \(\text{SH}(k)[1/e] \) for every \(U \in \text{Sm}/k \) — see [25, Appendix B]. The previous arguments show that (26) is an \(e^{-1} \)-stable motivic equivalence — note that [28, Corollary 56] concerns the stable motivic model structure on motivic functors, but it readily extends to the \(e^{-1} \)-stable model structure.

Finally, when \(A \in \mathcal{M} \), recall that \(A^e \) is a sequential colimit of simplicial schemes from \(\Delta^0 \text{Sm}/k_+ \). Since the geometric realization functor preserves \(e^{-1} \)-stable motivic equivalences we conclude (27) is an isomorphism in \(\text{SH}(k)[1/e] \).

\[\square\]

REFERENCES

[1] A. Ananyevskiy, G. Garkusha, I. Panin, Cancellation theorem for framed motives of algebraic varieties, Adv. Math. 383 (2021), article 107681.
[2] A. Ananyevskiy, M. Levine, I. Panin, Witt sheaves and the \(\eta \)-inverted sphere spectrum, J. Topology 10(2) (2017), 370-385.
[3] T. Bachmann. The generalized slices of hermitian \(K \)-theory. J. Topology 10(4) (2017), 1124-1144.
[4] T. Bachmann, J. Fasel, On the effectivity of spectra representing motivic cohomology theories, preprint arXiv:1710.00594v3.
[5] B. Blander, Local projective model structures on simplicial presheaves, K-Theory 24(3) (2001), 283-301.
[6] J. M. Boardman, R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, 1971.
[7] A. K. Bousfield, E. M. Friedlander, Homotopy theory of \(\Gamma \)-spaces, spectra, and bisimplicial sets, in Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Mathematics, Vol. 658, Springer-Verlag, 1978, pp. 80-130.
[8] B. Calmès, J. Fasel, The category of finite \(MW \)-correspondences, preprint arXiv:1412.2989v2.
[9] B. Day, On closed categories of functors, In Reports of the Midwest Category Seminar, IV, pp. 1-38. Springer, Berlin, 1970.
[10] B. I. Dundas, T. Goodwillie, R. McCarthy, The local structure of algebraic \(K \)-theory. Algebra and Applications, Vol. 18. Springer-Verlag, 2013.
[11] B. I. Dundas, M. Levine, P. A. Østvær, O. Røndigs, V. Voevodsky, Motivic homotopy theory. Lectures from the Summer School held in Nordfjordeid, August 2002. Universitext. Springer-Verlag, 2007.
[12] B. I. Dundas, O. Røndigs, P. A. Østvær, Enriched functors and stable homotopy theory, Doc. Math. 8 (2003), 409-488.
[13] B. I. Dundas, O. Røndigs, P. A. Østvær, Motivic functors, Doc. Math. 8 (2003), 489-525.
[14] E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo, M. Yakerson, Motivic infinite loop spaces, Cambridge J. Math. 9(2) (2021), 431-549.
[15] G. Garkusha, Reconstructing rational stable motivic homotopy theory, Compos. Math. 155(7) (2019), 1424-1443.
[16] G. Garkusha, A. Neshitov, Fibrant resolutions for motivic Thom spectra, preprint arXiv:1804.07621.
[17] G. Garkusha, A. Neshitov, I. Panin, Framed motives of relative motivic spheres, Trans. Amer. Math. Soc. 374(7) (2021), 5131-5161.
[18] G. Garkusha, I. Panin, Homotopy invariant presheaves with framed transfers, Cambridge J. Math. 8(1) (2020), 1-94.
[19] G. Garkusha, I. Panin, Framed motives of algebraic varieties (after V. Voevodsky), J. Amer. Math. Soc. 34(1) (2021), 261-313.
[20] G. Garkusha, I. Panin, The triangulated categories of framed bispectra and framed motives, preprint arXiv:1809.08006.
[21] M. Hovey, Model categories, American Mathematical Society, Providence, RI, 1999.
[22] M. Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165(1) (2001), 63-127.

26
[23] M. Hoyois, S. Kelly, P. A. Østvær, The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. 19, 3813-3849, 2017.
[24] J. F. Jardine, Local homotopy theory. Springer Monographs in Mathematics. Springer, 2015.
[25] M. Levine, Y. Yang, G. Zhao, J. Riou, Algebraic elliptic cohomology theory and flops, I, Math. Ann. 375 (2019), 1823-1855.
[26] F. Morel, V. Voevodsky, \mathbb{A}^1-homotopy theory of schemes, Publ. Math. IHES 90 (1999), 45-143.
[27] I. Panin, C. Walter, On the algebraic cobordism spectra MSL and MSP, preprint arXiv:1011.0651.
[28] O. Röndigs, P. A. Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008), 689-727.
[29] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
[30] M. Spitzweck, P. A. Østvær, Motivic twisted K-theory, Algebr. Geom. Topol. 12 (2012), 565-599.
[31] A. Suslin, On the Grayson spectral sequence. Tr. Mat. Inst. Steklova 241 (2003), Teor. Chisel, Algebra i Gebr. Geom., 218-253; translation in Proc. Steklov Inst. Math. 2003, no. 2(241), 202-237.
[32] V. Voevodsky, \mathbb{A}^1-homotopy theory, Doc. Math., Extra Vol. ICM 1998(1), 417-442.
[33] V. Voevodsky, Triangulated category of motives over a field, in Cycles, Transfers and Motivic Homology Theories, Ann. Math. Studies, Princeton Univ. Press, 2000.
[34] V. Voevodsky, Notes on framed correspondences, www.math.ias.edu/vladimir/publications, unpublished, 2001.
[35] V. Voevodsky, Simplicial radditive functors, J. of K-Theory 5 (2010), 201-244.
[36] M. E. Walker, Motivic cohomology and the K-theory of automorphisms, PhD Thesis, University of Illinois at Urbana-Champaign, 1996.

DEPARTMENT OF MATHEMATICS, SWANSEA UNIVERSITY, FABIAN WAY, SWANSEA SA1 8EN, UK
Email address: g.garkusha@swansea.ac.uk

ST. PETERSBURG BRANCH OF V. A. STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27, 191023 ST. PETERSBURG, RUSSIA & DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, P.O. BOX 1053 BLINDERN, 0316 OSLO, NORWAY
Email address: paniniv@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, P.O. BOX 1053 BLINDERN, 0316 OSLO, NORWAY
Email address: paularne@math.uio.no