A strong redshift dependence of the broad absorption line quasar fraction

James T. Allen,1⋆ Paul C. Hewett1, Natasha Maddox2, Gordon T. Richards3
and Vasily Belokurov1

1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA
2Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
3Department of Physics, Drexel University, Philadelphia, PA 19104, USA

26 July 2010

ABSTRACT

We describe the application of non-negative matrix factorisation to generate compact reconstructions of quasar spectra from the Sloan Digital Sky Survey (SDSS), with particular reference to broad absorption line quasars (BALQSOs). BAL properties are measured for Si IV λ1400, C IV λ1550, Al III λ1860 and Mg II λ2800, resulting in a catalogue of 3547 BALQSOs. Two corrections, based on extensive testing of synthetic BALQSO spectra, are applied in order to estimate the intrinsic fraction of C IV BALQSOs. First, the probability of an observed BALQSO spectrum being identified as such by our algorithm is calculated as a function of redshift, signal-to-noise ratio and BAL properties. Second, the different completenesses of the SDSS target selection algorithm for BALQSOs and non-BAL quasars are quantified. Accounting for these selection effects the intrinsic C IV BALQSO fraction is 41±5 per cent. Our analysis of the selection effects allows us to measure the dependence of the intrinsic C IV BALQSO fraction on luminosity and redshift. We find a factor of 3.5±0.4 decrease in the intrinsic fraction from the highest redshifts, $z\approx4.0$, down to $z\approx2.0$. The redshift dependence implies that an orientation effect alone is not sufficient to explain the presence of BAL troughs in some but not all quasar spectra. Our results are consistent with the intrinsic BALQSO fraction having no strong luminosity dependence, although with 3-σ limits on the rate of change of the intrinsic fraction with luminosity of −6.9 and 7.0 per cent dex$^{-1}$ we are unable to rule out such a dependence.

Key words: methods: data analysis – galaxies: active – galaxies: nuclei – quasars: absorption lines – galaxies: statistics

1 INTRODUCTION

Despite the greatly increased quantity and quality of data since the first observations of broad absorption line quasars (BALQSOs; see Weymann, Carswell & Smith 1981 for a review), relatively little is known about their physical origins. By definition, a BALQSO exhibits blueshifted absorption, which may extend to tens of thousands of kilometres per second relative to the quasar systemic velocity, with an absorption velocity width of at least 2000 km s$^{-1}$ (Weymann et al. 1981). Such broad absorption features with comparably large redshifted velocities are not observed, implying that the absorption originates in material outflowing from the quasar.

It is not yet clear whether the material outflowing in BAL systems represents a large mass relative to outflow processes as a whole, with estimates of the total column density of absorbing material varying by several orders of magnitude (Hamann 1998; Gabel, Arav & Kim 2006; Casebeer et al. 2008; Hamann et al. 2008). However, the absorption can certainly be used to trace the kinematics of the quasar outflows. As outflows are believed to be fundamental to the phenomenon of active galactic nuclei (AGN) feedback a better understanding of their kinematics could shed light on the physical basis of the outflow phenomenon (see Begelman 2004 for a review of AGN feedback mechanisms). In some models the BAL phenomenon arises from preferred viewing angles towards the central regions and the demographics of BALQSOs among the quasar population may also help constrain the parameters of unified models (e.g. Elvis 2000).
ionisation lines such as C iv λ1550 and Si iv λ1400; BALQSOs without absorption present in lower-ionisation species are termed HiBALQSOs. Less frequently, broad absorption is also observed in the low-ionisation lines Al iii λ1860 and Mg ii λ2800. BALQSOs with both high- and low-ionisation absorption are termed LoBALQSOs, while those even rarer objects that also show absorption by one or more species of iron are termed FeLoBALQSOs. See Hall et al. (2002) for examples of the rich variety of spectra produced by the broad absorption phenomenon.

The most widely used metric to separate BALQSOs and non-BAL quasars is the baliicity index (BI), first presented by Weymann et al. (1991). The BI is defined as

\[BI = \int_{-25000 \text{ km s}^{-1}}^{-3000 \text{ km s}^{-1}} \left(1 - \frac{f(v)}{0.9}\right) \text{Cd}v, \tag{1} \]

where \(f(v) \) is the continuum-normalised flux as a function of velocity, \(v \), relative to the line centre. The constant \(C \) is equal to unity in regions where \(f(v) \) has been continuously less than 0.9 for at least 2000 km s\(^{-1}\), counting from large to small outflow velocities, and zero elsewhere. The outflow velocity, \(v \), is defined to be negative for blueshift velocities, i.e. for material moving towards the observer. Quasars with non-zero BI are defined as BALQSOs; all others are non-BAL quasars.

Modifications to the BI have been proposed, in particular the absorption index (AI; Hall et al. 2002; Trump et al. 2006), designed to include narrower troughs than the BI, and the modified baliicity index BI\(_0\) (Gibson et al. 2009, hereafter G09), which extends the integration region to zero velocity. Each of these modifications increases the number of quasars defined to be BALQSOs, but Knigge et al. (2008) demonstrated that the observed distribution of AI values is bimodal, suggesting that the metric encompasses two distinct populations of absorbers. Except where noted we define BALQSOs in this paper according to the traditional BI.

The observed C iv BALQSO fraction has been variously calculated as, among other measurements, 15±3 (Hewett & Foltz 2003), 14.0±1.0 (Reichard et al. 2003b), 12.5 (Scaringi et al. 2009), and 13.3±0.6 per cent (G09). Correcting for the different probabilities of a BALQSO and non-BAL quasars entering the spectroscopic surveys used, the intrinsic fraction present in flux-limited optical surveys has been estimated as 22±4 (Hewett & Foltz 2003), 15.9±1.4 (Reichard et al. 2003b), 17±3 (Knigge et al. 2008), and 16.4±0.6 per cent (G09).

It is often suggested that broad absorption occurs in all quasars but is only observed along particular sightlines (e.g. Weymann et al. 1991; Elvis 2000). In this model the BALQSO fraction can be directly interpreted as the solid angle covered by the absorbing clouds divided by the solid angle over which a Type 1 quasar can be seen. Another possibility is that BALQSOs could represent a particular evolutionary stage (e.g. Voit, Weymann & Korista 1993; Becker et al. 1997; Lipari & Terlevich 2006), during which absorbing material with a high covering fraction is being expelled from the central regions of the quasar. However, models in which individual BALQSOs have a very high covering fraction appear to be ruled out by the results of Gallagher et al. (2007), which show that BAL and non-BAL quasars have very similar mid-infrared properties, while a high covering fraction would result in more light being reprocessed into the mid-infrared. The possibility still remains that a combination of evolutionary and orientation effects can explain the separation of BALQSOs and non-BAL quasars. For example, in a disc wind model the structure of the wind could change with cosmic time, while still having an orientation dependence.

It is difficult or impossible to distinguish between the different models based on observations of individual objects, but much progress can be made by characterising the statistical properties of the BALQSO population. Crucial properties in such an investigation are the dependence of the BALQSO fraction on factors such as redshift and luminosity. However, measuring these properties is greatly complicated by the selection effects involved, which are themselves strongly dependent on redshift and luminosity, in part due to their correlations with the signal-to-noise ratio (S/N) of observed spectra. For example, the probability of correctly identifying a BALQSO increases with increasing S/N, which is in turn related to the luminosity of an observed quasar. Without quantifying the form of the selection effect it is impossible to establish whether or not an observed trend in the BALQSO fraction with luminosity is the result of an intrinsic trend. The existence of such an effect has previously been noted (Knigge et al. 2008; G09) but not fully addressed; we quantify the S/N-dependent selection probability and other selection effects in this paper.

A pre-requisite for any investigation of the statistical distribution of absorption properties is a large well-defined catalogue of BALQSOs. The Sloan Digital Sky Survey (SDSS; York et al. 2000) is well suited to this purpose as it provides a large homogeneous sample of quasar spectra in which to search for BALQSOs. Previous studies producing BALQSO catalogues from the SDSS include Reichard et al. (2003a), using the Early Data Release (EDR), Trump et al. (2006), using the Third Data Release (DR3), and G09 and Scaringi et al. (2009), both using DR5. In this work, quasars from the SDSS DR6 are used, giving a larger sample size.

The BI, AI and BI\(_0\) are all calculated from the continuum-normalised flux, so all require an estimate of the unabsorbed continuum level. Improving the quality of the continua will greatly improve the accuracy of the resulting determinations of statistical properties, as the continuum level is currently the principal uncertainty in the classification of BALQSOs. Previous studies have estimated the continuum using template spectra (Trump et al. 2006) or simple continuum plus emission-line models (G09), but each of these techniques has its disadvantages: template spectra are limited in the range of continua and emission-line profiles they allow, while any technique that relies on directly fitting the emission lines will struggle when significant sections of those emission lines are absorbed.

In this paper we produce estimates of the unabsorbed emission using non-negative matrix factorisation (NMF; Lee & Seung 1999, 2000; Blanton & Roweis 2007), a blind source separation technique. NMF uses all the available information to fit the entire spectrum simultaneously, enabling accurate reconstructions to be produced even in cases where much of the spectrum has been absorbed. Starting from a suitably chosen input sample the technique is able to reconstruct spectra with a wide range of observed properties with little or no manual intervention. The estimates of the con-
Continuum in the C IV BI region will be made publicly available through the SDSS value-added catalogues as this paper is published, to enable their use in any future BALQSO classification schemes.

In Section 2 we introduce blind source separation and non-negative matrix factorisation. In Section 3 we present our sample of SDSS quasars, and in Section 4 we describe our method of reconstructing their spectra. The results are presented in Section 5, including the resulting catalogue of BALQSOs. In Section 6 we compare these results to those from previous studies. In Sections 7 and 8 we quantify the probability of a BAL trough being detected by our methods, and the relative probabilities of BALQSOs and non-BAL quasars entering the SDSS spectroscopic survey. From these results the intrinsic BALQSO fraction is calculated in Section 9. The results are discussed in Section 10, and we summarise our conclusions in Section 11.

Those readers who are particularly interested in the BALQSO catalogue itself, its generation and the observed properties of BALQSOs should focus on Sections 3–5. Readers who are more interested in the relation between the observed and intrinsic properties of the BALQSO population, and in particular the calculation of the intrinsic fraction of BALQSOs as a function of redshift and luminosity, can skip to Section 7.

In this work we assume a flat ΛCDM cosmology with $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_M = 0.3$ and $\Omega_{\Lambda} = 0.7$. Vacuum wavelengths are employed throughout the paper.

2 BLIND SOURCE SEPARATION

Blind source separation (BSS) techniques involve rewriting an $n \times m$ data matrix V as the product of a set of components, $H,$ and weights, W:

$$ V = WH. \quad (2) $$

In the context of this work, V is an $n \times m$ array of flux measurements for n different quasars at m wavelengths, H is an $r \times m$ array of the r component spectra at the same wavelengths, and W is an $n \times r$ array of the corresponding weights for each quasar. For any individual quasar, the observed spectrum is written as a linear combination of the r components. In the case that $r < n$, the equality in equation 2 is an approximation, and the product WH can be viewed as a reconstruction of the original data. It is this reconstruction that we use as an estimate of the unabsorbed continuum of BALQSOs.

2.1 Non-negative matrix factorisation

Non-negative matrix factorisation (NMF) is a relatively new BSS technique that incorporates a non-negativity constraint on both its components and their weights (Lee & Seung 1999, 2000; Blanton & Roweis 2007). The non-negativity constraint is appealing in the context of spectroscopic data as the physical emission signatures are expected to obey such a restriction naturally. Unusually for a BSS technique, fewer components are generated than there are input spectra. Starting from random initial matrices, the components, $H,$ and weights, $W,$ follow the multiplicative update rules:

$$ W_{ik} \leftarrow W_{ik} \frac{[VW^T]_{ik}}{[W WH^T]_{ik}}, \quad (3) $$

and

$$ H_{kj} \leftarrow H_{kj} \frac{[WT V]_{kj}}{[W^T WH]_{kj}}, \quad (4) $$

in which, at each step, the elements of W and H are replaced by the values given by the right hand sides of equations 3 and 4. The matrices continue to be updated until a stable solution is reached.

The update rules minimize the error in the reconstructions, $WH,$ as measured by the Euclidean distance to the data, defined as

$$ \| V - WH \| = \sqrt{\sum_{ij} \left(V_{ij} - \sum_k W_{ik}H_{kj} \right)^2}. \quad (5) $$

The random starting conditions result in slightly different components being generated each time the algorithm is executed. However, as the Euclidean distance is defined in terms of the reconstructions, and the algorithm converges on a minimum in the Euclidean distance (Lee & Seung 1999, 2000), the resulting reconstructions do not vary.

After an initial source separation has been performed, generating a set of components, the components can be applied to create compact reconstructions of further spectra. A new data matrix is created from the spectra that are to be reconstructed, the components matrix is taken from the initial results, and a random set of starting weights is generated. The matrix of weights is then updated according to equation 3, keeping the components matrix fixed. This process finds a local minimum in the Euclidean distance between the data and the reconstructions, under the constraint of fixed H.

3 QUASAR SAMPLE

The quasar sample consists of 91 665 objects from the SDSS DR6 spectroscopic survey, including 77 392 quasars in the Schneider et al. (2007) DR5 quasar catalogue that are retained in the later DR7 quasar catalogue of Schneider et al. (2010). A further 13 081 objects are quasars, present in the additional DR6 spectroscopic plates, identified by one of us (PCH) using a similar prescription to that employed by Schneider et al. (2007), all of which are present in the Schneider et al. (2010) catalogue. An additional 1192 objects, which do not satisfy one, or both, of the emission line velocity width or absolute magnitude criterion imposed by Schneider et al. (2007), are also included. While formally failing the ‘quasar’ definition of Schneider et al.’s DR5 and DR7 compilations the objects are essentially all luminous active galactic nuclei (AGN). In fact, the vast majority of such objects lie at redshifts $z < 0.4$, where even Mg II broad absorption is not visible in the SDSS spectra. In the following work, objects with $z < 0.4$ were not searched for BAL features, and a further 30 spectra were discarded because they were very poor quality or unavailable in DR6, leaving 93 400 spectra of 86 773 unique objects.

The spectra were all processed through the sky-residual
subtraction scheme of Wild & Hewett (2005), resulting in significantly improved S/N at observed wavelengths \(\lambda > 7200 \, \text{Å} \).

The SDSS DR6 contains a very large number of objects for which multiple spectra are available. For our quasar sample there are \(\approx 9000 \) independent pairs of spectra. The catalogue of spectrum pairs allows an empirical check on the reproducibility of the BI determinations as a function of spectrum S/N.

Improved quasar redshifts were taken from a preliminary implementation of the Hewett & Wild (2010) scheme for generating self-consistent redshifts for quasars with SDSS spectra. While not responsible for major differences in the resulting catalogue of BALQSOs, the large number of redshift revisions at the \(\approx 1000 \, \text{km s}^{-1} \) level does result in classification changes for a number of quasars with absorption present at low velocities, \(< 5000 \, \text{km s}^{-1} \), relative to the quasar systemic redshift.

The SDSS spectra as provided are not corrected for the effects of Galactic extinction, so before use we applied a correction using the SDSS \(E(B - V) \) measurement, taken from the dust maps of Schlegel, Finkbeiner & Davis (1998), and the Milky Way extinction curve of Cardelli, Clayton & Mathis (1989).

4 CONTINUUM RECONSTRUCTIONS OF QUASARS

In order to measure the BI, or any related metric, an estimate of the unabsorbed emission from the quasar is required. Here, non-negative matrix factorisation (NMF) is used to create sets of component spectra from non-BAL quasars. These components are then used to reconstruct the emission for all quasars, thereby allowing the implementation of a BI-determination algorithm to define the sample of BALQSOs.

The implementation of the method is described in detail in the following sections.

For any set of spectra, NMF is best applied to the common rest-frame wavelength range. To maximise the possible wavelength range, and to allow for redshift evolution of quasar properties, the quasars in the sample defined in Section 3 were divided into non-overlapping redshift bins of width \(\Delta z = 0.1 \). Except where noted, the methods described in this section were applied separately to each such redshift bin.

4.1 Quasar spectrum selection for component generation

To generate component spectra a sample of 500 input quasars were selected in each redshift bin. The input spectra were chosen to possess spectrum S/Ns, specifically, \((\text{S/N}_R + \text{S/N}_I)/2\), within the restricted range 9–25 and to possess at least 3800 ‘good’ SDSS pixels. Quasars exhibiting the presence of any form of extended absorption in their spectra longward of Ly\(\alpha \) \(\lambda 1216 \) were then excluded. A simple, very conservative, algorithm, based on the ‘bending’ of absorption-free template spectra to ‘fit’ each spectrum, allowed the calculation of a generic ‘absorption equivalent width’. The S/N and absorption cuts removed virtually all heavily-reddened quasars, but some additional objects in the redshift bin 0.7\(\leq z < 0.8 \), with strong [O III] \(\lambda 5007 \) emission and heavily dust-reddened continua, were manually removed. The form of the NMF components generated from the input quasar sample did not depend on the exact definition of the sample of input spectra.

The spectra at high redshifts were truncated at 1175 \(\text{Å} \), below which wavelength the spectra are dominated by the Ly\(\alpha \) forest, severely attenuating the underlying quasar emission. At redshifts \(z > 2.1 \) fewer than 500 quasars in each redshift bin satisfied the selection requirements, so smaller input samples were used, reaching a minimum of 202 quasars for 2.5\(\leq z < 2.6 \). For \(z \geq 2.6 \) there were insufficient quasars to produce representative components. However, due to the imposition of the truncation at 1175 \(\text{Å} \), the components generated from the 2.5\(\leq z < 2.6 \) interval covered the full accessible wavelength range present in quasars with \(z > 2.6 \). Thus, the same set of NMF components were used for all quasars with \(z > 2.5 \).

In each redshift bin, NMF components were generated from the input quasar spectra after pixels affected by any narrow absorption systems present had been flagged using a median filter-based algorithm. Flux values for such pixels, along with those pixels flagged as ‘bad’ due to a value of zero in the SDSS spectrum noise array, were generated via interpolation. Similarly, 12.0-\(\text{Å} \) regions centred on the prominent sky lines at observed-frame wavelengths 5578.5 and 6301.7 \(\text{Å} \) were interpolated over. Note that the use of spectra with a very high fraction of ‘good’ pixels ensured that interpolation was applied for, at most, only a few, narrow, intervals in each spectrum. The spectra were then normalised to have the same median flux.

4.2 Number of components

In applying NMF the number of components to generate must be chosen manually. In all cases using more components will reduce the total Euclidean distance between the reconstructions and the data, but above a certain number the improvement comes from fitting to the noise of individual spectra rather than to the general emission properties of the quasars, giving no further improvement in the quality of subsequent reconstructions. An estimate of the optimal number of components to employ can be found via the \(\chi^2 \) values of the reconstructions of the input spectra: when too many components are used and the NMF procedure is reproducing the noise from just one or a few spectra, the ‘overfitted’ spectra have much lower \(\chi^2 \) values than any others in the input sample.

The point at which overfitting occurs is a function of both the S/N and the emission properties of the input spectra. The number of components to use was chosen as the greatest number for which no input spectra showed the drop in \(\chi^2 \) typical of overfitting. In practice the correct number of components could be selected from a visual inspection of the \(\chi^2 \) distributions. The number of components so identified varied between 8 and 14 depending on the redshift bin.

In order to reconstruct a small fraction of the quasar spectra the number of components was reduced below the number initially determined. These cases are described in Sections 4.6 and 4.7.
the pixels remaining. For subsequent iterations the mask was were removed, and a reconstruction was generated based from a comparison of the initial reconstruction and the data. The new reconstruction, derived using the updated mask, is also shown. The object illustrated is SDSS J080559.94+140530.4.

4.3 Automated masking of spectra

The sets of components, derived as described above, were then applied to generate reconstructions of all quasars in the sample, following the procedure described in Section 2.1. As reconstructions of the unabsorbed emission were required, all wavelength regions where absorption was present were masked during the fits, along with regions affected by prominent sky lines. The same recipe for identifying narrow absorption and sky lines described in Section 4.1 was applied, but the exclusion of wavelength regions affected by broad absorption required an iteratively updated mask, as described below.

As an initial mask the wavelength regions $\lambda \leq 1240$, $1295 \leq \lambda \leq 1400$, $1430 \leq \lambda \leq 1546$, and $1780 \leq \lambda \leq 1880$ (all in Å) were removed, and a reconstruction was generated based on the pixels remaining. For subsequent iterations the mask was re-defined by examining the data and reconstructions within a window of width 31 pixels centred on each pixel in turn: a pixel was masked if the majority of pixels in its window had an observed flux lower than the reconstruction by at least twice the noise level. Any wavelength regions masked in this way were extended by a radius of 10 pixels to ensure the wings of the absorption were fully covered. Information about the locations of previous masks was not used in generating new masks and no restrictions were placed on potential mask locations. In most cases the mask locations converged in only a few iterations. The masking process is illustrated in Fig. 1, which shows the initial mask and the mask after the first iteration for an example BALQSO.

4.4 Accounting for quasar SED changes due to dust absorption

NMF, like most BSS techniques, assumes the observed data is a linear sum of various components. In contrast, the extinction and reddening of light by intervening dust, either within the quasar’s host galaxy or in an intervening ab-

sorber, has the effect of multiplying the observed spectrum by a wavelength-dependent factor.

For moderate levels of dust this effect is accounted for within the NMF components, as these were generated from quasar spectra that were themselves subject to varying levels of dust absorption. However, for more strongly reddened objects, exhibiting dramatically steeper spectral energy distributions (SEDs), an empirical correction was applied to estimate the unreddened spectrum. The method is illustrated in Fig. 2. A composite quasar spectrum was generated in each redshift bin from all quasars that satisfied the input criteria listed in Section 4.1. The ratio of each observed spectrum to its corresponding composite spectrum was taken, and a power law was fitted to the ratio to determine the level of reddening. Prominent emission lines were masked out during the fit. If the index of the best-fitting power law was greater than 1.5, indicating the observed spectrum was significantly redder than the composite, the observed spectrum was divided by the best-fitting power law to give the observed spectrum a similar shape to the composite. An NMF fit was then generated for the empirically ‘de-reddened’ quasar spectrum, and the fit was then multiplied by the best-fitting power law to match the original observed spectrum.

It should be emphasized that the procedure is in no way designed to parametrize, or otherwise quantify, the effect of dust on the quasars. Rather, the procedure has been crafted simply to allow effective NMF reconstructions of quasars that possess very different SED shapes compared to the bulk of the population. The success of the power-law normalisation can be attributed to the typical reddening towards SDSS quasars being very close to a power law in form (Hopkins et al. 2004; Maddox et al. 2010, in preparation).

4.5 Maximising CIV BAL trough coverage

In taking the common wavelength range of a set of spectra spread over a non-zero redshift range, some information from the ends of each observed spectrum is necessarily discarded. For quasars with $z \sim 1.6$ the C IV BAL trough at the blue end of the observed SDSS spectrum can be lost as a result. To extend the ability to identify BALQSOs to the lowest possible redshifts the NMF reconstructions of all quasars with $1.5 \leq z < 1.7$ were derived using the components from the next highest redshift bins, i.e. quasars with $1.5 \leq z < 1.6$ used the components from $1.6 \leq z < 1.7$, and quasars with $1.6 \leq z < 1.7$ used the components from $1.7 \leq z < 1.8$.

Using higher-redshift components ensured maximal coverage of the C IV regions at the cost of discarding a greater portion of the red end of the observed spectra. A similar scheme using lower-redshift components to cover a BAL trough at the red end of a spectrum was not required as the highest-redshift set of components used $2.5 \leq z < 2.6$ had complete coverage of the C IV BAL region.

An example BALQSO spectrum with $z = 1.64$ is shown in Fig. 3, which shows how the BAL trough is only identified when the higher-redshift components are used. The ability

\footnote{For redshifts $z < 0.6$ the de-reddening procedure was not used as the observed quasar spectra show a significantly greater spread in power law slopes, prohibiting a clean separation of red outliers.}
Figure 2. Top panel: observed flux (black) and initial NMF reconstruction (green) of SDSS J145907.19+002401.2, a quasar at $z=3.04$. The quality of the fit is poor because the quasar is heavily reddened. Middle panel: flux (black) of the same quasar after being divided by a power law slope with index 2.13, and the resulting NMF reconstruction (red). Bottom panel: as middle panel, but after the flux and reconstruction have been multiplied by the same power law slope to restore the true shape of the observed quasar spectrum.

Figure 3. SDSS J143735.50+222340.3, a BALQSO at $z=1.64$. In each panel the thin black line is the observed flux and the thick red line is the NMF reconstruction. The NMF components for $1.6 \leq z < 1.7$ do not extend below a wavelength of 1464 Å, so the reconstruction does not cover the BAL trough (left panel). Using the NMF components derived from $1.7 \leq z < 1.8$ quasars (right panel) allows the BAL trough to be identified.

Figure 4. Top panel: Flux spectrum (black) of SDSS J104945.36+285823.3 with initial 14-component NMF reconstruction (red). The initial reconstruction was identified as having an unphysical emission line profile. Bottom panel: the same quasar spectrum (black) and the NMF reconstructions after additional masking, for 14, 13, 12 and 11 NMF components. At 11 components a satisfactory emission line profile is found and this reconstruction was adopted.

4.6 Rejecting unphysical emission line profiles

Although the automated technique described above produced excellent reconstructions of both the continuum and emission lines for most spectra, in up to 5 per cent of spectra an unphysical ‘dip’ could be identified in the profile of the C IV emission line (Fig. 4). Spectra where such artifacts were present in the NMF reconstructions were identified via a simple ‘minima detection’ algorithm. Much as for the scheme used to generate an absorption equivalent width (Section 4.1), a template spectrum was ‘bent’ to fit the overall shape of the NMF reconstruction and a simple scheme was used to identify any location where the NMF reconstruction fell below the template spectrum.

In many cases the dip in the reconstructed emission line was caused by incomplete masking of absorption in the observed spectrum, so spectra with an identified dip were reprocessed with an additional mask applied to the affected region. The resulting fits were examined by eye and accepted if the dip was no longer visible. Where a dip was still apparent in the reconstruction the number of components used to create the reconstructions was reduced one by one until the dip was eliminated. For this purpose smaller sets of NMF components were generated using the same input spectra as used to generate the initial base NMF sets.

Reducing the number of components reduces the freedom of the fitting procedure to create unphysical line profiles, eliminating the dips in almost all cases. Quasars whose reconstructions still exhibited a dip in the C IV emission line with as few as two components are discussed further in the following section.

to detect BAL troughs at the extreme edges of spectra is a particular advantage of the NMF-based technique.
4.7 Manual masking of spectra

Spectra with reconstructions that met one or more of the following criteria were examined by eye to determine if the automated masking had failed to correctly separate absorbed and unabsorbed regions:

(i) dip in C IV emission line profile still present with only two NMF components
(ii) $\chi^2 > 2$
(iii) at least 500 pixels masked

Together these criteria selected ≈ 2.5 per cent of the reconstructions, of which ≈ 20 per cent (≈ 0.5 per cent of the total) were judged to require manually-defined masks.3

New reconstructions were generated for the selected spectra with manually-defined masks used in place of the automated masks. The results were visually inspected to identify unphysical emission line profiles and, where these were found, the number of components was reduced as in Section 4.6. At this point reconstructions with only two components were allowed. In a very small number of cases the reconstructed emission line profiles still exhibited unphysical profiles with as few as two components; in these cases the best reconstruction available was chosen even if a dip was present.

Notwithstanding the presence of the occasional pathological case where the automated NMF continuum generation fails, the success of the NMF-based scheme is evident from the extremely low percentage of quasars (0.5 per cent) that require any manual intervention and that only 54 spectra possess reconstructions that we judge to be significantly sub-optimal.

4.8 Visual inspection of spectra

As a final check, all spectra with non-zero BI were visually inspected in order to discard any in which the observed BAL trough was the result of a poor reconstruction, or consisted solely of bad pixels. Troughs that were visible in the data but were extended by a number of bad pixels had their BI values recalculated with those pixels removed. In cases where a small number of bad pixels appeared within a trough, no changes were made. Again, the number of spectra where the automated procedure requires tweaking is extremely small: 352 spectra had BAL troughs modified or removed from the catalogue because of regions of bad pixels, and 46 had troughs removed because of poor continuum fits. Of the 46 spectra, the problem in all but 10 affected only the Mg II troughs modified or removed from the catalogue because of regions of bad pixels, and 46 had troughs removed because of poor continuum fits. Of the 46 spectra, the problem in all but 10 affected only the Mg II troughs.

Cases in which a BAL trough exists but is not identified are discussed in Sections 6 and 7.

5 THE CATALOGUE OF BALQSOs

Data derived from the NMF fits to the SDSS DR6 quasar spectra are presented in Table 1. For each spectrum we present the SDSS coordinate object name, right ascension (RA) and declination (both using J2000 coordinates), the modified Julian date (MJD), plate and fiber numbers of the spectroscopic observation, the S/N, flux and luminosity at 1700 Å, redshift, i-magnitude, whether the object was targeted in the SDSS as a HIZ or LOWZ quasar (see Section 8), whether the spectrum is the primary spectrum for an object, and whether the object was used to generate NMF components (GenComp). Regarding the individual NMF fits, we present the number of components used (N_{comp}), whether that number is a reduction from the number available (RedComp), the χ^2 of the fit, the number of pixels retained after masking (N_{pix}), the index of the power-law slope fitted to identify red objects (Slope), whether a slope correction was applied (SiCor), and whether an additional mask was applied to cover a dip in the reconstruction (DipMask) or defined manually (ManMask).

For each of Si IV λ1400, C IV λ1550, Al III λ1860 and Mg II λ2800 we list the BI, mean depth (\bar{d}) and minimum and maximum velocities ($v_{\text{min}}, v_{\text{max}}$) of any identified BAL troughs, and the minimum and maximum velocities covered by both the SDSS spectra and NMF components ($v_{\text{corr.min}}, v_{\text{corr.max}}$). The coverage velocities are set to zero when the BAL region has no coverage at all. We also list the number of bad pixels within the BI integration range (N_{BI}) and within any BAL troughs (N_{RT}), and the same for pixels affected by sky lines (N_{SR} and N_{ST}). Finally, four flags are listed for each species: Inc is set if the coverage of the BI region is incomplete, CBP denotes a manual change has been made to the measured BI and associated properties because of bad pixels in the originally-identified trough, CPF denotes a manual change has been made because of a poor NMF fit, and BBP is set if there is a broad region of bad pixels that could be concealing a BAL trough.

The above information is presented for all quasars in the sample described in Section 3, regardless of whether any BAL troughs are identified.

The SDSS names are taken from the SDSS DR7 Legacy Release where available. To calculate the S/N, flux and luminosity at 1700 Å the NMF reconstruction of the flux was smoothed by a median filter with width 41 pixels, and the region between 1650 and 1750 Å was extracted. The flux quoted (F_{1700}) is the median value within this range, while the S/N (SN_{1700}) is the median of the smoothed flux spectrum divided by the SDSS per-pixel noise spectrum. Bad pixels and those affected by sky lines were excluded from the S/N calculation as their noise values are unreliable or nonexistent, and the same pixels were excluded from the flux measurement for consistency, particularly with regard to the correlations measured in Section 7.2.

The luminosity (λL_{1700}) is calculated from F_{1700} using a luminosity distance based on the redshift given in Table 1, and is quoted after multiplying by $\lambda = 1700$ Å for units of erg s$^{-1}$. The S/N, flux and luminosity are listed as zero if the range 1650–1750 Å is outside the rest-frame coverage of the SDSS spectrum, or is covered entirely by bad pixels. The i-magnitudes are SDSS i-band PSF magnitudes, corrected for

2 Additionally, the automated procedure had failed to produce fits for three spectra: for one the automated mask covered the entire spectrum; for the second, the power law slope correction, as described in Section 4.4, was so great it suppressed all information in the spectrum; for the third, large sections of the SDSS spectrum had recorded fluxes of ±∞. Manually-defined masks were also created for these three spectra.

3 The strong redshift dependence of the BALQSO fraction.
Galactic extinction according to the dust maps of Schlegel et al. (1998).

The BI values are calculated according to equation 1 using the rest-frame zero-velocity wavelengths 1402.77, 1550.77, 1862.79 and 2803.53 Å for Si iv, C iv, Al iii and Mg ii, respectively. The corresponding wavelengths for \(v = -25000 \text{ km s}^{-1} \), the maximum velocity at which we search for BAL troughs, are 1290.61, 1426.78, 1713.85 and 2579.37 Å, respectively. BAL systems with outflow velocities greater than this limit are not identified, and in rare cases where a C iv outflow has extremely high velocity it could potentially be misidentified as a Si iv system.

The mean depth, \(\bar{d} \), is the mean of the flux ratio depth over all pixels in the BI-defined trough. In spectra with more than one distinct trough for a single species \(d \) is the mean over all troughs. Similarly, the minimum and maximum velocities listed give the minimum and maximum for all identified absorption.

In calculating the BI and \(\bar{d} \) values, 12.0-Å regions around 5578.5 and 6301.7 Å in the observed frame were interpolated over to remove the effect of the prominent sky lines at those wavelengths. Although such an interpolation can smooth over regions that genuinely rise above a flux ratio of 0.9, it is more common for the presence of a sky line within a broad absorption trough to halt the BI integration despite the true flux ratio still being below 0.9. The redshift regions in which the sky lines fall within the C iv BI integration region are 2.63<z<2.91 and 3.10<z<3.42.

Table 1 includes data for both ‘primary’ (best) and ‘duplicate’ observations, so many objects are listed more than once. To remove duplicates, leaving exactly one spectrum for each object in the catalogue, only those spectra with Primary=1 (in column 14) should be used. Duplicate observations can be matched with their corresponding primary observations using the SDSS object name (column 1) or coordinates (columns 2 and 3).

5.1 Distributions of absorption properties
In total, 3547 BALQSOs are identified, including 811 Si iv, 3296 C iv, 214 Al iii and 215 Mg ii BALQSOs. Note that many BALQSOs show absorption in more than one species. In these totals, and in all following calculations, only ‘primary’ SDSS spectra are used. ‘Duplicate’ spectra are discussed in Section 5.2.

The distributions of BI values for the four species examined are shown in Fig. 5. It can be seen that the two high-ionisation species, C iv and Si iv, follow the same BI distribution, peaking at 2000–3000 km s\(^{-1}\) in the log-space distribution, while the low-ionisation species, Al iii and Mg ii, peak below 1000 km s\(^{-1}\). However, in cases where both a HiBAL and a LoBAL trough are visible, the typical HiBAL BI is greater than for the HiBALQSO population as a whole by a factor of \(\sim \)3, as shown by the thick lines in Fig. 5.

The extreme nature of the HiBAL absorption in LoBALQSOs is further illustrated by Fig. 6, in which the ratio of LoBALQSOs to the total BALQSO population is shown as a function of Si iv or C iv BI. Only BALQSOs with complete coverage of the Al iii BAL region were included in the calculation. The LoBALQSO population consists almost entirely of objects with HiBAL BI values of several thousand km s\(^{-1}\) or more, and conversely almost all BALQSOs with HiBAL BI>10000 km s\(^{-1}\) also exhibit LoBAL absorption.

The differences between high- and low-ionisation absorption properties can also be seen in the distributions of \(d \) values, shown in Fig. 7: the high-ionisation species peak at \(d \approx 0.6 \), while the low-ionisation species peak at \(d \approx 0.3 \). As expected from the BI values, the typical depth of a HiBAL trough in a LoBALQSO is greater than in the general HiBALQSO population. However, Fig. 8 shows there is a large population of BALQSOs with very deep HiBAL troughs but no LoBAL absorption.

5.2 Repeat observations
A number of quasars were observed more than once in the SDSS spectroscopic survey. Such quasars provide a convenient test of the reliability of the NMF reconstructions and the resulting balnicity measurements, as the actual balnicities of most objects are not expected to vary greatly over...
A strong redshift dependence of the BALQSO fraction

the time-scales of the survey (Lundgren et al. 2007; Gibson et al. 2008).

Counting only those observations for which the C\textsc{iv} Inc and C\textsc{iv} BBP flags are not set, there are 2051 quasars with between two and seven observations in DR6. Of the 3288 pairs of observations available, there are 300 for which both NMF reconstructions give a C\textsc{iv} BALQSO classification, and a further 73 for which one reconstruction does but not the other. The distribution of differences between the pairs of C\textsc{iv} BI values, \(\Delta BI \), is shown in Fig. 9. For the majority of cases the discrepancy is less than 1000 km s\(^{-1}\). Visual inspection confirms that, as expected, most of the pairs with larger \(\Delta BI \) consist of observations with significantly differing S/Ns. As detailed in Section 7, the measurement of BALQSO properties is very sensitive to S/N, even in the ideal situation in which the NMF reconstructions do not vary.

The presence of pairs in which one observation is classified as a BALQSO, but the other is not, is confirmation that not all BAL troughs are identified by the NMF procedure. The resulting incompleteness is addressed in Section 7.

5.3 Observed BALQSO fractions

The observed BALQSO fractions for Si\textsc{iv}, C\textsc{iv}, Al\textsc{iii} and Mg\textsc{ii} as a function of redshift are shown in Fig. 10. Only spectra for which the relevant Inc and BBP flags were not set were included when calculating these fractions. There is a strong apparent redshift dependence of the BALQSO fractions, the implications of which are addressed in Sections 7–9. The highest-redshift BALQSO identified is a C\textsc{iv} BALQSO at redshift, \(z = 5.0314 \), but for \(z > 5 \) no C\textsc{iv} BALQSO fraction is measured because all spectra have incomplete coverage of the C\textsc{iv} absorption region. Of the 47 spectra at \(z > 5 \) for which complete coverage of the Si\textsc{iv} absorption region is available, none are identified as Si\textsc{iv} BALQSOs. Summing over all redshifts, the BALQSO fractions for Si\textsc{iv}, C\textsc{iv}, Al\textsc{iii} and Mg\textsc{ii} are 3.4\(\pm 0.1 \), 8.0\(\pm 0.1 \), 0.38\(\pm 0.03 \) and 0.29\(\pm 0.02 \) per cent, respectively. The uncertainties quoted are 1-\(\sigma \) binomial errors.
The observed fractions as a function of λL_{1700} are shown in Fig. 11. Only objects with redshifts $1.2 \leq z \leq 4.6$, i.e. where $1700\, \AA$ rest-frame is present in the SDSS spectra, are included. The luminosities are not corrected for dust extinction at this point. The distributions for Si$^\text{iv}$, C$^\text{iv}$ and Al$^\text{iii}$ all show a strong tendency towards higher BALQSO fractions at high luminosity, but this result is strongly biased by the relative probabilities of detecting a given BAL trough at different S/Ns; this bias is addressed in Section 7. The fraction of Mg$^\text{ii}$ BALQSOs shows a marked increase at $\lambda L_{1700} < 10^{45}$ erg s$^{-1}$ that is not observed in the other species; the BALQSOs contributing at these luminosities are all very heavily dust-reddened, resulting in a very low flux at $1700\, \AA$.

6 COMPARISON TO PREVIOUS RESULTS

G09 presented a catalogue of BALQSOs in the SDSS DR5, in which the unabsorbed emission was estimated by fitting a dust-reddened power law with Voigt profiles for the strong emission lines. The DR5 spectra are a large subsample of the DR6 spectra used here and a comparison of the results is thus possible.

The left panel of Fig. 12 compares the C$^\text{iv}$ BI values presented in this paper to those in G09, including only those spectra that were available in DR5. It is immediately clear that in general there is good agreement between the measurements. However, there are some notable differences. In particular, there are many more objects for which the G09 BI value is several thousand km s$^{-1}$ higher than the NMF-derived BI value than there are for which the reverse is true; this can be seen in the asymmetry in the distribution of points around the line of equality. Similarly, there are 1206 objects that are identified as C$^\text{iv}$ BALQSOs in G09 but not in this paper, but only 149 that are identified as C$^\text{iv}$ BALQSOs here but not in G09.

Before calculating the BI values, G09 smoothed the observed flux of each object using a boxcar with a width of three pixels. This smoothing was performed to reduce the number of cases where the noise in a single pixel breaks up a BAL trough. When the same smoothing is applied before recalculating the NMF-derived BI values, the results from the two catalogues follow each other more closely, as shown in the right panel of Fig. 12. The results presented in Section 5 use the un-smoothed spectra; the resulting incompleteness is corrected for in the following Sections. Visual inspection confirms that the spectra for which the BAL status is different in different catalogues tend to be marginal cases for which it is debatable whether any absorption present is deep or broad enough to be classified as a ‘broad absorber’.

For the strongest absorbers ($BI \gtrsim 10000\, \text{km s}^{-1}$) Fig. 12 shows a trend for the NMF-derived BI values to be greater than those from G09. The reason for the discrepancy is not always clear but the trend implies that, for high-BI quasars, the NMF algorithm tends to place the reconstructed continuum higher than G09 reconstructions.

Similar trends can be seen when comparing to the DR3 catalogue presented by Trump et al. (2006), as shown in Fig. 13, although the initial asymmetry is less pronounced and there is a tendency for the smoothed NMF-derived BI values to be higher than the values from Trump et al. (2006) across the entire range, again implying the NMF reconstructions have a higher continuum level.

The varying classifications between these three catalogues, each of which used the same metric on essentially the same data, emphasizes the importance of an accurate fit to the unabsorbed continuum. Relatively small errors in the
position of the continuum can often change a classification between non-BAL and BALQSO, or change the measured BI by thousands of km s\(^{-1}\). We expect that the NMF-derived fits presented in this paper will be consistently more accurate than the fits used to create previous catalogues, due to the manner in which the NMF procedure combines data from the entire observed spectrum to reconstruct the continuum. In cases in which large portions of the spectrum are absorbed, such a method has clear advantages over one that attempts to directly fit line profiles in the absorbed regions. Visual inspection of reconstructions of synthetic BALQSO spectra, such as those described in Section 7, suggests that the NMF procedure reliably produces accurate reconstructions of quasar continua, even in cases where large regions are affected by absorption.

Recently Scaringi et al. (2009) have presented a BALQSO catalogue in which ‘learning vector quantisation’ (LVQ), a machine-learning algorithm, was used to classify quasars as BALQSOs or non-BAL quasars. These classifications were compared to those from G09 and, in the cases where the two disagreed, a visual inspection was performed to provide a final hybrid-LVQ classification.

The final hybrid-LVQ catalogue leaves out very few of the DR5 quasars that are classified as BALQSOs in this paper. Conversely, nearly 1400 quasars have BI=0 km s\(^{-1}\) when measured from the NMF results but are classified as BALQSOs by Scaringi et al. (2009). In part this discrepancy is due to the increased probability of the G09 fits producing a non-zero BI relative to the NMF results, but the decision by Scaringi et al. (2009) to include absorbers with velocity <3000 km s\(^{-1}\) or velocity width <2000 km s\(^{-1}\) if a visual inspection indicates they have similar properties to other BALQSOs, results in the inclusion of many objects that by definition will always be excluded from a purely BI-based catalogue. The resulting discrepancy serves to underline the current difficulties in objectively defining ‘broad absorption’.

The public release of the C\(\text{iv}\)-region NMF-continuum fits, for each of the 48146 spectra in the sample with complete or partial coverage of the C\(\text{iv}\) region, allows anyone to use them to define BALQSO samples using any metric they wish. Additionally, future continuum fits to the same objects can be compared to the NMF-derived fits to aid in identification and explanation of discrepancies.

7 C\(\text{iv}\) BALQSO DETECTION EFFICIENCY

The catalogue presented in Section 5 is not complete. A number of BALQSOs will exist in the SDSS DR6 spectroscopic survey but have a measured BI of zero. There are two principal reasons why this can occur. Firstly, the reconstruction of the emission may place the continuum level too low, reducing the apparent depth of a trough or eliminating it completely. Secondly, even for a perfect reconstruction, a noise spike in the observed spectrum may lie above 90 per cent of the unabsorbed emission, halting the BI integration. This incompleteness in identifying BALQSOs from observed spectra has previously been noted (Knigge et al. 2008; G09) but not quantified. Because the level of incompleteness is strongly dependent on the S/N of the observed spectra, an extensive analysis is required in order to quantify the BALQSO fraction within the SDSS, \(f_{\text{SDSS}}\), as a function of any parameters that are correlated with spectrum S/N, such as luminosity or redshift.

It is also possible for non-BAL quasars to be incorrectly identified as BALQSOs due to a reconstruction that places the continuum too high. However, following the results of the comparisons in Section 6, such false positives are expected to be rare in the catalogue presented here.

The probability of a particular C\(\text{iv}\) BALQSO being detected by the NMF-based routine, \(p_{\text{det}}\), was estimated by inserting BAL troughs with known properties into non-BAL quasar spectra and processing the resulting synthetic BALQSOs in the same way as for observed spectra. The value of \(p_{\text{det}}\) for any selected set of quasar and BAL properties is then simply the number of correctly identified BALQSOs, divided by the total number of synthetic spectra created. As \(p_{\text{det}}\) was expected to be a strong function of redshift and S/N it was calculated separately for each of the redshift–luminosity bins shown in Fig. 14.

The methods described below could be applied to BAL systems in any species, but in this work we examine only C\(\text{iv}\) systems, by far the most common form of BALQSO.

7.1 Synthetic BALQSO spectra

In each redshift bin a sample of 50 quasars was chosen such that each quasar had \(9<\text{SN}_R<25\) and no significant absorption in the C\(\text{iv}\) trough region. For the \(4.0<z<4.5\) redshift bin the minimum \(\text{SN}_R\) was reduced to 7 to ensure sufficient spectra were available. To create spectra with the same properties but over a range of S/N, the observed quasar spectra were degraded by adding in sky spectra from the same SDSS plate. An example of this degradation is shown in Fig. 15, where a quasar spectrum has 1, 3, 7 and 15 sky spectra added to reduce the S/Ns by nominal factors of \(\sqrt{2}, \sqrt{3}, \sqrt{7}\) and \(\sqrt{15}\), although the actual S/N was always recalculated for each degraded spectrum.

The spectra were degraded by increasing factors of \(\sqrt{2}\) in S/N until there were insufficient sky spectra from the SDSS plate to continue; in most cases this halted the process
at 31 additional sky spectra, for a S/N nominally reduced by a factor of $\sqrt{32} \approx 5.66$.

The BAL troughs used to create synthetic BALQSOs were created from the flux ratio profiles of a set of five actual BALQSOs, chosen to provide a range of BAL velocity widths. The initial flux ratios were generated by dividing the observed spectrum by the NMF reconstruction, and smoothing the result by a boxcar window with width 15 pixels. The maximum flux ratio was set to unity, and any absorption outside the principal C\textsc{iv} and Si\textsc{iv} troughs was erased. The resulting smoothed ratios are shown in Fig. 16.

Preliminary tests suggested that the fraction of BAL troughs recovered depended more strongly on the mean depth, \bar{d}, than on the BI itself, so each of the flux ratio profiles in Fig. 16 was scaled to create profiles with C\textsc{iv} $\bar{d} = 0.15$, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7 and 0.9. A simple linear scaling was used. Fig. 17 shows the resulting troughs at different values of \bar{d} for one of the input flux ratio profiles.

To insert the troughs into non-BAL quasar spectra, simply multiplying the reference spectra by the selected flux ratio profiles would have artificially reduced the noise within the troughs. Instead the original NMF reconstructions of the non-BAL quasar spectra were multiplied by the flux ratios, and the resulting trough shapes – the difference between the reconstruction and the reconstruction multiplied by the flux ratio – were subtracted from the observed spectra, as shown in Fig. 18.

By inserting each synthetic BAL profile at each mean depth into each of the spectra in the test sample for all levels of S/N degradation, the 50 input spectra in each redshift bin were expanded to over 10,000, covering extended ranges of S/N and BAL properties. NMF reconstructions of these synthetic BALQSO spectra were calculated by the method described in Section 4 to determine if the BAL troughs would be detected.

7.2 Relating luminosity to signal-to-noise ratio

The variation in p_{det} with S/N is crucial because S/N correlates with important physical parameters such as redshift and luminosity. The synthetic BALQSO spectra have known redshifts, from the original non-BAL quasars on which they are based, but the luminosities of the degraded spectra are not well-defined. To relate the S/N to luminosity, the SN_{1700}
A strong redshift dependence of the BALQSO fraction

and λL_{1700} values for all quasars with $SN_{1700} < 25$ were extracted from the catalogue. In each redshift range a linear regression fit was made to empirically determine the relationship between S/N and luminosity. The values used to define the luminosity bins were then converted to S/N values using these linear relationships, allowing each synthetic spectrum to be assigned to a redshift–luminosity bin.

7.3 Detection probabilities

The derived values of p_{det} as a function of input mean depth, d_{in}, are shown in Fig. 19 for all redshift and luminosity bins. The uncertainties were calculated from bootstrap realisations, in each of which 50 spectra were chosen at random with replacement from the 50 input spectra.

As expected, the detection probabilities are highest for quasars with high luminosity (and hence high S/N) and deep BAL troughs. In general, for $\lambda L_{1700} \geq 10^{45.9}$ erg s$^{-1}$, there is a value of d_{in} above which all or nearly all BAL troughs are detected; below this depth p_{det} falls rapidly. In the redshift range $4.0 \leq z < 4.5$ (bottom-right panel in Fig. 19) none of the synthetic spectra reached the low S/N required for the lowest luminosity bin, although the results from the higher-luminosity bins suggest p_{det} would be very low. With only four quasars observed in this bin, we exclude the bin in the following analysis.

The detection probabilities calculated here were based on the actual mean depth of the BAL trough, but an examination of the results from the synthetic BALQSOs suggested that on average the observed mean depth, d_{obs}, was slightly deeper than the input mean depth, d_{in}. The offset is due in part to (i) a tendency for the shallow wings of the input absorption profiles to be excluded from the observed BI regions and (ii) the possibility for an observed trough, scattered to smaller depths, to be mis-identified as a non-BAL quasar. To correct for this trend, in each redshift–luminosity bin a linear regression line was fitted to d_{in} as a function of d_{obs}, and the observed mean depths presented in Section 5 were reduced according to the regression line before f_{sdss} was calculated. The typical corrections are small, with a median Δd of only 0.03. The corrected depth, $d_{\text{cor}} = d_{\text{obs}} - \Delta d$, is taken to be equivalent to the input depth, d_{in}, of the synthetic quasars.

8 DIFFERENTIAL SDSS TARGET SELECTION

Any BALQSO fraction derived directly from the quasar spectra in the SDSS will not be the intrinsic BALQSO fraction, because the SDSS spectroscopic survey is not 100 per cent complete. Quasar candidates were chosen for spectroscopic observations based on their photometric properties, as well as specifically targeting sources identified in the FIRST radio catalogues (Becker et al. 1995), giving an overall completeness, for quasars brighter than an observed i-band magnitude, of >90 per cent (Richards et al. 2002). Crucially, the presence of material causing a BAL trough along the line-of-sight to a quasar changes the quasar’s observed photometric properties. As a result, the probability of a BALQSO being selected by the target selection algorithm is different to that for a non-BAL quasar whose properties are otherwise the same. Differential selection probabilities were calculated by Reichard et al. (2003b), using simulated BALQSO and non-BAL quasar magnitudes; we follow a similar but more involved procedure here.

First, model quasar spectra are generated covering a wide range of expected quasar properties (Section 8.1). As well as different BAL properties we simulate different levels of dust reddening, a range of Lyman limit cut-off wavelengths and different continuum power laws. Each of these factors has an effect on the photometric properties of quasars and hence can change the SDSS completeness. In Section 8.2 we calculate observed $ugriz$ magnitudes from the model spectra at a range of redshifts and luminosities, allowing us to process them with the SDSS quasar target selection algorithm to determine the probability each model quasar would be targeted. The resulting completeness values are presented as contour plots in redshift–magnitude space in Section 8.3.

In order to make use of the completeness values derived for each individual model quasar, they must be weighted according to the expected probability distribution functions of each input parameter. In Section 8.4 we describe our methods for determining such distributions. Finally, in Section 8.6 we combine the weighted completeness values with an input luminosity distribution to derive the overall completeness.
for BALQSOs and non-BAL quasars as a function of redshift and luminosity.

8.1 Model quasar spectra

The wavelength coverage required to synthesise SDSS ugriz photometry is greater than that provided by the SDSS spectra, so more extended model spectra must be used. The reference quasar model for the investigation is that described in Maddox et al. (2008). The Maddox et al. model quasar SED reproduces the variations of the median colours of the SDSS quasars over the full redshift range 0.2 < z < 5.0 to a high degree of accuracy. A graphical indication of the success of an earlier version of the model in reproducing the colours of SDSS quasars can be found as fig. 8 of Chiu et al. (2007). The implementation employed here incorporates a refined parametrisation of the Ly-α forest opacity based on the work of Faucher-Giguère et al. (2008). The model results in an excellent match to the observed median ugr colours of the SDSS quasars over the redshift range 1.7 < z < 5.0, representing a significant improvement over the parametrisation based on the results of Songaila (2004) that was employed previously.

The Maddox et al. (2008) model SED does reproduce very well the locus of observed quasar colours over an extended range of redshifts. However, it uses a fixed continuum model while the quasar population exhibits an intrinsic range in overall continuum shape. As only a small fraction of quasars deviate significantly from the model SED such quasars typically have little effect on the overall SDSS completeness. None the less, there are regions of parameter space in which the quasar locus passes through the colour-volume occupied by main sequence stars and the predicted completeness values plummet, while those quasars with unusually blue SEDs skirt the stellar main sequence and do satisfy the SDSS quasar selection criteria. In such regions the ‘blue’ quasars do make a significant contribution to the completeness values. To include this effect an additional series of model quasars, with the rest-frame ultraviolet power law slope α (f_ν = ν^{-α}) bluer by 0.5, was generated.

The reference quasar spectra were modified in the following ways to reproduce the range of SEDs present among the quasar population. The spectrum was dust-reddened using an empirically-derived extinction curve (Maddox et al. 2010, in preparation) with E(B − V) values of 0.0, 0.05, 0.1, 0.15 and 0.2. The Maddox et al. (2010) extinction curve is very similar to the extinction curve of the Small Magellanic Cloud (SMC), which is frequently used in studies of quasars. Like the SMC curve, there is no 2175-Å feature but the increase in extinction below 1600 Å is somewhat shallower, although still always greater than for a Large Magellanic Cloud extinction curve.

Changing the wavelength of the Lyman limit cut-off, λ_{LL}, can have a large effect on the observed quasar colours.

Figure 19. Probability of the NMF routine detecting a BALQSO in SDSS as a function of input d. Each panel represents a single redshift bin, as labelled. The curves within each panel represent different luminosities: $L_{1700} < 10^{45.9}$ (solid blue), $10^{45.9} \leq L_{1700} < 10^{46.1}$ (dotted red), $10^{46.1} \leq L_{1700} < 10^{46.3}$ (dashed green) and $10^{46.3} \leq L_{1700}$ (dot-dashed black) (all luminosities in erg s^{-1}).
particularly by changing the u-band flux and hence the u-g colour. Such an effect can move quasars into or out of the stellar locus, changing their targeting status with only a small shift in \(\lambda_{\text{LL}} \), a feature which Prochaska, Worseck & O’Meara (2009) and Worseck & Prochaska (2010) have highlighted recently. To explore the impact of a Lyman limit cut-off we generated sets of objects following the tracks in \(ugriz \) magnitude space defined by varying \(\lambda_{\text{LL}} \) between 600 and 912 Å. The objects were spaced along the tracks such that the step size, \(\Delta m = \sqrt{\Delta u^2 + \Delta g^2 + \Delta r^2 + \Delta i^2 + \Delta z^2} \), was constant, with the number of steps chosen individually for each test quasar to give \(\Delta m \approx 0.1 \).

BALQSOs were simulated by employing a modified subset of the flux ratios used in Section 7. The flux ratio profiles used were the first, third and fourth from the top in Fig. 16, each with mean depths of 0.15, 0.3, 0.5, 0.7 and 0.9. In each case the \(\text{C}^{\text{iV}} \) trough profile was replicated at the wavelengths of the \(\text{Si}^{\text{IV}} \), \(\text{N}^{\text{V}} \) and Ly\(\alpha \) lines. In the case of the \(\text{Si}^{\text{IV}} \) and \(\text{N}^{\text{V}} \) lines the \(\text{C}^{\text{iV}} \) trough was reduced to 80 per cent of its original depth, in order to ensure consistency between different profiles representing different BI ranges. In addition, the flux bluewards of 1050 Å was reduced by the mean depth of the \(\text{C}^{\text{iV}} \) trough, to approximate the combined effect of broad absorption from a number of other high-ionisation species. The existence of these troughs can be seen directly by comparing composite SDSS spectra of BALQSOs and non-BAL quasars with redshifts 3.0<\(z <4.0 \) (such as those in Fig. 22), where the rest-frame 800–1100 Å wavelength region is visible in the spectra, showing a systematic depression in the BALQSOs compared to the non-BAL quasars below \(\approx 1050 \) Å.

The BALQSO completeness values calculated below were interpolated to cover all eight of the mean depths for which the detection efficiency was calculated in Section 7, for each of the three profiles used, giving \(8 \times 3 = 24 \) BI/\(\bar{d} \) ranges.

The recipe adopted for the BAL trough simulations closely matches the observed properties of BAL quasars among the SDSS spectra. The non-BAL quasar spectra were also retained and the full suite of model spectra covers an extended range in the reddening and BAL properties of quasars.

8.2 Synthetic SDSS magnitudes

In order to measure the completeness for the model quasar spectra, SDSS magnitudes were generated for each and multiple realisations were created by scattering according to typical photometric errors. The sets of scattered magnitudes were processed by the SDSS quasar target selection algorithm to determine if each would be targeted. The completeness for each model quasar could then be estimated as the fraction of realisations, scattered from the true magnitudes for that model, that were targeted. The procedure is described in detail below.

Synthetic SDSS colours for the model quasars, over a range of redshifts, were determined as described in Hewett et al. (2006). \(ugriz \) magnitudes were then derived by setting the \(i \)-magnitude to a specific value and applying the synthetic colours. The magnitudes were calculated according to the asinh magnitude system presented by Lupton et al. (1999), to match the SDSS photometric data. The range of redshifts and \(i \)-magnitudes used is shown in Fig. 20; the values were chosen to concentrate on the regions where completeness varies rapidly according to Richards et al. (2002).

The errors in the photometric measurements can cause an object to scatter into or out of the target selection region. Typical errors were derived from the ‘BEST’ photometric values and errors in the SDSS DR5 quasar catalogue (Schneider et al. 2007). For each individual photometric measurement all the measurements in that band with a magnitude within 0.25 were extracted, along with their associated errors. The first and third quartile values of the extracted error distribution were chosen to represent ‘good’ and ‘poor’ observing conditions, respectively. For each set of synthetic magnitudes ten ‘good’ and ten ‘poor’ realisations were created by adding Gaussian random noise with the appropriate 1-\(\sigma \) errors.

The photometric errors of an object are used by the SDSS target selection algorithm to assess the significance of an object’s deviation from the stellar locus in colour space. The relevant magnitude errors required are those pertaining to the scattered rather than \textit{intrinsic} photometric properties. Thus, the magnitude errors were recalculated for each realisation using the ‘TARGET’ photometric data from Schneider et al. (2007), which better reflect the information originally used for quasar target selection. The resulting sets of magnitudes and errors were processed by the SDSS quasar target selection algorithm, as radio-quiet stellar (point-source) candidates, to determine the spectroscopic target status of each model quasar realisation. The results from each set of twenty realisations were combined to estimate the completeness for that model quasar.

There are a number of criteria under which an object can be targeted; the PRIMTARG header item in each SDSS spectrum’s datafile specifies whether an object was targeted as a high-redshift quasar candidate (HIZ), a low-redshift quasar candidate (LOWZ), a FIRST radio source or some other candidate type. Multiple targeting flags for a single

Figure 20. Redshift–magnitude combinations tested for completeness in the SDSS quasar target selection algorithm. The contours show the completeness for non-BAL quasars measured by Richards et al. (2002), marking the 10, 25, 50, 75 and 90 per cent levels. The 90 per cent contour is marked with a dashed line. Red crosses show the combinations tested in this work.
source are allowed. The target selection algorithm is described in detail by Richards et al. (2002). Only the HIZ and LOWZ flags are used here: these flags depend only on the photometric properties of each individual object, and are the criteria under which the majority of SDSS quasars were selected.

To reduce the CPU time and data transfer requirements of processing the very large number of test points produced, after an initial set of 30,000,000 objects had been processed by the target selection algorithm further objects were first compared to the initial set. If the two nearest neighbours in magnitude space to a new object had the same PRIXTARG values then this value was adopted for the new object too. If they disagreed, the new object was processed by the normal target selection algorithm. Tests on a random subsample of objects suggested that comparison to the nearest neighbours gave the correct result in 94 per cent of cases; given the large number of objects included in each completeness datapoint this represents an acceptable error rate.

8.3 Completeness contours in redshift–magnitude space

Example completeness contour plots are shown in Fig. 21, for the normal (not ‘blue’) quasar SED with a range of input properties. The overall features for the dust-free quasars with $\lambda_{LL} = 912 \, \text{Å}$ (top-left panel for a non-BAL quasar, top-right for a BALQSO) are largely as expected from the results of Richards et al. (2002) and Reichard et al. (2003b): the completeness is very high for both non-BAL quasars and BALQSOs with $z < 2.1$ and $i < 19.1$, drops sharply for a narrow region close to $z \approx 2.6$, and rises again for higher redshifts.

Differences between the non-BAL and BALQSO completeness values can be seen around $z \approx 2.6$, where the model quasar colours move close to or through the stellar locus. The redder $u-g$ colours for BALQSOs, caused by suppression of the flux bluewards of 1050 Å, causes BALQSOs to enter and then leave the stellar locus at lower redshifts than non-BAL quasars. A further difference is seen at $z \approx 3.5$, where the BALQSO colours again come close to the stellar locus, causing a sharp but brief drop in the completeness. At other redshifts, in particular $z < 2.1$ and $z > 3.6$, the completeness is very similar for BALQSOs and non-BAL quasars.

Adjusting the position of the Lyman limit cut-off wavelength can have a very strong effect on the derived completeness values, due to the resulting change in the u-magnitude of the quasars. The bottom-left panel of Fig. 21 shows an extreme case in which a very low $\lambda_{LL} = 600 \, \text{Å}$ allows significant u-band flux at all redshifts, keeping the quasar colours away from the stellar locus but also preventing selection based on the HIZ targeting.

The contour plots in Fig. 21 are based on the observed i-band magnitude, so the bottom-right panel with $E(B-V) = 0.1$, shows the effects of dust reddening but not dust extinction. However, there are still large differences between the results for dust-free and dust-reddened quasars due just to the induced change in colours. Reichard et al. (2003b) showed that, depending on redshift, the effect of dust can be to move the quasar away from or towards the stellar locus in colour space. Such motion makes target selection more or less likely at different redshifts. The tendency for BALQSOs to exhibit more dust reddening than non-BAL quasars (e.g. Sprayberry & Foltz 1992; Reichard et al. 2003b) is thus important when considering relative completeness values for the SDSS quasar selection.

Combining the different quasar parameters has effects on the completeness maps that are not obvious from examining the parameters individually. The plots in Fig. 21 only illustrate the types of effect that arise. The impact of combinations of dust-reddening, Lyman limit cut-off wavelength and BAL properties must be considered in order to quantify the relative completeness.

8.4 Distributions of quasar properties

In order to apply the completeness maps derived above, estimates must be made of the distributions of the quasar properties on which they are based. Such distributions allow us to weight the results from different input parameters accordingly. There are five properties for which quasar population distributions are required: (i) the intrinsic luminosity distribution of quasars, (ii) the intervening absorber Lyman-limit wavelengths, (iii) the actual BAL trough properties, (iv) the relative numbers of quasars with ‘normal’ and ‘blue’ SEDs and (v) dust extinction and reddening, i.e. $E(B-V)$. The first four of these are covered here, while the $E(B-V)$ distributions are described in Section 8.5.

The intrinsic luminosity distribution was modelled as a power law, $\Phi (\log (\lambda L_{1700})) \propto 10^{-a \log (\lambda L_{1700})}$, with $a = 2.2$. The value of a was determined from a fit to the observed distribution of quasars with $z < 2.0$. Within each redshift bin the number density per unit redshift was assumed to be constant. As the completeness correction is applied to separate redshift bins independently the change in number density between redshift bins does not enter into the calculations.

The following results do not depend strongly on the details of the luminosity distribution used. The effect of using different values of a is to change slightly the overall intrinsic BALQSO fraction while making little or no difference to the shape of the function as a function of redshift; the effects are discussed further in Section 9.2. Tests using a redshift-dependent luminosity distribution determined from the observed quasars in each redshift bin produced very similar results. The stability in the determination of the intrinsic BALQSO fraction, f_{int} (Section 9), is in part because the final result depends only on the ratio of the non-BAL quasar and BALQSO completenesses, rather than their absolute values.

In order to weight the contributions from each of the Lyman limit wavelengths an initial weight of 50 per cent was assigned to $\lambda_{LL} = 912 \, \text{Å}$, to account for quasars where a Lyman limit system exists within the host galaxy. This fraction is consistent with a visual inspection of SDSS quasar spectra. To assign the weights for the remaining half of the quasars, a set of 10^6 quasar sightlines were populated with Lyman limit systems and damped Lyα absorbers using the method of Warren, Hewett & Osmer (1994) and parameters of Fan (1999). The completeness values derived for each of the discrete u-magnitudes tested were interpolated to intervening u-magnitudes, corresponding to different λ_{LL}, and weighted according to the fraction of the 10^6 quasar sightlines whose highest-redshift absorber produced that value of λ_{LL}.
A strong redshift dependence of the BALQSO fraction

The SDSS selection effects were calculated and applied separately for non-BAL quasars and each of the 24 BALQSOs described in Section 8.1. The ‘normal’ and ‘blue’ quasar SEDs in the population were assigned weights of 0.9 and 0.1, respectively.

8.5 $E(B-V)$ distributions

The $E(B-V)$ probability density function for the non-BAL quasars was taken from Maddox et al. (2010, in preparation). Maddox et al. matched the SDSS quasar catalogue to UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007) Y JHK near-infrared photometry. $E(B-V)$ estimates were then made for each quasar using the observed SDSS i-band to near-infrared colours, relative to the colours for the unreddened model quasar SED employed in this paper. The method utilises quasar rest-frame wavelengths in the optical, where the Milky Way, LMC and SMC extinction curves show very similar behaviour. Maddox et al. (2010) take careful account of a number of selection effects involved in combining the SDSS and UKIDSS data but their resulting $E(B-V)$ probability density functions parametrize the observed distribution of extinction values for quasars satisfying the SDSS LOWZ and HIZ quasar selection criteria.

The observed $E(B-V)$ distribution is biased towards low values as, in general, the presence of dust makes a quasar less likely to be included in the SDSS spectroscopic survey. To recover the intrinsic distribution of quasar properties, an estimate of the overall completeness as a function of $E(B-V)$ was made. The observed $E(B-V)$ distribution was divided by the average completeness for a population of quasars with the power-law luminosity distribution described in Section 8.4, and the observed redshift distribution, after applying the appropriate levels of reddening and extinction. The $E(B-V)$ distribution was truncated at $E(B-V) = 0.2$ as for larger values of $E(B-V)$ the completeness is too low to determine the intrinsic distribution with sufficient accuracy.
In a flux limited sample, the mean observed \(E(B-V) \) for a population of objects with an \(E(B-V) \) distribution independent of redshift, decreases with redshift as the increasing level of extinction with redshift experienced by the population removes a larger and larger fraction of high \(E(B-V) \) objects. By contrast, the mean observed \(E(B-V) \) for the BALQSOs, derived from the SDSS i-band to near-infrared colours, increases strongly with redshift. Constructing composite non-BAL and BALQSO spectra from the much larger sample of BALQSOs satisfying the SDSS LOWZ and HIZ quasar selection criteria, as shown in Fig. 22, demonstrates the same effect: the \(E(B-V) \) shown by the composite BALQSO spectra relative to the non-BAL spectra increases significantly with redshift.

An observed variation in median \(E(B-V) \) could be caused by a genuine trend with redshift, or by a redshift-dependent selection effect. Indeed, the large \(E(B-V)=0.075 \) value found for the \(z=2.5-3.0 \) interval is explained by an increased probability of selecting quasars with non-zero \(E(B-V) \) as the majority of unreddened quasars lie close to the stellar locus in the ugriz colour-space. However, the strong increasing trend in median \(E(B-V) \) with redshift is present for redshift ranges where the selection probabilities for both unreddened and reddened quasars are extremely high. If dust content were strongly correlated with BAL absorption strength this could produce an observed correlation with redshift, as we are more sensitive to weak troughs at low redshift, but an empirical determination of the relationship between \(E(B-V) \) and BI for more than 300 BALQSOs in the redshift interval \(1.6<z<2.6 \) shows no evidence for any such correlation.

Having ruled out any significant bias resulting from the quasar selection or from a dependence of \(E(B-V) \) on BI, the most likely explanation for the correlation between the observed median \(E(B-V) \) and redshift is an increase in the intrinsic fraction of BALQSOs with larger values of \(E(B-V) \) at higher redshifts. Unfortunately, while the trend in the observed median \(E(B-V) \) for the BALQSOs is clear we do not have sufficient information to determine the form of the distribution of \(E(B-V) \) as a function of redshift.

We therefore adopt two related approaches to parametrizing the BALQSO \(E(B-V) \) distribution. In the first, a Gaussian distribution centred on \(E(B-V)=0.08 \) with width, \(\sigma=0.03 \), truncated at \(E(B-V)=0.0 \) and 0.2, was used, to provide a non-evolving reference. The form of the distribution was chosen to produce an observed mean \(E(B-V)=0.05 \) (over all redshifts \(1.6<z<4.5 \)), the approximate midpoint of the composite-derived values. For the second approach, the Gaussian width was retained at 0.03, independent of redshift, but a different central value was adopted for each redshift bin such that the predicted mean observed \(E(B-V) \) matched the linear trend with redshift derived from the composite quasar spectra. The central values of the Gaussian increase monotonically from 0.023 at \(1.65<z<1.70 \) up to 0.099 at \(4.0<z<4.5 \). Hereafter, we refer to the two approaches as ‘fixed’ and ‘redshift-dependent’, respectively.

A large number of alternative \(E(B-V) \) distributions were also tested to determine the relationship between input \(E(B-V) \) distribution and the final determination of the intrinsic BALQSO fraction. As with changing the luminosity distribution, modifying the form of the \(E(B-V) \) distribution changes the overall BALQSO fraction but has little effect on the shape of that fraction as a function of redshift as all redshifts are affected in a similar manner; this point is discussed further in Section 10.

The \(E(B-V) \) cumulative distribution functions (CDFs) are shown in Fig. 23. The CDFs for non-BAL quasars do not pass through the origin because the probability distributions include a delta function at \(E(B-V)=0 \) which, after correcting for completeness, accounts for \(\approx 81 \) per cent of non-BAL quasars.

Figure 22. Composite spectra of BALQSOs and non-BAL quasars. Each panel shows composites derived in a different redshift range, as labelled. In each panel the black line shows the BALQSO composite, the blue line shows the non-BAL quasar composite, and the red line shows the same non-BAL composite after reddening by the \(E(B-V) \) level shown to match the shape of the BALQSO composite. The \(E(B-V) \) measurements have uncertainties of \(\pm 0.05 \) mag. All spectra are normalised by the flux at the red end of the spectrum. The numbers of BALQSO/non-BAL spectra used to generate each composite are, from low to high redshift, 1333/1204, 900/1249, 497/1073, 538/1013 and 172/1226. Non-BAL spectra were chosen at random from those available.
8.6 Calculating overall completeness values

Overall completeness values were calculated in each redshift–luminosity bin for non-BAL quasars and each of the 24 BALQSOs individually. In short, quasars following the power-law luminosity function were reddened according to the different \(E(B-V) \) distributions described in Section 8.4. The completeness contours from Section 8.3 were then used to determine the fraction of such quasars that would be targeted by the SDSS, and the overall completeness was measured as the total number of targeted quasars with a given observed luminosity divided by the total input number of unreddened quasars with that luminosity. This approach enables the completeness calculation to explicitly include reddened quasars with redshift–luminosity–\(E(B-V) \) combinations such that their completeness is zero, which are not observed in the SDSS catalogue. Full details of the procedure are given below.

First the quasar sample is restricted to those objects where reliable detection probabilities are available. The target selection testing described above covers only the LOWZ and HIZ quasar target flags and only those quasars that were targeted under one or both of the LOWZ and HIZ criteria were retained. Early spectroscopic plates in the SDSS used slightly different targeting criteria so in using all plates there is a small bias against quasars that are not covered by the original targeting criteria but would have been selected by the final algorithm. This bias can be removed by excluding plates that were observed before the target selection algorithm was finalised. Doing so makes no significant difference to the results described below, suggesting the systematic errors induced by the bias are very small, but the statistical errors increase due to the reduced sample size. As a result, all spectroscopic plates are included in the sample.

To reduce the impact of quasars with unusual spectral properties, which were not covered by the target selection testing, quasars with a redshift and apparent magnitude such that the completeness for unreddened non-BAL quasars or BALQSOs (averaged over different trough properties) was less than 10 per cent were excluded from the calculations. These quasars are by definition rare but their inclusion would bias the calculation of the intrinsic BALQSO fraction as these rare SEDs were not included in the calculation of the completeness values. Quasars with either the C IV Inc or C IV BBP flags set were also rejected. The redshift–luminosity distribution of the 20078 retained quasars is shown in Fig. 24.

After restricting the input quasar sample the boundaries of the luminosity ranges used to calculate \(f_{\text{SDSS}} \) were shifted to reflect the new luminosity distribution; the new boundaries are also shown in Fig. 24.

The input \(E(B-V) \) distributions were used to derive the redshift–luminosity distributions for quasars that are affected by dust. Intrinsic 1700-Å luminosities were converted into observed \(i \)-magnitudes for all \(E(B-V) \) values using extinction values and \(K \)-corrections based on the appropriate synthetic non-BAL quasar and BALQSO spectra. From these magnitudes and the intrinsic luminosity and \(E(B-V) \) distributions the number of quasars that would be targeted by the SDSS was found from the completeness contours (derived above) interpolated to the required redshift, observed magnitude and \(E(B-V) \) values, and averaged over all redshifts within each bin. The completeness in each of the redshift–luminosity bins shown in Fig. 24 was then calculated by dividing the number of targeted quasars with an observed luminosity in that range by the total number of quasars with an intrinsic luminosity in that range. The completeness was evaluated separately for non-BAL quasars and each of the 24 BI/\(\bar{d} \) ranges for BALQSOs.

9 INTRINSIC BALQSO FRACTION

As detailed in Sections 7 and 8, to derive the intrinsic BALQSO fraction, \(f_{\text{int}} \), from the observed fraction, \(f_{\text{obs}} \), we must first correct for the incomplete identification of BAL troughs within the SDSS catalogue, then correct for the different levels of completeness for BALQSOs and non-BAL quasars entering the SDSS quasar sample. Over most re-
regions of parameter space these corrections are robust, but at particular redshifts the probabilities quasars are selected become small, systematic errors become large and the reliability of our analysis decreases. The regions where this occurs are discussed below.

9.1 Correction for incomplete identification

An estimate of the true number of BALQSOs in the SDSS can be found by splitting the observed BALQSOs into the redshift, luminosity and mean depth bins used in Section 7 and dividing the number in each bin by the relevant detection probability.

Using the redshift–luminosity bins shown in Fig. 14 and taking the total number of BALQSOs across all values of d, the resulting estimates of f_{SDSS} are shown as a function of redshift as the square symbols in the upper panel of Fig. 25. The lower panel of Fig. 25 uses only quasars from the highest extinction-corrected luminosity bin to ensure the use of the same luminosity interval over all redshifts. The errors shown are 1-σ errors calculated from bootstrap realisations of the observed SDSS quasars and the quasars used to calculate p_{det}.

Summing quasars over all redshifts gives an overall fraction $f_{\text{SDSS}} = 14.0 \pm 1.6$ per cent. In this summation the two redshift–luminosity bins in which the averaged p_{det} is less than 0.05 were not used, as a small error in the value of p_{det} in these bins creates a much larger error in the resulting calculation of f_{SDSS}.

The statistical uncertainties in the determination of f_{SDSS} are very large in places; this is principally the result of large uncertainties in the true number of BAL troughs with low d_{cor}. For a number of datapoints the value plotted in Fig. 25 is dominated by just one or two BALQSOs that lie in regions with very low p_{det}. The strong dependence of the uncertainties on the mean depth can be seen in Fig. 26, which shows f_{SDSS} as a function of d_{cor}, averaged over all redshifts and luminosities. The results are binned according to the mean depths at which p_{det} was measured. It is clear that the small number of troughs observed with low d in the catalogue presented in Section 5 is due to the small detection probabilities, rather than an intrinsic lack of shallow absorbers.

The crosses in Fig. 25 show the results when only BAL troughs with $d_{\text{cor}} \geq 0.35$ are included; the cut-off depth was chosen to ensure a high detection probability over all redshifts and luminosities, and hence a low uncertainty in the true number of BALQSOs. The resulting SDSS BALQSO fraction includes only a subset of all BALQSOs, but the increased precision allows a better determination of the redshift dependence.

9.2 Correction for SDSS target selection

The intrinsic numbers of non-BAL quasars and BALQSOs were calculated by dividing the numbers of each estimated to be present in the SDSS by the completeness values derived in Section 8, using the redshift–luminosity bins shown in Fig. 24. The correction was applied separately for the fixed and redshift-dependent $E(B - V)$ distributions.

The intrinsic BALQSO fraction, f_{int}, is shown as a function of redshift in Fig. 27, in which the results from some adjacent redshift bins have been combined to reduce the statistical uncertainties. The top panel uses quasars with all luminosities, while the bottom panel uses only quasars with extinction-corrected $\lambda L_{1700} \geq 10^{46.4}$ erg s$^{-1}$ in order to minimize the variation with redshift of the luminosity distribution. In both panels black squares represent results using the fixed $E(B - V)$ distribution, and red crosses use the redshift-dependent distribution. Only BAL troughs with $d_{\text{cor}} \geq 0.35$ were used, because of the large uncertainties at lower values of d_{cor} discussed in Section 9.1. As before, the errors are calculated from bootstrap realisations of the observed SDSS quasars, the quasars used to calculate p_{det}, and also the sets of synthetic magnitudes from which the target selection completeness contours were derived.

As well as the statistical errors shown the results will
be affected by systematic errors. Details of tests carried out
to determine the level of systematic errors are given below but
throughout most of the redshift range covered these errors are
relatively small. However, in the range $2.3 \leq z < 3.0$
the completeness for one or both of non-BAL quasars and
BALQSOs drops to very low levels, as previously noted by
Richards et al. (2002) and Reichard et al. (2003b). When the
completeness is low the systematic errors become far more
significant, for two reasons: firstly, a small absolute error in the
completeness measurement corresponds to a large relative
effect; and secondly, a greater fraction of the observed
objects will have unusual SEDs that were not covered by
the completeness testing described in Section 8. As such, we
caution that the systematic errors for $2.3 \leq z < 3.0$ are likely
to be considerably larger than the statistical errors shown.

Figure 27. Intrinsic BALQSO fraction as a function of redshift,
including troughs with $d_{\text{cor}} \geq 0.35$ only. Top panel: all luminosi-
ties. Bottom panel: extinction-corrected $\lambda L_{1700} \geq 10^{46.4}$ erg s$^{-1}$
only. Restricting the luminosities used minimizes the influence of the
observed redshift–luminosity correlation. In both panels
black squares and red crosses use fixed and redshift-dependent
$E(B - V)$ distributions, respectively. The shaded region marks
the redshift range in which the systematic errors are predicted to
be considerably larger than the statistical errors shown.

Figure 28. Intrinsic BALQSO fraction as a function of
extinction-corrected luminosity, including troughs with $d_{\text{cor}} \geq 0.35$ only. Top panel: all redshifts. Bottom panel: the results re-
stricted to quasars with $z < 2.0$. In both panels black squares and
red crosses use fixed and redshift-dependent $E(B - V)$ distribu-
tions, respectively. Restricting the redshift range used minimizes
the influence of the redshift–luminosity correlation, which is re-
ponsible for the strong trend evident in the top panel.

An important source of systematic error in the calcu-
lation of f_{int} is the determination of p_{det}. In particular, the
values of p_{det} used were averages over a range of BI values at
any particular d_{min}, so if the sample of BAL trough profiles
used was unrepresentative the determination of p_{det} would
be biased. Using each of the profiles in Fig. 16 in isolation,
rather than averaging over all five, gives a range of values of
s_{DSSS} and f_{int} with standard deviations of 4 and 8 per cent,
respectively, which gives an indication of the variation that
could be induced by making an extreme change to the dis-
bution of BAL trough profiles. Restricting the analysis to
deep troughs ($d_{\text{cor}} \geq 0.35$) decreases the possible variation
in the results by a factor of 4, as the typical corrections for
incompleteness become smaller.

The input luminosity distribution used has an effect on
the values of f_{int} measured, principally because a steeper lu-
ninosity distribution results in a larger fraction of reddened
quasars dropping below any luminosity limits for any given
$E(B - V)$. For the fixed $E(B - V)$ distribution, changing α
in the luminosity distribution by 0.1 changes f_{int} by approx-
imately 1 per cent at all redshifts, with a steeper (shallower)
luminosity distribution giving a larger (smaller) f_{int}. For the
redshift-dependent $E(B - V)$ distribution the effect is great-
est at high redshift where the typical $E(B - V)$ values for
BALQSOs are highest. However, at all redshifts the change in
f_{int} is less than 1.7 per cent for a change in α of 0.1, so an
unfeasibly shallow luminosity distribution would be required to
remove the strong redshift evolution seen in Fig. 27.

The results for the BALQSO fraction are not strongly
sensitive to the positions of the luminosity boundaries shown
in Figures 14 and 24: examining the range in results pro-
duced using different positions suggested the systematic er-
error is no more than ±1.2 per cent in \(f_{\text{SDSS}} \) and ±4.2 per cent in \(f_{\text{int}} \).

Varying the relative fractions of the ‘regular’ and ‘blue’ model quasars makes little difference to the calculated intrinsic BALQSO fraction for \(z < 2.3 \) and \(z > 3.0 \), where the completeness for both models is reasonably high. For the intermediate redshift interval, where the SDSS quasar sample suffers from very significant incompleteness, ‘blue’ BALQSOs are significantly more likely to be included than ‘regular’ BALQSOs, so increasing the fraction of ‘blue’ quasars decreases the completeness correction for the BALQSOs and hence decreases \(f_{\text{int}} \).

10 DISCUSSION

In the preceding Sections we have presented a detailed analysis of the principal selection effects that affect the observed fraction of high-ionisation BALQSOs (HiBALQSOs). Even in the SDSS spectroscopic samples, the number of LoBALQSOs at redshifts \(z<1.5 \) is relatively small and we have not quantified the selection effects for such objects. However, the number of LoBALQSOs contained in our, and other recent, catalogues suitable for a careful analysis of multiple transitions from the same species (e.g. Moe et al. 2009) is growing and a better understanding of the frequency of occurrence and importance of low-ionisation species in the BALQSO population should follow.

With the quantitative information in hand for the HiBALQSO population we are able to measure the intrinsic BALQSO fraction and, more importantly, its variation with redshift and luminosity. Quantifying such variation allows us to provide important constraints on BALQSO models in a way not previously possible.

10.1 Overall BALQSO fraction

The observed \(\text{C IV} \) BALQSO fraction \(f_{\text{obs}} = 8.0 \pm 0.1 \) per cent derived here is lower than that from previous work, but the resulting intrinsic fraction \(f_{\text{int}} = 38.8 \pm 2.2 \) or \(40.7 \pm 5.4 \) per cent is considerably larger than most other estimates. The low observed fraction is largely due to the decision not to smooth spectra before calculating the BI, resulting in a more conservative definition of BALQSOs. This difference is accounted for in the correction for BAL troughs that are present in the SDSS spectra but undetected when continuum reconstructions are made. It is worth noting that the effective ‘smoothing’ of spectra prior to searches for BALQSOs has to date been largely ad-hoc, resulting from either instrumental limitations (i.e. resolution \(R=\delta \lambda/\lambda \)) or small-scale (\(<200 \text{km s}^{-1} \)) filters (e.g. G09). An alternative approach to that adopted in this paper would be to optimise the detection of BALQSOs by applying a filtering scheme with a scale \(\sim 2000 \text{km s}^{-1} \), i.e. equivalent to the minimum extent of BAL troughs, thereby maximising the completeness of a BALQSO catalogue. Part of the rationale for making available the NMF-generated continua is indeed to allow such an approach to be undertaken and relevant comparisons made between different ‘detection’ schemes for BAL troughs.

Recent work (Dai, Shankar & Sivakoff 2008; Maddox et al. 2008) has advocated the existence of high BALQSO fractions based on samples selected at near-infrared wavelengths. However, the Dai et al. (2008) type of analysis is still dependent on the observed distribution of quasars in the SDSS (optical) catalogues. In the investigation described here the optical-to-near-infrared properties of the SDSS-selected quasars are first used to determine the observed distributions of \(E(B-V) \) for non-BAL quasars, up to moderate redenings of \(E(B-V)=0.2 \) magnitudes. For BALQSOs parametrizations of the intrinsic \(E(B-V) \) distribution are chosen to reproduce the observed distribution, accounting for the strong selection effects present. Then, the \(E(B-V) \) distributions are included in a self-consistent way to allow the determination of the intrinsic fraction of BALQSOs (up to the \(E(B-V)=0.2 \) mag limit). The intrinsic fraction of BALQSOs derived here is very similar to the observed \(\sim 40 \) per cent value from Dai et al. (2008), based on a sample of SDSS quasars detected in 2MASS. The observed fraction of BALQSOs will increase for flux-limited samples defined at increasingly longer wavelengths. Determination of the intrinsic fraction of BALQSOs from a sample involving flux limits in two passbands, defined at substantially different epochs, involves quantification of rather complex selection effects and we believe the apparent agreement between the quoted BALQSO fractions to be somewhat misleading. Urrutia et al. (2009) also propose a very high fraction of BALQSOs based on a sample derived using FIRST, 2MASS and the SDSS. Their objects possess \(E(B-V) \) values extending well beyond the \(E(B-V)=0.2 \) mag limit used here, and the number of quasars at \(z>1 \) is small. The individual quasars are impressive examples of significantly reddened objects but, again, a careful analysis of the selection effects, including the strong bias towards the identification of red, broad-line objects with strong \(\text{H}\alpha \) emission present in the \(K \)-band, for the redshift interval \(z\sim2.1-2.6 \), is required.

In an analysis that is similar in concept to that described here, Reichard et al. (2003b), whose results were also used in Knigge et al. (2008), the effect of larger \(E(B-V) \) values among BALQSOs was modelled by taking the difference in colours between the SDSS EDR composite quasar spectrum and a composite of HiBALQSOs. This colour difference was applied to sets of synthetic quasar colours to allow each object to be processed by the SDSS quasar target selection algorithm as both a BALQSO and non-BAL quasar, leading to a correction for colour-dependent selection effects. A separate correction was applied to account for different levels of dust extinction. The Reichard et al. (2003b) method produces an average completeness correction based on quasars that were spectroscopically observed, but as such it is biased against those quasars for which the SDSS completeness is low, and it does not fully explore the parameter space of (reddened) quasar properties. Employing simulations of quasar SEDs for an extended range of \(E(B-V) \) values, as described in Section 8, and processing the reddening and extinction corrections together, provides a more accurate determination of the relative completeness levels.

The two different parametrizations of the \(E(B-V) \) distributions, described in Section 8.4, produce consistent results for the overall BALQSO fraction. Such agreement is unsurprising given the parametrizations were each chosen to reproduce the typical \(E(B-V) \) values observed in the identified BALQSOs. We note that the overall BALQSO fraction
is highly sensitive to the input $E(B-V)$ distribution: in general, f_{det} is correlated with the mean input $E(B-V)$ as a large fraction of high-$E(B-V)$ objects would imply a low completeness. However, any input $E(B-V)$ distribution used must be consistent with the typical values observed, placing a strong constraint on the possible range of distributions.

10.2 Redshift dependence

Notwithstanding the quantification of the detection probabilities for BAL troughs as a function of d (Fig. 19), the combination of low p_{det} and small-number statistics mean that the observed fraction of troughs with $d_{\text{cor}}<0.35$ is poorly constrained as a function of any parameter of potential interest, e.g. redshift. Indeed, for $z-\lambda L_{1700}-d$ combinations for which p_{det} drops low enough there are no observed BALQSOs and hence we can at best provide an upper limit to their numbers. The problem can be seen in Fig. 25, in which the f_{SDSS} values for all BALQSOs, and only those with $d_{\text{cor}} \geq 0.35$, converge at $z \geq 3.0$, i.e. no additional shallow troughs are detected.

To investigate potential variation in the intrinsic fraction of BALQSOs as a function of redshift and luminosity we therefore confine ourselves to consideration of the BALQSO sample with $d_{\text{cor}} \geq 0.35$. When the BALQSO sample is limited in this way, as shown in Fig. 27, f_{det} apparently peaks at >80 per cent at $z \sim 2.6$. However, the proximity of quasars to the stellar locus in the SDSS $ugriz$-space at this redshift results in a very low completeness for both BALQSOs and non-BAL quasars and we do not believe the simulations of the type we have undertaken are adequate for redshifts $2.3 \leq z < 3.0$. The larger median observed $E(B-V)$ for the BALQSOs in the interval, relative to adjacent redshifts (Section 8.5), likely indicates that further testing is required to fully explore the sensitive linkage between quasar SED properties and the SDSS selection at these redshifts. Systematic uncertainties are thus considerably larger than the statistical errors plotted in Fig. 27 and in the following discussion we focus on the results for $z < 2.3$ and $z \geq 3.0$, where the completeness is considerably higher and hence the uncertainties both smaller and well quantified.

Comparing the low ($z < 2.3$) and high ($z \geq 3.0$) redshift regions, we see different patterns depending on the $E(B-V)$ distributions used. With a fixed $E(B-V)$ distribution there is little overall difference between the two regions, but the redshift-dependent distribution results in a significantly higher f_{det} at high redshift. This trend appears because a higher mean $E(B-V)$ is necessary at high redshift, to match the observed trend, and so a lower completeness for high-z BALQSOs is predicted.

An observed trend with redshift can in general be produced by an intrinsic trend with luminosity, although the multiple criteria under which SDSS quasars were selected to some extent reduce the strong redshift–luminosity correlation present in most flux-limited samples. The results described above do not change greatly when we restrict our sample to the most luminous quasars (bottom panel of Fig. 27), but the trend of higher f_{det} at higher redshift for the redshift-dependent $E(B-V)$ distribution is strengthened, and a similar but weaker trend can also be seen for the fixed $E(B-V)$ distribution. With the luminosity threshold in place there is very little redshift evolution of the luminosity distribution of the quasars, implying that the observed trends represent a true redshift evolution of the BALQSO fraction.

A different parametrization of the $E(B-V)$ distribution as a function of redshift would in general predict a different trend in f_{det}. However we note that, even when using the fixed $E(B-V)$ distribution, which overpredicts the mean $E(B-V)$ at low redshift and underpredicts it at high redshift, f_{det} at $z \geq 3.0$ is greater than that at $z < 2.3$ by a factor 1.6 ± 0.2. To remove this trend would require a decreased completeness at low redshift, or an increased completeness at high redshift, either of which would exacerbate the disagreement between the predicted and observed mean $E(B-V)$. When using a redshift-dependent $E(B-V)$ distribution that better predicts the SEDs of composite BALQSO spectra the redshift trend becomes considerably stronger, with a factor 3.5 ± 0.4 difference between the high- and low-redshift intrinsic fractions.

Other than the $E(B-V)$ distributions, the largest source of systematic error we have identified is in the choice of synthetic BAL troughs used to quantify the detection probability, p_{det}. However, any variation in p_{det} due to a different range of synthetic troughs would affect all redshifts in approximately the same way, making little difference to the form of the observed trends. Other sources of systematic error, such as the luminosity distribution used or the positioning of the redshift–luminosity bins, were found to have minimal effect on the results. Further sources of systematic error, of which we are aware, would, to at least first order, also affect all redshifts in a similar manner. As such we expect the trends to be robust against known sources of systematic error and Fig. 27, showing the large, factor ≥ 3.5, change in the fraction of BALQSOs as a function of redshift, is the main scientific result of our investigation.

A further implication of the high BALQSO fraction at high redshift is in the number density of high-redshift quasars. The relatively low completeness for $z \geq 3.0$ BALQSOs implies that the true quasar number density at such redshifts is higher than observed by ≥ 50 per cent. At face value the increase in space density is relatively modest but if the results of Glikman et al. (2010) concerning the steepness of the faint end of the quasar luminosity function at $z \sim 4$ are confirmed then our result may have some implications in the context of the ability of the quasar population to maintain the ionisation of the inter-galactic medium at $z \lesssim 5$.

10.3 Luminosity dependence

There is a dynamic range of approximately one decade in luminosity at fixed redshift in our sample (Fig. 24). Somewhat unusually for an optically defined quasar sample, the two different selection algorithms employed in the SDSS (to target low- and high-redshift quasars), with their different faint magnitude limits, result in a relatively weak correlation between redshift and median luminosity. It is thus viable to determine whether luminosity contributes to the very strong redshift-dependent trends in BALQSO fraction discussed above.

The observed BALQSO fractions for Si IV, C IV and Al III are strongly dependent on luminosity, with a much higher fraction at high values of observed $\lambda \lambda L_{1700}$. This is
in part because the spectra of low-luminosity quasars will in general have lower S/N, and a BAL trough is less likely to be identified in a low S/N spectrum. However, the S/N dependence is to some extent balanced by the tendency for BALQSOs to possess larger $E(B-V)$ values (due to dust) than non-BAL quasars, reducing the observed BALQSO luminosities. After correcting for the competing selection effects for C iv BALQSOs the intrinsic fraction still shows a positive correlation with extinction-corrected luminosity, but the apparent trend is the result of the redshift dependence discussed in Section 10.2. When the analysis is restricted to quasars with $z<2.0$ and BAL troughs with $d_{	ext{cor}}\geq 0.35$, f_{int} shows no dependence on luminosity. However, the limited dynamic range in luminosity means that the constraint on any luminosity-dependent behaviour is weak. Fitting linear models to the data in the lower panel of Fig. 28 gives slopes of -2.1 ± 0.4 per dex $^{-1}$ (fixed $E(B-V)$ distribution) and 0.1 ± 0.3 per dex $^{-1}$ (redshift-dependent $E(B-V)$ distribution). For the latter distribution the uncertainties correspond to 3σ limits of -6.9 and 7.0 per cent dex $^{-1}$.

The observed fraction of Mg ii BALQSOs is highest at the lowest observed luminosities, in contrast to the other ions, due largely to a population of high-$E(B-V)$ objects. The most extreme objects of this type are often undetected at redshifts $z \geq 1.8$ due to the catastrophic reduction in the observed i-band flux once the absorbed part of the quasar SED, shortward of Mg ii, falls in the SDSS i band. Dust-induced extinction is also likely to make the population of Mg ii BALQSOs even fainter as the quasar redshift increases. Observational strategies of the type described by Urrutia et al. (2009) should prove far more effective in quantifying the fraction of such extreme BALQSOs.

10.4 Comparison to models

One of the two primary classes of model for BALQSOs (Weymann et al. 1991) involves the presence of broad absorption line clouds in all quasars but, due to incomplete solid angle coverage, quasars are only observed as BALQSOs when viewed along certain sightlines. Hence, broad absorption troughs are observed in some quasar spectra but not others, and the fraction in which they are observed can be directly related to the fractional solid angle coverage of the broad absorption regions. Ganguly & Brotherton (2008) summarise the body of evidence that the BALQSO fraction, and more generally the outflow fraction, is largely independent of the properties of the quasar. If incomplete solid angle coverage were the only determinant of the intrinsic fraction of BALQSOs it would be expected that the fraction should not vary as a function of redshift: the geometry of the BAL region is predicted to be constant with respect to time.

The results of Section 9 provide evidence against this simple model. In particular, the intrinsic BALQSO fraction is found to be significantly greater at high redshift ($z \geq 3.0$) than at low redshift ($1.65 \leq z < 2.3$). Such a change requires a model in which f_{int} depends on one or more parameters that are themselves varying functions of redshift. One possibility is that the coverage of the broad absorption line regions varies during the life of a quasar. The probability of viewing a BAL region in any particular quasar may still be a function of the solid angle coverage of the BAL clouds, but that coverage would itself be a function of the age of the quasar. Farrah et al. (2007) and Urrutia et al. (2009) have argued recently that at least the most extreme examples of the BAL phenomenon, the rare FeLoBAL quasars, are indeed the manifestation of an evolutionary scheme in which the BALQSOs represent the final phase in the emergence of a naked quasar from an earlier dust- and gas-enshrouded fueling phase. The observed variation in $E(B-V)$ with redshift would also be consistent with such a scheme.

An acknowledged difficulty with the evolutionary class of models is the lack of evidence for differences in the mid-infrared fluxes of BALQSOs and non-BAL quasars (Gallagher et al. 2007), expected to arise from the presence of an obscuring ‘cocoon’ at early times in the evolution of the objects. However, the evolutionary scenario has attracted support from recent studies at other wavelengths (e.g. Montenegro-Montes et al. 2009), although observations are still at an exploratory stage in many cases (Priddey et al. 2007). Our results relate to the much more common HiBALQSOs but the large, factor of 3.5, decrease in the BAL fraction from the highest redshifts, $z<4.5$, to redshift, $z<2.6$, where the observed space density of the most luminous quasars peaks, coincides with the period when the individual black hole growth within quasars was at its most rapid.

Alternative models that allow for cosmic evolution of the BALQSO fraction include identifying BAL regions with radiation-driven disc winds (e.g. Proga, Stone & Kallman 2000; Risaliti & Elvis 2009). Such winds are a class of outflow that can be generated by quasar accretion discs under a variety of physical conditions. As the solid angle coverage of the winds, and indeed the possibility of their existence, is a function of physical parameters such as the mass and Eddington ratio of the quasar (Proga & Kallman 2004; Risaliti & Elvis 2009), and the typical values of these parameters vary with redshift (e.g. Hopkins, Richards & Hernquist 2007; Steinhardt & Elvis 2010a,b), models of this type would generate a redshift-dependent BAL fraction without requiring – but also without contradicting – evolutionary BALQSO models.

Although we have provided a very brief summary of some of the considerations that relate to the main classes of models for BALQSOs the primary purpose of this paper is to present the first quantitative determination of the BAL fraction of luminous quasars as a function of redshift and luminosity. At face value, the very strong systematic changes in the BAL fraction as a function of redshift present a significant challenge for current models.

11 CONCLUSIONS

We have applied non-negative matrix factorisation to the reconstruction of SDSS quasar spectra, with particular reference to BALQSOs, and presented the resulting measurements of BAL properties. The observed C iv BAL fraction was corrected for incomplete identification of BAL troughs by the NMF routine, and for differential SDSS spectroscopic target selection for BALQSOs and non-BAL quasars.

The principal results from this analysis are that:

(i) A total of 811 Si iv, 3296 C iv, 214 Al iii, and 215 Mg ii BALQSOs are detected, corresponding to observed
BALQSO fractions of $3.4 \pm 0.1, 8.0 \pm 0.1, 0.38 \pm 0.03$ and 0.29 ± 0.02 per cent, respectively.

(ii) The probability of a BAL trough being detected by the NMF procedure is strongly dependent on the S/N of the spectrum and the mean depth of the trough. The detection probability is often very low for spectra and the mean depth of the trough. The detection probability is often very low for BAL troughs.

(iii) After correcting for incomplete identification of BAL troughs, the estimated C iv BALQSO fraction within the SDSS spectroscopic survey is 14.0 ± 1.6 per cent.

(iv) After correcting for differential SDSS target selection of BALQSOs and non-BAL quasars the estimated intrinsic C iv BALQSO fraction is 40.7 ± 5.4 per cent when using a redshift-dependent $E(B-V)$ distribution.

(v) The intrinsic BALQSO fraction decreases by a factor of 3.5 ± 0.4 between the redshift intervals $3.0 \leq z < 4.5$ and $1.65 \leq z < 2.3$, implying that the orientation of a sightline with respect to the quasar and its torus alone is insufficient to determine the presence or otherwise of a BAL trough.

(vi) The intrinsic BALQSO fraction shows no significant variation with the luminosity of the quasars in the sample, within the restricted luminosity range in which the comparison can be made.

The NMF reconstructions in the region around the C iv emission and absorption lines, of each of the 48 146 quasar spectra in the sample with coverage of the C iv region, will be made available through the SDSS value added catalogues as this paper is published.

ACKNOWLEDGMENTS

We thank the referee, Patrick Hall, for a number of suggestions that greatly improved the quality of this work. We thank Vivienne Wild for her contribution to improving the SDSS DR6 spectra via the sky-residual subtraction scheme, and Michael Strauss for processing a number of objects through the SDSS target selection algorithm. JTA acknowledges the award of an STFC Ph.D. studentship. PCH acknowledges support from the STFC-funded Galaxy Formation and Evolution programme at the Institute of Astronomy. GTR was supported in part by an Alfred P. Sloan Research Fellowship.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Becker R. H., Gregg M. D., Hook I. M., McMahon R. G., White R. L., Helfand D. J., 1997, ApJ, 479, L93
Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
Begelman M. C., 2004, in Ho L. C., ed., Carnegie Observatories Astrophysics Ser. Vol. 1, Coevolution of Black Holes and Galaxies, Cambridge Univ. Press, Cambridge, p. 374
Blanton M. R., Roweis S., 2007, AJ, 133, 734
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Casebeer D., Baron E., Leighly K., Jevremovic D., Branch D., 2008, ApJ, 676, 857
Chiu K., Richards G. T., Hewett P. C., Maddox N., 2007, MNRAS, 375, 1180
Dai X., Shankar F., Sivakoff G. R., 2008, ApJ, 672, 108
Elvis M., 2000, ApJ, 545, 63
Fan X., 1999, AJ, 117, 2528
Farrah D., Lacy M., Priddey R., Borys C., Afonso J., 2007, ApJ, 662, L59
Fauquier-Giguère C., Prochaska J. X., Lidz A., Hernquist L., Zaldarriaga M., 2008, ApJ, 681, 831
Gabel J. R., Arav N., Kim T., 2006, ApJ, 646, 742
Gallagher S. C., Hines D. C., Blaylock M., Priddey R. S., Brandt W. N., Egami E. E., 2007, ApJ, 665, 157
Ganguly R., Brotherton M. S., 2008, ApJ, 672, 102
Gibson R. R., Brandt W. N., Schneider D. P., Gallagher S. C., 2008, ApJ, 675, 985
Gibson R. R., et al., 2009, ApJ, 692, 758
Glikman E., Bogosavljević M., Djorgovski S. G., Stern D., Dey A., Jannuzi B. T., Mahabal A., 2010, ApJ, 710, 1498
Hall P. B., et al., 2002, ApJS, 141, 267
Hamann F., 1998, ApJ, 500, 798
Hamann F., Kaplan K. F., Hidalgo P. R., Prochaska J. X., Herbert-Fort S., 2008, MNRAS, 391, L39
Hewett P. C., Foltz C. B., 2003, AJ, 125, 1784
Hewett P. C., Warren S. J., Leggett S. K., Hodgkin S. T., 2006, MNRAS, 367, 454
Hewett P. C., Wild V., 2010, MNRAS, 405, 2302
Hopkins P. F., et al., 2004, AJ, 128, 1112
Hopkins P. F., Richards G. T., Hernquist L., 2007, ApJ, 654, 731
Knigge C., Scaringi S., Goad M. R., Cottis C. E., 2008, MNRAS, 386, 1426
Lawrence A., et al., 2007, MNRAS, 379, 1599
Lee D. D., Seung H. S., 1999, Nat, 401, 788
Lee D. D., Seung H. S., 2000, Advanced Neural Inf. Processing Syst., 13, 556
Lipari S. L., Terlevich R. J., 2006, MNRAS, 368, 1001
Lundgren B. F., Wilhite B. C., Brunner R. J., Hall P. B., Schneider D. P., York D. G., Vanden Berk D. E., Brinkmann J., 2007, ApJ, 656, 73
Lupton R. H., Gunn J. E., Szalay A. S., 1999, AJ, 118, 1406
Maddox N., Hewett P. C., Warren S. J., Croom S. M., 2008, MNRAS, 386, 1605
Moe M., Arav N., Bautista M. A., Korista K. T., 2009, ApJ, 706, 525
Montenegro-Montes F. M., Mack K., Benn C. R., Carbollo R., González-Serrano J. I., Holt J., Jiménez-Luján F., 2009, Astronomische Nachrichten, 330, 157
Priddey R. S., Gallagher S. C., Isaak K. G., Sharp R. G., McMahon R. G., Butner H. M., 2007, MNRAS, 374, 867
Prochaska J. X., Worseck G., O’Meara J. M., 2009, ApJ, 705, L113
Proga D., Kallman T. R., 2004, ApJ, 616, 688
Proga D., Stone J. M., Kallman T. R., 2000, ApJ, 543, 686
Reichard T. A., et al., 2003a, AJ, 125, 1711
Reichard T. A., et al., 2003b, AJ, 126, 2594
Richards G. T., et al., 2002, AJ, 123, 2945
Risaliti G., Elvis M., 2009, preprint (arXiv:0911.0958)
Scaringi S., Cottis C. E., Knigge C., Goad M. R., 2009, MNRAS, 399, 2231
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
Schneider D. P., et al., 2007, AJ, 134, 102
Schneider D. P., et al., 2010, AJ, 139, 2360
Songaila A., 2004, AJ, 127, 2598
Sprayberry D., Foltz C. B., 1992, ApJ, 390, 39
Steinhardt C. L., Elvis M., 2010a, MNRAS, 402, 2637
Steinhardt C. L., Elvis M., 2010b, preprint (arXiv:0911.3155)
Trump J. R., et al., 2006, ApJS, 165, 1
Urrutia T., Becker R. H., White R. L., Glikman E., Lacy M., Hodge J., Gregg M. D., 2009, ApJ, 698, 1095
Voit G. M., Weymann R. J., Korista K. T., 1993, ApJ, 413, 95
Warren S. J., Hewett P. C., Osmer P. S., 1994, ApJ, 421, 412
Weymann R. J., Carswell R. F., Smith M. G., 1981, ARA&A, 19, 41
Weymann R. J., Morris S. L., Foltz C. B., Hewett P. C., 1991, ApJ, 373, 23
Wild V., Hewett P. C., 2005, MNRAS, 358, 1083
Worseck G., Prochaska J. X., 2010, preprint (arXiv:1004.3347)
York D. G., et al., 2000, AJ, 120, 1579
A strong redshift dependence of the BALQSO fraction

Table 1. Properties of the NMF reconstructions and the resulting broad absorption properties.

SDSS object name	RA (J2000)	Dec. (J2000)	MJD	Plate	Fiber	z	i	SN_{1700}	$\log(F_{1700})$
000006.53+003055.2	0.027231	0.515332	52203	685	467	1.8240	20.041	4.288	-16.019
000008.13+001634.6	0.033946	0.270292	52203	685	470	1.8366	19.420	5.010	-15.952
000009.26+151754.5	0.038609	15.29849	52251	751	354	1.197	19.058	0.000	0.000
000009.38+135618.4	0.039099	13.938458	52235	750	82	2.2400	18.172	13.950	-15.287
000009.42−102751.9	0.039264	-10.464410	52143	650	199	1.8520	18.700	9.899	-15.530

Table 1 – continued

$\log(\lambda L_{1700})$	HIZ	LOWZ	Primary	GenComp	N_{comp}	χ^2_{ν}	N_{pix}	Slope	SiCor	DipMask
45.574	0	0	1	0	12	0.869	3641	-0.277	0	0
45.648	0	0	1	0	12	0.951	3589	0.576	0	0
0.000	0	1	1	0	9	1.175	3502	0.746	0	0
46.525	0	1	1	0	11	1.358	3468	0.109	0	0
46.080	0	1	1	0	12	0.973	3534	-0.142	0	0

Table 1 – continued

Si\text{IV} N_{ST}	Si\text{IV} Inc	Si\text{IV} CBP	Si\text{IV} CBP	Si\text{IV} BBP	C\text{IV} BI km s^{-1}	C\text{IV} d	C\text{IV} v_{min} km s^{-1}	C\text{IV} v_{max} km s^{-1}
0	1	0	0	0	0	0	0	-3000
0	1	0	0	0	0	0	0	-3000
0	1	0	0	0	0	0	0	-3000
0	1	0	0	0	0	0	0	-3000

Table 1 – continued

C\text{IV} v_{cov,min} km s^{-1}	C\text{IV} N_{BR}	C\text{IV} N_{BT}	C\text{IV} N_{SR}	C\text{IV} N_{ST}	C\text{IV} Inc	C\text{IV} CBP	C\text{IV} CPF	C\text{IV} BBP	Al\text{III} BI km s^{-1}
-25000	0	0	0	0	0	0	0	0	0.0
-25000	0	0	0	0	0	0	0	0	0.0
-25000	0	0	0	0	0	0	0	0	0.0
-25000	0	0	0	0	0	0	0	0	0.0
\(\text{Al\textsc{iii}} \) \(\bar{d} \)	\(\text{Al\textsc{iii}} v_{\text{min}} \) \(\text{km s}^{-1} \)	\(\text{Al\textsc{iii}} v_{\text{max}} \) \(\text{km s}^{-1} \)	\(\text{Al\textsc{iii}} v_{\text{cov, min}} \) \(\text{km s}^{-1} \)	\(\text{Al\textsc{iii}} v_{\text{cov, max}} \) \(\text{km s}^{-1} \)	\(\text{Al\textsc{iii}} N_{\text{BR}} \)	\(\text{Al\textsc{iii}} N_{\text{BT}} \)	\(\text{Al\textsc{iii}} N_{\text{SR}} \)	\(\text{Al\textsc{iii}} N_{\text{ST}} \)	
--------	----------------	---------------	----------------	----------------	-------------	-------------	-------------	-------------	
0.000	0	0	-3000	-25000	0	0	0	0	
0.000	0	0	-3000	-25000	0	0	0	0	
0.000	0	0	-3000	-8126	0	0	0	0	
0.000	0	0	-3000	-25000	0	0	9	0	
0.000	0	0	-3000	-25000	0	0	0	0	

\(\text{Al\textsc{iii}} \) \text{Inc}	\(\text{Al\textsc{iii}} \) \text{CBP}	\(\text{Al\textsc{iii}} \) \text{CPF}	\(\text{Al\textsc{iii}} \) \text{BBP}	\(\text{Mg\textsc{ii}} \) \text{BI} \(\text{km s}^{-1} \)	\(\text{Mg\textsc{ii}} \) \(d \)	\(\text{Mg\textsc{ii}} v_{\text{min}} \) \(\text{km s}^{-1} \)	\(\text{Mg\textsc{ii}} v_{\text{max}} \) \(\text{km s}^{-1} \)	\(\text{Mg\textsc{ii}} v_{\text{cov, min}} \) \(\text{km s}^{-1} \)	\(\text{Mg\textsc{ii}} v_{\text{cov, max}} \) \(\text{km s}^{-1} \)
0	0	0	0	0.0	0.000	0	0	-3000	-25000
0	0	0	0	0.0	0.000	0	0	-3000	-25000
1	0	0	0	0.0	0.000	0	0	-3000	-25000
0	0	0	0	0.0	0.000	0	0	-3000	-25000
0	0	0	0	0.0	0.000	0	0	-3000	-25000

\(\text{Mg\textsc{ii}} \) \(N_{\text{BR}} \)	\(\text{Mg\textsc{ii}} \) \(N_{\text{BT}} \)	\(\text{Mg\textsc{ii}} \) \(N_{\text{SR}} \)	\(\text{Mg\textsc{ii}} \) \(N_{\text{ST}} \)	\(\text{Mg\textsc{ii}} \) \text{Inc}	\(\text{Mg\textsc{ii}} \) \text{CBP}	\(\text{Mg\textsc{ii}} \) \text{CPF}	\(\text{Mg\textsc{ii}} \) \text{BBP}
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0