Reply to Comment on “Spatial optical solitons in highly nonlocal media” and related papers

Citation for published version:
Alberucci, A, Jisha, C, Smyth, N & Assanto, G 2017, 'Reply to Comment on “Spatial optical solitons in highly nonlocal media” and related papers', Physical Review A, vol. 95, no. 5.
https://doi.org/10.1103/PhysRevA.95.057802

Digital Object Identifier (DOI):
https://doi.org/10.1103/PhysRevA.95.057802

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Physical Review A

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Reply to Comment on “Spatial optical solitons in highly nonlocal media” and related papers

Alessandro Alberucci,1,* Chandroth P. Jisha,2 Noel F. Smyth,3 and Gaetano Assanto1,4,5
1 Photonics Laboratory, Tampere University of Technology, FI-33101 Tampere, Finland
2 Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto, PT-4169-007 Porto, Portugal
3 School of Mathematics, University of Edinburgh, The King’s Building, Edinburgh, Scotland EH9 3FD, United Kingdom
4 NooEL - Nonlinear Optics and OptoElectronics Lab, University “Roma Tre”, IT-00146 Rome, Italy
5 CNR-ISC, Institute for Complex Systems, IT-00185 Rome, Italy

(Dated: May 4, 2017)

In their Comment, Petrovic et al. claim that some of the results previously published by us on the use of the “accessible soliton” model of Snyder et al. are incorrect, whereas the correct ones were previously published by them. In order to restore a proper perspective of the problem, we discuss and clarify some of the existing literature and our own work on the subject, underlining the importance of the accessible soliton approximation and its recent improvements towards enabling a general understanding of light self-confinement in highly nonlocal media, both quantitatively and qualitatively.

Petrovic et al. raise two main points about our paper [1] (and related papers) in their Comment: on the origin and credits of our results in [1, 2] and on incongruities about the application of the Snyder-Mitchell model (SMM) [3]. They also raise technical questions about Ref. [1], stating that our model accounting for the longitudinal nonlocality is inconsistent. We first respond to the main points. In the second part of this Reply we provide detailed technical answers to Petrovic et al.

I. OVERALL REPLY

The claim on paternity by Petrovic et al. on discovering the quantitative inaccuracy of the SMM is simply in disagreement with the pertinent literature. In fact, this result was first published (to the best of our knowledge, but certainly before Petrovic et al.) in [4, 5] by Guo’s group in China. Both these papers were cited in [2] (in [1] we cited Ref. [5] only) to clearly establish the credit for pinpointing the inaccuracy of the SMM when dealing with diffusive nonlinear media. In Ref. [6] Petrovic et al. write explicitly for the first time that a factor 2 accounts for the discrepancy between solutions of the Schrödinger-Poisson equation and the SMM, but this is a secondary detail, which can be easily derived using Guo’s approach. Despite the statements by Petrovic et al., we never claimed this result as ours. With respect to the paper under Comment, Ref. [1] deals with a distinct topic, that is, the effect of longitudinal nonlocality on the propagation of spatial solitons governed by a Schrödinger-Poisson equation. Our paper [2] deals with the SMM. We wrote: “We explained on physical grounds why the SMM fails for any given amount of nonlocality” and “Finally, we derived an effective parabolic shaped photonic potential leading to an accurate description of solitons by means of simple analytical formulae”.

The SMM is a fundamental tool for the investigation of spatial solitons in highly nonlocal media. It permits the addressing of all the main features of solitons in such media (stability, interaction, breathing). While these properties are now widely established, a couple of decades ago they were quite novel and surprising as most of the literature on spatial solitons (both theoretical and experimental) was dealing with Kerr local media, for which there is catastrophic collapse [(2+1)D case], inverse scattering [(1+1)D case] and so on [7]. As expected in science, since then, models and experiments have been greatly improved, including, e.g., the inclusion of nonlocal effects. In this course, Guo’s group discovered the quantitative discrepancy between solitary wave propagation in real diffusive media and results provided by the SMM [4, 5], as stated above.

In this context, Conti et al. in Ref. [8] interpolated the breathing behaviour of experimentally observed nematics (solitons in nematic liquid crystals, NLC) with the sinusoidal behaviour predicted by the SMM. A fitting procedure was necessary for two main reasons: i) some experimental parameters were not known (including the role of the NLC/air interface and the effective elastic constant) and ii) the SMM is approximate, with accuracy being worse in voltage-biased than in bias-free cells [2]. In the past several years, relevant improvements have been made in both technology (better control of the input interface, see [9]) and modeling (accounting, e.g., for walk-off [10–12]). Our results establish a good quantitative agreement between experimental data and the modified SMM [2], as recently shown in [13]. Finally, the results from our group have been experimentally validated by several groups [14–23].

* alessandro.alberucci@tut.fi
II. POINT BY POINT RESPONSE

After these premises, let us now address the Comment by Petrovic et al. in order of appearance of their main points.

• **Application of the VA to the investigation of the role of boundary conditions for highly nonlocal responses.**

Petrovic et al. claim the original introduction of a variational approximation (VA) to investigate the role of boundary conditions on the propagation of spatial solitons. In the literature, interaction with boundaries was studied earlier than in [24], e.g., in lead glasses [25–29] and in NLC [30, 31]. The VA itself was applied to nematicons in a biased cell well before Petrovic et al., see [32, 33]. It was even applied to the specific problem of the interaction of nematicons with boundaries in 2009 [34, 35].

The role of noise on (the existence of) shape-preserving nematicons is the major issue in Ref. [24]. In [24] noise was inserted as a perturbation of the pre-tilt angle. This is quite a questionable assumption and affects the results, as the proper way to introduce molecular noise in NLC is to consider noise both in time and in the transverse direction. When longitudinal random changes are applied exclusively to the pre-tilt angle, the consequence is a stochastic modulation of the nonlinearity in the system [12, 36].

Nematicons tend to be robust and resilient to noise due to their high nonlocality (see Supplemental Materials in [37] and Fig. 6 in Ref. [2]). In actual experiments, noise is not the reason why shape-preserving solitons are not observed. Rather, the losses associated with strong scattering in NLC [38] are the main cause of longitudinal changes in nematicons. Even with the assumption of negligible losses (only applicable over very short distances), launching shape-preserving nematicons is hindered by the presence of an input interface which breaks the symmetry along z, as also discussed in the paper under comment [1].

• **Discovery of the quantitative inaccuracy for the accessible soliton model in diffusive media.**

To the best of our knowledge, the first quantitative and qualitative demonstration of the inaccuracy of the SSM was provided in [4]. Its abstract reads: “We show that for the nonlocal case of an exponential-decay type nonlocal response the Gaussian-function-like soliton solutions cannot describe the nonlocal soliton states exactly even in the strongly nonlocal case.” In the body of [4], Figs. 6–9 show the quantitative results. Additionally, it is clearly explained that the problem stems from the fact that a harmonic potential does not provide an accurate approximation of the actual nonlinear index well. Petrovic et al. in their Comment state that “The first published accurate quantitative correction to AS” was presented in Ref. [24]. In that paper [24], however, the only reference to SSM appears to be a sentence qualitatively stating that the shape-preserving soliton is almost Gaussian, except in the tails. The latter trivial result was reported, for example, much earlier in Ref. [39], section 2.5.

• **Complaint on lack of credit.**

Throughout the Comment Petrovic et al. complain about the lack of citations to their own work. As stated above, the inaccuracy of the SMM was first emphasized by Guo’s group [4, 5, 40]. In the introduction of [4] Ouyang et al. state: “On the other hand, even though a convenient method has been introduced in Refs. [3,5,13,14] to study the propagation of light beams in the strongly nonlocal case or even in the sub-strongly nonlocal case, to employ this method efficiently the nonlocal response function must be twice differentiable at its center. As will be shown this method cannot deal with the nonlocal case of an exponential-decay type nonlocal response function that is not differentiable at its center”. In the conclusions of [4] they write: “For the nonlocal case of the exponential-decay type nonlocal response, the Gaussian-function-like soliton solution cannot describe the fundamental soliton state of the NNLSE exactly even in the strongly nonlocal case, that greatly differs from the nonlocal case of the Gaussian function type nonlocal response.”

The goal of [2] — as clearly stated throughout the Letter — was to explain on physical grounds why this discrepancy exists, why it takes a certain numerical value, why do solitons not exist below a power threshold. Conversely, Petrovic and coworkers in their papers retrieve this discrepancy as a mere result of computations.

Petrovic et al. state that the findings of Ref. [4] are not relevant as they provide an approximate solution stemming from a perturbative correction to the SMM and that they do not mention a factor 2 or $\sqrt{2}$. Firstly, the VA used by Petrovic et al. is an approximate method, as well. Noteworthy, for a Gaussian input the director distribution can be computed exactly [30]. Secondly, the analytical expression of Ouyang et al. is much closer to the exact one than the solution from the VA (see Fig. 6 in [4]). Thirdly, the scaling factor connecting exact and approximate solutions can even be computed from the closed form solutions presented in [4] (for instance, the existence curve power vs soliton width is expressed by Eq. (42) and plotted in Fig. 9 of [4]). The statement that the numerical correction cannot be found in the framework of perturbation theory is simply mathematically unsubstantiated.

• **Physical reason behind the inaccuracy of the accessible soliton model in diffusive media.**

Petrovic et al. wonder what is the reason behind the SMM inaccuracy, hinting to an “inconsistency” in our scientific approach. The singularity in the response function
is the mathematical reason for the quantitative inaccuracy in the SMM. When the response function is differentiable, the SMM is valid for large powers [3, 4]. From a physical point of view, the quantitative inaccuracy stems from the fact that the nonlinear perturbation is governed by a Poisson equation, leading to an infinitely extended range of nonlocality, as phrased in [25]. In other words, the pointwise solution of an elliptic equation depends on the solution in the whole domain [41]. Thus, the width of the nonlinear response is inherently related to the size of the integration domain, and the spatial overlap between the input beam and the anharmonic components of the self-induced index well does not vanish as power is increased [30]. This is due to the boundary conditions and is the physical reason for the quantitative (not qualitative) inaccuracy of the original SMM when dealing with diffusive media [2]. Summarizing, the two explanations are equivalent, describing the same effect on different grounds.

- **Factor 2 missing in the paper under Comment.**

In [1] we mistakenly defined the soliton width according to the modified SMM, previously found in [2] (see the Erratum to [1]). As for the correction factor, it comes from [2], in which the background physics is discussed in detail. Our results are also in agreement with those presented by Petrovic et al. and based on the VA [6].

- **On the proper application of the paraxial approximation when dealing with nonlocal spatial solitons.**

Petrovic et al. doubt the self-consistency of the approximations in [1], with particular reference to the paraxial approximation. For electromagnetic waves, the paraxial approximation breaks down when the wavepacket size is comparable with, or smaller than, the wavelength. A first order correction then requires a non-negligible longitudinal field [42]. The corrections due to the second derivative of the field along the propagation direction are second order [42] (the application of these results to nematicons can be found, e.g., in [43]). The longitudinal second derivative of the field must be accounted for when dealing with solitons propagating at large angles ($\approx 30^\circ$ with respect to z) [44]. Fast variations along z imply a change in the refractive index of the carrier. On the one hand, this effect does not affect transverse confinement. On the other hand, the change is adiabatic on the wavelength scale, both in typical experiments [12, 45] and in numerical simulations [1, 46]. Importantly, this needs to be accounted for even when the second derivative of the nonlinear index well along the propagation direction is not considered. Analogously, back reflections are neglected whenever light propagation is described by a unidirectional paraxial Helmholtz equation (that is, an NLSE in the nonlinear case), corresponding numerically to the use of a unidirectional Beam Propagation Method.

After these considerations of well-known results, let us discuss in detail the model we employed in Ref. [1]. For light propagation in the presence of a highly nonlocal response, the latter smooths out the longitudinal variations in the light-induced index well, thus minimizing back reflections. The inclusion of longitudinal nonlocality improves the agreement between the mathematical model and the physical system [47, 48]. In essence, our overall model (i.e., including light evolution and light-matter interaction) satisfies the paraxial approximation better than standard ones (i.e., when longitudinal nonlocality is neglected). Our group members (and other experimentalists in the field, as far as we are aware of) have never observed any back-reflection when light is self-trapped in experiments with undoped NLC. Finally, in the framework of classical optics, a back-scattered wave cannot be generated without an input wave.

- **Alleged inconsistency of experimental results published by our group.**

Petrovic et al. claim an inconsistency in the experimental data reported in [8]. Let us first—and foremost—stress that the SMM is approximate. Thus, it cannot (and it is not meant to) match perfectly with real experiments. Incidentally, even in the first (theoretical) paper about accessible solitons in NLC [49], corrections to the SMM were discussed (see Eq. (16) in [49]). Secondly, the observations in [8] were performed in a biased cell, for which the nonlinear index well is governed by a screened Poisson equation. As we showed in Ref. [2], the SMM is thus even more inaccurate than in bias-free cells (in unbiased cells the nonlinear index well obeys a Poisson equation in the perturbative regime [12]). In fact, in Ref. [8] Conti et al. wrote that Eqs. (6) in Ref. [8] are derived from Eq. (4) in Ref. [8] using an approximation. Thirdly, in biased cells nematicons propagate in a wide linear index well and possess walk-off in the vertical plane (x, z): the model used in [8] does not account for this dynamics, which was addressed later in [11, 15]. Reality is far more complex than a single Schrödinger-Poisson equation: (i) in real samples there are interfaces at finite distances, as we discussed in [1]; ii) several nonlinear effects act together, thus models considering only the reorientational response are approximations [50, 51]; iii) actual reorientation is driven by a more complicated equation than a single Poisson equation, even in the perturbative regime [38, 52]; iv) NLC described by a molecular director field are a simplification of an underlying many body system which is subject to continuous temporal fluctuations [38, 53]. The elegant SMM, despite its mathematical simplicity, explains qualitatively nonlinear light propagation, predicting an oscillatory (breathing) behavior qualitatively different from the breather dynamics in a standard NLSE [54–56], stability in $(2+1)D$ [57] and interaction between solitons [17, 58, 59]. In short, all the main features of nematicons are well described by the accessible soliton model. With respect to the results in [8], just before the statement Petrovic et al. cited, we read: “The best fit is obtained from Eq. (7) by introducing as a parameter the coupling efficiency α of the laser power
P_{in} into the soliton-trapped power P (i.e., $\alpha P = P_{in}$).” This is the best fit coefficient α accounting for all factors discussed above (in [8] $\alpha \approx 7\%$, meaning that all these factors were simultaneously in action). Thus, the scaling constant stemming from the SMM (which is not 2, as in Ref. [8] the cell was biased, see [2]) was simply included in the coefficient α.

III. CONCLUSIONS

In conclusion, we have explained, substantiated and proven that no systematic errors were made by us or members of our group with reference to the results discussed in the Comment by Petrovic et al. The correction to the SMM was neither discovered nor published for the first time by Petrovic et al. We have clarified that there are no conceptual deficiencies in the paper under Comment [1]. With respect to Petrovic’s et al. final sentence “This model is just a linear over simplication of a highly nonlocal nonlinear problem”, we like to stress that, as physicists, our primary goal is understanding the main physical mechanisms and describing them in the simplest way, including the use of approximate methods. Better models and approximations can be implemented later. Along this path, we recently elaborated a corrected SMM able to model quantitatively light propagation [13, 60]. In doing so, we also tried to understand the limits of this approximation by direct comparison with experiments. Eventually, we thank Petrovic et al. for spotting a wrong factor in [1], which we have amended in [61].
through interaction with dielectric particles," J. Opt. Soc. Am. B 30, 1432–1437 (2013).

[24] Najdan B. Aleksić, Milan S. Petrović, Aleksandra I. Strinić, and Milivoj R. Belić, “Solitons in highly nonlocal nematic liquid crystals: Variational approach," Phys. Rev. A 85, 033826 (2012).

[25] C. Rotschild, O. Cohen, O. Manela, M. Segev, and T. Carmon, “Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons," Phys. Rev. Lett. 95, 213904 (2005).

[26] B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides, “Boundary force effects exerted on solitons in highly nonlinear media," Opt. Lett. 32, 154 (2007).

[27] C. Rothschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons," Nat. Phys. 2, 769 (2006).

[28] Barak Alfassi, Carmel Rotschild, Ofer Manela, Mordechai Segev, and Demetrios N. Christodoulides, “Nonlocal surface-wave solitons," Phys. Rev. Lett. 98, 213901 (2007).

[29] Qian Shou, Yanbin Liang, Qun Jiang, Yajian Zheng, Alessandro Alberucci, Gaetano Assanto, Daniel Buc-

collo, Anton S. Desyatnikov, Timothy R. Marchant, and Noel F. Smyth, “Boundary force exerted on spatial solitons in cylindrical strongly nonlocal media," Opt. Lett. 34, 3523–3525 (2009).

[30] Alessandro Alberucci and Gaetano Assanto, “Propagation of optical spatial solitons in finite-size media: interplay between nonlocality and boundary conditions," J. Opt. Soc. Am. B 24, 2314–2320 (2007).

[31] Alessandro Alberucci, Marco Peccianti, and Gaetano Assanto, “Nonlinear bouncing of nonlocal spatial solitons at the boundaries," Opt. Lett. 32, 2795–2797 (2007).

[32] Cathy García Reinbert, Antonamaria A. Minzoni, and Noel F. Smyth, “Spatial soliton evolution in nematic liquid crystals in the nonlinear local regime," J. Opt. Soc. Am. B 23, 294–301 (2006).

[33] Antonamaria A. Minzoni, Noel F. Smyth, and Annette L. Worthy, “Modulation solutions for nematicon propagation in nonlocal liquid crystals," J. Opt. Soc. Am. B 24, 1549–1556 (2007).

[34] Alessandro Alberucci, Gaetano Assanto, Daniel Buc-

collo, Anton S. Desyatnikov, Timothy R. Marchant, and Noel F. Smyth, “Modulation analysis of boundary-induced motion of optical solitary waves in a nematic liquid crystal," Phys. Rev. A 79, 043816 (2009).

[35] Antonamaria A. Minzoni, Luke W. Sciberras, Noel F. Smyth, and Annette L. Worthy, “Propagation of optical spatial solitary waves in bias-free nematic-liquid-crystal cells," Phys. Rev. A 84, 043823 (2011).

[36] M. Peccianti, C. Conti, and G. Assanto, “The interplay between non locality and nonlinearity in nematic liquid crystals," Opt. Lett. 30, 415 (2005).

[37] Alessandro Alberucci, Armando Piccardi, Nina Kravets, Oleksandr Buchnev, and Gaetano Assanto, “Soliton enhancement of spontaneous symmetry breaking," Optica 2, 783–789 (2015).

[38] P. G. DeGennes and J. Prost, The Physics of Liquid Cry-

stals (Oxford Science, New York, 1993).

[39] A. Alberucci, Solitons in Nonlocal Media, Ph.D. thesis, Università degli Studi Roma Tre (2008).

[40] Hongyan Ren, Shigen Ouyang, Qi Guo, Wei Hu, and Longgui Cao, “A perturbed (1+2)-dimensional soliton solution in nematic liquid crystals," J. Opt. A: Pure and Applied Optics 10, 025102 (2008).

[41] R. Courant and D. Hilbert, Methods of Mathematical Physics Volume II (Interscience Publishers, New York, 1965).

[42] Melvin Lax, William H. Louisell, and William B. McK-
night, “From Maxwell to paraxial wave optics," Phys. Rev. A 11, 1365–1370 (1975).

[43] Alessandro Alberucci and Gaetano Assanto, “Nonparaxial solitary waves in anisotropic dielectrics," Phys. Rev. A 83, 033822 (2011).

[44] Julio Sánchez-Curto, Pedro Chamorro-Posada, and Graham S. McDonald, “Helmholtz bright and black soli-

ton splitting at nonlinear interfaces," Phys. Rev. A 85, 013836 (2012).

[45] Armando Piccardi, Alessandro Alberucci, and Gaetano Assanto, “Soliton self-deflection via power-dependent walk-off," Appl. Phys. Lett. 96, 061105 (2010).

[46] Alvaro Navarrete, Angel Paredes, José R. Salgueiro, and Humberto Michinel, “Spatial solitons in thermo-optical media from the nonlinear Schrödinger-Poisson equation and dark-matter analogs," Phys. Rev. A 95, 013844 (2017).

[47] David W. McLaughlin, David J. Muraki, Michael J. Shelley, and Xiao Wang, “A paraxial model for optical self-focussing in a nematic liquid crystal," Physica D 88, 55 – 81 (1995).

[48] Julio Sánchez-Curto and Pedro Chamorro-Posada, “Helmholtz solitons in diffusive Kerr-type media," Phys. Rev. A 93, 033826 (2016).

[49] C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).

[50] Urszula A. Laudyn, Michal Kwasny, Armando Piccardi, Miroslaw A. Karpierz, Roman Dabrowski, Olga Cho-

jnowska, Alessandro Alberucci, and Gaetano Assanto, “Nonlinear competition in nematicon propagation," Opt. Lett. 40, 5235–5238 (2015).

[51] Pawel S. Jung, Wieslaw Krolikowski, Urszula A. Laudyn, Marek Trippenbach, and Miroslaw A. Karpierz, “Super-mode spatial optical solitons in liquid crystals with competing nonlinearities," Phys. Rev. A 95, 023820 (2017).

[52] Filip A. Sala and Miroslaw A. Karpierz, “Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals," Opt. Express 20, 13923–13938 (2012).

[53] Jeroen Beeckman, K. Neyts, P. J. M. Vanbrabant, R. James, and F. A. Hernandez, “Finding exact spatial soliton profiles in nematic liquid crystals," Opt. Express 18, 1900–1902 (2010).

[54] J. Satsuma and N. Yajima, “Initial value problems of one-

dimensional self-modulation of nonlinear waves in disper-

sive media," Prog. Theor. Phys. Suppl. 55, 284 (1974).

[55] G. Boffetta and A. R. Osborne, “Computation of the di-

crect scattering transform for the nonlinear Schroedinger equation," J. Comput. Phys. 102, 252–264 (1992).

[56] Ido Kaminer, Carmel Rotschild, Ofer Manela, and Mordechai Segev, “Periodic solitons in nonlinear nonlinear media," Opt. Lett. 32, 3209–3211 (2007).

[57] Marco Peccianti and Gaetano Assanto, “Nematicons," Phys. Rep. 516, 147 – 208 (2012).

[58] M. Peccianti, K. Bzdakiewicz, and G. Assanto, “Nonlo-

cal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460 (2002).
[59] Michal Kwasny, Armando Picardi, Alessandro Alberucci, Marco Peccianti, Malgosia Kaczmarek, Miroslaw A. Karpierz, and Gaetano Assanto, “Nematicon–nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011).

[60] Alessandro Alberucci, Chandroth Pannian Jisha, and Gaetano Assanto, “Breather solitons in highly nonlocal media,” J. Opt. 18, 125501 (2016).

[61] Alessandro Alberucci, Chandroth Pannian Jisha, Noel F. Smyth, and Gaetano Assanto, “Erratum: Spatial optical solitons in highly nonlocal media,” Phys. Rev. A (2017).