Management of Chronic Urticaria

Usma Iftikhar¹, Shawana Sharif²

¹ Ex Assistant Professor, Department of Dermatology, Benazir Bhutto Hospital, Rawalpindi Medical University, Rawalpindi.
² Senior Registrar, Department of Dermatology, Benazir Bhutto Hospital, Rawalpindi Medical University, Rawalpindi.

Author’s Contribution
1 Conception of study
1 Experimentation/Study conduct
1 Analysis/Interpretation/Discussion
1,2 Manuscript Writing
1,2 Critical Review
1,2 Facilitation and Material analysis

Corresponding Author
Dr. Shawana Sharif Hasan
Senior Registrar,
Department of Dermatology,
Benazir Bhutto Hospital,
Rawalpindi Medical University, Rawalpindi
Email: shawana.sharif@gmail.com

Cite this Article: Iftikhar, U. & Sharif, S.(2020). Management of Chronic Urticaria. Journal of Rawalpindi Medical College, 24(1), 85-92.
DOI: https://doi.org/10.37939/jrmc/vol24.iss1.17

Conflict of Interest: Nil
Funding Source: Nil

Introduction

The management of urticaria, although complex, relies on two postulates:
- Recognition and eradication of the triggering factor(s)
- Provision of symptomatic relief

Recognition and eradication of the triggering factor(s)
Factors known are drugs, food, infections, and physical stimuli.
Drugs: Analgesics and NSAIDs can exacerbate already present urticaria and are also recognized triggers of new-onset urticaria.¹² When suspected, they should be withdrawn entirely or can be replaced. ACE inhibitors can cause angioedema.
Eradication of infectious agents
Infections and infestations should be treated where suspected, including infections of the GI tract e.g., H Pylori associated gastritis⁵, nasopharyngeal bacterial infections and intestinal worms.⁸

Management of diet
The allergens in food need to be avoided if a patient has type I hypersensitivity to any one of these allergens. Pseudo-allergic reactions⁵ which are not IgE mediated have been described for organic foods and food additives.⁹-¹³

Physical stimuli
They are usually recognized and controlled, e.g., in chronic pressure urticaria patients are advised to use bags with a wide handle and similarly, in symptomatic dermographism, simple avoidance of friction can give relief from symptoms.¹⁵

Symptomatic therapy
One of the objectives of symptomatic therapy is to mask the effects of histamine, platelet-activating factor, and other mast cell mediators. Histamine plays a primary role in inducing the symptoms associated with urticaria. The activation of receptors on endothelial cells by histamine results in wheals whereas this histamine receptor activation on sensory nerves results in itching. Different guidelines have been proposed for managing chronic urticaria including the EACCI [5] and BSACI [4].
Figure 1: Chronic Urticaria management algorithms.
(A) European Academy of Allergy and Clinical Immunology/ Global Allergy and Asthma European Network/ European Dermatology Forum/ World Allergy Organization (EAACI/GA2LEN/EDF/WAO) guidelines
(B) The US practice parameters for the diagnosis and management of chronic urticaria (CU).
According to EACCI guidelines, the first choice in treating chronic urticaria is second-generation histamine type I receptor blockers. However, continuous treatment is recommended because of their non-sedating or minimally sedating properties free of anticholinergic side effects. More than four-fold higher doses can be used in the majority. Table 1 enlists the commonly used H1 antihistamines in Pakistan.

Table 1: Antihistamine (H1) commonly used for CU

Drug	Dose	Class	References
Cetirizine	10 mg	Second-generation antihistamine	(22)
Desloratadine	5 mg	Second-generation antihistamine	(24)
Fexofenadine	120-180 mg	Second-generation antihistamine	(20)
Levocetirizine	5 mg	Second-generation antihistamine	(25)
Loratadine	10 mg	Second-generation antihistamine	(27)
Ebastine	10 mg	Non-sedating antihistamine	
	20 mg		

Safety data of H1 antihistamines are available regarding prolonged use. In the recent GA2LEN position paper, first-generation antihistamines are no longer recommended. This view is shared by the World Allergy Organization guideline for Allergic Rhinitis and its Impact on Asthma. Modern second-generation antihistamines (loratadine, and fexofenadine) are non-sedating metabolites of earlier sedative antihistamines. Astemizole and terfenadine are disregarded because of cardiotoxic effects. Seven of second-generation antihistamines (cetirizine, desloratadine, fexofenadine, levocetirizine, loratadine, rupatadine, and bilastine) have been tested in detail. Studies show the benefit of dose more than four-fold of the recommended dose. It has been verified using bilastine, cetirizine, desloratadine, levocetirizine, fexofenadine, and rupatadine. H2-Antihistamines

There is little evidence for their use. A combination of cimetidine with hydroxyzine results in increased hydroxyzine levels hence recommended only in hydroxyzine unresponsiveness. Cimetidine is not recommended in combination with cetirizine. The combination of ranitidine with terfenadine was superior to terfenadine alone in terms of itch, but not in wheals or swellings.

Treatment of refractory symptoms

Repeated courses of glucocorticoids may be used, but it may cause severe side effects without inducing remission or altering the course. So they are only advisable for short periods at the minimal effective dose while considering other options.

Goal of Therapy

There is no standardized approach. Options include omalizumab, and anti-inflammatory or immunosuppressants. Therapy must be individualized, considering concomitant medical conditions and patient preferences.

Treatment strategies

Any ineffective standard therapies should be discontinued. A baseline complete blood count and chemistry panel with liver function tests should be obtained prior to initiation.

Drugs for refractory urticaria can be divided into three groups:

1. **Anti-inflammatory group**
 - Predominantly anti-inflammatory, with low toxicity and less proven efficacy e.g., dapsone, sulfasalazine, and hydroxychloroquine.

2. **Immunosuppressant group**
 - Potent immune suppression with greater toxicity and efficiency e.g.; calcineurin inhibitors, sirolimus, and mycophenolate mofetil.

3. **Omalizumab**
1. ANTI-INFLAMMATORY AGENTS:
Table 2: Agents best studied in CU are dapsone, sulfasalazine, and hydroxychloroquine.

Drug	MOA	Side Effects	Dose
Dapsone	Sulfone Antimicrobial; Addition of dapsone to antihistamines showed earlier response than with antihistamines.	Anemia, neuropathy, hepatotoxicity, methaemoglobinaemia, DRESS syndrome.	100mg.
Sulfasalazine	5-Aminosalicylic Acid derivative.	Nausea, gastrointestinal discomfort, mild headache, leucopenia, and elevated liver function tests.	Start with 500 mg daily, increase by 500 mg per week to 2000 mg daily.
Hydroxychloroquine	Anti-inflammatory; Anti-malarial; Suppression of T-cell activation; Disruption of antigen processing of macrophages	Slow onset of action.	Adults: 200 mg twice daily. 3 months’ trial required.

2. IMMUNOSUPPRESSIVE AGENTS:
Table 3: Immunosuppressant Agents.

Drug	MOA	Side Effects	Dose
Cyclosporine	Inhibit the calcium-dependent release of histamine, leukotriene C4 and mediators in mast cells. Has anti-T lymphocyte activity; May disrupt TNF-alpha activity.	3-5 mg per kg daily, tapering after remission.	1mg twice daily for 1 week; increased to 2mg twice daily.
Tacrolimus	Same as cyclosporine.		
Sirolimus	The substrate of cytochrome P450 3A4.	Headache, arthralgias, rash, dyslipoproteinaemia cytopenias, and immune suppression-related neoplasia or infections.	
3. Omalizumab:
This recombinant humanized monoclonal IgG antibody binds free IgE, down-regulates mast cell function and induces eosinophil apoptosis through the reduction of FcεRI in basophils and mast cells. It has proven efficacy in refractory CU. Add-on therapy with subcutaneous omalizumab 300 mg every 4 weeks for 12 or 24 weeks, reduced itching severity, hives, and angioedema. It is the second choice in the EAACI guidelines and officially approved by the European Regulatory Agency. Efficacy is proven in symptomatic dermographism, cold urticaria, heat urticaria, delayed pressure, solar and cholinergic urticaria.

Dosing — Two doses approved by the FDA are 150 mg or 300 mg every four weeks. If the response is adequate, taper to a lower dose (e.g., 150 mg every four or six weeks). An algorithm for dose individualization has been proposed. Treated patients, who, after stopping therapy, had a recurrence, have been reported to respond to omalizumab again, suggesting that resistance does not develop readily.

Monitoring — No specific laboratory monitoring is required for patients receiving omalizumab.

Side Effects — There appears to be no reported side effect. However, transient hair loss was reported in three subjects who continued therapy despite it.

Therapies with Significant Limitations

Some additional agents that can be useful, albeit with limitations. Glucocorticoids remain the standard comparator.

Immunoglobulin
Used where immunomodulation is preferable to immunosuppression, e.g., history of malignancy. It alters cell adhesion, immunoregulatory molecules, complement function, cytokine levels, and autoantibody production. It can be administered intravenously [IVIG]) or subcutaneously [SCIG]. Adverse effects are generally predictable and manageable. It may be dosed individually, the optimal dose, number of infusions and schedule are unknown.

TNF-inhibitors
Tumor necrosis factor (TNF)-alpha is upregulated in the epidermis in lesional and nonlesional skin. Etanercept, adalimumab, and infliximab have been studied. However, the effectiveness is limited.

Colchicine

It acts by suppressing leukotriene generation or leukocyte adhesiveness and migration. It is safe at recommended doses, with a rapid onset of action.

Androgens
These are effective in hereditary angioedema and have been studied in chronic idiopathic urticaria and angioedema. Methotrexate
It reduces neutrophil accumulation, diminishes leukocyte adhesiveness, leukotriene synthesis, and alters cytokine activity. Efficacy is limited. Doses ranged from 5-25 mg/week and effects observed after four weeks.

Cyclophosphamide
Reserved where multiple alternative agents have failed. It is believed to act on plasma cells to reduce autoantibody production in autoimmune CU.

Antifibrinolytics
These are useful because coagulation and inflammatory pathways in urticaria are interconnected. Serine protease inhibitors decrease proteases including tryptase, kallikrein, complement, factor XII, and plasmin e.g., tranexamic acid.

Methylxanthines
Theophylline.

I/M or aerosolized epinephrine (BASCI):
Intramuscular epinephrine not routinely prescribed except for self-administration in angioedema affecting the upper airway.

Nondrug therapies
Nondrug treatments that have been studied in CU include phototherapy, autohemotherapy, and plasmapheresis.

Phototherapy
It is useful in solar and physical urticarias, suitable for patients who visit frequently or intolerant to systemic treatment. Narrowband UVB is effective, safe and affordable for steroid-dependent CRU.

Autohemotherapy
It involves the parenteral injection of autologous blood to desensitize patients to pro-urticarial factors in his serum and improved quality of life.

Plasmapheresis
It removes proteins and other substances and may be immunomodulatory. However, it is not easily available and not recommended for routine use.

Inducing Tolerance
It can be useful in physical, cholinergic, solar and cold urticarias. However, it lasts only a few days. A consistent exposure is required, which is often not acceptable.
Table 4: Recommendations for treatment of chronic urticaria: Representative sampling of clinical guidelines and expert panel opinions.

Ref	Recommendations
EAACI/GA 2LEN/EDF/WAO guideline	Second-generation histamine type I receptor blockers should be the first choice for symptomatic relief. Sedating antihistamines should not be used for routine management as first-line agents
BSACI guidelines	Non-sedating H1-antihistamines are the mainstay of therapy. Chronic use of these should be discouraged as it can lead to psychomotor dysfunction and heavy sedation
AAITO position paper	Low-sedating H1-antihistamines as first-line therapy
SFD Consensus Conference Recommendations	Monotherapy with a second-generation H1-antihistamine is the preferred treatment. This drug controls the disease in the majority.
Joint Task Force on Practice Parameters	Symptomatic treatment with H1-antihistamines remains the mainstay of management; Sedation does not occur at recommended doses except for cetirizine. Sedation may reduce the discomfort of pruritus, but may cause undesirable and potentially dangerous side effects
BAD therapy guidelines	Histamine type I receptor blockers which do not cause significant sedation are the mainstay of treatment. As the response and tolerance may vary among patients, the choice of a minimum of two non-sedating antihistamines should be offered to them.
Khan 2008	Second-generation of histamine type I receptor blockers should be the first choice
Muller 2004	2nd generation H1-receptor antagonists should be used as first-line treatment
Kaplan 2002	There is general agreement that non-sedating antihistamines are the first choice for treatment

Special Populations

Children: A significant proportion of children (50–80%) with chronic urticaria have concomitant angioedema. [BSACI] Cold and pressure are the most frequent precipitating factors. 4% have anti-thyroid antibodies. A detailed clinical history along with examination is needed. Allergy tests can be employed to diagnose the type I hypersensitivity reaction (IgE mediated allergies). An elimination and re-challenge diets may be required in some cases.

Chronic urticaria and angioedema management in children

The initial treatment depends on the severity of disease manifestation. The therapy is highly individualized, it is tailored and tapered according to the response of the patient. High dose steroid therapy (up to 40 mg/day) may be used for three days in case of severe exacerbations. Once the disease is under control the dose can be tapered. Latest Evidence on the mode of antihistamine action suggests that it is better to taper and stop than to stop such therapy suddenly. Histamine receptor blockers are the backbone of management. 2nd generation drugs are preferred and may be given in combination with sedating first-generation in case of unresponsiveness. However, these are not recommended for use in children < 6 months of age. Cetirizine and loratadine are licensed for use in 2 years and older and desloratadine to 1 year and older. 1st generation antihistamines that cause considerable sedation, can be used in childhood. These drugs include diphenhydramine, hydroxyzine, promethazine, and chlorphenamine. Among all these, only chlorphenamine and hydroxyzine are recommended for use in children under 2 years.

Corticosteroids are recommended in the resistance of the maximal dose of H1 antihistamines with the addition of H2 blockers and leukotrienes. More effective in delayed-pressure urticarias, but side-effects should be monitored.

Pregnancy: Most of the antihistamines are not contraindicated in pregnancy and can be used safely. Loratadine & hydroxyzine have shown teratogenicity at high doses in animals. Chlorpheniramine, loratadine & cetirizine have been recommended as Class B drugs in pregnancy. However, the lowest possible doses should be used.

Breastfeeding: Antihistamines are only recommended for breast-feeding if potential benefits outweigh the risk as the majority of the drugs are excreted in the
human breast milk. Chlorpheniramine can cause drowsiness and poor feeding.

Conclusion

Urticaria significantly affects the quality of life and therefore its early and effective treatment is imperative. Sound cooperation between the patient and the treating physician is required for successful therapy. The objective is to make the patient asymptomatic and hence elevate his quality of life. An individualized approach is required and the treatment of chronic urticaria needs to be tailored differently for each patient because of the highly variable disease presentation.

Reference

1. Criado PR, Criado RJ, Maruta CW, Reis VMSd. Chronic urticaria in adults: state-of-the-art in the new millennium. Anais brasileiros de dermatologia. 2015;90(1):74-89.
2. Bernstein JA, Lang DM, Khan DA, Craig T, Dreyfus D, Hsieh F, et al. The diagnosis and management of acute and chronic urticaria: 2014 update. Journal of Allergy and Clinical Immunology. 2014;133(5):1270-7. e66.
3. Viegas L, Ferreira M, Kaplan A. The maddening itch: an approach to chronic urticaria. J Invest Allergol Clin Immunol. 2014;24(1):1.
4. Greenberger PA. Anaphylactic and anaphylactoid causes of angioedema. Immunology and allergy clinics of North America. 2006;26(4):753-67.
5. Zuberbier T, Aberer W, Asero R, Bindslev-Jensen C, Brzoza Z, Canonica G, et al. The EAACI/GA2LEN/EDF/WAO Guideline for the definition, classification, diagnosis, and management of urticaria: the 2013 revision and update. Allergy. 2014;69(7):e1-e29.
6. Fawankar R, Bunmag N, Khaltavae N, Bouquet J. Allergic rhinitis and its impact on asthma in Asia Pacific and the ARIA update 2008. World Allergy Organization Journal. 2012;5(5):1.
7. Ortonne J-P. Urticaria and its subtypes: the role of second-generation antihistamines. European journal of internal medicine. 2012;23(1):26-30.
8. Zuberbier T. Pharmacological rationale for the treatment of chronic urticaria with second-generation non-sedating antihistamines at higher-than-standard doses. Journal of the European Academy of Dermatology and Venereology. 2012;26(1):9-18.
9. Malady AM, Webster NR. Histamine and antihistamines. Anaesthesia & Intensive Care Medicine. 2014;15(5):250-5.
10. Termeer C, Staabach P, Kurzen H, Störmer K, Ostondorf R, Maurer M. Chronic spontaneous urticaria—a management pathway for patients with chronic spontaneous urticaria. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2015;13(5):419-28.
11. Church MK. Safety and efficacy of bilastine: a new H1-antihistamine for the treatment of allergic rhinoconjunctivitis and urticaria. Expert opinion on drug safety. 2011;10(5):779-93.
12. Asero R, Tedeschi A, Cugno M. Treatment of refractory chronic urticaria: current and future therapeutic options. American journal of clinical dermatology. 2013;14(6):481-8.
13. Asero R, Tedeschi A, Cugno M. Treatment of chronic urticaria. Immunology and allergy clinics of North America. 2014;34(1):105-16.
14. Sánchez-Borges M, Caballero-Fonseca F, Capriles-Hulett A. Treatment of recalcitrant chronic urticaria with nonsedating antihistamines: is there evidence for updosing. J Investig Allergol Clin Immunol. 2015;23(3):141-4.
15. Marzano A, Pigatto P, Cristaudo A, Ayala F, Rossi O, Senna G, et al. Management of chronic spontaneous urticaria: practical parameters. DERMATOLOGIA E VENEREOLOGIA. 2015;150:237-46.
16. Grattan C. Night-time sedating H1 antihistamine increases daytime somnolence but not treatment efficacy in chronic spontaneous urticaria: a randomized controlled study. British Journal of Dermatology. 2014;171(1):8-9.
17. Sharma M, Bennett C, Carter B, Cohen SN. H1-antihistamines for chronic spontaneous urticaria: an abridged Cochrane Systematic Review. Journal of the American Academy of Dermatology. 2015;73(4):710-6. e4.
18. Johnson M, Kwatr G, Badyal DK, Thomas EA. Levocetirizine and rupatadine in chronic idiopathic urticaria. International journal of dermatology. 2015;54(10):1199-204.
19. Maurer M, Mage R, Metz M, Zuberbier T. Diagnosis and therapy of chronic urticaria: what is expected from the revision and update of the international guidelines? A report of the public consensus conference" URTICARIA 2012". Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete. 2013;64(9):638-43.
20. Ogawa Y, Ichinokawa Y, Hiruma M, Machida Y, Funakushi N, Sadamas H, et al. Retrospective cohort study on combination...
therapy with the histamine H2-receptor antagonist lafutidine for antihistamine-resistant chronic urticaria. Journal of Dermatological Treatment. 2013;24(6):463-5.
31. Mitchell S, Balje MM, Samuel M, McBride D, Maurer M. Systematic review of treatments for chronic spontaneous urticaria with inadequate response to licensed first-line treatments. International journal of dermatology. 2015;54(9):1088-104.
32. Beck LA, Bernstein JA, Maurer M. A Review of International Recommendations for the Diagnosis and Management of Chronic Urticaria. Acta Derm Venereol. 2016;00015555:2496.
33. Asero R, Tedeschi A. A Usefulness of a Short Course of Oral Prednisone in Antihistamine-Resistant Chronic Urticaria: A Retrospective Analysis. Journal of investigational allergology & clinical immunology. 2010;20(5):386.
34. Mehta A, Godse K, Patil S, Nadkarni N, Gautam M. Treatment of refractory chronic urticaria. Indian journal of dermatology. 2015;60(3):230.
35. McGirt LY, Vasagar K, Gober LM, Saini SS, Beck LA. Successful treatment of recalcitrant chronic idiopathic urticaria with sulphasalazine. Archives of dermatology. 2006;142(10):1337-42.
36. Goldman FD, Gilman AL, Hellenback C, Kato RM, Premack BA, Rawlings DJ. Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood. 2000;95(11):3460-6.
37. Fox RL, editor Mechanism of action of hydroxychloroquine as an antirheumatic drug. Seminars in arthritis and rheumatism; 1993: Elsevier.
38. Kaplan AP. What the first 10,000 patients with chronic urticaria have taught me: a personal journey. Journal of Allergy and Clinical Immunology. 2009;123(3):713.
39. Marone G, Triggiani M, Cirillo R, Giacummo A, Siri L, Corderelli M. Cyclosporin A inhibits the release of histamine and peptide leukotriene C4 from human lung mast cells. Ricerca in clinica e in laboratorio. 1988;18(1):53-9.
40. Wershil B, Furuta G, Lavigne J, Choudhury A, Wang Z, Galli S. Dexamethasone and cyclosporin A suppress mast cell-leukocyte cytokine cascades by multiple mechanisms. International archives of allergy and immunology. 1995;107(1-3):323-4.
41. Marsland A, Beck M. Cold urticaria responding to systemic cyclosporin. British Journal of Dermatology. 2003;149(1):214-5.
42. Loria M, Loria MP, Dambra P, D’Oronzio L, Nettis E, Panuñoño A, et al. Cyclosporin A in patients affected by chronic idiopathic urticaria: a therapeutic alternative. Immunopharmacology and immunotoxicology. 2001;23(2):205-13.
43. Di Gioacchino M, Di Stefano F, Cavallucci E, Verna N, Ramondo S, Paolini F, et al., editors. Treatment of chronic idiopathic urticaria and positive autologous serum skin test with cyclosporine: clinical and immunological evaluation. Allergy and Asthma Proceedings; 2003: OceanSide Publications, Inc.
44. Kessel A, Bamberger E, Toubi E. Tacrolimus in the treatment of severe chronic idiopathic urticaria: an open-label prospective study. Journal of the American Academy of Dermatology. 2005;52(1):145-8.
45. Morgan M. Treatment of refractory chronic urticaria with sirolimus. Archives of dermatology. 2009;145(6):637.
46. Raghavendran R, Humphreys F, Kaur M. Successful use of mycophenolate mofetil to treat severe chronic urticaria in a patient intolerant to cyclosporin. Clinical and experimental dermatology. 2014;39(1):68-9.
47. Maurer M, Rosén K, Hsieh H-J, Saini S, Grattan C, Giménez-Arnau A, et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. New England Journal of Medicine. 2013;368(10):924-35.
48. Magerl M, Altrichter S, Borzova E, Giménez-Arnau A, Grattan C, Lawlor F, et al. The definition, diagnostic testing, and management of chronic inducible urticarias-The EAACI/GA2LEN/EDF/UNEV consensus recommendations 2016 update and revision. Allergy. 2016;71(6):780-802.
49. Konstantinou G, Chiotti A, Daniilidis M. Self-reported hair loss in patients with chronic spontaneous urticaria treated with omalizumab: an under-reported, transient side effect? European annals of allergy and clinical immunology. 2016;48(3):205.
50. Sewell W, Jolles S. Immunomodulatory action of intravenous immunoglobulin. Immunology. 2002;107(4):387-93.
51. Sand H, Thomsen SF. TNF-alpha inhibitors for chronic urticaria: experience in 20 patients. Journal of allergy. 2015;2013.
52. Cicardi M, Aberer W, Banerji A, Bas M, Bernstein J, Bork K, et al. Classification, diagnosis, and approach to treatment for angioedema: consensus report from the Hereditary Angioedema International Working Group. Allergy. 2014;69(5):602-16.
53. Chan ES, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Research & Therapy. 2002;4(4):1.
54. Sharma VK, Singh S, Ramam M, Kumawat M, Kumar R. A randomized placebo-controlled double-blind pilot study of methotrexate in the treatment of H1 antihistamine-resistant chronic spontaneous urticaria. Indian Journal of Dermatology, Venereology, and Leprology. 2014;80(2):122.
55. Asero R, Tedeschi A, Cugno M. Heparin and tranexamic acid therapy may be effective in treatment-resistant chronic urticaria with elevated d-dimer: a pilot study. International archives of allergy and immunology. 2010;152(4):384-9.
56. Grewe J, Bernstein JA. Therapy of antihistamine-resistant chronic spontaneous urticaria. Expert Review of Clinical Immunology. 2016:1-8.
57. Bůhmová A, Parsad D, Vinay K, Kumaran M. Phototherapy using narrowband ultraviolet B and psoralen plus ultraviolet A is beneficial in steroid-dependent antihistamine-refractory chronic urticaria: a randomized, prospective observer-blinded comparative study. The British journal of dermatology. 2016.
58. Staubach P, Onnen K, Vonend A, Metz M, Siebenhaar F, Tschentscher I, et al. Autologous whole blood injections to patients with chronic urticaria and a positive autologous serum skin test: a placebo-controlled trial. Dermatology. 2006;212(2):150-9.
59. Grattan C, Francis D, Barlow R, Geaves M, Slater N. Plasmapheresis for severe, unremitting, chronic urticaria. The Lancet. 1992;339(8801):1078-80.
60. Hide M, Hiragun T. Japanese guidelines for diagnosis and treatment of urticaria in comparison with other countries. Allergology International. 2012 Dec 31;61(4):517-27.