Explicit Numerical Model of Solar Cells to Determine Current and Voltage

M. Rasheed¹, O. Y. Mohammed², S. Shihab³, Aqeel Al-Adili⁴

¹,³,⁴ University of Technology, Applied Sciences Department, Iraq
² University of Anbar, College of Education for Pure Sciences, Iraq

*Corresponding author: rasheed.mohammed40@yahoo.com, 10606@uotechnology.edu.iq

Abstract: This paper deals with the extraction of the physical parameters of solar cells (a single diode model) from the equivalent circuit of the cell. The extraction is carried out by three different numerical methods with a comparison between them. The first and second methods are a difference of the Newton Raphson algorithm (NRM) and Aitken’s extrapolation algorithm (AEM), respectively. The roots of the nonlinear equation of this cell have been described and solved using the three methods. The proposed method is tested to solve the output voltage; current and power of this cell from the roots of this equation with the various values of load resistance R_L.

Keywords: Aitken's extrapolation algorithm; three step method; iterations; load resistance; parameters of solar cell.

1. Introduction

Numerical methods are a class of methods used to solve a wide range of mathematical problems whose origins can be mathematical models of physical conditions. These methods are unique in that they only use calculations and logic, which can be used directly on a digital computer. Numerical analysis can solve many kinds of nonlinear equations such as differential and partial equations; linear systems; Taylor series; integral equations; optimal control problems and physical problems like solar cells [1-5]. A photovoltaic cell is a specialized semiconductor diode that converts light into direct current electricity (DC). Depending on the optical band gap in the light absorbing range, photovoltaic cells can also convert low-energy, infrared (IR) or high-energy, ultraviolet (UV) photons into DC electricity. These cells are made of semiconductor materials such as silicon. PV cells can be described corresponding to its manufacturing technology and the material used such as monocrystalline, polycrystalline, and amorphous solar cells; in addition; thin films solar cells [9-27].

This work aims to propose and characterize a new numerical method in order to find the real roots of the single-diode nonlinear equation of the solar cells based on three different techniques with the comparison between them. It is organized as follows: section 2 characterizing the analytical model of a single-diode design of the solar cell; Section 3 establishing the root-finding Newton Raphson Method (NRM); Aitken's extrapolation algorithm (AEM) and three step method (TSM); section 4 results and discussion; section 5 conclusions of the obtained results. MATLAB program is achieved for all the acquired results.

2. Characteristics of Single-Diode Solar Cells Equation

The simple equivalent electric circuit of a solar cell is shown in Figure 1.
Kirchhoff’s current law is applied for single-diode model to calculate the current I, the equation is given by

$$I = I_{ph} - I_D$$

(1)

$$I_D = I_0 \left(e^{\frac{V_{PV}}{nV_T}} - 1 \right)$$

(2)

$$I = I_{ph} - I_0 \left(e^{\frac{V_{PV}}{nV_T}} - 1 \right)$$

(3)

where:

I_{ph} is the photocurrent (A); I_0 is reverse saturation current of the diode (A); I and V_{PV} are the delivered current and voltage, respectively. $V_T = \frac{kT}{q} = 0.0259$ V is thermic voltage = 27.5 \pm 26 mV at ($T=25\,^\circ C$ Air-Mass $n=1.5$); m is the recombination factor closeness to an ideal diode ($1 < m < 2$, k is Boltzmann constant=1.38\times10$^{-23}$ J/K; T is P-n junction temperature (K); q is the electron charge=1.6\times10$^{-19}$ C.

I_{ph}=I_{source}

(4)

$$I_D = I_s \times \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

(5)

Substituting Eq. 4 in Eq. 5 we get

$$\left(I_{source} \right) = 10^{-12} \left(e^{\frac{-V}{1.2\times10^{-26}}} - 1 \right)$$

(6)

where I_s reverse saturation current= 10$^{-12}$ A, suppose n is ideality factor=1.2 in our case (normally n between 1 and 2). In parallel, $V_D = V_{PV} = V$

According to Eq. 6 one can calculate V of the cell numerically based on the first derivative of this equation.

3. Newton Raphson Method

The following algorithm suggestion for solving Eq. 5 by using NRM (see Figure 3)

INPUT initial approximate solution x_0, tolerance ε, maximum number of iterations N.

OUTPUT approximate solution x_{n+1}

Step 1: Set $x = 0$

Step 2: while $i \leq x_0$

Step 3: Calculate

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \text{ for } n = 0, 1, 2, \ldots$$

Step 4: if $|x_i - x_{i-1}| < \varepsilon$; then OUTPUT x_{n+1} and stop.

Step 5: Set $n = n + 1; i = i + 1$ and go to Step 2.

Step 6: OUTPUT

4. Aitken's Extrapolation Algorithm (AEM)

Given: x_0, $\varepsilon = 10^{-9}$, N, f, df
Step 1: For \(i = 1 \) to 2

Step 2: Calculate \(\bar{E}_n = \bar{E}_{n+2} - \frac{(\bar{E}_{n+2} - \bar{E}_{n+1})^2}{\bar{E}_{n+2} - 2 \times \bar{E}_{n+1} + \bar{E}_n} \) for \(n = 0, 1, 2, \ldots \).

Step 3: If \(f(x_i) = 0 \) or \(f(x_i) < \varepsilon \), then go to Step 6

Step 4: Set \(\bar{E}_{n+1} = \bar{E}_n \)

Step 5: \(n = n + 1, i = i + 1 \), go back to Step 2.

Step 6: OUTPUT \(x_{n+1} \) and stop iteration.

5. Three Step Method (TSM)

Six-order convergences with three steps are investigated. Let \(f(x) = 0 \) is a nonlinear equation, suppose \(x_0 \) as an initial value, so the iteration results \(x_{n+1} \) can be calculated using the following scheme

\[
\begin{align*}
\gamma_n &= x_n - \frac{f(x_n)}{f'(x_n)} \\
z_n &= x_n - \left[\frac{f(x_n) + f(y_n)}{f(x_n)} \right] \\
x_{n+1} &= z_n - \frac{f(x_n)x_n}{f'(x_n)[f(x_n) + f(y_n)] - f(x_n)x_n} \tag{7}
\end{align*}
\]

Eq. 7 has a six-order convergence called a three-step method (TSM); the proposed method.

6. Results and Discussion

Consider the Eq. 6 is modeled in the form single-diode solar cell; has obtained the following approximate solutions and three numerical methods are applied: first, Newton-Raphson methods (NRM) with initial value \(x_0 \), second, the Aitken's extrapolation algorithm (AEM) with the initial values from (NRM) \(x_0 \) and \(x_1 \); third the proposed method three-step method (TSM) with the initial value from (AEM). In Table 1 the Aitken's extrapolation algorithm (AEM) and three-step method (TSM) of the solution results (voltage \(V_{pv} \); current \(I_{pv} \) and power \(P_{pv} \) of the solar cell) are given and listed in the last columns of this table when the load resistance \(R = 1 \).

Iterations	\(R \)	\(X_n \)	\(V_{pv}\) - AEM	\(I_{pv}\) - AEM	\(P_{pv}\) - AEM	\(V_{pv}\) - TSM	\(I_{pv}\) - TSM	\(P_{pv}\) - TSM
1	1	\(x_0 \)	0.947037857	0.947037857	0.896880703	0.922220699	0.922220699	0.850491018
2	1	\(x_1 \)	0.930012729	0.930012729	0.864923676	0.921919557	0.921919557	0.84993567
3	1	\(x_2 \)	0.923271149	0.923271149	0.852429615	0.922412266	0.922412266	0.850844388
4	1	\(x_3 \)	0.922434357	0.922434357	0.850885144	0.922423132	0.922423132	0.850864435
5	1	\(x_4 \)	0.922423136	0.922423136	0.850864433	0.922423135	0.922423135	0.850864439
6	1	\(x_5 \)	0.922423135	0.922423135	0.850864439	0.922423135	0.922423135	0.850864439
7	1	\(x_6 \)	0.922423135	0.922423135	0.850864439	0.922423135	0.922423135	0.850864439

Figure 2 presents the obtained solutions of the study result.
Figure 2. Obtained solutions of the study result at the load resistance $R = 1$.

In Table 2 the Aitken's extrapolation algorithm (AEM) and three-step method (TSM) of the solution results (voltage V_{pv}; current I_{pv}, and power P_{pv} of the solar cell) are given and listed in the last columns of this table when the load resistance $R = 2$.

Iterations	R	x_n	V_{pv}-AEM	I_{pv}-AEM	P_{pv}-AEM	V_{pv}-TSM	I_{pv}-TSM	P_{pv}-TSM
1	2	x_{10}	0.945750417	0.472875208	0.447221925	0.917699118	0.458849559	0.421085836
2	2	x_{1}	0.927013023	0.463506512	0.429676573	0.916335587	0.458167793	0.419835454
3	2	x_{2}	0.918476227	0.459238113	0.421799289	0.91700519	0.458502595	0.420449259
4	2	x_{3}	0.917067904	0.458539352	0.42050677	0.917035365	0.458517683	0.420476931
5	2	x_{4}	0.917035399	0.4585177	0.420476962	0.917035382	0.458517691	0.420476946
6	2	x_{5}	0.917035382	0.458517691	0.420476946	0.917035382	0.458517691	0.420476946
7	2	x_{6}	0.917035382	0.458517691	0.420476946	0.917035382	0.458517691	0.420476946

Figure 3 presents the obtained solutions of the study result.
Obtained solutions of the study result at the load resistance $R = 2$.

Table 3. The V_{PV}, I_{PV}, P_{PV} and ε values using AEM and TSM

Iterations	R	X_n	V_{PV}-AEM	I_{PV}-AEM	P_{PV}-AEM	V_{PV}-TSM	I_{PV}-TSM	P_{PV}-TSM
1	3	x_0	0.944437431	0.472218715	0.44598103	0.91268674	0.45634337	0.41649854
2	3	x_1	0.92381119	0.461905595	0.426713557	0.90952263	0.454761319	0.413615714
3	3	x_2	0.912938978	0.456469489	0.416728789	0.910316762	0.455158381	0.414338303
4	3	x_3	0.910504334	0.455252167	0.414509071	0.910403208	0.455201604	0.414417
5	3	x_4	0.910403537	0.455201768	0.4144173	0.910403374	0.455201687	0.414417152
6	3	x_5	0.910403374	0.455201687	0.41441752	0.910403374	0.455201687	0.414417152
7	3	x_6	0.910403374	0.455201687	0.41441752	0.910403374	0.455201687	0.414417152

Figure 4 presents the obtained solutions of the study result.
In Table 4 the Aitken's extrapolation algorithm (AEM) and three-step method (TSM) of the solution results (voltage V_{pv}; current I_{pv}, and power P_{pv} of the solar cell) are given and listed in the last columns of this table when the load resistance $R = 4$.

Table 4. The V_{pv}, I_{pv}, P_{pv} and ε values using AEM and TSM

Iterations	R	X_0	V_{pv}-AEM	I_{pv}-AEM	P_{pv}-AEM	V_{pv}-TSM	I_{pv}-TSM	P_{pv}-TSM
1	4	x_0	0.943098312	0.235774578	0.222358607	0.907097754	0.226774439	0.205706584
2	4	x_1	0.92038679	0.23096697	0.21177961	0.9010338	0.22525845	0.202965477
3	4	x_2	0.90644763	0.226611907	0.205411826	0.901608561	0.22540214	0.203224499
4	4	x_3	0.90208766	0.225521915	0.203440537	0.901753616	0.225438404	0.203289896
5	4	x_4	0.901742565	0.225435641	0.203249413	0.90174069	0.225435173	0.203284068
6	4	x_5	0.901740602	0.225435151	0.203248028	0.901740602	0.22543515	0.203284028
7	4	x_6	0.901740602	0.22543515	0.203284028	0.901740602	0.22543515	0.203284028

Figure 5 presents the obtained solutions of the study result.
Figure 5. Obtained solutions of the study result at the load resistance $R = 4$.

In Table 5 the Aitken’s extrapolation algorithm (AEM) and three-step method (TSM) of the solution results (voltage V_{pv}; current I_{pv}, and power P_{pv} of the solar cell) are given and listed in the last columns of this table when the load resistance $R = 5$.

Iterations	R	X_n	V_{pv}-AEM	I_{pv}-AEM	P_{pv}-AEM	V_{pv}-TSM	I_{pv}-TSM	P_{pv}-TSM
1	5	x_0	0.941732458	0.188346492	0.177372004	0.900883039	0.180176608	0.16231805
2	5	x_1	0.916716819	0.183343364	0.168073945	0.889778347	0.177955669	0.158341101
3	5	x_2	0.898705719	0.179741144	0.161534394	0.8884201	0.17768402	0.157858055
4	5	x_3	0.890512633	0.178102527	0.15860255	0.889061297	0.177812259	0.158085998
5	5	x_4	0.889126783	0.177825357	0.158109287	0.889092694	0.177818539	0.158097164
6	5	x_5	0.889092735	0.177818547	0.158097178	0.889092715	0.177818543	0.158097171
7	5	x_6	0.889092715	0.177818543	0.158097171	0.889092715	0.177818543	0.158097171
8	5	x_7	0.889092715	0.177818543	0.158097171	0.889092715	0.177818543	0.158097171

Figure 6 presents the obtained solutions of the study result.
Figure 6. Obtained solutions of the study result at the load resistance $R = 5$.

The obtained solution plot in the (no. of iteration)-ξ-plane and the initial-output values proves that the proposed method (TSM) has seven iterations indicated a fast behaviour. Parallel to this feature, it is noticed that the proposed method (TSM) has a behaviour of the solution in the initial values x_0-(AEM) has the smallest error tolerance compared with (NRM) and (AEM) with initial value $x_0 = 1$.

Results of tables 1 to 5 are showing that the suggested method (TSM) have low error after relatively view iterations are computed and this in turn is demonstrating their efficiency

7. Conclusion

This paper, give three numerical solutions for single-diode for PV cells mathematical model. The basic advantages of the proposed method (TSM) are simplicity and high accurate approximate solution which was achieved using a few numbers of iterations. The obtained numerical results were compared with two other methods (NRM and AEM).

References
[1] Shihab S N, Naif T N 2014 *Open Science Journal of Mathematics and Application* **2** 2:15-19.
[2] Delphi M, Shihab S 2019 *The Journal of Nature Life and Applied Sciences* **3** 4:110-119.
[3] Al-Faour O, Shihab S N, Al-Salemi B F 2001 *Journal of the College of Basic Education* **12** 2.
[4] Shihab S N, Abdalrehman A A 2014 *Baghdad Science Journal* **11** 2:229-234.
[5] Ouda E H, Ibraheem S F, Shihab S N *Baghdad Science Journal* 2020 To appear.
[6] Rasheed M, Barillé R 2017 *Optical and Quantum Electronics* **49** 5:1-14.
[7] Rasheed M, Barillé R 2017 *Journal of Non-Crystalline Solids* **476** 1:14.
[8] Rasheed M, Barillé R 2017 *Journal of Alloys and Compounds* 2017 **728** 1186-1198.
[9] Dkhilalli F, Megdiche S, Guidara K, Rasheed M, Barillé R, Megdiche M *Ironics* 2018 **24** 1:169-180.
[10] Enneffati M, Louati B, Guidara K, Rasheed M, Barillé R 2018 *Journal of Materials Science: Materials in Electronics* **29** 1:171-179.
[11] Dkhilalli F, Borchani S M, Rasheed M, Barillé R, Shihab S, Guidara K, Megdiche M 2018 *Royal Society Open Science* **5** 8:1-12.
[12] Cuce E, Cuce P M, Bali T. 2013 *Applied Energy* **111**: 374-382.
[13] Khan F, Baek S. H, Kim J H. 2014 *Applied Energy* **133**:356-362.
[14] Khan, F., Baek, S. H., & Kim, J. H. (2016). Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions. *Applied Energy*, 183, 715-724.
[15] Chahid E H, Oumhand M I, Erritali M, Malaoui, A 2017 *International Journal of Electrical & Computer Engineering* **7** 1:2088-8708.
[16] Xun L X H W L 2015 中国激光 **42** 8.
[17] Khan M F N, Ali G, Khan A K 2019 *Conf. International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)*: 1-6.
[18] Khan F, Lee H J, Oh M, Kim J H 2014 *Solar energy* **108**:189-198.
[19] Cuce E, Cuce P M 2014 *International Journal of Ambient Energy* **35** 4:193-199.
[20] Humada A M, Hojabri M, Mekhilef S, Hamada H M 2016 *Renewable and Sustainable Energy Reviews* **56**:494-509.
[21] Cotfas D T, Cotfas P A, Machidon O M 2018 *International Journal of Photoenergy*.
[22] Cotfas D T, Deaconu A M, Cotfas P A 2019 *Energy conversion and management* **196**:545-556.
[23] Waly H M, Azazi H Z, Osheba D S, El-Sabbe A E 2019 *IET Renewable Power Generation* **13** 9:1466-1473.
[24] Liang J, Ge S, Qu B, Yu K, Liu F, Yang H, Li, Z 2020 *Energy Conversion and Management* **203**:112138.
[25] Aly S P, Ahzi S, Barth N 2019 *Applied Energy* **236**:728-742.
[26] Al-Adili Ash, Al-Rubae R H, Fouad M O 2020 *MS&E* **1** 737:012137.
[27] Al-Adili Ash, Al-Taee M 2020 *MS&E*. **737** 1:012151.