First record of *Garra birostris* Nebeshwar & Vishwanath, 2013 (Cypriniformes: Cyprinidae) from Doyang and Dikhu rivers of Brahmaputra drainage, Nagaland, India

Sophiya Ezung¹, Metevinu Kechu² & Pranay Punj Pankaj³

¹–³ Department of Zoology, Fish Biology and Fisheries Lab, Nagaland University, Lumami, Nagaland 798627, India. ¹sophiezung@gmail.com, ²metevinu06@gmail.com, ³pranaypunj@gmail.com (corresponding author)

Abstract: *Garra birostris* is recorded for the first time from the Doyang and Dikhu tributaries of the Brahmaputra drainage, Nagaland, northeastern India. The detailed morphometric and meristic data of the specimens that forms the basis of this new record are presented.

Keywords: Freshwater fish, meristic data, northeastern India, stone suckers, taxonomy.

Members of the labeonine genus *Garra* Hamilton, 1822 are widely distributed from Sub-Saharan Africa to Borneo through the Arabian Peninsula, southern, and southeastern Asia, and southern China (Zhang & Chen 2002). The genus *Garra* is diagnosed in possessing a specialized adhesive pad or modified lower lip forming a gular disc, that displays extraordinary variations in the snout (Kottelat 2020a). They can also be distinguished by their pharyngeal teeth arranged in three rows, the origin of dorsal fin which starts slightly anterior to pelvic fins, and an anal fin originating well behind the pelvic fins (Stiassny & Getahun 2007).

Northeastern India, part of the Himalaya Biodiversity Hotspot is represented by 56 nominal species of the genus *Garra* which are distributed in the Brahmaputra, Barak, Kaladan, Karnaphuli, and Chindwin drainages, respectively (Vishwanath 2017; Roni & Vishwanath 2018; Fricke et al. 2022). Rivers in the state of Nagaland harbour 13 species of the genus *Garra*—*Garra annandalei* Hora, 1921, *Garra gravelyi* Annandale, 1919, *Garra gotyla* Gray, 1830, *Garra kempi* Hora, 1921, *Garra lamta* Hamilton, 1822, *Garra lissorhynchus* McClelland, 1842, *Garra mceillandi* Jerdon, 1849, *Garra notata* Blyth, 1861, *Garra naganensis* Hora, 1921, *Garra nasuta* McClelland, 1838, *Garra rupicola* McClelland, 1839, *Garra chathensis* Ezung, Shangningam & Pankaj, 2020 and *Garra langlungensis* Ezung, Shangningam & Pankaj, 2021 (Ezung et al. 2020a,b,c). So far, *Garra birostris* is known to occur in Arunachal Pradesh (Nebeshwar & Vishwanath 2013) and Assam (Basumatary et al. 2017).
as well as in neighbouring Bhutan (Thoni et al. 2016). The present study records for the first time the occurrence of *Garra birostris* from two major river systems of Nagaland state—Dikhu and Doyang—are tributaries of the Brahmaputra.

Materials and Methods

Specimens were collected from the Doyang (26.0605°N, 94.0005°E) and Dikhu rivers (26.4506°N, 94.7033°E) of the Brahmaputra drainage, in Nagaland, India (Figure 1). Specimens were fixed in 10% formalin on site, and subsequently transferred to 70% ethanol for permanent storage. All measurements were recorded to the nearest 0.1 mm using digital calipers including the first non-zero digit from the left, through the last digit. Meristic and morphometric data followed Kottelat (2000b) and Nebeshwar & Vishwanath (2013). Gular disc terminology followed Kottelat (2020a). Meristic data were taken under a Leica M205A stereo-zoom microscope. ArcGIS tool was used to map the spatial distribution of specimens (ESRI 2017). Specimens are deposited at the Zoological Survey of India (ZSI), Kolkata and Nagaland University Fish Museum (NUFM), Nagaland.

Results

Specimens were identified as *Garra birostris* primarily based on the presence of a prominent, bilobed proboscis, bearing large, tri- to tetra-cuspid acanthoid tubercles on each lobe, a transverse lobe with small to large acanthoid tubercles, deep transverse groove, a black spot at the upper angle of gill opening and six lateral black stripes on the caudal peduncle (Image 1,2). Meristic and morphometric data are presented in Table 1. Dorsal fins with two simple and, 8½ branched rays. Pectoral fin with one simple and, 12–15 branched rays. Pelvic fin with one simple and 8 branched rays. Anal fin with two simple and 5½ branched rays. Predorsal scales 10–11. Lateral line complete with 33–34 scales. Circumpeduncular scales rows 16. Transverse scale rows above lateral line scale 4½, and, between lateral line and pelvic-fin origin 3½.

Distribution and Habitat

Previously known only from the rivers in Arunachal Pradesh (Nebeshwar & Vishwanath 2013), Assam (Basumatary et al. 2017), and Bhutan (Thoni et al. 2016), this study extends the distribution of the species into the Doyang and Dikhu rivers of Nagaland. *Garra birostris* tends to inhabit swiftly-flowing sections of headwaters and tributaries of large river systems, but also occurs in some wider, lowland river channels, as well as reservoirs. Ideal habitats comprise clear and slightly basic (pH: 7.5–8.08), oxygen-saturated water (10.02–11.38 mg/l) with a total hardness (82.39–72.52) and total dissolved solids under the desirable limits of 500 mg/l.

![Figure 1. Collection locations of Garra birostris in the Doyang River and Dikhu River, Nagaland, India.](image-url)
Discussion

Members of the genus *Garra* shows varied snout morphology (Nebeshwar & Vishwanath 2017). *Garra birostris* specimens collected as part of the present study belonged to group possessing a snout with proboscis (bi-lobed) and a prominent transverse lobe as described by Nebeshwar & Vishwanath (2017). *Garra birostris* is rheophilic cyprinid with a flat belly and the lower lip expanded at its posterior rim to form an oval sucking pad and a greatly diminished vomero-palatine organ.
Table 1. Biometric data of *Garra birostris*. N — number of specimens | SD — standard deviation.

River	Doyang river (n = 04)	Dikhu river (n = 05)						
Locality	Liphiyan	Longleng, Yong						
Altitudes	371 m	371 m						
Range	**Mean**	**SD**	**Range**	**Mean**	**SD**			
Standard length (mm)	52.7–80.5	113.1–138.7						
Head length	24.1–27.7	23.3–25.3	24.4	0.7				
Body depth at dorsal fin origin	21.1–23.4	20.1–24.9	22.7	1.7				
Predorsal length	45.6–47.7	44.5–47.4	46.1	1.1				
Preanal length	66.3–70.9	67.4–72.8	69.4	2.0				
Preanal length	59.8–78.3	75.1–78.2	76.1	1.2				
Prepectoral length	21.9–46.1	19.9–23.1	21.7	1.5				
Prepelvic length	48.3–53.6	49.1–52.3	50.5	1.2				
Dorsal-fin base length	15.5–18.7	17.1–20.1	18.8	1.1				
Dorsal-fin length	23.2–26.4	24.1–27.7	25.3	1.4				
Pectoral-fin length	22.2–26.4	19.3–23.7	21.9	1.6				
Pelvic-fin length	18.8–21.1	20.1–23.1	21.7	1.2				
Anal-fin base length	6.4–9.4	7.1–10.0	8.3	1.1				
Anal-fin length	18.6–20.7	20.3–22.0	21.1	0.8				
Vent to anal distance	6.2–7.1	5.4–7.1	6.4	0.6				
Caudal peduncle length	14.3–20.8	15.2–17.2	15.9	0.7				
Caudal peduncle depth	12.5–13.8	12.3–14.1	13.1	0.6				
Caudal fin length (upper lobe)	20.4–26.4	24.4–28.1	26.6	1.5				
Disc length	9.5–10.8	6.3–10.5	8.4	1.6				
Disc width	11.4–13.5	9.8–13.8	12.2	1.4				
Pulvinus length	6.4–6.6	3.1–6.3	5.5	1.3				
Pulvinus width	8.3–8.6	5.7–9.1	8.1	1.3				
In percent of head length								
Head depth at occiput	59.7–75.1	67.4–72.1	69.9	1.8				
Snout length	47.0–58.6	51.2–58.3	53.8	3.2				
Interorbital width	33.7–44.8	37.9–43.5	41.1	2.1				
Eye diameter	22.1–29.2	16.1–19.5	17.8	1.5				
Disc length	37.4–41.2	26.4–43.3	34.5	6.6				
Disc width	44.9–50.6	41.1–56.9	50.1	6.1				
Pulvinus length	23.5–27.0	13.2–26.2	22.7	5.3				
Pulvinus width	30.0–34.3	23.6–36.3	33.2	5.3				
Meristic counts	N = 04	N = 05						
Dorsal-fin rays	ii8½	ii8½						
Pectoral-fin rays	i12–14	i14–15						
Pelvic-fin rays	i8	i8						
Anal-fin rays	ii5½	ii5½						
Pre-dorsal scales	10–11	10–11						
Lateral line scales	33–34	33–34						
Transverse scales	4½	1	3½	4½	1	3½		
Circumpeduncular scale rows	16	16						
Garra biloborostris (Roni & Vishwanath, 2017) and Garra chathensis (Ezung et al., 2020b) are the closest congeners of Garra birostris as they belong to the ‘proboscis species-group’ with a prominent bilobed proboscis (Nebeshwar & Vishwanath 2017). The presence of large tri- or tetra-cuspoid acanthoid tubercles on each lobe in G. birostris, three acanthoid tubercles on each lobe in G. biloborostris, and large bicuspid acanthoid tubercles on each lobe in G. chathensis are the most important characters distinguishing the three species.

In the present study, G. birostris was identified based on the large, tri- to tetra-cuspoid acanthoid tubercles on each lobe, having 4½–13½ transverse scale rows and a black spot at the upper angle of the gill opening. Our specimens of G. birostris differed to a certain extent in the characters mentioned in the original description in having fewer dorsal fin i8½ (vs iiii8½) and anal fin rays iii5½ (vs iiii5½) which may be to the result of differences in habitat physio-chemistry and climatic conditions.

The first record of G. birostris from Nagaland, adds yet another species to Nagaland’s ichthyofauna. This species is locally known as Aaghungu in Sumi Naga dialect, Angad in Ao Naga dialect and Engoro in Lotha Naga dialect. The prevailing threats to the fish species and their habitat occur mostly due to over exploitation including using destructive fishing methods, various anthropogenic activities hazards, such as irrigation water for human needs and plastic waste discharge, and sand & boulder mining. Public awareness campaigns among the general public could be the most effective step toward preserving and conserving native fisheries resources. Anthropogenic activities must be regulated, especially those negatively impacting aquatic ecosystems and their resources. It is also necessary to conduct continued research to investigate and document the ichthyofauna in this region, especially from poorly-explored tributaries, as to develop sustainable exploitation and for conservation plans for the fish fauna.

Materials examined

Garra biloborostris: ZSI FF 7928, 2 paratypes, 69.1–75.6 mm; India, Assam, Chirang District, Kanamakura River, Brahmaputra basin, Sewalli and Paraty.

Garra chathensis: ZSI FF 8037, holotype, 65.6 mm SL; India: Nagaland: Chathe River, Brahmaputra basin, Ezung et al. (2020)

Garra birostris: Data from Nebeshwar & Vishwanath (2013)

References

Basumatary, S., F. Jabeen, A. Dey, H. Choudhury, B. Talukdar, H.K. Kalita & D. Sarma (2017). Length-weight relationships of Garra birostris Nebeshwar & Vishwanath, 2013, Garra annandalei (Hora, 1921), Johnius coltor (Hamilton, 1822) and Raiamas bola (Hamilton, 1822) from the Brahmaputra River basin, Northeast India. Journal of Applied Ichthyology 33(6): 1242–1243.

ESRI (2017). ArcGIS desktop and spatial analyst extension: release 10.5. Environmental Systems Research Institute; Redlands, CA.

Ezung, S., B. Shangningam & P.P. Pankaj (2021). A new fish species of genus Garra (Cyprinidae) from Nagaland, India. Journal of Threatened Taxa 13(6): 18618–18623. https://doi.org/10.11609/jtt.40.5.13.6.18618-18623

Ezung, S., S. Bungdon & P.P. Pankaj (2020). A new fish species of the genus Garra (Teleostei: Cyprinidae) from the Brahmaputra basin, Nagaland, India. Journal of Experimental Zoology, India 23(2): 1333–1339.

Fricke, R., W.N. Eschmeyer & R. van der Laan (2018). Eschmeyer’s Catalog of Fishes: genera, species, references, online version. California Academy of Sciences, San Francisco. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishticmain.asp (accessed 31 December 2020).

Kottelat, M. (2020a). Ceratogarra, a genus name for Garra camboediensis and G. fasciacauda and comments on the oral and gular soft anatomy in labeonine fishes (Teleostei: Cyprinidae). Raffles Bulletin of Zoology Supplement No. 35: 156–178.

Kottelat, M. (2000b). Diagnoses of a new genus and 64 new species of fishes form Laos (Teleostei: Cyprinidae, Balitoridae, Bagridae, Syngnathidae, Chauhuiridae and Tetradontidae). Journal of South Asian Natural History 5: 37–82.

Nebeshwar, K. & W. Vishwanath (2013). Three new species of Garra (Pisces: Cyprinidae) from north-eastern India and redescriptions of G. gotyla. Ichthyological Exploration of Freshwaters 24(2): 97–120.

Nebeshwar, K. & W. Vishwanath (2017). On the nout and oromandibular morphology of genus Garra, description of two new species from the Koladnye River basin in Mizoram, India, and redescription of G. manipuresis (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 28(1): 17–53.

Roni, N. & W. Vishwanath (2018). A new species of the genus Garra (Teleostei: Cyprinidae) from the Barak River drainage, Manipur, India. Zootaxa 4374(2): 263–272.

Roni, N. & W. Vishwanath (2017). Garra biloborostris, a new labeonine species from north-eastern India (Teleostei: Cyprinidae). Vertebrate Zoology 67(2): 133–137.

Sflassny, M. L. & A. Getahun (2007). An overview of labeonine relationships and the phylogenetic placement of the Afro-Asian genus Garra Hamilton, 1922 (Teleostei: Cyprinidae), with the description of five new species of Garra from Ethiopia, and a key to all African species. Zoological Journal of the Linnean Society 150(1): 41–83.

Thoni, R.I., D.B. Gurung & R.L. Mayden (2016). A review of the genus Garra Hamilton 1822 of Bhutan, including the descriptions of two new species and three additional records (Cypriniformes: Cyprinidae). Zootaxa 4169(1): 115–132.

Vishwanath, W. (2017). Diversity and conservation status of freshwater fishes of the major rivers of northeast India. Aquatic Ecosystem Health & Management 20(1–2): 86–101. https://doi.org/10.1080/14634988.2017.1294947

Zhang, E. & Y.Y. Chen (2002). Garra tengchongensis, a new cyprinid species from the upper Irrawaddy River basin in Yunnan, China (Pisces: Teleostei). Raffles Bulletin of Zoology 50(2): 459–464.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows for unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)
Date of Publication: 26 July 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.7.21331-21486

Articles
The Javan Leopard Panthera pardus melas (Cuvier, 1809) (Mammalia: Carnivora: Felidae) in West Java, Indonesia: estimating population density and occupancy
– Anton Ario, Senjaya Manurung, Rinaldi, Gumilang, I Gede Gellg
Darma Putra Wirawan & Toni Ahmad Slamet, Pp. 21331–21346

Breeding phenology and population dynamics of the endangered Forest Spiny Reed Frog Acríalus sylvaticus Schicht, 1974 in Shimba Hills, Kenya
– Alfayo Koskei, George Eshiamwata, Bernard Kirui & Phylis K. Cheruiyot, Pp. 21347–21355

First record of Proceratium Roger, 1863, Zasphinctus Wheeler, 1918, and Vollenhovia Mayr, 1865 (Hymenoptera: Formicidae) from the Western Ghats of peninsular India, description of three new species, and implications for Indian biogeography
– Kalesh Sadasivan & Manoj Kripakaran, Pp. 21368–21387

Communications
New queen? Evidence of a long-living Jaguar Panthera onca (Mammalia: Carnivora: Felidae) in Tikal National Park, Guatemala
– Carlos A. Gaitán, Manolo J. García, M. André Sandoval-Lemus, Vivian R. González-Castillo, Gerber D. Guzmán-Flores & Cristel M. Pineda, Pp. 21388–21395

First camera trap record of Striped Hyena Hyaena hyaena (Linnaeus, 1758) in Parsa National Park, Nepal
– Pramod Raj Regmi, Madhu Chetri, Haribhadra Acharya, Prakash Sigdel, Babu Ram Lamichhane, Pp. 21396–21401

Range extension and new ecoregion records of the Crocodile Monitor Varanus salvator (Peters & Doria, 1878) (Reptilia: Varanidae) in Papua New Guinea
– Borja Reh & Jim Thomas, Pp. 21402–21408

A checklist of fish and shellfishes of the Poonthura estuary, southwestern coast of India
– Kiranya Bella, Pramila Sahadevan, Giri Bhanav Sreekant & Rajeev Raghavan, Pp. 21409–21420

A new species of Protosticta Selys, 1885 (Odonata: Zygoptera: Platystictidae) from Western Ghats, India
– Kalesh Sadasivan, Vinayan P. Nair & K. Abraham Samuel, Pp. 21421–21431

A case study on utilization and conservation of threatened plants in Sechuan Tuan Nalla Wildlife Sanctuary, western Himalaya, India
– Puneet Kumar, Harminder Singh & Sushil Kumar Singh, Pp. 21432–21441

A survey of ethno-medicinally important tree species in Nourdehi Wildlife Sanctuary, central India
– Tinku Kumar, Akash Kumar, Amit Jugnu Bishwas & Pramod Kumar Khare, Pp. 21442–21448

Short Communications
Effects of a Bengal Slow Loris Nycticebus bengalensis (Primates: Lorisidae) bite: a case study from Murlen National Park, Mizoram, India
– Amit Kumar Bal, Anthony J. Giordano & Sushanto Gouda, Pp. 21449–21452

First record of Garra birostris Nebeshwar & Vishwanath, 2013 (Cypriniformes: Cyprinidae) from Doyang and Dikhu rivers of Brahmaputra drainage, Nagaland, India
– Sohinya Ezung, Metevinu Kechu & Pranay Punj Pankaj, Pp. 21453–21457

Illustrated description of the mantis Mesopteryx platyccephala (Mantodea: Mantidae) collected from West Bengal, India
– Gauri Sathaye, Sachin Ranade & Hemant Ghate, Pp. 21462–21466

Cetrella isidia (Asahina) W.L. Culb. & C.F. Culb. (Pamphelidae) – an addition to the Indian lichen biota
– Gaurav K. Mishra, Payal Maurya & Dalip K. Upadhyay, Pp. 21467–21469

Notes
A new southern distribution record for Pacific Marten Martes caurina
– Maxsimilian L. Allen, Brianne Kenny, Benjamin Crawford & Morgan J. Farmer, Pp. 21470–21473

First Asian record of Light-mantled Albatross Phoebetria palpebrata (Foster, 1785) from Rameswaram Island, Tamil Nadu, India
– H. Byju & N. Raveendran, Pp. 21473–21475

Salvia misella Kunth (Lamiaceae) – a new record for Eastern Ghats of India
– Prabhat Kumar Das, Pradeep Kumar Kamila & Pratap Chandra Panda, Pp. 21576–21579

Salsola oppositifolia Desf. in Great Rann of Kachchh, Gujarat – a new record for India
– Rakesh Gujar, Vinesh Gamit, Ketan Tatu & R.K. Sugoor, Pp. 21580–21483

Extended distribution of Impatiens scapiflora (Balsaminaceae) to the flora of Eastern Ghats, India
– T.S. Saravanan, S. Kaliamoorthy, M.Y. Kamble & M.U. Sharief, Pp. 21484–21486

Publisher & Host
www.threatenedtaxa.org