An iridoid, lamiide, its extraction method from *Phlomis bruguieri*, and evaluation of its antioxidant capacity

Behzad Zolfaghari,1 Azade Esparham,1 Ebrahim Sajjadi,2 Mustafa Ghanadian1,2

1Department of Pharmacognosy, Isfahan Pharmaceutical Sciences research center, school of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan; 2Phytochemistry Research Center and School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Phlomis bruguieri is a native plant in Iran, which deserves phytochemical study. The aim of this study was evaluation of its iridoid contents along with its antioxidant capacity. Aerial parts of the plant material were extracted with methanol and applied on repeated normal column chromatography using hexane: chloroform: methanol (70:30), chloroform: methanol (90:10), and methanol (100%). The fraction eluted with methanol (100%) containing polar glycosides was selected and medium pressure liquid chromatography (MPLC) on a RP-18 cartridge. Fraction elute by MeOH: water 30:70 was loaded on HPLC on RP-18 column for final purification. Structure elucidation was done using 1D and 2D NMR, and mass spectra. Antioxidant activity including total antioxidant capacity, DPPH and FRAP methods were designated to assess the *in vitro* antioxidant capacities. This study indicated the presence of lamide as iridoid compound in the aerial parts of *Phlomis bruguieri* for the first time in this plant [350 mg/2 kg; 0.0175 % (w/w)]. Lamide showed moderate antioxidant activity using TAC (EC50: 55 ± 15 µg/mL; ascorbic acid EC50: 7.5 ± 0.68 µg/mL), DPPH (EC50: 116.2 ± 3.51 µg/mL; ascorbic acid:34.7 ± 0.97 µg/mL), and FRAP (EC50:200 µg/mL; quercetin: 7.5 ± 0.68 µg/mL) methods.

Introduction

Phlomis species from Lamiaceae family are distributed in North Africa, throughout Europe, and Asia. They have been used as herbal to protect the kidney, liver, and cardiovascular system, for treatment of painful swellings, psoriasis, and skin eruptions, lesion and burns, stomach ache and gastrointestinal troubles, and antidiabetic. Even, grilled leaves of some species have reported for culinary use. Essential oils, flavonoids, Iridoids, phenylethyl alcohol glycosides are their major secondary metabolites. In the case of Iridoids, 8-O-acetylsanzhiside methyl ester, shanzhiside methyl ester, and lamide are more frequent which are distributed in most of the *Phlomis* species. In pharmacological properties, they are reported for reducing the oxidative stress in diabetes or by stimulating the production of enzymes implicated in glucose metabolism. Mohajer et al. also reported pain relieving and analgesic properties of different *Phlomis* species. Their aqueous extract in some species have been studied for the gastroprotective activity. In another study conducted by Ismailoglu and coworkers, phenylethyl alcohol fraction and iridoid fraction of *Phlomis pungens* prevented the inhibition of acetylcholine response induced by electrolysis in aortic rings. They showed also protective activity in free radical-induced impairment of endothelium-dependent relaxation which probably id because of free radical scavenging activity of these compounds. *Phlomis bruguieri* (*P. bruguieri*) is distributed in flora of Turkey, Iran, and Iraq. Previous biological studies reported its antimicrobial against Streptococcus *sanguis* and Staphylococcus aureus, antioxidant, and α-amylase inhibitory activities. Previous phytochemical studies showed that the main constituents of its essential oil are bicyclogermacrone (4.1%), γ-elemene (16.5%), germacrene D (60.5%), and germacrene B (7.1%). In another study LC mass analysis reported presence of phenylethanoid glycosides: verbascoside, leucosceptosides A, isoverbascoside, and martynoside.
Another phytochemical study by the authors, led to isolation of one new 4'-methoxy-luteolin-7-phosphate as well as three flavones: luteolin, tricin, and apigenin in semi polar partition of this plant. In this study we investigated the major component in aqueous partition of Phlomis bruguieri in addition to its antioxidative activity.

Materials and Methods

NMR spectra were taken in DMSO-d6 as the solvent on a Bruker AV400 NMR spectrometer (Bruker, Germany). High-resolution mass spectra were carried out on an Agilent 1100 SL series mass spectrometer. Column Chromatography (CC) was done on flash silica gel particle size 40-63 μm, and Size Exclusion Chromatography (SEC) on Sephadex LH-20 (Sigma-Aldrich). HPLC was done on a waters 501 pump and YMC RP-18 column (250 x 20 mm) with AcCN:H2O (10:90) at 3.0 mL/min.

Plant material

Aerial parts of P. bruguieri were collected from Kermanshah, Iran. It was identified according to the voucher specimen (2182) deposited in the herbarium of biology department, Faculty of Science, University of Isfahan, Isfahan, I.R. Iran.

Extraction and isolation

Dried powder of (2.0 Kg) was extracted with methanol (20 L) for one week. It was filtered and concentrated (361 g) by rotary evaporator at 40 °C. The extract was defatted in a separating funnel by partitioning between methanol: water and hexane. Methanolic phase was concentrated (80 g) and applied on column chromatography (silica gel, 400 g) for preliminary fractionation using hexane: chloroform (70:30), chloroform: methanol (90:10), and methanol (100%). Fr. 2 eluted with chloroform: methanol (90:10) was analyzed and reported previously [17] and Fr.3, eluted with methanol (100%) containing polar glycosides selected and loaded on MPLC on a RP-18 cartridge (50 * 150 mm) using MeOH: water 30:70; 40:60, and 50:50. Based on TLC, fraction elute by MeOH: water 30:70 was loaded on HPLC column on YMC RP-18 column (20 * 250 mm) using acetonitril: water (10:90) as solvent and yielded lamide as major iridoid component (350 mg).

To check its antioxidant activity, total antioxidant capacity, DPPH and FRAP methods were designated to assess the in vitro antioxidant capacities.

Evaluation of total antioxidant capacity

The Total Antioxidant Capacity (TAC) was done using the method of Salmanian et al. and by some adaptation method to micro titer plates. 96 well plate resistant to temperature was poured with 250 µL of sample in different concentrations of 1, 10, 25, 50, 100, and 200 µg/mL and in triplicate wells combined with micro titer plates. 18 96 well plate resistant to temperature was poured with 10 µL of sample solutions solvent and 100 µL of reagent. Ascorbic acid 200 µg/mL was used as control.

The concentration of the sample which had 50% of total antioxidant capacity, (EC50), was determined for sample and standard using Excel 2010 graph software.

DPPH free radical scavenging activity

It was done using the method of West et al. and by adaptation to 96 well plates. Ninety-six well plate resistant to temperature were poured with 250 µL of sample in different concentrations of 1, 10, 25, 50, 100, and 200 µg/mL and in triplicate wells; 100 µL of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) ethanol solution (0.3 mM) was added. The reaction was finished after 30 min at room temperature, and the absorbance values could be measured at 518 nm. Radical scavenging activity (RSA) was calculated as follows:

\[\text{RSA (\%)} = \frac{\text{OD blank} - \text{OD sample}}{\text{OD blank}} \times 100 \]

The concentration of the sample which could scavenge 50% of DPPH radical, (EC50), was determined for sample and standard using Excel 2010 graph software.

Ferric ion reducing antioxidant power by potassium ferricyanide

The Ferric ion Reducing Antioxidant Power (FRAP) was determined using the method described by West et al. but some modification in final calculation. To 1 mL of sample, quercetin as standard in different concentrations of 1, 10, 25, 50, 100, and 200 µg/mL and in triplicate, 2.5 mL of sodium phosphate buffer (0.2M, pH=6.6) and 2.5 mL of 1% potassium ferricyanide were added. The solution was incubated at 50 °C for 20 min. Methanol as negative control and quercetin in the same concentrations as positive control were added. Then after incubation, 2.5 mL of trichloroacetic acid (TCA, 10%) was added, and the solution was centrifuged at 10000g for 10 min. Then, 2.5 mL of the supernatant, with 2.5 mL deionized water and 0.5 mL FeCl3 (1%) were added. The mixture was incubated at room temperature for 30 min, and the absorbance OD was measured at 700 nm. Quercetin 200 µg/mL was used as control.

\[\text{FRAP (\%)} = \frac{\text{OD control} - \text{OD sample}}{\text{OD control}} \times 100 \]

The concentration of the sample which had 50% of ferric ion reducing antioxidant power, (EC50), was determined for sample and standard using Excel 2010 graph software.

Results and Discussion

Compound 1 was isolated in good quantities using MPLC on a RP-18 cartridge followed by prep HPLC column on YMC RP-18 column using acetonitril: water (10:90) as solvent. It was obtained as a white, amorphous powder and its structure was determined based on 1H-NMR, 13C-NMR, HSQC, and HMBC experiments. In the HR-ESIMS spectra pseudomolecular ion at m/z 445.1316 was indicative to the molecular formula C114H144O37 +Na+ (Caled: 445.1323). H-NMR, 13C-NMR, HSQC, and HMBC analysis showed signals related to a beta pyranoglucofuranoside substituent δC 97.9 [δH 4.38 (1H, d, J=7.9 Hz, H-1′)], 72.9 [δH 2.94 (1H, d, J=7.9 Hz, H-4′)], 7.56 [δH 3.11-3.17 (overlapping, H-6′a)], 7.0 [δH 3.06 (1H, d, J=7.9 Hz, H-5′a)], 13δ[δC 21.3 [δH 0.93 (3H, s)], a three-substituted double bond [δC 114.4 and 150.5 (each s);
δH 7.33 (1H, s), conjugated with an α,β unsaturated esteric group [δC 165.8], one methylene δC 44.6 [δH 1.98 (1H, dd, J6a,6b = 14.5, J6b,7 = 4.2 Hz, H-6a)]; 2.21 (1H, dd, J6a,6b = 14.5, J6b,7 = 5.3 Hz, H-6b)], three SP3 methines: one attached to a hydroxyl function δC 75.6 [δH 3.28 (1H, ddd, J6a,7 = 4.2, J6b,7 = 5.3, J7,OH = 4.8 Hz); 4.98 (1H, d, J1,9 = 1.0 Hz, H-1)], and a simple one δC 57.3 [δH 2.55 (1H, d, J1,9 = 1.0 Hz, H-1)], in addition to two oxygenated quaternary carbons δC 66.9 (C-5), and 77.0 (C-8), and two singlet hydroxyl groups δH 4.36 (1H, s), 4.48 (1H, s) with HMBC correlation to C-5, and C-8, respectively. By the complete assignment of the structure using 2D-NMR spectra and comparison with the published data the structure was confirmed as lamiide (Figure 1) and is reported for the first time in this plant.

Total Antioxidant Capacity Assay

In this assay phosphomolybdenum (VI) is reduced to phosphate/Mo (V) complex at acidic pH. As shown in Figure 2, total antioxidant capacity of lamiide increased with increasing concentration (Dose concentration pattern). In concentrations of 1, 10, 25, 50 µg/mL its activity was less than ascorbic acid (P two-tail<0.001) while at concentrations 100 µg/mL (P two-tail=0.089) and 200 µg/mL (P two-tail=0.868) difference was not significant. Lamiide showed EC50 value of TAC equal to 55 µg/mL, while ascorbic acid determined to be equivalent to 7.5 µg/mL determined for 100 µL of reagent solution in test (Figure 2).

DPPH free radical scavenging activity

DPPH method is free radical scavenging activity evaluation by proton donation or radical scavenging ability using pink stable radical DPPH (λmax =517 nm). As shown in Figure 3, free radical scavenging by lamiide was in a dose dependent pattern. In concentrations of 25, 50, 100 µg/ml its activity was less than ascorbic acid (P<0.001) while at concentrations 200 µg/mL difference was not significant (P>0.05). Lamiide EC50 value at concentration of 116.2 ± 3.51 µg/ml, while ascorbic acid as positive control was 34.7 ± 0.97 µg/mL (Figure 3).

Determination of ferric ion reducing antioxidant power

Reducing power assay method is based on this principle that compounds with FRAP activity, reduce ferric ion (Fe3+) in the form of K3[Fe(CN)6] to Fe2+ ion in K4[Fe(CN)6], which then reacts with FeCl3, to form Fe4[Fe(CN)6]3 with Prussian color that has an maximum absorption (λmax) at 700 nm. As shown in Figure 4, ferric ion reducing activity by lamiide was dose dependent. Lamiide EC50 value was more than 200 µg/mL, while quercetin was 7.5 ± 0.68 µg/mL in this test. Lamiide at higher concentration of 200 µg/mL, showed 16.28 ± 0.37 % FRAP activity compared with quercetin with 100 % activity (Figure 4).
Conclusions

This study indicated using MPLC on reverse phase C-18 followed by HPLC on prep RP C-18 columns using acetonitrile:water as solvent is a good method for purification of Lamiide iridoid. the presence of lamiide as iridoid compound in the aerial parts of Phlomis bruguieri for the first time from in this plant [350 mg/2 kg; 0.0175 % (w/w)]. Lamiide has been found in other Phlomis species by increasing order as following: P. thapsoides (9mg/2.7kg; 0.0033%), P. persian (4mg/750g; 0.0005%), P. area (40mg/5kg; 0.0008%), P. capitata (6mg/500g; 0.0012%), P. grandiflora (17mg/530g; 0.003%), P. monoscepha (15mg/500g; 0.003%), P. syriaca (14.7mg/450g; 0.0032%), B. austriatica (20mg/435g; 0.0045%), P. fruticosa (26mg/512g; 0.005%), P. grandiflora var. fimbriilligera (26mg/420g; 0.006%), P. physocalyx (75mg/600g; 0.0125%), P. kotschyanu (60mg/280g; 0.021%), P. nissolii (300 mg/1.2kg; 0.025%), P. oppositiflora (114mg / 200g; 0.057%), P. pungens (3g / 2.5kg; 0.12%), P. viscosa (1794mg/350g; 0.5%).

In comparison between Phlomis species, P. viscosa, and P. pungens with 0.1 to 0.5 % (w/w) lamiide content could be considered as most rich sources of lamiide. However, because of this fact that P. bruguieri contains only one major iridoid, it could be considered also as a source with 0.035 % lamiide content because of less purification steps.

Lamiide showed moderate antioxidant activity using TAC (EC50 55 µg/ml; ascorbic acid EC50: 7.5 µg/ml), DPPH (EC50: 116.2 ± 3.51 µg/ml; ascorbic acid:34.7 ± 0.97 µg/ml), and FRAP (EC50=200 µg/ml; quercetin: 7.5 ± 0.68 µg/ml). These results were in agreement with DPPH activity of other iridoids as follows: 6-methoxy scandoside methyl ester (EC50: 277.38 µg/ml), longifolioside A (EC50: l27.0 µg/mL), longifolioside B (EC50:19.0 µg/mL), Ixoside (EC50: 42.4 µg/mL), and 10-O-caffeoyl scandoside methyl ester (EC50: 2.56 µg/ml).

Previously lamiide showed anti-inflammatory activity which support antioxidant activities. Its activity on rat-brain phospholipid peroxidation showed a prosperous activity with IC50 value of 0.92±0.01 mM and an anti-inflammatory effect in a carrageenin-induced paw edema in rat test with ED50 value of 62.3+/-.7 mg/kg.

References

1. Amor IL, Boubaker J, Sgaier MB, et al. Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol 2000;125:183-202.
2. Ertuğ F. Wild edible plants of the Bodrum area (Muğla, Turkey). Turk J Bot 2004;28:161-74.
3. Khaman M, Hassan MA. A critical study of the genus Leucas R. Br. (Lamiaceae) from Bangladesh. Bangladesh J Plant Taxon 2005;12:1-0.
4. Liolios C, Laourer H, Boulaacheb N, et al. Chemical composition and antimicrobial activity of the essential oil of Algerian Phlomis bovei De Noé subsp. Bovei. Molecules 2007;12:772-81.
5. Digrak M, Alma MH, Içim A, Sen S. Antibacterial and antifungal effects of various commercial plant extracts. Pharm Biol 1999;37:216-20.
6. Khafagi IK, Dewedar A. The efficiency of random versus ethno-directed research in the evaluation of Sinai medicinal plants for bioactive compounds. J Ethnopharmacol. 2000;71:365-76.
7. Naghibi F, Mosaddeg M, Mohammadi Motamed M, Ghorbani A. Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iran J Pharm Res 2010:63-79.
8. Kasai R, Katagiri M, Ohtani K, et al. Iridoid glycosides from Phlomis younghusbandii roots. Phytochemistry 1994;36:967-70.
9. Sarkhai P, Rahmanipour S, Fadye vatavan S, et al. Antidiabetic effect of Phlomis anisodontia: effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Pharmacol Res 2007;56:261-6.
10. Mohajer M. Anti-inflammatory and analgesic effects of Phlomis lanceolata Boiss and Hohen. extracts and examination of their components. Int J Pharmacol 2005;2:50-4.
11. Amor IL, Skandari I, Boubaker J, et al. Investigation of biological activity of polar extracts isolated from Phlomis crinata Cav ssp. mauritania Mbn. Drug Chem Toxicol 2009;32:38-46.
12. Ismaïlougli UB, Saracoglu I, Harput US, Sahin-Erdemli I. Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings. J Ethnopharmacol 2002;79:193-7.
13. Rechinger KH, ed. Flora Iranica. Graz: Akademische Drucku Verlagsanstalt; 1982. pp. 292–317.
14. Delnavazi MR, Safaei M, Biuki S, et al. Coumaryl flavone glycosides and cinnamic acid derivatives from the aerial parts of Phlomis bruguieri Desf. Res J Pharmacognosy 2017;4:17-22.
15. Sarkhai P, Amin G, Surnaghi MH, Shafiee A. Composition of the volatile oils of Phlomis lanceolata Boiss. & Hohen., Phlomis anisodonta Boiss, and Phlomis bruguieri Desf. from Iran. Flavour Fragr J 2005;20:327-9.
16. Kirmizibekmez H, Montoro P, Piacente S, et al. Identification by HPLC–PAD–MS and quantification by HPLC–PAD of phenylethanoid glycosides of five Phlomis species. Phytochem Anal 2005;16:1–6.
17. Saajjda SE, Delazari Z, Aghaei M, Ghanadian M. Flavone constituents of Phlomis bruguieri Desf. with cytotoxic activity against MCF-7 breast cancer cells. Res Pharm Sci 2018;13:422.
18. Salmanian S, Sadeghi MA, Alami M, Ghorbani M. Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. J Agr Tech 2012;47:1392-7.
19. West BJ, Deng S, Jensen CJ, et al. Antioxidant, toxicity, and iridoid tests of processed Cornelian cherry fruits. Int J Food SciTech 2012;47:1392-7.
20. Saloufou KI, Boyode P, Simalou O, et al. Chemical composition and antioxidant activities of different parts of Ficus sur. J Herbmed Pharmaco 2018;7:185-92.
21. Sarkhai P, Monsef-Esfahani HR, Amin G, et al. Phytochemical study of Phlomis olivieri Benth. and Phlomis persica Boiss. Daru 2006;14:202-7.
22. Cobelli M, Mamadalieva NZ, Mohamed T, et al. Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Med Chem Res 2016;25:2304-15.
23. Kamel MS, Mohamed KM, Hassanean HA, et al. Iridoid and megalistigma glycosides from Phlomis aurea. Phytochemistry 2000;55:353-7.
24. Kirmizibekmez H, Piacente S, Pizzà C, Doğan AA, Çağlı İ. Iridoid and phenylethanoid glycosides from Phlomis nissolii and P. capitata. Z Naturforsch. B. 2004;59:609-13.
25. Saracoglu I, Varel M, Çağlı İ, Dönmez AA. Neolignan, flavonoid, phenylethanoid and iridoid glycosides from
Phlomis integrifolia. Turk J Chem 2003;27:739-48.

26. Yalcin FN, Ersoez T, Akbay P, et al. Iridoid and Phenylpropanoid Glycosides from Phlomis samia, P. monoccephala and P. carica. Turk J Chem 2003;27:295-306.

27. Harput ÜŞ, Çalış I, Saracoğlu İ, Dönmez AA, Nagatsu A. Secondary metabolites from Phlomis syriaca and their antioxidant activities. Turk J Chem 2006;30:383-90.

28. Yalcin FN, Ersoz T, Bedir E, et al. Phlinoside F, a new phenylethanoid glycoside from Phlomis angustissima. Turk J Chem 2005;29:417-23.

29. Ersoz T, Saracoğlu İ, Harput ÜŞ, et al. Iridoid and phenylpropanoid glycosides from Phlomis grandiflora var. fimbriiliger and Phlomis fruticosa. Turk J Chem 2002;26:171-7.

30. Ersoz T, Alipieva KI, Yalçın FN, et al. Physocalycoside, a new phenylethanoid glycoside from Phlomis physocalyx Hub.-Mor. Z Naturforsch C 2003;58:471-6.

31. Harput ÜŞ, Saracoğlu İ, Çalış I, et al. Secondary metabolites from Phlomis kotschyan. Turk J Chem 2004;28:767-74.

32. Kırmızibekmez H, Piacente S, Pizza C, et al. Iridoid and phenylethanoid glycosides from Phlomis nissolii and P. capitata. Z Naturforsch B 2004;59:609-13.

33. Çalış I, Bedir E, Kirmizibekmez H, et al. Secondary metabolites from Phlomis oppositiflora. Nat Prod Res 2005;19:493-501.

34. Saracoğlu İ, Suleymanov T, Shukurova A, Dogan Z. Phytochemical studies on Phlomis pungens Willd. from Azerbaijan. Planta Medica 2016;82:P285.

35. Çalış İ, Kirmizibekmez H, Beutler JA, et al. Secondary metabolites of Phlomis viscosa and their biological activities. Turk J Chem 2005;29:71-82.

36. Lakshmana Raju B, Lin SJ, Hou WC, et al. Antioxidant iridoid glucosides from Wendlandia formosana. Nat Prod Res 2004;18:357-64.

37. Jensen SR, Gotfredsen CH, Harput US, Saracoğlu I. Chlorinated iridoid glucosides from Veronica longifolia and their antioxidant activity. J Nat Prod 2010;73:1593-6.

38. Abdel-Mageed WM, Backheet EY, Khalifa AA, et al. Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis. Fitoterapia 2012;83:500-7.

39. Delaporte RH, Sánchez GM, Cuellar AC, et al. Anti-inflammatory activity and lipid peroxidation inhibition of iridoid lamide isolated from Bouchea fluminensis (Vell.) Mold.(Verbenaceae). J Ethnopharmac 2002;82:127-30.