THE SOLVABILITY OF GROUPS
WITH NILPOTENT MINIMAL COVERINGS

RUSSELL D. BLYTH, FRANCESCO FUMAGALLI, AND MARTA MORIGI

In memory of László Kovács

Abstract. A covering of a group is a finite set of proper subgroups whose union is the whole group. A covering is minimal if there is no covering of smaller cardinality, and it is nilpotent if all its members are nilpotent subgroups. We complete a proof that every group that has a nilpotent minimal covering is solvable, starting from the previously known result that a minimal counterexample is an almost simple finite group.

2010 Mathematics subject classification: 20D99, 20E32, 20D15.
Keywords and phrases: finite group, cover of a group, almost simple group.

1. Introduction

A covering (or cover) for a group G is a finite collection of proper subgroups whose union is all of G. A minimal covering for G is a covering which has minimal cardinality among all the coverings of G. The size of a minimal covering of a group G is denoted $\sigma(G)$ and is called the covering number of G. Since the first half of the last century a lot of attention has been given to determining which numbers can occur as covering numbers for groups, and, when possible, to characterize groups having the same value of $\sigma(G)$. The earlier works date back to G. Scorza ([24]) and D. Greco ([13], [14], [15]). The terminology “minimal covering” appears in the celebrated paper [26] of M. J. Tomkinson. Also worth mentioning are [16], [3] and [9]. More recent works determine bounds, and also exact values of $\sigma(G)$, for various classes of finite groups (see for instance [4], [21], [23], [17] and [18]).

Here we are interested in minimal coverings of groups by proper subgroups with restricted properties. For example, in [5, Theorem 2] R. Bryce and L. Serena show that a group that has a minimal covering consisting of abelian subgroups is solvable of very restricted structure. In [6] the same authors treat the case of groups that admit a minimal covering with all members nilpotent, that is, a nilpotent minimal covering. They state the following:

Conjecture. Only solvable groups can admit a nilpotent minimal covering.

Their main result ([6, Proposition 2.1]) is a reduction to the almost simple case, namely if there is an insolvable group with a nilpotent minimal covering then there is a finite almost simple such group. Bryce and Serena also show that several classes of finite almost simple groups (among them the alternating and symmetric groups, the projective special/general linear groups, the Suzuki groups, and the 26 sporadic groups) do not have nilpotent minimal coverings.
Our main result is the following.

Theorem 1. No finite almost simple group has a nilpotent minimal covering.

As an immediate corollary we complete the proof of the aforementioned conjecture.

Theorem 2. Every group that has a nilpotent minimal covering is solvable.

The structure of solvable groups with such a minimal covering is well understood and can be found in [5, Theorem 11].

A reasonable indication of the truth of Theorem 1 is suggested by the fact that in a finite non abelian simple group the order of the largest nilpotent subgroups is always much smaller than the order of the group (see [27]).

Our proof of Theorem 1 makes use of the classification of finite non abelian simple groups, and it can be outlined as follows. We start by taking a minimal order counterexample G, which is therefore an almost simple group, say $S \leq G \leq \text{Aut}(S)$, where S is a non abelian simple group. If S is a group of Lie type we reduce to the cases when S has Lie rank one or twisted Lie rank one, or S has Lie rank two and G contains a graph, or a graph-field, automorphism of S. Then we reduce to G/S cyclic and we use a technical lemma (Lemma 5) to eliminate the possibility that G is itself not simple (Proposition 6). Finally we prove that no finite simple group can be a counterexample (Proposition 7).

Recently nilpotent coverings and their connections with maximal non-nilpotent subsets in finite simple groups of Lie type have been studied in [2].

The notation of this paper is standard and mostly follows the book [12]. We remark that for the classical groups we have preferred to use the ‘classical’ notation rather than Artin’s single letter notation. Therefore we use $\text{PSL}(n,q)$ instead of $A_{n-1}(q)$ or $L_n(q)$, and similarly $\text{PSp}(2n,q)$ for $B_{2n}(q)$ and $\text{PSU}(n,q)$ for $^2A_{n-1}(q)$ or $U_n(q)$. Note also that whenever we write $\text{PSU}(n,q)$ we mean that this group is defined over the field of order $q^2 = p^f$ (p a prime). Differently from [12], we denote the Suzuki and the Ree groups over the fields F_{2^f} and F_{3^f} (f odd), by $^2B_2(2^f)$, $^2G_2(3^f)$, instead of $^2B_2(2^f)$ and $^2G_2(3^f)$.

2. Proofs of Theorems 1 and 2

We start with a simple but important observation. Assume that $A = \{A_1, \ldots, A_\sigma\}$ is a minimal covering of a group G, that is,

$$G = A_1 \cup A_2 \cup \ldots \cup A_\sigma$$

and G is not the setwise union of fewer than σ proper subgroups. Then for every $1 \leq i < j \leq \sigma$, $(A_i, A_j) = G$, since otherwise we could replace the subgroups A_i and A_j in A with (A_i, A_j), obtaining a covering of G with fewer than σ members. We will use this simple fact often.

The proof of Theorem 1 depends on understanding the structure of the finite simple groups of Lie type and the corresponding simple linear algebraic groups. Lemma 2 is a key step in our proof. We first recall some important facts regarding algebraic groups.
A regular unipotent element of an algebraic group G is an element g of G such that $\dim(G_{\geq}(g)) = \text{rk}(G)$. The following result can be found in [8], Propositions 5.1.2 and 5.1.3.

Proposition 1. Let G be a connected reductive group. Then G admits regular unipotent elements and these elements form a unique conjugacy class in G. Moreover, if u is a unipotent element of G, then the following conditions on u are equivalent:

(a) u is regular,

(b) u lies in a unique Borel subgroup of G, and

(c) u is conjugate to an element of the form $\prod_{\alpha \in \Phi^+} x_\alpha(\lambda_\alpha)$ with $\lambda_\alpha \neq 0$ for all $\alpha \in \Delta$ (where Φ^+ and Δ denote, respectively, a positive system of roots and its fundamental system).

In particular, if G is a simple linear algebraic group over an algebraically closed field in characteristic p and F is a Frobenius endomorphism of G, then the finite group of Lie type $G = G^F$ contains p-elements (that we still call regular unipotent) which have the property that each lies in a unique Sylow p-subgroup of G (see [8, Proposition 5.1.7]).

Lemma 2. Let G be an almost simple group whose socle S is a group of Lie type in characteristic p. Suppose that $\mathcal{A} = \{A_i\}_{i=1}^\sigma$ is a nilpotent minimal covering of G. Then the following hold:

(a) σ is greater than the number $n_p(S)$ of Sylow p-subgroups of S, and

(b) if U is a Sylow p-subgroup of S, then $N_G(U)$ is a maximal subgroup of G.

Proof. Let u be a regular unipotent element of S and let U be the unique Sylow p-subgroup of S containing u. Assume that $u \in A_i$. Since A_i is nilpotent, $O_p'(A_i) \leq C_G(u)$; in particular $O_p'(A_i) \leq C_G(u)$. We now prove that $O_p'(A_i) \leq N_G(U)$. Let $y \in O_p'(A_i)$. Then y normalizes $O_p'(A_i) \cap S$, and since $u \in O_p'(A_i) \cap S = (O_p'(A_i) \cap S)^y \subseteq U^y$ and U is the unique Sylow p-subgroup of S containing u, we have $U^y = U$, as we wanted. It follows that $A_i \leq N_G(U)$. As $\langle A_i, A_j \rangle = G$ for $i \neq j$, two different members of \mathcal{A} cannot normalize the same Sylow p-subgroup of S. This shows that $\sigma \geq |\text{Syl}_p(S)|$. Moreover, since a finite group is never the union of conjugates of a unique proper subgroup ([11, Theorem 1]), in fact $\sigma > |\text{Syl}_p(S)|$.

Assume now that $N_G(U) < K \leq G$. Then for every $k \in K \setminus N_G(U)$, the element u^k is still regular unipotent in S and lies in $U^k \neq U$. If $u \in A_i$ and $u^k \in A_j$, we have that for $i \neq j$, the subgroup A_j is contained in $N_G(U)^k$ and

$$G = \langle A_i, A_j \rangle \leq \langle N_G(U), N_G(U)^k \rangle \leq K,$$

which is a contradiction. Thus $N_G(U)$ is maximal in G. \hfill \Box

We next determine in which of these groups G the normalizer of a Sylow p-group of S is a maximal subgroup of G.

Proposition 3. Let G be a finite almost simple group whose socle S is a group of Lie type in characteristic p. Let U be a Sylow p-subgroup of S. Then $N_G(U)$ is maximal in G if and only if one of the following holds:

(a) $S \in \{\text{PSL}(2, q), \text{PSU}(3, q), 2B_2(q), 2G_2(q)\}$, or
(b) $S \in \{ \text{PSL}(3,q), \text{PSp}(4,2^f), G_2(3^f) \}$ and G contains a graph or graph-field automorphism of S.

Proof. Assume first that $G = S$ is simple. Then $B = N_S(U)$ is a Borel subgroup of S and, by general BN-pair theory ([7, Proposition 8.2.1 and Theorem 13.5.4]), the lattice of overgroups of B in S consists of B, the parabolic subgroups of S, and S. In particular, $N_S(U)$ is maximal in S if and only if it is the unique parabolic subgroup of S, which is the case exactly when S is of Lie rank one or, respectively, of twisted Lie rank one. Only the finite simple groups listed in (a) have this property.

Assume now that $G > S$ and let S^* be the extension of S by the diagonal and field automorphisms of S. The group S^* has a BN-pair whose Borel subgroup is $B^* = N_{S^*}(U)$, since to construct S^* from S we can choose diagonal and field automorphisms that normalize every root subgroup of U. Of course, the BN-pair restricts to $G \cap S^*$. Therefore, if $G \leq S^*$, we have immediately that $N_G(U)$ is maximal in G precisely when G is an extension of some simple group that appears in (a).

Suppose then that $G \not\leq S^*$, that is, that G contains a graph or graph-field automorphism of S. Note that this happens exactly when S is one of the following (see [7] or [10]):

$$\text{PSL}(n,q), n \geq 3, \text{PSp}(4,2^f), D_n(q), G_2(3^f), F_4(2^f), E_6(q).$$

Moreover, non-trivial graph automorphisms, modulo the field automorphisms, always have order 2 or 3 (order 3 occurs only in the case $S = D_4(q)$), and such automorphisms interchange the fundamental root subgroups. By looking at the action of such graph automorphisms on the Dynkin diagrams, only when the Lie rank of S is two can it be the case that $N_G(U)$ is maximal. This condition excludes all the possible groups except when S is one of the following: $\text{PSL}(3,q)$, $\text{PSp}(4,2^f)$ or $G_2(3^f)$. Finally we claim that in these groups $N_G(U)$ is indeed a maximal subgroup of G. By our earlier argument, the group $G^* = G \cap S^*$ has a BN-pair with Borel subgroup $B^* = N_{G^*}(U)$, whose overgroups are B^*, P_1^*, P_2^* and G^*, where P_1^* and P_2^* are the meets of G with the extensions, by diagonal and field automorphisms, of the two parabolic subgroups of S that contain B. Now $|G : G^*| = 2$ and any element of $N_G(U) \setminus N_{G^*}(U)$ interchanges P_1^* and P_2^*, since it interchanges the two fundamental root subgroups. Suppose that M is a maximal subgroup of G containing $N_G(U)$. Then $M \leq S^*$ contains $B^* = N_{G^*}(U)$, and so $M \cap S^* \in \{ B^*, P_1^*, P_2^*, G^* \}$. By the Frattini argument, $G = SN_G(U)$. Thus there is an element g in $N_G(U) \setminus N_{G^*}(U)$, such that, by the above, g interchanges P_1^* and P_2^*. But g normalizes $M \cap S^* =$; thus $M \cap S^* = B^*$ or S^*. If $M \cap S^* = S^*$, then $M = S^*N_G(U) = G$, a contradiction. Hence $M \cap S^* = B^*$ and so $M = N_G(U)$. We conclude that $N_G(U)$ is maximal in G in all these cases.

We make a further reduction that applies to any minimal counterexample to Theorem 1.

Lemma 4. If G is a minimal counterexample to Theorem 1, where $S \leq G \leq \text{Aut} (S)$ and S is a finite non abelian simple group, then G/S is a cyclic group.

Proof. Assume by contradiction that G has a nilpotent minimal covering with $\sigma = \sigma(G)$ subgroups and that G/S is not cyclic. Note that this assumption automatically excludes the cases when S is an alternating group A_n with $n \neq 6$ or...
a sporadic group, since in those cases $|G/S| = 2$. Thus S is a simple group of Lie type, and, by Lemma 2 and Proposition 3, the pair (G,S) is one that appears in the statement of Proposition 3. We may also assume S is not one of $2B_2(2^f), 2G_2(3^f), PSp(4, 2^f)$, or $G_2(q)$, since for these groups Out (S) is cyclic of order f or $2f$. Trivially, we may cover G/S using all its non-trivial cyclic subgroups, so in particular $σ(G/S) < |G/S|$. Since $σ ≤ σ(G/S)$, we deduce that $σ < |\text{Out}(S)|$. By Lemma 2, then, we have that $n_p(S) < |\text{Out}(S)|$. Thus, as before, $n_p(G)$ denotes the number of Sylow p-subgroups of S, that is, the index of a Borel subgroup of S in $S)$. But for the remaining possible groups listed in Proposition 3 we have

(a) $n_p(PSL(2, q)) = q + 1$ and $|\text{Out}(PSL(2, q))| = df$, where $q = p^f$ and $d = (2, q - 1)$,

(b) $n_p(PSL(3, q)) = (q + 1)(q^2 + q + 1)$ and $|\text{Out}(PSL(3, q))| = 2df$, where $q = p^f$ and $d = (3, q - 1)$, and

(c) $n_p(PSU(3, q)) = q^3 + 1$ and $|\text{Out}(PSU(3, q))| = df$, where $q^2 = p^f$ and $d = (3, q + 1)$,

and it is straightforward to show in each case that $n_p(S) > |\text{Out}(S)|$. \□

The following technical lemma is the key ingredient to reduce to the case that a minimal counterexample to Theorem 1 is necessarily a finite simple group.

Lemma 5. Let G be an almost simple group with socle S such that G/S is a cyclic group. Assume also that if S is of Lie type, then the pair (G, S) appears in the statement of Proposition 3. Then there exist some element $s ∈ S$ and some maximal subgroup K of G containing S such that $\text{g.c.d.}(|s|, |G/K|) = 1$ and $G ≠ KC_G(s)$.

Proof. Let $S = A_n$ be an alternating group, with $n ≥ 5$. If $n ≠ 6$, or $n = 6$ and $G = S_6$, take s to be an n-cycle if n is odd, or an $(n - 1)$-cycle if n is even, and take $K = S$. In both cases $|s|$ is odd and $C_{S_n}(s) ≤ A_n$. If $n = 6$ and G is a cyclic extension of A_6 distinct from S_6, we may always take s to be a 3-cycle (see [10]).

If S is a sporadic group, then Out (S) is always cyclic of order at most two. The following table lists possible choices for the order of s, depending on the pair (G, S) when $G ≠ S$ (our reference is [10]). Then s can be chosen to be any element of the given order.

S	M_{12}	M_{23}	J_2	HS	J_3	McL	He	Suz	$O'N$	Fi_{22}	HN	Fi_{24}	
$	s	$	11	11	5	11	19	7	17	31	13	19	29

We assume now that G is a cyclic extension of a finite simple group S of Lie type in characteristic p and that the pair (G, S) satisfies the conclusions of Proposition 3. Let $δ$ be a diagonal automorphism of S of maximal order d, modulo S, and set $\hat{S} = S(δ)$. Let $φ$ be a field automorphism of \hat{S} of order f, where $q = p^f$ except when S is unitary, when $q^2 = p^f$. Set $S^* = \hat{S}(φ)$. Then

$$S ≤ \hat{S} ≤ S^* ≤ \text{Aut}(S),$$

where the indices are respectively d, f and g, where $g ∈ \{1, 2\}$, for the groups under consideration. We treat separately the following three cases: a) $G ≤ \hat{S}$, b) $G ≤ S^* \setminus \hat{S}$ and c) $G ≤ S^*$.

a) Assume $G ≤ \hat{S}$.

According to Proposition 3, $S ∈ \{PSL(2, q), PSU(3, q)\}$ and $G = \hat{S}$ with the index
of S in G being respectively 2 or 3. In particular, p is coprime with $|G/S|$. Let s be a regular unipotent element of S. Since by [29, Lemma 3.1] (respectively by [25, Table 2]) we have that $C_G(s) < S$, taking $K = S$ we have that $G \neq KC_G(s)$, as we wanted.

b) Assume $G \leq S^* \setminus \hat{S}$.

According to Proposition 3, S is one of the following groups:

$$PSL(2, q), PSU(3, q), 2B_2(q), 2G_2(q).$$

Note that in the last two cases q is respectively 2^f or 3^f, with f odd and $f \geq 3$ (since $2B_2(2)$ and $2G_2(3)$ are not simple groups). Moreover, as $G \not\leq \hat{S}$, we always have $f > 1$ in this case.

Let \mathbb{F}_p be the algebraic closure of the field \mathbb{F}_p of order p. We first claim that for any of the aforementioned simple groups S there is a least integer m whose values are displayed in Table A and an embedding

$$\iota: \hat{S} \rightarrow PGL(m, \mathbb{F}_p),$$

such that φ is the restriction to S of the standard Frobenius automorphism of $PGL(m, \mathbb{F}_p)$, which later we will still call φ. This claim is trivial when $S = PSL(2, q)$ or $S = PSU(3, q)$, respectively, when $m = 2$ or 3 and ι is the natural inclusion. For the case $S = 2B_2(2^f)$, note that S is the centralizer in $S_0 = PSp(4, 2^f)$ of a graph involution x ([20, Proposition 2.4.4]) and that

$$\text{Aut} (S_0) = \text{Inn} (S_0) : (\langle \varphi \rangle \times \langle x \rangle) \simeq S_0 : (C_f \times C_2).$$

Since the existence of an embedding ι with the aforementioned property, of S_0 into $PGL(4, \mathbb{F}_2)$ is guaranteed, the same is true for $2B_2(2^f)$. Similarly, $S = 2G_2(3^f)$ is the centralizer in $S_0 = P\Omega^+(8, 3^f)$ of the full group of graph automorphisms of S_0 (see [19]). As

$$\text{Aut} (S_0) = \text{Inn} (S_0) : (\langle \varphi \rangle \times \langle x, y \rangle) \simeq S_0 : (C_f \times C_3),$$

for suitable graph automorphisms x and y, and such an embedding ι exists for $P\Omega^+(8, 3^f)$ into $PGL(8, \mathbb{F}_3)$, the same is true for $2G_2(3^f)$ and our claim is proved.

Now we assume that there exists a primitive prime divisor of $p^f z - 1$, with z as in Table A, and let r be such a prime divisor. Note that r divides the order of S. Also, trivially, $r \neq d$, and, if r divides f, then, writing $f = rf'$, we have $0 \equiv p^f z - 1 \equiv p^{f'} z - 1$ (mod r), which contradicts the fact that r is a primitive prime divisor of $p^f z - 1$. Therefore r is coprime with $|G/S|$. Let t_1 be an element of S of order r. Note that t_1 is a power of a generator of a cyclic maximal torus T of S, whose order is displayed in Table A. Suppose that $C_G(t_1)$ contains an element of the form $g \delta^h \varphi^k$, with $g \in S$, and $0 \leq h \leq d - 1$, $0 < k \leq f - 1$. Then

$$t_1^{\delta^h} = t_1^{\varphi^k}.$$

This, of course, implies that

$$(\iota(t_1^{\delta^h}))^L = (\iota(t_1)^{\varphi^k})^L,$$

where $L = PGL(m, \mathbb{F}_p)$ and $(g)^L$ denotes the L-conjugacy class of $g \in L$. Now $\iota(t_1)$ is L-conjugate to the projection $\tilde{\alpha}$ of a diagonal $m \times m$ matrix α, and φ sends $\tilde{\alpha}$ to its p-th power $\tilde{\alpha}^p$. As $\iota(g \delta^h) \in L$, it follows that

$$(\iota(t_1^{\delta^h}))^L = (\iota(t_1))L = (\tilde{\alpha})^L = (\tilde{\alpha}^{p^{-k}})^L.$$
We want to prove that if $0 < k < f$ the two L-classes $(\bar{a})^L$ and $(\bar{a}^p)^L$ are different. Note that as t_1 has order r and the matrix $\alpha \in SL(m, \mathbb{F}_p)$ is determined modulo the scalars, we can choose α in such a way that its eigenvalues are either 1 or have order r in the multiplicative group of \mathbb{F}_p. Moreover, α has at least one eigenvalue μ of order r. Note that μ belongs to the field \mathbb{F}_{p^f}, but to no smaller field. Since $\nu(t_1) \in PSL(m, p^f)$, the characteristic polynomial χ of α has coefficients in \mathbb{F}_{p^f}, so $\mu, \mu^p, \ldots, \mu^{p^{f-1}}$ are all distinct roots of χ. If $S \neq 2G_2(q)$ then χ has degree $m = z$ and the eigenvalues of α are precisely $\mu, \mu^p, \ldots, \mu^{p^{f-1}}$. If $S = 2G_2(q)$, then $m = 6$, $z = 8$, and χ factors as $\chi = \chi_1\chi_2$, where χ_1 is the minimum polynomial of μ and has degree 6, and χ_2 has degree 2. Now the roots of χ_2, which are eigenvalues of α, cannot have order r, because $r \mid q^2 - 1$, so they must be 1, and the eigenvalues of α are: $\mu, \mu^p, \ldots, \mu^{p^2}$, 1, 1. The non-zero entries of the matrix $\alpha^{p^{-1}}$ are the p^k-th powers of the eigenvalues of α and it is straightforward to see that if $0 < k < f$ it cannot happen that $\alpha = \lambda^0\alpha^{p^{-k}}$ for some $\lambda \in \mathbb{F}_p$. This proves that $C_G(t_1) \leq G \cap \hat{S}$. Thus, by taking $s = t_1$ and K any maximal subgroup containing $\hat{S} \cap G$, we have that $G \not= KC_G(s)$, as we wanted.

We consider now the cases in which no primitive prime divisor of $p^{f^2} - 1$ exists. Then by Zsigmondy’s Theorem (see [30]), either $(p, zf) = (2, 6)$ or p is a Mersenne prime and $zf = 2$. The last condition cannot happen, since in this case both z and f are greater than one. The first condition reduces to considering the cases when S is either $PSL(2, 8)$ or $PSU(3, 2)$. But $PSU(3, 2)$ is not simple, while if $S = PSL(2, 8)$, then $G = \text{Aut}(S) = S^*$, and we can take s to be an element of S of order 7 and $K = S$ (see [10]).

| S | $|T|$, T a max. torus of S | d | $|\text{Out}(S)|$ | z | m |
|---------|-----------------|------|------------------|----|-----|
| $PSL(2, q)$ | $(q + 1)/d$ | $(q + 1)/d$ | $(q - 1, 2)$ | df | 2 | 2 |
| $PSU(3, q)$ | $(q^2 - q + 1)/d$ | $(q - 1, 2)$ | $(q + 1, 3)$ | df | 3 | 3 |
| $2B_2(q)$ | $\{q + \sqrt{2q} + 1$ or $q - \sqrt{2q} + 1$ | 1 | f | 4 | 4 |
| $2G_2(q)$ | $\{q + \sqrt{3q} + 1$ or $q - \sqrt{3q} + 1$ | 1 | f | 6 | 8 |

c) Assume $G \not\leq S^*$. Then, according to Proposition 3, S is one of the following groups:

$$PSL(3, q), PSp(4, 2^f), G_2(3^f),$$

with f an integer greater than 1, and $|G : G^*| = 2$, where $G^* = G \cap S^*$. We choose s to be a generator of a cyclic maximal torus T of S, whose order is respectively $(q^2 + q + 1)/d$, $q^2 + 1$, or $q^2 - q + 1$, according to whether S is $PSL(3, q)$, $PSp(4, 2^f)$ or $G_2(3^f)$, and $K = G^*$. Note that $|s| = |T|$ is odd, and thus coprime with $|G/K|$. We first claim that $|C_{G^*}(T)|$ is odd. If not, let y be an involution in $C_{G^*}(T)$. Since $|C_{G^*}(T)| = d|T|$ is odd, $y \not\in \hat{S}$. By Proposition 4.9.1 in [12], we have that f is even and y is \hat{S}-conjugate to a field automorphism of order two. In particular, $C_S(y)$ is isomorphic respectively to $PSL(3, p^{f/2})$, $PSp(4, 2^{f/2})$ or $G_2(3^{f/2})$. In each of these cases, by order reasons, $C_S(y)$ cannot contain T. Thus $|C_G(T)|$ is odd, and if we argue by contradiction assuming $G = G^*C_G(s)$, there exists some involution x in $C_G(s) \setminus G^*$. Again by Proposition 4.9.1 in [12], we have that $C_G(x)$ is isomorphic
respectively to $\text{PSU}(3,q)$, $2B_2(q)$ or $^2G_2(q)$. But none of these groups contains a cyclic maximal torus T of S, a contradiction. \hfill \Box

The following proposition eliminates the possibility that a minimal counterexample to Theorem 1 can be an almost simple group but not simple.

Proposition 6. Let G be an almost simple group which is not simple. Then G does not admit a nilpotent minimal covering.

Proof. Suppose that G has a nilpotent minimal covering

$$G = A_1 \cup \ldots \cup A_n,$$

with $\sigma = \sigma(G)$, and all A_i nilpotent. Suppose further that $S < G < \text{Aut}(S)$, where S is a finite non-abelian simple group. If S is of Lie type, then by Lemma 2 the pair (G, S) is one that appears in Proposition 3. Also by Lemma 4, we can assume that G/S is cyclic. According to Lemma 5, we may choose an element s in S and a maximal subgroup K of G containing S such that $|s|$ is coprime with the prime $r = |G/K|$ and $G \neq KCG(s)$. Note that r is prime since G/S is cyclic. Let $s \in A_i$ for some $i \in \{1, \ldots, \sigma\}$. We claim that A_i lies in K. For if not let $\alpha \in A_i \setminus K$, so that $G = K(\alpha)$ by the maximality of K. If $|\alpha| = r^av$, with r not dividing v, we also have that $G = K(\alpha^v)$, and, moreover, that α^v is an element of A_i of order r^a, which is coprime with $|s|$. Thus, since A_i is nilpotent, $\alpha^v \in CG(s)$, forcing G to be equal to $KCG(s)$, contradicting the choices of s and K. Thus $A_i \leq K$. We may choose some $g \in S$ such that $s^g \notin A_i$. Such a $g \in S$ exists, for otherwise by the simplicity of S we would have that $\langle s^g | g \in S \rangle = S \leq A_i$, contradicting the nilpotence of A_i. Suppose that $s^g \in A_j$. Then, arguing as before, $A_j \leq K$, and so we conclude that $G = \langle A_i, A_j \rangle \leq K$, a contradiction. \hfill \Box

We are now in a position to complete the proof of Theorem 1.

Proposition 7. No finite simple group S admits a nilpotent minimal covering.

Proof. In [6] the cases S alternating and sporadic are completely settled. We can assume therefore that S is a finite simple group of Lie type in characteristic p. By Lemma 2 and Proposition 3, S lies in one of the following families:

$$\text{PSL}(2,q), \text{PSL}(3,q), 2B_2(q), ^2G_2(q).$$

The two families of projective special linear groups $\text{PSL}(2,q)$ and the Suzuki groups $^2B_2(q)$ have also been settled in [6] (respectively Lemma 4.2 and Theorem 4.3). We need only to analyze the two remaining families.

Let therefore $S = \text{PSU}(3,q)$, with $q > 2$, or $S = ^2G_2(q)$, with $q = 3^f$, where f is odd and $f \geq 3$. Note that $|\text{PSU}(3,q)| = \frac{1}{2}q^3(q^2-1)(q^3+1)$, where $d = (3, q+1)$, and $|^2G_2(q)| = q^3(q-1)(q^3+1)$. Assume first that there is an odd prime r dividing $q-1$ (observe that this is always the case when $S = ^2G_2(q)$). Since $q \equiv 1 \pmod{r}$, we have that r is coprime with $|S|/(q-1)$. Thus if R is a Sylow r-subgroup of S, R lies in a Levi complement H of a Borel subgroup $B = UH$. In particular, R is cyclic, $R = \langle x \rangle$, and $H = CS(R)$, by [25, Table 2] for $\text{PSU}(3,q)$, and [28], or [22, Lemma 2.2] for $^2G_2(q)$. If $x \in A_i$, then, since A_i is nilpotent and the Sylow r-subgroups are cyclic, $A_i \leq CS(x) = H$. Now, let $u \in U$ be a regular unipotent element of S. Then $CS(u)$ is a p-subgroup (again by [25, Table 2] and [28]). In particular if $u \in A_j$, then $A_j \leq U$. But then we get a contradiction, since $\langle A_i, A_j \rangle \leq B$.
It remains to consider the case when $S = PSU(3,q)$ and $q - 1$ is a power of 2. Note that this happens if and only if $q = 9$ or q is a Fermat prime, say $q = 2^m + 1$. Let $\mathcal{A} = \{A_i\}_{i=1}^\sigma$ be a nilpotent minimal covering of $S = PSU(3,q)$. The centralizer of any regular unipotent element u of S is a p-subgroup ([25, Table 2]), and therefore there exists a unique maximal nilpotent subgroup of S containing u, and this subgroup is a Sylow p-subgroup of S. We may therefore assume that all the Sylow p-subgroups of S appear as members of the nilpotent covering \mathcal{A}. Now let U be a Sylow p-subgroup and let H be a Levi complement of it in a Borel subgroup $N_S(U) = UH$. In particular, H is cyclic of order $(q^2 - 1)/d$. Let h be a generating element of H and assume that $h \in A_i$ for some $i \in \{1, \ldots, \sigma\}$. If $A_i = H$ then we can replace the subgroups U and A_i of \mathcal{A} with the subgroup $N_G(U)$, obtaining a covering of S with fewer than σ members, which contradicts the minimality of σ. Therefore A_i must be a nilpotent subgroup of S that strictly contains H. Now the Sylow 2-subgroup of H is cyclic (of order 16 if $q = 9$ and 2^{m+1} if $q = 2^m + 1$) and so it is normal of index 2 in a Sylow 2-subgroup of S. In particular, w is a central element of A_i, that is, $A_i \leq C_S(w)$. By Proposition 4 (iii) in [1, Chapter II, Section 2], $C_S(w)$ is a central extension of a cyclic group of order $\frac{q^2 - 1}{d}$ by a group isomorphic to $PGL(2,q)$. Note that H^{q-1} is the central subgroup of $C_S(w)$ of order $(q + 1)/d$. Now the only nilpotent subgroups of $C_S(w)$ that strictly contain a cyclic subgroup of order $(q^2 - 1)/d$ are central extensions of $C_{\frac{q^2 - 1}{d}}$ by a Sylow 2-subgroup, say P, of $PGL(2,q)$ (and so also of S). Therefore A_i is a group isomorphic to $\frac{C_{\frac{q^2 - 1}{d}} \times P}$, and it contains H as a subgroup of index two. Since \hat{H} is not normal in $C_S(w)$ we can find an element $g \in C_S(w) \setminus N_S(H)$ and consider the element h^g. Assume that $h^g \not\in A_j$. Arguing as before, we have that either $A_j = \langle h^g \rangle = H^g$, or A_j is a subgroup of $C_S(w)^g = C_S(w)$ isomorphic to A_i. In the first case we obtain a contradiction by replacing the subgroups U^g and A_j in \mathcal{A} with $(UH)^g$. In the latter case we have that $A_j \neq A_i$, since $H \neq H^g$ and a group isomorphic to A_i has a unique cyclic maximal subgroup of index two. But then $G = \langle A_i, A_j \rangle \leq C_S(w)$, a contradiction.

3. Acknowledgments

We are very grateful to Ron Solomon for his precious help in dealing with the groups of Lie type and for the constant encouragement he gave us. The first-listed author is thankful for the generous hospitality of the Dipartimento di Matematica e Informatica of the Università di Firenze during his visit there, when this work was undertaken. The third-listed author is partially supported by the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA - INDAM).

References

[1] J. L. Alperin, R. Brauer, D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1–261.
[2] A. Azad, J. R. Britnell, N. Gill, Nilpotent covers and non-nilpotent subsets of finite groups of Lie type. Preprint (2013). arXiv:1305.3748v2.
[3] M. Bruckheimer, A. C. Bryan, A. Muir, Groups which are the union of three subgroups. Amer. Math. Monthly 77 (1970), no. 1, 52–57.
[4] R. A. Bryce, V. Fedri, L. Serena, Subgroup coverings of some linear groups. Bull. Aust. Math. Soc. 60 (1999), no. 2, 227–238.
[5] R. A. Bryce, L. Serena, A note on minimal coverings of groups by subgroups. *J. Aust. Math. Soc.* 71 (2001), no. 2, 159–168.

[6] R. A. Bryce, L. Serena, Some remarks on groups with nilpotent minimal covers. *J. Aust. Math. Soc.* 85 (2008), no. 3, 353–365.

[7] R. W. Carter, *Simple groups of Lie type*, Pure and Applied Mathematics, Vol. 28. John Wiley & Sons, London-New York-Sydney, 1972.

[8] R. W. Carter, *Finite groups of Lie type. Conjugacy classes and complex characters*, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985.

[9] J. H. E. Cohn, On n-sum groups. *Math. Scand.* 75 (1994), no. 1, 44–58.

[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, *Atlas of finite groups*, Oxford University Press, Eynsham, 1985.

[11] B. Fein, W. M. Kantor, M. Schacher, Relative Brauer groups. II, *J. Reine Angew. Math.* 328 (1981), 39–57.

[12] D. Gorenstein, R. Lyons, R. Solomon, *The classification of the finite simple groups*. Number 3, *Mathematical Surveys and Monographs*, Vol. 40.3. American Mathematical Society, Providence, RI, 1998.

[13] D. Greco, I gruppi finiti che sono somma di quattro sottogruppi. *Rend. Accad. Sci. Fis. Mat. Napoli (4)* 18 (1951), no. 4, 74–85.

[14] D. Greco, Su alcuni gruppi finiti che sono somma di cinque sottogruppi. *Rend. Sem. Mat. Padova* 22 (1953), 313–333.

[15] D. Greco, Sui gruppi che sono somma di quattro o cinque sottogruppi. *Rend. Accad. Sci. Fis. Mat. Napoli (4)* 23 (1956), 49–59.

[16] S. Haber, A. Rosenfeld, Groups as unions of proper subgroups. *Amer. Math. Monthly* 66 (1959), no. 6, 491–494.

[17] P. E. Holmes, Subgroup coverings of some sporadic simple groups. *J. Combin. Theory Ser. A* 113 (2006), no. 6, 1204–1213.

[18] P. E. Holmes, A. Maróti, Pairwise generating and covering sporadic simple groups. *J. Algebra* 324 (2010), no. 1, 25–35.

[19] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups $^2G_2(q)$, and their automorphism groups. *J. Algebra* 117 (1988), no. 1, 30–71.

[20] P. B. Kleidman, M. Liebeck, *The subgroup structure of the finite classical groups*, London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.

[21] M. S. Lucido, On the covers of finite groups. *Groups St. Andrews 2001 in Oxford, Vol. II*, London Math. Soc. Lecture Note Ser., 305, Cambridge Univ. Press, Cambridge (2003), 395–399.

[22] M. S. Lucido, On the n-covers of exceptional groups of Lie type. *Groups St. Andrews 2005, Vol. II*, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge (2007), 621–623.

[23] A. Maróti, Covering symmetric groups with proper subgroups. *J. Combin. Theory Ser. A* 110 (2005), no. 1, 97–111.

[24] G. Scorza, I gruppi che possono pensarsi come somma di tre sottogruppi. *Boll. Un. Mat. Ital* 5 (1926), no. 1, 216–218.

[25] W. A. Simpson, J. S. Frame, The character tables for $SL(3,q)$, $SU(3,q^2)$, $PSL(3,q)$, $PSU(3,q^2)$, *Canad. J. Math.* 25 (1973), 468–494.

[26] M. J. Tomkinson, Groups as the union of proper subgroups. *Math. Scand.* 81 (1997), no. 2, 191–198.

[27] E. P. Vdovin, Large nilpotent subgroups of finite simple groups. *Algebra and Logic* 39 (2000), no. 5, 301–312.

[28] H. N. Ward, On Ree’s series of simple groups, *Trans. Amer. Math. Soc.* 121 (1966) 62–89.

[29] D. White, Character degrees of extensions of $PSL_2(q)$ and $SL_2(q)$, *J. Group Theory* 16 (2013), no. 1, 1–33.

[30] K. Zsigmondy, Zur Theorie der Potenzreste. *Monatsh. für Math. u. Phys.* 3 (1892), 265–284.
