Abstract

In a Robertson-Walker space-time a spinning particle model is investigated and we show that in a stationary case, there exists a class of new structures called f-symbols which can generate reducible Killing tensors and supersymmetry algebras.

Keywords: f-symbols, Killing-Yano tensors, hidden symmetries

Pacs: 04.20.-q, 12.60.Jv, 04.65.+e

1 Introduction

The constants of motion of a scalar particle in a curved space are determined by the symmetries of the manifold, and are expressible in terms of the Killing vectors and tensors. A similar result hold for a spinning particle, with the modification that the constants of motion related to a Killing vector contain spin dependent parts and, there are Grassmann odd constants of motion, which do not have a counterpart in the scalar model. An illustration of the existence of extra conserved quantities is provided by Kerr-Newmann and Taub-NUT geometry. For the geodesic motion in the Taub-NUT space,
conserved vector analogous to the Runge-Lenz vector of the Kepler type problem is quadratic in 4-velocities, its components are Stackel-Killing tensors and they can be expressed as symmetrized products of Killing-Yano tensors \[2, 3, 4, 5, 6\]. The configuration space of spinning particles (spinning space) is an extension of an ordinary Riemannian manifold, parameterized by local coordinates \(\{x^\mu\}\), to a graded manifold parameterized by local coordinates \(\{x^\mu, \psi^\mu\}\), with the first set of variables being Grassmann-even (commuting) and the second set Grassmann-odd (anti-commuting). In the spinning case the generalized Killing equations are more involved and new procedures have been conceived.

The aim of this paper is to show that the existence of the Killing-Yano tensors and its properties in a stationary case of Robertson-Walker space-times, may be understood in a systematic way as a particularly interesting example of a more general structures called \(f\)-symbols [9].

The plan of this paper is as follows. In Sec. 2 we give a short review of the formalism for pseudo-classical spinning point particles in an arbitrary background space-time, using anticommuting Grassmann variables to describe the spin degrees of freedom. In Sec. 3 we present the properties of \(f\)-symbols and the role played in generating new supersymmetries. In Sec. 4 we apply the results previously presented to show that in a stationary case of a Robertson-Walker space-time we obtain explicit solutions for \(f\)-symbols equations and construct corresponding Killing tensors. Conclusions are presented in Sec. 5.

2 Symmetries of Spinning Particle Model

The symmetries of spinning particle model can be divided into two classes [7, 8]: generic ones, which exists for any spinning particle model and non-generic ones, which depend on the specific background space considered. To the first class belong proper-time translations and supersymmetry, generated by the hamiltonian and supercharge: \(Q_0 = \Pi_\mu \psi^\mu\). To obtain all symmetries, including the non-generic ones, one has to find all functions \(J(x, \Pi, \psi)\) which commute with the Hamiltonian in the sense of Poisson-Dirac brackets: \(\{H, J\} = 0\). Expanding \(J\) in a power series in the covariant momentum

\[
J = \sum_{n=0}^{\infty} \frac{1}{n!} J^{(n)\mu_1...\mu_n}(x, \psi) \Pi_{\mu_1} ... \Pi_{\mu_n},
\]

(1)
then the components of J satisfy

$$D_{(\mu_{n+1}} J^{(n)}_{\mu_1...\mu_n)} + \omega^a_{(\mu_{n+1}} b \psi^b \frac{\partial J^{(n)}_{\mu_1...\mu_n)}}{\partial \psi^a} = R_{\nu(\mu_{n+1}} J^{(n+1)}_{\mu_1...\mu_n) \nu}, \tag{2}$$

where the parentheses denote full symmetrization over the indices enclosed, $\omega^a_{\mu b}$ the spin connection and $R_{\mu\nu}$ given by

$$R_{\mu\nu} = \frac{i}{2} \psi^a \psi^b R_{ab\mu\nu}. \tag{3}$$

Eqs. (2) are the generalizations of the Killing equations to spinning space first obtained in [7]. Writing for J the series expansion

$$J(x, \Pi, \psi) = \sum_{m,n=0}^{\infty} \frac{[m]}{m!n!} \psi^{a_1} ... \psi^{a_m} f^{(m,n)}_{a_1...a_m} (x) \Pi^{\mu_1} ... \Pi^{\mu_n}, \tag{4}$$

where $f^{(n,m)}$ is completely symmetric in the n upper indices $\{\mu_k\}$ and completely anti-symmetric in the m lower indices $\{a_i\}$ we obtains the component equation

$$n f^{(m+1,n-1)}_{a_0a_1...a_m} (\mu_1...\mu_{n-1} e^{\mu_n}) a_0 = m D_{[a_1} f^{(m-1,n)}_{a_2...a_m]} \mu_1...\mu_n, \tag{5}$$

where $D_a = e^{\mu_a} D_\mu$ are ordinary covariant derivatives, and indices in parentheses are to be symmetrized completely, whilst those in square brackets are to be anti-symmetrized, all with unit weight. Note in particular for $m = 0$, $f^{(1,n)}_{a} (\mu_1...\mu_n e^{\mu_{n+1}} a_0) = 0$. In a certain sense these equations represent a square root of the generalized Killing equations, although they only provide sufficient, not necessary conditions for obtaining solutions. Having found Θ we can then reconstruct the corresponding J. Eqs. (5) partly solve $f^{(m+1,n-1)}$ in terms of $f^{(m-1,n)}$ and only that part of $f^{(m+1,n-1)}$ is solved which is symmetrized in one flat index and all $(n - 1)$ curved indices. On the other hand eqs. (5) do not automatically imply that $f^{(m+1,n-1)}$ is completely anti-symmetric in the first $(m + 1)$ indices. Imposing that condition on eqs. (5) one finds a new set of equations which are precisely the generalized Killing equations for that part of $f^{(m+1,n-1)}$ which was not given in terms of $f^{(m-1,n)}$, and which should still be solved for. This is the part of $f^{(m+1,n-1)}$ which is anti-symmetrized in one curved index and all $(m + 1)$ flat indices. Hence eqs. (5) clearly have advantages over the generalized Killing equations (2).
order to find the constant of motion corresponding to a Killing tensor of rank n,

$$D_{(\mu_{n+1}} J^{(n)}_{\mu_{1}...\mu_{n})} = 0, \quad (6)$$

with D_μ given by

$$D_\mu = \partial_\mu + \Gamma^\lambda_{\mu\nu} \Pi_\lambda \frac{\partial}{\partial \Pi_\nu} + \omega_{\mu}^a \psi^b \frac{\partial}{\partial \psi^a}, \quad (7)$$

one has to solve the hierarchy of equations (2) for $(J^{(n-1)}_{\mu_{1}...\mu_{n-1}},...,J^{(0)}_{\mu_{1}...\mu_{n}})$ and add the terms, as in expression (1). Having a solution $f_{(m,n)(\mu_{1}...\mu_{n})}^{\alpha}$ of the equation $f_{(m,n)(\mu_{1}...\mu_{n})}^{\alpha} = 0$, then we generate at least part of the components $f_{(m+2,n-\alpha)(\mu_{1}...\mu_{n-\alpha})}^{\alpha}$ for $\alpha = 1,...,n$ by mere differentiation.

3 New Supersymmetries and f-symbols

The constants of motion generate infinitesimal transformations of the coordinates leaving the equations of motion invariant: $\delta x^\mu = \delta \alpha \{ x^\mu, J \}$, $\delta \psi^a = \delta \alpha \{ \psi^a, J \}$, with $\delta \alpha$ the infinitesimal parameter of the transformation. The theory might admit other (non-generic) supersymmetries [9] of the type $\delta x^\mu = -i \epsilon f^\mu_a \psi^a$ with corresponding supercharges

$$Q_f = -i \epsilon f^\mu_a \psi^a + \frac{i}{3!} c_{abc}(x) \psi^a \psi^b \psi^c, \quad (8)$$

provided the tensors f^μ_a and c_{abc} satisfy the differential constraints

$$D_\mu f^\mu_a + D_\nu f^\nu_a = 0, \quad (9)$$

$$D_\mu c_{abc} = -(R_{\mu\nu ab} f^\nu_c + R_{\mu\nu bc} f^\nu_a + R_{\mu\nu ca} f^\nu_b). \quad (10)$$

One now obtains the following algebra of Poisson-Dirac brackets of the conserved charges Q_i:

$$\{ Q_i, Q_j \} = -2i Z_{ij}, \quad (11)$$

with

$$Z_{ij} = \frac{1}{2} K_{ij}^{\mu\nu} \Pi_\mu \Pi_\nu + I_{ij}^{\mu} \Pi_\mu + G_{ij}, \quad (12)$$

where

$$K_{ij}^{\mu\nu} = \frac{1}{2} \left(f^\mu_{ia} f^\nu_{ja} + f^\nu_{ia} f^\mu_{ja} \right), \quad (13)$$
showing that \(K_{ij \mu \nu} \) is a symmetric Killing tensor of 2nd rank: \(D(\lambda \ K_{ij \ (\mu \nu)}) = 0 \), whilst \(I_{ij}^\mu \) is the corresponding Killing vector and \(G_{ij} \) the corresponding Killing scalar.

In order to study the properties of the new supersymmetries, it is convenient to introduce the 2nd rank tensor \(f_{\mu \nu} = f_{\mu a} e_a^\nu \), which will be referred to as the \(f \)-symbol \[9]. The defining relation (9) implies

\[D_\nu f_{\lambda \mu} + D_\lambda f_{\nu \mu} = 0. \]

(14)

It follows that the \(f \)-symbol is divergence-less on its first index \(D_\nu f_{\nu \mu} = 0 \), and by contracting of eq.(14) one finds \(D_\nu f_{\mu \nu} = -\partial_\mu f_{\nu \nu} \). Hence the divergence on the second index vanishes if and only if the trace of the \(f \)-symbol is constant:

\[D_\nu f_{\nu \mu} = 0 \Leftrightarrow f_{\mu} = \text{const.} \]

(15)

If the trace is constant, it may be subtracted from the \(f \)-symbol without spoiling condition (14). It follows, that in this case one may without loss of generality always take the constant equal to zero and hence \(f \) to be traceless. The symmetric part of the \(i \)th \(f \)-symbol is the tensor

\[S_{\mu \nu} \equiv K_{i0 \mu \nu} = \frac{1}{2} (f_{\mu \nu} + f_{\nu \mu}) , \]

(16)

which satisfies the generalized Killing equation \(D_{(\mu} S_{\nu \lambda)} = 0 \). We can also construct the anti-symmetric part

\[B_{\mu \nu} = -B_{\nu \mu} = \frac{1}{2} (f_{\mu \nu} - f_{\nu \mu}) . \]

(17)

which obeys the condition \(D_\nu B_{\lambda \mu} + D_\lambda B_{\nu \mu} = D_\mu S_{\nu \lambda} \). It follows, that if the symmetric part does not vanish and is not covariantly constant, then the anti-symmetric part \(B_{\mu \nu} \) by itself is not a solution of eq.(14). But by the same token the anti-symmetric part of \(f \) can not vanish either, hence \(f \) can be completely symmetric only if it is covariantly constant.

Anti-symmetric \(f \)-symbols, Killing-Yano tensors \(f_{\mu \nu} \) found by Penrose and Floyd \[15\], and their corresponding Killing-tensors have been studied extensively in refs.\[1\] \[10\] \[11\] \[12\] \[13\] in the related context of finding solutions of the Dirac-equation in non-trivial curved space-time.
4 f-symbols in Robertson-Walker space-times

We consider space-time to be $\mathbb{R} \times \Sigma$, where \mathbb{R} represents the time direction and Σ is a homogeneous and isotropic three-manifold (maximally symmetric space), with metric of the form

$$ds^2 = dt^2 - a^2(t)\gamma_{ij}(u)du^i du^j.$$ \hspace{1cm} (18)

Here t is the timelike coordinate, and (u^1, u^2, u^3) are the coordinates on Σ; γ_{ij} is the maximally symmetric metric on Σ. The function $a(t)$ is known as the scale factor and the coordinates used here, in which the metric is free of cross terms $dt \, du^i$ and the spacelike components are proportional to a single function of t, are known as comoving coordinates.

Since the maximally symmetric metrics obey $^{(3)}R_{ijkl} = k(\gamma_{ik}\gamma_{jl} - \gamma_{il}\gamma_{jk})$, where k is some constant, the Ricci tensor is $^{(3)}R_{jl} = 2k\gamma_{jl}$ and the metric on Σ can be put in the form

$$d\sigma^2 = \gamma_{ij}du^i du^j = e^{2\beta(r)}dr^2 + r^2(d\theta^2 + \sin^2 \theta \, d\phi^2)$$ \hspace{1cm} (19)

we obtain the following metric on space-time:

$$ds^2 = dt^2 - a^2(t) \left[\frac{dr^2}{1 - kr^2} - r^2(d\theta^2 + \sin^2 \theta \, d\phi^2) \right].$$ \hspace{1cm} (20)

with $k = -1, 0, 1$, known as Robertson-Walker metric.

We apply the results obtained previously to show that in a stationary case $a(t) = \text{const}$ of this metric we obtain solutions of (14) which are not just Killing - Yano tensors of order two, also investigated in [16, 17, 18]. In the stationary case and $k \neq 0$ we have seven Killing vector fields:

$$\zeta^{(1)} = -r\sqrt{1 - kr^2} \sin(\theta) \frac{\partial}{\partial \theta} + \frac{1}{1 - kr^2} \cos(\theta) \frac{\partial}{\partial r}$$

$$\zeta^{(2)} = \cos(\theta) \cos(\phi) \frac{\partial}{\partial \theta} - \frac{1}{\sqrt{1 - kr^2}} \sin(\theta) \cos(\phi) \frac{\partial}{\partial r}$$

$$\zeta^{(3)} = r\sqrt{1 - kr^2} \sin(\phi) \frac{\partial}{\partial \theta} + \frac{1}{\sqrt{1 - kr^2}} \sin(\theta) \sin(\phi) \frac{\partial}{\partial r}$$

$$+ \, r\sqrt{1 - kr^2} \sin(\theta) \cos(\phi) \frac{\partial}{\partial \phi}$$

$$\zeta^{(4)} = r^2 \cos(\phi) \frac{\partial}{\partial \theta} - r^2 \sin(\theta) \cos(\phi) \sin(\phi) \frac{\partial}{\partial \phi}$$ \hspace{1cm} (21)
\[
\vec{\xi}^{(5)} = r^2 \sin(\phi) \frac{\partial}{\partial \theta} + r^2 \sin(\theta) \cos(\theta) \frac{\partial}{\partial \phi}
\]
\[
\vec{\xi}^{(6)} = r^2 \sin^2(\theta) \frac{\partial}{\partial \phi}
\]
\[
\vec{\xi}^{(7)} = \frac{\partial}{\partial t}
\]

We obtain from (14) the following three independent solutions
\[
f^{(1)}_{tt} = 1 \quad \text{(22)}
\]
\[
f^{(2)}_{rt} = \frac{\cos(\theta)}{\sqrt{1 - kr^2}}, \quad f^{(2)}_{\theta t} = -r \sqrt{1 - kr^2} \sin(\theta) \quad \text{(23)}
\]
\[
f^{(3)}_{\varphi t} = r^2 \sin^2(\theta) \quad \text{(24)}
\]

and other four antisymmetric solutions (Killing-Yano tensors) \cite{17,18},
\[
Y^{(1)}_{r\theta} = \frac{r \cos \varphi}{\sqrt{1 - kr^2}}, \quad Y^{(1)}_{r\varphi} = -\frac{r \sin \theta \cos \theta \sin \varphi}{\sqrt{1 - kr^2}}, \quad Y^{(1)}_{\theta \varphi} = r^2 \sqrt{1 - kr^2} \sin^2 \theta \sin \varphi \quad \text{(25)}
\]
\[
Y^{(2)}_{r\theta} = \frac{r \sin \varphi}{\sqrt{1 - kr^2}}, \quad Y^{(2)}_{r\varphi} = \frac{r \sin \theta \cos \theta \cos \varphi}{\sqrt{1 - kr^2}}, \quad Y^{(2)}_{\theta \varphi} = -r^2 \sqrt{1 - kr^2} \sin^2 \theta \cos \varphi \quad \text{(25)}
\]
\[
Y^{(3)}_{r\varphi} = \frac{r \sin^2 \theta}{\sqrt{1 - kr^2}}, \quad Y^{(3)}_{\theta \varphi} = r^2 \sqrt{1 - kr^2} \sin \theta \cos \theta \quad \text{(25)}
\]
\[
Y^{(4)}_{\theta \varphi} = r^3 \sin \theta. \quad \text{(25)}
\]

By taking the symmetric parts \cite{16} for solutions \(f^{(1)}, f^{(2)}\) and \(f^{(3)}\), we obtain the following three Killing tensors:
\[
K^{(1)}_{tt} = 1 \quad \text{(26)}
\]
\[
K^{(2)}_{rt} = \frac{1}{2} \frac{\cos(\theta)}{\sqrt{1 - kr^2}}, \quad K^{(1)}_{\theta \varphi} = -\frac{1}{2} r \sqrt{1 - kr^2} \sin(\theta) \quad \text{(27)}
\]
\[
K^{(3)}_{t\varphi} = \frac{1}{2} r^2 \sin^2(\theta) \quad \text{(28)}
\]

From \cite{13,22,23,24} we obtain six more Killing tensors
\[
K^{(4)}_{tt} = 1 \quad \text{(29)}
\]
\[
K^{(5)}_{rt} = \frac{1}{2} \frac{\cos(\theta)}{\sqrt{1 - kr^2}}, \quad K^{(5)}_{t\theta} = -\frac{1}{2} r \sqrt{1 - kr^2} \sin(\theta) \quad \text{(30)}
\]
We observe that the Killing tensors obtained from \(f^{(1)} \), \(f^{(2)} \) and \(f^{(3)} \) are reducible

\[
K^{(1)}_{\mu\nu} = \xi^{(7)}_\mu \xi^{(7)}_\nu
\]
\[
K^{(2)}_{\mu\nu} = \frac{1}{2} \left(\xi^{(1)}_\mu \xi^{(7)}_\nu + \xi^{(1)}_\nu \xi^{(7)}_\mu \right)
\]
\[
K^{(3)}_{\mu\nu} = \frac{1}{2} \left(\xi^{(6)}_\mu \xi^{(7)}_\nu + \xi^{(6)}_\nu \xi^{(7)}_\mu \right)
\]
\[
K^{(4)}_{\mu\nu} = \xi^{(7)}_\mu \xi^{(7)}_\nu
\]
\[
K^{(5)}_{\mu\nu} = \frac{1}{2} \left(\xi^{(1)}_\mu \xi^{(7)}_\nu + \xi^{(1)}_\nu \xi^{(7)}_\mu \right)
\]
\[
K^{(6)}_{\mu\nu} = \frac{1}{2} \left(\xi^{(6)}_\mu \xi^{(7)}_\nu + \xi^{(6)}_\nu \xi^{(7)}_\mu \right)
\]
\[
K^{(7)}_{\mu\nu} = \xi^{(1)}_\mu \xi^{(1)}_\nu
\]
\[
K^{(8)}_{\mu\nu} = \xi^{(6)}_\mu \xi^{(6)}_\nu
\]
\[
K^{(9)}_{\mu\nu} = \frac{1}{2} \left(\xi^{(1)}_\mu \xi^{(6)}_\nu + \xi^{(1)}_\nu \xi^{(6)}_\mu \right)
\]

as well as Killing tensors \([17, 18]\) constructed from Killing-Yano tensors \([25]\), where reducible means that it can be written as a linear combination of the metric and symmetrized products of Killing vectors, i.e.

\[
K_{\mu\nu} = a_0 g_{\mu\nu} + \sum_{I=1}^{N} \sum_{J=1}^{N} a_{IJ} \xi^{(I)}_\mu \xi^{(J)}_\nu
\]

where \(\xi^{(I)} \) for \(I = 1 \ldots N \) are the Killing vectors admitted by the manifold and \(a_0 \) and \(a_{IJ} \) for \(1 \leq I \leq J \leq N \) are constants, the quadratic constant of motion associated with a reducible Killing tensor simply being a linear combination of existing first integrals.
The case investigated does not correspond to any of the special cases \cite{19} as admitting non-reducible Killing tensors of order two that exist in spherically symmetric static space-times.

5 Conclusions

In this paper a spinning particle model was investigated and was shown, that in a stationary case of Robertson-Walker space-time, there exists a class of new structures called \textit{f-symbols} which can generate reducible Killing tensors and supersymmetry algebras. As to our knowledge a curved space-time possessing such structures have not been exemplified until now. Further implications of \textit{f-symbols} in the context of Dirac-type operators \cite{10,11,12,13,14} and geometric duality \cite{20,21,22,23} are under investigations \cite{24}.

Acknowledgments

The authors are grateful to Mihai Visinescu for valuable suggestions and discussions. This work is supported by M.E.C, NUCLEU - LAPLACE 03-170601.7.

References

[1] B. Carter, \textit{Phys. Rev. D}, 16, (1977), 3395.
[2] K. Yano, \textit{Ann. Math.}, 55, (1952), 328.
[3] G. W. Gibbons and P. J. Ruback, \textit{Phys. Lett. B}, 188, (1987), 226.
[4] G. W. Gibbons and P. J. Ruback, \textit{Commun. Math. Phys.}, 115, (1988), 267.
[5] D. Vaman and M. Visinescu, \textit{Phys. Rev. D}, 57, (1998), 3790.
[6] J. W. van Holten, \textit{Phys. Lett. B}, 342, (1995), 47.
[7] R.H. Rietdijk: ”Applications of supersymmetric quantum mechanics”, \textit{PhD. Thesis}, Univ. Amsterdam (1992).
[8] R.H. Rietdijk and J.W. van Holten, \textit{Class. Quant. Grav.}, 7, (1990), 247.
[9] G.W. Gibbons, R.H.Rietdijk and J.W.van Holten, *Nucl.Phys. B*, 404, (1993), 42.

[10] B. Carter and R.G. McLenaghan, *Phys. Rev. D*, 19, (1979), 1093.

[11] M. Visinescu, I. Cotaescu, *Class. Quant. Grav.*, 21, (2004), 11-28.

[12] M. Visinescu, I. Cotaescu, *J. Math. Phys.*, 43, (2002), 2978-2987.

[13] M. Visinescu, I. Cotaescu, *Class. Quant. Grav.*, 18, (2001), 3383-3394.

[14] V.V. Klišhevič, *Class. Quant. Grav.*, 17, (2000), 305-318.

[15] R. Penrose, *Ann. N. Y. Acad. Sci.*, 224, (1973), 125;
 R. Floyd: "The Dynamics of Kerr Fields", *PhD. Thesis*, London (1973).

[16] G. S. Hall, *Int. J. Theor. Phys.*, Vol. 26, No. 1, (1987).

[17] L. Howarth: "The Existence and Structure of Constants of Motion ad-
mitted by Spherically Symmetric Static Space-times", *Ph.D. Thesis*, University of Hull.

[18] L. Howarth, C. D. Collinson, *Gen. Rel. Grav.*, 32, 9, (2000), 1845.

[19] I. Hauser and R. J. Malhiot, *J. Math. Phys.*, 15, (1974), 816.

[20] R.H. Rietdijk, J.W. van Holten, *Nucl. Phys. B*, 472, (1996) 427-446

[21] D. Baleanu, A. Karasu, *Mod. Phys. Lett. A*, 14, (1999), 2597.

[22] D. Baleanu, S. Baskal, *Mod. Phys. Lett. A*, 16, (2001), 135-142.

[23] D. Baleanu, S. Baskal, *Int. J. Mod. Phys. A*, 17, (2002) 3737-3748.

[24] F.C. Popa, Ovidiu Tintareanu-Mircea, in preparation.