Association of periodontal pocket area with type 2 diabetes and obesity: a cross-sectional study

Kohei Takeda, Koji Mizutani, Isao Minami, Daisuke Kido, Risako Mikami, Kuniha Konuma, Natsumi Saito, Hiromi Kominato, Shu Takemura, Keita Nakagawa, Yuichi Izumi, Yoshihiro Ogawa, Takanori伊iva

ABSTRACT
Introduction The aim was to investigate the relationship of full-mouth inflammatory parameters of periodontal disease with diabetes and obesity.

Research design and methods This cross-sectional study conducted diabetes-related examinations and calculated periodontal inflamed and epithelial surface area (PISA and PESA) of 71 Japanese patients with type 2 diabetes. Multiple linear regression analyses were performed to evaluate associations between PISA or PESA and diabetes and obesity parameters.

Results Median value of body mass index (BMI), hemoglobin A1c (HbA1c) level, fasting plasma glucose (FPG) level, and visceral fat area (VFA) were 25.7 kg/m², 9.1%, 151 mg/L, and 93.3 cm², respectively. PISA and PESA were significantly associated with HbA1c after adjusting for age, sex, BMI, smoking status, and full-mouth plaque control level (PISA: coefficient=38.1, 95% CI 8.85 to 67.29, p=0.001; PESA: coefficient=66.89, 95% CI 21.44 to 112.34, p=0.005). PISA was also significantly associated with the highest tertile of fasting plasma glucose (FPG tertile >175 mg/dL) after adjusting for confounders (coefficient=167.0, 95% CI 48.60 to 285.4, p=0.006). PISA and PESA were not significantly associated with BMI or VFA.

Conclusion PISA was associated with FPG and HbA1c, but not with obesity parameters, independent from confounders such as full-mouth plaque control level in patients with type 2 diabetes.

INTRODUCTION
Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. Elevated hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG) are critical markers of diabetes. Obesity is associated with prediabetes and is a risk factor for developing diabetes. Both diabetes and obesity are recognized as systemic inflammatory conditions. Hyperglycemia and dyslipidemia increase oxidative stress, which activates inflammatory mediators. In adipose tissue in obesity, macrophages secrete a large amount of adipokine that includes inflammatory cytokines such as tumor necrosis factor-α. It is known that visceral fat induces chronic, low-level systemic inflammation.

Evidence for associations between diabetes, obesity, and periodontal disease has been accumulating in recent years. It is recognized that elevated systemic inflammation levels lead to an increase in local inflammation in the periodontal tissue. Inflammatory markers in gingival crevicular fluid (GCF) are elevated...
in patients with diabetes and patients who were obese. Higher inflammatory marker levels in GCF following initial periodontal treatment might indicate an increase in local inflammation in patients with type 2 diabetes.

Periodontitis is diagnosed by the presence of periodontal pocket depth ≥1mm with alveolar bone loss and bleeding on probing (BOP) in the periodontal pocket examination. Within the periodontal pocket, the dental biofilm has accumulated as subgingival plaque and formed numerous microulcers on the surface of epithelium. Because periodontal inflammation was caused by microbiological challenge in the periodontal pockets, the evaluation of total periodontal pocket area is required. To quantify and describe the inflammation of full-mouth periodontal tissue as a single parameter, periodontal epithelial surface area (PESA) and periodontal inflammatory surface area (PISA) were developed as parameters of periodontitis. PISA describes the surface area of bleeding pocket epithelium in square millimeters to quantify the amount of inflamed periodontal tissue. To the best of our knowledge, there are few reports investigating the relationship between PISA and diabetic parameters and no reports investigating the relationship between PISA and obesity parameters. Therefore, the aim of this study was to investigate the relationship between PISA and PESA and the parameters of diabetes and obesity.

RESEARCH DESIGN AND METHODS

Study participants

This study enrolled 71 Japanese patients hospitalized for diabetes-related problems at the Medical Hospital of Tokyo Medical and Dental University (Tokyo, Japan) who received a dental examination between October 2013 and April 2015. The exclusion criteria were as follows: (a) aged under 20 years, (b) edentulous jaw, and (c) severe renal impairment, which defined as those with an estimated glomerular filtration rate of <15 mL/min/1.73 m² or those undergoing renal replacement therapy and those with a severe infection or serious trauma. This study was an exploratory study and did not include sample size calculations in advance. This study was conducted in accordance with the Helsinki Declaration of 1975 as revised in 2013. This trial was registered in the University Hospital Medical Information Network (UMIN; https://www.umin.ac.jp/), clinical trial number: UMIN000040218. All participants gave written informed consent to participate in this study and for the result of it to be published.

Clinical data collection

Medical interviews and examinations related to diabetes and diabetic complications were performed. Briefly, blood tests for FPG and HbA1c, and measurement of body mass index (BMI) and visceral fat area (VFA) were performed as described previously. VFA was measured at the level of the umbilicus by a dual bioelectrical impedance analyzer (DUALSCAN, Omron Healthcare, Kyoto, Japan). After comprehensive examinations, physicians made a diagnosis of type 2 diabetes based on the classification and diagnostic criteria of diabetes mellitus by the Committee of the Japan Diabetes Society. Oral hygiene status using the O’Leary plaque control record, and periodontal examination that included tooth mobility, periodontal probing pocket depth (PPD), clinical attachment level (CAL), and BOP at six sites on all residual teeth were conducted by an experienced periodontist. Periodontal pocket measurement was calibrated to reduce intraexaminer error and to ensure reliability and consistency. The intraexaminer agreement was calculated with intraclass correlations coefficients and showed an agreement of 0.89 (95% CI 0.79 to 0.94). Periodontal case classification was used to diagnose periodontal health, gingivitis, and periodontitis stage I, II, III, and IV. Further, to quantify the spread of inflammation in the whole periodontal tissue, PISA and PESA were used as periodontal indicators and were calculated at six sites per tooth. The PESA was calculated using equations determined for each tooth type with CAL and PPD, and the PISA was calculated using BOP, CAL, and PPD. In this study, the PISA and the PESA were derived from the calculation sheet of a previous report.

Statistical analysis

All variables are expressed as numbers and percentages for categorical data or as medians (25th, 75th percentiles) for continuous data. To analyze the association between PISA or PESA and diabetes or obesity, we used HbA1c and FPG as diabetic parameters and BMI and VFA as obesity parameters. HbA1c and FPG were applied as continuous or categorical variables with tertiles as thresholds. BMI was applied as a continuous or categorical variable with the threshold 25 kg/m² according to the definition of obesity for Japanese population. VFA was applied as a continuous or categorical variable with the threshold 100 cm² according to the definition of visceral fat accumulation, which is an obesity-related cardiovascular risk factor irrespective of BMI. Differences between groups were calculated with the Mann–Whitney test and correlations were assessed using Spearman’s correlation. Multiple linear regression analysis was performed to investigate the association between PISA or PESA and diabetes or obesity. The multivariate models adjusted for age, sex, BMI, smoking habits, and plaque control record, to which the variance inflation factor (VIF) was added to detect multicollinearity between independent variables. Statistical analyses were performed using STATA software (V.15.0; Stata, College Station, Texas, USA), and p<0.05 was considered statistically significant.

RESULTS

Clinical characteristic and periodontal parameters of study participants

The demographic characteristics of the participants are described in table 1. The median age was 62 (51, 69)
years. Of the 71 participants, 47 (66.2%) were men. The median BMI, VFA, HbA1c, and FPG were 25.7 (23.7, 28.6) kg/m², 93.3 (74.6, 128.8) cm², 9.1 (8.0, 10.4) %, and 151 (113, 186) mg/dL, respectively. There were 28 patients with BMI ≥25 kg/m² and 40 patients with VFA ≥100 cm². The number of non-smokers, past smokers, and current smokers was 34 (47.9%), 28 (39.4%), and 9 (12.7%), respectively. The median number of remaining teeth was 24 (21, 27). The proportions of periodontal health, gingivitis, and periodontal disease stage I, II, III, and IV were 4.2, 0, 1.4, 12.7, 33.8, and 47.9%, respectively. The median full-mouth plaque control record was 45.5 (29.5, 62.5) %. The median PISA and PESA were 190.3 (61.2, 379.9) mm² and 910.4 (684.7, 1142.7) mm², respectively (table 1). Histograms of PISA and PESA are shown in online

Table 1 Characteristics of study patients

Demographic and clinical characteristics	Dental health status			
Male	**Number of teeth**	22.4±6.8		
Age, years	59.6±13.0	Periodontal diagnosis*		
Smoking		Healthy	3 (4.2%)	
Never	34 (47.9%)	Gingivitis	0 (0%)	
Former	28 (39.4%)	Periodontitis stage I	1 (1.4%)	
Current	9 (12.7%)	Periodontitis stage II	9 (12.7%)	
BMI (kg/m²)	26.6±4.5	Periodontitis stage III	24 (33.8%)	
≥25	28 (39.4%)	Periodontitis stage IV	34 (47.9%)	
<25	43 (60.6%)			
VFA (cm²)	93.3(74.6, 128.8) cm², 9.1 (8.0, 10.4) %, and 151 (113, 186) mg/dL, respectively.			
≥100	40 (56.3%)	PISA (mm²)	254.2±240.8	
<100	31 (43.7%)	PESA (mm²)	930.8±385.5	
HbA1c (%)	9.4±1.9	PPD 4–6 mm (%)	10.0±10.4	
FPG (mg/dL)	158.7±55.4	PPD≤3 mm (%)	88.8±12.7	
Duration of diabetes (years)	11.1±8.4	BOP (%)	22.8±17.2	
Nephropathy	Normoalbuminuria	45 (63.4%)	Full-mouth plaque control record (%)	45.6±25.1
Microalbuminuria	23 (32.4%)			
Macroalbuminuria	3 (4.2%)			
Retinopathy	Absence of retinopathy	45 (63.4%)		
Non-proliferative retinopathy	16 (22.5%)			
Proliferative retinopathy	7 (9.9%)			
Angina myocardial infarction	15 (21.1%)			
Cerebrovascular disorder	1 (1.4%)			
Hypertension	41 (57.8%)			
Dyslipidemia	47 (66.2%)			
Total cholesterol (mg/dL)	181.0±41.1			
LDL cholesterol (mg/dL)	108.8±33.8			
HDL cholesterol (mg/dL)	45.9±11.3			
Triglyceride (mg/dL)	160.8±115.2			
Urine albumin (mg/day)	70.0±220.5			
serum CPR (ng/ml)	1.6±0.8			
Urine CPR (µg/day)	71.5±48.0			
C-peptide index	1.1±0.7			
eGFR (mL/min/1.73 m²)	77.6±23.9			

Data are number of subjects (%) or mean±SD.
*Criteria for staging according the description of classification Papapanou et al.25

BMI, body mass index; BOP, bleeding on probing; CPR, connecting peptide immunoreactivity; eGFR, estimated glomerular filtration rate; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PESA, periodontal epithelial surface area; PISA, periodontal inflamed surface area; PPD, probing pocket depth; VFA, visceral fat area.
supplemental figure 1). PISA and PESA was significantly increased in stages III compared with the healthy control group (online supplemental figure 2).

Association of PISA or PESA with diabetes parameters

PISA and PESA were significantly associated with HbA1c (PISA: Spearman’s $r=0.28$, $p=0.0195$; PESA: Spearman’s $r=0.34$, $p=0.0035$) (figure 1A,B). When splitting patients into two groups based on the tertiles of HbA1c (HbA1c T1 and T2 (10.0% and less) vs HbA1c T3 (10.0% and more)), there was no significant difference in PISA or PESA between the two HbA1c groups (figure 2A,B). Multiple linear regression analysis showed the significant, positive association of HbA1c with both PISA and PESA even after adjusting for age, sex, BMI, smoking status, and full-mouth plaque control record (PISA: coefficient=38.1, 95% CI 8.85 to 67.29, $p=0.01$; PESA: coefficient=66.9, 95% CI 21.44 to 112.34, $p=0.005$) (tables 2 and 3). The highest tertile of
HbA1c was not significantly associated with PISA and PESA following adjustments for the confounders (PISA: coefficient=-102.2, 95% CI -15.90 to 220.3, p=0.09; PESA: coefficient=167.8, 95% CI -17.98 to 353.65, p=0.08) (tables 2 and 3). The VIF was calculated for all the predictors in the multiple regression models (online supplemental tables 1 and 2). In the results of the sensitivity analysis of the group with HbA1c less than 8% (n=16), a similar tendency as the analyses represented in tables 2 and 3 was observed. An HbA1c level of ≥8 was more strongly associated with the PISA and the PESA than an HbA1c level <8, following adjustments for the confounders (online supplemental table 3).

Table 2

PISA	Crude model	Multivariate analysis model			
	Coef. 95% CI	P value	Coef. SE 95% CI	P value	
Continuous variable					
HbA1c (%)	32.3 3.1 to 61.5	0.03	38.1* 14.6	8.85 to 67.29	0.01
FPG (mg/dL)	0.8 −0.2 to 1.8	0.11	0.8† 0.5	−0.25 to 1.83	0.13
BMI (kg/m²)	−4.5 −16.9 to 8.0	0.48	−10.3† 6.5	−9.0 to 0.1	0.12
VFA (cm²)	−0.2 −1.5 to 1.1	0.74	−0.5* 0.8	−2.0 to 1.1	0.57
Categorical variable					
HbA1c T3 (compared with T1,2)	78.1 −41.8 to 198.1	0.20	102.2* 59.1	−15.90 to 220.3	0.09
FPG T3 (compared with T1,2)	158.1 39.8 to 276.3	0.01	167.0* 59.2	48.60 to 285.4	0.006
BMI≥25 kg/m² (compared with <25 kg/m²)	9.3 −108.2 to 126.8	0.88	−1.3† 57.5	−116.2 to 113.6	0.98
VFA≥100 cm² (compared with <100 cm²)	23.2 −99.8 to 146.1	0.71	64.4* 73.1	−81.9 to 210.6	0.38

HbA1c and FPG were analyzed with categorical variable for the highest tertile. BMI and VFA were analyzed with categorical variable for criteria of BMI=25, VFA=100, respectively.

*Means adjusted for age, sex, smoking status, BMI, and plaque control record.
†Means adjusted for age, sex, smoking status, and plaque control record.

BMI, body mass index; Coef, coefficient; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; PISA, periodontal inflamed surface area; T, tertile; VFA, visceral fat area.

The correlation between PISA or PESA and FPG level was not significant in the Spearman’s correlation analysis (figure 1C,D). However, there was a significant difference in PISA and PESA when comparing FPG split into two groups by tertiles (FPG T1 and T2 (175 mg/dL and less) vs FPG T3 (175 mg/dL and more)), with significantly higher PISA and PESA levels in the highest tertile (T3) (figure 2C,D). In the multiple regression analysis, PISA or PESA and FPG levels were not significant (tables 2 and 3). The highest tertile (T3) of FPG was significantly associated with PISA following adjustment for clinically relevant variables including plaque control.

Table 3

PESA	Crude model	Multivariate analysis model			
	Coef. 95% CI	P value	Coef. SE 95% CI	P value	
Continuous variable					
HbA1c (%)	67.1 21.1 to 113.0	0.01	66.9* 22.7	21.44 to 112.34	0.005
FPG (mg/dL)	1.3 −0.3 to 3.0	0.11	1.0* 0.8	−0.69 to 2.62	0.25
BMI (kg/m²)	−9.4 −29.7 to 10.9	0.36	−19.1† 10.2	39.5 to 1.4	0.07
VFA (cm²)	−0.8 −2.9 to 1.3	0.47	−1.2* 1.2	−3.7 to 1.2	0.32
Categorical variable					
HbA1c T3 (compared with T1,2)	152.7 −38.1 to 343.6	0.12	167.8* 93.0	−17.98 to 353.65	0.08
FPG T3 (compared with T1,2)	232.4 41.6 to 423.2	0.02	195.7* 96.0	3.92 to 387.52	0.046
BMI≥25 kg/m² (compared with <25 kg/m²)	35.0 −181.8 to 218.0	0.80	−19.1† 90.7	−183.1 to 179.2	0.98
VFA≥100 cm² (compared with <100 cm²)	10.8 −186.0 to 207.6	0.91	77.2* 115.1	−153.1 to 307.5	0.51

HbA1c and FPG were analyzed with categorical variable for the highest tertile. BMI and VFA were analyzed with categorical variable for criteria of BMI=25, VFA=100, respectively.

*Means adjusted for age, sex, smoking status, BMI, and plaque control record.
†Means adjusted for age, sex, smoking status, and plaque control record.

BMI, body mass index; Coef, coefficient; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; PESA, periodontal epithelial surface area; VFA, visceral fat area.
of possible confounders. PISA, in the highest tertile of FPG, increased 143.42 mm² compared with the lower and middle tertiles of FPG. In this cross-sectional study, the mechanism by which poor glycemic control is associated with a high PISA level could not be clarified. In order to analyze the causal relationship, a longitudinal study is warranted to assess serum inflammation markers, such as C reactive protein.32

This is the first study to evaluate the association of VFA or BMI and PISA. VFA and BMI are diagnostic criteria for obesity disease,33 34 and visceral fat mass has been reported to increase cardiovascular risk.35 36 VFA quantitatively represents the amount of adipose tissue, which has been associated with oxidative stress.37 Visceral fat may affect periodontal tissue because oxidative stress has been implicated in periodontal inflammation.38 It has also been reported that the higher the BMI, the more likely patients are to have periodontal pockets of 4 mm or more.39 Furthermore, increases in BMI were also associated with increases in the community periodontal index (CPI) scores in Japan.40 In this study, PISA and PESA were not significantly correlated with the obesity parameters as continuous variables. Even when VFA and BMI were analyzed as categorical variables, PISA and PESA were not significantly correlated with VFA ≥100 cm² and BMI ≥25 kg/m². This finding might be consistent with a previous large-scale study in Japan that found that obesity (BMI ≥25 kg/m²) was not significantly associated with periodontal disease.41 The previous report also suggested that there was no association BMI and clinical attachment loss among patients with type 2 diabetes.42 However, another report suggested that there was a relationship between CPI code and VFA in Koreans and that VFA might be a risk factor for periodontitis.43 That report found that the association between VFA and periodontitis (CPI code of 3–4) was for men. However, CPI score cannot accurately represent the condition of the full-mouth periodontal tissue because the CPI score is examined in a limited number of teeth. Because we did not analyze by CPI score or periodontal pocket depth as categorical variables, but used continuous variables such as PISA and PESA in this study, the inconsistent findings might be observed. PISA and PESA are affected by the number of teeth. The classification of periodontal disease also depends on the number of extracted teeth. Therefore, we considered that there were the inconsistent findings with previous report. In addition, we speculated the effect of periodontal tissue by diabetic drug,44 45 but no significant difference was found in this study.

There are some limitations of this study. First, the participants were all Japanese patients with poorly controlled type 2 diabetes. Thus, the associations between PISA and diabetic parameters such as HbA1c and FPG may not apply to other populations. Second, patients who are non-diabetic but obese were required as a control group in this study. The association between PISA and the inflammation induced by obesity itself is unclear. Then, the association PISA and HbA1c were
limited the precision among poorly controlled diabetes since a sample size calculation was not made. In order to confirm the finding of this study, further research is needed that can set to be compare the control group on a large scale. Finally, causality cannot be determined because this was a cross-sectional study. Further intervention studies are needed to determine whether intensive diabetic treatments reduce PISA and PESA via suppression of HbA1c and FPG.

CONCLUSION

In conclusion, both PISA and PESA were significantly associated with HbA1c, but not with parameters of obesity. PISA was also associated with FPG. This study suggested that inflammation of periodontal tissue may be affected by glycemic control, independent of oral hygiene.

Author affiliations

1Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
2Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
3Department of Endocrinology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
4Oral Care Perio Center, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Fukushima, Japan
5Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Acknowledgements

The authors thank Dr Norihiko Ohara of the Department of Molecular Endocrinology and Metabolism, TMU, for helping us in collecting the data and Professor Jun Aida of the Department of Oral Health Promotion, TMU, for advising us to include statistical analyses in the revised process.

Contributors

KT, KM, and RM participated in study design, statistical analysis, and manuscript preparation and review. IM participated in study design, study logistics, data analysis, and manuscript preparation and review. DK and KI participated in collection of study data. NS and HK participated in manuscript review. ST and ET participated in study design, study logistics, and manuscript review.

Funding

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (16K20666 and 20K18525).

Competing interests

None declared.

Patient consent for publication

Not required.

Ethics approval

Informed consent was obtained from each participant and the study protocol conforms to the ethical guidelines in accordance with the Helsinki Declaration of 1975 as revised in 2013 as reflected in a prior approval by the Dental Ethics Committee of Tokyo Medical and Dental University (Medical Hospital 1573, Dental Hospital 993).

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

No data are available. This trial was registered in the University Hospital Medical Information Network (UMIN; https://www.umin.ac.jp/), clinical trial number: UMIN000040218.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID ids

Kohli Takeda http://orcid.org/0000-0002-9063-2532
Koji Mizutani http://orcid.org/0000-0002-1619-7430

REFERENCES

1 Grundy SM. Pre-Diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 2012;59:635–43.
2 Nascimento GG, Leite FRM, Do LG, et al. Is weight gain associated with the incidence of periodontitis? A systematic review and meta-analysis. J Clin Periodontol 2015;42:495–505.
3 Galle EJ, Haas AN, Rössing CK, et al. Effect of obesity on periodontal attachment loss progression: a 5-year population-based prospective study. J Clin Periodontol 2016;43:537–65.
4 Donath MY, Shoelison SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011;11:98–107.
5 Takeda K, Mizutani K, Tajima N, et al. Impaired diabetes on gingival wound healing via oxidative stress. PLoS One 2012;7:e0189601.
6 Mizutani K, Park K, Mima A, et al. Obesity-Associated gingival vascular inflammation and insulin resistance. J Dent Res 2014;93:596–601.
7 Takeda K, Mizutani K, Matsuura T, et al. Periodontal regenerative effect of enamel matrix derivative in diabetes. PLoS One 2018;13:e0207201.
8 Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005;115:911–9.
9 Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007;56:1010–3.
10 Chaffee BW, Weston SJ. Association between chronic periodontal disease and obesity: a systematic review and meta-analysis. J Periodontol 2010;81:1708–24.
11 Chapple ILC, Genco R, on behalf of working group 2 of the joint EFP/AAP workshop. Diabetes and periodontal diseases: consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases. J Periodontol 2013;84:S106–12.
12 Genco RJ, Grossi SG, Ho A, et al. A proposed model linking inflammation to obesity, diabetes, and periodontal infections. J Periodontol 2005;76:2075–84.
13 Graziani F, Gennai S, Solini A, et al. A systematic review and meta-analysis of epidemiologic data: clinical evidence on the effect of periodontitis on diabetes an update of the EFP-AAP review. J Clin Periodontol 2018;45:167–87.
14 Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol 2011;7:738–48.
15 Simpson TC, Weldon JC, Worthvington HV, et al. Treatment of periodontal disease for glycaemic control in people with diabetes mellitus. Cochrane Database Syst Rev 2015;CD004714.
16 Andriankaja OM, Barros SP, Moss K, et al. Levels of serum interleukin (IL)-6 and gingival crevicular fluid of IL-1β and prostaglandin E, among non-smoking subjects with gingivitis and Type 2 diabetes. J Periodontol 2009;80:307–16.
17 Duffley LF, Hermont AP, Abreu LG, et al. Association between obesity and adipokines levels in saliva and gingival crevicular fluid: a systematic review and meta-analysis. J Evid Based Med 2019;12:313–24.
18 Kardeşler L, Buduneli N, Çetinkalp Sevik, et al. Gingival crevicular fluid IL-6, tPA, PAI-2, albumin levels following initial periodontal treatment in chronic periodontitis patients with or without type 2 diabetes. Inflamm Res 2011;60:143–51.
19 Nesse W, Abbas F, van der Ploeg I, et al. Periodontal inflamed surface area: quantifying inflammatory burden. J Clin Periodontol 2008;35:668–73.
20 Nesse W, Linde A, Abbas F, et al. Dose-Response relationship between periodontal inflamed surface area and HbA1c in type 2 diabetics. J Clin Periodontol 2009;36:295–300.
21 Ohara N, Minami I, Bouchi R, et al. Loss of skeletal muscle mass and its predictors in type 2 diabetes patients under a multifaceted treatment approach. Diabetol Int 2017;8:366–74.
22 Ryo M, Maeda K, Onda T, et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care 2005;28:451–3.
23 Seino Y, Narajo K, Tajima N, et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetol Int 2010;1:2–20.
Epidemiology/Health services research

24 O’Leary TJ, Drake RB, Naylor JE. The plaque control record. J Periodontol 1972;43:38.
25 Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: consensus report of Workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol 2018;45:S162–70.
26 Tonetti MS, Sanz M. Implementation of the new classification of periodontal diseases: Decision-making algorithms for clinical practice and education. J Clin Periodontol 2019;46:398–405.
27 Examination Committee of Criteria for ‘Obesity Disease’ in Japan, Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ J 2002;66:987–92.
28 Hiuge-Shimizu A, Kishida K, Funahashi T, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann Med 2012;44:82–92.
29 Isola G, Matarese G, Ramaglia L, et al. Association between periodontitis and glycosylated haemoglobin before diabetes onset: a cross-sectional study. Clin Oral Investig 2020;24:2799-2808.
30 Löe H. The gingival index, the plaque index and the retention index systems. J Periodontol 1967;38:610–6.
31 American Diabetes Association. 2. classification and diagnosis of diabetes. Diabetes Care 2020;43:S14–31.
32 Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol 2008;35:277–90.
33 Yang S-J, Li H-R, Zhang W-H, et al. Visceral fat area (VFA) superior to BMI for predicting postoperative complications after radical gastrectomy: a prospective cohort study. J Gastrointest Surg 2020;24:1298-1306.
34 Yoshikawa K, Shimada M, Kurita N, et al. Visceral fat area is superior to body mass index as a predictive factor for risk with laparoscopy-assisted gastrectomy for gastric cancer. Surg Endosc 2011;25:3826–30.
35 Bouchi R, Takeuchi T, Akihisa M, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol 2015;14:136.
36 Nicklas BJE, et al. Association of visceral adipose tissue with incident myocardial infarction in older men and women: the health, aging and body composition study. Am J Epidemiol 2004;160:741–9.
37 Fujita K, Nishizawa H, Funahashi T, et al. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ J 2006;70:1437–42.
38 Liu Z, Liu Y, Song Y, et al. Systemic oxidative stress biomarkers in chronic periodontitis: a meta-analysis. Dis Markers 2014;2014:1–10.
39 Morita I, Okamoto Y, Yoshii S, et al. Five-year incidence of periodontal disease is related to body mass index. J Dent Res 2011;90:199–202.
40 Ekuni D, Mizutani S, Kojima A, et al. Relationship between increases in BMI and changes in periodontal status: a prospective cohort study. J Clin Periodontol 2014;41:772–8.
41 Kushiyama M, Shimazaki Y, Yamashita Y. Relationship between metabolic syndrome and periodontal disease in Japanese adults. J Periodontol 2009;80:1610–5.
42 Awad M, Rahman B, Hasan H, et al. The relationship between body mass index and periodontitis in Arab patients with type 2 diabetes mellitus. Oman Med J 2015;30:36–41.
43 Han D-H, Lim S-Y, Sun B-C, et al. Visceral fat area-defined obesity and periodontitis among Koreans. J Clin Periodontol 2010;37:172–9.
44 Nicolini AC, Grisa TA, Muniz FWMG, et al. Effect of adjuvant use of metformin on periodontal treatment: a systematic review and meta-analysis. Clin Oral Investig 2019;23:2659–66.
45 Bertl K, Parllaku A, Pandis N, et al. The effect of local and systemic statin use as an adjunct to non-surgical and surgical periodontal therapy—a systematic review and meta-analysis. J Dent 2017;67:18–28.