Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina

Shoji Notomi\(^{a,b}\), Kenji Ishihara\(^a\), Nikolaos E. Efstathiou\(^a\), Jong-Jer Lee\(^{a,c}\), Toshio Hisatomi\(^b\), Takashi Tachibana\(^b\), Eleni K. Konstantinou\(^a\), Takashi Ueta\(^a\), Yusuke Murakami\(^b\), Daniel E. Maitana\(^a\), Yasuhiko Ikeda\(^a\), Shintaro Kume\(^a\), Hiroto Terasaki\(^e\), Shozo Sonoda\(^a\), Judith Blanz\(^a\), Lucy Young\(^a\), Taiji Sakamoto\(^e\), Koh-Hei Sonoda\(^b\), Paul Saftig\(^b\), Tatsuro Ishibashi\(^b\), Joan W. Miller\(^a\), Guido Kroemer\(^b\)) and Demetrios G. Vavvas (Δημήτριος Γ. Βάββας\(^b\))

\(^{a}\)Angiogenesis Laboratory, Ophthalmology Department, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114; \(^{b}\)Department of Ophthalmology, Kyushu University, Fukuoka 812-8582, Japan; \(^{c}\)Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; \(^{d}\)Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan; \(^{e}\)Department of Ophthalmology, Kagoshima University, Kagoshima 890-8520, Japan; \(^{f}\)Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; \(^{g}\)Institute of Biochemistry, Kiel University, Kiel D-24098, Germany; \(^{h}\)Metabolism, Cancer & Immunity Laboratory, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris 75006, France; \(^{i}\)Institute Gustave Roussy, Villejuif 94800, France; \(^{j}\)Department of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 100050, China; and \(^{k}\)Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden

Edited by Christine A. Curcio, University of Alabama at Birmingham, Birmingham, AL, and accepted by Editorial Board Member Jeremy Nathans October 11, 2019 (received for review April 25, 2019)

The early stages of age-related macular degeneration (AMD) are characterized by the accumulation of basal laminar deposits (BLamDs). The mechanism for BLamDs accumulating between the retinal pigment epithelium (RPE) and its basal lamina remains elusive. Here we examined the role in AMD of lysosome-associated membrane protein-2 (LAMP2), a glycoprotein that plays a critical role in lysosomal biogenesis and maturation of autophagosomes/phagosomes. LAMP2 was preferentially expressed by RPE cells, and its expression declined with age. Deletion of the Lamp2 gene in mice resulted in age-dependent autofluorescence abnormalities of the fundus, thickening of Bruch’s membrane, and the formation of BLamDs, resembling histopathological changes occurring in AMD. Moreover, LAMP2-deficient mice developed molecular signatures similar to those found in human AMD—namely, the accumulation of APOE, APOA1, clusterin, and vitronectin—adherent to BLamDs. In contrast, collagen 4, laminin, and fibronectin, which are extracellular matrix proteins constituting RPE basal lamina and Bruch’s membrane were reduced in Lamp2 knockout (KO) mice. Mechanistically, retarded phagocytic degradation of photoreceptor outer segments compromised lysosomal degradation and increased exocytosis in LAMP2-deficient RPE cells. The accumulation of BLamDs observed in LAMP2-deficient mice was eventually followed by loss of the RPE and photoreceptors. Finally, we observed loss of LAMP2 expression along with ultramicroscopic features of abnormal phagocytosis and exocytosis in eyes from AMD patients but not from control individuals. Taken together, these results indicate an important role for LAMP2 in RPE function in health and disease, suggesting that LAMP2 reduction may contribute to the formation of BLamDs in AMD.

lysosome | LAMP2 | retinal degeneration | aging

Cellular and extracellular debris accumulate in age-associated disorders such as atherosclerosis, Alzheimer disease, and age-related macular degeneration (AMD). AMD is the leading cause of central vision loss in developed countries and exists in 2 forms: the neovascular or “wet” form (~15%) and the non-neovascular or “dry” form (85%) (1, 2). Dry AMD, for which effective treatments are elusive (1), is characterized by a particular form of extracellular debris accumulating with age, the so-called drusen (3, 4). Importantly, large drusen are associated with the risk of developing late AMD—namely, neovascular AMD or geographic atrophy (5). Histopathological examination of AMD specimens has identified material between the retinal pigment epithelium (RPE), a monolayer of cells beneath the neurosensory retina, and the underlying Bruch’s membrane (BrM). The debris accumulating beneath the RPE can be classified into 2 categories: basal linear deposits (BLamDs) and basal laminar deposits (BLamDs). BLamDs are the most prevalent histopathologic finding in early AMD (6). However, the mechanism of BLamD generation remains unclear.

One of the major functions of RPE cells is the phagocytosis of photoreceptor outer segments (POSs) that are shed daily from retinal photoreceptor cells. Phagocytic removal of POSs may be involved in a unique age-related change in the RPE, lipofuscin accumulation. The cargo of lipofuscin granules includes the remnants of POSs that are being degraded (7, 8). Although the extracellular tissue debris accumulates with aging and in the most prevalent central-vision-threatening eye disorder, age-related macular degeneration (AMD). In this work, we discovered that lysosome-associated membrane protein-2 (LAMP2), a glycoprotein that plays a critical role in lysosomal biogenesis and maturation of autophagosomes/phagosomes, is preferentially expressed in the outermost, neuroepithelial layer of the retina, the retinal pigment epithelium (RPE), and contributes to the prevention of ultrastructural changes in extracellular basal lamina deposits including lipids and apolipoproteins. LAMP2 thus appears to play an important role in RPE biology, and its apparent decrease with aging and in AMD specimens suggests that its deficiency may accelerate the basal lamina deposit formation and RPE dysfunction seen in these conditions.

Significance

Extracellular tissue debris accumulates with aging and in the most prevalent central-vision-threatening eye disorder, age-related macular degeneration (AMD). In this work, we discovered that lysosome-associated membrane protein-2 (LAMP2), a glycoprotein that plays a critical role in lysosomal biogenesis and maturation of autophagosomes/phagosomes, is preferentially expressed in the outermost, neuroepithelial layer of the retina, the retinal pigment epithelium (RPE), and contributes to the prevention of ultrastructural changes in extracellular basal lamina deposits including lipids and apolipoproteins. LAMP2 thus appears to play an important role in RPE biology, and its apparent decrease with aging and in AMD specimens suggests that its deficiency may accelerate the basal lamina deposit formation and RPE dysfunction seen in these conditions.
biogenesis of lipofuscin and drusen is different (9–13), it has been suggested that at least some druse material may come from POSs (14, 15), meaning that lysosomal (dys)function might be relevant to AMD. Kim et al. have shown that phagocytic POS digestion in the RPE requires ATG5-dependent recruitment of LC3 to the phagosome (16). Previous immunohistochemical studies on cadaveric eyes from AMD patients revealed the presence of autophagy-related proteins in drusen (17, 18). Furthermore, knockout of Rb1-inducible coiled-coil 1 (RB1CC1; also known as FIP200), an upstream inducer of autophagy, results in RPE dysfunction. Deletion of a gene coding for another multifunctional protein, crystallin beta-A1 (CRYBA1), which regulates endolysosomal acidification, also results in RPE dysfunction in animal models (19–21). These human and animal data taken together suggest that the lysosomal/autophagic pathway may contribute to RPE physiology as well as to AMD pathophysiology.

Lysosome-associated membrane protein-2 (LAMP2) is a rather abundant lysosomal glycoprotein that functions as a receptor for proteins to be imported directly into lysosomes and as a mediator for autophagosomal/phagosomal maturation (22–28). LAMP2 knockout (KO) mice are characterized by disrupted autophagy and phagocytosis in hepatocytes, neurons, and leukocytes (23–26). Loss-of-function mutations of the human LAMP2 gene cause Danon disease, a lysosomal storage disorder characterized by cardiomyopathy, skeletal myopathy, and mental retardation (29, 30). Importantly, recent studies have revealed that patients with Danon disease also exhibit progressive retinal degeneration, indicating that LAMP2 may be essential for retinal homeostasis (31–34).

In this study, we investigated the role of LAMP2 in retinal physiology and age-related retinal pathophysiology. We observed that LAMP2 was primarily expressed by RPE cells, and that its deletion in mice resulted in accelerated age-dependent accumulation of autofluorescent granules and BLamDs, as well as in thickening of BrM, the collagenous and elastic layers between the basement membrane of the RPE and that of the choriocapillaris. Consistently, we discovered a decreased expression of LAMP2 and disrupted lysosomal structures in the human RPE from AMD patients compared to control subjects. Altogether, these results suggest that LAMP2 deficiency facilitates the formation of sub-RPE material and hence may contribute to the pathogenesis of AMD.

Results

Preferential Expression of LAMP2 in the RPE and Effects of Aging. To investigate the role of LAMP2 in RPE health and disease, we first examined LAMP2 expression in the neurosensory retina and the RPE/choroid from mice. By immunoblotting, significantly higher levels of LAMP2 protein were detected in the RPE compared to the retina (Fig. 1A). The observed band in the RPE corresponded to mature, extensively glycosylated LAMP2, resulting in an apparent molecular weight of ~100 kDa (35). In contrast, significantly less LAMP2 was observed in the retina, displaying a slightly lower molecular weight (Fig. 1A), presumably due to less glycosylation. Of note, these immunoreactivities observed in wild-type (WT) mice were completely absent in LAMP2 KO mice, validating the specificity of the antibody. Next, we compared LAMP2 expression in isolated RPE cell monolayers from young and aged WT mice. As normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or the RPE-specific marker protein RPE65, LAMP2 expression decreased at 12 mo compared to 2 mo of age (Fig. 1B). Furthermore, the levels of sequestosome 1 (SQSTM1; also known as p62), an autophagosome cargo protein, significantly increased in the RPE/choroid of 12-mo-old WT mice compared to its levels in 2-mo-old mice, suggesting an impairment of autophagic flux (Fig. 1C). Altogether, these findings suggest a critical role for LAMP2 in the RPE that can be affected by age.

![Fig. 1. LAMP2 expression in the retina and the RPE in young and aged mice. (A) Western blot analyses of LAMP2 expression in the retina or the RPE/choroid from WT or Lamp2 KO mice. LAMP2 was abundantly expressed in the RPE/choroid of WT mice, but was completely absent in the RPE/choroid of Lamp2 KO mice. In contrast, relatively less LAMP2 was observed in the retina of WT mice (band indicated by arrowhead above 75 kDa). ***P < 0.001. One-way ANOVA with post hoc Tukey honestly significant difference (HSD) test. (B) Western blot analysis of LAMP2 expression in the isolated RPE from young or old (2- or 12-mo-old) WT mice. LAMP2 expression significantly decreased with age as normalized by GAPDH or the RPE-specific marker RPE65. (C) SQSTM1 expression notably increased in the RPE/choroid of aged mice compared to those of young mice. Lysates of mice retinas and the RPE/choroid were collected from 6 mice per group for Western blot. Ratiometric analyses were performed with at least 3 times repetitive immunoblotting. **P < 0.001, ****P < 0.0001. Student t test. Values are expressed as mean ± SD.](https://www.pnas.org/doi/10.1073/pnas.1906643116)
To further characterize the changes seen in the fundus examination, electron microscopy examination of the RPE and the sub-RPE space was performed. BLamDs are located between the RPE and its basal lamina; they consist of amorphous material that is similar in electron density and texture to the basal lamina (39). In contrast, a BLinD is membranous material located between the basal lamina of the RPE and the inner collagenous layer. Moreover, BLamD thickness correlates with the degree of RPE degeneration, photoreceptor fallout, and vision loss (40–42). Similar to human AMD (39), amorphous BLamDs were observed in 6-mo-old Lamp2 KO mice, contrasting with minimal sub-RPE deposits in age-matched WT mice, which became more prominent at 12 mo of age (Fig. 3A). Ultrastructural examination detected granular electron-dense structures within BLamDs (Fig. 3A; arrows). The electron-dense material in the electron-lucent tracks crossing the deposits may be partly preserved lipids, similar to a finding is reminiscent of the death of overlying photoreceptors and concomitant retinal thinning associated with RPE dysfunction in dry AMD (47–49).

Molecular Characterization of Sub-RPE Deposits in Lamp2-Deficient Mice. We next characterized molecules in sub-RPE deposits in Lamp2 KO mice by Western blotting. Key proteins found in human drusen, such as apolipoprotein E (APOE), clusterin (CLU), and vitronectin (VTN), were significantly up-regulated in Lamp2 KO mice compared to WT mice at 6 mo of age (Fig. 4A). Immunofluorescence studies confirmed the accumulation of these molecules under the RPE (Fig. 4B). The overexpression of APOE was confirmed in ex vivo cultures of primary RPE from Lamp2 KO mice compared to the WT control RPE (SI Appendix, Fig. S5), indicating that RPE cells may be the source of APOE contained in sub-RPE deposits. Immunofluorescence analysis also revealed that extracellular matrix proteins such as collagen IV, laminin, and fibronectin decreased in Lamp2 KO mice compared to WT mice at 12 mo of age. The decreased expression of laminin and fibronectin in the Lamp2 KO RPE/choroid was confirmed by Western blot analysis (SI Appendix, Fig. S6). In contrast, expression of matrix metalloprotease 2 (MMP-2) increased in the Lamp2 KO RPE/choroid (SI Appendix, Fig. S6). We further examined alterations in lipids in Lamp2 KO eyes. Lamp2 deficiency resulted in increased expression of APOA1 but not of APOB (Fig. 5). Filipin staining unraveled the accumulation of unesterified cholesterol (UC) under the RPE in Lamp2 KO mice (Fig. 5). Moreover, an increase in accumulation of esterified cholesterol (EC), which is specific for drusen and BrM depositions in human eyes (50, 51), was observed on the basal side of the RPE in Lamp2 KO mice. These results suggest that the BLamDs found in Lamp2 KO mice are associated with accumulation of lipids and decreased abundance of extracellular matrix.

Deficient POS Phagocytosis and Increased Lysosomal Exocytosis in Lamp2 KO Mice Aids the Formation of Sub-RPE Deposits. Given the extensive sub-RPE deposits observed in Lamp2 KO mice, we further examined the underlying cellular and molecular mechanisms. Phagocytosis of POSs is one of the important functions for specific for drusen and BrM depositions in human eyes (50, 51), was observed on the basal side of the RPE in Lamp2 KO mice. These results suggest that the BLamDs found in Lamp2 KO mice are associated with accumulation of lipids and decreased abundance of extracellular matrix.
confirmed the increased number of POS phagosomes in the RPE of Lamp2 KO mice compared to that of WT mice at 2 mo of age (Fig. 6A). This difference was accentuated at 6 mo of age, when most of the POS phagosomes in Lamp2 KO mice adopted a notably dilated morphology (Fig. 6A; arrowheads). Furthermore, the RPE from 6-mo-old Lamp2 KO mice manifested an augmentation of total microtubule-associated proteins 1A/1B light chain 3 (LC3), an increase in the ratio of lipidated to nonlipidated LC3 (LC3-II/I ratio), an augmentation of SQSTM1 (Fig. 6B), and an increase in accumulation of autophagic vacuoles (Fig. 6C). The accumulation of LC3-II might result from a disruption of autophagy and/or LC3-associated phagocytosis (LAP) (16), whereas SQSTM1 accumulation suggested reduced macroautophagy. To further examine whether impaired (auto-)phagocytic digestion contributes to extracellular deposit formation, ex vivo cultures of primary RPE cells were examined in the presence or absence of exogenously supplied POSs. The RPE from Lamp2 KO mice showed a significant accumulation of basolateral deposits,
which was more pronounced in the presence of POS feeding (Fig. 7) when compared to the WT mice RPE.

To further examine if impaired autophagy/phagocytosis and BLamD formation in LAMP2-deficient RPE cells was associated with lysosomal exocytosis, we performed a lysosomal enzyme release assay by measuring extracellular beta-hexosaminidase activity in RPE cells. Lamp2 gene silencing was achieved by a specific siRNA that did not affect LAMP1 expression in the human RPE cell line, ARPE-19 (SI Appendix, Fig. S7). In LAMP2-deficient ARPE-19 cells, extracellular beta-hexosaminidase activity was significantly increased upon stimulation of calcium-mediated lysosomal exocytosis by ionomycin (SI Appendix, Fig. S7), indicating an up-regulated ability of lysosomal exocytosis in LAMP2-deficient cells.

Taken together, these data suggest that impaired phagocytic degradation of POSs and increased lysosomal exocytosis contribute to the formation of BLamDs seen in LAMP2-deficient mice.

Loss of LAMP2 Expression and Accumulation of Vacuolar Structures in Human AMD. Finally, we examined LAMP2 expression in human eyes. Previously it had been shown that LAMP2 is strongly expressed in lysosomes of the human RPE (33). Patients with LAMP2 deficiency manifest widespread retinopathy and maculopathy with irregularities in the RPE photoreceptor complex relatively early in life (31–34, 54). Confirming a prior report (33), LAMP2 immunoreactivity was primarily detected in the RPE rather than in the retina (Fig. 8 A). Furthermore, LAMP2 expression appeared to be decreased in AMD specimens relative to

Fig. 4. Molecular characterization of sub-RPE deposits in Lamp2 KO mice. (A) Western blot analyses of APOE, CLU, and VTN expression in the RPE/choroid from 6-mo-old WT or Lamp2 KO mice. RPE/choroid lysates were collected from 6 eyes per group, and ratiometric analyses were performed on at least 3 repetitive blottings. (B) Confocal fluorescence microscopy for APOE, clusterin, and vitronectin in the eyes of 12-mo-old WT or Lamp2 KO mice. Arrows indicate the punctate accumulation of proteins that localized under the RPE in Lamp2 KO mice eyes. (C) Quantification of immunofluorescence for APOE, clusterin, and vitronectin. Immunofluorescence for these proteins at the basal side of the RPE was quantified for 4 defined regions per eye. n = 6 mice per group. *P < 0.01, **P < 0.001, and ***P < 0.0001. Student t test. Values are expressed as mean ± SD. (Scale bars: 10 μm.)
normal eyes (Fig. 8 B and C), while staining with an antibody against RPE65 revealed similar immunoreactivity between AMD and controls (Fig. 8D). TEM revealed largely dilated autophagic or phagocytic vacuoles in the RPE from AMD patients, as well as abundant granular electron-dense material within drusen under the RPE (SI Appendix, Fig. S8), reminiscent of intracellular changes found in the RPE from aged LAMP2-deficient mice. Taken together, these results indicate an association between reduced LAMP2 expression and AMD.

Discussion
Our work revealed a role for deficient lysosomal LAMP2 expression by the RPE in the formation of extracellular RPE deposits resembling BLamDs in AMD. There are several hypotheses on the origin of extracellular RPE deposits, including the lipid retention/“oil spill” hypothesis for BLinD and drusen formation (55), misfolding and aberrant accumulation of extracellular matrix proteins (56, 57), and immune complex formation (58, 59). Here, we provide an additional mechanism related to the reduced expression of LAMP2 and dysregulated lysosomal function in aged RPE cells that may contribute to BLamD formation.

LAMP2 is preferentially expressed in the RPE, and its expression decreases with age in mouse as well as in human AMD. Moreover, the ablation of the Lamp2 gene in vivo results in age-dependent BrM thickening and BLamD accumulation. In addition, several key molecules found in human drusen, including APOE,
APOA1, clusterin, vitronectin, and cholesterol, were detected adjacent to BLamDs in LAMP2-deficient mice. Importantly, we noted similar amorphous and granular extracellular material beneath the RPE in human AMD and in Lamp2 KO mice by electron microscopy. Several features observed in Lamp2 KO mice share apparent similarities with human AMD, supporting the idea that a diminution of LAMP2 expression in mice mimics BLamD formation in humans. BLamDs form in many conditions including AMD (44, 60, 61). Mechanistically, we observed that LAMP2 deficiency could recapitulate the accumulation of sub-RPE deposits even in the absence of photoreceptors, although this was worsened by the addition of POSs for phagocytosis in ex vivo cultures of the mouse RPE, suggesting that the deficient phagocytic capabilities of the RPE contributed to the formation of BLamDs. In addition, siRNA-mediated silencing of Lamp2 in vitro resulted in up-regulated lysosomal exocytosis, showing that an increase in exocytosis of indigestible cargo might contribute to the accumulation of extracellular deposits seen in LAMP2 deficiency.

Loss of Lamp2 in mouse eyes also resulted in an increase in autofluorescent properties in RPE cells. In the Lamp2 KO RPE, nearly spherical inclusions were observed, accompanied by lipid droplets stained with oil red O. These features, observed here and in other mouse models (21, 44, 62), are not identical to those seen in the human RPE, where lipofuscin is associated with complex granules that interact with melanosomes and melanolipofuscin (63). Although BLamDs and the accumulation of lipids/lipoproteins

Fig. 6. Dysregulated autophagic and phagocytic degradation in the LAMP2-deficient RPE. (A) TEM showed increased numbers of phagosomes containing POSs (arrows: normal phagosome; arrowheads: dilated phagosome) in Lamp2 KO mice compared to WT mice. Note the abnormal morphology of dilated phagosomes in 6-mo-old Lamp2 KO mice (arrowheads). The numbers of phagosomes containing identifiable multilayered membranes (disk structure) of POSs were determined at 6 defined regions and mean values were plotted. n = 6 mice per group. ***P < 0.001. One-way ANOVA with post hoc Tukey HSD test. (B) Western blot analyses of LC3 and SQSTM1 in the retina or the RPE/choroid from WT or Lamp2 KO mice. LC3-II/I ratio and SQSTM1 expression of the RPE/choroid was significantly increased in Lamp2 KO mice compared to WT mice. n = 6 eyes from 3 mice per group. **P < 0.01. One-way ANOVA with post hoc Tukey HSD test. (C) Representative TEM images of autophagic vacuoles (arrows) in the RPE of WT and Lamp2 KO mice. Autophagic vacuoles that did not contain identifiable POS disk structures were counted in 6 defined regions, and mean values were plotted. n = 6 mice per group. ***P < 0.001, ***P < 0.0001. NS, not significant. Student t test. Values are expressed as mean ± SD. (Scale bars: 1 μm in A and C.)
support an AMD-like pathology in Lamp2 KO mice, the auto-
fluorescent granules in mouse models may differ from human
lipofuscin.
Several studies have examined the role of autophagy-related
genes and proteins in the RPE and AMD (16, 19–21, 64, 65).
Wang et al. (17) observed increased exosomal markers and ATG5
in the drusen of AMD patients and speculated that increased
autophagy may contribute to the formation of drusen. However, in
our study cellular debris was accumulating beneath the RPE from
Lamp2 KO mice, suggesting rather that insufficient autophagic
maturation contributes to the accumulation of sub-RPE deposits.
Contrasting with the age-dependent decline in Lamp2 (which
is involved in the late stages of autophagy) reported here, Mitter
et al. (18) showed an age-dependent increase in ATG7 and ATG9,
2 proteins which are involved in the earlier steps of autophagy, in
the human central retina outside the macula. However, the au-
thors observed that AMD patients were affected by a reduction in
these autophagy-related proteins, leading to speculation that in-
creased autophagy in aging would constitute a protective mecha-
nism that is lost in AMD patients (18). More recently, Yao et al.
(21) reported that deletion of the Unc-51–like autophagy ac-
tivating kinase (ULK) interacting protein RB1CC1, which is
required for the very first steps of autophagy induction (among
other processes such as cell proliferation and apoptosis), caused
RPE degeneration and subsequent loss of photoreceptors in mice.
The accumulation of deposits seen in that study was primarily
intra-RPE and subretinal rather than BLamDs as reported here.
Since FIP200/RB1CC1 (in contrast to ATG5, ATG13, and Beclin
1) is not involved in LAP (16), this phenotype may be ascribed to
an exclusive inhibition of macroautophagy, not LAP (66). Taken
together, BLamDs occurring in Lamp2 KO eyes might be due to
LAP inhibition and consequent phagocytic dysfunction, beyond a
macroautophagy defect. This interpretation is in line with the ob-
observation that POS feeding to the cultured Lamp2 KO RPE led to
extracellular deposits on the basal membrane.
Valapala et al., reported that deletion of the lens crystalline
gene Cryba1, which is also expressed outside the lens, resulted in
impaired endolysosomal acidification via V-ATPase-MTORC1
signaling and RPE degeneration (19, 67). Here, we observed RPE
degeneration in the context of Lamp2 deficiency, which does not
impair lysosomal acidification (24–26). Our results are consistent
with previous studies in that compromised lysosomal degradation
may yield RPE dysfunction. However, in contrast to the study by
Valapala et al., where RPE degeneration was observed without
detectable sub-RPE deposits, we did observe massive sub-RPE
deposition in the context of Lamp2 deficiency.
Lamp2 is implicated in subtypes of autophagy including
chaperone-mediated autophagy (CMA), which specifically
depends on the Lamp2A isoform, one of 3 products generated
by alternative splicing of the Lamp2/Lamp2 gene. Lamp2A
possesses a highly glycosylated luminal region that is common
to all Lamp2 isoforms and a specific 11-amino-acid-long cytosolic
C-terminal tail (69). By virtue of this particularity, Lamp2A (but
neither of the 2 other isoforms, Lamp2B and Lamp2C), par-
icipates in CMA, which facilitates selective import and degrada-
tion of cytosolic proteins in lysosomes via chaperoning of heat
shock 70-kDa protein 8 (70–73). Complete knockout of all Lamp2
isoforms in mice affects macroautophagy (24, 74), but does not
affect clearance of CMA substrates in certain assays of brain lys-
sates from Lamp2 KO mice or after stable knockdown of Lamp2
in murine neuroblastoma (N2a) cells (74). Furthermore, studies
have shown normal proteolysis in vitro in mouse embryonic fi-
broblasts obtained from embryonic lethal Lamp-1/2 double-KO
mice (27, 75). Thus, further investigation will be required to elu-
cidate the potential role of Lamp2 isoforms and CMA in retinal
pathophysiology. Another poorly explored question regarding the
structure/function of Lamp2 is the role of its N-terminal domain,
which is common to all Lamp2 isoforms. Previous studies using
LAMP1/2 double-deficient MEFs revealed disturbed cholesterol
trafficking in Lamp2-deficient cells that depends on the domain
common to all Lamp2 isoforms (27). Lamp2 has been consis-
tently shown to interact with cholesterol, as well as with NPC1
(Niemann-Pick disease, type C1) and NPC2 (76), which are pro-
teins that are involved in intracellular cholesterol trafficking.
In parallel with the findings in Lamp2 KO mice, loss-of-
function mutations in the Lamp2 gene are known to cause Danon
disease in humans, which is associated with the accumulation of
autophagic vacuoles in various cell types such as cardiomyocytes
and myocytes (29, 30). Danon patients are known to suffer from
the classical triad of cardiomyopathy, skeletal myopathy, and
mental retardation. Moreover, recent studies have demonstrated
that patients with Danon disease exhibit progressive and wide-
spread retinal and macular degeneration that shares some simi-
larities with changes observed in AMD, such as pigmentary

\[
\text{Fig. 7. Ex vivo cultures of the Lamp2-deficient RPE recapitulated the sub-RPE deposits. Primary RPE monolayers were isolated as sheets from WT or Lamp2 KO mice and cultured in the presence or absence of POS administration. TEM images of primary RPE cultures on the membrane inserts were obtained. The maximum thickness of basolateral extracellular material was determined at 6 regions per membrane (n = 4 membranes per group). RPE cultures from Lamp2 KO mice showed a significantly increased accumulation of sub-RPE deposits compared to those from WT mice, which became more pronounced with the addition of POSs (arrows indicate the thickness of sub-RPE deposits). \(*P < 0.05, **P < 0.01 \text{ One-way ANOVA with post hoc Tukey HSD test. Values are expressed as mean } \pm SD. \) (Scale bar: 0.5 \(\mu m \))}
\]
disturbances and discrete sub-RPE deposits, although it should be noted that all of these patients were young (32–34, 31). Our finding of decreased LAMP2 expression and increased abnormally dilated vacuoles in the RPE of elderly human AMD patients, along with animal data, suggests that LAMP2 deficiency plays a role in sub-RPE deposits in AMD.

In summary, our results reveal a role for lysosomal LAMP2 in RPE function, sub-RPE basolaminar deposit formation, and AMD pathology. LAMP2 is preferentially expressed in the RPE, and its genetic deficiency leads to the formation of a specific form of sub-RPE deposits (BLamDs) as well as the accumulation of proteins and lipids adjacent to the deposits whose features resemble features of human AMD. Speculatively, these results support stimulation of LAMP2 expression and function as an additional interventional strategy in AMD.
Materials and Methods

Donor eyes were obtained from the National Disease Research Interchange (Philadelphia, PA). Adult male Lamp2 KO mice (Lamp2^{−/−}) (24), their WT littermates (Lamp2^{+/+}), or C57BL/6j mice (Stock No. 000664, Jackson Laboratory; female, 3–6 months old) were used at 2, 6, and 12 mo of age in this study. Extensive materials and methods regarding fundus photography, immunohistochemistry, ex vivo RPE culture, TEM, and Western blot are provided in SI Appendix, SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Philip Seifert (Scheepens Eye Research Institute) and Fumiyo Morikawa (Kyushu University) for their technical assistance. We thank Philip Seifert (Schepens Eye Research Institute) and Fumiyo Morikawa (Kyushu University) for their technical assistance. We thank Philip Seifert (Schepens Eye Research Institute) and Fumiyo Morikawa (Kyushu University) for their technical assistance.

27. E. L. Eskelinen

12. T. Ach

13. G. S. Reiter

19. M. Valapala

22. M. G. Binker

23. N. Andrejewski

We thank Philip Seifert (Schepens Eye Research Institute) and Fumiyo Morikawa (Kyushu University) for their technical assistance.

We thank Philip Seifert (Schepens Eye Research Institute) and Fumiyo Morikawa (Kyushu University) for their technical assistance.

We thank Philip Seifert (Schepens Eye Research Institute) and Fumiyo Morikawa (Kyushu University) for their technical assistance.
59. L. V. Johnson, W. P. Leitner, M. K. Staples, D. H. Anderson, Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp. Eye Res. 73, 887-896 (2001).
60. D. G. Espinosa-Heidmann et al., Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest. Ophthalmol. Vis. Sci. 47, 729-737 (2006).
61. L. Y. Marmorstein, P. J. McLaughlin, N. S. Peache, T. Sasaki, A. D. Marmorstein, formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: A model for the early pathogenic course of macular degeneration. Hum. Mol. Genet. 16, 2423-2432 (2007).
62. Z. Zhao et al., Age-related retinopathy in NRF2-deficient mice. PLoS One 6, e19456 (2011).
63. A. Pollreisz et al., Visualizing melanosomes, lipofuscin, and melanolipofuscin in human retinal pigment epithelium using serial block face scanning electron microscopy. Exp. Eye Res. 166, 131-139 (2018).
64. L. S. Frost, C. H. Mitchell, K. Boesze-Battaglia, Autophagy in the eye: Implications for ocular cell health. Exp. Eye Res. 124, 56-66 (2014).
65. L. S. Frost et al., The contribution of melanoregulin to microtubule-associated protein 1 light chain 3 (LC3)-associated phagocytosis in retinal pigment epithelium. Mol. Neurobiol. 52, 1135-1151 (2014).
66. J. Martinez et al., Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. U.S.A. 108, 17396-17401 (2011).
67. M. Valapala et al., Modulation of V-ATPase by βA3/A1-Crystallin in retinal pigment epithelial cells. Adv. Exp. Med. Biol. 854, 779-784 (2016).
68. J. S. Zigler, Jr., D. Sinha, βA3/A1-crystallin: More than a lens protein. Prog. Retin. Eye Res. 44, 62-85 (2015).
69. A. M. Cuervo, E. Wong, Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 24, 92-104 (2014).
70. A. M. Cuervo, J. F. Dice, Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 275, 31505-31513 (2000).
71. A. M. Cuervo et al., Autophagy and aging: The importance of maintaining “clean” cells. Autophagy 1, 131-140 (2005).
72. R. Kiffin et al., Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J. Cell Sci. 120, 782-791 (2007).
73. Y. Fujiiwara et al., Discovery of a novel type of autophagy targeting RNA. Autophagy 9, 403-409 (2013).
74. M. Rothaug et al., LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol. Commun. 3, 6 (2015).
75. G. Wang, Z. Mao, Chaperone-mediated autophagy: Roles in neurodegeneration. Transl. Neurodegener. 3, 20 (2014).
76. J. Li, S. R. Pfeffer, Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. eLife 5, e21635 (2016).