Calcium Channels and Pumps in Cancer: Changes and Consequences*
Published, JBC Papers in Press, July 20, 2012, DOI 10.1074/jbc.R112.343061
Gregory R. Monteith, Felicity M. Davis, and Sarah J. Roberts-Thomson
From the School of Pharmacy, The University of Queensland, Brisbane 4075, Australia

Increases in intracellular free Ca\(^{2+}\) play a major role in many cellular processes. The deregulation of Ca\(^{2+}\) signaling is a feature of a variety of diseases, and modulators of Ca\(^{2+}\) signaling are used to treat conditions as diverse as hypertension to pain. The Ca\(^{2+}\) signal also plays a role in processes important in cancer, such as proliferation and migration. Many studies in cancer have identified alterations in the expression of proteins involved in the movement of Ca\(^{2+}\) across the plasma membrane and subcellular organelles. In some cases, these Ca\(^{2+}\) channels or pumps are potential therapeutic targets for specific cancer subtypes or correlate with prognosis.

Our understanding of calcium signaling and its intersection with specific processes important in tumor progression is only recent. We now appreciate that altered expression of specific Ca\(^{2+}\) channels and pumps is a characterizing feature of some cancers. By comparison, the link between calcium signaling and other conditions, such as cardiovascular and neurological diseases, was made many years ago. The direct link between Ca\(^{2+}\) and processes linked to a specific pathology, such as vascular tone and neurotoxicity, meant that these conditions attracted the initial focus of researchers devoted to defining the role of Ca\(^{2+}\) in disease.

In their seminal review “The Hallmarks of Cancer,” Hanahan and Weinberg (1) described six acquired characteristics of cancers: the ability to evade apoptosis, self-sufficiency in growth signaling, insensitivity to anti-growth signals, the capacity to acquire growth factors, and the ability to create a microenvironment that favors growth. Characterizing such changes may help to identify new therapeutic targets. In this minireview, we discuss how remodelling of Ca\(^{2+}\) signaling is a feature of some cancers and provide examples of how this remodeling is often achieved through the differential expression of specific Ca\(^{2+}\) pumps and channels.

Examples of this remodeling are discussed, particularly those that illustrate the complexities of expression changes and their contribution to tumor progression.

Ca\(^{2+}\) Transport in Cancer Cells
Cancer cells use the same calcium channels, pumps, and exchangers as non-malignant cells. However, there are often key alterations in calcium channels and pumps in cancer cells. Such changes in cancer cells may include the expression of calcium channels or pumps (or their specific isoforms) not normally present in non-malignant cells of the same cell type, pronounced changes in the level of expression (as outlined in Table 1), altered cellular localization, altered activity through changes in post-translational modification, gene mutations, and changes in activity or expression associated with specific cancer-relevant processes (e.g. migration). These changes are often reflected in alterations in Ca\(^{2+}\) flux across the plasma membrane or across intracellular organelles.

Ca\(^{2+}\) Influx in Cancer
The influx of calcium across the plasma membrane into the cell is a key trigger or regulator of cellular processes relevant to tumor progression, including proliferation, migration, and apoptosis. Ca\(^{2+}\)-permeable ion channels of almost every class have now been associated with aspects of tumor progression. This minireview will particularly focus on transient receptor potential (TRP\(^{2}\)) channels and ORAI-mediated store-operated Ca\(^{2+}\) influx as examples of Ca\(^{2+}\) influx pathways altered in some cancers.

TRP Channels—TRP ion channels consist of six subfamilies, with most members permeable to Ca\(^{2+}\), many of which have a role in distinguishing sensations, including pain, temperature, taste, and pressure (7). This family is arguably the most studied ion channel class in cancer. The key early work on calcium signaling in cancer was focused on cancers of the prostate gland and more specifically the calcium-permeable ion channel TRPM8 (8). Although now studied predominantly in the context of its role as a cold receptor (9, 10), TRPM8 was first identified by its overexpression in some prostate cancers (8). Early work by Zhang and Barratt (11) demonstrated that both the silencing of TRPM8 and menthol-mediated activation of TRPM8 reduced the viability of LNCaP prostate cancer cells. That both activators and inhibitors are proposed as potential therapeutic agents for prostate cancer cells that overexpress TRPM8 is reflective of the duality of the calcium signal (12), whereby Ca\(^{2+}\) is both a key regulator of proliferation and, in the case of Ca\(^{2+}\) overload, an initiator of cell death. The ability of TRPM8 activation by prostate-specific antigen to inhibit the migration of PC3 prostate cancer cells now extends the applicability of channel activators as therapeutics beyond just inducers of cancer cell death (13). Further detailed work on TRPM8

*This work was supported by National Health and Medical Research Council Grants 631347 and 569645. This article is part of the Thematic Minireview Series on Calcium Function and Disease.

1 To whom correspondence should be addressed. E-mail: gregm@uq.edu.au. This is an Open Access article under the CC BY license.

2 The abbreviations used are: TRP, transient receptor potential; PMCA, plasma membrane Ca\(^{2+}\)-ATPase; SERCA, sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase; SPCA, secretory pathway Ca\(^{2+}\)-ATPase.
in prostate cancer showed androgen-mediated increases in TRPM8 in LNCaP prostate cancer cells (11, 14). This finding provides one of the first examples of hormone-mediated changes in the expression of a calcium-permeable ion channel in a cancer cell line. As discussed below, this has now been seen with other calcium channels and pumps in breast cancers.

The contribution of TRPM8 to cancer progression, as we will see for other Ca\(^{2+}\) channels and pumps, may not always involve its classic role (in this case as a plasma membrane ion channel). As opposed to the usual plasma membrane localization, endoplasmic reticulum localization of TRPM8 is observed in some prostate cancer cells (11, 15), with the consequence being reduced levels of endoplasmic reticulum Ca\(^{2+}\) and increased resistance to apoptosis (15). Aside from prostate cancer, overexpression of TRPM8 is also associated with other cancer types, including melanoma and cancers of the pancreas, breast, colon, and lung (see Table 1). However, the utility of TRPM8 as a target for cancer therapy might be limited and require knowledge of the individual tumor expression of the channel. For example, TRPM8 expression actually appears to decrease as prostate cancer cells transition to androgen independence and increased aggressiveness (16, 17).

TRPV6 is another TRP channel linked to prostate cancer. TRPV6 levels correlate with tumor progression and have been proposed as a predictor of invasiveness (18, 19). TRPV6 is highly Ca\(^{2+}\)-selective and is constitutively active (20). When TRPV6 expression is silenced in LNCaP prostate cancer cells, there is inhibition of Ca\(^{2+}\) influx and consequently reduced activation of NFAT. Crucially, this illustrates the importance of calcium-dependent transcription pathways as a mechanism for tumor promotion (19).

Like TRPM8, alterations in TRPV6 expression are not confined to cancers of the prostate, with increased expression levels reported in thyroid, colon, ovarian, and breast cancers (see Table 1). In breast cancers, the expression of TRPV6 varies widely between tumors (21). The consequences of TRPV6 overexpression in tumors may relate to effects on cancer cell survival, as TRPV6 silencing in T47D breast cancer cells reduces cell viability (21). Further studies are needed to address the mechanisms leading to TRPV6 overexpression in cancers and the association between TRPV6 levels and breast cancer prognosis. Analogous to the androgen dependence of TRPM8 expression in LNCaP prostate cancer cells, TRPV6 levels also appear to be hormonally regulated, with estradiol increasing TRPV6 mRNA in T47D breast cancer cells (21).

Other examples of TRP channels that are overexpressed in multiple cancer types include TRPC3 and TRPC6. TRPC3 is elevated in some breast (22) and ovarian epithelial tumors, and its silencing reduces ovarian cancer cell line proliferation in vitro and tumor formation in vivo (23). TRPC6 is elevated in cancers of the breast, liver, stomach, and esophagus and in gliomas (22, 24, 25), and its silencing reduces the proliferation of some esophageal and breast cancer cell lines and glioma cell lines (22, 24, 25). For esophageal and glioma cell lines, these effects are due to G0/M cell cycle arrest (24, 25).

The importance of some TRP channels in tumor progression appears to extend beyond the primary tumor. Fiorio Pla et al. (26) showed that migrating endothelial cells have a greater cytosolic calcium response to the TRPV4 activator 4-α-phorbol 12,13-didecanoate than non-migrating cells. Furthermore, they showed increased expression of TRPV4 in endothelial cells derived from breast cancers compared with those derived from normal tissue, implicating TRPV4 as a possible key component in angiogenesis associated with breast cancers. Other Ca\(^{2+}\) channels have also been associated with angiogenesis, as reviewed recently (4).

Calcium entry into the cell via some TRP channels may result in localized Ca\(^{2+}\) signals that contribute to cancer cell migration (3). One example of such a localized event is referred to as Ca\(^{2+}\) flickers (27), which are highly localized (~5-μm diameter) and transient (10 ms to 4 s) increases in Ca\(^{2+}\) that control the direction of migration as lung fibroblasts move toward a growth factor. Ca\(^{2+}\) flickers during migration are regulated by TRPM7 (27), which may act as a stretch or mechanical sensing channel (28). With TRPM7 inhibition, there is a reduction in migration of a number of cancer cell types, including those of the pancreas, lung, and nasopharynx (29–31).

The examples above highlight some studies in which cancer cells have been associated with a remodeling of TRP channel expression or in which TRP channels have been linked to specific processes important in tumor progression. The interest and understanding of TRP channels in cancer are likely to expand in the coming years, and these channels may represent the first class of ion channel targeted for the treatment of a specific cancer.

Store-operated Ca\(^{2+}\) Influx—Store-operated Ca\(^{2+}\) entry is a critical Ca\(^{2+}\) influx pathway and represents the major Ca\(^{2+}\) influx mechanism in non-excitable cells (32), such as those of the epithelia, from where most cancers originate. The pathway involves the activation of Ca\(^{2+}\) influx upon intracellular Ca\(^{2+}\) store depletion (32–34). The canonical components of store-operated Ca\(^{2+}\) entry are the calcium influx channel ORAI1 and the endoplasmic Ca\(^{2+}\) depletion sensor STIM1 (stromal interaction molecule 1) (35, 36). Although this pathway has rapidly become one of the Ca\(^{2+}\) influx pathways most studied in breast cancer, it also appears to be an important Ca\(^{2+}\) influx route during lactation (37), suggesting an important role in normal breast function.

ORAI1 and STIM1 silencing in MDA-MB-231 breast cancer cells reduces migration, invasion through Matrigel, and the establishment of lung metastasis after tail vein injection in NOD/SCID mice (38), the latter of which can be mimicked by the pharmacological store-operated Ca\(^{2+}\) influx inhibitor SKF96365 (38). The anti-metastasis effects of ORAI1 and STIM1 silencing appear to be due in part to alterations in focal adhesion turnover (38). The effects of ORAI1 silencing on breast cancer cells are not restricted to inhibition of processes important in migration; ORAI1 silencing has antiproliferative properties in MCF-7 breast cancer cells in culture and in vivo. These changes may be due in part to reductions in basal Ca\(^{2+}\) influx, leading to reduced ERK1/2 phosphorylation and cyclin D1 expression (39).

Alterations in the expression of specific components of store-operated Ca\(^{2+}\) entry are also a feature of some breast cancer cells. ORAI1 mRNA levels are higher in some breast cancer cell lines compared with non-malignant breast cell lines.
When breast cancer subtypes are stratified by gene expression, basal breast cancers (associated with a poor prognosis and a lack of effective therapies) are characterized by an elevated STIM1/STIM2 ratio. Correspondingly, those patients with breast cancers with a high STIM1/STIM2 ratio and high STIM1 levels have significantly reduced survival (37), placing STIM proteins as either potential key regulators or biomarkers of breast cancer progression. The significance of STIM1 may extend beyond breast cancers given its role in the migration of cervical cancer cells (40). The mechanisms responsible for enhanced ORAI1-mediated Ca\(^{2+}\) influx in breast cancer appear to be complex and related to cancer subtypes. As discussed below, in addition to STIM1-mediated activation of ORAI1, some breast cancers that overexpress the SPCA2 isoform may be characterized by elevated ORAI1-mediated Ca\(^{2+}\) influx.

The ORAI1 isoform is not the only ORAI protein with a cancer association. ORAI3 protein levels and ORAI3-dependent store-operated Ca\(^{2+}\) influx are both elevated in estrogen receptor-positive breast cancer cell lines (41) compared with estrogen receptor-negative cell lines, in which store-operated Ca\(^{2+}\) influx is mediated predominately by ORAI1. A strengthening of the causative link with cancer was provided by a study in estrogen receptor-positive MCF-7 breast cancer cells in which ORAI3 silencing inhibited proliferation through G\(_1\) arrest (42). Although the examples above point to an up-regulation of ORAI1-mediated influx, some cancer types might be associated with a down-regulation of this pathway that may in turn help in the acquisition of apoptotic resistance (6). Indeed, reduced ORAI1-mediated Ca\(^{2+}\) influx and expression are features of androgen-independent prostate cancer cells, and silencing of ORAI1 reduces apoptosis in LNCaP cells (43).

In this minireview, we have given examples of how ORAI1 may regulate processes important for carcinogenesis, including cell proliferation, migration, and apoptosis sensitivity, and this may occur in a store-dependent or store-independent manner. Examples of how ORAI1 regulates these key cancer processes are shown schematically in Fig. 1.

Although not a focus of this minireview, voltage-gated calcium channels are increasingly studied in cancer, and in many cases, the studies have examined the reasons for changes in expression levels in cancer. This is particularly illustrated in studies assessing mechanisms of altered expression of voltage-gated ion channels. For example, higher relapse in Wilms tumors is associated with higher DNA copy numbers of the \(\alpha_1\)-subunit of the voltage-gated Ca\(^{2+}\) channel CACNA1E (44), and reduced expression of CACNA2D3 via promoter hypermethylation is associated with poor prognosis in gastric cancer (45). These methodological approaches will be applied to other channels and pumps and other cancers in the future.

Ca\(^{2+}\) Efflux in Cancer

Ca\(^{2+}\) efflux across the plasma membrane can be mediated by both Na\(^{+}\)/Ca\(^{2+}\) exchangers and primary active transport via plasma membrane Ca\(^{2+}\)-ATPases (PMCA). However, most studies of Ca\(^{2+}\) efflux pathways in cancer cells have focused on the latter mechanism. PMCA are encoded by four genes (PMCA1–4), which are alternatively spliced to generate a suite of Ca\(^{2+}\) efflux pumps responsible for maintaining resting cytosolic free Ca\(^{2+}\) at low (~100 nM) levels (46, 47). PMCA also contribute to specific cell functions, such as the transport of Ca\(^{2+}\) into milk through PMCA2 (48).

An area in which PMCA may be critically important in cancer is the regulation of cell death, as reflected in early work assessing the consequences of PMCA overexpression. Overexpression of some PMCA isoforms in CHO cells reduces Ca\(^{2+}\) levels within the endoplasmic reticulum and also attenuates mitochondrial Ca\(^{2+}\) accumulation after cell activation (49), a consequence that would be hypothesized to result in anti-apoptotic effects. Indeed, the overexpression of PMCA in HeLa cells increases their resistance to cell death induced by ceramide (50). Recent studies in T47D breast cancer cells show that the overexpression of PMCA2 reduces the degree of cell death induced by ionomycin, and this is associated with a reduction in the duration and magnitude of increases in cyto-

FIGURE 1. ORAI1 regulates processes important for cancer cell proliferation, migration, and apoptosis. A, in MCF-7 human breast cancer cells, SPCA2 partially localizes to the plasma membrane and interacts with ORAI1 to mediate store-independent Ca\(^{2+}\) influx. This is associated with phosphorylation of ERK1/2, nuclear translocation of NFAT, and increased cell proliferation (39). B, silencing of ORAI1 or STIM1 in MDA-MB-231 human breast cancer cells reduces store-operated Ca\(^{2+}\) influx and is associated with reduced focal adhesion turnover, cell migration, and metastasis formation in vivo. Expression of constitutively active Ras or Rac in these cells partially rescues impaired focal adhesion turnover and cell migration induced by inhibition of store-operated Ca\(^{2+}\) entry, implicating possible roles for these small GTPases in Ca\(^{2+}\)-dependent cell migration (39). C, in LNCaP human prostate cancer cells, ORAI1 expression is regulated by the androgen receptor (AR), and ORAI1 silencing is associated with resistance to thapsigargin (TG), TNF-\(\alpha\), cisplatin-, and oxaliplatin-induced apoptosis (43). In A and B (black), ORAI1 expression may promote carcinogenesis; in C (red), ORAI1 expression may inhibit carcinogenesis (i.e., promote apoptosis). IP_{3}R3, inositol 1,4,5-trisphosphate receptors.
solic [Ca\(^{2+}\)] mediated by this Ca\(^{2+}\) ionophore (51). PMCA2 is an isoform with reported overexpression in some breast cancer cell lines (52) and in clinical human samples, in which high levels appear to be associated with a poor prognosis in some patient groups (51). Collectively, these studies suggest that the remodeling of calcium efflux associated with increases in PMCA expression contributes to the acquisition of an anti-apoptotic phenotype in cancer cells.

Studies assessing the expression of PMCA isoforms during the differentiation of colon cancer cells suggest that a remodeling of PMCA isoform expression is not confined to cancers of the breast. PMCA1 expression remains fairly constant during differentiation of human colon cancer cell lines, whereas PMCA4 undergoes a pronounced increase in expression with differentiation (53, 54). PMCA4 overexpression studies in HT29 colon cancer cells suggest that the down-regulation of PMCA4 in colon cancer may help to augment cytosolic Ca\(^{2+}\) responses to proliferative stimuli without sufficiently increasing cytosolic [Ca\(^{2+}\)] to levels that promote apoptosis (55). The changes in PMCA4 expression seen in the differentiation models correlate well with human colon cancer clinical samples, in which PMCA4 mRNA is reduced in colon adenocarcinomas compared with normal colon (55). The up-regulation of PMCA2 expression in breast cancer and the down-regulation of PMCA4 in colon cancer may seem to conflict; however, in both cases, the changes in PMCA expression appear to bestow an advantage to the cancer cell. In the case of PMCA2, this appears to be related to the acquisition of greater resistance to cell death in breast cancer cells, and for PMCA4 augmented responses to proliferative signals in colon cancer cells.

Intracellular Organelle Ca\(^{2+}\) Channels and Pumps and Cancer

Intracellular organelles play critical roles in Ca\(^{2+}\)-regulated processes either through the regulation of cytosolic free Ca\(^{2+}\) or through modulation of Ca\(^{2+}\)-regulated proteins that reside within the organelle. We will outline examples of Ca\(^{2+}\) channels and pumps of the endoplasmic reticulum and Golgi, as these have been the most studied in cancer. However, the recent identification of proteins that play major roles in mitochondrial Ca\(^{2+}\) influx and efflux (56–58) and the recently identified two-pore channel proteins present in endosomes (TPC1) and lysosomes (TPC2) (59) represent new opportunities to improve our understanding of the remodeling of Ca\(^{2+}\) signaling in some cancers and will no doubt be the focus of research in the future (60).

Regulators of Endoplasmic Reticulum Ca\(^{2+}\) Levels

One of the earliest links between the regulation of endoplasmic reticulum Ca\(^{2+}\) and cancer comes from studies of the anti-apoptotic protein Bcl-2 (B cell lymphoma-2). In addition to its early and now well established role in inhibiting the release of the pro-apoptotic factor cytochrome c (61–63), Bcl-2 decreases the Ca\(^{2+}\) content of the endoplasmic reticulum (50, 64, 65). Mechanistically, this occurs at least in part through interaction with the inositol 1,4,5-triphosphate receptor (66), likely reducing the ability to achieve the high Ca\(^{2+}\) loads required for mitochondria to accumulate Ca\(^{2+}\) sufficiently to trigger apoptotic cell death (67). Some examples of alterations in the expression of key calcium channels and pumps of the endoplasmic reticulum are highlighted in Table 1. Similar to increases in the expression of PMCA4 during colon cancer cell line differentiation and the down-regulation of PMCA4 expression in some colon cancers, SERCA3 pump expression increases with the differentiation of colon cell lines and is down-regulated in colon cancer (68), implicating a major remodeling of active Ca\(^{2+}\) transport in colon cancer. The significance of the down-regulation of SERCA3 is not restricted to colon cancer given the more recent report of a significant down-regulation of SERCA3 in breast cancers, an event that is even seen in benign lesions (69). Further evidence of the potential significance of sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) down-regulation in cancer is reflected in studies of mice haplodeficient for SERCA2 (70, 71). These mice are characterized by increased incidence of squamous cell tumors, the mechanism of which likely involves altered Ca\(^{2+}\) signaling and a subsequent change in the microenvironment of skin epithelia (70).

Regulators of Golgi Ca\(^{2+}\) Levels

Although more recently identified and less widely studied in the context of contributions to cellular processes than SERCAs, secretory pathway Ca\(^{2+}\)-ATPases (SPCAs), both the ubiquitously expressed SPCA1 isoform and the more restricted SPCA2 isoform (72, 73), are beginning to be assessed in cancer cells. In MDA-MB-231 basal-like breast cancer cells (which do not express the SPCA2 isoform), SPCA1 silencing inhibits proliferation without changes in global cytosolic [Ca\(^{2+}\)] consistent with the minor role of SPCAs (cf. PMCAs and SERCAs) in contributing to cytosolic [Ca\(^{2+}\)] recovery in most cell types (74). Instead, as may be the case for other Ca\(^{2+}\) channels and pumps located on the membranes of intracellular organelles, the mechanism by which SPCA1 silencing inhibits proliferation may involve alterations in the Ca\(^{2+}\) levels within the Golgi lumen, where Ca\(^{2+}\)-regulated enzymes reside. Indeed, one consequence of SPCA1 silencing in MDA-MB-231 breast cancer cells is the inhibition of cleavage of the pro-insulin-like growth factor 1 receptor likely through reduced activity of the Ca\(^{2+}\)-sensitive proprotein convertase furin (74). The consequences of reduced SPCA1-mediated Ca\(^{2+}\) sequestration may be cell-type and context-dependent as shown by the increased susceptibility of Spca1\(^{-/-}\) mice to develop squamous skin tumors (75).

One of the proposed roles for the other SPCA isoform, SPCA2, has been the sequestration of Ca\(^{2+}\) during lactation (76); however, this pump also appears to play a role in the pathophysiology of breast cancer. SPCA2 levels are increased in luminal-like breast cancer cell lines and clinical breast cancers belonging to the luminal B and ERBB2 molecular subtypes (39). This may be related to hormonal factors given that, in MCF-7 breast cancer cells, SPCA2 mRNA levels increase with prolactin (77). Silencing of SPCA2 in breast cancer cell lines that overexpress this Ca\(^{2+}\) pump, such as MCF-7 cells, reduces their proliferation, anchorage-independent growth, and growth in vivo (39). However, in contrast to SPCA1 in breast cancer cells, SPCA2 does not appear to contribute to tumor progression through alterations in Ca\(^{2+}\) levels within the Golgi. In a result that was initially counterintuitive, SPCA2 overexpression
increases cytosolic basal [Ca\(^{2+}\)] rather than decreasing it, as might be expected for a calcium pump that sequesters Ca\(^{2+}\) from the cytoplasm into the Golgi. Overexpression of SPCA2 leads to its localization at the plasma membrane, where it activates ORAI1 channels, the consequence of which is activation of the transcription factor NFAT (nuclear factor of activated T cells; shown in Fig. 1A) (39). SPCA2 overexpression-induced increases in Ca\(^{2+}\) influx across the plasma membrane represent an example in which the contribution that a calcium pump makes to tumor progression is not directly related to its own Ca\(^{2+}\)-transporting ability. The ability of SPCA2 to contribute to tumor growth independently of its own Ca\(^{2+}\)-transporting ability suggests that pharmacological inhibitors of SPCA2 Ca\(^{2+}\) transport function may be ineffective in breast cancers in which SPCA2 solely contributes to tumor growth through this ORAI1-dependent mechanism and demonstrates the importance of mechanistic studies assessing the contribution of Ca\(^{2+}\) channels and pumps to tumorigenic pathways.

Calcium Signaling and Cancer: New Horizons

Major advances have occurred in the last decade in our understanding of how calcium signaling is remodeled in some cancer cells and how specific calcium channels or pumps represent potential new therapeutic targets in oncology. However, there are areas of cancer research where the link between calcium signaling is still relatively unexplored, such as the “emerging hallmarks of cancer” recently described by Hanahan and Weinberg (78). These include cellular energy metabolism

Table 1

Ca\(^{2+}\) pump or channel	Cancer type	Change with cancer	Ref.
Transient receptor potential channels			
TRPC1	Breast cancer: patient tissue samples	↑\(^{*}\) ↑	89
TRPC3	Ovarian cancer: patient tissue samples	↑\(^{*}\) ↓	23
TRPC6	Breast cancer: patient tissue samples	↑\(^{*}\) ↑	22
TRPM7	Esophageal cancer: patient tissue samples	↑\(^{*}\) ↑	24
	Glioma: patient tissue samples	↑\(^{*}\) ↑	25
	Liver cancer: patient tissue samples	↑\(^{*}\) ↑	90
	Breast cancer: patient tissue samples	↑\(^{*}\) ↑	22, 89
	Pancreatic cancer: patient tissue samples	↑\(^{*}\) ↑	29
	Breast cancer: tissue samples	↑\(^{*}\) ↑	89
	Pancreatic cancer: (mRNA) and patient tissue samples (protein)	↑\(^{*}\) ↑	91
	Prostate cancer: cell lines and patient tissue samples	↑ \(^{a}\) ↑	8, 17, 92
	Breast cancer: patient tissue samples	↑\(^{*}\) ↑	8, 89
	Melanoma: patient tissue samples	↑\(^{*}\) ↑	8
	Colorectal cancer: patient tissue samples	↑\(^{*}\) ↑	8
	Lung cancer: patient tissue samples	↑\(^{*}\) ↑	8
TRPV1	Bladder cancer: patient tissue samples	↑\(^{*}\) ↑	93
TRPV6	Breast cancer: patient tissue samples	↑\(^{*}\) ↑	94
	Prostate cancer: patient tissue samples	↑\(^{*}\) ↑	18, 21, 89, 95
	Thyroid cancer: patient tissue samples	↑\(^{*}\) ↑	89
	Colon cancer: patient tissue samples	↑\(^{*}\) ↑	95
	Ovarian cancer: patient tissue samples	↑\(^{*}\) ↑	95
Voltage-gated calcium channels			
Cav1.2	Colon cancer: patient tissue samples	↑\(^{*}\) ↑	96
Cav3.2	Prostate cancer: patient tissue samples	↑\(^{*}\) ↑	97
Store-operated calcium channels			
ORAI1	breast cancer: cell lines	↑\(^{*}\) ↓\(^{\pm}\)	37, 41
ORAI3	breast cancer: cell lines and patient tissue samples (mRNA only)	↑\(^{\pm}\) ↑	37, 41, 42
Plasma membrane calcium ATPases			
PMCA2	breast cancer: cell lines (mRNA only) and patient tissue samples	↑\(^{*}\) ↑	51, 52
	Colon cancer: patient tissue samples	↓\(^{+}\) ↑	55
Store release channels			
IP\(_{3}\)R1	Glioblastoma: patient tissue samples	↓\(^{+}\)	98
	Glioblastoma: patient tissue samples	↑\(^{*}\) ↑	98
	Colorectal cancer: patient tissue samples	↑\(^{*}\) ↑	99
Sarcoplasmic/endoplasmic reticulum calcium ATPases			
SERCA2	Oral cancer: cell lines (mRNA only) and patient tissue samples	↓ \(^{+}\) ↓	100
SERCA3	Colon cancer: cell lines and patient tissue samples	↓ \(^{+}\) ↓	68
	Breast cancer: patient tissue samples	↓\(^{+}\)	69
Secretory pathway calcium ATPases			
SPCA1	breast cancer: basal-like clinical samples and cell lines	↑\(^{*}\) ↑	74
SPCA2	breast cancer: cell lines and patient tissue samples (mRNA only)	↑\(^{\pm}\) ↑	39

\(^{*}\) ↑, increase; ↓, decrease; ↔, no significant difference.
\(^{a}\) MCF-7 versus MCF-10A.
reprogramming, whereby cancer cells shift their energy metabolism to glycolysis, a phenomenon first described by Otto Warburg almost a century ago (78–80). Further studies on the possible role of Ca\(^{2+}\) signaling in the regulation of glycolysis, the switch to glycolysis, and the use of glycolysis-generated ATP to fuel Ca\(^{2+}\) pumps in cancer cells are required (81, 82). Another aspect of cancer biology where Ca\(^{2+}\) signaling is clearly going to be critical but has not been fully explored is the tumor microenvironment (78). Due to the depth of work in the area of tumor microenvironment, readers are encouraged to consult the numerous reviews on this topic (83–85). An aspect of the tumor microenvironment where signaling is likely to be particularly significant is cancer-associated fibroblasts, which are in an “activated” state and are in a dynamic signaling interplay with cancer cells (78, 86). Ca\(^{2+}\) may be critical to this signaling, as reflected by the importance of PDGF in the signaling between cervical cancer cells and cancer-associated fibroblasts (87) and the ability of PDGF to elevate cytosolic [Ca\(^{2+}\)] in other cell types (88).

Conclusions

Many processes contribute to cancer development, and Ca\(^{2+}\) signaling seems to play a role in many of them. Numerous studies have now established that some cancers are associated with major changes in the expression of specific Ca\(^{2+}\) channels and pumps and that inhibition of some of these proteins inhibits the proliferation and/or metastasis of cancer cells. The next decade will see the role of Ca\(^{2+}\) in cancer further defined and may see agents that specifically target Ca\(^{2+}\) channels or pumps used in cancer therapy.

REFERENCES

1. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer. *Cell* 100, 57–70
2. Roderick, H. L., and Cook, S. J. (2008) Ca\(^{2+}\) signaling checkpoints in cancer: remodeling Ca\(^{2+}\) for cancer cell proliferation and survival. *Nat. Rev. Cancer* 8, 361–375
3. Prevarskaya, N., Skryma, R., and Shuba, Y. (2011) Calcium in tumor metastasis: new roles for known actors. *Nat. Rev. Cancer* 11, 609–618
4. Fiorio Pla, A., Avanzato, D., Munaron, L., and Ambudkar, I. S. (2012) Ion channels and transporters in cancer. 6. Vascularizing the tumor: TRP channels as molecular targets. *Am. J. Physiol. Cell Physiol.* 302, C9–C15
5. Rizzuto, R., Pinton, P., Ferrari, D., Chami, M., Szabadkai, G., Magalhães, P. J., Di Virgilio, F., and Pozzan, T. (2003) Calcium and apoptosis: facts and hypotheses. *Oncogene* 22, 8619–8627
6. Lehen’kyi, V., Shapovalov, G., Skryma, R., and Prevarskaya, N. (2011) Ion channels and transporters in cancer. 5. Ion channels in control of cancer cell and cell apoptosis. *Am. J. Physiol. Cell Physiol.* 301, C1281–C1289
7. Ramsey, I. S., Delling, M., and Clapham, D. E. (2006) An introduction to TRP channels. *Annu. Rev. Physiol.* 68, 619–647
8. Tsavliris, L., Shaper, M. H., Morkowski, S., and Laus, R. (2001) Trpp8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. *Cancer Res.* 61, 3760–3769
9. McKeon, D. D., Neuhauser, W. M., and Julius, D. (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. *Nature* 416, 52–58
10. Knowlton, W. M., Daniels, R. L., Palkar, R., McCoy, D. D., and McKeown, D. D. (2011) Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. *PLoS ONE* 6, e25894
11. Zhang, L., and Barritt, G. J. (2004) Evidence that TRPM8 is an androgen-dependent Ca\(^{2+}\) channel required for the survival of prostate cancer cells. *Cancer Res.* 64, 8365–8373
12. Monteith, G. R., McAndrew, D., Faddy, H. M., and Roberts-Thomson, S. J. (2007) Calcium and cancer: targeting Ca\(^{2+}\) transport. *Nat. Rev. Cancer* 7, 519–530
13. Gkika, D., Flourakis, M., Lemonnier, L., and Prevarskaya, N. (2010) PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. *Oncogene* 29, 4611–4616
14. Bidaux, G., Roudbaraki, M., Merle, C., Crépin, A., Delcourt, P., Slomianny, C., Thebault, S., Bonnal, J. L., Benahmed, M., Cabon, F., Mauroy, B., and Prevarskaya, N. (2005) Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. *Endocr. Relat. Cancer* 12, 367–382
15. Bidaux, G., Flourakis, M., Thebault, S., Zhilos, A., Beck, B., Gkika, D., Roudbaraki, M., Bonnal, J. L., Mauroy, B., Shuba, Y., Skryma, R., and Prevarskaya, N. (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. *J. Clin. Invest.* 117, 1647–1657
16. Henshall, S. M., Afar, D. E., Hiller, J., Horvath, L. G., Quinn, D. I., Rasiah, K. K., Gish, K., Willihite, D., Kench, J. G., Gardiner-Garden, M., Stricker, P. D., Scher, H. I., Grygiel, J. J., Agus, D. B., Mack, D. H., and Sutherland, R. L. (2003) Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. *Cancer Res.* 63, 4196–4203
17. Prevarskaya, N., Skryma, R., Bidaux, G., Flourakis, M., and Shuba, Y. (2007) Ion channels in death and differentiation of prostate cancer cells. *Cell Death Differ.* 14, 1295–1304
18. Fixemer, T., Wissenbach, U., Flockerzi, V., and Bonkhoff, H. (2003) Expression of the Ca\(^{2+}\)-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. *Oncogene* 22, 7858–7861
19. Lehen’kyi, V., Flourakis, M., Skryma, R., and Prevarskaya, N. (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca\(^{2+}\)/NFAT-dependent pathways. *Oncogene* 26, 7380–7385
20. Wissenbach, U. and Niemeyer, B. A. (2007) Trpv6. *Handb. Exp. Pharmacol.* 179, 221–234
21. Bolanz, K. A., Hediger, M. A., and Landowski, C. P. (2008) The role of TRPV6 in breast carcinogenesis. *Mol. Cancer Ther.* 7, 271–279
22. Aydar, E., Yeo, S., Djangos, M., and Palmer, C. (2009) Abnormal expression, localization, and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. *Cancer Cell Int.* 9, 23
23. Yang, S. L., Cao, Q., Zhou, K. C., Feng, Y. J., and Wang, Y. Z. (2009) Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. *Oncogene* 28, 1320–1328
24. Shi, Y., Ding, X., He, Z. H., Zhou, K. C., Wang, Q., and Wang, Y. Z. (2009) Critical role of TRPC6 channels in G2 phase transition and the development of human esophageal cancer. *Gut* 58, 1443–1450
25. Ding, X., He, Z., Zhou, K., Cheng, J., Yao, H., Lu, D., Cai, R., Jin, Y., Dong, B., Xu, Y., and Wang, Y. (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. *J. Natl. Cancer Inst.* 102, 1052–1068
26. Fiorio Pla, A., Ong, H. L., Cheng, K. T., Brossa, A., Bussolati, B., Lockwick, T., Paria, B., Munaron, L., and Ambudkar, I. S. (2012) TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. *Oncogene* 31, 200–212
27. Wei, C., Wang, X., Chen, M., Ouyang, K., Song, L. S., and Cheng, H. (2009) Calcium flickers steer cell migration. *Cell* 139, 663–675
28. Numata, T., Shimizu, T., and Okada, Y. (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. *Am. J. Physiol. Cell Physiol.* 292, C460–C467
29. Rybarczyk, P., Gautier, M., Hauke, F., Dheninin-Duthille, I., Chatelain, D., Kerr-Conte, J., Pattou, F., Regimbeau, J. M., Sevestre, H., and Ouadid-Ahidouch, H. (2012) Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal adenocarcinomas and regulates human pancreatic cancer cell migration. *Int. J. Cancer* 131, E851–E861
30. Gao, H., Chen, X., Du, X., Guan, B., Liu, Y., and Zhang, H. (2011) EGF enhances the migration of cancer cells by up-regulation of TRPM7. *Cell Calcium* 50, 559–568
MINIREVIEW: Calcium Channels and Pumps in Cancer

31. Chen, J. P., Luan, Y., You, C. X., Chen, X. H., Luo, R. C., and Li, R. (2010) TRPM7 regulates the migration of human nasopharyngeal carcinoma by mediating Ca2+ influx. Cell Calcium 47, 425–432.

32. Parekh, A. B., and Putney, J. W., Jr. (2005) Store-operated calcium channels. Physiol. Rev. 85, 757–810.

33. Roberts-Thomson, S. J., Peters, A. A., Grice, D. M., and Monteith, G. R. (2010) ORAI-mediated calcium entry: mechanism and roles, diseases and pharmacology. Pharmacol. Ther. 127, 121–130.

34. Hogan, P. G., and Rao, A. (2007) Dissecting ICRAC, a store-operated calcium current. Trends Biochem. Sci. 32, 235–245.

35. Berti, M., Grice, D. M., Peters, A. A., Davis, F. M., Stewart, T., Rice, M., Smart, C. E., Brown, M. A., Penny, P. A., Roberts-Thomson, S. J., and Monteith, G. R. (2010) Store-independent activation of Orai by SPCA2 in mammalian tumors. Cell 143, 84–98.

36. Chen, Y. F., Chiu, W. T., Chen, Y. T., Lin, P. Y., Huang, H. J., Chou, C. Y., Chang, H. C., Tang, M. I., and Shen, M. R. (2011) Calcium store sensor stromal interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 108, 15225–15230.

37. Motiani, R. K., Abdullaev, I. F., and Trebak, M. (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J. Biol. Chem. 285, 19173–19183.

38. Faouzi, M., Hauge, F., Potier, M., Ahdouch, A., Sevestre, H., and Ouadid-Ahidouh, H. (2011) Down-regulation of Orai3 arrests cell cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J. Cell. Physiol. 226, 542–551.

39. Flourakis, M., Lehenký, V., Beck, B., Raphaël, M., Vandenbergh, M., Abebe, F. V., Roudbaraki, M., Lepage, G., Mauroy, B., Romanin, C., Shuba, Y., Skryma, R., and Prevorskaya, N. (2010) Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis. 1, e75.

40. Natraj, R., Little, S. E., Reis-Filho, J. S., Hing, L., Messahel, B., Grundy, P. E., Dome, J. S., Schneider, T., Vujanic, G. M., Pritchard-Jones, K., and Jones, C. A. M. (2006) Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms tumors. Clin. Cancer Res. 12, 7284–7293.

41. Wanjari, A., Sasaki, A., Nagasaki, H., Shimada, S., Otsubo, T., Owaki, S., Shimizu, Y., Eishi, Y., Kojima, K., Nakajima, K., Kawano, T., Yusa, Y., and Akiyama, Y. (2008) Methylation of the calcium channel-related gene CACNA2D3 is frequent and a poor prognostic factor in gastric cancer. Gastroenterology 135, 580–590.

42. Streher, E. E., and Zacharias, D. A. (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50.

43. Brini, M., and Carafoli, E. (2009) Calcium pumps in health and disease. Physiol. Rev. 89, 1341–1378.

44. Reinhardt, T. A., Lippolis, J. D., Shull, G. E., and Horst, R. L. (2004) Null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J. Biol. Chem. 279, 42369–42373.

45. Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) A comparative functional analysis of plasma membrane Ca2+-pump isoforms in intact cells. J. Biol. Chem. 278, 24500–24508.

46. Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701.

47. VanHouten, J., Sullivan, C., Bazinet, C., Ryoo, T., Camp, R., Rimm, D. L., Chung, G., and Wysolmerski, J. (2010) PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 107, 11405–11410.

48. Lee, W. J., Roberts-Thomson, S. J., and Monteith, G. R. (2005) Plasma membrane calcium ATPases 2 and 4 in human breast cancer cell lines. Biochem. Biophys. Res. Commun. 337, 779–783.

49. Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 83, 1019–1057.

50. Rizzuto, R. (2003) Mitochondria: a key in the intracellular calcium store. Cell Calcium 34, 435–445.

51. Strehler, E. E., and Zacharias, D. A. (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 83, 1019–1057.

52. Aung, C. S., Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 83, 1019–1057.

53. Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) A comparative functional analysis of plasma membrane Ca2+-pump isoforms in intact cells. J. Biol. Chem. 278, 24500–24508.

54. Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701.

55. VanHouten, J., Sullivan, C., Bazinet, C., Ryoo, T., Camp, R., Rimm, D. L., Chung, G., and Wysolmerski, J. (2010) PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 107, 11405–11410.

56. Lee, W. J., Roberts-Thomson, S. J., and Monteith, G. R. (2005) Plasma membrane calcium ATPases 2 and 4 in human breast cancer cell lines. Biochem. Biophys. Res. Commun. 337, 779–783.

57. Rizzuto, R. (2003) Mitochondria: a key in the intracellular calcium store. Cell Calcium 34, 435–445.
