Big-conductance Ca\(^{2+}\)-activated K\(^{+}\) channels in physiological and pathophysiological urinary bladder smooth muscle cells

Shankar P. Parajuli\(^a\), Yun-Min Zheng\(^a\), Robert Levin\(^b\), and Yong-Xiao Wang\(^a\)

\(^a\)Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, USA; \(^b\)Stratton VA Medical Center, Albany, NY, USA

ABSTRACT
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca\(^{2+}\)-activated K\(^{+}\) (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca\(^{2+}\) (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.

KEYWORDS
big-conductance Ca\(^{2+}\)-activated K\(^{+}\) channel; inositol triphosphate receptor; muscarinic receptor; overactive bladder; ryanodine receptor; urinary bladder smooth muscle cell

Introduction

The primary functions of the urinary bladder are to relax and store urine during the filling phase and contract forcefully to empty the bladder during micturition.\(^1\) Overactive bladder (OAB), obstructive bladder, and urinary incontinence are common clinical disorders associated with bladder storage dysfunctions that cause a sudden urge to urinate and an increase in frequency of urination. The cost of treating these illnesses in the United States exceeds 10 billion dollars per year,\(^2\) and much research is being devoted to this problem. The current mainstay of OAB treatment is antimuscarinic pharmacotherapy. This therapy is limited in its efficacy and tolerability, since antimuscarinic drugs often cause adverse effects such as constipation, blurred vision and cardiac disturbances.\(^3-7\)

Bladder functions are facilitated by a coordinated contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) that make up the bladder wall.\(^1,8\) One of the major mechanisms in the regulation of UBSMC functions are implemented by various ion channels, particularly including the big-conductance Ca\(^{2+}\)-activated K\(^{+}\) (BK) channels.\(^9-15\) The UBSMC BK channels may represent a novel target for the treatment of bladder dysfunctions. Inhibition of BK channels triggers cell membrane depolarization leading to an increase in the activity of voltage-gated Ca\(^{2+}\) (CaV) channels and intracellular Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]\(_i\)) in UBSMCs, whereas the BK channel activation produces opposite effects.\(^9-13,15\) Thus, BK channels play a critical role in the control of cell contraction by providing a negative feedback to limit membrane depolarization and [Ca\(^{2+}\)]\(_i\) in UBSMCs.\(^1,8,16-18\) Signaling molecules and regulatory mechanisms involving ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) that have a direct or an indirect effect on the activity of BK channels can control or regulate physiological and pathological functions in UBSMCs.

The present review aims to discuss the interactions of BK channels with muscarinic receptors, RyRs and IP3Rs in the regulation of functions in UBSMCs.

CONTACT
Yong-Xiao Wang, wangy@mail.amc.edu
Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kchl.

© 2016 Taylor & Francis
Stimulation of muscarinic receptors provides a major neural control of contractile responses, thereby making a significant contribution to cellular functions in UBSMCs. In response to a variety of stimuli, the Ca$^{2+}$ release channels RyRs and IP$_3$Rs on the sarcoplasmic reticulum (SR) mediate the release of Ca$^{2+}$ from the SR into the cytoplasm of the cell. In UBSMCs, BK channels can be activated by Ca$^{2+}$ release from RyRs in the form of Ca$^{2+}$ sparks. These local Ca$^{2+}$ release events occur spontaneously in UBSMCs in the absence of stimulation and trigger transient BK currents (TBKCs), also known as spontaneous transient outward currents (STOCs), without affecting the global [Ca$^{2+}$]_i. Previous studies have also shown that Ca$^{2+}$ release channels on the SR contribute to muscarinic receptor-mediated contractions in human, pig, and mouse UBSMCs.

Functional interactions of muscarinic receptors and BK channels in physiological and pathophysiological bladders

Acetylcholine (ACh) and adenosine triphosphate (ATP) are the 2 main neurotransmitters released from parasympathetic nerve endings that regulate UBSMC contractions in rodents. ACh is a major neurotransmitter triggering voiding contractions in UBSMCs by binding and activating muscarinic receptors. However, it is a controversial topic as to whether or not ATP acts as a neurotransmitter in human UBSMCs. Muscarinic receptor activation is a primary mechanism to enhance excitability and contractility of UBSMCs. Muscarinic M$_2$ and M$_3$ receptors (M$_2$Rs and M$_3$Rs) are predominantly expressed in rat and human UBSMCs. UBSMC contraction under physiological conditions is caused largely by activation of M$_2$Rs. The involvement of M$_3$Rs in UBSMC contractions has been examined by using the M$_3$R antagonist 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) and the M$_2$R antagonist methoctramine. Four-DAMP has been shown to have a ~9 to 10-fold selectivity ratio for M$_3$Rs over M$_2$Rs. This antagonist inhibits M$_3$Rs with a higher affinity (pA_2) value of 8.5 to 8.9 (~1 nM) in rat UBSMCs. Methoctramine has been demonstrated to be the most selective M$_2$R antagonist and have a binding affinity 33-fold greater than that of M$_3$Rs. Four-DAMP has a large inhibitory effect on muscarinic contraction in UBSMCs.

In support of these pharmacological results, studies using M$_3$R and M$_2$R/ M$_3$R (double) knockout mice indicate that M$_3$Rs play a minor role in UBSMCs by enhancing the M$_2$R-mediated contraction. M$_3$Rs are the most valuable player for cholinergic contractile responses in both adult and newborn UBSMCs, while the M$_2$Rs are of lesser importance. The muscarinic agonist carbachol-induced UBSMC contraction has been reported to be attributed to M$_3$R activation, which leads to IP$_3$-induced Ca$^{2+}$ release and then to membrane potential depolarization. A study in guinea pig UBSMCs has shown that stimulation of M$_3$Rs with muscarinic agonists produces IP$_3$ and thereby induces UBSMC contractions. In contrast to this report, IP$_3$Rs do not control the nerve-evoked contractility in mouse UBSMCs.

TBKCs are controlled by Ca$^{2+}$ release from RyRs on the SR and directly suppressed by inhibition of RyRs with ryanodine in UBSMCs. Recent work by Parajuli and Petkov has shown that stimulation of muscarinic receptors with carbachol increases TBKCs followed by the current inhibition in rat UBSMCs. The inhibitory effect of carbachol on TBKCs is possibly caused by either an inhibition of RyRs or by a decrease in the SR Ca$^{2+}$ content due to the SR Ca$^{2+}$-pump blockade. Consistent with these findings, previous studies have shown a similar inhibitory muscarinic effect on BK channels in other SMCs.

In non-UBSMCs such as tracheal and gastrointestinal SMCs, activation of M$_2$Rs has been shown to cause a direct inhibition of BK channels. The functional contribution of M$_2$Rs in UBSMCs has been demonstrated under pathologic conditions such as neurogenic bladder dysfunctions and hypertrophy. It has been shown that the contractile responses to muscarinic agonists are significantly increased in diabetic UBSMCs. M$_3$R biosynthesis is upregulated in diabetic UBSMCs. In contrast, studies reveal that downregulation of M$_2$Rs and upregulation of M$_3$Rs occur in diabetic UBSMCs. Experiments further indicate that muscarinic contractile and Ca$^{2+}$ responses are enhanced in mild outlet obstruction bladders and decreased in severe outlet obstruction bladders. All these findings suggest that muscarinic receptors, in particular M$_2$Rs, show the increased expression and activity contributing to the enhanced UBSMC overactivity.

Using the perforated whole-cell patch clamp technique, Parajuli and Petkov have found that M$_2$Rs are
not involved in BK channel regulation in rat UBSMCs under physiological conditions. Noticeably, a study using the conventional whole-cell patch clamp technique has shown that activation of M3Rs causes BK channel inhibition. Previous experiments using animals and humans have revealed that muscarinic receptor agonist-induced UBSMC contractions are either due to Ca\(^{2+}\) entry through Ca\(_V\) channels or Ca\(^{2+}\) release from the SR. Since there is a considerable differences in relative contributions of muscarinic agonist-induced extracellular Ca\(^{2+}\) influx and intracellular Ca\(^{2+}\) release between human, porcine and murine UBSMCs, a better understanding into the mechanistic insight by which the intracellular Ca\(^{2+}\) handling impacts cellular functions in UBSMCs is of great importance.

It has been reported that after stimulation of M3Rs, protein kinase C (PKC) is activated and thus regulates multiple cellular responses in UBSMCs. Indeed, a number of studies have revealed that PKC-dependent signaling pathways may play a significant role in the regulation of functions in UBSMCs. An interaction of PKC with BK channels has been investigated at the molecular and functional level. A plausible explanation for this interaction is that stimulation of M3Rs leads to diacylglycerol production, which activates PKC (Fig. 1). PKC may cause direct inhibition of the SR Ca\(^{2+}\) pumps and/or RyRs, thereby resulting in suppression of BK channels in UBSMCs. However, the assumption of a direct PKC-BK channel interaction or an indirect mechanism involving the SR Ca\(^{2+}\) store needs to be tested directly. It has been shown that PKC can phosphorylate specific serine residues on the BK channel \(\alpha\) and \(\beta\) subunits, and a failure of phosphorylation of either subunit leads to a loss of the channel function when the serine residues were substituted for alanine.

Figure 1. A schematic diagram illustrating the functional interaction of IP3R, RyRs, and BK channels in urinary bladder smooth muscle cells. Activation of M3Rs leads to IP3 and DAG production via a pathway involving PLC and PIP2. IP3 activates IP3Rs, which releases Ca\(^{2+}\) from the SR. This IP3-induced Ca\(^{2+}\) release transiently activates the BK channels. Furthermore, depletion of the SR Ca\(^{2+}\) upon activation of M3Rs reduces Ca\(^{2+}\) spark activity, inhibits TBKCs and depolarizes cell membrane, which activates Ca\(_V\) channels, cause Ca\(^{2+}\) influx and thus increases contractility in UBSMCs. DAG activates PKC, leading to inhibition of Ca\(^{2+}\) sparks and TBKCs. Ca\(^{2+}\) release from the SR also activates melastatin transient receptor potential (TRPM) channels resulting in UBSMC contractions. (DAG, diacylglycerol; IP3, inositol triphosphate; M3R, muscarinic receptors type 3; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase-C; PLC, phospholipase-C; SR, sarcoplasmic reticulum; Ca\(_V\), voltage-dependent Ca\(^{2+}\)).
specific PKC isoforms in BK channel-dependent excitability and contractility in UBSMCs remains to be elucidated. In spite of this fact, PKC may play an important role in maintaining the normal bladder storage and also bladder emptying force in a BK channel-dependent manner. To the best of our knowledge, the functional interaction between PKC and BK channels has not been studied in UBSMCs under a pathological condition such as OAB.

Role of ryanodine receptors in BK channel-mediated physiological and pathophysiological functions in bladders

Three subtypes of RyRs (RyR1, RyR2 and RyR3) are expressed in mammalian cells. RyR1 is chiefly expressed and required for physiological functions in skeletal muscle cells, RyR2 is primarily present and necessary for normal functions in cardiac myocytes, and RyR3 is predominantly located in brain and skeletal muscle cells with uncertain functions. It has been reported that RyR2, but not RyR1 or RyR3, mRNAs are expressed in freshly isolated and cultured human UBSMCs. However, RyR2 mRNA expression is undetected following culture, suggesting that properties of the RyR2 isoform in human UBSMCs may change when the cells are maintained in culture. The importance of RyRs to regulate the spontaneous phasic contractions has been demonstrated using a rat model of partial bladder outlet obstruction (PBOO). These animals develop overactive UBSMC contraction that is associated with a significant decrease in expression and activity of RyRs.

RyRs are an important modulator of excitation-contraction coupling in UBSMCs. In cardiac myocytes, \(\text{Ca}^{2+} \) channels on the SR are physiologically coupled to RyRs on the SR membrane whereby a small amount of extracellular \(\text{Ca}^{2+} \) influx through \(\text{Ca}^{2+} \) channels activates RyR2 to induce a massive \(\text{Ca}^{2+} \) release from the SR, i.e., \(\text{Ca}^{2+} \)-induced \(\text{Ca}^{2+} \) release (CICR), which is required for physiological cardiac functions. RyR2 may play a crucial role in the regulation of \(\text{Ca}^{2+} \) and contractile responses during the excitation-contraction coupling in UBSMCs. Reportedly, a loose coupling between \(\text{Ca}^{2+} \) channels and RyRs exists in UBSMCs, in which \(\text{Ca}^{2+} \) influx due to the opening of single \(\text{Ca}^{2+} \) channels is insufficient to activate RyRs to induce \(\text{Ca}^{2+} \) release; rather, aggregate \(\text{Ca}^{2+} \) influx via a number of \(\text{Ca}^{2+} \) channels must be large enough to open RyRs. An interpretation for this loose coupling is that RyR2 may show a lesser \(\text{Ca}^{2+} \) sensitivity in UBSMCs than in cardiac muscle. One of the most functional characteristics of RyRs is to form \(\text{Ca}^{2+} \) sparks. The sparks may develop into waves that spread across the cell to produce a global \(\text{Ca}^{2+} \) signal. Indeed, a loss of spontaneous contractile activity is associated with a significant decrease in RyR expression.

RyRs may act as a negative-feedback regulator of spontaneous contractile activity in normal UBSMCs, in which RyRs are localized with BK channels within a distance of ~20 nm. Because of this physical localization, \(\text{Ca}^{2+} \) release from RyRs may directly activate BK channels, which causes outward membrane currents and cell membrane hyperpolarization that leads to the inhibition of \(\text{Ca}^{2+} \) channels, extracellular \(\text{Ca}^{2+} \) influx and cell relaxation. On the other hand, simultaneous activation of massive RyRs following application of the classic channel agonist caffeine at a high concentration may simply elicit transient BK currents in UBSMCs. A similar response in UBSMCs has also been produced by a voltage depolarization.

Downregulation of BK channel activity is a common pathophysiological feature in hypertension. Similarly, the downregulated BK channels in vascular myocytes have also been shown in diabetes. The impaired functions of BK channels in hypertensive and diabetic vascular SMCs may primarily result from the downregulated \(\beta 1 \) subunits. It has been reported that diabetes causes a decrease in BK channel activity and \(\beta 1 \) subunit mRNA expression in diabetic UBSMCs, suggesting that the diabetic downregulation of BK channels may promote UBSMC excitability leading to OAB. In support of this finding, a previous study has shown that diabetic mice exhibit decreased voiding efficiency and other OAB characteristics. However, the molecular mechanisms by which diabetes causes a decrease in BK channel \(\beta 1 \) subunit expression, an impairment of BK channels, and a malfunction of \(\text{Ca}^{2+} \) signals in UBSMCs are not known.

Interactive contribution of IP3 receptors in the regulation of functions of BK channels in physiological and pathophysiological bladders

IP3 is a prime cytosolic messenger linking the plasma membrane events to the release of \(\text{Ca}^{2+} \) from the SR. Available literature indicates that 3 IP3 receptor isoforms (IP3R1–3) have been identified, each of which is encoded by a different gene. Expression of...
individual IP3R isoforms is based on the tissue of origin and developmental stage in mammalian SMCs. IP3R1 is the predominant isoform in vascular SMCs. Quantitative RT-PCR indicates that IP3R1 mRNA is the most abundant of the 3 isoforms in freshly isolated cerebral artery SMCs. IP3Rs are modulated by both cytosolic Ca\(^{2+}\) and SR luminal Ca\(^{2+}\) in SMCs. Depletion of the SR Ca\(^{2+}\) abolishes IP3R-mediated Ca\(^{2+}\) release. The SR Ca\(^{2+}\) may also determine the driving force for Ca\(^{2+}\) release and thus modulate the amplitude of IP3-mediated Ca\(^{2+}\) signals.

Stimulation of IP3R1 activates BK channels via their local interaction mechanism in cerebral arterial SMCs. It has been reported that activation of IP3Rs causes the opening of BK channels in coronary artery SMCs and consequently decreases the artery tone. Whether such a functional interaction between IP3Rs and BK channels exists in UBSMCs is not known. As in vascular SMCs, activation of IP3Rs may increase or decrease the excitability and contractility of UBSMCs by modulating BK channel activity. Emerging evidence indicates that stimulation of M3Rs causes phospholipase C activation, IP3 production, IP3R opening, and SR Ca\(^{2+}\) release in UBSMCs. However, it is not clear whether the Ca\(^{2+}\) release from IP3Rs modulates the BK channels to regulate the excitability and contractility of UBSMCs. In spite of this fact, intracellular application of IP3 can induce a substantial Ca\(^{2+}\) release in both freshly isolated and cultured human UBSMCs. Furthermore, it has been shown that Ca\(^{2+}\) release from IP3Rs activates melastatin transient potential 4 (TRPM4) channels and subsequently increases the membrane excitability. In support of the role of TRPM4 channels, a recent study has revealed that the TRPM4 channel inhibitor 9-phenanthrol attenuates spontaneous inward currents in the presence of the muscarinic receptor agonist carbachol in UBSMCs, thus reducing the cell excitability.

Treatment of cells with xestospongin C, an IP3R inhibitor, significantly decreases spontaneous transient inward currents (STICs) in human UBSMCs. These data indicate that activation of M3Rs results in IP3-induced Ca\(^{2+}\) release from IP3Rs, opening of TRPM4 channels, depolarization of cell membrane, Ca\(^{2+}\) influx via Ca\(_\text{v}\) channels, and contraction in UBSMCs. It has been demonstrated that UBSMC overactivity is associated with the downregulation of BK channels as evidenced by a decrease in BK channel expression and functions under neurogenic bladder conditions.

Presumably, the functional uncoupling between IP3Rs and BK channels may occur in UBSMCs under neurogenic bladder conditions or OAB syndromes, in which stimulation of IP3Rs may not be able to have a stimulatory effect on BK channels in UBSMCs. Another plausible functional interaction between IP3Rs and BK channels is that IP3R stimulation increases the basal Ca\(^{2+}\) level, leading to inhibition of Ca\(^{2+}\) sparks and BK channels, as shown in colonic SMCs.

In vascular SMCs, BK channels are gated by Ca\(^{2+}\) with a relatively low affinity. As a consequence of a large increase in [Ca\(^{2+}\)], following activation of IP3Rs, BK channels are activated, which causes hyperpolarizing K\(^+\) currents and inactivation of Ca\(_\text{v}\) currents, thereby preventing contraction in vascular SMCs. Despite very limited information on the role of IP3Rs in regulation of BK channels in various types of cells, whether stimulation of IP3Rs may modulate the BK channel activity in UBSMCs has never been studied. Conceivably, new strategies to modulate IP3Rs and BK channels in UBSMCs may have a significant clinical impact in the production of more effective therapeutics for bladder dysfunctions. OAB syndrome is one of the common complications of diabetes. Thus, it would be very interesting to investigate the interactive role of IP3Rs and BK channels in the development of OAB using an animal model of diabetes and bladder samples from diabetic patients.

Conclusion

Taken together, we propose a schematic diagram (Fig. 1) to summarize the important interactions of BK channels with the key signaling molecules and effectors including muscarinic receptors, DAG, PKC, IP3, RyRs, and IP3Rs in the control of cellular functions in UBSMCs. The antimuscarinic agents are the mainstay in treating OAB. Therefore, further studies are necessary to better understand the mechanistic details of muscarinic signaling pathways associated with RyRs and IP3Rs in physiological and pathophysiological bladders. Without doubt, additional investigations with respect to the role of BK channels, RyRs, and IP3Rs may help to generate novel and specific drugs to treat OAB and other bladder diseases.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.
Funding
This work was in part supported by the American Heart Association Scientist Development Award 0630236N (Y.-M.Z.) and Established Investigator Award 0340160N (Y.-X.W.) as well as the National Institutes of Health grant HL071000 and HL108232 (Y.-X.W.).

References

[1] Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84(3):935-86; PMID:15269341; http://dx.doi.org/10.1152/physrev.00038.2003

[2] McDonald CJ, Weiner M, Hui SL. Deaths due to medical errors are exaggerated in Institute of Medicine report. JAMA 2000; 284(1):93-5; PMID:10872021; http://dx.doi.org/10.1001/jama.284.1.93

[3] Abraham N, Goldman HB. An update on the pharmacotherapy for lower urinary tract dysfunction. Expert Opin Pharmacother 2015; 16(1):79-93; PMID:25351368; http://dx.doi.org/10.1517/14656566.2015.977253

[4] Cipullo LM, Zullo F, Cosimato C, Di Spiezo Sardo A, Troisi J, Guida M. Pharmacological treatment of urinary incontinence. Female Pelvic Med Reconstr Surg 2014; 20(4):185-202; PMID:24978084; http://dx.doi.org/10.1097/SPV.0000000000000076

[5] Wein AJ. Pharmacological agents for the treatment of urinary incontinence due to overactive bladder. Expert Opin Investig Drugs 2001; 10(1):65-83; PMID:11116281; http://dx.doi.org/10.1517/14534784.10.1.65

[6] Andersson KE, Appell R, Cardozo LD, Chapple C, Drutz HP, Finkbeiner AE, Haab F, Vela Navarrete R. The pharmacological treatment of urinary incontinence. BJU Int 1999; 84(9):923-47; PMID:10571617; http://dx.doi.org/10.1046/j.1464-410x.1999.00397.x

[7] Oefelein MG. Safety and tolerability profiles of anticholinergic agents used for the treatment of overactive bladder. Drug Saf 2011; 34(9):733-54; PMID:21830836; http://dx.doi.org/10.2165/11592790-000000000-00000

[8] Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol 2012; 9(1):30-40; http://dx.doi.org/10.1038/nruro.2011.194

[9] Hashitani H, Brading AF. Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br J Pharmacol 2003; 140(1):146-58; PMID:12967944; http://dx.doi.org/10.1038/sj.bjp.0705319

[10] Heppner TJ, Bonev AD, Nelson MT. Ca2+-activated K+ channels regulate action potential repolarization in urinary bladder smooth muscle. Am J Physiol 1997; 273(1):C110-7; PMID:9252448

[11] Hristov KL, Chen M, Kellett WF, Rovner ES, Petkov GV. Large-conductance voltage- and Ca2+-activated K+ channels regulate human detrusor smooth muscle function. Am J Physiol Cell Physiol 2011; 301(4):C903-12; PMID:21697543; http://dx.doi.org/10.1152/ajpcell.00495.2010

[12] Herrera GM, Heppner TJ, Nelson MT. Voltage dependence of the coupling of Ca2+ sparks to BKCa channels in urinary bladder smooth muscle. Am J Physiol Cell Physiol 2001; 280(3):C481-90; PMID:11171567

[13] Herrera GM, Nelson MT. Differential regulation of SK and BK channels by Ca2+ signals from Ca2+-channels and ryanodine receptors in guinea-pig urinary bladder myocytes. J Physiol 2002; 541(Pt 2):483-92; PMID:12042353; http://dx.doi.org/10.1113/jphysiol.2002.017707

[14] Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 2014; 307(6):R571-84; PMID:24990859; http://dx.doi.org/10.1152/ajpregu.00142.2014

[15] Petkov GV, Nelson MT. Differential regulation of Ca2+-activated K+ channels by beta-adrenoceptors in guinea pig urinary bladder smooth muscle. Am J Physiol Cell Physiol 2005; 288(6):C1255-63; PMID:15677377; http://dx.doi.org/10.1152/ajpcell.00381.2004

[16] Imaizumi Y, Tori Y, Ohi Y, Nagano N, Atsuki K, Yamamura H, Muraki K, Watanabe M, Bolton TB. Ca2+ images and K+ current during depolarization in smooth muscle cells of the guinea-pig vas deferens and urinary bladder. J Physiol 1998; 510(Pt 3):705-19; PMID:9660887; http://dx.doi.org/10.1111/j.1469-7793.1998.705bj.x

[17] Bentzen BH, Olesen SP, Rønn LC, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389; PMID:25346695; http://dx.doi.org/10.3389/fphys.2014.00389

[18] Heppner TJ, Herrera GM, Bonev AD, Hill-Eubanks D, Nelson MT. Ca2+ sparks and K+, channels: novel mechanisms to relax urinary bladder smooth muscle. Adv Exp Med Biol 2003; 539(Pt A):347-57; PMID:15088917

[19] Parajuli SP, Hristov KL, Cheng Q, Malyzs J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca2+-activated K+ channels in freshly isolated human detrusor smooth muscle cells. Pflugers Arch 2015; 467(4):665-75; PMID:24867682; http://dx.doi.org/10.1007/s00424-014-1537-8

[20] Ohi Y, Yamamura H, Nagano N, Ohya S, Muraki K, Watanabe M, Imaizumi Y. Local Ca2+ sparks and KCa channels: novel mechanisms to relax urinary bladder smooth muscle. J Physiol 2001; 541(Pt 2):483-92; PMID:12042353; http://dx.doi.org/10.1113/jphysiol.2002.017707

[21] Wuest M, Hiller N, Braeter M, Hakenberg OW, Wirth MP, Ravens U. Contribution of Ca2+ influx to carbachol-induced detrusor contraction is different in human urinary bladder compared to pig and mouse. Eur J Pharmacol 2007; 565(1-3):180-9; PMID:17395173; http://dx.doi.org/10.1016/j.ejphar.2007.02.046

[22] Heppner TJ, Werner ME, Nausch B, Vial C, Evans RJ, Nelson MT. Nerve-evoked purinergic signalling suppresses action potentials, Ca2+ flashes and contractility evoked by muscarinic receptor activation in mouse urinary bladder smooth muscle. J Physiol 2009; 587(Pt
Schneider T, Hein P, Michel MC. Signal transduction pathways of muscarinic receptor mediated activation in the newborn and adult mouse urinary bladder. BJU Int 2009; 103(1):90-7; PMID:18727613; http://dx.doi.org/10.1111/j.1464-410X.2008.07935.x

Ochodnicky P, Uvelius B, Andersson KE, Michel MC. Autonomic nervous control of the urinary bladder. Acta Physiol (Oxf) 2013; 207(1):16-33; PMID:23033838; http://dx.doi.org/10.1111/apha.12010

Werner ME, Knorn AM, Meredith AL, Aldrich RW, Nelson MT. Frequency encoding of cholinergic- and purinergic-mediated signaling to mouse urinary bladder smooth muscle: modulation by BK channels. Am J Physiol Regul Integr Comp Physiol 2007; 292(1):R616-24; PMID:16931654; http://dx.doi.org/10.1152/ajpregu.00036.2006

Tagliani M, Candura SM, Di Nucci A, Franceschetti GP, D’Agostino G, Ricotti P, Fiori E, Tonini M. A reappraisal of the nature of the atropine-resistant contraction to electrical field stimulation in the human isolated detrusor muscle. Naunyn Schmiedebergs Arch Pharmacol 1997; 356(6):750-5; PMID:9453460; http://dx.doi.org/10.1007/PL00005114

Hoyle CH. Non-adrenergic, non-cholinergic control of the urinary bladder. World J Urol 1994; 12 (5):233-44; PMID:7532513; http://dx.doi.org/10.1007/BF00191202

Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Latives A, Nathanson NM, Pasricha PJ, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 2006; 148 (5):565-78; PMID:16751797; http://dx.doi.org/10.1038/sj.bjp.0706780

Andersson KE, Muscarinic acetylcholine receptors in the urinary tract. Handb Exp Pharmacol 2011 (202):319-44; PMID:21290234; http://dx.doi.org/10.1007/978-3-642-16499-6_16

Yamaguchi O, Shishido K, Tamura K, Ogawa T, Fujimura T, Ohtsuka M. Evaluation of mRNAs encoding muscarinic receptor subtypes in human detrusor muscle. J Urol 1996; 156(3):1208-13; PMID:8709348; http://dx.doi.org/10.1152/ajpcell.00113.2013

Wang P, Luthin GR, Ruggieri MR. Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J Pharmacol Exp Ther 1995; 273(2):959-66; PMID:7752101

Schneider T, Fetscher C, Krege S, Michel MC. Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther 2004; 309 (3):1148-53; PMID:14769832; http://dx.doi.org/10.1124/jpet.103.063735

Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca\(^{2+}\) sources. J Pharmacol Exp Ther 2004; 308(1):47-53; PMID:NOT_FOUND; http://dx.doi.org/10.1124/jpet.103.058248

Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsu m. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 2005; 313(1):368-78; PMID:15608083; http://dx.doi.org/10.1124/jpet.104.077909

Ehlert FJ, Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 2003; 74(2-3):355-66; PMID:14607264; http://dx.doi.org/10.1016/j.lfs.2003.09.023

Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 1997; 120(8):1409-18; PMID:9113359; http://dx.doi.org/10.1038/sj.bjp.0701048

Chess-Williams R, Chapple CR, Yamanishi T, Yasuda K, Sellers DJ. The minor population of M3-receptors mediate contraction of human detrusor muscle in vitro. J Auton Pharmacol 2001; 21(5-6):243-8; PMID:12123469

Buckley NJ, Bonner TI, Buckley CM, Brann MR. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 1989; 35(4):469-76; PMID:2704370

Doods HN, Mathy MJ, Davidesko D, van Charldorp KJ, de Jonge A, van Zwieteren PA. Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther 1987; 242(1):257-62; PMID:3612532

Dorje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 1991; 256(2):727-33; PMID:1994002

Braverman A, Legos J, Young W, Luthin G, Ruggieri M. M2 receptors in genito-urinary smooth muscle pathology. Life Sci 1999; 64(6-7):429-36; PMID:10069506; http://dx.doi.org/10.1016/S0024-3205(98)00582-7

Parajuli SP, Petkov GV. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca\(^{2+}\)-activated K\(^{+}\) channels in rat urinary bladder smooth muscle cells. Am J Physiol Cell Physiol 2013; 305(2):C207-14; PMID:23703523; http://dx.doi.org/10.1152/ajpcell.00113.2013

Somlyo AP, Somlyo AV, Ca\(^{2+}\) sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83(4):1325-58; PMID:14506307; http://dx.doi.org/10.1152/physrev.00023.2003

Hashitani H, Bramich NJ, Hirst GD. Mechanisms of excitatory neuromuscular transmission in the guinea-pig urinary bladder. J Physiol 2000; 524(Pt 2):565-79; PMID:10766934; http://dx.doi.org/10.1111/j.1469-7793.2000.101-2-00565.x

Nausch B, Heppner TJ, Nelson MT. Nerve-released acetylcholine contracts urinary bladder smooth muscle by inducing action potentials independently of IP3-
mediated calcium release. Am J Physiol Regul Integr Comp Physiol 2010; 299(3):R878-88; PMID:20573989; http://dx.doi.org/10.1152/ajpregu.00180.2010

[46] Bolton TB, Lim SP. Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine. J Physiol 1989; 409:385-401; PMID:2585296; http://dx.doi.org/10.1113/jphysiol.1989.sp017504

[47] Hurley BR, Preiksaitis HG, Sims SM. Characterization and regulation of Ca²⁺-dependent K⁺ channels in human esophageal smooth muscle. Am J Physiol 1999; 276(4):G843-52; PMID:10198326

[48] Nakamura T, Kimura J, Yamaguchi O. Muscarinic M2 receptors inhibit Ca²⁺-activated K⁺ channels in rat bladder smooth muscle. Int J Urol 2002; 9(12):689-96; PMID:12492954; http://dx.doi.org/10.1046/j.1442-2042.2002.00548.x

[49] Wade GR, Sims SM. Muscarinic stimulation of tracheal smooth muscle cells activates large-conductance Ca²⁺-dependent K⁺ channel. Am J Physiol 1993; 265(3):C658-65; PMID:8214022

[50] Cole WC, Sanders KM. G proteins mediate suppression of Ca²⁺-activated K⁺ current by acetylcholine in smooth muscle cells. Am J Physiol 1989; 257(3):C596-600; PMID:2506760

[51] Ruggieri, Sr. MR, Braverman AS. Regulation of bladder muscarinic receptor subtypes by experimental pathologies. Auton Autacoid Pharmacol 2006; 26(3):311-25; PMID:16879497; http://dx.doi.org/10.1111/j.1474-8673.2006.00377.x

[52] Pontari MA, Braverman AS, Ruggieri, Sr., MR. The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am J Physiol Regul Integr Comp Physiol 2004; 286(5):R874-80; PMID:14751843; http://dx.doi.org/10.1152/ajpregu.00391.2003

[53] Eglen RM, Hegde SS, Watson N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 1996; 48(4):531-65; PMID:8981565

[54] Stevens LA, Sellers DJ, McKay NG, Chapple CR, Chess-Williams R. Muscarinic receptor function, density and G-protein coupling in the overactive diabetic rat bladder. Auton Autacoid Pharmacol 2006; 26(3):303-9; PMID:16879496; http://dx.doi.org/10.1111/j.1474-8673.2006.00371.x

[55] Tong YC, Cheng JT. Alteration of M(3) subtype muscarinic receptors in the diabetic rat urinary bladder. Pharmacology 2002; 64(3):148-51; http://dx.doi.org/10.1159/00006164

[56] Pak KJ, Ostrom RS, Matsui M, Ehler FJ. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder. Naunyn Schmiedebergs Arch Pharmacol 2010; 381(5):441-54; PMID:20349044; http://dx.doi.org/10.1007/s00210-010-0509-6

[57] Saito M, Hypolite JA, Wein AJ, Levin RM. Effect of partial outflow obstruction on rat detrusor contractility and intracellular free calcium concentration. Neurourol Urodyn 1994; 13(3):297-305; PMID:7920686; http://dx.doi.org/10.1002/1520-6777(1994)13:3%3c297::AID-NAU1930130311%3e3.0.CO;2-Y

[58] Andersson KE. Emptying against outflow obstruction—pharmacological aspects. Scand J Urol Nephrol Suppl 1997; 184:77-84; PMID:9165626

[59] Macherji G, Yiangou Y, Gregson J, Underwood J, Agarwal SK, Khullar V, Anand P. Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol 2006; 176(1):367-73; PMID:16753445; http://dx.doi.org/10.1016/j.s0022-5347(06)00563-5

[60] Matsumoto M, Watanabe T, Miyagawa I. Effects of long-term estradiol treatment on the contractile response to muscarine and muscarinic receptor subtypes in the bladder of aged female rats. Biomed Res 2007; 28(6):309-14; PMID:18202521; http://dx.doi.org/10.2220/biomedres.28.309

[61] Rivera L, Bradin AF. The role of Ca²⁺ influx and intracellular Ca²⁺ release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle. BJU Int 2006; 98(4):868-75; PMID:16978287; http://dx.doi.org/10.1111/j.1464-410X.2006.06431.x

[62] Kajioka S, Nakayama S, Asano H, Brading AF. Involvement of ryanodine receptors in muscarinic receptor-mediated membrane current oscillation in urinary bladder smooth muscle. Am J Physiol Cell Physiol 2005; 288(1):C100-8; PMID:15317662

[63] Caudfield MP. Muscarinic receptors—characterization, coupling and function. Pharmacol Ther 1993; 58(3):319-79; PMID:7504306; http://dx.doi.org/10.1016/0163-7258(93)90027-B

[64] Hristov KL, Smith AC, Parajuli SP, Malysz J, Petkov NJ. Intracellular Ca²⁺ signals in the bladder of aged female rats. Biomed Res Int 2015; 2015:15; 110; PMID:26538012; http://dx.doi.org/10.1186/s12894-015-0106-6

[65] Hristov KL, Smith AC, Parajuli SP, Malysz J, Petkov NJ. Intracellular Ca²⁺ signals in the bladder of aged female rats. Biomed Res Int 2015; 2015:15; 110; PMID:26538012; http://dx.doi.org/10.1186/s12894-015-0106-6

[66] Zhou XB, Arntz C, Kam M, Motiejuk K, Sausbier U, Wang GX, Ruth P, Korth M. A molecular switch for specific stimulation of the BKCa channel by cGMP and cAMP kinase. J Biol Chem 2001; 276(46):43239-45; PMID:11514553; http://dx.doi.org/10.1074/jbc.M1042202200

[67] Chang S, Hypolite JA, Mohanan S, Zderic SA, Wein AJ, Chacko S. Alteration of the PKC-mediated signaling pathway for smooth muscle contraction in obstruction-induced hypertrophy of the urinary bladder. Lab Invest 2009; 89(7):823-32; PMID:19381130; http://dx.doi.org/10.1038/labinvest.2009.38

[68] Hypolite JA, Lei Q, Chang S, Zderic SA, Butler S, Wein AJ, Malychkina AP, Chacko S. Spontaneous and evoked contractions are regulated by PKC-mediated signaling in...
detrusor smooth muscle involvement of BK channels. Am J Physiol Renal Physiol 2013; 304(5):F451-62; PMID:23269650; http://dx.doi.org/10.1152/ajprenal.00639.2011

[69] Zheng YM, Wang YX. Ryanodine receptors/Ca2+ release channels in pulmonary artery smooth muscle cells. Recent advances in pulmonary vascular biology, ed. Wang, YX. 2011: Research Signpost: Trivandrum, Kerala. 91-114.

[70] Mei L, Zheng YM, Wang YX. Ryanodine and inositol trisphosphate receptors/Ca2+ release channels in airway smooth muscle cells. Calcium signaling in airway smooth muscle cells, ed. Wang, YX. 2014: Springer International Publishing; Switzerland. 1-20.

[71] Chambers P, Neal DE, Gillespie JL. Ryanodine receptors in human bladder smooth muscle. Exp Physiol 1999; 84(1):41-6; PMID:10081705; http://dx.doi.org/10.1111/j.1469-445X.1999.tb00070.x

[72] Jiang HH, Song B, Lu GS, Wen QJ, Jin XY. Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model. BJU Int 2005; 96(3):428-33; PMID:16042743; http://dx.doi.org/10.1111/j.1464-410X.2005.05644.x

[73] Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle. Science 1995; 268(5213):1042-5; PMID:7754383; http://dx.doi.org/10.1126/science.7754384

[74] Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 1995; 268(5213):1042-5; PMID:7754383; http://dx.doi.org/10.1126/science.7754383

[75] Hotta S, Morimura K, Ohya S, Muraki K, Takeshima H, Imaizumi Y. Ryanodine receptor type 2 deficiency changes excitation–contraction coupling and membrane potential in urinary bladder smooth muscle. J Physiol 2007; 582(Pt 2):489-506; PMID:17363382; http://dx.doi.org/10.1113/jphysiol.2007.130302

[76] Collier ML, Ji G, Wang Y, Kotlikoff MJ. Calcium-induced calcium release in smooth muscle; loose coupling between the action potential and calcium release. J Gen Physiol 2000; 115(5):653-62; PMID:10779321; http://dx.doi.org/10.1085/jgp.115.5.653

[77] Herrera GM, Nelson MT. Differential regulation of SK and BK channels by Ca2+ signals from Ca2+ channels and ryanodine receptors in guinea-pig urinary bladder myocytes. J Physiol 2002; 541(Pt 2):483-92; PMID:12042353; http://dx.doi.org/10.1113/jphysiol.2002.017707

[78] Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 2000; 278(2):C235-56; PMID:10666018

[79] Amberg GC, Bonev AD, Rossov CF, Nelson MT, Santana LF. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J Clin Invest 2003; 112(5):717-24; PMID:12952920; http://dx.doi.org/10.1172/JCI200318684

[80] Dong L, Zheng YM, Van Riper D, Rathore R, Liu QH, Singer HA, Wang YX. Functional and molecular evidence for impairment of calcium-activated potassium channels in type-1 diabetic cerebral artery smooth muscle cells. J Cereb Blood Flow Metab 2008; 28(2):377-86; PMID:17684520; http://dx.doi.org/10.1038/sj.jcbfm.9600536

[81] Lu T, Ye D, He T, Wang XL, Wang HL, Lee HC. Impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ channels in the coronary artery smooth muscle cells of Zucker Diabetic Fatty rats. Biophys J 2008; 95(11):5165-77; PMID:18790848; http://dx.doi.org/10.1529/biophysj.108.138339

[82] McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, Simpson DA, Scholfield CN, McGeown JG, Curtis TM. Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle. Circ Res 2007; 100(5):703-11; PMID:17293477; http://dx.doi.org/10.1161/01.RES.0000260182.36481.e9

[83] Krysthal DA, Paduraru OM, Boldyrev OI, Kit Ofu, Rekalov VV, Shuba IaM. [Changes in calcium-dependent potassium channels of isolated smooth muscle cells of the bladder in rats with experimental diabetes]. Fiziol Zh 2011; 57(3):25-32; PMID:21870515

[84] Leiria LO, Mónica FZ, Carvalho FD, Claudino MA, Franco-Penteado CF, Schenka A, Grant AD, De Nucci G, Antunes E. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels. Br J Pharmacol 2011; 163(6):1276-88; PMID:NOT_FOUND; http://dx.doi.org/10.1111/j.1476-5381.2011.01311.x

[85] Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87(2):593-658; PMID:17429043; http://dx.doi.org/10.1152/physrev.00035.2006

[86] Zhou H, Nakamura T, Matsumoto N, Hisatsune C, Mizutani A, Iesaki T, Daida H, Mikoshiba K. Predominant role of type 1 IP3 receptor in aortic vascular muscle contraction. Biochem Biophys Res Commun 2008; 369(1):213-9; PMID:18241669; http://dx.doi.org/10.1016/j.bbrc.2007.12.194

[87] Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 2008; 295(5):C1376-88; PMID:18799650; http://dx.doi.org/10.1152/ajpcell.00036.2008

[88] Amberg GC, Bonev AD, Rossov CF, Nelson MT, Santana LF. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J Clin Invest 2003; 112(5):717-24; PMID:12952920; http://dx.doi.org/10.1172/JCI200318684

[89] Amberg GC, Bonev AD, Rossov CF, Nelson MT, Santana LF. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J Clin Invest 2003; 112(5):717-24; PMID:12952920; http://dx.doi.org/10.1172/JCI200318684
smooth muscle as revealed by localized photolysis of caged inositol 1,4,5-trisphosphate. J Biol Chem 2004; 279(9):8417-27; PMID:14660609; http://dx.doi.org/10.1074/jbc.M311797200

[90] Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302(11):H2190-210; PMID:22447942; http://dx.doi.org/10.1152/ajpheart.01146.2011

[91] Zhao G, Neeb ZP, Leo MD, Pachau J, Adebiyi A, Ouyang K, Chen J, Jaggar JH. Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 2010; 136(3):283-91; PMID:20713546; http://dx.doi.org/10.1085/jgp.20101045

[92] Yang Y, Li PY, Cheng J, Cai F, Lei M, Tan XQ, Li ML, Liu ZF, Zeng XR. IP3 decreases coronary artery tone via activating the BKCa channel of coronary artery smooth muscle cells in pigs. Biochem Biophys Res Commun 2013; 439(3):363-8; PMID:24012825; http://dx.doi.org/10.1016/j.bbrc.2013.08.079

[93] Chambers P, Neill DE, Gillespie JI. Ca2+ signalling in cultured smooth muscle cells from human bladder. Exp Physiol 1996; 81(4):553-64; PMID:8853265; http://dx.doi.org/10.1113/expphysiol.1996.sp003958

[94] Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2010; 299(2):C279-C288; PMID:20427713; http://dx.doi.org/10.1152/ajpcell.00550.2009

[95] Parajuli SP, Hristov KL, Sullivan MN, Xin W, Smith AC, Earley S, Malysh J, Petkov GV. Control of urinary bladder smooth muscle excitability by the TRPM4 channel modulator 9-phenanthrol. Channels (Austin) 2013; 7(6):537-40; PMID:24037125; http://dx.doi.org/10.4161/chan.26289

[96] Hristov K, Parajuli SP, Smith A, Malysh J, Rovner E, and Petkov G., Potential novel target for treatment of overactive bladder: transient receptor potential melastatin 4 channel in human urinary bladder. J Urol 2014; 191(4):E136-7; http://www.jurology.com/article/S0022-5347 (14)00784-8/fulltext

[97] Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, Malkowicz B, Wein AJ, Chacko S. Detrusor overactivity is associated with downregulation of large-conductance calcium- and voltage-activated potassium channel protein. Am J Physiol Renal Physiol 2010; 298(6):F1416-23; PMID:20392804; http://dx.doi.org/10.1152/ajprenal.00595.2009

[98] Hristov KL, Afeli SA, Parajuli SP, Cheng Q, Rovner ES, Petkov GV. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca2+-activated K+ channels. PLoS One 2013; 8(7):e68052; PMID:23861849; http://dx.doi.org/10.1371/journal.pone.0068052

[99] Bayguinov O, Hagen B, Sanders KM. Muscarinic stimulation increases basal Ca2+ and inhibits spontaneous Ca2+ transients in murine colonic myocytes. Am J Physiol Cell Physiol 2001; 280(3):C689-700; PMID:11171588

[100] Patterson AJ, Henrie-Olson J, Brenner R. Vasoregulation at the molecular level: a role for the beta1 subunit of the calcium-activated potassium (BK) channel. Trends Cardiovasc Med 2002; 12(2):78-82; PMID:11852255; http://dx.doi.org/10.1016/S1050-1738(01)00146-3