Efficient protocols for deterministic secure quantum communication using GHZ-like states

December 21, 2013

Anindita Banerjee1,2 and Anirban Pathak3

1Department of Physics and Materials Science Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307, India.

2 Department of Physics and Center for Astroparticle Physics and Space Science, Bose Institute, Block EN, Sector V, Kolkata 700091, India.

Abstract

Two protocols for deterministic secure quantum communication (DSQC) using GHZ-like states have been proposed. It is shown that one of these protocols can be modified to an equivalent but more efficient protocol of quantum secure direct communication (QSDC). Security and efficiency of the proposed protocols are analyzed in detail and are critically compared with the existing protocols. It is shown that the proposed protocols are highly efficient. It is also shown that all the physical systems where dense coding is possible can be used to design maximally efficient protocol of DSQC and QSDC. Further, it is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols of the present kind. We have shown that there exist a large class of quantum state which can be used to design maximally efficient protocol of DSQC and QSDC protocols of the present kind. It is further, observed that maximally efficient QSDC protocols are more efficient than their DSQC counterparts. This additional efficiency arises at the cost of message transmission rate.

1 Introduction

A protocol for quantum key distribution (QKD) was first introduced in 1984 by Bennett and Brassard11. Since then several protocols for different cryptographic tasks have been proposed. Most of the initial works1 2 3 on quantum cryptography were concentrated around QKD. But very soon people realized that quantum-states can be used for more complex and more specific cryptographic tasks. For example, In 1999, Hillery4 had proposed a protocol for quantum secret sharing (QSS). Almost simultaneously, Shimizu and Imoto5 proposed a protocol for direct secure quantum communication using entangled photon pairs. These protocols had established that QKD is not essential for secure quantum communication as unconditionally secure quantum communication is possible without the generation of keys. Such protocols of direct quantum communications are broadly divided into two classes: a) Protocols for deterministic secure quantum communication (DSQC)6 7 8 9 10 11 12 13 and b) protocols for quantum secure direct communication (QSDC)14 15 16. In DSQC receiver (Bob) can read out the secret message only after at least one bit of additional classical information for each qubit is transmitted by the sender (Alice). In contrary, when no such exchange of classical information is required then the protocols are referred as QSDC protocols17. A conventional QKD protocol generates the unconditionally secure key by quantum means but then uses classical cryptographic resources to encode the message. No such classical means are required in DSQC and QSDC. Further, since all DSQC and QSDC protocols can be used to generate quantum keys, these protocols of direct communications are more useful than the traditional QKD protocols. In recent past, these facts have encouraged several groups to study DSQC and QSDC protocols in detail17 and reference there in.

In the pioneering work of Shimizu and Imoto5, they had cleverly used entangled photon pairs and Bell measurement to achieve the task of DSQC. In 2002, Beige et al.18 extended the idea and proposed another protocol for DSQC using single photon two-qubit states. But eventually the authors themselves found out the protocol to be insecure. In the same year, Bostrom and Felbinger proposed the famous ping-pong protocol of QSDC, which uses EPR states for
communication. This protocol is quasi secure. Such issues with security of the direct communications are not present in most of the DSQC and QSDC protocols presented there after. Several unconditionally secure protocols are presented in last few years. The unconditional security of those protocols are obtained by using different quantum resources. For example, unconditionally secure protocols are proposed a) with and without maximally entangled state and references there in, b) using teleportation, c) using entanglement swapping d) using rearrangement of order of particles etc. We are specifically interested in the DSQC protocols based on the rearrangement of orders of particles. Such a protocol was first proposed by Zhu et al. in 2006 but almost immediately after its publication, it was reported by Li et al. that the protocol of Zhu et al. is not secure under Trojan horse attack. Li et al. had also proposed a modified version of Zhu et al’s protocol. Thus Li et al.’s protocol may be considered as the first unconditionally secure protocol of DSQC based on rearrangement of order of the particles. In the last five years, many such protocols of DSQC are proposed. Very recently, Yuan et al. and Tsai et al. have proposed two very interesting DSQC protocols based on rearrangement of order of the particles. The Yuan et al. protocol uses four-qubit symmetric W state for communication, while the Tsai et al. protocol utilizes the dense coding of four qubit cluster states. Present work aims to improve the qubit efficiency of the existing DSQC protocols and to explore the possibility of designing DSQC and QSDC protocols using GHZ-like states and other quantum states.

GHZ states have been used for quantum information processing since a long time. Recently, the ideas have been extended to GHZ-like states. GHZ-like states belong to GHZ class and can be generated by an EPR state, a single qubit state and a controlled-NOT operation. GHZ-like states can be described in general as

$$\frac{(|\psi_i\rangle |0\rangle + |\psi_j\rangle |1\rangle)}{\sqrt{2}}$$

where $i, j \in \{0, 1, 2, 3\}$, $i \neq j$ and also $|\psi_i\rangle$ and $|\psi_j\rangle$ are Bell states which are usually denoted as

$$\begin{align*}
|\psi_0\rangle &= |\psi_{00}\rangle = |\psi^+_0\rangle = |00\rangle + |11\rangle \\
|\psi_1\rangle &= |\psi_{01}\rangle = |\phi^+_0\rangle = |01\rangle + |10\rangle \\
|\psi_2\rangle &= |\psi_{10}\rangle = |\psi^-_0\rangle = |00\rangle - |11\rangle \\
|\psi_3\rangle &= |\psi_{11}\rangle = |\phi^-_0\rangle = |01\rangle - |10\rangle
\end{align*}$$

Earlier we have shown that GHZ-like states are useful for controlled quantum teleportation and quantum information splitting. Here we have shown that we can form an orthonormal basis set in 2^3 dimensional Hilbert space with 8 GHZ-like states, which can be used for dense coding and DSQC. Thus GHZ-like states are established as a useful resource for quantum information processing. Remaining part of the paper is organized as follows: In the following section a protocol for DSQC using GHZ-like states without complete utilization of dense coding is provided. In Section 3 we have provided an efficient protocol of DSQC using GHZ-like states with complete utilization of dense coding. In Section 4 it is shown that the second DSQC protocol (i.e. the one with complete utilization of dense coding) may be converted to an equivalent QSDC protocol having better qubit efficiency. In Section 5 we have analyzed the security and efficiency of the proposed DSQC and QSDC protocols and have shown that the proposed protocols are unconditionally secure and maximal efficiency can be achieved here. Finally, we have concluded the work in Section 6 and have shown that any set of orthogonal states where dense coding is possible may be used for DSQC (and QSDC) and consequently for QKD. We have provided several examples of such quantum states which may be used for designing of efficient DSQC and QSDC protocols. Further, it is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols of the present kind. We have also shown that there exist a large class of quantum state which can be used to design maximally efficient DSQC and QSDC protocols of the present kind.

2 DSQC using GHZ-like states without complete utilization of dense coding

Let us suppose that Alice and Bob are two distant or spatially separated legitimate/authenticated communicators. Alice wants to transmit a secret classical message to Bob. The proposed protocol can be implemented by the following steps:

1. Without loss of generality we may assume that Alice has prepared n copies of the GHZ-like state:

$$|\lambda\rangle = \frac{|\phi^+0\rangle + |\psi^+1\rangle}{\sqrt{2}} = \frac{1}{2} (|010\rangle + |100\rangle + |001\rangle + |111\rangle).$$

\[\text{In principle the unconditional security arises from quantum non-realism and conjugate coding.}\]
Now Alice prepares a sequence P of n ordered triplet of entangled particles as $P = \{p_1, p_2, ..., p_n\}$, where the subscript $1, 2, ..., n$ denotes the order of a particle triplet $p_i = \{h_1, t_1, t_2\}$, which is in the state $|\lambda\rangle$. Symbol h and t are used to indicate home photon (h) and travel photon (t) respectively.

2. Alice encodes her secret message on sequence P by applying one of the four two qubit unitary operations $\{U_{00} = X \otimes I, U_{01} = I \otimes I, U_{10} = I \otimes Z, U_{11} = I \otimes iY\}$ on the particles (h_1, t_1) of each triplet. The unitary operations $\{U_{00}, U_{01}, U_{10}, U_{11}\}$ encodes the secret message $\{00, 01, 10, 11\}$ respectively. Here

$$I = |0\rangle\langle 0| + |1\rangle\langle 1|$$
$$X = \sigma_x = |0\rangle\langle 1| + |1\rangle\langle 0|$$
$$iY = i\sigma_y = |0\rangle\langle 1| - |1\rangle\langle 0|$$
$$Z = \sigma_z = |0\rangle\langle 0| - |1\rangle\langle 1|.$$

(4)

These operations U_{ij} $(i, j \in \{0, 1\})$ will transform the GHZ-like state $|\lambda\rangle$ into another GHZ-like state $|\lambda_{ij}\rangle$, where

$$|\lambda_{00}\rangle = U_{00}|\lambda\rangle = \frac{1}{2}X \otimes I(|010\rangle + |100\rangle + |001\rangle + |111\rangle) = \frac{1}{2}(|110\rangle + |000\rangle + |101\rangle + |011\rangle) = \frac{|010\rangle + |101\rangle}{\sqrt{2}},$$
$$|\lambda_{01}\rangle = U_{01}|\lambda\rangle = \frac{1}{2}I \otimes I(|010\rangle + |100\rangle + |001\rangle + |111\rangle) = \frac{1}{2}(|010\rangle + |100\rangle + |001\rangle + |111\rangle) = \frac{|010\rangle + |101\rangle}{\sqrt{2}},$$
$$|\lambda_{10}\rangle = U_{10}|\lambda\rangle = \frac{1}{2}I \otimes Z(|010\rangle + |100\rangle + |001\rangle + |111\rangle) = \frac{1}{2}(-|010\rangle + |100\rangle + |001\rangle - |111\rangle) = \frac{|010\rangle - |101\rangle}{\sqrt{2}} = |\lambda_{01}\rangle,$$
$$|\lambda_{11}\rangle = U_{11}|\lambda\rangle = \frac{1}{2}I \otimes iY(|010\rangle + |100\rangle + |001\rangle + |111\rangle) = \frac{1}{2}(-|000\rangle + |110\rangle + |011\rangle - |101\rangle) = -\frac{|010\rangle + |101\rangle}{\sqrt{2}} = |\lambda_{00}\rangle.$$

(5)

3. Alice keeps the home photon (h_1) of each triplet with her and prepares an ordered sequence,

$${P}_A = \{p_1(h_1), p_2(h_1), ..., p_n(h_1)\}.$$

Similarly, she uses all the travel photons to prepare an ordered sequence $${P}_B = \{p_1(t_1, t_2), p_2(t_1, t_2), ..., p_n(t_1, t_2)\}.$$

4. Alice disturbs the order of the pair of travel photon\(^8\) in $${P}_B$$ and create a new sequence $${P}'_B = \{p_1'(t_1, t_2), p_2'(t_1, t_2), ..., p_n'(t_1, t_2)\}.$$ The actual order is known to Alice only.

5. For preventing the eavesdropping, Alice prepares $m = 2n$ decoy photons\(^3\). The decoy photons are randomly prepared in one of the four states $\{|0\rangle, |1\rangle, |\pm\rangle, |\mp\rangle\}$, where $|\pm\rangle = \frac{|0\rangle \pm |1\rangle}{\sqrt{2}}$ and $|\mp\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ i.e. decoy photons state is $\otimes_{j=1}^{m} |P_j\rangle$, $|P_j\rangle \in \{|0\rangle, |1\rangle, |\pm\rangle, |\mp\rangle\}, (j = 1, 2, ..., m)$. Then Alice randomly inserts these decoy photons into the sequence $${P}'_B$$ and creates a new sequence $${P}'_{B+m}$$, which she transmits to Bob. $${P}_B$$ remains with Alice\(^4\).

6. After confirming that Bob has received the entire sequence $${P}'_{B+m}$$, Alice announces the positions of the decoy photons. Bob measures the corresponding particles in the sequence $${P}'_{B+m}$$ by using X basis or Z basis at random, here $X = \{|\pm\rangle, |\mp\rangle\}$ and $Z = \{|0\rangle, |1\rangle\}$. After measurement, Bob publicly announces the result of his measurement and the basis used for the measurement. Now Alice has to discard the 50% cases where, Bob has chosen wrong basis. From the remaining outcomes Alice can compute the error rate and check whether it exceeds the predetermined threshold or not. If it exceeds the threshold, then Alice and Bob abort this communication and repeat the procedure from the beginning. Otherwise they go on to the next step.

7. After knowing the position of the decoy photons Bob has already obtained the sequence $${P}'_B$$. Now Alice discloses the actual order of the sequence and Bob uses this information to convert the reordered sequence $${P}'_B$$ to the original sequence $${P}_B$$. Therefore Alice needs to exchange $2n$ classical bits.

\(^2\)In the entire manuscript we have used photon and qubit as anonymous but all the conclusions will remain valid for other form of qubits too.

\(^3\)Reordering of sequence of travel photons and reordering of sequence of unitary operations used to encode the message is equivalent.

\(^4\)In this kind of protocols it is often assumed that number of decoy photon $m \ll n$. For example, such an assumption is used in Yuan et al. protocol\(^1\). This is not a correct assumption because if $m \ll n$ then Bob may fail to detect Eve as there will be a finite possibility that most of the verification-qubits (decoy qubits) are not measured by Eve. In contrary, when $2x$ qubits (a random mix of message qubits and decoy qubits) travel through a channel accessible to Eve and x of them are tested for eavesdropping then for any $\delta > 0$, the probability of obtaining less than δm errors on the check qubits (decoy qubits), and more than $(\delta + \epsilon)n$ errors on the remaining x qubits is asymptotically less than $\exp[-O(n^{2}x)]$ for large x.\(^2\) As the unconditional security obtained in quantum cryptographic protocol relies on the fact that any attempt of eavesdropping can be identified. Thus to obtain an unconditional security we always need to check half of the travel qubits for eavesdropping in other words either half of the entangled states (in our case GHZ-like states) prepared by Alice would be used for checking of eavesdropping and remaining would be used for encoding or we have to randomly add decoy qubits whose number would be equal to the total number of travel qubits that are used for transmission of encoded information.

\(^5\)Alternatively Alice may use part of the original sequence for verification and the remaining part for encoding of information (messaging).
Alice’s measurement result	Bob’s measurement result	Decoded secret
0	ϕ^+	01
	ϕ	10
	ψ^+	00
	ψ^-	11
1	ϕ^+	00
	ϕ^-	11
	ψ^+	01
	ψ^-	10

Table 1: Relation between the measurement outcomes and the secret message in DSQC using GHZ-like states without complete utilization of dense coding.

8. Alice measures her home photon in computational basis (Z basis) and announces the result. Bob measures his qubits in Bell basis. From (5), it is clear that knowing the results of measurements of Alice and that of his own measurement, Bob can easily decode the encoded information. For clarity in Table 1 we have provided a relation between the measurement outcomes and the secret messages.

An analogous protocol of DSQC based on order rearrangement of particles have been recently proposed by Yuan et al. \[13\]. In their work they have used four qubit symmetric W state for secure communication of 2 bits of classical information. They have compared their protocol with an earlier protocol of DSQC introduced by Cao and Song \[12\]. Cao and Song protocol also uses 4-qubit W state for DSQC but in their protocol each W state can be used to transmit only one bit of classical information. Keeping this in mind Yuan et al.’s protocol as the state used by us to transmit two bits of secret message is a 3-qubit GHZ-like state. The advantage is obtained as encoding is done by performing unitary operations on two qubits (photons) but only one of them is kept as home photon. The same conclusion would remain valid for GHZ states and any other tripartite state where dense coding is possible.

Our protocol is considerably more efficient than the protocol of Yuan et al. But the efficiency is not maximal. A maximally efficient DSQC protocol must be able to transmit n bit secret message using $n−qubit$ quantum state (or n photons). Such a scheme is recently introduced by Tsai, Hsieh and Hwang \[19\] by using 4-qubit cluster state. They have used dense coding for the purpose. In the following section we have shown that it is possible to use GHZ-like state for maximal DSQC.

3 DSQC using GHZ-like states with complete utilization of dense coding

In order to establish that a clever use of dense coding may further increase the efficiency/capacity of the DSQC protocol described in the last section, first we need to show that dense coding is possible for GHZ-like states. We have established that in the following subsection and have subsequently described a protocol for DSQC, which exploit the dense coding.

3.1 Dense coding using GHZ-like states

In this sub-section it is shown that GHZ-like states can be used to achieve dense coding. First we need to note that the following set of 8 GHZ-like states are mutually orthogonal:

$$\begin{align*}
&\left\{ \frac{1}{\sqrt{2}} \left(|\psi^+\rangle + |\psi^-\rangle \right), \frac{1}{\sqrt{2}} \left(|\psi^+\rangle - |\psi^-\rangle \right), \frac{1}{\sqrt{2}} \left(|\phi^+\rangle + |\phi^-\rangle \right), \frac{1}{\sqrt{2}} \left(|\phi^+\rangle - |\phi^-\rangle \right), \\
&\frac{1}{\sqrt{2}} \left(|\phi^+\rangle + |\phi^-\rangle \right), \frac{1}{\sqrt{2}} \left(|\phi^+\rangle - |\phi^-\rangle \right), \frac{1}{\sqrt{2}} \left(|\phi^+\rangle + |\phi^-\rangle \right), \frac{1}{\sqrt{2}} \left(|\phi^+\rangle - |\phi^-\rangle \right) \right\}.
\end{align*}$$

These states form an orthonormal basis set which may be called GHZ-like basis set. Consequently, these 8 states may be distinguished through measurement on the GHZ-like basis. Assume that initially Alice and Bob share the following tripartite entangled state of GHZ-like family:

$$\frac{1}{\sqrt{2}} |\psi^+\rangle + |\psi^-\rangle.$$
The first two qubits are with Alice and the third one is with Bob. Now Alice can apply suitable unitary operations (as shown in Table 2) on the first two qubits and transform the initial state to an orthogonal GHZ-like state. Since a particular GHZ-like state can be transformed into all the other orthogonal GHZ-like states, Alice may choose the unitary operations shown in second column of Table 2 to encode 000, 001, 010, 011, 100, 101, 110, 111. After encoding this 3 bit information, Alice sends her bits to Bob. Now Bob can measure his qubits in GHZ-like state and therefore after her encoding she sends the entire state to Bob. The protocol achieves DSQC in the following steps:

1. Alice prepares \(n \) copies of one of the GHZ-like states. Here we assume that Alice has prepared \(n \) copies of the GHZ-like state:
 \[
 |\zeta\rangle = \frac{|\psi^+\rangle + |\psi^-
angle}{\sqrt{2}} = \frac{1}{2}(|000\rangle + |110\rangle + |001\rangle - |111\rangle).
 \] (7)

 Now Alice prepares a sequence \(P \) of \(n \) ordered triplet of entangled particles as \(P = \{p_1, p_2, \ldots, p_n\} \), where the subscript 1, 2, \ldots, \(n \) denotes the order of a particle triplet \(p_i = \{t_1, t_2, t_3\} \), which is in the state \(|\zeta\rangle \).

2. Alice encodes her secret message on sequence \(P \) by applying one of the eight two qubit unitary operations
 \[
 \{U_{000} = I \otimes I, \ U_{001} = X \otimes X, \ U_{010} = Z \otimes I, \ U_{011} = iY \otimes I, \ U_{100} = I \otimes X, \ U_{101} = X \otimes I, \ U_{110} = I \otimes iY, \ U_{111} = iY \otimes X\}
 \]
 on the first two qubits \(\{t_1, t_2\} \) of each triplet. The unitary operations \(\{U_{000}, U_{001}, U_{010}, U_{111}, U_{100}, U_{101}, U_{110}, U_{111}\} \) encodes \(\{000, 001, 010, 011, 100, 101, 110, 111\} \) respectively. These operations \(U_{ijk} (i,j,k \in \{0,1\}) \) will transform the

Table 2: Dense coding using GHZ-like states.

Message	Unitary operator	State
000	\(U_{000} = I \otimes I \)	\(\frac{
angle}{\sqrt{2}} \)		
001	\(U_{001} = X \otimes X \)	\(\frac{
angle}{\sqrt{2}} \)		
010	\(U_{010} = Z \otimes I \)	\(\frac{
011	\(U_{011} = iY \otimes I \)	\(\frac{
100	\(U_{100} = I \otimes X \)	\(\frac{
101	\(U_{101} = X \otimes I \)	\(\frac{
110	\(U_{110} = I \otimes iY \)	\(\frac{
111	\(U_{111} = iY \otimes X \)	\(\frac{

3.1.1 DSQC with the help of dense coding using GHZ-like states

The protocol is similar to the protocol introduced in Section 2.1, with the only difference that Alice does not keep any home photon and therefore after her encoding she sends the entire state to Bob. The protocol achieves DSQC in the following steps:

1. Alice prepares \(n \) copies of one of the GHZ-like states. Here we assume that Alice has prepared \(n \) copies of the GHZ-like state:
 \[
 |\zeta\rangle = \frac{|\psi^+\rangle + |\psi^-
angle}{\sqrt{2}} = \frac{1}{2} (|000\rangle + |110\rangle + |001\rangle - |111\rangle).
 \] (7)

2. Alice encodes her secret message on sequence \(P \) by applying one of the eight two qubit unitary operations
 \[
 \{U_{000} = I \otimes I, \ U_{001} = X \otimes X, \ U_{010} = Z \otimes I, \ U_{011} = iY \otimes I, \ U_{100} = I \otimes X, \ U_{101} = X \otimes I, \ U_{110} = I \otimes iY, \ U_{111} = iY \otimes X\}
 \]
 on the first two qubits \(\{t_1, t_2\} \) of each triplet. The unitary operations \(\{U_{000}, U_{001}, U_{010}, U_{111}, U_{100}, U_{101}, U_{110}, U_{111}\} \) encodes \(\{000, 001, 010, 011, 100, 101, 110, 111\} \) respectively. These operations \(U_{ijk} (i,j,k \in \{0,1\}) \) will transform the
state \(|\zeta\rangle\) into the state \(|\zeta_{ijk}\rangle\), as shown in Table 2 where

\[
\begin{align*}
|\zeta_{000}\rangle &= U_{000}|\zeta\rangle = \sqrt{\frac{1}{2}}|\psi^+\rangle + |\psi^-\rangle, \\
|\zeta_{001}\rangle &= U_{001}|\zeta\rangle = \sqrt{\frac{1}{2}}|\psi^+\rangle - |\psi^-\rangle, \\
|\zeta_{010}\rangle &= U_{010}|\zeta\rangle = |\psi^-\rangle + |\phi^+\rangle, \\
|\zeta_{011}\rangle &= U_{011}|\zeta\rangle = |\psi^-\rangle - |\phi^+\rangle, \\
|\zeta_{100}\rangle &= U_{100}|\zeta\rangle = \frac{1}{\sqrt{2}}(|\phi^+\rangle + |\phi^-\rangle), \\
|\zeta_{101}\rangle &= U_{101}|\zeta\rangle = \frac{1}{\sqrt{2}}(|\phi^+\rangle - |\phi^-\rangle), \\
|\zeta_{110}\rangle &= U_{110}|\zeta\rangle = \frac{1}{\sqrt{2}}(|\phi^-\rangle + |\phi^+\rangle), \\
|\zeta_{111}\rangle &= U_{111}|\zeta\rangle = \frac{1}{\sqrt{2}}(|\phi^-\rangle - |\phi^+\rangle).
\end{align*}
\]

(8)

3. Alice disturbs the order of the triplet of travel qubits in \(P\) and create a new sequence

\[P'_B = [p'_1(t_1, t_2, t_3), p'_2(t_1, t_2, t_3), ..., p'_n(t_1, t_2, t_3)].\]

The actual order is known to Alice only.

4. For preventing from eavesdropping, Alice prepares \(m = 3n\) decoy photons: \(\otimes_{j=1}^{m} |P_j\rangle, |P_j\rangle = \{|0\rangle, |1\rangle, |+\rangle, |−\rangle\}, (j = 1, 2, ..., m)\). Then Alice randomly inserts these decoy photons into the sequence \(P'_B\) and creates a new sequence \(P'_{B+m}\), which she transmits to Bob.

5. After confirming that Bob has received the entire sequence \(P'_{B+m}\), Alice announces the position of the decoy photons. Bob measures the corresponding particles in the sequence \(P'_{B+m}\) by using \(X\) basis or \(Z\) basis at random, here \(X = \{|+, |−\}\) and \(Z = \{|0\rangle, |1\rangle\}\). After measurement, Bob publicly announces the result of his measurement and the basis used for the measurement. Now Alice has to discard the 50% cases where, Bob has chosen wrong basis. From the remaining outcomes Alice can compute the error rate and check whether it exceeds the predefined threshold or not. If it exceeds the threshold then Alice and Bob abort this communication and repeat the procedure from the beginning. Otherwise they go on to the next step.

6. After knowing the position of the decoy photons Bob has already obtained the sequence \(P''_B\). Now Alice discloses the actual order of the sequence and Bob uses that information to convert the reordered sequence \(P''_B\) to the original sequence \(P\).

7. Now Bob measures his qubits in GHZ-like basis (equivalently he measures any two qubits in Bell basis and the other one in computational basis). From the third column of Table 2 it is clear that from the results of measurements, Bob can easily decode the encoded information.

This protocol uses three qubits to communicate three bits of classical information. This protocol can be extended to any set of states where all the elements of a basis set are unitarily connected. That means when you can create the entire basis set by applying unitary operations on one of the basis vector. This is always true for those states where dense coding is possible. Consequently our protocol can be extended to GHZ states and all other states where dense coding is possible. Some general observations in this regard are noted in Section 6.

4 Modification of the DSQC protocols into the QSDC protocols and their relevance to QKD

The previous protocol can be easily generalized to a QSDC protocol. To do so we need to modify Step 3-6 in the above protocol. In the modified protocol, after Step 2 (i.e. after the encoding is done) Alice prepares three sequences: \(P_{B1} = [p_1(t_1), p_2(t_1), ..., p_n(t_1)]\), with all the first qubits, \(P_{B2} = [p_1(t_2), p_2(t_2), ..., p_n(t_2)]\), with all the second qubits and \(P_{B3} = [p_1(t_3), p_2(t_3), ..., p_n(t_3)]\) with the remaining qubits. She prepares \(3n\) decoy photons as in Step 4 of the previous protocol and inserts \(n\) decoy photons randomly into each of the three sequences prepared by her. This creates three

\(^7\) Alternately Alice may announce the position of the decoy states as well as the basis used to prepare them. In that case Bob would measure the decoy states using the same basis.
extended sequences \((P_{B_1+n}, P_{B_2+n}, P_{B_3+n}) \) each of which contain 2n qubits. Then she sends the first sequence \(P_{B_1+n} \) to Bob. After confirming that Bob has received the entire sequence, she announces the position of decoy photons and checks eavesdropping. If eavesdropping is found she truncates the protocol otherwise she sends the second sequence \(P_{B_2+n} \) to Bob and checks for eavesdropping and if no eavesdropping is found then she sends the third sequence and check for eavesdropping. Now Bob can measure the final states in GHZ-like basis and obtain the message sent by Alice. Since Eve can not obtain more than 1 qubit of a tripartite state (as we are sending the qubits one by one and checking for eavesdropping after each step) she has no information about the encoded state and consequently this direct quantum communication protocol is secure. Thus the rearrangement of particle order is not required if we do the communication in multiple steps. Further, since no quantum measurement is done at Alice’s end and rearrangement of particle order is not required, this protocol does not require any classical communication for the decoding operation. Thus it is a QSDC protocol. Its efficiency will be naturally higher than the previous protocol. This is so because here Alice does not need to disclose the actual sequence and consequently the amount of classical communication required for decoding of the message is reduced. But this increase in qubit efficiency is associated with a cost. This QSDC protocol will be slow as Alice has to communicate in steps and has to check eavesdropping in the a sequence before she can send the next sequence. Thus the increase in qubit efficiency will be associated with a decrease in transmission rate. Following the same path we can also modify our first protocol and circumvent the use of rearrangement of particle ordering. That would increase qubit efficiency at the cost of transmission rate but the protocol would remain a DSQC protocol as Alice would require to measure the home qubit and communicate the result (classical communication) to Bob.

Here we would like to note that all DSQC and QSDC protocols can be reduced to QKD schemes if Alice encodes a random key instead of a message. Assume that Alice has a random number generator and Alice encodes the outcome of that in any of the protocols described above. Following the same protocol Bob will obtain the random key as a message. Now since both of them have an unconditionally secure quantum key they may use that for secure communication. Thus all the quantum states where dense coding is possible may be also used to generate secure quantum key. From the above discussion, it is straightforward to note that key generation rate in the above mentioned QSDC protocol will be less than the corresponding DSQC protocol.

5 Efficiency and security analysis of the DSQC and QSDC protocols

In this section, the security of the proposed DSQC and QSDC protocols are first analyzed. Then the quantum bit efficiency of the proposed protocols are analyzed and critically compared with the efficiency of the existing protocols. It is shown that the proposed protocols are highly efficient.

5.1 Security analysis

The security of the DSQC protocols prescribed above are obtained by two means. The decoy photon checking technique is used to decide whether Eve is online or not. Eve can not selectively measure the message qubits since the decoy photons are randomly inserted in the sequence \((P_{B+n}) \) that is communicated to Bob by Alice. Consequently, if Eve tries any kind of man-in-the-middle attack he will be disturbing the decoy qubits and that would lead to the detection of Eve. As the decoy photons are prepared randomly in \(\{|0\}, |1\}, |+\}, |-\} \rangle \) the present security check is of BB-84 type. The same logic ensures that Eve will be detected in the proposed QSDC protocol too. Here we need to note an important point, if the number of decoy qubits are much much less than that of travel qubits used for message encoding then there is a finite probability that the Eve’s man-in-the-middle attack get undetected. Consequently, Yuan’s protocol [13, 25], are insecure and only inclusion of adequate number of decoy photons can make them secure. Now another important point in this context is that in addition to have the ability to detect eavesdropping, Alice and Bob must be able to ensure that the secret message do not leak to Eve before she is detected. If we only use the decoy qubit technique then a considerably large amount of information would be leaked to Eve. For example, in our first protocol of DSQC if Eve attacks all the transmitting qubits she will obtain 62.5% of the secret message. Similarly, she will obtain 100% of the secret message in our second protocol of DSQC, and in Yuan’s protocol she will obtain 75% of the secret message. This can be understood easily. Assume that Eve stores the sequence \(P_{B+m} \) with herself and send a fake sequence to Bob. Therefore during security check when Alice announces the position of the decoy qubits, Eve will discard them and measure the rest of the photon in Bell basis in case of our first protocol and in GHZ-like basis in case of our second protocol. To be precise in case of the first protocol she may assume that Alice’s measurement outcome is \(|1\} \) and interpret her Bell measurement results accordingly, her interpretation will be correct in 50% cases where Alice’s measurement would actually be \(|1\} \) and in \(\frac{1}{4}th \) of the remaining cases. Thus 62.5% of the information would be leaked before detection of Eve. In case of second protocol Eve will obtain the entire message and therefore her interpretation will be 100%. To avoid this potential attack we need to rearrange the order of the particles. When Alice disturbs the order of particle sequence then Eve’s strategy
of intercept-resend attack can only give her a random sequence of zeroes and ones which is a meaningless data. In the QSDC protocol proposed above we don’t need to disturb the order of the particles as we check for eavesdropping after communication of every qubit and Eve can never obtain simultaneous access to more than one qubit of the entangled state, so she can not measure the transmitted states in GHZ-like basis and consequently she can not discriminate the encoded states. Further we would like to note that non-inclusion of the rearrangement of particle ordering technique makes a few of the existing protocols (e.g. [20]) unsecured under the intercept-resend attack.

5.2 Efficiency analysis

In the existing literature, two analogous but different parameters are used for analysis of efficiency of DSQC and QSDC protocols. The first one is simply defined as

\[\eta_1 = \frac{c}{q} \]

where \(c \) denotes the total number of transmitted classical bits (message bits) and \(q \) denotes the total number of qubits used [10, 19]. This simple measure does not include the classical communication that is required for decoding of information in a DSQC protocol. Consequently it is a weak measure. Another measure [17, 20] that is frequently used and which includes the classical communication is given as

\[\eta_2 = \frac{c}{q + b} \]

where \(b \) is the number of classical bits exchanged for decoding of the message (classical communications used for checking of eavesdropping is not counted). It is straightforward to visualize that \(\eta_1 = \eta_2 \) for all QSDC protocols but \(\eta_1 > \eta_2 \) for all DSQC protocols. Now while we compare two protocols of DSQC it is important that same definition of quantum bit efficiency is used. Further, it is important to note that number of decoy states required to obtain an exponential security is same as the number of travel qubits (it is neither negligible as considered in [13, 25] nor half of the total number of qubits) send in message mode (either encoding is done on these qubits directly or on the qubits entangled to them). This point is relevant in all such cases where dense coding is not completely realized and hence all the photons are not send to Bob. As there is no question of eavesdropping in home photons we don’t need to add decoy photon for them for checking of eavesdropping. This point is missing in many reported efficiency values. Another important point is that classical communication required to disclose the actual order will also contribute to \(b \). This point is not considered in [19] and consequently the efficiency values reported there are higher than the actual values. Further it is interesting to note that when we use all the qubits as travel qubits (say when we use maximal dense coding) then use of decoy photon or part of the string \(P \) for checking of eavesdropping is equivalent but when we partially use dense coding (or in other words when Alice keeps few qubits of an \(n \)-partite entangled state as home qubits and sends the rest as travel qubits) then it is beneficial to use single qubit decoy photons for eavesdropping checking. This can be understood as follows: Suppose Alice has \(2m \) copies of \(2n \)-partite entangled states and she can communicate \(x \)-bit of classical information using each \(2n \)-partite entangled state. Alice use first \(n \)-particles of each entangled state as home qubits and sends the remaining \(n \)-particles of each state as travel photon. To check that eavesdropping has not happened in travel photon either we have to insert \(2mn \) decoy photons or we have to use \(m \) copies of entangled states for verification and remaining for encoding. In the first case we obtain \(c = 2mx \), \(q = 2m \times 2n + 2mn \), \(\eta_1 = \frac{c}{3m} \) and in the second case \(c = mx \) (as only \(m \) copies of entangled states are used for encoding), \(q = 2m \times 2n \). Therefore, \(\eta_1 = \frac{c}{4m} \). This clearly shows that it is useful to add single photon decoy states in particular cases. We have already discussed that rearrangement of particle ordering can be avoided by sending the sequence of qubits in steps and that may convert a DSQC protocol into a QSDC protocol when all qubits are sent as travel qubits. In that case efficiency will be \(\eta_1 = \eta_2 = \frac{1}{2} \). This imposes an upper-bound on the efficiency of QSDC protocols. This is so because in the present framework Alice and Bob do not share any prior entanglement and in such situation one qubit of communication can not transmit more than one bit of classical information (dense coding is possible only when prior entanglement exist). Therefore, \(q \geq c \) and \(q = c \) iff all the particles of \(n \)-partite entangled states are sent as travel qubits. If these travel qubits are sent in \(n \) steps then we obtain the maximum qubit efficiency \(\eta_{2_{max}} = \frac{1}{2} \).

Corresponding rearrangement based single-step DSQC protocols can have a highest efficiency of \(\eta_2 = \frac{1}{4} \) as we need one bit of classical communication for each transmitted message qubits (this is required to disclose the exact sequence). Now the qubit efficiency of an efficient multi-step DSQC protocol (say instead of using rearrangement we sent the travel qubits in sequence in our first protocol) will have a qubit efficiency \(\eta_2 \) greater than their rearrangement based counter-part but it would be bounded as \(\eta_2 < \frac{1}{2} \). This can never approach \(\eta_2 = 0.5 \) as Alice’s disclosure of measurement on home qubits will require some classical communications but it may reach a value very close to 0.5 if a \((n-1)\)-steps DSQC protocol is designed with \(n \)-partite entangled states having \(n \gg 1 \) and Alice keeps only one qubit of each entangled state as home photon. In such a situation \(\eta_2 = \frac{2n-1}{2(n-1)+1} = \frac{2n-1}{2n-2} \). In Table 3 we have provided efficiency of several existing protocols and have compared them with the proposed protocol. The comparison clearly establishes that our protocols are highly efficient and this indicates that GHZ-like states can be used as an important resource for quantum communication.
6 Conclusions

Two protocols of DSQC using tri-partite GHZ-like states have been proposed. One of them is modified to construct a 3-step QSDC protocol. It is shown that these protocols are efficient and secure. It is also shown that some of the existing protocols are insecure and qubit efficiency claimed in some other cases are more than their actual efficiency. For example, Yuan et al. \[13, 25\] protocol is insecure under intercept resend attack as the number of decoy qubits are negligible compared to the total number of travel qubits used for encoding of the secret message. On the other hand, the qubit efficiency computed in \[19\] is an over estimate as they have not considered the classical communication required for disclosure of actual order of the particles. We have reported corrected efficiency of all such protocols and have established that the GHZ-like states can achieve maximum qubit efficiency. It established GHZ-like states as an important resource for quantum communication but it does not indicate any advantage of these states over the other states. To be precise, a large number of protocols of DSQC \[19, 13, 17\] have been reported in recent past. All these protocols, which use reordering of the sequence of particles, decoy photon and entangled channel, are essentially same. The schemes which do not use dense coding directly, for example, the protocol described in \[13\] and the analogous scheme described here in Section 2 do not claim to use dense coding in true sense but what it does is simply partial utilization of dense coding. From these facts one may conclude that dense coding is essential for efficient DSQC protocols. Here we will show that dense coding is sufficient for designing of a maximally efficient DSQC protocol in an analogy to our second protocol and can be modified to a multi-step QSDC protocol by the same manner as we have done here but dense coding is neither essential for the efficient QSDC nor for the QSDC protocols.

Let us assume that we have a set \(Q = \{Q_0, Q_1, \ldots, Q_{2^n-1}\}\) of \(n\)-partite orthonormal vectors which spans the \(2^n\) dimensional Hilbert space. Further we assume that these state vectors can be unitarily transformed to each other. In other words there exist a set of unitary operations \(U = \{U_0, U_1, \ldots, U_{2^n-1}: U_j Q_i = Q_j\}\) such that the unitary operations can transform a particular element \(Q_i\) of set \(Q\) into all the other elements of set \(Q\). Now suppose Alice prepares multiple copies of the state vector \(Q_i\). She can encode \(n\)-bit message by using an encoding scheme in which \(\{U_0, U_1, \ldots, U_{2^n-1}\}\) are used to encode \(\{0_1 0_2 \cdots 0_n, 0_1 0_2 \cdots 1_n, \cdots, 1_n 1_2 \cdots 1_n\}\) respectively. If these encoded messages are sent to Bob then Bob can unambiguously decode the message since the states received by him are mutually orthogonal. Security can be achieved by insertion of decoy qubits and either by rearrangement of the particle order or by sending the encoded steps in multiple states. This is sufficient for construction of an efficient DSQC or QSDC scheme and it does not require dense coding.

Dense coding is a special case of the above idea. To be precise, dense coding is possible if and only if \(U_j\) are \(m\) qubit operators, where \(m < n\). In a good dense coding protocol the operators are chosen in such a way that \(m = \frac{n}{2}\) for even \(n\) and \(m = \frac{n}{2} + 1\) for odd \(n\). Now for dense coding, Alice and Bob shares a quantum channel \(Q_i\) in such a way that \(m\) qubits of \(Q_i\) are with Alice and the remaining \(n-m\) qubits are with Bob, who knows the initial state \(Q_i\) prepared by Alice. Alice may encode a \(n\)-bit message by operating any of \(2^n\) unitary \(m\)-qubit operators available with her (say she applies \(U_j\)) and send her photons to Bob. Now since the orthonormal states are distinguishable, Bob can measure his qubits (in Q basis) and find the state \(Q_j\). Since he already knows that the initial state was \(Q_i\), now he knows that Alice has send him a bit string indexed as \(j\). Thus \(n\)-bit information are send with \(m < n\) qubits. This is the essence of dense coding. This does not involve any security measures. If we just need to modify it for DSQC then we assume that Alice and Bob do not share any entanglement. Alice prepares \(n\) copies of \(Q_i\), prepares a sequence, apply unitary operations as per the secret message she wants to send, changes its order, inserts decoy photons and sends the entire sequence to Bob. Now first Bob confirms that

Protocol	Qubit efficiency \(\eta_1\) in %	Qubit efficiency \(\eta_2\) in %	Quantum states used
[19]	26.67%	22.22%	Three qubit W state
[19]	16.67%	14.29%	Four qubit W state
[18]	33.33%	22.22%	Four qubit cluster state
[19]	50%	33.33%	Four qubit cluster state
[24]	33.33%	25%	Four qubit cluster state
[24]	16.67%	14.29%	Four qubit cluster state
Proposed DSQC without complete utilization of densecoding	40%	25%	Three qubit GHZ-like state
Proposed DSQC with complete utilization of densecoding	50%	33.33%	Three qubit GHZ-like state
Proposed QSDC protocol	50%	50%	Three qubit GHZ-like state

Table 3: Comparison of quantum bit efficiency of different protocols.
he has received a sequence of appropriate length, then Alice announces the positions of the decoy photons, Bob measures
them and announces the result and the basis used to measure them. Alice uses that result to compute the error rate to
detect Eve. If the error rate is below the threshold, Alice discloses the sequence, Bob reorders his sequence and measures
it in Q basis to know the secret send by Alice. In this entire protocol no specific channel is used. This is true in general
and consequently any existing dense coding protocol can be used for DSQC. Further, Bob will be able to distinguish
among 2^n orthogonal states iff he has access to all the n qubits and consequently Alice has to send the entire sequence
to Bob. In all such cases quantum bit efficiency η_2 will be maximum. No quantum channel (Q_i) has any advantage
over the others $(Q_{j \neq i})$. Since dense coding has been already reported in several systems, the present discussion implies
that the maximally efficient DSQC (and their maximally efficient multi-step QSDC counterparts) can be achieved with
large number of alternatives. For example, dense coding is recently reported in different classes of genuine quadripartite
entangled states 28, such as $|\Omega\rangle = \frac{1}{\sqrt{2}}(|0\rangle |\varphi^+\rangle |0\rangle + |1\rangle |\varphi^-\rangle |1\rangle)$, $|Q_4\rangle = \frac{1}{2}(|0000\rangle + |0101\rangle + |1000\rangle + |1110\rangle)$, $|Q_5\rangle = \frac{1}{2}(|0000\rangle + |1011\rangle + |1110\rangle + |1110\rangle)$. All these states can now be used for efficient DSQC.

Thus dense coding is sufficient to construct efficient DSQC protocols and several alternate quantum channel exist. But
as dense coding is not essential for DSQC, there exist a large number of quantum states which does not show maximal
dense coding (or which does not show dense coding at all) but which may be used for designing of efficient protocol of
DSQC and QSDC. To be precise, if there exist a set of orthonormal states for which $m = n$, then dense coding would
not be possible but DSQC would be possible. Examples of such a system are tripartite and quadripartite W states. In
brief, we have numerous alternative quantum states which may be used for DSQC and at the end of the day it appears
to be matter of convenience of the experimentalist. Whichever, set of orthogonal states Q and unitary operations U will
be easier to generate experimentally will be more useful for the realization of DSQC. This is so because quantum bit
efficiency η_2 is same for all these systems. Further, we would like to note that since the efficiency would remain same, it
does not really make sense to investigate the possibility of DSQC using newer systems involving more complex quantum
states (say 6 qubit W state or Brown state). Here we have exploited the intrinsic symmetry of the existing protocols and
have used simple minded logic to reach at strong conjecture that no new and complex system will provide better quantum
bit efficiency as long as present class of protocols are concerned.

Further, we wish to add that Werner 29 had shown that there exists a one to one correspondence between dense
coding and teleportation when these schemes are assumed to be tight. Here we have shown that there exists a one to one
mapping between dense coding, DSQC and QSDC. Consequently all the quantum states used for perfect teleportation can
be used for DSQC, QSDC and QKD. These simple but interesting observations open up the window for experimentalist
to use different experimentally realizable quantum states (as per their convenience to create it experimentally and to
maintain it) for the purpose of QKD, QSDC and DSQC.

Acknowledgment: AP thanks Institute of Mathematical Sciences, Chennai, India (IMSc) for the warm hospitality
and facilities provided during his visit. Part of this work is done in IMSc. He also thanks Department of Science and
Technology (DST), India for support provided through the DST project No. SR/S2/LOP/2010.

References

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and
Signal Processing, Bangalore, p. 175 (1984).
[2] A.K. Ekert, Phys. Rev. Lett. 67, (1991) 661.
[3] C.H. Bennett, Phys. Rev. Lett. 68, (1992) 3121.
[4] M. Hillery, V. Buzek and A. Bertaiume, Phys. Rev. A 59, (1999) 1829.
[5] K. Shimizu and N. Imoto, Phys. Rev. A 60, (1999), 157.
[6] J. Liu et al., Chin. Phys. Lett. 23, (2006) 2652.
[7] X. H. Li et al., J. Korean Phys. Soc. 49, (2006) 1354.
[8] F. L. Yan and X. Zhang, Euro. Phys. J. B 41, (2004) 75.
[9] Z. X. Man, Z. J. Zhang and Y. Li, Chin. Phys. Lett. 22, (2005) 18.
[10] T. Hwang, C. C. Hwang and C W Tsai, Euro. Phys. J. D 61, (2011) 785.
[11] A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, Phys. Rev. A 73, (2006) 022338.
[12] H. J. Cao and H.S. Song, Chin. Phys. Lett. 23, (2006) 290.
[13] H. Yuan et al., Int. J. Theo. Phys. 50, (2011) 2403.
[14] K. Bostrom and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002).
[15] L. Goldenberg and L. Vaidman, Phys. Rev. Lett. 75, (1995) 1239.
[16] M. Lucamarini and S. Mancini, Phys. Rev. Lett. 94, 140501 (2005).
[17] G. Long, et al., Front. Phys. China, 2 (2007) 251.
[18] A. Beige, B. G. Englert, C. Kurtsiefer and H. Weinfurter, Acta Phys. Pol. A 101, (2002) 357.
[19] C.W. Tsai, C.R. Hsieh, and T. Hwang, Eur. Phys. J. D 61, (2011) 779.
[20] Yang et al., Int. J. Theo. Phys. 48, (2009) 516.
[21] Q.Y. Zhang et al., Int. J. Theo. Phys. 48, (2009) 3331.
[22] A. Banerjee, K. Patel and A. Pathak, Int. J. Theo. Phys. 50, (2011) 507.
[23] A. Pathak and A. Banerjee, Int. J. Quant. Info. 9 (2011) 389.
[24] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New Delhi (2008) 589.
[25] YUAN Hao et al., Commun.Theor. Phys. 55, (2011) 984.
[26] W. J. Liu et al. Chin.Phys. B 18, (2009) 4105.
[27] G. Y. Wang, X. M. Fang and X. H. Tan, Chin. Phys. Lett. 23, (2006) 2658.
[28] B. Pradhan, P. Agrawal and A. K. Pati, quant-ph/0705.1917.v1 (2007).
[29] R. F. Werner, J. Phys. A: Math. Gen. 34, (2001) 7081.