SUPPLEMENTARY MATERIAL

Secondary metabolites from marine-derived *Streptomyce antibioticus* strain H74-21

Shuna Fu\(^a\), Fan Wang\(^a\), Hongyu Li\(^a\), Yixuan Bao\(^a\), Yu Yang\(^a\), Huifang Shen\(^b\), Birun Lin\(^b\)* and Guangxiong Zhou\(^a\)*

\(^a\)Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China;
\(^b\)Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510632, China

A new secondary metabolite, (2\(S\),3\(R\))-L-Threonine, \(N\)-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((\(S\)))-Pro-8-hydroxy-(\(R\))-Ile (3), cyclo-((\(S\)))-Pro-(\(R\))-Leu (4), and seco-((\(S\)))-Pro-(\(R\))-Val (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived *streptomycete* strain H74-21, which was isolated from sea sediment in a mangrove district. The structure of the new compound was established on the basis of its spectroscopic data, including 1D NMR and 2D NMR, HR-TOF-MS. Their antifungal activities against *Candida albicans* and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC\(_{50}\) value of 27.0 \(\mu\)g/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50\(\mu\)g/mL.

Keywords: *Streptomyce*; secondary metabolites; dipeptide; streptomyceamide C;
piperidinedione

Compound 1

![Figure S1. The IR spectrum of Compound 1](image1)

![Figure S2. HR-MS of compound 1](image2)
Figure S3. The 1H spectrum of compound 1 (300 MHz in CD$_3$OD)

Figure S4. The 13C spectrum of compound 1 (75 MHz in CD$_3$OD)
Figure S5. The DEPT spectrum of compound 1 (in CD$_3$OD)

Figure S6. The 1H-1H COSY spectrum of compound 1 (in CD$_3$OD)
Figure S7. The HMQC spectrum of compound 1 (in CD$_3$OD)

Figure S8. The HMBC spectrum of compound 1 (in CD$_3$OD)
Figure S9. The NOE spectrum of compound 1 (300 MHz in CD$_3$OD)

Figure S10. The 1H spectrum of compound 1 (600 MHz in DMSO-d_6)
Figure S11. The NOE spectrum of compound 1 (600 MHz in DMSO-\textit{d}_6)

Figure S12. The rational or alternative configuration and their favorite conformers with the lowest energy of compound 1 in ChemDraw. a: A rational configuration for 1, in its favorite conformer, dihedral angle between H(8)-C(8)-C(13) and H(13)-C(13)-C(8) is about 120° (Karplus equation); b: An alternative and less possible configuration for 1, in its favorite conformer, dihedral angle between H(8)-C(8)-C(13) and H(13)-C(13)-C(8) is about 180°.
Figure S13. The observed NOE correlations of compound 1

Figure S14. The 1H-1H COSY and key HMBC correlations of 1 and 2

Table S1. 1H (300 MHz) and 13C (75 MHz) NMR Data of 1 and 2 (δ in ppm J in Hz)

Position	1 (in CD$_3$OD)	2 (in CDCl$_3$)			
	δ (H)	δ (C)	δ (H)	δ (C)	
1	115.7				
2	152.6				
3	128.2	3.83 (1H, d, J = 4.3)	69.4		
4	8.30 (1H, d, J = 7.9)	126.4			
5	6.91 (1H, t, J = 7.9)	119.6	166.8		
6	7.64 (1H, d, J = 7.9)	123.5	4.18 (1H, d, J = 18.0)	52.7	
		3.90 (1H, d, J = 18.0)			
7	171.9	2.95 (3H, s)	33.7		
8	4.71 (1H, d, J = 6.9)	59.7	2.30 (1H, m)	33.9	
9	172.1	0.94 (3H, d, J = 6.9)	18.2		
10	4.21 (2H, q, J = 7.1)	62.8	1.06 (3H, d, J = 7.0)	19.9	
11	1.29 (3H, t, J = 7.1)	14.6	3.00 (3H, s)	34.4	
	Chemical Shift (ppm)	Multiplicity			
----	----------------------	--------------	----	---	---
12	8.37 (1H, s)			162.3	
13	4.41 (1H, m)			68.6	
14	1.25 (3H, d, J = 7.3)			20.7	

Compound 2

![IR Spectrum](image1)

Figure S15. The IR spectrum of compound 2

![HR-MS Spectrum](image2)

Figure S16. The HR-MS spectrum of compound 2
Figure S17. The 1H spectrum of compound 2 (300 MHz in CDCl$_3$)

Figure S18. The 13C spectrum of compound 2 (75 MHz in CDCl$_3$)
Figure S19. The DEPT spectrum of compound 2 (in CDCl₃)

Figure S20. The ¹H-¹H COSY spectrum of compound 2 (in CDCl₃)
Figure S21. The HMQC spectrum of compound 2 (in CDCl₃)

Figure S22. The HMBC spectrum of compound 2 (in CDCl₃)
Figure S23. The NOE spectrum of compound 2 (in CDCl₃)
Table S2. 1H (300 MHz) and 13C (75 MHz) NMR data of 3-5 (δ in ppm J in Hz)

Position	3 (in CD$_3$OD)	4 (in CD$_3$OD)	5 (in CD$_3$OD)			
	δ (H)	δ (C)	δ (H)	δ (C)	δ (H)	δ (C)
1	172.6	172.9	172.8			
2						
3	3.56-3.52 (1H, m)	3.54-3.51 (2H, m)	3.59-3.55 (1H, m)	46.3	46.6	46.3
	3.49-3.46 (1H, m)				3.54-3.50	
4	2.03-1.98 (1H, m)	2.06-1.99 (1H, m)	2.05-2.01 (1H, m)	23.4	23.8	23.4
	1.96-1.88 (1H, m)				1.98-1.94	
5	2.33-2.28 (1H, m)	2.35-2.31 (1H, m)	2.35-2.33 (1H, m)	29.7	29.2	29.7
	1.98-1.90 (1H, m)				1.98-1.94	
6	4.06 (1H, br. s)	61.5	4.15 (1H, br. s)	60.4	4.05 (1H, br. s)	61.7
7	167.8	169.1	167.7			
8						
9	4.48 (1H, t, $J = 6.9$)	4.29 (1H, t, $J = 7.1$)	54.8	4.23 (1H, t, $J = 7.1$)	60.2	
10	2.18-2.12 (1H, m)	1.99-1.94 (1H, m)	39.5	2.50 (1H, dq, $J = 7.3$)	30	
	1.57-1.53 (1H, m)					
11	1.47-1.41 (1H, m)	37.2	2.06-2.01 (1H, m)	25.9	1.11 (3H, d, $J = 7.3$)	19
	1.35-1.29 (1H, m)					
12	0.95 (3H, t, $J = 6.9$)	1.01 (3H, d, $J = 6.5$)	23.5	0.95 (3H, d, $J = 6.9$)	16.8	
13	1.07 (3H, d, $J = 6.9$)	0.97 (3H, d, $J = 6.5$)	22.3			
Table S3. Antifungal activities of isolated compounds 1–5 (MIC: µg/mL)

Compounds	1	2	3	4	5	Antimycin A_{2α}	Antimycin A_{7α}
MIC	>1000	>1000	>1000	>1000	>1000	31.25	31.25

Table S4. Cytotoxic activities of isolated compounds 1–5 (IC₅₀: µg/mL)

Compounds	MCF-7	SF-268	NCI-H468
1	27	>50	>50
2	>50	>50	>50
3	>50	>50	>50
4	>50	>50	>50
5	>50	>50	>50

Positive control

4 41 25.1

Figure S24. 16S rDNA of H74-21

ATCTGCCCTGCACTCTGGGACACAGCCCTGGAAACGGGGTCTAATACCCGATATCACTC
TTGCAGGCATCTGTGAGGTTGCAAGCTCCCGCGGTGTCAGGATGACGCCTGGCCCTTA
TCAGCTTGTGTTGAGGTAAATTGCTCAACCAGGGCAGACGGGTTAGCCCGGCTAGA
GGGCGACCGCCACACTGGGACTGAGACACCGGCCACTCTAGCGGGAGCACAGA
GTGGGGAATATTGCAACAATGGGGGAAAGCCTGTAGTCAGGCAGCCGCGGTGAGG
ACCGCTTCTGGGTGTTAACCCTTTACGACGGGGAGAAGCAGACTGGAATGACCTT
GCAGAAAGACGGCGCCTGCTAATACCTGAGCCCGAGCCGCTAGTACGAGGAGCACAG
AGCGTTGTCCGGAAATTAGTTGGGGTAAAGGCTCTTGAGGCGGCTTGTCGTCG
GTGAAAGCCCGCCCTTAACCCCGGGTCTGCATTCGATACGGGCTACTGAGGAGCTG
GTAGGGGAGATCAGGAAATTCCTGTTGTAGCGGGTAACGGCGAAGTCAGTACG
ACCGCTTCTGGGGATCTCTGGGGCAATTACTGACGCTGAGGGGACACGCGAAGAGCTG
GGAGCGAAGAGGATAGATACCTTGTGATTCACGCGTAAACGGTGAGGAAAGTGAGT
GGTGGCGACATTACCTGACTGCTGACGCGTAAACCGATAGGAGGAGCTG
GAGTACGCGCAGCCAGCTAAACAGGCTGAAACGGTGAGGAAAGTGAGT
GGAGCATGTTGGCTTAACTTCGAGCGCAGCGGAAGAACCTTAAACCTTACGCTG
CCGAAACCGCCAGATGGTGCAGGCCCTTGTGGTACAGGGTACGGGAATGTGC
TGTCGTCGCTGCTGCTGAGTAGTGTGGGTAAAGTCGCCACAGAGGCAAAAAATCGG
TTTGTGTTTGGCAGCATGGCTCTTCTGGGGATGTTGGGGACTGACGAGGACACCGGC
CAAGGGGACGACGTTCAAGTGTCCACTGACGAGATGTTGGGGGATGTTGGGGGATG
GCACACGTGCTACAATGGGGCGCTAACAAAGACGACGATACGGTGAGGTTGGG

GTGACGAAAGAGGATAGATACCTTGTGATTCACGCGTAAACGGTGAGGAAAGTGAGT
GGTGGCGACATTACCTGACTGCTGACGCGTAAACCGATAGGAGGAGCTG
GAGTACGCGCAGCCAGCTAAACAGGCTGAAACGGTGAGGAAAGTGAGT
GGAGCATGTTGGCTTAACTTCGAGCGCAGCGGAAGAACCTTAAACCTTACGCTG
CCGAAACCGCCAGATGGTGCAGGCCCTTGTGGTACAGGGTACGGGAATGTGC
TGTCGTCGCTGCTGCTGAGTAGTGTGGGTAAAGTCGCCACAGAGGCAAAAAATCGG
TTTGTGTTTGGCAGCATGGCTCTTCTGGGGATGTTGGGGGACTGACGAGGACACCGGC
CAAGGGGACGACGTTCAAGTGTCCACTGACGAGATGTTGGGGGATGTTGGGGGATG
GCACACGTGCTACAATGGGGCGCTAACAAAGACGACGATACGGTGAGGTTGGG

Strain No	Names of identified species
cfcc3080	*Streptomyces griseoruber* strain cfcc3080
NBRC 12838	*Streptomyces antibioticus* strain NBRC 12838
CSSP528	*Streptomyces antibioticus* strain CSSP528
1022-257	*Streptomyces antibioticus* strain 1022-257
cfcc3075	*Streptomyces antibioticus* strain cfcc3075
cfcc3085	*Streptomyces antibioticus* strain cfcc3085
EAAG90	*Streptomyces antibioticus* strain EAAG90
NBRC 12873	*Streptomyces griseoruber* strain NBRC 12873
CSSP408	*Streptomyces griseoruber* strain CSSP408
S5	*Actinobacterium* S5
15721	*Streptomyces bungoensis* strain 15721
A316	*Streptomyces griseoruber* strain A316
HBUM174899	*Streptomyces longwoodensis* strain HBUM174899
DSM 40089	*Streptomyces galbus* strain DSM 40089
JM-R35	*Streptomyces caeruleatus* strain JM-R35
JCM 3373	*Streptomyces lasaliensis* strain JCM 3373
NBRC 12849	*Streptomyces cellostaticus* strain NBRC 12849
BCCO 10_1548	*Streptomyces curacoi* strain BCCO 10_1548
1043	*Streptomyces panayensis* strain 1043
NBRC 15711	*Streptomyces bungoensis* strain NBRC 15711