Does immunosuppressive property of non-steroidal anti-inflammatory drugs (NSAIDs) reduce COVID-19 vaccine-induced systemic side effects?

Itsuro Kazama*, Momono Senzaki

School of Nursing, Miyagi University, Taiwa-cho, Miyagi, Japan.

SUMMARY To help stop the coronavirus disease 2019 (COVID-19) pandemic, vaccines are currently the most critical tool. However, the COVID-19 mRNA vaccines frequently cause systemic side effects shortly after the injection, such as fever, headache and generalized fatigue. In our survey, after receiving the second dose of the COVID-19 vaccine, 80% developed fever, 62% headache and 69% generalized fatigue. Among people who required antipyretics, the average durations of fever and headache were significantly shorter in those who took non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin, loxoprofen and ibuprofen, than those who took acetaminophen. In our patch-clamp studies, NSAIDs effectively suppressed the delayed rectifier K⁺-channel (Kv1.3) currents in T-lymphocytes and thus exerted immunosuppressive effects. Because of this pharmacological property, the use of NSAIDs should be more effective in reducing the vaccine-induced systemic side effects that are caused primarily by the enhanced cellular immunity.

Keywords Coronavirus disease 2019 (COVID-19), vaccine, side effects, non-steroidal anti-inflammatory drugs (NSAIDs)
arthritis (9). In our previous case reports, NSAIDs were actually effective in reducing systemic symptoms triggered by the enhanced autoimmunity (10,11). Concerning the mechanisms by which NSAIDs exert this immunosuppressive property, NSAIDs inhibit the migration of leukocytes or directly suppress their cytokine production, either cyclooxygenase (COX) -dependently or -independently (12,13). Since the enhanced cellular immunity was the primary pathogenesis of the vaccine-induced side effects, the immunosuppressive effect of NSAIDs was thought to be responsible for the more rapid reduction of fever, headache and generalized fatigue in our survey (Figure 1).

In our patch-clamp studies, we have revealed that NSAIDs, such as aspirin, indomethacin and diclofenac, functionally inhibited delayed rectifier K+ -channels (Kv1.3) expressed in T-lymphocytes, and thus suppressed the activity of the cells (14) (Figure 2). Since the channels are highly expressed in T-lymphocytes (15), and since selective blockade of the channels actually repressed the immune response in lymphocytes (16), this mechanism was thought to be largely responsible for the immunosuppressive property of NSAIDs (Figure 2). Concerning this pharmacological property, besides the use of immunosuppressive drugs or corticosteroids, the use of selective Kv1.3-channel inhibitors may also be beneficial. The early administration of these drugs may not only shorten the duration of the vaccine-induced systemic side effects, but also prevent serious complications after the vaccination, such as myocarditis and pericarditis (17). Recently, we have additionally demonstrated in our patch-clamp studies that drugs such as statins (lovastatin, simvastatin), antibiotics (clarithromycin, chloroquine), anti-hypertensive drugs (nifedipine, bendipide, diltiazem, verapamil) and anti-allergic drugs (cetirizine, fexofenadine, azelastine, terfenadine), also strongly suppress the Kv1.3-channel currents in T-lymphocytes (15,18-20). In this context, besides NSAIDs, these drugs may also be potentially effective in reducing vaccine-induced systemic side effects.

Funding: This work was supported by the Salt Science Research Foundation, No. 2123 to IK.

Conflict of Interest: The authors have no conflicts of interest to disclose.

References

1. Kazama I. Targeting lymphocyte Kv1.3-channels to suppress cytokine storm in severe COVID-19: Can it be a novel therapeutic strategy? Drug Discov Ther. 2020; 14:143-144.

2. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernan MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021; 384:1412-1423.

3. Lopez Bernal J, Andrews N, Gower C, et al.
Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med. 2021; 385:585-594.

4. Menni C, Klaser K, May A, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis. 2021; 21:939-949.

5. Kazama I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve post-COVID syndrome? Drug Discov Ther. 2020; 14:259-261.

6. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021; 21:195-197.

7. Wolde Meskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest. 2021; 131.

8. Cho JY. Immunomodulatory effect of nonsteroidal anti-inflammatory drugs (NSAIDs) at the clinically available doses. Arch Pharm Res. 2007; 30:64-74.

9. Wallace DJ. Advances in drug therapy for systemic lupus erythematosus. BMC Med. 2010; 8:77.

10. Kazama I, Sasagawa N, Nakajima T. Complete remission of human parvovirus b19 associated symptoms by loxoprofen in patients with atopic predispositions. Case Rep Med. 2012; 2012:703281.

11. Kazama I, Miura C, Nakajima T. Nonsteroidal anti-inflammatory drugs quickly resolve symptoms associated with EBV-induced infectious mononucleosis in patients with atopic predispositions. Am J Case Rep. 2016; 17:84-88.

12. Hackstein H, Morelli AE, Larregina AT, Ganster RW, Papworth GD, Logar AJ, Watkins SC, Falo LD, Thomson AW. Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J Immunol. 2001; 166:7053-7062.

13. Gao JX, Issekutz AC. The effect of ebselen on polymorphonuclear leukocyte migration to joints in rats with adjuvant arthritis. Int J Immunopharmacol. 1993; 15:793-802.

14. Kazama I, Maruyama Y, Murata Y. Suppressive effects of nonsteroidal anti-inflammatory drugs diclofenac sodium, salicylate and indomethacin on delayed rectifier K’-channel currents in murine thymocytes. Immunopharmacol Immunotoxicol. 2012; 34:874-878.

15. Kazama I. Physiological significance of delayed rectifier K’ channels (Kv1.3) expressed in T lymphocytes and their pathological significance in chronic kidney disease. J Physiol Sci. 2015; 65:25-35.

16. Villalonga N, David M, Bielanska J, Gonzalez T, Parra D, Soler C, Comes N, Valenzuela C, Felipe A. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem Pharmacol. 2010; 80:858-866.

17. Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021; 326:1210-1212.

18. Kazama I, Baba A, Maruyama Y. HMG-CoA reductase inhibitors pravastatin, lovastatin and simvastatin suppress delayed rectifier K’-channel currents in murine thymocytes. Pharmacol Rep. 2014; 66:712-717.

19. Baba A, Tachi M, Maruyama Y, Kazama I. Suppressive effects of diltiazem and verapamil on delayed rectifier K’-channel currents in murine thymocytes. Pharmacol Rep. 2015; 67:959-964.

20. Saito K, Abe N, Toyama H, Ejima Y, Yamauchi M, Mushiake H, Kazama I. Second-generation histamine H1 receptor antagonists suppress delayed rectifier K’-channel currents in murine thymocytes. Biomed Res Int. 2019; 2019:6261951.