Can Vacancies Lubricate Dislocation Motion in Aluminum?

Gang Lu* and Efthimios Kaxiras

Department of Physics and Division of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138
(Received 19 April 2002; published 16 August 2002)

The interaction of vacancy with dislocations in Al is studied using the semidiscrete variational Peierls-Nabarro model with \textit{ab initio} determined γ surface. For the first time, we confirm theoretically the so-called vacancy lubrication effect on dislocation motion in Al, a discovery that can settle a long-standing controversy in dislocation theory for fcc metals. We provide insights into the lubrication effect by exploring the connection between dislocation mobility and its core width. We predict an increased dislocation splitting in the presence of vacancy. We find that on average there is a weak repulsion between vacancies and dislocations which is independent of dislocation character.

DOI: 10.1103/PhysRevLett.89.105501 PACS numbers: 62.20.Fe, 61.72.–y, 62.40.+i

Defects and their mutual interactions dominate the properties of materials that host them. Vacancies as point defects have long been known to strongly interact with dislocations (line defects), and the study of their interactions represents one of the most challenging problems in material science and engineering [1]. More than a decade ago, Benoit \textit{et al.} discovered an interesting phenomenon in ultra-high-purity aluminum deformed at low temperature of 4.2 K. They observed a marked decrease of elastic modulus in cold-worked Al, which they attributed to vacancy enhanced dislocation mobility in Al, a novel phenomenon they termed dislocation lubrication effect \cite{2,3}. Corroborative experimental evidence led these authors to conclude that vacancies, generated from cold work or irradiation, are solely responsible for the enhanced dislocation mobility. This indeed is a quite intriguing result because, traditionally, vacancies are thought to lock dislocation motion by forming atmospheres around the dislocation \cite{4}. Furthermore, the lubrication effect may hold the key to resolving the long-standing controversy for Peierls stress (σ_p) estimated from plastic deformation and from internal friction measurements. It is generally believed that kink pair formation (KPF) of dislocations is responsible for the Bordoni peaks observed in internal friction measurements of fcc metals \cite{5,6}. However, σ_p, derived from the KPF mechanism is on the order of $10^{-3}\mu$ (μ is the shear modulus) far greater than the critical resolved shear stress (CRSS) estimated from plastic deformation experiments, which is around $10^{-5}\mu$ to $10^{-4}\mu$ \cite{7}. This has been regarded as a serious problem because it casts doubt on the well-accepted KPF theory for the Bordoni peak in fcc metals. The controversy is particularly troublesome in light of the good agreement found in bcc and ionic crystals regarding σ_p measured from internal friction and low temperature CRSS experiments \cite{6}. It is conceivable that the vacancy lubrication effect may settle the controversy based on the fact that vacancies strongly interact with dislocations and, as a consequence, lower their σ_p to the level that is consistent with the low-temperature CRSS experiments \cite{2,3}. Finally, if the lubrication mechanism turns out to be general, it may lead to an innovation in molding technology for materials with high σ_p by introducing vacancies \cite{8}. However interesting the lubrication effect may seem to be, it has not been widely accepted, which, in our opinion, is due to poor understanding of the phenomenon. In fact, there is no complete theoretical work ever published to address this problem, to the best of our knowledge. Therefore it is the purpose of this Letter to present the first \textit{ab initio} study of the problem. As we will show in the following, our calculations not only provide theoretical support for the lubrication effect, they also reveal other important difference in dislocation properties that are associated with the presence of vacancies.

In this Letter, we employed the recently developed semidiscrete variational Peierls-Nabarro (SVPN) model \cite{9,10} in conjunction with \textit{ab initio} determined γ surfaces \cite{11}. The SVPN model provides an ideal framework for multiscale simulations of dislocation properties, and it combines an atomistic (\textit{ab initio}) treatment of the interactions across the slip plane and an elastic treatment of the continua on either side of the slip plane. The model has been shown to be quite successful in predicting dislocation properties by comparing its predictions against the direct atomistic simulations results \cite{9,10}. For example, by using the γ surface calculated from embedded atom method (EAM), we obtained values for σ_p in Al that are in excellent agreement with those from direct atomistic simulations employing the same EAM potential \cite{10}. More remarkably, good agreement is also achieved for dislocations in Si \cite{9} where the classic Peierls-Nabarro model fails, owing to its inability to deal with narrow dislocations. Since one has no \textit{a priori} knowledge regarding the size of dislocations in the presence of vacancies, the SVPN model seems to be particularly useful to explore the interaction of vacancy defects with dislocations. Besides σ_p, the model can also provide reliable results for other dislocation properties, such as partial separation distance and core width \cite{10}, as they are compared to direct atomistic simulations \cite{12,13}. Thus the strength of this approach, when combined with \textit{ab initio} calculations for γ surface, is that it
produces essentially an atomistic simulation for dislocation properties without suffering from uncertainties associated with empirical potentials.

In the SVPN approach, the equilibrium structure of a dislocation is obtained by minimizing the dislocation energy functional \[\text{9,10]}

\[
U_{\text{dil}} = U_{\text{elastic}} + U_{\text{misfit}} + U_{\text{stress}} + Kb^2 \ln L, \tag{1}
\]

where

\[
U_{\text{elastic}} = \sum_{i,j} \frac{1}{2} \chi_{ij} [K_p \rho_i^{(1)} \rho_j^{(1)} + \rho_i^{(2)} \rho_j^{(2)} + K_s \rho_i^{(3)} \rho_j^{(3)}], \tag{2}
\]

\[
U_{\text{misfit}} = \sum_i \Delta \chi \gamma(f_i), \tag{3}
\]

\[
U_{\text{stress}} = -\sum_{i,j} \left(\frac{x_i^2 - x_{i-L}^2}{2} \right) \rho_i \rho_j^{(0)}, \tag{4}
\]

with respect to the dislocation Burgers vector density \(\rho_i \). Here, \(\rho_i^{(1)}, \rho_i^{(2)}, \) and \(\rho_i^{(3)} \) are the edge, vertical, and screw components of the general Burgers vector density defined at the \(i \)th nodal point as \(\rho_i = (f_i - f_{i-1})/(x_i - x_{i-1}) \), where \(f_i \) and \(x_i \) are the displacement vector and the coordinate of the \(i \)th nodal point (atomic row). \(\gamma(f_i) \) is the \(\gamma \) surface that is determined from \textit{ab initio} calculations, \(\tau^{(0)} \) is the external stress component interacting with the corresponding Burgers vector density \(\rho_i^{(0)} \), \(\chi_{ij} \) is the discretized elastic energy kernel, and \(K_p, K_s \) are the prelogarithmic elastic energy factors \[\text{9,10].} \]

The \(\gamma \) surface defined by the last term is the outer cutoff radius for the configuration-independent part of the elastic energy \[\text{14].} \]

We identify the dislocation configuration-dependent part of the elastic energy and the misfit energy as the core energy, i.e., \(U_{\text{core}} = U_{\text{elastic}} + U_{\text{misfit}} \). The response of a dislocation to an external stress is achieved by minimizing the energy functional at the given value of the applied stress. An instability is reached when an optimal solution for the Burgers vector density distribution no longer exists, which is manifested numerically by the failure of the minimization procedure to convergence. \(\sigma_p \) is then identified as the critical value of the applied stress giving rise to this instability.

In order to examine how vacancies change dislocation core structure by modifying atomic bonding across the slip plane, we carry out \textit{ab initio} calculations for the \(\gamma \) surface of Al with vacancies at the slip plane. Specifically, we select a supercell containing six Al layers in [111] direction with four atoms per layer, and remove one Al atom from the top layer (right below the designated slip plane) of the supercell to simulate a vacancy concentration at 4 at.%. We should emphasize that 4 at.\% represents the vacancy concentration at the dislocation core region that we are interested in, therefore it is much greater than the average vacancy concentration of the bulk material. The \textit{ab initio} calculations are based on the pseudopotential plane-wave method with local density approximation \[\text{15] to the exchange-correlation functional [16].} \]

A kinetic energy cutoff of 12 Ry for the plane-wave basis is used, and a \(k \)-point mesh consisting of \((8, 8, 4)\) divisions along the reciprocal lattice vectors is sampled for the Brillouin zone integration. Atomic relaxation is performed before we initiate the sliding. During the sliding process, atoms are allowed to move only along [111] direction while the atoms at the innermost two layers are held fixed. Volume relaxation is also performed for each sliding distance to minimize the tensile stress on the supercell.

The \textit{ab initio} determined \(\gamma \) surface for Al with and without vacancies is presented in Fig. 1. In order to highlight the vacancy effect on \(\gamma \) surface, we also summarize in Table I some important stacking fault energies for both Al and Al + V (Al with vacancies) systems. These special stacking faults correspond to the various extremes along [121] and [101] directions of the \(\gamma \) surface. It is clear that the presence of the vacancy lowers the intrinsic and

![FIG. 1](color online). The \(\gamma \) surface \((J/m^2)\) for displacements along a (111) plane for (a) pure Al and (b) Al + V systems. The corners of the plane and its center correspond to identical equilibrium configuration, i.e., the ideal lattice. The two surfaces are displayed in exactly the same perspective and on the same energy scale to facilitate comparison. The \(\gamma \) surface of Al + V is truncated to emphasize the more interesting region.
unstable stacking fault energy along [12\bar{1}] direction while it increases the run-on stacking fault energy and unstable stacking fault energy along [101] direction. Therefore it is not immediately clear how the dislocation core structure will be changed by vacancies, and a detailed analysis based on SVPN model is needed. Since the experiments [2] have concluded that the change in elastic constants due to vacancies is not responsible for the observed lubrication effect, we will simply use the experimental elastic constants and binding energy values for Al are 8.82 \times 10^{-3} \mu (224 \text{ MPa}) for the screw dislocation in pure Al [6,17]. This value of \sigma_p is in excellent agreement with our model result, 8.82 \times 10^{-3} \mu for the same dislocation (Table II). Furthermore, the less definite measurement for the subsidiary peak (B1 peak) yields an activation energy ranging from 0.12 to 0.16 eV, which corresponds to \sigma_p in the range of 2.8 to 4.6 \times 10^{-3} \mu (80 to 130 \text{ MPa}) for the 60° dislocation. This value also agrees well with our result for the same dislocation (3.40 \times 10^{-3} \mu). The overall consistency between the theoretical and experimental values for \sigma_p indicates the reliability of our model and establishes the basis for further study of the vacancy effect.

When vacancies are introduced at the slip plane but are not absorbed by a dislocation line, we find that \sigma_p for various dislocations is lowered by more than 1 order of magnitude (except for the edge dislocation), as shown in Table II. Therefore we have confirmed the vacancy lubrication effect theoretically for the first time since its proposal. The fact that this lubrication effect is observed for various dislocations suggests a generic nature of the underlying mechanism. In order to shed light on this general mechanism, we have calculated the dislocation core width which is defined as the atomic spacing over which the relative displacement of the dislocation changes from 1/4b to 3/4b [10]. It is generally believed that \sigma_p is exponentially lowered with the increase of dislocation half-width according to the Peierls-Nabarro model [10,14]. The calculated dislocation core half-width (\zeta) is presented in Table II. It is found that, in the presence of vacancies, dislocation becomes 60% to 90% wider, which we believe is due to the reduced slope of the \gamma surface at relevant displacements as vacancies are introduced. Since the lattice restoring force, represented by the slope of the \gamma surface, is weakened by the vacancies, the repulsive elastic force resulting from the continuous distribution of infinitesimal dislocations dominates, leading to a wider dislocation core and therefore enhanced dislocation mobility. Although the vacancy lubrication effect may be qualitatively understood from the above argument by a careful inspection of the \gamma surface, one has to resort to the SVPN model to obtain reliable values of \sigma_p in order to make a quantitative comparison. As shown in Table II, vacancies can bring \sigma_p down to the values derived from the plastic deformation experiments (10^{-3} \mu to 10^{-4} \mu), therefore bridging the gap for \sigma_p between the internal friction measurement and the measurement of CRSS at low temperature. Although one is tempted to claim that the kink pair formation energy is also reduced by vacancies according to Eq. (5), it is not clear if the core extension mechanism discussed above is still relevant to kinks. An alternative approach based on three-dimensional atomistic simulations may hold the key to resolving this issue. Moreover since our model calculations deal with straight dislocations (two-dimensional), we actually simulate straight dislocations with a row of vacancies at the dislocation cores.
In order to gain more insight into the interaction of vacancies and dislocations, we have calculated the dislocation Burgers vector density for pure Al and \(\text{Al} + V \), shown in Fig. 2. It is found that dislocations tend to dissociate more into partials in the presence of vacancy. This behavior is obviously associated with the fact that the intrinsic stacking fault energy is reduced by the presence of vacancies. The result cautions us to be more careful in interpreting transmission electron microscopy data for partial separation distances because accidentally introduced vacancies could change the distance significantly. We have also calculated binding energies of vacancies to the dislocation cores, summarized in Table II. The binding energy is defined as the difference between the dislocation core energy with and without the vacancy. Overall we find that the binding energies are not sensitive to the dislocation character, and more importantly they are all marginally positive. The positive binding energy indicates that dislocation spreading, and thus higher dislocation mobility. We predict that vacancies can increase the partial separation distance in Al, and finally we find there exists a weak repulsion between dislocations and vacancies, which is independent of the dislocation character.

To conclude, we have studied the interaction of vacancies with dislocations in Al using the SVVPN model with \textit{ab initio} determined \(\gamma \) surface. We confirm the experimental suggestion of vacancy lubrication effect in Al. We propose that vacancies can weaken the lattice restoring force across the slip plane, which leads to a wider dislocation spreading, and thus higher dislocation mobility. We find that \(\sigma_p \) of the dislocations is lowered by more than 1 order of magnitude in the presence of vacancy, which bridges the gap between \(\sigma_p \) values observed from different experiments, resolving one of the long-standing problems in dislocation theory. This work represents the first theoretical effort to challenge the traditional point of view that regards vacancy defect as a locking agent for dislocation motion. We predict that vacancies can increase the partial separation distance in Al, and finally we find there exists a weak repulsion between dislocations and vacancies, which is independent of the dislocation character.

We acknowledge support from Grant No. F49620-99-1-0272 through the U.S. Air Force Office for Scientific Research. The authors have benefitted from discussions with A. Needleman.

FIG. 2. Dislocation Burgers vector density for four dislocations (clockwise): screw (0°), 30°, 60°, and edge (90°) for the pure Al (solid lines) and \(\text{Al} + V \) (dashed lines) systems. The peaks in the density plot represent partial dislocations.

*Email address: glu@cmt.harvard.edu

[1] R. W. Balluffi and A. V. Granato, in \textit{Dislocations in Solids}, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1979), Vol. 4, p. 1.
[2] J. Lauzier, J. Hillairet, A. Vieux-Champagne, and W. Benoit, J. Phys. Condens. Matter \textbf{1}, 9273 (1989); J. Lauzier, J. Hillairet, G. Gremaud, and W. Benoit, \textit{ibid.} \textbf{2}, 9247 (1990).
[3] W. Benoit, G. Gremaud, and B. Quenet, Mater. Sci. Eng. A \textbf{164}, 42 (1993).
[4] F. R. N. Nabarro, \textit{Theory of Crystal Dislocations} (Dover, New York, 1987).
[5] A. Seeger, Philos. Mag. \textbf{1}, 651 (1951).
[6] G. Fantozzi, C. Esnouf, W. Benoit, and G. Ritchie, Prog. Mater. Sci. \textbf{27}, 311 (1982).
[7] A. Seeger and P. Schiller, in \textit{Physical Acoustics}, edited by W. Mason (Academic Press, New York, 1966), Vol. 3, p. 366.
[8] T. Kosugi and T. Kino, Mater. Sci. Eng. A \textbf{164}, 368 (1993).
[9] V. V. Bulatov and E. Kaxiras, Phys. Rev. Lett. \textbf{78}, 4221 (1997).
[10] G. Lu, N. Kioussis, V. V. Bulatov, and E. Kaxiras, Phys. Rev. B \textbf{62}, 3099 (2000); Philos. Mag. Lett. \textbf{80}, 675 (2000).
[11] When a crystal is cut along its slip plane and the upper half is displaced relative to the lower by a vector \(\mathbf{f} \), the energy increase per unit area is defined as \(\gamma \) and the energy surface \(\gamma(f) \), with \(f \) spanning the entire slip plane, is called the \(\gamma \)-surface.
[12] V. V. Bulatov, O. Richmond, and M. V. Glazov, Acta Mater. \textbf{47}, 3507 (1999).
[13] Q. F. Fang and R. Wang, Phys. Rev. B \textbf{62}, 9317 (2000).
[14] J. P. Hirth and J. Lothe, \textit{Theory of Dislocations} (Wiley, New York, 1992), 2nd ed.
[15] W. Kohn and L. Sham, Phys. Rev. \textbf{140}, A1133 (1965).
[16] J. Perdew and A. Zunger, Phys. Rev. B \textbf{23}, 5048 (1984).
[17] W. Benoit, M. Bujard, and G. Gremaud, Phys. Status Solidi A \textbf{104}, 427 (1987).