ABSTRACT. We provide applications to studying the behavior of Selmer groups under specialization. We consider Selmer groups associated to 4-dimensional Galois representations coming from (i) the tensor product of two cuspidal Hida families F and G, (ii) its cyclotomic deformation, (iii) the tensor product of a cusp form f and the Hida family G, where f is a classical specialization of F with weight $k \geq 2$. We prove control theorems to relate (a) the Selmer group associated to the tensor product of Hida families F and G to the Selmer group associated to its cyclotomic deformation and (b) the Selmer group associated to the tensor product of f and G to the Selmer group associated to the tensor product of F and G. On the analytic side of the main conjectures, Hida has constructed 1-variable, 2-variable and 3-variable Rankin-Selberg p-adic L-functions. Our specialization results enable us to verify that Hida’s results relating (a) the 2-variable p-adic L-function to the 3-variable p-adic L-function and (b) the 1-variable p-adic L-function to the 2-variable p-adic L-function and our control theorems for Selmer groups are completely consistent with the main conjectures.

Studying the behavior of Selmer groups under specialization has been quite fruitful in the context of the main conjectures in Iwasawa theory. We cite three examples where the topic of specializations of Selmer groups has come up in the past; it has come up in a work of Greenberg [8] to prove a result involving classical Iwasawa modules corresponding to a factorization formula proved by Gross involving Katz’s 2-variable p-adic L-function, in the work of Greenberg-Vatsal [12] while studying an elliptic curve with an isogeny of degree p and in an earlier work of ours [26] to prove a result involving Selmer groups corresponding to a factorization formula proved by Dasgupta involving Hida’s Rankin-Selberg 3-variable p-adic L-function.

The main results of this paper will deal with Selmer groups to which the Rankin-Selberg p-adic L-functions, constructed by Hida in [17], are associated. The results of [21] suggest that the proofs of the main conjectures associated to these Rankin-Selberg p-adic L-functions are imminent; the results of this paper provide evidence to these conjectures. The results of this paper contrast well with the three examples cited earlier since in this paper we deal with “critical” specializations (the three examples cited earlier dealt with “non-critical” specializations). After the completion of this project, the author learnt about the paper [13] where the behavior of Selmer groups under certain critical specializations has also been studied. Hara and Ochiai (see Theorem D in [13]) deduce the cyclotomic Iwasawa main conjecture over a CM field E (formulated over a regular local ring with Krull dimension 2) for Hilbert cuspsforms with complex multiplication from the main conjecture formulated (over a regular local ring with Krull dimension greater than or equal to $[E:Q] + 2$) by Hida and Tilouine in [22]; the Hida-Tilouine main conjecture has been proved by Ming-Lun Hsieh [23] under certain hypotheses. To place our work involving specializations of Selmer groups in the context of main conjectures, this result of [13] might serve as a useful template for the reader to keep in mind. To prove our results, we will use the techniques developed in an earlier paper of ours [26] (which is briefly summarized in Section 3). The novelty in the techniques introduced in [26] is that the local domains, appearing in Hida theory and over which the main conjectures are formulated, are not always known to be regular or even a UFD (see Section 4); in contrast, the main conjectures over CM fields are formulated over regular local rings. One obstacle from the perspective of

2000 Mathematics Subject Classification. Primary 11R23; Secondary 11F33, 11F80.
commutative algebra that thus needs to be overcome is that the kernel of the specialization map (which in our case is a prime ideal of height one) is not known to be principal.

Let us introduce some notations. Let $p \geq 5$ be a fixed prime number. Let $F = \sum_{n=1}^{\infty} a_n q^n \in \mathbb{R}_F[[q]]$ and $G = \sum_{n=1}^{\infty} b_n q^n \in \mathbb{R}_G[[q]]$ be two ordinary cuspidal Hida families. Here, we let R_F and R_G be the integral closures of the irreducible components of the ordinary primitive cuspidal Hecke algebras through F and G respectively. The rings R_F and R_G turn out to be finite integral extensions of $\mathcal{O}_F[[x_F]]$ and $\mathcal{O}_G[[x_G]]$ respectively, where x_F and x_G are “weight variables” for F and G respectively. We assume the following hypotheses on F and G:

IRR The residual representations associated to F and G are absolutely irreducible.

p-DIS-IN The restrictions, to the inertia subgroup I_p at p, of the residual representations associated to F and G have non-scalar semi-simplifications.

Let Σ be a finite set of primes in \mathbb{Q} containing the primes p, ∞, a finite prime $l_0 \neq p$ and all the primes dividing the levels of F and G. Let $\Sigma_0 = \Sigma \setminus \{p\}$. Let O denote the ring of integers in a finite extension of \mathbb{Q}_p. Let Σ_O denote the maximal extension of \mathbb{Q} unramified outside Σ. Let G_Σ denote $\text{Gal}(\mathbb{Q}_\Sigma/\mathbb{Q})$. We have Galois representations $\rho_F : G_\Sigma \to \text{GL}_2(R_F)$ and $\rho_G : G_\Sigma \to \text{GL}_2(R_G)$ associated to F and G respectively (see [13]). We let L_F (and L_G) be the free R_F-module (and R_G-module) of rank 2 on which G_Σ acts to let us obtain the Galois representation ρ_F (and ρ_G respectively). Assume that the integral closures of \mathcal{O}_p in R_F and R_G are equal (extending scalars if necessary) to O.

Specializing from 3-variables to 2-variables

Let $R_{F,G}$ denote the completed tensor product $R_F \hat{\otimes} R_G$. The completed tensor product is the co-product in the category of complete semi-local Noetherian O-algebras (where the morphisms are continuous O-algebra maps). We have the natural inclusions $i_F : R_F \hookrightarrow R_{F,G}$ and $i_G : R_G \hookrightarrow R_{F,G}$. One can construct a 4-dimensional Galois representation $\rho_{F,G} : G_\Sigma \to \text{GL}_4(R_{F,G})$, that is given by the action of G_Σ on the following free $R_{F,G}$-module of rank 4:

$$L_2 := \text{Hom}_{R_{F,G}} \left(L_F \otimes_{R_F} R_{F,G}, \ L_G \otimes_{R_G} R_{F,G} \right).$$

Let $\rho_{F,G} \otimes \kappa^{-1} : G_\Sigma \to \text{GL}_4(R_{F,G}[[\Gamma]])$ denote the Galois representation given by the action of G_Σ on the following free $R_{F,G}[[\Gamma]]$-module of rank 4:

$$L_3 := L_2 \otimes_{R_{F,G}} R_{F,G}[[\Gamma]](\kappa^{-1}).$$

We let \mathbb{Q}_∞ denote the cyclotomic extension of \mathbb{Q} and we let Γ denote the Galois group $\text{Gal}(\mathbb{Q}_\infty/\mathbb{Q})$. Here, $\kappa : G_\Sigma \to \Gamma \to \mathcal{O}_p[[\Gamma]]^\times$ denotes the tautological character. To simplify notations, we will let ρ_2 denote $\rho_{F,G}$ and ρ_3 denote $\rho_{F,G} \otimes \kappa^{-1}$. Hida has constructed elements $\theta_2^{\Sigma_0}$ and $\theta_3^{\Sigma_0}$, in the fraction fields of $R_{F,G}$ and $R_{F,G}[[\Gamma]]$ respectively, as generators for non-primitive p-adic L-functions associated to ρ_2 and ρ_3 respectively. See section 7.4 and section 10.4 of [13] for their constructions and the precise interpolation properties that they satisfy. The elements $\theta_2^{\Sigma_0}$ and $\theta_3^{\Sigma_0}$ generate a 2-variable p-adic L-function and 3-variable p-adic L-function respectively. For the 2-variable p-adic L-function, one can vary the weights of F and G. For the 3-variable p-adic L-function, in addition to the weights of F and G, one can also vary the cyclotomic variable. Notice that the subscripts in our notation for the Galois representations or the associated Galois lattices indicate the number of variables in the corresponding p-adic L-functions.

Let $\pi_{3,2} : R_{F,G}[[\Gamma]] \to R_{F,G}$ be the map defined by sending every element of Γ to 1. We have the Galois representation $\pi_{3,2} \circ \rho_3 : G_\Sigma \xrightarrow{\rho_3} \text{GL}_4(R_{F,G}[[\Gamma]]) \xrightarrow{\pi_{3,2}} \text{GL}_4(R_{F,G})$, along with the following
isomorphism of Galois representations:

\[\pi_{3,2} \circ \rho_3 \cong \rho_2. \]

Hida has proved the following theorem relating \(\theta_2^{\Sigma_0} \) and \(\theta_3^{\Sigma_0} \). See Theorem 1 in Section 10.5 of [18] and Theorem 5.1d’ in [17].

Theorem 1 (Hida). \(\pi_{3,2} \left(\theta_3^{\Sigma_0} \right) = \left(1 - \frac{i_E(a_p)}{i_G(b_p)} \right) \cdot \theta_2^{\Sigma_0} \).

Recall that the ordinarity assumption on \(F \) and \(G \) ensures us that the coefficients \(i_E(a_p) \) and \(i_G(b_p) \) would be units in \(R_{F,G} \). On the algebraic side, we can construct Selmer groups \(\text{Sel}_{\rho_2}^{\Sigma_0}(Q) \) and \(\text{Sel}_{\rho_3}^{\Sigma_0}(Q) \) associated to the Galois representations \(\rho_2 \) and \(\rho_3 \) respectively. We prove the following control theorem relating \(\text{Sel}_{\rho_2}^{\Sigma_0}(Q) \) and \(\text{Sel}_{\rho_3}^{\Sigma_0}(Q) \):

Theorem 2. We have the following equality in the divisor group of \(R_{F,G} \):

\[
\text{Div} \left(\text{Sel}_{\rho_3}^{\Sigma_0}(Q)^\vee \otimes_{R_{F,G}[\Gamma]} R_{F,G} \right) + \text{Div} \left(H^0(G_\Sigma, D_{\rho_3})^{\vee}[\ker(\pi_{3,2})] \right) = \text{Div} \left(\text{Sel}_{\rho_2}^{\Sigma_0}(Q)^\vee \right) + \text{Div} \left(1 - \frac{i_E(a_p)}{i_G(b_p)} \right).
\]

Let us explain some of our notations. If \(A \) is a topological commutative ring, we let \(\hat{A} \) denote the Pontryagin dual of \(A \). If \(M \) is a continuous \(A \)-module, we let \(M^\vee \) denote its Pontryagin dual. To a finitely generated torsion module over an integrally closed Noetherian local domain or a non-zero element of its fraction field, we shall associate an element of the divisor group following [9]. If \(M \) is an \(A \)-module and \(I \) is an ideal of \(A \), the \(A/I \)-module \(M/I \) is defined to be the set \(\{ m \in M \mid i \cdot m = 0, \forall i \in I \} \). We will assume throughout this paper that the \(R_{F,G}[\Gamma] \)-module \(\text{Sel}_{\rho_3}^{\Sigma_0}(Q)^\vee \) and the \(R_{F,G} \)-module \(\text{Sel}_{\rho_2}^{\Sigma_0}(Q)^\vee \) are torsion.

One can formulate a main conjecture in Iwasawa theory for \(\rho_2 \) and \(\rho_3 \) following [9]. The main conjecture for \(\rho_3 \) predicts the the following equality of divisors in \(R_{F,G}[\Gamma] \):

\[
(\text{MC-}\rho_3) \quad \text{Div} \left(\theta_3^{\Sigma_0} \right) \cong \text{Div} \left(\text{Sel}_{\rho_3}^{\Sigma_0}(Q)^\vee \right) - \text{Div} \left(H^0(G_\Sigma, D_{\rho_3})^{\vee}[\ker(\pi_{3,2})] \right).
\]

The main conjecture for \(\rho_2 \) predicts the the following equality of divisors in \(R_{F,G} \):

\[
(\text{MC-}\rho_2) \quad \text{Div} \left(\theta_2^{\Sigma_0} \right) \cong \text{Div} \left(\text{Sel}_{\rho_2}^{\Sigma_0}(Q)^\vee \right) - \text{Div} \left(H^0(G_\Sigma, D_{\rho_2})^{\vee} \right).
\]

We prove the following theorem to show that Theorem 1 and Theorem 2 are completely consistent with the main conjectures \(\text{MC-}\rho_3 \) and \(\text{MC-}\rho_2 \):

Theorem 3. If the main conjecture \(\text{MC-}\rho_3 \) holds, then the main conjecture \(\text{MC-}\rho_2 \) also holds.

Remark 1. As we will show in equation (8), we have the following isomorphism of \(R_{F,G} \)-modules:

\[
(2) \quad \text{Tor}_{1}^{R_{F,G}[\Gamma]}(R_{F,G}, H^0(G_\Sigma, D_{\rho_3})^{\vee}) \cong H^0(G_\Sigma, D_{\rho_3})^{\vee}[\ker(\pi_{3,2})].
\]

Regarding Theorem 2, it will be useful to keep this isomorphism in mind. Since we invoke results from homological algebra, we will need to use the Tor functor frequently.

Specializing from 2-variables to 1-variable

Let \(f \) be a cuspidal \(p \)-stabilized eigenform obtained by specializing \(F \) at a classical height one prime ideal \(P_k \) of weight \(k \geq 2 \). Let \(\rho_f : G_\Sigma \to \text{GL}_2(O_f) \) denote the Galois representation associated to \(f \) (constructed by Deligne). Here, \(O_f \) denotes the integral closure of \(\mathbb{Q}_p \). We also obtain a natural map \(\pi_f : R_F \to O_f \). We let \(L_f \) denote the free \(O_f \)-module of rank 2 on which \(G_\Sigma \) acts to let us obtain the Galois representation \(\rho_f \). Let \(R_{f,G} \) be the completed tensor product \(O_f \widehat{\otimes} R_G \). We have
natural maps \(j_F : R_F \to O_f \hookrightarrow R_{f,G} \) and \(j_G : R_G \to R_{f,G} \). Consider the 4-dimensional Galois representation \(\rho_1 : G_\Sigma \to \text{GL}_4(R_{f,G}) \) given by the action of \(G_\Sigma \) on the rank 4 free \(R_{f,G} \)-module:

\[
L_1 := \text{Hom}_{R_{f,G}}(L_F \otimes R_{f,G}, L_G \otimes R_{f,G}).
\]

Hida has also constructed an element \(\vartheta_1^{\Sigma_0} \), in the fraction field of \(R_{f,G} \), that generates a non-primitive 1-variable Rankin-Selberg \(p \)-adic \(L \)-function associated to \(\rho_1 \). See section 7.4 in [18] for its construction and the precise interpolation properties that \(\vartheta_1^{\Sigma_0} \) satisfies. For the 1-variable \(p \)-adic \(L \)-function, one can vary the weight of \(G \). We have a natural map \(\pi_{2,1} : R_{f,G} \to R_{f,G} \) obtained by the maps \(j_F : R_F \to O_f \hookrightarrow R_{f,G} \) and \(j_G : R_G \to R_{f,G} \). The map \(\pi_{2,1} : R_{f,G} \to R_{f,G} \) lets us obtain the following isomorphism of Galois representations:

\[
\pi_{2,1} \circ \rho_2 \cong \rho_1.
\]

Hida has proved following theorem relating \(\vartheta_2^{\Sigma_0} \) and \(\vartheta_1^{\Sigma_0} \) (see the comment just before Theorem 2 in section 7.4 of [18]):

Theorem I (Hida). \(\pi_{2,1}(\vartheta_2^{\Sigma_0}) = \vartheta_1^{\Sigma_0} \).

Associated to \(\rho_1 \), we can construct the Selmer group \(\text{Sel}_{\rho_1}(\mathbb{Q}) \). We will assume that \(\text{Sel}_{\rho_1}(\mathbb{Q}) \) is a torsion \(R_{f,G} \)-module. We prove the following control theorem relating \(\text{Sel}_{\rho_1}(\mathbb{Q}) \) and \(\text{Sel}_{\rho_2}(\mathbb{Q}) \):

Theorem II. We have the following equality in the divisor group of \(R_{f,G} \):

\[
\text{Div} \left(\text{Sel}_{\rho_2}(\mathbb{Q}) \otimes_{R_{f,G}} R_{f,G} \right) + \text{Div} \left(\text{Tor}_1^{R_{f,G}}(R_{f,G}, H^0(G_{\Sigma}, D_{\rho_2})) \right) = \text{Div} \left(\text{Sel}_{\rho_1}(\mathbb{Q}) \right).
\]

The main conjecture for \(\rho_1 \) predicts the following equality of divisors in \(R_{f,G} \):

\[
(MC^{-\rho_1}) \quad \text{Div} \left(\vartheta_1^{\Sigma_0} \right) = \text{Div} \left(\text{Sel}_{\rho_1}(\mathbb{Q}) \right) - \text{Div} \left(H^0(G_{\Sigma}, D_{\rho_1}) \right).
\]

We prove the following theorem to show that Theorem I and Theorem II are completely consistent with the main conjectures \(MC^{-\rho_2} \) and \(MC^{-\rho_1} \):

Theorem III. If the main conjecture \(MC^{-\rho_2} \) holds, then the main conjecture \(MC^{-\rho_1} \) also holds.

Remark 2. One can combine Proposition 3.3 and Lemma 3.4 to obtain the following equality of divisors in \(R_{f,G} \):

\[
(4) \quad \text{Div} \left(\text{Tor}_1^{R_{f,G}}(R_{f,G}, H^0(G_{\Sigma}, D_{\rho_2})) \right) = \text{Div} \left(H^0(G_{\Sigma}, D_{\rho_2}) \otimes_{R_{f,G}} R_{f,G} \right),
\]

which is similar to the one obtained in equation (2). As mentioned in Remark I, we prefer stating Theorem III using the term on the left hand side of equation (4) involving the Tor functor (instead of the term appearing on the right hand side).

Remark 3. The main conjectures, formulated in [9], relate the primitive Selmer groups to the primitive \(p \)-adic \(L \)-functions. It is possible to relate the primitive Selmer groups to the non-primitive Selmer groups; it is also possible to relate the primitive \(p \)-adic \(L \)-functions to the non-primitive \(p \)-adic \(L \)-functions. As a result, it will be possible to formulate a conjecture, that is equivalent to the one formulated in [9], relating the non-primitive Selmer groups to the non-primitive \(p \)-adic \(L \)-functions. It is the latter formulation that we adopt in this paper. Since we are motivated by Hida's results involving the non-primitive \(p \)-adic \(L \)-functions, we will only work with the non-primitive Selmer groups; and since Hida's results simply serve as heuristics to motivate our theorems, we will not concern ourselves with proving that Greenberg's formulation of the main conjectures for \(\rho_3 \), \(\rho_2 \) and \(\rho_1 \) involving primitive Selmer groups and primitive \(p \)-adic \(L \)-functions in [9] are equivalent to \(MC^{-\rho_3} [MC^{-\rho_2}] [MC^{-\rho_1}] \) respectively.
Remark 4. We would like make the reader aware of a point that was conveyed to us by Haruzo Hida. The p-adic L-functions $\theta_1^{\Sigma_0}$, $\theta_2^{\Sigma_0}$ and $\theta_3^{\Sigma_0}$ are “genuine” in the sense of [19] and do not exactly equal the p-adic L-functions constructed in [18]. Recall that we have inclusions $R_G \hookrightarrow R_{f,G}$ and $R_G \hookrightarrow R_{f,G} \hookrightarrow R_{f,G}[[\Gamma]]$. There is an element $\Theta \in R_G$ that corresponds to the divisor of a one-variable p-adic L-function associated to the 3-dimensional adjoint representation $\text{Ad}^0(p_G)$ (see Conjecture 1.0.1 in [19]). The p-adic L-functions, that are constructed in [18] as elements of the fraction fields of $R_{f,G}$, $R_{f,G}$ and $R_{f,G}[[\Gamma]]$ respectively, are in fact equal to $\theta_1^{\Sigma_0}$, $\theta_2^{\Sigma_0}$ and $\theta_3^{\Sigma_0}$ respectively. A discussion surrounding the need to introduce this modification, which is related to the choice of a certain period (Neron period versus a period involving the Peterson inner product), is carefully explained in [19] (see the introduction and Section 6 there). This point will not matter to us since the maps $\pi_{3,2}$ and $\pi_{2,1}$ are R_G-linear.

Acknowledgements. We are greatly indebted to Ralph Greenberg; this project has been completed while the author was his student at the University of Washington. We would also like to thank Haruzo Hida for indicating to us how to compute the examples in Section 4.

Selmer Groups

The hypothesis p-DIS-IN lets us obtain following $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$-equivariant short exact sequences of free R_F and R_G modules respectively:

\begin{equation}
0 \to \text{Fil}^+L_F \to \frac{L_F}{\text{Fil}^+L_F} \to 0, \quad 0 \to \text{Fil}^+L_G \to \frac{L_G}{\text{Fil}^+L_G} \to 0.
\end{equation}

Here, the action of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ on the rank 1 modules Fil^+L_F and Fil^+L_G is given by ramified characters $\delta_F : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to R_F^\times$ and $\delta_G : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to R_G^\times$ respectively. The action of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ on the rank 1 modules $\frac{L_F}{\text{Fil}^+L_F}$ and $\frac{L_G}{\text{Fil}^+L_G}$ is given by unramified characters $\epsilon_F : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to R_F^\times$ and $\epsilon_G : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to R_G^\times$. Note that $\epsilon_F(\text{Frob}_p) = a_p$ and $\epsilon_G(\text{Frob}_p) = b_p$. Furthermore, using the residual characters $\overline{\delta}_F : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \mathbb{F}_p^\times$ and $\overline{\delta}_G : \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \mathbb{F}_p^\times$ associated to δ_F and δ_G respectively, the hypothesis p-DIS-IN can be restated in the following way:

\begin{equation}
(p\text{-DIS-IN}) \quad \overline{\delta}_F |_{I_p} \neq 1, \quad \overline{\delta}_G |_{I_p} \neq 1.
\end{equation}

Here, I_p denotes the inertia subgroup inside the decomposition group $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Analogous to the short exact sequences in (5), we can now form the following $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$-equivariant short exact sequence of free $R_{f,G}[[\Gamma]]$-modules:

\begin{equation}
0 \to \text{Fil}^+L_3 \to \frac{L_3}{\text{Fil}^+L_3} \to 0,
\end{equation}

where $\text{Fil}^+L_3 := \text{Hom}_{R_{f,G}} \left(L_F \otimes_{R_F} R_{f,G}, \text{Fil}^+L_G \otimes_{R_G} R_{f,G} \right) \otimes_{R_{f,G}} R_{f,G}[[\Gamma]](\kappa^{-1})$.

We would like to emphasize the following isomorphisms of $R_{f,G}$ and $R_{f,G}$-modules respectively.

\begin{equation}
L_2 \cong L_3 \otimes_{R_{f,G}[[\Gamma]]} R_{f,G}, \quad L_1 \cong L_2 \otimes_{R_{f,G}[[\Gamma]]} R_{f,G}.
\end{equation}

Once again, analogous to the short exact sequences in (5), we can now form the following $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$-equivariant short exact sequence of free $R_{f,G}$ and $R_{f,G}$ modules respectively:

\begin{equation}
0 \to \text{Fil}^+L_2 \to \frac{L_2}{\text{Fil}^+L_2} \to 0, \quad 0 \to \text{Fil}^+L_1 \to \frac{L_1}{\text{Fil}^+L_1} \to 0.
\end{equation}
where \(\text{Fil}^+ L_2 := \text{Fil}^+ L_3 \otimes_{R_{F,G}[[\Gamma]]} R_{F,G}, \quad \text{Fil}^+ L_1 := \text{Fil}^+ L_2 \otimes_{R_{F,G}} R_{f,G} \).

To the Galois representations \(\rho_3, \rho_2 \) and \(\rho_1 \), we can now associate the following discrete modules:

\[
D_{\rho_3} = L_3 \otimes_{R_{F,G}[[\Gamma]]} R_{F,G}[[\Gamma]], \quad D_{\rho_2} = L_2 \otimes_{R_{F,G}} R_{F,G}, \quad D_{\rho_1} = L_1 \otimes_{R_{f,G}} R_{f,G}.
\]

\(\text{Fil}^+ D_{\rho_3} = \text{Fil}^+ L_3 \otimes_{R_{F,G}[[\Gamma]]} R_{F,G}[[\Gamma]], \quad \text{Fil}^+ D_{\rho_2} = \text{Fil}^+ L_2 \otimes_{R_{F,G}} R_{F,G}, \quad \text{Fil}^+ D_{\rho_1} = \text{Fil}^+ L_1 \otimes_{R_{f,G}} R_{f,G}. \)

We now define the (discrete) non-primitive Selmer groups associated to the Galois representations \(\rho_3, \rho_2 \) and \(\rho_1 \) respectively. Since we do not talk about primitive Selmer groups in this paper, we will refer to the non-primitive Selmer groups simply as Selmer groups (without the prefix “non-primitive”). Let \(i \in \{1, 2, 3\} \).

\[
\text{Sel}_{\rho_i}^{\Sigma_0}(Q) := \ker \left(H^1(G_\Sigma, D_{\rho_i}) \otimes_{\pi_{\rho_i}} H^1 \left(I_p, \frac{D_{\rho_i}}{\text{Fil}^+ D_{\rho_i}} \right) \bigotimes_{[\Gamma]} \right).
\]

Here, \(\Gamma_p = \frac{\text{Gal}(Q_p/Q_p)}{I_p} \). Throughout this paper, we will suppose that the following hypothesis holds.

\[(\text{Tor}) \quad \text{Rank}_{R_{F,G}[[\Gamma]]} \left(\text{Sel}_{\rho_3}^{\Sigma_0}(Q)^{\vee} \right) = 0, \quad \text{Rank}_{R_{F,G}} \left(\text{Sel}_{\rho_2}^{\Sigma_0}(Q)^{\vee} \right) = 0, \quad \text{Rank}_{R_{f,G}} \left(\text{Sel}_{\rho_1}^{\Sigma_0}(Q)^{\vee} \right) = 0. \]

Let us now discuss the proofs of Theorems 2 and 3 along with the proofs of Theorems 11 and 111. These proofs will utilize the control theorems and specialization results developed in our earlier work [26]. The control theorems are developed in Section 5 of [26] (see Proposition 5.2 in [26]). The specialization results are developed Section 4 of [26] (see Proposition 4.2 in [26]). We will treat those results as a black box. We summarize the results of [26] in section 3.

1. PROOFS OF THEOREM 2 AND 3

One can use Proposition 5.2 in Section 5 of [26] to establish a control theorem relating \(\text{Sel}_{\rho_3}^{\Sigma_0}(Q) \) to \(\text{Sel}_{\rho_2}^{\Sigma_0}(Q) \) (see Section 3). We have the following equality of divisors in \(R_{F,G} \):

\[
\text{Div} \left(\text{Sel}_{\rho_3}^{\Sigma_0}(Q)^{\vee} \otimes_{R_{F,G}[[\Gamma]]} R_{F,G} \right) + \text{Div} \left(\text{Tor}_{1}^{R_{F,G}[[\Gamma]]} \left(R_{F,G}, H^0(G_\Sigma, D_{\rho_3})^{\vee} \right) \right)
\]

\[= \text{Div} \left(\text{Sel}_{\rho_2}^{\Sigma_0}(Q)^{\vee} \right) + \text{Div} \left(\text{Tor}_{1}^{R_{F,G}[[\Gamma]]} \left(R_{F,G}, H^0 \left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right) \right)^{\vee} \right). \]

We will view \(R_{F,G} \) as an \(R_{F,G}[[\Gamma]] \)-module via the map \(\pi_{3,2} : R_{F,G}[[\Gamma]] \rightarrow R_{F,G} \). As a topological group, \(\Gamma \cong \mathbb{Z}_p \). Let’s choose a topological generator \(\gamma_0 \) of \(\Gamma \). The prime ideal \(\ker(\pi_{3,2}) \) is generated by \(\gamma_0 - 1 \) as an \(R_{F,G}[[\Gamma]] \)-module. Consider the short exact sequence \(0 \rightarrow R_{F,G}[[\Gamma]] \rightarrow R_{F,G} \rightarrow 0 \) of \(R_{F,G}[[\Gamma]] \)-modules. Taking the tensor product with the \(R_{F,G}[[\Gamma]] \)-module \(H^0(G_\Sigma, D_{\rho_3})^{\vee} \) over the ring \(R_{F,G}[[\Gamma]] \) gives us following isomorphism:

\[
\text{Tor}_{1}^{R_{F,G}[[\Gamma]]} \left(R_{F,G}, H^0(G_\Sigma, D_{\rho_3})^{\vee} \right) \cong H^0(G_\Sigma, D_{\rho_3})^{\vee} |_{\ker(\pi_{3,2})}. \]

Lemma 3.8 establishes the following isomorphism of \(R_{F,G} \)-modules:

\[
\text{Tor}_{1}^{R_{F,G}[[\Gamma]]} \left(R_{F,G}, H^0 \left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right) \right)^{\vee} \cong \frac{R_{F,G}}{1 - \frac{\gamma_0(\pi_{\rho_3})}{I_{\Gamma}(\gamma_0)}}. \]

Combining equations (7), (8), and (9) completes the proof of Theorem 2.
Now suppose that the main conjecture $\text{MC-}p_3$ holds. That is, we have the following equality in the divisor group of $R_{f,G}[\Gamma]$:

$$(\text{MC-}p_3) \quad \text{Div} \left(\theta_3^{\Sigma_0} \right) = \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_3}(Q)^{\vee} \right) - \text{Div} \left(H^0(G_\Sigma, D_{p_3})^{\vee} \right).$$

We will later outline in Section 3 how the specialization result (Proposition 4.2 in Section 4 of [26]) lets us obtain the following equality of divisors in $R_{f,G}$:

$$(10) \quad \text{Div} \left(\pi_{3,2} \left(\theta_3^{\Sigma_0} \right) \right) = \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_3}(Q)^{\vee} \otimes_{R_{f,G}[\Gamma]} R_{f,G} \right) + \text{Div} \left(\text{Tor}_1^{R_{f,G}[\Gamma]} \left(R_{f,G}, H^0(G_\Sigma, D_{p_3})^{\vee} \right) \right) - \text{Div} \left(H^0(G_\Sigma, D_{p_2})^{\vee} \right).$$

Theorem 1 establishes the following equality in the divisor group of $R_{f,G}$:

$$(11) \quad \text{Div} \left(\pi_{3,2} \left(\theta_3^{\Sigma_0} \right) \right) = \text{Div} \left(\theta_2^{\Sigma_0} \right) + \text{Div} \left(\frac{1 - \frac{f(a_p)}{\iota_G(b_p)}}{1} \right).$$

Now combining equations (10), (11) and (12), we have the following equality of divisors in $R_{f,G}$:

$$(\text{MC-}p_2) \quad \text{Div} \left(\theta_2^{\Sigma_0} \right) = \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_2}(Q)^{\vee} \right) - \text{Div} \left(H^0(G_\Sigma, D_{p_2})^{\vee} \right).$$

This completes the proof of Theorem 3.

2. Proofs of Theorem 11 and 111

The proofs of Theorem 11 and 111 will be similar to the proofs of Theorem 2 and 3. Proposition 5.2 in Section 5 of [36] will allow us to establish a control theorem relating $\text{Sel}^{\Sigma_0}_{p_2}(Q)^{\vee} \otimes_{R_{f,G}} R_{f,G}$ to $\text{Sel}^{\Sigma_0}_{p_1}(Q)^{\vee}$. We have the following equality of divisors in $R_{f,G}$:

$$(13) \quad \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_2}(Q)^{\vee} \otimes_{R_{f,G}} R_{f,G} \right) + \text{Div} \left(\text{Tor}_1^{R_{f,G}} \left(R_{f,G}, H^0(G_\Sigma, D_{p_2})^{\vee} \right) \right)$$

$$= \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_1}(Q)^{\vee} \right) + \text{Div} \left(\text{Tor}_1^{R_{f,G}} \left(R_{f,G}, H^0 \left(I_p, \frac{D_{p_2}}{\text{Fil}^+ D_{p_2}} \right) \right) \right).$$

Lemma 3.9 establishes the following equality:

$$(14) \quad \text{Tor}_1^{R_{f,G}} \left(R_{f,G}, H^0 \left(I_p, \frac{D_{p_2}}{\text{Fil}^+ D_{p_2}} \right) \right)^{\vee} = 0.$$

Combining equations (13) and (14) completes the proof of Theorem 111.

Now suppose that the main conjecture $\text{MC-}p_2$ holds. That is, we have the following equality in the divisor group of $R_{f,G}$:

$$(\text{MC-}p_2) \quad \text{Div} \left(\theta_2^{\Sigma_0} \right) = \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_2}(Q)^{\vee} \right) - \text{Div} \left(H^0(G_\Sigma, D_{p_2})^{\vee} \right).$$

As before, we will later outline in Section 3 how the specialization result (Proposition 4.2 in Section 4 of [26]) lets us obtain the following equality of divisors in $R_{f,G}$:

$$(15) \quad \text{Div} \left(\pi_{2,1} \left(\theta_2^{\Sigma_0} \right) \right) = \text{Div} \left(\text{Sel}^{\Sigma_0}_{p_2}(Q)^{\vee} \otimes_{R_{f,G}} R_{f,G} \right) + \text{Div} \left(\text{Tor}_1^{R_{f,G}} \left(R_{f,G}, H^0(G_\Sigma, D_{p_2})^{\vee} \right) \right) - \text{Div} \left(H^0(G_\Sigma, D_{p_2})^{\vee} \right).$$
Theorem \[\text{\textbf{11}}\] establishes the following equality in the divisor group of \(R_{f,G}\):
\[
\text{Div} \left(\pi_{2,1} (\Theta_{2}^{\infty}) \right) = \text{Div} (\Theta_{p_{1}}^{\infty}).
\]

Theorem \[\text{\textbf{11}}\] establishes the following equality in the divisor group of \(R_{f,G}\):
\[
\text{Div} \left(\text{Sel}_{p_{2}}^{\infty} (Q)^{\vee} \otimes_{R_{F,G}} R_{f,G} \right) + \text{Div} \left(\text{Tor}_{1}^{R_{F,G}} (R_{F,G}, H^{0}(G_{\Sigma}, D_{p_{2}}))^{\vee} \right) = \text{Div} \left(\text{Sel}_{p_{1}}^{\infty} (Q)^{\vee} \right).
\]

Now combining equations (15), (16) and (17), we have the following equality of divisors in \(R_{f,G}\):
\[
\text{Div} (\Theta_{1}^{\infty}) = \text{Div} \left(\text{Sel}_{p_{1}}^{\infty} (Q)^{\vee} \right) - \text{Div} (H^{0}(G_{\Sigma}, D_{p_{1}}))^{\vee}).
\]

This completes the proof of Theorem \[\text{\textbf{11}}\].

3. TOWARDS THE CONTROL THEOREMS AND SPECIALIZATION RESULTS

The hypothesis \[\text{\textbf{T}}\] plays a crucial role in establishing many structural properties of the Galois cohomology groups and Selmer groups. The control theorems and specialization results rely heavily on Greenberg’s foundational works ([10], [11] and [7]). In these works, the Weak Leopoldt conjecture often comes into play. Let \(i \in \{1, 2, 3\}\). We consider the following group:

\[
\text{III}^{2} (D_{p_{i}}) := \text{ker} \left(H^{2}(G_{\Sigma}, D_{p_{i}}) \to \prod_{\nu \in \Sigma} H^{2}(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{\nu}), D_{p_{i}}) \right).
\]

The validity of \[\text{\textbf{T}}\] ensures us that the following statement \[\text{\textbf{Weak Leo}}\] holds:

Weak Leo \(\text{III}^{2}(D_{p_{3}})^{\vee}, \text{III}^{2}(D_{p_{2}})^{\vee}\) and \(\text{III}^{2}(D_{p_{1}})^{\vee}\) are torsion \(R_{F,G}[[\Gamma]], R_{F,G}\) and \(R_{f,G}\) modules respectively.

For each \(i \in \{1, 2, 3\}\) and each \(\nu \in \Sigma_{0}\), the validity of \[\text{\textbf{T}}\] also lets us deduce the following equalities:

\[
H^{2}(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{\nu}), D_{p_{i}}) = 0, \quad \forall \nu \in \Sigma_{0}; \quad H^{2} \left(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), \frac{D_{p_{i}}}{\text{Fil}^{+} D_{p_{i}}} \right) = 0.
\]

The Galois representation \(\rho_{3}\) is related to the cyclotomic deformation of \(\rho_{2}\) (see Section 3 of [8] for a description of the cyclotomic deformation). Equation (18) can be deduced from the arguments given in Section 5 of [11]. The arguments involve combining local duality, Proposition 3.10 in [11] along with results from Section 3 in [9]. These arguments are also described in Section 1 of [26].

\[
H^{2} (\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), D_{p_{3}}) = H^{2} (\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), \text{Fil}^{+} D_{p_{3}}) = 0.
\]

We will use local duality to establish a similar result for \(\rho_{2}\) and \(\rho_{1}\). See Lemma 3.10

\[
H^{2} (\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), D_{p_{2}}) = H^{2} (\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), \text{Fil}^{+} D_{p_{2}}) = 0,
\]

\[
H^{2} (\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), D_{p_{1}}) = H^{2} (\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), \text{Fil}^{+} D_{p_{1}}) = 0.
\]

These observations, along with Corollary 3.11 establish the following statement:

Van-H2 Let \(i \in \{1, 2, 3\}\). Let \(\nu \in \Sigma_{0}\). We have

\[
H^{2}(G_{\Sigma}, D_{p_{i}}) = H^{2}(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{\nu}), D_{p_{i}}) = H^{2}(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), D_{p_{i}}) = H^{2}(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), \text{Fil}^{+} D_{p_{i}}) = H^{2}(\text{Gal}(\mathbb{Q}_{p}/\mathbb{Q}_{p}), \frac{D_{p_{i}}}{\text{Fil}^{+} D_{p_{i}}}) = 0.
\]

We will now summarize the arguments involved in deducing the specialization results given in equations (10) and (15). Let \(X_{3} = \text{Sel}_{p_{3}}^{\infty} (Q)^{\vee}\) and \(X_{2} = \text{Sel}_{p_{2}}^{\infty} (Q)^{\vee}\). Given the divisor \(\text{Div}(X_{3})\) in \(R_{F,G}[[\Gamma]]\) (and \(\text{Div}(X_{2})\) in \(R_{F,G}\) respectively), we would like to find the divisor \(\text{Div} \left(X_{3} \otimes_{R_{F,G}[[\Gamma]]} R_{F,G} \right)\) in \(R_{F,G}\) (and \(\text{Div} \left(X_{2} \otimes_{R_{F,G}} R_{F,G} \right) R_{F,G}\) in \(R_{F,G}\) respectively). For this purpose, we will use Proposition 4.2 in Section 4 of [26]. One of the hypotheses involved in the Proposition there concerns the following statement:
\textbf{FIN-PROJ} For every height two prime ideal \(Q_{3,2} \) in \(R_{F,G}[[\Gamma]] \) containing \(\ker(\pi_{3,2}) \), the projective dimension of \((\text{Sel}_{\rho_3}^{\Sigma_0}(Q))^\vee \) is finite.

For every height two prime ideal \(Q_{2,1} \) in \(R_{F,G} \) containing \(\ker(\pi_{2,1}) \), the projective dimension of \((\text{Sel}_{\rho_2}^{\Sigma_0}(Q))^\vee \) is finite.

Let us suppose that \textbf{FIN-PROJ} holds (we will briefly discuss later why \textbf{FIN-PROJ} holds). Another hypothesis involved in Proposition 4.2 in section 4 of [26] requires us to show that the maximal \(R_{F,G}[[\Gamma]] \) (and \(R_{F,G} \) respectively) pseudo-null submodule of \(X_3 \) (and \(X_2 \) respectively) is trivial. For this purpose, we will first define the strict (non-primitive) Selmer group, for each \(i \in \{1,2,3\} \), as follows:

\[
\text{Sel}_{\rho_i}^{\Sigma_0,\text{str}}(Q) := \ker \left(H^1(G_\Sigma, D_{\rho_i}) \xrightarrow{\phi_{\rho_i}^{\Sigma_0,\text{str}}} H^1(\text{Gal}(\overline{Q}/Q), \frac{D_{\rho_i}}{\text{Fil}^+ D_{\rho_i}}) \right).
\]

Combining Proposition 4.2.1 and Proposition 4.3.2 from [7] with the statements \textbf{Tor} and \textbf{VAN-H}2, we obtain that the \(R_{F,G}[[\Gamma]] \)-module \(\text{Sel}_{\rho_3}^{\Sigma_0,\text{str}}(Q)^\vee \) and the \(R_{F,G} \)-module \(\text{Sel}_{\rho_2}^{\Sigma_0,\text{str}}(Q)^\vee \) have no non-trivial pseudo-null submodules. Also for each \(i \in \{1,2,3\} \), one has the following short exact sequence relating \(\text{Sel}_{\rho_i}^{\Sigma_0,\text{str}}(Q) \) to \(\text{Sel}_{\rho_i}^{\Sigma_0}(Q) \):

\[
0 \to \text{Sel}_{\rho_i}^{\Sigma_0,\text{str}}(Q) \xrightarrow{\alpha_i} \text{Sel}_{\rho_i}^{\Sigma_0}(Q) \to H^1(\Gamma_p, H^0(\text{Fil}_p^+ D_{\rho_i})) \to 0.
\]

In the cases we are interested in, Lemma 3.7 tells us that \(H^1(\Gamma_p, H^0(\text{Fil}_p^+ D_{\rho_i})) = 0 \), for each \(i \in \{1,2,3\} \). This lets us conclude that the map \(\alpha_i \) is an isomorphism for each \(i \in \{1,2,3\} \). We have the following statement:

\textbf{No-PN} The \(R_{F,G}[[\Gamma]] \)-module \(\text{Sel}_{\rho_3}^{\Sigma_0}(Q)^\vee \) has no non-trivial pseudo-null submodules.

The \(R_{F,G} \)-module \(\text{Sel}_{\rho_2}^{\Sigma_0}(Q)^\vee \) has no non-trivial pseudo-null submodules.

Let \(Q_{3,2} \) (and \(Q_{2,1} \) respectively) be a height two prime ideal in \(R_{F,G}[[\Gamma]] \) (and \(R_{F,G} \) respectively) containing \(\ker(\pi_{3,2}) \) (and \(\ker(\pi_{2,1}) \) respectively). \textbf{No-PN} allows us to conclude that

\[
\text{depth}_{(R_{F,G}[[\Gamma]])} Q_{3,2} (X_3)_{Q_{3,2}} \geq 1, \quad \text{depth}_{(R_{F,G})} Q_{2,1} (X_2)_{Q_{2,1}} \geq 1.
\]

The hypotheses \textbf{FIN-PROJ} allows us to use the Auslander-Buchsbaum formula. Combining equation (19) along with the Auslander-Buchsbaum formula over the two-dimensional local rings \((R_{F,G}[[\Gamma]])_{Q_{3,2}} \) and \((R_{F,G})_{Q_{2,1}} \) allows us to make the following conclusion involving projective dimensions:

\[
\text{pd}_{(R_{F,G}[[\Gamma]])} Q_{3,2} (X_3)_{Q_{3,2}} \leq 1, \quad \text{pd}_{(R_{F,G})} Q_{2,1} (X_2)_{Q_{2,1}} \leq 1.
\]

This allows us to write down projective resolutions for \((X_3)_{Q_{3,2}} \) (and \((X_2)_{Q_{2,1}} \) respectively) over \((R_{F,G}[[\Gamma]])_{Q_{3,2}} \) (and \((R_{F,G})_{Q_{2,1}} \) respectively). Let \(A_3 = (R_{F,G}[[\Gamma]])_{Q_{3,2}} \) and \(A_2 = (R_{F,G})_{Q_{2,1}} \). Both \(A_3 \) and \(A_2 \) have Krull dimension two. We have the following short exact sequences:

\[
0 \to A_3^{n_3} \xrightarrow{\omega_3} A_3^{n_3} \to (X_3)_{Q_{3,2}} \to 0, \quad 0 \to A_2^{n_2} \xrightarrow{\omega_2} A_2^{n_2} \to (X_2)_{Q_{2,1}} \to 0.
\]

Here, we have matrices \(\omega_3 \in M_{n_3}(A_3) \) and \(\omega_2 \in M_{n_2}(A_2) \). Consider the rings \(B_2 := A_3 \otimes_{R_{F,G}[[\Gamma]]} R_{F,G} \) and \(B_1 := A_2 \otimes_{R_{F,G}} R_{F,G} \), both of which have Krull dimension one. Taking the tensor product with the \(R_{F,G}[[\Gamma]] \)-module \(R_{F,G} \) (and \(R_{F,G} \)-module \(R_{F,G} \) respectively), we obtain the following short exact sequences:

\[
0 \to B_2^{n_2} \xrightarrow{\pi_{3,2}(\omega_3)} B_2^{n_2} \to X_3 \otimes_{R_{F,G}[[\Gamma]]} B_2 \to 0, \quad 0 \to B_1^{n_2} \xrightarrow{\pi_{2,1}(\omega_2)} B_1^{n_2} \to X_2 \otimes_{R_{F,G}} B_1 \to 0.
\]
If we let \(\text{len}_A(M) \) denote the length of an \(A \)-module \(M \), we have
\[
\text{len}_B_2 \left(\frac{B_2}{(\pi_{3,2}(\det(\omega_3)))} \right) = \text{len}_B_2 \left(X_3 \otimes_{R,F,G[[\Gamma]]} B_2 \right), \quad \text{len}_B_1 \left(\frac{B_1}{(\pi_{2,1}(\det(\omega_2)))} \right) = \text{len}_B_1 \left(X_2 \otimes_{R,F,G} B_1 \right).
\]

It is this observation that we will maneuver to obtain information about the divisors \(\text{Div} \left(X_3 \otimes_{R,F,G[[\Gamma]]} R_{F,G} \right) \) and \(\text{Div} \left(X_2 \otimes_{R,F,G} R_{f,G} \right) \) in \(R_{F,G} \) and \(R_{f,G} \) respectively.

To establish \([\text{FIN-PROJ}]\) we will first combine Corollary 3.2.3 in [11] with \([\text{Tor}]\) and \([\text{VAN-H2}]\) to establish the following statement:

\(\text{SURJ} \) The global-to-local maps \(\phi_{\Sigma_0}^* \) and \(\phi_{\rho_1}^* \) defining the Selmer groups \(\text{Sel}_{\Sigma_0}^1(Q) \), \(\text{Sel}_{\rho_1}^1(Q) \) respectively are surjective.

Let \(Q_{3,2} \) (and \(Q_{2,1} \) respectively) be a height two prime ideal in \(R_{F,G[[\Gamma]]} \) (and \(R_{F,G} \) respectively) containing \(\ker(\pi_{3,2}) \) (and \(\ker(\pi_{2,1}) \) respectively). To establish \([\text{FIN-PROJ}]\) it will suffice to prove that the projective dimensions of the \((R_{F,G[[\Gamma]]})_{\Sigma_3,2} \)-modules
\[
H^1(G_\Sigma, D_{\rho_3})^\vee \otimes_{R,F,G[[\Gamma]]} R_{F,G[[\Gamma]]}Q_{3,2}, \quad H^1 \left(\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p), \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)^\vee \otimes_{R,F,G[[\Gamma]]} (R_{F,G[[\Gamma]]})_{\Sigma_3,2}
\]
and the projective dimensions of the \((R_{F,G})_{Q_{2,1}} \)-modules
\[
H^1(G_\Sigma, D_{\rho_2})^\vee \otimes_{R,F,G} (R_{F,G})_{Q_{2,1}}, \quad H^1 \left(\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p), \frac{D_{\rho_2}}{\text{Fil}^+ D_{\rho_2}} \right)^\vee \otimes_{R,F,G} (R_{F,G})_{Q_{2,1}}
\]
are respectively finite. The hypothesis \([\text{VAN-H2}]\) allows us to apply Proposition 4.5 and Proposition 4.6 in [26]. It will now suffice to prove the following statements \([\text{REG-\rho_3}]\) and \([\text{REG-\rho_2}]\):

\(\text{REG-\rho_3} \) For every height two prime ideal \(Q_{3,2} \) containing \(\ker(\pi_{3,2}) \) and in the support of \(H^0(G_\Sigma, D_{\rho_3})^\vee \) or \(H^0 \left(\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p), \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)^\vee \), the 2-dimensional local ring \((R_{F,G[[\Gamma]]})_{\Sigma_3,2} \) is regular.

\(\text{REG-\rho_2} \) For every height two prime ideal \(Q_{2,1} \) containing \(\ker(\pi_{2,1}) \) and in the support of \(H^0(G_\Sigma, D_{\rho_2})^\vee \),

- the 2-dimensional local ring \((R_{F,G})_{Q_{2,1}} \) is regular;
- the 1-dimensional ring \(\left(\frac{R_{F,G}}{\ker(\pi_{2,1})} \right)_{Q_{2,1}} \) is integrally closed (and hence regular too).

The projective dimension of the \(R_{F,G} \)-module \(H^0 \left(\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p), \frac{D_{\rho_2}}{\text{Fil}^+ D_{\rho_2}} \right)^\vee \) equals one.

Proposition 3.3, Lemma 3.4 and Lemma 3.8 establish \([\text{REG-\rho_2}]\). Lemma 1.16 and Proposition 1.17 in [20] establish \([\text{REG-\rho_3}]\).

The control theorems that relate \(\text{Sel}_{\Sigma_0}^1(Q)^\vee \otimes_{R,F,G[[\Gamma]]} R_{F,G} \) with \(\text{Sel}_{\rho_1}^1(Q)^\vee \), given in equation (7), and \(\text{Sel}_{\rho_2}^1(Q)^\vee \otimes_{R,F,G} R_{f,G} \) with \(\text{Sel}_{\rho_1}^1(Q)^\vee \), given in equation (13), use Proposition 5.2 in [26]. The following flowchart summarizes the logical flow involved in those arguments:
Calculations involving global Galois cohomology groups

Lemma 3.1. Let Q be a height two prime ideal in $R_{F,G}$ satisfying the following properties:

- $p \notin Q$.
- $i_F(\mathfrak{P}_F) \subset Q$, for some classical height one prime ideal \mathfrak{P}_F of R_F with weight ≥ 2.

Then, $(R_{F,G})_Q$ is a regular local ring with Krull dimension 2.

Proof. We have the following natural inclusions:

$$i_1 : O[[x_F]] \hookrightarrow R_F, \quad i_F : R_F \twoheadrightarrow R_{F,G}, \quad i_{F,G} : R_G[[x_F]] \hookrightarrow R_{F,G}.$$

Let us define the following prime ideals:

$$\mathfrak{p}_0 := i_1^{-1}(\mathfrak{P}_F), \quad Q_0 := i_{F,G}^{-1}(Q).$$

Since $p \notin Q$ and the Krull dimension of R_F equals two, we have the equality $i_{F}^{-1}(Q) = \mathfrak{P}_F$.

Furthermore, since \mathfrak{P}_F is a classical height one prime ideal in R_F, the extension

$$(O[[x_F]])_{\mathfrak{p}_0} \hookrightarrow (R_F)_{\mathfrak{P}_F}$$

of discrete valuation rings is finite and étale (see Corollary 1.4 in [15]). Let

$$\mathcal{R} = (R_{G}[[x_F]])_{Q_0} \otimes (O[[x_F]])_{\mathfrak{p}_0} (R_F)_{\mathfrak{P}_F}.$$

We have the following commutative diagrams:

$$\begin{array}{ccc}
O[[x_F]] & \longrightarrow & R_G[[x_F]] \\
\downarrow i_1 & & \downarrow i_{F,G} \\
R_F & \longrightarrow & R_{F,G} \\
\downarrow i_F & & \downarrow \\
\mathcal{R} & \longrightarrow & \mathcal{R}
\end{array}$$

Étale morphisms are stable under base change (Proposition 3.22 in Chapter 4 of [25]). So, the morphism $(R_{G}[[x_F]])_{Q_0} \rightarrow \mathcal{R}$ is also étale. Since \mathfrak{P}_F is a classical height one prime ideal in R_F, there exists integers n_1 and n_2 such that $(1 + x_F)^{n_1} - (1 + p)^{n_2}$ belongs to \mathfrak{P}_F (and hence belongs to Q_0 as well). The polynomial $(1 + x_F)^{n_1} - (1 + p)^{n_2}$ is a non-constant monic polynomial. Lemma 1.16 in [24] now forces $(R_{G}[[x_F]])_{Q_0}$ to be a regular local ring with Krull dimension 2. Since the morphism $(R_{G}[[x_F]])_{Q_0} \rightarrow \mathcal{R}$ is étale, the ring \mathcal{R} is regular too (Corollary 3.24 in Chapter 4 of [25]).

The natural $(O[[x_F]])_{\mathfrak{p}_0}$-algebra maps

$$(R_{G}[[x_F]])_{Q_0} \hookrightarrow (R_{F,G})_Q, \quad (R_F)_{\mathfrak{P}_F} \hookrightarrow (R_{F,G})_Q$$

give us a natural $(O[[x_F]])_{\mathfrak{p}_0}$-algebra map $\mathcal{R} \rightarrow (R_{F,G})_Q$. If we let Q_1 be the prime ideal in \mathcal{R} that Q pullbacks to, we get a natural map $\beta : \mathcal{R}_{Q_1} \rightarrow (R_{F,G})_Q$ of local rings. Using the fact that the completed tensor product $R_{F,G}$ satisfies the universal property of being a co-product in the category of complete semi-local Noetherian O-algebras, we can deduce the following natural isomorphism:

$$(21) \quad R_{G}[[x_F]] \otimes_{O[[x_F]]} R_F \cong R_{F,G}.$$

Equation (21) gives us a natural map $R_{F,G} \rightarrow \mathcal{R}$. We obtain the two following sequence of maps:

$$R_{F,G} \rightarrow \mathcal{R}_{Q_1} \rightarrow (R_{F,G})_Q, \quad (R_{F,G})_Q \rightarrow \mathcal{R}_{Q_1} \rightarrow (R_{F,G})_Q$$

The second sequence of maps in the equation above is obtained by localizing the first sequence of maps with respect to the prime ideal (corresponding to) Q. The composition $\beta \circ \beta'$ is the identity map. Thus, the map β must be surjective. In fact, β turns out to be an isomorphism. To see this, it suffices to show that $\ker(\beta)$ equals 0. Since the Krull dimensions of both \mathcal{R}_{Q_1} and $(R_{F,G})_Q$ equal
two, the height of the prime ideal $\ker(\beta)$ must equal 0. Since \mathcal{R}_{Q_1} is a domain (it is in fact a regular local ring), $\ker(\beta)$ must equal 0. This completes the proof since \mathcal{R}_{Q_1} is a regular local ring. □

Lemma 3.2. The $R_{f,G}$-module $H^0(G_{\Sigma}, D_{p_1})^\vee$ is not supported at any height 1 prime ideal of $R_{f,G}$ containing the prime number p. Consequently, the $R_{f,G}$-module $H^0(G_{\Sigma}, D_{p_1})^\vee$ is torsion.

Proof. Let q be a height one prime ideal in $R_{f,G}$ containing p. Let K denote the fraction field of $\frac{R_{f,G}}{q}$. Note that the characteristic of K is equal to p. We have the following G_{Σ}-equivariant isomorphisms:

$$D^\vee_{p_1} \cong \text{Hom}_{R_{f,G}}\left(L_G \otimes_{R_G} R_{f,G}, \ L_f \otimes_{O_f} R_{f,G}\right),$$

$$\implies D^\vee_{p_1} \otimes_{R_{f,G}} K \cong \text{Hom}_K\left(V_f, V_f\right).$$

Here, V_f and V_G are K-vector spaces with a G_{Σ}-action given by following representations σ_f and σ_G respectively:

$$\sigma_f : G_{\Sigma} \xrightarrow{\rho_f} \text{GL}_2(O_f) \hookrightarrow \text{GL}_2(R_{f,G}) \to \text{GL}_2(K),$$

$$\sigma_G : G_{\Sigma} \xrightarrow{\rho_G} \text{GL}_2(R_G) \to \text{GL}_2(R_{f,G}) \to \text{GL}_2(K).$$

To show that $H^0(G_{\Sigma}, D_{p_1})^\vee$ is not supported at p, it will be sufficient to show that $H^0(G_{\Sigma}, \text{Hom}_K(V_f, V_f))$ is equal to 0. Both σ_f and σ_G are Galois representations over K, a field of characteristic p. In fact as a G_{Σ}-representation, σ_f is isomorphic to the residual representation $\overline{\rho_f}$, after extending scalars to K. The residual representation $\overline{\rho_f}$ is absolutely irreducible (due to the hypothesis \mathbb{RH}). Consequently, the Galois representation σ_f is irreducible. Thus, to show that $H^0(G_{\Sigma}, \text{Hom}_K(V_f, V_f))$ is equal to 0, it will be sufficient to show that σ_f and σ_G are not isomorphic as G_{Σ}-representations over K. For this purpose, it will be sufficient to show that $\text{det}(\sigma_f)$ and $\text{det}(\sigma_G)$ are not isomorphic as G_{Σ}-representations. The image of $\text{det}(\sigma_f)$ lies inside \mathbb{P}_p^N. The pullback $\jmath^{-1}_G(q)$ of the height one prime ideal q under the map $\jmath_G : R_G \hookrightarrow R_{f,G}$ is a height one prime ideal (and not the maximal ideal) of R_G. Consequently, the image of $\text{det}(\sigma_G)$ lies inside $\mathbb{P}_p[[x_G]]^{\times}$ but does not lie inside \mathbb{P}_p^{\times}. Consequently, $\text{det}(\sigma_f)$ and $\text{det}(\sigma_G)$ are not isomorphic as G_{Σ}-representations. The lemma follows. □

Note that $\frac{R_{f,G}}{\ker(\pi_{2,1})} \hookrightarrow R_{f,G}$ is an integral extension. We have the following isomorphism of $R_{f,G}$-modules:

$$(22) \quad \left(H^0(G_{\Sigma}, D_{p_2})^\vee \otimes_{R_{f,G}} \frac{R_{f,G}}{\ker(\pi_{2,1})} \right) \otimes_{\frac{R_{f,G}}{\ker(\pi_{2,1})}} R_{f,G} \cong H^0(G_{\Sigma}, D_{p_1})^\vee.$$

Let $Q_{2,1}$ be a height two prime ideal in $R_{f,G}$ containing $\ker(\pi_{2,1})$. It uniquely corresponds to a height one prime ideal p in $\frac{R_{f,G}}{\ker(\pi_{2,1})}$. And there exist finitely many height one prime ideals q_1, \ldots, q_n in $R_{f,G}$ lying above p. A simple application of Nakayama’s lemma along with equation (22) lets us make the following observation: A height two prime ideal $Q_{2,1}$ in $R_{f,G}$ containing $\ker(\pi_{2,1})$ belongs to the support of $H^0(G_{\Sigma}, D_{p_1})^\vee$ if and only if one of the height one prime ideals q_i (for $1 \leq i \leq n$) in $R_{f,G}$ belongs to the support $H^0(G_{\Sigma}, D_{p_1})^\vee$. These observations along with Lemma 3.1 and Lemma 3.2 immediately give us the following proposition:

Proposition 3.3. Let $Q_{2,1}$ be a height two prime ideal containing $\ker(\pi_{2,1})$.

- If $p \in Q_{2,1}$, then $(H^{0}(G_{\Sigma}, D_{p_2})^\vee)_{Q_{2,1}} = 0$.
- If $p \notin Q_{2,1}$, then $(R_{f,G})_{Q_{2,1}}$ is a regular local ring of dimension 2.

Let P_k be the classical height one prime ideal corresponding to f. Here, P_k is defined to be the kernel of the natural map $\pi_f : R_F \to O_f$. The ring O_f, defined to be the integral closure of $\frac{R_F}{P_k}$, is the ring of integers in a finite extension of \mathbb{Q}_p. As a result, the index $\left[O_f : \frac{R_F}{\ker(\pi_f)}\right]$ is finite and
equal to a power of \(p \). The ring \(R_{f,G} \) is the completed tensor product \(O_f \hat{\otimes} R_G \) (over the ring \(O \)). The map \(\pi_{2,1} : R_{F,G} \to R_{f,G} \) is obtained naturally via the maps

\[
\pi_f : R_F \to O_f, \quad \text{id} : R_G \xrightarrow{=} R_G.
\]

So, the cokernel of the natural inclusion \(\frac{R_{F,G}}{\ker(\pi_{2,1})} \to R_{f,G} \) is also annihilated by a power of \(p \). We obtain the following lemma:

Lemma 3.4. Let \(q \) be a height one prime ideal in \(R_{f,G} \) not containing \(p \). Let \(Q_{2,1} \) denote the height two prime ideal in \(R_{F,G} \), containing \(\ker(\pi_{2,1}) \), given by \(\pi_{2,1}^{-1}(q) \). Then, the following natural inclusion is an equality:

\[
\left(\frac{R_{F,G}}{\ker(\pi_{2,1})} \right)_{Q_{2,1}} \xrightarrow{\sim} (R_{f,G})_q.
\]

Lemma 3.2 also lets us conclude that \(H^0(G_\Sigma, D_{\rho_3})^\vee \) is a torsion \(R_{F,G} \)-module. Combining equation (22) with Nakayama’s lemma, we can then conclude that \((H^0(G_\Sigma, D_{\rho_3})^\vee)_{\ker(\pi_{2,1})} = 0 \).

What we also obtain is that \(H^0(G_\Sigma, D_{\rho_3})^\vee \) is a torsion \(R_{F,G} \)-module. Considering \(R_{F,G} \) as an \(R_{F,G}[[\Gamma]] \)-module via the map \(\pi_{3,2} : R_{F,G}[[\Gamma]] \to R_{F,G} \), we also have the following isomorphism of \(R_{F,G} \)-modules:

\[
H^0(G_\Sigma, D_{\rho_3})^\vee \otimes_{R_{F,G}[[\Gamma]]} R_{F,G} \cong H^0(G_\Sigma, D_{\rho_2})^\vee.
\]

Nakayama’s lemma lets us conclude that \((H^0(G_\Sigma, D_{\rho_3})^\vee)_{\ker(\pi_{3,2})} = 0 \). We have shown that the following equality holds:

\[
(H^0(G_\Sigma, D_{\rho_3})^\vee)_{\ker(\pi_{3,2})} = (H^0(G_\Sigma, D_{\rho_2})^\vee)_{\ker(\pi_{2,1})} = 0.
\]

Since the Tor functor commutes with localization, we immediately get the following lemma:

Lemma 3.5. For all \(i \geq 0 \), the following statements hold:

- The \(R_{F,G} \)-module \(\text{Tor}_i^{R_{F,G}[[\Gamma]]}(R_{F,G}, H^0(G_\Sigma, D_{\rho_3})^\vee) \) is torsion,
- The \(R_{f,G} \)-module \(\text{Tor}_i^{R_{F,G}}(R_{f,G}, H^0(G_\Sigma, D_{\rho_2})^\vee) \) is torsion.

Calculations involving local Galois cohomology groups

As for the local Galois cohomology groups, we will begin with the following exact sequence of \(R_{F,G}[[\Gamma]] \)-modules that is \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \)-equivariant:

\[
0 \to \frac{W}{\text{corank}=1} \to \frac{D_{\rho_3}}{\text{corank}=2} \to \frac{W'}{\text{corank}=1} \to 0,
\]

where

\[
W := \text{Hom}_{R_{F,G}} \left(\frac{L_F}{\text{Fil}^+ L_F} \otimes_{R_F} R_{F,G}, \frac{L_G}{\text{Fil}^+ L_G} \otimes_{R_G} R_{F,G} \right) \otimes_{R_{F,G}} R_{F,G}[[\Gamma]](\kappa^{-1}),
\]

\[
W' := \text{Hom}_{R_{F,G}} \left(\text{Fil}^+ L_F \otimes_{R_F} R_{F,G}, \frac{L_G}{\text{Fil}^+ L_G} \otimes_{R_G} R_{F,G} \right) \otimes_{R_{F,G}} R_{F,G}[[\Gamma]](\kappa^{-1}).
\]

Note that we also have the following \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \)-equivariant isomorphisms of \(R_{F,G}[[\Gamma]] \)-modules:

\[
W \cong R_{F,G} \left((i_F \circ \epsilon_F^{-1}) \cdot (i_G \circ \epsilon_G) \right) \otimes_{R_{F,G}} R_{F,G}[[\Gamma]](\kappa^{-1}),
\]

\[
W' \cong R_{F,G} \left((i_F \circ \delta_F^{-1}) \cdot (i_G \circ \epsilon_G) \right) \otimes_{R_{F,G}} R_{F,G}[[\Gamma]](\kappa^{-1}).
\]
The hypotheses p-DIS-IN ensures us that the residual representation, defined over \mathbb{F}_p, associated to $(i_F \circ \delta_F^{-1}) \cdot (i_G \circ \epsilon_G)$ is non-trivial. Consequently, $H^0(I_p, W') = 0$. So, we get the following $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$-equivariant isomorphism of $R_{F,G}[[\Gamma]]$-modules:

$$(25) \quad H^0\left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right) \cong H^0(I_p, W).$$

Let η_p denote the unique prime in \mathbb{Q}_∞ lying above p and let I_{η_p} denote the corresponding inertia subgroup at η_p. The Galois representation ρ_3 is related to the cyclotomic deformation of ρ_2. We have denoted the quotient $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ by Γ_p. The arguments in Section 3 of [9] combined with the fact that both the characters ϵ_F and ϵ_G are unramified at p give us the following isomorphism that is Γ_p-equivariant:

$$H^0(I_p, W) \cong H^0\left(I_{\eta_p}, \widehat{R_{F,G}} \left((i_F \circ \epsilon_F^{-1}) \cdot (i_G \circ \epsilon_G)\right)\right) \cong \widehat{R_{F,G}} \left((i_F \circ \epsilon_F^{-1}) \cdot (i_G \circ \epsilon_G)\right).$$

Taking the Pontryagin duals of the modules in the above equation gives us the following lemma:

Lemma 3.6. We have the following isomorphism of $R_{F,G}[[\Gamma]]$-modules that is Γ_p-equivariant.

$$H^0\left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)^\vee = R_{F,G} \left((i_F \circ \epsilon_F) \cdot (i_G \circ \epsilon_G^{-1})\right).$$

Here, we consider $R_{F,G}$ as an $R_{F,G}[[\Gamma]]$-module via the map $\pi_{3,2} : R_{F,G}[[\Gamma]] \rightarrow R_{F,G}$.

Note that a_p and b_p are elements of R_F and R_G respectively but not elements of O. This is because the values that a_p and b_p take at classical specializations of F and G respectively vary as one varies the weight (see Lemma 3.2 in [14]). Consequently, the ratio $\frac{i_F(a_p)}{i_G(b_p)}$ is not an element of O (in particular, it is not equal to 1). Thus, the following map of free $R_{F,G}$-modules (of rank 1), which is given by multiplication by $\frac{i_F(a_p)}{i_G(b_p)} - 1$, is injective:

$$H^0\left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)^\vee \xrightarrow{\text{Frob}_p^{-1}} H^0\left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)^\vee.$$

The Frobenius at p, denoted by Frob_p, is a topological generated for Γ_p. This gives us the following equality:

$$H^1\left(I_p, H^0\left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)\right) = 0.$$

Arguing similarly, we get the following results for the modules related to ρ_2 and ρ_3:

$$(26) \quad H^0\left(I_p, \frac{D_{\rho_2}}{\text{Fil}^+ D_{\rho_2}} \right) \cong \widehat{R_{F,G}} \left((i_F \circ \epsilon_F^{-1}) \cdot (i_G \circ \epsilon_G)\right), \quad H^1\left(I_p, H^0\left(I_p, \frac{D_{\rho_2}}{\text{Fil}^+ D_{\rho_2}} \right)\right) = 0.$$

Combining these observations, we get the following lemma:

Lemma 3.7. Let $i \in \{1, 2, 3\}$. Then, $H^1\left(I_p, H^0\left(I_p, \frac{D_{\rho_i}}{\text{Fil}^+ D_{\rho_i}} \right)\right) = 0$.

Consider the short exact sequence $0 \rightarrow R_{F,G}[[\Gamma]] \xrightarrow{\gamma_0^{-1}} R_{F,G}[[\Gamma]] \rightarrow R_{F,G} \rightarrow 0$ of $R_{F,G}[[\Gamma]]$-modules. Here, γ_0 is a topological generator for the pro-cyclic group Γ. Taking the tensor product with the $R_{F,G}[[\Gamma]]$-module $H^0\left(I_p, \frac{D_{\rho_3}}{\text{Fil}^+ D_{\rho_3}} \right)^\vee$ over the ring $R_{F,G}[[\Gamma]]$, we get the following exact sequence:
Here, χ denotes the fraction field of E.

\[H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \overset{\gamma_0 - 1}{\rightarrow} H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \overset{\gamma_0 - 1}{\rightarrow} H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \otimes_{R_{F,G}[\Gamma]} R_{F,G} \to 0. \]

By Nakayama’s lemma, the natural surjection
\[H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \overset{\gamma_0}{\rightarrow} H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \otimes_{R_{F,G}[\Gamma]} R_{F,G} \]

must be an isomorphism since it is a map between free $R_{F,G}$-modules of rank 1 (see Lemma 3.6 and equation (26)). This tells us that the map $H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \overset{\gamma_0 - 1}{\rightarrow} H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right)$, given by multiplication by the element $\gamma_0 - 1$, is the zero map. Using Lemma 3.6, we get the following isomorphism of $R_{F,G}$-modules that is Γ_p-equivariant:

\[\text{Tor}_1^{R_{F,G}[\Gamma]} \left(R_{F,G}, H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \right) \cong H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \cong R_{F,G} \left((i_F \circ \epsilon_F) \cdot (i_G \circ \epsilon^{-1}_G) \right) . \]

This observation, along with equation (26), immediately gives us the following lemma:

Lemma 3.8. We have the following isomorphism of torsion $R_{F,G}$-modules:

\[\text{Tor}_1^{R_{F,G}[\Gamma]} \left(R_{F,G}, H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \right) \cong \frac{R_{F,G}}{1 - \frac{\ell_p(\chi_p)}{\ell_p(\mu_p)}} . \]

Lemma 3.9.

- For all $i \geq 2$, we have $\text{Tor}_i^{R_{F,G}[\Gamma]} \left(R_{F,G}, H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \right) = 0$.

- For all $i \geq 1$, we have $\text{Tor}_i^{R_{F,G}} \left(R_{F,G}, H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right) \right) = 0$.

Proof. The first statement simply follows from the fact that as an $R_{F,G}[\Gamma]$-module, the projective dimension of $R_{F,G}$ (which is isomorphic to $\frac{R_{F,G}[\Gamma]}{(\gamma_0 - 1)}$ as an $R_{F,G}[\Gamma]$-module) is equal to 1. The second statement follows from equation (25), since $H^0 \left(I_p, \frac{D_{p_3}}{\text{Fil}^+ D_{p_3}} \right)$ is a free $R_{F,G}$-module. \(\square\)

Lemma 3.10.

\[H^2 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), D_{p_1} \right) = H^2 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), \text{Fil}^+ D_{p_1} \right) = H^2 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), D_{p_3} \right) = H^2 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), \text{Fil}^+ D_{p_3} \right) = 0 . \]

Proof. We will show that $H^2 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), D_{p_2} \right) = 0$. The rest of the lemma follows using similar arguments. By local duality, we have

\[H^2 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), D_{p_2} \right) \cong H^0 \left(\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p), L_p^* \right) , \]

where $L_p^* \cong \text{Hom}_{R_{F,G}} (L_G \otimes_{R_{F,G}} R_{F,G}, L_F \otimes_{R_F} R_{F,G}(\chi_p))$.

Here, $\chi_p : G_{\Sigma} \rightarrow \mathbb{Z}_p^*$ is the p-adic cyclotomic character given by the action of G_{Σ} on μ_{p^∞}, the p-power roots of unity. Let E denote the fraction field of $R_{F,G}$. We define the following vector spaces over E that have an action of $\text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p)$:

\[V_F(\chi_p) := L_F \otimes_{R_F} E(\chi_p), \quad V_G := L_G \otimes_{R_G} E, \]

It will be sufficient to show that

\[\text{(27)} \quad \text{Hom}_E (V_G, V_F(\chi_p)) \langle p \rangle = 0. \]
Both $V_F(\chi_p)$ and V_G are reducible representations for the action of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Let the $V_F(\chi_p)^{ss}$ and V_G^{ss} denote the semi-simplifications of $V_F(\chi_p)$ and V_G respectively for the action of the inertia subgroup I_p. We have the following I_p-equivariant isomorphisms:

$$V_F(\chi_p)^{ss} \cong E(\chi_p(i_F \circ \delta_F)) \oplus E(\chi_p), \quad V_G^{ss} \cong E(\chi_G \circ \delta_G) \oplus E.$$

In this paragraph, we will consider characters over the inertia group I_p. The values of the character $\chi_p(i_F \circ \delta_F)$ lie inside the ring R_F but not inside the ring O. Similarly, the values of the character $i_G \circ \delta_G$ lie inside the ring R_G but not inside the ring O. As a result, the character $\chi_p(i_F \circ \delta_F)$ cannot equal $i_G \circ \delta_G$ or the trivial character. Also, the p-adic cyclotomic character χ_p (which takes values in \mathbb{Z}_p^\times) cannot equal the character $i_G \circ \delta_G$ or the trivial character. Equation (27) now follows from these observations; and hence so does the lemma.

The validity of the Weak Leopoldt conjecture [Weak Leo] along with Proposition 6.1 in [10] and Proposition 5.2.4 in [11] gives us the following corollary to Lemma 3.10.

Corollary 3.11. $H^2(G_\Sigma, D_{p_1}) = H^2(G_\Sigma, D_{p_2}) = H^2(G_\Sigma, D_{p_3}) = 0$.

4. Examples When R_F Is Not Regular

To end, we will provide some examples when R_F, the normalization of a primitive component of the ordinary Hecke algebra, is not a UFD (and hence not regular). These examples will be based on the circle of ideas developed in [20], [2] and [3]. We have used Sage [3] to perform the computations. Let $E = \mathbb{Q}(\sqrt{D})$ be a real quadratic field with discriminant $D > 0$, and where the prime p splits; we have $(p) = p_1 p_2$ for two distinct prime ideals p_1 and p_2 in the ring of integers of the number field E. Let k be an even integer strictly greater than 2. Let $\chi_E : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \{\pm 1\}$ be the quadratic character associated to E. Let ϵ be a fundamental unit for E. Let us suppose that the following condition holds:

$$p \text{ divides } \text{Norm}_{E/\mathbb{Q}}(k - 1). \quad (28)$$

We will assume as a result, without loss of generality, that $k - 1 \in p_1$. Equation (28) allows us to apply Proposition 2.1 in [20]. We have an ordinary p-stabilized newform $f = \sum_{n \geq 1} a_n(f)q^n$ in $S^\ord_k(Dp, \chi_E)$ such that the residual representation $\overline{\rho}_f$ (defined over a finite field \mathbb{F} with characteristic p) associated to f satisfies the following properties:

- $\overline{\rho}_f$ is absolutely irreducible, $\overline{\rho}_f \otimes \chi_E \cong \overline{\rho}_f$, $\overline{\rho}_f$ is p-ordinary (in the sense of [11]).

Let O denote the ring of integers in a finite extension of \mathbb{Q}_p, containing the unique unramified quadratic extension of \mathbb{Q}_p, the ring of Witt vectors $W(\mathbb{F})$ and the p'-th roots of unity (where p' denotes the exponent of the p-Sylow subgroup of the ideal class group of E). Let $h^\ord(Dp^\infty, \chi_E, O)$ denote the universal p-ordinary Hecke algebra, with coefficients in O, with tame level D and whose prime-to-p part of the Nebentypus equals the character χ_E. Let h_m be the unique local ring of $h^\ord(Dp^\infty, \chi_E, O)$ through which the following ring homomorphism factors:

$$\lambda_f : h^\ord(Dp^\infty, \chi_E, O) \to \overline{\mathbb{F}}_p, \quad \text{given by}$$

$$\lambda_f(T_l) = a_l(f), \forall \text{ primes } l \text{ not dividing } Dp, \quad \lambda_f(U_l) = a_l(f), \forall \text{ primes } l \text{ dividing } Dp.$$

See [15] for a definition of the Hecke operators T_l and U_l. Also note that h_m is the “full” Hecke algebra generated by the Hecke operators T_l along with the diamond operators $< l >$ for primes l not dividing Dp and the U_l operators for primes l dividing Dp. Let $\rho_m : G\mathbb{Q} \to \text{GL}_2(h_m)$ denote the Galois representation (section 2.4 of [15]) such that $\text{Trace}(\rho_m(\text{Frob}_l)) = T_l$, for all primes $l \nmid Dp$.

16
Let \(\text{CNL}_O \) denote the category of complete, Noetherian, local \(O \)-algebras whose residue field equals the residue field of \(O \). Let \(\text{SETS} \) denote the category of sets. Consider the deformation functor \(\mathfrak{F} : \text{CNL}_O \to \text{SETS} \) that, for every \(B \in \text{CNL}_O \), is given by strict equivalence classes of deformations \(\varrho : G_E \to \text{GL}_2(B) \) that are of type \(\mathfrak{D} \) and such that the residual representation associated to the deformation \(\varrho \) is isomorphic to \(\overline{\rho}_p \). A Galois representation \(\varrho : G_E \to \text{GL}_2(B) \) is said to be of type \(\mathfrak{D} \) if it satisfies the following properties:

- \(\varrho \) is unramified at all primes \(l \) not dividing \(D_p \).
- The restriction \(\varrho \big|_{\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)} \) to the decomposition group at \(p \) is \(p \)-ordinary.
- If \(l \) is a prime dividing \(D \), we have \(\varrho \big|_{\text{Gal}(\overline{\mathbb{Q}}_l/\mathbb{Q}_l)} \sim \begin{pmatrix} 1 & 0 \\ 0 & \chi_E \end{pmatrix} \).

Suppose also that the following condition holds:

\[
2(k - 1) \neq 0 \pmod{p - 1}.
\]

By Theorem 3.9 in [1], the ring \(h_m \) along with the Galois representation \(\rho_m : G_E \to \text{GL}_2(h_m) \) represents the deformation functor \(\mathfrak{F} \). The isomorphism \(\overline{\rho}_f \cong \overline{\rho}_f \otimes \chi_E \) induces an involution \(\tau : h_m \to h_m \) that is \(O[[x_F]] \)-equivariant. Let \(h_m^+ \) denote the subring of \(h_m \) fixed by the involution \(\tau \). We have the following natural inclusions of \(O[[x_F]] \)-algebras:

\[
O[[x_F]] \hookrightarrow h_m^+ \hookrightarrow h_m.
\]

Theorem 1.1 and 1.2 in [15] give us a natural surjection \(h_m \twoheadrightarrow h_{k,m} \). Here, the ring \(h_{k,m} \) denotes the local factor of \(h_m^+ \text{ord}(\Gamma_1(Dp), \chi_E, O) \) (the “full” Hecke algebra acting on the space of ordinary cuspforms of weight \(k \) with Nebentypus \(\chi_E \) and conductor \(Dp \) generated by the operators \(T_l^{(k)} \) for primes \(l \nmid Dp \)) and \(U_l^{(k)} \) for primes \(l \mid Dp \) through which the following ring homomorphism factors:

\[
\beta_f : h_k^{\text{ord}}(\Gamma_1(Dp), \chi_E, O) \to \mathbb{F}_p,
\]

\[
\beta_f(T_l^{(k)}) = a_l(f), \forall l \nmid Dp,
\]

\[
\beta_f(U_l^{(k)}) = \overline{a_l(f)}, \forall l \mid Dp.
\]

Let us now suppose that the following condition holds:

\[
\text{Rank}_O h_{k,m} = 2.
\]

Nakayama’s lemma and the fact \(h_m \) is a free \(O[[x_F]] \)-algebra (Theorem 3.1 in [16]) then let us conclude that \(\text{Rank}_O O[[x_F]] h_m = 2 \). Note that by Corollary 3.12 in [3], the natural inclusion \(h_m^+ \mathfrak{F} \to h_m \) is not an isomorphism. So, the natural inclusion \(O[[x_F]] \mathfrak{F} \to h_m^+ \) must be an isomorphism. By Theorem 1.1 in [2], we have the following isomorphism of \(O[[x_F]] \)-algebras:

\[
h_m \cong h_m^+ [\vartheta] \cong O[[x_F]][\vartheta], \quad \text{where } \vartheta^2 = \sqrt{(1 + x_F)^{\frac{\log(s)}{\log(1 + p)}} - 1}.
\]

The function \(\log \) denotes the \(p \)-adic logarithm on \(E \) that is determined by the inclusion \(E \hookrightarrow E_{p_1} \), where the field \(E_{p_1} \) denotes the completion of the field \(E \) with respect to the valuation \(\text{Val}_{p_1} \) given by the prime ideal \(p_1 \). Note that \(E_{p_1} \cong \mathbb{Q}_p \). Now, let us further suppose that \(\epsilon \) is a \(p \)-th power in \(E_{p_1} \). This condition is satisfied precisely when the following inequality holds:

\[
\text{Val}_{p_1} \left(e^{p-1} - 1 \right) \geq 2.
\]

In this case, the element \((1 + x_F)^{\frac{\log(s)}{\log(1 + p)}} - 1 \) is a square-free polynomial in \(O[[x_F]] \) and a product of at least 2 distinct irreducible elements of \(O[[x_F]] \). As a result, the local ring \(h_m \) is an integrally closed domain that is not a UFD. Finally, we let \(F \) equal the unique Hida family passing through \(f \).
Remark 5. The Galois representation ρ_m, as constructed in Section 2.4 of \cite{5}, takes values in the “reduced” ordinary Hecke algebra h_m^{red} (generated by the Hecke operators T_l for primes l not dividing Dp). Note that h_m^{red} is a subring of h_m. Theorem 3.9 in \cite{11}, in fact, identifies the universal deformation ring for the functor \mathfrak{F} with h_m^{red}. It is Proposition 2.4.2 in \cite{5} that provides us an isomorphism $h_m^{\text{red}} \cong h_m$. See Theorem 12 in \cite{6} that also addresses this fact.

Remark 6. We will now explain how to ascertain that $\text{Rank}_\mathbb{Q} h_{k,m} = 2$. Let us define the following set of Hecke eigenforms of conductor Dp, weight k and Nebentypus χ_E with coefficients in \mathbb{Q}_p:

$$B_{k,m,\text{st}} = \{g \mid g \text{ is a } p\text{-stabilized Hecke eigenform in } S_k^{\text{ord}}(Dp, \chi_E),$$

$$a_1(g) = 1, \ a_l(f) \equiv a_l(g) \ (\text{mod } l), \ \forall l \nmid Dp\}.$$

By Corollary 3.7 in \cite{15}, it suffices to show that $|B_{k,m,\text{st}}| = 2$. Note that since f and its twist $f \otimes \chi_E$ belong to the set $B_{k,m,\text{st}}$, we have $|B_{k,m,\text{st}}| \geq 2$. For each $g \in B_{k,m,\text{st}}$, let g_0 be the unique newform associated to it (Theorem 3.22 in \cite{21}). Throughout this remark, it will be useful to keep in mind that the weight k is strictly greater than 2 and that the conductor of χ_E is equal to D (and hence of order prime to p), the conductor of g_0 is also equal to D (Proposition 3.1 in \cite{14}). We will now use the following code in Sage to construct a set B_{full}, whose $\text{Gal}(E/\mathbb{Q})$-orbit equals the set of all normalized (new) Hecke eigenforms of weight k, conductor D and Nebentypus χ_E:

```
%%sage
B_{\text{full}} = Newforms(chi_E, k, names='alpha');
```

For each $g \in B_{\text{full}}$, let K_g denote the number field generated by the Hecke eigenvalues of g. Note that if the p-stabilization of g belongs to $B_{k,m,\text{st}}$ and if l is a prime that remains inert in the extension E/\mathbb{Q}, then l divides $\text{Norm}_{K_g}(a_l(g))$. This is because the residual Galois representation $\overline{\rho}_g$ associated to g (which is isomorphic to $\overline{\rho}_f$) would be isomorphic to $\overline{\rho}_g \otimes \chi_E$ (since $\overline{\rho}_f \cong \overline{\rho}_g \otimes \chi_E$). Define a subset $B'_{k,m,\text{new}}$ of B_{full} which contains those newforms g such that l divides $\text{Norm}_{K_g}(a_l(g))$, for all primes l that remain inert in the extension E/\mathbb{Q} and such that $3 \leq l \leq 100$. In the examples listed in Table 1, $|B'_{k,m,\text{new}}|$ turns out to be 1. And hence in those examples, the $\text{Gal}(E/\mathbb{Q})$-orbit of $B'_{k,m,\text{new}}$ is in bijection with the set $B_{k,m,\text{st}}$ (the bijection is obtained through the process of p-stabilization) leading us to conclude that $|B_{k,m,\text{st}}| = 2 \times |B'_{k,m,\text{new}}| = 2$. This will ascertain that $\text{Rank}_\mathbb{Q} h_{k,m} = 2$.

Remark 7. Fixing a quadratic field $\mathbb{Q}(\sqrt{D})$ and letting the primes p vary, it seems computationally difficult to find a large number of primes p such that equation (32) holds. William Stein informed us that the complexity of the code in Remark 6 is $O \left((Dk)^3 \right)$. This explains the paucity of our examples.

Table 1. $RF = h_m = O[|x_F|] \left[\sqrt{(1 + x_F)^{\frac{\log(e)}{\log(1+p)}} - 1} \right]$

| $\mathbb{Q}(\sqrt{D})$ | (k,p) | ϵ | $\text{Norm}_{E/\mathbb{Q}}(\epsilon^{k-1} - 1)$ | $\text{Val}_p \left(\epsilon^{p-1} - 1 \right)$ | $|K_f : \mathbb{Q}|$ |
|------------------------|-------|----------|---------------------------------|---------------------------------|----------------|
| $\mathbb{Q}(\sqrt{10} \cdot 4)$ | $(20,191)$ | $\sqrt{10} + 3$ | $-1 \cdot 2 \cdot 3 \cdot 191^2 \cdot 4523 \cdot 1021973$ | 2 | 112 |
| $\mathbb{Q}(\sqrt{33})$ | $(10,37)$ | $4\sqrt{33} + 23$ | $-1 \cdot 2^2 \cdot 11 \cdot 37^4 \cdot 47^2 \cdot 71^2$ | 2 | 32 |
| $\mathbb{Q}(\sqrt{89})$ | $(4,5)$ | $53\sqrt{89} + 500$ | $-1 \cdot 2^3 \cdot 5^3 \cdot 1000003$ | 3 | 22 |
| $\mathbb{Q}(\sqrt{89})$ | $(6,5)$ | $53\sqrt{89} + 500$ | $-1 \cdot 2^3 \cdot 5^4 \cdot 11 \cdot 18181909091$ | 3 | 36 |
| $\mathbb{Q}(\sqrt{629})$ | $(4,5)$ | $\sqrt{629} + 25$ | $-1 \cdot 2^2 \cdot 5^2 \cdot 157$ | 2 | 168 |
REFERENCES

[1] G. Böckle. On the density of modular points in universal deformation spaces. Amer. J. Math., 123(5):985–1007, 2001.
[2] S. Cho. Deformation rings for induced Galois representations. PhD thesis, University of California, Los Angeles, 1999.
[3] S. Cho and V. Vatsal. Deformations of induced Galois representations. J. Reine Angew. Math., 556:79–98, 2003.
[4] T. S. Developers. SageMath, the Sage Mathematics Software System (Version 7.2), YYYY. http://www.sagemath.org.
[5] M. Emerton, R. Pollack, and T. Weston. Variation of Iwasawa invariants in Hida families. Invent. Math., 163(3):523–580, 2006.
[6] F. Q. Gouvêa. Deforming Galois representations: controlling the conductor. J. Number Theory, 34(1):95–113, 1990.
[7] R. Greenberg. On the structure of Selmer groups. preprint.
[8] R. Greenberg. Iwasawa’s theory and p-adic L-functions for imaginary quadratic fields, dans number theory related to Fermat’s last theorem, edited by N. Koblitz. Progress in Math, 26:275–285, 1982.
[9] R. Greenberg. Iwasawa theory and p-adic deformations of motives. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 193–223. Amer. Math. Soc., Providence, RI, 1994.
[10] R. Greenberg. On the structure of certain Galois cohomology groups. Doc. Math., (Extra Vol.):335–391 (electronic), 2006.
[11] R. Greenberg. Surjectivity of the global-to-local map defining a Selmer group. Kyoto J. Math., 50(4):853–888, 2010.
[12] R. Greenberg and V. Vatsal. On the Iwasawa invariants of elliptic curves. Inventiones Mathematicae, 142(1):17–63, 2000. Available at http://www.math.washington.edu/~greenber/IWINV.ps.
[13] T. Hara and T. Ochiai. The cyclotomic Iwasawa main conjecture for Hilbert cuspforms with complex multiplication. arXiv preprint arXiv:1507.07309, 2016.
[14] H. Hida. A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I. Invent. Math., 79(1):159–195, 1985.
[15] H. Hida. Galois representations into $GL_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms. Invent. Math., 85(3):545–613, 1986.
[16] H. Hida. Iwasawa modules attached to congruences of cusp forms. Ann. Sci. École Norm. Sup. (4), 19(2):231–273, 1986.
[17] H. Hida. A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II. Ann. Inst. Fourier (Grenoble), 38(3):1–83, 1988.
[18] H. Hida. Elementary theory of L-functions and Eisenstein series, volume 26 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1993.
[19] H. Hida. On the search of genuine p-adic modular L-functions for $GL(n)$. Mém. Soc. Math. Fr. (N.S.), (67):vi+110, 1996. With a correction to: “On p-adic L-functions of $GL(2)\times GL(2)$ over totally real fields” [Ann. Inst. Fourier (Grenoble) 41 (1991), no. 2, 311–391; MR1137290 (93b:11052)].
[20] H. Hida. Global quadratic units and Hecke algebras. Doc. Math., 3:273–284 (electronic), 1998.
[21] H. Hida. Modular forms and Galois cohomology, volume 69 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2000.
[22] H. Hida and J. Tilouine. On the anticyclotomic main conjecture for CM fields. Invent. Math., 117(1):89–147, 1994.
[23] M.-L. Hsieh. Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields. J. Amer. Math. Soc., 27(3):753–862, 2014.
[24] A. Lei, D. Loeffler, and S. L. Zerbes. Euler systems for Rankin-Selberg convolutions of modular forms. Ann. of Math. (2), 180(2):653–771, 2014.
[25] Q. Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.
[26] B. Palvannan. On Selmer groups and factoring p-adic L-functions. preprint, 2016. Available at https://arxiv.org/abs/1605.01026v1.

DEPARTMENT OF MATHEMATICS, DAVID RITTENHOUSE LABORATORY, 209 SOUTH 33RD STREET UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA 19104-6395, USA

E-mail address: bharath@math.upenn.edu