Trimaximal neutrino mixing from scotogenic A_4 family symmetry

Gui-Jun Ding,1,2,∗ Jun-Nan Lu,2,3,† and José W. F. Valle3,‡

1Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China
2Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
3AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Científic de Paterna, C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) - SPAIN

We propose a flavour theory of leptons implementing an A_4 family symmetry. Our scheme provides a simple way to derive trimaximal neutrino mixing from first principles, leading to simple and testable predictions for neutrino mixing and CP violation. Dark matter mediates neutrino mass generation, as in the simplest scotogenic model.

I. INTRODUCTION

The discovery of neutrino oscillations [1–3] constitutes a milestone in particle physics, yet we are still far from understanding the pattern of lepton mixing parameters. Indeed, the flavor problem of particle physics has, in the lepton sector, its most challenging expression. Likewise, the basic understanding and interpretation of cosmological dark matter remains a challenge [4]. Many educated guesses have been proposed as to what the pattern of lepton mixing should look like. Such phenomenological patterns of neutrino mixing include, for example, Tri-bimaximal (TBM) [5, 6], Trimaximal (TM1/TM2) [7–9] and bi-large mixing patterns [10–13]. Some of these have been generalized [14], especially after [15, 16] the non-zero value of the mixing angle θ_{13} was established by reactor experiments Daya Bay [17] and RENO [18].

Extracting the symmetries behind the observed pattern of neutrino oscillations seems to be a promising way to make progress [19]. Such symmetry programme may be pursued in a model-independent way, for example exploiting generalized CP symmetries [20–23], or attempts to implement full-fledged family symmetries from first principles [24–31]. This way one can obtain neutrino mixing predictions within fundamental theories of neutrino mass.

The aim of this letter is to pursue the symmetry approach to account for the oscillation results within a scenario in which the dark matter problem is also addressed. We propose a neutrino mass theory implementing an A_4 family symmetry in which the dark matter particle is identified with one of the mediators of neutrino mass generation. Such “scotogenic” paradigm [32] has been generalized in many ways [33–37]. Here we focus on an $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ extension of the simplest scotogenic model, in which the dark fermions include both $SU(2)_L$ iso-singlets [32] as well as iso-triplets [38]. Such “cloned” model was suggested in [39] and has a richer phenomenology, studied in a number of papers [39–44]. Our proposed flavour extension of this scenario enables us to derive, from first principles, the TM2 neutrino mixing ansatz [7–9]. This results in two very simple predictions for neutrino mixing and CP violation parameters, that will be tested at upcoming neutrino experiments.

∗ dinggj@ustc.edu.cn
† JunNan.Lu@ific.uv.es
‡ valle@ific.uv.es
II. A SIMPLE SCOTOGENIC MODEL WITH A_4 FAMILY SYMMETRY

Here we extend the singlet-triplet scotogenic model of [39] by combining with the A_4 flavor symmetry in order to understand the observed flavor structure in the lepton sector. We recall that A_4 is the even permutation group of four objects, and it can be generated by two generators S and T obeying the relations

$$S^2 = T^3 = (ST)^3 = 1.$$ \hfill (1)

A_4 has three irreducible one-dimensional 1, $1'$ and $1''$ and a three-dimensional representation 3. We formulate the model in the basis where both generators S and T in the triplet representation 3 are represented by real matrices [45],

$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}. \hfill (2)$$

The most relevant contraction rule is $3 \otimes 3 = 1 \oplus 1' \oplus 1'' \oplus 3_S \oplus 3_A$, where 3_S and 3_A denote the symmetric and the antisymmetric triplet combinations respectively. For two triplets $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta = (b_1, b_2, b_3)$, we have

$$(\alpha \otimes \beta)_1 = \alpha_1 b_1 + \alpha_2 b_2 + \alpha_3 b_3,$$

$$(\alpha \otimes \beta)_{1'} = \alpha_1 b_1 + \omega^2 \alpha_2 b_2 + \omega \alpha_3 b_3,$$

$$(\alpha \otimes \beta)_{1''} = \alpha_1 b_1 + \omega \alpha_2 b_2 + \omega^2 \alpha_3 b_3,$$

$$(\alpha \otimes \beta)_{3_S} = \begin{pmatrix} \alpha_2 b_3 + \alpha_3 b_2 \\ \alpha_3 b_1 + \alpha_1 b_3 \\ \alpha_1 b_2 + \alpha_2 b_1 \end{pmatrix},$$

$$(\alpha \otimes \beta)_{3_A} = \begin{pmatrix} \alpha_2 b_3 - \alpha_3 b_2 \\ \alpha_3 b_1 - \alpha_1 b_3 \\ \alpha_1 b_2 - \alpha_2 b_1 \end{pmatrix}. \hfill (3)$$

In the original triplet-singlet scotogenic dark matter model [39] there was only one copy of the new fermions Σ, F, as well as the new scalar fields η and Ω beyond the standard model Higgs doublet ϕ. As a result, both charged lepton and neutrino mass matrices are structureless, with no prediction for lepton mixing [39]. Here we assume three copies of Σ, F and ϕ, Ω, all transforming as the A_4 family group triplet 3, like the left-handed leptons. The full particle content of the model is given in Table I, with the corresponding assignments under the different symmetry groups.

Generations	SU(3)$_C$	SU(2)$_L$	U(1)$_V$	Z_2	A_4
L, e_R, μ_R, τ_R	1	1	1	1	3
Σ	1	1	-1	-1	3
F	3	3	1	1	3
ϕ	1	1	0	0	1
η	1	1	0	0	1
Ω	1	1	0	0	1

| TABLE I. Particle content and quantum numbers of our scotogenic model. |

Notice that the Z_2 parity is imposed to ensure the stability of dark matter candidate. Taking into account the new fields and symmetries of the model, the relevant terms of the Lagrangian involving fermion fields read

$$\mathcal{L} \supset -y_e (\bar{L}_e \phi) e_R - y_\mu (\bar{L}_\mu \phi) \mu_R - y_\tau (\bar{L}_\tau \phi) \tau_R - Y_F (\bar{L} F) \frac{1}{2} M_\Sigma \text{Tr}((\bar{\Sigma} \Sigma^c)_{1}) - \frac{1}{2} M_F (\bar{F} F) + \text{h.c.}, \hfill (4)$$

$$-Y_{\Omega,1} \left[\text{Tr} \left[\left(\bar{\Sigma} \Omega \right)_{3_S} \right] F \right]_{1} - Y_{\Omega,2} \left[\text{Tr} \left[\left(\bar{\Sigma} \Omega \right)_{3_A} \right] F \right]_{1} - \frac{1}{2} M_\Sigma \text{Tr}((\bar{\Sigma} \Sigma^c)_{1}) - \frac{1}{2} M_F (\bar{F} F) + \text{h.c.},$$

$$-y_{\nu} (\bar{\nu} \nu) \nu_L - Y_{\nu} (\bar{\nu} \nu) \nu_L - Y_{\tau} (\bar{\nu} \nu) \tau_R - Y_F (\bar{L} F) \frac{1}{2} M_\nu \text{Tr}((\bar{\nu} \nu^c)_{1}) - \frac{1}{2} M_F (\bar{F} F) + \text{h.c.},$$

$$-y_{\nu} (\bar{\nu} \nu) \nu_L - Y_{\nu} (\bar{\nu} \nu) \nu_L - Y_{\tau} (\bar{\nu} \nu) \tau_R - Y_F (\bar{L} F) \frac{1}{2} M_\nu \text{Tr}((\bar{\nu} \nu^c)_{1}) - \frac{1}{2} M_F (\bar{F} F) + \text{h.c.},$$

$$-y_{\nu} (\bar{\nu} \nu) \nu_L - Y_{\nu} (\bar{\nu} \nu) \nu_L - Y_{\tau} (\bar{\nu} \nu) \tau_R - Y_F (\bar{L} F) \frac{1}{2} M_\nu \text{Tr}((\bar{\nu} \nu^c)_{1}) - \frac{1}{2} M_F (\bar{F} F) + \text{h.c.},$$
where \(\tilde{\eta} = i\sigma_2\eta^* \) and the \(SU(2)_L \) triplets \(\Sigma \) and \(\Omega \) can be written in 2 \times 2 matrix notation as

\[
\Omega = \begin{pmatrix} \Omega^0 / \sqrt{2} & \Omega^+ \\ \Omega^- & -\Omega^0 / \sqrt{2} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma^0 / \sqrt{2} & \Sigma^+ \\ \Sigma^- & -\Sigma^0 / \sqrt{2} \end{pmatrix}
\]

and \(\tilde{\Sigma}^c \equiv i\sigma_2\Sigma^*i\sigma_2 \). The scalar triplet \(\Omega \) is assumed to be real.

A. Scalar sector

The scalar potential \(V \) characterizing the symmetry breaking pattern in our model can be written as

\[
V = V(\phi) + V(\eta) + V(\phi, \eta) + V(\eta, \Omega) + V(\phi, \Omega) .
\]

where

\[
V(\phi) = -m_3^2 (\phi^\dagger \phi)_1 + \frac{\lambda_{1.1}^1}{2} (\phi^\dagger \phi)_1 (\phi^\dagger \phi)_1 + \frac{\lambda_{1.2}^1}{2} (\phi^\dagger \phi)_1 (\phi^\dagger \phi)_1 \nonumber + \frac{\lambda_{1.3}^1}{2} (\phi^\dagger \phi)_3 (\phi^\dagger \phi)_3 \\
+ \frac{i\lambda_{1.4}^1}{2} (\phi^\dagger \phi)_3 (\phi^\dagger \phi)_3 + \frac{i\lambda_{1.5}^1}{2} (\phi^\dagger \phi)_3 (\phi^\dagger \phi)_3 ;
\]

\[
V(\eta) = m_2^2 (\eta^\dagger \eta)_1 + \frac{\lambda_{2}^1}{2} (\eta^\dagger \eta)_1^2 ,
\]

\[
V(\Omega) = -\frac{m_3^2}{2} \text{Tr} ((\Omega^\dagger \Omega)_1) + \frac{\lambda_{3}^2}{4} \text{Tr} ((\Omega^\dagger \Omega)_1) \text{Tr} ((\Omega^\dagger \Omega)_1) + \frac{\lambda_{3}^2}{4} \text{Tr} ((\Omega^\dagger \Omega)_1) \text{Tr} ((\Omega^\dagger \Omega)_1) \nonumber + \frac{i\lambda_{3}^2}{4} \text{Tr} ((\Omega^\dagger \Omega)_3) \text{Tr} ((\Omega^\dagger \Omega)_3) + \frac{i\lambda_{3}^2}{4} \text{Tr} ((\Omega^\dagger \Omega)_3) \text{Tr} ((\Omega^\dagger \Omega)_3) + \frac{i\lambda_{3}^2}{4} \text{Tr} ((\Omega^\dagger \Omega)_3) \text{Tr} ((\Omega^\dagger \Omega)_3) ,
\]

\[
V(\phi, \eta) = \lambda_1 (\phi^\dagger \phi)_1 (\eta^\dagger \eta)_1 + \lambda_1 ((\phi^\dagger \phi)_3 (\eta^\dagger \eta)_3)_1 + \left[\frac{\lambda_5^1}{2} ((\phi^\dagger \eta)_3 (\phi^\dagger \eta)_3)_1 + h.c. \right] ,
\]

\[
V(\eta, \Omega) = \frac{\lambda_{4}^2}{2} (\eta^\dagger \eta)_1 \text{Tr} ((\Omega^\dagger \Omega)_1) ,
\]

\[
V(\phi, \Omega) = \mu_{1.1} (\phi^\dagger \Omega)_3 (\phi)_1 + i\mu_{1.2} ((\phi^\dagger \Omega)_3 (\phi)_1^\dagger + \frac{\lambda_{5}^2}{2} (\phi^\dagger \phi)_1 \text{Tr} ((\Omega^\dagger \Omega)_1) \\
+ \frac{i\lambda_{5.2}^2}{2} (\phi^\dagger \phi)_1 \text{Tr} ((\Omega^\dagger \Omega)_1) + \frac{i\lambda_{5.3}^2}{2} (\phi^\dagger \phi)_3 \text{Tr} ((\Omega^\dagger \Omega)_3) + \frac{i\lambda_{5.4}^2}{2} (\phi^\dagger \phi)_3 \text{Tr} ((\Omega^\dagger \Omega)_3) \\
+ \frac{i\lambda_{5.5}^2}{2} (\phi^\dagger \phi)_3 \text{Tr} ((\Omega^\dagger \Omega)_3) + \frac{i\lambda_{5.6}^2}{2} (\phi^\dagger \phi)_3 \text{Tr} ((\Omega^\dagger \Omega)_3) + \frac{i\lambda_{5.7}^2}{2} (\phi^\dagger \phi)_3 \text{Tr} ((\Omega^\dagger \Omega)_3) .
\]

Here only \(\lambda_{5.2}^2 \) is complex and all of other couplings are real, including \(\lambda_5 \), taken to be real without any loss of generality [32, 39]. We assume the scalar fields have the simple vacuum alignment

\[
\langle \phi \rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} v_\phi, \quad \langle \Omega \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v_\Omega, \quad \langle \eta \rangle = 0 .
\]

The vacuum expectation values of \(\phi \) and \(\Omega \) break the \(A_4 \) flavor symmetry down to the subgroups \(Z_3^T \) and \(Z_2^S \) respectively, where the superscripts denote the generator of the subgroups. This commonly used alignment can be achieved by forbidding the cross terms between \(\phi \) and \(\Omega \). This may be done by appealing to supersymmetry [24, 25] or extra dimensions [26]. In fact our desired alignment is exactly realized in [26]. With the vacuum alignment given
in Eq. (8), we find that the minimization conditions are

\[
\frac{\partial V}{\partial \phi_1^*} = \frac{v_\phi}{\sqrt{2}} \left[-2m_\phi^2 + (3\lambda_{1,1} + 4\lambda_{1,3})|v_\phi|^2 + (\lambda^\Omega_{\phi,1} + 2\text{Re}(\lambda^\Omega_{\phi,2}))|v_\Omega|^2 \right] = 0,
\]

\[
\frac{\partial V}{\partial \phi_2^*} = \frac{v_\phi}{\sqrt{2}} \left[-2m_\phi^2 - \sqrt{2}(\mu_{1,1} - i\mu_{1,2})v_\Omega + (3\lambda_{1,1} + 4\lambda_{1,3})|v_\phi|^2 + (\lambda^\Omega_{\phi,1} + \sqrt{3}\text{Im}(\lambda^\Omega_{\phi,2}) - \text{Re}(\lambda^\Omega_{\phi,2}))|v_\Omega|^2 \right] = 0,
\]

\[
\frac{\partial V}{\partial \phi_3^*} = \frac{v_\phi}{\sqrt{2}} \left[-2m_\phi^2 - \sqrt{2}(\mu_{1,1} + i\mu_{1,2})v_\Omega + (3\lambda_{1,1} + 4\lambda_{1,3})|v_\phi|^2 + (\lambda^\Omega_{\phi,1} - \sqrt{3}\text{Im}(\lambda^\Omega_{\phi,2}) - \text{Re}(\lambda^\Omega_{\phi,2}))|v_\Omega|^2 \right] = 0,
\]

\[
\frac{\partial V}{\partial \Omega^1} = -m^2_\Omega v_\Omega + (\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2})v_\Omega^3 + \frac{1}{2}(3\lambda^\Omega_{\phi,1} v_\Omega - \sqrt{2}\mu_{1,1})|v_\phi|^2 = 0,
\]

\[
\frac{\partial V}{\partial \Omega^2} = (\lambda^\Omega_{\phi,4} v_\Omega - \frac{\mu_{1,1}}{\sqrt{2}})|v_\phi|^2 = 0,
\]

\[
\frac{\partial V}{\partial \Omega^3} = (\lambda^\Omega_{\phi,4} v_\Omega - \frac{\mu_{1,4}}{\sqrt{2}})|v_\phi|^2 = 0.
\]

From above equations, we find that the non-trivial solutions can be achieved if the following relations among the parameters are satisfied

\[
\mu_{1,1} = -\frac{3\sqrt{2}}{2}\text{Re}(\lambda^\Omega_{\phi,2})v_\Omega, \quad \mu_{1,2} = \text{Im}(\lambda^\Omega_{\phi,2}) = 0, \quad \lambda^\Omega_{\phi,4} = -\frac{3}{2}\text{Re}(\lambda^\Omega_{\phi,2}).
\]

Under such assumptions, the minimization conditions are simplified into

\[
\frac{\partial V}{\partial \phi_1^*} = \frac{\partial V}{\partial \phi_2^*} = \frac{\partial V}{\partial \phi_3^*} = \frac{v_\phi}{2\sqrt{2}} \left(-2m_\phi^2 + (3\lambda_{1,1} + 4\lambda_{1,3})|v_\phi|^2 + (\lambda^\Omega_{\phi,1} + 2\text{Re}(\lambda^\Omega_{\phi,2}))v_\Omega^2 \right) = 0,
\]

\[
\frac{\partial V}{\partial \Omega^1} = v_\Omega \left(-m^2_\Omega v_\Omega + (\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2})v_\Omega^3 + \frac{3}{2}(\lambda^\Omega_{\phi,1} + \text{Re}(\lambda^\Omega_{\phi,2}))|v_\phi|^2 \right) = 0, \quad \frac{\partial V}{\partial \Omega^2} = \frac{\partial V}{\partial \Omega^3} = 0.
\]

We assume that the cross terms \(V(\phi, \Omega)\) between \(\phi\) and \(\Omega\) can be forbidden. In this case, the minimization conditions can be written as

\[
\frac{\partial V}{\partial \phi_1^*} = \frac{\partial V}{\partial \phi_2^*} = \frac{\partial V}{\partial \phi_3^*} = \frac{v_\phi}{2\sqrt{2}} \left(-2m_\phi^2 + (3\lambda_{1,1} + 4\lambda_{1,3})|v_\phi|^2 \right) = 0,
\]

\[
\frac{\partial V}{\partial \Omega^1} = -m^2_\Omega v_\Omega + (\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2})v_\Omega^3 = 0, \quad \frac{\partial V}{\partial \Omega^2} = \frac{\partial V}{\partial \Omega^3} = 0,
\]

then we can obtain

\[
|v_\phi|^2 = \frac{2m^2_\phi}{3\lambda_{1,1} + 4\lambda_{1,3}}, \quad v_\Omega^2 = \frac{m^2_\Omega}{\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2}}.
\]

The mass matrix of the neutral scalars in the basis \((h^0_1, h^0_2, h^0_3, \Omega^0_1, \Omega^0_2, \Omega^0_3)\) are

\[
M^2_h = \begin{pmatrix}
M^2_{h^0_1} & 0_{3 \times 3} \\
0_{3 \times 3} & M^2_{\Omega^0_1}
\end{pmatrix},
\]

where

\[
M^2_{h^0} = \frac{v_\phi^2}{2} \begin{pmatrix}
2(\lambda_{1,1} + \lambda_{1,2}) & 2\lambda_{1,1} - \lambda_{1,2} + 4\lambda_{1,3} & 2\lambda_{1,1} - \lambda_{1,2} + 4\lambda_{1,3} \\
2\lambda_{1,1} - \lambda_{1,2} + 4\lambda_{1,3} & 2(\lambda_{1,2} + \lambda_{1,1}) & 2\lambda_{1,1} - \lambda_{1,2} + 4\lambda_{1,3} \\
2\lambda_{1,1} - \lambda_{1,2} + 4\lambda_{1,3} & 2\lambda_{1,1} - \lambda_{1,2} + 4\lambda_{1,3} & 2(\lambda_{1,2} + \lambda_{1,1})
\end{pmatrix},
\]

\[
M^2_{\Omega^0} = \text{diag} \left(2(\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2})v_\Omega^2, -\frac{3}{2}(\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2})v_\Omega^2, -\frac{3}{2}(\lambda^\Omega_{1,1} + \lambda^\Omega_{1,2})v_\Omega^2 \right).
\]

The mass matrix for the charged scalars in the basis \((\phi^\pm_{1,2,3}, \Omega^\pm_{1,2,3})\) is

\[
M^2_{h^\pm} = \begin{pmatrix}
M^2_{\phi^\pm_{1,2,3}} & 0_{3 \times 3} \\
0_{3 \times 3} & M^2_{\Omega^\pm_{1,2,3}}
\end{pmatrix},
\]
with

$$M_\phi^2 = \frac{v^2}{2} \begin{pmatrix}
-4\lambda_{1,3} & 2\lambda_{1,3} + i\lambda_{1,4} & 2\lambda_{1,3} - i\lambda_{1,4} \\
2\lambda_{1,3} - i\lambda_{1,4} & -4\lambda_{1,3} & 2\lambda_{1,3} + i\lambda_{1,4} \\
2\lambda_{1,3} + i\lambda_{1,4} & 2\lambda_{1,3} - i\lambda_{1,4} & -4\lambda_{1,3}
\end{pmatrix},$$

$$M_\Omega^2 = \text{diag}\left(0, -\frac{3}{2}\lambda_\Omega v_\Omega^2, -\frac{3}{2}\lambda_\Omega v_\Omega^2\right).$$

(17)

Notice that the massless Ω_1^\pm is absorbed by the W boson. The W and Z boson masses are

$$m_W^2 = \frac{1}{4}g^2(3v_\phi^2 + 4v_\Omega^2), \quad m_Z^2 = \frac{3}{4}(g^2 + g'^2)v_\phi^2.$$

(18)

Concerning the dark scalar η, taking the pattern of scalar vacuum expectation values in Eq. (8), we can read out the mass eigenvalues of the η scalars. The masses of the real and imaginary parts of the neutral $\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}$ are

$$m_\eta_R^2 = m_\eta^2 + \frac{3}{2}(\lambda_3 + \lambda_4 + \lambda_5)v_\phi^2 + \frac{1}{2}\lambda_\Omega v_\Omega^2,$$

$$m_\eta_I^2 = m_\eta^2 + \frac{3}{2}(\lambda_3 + \lambda_4 - \lambda_5)v_\phi^2 + \frac{1}{2}\lambda_\Omega v_\Omega^2,$$

(19)

One sees that, in the limit $\lambda_5 \to 0$ the masses of the scalars (η_R, η_I) are degenerate, a characteristic feature of scotogenic models. The mass of charged η bosons is

$$m_{\eta^\pm}^2 = m_\eta^2 + \frac{3}{2}\lambda_3 v_\phi^2 + \frac{1}{2}\lambda_\Omega v_\Omega^2.$$

(20)

B. Charged lepton sector

The Yukawa terms responsible for generating the charged lepton masses are

$$\mathcal{L}_\ell = -y_e(L\phi)_{1}\ell_R - y_\mu(L\phi)_{1}\nu_R - y_{\tau}(L\phi)_{1}\tau_R,$$

$$= -y_e(e_L\phi_1 + \overline{\mu_L}\phi_2 + \overline{\nu_L}\phi_3)\ell_R - y_\mu(e_L\phi_1 + \omega^2\overline{\tau_L}\phi_2 + \omega\overline{\tau_L}\phi_3)\mu_R - y_{\tau}(e_L\phi_1 + \omega^2\overline{\tau_L}\phi_2 + \omega\overline{\tau_L}\phi_3)\tau_R$$

(21)

For the alignment of ϕ in Eq. (8), one can read out the charged lepton mass matrix as follows

$$M_\ell = \begin{pmatrix} y_e & y_\mu & y_{\tau} \\
y_e & \omega y_\mu & \omega^2 y_{\tau} \\
y_e & \omega^2 y_\mu & \omega y_{\tau} \end{pmatrix} v_\phi = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\
1 & \omega & \omega^2 \\
1 & \omega^2 & \omega \end{pmatrix} \text{diag}(\sqrt{3}y_e v_\phi, \sqrt{3}y_\mu v_\phi, \sqrt{3}y_{\tau} v_\phi)$$

(22)

Therefore the charged lepton mass matrix M_ℓ is diagonalized by the unitary transformation

$$U_\ell = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\
1 & \omega & \omega^2 \\
1 & \omega^2 & \omega \end{pmatrix},$$

(23)

so that $U_\ell^\dagger M_\ell U_\ell$ is diagonal and positive.

C. Dark fermionic sector

In addition to their bare mass terms, the dark Majorana fermions F and Σ have Yukawa couplings to Ω, which also contribute to their masses,

$$\mathcal{L}_{FS} = -Y_{\Omega,1} \left(\text{Tr}\left[(\Sigma\Omega)_{3s} F \right]_{1} - Y_{\Omega,2} \left(\text{Tr}\left[(\overline{\Sigma}\Omega)_{3s} \right] F \right)_{1} - \frac{1}{2} M_\Sigma \text{Tr}(\overline{\Sigma}\Sigma^c_{1}) - \frac{1}{2} M_F (\overline{F}\overline{F})_{1} + \text{h.c.} \right).$$

(24)
Given the vacuum expectation values of scalars in Eq. (8) one can read out the mass matrix of the dark fermions F and Σ^0. In the basis of (Σ_0^c, F), their Majorana mass terms are defined as

$$ -\frac{1}{2}(\bar{\Sigma}_1^c F_1, \bar{\Sigma}_2^c F_2, \bar{\Sigma}_3^c F_3) M_{\chi} \begin{pmatrix} \Sigma_0^c \\ F_1 \\ \Sigma_2^c \\ F_2 \\ \Sigma_3^c \\ F_3 \end{pmatrix}, $$

(25)

where the 6×6 Majorana mass matrix takes the form

$$ M_{\chi} = \begin{pmatrix} M_\Sigma & 0 & 0 & 0 & 0 & 0 \\ 0 & M_F & 0 & 0 & 0 & 0 \\ 0 & 0 & M_\Sigma & (Y_{\Omega,1} - Y_{\Omega,2}) v_\Omega & 0 & 0 \\ 0 & 0 & (Y_{\Omega,1} - Y_{\Omega,2}) v_\Omega & M_F & 0 & 0 \\ 0 & 0 & 0 & 0 & M_\Sigma & (Y_{\Omega,1} + Y_{\Omega,2}) v_\Omega \\ 0 & 0 & 0 & 0 & (Y_{\Omega,1} + Y_{\Omega,2}) v_\Omega & M_F \end{pmatrix}. $$

(26)

Notice that, from the electroweak precision tests, i.e. restrictions due to the ρ parameter [46] one expects a small mixing between the two dark sub-sectors. The symmetric complex 6×6 matrix M_{χ} in Eq.(26) can be diagonalized [47] by a 6×6 block-diagonal matrix V [48]

$$ V^T M_{\chi} V = \text{diag}(m_{\chi_1^0}, m_{\chi_2^0}, m_{\chi_3^0}, m_{\chi_4^0}, m_{\chi_5^0}, m_{\chi_6^0}), $$

(27)

with

$$ V = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos \theta e^{i(\phi_1 + \phi_1)}/2 & \sin \theta e^{i(\phi_1 + \phi_1)}/2 & 0 & 0 \\ 0 & 0 & -\sin \theta e^{i(\phi_1 - \phi_1)}/2 & \cos \theta e^{i(\phi_1 - \phi_1)}/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos \alpha e^{i(\phi_2 + \phi_2)}/2 & \sin \alpha e^{i(\phi_2 + \phi_2)}/2 \\ 0 & 0 & 0 & 0 & -\sin \alpha e^{i(\phi_2 - \phi_2)}/2 & \cos \alpha e^{i(\phi_2 - \phi_2)}/2 \end{pmatrix}, $$

(28)

with the rotation angles θ and α satisfying

$$ \tan 2\theta = \frac{\Delta_{34}}{M_F^2 - M_\Sigma^2}, \quad \tan 2\alpha = \frac{\Delta_{56}}{M_F^2 - M_\Sigma^2}, $$

(29)

with

$$ \Delta_{34} = 2Y_- \sqrt{M_\Sigma^2 + M_F^2 + 2M_\Sigma M_F \cos 2\phi_{34}}, \quad \Delta_{56} = 2Y_+ \sqrt{M_\Sigma^2 + M_F^2 + 2M_\Sigma M_F \cos 2\phi_{56}}. $$

(30)

Here we have defined

$$ Y_- \equiv |(Y_{\Omega,1} - Y_{\Omega,2}) v_\Omega|, \quad \phi_{34} = \arg((Y_{\Omega,1} - Y_{\Omega,2}) v_\Omega), $$

$$ Y_+ \equiv |(Y_{\Omega,1} + Y_{\Omega,2}) v_\Omega|, \quad \phi_{56} = \arg((Y_{\Omega,1} + Y_{\Omega,2}) v_\Omega). $$

(31)
The eigenvalues $M_{\chi^0_{1,2,3,4,5,6}}$ are given as

$$m_{\chi^0_1} = M_\Sigma, \quad m_{\chi^0_2} = M_F, \quad m_{\chi^0_3} = \frac{1}{2} \left(M_\Sigma^2 + M_F^2 + 2Y^2 - \sqrt{(M_F^2 - M_\Sigma^2)^2 + \Delta_{34}^2} \right), \quad m_{\chi^0_4} = \frac{1}{2} \left(M_\Sigma^2 + M_F^2 + 2Y^2 + \sqrt{(M_F^2 - M_\Sigma^2)^2 + \Delta_{34}^2} \right),$$

$$m_{\chi^0_5} = \frac{1}{2} \left(M_\Sigma^2 + M_F^2 + 2Y^2 - \sqrt{(M_F^2 - M_\Sigma^2)^2 + \Delta_{56}^2} \right), \quad m_{\chi^0_6} = \frac{1}{2} \left(M_\Sigma^2 + M_F^2 + 2Y^2 + \sqrt{(M_F^2 - M_\Sigma^2)^2 + \Delta_{56}^2} \right).$$

(32)

In the limit $\eta \ll M_\Sigma, M_F$, which means $Y^2 \ll M_\Sigma^2, M_F^2$, then the masses of fermions $\chi^0_{1,2,3,4,5,6}$ are approximately degenerate as

$$m_{\chi^0_1} = M_\Sigma, \quad m_{\chi^0_2} = M_F, \quad m_{\chi^0_3} = M_\Sigma^2 - 2Y^2 - \frac{M_\Sigma(M_F^2 + M_F \cos 2\phi_{34})}{M_F^2 - M_\Sigma^2}, \quad m_{\chi^0_4} = M_F^2 + 2Y^2 - \frac{M(F + M_\Sigma \cos 2\phi_{34})}{M_F^2 - M_\Sigma^2},$$

$$m_{\chi^0_5} = M_\Sigma^2 - 2Y^2 \frac{M_\Sigma(M_F^2 + M_F \cos 2\phi_{56})}{M_F^2 - M_\Sigma^2}, \quad m_{\chi^0_6} = M_F^2 + 2Y^2 \frac{M(F + M_\Sigma \cos 2\phi_{56})}{M_F^2 - M_\Sigma^2},$$

(33)

for $M_F > M_\Sigma$. The expressions of $m_{\chi^0_3}$ and $m_{\chi^0_4}$ are exchanged with those of $m_{\chi^0_4}$ and $m_{\chi^0_5}$ respectively for $M_F < M_\Sigma$.

The Majorana mass eigenstates $\chi^0_{1,2,3,4,5,6}$ are related with Σ^0 and F by the unitary transformation V as follow

$$\left(\begin{array} {c} \chi^0_1 \\ \chi^0_2 \\ \chi^0_3 \\ \chi^0_4 \\ \chi^0_5 \\ \chi^0_6 \end{array} \right) = V^\dagger \left(\begin{array} {c} \Sigma^0_1 \\ F_1 \\ \Sigma^0_2 \\ F_2 \\ \Sigma^0_3 \\ F_3 \end{array} \right), \quad \left(\begin{array} {c} \chi^0_1 \\ \chi^0_2 \\ \chi^0_3 \\ \chi^0_4 \\ \chi^0_5 \\ \chi^0_6 \end{array} \right) = V \left(\begin{array} {c} \Sigma^0_1 \\ F_1 \\ \Sigma^0_2 \\ F_2 \\ \Sigma^0_3 \\ F_3 \end{array} \right).$$

(34)

III. NEUTRINO MASS

Neutrino masses are generated at the one-loop level, as shown in Fig. 1. This mechanism is simply a flavour extension of the original singlet-triplet scotogenic model [39–44]. Notice that, in contrast to the dark scalar η, the dark fermions transform as A_4 triplets. We stress that this figure actually includes all possible 1-loop diagrams, since $\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}$ and all six intermediate dark fermions are included. The interactions contributing to neutrino mass generation arise from the terms $-\bar{Y}_F (\bar{L}F) \gamma^\dagger \gamma - Y_\Sigma (\bar{\Sigma} \Sigma^c) \gamma \gamma$ in Eq. (4), we have

$$\mathcal{L}_\nu = -\bar{\nu}_e(Y_F F_1 + \frac{Y_\Sigma}{\sqrt{2}} \Sigma^0_1)\eta^0_0 - \bar{\nu}_\mu(Y_F F_2 + \frac{Y_\Sigma}{\sqrt{2}} \Sigma^0_2)\eta^0_0 - \bar{\nu}_\tau(Y_F F_3 + \frac{Y_\Sigma}{\sqrt{2}} \Sigma^0_3)\eta^0_0 + \text{h.c.}.$$

(35)

In the mass eigenstate of dark Majorana fermions, \mathcal{L}_ν is of the following form

$$\mathcal{L}_\nu = -\frac{1}{\sqrt{2}} h_{\alpha \beta} \bar{\nu}_\alpha \eta_R \chi^0_\beta + \frac{i}{\sqrt{2}} h_{\alpha \beta} \bar{\nu}_\alpha \eta_I \chi^0_\beta - \frac{1}{\sqrt{2}} h_{\alpha \beta} \bar{\nu}_\alpha \eta_R \nu_\beta - \frac{i}{\sqrt{2}} h_{\alpha \beta} \bar{\nu}_\alpha \eta_I \nu_\beta,$$

(36)

where we have defined

$$h = \begin{pmatrix} \frac{Y_\Sigma}{\sqrt{2}} & Y_F & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{Y_\Sigma}{\sqrt{2}} & 0 & 0 & Y_F \\ 0 & 0 & 0 & Y_F & \frac{Y_\Sigma}{\sqrt{2}} & 0 \end{pmatrix} \mathcal{V}. $$

(37)
We find the neutrino masses radiatively generated at one-loop level are given by

\[i(M_\nu)_{\alpha\beta} = \sum_i \frac{1}{2} \int \frac{d^4k}{2\pi^4} \left(\frac{-ih_{\alpha i}h_{\beta i}}{k^2 - m_{\eta i}^2} + \frac{ih_{\alpha i}h_{\beta i}}{k^2 - m_{\eta i}^2} \right) \frac{i(k + m_{\chi_i}^0)}{k^2 - m_{\chi_i}^0} \]

\[= i \sum_i \frac{h_{\alpha i}h_{\beta i}}{32\pi^2} m_{\chi_i}^0 \left(m_{\eta i}^2 \ln \left(\frac{m_{\eta i}^2}{m_{\chi_i}^0} \right) + m_{\eta i}^2 \ln \left(\frac{m_{\eta i}^2}{m_{\chi_i}^0} \right) \right) \]

\[= i \sum_i \frac{h_{\alpha i}h_{\beta i}}{32\pi^2} m_{\nu i}^\nu, \quad (38) \]

where

\[m_{\nu i}^\nu = m_{\chi_i}^0 \left[\frac{m_{\eta i}^2 \ln \left(\frac{m_{\eta i}^2}{m_{\chi_i}^0} \right)}{m_{\eta i}^2 - m_{\chi_i}^0} + \frac{m_{\eta i}^2 \ln \left(\frac{m_{\eta i}^2}{m_{\chi_i}^0} \right)}{m_{\eta i}^2 - m_{\chi_i}^0} \right]. \quad (39) \]

Thus the neutrino mass matrix can be written in matrix form as

\[M_\nu = \frac{1}{32\pi^2} \hbar \text{diag}(m_{\nu 1}^1, m_{\nu 2}^2, m_{\nu 3}^3, m_{\nu 4}^4, m_{\nu 5}^5, m_{\nu 6}^6) \hbar^T. \quad (40) \]

Hence one finds a very simple pattern, namely,

\[M_\nu = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & c & d \end{pmatrix}. \quad (41) \]
where
\[a = \frac{1}{32\pi^2} \left[\frac{y_0^2}{2} m_1^2 + Y_l^2 m_2^2 \right], \]
\[b = \frac{1}{32\pi^2} \left[\frac{y_0^2}{2} \left(e^{i(\phi_1 + \phi_2)} m_3^2 \cos^2 \theta + e^{i(\phi_1 - \phi_2)} m_2^2 \sin^2 \theta \right) + Y_l^2 \left(e^{i(\phi_2 - \phi_3)} m_3^2 \sin^2 \alpha + e^{i(\phi_2 - \phi_3)} m_2^2 \cos^2 \alpha \right) \right], \]
\[c = \frac{y_0 Y_{\Sigma}}{64\sqrt{2\pi}} \left[\left(e^{i\phi_1} - e^{i\phi_3} \right) m_3^2 \sin 2\theta + (e^{i\phi_2} - e^{i\phi_3} m_2^2 \sin 2\alpha \right), \]
\[d = \frac{1}{32\pi^2} \left[Y_l^2 \left(e^{i(\phi_1 - \phi_2)} m_3^2 \sin^2 \theta + e^{i(\phi_1 - \phi_2)} m_2^2 \cos^2 \theta \right) + \frac{y_0^2}{2} \left(e^{i(\phi_2 + \phi_3)} m_3^2 \cos^2 \alpha + e^{i(\phi_2 + \phi_3)} m_2^2 \sin^2 \alpha \right) \right]. \]

Notice the simple structure of the neutrino mass matrix, with two vanishing entries. Since \(M_{\nu} \) is a symmetric matrix, it can be diagonalized as
\[U_{\nu}^\dagger M_{\nu} U_{\nu}^* = \text{diag}(m_1, m_2, m_3), \]
where \(U_{\nu} \) can be generally denoted as
\[U_{\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{\nu} & \sin \theta_{\nu} e^{i\delta_{\nu}} \\ 0 & -\sin \theta_{\nu} e^{-i\delta_{\nu}} & \cos \theta_{\nu} \end{pmatrix}. \]

The parameters \(\theta_{\nu} \) and \(\delta_{\nu} \) satisfy
\[\tan 2\theta_{\nu} = \frac{\Delta}{|d|^2 - |b|^2}, \quad \delta_{\nu} = \arg(bc^* + cd^*). \]
with
\[\Delta = 2|c| \sqrt{|b|^2 + |d|^2 + 2|b||d| \cos (\arg(b) + \arg(d) - 2\arg(c))}. \]

The light neutrino masses \(m_i \) are given as
\[m_1 = a, \]
\[m_2 = \frac{1}{2} \left(|b|^2 + |d|^2 + 2|c|^2 - S \sqrt{(|d|^2 - |b|^2)^2 + \Delta^2} \right), \]
\[m_3 = \frac{1}{2} \left(|b|^2 + |d|^2 + 2|c|^2 + S \sqrt{(|d|^2 - |b|^2)^2 + \Delta^2} \right). \]

where \(S = \text{sign} \left((|d|^2 - |b|^2) \cos 2\theta_{\nu} \right) \). And \(S \) equals to 1 (-1) corresponds to the ordering of neutrino masses is normal (inverted). At this point we stress that the special structure of the light neutrino mass matrix. The parameter \(a \) is real, and the other three parameters \(b, c, d \) are complex. Altogether, we are left with 7 real input parameters: \(a \), \(\text{Re}(b) \), \(\text{Im}(b) \), \(\text{Re}(c) \), \(\text{Im}(c) \), \(\text{Re}(d) \) and \(\text{Im}(d) \) to explain 9 observables including 3 neutrino masses, 3 mixing angles and three CP violation phases. Therefore we expect to have 9 − 7 = 2 predictions. This will be made explicit in Sec. IV.

IV. THE LEPTON MIXING MATRIX

The lepton mixing matrix characterizing the charged current weak interaction arises from the mismatch in the diagonalizations of the charged and neutral lepton mass matrices [47]. In our model the corresponding diagonalizing matrices are given in Eqs. (23) and (44), respectively. Combining the results of \(U_l \) and \(U_{\nu} \) we obtain the general form of lepton mixing matrix as
\[U = U_l^\dagger U_{\nu} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{\nu} & \sin \theta_{\nu} e^{i\delta_{\nu}} \\ 0 & -\sin \theta_{\nu} e^{-i\delta_{\nu}} & \cos \theta_{\nu} \end{pmatrix}. \]
One sees from Eq. (48) that one column of lepton mixing matrix is fixed to be $\frac{1}{\sqrt{3}}(1, 1, 1)^T$. Since in this model, we have no prediction for the ordering of neutrino mass eigenvalues, we are allowed to permute the columns in U. This way one sees that the lepton mixing matrix has the so-called trimaximal TM2 form [7–9],

$$U' = UP_{12} = \frac{1}{\sqrt{3}} \begin{pmatrix} \cos \theta_\nu - \sin \theta_\nu e^{-i \delta_\nu} & 1 & \cos \theta_\nu + \sin \theta_\nu e^{i \delta_\nu} \\ \omega^2 \cos \theta_\nu - \omega \sin \theta_\nu e^{-i \delta_\nu} & 1 & \omega \cos \theta_\nu + \omega^2 \sin \theta_\nu e^{i \delta_\nu} \\ \omega \cos \theta_\nu - \omega^2 \sin \theta_\nu e^{-i \delta_\nu} & 1 & \omega^2 \cos \theta_\nu + \omega \sin \theta_\nu e^{i \delta_\nu} \end{pmatrix},$$

(49)

where

$$P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \quad (50)$$

We find that the lepton mixing matrix U' in Eq. (49) fulfills the following identities,

$$U'(\theta_\nu + \pi, \delta_\nu) = -U'(\theta_\nu, \delta_\nu), \quad U'(\theta_\nu, \delta_\nu + \pi) = U'(-\theta_\nu, \delta_\nu). \quad (51)$$

Consequently the parameters θ_ν and δ_ν can be restricted to the regions $0 \leq \theta_\nu \leq \pi$ and $0 \leq \delta_\nu \leq \pi$ without loss of generality.

A. Oscillation predictions

As already anticipated at the end of Sec. III, we expect two predictions for the oscillation parameters in our scenario. Indeed, from the lepton mixing matrix obtained in Eq. (49), one can easily extract the following results for the neutrino mixing angles as well as the leptonic Jarlskog invariant,

$$\sin^2 \theta_{13} = \frac{1 + \sin 2\theta_\nu \cos \delta_\nu}{3},$$

$$\sin^2 \theta_{12} = \frac{1}{2 - \sin 2\theta_\nu \cos \delta_\nu},$$

$$\sin^2 \theta_{23} = \frac{1}{2} - \frac{\sqrt{3} \sin 2\theta_\nu \sin \delta_\nu}{4 - 2 \sin 2\theta_\nu \cos \delta_\nu},$$

$$J_{CP} = \frac{\cos 2\theta_\nu}{6\sqrt{3}}. \quad (52)$$

One sees that the three neutrino mixing angles as well as the Dirac CP violation phase are all expressed in terms of just two parameters, θ_ν and δ_ν. As a result, there are two predicted relations amongst the neutrino mixing angles and the Dirac CP violation phase, that can be expressed analytically as

$$\cos^2 \theta_{13} \sin^2 \theta_{12} = \frac{1}{3}, \quad \cos \delta_{CP} = \frac{2(3 \cos^2 \theta_{12} \cos^2 \theta_{23} + 3 \sin^2 \theta_{12} \sin^2 \theta_{13} \sin^2 \theta_{23} - 1)}{3 \sin 2\theta_{23} \sin 2\theta_{12} \sin \theta_{13}}. \quad (53)$$

Note that the 3σ region of the solar mixing angle obtained from the latest neutrino oscillation global study is $0.271 \leq \sin^2 \theta_{12} \leq 0.370$ [3]. Using the 3σ range $2.015 \times 10^{-2} \leq \sin^2 \theta_{13} \leq 2.417 \times 10^{-2}$ for NO and $2.039 \times 10^{-2} \leq \sin^2 \theta_{13} \leq 2.441 \times 10^{-2}$ for IO obtained for the very precisely measured reactor angle θ_{13} [3], we find that only a narrow range is consistent in our model,

$$\text{NO: } 0.3402 \leq \sin^2 \theta_{12} \leq 0.3416,$$

$$\text{IO: } 0.3403 \leq \sin^2 \theta_{12} \leq 0.3417, \quad (54)$$

a prediction which should be tested in forthcoming neutrino oscillation experiments. Notice that, since there is no free mixing parameter associated to the diagonalization of the charged leptons, we have this tight prediction.
The predicted values of the mixing parameters $\sin^2 \theta_{ij}$ and δ_{CP} are determined by scanning the free parameters θ_ν and δ_ν from 0 to π. The measurement of the oscillation parameters $\sin^2 \theta_{12}$, $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$ and the Dirac CP violation phase δ_{CP} place restrictions on the plane defined by the model parameters $\theta_\nu - \delta_\nu$, shown in Figs. 2 and 3. The shaded regions in Fig. 2 followed from the individual measurements of the three mixing angles, according to the global oscillation analysis in Ref. [3]. Fig. 3 shows the corresponding contour plots for δ_{CP} in the $\theta_\nu - \delta_\nu$ plane. The
FIG. 4. The predicted correlations between δ_{CP} and $\sin^2 \theta_{23}$ are shown in the hatched bands in the top panels, for both neutrino orderings, as indicated. The undisplayed $\sin^2 \theta_{13}$ and $\sin^2 \theta_{12}$ are required to lie within their 3σ regions from the current oscillation global fit [3]. Similarly, in displaying δ_{CP} versus $\sin^2 \theta_{13}$ we required $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$ to satisfy their 3σ constraints. The 1σ, 2σ and 3σ regions from the current neutrino oscillation global fit are indicated by the shaded areas [3].

black bands denote the regions in which all three lepton mixing angles lie in the experimentally allowed 3σ ranges [3].

The model predictions for the two most poorly determined oscillation parameters $\sin^2 \theta_{23}$ and δ_{CP} are shown in Fig. 4. The top panels illustrate the very tight correlations between $\sin^2 \theta_{23}$ and δ_{CP}. The bottom display δ_{CP} versus $\sin^2 \theta_{13}$; the star and dot represent the global best fit points for NO and IO, respectively. One sees that the allowed values of δ_{CP} are “cut-from-above”, covering a narrower range than that obtained in generic global fit determinations.

B. Neutrinoless double beta decay

Given the oscillation results one can forecast the expected values for the mass parameter $|m_{ee}|$ characterizing the amplitude for neutrinoless double beta decay ($0\nu\beta\beta$). The general expectations cover two regions depending on whether neutrinos mass eigenvalues follow a normal or inverted ordering (NO or IO). In Fig. 5 we plot the regions expected within our scenario. As a result of our predictions, Eq. (53), they are narrower than expected generically.
Despite this fact, for the NO case, preferred by oscillations, the amplitude can vanish both in the general case as well as within our model. In contrast, the lower bound (in the amplitude) expected for the IO case lies over 20% higher in our model than in the generic case. This would make $0\nu\beta\beta$ detectable at LEGEND [49] and nEXO [50].

![Expected mass parameter characterizing the $0\nu\beta\beta$ amplitude.](image)

V. FINAL DISCUSSION

We have proposed a scotogenic theory in which an A_4 family symmetry is incorporated. Our scheme provides a natural way to derive a trimaximal neutrino mixing pattern from first principles. Trimaximal neutrino mixing had been derived from earlier theories of lepton mixing. For example, the TM1 pattern was derived in [52]. More recently, TM1 has been recently derived from constructions involving modular symmetries [53] or warped extra dimensions [31]. Concerning the TM2 pattern obtained in the present paper, it has been obtained within the warped scenario in Ref. [27]. However, our present 4-dimensional model is substantially simpler and provides also an explanation for cosmological dark matter. The particle responsible for the latter is a weakly interacting massive particle that mediates neutrino mass generation, Fig. 1. The dark matter phenomenology has been studied in the literature for the simpler, flavour-less scotogenic model. In fact, if the lightest dark-sector particle is a scalar, the dark matter analysis is equivalent to the one recently explored in [44]. Last, but not least, we stress the two very simple, but important, neutrino predictions in Eq. (53). These have been thoroughly discussed in this paper. They imply a very narrow range for the solar mixing angle, Eq. (54), and sharp correlations between $\sin^2 \theta_{23}$ and δ_{CP}, as shown in Fig. 4, leading to a restricted consistency range for δ_{CP}. In addition, we have a somewhat tighter lower bound on the mass parameter characterizing the $0\nu\beta\beta$ amplitude. These predictions should be testable at future oscillation experiments as well as $0\nu\beta\beta$ searches.

Our model may be extended to include quarks. In the minimal way, without new scalars, we could assign the left-handed quarks to an A_4 triplet, the right-handed up- and down-quarks as singlets 1, $1'$ and $1''$ respectively. The
up- and down-quark mass terms would be of the same form as the charged lepton Yukawa couplings in Eq. (21). As a result, the CKM mixing matrix would be the unit matrix, a good leading order approximation. In order to accommodate the measured CKM pattern, one could include other scalar fields beyond ϕ, with non-zero vacuum expectation values.

ACKNOWLEDGMENTS

This work is supported by the Spanish grants SEV-2014-0398 and FPA2017-85216-P (AEI/FEDER, UE), PROMETEO/2018/165 (Generalitat Valenciana), Fundação para a Ciência e a Tecnologia (FCT, Portugal) under project CERN/FIS-PAR/0004/2019, and the Spanish Red Consolider MultiDark FPA2017-90566-REDC and the National Natural Science Foundation of China under Grant Nos 11975224, 11835013 and 1194730.

[1] A. B. McDonald, “Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos,” *Rev. Mod. Phys.* **88** (2016) 030502.

[2] T. Kajita, “Nobel Lecture: Discovery of atmospheric neutrino oscillations,” *Rev. Mod. Phys.* **88** (2016) 030501.

[3] P. de Salas et al., “2020 Global reassessment of the neutrino oscillation picture,” arXiv:2006.11237 [hep-ph].

[4] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” *Phys. Rept.* **405** (2005) 279–390.

[5] P. Harrison, D. Perkins, and W. Scott, “Tri-bimaximal mixing and the neutrino oscillation data,” *Phys. Lett. B* **530** (2002) 167, arXiv:hep-ph/0202074.

[6] P. Harrison and W. Scott, “Symmetries and generalizations of tri-bimaximal neutrino mixing,” *Phys. Lett. B535* (2002) 163–169.

[7] C. H. Albright and W. Rodejohann, “Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing,” *Eur. Phys. J. C62* (2009) 599–608, arXiv:0812.0436 [hep-ph].

[8] C. H. Albright, A. Dueck, and W. Rodejohann, “Possible Alternatives to Tri-bimaximal Mixing,” *Eur. Phys. J. C70* (2010) 1099–1110, arXiv:1004.2798 [hep-ph].

[9] X.-G. He and A. Zee, “Minimal Modification to Tri-bimaximal Mixing,” *Phys. Rev. D84* (2011) 053004, arXiv:1106.4359 [hep-ph].

[10] S. Boucenna et al., “Bi-large neutrino mixing and the Cabibbo angle,” *Phys. Rev. D86* (2012) 051301, arXiv:1206.2555 [hep-ph].

[11] S. Roy et al., “The Cabibbo angle as a universal seed for quark and lepton mixings,” *Phys. Lett. B748* (2015) 1–4, arXiv:1410.3658 [hep-ph].

[12] P. Chen, G.-J. Ding, R. Srivastava, and J. W. F. Valle, “Predicting neutrino oscillations with ‘bi-large’ lepton mixing matrices,” *Phys. Lett. B792* (2019) 461–464, arXiv:1902.08962 [hep-ph].

[13] G.-J. Ding, N. Nath, R. Srivastava, and J. W. F. Valle, “Status and prospects of ‘bi-large’ leptonic mixing,” *Phys. Lett. B796* (2019) 162–167, arXiv:1904.05632 [hep-ph].

[14] A. Datta, L. Everett, and P. Ramond, “Cabibbo haze in lepton mixing,” *Phys. Lett. B620* (2005) 42–51.

[15] P. Chen, S. Centelles Chulià, G.-J. Ding, R. Srivastava, and J. W. F. Valle, “Realistic trilephonic neutrino mixing,” *Phys. Rev. D98* (2018) 053019, arXiv:1806.03367 [hep-ph].

[16] P. Chen, S. Centelles Chulià, G.-J. Ding, R. Srivastava, and J. W. Valle, “CP symmetries as guiding posts: Revamping tribimaximal mixing, II.,” *Phys. Rev. D100* (2019) 053001, arXiv:1905.11997 [hep-ph].

[17] Daya Bay Collaboration, F. P. An et al., “Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment,” *Phys. Rev. D95* (2017) 072006, arXiv:1610.04802 [hep-ex].

[18] RENO Collaboration, M. Y. Pac, “Recent Results from RENO,” vol. NuFact2017, p. 038. 2018. arXiv:1801.04049 [hep-ex].

[19] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, “Non-Abelian Discrete Symmetries in Particle Physics,” *Prog. Theor. Phys. Suppl.* **183** (2010) 1–163, arXiv:1003.3552 [hep-th].
[20] P. Chen, G.-J. Ding, F. Gonzalez-Canales, and J. W. F. Valle, “Generalized $\mu - \tau$ reflection symmetry and leptonic CP violation,” Phys. Lett. B753 (2016) 644–652, arXiv:1512.01551 [hep-ph].

[21] P. Chen, G.-J. Ding, F. Gonzalez-Canales, and J. W. F. Valle, “Classifying CP transformations according to their texture zeros: theory and implications,” Phys. Rev. D94 (2016) 033002, arXiv:1604.03510 [hep-ph].

[22] P. Chen, S. Centelles Chuliá, G.-J. Ding, R. Srivastava, and J. W. F. Valle, “Neutrino Predictions from Generalized CP Symmetries of Charged Leptons,” JHEP 1807 (2018) 077, arXiv:1802.04275 [hep-ph].

[23] P. Chen, S. Centelles Chuliá, G.-J. Ding, R. Srivastava, and J. W. F. Valle, “CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I,” JHEP 1903 (2019) 036, arXiv:1812.04663 [hep-ph].

[24] K. Babu, E. Ma, and J. W. F. Valle, “Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix,” Phys. Lett. B552 (2003) 207–213.

[25] G. Altarelli and F. Feruglio, “Tri-bimaximal neutrino mixing, A(4) and the modular symmetry,” Nucl. Phys. B741 (2006) 215–235.

[26] G. Altarelli and F. Feruglio, “Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions,” Nucl. Phys. B720 (2005) 64–88.

[27] P. Chen, G.-J. Ding, A. D. Rojas, C. Vaquera-Araujo, and J. W. F. Valle, “Warped flavor symmetry predictions for neutrino physics,” JHEP 1601 (2016) 007, arXiv:1509.06683 [hep-ph].

[28] F. J. de Anda, J. W. F. Valle, and C. A. Vaquera-Araujo, “Flavour and CP predictions from orbifold compactification,” Phys. Lett. B801 (2020) 135195, arXiv:1910.05605 [hep-ph].

[29] F. J. de Anda et al., “Probing the predictions of an orbifold theory of flavor,” Phys. Rev. D101 no. 11, (2020) 116012, arXiv:2004.06735 [hep-ph].

[30] M. J. Pérez, M. H. Rahat, P. Ramond, A. J. Stuart, and B. Xu, “Stitching an asymmetric texture with $T'_{13} \times Z_5$ family symmetry,” Phys. Rev. D100 (2019) 075008, arXiv:1907.10698 [hep-ph].

[31] P. Chen, G.-J. Ding, J.-N. Lu, and J. W. F. Valle, “Predictions from warped flavordynamics based on the T' family group,” arXiv:2004.06735 [hep-ph].

[32] E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D73 (2006) 077301.

[33] S. K. Kang et al., “Scotogenic dark matter stability from gauged matter parity,” Phys. Lett. B798 (2019) 135013, arXiv:1902.05966 [hep-ph].

[34] J. Leite et al., “A theory for scotogenic dark matter stabilised by residual gauge symmetry,” arXiv:1909.06386 [hep-ph].

[35] A. Cárcamo Hernández, J. W. F. Valle, and C. A. Vaquera-Araujo, “Simple theory for scotogenic dark matter with residual matter-parity,” arXiv:2006.06009 [hep-ph].

[36] J. Leite, A. Morales, J. W. F. Valle, and C. A. Vaquera-Araujo, “Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory,” arXiv:2005.03600 [hep-ph].

[37] J. Leite, A. Morales, J. W. F. Valle, and C. A. Vaquera-Araujo, “Scotogenic dark matter and Dirac neutrinos from unbroken gauged $B - L$ symmetry,” arXiv:2003.02950 [hep-ph].

[38] E. Ma and D. Suematsu, “Fermion Triplet Dark Matter and Radiative Neutrino Mass,” Mod. Phys. Lett. A24 (2009) 583–589, arXiv:0809.0942 [hep-ph].

[39] M. Hirsch et al., “WIMP dark matter as radiative neutrino mass messenger,” JHEP 1310 (2013) 149, arXiv:1307.8134 [hep-ph].

[40] A. Merle et al., “Consistency of WIMP Dark Matter as radiative neutrino mass messenger,” JHEP 1607 (2016) 013, arXiv:1603.05685 [hep-ph].

[41] M. A. Díaz et al., “Heavy Higgs Boson Production at Colliders in the Singlet-Triplet Scotogenic Dark Matter Model,” JHEP 1708 (2017) 017, arXiv:1612.06569 [hep-ph].

[42] S. Choubey, S. Khan, M. Mitra, and S. Mondal, “Singlet-Triplet Fermionic Dark Matter and LHC Phenomenology,” Eur. Phys. J. C78 (2018) 302, arXiv:1711.08888 [hep-ph].

[43] D. Restrepo and A. Rivera, “Phenomenological consistency of the singlet-triplet scotogenic model,” JHEP 2004 (2020) 134, arXiv:1907.11938 [hep-ph].

[44] I. M. Ávila et al., “Minimalistic scotogenic scalar dark matter,” arXiv:1910.08422 [hep-ph].

[45] E. Ma and G. Rajasekaran, “Softly broken A(4) symmetry for nearly degenerate neutrino masses,” Phys. Rev. D64 (2001) 113012.

[46] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 (2018) 030001.
[47] J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” *Phys.Rev.* **D22** (1980) 2227.

[48] J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” *Phys.Rev.* **D25** (1982) 774.

[49] **LEGEND** Collaboration, N. Abgrall *et al.*, “The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND),” vol. 1894, p. 020027. 2017. arXiv:1709.01980 [physics.ins-det].

[50] **nEXO** Collaboration, J. Albert *et al.*, “Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay,” *Phys.Rev.* **C97** (2018) 065503, arXiv:1710.05075 [nucl-ex].

[51] **Planck** Collaboration, N. Aghanim *et al.*, “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].

[52] G.-J. Ding, S. F. King, C. Luhn, and A. J. Stuart, “Spontaneous CP violation from vacuum alignment in \(S_4\) models of leptons,” *JHEP* **1305** (2013) 084, arXiv:1303.6180 [hep-ph].

[53] S. F. King and Y.-L. Zhou, “Trimaximal TM\(_1\) mixing with two modular \(S_4\) groups,” *Phys.Rev.* **D101** (2020) 015001, arXiv:1908.02770 [hep-ph].