Continuous Wavelet Transform in Quantum Field Theory

Mikhail V. Altaisky1 Natalia E. Kaputkina2

1 Space Research Institute RAS, Profsoyuznaya 84/32, Moscow, 117997, Russia
2 National University of Science and Technology “MISiS”, Leninsky prospect 4, Moscow, 119049, Russia
altaisky@mx.iki.rssi.ru, nataly@misis.ru

Frontiers of Fundamental Physics Symposium, Jul 15 – 18, 2014. Marseille
Abstract

We describe the application of the continuous wavelet transform to calculation of the Green functions in quantum field theory: scalar ϕ^4 theory, quantum electrodynamics, quantum chromodynamics. The method of continuous wavelet transform in quantum field theory presented by Altaisky [Phys. Rev. D 81, 125003 (2010)] for the scalar ϕ^4 theory, consists in substitution of the local fields $\phi(x)$ by those dependent on both the position x and the resolution a. The substitution of the action $S[\phi(x)]$ by the action $S[\phi_a(x)]$ makes the local theory into nonlocal one, and implies the causality conditions related to the scale a, the region causality [J.D.Christensen and L.Crane, J.Math.Phys. (N.Y.) 46, 122502 (2005)]. These conditions make the Green functions $G(x_1, a_1, \ldots, x_n, a_n) = \langle \phi_{a_1}(x_1) \ldots \phi_{a_n}(x_n) \rangle$ finite for any given set of regions by means of an effective cutoff scale $A = \min(a_1, \ldots, a_n)$.

2 Mikhail V. Altaisky, Natalia E. Kaputkina Continuous Wavelet Transform in Quantum Field Theory
This talk is based on

M.V.Altaisky. *Phys. Rev. D* 81(2010) 125003
M.V.Altaisky and N.E.Kaputkina. *JETP Lett.* 94(2011)341
M.V.Altaisky and N.E.Kaputkina. *Phys. Rev. D* 88(2013)025015
• Loop divergences in quantum field theory
Subjects

- Loop divergences in quantum field theory
- Translation group $G : x \rightarrow x + b$ and affine group $G : x \rightarrow ax + b$
Loop divergences in quantum field theory
Translation group $G : x \rightarrow x + b$ and affine group $G : x \rightarrow ax + b$
Scale-dependent fields
Subjects

- Loop divergences in quantum field theory
- Translation group $G : x \rightarrow x + b$ and affine group $G : x \rightarrow ax + b$
- Scale-dependent fields
- Quantum field theory based on continuous wavelet transform
Subjects

- Loop divergences in quantum field theory
- Translation group $G : x \rightarrow x + b$ and affine group $G : x \rightarrow ax + b$
- Scale-dependent fields
- Quantum field theory based on continuous wavelet transform
- Causality
Subjects

- Loop divergences in quantum field theory
- Translation group $G : x \rightarrow x + b$ and affine group $G : x \rightarrow ax + b$
- Scale-dependent fields
- Quantum field theory based on continuous wavelet transform
- Causality
- Gauge theories
Let us consider a field theory with 4th power interaction

$$W[J] = \mathcal{N} \int e^{-\int d^dx \left[\frac{1}{2} (\partial \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4!} \phi^4 - J \phi \right]} \mathcal{D}\phi$$

The connected Green functions are given by variational derivatives of the generating functional:

$$\Delta^{(n)} \equiv \langle \phi(x_1) \ldots \phi(x_n) \rangle_c = \left. \frac{\delta^n \ln W[J]}{\delta J(x_1) \ldots \delta J(x_n)} \right|_{J=0}$$

In statistical sense these functions have the meaning of the n-point correlation functions [ZJ99].
The divergences of Feynman graphs in the perturbation expansion of the Green functions with respect to the small coupling constant λ emerge at coinciding arguments $x_i = x_k$. For instance, the bare two-point correlation function

$$\Delta_0^{(2)}(x - y) = \int \frac{d^d p}{(2\pi)^d} \frac{e^{ip(x-y)}}{p^2 + m^2}$$

is divergent at $x = y$ for $d \geq 2$.
Measurement
Have the divergences ever been observed?

To localize a particle in an interval Δx the measuring device requests a momentum transfer of order $\Delta p \sim \hbar/\Delta x$. $\phi(x)$ at a point x has no experimental meaning. What is meaningful, is the vacuum expectation of product of fields in certain region around x.
Measurement
Have the divergences ever been observed?

To localize a particle in an interval Δx the measuring device requests a momentum transfer of order $\Delta p \sim \hbar/\Delta x$. $\phi(x)$ at a point x has no experimental meaning. What is meaningful, is the vacuum expectation of product of fields in certain region around x.

If the particle, described by $\phi(x)$, have been initially prepared on the interval $(x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2})$, the probability of registering it on this interval is ≤ 1: for the registration depends on the strength of interaction and the ratio of typical scales related to the particle and to the equipment.
To localize a particle in an interval Δx the measuring device requests a momentum transfer of order $\Delta p \sim \hbar / \Delta x$. $\phi(x)$ at a point x has no experimental meaning. What is meaningful, is the vacuum expectation of product of fields in certain region around x.

If the particle, described by $\phi(x)$, have been initially prepared on the interval $(x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2})$, the probability of registering it on this interval is ≤ 1: for the registration depends on the strength of interaction and the ratio of typical scales related to the particle and to the equipment.

Statement of existence: if a measuring equipment with a given resolution a fails to register an object, prepared on spatial interval of width Δx with certainty, then tuning the equipment to all possible resolutions a' would lead to the registration.
Implies the dependence on certain scale parameter
\[[\text{tHV72, Wil73, Ram89}] \]

\[
\frac{1}{p^2} \rightarrow \frac{1}{p^2} - \frac{1}{p^2 - \Lambda^2}, \quad \int_{\Lambda e^{-\delta i}}^{\Lambda} g \mu^{2\epsilon} \int d^{4-2\epsilon} p \ldots
\]
Implies the dependence on certain scale parameter [tHV72, Wil73, Ram89]

\[
\frac{1}{p^2} \rightarrow \frac{1}{p^2} - \frac{1}{p^2 - \Lambda^2}, \quad \int_{\Lambda e^{-\delta}}^{\Lambda} g \mu^{2\epsilon} \int d^{4-2\epsilon} p \ldots
\]

Covariance with respect to scale transformations is expressed by renormalization group equation:

\[
\mu \frac{\partial}{\partial \mu} [\text{Physical quantities}] = 0
\]
Implies the dependence on certain scale parameter [tHV72, Wil73, Ram89]

\[\frac{1}{p^2} \rightarrow \frac{1}{p^2} - \frac{1}{p^2 - \Lambda^2}, \quad \int_{\Lambda e^{-\delta}}^{\Lambda} g \mu^{2\epsilon} \int d^{4-2\epsilon} p \ldots \]

Covariance with respect to scale transformations is expressed by renormalization group equation:

\[\mu \frac{\partial}{\partial \mu} [\text{Physical quantities}] = 0 \]

Kadanoff blocking assumes the larger blocks interact with each other in the same way as their sub-blocks [Kad66, Ito85]
Regularization

- Implies the dependence on certain scale parameter \([tHV72, \, Wil73, \, Ram89]\)

\[
\frac{1}{p^2} \rightarrow \frac{1}{p^2} - \frac{1}{p^2 - \Lambda^2}, \quad \int_{\Lambda e^{-\delta i}}^{\Lambda} \, g \mu^{2\epsilon} \int d^{4-2\epsilon} p \ldots
\]

- Covariance with respect to scale transformations is expressed by renormalization group equation :

\[
\mu \frac{\partial}{\partial \mu} [\text{Physical quantities}] = 0
\]

- Kadanoff blocking assumes the larger blocks interact with each other in the same way as their sub-blocks \([Kad66, \, Ito85]\)

- The theory based on the Fourier transform describes the strength of the interaction of all fluctuations \(up to\) the scale \(1/\Lambda\), but says nothing about the interaction strength \(at\) a given scale

\[
g \prod_i \int_{|k|<\Lambda} e^{-i k_i x} \phi(k_i) \frac{d^d k}{(2\pi)^d}
\]
Translation group: \(G : x' = x + b \)

\[
\phi(x) = \langle x | \phi \rangle = \int \langle x | k \rangle \frac{d^d k}{(2\pi)^d} \langle k | \phi \rangle
\]
Translation group and affine group

- **Translation group:** $G : x' = x + b$
 \[\phi(x) = \langle x | \phi \rangle = \int \langle x | k \rangle \frac{d^d k}{(2\pi)^d} \langle k | \phi \rangle \]

- **Arbitrary (locally compact) group** [Car76, DM76] acting on Hilbert space \mathcal{H}:
 \[\hat{1} = \frac{1}{C_g} \int_{q \in G} U(g)|g\rangle d\mu_L(q) \langle g | U^*(q) \]

 $g \in \mathcal{H}$ is an admissible vector, such that
 \[C_g = \frac{1}{\|g\|_2^2} \int_{G} |\langle g | U(q) | g \rangle|^2 d\mu(q) < \infty. \]
Translation group and affine group

- **Translation group**: $G : x' = x + b$

 \[\phi(x) = \langle x | \phi \rangle = \int \langle x | k \rangle \frac{d^d k}{(2\pi)^d} \langle k | \phi \rangle \]

- **Arbitrary (locally compact) group** [Car76, DM76] acting on Hilbert space \mathcal{H}:

 \[\hat{1} = \frac{1}{C_g} \int_{q \in G} U(g) |g\rangle d\mu_L(q) \langle g | U^*(q) \]

 $g \in \mathcal{H}$ is an admissible vector, such that

 \[C_g = \frac{1}{\|g\|_2^2} \int_{G} |\langle g | U(q) |g\rangle|^2 d\mu(q) < \infty. \]

- **Affine group** $G : x' = ax + b$, $|g; a, b\rangle = U(a, b) |g\rangle$

 (coordinate representation with L^1-norm)

 \[d\mu_L(a, b) = \frac{d\alpha d^d b}{a}, \quad U(a, b)g(x) = \frac{1}{a^d} g \left(\frac{x - b}{a} \right) \]
We define the resolution-dependent fields
\[\phi_a(x) \equiv \langle g; a, x|\phi \rangle, \]
also referred to as scale components of \(\phi \), where \(\langle g; a, x| \) is the bra-vector corresponding to localization of the measuring device around the point \(x \) with the spatial resolution \(a \); \(g \) labels the apparatus function of the equipment, an \textit{aperture}.

If the measuring equipment has the best resolution \(A \), \textit{i.e.} all states \(\langle g; a \geq A, x|\phi \rangle \) are registered, but those with \(a < A \) are not, the regularization of the fields in momentum space, with the cutoff momentum \(\Lambda = 2\pi/A \) corresponds to the UV-regularized functions
\[
\phi^{(A)}(x) = \frac{1}{C_g} \int_{a \geq A} \langle x|g; a, b \rangle d\mu(a, b)\langle g; a, b|\phi \rangle.
\]

The regularized \(n \)-point Green functions are
\[
\mathcal{G}^{(A)}(x_1, \ldots, x_n) \equiv \langle \phi^{(A)}(x_1), \ldots, \phi^{(A)}(x_n) \rangle_c.
\]
Continuous Wavelet Transform

To keep the scale-dependent fields the same physical dimension as the ordinary fields we use the CWT in L^1-norm [FPAA90, Chu92, HM98]:

$$\phi(x) = \frac{1}{C_g} \int \frac{1}{a^d} g \left(\frac{x - b}{a} \right) \phi_a(b) \frac{da d^d b}{a},$$

$$\phi_a(b) = \int \frac{1}{a^d} g \left(\frac{x - b}{a} \right) \phi(x) d^d x, \quad \tilde{\phi}_a(k) = \tilde{g}(ak) \tilde{\phi}(k)$$

For isotropic wavelets g the normalization constant C_ψ is readily evaluated using Fourier transform:

$$C_g = \int_0^\infty |\tilde{g}(ak)|^2 \frac{da}{a} = \int |\tilde{g}(k)|^2 \frac{d^d k}{S_d |k|} < \infty,$$

where $S_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$ is the area of unit sphere in \mathbb{R}^d.
Continuous Wavelet Transform in D dimensions

\[G : x' = aR(\theta)x + b, x, b \in \mathbb{R}^d, a \in \mathbb{R}_+, \theta \in SO(d), \]

where \(R(\theta) \) is the rotation matrix. We define unitary representation of the affine transform:

\[
U(a, b, \theta)g(x) = \frac{1}{a^d} g \left(R^{-1}(\theta) \frac{x - b}{a} \right).
\]

The wavelet coefficients of the function \(\phi(x) \in L^2(\mathbb{R}^d) \) with respect to the basic wavelet \(g(x) \) are

\[
\phi_{a,\theta}(b) = \int_{\mathbb{R}^d} \frac{1}{a^d} g \left(R^{-1}(\theta) \frac{x - b}{a} \right) \phi(x) d^d x.
\]

The function \(\phi(x) \) can be reconstructed from its wavelet coefficients:

\[
\phi(x) = \frac{1}{C_g} \int \frac{1}{a^d} g \left(R^{-1}(\theta) \frac{x - b}{a} \right) \phi_{a\theta}(b) \frac{d^d a}{a} d\mu(\theta)
\]
CWT in Fourier representation

\[\phi(x) = \frac{1}{C_g} \int_0^\infty \frac{da}{a} \int \frac{d^d k}{(2\pi)^d} e^{-i k x} \tilde{g}(ak) \tilde{\phi}_a(k) \]

The Feynman rules [Alt03],[Alt10]:

13 Mikhail V. Altaisky, Natalia E.Kaputkina Continuous Wavelet Transform in Quantum Field Theory
CWT in Fourier representation

\[\phi(x) = \frac{1}{C_g} \int_0^\infty da \int \frac{d^d k}{(2\pi)^d} e^{-ikx} \tilde{g}(ak) \tilde{\phi}_a(k) \]

The Feynman rules [Alt03],[Alt10]:
- each field \(\tilde{\phi}(k) \) will be substituted by the scale component

\(\tilde{\phi}(k) \rightarrow \tilde{\phi}_a(k) = \tilde{g}(ak)\tilde{\phi}(k) \).
The Feynman rules [Alt03],[Alt10]:

- each field $\tilde{\phi}(k)$ will be substituted by the scale component $\tilde{\phi}(k) \rightarrow \tilde{\phi}_a(k) = \tilde{g}(ak)\tilde{\phi}(k)$.
- each integration in momentum variable is accompanied by corresponding scale integration:

$$\frac{d^d k}{(2\pi)^d} \rightarrow \frac{d^d k}{(2\pi)^d} \frac{da}{a}.$$
The Feynman rules \cite{Alt03},\cite{Alt10}:

- each field \(\tilde{\phi}(k) \) will be substituted by the scale component \(\tilde{\phi}(k) \to \tilde{\phi}_a(k) = \tilde{g}(ak)\tilde{\phi}(k) \).
- each integration in momentum variable is accompanied by corresponding scale integration:
 \[
 \frac{d^d k}{(2\pi)^d} \to \frac{d^d k}{(2\pi)^d} \frac{d a}{a} .
 \]
- each interaction vertex is substituted by its wavelet transform; for the \(N \)-th power interaction vertex this gives multiplication by factor \(\prod_{i=1}^{N} \tilde{g}(a_i k_i) \).
Substitution of the CWT into field theory $W[J]$ gives a theory for the fields $\phi_a(x)$ [Alt07]:

$$W_W[J_a] = \mathcal{N} \int \exp \left[-\frac{1}{2} \int \phi_a(x_1)D(a_1, a_2, x_1 - x_2)\phi_a(x_2) \frac{da_1 d^d x_1}{a_1} \right. \times$$

$$\left. \times \frac{da_2 d^d x_2}{a_2} - \frac{\lambda}{4!} \int V_{x_1, \ldots, x_4}^{a_1, \ldots, a_4} \phi_a(x_1) \cdots \phi_a(x_4) \frac{da_1 d^d x_1}{a_1} \times \right.$$

$$\left. \times \frac{da_2 d^d x_2}{a_2} \frac{da_3 d^d x_3}{a_3} \frac{da_4 d^d x_4}{a_4} + \int J_a(x)\phi_a(x) \frac{dad^d x}{a} \right] D\phi_a,$$

with $D(a_1, a_2, x_1 - x_2)$ and $V_{x_1, \ldots, x_4}^{a_1, \ldots, a_4}$ denoting the wavelet images of the inverse propagator and that of the interaction potential. The Green functions for scale component fields are given by functional derivatives

$$\langle \phi_{a_1}(x_1) \cdots \phi_{a_n}(x_n) \rangle_c = \frac{\delta^n \ln W_W[J_a]}{\delta J_{a_1}(x_1) \cdots \delta J_{a_n}(x_n)} \bigg|_{J=0}.$$
Let us consider the contribution of the tadpole diagram to the two-point Green function $G^{(2)}(a_1, a_2, p)$ shown in a) below. The bare Green function is

$$G^{(2)}_0(a_1, a_2, p) = \frac{\tilde{g}(a_1 p)\tilde{g}(-a_2 p)}{p^2 + m^2}.$$

Feynman diagrams for the Green functions $G^{(2)}$ and $G^{(4)}$ for the resolution-dependent fields.
Tadpole and one-loop vertex for ϕ^4 in $d = 4$

g_1 wavelet $g(x) = -\frac{xe^{-x^2/2}}{(2\pi)^{d/2}}, \quad \hat{g}(k) = \kappa k e^{-k^2/2}$

$$T_{1}^{4}(\alpha^2) = -\frac{4\alpha^4 e^{2\alpha^2} \text{Ei}_1(2\alpha^2) + 2\alpha^2}{64\pi^2 \alpha^4} m^2,$$

$$\lim_{s^2 \gg 4m^2} X_4(\alpha^2) = \frac{\chi^2}{256\pi^6} \frac{e^{-2\alpha^2}}{2\alpha^2} \left[e^{\alpha^2} - 1 - \alpha^2 e^{2\alpha^2} \text{Ei}_1(\alpha^2) \right] + 2\alpha^2 e^{2\alpha^2} \text{Ei}_1(2\alpha^2),$$

Dimensionless scale factor $\alpha \equiv A m$, A is the minimal scale of all external lines.

Scale-decay factors for the two-point and four-point Green functions. The bottom curve is the graph of the tadpole and one-loop vertex as a function of A^2; the top curve is the graph of the vertex divided by $\frac{\chi^2}{256\pi^6}$ as a function of A^2. $m = s^2 = 1$ is set for both curves. Redrawn from Altaisky PRD 81(2010)125003.
Causality and commutation relations

In standard quantum field theory the operator ordering is performed according to the non-decreasing of the time argument in the product of the operator-valued functions acting on vacuum state

\[A(t_n)A(t_{n-1}) \ldots A(t_2)A(t_1) |0\rangle. \]

\[t_n \geq t_{n-1} \geq \ldots \geq t_2 \geq t_1 \]

The quantization is performed by separating the Fourier transform of quantum fields into the positive- and the negative-frequency parts

\[\phi = \phi^+(x) + \phi^-(x), \]

defined as follows

\[\phi(x) = \int \frac{d^d k}{(2\pi)^d} \left[e^{i k x} u^+(k) + e^{-i k x} u^-(k) \right], \]

where the operators \(u^\pm(k) = u(\pm k) \theta(k_0) \) are subjected to canonical commutation relations

\[[u^+(k), u^-(k')] = \Delta(k, k'). \]
In case of the scale-dependent fields, because of the presence of the scale argument in new fields $\phi_{a,\eta}(x)$, where a and η label the size and the shape of the region centered at x, the problem arises how to order the operators supported by different regions. This problem was solved in (Altaisky PRD 81(2010)125003) on the base of the region causality assumption [CC05].

Causal ordering of scale-dependent fields. Space-like regions are drawn in Euclidean space: a) The event regions do not intersect; b) Event X is inside the event Y.
Region Causality in Minkowski Space

Disjoint events in \((t, x)\) plane in Minkowski space

Nontrivial intersection of two events \(X \subset Y\) in \((t, x)\) plane in Minkowski space
Causality principle

The coarse acts on vacuum first

d_0^0	d_1^0
d_{00}^1	d_{01}^1
d_{10}^1	d_{11}^1

Table: Binary tree of operator-valued functions. Vertical direction corresponds to the scale variable. The causal sequence of the operator-valued functions shown in the table above is: $d_0^0, d_{00}^1, d_{01}^1, d_1^0, d_{10}^1, d_{11}^1$. As it is shown the underlined regions of different scales do not intersect.

Green’s functions are not singular at coinciding arguments – they are projections from coarser scale to finer scale:

$$G_0^{(2)}(a_1, a_2, b_1 - b_2 = 0) = \int \frac{d^4 p}{(2\pi)^4} \frac{\tilde{g}(a_1 p)\tilde{g}(-a_2 p)}{p^2 + m^2} e^{-ip \cdot 0},$$

since $|\tilde{g}(p)|$ vanish at $p \to \infty$.
The Dyson-Schwinger equation relating the full propagator with the bare propagator is symbolically drawn in the diagram

\[\begin{align*}
a_y & \quad a_x & \quad a_y & \quad a_x & \quad a_y & \quad a_1 & \quad a_2 & \quad a_x \\
0 & \quad 0
\end{align*} \]

The corresponding integral equation can be written as

\[
G(x - y, a_x, a_y) = G(x - y, a_x, a_y) + \int \frac{da_1}{a_1} \int \frac{da_2}{a_2} \int dx_1 dx_2 \times \\
\times G(x - x_2, a_x, a_2) P(x_2 - x_1, a_2, a_1) G(x_1 - y, a_1, a_y),
\]

where \(P(x_2 - x_1, a_2, a_1) \) denotes the vacuum polarization operator if \(G \) is the massless boson, or the self-energy diagram otherwise.

\[
\tilde{G}_{a_x, a_y}(p) = \tilde{G}_{a_x, a_y}(p) + \int \frac{da_1}{a_1} \int \frac{da_2}{a_2} \tilde{G}_{a_x, a_2}(p) \tilde{P}_{a_2, a_1}(p) \tilde{G}_{a_1, a_y}(p).
\]
Wavelet transform in Minkowski space

Light-cone coordinates \((x_+, x_-, x, y)\)

\[x_\pm = \frac{t \pm z}{\sqrt{2}}, \quad x_\perp = (x, y) \]

The rotation matrix has a block-diagonal form

\[
M(\eta, \phi) = \begin{pmatrix}
 e^\eta & 0 & 0 & 0 \\
 0 & e^{-\eta} & 0 & 0 \\
 0 & 0 & \cos \phi & \sin \phi \\
 0 & 0 & -\sin \phi & \cos \phi
\end{pmatrix},
\]

so that \(M^{-1}(\eta, \phi) = M(-\eta, -\phi)\).

We can define the wavelet transform in light-cone coordinates in the same way as in Euclidean space using the representation of the affine group

\[x' = aM(\eta, \phi)x + b \]
Definition of basic wavelets in Minkowski space

In contrast to wavelet transform in Euclidean space, where the basic wavelet g can be defined globally on \mathbb{R}^d, the basic wavelet in Minkowski space is to be defined separately in four domains impassible by Lorentz rotations:

$$A_1 : k_+ > 0, k_- < 0; A_2 : k_+ < 0, k_- > 0;$$
$$A_3 : k_+ > 0, k_- > 0; A_4 : k_+ < 0, k_- < 0,$$

where k is wave vector, $k_\pm = \frac{\omega \pm k_z}{\sqrt{2}}$. Whence we have four separate wavelets in these four domains. Thus the wavelet coefficients are

$$W_{ab\eta\phi}^i = \int_{A_i} e^{i k_- b_+ + i k_+ b_- - i k_{\perp} b_{\perp}} \tilde{f}(k_-, k_+, k_{\perp})$$

$$\tilde{g}(ae^\eta k_-, ae^{-\eta} k_+, aR^{-1}(\phi)k_{\perp}) \frac{dk_+ dk_- d^2k_{\perp}}{(2\pi)^4}.$$
Let us introduce a localized wave packet in Fourier space
\[\tilde{g}(t, k) = e^{-itk - k^2/2}. \]
It is a gaussian wave packet at initial time \(t=0 \). At finite \(t \) it can be approximated by

\[\tilde{g}(t, k) = \tilde{g}_0(k) + \frac{t}{1!} \tilde{g}_1(k) + \frac{t^2}{2!} \tilde{g}_2(k) + O(t^3), \]

where \(\tilde{g}_n(k) = \frac{d^n}{dt^n} \tilde{g}(t, k) \bigg|_{t=0} \) are responsible for the shape of the packet at the times at which 1, 2 or \(n \) excitations are significant; with \(\tilde{g}_1 \) being the first excitation.

The only restriction is the finiteness of the wavelet cutoff function

\[f(x) = \frac{1}{C_g} \int_{x}^{\infty} \left| \tilde{g}(a) \right|^2 \frac{da}{a}, \quad f(0) = 1 \]
Quantum electrodynamics: one loop

In one-loop approximation the radiation corrections in QED come from three primitive Feynman graphs: fermion self-energy

\[\Sigma(p) = -e^2 \int \frac{d^4 q}{(2\pi)^4} \frac{\gamma_{\mu}}{p - \slashed{q} + m} \frac{-i}{2} \gamma_{\nu} \delta_{\mu\nu} \frac{q^2}{q^2}, \]

gives the corrections to the bare electron mass \(m_0 \) related to irradiation of virtual photons;

vacuum polarization operator

\[\Pi_{\mu\nu}(p) = -e^2 \int \frac{d^4 q}{(2\pi)^4} \text{Sp} \left[\gamma_{\mu} \frac{1}{p + \slashed{q} + m} \gamma_{\nu} \frac{1}{\slashed{q} + m} \right] \]

contributes to the Lamb shift of the atom energy levels;

and the vertex function

\[\Gamma_\rho(p, q) = -ie^3 \int \frac{d^4 f}{(2\pi)^4} \frac{1}{\gamma_{\tau}} \frac{1}{\gamma_{\rho}} \frac{\delta_{\tau\sigma}}{f^2}, \]

determines the anomalous magnetic moment of the electron.
\[\Sigma^{(A)}(p) = -ie^2 \int \frac{d^4 q}{(2\pi)^4} \frac{F_A(p, q) \gamma_{\mu} \left[\frac{p}{2} - q - m \right] \gamma_{\mu}}{\left[\left(\frac{p}{2} - q \right)^2 + m^2 \right] \left[\frac{p}{2} + q \right]^2}, \]

For the isotropic wavelet \(F_A(p, q) = f^2(A(\frac{p}{2} - q)) f^2(A(\frac{p}{2} + q)) \)

\[\Sigma^{(A)}(p) = -ie^2 \int \frac{d^4 y}{(2\pi)^4} F_A(p, |p|y) \times \]
\[\frac{\dot{y} p + 4m - 2|p|\dot{y}}{\left[y^2 + \frac{1}{4} - y \cos \theta - \frac{m^2}{p^2} \right] \left[y^2 + \frac{1}{4} + y \cos \theta \right]}, \]

where \(\theta = \angle(p, q) \) is the Euclidean angle; \(y = q/|p| \).
Electron self-energy, g_1 wavelet

In high energy limit, $p^2 \gg 4m^2$, the contribution of last term in the numerator vanishes for the symmetry, and the diagram can be easily integrated in angle variable:

$$\Sigma^{(A)}(p) \frac{\tilde{g}(ap)\tilde{g}(-a'p)}{\tilde{g}(ap)\tilde{g}(-a'p)} = -\frac{ie^2}{4\pi^2} R_1(p)(p + 4m)$$

where:

$$R_1(p) = \int_0^\infty dy y F_A(p, |p|y) \left[1 - \sqrt{1 - \frac{1}{\beta^2(y)}} \right],$$

$$\beta(y) = y + \frac{1}{4y}.$$

The integral $R_1(p)$ is finite for any wavelet cutoff function. For the g_1 wavelet we get

$$R_1(p) = \frac{1}{8A^2p^2} \left(2A^2p^2 \text{Ei}_1(A^2p^2) - 4A^2p^2 \text{Ei}_1(2A^2p^2) - e^{-A^2p^2} + 2e^{-2A^2p^2} \right)$$
\[\Pi_{\mu\nu}^{(A)}(p) = -e^2 \int \frac{d^4 q}{(2\pi)^4} F_A(p, q) \times \]
\[\times \left[\frac{\delta_{\mu\nu} \left(q + \frac{p}{2} - m \right) \left(q - \frac{p}{2} - m \right)}{\left((q + p/2)^2 + m^2 \right) \left((q - p/2)^2 + m^2 \right)} \right] \]
\[= -4e^2 \int \frac{d^4 q}{(2\pi)^4} F_A(p, q) \times \]
\[\times \left[2q_\mu q_\nu - \frac{1}{2} p_\mu p_\nu + \delta_{\mu\nu} \left(\frac{p^2}{4} - q^2 - m^2 \right) \right] \]
\[\frac{\left((q + \frac{p}{2})^2 + m^2 \right) \left((q - \frac{p}{2})^2 + m^2 \right)}{\left((q + p/2)^2 + m^2 \right) \left((q - p/2)^2 + m^2 \right)} \cdot \]
\[
\frac{\Pi^{(A)}_{\mu\nu}(p)}{\tilde{g}(ap)\tilde{g}(-a'p)} = \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) \pi^{(A)}_T + X^{(A)} \frac{p_\mu p_\nu}{p^2}
\]

where

\[
\pi^{(A)}_T = -\frac{e^2}{3\pi^2} m^2 p^2 \int_0^\infty dy y F_A(mp, mpy) \left[y^2 + \left(1 - \sqrt{\frac{\frac{1}{16} + y^4 + \frac{1}{p^4} - \frac{y^2}{2} + \frac{1}{2p^2} + \frac{2y^2}{p^2}}{\left(\frac{1}{4} + y^2 + \frac{1}{p^2} \right)^2}} \right)^2 \times \left(\frac{5}{8} - \frac{4}{p^2} - \frac{2}{p^4} - 2y^2 \left(1 + \frac{2}{p^2} \right) - 2y^4 \right) \right]
\]

\[
X^{(A)} = \frac{e^2 m^2 p^2}{\pi^2} \int_0^\infty dy y F_A(mp, mpy) \left[y^2 - \left(1 - \sqrt{\frac{\frac{1}{16} + y^4 + \frac{1}{p^4} - \frac{y^2}{2} + \frac{1}{2p^2} + \frac{2y^2}{p^2}}{\left(\frac{1}{4} + y^2 + \frac{1}{p^2} \right)^2}} \right)^2 \times \left(\frac{5}{8} - \frac{4}{p^2} - \frac{2}{p^4} - 2y^2 \left(1 + \frac{2}{p^2} \right) - 2y^4 \right) \right]
\]
Result for g_1 wavelet at large $p^2 \gg 4$

For g_1 wavelet the regularizing function

$$F_A(p, q) = \exp\left(-A^2 p^2 - 4A^2 q^2\right).$$

Hence for large $p^2 \gg 4$ the integral can be evaluated by substitution $y^2 = t$

$$\pi_T^{(A)} = -\frac{e^2}{6\pi^2} m^2 p^2 \left\{ \frac{e^{-a^2 p^2}}{8a^6 p^6} \left(4a^4 p^4 - a^2 p^2 - 1 \right) + \frac{e^{-2a^2 p^2}}{8a^6 p^6} \right\} \times \left(1 - 4a^4 p^4 + 2a^2 p^2 \right) - \frac{1}{2} Ei_1(a^2 p^2) + Ei_1(2a^2 p^2).$$

Similarly, for the longitudinal term

$$\chi_A = \frac{e^2 m^2 p^2}{16\pi^2} \frac{e^{-a^2 p^2}(a^2 p^2 - 1 + e^{-a^2 p^2})}{a^6 p^6}.$$
The explicit substitution with photon propagator taken in Feynman gauge gives

\[
- \gamma e \frac{\Gamma^{(A)}_{\mu,r}}{\tilde{g}(-pa')\tilde{g}(-qr)\tilde{g}(ka)} = (-\gamma e)^3 \int \frac{d^4 l}{(2\pi)^4} \gamma_\alpha G(p-f)\gamma_\mu \times \\
\times G(k-f)\gamma_\beta D_{\alpha\beta} F_A(p-f) F_A(k-f) F_A(f).
\]
Ward-Takahashi Identities

The standard procedure of the variation of action with a gauge fixing term leads to the equations (Albeverio, Altaisky, 2009):

\[q_{\mu} \Gamma_{\mu a_4 a_3 a_1}(p, q, p + q) = \int \frac{da_2}{a_2} G_{a_1 a_2}^{-1}(p + q) \tilde{M}_{a_2 a_3 a_4}(p + q, q, p) \]

\[- \int \frac{da_2}{a_2} \tilde{M}_{a_1 a_3 a_2}(p + q, q, p) G_{a_2 a_4}^{-1}(p), \]

where

\[\tilde{M}_{a_1 a_2 a_3}(k_1, k_2, k_3) = (2\pi)^d \delta^d(k_1 - k_2 - k_3) \tilde{g}(a_1 k_1) \tilde{g}(a_2 k_2) \tilde{g}(a_3 k_3). \]
Quantum chromodynamics
Vacuum polarization operator – gluon loop

\[\Pi_{AB,\mu\nu}^{(A)}(p) = -\frac{g^2}{2} f^{ABC} f^{BDC} \int \frac{d^4 l}{(2\pi)^4} \frac{N_{\mu\nu}(l, p) F_A(l + p, l)}{l^2(l + p)^2}, \]

This integral can be easily evaluated in infrared limit [AK13] where ordinary QCD is divergent:

\[\Pi_{AB,\mu\nu}^{(A,g_1)}(p \to 0) = -g^2 f^{ACD} f^{BDC} \int \frac{d^4 q}{(2\pi)^4} \frac{e^{-4A^2q^2}}{q^4} [5q_\mu q_\nu + q^2 \delta_{\mu\nu}]. \]

Making use of isotropy we get

\[\Pi_{AB,\mu\nu}^{(A,g_1)}(p \to 0) = -\frac{9g^2 f^{ACD} f^{BDC}}{32} \delta_{\mu\nu} \int_0^\infty q dq e^{-4A^2q^2} \]

\[= -\frac{9g^2 f^{ACD} f^{BDC}}{256A^2} \delta_{\mu\nu}. \]
This gives the Casimir energy

\[E(a, \delta) = -\frac{\hbar c \pi^2}{720 a^3} \left[1 + \frac{2}{7} \left(\frac{2\pi \delta}{a} \right)^2 + \frac{3}{28} \left(\frac{2\pi \delta}{a} \right)^4 + \ldots \right], \]

and the Casimir force

\[F(a, \delta) = -\frac{\hbar c \pi^2}{240 a^4} \left[1 + \frac{10}{21} \left(\frac{2\pi \delta}{a} \right)^2 + \frac{1}{4} \left(\frac{2\pi \delta}{a} \right)^4 + \ldots \right], \]

Altayiski,Kaputkina *JETP Lett.* 94(2011)341
The research was supported in part by RFBR Project 13-07-00409 and Programme of Creation and Development of the National University of Science and Technology ”MISiS”
M.V. Altaisky and N.E. Kaputkina, *Continuous wavelet transform in quantum field theory*, Phys. Rev. D **88** (2013), 025015.

M. V. Altaisky, *Wavelet based regularization for Euclidean field theory*, Institute of Physics Conference Series Series **173** (2003), 893–897.

M.V. Altaisky, *Quantum field theory without divergences*, Physical Review D **81** (2010), 125003.

A. L. Carey, *Square-integrable representations of non-unimodular groups*, Bull. Austr. Math. Soc. **15** (1976), 1–12.

J. D. Christensen and L. Crane, *Causal sites as quantum geometry*, J. Math. Phys **46** (2005), 122502.
C. K. Chui, *An introduction to wavelets*, Academic Press Inc., 1992.

M. Duflo and C. C. Moore, *On regular representations of nonunimodular locally compact group*, J. Func. Anal. **21** (1976), 209–243.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, *Optical wavelet transform of fractal aggregates*, Phys. Rev. Lett. **64** (1990), no. 7, 745–748.

C. M. Handy and R. Murenzi, *Moment-wavelet quantization: a first principles analysis of quantum mechanics through continuous wavelet transform theory*, Phys. Lett. A **248** (1998), 7–15.

K. Ito, *Permanent quark confinement in four dimensional hierarchical lattice gauge theories of Migdal-Kadanoff type*, Physical Review Letters **55** (1985), no. 6, 558–561.
L. P. Kadanoff, *Scaling laws for ising models near \(t_c \),* Physics 2 (1966), 263–272.

P. Ramond, *Field theory: A modern primer,* second ed., Addison-Wesley, 1989.

G. 't Hooft and M. Veltman, *Regularization and renormalization of gauge theories,* Nuclear Physics B 44 (1972), 189–213.

K. G. Wilson, *Quantum field-theory models in less than 4 dimensions,* Physical Review D 7 (1973), no. 10, 2911–2927.

J. Zinn-Justin, *Quantum field theory and critical phenomena,* Oxford University Press, 1999.