Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines

Abel Ramos-Vega 1†, Sergio Rosales-Mendoza 2,3,*, Bernardo Bañuelos-Hernández 4 and Carlos Angulo 1*

1 Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico, 2 Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, 3 Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, 4 Escuela de Agronomía y Veterinaria, Universidad De La Salle Bajío, León, México

Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.

Keywords: adjuvant, bioencapsulation, microalgae, oral vaccine, thermostable vaccine, Algevir system

RELEVANCE AND CHALLENGES IN ORAL VACCINE DEVELOPMENT

Vaccination is a primary intervention against infectious diseases, thus, affordable vaccination campaigns for government budgets, especially in developing countries, are a priority. However, many potentially vaccine-preventable diseases in low-income countries are inadequately prevented due to an insufficient use of the existing vaccines. For instance, there is a lack of efficient distribution and delivery logistics, in addition to the associated high cost of the vaccine (Kochhar et al., 2013; Chen et al., 2014a). Most of the current available vaccines are designed for subcutaneous or intramuscular administration. However, these routes have limitations such as the problems associated with unsafe injections that are consequence of low economic resources and limited trained personnel (Hauri et al., 2004; Wilkhu et al., 2011). In addition, parenteral vaccines generally require "cold chain," which represents further economic and logistical burdens (Kumru et al., 2014). Therefore, oral immunization with thermostable vaccines is highly desired since it avoids the need of cold chain, specialized devices, and trained personnel for administration (Scherfiess, 2011).
Since the vast majority of pathogens infect their host through the mucosa, local immune responses at these sites serve as the first line of defense against the pathogen (Hornef, 2015). Interestingly, several vaccines administered via mucosal routes have a proven effective induction of both systemic and local immunity (Lamichhane et al., 2014). However, to achieve efficacy, higher and more frequently administered doses are required in oral immunization schemes when compared to intramuscular or subcutaneous vaccines; which is a consequence of antigen dilution and degradation in the gastrointestinal tract as well as a poor antigen uptake (Doherty, 2015; Truong-Le et al., 2015).

Another important aspect is related to the fact that the mucosal tissues maintain homeostasis by mounting specialized anti-inflammatory immune defenses, including the induction of tolerance against innocuous soluble substances and commensal bacteria (Kweon, 2014). Therefore, oral vaccination must overcome the induction of local and systemic immunological tolerance, known as oral tolerance (Wilku et al., 2011). This obstacle can be overridden by antigen encapsulation (Kai and Chi, 2008) and the inclusion of adjuvants to enhance the immunogenic properties of the formulation (Hasegawa et al., 2015; Savelkoul et al., 2015). Although several technologies for antigen encapsulation (Trovato and Berardinis, 2015) and adjuvants are under evaluation (Newsted et al., 2015), there is a clear need to continue in the exploration of new oral vaccination strategies; which is reflected by the limited number of oral vaccines available in the clinic (Yuki and Kiyono, 2009).

MICROALGAE-MADE VACCINES

Among the current trends in biotechnology for the production of biopharmaceuticals in attractive platforms, algae have been used to produce monoclonal antibodies, vaccine antigens, therapeutic enzymes, blood proteins, cytokines, growth factors, and growth hormones. Microalgae-based expression systems are inherently faster to develop, potentially less expensive, and require less space for production. In addition, the biomass is relatively inexpensive to produce. Algae-based vaccines offer antigen protection from proteolytic degradation due to the cell wall. In addition, subcellular compartmentalization may also influence antigen release and thus bioavailability (Gregory et al., 2013). Moreover, algae are capable of performing post-translational modifications (e.g., glycosylation in endoplasmic reticulum and Golgi) that are frequently important for the antigen activity, can be produced relatively fast and some species could be used to formulate vaccines in a straightforward manner since they hold a GRAS status (Specht and Mayfield, 2014). This notion has been primarily explored for the freshwater microalgae *Chlamydomonas reinhardtii* with important advances toward the development of low cost orally-delivered vaccines (Bañuelos-Hernández et al., 2015; Rasala and Mayfield, 2015; Dyo and Purton, 2018). Two interesting reports in this area comprise a developed *S. aureus* vaccine based on *C. reinhardtii*, showing antigen yields up to 0.7% TSP. The vaccine was stable at room temperature up to 20 months. Moreover, the mucosal IgA and systemic IgG responses were induced in orally immunized mice subjected to a scheme consisting of priming and 4 boosts administered weekly. Remarkably, an 80% survival rate after a lethal challenge with *S. aureus* was achieved (Dreesen et al., 2010). In the same microalga, a vaccine against malaria was developed. The vaccine was able to induce the systemic IgG responses and conferred protection against *Plasmodium berghei* in terms of reduction of parasitic load in red blood cells from mice treated with a single vaccine dose (Dauville et al., 2010). Another case of an oral algae-based vaccine against malaria consisted of a fusion protein comprising the cholera toxin B subunit (CTB) as adjuvant and the antigen of *Plasmodium falciparum* PfS25. In this case, the oral vaccination of BALB/c mice using algae producing CTB-PfS25 elicited CTB-specific serum IgG, fecal IgA antibodies, as well as PfS25-specific IgA antibodies (Gregory et al., 2013). Diatoms have also been applied for the expression of vaccine antigens with promising findings on the expression of Ip6A DR2 antigen from *Histophilus somni* (Corbel et al., 2015; Davis et al., 2017). Although no clinical trials are ongoing for algae-based vaccines, the technology seems promising and these evaluations could begin in the short term (Rosales-Mendoza and Salazar-González, 2014).

APPLICATION OF MARINE MICROALGAE IN VACCINE DEVELOPMENT

Marine organisms are attractive hosts in this field as they are currently produced at industrial levels in culture media based on marine water to produce compounds with pharmaceutical, nutrition, and health applications; among other industrial applications (Mayer et al., 2011; Dewapriya and Kim, 2014). Interestingly, marine microalgae have been used in the production of vaccines. For instance, *Phaeodactylum tricornutum* was used to produce a monoclonal human IgG antibody against the Hepatitis B surface antigen (HBsAg) as well as HBsAg fused to GFP or an ER retention signal. The achieved antibody production was 8.7% of the total soluble protein (TSP; 1.6 mg per liter of culture or 21 mg antibody per gram algal dry weight), whereas HBsAg yields were up to 0.7% TSP (Hempel et al., 2011). Similarly, *Dunaliella salina* was transformed for the expression of HBsAg. In this case, the yields obtained were up to 3 ng/mg soluble protein and the positive clones were grown in non-selective liquid media for at least 60 generations; showing that the HBsAg protein was stably expressed in the transformed cells (Geng et al., 2003). On the other hand, the expression of the viral protein 28 (VP28) from the *White spot syndrome virus* was reported in the marine microalga *Dunaliella salina* with yields up to 780 µg VP28 per liter of culture. This vaccine was able to induce a 41% reduction in shrimp mortality after a lethal challenge experiment in orally immunized animals (Feng et al., 2014).

RELEVANT CHARACTERISTICS OF *Schizochytrium* sp. FOR VACCINE DEVELOPMENT

Schizochytrium sp., a thraustochytrid, is a heterokont marine microalgae with a cell diameter of about 9–14 µm belonging
to the Labyrinthulomycetes class, which is used to produce Docosahexaenoic acid (DHA) that accumulates up to 50% of dry weight lipids. Furthermore, it contains up to 10% of protein and 25% of carbohydrates (Qu et al., 2013; Fedorova-Dahms et al., 2014; Yao et al., 2015). In addition β-carotene is accumulated at significant levels in some species of this genus (Aki et al., 2003; Yokoyama and Honda, 2007; Ren et al., 2010). *Schizochytrium* sp. can be propagated at the industrial scale in heterotrophic conditions in which low cost medium is used and no complex photobioreactors are required since the process does not depend on light irradiation. Since some species of *Schizochytrium* sp. may grow in marine water-based culture media, their industrial use could not interfere with fresh water sources used for agriculture (Barclay, 1992; Chang et al., 2014). This microalga is currently used as food supplement in mammals and poultry (Meale et al., 2014). For instance, the *Schizochytrium* sp. supplementation of the laying hen diet has a beneficial effect on egg production, egg weight, yolk color, and blood lipid profiles of the layer hen (Park et al., 2015). In addition, DHA from *Schizochytrium* sp. is a key component in dietary supplements, cosmetics products, and pharmaceutical formulations (Fedorova-Dahms et al., 2014; Aasen et al., 2016). Moreover, several immunomodulating compounds are also produced by this microalga, which highlights a potential contribution to vaccine efficacy when used as a delivery vehicle (Figure 1). For instance, it produces squalene, a compound with adjuvant activity (Hoang et al., 2014).

Schizochytrium sp. is an interesting alternative for vaccine production and delivery due to its capacity for recombinant protein expression, being able to efficiently export proteins toward the extracellular compartment; which is a substantial advantage over the bacterial hosts since the recombinant protein can be easily purified due to the simpler composition of culture supernatants. In addition, a singular advantage of *Schizochytrium* sp. is the capability of exporting full-length complex membrane-bound insoluble proteins in a secreted form while retaining full functionality and a properly active structure (Bayne et al., 2013). Since *Schizochytrium* sp. has singular properties among the algae species, the implications of this species in vaccinology are analyzed.

Bioencapsulation Effects

Since a major challenge in oral vaccine development is antigen degradation by commensal bacteria, proteases, and the acidic stomach environment, it is necessary to protect it and include suitable mucosal adjuvants to enhance antigen bioavailability and recognition by the elements of the gut-associated lymphoid tissues (Hernández et al., 2014). One alternative to address these challenges is antigen encapsulation and among the approaches explored in this regard is the use of nano and microparticles for oral vaccine delivery. There is an array of different polymers suitable for this purpose, which can be either natural or synthetic, in which antigens can be encapsulated within the particles. Although promising, it should be considered that these systems require a synthesis approach that involve strict reaction conditions for synthesis, purification and characterization, which is laborious and costly (Sinyakov et al., 2006).

In contrast, *Schizochytrium* sp. can be used not only as the biofactory of antigens but also as a natural microcapsule (9–14 μm), which is easier and cheaper to obtain than synthetic micro particles. When an antigen is intracellularly accumulated algae biomass can be used as a microencapsulated vaccine not requiring complex processing (i.e., purification). In this manner, the microagal cell adds its components to the vaccine activity, which could favorably influence: (i) the antigen bioavailability as it is believed to protect the antigen from degradation but at the same time to mediate a proper release of the antigen to make it bioavailable while maintaining its native conformation in the microalga and therefore the antigenic determinants are preserved (Gregory et al., 2013); and (ii) stimulation of the cells involved in antigen translocation, processing and presentation by the action of algal compounds; improving the response triggered by the antigen. In fact, microalgae have allowed the oral delivery of intact nanobodies in the intestine of mice (Barrera et al., 2015). Therefore, antigens encapsulated into *Schizochytrium* cells offer a cheaper and more practical system compared with conventional micro and nanoparticulated systems.

Presence of Immunostimulatory Compounds

Immunostimulatory compounds, such as adjuvants and immunostimulants, can enhance vaccine efficacy since they support the induction of robust immune responses through several mechanisms (Reed et al., 2013, Table 1). The benefits of immunostimulatory compounds include enhanced immunogenicity, antigen-sparing, and achievement of long-lasting immunoprotection (Petrovsky and Aguilar, 2004; Lee and Nguyen, 2015). Therefore, immunostimulatory compounds may contribute to reduce the number and magnitude of antigen doses as well as achieving proper immune polarization (Reed et al., 2013; Ranasinhe, 2014). Using organisms that serve as biofactories but at the same time as delivery vehicles containing immunostimulatory compounds is the ideal case for vaccine design (Rosales-Mendoza and Salazar-González, 2014).

In this context, marine organisms serve as a source of a myriad of potent bioactive compounds; including immunostimulatory molecules of relevance in vaccination. In particular, several algae species have been identified as a source of inflammatory modulators as well as anti-nociceptive and anti-cancer compounds (De Almeida et al., 2011; Farooqi et al., 2014; De Jesus Raposo et al., 2015). To date, the compounds produced by *Schizochytrium* sp. with known anti-nociceptive and anti-cancer effects are DHA and EPA (van Beelen et al., 2007; Mann et al., 2018; Mitome et al., 2018). In addition, *Schizochytrium* sp. contains several bioactive compounds such as flavonoids, β-glucans, β-carotene, polysaccharides, nucleotides and peptides; many of them considered immunostimulants and immunomodulators that, in adequate amounts or in appropriate combination, can improve immune competence (Ibáñez and Cifuentes, 2013; Kousoulaki et al., 2015). Interestingly, no signs of toxicity have been observed thus far in the use of bioactive compounds from *Schizochytrium* sp. in humans or animals. Moreover, no intermediary metabolites involved in the synthesis.
of toxic compounds have been reported in *Schizochytrium sp.* Overall, these features make *Schizochytrium sp.* an attractive species to be used for food purposes and as a valuable source of immunostimulatory compounds for animals and humans (Mioso et al., 2014). The relationship between *Schizochytrium sp.* immunostimulatory compounds and the immune system in the context of vaccine development will be briefly discussed in the following sections.

Lipids

Lipids represent up to 56% of the total dry weight of *Schizochytrium* sp. (Yokochi et al., 1998; Ren et al., 2010), with some of them exerting health-promoting effects (Chen et al., 2014b; Raposo and De Morais, 2015). Lipids with immunostimulatory or immunomodulatory activities produced by *Schizochytrium sp.* comprise DHA, EPA, palmitic acid, and squalene (Huang et al., 2010; Taparia et al., 2016). DHA and EPA have proinflammatory and antinflammatory effects (Kelley, 2001; Ramakers et al., 2005) and improve Th1 and Th2 responses following vaccination (Hogenkamp et al., 2011). DHA and EPA immunomodulatory effects have been evaluated *in vitro* in cells derived from human and animals such as macrophages, dendritic cells, neutrophils, lymphocytes, epithelial cell lines, among others. Therefore, DHA and EPA differentially modulate immune responses related to phagocytosis, phosphorylation of intracellular signaling molecules, activation of transcription factors, and effector immune-related gene expression; which largely depends of the cell type or target species. The overall
modulatory effects of DHA and EPA are related to a polarized anti-inflammatory response demonstrated by the reduction of cytokines such as TNF-α, IFN-γ, IL-1β, IL-6, IL-12, and the anti-inflammatory cytokine IL-10, through the inhibition of kinases (i.e., JNK, ERK) of the NFκB pathway (Xue et al., 2006; Weldon et al., 2007; Draper et al., 2011; Magee et al., 2012; Siriwardhana et al., 2012; Tsunoda et al., 2015; He et al., 2017; Dawczynski et al., 2018). These effects could be associated with the eicosanoid synthesis pathway (Loke et al., 1988). In addition, it should be taken into account that DHA and EPA enhance neutrophil and macrophage phagocytosis, nitric oxide production (a pro-inflammatory mediator), and lymphocyte proliferation (Omura et al., 2001; Verlegia et al., 2004; Gorjão et al., 2006, 2009). Furthermore, it has been suggested that DHA promotes the production of pro-resolving cytokines from T helper lymphocytes and monocytes, via activation of the PPAR-gamma transcription factor; which finally contributes to adequate pro-resolving inflammatory responses that maintain a healthy status (Jaudszus et al., 2013). Moreover, it has been reported that the administration of DHA and/or EPA regulates the immune response in several animals such as cattle, goats, poultry, and pigs (Moreno-Indias et al., 2012; Bragaglio et al., 2015; Światkiewicz et al., 2015). Therefore, DHA and EPA could improve the efficacy of vaccines against inflammatory disorders. Interestingly, supplementation with DHA modulated antigen-specific T cell responses through an IL-10-mediated mechanism in vaccinated pigs (Bassaganya-Riera et al., 2007), and reduced TNF-α and IL-1β production and increased IgG titers against bacterial toxins in vaccinated infants (López-Alarcón et al., 2008; Furuhjelm et al., 2011). Similarly, the supplementation of the maternal diet with DHA positively favors the activation of B cells and the response to a potential food antigen upon challenge in suckled offspring (Richard et al., 2015). On this regard, the evidence suggest that both DHA and EPA promote B cell activation and antibody production, particularly enhancing mucosal IgA responses, which is relevant to protect against infectious diseases (Gurzell et al., 2013; Teague et al., 2013; Whelan et al., 2016). Remarkably, the study of DHA and DHA-derivatives as potential adjuvants seems promising in vaccinology. Using 17-HDHA led to an enhanced serum protective antibody response after OVA and H1N1 vaccination in a mouse model (Ramon et al., 2014). Dietary DHA has also been proposed as a potential adjuvant in cancer treatments (Merendino et al., 2013) and has been tested in children and adolescents with acute lymphoblastic leukemia (Elbarbary et al., 2016). It is clear that dietary fatty acids influence the response of the immune system to vaccination and the potential benefits from marine (n-3) PUFA have been reported (Hogenkamp et al., 2011). Therefore, it can be expected that the fatty acids existing in Schizochytrium-based vaccines may account for the efficacy of the formulation (Maroufyan et al., 2012).

Another fatty acid present in high levels in Schizochytrium sp. is palmitic acid (PA), which triggers a pro-inflammatory response by the activation of macrophages (Talbot et al., 2014; Tian et al., 2015). In addition, PA is involved in the improvement of antigen presentation by antigen presenting cells (APC); an effect that is partly mediated by TLR4 and TLR2 binding (Weatherill et al., 2005; Huang et al., 2012). In general, it is known that PA exerts immunostimulatory effects through the TLR4/IKKβ/NFκB pathway. The downstream TLR4 signaling induced by PA leads to the activation of NFκB and it has been associated with an increase in the secretion of monocyte chemoattractant protein-1 and pro-inflammatory molecules, such as nitric oxide, TNF-α, IL-1β, IL-6, and IL-8 (Medzhitov et al., 1997; Kim et al., 2007; Schaeffler et al., 2009; Zhou et al., 2013). In particular, the production of IFN-γ and IL-2 is enhanced in human peripheral lymphocytes upon PA treatment (Karsten et al., 1994). Additionally, PA was found to enhance secretory IgA responses; which are supported by the production of interleukins such as IL-5, IL-6, IL-10, and IL-15 (Nguyen et al., 2007; Kunisawa et al., 2012). On the other hand, dietary administration of PA in mice stimulates plasma cells to produce antibodies in intestine, highlighting its potential as a diet-mucosal adjuvant (Kunisawa et al., 2012). Particularly, PA-diet supplementation induced higher intestinal IgA responses in orally-immunized mice with OVA antigen and cholera toxin (Kunisawa et al., 2014). Interestingly, the palmitoyl group is also crucial in the approaches to produce immunogenic conjugates able to elicit specific and long lasting humoral immune response without the need of additional adjuvants (Kargakis et al., 2007). Vaccine formulations containing PA and palmitic acid-derivatives as adjuvants resulted in improved efficacy against several diseases including tuberculosis (Gupta et al., 2016), cancer (Rueda et al., 2017), rabies (Liu et al., 2016), canine distemper (Chua et al., 2007), and toxoplasmosis (Tan et al., 2010); an effect that is associated with enhanced pro-inflammatory cytokine production (Moyle, 2017).

Schizochytrium lipids are also the basis of some commercial adjuvants. Squalene is a lipid (polyunsaturated triterpen) of the terpenoid family, typically obtained from animal sources; however, recent advances in purification processes have allowed the use of plants and microalgae as squalene sources (Brito et al., 2011). Interestingly, squalene is particularly produced at high levels in Schizochytrium (Yue and Jiang, 2009; Hoang et al., 2014). Squalene is used to produce adjuvants with proven efficacy, such as MF59, AF03, and AS03 (Reddy and Couvreur, 2009; O’Hagan et al., 2012; Kedl and Kedl, 2015; Bonam et al., 2017). Although the activity of such adjuvants is consequence of the combination of squalene with other compounds, it has been reported that neutrophils, dendritic cells and macrophages are the main players involved in the production of proinflammatary cytokines and chemokines (Calabro et al., 2013). Intraperitoneal administration of pure squalene (536.5 μl kg⁻¹) in fish led to safe inflammatory cellular and humoral responses at the site of injection and in immune-relevant tissues (Vinay et al., 2013). It is known that squalene is efficiently absorbed through the intestinal mucosa, rapidly enter into lymphatic circulation and is metabolized (Tilvis and Miettinen, 1983; Gylling and Miettinen, 1994) and therefore it could be active in oral vaccine formulations. For instance, MF59 has been licensed in more than 20 countries for use in an improved influenza vaccine called Fluvad® (Frey et al., 2014). Squalene-based adjuvants efficiently enhance immune responses and are safe for humans and animals (O’Hagan et al., 2014).
Therefore, lipids produced by *Schizochytrium sp.* might account, in combination with other immunostimulatory molecules synthesized by the alga, for the immunogenicity of vaccines. The current information in the literature encourages performing more studies to investigate in detail the immunostimulatory effects of individual compounds or mixtures of them in oral immunization prototypes. All of this evidence on the production of lipids with immunomodulatory properties accounts for the potential of *Schizochytrium sp.* as an attractive host for the development of efficient oral vaccines.

Polysaccharides

Polysaccharides derived from marine microorganisms have had great importance in the industry (Sudha et al., 2014) and are also of relevance for the biomedical field having several applications. For instance, they can serve as vaccine vehicles and adjuvants (Petrovsky and Cooper, 2011; Shinchi et al., 2015). In fact, several polysaccharides have anti-tumor and immunomodulatory properties (Yang and Zhang, 2009; Laurienzo, 2010; Na et al., 2010). In particular, sulfated polysaccharides significantly improved the humoral response; an effect associated to the promotion of lymphocyte proliferation and macrophage activation via TLR-4 binding (Huang et al., 2008). In addition, several polysaccharides favor Th1 responses, promoting protection against intracellular pathogens such as mycobacteria (Pi et al., 2014). A remarkable case is the ADVAX™ adjuvant, made with pectin, which enhances the humoral and cellular responses against hepatitis and influenza vaccines and is currently under clinical evaluation (Saade et al., 2013; Honda-Okubo et al., 2015).

Marine microalgae are known as one of the most abundant sources of polysaccharides (Laurienzo, 2010). Particularly *Schizochytrium sp.* produces high levels of exopolysaccharides (EPS), at rates of around 300 mg per liter of culture (Chang et al., 2013), that are easily isolated from cultures since these are exported to the culture media (Laurienzo, 2010; Liu et al., 2014). EPS synthetized by the *Schizochytrium* species and other members of the Labyrinthulomycetes class are of great biotechnological interest (Jain et al., 2005). Overall, EPS exert immunostimulatory activity and adjuvant effects (Feng et al., 2015; Li and Wang, 2015), although no report exists about the immunostimulatory activity of EPS from *Schizochytrium sp.* and it constitutes an open field of study. Interestingly, it is known that the EPS production can be modulated by certain factors, such as glucose concentration in culture media; therefore, optimization of the EPS synthesis during *Schizochytrium*-based vaccines production could be an important aspect to optimize (Li et al., 2014).

Schizochytrium sp. also exports many other compounds into the culture media including proteins, lipids, uronic acids, and sulfates (Lee Chang et al., 2014). Moreover, *Schizochytrium sp.* produces high amounts of xanthophylls (Aki et al., 2003) which possess immunomodulatory properties that promote cellular and humoral responses (Park et al., 2011; Ghodratizadeh et al., 2014).

Although no detailed characterization on the cell wall composition is available for *Schizochytrium sp.*, it can be expected that the cell wall of *Schizochytrium sp.* could exert singular immunostimulatory effects. It is known that microalgae possess a singular cell wall composition: an apparent lack of cellulose and the cell wall components are layers of crystalline Ara-rich, Hyp-rich glycoproteins (Miller et al., 1974; Roberts, 1974). Therefore, it can be speculated that the components from the cell wall of *Schizochytrium sp.* may exert immunostimulatory activity leading to highly effective oral vaccines when used as delivery vehicle.

GENETIC ENGINEERING TOOLS

The current genetic engineering methods for *Schizochytrium sp.* comprise transgene installation into the nuclear genome (Table 2), which has been achieved by the following transformation techniques: particle bombardment (Lippmeier et al., 2009; Metz et al., 2009; Sakaguchi et al., 2012; Bayne et al., 2013); *Agrobacterium*-mediated transformation using protoplasts (Cheng et al., 2012); and electroporation (Cheng et al., 2011).

Selective agents used in these successful methods include paromomycin, zeocin and geneticin. In terms of regulatory sequences, the EF1 promoter has led to convenient protein yields up to 5–20 mg of recombinant protein per liter of culture (Cheng et al., 2013). However, no extensive evaluation of distinct regulatory sequences and a wide diversity of target proteins have been explored in *Schizochytrium sp.* Despite the fact that homologous recombination occurs in *Schizochytrium sp.* and it has been exploited to generate mutants for lipid metabolism studies (Metz et al., 2009), this feature has not been exploited to generate clones with site directed insertions to favor efficient expression of the transgene in vaccine production.

In this context, the knowledge on the genetic engineering approaches explored for the case of the *C. reinhardtii* microalgae model is a relevant reference that can be used to expand the developments for *Schizochytrium sp.* According to several reports, *C. reinhardtii* tends to show complex expression patterns under nuclear expression approaches (Mardanova et al., 2015), however improvements on yields have been achieved by a number of approaches. For instance, co-expressing the gene of interest and the gene marker in a transcriptional arrangement where, once under translation, the presence of the picornaviral 2A element between both sequences induces the release of independent proteins. The yields obtained under this approach were up to 0.25% TSP. Nonetheless, the limitations of this approach include the fact that this split mechanism does not occur in all the molecules and thus a fraction of the produced protein corresponds to fusion proteins (Rasala and Mayfield, 2015). Another approach has consisted on generating mutant strains by UV light exposure and the use of codon optimized selectable markers (Barahimipour et al., 2016). A bicistronic arrangement driven by the promoter of the endogenous intrallagellar transport 25 protein has led to attractive protein yields (Dong et al., 2017). Insertions of the first intron of the
TABLE 2 | Summary of the genetic engineering methodologies implemented for the marine microalgae Schizochytrium sp.

Objective	Vector	Promoter	Terminator	Transformation method	Selection approach	Findings	References
Generate mutants for polyunsaturated fatty acid (PUFA) synthase to characterize PUFA biosynthesis	Schizochytrium PFA1: (pBSK): Resistance to zeocin: (pTUB2EO11-2)	Schizochytrium α-tubulin	Simian virus SV40	Particle bombardment	Zeocin resistance (Sh ble gene)	Mutants are auxotrophic and required supplementation with PUFAs	Lippmeier et al., 2009
Generate mutant for fatty acid synthase (FAS) by homologous recombination to characterize fatty acid biosynthesis	(pBluescript SK(b) from Stratagene)	Schizochytrium α-tubulin	SV40	Particle bombardment	Zeocin (Sh ble gene)	Mutants are lethal and rescued only when grown under supplementation with appropriate saturated fatty acids in combination with methylated cyclodextrins	Metz et al., 2009
Investigate a transgene expression system by 18S rDNA-targeted homologous recombination	pUCT-18S	TEF1	CYC1	Electroporation	Zeocin (Sh ble gene)	The majority of the transformants showed similar biomass and total lipid content when compared to the wild type strain	Cheng et al., 2011
Develop a novel transformation approach using Agrobacterium tumefaciens and a binary vector	pCAMBIA2301	egfp gene: TEF1 gus gene: CaMV35S	A. tumefaciens.	G418 resistance (nptII gene)	A. tumefaciens allowed for the stable insertion of the T-DNA	Transformation efficiency: 1 µg linearized plasmid yield more than 100 transformants	Cheng et al., 2012
Introduce the Escherichia coli acetyl-CoA synthetase (ACS) gene to reduce the negative impact of acetate accumulation on the fermentation products	pBluescript II SK (+)	TEF1	CYC1	Electroporation	G418 resistance (nptII gene)	The genetically modified Schizochytrium sp. showed a significantly higher biomass and fatty acid proportion. Transforms produce lower acetate levels (0.84 and 0.66 g/l) than the wild-type strain (1.66 g/l)	Yan et al., 2013
Produce the recombinant hemagglutinin (rHA) protein derived from A/Puerto Rico/8/34 (H1N1) influenza Virus as a subunit vaccine	pQL0143, pQL0154, pQL0161, pQL0160, pQL0153	Elongation factor 1	PFA3	Particle bombardment	Paromomycin resistance (aphH gene)	Protective immunity against a lethal challenge with homologous virus was achieved by immunizing with a single dose of 1.7, 5, or 15µg rHA with or without adjuvant (survival rates: 80–100%) Full protection (100%) was achieved at all dose levels with or without adjuvant when mice were given a second vaccination	Bayne et al., 2013
Develop a versatile transformation system for thaurochydriids applicable to both multiple transgene expression and gene targeting	pGEM-T Easy (Promega) and pUC18 (TaKaRa Bio)	EF-1α promoter Ubiquitin terminator	Particle bombardment and electroporation	G418 resistance (nptII gene) Hygromycin resistance (hyg gene)	A multiple gene expression and gene targeting was achieved	Transformation efficiency Microprojectile bombardment: 4.6 × 10^3 Colonies/µg DNA vector Electroporation: 0 Colonies	Sakaguchi et al., 2012

(Continued)
Selection approach	Transformation method	References
Particle bombardment and electroporation	Schizochytrium tubulin gene promoter	http://www.google.com/patents/US7001772
Transformation efficiency: about 68% of the resulting Zeocin™-resistant clones were PCR positive for the fat-1 gene		

Table 2 Continued

Selection approach	Transformation method	References
Site-directed mutagenesis of an acetolactate synthase gene	Zeocin (Sh ble gene)	http://www.google.com/patents/US7001772
Homologous recombination occurs in Schizochytrium sp., allowing for the generation of site-directed mutants		
Transformation efficiency: about 68% of the resulting Zeocin™-resistant clones were PCR positive for the fat-1 gene		

Looking to develop innovative expression systems, we have reported for the first time the use of a viral vector to efficiently produce biopharmaceuticals in algae, using *Schizochytrium* sp. as the model alga and a geminiviral vector constructed with sequences of the begomovirus *Ageratum enation virus* (Bañuelos-Hernández et al., 2017). The vector mediates the inducible expression driven by the AlcA promoter, which has a fungal origin and is induced by ethanol in a mechanism mediated by the AlcR protein. The proof of concept was provided by expressing in *Schizochytrium* sp., a complex viral protein, namely GP1 protein from Zaire ebolavirus, and a bacterial toxin subunit (B subunit of the heat-labile *E. coli* enterotoxin). High levels of the target antigens were achieved (GP1 yields up to 1.2 mg per gram of fresh weight biomass). Figure 2 depicts the general methodology comprised by the Algevir system.

In terms of yields, *Schizochytrium* sp. possesses a competitive productivity for recombinant protein production (5–20 mg/L) when compared with other microalgae. For instance, maximum yields observed in photosynthetic algae (*C. reinhardtii*) are 15 mg/L in a system based in the secretion of the target protein using either synthetic glycomodules (tandem serine and proline repeats) that improve secretion or a mutant strain that efficiently expresses heterologous genes (Bayne et al., 2013; Lauersen et al., 2013; Ramos-Martinez et al., 2017). Another promising approach relies in chloroplast genome engineering, by which yields up to 3 mg/L have been achieved (Gimpel et al., 2015). However *Schizochytrium* sp. does not possesses this organelle.

In this context, Algevir is a robust and attractive system as it possesses the following advantages that override the mentioned limitations: nuclear expression offers the possibility to access the complex cellular machinery to perform complex post-translational modifications (e.g., glycosylation); intracellular accumulation at high levels of the biopharmaceutical allows using the alga cell as the delivery vehicle in oral formulations; inducible expression allows a tight control that might lead to an efficient production of recombinant proteins that have toxic effects in algae; transient expression avoids the long time investment required to select stably transformed clones. Therefore, Algevir is a versatile system offering the advantages of transient expression (short production time and high yields) that are ideal for the production of vaccines in response to epidemics.

Conventional systems for recombinant protein production allow overall higher yields than those of the microalgae-based systems. For instance bacterial systems have a productivity in the order of 5 g/L, yeast systems in the order of 30 g/L, whereas mammalian cells are in the range of 5–25 g/L (Jarvis, 2008; Demain and Vaishnav, 2009). However, besides yields it should also be considered that bacterial systems often led to significant losses when refolding is required, the system has limitations for the synthesis of complex proteins and the host produces endotoxins (Feng et al., 2012). In the case of mammalian cells, the limitations are high production cost and possible contamination with human pathogens (Moody et al., 2012).
2011). Although yeast is also a fast-growing, GRAS, heterotrophic eukaryotic microorganism leading to high yields of recombinant proteins, it is often associated with hyper-glycosylation problems that may impair correct protein folding and functionality (Wildt and Gerngross, 2005). Therefore, although *Schizochytrium sp.* offers modest productivity in this context, the overall features of this organism make it an attractive host for vaccine production.

INITIAL EFFORTS USING *Schizochytrium sp.* IN VACCINE DEVELOPMENT

Bayne et al. (2013) reported a pioneering study on the expression of hemagglutinin (rHA) from *A/Puerto Rico/8/34 (H1N1)* influenza Virus in *Schizochytrium sp.* The *Schizochytrium sp.* EF-1 promoter, PFA3 terminator, and the aphH gene conferring paromomycin resistance were used. Clones transformed by particle bombardment were obtained and characterized at the molecular and immunogenic level. The algae-made HA was successfully detected in the extracellular space retaining activity as revealed by hemagglutination activities from 16 to 512 hemagglutination activity units (HAU)/50 µL of cell-free supernatants (CFS).

The algae-made HA antigen was purified from fermentation culture supernatants with average yields of 5–20 mg of HA per liter of culture. The authors explored several immunization schemes in BALB/c mice groups comprising doses of 1.7, 5, and 15 µg of HA alone or co-administered with the AddaVax™ adjuvant. Another variable was a boost administered 3 weeks after priming. The hemagglutination inhibition (HI) activity assays revealed that the adjuvant-formulated vaccine induced...
higher HA antibody titer, which significantly increased after the second injection.

The protective immunity against a lethal challenge with a homologous virus was evaluated following an immunization scheme comprising three rHA dose levels (1.7, 5, or 15 μg) with or without adjuvant. In spite of the dose, all mice were fully protected after two vaccinations. In terms of infectious virus titers, the test animals receiving adjuvant showed lower virus titers than adjuvant-free vaccine-treated mice.

The Algevir system has been applied to produce several antigenic proteins with distinct yields, namely the GP1 antigen Zaire ebolavirus (yields: 6 mg/l), the B subunit of the heat labile E. coli enterotoxin (yields: 0.4 mg/l), and a chimeric protein targeting the receptor of advanced glycation end products for Alzheimer's disease (RAGE; yields: 0.4 mg/l) (Bañuelos-Hernández et al., 2017; Ortega-Berlanga et al., 2018).

These seminal reports indicate a high potential of Schizochytrium sp. in the microalgae-made vaccines field, in particular for the production of antigens requiring complex post-translational modifications in a robust system. Several directions in which this technology can be exploited are identified and discussed in the next section.

FUTURE DIRECTIONS

The positive outcomes derived from the Influenza vaccine prototype developed with Schizochytrium sp. indicate a great potential to develop other vaccine candidates. Several directions in which this organism can be exploited in vaccinology are identified. For instance, biomass from transgenic lines expressing the antigen of interest will allow evaluating oral vaccines formulated in a straightforward manner without complex processing (e.g., freeze-dried biomass could be used for oral immunization). In addition, several cellular localizations can be assessed and the implications on immunogenicity and yields determined. For example, proteins can be retained in the endoplasmic reticulum or expressed in the form of amylosomes as has been performed in C. reinhardtii (Dauvillé et al., 2010); another possibility is the association to lipid bodies or protein bodies which have been accomplished in seed crops. In plants, the oil body fusion technology consists in fusing the target protein to the N- or C-terminus of oleosin in the oil body surface; since the expression is driven by a seed specific promoter, the protein can be efficiently expressed and rescued from seeds (Stoger et al., 2005; Boothe et al., 2010). This approach also extends protein half-life allowing easier transportation and storage (Bhata et al., 2010). Given the high accumulation of oil bodies in Schizochytrium sp. (Morita et al., 2006), this process is considered viable and proposed as an efficient approach for recombinant antigen production having implications in the immunogenic activity since high molecular size complexes carrying the antigen could be produced in the recombinant algae.

A number of mechanisms may underline the immunomodulatory (pro- and anti-inflammatory) effects of fatty acids present in Schizochytrium sp. in prototype vaccines. All of them should be considered case-by-case determining the immunological outcomes required to fight the target disease. Thus, efforts to elucidate the immunological role and impact of the compounds present in Schizochytrium sp. are needed to understand and ultimately manipulate the immune responses induced by the vaccine. In terms of antigen design, studying the potential to produce virus like particles, antibody-antigen immunocomplexes, and adjuvant-antigen fusions are relevant, pending goals (Wen et al., 2016; Ding et al., 2018).

Moreover, conventional mutagenesis and genetic engineering along with the currently available Schizochytrium sp. genome bring opportunities for implementing strategies to improve the production of recombinant subunit vaccines. For instance, endogenous promoters and signal peptides could be used to improve the expression of the target antigens (Molino et al., 2018). Moreover, modifying the expression of enzymes involved in the synthesis of immunostimulatory compounds could lead to strains with modified metabolite profiles that could lead to improved immunogenicity (Park et al., 2018). Exploring these avenues will reinforce the use of Schizochytrium sp. as a convenient host in the production of attractive vaccines. The use of Schizochytrium sp. for vaccine production will also require the implementation of Good Management Practices-compliant process and validation of its safety for consumption by humans. It should be considered that Schizochytrium sp. is safe as food supplement for animals and thus the veterinary field could be the first to be benefited from the evaluation and commercialization of the Schizochytrium-made vaccines (Franklin et al., 1999; Meale et al., 2014; Kousoulaki et al., 2015; Park et al., 2015). This will be highly convenient since aquaculture and poultry intensive farming practices encourage the spread of diseases but the small size and low value of juvenile animals make other vaccination approaches impractical (Charoongnart et al., 2018).

CONCLUSIONS

Safe consumption, bioencapsulation effects, and the presence of immunomodulatory compounds are attributes that account for the potential of Schizochytrium sp. as an innovative platform for oral vaccine development. In addition, the well-established industrial process for Schizochytrium sp. production and the availability of efficient genetic engineering tools will support the perspectives of this technology.

Therefore, Schizochytrium sp. is an interesting alga species with implications in the development of improved algae-made vaccines that will benefit animal and human health. This research path will be particularly relevant in developing countries where heat-stable, low cost, easy to administer, and safe vaccines are urgently needed.

AUTHOR CONTRIBUTIONS

CA and SR-M conceived the manuscript. AR-V wrote most of the sections under supervision of SR-M and CA. BB-H wrote the section on the Algevir system.
ACKNOWLEDGMENTS

We appreciate the assistance of M.Sc. Crystal A. Guluarte-Ramos-Vega et al. Schizochytrium-Based Vaccines

REFERENCES

Aasen, I. M., Ertesvåg, H., Heggeset, H., Liu, B., Brautaset, T., Vadstein, O., et al. (2010). Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol. Adv. 28, 95–107. doi: 10.1016/j.biortech.2009.11.014

Bañuelos-Hernández, B., Beltrán-López, J. L., and Rosales-Mendoza, S. (2015). “Production of biopharmaceuticals in microalgae,” in Handbook of Marine Microalgae, ed S.-K. Kim (London: Academic Press), 281–298.

Bañuelos-Hernández, B., Monreal-Escalante, E., Gómez-Ortega, O., Angulo, C., and Rosales-Mendoza, S. (2017). Algrev: an expression system for microalgae based on viral vectors. Front. microbioL 8:1100. doi: 10.3389/fmicb.2017.01100

Bayne, A. C., Boltz, D., Owen, C., Betz, Y., Maia, G., Azadi, P., et al. (2013). Wood, C. M., et al. (2007). Arachidonic acid and docosahexaenoic acid-enriched formulas modulate antigen-specific T cell responses to influenza virus in neonatal pigs. Am. J. Clin. Nutr. 85, 824–836. doi: 10.1093/ajcn/85.3.824

Bhatla, S. C., Kaushik, V., and Yadav, M. K. (2010). Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol. Adv. 28, 293–300. doi: 10.1016/j.biotechadv.2010.01.001

Black, S. (2015). Safety and effectiveness of MF-59 adjuvanted influenza vaccines in children and adults. Vaccine 33, B3–B5. doi: 10.1016/j.vaccine.2014.11.062

Bonam, S. R., Partidos, C. D., Halmuthur, S. K. M., and Muller, S. (2017). An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 38, 771–793. doi: 10.1016/j.tips.2017.06.002

Bothe, J., Nyikiforuk, C., Shen, Y., Zaplachinski, S., Szarka, S., Kuhlman, P., et al. (2010). Seed-based expression systems for plant molecular farming. Plant Biotechnol. J. 8, 588–606. doi: 10.1111/j.1467-7652.2010.00511.x

Bragaglio, A., Braghieri, A., Napolitano, F., De Rosa, G., Riviezza, A. M., Surianello, F., et al. (2015). Omega-3 supplementation, milk quality and cow immune-competence. Ital. J. Agron. 10, 9–14. doi: 10.4081/ija.v2015.611

Brito, L. A., Chan, M., Baudner, B., Gallorini, S., Santos, G., O’Hagan, D. T., et al. (2011). An alternative renewable source of squalene for use in emulsion adjuvants. Vaccine 29, 6262–6268. doi: 10.1016/j.vaccine.2011.06.067

Calabrò, S., Tritto, P., Pizzotti, A., and Taccone, M. (2013). The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31, 3363–3369. doi: 10.1016/j.vaccine.2013.05.007

Chang, G., Gao, N., Tian, G., Wu, Q., Chang, M., and Wang, X. (2013). Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 142, 400–406. doi: 10.1016/j.biortech.2013.04.107

Chang, G., Wu, J., Jiang, C., Tian, G., Wu, Q., Chang, M., et al. (2014). The relationship of oxygen uptake rate and k(L)a with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31. Bioresour. Technol. 152, 234–240. doi: 10.1016/j.biortech.2013.11.002

Chaoornnont, P., Purton, S., and Saksmperprove, V. (2018). Applications of microalgal biotechnology for disease control in aquaculture. Aquaculture. 72:2. doi: 10.3390/biotechnology/7020024

Chen, J., Jiao, R., Jiang, Y., Bi, Y., and Chen, Z. Y. (2014b). Algal sterols are as effective as β-sitosterol in reducing plasma cholesterol concentration. J. Agric. Food Chem. 62, 675–681. doi: 10.1021/jf404955n

Chen, S. I., Norman, B. A., Raigopal, J., Assi, T. M., Lee, B. Y., and Brown, S. T. (2014a). A planning model for the WHO-EPI vaccine distribution network in developing countries. IIE Transactions 46, 853–865. doi: 10.1080/0740817X.2013.813094

Cheng, R., Ge, Y., Yang, B., Zhong, X., Lin, X., and Huang, Z. (2013). Cloning and functional analysis of putative malonyl-CoA: acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101. World J. Microbiol. Biotechnol. 29, 959–967. doi: 10.1007/s11274-013-1253-0

Cheng, R., Ma, R., Li, K., Rong, H., Lin, X., Wang, Z., et al. (2012). Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microb. Res. 167, 179–186. doi: 10.1016/j.micres.2011.05.003

Cheng, R. B., Lin, X. Z., Wang, Z. K., Yang, S. J., Rong, H., and Ma, Y. (2011). Establishment of a transgene expression system for the marine microalga Schizochytrium by 18S rDNA-targeted homologous recombination. World J. Microbiol. Biotechnol. 27, 737–741. doi: 10.1007/s11274-010-0510-8

Chua, B. Y., Zeng, W., Lau, Y. F., and Jackson, D. C. (2007). Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups. Vaccine 25, 92–101. doi: 10.1016/j.vaccine.2006.07.012

Corbel, L. B., Hildebrand, M., Shrestha, R., Davis, A., Schrier, R., Oyler, G. A., et al. (2015). Diatom-based vaccines. U.S. Patent No. 9,358,283.

Dauvillee, D., Delhaye, S., Gruyer, S., Sliomannyi, C., Moretz, S. E., d’Hulst, C., et al. (2010). Engineering the chloroplas targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS ONE 5:e15424. doi: 10.1371/journal.pone.0015424

Davis, A., Crum, L. T., Corbel, L. B., and Hildebrand, M. (2017). Expression of Histophilus somni IbpDA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl. Microbiol. Biotechnol. 101, 5313–5324. doi: 10.1007/s00253-017-8267-8

Dawczynski, C., Dittrich, M., Neumann, T., Goetze, K., Welzel, A., Oelzner, P., et al. (2018). Docosahexaenoic acid in the treatment of rheumatoid arthritis: A double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sunflower oil. Clin. Nutr. 37, 494–504. doi: 10.1016/j.clnu.2017.02.021

De Almeida, C. L., Falcão, Hde, S., Lima, G. R., Montenegro, Cde, A., Lira, N. S., de Athayde-Filho, P. F., et al. (2011). Bioactivities from marine algae of the genus Gracilariar Int. J. Mol. Sci. 12, 4550–4573. doi: 10.3390/ijms12074550

De Jesus Raposo, M. F., De Morais, A. M., and De Morais, R. M. (2015). Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 13, 2967–3028. doi: 10.3390/md13052967

Demain, A. L., and Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotech. Adv. 27, 297–306. doi: 10.1016/j.biotechadv.2009.01.008

Dewapriya, P., and Kim, S. K. (2014). Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res. Int. 56, 115–125. doi: 10.1016/j.foodres.2013.12.022
Ghodratizadeh, S., Kanbak, G., Beyramzadeh, M., Dikmen, Z. G., Memarzadeh, Gimpel, J. A., Hyun, J. S., Schoepp, N. G., and Mayfield, S. P. (2015). Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol. Bioeng. 112, 339–345. doi: 10.1002/bit.25357

Gorjão, R., Azevedo-Martins, A. K., Rodrigues, H. G., Abdulkader, F., Arcisio-Miranda, M., Procopio, J., et al. (2009). Comparative effects of DHA and EPA on cell function. Pharmcol Ther. 122, 56–64 doi: 10.1016/j.pharmthera.2009.01.004

Gorjão, R., Verlengia, R., de Lima, T. M., Soriano, F. G., Boaventura, M. F., and Kanunfre, C. C. (2006). Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin. Nutr. 25, 923–938. doi: 10.1016/j.clnu.2006.03.004

Gregory, J. A., Topol, A. B., Doerner, D. Z., and Mayfield, S. (2013). Alga-produced cholera toxin-pfs25 fusion proteins as oral vaccines. Appl. Environ. Microbiol. 79, 3917–3925. doi: 10.1128/AEM.00714-13

Gupta, N., Vedi, S., Kunimoto, D. Y., Agrawal, B., and Kumar, R. (2016). Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: routes of immunization and TLR agonists critically impact vaccine’s efficacy. Vaccine 34, 5677–5688. doi: 10.1016/j.vaccine.2016.08.075

Guruzel, E. A., Teague, H., Harris, M., Clinhorne, J., Shaikh, S. R., and Fenton, J. I. (2013). DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. J. Leukoc. Biol. 93, 463–470. doi: 10.1189/jlb.0812394

Gylling, H., and Miettinen, T. A. (1994). Post absorptive metabolism of dietary squalene. Atherosclerosis 106, 169–178. doi: 10.1016/0021-9925(94)90122-8

Haemmers, J., Probeck, P., Su, J., Piras, F., Dallençon, F., Cotte, J. F., et al. (2015). Design and preclinical characterization of a novel vaccine adjuvant formulation consisting of a synthetic TLR4 agonist in a thermoreversible squalene emulsion. Int. J. Pharm. 486, 99–111. doi: 10.1016/j.ijpharm.2015.03.028

Hasegawa, H., van Reit, E., and Kida, H. (2015). Mucosal immunization and adjuvants. Influenza Pathogenesis and Control - Volume II Volume 386 of the series. Curr. Top. Microbiol. Immunol. 386, 371–380. doi: 10.1007/82_2014_402

Hauri, A. M., Armstrong, G. L., and Hutin, Y. J. (2004). The global burden of disease attributable to contaminated injections given in health care settings. Int. J. STD. AIDS. 15, 7–16. doi: 10.1258/095646204322637182

He, X., Liu, W., Shi, M., Yang, Z., Zhang, X., and Gong, P. (2017). Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathway in primary bovine mammary epithelial cells. Ros. Vet. Sci. 112, 7–12. doi: 10.1016/j.rvsc.2016.12.011

Hempel, F., Lau, J., Klingl, A., and Maier, U. G. (2011). Algae as factory: expression of a human antibody and the respective antigen in the diatom Phaeodactylumtricornutum. PLoS ONE 6: e28424. doi: 10.1371/journal.pone.0028424

Hernández, M., Rosas, G., Cervantes, J., Fragoso, G., Rosales-Mendoza, S., and Scutto, E. (2014). Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev. Vaccines 13, 1523–1536. doi: 10.1586/14760858.2013.811188

Hoang, M. H., Ha, N. C., Thum, L. T., Tam, L. T., Anh, H. T. and Thu, N. T. (2014). Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei EX6 during biodiesel producing process. J. Biosci. Bioeng. 118, 632–639. doi: 10.1016/j.jbiosc.2014.05.015

Hogenkamp, A., van Vliet, N., Fear, A. L., van Esch, B. C., Hofman, G. A., Garsen, J., et al. (2011). Dietary fatty acids affect the immune system in male mice sensitized to ovalbumin or vaccinated with influenza. J. Nutr. 141, 698–702. doi: 10.3945/jn.110.1135863

Honda-Okubo, Y., Ong, C. H., and Petrovsky, N. (2015). Advac delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine 33, 4892–4900. doi: 10.1016/j.vaccine.2015.07.051

Horner, M. (2015). Pathogens commensal symbionts, and pathobionts: discovery and functional effects on the host. ILAR J. 56, 159–162. doi: 10.1093/ilar/ilv007

Huang, G., Chen, F., Wei, D., Zhang, X., and Chen, G. (2010). Biodiesel production by microalgal biotechnology. Appl. Energy 87, 38–46. doi: 10.1016/j.apenergy.2009.06.016

Huang, S., Rutkowski, J. M., Snodgrass, R. G., Oono-Moore, K. D., Schneider, D. A., Newman, J. W., et al. (2012). Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 53, 2002–2013. doi: 10.1194/jlr.D029546

Huang, X., Hu, Y., Zhao, X., Lu, Y., Wang, J., Zhang, F., et al. (2008). Sulfated modification can enhance the adjuvant activity of astragulus polysaccharide for ND vaccine. Carbohydr. Polym. 73, 303–308. doi: 10.1016/j.carbpol.2007.11.032
oleaginous microbial source of biodiesel. Braz. J. Microbiol. 45, 403–409. doi: 10.1590/S1517-83822014000200006

Mitome, K., Takeda, S., Oshima, K., Shimazu, Y., and Takeda, M. (2018). Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats. Neurosci. Res. doi: 10.1016/j.neures.2018.02.005. [Epub ahead of print].

Molino, J. V. D., de Carvalho, J. C. M., and Mayfield, S. P. (2018). Comparison of secretory signal peptides for heterologous protein expression in microalgae: expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE 13:e0192433. doi: 10.1371/journal.pone.0192433

Moody, M., Alves, W., Verghees, J., and Khan, F. (2011). Mouse minute virus (MMV) contamination—a case study: detection, root cause determination, and corrective actions. PDA J. Pharm. Sci. Technol. 65, 580–588. doi: 10.5731/pdajst.2011.00824

Moreno-Indias, I., Morales-DelaNuez, A., Hernández-Castellano, L. E., and Rodríguez, J. J. (2012). Laguna HBD Obascanxenacido in the goat kid diet: effects on immune system and meat quality. J. Anim. Sci. 90, 3729–3738. doi: 10.2527/jas.2011-34351

Morita, E., Kumon, Y., Nakahara, T., Kagiwada, S., and Noguchi, T. (2006). Fatty acid-induced induction of Toll-like receptor-4 and other immune responses in cats and dogs. J. Anim. Sci. 84, 53–59. doi: 10.2527/jas.2011-4351

Morris, D. E., Mathison, B. D., Mayfield, S. P., and Cooper, P. D. (2011). Vaccine adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine 32, 401–408. doi: 10.1016/j.vaccine.2013.11.027

Qu, L., Ren, L. J., Li, J., Sun, G. N., Sun, L. N., Ji, X. J., et al. (2013). Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexaenoic acid producing Schizochytrium sp. strains. Appl. Microbiol. Biotechnol. 171, 1865–1876. doi: 10.1007/s00253-013-4598-4

Ramos-Martinez, E. M., Fimognari, L., and Sakuragi, Y. (2017). High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnol. J. 15, 1214–1224. doi: 10.1111/pbi.12710

Ramosingh, C. (2014). New advances in mucosal vaccination. Immunol. Lett. 161, 204–206. doi: 10.1016/j.imlet.2014.01.006

Ramos, M. F., and De Moraes, A. M. (2015). Microalgae for the prevention of cardiovascular disease and stroke. Life Sci. 125, 32–41. doi: 10.1016/j.lfs.2014.09.018

Rasala, B. A., and Mayfield, S. P. (2015). Photosynthetic biomanufacturing green algae: production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth. 123, 227–239. doi: 10.1016/j.1092-1712.2014.01-4

Reddy, L. H., and Couvreur, P. (2009). Squalene: a natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 61, 1412–1426. doi: 10.1016/j.addr.2009.09.005

Reed, S. G., Orr, M. T., and Fox, C. B. (2013). Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608. doi: 10.1038/nm.3409

Ren, L. J., Ji, X. J., Huang, H., Qu, L., Feng, Y., Tong, Q. X., et al. (2010). Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biotechnol. 87, 1469–1465. doi: 10.1007/s00253-010-2639-7

Richard, C., Lewis, E. D., Goruk, S., and Field, C. J. (2015). The content of docosahexaenoic acid in the maternal diet differentially affects the immune response in lactating dams and suckled offspring. Eur. J. Nutr. 55, 2255–2264. doi: 10.1007/s00394-015-1035-6

Roberts, K. (1974). Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Philos. Trans. R. Soc. Lond. B. 268, 129–146. doi: 10.1098/rstb.1974.0021

Rosales-Mendoza, S., and Salazar-González, J. A. (2014). Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev. Vaccines 13, 737–749. doi: 10.1586/14760584.2014.913483

Rueta, D., Fich, C., Cordobilla, B., Domingo, P., and Acosta, G., Albericio, F., et al. (2017). Effect of TLR ligands co-encapsulated with multiepitope antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines. Immunobiology 222, 989–997. doi: 10.1016/j.imbio.2017.06.002

Saade, F., Okubo, Y. H., Trec, S., and Petrovsky, N. (2013). A novel hepatitis B virus containing AdVacTM, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine 31, 1999–2007. doi: 10.1016/j.vaccine.2012.12.077

Sakaguchi, K., Matsuda, T., Kobayashi, T., Ohara, J. I., Hamaguchi, R., Abe, E., et al. (2012). Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. J. Anim. Sci. 90, 3193–3202. doi: 10.2527/jas.2011-40546-x

Schaeffer, A., Gross, P., Buettner, R., Bollheimer, C., Buechler, C., Neumeier, M., et al. (2009). Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signaling with innate immunity. Immunology 126, 233–245. doi: 10.1111/j.1565-2672.2008.02792.x

Scherlier, R. (2011). Delivery of antigens used for vaccination: recent advances and challenges. Ther. Deliv. 2, 1351–1368. doi: 10.4155/tde.11.80

Shinchi, H., Crain, B., Yao, S., Chan, M., Zhang, S. S., Ahmadiveli, A., et al. (2015). Enhancement of the immunostimulatory activity of a TLR7 ligand by conjugation to polysaccharides. Bioconjug. Chem. 26, 1713–1723. doi: 10.1021/acs.bioconjchem.5b00285

Sinyakov, M. S., Dror, M., Lublin-Tennenbaum, T., Salzberg, S., Margel, S., and Avtalion, R. R. (2006). Nano- and microparticles as adjuvants in vaccine design: success and failure is related to host natural antibodies. Vaccine 24, 6534–6541. doi: 10.1016/j.vaccine.2006.02.011

Siriwatthana, N., Kalapahana, N. S., Fletcher, S., Xin, W., Claycombe, K. J., Quignard-Boulange, A., et al. (2012). n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiogenesis and other inflammatory adipokines in part via NF-κB-dependent mechanisms. J. Nutr. Biochem. 23, 1661–1667. doi: 10.1016/j.jnutbio.2011.11.009

Specht, E. A., and Mayfield, S. P. (2014). Algae-based oral recombinant vaccines. Expert Rev. Vaccines 13, 43–53. doi: 10.15252/erv.2013.03.100

Weatherill, A. R., Lee, J. Y., Zhao, L., Lemay, D. G., Youn, H. S., and Hwang, D. H. (2005). Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J. Immunol. 174, 5390–5397. doi: 10.4049/jimmunol.174.9.5390

Weldon, S. M., Mullen, A. C., Lockner, C. E., Hurley, L. A., and Roche, H. M. (2007). Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J. Nutr. Biochem. 18, 250–258. doi: 10.1016/j.jnutbio.2006.04.003

West, Y. M., Mu, L., and Shi, Y. (2016). Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol. Med. 8, 1120–1133. doi: 10.15252/emmm.201606593

Whelan, J., Gowdy, K. M., and Shaikh, S. R. (2016). n-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: implications for the immune response to infections. Eur. J. Pharmocol. 785, 10–17. doi: 10.1016/j.ejphar.2015.03.100

Wildt, S., and Gerngross, T. U. (2005). The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol. 3, 119–128. doi: 10.1038/nrmicro1087

Wilkh, J., McNeil, S. E., Kirby, D. J., and Perrie, Y. (2011). Formulation design considerations for oral vaccines. Ther. Deliv. 2, 1141–1164. doi: 10.4155/tde.11.82

Xue, H., Wan, M., Song, D., Li, Y., and Li, J. (2006). Eicosapentaenoic acid and docosahexaenoic acid modulate mitogen-activated protein kinase activity in endothelium. Viscum Pharmacol. 44, 434–439. doi: 10.1016/j.vph.2006.02.005

Yan, J., Cheng, R., Lin, X., You, S., Li, K., Rong, H., et al. (2013). Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium sp. Appl. Microbiol. Biotechnol. 97, 1933–1939. doi: 10.1007/s00253-012-4481-6

Yang, L., and Zhang, L. M. (2009). Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 76, 349–361. doi: 10.1016/j.carbpol.2008.12.015

Yao, L., Gerde, J. A., Lee, S. L., Wang, T., and Harrata, K. A. (2015). Microalgae lipid characterization. J. Agric. Food Chem. 63, 1773–1787. doi: 10.1021/jf5015050

Yokohama, R., and Honda, D. (2007). Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytridae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium. Gen. Nov. Mycosci. 48, 199–211. doi: 10.1016/j.snb.2006.08.025

Yue, C. J., and Jiang, Y. (2009). Impact of methyl jasmonate on squalene biosynthesis in microalgae Schizochytrium mangrovei. Process Biochem. 44, 923–927. doi: 10.1016/j.procbio.2009.03.016

Yuki, Y., and Kiyono, H. (2009). Mucosal vaccines: novel advances in World J. Immunol. 21, 63–77. doi: 10.15252/wji.2014.21.1.030067

Zhou, B. R., Zhang, J. A., Zhang, Q., Permatasari, F., Xu, Y., Wu, D., et al. (2013). Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium sp. Appl. Microbiol. Biotechnol. 97, 1933–1939. doi: 10.1007/s00253-012-4481-6

Yokoyama, R., and Honda, D. (2007). Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytridae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium. Gen. Nov. Mycosci. 48, 199–211. doi: 10.1016/j.snb.2006.08.025

Zhu, B. R., Zhang, J. A., Zhang, Q., Permatasari, F., Xu, Y., Wu, D., et al. (2013). Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes. Mediators Inflamm. 46, 823–830.