The MC@NLO 2.0 Event Generator*

Stefano Frixione

INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
E-mail: Stefano.Frixione@cern.ch

Bryan R. Webber

Theory Division, CERN, 1211 Geneva 23, Switzerland and
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, U.K.
E-mail: webber@hep.phy.cam.ac.uk

ABSTRACT: This is the user’s manual of MC@NLO 2.0. This package is a practical implementation, based upon the HERWIG event generator, of the MC@NLO formalism, which allows one to incorporate NLO QCD matrix elements consistently into a parton shower framework. This document is self-contained, but we emphasise the main differences with respect to version 1.0.

KEYWORDS: QCD, Monte Carlo, NLO Computations, Resummation, Hadronic Colliders.

*Work supported in part by the UK Particle Physics and Astronomy Research Council and by the EU Fourth Framework Programme ‘Training and Mobility of Researchers’, Network ‘Quantum Chromodynamics and the Deep Structure of Elementary Particles’, contract FMRX-CT98-0194 (DG 12 - MIHT).
1. Generalities

In this documentation file, we briefly describe how to run the MC@NLO, implemented according to the formalism introduced in ref. [1]. The production processes now available are listed in table 1. The process codes IPR0C will be explained below. H1,2 represent hadrons (in practice, p or \bar{p}). The treatment of vector boson pair production within MC@NLO has been described in ref. [1], that of heavy quark pair production in ref. [2]. The NLO matrix elements have been taken from refs. [3, 4, 5, 6].

This documentation refers to MC@NLO version 2.0, which supersedes version 1.0 described in ref. [7].
1.1 Mode of operation

In the case of standard MC, a hard kinematic configuration is generated on a event-by-event basis, and it is subsequently showered and hadronized. In the case of MC@NLO, all of the hard kinematic configurations are generated in advance, and stored in a file (which we call event file – see sect. 3.1); the event file is then read by HERWIG, which showers and hadronizes each hard configuration. In the current version 2.0, the events are handled by the “Les Houches” generic user process interface [8] (see ref. [2] for more details). Therefore, in the MC@NLO the reading of a hard configuration from the event file is equivalent to the generation of such a configuration in the standard MC.

The signal to HERWIG that configurations should be read from an event file using the Les Houches interface is a negative value of the process code IPR0C; this accounts for the negative values in table 1. In the case of heavy quark production, the codes are simply the negative of those for the corresponding standard HERWIG MC processes. Where possible, this convention will be adopted for additional MC@NLO processes. In the case of gauge boson production, the codes are the negative of those adopted in MC@NLO 1.0 (for which the Les Houches interface was not yet available), rather than those of standard HERWIG. Consistently with what happens in standard HERWIG, by subtracting 10000 from IPR0C one generates the same processes as in table 1, but eliminates the underlying event.

Apart from these differences, MC@NLO and HERWIG behave in exactly the same way. Thus, the available user’s analysis routines can be used without any modification in the case of MC@NLO. One should recall, however, that MC@NLO always generates some events with negative weights (see refs. [1, 2]); therefore, the correct distributions are obtained by summing weights with their signs (i.e., the absolute values of the weights must NOT be used when filling the histograms).

With such a structure, it is natural to create two separate executables, which we improperly denote as NLO and MC. The former has the sole scope of creating the event file; the latter is just HERWIG, augmented by the capability of reading the event file.
1.2 Package files

The package consists of the following files:

- **Shell utilities**
 - MCatNLO.Script
 - MCatNLO.inputs
 - Makefile

- **Utility codes**
 - alpha.f
 - dummies.f
 - linux.f
 - mcatnlo_date.f
 - mcatnlo_hbook.f
 - mcatnlo_int.f
 - mcatnlo_libofpdf.f
 - mcatnlo_mlmtopdf.f
 - mcatnlo_pdfptomlm.f
 - mcatnlo_str.f
 - mcatnlo_uti.f
 - mcatnlo_uxdate.c
 - sun.f
 - trapfpe.c

- **General HERWIG routines**
 - mcatnlo_hwdriver.f
 - mcatnlo_hwlhin.f

- **Process-specific codes**
 - mcatnlo_hwanbtm.f
 - mcatnlo_hwantop.f
 - mcatnlo_hwanvbp.f
 - mcatnlo_qqmain.f
 - mcatnlo_qqxsec.f
 - mcatnlo_vbmain.f
 - mcatnlo_vbxsec.f
 - hvqcbblks.h

These files can be downloaded from the Web page:

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

The files `mcatnlo_hwanzzz.f`, which appear in the list of the process-specific codes, are sample HERWIG analysis routines. They are provided here to give the user a
ready-to-run package, but they should be replaced with appropriate codes according to the user’s needs.

In addition to the files listed above, the user will need a version of the HERWIG code [9, 10, 11]. As stressed in ref. [1], for the MC@NLO we do not modify the existing (LL) shower algorithm. However, since MC@NLO 2.0 makes use of the Les Houches interface, first implemented in HERWIG 6.5, the version must be 6.500 or higher. On most systems, users will need to delete the dummy subroutines UPEVNT, UPINIT, PDFSET and STRUCTM from the standard HERWIG package, to permit linkage of the corresponding routines from the MC@NLO package.

1.3 Working environment

We have written a number of shell scripts and a Makefile (all listed under Shell utilities above) which will simplify the use of the package considerably. In order to use them, the computing system must support bash shell, and gmake. Should they be unavailable on the user’s computing system, the compilation and running of our MC@NLO requires more detailed instructions; in this case, we refer the reader to app. B. This appendix will serve also as a reference for a more advanced use of the package.

1.4 Source and running directories

We assume that all the files of the package sit in the same directory, which we call the source directory. When creating the executable, our shell scripts determine the type of operating system, and create a subdirectory of the source directory, which we call the running directory, whose name is Alpha, Sun, or Linux, depending on the operating system. If the operating system is not known by our scripts, the name of the working directory is Run. The running directory contains all the object files and executable files, and in general all the files produced by the MC@NLO while running. It must also contain the relevant grid files (see sect. 2.1), or links to them, if the library of parton densities provided with the MC@NLO package is used.

2. Prior to running

Before running the code, the user needs to edit the following files:

```
mcatnlo_hwanxxx.f
mcatnlo_hwdriver.f
mcatnlo_hwlhin.f
```

We do not assume that the user will adopt the latest release of HERWIG (although, as explained above, it must be version 6.500 or higher). For this reason, the files mcatnlo_hwdriver.f and mcatnlo_hwlhin.f must be edited, in order to modify the INCLUDE HERWIGXX.INC command to correspond to the version of HERWIG
the user is going to adopt. `mcatnlo_hwdriver.f` contains a set of read statements, which are necessary for the MC to get the input parameters (see sect. 3 for the input procedure); these read statements must not be modified or eliminated. Also, `mcatnlo_hwdriver.f` calls the HERWIG routines which perform showering, hadronization, decays (see sect. 3.2 for more details on this issue), and so forth; the user can freely modify this part, as customary in MC runs. Finally, the sample codes `mcatnlo_hwanxxx.f` contain analysis-related routines: these files must be replaced by files which contain the user’s analysis routines. We point out that, in version 2.0, the `Makefile` need not be edited any longer, since the corresponding operations are now performed by setting script variables (see sect. 4).

2.1 Parton densities

Since the knowledge of the parton densities (PDF) is necessary in order to get the physical cross section, a PDF library must be linked. The possibility exists to link the CERNLIB PDF library (PDFLIB); however, we also provide a self-contained PDF library with this package, which is faster than PDFLIB. The user may link either PDF library; all that is necessary is to set the variable `PDFLIBRARY` (in the file `MCatNLO.inputs`) equal to `THISLIB` if one wants to link to our PDF library, and equal to `PDFLIB` if one wants to link to PDFLIB. Our PDF library collects the original codes, written by the authors of the PDF fits; as such, for most of the densities it needs to read the files which contain the grids that initialize the PDFs. These files, which can be also downloaded from the MC@NLO web page, must either be copied into the running directory, or defined in the running directory as logical links to the physical files (by using `ln -sn`).

As stressed before, consistent inputs must be given to the NLO and MC codes. However, in ref. [1] we found that the dependence upon the PDFs used by the MC is rather weak. So one may want to run the NLO and MC adopting a regular NLL-evolved set in the former case, and the default HERWIG set in the latter (the advantage is that this option reduces the amount of running time of the MC). In order to do so, the user must set the variable `HERPDF` equal to `DEFAULT` in the file `MCatNLO.inputs`; setting `HERPDF=EXTPDF` will force the MC to use the same PDF set as the NLO code.

Regardless of the PDFs used in the MC run, users must delete the dummy PDFLIB routines `PDFSET` and `STRUCTM` from HERWIG, as explained earlier.

In MC@NLO 2.0, the PDF library LHAPDF is not supported.

3. Running

It is straightforward to run the MC@NLO. First, edit

```
MCatNLO.inputs
```
and write there all the input parameters (for the complete list of the input parameters, see sect. 4). As the last line of the file \texttt{MCatNLO.inputs}, write

\begin{verbatim}
runMCatNLO
\end{verbatim}

Finally, execute \texttt{MCatNLO.inputs} from the (bash) shell. This procedure will create the NLO and MC executables, and run them using the inputs given in \texttt{MCatNLO.inputs}, which guarantees that the parameters used in the NLO and MC runs are identical. Should the user only need to create the executables without running them, or to run the NLO or the MC only, he/she should replace the call to \texttt{runMCatNLO} in the last line of \texttt{MCatNLO.inputs} by calls to

\begin{verbatim}
compileNLO
compileMC
runNLO
runMC
\end{verbatim}

which have obvious meanings. We point out that the command \texttt{runMC} may be used with \texttt{IPROC}=1705 or 1706 to generate $b\bar{b}$ or $t\bar{t}$ events with standard HERWIG.

We stress that the input parameters are not solely related to physics (masses, CM energy, and so on); there are a few of them which control other things, such as the number of events generated. These must also be set by the user, according to his/her needs: see sect. 4.

Two such variables are \texttt{HERWIGVER} and \texttt{HWUTI}, which have been moved in version 2.0 from the \texttt{Makefile} to \texttt{MCatNLO.inputs}. The former variable must be set equal to the object file name of the version of HERWIG currently adopted (matching the one whose common blocks are included in the files mentioned in sect. 2). The variable \texttt{HWUTI} must be set equal to the list of object files that the user needs in the analysis routines.

If the shell scripts are not used to run the codes, the inputs are given to the NLO or MC codes during an interactive talk-to phase; the complete sets of inputs for our codes are reported in app. B.2.

3.1 Event file

The NLO code creates the event file. In order to do so, it goes through two steps; first it integrates the cross sections (integration step), and then, using the information gathered in the integration step, produces a set of events (event generation step).

The event generation step necessarily follows the integration step; however, for each integration step one can have an arbitrary number of event generation steps, i.e., an arbitrary number of event files. This is useful in the case in which the statistics accumulated with a given event file is not sufficient.

Suppose the user wants to create an event file; editing \texttt{MCatNLO.inputs}, the user sets \texttt{BASES=ON}, to enable the integration step, sets the parameter \texttt{NEVENTS} equal to the number of events wanted on tape, and runs the code; the information on the integration step (unreadable to the user, but needed by the code in the event
generation step) is written on files whose name begin with FPREFIX, a string the user sets in MCatNLO.inputs; these files (which we denote as data files) have extensions .data. The name of the event file is EVPREFIX.events, where EVPREFIX is again a string set by the user.

Now suppose the user wants to create another event file, to increase the statistics. The user simply sets BASES=OFF, since the integration step is not necessary any longer (however, the data files must not be removed: the information stored there is still used by the NLO code); changes the string EVPREFIX (failure to do so overwrites the existing event file), while keeping FPREFIX at the same value as before; and changes the value of RNDEVSEED (the random number seed used in the event generation step; failure to do so results in an event file identical to the previous one); the number NEVENTS generated may or may not be equal to the one chosen in generating the former event file(s).

We point out that data and event files may be very large. If the user wants to store them in a scratch area, this can be done by setting the script variable SCRTCH equal to the physical address of the scratch area (see sect. 3.3).

3.2 Decays

MC@NLO is intended primarily for the study of NLO corrections to production cross sections and distributions. NLO corrections to the decays of produced particles are not included. In the current version, spin correlations in decays are also neglected, although these will be included in future versions where possible. This means that at present quantities sensitive to the polarisation of produced particles are not given correctly even to leading order. For such quantities, it may be preferable to use the standard HERWIG MC, which does include spin correlations.

Particular decay modes of gauge bosons may be forced in MC@NLO in the same way as in standard HERWIG, using the MODBOS variables – see sect. 3.4 of ref. [10]. However, top decays cannot be forced in this way because the decay is treated as a three-body process: the W^\pm boson entry in HEPEVT is for information only. Instead, the top branching ratios can be altered using the HWMODK subroutine – see sect. 7 of ref. [10]. This is done separately for the t and \bar{t}. For example, CALL HWMODK(6,1.D0,100,12,-11,5,0,0) forces the decay $t \rightarrow \nu_e e^+ b$, while leaving \bar{t} decays unaffected. Note that the order of the decay products is important for the decay matrix element (NME = 100) to be applied correctly. The relevant statements should be inserted in the HERWIG main program (corresponding to mcatnlo_hwdriver.f in this package) after the statement CALL HWUINC and before the loop over events. A separate run with CALL HWMODK(-6,1.D0,100,-12,11,-5,0,0) should be performed if one wishes to symmetrize the forcing of t and \bar{t} decays, since calls to HWMODK from within the event loop do not produce the desired result.
3.3 Results

As in the case of standard HER WIG the form of the results will be determined by the user’s analysis routines. However, in addition to any files written by the user’s analysis routines, the MC@NLO writes the following files:

♦ FPREFIXNLOinput: the input file for the NLO executable, created according to the set of input parameters defined in MCatNLO.inputs (where the user also sets the string FPREFIX). See table 2.
♦ FPREFIXNLO.log: the log file relevant to the NLO run.
♦ FPREFIXxxx.data: xxx can assume several different values. These are the data files created by the NLO code. They can be removed only if no further event generation step is foreseen with the current choice of parameters.
♦ FPREFIXMCinput: analogous to FPREFIXNLOinput, but for the MC executable. See table 4.
♦ FPREFIXMC.log: analogous to FPREFIXNLO.log, but for the MC run.
♦ EVPREFIX.events: the event file, where EVPREFIX is the string set by the user in MCatNLO.inputs.
♦ EVPREFIXxxx.events: xxx can assume several different values. These files are temporary event files, which are used by the NLO code, and eventually removed by the shell scripts. They MUST NOT be removed by the user during the run (the program will crash or give meaningless results).

By default, all the files produced by the MC@NLO are written in the running directory. However, if the variable SCRTCH (to be set in MCatNLO.inputs) is not blank, the data and event files will be written in the directory whose address is stored in SCRTCH (such a directory is not created by the scripts, and must already exist at runtime).

4. Script variables

In the following, we list all the variables appearing in MCatNLO.inputs; these can be changed by the user to suit his/her needs. This must be done by editing MCatNLO.inputs.

ECM The CM energy of the colliding particles.

FREN The ratio between the renormalization scale, and a reference mass scale.

FFACT As FREN, for the factorization scale.

FRENMC As FREN; enters the MC-subtraction terms Σ_{MC} (see ref [1]).

FFACTMC As FFACT; enters the MC-subtraction terms Σ_{MC} (see ref [1]).

xMASS The mass (in GeV) of the particle x, with x=W,Z,U,D,S,C,B,G.
HVQMASS The mass (in GeV) of the bottom or top quark, when IPROC = -1705 or -1706 respectively. In the former case, HVQMASS must coincide with BMASS.

IPROC Process number that identifies heavy particles in the final states: see table 1 for valid entries.

PARTn The type of the incoming particle #n, with n=1,2. HERWIG naming conventions are used (P, PBAR, N, NBAR).

PDFGROUP The name of the group fitting the parton densities used; the labeling conventions of PDFLIB are adopted.

PDFSET The number of the parton density set; according to PDFLIB, the pair (PDFGROUP, PDFSET) identifies the densities.

LAMBDAFIVE The value of Λ_{QCD}, for five flavours and in the \overline{MS} scheme.

SCHEMEOFPDF The subtraction scheme in which the parton densities are defined.

FPREFIX Our integration routine creates files with name beginning by the string FPREFIX. These files are not directly accessed by the user; for more details, see sect. 3.1.

EVPREFIX The name of the event file begins with this string; for more details, see sect. 3.1.

EXEPREFIX The name of the NLO and MC executables begin with this string; this is useful in the case of simultaneous runs.

NEVENTS The number of events stored in the event file, eventually processed by HERWIG.

WGTTYPE Valid entries are 0 and 1. When set to 0, the weights are ±1. When set to 1, the weights are $\pm w$, with w a constant such that the sum of the weights gives the total NLO rate.

RNDEVSEED This is the seed for the random number generation is the event generation step; must be changed in order to obtain statistically-equivalent but different event files.

BASES Controls the integration step; valid entries are ON and OFF. At least one run with BASES=ON must be performed.

PDFLIBRARY Valid entries are PDFLIB and THISLIB. In the former case, the local version of PDFLIB is used to compute the parton densities, whereas in the latter case the densities are obtained from our self-contained faster package.

HERPDF If set to DEFAULT, HERWIG uses its internal PDF set (controlled by NSTRU), regardless of the densities adopted at the NLO level. If set to EXTPDF, HERWIG uses the same PDFs as the NLO code.
HWPATH The physical address of the directory where the user’s preferred version of HERWIG is stored.

SCRATCH The physical address of the directory where the user wants to store the data and event files. If left blank, these files are stored in the running directory.

HWUTI This variable must be set equal to a list of object files, needed by the analysis routines of the user (for example, HWUTI=\texttt{obj1.o obj2.o obj3.o} is a valid assignment).

HERWIGVER This variable must to be set equal to the name of the object file corresponding to the version of HERWIG linked to the package (for example, HERWIGVER=\texttt{herwig65.o} is a valid assignment).

Acknowledgement

Many thanks to Paolo Nason for contributions to the heavy quark code and valuable discussions on all aspects of the MC@NLO project.

Appendices

A. From MC@NLO version 1.0 to version 2.0

In this appendix we list the changes that occurred in the package, which motivate the upgrade in version number.

- The Les Houches generic user process interface has been adopted.
- As a result, the convention for process codes has been changed: MC@NLO process codes IPROC are negative.
- The code \texttt{mcatnlo_hwhvvj.f}, which was specific to vector boson pair production in version 1.0, has been replaced by \texttt{mcatnlo_hwlhin.f}, which reads the event file according to the Les Houches prescription, and works for all the production processes implemented.
- The \texttt{Makefile} need not be edited, since the variables HERWIGVER and HWUTI have been moved to \texttt{MCatNLO.inputs} (where they must be set by the user).
- A code \texttt{mcatnlo_hbook.f} has been added to the list of utility codes. It contains a simplified version (written by M. Mangano) of HBOOK, and it is only used by the sample analysis routines \texttt{mcatnlo_hwanxxx.f}. As such, the user will not need it when linking to a self-contained analysis code.

We also remind the reader that the HERWIG version must be 6.5 or higher since the Les Houches interface is used.
B. Running the package without the shell scripts

In this appendix, we describe the actions that the user needs to take in order to run the package without using the shell scripts, and the Makefile. Examples are given for vector boson pair production, but only trivial modifications are necessary in order to treat heavy quark pair production; they are listed below.

B.1 Creating the executables

An MC@NLO run requires the creation of two executables, for the NLO and MC codes respectively. The files to link depend on whether one uses PDFLIB, or the PDF library provided with this package; we list them below:

- **NLO without PDFLIB:** `mcatnlo_vbmain.o mcatnlo_vbxsec.o mcatnlo_date.o mcatnlo_int.o mcatnlo_uxdate.o mcatnlo_uti.o mcatnlo_str.o mcatnlo_pdftomlm.o mcatnlo_libofpdf.o dummies.o SYSFILE`

- **NLO with PDFLIB:** `mcatnlo_vbmain.o mcatnlo_vbxsec.o mcatnlo_date.o mcatnlo_int.o mcatnlo_uxdate.o mcatnlo_uti.o mcatnlo_str.o mcatnlo_mlmtopdf.o dummies.o SYSFILE CERNLIB`

- **MC without PDFLIB:** `mcatnlo_hwdriver.o mcatnlo_hwlhin.o mcatnlo_hwanvbp.o mcatnlo_hbook.o mcatnlo_str.o mcatnlo_pdftomlm.o mcatnlo_libofpdf.o dummies.o HWUTI HERWIGVER`

- **MC with PDFLIB:** `mcatnlo_hwdriver.o mcatnlo_hwlhin.o mcatnlo_hwanvbp.o mcatnlo_hbook.o mcatnlo_str.o mcatnlo_mlmtopdf.o dummies.o HWUTI HERWIGVER CERNLIB`

In the case of heavy quark pair production, the files `mcatnlo_vbmain.o` and `mcatnlo_vbxsec.o` are replaced by `mcatnlo_qqmain.o` and `mcatnlo_qqxsec.o` respectively in the NLO executable, and the HERWIG analysis routines `mcatnlo_hwanvbp.o` by either `mcatnlo_hwanbtm.o` or `mcatnlo_hwantop.o` in the MC executable. The variable SYSFILE must be set either equal to `alpha.o`, or to `linux.o`, or to `sun.o`, according to the architecture of the machine on which the run is performed. For any other architecture, the user should provide a file corresponding to `alpha.f` etc., which he/she will easily obtain by modifying `alpha.f`. The variables HWUTI and HERWIGVER have been described in sect. 4. Finally, CERNLIB must be set in order to link the local version of CERN PDFLIB. In order to create the object files eventually linked, static compilation is always recommended (for example, `g77 -Wall -fno-automatic` on Linux).
B.2 The input files

In this appendix, we describe the inputs to be given to the NLO and MC executables in the case of vector boson pair production. The case of heavy quark pair production is completely analogous. When the shell scripts are used to run the MC@NLO, two files are created, FPREFIXNLOinput and FPREFIXMCinput, which are read by the NLO and MC executable respectively. We start by considering the inputs for the NLO executable, presented in table 2. The variables whose name is in uppercase

Variable	Default value
zi	0.1
nitn1, nitn2	10/0 (BASES=ON/OFF)

Table 2: Sample input file for the NLO code (for vector boson pair production). FPREFIX and EVPREFIX must be understood with SCRTCH in front (see sect. 4).

characters have been described in sect. 4. The other variables are assigned by the shell script. Their default values are given in table 3. Users who run the package without the script should use the values given in table 3. The variable zi controls, to a certain extent, the number of negative-weight events generated by the MC@NLO
(see ref. [1]). Therefore, the user may want to tune this parameter in order to reduce as much as possible the number of negative-weight events. We stress that the MC code will not change this number; thus, the tuning can (and must) be done only by running the NLO code. The variables \texttt{nitn} control the integration step (see sect. 3.1), which can be skipped by setting \texttt{nitn} = 0. If one needs to perform the integration step, we suggest setting these variables as indicated in table 3.

```
'EVPREFIX.events' ! event file
NEVENTS ! number of events
pdftype ! 0-&gt;Herwig PDFs, 1 otherwise
'PART1' 'PART2' ! hadron types
beammom beammom ! beam momenta
IPROC ! -2850/60/70/80=WW/ZZ/ZW+/ZW-
'PDFGROUP' ! PDF group (1)
PDFSET ! PDF id number (1)
'PDFGROUP' ! PDF group (2)
PDFSET ! PDF id number (2)
LAMBDAFIVE ! Lambda_5, <0 for default
WMASS WMASS ZMASS ! M_W+, M_W-, M_Z
UMASS DMASS SMASS CMASS BMASS GMASS ! quark and gluon masses
```

Variable	Default value
esctype	0
pdftype	0/1 (HERPDF=DEFAULT/EXTPDF)
beammom	EMC/2

| Table 4: Sample input file for the MC code (for vector boson pair production), resulting from setting HERPDF=EXTPDF, which implies \texttt{pdftype}=1. Setting HERPDF=DEFAULT results in an analogous file, with \texttt{pdftype}=0, and without the lines concerning PDFGROUP and PDFSET. EVPREFIX must be understood with SCRTCH in front (see sect. 4). The negative sign of IPROC tells HERWIG to use Les Houches interface routines. |

We now turn to the inputs for the MC executable, presented in table 4. The variables whose names are in uppercase characters have been described in sect. 4. The other variables are assigned by the shell script. Their default values are given in table 5. The user can freely change the values of esctype and pdftype; on the

Variable	Default value
esctype	0
pdftype	0/1 (HERPDF=DEFAULT/EXTPDF)
beammom	EMC/2

| Table 5: Default values for script-generated variables in Mcinput. |
other hand, the value of \texttt{beammom} must always be equal to half of the hadronic CM energy.

In the case of heavy quark production, the MC executable can be run with the corresponding positive input process codes \texttt{IPROC} = 1705 or 1706, to generate a standard HERWIG run for comparison purposes. Then the input event file will not be read: instead, parton configurations will be generated by HERWIG according to the LO matrix elements.

References

[1] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations,” JHEP 0206 (2002) 029 [hep-ph/0204244].

[2] S. Frixione, P. Nason and B. R. Webber, “Matching NLO QCD and parton showers in heavy flavour production,” arXiv:hep-ph/0305252.

[3] B. Mele, P. Nason and G. Ridolfi, “QCD Radiative Corrections To Z Boson Pair Production In Hadronic Collisions,” Nucl. Phys. B 357 (1991) 409.

[4] S. Frixione, P. Nason and G. Ridolfi, “Strong corrections to W Z production at hadron colliders,” Nucl. Phys. B 383 (1992) 3.

[5] S. Frixione, “A Next-to-leading order calculation of the cross-section for the production of W+ W- pairs in hadronic collisions,” Nucl. Phys. B 410 (1993) 280.

[6] M. L. Mangano, P. Nason and G. Ridolfi, “Heavy Quark Correlations In Hadron Collisions At Next-To-Leading Order,” Nucl. Phys. B 373 (1992) 295.

[7] S. Frixione and B. R. Webber, “The MC@NLO event generator,” arXiv:hep-ph/0207182.

[8] E. Boos et al., “Generic user process interface for event generators,” arXiv:hep-ph/0109068.

[9] G. Marchesini, B. R. Webber, G. Abbiendi, I. G. Knowles, M. H. Seymour and L. Stanco, “HERWIG: A Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 - April 1991,” Comput. Phys. Commun. 67 (1992) 465.

[10] G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour and B.R. Webber, “HERWIG 6: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes),” JHEP 0101 (2001) 010 [hep-ph/0011363].

[11] G. Corcella et al., “HERWIG 6.5 release note,” arXiv:hep-ph/0210213.