A volume inequality for quantum Fisher information and the uncertainty principle. (English)

Zbl 1133.81008

J. Stat. Phys. 130, No. 3, 545-559 (2008).

Summary: Let A_1, \ldots, A_N be complex self-adjoint matrices and let ρ be a density matrix. The Robertson uncertainty principle

$$\det\left\{\text{Cov}(A_h, A_j)\right\} \geq \det\left\{-\frac{i}{2} \text{Tr}(\rho [A_h, A_j])\right\}$$

gives a bound for the quantum generalized covariance in terms of the commutators $[A_h, A_j]$. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case $N = 2m + 1$.

Let f be an arbitrary normalized symmetric operator monotone function and let $\langle \cdot, \cdot \rangle_{\rho, f}$ be the associated quantum Fisher information. Based on previous results of several authors, we propose here as a conjecture the inequality

$$\det\left\{\text{Cov}(A_h, A_j)\right\} \geq \det\left\{\frac{f(0)}{2} \langle i[\rho, A_h], i[\rho, A_j] \rangle_{\rho, f}\right\}$$

whose validity would give a non-trivial bound for any $N \in \mathbb{N}$ using the commutators $i[\rho, A_h]$.

MSC:

81P68 Quantum computation
94A17 Measures of information, entropy

Keywords:

Generalized variance; Uncertainty principle; Operator monotone functions; Matrix means; Quantum Fisher information

Full Text: DOI arXiv

References:

[1] Čencov, N.N.: Statistical Decision Rules and Optimal Inference. American Mathematical Society, Providence (1982). Translation from the Russian edited by Lev J. Leifman
[2] Daoud, M.: Representations and properties of generalized A r statistics, coherent states and Robertson uncertainty relations. J. Phys. A: Math. Gen. 39, 889–901 (2006) · Zbl 1087.81030 · doi:10.1088/0305-4470/39/4/010
[3] Dodonov, A.V., Dodonov, V.V., Mizrahi, S.S.: Separability dynamics of two-mode Gaussian states in parametric conversion and amplification. J. Phys. A: Math. Gen. 38, 683–696 (2005) · Zbl 1063.81026 · doi:10.1088/0305-4470/38/3/008
[4] Gibilisco, P., Isola, T.: A characterization of Wigner-Yanase skew information among statistically monotone metrics. Infin. Dimens. Anal. Quantum Probab. 4(4), 553–557 (2001) · Zbl 1041.81011 · doi:10.1142/S0219025701000644
[5] Gibilisco, P., Isola, T.: Wigner-Yanase skew information on quantum state space: the geometric approach. J. Math. Phys. 44(9), 3752–3762 (2003) · Zbl 1062.81019 · doi:10.1063/1.1598279
[6] Gibilisco, P., Isola, T.: On the characterization of paired monotone metrics. Ann. Inst. Stat. Math. 56, 369–381 (2004) · Zbl 1071.81021 · doi:10.1007/BF02530551
[7] Gibilisco, P., Isola, T.: On the monotonicity of scalar curvature in classical and quantum information geometry. J. Math. Phys. 46(2), 023501–14 (2005) · Zbl 1076.81006 · doi:10.1063/1.1834693
[8] Gibilisco, P., Isola, T.: Uncertainty principle and quantum Fisher information. Ann. Inst. Stat. Math. 59, 147–159 (2007) · Zbl 1146.81012 · doi:10.1007/s10463-006-0103-3
[9] Gibilisco, P., Imparato, D., Isola, T.: Uncertainty principle and quantum Fisher information II. J. Math. Phys. 48, 072109 (2007) · Zbl 1144.81349 · doi:10.1063/1.2748210
[10] Gibilisco, P., Imparato, D., Isola, T.: Inequality for quantum Fisher information (2007). arXiv:math-ph/0702058 · Zbl 1144.81349
[11] Hansen, F.: Extension of Lieb’s concavity theorem. J. Stat. Phys. 124(1), 87–101 (2006) · Zbl 1157.47305 · doi:10.1007/s10955-
[12] Hansen, F.: Metric adjusted skew information (2006). arXiv:math-ph/0607049v3 · Zbl 1205.94058
[13] Heisenberg, W.: Über den Anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927) · Zbl 53.0853.05 · doi:10.1007/BF01397280
[14] Jarvis, P.D., Morgan, S.O.: Born reciprocity and the granularity of spacetime. Found. Phys. Lett. 19, 501 (2006) · Zbl 1111.81077 · doi:10.1007/s10702-006-1006-5
[15] Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326–352 (1927) · Zbl 53.0853.02 · doi:10.1007/BF01391200
[16] Kosaki, H.: Matrix trace inequality related to uncertainty principle. Int. J. Math. 16(6), 629–645 (2005) · Zbl 1083.15033 · doi:10.1142/S0129167X0500303X
[17] Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246(3), 205–224 (1979/80) · Zbl 0421.47011 · doi:10.1007/BF01371042
[18] Luo, S.: Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53, 243–251 (2000) · Zbl 1083.15033 · doi:10.1023/A:1011080128419
[19] Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003) · doi:10.1103/PhysRevLett.91.180403
[20] Luo, S., Luo, Y.: Correlation and entanglement. Acta Math. Appl. Sin. 19(4), 581–598 (2003) · Zbl 1073.81539
[21] Luo, S., Zhang, Z.: An informational characterization of Schrödinger’s uncertainty relations. J. Stat. Phys. 114(5–6), 1557–1576 (2004) · Zbl 1059.81024 · doi:10.1023/B:JOSS.0000013971.75667.c8
[22] Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996) · Zbl 0856.15023 · doi:10.1016/0024-3795(94)00211-8
[23] Petz, D.: Geometry of quantum states. J. Math. Phys. 37, 2662–2673 (1996) · Zbl 0868.60098 · doi:10.1063/1.531535
[24] Petz, D., Tenesi, R.: Means of positive numbers and matrices. SIAM J. Matrix Anal. Appl. 27(3), 712–720 (2005) (electronic) · Zbl 1108.47020 · doi:10.1137/050621906
[25] Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 573–574 (1929) · doi:10.1103/PhysRev.34.163
[26] Robertson, H.P.: An indeterminacy relation for several observables and its classical interpretation. Phys. Rev. 46, 794–801 (1934) · Zbl 1009.81501 · doi:10.1103/PhysRev.46.794
[27] Schrödinger, E.: About Heisenberg uncertainty relation (original annotation by Angelow, A. and Batoni, M.C.). Bulg. J. Phys. 26(5–6), 193–203 (1999). Translation of Proc. Prussian Acad. Sci. Phys. Math. Sect. 19, 296–303 (1930)
[28] Trifonov, D.A.: Generalized intelligent states and squeezing. J. Math. Phys. 35(5), 2297–2308 (1994) · Zbl 0824.47056 · doi:10.1063/1.530553
[29] Trifonov, D.A.: Generalized intelligent states and squeezing. J. Math. Phys. 35(5), 2297–2308 (1994) · Zbl 0824.47056 · doi:10.1063/1.530553
[30] Trifonov, D.A.: State extended uncertainty relations. J. Phys. A: Math. Gen. 33, 299–304 (2000) · Zbl 1009.81501 · doi:10.1088/0305-4470/33/32/102
[31] Trifonov, D.A.: Generalizations of Heisenberg uncertainty relation. Eur. Phys. J. B 29, 349–353 (2002) · doi:10.1140/epjb/e2002-00315-6
[32] Yanagi, K., Furuichi, S., Kuriyama, K.: A generalized skew information and uncertainty relation. IEEE Trans. Inf. Theory 51(12), 4401–4404 (2005) · Zbl 1171.94330 · doi:10.1109/TIT.2005.858871

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.