Supplementary Information

Direct metal-carbon bonding in symmetric bis(C-H) agostic Nickel(I) complexes
Weiying He1,2, D. Dawson Beattie2, Hao Zhou1,2, Eric Bowes2, Laurel L Schafer2, Jennifer A Love1,2, and Pierre Kennepohl1,2*
1. Department of Chemistry, University of Calgary, 2500 University Drive NW Calgary Alberta T2N 1N4, Canada.
2. Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
pierre.kennepohl@ucalgary

Contents
Supplementary Methods ... 2
 General Considerations ... 2
 Synthesis and Isolation of 3 ... 3
 Formation of 4 .. 4
Supplementary Data ... 5
 Ni K edge X-ray Absorption Spectroscopy .. 5
 TD-DFT of Ni K edge XAS .. 6
 General Considerations of Ni K edge XAS Simulation ... 27
 EXAFS Data Analysis of Sample In solution. ... 31
 Ni L edge X-ray Absorbance Spectroscopy ... 34
 TD-DFT calculation of Ni L edge XAS ... 36
Density Functional Calculation .. 39
 General Consideration ... 39
 Molecular Orbital ... 40
 DFT-AIM calculation .. 42
 DFT -NBO Calculation ... 43
 DFT calculation of rotation scan ... 47
 X-ray diffraction ... 48
Appendix – Calculation Coordinates .. 51
Supplementary References .. 57
Supplementary Methods

General Considerations

All experiments were carried out employing standard Schlenk techniques under an atmosphere of dry nitrogen employing degassed, dried solvents. Complex 1-2 used in this study are prepared according to literature procedures\(^1\). Complex 3-4 are referred to Dr. Dawson Beattie’s thesis\(^2\). Celite® was set in an oven at 180°C for at least 24 hours, then brought into a glovebox overnight following standard procedures. Nujol was dried over activated molecular sieves, then degassed by three freeze-pump-thaw cycles. Pyridine and acetonitrile were purchased from Sigma-Aldrich, dried over CaH\(_2\), and degassed by three freeze-pump-thaw cycles. \(\text{d}_6\)-benzene was purchased from Cambridge Isotope Laboratories Inc., dried over sodium metal, and degassed by three freeze-pump-thaw cycles. THF and Et\(_2\)O were dried over sodium metal, and degassed by three freeze-pump-thaw cycles. Hexanes and toluene were either dried over sodium metal or passed over activated alumina columns into Teflon sealed Schlenk flasks, and degassed by three freeze-pump-thaw cycles. NMR spectra were recorded on Bruker Avance 300, 400, or 600 MHz spectrometers. \(^1\)H NMR spectra are reported in parts per million (ppm) and were referenced\(^3\) to residual solvent: \(^1\)H(C\(_6\)D\(_6\)): \(\delta\) 7.16; \(^{13}\)C(C\(_6\)D\(_6\)): \(\delta\) 128.06; coupling constants are reported in Hz. \(^{13}\)C NMR spectra were performed as proton-decoupled experiments and are reported in ppm. The multiplicities are abbreviated as follows: \(s\) = singlet, \(d\) = doublet, \(dd\) = doublet of doublets, \(t\) = triplet, \(sept\) = septet. NMR spectra are shown using MestReNova 6.0.2 NMR processing software. Integrations of paramagnetic compounds 1-4 were not possible. EI-MS data were obtained using a Kratos MS-50 spectrometer (70 eV source). Elemental analyses were recorded on a Carlo Erba EA 1108 elemental analyzer. IR spectroscopy was performed using Nujol mulls between two NaCl salt plates on a Thermo Electron Corporation Nicolet 4700 FT-IR spectrometer.
Synthesis and Isolation of 3

Complex 3: In a glovebox, Sigman’s Dimer (70 mg, 0.066 mmol) was added as a solid at room temperature to a 20 mL vial containing a stirring solution of Na[MeCyAm] (27.2 mg, 0.132 mmol) in toluene (5 mL). The contents were stirred overnight (~12 h), and in the morning removed from the stir plate and allowed to settle for 5 minutes. The supernatant was filtered through Celite®, and the remaining solids were dissolved in toluene (5 mL) and filtered until no solid remained. The filtered toluene was divided equally into 2 vials (5 mL each) and layered with hexanes. Paramagnetic yellow crystals of 3 formed overnight at -35°C (67.1 mg, 0.107 mmol, 81% - multiple crops) and were collected by decanting the vials, washing with cold hexanes (0.5 mL), and removal of volatiles *in vacuo*. X-ray quality crystals were prepared by slow diffusion of hexanes into toluene solutions of 3 in toluene at -35°C. \(^1\)H NMR (400 MHz, 25°C, d\(_8\)-tol): \(\delta = 28.01, 17.51, 14.98, 9.11, 8.26, 5.12, 4.22, 2.36, 1.81, 1.24, 0.04, -0.99.\) Evans Method (C\(_6\)D\(_6\), 27°C): \(\overline{\gamma} = 2.17\) \(\overline{\gamma} = \) a. EI-MS (m/z): 628 [M]+. *Anal. Calcd.* for C\(_{38}\)H\(_{56}\)N\(_3\)NiO (628). C, 72.50%; H, 8.97%; N, 6.67%. Found: C, 72.24%; H, 9.00%; N, 6.45%.

Supplementary Figure 1. \(^1\)H NMR (400 MHz, 25°C, d\(_8\)-tol) of complex 3
Formation of 4

"Sigman's Dimer"
0.5 equiv.
\[\text{Ni-Br} \]
\[\text{IPr-Ni-Ni-IPr} \]
\[\text{H} \]
\[\text{Na} \]
\[\text{toluene, r.t.} \]
\[-\text{NaBr} \]
45%

Complex 4: In a glovebox, Sigman's Dimer (50 mg, 0.0474 mmol) was added as a solid at room temperature to a 20 mL vial containing a stirring solution of Na[CyAm] (18.1 mg, 0.0948 mmol) in toluene (5 mL). The contents were stirred overnight (~12 h), and in the morning removed from the stir plate and allowed to settle for 5 minutes. The supernatant was filtered through Celite®, and the remaining solids were dissolved in toluene (10 mL) and filtered until no solid remained. The filtered toluene was divided equally into 2 vials (10 mL each) and layered with hexanes. Paramagnetic yellow crystals of 4 formed overnight at -35°C (26.2 mg, 45% - single crop) and were collected by decanting the vials, washing with cold hexanes (2 x 0.5 mL), and removal of volatiles in vacuo. X-ray quality crystals were prepared by slow diffusion of hexanes into a concentrated solution of 4 in toluene at -35°C. ¹H NMR (300 MHz, 25°C, C₆D₆): δ(ppm) = 52.46, 32.35, 31.04, 27.01, 20.49, 15.20, 7.16, 4.96, 3.55, 2.79, 2.30, 1.90, 0.44, 0.29, -1.09, -2.28, -4.65, -5.14, -5.53, -5.77, -6.41, -15.35, -20.90. Evans Method (C₆D₆, 24°C): g_eff = 2.12. EI-MS (m/z): 614 [M]⁺. Anal. Calcd. for C₃7H₅₄N₆NiO (614). C, 72.20%; H, 8.84%; N, 6.83%. Found: C, 71.97%; H, 8.55%; N, 6.75%.

Supplementary Figure 2 ¹H NMR (400 MHz, 25°C, d₈-tol) of complex 4
Supplementary Data

Ni K edge X-ray Absorption Spectroscopy (XAS)

All XAS samples were analyzed as solids under anaerobic conditions and diluted in boron nitride (20-50% by weight). All samples were quickly frozen under liquid nitrogen environment. XAS Ni K-edges were acquired at the SSRL beamline 7-3, which is equipped with a Si(220) ϕ = 90° double crystal monochromator, a 9 keV cutoff mirror, and a He cryostat (at 20 K). Data were collected using a Canberra 30-element Ge solid-state detector with a 3mm Co filter. Data averaging and energy calibration were performed using SixPack^4. The AUTOBK algorithm available in the Athena software package^5 was employed for data reduction and normalization.

Supplementary Figure 3. The first derivative (left) and second derivative (right) of normalized Ni K-edge PFY XANES edge spectra for agostic complexes (1), (3) and their control group complexes non-agostic complexes (2), (4). The local minimum of second derivative were carefully selected as an initial guess of the pre-edge features for the fitting work in Supplementary Figure 4-7.
TD-DFT of Ni K edge XAS

XAS TD-DFT (X-ray absorption Time dependent DFT) calculation were performed with a dense intergration grid (Gird6) for better implementing Scalar relativisitic effects by using ZORA8 corrections, and reduced by using MOanlayzer software. All the Molecular orbitals information and their contribution to the TD-DFT calculated pre-edge features are provided. Only the molecular orbitals with pronounced Ni contribution are considered to contribute the Ni K edge spectrum and function as the acceptors for quick identifying the character of major molecular orbitals (> 5%, labelled in bold), but the rest molecular orbitals are still provided as a record. The calculated energies are all shifted by + 180.19 eV for a better comparison with the experimental data.

![Image of calculated Ni K edge XAS spectrum](image)

Supplementary Figure 4 TD-DFT calculated Ni K edge XAS spectrum of 1-4.
	Energy(eV)	Intensity	MO-1	MO-2 Cont.	MO-3 Cont.	MO-4 Cont.		
A	8330.48	6.36E-06	159b	52.4%	163b	18.4%	162b	13.0%
B	8335.12	8.25E-05	164b	56.8%	161b	26.7%	160b	11.8%
	8335.27	9.27E-05	164a	50.8%	162a	27.4%	160a	17.2%
	8336.86	2.89E-05	166a	45.2%	176a	5.9%		
	8337.44	5.41E-05	166a	38.9%	176a	12.9%	170a	11.2% 167a 10.30%
	8337.55	2.87E-05	167b	71.4%	174b	12.7%		
	8337.58	2.28E-05	167a	65.6%				
C	8337.6	1.07E-05	166b	28.0%	172b	21.0%	176b	2.7%
	8337.68	5.31E-05	168a	64.1%	174a	5.1%	176a	5.4%
	8337.72	6.70E-05	168b	69.7%	174b	4.2%	176b	7.0%
	8337.84	**8.84E-05**	**174a**	**32.5%**	**169a**	**25.8%**	**167a**	**19.0%**
	8337.84	5.73E-05	174b	30.0%	169b	24.8%	167b	16.3%
	8337.93	2.20E-05	169a	56.9%	174a			
	8338.05	3.36E-05	170a	28.6%	172a	23.7%	168a	16.6% 174a 4.66%
D	8338.11	4.26E-05	170a	44.0%	176a	16.8%	168a	11.1%
	8338.24	1.06E-05	171b	64.6%	174b	1.4%	176b	11.7%
	8338.31	1.65E-05	173b	76.8%	176b	5.4%		

Supplementary Table 1 TD-DFT calculation of the pre-edge features (A-D) and the Molecular orbital contribution of complex 1. highest calculated features are labeled in bold. Important orbitals with Ni character (>5%) are labeled in bold.
Complex 1	Nickel Centre	CH₃	NHC ligand						
	Ni	C	H	N	C				
Orbital	Total s (%)	p (%)	d (%)	Total s (%)	p (%)	d (%)	Total s (%)	p (%)	d (%)
159,a	23.4	0.2	0.2	21.4	0.2	0.2	0	1.6	0.1
160,a	1.4	0.6	0.4	0.5	0.6	0.4	0	4.3	0.2
161,a	0.2	0	0	0.1	0	0	0	1.4	0.3
162,a	2.9	0.1	0.1	2	0.1	0.1	0	7.7	0.3
163,a	0.2	0	0	0.2	0	0	0	1.3	0.0
164,a	11.3	1	0.1	7.9	0.1	0.5	3.3	0	0.3
166,a	1.7	0.9	0.2	0.7	0.9	0.2	0.5	0.1	0.3
167,a	1.6	0.2	0.1	0.3	0.2	0.1	0.0	5	0.1
168,a	2.1	0.5	0.3	0	2.1	0.5	0.3	0.7	0.2
169,a	1.5	0.1	0.1	1.1	0.1	0.1	0	0.9	0.0
170,a	1.8	0.5	0.1	1.2	0.5	0.1	0.3	1.2	0.1
171,a	3.1	1.3	0.3	1.3	0.3	0.3	0.5	1	0.1
172,a	5.9	3.2	0.8	3.1	3.2	0.8	0.5	0.9	0.0
173,a	0.1	0.3	0.2	0	0.1	0.3	0.2	0.6	0.0
174,a	19.4	3.1	0.1	18.8	3.1	0.1	1.9	5.4	0.1
176,a	12.1	5.5	1.5	10.5	5.5	1.5	0.8	2.2	1
159,b	44.3	1.9	0.3	6.8	1.9	0.3	0.7	0	0.3
160,b	1	0.3	0.2	0.5	0.3	0.2	0.1	3	0
161,b	4.8	0.3	0.2	1.8	0.3	0.2	0.1	6.7	0
162,b	12.2	0.4	0.1	1.7	0.4	0.1	0.1	1.7	0
163,b	17.1	0.8	0.2	2.4	0.8	0.2	0.4	1.4	0
164,b	13.4	1.1	0.1	0.7	1.1	0.1	0.6	3.2	0.1
166,b	2.8	0.5	0.1	0.3	0.5	0.1	0.1	0.5	0
167,b	1.5	0.4	0.3	1.2	0.4	0.3	0.1	0	0.4
168,b	1.8	2.1	0.5	1.7	2.1	0.5	0.3	0.6	0.2
169,b	1.2	0.1	0.1	0.8	0.1	0.1	0.0	0.8	0
170,b	0.9	0.2	0.1	0.7	0.2	0.1	0.1	1.2	0
171,b	0.1	0.2	0.1	0	0.1	0.2	0.1	0.8	0
172,b	7.9	3.6	0.9	1.5	3.6	0.9	0.6	1	0
173,b	1.3	0.9	0.2	0.2	0.9	0.2	0.2	0.3	0
174,b	18.7	3.1	0.1	18.1	3.1	0.1	1.8	4.7	0
176,b	7.9	5.9	1.4	6.4	5.9	1.4	0.8	2.7	1

Supplementary Table 2. Atomic Character Contribution in Acceptor Molecular Orbital from Ni centre, pendant CH₃ substitute and NHC ligand in complex 1. Important Molecular Orbitals with Ni character (>5%) are labeled in bold.
Supplementary Table 3. The contribution of atomic orbital character of Ni centre to the TD-DFT calculated transition states in each pre-edge feature of complex 1 Ni K edge. Only the molecular orbitals with pronounced Ni contribution are considered (> 5%).

Feature	Energy(eV)	Intensity	sum	s	p	d	s	p	d	s	p	d
A	8330.48	6.36E-06	12.3%	0.0%	1.0%	11.2%	0.0%	8.5%	91.5%	0.0%	8.5%	91.5%
B	8335.12	8.25E-05	7.6%	0.1%	4.4%	3.1%	0.7%	58.2%	41.0%	0.8%	64.1%	35.1%
	8335.27	9.27E-05	5.7%	0.1%	4.0%	1.7%	0.9%	69.9%	29.2%			
C	8336.86	2.89E-05	0.7%	0.0%	0.6%	0.1%	4.1%	86.8%	9.1%	2.8%	89.8%	7.3%
	8337.44	5.41E-05	1.6%	0.1%	1.4%	0.1%	4.1%	86.8%	9.1%			
	8337.55	2.87E-05	2.4%	0.0%	2.3%	0.1%	0.5%	96.8%	2.7%			
	8337.6	1.07E-05	3.3%	0.3%	2.3%	0.7%	9.5%	69.6%	20.9%			
	8337.68	5.31E-05	1.6%	0.0%	1.5%	0.1%	2.3%	92.9%	4.8%			
	8337.72	6.70E-05	1.1%	0.0%	1.0%	0.1%	0.4%	92.1%	7.5%			
	8337.84	8.84E-05	6.3%	0.1%	6.1%	0.1%	1.0%	96.9%	2.1%			
	8337.84	5.73E-05	5.6%	0.0%	5.4%	0.2%	0.5%	96.8%	2.7%			
D	8338.05	3.36E-05	2.3%	0.4%	1.6%	0.3%	18.9%	70.0%	11.1%			
	8338.11	4.26E-05	2.0%	0.1%	1.8%	0.2%	4.1%	86.8%	9.1%			
	8338.24	1.06E-05	1.2%	0.0%	1.0%	0.2%	0.1%	84.5%	15.4%			
	8338.31	1.65E-05	0.4%	0.0%	0.3%	0.1%	0.0%	81.0%	19.0%			
Molecular Orbitals of Complex 1												
170α (Nipα)	170β (Nipβ)	171α	171β									
--------------	--------------	------	------									
![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)									
172α	172β	173α	173β									
![Image](image5.png)	![Image](image6.png)	![Image](image7.png)	![Image](image8.png)									
174α (Nipα)	174β (Nipβ)	176α	176β									
![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)									

Supplementary Figure 5. 3D view of Molecular Orbital Acceptors in Complex 1.
	Energy(eV)	Intensity	MO-1	MO-2	MO-3	MO-4
A	8330.19	3.33E-06	155b	81.76%		
	8335.18	8.66E-05	160b	54.29%	156b	18.21%
	8335.34	9.90E-05	160a	47.84%	156a	23.54%
	8337.12	3.20E-04	164a	33.30%	170a	24.10%
	8337.36	2.53E-04	164b	31.48%	170b	31.02%
B	8335.18	8.66E-05	160b	54.29%	156b	18.21%
	8335.34	9.90E-05	160a	47.84%	156a	23.54%
	8337.12	3.20E-04	164a	33.30%	170a	24.10%
	8337.36	2.53E-04	164b	31.48%	170b	31.02%
	8337.69	2.24E-05	163a	74.33%	172a	9.38%
	8338.05	8.42E-05	172a	35.24%	163a	16.43%
	8338.06	2.61E-05	164a	50.24%	167a	16.16%
	8338.06	3.25E-05	164b	51.67%	170b	14.79%
	8338.07	9.87E-05	172b	37.14%	169b	19.55%
	8338.23	1.26E-05	166b	54.57%	167b	11.22%
	8338.33	1.17E-05	167a	41.74%	170a	26.82%
	8338.33	1.38E-05	167b	58.49%	170b	17.83%

Supplementary Table 4. TD-DFT calculation of the pre-edge features and the Molecular orbital contribution of complex 2.
Supplementary Table 5. Atomic Character Contribution in Acceptor Molecular Orbital from Ni centre, pendant CH$_3$ substitute and NHC ligand in complex 2. Important Molecular Orbitals with Ni character (>5%) are labeled in bold.

complex	Nickel Center	NHC ligand							
	Ni	N	C						
	Total s (%) p (%) d (%)	s (%) p (%) s (%) p (%)							
155,a	26.6 0.1 2.5 24	2 0 1.8 0 0.2							
156,a	2.6 0 1.8 0.8	5.8 0 2.7 0.3 2.8							
157,a	2 0 1.4 0.6	4.6 0 1.9 0.3 2.4							
158,a	1.3 0 0.8 0.5	3.4 0 2 0.1 1.3							
160,a	11.8 0 8.3 3.5	34.8 0 13.1 0 21.7							
163,a	7.6 0 7.5 0.1	1.6 0.2 0.6 0 0.8							
164,a	3.9 0.5 3.1 0.3	1.6 0.2 0.7 0 0.7							
166,a	6 0.2 5.5 0.3	1.8 0.4 0.5 0 0.9							
167,a	1.6 0.1 1.4 0.1	0.6 0 0.4 0 0.2							
169,a	14.9 2 11.5 1.4	3.2 0.1 0.6 0.3 2.2							
170,a	17.5 1 15.7 0.8	3.3 0.6 0.3 0.2 2.2							
172,a	12.5 0.3 11.7 0.5	3.5 0 0.5 0 0.3							
155,b	70.2 13.4 0.2 56.6	3.9 0 0.1 0.8 3							
156,b	2.4 0 1.3 1.1	4.4 0 2.2 0 2.2							
157,b	3.3 0 1.9 1.4	6.2 0 3 0 3.2							
158,b	5.2 0.9 0 4.3	0.7 0 0.2 0.4 0.1							
160,b	14 0.1 8.3 5.6	35.6 0 13.2 0 22.4							
163,b	1.7 0 1.3 0.4	4.9 0 1.2 0 3.7							
164,b	4.6 0 4.6 0	0.8 0.2 0.3 0 0.3							
166,b	1.8 0.1 1.3 0.4	0.9 0 0.5 0 0.4							
167,b	2.8 0 2.7 0.1	1.2 0.3 0.5 0 0.4							
168,b	0.5 0 0.4 0.1	0.6 0 0.5 0 0.1							
169,b	17.6 0.9 14.6 2.1	3.2 0.1 0.7 0.1 2.3							
170,b	20.2 0.4 18.8 1	3.6 0.7 0.4 0.1 2.4							
172,b	12.3 0.2 11.4 0.7	3.1 0 0.5 0 2.6							
Feature	Energy(eV)	Intensity	absolute	normalized	average				
---------	------------	-----------	----------	------------	---------				
			sum	s	p	d	s	p	d
A	8330.19	3.33E-06	21.7%	0.1%	2.0%	19.6%	0.4%	9.4%	90.2%
	8335.18	8.66E-05	7.6%	0.1%	4.5%	3.0%	0.7%	59.3%	40.0%
	8335.34	9.90E-05	5.6%	0.0%	4.0%	1.7%	0.0%	70.3%	29.7%
B	8337.12	3.20E-04	7.6%	0.3%	7.0%	0.3%	3.5%	92.9%	3.5%
	8337.36	2.53E-04	6.3%	0.1%	5.8%	0.3%	2.0%	93.1%	5.0%
C	8337.69	2.24E-05	1.2%	0.0%	1.1%	0.0%	2.4%	93.6%	4.0%
	8338.05	8.42E-05	24.7%	4.7%	0.1%	19.9%	19.1%	0.3%	80.6%
	8338.06	2.61E-05	4.8%	0.0%	4.7%	0.1%	0.7%	97.3%	2.1%
D	8338.06	3.25E-05	3.0%	0.1%	2.8%	0.1%	2.0%	93.1%	5.0%
	8338.07	9.87E-05	8.0%	0.3%	7.1%	0.7%	3.1%	88.5%	8.4%
	8338.23	1.26E-05	1.1%	0.0%	1.0%	0.1%	1.6%	92.7%	5.7%
	8338.33	1.17E-05	7.2%	0.4%	6.5%	0.3%	4.9%	90.4%	4.7%
	8338.33	1.38E-05	3.6%	0.1%	3.4%	0.2%	2.0%	93.1%	5.0%

Supplementary Table 6. The contribution of atomic orbital character of Ni centre to the TD-DFT calculated transition states in each pre-edge feature of complex 2's Ni K edge. Only the molecular orbitals with pronounced Ni contribution are considered (> 5%).
Molecular Orbitals of Complex 2

155α 155β 156α 156β

157α 157β 158α 158β

160α 160β 163α 163β

164α 164β 166α 166β

167α 167β 168α 168β
Supplementary Figure 6. 3D view of Molecular Orbital Acceptors in Complex 2.
	Energy(eV)	Intensity	MO-1	Cont.	MO-2	Cont.	MO-3	Cont.	MO-4	Cont.
A	8330.43	5.47E-06	170b	55.60%	174b	11.80%				
B	8335.09	7.31E-05	175b	45.81%	172b	30.88%	171b	10.06%	170b	9.56%
C	8335.21	8.25E-05	175a	41.45%	171a	40.12%	172a	11.44%		
	8336.15	1.40E-05	177a	49.45%	185a	8.09%	183a	6.42%		
	8336.92	3.42E-05	177a	49.45%	185a	8.09%				
	8337.38	**1.21E-04**	177a	36.75%	179a	10.79%	185a	9.45%		
	8337.5	**5.28E-05**	178b	33.65%	179b	23.53%	180b	10.92%	177b	8.79%
	8337.52	**1.07E-05**	178a	78.59%	179a	7.60%				
	8337.55	**9.41E-05**	178b	52.50%	179a	7.72%	186b	7.64%		
	8337.62	**3.32E-05**	179a	42.65%	184a	12.61%	177a	8.57%		
	8337.81	**1.83E-05**	180a	63.30%	181a	8.87%	179a	8.72%		
D	**8337.83**	**2.50E-05**	180b	50.40%	181b	13.04%	179b	7.38%		
	8337.92	**6.26E-05**	179a	24.19%	184a	19.13%	181a	9.69%		
	8338.01	**2.30E-05**	181b	26.81%	180b	18.15%	187b	15.78%		
	8338.02	**5.06E-05**	181a	30.87%	180a	14.68%	187a	11.78%		
	8338.04	**3.70E-05**	185a	34.98%	181a	26.58%	184a	10.04%	187a	9.09%
	8338.05	**4.72E-05**	185b	24.93%	184b	23.07%	181b	21.85%		

Supplementary Table 7 TD-DFT calculation of the pre-edge features and the Molecular orbital contribution of complex 3.
complex 3	Nickel Center	CH3	NHC ligand					
		C	H					
		s (%)	p (%)	d (%)	Total s (%)	p (%)	s (%)	p (%)
170,a	23.4 0 1.7 21.7	0.2 0 0.2 0 0	1.4 0 1.2 0 0					
171,a	2.9 0 1.8 1.1	0.1 0 0.1 0 0	9.9 0 3.9 0.3 5.7					
172,a	1.4 0 0.9 0.5	0.5 0 0.2 0.3 0	3.5 0 1.8 0 1.7					
174,a	0.1 0 0 0.1	0.3 0 0.1 0.2 0	1.7 0 0.5 0 1.2					
175,a	10.1 0 6.9 3.2	0.3 0.1 0.2 0 0	35.3 0 13.5 0 21.8					
177,a	1.3 0.6 0.2 0.5	0.5 0.1 0.1 0.3 0	0.6 0 0.2 0.3 0.1					
178,a	1.7 0.1 1.4 0.2	1.9 0.3 0.4 0.8 0.4	3.7 0 1 0 2.7					
179,a	1.6 0 1.6 0	1.2 0.1 0.2 0.7 0.2	1.7 0 0.4 0.1 1.2					
180,a	2 0.2 1.6 0.2	0.6 0 0.5 0.1 0	0.7 0.3 0.2 0 0.2					
181,a	1.4 0.2 1.1 0.1	0.3 0 0.1 0.2 0	1.2 0 0.6 0 0.6					
183,a	2.7 0.8 1.4 0.5	1.1 0 0.4 0.5 0.2	0.6 0 0.3 0 0.3					
184,a	6 1.3 4.2 0.5	4 1.3 1.1 0.9 0.7	0.4 0 0.2 0.1 0.1					
185,a	0.5 0.7 6.9 0.9	2.1 0.5 0.2 0.8 0.6	2.3 0.2 0.5 0.2 1.4					
186,a	5 0 4.7 0.3	0.7 0.1 0.4 0.1 0.1	1.9 0.2 0.8 0 0.9					
187,a	11.3 0.1 11.1 0.1	3.8 0 1.8 1.2 0.8	3 0.2 0.3 0 2.5					
170,b	48.5 7.5 3.5 37.5	2.6 0.3 1 0.9 0.4	5.8 0 1.5 0.8 3.5					
171,b	5.8 0.7 0.3 4.8	0.6 0.1 0.1 0.4 0	3 0 1.3 0 1.7					
172,b	4.8 0.3 1.6 2.9	0.3 0 0.2 0.1 0	7.1 0 2.8 0 4.3					
174,b	11.4 1.6 0.6 9.2	0.3 0.1 0.2 0 0	2.1 0 0.3 0.1 1.7					
175,b	13.3 0.3 6 7	1 0.2 0.5 0.3 0	35.4 0 13.4 0 22					
177,b	2.4 0.2 0.3 1.9	0.4 0.1 0 0.3 0	0.6 0 0.2 0.2 0.2					
178,b	2 0.1 1.5 0.4	1.9 0.3 0.4 0.8 0.4	3.8 0 1 0 2.8					
179,b	1.6 0 1.3 0.3	1.3 0.2 0.2 0.7 0.2	1.6 0 0.4 0 1.2					
180,b	1.8 0.1 1.4 0.3	0.6 0 0.5 0.1 0	0.4 0.2 0 0 0.2					
181,b	0.9 0.1 0.6 0.2	0.3 0 0.1 0.2 0	0.8 0 0.5 0 0.3					
183,b	0.9 0.1 0.4 0.4	1 0 0.3 0.5 0.2	0.2 0 0.2 0 0					
184,b	7.8 0.9 6.1 0.8	4.4 1.4 1.1 1 0.9	0.1 0 0.1 0 0					
185,b	4.4 0.5 2.5 1.4	1.1 0.1 0.2 0.6 0.2	1.1 0 0.6 0 0.5					
186,b	5.2 0.1 4.1 1	1.6 0.2 0.4 0.6 0.4	1.2 0.2 0.4 0 0.6					
187,b	11.2 0.1 10.9 0.2	3.5 0 1.8 1.2 0.5	3 0.2 0.3 0 2.5					

Supplementary Table 8. Atomic Character Contribution in Acceptor Molecular Orbital from Ni centre, pendant CH$_3$ substitute and NHC ligand in complex 3. Important Molecular Orbitals with Ni character (>5%) are labeled in bold.
Supplementary Table 9. The contribution of atomic orbital character of Ni centre to the TD-DFT calculated transition states in each pre-edge feature of complex 2’s Ni K edge. Only the molecular orbitals with pronounced Ni contribution are considered (> 5%).
Molecular Orbitals of Complex 3
![Image](image1.png)
170α
![Image](image5.png)
172α
![Image](image9.png)
175α
![Image](image13.png)
178α
![Image](image17.png)
180α
Supplementary Figure 7. 3D view of Molecular Orbital Acceptors in Complex 3.

A
B
C

Supplementary Table 10. TD-DFT calculation of the pre-edge features and the Molecular orbital contribution of complex 4.
Complex 4	Nickel Center	NHC ligand								
	Ni	Total	s (%)	p (%)	d (%)	Total	s (%)	p (%)	s (%)	p (%)
166,a	24.9	0	2.3	22.6		1.6	0	1.4	0	0.2
167,a	3.2	0	1.8	1.4		9.7	0	3.5	0.3	5.9
169,a	1.1	0	0.8	0.3		2.8	0	1.2	0	1.6
170,a	0.6	0	0.5	0.1		0.8	0	0.3	0	0.5
171,a	11.8	0	8.5	3.3		34.2	0	13.6	0	20.6
173,a	1.5	0.8	0.2	0.5		0.5	0	0.1	0.3	0.1
174,a	15.6	0	15.5	0.1		2	0.2	0.5	0	1.3
175,a	2.7	0	2.5	0.2		3.5	0	1.2	0	2.3
176,a	4.8	0.1	4.7	0		1	0.4	0.2	0	0.4
177,a	4	0	4	0		1.2	0.2	0.4	0	0.6
178,a	6.9	0.2	6.6	0.1		1.2	0.3	0.3	0	0.6
179,a	6.5	2.2	2.9	1.4		1.4	0.1	0.4	0.1	0.8
180,a	3.4	0	3.4	0		1.5	0.1	0.7	0	0.7
181,a	5.4	1.6	2.8	1		0.9	0	0.2	0.2	0.5
182,a	10.4	0	10.2	0.2		2.8	0.1	0.9	0	1.8
166,b	71.8	15.7	0	56.1		4.6	0	0.2	0.8	3.6
167,b	4.3	0.2	1.5	2.6		9.4	0	3.4	0.2	5.8
169,b	1.6	0.1	0.7	0.8		2.6	0	1.1	0	1.5
170,b	0.7	0	0.4	0.3		0.7	0	0.3	0	0.4
171,b	14.1	0.1	8.1	5.9		34.7	0	13.6	0	21.1
173,b	2.1	0.2	0.2	1.7		0.4	0	0.2	0.1	0.1
174,b	3.8	0	3.5	0.3		3.7	0	1	0	2.7
175,b	6.7	0	6.6	0.1		1	0.1	0.3	0	0.6
176,b	5.2	0.1	5.1	0		0.9	0.4	0.2	0	0.3
177,b	2.1	0	2.1	0		1	0.1	0.5	0	0.4
178,b	8.9	0.2	8.6	0.1		1.4	0.4	0.3	0	0.7
179,b	3.1	0.3	1.7	1.1		0.4	0.1	0.2	0	0.1
180,b	5.9	0	5.8	0.1		1.6	0.2	0.5	0	0.9
181,b	10.4	0.1	10.1	0.2		2.1	0.1	0.5	0	1.5
182,b	6.3	0.6	4.2	1.5		0.5	0.1	0.1	0	0.3

Supplementary Table 11. Atomic Character Contribution in Acceptor Molecular Orbital from Ni centre, pendant CH₃ substitute and NHC ligand in complex 4. Important Molecular Orbitals with Ni character (>5%) are labeled in bold.
Supplementary Table 12. The contribution of atomic orbital character of Ni centre to the TD-DFT calculated transition states in each pre-edge feature of complex 2’s Ni K edge. Only the molecular orbitals with pronounced Ni contribution are considered (> 5%).

Feature	Energy(eV)	Intensity	s	p	d	s	p	d	s	p	d	
A	8330.13	2.00E-06	59.10%	12.9%	0.0%	46.2%	21.9%	0.0%	78.1%	21.9%	0.0%	78.1%
B	8335.12	7.93E-05	6.70%	0.1%	3.8%	2.8%	0.7%	57.4%	41.8%	0.4%	64.7%	34.9%
C	8335.25	9.21E-05	5.00%	0.0%	3.6%	1.4%	0.0%	72.0%	28.0%			
	8336.15	2.95E-05	1.90%	0.0%	1.3%	0.5%	0.0%	72.0%	28.0%	1.3%	92.8%	5.9%
	8336.79	1.26E-04	3.90%	0.2%	3.5%	0.2%	5.5%	90.5%	4.0%			
	8337.01	1.59E-04	4.80%	0.0%	4.7%	0.0%	0.4%	98.8%	0.8%			
	8337.1	2.00E-04	3.10%	0.0%	3.0%	0.0%	1.1%	97.8%	1.1%			
	8337.68	2.40E-05	3.40%	0.0%	3.4%	0.0%	0.0%	99.4%	0.6%			
	8337.88	1.35E-05	5.00%	0.0%	4.9%	0.0%	0.8%	98.3%	0.9%			
D	8338.07	1.52E-05	2.40%	0.0%	2.4%	0.0%	0.0%	99.4%	0.6%	1.0%	97.8%	1.2%
	8338.07	7.93E-05	2.60%	0.0%	2.5%	0.1%	1.0%	97.1%	1.9%			
	8338.17	1.07E-05	4.50%	0.1%	4.3%	0.1%	1.9%	97.0%	1.1%			
Molecular Orbitals of Complex 4												

![Molecular Orbital 166α](image1)	![Molecular Orbital 166β](image2)	![Molecular Orbital 167α](image3)	![Molecular Orbital 167β](image4)									
![Molecular Orbital 169α](image5)	![Molecular Orbital 169β](image6)	![Molecular Orbital 170α](image7)	![Molecular Orbital 170β](image8)									
![Molecular Orbital 171α](image9)	![Molecular Orbital 171β](image10)	![Molecular Orbital 172α](image11)	![Molecular Orbital 172β](image12)									
![Molecular Orbital 173α](image13)	![Molecular Orbital 173β](image14)	![Molecular Orbital 174α](image15)	![Molecular Orbital 174β](image16)									
![Molecular Orbital 175α](image17)	![Molecular Orbital 175β](image18)	![Molecular Orbital 176α Px](image19)	![Molecular Orbital 176β Px](image20)									
![Molecular Orbital 177α Px](image21)	![Molecular Orbital 177β Px](image22)	![Molecular Orbital 178α Px](image23)	![Molecular Orbital 178β Px](image24)									
Supplementary Figure 8. 3D view of Molecular Orbital Acceptors in Complex 4.
Simulation of Ni K edge XAS

Calibrated and normalized experimental spectra were further simulated with Athena software. Assumption of number of the pre-edge features was made from the time-dependant DFT calculation and the assignment of each feature by the DFT MO calculation. Four Lorentzian function curves were applied for the four identified pre-edge features. One Gaussian feature was used to simulate the broad background continuum comprised of a series of satellite features. An error function was used for simulating the edge jump of XAS. Both of the Gaussian curve and error function constitute the background of the simulated spectrum. The simulating results indicated that the pre-edge feature A is extremely hard to track and evaluate due to the large uncertain and small peak height. Therefore, the details of the consideration of 3d feature will be discussed by the Ni L edge spectra.
Supplementary Figure 9. Ni K edge XAS spectrum fitting of complex 1 in solid state.

Feature	Function	height	center	sigma	area
A	lorentzian	0.009(0.009)	8331.04(5.56)	0.538(0.441)	0.009
B	lorentzian	0.277(0.034)	8335.13(0.39)	1.149(0.092)	0.277
C	lorentzian	2.548(0.585)	8337.34(0.53)	3.492(0.288)	2.548
D	lorentzian	0.957(0.606)	8337.72(1.50)	3.711(0.803)	0.957
Continuum	gaussian	2.958(1.140)	8342.05(5.14)	3.271(0.176)	2.958
Edge	error fun	0.576(0.305)	8345.51(5.57)	5.806(4.568)	

Supplementary Table 13. Ni K edge XAS spectrum fitting results of complex 1 in solid state. The uncertainty of each simulating value is listed within bracket.
Supplementary Figure 10. Ni K edge XAS spectrum fitting of complex 2 in solid state.

Feature	Function	height	center	sigma	area
A	lorentzian	0.012(0.030)	8333.11(15.44)	2.482(4.660)	0.012
B	lorentzian	0.930(0.873)	8335.20(7.52)	5.557(0.557)	0.93
C	lorentzian	2.459(0.318)	8337.10(0.38)	3.510(0.185)	2.459
D	lorentzian	1.054(0.496)	8337.97(0.84)	3.439(0.610)	1.054
Continuum	gaussian	4.333(9.793)	8342.46(13.87)	4.256(0.646)	4.333
Edge	error fun	0.480(0.093)	8345.33(11.08)	5.113(4.845)	

Supplementary Table 14. Ni K edge XAS spectrum fitting results of complex 2 in solid state. The uncertainty of each simulating value is listed within bracket.
Supplementary Figure 11. Ni K edge XAS spectrum fitting of complex 3 in solid state.

Supplementary Table 15. Ni K edge XAS spectrum fitting results of complex 3 in solid state. The uncertainty of each simulating value is listed within bracket.
Supplementary Figure 12. Ni K edge XAS spectrum fitting of complex 3 in solid state.

Supplementary Table 16. Ni K edge XAS spectrum fitting results of complex 4 in solid state. The uncertainty of each simulating value is listed within bracket.

Extended X-ray absorption fine structure (EXAFS) of complex 1
The EXAFS oscillations $\chi (k)$ were quantitatively analyzed by curve fitting using Artemis suite of computer programs as previously described, using *ab initio* theoretical phase and amplitude functions calculated using the program FEFF version 6.0. No smoothing, filtering, or related operations were performed on the data. Single scattering paths as well as a multiple scattering model used in the fitting procedure were obtained from the single crystal structure from solid complex 1.

Supplementary Figure 13. Ni K edge XAS spectrum of complex 1 in solid state (red solid line) and toluene solution (red dash line).

Supplementary Figure 14. Experimental (black) and calculated (blue) EXAFS spectra of the 1 (in toluene solution), in k space (left) and reduced distance space (right) with Model 1.
Supplementary Table 17. Structural parameters obtained from best EXAFS fitting for complex 1 (in toluene solution). Degeneracy (coordination number) N, internuclear separations R, Debye-Waller factors σ^2, and threshold energy shift ΔE_0, derived from EXAFS curve fitting. *Fit parameters: $\Delta k = 3.0 - 12.0 \text{Å}^{-1}, \quad dk = 1.0 \text{Å}^{-1}, \quad R = 1 - 4.4 \text{Å}, \quad S_0^2 = 1.20$. Goodness of fit value, $R = 0.006$. The degeneracy for Ni-C at 2.41 Å was set as a floating number. *Fit parameters: $\Delta k = 3.0 - 12.0 \text{Å}^{-1}, \quad dk = 1.0 \text{Å}^{-1}, \quad R = 1 - 4.4 \text{Å}, \quad S_0^2 = 1.20$. Goodness of fit value, $R = 0.007$. The degeneracy for Ni-C at 2.41 Å was set as a fixed number.

Scattering Path	Degeneracy	R (Å)	σ^2 (Å2)	ΔE_0 (eV)
Ni-N	1	1.89	0.004	-1.13
Ni-C	1	1.90	0.004	-1.13
Ni-C	0.59	2.41	0.002	-1.13
Ni-C/N	6	2.93	0.011	-1.13
Ni-C-N	8	3.15	0.005	-1.13
Ni-C	1	3.54	0.005	-1.13
Ni-C	6	3.25	0.026	-1.13
Ni-C/O	8	4.05	0.010	-1.13
Ni-C-O	2	4.04	0.010	-1.13
Ni-C-C/N	6	4.17	0.005	-1.13

In order to obtain metrical information from the peaks in the Fourier-transformed data, a shell model method was utilized for EXAFS fitting. It was first started with the model optimized by DFT calculations, and the simulated EXAFS spectrum of complex 1 (in toluene solution) agrees well with the experimental results (Figure S10). The first coordination shell at around 1.5 Å (R + Δ, without phase correction) consists of the contributions from a single Ni-N bond at 1.89 Å, a single Ni-C bond at 1.90 Å, as well as another Ni-C bond at 2.41 Å. It should be noteworthy that the fitting results was slightly improved (R =0.007 to R = 0.006) when we set the coordination number of Ni-C bond at 2.41 Å as a floating number (Model 1 in Table S6). Based the fitting results, it suggests the coordination number of Ni-C at 2.41 Å is 0.59 rather than 1, indicating the flexibility of CH$_3$ group when 1 is dissolved in toluene. The second coordination shell at around 2.7 Å to 3.0 Å (R + Δ, without phase correction) consists of the single scattering from neighbouring C or N atom at distance 2.93 Å to 3.54 Å. Multiple scattering at 4.04 Å and 4.17 Å contributes to the third shell in EXAFS spectrum.
Ni L edge X-ray Absorbance Spectroscopy

Supplementary Figure 15. Experimental Ni L edge XAS of complex 1 and 2 and the simulating function curves of each pre-edge feature.
Supplementary Table 18. Simulation data of Ni L edge XAS. The most pronounced pre-edge feature 1 lies in the energy region of 3d← 2p, which is supported by the following TD-DFT calculation.
Supplementary Figure 16. TD-DFT calculated Ni L-edge XAS. See feature info in Supplementary Table 10 & 11.
Region	Energy	Intensity	MO	MO-1	MO-2	MO-3
3d2-y^{2} ← 2p	844.57	1.18E-03	orbital	159b	163b	162b
			contribution	52.01%	19.41%	12.65%
	844.63	4.27E-02	orbital	159b	163b	162b
			contribution	51.91%	19.40%	12.63%
	844.79	4.42E-02	orbital	159b	163b	162b
			contribution	51.80%	19.36%	12.61%
π^{*}CNiN← 2p	849.43	4.04E-03	orbital	164b	161b	160b
			contribution	56.25%	26.00%	11.90%
	851.33	2.30E-03	orbital	166b	172b	193b
			contribution	53.86%	11.12%	
	849.18	3.62E-03	orbital	164b	161b	
			contribution	54.56%	25.29%	11.57%
	849.57	5.36E-03	orbital	164a	162a	160a
			contribution	47.89%	26.57%	17.05%
	850.2	2.43E-03	orbital	164a	162a	160a
			contribution	41.89%	22.68%	14.42%
	851.16	8.74E-03	orbital	166a	164a	
			contribution	21.55%	5.50%	
	851.2	1.01E-03	orbital	166b	172b	
			contribution	56.04%	10.68%	
	851.68	1.20E-03	orbital	166b	172b	167b
			contribution	21.21%	15.45%	15.79%
	851.7	1.65E-03	orbital	166a	176a	170a
			contribution	29.99%	9.99%	9.10%
4p← 2p	852.36	1.52E-03	orbital	171b	166a	170b
			contribution	18.25%	12.94%	10.31%
	851.85	8.65E-05	orbital	167a	174a	166a
			contribution	59.37%	7.68%	
	851.89	1.61E-03	orbital	167b	174b	
			contribution	54.51%	11.36%	
	851.94	3.12E-03	orbital	168a	166b	
			contribution	15.50%	12.45%	9.83%
	851.96	1.99E-03	orbital	168a	169b	172a
			contribution	45.15%	6.42%	5.72%
	852.78	1.84E-03	orbital	176b	172b	183b
			contribution	19.66%	12.35%	11.45%
Supplementary Table 19. TD-DFT calculated Ni L-edge XAS and each Molecular Orbital Acceptors Contribution of complex 1. See the details of each MO acceptor's atomic character and 3d graphics in Supplementary Table 1 and Supplementary Table 5.

Region	Energy	Intensity	MO acceptor	MO-1	MO-2	MO-3
3d_{x^2-y^2} ← 2p			Orbital	160b	156b	157b
849.59	3.70E-03		Contribution	50.56%	26.07%	17.91%
850.324	3.05E-03		Orbital	160, a	156, a	157, a
			Contribution	44.86%	29.54%	18.04%
π^*CNiN←2p			Orbital	162b	158a	170b
851.526	1.99E-03		Contribution	24.03%	20.87%	6.44%
851.455	1.39E-03		Orbital	162b	170b	186b
851.839	2.04E-03		Contribution	29.80%	7.91%	6.53%
851.954	4.22E-03		Orbital	164b	170b	167b
852.285	2.62E-03		Contribution	26.30%	23.42%	9.04%
			Orbital	162a	163b	170a
			Contribution	18.68%	17.26%	10.20%
852.341	1.53E-03		Orbital	162a	170a	166a
852.6	2.71E-03		Contribution	56.73%	10.77%	9.47%
852.458	1.63E-03		Orbital	164a	172b	169a
			Contribution	16.47%	16.36%	7.91%
844.312	9.20E-03		Orbital	155, b	158, b	
			Contribution	84.02%	6.91%	
844.386	2.83E-02		Orbital	155, b	158, b	
			Contribution	81.29%	6.68%	
844.406	5.50E-02		Orbital	155, b	160, b	
			Contribution	81.34%	5.06%	
849.674	3.94E-03		Orbital	160, b	156, b	157, b
			Contribution	51.27%	26.40%	18.13%
4p←2p			Orbital	167b	174b	
851.89	1.61E-03		Contribution	54.51%	11.36%	
851.94	3.12E-03		Orbital	168a	166b	
			Contribution	15.50%	12.45%	9.83%
851.96	1.99E-03		Orbital	168a	169b	172a
			Contribution	45.15%	6.42%	5.72%
852.78	1.84E-03		Orbital	176b	172b	183b
			Contribution	19.66%	12.35%	11.45%
Density Functional Calculation

General Consideration

Density Functional Theory Calculations Initial geometries for all molecules were obtained from crystallographic coordinates (where available) or constructed from standard models. Geometry optimizations and numerical frequency calculations were performed using version 4.21 of the ORCA computational chemistry package. Molecular geometries were optimized using the PBE0 functional and all electron basis sets (def2-TZVP) for Ni centre and def2-SVP for all the rest atoms. Statistical mechanics calculations of entropic and thermal effects were performed using the rigid rotor and harmonic oscillator approximations at 298.15 K and 1 atm. Computational efficiency was improved by applying the RI approximation (RIJCOSX) for the hybrid functional. All calculations were performed with integration grid (ORCA Grid4). NBO calculations were calculated with Gaussian 09 program package, AIM calculation were performed in Multiwfn software by using NBO outputs using D3LYP/def2-TZVPP level. All calculations were run on the UBC Chemistry Abacus cluster and on the Cedar of Compute Canada cluster.
Supplementary Figure 17. MO diagram of complex 1 and 2. Only orbitals contribute to the XAS absorption with significant Ni characters are present.
Supplementary Figure 18. MO diagram of complex 3 and 4. Only orbitals contribute to the XAS absorption with significant Ni characters are present.
DFT-AIM calculation

Supplementary Figure 19. AIM electron density contour map of complex 1 and its simplified version 1-s. 1° dihedral angle Φ was optimized at 0° and constrained at 10° as comparison.

	bcp 98 in 1	bcp 10 in 1°	bcp 10 in 1°
Φ(°)	4.9	0.0	10.0
ρ(r)	0.040	0.030	0.030
G(r)	0.043	0.030	0.030
K(r)	0.003	0.001	0.001
V(r)	-0.046	-0.031	-0.032
E(r) or H (r)	-0.003	-0.001	-0.001
∇²ρ(r)	0.159	0.117	0.117
ELF	0.095	0.075	0.076
LOL	0.241	0.217	0.218
ESP from nuclear charges	53.671	27.653	27.598
ESP from electrons	-53.440	-27.445	-27.390
Total ESP	0.232	0.208	0.207

Supplementary Table 21. AIM calculation data. a Dihedral Angle Ni1-N2-C3-C4; b Density of all electrons; c Lagrangian kinetic energy; d Hamiltonian kinetic energy; e Potential energy density; f Energy density; g Laplacian of electron density; h Electron localization function; i Localized orbital locator;
DFT -NBO Calculation

![Complex 1 Diagram](image)

	B3LYP/Def2SVP			
Donor	**Acceptor**	**E(2)** kcal/mol	**E(j)-E(i)** a.u.	**F(i,j)** a.u.
85. BD (1) C 71 - H91	155. LP*(6)Ni 1	1.89	0.6	0.046
	157. LP*(8)Ni 1	4.76	0.77	0.077
84. BD (1) C 71 - H90	155. LP*(6)Ni 1	1.06	0.6	0.034
	157. LP*(8)Ni 1	3.11	0.77	0.062
Total		10.82	2.74	0.219
85. BD (1) C71 - H90	156. LP*(7)Ni 1	5.51	0.59	0.073
	157. LP*(8)Ni 1	0.74	0.7	0.029
86. BD 1) C71 - H91	156. LP*(7)Ni 1	8.89	0.59	0.092
	157. LP*(8)Ni 1	1.06	0.7	0.035
Total		16.2	2.58	0.229

Donor	**Acceptor**	**E(2)** kcal/mol	**E(j)-E(i)** a.u.	**F(i,j)** a.u.
H1	σC71 - H90	10.42	2.66	0.198
H2	σC71 - H91	16.6	2.66	0.25

α spin

84. (0.98497) BD (1) C71 – H90	(61.21%) C 71 s(22.93%) p 3.36(77.02%) d 0.00(0.04%)		
	(38.79%) H 90 s(99.92%) p 0.00(0.08%)		
85. (0.98081) BD (1)C71 - H91	(60.28%) C 71 s(22.37%) p 3.47(77.59%) d 0.00(0.05%)		
	(39.72%) H 91 s(99.92%) p 0.00(0.08%)		
155. (0.16568) LP*(6)Ni1	s(87.97%) p 0.05(4.11%) d 0.09(7.93%)		
157. (0.01818) LP*(8)Ni1	s(1.99%) p48.57(96.75%) d 0.63(1.25%)		

β spin

85. (0.97987) BD (1) C71 - H90	(61.16%) C 71 s(22.63%) p 3.42(77.32%) d 0.00(0.04%)		
	(38.84%) H 90 s(99.93%) p 0.00(0.07%)		
86. (0.97184) BD (1) C71 - H91	(59.97%) C 71 s(21.93%) p 3.56(78.02%) d 0.00(0.04%)		
	(40.03%) H 91 s(99.93%) p 0.00(0.07%)		
155. (0.07809) LP*(6)Ni1	s(0.10%) p99.99(98.76%) d11.26(1.12%)		
157. (0.00789) LP*(8)Ni1	s(6.46%) p12.86(83.04%) d 1.63(10.50%)		

Supplementary Table 22. NBO calculation of complex 1 at UB3LYP/defs-SVP theory level.
Donor	Acceptor	\(E(2)\) kcal/mol	\(E(i)-E(i)\) a.u.	\(F(i,j)\) a.u.
84. BD (1) C71 - H90	155. LP*(6)Ni 1	1.14	0.61	0.036
85. BD (1) C71 - H91	155. LP*(6)Ni 1	4.14	0.86	0.075
85. BD (1) C71 - H91	157. LP*(8)Ni 1	2.11	0.61	0.049
	157. LP*(8)Ni 1	6.14	0.86	0.092
Total		13.53	2.94	0.252
86. BD (1) C71 - H90	158. LP*(8)Ni 1	1.07	0.8	0.037
87. BD (1) C71 - H91	157. LP*(7)Ni 1	7.76	0.63	0.09
	158. LP*(8)Ni 1	11.7	0.63	0.109
Total		22.19	2.86	0.283

\(\alpha\) spin

84. (0.98224) BD (1) C71 - H90	C71 s (23.66%) p 3.22(76.20%) d 0.01(0.14%)
	H90 s(99.97%) p 0.00(0.03%)
85. (0.97697) BD (1) C71 - H91	0.7731* C 71 s(23.06%)p 3.33(76.78%) d 0.0(0.15%)
	0.6343* H 91 s(99.96%)p 0.00(0.04%)
155. (0.17706) LP*(6)Ni1	s(88.35%) p 0.08(6.75%) d 0.06(4.90%)
157. (0.02359) LP*(8)Ni 1	s(1.69%) p57.45(97.23%) d 0.63(1.07%)

\(\beta\) spin

86. (0.97271) BD (1) C71 - H90	C71 s(23.32%) p 3.28(76.53%) d 0.01(0.14%)
	H90 s(99.97%) p 0.00(0.03%)
87. (0.96183) BD (1) C71 - H91	0.7731* C 71 s(22.59%)p 3.32(77.25%) d 0.01(0.15%)
	0.6343* H 91 s(99.96%)p 0.00(0.03%)
157. (0.05668) LP*(7)Ni 1	s(54.15%) p 0.37(19.97%) d 0.48(25.88%)
158. (0.01122) LP*(8)Ni 1	s(6.84%) p12.23(83.71%) d 1.38(9.45%)

Supplementary Table 23. NBO calculation of complex 1 at UB3LYP/def2-TZVP theory level.
complex 1

![Chemical structure of complex 1](image)

Donor	Acceptor	E(2) kcal/mol	E(\(j\))-E(\(i\)) a.u.	F(\(i,j\)) a.u.	
84. BD (1) C71 - H90	155. LP*(6)Ni	1	0.83	0.59	0.03
156. LP*(7)Ni	1	0.31	0.92	0.022	
157. LP*(8)Ni	1	8.26	0.87	0.107	
α	155. LP*(6)Ni	1	1.65	0.59	0.043
156. LP*(7)Ni	1	0.34	0.92	0.023	
157. LP*(8)Ni	1	10.06	0.87	0.118	
Total			21.45	4.76	0.343
86. BD (1) C71 - H91	155. LP*(6)Ni	1	0.31	0.88	0.021
156. LP*(7)Ni	1	10.73	0.67	0.108	
157. LP*(8)Ni	1	2.41	0.74	0.054	
β	155. LP*(6)Ni	1	0.61	0.88	0.03
156. LP*(7)Ni	1	14.23	0.67	0.124	
157. LP*(8)Ni	1	2.5	0.74	0.054	
Total			30.79	4.58	0.391
H 1	σ C71 - H90		24.65	4.67	0.342
H 2	σ C71 - H91		27.59	4.67	0.392

α spin

| 84. (0.97610) BD (1) C71 - H90 | (60.72%) C71 s(23.77%) p 3.20(76.08%) d 0.01(0.15%) |
| (39.28%) H90 s(99.95%) p 0.00(0.05%) d 0.00(0.00%) |
| 85. (0.97199) BD (1) C71 - H91 | (59.74%) C71 s(23.12%) p 3.32(76.72%) d 0.01(0.16%) |
| (40.26%) H91 s(99.95%) p 0.00(0.05%) d 0.00(0.00%) |
155. (0.17905) LP*(6)Ni1	s(89.15%) p 0.06(6.67%) d 0.06(5.67%)
156. (0.06951) LP*(7)Ni1	s(2.64%) p36.77(97.15%) d 0.07(0.20%)
157. (0.03664) LP*(8)Ni1	s(2.46%) p36.97(96.05%) d 0.60(1.47%)

β spin

| 86. (0.96711) BD (1) C71 - H90 | (60.69%) C71 s(23.43%) p 3.26(76.42%) d 0.01(0.14%) |
| (39.31%) H90 s(99.95%) p 0.00(0.04%) d 0.00(0.00%) |
| 87. (0.95755) BD (1) C71 - H91 | (59.43%) C71 s(22.63%) p 3.41(77.21%) d 0.01(0.15%) |
| (40.57%) H91 s(99.95%) p 0.00(0.05%) d 0.00(0.00%) |
156. (0.07142) LP*(6)Ni	s(4.49%) p19.57(87.92%) d 1.68(7.57%)
157. (0.05801) LP*(7)Ni	s(47.59%) p 0.68(32.47%) d 0.42(19.94%)
158. (0.02297) LP*(8)Ni	s(10.13%) p 7.54(76.31%) d 1.34(13.56%)

Supplementary Table 24. NBO calculation of complex 1 at UB3LYP/defs-TZVPP theory level
Donor	Acceptor	\(E(2)\) kcal/mol	\(E(j)-E(i)\) a.u.	\(F(i,j)\) a.u.
11. BD (1)C5-H7	52. LP*(6)Ni 12	0.68	0.61	0.026
	52. LP*(6)Ni 12	5.22	0.67	0.075
	52. LP*(7)Ni 12	0.68	0.61	0.026
	52. LP*(7)Ni 12	5.22	0.67	0.075
Total	11.8	2.56	0.202	
11. BD (1)C5-H7	51. LP*(5)Ni 12	8.55	0.59	0.091
	52. LP*(6)Ni 12	0.7	0.61	0.026
	53. LP*(7)Ni 12	0.36	0.62	0.019
b	51. LP*(5)Ni 12	8.55	0.59	0.091
13. BD (1)C5-H10	52. LP*(6)Ni 12	0.7	0.61	0.026
	53. LP*(7)Ni 12	0.36	0.62	0.019
Total	19.22	3.64	0.272	
H1	\(\sigma\) C5 - H7	15.51	3.1	0.237
H1	\(\sigma\) C5 - H10	15.51	3.1	0.237

\textbf{Supplementary Table 25.} NBO calculation of complex 1* at UB3LYP/defs-TZVPP theory level
DFT calculation of rotation scan

Supplementary Figure 20. AIM electron density contour map of complex 1 and its simplified version 1-s. 1-s’s dihedral angle Φ was optimized at 0° and constrained at 10° as comparison.
X-ray diffraction

The crystal structure details are referred to previous reports.1,2

Supplementary Figure 21. ORTEP depiction of the solid-state structure of 3 (ellipsoids at 50% probability, H1 and H2 were freely located and refined from the electron density map.)

Supplementary Figure 22. ORTEP depiction of the solid-state structure of 4 (ellipsoids at 50% probability, H1 and H2 were freely located and refined from the electron density map.)
Compound	3	4
Empirical formula	C_{38}H_{56}N_{3}NiO	C_{37}H_{54}N_{3}NiO
Formula weight	629.56	615.54
Temperature/K	90	90
Crystal system	monoclinic	monoclinic
Space group	P2_1/c	P2_1/n
a/Å	9.3273(13)	9.4012(6)
b/Å	17.223(2)	20.5882(13)
c/Å	21.432(3)	18.0158(13)
α/°	90	90
β/°	94.644(3)	94.096(2)
γ/°	90	90
Volume/Å³	3431.7(8)	3478.1(4)
Z	4	4
ρ_cal g/cm³	1.219	1.175
μ/mm⁻¹	0.598	0.589
F(000)	1364	1332
Crystal size/mm³	0.57 x 0.12 x 0.04	0.19 x 0.17 x 0.17
Radiation	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)
2θ range for data collection/°	3.038 to 56.018	3.956 to 58.254
Index ranges	-10 ≤ h ≤ 12, -22 ≤ k ≤ 22, -27 ≤ l ≤ 28	-12 ≤ h ≤ 12, -28 ≤ k ≤ 20, -24 ≤ l ≤ 24
Reflections collected	32923	39295
Independent reflections	8266 [R_{int} = 0.0536, R_{sigma} = 0.0468]	9351 [R_{int} = 0.0521, R_{sigma} = 0.0472]
Data/restraints/parameters	8266/0/399	9351/6/419
Goodness-of-fit on F²	1.02	1.008
Final R indexes [I>=2σ(I)]	R₁ = 0.0374, wR₂ = 0.0808	R₁ = 0.0378, wR₂ = 0.0798
Final R indexes [all data]	R₁ = 0.0610, wR₂ = 0.0897	R₁ = 0.0612, wR₂ = 0.0877
Largest diff. peak/hole / e Å⁻³	0.47/-0.37	0.48/-0.26

Supplementary Table 26. Crystallographic data for complex 3 and 4.
complex	Ni1-H1 (Å)	N1-H2 (Å)	Ni1-C1 (Å)	Ni1-H1-C1 (°)	Ni1-H2-C1 (°)	ΔNi-H (Å)	ΔNi-H-C (°)
6.1a(XRD)	2.159(15)	2.024(15)	2.4476(10)	101.8(10)	94.3(10)	7.5	-0.135
6.2a(XRD)	1.94(2)	2.15(2)	2.4007(2)	106.18(3)	92.60(8)	13.575	0.21
6.1a(DFT)	1.98	2.133	2.394	97.384	89.488	7.896	0.152
6.2a(DFT)	1.97	2.263	2.461	102.276	86.734	15.542	0.294

Supplementary Table 27. The comparison of Distances and Angles of agnostic complexes 6.1a-6.2a in XRD and DFT structures.
Appendix – Calculation Coordinates

Complex 1

![Complex 1 Diagram](image_url)

UKS PBE0 D3BJ def2-SVP def2/J RIJCOSX
newgto Ni def2-TZVP

Atom	X	Y	Z	Atom	X	Y	Z					
Ni	3.727164	9.195253	13.992052	C	3.048276	5.077815	13.820574					
O	7.277636	11.33025	14.364541	H	2.225648	5.399616	13.161702					
N	5.48843	9.710786	14.513119	C	3.102184	3.553931	13.795704					
N	1.016118	8.865216	12.726788	H	3.958492	3.168817	14.369675					
N	1.408193	7.434599	14.263826	H	3.230634	3.19594	12.763219					
C	1.986116	8.481748	13.60759	H	2.190384	3.100082	14.212931					
C	-0.129605	8.099015	12.852072	C	4.343777	5.67682	13.267921					
H	-1.004011	8.275869	12.232826	H	4.298584	6.777077	13.239147					
C	0.119016	7.191013	13.828711	H	4.542161	5.316258	12.246538					
H	-0.496101	6.410374	14.267162	H	5.200277	5.3967	13.899553					
C	1.161622	9.89991	11.752266	C	0.985822	8.642028	16.822892					
C	0.712155	11.195382	12.05878	H	0.538637	8.893491	15.850274					
C	0.88589	12.183485	11.085082	C	-0.171731	8.435076	17.795789					
H	0.550548	13.202134	11.292249	H	-0.849193	7.642621	17.438279					
C	1.487599	11.892807	9.866167	H	-0.757987	9.360856	17.901669					
H	1.628795	12.682657	9.125121	H	0.179337	8.145797	18.798945					
C	1.909697	10.597501	9.58476	C	1.886452	9.816836	17.203842					
H	2.382065	10.378444	8.625	H	2.37499	9.658367	18.178499					
C	1.744974	9.56943	10.515264	H	1.301591	10.74832	17.263661					
C	2.206491	8.160136	10.190331	H	2.679269	9.958963	16.45048					
C	1.722073	7.478021	10.906516	C	6.120487	10.818185	14.077786					
C	3.717105	8.020876	10.373556	C	5.318955	11.781969	13.173247					
H	4.258188	8.730627	9.72927	C	3.987607	11.211409	12.727808					
H	4.048955	7.004568	10.110258	C	5.081321	13.060589	13.98264					
C	1.784712	7.722324	8.878508	H	6.042225	13.463101	14.334471					
H	2.052672	6.667008	8.624032	H	4.458012	12.852523	14.867637					
H	2.294428	8.30763	8.007346	H	4.57164	13.825716	13.373771					
C	0.028828	11.536871	13.369749	C	6.174738	12.091729	11.944559					
H	0.103404	10.65494	14.02437	H	6.327429	11.188106	11.332869					
C	0.702874	12.696179	14.101017	H	7.161374	12.453245	12.264597					
H	1.755581	12.473427	14.32539	H	5.691603	12.854493	11.312487					
H	0.188447	12.895889	15.053702	C	6.305923	8.816713	15.372759					
H	0.669173	13.624732	13.510976	H	6.964267	9.519483	15.966986					
C	-1.453918	11.831772	13.13069	C	5.419901	8.073692	16.321138					
H	-1.58244	12.675472	12.434767	H	4.841868	8.748831	16.96964					
----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
C	2.005736	6.793992	15.391597	C	7.222318	7.966058	14.542647					
C	1.797763	7.374149	16.652943	C	6.63708	7.314907	13.874752					
H	3.644965	5.149678	18.466247	H	3.28743	11.08291	13.584987					
C	0.138763	7.123686	13.758239	H	2.42877	3.175425	14.219882					
C	-0.07221	8.049643	12.786859	C	4.597966	5.810832	13.498654					
H	-0.915966	8.220989	12.124929	H	4.528113	6.910574	14.372513					
C	0.138763	7.123686	13.758239	H	4.894475	5.466277	12.495199					
H	-0.485654	6.320102	14.138031	H	5.404308	5.546809	14.200021					
C	1.273247	9.960396	11.889243	C	0.687983	8.506251	16.792091					
C	0.918311	11.234458	12.36142	H	0.385301	8.800461	15.77698					
C	1.18672	12.324391	11.52895	C	-0.593929	8.146522	17.540365					
H	0.93422	13.331463	11.868686	H	-1.129754	7.330588	17.031781					
C	1.784292	12.145016	10.286977	H	-1.26768	9.015928	17.588968					
C	1.999278	13.011037	9.657245	H	-0.390679	7.816134	18.571668					
C	2.126188	10.870212	9.846555	C	1.412655	9.710882	17.390165					
H	2.612479	10.745775	8.876691	H	1.773812	9.510235	18.411331					
C	1.874169	9.746901	10.636517	H	0.739618	10.580718	17.434009					
C	2.295556	8.363636	10.18006	H	2.282629	9.985838	16.773919					
H	1.751381	7.631661	10.797021	C	5.958996	10.732585	13.655393					
C	3.788172	8.151266	10.426375	C	5.000907	11.331564	12.61629					
H	4.385728	8.853888	9.828842	C	4.650676	12.761055	13.016402					
H	4.090371	7.128841	10.151874	H	5.57738	13.348376	13.103787					

Complex 2

UKS PBE0 D3BJ def2-SVP def2/J RIJCOSX
newgto Ni def2-TZVP
Complex 3

![Complex3 Diagram](image)

UKS PBE0 D3BJ def2-SVP def2/J RIJCOSX

newgto Ni def2-TZVP

Element	X	Y	Z	X	Y	Z
Ni	3.421346	11.730938	15.321682	1.902363	9.531025	17.83243
O	1.233	15.139252	15.725736	1.354945	7.840258	17.720681
N	5.147348	9.368427	15.670737	2.056365	8.438351	19.235497
N	4.276215	9.355061	13.715053	0.522941	13.70932	13.24637
N	2.511318	13.265513	16.004271	0.274301	12.684804	13.57338
C	5.38889	9.6879	17.04335	-0.171699	14.387663	13.765593
C	4.32319	10.095646	14.863808	0.960475	13.020045	17.897575
C	5.029969	8.19884	13.817708	0.816505	11.940404	17.719865
H	5.0961	7.480126	13.006056	0.809589	13.224642	18.970304
C	1.877913	14.194095	15.263299	0.202488	13.578926	17.330888
C	3.383767	9.647453	12.636888	3.450037	12.735337	18.194804

53
C	2.019782	9.35886	12.825087	H	4.441588	13.094643	17.884954
C	2.349127	13.456562	17.440595	H	3.35737	12.888905	19.281257
H	2.424946	14.539167	17.647595	H	3.41556	11.64499	18.015668
C	5.587299	8.210339	15.054432	C	0.337304	13.854954	11.738911
H	6.24592	7.507783	15.556405	H	-0.702248	13.609057	11.463291
C	4.604236	9.043025	18.019793	H	0.971568	13.128512	11.199818
C	3.879434	10.233782	11.457894	C	8.679397	11.409656	16.658393
C	1.49391	8.664765	14.066771	H	9.081737	10.429675	16.957557
H	2.357739	8.419303	14.700902	H	9.264564	11.780057	15.803151
C	1.945268	14.065548	13.726926	H	8.856276	12.110703	17.488338
C	1.132884	9.736255	11.813191	C	2.137676	15.594577	11.672526
H	0.065235	9.542667	11.939248	H	2.819849	14.925091	11.116069
C	6.381975	10.630425	17.361867	H	2.403224	16.617403	11.357687
C	3.509997	8.056972	17.646589	C	0.698548	15.267108	11.290685
H	3.460455	8.026762	16.548948	H	0.02616	15.983446	11.794903
C	0.585948	9.58486	14.879118	H	0.535962	15.394324	10.207049
H	-0.285995	9.912931	14.292298	C	5.784777	10.219195	9.806697
H	0.211731	9.067442	15.775342	H	5.318305	10.918367	9.091049
H	1.132631	10.484623	15.208968	H	6.873662	10.341333	9.696099
C	2.948291	10.589866	10.477657	H	5.517878	9.197723	9.48894
H	3.294151	11.072953	9.561975	C	6.638467	12.727644	16.002216
C	7.197334	11.333062	16.293376	H	6.672412	13.361711	16.901752
H	7.106721	10.739369	15.370455	H	7.223328	13.226552	15.214171
C	5.357104	10.505026	11.239058	H	5.586695	12.682604	15.670705
H	5.920839	9.819175	11.890361	C	3.822124	6.64162	18.132835
C	4.85629	9.359131	19.357998	H	3.813512	6.589599	19.23533
H	4.266684	8.879867	20.14355	H	3.06475	5.932131	17.755777
C	6.577981	10.924835	18.713833	H	4.806755	6.294261	17.784662
H	7.330026	11.662978	18.998813	C	2.928922	13.006119	13.275432
C	0.804807	7.345118	13.715361	H	2.577849	11.987603	13.560088
H	1.480165	6.671928	13.1664	H	3.027009	12.951544	12.183095
H	0.475407	6.828971	14.630907	H	3.936398	13.201753	13.680162
H	-0.087199	7.504512	13.089608	C	5.744972	11.929582	11.6434
C	5.830051	10.293328	19.701118	H	5.59381	12.099027	12.718597
H	6.006654	10.543039	20.75036	H	6.804489	12.1179	11.408934
C	2.345958	15.447133	13.174214	H	5.141973	12.6711	11.097919
H	3.394915	15.656908	13.447153	C	1.589255	10.356429	10.656436
H	1.729691	16.185076	13.711007	H	0.879929	10.65385	9.881507
C	2.13186	8.499297	18.137962				
Complex 1*

UKS PBE0 D3BJ def2-SVP def2/J RIJCOSX
newgto Ni def2-TZVP

O	7.450600555	11.08700078	14.48790103
N	5.659100401	9.664400718	14.63760104
C	6.307200447	10.75800075	14.19120103
C	5.520800403	11.65210085	13.22550097
C	4.092500292	11.24220079	12.91880095
H	6.280800429	9.147200655	15.25650109
H	4.064200295	10.24980072	12.41680087
H	3.478500248	11.20670083	13.84290101
H	3.583100259	11.94160087	12.23720086
H	6.115100427	11.70690086	12.29930087
H	5.549700413	12.6659009	13.65510098
Supplementary References

1. Beattie, D. D., Bowes, E. G., Drover, M. W., Love, J. A. & Schafer, L. L. Oxidation State Dependent Coordination Modes: Accessing an Amidate-Supported Nickel(I) δ-bis(C–H) Agostic Complex. Angew. Chemie - Int. Ed. 55, 13290–13295 (2016).
2. Beattie, D. D. Amidate and ureate complexes of nickel: harnessing ligand design to understand the mecha(Ni)sm of C–H bond activation. UBC Theses Diss. (2019) doi:10.14288/1.0379357.
3. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).
4. Webb, S. M. SIXpack: A graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115, 1011–1014 (2005).
5. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. in Journal of Synchrotron Radiation vol. 12 537–541 (International Union of Crystallography, 2005).
6. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356, 98–109 (2009).
7. Schäfer, A., Huber, C. & Åhrlichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).
8. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
9. Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 34, 1429–1437 (2013).
10. Bader, R. F. W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 91, 893–928 (1991).
11. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
12. Tomson, N. C. et al. Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions. Chem. Sci. 6, 2474–2487 (2015).
13. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.