Effects and implementation of a mindfulness and relaxation app for patients with cancer: Mixed methods feasibility study

Mikolasek, Michael ; Witt, Claudia M ; Barth, Jürgen

Abstract: Background: Cancer diagnosis and cancer treatment can cause high levels of distress, which is often not sufficiently addressed in standard medical care. Therefore, a variety of supportive nonpharmacological treatments have been suggested to reduce distress in patients with cancer. However, not all patients use these interventions because of limited access or lack of awareness. To overcome these barriers, mobile health may be a promising way to deliver the respective supportive treatments. Objective: The aim of this study is to evaluate the effects and implementation of a mindfulness and relaxation app intervention for patients with cancer as well as patients’ adherence to such an intervention. Methods: In this observational feasibility study with a mixed methods approach, patients with cancer were recruited through the web and through hospitals in Switzerland. All enrolled patients received access to a mindfulness and relaxation app. Patients completed self-reported outcomes (general health, health-related quality of life, anxiety, depression, distress, mindfulness, and fear of progression) at baseline and at weeks 4, 10, and 20. The frequency of app exercise usage was gathered directly through the app to assess the adherence of patients. In addition, we conducted interviews with 5 health professionals for their thoughts on the implementation of the app intervention in standard medical care. We analyzed patients’ self-reported outcomes using linear mixed models (LMMs) and qualitative data with content analysis. Results: A total of 100 patients with cancer (74 female) with a mean age of 53.2 years (SD 11.6) participated in the study, of which 25 patients used the app regularly until week 20. LMM analyses revealed improvements in anxiety (P=.04), distress (P<.001), fatigue (P=.01), sleep disturbance (P=.02), quality of life (P=.03), and mindfulness (P<.001) over the course of 20 weeks. Further LMM analyses revealed a larger improvement in distress (P<.001), a moderate improvement in anxiety (P=.001), and a larger improvement in depression (P=.03) in patients with high levels of symptoms at baseline in the respective domains. The interviews revealed that the health professionals perceived the app as a helpful addition to standard care. They also made suggestions for improvements, which could facilitate the implementation of and adherence to such an app. Conclusions: This study indicates that a mindfulness and relaxation app for patients with cancer can be a feasible and effective way to deliver a self-care intervention, especially for highly distressed patients. Future studies should investigate if the appeal of the app can be increased with more content, and the effectiveness of such an intervention needs to be tested in a randomized controlled trial.

DOI: https://doi.org/10.2196/16785
Originally published at:
Mikolasek, Michael; Witt, Claudia M; Barth, Jürgen (2021). Effects and implementation of a mindfulness and relaxation app for patients with cancer: Mixed methods feasibility study. JMIR Cancer, 7:e16785. DOI: https://doi.org/10.2196/16785
Effects and Implementation of a Mindfulness and Relaxation App for Cancer Patients: Mixed-Methods Feasibility Study

Michael Mikolasek, Claudia Margitta Witt, Jürgen Barth

Submitted to: JMIR Cancer on: October 27, 2019

Disclaimer: © The authors. All rights reserved. This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on its website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.
Table of Contents

Section	Page
Original Manuscript	5
Supplementary Files	26
Figures	27
Figure 1	28
Figure 2	29
Figure 3	30
TOC/Feature image for homepages	31
TOC/Feature image for homepage 0	32
Effects and Implementation of a Mindfulness and Relaxation App for Cancer Patients: Mixed-Methods Feasibility Study

Michael Mikolasek¹ MSc; Claudia Margitta Witt¹,²,³ MD, MBA; Jürgen Barth¹ PhD

¹Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich Zurich CH
²Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin Berlin DE
³Center for Integrative Medicine, University of Maryland School of Medicine Baltimore US

Corresponding Author:
Michael Mikolasek MSc
Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich
Sonneggstrasse 6
Zurich
CH

Abstract

Background: A cancer diagnosis and cancer treatment can cause high levels of distress, which is often not sufficiently addressed in standard medical care. Therefore, a variety of adjuvant non-pharmacological treatments have been suggested to reduce cancer patients’ distress. However, not all patients use those interventions because of limited access or being unaware. To overcome these barriers, mHealth might be a promising way to deliver respective adjuvant interventions.

Objective: The aim of this study was to evaluate effects and the implementation of a mindfulness and relaxation app intervention for cancer patients as well as patients’ adherence to such an intervention.

Methods: In this observational feasibility study with a mixed-methods approach, cancer patients were recruited online and through hospitals in Switzerland. All enrolled patients received access to a mindfulness and relaxation app. Patients completed self-reported outcomes (general health, health-related quality of life, anxiety, depression, distress, mindfulness, and fear of progression) at baseline, week 4, 10, and 20. The frequency of app exercise usage was gathered directly through the app in order to assess the adherence of patients. In addition, we conducted interviews with 5 health professionals for their thoughts on the implementation of the app intervention into standard medical care. We analyzed patients’ self-reported outcomes with linear mixed models (LMM) and qualitative data with content analysis.

Results: A total of 100 cancer patients (74 female) with a mean age of 53.24 (SD 11.55) participated in the study, of which 25 patients used the app regularly until week 20. LMM analyses revealed an improvement in anxiety (P=.04), distress (P<.001), fatigue (P=.01), sleep disturbance (P=.02), quality of life (P=.03), and mindfulness (P<.001) over the course of 20 weeks. Further LMM analyses revealed a larger improvement of distress (P<.001), a moderate improvement of anxiety (P=.001), and depression (P=.03) in patients with high symptom levels in the respective domains. The interviews revealed that the health professionals perceived the app as a helpful addition to standard care. They also made suggestions for improvements, which could facilitate the implementation and adherence to such an app.

Conclusions: This study indicates that a mindfulness and relaxation app for cancer patients can be a feasible and effective way to deliver a self-care intervention, especially for highly distressed patients. Future studies should investigate if the appeal of the app can be increased with more content and the effectiveness of such an intervention needs to be tested in a randomized controlled trial. Clinical Trial: German Clinical Trials Register, DRKS00010481, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00010481 (JMIR Preprints 27/10/2019:16785)
DOI: https://doi.org/10.2196/16785

Preprint Settings

1) Would you like to publish your submitted manuscript as preprint?
✔ Please make my preprint PDF available to anyone at any time (recommended).
Please make my preprint PDF available only to logged-in users; I understand that my title and abstract will remain visible to all users.

No, I do not wish to publish my submitted manuscript as a preprint.

2) If accepted for publication in a JMIR journal, would you like the PDF to be visible to the public?

✓ Yes, please make my accepted manuscript PDF available to anyone at any time (Recommended).

 Yes, but please make my accepted manuscript PDF available only to logged-in users; I understand that the title and abstract will remain visible to all users.

 Yes, but only make the title and abstract visible (see Important note, above). I understand that if I later pay to participate in the PubMed Now! service, my accepted manuscript PDF will automatically be made openly available.

https://preprints.jmir.org/preprint/16785
Effects and Implementation of a Mindfulness and Relaxation App for Cancer Patients: Mixed-Methods Feasibility Study

Authors
Michael Mikolasek, MSc ¹, Claudia M. Witt, MD, MBA ²,³, Jürgen Barth; PhD ¹

¹ Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
² Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, Berlin, Germany
³ Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA

Corresponding author:
Michael Mikolasek
University Hospital Zurich
Institute for Complementary and Integrative Medicine
Sonneggstrasse 6
CH - 8091 Zurich, Switzerland
Tel: +41 44 255 51 49
Fax: +41 44 255 43 94
e-mail: michael.mikolasek@usz.ch
Abstract

Background: A cancer diagnosis and cancer treatment can cause high levels of distress, which is often not sufficiently addressed in standard medical care. Therefore, a variety of supportive non-pharmacological treatments have been suggested to reduce cancer patients’ distress. However, not all patients use those interventions because of limited access or being unaware. To overcome these barriers, mHealth might be a promising way to deliver respective supportive treatments.

Objective: The aim of this study was to evaluate effects and the implementation of a mindfulness and relaxation app intervention for cancer patients as well as patients’ adherence to such an intervention.

Methods: In this observational feasibility study with a mixed-methods approach, cancer patients were recruited online and through hospitals in Switzerland. All enrolled patients received access to a mindfulness and relaxation app. Patients completed self-reported outcomes (general health, health-related quality of life, anxiety, depression, distress, mindfulness, and fear of progression) at baseline, week 4, 10, and 20. The frequency of app exercise usage was gathered directly through the app in order to assess the adherence of patients. In addition, we conducted interviews with 5 health professionals for their thoughts on the implementation of the app intervention into standard medical care. We analyzed patients’ self-reported outcomes with linear mixed models (LMM) and qualitative data with content analysis.

Results: A total of 100 cancer patients (74 female) with a mean age of 53.2 (SD 11.6) participated in the study, of which 25 patients used the app regularly until week 20. LMM analyses revealed an improvement in anxiety \((P=.04) \), distress \((P<.001) \), fatigue \((P=.01) \), sleep disturbance \((P=.02) \), quality of life \((P=.03) \), and mindfulness \((P<.001) \) over the course of 20 weeks. Further LMM analyses revealed a larger improvement of distress \((P<.001) \), a moderate improvement of anxiety \((P=.001) \), and depression \((P=.03) \) in patients with high symptom levels at baseline in the respective domains. The interviews revealed that the health professionals perceived the app as a helpful addition to standard care. They also made suggestions for improvements, which could facilitate the implementation and adherence to such an app.

Conclusions: This study indicates that a mindfulness and relaxation app for cancer patients can be a feasible and effective way to deliver a self-care intervention, especially for highly distressed patients. Future studies should investigate if the appeal of the app can be increased with more content and the effectiveness of such an intervention needs to be tested in a randomized controlled trial.

Keywords: mobile application; app; mindfulness; relaxation; cancer; mixed-methods; implementation science; mHealth; evaluation; adherence; preference
Introduction

A cancer diagnosis and the following medical treatments can cause high levels of distress [1-4]. However, adequate psychological support for cancer patients is often lacking in standard medical care [5,6]. Therefore, a variety of supportive treatments have been suggested to reduce distress in cancer patients, such as Mind Body Medicine (MBM) [7]. MBM combines various effective treatments like mindfulness meditation, relaxation, yoga, and tai chi [7,8]. Such MBM treatments can have beneficial effects on cancer-related symptoms, such as pain, fatigue, and sleep disturbance [9-11]. Furthermore, MBM treatments can have beneficial effects on cancer patients’ quality of life [12-14]. These treatments can be provided through guided MBM programs for cancer patients, where the patients learn various exercises (e.g., physical exercises, relaxation, and stress reduction) and are encouraged to practice these newly learned exercises at home [15,16].

However, uptake of supportive treatments in distressed cancer patients is moderate [17]. Barriers for the uptake of such treatments include for instance stigmatization, unawareness of such interventions or limited access [18,19]. This is problematic, since untreated elevated levels of distress can lead to additional negative effects, such as reduced quality of life, daily functioning and lower adherence to medical treatment [20,21]. Access can be restricted for instance due to geographical distance, lack of treatment providers or knowledge thereof, and financial constraints [22-24]. To overcome these limitations in access, e- and mHealth interventions have been proposed. eHealth is defined more broadly as the delivery of health services or information through the internet and related technologies [25], whereas mHealth uses mobile technologies such as smartphones for the delivery of health services [26]. So far, research indicates that eHealth interventions with mindfulness or relaxation components can have beneficial effects on health outcomes in various patient populations [27-29]. However, eHealth studies focusing on cancer patients show inconsistent results so far [30,31]. Nonetheless, eHealth interventions seem promising since they can have positive effects on cancer patients’ wellbeing [31].

Although mHealth interventions have some advantages over web-based eHealth interventions (e.g., more flexible access due to mobility, the possibility to reach a large number of patients due to a large popularity of smartphones), little is known about best practices for the implementation of mHealth interventions [32,33]. In addition, mHealth research so far indicates that the adoption of mHealth interventions by health professionals and patients can be inhibited by various factors, such as perceived usefulness and ease of use [34,35]. Furthermore, there is a lack of mHealth studies with mindfulness or relaxation-based interventions [27]. Therefore, we developed a research app to conduct a feasibility study of a mindfulness- and relaxation-based mHealth intervention for cancer patients [36]. The app included three exercises, namely mindfulness meditation, guided imagery, and progressive muscle relaxation.

The aim of this study was to assess the feasibility of this mHealth intervention by using the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) evaluation framework, which was developed for the evaluation of public health interventions [37]. While the results for the dimensions reach, adoption over the course of 10 weeks, and maintenance were published elsewhere [36], the present analyses focus on the three dimensions effectiveness, adoption and implementation over the course of 20 weeks to assess pre-post effects of the app on a variety of health outcomes and the adherence to the app intervention. In doing so, we investigate if such an app might be a beneficial supportive care tool for cancer patients.
Methods

Study Design

For this feasibility study, we used a mixed-methods approach. For quantitative data, we assessed 4 paper-and-pencil questionnaires which we sent to cancer patients at baseline, weeks 4, 10, and 20. Demographics and patient characteristics were assessed at baseline and health outcomes (physical, mental, and social health, health-related quality of life, anxiety, depression, distress, mindfulness, and fear of progression) were assessed over the four time points. Qualitative data consisted of semi-structured interviews with 5 health professionals. In those interviews, we inquired health professionals’ perspectives on a mindfulness- and relaxation-based mHealth intervention for cancer patients and its implementation into standard medical care. In order to receive feedback from different health professionals, we conducted 2 face-to-face group interviews (one interview with 2 nursing experts, the second interview with two psychologists providing a MBM treatment for cancer patients) and one individual interview with an oncologist. All interviewees received access to the app before the interview and could test the app. The interviewer also demonstrated the app and its content to the interviewees before the interview started.

To assess the feasibility of our mHealth intervention, we used the RE-AIM implementation science framework [37]. Ethical approval for the study was granted in April 2016 by the cantonal ethics committee Zurich (BASEC-Nr. 2016-00258) and we registered the study in the German Clinical Trials Register (DRKS00010481).

Participants

Patients were eligible if they had any cancer diagnosis at any stage of cancer, were 18 years or older, and owned either an iOS or Android-based smartphone with at least a weekly connection to the internet. Patients were excluded if they had suicidal ideation or insufficient German language skills, intended to move to another country or if they had insufficient knowledge on how to use a smartphone. The patient recruitment process is described in more detail elsewhere [36]. For the interviews with health professionals, we invited experts (an oncologist, nursing experts, and psychologists) from the University Hospital Zurich who provide health care for cancer patients.

App Intervention

All enrolled patients received the mindfulness and relaxation app, which was specifically developed for this study and only available for patients participating in the study. The app could be downloaded in the Apple iTunes store and Google Play Store for android devices and accessed with a code, which was provided to the patients after study inclusion. The app offered three exercises, namely mindfulness meditation, guided imagery, and progressive muscle relaxation. The exercises were included in the app as audio files with a duration of approximately 15 min each and the patients could choose between a female or male narrator. Patients were free to choose which exercises they wanted to use and how often they wanted to practice. However, we recommended to the patients to use an exercise of their choice on a daily basis, ideally five times per week. In order to help patients practice regularly, the app had an optional notification feature, which patients could set up to get a daily push notification on the mobile device, reminding them to practice on an individually set time. Information about the use of exercises (exercise type, date, start and end time) was saved in the backend, which was only accessible to the researchers as an XML log file. More information about the app is presented in a previously published paper [36].
Outcomes

Effects

Since we conducted a single arm study without a control group, we were not able to assess the effectiveness of the app intervention. Therefore, for the RE-AIM dimension effectiveness, we looked into pre-post effects in a variety of health outcomes relevant to cancer patients. We assessed physical, mental, and social health with the Patient-Reported Outcomes Measurement Information System (PROMIS 29) [38]. PROMIS 29 is a 29 item scale assessing seven health domains: physical function (Cronbach alpha=.81), fatigue (Cronbach alpha=.94), pain interference (Cronbach alpha=.96), depressive symptoms (Cronbach alpha=.85), anxiety (Cronbach alpha=.81), ability to participate in social roles and activities (Cronbach alpha=.88), and sleep disturbance (Cronbach alpha=.86) with four items, each on a 5-point scale and pain intensity with a single item on a 10-point numeric rating scale.

For the assessment of health-related quality of life for cancer patients, we administered the Functional Assessment of Cancer Therapy – General (FACT-G) [39,40]. FACT-G consists of four subscales, namely physical well-being (Cronbach alpha=.85), social well-being (Cronbach alpha=.76), emotional well-being (Cronbach alpha=.70), functional well-being (Cronbach alpha=.79), measured with 27 items with a 5-point scale. A higher score indicates better quality of life.

For the assessment of distress, we administered Distress-Thermometer [41]. The Distress-Thermometer is a numeric rating scale ranging from 0 to 10. A score of 5 or higher is considered as clinically relevant distress [42].

For the assessment of mindfulness, we administered the short version of the Freiburg Mindfulness Inventory (FMI) [43]. The FMI (Cronbach alpha=.87) assesses mindfulness with 14 items on a 4-point scale with a higher score indicating higher mindfulness.

We measured anxiety and depression with the Hospital Anxiety and Depression Scale (HADS). The HADS assesses 7 items for the subscales anxiety (Cronbach alpha=.79) and depression (Cronbach alpha=.67) on a 4-point scale, with a maximum score of 21 for each subscale. A score up to 7 is considered normal, a score between 8 and 11 as borderline, and a score above 11 as caseness [44].

For the assessment of fear of progression, we administered the Fear of Progression Questionnaire-Short Form (FoP-Q-SF) [45]. The FoP-Q-SF (Cronbach alpha=.81) consists of 12 items with a 5-point scale. A higher score indicates more fear of progression.

We assessed PROMIS 29, FACT-G, and FMI at baseline, week 4, week 10, week 20 and HADS, FoP-Q-SF, as well as Distress at baseline, week 10, and week 20. We defined a continuous app user as a patient who used the app exercises regularly (at least one exercise per week). We counted an exercise as completed if the patient played the exercise audio file for at least 10 minutes of the total time of 15 minutes. We defined an intervention dropout as a patient who stopped using the exercises for four consecutive weeks, since regular practice might be a prerequisite for a beneficial intervention. We defined the first week when the patient stopped using the exercises as dropout week. A patient who never used an app exercise counted as a week one intervention dropout.

Adoption

For the RE-AIM dimension adoption, we looked at numbers of completed app exercises over 20 weeks and app exercises preferences. We report the median of completed app exercises by all enrolled patients per week, as well as the median of completed app exercises by continuous app users. For exercise preferences, we report frequencies of used exercises for all enrolled patients, stratified for gender of the patient and the narrator.
Implementation

For the RE-AIM dimension implementation, we report results from interviews with health professionals regarding their opinion on the implementation of the app intervention in addition to standard medical care. In the interviews, we inquired the general impression regarding the app, implementation of the app as an addition to standard medical care, and suggestions for improvements.

Sample Size

One aspect evaluated in our feasibility study was characteristics and number of cancer patients which participated in the study (evaluation dimension reach), which was reported previously [36]. Therefore, we did not perform an a priori analysis to determine the required sample size for adequate power. However, we aimed to recruit at least 100 patients, which is sufficient to achieve 80% power for a 2-tailed t-test with an alpha level set at .05 and a small effect size of Cohen’s $d = .28$.

Data Analysis

Quantitative Data

All printed case report forms were entered by trained researchers into the electronic data base REDCap, which was hosted at the University Hospital Zurich. All analyses were carried out in SPSS version 25.0 (IBM Corp, Armonk, NY, USA).

For patients’ baseline characteristics we used descriptive statistics (frequencies and percentages for categorical variables, mean and SD for continuous variables). For the analyses of pre-post effects, we used linear mixed models (LMMs) to analyze changes over time (baseline, week 4, week 10, week 20) in health outcomes, as well as differences between continuous app users and intervention dropouts in health outcomes. All patients who provided baseline data were included in the analyses and since we used LMMs, patients with missing data in week, 4, 10, and 20 questionnaires were nevertheless included. The dependent variables were the seven PROMIS 29 domains, FACT-G, HADS subscales anxiety and depression, Distress-Thermometer, FMI, and FoP-Q-SF. Furthermore, we looked at changes in the respective health outcomes for subsamples with high distress (Distress-Thermometer score 5 or higher), high anxiety (HADS anxiety score of 8 or higher), high depression (HADS depression score of 8 or higher). As covariance type we used an autoregressive covariance structure (AR1). Time was included as fixed effect. For group analyses (continuous app users vs. intervention dropouts), we added group and time by group as fixed effects. Hedge’s g effect sizes were calculated as mean differences (baseline and week 20) divided by pooled SDs for each health outcome of interest.

Qualitative Data

For the dimension implementation, we recorded the interviews and transcribed the interviews verbatim. We used thematic coding for structuring the interviews using MAXQDA 11 (VERBI Software, Berlin, Germany) and we used content analysis according to Mayring [46].

Results

Patient Characteristics

Between June 2016 and December 2018, we were able to recruit 100 cancer patients and all of them provided baseline information. At week 20, 72 (72/100, 72%) patients filled in questionnaire 4
Baseline characteristics of all enrolled patients (N=100) as well as subsamples of patients with high distress (62/100, 62%), high anxiety (35/100, 26%), and high depression (20/100, 20%) are summarized in Table 1. The majority of patients (74/100, 74%) were female. The mean age of all patients was 53.24 (SD=11.55) and ranged from 23 to 84 years. Patients predominantly owned an iOS smartphone (67/100, 67%), whereas 30 patients (30/100, 30%) owned an Android smartphone and a few (3/100, 3%) owned both.

Figure 1 Flowchart

Table 1. Demographics for total sample, high distress, high depression, and high anxiety subsamples.

Patient demographics	Total sample (N=100)	High distress\(^a\) subsample (n=62)	High anxiety\(^b\) subsample (n=35)	High depression\(^c\) subsample (n=20)

https://preprints.jmir.org/preprint/16785 [unpublished, peer-reviewed preprint]
Gender, n (%)

	Baseline	Week 1	Week 2	Week 3
Female	74 (74)	48 (77)	26 (74)	15 (75)
Male	26 (26)	14 (23)	9 (26)	5 (25)

Age, mean (SD)

	Baseline	Week 1	Week 2	Week 3
Breast cancer	53.24 (11.55)	52.74 (10.67)	51.22 (10.67)	51.74 (11.63)
Colon cancer	9 (9)	7 (11)	2 (6)	3 (15)
Ovarian or cervical cancer	6 (6)	3 (5)	2 (6)	0 (0)
Lung cancer	6 (6)	3 (5)	0 (0)	1 (5)
Others	40 (40)	22 (35)	13 (37)	8 (40)

Status of cancer treatment, n (%)

	Baseline	Week 1	Week 2	Week 3
Total removal	46 (46)	33 (53)	24 (69)	11 (55)
Recurrence or incomplete removal	25 (25)	15 (24)	6 (17)	5 (25)
Uncertain	3 (3)	1 (2)	1 (3)	2 (10)
Other	26 (26)	13 (21)	4 (11)	4 (20)

Highest education, n (%)

	Baseline	Week 1	Week 2	Week 3
Primary school	3 (3)	2 (3)	2 (6)	0 (0)
Apprenticeship	22 (22)	16 (26)	5 (14)	5 (25)
Secondary education	41 (41)	21 (34)	14 (40)	7 (35)
University degree	33 (33)	22 (35)	14 (40)	7 (35)
unknown	1 (1)	1 (2)	0 (0)	1 (5)

a Distress-Thermometer score ≥ 5
b HADS anxiety score ≥ 8
c HADS depression score ≥ 8

Effects

The health outcome values at baseline and week 20, as well as effect sizes for the total sample and the high distress, high anxiety, high depression subsamples are presented in Table 2. Baseline distress was at 5.29 (SD=2.31) and therefore patients were on average above an assumed clinically relevant threshold of 5, with 62 patients (62/100, 62%) of patients reporting a distress level of 5 or higher. At week 20, distress decreased to an average of 4.1 (SD=2.12; Hedge’s g=0.53). The mean for HADS anxiety was at baseline at 6.88 (SD=3.50) and dropped to 6.31 (SD=3.78; Hedge’s g=0.16) at week 20. Overall, 35 (35/100; 35%) patients reported elevated HADS anxiety (8 or higher) at baseline (mean=10.71; SD=1.95), which dropped to 8.85 (SD=3.50; Hedge’s g=0.68) at week 20. For HADS depression, mean at baseline was 4.96 (SD=2.78) and dropped to 4.55 (SD=3.31; Hedge’s g=0.14) at week 20. Overall, 20 (20/100; 20%) patients reported elevated HADS depression (8 or higher) at baseline (mean=9.00; SD=1.12), which dropped to 8.85 (SD=3.50; Hedge’s g=0.61) at week 20. For the remaining measures without a proposed threshold (PROMIS, FACT-G, FMI, FoP), changes from baseline to week 20 were small with Hedge’s g effect sizes ranging from 0.04 to 0.33.

Sample	Outcome	Baseline	Week 20	Hedges’s g
		Mean (SD), n	Mean (SD), n	

Table 2. Mean values of health outcomes at baseline and week 20, response rate (n) and effect sizes.
Total sample (N=100)	HADS^a anxiety	HADS^a depression	Distress	PRO physfunc^b	PRO anxiety^c	PRO depression^d	PRO fatigue^e	PRO sleep^f	PRO social^g	PRO pain^h	FACT-Gⁱ	FMI^j	FoP^k	High distress^l (n=62)	High anxiety^m (n=35)	High depressionⁿ (n=20)	
	6.88 (3.50), n=99	4.96 (2.78), n=100	5.29 (2.31), n=99	46.55 (6.54), n=99	55.97 (6.46), n=99	55.20 (6.81), n=100	56.11 (9.23), n=99	51.44 (8.85), n=100	48.42 (7.64), n=99	52.88 (9.10), n=97	75.54 (13.85), n=99	38.46 (6.62), n=96	31.33 (7.83), n=93	6.79 (1.36), n=62	10.71 (1.95), n=35	9.00 (1.12), n=20	
	6.31 (3.78), n=71	4.55 (3.31), n=71	4.10 (2.12), n=71	46.30 (7.32), n=71	55.01 (6.83), n=70	53.88 (7.81), n=71	52.40 (10.31, n=70)	49.52 (8.02), n=70	49.84 (7.87), n=71	51.96 (9.38), n=70	79.62 (14.81), n=70	41.80 (6.42), n=69	30.28 (7.99), n=64	4.39 (2.19), n=46	8.85 (3.50), n=26	7.47 (3.52), n=17	
(95% CI)	-0.16 (-0.46, 0.15)	-0.14 (-0.44, 0.17)	-0.53 (-0.84, 0.22)	-0.04 (-0.34, 0.27)	-0.15 (-0.45, 0.16)	-0.18 (-0.49, 0.12)	-0.38 (-0.69, 0.07)	-0.23 (-0.53, 0.08)	0.18 (-0.12, 0.49)	0.10 (-0.41, 0.21)	0.29 (-0.02, 0.59)	0.51 (-0.20, 0.83)	-0.13 (-0.45, 0.19)	-1.36 (-1.79, -0.94)	-0.69 (-1.20, -0.16)	-0.61 (-1.27, 0.05)	

^a Hospital Anxiety Depression Scale, negative effect = improvement
^b PROMIS Physical Function, positive effect = improvement
^c PROMIS Anxiety, negative effect = improvement
^d PROMIS Depression, negative effect = improvement
^e PROMIS Fatigue, negative effect = improvement
^f PROMIS Sleep Disturbance, negative effect = improvement
^g PROMIS Ability to Participate in Social Roles and Activities, positive effect = improvement
^h PROMIS Pain Interference, negative effect = improvement
ⁱ Functional Assessment of Cancer Therapy – General, positive effect = improvement
^j Freiburg Mindfulness Inventory, positive effect = improvement
^k Fear of Progression, negative effect = improvement
^l Distress-Thermometer score ≥ 5, negative effect = improvement
^m HADS anxiety score ≥ 8, negative effect = improvement
ⁿ HADS depression score ≥ 8, negative effect = improvement

https://preprints.jmir.org/preprint/16785 [unpublished, peer-reviewed preprint]
Results for effects over time are presented in table 3. LMM analyses revealed that there was a significant decrease over time in distress (P<.001), fatigue (P=.01), sleep disturbance (P=.02), and anxiety (P=.04) measured with the HADS. Furthermore, there was a significant increase in quality of life (P=.03) and mindfulness (P<.001). No significant effects were found for physical functioning, anxiety measured with PROMIS, depression, ability to participate in social roles and activities, and fear of progression. LMM analyses for the subsamples revealed that distress decreased significantly in the high distress subsample (P<.001), anxiety decreased significantly in the high anxiety subsample (P=0.001), and depression decreased significantly in the high depression subsample (P=.03). Dose response analyses using LMM with group by time revealed no significant results.

Table 3. Linear mixed models: estimates of fixed effect of time on health outcomes from baseline to week 20.
Adoption

According to our definition, 25 (25/100, 25%) of all enrolled patients used the app continuously (i.e. at least one completed exercise per week) at week 20 of the intervention. The average number (median) of completed exercises during the 20 week intervention for all patients as well as continuous app users is presented in Figure 2. Across all patients, the median of completed exercises was 2 during the first week and dropped to 0 at week 9. For continuous app users, who completed an app exercise at least once per week until week 20, the median of completed exercises at week one was 6. For the subsequent weeks up until week 20, the median of completed exercises varied between a median of 3 and 5 for the continuous app users.

Figure 2. Completed app exercises by all enrolled patients (N=100) and by continuous app users (N=25) per week (median).

The percentage of completed exercises is presented in Figure 3. All patients together completed 3526 exercises. Mindfulness meditation was used most often with a total of 1633 completed exercises (46.31%), followed by guided imagery with 1077 completed exercises (30.55%). Progressive muscle relaxation was used least frequently with 816 completed exercises (23.14%). In both mindfulness meditation and guided imagery the female narrator voice was preferred. Furthermore, female patients showed a preference for exercises with a female narrator (1935 completed exercises with female narrator vs. 1031 completed exercises with a male narrator). Male patients however preferred exercises with a male narrator (389 completed exercises with a male narrator vs. 171 completed exercises with a female narrator). The probability to choose the same sex in audio file is therefore increased for women by 87% and for men by 127% which corresponds to a twofold higher preference for the same sex as narrator.

Figure 3. Completed exercises (3526) of all patients (N=100) over 20 weeks by type (mindfulness meditation, guided imagery, progressive muscle relaxation), gender of patient (male, female) and sex of narrator (male, female). Percentages refer to the total number of exercises per gender.
Implementation

Five health professionals took part in an interview: two female nursing experts (one from an inpatient, the other from an outpatient oncology unit), two female MBM psychologists, and one male oncologist. Interviews were conducted between January and March 2018 and lasted on average 45 min (SD=9.54). The qualitative analysis of the interviews yielded 4 themes: (1) general impression of the app, (2) suggestions for improvement, (3) implementation into standard care, and (4) experience with recommending the app to patients.

Overall, the general impression of the app was positive. For instance, the oncologist summarized his impression of the app as follows:

I think [the app] is a very helpful thing because it is relatively easy [to use]. You can test it. You can try it and if you like it, you can integrate it relatively easy into everyday life. I think it is very practical. It is a practical thing and if patients are interested, I also see that they take it up willingly.

All health professionals perceived the app as appealing, clearly structured, and as a helpful supportive tool. In addition to that, the MBM psychologists liked the app as an addition to the 10-week face-to-face MBM course and appreciated the app as a good self-help tool complementing the course. The oncologist also stated that a lot of cancer patients look for something they can use to add to standard care and an app can provide a low threshold aid. As a negative aspect, a nursing expert stated that a smartphone is required and not every patient possesses such a device.

All health experts made various suggestions for improving the app. A shared opinion was that the content of the app (i.e. number and variety of exercises) could be increased, since over an extended period, patients might get bored with a choice limited to three exercises. A nursing expert suggested that a new exercise could for instance be unlocked after completing several times the same exercise. A MBM psychologist suggested that every week a different selection of exercises could be activated with alternating topics such as meditation, relaxation, self-compassion, or body exercises. In addition, the inclusion of exercises with different degrees of complexity were suggested. An MBM psychologist stated that exercises for beginners (e.g. more detailed instructions, fewer moments of silence) as well as exercises for patients experienced in mindfulness and relaxation could be added. MBM psychologists and nursing experts also recommended that some exercises should be accompanied by soothing background music, since longer periods of silence might be uncomfortable to some patients. They also recommended exercises with various lengths of time, so that patients had more flexibility if they were facing time constraints or if they were too impatient for longer exercises.
exercises. The oncologist mentioned that adding exercises specifically for sleep disorders might be a good addition to the app, especially for inpatients, since poor sleep in hospitals is very common. As an additional topic that could be added, he mentioned body exercises like Yoga. In addition, a MBM psychologist mentioned that an app mirroring the MBM course more closely would be great:

If I could make a wish, then I would say, it would be totally cool to have an accompanying Mind Body Medicine app. That is to say that a lot of exercises – not all of them – but a lot of exercises we do [could be added to the app]. Possibly also guided body exercises. That would be totally cool.

The interviewees mentioned several factors, which could influence the implementation of a mindfulness- and relaxation-based app into standard care. Both nursing experts as well as one of the MBM psychologists stated that it might be important, at what time point the information of the app is delivered to the patient. These health professionals mentioned that the patients are bombarded with information during the first consultation or during the first day when a patient enters the hospital and additional information about the app might overwhelm some patients. The outpatient nursing expert also mentioned that they are oftentimes limited due to time constraints during consultation hours:

On the one hand there are the concerns of the patients, which you have to discuss. But you also have a little bit of pressure, [to tell them] all relevant information. […] And sometimes it’s already two minutes before the end [of the consultation]. […] And you can’t just hand out the flyer. You also need to say a few words [about the app] and that’s why I sometimes forgot [to mention the app]. Due to shortage of time.

The nursing experts also mentioned that the nurses oftentimes forgot about the app since it is not part of standard care. Therefore, the nursing experts stated that it might be helpful to better inform the nurses about the app and setting up standards regarding the communication about the app, e.g. when to inform the patients and how. In addition, the nursing experts stated that it might be helpful, if they had a demonstration device at the oncology unit, so that they could better explain the app to the patients. All interviewed health professionals further mentioned, that cancer patients are very diverse and that while some patients are very eager to try out various treatments, others are not. One MBM therapist also stated that not all patients perceive relaxation as important and that those patients might need some additional information, why relaxation is good for them. All health professionals also stated that implementing such an app does not result in a lot of additional work for them and they appreciate the app, which they could recommend to suitable patients.

Regarding their experience with recommending the app to patients, the health professionals shared the opinion that female patients are more drawn to mindfulness and relaxation exercises. Furthermore, the MBM therapists stated that patients who already practice some form of relaxation or meditation oftentimes did not participate in the study. The MBM therapists also noticed that the composition of the MBM group had an influence, how many patients were willing to try out the app. For instance, if one patient was very motivated and expressed interest in the app, hesitant patients sometimes followed suit and were willing to try the app as well. One MBM therapist also noticed that many older people were willing to use the app:

I was surprised that so many older patients had the app on their phone and also used the app regularly […]. I had the impression, that it appeals to the young. […]. But oftentimes, the older people have more time, because they don’t work anymore.
Discussion

Principal Findings

In this study, we explored the feasibility of a mindfulness- and relaxation-based self-help app for cancer patients. To evaluate the feasibility, we used the RE-AIM framework [37] and in this analysis, we focused on the frameworks dimensions effectiveness, adoption, and implementation. Our findings support the feasibility of this mHealth intervention. The results indicate that the intervention might have beneficial effects on patients’ distress and quality of life. Furthermore, the mHealth intervention is accepted by the target population as well as by health professionals.

For the dimension effectiveness, we looked into pre-post effects. Our results suggest that the app might have the potential to reduce distress, fatigue, sleep disturbance, and anxiety as well as improve health related quality of life, and mindfulness. This is in line with a recent pilot study [47], in which a mobile mindfulness-based stress reduction program improved, amongst others, stress, anxiety, depression, sleep quality, and quality of life, mindfulness in breast cancer patients with small to large effects. Furthermore, a recent randomized controlled trial conducted by Kubo et al. [48], assessed the feasibility of a commercially available mindfulness program in which they targeted cancer patients and cancer caregivers. This program lead to an increase in quality of life in cancer patients with a medium effect size [48]. Similar to these findings, Rosen et al. [49] reported that breast cancer patients’ quality of life improved with a small effect size using a commercially available mindfulness course when compared to a control group.

Since in our study depressive symptoms and anxiety were not significantly reduced in the total sample, we also looked at subsamples with higher HADS scores. In the high anxiety and high depression subsamples, anxiety, respectively depression, decreased significantly over time. This might indicate that a mindfulness and relaxation mHealth intervention is especially beneficial for cancer patients with higher emotional distress. This is also in line with a study by Barth et al. [50], where highly distressed patients benefited most from psycho-oncological intervention. However, we did not find any group effects when comparing continuous app users with intervention dropouts. This might indicate that our definition of users and dropouts is not precise enough or that another variable than time spent practicing is responsible for changes in outcomes.

For adoption, our results showed that at week 20 of the intervention, 25 out of 100 patients were using the app continuously. With 54 out of 100 continuous app users at week 10 [36], this leads to a dropout rate of approximately 50% every 10 weeks. The 25 continuous app users practiced on average 3 to 5 times per week (median), which comes close to our initially stated recommendation of 5 exercises per week. We consider this as a good adoption of the mHealth intervention, since the intervention was set up as a self-care intervention without involvement of a therapist or health professional. Mindfulness was the preferred exercise, followed by guided imagery and progressive muscle relaxation. However, the mindfulness meditation exercises was also presented as the first choice in the app, while guided imagery was placed at the second position and progressive muscle relaxation at the third. Therefore, the preference for mindfulness meditation could also be caused by the placement of the exercises in the app. These results regarding the adoption are comparable to a study conducted by Kubo et al.[48], in which cancer patients received access to the commercially available mindfulness app HeadspaceTM. In this study, 40 out of 54 cancer patients allocated to the intervention group completed the 8-week study and 20 cancer patients used the app at least on 50% of the days [48].

The results from the interviews with health professionals provide some insights about the implementation of a mindfulness and relaxation mHealth intervention into standard care. In general, all interviewed health professionals perceived the app as a helpful addition to standard care. The health professionals also suggested some improvements, which might increase the acceptance and long-term use of such a mHealth intervention by patients. A suggested improvement shared by all
health professionals is the increase of content of the app, such as additional exercises or variations of the exercises. A statement about the implementation of the mHealth intervention given by several health professionals was the adequate provision of information. One of the interviewed MBM psychologists as well as the nursing experts stated that cancer patients are on the one hand flooded with information, especially when they start their treatment. However, the provision of some information to the patients about a mHealth intervention is necessary, at least to let the patients know about the existing intervention. On the other hand, the nursing experts also mentioned that nurses often forgot about the intervention, even though they approve this kind of interventions. Therefore, a standardized procedure for informing the patients about the mHealth intervention might facilitate the implementation of the intervention. In addition, health professionals such as nurses might have to be informed regularly about such interventions since it is not part of their standard treatment and therefore, they might forget about it, as seen in this study. Regarding the recruitment process, the health professionals made the observation that female patients were more interested in this mHealth intervention. This is also reflected by the gender ratio in this study’s sample, with 76 female and 24 male cancer patients, which is typical for complementary and alternative treatments [51-53]. This gender difference raises the question, if an effort should be made to better recruit male cancer patients for such an intervention. A nursing expert for instance mentioned during the interview that a focus on more technical aspects or facts could be more appealing to male patients.

Strengths, Limitations, and Future Directions

This study has several strengths and limitations. A strength of the study is the collection of objective data in form of logging the exercise use for each patient over the course of 20 weeks. Therefore, data on using the app exercises was not biased through self-report. Another advantage of this study was the use of a mixed-methods approach which is recommended for the development of digital interventions [54].

A limitation of the study is that we did not have a control group. Therefore, the effectiveness of the app cannot be determined in this study, since regression to the mean could have an impact on the improvement of well-being. Furthermore, we used paper-pencil questionnaires, which might have led to more missing data compared to online questionnaires [55]. This was, however, compensated by using linear mixed models analyses, which take into account all patients who provided baseline data. Another limitation is that we did not assess if patients were practicing mindfulness and relaxation exercises without the app, which could have an effect on the assessed outcomes. Therefore, future studies should investigate this topic with a randomized controlled trial to determine the effectiveness of a mindfulness and relaxation mHealth intervention. Our study gives some insights regarding effects that might be expected in a similar study, which will be helpful to power future studies sufficiently. We also looked at aspects of implementing a mHealth intervention. All interviewed health professionals perceived such a mHealth intervention as a helpful addition to standard care but, as described above, they also stated barriers to implementation of such an intervention, which should be investigated in future studies. Future studies could also investigate a mHealth intervention with more content than in this study app, as suggested during the interviews by health professionals by patients. For instance, audio files with background music or exercises with variations in their duration could be added. Besides mindfulness and relaxation exercises, physical exercise programs could be added. Physical exercise can have beneficial effects on cancer patients’ symptoms [56] and physical exercise has already been implemented into mHealth apps for cancer patients [57].

Conclusion

The results from this observational feasibility study indicate that a mindfulness and relaxation app can be a feasible and might be an effective way to deliver a self-care intervention for cancer patients.
Our results indicate that such an intervention might be especially beneficial for highly distressed cancer patients. The appeal of such an app could be increased with more diverse content, which might also positively affect patients’ adherence to such an intervention. The effectiveness and further aspects regarding the implementation of such a mHealth intervention has to be investigated in a future randomized controlled trial.

Acknowledgements
This study was funded by the Swiss Cancer League (KLS-3564-02-2015).

Conflicts of Interest
None declared.

Abbreviations

FACT-G: Functional Assessment of Cancer Therapy – General
FMI: Freiburg Mindfulness Inventory
FoP-Q-SF: Fear of Progression Questionnaire-Short Form
HADS: Hospital Anxiety and Depression Scale
LMM: linear mixed models
MBM: Mind Body Medicine
PROMIS 29: Patient-Reported Outcomes Measurement Information System

References

1. Mehnert A, Brahler E, Faller H, Harter M, Keller M, Schulz H, et al. Four-week prevalence of mental disorders in patients with cancer across major tumor entities. J Clin Oncol 2014 Nov 1;32(31):3540-3546. PMID: 25287821.
2. Mehnert A, Hartung TJ, Friedrich M, Vehling S, Brahler E, Harter M, et al. One in two cancer patients is significantly distressed: Prevalence and indicators of distress. Psychooncology 2018 Jan;27(1):75-82. PMID: 28568377.
3. Vehling S, Koch U, Ladehoff N, Schon G, Wegscheider K, Heckl U, et al. Prevalence of affective and anxiety disorders in cancer: Systematic literature review and meta-analysis. Psychother Psychosom Med Psychol 2012 Jul;62(7):249-258. PMID: 22585582.
4. Renovanz M, Soebianto S, Tsakmaklis H, Keric N, Nadji-Ohl M, Beutel M, et al. Evaluation of the psychological burden during the early disease trajectory in patients with intracranial tumors by the ultra-brief Patient Health Questionnaire for Depression and Anxiety (PHQ-4). Support Care Cancer 2019 Mar. PMID: 30904948.
5. Burg MA, Adorno G, Lopez ED, Loerzel V, Stein K, Wallace C, et al. Current unmet needs of cancer survivors: Analysis of open-ended responses to the American Cancer Society Study of Cancer Survivors II. Cancer 2015 Feb;121(4):623-630. PMID: 25581252.
6. Faller H, Weis J, Koch U, Brahler E, Harter M, Keller M, et al. Utilization of professional psychological care in a large German sample of cancer patients. Psychooncology 2017 Apr;26(4):537-543. PMID: 27327213.
7. Carlson LE, Zelinski E, Toivonen K, Flynn M, Qureshi M, Piedalue KA, et al. Mind-body therapies in cancer: What is the latest evidence? Curr Oncol Rep 2017 Aug;19(10):67. PMID: 28822063.
8. Astin JA, Shapiro SL, Eisenberg DM, Forys KL. Mind-body medicine: State of the science, implications for practice. J Am Board Fam Pract 2003 Mar-Apr;16(2):131-147. PMID: 12665179.
9. Kwekkeboom KL, Cherwin CH, Lee JW, Wanta B. Mind-body treatments for the pain-fatigue-sleep disturbance symptom cluster in persons with cancer. J Pain Symptom Manage
Cramer H, Lauche R, Klose P, Lange S, Langhorst J, Dobos GJ. Yoga for improving health-related quality of life, mental health and cancer-related symptoms in women diagnosed with breast cancer. Cochrane Database Syst Rev 2017 Jan 3;1:CD010802. PMID: 28045199.

Haller H, Winkler MM, Klose P, Dobos G, Kummel S, Cramer H. Mindfulness-based interventions for women with breast cancer: an updated systematic review and meta-analysis. Acta Oncol 2017 Dec;56(12):1655-1676. PMID: 28686520.

Chen Z, Meng Z, Milbury K, Bei W, Zhang Y, Thornton B, et al. Qigong improves quality of life in women undergoing radiotherapy for breast cancer: Results of a randomized controlled trial. Cancer 2013 May 1;119(9):1690-1698. PMID: 23355182.

Jeitler M, Jaspers J, von Scheidt C, Koch B, Michalsen A, Steckhan N, et al. Mind-body medicine and lifestyle modification in supportive cancer care: A cohort study on a day care clinic program for cancer patients. Psychooncology 2017 Dec;26(12):2127-2134. PMID: 28370730.

Zhang J, Yang KH, Tian JH, Wang CM. Effects of yoga on psychologic function and quality of life in women with breast cancer: A meta-analysis of randomized controlled trials. J Altern Complement Med 2012 Nov;18(11):994-1002. PMID: 22909345.

Spahn G, Choi KE, Kennemann C, Ludtke R, Franken U, Langhorst J, et al. Can a multimodal mind-body program enhance the treatment effects of physical activity in breast cancer survivors with chronic tumor-associated fatigue? A randomized controlled trial. Integr Cancer Ther 2013 Jul;12(4):291-300. PMID: 23766391.

Paul A, Cramer H, Lauche R, Altner N, Langhorst J, Dobos GJ. An oncology mind-body medicine day care clinic: concept and case presentation. Integr Cancer Ther 2013 Nov;12(6):503-507. PMID: 23329568.

Brebach R, Sharpe L, Costa DS, Rhodes P, Butow P. Psychological intervention targeting distress for cancer patients: A meta-analytic study investigating uptake and adherence. Psychooncology 2016 Aug;25(8):882-890. PMID: 26893285.

Cohen A, Ianovski LE, Frenkien S, Hier M, Zeitouni A, Kost K, et al. Barriers to psychosocial oncology service utilization in patients newly diagnosed with head and neck cancer. Psychooncology 2018 Dec;27(12):2786-2793. PMID: 30216594.

Dilworth S, Higgins I, Parker V, Kelly B, Turner J. Patient and health professional's perceived barriers to the delivery of psychosocial care to adults with cancer: a systematic review. Psychooncology 2014 Jun;23(6):601-612. PMID: 24519814.

Brown LF, Kroenke K, Theobald DE, Wu J, Tu W. The association of depression and anxiety with health-related quality of life in cancer patients with depression and/or pain. Psychooncology 2010 Jul;19(7):734-741. PMID: 19777535.
27. Mikolasek M, Berg J, Witt CM, Barth J. Effectiveness of mindfulness- and relaxation-based eHealth interventions for patients with medical conditions: A systematic review and synthesis. Int J Behav Med 2018 Feb;25(1):1-16. PMID: 28752414.

28. Fish J, Brimson J, Lynch S. Mindfulness interventions delivered by technology without facilitator involvement: What research exists and what are the clinical outcomes? Mindfulness 2016;7(5):1011-1023. PMID: 27642370.

29. Spijkerman MP, Pots WT, Bohlmeijer ET. Effectiveness of online mindfulness-based interventions in improving mental health: A review and meta-analysis of randomised controlled trials. Clin Psychol Rev 2016 Apr;45:102-114. PMID: 27111302.

30. McAlpine H, Joubert L, Martin-Sanchez F, Merolli M, Drummond KJ. A systematic review of types and efficacy of online interventions for cancer patients. Patient Educ Couns 2015 Mar;98(3):283-295. PMID: 25535016.

31. Escriva Boulley G, Leroy T, Bernetiere C, Paquenseguy F, Desfriches-Doria O, Preau M. Digital health interventions to help living with cancer: A systematic review of participants’ engagement and psychosocial effects. Psychooncology 2018 Dec;27(12):2677-2686. PMID: 30152074.

32. Tomlinson M, Rotheram-Borus MJ, Swartz L, Tsai AC. Scaling up mHealth: where is the evidence? PLoS Med 2013;10(2):e1001382. PMID: 23424286.

33. Matthew-Maich N, Harris L, Ploeg J, Markle-Reid M, Valaitis R, Ibrahim S, et al. Designing, Implementing, and Evaluating Mobile Health Technologies for Managing Chronic Conditions in Older Adults: A Scoping Review. JMIR Mhealth Uhealth 2016 Jun 9;4(2):e29. PMID: 27282195.

34. Gagnon MP, Ngangue P, Payne-Gagnon J, Desmartis M. m-Health adoption by healthcare professionals: a systematic review. J Am Med Inform Assoc 2016 Jan;23(1):212-220. PMID: 26078410.

35. Zhao Y, Ni Q, Zhou RX. What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. Int J Inform Manage 2018 Dec;43:342-350. PMID: WOS:000447963300028.

36. Mikolasek M, Witt CM, Barth J. Adherence to a mindfulness and relaxation self-care app for cancer patients: mixed-methods feasibility study. JMIR Mhealth Uhealth 2018 Dec 6;6(12):e11271. PMID: 30522990.

37. Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: The RE-AIM framework. Am J Public Health 1999 Sep;89(9):1322-1327. PMID: 10474547.

38. Fischer F, Gibbons C, Coste J, Valderas JM, Rose M, Leplege A. Measurement invariance and general population reference values of the PROMIS Profile 29 in the UK, France, and Germany. Qual Life Res 2018 Apr;27(4):999-1014. PMID: 29350345.

39. Bonomi AE, Cella DF, Hahn EA, Bjordal K, Sperner-Unterweger B, Gangeri L, et al. Multilingual translation of the Functional Assessment of Cancer Therapy (FACT) quality of life measurement system. Qual Life Res 1996 Jun;5(3):309-320. PMID: 8763799.

40. Cella DF, Tulsky DS, Gray G, Sarafian B, Linn E, Bonomi A, et al. The Functional Assessment of Cancer Therapy scale: Development and validation of the general measure. J Clin Oncol 1993 Mar;11(3):570-579. PMID: 8445433.

41. Mehnert A, Muller D, Lehmann C, Koch U. The German version of the NCCN Distress Thermometer: Validation of a screening instrument for assessment of psychosocial distress in cancer patients. Zeitschrift für Psychiatrie, Psychologie und Psychotherapie 2006 Jul;54(3):213-223. PMID: WOS:000239891500008.

42. Jacobsen PB, Donovan KA, Trask PC, Fleishman SB, Zabora J, Baker F, et al. Screening for
psychologic distress in ambulatory cancer patients. Cancer 2005 Apr;103(7):1494-1502. PMID: 15726544.

43. Walach H, Buchheld N, Buttenmuller V, Kleinknecht N, Schmidt S. Measuring mindfulness - the Freiburg Mindfulness Inventory (FMI). Pers Individ Differ 2006 Jun;40(8):1543-1555. PMID: WOS:000237901000004.

44. Snaith RP. The Hospital Anxiety and Depression scale. Health Qual Life Outcomes 2003 Aug;1(1):29. PMID: 12914662.

45. Mehnert A, Herschbach P, Berg P, Henrich G, Koch UIJfPMuP. Fear of progression in breast cancer patients—validation of the short form of the Fear of Progression Questionnaire (FoP-Q-SF). 2006;52(3):274-288.

46. Mayring P. Qualitative Inhaltsanalyse: Grundlagen und Techniken. Basel: Beltz Pädagogik; 2010.

47. Lengacher CA, Reich RR, Ramesar S, Alinat CB, Moscoso M, Cousin L, et al. Feasibility of the mobile mindfulness-based stress reduction for breast cancer (mMBSR(BC)) program for symptom improvement among breast cancer survivors. Psychooncology 2018 Feb;27(2):524-531. PMID: 28665541.

48. Kubo A, Kurtovich E, McGinnis M, Aghaee S, Altschuler A, Quesenberry C, Jr., et al. A randomized controlled trial of mHealth mindfulness intervention for cancer patients and informal cancer caregivers: A feasibility study within an integrated health care delivery system. Integr Cancer Ther 2019 Jan-Dec;18:1-13. PMID: 31092044.

49. Rosen KD, Paniagua SM, Kazanis W, Jones S, Potter JS. Quality of life among women diagnosed with breast Cancer: A randomized waitlist controlled trial of commercially available mobile app-delivered mindfulness training. Psychooncology 2018 Aug;27(8):2023-2030. PMID: 29766596.

50. Barth J, Delfino S, Kunzler A. Naturalistic study on the effectiveness of psycho-oncological interventions in cancer patients and their partners. Support Care Cancer 2013 Jun;21(6):1587-1595. PMID: 23299560.

51. Bishop FL, Lewith GT. Who uses CAM? A narrative review of demographic characteristics and health factors associated with CAM use. Evid Based Complement Altern Med 2010 Mar;7(1):11-28. PMID: 18955327.

52. Reid R, Steel A, Wardle J, Trubody A, Adams J. Complementary medicine use by the Australian population: A critical mixed studies systematic review of utilisation, perceptions and factors associated with use. BMC Complement Altern Med 2016 Jun;16:176. PMID: 27289517.

53. Thomson P, Jones J, Evans JM, Leslie SL. Factors influencing the use of complementary and alternative medicine and whether patients inform their primary care physician. Complement Ther Med 2012 Feb-Apr;20(1-2):45-53. PMID: 22305248.

54. Michie S, Yardley L, West R, Patrick K, Greaves F. Developing and evaluating digital interventions to promote behavior change in health and health care: Recommendations resulting from an international workshop. J Med Internet Res 2017 Jun;19(6):e232. PMID: 28663162.

55. Kongsved SM, Basnov M, Holm-Christensen K, Hjollund NH. Response rate and completeness of questionnaires: A randomized study of Internet versus paper-and-pencil versions. J Med Internet Res 2007 Sep 30;9(3):e25. PMID: 17942387.

56. Nakano J, Hashizume K, Fukushima T, Ueno K, Matsuura E, Ikio Y, et al. Effects of aerobic and resistance exercises on physical symptoms in cancer patients: A meta-analysis. Integr Cancer Ther 2018 Dec;17(4):1048-1058. PMID: 30352523.

57. Haberlin C, O'Dwyer T, Mockler D, Moran J, O'Donnell DM, Broderick J. The use of eHealth to promote physical activity in cancer survivors: A systematic review. Support Care Cancer 2018 Oct;26(10):3323-3336. PMID: 29909476.
Supplementary Files
Figures
Flowchart.
Completed app exercises by all enrolled patients (N=100) and by continuous app users (N=25) per week (median).
Completed exercises (3526) of all patients (N=100) over 20 weeks by type (mindfulness meditation, guided imagery, progressive muscle relaxation), gender of patient (male, female) and sex of narrator (male, female). Percentages refer to the total number of exercises per gender.
