Modified Korteweg-de Vries surfaces

Süleyman Tek
Department of Mathematics, Faculty of Science
Bilkent University, 06800 Ankara, Turkey

September 7, 2018

Abstract

In this work, we consider 2-surfaces in \mathbb{R}^3 arising from the modified Korteweg de Vries (mKdV) equation. We give a method for constructing the position vector of the mKdV surface explicitly for a given solution of the mKdV equation. mKdV surfaces contain Willmore-like and Wei- ngarten surfaces. We show that some mKdV surfaces can be obtained from a variational principle where the Lagrange function is a polynomial of the Gaussian and mean curvatures.
1 Introduction

In this work we study the 2-surfaces in \mathbb{R}^3 arising from the deformations of the modified Korteweg de Vries (mKdV) equation and its Lax pair. Deformation technique was developed by several authors. Here we mainly follow references [1]-[12].

Let $u(x, t)$ satisfy the mKdV equation

$$u_t = u_{3x} + \frac{3}{2} u^2 u_x. \quad (1)$$

Substituting the traveling wave ansatz $u_t - \alpha u_x = 0$ in Eq. (1), where α is an arbitrary real constant, we get

$$u_{2x} = \alpha u - \frac{u^3}{2}. \quad (2)$$

Here and in what follows, subscripts x, t, and λ denote the derivatives of the objects with respect to x, t, and λ, respectively. The subscript nx stands for n times x derivative, where n is a positive integer, e.g., u_{2x} indicates the second derivative of u with respect to x. We use Einstein’s summation convention on repeated indices over their range. Eq. (2) can be obtained from a Lax pair U and V, where

$$U = \frac{i}{2} \begin{pmatrix} \lambda & -u \\ -u & -\lambda \end{pmatrix}, \quad (3)$$

$$V = -\frac{i}{2} \begin{pmatrix} \frac{1}{2} u^2 - (\alpha + \alpha \lambda + \lambda^2) & (\alpha + \lambda) u - i u_x \\ (\alpha + \lambda) u + i u_x & -\frac{1}{2} u^2 + (\alpha + \alpha \lambda + \lambda^2) \end{pmatrix}, \quad (4)$$

and λ is the spectral parameter. The Lax equations are given as

$$\Phi_x = U \Phi, \quad \Phi_t = V \Phi, \quad (5)$$

where the integrability of these equations are guaranteed by the mKdV equation or the zero curvature condition

$$U_t - V_x + [U, V] = 0. \quad (6)$$

A connection of the mKdV equation to surfaces in \mathbb{R}^3 can be achieved by defining $su(2)$ valued 2×2 matrices A and B satisfying
\[A_t - B_x + [A, V] + [U, B] = 0. \]
\[(7) \]

Let \(F \) be an \(su(2) \) valued position vector of the surface \(S \) corresponding to the mKdV equation such that

\[y_j = F_j(x, t; \lambda) \quad , \quad j = 1, 2, 3 \quad , \quad F = i \sum_{k=1}^{3} F_k \sigma_k, \]
\[(8) \]

where \(\sigma_k \)'s are the Pauli sigma matrices

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]
\[(9) \]

The connection formula (connecting integrable systems to 2-surfaces in \(\mathbb{R}^3 \)) is given by

\[F_x = \Phi^{-1} A \Phi, \quad F_t = \Phi^{-1} B \Phi. \]
\[(10) \]

Then at each point on \(S \), there exists a frame \(\{ F_x, F_t, \Phi^{-1} C \Phi \} \) forming a basis of \(\mathbb{R}^3 \), where \(C = [A, B]/|[A, B]| \) and \([A, B] = AB - BA \). The inner product \(<, > \) of \(su(2) \) valued vectors \(X \) and \(Y \) are given by \(< X, Y > = -\frac{1}{2} \) trace(\(XY \)). Hence \(||X|| = \sqrt{|< X, X >|} \). The first and second fundamental forms of \(S \) are

\[(ds)_I^2 \equiv g_{ij} \, dx^i \, dx^j = < A, A > \, dx^2 + 2 < A, B > \, dx \, dt + < B, B > \, dt^2, \]
\[(ds)_II^2 \equiv h_{ij} \, dx^i \, dx^j = < A_x + [A, U], C > \, dx^2 \]
\[+ 2 < A_t + [A, V], C > \, dx \, dt + < B_t + [B, V], C > \, dt^2, \]
\[(11) \]

where \(i, j = 1, 2 \), \(x^1 = x \) and \(x^2 = t \). Here \(g_{ij} \) and \(h_{ij} \) are coefficients of the first and second fundamental forms, respectively. The Gauss and the mean curvatures of \(S \) are, respectively, given by \(K = \det(g^{-1} h) \) and \(H = \frac{1}{2} \) trace(\(g^{-1} h \)), where \(g \) and \(h \) denote the matrices \((g_{ij}) \) and \((h_{ij}) \), and \(g^{-1} \) stands for the inverse of the matrix \(g \).

In order to calculate the fundamental forms in Eq. (11) and the curvatures \(K \) and \(H \), one needs the deformations matrices \(A \) and \(B \). Given \(U \) and \(V \), finding \(A \) and \(B \) from Eq. (7) is a difficult task in general. However, there are some deformations which provide \(A \) and \(B \) directly. They are given as follows:
• Spectral parameter λ invariance of the equation:

$$A = \mu \frac{\partial U}{\partial \lambda}, \quad B = \mu \frac{\partial V}{\partial \lambda}, \quad F = \mu \Phi^{-1} \frac{\partial \Phi}{\partial \lambda},$$

where μ is an arbitrary function of λ.

• Symmetries of the (integrable) differential equations:

$$A = \delta U, \quad B = \delta V, \quad F = \Phi^{-1} \delta \Phi,$$

where δ represents the classical Lie symmetries and (if integrable) the generalized symmetries of the nonlinear PDE’s.

• Gauge symmetries of the Lax equation:

$$A = M_x + [M, U], \quad B = M_t + [M, V], \quad F = \Phi^{-1} M \Phi,$$

where M is any traceless 2×2 matrix.

There are some surfaces which may be obtained from a variational principle. For this purpose, we consider a functional \mathcal{F} which is defined by

$$\mathcal{F} = \int_S \mathcal{E}(H, K) dA + p \int_V dV,$$

where \mathcal{E} is some function of the curvatures H and K, p is a constant and V is the volume enclosed by the surface S. For open surfaces, we let $p = 0$. The first variation of the functional \mathcal{F} gives the following Euler-Lagrange equation for the Lagrange function \mathcal{E} [13]-[16]

$$(\nabla^2 + 4H^2 - 2K) \frac{\partial \mathcal{E}}{\partial H} + 2(\nabla \cdot \nabla + 2KH) \frac{\partial \mathcal{E}}{\partial K} - 4H \mathcal{E} + 2p = 0,$$

where ∇^2 and $\nabla \cdot \nabla$ are defined as

$$\nabla^2 = \frac{1}{\sqrt{\tilde{g}}} \frac{\partial}{\partial x^i} \left(\sqrt{\tilde{g}} g^{ij} \frac{\partial}{\partial x^j} \right), \quad \nabla \cdot \nabla = \frac{1}{\sqrt{\tilde{g}}} \frac{\partial}{\partial x^i} \left(\sqrt{\tilde{g}} h^{ij} \frac{\partial}{\partial x^j} \right),$$

and $\tilde{g} = \det(g_{ij})$, where g^{ij} and h^{ij} are the inverse components of the first and second fundamental forms, $x^1 = x, x^2 = t$. The following are examples of surfaces derived from a variational principle:

i) Minimal surfaces: $\mathcal{E} = 1, \quad p = 0; \quad$
ii) constant mean curvature surfaces: $E = 1$;

iii) linear Weingarten surfaces: $E = aH + b$, where a and b are some constants;

iv) Willmore surfaces: $E = H^2$ [17], [18];

v) surfaces solving the shape equation of lipid membrane: $E = (H - c)^2$, where c is a constant [13]-[16], [19]-[21];

The surfaces obtained from the solutions of the equation

$$\nabla^2 H + aH^3 + bH K = 0,$$

are called Willmore-like surfaces, where ∇^2 is the Laplace-Beltrami operator defined on the surface and a, b are arbitrary constants.

Unless $a = 2$ and $b = -2$, these surfaces do not arise from a variational problem. The case $a = -b = 2$ corresponds to the Willmore surfaces. For compact 2-surfaces, the constant p may be different than zero, but for noncompact surfaces we assume it to be zero. For the latter, we require asymptotic conditions, where K goes to a constant and H goes to zero. This requires that the mKdV equation have solutions decaying rapidly to zero as $|x| \to \pm\infty$. Soliton solutions of the mKdV equation satisfy this requirement. In this work, using solitonic solutions of the mKdV equation, we find the corresponding 2-surfaces and then solve the Euler-Lagrange equation [Eq. (16)] for polynomial Lagrange functions of H and K, i.e.

$$E = a_N H^N + \ldots + b_{10} K H + b_{11} K H^2 + \ldots + e_1 K + \ldots \tag{19}$$

For each N, we find the constants $a_l, b_{nk},$ and e_m in terms of others and the parameters of the surface.

From a solution of the mKdV equation, we first find the fundamental forms in Eq. (11) and the curvatures K and H of the corresponding 2-surface S. To find the position vector $\vec{y}(x, t)$ of S, we use Eq. (10). To solve this equation, we need the matrix Φ satisfying the Lax equation [Eq. (5)] for a given function $u(x, t)$. Hence, in general our method for constructing the position vector \vec{y} of integrable surfaces consists of the following steps:
i) Find a solution $u(x, t)$ of the mKdV equation.

ii) Find a solution of the Lax equation [Eq. (5)] for a given $u(x, t)$.

iii) Find the corresponding deformation matrices A, B, and find F from Eq. (10).

In this work more specifically, starting with one soliton solution of the mKdV equation and following the steps above, we solve the Lax equations and find the corresponding $SU(2)$ valued function $\Phi(x, t)$. Then using the spectral deformations and combination of the gauge and spectral deformations, we find the parametric representations (position vectors) of the mKdV surfaces and plot some of them for some special values of constants. We show that there are some Weingarten and Willmore-like mKdV surfaces obtained from spectral deformations. Surfaces arising from a combination of the gauge and spectral deformations do not contain Willmore-like surfaces. We study also the mKdV surfaces corresponding to the symmetry deformations. We determine all geometric quantities in terms of the function $u(x, t)$ and the symmetry $\phi(x, t)$. For the simplest symmetry $\phi = u_x$, the surface turns out to be the surface of the sphere with radius $| (\alpha \mu)/(2 \lambda) |$, where λ is the spectral parameter and α and μ are constants.

2 mKdV Surfaces From Spectral Deformations

In this section, we find surfaces arising from the spectral deformation of Lax pair for the mKdV equation. We start with the following proposition.

Proposition 1: Let u satisfy (which describes a traveling mKdV wave) Eq. (2). The corresponding $su(2)$ valued Lax pair U and V of the mKdV equation are given by Eqs. (3) and (4), respectively. Then, $su(2)$ valued matrices A and B are

$$A = \frac{i}{2} \begin{pmatrix} \mu & 0 \\ 0 & -\mu \end{pmatrix}, \quad \quad (20)$$

$$B = -\frac{i}{2} \begin{pmatrix} -(\alpha \mu + 2 \mu \lambda) & \mu u \\ \mu u & \alpha \mu + 2 \mu \lambda \end{pmatrix}, \quad \quad (21)$$
where \(A = \mu U \lambda \), \(B = \mu V \lambda \), \(\mu \) is a constant and \(\lambda \) is the spectral parameter. The surface \(S \), generated by \(U, V, A \) and \(B \), has the following first and second fundamental forms \((j, k = 1, 2)\):

\[
(ds_I)^2 = g_{jk} dx^j dx^k = \frac{\mu^2}{4} (\|dx + (\alpha + 2 \lambda) dt\|^2 + u^2 dt^2),
\]

\[
(ds_{II})^2 = h_{jk} dx^j dx^k = \frac{\mu u}{2} (dx + (\alpha + \lambda) dt)^2 + \frac{\mu u}{4} (u^2 - 2 \alpha) dt^2,
\]

with the corresponding Gaussian and mean curvatures
\[
K = \frac{2}{\mu^2} (u^2 - 2 \alpha), \quad H = \frac{1}{2\mu u} (3u^2 + 2(\lambda^2 - \alpha)),
\]

where \(x^1 = x, x^2 = t \).

By using \(U, V, A, \) and \(B \) and the method given in the Introduction, Proposition 1 provides the first and second fundamental forms, and the Gaussian and mean curvatures of the surface corresponding to spectral deformation. The following proposition gives a class of surfaces which are Willmore-like.

Proposition 2: Let \(u_x^2 = \alpha u^2 - u^4 / 4 \). Then the surface \(S \), defined in Proposition 1, is a Willmore-like surface, i.e., the Gaussian and mean curvatures satisfy Eq. (18), where

\[
a = \frac{4}{9}, \quad b = 1, \quad \alpha = \lambda^2,
\]

and \(\lambda \) is an arbitrary constant.

It is important to search for mKdV surfaces arising from a variational principle [13]-[16]. For this purpose, we do not need a parametrization of the surface. The fundamental forms and the Gauss and mean curvatures are enough to look for such mKdV surfaces. The following proposition gives a class of mKdV surfaces that solves the Euler-Lagrange equation [Eq. (16)].

Proposition 3: Let \(u_x^2 = \alpha u^2 - u^4 / 4 \). Then there are mKdV surfaces defined in Proposition 1 satisfying the generalized shape equation [Eq. (16)] when \(E \) is a polynomial function of \(H \) and \(K \).

Here are several examples:

Example 1: Let \(\deg(E) = N \), then
iii) for $N = 3$:

$$
E = a_1 H^3 + a_2 H^2 + a_3 H + a_4 + a_5 K + a_6 K H,
$$

$$
\alpha = \lambda^2, \quad a_1 = -\frac{p \mu^4}{72 \lambda^4}, \quad a_2 = a_3 = a_4 = 0, \quad a_6 = \frac{p \mu^4}{32 \lambda^4},
$$

where $\lambda \neq 0$, and μ, p, and a_5 are arbitrary constants;

ii) for $N = 4$:

$$
E = a_1 H^4 + a_2 H^3 + a_3 H^2 + a_4 H + a_5 + a_6 K + a_7 K H + a_8 K^2 + a_9 K H^2,
$$

$$
\alpha = \lambda^2, \quad a_2 = -\frac{p \mu^4}{72 \lambda^4}, \quad a_3 = -\frac{8 \lambda^2}{15 \mu^2} (27 a_1 - 8 a_8), \quad a_4 = 0,
$$

$$
a_5 = \frac{\lambda^4}{5 \mu^4} (81 a_1 + 16 a_8), \quad a_7 = \frac{p \mu^4}{32 \lambda^4}, \quad a_9 = -\frac{1}{120} (189 a_1 + 64 a_8),
$$

where $\lambda \neq 0$, $\mu \neq 0$, and p, a_1, a_6, a_8 are arbitrary constants;

iii) for $N = 5$:

$$
E = a_1 H^5 + a_2 H^4 + a_3 H^3 + a_4 H^2 + a_5 H + a_6 + a_7 K + a_8 K H + a_9 K^2 + a_{10} K H^2 + a_{11} K^2 H + a_{12} K H^3,
$$

$$
\alpha = \lambda^2, \quad a_3 = -\frac{1}{504 \mu^2 \lambda^4} \left(\lambda^6 [4212 a_1 + 256 a_{11}] + 7 p \mu^6\right),
$$

$$
a_4 = -\frac{8 \lambda^2}{15 \mu^2} (27 a_2 - 8 a_9), \quad a_5 = \frac{6 \lambda^4}{7 \mu^4} (135 a_1 - 88 a_{11}),
$$

$$
a_6 = \frac{\lambda^4}{5 \mu^4} (81 a_2 + 16 a_9), \quad a_8 = \frac{1}{32 \mu^2 \lambda^4} \left(\lambda^6 [-324 a_1 + 512 a_{11}] + p \mu^6\right),
$$

$$
a_{10} = -\frac{1}{120} (189 a_2 + 64 a_9), \quad a_{12} = -\frac{1}{750} (1053 a_1 + 512 a_{11}),
$$

where $\lambda \neq 0$, $\mu \neq 0$, and p, a_1, a_2, a_7, a_9, and a_{11} are arbitrary constants;

iv) for $N = 6$:

$$
E = a_1 H^6 + a_2 H^5 + a_3 H^4 + a_4 H^3 + a_5 H^2 + a_6 H + a_7 + a_8 K + a_9 K H + a_{10} K^2 + a_{11} K H^2 + a_{12} K^2 H + a_{13} K H^3 + a_{14} K^3 + a_{15} K^2 H^2 + a_{16} K H^4,
$$

$$
\alpha = \lambda^2,
$$

$$
a_4 = -\frac{1}{504 \mu^2 \lambda^4} \left(\lambda^6 [4212 a_2 + 256 a_{12}] + 7 p \mu^6\right),
$$
\[a_5 = - \frac{\lambda^4}{900 \mu^4} (-359397 a_1 + 191488 a_{14} - 203472 a_{16}) \]
\[- \frac{8 \lambda^2}{15 \mu^2} (27 a_3 - 8 a_{10}), \]
\[a_6 = \frac{6 \lambda^4}{7 \mu^4} (135 a_2 - 88 a_{12}), \]
\[a_7 = \frac{\lambda^6}{25 \mu^6} (29889 a_1 - 9856 a_{14} + 11664 a_{16}) \]
\[+ \frac{\lambda^4}{5 \mu^4} (81 a_3 + 16 a_{10}), \]
\[a_9 = \frac{1}{32 \mu^2 \lambda^4} (\lambda^6 [-324 a_2 + 512 a_{12}] + \mu^6), \]
\[a_{11} = - \frac{\lambda^2}{1800 \mu^2} (59778 a_1 - 13312 a_{14} + 23328 a_{16}) \]
\[- \frac{1}{120} (189 a_3 + 64 a_{10}), \]
\[a_{13} = - \frac{1}{756} (1053 a_2 + 512 a_{12}), \]
\[a_{15} = - \frac{1}{2880} (5103 a_1 + 2048 a_{14} + 3888 a_{16}), \]

where \(\lambda \neq 0, \mu \neq 0 \), and \(p, a_1, a_2, a_3, a_8, a_{10}, a_{12}, a_{14}, \) and \(a_{16} \) are arbitrary constants;

For general \(N \geq 3 \), from the above examples, the polynomial function \(E \) takes the form

\[E = \sum_{n=0}^{N} H^n \sum_{l=0}^{\lfloor (N-n) \rfloor} a_{nl} K^l, \]

where \(\lfloor x \rfloor \) denotes the greatest integer less than or equal to \(x \) and \(a_{nl} \) are constants.
2.1 The Parametrized form of the three parameter family of mKdV Surfaces

In the previous section, we found possible mKdV surfaces satisfying certain equations. In this section, we find the position vector

\[\mathbf{y} = (y_1(x, t), y_2(x, t), y_3(x, t)) \]

(26)

of the mKdV surfaces for a given solution of the mKdV equation and the corresponding Lax pair. To determine \(\mathbf{y} \), we use the following steps:

i) Find a solution \(u \) of the mKdV equation with a given symmetry:
Here we consider Eq. (2) which is obtained from the mKdV equation by using the traveling wave solutions \(u_t = \alpha u_x \), where \(\alpha = -1/c, \ c \neq 0 \) are arbitrary constants.

ii) Find the matrix \(\Phi \) of the Lax equation [Eq. (5)] for given \(U \) and \(V \):
In our case, the corresponding \(su(2) \) valued \(U \) and \(V \) of the mKdV equation are given by Eqs. (3) and (4). Consider the \(2 \times 2 \) matrix \(\Phi \)

\[\Phi = \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{21} & \Phi_{22} \end{pmatrix}. \]

(27)

By using this and Eq. (3) for \(U \), we can write \(\Phi_x = U \Phi \) in matrix form as

\[\begin{pmatrix} (\Phi_{11})_x & (\Phi_{12})_x \\ (\Phi_{21})_x & (\Phi_{22})_x \end{pmatrix} = \begin{pmatrix} \frac{1}{2} i \lambda \Phi_{11} - \frac{i}{2} u \Phi_{21} & \frac{1}{2} i \lambda \Phi_{12} - \frac{i}{2} u \Phi_{22} \\ -\frac{1}{2} i \lambda \Phi_{21} - \frac{i}{2} u \Phi_{11} & -\frac{1}{2} i \lambda \Phi_{22} - \frac{i}{2} u \Phi_{12} \end{pmatrix}. \]

(28)

Combining \((\Phi_{11})_x = \frac{1}{2} i \lambda \Phi_{11} - \frac{i}{2} u \Phi_{21} \) and \((\Phi_{21})_x = -\frac{1}{2} i \lambda \Phi_{21} - \frac{i}{2} u \Phi_{11} \), we get

\[(\Phi_{21})_{xx} - \frac{u_x}{u} (\Phi_{21})_x + \left[\frac{1}{4 u} \left(u (\lambda^2 + u^2) - 2 i \lambda u_x \right) \right] \Phi_{21} = 0. \]

(29)

Similarly, a second order equation can be written for \(\Phi_{22} \) by using the first order equations of \(\Phi_{12} \) and \(\Phi_{22} \). By solving the second order equation [Eq. (29)] of \(\Phi_{21} \) and the equation for \(\Phi_{22} \), we determine the explicit \(x \) dependence of \(\Phi_{21}, \Phi_{22} \).
Integrating Eq. (10), we get

\[(\Phi_{11})_t = -\frac{i}{2} \left[\frac{u^2}{2} - \alpha - \alpha \lambda - \lambda^2 \right] \Phi_{11} - \frac{i}{2} \left[(\alpha + \lambda) u - i u_x \right] \Phi_{21}, \]

(30)

and

\[(\Phi_{21})_t = \frac{i}{2} \left[\frac{u^2}{2} - \alpha - \alpha \lambda - \lambda^2 \right] \Phi_{21} - \frac{i}{2} \left[(\alpha + \lambda) u + i u_x \right] \Phi_{11}, \]

(31)

By solving these equations, we determine the explicit \(t \) dependence of \(\Phi_{11}, \Phi_{21}, \Phi_{12}, \) and \(\Phi_{22}. \) This way we completely determine the solution \(\Phi \) of the Lax equations.

iii) We use Eq. (10) to find \(F. \) For our case, \(A \) and \(B \) are given by Eqs. (20) and (21), which are obtained by the spectral deformation of \(U \) and \(V, \) respectively. Integrating Eq. (10), we get \(F. \)

Now by using a given solution of the mKdV equation, we find the position vector of the mKdV surface. Let \(u = k_1 \operatorname{sech} \xi, \) \(\xi = k_1 (k_1^2 t + 4 x) / 8, \) be one soliton solution of the mKdV equation, where \(\alpha = k_1^2 / 4. \) By substituting \(u \) into the second order equation [Eq. (29)] and using the notation \(u_x = k_1 u_x / 2, (\Phi_{21})_x = k_1 (\Phi_{21})_x / 2, \) we find the solution of \(\Phi_x = U \Phi \) as follows:

\[\Phi_{21} = i A_1(t) (\tanh \xi + 1)^{i\lambda/2k_1} (\tanh \xi - 1)^{-i\lambda/2k_1} \operatorname{sech} \xi + B_1(t) (k_1 \tanh \xi + 2 i \lambda) (\tanh \xi - 1)^{i\lambda/2k_1} (\tanh \xi + 1)^{-i\lambda/2k_1}, \]

(34)

\[\Phi_{22} = i A_2(t) (\tanh \xi + 1)^{i\lambda/2k_1} (\tanh \xi - 1)^{-i\lambda/2k_1} \operatorname{sech} \xi + B_2(t) (k_1 \tanh \xi + 2 i \lambda) (\tanh \xi - 1)^{i\lambda/2k_1} (\tanh \xi + 1)^{-i\lambda/2k_1}, \]

(35)

\[\Phi_{11} = -\frac{i}{k_1} A_1(t) (2\lambda + i k_1 \tanh \xi) (\tanh \xi + 1)^{i\lambda/2k_1} (\tanh \xi - 1)^{-i\lambda/2k_1} + i k_1 B_1(t) (\tanh \xi - 1)^{i\lambda/2k_1} (\tanh \xi + 1)^{-i\lambda/2k_1} \operatorname{sech} \xi, \]

(36)

\[\Phi_{12} = -\frac{i}{k_1} A_2(t) (2\lambda + i k_1 \tanh \xi) (\tanh \xi + 1)^{i\lambda/2k_1} (\tanh \xi - 1)^{-i\lambda/2k_1} + i k_1 B_2(t) (\tanh \xi - 1)^{i\lambda/2k_1} (\tanh \xi + 1)^{-i\lambda/2k_1} \operatorname{sech} \xi. \]

(37)
Hence one part ($\Phi_x = U\Phi$) of the Lax equations has been solved. By using these solutions in Eqs. (30)-(33) obtained from $\Phi_1 = V\Phi$, we find

$$A_1(t) = A_1 e^{i(k_1^2 + 4\lambda^2)t/8} \quad \text{and} \quad B_1(t) = B_1 e^{-i(k_1^2 + 4\lambda^2)t/8},$$

$$A_2(t) = A_2 e^{i(k_2^2 + 4\lambda^2)t/8} \quad \text{and} \quad B_2(t) = B_2 e^{-i(k_2^2 + 4\lambda^2)t/8},$$

where A_1, A_2, B_1, and B_2 are arbitrary constants. We solved the Lax equations for a given U, V and a solution u of the mKdV equation [Eq. (2)]. The components of Φ are

$$\Phi_{11} = -i k_1 A_1 e^{i(k_1^2 + 4\lambda^2)t/8} (2\lambda + i k_1 \tanh \xi) (\tanh \xi + 1)^{i\lambda/2k_1} (\tanh \xi - 1)^{-i\lambda/2k_1} \quad \text{det}(\Phi) = \left(\frac{k^2}{k_1^2} \right) (A_1 B_2 - A_2 B_1) \neq 0.$$
where

\[
R_1 = -\frac{\mu k_1}{2(k_1^2 + 4 \lambda^2)},
\]

(47)

\[
G = t \left(\lambda^2 + \frac{1}{4} k_1^2 [1 + \lambda] \right) + x \lambda,
\]

(48)

\[
E = (t [8 \lambda + k_1^2] + 4 x) (k_1^2 + 4 \lambda^2),
\]

(49)

\[
\xi = \frac{k_1^3}{8} (t + \frac{4x}{k_1}).
\]

(50)

This surface has the following first and second fundamental forms:

\[
(ds_1)^2 = \frac{1}{4} \mu^2 \left[\left(dx + \left(\frac{1}{4} k_1^2 + 2 \lambda \right) dt \right)^2 + k_1^2 \operatorname{sech}^2 \xi \ dt^2 \right],
\]

(51)

\[
(ds_{II})^2 = \frac{1}{2} \mu k_1 \operatorname{sech} \xi \left[dx + \left(\frac{1}{4} k_1^2 + \lambda \right) dt \right]^2 + \frac{1}{8} \mu k_1^3 \operatorname{sech} \xi \left[2 \operatorname{sech}^2 \xi - 1 \right] dt^2.
\]

and the Gaussian and mean curvatures, respectively, are

\[
K = \frac{k_1^2}{\mu^2} \left(2 \operatorname{sech}^2 \xi - 1 \right),
\]

(52)

\[
H = \frac{1}{4 \mu k_1 \operatorname{sech} \xi} \left(6 k_1^2 \operatorname{sech}^2 \xi + (4 \lambda^2 - k_1^2) \right).
\]

(53)

Proposition 4: The surface which is parametrized by Eqs. (44)-(46) is a cubic Weingarten surface, i.e.,

\[
4 \mu^2 H^2 (2 [\mu^2 K + k_1^2]) - 9 \mu^4 K^2 - 12 \mu^2 (k_1^2 + 2 \lambda^2) K - (k_1^2 + 2 \lambda^2)^2 = 0.
\]

(54)

When \(k_1 = 2 \lambda \) in Eqs. (52) and (53), it reduces to a quadratic Weingarten surface, i.e.,

\[
8 \mu^2 H^2 - 9 \mu^2 K - 36 \lambda^2 = 0.
\]

(55)

\[2.2\] The analyses of the three parameter family of mKdV surfaces

In general, \(y_2 \) and \(y_3 \) are asymptotically decaying functions, and \(y_1 \) approaches \(\pm \infty \) as \(\xi \) tends to \(\pm \infty \). For some small intervals of \(x \) and \(t \), we plot some of the
three parameter family of surfaces for some special values of the parameters k_1, λ, and μ in Figs. 1-4.

Example 2: By taking $k_1 = 2$, $\lambda = 1$, and $\mu = -8$ in Eqs. (44)-(46), we get the surface (Fig. 1).

![Figure 1](image)

The components of the position vector of the surface are

$$y_1 = -E_1 - 8/(e^{2\xi} + 1), y_2 = -4 \cos G \text{sech} \xi, y_3 = -4 \sin G \text{sech} \xi,$$ \hspace{1cm} (56)

where $E_1 = 4(x + 3t)$, $G = x + 3t$, and $\xi = x + t$. As ξ tends to $\pm \infty$, y_1 approaches $\pm \infty$, and y_2 and y_3 approach zero. This can also be seen in Fig. 1. For small values of x and t, the surface has a twisted shape.

Example 3: By taking $k_1 = 2$, $\lambda = 0$, and $\mu = -4$ in Eqs. (44)-(46), we get the surface (Fig. 2).

The components of the position vector of the surface are

$$y_1 = -E_1 - 8/(e^{2\xi} + 1), y_2 = -4 \cos G \text{sech} \xi, y_3 = -4 \sin G \text{sech} \xi,$$ \hspace{1cm} (57)

where $E_1 = 2(x + 3t)$, $G = t$, and $\xi = x + t$. As ξ tends to $\pm \infty$, y_1 approaches $\pm \infty$, and y_2 and y_3 tend to zero. This can also be seen in Fig. 2. Asymptotically, this surface and the surface given in Example 2 are the same. However, for small values of x and t, they are different.

Example 4: By taking $k_1 = 3$, $\lambda = 1/10$, and $\mu = -452/75$ in Eqs. (44)-(46), we get the surface (Fig. 3).
The components of the position vector of the surface are

\[y_1 = -E_1 - 8/(e^{2\xi} + 1), \quad y_2 = -4\cos G \text{ sech} \xi, \quad y_3 = -4\sin G \text{ sech} \xi, \quad (58) \]

where \(E_1 = -(5537t + 2260x)/750, \ G = 17(497t + 20x)/200, \) and \(\xi = (12x + 27t)/8. \) Asymptotically, this surface is similar to the previous two surfaces. For small values of \(x \) and \(t, \) the surface looks like a shell.

Example 5: By taking \(k_1 = 1, \ \lambda = -1/10, \) and \(\mu = -52/25 \) in Eqs. (44)-(46), we get the surface (Fig. 4).

The components of the position vector of the surface are

\[y_1 = -E_1 - 8/(e^{2\xi} + 1), \quad y_2 = -4\cos G \text{ sech} \xi, \quad y_3 = -4\sin G \text{ sech} \xi, \quad (59) \]
where \(E_1 = -13(20x + t)/250, \ G = (47t - 20x)/200, \) and \(\xi = (4x + t)/8. \)
Asymptotically, this surface is similar to the previous three surfaces.

3 mKdV Surfaces From Spectral-Gauge Deformations

In this section, we find surfaces arising from a combination of the spectral and
gauge deformations of the Lax pair for the mKdV equation.

Proposition 5: Let \(u \) satisfy (which describes a traveling mKdV wave) Eq. (2).
The corresponding \(su(2) \) valued Lax pair \(U \) and \(V \) of the mKdV equation are
given by Eqs. (3) and (4), respectively. The \(su(2) \) valued matrices \(A \) and \(B \) are

\[
A = i \begin{pmatrix} (\frac{1}{2} \mu - \nu u) & -\nu \lambda \\ -\nu \lambda & -\left(\frac{1}{2} \mu - \nu u\right) \end{pmatrix},
\]

\[
B = i \begin{pmatrix} \frac{1}{2} \mu (\alpha + 2 \lambda) - \nu (\alpha + \lambda) u & -\frac{1}{2} \mu u + \nu \left(\frac{1}{2} u^2 - \alpha - \alpha \lambda - \lambda^2\right) \\ -\frac{1}{2} \mu u + \nu \left(\frac{1}{2} u^2 - \alpha - \alpha \lambda - \lambda^2\right) & -\frac{1}{2} \mu (\alpha + 2 \lambda) + \nu (\alpha + \lambda) u \end{pmatrix},
\]

where \(A = \mu U_\lambda + \nu [\sigma_2, U], \ B = \mu V_\lambda + \nu [\sigma_2, V], \) \(\lambda \) is the spectral parameter, \(\mu \)
and \(\nu \) are constants, and \(\sigma_2 \) is the Pauli sigma matrix. The surface \(S \), generated
by \(U, V, A, \) and \(B, \) has the following first and second fundamental forms \((j, k = \)
\begin{equation}
(ds_I)^2 = g_{jk} \, dx^j \, dx^k, \tag{62}
\end{equation}

\begin{equation}
(ds_{II})^2 = h_{jk} \, dx^j \, dx^k, \tag{63}
\end{equation}

where

\begin{align*}
g_{11} &= \frac{1}{4} \mu^2 + \nu \left(\nu \left[u^2 + \lambda^2 \right] - \mu u \right), \\
g_{12} &= \frac{1}{4} (\alpha + 2 \lambda) \mu^2 + \frac{1}{4} \nu \left(\nu \left[2(\lambda + 2 \alpha)u^2 + 4(\lambda^3 + \alpha \lambda + \lambda^2 \alpha) \right] \\
&\quad - 4 \mu (\alpha + \lambda) u \right), \\
g_{22} &= \frac{1}{4} (u^2 + (2 \lambda + \alpha)^2) \mu^2 + \nu \left(\nu \left[\frac{1}{4} u^4 + \alpha (\alpha - 1 + \lambda)u^2 + \\
&\quad \left((1 + \lambda)\alpha + \lambda^2 \right)^2 \right] - \frac{1}{2} \mu u^3 - \mu \left(\alpha^2 + (2 \lambda - 1)\alpha + \lambda^2 \right) u \right). \\
h_{11} &= \frac{1}{2} \mu u - \nu (u^2 + \lambda^2), \\
h_{12} &= \frac{1}{2} \mu (\alpha + \lambda) u - \nu \left(\lambda (\lambda^2 + \alpha \lambda + \alpha) + \frac{1}{2} (\lambda + 2 \alpha)u^2 \right), \\
h_{22} &= \frac{1}{4} \mu \left(u^3 + 2 [\alpha^2 + (2 \lambda - 1)\alpha + \lambda^2] u \right) \\
&\quad - \nu \left(\frac{1}{4} u^4 + \alpha (\alpha - 1 + \lambda)u^2 + \left((1 + \lambda)\alpha + \lambda^2 \right)^2 \right),
\end{align*}

and the corresponding Gaussian and mean curvatures are

\begin{align*}
K &= \frac{2 u (u^2 - 2 \alpha)}{\nu \left(2 \nu u[u^2 - 2 \alpha] - 3 \mu u^2 - 2 \mu (\lambda^2 - \alpha) \right) + \mu^2 u}, \\
H &= \frac{\mu (3 u^2 + 2(\lambda^2 - \alpha)) - 4 u \nu (u^2 - 2 \alpha)}{2 \nu \left(2 \nu u[u^2 - 2 \alpha] - 3 \mu u^2 - 2 \mu (\lambda^2 - \alpha) \right) + 2 \mu^2 u},
\end{align*}

where \(x^1 = x \) and \(x^2 = t \).

3.1 The parametrized form of the four parameter family of mKdV surfaces

We apply the same technique that we used in section 2 to find the position vector of the corresponding surface. Let \(u = k_1 \text{sech} \xi, \xi = k_1 (k_1^2 t + 4x) / 8, \)
be the one soliton solution of the mKdV equation, where \(\alpha = k_1^2 / 4 \). The Lax pair \(U \) and \(V \) are given by Eqs. 39 and 41, respectively, which is the same as in the spectral deformation case. So we can use the solution of the Lax equation [Eq. 43] that we found in the spectral deformation case. By solving Eq. 10, we obtain the position vector, where the components of \(\Phi \) are given by Eqs. (40)-(43) and \(A, B \) are given by Eqs. (60) and (61), respectively. Here we choose \(A_1 = A_2, B_1 = A_1 e^{\pi \lambda / k_1} \)/k, \(B_2 = -B_1 \) to write \(F \) in the form

\[
F = i (\sigma_1 y_1 + \sigma_2 y_2 + \sigma_3 y_3),
\]

Hence we obtain a four parameter (\(\lambda, k_1, \mu, \nu \)) family of surfaces parametrized by

\[
y_1 = R_2 \frac{e^{2 \xi} - 1}{(e^{2 \xi} + 1)} \text{sech} \xi + R_3 \tilde{E} + R_4 \frac{1}{e^{2 \xi} + 1},
\]

\[
y_2 = \frac{1}{2} R_4 \text{sech} \xi + R_5 \left(\frac{e^{4 \xi} + 1}{(e^{2 \xi} + 1)^2} - R_6 \text{sech}^2 \xi \right) \cos G + R_7 \frac{e^{2 \xi} - 1}{(e^{2 \xi} + 1)} \sin G,
\]

\[
y_3 = \left[-\frac{1}{2} R_4 \text{sech} \xi - R_5 \frac{(e^{4 \xi} + 1)}{(e^{2 \xi} + 1)^2} + R_6 \text{sech}^2 \xi \right] \sin G + R_7 \frac{e^{2 \xi} - 1}{(e^{2 \xi} + 1)} \cos G,
\]

where

\[
R_2 = \frac{2 k_1^2 \nu}{k_1^2 + 4 \lambda^2}, \quad R_3 = \frac{\mu}{8},
\]

\[
R_4 = \frac{4 \mu k_1^2}{k_1^2 + 4 \lambda^2}, \quad R_5 = \frac{\nu (k_1^2 - 4 \lambda^2)}{k_1^2 + 4 \lambda^2},
\]

\[
R_6 = \frac{\nu (4 \lambda^2 + 3 k_1^2)}{2(k_1^2 + 4 \lambda^2)}, \quad R_7 = \frac{4 \lambda k_1^2 \nu}{k_1^2 + 4 \lambda^2},
\]

\[
G = t \left(\lambda^2 + \frac{1}{4} k_1^2 [1 + \lambda] \right) + x \lambda,
\]

\[
\tilde{E} = t [8 \lambda + k_1^2 + 4 x],
\]

\[
\xi = \frac{k_1^3}{8} (t + \frac{4 x}{k_1^2}).
\]

Thus the position vector \(\vec{y} = (y_1(x, t), y_2(x, t), y_3(x, t)) \) of the surface is given by Eq. (72). This surface has the following first and second fundamental forms:

\[
(ds_{11})^2 = g_{jk} \, dx^j \, dx^k,
\]

\[
(ds_{11})^2 = h_{jk} \, dx^j \, dx^k,
\]
where

\[g_{11} = \frac{1}{4} \mu^2 + \nu (\nu [k_1^2 \text{sech}^2 \xi + \lambda^2] - \mu k_1 \text{sech} \xi), \]

\[g_{12} = \frac{1}{4} (\alpha + 2 \lambda) \mu^2 + \frac{1}{4} \nu (\nu [2 k_1^2 (\lambda + 2 \alpha) \text{sech}^2 \xi + (4 \lambda^3 + 4 \alpha \lambda + 4 \lambda^2 \alpha)] \]

\[- 4 \mu (\alpha + \lambda) k_1 \text{sech} \xi), \]

\[g_{22} = \frac{1}{4} (k_1^2 \text{sech}^2 \xi + (2 \lambda + \alpha)^2) \mu^2 + \nu \left(\nu \left(\frac{1}{4} \right) k_1^4 \text{sech}^4 \xi + \alpha k_1^2 (\alpha - 1 + \lambda) \text{sech}^2 \xi \right) \]

\[+ ((1 + \lambda) + \lambda^2) \right) - \frac{1}{2} \mu k_1^2 \text{sech}^3 \xi - \mu k_1 (\alpha^2 + (2 \lambda - 1) \alpha + \lambda^2) \text{sech} \xi \right), \]

\[h_{11} = \frac{1}{2} \mu k_1 \text{sech} \xi - \nu (k_1^2 \text{sech}^2 \xi + \lambda^2), \]

\[h_{12} = \frac{1}{2} \mu (\alpha + \lambda) k_1 \text{sech} \xi - \nu \left(\lambda (\lambda^2 + \alpha + \lambda) + \frac{1}{2} k_1^2 (\lambda + 2 \alpha) \text{sech}^2 \xi \right), \]

\[h_{22} = \frac{1}{4} (k_1^4 \text{sech}^4 \xi + 2 k_1^2 \alpha^2 + (2 \lambda - 1) \alpha + \lambda^2) \text{sech}^2 \xi) \]

\[- \nu \left(\frac{1}{4} k_1^4 \text{sech}^4 \xi + \alpha k_1^2 (\alpha - 1 + \lambda) \text{sech}^2 \xi + ((1 + \lambda) + \lambda^2)^2 \right), \]

and the corresponding Gaussian and mean curvatures are

\[K = \frac{2 k_1 \text{sech} \xi (k_1^2 \text{sech}^2 \xi - 2 \alpha)}{\nu \left(2 \nu k_1 \text{sech} \xi [k_1^2 \text{sech}^2 \xi - 2 \alpha] - 3 \mu k_1^2 \text{sech}^2 \xi - 2 \mu (\lambda^2 - \alpha) \right) + \mu^2 k_1 \text{sech} \xi}, \]

\[H = \frac{\mu (3 k_1^2 \text{sech}^2 \xi + 2 (\lambda^2 - \alpha)) - 4 \nu k_1 \text{sech} \xi (k_1^2 \text{sech}^2 \xi - 2 \alpha)}{2 \nu \left(2 \nu k_1 \text{sech} \xi [k_1^2 \text{sech}^2 \xi - 2 \alpha] - 3 \mu k_1^2 \text{sech}^2 \xi - 2 \mu (\lambda^2 - \alpha) \right) + 2 \mu^2 k_1 \text{sech} \xi}, \]

where \(x^1 = x, x^2 = t, \) and \(\alpha = \frac{1}{4} k_1^2. \)

3.2 The analyses of the four parameter family of surfaces

Asymptotically, \(y_1 \) approaches \(\pm \infty \), \(y_2 \) approaches \(R_5 \cos G \pm R_7 \sin G \), and \(y_3 \) approaches \(-R_5 \sin G \pm R_7 \cos G \) as \(\xi \) tends to \(\pm \infty \). For some small intervals of \(x \) and \(t \), we plot some of the four parameter family of surfaces for some special values of the parameters \(k_1, \lambda, \mu, \) and \(\nu \) in Figs. 5-7.

Example 6: By taking \(k_1 = 2, \lambda = 0, \mu = -4, \) and \(\nu = 1 \) in Eq. (72), we get the surface (Fig. 5).
The components of the position vector are

\[
\begin{align*}
y_1 &= 2 \text{sech} \xi \left(e^{2\xi} - 1 \right) / \left(e^{2\xi} + 1 \right) - E_2 - 8 / \left(e^{2\xi} + 1 \right), \\
y_2 &= \left[-4 \text{sech} \xi + \left(e^{4\xi} + 1 \right) / \left(e^{2\xi} + 1 \right)^2 - (3/2) \text{sech}^2 \xi \right] \cos G, \\
y_3 &= \left[4 \text{sech} \xi - \left(e^{4\xi} + 1 \right) / \left(e^{2\xi} + 1 \right)^2 + (3/2) \text{sech}^2 \xi \right] \sin G,
\end{align*}
\]

where \(E_2 = -2(x + t), G = t, \) and \(\xi = x + t. \) As \(\xi \) tends to \(\pm \infty, \) \(y_1 \) approaches \(\pm \infty, \) \(y_2 \) approaches \(\cos t, \) and \(y_3 \) approaches \(-\sin t. \)

Example 7: By taking \(k_1 = 2, \lambda = 1, \mu = 1/10, \) and \(\nu = 1 \) in Eq. (72), we get the surface (Fig. 6).
The components of the position vector are

\[y_1 = \text{sech} \xi (e^{2\xi} - 1)/(e^{2\xi} + 1) + E_2 + 1/(10(e^{2\xi} + 1)), \quad (84) \]
\[y_2 = [(1/20) \text{sech} \xi - \text{sech}^2 \xi] \cos G + \sin G (e^{2\xi} - 1)/(e^{2\xi} + 1), \quad (85) \]
\[y_3 = [- (1/20) \text{sech} \xi + \text{sech}^2 \xi] \sin G + \cos G (e^{2\xi} - 1)/(e^{2\xi} + 1), \quad (86) \]

where \(E_2 = (x + 3t)/20, \ G = (x + 3t), \) and \(\xi = x + t. \) As \(\xi \) tends to \(\pm \infty, \) \(y_1 \) tends to \(\pm \infty, \) \(y_2 \) approaches \(\sin (x + 3t), \) and \(y_3 \) approaches \(\cos (x + 3t). \)

Example 8: By taking \(k_1 = 1, \lambda = -1/10, \mu = -52/25, \) and \(\nu = -1 \) in Eq. (72), we get the surface (Fig. 7).

![Figure 7: \((x, t) \in [-20, 20] \times [-20, 20]\)]

The components of the position vector are

\[y_1 = -(25/13) \text{sech} \xi (e^{2\xi} - 1)/(e^{2\xi} + 1) - E_2 - 8/(e^{2\xi} + 1), \quad (87) \]
\[y_2 = [- 4 \text{sech} \xi - (12/13) \left(e^{4\xi} + 1\right)/(e^{2\xi} + 1)^2 + (19/13) \text{sech}^2 \xi] \cos G \]
\[+ (5/13) \sin G (e^{2\xi} - 1)/(e^{2\xi} + 1), \quad (88) \]
\[y_3 = [4 \text{sech} \xi + (12/13) \left(e^{4\xi} + 1\right)/(e^{2\xi} + 1)^2 - (19/13) \text{sech}^2 \xi] \sin G \]
\[+ (5/13) \cos G (e^{2\xi} - 1)/(e^{2\xi} + 1), \quad (89) \]

where \(E_2 = 13(20x + t)/250, \ G = (47t - 20x)/200 \) and \(\xi = (4x + t)/8. \) As \(\xi \) tends to \(\pm \infty, \) \(y_1 \) tends to \(\pm \infty, \) \(y_2 \) approaches \(\cos t \) and \(y_3 \) to \(- \sin t. \)
4 Conclusion

In this work, we considered mKdV 2-surfaces by using two deformations, spectral deformation and a combination of gauge and spectral deformations of mKdV equation and its Lax pair. We found the first and second fundamental forms, and the Gaussian and mean curvatures of the corresponding surfaces. By solving the Lax equation for a given solution of the mKdV equation and the corresponding Lax pair, we also found position vectors of these surfaces.

The surfaces arising from the spectral deformation are Weingarten and Willmore-like surfaces. We also obtained some mKdV surfaces from the variational principle for the Lagrange function, that is a polynomial of the Gaussian and mean curvatures of the surfaces corresponding to the spectral deformations of the Lax pair of the mKdV equation. For some special values of parameters, we plotted these three parameter family of surfaces in Examples 2-5.

In the case of the gauge-spectral parameter deformations, we obtained a four parameter family of mKdV surfaces. For some special values of the parameters in the position vectors Eq. (72) of these surfaces, we plotted them in Examples 6-8.

5 Acknowledgments

I would like to thank Metin Gürses for his continuous help in this work. I would like also thank B. Özgür Saroğlu for his critical reading of the manuscript. This work is partially supported by the Scientific and Technological Research Council of Turkey.
References

[1] A. Sym, Lett. Nuovo Cimento Soc. Ital. Fis. 33, 394 (1982).

[2] A. Sym, in Geometrical Aspects of the Einstein Equations and Integrable Systems, Lecture Notes in Physics Vol. 239, edited by Martini R (Springer, Berlin, 1985) p.154.

[3] A.S. Fokas and I.M. Gelfand, Commun. Math. Phys. 177, 203 (1996).

[4] A.S. Fokas, I.M. Gelfand, F. Finkel and Q.M. Liu, Selecta Math., New Ser. 6, 347 (2000).

[5] Ö. Ceyhan, A.S. Fokas, and M. Gürses, J. Math. Phys. 41, 2251 (2000).

[6] M. Gürses, J. Nonlinear Math. Phys. 9, 59 (2002).

[7] M. Gürses, S. Tek, Report No. nlin.SI/0511049.

[8] B.G. Konopelchenko, Phys. Lett. A 183, 153 (1993).

[9] B.G. Konopelchenko and I. A. Taimanov, Report No. dg-ga/9506011.

[10] J. Cieslinski, P. Goldstein, and A. Sym, Phys. Lett. A 205, 37 (1995).

[11] J. Cieslinski, J. Math. Phys. 38, 4255 (1997).

[12] M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976).

[13] Z.C. Tu and Z.C. Ou-Yang, J. Phys. A 37, 11407 (2004).

[14] Z.C. Tu and Z.C. Ou-Yang, Phys. Rev. E 68, 061915 (2003).

[15] Z.C. Ou-Yang, J. Liu, and Y. Xie, Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases (World Scientific, Singapore, 1999).

[16] Z. C. Tu and Z. C. Ou-Yang, Proceeding of the Seventh International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 2005, edited by I. M. Mladenov and M. de León, SOFTEX, Sofia, 2005, p. 237, Report No. math-ph/0506055.
[17] T.J. Willmore, *Total Curvature in Riemannian Geometry* (Wiley, New York, 1982).

[18] T.J. Willmore, *Annals of Global Analysis and Geometry*, (Springer, 2000), Vol. 18, pp. 255-264.

[19] Z. C. Ou-Yang and W. Helfrich, Phys. Rev. Lett. 59, 2486 (1987).

[20] Z. C. Ou-Yang and W. Helfrich, Phys. Rev. A 39, 5280 (1989).

[21] I. M. Mladenov, Eur. Phys. J. B 29, 327 (2002).