Inhibitory effect of endostatin expressed by human liver carcinoma SMMC7721 on endothelial cell proliferation in vitro

Xuan Wang, Fu-Kun Liu, Xi Li, Jai-Sou Li, Gen-Xin Xu

AIM: To construct a stable transfectant of human liver carcinoma cell line SMMC7721 that could secrete human endostatin and to explore the effect of human endostatin expressed by the transfectant on endothelial cell proliferation.

METHODS: Recombinant retroviral plasmid pLncx-Endo containing the cDNA for human endostatin gene together with rat albumin signal peptide was engineered and transferred into SMMC7721 cell line by lipofection. After selection with G418, endostatin-transfected SMMC7721 cells were chosen and expanded. Immunohistochemical staining and Western blot analysis confirmed the expression and secretion of human endostatin in transfected SMMC7721 cells and its product. The conditioned medium of endostatin-transfected and control SMMC7721 cells were collected and incubated with human umbilical vein endothelial cells for 72 hours. The inhibitory effect of endostatin, expressed by transfected SMMC7721 cells, on endothelial proliferation in vitro was observed by using MTT assay.

RESULTS: A 550 bp specific fragment of endostatin gene was detected from the PCR product of endostatin-transfected SMMC7721 cells. Immunohistochemistry and Western blot analysis confirmed the expression and secretion of human endostatin protein by endostatin-transfected SMMC7721 cells. In vitro endothelial proliferation assay showed that 72 hours after cultivation with human umbilical vein endothelial cells, the optical density (OD) in group using the medium from endostatin-transfected SMMC7721 cells was 0.51 ± 0.06, lower than that from RPMI 1640 group (0.98 ± 0.09) or that from control plasmid pLncx-transfected SMMC7721 cells (0.88 ± 0.11). The inhibitory rate for medium from endostatin-transfected SMMC7721 cells was 48%, significantly higher than that from empty plasmid pLncx-transfected SMMC7721 cells (10.2%, P < 0.01).

CONCLUSION: Human endostatin can be stably expressed by SMMC7721 cell transfected with human endostatin gene and its product can significantly inhibit the proliferation of human umbilical vein endothelial cell in vitro.

Wang X, Liu FK, Li X, Li JS, Xu G. Inhibitory effect of endostatin expressed by human liver carcinoma SMMC7721 on endothelial cell proliferation in vitro. World J Gastroenterol 2002;8(2):253-257
concentration of polybrene at 2mg·L⁻¹. After transfection, NIH3T3 cells were also plated under G418 selection. Two weeks later, G418-resistant NIH3T3 colonies were counted for determination of viral titre.

Generation of stable transfectant

Total of 5×10⁵ SMMC7721 cells were plated on 6-well plate and incubated for 24h. The cells were rinsed with serum-free 1640 medium twice, and 100µL supernatant of endostatin-transfected PA317 colony was added and incubated for 3h. Another 3mL 1640 medium was added with the final concentration of polybrene at 2mg·L⁻¹ and G418 at 500µg·L⁻¹. Four weeks after transfection, G418-resistant cells were expanded for preservation and detected for endostatin-HA fusion protein by immunohistochemistry and Western blot analysis. The G418-resistant colony was designated as SMMC-Endo. Control transfectant (SMMC-pLncx) was generated in a similar way except that the parent plasmid pLncx-Endo was replaced by pLncx.

PCR amplification of endostatin gene

SMMC-Endo and SMMC-pLncx cells were harvested and DNA was extracted. The primers used were: 5’CCG GAA TTC A TG CAC AGG CAC GCG GAC TTC TAC CCG and 5’GCC GGA TCC CTA CTT GGA GGC AGT CAT GGA GCT based on human endostatin sequence. PCR was performed in 50µL reactive volume containing 2µL cDNA, 2µL 10xPCR buffer, 2µL 4xdNTP (2mmol·L⁻¹), 50pmol·L⁻¹ primer, and 1µLTag DNA polymerase. The samples were subjected to 30 thermal cycles, consisting of 5min at 94°C for denaturing, 1min at 60°C for annealing, 1min at 72°C for extension, and 10min at 72°C for final extension after the last cycle. PCR products were run on 10g·L⁻¹ agarose gels (containing 0.5mg·L⁻¹ ethidium bromide) and visualized under UV light.

Immunohistochemical staining

Immunohistochemical staining was accomplished utilizing an avidin-biotin technique. Anti-HA monoclonal antibody was purchased from Jing Mei Biotechnology Co. Ltd. SMMC-Endo and SMMC-pLncx cells were grown on six-well glass slides and fixed in acetone. After washing in PBS, the cells were incubated with a 10mL·L⁻¹ H₂O₂ solution at room temperature for ten minutes to quench endogenous peroxidases. Non-specific binding was blocked with 50mL·L⁻¹ normal horse serum at room temperature for five minutes. The cells then were incubated with anti-HA at a 1:300 dilution at 4°C overnight. Following washing in PBS, the secondary antibody, biotinylated anti-rat IgG, was added and the cells were incubated at room temperature for an hour. After washes in PBS, VECTASTAIN reagent (a solution containing strepavidin-horseradish peroxidase) was added and then incubated at room temperature for ten minutes. 3,3-diaminobenzidine was used as the chromagen. After ten minutes, the brown color signifying the presence of antigen bound to antibodies was detected by light microscopy and photographed at x400.

Western blot analysis

SMMC-Endo and SMMC-pLncx cells were plated in six-well plates at 2.5x10⁵ cells/well respectively and incubated for 24h. The medium was replaced with 1mL serum-free RPMI 1640 and collected after 48h. One mL of conditioned medium was subjected to PCR amplification of endostatin gene using LTag DNA polymerase. The samples were run on 10g·L⁻¹ agarose gel with 10mL·L⁻¹ fetal bovine serum and 1µg·L⁻¹ bFGF (Sigma) as control. The plasmid pLncx and the recombinant retroviral pLncx-Endo were digested with Hind III and Cla I; 1: pLncx plasmid digested with Hind III and Cla I; 2: pLncx-Endo plasmid digested with Hind III and Cla I; 3: DNA Marker.

RESULTS

Identification of a recombinant retroviral pLncx-Endo and determination of the recombinant virus titre

The plasmid pLncx and the recombinant retroviral pLncx-Endo were digested by Hind III and Cla I respectively. Only in recombinant retroviral pLncx-Endo contained a 640-bp endostatin gene fragment separated by electrophoresis in 10g·L⁻¹ agarose gel (Figure 1). It proved that the foreign endostatin gene together with signal peptide and HA-tag was correctly inserted in retroviral pLncx. After transfection of NIH3T3 cells with supernatant of endostatin-transfected PA317, NIH3T3 cells were maintained in DMEM supplemented with G418 500mg·L⁻¹. Two weeks later, total 34 colonies were detected under microscopy and the titre of the recombinant virus (pLncx-Endo) was 1.36x10⁸cfu·L⁻¹.

Generation of stable transfectants

The PCR products amplified from DNA of SMMC-Endo and SMMC-pLncx cells were analyzed under ultraviolet light after 10g·L⁻¹ agarose gel electrophoresis. A 550-bp fragment was seen in the PCR product from DNA of SMMC-Endo cells, but not from the control (Figure 2).

![Figure 1](image-url) Identification of recombinant plasmids digested with restriction enzymes (Hind III and Cla I).

1: pLncx plasmid digested with Hind III and Cla I; 2: pLncx-Endo plasmid digested with Hind III and Cla I; 3: DNA Marker.
gene can be expressed stably in SMMC7721 cells (Figure 3). Transgene expression was also tested by Western blot for the expressed protein. On a reducing 120g·L⁻¹ SDS/PAGE gel, a distinct band at around M_r22000, corresponding to the size of endostatin, was visualized in the supernatant of SMMC-Endo cells but not in the supernatant of SMMC-pLncx cells. Monoclonal mouse anti-HA antibody reacted positively in a Western blot with the M_r22000 protein only. It was confirmed that endostatin could be efficiently secreted into the supernatant of cells transduced by retroviral pLncx-Endo (Figure 4).

Figure 2 Analysis of PCR product of SMMC7721 transferred with pLncx-endo by 1% agarose gel electrophoresis. 1: DNA Marker; 2: PCR product of SMMC7721 cell DNA transferred with pLncx; 3: PCR product of SMMC7721 cell DNA transferred with pLncx-Endo

Figure 3 Expression of human endostatin-HA fusion protein in endostatin-transfected cells. Anti-HA monoclonal antibody was applied to SMMC7721 transferred with pLncx (A) and SMMC7721 transferred with pLncx-endo (B), followed by a HRP-conjugated secondary antibody. Hematoxylin counterstain. ×400.

Human endostatin inhibits endothelial cell proliferation

Three days after incubation with conditioned medium, cell number, as measured by absorbance (OD), was quantified by using a colorimetric MTT assay. The results showed that the optical density in groups using concentrated conditioned medium from SMMC7721 cells, RPMI1640 and SMMC-pLncx cells were 1.01±0.09, 0.98±0.09 and 0.88±0.1 respectively. It revealed that conditioned medium both from SMMC7721 cells and empty plasmid pLncx-transfected SMMC7721 cells did not have inhibitory effect on the growth of HUVEC, compared with 1640 medium ($P>0.01$). While the optical density in group using conditioned medium from endostatin-transfected SMMC-Endo cells was 0.51±0.06, significantly lower than that from SMMC-pLncx group (0.88±0.1). It meant that inhibitory rate on endothelial proliferation for conditioned medium from endostatin-transfected SMMC7721 group was 48%, significantly higher than that from control pLncx-transfected SMMC7721 group (10.2%, $P<0.01$), (Figure 5).

Figure 4 SDS-PAGE analysis and Western blot of endostatin expressed in supernatant of viral transduced SMMC7721 cells(A) SDS-PAGE analysis; 1, protein marker; 2, supernatant of SMMC7721 cells transfected with pLncx-Endo;(B) Western blot analysis; 1, protein marker; 2, supernatant of SMMC7721 cells transfected with pLncx-Endo

Figure 5 Inhibition of endothelial cell proliferation by conditioned medium from transfected and untransfected cells. Conditioned medium from endostatin-transfected SMMC-Endo cells (2), conditioned medium from SMMC7721 cells (3), and conditioned medium from SMMC-pLncx cells (4) were concentrated and applied to cultivate with HUVEC cells grown in 40-well plate. Three days later, cell number, as measured by absorbance (OD), was then quantified by using a colorimetric MTT assay. Bars, SD. b $P<0.01$, compared with conditioned medium from control SMMC-pLncx cells.

DISCUSSION

It is well known that the growth and metastases of tumor is dependent on the formation of new blood vessel. The new blood vessel provides not only nutrient for tumor, but also the ways for excretion and metastases. Numerous studies have proven that tumor cells will stop growing or die when it exceeds 2mm to 3mm in diameter if new blood vessel for tumor is not formed[5,6]. So, anti-angiogenesis is one of the effective ways to inhibit and control the development of tumor by inducing tumor dormancy or apoptosis.

Endostatin is a new kind of potent antiangiogenic factor
consisting of 184 amino acids in C-terminal fragment of endogenous collagen 18a. It was isolated as a M22000 protein from conditioned medium of the EOMA murine hemangioendothelioma cell line by Professor O’Reilly in 1997[22-27]. In vivo and in vitro experiments have demonstrated that endostatin have specific inhibitory effect on tumor metastases and primary tumor with no observed sign of toxicity[28-30]. Furthermore, the genome of endothelial cell, targeted by endostatin, has a stable inherent property and rare mutation. So, there is no acquired resistance to endostatin during endostatin therapy. But the production of functional polypeptide has proven difficult because of its unstable physical property. In addition, antiangiogenic therapy with endostatin in cancer requires prolonged administration and high doses of the recombinant protein. It will result in heavy economic burden and inconvenience to recipients by repeated administrations. Therefore, transfer of foreign endostatin gene into host cells represents an alternative method to treat tumor by generating high efficient endostatin in areas around tumor[31-36]. The aims of generating a high efficient protein with no toxin and keeping a long time and relatively high expression of endostatin can be achieved by single administration[37]. A few groups have demonstrated that antiangiogenic gene therapy with viral vectors is a potentially useful approach for inhibiting tumor growth in mouse model[38-41]. By the way, gene transfer mediated by retroviral vectors is most commonly used among the various ways of transducing methods[42]. As retroviral vectors can be integrated into chromosome of host cells, gene transferred by retrovirus can be inherited to next generation and stably expressed in host cells. In this experiment, in order to explore the effect of endostatin on endothelial cell proliferation expressed by SMMC7721, endostatin gene was inserted into retroviral vector pLncix by recombinant technology and subsequently used to infect human liver carcinoma cell line SMMC7721. After transfection, PCR products and immunohistochemical staining showed that endostatin gene had been successfully transferred into and expressed in endostatin-transfected SMMC7721 cells. For the purpose of the protein expressed by SMMC7721 cells being excreted outside the cell, rat albumin signal peptide, which can lead to the expressed protein being secreted outside cell while without any effect on the activity of the protein, was put into the upstream of endostatin gene during the construction of recombinant plasmide[42-44]. The effect of signal peptide was also demonstrated by Western blot analysis, which revealed that endostatin protein did exist in the concentrated supernatant of endostatin-transfected SMMC7721 cells. The endothelial cell proliferation assay indicated that conditioned medium from endostatin-transfected SMMC7721 cells significantly inhibited the proliferation of endothelial cell by 48%, compared to conditioned medium from control SMMC7721 cells transfected with empty plasmid pLncix. In another word, endostatin expressed by SMMC7721 cells can remarkably inhibit the proliferation of endothelial cell. In conclusion, gene therapy with endostatin mediated by retrovirus is effective \textit{in vitro}, and perhaps it might also have a significant inhibitory effect on tumor growth \textit{in vivo}, but that remains to be confirmed by further experiments.

\textbf{REFERENCES}

1. Folkman J, Watson K, Ingbert D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989;339:58-62
2. Hahnfeldt P, Panigythy D, Folkman J, Hasky L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response and postvascular dormancy. Cancer Res 1999;59:4720-4725
3. Liu DH, Zhang XY, Fan DM, Huang YX, Zhang JS, Huang WQ, Zang QY, Huang QS, Ma WY, Chai YB, Jin M. Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma. World J Gastroenterol 2001;7:500-507
4. Dhanabal M, Ramachandran R, Waterman MJF, Lu H, Knebelmann B, Segal M, Sukhatme VP. Endostatin induce endothelial cell apoptosis. J Biol Chem 1999;274:1721-1726
5. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995;333:1757-1763
6. Perletti G, Concari P, Giardini R, Marras E, Piccinini F, Folkman J, Chen L. Antitumor activity of endostatin against carcinoma-induced rat primary mammary tumors. Cancer Res 2000;60:1793-1796
7. Jiang YF, Yang ZH, Hu JQ. Recurrence or metastasis of HCC: predictors, early detection and experimental antiangiogenic therapy. World J Gastroenterol 2001;7:500-507
8. Liu H, Wu JS, Li LH, Yao X. The expression of platelet-derived growth factor and angiogenesis in human colorectal carcinoma. Shijie Huaren Xuebao Zazhi 2000;8:661-664
9. Fan ZR, Yang DH, Cui J, Qin HR, Huang CC. Expression of insulin like growth factor II and endostatin in hepatocellular carcinogenesis. World J Gastroenterol 2001;7:285-288
10. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic during tumorigenesis. Cell 1996;68:353-364
11. Beams T, Folkman J, Rabkin S, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997;390:404-407
12. Liu XP, Song SB, Li W, Wang DJ, Zhao HL, Wei LX. Correlations of microvessel quantification in colorectal tumors and clinicopathology. World J Gastroenterol 2001;7:500-507
13. Oreilly MS, Bohem T, Shing Y, Fukai N, Vasis G, Lane WS, Flynn E, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277-285
14. Berger AC, Feldman AL, Guant MF, Kruger EA, Sing Bk, Hewitt S, Figg WD, Alexander HR, Libutti SK. The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing. J Surg Res 2000;91:26-31
15. Dhanabal M, Volk R, Ramachandran R, Simons M, Sukhatme V. Cloning, expression, and in vitro activity of human endostatin. Biochem and Biophy Res Commun 1999;258:345-352
16. Yokoyama Y, Dhanabal M, Griffioen AW. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 2000;60:2190-2194
17. Feldman AL, Restifo NP, Alexander HR, Bartlett DL, Hwu P, Seth P, Libutti K. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000;60:1503-1506
18. Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Timpl R. Structure, function and tissue distribution of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. Embo J 1998;17:4249-4256
19. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J. The generation of endostatin is mediated by elastase. Cancer Res 1999;59:6052-6056
20. Felbor U, Dreiser L, Bryant RA, Ploehl HG, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. Embo J 2000;19:1187-1194
21. Kim YM, Jang JW, Lee OH, Yeon J, Choi EY, Kim EW, Lee ST, Kwon KT. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 2000;60:5410-5413
22. Taddie L, Chiarugi P, Brogelli L. Inhibitory effect of full-length human endostatin on \textit{in vitro} angiogenesis. Biochem and Biophy Res Commun 1999;263:340-345
23. Ding I, Sun JZ, Fenton B, Liu WM, Kinsley P, Okunieff P, Min W. Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in Mca-4 murine mammary carcinomas. Cancer Res 2001;61:526-531
24. Kuger EA, Durat PH, Tsokos MG, Venzon DJ, Libutti SK, Dixon SC, Rudek MA, Pluda J, Allegra C, Figg WD. Endostatin inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay. Biochem and Biophy Res Commun 2000;268:183-191
25. Musso O, Theron N, Helysavaara R, Rahn M, Turbin B, Camphon JP, Pihlajaniemi T, Clement B. Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII in human liver cancers. Hepatology 2001;33:868-876
26. Musso O, Rethn M, Theron N, Turbin B, Paulette BS, Lotrian D, Camphon JP, Pihlajaniemi T, Clement B. Tumor progression is associated with a significant decrease in the expression of the endostatin precursor collagen X in human hepatocellular carcinomas. Cancer Res 2001;61:45-49
27. Lietard J, Theron N, Rahn M, Musso O, Dargere D, Pihlajaniemi T, Clement B. The promoter of the long variant of collagen XVIII, the precursor of endostatin, contains liver-specific regulatory elements. Hepatology 2000;32:1377-1385
28. Yoon SS, Eto H, Lin CM, Nakamura H, Pawlik TM, Song SU, Tanabe KF. Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res 1999;59:6251-6256
29. Oehler MK, Blicknell R. The promise of anti-angiogenic cancer therapy. www.wjgnet.com
Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SLC. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. *Proc Natl Acad Sci USA* 2000;97:4802-4807

Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M, Singhai A, Sullivan S, Rolland A, Ralston R, Min W. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. *Nat Biotechnol* 1999;17:343-348

Huang X, Wong MKK, Zhao Q, Zhu Z, Wang KZQ, Huang N, Ye C, Gorelik E, Li M. Soluble recombinant endostatin purified from *Escherichia coli*: antiangiogenic activity and antitumor effect. *Cancer Res* 2001;61:478-481

Strik H, Schluesener HJ, Seid K, Meyermann R, Deininger M. Localization of endostatin in rat and human gliomas. *Cancer* 2001;91:1013-1019

Wu J, Fan DM. Angiogenesis and antiangiogenesis therapy. *Shijie Huaren Xiaohua Zazhi* 2001;9:316-321

Tang YC, Li Y, Qian GX. Reduction of tumorigenicity of SMMC7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy. *World J Gastroenterol* 2001;7:22-27

Feldman AL, Pak H, Yang JC, Alexander HR, Libutti SK. Serum endostatin levels are elevated in patients with soft tissue sarcoma. *Cancer* 2001;91:1525-1529

Naguen JT, Wu P, Clouse ME, Hlatky L, Terwillinger EF. Adenovirus-associated virus-mediated delivery of anti-angiogenic factors as an anti-tumor strategy. *Cancer Res* 1998;58:5673-5677

Yoon SS, Carroll NM, Chiocca EA, Tanabe KK. Cancer gene therapy using a replication-competent herpes simplex virus type I vector. *Ann Surg* 1998;228:366-374

Folkman J. Antiangiogenic gene therapy. *Proc Natl Acad Sci USA* 1998;95:9064-9066

Dhanabal M, Ramchandran R, Volk R, Stillman HE, Lombardo M, Iruela-Arispe ML, Simons M, Sukhatme VP. Endostatin: Yeast production, mutants and antitumor effect in renal cell carcinoma. *Cancer Res* 1999;59:189-197

Yokoyama Y, Green JE, Sukhatme VP, Ramakrishnan S. Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinomas in a transgenic mouse model. *Cancer Res* 2000;60:4362-4365

Wang XW, Yuan JH, Zhang RG, Guo LX, Xie Y, Xie H. Antihepatoma effect of alpha-fetoprotein antisense phosphorothioate oligodeoxynucleotides in vitro and in mice. *World J Gastroenterol* 2001;7:397-401

Xiao B, Jing B, Zhang YL, Zhou DY, Zhang WD. Tumor growth inhibition effect of hIL-6 on colon cancer cells transfected with the target gene by retroviral vector. *World J Gastroenterol* 2000;6:89-92

Wang XW, Yuan JH, Zhang RG, Guo LX, Xie Y, Xie H. Antihepatoma effect of alpha-fetoprotein antisense phosphorothioate oligodeoxynucleotides in vitro and in mice. *World J Gastroenterol* 2001;7:345-351

Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang XW, Li YP, Zhao YL, Dewhirst MW, Yuan F, Li CY. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. *Cancer Res* 2001;61:3281-3284

Cao MM, Pan W, Chen QL, Ma ZC, Ni ZJ, Wu WB, Pan X, Cao GW, Qi ZT. Construction of the eukaryotic expression vector expressing the fusion protein of human endostatin protein and IL-3 signal peptide. *Shijie Huaren Xiaohua Zazhi* 2001;9:43-46

Edited by Zhang JZ