THE PREVALENCE OF NARROW OPTICAL Fe\textsc{ii} EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

Xiao-Bo Dong1,2, Luis C. Ho2, Jian-Guo Wang1,3,4, Ting-Gui Wang1, Huiyuan Wang1, Xiaohui Fan5, and Hongyan Zhou1

1 Key Laboratory for Research in Galaxies and Cosmology, The University of Sciences and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, China
2 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA
3 National Astronomical Observatories/Yunnan Observatory and Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China
4 Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, P.O. Box 3908, Beijing 100039, China
5 Steward Observatory, The University of Arizona, Tucson, AZ 85721, USA

Received 2010 July 1; accepted 2010 August 25; published 2010 September 10

ABSTRACT

From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate—that narrow optical Fe\textsc{ii} emission lines, both permitted and forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow Fe\textsc{ii} emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.

Key words: accretion, accretion disks – galaxies: active – line: formation – line: identification – quasars: emission

Online-only material: color figures

1. INTRODUCTION

Broad Fe\textsc{ii} multiplet emission are prominent features in the optical spectra of most type 1 active galactic nuclei (AGNs), but narrow optical Fe\textsc{ii} lines, either permitted or forbidden, are rarely seen. To our knowledge, narrow optical Fe\textsc{ii} emission has been reported in only three sources to date: I Zw 1 (Véron-Cetty et al. 2004), Mrk 110 (Véron-Cetty et al. 2007), and SDSS J1028+4500 (Wang et al. 2008). The apparent weakness of Fe\textsc{ii} emission in the narrow-line region (NLR) might be attributed to iron, a refractory element, condensing on dust grains, which sublimate in the broad-line region (Laor & Draine 1993). This is especially true for low-ionization lines such as Fe\textsc{ii} that arise from partially neutral portions of the NLR clouds (Ferguson et al. 1997). On the other hand, narrow forbidden Fe\textsc{ii} emission lines in the near-infrared (NIR) are commonly observed in both type 1 and type 2 AGNs (e.g., Simpson et al. 1996; Mouri et al. 2000; Rodriguez-Ardila et al. 2004, 2005). According to these studies, NIR [Fe\textsc{ii}] emission most likely originates from AGN photoionization, although additional contributions from shock heating cannot be excluded. This raises the following questions: are narrow optical Fe\textsc{ii} emission lines really absent in AGNs? If so, why?

It is possible that narrow Fe\textsc{ii} lines are actually prevalent in the optical spectra of AGNs, yet have just been neglected or mistaken as a part of the coexisting broad-line emission or stellar features. Because of the complex atomic structure of the Fe+ ion, there are so many transitions that individual Fe\textsc{ii} lines, even if narrow, are highly blended with each other, effectively mimicking much broader features. The situation is further exacerbated in type 1 AGNs by the ubiquitous presence of broad Fe\textsc{ii} multiplets as well as other emission lines. Without knowing a complete identification list of the optical transitions and their relative strengths, it is hard to discern them. Fortunately, Véron-Cetty et al. (2004) have recently identified and measured all the narrow Fe\textsc{ii} lines present in the optical spectrum of I Zw 1, a well-known narrow-line Seyfert 1 galaxy. Their analysis made it possible for us to explore systematically narrow optical Fe\textsc{ii} emission lines in AGNs.

In this Letter, we report the discovery of the prevalence of narrow Fe\textsc{ii} emission lines, both permitted and forbidden, in the optical spectra of type 1 AGNs and their non-detection in type 2 AGNs. We adopt a cosmology with $H_0 = 70\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$, $\Omega_m = 0.3$, and $\Omega_\Lambda = 0.7$.

2. SAMPLE AND DATA ANALYSIS

2.1. The Type 1 AGN Sample

The type 1 AGN sample consists of the 4178 Seyfert 1 galaxies and quasars from Dong et al. (2010), selected from the spectral data set of the Sloan Digital Sky Survey Fourth Data Release (SDSS DR4; Adelman-McCarthy et al. 2006). Sample definition and data analysis methods are described in detail in that work. Here, we provide a brief description and some additional treatments for verifying the existence of narrow-line Fe\textsc{ii} emission. Briefly, we select broad-line AGNs with prominent Fe\textsc{ii} emission in the SDSS bandpass and with continuum and emission lines suffering minimally from contaminations by host galaxy starlight. The criteria are as follows: (1) $z \leq 0.8$, to ensure that Fe\textsc{ii} emission in the rest-frame wavelength region 4434–4684 Å (hereinafter Fe\textsc{ii} 4450), as well as Hβ and [O\textsc{iii}] $\lambda\lambda$4959, 5007, are in the bandpass; (2) a median signal-to-noise ratio $(S/N) \geq 10\,\text{pixel}^{-1}$ in the optical Fe\textsc{ii} region (4400–5400 Å); and (3) absence of detectable Ca K (3934 Å), Ca H + He (3970 Å), and Hδ (4102 Å) stellar absorption features at $>2\sigma$ significance.

At optical wavelengths, numerous Fe\textsc{ii} multiplets and other broad emission lines are heavily blended to form a pseudo-continuum. Following Dong et al. (2008), we fit simultaneously the AGN featureless continuum, represented by a power law, the Fe\textsc{ii} multiplets, and other emission lines in the range of 4200–5600 Å using a code based on the MPFIT package (Markwardt 2009). The Fe\textsc{ii} emission is modeled with two
In order to verify that the narrow-line Fe\textsc{ii} are not residuals from poor broad Fe\textsc{ii} subtraction due to mismatch of the broad-line Fe\textsc{ii} model, we use three schemes to model the profile of individual broad Fe\textsc{ii} lines: (A) the best-fit broad H\textbeta profile, (B) the best-fit total (narrow + broad) H\textbeta profile, and (C) a single Lorentzian with width set as a free parameter. Scheme A is a natural choice that has been used in our previous studies (e.g., Dong et al. 2008, Dong et al. 2010). Scheme B is rather extreme and formally unreasonable because H\textbeta definitely has a component from the canonical NLR; we use it as a stringent test of the reality of the narrow Fe\textsc{ii} lines. Scheme C is inspired by the fact that the broad Fe\textsc{ii} lines in I Zw 1 are best described by a Lorentzian profile (Véron-Cetty et al. 2004). The redshift of broad Fe\textsc{ii} is set to be a free parameter. We note that the width of broad Fe\textsc{ii} lines may be different from that of broad H\textbeta (see, e.g., Hu et al. 2008), yet we find that the flux of both broad and narrow Fe\textsc{ii} are quite insensitive to the exact profile assumed for the broad component (Dong et al. 2010). As noted by Vestergaard & Peterson (2005) and Landt et al. (2008), the broad Fe\textsc{ii} multiplets are so highly blended that the overall profile mainly depends on their relative strengths. As a strict demonstration that the detection of narrow Fe\textsc{ii} is robust, we show (Section 3.1) that we can recover these features in the residual spectrum even after excluding the narrow-line Fe\textsc{ii} template from our model altogether.

2.2. The Type 2 AGN Sample

The type 2 AGN sample comprises the ∼27,000 Seyfert 2 galaxies in SDSS DR4 selected according to the criteria ofKauffmann et al. (2003), having H\textbeta, [O\textsc{iii}] λ5007, H\alpha, and [N\textsc{ii}] λ6583 detected at >5\sigma significance. The mean and standard deviation of their redshifts are 0.10 and 0.05, respectively. We subtracted the starlight continuum to obtain a clean emission-line spectrum using the method of Lu et al. (2006), using stellar templates broadened and shifted to match the stellar velocity dispersion of the galaxy. The stellar absorption lines must be subtracted well to ensure reliable measurement of weak emission lines. In the present study, we add the narrow Fe\textsc{ii} template described above into the model, in order to detect any possible narrow Fe\textsc{ii} emission. Next, we fitted emission lines with Gaussians using the code described in detail in Dong et al. (2005); errors are given by MPFIT. There are 2671 objects in the galaxy catalog having a broad H\alpha component with S/N > 5; we excluded these from the type 2 AGN sample (cf. Zhang et al. 2008).

3. RESULTS

3.1. Narrow Fe\textsc{ii} Emission in Type 1 AGNs

As a first step toward ascertaining whether narrow Fe\textsc{ii} lines can be discerned without the aid of a narrow Fe\textsc{ii} template, we model the pseudocontinuum with a power-law AGN continuum plus the broad Fe\textsc{ii} template only. For this purpose, we try all three schemes of modeling the profile of broad Fe\textsc{ii} lines described in Section 2.1. The fitting results are very encouraging: narrow Fe\textsc{ii} lines are present in many residual spectra regardless of the broad Fe\textsc{ii} model adopted. Figure 1 illustrates the three schemes applied to SDSS J111354.19+002235.4. Plotted as vertical lines are the locations of the narrow Fe\textsc{ii} lines, both permitted (dotted) and forbidden (dashed), as well as some narrow transitions of Cr\textsc{ii}, Ni\textsc{ii}, and Ti\textsc{ii} (cyan), that were identified by Véron-Cetty et al. (2004) and appear unambiguous in all the residual spectra. Those lines are also labeled in Figure 1. While there are small differences among the three fitting schemes, overall the pattern of narrow features appears robust. Moreover, the relative strengths of the narrow features seem, to first order, reproducible from object to object. This is shown in Figure 2 (top), where we plot the residual spectra for four sources fitted using Scheme A (broad Fe\textsc{ii} modeled using the broad H\textbeta profile).

Next, we fit the entire type 1 sample with the narrow Fe\textsc{ii} template included into the pseudocontinuum model, as described in Section 2.1. The broad Fe\textsc{ii} line profile is again modeled with the above three schemes. The addition of the narrow-line component is justified statistically by the F-test, with over half of the spectra having a chance probability $P_{\text{null}} < 0.01$, regardless of the model adopted for the broad Fe\textsc{ii} profile (even the extreme case of Scheme B). Because the fluxes of both narrow and broad Fe\textsc{ii} are relatively insensitive to the choice of broad Fe\textsc{ii} template, we adopt Scheme A (broad Fe\textsc{ii} profile = broad H\textbeta profile) for the rest of the study.

We detect narrow Fe\textsc{ii} emission at >3\sigma significance in 2515 (60%) of the 4178 objects, and at >5\sigma significance in 1872 (45%), using errors on the narrow-line Fe\textsc{ii} flux as given by MPFIT. This is consistent with the above F-test results. The rest-frame equivalent widths of the narrow Fe\textsc{ii} features integrated over the region 4434–4684 Å (Fe\textsc{ii} λλ4570) range from undetectable to 25 Å. The intensity ratios of the narrow to broad Fe\textsc{ii} λ4570 feature, among the 2502 objects in which both components are detected at >3\sigma significance, vary by two orders of magnitude, ranging from ∼0.005 to 0.5, with a mean of 0.07 and a standard deviation of 0.3 dex (computed in log space). The equivalent widths of the two components do not correlate very tightly (Spearman correlation coefficient $r_s = 0.45$; see Figure 3), suggesting that the narrow component is not an artifact of measurement uncertainty associated with deblending of the broad component. Remarkably, however, as described in the companion paper by Dong et al. (2010), the relative strengths of narrow Fe\textsc{ii} with respect to the continuum and all other prominent emission lines in the near-ultraviolet and optical region (e.g., Mg\textsc{ii} λ2800, broad Fe\textsc{ii}, broad H\textbeta,

6. The implementation of the template functions in Interactive Data Language (IDL) is available at http://staff.ustc.edu.cn/~xdbong/Data_Release/Fell/Template/.

7. We have found through experimentation that the F-test works well in such spectral fitting, although, theoretically, it holds only for linear models (see below and Dong et al. 2008).
Figure 1. Fitting results of the optical spectrum of SDSS J113541.19+002235.4, using three different models for the profile of broad Fe\textsc{ii} emission lines, without taking into account narrow Fe\textsc{ii} lines. We show the SDSS spectrum (black), the AGN power-law continuum (blue), and the pseudocontinuum (AGN continuum plus broad-line Fe\textsc{ii} emission) with broad Fe\textsc{ii} lines modeled with the profile of broad H\textsc{\beta} (red), with the whole H\textsc{\beta} profile (purple), and with a single Lorentzian of variable width (green). In the bottom of every panel, the pseudocontinuum-subtracted residuals for the three respective models are displayed (with arbitrary offsets for clarity). Vertical lines and labels denote the permitted (dark gray, dotted) and forbidden (gray, dashed) narrow Fe\textsc{ii} lines, as well as some narrow Cr\textsc{ii}, N\textsc{i}\textsc{ii}, and Ti\textsc{ii} lines (cyan), that appear unambiguous in the present spectrum. We also label several non-iron emission lines (black) and two broad Ti\textsc{ii} lines (navy). In the bottom panel, we show the best-fit model for broad H\textsc{\beta} (gray, solid).

(A color version of this figure is available in the online journal.)

and [O\textsc{iii}] \(\lambda5007 \) correlate most strongly with the Eddington ratio\(^8\) rather than with other physical parameters of the AGNs. A physical model unifying these and other correlations concerning Eddington ratio was proposed by Dong et al. (2009a, 2009b, 2010).

\(^8\) Eddington ratio, \(\ell \equiv L/L_{\text{Edd}} \), is the ratio between the bolometric and Eddington luminosities. The Eddington luminosity (\(L_{\text{Edd}} \)), by definition, is the luminosity at which the gravity of the central source acting on an electron–proton pair (i.e., fully ionized gas) is balanced by the radiation pressure due to electron Thomson scattering.

It is difficult to obtain accurate measurements of the kinematics of the narrow Fe\textsc{ii} features. The lines are weak, most are severely blended, and both the spectral resolution and S/N of the SDSS data are limited. Notwithstanding these limitations, we make a preliminary statistical investigation for the 1032 objects with narrow Fe\textsc{ii} emission detected at >10\sigma significance. The best-fitting narrow Fe\textsc{ii} model gives line widths (full width at half-maximum, corrected for instrumental broadening) mostly in the range of 200–800 km s\(^{-1}\), with a mean of 560 km s\(^{-1}\) and a standard deviation of 150 km s\(^{-1}\); these
Figure 2. Top: residual spectra of four type 1 AGNs with strong narrow Fe ii lines, after the subtraction of the AGN continuum and the best-fit broad-line Fe ii emission modeled with the profile of broad Hβ. The vertical lines are the same as in Figure 1. Bottom: four composite spectra of type 2 AGNs, ordered by [O iii] luminosity. The narrow emission lines from non-iron elements are labeled according to the identifications by Vanden Berk et al. (2001) from their composite quasar spectrum. Strong emission lines are clipped for clarity.

(A color version of this figure is available in the online journal.)

Figure 3. Distribution of equivalent widths of narrow and broad Fe ii λ4570 emission (black dots), along with 1σ error bars (gray), for the 2502 objects with both components detected at >3σ significance.

values are comparable to those of [O iii] λ5007 within ±50% (1σ). The velocity shifts of the narrow Fe ii system with respect to narrow Hβ range mostly from −200 km s⁻¹ (blueshifted) to 300 km s⁻¹ (redshifted), with a mean of 50 km s⁻¹ and a standard deviation of 100 km s⁻¹. With respect to the broad Fe ii system, the mean velocity shift of narrow Fe ii is 210 km s⁻¹, with a standard deviation of 280 km s⁻¹. We cannot discern any obvious velocity differences between the permitted and forbidden narrow transitions. Without a robust estimation of the measurement uncertainties on these kinematic parameters at present, we refrain from a full discussion of the kinematics in this Letter.

3.2. No Narrow Fe ii Emission in Type 2 AGNs

In strong contrast to the case of type 1 AGNs, no Fe ii emission is detected at >3σ significance in any object in the type 2 sample. Considering that the detection of weak emission lines may be heavily influenced by uncertainties in starlight subtraction, we divide the type 2 sample into three subsamples according to [O iii] λ5007 luminosity and build a composite spectrum for each. The composites are arithmetic mean spectra, constructed following Chen et al. (2010, see their Section 3.1). The luminosity ranges of the three subsamples are \(L_{[\text{O iii}]} < 10^{40.5}, \quad 10^{40.5} - 10^{41.5}, \quad \text{and} \quad >10^{41.5} \text{ erg s}^{-1}. \) To avoid possible confusion from the inclusion of star-forming galaxies, we further require the objects to be located above
the maximum starburst line in the Baldwin–Phillips–Terlevich diagram (Baldwin et al. 1981) of Kewley et al. (2001) and to have $|\text{O} III\lambda 5007/H\beta| > 3$ to avoid low-ionization sources. To obtain a comparison sample of type 2 sources with AGN luminosities more compatible with that of the type 1 sample (median $L_{|\text{O} III\lambda 5007|} = 1.3 \times 10^{42}$ erg s$^{-1}$), we also build a composite spectrum for the SDSS type 2 quasars presented in Reyes et al. (2008), which have $8 \times 10^{41} < L_{|\text{O} III\lambda 5007|} < 4 \times 10^{43}$ erg s$^{-1}$. As shown in Figure 2 (bottom), it is clear that no narrow Fe ii features whatsoever are seen in any of the composite type 2 spectra. To quantify this striking result, we use the type 2 quasar composite, after starlight subtraction, to place upper limits on two relatively isolated features, Fe $\text{ii} \lambda 4925$ (integrated in the vacuum wavelength range 4918–4938 Å, which is dominated by Fe $\text{ii} \lambda 4923$ and Fe $\text{ii} \lambda 4928$) and Fe $\text{ii} \lambda 5234$. Relative to $|\text{O} III\lambda 5007|$, the limits are <0.006 and <0.005, respectively. By comparison, the mean values of these features in the type 1 sample are 0.05 and 0.02.

4. DISCUSSION AND SUMMARY

The most surprising finding of this Letter is that narrow Fe ii emission is prevalent in type 1 AGNs, yet not present at all in type 2 AGNs. This is a statistically robust result, based on analysis of a large sample of individual spectra as well as very high S/N stacked spectra. A possible explanation for this striking contrast, appealing to the canonical geometric unification scheme for type 1 and type 2 AGNs (e.g., Antonucci 1993), is that narrow Fe ii emission arises from gas in the innermost regions of the NLR located interior to the obscuring torus. The inner edge of the torus has been estimated to be on scale of parsecs, roughly the dust sublimation radius (Suganuma et al. 2006); its radial extent is likely to be several tens of parsecs (e.g., Jaffe et al. 2004; see Granato & Danese 1994 for a model). In this picture the narrow Fe ii-emitting region is visible along our line of sight in type 1 objects but obscured by the (extent of) the dusty torus in type 2 counterparts. As a low-ionization specie, Fe ii may preferentially avoid the ionization cone and be largely confined to a disk-like geometry along the plane of the torus, as depicted in Figure 6 of Gaskell (2009).

Yet, the complete absence of optical narrow Fe ii emission in type 2 sources appears perplexing in view of the fact that narrow [Fe ii] emission in the NLR has been seen in AGNs of both types (see Section 1). Can line-of-sight dust obscuration be so effective in suppressing or hiding the optical lines, in all cases? Given the inherent patchiness of the interstellar medium, this seems incredible. However, in the absence of a quantitative prediction for the intrinsic relative strengths of the optical and NIR Fe ii transitions, which, to our knowledge, has not been published, it is difficult to evaluate this hypothesis. Comparison between the NIR and optical lines may be further complicated by the fact that the transitions in these two wavelength ranges arise from different energy levels (<1.5 eV for the NIR; ~3 eV for optical forbidden; ~5 eV for optical permitted), and hence likely trace physically different regions. The NIR lines probably tracer cooler, dustier material compared to the regions emitting the optical lines.

There are several lines of fruitful work for the future. From an observational standpoint, it would be useful to obtain optical spectra of higher S/N and higher spectral resolution to better constrain the kinematics of the Fe ii-emitting gas and its relation to regions emitting higher-ionization species. To better understand the puzzling mismatch between the optical and NIR lines, it would be instructive to obtain NIR spectra of the sources for which narrow Fe ii has been detected in the optical and vice versa. And finally, theoretical calculations are needed to predict the intrinsic spectrum of narrow Fe ii across a wide wavelength range.

We thank Kirk Korista, Martin Gaskell, and Weimin Yuan for helpful comments. This work is supported by Chinese NSF grants NSF-10703006 and NSF-10728307, and a National 973 Project of China (2007CB815403). The research of L.C.H. is supported by the Carnegie Institution for Science. The visit of X.D. in Carnegie Observatories is mainly supported by OATF, USTC. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.

REFERENCES

Adelman-McCarthy, J. K., et al. 2006, ApJS, 162, 38
Antonucci, R. 1993, ARA&A, 31, 473
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Chen, Y.-M., Tremonti, C. A., Heckman, T. M., Kauffmann, G., Weiner, B. J., Brinchmann, J., & Wang, J. 2010, AJ, 140, 445
Dong, X.-B., Wang, T.-G., Fan, X., Ho, L. C., Wang, H., Zhou, H., & Yuan, W. 2010, ApJ, submitted (arXiv:0903.5020)
Dong, X.-B., Wang, T.-G., Wang, T.-G., Wang, H., Fan, X., Zhou, H., Yuan, W., & Long, Q. 2009a, in ASP Conf. Ser. 408, The Starburst–AGN Connection, ed. W. Wang et al. (San Francisco, CA: ASP), 83
Dong, X.-B., Wang, T.-G., Wang, J.-G., Fan, X., Wang, H., Zhou, H., & Yuan, W. 2009b, ApJ, 703, L1
Dong, X., Wang, T., Wang, J., Yuan, W., Zhou, H., Dai, H., & Zhang, K. 2008, MNRAS, 383, 581
Dong, X.-B., Zhou, H.-Y., Wang, T.-G., Wang, J.-X., Li, C., & Zhou, Y.-Y. 2005, ApJ, 620, 629
Ferguson, J. W., Korista, K. T., Baldwin, J. A., & Ferland, G. J. 1997, ApJ, 487, 122
Gaskell, C. M. 2009, New Astron. Rev., 53, 140
Granato, G. L., & Danese, L. 1994, MNRAS, 268, 235
Hu, C., Wang, J.-M., Ho, L. C., Chen, Y.-M., Zhang, H.-T., Bian, W.-H., & Xue, S.-J. 2008, ApJ, 687, 78
Jaffe, W., et al. 2004, Nature, 429, 47
Kauffmann, G., et al. 2003, MNRAS, 346, 1055
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121
Landt, H., Benztz, M. C., Ward, M. J., Elvis, M., Peterson, B. M., Korista, K. T., & Karovska, M. 2008, ApJS, 174, 282
Laor, A., & Draine, B. T. 1993, ApJ, 402, 441
Lu, H., Zhou, H., Wang, J., Wang, T., Dong, X., Zhuang, Z., & Li, C. 2006, AJ, 131, 790
Markwardt, C. B. 2009, in ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler (San Francisco, CA: ASP), 251
Mouri, H., Kawara, K., & Taniguchi, Y. 2000, ApJ, 528, 186
Reyes, R., et al. 2008, AJ, 136, 2373
Rodríguez-Ardila, A., Pastoriza, M. G., Viegas, S., Sigut, T. A. A., & Pradhan, A. K. 2004, A&A, 425, 457
Rodríguez-Ardila, A., Riffel, R., & Pastoriza, M. G. 2005, MNRAS, 364, 1041
Simmons, C., Forbes, D. A., Baker, A. C., & Ward, M. J. 1996, MNRAS, 283, 777
Suganuma, M., et al. 2006, ApJ, 639, 46
Vanden Berk, D. E., et al. 2001, AJ, 122, 549
Véron-Cetty, M.-P., Joly, M., & Véron, P. 2004, A&A, 417, 515
Véron-Cetty, M.-P., Véron, P., Joly, M., & Kollatschny, W. 2007, A&A, 475, 457
Vestergaard, M., & Peterson, B. M. 2005, ApJ, 625, 688
Wang, T., Dai, H., & Zhou, H. 2008, ApJ, 674, 668
Zhang, K., Wang, T.-G., Dong, X.-B., & Lu, H. 2008, ApJ, 685, L109