Neural Machine Translation with Source Dependency Representation

Kehai Chen¹, Rui Wang², Masao Utiyama², Lemao Liu³, Akihiro Tamura⁴, Eiichiro Sumita² and Tiejun Zhao¹

¹Harbin Institute of Technology, China
²National Institute of Information and Communications Technology, Japan
³Tencent AI Lab, China
⁴Ehime University, Japan
Overview

- Traditional NMT Model

\[\text{Src: } x_1, x_2, x_3, x_4, x_5, x_6, x_7 \]

\[\text{Trg: } y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8 \]

Standard NMT model
Overview

Our proposed NMT model

Inspired by the syntax knowledge in SMT, we want to explicitly integrate source dependency information into NMT
Related Work

- NMT with source syntax information

 - Tree2seq (Eriguchi et al., 2016; Li et al., 2017; +other)
 Tree-based neural network is used to encode source phrase structures

 - Extending source inputs with syntax labels (Sennrich et al., 2016; Chen et al., 2017; +other)
 Dependency labels are concatenated to source word
Related Work

• NMT with source syntax information
 - Tree2seq (Eriguchi et al., 2016; Li et al., 2017; +other)
 Tree-based neural network is used to encode source phrase structures
 - Extending source inputs with syntax labels (Sennrich et al., 2016; Chen et al., 2017; +other)
 Dependency labels are concatenated to source word

• Our work
 - A compromise between the two kinds of works
 - A novel double context approach to utilizing source dependency constraints
Source Dependency Representation (SDR)

- Extracting a dependency unit for each source word to capture source long-distance dependency constraints:

\[U_j = \langle PA_{x_j}, SI_{x_j}, CH_{x_j} \rangle \]
Source Dependency Representation (SDR)

Extracting a dependency unit for each source word to capture source long-distance dependency constraints:

\[U_j = \langle PA_{x_j}, SI_{x_j}, CH_{x_j} \rangle \]

Where \(PA_{x_j}, SI_{x_j}, \) and \(CH_{x_j} \) denote the parent, siblings and children words of source word \(x_j \) in a dependency structure.

Take \(x_2 \) as an example:

\[PA_{x_2} = \langle x_3 \rangle, \quad SI_{x_2} = \langle x_1, x_4, x_7 \rangle, \quad CH_{x_2} = \langle \epsilon \rangle, \]

then,

\[U_2 = \langle x_3, x_1, x_4, x_7, \epsilon \rangle \]
Source Dependency Representation (SDR)

- Learn semantic representation of each dependency unit

 Take x_2 as an example: $PA_{x_2} = \langle x_3 \rangle$, then, $U_2 = \langle x_3, x_1, x_4, x_7, \epsilon \rangle$

 $SI_{x_2} = \langle x_1, x_4, x_7 \rangle$,

 $CH_{x_2} = \langle \epsilon \rangle$,

\[\begin{array}{c}
\text{Input layer} \\
\begin{array}{c}
\text{x}_3 \\
\text{x}_1 \\
\text{x}_4 \\
\text{x}_7 \\
\text{\epsilon} \\
\end{array}
\end{array} \text{ Convolution layer 1 } \\
\begin{array}{c}
\begin{array}{c}
\text{3}\times d \text{ kernel} \\
\end{array}
\end{array} \\
\begin{array}{c}
\text{Max-pooling layer 1} \\
\begin{array}{c}
\text{10}\times d \\
\text{8}\times d \\
\text{4}\times d \\
\text{2}\times d \\
\text{1}\times d \\
\end{array}
\end{array} \text{ Convolution layer 2 } \\
\begin{array}{c}
\begin{array}{c}
\text{Max-pooling layer 2} \\
\text{Output layer} \\
\end{array}
\end{array} \text{ V}_{U2} \]
Neural Machine Translation with SDR

SDRNMT-1:

```
| Src | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 |
|-----|-----|-----|-----|-----|-----|-----|-----|
```

Dep Tuples

```
| Encoder |
|---------|
| V_{x_1} | V_{x_2} | ... | V_{x_J} |
| h_1     | h_2     | ... | h_J     |
```

Decoder

```
| s_i     |
|---------|
| c_i     |
| s_{i-1} |
| y_{i-1} |
| y_i     |
```

9
Neural Machine Translation with SDR

SDRNMT-1:

Where the v_{x_j} is 360-dim and the learned v_{U_j} is 260-dim.
Neural Machine Translation with SDR

SDRNMT-2:

\[
\begin{align*}
\text{Encoder} & : \quad V_{x_1} \xrightarrow{\text{CNN}} V_{U_1} \xrightarrow{} h_1 \\
\text{Dep Tuples} & : \quad U_1 = \langle x_1, x_2, x_3, x_4, x_7, \varepsilon \rangle \\
\text{Src dep} & : \quad x_1, x_2, x_3, x_4, x_5, x_6, x_7
\end{align*}
\]
Neural Machine Translation with SDR

SDRNMT-2:

Encoder:
\[h_j = f_{enc}(V_{x_j}, h_{j-1}), \]
\[d_j = f_{enc}(V_{U_j}, d_{j-1}) \]
Neural Machine Translation with SDR

SDRNMT-2:

Encoder: $h_j = f_{enc}(V_{x_j}, h_{j-1})$

$d_j = f_{enc}(V_{U_j}, d_{j-1})$

Attention: $e_{i,j}^s = f(s_{i-1}^s + h_j)$,

$e_{i,j}^d = f(s_{i-1}^d + d_j)$.

$$\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}$$
SDRNMT-2:

Encoder:

\[h_j = f_{enc}(V_{x_j}, h_{j-1}), \]

\[d_j = f_{enc}(V_{U_j}, d_{j-1}) \]

Attention:

\[e_{i,j}^s = f(s_{i-1}^s + h_j), \]

\[e_{i,j}^d = f(s_{i-1}^d + d_j). \]

\[\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)} \]

Decoder:

\[c_{i,j}^s = \sum_{j=1}^{J} \alpha_{i,j} h_j, c_{i,j}^d = \sum_{j=1}^{J} \alpha_{i,j} d_j \]

\[s_{i,j}^s = \varphi(s_{i-1}^s, y_{i-1}, c_{i,j}^s), \]

\[s_{i,j}^d = \varphi(s_{i-1}^d, y_{i-1}, c_{i,j}^d). \]
Neural Machine Translation with SDR

SDRNMT-2:

Encoder: \[h_j = f_{enc}(V_{x_j}, h_{j-1}), \]
\[d_j = f_{enc}(V_{U_j}, d_{j-1}) \]

Attention: \[e_{i,j}^s = f(s_{i-1}^s + h_j), \]
\[e_{i,j}^d = f(s_{i-1}^d + d_j). \]

\[\alpha_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)}{\sum_{j=1}^J \exp(\lambda e_{i,j}^s + (1-\lambda)e_{i,j}^d)} \]

Decoder: \[c_{i,j}^s = \sum_{j=1}^J \alpha_{i,j} h_j, c_{i,j}^d = \sum_{j=1}^J \alpha_{i,j} d_j \]
\[s_{i,j}^s = \varphi(s_{i-1}^s, y_{i-1}, c_{i,j}^s), \]
\[s_{i,j}^d = \varphi(s_{i-1}^d, y_{i-1}, c_{i,j}^d). \]

\[p(y_i | y_{i-1}, x, T) = g(y_{i-1}, s_{i,j}^s, s_{i,j}^d, c_{i,j}, c_{i,j}^d) \]
Neural Machine Translation with SDR

SDRNMT-2:

Encoder:
\[h_j = f_{\text{enc}}(V_{x_j}, h_{j-1}), \]
\[d_j = f_{\text{enc}}(V_{U_j}, d_{j-1}) \]

Attention:
\[e_{i,j}^s = f(s_{i-1}^s + h_j), \]
\[e_{i,j}^d = f(s_{i-1}^d + d_j). \]

Decoder:
\[c_{i}^s = \sum_{j=1}^{J} \alpha_{i,j} h_j, c_{i}^d = \sum_{j=1}^{J} \alpha_{i,j} d_j \]
\[s_{i}^s = \varphi(s_{i-1}^s, y_{i-1}, c_{i}^s), \]
\[s_{i}^d = \varphi(s_{i-1}^d, y_{i-1}, c_{i}^d). \]

Double Context NMT
Experimental

- Experiments on Chinese-to-English translation task, 1.42M LDC corpus
- Parse source sentences of training data by Stanford Parser (Chang et al., 2009)
- For the SDRNMT-1 and SDRNMT-2, the dimension of V_{xj} is 360 and the dimension of V_{uj} is 260, and input embedding of the baseline is 620
- The baselines include Phrase-Based Statistical Machine Translation (PBSMT) (Koehn et al., 2007), standard Attentional NMT (AttNMT) (Bahdanau et al., 2014), NMT with dependency labels (Sennrich and Haddow, 2016)
Experimental

System	Dev(NIST02)	NIST03	NIST04	NIST05	NIST06	NIST08	AVG
PBSMT	33.15	31.02	33.78	30.33	29.62	23.53	29.66
AttNMT	36.31	34.02	37.11	32.86	32.54	25.44	32.40
Sennrich-deponly	36.68	34.51	38.09	33.37	32.96	26.96	32.98
SDRNMT-1	36.88	34.98*	38.14	34.61**	33.58*	27.06	33.32
SDRNMT-2	**37.34**	**35.91**	**38.73**	**34.18**	**33.76**	**27.64**	**34.04**

“*” indicates statistically significant better than “Sennrich-deponly” at p-value < 0.05 and “**” at p-value < 0.01 by bootstrap resampling (Koehn, 2004)
Experimental Results

- Translation qualities for different sentence lengths

![Graph showing BLEU scores for different sentence lengths with comparisons between PBSMT, AttNMT, Sennrich-deponly, SDSNMT-1, SDSNMT-2.](image-url)
Conclusion

- Source dependency unit to capture source long-distance dependency constraint
- The proposed $SDRNMT-1$ and $SDRNMT-2$ consist of NMT and CNN, which are jointly trained to learn SDR and translation instead of separately trained
- Double-Context approach to further utilize source dependency representation