A Systematic Study of Spin-Dependent Recombination in GaAs$_{1-x}$N$_x$ as a Function of Nitrogen Content

Agatha C. Ulibarri,* Rishabh Kothari, Alejandro Garcia, Jean-Christophe Harmand, Sangjun Park, Fabian Cadiz, Yves Lassailly, Jacques Peretti, and Alistair C. H. Rowe*

A systematic study of spin-dependent recombination (SDR) under steady-state optical pumping conditions as a function of nitrogen content, x, in dilute nitride alloys of the form GaAs$_{1-x}$N$_x$ is reported. Use of high-excitation power densities up to $10^7$ W cm$^{-2}$ allows measurement of the full SDR versus power curves, even at relatively high nitrogen contents of $x = 0.039$. Alloy contents for 0.022 $\leq x \leq 0.039$ are determined within $\delta x = \pm 0.005$ by fitting the photoluminescence (PL) spectra using a Roosbroeck–Shockley relation, and values consistent with those obtained by studying the intensity of the GaN-like LO$_2$ Raman mode are found. PL intensity increases by a factor known as the SDR ratio when switching from linearly to circularly polarized pump excitation. This factor reaches 5 for $x = 0.022$ and decreases with increasing x, falling to 1.5 for $x = 0.039$. Moreover, the excitation power required for maximum SDR increases with increasing x, varying from 0.6 mW for $x = 0.022$ to 15 mW for $x = 0.039$. These observations indicate an increase in the density of electronically active defects with increasing nitrogen content, both responsible for the SDR and other, standard Shockley–Read–Hall centers. The result demonstrates the importance of including nonspin-dependent recombination channels in a complete model of SDR.

1. Introduction

The recombination dynamics of minority carriers in nonmagnetic semiconductors become spin dependent in the presence of a Shockley–Read–Hall (SRH) process occurring at a paramagnetic recombination center[1] due to the exchange interaction operating on quantum-correlated electron pairs formed during the electron capture process.[2] If the spin-dependent recombination (SDR) rate via this route is faster than other SRH rates or the radiative band-to-band rate, luminescence and photocurrent intensities can increase spectacularly when conduction electrons are spin polarized.[2,3] The ratio of these intensities is known as the SDR ratio.

The discovery of SDR was initially achieved using resonance methods in crystalline[4] and amorphous[5] silicon. In direct-gap III–V semiconductors, optical orientation with circularly polarized photons provides an efficient means to spin polarize conduction electrons, and SDR effects in the PL were initially observed in ternary AlGaAs alloys.[6] After a long hiatus, giant effects under optical orientation conditions were observed in dilute nitrides of the form GaAs$_{1-x}$N$_x$[6,7] where typically, $x < 0.05$. Indeed, the SDR in dilute nitrides is so large that its measurement via photoconductivity[8] has catalyzed device propositions ranging from spin filters[9] to spin–photon interfaces[10] and quantum sensors acting as light helicity detectors.[11] In parallel with efforts to develop device applications, significant fundamental progress in the identification of the SDR-active defect in these alloys has been made. In particular, the spin dynamics of the paramagnetic center were studied[12] and optically detected magnetic resonance experiments have identified a Ga$_{2+}$ interstitial defect[9,13] as being responsible for SDR. The basic physical picture that describes SDR is now widely accepted: spin polarization of conduction electrons result in dynamic polarization of paramagnetic centers that effectively quenches a spin-dependent SRH recombination path. This results in an overall increase in the minority carrier lifetime which increases PL intensity occurring via spin-independent radiative transitions. Here, we report a systematic study of the steady-state SDR at room temperature and under optical pumping conditions using $h\nu = 1.39$ eV excitation in GaAs$_{1-x}$N$_x$ as a function of alloy content x and excitation power. The alloy content is estimated by fitting PL spectra with a two-component Roosbroeck–Shockley model[14] that accounts for the strain-induced splitting of the heavy- and light-hole bands, and the resulting findings are validated using an independent approach based on an intensity measurement of GaN-like LO$_2$ phonon-mode intensities.[13] The observed variations with x in the SDR ratio and the power at which maximum SDR is measured,


2. Determination of Alloy Content

A 50 nm-thick p-type silicon-doped, \( p = 2 \times 10^{18} \text{cm}^{-3} \), GaAs\(_{1-x}\)N\(_x\) layer with nominal \( x = 0.021 \) was grown on a (001) semi-insulating GaAs substrate using molecular beam epitaxy and terminated with a 10 nm GaAs cap layer. The nitrogen content, \( x \), was found to vary significantly across the surface as optical measurements at the six points in Figure 1a will show. The normalized, room-temperature PL spectra shown in Figure 1b were obtained from a region of the sample several hundred micrometers across using a pump beam at 1.39 eV focused to a Gaussian spot with a lateral extent of \( \sigma = 0.6 \mu \text{m} \). These spectra were taken at the points on the sample surface marked by the 20 \( \times \) 20 \( \mu \text{m} \) correspondingly colored squares shown in Figure 1a. A curved feature on the sample surface delimits the zone where a significant redshift in the PL spectrum occurs before the disappearance of the GaAs\(_{1-x}\)N\(_x\) PL peak at the black measurement spot. This redshift can be a combination of increasing layer strain and an increase in the local nitrogen content [17] the details of which are now analyzed via a fit to the PL lineshape. When grown on a GaAs substrate, thin dilute nitride layers experience an in-plane biaxial tensile strain, and an out-of-plane uniaxial compressive strain, both of which increase with increasing \( x \). Gap changes with alloy content are then described by a band anticrossing model [17] corrected for both the hydrostatic and shear components of the in-built strain [19]. In addition to this, the shear component of the strain also splits the heavy- and light-hole degeneracy according to

\[
\delta = 2b(e_|| - e_\perp)
\]

where \( e_|| \) is the in-plane biaxial strain and \( e_\perp \) is the out-of-plane uniaxial strain. The coefficient \( b \) is the shear deformation potential of the dilute nitride.

In order to establish the nitrogen content of the five alloys studied here, the values of the heavy- and light-hole bandgaps (and therefore the hole-splitting energies) were obtained by fitting the PL spectra using a Roosbroeck–Shockley relation [14] described by

\[
I(h\nu) \propto |h\nu|^2 \{1 - \exp[a(h\nu)d]\} \exp[-h\nu/k_BT_c]
\]

where \( d \) is the active layer thickness, \( h\nu \) is the photon energy, \( a(h\nu) \) is the energy-dependent absorption coefficient, and \( k_BT_c \) is the carrier thermal energy. The absorption coefficient depends on the electronic density of states which, using Ullrich’s approach [14], switches smoothly from an Urbach tail at low energies to the 3D Bloch density of states at a critical energy, \( E_{cr} \). \( E_{cr} \) is a fitting parameter related to the energy gap, \( E_g \), and the width of the Urbach tail, \( \Sigma \), according to \( E_{cr} = E_g + k_BT_c/\Sigma \) where \( k_BT_c \) is the lattice thermal energy. The PL fits contain five parameters, \( \Sigma, k_BT_c, k_BT_1, E_{cr}, \) and a parameter \( A \) appearing in \( a(h\nu) \) which does not significantly change the fitting result. Figure 2 shows an example of the strain-split light- and heavy-hole component peaks in gray and green, as well as their sum (in black) which was fit to the measured PL spectrum (in blue). \( E_{cr} \) is shown for each of the component peaks as a dotted, vertical line, while \( E_g \) associated with each of the two transitions are shown as solid vertical lines. The hole splitting, \( \delta \), obtained by taking the difference between \( E_g \) for each of the component curves, is also indicated in Figure 2. The fits are sensitive to the gap values and therefore \( \delta \) can be obtained with good accuracy, typically to within a standard error of 2 meV. This is indicated by the vertical error bars on the points in Figure 3 and this is important to keep...
in mind for the following discussion on the accuracy with which it is possible to determine the alloy content, \( x \), from these fits.

Using these obtained values of the heavy- and light-hole gaps it is possible to estimate the nitrogen content, either using the absolute values of the gaps or using the splitting between the two. The first approach requires the use of five parameters: two empirical band coupling parameters (\( V_{\text{hh}} \) and \( V_{\text{lh}} \)) that appear in the anticrossing model,\(^{17}\) the hydrostatic deformation potentials for the valence (\( a_v \)) and conduction (\( a_c \)) bands, and the aforementioned shear deformation potential, \( b \).\(^{19}\) The second approach, on the other hand, only requires the use of a single empirical parameter, \( b \), and is therefore favored here.

In the thin layer limit of relevance here, the in-plane lattice parameter of the dilute nitride is equal to the lattice parameter of the GaAs substrate, \( a_0 = a_{\text{GaAs}} = 0.56535 \text{ nm} \). The known, empirical dependence of the strain-relaxed lattice parameter, \( a \), of dilute nitrides as a function of \( N_x \)\(^{20}\) was used to calculate the in-plane biaxial strain \( \epsilon_{ab} = a/a_0 - 1 \) in Equation (1). The out-of-plane lattice constant can then be calculated using the mechanical symmetries of the face-centered cubic lattice.\(^{19}\) Thereby obtaining the out-of-plane uniaxial strain \( \epsilon_{c} = a_c/a_0 - 1 \) also in Equation (1). The value of the shear deformation potential, \( b \), in the dilute nitride is not clear. Some works claim \( x \)-dependent values as large as \(-3.2 \text{ eV}\)\(^{20,21}\) while others report values around \(-2.4 \text{ eV}\) for low-nitrogen contents similar to a value measured for GaAs of \(-1.7 \text{ eV}\).\(^{18}\) There is a high degree of variability in the reported values of \( b \), even for GaAs, so for the sake of simplicity, a typical value of \(-2 \text{ eV}\) was used to calculate the dark gray line shown in Figure 3. Using the measured splittings obtained from the fits to the PL data, an estimate for the \( x \) value can then be obtained by adjusting these points onto the dark gray line as shown in Figure 3. From the highest to lowest nitrogen content, the five alloys studied here have nitrogen fractions \( x \) equal to 0.039, 0.038, 0.035, 0.031, and 0.022 (as also noted in Figure 1b). The principal error in determining the alloy content is not the fit to the PL spectra since the vertical error bars in \( x \) are negligibly small. In fact the principal uncertainty is the value of \( b \). To estimate this error, the upper edge of the gray zone in Figure 3 was calculated with \( b = -2.4 \text{ eV} \), and the lower edge with \( b = -1.7 \text{ eV} \), two outlying values for \( b \). In this way, given the small uncertainty in \( \delta \), conservative estimates for the horizontal error bars, that is, in \( x \), can be made by taking the minimum and maximum values of \( x \) that fall within the gray zone. The deduced alloy contents and errors are \( 0.039 \pm 0.005, 0.038 \pm 0.006, 0.035 \pm 0.006, 0.031 \pm 0.005, \) and \( 0.022 \pm 0.004 \). The \( x \) error is estimated by taking the maximal \( x \) values corresponding to the standard error in \( \delta \) (vertical error bars) found from the PL spectral fit. The colored circles correspond to the \( x \) values found using Raman spectroscopy at the same points on the sample.

---

**Figure 3.** Hole-splitting energies, \( \delta \), plotted as a function of alloy nitrogen content, \( x \). The black line corresponds to a shear deformation potential, \( b = -2 \text{ eV} \), in Equation (1). The upper and lower limits of values for \( b \) are indicated by the gray region. The nitrogen content of the five studied alloys is estimated by placing the measured hole splittings (open circles) on the black line. The results, obtained from the (red to blue) spectra in Figure 1b, are \( 0.039 \pm 0.005, 0.038 \pm 0.006, 0.035 \pm 0.006, 0.031 \pm 0.005, \) and \( 0.022 \pm 0.004 \). The \( x \) error is estimated by taking the maximal \( x \) values corresponding to the standard error in \( \delta \) (vertical error bars) found from the PL spectral fit.
The nitrogen content map obtained by Raman spectroscopy covers the same area of the sample used for the PL measurements, as shown by comparing the bright-field images in Figure 1a and 4a. The black-outlined squares correspond to identical points in both cases, so the estimated x values obtained by fitting the PL, and via Raman scattering, can be directly compared. The excellent agreement between the two methods indicates that the nitrogen contents of the alloy can be determined with some confidence. This is emphasized in Figure 3 where the x values determined by Raman scattering, shown in color, align closely with the PL-determined points.

3. SDR Ratio as a Function of Alloy Content

When the sample is excited with circularly polarized laser light, spin polarization of conduction electrons is introduced according to the optical selection rules for allowed band-to-band transitions. This in turn results in dynamic polarization of the paramagnetic centers associated with Ga$_2$+$^+$ interstitials. In steady state, the polarization of the centers is similar to that of the conduction electrons, and according to the exchange interaction, this prevents recombination of the dominant spin species via these trap states. This in turn increases the PL intensity when switching from linearly to circularly polarized pump light. As previously described, the ratio of these two PL intensities is called the SDR ratio and is shown in Figure 5a for varying excitation powers and alloy contents.

For each of the studied alloys, the SDR ratio as a function of excitation power shows the characteristic peak at $P_{\text{max}}$ where the photoexcited conduction electron density is comparable to the defect density. A qualitative explanation for this is as follows: at low excitation powers, where the photoelectron density is small compared to the density of paramagnetic defects, only a small fraction of the defects are dynamically polarized and the SDR is small. At high excitation powers, where the photoelectron density is much higher than the paramagnetic defect density, the defects progressively transit to the doubly occupied state, which is no longer an electronically active trap state. In this case, the SDR also drops. Quantitatively, this behavior can be captured by a coupled rate equation model for the electron, hole, and trap state densities, but no attempt is made here to fit this model to the presented data.

In spite of this it is important to note that a measurement of $P_{\text{max}}$ gives an indication of the relative density of SDR-active centers. The observation that $P_{\text{max}}$ increases with increasing nitrogen content, as shown in Figure 5d, therefore suggests that the density of paramagnetic traps responsible for SDR increases with increasing nitrogen content. The importance of using extremely high excitation power densities up to $\approx 10^7 \text{W cm}^{-2}$ for PL measurements therefore becomes apparent. It allows for the full SDR ratio versus power curves to be measured, even for high nitrogen contents where SDR-active defect densities and hence $P_{\text{max}}$ are large. Indeed, previous reports of the SDR ratio as a function of excitation power in dilute nitrides have only studied alloy contents up to $x = 0.026$, even with the use of high peak intensity pulsed excitation.

Another important observation is that the maximum SDR ratio monotonically decreases with increasing nitrogen content, as shown in Figure 5c. This second observation can be qualitatively explained by an increase in other, as-yet unidentified, SRH centers through which spin-independent recombination
rates become comparable to, or greater than, the SDR rate occurring via the Ga\(^{2+}\)-related centers. This increase in available non-radiative recombination routes is consistent with the monotonic decrease in PL intensity with increasing \(x\) shown in Figure 5b. This is also apparent in Figure 1b where the normalization factors for each spectrum are shown, that is, for \(x = 0.039\) the spectrum is 18.7 times less intense than the \(x = 0.022\) spectrum. These observations of the SDR and its power dependence versus alloy content therefore clearly indicate the necessity to include non-SDR paths in any complete description of SDR. This conclusion has been made previously on the basis of the power dependence of the SDR ratio for \(0.007 \leq x \leq 0.026\).\(^{[16]}\) The alloy dependence observed here reinforces this conclusion.

4. Conclusion

SDR in dilute nitrides has been studied as a function of alloy content on a single wafer where likely temperature and strain variation during growth result in a gradient in nitrogen content as a function of position. The nitrogen content of the alloys is determined to an accuracy of \(\approx 0.005\) using two independent approaches, one based on a fit of the PL spectra using a Roosbroeck–Shockley model and another using the relative intensity of GaN-like phonon modes in the Raman spectrum. The excellent agreement between these two methods indicates that while only strictly applicable in equilibrium, that is, to absorption spectra, the Roosbroeck–Shockley model can be applied to PL at least for sufficiently low excitation powers.

Use of excitation power densities significantly higher than those previously reported in the literature allows for the full SDR ratio versus excitation power curves to be measured, even at the highest available nitrogen content. A systematic reduction in maximum SDR ratio and in PL intensity with increasing nitrogen content, along with an associated increase in \(P_{\text{max}}\), indicates that the density of all SRH centers, both which yield spin-dependent and spin-independent recombination paths, must be accounted for in any complete physical model of SDR in these materials.

Acknowledgements

This work was supported by the Simons Foundation (grant No. 601944) and by the Agence Nationale de la Recherche (grant no. ANR-17-CE24-0005).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

dilute nitrides, III–V semiconductors, photoluminescence, Raman spectroscopy, spin-dependent recombination, spintronics

Received: July 31, 2022
Revised: October 31, 2022
Published online: November 13, 2022
[1] F. Rong, W. Buchwald, E. Poindexter, W. Warren, D. Keeble, Solid-State Electron. 1991, 34, 835.
[2] D. Kaplan, I. Solomon, N. F. Mott, J. Phys. Lett. 1978, 39, 51.
[3] C. Weisbuch, G. Lampel, Solid State Commun. 1974, 14, 141.
[4] D. Lepine, Phys. Rev. B 1972, 6, 436.
[5] I. Solomon, D. Biegelsen, J. Knights, Solid State Commun. 1977, 22, 505.
[6] V. Kalevich, E. Ivchenko, M. Afanasiev, A. Shiryaev, A. Egorov, V. Ustinov, B. Pal, Y. Masumoto, JETP Lett. 2005, 82, 455.
[7] V. Kalevich, A. Shiryaev, E. Ivchenko, A. Egorov, L. Lombez, D. Lagarde, X. Marie, T. Amand, JETP Lett. 2007, 85, 174.
[8] F. Zhao, A. Balocchi, A. Kunold, J. Carrey, H. Carrère, T. Amand, N. B. Abdallah, J. C. Harmand, X. Marie, Appl. Phys. Lett. 2009, 95, 241104.
[9] X. Wang, I. Buyanova, F. Zhao, D. Lagarde, A. Balocchi, X. Marie, C. Tu, J. Harmand, W. Chen, Nat. Mater. 2009, 8, 198.
[10] S. Chen, Y. Huang, D. Visser, S. Anand, I. Buyanova, W. Chen, Nat. Commun. 2018, 9, 3575.
[11] R. Joshya, H. Carrère, V. Ibarra-Sierra, J. Sandoval-Santana, V. Kalevich, E. Ivchenko, X. Marie, T. Amand, A. Kunold, A. Balocchi, Adv. Funct. Mater. 2021, 31, 064040.
[12] V. Kalevich, A. Y. Shiryaev, E. Ivchenko, M. Afanasiev, A. Y. Egorov, Y. Ustinov, V. M. Masumoto, Physica B 2009, 404, 4929.
[13] X. J. Wang, Y. Puttisong, C. W. Tu, A. J. Ptak, V. K. Kalevich, A. Y. Egorov, L. Geelhaar, H. Riechert, W. M. Chen, I. A. Buyanova, Appl. Phys. Lett. 2009, 95, 241904.
[14] B. Ullrich, S. Munshi, G. Brown, Semicond. Sci. Technol. 2007, 22, 1174.
[15] J. Wagner, T. Geppert, K. Köhler, P. Ganser, N. Horres, J. Appl. Phys. 2001, 90, 5027.
[16] A. Kunold, A. Balocchi, F. Zhao, T. Amand, N. B. Abdallah, J. Harmand, X. Marie, Phys. Rev. B 2011, 83, 165202.
[17] E. P. O’Reilly, A. Lindsay, P. J. Klar, A. Polimeni, M. Capizzi, Semicond. Sci. Technol. 2009, 24, 033001.
[18] W. Li, M. Pessa, J. Likonen, Appl. Phys. Lett. 2001, 78, 2864.
[19] A. Egorov, V. Kalevich, M. Afanasiev, A. Shiryaev, V. Ustinov, M. Ikezawa, Y. Masumoto, J. Appl. Phys. 2005, 98, 013539.
[20] Y. Zhang, A. Mascarenhas, H. Xin, C. Tu, Phys. Rev. B 2000, 61, 7479.
[21] T. Ikari, S. Fukushima, Y. Ohta, A. Fukuyama, S. D. Wu, F. Ishikawa, M. Kondow, Phys. Rev. B 2008, 77, 125311.
[22] M. Reason, H. A. McKay, W. Ye, S. Hanson, R. S. Goldman, V. Rotberg, Appl. Phys. Lett. 2004, 85, 1692.
[23] F. Zhao, A. Balocchi, G. Truong, T. Amand, X. Marie, X. Wang, I. A. Buyanova, W. Chen, J. Harmand, J. Phys.: Condens. Matter 2009, 21, 174211.