Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma

Michelle L. Manni1, Victoria A. Heinrich2, Gregory J. Buchan2, James P. O’Brien2, Crystal Uvalle2, Veronika Cechova2,3, Adolf Koudelka2,3, Dharti Ukani1, Mohamad Rawas-Qalaji2, Tim D. Oury4, Renee Hart2, Madeline Ellgass2, Steven J. Mullett2,5, Merritt L. Fajt6, Sally E. Wenzel7, Fernando Holguin8, Bruce A. Freeman2 & Stacy G. Wendell2,5,9

Bile acid profiles are altered in obese individuals with asthma. Thus, we sought to better understand how obesity-related systemic changes contribute to lung pathophysiology. We also test the therapeutic potential of nitro-oleic acid (NO2-OA), a regulator of metabolic and inflammatory signaling pathways, to mitigate allergen and obesity-induced lung function decline in a murine model of asthma. Bile acids were measured in the plasma of healthy subjects and individuals with asthma and serum and lung tissue of mice with and without allergic airway disease (AAD). Lung function, indices of inflammation and hepatic bile acid enzyme expression were measured in obese mice with house dust mite-induced AAD treated with vehicle or NO2-OA. Serum levels of glycocholic acid and glycoursodeoxycholic acid clinically correlate with body mass index and airway hyperreactivity whereas murine levels of β-muricholic acid and tauro-β-muricholic acid were significantly increased and positively correlated with impaired lung function in obese mice with AAD. NO2-OA reduced murine bile acid levels by modulating hepatic expression of bile acid synthesis enzymes, with a concomitant reduction in small airway resistance and tissue elastance. Bile acids correlate to body mass index and lung function decline and the signaling actions of nitroalkenes can limit AAD by modulating bile acid metabolism, revealing a potential pharmacologic approach to improving the current standard of care.

Abbreviations
AAD Allergic airway disease
BAAT Bile acid-CoA:amino acid N-acyltransferase
BAL Bronchoalveolar lavage
BMI Body mass index
Ers Pulmonary elastance
FEV1 Percent predicted forced expiratory volume
FXR Farnesoid X receptor
G Tissue damping
GCA Glycocholic acid
GUDCA Glycoursodeoxycholic acid
H Tissue elastance
HDM House dust mite

1Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA. 2Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, E1345, Pittsburgh, PA 15261, USA. 3Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, 61265 Brno, Czech Republic. 4Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA. 5Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA 15261, USA. 6Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA. 7Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA. 8Division of Pulmonary Sciences and Critical Care, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA. 9Department of Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA 15261, USA. *email: gstacy@pitt.edu
Obesity induces a chronic systemic inflammatory state characterized by impaired adipokine signaling, pro-inflamma tory cytokine production, immune cell activation and enhanced generation of oxygen and nitrogen oxide-derived reactive species. Obesity is a risk factor for the development of asthma and is associated with worsening symptoms and poor asthma control1,2. Obese individuals with asthma often have severe, refractory disease with higher rates of exacerbations and hospitalizations1–3. Currently, 60% of severe asthmatic adults are obese4. The relationship between obesity and asthma derives from multiple physiological, environmental, and clinical factors, with specific pathogenic mechanisms remaining to be defined.

Bile acids are sterol metabolites produced by a combination of hepatic and microbial metabolic reactions and are implicated in obesity-associated changes in lung function and a pro-asthma phenotype5,6. Bile acids bind nuclear receptors, including the farnesoid X receptor (FXR), pregnane X receptor, vitamin D receptor, and G protein-coupled receptors like G-protein coupled bile acid receptor 1 and sphingosine 1 phosphate receptor to regulate gut barrier integrity, metabolism and their own synthesis7,8. Depending on their structure and the receptor identity, bile acids can act as agonists or antagonists9–11. Similar to short chain fatty acids, obesity-induced gut dysbiosis alters bile acid profiles and signaling12–14. Metabolomics studies have identified changes in bile acid profiles in individuals with asthma or food allergies; however, the relationship between altered bile acid profiles and lung function remains unclear6,15,16.

To elucidate the link between bile acids and lung function, we examined plasma bile acids using stable isotope dilution liquid chromatography high resolution mass spectrometry (SID-LC-HRMS). We found that bile acids are altered by obesity and asthma status, with specific bile acid levels correlating with percent predicted forced expiratory volume (FEV\textsubscript{1}) in adults with and without asthma. Using a murine model of obese allergic airway disease (AAD), we reveal that bile acid levels are strongly linked with lung function parameters. Specifically, pulmonary sensitization and challenge with house dust mite (HDM) allergen enhances bile acid synthesis in the liver of obese mice adversely affecting lung function. As there are few phenotype-specific treatments for obesity-associated asthma, we hypothesized that the small molecule electrophile, nitro-oleic acid (NO\textsubscript{2}-OA) would mitigate airway hyperreactivity. NO\textsubscript{2}-OA reduces metabolic syndrome, hepatic dysfunction and pulmonary hypertension in diet-induced murine models of obesity17–19. Thus, NO\textsubscript{2}-OA may modulate key gene expression and intermediary metabolism pathways that contribute to the obesity-associated asthma phenotype.

Results

Individuals with increased body mass index (BMI) and asthma have higher systemic levels of bile acids that correlate with decreased FEV\textsubscript{1}. Plasma samples from two cohorts of lean and obese healthy individuals and individuals with asthma (Table 1) were analyzed for a panel of 17 bile acids using SID-LC-HRMS. Plasma levels of glycocholic acid (GCA) were significantly increased in individuals with asthma compared to healthy subjects (p = 0.018) and glycoursodeoxycholic acid (GUDCA) trended towards significance (p = 0.066) (Fig. 1A). When GCA and GUDCA levels were stratified by BMI, the highest concentrations were detected in individuals with asthma and a BMI > 25 (Fig. 1B).

NO\textsubscript{2}-OA	Nitro-oleic acid
Rn	Airway resistance
Rrs	Pulmonary resistance
SID-LC-HRMS	Stable isotope dilution liquid chromatography high resolution mass spectrometry
tβMCA	Tauro-β-muricholic acid
βMCA	β-Muricholic acid

Table 1. Subject characteristics. BMI/body mass index, FEV\textsubscript{1} forced expiratory volume in 1 s, FVCforced vital capacity, FeNO fractional exhaled nitric oxide, ICSinhaled corticosteroid, LABA long-acting beta-agonist, SABA short-acting beta-agonist. *Data presented as median 25th–75th interquartile range using Wilcoxon/ANOVA. For categorical variables, Pearson X2 was used. **One subject did not report race.
While neither GUDCA or GCA significantly correlated with fractional exhaled nitric oxide or bronchoalveolar lavage (BAL) eosinophils, there was a trend towards a negative correlation with GUDCA and blood eosinophil levels in the Pittsburgh cohort (Fig. S1). However, for all subjects, plasma levels of GCA significantly correlated with FEV1 and GUDCA trended towards a significant correlation (Fig. 2A). Furthermore, analysis of only healthy and asthmatic individuals with a BMI > 25, resulted in a stronger negative correlation with FEV1 for GUDCA whereas the GCA correlation to BMI > 25 was similar to the correlation of FEV1 for all subjects, indicating that BMI may independently affect the levels of some bile acids more than others (Fig. 2B).

NO2-OA improves lung mechanics in obese mice with AAD but does not diminish inflammation. To model obesity-associated asthma, C57BL/6J mice were fed 60% high fat diet chow for 12 weeks before sensitization and challenge with HDM to induce AAD. The average weights of each group of obese mice were similar prior to the induction of AAD and at the time of sacrifice (Fig. S2). NO2-OA (equimolar 9-NO2- and 10-NO2-oleic acid regioisomers) activates the expression of multiple tissue defense mechanisms and inhibits pro-inflammatory signaling responses in vitro and in vivo17,18,20. To investigate the therapeutic potential of NO2-OA, obese mice with AAD were gavaged with either triolein (vehicle) or NO2-OA.

Markers of HDM-induced inflammation were examined in our model of obese asthma. While HDM sensitization and challenge resulted in an overall increase in airway inflammation compared to obese controls (Fig. S3), NO2-OA treatment did not mitigate the overall inflammatory response except for a significant decrease in total BAL fluid cell counts; although, no one specific immune cell subset was significantly reduced (Fig. S3A,B). Histological assessment of pulmonary inflammation revealed an increase in inflammation in obese mice with AAD when compared to obese control mice without AAD; however, this inflammation was not significantly decreased with NO2-OA administration (Figs. S3C and S3D). Lastly, pro-inflammatory Th2- and Th17-related cytokines and chemokines are elevated (Figs. S3E and S3F), while the anti-inflammatory cytokine, IL-10, is decreased in the lungs of obese mice with AAD compared to obese control mice. Inflammatory mediator expression was not diminished with NO2-OA administration (Fig. S3G).

Lung mechanics were evaluated in obese mice with AAD following NO2-OA treatment. Pulmonary resistance (Rrs) and elastance (Ers) were significantly decreased in obese mice with AAD treated with NO2-OA compared to obese mice with AAD treated with vehicle (Fig. 3A,B). Although central airway resistance (Rn) was unaltered...
by NO₂-OA treatment, tissue damping (G) observed was significantly reduced in obese mice with AAD following NO₂-OA treatment (Fig. 3C,D). NO₂-OA also decreased tissue elastance (H, Fig. 3E) in the lungs of obese mice with AAD at the highest dose of methacholine (50 mg/mL). Overall, these results affirm that airway hyperresponsiveness in obesity-associated AAD was attenuated by NO₂-OA, illustrating a therapeutic potential in this subset of disease.

Bile acid profiles are altered in AAD and correlate with lung function. SID-LC-HRMS analysis of bile acids (Table 2) was performed on the serum and lung homogenates of lean and obese control mice, and lean and obese mice with AAD following NO₂-OA or vehicle treatment. β-muricholic acid (βMCA) and tauro-β-muricholic acid (tβMCA) were increased in the serum (Fig. 4A) and lungs (Fig. 4B) of obese mice with AAD compared to obese controls and all groups of lean mice. Treatment with NO₂-OA significantly reduced βMCA and tβMCA to levels in serum comparable to obese mice without AAD. Similarly, NO₂-OA decreased βMCA and tβMCA levels in the lungs when compared to obese mice with AAD that received vehicle (Fig. 4A,B).

Levels of βMCA and tβMCA were correlated with lung mechanics in obese mice with and without AAD and following NO₂-OA or vehicle treatment. Both serum βMCA and tβMCA levels positively correlated with changes in small airway resistance at the highest dose of methacholine (G, Fig. 5A); however, there was no significant correlation with tissue elastance at the highest dose of methacholine (H, Fig. 5B). βMCA also positively correlated with Ers (Fig. 5C) and Rrs (Fig. 5D) at highest dose of methacholine.

Bile acid synthesis in the liver altered during AAD is abrogated by NO₂-OA treatment. Next, we examined how AAD may affect bile acid synthesis and whether NO₂-OA impacts these responses by assessing expression of genes necessary for bile acid production and conjugation in the liver. Obese mice with AAD had increased hepatic cytochrome P450 (Cyp7a1) mRNA expression and NO₂-OA treatment in these mice decreased Cyp7a1 expression to the level detected in obese controls (Fig. 6A). Further, the expression of Cyp27a1, which converts cholesterol to 27-hydroxycholesterol, was not altered by AAD or NO₂-OA treatment compared to obese control mice (Fig. S4A).

AAD also decreased expression of sterol 12α-hydroxylase, Cyp8b1, in the livers of obese mice, and NO₂-OA treatment rescued the suppression of Cyp8b1, returning expression levels to those of obese controls (Fig. 6B). The expression levels of Cyp2c70 were next evaluated to determine whether AAD modulated the conversion of chenodeoxycholic acid to muricholic acid. A modest increase in Cyp2c70 expression was observed in obese mice with AAD compared to obese controls that was reduced by NO₂-OA treatment; although, these changes were not statistically significant (Fig. S4B). NO₂-OA significantly decreased the expression of bile acid-CoA:amino
Acid N-acyltransferase (BAAT), which conjugates bile acids to either glycine or taurine (Fig. 6C). Baat expression in the liver was upregulated in obese mice with AAD, although not statistically significant (p = 0.0661). Finally, NO2-OA treatment of obese mice with AAD resulted in a significant increase in Fxr expression in the liver compared to obese mice with AAD treated with vehicle and obese controls. Thus, NO2-OA-mediated induction of FXR may be one mechanism whereby NO2-OA regulates bile acid synthesis in the liver (Fig. 6D). In aggregate, these results indicate that NO2-OA abrogates AAD-mediated up-regulation of bile acid synthesis and conjugation resulting in decreased levels of βMCA and tβMCA compared to obese mice with AAD.

Discussion

Obesity-associated asthma is a disease with multiple phenotypes and diverse clinical presentations. Asthma is more prevalent in obese individuals, but not all individuals who are obese present with asthma, despite having a higher risk of developing disease and dysregulated pulmonary function. Herein, the novel discovery that changes in bile acid profiles modulate lung function is reported. This insight can motivate further studies linking specific bile acid metabolites to altered lung function, as we strive to understand and treat disease pathogenesis in complicated disease phenotypes such as obesity-related asthma.

Altered bile acid profiles have been reported in asthmatic patients, with GCA, glycodeoxycholate, taurochenodeoxycholate and taurocholate increased with asthma, compared to healthy individuals. Primary bile acids are synthesized in the liver by a series of cytochrome P450-mediated reactions. The classical pathway accounts

Figure 3. NO2-OA improves lung function in obese mice with AAD. Lung function was evaluated following NO2-OA treatment in obese mice with HDM-induced allergic airway disease. (A) Pulmonary resistance (Rrs), (B) pulmonary elastance (Ers), (C) airway resistance (Rn), (D) tissue damping (G), and (E) tissue elastance (H) were measured at baseline and following administration of increasing doses of methacholine using a flexiVent system. Graphs show data for control (n = 2–5), vehicle (n = 6–13), and NO2-OA (n = 8–13) and combined from four independent experiments. *p < 0.05, ****p < 0.0001.
for 90% of bile acid synthesis and is initiated by the 7α-hydroxylation of cholesterol by the 7α-hydroxylase, CYP7a1.22 HDM sensitization and challenge resulted in a significant increase in Cyp7a1 mRNA expression compared to obese controls. CYP7a1 expression is regulated by FXR as induction of FXR recruits the small heterodimer protein, SHP, to suppress CYP7a1.12 The observed induction of hepatic Fxr expression is one possible mechanism by which this nitroalkene may alter AAD.

Table 2. LC-HRMS parameters for bile acid analysis.

Bile acid	Formula	M–H+	Internal standard	M–H+	Retention time
Cholic acid	C_{24}H_{38}O_{5}	407.2802	CA-d_{4}	411.3049	7.1
β-Muricholic acid	C_{24}H_{36}O_{5}	407.2802	bMCA-d_{4}	412.3111	5.4
Deoxycholic acid	C_{24}H_{36}O_{5}	391.2853	DCA-d_{4}	395.3100	8.8
Chenodeoxycholic acid	C_{24}H_{36}O_{4}	391.2853	CDCA-d_{4}	395.3100	8.6
Ursodeoxycholic acid	C_{24}H_{36}O_{4}	391.2853	UDCA-d_{4}	395.3100	6.3
Lithocholic acid	C_{24}H_{36}O_{3}	375.2904	LCA-d_{4}	379.3151	10.0
Glycocholic acid	C_{26}H_{43}NO_{5}	464.3017	GCA-d_{4}	468.3264	6.2
Glycodeoxycholic acid	C_{26}H_{43}NO_{5}	448.3068	GDCA-d_{4}	452.3315	8.1
Glycochenodeoxycholic acid	C_{26}H_{43}NO_{5}	448.3068	GCDCA-d_{4}	452.3315	7.7
Glycoursodeoxycholic acid	C_{26}H_{43}NO_{5}	448.3068	GUDCA-d_{4}	452.3315	5.4
Taurocholic acid	C_{26}H_{45}NO_{7S}	514.2843	TCA-d_{4}	518.3090	6.2
Tauro-β-muricholic acid	C_{26}H_{45}NO_{7S}	514.2843	TbMCA-d_{4}	518.3090	3.9
Taurodeoxycholic acid	C_{26}H_{45}NO_{6S}	498.2894	TDCA-d_{5}	503.3203	8.1
Taurochenodeoxycholic acid	C_{26}H_{45}NO_{6S}	498.2894	TCDCA-d_{4}	502.3141	7.6
Tauroursodeoxycholic acid	C_{26}H_{45}NO_{6S}	498.2894	TUDCA-d_{4}	502.3141	5.1
Tauro lithocholic acid	C_{26}H_{45}NO_{5S}	482.2945	TLCA-d_{5}	487.3254	9.2

Figure 4. Murine bile acids increase in obese mice with AAD, and NO2-OA treatment reduces endogenous bile acids in these mice. β-muricholic (βMCA) and tauro-β-muricholic acid (tβMCA) levels were measured in serum (A) and lung (B) from lean and obese mice with and without AAD and NO2-OA treatment using SID-LC-HRMS. Graphs show data for n = 4–12 per group and combined from four independent experiments. *p < 0.05, **p < 0.01.
Further examination revealed that HDM-induced AAD perturbed the ratio of cholic acid to chenodeoxycholic acid by down-regulating sterol 12α-hydroxylase, Cyp8b1, expression. This in turn increases levels of chenodeoxycholic acid, the substrate of CYP2c70 metabolism that yields α-/β-muricholic acids. AAD also increased conjugation of βMCA with the rodent preferred conjugate, taurine, in a reaction catalyzed by hepatic BAAT, resulting in an increase in tβMCA in both serum and lung. NO2-OA significantly abrogated the effects of AAD on bile acid synthesis and conjugation to restore mRNA expression levels to those of the obese controls. Weight gain alone may also contribute to the increase in the level of tβMCA observed in this model. Murine models of diet-induced obesity show decreased microbial diversity that results in decreased bile salt hydrolase activity, and consequently an increase in conjugated bile acids. Increased conjugated bile acid levels are also detected in distal organs of germ-free rats, but any contributions to specific disease pathogenesis remains undefined. Notably, bile acids act as agonists or antagonists for their cognate receptors and promote signaling in opposing effects depending on the target tissue and other underlying factors. This in part motivated us to define the impact of endogenous bile acid signaling in the lung and specifically in asthma. In individuals with mild-moderate asthma, we discerned that levels of the conjugated bile acids GCA and GUDCA were associated with BMI and asthma status, and that BMI alone may play a predominant role as demonstrated by the strengthened

Figure 5. βMCA and tβ-MCA correlate with a decline of lung function in obese mice. Pearson correlations of serum βMCA and tβMCA levels with tissue damping, G (A), pulmonary elastance, Ers (B), tissue elastance, H (C), and pulmonary resistance, Rrs (D) measured by flexiVent following 50 mg/mL methacholine challenge in obese mice. n = 16–23 pairs. Graphs show natural log transformed data combined from four independent experiments.
correlation between GUDCA and FEV₁ when only considering subjects with a BMI > 25. Although strong correlations between serum bile acid levels and FEV₁ are shown, the cohort assessed is small and it is not possible to determine or control for the effects of race and gender differences, early versus late onset of disease or stratify by Th2 phenotype. While there was no correlation with the Type 2 inflammation biomarker fractional exhaled nitric oxide, GUDCA levels did trend toward a negative correlation with blood eosinophils and the correlation between GUDCA and FEV₁ was stronger in subjects with a BMI > 25. Thus, it may be that GUDCA levels are more related to weight gain rather than airway hyperreactivity (Fig. S1). Furthermore, systemic changes related to metabolic syndrome and corresponding therapies may also contribute to changes in bile acid metabolism. The effects of metabolic syndrome on our findings were also limited by cohort size. With these limitations in mind, future studies will focus on larger analyses of obese asthma and other asthma endotypes that have been stringently characterized.

In this study, NO₂-OA reduced systemic and pulmonary levels of βMCA and tβMCA in obese mice with AAD. NO₂-OA and the pure positional isomer, 10-NO₂-OA (CXA-10), have been used in cell and murine models of obesity, inflammation, and fibrosis. In human Phase 1 studies the pleiotropic effects of CXA-10 were evaluated in overweight/obese males. CXA-10 (P.O., daily, 2 wk) activated multiple tissue defense mechanisms and inhibited pro-inflammatory signaling responses. These basic research and clinical studies have produced reproducible data that has culminated into a profile of targets in various disease pathologies that include a) the inhibition of NF-κB-regulated inflammatory cytokine, adipokine (leptin and adiponectin) and adhesion molecule expression, b) the inhibition of pro-inflammatory macrophage activation, c) the activation of Nrf2-regulated adaptive gene expression, and d) the prevention and reversal of fibrosis. Based on this data, a clinical trial administering CXA-10 for 6 weeks is ongoing in obesity-associated asthma (NCT03762395). The present findings encourage a therapeutic potential for small molecule, electrophilic nitroalkenes in obesity-associated asthma, as it improves lung function, specifically small airway resistance and tissue elastance. The lowering of these viscoelastic parameters of the lung parenchyma and reduction of bile acids following NO₂-OA treatment suggests a contribution of bile acids to small airway dysfunction. Further, NO₂-OA/CXA-10 may have unexplored effects on bile acid formation via activation of liver FXR, which warrants future investigation.

In summary, we report the novel linkage between asthma pathogenesis and dysregulated bile acid synthesis/levels in the setting of obesity. A more detailed investigation into the spectrum of bile acids and their pulmonary actions is needed to better understand if changes in bile acid profiles are caused directly by obesity and allergen exposure or indirectly due to obesity-mediated changes of the gut microbiome and gut barrier integrity. These results also extend the mounting evidence that small molecule electrophiles act pleiotropically to regulate metabolism. Bioanalytical studies linked with the ongoing clinical trial of CXA-10 effects on individuals with obesity-associated asthma will lend better perspective as to how electrophilic nitroalkenes modulate metabolic function.
Methods

Human subjects, questionnaires, and spirometry. Human studies were approved by the Institutional Review Board of the University of Pittsburgh and the University of Colorado in accordance with The Code of Ethics of the World Medical Association. Subjects were recruited through either the Electrolyte Fatty Acid Derivatives in Asthma study at Pittsburgh (PRO11010186) or the University of Colorado Obesity study of Metabolic Dysregulation and the Airway Epithelium in Asthmatics (16-2522). All subjects, 18 to 65 years of age, provided informed consent (Table 1). For both the Pittsburgh and Colorado studies, male and female subjects were non-smokers in the last year and had a 10 or less pack-year smoking history. Healthy subjects had normal lung function and no history of chronic respiratory diseases with or without atopy. Asthmatic patients had a 12% or greater bronchodilator response to 4 puffs of albuterol or equivalent or PC20 methacholine (16 mg) if no BD response. Asthmatic patients were mild-moderates with an FEV1 of greater than 60% of predicted value and were taking either no controller medications up to low- to moderate-dose inhaled corticosteroids (ICS) with or without a second controller agent (leukotriene modifier or long-acting β-agonist) as clinically indicated. Subjects completed blood draws (CBC with differential collected at Pittsburgh site only), fraction of exhaled nitric oxide (FeNO) measurement, and baseline and postbronchodilator spirometry per ATS guidelines. Peripheral eosinophil counts were reported as cells per microliter.

Murine model of obesity-associated asthma. 4-week-old, male C57BL/6 mice were purchased from Jackson Laboratory and fed high fat diet (HFD, 60% fat diet D12492, Research Diets, Inc.) for 12 weeks and water ad libitum. Experiments are approved by the University of Pittsburgh IACUC (20016689) and in accordance with NIH guidelines. This study was carried out in compliance with the ARRIVE guidelines (https://arriveguidelines.org). Obese C57BL/6 (WT) mice were sensitized with 2 µg of HDM (Greer Lot #213051, endotoxin level 32.25 EU/vial) and cholera toxin adjuvant (0.1 µg) via oropharyngeal aspiration on Day 0 and 7. The obese control group only received adjuvant during sensitization so that they do not develop AAD. All groups of mice were then challenged daily for five consecutive days (Day 14–18) with 2 µg HDM by oropharyngeal aspiration. Three days after the last challenge (D21), AAD was assessed. To investigate the therapeutic potential of NO2-OA, mice were treated with 25 mg/kg NO2-OA via gavage (Days 14–18) three hours prior to HDM challenge. To investigate the contribution of diet to murine bile acid levels, AAD was also induced in age-matched normal chow fed WT mice (lean mice) using the treatment scheme described above.

Lung mechanics measurements. Pulmonary function was assessed by mechanical ventilation of anesthetized (100 mg/kg pentobarbital, i.p.) and tracheotomized mice using a computer-controlled small-animal mechanical ventilator (flexiVent; SCIREQ, Montreal, Quebec, Canada) as previously described. Briefly, mice were mechanically ventilated at 150 breaths/min with a tidal volume of 10 mL/kg and a positive end expiratory pressure of 3 cmH2O (mimicking spontaneous ventilation). First, the quasi-static mechanical properties of the lung at baseline (compliance and hysteresis) were measured using pressure–volume curves (stepwise pressure-driven maneuvers). Secondly, respiratory system mechanics were assessed by alternating perturbations of the single (SnapShot-150) and broadband frequency forced oscillation techniques (Quick Prime-3) prior to (baseline) and following inhalation of increasing doses of aerosolized methacholine (0–50 mg/mL). Multiple linear regression was used to fit measured pressure and volume in each individual mouse to the model of linear line) and following inhalation of increasing doses of aerosolized methacholine (0–50 mg/mL). The inflammation score was then reported as a ratio based on the percentage of tissue with inflammation according to the following scale: 0 = no inflammation, 1 = up to 25%, 2 = 25%–50%, 3 = 50%–75%, 4 = 75%–100%. The inflammation score was then reported as a ratio of the sum of all of the scores divided by the total number of fields counted for each sample. Next, mucus production was quantified by a pathologist (T.D.O.), who was blinded to the identity of the sample groups. Each bronchiole was examined throughout the entire PAS-stained lung section (100× magnification) and the number of the sum of all of the scores divided by the total number of fields counted for each sample. Next, mucus production was quantified by a pathologist (T.D.O.), who was blinded to the identity of the sample groups. Each bronchiole was examined throughout the entire PAS-stained lung section (100× magnification) and the number.
of bronchioles with positive staining was recorded. The PAS score was reported as the ratio of the number of PAS-positive bronchioles divided by the total number of bronchioles counted for each sample.

Targeted bile acid analysis by SID-LC-HRMS.
Sample preparation. Serum (50 μL) and lung homogenates were extracted with modifications to published protocols. Briefly, internal standards were added to 50 μL of serum and bile acids were extracted with 500 μL of ACN + 3% HCl containing a final internal standard mix (75 ng/mL). Samples were vortexed and spun down at 14,000 × g for 15 min. Supernatant was transferred to a different vial and dried for 2 h by speedvac. Samples were reconstituted in 1:1 MeOH:H2O (50 μL) for analysis. Lung tissue was processed in the same manner except tissue was homogenized in the solvent system described above at a ratio of 15 μL/mg before centrifugation and drying under vacuum.

SID-LC-HRMS. Targeted analysis of bile acids was conducted using a Vanquish UHPLC coupled to either a Q Exactive or ID-X mass spectrometer (Thermo Fisher Scientific, Waltham, MA). Samples (20 μL) were injected onto a Phenomenex Luna C18 column (2 × 100 mm, 5 μ) and separated over a 20 min gradient at a flow of 0.6 mL/min. Solvent A consisted of aqueous 5 mM ammonium acetate with 0.12% formic acid and Solvent B was MeOH. The gradient started at 52% B, which increased to 100% B from 0.4 to 13.5 min and was held for 2 min before returning to baseline conditions. Bile acids were identified by their accurate mass, retention time and stable isotope labeled internal standards. Bile acids are reported as “Relative Amount”, which is the peak area ratio of the analyte to their corresponding deuterated internal standard for plasma and serum and the peak area ratio normalized to tissue weight for the lungs (Table 2).

RT-PCR. Livers from obese control mice, and obese mice with AAD treated with vehicle or NO2-OA were pulverized in liquid nitrogen. Approximately 30 mg was weighed into 1 mL of Trizol (Invitrogen) for RNA extraction per manufacturer's instructions. Next, cDNA was prepared according to iScript cDNA Synthesis kit (BioRad) according to the manufacturer’s instructions. Real-time PCR was performed with TaqMan Fast Advanced PCR Master mix (Applied Biosystems) and relative gene expression was calculated using established methods.

Statistics. All analyses were performed using GraphPad Prism 7 (GraphPad Software Inc., La Jolla, CA). Experiments involving one or two variables were analyzed by one-way analysis of variance with Tukey's post-hoc or with Welch’s test or two-way analysis of variance with a Bonferroni post-hoc test, respectively. Data comparing two groups were analyzed using an unpaired t-test. Data was tested for normality using Shapiro-Wilks or with Welch's test or two-way analysis of variance with a Bonferroni post-hoc test, respectively. Data from continuous variables, Kruskal–Wallis test and Pearson χ² tests were used, respectively. An overall p < 0.05 was considered statistically significant. Data shown are mean ± SEM.

Received: 25 June 2021; Accepted: 10 August 2021
Published online: 07 September 2021

References

1. Dixon, A. E. & Holguin, F. Diet and metabolism in the evolution of asthma and obesity. *Clin. Chest Med.* 40, 97–106. https://doi.org/10.1016/j.ccm.2018.10.007 (2019).
2. Holguin, F. et al. Obesity and asthma: An association modified by age of asthma onset. *J. Allergy Clin. Immunol.* 127, 1486–1493, 1493.e182. https://doi.org/10.1016/j.jaci.2011.03.036 (2011).
3. Dixon, A. E. & Poynter, M. E. Mechanisms of asthma in obesity: Pleiotropic aspects of obesity produce distinct asthma phenotypes. *Am. J. Respir. Cell. Mol. Biol.* 54, 601–608. https://doi.org/10.1165/rcmb.2016-0017PS (2016).
4. Schatz, M. et al. Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. *J. Allergy Clin. Immunol.* 133, 1549–1556. https://doi.org/10.1016/j.jaci.2013.10.006 (2014).
5. Shore, S. A. & Cho, Y. Obesity and asthma: Microbiome-metabolome interactions. *Am. J. Respir. Cell Mol. Biol.* 54, 609–617. https://doi.org/10.1165/rcmb.2016-0052PS (2016).
6. Lee-Sarwar, K. A., Lasky-Su, J., Kelly, R. S., Litonjua, A. A. & Weiss, S. T. Metabolome-microbiome crosstalk and human disease. *Metabolites* https://doi.org/10.3390/metab10050181 (2020).
7. Shin, D. J. & Wang, L. Bile acid-activated receptors: A review on FXR and other nuclear receptors. *Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab.* 17, 225–235. https://doi.org/10.1016/j.cmet.2013.01.003 (2013).
8. Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. *Cell Metab.* 24, 41–50. https://doi.org/10.1016/j.cmet.2016.03.005 (2016).
9. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohpatic signal to regulate bile acid homeostasis. *Cell Metab.* 2, 217–225. https://doi.org/10.1016/j.cmet.2005.09.001 (2005).
10. Crestani, E. et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. *J. Allergy Clin. Immunol.* 145, 897–906. https://doi.org/10.1016/j.jaci.2019.10.014 (2020).
Acknowledgements

This work was supported by the following grants: R01HL146445, Parker B. Francis Foundation, and UPMC Children's Hospital of Pittsburgh (MLM), T32GM133332 (VAH), F31HL142171 (GBJ), FP00004615 (JPB), MEYS LTUSA17160 and GACR 17-08066Y (AK and VC), F32AI085633 (MF), R01HL63947 (BAF), R01HL132550 (BAF, FH), R21AI122071 and S10OD023402 (SGW).
Author contributions
M.L.M., B.A.F. and S.G.W. conceptualized the study. M.L.M., S.G.W., V.A.H., G.J.B., J.P.O., C.U., V.C., A.K., D.U., M.R.Q., R.H., M.E. and S.J.M. performed experiments and data analysis. T.O. performed pathological analysis of the lung histology sections. M.L.F., S.E.W. and F.H. performed clinical studies and data analysis. M.L.M. and S.G.W. wrote the manuscript. All authors reviewed the manuscript.

Competing interests
BAF acknowledges an interest in Creegh Pharmaceuticals, Inc. Other authors have no relevant conflict of interest to declare.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-96471-9.

Correspondence and requests for materials should be addressed to S.G.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021