Abstract

We define the scattered subsets of a group as asymptotic counterparts of scattered subspaces of a topological space, and prove that a subset A of a group G is scattered if and only if A contains no piecewise shifted IP-subsets. For an amenable group G and a scattered subspace A of G, we show that $\mu(A) = 0$ for each left invariant Banach measure μ on G.

1 Introduction

Given a discrete space X, we take the points of βX, the Stone-Čech compactification of X, to be the ultrafilters on X, with the points of X identified with the principal ultrafilters on X. The topology on βX can be defined by stating that the sets of the form $A = \{ p \in \beta X : A \in p \}$, where A is a subset of X, form a base for the open sets. We note that the sets of this form are clopen and that, for any $p \in \beta X$ and $A \subseteq X$, $A \in p$ if and only if $p \in \overline{A}$. For any $A \subseteq X$ we denote $A^* = \overline{A} \cap G^*$, where $G^* = \beta G \setminus G$. The universal property of βG states that every mapping $f : X \to Y$, where Y is a compact Hausdorff space, can be extended to the continuous mapping $f^\beta : \beta X \to X$.

Now let G be a discrete group. Using the universal property of βG, we can extend the group multiplication from G to βG in two steps. Given $g \in G$, the mapping

$$x \mapsto gx : G \to \beta G$$

extends to the continuous mapping

$$q \mapsto gq : \beta G \to \beta G.$$
Then, for each $q \in \beta G$, we extend the mapping $g \mapsto gq$ defined from G into βG to the continuous mapping

$$p \mapsto pq : \beta G \to \beta G.$$

The product pq of the ultrafilters p, q can also be defined by the rule: given a subset $A \subseteq G$,

$$A \in pq \iff \{ g \in G : g^{-1}A \in q \} \in p.$$

To describe the base for pq, we take any element $P \in p$ and, for every $x \in P$, choose some element $Q_x \in q$. Then $\cup_{x \in P} xQ_x \in pq$, and the family of subsets of this form is a base for the ultrafilter pq.

By the construction, the binary operation $(p, q) \mapsto pq$ is associative, so βG is a semigroup, and G^* is a subsemigroup of βG. For each $q \in \beta G$, the right shift $x \mapsto xq$ is continuous, and the left shift $x \mapsto xq$ is continuous for each $g \in G$.

For the structure of a compact right topological semigroup βG and plenty of its applications to combinatorics, topological algebra and functional analysis see [1], [2], [3], [4], [5].

Given a subset A of a group G and an ultrafilter $p \in G^*$, we define a p-companion of A by

$$\Delta_p(A) = A^* \cap gp = \{gp : g \in G, A \in gp\},$$

and say that a subset S of G^* is an ultracompanion of A if $S = \Delta_p(A)$ for some $p \in G^*$. For ultracompanions of subsets of groups and metric spaces see [6], [7].

Clearly, A is finite if and only if $\Delta_p(A) = \varnothing$ for each $p \in G^*$.

We say that a subset A of a group G is

- thin if $|\Delta_p(A)| \leq 1$ for each $p \in G^*$;
- n-thin, $n \in \mathbb{N}$ if $|\Delta_p(A)| \leq n$ for each $p \in G^*$;
- sparse if each ultracompanion of A is finite;
- disperse if each ultracompanion of A is discrete;
- scattered if, for each infinite subset Y of A, there is $p \in Y^*$ such that $\Delta_p(Y)$ is finite.
We denote by \([G]^\omega\) the family of all finite subsets of \(G\). Given any \(F \in [G]^\omega\) and \(g \in G\), we put
\[
B(g, F) = Fg \cup \{g\}
\]
and, following [8], say that \(B(g, F)\) is a ball of radius \(F\) around \(g\). For a subset \(Y\) of \(G\), we put \(B_Y(g, F) = Y \cap B(g, F)\). By [6, Proposition 4], \(Y\) is \(n\)-thin if and only if for every \(F \in [G]^\omega\), there exists \(H \in [G]^\omega\) such that \(|B_Y(y, F)| \leq n\) for each \(y \in Y \setminus H\). For thin subsets of a group, their applications and modifications see [9]–[19].

By [6, Proposition 5] and [20, Theorems 3 and 10], for a subset \(A\) of a group \(G\), the following statements are equivalent

1. \(A\) is sparse;
2. for every infinite subset \(X\) of \(G\), there exists finite subset \(F \subset G\) such that \(\bigcap_{g \in F} gA\) is finite;
3. for every infinite subset \(Y\) of \(A\), there exists \(F \in [G]^\omega\) such that, for every \(H \in [G]^\omega\), we have
 \[
 \{y \in Y : B_A(y, H) \setminus B_A(y, F) = \emptyset\} \neq \emptyset;
 \]
4. \(A\) has no subsets asymorphic to the subset \(W_2 = \{g \in \oplus_\omega \mathbb{Z}_2 : \text{sup}^g \leq 2\}\) of the group \(\oplus_\omega \mathbb{Z}_2\), where \(\text{sup}^g\) is the member of non-zero coordinates of \(g\).

The notion of asymorphisms and coarse equivalence will be defined in the next section. The sparse sets were introduced in [21] in order to characterise strongly prime ultrafilters in \(G^*\), the ultrafilters from \(G^* \setminus \overline{G^*G^*}\). More on sparse subsets can be find in [10], [11], [16], [22].

In this paper, answering Question 4 from [6], we prove that a subset \(A\) of a group \(G\) is scattered if and only if \(A\) is disparse, and characterize the scattered subsets in terms of prohibited subsets. We answer also Question 2 from [6] proving that each scattered subset of an amenable group is absolute null. The results are exposed in section 2, their proofs in section 3.
2 Results

Our first statement shows that, from the asymptotic point of view \[23\], the scattered subsets of a group can be considered as the counterparts of the scattered subspaces of a topological space.

Proposition 1. For a subset A of a group G, the following two statements are equivalent

(i) A is scattered;

(ii) for every infinite subset Y of A, there exists $F \in [G]^{<\omega}$ such that, for every $H \in [G]^{<\omega}$, we have

$$\{y \in Y : B_Y(y, H) \setminus B_Y(y, F) = \emptyset\} \neq \emptyset.$$

Proposition 2. A subset A of a group G is scattered if and only if, for every countable subgroup H of G, $A \cap H$ is scattered in H.

Let A be a subset of a group G, $K \in [G]^{<\omega}$. A sequence $a_0, ..., a_n$ in A is called K-chain from a_0 to a_n if $a_{i+1} \in B(a_i, K)$ for each $i \in \{0, ..., n-1\}$. For every $a \in A$, we denote

$$B_A^\sqsubset(a, K) = \{b \in A : \text{there is a } K\text{-chain from } a \text{ to } b\}$$

and, following [24] Chapter 3], say that A is cellular (or asymptotically zero-dimentional) if, for every $K \in [G]^{<\omega}$, there exists $K' \in [G]^{<\omega}$ such that, for each $a \in A$,

$$B_A^\sqsubset(a, K) \subseteq B_A(a, K').$$

Now we need some more asymptology (see [24] Chapter 1]). Let G, H be groups, $X \subseteq G, Y \subseteq H$. A mapping $f : X \rightarrow Y$ is called a \prec-mapping if, for every $F \in [G]^{<\omega}$, there exists $K \in [G]^{<\omega}$ such that, for every $x \in X$,

$$f(B_X(x, F)) \subseteq B_Y(f(x), K).$$

If f is a bijection such that f and f^{-1} are \prec-mapping, we say that f is an asymorphism. The subsets X and Y are called coarse equivalent if there exist asymorphic subsets $X' \subseteq X$ and $Y' \subseteq Y$ such that $X \subseteq B_X(X', F)$, $Y \subseteq B_Y(Y', K)$ for some $F \in [G]^{<\omega}$ and $K \in [H]^{<\omega}$.

4
Following [23], we say that the set Y of G has no asymptotically isolated balls if Y does not satisfy Proposition [1](ii): for every $F \in [G]^{<\omega}$, there exists $H \in [G]^{<\omega}$ such that $B_Y(y, H) \setminus B_Y(y, F) \neq \emptyset$ for each $y \in Y$.

By [23], a countable cellular subset Y of G with no asymptotically isolated balls is coarsely equivalent to the group $\oplus \omega \mathbb{Z}_2$.

Proposition 3. Let X be a countable subset of a group G. If X is not cellular then X contains a subset Y coarsely equivalent to $\oplus \omega \mathbb{Z}_2$.

Let $(g_n)_{n<\omega}$ be an injective sequence in a group G. The set

$$\{g_{i_1}g_{i_2}...g_{i_n} : 0 \leq i_1 < i_2 < ... < i_n < \omega\}$$

is called an IP-set [1, p. 406], the abbreviation for "infinite dimensional parallelepiped".

Given a sequence $(b_n)_{n<\omega}$ in G, we say that the set

$$\{g_{i_1}g_{i_2}...g_{i_n}b_{i_n} : 0 \leq i_1 < i_2 < ... < i_n < \omega\}$$

is a piecewise shifted IP-set.

Theorem 1. For a subset A of a group G, the following statements are equivalent

(i) A is scattered;

(ii) A is disparse;

(iii) A contains no subsets coarsely equivalent to the group $\oplus \omega \mathbb{Z}_2$;

(iv) A contains no piecewise shifted IP-sets.

By the equivalence $(i) \Leftrightarrow (ii)$ and Propositions 10 and 12 from [6], the family of all scattered subsets of an infinite group G is a translation invariant ideal in the Boolean algebra of all subsets of G strictly contained in the ideal of all small subsets.

Now we describe some relationships between the left invariant ideals Sp_G, Sc_G of all sparse and scattered subsets of a group G on one hand, and closed left ideals of the semigroup βG.

Let J be a left invariant ideal in the Boolean algebra P_G of all subsets of a group G. We set

$$\hat{J} = \{p \in \beta G : G \setminus A \in p \text{ for each } A \in J\}$$
and note that \hat{J} is a closed left ideal of the semigroup βG. On the other hand, for a closed left ideal L of βG, we set

$$\hat{L} = \{ A \subseteq G : A \notin p \text{ for each } p \in L \}$$

and note that \hat{L} is a left invariant ideal in \mathcal{P}_G. Moreover, $\hat{J} = J$ and $\hat{L} = L$.

Clearly, $[G]^{<\omega} = G^*$ and by Theorem 1

$$(\star) \quad \hat{S}_c G = \text{cl}\{ p \in \beta G : Gp \text{ is discrete in } \beta G \} = \text{cl}\{ p \in \beta G : p = \varepsilon p \text{ for some idempotent } \varepsilon \in G^* \}.$$

Given a left invariant ideal J in \mathcal{P}_G and following [11], we define a left invariant ideal $\sigma(J)$ by the rule:

$$A \in \sigma(J) \text{ if and only if } \Delta_p(A) \text{ is finite for every } p \in \hat{J}.$$

Equivalently, $\sigma(J) = \text{cl}(G^* \hat{J})$. Thus, we have

$$\hat{S}_p G = \text{cl}(G^* G^*).$$

We say that a left invariant ideal J in \mathcal{P}_G is sparse-complete if $\sigma(J) = J$ and denote by $\sigma^*(J)$ the intersection of all sparse-complete ideals containing J. Clearly, the sparse-completion $\sigma^*(J)$ is the smallest sparse-complete ideal such that $J \subseteq \sigma^*(J)$. By [11] Theorem 4(1), $\sigma^*(J) = \bigcup_{n \in \omega} \sigma^n(J)$, where $\sigma^0(J) = J$ and $\sigma^{n+1}(J) = \sigma(\sigma^n(J))$. We can prove that $A \in \sigma^n([G]^{<\omega})$ if and only if A has no subsets asymorphic to $W_n = \{ g \in \oplus_\omega \mathbb{Z}_2 : \text{supp}g \leq n \}$.

By [11] Theorem 4(2), the ideal $S_p G$ is not sparse complete. By (\star), the ideal $S_c G$ is sparse-complete. Hence $\sigma^*([G]^{<\omega}) \subseteq S_c G$ but $\sigma^*([G]^{<\omega}) \neq S_c G$.

Recall that a subset A of an amenable group G is absolute null if $\mu(A) = 0$ for each left invariant Banach measure μ on G. For sparse subsets, the following theorem was proved in [10, Theorem 5.1].

Theorem 2. Every scattered subset A of an amenable group G is absolute null.

Let A be a subset of \mathbb{Z}. The upper density $\overline{d}(A)$ is denoted by

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{-n, -n+1, ..., n-1, n\}|}{2n+1}.$$

By [25] Theorem 11.11, if $\overline{d}(A) > 0$ then A contains a piecewise shifted IP-set. We note that Theorem 2 generalizes this statement because there exists a Banach measure μ on \mathbb{Z} such that $\overline{d}(A) = \mu(A)$.

In connection with Theorem 1, one may ask if it possible to replace piecewise shifted IP-sets to (left or right) shifted IP-sets. By Theorem 2 and [25] Theorem 11.6, this is impossible.
3 Proofs

Proof of Proposition 1

(i) ⇒ (ii). We take \(p \in Y^* \) such that \(\Delta_p(Y) \) is finite, so \(\Delta_p(Y) = Fp \) for some \(F \in [G]^{<\omega} \). Given any \(H \in [G]^{\omega} \), we have \(hp \notin \Delta_p(Y) \) for each \(h \in H \setminus F \). Hence \(hP_h \cap Y = \emptyset \) for some \(P_h \in p \). We put \(P = \bigcap_{h \in H \setminus P} P_h \) and note that

\[
P \subseteq \{ y \in Y : B_Y(y, H) \setminus B_Y(y, F) = \emptyset \}.
\]

(ii) ⇒ (i). We take an infinite subset \(Y \) of \(A \), choose corresponding \(F \in [G]^{<\omega} \) and, for each \(H \in [G]^{<\omega} \), denote \(P_H = \{ y \in Y : B_Y(y, H) \setminus B_Y(y, F) = \emptyset \} \). By (ii), the family \(\{ P_H : H \in [G]^{<\omega} \} \) has a finite intersection property and \(\bigcap_{H \in [G]^{<\omega}} P_H = \emptyset \). Hence \(\{ P_H : H \in [G]^{<\omega} \} \) is contained in some ultrafilter \(p \in Y^* \). By the choice of \(p \), we have \(gp \notin \Delta_p(Y) \) for each \(g \in G \setminus (F \cup \{ e \}) \), \(e \) is the identity of \(G \). It follows that \(\Delta_p(Y) \) is finite so \(A \) is scattered.

Proof of Proposition 2

Assume that \(A \) is not scattered and choose a subset \(Y \) of \(A \) which does not satisfy the condition (ii) of Proposition 1. We take an arbitrary \(a \in A \) and put \(F_0 = \{ e, a \} \). Then we choose inductively a sequence \((F_n)_{n \in \omega} \) in \([G]^{<\omega} \) such that

1. \(F_n F_n^{-1} \subset F_{n+1} \);
2. \(B_Y(y, F_{n+1}) \setminus B_Y(y, F_n) \neq \emptyset \) for every \(y \in Y \).

After \(\omega \) steps, we put \(H = \bigcup_{n \in \omega} F_n \). By the choice of \(F_0 \), \(Y \cap H \neq \emptyset \). By (1), \(H \) is a subgroup. By (2), \((Y \cap H) \) is not scattered in \(H \).

Proof of Proposition 3

Replacing \(G \) by by the subgroup generating by \(X \), we assume that \(G \) is countable. We write \(G \) as an union of an increasing chain \(F_n \) of finite subsets such that \(F_0 = \{ e \}, F_n = F_n^{-1} \). In view of \([G]^{<\omega} \), it suffices to find a cellular subset \(Y \) of \(X \) with no asymptotically isolated balls.

Since \(X \) is not cellular, there exists \(F \in [G]^{<\omega} \) such that
for every \(n \in \mathbb{N} \), there is \(x \in X \) such that
\[
B_X(x, F) \setminus B_X(x, F_n) \neq \emptyset.
\]

We assume that \(G \) is finitely generated and choose a system of generators \(K \in [G]^{< \omega} \) such that \(K = K^{-1} \) and \(F \subseteq K \). Then we consider the Cayley graph \(\Gamma = \text{Cay}(G, K) \) with the set of vertices \(G \) and the set of edges \(\{ \{ g, h \} : g^{-1}h \in K \} \). We endow \(\Gamma \) with the path metric \(d \) and say that a sequence \(a_0, ..., a_n \in G \) is a geodesic path if \(a_0, ..., a_n \) is the shortest path from \(a_0 \) to \(a_n \), in particular, \(d(a_0, a_n) = n \). Using (1), for each \(n \in \mathbb{N} \), we choose a geodesic path \(L_n \) of length \(3^n \) such that \(L_n \subset X \) and
\[
B_G(L_n, F_n \cap B_G(L_{n+1}, F_{n+1})) = \emptyset \quad \text{for every} \quad n \in \mathbb{N}.
\]

Let \(A = \{ g_{i_1}g_{i_2}...g_{i_n}b_{i_n} : 0 \leq i_1 < ... < i_n < \omega \} \)
of \(G \) is not scattered. For each \(m \in \omega \), let
\[
A_m = \{ g_{i_1}g_{i_2}...g_{i_n}b_{i_n} : m < i_1 < ... < i_n < \omega \}.
\]

We take an arbitrary \(p \in A^* \) and show that \(\Delta_p(A) \) is infinite.
If \(A_n \in p \) for every \(m \in \omega \) then \(g_n p \in A^* \) for each \(n \in \omega \). Otherwise, there exists \(m \in \omega \) such that
\[
\{g_m g_{i_1} \ldots g_{i_n} b_{i_n} : m < i_1 < \ldots < i_n < \omega\} \subseteq p.
\]
Then \(g_m^{-1} p \in A^* \) and we repeat the arguments for \(g_m^{-1} p \).

\((iv) \Rightarrow (ii)\). Assume that \(A \) is not disperse and take \(p \in A^* \) such that \(p \) is not isolated in \(\Delta_p(A) \). Then \(p = qp \) for some \(q \in G^* \). The set \(\{x \in G^* : xp = p\} \) is a closed subsemigroup of \(G^* \) and, by [11] Theorem 2.5, there is an idempotent \(r \in G^* \) such that \(p = rp \). We take \(R \in r \) and \(P_g \in p \), \(g \in R \) such that \(\bigcup_{g \in R} gp \subseteq A \). Since \(r \) is an idempotent, by [11] Theorem 5.8, there is an injective sequence \((g_n)_{n \in \omega} \) in \(G \) such that
\[
\{g_{i_1} \ldots g_{i_n} : 0 \leq i_1 < \ldots < i_n < \omega\} \subseteq R
\]. For each \(n \in \omega \), we pick \(b_n \in \bigcap \{P_g : g = g_{i_1} \ldots g_{i_n} : 0 \leq i_1 < \ldots < i_n < \omega\} \) and note that
\[
\{g_{i_1} \ldots g_{i_n} b_{i_n} : 0 \leq i_1 < \ldots < i_n < \omega\} \subseteq A.
\]

\((ii) \Rightarrow (iii)\). We assume that \(A \) contains a subset coarsely equivalent to the group \(B = \bigoplus_{\omega} \mathbb{Z}_2 \). Then there exist a subset \(X \) of \(B , H \in [B]^<\omega \) such that \(B = H + X \), and an injective \(\prec \)-mapping \(f : X \to A \). We take an arbitrary idempotent \(r \in B^* \), pick \(h \in H \) such that \(h + X \in r \) and put \(p = r - h \). Since \(r + p = r \), we see that \(p \) is not isolated in \(\Delta_p(X) \). We denote \(q = f^\beta(p) \). Let \(b \in B , b \neq 0 \) and \(b + p \in X^* \). Since \(f \) is an injective \(\prec \)-mapping, there is \(g \in G \setminus \{e\} \) such that \(f^\beta(b + p) = g + q \). It follows that \(q \) is not isolated in \(\Delta_q(A) \). Hence \(A \) is not disperse.

\((iii) \Rightarrow (i)\). Let \(X \) be a countable subset of \(A \). By Proposition [13] \(X \) is cellular. By [23], \(X \) satisfies Proposition [11] \((ii)\). Hence \(X \) is scattered. By Proposition [12] \(A \) is scattered.

Proof of Theorem [2]

We assume that \(\mu(A) > 0 \) for some Banach measure \(\mu \) on \(G \). We use the arguments from [10] p. 506-507 to choose a decreasing sequence \((A_n)_{n \in \omega} \) of subsets of \(G \) and an injective sequence \((g_n)_{n \in \omega} \) in \(G \) such that \(A_0 = A \) and \(\mu(A_n) > 0 \) \(g_n A_{n+1} \subseteq A_n \) for each \(n \in \omega \). We pick \(x_n \in A_{n+1} \) and put
\[
X = \{g_0^{\varepsilon_0} \ldots g_n^{\varepsilon_n} x_n : n \in \omega, \varepsilon_i \in \{0,1\}\}.
\]
By the construction \(X \) is a piecewise shifted \(IP \)-sets and \(X \subseteq A \). By Theorem [11] \(X \) is not scattered.

9
References

[1] Hindman N., Strauss D., *Algebra in the Stone-Čech Comactification*, 2nd edition, de Grueter, 2012.

[2] Todorcevic S., *Introduction to Ramsey Spaces*, Princeton Univ. Press, 2010.

[3] Filali M., Protasov I., *Ultrafilters and Topologies on Groups* // Math. Stud. Monogr. Ser. - Lviv: VNTL Publ., 2010. - Vol. 13.

[4] Zelenyuk Y., *Ultrafilters and Topologies on Groups*, de Grueter, 2012.

[5] Dales H., Lau A., Strauss D., *Banach Algebras on semigroups and their compactifications* // Mem. Amer. Math. Soc., 2010. - Vol 2005.

[6] Protasov I., Slobodianiuk S., *Ultracompanions of subsets of groups* // Comment. Math. Univ Carolin (to appear), preprint is available at arxiv: 1308.1497.

[7] Protasov I.V., *Ultrafilters on metric spaces* // preprint is available at arxiv: 1310.2437.

[8] Bella A., Malykhin V., *On certain subsets of a group* // Questions Answers Gen. Topology. - 1999. - 17. - P. 183–197.

[9] Chou C., *On the size of the set of left invariant means on a semigroup*, Proc. Amer. Math. Soc. - 1969. - 23. P.199–205.

[10] Lutsenko Ie., Protasov I.V., *Sparse, thin and other subsets of groups* // Intern. J. Algebra Computation, - 2009. - 19. P. 491–510.

[11] Lutsenko Ie., Protasov I.V., *Relatively thin and sparse subsets of groups* // Ukr. Math. J. - 2011 - 63. - P. 216–225.

[12] Lutsenko Ie., Protasov I.V., *Thin subsets of balleans* // Appl. Gen. Topology. - 2010. - 11. - No.2, - P. 89–93.

[13] Lutsenko Ie, *Thin systems of generators of groups* // Algebra Discrete Math. - 2010. - 9. - P. 108–114.

[14] Petrenko O., Protasov I.V., *Thin ultrafilters* // Note Dome J. Formal Logic. - 2012. - 53. - P. 79–88.
[15] Protasov I.V., *Partitions of groups into thin subsets* // Algebra Discrete Math. - 2011. - 11. - P. 88–92.

[16] Protasov I.V., *Selective survey on Subset Combinatorics of Groups* // Ukr. Math. Bull. - 2011. - 7. - P. 220–257.

[17] Protasov I.V., *Thin subsets of topological groups* // Topology Appl. - 2013. - 160. - P. 1083–1087.

[18] Protasov I.V., Slobodianiuk S., *Thin subsets of groups* // Ukr. Math. J. - 2013. - 65. - P. 1237–1245.

[19] Banakh T., Lyaskova N., *On thin complete ideals of subsets of groups* // Ukr. Math. J. 2011. - 63. - P. 741–754.

[20] Protasov I.V., *Assimptotically scattered spaces* // preprint available at arxiv: 1212.0364.

[21] Filali M., Lutsenko Ie., *Boolean group ideals and their ideal structure of βG* // Math. Stud. - 2008. - 30. - P. 1–10.

[22] Protasov I.V., *Partitions of groups into sparse subsets* // Algebra Discrete Math. - 2012. - 13. - No.1 - P. 107–110.

[23] Banakh T., Zarichnyi I. *Characterizing the Cantor bi-cube in asymptotic categories* // Groups, Geometry and Dynamics. - 2011. - 5. - P. 691–728.

[24] Protasov I.V., Zarichnyi M., *General Asymptology* // Math. Stud. Monogr. Ser. - Lviv: VNTL Publ., -2007. - Vol. 12.

[25] Hindman N., *Ultrafilters and combinatorial number theory* // Lecture Notes Math. - 1979 - 751. - P. 119–184.

[26] A. Dranishnikov, M.Zarichnyi *Universal spaces for asymptotic dimension* // Topology Appl. - 2004. - 140. - P. 203–225.