On the intersection of solvable Hall subgroups in finite simple exceptional groups of Lie type

Evgeny. P. Vdovin

Abstract

Assume that a finite almost simple group with simple socle isomorphic to an exceptional group of Lie type possesses a solvable Hall subgroup. Then there exist four conjugates of the subgroup such that their intersection is trivial.

Keywords: almost simple group, base size, solvable Hall subgroup.

Introduction

Throughout the paper the term “group” we always use in the meaning “finite group”. We use symbols $A \leq G$ and $A \triangleleft G$ if A is a subgroup of G and A is a normal subgroup of G respectively. If Ω is a (finite) set, then by $\text{Sym}(\Omega)$ we denote the group of all permutations of Ω. We also denote $\text{Sym}\{1, \ldots, n\}$ by Sym_n. Given $H \leq G$ by $H_G = \cap_{g \in G} H^g$ we denote the kernel of H.

Assume that G acts on Ω. An element $x \in \Omega$ is called a G-regular point, if $|xG| = |G|$, i.e., if the stabilizer of x is trivial. We define the action of G on Ω^k by

$$g : (i_1, \ldots, i_k) \mapsto (i_1g, \ldots, i_kg).$$

If G acts faithfully and transitively on Ω, then the minimal k such that Ω^k possesses a G-regular point is called the base size of G and is denoted by $\text{Base}(G)$. For every natural m the number of G-regular orbits on Ω^m is denoted by $\text{Reg}(G, m)$ (this number equals 0 if $m < \text{Base}(G)$). If H is a subgroup of G and G acts on the set Ω of right cosets of H by right multiplications, then G/H_G acts faithfully and transitively on Ω. In this case we denote $\text{Base}(G/H_G)$ and $\text{Reg}(G/H_G, m)$ by $\text{Base}_H(G)$ and $\text{Reg}_H(G, m)$ respectively. We also say that $\text{Base}_H(G)$ is the base size of G with respect to H. Clearly, $\text{Base}_H(G)$ is the minimal k such that there exist elements $x_1, \ldots, x_k \in G$ with $H^{x_1} \cap \ldots \cap H^{x_k} = H_G$. Thus, the base size of G with respect to H is the minimal k such that there exist k conjugates of H with intersection equals H_G.

We prove the following theorem in the paper.

Theorem 1. (Main Theorem) Let G be an almost simple group with simple socle isomorphic to an exceptional group of Lie type. Assume also that G possesses a solvable Hall subgroup H. Then $\text{Base}_H(G) \leq 4$.

*The work is supported by RFBR, projects 11–01–00456, 12–01–33102.
The following results were obtained in this direction. In 1966 D.S.Passman proved (see [1]) that a p-solvable group possesses three Sylow p-subgroups whose intersection equals the p-radical of G. Later in 1996 V.I.Zenkov proved (see [2]) that the same conclusion holds for arbitrary finite group G. In [3] S.Dolfi proved that in every π-solvable group G there exist three conjugate π-Hall subgroups whose intersection equals $O_\pi(G)$ (see also [4]). Notice also that V.I.Zenkov in [5] constructed an example of a group possessing a solvable π-Hall subgroup H such that the intersection of five conjugates of H equals $O_\pi(G)$, while the intersection of every four conjugates of H is greater than $O_\pi(G)$. In [6] Theorem 1] the following statement is proven.

Theorem 2. Let G be a finite group possessing a solvable π-Hall subgroup H. Assume that for every simple component S of $E(G)$ of the factor group $G = G/S(G)$, where $S(G)$ is a solvable radical of G, the following condition holds:

for every L such that $S \leq L \leq \text{Aut}(S)$ and contains a solvable $\pi - \text{Hall subgroup} M$,

the inequalities Base$_M(L) \leq 5$ and Reg$_M(L, 5) \geq 5$ hold.

Then Base$_H(G) \leq 5$ and Reg$_H(G, 5) \geq 5$.

Moreover, at the beginning of the proof of Theorem 2 from [6] the following statement is obtained.

Lemma 3. If, for a group G and its subgroup H, the inequality Base$_H(G) \leq 4$ holds, then Reg$_H(G, 5) \geq 5$.

Thus by Theorems [1] and [2] Lemma [3] and [6] Theorem 2] we immediately obtain

Theorem 4. Let H be a solvable π-Hall subgroup of G. Assume that each nonabelian composition factor of the socle of $G/S(G)$, where $S(G)$ is the solvable radical of G, is isomorphic to either alternative, or sporadic, or exceptional group of Lie type. Then Base$_H(G) \leq 5$, i.e., there exist elements x, y, z, t of G such that the identity

$$H \cap H^x \cap H^y \cap H^z \cap H^t = O_\pi(G)$$

holds.

1 Notations and preliminary results

Throughout by π a set of primes is denoted, while by π' we denote its complement in the set of all primes. A subgroup H of G is called a π-Hall subgroup, if the order $|H|$ is divisible by primes from π only, while its index $|G : H|$ is divisible by primes from π' only. The set of all π-Hall subgroups of G is denoted by Hall$_\pi(G)$. A subgroup H of G is called a Hall subgroup, if its order $|H|$ and the index $|G : H|$ are coprime. A group G is called almost simple, if there exists a nonabelian simple group S such that $F^*(G) = S$, where $F^*(G)$ is the generalized Fitting subgroup of G. In other words, G is called almost simple, if there exists a simple group S such that $S \cong \text{Im}(S) \leq G \leq \text{Aut}(S)$.

Lemma 5. [7] Lemma 1] Let G be a finite group and A be its normal subgroup. If $H \in \text{Hall}_\pi(G)$, then $H \cap A \in \text{Hall}_\pi(A)$ and $HA/A \in \text{Hall}_\pi(G/A)$.

Lemma 6. [8] Let A be an abelian subgroup of a finite group G. Then there exists $x \in G$ such that $A \cap A^x \leq F(G)$.
Combining known results (see [11, Theorems 8.3–8.7]), we obtain the following

Lemma 7. Let G be a simple group of Lie type over a field of characteristic $p \in \pi$ and H be its solvable π-Hall subgroup. Then either H is included in a Borel subgroup of G, or one of the following holds:

1. $G = SL_3(2)$ or $G = SL_3(3)$ and H is the stabilizer of a line or of a plain in the natural 3-dimensional module, i.e., there exist two classes of conjugate π-Hall subgroups in this case.

2. $G = SL_4(2)$ or $G = PSL_4(3)$ and H is the stabilizer of a two-dimensional subspace of the natural 4-dimensional module.

3. $G = SL_5(2)$ or $G = SL_5(3)$ and H is the stabilizer of a chain of subspaces $V_0 < V_1 < V_2 < V_3 = V$ whose codimensions are in the set $\{1, 2\}$ (i.e., two codimensions equal 2 and one codimension equals 1). There exist three classes of conjugate π-Hall subgroups in this case.

We recall some known technical results (see [10]). If G acts transitively on the set Ω, then given $x \in G$ by fpr(x) we denote the fixed point ratio of x, i.e. fpr$(x) = |\text{fix}(x)|/|\Omega|$, where \text{fix}(x) = $\{\omega \in \Omega \mid \omega^x = \omega\}$. If G acts transitively and H is a point stabilizer, then the following formulae is known

\[
\text{fpr}(x) = \frac{|x^G \cap H|}{|x^G|}.
\]

As it is noted in [11, Theorem 1.3], the base size can be bounded by using the following arguments. Assume that G acts faithfully and let $Q(G, c)$ denote the probability that arbitrary chosen element of Ω^c is not a G-regular point. Clearly, Base(G) is the minimal c such that $Q(G, c) < 1$. In particular, if $Q(G, c) < 1$ then Base$(G) \leq c$. Clearly, an element of Ω^c is not a G-regular point if and only if it is stable under the action of an element x of prime order. Notice also that the probability for arbitrary chosen element of Ω^c to be stable under x is not greater than fpr$(x)^c$. Denote by \mathcal{P} the set of elements of G whose order is equal to a prime number. Let x_1, \ldots, x_k be representatives of the conjugacy classes of elements from \mathcal{P}. Since G acts transitively, the formulae [11] shows that fpr(x) does not depend on the choice of the representative of a conjugacy class. Thus the following chain of inequalities holds.

\[
Q(G, c) \leq \sum_{x \in \mathcal{P}} \text{fpr}(x)^c = \sum_{i=1}^{k} |x_i^G| \cdot \text{fpr}(x_i)^c =: \hat{Q}(G, c).
\]

In particular, we can use the upper bound for fpr(x) in order to bound $\hat{Q}(G, c)$ and so to bound $Q(G, c)$. The following lemma is the main technical tool for this bound.

Lemma 8. [11, Proposition 2.3] Let G be a transitive group of permutations on Ω and H be a point stabilizer. Assume that x_1, \ldots, x_k are representatives of distinct conjugacy classes such that the inequalities $\sum_i |x_i^G \cap H| \leq A$ and $|x_i^G| \geq B$ hold for all $i = 1, \ldots, k$. Then the inequality

\[
\sum_{i=1}^{k} |x_i^G| \cdot \text{fpr}(x_i)^c \leq B(A/B)^c
\]

holds for every $c \in \mathbb{N}$.

Notice that for every subgroup H and every set x_1, \ldots, x_k not containing the identity element the bound $\sum_i |x_i^G \cap H| < |H|$ holds.
2 Technical results

Our notations for groups of Lie type agree with that of [12]. In particular, for every simple group of Lie type S over a field of characteristic p we fix a simple algebraic group \overline{G} of adjoint type and a Steinberg map σ so that $S = O^p(\overline{G}_\sigma)$. Then \overline{G}_σ is the group of inner-diagonal automorphisms of S (we denote the group of inner-diagonal automorphisms of S by \hat{S}). We assume that a Borel \overline{B} and its maximal torus \overline{T} are chosen σ-invariant, and we denote \overline{B}_σ and \overline{T}_σ by B and T respectively. Recall that if $S \in \{2A_n(q), 2D_n(q), 2E_6(q)\}$, then the definition field of S equals F_{q^2}, if $S = 3D_4(q)$, then the definition field of S equals \mathbb{F}_{q^3}, and the definition field of S equals \mathbb{F}_q in the remaining cases. For groups $2A_n(q), 2D_n(q), 2E_6(q)$ we also use the notations $A_n^- (q), D_n^- (q), E_6^- (q)$ respectively. Notice also the known fact: $Z(\overline{B}) \cap \overline{T} = Z(\overline{G}) = 1$, if \overline{G} is of adjoint type and $\overline{Z}(B) \cap \overline{T} = Z(S)$ ($= 1$, if \overline{G} is of adjoint type).

Lemma 9. Let G be a group of inner-diagonal automorphisms of a finite simple group of Lie type over a field of characteristic p (i.e. $G = \overline{G}_\sigma$ for some connected simple algebraic group \overline{G} of adjoint type over an algebraically closed field of characteristic p and a Steinberg map σ). Let $B = U \times T$ be a Borel subgroup of G, where U is a maximal unipotent subgroup of G and T is a Cartan subgroup of G. We denote the subgroup of monomial matrices containing T by N so that $N/T \simeq W$ is the Weyl group of G. Let $w_0 \in W$ be the unique element that maps all positive roots into negatives, and n_0 be its preimage in N. Then there exists $x \in U^{n_0}$ such that $T^x \cap B = 1$. In particular, there exist $u, v \in O^p(G)$ such that $B \cap B^u \cap B^v = 1$.

Proof. Consider $B^u = U^{n_0} \times T$. The Fitting subgroup $F(U^{n_0} \times T)$ equals U^{n_0} since $Z(O^p(G)) = 1$. Otherwise, since U^{n_0} is a normal nilpotent subgroup of $U^{n_0} \times T$ we obtain that $U^{n_0} \leq F(U^{n_0} \times T)$. If $U^{n_0} \neq F(U^{n_0} \times T)$, then there exists $1 \neq z \in T$ centralizing U^{n_0} and so lying in $Z(O^p(G)) = 1$, a contradiction. Hence $F(U^{n_0} \times T) = U^{n_0}$ and by Lemma 8 there exists $x \in U^{n_0}$ such that $T \cap T^x = 1$.

Notice that $U^{n_0} \cap B = 1$, so $(U^{n_0} \times T) \cap B = T$. Since $T^x \in U^{n_0} \times T$ we obtain

$$1 = T^x \cap T = T^x \cap ((U^{n_0} \times T) \cap B) = (T^x \cap (U^{n_0} \times T)) \cap B = B \cap B^x \cap B^v,$$

whence the main statement of the lemma follows.

Now we prove “in particular”, i.e., we show that there exist $u, v \in O^p(G)$ such that $B \cap B^u \cap B^v = 1$. By construction, $x \in U^{n_0} \leq O^p(G)$ and $1 = T^x \cap B = (B^{n_0} \cap B)^x \cap B = B \cap B^x \cap B^{n_0}$. The lemma is proven.

Let $S = O^p(\overline{G}_\sigma)$ be a finite simple nontwisted group of Lie type over a field \mathbb{F}_q of characteristic p. A Cartan subgroup $T \cap S$ of S can be obtained as $\langle h_r(\lambda) \mid r \in \Pi, \lambda \in \mathbb{F}_q^* \rangle$ (see [12], Theorem 2.4.7]), where Π is a set of fundamental roots of the root system of S. Then a field automorphism φ of S can be chosen so that for every $r \in \Pi, \lambda \in \mathbb{F}_q^*$ the identity $h_r(\lambda)^\varphi = h_r(\lambda^p)$ holds. Moreover, a graph automorphism τ corresponding to the symmetry $\varphi : \Pi \to \Pi$ of the Dynkin diagram of S can be chosen so that for every $r \in \Pi, \lambda \in \mathbb{F}_q^*$ the identity $(h_r(\lambda))^\tau = h_r(\bar{\lambda})$ holds, where $\bar{\lambda} = \lambda$, if all roots have the same length. Consider the subgroup A generated by so chosen field automorphism and graph automorphisms (there exist several graph automorphisms for the root system D_4). It is well-known that $\text{Aut}(S) = \hat{S} \times A$. Moreover, A normalizes a Borel subgroup B containing the Cartan subgroup T. Since $N_S(B) = B$ we obtain that $N_{\text{Aut}(S)}(B) = B \times A$.

Now assume that S is a finite simple twisted group of Lie type distinct from a Suzuki group or a Ree group, L is a nontwisted group of Lie type and ψ is an automorphism
of L such that \(S = O^d(L_\psi) \). Let \(- : \Pi \to \Pi \) be the symmetry of the Dynkin diagram of a fundamental set of roots \(\Pi \) of the root system of \(L \) using for construction of \(\psi \). Then a Cartan subgroup \(T \cap L \) of \(\hat{L} \) can be written as \(\langle h_r(\lambda) \mid r \in \Pi, \lambda \in \mathbb{F}_q^* \rangle \), and a field automorphism \(\varphi \) of \(S \) can be chosen so that for every \(r \in \Pi, \lambda \in \mathbb{F}_q^* \) the equality \((h_r(\lambda))^{\varphi} = h_r(\lambda^r) \) holds. We set \(A = \langle \varphi \rangle \), then \(\text{Aut}(S) = \hat{S} \rtimes A \), and there exists a Borel subgroup \(B \) of \(S \) such that the equality \(N_{\text{Aut}(S)}(B) = B \rtimes A \) holds.

Lemma 10. In the introduced notations assume that, if \(S \) is not twisted, then the order \(q \) of the definition field \(\mathbb{F}_q \) of \(S \) is greater than 2. Moreover, if \(S = D_4(q) \), assume also that \(q > 3 \). Assume also that \(S \) is neither a Suzuki group nor a Ree group. Then there exists \(x \in T \cap S \) such that \(C_A(x) = 1 \). In particular \(A \cap A^x = 1 \).

Proof. If \(S \) is not twisted and is distinct from \(D_4(q) \), then we can take \(x = h_r(\lambda) \), where \(r \in \Pi \) is such that \(r \neq \bar{r} \) and \(\lambda \) is a generating element of the multiplicative group of \(\mathbb{F}_q \). If \(S \) is twisted distinct from \(D_4(q) \), then we can take \(x = h_r(\lambda)h_{\bar{r}}(\lambda^q) \), where \(\lambda \) is a generating element of the multiplicative group of \(\mathbb{F}_q^2 \) and \(r \neq \bar{r} \). If \(S = D_4(q) \), then we can take \(x = h_r(\lambda)h_{\bar{r}}(\lambda^q)h_{\bar{r}}(\lambda^q) \), where \(\lambda \) is a generating element of the multiplicative group of \(\mathbb{F}_q^3 \) and \(r \neq \bar{r} \). Finally, if \(S = D_4(q) \) and \(q > 3 \), then there exist \(\lambda_1, \lambda_2 \in \mathbb{F}_q \setminus \{1\} \) such that \(\lambda_2 \notin \{\lambda_1^q, \lambda_1^q, \ldots, \lambda_1^q\} \) and \(\lambda_1 \) generates \(\mathbb{F}_q^* \). Choose fundamental roots \(r, s \) so that there exists a nontrivial symmetry of the Dynkin diagram, permuting the roots. Then we can take \(x = h_r(\lambda_1)h_s(\lambda_2) \).

Lemma 11. Let \(G \) be an almost simple group, whose simple socle \(S \) is a group of Lie type, satisfying the conditions of Lemma 10. Let \(B = U \rtimes T \) be a Borel subgroup of \(\hat{S} \) and \(H = N_G(B) \). Then there exist \(x, y, z \in S \), such that \(H \cap H^x \cap H^y \cap H^z = 1 \).

Proof. We use the notations introduced in Lemmas 9 and 10 in particular \(H \leq B \rtimes A \). It is proven in Lemma 9 that there exists \(x \in U^{\lambda_0} \leq S \) such that \(T^x \cap B = 1 \). In particular, \(B \cap B^{\lambda_0} \cap B^{-1} = 1 \). Therefore \(H \cap H^{\lambda_0} \cap H^{-1} \leq A \) and \(A \cap B = 1 \). By Lemma 10 there exists \(y \in T \cap S = (B \cap B^{\lambda_0}) \cap S \) such that \(A \cap A^y = 1 \). Thus

\[
(H \cap H^{\lambda_0} \cap H^{-1}) \cap (H \cap H^{\lambda_0} \cap H^{-1})^y = H \cap H^{\lambda_0} \cap H^{-1} \cap H^{-1} = 1,
\]

whence the lemma follows.

Lemma 12. Let \(S \) be a simple exceptional group of Lie type over a field of characteristic \(p \notin \pi \) and \(H \) be a solvable \(\pi \)-Hall subgroup of \(S \). Then one of the following holds.

1. There exists a maximal torus \(T \) of \(S \) such that \(H \leq N(S,T) \) and \(|\pi(N(S,T)/T) \cap \pi| \leq 1 \).

2. \(S = G_2(2^m+1), \pi \cap \pi(S) = \{2,7\}, |S|_{\{2,7\}} = 56, H \) is a Frobenius group of order 56.

3. \(S \in \{G_2(q), F_4(q), E_6^{-\varepsilon}(q), D_4(q)\} \), where \(\varepsilon \in \{+,-\} \) is chosen so that \(q \equiv 1 \) (mod 4); 2, 3 \(\notin \pi \), \(\pi \cap \pi(S) \leq \pi(\varepsilon-1) \), \(H \leq N(S,T) \), where \(T \) is a unique up to conjugation maximal torus such that \(N(S,T) \) contains a Sylow 2-subgroup of \(G \) and \(N(S,T)/T \) is a \{2,3\}-group. Here \(N(S,T) := N_G(T) \cap S \), where \(T = T S \cap S \) and \(S = O^d(T) \).

Proof. If \(2 \notin \pi \) then by Lemmas 7–14, Theorem 3 statement (1) of the Lemma holds. If \(2 \in \pi \) and \(3 \notin \pi \), then by Lemma 5.1 and Theorem 5.2 (see also 9, Theorem 8.9) either statement (1) or statement (2) of the lemma holds.
Finally, if $2, 3 \in \pi$, then S is neither a Suzuki group, nor a Ree group (since $p \not\in \pi$). By [15, Lemma 7.1–7.6] (see also [9, Theorem 8.15]) we have $\pi \cap \pi(S) \subseteq \pi(p - \varepsilon_1)$, $H \leq N(S, T)$, where T is a unique up to conjugation maximal torus such that $N(S, T)$ contains a Sylow 2-subgroup of S and either $N(S, T)/T$ is a $\{2, 3\}$-group, or $N(S, T)/T$ is a Weyl group of the root system of S. Since for root systems E_6, E_7, E_8, F_4, G_2 the Weyl groups are either $\{2, 3\}$-groups, or unsolvable, we obtain that if $S \in \{E^\pm_6(q), E_7(q), E_8(q)\}$, then H is unsolvable, whence statement (3) of the lemma.

Corollary 13. Let S be a simple exceptional group of Lie type over a field of characteristic $p \not\in \pi$, S is neither a Suzuki group, nor a Ree group, and H is a solvable π-Hall subgroup of S. Then the following statements hold.

(1) If $S = E_8(q)$, then $|H| \leq (q + 1)^8 \cdot 2^{14}$.

(2) If $S = E_7(q)$, then $|H| \leq (q + 1)^7 \cdot 2^{10}$.

(3) If $S = E_6(q)$, then $|H| \leq (q + 1)^6 \cdot 2^7$.

(4) If $S = F_4(q)$, then $|H| \leq (q + 1)^4 \cdot 2^7 \cdot 3^2$.

(5) If $S = G_2(q)$, then $|H| \leq (q + 1)^2 \cdot 12$.

(6) If $S = ^3D_4(q)$, then $|H| \leq \max\{(q^2 + q + 1)^2, (q + 1)^2 \cdot 48\}$.

3 Proof of the Main Theorem.

We proceed by considering distinct possible cases for the simple socle S of G and the structure of its π-Hall subgroup H. If S is either a Suzuki group or a Ree group, then by [10, Tables 3 and 4] it follows that for every subgroup H of G the inequality $\text{Base}_{H}(G) \leq 3$ holds. So we assume later that S is neither a Suzuki group, nor a Ree group.

3.1 S is a simple group of Lie type over a field of characteristic $p \in \pi$.

By Lemma [7] $H \cap \hat{S} \in \text{Hall}_p(\hat{S})$, so in this case for $H \cap \hat{S}$ Lemma [7] holds. Assume first that $H \cap \hat{S}$ lies in a Borel subgroup of \hat{S}. If S is a non twisted group of Lie type over a field of order two, then H is a 2-group. By [2] the inequality $\text{Base}_{H}(G) \leq 3$ holds. If $S = D_4(3)$, then H is a 3-group. By [2] the inequality $\text{Base}_{H}(G) \leq 3$ holds. Assume that S is not a non twisted group of Lie type over a field of two elements, and $S \not\cong D_4(3)$. Then $H \leq N_G(U) = N_G(B)$ and by Lemma [11] the inequality $\text{Base}_{H}(G) \leq 4$ holds. If one of statements (1)–(3) of Lemma [7] is satisfied, then S is a classical group and calculations by using [16] show that in any case $\text{Base}_{H}(G) \leq 5$ and $\text{Reg}_{H}(G, 5) \geq 5$.

3.2 S is a simple exceptional group of Lie type over a field of characteristic $p \not\in \pi$.

Assume that $S = E_8(q)$. We use Lemma [8] If x is a unipotent element, then $x^G \cap H = \emptyset$. If x is a semisimple element from $G = \hat{G}$, then by [17, Table 2] it follows that the maximum of orders of centralizers of semisimple elements in $E_8(q)$ is not greater than $q^{64}(q^{18} - 1)(q^{14} - 1)(q^{12} - 1)(q^{10} - 1)(q^8 - 1)(q^6 - 1)(q^2 - 1)^2$.

6
whence $|x^G| > q^{112}$. Clearly, the inequality $|x^G| > q^{112}$ holds in case, when x is a field automorphism. So for $c = 2$ we obtain

$$\hat{Q}(G, 2) \leq ((q + 1)^8 \cdot 2^{14})^2 / (q^{112}) < 1$$

for every $q \geq 2$. Hence, $\text{Base}_H(G) \leq 2$.

Assume that $G = E_7(q)$. We again use Lemma 8. If x is a unipotent element, then $x^G \cap H = \emptyset$. If x is a semisimple element from \hat{G}, then by [17] Table 1 it follows that the maximum of orders of centralizers of semisimple elements in $E_7(q)$ is not greater than

$$q^{31}(q^2 - 1)^2(q^4 - 1)(q^6 - 1)^2(q^8 - 1)(q^{10} - 1),$$

whence $|x^G| > (1/2)q^{64}$. Clearly, the inequality $|x^G| > (1/2)q^{64}$ holds in case, when x is a field automorphism. So for $c = 2$ we obtain

$$\hat{Q}(G, 2) \leq ((q + 1)^7 \cdot 2^{20})^2 / (q^{64}) < 1$$

for every $q \geq 2$. Hence $\text{Base}_H(G) \leq 2$.

Assume that $G = E_6^q(q)$. As above, we obtain that x is either a semisimple element from \hat{G}, or does not lie in \hat{G}. If x is a semisimple element, then by [18] Table 1 and Case $E_6(q)$ it follows that the maximum of orders of centralizers of semisimple elements in $E_6^q(q)$ is not greater than

$$q^{20}(q - \epsilon 1)(q^2 - 1)(q^4 - 1)(q^6 - 1)(q^8 - 1)(q^5 - \epsilon 1),$$

whence $|x^G| > \frac{1}{8}q^{30}$. Clearly, the inequality $|x^G| > \frac{1}{8}q^{30}$ holds in case, when x is either a field, or a graph-field automorphism. If x is a graph automorphism, then

$$|x^G| = |E_6^q| / |F_4(q)| \geq \frac{1}{3}q^{12}(q^5 - 1)(q^9 - 1).$$

So for $c = 4$ we obtain

$$\hat{Q}(G, 2) \leq \frac{(q + 1)^{24} \cdot 2^{28} \cdot 3^3}{q^{36} \cdot (q^5 - 1)^3 \cdot (q^9 - 1)^3} < 1$$

for every $q \geq 2$. Hence $\text{Base}_H(G) \leq 4$.

Assume that $G = F_4(q)$. Again we may assume that x either is a semisimple element from $G = \hat{G}$ or does not lie in \hat{G}. If x is a semisimple element, then by [18] Table 2 it follows that the maximum of orders of centralizers of semisimple elements in $F_4(q)$ is not greater than

$$q^{16}(q^2 - 1)(q^4 - 1)(q^6 - 1)(q^8 - 1),$$

whence $|x^G| > q^{16}$. Clearly, the inequality $|x^G| > q^{16}$ holds for every x not lying in G. So for $c = 4$ we obtain

$$\hat{Q}(G, 2) \leq \frac{(q + 1)^{16} \cdot 2^{28} \cdot 3^8}{q^{48}} < 1$$

for every $q \geq 3$. So for $q \geq 3$ the inequality $\text{Base}_H(G) \leq 4$ holds. If $q = 2$, then in view of the condition $p \notin \pi$ we obtain that the order $|H|$ is odd. By [13] Lemma 8 we obtain that either H is a Sylow 3-subgroup of G, or H is abelian. Hence the inequality $\text{Base}_H(G) \leq 3$ holds: in the first case by [2], and in the second case by Lemma 6.

Assume that $G = G_2(q)$. As above we may assume that x either is a semisimple element from $G = \hat{G}$, or does not lie in \hat{G}. If x is semisimple, then by [18] Table 4 it
follows that the maximum of orders of centralizers of semisimple elements in $F_4(q)$ is not greater than
\[q^2(q^2 - 1)(q^3 + 1), \]
whence $|x^G| \geq q^4(q^3 - 1)$. Clearly, the inequality $|x^G| \geq q^4(q^3 - 1)$ holds for every x not lying in G. So for $c = 4$ we obtain
\[\hat{Q}(G, 2) \leq \frac{(q + 1)^8 \cdot 12^4}{q^{12} \cdot (q^3 - 1)^3} < 1 \]
for every $q \geq 3$. Hence for $q \geq 3$ the inequality $\text{Base}_H(G) \leq 4$ holds. If $q = 2$, then by the condition $p \not\in \pi$ we obtain that the order $|H|$ is odd. By [13] Lemma 7 we obtain that either H is a Sylow 3-subgroup of G, or H is abelian. So the inequality $\text{Base}_H(G) \leq 3$ holds: in the first case by [2], and in the second case by Lemma [3].

If $G = 3D_4(q)$, then by [18] Table 7 it is easy to get the bound $|x^G| > q^{16}$. Using the bound we obtain that for $q \geq 2$ the inequality $\text{Base}_H(G) \leq 4$ holds. The Main Theorem is proven.

Notice that for the case $p \in \pi$ we also prove the following

Theorem 14. Let G be a finite almost simple group, whose simple socle is isomorphic to a group of Lie type over a field of characteristic $p \in \pi$. Assume that H is a solvable π-Hall subgroup of G. Then the inequalities $\text{Base}_H(G) \leq 5$ and $\text{Reg}_H(G, 5) \geq 5$ hold.

References

[1] Passman D.S. Groups with normal solvable Hall p'-subgroups // Trans. Amer. Math. Soc. 1966. vol. 123, no 1. p. 99–111.

[2] Zenkov V.I. Intersections of nilpotent subgroups in finite groups // Fund. Prikl. Mat. 1996. vol. 2, no 1. p. 1–92. (In Russian)

[3] Dolfi S. Large orbits in coprime actions of solvable groups // Trans. AMS. 2008. vol. 360. p. 135–152.

[4] Vdovin E.P. Regular orbits of solvable linear p'-groups // Siberian Electronic Mathematical Reports. 2007. vol. 4. p. 345–360.

[5] Zenkov V.I. On the intersections of solvable Hall subgroups in finite nonsolvable groups // Trudy IMM. 2007. vol. 13, no. 2. p. 86–89. (In Russian)

[6] Vdovin E.P., Zenkov V.I., On the intersection of solvable Hall subgroups in finite groups // Proc. Stekl. Inst. Math. Suppl. 3. 2009, p. 234-243.

[7] Hall P., Theorems like Sylow’s // Proc. London Math. Soc. (3). 1956. vol. 6. p. 286–304.

[8] Zenkov V.I. Intersections of abelian subgroups in finite groups. // Math. Notes. 1994. vol. 56, no 3. p. 869–871.

[9] Vdovin E.P., Revin D.O. Theorems of Sylow type // Russian Math. Surveys. vol. 66 (2011), no. 5, p. 829–870.
[10] Burness T.C., Liebeck M.W., Shalev A. Base sizes for simple groups and a conjecture of Cameron // Proc. Lond. Math. Soc. (3). 2009, vol. 98, no 1, p. 116–162.

[11] Liebeck M.W., Shalev A. Simple groups, permutation groups, and probability // J. Amer. Math. Soc. 1999. vol. 12, no 2. p. 497–520.

[12] Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple K-groups. AMS Mathematical Surveys and Monographs. vol. 40, no 3. American Mathematical Society, Providence, RI, 1998.

[13] Vdovin E.P., Revin D.O. Hall subgroups of odd order of finite groups // Algebra and Logic. vol. 41 (2002), no. 1, p. 8–29.

[14] Revin D.O. Vdovin E.P. Hall subgroups of finite groups // Contemporary Mathematics. 2006. vol. 402. p. 229–263.

[15] Revin D.O., Vdovin E.P. On the number of classes of conjugate Hall subgroups in finite simple groups // Journal of Algebra. 2010. vol. 324, no. 12. p. 3614–3652.

[16] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.5.7 (2013); (http://www.gap-system.org).

[17] Deriziotis D.I. The centralizers of semisimple elements of the Chavalley groups E_7 and E_8 // Tokyo Journal of Mathematics. 1983. vol. 6, no 1. p. 191–216.

[18] Deriziotis D.I. Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type. Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, Helt 11, 1984.