Table e-1: Participation rate of all Dutch hospitals in the Hospital Discharge Register (HDR)

Year	Percentage of hospitals participating in the HDR
1998	98.4%
1999	98.8%
2000	98.5%
2001	98.6%
2002	99.0%
2003	98.9%
2004	98.5%
2005	96.2%
2006	89.0%
2007	87.5%
2008	87.6%
2009	86.8%
2010	85.6%
ICD-9	ICD-10
-------	--------
Intracerebral haemorrhage	
431	I61
Ischaemic stroke	
434	I63
Unspecified stroke	
436	I64
All stroke	
431	I61
434	I63
436	I64
Composite vascular outcome	
410	I21
411	I24
413	I20
414	I25
415	I27
430	I60
431	I61
432	I62
434	I63
436	I64
441	I71
442	I72
443	I73
444	I26
444	I74
445	I75
451	I80
452	I81
453	I82

The Hospital Discharge Register contains reasons for admission coded with ICD-9. Causes of death are registered in the Cause of Death Register using ICD-10 codes.
Table e-3. Composition of the outcome all stroke

	Deaths, n (%)	Admissions, n (%)
All stroke*	1722	1655
Intracerebral haemorrhage	328 (19.0%)	449 (27.1%)
Cerebral infarction	72 (4.2%)	684 (41.3%)
Stroke, not specified as haemorrhage or infarction	1299 (75.4%)	466 (28.2%)
Subarachnoid haemorrhage	23 (1.3%)	56 (3.4%)

* numbers of the stroke subtypes as a component of the outcome all stroke may differ from the numbers reported for these outcomes separately as reported in the text because multiple events may occur in individual patients.
Table e-4. Composition of the composite vascular outcome

Composite vascular outcome	Deaths, n (%)	Admissions, n (%)												
Composite vascular outcome	2160	2805												
Intracerebral haemorrhage	314 (14.5%)	418 (14.9%)												
Cerebral infarction	69 (3.2%)	623 (22.2%)												
Stroke, not specified as stroke or infarction	1269 (58.8%)	435 (15.5%)												
Acute myocardial infarction	279 (12.9%)	295 (10.5%)												
Other acute ischaemic heart disease	5 (0.2%)	175 (6.2%)												
Intracerebral haemorrhage	314 (14.5%)	418 (14.9%)												
Cerebral infarction	69 (3.2%)	623 (22.2%)												
Stroke, not specified as stroke or infarction	1269 (58.8%)	435 (15.5%)												
Acute myocardial infaration	279 (12.9%)	295 (10.5%)												
Other acute ischaemic heart disease	5 (0.2%)	175 (6.2%)												
Aortic aneurysm and dissection	40 (1.9%)	137 (4.9%)												
Angina pectoris	5 (0.2%)	168 (6.0%)												
Pulmonary embolism	26 (1.1%)	117 (4.2%)												
Chronic ischaemic heart disease	88 (4.1%)	43 (1.5%)												
Arterial embolism and thrombosis	9 (0.4%)	116 (4.1%)												
Other intracranial haemorrhage	15 (0.7%)	95 (3.4%)												
Other venous embolism and thrombosis	1 (<0.1%)	87 (3.1%)												
Subarachnoid haemorrhage	23 (1.1%)	52 (1.9%)												
Other aneurysm and dissection	7 (0.3%)	29 (1.0%)												
Phlebitis and thrombophlebitis	3 (0.1%)	15 (0.5%)												
Other peripheral vascular diseases	4 (0.2%)	0												
Acute pulmonary heart disease	3 (0.1%)	0												
Study	Country and period	Setting	Design	Population	Analytic method	Patients, n	Age, mean, y	Follow up duration, mean, y	Intracerebral haemorrhage	Ischaemic stroke	All stroke	CVO	Vascular death	All death
------------------	--------------------------	---------------	-------------	------------	------------------------	-------------	-------------	----------------------------	--------------------------	----------------	------------	-----	----------------	-----------
Douglas, 1982	United States 1975-1979	Two hospitals	Retrospective	Hypertensive ICH, clinical diagnosis, discharged alive	P	42	2.4	0 (0.5-8.0)	N/A	N/A	4.8 (1.0-14.4)	7.1 (2.1-17.9)	16.7 (7.8-30.0)	
Holweg-Larsen, 1984	Denmark 1974-1982	Single hospital	Retrospective	Any ICH, clinical diagnosis, 21 days survivors	P	39	54 (median)	4.5 (median)	2.6 (0.3-11.4)	N/A	5.1 (1.1-15.5)	N/A	18.0 (8.4-32.0)	
Fieschi, 1988	Italy 1982-1983	Single hospital	Retrospective	First ICH, clinical diagnosis, 30 days survivors	P	73	61.5 (median)	1 (fixed)	0 [0.3-4.9]	N/A	N/A	N/A	4.1 (1.2-10.6)	
Fogelholm, 1992	Finland 1985-1989	Population	Retrospective	First ICH, clinical diagnosis, 30 days survivors	P	79	68.2 (median)	2.7 (median)	7.6 (3.2-15.0)	N/A	6.3 (2.5-13.3)	13.9 (7.6-22.8)	N/A	20.3 (12.6-30.1)
Franke, 1992	Netherlands 1986-1989	Two hospitals	Prospective	First ICH, clinical diagnosis, 2 days survivors	P	120	1 (fixed)	N/A	N/A	3.3 (1.1-7.7)	N/A	10.0 (5.6-16.3)	38.8 (30.0-47.2)	
Chen, 1995	Taiwan 1987-1989	Single hospital	Retrospective	Hypertensive ICH, clinical diagnosis, history of ICH	P	892	59 (median)	2.3 (median)	5.3 (4.0-6.9)	N/A	N/A	N/A	N/A	
Counsell, 1995	United Kingdom 1981-1985	Population	Prospective	First ICH, clinical diagnosis, 30 days survivors	P	31	68.9 (median)	2.5 (median)	12.9 (4.5-27.8)	N/A	12.9 (4.5-27.8)	29.0 (15.4-46.3)	N/A	19.4 (8.5-35.6)
Maruishi, 1995	Japan 1984-1992	Single hospital	Retrospective	Any ICH, clinical diagnosis, history of ICH	P	509	62.9 (median)	2.3 (median)	5.9 (4.1-8.2)	N/A	N/A	N/A	N/A	
Passero, 1995	Italy 1978-1982	Single hospital	Prospective	First ICH, clinical diagnosis, 30 days survivors	P	112	63.7 (median)	7.0	24.1 (16.9-32.6)	N/A	7.1 (3.4-13.0)	31.3 (23.2-40.2)	N/A	N/A
Neau, 1997	France 1984-1994	Single hospital	Retrospective	First ICH, clinical diagnosis, 30 days survivors	P	375	64.7 (median)	4.0	2.0 (0.9-3.7)	N/A	N/A	N/A	N/A	
Arakawa, 1998	Japan 1982-1996	Single hospital	Retrospective	First hypertensive ICH, clinical diagnosis, 3 months survivors	AR	74	59 (median)	5.6	2.0 (0.9-3.7)	N/A	N/A	N/A	N/A	
Gonzalez-Duarte, 1998	Mexico 1989-1997	Single hospital	Retrospective	First ICH, clinical diagnosis, discharged alive	P	350	60 (median)	4.6	6.3 (4.1-9.2)	N/A	N/A	N/A	N/A	
Hankay, 1998	Australia 1989-1990	Population	Prospective	First ICH, clinical diagnosis, 21 days survivors	P	36	73 (median)	5 (fixed)	8.3 (2.4-20.6)	N/A	8.3 (2.4-20.6)	27.8 (15.3-43.7)	N/A	N/A
Bae, 1999	Korea 1989-1995	Single hospital	Retrospective	Any hypertensive ICH, clinical diagnosis, 3 months survivors	P	617	58 (median)	3.2	8.4 (6.4-10.8)	N/A	N/A	N/A	N/A	
Year	Author	Country	Methodology	Study Details	Population	Location	Follow-Up	Inclusion Criteria	Results					
------	--------------	---------------	------------------------------	--	------------	----------	-----------	---	--					
1997	Hill, 2000	United States	Cross-sectional	Single hospital, Prospective, clinical diagnosis, 1 year risk: 24% 5%	N/A	United States	1991-1998	5-10.1 (18-30) i	N/A					
2001	O'Donnell,	United States	Retrospective, record-linking	Single hospital, Clinical diagnosis, 4 year risk: 19.2 (17.4-21.0)	N/A	United States	1994-1998	7.9 (3.8-13.4) i	N/A					
2003	Chen, 2001	Taiwan	Retrospective	Single hospital, Clinical diagnosis, 1 year risk: 21.4 (19.6-23.3)	N/A	Taiwan	1988-1999	7.9 (3.8-13.4) i	N/A					
2004	Vermaer, 2002	Netherlands	Retrospective	Single hospital, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Netherlands	1986-1995	7.9 (3.8-13.4) i	N/A					
2006	Yokota, 2004	Japan	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Japan	1978-1997	7.9 (3.8-13.4) i	N/A					
2005	Fosbergholm,	Finland	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Finland	1985-1991	7.9 (3.8-13.4) i	N/A					
2005	Hata, 2005	Japan	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Japan	1961-1993	7.9 (3.8-13.4) i	N/A					
2005	Ingawa, 2005	Japan	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Japan	1991-1998	7.9 (3.8-13.4) i	N/A					
2006	Saloheimo,	Finland	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Finland	1993-1995	7.9 (3.8-13.4) i	N/A					
2007	Hanger, 2007	New Zealand	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	New Zealand	1996-2004	7.9 (3.8-13.4) i	N/A					
2007	McGuire, 2007	Scotland	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Scotland	1995	7.9 (3.8-13.4) i	N/A					
2007	Lee, 2007	United States	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	United States	1997	7.9 (3.8-13.4) i	N/A					
2007	Yen, 2007	Taiwan	Single hospital	Population, Clinical diagnosis, 1 year risk: 27.4 (24.7-30.3)	N/A	Taiwan	1999-2003	7.9 (3.8-13.4) i	N/A					

Notes:
- AR: Annual Report
- P: Retrospective
- N/A: Not available
| Study, Year | Country | Study Design | Age | Study Population | ICH, no stroke in prior 5y, ICD code based, discharged alive | Prospective | 1 year risk: | 3 year risk: | 5 year risk: | 10 year risk: | Median Risk: | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Christensen, 2005-2010 | Scotland | All hospitals in Scotland | Retrospective, record-linking | ICH, no stroke in prior 5y, ICD code based, discharged alive | First ICH, ≥64y clinical diagnosis, 28 days survivors | P | 557 | 67.0% | 1 fixed | 8.4 (6.0-10.8) | 1.9 (0.7-3.1) | 15.0 (12.1-17.9) | 1.0 (0.2-1.8) | N/A | 7.3 (5.6-8.9) |
| Azarpazhooh, 2008 | Australia | Population | Prospective | First ICH, ≥64y clinical diagnosis, 28 days survivors | | P | 191 | N/A | 2 fixed | 2.6 (1.0-5.6) | 3.7 (1.7-7.4) | 6.3 (3.5-10.4) | N/A | N/A | N/A |
| Zia, 2009 | Sweden | Single hospital | Prospective | First ICH, clinical diagnosis, 28 days survivors | AR | P | 353 | 73% | 3 fixed | 2.3 (1.4-3.5) | 2.8 (1.8-4.0) | 5.1 (3.7-6.7) | N/A | - | 3 year risk: 30.3 (25.7-35.3) | |
| Weimar, 2011 | Germany | 13 hospitals | Prospective | First ICH, clinical diagnosis, discharged alive | AR | P | 496 | 69.6% | 2 | 2.2 (1.2-3.8) | 4.2 (2.7-6.3) | 9.3 (7.0-12.1) | N/A | 6.3 (4.4-8.6) | |
| Hansen, 2013 | Sweden | 12 hospitals | Retrospective, record-linking | First ICH, clinical diagnosis, 1 year survivors | AR | P | 172 | 67.7 | 13 fixed | 0.5 (0.2-1.7) | 0.7 (0.3-1.3) | 3.2 (2.4-4.3) | N/A | 4.9 (3.8-6.2) | |
| Jones, 2013 | United States | Population | Prospective | First ICH, clinical diagnosis, no intercept | AR | P | 85 | 66 | 5.3 | 1.1 (0.3-2.9) | 2.1 (0.9-4.4) | 3.2 (1.6-5.8) | 9.4 (3.6-23.2) | N/A |
| Rutten-Jacobs, 2013 | Netherlands | Single hospital | Prospective | First ICH, age 18-50y clinical diagnosis, 30 days survivors | AR | P | 71 | 38.1 | 6.1 | 0.3 (0.0-0.9) | 0 (0.0-0.4) | 0.3 (0.0-0.9) | N/A | 0.8 (0.3-1.6) | |
| Rutten-Jacobs, 2013 | Netherlands | Single hospital | Prospective | First ICH, age 18-50y clinical diagnosis, 30 days survivors | AR | P | 68 | 38.0 | 6.6 | 5.9 (2.0-13.4) | 1.5 (0.2-6.7) | 7.4 (2.9-15.4) | 8.8 (3.8-17.3) | N/A |
| Pennlert, 2014 | Sweden | Population | Prospective | First ICH, age 25-74y clinical diagnosis, 28 days survivors | AR | P | 815 | 62.1 | 4.0 | 4.1 (2.9-5.6) | 7.7 (6.1-9.7) | 12.4 (10.3-14.8) | N/A | N/A | N/A |
| Yeh, 2014 | Taiwan | Single hospital | Prospective | First ICH, clinical diagnosis, 1 month survivors | AR | P | 3,785 | 58.7% | 5.5 | 1 year risk: 3.2 (2.7-3.8) | 1 year risk: 1.4 (1.1-1.8) | 1 year risk: 3.6 (3.0-4.2) | 1 year risk: 11.6 (10.6-12.7) | 10 year risk: 20.9 (19.6-22.2) | N/A |
| Biffi, 2015 | United States | Single hospital | Prospective | Any ICH, clinical diagnosis, 90 days survivors | AR | P | 1,145 | 73.4 | 3.1 | 7.6 (4.0-13.1) | 3.1 (1.0-7.1) | 10.7 (6.3-16.8) | N/A | N/A | N/A |
| Koivunen, 2015 | Finland | Single hospital | Retrospective, record-linking | First ICH, age 16-49y clinical diagnosis, 30 days survivors | AR | P | 131 | N/A | 9.7 | 7.6 (4.0-13.1) | 3.1 (1.0-7.1) | 10.7 (6.3-16.8) | N/A | N/A | N/A |
| Samaraoeva, 2015 | Scotland | Population | Prospective | First ICH, clinical diagnosis, no intercept | AR | P | 128 | 78 | 1 | 3.1 (1.1-7.3) | 6.3 (2.0-15.3) | N/A | N/A | N/A | N/A |
| Bjørkem, 2016 | Norway | Single hospital | Prospective | First ICH, clinical diagnosis, discharged alive | AR | P | 121 | 72.3 | 1 | 1.4 (0.2-6.3) | 2.8 (0.6-8.6) | 4.2 (1.2-10.7) | 9.7 (4.5-18.1) | 14.9 (8.9-22.7) |
| Callaly, 2016⁴³ | Ireland | Population | Prospective | Any ICH, clinical diagnosis, 28 days survivors | P | 61 | 70.6 | 2 (fixed) | 3.3 (0.7-10.1)^f | 0 (0.0-4.0)^f | 3.3 (0.7-10.1)^f | N/A | N/A | 6.7 (1.7-24.1) |
| Ottosen, 2016⁴⁴ | Denmark | Nationwide | Retrospective, record-linking | First ICH, age >18y, ICD code based, 30 days survivors | P | 6,369 | N/A | 2.3 (median) | 3.2 (2.8-3.7)[#] | N/A | N/A | N/A | N/A | N/A | N/A |
| Schmidt, 2016⁴⁵ | Denmark | Nationwide | Retrospective, record-linking | First ICH, age >18y, ICD code based, 7 days after discharge | P | 15,270 | N/A | 2.8 (median) | 1 year risk: 8.0 (8.4-9.3) | 5 year risk: 13.7 (13.2-14.3) | N/A | N/A | N/A | N/A | N/A | N/A |
| Wolf, 2016⁴⁶ | Germany | Single hospital | Retrospective | First ICH, clinical diagnosis, 28 days survivors | P | 1,273 | 69 | 1.5 (median) | 2.6 (1.8-3.6)[#] | N/A | N/A | N/A | N/A | N/A | N/A |
| He, 2017⁴⁷ | China | 109 hospitals | Retrospective | Any ICH, ICD code based, unknown intercept | P | 23,748 | 58 | 2 (fixed) | 3.3 (3.0-6.5)^f | 2.1 (1.9-2.2)^f | 5.4 (5.1-5.7)^f | N/A | N/A | N/A |
| Qiu, 2017⁴⁸ | Singapore | Single hospital | Prospective | First ICH, clinical diagnosis, 14 days survivors | AR | 1,708 | 62 | 3.8 | 1.1 (0.8-1.3)^f | 3.5 (2.7-4.5)^f | N/A | N/A | N/A | N/A | N/A | 8.7 (8.0-9.5)^f | 32.6 (30.4-34.9)^f |
| Tsivgoulis, 2018⁴⁹ | Greece | Population | Prospective | First ICH, clinical diagnosis, 1 day survivors | P | 83 | 77 | 1 (fixed) | N/A | N/A | 1.2 (0.7-2.2) | N/A | N/A | 47.0 (36.6-57.6) |
| Casolla, 2019⁵⁰ | France | Single hospital | Prospective | Any ICH, clinical diagnosis, 30-day survivors | P | 310 | 70 (median) | 6 (median) | 1-year risk: 3.0 (2.1-4.6) | 5-year risk: 4.9 (2.9-7.7) | 1-year risk: 3.2 (1.7-5.7) | 5-year risk: 9.0 (6.1-12.6) | 1-year risk: 7.2 (4.6-18.4) | 5-year risk: 14.2 (10.5-18.4) | N/A | N/A | N/A |

Abbreviations: AR, annual rate; N/A, not available; P, proportion.

^a Unless otherwise specified
^b Mean age relates to the whole cohort, including non-survivors
^c Defined as stroke, myocardial infarction, or major extracranial haemorrhage
^d Defined as the composite event of fatal or non-fatal stroke (ischaemic or hemorrhagic), fatal or nonfatal myocardial infarction, or cardiovascular procedures (coronary artery bypass grafting, percutaneous transluminal coronary angioplasty, carotid endarterectomy, or other peripheral arterial revascularization procedures), whichever occurred first
^e All-cause mortality was available for 282 patients
^f 95%-CI calculated by Mid-P exact test
^g 95%-CI calculated by Jeffreys score interval
[#] Only fatal events
¹ Defined as fatal or non-fatal acute myocardial infarction, fatal arrhythmia, fatal heart failure and fatal cardiac arrest.
² Defined as the composite of stroke, acute coronary syndrome, acute limb ischemia, coronary artery revascularization (either coronary artery bypass or percutaneous coronary intervention), severe peripheral artery disease (ie, symptomatic arterial stenosis or stenosis requiring a revascularization procedure), and severe internal carotid stenosis requiring a revascularization procedure, bleeding with hemoglobin drop of ≥3g/dL or needing blood transfusion, surgical intervention or intravenous vasoactive agents, imaging confirmed intracranial or intraspinal haemorrhage or intraocular bleed, coronary bypass-related bleeding, or fatal bleeding
Supplementary references

1. Douglas MA, Haerer AF. Long-term prognosis of hypertensive intracerebral hemorrhage. Stroke; a journal of cerebral circulation 1982;13:488-491.
2. Helweg-Larsen S, Sommer W, Strange P, Lester J, Boysen G. Prognosis for patients treated conservatively for spontaneous intracerebral hematomas. Stroke 1984;15:1045-1048.
3. Fieschi C, Carolei A, Fiorelli M, et al. Changing prognosis of primary intracerebral hemorrhage: results of a clinical and computed tomographic follow-up study of 104 patients. Stroke; a journal of cerebral circulation 1988;19:192-195.
4. Fogelholm R, Nuutila M, Vuorela AL. Primary intracerebral haemorrhage in the Jyvaskyla region, central Finland, 1985-89: incidence, case fatality rate, and functional outcome. J Neurol Neurosurg Psychiatry 1992;55:546-552.
5. Franke CL, van Swieten JC, Algra A, van Gijn J. Prognostic factors in patients with intracerebral haematoma. J Neurol Neurosurg Psychiatry 1992;55:653-657.
6. Chen ST, Chiang CY, Hsu CY, Lee TH, Tang LM. Recurrent hypertensive intracerebral hemorrhage. Acta neurologica Scandinavica 1995;91:128-132.
7. Counsell C, Boonyakarnkul S, Dennis M, et al. Primary intracerebral hemorrhage in the Oxfordshire Community Stroke Project. Cerebrovascular diseases 1995;5:26-34.
8. Maruishi M, Shima T, Okada Y, Nishida M, Yamane K, Okita S. Clinical findings in patients with recurrent intracerebral hemorrhage. Surgical neurology 1995;44:444-449.
9. Passero S, Burgalassi L, D’Andrea P, Battistini N. Recurrence of Bleeding in Patients With Primary Intracerebral Hemorrhage. Stroke; a journal of cerebral circulation 1995;26:1189-1192.
10. Neau JP, Ingrand P, Couderq C, et al. Recurrent intracerebral hemorrhage. Neurology 1997;49:106-113.
11. Arakawa S, Saku Y, Ibayashi S, Nagao T, Fujishima M. Blood pressure control and recurrence of hypertensive brain hemorrhage. Stroke 1998;29:1806-1809.
12. Gonzalez-Duarte A, Cant C, Ruz-Sandoval JL, Barinagarrementeria F. Recurrent primary cerebral hemorrhage: frequency, mechanisms, and prognosis. Stroke; a journal of cerebral circulation 1998;29:1802-1805.
13. Hankey GJ, Jamrozik K, Broadhurst RJ, et al. Long-term risk of first recurrent stroke in the Perth Community Stroke Study. Stroke; a journal of cerebral circulation 1998;29:2491-2500.
14. Bae HG, Jeong DS, Doh JW, Lee KS, Yun IG, Byun BJ. Recurrence of bleeding in patients with hypertensive intracerebral hemorrhage. Cerebrovascular diseases 1999;9:102-108.
15. Hill MD, Silver FL, Austin PC, Tu JV. Rate of stroke recurrence in patients with primary intracerebral hemorrhage. Stroke 2000;31:123-127.
16. O'Donnell HC, Rosand J, Knudsen KA, et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. The New England journal of medicine 2000;342:240-245.
17. Chen CH, Huang CW, Chen HH, Lai ML. Recurrent hypertensive intracerebral hemorrhage among Taiwanese. Kaohsiung J Med Sci 2000;17:556-563.
18. Vermeer SE, Algra A, Franke CL, Koudstaal PJ, Rinkel GJ. Long-term prognosis after recovery from primary intracerebral hemorrhage. Neurology 2002;59:205-209.
19. Hillen T, Coshall C, Tilling K, et al. Cause of stroke recurrence is multifactorial: patterns, risk factors, and outcomes of stroke recurrence in the South London Stroke Register. Stroke; a journal of cerebral circulation 2003;34:1457-1463.
20. Yokota C, Minematsu K, Hasegawa Y, Yamaguchi T. Long-term prognosis, by stroke subtypes, after a first-ever stroke: a hospital-based study over a 20-year period. Cerebrovascular diseases 2004;18:111-116.
21. Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry 2005;76:1534-1538.
22. Hata J, Tanizaki Y, Kiyohara Y, et al. Ten year recurrence after first ever stroke in a Japanese community: the Hisayama study. J Neurol Neurosurg Psychiatry 2005;76:368-372.
23. Inagawa T. Recurrent primary intracerebral hemorrhage in Izumo City, Japan. Surg Neurol 2005;64:28-35; discussion 35-26.
24. Saloheimo P, Lapp TM, Juvela S, Hillbom M. The impact of functional status at three months on long-term survival after spontaneous intracerebral hemorrhage. Stroke 2006;37:487-491.
25. Hanger HC, Wilkinson TJ, Fayez-Iskander N, Sainsbury R. The risk of recurrent stroke after intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 2007;78:836-840.
26. McGuire AJ, Raikou M, Whittle I, Christensen MC. Long-term mortality, morbidity and hospital care following intracerebral hemorrhage: an 11-year cohort study. Cerebrovasc Dis 2007;23:221-228.
27. Lee WC, Joshi AV, Wang Q, Pashos CL, Christensen MC. Morbidity and mortality among elderly Americans with different stroke subtypes. Adv Ther 2007;24:258-268.
28. Yen CC, Lo YK, Li JY, Lin YT, Lin CH, Gau YY. Recurrent primary intracerebral hemorrhage: a hospital based study. Acta Neurol Taiwan 2007;16:74-80.
29. Christensen MC, Munro V. Ischemic stroke and intracerebral hemorrhage: the latest evidence on mortality, readmissions and hospital costs from Scotland. Neuroepidemiology 2008;30:239-246.
30. Azarpazhooh MR, Nicol MB, Donnan GA, et al. Patterns of stroke recurrence according to subtype of first stroke event: the North East Melbourne Stroke Incidence Study (NEMESIS). International journal of stroke : official journal of the International Stroke Society 2008;3:158-164.
31. Zia E, Engstrom G, Svensson PJ, Norrving B, Pessah-Rasmussen H. Three-year survival and stroke recurrence rates in patients with primary intracerebral hemorrhage. Stroke 2009;40:3567-3573.
32. Weimar C, Benemann J, Terborg C, et al. Recurrent stroke after lobar and deep intracerebral hemorrhage: a hospital-based cohort study. Cerebrovascular diseases 2011;32:283-288.
33. Hansen BM, Nilsson OG, Anderson H, Norrving B, Saveland H, Lindgren A. Long term (13 years) prognosis after primary intracerebral haemorrhage: a prospective population based study of long term mortality, prognostic factors and causes of death. J Neurol Neurosurg Psychiatry 2013;84:1150-1155.
34. Jones SB, Sen S, Lakshminarayan K, Rosamond WD. Poststroke outcomes vary by pathogenic stroke subtype in the Atherosclerosis Risk in Communities Study. Stroke 2013;44:2307-2310.
35. Rutten-Jacobs LC, Arntz RM, Maaijwee NA, et al. Long-term mortality after stroke among adults aged 18 to 50 years. Jama 2013;309:1136-1144.
36. Rutten-Jacobs LC, Maaijwee NA, Arntz RM, et al. Long-term risk of recurrent vascular events after young stroke: The FUTURE study. Ann Neurol 2013;74:592-601.
37. Pennlert J, Eriksson M, Carlberg B, Wiklund PG. Long-term risk and predictors of recurrent stroke beyond the acute phase. Stroke; a journal of cerebral circulation 2014;45:1839-1841.
38. Yeh SJ, Tang SC, Tsai LK, Jeng JS. Pathogenetical subtypes of recurrent intracerebral hemorrhage: designations by SMASH-U classification system. Stroke 2014;45:2636-2642.
39. Biffi A, Anderson CD, Battey TW, et al. Association Between Blood Pressure Control and Risk of Recurrent Intracerebral Hemorrhage. Jama 2015;314:904-912.
40. Koivunen RJ, Tatlisumak T, Satopaa J, Niemela M, Putaala J. Intracerebral hemorrhage at young age: long-term prognosis. Eur J Neurol 2015;22:1029-1037.
41. Samarasekera N, Fonville A, Lerpiniere C, et al. Influence of intracerebral hemorrhage location on incidence, characteristics, and outcome: population-based study. Stroke 2015;46:361-368.
42. Bjerkreim AT, Thomassen L, Waje-Andreassen U, Selvik HA, Naess H. Hospital Readmission after Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2016;25:157-162.
43. Callaly E, Ni Chroinin D, Hannon N, et al. Rates, Predictors, and Outcomes of Early and Late Recurrence After Stroke: The North Dublin Population Stroke Study. Stroke; a journal of cerebral circulation 2016;47:244-246.
44. Ottosen TP, Grijota M, Hansen ML, et al. Use of Antithrombotic Therapy and Long-Term Clinical Outcome Among Patients Surviving Intracerebral Hemorrhage. Stroke; a journal of cerebral circulation 2016;47:1837-1843.
45. Schmidt LB, Goertz S, Wohlfahrt J, Melbye M, Munch TN. Recurrent Intracerebral Hemorrhage: Associations with Comorbidities and Medicine with Antithrombotic Effects. PLoS One 2016;11:e0166223.

46. Wolf ME, Alonso A, Ebert AD, Szabo K, Chatzikonstantinou A. Etiologic and Clinical Characterization of Patients with Recurrent Spontaneous Intracerebral Hemorrhage. European neurology 2016;76:295-301.

47. He Q, Wu C, Guo W, et al. Hospital-Based Study of the Frequency and Risk Factors of Stroke Recurrence in Two Years in China. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 2017;26:2494-2500.

48. Qiu L, Upadhyaya T, See AA, Ng YP, Kon Kam King N. Incidence of Recurrent Intracerebral Hemorrhages in a Multiethnic South Asian Population. J Stroke Cerebrovasc Dis 2017;26:666-672.

49. Tsivgoulis G, Katsanos AH, Patoudi A, et al. Stroke recurrence and mortality in northeastern Greece: the Evros Stroke Registry. Journal of neurology 2018;265:2379-2387.

50. Casolla B, Moulin S, Kyheng M, et al. Five-Year Risk of Major Ischemic and Hemorrhagic Events After Intracerebral Hemorrhage. Stroke 2019;50:1100-1107.