Theory of the electronic and transport properties of graphene under a periodic electric or magnetic field

Cheol-Hwan Park, Liang Zheng Tan, Steven G. Louie
Department of Physics, University of California at Berkeley, Berkeley, California 94720
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Abstract
We discuss the novel electronic properties of graphene under an external periodic scalar or vector potential, and the analytical and numerical methods used to investigate them. When graphene is subjected to a one-dimensional periodic scalar potential, owing to the linear dispersion and the chiral (pseudospin) nature of the electronic states, the group velocity of its carriers is renormalized highly anisotropically in such a manner that the velocity is invariant along the periodic direction but is reduced the most along the perpendicular direction. Under a periodic scalar potential, new massless Dirac fermions are generated at the supercell Brillouin zone boundaries. Also, we show that if the strength of the applied scalar potential is sufficiently strong, new zero-energy modes may be generated. With the periodic scalar potential satisfying some special conditions, the energy dispersion near the Dirac point becomes quasi one-dimensional. On the other hand, for graphene under a one-dimensional periodic vector potential (resulting in a periodic magnetic field perpendicular to the graphene plane), the group velocity is reduced isotropically and monotonically with the strength of the potential.

Keywords: graphene, superlattices, pseudospin

1. Introduction
Graphene is a single atomic layer of carbon atoms arranged in a honeycomb structure. The electronic states in graphene obey a unique linear energy dispersion relation near the Fermi energy [Fig. 1(a)], and they possess an additional quantum number called pseudospin which describes the electron’s probability amplitudes at the two different sublattices of carbon atoms forming graphene [1]. These behaviors are similar to those of massless neutrinos in relativistic quantum physics except that the role played by the actual spin of the neutrinos is now replaced by the pseudospin in graphene.

When graphene is subjected to a slowly varying nanoscale external periodic scalar or vector potential, the quasiparticles in graphene show even more interesting physics. Recently, there have been several studies on the electronic properties of graphene under either a periodic scalar potential [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], under a periodic vector potential [12, 13, 14, 15, 16, 17, 18], or under a periodic corrugation [19, 20, 21].

Graphene superlattices are not just theorists’ dream but have been experimentally realized. Superlattice patterns with periodicity as small as 5 nm have been imprinted on graphene through electron-beam induced deposition of adsorbates [22], triangular patterns with ~10 nm lattice period have been observed for graphene on metal surfaces [23, 24, 25, 26, 27, 28, 29], and periodically corrugated graphene sheet has also been reported [30].

Periodically patterned gates can provide another route for making graphene superlattices.

In this paper, we review the electronic properties of charge carriers in graphene under an external periodic scalar or vector potential. Especially, we focus on one-dimensional (1D) periodic potentials [e.g., Figs. 1(b) or 1(c)] for simplicity. However, many of the essential findings discussed here are applicable to two-dimensional (2D) periodic potentials. We also discuss the methodologies used in the analytical and numerical calculations.

The rest of the paper is organized as follows. In Secs. 2 and 3, we present the analytical derivation of the energy-momentum dispersion relation near the Dirac points (original or newly generated) in graphene under an external periodic scalar potential and vector potential, respectively. In Sec. 4 we present the details of our numerical calculations used in studying the effects of stronger perturbing potentials. In Sec. 5 we discuss the emerging massless Dirac fermions and quasi-1D modes under a strong external periodic scalar potential. Finally, in Sec. 6 we summarize our findings.

2. Graphene under an external periodic scalar potential

In this section, through analytical calculations, we show that when a 1D periodic scalar potential is applied to graphene: (i) the group velocity of the massless Dirac fermions is anisotropically renormalized in momentum space in an unexpected fashion, and (ii) new massless Dirac fermions are generated at the supercell Brillouin zone boundaries [4].
Figure 1: (a) Schematic diagram of graphene. Inset: the linear and isotropic energy dispersion near one of the Dirac points in the Brillouin zone. The potential is $V(x, y) = V(x)$ periodic along the x direction with spatial period L. The potential is $U_{0}/2$ in the grey regions and $-U_{0}/2$ outside. Inset: energy dispersion of charge carriers in this graphene superlattice. The energy dispersion along any line in 2D wavevector space going through the Dirac point is linear but with different group velocity. For a particle moving parallel to the periodic direction, the group velocity is not renormalized at all whereas that for a particle moving perpendicular to the direction of periodicity is reduced the most. (c) A 1D graphene superlattice formed by Kronig-Penney type of scalar potential $A(x, y) = A(x)$ periodic along the x direction with spatial period L. The vector potential $A(x)$ is $A_{0}/2$ in the grey regions and $-A_{0}/2$ outside. Inset: energy dispersion of charge carriers in this graphene superlattice. The group velocity around the Dirac point is reduced isotropically.

We consider a situation where the spatial variation of the external periodic potential is much slower than the inter-carbon distance so that inter-valley scattering between the K and K' points in the Brillouin zone may be neglected [31, 32]. We shall further limit our discussion to the low-energy electronic states of graphene which have wavevector $k + K$ close to the K point, i.e. with $|k| \ll |K|$.

There are two carbon atoms per unit cell in graphene, forming two different sublattices. Hence the eigenstate of charge carriers in graphene can be represented by a two component basis vector. The Hamiltonian of the low-energy quasiparticles in pristine graphene in a pseudospin basis,

$$
H_{0} = \frac{\hbar v_{0}}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{ik \cdot r} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{i\overline{kr}},
$$

and

$$
E_{\sigma}^{n}(s) = s \hbar v_{0} k,
$$

respectively, where $s = \pm 1$ is the band index and θ_{k} is the angle between k and the $+k_{x}$ direction.

We now assume that a 1D scalar potential $V(x)$, periodic along the x direction with periodicity L, is applied to graphene [Fig. 1(b)]. The Hamiltonian H then reads

$$
H = \hbar v_{0} \begin{pmatrix} -i\sigma_{y} \partial_{x} - i\sigma_{x} \partial_{y} + I \frac{V(x)}{\hbar v_{0}} \end{pmatrix},
$$

where I is the 2×2 identity matrix. Next we perform a similarity transform, $H' = U_{1} H U_{1}$, using the unitary matrix

$$
U_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\alpha(x)/2} & -e^{i\alpha(x)/2} \\ e^{i\alpha(x)/2} & e^{-i\alpha(x)/2} \end{pmatrix},
$$

where $\alpha(x)$ is given by

$$
\alpha(x) = 2 \int_{0}^{L} V(x') dx'/\hbar v_{0}.
$$

Here, without losing generality, we shall assume that an appropriate constant has been subtracted from $V(x)$ and that $V(x)$ has been shifted along the x direction so that the averages of both $V(x)$ and $\alpha(x)$ are zero. The transformed Hamiltonian H' takes the form

$$
H' = \hbar v_{0} \begin{pmatrix} -i\partial_{y} & -e^{i\alpha(x)} \partial_{y} \\ e^{-i\alpha(x)} \partial_{y} & i\partial_{x} \end{pmatrix}.
$$

A similar transform has been used to study nanotubes under a sinusoidal potential [34, 35].

We are interested in the low-energy quasiparticle states whose wavevector $k \equiv p + G_{m}/2$ [where $G_{m} = m(2\pi/L) \hat{x} \equiv$
term of the periodic potential always lower
potential. Moreover, the group velocity along the
Dirac fermions but having a group velocity varying
the electronic states near
along the
plifies when the external potential
in Fig. 1(b).
here, we should note that the spinors
now have a different meaning from
In order to calculate these matrix elements, we perform a
Fourier transform of
\[e^{i\alpha(x)} \]
where the Fourier components \(f[V] \)'s are determined by the
periodic potential \(V(x) \). We should note that in general
\[|f| < 1 , \]
which can directly be deduced from Eq. (6). The physics sim-
plifies when the external potential \(V(x) \) is an even function and
hence \(\alpha(x) \) in Eq. (6) is an odd function. If we take the
complex conjugate of Eq. (9) and change \(x \) to \(-x\), it is evident that
\(f[V] \)'s are real. General cases other than even potentials are
discussed in Ref. [6]. For states with wavevector \(k \) very close to
\(G_m/2 \), the \(2 \times 2 \) matrix \(M \) whose elements are calculated
from the Hamiltonian \(H' \) with the basis given by Eq. (9) can be
written as
\[M = h\nu_0 \left(\begin{array}{cc} p_x \sigma_x + f_m p_y \sigma_y & + h\nu_0 m G/2 \cdot 1 \end{array} \right) . \]
After performing yet another similarity transform \(M' = U_1^* M U_2 \)
with
\[U_2 = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right) , \]
we obtain the final result:
\[M' = h\nu_0 \left(p_x \sigma_x + f_m p_y \sigma_y \right) + h\nu_0 m G/2 \cdot 1 . \]
The energy eigenvalue of the matrix \(M' \) is given by
\[E_4(p) = sh\nu_0 \sqrt{p_x^2 + f_m^2 p_y^2} + h\nu_0 m G/2 . \]
Equation (14) holds in general and not only for cases where the
potential \(V(x) \) is even [6]. The only difference of the energy spectrum in
Eq. (9) from that in Eq. (14), other than a constant energy term, is that the
group velocity of quasiparticles moving along the \(y \) direction has been changed from \(v_0 \) to \(|f_m|\nu_0 \). Thus,
the electronic states near \(k = G_m/2 \) are also those of massless
Dirac fermions but having a group velocity varying anisotropi-
cally depending on the propagation direction. The group ve-
locity along the \(x \) direction is unchanged independent of
the potential. Moreover, the group velocity along the \(y \) direction is always lower than \(v_0 \) [Eq. (10)] regardless of the form or mag-
nitude of the periodic potential \(V(x) \) as schematically depicted
in Fig. 1(b).

We have thus shown that other than the original Dirac points,
new massless Dirac fermions are generated around the super-
cell Brillouin zone boundaries, i.e., the case with non-zero \(m \)
values in Eq. (14). It has also been shown that these newly gen-
erated massless Dirac points are the only available states in a
certain energy window if graphene is subjected to a 2D repul-
sive periodic scalar potential having triangular symmetry [6].

One more thing to note is that in graphene under an external
periodic scalar potential, a generalized pseudospin vector can
be defined and used to describe the scattering properties be-
 tween eigenstates; and especially, back-scattering processes by
a slowly varying impurity potential are suppressed as in pristine
graphene [6].

3. Graphene under a 1D external periodic vector potential

Now we move on to the case where a 1D vector potential
\(A(x, y) = A_x(x) \hat{y} \) is applied to graphene [Fig. 1(c)]. We show
through a novel transformation relation between scalar and vec-
tor potentials [13] that, unlike the electrostatic case, the group
velocity of charge carriers in graphene under a 1D periodic vec-
tor potential is renormalized isotropically.

The superlattice Hamiltonian, following the Peierls substitu-
tion, is given by
\[H = h\nu_0 \left(-i\sigma_x \partial_x - i\sigma_y \partial_y - \sigma_3 eA_x(x)/hc \right) . \]
Writing the wavefunction as \(\psi(x, y; t) = e^{-iEt/h} \psi(x) \), the
Dirac equation becomes
\[i\hbar \frac{d\psi}{dt} = h\nu_0 \left(-i\sigma_x \partial_x - i\sigma_y \partial_y - \sigma_3 eA_x(x)/hc \right) \psi(x) . \]
Now, if we multiply Eq. (17) by \(\sigma_3 \) on both sides, define \(\varphi'(x) = U_3 \varphi(x) \)
with
\[U_3 = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right) , \]
and use the relations \(U_3 = U_3^* U_3 = U_3^1 \), \(U_3\sigma_3 U_3 = -\sigma_3 \), and
\(U_3\sigma_y U_3 = \sigma_y \), Eq. (17) becomes
\[E' \varphi'(x) = h\nu_0 \left(-i\sigma_x \partial_x + \sigma_3 k_y' + IV'(x)/h\nu_0 \right) \varphi'(x) . \]
Here, we have defined
\[E' = -ih\nu_0 k_y , \]
\[k_y' = iE/h\nu_0 , \]
and
\[V'(x) = -i e (v_0/c) A_y(x) . \]
Equation (19) is thus equivalent to the Dirac equation with a peri-
odic scalar potential in Eq. (4) except that now the variables
are imaginary numbers. Using analytic continuation [18], we
obtain the energy-momentum dispersion relation in magnetic graphene superlattices from that in electrostatic graphene superlattices. For the states near the original Dirac point, as shown in the previous section, the energy dispersion in graphene under a periodic scalar potential is given [from Eq. (14)] by

$$E_s(k) = s\hbar v_0 \sqrt{k_x^2 + f_0^2k_y^2},$$ \hspace{1cm} \text{(23)}$$

where, according to Eq. (9),

$$f_0 = \frac{1}{L} \int_0^L \exp \left(\int_0^s \frac{2}{\hbar v_0} V(x') dx' \right) dx.$$

Plugging Eqs. (20), (21), and (22) into Eq. (23), we obtain

$$E_s(k) = \frac{1}{f_0} \hbar v_0 \sqrt{k_x^2 + k_y^2},$$ \hspace{1cm} \text{(25)}$$

where

$$f_0' = \frac{1}{L} \int_0^L \exp \left(\int_0^s \frac{2}{\hbar c} A_s(x') dx' \right) dx.$$

Therefore, from Eq. (25), we find that the group velocity in graphene under an external periodic vector potential (corresponding to a perpendicular magnetic field) is renormalized isotropically in the $k_y - k_x$ space \cite{17,18} even though the external vector potential profile is highly anisotropic in the x-y plane [Fig. 1(c)]. Note from Eq. (26) that

$$|f_0'| > 1$$

regardless of the form of the vector potential $A_s(x)$, i.e., the group velocity in graphene under an external periodic vector potential is always reduced. This result can in fact be used as a special case to understand the predictions of velocity reduction in metallic carbon nanotubes and gap reduction in semiconducting carbon nanotubes under a magnetic field \cite{26,37}.

4. Numerical calculation

If one wants to find the energy eigenvalues and eigenfunctions of graphene under an external periodic potential with wavevector k not very close to the supercell Brillouin zone boundary centers ($G_m/2$), one has to resort to numerical calculations. Such numerical calculations have led us to the discovery of solutions corresponding to new branches of massless Dirac fermions \cite{6} that are not found in the analytical calculations discussed in the previous sections.

The scattering amplitudes arising from the periodic scalar and vector potentials between eigenstates of pristine graphene [Eq. (2)], using the Hamiltonians in Eq. (4) and in Eq. (15), are given by

$$\langle \psi^0_{s,k} | I V(r) | \psi^0_{s',k'} \rangle = \sum_G \frac{1}{2} \left(1 + s s' e^{iG_{1y}(k_y - k_y')} \right) V(G) \delta_{k,k-G}$$

and

$$\langle \psi^0_{s,k} | -e\hbar v_0/c \cdot \sigma_y A_s(r) | \psi^0_{s',k'} \rangle = e\hbar v_0/c \cdot \sum_G \frac{1}{2} \left(s s' e^{iG_{1y}} - s e^{-iG_{1y}} \right) A_s(G) \delta_{k,k-G}.$$ \hspace{1cm} \text{(28)}$$

respectively. Here, G is a superlattice reciprocal lattice vector and $V(G)$ and $A_s(G)$ are the corresponding Fourier components of the external periodic scalar and vector potentials, respectively. Therefore, the energy dispersion and eigenstates of the quasiparticles in a graphene superlattice are obtained non-perturbatively within the single-particle picture by solving the following set of linear equations

$$E - E_{s,k}^{G'}(s,k) = \sum_G \frac{1}{2} \left(1 + s s' e^{iG_{1y}(k_y - k_y')} \right) V(G) c(s', k - G)$$

for graphene under an external periodic scalar potential, and by solving the following set of linear equations

$$E - E_{s,k}^{G'}(s,k) = \sum_G \frac{1}{2} \left(s s' e^{iG_{1y}} - s e^{-iG_{1y}} \right) A_s(G) c(s', k - G),$$

for graphene under an external periodic vector potential, where E is the superlattice energy eigenvalue and we have used Eqs. (3), (28), and (29). The amplitudes $c(s,k)$ and $c(s', k - G)$ indicate the mixing among different unperturbed quasiparticle states of pristine graphene.

Note that the scattering amplitude methods presented here are applicable to 2D graphene superlattices in general and not just to 1D periodic systems.

5. Emerging new massless Dirac fermions in a strong external periodic scalar potential

If the external periodic scalar potential applied to graphene is sufficiently strong, new branches of massless Dirac fermions are generated near the original Dirac cone (i.e., zero-energy modes) \cite{6,10,11}. Note that these new zero-energy modes are different from the new massless Dirac fermions discussed in Sec. 2 which have higher energies and are generated at the supercell Brillouin zone boundary centers ($k = G_m/2$) no matter how weak the perturbing potential is. As shown in Fig. 2, the number of zero-energy Dirac modes increases with the amplitude of the external periodic scalar potential. These new zero-energy modes could have distinguishable signatures in quantum Hall \cite{8} or transport measurement \cite{9}.

The new zero-energy modes are generated when the applied periodic scalar potential $V(x)$ has both even and odd symmetries [Fig. 2 or Figs. 3(a) and 3(b)]. When the odd symmetry is broken [Fig. 3(c)], new massless Dirac fermions are generated but the energy position could be different from zero [Fig. 3(d)]. But, if the even symmetry is broken [Fig. 3(e)], new massless Dirac fermions are not generated [Fig. 3(f)]. However, even in these broken-symmetry cases, the signatures of the modified electronic bandstructure could be captured in, e.g., Landau level measurements \cite{8}.

It is worthwhile to focus on the conditions on the external periodic potential under which the number of zero-modes jumps, as shown by the steps in Fig. 2(b) and Fig. 2(e). We call these systems at the jump special graphene superlattices (SGSs) \cite{2,8}. In an SGS, the group velocity along the k_y direction vanishes. Figure 4 shows that the energy dispersion in an
Figure 2: (a) Schematic diagram of a Kronig-Penney type of potential applied to graphene given by \(U_0/2 \) for \(0 < x < L/2 \) and \(-U_0/2 \) for \(L/2 < x < L \) with lattice period \(L \). (b) Number of Dirac points (not including spin and valley degeneracies) in a graphene superlattice versus \(U_0 \). (c) Electron energy in units of \(\varepsilon_L \) for a periodic potential \(U(x) = \Delta \sin(2\pi x/L) \) versus wavevector near the Dirac point for a graphene superlattice formed by the periodic scalar potential depicted in (a) with \(U_0 = 6\pi\varepsilon_L \). (d)-(f): Same quantities as in (a)-(c) for a graphene superlattice formed by a sinusoidal scalar potential \(V(x) = V_0 \sin(2\pi x/L) \). In (f), \(V_0 = 4.0\varepsilon_L \) was used.

Figure 3: (a) Kronig-Penney type of potential \(V(x) \) given by \(U_0/2 \) for \(0 < x < L/2 \) and \(-U_0/2 \) for \(L/2 < x < L \) with lattice period \(L \). (b) Electron energy (in units of \(\varepsilon_L = \hbar v_F/L \)) versus \(k_y \) with \(k_x = 0 \) in a graphene superlattice formed by the periodic potential in (a) with \(U_0 = 6\pi\varepsilon_L \). (c) and (d): Same quantities as in (a) and (b) for a periodic potential \(V(x) \) with a perturbation that breaks the even symmetry. The perturbing potential \(\Delta V(x) \) within one unit cell is given by \(+10\%\) of the potential amplitude \((U_0/2) \). (e) and (f): Same quantities as in (a) and (b) for a periodic potential \(V(x) \) with a perturbation that breaks the odd symmetry. The perturbing potential \(\Delta V(x) \) within one unit cell is given by \(+10\%\) and \(-10\%\) of the potential amplitude \((U_0/2) \).
Figure 4: (a) Schematic diagram showing the electronic energy dispersion relations and pseudospin vectors (black arrows) in graphene. (b) Calculated electron energy bandstructure in graphene. (c) and (d): Same quantity as in (a) and (b), respectively, for the considered Kronig-Penney type of an SGS [as defined in Fig. 1(b) with $U_0 = 4\pi\varepsilon_L$, where $\varepsilon_L = \hbar v_0/L$]. Red and blue arrows in (c) represent the ‘right’ and the ‘left’ pseudospin states, respectively.
SGS is quasi-1D and the pseudospin in an SGS is either parallel or antiparallel to the $+k_x$ (or periodic) direction. Because of this quasi-1D electron energy bandstructure in an SGS, the group velocity of electronic states are almost the same over a wide region in momentum space; and this has led to the prediction that SGSs can be used for electron beam supercollimation.

6. Summary

The electronic structure of graphene under a general external periodic scalar potential is modified from that of graphene in several highly unexpected ways: (i) the group velocity is anisotropically renormalized in momentum space and (ii) new massless Dirac fermions are generated at the supercell Brillouin zone boundary. Moreover, when a strong 1D periodic scalar potential is applied, new zero-energy modes emerge. Under certain conditions, the group velocity of charge carriers along the direction perpendicular to the 1D periodic direction of the superlattice potential vanishes. In this special class of 1D graphene superlattices, the electron energy bandstructure and pseudospin structure are quasi-1D and these properties can be used in collimating the electron flow. With a 1D external periodic vector potential applied to graphene, on the other hand, the group velocity of charge carriers near the original Dirac point is reduced isotropically. The analytical and numerical methods discussed in this paper can be used in further investigating the novel properties of quasiparticles in 1D and 2D graphene superlattices.

Acknowledgment

We acknowledge Li Yang, Young-Woo Son, and Marvin L. Cohen for fruitful discussions and collaboration. The theoretical part of this work was supported by NSF Grant No. DMR07-05941, and L.Z.T. and the simulation part of the study by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.-H.P. was supported by Office of Naval Research MURI Grant No. N00014-09-1066. Computational resources have been provided by TeraGrid and NERSC.

References

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109.
[2] C. Bai, X. Zhang, Klein paradox and resonant tunneling in a graphene superlattice, Phys. Rev. B 76 (2007) 075430.
[3] C.-H. Park, L. Yang, Y.-W. Son, M. Cohen, S. G. Louie, Anisotropic behaviors of massless dirac fermions in graphene under periodic potentials, Nature Phys. 4 (2008) 213–217.
[4] M. Barbier, F. M. Peeters, P. Vasilopoulos, J. J. Milton Pereira, Dirac and klein-gordon particles in one-dimensional periodic potentials, Phys. Rev. B 77 (11) (2008) 115446.
[5] C.-H. Park, Y.-W. Son, L. Yang, M. L. Cohen, S. G. Louie, Electron beam supercollimation in graphene superlattices, Nano Lett. 8 (2008) 2920–2924.
[6] C.-H. Park, L. Yang, Y.-W. Son, M. L. Cohen, S. G. Louie, New generation of massless dirac fermions in graphene under external periodic potentials, Phys. Rev. Lett. 101 (2008) 126804.
[7] J. H. Ho, Y. H. Chiu, S. J. Tsai, M. F. Lin, Semimetallic graphene in a modulated electric potential, Phys. Rev. B 79 (2009) 115427.
[8] C.-H. Park, Y.-W. Son, L. Yang, M. L. Cohen, S. G. Louie, Landau levels and quantum hall effect in graphene superlattices, Phys. Rev. Lett. 103 (2009) 046808.
[9] L. Brey, H. A. Fertig, Emerging zero modes for graphene in a periodic potential, Phys. Rev. Lett. 103 (2009) 046809.
[10] M. Barbier, P. Vasilopoulos, F. M. Peeters, Extra dirac points in the energy spectrum for superlattices on single-layer graphene, Phys. Rev. B 81 (2010) 075438.
[11] L.-G. Wang, S.-Y. Zhu, Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers, Phys. Rev. B 81 (2010) 205444.
[12] M. R. Masir, P. Vasilopoulos, A. Matulis, F. M. Peeters, Direction-dependent tunneling through nanostructured magnetic barriers in graphene, Phys. Rev. B 77 (2008) 235443.
[13] M. R. Masir, P. Vasilopoulos, F. M. Peeters, Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene, Phys. Rev. B 79 (2009) 035409.
[14] S. Ghosh, M. Sharma, Electron optics with magnetic vector potential barriers in graphene, J. Phys.: Cond. Matt. 21 (2009) 292204.
[15] D. Dell’Anna, A. D. Martino, Multiple magnetic barriers in graphene, Phys. Rev. B 79 (2009) 045420.
[16] Q.-S. Wu, S.-N. Zhang, S.-J. Yang, Transport of the graphene electrons through a magnetic superlattice, J.: Phys. Cond. Matt. 20 (2008) 485210.
[17] I. Snyman, Gapped state of a carbon monolayer in periodic magnetic and electric fields, Phys. Rev. B 80 (2009) 054303.
[18] L. Z. Tan, C.-H. Park, S. G. Louie, Graphene dirac fermions in one-dimensional inhomogeneous field profiles: Transforming magnetic to electric field, Phys. Rev. B 81 (2010) 195426.
[19] A. Isacsson, L. M. Jonsson, J. M. Kinaret, M. Jonson, Electronic superlattices in corrugated graphene, Phys. Rev. B 77 (2008) 035423.
[20] F. Guinea, M. I. Katsnelson, M. A. H. Vozmediano, Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B 77 (2008) 075422.
[21] T. O. Wehling, A. V. Balatsky, M. I. Katsnelson, A. I. Lichtenstein, Midgap states in corrugated graphene: Ab initio calculations and effective field theory, Europhys. Lett. 84 (2009) 17003.
[22] J. C. Meyer, C. O. Girit, M. F. Crommie, A. Zettl, Hydrocarbon lithography on graphene membranes, Appl. Phys. Lett. 92 (2008) 123110.
[23] S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on ru(0001), Phys. Rev. B 76 (2007) 075429.
[24] A. L. Vazquez de Parga, F. Calleja, B. Borca, M. C. G. P Jr, J. J. Hinarejo, F. Guinea, R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure, Phys. Rev. Lett. 100 (2008) 056807.
[25] P. W. Sutter, J.-I. Flege, E. A. Sutter,Epitaxial graphene on ruthenium, Nature Mater. 7 (2008) 406–411.
[26] D. Martoccia, P. R. Willmott, T. Brugger, M. Björck, S. G. Günther, C. M. Schlepütz, A. Cervellino, S. A. Pauli, B. D. Patterson, S. Marchini, J. Wintterlin, W. Moritz, T. Greber, Graphene on ru(0001): A 2x5 supercell, Phys. Rev. Lett. 101 (2008) 126102.
[27] J. Coraux, A. T. N’Diaye, C. Busse, T. Michely, Structured graphene on graphite (011), Nano Lett. 8 (2008) 565–570.
[28] A. T. N’Diaye1, J. Coraux, T. N. Plasa, C. Busse, T. Michely, Structure of epitaxial graphene on graphite (011), New J. Phys. 10 (2008) 043033.
[29] I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye, C. Busse, T. Michely, Dirac cones and minigaps for graphene on graphite (011), Phys. Rev. Lett. 102 (2009) 056808.
[30] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jing, C. Dames, C. N. Lau, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nature Nanotechnol. 4 (2009) 562–566.
[31] T. Ando, T. Nakamishi, Impurity scattering in carbon nanotubes - absence of back scattering, J. Phys. Soc. Japan 67 (1998) 1704–1713.
[32] P. L. McEuen, M. Bockrath, D. H. Cobden, Y.-G. Yoon, S. G. Louie, Disorder, pseudospins, and backscattering in carbon nanotubes, Phys. Rev. Lett. 83 (1999) 5098–5101.
[33] C. Wallace, The band theory of graphite, Phys. Rev. 71(1947) 622–634.
[34] T. Talyanskii, V. I., Novokov, D. S., Smirnov, B. D., L. S. Levitov, Quan-
tized adiabatic charge transport in a carbon nanotube, Phys. Rev. Lett. 87 (2001) 276802.

[35] D. S. Novikov, Electron properties of carbon nanotubes in a periodic potential, Phys. Rev. B 72 (2005) 235428.

[36] H. Ajiki, T. Ando, Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62 (1993) 1255–1266.

[37] H.-W. Lee, D. S. Novikov, Supersymmetry in carbon nanotubes in a transverse magnetic field, Phys. Rev. B 68 (2003) 155402.