1. Introduction

The World-Wide Web1-3 forms a big source of information among various domains. The scalability of data makes the database volume wider and wider. However, the era of the mobile internet still increases the data volume. The internet society4 quotes that by May 2015 there were 3 billion internet users and it's likely to increase 71\% in 2019. The data is distributed globally and most of the internet users really on this data. Hence it increases the complexity of searching, managing and analyzing of those data. Moreover, there is not much semantics associated with the data in the WWW, makes the process more human interaction than computer interaction. The Semantic Web5,6 is a vision of the next generation World-Wide Web in which data from multiple sources described with rich semantics are integrated to enable processing by humans as well as software agents. One of the goals of Semantic Web research is to incorporate most of the knowledge of a domain in an ontology that can be shared by many applications. Ontologies7,8 provide hierarchal taxonomies of information of a particular domain with concepts based classes, attributes, and the relationships between concepts.

Today most of the web pages are designed for humans to read and get information, rather than the intellectual processing by the computer9. The web pages are designed according to the defined structure which is understandable only to the humans. For example, if a student needs to know about MBBS course, the current web will give only the details of the MBBS course. Instead, the web provides the details of the course, where it is offered, what is the duration, payment, etc. then it becomes the beneficial process. This could be done through the semantic web. The semantic web is just an extension of the current web, which processes the annotated semantics along with the data being stored on the web. The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users.

On the extension of above definition, the semantic web had been revisited and put into existence10. The standards organizations like the Internet Engineering Task Force and the World Wide Web Consortium (W3C), has directed major efforts at specifying, developing, and deploying languages for sharing meaning. These languages provide a foundation for semantic interoperability. In
1997, the W3C defined the first Resource Description Framework (RDF) specification. RDF provided a simple but powerful triple-based representation language for Universal Resource Identifiers (URIs). It became a W3C recommendation by 1999. The vision for RDF was to provide a less essential knowledge representation for the Web.

2. Rough Set

Rough set theory11 was proposed by is a new mathematical tool for the imprecise data. The indiscernibility among the objects associated with the same category leads the concept of approximation. Figure 1 shown as the basis of the rough set which formulates the definition of two sets as lower and upper approximation.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{rough_set.png}
\caption{Rough set approximations.}
\end{figure}

Let U be the universe and R be the equivalence relation defined on U, if A is the target set then A can be characterized by $\overline{R}A$ (lower approximation) and RA (upper approximation).

\[RA = \bigcup \{ Y \in U / R : Y \subseteq A \} \]
\[\overline{RA} = \bigcup \{ Y \in U / R : Y \cap A \neq \emptyset \} \]

Rough set theory is an effective and powerful methodology and has been widely used in various domains for knowledge discovery. Many people have discovered knowledge by combining various mining and intelligent techniques with the rough set. For example in the medical domain knowledge has been discovered by using the rule-based induction algorithms12 and build a knowledge-based system to detect the early ovarian cancer by analysing the big data13.

3. Ontology on Intelligent Techniques

The ontology system in the semantic web can be constructed based on Formal Concept Analysis (FCA) and Rough set14. Today web-surfing becomes a day-to-day activity where people search for information. The ontology provides the explicit specification of the domain knowledge in the semantic web. This makes the clear description of the knowledge and makes the surfing at ease with the means of a semantic network. The essential and critical part in the construction of the ontology conceptual model is to identify the concepts and the relationship between those concepts. Even though many methodologies have been developed to build the ontology, the construction is still difficult as the object orientation model is always an abstraction to the ontology. To construct ontology requires more costs, works, efforts, and domain knowledge. The users were caught up by the annotation used to extricate the interdependencies in the semantic web.

As a new model of set-theoretical for the concept and conceptual hierarchies the Formal Concept Analysis (FCA) has been proposed by15. This model not only forms the basis for data analysis but for also to represent the conceptual knowledge and information management. An Intelligent Framework for medical diagnosis was also designed by16. Domain Knowledge or true belief can be expressed in terms of concepts which represent a set of objects or its instance which share the similar characteristics Formal Concept Analysis allow a mathematical description of a domain with the formal context triplet $K = (X, Y, R)$, where G is a non-empty set of objects, M is a non-empty set of attributes and R a binary relation between the objects and the attributes i.e $R \subseteq X \times Y$. A concept is determined by its extent which is a set of objects and its intent which is a set of attributes shared by the objects. For every $A \subseteq X$ and for every $B \subseteq Y$, the formal context can be defined by the formulas

\[\forall A, \subseteq A = \{ y \in B | \forall x \in A, \ x \ R y \} \]
\[\forall B, \subseteq B = \{ y \in A | \forall y \in B, \ x \ R y \} \]

Formal Context can be expressed in terms of the table. If $\{x_1, x_2, x_3, \ldots x_m\}$ are the set of objects and $\{y_1, y_2, y_3, \ldots y_n\}$ are the set of attributes with m rows and n columns,
then the relation R defined by $(x_i, y_j) \in R$ only if the Table 1 shown as i th row and j th column contains the value x.

For example:

R	Y_1	Y_2	Y_3	Y_4
X_1	\times	\times	\times	\times
X_2	\times	\times	\times	\times
X_3	\times	\times	\times	\times
X_4	\times	\times	\times	\times

Concept lattice is a form of an ordered taxonomical graph in which each node represents a subset of objects (intent) with their common attributes (extent) and the intent and the extent of a formal concept uniquely determine each other. For this case, attributes are called many-valued attributes. Since Formal Concept analysis presents multivalued attributes this can be best used for the semantic web to express the domain knowledge. Moreover, the ontology is constructed based on classes; FCA can be used to construct the ontology in an effective way.

Formal Concept Analysis can be done automatically by means of computer programs. This makes the task of data analysing and knowledge representation in ease. Hence the FCA can be used to construct the ontology easier and effective.

Finally, the author introduces the rough concept analysis by including rough set to the Formal Concept Analysis. The Rough Set theory introduces by addresses the vagueness, imprecision, and uncertainty in data analysis. In the semantic web, ontology is constructed and reused. The ontology may be developed, aligned, mapped, and merged during the process. During such time the Rough Set can be used to meet the boundary conditions. The author had developed an architecture where data is extracted from the log file with which the formal contexts are developed. Later a lattice model is constructed with the help of rough set which is stored as the domain ontology.

The information retrieval can be effectively done based on rough ontology. In the traditional keyword-based search method the word sense disambiguation leads to lack of accuracy. The limitations of the traditional keyword-based search are overwhelmed with the advent of the semantic web. With the semantic annotation, ontology plays a vital role in the field of information retrieval. As the ontology provides the formal explicit specification of conceptualization, it makes the domain knowledge machine understandable. Though the ontology affords the semantic annotation, unfortunately, it doesn't address the imprecise, uncertain and vague concept of real life data. The dominant ontology theory is further enriched with other powerful Rough set theory to process the imprecise information. In the proposed method the information retrieval is enhanced with the rough ontology based model. The proposed model is precisely defined by the following procedure.

- Keyword Query (Q) is posted by the user.
- Using the traditional keyword-based method, Initial document set (D_q) is obtained.
- The upgradation of actual documents to the machine understandable is done through the semantic annotation by constructing the specified domain ontology.
- To the annotated document association search is made and a new individual set (I_q) and property set (P_q) are obtained.
- Having P_q as the equivalence relation an approximation space is constructed.
- Taking the individual D_q and I_q the similarity is computed based on the defined approximation space.
- According to the similarity ranking is provided and the final search document set is sent to the user.

The authors also proved that the performance of their proposed method was upright with the traditional keyword-based method and ontology-based query retrieval method using the weighted harmonic mean of precision and recall.

Case Representation is a way to represent the knowledge. In presented their views on to present the knowledge by means of ontology-based case representation using rough set. Case-based Reasoning was first formulated by. In our day to day life, we can see people solving their problems using their previous knowledge and experience. The same methodology is followed in case representation where we derive the new solutions based on the old experiences. Normally this type methodology can be adapted to situations like problem solving and interpretation where we recall the old experience and adapt them to the new solution or interpret to new solutions.

The Traditional way to represent the case in case based reasoning are mainly classified into three categories as feature vector representation, structured representation
and textual representation. Later this is extended by hierarchical and general cases20. In addition each case in the case library in case based reasoning using the domain ontology21. Since there is lack of flexibility in process of retrieval Qian Chen et al. uses rough set to define the clustering.

The most fundamental concept of rough set is the approximation. A view of rough set concept approximation is given by 22. Some of the basic approaches determining the rough approximation to a concept are attribute-based approximations, case-based approximations, and rule-based approximations. An improved method of classifier synthesis based on rough set and layered learning approach has also been studied23. The authors compared their current work with layered learning algorithm with the classical RS algorithm for concept approximation. Using the RS algorithm the decision attribute of target attribute is connected directly with the input attributes. The main problem of this method is the construction of the decision table and to the lack of decision attribute for intermediate concepts. The work is improved by using the supervised learning concept where the decision attribute of the target concept is introduced as class attributes. Moreover, he used an ontology to represent the domain knowledge where the concepts are represented in a hierarchical approach. In the proposed method the training set is represented by a decision table and the set of decision attributes corresponds to both intermediate and target attributes. The improved layered learning algorithm takes the decision system and the concept hierarchy as input and gives the hypothetical attributes of all concepts in the hierarchy as output. The algorithm at each level takes the concepts and check with the input attribute set if present it adds to the final set else it forms the concept approximation through the rough set theory.

4. Conclusion

This paper probes how the rough ontology can be applied to the indiscernibility of objects. The vague and incomplete knowledge in the semantic web can be managed by the rough set. Although managing ontology in the approximation space is difficult it can be overcome by using different intelligent techniques as it has been discussed in this paper.

5. References

1. Albert R, Jeong H, Barabási AL. Internet: Diameter of the world-wide web. Nature. 1999 Sep 9; 401(6749):130–1.
2. Berners-Lee T, Fischetti M. Weaving the web: The original design and ultimate destiny of the World wide web by its inventor. HarperInformation; 2000 May.
3. Lawrence S, Giles CL. Searching the world wide web. Science. 1998 Apr; 280(5360):98–100.
4. Internet society [Internet]. [Cited 2016 Aug 25]. Available from: http://www. internetsociety.org.
5. Gruber TR. A translation approach to portable ontology specifications. Knowledge Acquisition. 1993 Jun; 5(2):199–220.
6. Khurs S, Jabeen F, Mashwani SR, Alam I. Linked open data: towards the realization of semantic web-a review. Indian Journal of Science and Technology. 2014 Jun; 7(6):745.
7. Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific American. 2001 May 17; 284(5):28–37.
8. Bhatia MP, Kumar A, Beniwal R. Ontologies for Software Engineering: Past, present and future. Indian Journal of Science and Technology. 2016 Mar; 9(9):1–21.
9. Berners-Lee T, Cailliau R, Groff JF, Pollermann B. Worldwide web: The information universe. Internet Research. 2010 Aug; 20(4):461–71.
10. Shadbolt N, Berners-Lee T, Hall W. The semantic web revisited. IEEE Intelligent Systems. 2006 Jan; 21(3):96–101.
11. Pawlak Z. Rough sets. International Journal of Computer and Information Sciences. 1982 Oct; 11(5):341–56.
12. Srimani PK, Koti MS. Knowledge discovery in medical data by using rough set rule induction algorithms. Indian Journal of Science and Technology. 2014 Jul; 7(7):905.
13. Yasodha P, Ananthanarayanan NR. Analysing big data to build knowledge based system for early detection of ovarian cancer. Indian Journal of Science and Technology. 2015 Jul; 8(14):12–14.
14. Zhang RL, Xu HS. Building the ontology system in semantic web based on formal concept analysis and rough set. Journal of Convergence Information Technology. 2011; 6(7):1–12.
15. Wille R. Formal concept analysis as mathematical theory of concepts and concept hierarchies. Formal concept analysis, Springer Berlin Heidelberg; 2005. p. 1–33.
16. Tripathy BK, Achariya DP, Cynthya V. A framework for intelligent medical diagnosis using rough set with formal concept analysis. 2013; 2(2):22.
17. Hu J, Li ZL, Guan C. A method of rough ontology-based information retrieval. IEEE International Conference on Granular Computing, China; 2008. p. 296–99.
18. Chen Q, Xiang Y, Guo X, Wei W. Survey on ontology-based case representation using rough-set. International Conference on Computer, Mechatronics, Control and Electronic Engineering. 2010; 1:301–4.
19. Kolodner JL. An introduction to case-based reasoning. Artificial Intelligence Review. 1992 Mar; 6(1):3–4.
20. Bergmann R, Kolodner J, Plaza E. Representation in case-based reasoning. The Knowledge Engineering Review. 2005 Sep; 20(03):209–13.
21. Wang D, Xiang Y, Zou G, Zhang B. Research on ontology-based case indexing in cbr. International Conference on Artificial Intelligence and Computational Intelligence, AICI’09. Springer-Verlag Berlin, Heidelberg. 2009; 4:238–41.
22. Bazan J, Nguyen HS, Szczuka M. A view on rough set concept approximations. Fundamenta Informaticae. 2004 Jan; 59(2–3):107–18.
23. Hoa NS, Son NH. Improving rough classifiers using concept ontology. Pacific-Asia Conference on Knowledge Discovery and Data Mining Springer Berlin Heidelberg; 2005. p. 312–22.