Study Of Avifauna Of Rajparian Wildlife Sanctuary, Kashmir Himalaya: Diversity, Status And Seasonal Variation

Aadil Hussain Bhat¹, Altaf Hussain Mir¹, Samina Amin Charoo²
¹Department of Zoology, University of Kashmir, 190006, India
²Department of Wildlife Protection J&K Government, 190006, India

*Corresponding author: aadilhussain328@gmail.com

Received: 12.05.2022, Revised: 14.06.2022, Accepted: 15.06.2022
©Society for Himalayan Action Research and Development

Abstract: The value of local and regional landscapes for avian conservation requires a thorough understanding of the diversity and structure of bird communities. The present study was conducted in the Rajparian Wildlife Sanctuary to assess the diversity, status and seasonal variation of avifauna. Weekly surveys were conducted from July 2019 to December 2021, following the line transect method. 102 bird species were recorded during the study period, categorized under 12 orders and 37 families, including 60 resident species, 24 summer migrants, 3 winter visitors, 8 passage migrants and 7 local altitudinal migrants. Among the dominant families, the Muscicapidae accounted for 17 species with a 15.7 relative diversity index value. Renyi diversity profile and rarefaction analysis revealed that of all the studied seasons, the summer season has the highest diversity and richness. Considerable variation in Sorensen dissimilarity between different seasonal pairs was observed, with the lowest dissimilarity found between summer and autumn ($\beta_{SOR} = 0.07$) and the highest between autumn and winter ($\beta_{SOR} = 0.21$). The current study will serve as a baseline for future avian research as well as for management implications in the sanctuary.

Key words: Avifaunal diversity, Rajparian Wildlife Sanctuary, Seasonal variation

Introduction

Birds are considered one of the best studied vertebrate groups on the planet since they are conspicuous, ubiquitous and have been extensively examined (Whelan et al. 2008). They inhibit nearly all habitats around the globe and have many ecological functions (wenny et al. 2011). Bird community composition is a key indicator of the health and economic vitality of local ecosystems and regional landscapes (Nagya et al. 2017). In addition to delivering critical ecosystem services, they also serve as seed dispersers, scavengers and predators (Gregory et al. 2003; Sodhi et al. 2011). The importance of landscapes for the conservation of birds requires a comprehensive understanding of bird community structure and diversity (Kattan and Franco 2004). Several ecosystems rely on birds as a component of the natural food chain (Whelan et al. 2008). Avian species richness and diversity can be used as an effective tool for monitoring different habitats, both qualitatively and quantitatively (Bilgrami 1995). Vegetation loss and degradation, hunting, pollution, invasive species and disease all pose persistent threats to avifauna (Sodhi et al. 2011). In addition to supporting biodiversity, protected areas, such as national parks and wildlife sanctuaries, play an essential role in functions such as providing ecosystem services, climatic stabilization and prevention of natural disasters (Defries et al. 2007; Heal 2000). The subcontinent of India is one of the most biologically diverse regions on earth, with highly varied climatic conditions,
diverse habitats, and long stretches of vegetative cover, supporting over 13% of all birds (Grimmett et al. 1998; Ali 2002). Globally, the Himalayan regions are considered affluent because they are surrounded by broad-leaved mixed forests, dry deciduous forests, moist deciduous forests and coniferous forests (Joshi & Bhatt 2013).

Located in the Himalayan region, Jammu and Kashmir is endowed with abundant natural resources and harbours a rich diversity of birds. With 28 designated bird areas (Islam and Rahmani 2012), Jammu and Kashmir is home to approximately 12 globally threatened bird species and six near-threatened species (Rahmani et al. 2013). Bird surveys have been conducted for all three regions of Jammu, Kashmir, and Ladakh (Pfister 2001; Aggarwal et al. 2008; Bhat and Bhat 2012; Kait et al. 2014; Sharma and Kichloo 2015; Sharma and Sohil 2017). However, the diversity and richness of bird species are not known for the Rajparian wildlife sanctuary. Through this study, we aim to understand the biodiversity, richness, composition and seasonal variations of avian species in the sanctuary.

Material and Methods

Study area: Rajparian Wildlife Sanctuary (Fig.1) is located in the district Anantnag of Jammu and Kashmir, between 33° 36’ 30” to 33° 42’ 30” N latitude and 75° 25’ 30” to 75° 31’ 15” E longitudes at an elevation ranging from 2360 m and 4270 m above sea level. The Anantnag-Semthan-Kishtwar road (NH-1B) leads to the sanctuary, which is approximately 100 km from Srinagar and about 41 km from Anantnag in the south-east direction. The Sanctuary covers an area of 48.27 km² and takes its name from the Rajparian Nallah that runs through it and serves as a major catchment region for the Bringi River, a tributary of the Jhelum. In 1948, the sanctuary was designated as the game reserve for Hangul (Cervus hanglu hanglu), and in 1981, it was upgraded to the Rajparian Wildlife Sanctuary.

Varied altitude, aspect and soil conditions have brought about different vegetation structures in the area, including dense forest, grassland, grazing land, scrub vegetation, riverine vegetation and barren rocky areas. The dominant vegetation of the study area includes Pinus wallichiana, Picea smithiana, Acer caesium, Salix alba, Betula utilis, Aesculus indica, Juglanus regia, Ulmus wallichiana, juniperus squamata, and Rhododendron anthopogan. The sanctuary is abode to many mammalian species, including Asiatic Black Bear, Musk Deer, Himalayan Grey Langur, and Red Fox. The region is characterized by four seasons: spring, summer, autumn and winter.

Fig.1: Location map of the study area
Sampling procedure
Several study sites, including dense forests, grasslands, riverine areas, scrub vegetation and barren rocky habitats, were selected for sampling birds within the Rajparian wildlife sanctuary, based on the vegetation structure from 2019 to 2021, covering all seasons. Following Bibby et al. (2000), a total of 28 linear transects were laid, varying in length from 100 m to 500 m and in width from 25 m to 50 m, covering almost all study sites and habitat types. The length of the transects varied according to the vegetation and accessibility of the area. All sampling points were taken through a stratified random method and a distance of almost 250 m was maintained between two sampling points in order to avoid double counting of birds. For surveying birds, weekly sampling was done mainly during the morning and evening hours when birds were found most active, avoiding inclement weather conditions. Based on sighting frequency, bird species were ranked into the following categories: very common (VC)-sighted > 10 times, common (C)-sighted 7-9 times, uncommon (UC)-sighted 3-6 times and rare (R)-sighted once or twice, for analysis of relative abundance following McKinnon and Phillip (1993). Migratory and threat status of bird species were assigned following Grimmett et al. (2011) and the IUCN Red List of Threatened Species respectively. Bird species were observed using binoculars (Nikon Action 8 X 40 8.2) and photographs were taken with a digital camera (Nikon D5600 with a 60-300 mm lens kit). Bird species were identified using field guides by Grimmett et al. (2011) and Ali (2002). For call and song notes, BirdNET and Merlin applications were used.

Data Analysis
The iNext 2.0.20 R package was used to calculate individual and coverage-based rarefaction and extrapolation curves based on abundance data for all seasons (Hsieh et al. 2020). To determine which pairs of studied seasons showed significant differences in species richness, we used the Tukey HSD test for multiple pairwise comparisons between their means. The Vegan 2.5-7 package was used to calculate the species diversity of the studied seasons using the Renyi diversity profile approach (Oksanen et al. 2020). Based on the average abundance data of the three-year period and a scaling parameter (α) that ranges from zero to infinity, the Renyi diversity profile values (H_{α}) were determined using the following formula:

$$H_{\alpha} = \frac{1}{1-\alpha} \ln \sum_{i=1}^{S} p_i^\alpha$$

Where, pi is the average abundance of a bird species, and α is the scaling parameter (Legendre and Legendre 1998; Kindt and Coe 2005; Oksanen et al. 2020). Renyi profile values at the scales of 0, 1, 2 and infinity (∞) indicate species richness, the Shannon diversity index, the Simpson diversity index and the Berger-Parker diversity index, respectively. In the present study, the diversity values for the default α scale of 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and infinity (∞) were calculated and plotted against the corresponding Renyi diversity profiles for each studied season.

Using the betapart 1.5.4 package (Baselga et al. 2012), seasonal patterns of beta diversity components for avian species was investigated by analyzing the turnover and nestedness components based on presence absence data and the Sørensen index. Based on this method, observed dissimilarity (β_{SOR}) is partitioned into two additive components, species turnover or replacement (β_{SIM}), and nestedness (β_{SNE}) (Baselga and Orme 2017). The relative diversity was calculated using the following formula (Torre-Cuadros et al. 2007):

$$RDi = \frac{\text{Number of bird species in a family}}{\text{Total number of species}} \times 100$$
Results and Discussion

A total of 102 bird species categorized under 12 orders and 37 families were recorded in the study area, including two near-threatened and one vulnerable bird species (Table 2). The rich diversity in the area could be attributed to varied altitude, aspect and soil conditions that have brought about rich vegetation cover for nesting, roosting, the availability of foraging material and low accessibility to predators (Gabbe et al. 2002; Hu & Cardoso 2009; Jokimäki et al. 2012). The highest number of bird species were recorded from the order Passeriformes (75.5%), followed by Accipitriformes (5.9%). Other earlier studies have also reported the order Passeriformes to be the most dominant order (Bhat and Bhat 2012; Singh et al. 2013; Wani et al. 2013). The diversity of passerine species is high due to their ability to inhibit a variety of habitats and consume an array of food items, such as invertebrates, grains, nuts, floral buds, fruits and nectar (Beresford et al. 2005). Family Muscicapidae was found to be most dominant with 17 species followed by Fringillidae (9 species). Other authors (Wani et al. 2013; Thakur 2010) also found the family Muscicapidae to be dominant. Analysis of the relative diversity (RDi) of bird families revealed that the highest RDi value was (16.7) for the family Muscicapidae (Fig.2). Analysis of data on residential status revealed that out of 102 bird species, 60 were residents, 24 were summer migrants, 3 were winter visitors, 8 were passage migrants and 7 were local altitudinal migrants. The hierarchical cluster analysis based on the residential status was divided into two major clusters with permanent residential species forming one separate cluster, while seasonal migrants collectively form second cluster (Fig. 3). Furthermore, the second cluster is further sub-divided into three sub-clusters with summer and passage migrants forming two separate sub-clusters, while winter and local altitudinal migrants are grouped together into the third sub-cluster (Fig. 3). Further, the relative abundance analysis indicated that 16 species were very common (VC), 27 were common (C), 41 were uncommon (UC) and 18 were occasionally sighted (O) species (Fig. 4). During the study period, the highest numbers of individuals were recorded for spot winged tit (11.2 ± 15.2; mean ± SD) and the lowest for European Roller and Tibetan Blackbird (0.3 ± 0.1; mean ± SD)

Fig.2: Bar graph showing families of birds and their relative diversity
Fig. 3: Dendrogram showing residential status of birds, based on compositional data.

Seasonal diversity:
The Renyi diversity profiles showed that, of all the studied seasons, the summer season had the highest species diversity in terms of all the scaling parameters (α) chosen. On the other hand, the winter season showed the lowest species diversity (fig. 5). A possible reason for the high diversity and richness of birds in summer could be the increased number of migrants flocking to the wildlife sanctuary during the summer for food and breeding. This may be due to the availability of feeding and breeding grounds in the summer, when the flowers and fruit are in bloom, which is unlike in the winter. In winters, the sanctuary remains covered with snow and most species show altitudinal migration to new feeding and breeding grounds in order to escape harsh climatic conditions. Winter migrants move from high elevation breeding grounds to non-breeding sites to find food (Dingle & Drake 2007; Rappole 2013), while inter-altitudinal and inter-continental summer migrants move to higher elevations to breed (Cade & Hoffman 1993; Norbu et al. 2013).

Fig. 4: Bar graph showing residential status (R = resident; SV = summer visitor; WV = winter visitor; PV = passage visitor and LAM = local altitudinal migrant) and relative abundance (VC = very common; C = common, UC = uncommon, and O = occasional) of birds in Rajparian Wildlife Sanctuary.
Fig. 5: Renyi diversity profiles of birds for the studied seasons. The dots denote the diversity value for the seasons; the outer two dashed lines represent the extremes; and the inner pink line represents the median in the data.

Fig. 6: Rarefaction and extrapolation curves of bird species for the studied seasons. A solid line represents the rarefaction curves, a dashed line represents the extrapolation curves, and a shaded area represents the 95% confidence intervals of species richness. The solid symbols represent the reference samples.
Fig. 7: Coverage based rarefaction and extrapolation curves of bird species for the studied seasons

On the basis of individual rarefaction and extrapolation curves, the summer season has the highest species richness, whereas the winter season has the lowest. Also, the studied seasons showed clear asymptotic curves (Fig. 6). However, the coverage-based rarefaction and extrapolation curve revealed that all the studied seasons showed an adequate sampling effort with sample coverage of more than 95% (Fig. 7). The highest numbers of individuals were recorded in summer seasons (30 ± 31; mean ± SD) and lowest in the winter (13 ± 20; mean ± SD).

The overall Sorensen Dissimilarity Index among the studied seasons was high (βSOR=0.27). Furthermore, the nestedness component (βSNE= 0.21) had a significant contribution to the overall dissimilarity compared to the turnover component (βSIM = 0.05), indicating that the overall dissimilarity is more likely a result of richness differences (nestedness) compared with species replacements (turnover) (Fig 8a).

There were also considerable variation in Sorensen dissimilarity between different seasonal pairs, with the lowest dissimilarity found between summer and autumn (βSOR = 0.07) and the highest found between autumn and winter (βSOR = 0.21). In the majority of comparisons, pair-wise dissimilarity was caused by nestedness rather than species turnover (Table 1). Further, the cluster analysis based on the turnover component of dissimilarity (βSIM) revealed that the winter season differs greatly from the rest of the seasons in terms of bird species composition, followed by spring and autumn (Fig. 8b). On the other hand, the cluster analysis based on the nestedness component of dissimilarity (βSNE) revealed winter and spring to be highly dissimilar from the rest of the seasons (Fig. 8c).
Fig. 8 (a-c): Seasonal differences in bird species composition. Showing the partitioning of total dissimilarity (β_{SOR} – black solid line) into species turnover (β_{SIM} – dashed line) and nestedness (β_{SNE} – gray solid line) components (a), average clustering of β_{SIM} (b) and β_{SNE} (c) components of species dissimilarity among the studied seasons.
Table 1: Pair-wise Sorenson dissimilarity (β_{SOR}) along with the turnover (β_{SIM}) and nestedness (β_{SNE}) components.

	Spring	Summer	Autumn
Summer	0.19277108		
Autumn	0.15000000	0.07368421	
Winter	0.12500000	0.29113924	0.21052632

	Spring	Summer	Autumn
Summer	0.01470588		
Autumn	0.00000000	0.04347826	
Winter	0.06666667	0.06666667	0.00000000

	Spring	Summer	Autumn
Summer	0.17806520		
Autumn	0.15000000	0.03020595	
Winter	0.05833333	0.22447257	0.21052632

Table 2: Systematic list and status of birds recorded from Rajparian Wildlife Sanctuary, Kashmir

S. No	Common name	Scientific name	Status	Distribution	IUCN status
01	Himalayan woodpecker	Dendrocopos himalayensis	R	VC	LC
02	Brown fronted woodpecker	Dendrocopos auriceps	R	C	LC
03	Scaly bellied woodpecker	Picus squamatus	R	C	LC
	Order: Piciformes				
04	White wagtail	Motacilla alba	S	C	LC
05	Yellow wagtail	Motacilla flava	P	C	LC
06	Grey wagtail	Motacilla cinerea	R	C	LC
07	Citrine wagtail	Motacilla citreola	S	UC	LC
08	Rosy Pipit	Anthus roseatus	R	C	LC
09	Tree pipit	Anthus trivialis	R	C	LC
	Order: Passeriformes				
10	Long tailed minivet	Pericrocotus ethologus	S	C	LC
11	Himalayan bulbul	Pycnonotus leucogenys	R	VC	LC
12	Black Bulbul	Hypsipetes leucocephalus	R	UC	LC
Family: Laniidae					
-----------------	-----------------				
13	Long tailed shrike	Lanius schach	S	VC	LC
Family: Turdidae					
14	Mistle thrush	Turdus viscivorus	R	C	LC
15	Tibetan Blackbird	Turdus maximus	R	O	LC
16	Chestnut Thrush	Turdus rubrocanaus	R	C	LC
17	Black-throated Thrush	Turdus atrogularis	W	UC	LC
18	Alpine Thrush	Zoothera mollissima	R	O	LC
19	Tickell’s Thrush	Turdus unicolor	S	C	LC
Family: Leiothrichidae					
20	Variegated laughing Thrush	Garrulax variegates	LAM	VC	LC
21	Streaked laughing Thrush	Garrulax lineatus	LAM	VC	LC
Family: Paridae					
22	Spot winged tit	Parus melanolophus	R	C	LC
23	Rufous-vented Tit	Parus rubidiventris	R	C	LC
24	Cinereous Tit	Parus cinererus	S	C	LC
25	Green backed tit	Parus monticolus	LAM	C	LC
Family: Certhiidae					
26	Bar tailed tree creeper	Cerithia himalayana	LAM	C	LC
Family: Troglodytidae					
27	Winter wren	Troglodytes troglodytes	LAM	UC	LC
Family: Emberizidae					
28	Rock bunting	Emberiza cia	R	C	LC
Family: Fringillidae					
29	Plain mountain Finch	Leucosticte nemoricola	R	C	LC
30	Spectacled Finch	Callacanthis burtoni	R	O	LC
31	Brambling	Fringilla montifringilla	W	C	LC
32	Common Rosefinch	Carpodacus erythrinus	P	UC	LC
33	Black and yellow Grosbeak	Mycerobas icterioides	R	UC	LC
34	Orange Bullfinch	Pyrrhula aurantiaca	R	UC	LC
35	Yellow-breasted Greenfinch	Chloris spinoides	S	UC	LC
36	European Goldfinch	Carduelis carduelis	R	UC	LC
37	Fire-fronted Serin	Serinus pusillus	R	UC	LC
Family: Passeridae					
38	Russet Sparrow	Passer rutilans	R	C	LC
39	Common Sparrow	Passer domesticus	R	VC	LC
Family: Sturnidae					
40	Common Myna	Acridootheres tristis	R	VC	LC
41	Common Starling	Sturnus vulgaris	S	C	LC
Family: Oriolidae					
42	Golden oriole	Oriolus oriolus	S	C	LC
Family: Corvidae					
43	Large billed Crow	Corvus macrorhynchos	R	VC	LC
44	Yellow billed blue Magpie	Urocissa flavirostris	R	VC	LC
45	Eurasian Jackdaw	Corvus monedula	R	VC	LC
46	Large Spotted nut cracker	Nucifraga multipunctata	R	C	LC
No.	Species	Genus	Status	IUCN	Order
-----	--	------------------------------	--------	------	-----------------
47	House Crow	*Corvus splendens*	R	VC	Coraciiformes
48	Red-billed Chough	*Pyrrhocorax pyrrhocorax*	R	O	Coraciiformes
49	Blue whistling-Thrush	*Myiophonus caeruleus*	R	VC	Coraciiformes
50	Siberian Stonechat	*Saxicola maurus*	P	UC	Coraciiformes
51	Himalayan Bluetail	*Tarsiger rufilatus*	R	UC	Coraciiformes
52	Little Forktail	*Enicurus scouleri*	LAM	UC	Coraciiformes
53	Himalayan Rubythroat	*Calliope pectoralis*	S	UC	Coraciiformes
54	Spotted Forktail	*Enicurus maculates*	LAM	C	Coraciiformes
55	Blue-capped Redstart	*Phoenicurus coeruleocephala*	R	UC	Coraciiformes
56	Blue-fronted Redstart	*Phoenicurus frontalis*	W	O	Coraciiformes
57	Black Redstart	*Phoenicurus ochruros*	P	UC	Coraciiformes
58	Chestnut-bellied rock Thrush	*Monticola rufiventris*	S	O	Coraciiformes
59	Plumbeous water Redstart	*Rhyacornis fuliginosa*	R	VC	Coraciiformes
60	White-capped Redstart	*Chaimarrornis leucocephalus*	R	VC	Coraciiformes
61	Blue rock Thrush	*Monticola solitaries*	R	O	Coraciiformes
62	Grey Bushchat	*Saxicola ferreus*	R	C	Coraciiformes
63	Ultramarine Flycatcher	*Ficedula superciliaris*	R	UC	Coraciiformes
64	Kashmir Flycatcher	*Ficedula subrubra*	S	O	Coraciiformes
65	Dark-sided Flycatcher	*Muscicapa sibirica*	S	UC	Coraciiformes
66	Brown Dipper	*Cinclus pallasii*	R	VC	Coraciiformes
67	Black-throated Accentor	*Prunella atrogularis*	P	UC	Coraciiformes
68	Rufous-breasted Accentor	*Prunella strophiata*	S	UC	Coraciiformes
69	Kashmir Nuthatch	*Sitta cashmirensis*	R	UC	Coraciiformes
70	White-cheeked Nuthatch	*Sitta leucopsis*	R	UC	Coraciiformes
71	Goldcrest	*Regulus regulus*	P	UC	Coraciiformes
72	Asian paradise Flycatcher	*Terpsiphone paradisi*	S	C	Coraciiformes
73	Ashy Drongo	*Dicurus leucopus*	S	C	Coraciiformes
74	Lemon-rumped Warbler	*Phylloscopus chloronotus*	S	C	Coraciiformes
75	Hume’s Warbler	*Phylloscopus humei*	S	C	Coraciiformes
76	Common Chiffchaff	*Phylloscopus collybita*	P	UC	Coraciiformes
77	Grey-hooded Warbler	*Phylloscopus xanthoschistos*	R	UC	Coraciiformes
78	Western Crowned Warbler	*Phylloscopus occipitalis*	S	UC	Coraciiformes
79	Wallcreeper	*Tichodroma muraria*	R	UC	Coraciiformes
80	Clamorous Reed Warbler	*Acrocephalus stentoreus*	S	UC	Coraciiformes

Order: *Coraciiformes*
Family: Alcedinidae				
81 Common Kingfisher	*Alcedo atthis*	R	C	LC
82 White-throated Kingfisher	*Halcyon smyrnensis*	R	UC	LC

Order: Strigiformes

Family: Strigidae				
83 Tawny Owl	*Strix aluco*	R	UC	LC
84 Barn Owl	*Tyto alba*	R	UC	LC

Order: Columbiformes

Family: Columbidae				
85 Common Pigeon	*Columba livia*	R	VC	LC
86 Oriental Turtle-dove	*Streptopelia orientalis*	R	VC	LC
87 Eurasian Collared-dove	*Streptopelia decaocto*	S	UC	LC
88 Snow Pigeon	*Columba leuconota*	R	O	LC

Order: Accipitridae

Family: Accipitridae				
89 Himalayan Vulture	*Gyps himalayensis*	R	UC	NT
90 Common Kestrel	*Falco tinnunculus*	S	O	LC
91 Bearded Vulture	*Gypaetus barbatus*	R	O	NT
92 Eurasian Sparrowhawk	*Accipiter nisus*	R	UC	LC
93 Golden Eagle	*Aquila chrysaetos*	R	O	LC
94 Black-eared Kite	*Milvus migrans*	R	UN	LC

Order: Pelecaniformes

Family: Ardeidae				
95 Grey Heron	*Ardea cinerea*	R	UC	LC

Order: Galliformes

Family Phasianidae				
96 Chukar Partridge	*Alectoris chukar*	R	UC	LC
97 Himalayan Monal	*Lophophorus impejanus*	R	O	LC
98 Koklass Pheasant	*Pucrasia macrolopha*	R	O	LC

Order: Charadriiformes

Family: Scolopacidae				
99 Solitary Snipe	*Gallinago solitaria*	P	O	LC

Order: Bucerotiformes

Family: Upupidae				
100 Common Hoopoe	*Upupa epops*	S	VC	LC

Order: Falconiformes

Family: Falconidae				
101 Peregrine Falcon	*Falco peregrines*	R	UC	LC

Order: Coraciiformes

Family: Coraciidae				
102 European Roller	*Coracias garrulus*	S	O	LC

R = resident; SV = summer visitor; WV = winter visitor; PV = passage visitor and LAM = local altitudinal migrant, VC = very common; C = common, UC = uncommon, and O = occasional, LC = least concerned, VU = vulnerable, NT = near threatened
Conclusion

From the present study, it can be concluded that the Rajparian Wildlife Sanctuary is home to several avian species. A complex vegetation structure in this area probably contributes to the immense diversity and richness of avifauna by providing shelter, suitable niches, microhabitats and appropriate foraging substrates. The richness and diversity of species vary significantly between seasons. Due to the presence of many summer migrants and the existence of sufficient habitat conditions that allow resident bird species to thrive. Species diversity and richness remained high during the summer seasons. Winters, on the other hand, saw a decline in the diversity and abundance of birds due to heavy snowfall, which forced many species to migrate to other feeding and breeding grounds, reducing bird diversity and abundance.

Acknowledgements

The authors highly acknowledge all the persons who helped to carry out the field work especially Tariq Ahmad Bhat. We are thankful to the Department of Wildlife protection Govt. of Jammu and Kashmir for providing necessary permission to carry out this work.

Ethics approval and consent to participate

All requisite information and data were collected without disturbing the birds and their habitat. Photographic recordings were made using a telephoto lens.

Declaration of competing interests

The authors declare that they have no competing interests.

Abbreviations

IUCN = International Union for Conservation of Nature, R = resident; SV = summer visitor; WV = winter visitor; PV = passage visitor and LAM = local altitudinal migrant, HSD = Honest significant differences

References

Aggarwal, S. A. M. R. I. T. I., Sahi, D. N., & Wani, A. (2008). Feeding guilds of avifauna of Nandni Wildlife Sanctuary, Jammu (Jammu and Kashmir). The Ecoscan, 2(2), 157-160.

Ali, S. 2002. The book of Indian birds. Oxford University Press. New Delhi, 326 pp.

Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21(12), 1223-1232.

Baselga, A., Orme, D., Villéger, S., De Bortoli, J., Leprieur, F., Logez, M., & Henriques-Silva, R. (2017). Partitioning beta diversity into turnover and nestedness components. Package betapart, Version, 1-4.

Beresford, P., Barker, F. K., Ryan, P., & Crowe, T. M. (2005). African endemics span the tree of songbirds (Passeri): molecular systematics of several evolutionary ‘enigmas’. Proceedings of the Royal Society B: Biological Sciences, 272(1565), 849-858.

Bhat, B. A., & Bhat, G. A. (2012). Distribution of avifauna in Yusmarg forest-Jammu and Kashmir, India. International Journal of Current Research, 4(5), 52a.

Bibby, C. J., Burgess, N. D., Hillis, D. M., Hill, D. A., & Mustoe, S. (2000). Bird census techniques. Elsevier.

Bilgrami, K. S. (1995). Concept and conservation of biodiversity. Taxonomy and Biodiversity, 1-8.

Cade, B. S., & Hoffman, R. W. (1993). Differential migration of blue grouse in Colorado. The Auk, 110(1), 70-77.
DeFries, R., Hansen, A., Turner, B. L., Reid, R., & Liu, J. (2007). Land use change around protected areas: management to balance human needs and ecological function. *Ecological applications, 17*(4), 1031-1038.

Dingle, H., & Drake, V. A. (2007). What is migration?. *Bioscience, 57*(2), 113-121.

Gabbe, A. P., Robinson, S. K., & Brawn, J. D. (2002). Tree-species preferences of foraging insectivorous birds: implications for floodplain forest restoration. *Conservation Biology, 16*(2), 462-470.

Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven, M., & Gibbons, D. W. (2003). Using birds as indicators of biodiversity. *Ornis hungarica, 12*(13), 11-24.

Grimmet R, Inskipp C, Inskipp T. Birds of the Indian Subcontinent. 2nd edn Oxford UniversityPress. New Delhi, India. 2011.

Heal, G. (2000). Valuing ecosystem services. *Ecosystems, 24*-30.

Hu, Y., & Cardoso, G. C. (2009). Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas?. *Behavioral Ecology, 20*(6), 1268-1273.

Islam, M. Z., & Rahmani, A. R. (2004). Important Bird Areas in India: priority sites for conservation. *Indian Bird Conservation Network: Bombay Natural History Society and Birdlife International (UK), 1133.*

Joshi, K., & Bhatt, D. (2013). Avian species distribution in different elevation zone forest (Sal, Pine Mixed and Oak) in Nainital District of Uttarakhand, India. *Russian journal of ecology, 44*(1), 71-79.

Kait, R., Manhas, R., Aggrwal, S., & Sahi, D. N. (2014). Birds of Srinagar City, Jammu and Kashmir, India. *International journal of biodiversity and conservation, 6*(3), 217-221.

Kindt, R., & Coe, R. (2005). *Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies.* World Agroforestry Centre, 2005.

Legendre, P., & Legendre, L. (1998). Numerical ecology, Elsevier Science. *Amsterdam, Netherlands.*[Google Scholar].

MacKinnon, J. R., & Phillipps, K. (1993). *A field guide to the birds of Borneo, Sumatra, Java, and Bali, the Greater Sunda Islands.* Oxford University Press.

Nagy, G. G., Ladányi, M., Arany, I., Aszalós, R., & Czúcz, B. (2017). Birds and plants: Comparing biodiversity indicators in eight lowland agricultural mosaic landscapes in Hungary. *Ecological Indicators, 73,* 566-573.

Norbu, N., Wikelski, M. C., Wilcove, D. S., Partecke, J., Tenzin, U., & Tempa, T. (2013). Partial altitudinal migration of a Himalayan forest pheasant. *PLoS One, 8*(4), e60979.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-6. 2019.
Pfister, O. T. T. O. (2001). Birds recorded during visits to Ladakh, India, from 1994 to 1997. *Forktail, 81*-90.

Rahmani, A.R., Suhail, I., Chandan, P., Ahmad, K. and Zarri, A.A. (2013). Threatened birds of Jammu & Kashmir. Indian Bird Conservation Network, Bombay Natural History Society, Royal Society for the Protection of Birds, and Birdlife International. Oxford University Press.

Rappole, J. (2013). *The avian migrant*. Columbia University Press.

Sharma, N., & Kichloo, M. A. (2015). Avian habitat-use and dietary guilds in different forest communities of Bhaderwah, Jammu and Kashmir, India. *International Journal of Recent Scientific Research, 6*(7), 5145-5149.

Sharma, N., & SohilÂ, A. (2017). Bronzed Drongo Dicrurus aenea and Hair-crested Drongo Dicrurus hottentottus from Jammu & Kashmir, India. *Indian BIRDS, 13*(6), 168.

Singh, A., & Laura, J. S. (2013). Avifauna Species Diversity and their Abundance in Tilyar Lake, Rohtak, Haryana (India). *Bulletin of Environment. Pharmacol. Life Sci, 3*(1), 180-185.

Sodhi, N. S., Sekercioglu, C. H., Barlow, J., & Robinson, S. K. (2011). *Conservation of tropical birds*. John Wiley & Sons.

Thakur, M. L., Mattu, V. K., Mattu, N., Sharma, V. N., Bhardwaj, R., & Thakur, V. (2010). Bird Diversity in Sarkaghat Valley, Mandi (Himachal Pradesh), India. *Asian Journal of Experimental Biological Sciences, 1*(4), 940-950.

Torre-Cuadros, L., De Los Ángeles, M., Herrando-Pérez, S., & Young, K. R. (2007). Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. *Biodiversity and Conservation, 16*(10), 2965-2988.

Kattan, G. H., & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. *Global Ecology and Biogeography, 13*(5), 451-458.

Wenny, D. G., Devault, T. L., Johnson, M. D., Kelly, D., Sekercioglu, C. H., Tomback, D. F., & Whelan, C. J. (2011). The need to quantify ecosystem services provided by birds. *The auk, 128*(1), 1-14.

Whelan, C. J., Wenny, D. G., & Marquis, R. J. (2008). Ecosystem services provided by birds. *Annals of the New York academy of sciences, 1134*(1), 25-60.