You Can’t Teach Speed: Sprinters Falsify the Deliberate Practice Model of Expertise

Many scientists agree that expertise requires both innate talent and proper training. Nevertheless, the highly influential deliberate practice model (DPM) of expertise holds that talent does not exist or makes a negligible contribution to performance. It predicts that initial performance will be unrelated to achieving expertise and that 10 years of deliberate practice is necessary. We tested these predictions in the domain of sprinting. In Studies 1 and 2 we reviewed biographies of 15 Olympic champions and the 20 fastest American men in U.S. history. In all documented cases, sprinters were exceptional prior to initiating training, and most reached world class status rapidly (Study 1 median = 3 years; Study 2 = 7.5). In Study 3 we surveyed U.S. national collegiate championships qualifiers in sprints and throws. Sprinters recalled being faster as youths than did throwers, whereas throwers recalled greater strength and throwing ability. Sprinters’ best performances in their first season of high school, generally the onset of formal training, were consistently faster than 95-99% of their peers. Collectively, these results falsify the DPM for sprinting. Because speed is foundational for many sports, they challenge the DPM generally.
You Can’t Teach Speed: Sprinters Falsify the Deliberate Practice Model of Expertise

Authors and Affiliations

Michael P. Lombardo

Robert O. Deaner

1 Department of Biology, Grand Valley State University, Allendale, Michigan, United States of America

2 Department of Psychology, Grand Valley State University, Allendale, Michigan, United States of America
Abstract

Many scientists agree that expertise requires both innate talent and proper training. Nevertheless, the highly influential deliberate practice model (DPM) of expertise holds that talent does not exist or makes a negligible contribution to performance. It predicts that initial performance will be unrelated to achieving expertise and that 10 years of deliberate practice is necessary. We tested these predictions in the domain of sprinting. In Studies 1 and 2 we reviewed biographies of 15 Olympic champions and the 20 fastest American men in U.S. history. In all documented cases, sprinters were exceptional prior to initiating training, and most reached world class status rapidly (Study 1 median = 3 years; Study 2 = 7.5). In Study 3 we surveyed U.S. national collegiate championships qualifiers in sprints (n = 20) and throws (n = 44). Sprinters recalled being faster as youths than did throwers, whereas throwers recalled greater strength and throwing ability. Sprinters’ best performances in their first season of high school, generally the onset of formal training, were consistently faster than 95-99% of their peers. Collectively, these results falsify the DPM for sprinting. Because speed is foundational for many sports, they challenge the DPM generally.
“I can make you faster, but I can’t make you fast.”

Jerry Baltes, Head Coach, Grand Valley State University cross-country and track and field

Introduction

A major scientific goal is identifying the factors that contribute to expertise or superior performance in domains such as dancing, decision-based games (e.g., chess), music, professional decision-making (e.g., medical diagnosis), and sports.

Many contemporary scientists hold that the phenotypic expression of traits, including those associated with expertise, reflect an interaction between genes (i.e., nature) and experience (i.e., nurture)[1,2]. However, some hold that experience might, by itself, be sufficient to account for expertise [3-6]. These scholars have developed and endorsed a deliberate practice model (DPM) of expertise which emphasizes the crucial role of deliberate practice, defined as training that is structured, attentive, maximally effortful, and subject to immediate feedback from a coach [3-6]. The DPM, at least the strong version addressed here, holds that consistent long period of deliberate practice (about 10 years or 10,000 hours) is necessary and sufficient for any healthy individual to achieve expert performance in any domain [3-5]. The only acknowledged exceptions are for domains where success is dependent on body size and/or height, such as basketball [7,8]. Representative claims by DPM advocates are provided in Table S1.

The DPM has been enormously successful in stimulating research on the mechanisms (e.g., physiological, motor, perceptual, cognitive) and the kinds of training (e.g., social or solitary, leisurely or concentrated) that underlie expert performance [9-12]. This impact is revealed by the fact that as of 10 April 2014, the foundational DPM paper by Ericsson, Krampe, and Tesch-Römer [3] has been cited over 4200 times on Google Scholar. The DPM’s influence extends beyond academia, as it has served as the basis for several popular trade books [13-15].

Despite the DPM’s popularity, there are strong theoretical and empirical reasons to doubt
its fundamental claim that deliberate practice is necessary and sufficient for achieving expertise.

First, from a theoretical perspective, the assumptions of the DPM are inconsistent with mounting literature documenting the influence of an individual’s genotype on its behavior [16,17] and physiological performance [18-20]. In addition, the DPM may not adequately explain or predict the development of expert performance in motor dominated domains because of its emphasis on cognitive mechanisms [21]. Moreover, evolutionary hypotheses for the existence of display or “show-off” expertise domains hold that, in large part, expert performances are impressive precisely because they function to signal heritable genetic variation [22-26].

Second, empirical work indicates that foundational abilities for some expertise domains have a heritable genetic basis [27,28]. For instance, working memory capacity is highly heritable [29], and, even when the amount of deliberate practice is controlled, it predicts performance in poker [30] and piano playing [31]. Similarly, maximal oxygen consumption (VO$_2$ max) is crucial for elite performance in endurance sports, and both untrained VO$_2$ max and VO$_2$ max responsiveness are highly heritable [32,33].

Third, scientists have noted weaknesses in the behavioral evidence that directly addresses the DPM’s claims The DPM is based on correlational studies showing that achievement is strongly correlated with accumulated deliberate practice. One problem with the DPM is that it assumes that deliberate practice drives the correlation, yet it is possible that innate ability, or talent, is causal [34]. In other words, individuals that experience early success as a result of superior innate ability typically become more motivated to train [6]. For example, in the domain of music expertise, Ruthsatz et al. [35] reanalyzed the data in Ericsson et al. [3] and showed that, even as young children, the violinists who would eventually accumulate a large amount of deliberate practice (about 10,000 hours on average) and become elite were already more likely than others to win competitions despite training for similar durations as those who would not become not as accomplished.
A fourth problem with the DPM is its claim that deliberate practice explains a very high proportion of the variance in the attainment of expertise; the empirical data contradict this [36]. For example, deliberate practice explained only 28% of performance variation among dart players [37]. Among chess players, deliberate practice explained only 34% of performance variation. And in fact, some chess players did not reach the master level despite 25,000 hr of practice, whereas others reached this level with only 3,000 hr of practice [38]. Similarly, a study of 459 elite Australian athletes from 34 different sports demonstrated that the mean period of development from novice to elite athlete was 7.5 ± 4.1 (SD) years, and 69% of athletes in individual sports achieved elite status in less than five years [39].

Although these appear to be intractable empirical problems for the DPM’s strong claims, DPM proponents have presented counter-arguments [3,5,6,40]. For example, Ericsson et al. [5] and Ericsson [40] disputed the heritability of VO$_2$ max and other physiological factors relevant to sports performance [18,19,28,32,33]. In addition, Howe et al. [6] noted that modest correlations between deliberate practice and achievement might reflect unequal quality of instruction or effectiveness of practice strategy. In sum, then, there remains uncertainty regarding the validity of the DPM.

Here we provide strong tests of two critical DPM predictions in the domain of sprinting (e.g., footraces over short distances such as 100 m). First, we tested the DPM’s prediction that initial performance in a domain (i.e., prior to deliberate practice) and final performance in the domain will be unrelated. Although there has been much discussion about prodigies, since their occurrence would falsify the DPM, it is impossible to assess whether an individual is exceptional prior to training in most domains [3,6]. For example, it makes little sense to ask, much less measure, how gifted a child is at playing chess before they have become knowledgeable about the rules of the game. In the domain of sprinting, however, it is possible to assess performance prior to training. This is because nearly all children run in the course of normal play. Thus, a child who...
is an exceptionally fast runner can readily assess their ability relative to their peers, as can adult
observers. The DPM implies that initial performance in a domain represents random error and
that only formal training determines an individual’s ultimate level of performance. In contrast, an
interactive “talent matters” framework predicts that, as children, most elite sprinters will have
been fast relative to their peers and that these individuals will have performed exceptionally well
as soon as they began formal competition and training.

Second, we tested the DPM’s prediction that roughly 10 years of deliberate practice are
required to reach expert status. Although some studies indicate that some athletes reach expert
status with substantially less than 10 years of training [39], several others are consistent with the
“10 year rule” [11,41-46]. In addition, a limitation of most studies is that there is some degree of
subjectivity in the rating of expertise. For example, factors related to team selection (e.g., a coach
preferring older players [47]) may mean that a soccer or field hockey player may not play for his
or her national team (and thus be classified as an expert) until his or her mid-20s despite having
the ability to do so several years earlier. Because sprinting expertise is based on objective
performances, it provides an unusually strong test of the DPM’s main prediction that 10 years or
10,000 hr of deliberate practice are required to achieve expert performance.

We tested the two key predictions of the DPM with three complementary studies. In Study
1 we reviewed the biographies of male and female Olympic sprint champions. In Study 2 we
reviewed the biographies of the 20 fastest male 100 m runners in U.S. history. In Study 3 we
surveyed male and female sprinters who qualified for the 2012 U.S. collegiate national
championships. To our knowledge, these are the first studies to address the DPM in sprinting.

Study 1: Biographies of Olympic champions

We examined the biographies of Olympic champions because becoming an Olympic champion
shows unambiguous evidence of expertise. Moreover, because there is often great interest in
sprint champions, biographies have been written about many of them. These generally include
detailed information on the sprinter’s athletic development, making them ideal for addressing the
predictions of interest.

Although our main focus was testing the two predictions discussed above, we also
explored whether champion sprinters had participated in organized sports prior to beginning their
sprinting career. This was important because it could be argued that exceptional sprinting
performance prior to formal sprint training reflects skill transfer from other sports [48,49].

Methods

We sought English-language biographies, including autobiographies, published in print of male
and female gold medalists in the 100 m or 200 m sprints from the 1896 to 2012 Olympic Games.
We were able to obtain at least one biography for 15 sprinters (8 women) and obtained two or
more biographies for six sprinters. Two of the champion sprinters, Ben Johnson in 1988 and
Marion Jones in 2000, were later stripped of their gold medals due to their use of performance
enhancing drugs (PEDs). We retained these sprinters in the sample because the available
information indicated that they reached world class status before they began using PEDs.
Furthermore, the use of PEDs may be common among world class sprinters, even those who are
never sanctioned [50,51].

From the biographies, we recorded any evaluation of the sprinter being exceptional or
unexceptional relative to their peers. We recorded who made the evaluation, the sprinter, a
teacher, or a coach, or another individual. We recorded the sprinter’s age when the evaluation
occurred and the age when they began formal training with a coach. We assumed that formal
training with a coach would indicate the onset of training activities that would best correspond
with “deliberate practice.” In some cases, the sprinter’s age at the time of first evaluation or first
formal training was not mentioned, but their grade in school was, and this allowed us to estimate
their age. For instance, the first year of high school was assumed to indicate being age 14 years.
In cases where there was no explicit mention of the initiation of formal training, we assumed this
occurred at the onset of formal competition, usually in the first year of high school. We also noted any mention of a sprinter’s formal participation, or not, in an organized sport other than track and field prior to beginning formal sprint training. We also recorded the sprinter’s age when they first represented their country in the senior (i.e., open to all ages) World Championships or Olympic Games. We considered national representation indicative of achieving world class or expert status. These are highly selective, conservative measures of expertise because these championships do not occur every year and individuals who have reached world class performance levels may not qualify for them due to injury or other issues.

Results and Discussion

All 15 Olympic champion sprinters were recognized as being exceptionally fast relative to their peers before or coincident with their initiation of formal training. There was no indication in any biography that any sprinter was initially unexceptional. We condensed key information in Table 1 and summarized relevant passages from each biography in Table S2.

The biographies reported that adults (e.g., teachers, coaches) initially recognized the superior sprinting ability of nine sprinters (five women) and encouraged them to begin formal sprint training or competition. For example, the superior abilities of Wilma Rudolph, Helen Stephens, and Wyomia Tyus were discovered while they played basketball (Table S2), whereas Usain Bolt [52] and Bob Hayes [53] were discovered while they played cricket and baseball, respectively. In five cases (two women), sprinters reported recognizing their superior sprinting ability beginning in childhood. For example, Marion Jones reported that she was “always fast” and excelled at multiple sports [54] and Tommie Smith reported that he excelled at all sports as a schoolboy [55].

Sprinters required one to seven years of training to reach world class status (men: median = 4 years, mean = 4.6 ± 2.0 years, n = 7; women: median = 2.5 years, mean = 3.1 ± 2.4 years, n = 8; Table 1, Fig. 1). In fact, eight sprinters qualified for the Olympics as teenagers (Table S2).
For 10 of 15 sprinters there was no evidence that they had participated in organized sports of any kind prior to the recognition of their superior sprinting ability or their initiation of deliberate sprint practice.

The results of this study clearly contradict the DPM: sprinters were consistently fast prior to formal training, achieved world class status in much less than ten years, and, in most cases, their exceptional development cannot be attributed to skill transfer. Nonetheless, this study has two possible limitations. First, the sample size of 15 is modest. Second, many of the individuals became Olympic champions several decades ago. Because world class sprint performances have continued to improve [56], this raises the question of whether our results would differ if we used a more contemporary sample of sprinters. Study 2 was designed to address these limitations.

Study 2: Biographies of fastest 20 U. S. males of all time

In Study 2, we examined the development of the 20 fastest male U.S. 100 m sprinters. This is an excellent sample because the U.S. has been one of the strongest sprinting countries since the onset of modern international competition and record keeping [57]. This is revealed by the fact that 14 of 20 of these men won at least one individual World Championship or Olympic sprint medal (100 m, 200 m, or 60 m indoors); four of the others have won at least one relay medal at the World or Olympic championships. Moreover, all of these men achieved performances that meet contemporary standards of world class performance, including the 2012 Olympic A Qualifying Standard (i.e., 10.18 s automatically qualifying them to participate in the Olympic Games; www.usatf.org).

We again examined whether these sprinters were exceptional prior to initiating formal training and how long it took for them to reach world class status. We also searched for evidence indicating that these men were unexceptional relative to their peers prior to their beginning formal sprint training.
In addition, we documented the trajectories of performance improvement, particularly the percentage of improvement after age 19. The DPM makes no quantitative claim regarding the magnitude of improvement among regularly training adult athletes. However, the “talent matters” framework implies that once athletes have reached physical maturity and done some formal training, subsequent improvements will be relatively modest.
Methods

We used methods similar to those in Study 1 with the following two caveats. First, with the exception of Carl Lewis, book length biographies were not available for these athletes. We thus obtained information from magazines, newspapers, and internet sources. Second, we classified athletes as first reaching world class status upon first meeting either of the following criteria: (1) representing the U.S. in international competition (e.g., Olympic Games, World Championships, Pan American Games in an individual sprint event or as a member of a relay team) or (2) participating in the U.S. Olympic Trials which requires the athlete to meet Olympic A or B standards to qualify to compete at the Trials. Four of these athletes (Gatlin, Mitchell, Montgomery, Williams) were sanctioned for using PEDs at least once in their careers. Eight of the 20 sprinters (Bailey, Crawford, Dix, Gatlin, Gay, Padgett, Patton, Williams) competed in 2012 when we finished gathering data for this study. One athlete, Carl Lewis, was also included in Study 1.

We obtained information on athletes’ best performance at the age 19 from U. S. A. Track and Field (www.usatf.org), International Association of Athletics Federation (www.iaaf.org), or track and field historian Walter Murphy (pers. comm., 3 April 2011). We choose age 19 as a convenient cut-off age for comparisons between early and life-time fastest sprint performances because IAAF defines a Junior athlete as one who is 19 years of age or younger (www.iaaf.org). We obtained lifetime personal best performances from U. S. A. Track and Field (www.usatf.org). For these best performances, we only counted times that were legal (i.e., not wind-aided, wind less than 2 m per second).

In order to provide a more comprehensive picture of improvement, we plotted yearly best performances for the fastest 10 sprinters in this sample and plotted them as a function of age. We obtained data (though 31 December 2013) from the International Association of Athletics Federation (www.iaaf.org) and again only included legal times.
Results and Discussion

We were able to obtain information regarding the development of 12 of 20 sprinters, and these data are summarized in Table 2. All 12 were recognized as exceptionally fast relative to their peers before or coincident with their initiation of formal training. There was no indication that any sprinter was initially unexceptional.

In nine cases, adults reportedly first recognized a sprinter’s talent. Leroy Burrell [58] and Bernard Williams [59] were discovered while they played baseball and basketball, respectively, whereas track coaches identified the superior abilities of the other seven. In the cases of Carl Lewis and Walter Dix, their parents were the track coaches [60,61].

Eight of the 12 sprinters for whom relevant data were available required less than 10 years of deliberate practice to achieve world class status (median = 7.5 years; mean = 8.7 ± 3.8; Table 2).

Fastest 100 m times at age 19 were available for 19 of the sprinters (Table 2). They showed only modest improvement between their fastest time at age 19 and their personal record (mean improvement = 3.3 ± 1.5%; Table 2). They typically achieved their fastest time in their mid-20s (median = 24.8 years, 25.2 ± 2.6 years; Table 2).

The trajectories of 100 m performance improvement as a function of age are displayed in Figure S1. These show, both individually and collectively, that sprinters’ abilities generally improve from their late teens until their mid-twenties and then gradually decline. Presumably, the improvement generally reflects physical maturation and training and the decline reflects senescence. These trajectories must also be affected by other factors, such as motivation, injuries, racing conditions, and the use of performance enhancing drugs.

One concern about Study 1 and Study 2 is that 10 years might not have been necessary to achieve expertise for many sprinters because PEDS accelerated their development. This issue warrants consideration, but, for several reasons, the use of PEDs cannot provide a genuine
defense for the DPM. First, some sprinters in Study 1 performed before the PEDS believed to
substantially help sprinters (e.g., anabolic steroids) would have been available to them. It is
thought that weightlifters and bodybuilders in East Germany, the USSR, and the USA first used
anabolic steroids in the 1950s [62,63]. Anabolic steroids did not become widely used by track and
field athletes until after the 1960 Olympics [63]. Thus, PEDs seem unable to explain the rapid
development of Jesse Owens, Helen Stephens, Wilma Rudolph, and Bob Hayes. Second, the
biographies of Ben Johnson and Marion Jones indicated they began using PEDs after they had
achieved world class performances. These athletes and their coaches acknowledged that PEDs
allowed them to run faster, but stated that the gains, although certainly meaningful in allowing
them to beat their competitors, were proportionally modest. At the 1989 Canada Commission of
Inquiry into the Use of Drugs and Banned Practices Intended to Increase Athletic Performance,
Ben Johnson’s coach, Charlie Francis, testified, “It’s pretty clear that steroids are worth
approximately a meter [in the 100 meters] at the highest levels. He [Ben Johnson] could decide to
set up his starting blocks at the same line as all the other competitors, or set them up a meter
behind them all” [64]. A one meter benefit from steroid use is equivalent to 0.1 s in a 10.0 s 100
m sprint. Similarly, recent admissions by Tim Montgomery (see Table 2) indicate that he reached
world class status prior to using PEDs and that the performance benefits were proportionally
modest, roughly 2-3% [65]. Thus, PEDs seem unable to provide a plausible explanation for the
rapid attainment of world class status by these sprinters.

The results of Studies 1 and 2 contradict the DPM’s predictions, but they have two
plausible limitations with regards to initial performance. First, perhaps the initially exceptional
running of elite sprinters does not represent sprinting talent specifically. For example, a child
with more overall athletic experience than its peers, or one who physically matures earlier, might
be exceptional in almost all areas, and this early success could be a precondition for later
pursuing and excelling in various sports. Second, perhaps sprinters desire to portray themselves as unusually talented and therefore provide false accounts of their abilities. Study 3 was designed to address these limitations.

Study 3: Surveys of collegiate sprinters

In Study 3, we recruited individual sprint qualifiers for the 2012 National Collegiate Athletics Association (NCAA) national championships to complete an online survey. We asked sprinters about their speed relative to their peers as children and adolescents. To address the specificity of their athletic ability, we also recruited a control group, collegiate throwers (e.g., shot put, discus, javelin) who qualified for these meets. The “talent matters” framework predicts that sprinters generally will recall being faster than their peers as children and adolescents than will the throwers. To further address specificity, we also asked about physical strength and overhand throwing ability. We predicted that throwers would recall being stronger and having better overhand throwing ability as youths than would sprinters.

The surveys also allowed us to obtain systematic data on sprinters’ performances in their first season of high school competition, which was generally coincident with their onset of formal training. Again, the “talent matters” framework predicts that sprinters will be much faster than most of their peers even at this early stage in their careers, whereas the DPM does not.

Methods

Ethics Statement

The Chair of the Human Research Review Committee at Grand Valley State University reviewed the study protocol (Protocol 338194-1) and certified it as approved and exempt from full committee review.

Recruitment of Subjects

We attempted to recruit all male and female individual qualifiers in the 100 m, 200 m, and 400 m sprints and shot put, discus, and javelin throws from the 2012 NCAA Outdoor Track and Field
National Championships; lists were available online (www.ncaa.com). We recruited individuals from Divisions I, II, and III. The Divisions reflect, on average, the financial commitments made by colleges and universities to their athletes. Division I includes the largest athletic programs that provide the most athletically related financial aid for student-athletes, Division II institutions provide athletes limited financial aid, and Division III institutions do not provide athletically related financial aid (www.ncaa.org). Consequently, the most accomplished athletes (e.g., fastest sprinters) typically attend Division I institutions whereas the least accomplished generally attend Division III institutions. NCAA institutions are almost entirely comprised of U.S. schools.

We searched for email addresses through each school’s online directory and emailed all whom we could. In cases where we could not find email addresses, we attempted to make contact via Facebook. We were able to contact 72 of 114 candidate male sprinters (DI, n = 57; DII, n = 38; DIII, n = 19), and 72 of 146 female sprinters (DI, n = 59; DII, n = 42; DIII, n = 45). Of those contacted, 7 males (10%) and 13 females (18%) participated. In a similar manner, we attempted to contact all male and female individual qualifiers for the championship meets in the shot put, discus, and javelin throws. We were able to contact 83 of 159 male throwers (DI, n = 68; DII, n = 42; DIII, n = 49), and 107 of 169 female throwers (DI, n = 63; DII, n = 47; DIII, n = 59). Of those contacted, 18 males (22%) and 26 females (24%) participated. Numbers of qualifying athletes in each Division vary because some athletes qualified for multiple events and the number of athletes that met each Division’s championship qualifying standards varied.

The initial recruitment statement requested individuals to participate in a survey study of the “Development of elite athletic ability.” Individuals were informed that they had been contacted because they had qualified for the 2012 NCAA Outdoor Track and Field Championships. They were informed that the survey would take 5-10 min to complete and could be accessed by following an embedded link. No incentives for participation were offered. We first
solicited responses from athletes from 13-15 July 2012, and this yielded 35 responses; we
solicited responses again on 29 July 2012, and this yielded 29 additional responses.

Survey

The survey was implemented with the commercial platform, SurveyMonkey. It began with the
item, “To the best of your recollection, how would you compare your SPRINTING SPEED to
others your own age and gender when you were 6-10 years old?” Five choices were offered,
“much slower”, “slower”, “about the same”, “faster”, and “much faster”. The next item was the
same except that the age range was 11-15 years old. Then, for each age range, there were similar
multiple-choice items addressing physical strength and overhand throwing ability. We chose these
age ranges because (a) 6-10 years constitutes a range before the typical onset of puberty and an
age range when children are in school and can compare their athletic abilities (e.g., sprinting and
throwing) with a larger group of peers than was available to them before attending school and (b)
11-15 years captures the onset of puberty [66] but is earlier than most elite sprinters in Studies 1
and 2 reported, or were reported, to have begun formal sprint training with coaches.

The survey also included the following items:

- “If you competed in any of the following individual events in your FIRST YEAR OF
 HIGH SCHOOL track and field, please report your best performance in the event(s)
 during this FIRST YEAR OF HIGH SCHOOL track and field.” This was followed by
 a list of all common track and field events and a text box for each.

- “How old were you or what grade were you in at the end of YOUR FIRST SEASON
 OF HIGH SCHOOL track and field?”

- “To the best of your recollection, at what age (or grade) did you begin to seriously
 concentrate on track and field? (By seriously concentrate, we mean giving much
 attention and effort to training, usually with a coach.)”
The questionnaire also included items addressing gender, age, receipt of athletic-related financial aid, level of competition (e.g., Division I, II, or III), sports played prior to college besides track and field, recollections of first timed race, and best lifetime performances in all track and field events. No individually identifying information was sought, such as name or school.

Normative data

Normative data are required to assess the initial sprinting performance of elite sprinters. Because surveys (see below) indicated that these sprinters generally began regular training in 9th or 10th grade (usually ages 14-16) and usually reported best times for their first high school season, we focused on this age, and used two approaches to estimate normative data. First, we extrapolated 100 m, 200 m, and 400 m times (standard distances in U.S. high school meets) from normative values of 50 m times for a large representative sample of 15 year-old Australian schoolchildren [67]. We used Australian data because we could not find data from the U.S., and we have no reason to suspect that athletic abilities of the children from these nations differ substantially. We multiplied normative 50 m times by 2 to obtain 100 m benchmarks and by 4 to obtain 200 m benchmarks; because even world class runners slow by at least 10% when running 400 m, we multiplied 50 m times by 8.8 to obtain 400 m benchmarks. Thus, for females, 50th percentile benchmarks were 17.2 (100 m), 34.4 (200 m), and 75.7 s (400 m); 95th percentile benchmarks were 15.4, 30.8, and 67.8 s. The corresponding benchmarks for males were 15.4, 30.8, and 67.8 s (50th percentile), and 14.0, 28.0, and 61.6 s (95th percentile) sec.

This method of determining benchmarks is conservative because our examination of high school data (see next paragraph) shows that children slow with increasing sprint distances even for 100 m and 200 m distances. In other words, if we had used more realistic, but difficult to determine, benchmarks, the high school performances of the collegiate sprinters would seem even more exceptional.
Our second approach to establishing the relative abilities of the sprinters focused on the upper boundary of performance. We did this by documenting the fastest 100 m and 200 m times recorded by 9th or 10th graders at high school divisional championship meets held in 2012. To obtain a reasonably representative sample, we first identified a website with track and field results for most U.S. high schools (http://www.athletic.net/). We searched 10 U.S. states in alphabetical order, looking for the first high school in alphabetical order in each state with results from the 2012 season. We focused on this school’s meet prior to the state championship meet, which was generally called a conference, sectional or division meet. These meets included 4 to 16 teams (median = 9.5) and would be open to all or nearly all pupils at each school. The mean school population (9th – 12th grade) at each divisional meet ranged in size from 280 to 2100 students (median = 1483). Thus, the fastest 9th or 10th grade performances would generally represent the fastest male and female in a population of roughly 2,000 to 5,000 peers of the same sex and age. The median fastest times among 9th and 10th grade female performers were 12.96 and 26.45 s. For males, the median fastest times for 9th and 10th graders were 11.41 and 23.25 s. We consider these times to indicate performance at the 99th percentile or greater. We did not include median best 400 m times because many of these meets did not include a 9th or 10th grader among their finalists.

Results and Discussion

Contrary to the DPM, collegiate sprinters recalled being faster relative to their peers than did collegiate throwers (Table 3; Fig. 2). This difference was significant and substantial for recollections of 6-10 and 11-15 years of age, and the differences held within men and women (Table 3). In fact, 90% of sprinters reported they were faster or much faster than their peers at 6-10 years of age and 80% reported they were faster or much faster at 11-15 years of age. As we predicted, throwers recalled being stronger and having better overhand throwing ability relative to their peers than did sprinters, and these differences held robustly for both age ranges and
These results corroborate Studies 1 and 2 by showing that expert sprinters consistently recalled being faster than their peers as children. Furthermore, these recollections were at least somewhat specific to sprinting and so cannot be dismissed as a manifestation of general athletic ability.

Table 4 provides information for each sprinter regarding their background, onset of training, and best performances. Seventeen of 20 sprinters reported at least one best performance in their first season of high school competition, and only two of these reported they had begun serious training prior to this. Of the 15 sprinters who reported first season high school performances and no prior serious training, 13 of 15 were age 15 or younger at the end of this first season, supporting our decisions regarding age-appropriate benchmarks (see Methods). All 27 performances recalled by these 15 sprinters were faster than 95th percentile benchmarks. Moreover, seven of these sprinters recalled at least one performance faster than the 99th percentile benchmarks, and two of the others recalled performances that were within 0.5 s of 99th percentile benchmarks. These results represent more objective evidence that, relative to their peers, these sprinters were exceptional prior to the accumulation of substantial training.

A possible limitation of Study 3 is that the response rate of college athletes was low. However, a low response rate is reasonable because we did not provide athletes with incentives to participate and because we attempted to contact them after the academic year had ended. More importantly, to minimize response bias, we constructed the survey questions to appear neutral to the DPM or the “talent matters” framework.

General Discussion

The three studies of sprinter development in this paper focused on testing two crucial predictions of the DPM. We begin our discussion by considering each prediction. We then examine the implications of our findings.

Elite sprinters are initially remarkable
The first DPM prediction is that elite sprinters should have generally been unremarkable prior to training. Contrary to this, the biographical materials examined in Studies 1 and 2 indicated exceptional initial ability for all 26 world class sprinters for whom we were able to obtain relevant information. Study 3 corroborated this pattern in national qualifying collegiate sprinters, showing that they recalled being faster or much faster than their peers as children. In addition, these collegiate sprinters reported achieving performances in their first season of high school competition that would have exceeded 95-99% of their peers despite the fact that most had begun formal training that same season.

A limitation of these studies is that the use of biographical materials relies on the retrospective recall of information from many years earlier, and this information may be inaccurate or biased [68], although studies have demonstrated moderately high correlations between information obtained by retrospective recall and that found by examining diaries [3,69-71]. Most empirical studies addressing the DPM framework use systematic methods, such as requiring participants to maintain regular training diaries [3,69,70,72]. Such studies have not been conducted for sprinting, and they seem impractical. This is because, to our knowledge, there are no formal training programs or sports academies that endeavor to train “typical” children or adolescents so that they develop into elite sprinters. Apparently formal, dedicated sprint training is only taken up by individuals who are recognized as being exceptionally fast prior to formal training.

We also note that there are several reasons why inaccurate or biased biographical materials cannot provide a satisfying explanation for our results. First, if many sprinters in Studies 1 and 2 were not exceptionally fast prior to formal training, it would seem that at least some coaches, competitors, or peers would attempt to report the truth to biographers and journalists. For example, if Gwen Torrence and Evelyn Ashford had not, as untrained high school students, each beaten their school’s star (male) football player in a race, as their biographies
attested [73,74], we might have expected someone to dispute these or the many similar claims in other biographies. Similarly, most biographical accounts of extraordinary youth sprinting ability are corroborated by publicly documented timed performances. Moreover, objective facts such as race results are more accurately recalled than are subjective states (e.g., recalling the amount of effort put into a particular practice session) [75].

A second point is that Study 3, based on national qualifying collegiate sprinters, fully corroborated Studies 1 and 2. Although it was based on self-reports, the responses were anonymous, and this should have minimized self-presentation bias that might have occurred in the biographies (e.g., champion sprinters desiring to portray themselves as being innately gifted.)

A final point is that DPM proponents have used biographical materials similar to ours to support their key claims. Most notably, Ericsson et al. [3] and Howe et al. [6] reviewed biographies and retrospective studies of a variety of eventual experts (e.g., musicians, painters, chess players) and argued that these indicate that the experts’ initial performances were consistently unexceptional and that many years of deliberate practice always preceded their emergence as experts. Studies 1 and 2 demonstrate beyond doubt that this pattern does not hold for the biographies of most (and perhaps all) expert sprinters. There is no reason to dismiss sprinters’ biographies as highly inaccurate or biased while accepting the veracity of other biographies.

Our studies are also notable because they ruled out two alternative explanations for sprinters’ initially exceptional abilities. In Study 1 we addressed the transfer hypothesis, whereby remarkable initial performance in one domain, such as sprinting, might be due to previous training in another, such as football or baseball [6]. We showed that a transfer hypothesis is not viable because the biographies of Olympic champions revealed that two-thirds of them did not participate in organized sports prior to beginning sprinting. A DPM proponent might protest that perhaps informal sports participation was crucial for sprinting development. This argument has
some validity: informal (and difficult to measure) experience (e.g., play) might be crucial.

However, accepting this argument would still entail abandoning the underlying premise of the DPM, that expertise must be based on formal, deliberate training.

With Study 3 we addressed the possibility that remarkable initial sprinting ability might be merely indicative of unusual general athletic ability or early physical maturation. Contrary to this, the collegiate sprinters generally recalled being faster or much faster than their peers as children, whereas another group of similarly elite athletes, throwers, did not recall being as exceptionally fast. That the opposite pattern occurred for physical strength and overhand throwing shows that sprinting ability is not merely a manifestation of general athletic ability; it is specific, at least to some extent, consistent with definitions of talent [6]. As we will discuss below, however, speed is crucial for many other sports so it is not surprising that many champion sprinters excelled in sports besides track and field.

There are other possible concerns about our tests of this prediction, but none seem compelling. One concern is that, although we found evidence of initially outstanding speed in all three studies, the sample sizes were modest (i.e., n = 26 for Studies 1 and 2 combined; n = 20 sprinters for Study 3). This does not seem like a major weakness, however, because genuine experts are, by definition, rare, which is why many DPM studies use modest samples. For example, the seminal paper by Ericsson and colleagues [3] included data from only 54 musicians, only 22 of whom were considered expert.

A second, related concern is that our results are based on expert sprinters and perhaps may not apply to the development of sprinting abilities in a general population of athletes. In other words, for most athletes initial performance might explain little or no variation in the attainment of sprinting ability. This point is largely valid: studies of the initial performance and development of sprinting ability with proper training in broad range of individuals are certainly desirable.

Nonetheless, this point does not mitigate the challenge our results pose to the DPM. This is
because DPM proponents have consistently stressed the study of genuine experts and they have, with no apparent exceptions, assumed that the same principles apply to all individuals, i.e., there is no meaningful distinction (e.g., talent) between expert and non-experts besides in their training [3,6]. In addition, we note that Study 3 included many athletes whose best performances to date are far from world class (Table 4); given the base rate occurrence of world class performances and the typical patterns of world class sprinter development (Figure S1), most of these sprinters never will achieve world class performances. Nonetheless, their initial performances in childhood and high school were generally outstanding. This indicates that the patterns we documented do occur generally.

Elite sprinters break the “10 year rule”

Our studies also contradict the DPM’s prediction that at least 10 years of deliberate practice are necessary to achieve expert level performance. The results of Study 1 showed this because the median time to reach world class status for 15 Olympic champions was only three years. Study 2’s results indicated a median of 7.5 years to reach world class status for the fastest 20 men in U.S. history. This might seem roughly consistent with the 10 year rule, but it must be noted that our estimate of the initiation of formal training was highly conservative. For example, if someone began participating in track and field competitions at age 8 (Table 1), we considered that as the beginning formal training. However, we found no indication that, as children, any of the sprinters in Study 1 or Study 2 engaged in anything remotely similar to the demanding, time-intensive training that has been documented for future elites in other sports such as tennis, swimming, and gymnastics [76].

Moreover, similar to other previous studies [11,41,44,45] our measure of the duration until reaching world class status confounds training with physical maturation. For example, if a child begins training at age 10 and reaches world class status at age 20, one interpretation is that 10 years of deliberate practice were necessary for this improvement. An alternative interpretation
is that elite performance can only occur after physical maturation and that a talented individual could have reached the same performance level at age 20 if they had only begun training at age 18. Although this might seem far-fetched, in the course of our research we discovered two documented cases of men beginning formal sprint training as adults and reaching world class status within one year. The athletic biographies of these sprinters, Dave Sime and Delano Meriwether, are impossible to reconcile with the DPM, and we have summarized their biographies in Table S3.

Moreover, the biographies of Sime and Meriwether patently contradict the DPM’s claim that an athlete who starts deliberate practice at a relatively late age would not be able to “catch up” to an athlete who started training earlier [4,77] and the complementary view that extensive experience in a sport is necessary to reach world class status [12]. We also note that rapid development of sprinting expertise was not limited to men. Female Olympic gold medal winners Helen Stephens, Wilma Rudolph, Evelyn Ashford, and Marion Jones all achieved world class sprinting status within three years of beginning training (Table 1).

DPM proponents might argue that achieving expertise in less than 10 years might reflect extraordinarily intense training, so that, in a sense, 10 years of training might be compressed into nine (or fewer) years. However, the biographies of world class sprinters do not fit the claim of unusually intensive training (see Table S2). For example, Usain Bolt’s biographies [78,79], including his autobiography [52], document that his often extreme disinterest in training has been very frustrating for his coaches. In fact, Bolt was left off of the Jamaican national team competing at the 2003 IAAF World Championships because of his lackadaisical attitude [78].

We also note that sprint training requires high intensity efforts on the track and in the weight room several days per week with the remaining days spent in rest and low intensity recovery exercises [50,80-82]. Even Ericsson et al. [3] and Ericsson [83] recognized that very intensive sprint training is difficult for long periods even with periods of rest. Consequently, the
time that sprinters spend practicing sprinting may be very brief. For example, Carl Lewis,
considered by many to be the paragon of professionalism as a track and field athlete, reported that
a typical sprint training session consisted of sprinting 200 m six times averaging 23.0 s for 200 m
with one minute of rest between sprints [84]. Keith Roberts, Grand Valley State University’s
sprint coach, (pers. comm.) estimates that collegiate and professional sprinters typically spend
600-700 hr per year training on the track and in the weight room combined and that high school
sprinters would typically spend considerably less time. At the professional rate, it would take
between 14 and 17 years to accumulate 10,000 hr of deliberate practice.

The DPM has been falsified for sprinting

Is there any way to reconcile our results with the DPM? We do not think there is. As reviewed
here, several lines of evidence contradict the DPM, and even the data that seem consistent with it
(e.g., some sprinters “needing” ten years of deliberate practice) are easily accommodated into the
“talent matters” framework. Furthermore, in our review of biographical materials and discussions
with coaches and experts, we did not encounter even one account of an elite sprinter that
prototypically fits the DPM (e.g., a sprinter who was mediocre compared to a general population
of their peers and who engaged in deliberate practice for many years and eventually became
elite). The absence of such accounts, together with the data in our three studies and many
complementary physiological and genetic studies [32,85,86], allow us to conclude with
confidence that the DPM has been falsified in the domain of sprinting.

Sprinting is an authentic expertise domain

Although the evidence indicates that the DPM has been falsified for sprinting, it might be argued
that this does not seriously weaken the model because sprinting is an inauthentic or highly
unusual expertise domain. One version of this argument is that sprinting is inauthentic because
performances are highly constrained in that the goal is the same for every performance, to run as
fast as possible. By contrast, prototypical domains, such as chess or music, demand far greater
flexibility in decision-making and/or motor skills. This argument is unconvincing, however, because DPM researchers have frequently assumed the relevance of other highly constrained domains. For instance, Ericsson et al. [3] discussed how unremarkable adults can be trained to achieve prodigious performance in specific memory tasks, and Ericsson et al. [5] noted that, with proper training, otherwise unremarkable adults can greatly improve their endurance running or complete thousands of pushups per day. Thus, it seems likely that if DPM proponents could demonstrate that most healthy adolescents can achieve outstanding sprint performances (e.g., < 11.5 s for 100 m; see Study 2 and Table 3) with only a few months of deliberate practice, they would do so and cite this as evidence supporting the DPM. The fact that such a demonstration is apparently impossible must, therefore, count against the DPM.

A second possible argument is that sprinting is an inauthentic domain because it requires minimal skill. In other words, one might be dazzled by a professional pianist while dismissing a world class sprint performance as something that almost anyone could achieve, albeit more slowly. This argument is also unpersuasive because sprinting does require skill. Elite sprinters exert much effort in physical training (e.g., running, plyometrics, strength training) and technique (e.g., starts, transitions) [50, 80-82]. The resulting improvements may be modest (e.g., 1-6%; see Table 2), yet they can easily make the difference between being a mere qualifier for a championship meet and being the champion.

We also note that sprinting is one of the most popular sports across a broad spectrum of traditional and modern societies [87-91]. Sprinting’s popularity is also revealed by the global fame accorded to Olympic champions such as Jesse Owens [92], Wilma Rudolph [93], Bob Hayes [53], Marion Jones [54], and Usain Bolt [52]. Furthermore, unlike prototypical expertise domains (e.g., music, chess), no special equipment is needed for sprinting, meaning that, in most societies, it can be undertaken by virtually any individual. These points suggest that sprinting is not merely an authentic expertise domain; it may be an ideal one.
Despite these points, development in other expertise domains, especially those based on
decision-making or cognitive skills, could be substantially different than for sprinting and other
domains of physical skill [21]. Nonetheless, there is mounting evidence that much individual
variation in achievement in more cognitive expertise domains (e.g., music, chess, educational
attainment) also cannot be accounted for by the DPM [27,30,31,36,94].

Sprinting is a foundational expertise domain

We have argued that our results pose intractable problems for the DPM. However, the
implications of these results are actually greater than showing that one authentic domain does not
fit the model. This is because sprinting is a foundational domain in the sense that elite speed is
necessary or at least highly advantageous in many other sports. Coaches and commentators
frequently convey this in asserting that “speed kills” and much research supports the point
[95,96]. For example, in American football, sprinting speed over 40 yards is a significant
 predictor of playing ability and highly recruited high school players often possess similar speed
to professionals [97].

The advantages of superior sprinting speed are particularly well illustrated in cases where
elite sprinters take up new sports and reach world class status soon thereafter. For example, an
Australian woman recruited to train for skeleton, a winter sliding sport, based on her 30 m
sprinting speed reached world class status after only ten weeks of sport-specific training [98].

More recently, two American world class sprinters, Lolo Jones and Lauryn Williams, rapidly
made the transition to world class bobsled competition. Within several months of taking up the
sport, Jones helped the U.S. team win a world championship (http://sportsillustrated.cnn.com/
more/news/20130228/lolo-jones-bobsled.ap/). Two years after beginning bobsled training, Jones
was named to the 2014 U. S. Winter Olympics team. Her teammate Lauryn Williams, a 2012
Olympic gold medalist sprinter in the 4 x 100 m relay, was named to the 2014 Olympic bobsled
team six months after beginning training (http://lauryn-williams.com/).
We also note that while this paper has focused on behavioral data revealing the existence of innate sprinting talent, complementary studies have implicated genetic and physiological mechanisms [85,99]. Studies using similar methods have indicated that characteristics crucial to success in other sports are also partly innate. For example, substantial heritability has been demonstrated for muscle mass and strength, critical contributors to success in power sports (e.g., American football, weightlifting) [100,101] and for untrained VO₂ max and VO₂ max responsiveness, which are vital for endurance sports [32,33]. The convergence of this evidence suggests sprinting speed is only one of several innate ingredients that, depending on the particular sport, may be crucial for success.
Concluding remarks

Our studies are the first to systematically show that: (1) a strong predictor, probably a precondition, for elite sprinting performance is exceptional speed prior to formal training, (2) this exceptional ability is at least partly specific to sprinting, and (3) many elite sprinters reach world class status in far less than 10 years, although they usually make modest improvements even after that (Figure S1). Although these results are novel in the scientific literature, it is striking how closely they seem to correspond with folk wisdom or commonsense. In fact, in conversations about this research with colleagues, we found that everyone with at least some athletic experience anticipated our main findings.

Thus, the previous neglect of sprinting in the context of the DPM seems puzzling. On the one hand, it would seem that those skeptical of the DPM would have pointed out that sprinting strongly challenges it. The fact that they did not perhaps reveals the success of DPM proponents in steering research towards domains where the DPM is more difficult to rule out. On the other hand, the fact that DPM proponents neglected sprinting seems understandable: people are notorious for overlooking or discounting evidence that contradicts their views [102,103].

Finally, we find remarkable the continued popularity of the DPM despite its empirical weaknesses and theoretical implausibility [21,27,28,34,104]. We speculate that the model’s popularity reflects a more general desire to adhere to a “Blank Slate” view of human nature, whereby behavior is wholly shaped by the environment and that individuals have no inborn predispositions or talents besides the general ability to learn [1,105]. Although contradicted by evolutionary theory and abundant empirical data, the Blank Slate remains popular, apparently because of its supposed benevolent consequences (e.g., that anyone can achieve expertise) [1,104].

However, the Blank Slate view can have negative impacts as well. As an example, imagine that a youngster expressed a strong passion to become a world class sprinter and they
trained with great dedication under expert coaches for 10 years. Our studies indicate that, despite this training, the individual will not realize or even approach their goal unless they happen to possess extraordinary talent. The DPM view, by contrast, logically implies that their inability to become world class must be solely due to training failures on the part of the individual or their coaches. We believe that such blame would be unwarranted and undesirable and that a realistic view—that both training and talent are necessary—is preferable.

Acknowledgements

We benefited from conversations with Rick Albrecht and John Kilbourne and the GVSU track and field coaches, especially Jerry Baltes, Blaine Maag, and Keith Roberts. Brian Gurta helped in the initial stages of data collection. Shadie Emiah helped find contact information for collegiate athletes. Walt Murphy provided important biographical information about sprinters. Zach Hambrick, Shane Mueller, Ross Tucker, Bo Winegard, and Mike Wolfe provided useful comments on previous versions of the manuscript as did two anonymous reviewers.

REFERENCES

1. Pinker S (2002) The blank slate: the modern denial of human nature. New York, NY: Viking.
2. Ridley M (2003) Nature via nurture: genes, experience, and what makes us human. New York, NY: HarperCollins Publishers.
3. Ericsson KA, Krampe RT, Tesch-Römer C (1993) The role of deliberate practice in the acquisition of expert performance. Psychol Rev 100: 363-406.
4. Ericsson KA, Prietula MJ, Cokely ET (2007) The making of an expert. Harvard Bus Rev July-August: 1-8.
5. Ericsson KA, Nandagopal K, Roring RW (2009) Toward a science of exceptional performance. Attaining superior performance through deliberate practice. Ann NY Acad Sci 1172: 199-217.
6. Howe MJ, Davidson JW, Sloboda JA (1998) Innate talents: reality or myth? Behav Brain Sci 21: 399-442.

7. Visscher PM (2008) Sizing up human height variation. Nat Genet 40: 489-490.

8. Livshits G, Roset A, Yakovenko K, Trofimov S, Kobyliansky E (2002) Genetics of human body size and shape: body proportions and indices. Ann Hum Biol 29: 271-289.

9. Baker J, Côte J, Abernathy B (2003) Learning from the experts: practice activities of expert decision makers in sport. Res Q Exerc Sport 74: 342-347.

10. Gagné F (2009) Debating giftiness: pronat vs. anitnat. In: Shavinina LV, editor. International handbook on giftedness. New York, NY: Springer Science+Business Media B. V. pp. 155-204.

11. Starkes JL, Deakin JM, Allard F, Hodges NJ, Hayes A (1996) Deliberate practice in sports: what is it anyway? In: Ericsson KA, editor. The road to excellence: the acquisition of expert performance in the arts, sciences, sports and games. Mahwah, NJ: Erlbaum. pp. 81-106.

12. Williams MA, Ford PR (2008) Expertise and expert performance in sport. Int R Sport Exerc Psychol 1: 4-18.

13. Coyle D (2009) The talent code: Greatness isn’t born, It’s grown. Here’s how. New York, NY: Bantam Dell.

14. Gladwell M (2008) Outliers. New York, NY: Little, Brown and Company.

15. Syed M (2010) Bounce: the myth of talent and the power of practice. New York, NY: HarperCollins Publ.

16. Plomin R, DeFries JC, McLearn GE, McGuffin P (2008) Behavioral genetics. New York, NY: Worth Publishers.

17. Ebstein RP, Israel S, Chew SH, Zhong S, Knafo A (2010) Genetics of human social behavior. Neuron 65: 831-844.

18. Collins M (2009) Genetics and sports. Basel, Switzerland: Karger.
19. Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M et al. (2010) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108: 1487-1496.

20. Hagberg JM, Rankinen T, Loos RJF, Perusse L, Roth SM et al. (2011) Advances in exercise, fitness, and performance genomics in 2010. Med Sci Sports Exerc 43: 743-752.

21. Abernethy B, Farrow D, Berry J (2003) Constraints and issues in the development of a general theory of expert perceptual-motor performance. In: Starkes JL, Ericsson KA, editors. Expert performance in sports: advances in research on sport expertise. Champaign, IL: Human Kinetics. pp. 349-369.

22. Deaner RO (2013) Distance running as an ideal domain for showing a sex difference in competitiveness. Arch Sex Behav 42: 413-428.

23. de Block A, Dewitte S (2009) Darwinism and the cultural evolution of sports. Perspect Biol Med 52: 1-16.

24. Lombardo MP (2012) On the evolution of sport. Evol Psychol 10: 1-28.

25. Miller G (2000) The mating mind. New York, NY: Anchor Books.

26. Hawkes K, Bird RB (2002) Showing off, handicap signaling, and the evolution of men’s work. Evol Anthropol 11: 58-67.

27. Hambrick DZ, Meinz EJ (2011) Limits on the predictive power of domain-specific experience and knowledge in skilled performance. Curr Dir Psychol Sci 20: 275-279.

28. Tucker R, Collins M (2012) What makes champions? A review of the relative contribution of genes and training to sporting success. Brit J Sports Med 46: 555-561.

29. Kremen WS, Jacobsen KC, Xian H, Eisen SA, Eaves LJ et al. (2007) Genetics of verbal working memory processes: A twin study of middle-aged men. Neuropsychol 21: 569-580.

30. Meinz EJ, Hambrick DZ, Hawkins CB, Gillings AK, Meyer BE et al. (2011) Roles of domain knowledge and working memory capacity in components of skill in Texas hold’em...
31. Meinz EJ, Hambrick DZ (2010) Deliberate practice is necessary but not sufficient to explain individual differences in piano sight-reading skill: the role of working memory capacity. Psychol Sci 21: 914-919.

32. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS et al. (2011) Genomic predictors of maximal O2 uptake response to standard exercise training programs. J Appl Physiol 110: 1160-1170.

33. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM et al. (2012) Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLOS ONE doi:10.1371/journal.pone.0037887.

34. Ackerman PL (2013) Nonsense, common sense, and science of expert performance: talent and individual differences. Intelligence doi.org/10.1016/j.intell.2013.04.009.

35. Ruthsatz J, Detterman D, Griscom WS, Cirullo BA (2008) Becoming an expert in the musical domain: It takes more than just practice. Intelligence 36:330-338.

36. Hambrick DZ, Oswald FL, Altmann EM, Meinz EJ, Gobet F et al. (2013) Deliberate practice: Is that all it takes to become an expert? Intelligence Available: http://dx.doi.org/10.1016/j.intell.2013.04.001 via the Internet.

37. Duffey LJ, Baluch B, Ericsson KA (2004) Dart performance as a function of facets of practice amongst professional and amateur men ana women players. Int J Sport Psychol 35: 232-245.

38. Gobet F, Campitelli G (2007) The role of domain-specific practice, handedness, and starting age in chess. Dev Psychol 43: 159-172.

39. Oldenziel K, Gagne F, Gulbin J (2004) Factors affecting the rate of athletic development from novice to senior elite: how applicable is the 10-year rule? Available: http://cev.org.bc/biblioteca/factors-affecting-the-rate-of-athlete-development-from-novice-
to senior-elite how applicable is the 10 year rule via the Internet.

40. Ericsson KA (2013) Training history, deliberate practise and elite sports performance: an
analysis in response to Tucker and Collins review what makes champions? Brit J Sports
Med 47: 533-535.

41. Kalinowski AG (1985) The development of Olympic swimmers. In: Bloom BS, editor.
Developing talent in young people. New York, NY: Ballantine. pp. 139-192.

42. Wallingford R (1975) Long distance running. In: Taylor AW, Landry F, editors. The
scientific aspects of sports training. Springfield, IL: Charles C. Thomas. pp. 118-130.

43. Monsaas JA (1985) Learning to be a world-class tennis player. In: Bloom BS, editor.
Developing talent in young people. New York, NY: Ballantine. pp. 211-269.

44. Helsen WF, Starkes JL, Hodges NJ (1998) Team sports and the theory of deliberate
practice. J Sport Exerc Psychol 20: 12-34.

45. Hodges NJ, Starkes JL (1996) Wrestling with the nature of expertise: a sport-specific test of
Ericsson, Krampe, and Tesch-Romer’s (1993) theory of “deliberate practice”. Int J Sport
Psychol 27: 400-424.

46. Young BW, Salmela JH (2002) Perceptions of training and deliberate practice of middle
distance runners. Int J Sport Psychol 33: 167-181.

47. Coblé S, Baker J, Wattie N, McKenna J (2009) Annual age-grouping and athlete
development. Sports Med 39: 235-256.

48. Baker J, Côte J, Abernathy B (2003) Sport-specific practice and the development of expert
decision-making in team ball sports. J Appl Sports Psychol 15: 12-25.

49. Smeeton NJ, Ward P, Williams AM (2004) Do pattern recognition skills transfer across
sports? A preliminary analysis. J Sports Sci 22: 205-213.

50. Francis C, Coplon J (1991) Speed trap: inside the biggest scandal in Olympic history. New
York, NY: St. Martin’s Press.
51. Moore R (2012) The dirtiest race in history: Ben Johnson, Carl Lewis and the Olympic 100m final (Wisden Sports Writing). London, UK: A&C Black.

52. Bolt U (2010) Usain Bolt: my story: 9.58: being the world's fastest man. London, UK: HarperSport.

53. Hayes B (1990) Run, bullet, run: the rise, fall, and recovery of Bob Hayes. New York, NY: Harper & Row.

54. Jones M (2004) Life in the fast lane. New York, NY: Time Warner Books.

55. Smith T, Steele D (2007) Silent gesture: the autobiography of Tommie Smith. Philadelphia, PA: Temple University Press.

56. Seiler S, DeKoning JJ, Foster C (2007) The fall and rise of the gender difference in elite anaerobic performance 1952-2006. Med Sci Sports Exerc 39: 534-540.

57. Lawson G (1997) World record breakers in track & field athletics. Champaign, IL: Human Kinetics.

58. Hollobaugh J (1991) T&FN interview: Leroy Burrell. Track & Field News 56-57.

59. Satterfield L (1997) It’s full speed ahead for Williams track: Carver’s Bernard Williams uses his past struggles to motivate himself to be better - and faster. Baltimore Sun onlineAvailable: http://articles.baltimoresun.com/1997-04-13/sports/1997103063_1_bernard-williams-carver-williams-track via the Internet.

60. Lewis C, Marx J (1990) Inside track: my professional life in amateur track and field. Toronto: Fireside Book.

61. Landman B (2008) Walter Dix sprints toward Olympics, greatness. Tampa Bay Times 17 July.

62. Ungerleider S (2001) Faust’s gold: inside the East German doping machine. New York, NY: Thomas Dunne Books.

63. Yesalis CE, Courson SP, Wright JE (2000) History of anabolic steroid use in sport and...
exercise. In: Yesalis CE, editor. Anabolic steroids in sport and exercise. Champaign, IL: Human Kinetics. pp. 51-71.

64. Nooden M (1989) A dirty coach comes clean. Sports Illustrated 70: 22-23.

65. Axon R (2013) Tim Montgomery, former fastest man, up an running. USA Today Online Available: http://www.usatoday.com/story/sports/olympics/2013/09/10/tim-montgomery-100-meter-world-record-prison/2795863 via the Internet.

66. Jones RE, Lopez KH (2006) Human reproductive biology. New York, New York: Academic Press.

67. Catley MJ, Tomkinson GR (2013) Normative health-related fitness values for children: analysis of 85347 test results on 9–17-year-old Australians since 1985. Brit J Sports Med 47: 98-108.

68. Shiffman S, Hufford M, Hickcox M, Paty JA, Gynys M et al. (1997) Remember that? A comparison of real-time versus retrospective recall of smoking lapses. J Consult Clin Psychol 65: 292-300.

69. Sloboda JA, Davidson JW, Howe MJA, Moore DC (1996) The role of practice in the development of performing musicians. Brit J Psychol 87: 287-304.

70. Baker J, Côte J, Deakin J (2005) Expertise in ultra-endurance triathletes early sport involvement, training structure, and the theory of deliberate practice. J Appl Sport Psychol 17: 64-78.

71. Ward P, Hodges NJ, Starkes JL, Williams AM (2007) The road to excellence: deliberate practice and the development of expertise. High Ability Studies 18: 119-153.

72. Hodges NJ, Kerr T, Starkes JL, Weir PL, Nananidou A (2004) Predicting performance times from deliberate practice hours for triathletes and swimmers: what, when, and where is practice important? J Exp Psychol-Appl 10: 219-237.

73. Hornbuckle AR (1995) Gwen Torrence. In: Porter DL, editor. African-American sports
greats: a biographical dictionary. Westport, CT: Greenwood Press. pp. 358-361.

74. Davis MD (1992) Black American women in Olympic track and field. Jefferson, NC: McFarland & Company, Inc., Publishers.

75. Brewer WF (1998) Memory for randomly sampled autobiographical events. In: Neisser U, Winograd E, editors. Remembering reconsidered: ecological and traditional approaches to the study of memory. New York, NY: Cambridge University Press. pp. 21-90.

76. Bloom BS (1985) Developing talent in young people. New York, NY: Ballantine.

77. Baker J, Cobley S, Fraser-Thomas J (2009) What do we know about early sport specialization? Not much! High Ability Studies 20: 77-89.

78. Cantor G (2011) Usain Bolt. Detroit, MI: Lucent Books.

79. Irving R (2010) Usain Bolt: phenomenal track athlete. In: Irving R, Charlton V, editors. Jamaican gold: Jamaican sprinters. Kingston, Jamaica: University of the West Indies Press. pp. 54-59.

80. Ward RD, Dintiman GB (2003) Sports speed. Champaign, IL: Human Kinetics.

81. Smith M (2005) High performance sprinting. Wiltshie, UK: Crowood Press, Ltd.

82. Edwards J (2012) Research in sprinting: what science says about sprinting. New York, NY: New American Press.

83. Ericsson KA (2006) The influence of experience and deliberate practice on the development of superior expert performance. In: Ericsson KA, Charness N, Feltovich PJ, Hoffman DJ, editors. The Cambridge handbook of expertise and expert performance. New York, NY: Cambridge University Press. pp. 683-703.

84. Hurst M (1994) T&FN interview: Carl Lewis. Track & Field News 56-62.

85. Costill DL, Fink WJ, Pollock ML (1976) Muscle fiber composition and enzyme activities of elite distance runners. Med Sci Sports 8: 96-100.
86. Ahmetov II, Fedotovskaya ON (2012) Sports genomics: current state of knowledge and future directions. Cellular Mol Exerc Physiol doi:10.7457/cmep.v1i1.11.

87. Deaner RO, Smith BA (2013) Sex differences in sports across 50 societies. Cross-Cult Res 47:268-309.

88. Gotaas T (2009) Running: a global history. London, UK: Reaktion Books.

89. Guttmann A (2004) From ritual to record: the nature of modern sports. Updated with new afterword. New York, NY: Columbia University Press.

90. Guttmann A (2004) Sports: the first five millennia. Amherst, MA: University of Massachusetts Press.

91. Sears ES (2001) Running through the ages. Jefferson, NC: McFarland & Company, Inc., Publ.

92. Baker WJ (1986) Jesse Owens: an American life. New York, NY: Free Press.

93. Smith MM (2006) Wilma Rudolph: a biography. Westport, CT: Greenwood Press.

94. Wai J (2013) Experts are born, then made: combining prospective and retrospective longitudinal data shows that cognitive ability matters. Intelligence Available: http://dx.doi.org/10/1016/j.intell.2013.08.009 via the Internet.

95. Huijgen BCH, Elferink-Gemser MT, Post WJ, Visscher C (2009) Soccer skill development in professionals. Int J Sports Med 30: 585-591.

96. Little T, Williams AG (2005) Specificity of acceleration, maximum speed, and agility in professional soccer players. J Strength Cond Res 19: 76-78.

97. Ghigiarelli JJ (2011) Combine performance descriptors and predictors of recruit rankings for the top high school football recruits from 2001 to 2009: difference between position groups. J Strength Cond Res 25: 1193-1203.

98. Bullock N, Gulbin JP, Martin DT, Ross A, Holland T et al. (2009) Talent identification and deliberate programming in skeleton: ice novice to Winter Olympian in 14 months. J Sports...
99. Macarthur D, Yang N, Seto J, Raftery J, Kee A et al. (2006) A gene for speed: the ACTN3 R577X polymorphism influences muscle performance. Neuromuscular Disord 16: S59-S59.

100. Silventoinen K, Magnusson PKE, Tynelius P, Kaprio J, Rasmussen F (2008) Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol 32: 341-349.

101. Stewart CE, Rittweger J (2006) Adaptive processes in skeletal muscle: molecular regulators and genetic influences. J Musculoskelet Neuronal Int 6: 73-86.

102. Lord CG, Ross L, Lepper MR (1979) Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence. J Person Soc Psychol 37: 2098-2109.

103. Munro GD (2010) The scientific impotence excuse: discounting belief-threatening scientific abstracts. J Appl Soc Psychol 40: 579-600.

104. Detterman DK, Gabriel LT, Ruthsatz JM (1998) Absurd environmentalism. Behav Brain Sci 21: 411-412.

105. Tooby J, Cosmides L (1992) The psychological foundations of culture. In: Barkow JH, Cosmides L, Tooby J, editors. The adapted mind: Evolutionary psychology and the generation of culture. New York, NY: Oxford University Press. pp. 19-136.

106. Hanson SK (2004) The life of Helen Stephens: the Fulton flash. Carbondale, IL: Southern Illinois University Press.

107. Mallon W (1995) Wilma Rudolph. In: Porter DL, editor. African-American sports greats: a biographical dictionary. Westport, CT: Greenwood Press. pp. 288-291.

108. Rudolph W (1977) Wilma. New York, NY: New American Library.

109. Schraff A (2004) Wilma Rudolph. The greatest woman sprinter in history. Berkeley Hts., NJ: Enslow Publishers, Inc.
110. Carlson LH (1995) Wyomia Tyus-Tillman. In: Porter DL, editor. African-American sports
greats: a biographical dictionary. Westport, CT: Greenwood Press. pp. 349-351.

111. Tyus W (2010) Wyomia Tyus. In: Walter JC, Tida M, editors. Better than the best: black
athletes speak, 1920-2007. Seattle, WA: University of Washington Press. pp. 133-149.

112. Hornbuckle AR (1995) Evelyn Ashford Washington. In: Porter DL, editor. African-
American sports greats: a biographical dictionary. Westport, CT: Greenwood Press. pp. 361-
363.

113. Hornbuckle AR (1995) Florence Griffith Joyner. In: Porter DL, editor. African-American
sports greats: a biographical dictionary. Westport, CT: Greenwood Press. pp. 125-127.

114. Christie JR (1988) Ben Johnson: the fastest man on Earth. Toronto, Canada: McClelland-
Bantam, Inc.

115. Hornbuckle AR (1995) Gail Devers. In: Porter DL, editor. African-American sports greats:
a biographical dictionary. Westport, CT: Greenwood Press. pp. 69-72.

116. Johnson M (1996) Slaying the dragon. New York, NY: Regan Books.

117. Gutman W (2000) Marion Jones: the fastest woman in the world. New York, NY: Pocket
Books.

118. Maloney M (2007) Catch him if you can. Available:
http://www.kentucky.com/mld/kentucky/news/local/16830215.htm via the Internet.

119. Hendershott J (2007) T&FN interview: Tyson Gay. Track & Field News September: 14-16.

120. Layden T (1997) Speed demons. Sports Illustrated 87: 50-52.

121. Hendershott J (2000) T&FN interview: Maurice Greene. Track & Field News February: 8-
9.

122. Deford F (2001) Time bandits. Sports Illustrated 95: 53-63.

123. Nooden M (1991) Super power. Sports Illustrated 75: 44-49.

124. Hendershott J (2005) T&FN interview: Justin Gatlin. Track & Field News April: 8-10.
125. Layden T (2004) Fast company. Sports Illustrated 101: http://sportsillustrated.cnn.com/vault/article/magazine/MAG1112495/index/index.htm:

126. Gleason D (1980) Carl Lewis: T & F N interview. Track & Field News December: 50-51.

127. Hendershott J (1989) Athlete of the decade: Carl Lewis. Track & Field News December: 10-12.

128. Denman E (2006) Available: http://www.nationalscholastic.org/nbon/article/221 via the Internet.

129. Binder D (2012) Ryan Bailey story, circa 2007. Available: http://trackfocus.com/sprints/ryan-bailey-story-circa-2007 via the Internet.

130. Anonymous Travis Padgett. Available: http://www.theacc.com/sports/c-track/spec-rel/032307aac.html via the Internet.

131. Patton D Available: http://www.docpatton.com via the Internet.

132. Hendershott J (1994) T&FN interview: Dennis Mitchell. Track & Field News November: 46-48.

133. USATF (2000) Dennis Mitchell. Available: http://www.usatf.org/athletes/bios/TrackAndFieldArchive/2000/mitchell.html via the Internet.

134. USATF (no date) Leonard Scott. Available: http://www.usatf.org/athletes/bios/Scott_Leonard.asp via the Internet.

135. Anonymous (no date) Andre Cason. Available: http://en.wikipedia.org/wiki/Andre_Cason via the Internet.

136. Hendershott J (1994) T&FN interview: Andre Cason. Track & Field News July: 48-49.

137. IAAF (no date) Andre Cason. Available: http://www.iaaf.org/athletes/united-states/andre-cason via the Internet.

138. Weiss D (1991) Homecoming for TCU star. Available: http://articles.philly.com/1991-04-
139. Reid R (1999) Jon Drummond is a fixture at the Penn Relays the former Overbrook sprinter and Olympic medalist belongs. Available: http://articles.philly.com/1999-04-22/sports/25521375_1_jon-drummond-leadoff-leg-105th-penn-relays via the Internet.

140. Hendershott J (2002) T&FN interview-the world’s fastest human: Tim Montgomery. Track & Field News November: 28-30.

141. Abrahamson A (2003) Holding fast: Montgomery has Maion, his faith and a world record in the 100, so why would he possibly need a coach? Available: http://articles.latimes.com/2003/jun/19/sports/sp-track19 via the Internet.

142. Fish M (2009) The fastest man in the prison yard. Available: http://sports.espn.go.com/oly/trackandfield/columns/story?columnist=fish_mikeandid=4487014. via the Internet.

143. USATF (no date) Tim Harden. Available: http://www.usatf.org/athletes/bios/TrackAndFieldArchive/2001/Harden_Tim.asp via the Internet.

144. Martin S (1980) Tide’s Calvin Smith blazing a trail in track. The Tuscaloosa News B: 1, 11.

145. Lee Y (1987) T&FN interview: Calvin Smith. Track & Field News 44-46.

146. Hendershott J (1993) T&FN interview: Michael Marsh. Track & Field News July: 36-37.

147. USATF (1997) Michael Marsh. Available: http://www.usatf.org/athletes/bios/TrackAndFieldArchive/1997/marsh.asp via the Internet.

148. Ainsworth J (2012) Central grad Ivory Williams hopes his high school coach can help him reach Olympic dream. Available: http://www.beaumontenterprise.com/sports /hs/article/Central-grad-Ivory-Williams-hopes-his-high-school-3685911.php via the Internet.

149. Korth J (2000) Sprinter’s speed no gimmick. Available:
http://www.sptimes.com/News/053100/ Sports/Sprinter_s_speed_no_g.shtml via the Internet.
Table 1 (on next page)

Male and female 100 m and 200 m Olympic gold medal winners for which autobiographies or biographies published in print were available.
Table 1. Male and female 100 m and 200 m Olympic gold medal winners for which autobiographies or biographies published in print were available.

Athlete	Sex	Olympic Games	Events Won	Superior sprinting speed documented as youth or teenager	Years of DP to reach world class status	Reference
Jesse Owens	M	1936	100 m, 200 m	Yes	4	[92]
Helen Stephens	F	1936	100 m	Yes	3	[106]
Wilma Rudolph	F	1960	100 m, 200 m	Yes	2	[93,107-109]
Bob Hayes	M	1964	100 m	Yes	2	[53]
Wyomia Tyus	F	1964	100 m	Yes	7	[74,110,111]
Tommie Smith	M	1968	100 m	Yes	3	[55]
Evelyn Ashford	F	1984	100 m	Yes	1	[74,112]
Florence Griffith	F	1988	100 m, 200 m	Yes	2	[74,113]
Joyner		200 m				
Carl Lewis	M	1984	100 m, 200 m	Yes	NA	[60]
Ben Johnson	M	1988	100 m	Yes	3	[114]
Gail Devers	F	1992	100 m	Yes	6	[115]
Gwen Torrence	F	1992	200 m	Yes	7	[73]
Michael Johnson	M	1996	200 m	Yes	5	[116]
Marion Jones	F	2000	100 m	Yes	1	[54,117]
Usain Bolt	M	2008	100 m, 200 m	Yes	4	[52,78,79]
3 Defined as representing their country in international competitions (e.g., Olympic Games, World Championships).

4 Awarded the gold medal because Ben Johnson was disqualified as winner for using performance enhancing drugs.

5 Disqualified as winner for using performance enhancing drugs.
Table 2 (on next page)

Histories of the 20 fastest male American 100 m sprinters. Ranking of sprinters and fastest 100 m times at age 19 and older obtained from U. S. A. Track and Field (www.usatf.org) and I. A. A. F. (www.
Table 2. Histories of the 20 fastest male American 100 m sprinters. Ranking of sprinters and fastest 100 m times at age 19 and older obtained from U. S. A. Track and Field (www.usatf.org) and I. A. A. F. (www.iaaf.org) performance data.

Rank	Name	Date of Birth	Age when superior sprinting speed was first recognized	Age at start of DP	Fastest time at age 19	Fastest time	Percent improvement	Years from start of DP to world class status	Reference
1	T. Gay	1982	13	13	10.27	9.69	5.64	9	[118,119]
2	M. Greene	1974	8	8	10.19	9.79	3.93	13	[120-122]
3	L. Burrell	1967	14	14	10.46	9.85	5.83	7	[58,123]
4	J. Gatlin	1982	14	14	10.08	9.85	2.28	6	[124,125]
5	C. Lewis	1961	NA	NA	10.00	9.86	1.40	NA	[60,84,126,127]
6	S. Crawford	1978	12	12	10.51	9.88	5.99	11	[128]
7	W. Dix	1986	9	14	10.06	9.88	1.79	4	[61]
8	R. Bailey	1989	15	15	10.28	9.88	3.89	5	[129]
9	T. Padgett	1986	NA	NA	10.00	9.89	1.10	NA	[130]
10	D. Patton	1977	NA	NA	9.89	NA	NA	NA	[131]
11	D. Mitchell	1966	6	6	10.21	9.91	2.94	15	[132,133]
12	L. Scott	1980	NA	NA	10.29	9.91	3.69	NA	[134]
13	A. Cason	1969	NA	NA	10.08	9.92	1.59	NA	[135-137]
	J.	1968							[138,139]
14	J. Drummond	1968	9	9	10.25	9.92	3.22	14	
15	Montgomery	1975	NA	NA	10.11	9.92	1.88	NA	[140-142]
16	T. Harden	1974	NA	NA	10.32	9.92	3.88	NA	[143]
17	C. Smith	1961	NA	NA	10.17	9.93	2.36	NA	[144,145]
18	M. Marsh	1967	11	11	10.22	9.93	2.84	8	[146,147]
---	---	---	---	---	---	---			
19	I. Williams	1985	16	16	10.29	9.93	3.50	7	[148]
20	B. Williams	1978	16	16	10.45	9.94	4.88	4	[59,149]

\(^a\)Percent improvement = 1 - (fastest 100 m – 100 m time at age 19) x 100.

\(^b\)World class status defined as either (1) representing the U. S. A. at international championships (e.g., Pan American Games, World Championships, Olympic Games) in an individual sprint event or as a member of a relay team or (2) participating in the U.S. Olympic Trials which requires the athlete to meet Olympic A or B standards to qualify to compete at the Trials.

\(^c\)DP = deliberate practice.

\(^d\)C. Lewis was the 5\(^{th}\) ranked long jumper in the world and 2\(^{nd}\) ranked long jumper in the U. S. A. by the age of 18.

\(^e\)NA = no data/information available.
Table 3 (on next page)

Recollections of childhood and adolescent athletic abilities of sprinters and throwers who qualified for the 2012 U. S. collegiate track and field outdoor championships.
Table 3. Recollections of childhood and adolescent athletic abilities of sprinters and throwers who qualified for the 2012 U. S. collegiate track and field outdoor championships.

Ability	Sprinters (n = 20)	Throwers (n = 44)	df^a	t^b	Cohen's d			
	Mean	SD	Mean	SD				
6-10 years								
Sprinting	Total	4.3^c	0.8	3.5	1.2	62	2.72**	0.79
	Men	4.3	1.1	3.3	1.3	23	1.78	0.83
	Women	4.2	0.6	3.6	1.0	37	2.00	0.73
Strength	Total	3.3	0.8	3.9	0.8	62	3.21**	0.86
	Men	2.7	0.5	3.9	0.9	23	3.27**	1.64
	Women	3.5	0.8	3.9	0.7	37	1.58	0.52
Throwing	Total	3.1	0.7	4.2	0.9	61	4.80**	1.23
	Men	3.1	0.4	4.0	1.0	23	2.25*	1.17
	Women	3.0	0.8	4.3	0.9	36	4.32**	1.49
11-15 years								
Sprinting	Total	4.2	0.7	3.2	1.0	62	3.88**	1.10
	Men	4.0	0.8	3.1	1.0	23	2.22*	1.04
	Women	4.2	0.7	3.3	1.0	37	3.07**	1.10
Strength	Total	3.5	0.9	4.3	0.8	61	3.22**	0.87
	Men	2.7	0.5	4.1	1.0	23	3.37**	1.73
	Women	4.0	0.7	4.4	0.6	36	1.76	0.58
Throwing	Total	3.1	0.7	4.6	0.6	62	8.63**	2.25
	Men	3.0	0.6	4.5	0.7	23	4.98**	2.31
	Women	3.2	0.8	4.7	0.5	37	7.06**	2.24

^aDegrees of freedom differ because some participants did not complete all items.

^bStudent’s t-test, * p < 0.05; ** p < 0.01.
Values in table represent scores on surveys on a five point scale with higher scores indicating higher self-rated ability; see Study 3 Methods for scales.
Table 4 (on next page)

U. S. collegiate sprinters’ recollections of their onset of training and best performances.
Table 4. U. S. collegiate sprinters’ recollections of their onset of training and best performances.

Sex	Division	Age	Began Training	High School First Year	Lifetime Best Performance
	NCA				
F	I	18	*17	14	12.7, 26.3
F	I	22	18	14	NA, NA
F	I	24	*21	*17	NA, NA
F	II	23	15	14	NA, 26.X, NA
F	III	21	*13	14	13.X, 28.X, NA
F	III	22	*15	15	12.7, 27.2, NA
F	III	23	*19	*15	13.1, 26.X, 60.0, NA
F	III	20	*16	*15	13.5, 26.8, 59.9, 12.4
F	III	22	*17	*17	13.X, 27.X, 59.X, 12.0
F	III	21	*16	*15	13.X, 27.X, 61.X, 13.X
F	III	20	*13	*14	15.X, 27.X, 62.X, 12.4
F	III	19	*15	14	NA, 28.X, 63.X, NA
F	III	21	18	NA	NA, NA
M	I	20	*15	14	11.0, 22.5, 52.9, 10.2
M	I	20	18	*16	11.3, 23.5, 53.4, 10.6
M	I	20	*16	*15	11.2, 23.5, 54.X, 10.9
M	II	22	NA	NA	NA, NA
M	II	21	*17	15	11.3, 22.8, 49.9, 10.6
M	III	22	14	14	NA, NA

100m | 200 m | 400 m | 100m | 200 m | 400 m
51.1 | 56.3 | NA | NA | NA | 51.1
NA | NA | 59.3 | 11.4 | 23.4 | NA
NA | NA | 58.3 | 11.1 | 23.1 | NA
NA | NA | 24.1 | 11.4 | 23.4 | NA
56.3 | 62.2 | NA | NA | NA | 56.3
NA | NA | 59.9 | 11.9 | 26.0 | 62.2
NA | NA | 54.8 | 12.0 | 25.4 | NA
NA | NA | 56.4 | 12.0 | 25.4 | NA
NA | NA | 62.8 | 12.4 | 24.5 | 55.5
NA | NA | 54.8 | 12.0 | 25.4 | NA
NA | NA | 65.5 | 12.9 | 26.0 | 56.5
NA | NA | 49.2 | 10.2 | 21.1 | 49.2
NA | NA | 56.0 | 10.6 | 21.1 | 46.0
NA | NA | 46.3 | 10.9 | 21.2 | 46.3
NA | NA | 47.1 | 10.6 | 21.1 | 46.1
NA | NA | 48.8 | 10.6 | 21.3 | 48.8
| M | III | 21 | 17 | *16 | NA | 22.2 | 49.4 | NA | 22.1 | 47.4 |

a Indicates age estimated from reported grade (e.g., 9th grade = 15 years).

b NA = no data provided by athlete.

c Performances including an "X" after the decimal indicate uncertainty about exact time.
Figure 1

The number of years of training required to reach world class status by male and female Olympic 100 and 200 m champions and the 20 fastest 100 m American male sprinters.

Figure 1. The number of years of training required to reach world class status by male and female Olympic 100 and 200 m champions and the 20 fastest 100 m American male sprinters.
Figure 2

The recollections by Division I, II, and III qualifiers for the 2012 National Collegiate Athletic Association (NCAA) Outdoor Track and Field Championships of their sprinting, strength, and over-hand throwing abilities as youths relative to their peers. Relative ability: 5 = much faster, stronger, or better; 4 = faster, stronger, or better; 3 = about the same; 2 = slower, weaker, or worse. Mean relative ability plus one standard error of the mean is illustrated for each category.