Biodegradation of aromatic pollutants meets synthetic biology

Liang Xiang a, Guoqiang Li a, Luan Wen a, Cong Su a, Yong Liu a, Hongzhi Tang b,**, Junbiao Dai a, *

a CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China

b State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China

ARTICLE INFO

Keywords:
Aromatic compounds
Synthetic biology
Bioremediation
Environmental pollution
Microorganisms

ABSTRACT

Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.

1. Introduction

With rapid growth of the global population and material consumption, discharge of various pollutants continues to increase, and environmental pollution has become one of the most severe issues affecting human health [1]. Pollutants refer to substances that can cause environmental pollution and have an adverse effect on the environment if discharged into the atmosphere, water or soil during human daily life [2]. Environmental pollution have direct damage to the ecological systems, such as water deterioration, forest destruction, and desertification, or indirect damage to human [3]. Among the major environmental pollutants, aromatic compounds are of great concern because they will be persistent in the environment due to the high thermodynamic stability of the benzene group. How to degrade these pollutants is currently a key challenge in environmental pollution control. Thanks to diverse types of microbial metabolism, most pollutants can be degraded or transformed by certain microorganisms [4]. The microbial degradation of aromatic pollutants has been developed for 40 years and has always been a hot topic in environmental protection (see Fig. 1). Naturally genes involved in aromatic pollutants degradation generally exist in clusters and are often located on the plasmids with low copy numbers and large sizes [5]. The gene clusters comprise catabolic genes encoding enzymes, transport genes encoding proteins for uptake of the aromatic compounds, and regulatory genes responsible for regulating the expression of both catabolic and transport genes. Gene clusters from Comamonas sp. strain E6 can degrade o-phthalate, terephthalate, and isophthalate via the protocatechuate 4,5-cleavage pathway [6,7]. Microbes generally only contain the catabolic genes for a single compound, and the degradation of multiple compound pollutants by a single strain is currently not well resolved [8]. Microbial remediation has been drawing increasing attention in the recent years, especially in the rising era of synthetic biology. Synthetic biology provides a strategy to construct engineered microorganisms that can monitor, aggregate and degrade environmental pollutants, with the aim to eliminate water pollution, remove garbage, and reduce air pollution [9]. So far, there are only limited reports on the construction of microorganism to degrade aromatic compounds using synthetic biology [10]. However, many efforts have been made to degrade 1,2,3-trichloropropane via synthetic biology [11], and synthetic biosensors for rapid detection of water contaminants [12], these successful cases bring us the hope to the degradation of aromatic compounds. Here, we review current progresses in aromatic compounds degradation using microbes and present a
proposal for the rational design and construction of microbial strains to degrade aromatic compounds (see Fig. 2). Such a proposal usually follows the Chassis selection-Pathway design-Metabolism optimization-Tolerance engineering cycle, where iteration of each cycle leads to the improvement of the microbes.

2. Synthetic biology conception of microbial remediation

In the field of synthetic genomics, the de novo design and synthesis capabilities of DNA sequences have evolved from a single gene to the entire microbial genome. Viruses, prokaryotic genomes and eukaryotic chromosomes have been successfully synthesized in the past research studies [13–26]. At the same time, the existing enabling technology allows introduction of complex exogenous metabolic pathways into specific microbial hosts with particular modifications to achieve specific goals. In recent years, with the rapid development of synthetic biology, microbial remediation has been drawing increased attention and shown the great potential in degrading pollutants compared to traditional physical and chemical methods. In the last decade, by the means of “top-down” and “bottom-up” engineering approaches, synthetic biology has been proven to be a very powerful tool in utilization and modification of existing genetic materials to redesign organisms with desired abilities. Taking “Design-Build-Test-Learn (DBTL)” biological engineering cycle, the standardized and universal biological component modules could be designed, constructed, integrated, tested and optimized in simple chassis cells to achieve efficient operation of a quantitative and controllable platform-based new living system [29]. The reconstruction of synthetic pathways in dedicated chassis cells for natural product production (e.g. artemisinin, avermectin, resveratrol, or penicillin) has been successfully conducted in this strategy [30]. These results have not only achieved great academic and commercial success, so that more and more researchers are focusing on the synthesis of medicines and raw materials (see Table 1). However, synthetic biology is not yet widely applied in engineering the catabolism pathways in microbes so far. Therefore, the field of synthetic biology is increasingly expanding from a focus on natural products to pollutants degradation by engineering microbes, and artificially synthesized catabolic pathways provide a new approach for environmental bioremediation [33].

2.1. Designing and constructing microbes

Aromatic pollutants may be selected as a degradation target for their various toxic effects on humans. For a given aromatic pollutant, the first step towards heterologous degradation is selection of an appropriate host species in which to engineer the pathway. Within a species, use of previously developed strains that efficiently degrade pollutants can greatly accelerate progress. And lastly, within a given strain, preliminary engineering of the host prior to incorporation of heterologous enzymes can facilitate implementation of the non-native pathway in a new context.

2.1.1. Choosing a suitable chassis

The construction of microbial chassis and their application as artificial cell factories are important factors in microbial degradation [34], that is to identify a suitable host organism. Many microbes have been used as chassis for natural product production, whereas most studies focused on model organisms such as Escherichia coli and Saccharomyces cerevisiae [35]. There is still an urgent need for identification of new chassis. In nature, microbial strains capable of degrading persistent organic pollutants include Pseudomonas [36], Bacillus [37], Sphingomonas [38], Rhodococcus [39], Mycobacterium [40], and Dehalococcoides [41]. Table 2 provides a partial list of microbial strains containing certain gene clusters degrading aromatic pollutants. Using a host which naturally is capable of degrading the target pollutant, even not so efficiently, could greatly accelerate the engineering progress. Fortunately, Pseudomonas putida KT2440 belongs to this type of starting chassis strains. Pseudomonas putida is a gram-negative bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments in which pollutants often exist. The genome-editing methods have been well established in Pseudomonas putida KT2440, which has been considered as a robust metabolic chassis for catabolic pathway assembly. To date, many biodegradation pathways have been integrated into the chromosome of Pseudomonas putida KT2440 [53–55]. In addition, V. natriegens recently emerges as a promising chassis for aromatic pollutants degradation because of its fastest-growing and non-pathogenic nature [56, 57]. A number of tools for genetic manipulation have been established in V. natriegens. These methods comprise DNA transformation methods, such as electroporation, heat-shock transformation and conjugation, as well as genome engineering techniques, such as recombineering, multiplexed genome editing via natural transformation and CRISPR-Cas9. Clearly, V. natriegens could reduce the cycle time drastically, thereby accelerating the optimization of catabolic pathways and protein expression (enzymes).

2.1.2. Engineering a strain with known heterologous pathways

Following selection of a suitable host, engineering a strain with the

![Fig. 1. Development of microbial degradation of aromatic pollutants.](image-url)

In the 1980s, it was an exciting era of microbe discovery; In the 1990s, naturally occurring microbes already have considerable ability to remove many environmental pollutants; In the 2000s, sanger sequencing leads to the discovery of microbial degradation gene clusters; In the future, the emerging of synthetic biology technologies brings a new artificial microorganism for pollutants degradation.
Fig. 2. Schematic overview of synthetic biology strategies applying to microbial degradation of aromatic pollutants (Naphthalene, Toluene, and Phenanthrene). The workflow includes chassis selection, pathway design, metabolism optimization, and tolerance engineering. (A) Not just model microbes but also some nonconventional microbes can serve as a chassis cell for the degradation of pollutants, such as Naphthalene, Toluene, and Phenanthrene. When selecting a host, consideration should be given to the characteristics of the pollutant, the chassis’s genetic manipulation tools, genetic databases, and growth characteristics. (B) Biodegradation pathways containing gene clusters can be integrated into the chromosome or plasmid, and pathway design rely on genome data (gene clusters), mining tools (KEGG and MRE), and engineering tools (DNA assembly, CRISPR/Cas editing and Enzyme engineering). (C) Recently developed synthetic biology tools will accelerate the optimization of catabolism pathways for pollutants (AI-based design parts). (D) Most of the efforts in tolerance engineering have relied on improving the native gene function (nah, tmo, xyl and phn) and capabilities of a chassis cell.

Table 1
Progress of synthetic biomanufacturing of aromatic compounds.

Compound	Production host	Titer (g/L)	Refs
Salicylate	E. coli	11.5	[31]
4-hydroxybenzoate	E. coli	1.82	[31]
3-hydroxybenzoate	E. coli	2.18	[31]
4-aminobenzoate	E. coli	2.88	[31]
2-aminobenzoate	E. coli	1.83	[31]
l-tyrosine	E. coli	1.62	[31]
Phenol	E. coli	1.1	[31]
Muconic acid	E. coli	3.1	[31]
Cinnamaldehyde	S. cerevisiae	0.0003	[32]
Cinnamyl alcohol	S. cerevisiae	0.0278	[32]
Hydrocinnamyl alcohol	S. cerevisiae	0.1131	[32]

Table 2
Function gene clusters in the aromatic pollutants degradation of microbes.

Substrates	Degrading genes	Degradation strains	Refs
Benzene	bns	*Rhodococcus opacus*	[42]
Toluene	tmo, xyl	*Pseudomonas stutzeri*	[43]
Xylene	xyICMAABN	*Haloxenophila aromaticivorans*	[44]
Phenylpropanoid	phd	*Corynebacterium glutamicum*	[45]
Phenol	phe	*Pseudomonas pseudoalcaligenes C70*	[46]
Chlorophenol	cph	*Arthrobacter chlorophenolicus*	[47]
Nitrophenol	hnp, mnp, pnp	*Cupriavidus sp. strain CNP-8, Burkholderia sp. strain SJ98*	[48–50]
Naphthalene	nah	*Pseudomonas putida*	[51]
Phenanthrene	phn	*Burkholderia sp. strain RP007*	[52]
degradation pathways will be designed and executed. When designing the suitable degradation pathway for a specific pollutant, the process of engineering microbial host would be enhanced if we could identify all involved enzymes in the natural degradation pathway. The natural microbial degradation pathways of aromatic compounds mainly involve anaerobic reduction dehalogenation, aerobic dehalogenation, ring-opening mineralization and other co-metabolic steps. Certain anaerobic microbes can obtain energy to support their growth and metabolism through the reductive dehalogenation process using dehalogenase in dehalogenation respiratory reaction, which is an exothermic reaction [58]. Generally, the most common hexachlorobenzene degradation pathway is anaerobic reduction due to halogenated aromatic compounds resistance to aerobic degradation. DDT is converted into DDD (Dichlorodiphenylchloroethane) through removing one chlorine atom by the microbes, which requires transition metal and metal complexes as reducing agents [59]. DDD undergoes reductive dechlorination to generate dichlorodiphenylmethane, and then the benzene ring is cracked under aerobic conditions. The biodegradation of hexachlorocyclohexane also occurs under anaerobic conditions [60]. The anaerobic dehalogenation reaction of aromatic compounds catalyzed by microbes is a relatively slow process, which takes up to 7–12 weeks. After reductive dehalogenation by microbes, the compounds with increased hydrophilicity can become electron donors and enter the microbial aerobic degradation process. Followed further dehalogenation and ring-opening decomposition into small molecules, they subsequently enter the tricarboxylic acid cycle and are oxidized into water and carbon dioxide [61,62]. In contrast, the microbial aerobic degradation reaction of aromatic compounds is a relatively short-term process and does not produce toxic byproducts, which is the major way of aromatic compounds mineralization. The microbial aerobic degradation pathway of organochloride pesticides (OCPs) is to hydroxylate OCPs to form the intermediate product chlorinated catechol, which ring-opening and dechlorinating by lactonization [63,64]. Naphthalene is catalyzed by dioxygenase and dehydrogenase to produce 1,2-dihydroxynaphthalene, and further generate salicylic acid, which is then converted to catechol under the action of salicylic acid hydroxylase, or converted into gentisic acid under monooxygenase, and finally undergoes ring-opening degradation [65]. To access degradation potential, an innovative discovery pipeline was developed to systematically annotate the degradation abilities of microbes using comparative metabolomics and heterologous gene expression. With this platform, microbial genomic DNA fragments containing intact biodegradation gene clusters are inserted into yeast artificial chromosomes (YACs) and are used to transform a yeast host to discover new degradation products. For example, we can design a naphthalene metabolism pathway from catabolic gene clusters through synthetic biology methods, and reconstructed, cloned, and heterologously expressed a naphthalene gene clusters using YACs. Then we employ the YAC-metabolite scoring strategy to identify the degradation product of this gene clusters and probe its biodegradation pathway. The core metabolic networks of model organisms (yeast) are well-characterized and can be used to guide overexpression and knockout modifications for metabolic burden and to address common challenges (e.g., feedback inhibition or other metabolic regulation). The npd gene and the p-nitrophenol degradative operons were introduced into P. putida KT2442 to construct a parathion-degrading pathway [66]. In the practical application example of synthetic biology for the degradation of 1,2,3-trichloropropene, a complete, artificial five-step catabolic pathway has been engineered into Escherichia coli, which assembled haloalkane dehalogenase from Rhodococcus rhodochrous, haloalcohod dehalogenase and epoxide hydrolase from Agrobacterium radiobacter [67]. Then computational models was used to identify bottlenecks in the catabolic pathway and employed forward engineering to improve 1,2,3-trichloropropene degradation [68].

2.1.3. Identifying enzymes and redesigning novel metabolic pathways

A novel candidate degradation pathway is first outlined through selection of stepwise chemical intermediates leading from host metabolism to the target compound (e.g., H2O, CO2), followed by selection of enzymes to carry out each specified reaction. For certain pollutants, detailed knowledge of the native catabolic pathway is available and can be used to outline all intermediates and enzymes in a pathway, facilitating pathway engineering into a heterologous host. In such cases, candidate pathway design, enzyme selection, and pathway testing all offer distinct challenges which can be solved by computational tools. At the design stage, mining the gene clusters involved in aromatic compounds degradation is the first step in the construction of engineering microbes. Many degradation gene clusters have been identified in known metabolic pathways (see Table 2), such as nah, yxl, tmo, phn, bna, phe etc. In addition, some computational tools, KEGG and MRE, can be used for genome mining and pathway prediction involved in aromatic compounds decomposition. After chosen degrading enzymes, the enzyme gene clusters are synthesized in the form of functional clusters and introduced into a suitable chassis to achieve the goal of degradation of pollutants. Therefore, there are growing interests in engineering microbes through molecular biology manipulation to construct novel pathways with improved catalyzing activities for pollution removal. With recent advances in high-throughput screening methods, decomposition enzymes receive increased attention in environmental remediation. Enzymes are very promising in the degradation of pollutants (see Table 3). Among them, oxidoreductases and hydrolases are most studied enzymes for degrading pollutants owing to their high catalytic activity and ability to target a broad range of organic pollutants [83].

Table 3. Enzymes for contaminant degradation.

Enzymes	Species	Substrate	Refs
Oxidoreductases			
Peroxidases	Ganoderma lucidum IBL-05	Dye	[69]
	Trametes pubescens strain i8	Lignin	[70]
	Phanerochaete chrysosporium	Tetracycline and Oxytetracycline	[71]
Oxygenases	Ganoderma lucidum	Phenol	[72]
	Pseudomonas putida G786	Chlorofluoro carbons	[73]
Laccases	Trametes villosa	Bisphenol	[74]
	Coriolus versicolor	Lignin	[75]
	Trametes versicolor	Dye	[76]
	Bacillus subtilis	Polycyclic aromatic hydrocarbons	[77]
Hydrolases			
Lipase	Candida rugosa	Polyurethane	[78]
	Rhizomucor miehei	Soap oil	[79]
Cellulase	Bacillus megaterium	Cellobiose	[81]
Protease	Myrothecium verrucaria	Poultry feather	[82]
2.2. Optimizing the degradation system to boost efficiency by biological parts

Many microorganisms often have only one or none catabolic pathways, so they cannot completely mineralize aromatic pollutants. To solve this problem, one strategy in synthetic biology is to construct engineered strains which could be used as a bioremediation agent for aromatic compounds under complex environmental conditions. For example, one uses computational tools to analyze the genes, enzymes and metabolic pathways of degrading microorganism in different aromatic pollutants, and artificially synthesizes various biological parts [93], such as regulatory elements, transporters and stress-resistant elements (Table 4), and then integrate them into a microbial chassis to form a new metabolic network to achieve complete mineralization of refractory aromatic pollutants. When a fine-tuning of gene expression is required, the best approach is synthetic biology, which is the reconstruction, rewiring, and complete de novo design of transcriptional networks. Applications range from enhancing the understanding of gene regulatory and transcriptional mechanisms to the highly controlled expression of complete metabolic pathways. Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts depend on synthetic transcription factors and corresponding cis-regulatory binding sites. Synthetic promoters and corresponding synthetic transcription factors can be used to regulate the expression of heterologous genes without extensively relying on endogenous host transcription factors. A tunable and reasonable range of expression strengths is desired, especially when novel catabolic pathways are to be implemented. For example, precise control of key pathway enzymes can help maximize pollutant degradation, and synthetic promoters, terminators and ribosome-binding site can be inserted into the gene clusters in the right place to drive gene expression in host (Fig. 2B).

2.2.1. Regulatory elements

Synthetic biology builds artificial biological systems, and regulatory elements are the basis in this system, such as promoters, terminators, operators, open reading frame and ribosome-binding site (RBS). Gene expression is the basis for achieving gene function, especially for enzyme. The classic strategy to regulate this process is to construct an inducible expression system using the repressor protein and operator, such as IPTG system with lac operon in Escherichia coli. However, artificial systems constructed directly from natural elements often have the disadvantages of higher leakage expression, low induction efficiency, and poor stability for protein [109]. To overcome these bottlenecks, redesign artificial biological elements is highly desired [110]. We can develop high-performance biological elements, and standardize them to improve gene expression strength and stability, and achieve ‘plug and play’ goal. Samin et al. [94] reported that an engineered haloalkane dehalogenase with the constitutive dhlA promoter for improving 1,2,3-trichloropropane degradation activity in Pseudomonas putida MC4. Gong et al. [96] improved ketonase expression via promoter engineering strategies for degradation of feather wastes. In addition, the AI-assistant designed promoters have already been experimentally demonstrated to be functional in Escherichia coli [95]. Synthetic terminator also performs the same function as natural terminator [98]. A native promoter of the bph operon was replaced by a constitutive promoter through homologous recombination, which greatly improved the biphenyl and polychlorinated biphenyl degradation activity of Pseudomonas sp. strain KKS102 [111]. Curran [97] et al. synthesized a panel of short terminators with stronger termination efficiency, which have been applied in modulating gene expression in yeast.

2.2.2. Transporting elements

In the previous studies, there are few reports on the transporting elements involved in microbial remediation process. The transport proteins HBT1/HBT2, as a benzoic acid transporter, involved in the catabolic degradation of hydroxyaromatic compounds in the pathogenic yeast Candida parapsilosis [102]. Xu et al. reported that the gentisate transporter GenK was carried in the metabolism of gentisic acid by Corynebacterium glutamicum [103]. In addition, the transport proteins, which involve in the bioremediation process, have been found from Corynebacterium glutamicum. It also contains 4-hydroxybenzoic acid, protocatechueic acid, vanillic acid, and benzoic acid transporters [104].

2.2.3. Other elements

In addition to regulatory elements and transporters, there are other biological parts including mobile genetic elements, plasmids, genomic islands, and transposons. In order to quickly adapt to the stimuli and changes in the environment, microorganisms have gradually evolved the ability to obtain mobile genetic elements from surroundings [105], so that microbes have more and stronger catabolism capabilities for pollutants. For example, the resulting catabolic plasmids obtained certain genes encoding enzyme for the degradation of contaminants such as...
toluene, naphthalene, phenol, and nitrobenzene [107]. Deletion of some genes can also improve the degradation rate, and the genomic islands-deleted *Pseudomonas putida* KT2440 was an optimum chassis for improving the γ-hexachlorocyclohexane and 1,2,3-trichloropropane biodegradation pathways [106]. Transposons are small pieces of DNA that can transpose through either RNA or DNA intermediates, and used for the catabolism of toluene (Tn4651, Tn4653, Tn4656), chlorobenzoate (Tn5271), chlorobenzene (Tn5280), benzene (Tn5542) and naphthalene (Tn4655) [108]. Though microbes showed the advantages in naturally degrading pollutants, they have intrinsic disadvantage that they usually possess the metabolic gene only for one specific compound. Although their advantages are obvious and proof-of-concept have been demonstrated successful in the laboratory, construction of engineered strains is time consuming, and it is difficult for a single strain to degrade compound pollutants. Thus, few products have entered the market so far. However, taking advantages of synthetic biology, we are confident that current technical challenges in microbial remediation will be overcome in the future.

2.3. Strategies to improve the chassis tolerance

The discovery and application of stress-resistant elements is an effective method to enhance the viability of microbes under stress conditions and thereby improve microbe’s pollutant degradation capacity [112]. The long-term domestication of environmental microbes under natural conditions has a special and efficient stress response mechanism. Therefore, the tolerance elements in such microbes have wider application. However, information related to the unique stress response mechanism in environmental microbes remains unclear. Although the microbial degradation mechanism of organic pollutants in the environment has been studied, such as nicotine and biphenyl [113-115], it is still unknown why natural microbes usually appear in harsh environments with high temperature, high salt, strong acid and alkali, or hypertonicity, which exhibit increased metabolic burden and inhibited growth of natural microbes. In practical, engineered strains would also encounter various stresses, such as extreme temperature and pH, oxidative pressure, organic solvents, osmotic pressure, high concentrations of substrates, toxic products or byproducts etc. The metabolic activity of these strains under such stressful growth conditions is severely inhibited or even completely lost, causing dramatically dropping pollutants degradation efficiency. In the case of pollutants, the harsh environment toxicity is one of the main bottlenecks in achieving optimal pollutant degradation. Since overcoming sensitivity to the environment often requires engineering tolerance mechanisms, this specific area of host optimization has recently been termed tolerance engineering. Prominent categories of genes used in tolerance engineering include chaperones, membrane-modifying enzymes, redox enzymes, transport pumps, and transcriptional factors. For instance, chaperones specifically have emerged as a powerful category of proteins that bestow tolerance and often improve degradation efficiency of engineering strains. CRISPR and Red/ET recombineering allow us to target multiple genes simultaneously and provide powerful new approaches in tolerance engineering. Genome shuffling across multiple strains with desirable phenotypes, coupled with strong screens, can be a potential approach to obtain degrading strains. Adaptive evolution is also an effective method to obtain engineering strains under specific environmental conditions, which is used to screen microorganisms resistant to environmental stresses.

The tolerance of chassis cells against the harsh environments can be rationally enhanced if the tolerance elements present in natural microbes are well understood. Tolerance elements are closely related to the cell structure, physiological properties, metabolic pathways and regulatory processes of cells, such as cell wall and cell membrane, efflux pump, heat shock proteins, and compatible solutes (Table 5).

Tolerance mechanism	Proteins	Species	Stress resistance	Refs
chaperones	GroEL	*Clostridium acetobutylicum*	n-Butanol	[116]
transports	RhsB	*Lactococcus lactis*	Acid	[117]
membrane	Med2	*Candida glabrata*	Acid	[118]
membrane	MgaA	*E. coli*	Sucinic acid	[119]
efflux pumps	RcdA	*E. coli*	Limonene	[120]
regulators	MerR	*E. coli*	3-Methyl	[121]
heat shock proteins	HspX, Y, Z	*P. putida*	Phenol	[122]
compatible solute	RHD	*Marsiella AD-3*	saline	[123]

2.3.1. Cell wall and cell membrane

The cell wall is an important biological barrier separating microorganisms from the external environment. The murA gene encoding UDP-N-acetylgalactosamine enolpyruvoyl transferase, is known to catalyze the biosynthesis of peptidoglycan, which is an important cellular component of cell wall in prokaryotes [124]. Yuan et al. reported that overexpression of peptidoglycan biosynthesis murA2 gene from the *Lactobacillus plantarum* could enhance *Escherichia coli*’s tolerance to alcohols [125]. On the other hand, cell membrane is the major target under external stress conditions, and engineering membrane and cell-wall is a good strategy for developing industrial strains with increased stress tolerance [126,127]. Cellular analysis and comparative transcriptomics revealed that *Candida tropicalis* raised the tolerance to phenol through improvement of cell wall resistance [128].

2.3.2. Efflux pump

Efflux pumps are membrane transporters localized in the cytoplasmic membrane of various cells, such as TtgABC, TtgDEF, TtgGHI and SrpABC in *Pseudomonas Putida* and AcrAB-ToIC in *E. coli*. AcrAB-ToIC is involved in the tolerance towards olefin compounds in *Escherichia coli* [129]. The EmhABC in *Pseudomonas fluorescens* LP6a effluxes phenanthrene and anthracene, and the presence of EmhABC decreased the efficiency of phenanthrene biodegradation. However, the EmhABC is involved in naphthalene tolerance and increases the efficiency of naphthalene metabolism in *Pseudomonas fluorescens* LP6a [130].

2.3.3. Heat shock proteins

Heat shock proteins, as chaperones, play an important role in stress tolerance, and are induced or overexpressed for degradation and reactivation of damaged proteins. Suo et al. reported that overexpression of GroEL increased the butyric acid tolerance of *Clostridium tyrobutyricum* ATCC 25755 [131]. The genes groES and groEL from *Clostridium acetobutylicum* ATCC 824 were introduced into *Clostridium beijerinckii* NCIMB 8052, which enhanced its tolerance to furanic acid [132]. Overexpressing three heat shock protein genes hsp18.5, hsp18.5S and hsp19.3 in *Lactobacillus plantarum* strain WCF51 improved adaptation to heat, cold, and solvent tolerance [133]. Growth competition experiments showed that HspX, Y and Z of *Pseudomonas putida* are involved in tolerance against the toxic effects of phenol, and the novel heat shock operon hspXYZ, which is a part of the chaperone network could mediate stress tolerance in the natural environment [122].

2.3.4. Compatible solute

Accumulation of compatible solutes such as trehalose, proline, and betaine in the cell can balance intracellular and extracellular osmotic pressure, and maintain the metabolic activity of the cell to adapt to stress environment. Betaine, a regulator of osmosis, is synthesized by aldehyde dehydrogenase, and heterologous expression of the betaine aldehyde dehydrogenase gene from *Ammopiptanthus nanus* facilitated engineered *Escherichia coli* to confer high heat and salt tolerance under high temperature at 55 °C and 700 mM NaCl [134]. Intracellular proline
protects yeast from damage caused by freezing and ethanol, and is important for breeding stress-tolerant industrial yeast strains [135]. A phenanthrene-degrading strain, *Martelella* AD-3, was isolated from high salt environments. Label-free proteomics revealed that *Martelella* relied on aromatic ring-hydroxylating dioxygenase and dihydrodiol dehydrogenase to degrade phenanthrene, and accumulated compatible solutes for resistance to salt stress [123].

3. Challenges and future directions

Microbial remediation plays a critical role in the treatment of environmental pollution. Due to the diversity and complexity of environmental pollution, the tolerance of microbes under pollution condition has become the bottleneck for bioremediation. The application of synthetic biology in microbial remediation is still in its infancy but already offers exciting possibilities for creating a cleaner, safer, healthier environment. Many challenges remain to be resolved before the engineered cells can be used to treat environmental pollution in practice. For example, there may be multiple pollutants in the environment, which makes microbes unable to execute the expected degradation function. Since after a microorganism targeting a single pollutant is released into the environment, other pollutants and environmental factors may affect the growth and degradation speed and efficiency of this microorganism. We need to create a new design model that takes uncertainty into account and allows us to gradually increase the complexity when mimicking the natural environment.

In order to solve the problem of in-situ treatment of aromatic pollutants, we proposed the following technical routes: (i) Mine genes in microbial systems, such as degradation genes, transport genes, molecular switches, and stress resistance genes; (ii) Rationally design degradation pathways and systematically optimize high-efficiency degradation components; (iii) Improve the movement, aggregation, interaction of synthetic microorganisms and the ability to adapt to complex environments; (iv) Design, assemble multifunctional metabolic networks, and use artificial intervention to build a synthetic biological system for the aromatic pollutants degradation; (v) Develop artificial degradation metabolic systems in in-situ treatment of pollutants and apply it in actual industrial application.

The more enzymatic steps in a heterologous pathway, the more formidable the challenge for construction of the pathway, and discovery of the requisite enzymatic components. Advances in synthetic genomics, DNA sequencing, synthesis and assembly make it possible to redesign and artificially synthesize whole genomes, and these enabling technologies have allowed the discovery and engineering of increasingly long catabolism pathways. In the future, the fast development of synthetic biology has stimulated the reconstruction of cellular components to create synthetic microorganisms for solving the problem of pollutants (Fig. 3). By complying with the central dogma, which operates microbial catabolism, synthetic biology researchers have reprogrammed some organelles, such as nucleus, ribosomes, and mitochondria, and have created synthetic microorganisms which can serve as smart chassis for pollutant degradation.

However, commercial applications remain limited due to complicated biodegradation processes, and synthetic biology also brings many uncertainties to microbes. First, existing synthetic biology tools may not be suitable for new chassis and need to be further optimized. Second, considering that bioremediation will ultimately be performed in an open environment, the ecological safety of engineered bacteria must be considered, such as possibility of introducing mobile genetic elements and antibiotic resistance marker genes into the environment. Third, the change in microbial metabolic pathway, will release unknown toxic products for the environment, indirectly acting as opposition microbial candidates.

Funding

This work was supported by grants from the National Natural Science
Declaration of competing interest

The authors indicate that they have no conflict of interest.

References

[1] Dvorák P, Nikel PJ, Damborský J, de Lorenzo V. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biotechnology. Biotechnol Adv 2018;36(7):1758-66. https://doi.org/10.1016/j.biotechadv.2017.08.001.

[2] Padhye LP. Fate of environmental pollutants. Water Environ Res 2016;88(10): 1619–36. https://doi.org/10.1016/j.wer.2016.04.007.

[3] Sana B. Bioresources for control of environmental pollution. Adv Biochem Eng Biotechnol 2015;147:137–83. https://doi.org/10.1007/10.1016/j.aibbe.2014.08.006.

[4] Che S, Men Y. Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 2019;46(9-10):1343–58. https://doi.org/10.1007/s10295-019-02418-1.

[5] Rucka L, Nestvář J, Pátek M. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 2017;33(3):174. https://doi.org/10.1007/s11292-017-2339-x. Published 2017 Sep 6.

[6] Fukuhara Y, Inakazu K, Kodama N, et al. Characterization of the isophthalate fermentation pathway in Synechococcus sp. strain SH-1. Ext Microbiol Environ 2009;9:579-89. https://doi.org/10.1007/s13299-009-0048-6.

[7] Lawton CE, Harcombe WR, Hatzenpichler R, et al. Common principles and best practices for engineering microorganisms. Nat Rev Microbiol 2019;17(12):725–41. https://doi.org/10.1038/s41576-019-0255-9.

[8] de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol 2008;19(6):579. https://doi.org/10.1016/j.copbio.2008.08.005.

[9] Noda S, Shirai T, Oyama S, Kondo A. Metabolic design of a platform Escherichia coli strain for producing phenylpropionic acid. Metab Eng 2016;33:119–29. https://doi.org/10.1016/j.ymben.2015.11.007.

[10] Gotardi M, Knudsen JD, Prado I, Orešk Bi, Brandiardu P. Boro E. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2017;101(12):4883–93. https://doi.org/10.1007/s00253-017-8129-x.

[11] Rylott EL, Bruce NC. How synthetic biology can help bioremediation. Curr Opin Chem Biol 2018;40:88–95. https://doi.org/10.1016/j.cbpa.2017.09.004.

[12] Yu G, Xu X, Wu Y, et al. Advances and prospects of Bacillus subtilis cellulases from: rational design to industrial applications. Met Eng 2015;50: 109–21. https://doi.org/10.1016/j.jiem.2015.08.006.

[13] Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020;5(4):245–51. https://doi.org/10.1016/j.syntbio.2020.07.005. Published 2020 Jul 29.

[14] Xin J, Liu X, Liu W, Zheng X. Effects of biochar-BDE-47 interactions on BDE-47 bioaccessibility and biodegradation by Pseudomonas putida T7.1. Ecotoxicol Environ Saf 2014;106:257–62. https://doi.org/10.1016/j.ecoenv.2014.04.026.

[15] Li J, Luo C, Zhang D, Cai X, Jiang L, Zhang G. Stable-isotope probing-enabled cultivation of the indigenous bacterium Ralstonia sp. strain MI1, capable of degrading phenanthrene and biphenyl in industrial wastewater. Appl Environ Microbiol 2019;85(14). https://doi.org/10.1128/AEM.00511-19. e00511-19. Published 2019 Jul 1.

[16] Kim YM, Nam IH, Murugesan K, Schmidt S, Crowley DE, Chang YS. Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl Microbiol Biotechnol 2007;77(1):187–94. https://doi.org/10.1007/s00253-007-0729-x.

[17] Robrock KR, Coelhan M, Sediak DL, Alvarez-Coelho L. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates. Environ Sci Technol 2009;43(15):5705–11. https://doi.org/10.1021/es9014820.

[18] Dogra C, Raina V, Pal R, et al. Organization of lin genes and IS6100 among Sphingomonas putida SH204 and its transconjugants. Environ Microbiol 2009;11(5):1294–302. https://doi.org/10.1111/j.1462-2920.2009.01715.x.

[19] Belya K, Yamamoto H, Hasegawa Y. Isolation of marine xylene-utilizing bacterium and characterization of Haloxenophillus aromaticivorans gen. nov., sp. nov. and its xylene degradation gene cluster. FEMS Microbiol Lett 2018;365(7). https://doi.org/10.1093/femsle/fny042.

[20] Kallischuer N, Vogt M, Kappes J, et al. Identification of the phi pl gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum.
L. Xiang et al.

Appl Microbiol Biotechnol 2016;100(4):1871–81. https://doi.org/10.1007/s00253-015-7165-7.

Jostensbaas M, Vigger S, Heinarii E, et al. Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate. PloS One 2017;12(3): e0173180. https://doi.org/10.1371/journal.pone.0173180. Published 2017 Mar 22.

Nordin K, Uell M, Jansson JK. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 2005;71(11):6538–44. https://doi.org/10.1128/AEM.71.11.6538-6544.2005.

Min J, Chen W, Xu H. Biodegradation of 2,6-dibromo-4-nitrophenol by Cupriavidus sp. strain CNP-8. Front Microbiol 2016;7:791. https://doi.org/10.3389/fmicb.2016.00791. Published 2016 May 25.

Izmailkova TY, Sazonova MO, Nigmatullin RS, et al. Development of an efficient pathway construction chassis. Environ Microbiol 2020;22(10):4394–408. https://doi.org/10.1111/1462-2920.15128.

Zhao Y, Che Y, Zhang F, et al. The hcb gene operon involved in chloroanilines metabolism in a newly isolated bacterium, cupriavidus sp. strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 2018;103:57–64. https://doi.org/10.1016/j.ijbiomac.2018.12.053.

Wen X, Jin J, Li S. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—a white rot fungus. Chemosphere 2009;78(5):1003–7. https://doi.org/10.1016/j.chemosphere.2009.09.037.

Xu H, Gao MY, Gao YH, Bai XH, Zhou XW. Expression and characteristics of manganese peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties. Int J Biol Macromol 2017;103:57–64. https://doi.org/10.1016/j.ijbiomac.2017.04.076.

Rekk H, Zarij Jauzadi N, Boucens K, et al. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 2019;125:514–25. https://doi.org/10.1016/j.ijbiomac.2019.09.025.

Hussain F, Bhatti HN. Immobilized lignin peroxidase from Immersimon sp. strain PD653 [published correction appears in Appl Environ Microbiol. 2017 Dec 15;84(2):C70]. J Environ Manag 2017;197:23–32. https://doi.org/10.1016/j.jenvman.2017.12.075.

Gong T, Xu X, Che Y, et al. Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb Biotechnol 2018;11(6):792–6. https://doi.org/10.1111/1759-0826.12845. Published 2018 Dec 25.

Gong T, Xu X, Dang Y, et al. An engineered Pseudomonas putida can simultaneously degrade chlorophenols, pyrethroids and carbamates. Sci Total Environ 2018;628:629–65. https://doi.org/10.1016/j.scitotenv.2018.02.143.

Zhang S, Wondrous D, Cooper M, Zinder SH, Schümann G, Adrian L. Anaerobic dehalogenation of chloroanilines by Dehalococcoides mccartyi strain PD653. J Environ Sci Health Part A 2019;54(20):2793–801. https://doi.org/10.1080/10934529.2019.1671087.

Bumpus JA, Aust SD. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chloro-5-nitrophenol) in the anaerobic degradation of DDT in tropical soil. Environ Sci Pollut Res 2011;18(4):1784–93. https://doi.org/10.1007/s11356-010-0216-z.

Moreira-Gasparin FG, de Souza CG, Costa AM, et al. Purification and characterization of a Cu(II)-nitrilotriacetate complex with high laccase activity from a marine bacterium, Alteromonas macleodii. J Microbiol Biotechnol 2014;24(6):793–801. https://doi.org/10.4014/jm.1405.05.001.

Ito K, Takagi K, Matsushima Y, et al. Identification of the novel hcbB operon catalyzing aerobic hexachlorobenzene dechlorination in Nocardioides sp. strain PD653 [published correction appears in Appl Environ Microbiol. 2017 Dec 15;84(2):C70]. J Environ Manag 2017;197:23–32. https://doi.org/10.1016/j.jenvman.2017.12.075.

Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by Pseudomonas aeruginosa: Molecular mechanisms. Trends Microbiol 2003;11(6):199–204. https://doi.org/10.1016/S0928-4894(03)00086-2.

Hussain F, Bhatti HN. Immobilized lignin peroxidase from Immersimon sp. strain PD653 [published correction appears in Appl Environ Microbiol. 2017 Dec 15;84(2):C70]. J Environ Manag 2017;197:23–32. https://doi.org/10.1016/j.jenvman.2017.12.075.

Jostensbaas M, Vigger S, Heinarii E, et al. Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate. PloS One 2017;12(3): e0173180. https://doi.org/10.1371/journal.pone.0173180. Published 2017 Mar 22.

Nordin K, Uell M, Jansson JK. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 2005;71(11):6538–44. https://doi.org/10.1128/AEM.71.11.6538-6544.2005.

Min J, Chen W, Xu H. Biodegradation of 2,6-dibromo-4-nitrophenol by Cupriavidus sp. strain CNP-8. Front Microbiol 2016;7:791. https://doi.org/10.3389/fmicb.2016.00791. Published 2016 May 25.

Izmailkova TY, Sazonova MO, Nigmatullin RS, et al. Development of an efficient pathway construction chassis. Environ Microbiol 2020;22(10):4394–408. https://doi.org/10.1111/1462-2920.15128.

Zhao Y, Che Y, Zhang F, et al. The hcb gene operon involved in chloroanilines metabolism in a newly isolated bacterium, cupriavidus sp. strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 2018;103:57–64. https://doi.org/10.1016/j.ijbiomac.2017.04.076.

Hussain F, Bhatti HN. Immobilized lignin peroxidase from Immersimon sp. strain PD653 [published correction appears in Appl Environ Microbiol. 2017 Dec 15;84(2):C70]. J Environ Manag 2017;197:23–32. https://doi.org/10.1016/j.jenvman.2017.12.075.
[113] Hu H, Wang L, Wang W, et al. Regulatory mechanism of nicotine degradation in bacteria. Appl Microbiol Biotechnol 1999;51(1):379-84. doi:10.1007/s002530051356.

[114] Chen YJ, Liu P, Nielsen AA, et al. Characterization of natural and synthetic nicotinate mononucleotide oxidoreductase from Pseudomonas putida. mBio 2019;10(3). doi:10.1128/mBio.00602-19. e00602-19. Published 2019 Jun 4.

[115] Li Q, Wang X, Yin G, et al. New metabolites in dibenzofuran cometary degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. Environ Microbiol. 2010;12(2):478-88. doi:10.1111/j.1462-2920.2009.01914.x.

[116] Tomas CA, Weller NE, Papoutsakis ET. Overexpression of groEL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged subtilisin and subtilase production, and changes in the cell’s transcriptional response. Appl Environ Microbiol 2003;69(8):4951-65. doi:10.1128/AEM.69.8.4951-4965.2003.

[117] Zhu Z, Yang J, Yang P, Wu Z, Zhang J, Du G. Enhanced acid-stress tolerance in Lactobacillus casei N28000 by overexpression of ABC transporters. Microb Cell Factories 2019;18(1):136. doi:10.1186/s12934-019-1188-5.

[118] Zhou P, Yuan X, Liu H, Qi Y, Chen X, Liu L. Candida glabrata Yap6 recruits Med2 to alter glycerophospholipid composition and develop acid pH stress resistance. Appl Environ Microbiol 2020;86(24):e01915-20. doi:10.1128/AEM.01915-20.

[119] Wang J, Zhang B, Zhang J, et al. Enhanced succinic acid production and magnesium utilization by overexpression of magnesium transporter mgATPases in Escherichia coli. Microb Cell Factories 2019;18(1):125–31. doi:10.1186/s12934-019-1098-3.

[120] Frederix M, Hütter K, Les J, et al. Development of a native Escherichia coli induction system for ionic liquid tolerant PLoS One 2014;9(7):e101115. doi:10.1371/journal.pone.0101115.

[121] Foo JL, Jensen HM, Dahl RH, et al. Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 2014;5(6):e01932-14. doi:10.1128/mBio.01932-14.

[122] Krajewski SS, Jonewig M, Nagel M, Narberhaus F. A tricistronic heat shock operon is important for stress tolerance of Pseudomonas putida and conserved in many environmental bacteria. Environ Microbiol 2014;16(6):1835-53. doi:10.1111/1462-2920.12402.

[123] Chen X, Wang W, Hu H, et al. Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martellella strain AD-3. Ecotoxicology 2020. doi:10.1007/s10646-020-02310-4.10.1007/s10646-020-02310-4.

[124] Du W, Brown JR, Sylvester DR, et al. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria. J Bacteriol 2000;182(15):4146-52. doi:10.1128/jb.182.15.4146-4152.2000.

[125] Yuan Y, Bi C, Nicolaou SA, Zingaro KA, Ralston M, Papoutsakis ET. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA gene increases the tolerance of Escherichia coli to alcohol and enhances ethanol production. Appl Microbiol Biotechnol 2014;98(19):8399–411. doi:10.1007/s00253-014-6004-0.

[126] Sandoval NR, Papoutsakis ET. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: beyond sole genes. Curr Opin Microbiol 2016;33:56-66. doi:10.1016/j.mib.2016.06.005.

[127] Qi Y, Liu H, Chen X, Liu L. Engineering microbial membranes to increase stress tolerance of industrial strains. Metab Eng 2019;55:24-34. doi:10.1016/j.ymben.2018.12.010.

[128] Wang H, Li Q, Peng Y, et al. Cellular analysis and comparative transcriptomics reveal the tolerance mechanisms of Candida tropicalis toward phenol. Front Microbiol 2020;11:544. doi:10.3389/fmicb.2020.00544. Published 2020 Apr 15.

[129] Mingardon F, Clement C, Hirano K, et al. Improved olefin tolerance and metabolism, and changes in the cell wall composition of Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged subtilisin and subtilase production, and changes in the cell’s transcriptional response. Appl Environ Microbiol 2003;69(1):27-32. doi:10.1128/AEM.69.1.27-32.2003.

[130] Adebusuyi AA, Foygt JM. The EmABC efflux pump in Pseudomonas fluorescens LbP is involved in naphthalene tolerance but not efflux. Appl Microbiol Biotechnol 1993;39(3):212-23. doi:10.1007/bf00184761.

[131] Suo Y, Luo S, Zhang Y, Liao Z, Wang J. Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755. J Ind Microbiol Biotechnol 2017;44(8):1145–56. doi:10.1007/s10295-017-1939-7.

[132] Lee S, Lee JH, Mitchell RJ. Analysis of Clostridium beijerinckii NCIMB 8052’s transcriptional response to ferulic acid and its application to enhance the strain tolerance. Biotechnol Biofuels 2015;8:68. doi:10.1186/s13068-015-0252-5. Published 2015.12.20.

[133] Ficco D, Capozzi V, Goffin P, Holt P, Spano G. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 2007;74(9):909–15. doi:10.1007/s00253-007-1228-x.

[134] Yu HQ, Wang VG, Tong SM, Shi YE, Fu FL, Li WC. Heterologous expression of betaine aldehyde dehydrogenase gene from Ammonipputatus nanus confers high heat and salt tolerance to Escherichia coli. Gene 2014;549(1):77-84. doi:10.1016/j.gene.2014.07.019.

[135] Takagi H, Taguchi J, Kano T, Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast 2016;33(8):355-63. doi:10.1002/yea.3154.