The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes

Fumiaki Uchiumi · Satoru Miyazaki · Sei-ichi Tanuma

Received: 16 November 2010 / Revised: 28 February 2011 / Accepted: 17 March 2011 / Published online: 3 April 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Transcription is one of the most fundamental nuclear functions and is an enzyme complex-mediated reaction that converts DNA sequences into mRNA. Analyzing DNA sequences of 5′-flanking regions of several human genes that respond to 12-0-tetradecanoyl-phorbol-13-acetate (TPA) in HL-60 cells, we have identified that the ets (GGAA) motifs are duplicated, overlapped, or clustered within a 500-bp distance from the most 5′-upstream region of the cDNA. Multiple protein factors including Ets family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ets motifs play important roles in regulation of various promoters. Here, we propose a molecular mechanism, defined by the presence of duplication and multiplication of the GGAA motifs, that is responsible for the initiation of transcription of several genes and for the recruitment of binding proteins to the transcription start site (TSS) of TATA-less promoters.

Keywords Differentiation · Ets family proteins · GGAA motif · TATA-box · TATA-less promoters · TF-SEARCH · TSS

Abbreviations
ATRA All-trans retinoic acid
bp Base pair
IFN Interferon
iPS cells Induced pluripotent stem cells
ISRE Interferon-stimulated response element
Luc Luciferase
MCS Multi-cloning site
nt Nucleotide(s)
PARG Poly(ADP-ribose) glycohydrolase
PD-1 Programmed death-1
TBP TATA-binding protein
TPA 12-0-tetradecanoyl-phorbol-13-acetate
TSS Transcription start site

Introduction
A human promyelocytic cell line, HL-60, is frequently used to analyze cellular differentiation mechanisms [1]. HL-60 cells differentiate into macrophage-like cells and granulocytic cells after treatments with
12-O-tetradecanoyl-phorbol-13-acetate (TPA) and all-trans retinoic acid (ATRA), respectively [1–3]. In particular, it has been shown that the expression of a number of genes is augmented during differentiation induced by TPA [4]. Recently, TPA was successfully administered to patients with myelocytic leukemia, leading to temporary remission [5, 6]. This TPA-treatment is based on a concept that the growth and proliferation of lymphoma or cancer cells could be artificially suppressed if they are forced to differentiate into a non-growing state [7]. However, TPA has been originally identified as a cancer-causing reagent (carcinogen) activating protein kinase C [1]. Therefore, extreme care will be needed to administer the reagent in clinical situations.

It has been demonstrated that somatic cells could be converted into induced pluripotent stem (iPS) cells by introducing just four transcription factors, namely Oct4, Sox2, Klf4, and c-Myc expression vectors or their encoding proteins, into somatic cells [8, 9]. The possibility to change the destiny of cells by introducing transcriptional factors prompted us to study transcription systems that control cellular differentiation. In order to establish a method to convert malignant cells to the non-growing differentiated state without using TPA, it will be important to determine and characterize molecular mechanisms in the transcriptional signal transduction systems that are induced by TPA. In other words, the changes in the TPA-induced transcriptional controlling system will provide useful information about which genes of transcription factors should be transfected into the malignant cells.

Previously, it has been demonstrated that the human PARG promoter is activated during the differentiation of HL-60 cells induced by TPA [10]. Another example is the IGHMBP2 promoter, whose cDNA was isolated by Western-screening during a search for a gene encoding a binding factor to a 50-bp sequence of the MMTV LTR [11]. Interestingly, there are no obvious TATA- or CCAAT-boxes around the transcription start sites (TSS), but the duplicated GGAA motifs are commonly contained in the region between the TSS and the 100-bp upstream of the human PARG and IGHMBP genes. In addition, mutation analyses showed that the duplicated GGAA motifs of both promoters play a primarily important role in promoter activity during the TPA-response [10, 12]. Taken together, the duplicated (overlapped) GGAA motifs located very close to the TSS in the human PARG and IGHMBP2 promoters are primarily required for the initiation of transcription during TPA responses. Studies on the transcriptional mechanisms regulated by the duplicated GGAA motifs and binding factors may provide a new strategy to artificially induce differentiation of leukemia or cancer cells by introducing specific gene expression- and suppression-vectors.

Identification of the duplication of the GGAA motifs near the most 5'-upstream regions of the TPA-inducible genes

It has been indicated that the GGAA motif is located in the promoter regions of some human genes encoding interleukin-2 receptor β-chain (IL-2Rβ), Ets-2,stromelysin 1, TCRγ enhancer, TCRβ enhancer, and NFAT-1 [13]. Mutation of the GGAA motif abolished activity of the IL-2Rβ promoter during the PMA response in Jurkat cells. These observations, including ours that we reported in a recent paper [10, 12], suggested a hypothesis that the GGAA motif might be an essential transcription regulatory element with a positive response to TPA-induced signals. By analyzing the activities of various promoters of human genes encoding DNA helicases, or repair-associated proteins, it has been shown that the duplicated GGAA motifs are located in the XPB, RTEL, and Rbl promoters [14]. It has been reported that, during the macrophage-like differentiation of HL-60 cells, Rbl belongs to a group of TPA-inducible late genes [4]. In addition, the expression of the PARG and the IGHMBP2 genes shows a late responding profile, and the gene encoding the GA-binding transcription factor, β subunit 2, is classified into the early response group [4, 10, 11]. Multiple GGAA motifs are contained in the promoter region of the human CD68 gene that is widely regarded as a pan macrophage marker in immunohistochemistry studies, and its expression is regulated by Elf-1, PU.1, and IRF-4 [15]. These observations suggested that duplications of the GGAA motifs are necessary for the TPA-late response or macrophage-like differentiated state of the cells. Therefore, DNA sequences of the 5'-upstream regions of 19 late response genes were investigated and analyzed by a TF-SEARCH [4, 14]. As summarized in Table 1, duplications of the GGAA motifs are found in eight TATA-less promoters, including the Rbl, CD31(PECAM1), IL1R1, IL1R2, IL1RAPL2, S100A3, eIF3A, and ECM1 promoters. The 5'-flanking regions of the INHBA and S6 kinase genes contain clusters of GGAA motifs [14]. Interestingly, promoter regions of the IL1R1, IL1R2, and IL1RAPL2 genes, which encode the IL1 signal receptor or its associated proteins, have duplicated GGAA (TTCC) motifs (Table 1), suggesting that these genes are regulated by the IL1 signaling system. Although a single GGAA motif is located very close to the TSS of the PEA15, ANXA5, and RFC-1 genes, another six promoters, including those of the LGALS3, PREP, CHST10, RFXAP, P2Y5, and KCNMA1 genes, do not contain duplications of the GGAA motifs within the 300-bp from the most 5'-upstream region of their cDNAs [14]. Except for the P2Y5 promoter, which contains TA-rich sequences with Oct-1 binding sites, these are comparatively rich in GC content with GC-boxes. Therefore, Sp1 or GC-box binding proteins
Possible functions of duplicated ets (GGAA) motifs

Table 1 Duplication of the GGAA motifs in various human promoters

Genes	Sequence
IL-1β	5′-GAAGCTTCCACCAATACCTTTTTCCCCCTTCTTAA-3′
CD31 (PECAM-1)	5′-CGTTCAGGAAAGGCCTATTTTCCTAGG-3′
ILIR1	5′-TGTTCTCCCTTTCCAGG-3′
ILIR2	5′-TCACATTTCCCTTCTACGG-3′
IL1RAPL2	5′-CTCATTTCCAGGCCCTTCCCTTCTT-3′ (downstream of TSS)
S100A3	5′-AGCAATTTCCAGGAAGGCCTTTCCCTCC-3′
eIF3A	5′-GCCCTTCTTTCCCTCTCTC-3′ (downstream of TSS)
ECM1	5′-GGCCTTCCAGGAGGAGCTGGCTCTGTCATGTCATGGCAGGAGCTGA-3′ (downstream of TSS)
Rho1	5′-CGGCCGGAAGTGACGTTTCTCCCGCG-3′
CD41 (ITGA2B)	5′-AAGACCTCTTGTGAGAGAATCTGAAGGAGGAGGAGG-3′
PDCD1	5′-ACAGTTTCCTCCCTCCCTGCA-3′ (downstream of TSS)
ISG15	5′-CGCTCAGGAAAGGGAAACCGA-3′
CD40 (TNFRSF5)	5′-TTGTGGGAAATGTCTCCTGGGAACTCC-3′

The 5′-upstream regions (300–500 bp upstream from TSS) of the human IL-1β- and TPA-inducible late responding genes [4] were retrieved from the GRCh37 reference primary assembly sequence database and analyzed with the TF-SEARCH program (http://www.cbrc.jp/research/db/TFSEARCH.html). Eight of the 20 “late responding” classified promoters contain duplicated or triplicated GGAA (TTCC) motifs [4]. GGAA (TTCC) motifs in the IFN-inducible CD41, PDCD1, ISG15, and CD40 promoters are also shown.

The duplicated GGAA motifs are located in the promoter regions of interferon-inducible genes, and interleukin, endocrine signal-associated genes

Multiple GGAA motifs are found in the promoter region of the human (Table 1) and the mouse ITGA2B genes encoding the megakaryocyte marker, CD41, that regulates cell adhesion and platelet aggregation [16, 17]. It has been indicated that the MAP kinase signaling pathway and transcription factors such as Elk-1 and Ets play important roles in megakaryocytic differentiation [16, 18]. Overlapping GGAA motifs are hidden in the interferon (IFN)-stimulated response element (ISRE)-like sequence that IRF-2 binds to and activates transcription of the ITGA2B gene [19]. It has also been reported that IRF-2 drives megakaryocytic differentiation via activation of the promoter of the TPO gene encoding a thrombopoietin receptor [20]. These observations imply that transcriptional activation by the cis-acting effect of the duplicated GGAA motifs plays an important role in the differentiation of megakaryocytic cells as well as macrophage-like cells. Moreover, it has been reported that the ISRE of the mouse programmed death-1 (PDCD1) promoter contains duplication of the GGAA (TTCC) motifs and plays a role in the response to IFN-α in macrophages [21]. The PDCD1 gene encodes an immuno-regulatory receptor that belongs in the CD28 family [22]. In addition, duplication of the GGAA motifs is found in the interferon-responsive promoter regions of the human interferon-stimulated gene 15 (ISG15) [23] and CD40 (TNFRSF5) gene that encodes TNF receptor super family [24] (Table 1). Furthermore, the GGAA motif is located in an IFN-γ activated sequence in the transporter of antigenic peptide-1 (TAP1) promoter [25]. Analysis of transcripts in purified neutrophils from active tuberculosis patients, compared with healthy controls, showed that IFNs activate JAK/STAT signal cascade to induce various gene expressions, including IRFs and various interferon-inducible genes [26]. Within 500 bp upstream from the TSS, the duplicated GGAA (TTCC) motifs are found in 5′-flanking regions of the OAS1, OAS2, OAS3, IFI16, IFI44, IFI44L, IFIH1, IFITM3, TAP1, GBP2, STAT1, STAT2, CD274, CXCL10, IFIT5, and IRF7 genes. Therefore, the duplicated GGAA motifs and/or the recognizing factors might play a part in the regulation of those gene expressions responding to the signals evoked by IFNs. Recent study showed that IFN-γ-producing macrophages, which co-express CD68 molecule, are identified in 70% of human melanomas [27]. Although not duplicated, putative c-Ets binding motifs are found in the promoter region of the IFNG gene, suggesting that GGAA motif binding factors may co-regulate the IFNG and the CD68 genes in macrophages.

As described above, the duplicated GGAA motifs are commonly found in the ILIR1, ILIR2, and IL1RAPL2 gene promoter regions (Table 1). Also, the duplication of the motifs is observed in the human IL-1β [28] (Table 1), IL-2 [29], and IL-2Rβ [13] promoter regions. A recent study showed that Elk-1 and SRF regulate ets motif containing the ZC3H12A promoter with IL1 dependency, suggesting that the IL1 signaling system could be sensitized via the
The effect of Ets proteins on the endocrine system has been investigated [34]. It was recently indicated that two ets motifs located in the human insulin induced gene 2 (INSIG2) promoter play important roles in the response to insulin through binding or activation of the transcription factor, SAP1a [35]. Duplication of the GGAA motifs is found in the intronic promoter region of the human glucose-dependent insulinoergic polypeptide-encoding gene GIP [36]. The GIP can stimulate insulin release from pancreatic β-cells when blood glucose concentration increased [36]. These lines of evidence suggest that the GGAA motifs regulate the expression of genes encoding proteins that are involved in not only cellular differentiation but also in the immune response and endocrine systems.

The GGAA-microsatellite-containing genes in the human genome: the main target sequences for EWS/FLI to function as an oncoprotein

Repetitive sequences are known to be located in eukaryotic chromosomes. Telomeres, which are composed of TTA GGG repeats, are located at the end of linear chromosomes [37]. The centromere is a specific structural domain of the chromosome with important functions to segregate chromosomes accurately, and many protein components of the centromere have been identified [38]. A centromere protein (CENP) B box, which is recognized by CENP-B, is a 17-bp motif containing GGAA and it appears within every other α-satellite repeat (171-bp) in human chromosomes [39, 40]. Those repetitive sequences are generally referred as micro-satellites. Ewing’s sarcoma is a tumor in which Ets family members are involved in chromosomal translocations [41]. The chromosomal translocation, t(11;22)(q24;q12) in the malignant solid tumor generates the EWS/FLI oncoprotein that functions as an aberrant transcription factor [42]. The EWS/FLI oncoprotein is known to up-regulate the expression of various genes, including TGFβ RII, cyclin D1, Id2 and c-Myc, IGFBP3, PTP1E, cyclin E, MK-STYX, and caveolin1, through interaction with several ets (GGAA) motifs [43]. The repetitive GGAA motifs are known as GGAA-containing microsatellites that can be targeted by the oncoprotein EWS/FLI [42, 44]. The GGAA-microsatellites are located in the promoter regions of the DAX1/NR0B1, FCGR2T, CAV1, CACNB2, FEZF1, KIAA1797, and GSTM4 genes [43, 45, 46]. Recent study suggested that EWS/FLI binds to these elements as a homodimer to activate transcription [47]. The GGAA-microsatellite is preferentially recognized and activated by EWS/FLI but not by Ets1 and Elk1, suggesting that transcription of genes containing GGAA-microsatellites is not usually regulated by Ets family proteins [47, 48].

Identification of the duplicated GGAA motifs in the 5′-flanking regions of various human genes

By performing transfection experiments with mutation-carrying reporter plasmids, we have indicated previously that the duplicated GGAA motifs in the 5′-flanking regions of the PARG, IGHMBP2, ATR, XBP, RTEL, and Rb1 promoters have essential roles in regulating the activities of these promoters [10, 12, 14]. Comparing these duplicated GGAA motifs, we have tentatively determined the consensus 14-bp sequence as 5′-(A/G/C)(A/G/C)(G/C/G)(C/G)GGAA(A/G)(C/T)(G/C/T)(A/G/C)(A/G/C)-3′ [14]. The probability of this combination occurring by chance can be roughly estimated as only once in 8,630 combinations of these bases, including the reverse orientation. The probability that the consensus 14-bp sequence would be duplicated by chance within the 50-bp distance would be extremely rare. Therefore, we explored the duplicated 14-bp sequences 2,000 bp upstream and 200 bp downstream of the TSS of 47,553 human genes extracted from the Ensembl database. The computer-based in silico analysis retrieved 469 examples with one or more duplications of the 14-bp sequence, including 234 instances of protein-encoding genes of known function or structure. Eighty percent (372/469) of the genes having consensus 14-bp sequence lacks TATA-box, and 74% (345/469) of that have GGAA(TTCC) duplications within 500 bp upstream (Fig. 1). Although not all the 5′-flanking regions of those function-known 234 genes contain the duplicated GGAA motifs within a 450-bp distance of the TSS, 174 gene promoters were found to have at least one duplicated (overlapped) GGAA motif around the TSS (Table 2, Group A). They include, for example, IFITM5, RBBP5, GRB2, and SUMO1, encoding for the interferon-induced transmembrane protein 5/Bril [49], Rb-binding protein 5 [50], growth factor receptor-bound protein 2 [51], and small ubiquitin-modifier 1 [52], respectively. The genes encoding non-degradative ubiquitin signaling factors FANCD2, which is suggested to regulate DNA replication and repair...
is included in the list (Table 2, Group B). Although our search could not retrieve the 5′-flanking region of the \textit{BRCA1} gene, the duplicated GGAA motifs are also involved in the UP site and Ets2 binding site of the human \textit{BRCA1} promoter [54, 55]. Ets2 binds to the 150-bp region upstream of the UP site that is recognized by the GABP transcription factor [54]. A tumor suppressor \textit{BRCA1}, which regulates DNA damage response, including cell cycle check point control and DNA repair [56], has ubiquitin E3 ligase activity [53, 54]. FANCD2, which is involved in the Fanconi anaemia pathway [53], is mono-ubiquitylated to form Fanconi anaemia core complex with FANCI [56, 58]. Interestingly, \textit{OTUB1}, which encodes OUT domain-ubiquitin aldehyde binding 1, is included in Table 2. Recent study indicated that \textit{OTUB1} is an inhibitor of the DNA damage response that suppresses poly- but not mono-ubiquitinination [54]. These observations suggest that the duplicated GGAA motifs control expression of genes encoding non-degradative ubiquitylation-associated proteins. Other examples are promoter regions of genes encoding TNF-associated signal proteins such as \textit{TRA1}, \textit{TNFSF12} (TWEAK), and \textit{TNFSF13} (APRIL) [60–62]. The expression pattern of the \textit{TRA1} gene in HL-60 cells after TPA treatment has led to its classification as an intermediate responding gene [4]. It should be noted that the GGAA motif is duplicated in the human \textit{TNF} promoter region [63]. Therefore, duplicated GGAA motifs could regulate expression of the genes encoding proteins that are associated with the TNF signal cascade. Moreover, several promoters of glucose metabolism associated genes (\textit{G6PD}, \textit{GYS1}, and \textit{SLC2A13}) have been identified to contain the duplication within the 450 bp upstream of the TSS [64–66]. Although, the algorithm used in this study could not acquire \textit{NR1H2} (\textit{LXRB}) gene that was shown to be regulated by Elk1 and SRF transcription factors [67], multiple GGAA (TTCC) motifs are found around the TSS of the \textit{NR1H2} promoter, suggesting that the duplicated (multiple) GGAAs might also control glucose metabolism in cells.

The tandemly repeated GGAA motifs are found in the long terminal repeat of the HIV2 gene [68] and that have been identified as essential sequences in the human \textit{FcRy} promoter [69]. The locations of the \textit{ets} elements in various viral gene, Fc receptor and immunoglobulin, and other promoters were reviewed previously [70]. Redundancy or overlapping of the GGAA motifs in \textit{TP53}, \textit{PF4} (Platelet Factor 4), and \textit{UTRN} (Utrophin) promoters has been indicated [70]. These observations suggest that overlapped or tandem repeated GGAA motifs are contained in promoter regions of various genes that encode biologically important protein factors.

Distribution of the Ets binding motifs in the whole human genome

A recent study using promoter chromatin immunoprecipitation (ChIP) microarray analysis to search for Ets family protein binding regions in the human genome indicated that promoters occupied by Ets1, ELF1, or GABPz were frequently bound by one or more of the other Ets proteins [48]. Quantitative ChIP analysis indicated redundant binding of these transcription factors to the promoter regions of the \textit{COX17} and \textit{DFFA} genes that are listed in Table 2 [48]. Moreover, \textit{BTRC} (Table 2) promoter was shown to be Ets1-RUNX1 co-occupied as \textit{TCR} and \textit{TCRβ} promoters [48]. Thus, the genome-wide promoter ChIP analysis indicated that 5–15% of the 17,000 human promoters are redundantly occupied by these Ets proteins. Bioinformatic studies have also indicated that Ets-like binding sites are over-represented in human promoters [71–73]. Our \textit{in silico} search analysis retrieved 195 (Table 2, Group A and B combined) genes that represent only 1% of total genes. This unexpectedly low value may be resulted from somewhat stringent condition for the first screening to find duplications of the \textit{PARC/IGHMBP2}
promoter-like GGAA motifs. Given that each Ets family protein has preferential flanking sequence of the GGAA (TTCC), our selected 14-bp might have restricted candidate genes. Recently, overlap between ChIP-seq peak data indicated several preferential combinations of the Ets family proteins that depend on cell lines used [74]. The occupancy of Ets proteins in the same promoter region could be explained by alternative binding of the Ets proteins on the same binding site [48]. Another explanation is that there is a separate binding site containing duplicated or overlapped GGAA (TTCC) motifs for each factor around the TSS.

Biological properties of the Ets family proteins—functions as proto-oncogene products

An oncogene, \textit{v-ets}, was identified from the E26 avian leukemia virus in 1983 and a large family of conserved genes were isolated [75, 76]. Several of them were targeted by homologous recombination, and it has been demonstrated that \textit{ets} genes play important roles in embryogenesis and hematopoiesis [75, 77]. The amino acid sequences of the human Ets domains were aligned and their binding sequences have been evaluated [48]. The Ets family proteins not only have similarity in amino acid sequences (Ets domains) but also have similarity in their recognizing DNA sequences [48]. It has been reported that the Ets transcription factor, ER81, stimulates \textit{hTERT} gene expression [78, 79]. A recent study indicated that the \textit{hTERT} promoter possesses two biologically important Ets motifs (EtsA and EtsB) and that Ets2 maintains \textit{hTERT} gene expression in cooperation with c-Myc in breast cancer cells [80]. It is noteworthy that the TTCC motif-overlapped EtsB sequence, 5’-TTCC-3’, which is the same as the one located in the \textit{eIF3A} promoter (Table 1), is found close to the TSS of the \textit{hTERT} gene. Analyzing sequences of the \textit{hTERT} promoter from non-small cell lung cancers revealed that mutations of the TTCC motif correlate with low levels of telomerase activity and short telomeres [81]. It should also be noted that palindromic Ets-binding sites are located in the promoter region of the human \textit{TP53} gene and that Ets1 binds to the sequence [70, 82]. The biological relevance of Ets1 to transcriptional activity of the \textit{TP53}

Group A	Group B
AAGAB	CPSF7
ACMA1	FAM76B
ACXO3	CXCL17
AEN	CYB561
AFAP1L2	DAPK3
AGBL5	DCAF5
AKAP10	DBA1
AKT3	DEAF1
ALDH3B1	DEC1
APITD1	DEFA1B
ARHGAPI	DEFA3
ARMC7	DEF3
BTRC	DFFA
CCDC79	DIS3
CCT6A	DPAGT1
CELA3B	DUX4
CFL1	E2C8
CHMP1A	ELAC2
CIDEC	ERO1L
C1QTNF6	ETFA
CORT	FAM49B
COX17	FAM70B

174 genes 21 genes

Table 2 Human promoter regions containing duplication of the GGAA motifs near the TSS

Group A

174 genes	21 genes
AAGAB	CPSF7
ACMA1	FAM76B
ACXO3	CXCL17
AEN	CYB561
AFAP1L2	DAPK3
AGBL5	DCAF5
AKAP10	DBA1
AKT3	DEAF1
ALDH3B1	DEC1
APITD1	DEFA1B
ARHGAPI	DEFA3
ARMC7	DEF3
BTRC	DFFA
CCDC79	DIS3
CCT6A	DPAGT1
CELA3B	DUX4
C1QTNF6	ETFA
CORT	FAM49B
COX17	FAM70B
174 genes	21 genes

Group B

174 genes	21 genes
AAGAB	CPSF7
ACMA1	FAM76B
ACXO3	CXCL17
AEN	CYB561
AFAP1L2	DAPK3
AGBL5	DCAF5
AKAP10	DBA1
AKT3	DEAF1
ALDH3B1	DEC1
APITD1	DEFA1B
ARHGAPI	DEFA3
ARMC7	DEF3
BTRC	DFFA
CCDC79	DIS3
CCT6A	DPAGT1
CELA3B	DUX4
C1QTNF6	ETFA
CORT	FAM49B
COX17	FAM70B
174 genes	21 genes

Group A

The tentatively defined TPA-activation consensus 14-bp sequence, 5’-(A/G/C)N(A/G/C)(C/G)(C/G)GGAA(A/G)(C/T)(G/C/T)(A/G/C)-3’, was searched in the Ensembl data base. Duplicated or overlapped GGAA motifs were identified near the most 5’-upstream of those 174 genes. Group B Twenty-one genes were found to be head–head linked with genes listed in Group A.
promoter has been shown in embryonic stem cells undergoing apoptosis induced by UV irradiation [83]. A recent study indicated that the nuclear apoptosis-enhancing nuclease encoding AEN gene is a target of p53 [84]. It has been reported that the death-activated protein kinase (DAPK) family modifies MDM2 and p21 proteins [85]. The AEN and DAPK3 promoters were identified by our search algorithm (Table 2), suggesting that genes encoding p53 and its associated proteins are commonly regulated by the duplicated GGAA motifs at the transcriptional level. Furthermore, palindromic Ets binding sites in the CRYAB (alphaB-crystallin) gene promoter are positively regulated by Ets1 in breast cancer cells [86]. The epithelium-specific Ets transcription factor, ESE-1, which is abundantly expressed in human breast cancer, has been reported to have transforming activity in MCF-12A human mammary epithelial cells [87]. Recently, it was shown that the Ets family member ETV1 works as a regulator of gastrointestinal stromal tumors in combination with oncogene product KIT protein [88]. Whole genome sequencing analysis of human prostate cancer suggested that TMPRSS2-ERG fusion protein generated by gene rearrangement causes aberrant transcription or chromatin structure and that it is correlated with the tumorigenesis [89]. As described above, the GGAA motifs are duplicated in the human PARG promoter [10]. It should be noted that the duplicated GGAA motifs are located in the promoter region of the human PARP family members [90] and p21 [91] genes, which encode poly (ADP-ribose) synthetase and Cdk inhibitor, respectively. Taken together, these observations suggest that Ets family proteins regulate cancer development or tumorigenesis.

Apoptosis regulating functions of Ets family proteins

Apoptosis or programmed cell death is known to be regulated by various factors including caspases, DNases, or signal transduction proteins [92]. The importance of Ets family proteins in the regulation of cell-death has been proposed [75]. Caspase-1 has been identified as ICE (IL-1β converting enzyme), which plays a prominent role in inflammatory responses [93, 94], and it is involved in the regulation of apoptosis [95, 96]. Interestingly, it has been demonstrated that caspase-1 is a direct target gene of Ets1 [97]. The caspase-1 gene is also up-regulated by PU.1 in erythroleukemia cells undergoing apoptosis [98, 99]. The activation of caspase-1 gene expression could be explained by the presence of the Ets binding sequence located in the promoter region [97]. Ets family proteins have been shown to regulate apoptosis of endothelial cells [100, 101]. The repeated GGAA motifs are located in the promoter region of the human VE-cadherin gene and the Erg transcription factor has been shown to bind to that sequence in a ChIP assay [100, 102]. Expression of antiapoptotic genes, including Bcl-XL and cIAP, is regulated by Ets1 and Ets2 during embryonic development [101]. In human mesothelioma cells, Ets2 and PU.1 up-regulate Bcl-XL transcription to prevent cells from undergoing apoptosis [103]. The thioredoxin-binding protein 2 (TBP2) promoter, which contains multiple ets motifs, is regulated by Ets1 in the MG-63 osteosarcoma cell line [104]. TBP2 is thought to cause apoptosis through activation of ASK1 and JNK [105]. Moreover, the Ets1 binding site is present in the proto-oncogene Pim-3 promoter [106]. Up-regulated Pim-3 gene expression caused by Ets1 is thought to prevent apoptosis in cancer cells. Our search indicated that PARG/IGHMBP2-like GGAA motifs are located in the promoter regions of the PDCD-1 [22], and DFFA genes, encoding inhibitor of caspase-activated DNase (ICAD) [107]. Furthermore, the duplicated GGAA motifs are contained in the human Bcl-2 [108], Fas (CD95) [109], and FasL [110] promoter regions.

Taken together, Ets proteins could function as positive and negative apoptosis regulators controlling expression of the apoptosis signal transduction protein-encoding genes.

The duplicated GGAA sequence functions as a fundamental transcription regulatory element for TATA-less promoters

Molecular mechanisms of the initiation of transcription by RNA-polymerase II (RNA pol II), which is involved in the large protein complex in eukaryotic cells, have been well studied [111]. Sequential complex formation occurs at transcription initiation sites very close to the TATA-box where the TATA-binding protein (TBP)/TFIID complex binds first, then TFIIF, TFIIA, RNA pol II-TFIIF, TFIE, and the DNA helicase TFIIH assemble to make a large protein complex known as the transcription machinery [112]. The very first step of this RNA pol II-mediated transcription-initiating reaction begins with the recognition and binding of the TBP protein to the TATA-box. However, the TATA-box is not always found near the most 5'upstream region of the cDNA. It was reported that about 76% of human core promoters lack TATA-like element [113]. Figure 1 shows that 81% (279/345) of the genes having duplication or more GGAA consensus 14-bp sequences [14] in the 2,000-bp upstream region contain overlapped GGAA(TTCC) motifs within 500 bp upstream and have no TATA-box. The promoters that have no TATA-box near the TSS are usually known as TATA-less promoters, and they have a high GC content and frequently contain Sp1 binding sites, SCGGAAGY, or TGCGCANK motifs [113]. If the general transcription factors need to be
recruited onto the TATA-less transcription initiation site, other cis-acting sequences and binding protein factors are required for the initiation of the transcription reaction in mammalian cells.

It should be noted that the overlapping GGAA motif-containing sequence, 5'-CCTATGGAACACAGGAAATGAC-3', is found in the TBP promoter region and the ets motif has been shown to play an important part in regulation of the promoter activity [114]. Quantitative PCR-ChIP analysis indicated specific binding of ELK1 to the TBP, TAF1, TAF7, TAF12, GTF2A1, GTF2B, and BTA1 promoters [115]. Moreover, it has been reported that PU.1 plays a role in recruiting the TBP/TFIID complex to the defensin-1 promoter around the TSS [116]. It should also be noted that the ETS family transcription factor, ESX binds to people-restricted Ets transcription factor, ESX binds to the defensin-1 promoter, towards the TSS of the duplicated GGAA motif-containing sequence, 5'-CCTATGGAACACAGGAAATGAC-3', is found in the promoter region of the human DEFA1 gene [118] as listed in Table 2. These lines of evidence support that the ETS family proteins not only directly affect transcription of the TBP and its associated protein-encoding genes, but also guide general transcription factors, including TBP, towards the TSS of the duplicated GGAA motif-containing promoters. Recently, the crystal structure of Elf3, which is a member of the Ets family of proteins, was revealed to bind to GGAA motifs of A- and B-sites of the type II TGF-β receptor (TGF-β RII) promoter, and it was concluded that regions flanking the Ets domain are essential for DNA binding [119]. The presented model describing binding of the Elf3 with A- and B-sites in the TGF-β RII promoter region suggests that the duplication of the GGAA motifs might give a scaffold for general transcription factors near the TSS. In other words, tandemly repeated GGAA motifs might give rise to a fundamental position for the pre-initiation complex to bind around the TSS without TATA-box like sequences. The overlapped GGAA motifs may have advantages to control transcription precisely only by the expression levels of the Ets family members according to the behavior of cells to proliferate, differentiate, undergo apoptosis, or respond to IFN-induced signals (Fig. 2). Therefore, it could be happening that the promoter of the same gene is active in specific cells while it is attenuated in other cells depending on the GGAA-motif binding protein expression profiles.

Co-operation of the GGAA motifs with other transcription factor binding cis-elements near the TSS

As described above, duplicated GGAA (TTCC) motifs are found in the promoter region of the human IL-1β gene (Table 1). The IL-1β gene is synergistically regulated by PU.1 and IRFs through their binding to the PU.1/IRF composite element that is located −2.8 kb from the TSS [120]. The GGAA motif and other transcription factor binding site(s) can co-operatively affect promoter activity of various genes. For example, Sp1 is a transcription factor that binds to the GC boxes with the consensus sequence 5'-(G/T)GGCGG(A/G)(A/C/T)-3' or 5'-(G/T)(G/A)GGCGG(A/G)(A/C/T)-3' [121]. It has been reported that both the GGAA motif and the Sp1-binding element play important roles in regulating transcription of the human VE-cadherin (CDH5) [102] and presenilin 1 (PS1) genes [122]. Interactive regulatory function of the Sp1 and Ets-1 has been observed in the promoter region of the murine guanylyl cyclase/natriuretic peptide receptor-A-encoding gene, Npr1 [123]. Moreover, GABP and Sp1 co-operatively regulate human Heparanase 1 (HPRT1) promoter activity [124] Oct-1, which is encoded by POU2F1 gene, belongs to POU homeo-domain transcription factors [125]. Members of this family recognize and bind to the octameric sequence ATGCAAAT to activate transcription of genes.
various genes [126]. Oct-1 and PU.1 is involved in the control of the murine \textit{CD45} (\textit{Ptprc}) promoter activity [127]. Characterization of the promoter region of the \textit{Fibroblastin} (\textit{FGL2}) gene revealed that the \textit{cis}-elements, Oct-1, Ets1 and Sp1/Sp3, co-operatively regulate its transcription [128, 129]. Similarly, the human \textit{BTK} gene promoter, in which duplicated GGAA motif is located, is regulated by binding of Sp1/Sp3, PU.1, and Oct-1 [130, 131]. Furthermore, \textit{c-Ets} and the POU homeo-domain transcription factor, GHF-1/Pit-1 enhances Ras/Raf to activate the rat prolactin (\textit{PRL}) promoter [132]. Recently, it was shown that human prostacyclin receptor (\textit{PTGIR}) gene promoter is regulated by Sp1, PU.1, and Oct-1 elements, and a schematic model was presented to suggest that Sp1-PU.1-Oct-1 ternary complex might recruit pre-initiation complex, including TBP, TFIIID, and RNA pol II, to the TSS [133]. It has been shown that Ets1 and RUNX1 bind DNA co-operatively [48]. Recent genome-wide analysis of human promoters revealed that Elk1 and Ets1 bound regions are frequently occupied with SRF [115], and CBP [134], respectively. Moreover, it has been reported that API element is co-located with ETS binding site in the promoter regions of several tumor invasion/metastasis-associated protein-encoding genes, such as \textit{MMP-1/type I collagenase, MMP-3/stromelysin, MMP-7/matrixlisin, and MMP-9/type IV collagenase} genes [135]. Taken together, these observations suggest that transcriptional initiation may be co-regulated by the Ets family proteins in cooperation with GC-box binding factors, POU homeo-domain transcription factors, and other transcription factors including RUNX1, SRF, CBP, and API binding factors at the region close to the TSS.

\textbf{Conclusion}

Duplication of the GGAA motifs is found within a 500-bp distance of the TSS of various genes. Several of these genes are classified as intermediate and late responding genes during the macrophage-like differentiation of HL-60 cells induced by TPA. The duplicated GGAA motifs are located in the promoter regions of genes encoding interleukin-, interferon-, TNF-signal-associated proteins, apoptotic factors, cancer-causing proteins, tumor suppressors, or cell cycle controlling proteins including Rb and p53. Almost all these promoters have no obvious TATA-box, suggesting that the duplicated GGAA motifs play important roles in precisely recruiting the pre-initiation complex near the TSS. Redundant occupation of the duplicated GGAA motifs by Ets family proteins seems to be a complicated system, but this would enable finely tuned regulation of each promoter through altering composition of Ets family proteins or GGAA-binding proteins in the nucleus in response to cellular signals (Fig. 2). Moreover, it is noteworthy that the duplication of the GGAA motifs contained in the 5'-flanking region of the human \textit{TBP} gene is essential for regulating promoter activity. To date, initiation of transcription is explained mainly by the binding of TBP onto the TATA-box. Here, we propose an alternative transcription initiation mechanism where the duplication of the GGAA motifs is primarily required for determining the TSS in eukaryotic cells and for regulating expression of various genes. Further investigations into the regulatory mechanisms of the duplicated GGAA motif-containing promoters will enable the development of a new treatment for leukemia and malignant tumors by introducing Ets family protein expression vectors into cells.

\textbf{Acknowledgments} We are grateful to Dr. Atsuko Masumi for her discussion and advice. We are also grateful to Takeshi Watanabe, Takahiro Oyama, and Shizu Akasaka for their outstanding technical assistance. This work was supported in part by a Research Fellowship from the Research Center for RNA Science, RIST, Tokyo University of Science.

\textbf{Open Access} This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

\textbf{References}

1. Huberman E, Callaham MF (1979) Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci USA 76: 1293–1297
2. Koeffler HP (1986) Human acute myeloid leukemia lines: models of leukemogenesis. Semin Hematol 23:223–236
3. Collins SJ (1987) The \textit{HL}-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70:1233–1244
4. Zheng X, Ravatin R, Lin Y, Shih W-C, Rabson A, Strair R, Huberman E, Conney A, Chin KV (2002) Gene expression of \textit{BTK} gene promoter activity associated with \textit{hematological malignancies}: preliminary results from a phase I clinical trial of \textit{12-\textit{O-tetradecanoylphorbol-13-acetate}}. \textit{Clin Cancer Res} 8:2512–2518
8. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

9. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

10. Uchiumi F, Sakakibara G, Sato J, Tanuma S (2008) Characterization of the promoter region of the human PARG gene and its response to PU.1 during differentiation of HL-60 cells. Genes Cells 13:1229–1247

11. Uchiumi F, Komuro M, Mizuta R, Tanuma S (2004) Characterization of Smubp-2 as a mouse mammary tumor virus promoter-binding protein. Biochem Biophys Res Commun 321:355–363

12. Uchiumi F, Enokida K, Shiraishi T, Masumi A, Tanuma S (2010) Characterization of the promoter region of the human interleukin-2 receptor b gene and its response to TPA in HL-60 cells. Gene 463:8–17

13. Lin J-X, Bhat NK, John S, Queale WS, Leonard WJ (1993) Characterization of the human interleukin-2 receptor β chain gene promoter: regulation of promoter activity by ets gene products. Mol Cell Biol 13:6201–6210

14. Uchiumi F, Watanabe T, Tanuma S (2010) Characterization of various promoter regions of human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element. Exp Cell Res 316:1523–1534

15. O’Reilly D, Quinn CM, El-Shanawany T, Gordon S, Greaves DR (2003) Multiple Ets factors and interleukin regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem 278:21909–21919

16. Sevinsky JR, Whalen AM, Ahn NG (2004) Extracellular signal-regulated kinase induces the megakaryocyte GPlb/CD41 gene through MafB/Kreisler. Mol Cell Biol 24:4543–4545

17. Phillips DR, Charo IF, Parise LV, Fritzler LA (1988) The platelet membrane glycoprotein IIb-IIIa complex. Blood 71:831–843

18. Dorsey JF, Cunnick JM, Mane SM, Wu J (2002) Regulation of the Erk2-Etk1 signaling pathway and megakaryocytic differentiation of Bcr-Ab1(+)/K562 leukemic cells by Gab2. Blood 99:1388–1397

19. Masumi A, Hamaguchi I, Kuramitsu M, Mizukami T, Takizawa K, Momose H, Naito S, Yamaguchi K (2009) Interferon regulatory factor-2 induces megakaryopoiesis in mouse bone marrow hematopoietic cells. FEBS Lett 583:3493–3500

20. Stellacci E, Testa U, Petrucci E, Bendetti E, Orsatti R, Feccia T, Stafanes M, Marziali G, Battianni A (2004) Interferon regulatory factor-2 drives megakaryocytic differentiation. Biochem J 377:367–378

21. Cho HY, Lee SW, Seo SK, Choi IW, Choi I, Lee SW (2008) Interferon-sensitive response element (ISRE) is mainly responsible for IFN-α-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochem Biophys Acta 1779:811–819

22. Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347

23. Perry DJ, Austin KJ, Hansen TR (1999) Cloning of interferon-stimulated gene 17: the promoter and nuclear proteins that regulate transcription. Mol Endocrinol 13:1197–1206

24. Nguyen VT, M Rapeur EN (2000) Involvement of STAT1 and Ets family members in interferon-γ induction of CD40 transcription in microglia/macrophages. J Biol Chem 275:23674–23684

25. Rouyze MC, Lestini M, Charon M, Fichelson S, Buzyn A, Dusant-Fourt I (2005) IFN regulatory factor-2 cooperates with STAT1 to regulate transporter associated with antigen processing-1 promoter activity. J Immunol 174:3948–3958

26. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, D’Hawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977

27. Zaidi MR, Davis S, Noonan FP, Graff-Cherry C, Hawley TS, Walker RL, Feigenbaum L, Fuchs E, Lyakh L, Young HA, Hornyk TJ, Arnheiter H, Trinchieri G, Melzter PS, De Fabo EC, Merlino G (2011) Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 469:548–553

28. Yang Z, O’Reilly D, Chen C, Tsukada J, Auran PE (2006) NF-IL6 (C/EBPβ) rigorously activates il1b gene expression via a Sip-1 (PU.1) protein-protein tether. J Biol Chem 276:21272–21277

29. Avots A, Hoffmeyer A, Flory E, Cimanis A, Rapp UR, Serfling E (1997) GABP factors bind to a distal interleukin 2 (IL-2) enhancer and contribute to c-Raf-mediated increase in IL-2 induction. Mol Cell Biol 17:4381–4389

30. Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, Mizgalska M, Miska I, Kielak A, Trzeciakiewicz A, Misko A, Musielak A, Ciechanowicz P (2011) Interferon regulatory factor-2 cooperates with GABPalpha for normal T cell development. J Biol Chem 286:10176–10185

31. Xue HH, Bollenbacher J, Rovella V, Tripuraneni R, Du YB, Liu CY, Williams A, McCoy JP, Leonard WJ (2004) GA binding protein regulates interleukin 7 receptor alpha-chain gene expression in T cells. Nat Immunol 5:1036–1044

32. Genningshlo R, Tai TS, Frahm N, Hongo TC, Chicoine AT, Brander C, Kaufmann DE, Ho IC (2011) Ets-1 maintains IL-7 receptor expression in peripheral T cells. J Immunol 186:969–976

33. Yu S, Zhao DM, Jothi R, Xue HH (2010) Critical requirement of GABBPalpha for normal T cell development. J Biol Chem 285:10179–10188

34. Guittierrez-Hartmann A, Duval DL, Bradford AP (2007) ETS transcription factors in endocrine systems. Trends Endocrinol Metab 18:150–158

35. Fernández-Alvarez A, Soledad Alvarez M, Cucarella C, Casado M (2010) Characterization of the human insulin-induced gene 2 (INSIG2) promoter: the role of Ets-binding motifs. J Biol Chem 285:11765–11774

36. Hoo RLC, Chu JYS, Yuan Y, Yeung CM, Chan KYY, Chow TM, Williams A, McCoy JP, Leonard WJ (2004) GA binding protein regulates interleukin 7 receptor alpha-chain gene expression in T cells. Nat Immunol 5:1036–1044

37. Blackburn EH (2000) The end of the (DNA) line. Nat Struct Biol 7:847–850

38. Warburton PE (2001) Epigenetic analysis of kinetochore assembly on variant human centromeres. Trends Genet 17:243–247

39. Sugimoto K, Shibata A, Himeno M (1998) Nucleotide specificity at the boundary and size requirement of the target sites recognized by human centromere protein (CENP-B) in vitro. Chromosome Res 6:103–106

40. Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alpheid DNA. J Cell Biol 159:765–775

41. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Jouben I, de Jong P, Rouleau G, Aurias A, Thomas G (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumors. Nature 359:162–165

42. Gangwal K, Sankar S, Hollenhorst PC, Kinsney M, Haraldsen SC, Shah AA, Boucher KM, Watkins WS, Jorde LB, Graves BJ, Lesson L (2008) Microsatellites as EWS/FLI1 response
elements in Ewing’s sarcoma. Proc Natl Acad Sci USA 105:10149–10154
43. Guillou N, Tirole F, Boeva V, Zynoyev A, Barillot E, Delattre O (2009) The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One 4:e4932
44. Kovar H (2010) Downstream EWS/FLI1—upstream Ewing’s sarcoma. Genome Med 2:8
45. Luo W, Gangwal K, Sankar S, Boucher KM, Thomas D, Lesnick SL (2009) GSTM4 is a microsatellite-containing EWS/FLI1 target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance. Oncogene 28:4126–4132
46. Garcia-Aragoncillo E, Carrillo J, Lalli E, Agra N, Gomez-Lopez G, Pestana A, Alonso J (2008) DAX1, a direct target of EWS/FLI1 oncprotein, is a principal regulator of cell-cycle progression in Ewing’s tumor cells. Oncogene 27:6034–6043
47. Gangwal K, Close D, Enriquez CA, Hill CP, Lesnick SL (2010) Emergent properties of EWS/FLI1 regulation via GGAA microsatellites in Ewing’s sarcoma. Genes Cancer 1:177–187
48. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ (2007) Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 21:1882–1894
49. Moffatt P, Gaumond M-H, Salois P, Sellin K, Bessette M-C, Godin E, de Oliveira PT, Atkins GJ, Nanci A, Thomas G (2008) Bril: A novel bone-specific modulator of mineralization. J Bone Miner Res 23:1497–1508
50. Riemenschneider M, Buschges R, Wolter M, Reifenberger J, Kraus JA, Schlegel U, Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096
51. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (2000) Corticoids suppress tumor necrosis factor-a expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-a/B and c-Jun-activating transcription factor-2 binding sites in the promoter. J Biol Chem 275:18432–18440
52. Steer JH, Kroeger KM, Abraham LJ, Joyce DA (2000) Glucocorticoids suppress tumor necrosis factor-a expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-a/B and c-Jun-activating transcription factor-2 binding sites in the promoter. J Biol Chem 275:18432–18440
53. Amir-Ahmady B, Salati LM (2001) Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status. J Biol Chem 276:10514–10523
54. Irimia JM, Meyer CM, Pepler CL, Zhai L, Bock CB, Previs SF, McGuinness OP, DePaoli-Roach A, Roach PJ (2010) Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knockout mice. J Biol Chem 285:12851–12861
55. Di Daniel E, Mok MHS, Pepler CL, Irimia JM, Meyer CM, Peper CL, Zhai L, Bock CB, Previs SF, McGuinness OP, DePaoli-Roach A, Roach PJ (2010) Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knockout mice. J Biol Chem 285:12851–12861
56. Nilsson M, Dahlman-Wright K, Karelmo C, Gustafsson J (2009) Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res 7:1871–1881
57. O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C
58. Alpi AF, Patel KJ (2009) Monoubiquitylation in the Fanconi anaemia DNA damage response pathway. DNA Repair 8:430–435
59. Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Jiang Y-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, Natsume T, Suda T, Durocher D (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:941–946
60. Lee NK, Lee SY (2002) Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol 35:61–66
61. Fortin SP, Ennis MJ, Savitch BA, Carpentieri D, McDonough WS, Winkles JA, Loftus JC, Kingsley C, Hostetter G, Tran NL (2009) Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res 7:1871–1881
62. Petrov RD, Samuel LM, Murray GL, MacDonald G, O’Kelly T, Loudon M, Binnie N, Aly E, McKinlay A, Wang W, Gilbert F, Semple S, Collie-Duguid ESR (2009) APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling. BMC Cancer 9:434
63. Steer JH, Kroeger KM, Abraham LJ, Joyce DA (2000) Glucocorticoids suppress tumor necrosis factor-a expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-a/B and c-Jun-activating transcription factor-2 binding sites in the promoter. J Biol Chem 275:18432–18440
64. Amir-Ahmady B, Salati LM (2001) Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status. J Biol Chem 276:10514–10523
65. Irimia JM, Meyer CM, Pepler CL, Zhai L, Bock CB, Previs SF, McGuinness OP, DePaoli-Roach A, Roach PJ (2010) Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knockout mice. J Biol Chem 285:12851–12861
66. Di Daniel E, Mok MHS, Pepler CL, Irimia JM, Meyer CM, Peper CL, Zhai L, Bock CB, Previs SF, McGuinness OP, DePaoli-Roach A, Roach PJ (2010) Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knockout mice. J Biol Chem 285:12851–12861
67. Nilsson M, Dahlman-Wright K, Karelmo C, Gustafsson J (2009) Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res 7:1871–1881
68. O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras A-C
77. Bartel FO, Higuchi T, Spyropoulos DD (2000) Mouse models in the study of the Ets family of transcription factors. Oncogene 19:6443–6454
78. Dwyer J, Li H, Xu D, Liu JP (2007) Transcriptional regulation of telomerase activity: roles of the Ets transcription factor family. Ann N Y Acad Sci 1114:36–47
79. Goueli BS, Jainkruenth R (2004) Upregulation of the catalytic telomerase subunit by the transcription factor ERB1 and oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 24:25–35
80. Xu D, Dwyer J, Li H, Duan W, Liu JP (2008) Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 283:23567–23580
81. Hsu CP, Hsu NY, Lee LW, Ko JL (2006) Ets2 binding site single nucleotide polymorphism at the hTERT gene promoter-effect on telomerase expression and telomerase length maintenance in non-small cell lung cancer. Eur J Cancer 42:1466–1474
82. Baillat D, Laitem C, Leprivier G, Margerin C, Aumercier M (2004) Ets1 binds cooperatively to the palindromic Ets-binding sites in the p53 promoter. Biochem Biophys Res Commun 378:213–217
83. Xu D, Watson TJ, Chan D, De Luca E, Zhou J, Herzog PJ, Kola I (2002) Ets1 is required for p53 transcriptional activity in UV-induced apoptosis in embryonic stem cells. EMBO J 21:4081–4093
84. Kawase T, Ichikawa H, Ohta T, Noshita T, Tashiro F, Ohki R, Taya Y (2008) p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene 27:3797–3810
85. Burch LR, Scotto M, Pohler E, Meek D, Hupp T (2004) Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modulator of MDM2 and p21WAF1. J Mol Biol 337:115–128
86. Bosman JD, Vehiely F, Evans JR, Cryns VL (2004) Regulation of the human poly(ADP-ribose) is a nuclear exonuclease. Mol Biol Cell 11:2915–2932
87. Bergh LR, Scotto M, Pohler E, Meek D, Hupp T (2004) Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modulator of MDM2 and p21WAF1. J Mol Biol 337:115–128
88. Bosman JD, Vehiely F, Evans JR, Cryns VL (2004) Regulation of the human poly(ADP-ribose) polymerase by the transcription factor Ets1 in breast cancer. Breast Cancer Res Treat 119:63–70
89. Prescott JD, Koto KS, Singh M, Gutierrez-Hartmann A (2004) The ETS transcription factor ESE-1 transforms MCF-12A human mammary epithelial cells via a novel cytoplasmic mechanism. Mol Cell Biol 24:5548–5564
90. Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, Fletcher JA, Dewell S, Maki RG, Zheng D, Antonescu CR, Allis CD, Sawyer CL (2010) ETVE1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467:849–853
91. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Prescott JD, Koto KS, Singh M, Gutierrez-Hartmann A (2004) The ETS transcription factor ESE-1 transforms MCF-12A human mammary epithelial cells via a novel cytoplasmic mechanism. Mol Cell Biol 24:5548–5564
92. Goueli BS, Janknecht R (2004) Upregulation of the catalytic subunit of the human telomerase by an Ets transcription factor. Cell 117:685–693
93. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman M, Salfeld J, Towne E, Tracey D, Wardwell S, Wei F-Y, Wong W, Kamen R, Seshadri T (2005) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80:401–411
94. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS-S, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003
95. Miura M, Zhou H, Rotello R, Hartwig EA, Yuan Y (1993) Induction of apoptosis in fibroblasts by IL-1β -converting enzyme, a mammalian homolog of the C. elegans cell death gene cep-3. Cell 75:653–660
96. Kondo S, Barna BP, Morimura T, Takeuchi J, Yuan J, Akbasak A, Barnett GH (1995) Interleukin-1 β-converting enzyme mediates cisplatin-induced apoptosis in malignant glioma cells. Cancer Res 55:6166–6171
97. Pei H, Li C, Adereth Y, Hsu T, Watson DK, Li R (2005) Caspase-1 is a direct target gene of ETS1 and plays a role in ETS1-induced apoptosis. Cancer Res 65:7205–7213
98. Kihara-Negishi F, Yamada T, Kubota Y, Kondoh N, Yamamoto H, Abe M, Shirai T, Hashimoto Y, Oikawa T (1998) Downregulation of cis-regulatory and bcl-2 gene expression in PU.1-induced apoptosis in murine erythroleukemia cells. Int J Cancer 76:523–530
99. Oikawa T, Yamada T, Kihara-Negishi F, Yamamoto H, Kondoh N, Hitomi Y, Hashimoto Y (1999) The role of Ets family transcription factor PU.1 in hematopoietic cell differentiation, proliferation and apoptosis. Cell Death Differ 6:599–608
100. Birdsey GM, Dryden NH, Armeslil V, Gebhardt F, Sahnak H, Haskard DO, Dejana E, Mason JC, Randi AM (2008) Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 111:3498–3506
101. Wei G, Srinivasan R, Cantemir-Stone CZ, Sharma SM, Santhanam R, Weinstein M, Muthusamy N, Man AK, Oshima RG, Leone G, Ostrowski MC (2009) Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 114:1123–1130
102. Gory S, Dalmon J, Prandini M, Korteulewijs T, de Launoy P, Huber P (1998) Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem 273:6750–6755
103. Cao X, Littlejohn J, Rodarte C, Zhang L, Martino B, Rascoe P, Hamid K, Jupiter D, Smythe WR (2009) Up-regulation of Bcl-xl by hematocyte growth factor in human mesothelioma cells involves ETS transcription factors. Am J Pathol 175:2207–2216
104. Hashiguchi K, Tsuchiiya H, Tomita A, Ueda C, Akechi Y, Sakabe T, Kurimasa A, Noshita T, Yamada T, Tsuchida S, Shiota G (2010) Involvement of ETS1 in thiorodoxin-binding protein 2 transcription induced by a synthetic retinoid CD437 in human osteosarcoma cells. Biochem Biophys Res Commun 391:621–626
105. Matsuoka S, Tsuchiiya H, Sakabe T, Watanabe Y, Hoshikawa Y, Kurimasa A, Imauchi H, Harada T, Terakawa N, Masutani H, Yodoi Y, Shiota G (2008) Involvement of ETS1 in thiorodoxin-binding protein 2 transcription induced by a synthetic retinoid CD437 in human osteosarcoma cells. Biochem Biophys Res Commun 391:621–626
106. Li YY, Wu Y, Tsuneyama K, Baba T, Mukaide K, Kishida K, Kondo S, Barna BP, Morimura T, Takeuchi J, Yuan J, Akbasak A, Barnett GH (1995) Interleukin-1 β-converting enzyme mediates cisplatin-induced apoptosis in malignant glioma cells. Cancer Res 55:6166–6171
107. Frampton J, Ramqvist T, Graf T (1996) v-Myb of E26 leukemia virus up-regulates bcl-2 and suppresses apoptosis in myeloid cells. Genes Dev 10:2720–2731
Possible functions of duplicated ets (GGAA) motifs

109. Li XR, Chong AS, Wu J, Roe buck KA, Kumar A, Parrillo JE, Rapp UR, Kimberly RP, Williams JW, Xu X (1999) Transcri ptional regulation of Fas gene expression by GA-binding protein and AP-1 in T cell antigen receptor-CD3 complex-stimulated T cells. J Biol Chem 274:35203–35210

110. Chow W, Fang J, Yee J (2000) The IFN regulatory factor family participates in regulation of Fas ligand gene expression in T cells. J Immunol 164:3512–3518

111. Carey MF, Peterson CL, Smale ST (2009) Transcription and preinitiation complex assembly in vitro. In: Transcriptional regulation in eukaryotes, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 439–538

112. Turner BM (2001) Transcription in eukaryotes: The problems of complexity. In: Chromatin and gene regulation: mechanisms in epigenetics. Blackwell, Oxford, pp 25–43

113. Yang C, Bolotin E, Jiang T, Sladek FM, Martinez E (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389:52–65

114. Foulds CE, Hawley DK (1997) Analysis of the human TATA binding protein promoter and identification of an ets site critical for activity. Nucleic Acids Res 25:2485–2494

115. Boros J, Donaldson JJ, O’Donnell A, Odrowzaz ZA, Zeef L, Lupien M, Meyer CA, Shirley Liu X, Brown M (2009) Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res 19:1963–1973

116. Chang CH, Scott GK, Baldwin MA, Benz CC (1999) Ets-1 promoters. DNA binding and transactivating activity of the human TATA-binding protein (TBP). Oncogene 18:3682–3695

117. Defossez PA, Baert JL, Monnot M, de Launoit Y (1997) The TATA-less core promoters. Gene 389:52–65

118. Foulds CE, Hawley DK (1997) Analysis of the human TATA binding protein promoter and identification of an ets site critical for activity. Nucleic Acids Res 25:2485–2494

119. Agarkar VB, Babayeva ND, Wilder PJ, Rizzino A, Tahirov TH (2010) Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-β receptor promoter DNA. J Mol Biol 397:278–289

120. Marecki S, Riendeau CJ, Liang MD, Fenton MJ (2001) PU.1 and multiple IFN regulatory factor proteins synergize to mediate transcriptional activation of the human IL-1β gene. J Immunol 166:6829–6838

121. Wieratra I (2008) Sp1: Emerging roles-beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372:1–13

122. Pastorcic M, Das HK (2004) Alternative initiation of transcription of the human presenilin 1 gene in SH-SY5Y and SK-N-SH cells. Eur J Biochem 271:4485–4494

123. Kumar P, Garg R, Bolden G, Pandey KN (2010) Interactive roles of Ets-1, Sp1, and acetylated histones in the retinoic acid-dependent activation of guanylyl cyclase/atrial natriuretic peptide receptor-A gene transcription. J Biol Chem 285:37521–37530

124. Jiang P, Kumar A, Parrillo JE, Dempsey LA, Platt JL, Prinz RA, Xu X (2002) Cloning and characterization of the human heparanase-1 (HPRL) gene promoter: role of GA-binding protein and Sp1 in regulating HPRL basal promoter activity. J Biol Chem 277:8989–8998

125. Sturm RA, Cassady JL, Das G, Romo A, Evans GA (1993) Chromosomal structure and expression of the human OTF1 locus encoding the Oct-1 protein. Genomics 16:333–341

126. Kemler I, Schaffner W (1990) Octamer transactivation factors and the cell type-specificity of immunoglobulin gene expression. FASEB J 4:1444–1449

127. Kwon UK, Yen PH, Collins T, Wells RA (2006) Differential lineage-specific regulation of murine CD45 transcription by Oct-1 and PU.1. Biochem Biophys Res Commun 344:146–154

128. Liu M, Leibowitz JL, Clark DA, Mendicino M, Ning Q, Ding JW, D’Abreo C, Fung L, Marsden PA, Levy GA (2003) Gene transcription of fgf2 in epithelial cells is controlled by Ets-1 and Oct-1 and requires the presence of both Sp1 and Sp3. Eur J Biochem 270:2274–2286

129. Liu M, Mendicino M, Ning Q, Ghanekar A, He W, McGilvrey J, Shaliev I, Clark DA, Phillips MJ GA, Levy GA (2006) Cytokine-induced hepatic apoptosis is dependent on FGF2/VEGF: the role of Sp1/Sp3 and Stat1/Pu.1 composite cis elements. J Immunol 176:7026–7038

130. Muller S, Maas A, Islam TC, Sideras P, Suske G, Philipsen S, Xanthopoulos KG, Hendriks RW, Smith CIE (1999) Synergistic activation of the human Btk promoter by transcription factors Sp1/3 and Pu.1. Biochem Biophys Res Commun 259:364–369

131. Brunner C, Wirth T (2006) Btk expression is controlled by Oct-1 and requires the presence of both Sp1 and Sp3. Eur J Biochem 270:2274–2286

132. Bradford AP, Conrad KE, Waslyk C, Waslyk B, Gutierrez-Hartmann A (1995) Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Mol Cell Biol 15:2849–2857

133. Turner EC, Kinsella BT (2009) Transcriptional regulation of the human prostacyclin receptor gene is dependent on Sp1, PU.1 and Oct-1 in megakaryocytes and endothelial cells. J Mol Biol 386:579–597

134. Hollenhorst PC, Chandler KJ, Poulsen RL, Johnson WE, Speck NA, Graves BJ (2009) DNA specificity determinants associate with distinct transcription factor functions. PLoS Genet 5:e1000778

135. Oikawa T (2003) ETS transcription factors: possible targets for cancer therapy. Cancer Sci 95:626–633