Scalable Synthesis of Esp and Rhodium(II) Carboxylates from Acetylacetone and RhCl$_3$·xH$_2$O

Elisa Martínez-Castro, Samuel Suárez-Pantiga, and Abraham Mendoza*

ABSTRACT: Rhodium(II) carboxylates are privileged catalysts for the most challenging carbene-, nitrene-, and oxo-transfer reactions. In this work, we address the strategic challenges of current organic and inorganic synthesis methods to access these rhodium(II) complexes through an oxidative rearrangement strategy and a reductive ligation reaction. These studies illustrate the multiple benefits of oxidative rearrangement in the process-scale synthesis of congested carboxylates over nitrile anion alkylation reactions, and the impressive effect of inorganic additives in the reductive ligation of rhodium(III) salts.

KEYWORDS: rhodium catalysis, oxidative rearrangement, 1,3-diketone, sigmatropic shift, rhodium(II)

Total synthesis has been a major resource to facilitate the supply of scarce substances and a fertile playground to create and test new chemistries. Despite the dominance of natural product and pharmaceutical targets in these studies, our group and others have used ligands to inspire synthetic innovations. The synthesis of metal catalysts offers uncharted opportunities for basic research in both organic and inorganic chemistry and can facilitate the introduction of state-of-the-art catalysts in industrial production. In this sense, metal carboxylates have historically played a key role in the development of homogeneous catalysis, particularly in the field of C–H functionalization. Traditional pivalate complexes have evolved into congested carboxylates to tackle the most challenging transformations. In particular, the pursuit of aliphatic C–H amination resulted in the development in 2004 of Rh$_2$esp$_2$ (1; esp = α,α,α',α'-tetramethyl-1,3-benzenedipropionic acid) by Du Bois and co-workers (Scheme 1A). This catalyst displays a double chelate structure with two bis-carboxylate ligands, which stabilize the labile mixed-valence intermediates involved in the catalysis.

Rh$_2$esp$_2$ (1) has currently been extensively deployed in natural product total synthesis and is increasingly finding new applications in carbene-, nitrene-, and oxo-transfer reactions due to its unique properties. Moreover, the ligand esp (2) is now widespread in unrelated types of catalysis with palladium, rhenium, ruthenium, copper, cobalt, or bismuth.

Despite its importance, the chemical synthesis of the ligand esp (2) and its rhodium complex 1 have not evolved along their applications. The synthetic strategy toward the congested bis-carboxylate ligand 2 is based on the alkylation of isobutyronitrile (3) via the nitrile anion 4 with m-xylene dihalides 5 to forge the all-carbon quaternary center in the dinitrile intermediate 6 (see Scheme 1B). The latter is elaborated to esp (2) through a thermal hydration process. The nitrile anion strategy seems to be responsible for the high cost of this ligand as it requires inert conditions, anhydrous solvents, and large amounts of n-BuLi to generate LDA on-scale. On the inorganic synthesis side...
without large excess of elaborate carboxylates. 19 It was observed that in acidic thermal conditions the ligand 2 undergoes esterification by ethanol, which may be the reason for the large excess of ligand employed in current methods. 19,20 This finding invited exploration of basic anions that would inhibit ligand depletion as well as stabilize the rhodium(II) intermediates likely involved. 20 In agreement with previous studies, small quantities of base were unsuccessful (entries 2, 3). 19 However, the addition of more than 2 equiv results in a drastic improvement (entry 4), which may indicate that a carboxylate dianion is involved, in stark contrast with previous syntheses. 19 Other organic and inorganic bases perform variably (entries 5–9) with large influence of the counterion (entry 9–11). Li2CO3 offers the best balance between efficiency, cost, and process mass intensity (entry 12), and it facilitates the isolation of the pure 1. Carbonate anions may also stabilize the multinuclear intermediates as carboxylate surrogate ligand, 22,30 and the lithium salt was significantly more efficient (entries 13, 14). It was found that the presence of LiCl is beneficial to enhance yield and robustness of the process (entry 15), particularly in large scale reactions. This additive enhances the solubility of rhodium(III) chloride probably forming a more stable tetrachlororhodate reservoir of rhodium(III). We recognized that esp (2) could be synthesized via the oxidative rearrangement of 1,3-diketones in basic media that our group has recently developed 32,33 provided that the acyclic tetraketone intermediate 12 (Scheme 2A) would be a suitable substrate for a double rearrangement reaction. Should this be the case, the tetraketone 12 could be prepared from bulk acetylacetone (13; pKa = 13) using mild inorganic bases instead of the nitrile anion 4 derived from isobutyronitrile (3; pKa ~ 32) used in previous syntheses (Scheme 1B). 11,16a,17,18 To maximize the potential of our strategy, a single-step procedure to obtain tetraketone 12 was developed (Scheme 2, step 1). Initial acylation of acetylacetone (13) with methyl iodide (14) was performed using K2CO3 as base and acetonitrile as solvent. 32 On-scale, we found that an autoclave reactor and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and butanone were required to mitigate the volatility of methyl iodide in this reaction. For the second acylation, the cost-effective m-xylene dichloride (5b) was used in a mixture of butanone and glyme. This way, after the initial methylation was deemed complete, glyme, K2CO3, and m-xylene dichloride (5b) were added to obtain the crude 12 in one pot. The tetraketone 12 was crystallized from technical ethanol, yielding 169 g of 12 per batch. Surprisingly, the oxidative rearrangement of 1,3-diketones in basic media using LiOH and H2O2 that we recently developed 30 proved completely ineffective in...
the tetraketone substrate 12 (entry 1). A detailed analysis of this reaction revealed quantitative retro-Claisen deacylation of the tetraketone 12, in clear contrast with our previous studies using diketones.3d We reasoned that the high Lewis acidity of the lithium cation may be involved in this side reaction. To our delight, it was found that replacing the base by NaOH suppressed this process, obtaining the doubly rearranged esp ligand (2) in excellent yield (entry 2). Interestingly, the similar carbonate base was significantly less efficient than hydroxide (entry 3). The reaction also occurred in a variety of solvents (entries 4−9), but none proved superior to methanol.34 Using these conditions, the tetraketone 12 was smoothly rearranged into esp (2) below 25 °C in large scale (Scheme 2, step 2).

The product 2 could be recrystallized directly from the reaction crude to yield 95.5 g of esp ligand (2) in a single run. This contrasts with the limitations in scale, cost, mass intensity and safety that is inherent to nitrile anion alkylation reactions, and demonstrates for the first time the advantages of the oxidative rearrangement strategy3d toward congested carboxylates in process-scale.

With large quantities of esp ligand in hand, we scaled up the synthesis to produce gram quantities of Rh2esp2 (1) in a simple reflux system using technical ethanol under air (Scheme 2, step 3).35 Oxygen and moisture were found inconsequential for the efficiency of this reaction. However, a controlled ramp to steadily reach the reflux temperature (see Supporting Information) was important to obtain reproducible results. To put these results in perspective, it is important to highlight that only 1.4 equiv of the esp ligand is used, as opposed to the 90–120 equiv that was previously required with simpler carboxylic acids.19 Moreover, the catalyst is obtained for the first time in a single step from rhodium(III) chloride, thus minimizing the overall environmental impact and operational costs.

Scheme 2. Scalable Synthesis of Rh2esp2 (1)

entry	base	solvent	yield (%)
1	LiOH	MeOH	0
2	NaOH	MeOH	95
3	Na2CO3	MeOH	58
4	NaOH	PhCF3	61
5	NaOH	HFP	78
6	NaOH	DCM	77
7	NaOH	DMF	69
8	NaOH	DMSO	67
9	NaOH	t-amylOH	62

“1 equiv = 1 mol/mol pure 8.

The purity of the isolated complexes synthesized using this method have been routinely assessed to be >98% pure using 1H NMR analysis (see Supporting Information). The catalytic activity of the obtained Rh2esp2 (1) and Rh2TPA4 (17) has been benchmarked against current commercial catalysts in challenging carbene and nitrene transfer reactions (Scheme 3). Even the bulky triphenylacetic acid yields the congested Rh2TPA4 catalyst (17) at significantly lower temperature than through current ligand metathesis. Interestingly, these monocarboxylate catalysts 15−18 could be prepared in multigram amounts in the absence of LiCl, unlike the chelate Rh2esp2 (1; Scheme 2B).

Scheme 3. Direct Preparation of Rh(II) Monocarboxylates from RhCl3·xH2O and Catalyst Benchmarking Studies

catalyst	yield (%)
15 t-Bu	[Rh2(Piv)3] 71
16 n-Oct	[Rh2(Ocit)3] 67
17 CPh3	[Rh2(TPA)4] 66b

“1 equiv = 1 mol/mol pure 8. b = equiv of Li2CO3 was used. Ar, 4-tert-butylphenyl; Nph, naphthalimide; alt., alternative commercial catalyst.
The performance of the Rh.esp₂ (1) and Rh.TPA (17) directly prepared from RhCl₃·xH₂O (8) were found to be identical to the corresponding commercial complexes in representative cyclopropanation, aziridination, or C–H amination reactions.

In summary, the synthesis of Rh.esp₂ (1) has inspired the development of a mild and direct synthesis protocol from RhCl₃·xH₂O using key inorganic additives to suppress over-reduction to rhodium(0). This method allows important rhodium(II) catalysts to be obtained in a single operation and decreases two orders of magnitude the excess of carboxylate ligand required. Also, the alternative synthetic strategy toward the ligand esp (2) that has been presented herein demonstrates for the first time the fundamental step of oxidative rearrangement of 1,3-diketones in the process-scale production of all-carbon quaternary carboxylates. Overall, this work displays the potential of catalyst synthesis to inspire synthetic developments in both organic and inorganic chemistry.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.oprd.0c00164.

Synthetic procedures and characterization data (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Abraham Mendoza – Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden; orcid.org/0000-0001-9199-6736; Email: abraham.mendoza@su.se

Authors
Elisa Martinez-Castro – Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
Samuel Suárez-Pantiga – Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden; orcid.org/0000-0002-4249-7807

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.oprd.0c00164

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Financial support from the Knut and Alice Wallenberg Foundation (KAW2016.0153) and the European Research Council (714737) is gratefully acknowledged. We are indebted to the personnel of AstraZeneca Gothenburg and the Department of Organic Chemistry and the EXSELENT Center on Porous Materials at Stockholm University for unrestricted support.

■ REFERENCES

(1) (a) Keasling, J. D.; Mendoza, A.; Baran, P. S. A Constructive Debate - Practical Chemistry. Nature 2012, 492, 188. (b) Keding, S. J.; Danishefsky, S. J. Prospects for Total Synthesis: A Vision for a Totally Synthetic Vaccine Targeting Epithelial Tumors. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11937. (c) Nicolaou, K. C.; Snyder, S. A. The Essence of Total Synthesis. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11929. (d) Peterson, E. A.; Overman, L. E. Contiguous Stereogenic Quaternary Carbons: A Daunting Challenge in Natural Products Synthesis. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11943. (e) Nicolaou, K. C.; Hale, C. R. H.; Nileskw, C.; Ioannidou, H. A. Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance. Chem. Soc. Rev. 2012, 41, 5185. (f) Ball, P. Chemistry: Why Synthesize? Nature 2015, 528, 327.

(2) (a) Shenvi, R. A.; O’Malley, D. P.; Baran, P. S. Chemoselectivity: The Mother of Invention in Total Synthesis. Acc. Chem. Res. 2009, 42, 530. (b) Nicolaou, K. C.; Baran, P. S. The CP Molecule Labyrinth: A Paradigm of How Endeavors in Total Synthesis Lead to Discoveries and Inventions in Organic Synthesis. Angew. Chem., Int. Ed. 2002, 41, 2678. (c) Nicolaou, K. C.; Hale, C. R. H. The Endeavor of Total Synthesis and Its Impact on Chemistry, Biology and Medicine. Natl. Sci. Rev. U.S.A. 2014, 1, 233. (d) Gutekunst, W. R.; Baran, P. S. C–H Functionalization Logic in Total Synthesis. Chem. Soc. Rev. 2011, 40, 1976.

(3) (a) Suárez-Pantiga, S.; Colas, K.; Johansson, M. J.; Mendoza, A. Scalable Synthesis of Piperazines Enabled by Visible Light Irradiation and Aluminum Organometallics. Angew. Chem., Int. Ed. 2015, 54, 14094. (b) Otero-Fraga, J.; Suárez-Pantiga, S.; Montesinos-Mgraner, M.; Rhein, D.; Mendoza, A. Direct and Stereosepecific [3 + 2] Synthesis of Pyrroolidines from Simple Unactivated Alkenes. Angew. Chem., Int. Ed. 2017, 56, 12962. (c) Colas, K.; Martin-Montero, B.; Mendoza, A. Intermolecular Pummerer Coupling with Carbon Nucleophiles in Non-Electrophilic Media. Angew. Chem., Int. Ed. 2017, 56, 16042. (d) Britt, E.; Suárez-Pantiga, S.; Johansson, M. J.; Mendoza, A. Mechanism and Regioselectivity of the Anionic Oxidative Rearrangement of 1,3-Diketones towards All-Carbon Quaternary Carboxylates. Chem. Commun. 2019, 55, 8844.

(4) For selected recent examples, see: (a) Ramírez-López, R.; Ros, A.; Romero-Arenas, A.; Iglesias-Siguenza, J.; Fernández, R.; Lassaletta, J. M. Synthesis of IAN-type N,N-Ligands via Dynamic Kinetic Asymmetric Buchwald–Hartwig Amination. J. Am. Chem. Soc. 2016, 138, 12053. (b) Zheng, Z.; Cao, Y.; Chong, Q.; Han, Z.; Ding, J.; Luo, C.; Wang, Z.; Zhu, D.; Zhou, Q.-L.; Ding, K. Chiral Cyclohexyl-Fused Spirobiindanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis. J. Am. Chem. Soc. 2018, 140, 10374. (c) Ma, Y.-N.; Cheng, M.-X.; Yang, S.-D. Metal-Free Diastereoselective Radical Oxidative C–H Amination towards Chiral Atropoisomeric (P, N) Ligand’s Precursors. Org. Lett. 2017, 19, 600. (5) Mendoza, A.; Colas, K.; Suárez-Pantiga, S.; Goetz, D.; Johansson, M. J. Chemical Innovation through Ligand Total Synthesis. Synlett. 2016, 27, 1753.

(6) (a) Labinger, J. A.; Becvar, J. E. Understanding and Exploiting C–H Bond Activation. Nature 2002, 417, 507. (b) Brückl, T.; Baxter, R. D.; Ishihara, Y.; Baran, P. S. Innate and Guided C–H Functionalization Logic. Acc. Chem. Res. 2012, 45, 826. (c) Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. C–H Functionalization in Organic Synthesis. Chem. Soc. Rev. 2011, 40, 1855. (d) White, M. C. Adding Aliphatic C–H Bond Oxidations to Synthesis. Science 2012, 335, 807. (e) Lafrance, M.; Fagnou, K. Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalyst Design. J. Am. Chem. Soc. 2006, 128, 16496. (f) Leow, D.; Li, G.; Mei, T. S.; Yu, J.-Q. Activation of Remote Meta-C–H Bonds Assisted by an End-On Template. Nature 2012, 486, 518.

(7) (a) Lafrance, M.; Fagnou, K. Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalyst Design. J. Am. Chem. Soc. 2006, 128, 16496. (f) Leow, D.; Li, G.; Mei, T. S.; Yu, J.-Q. Activation of Remote Meta-C–H Bonds Assisted by an End-On Template. Nature 2012, 486, 518.
for Selective, Intramolecular Allylic C–H Amination: Reaction Development and Mechanistic Insight Gained through Experiment and Theory. J. Am. Chem. Soc. 2011, 133, 17207. For copper, see: (f) Tnay, Y. L.; Chen, C.; Chu, Y. Z.; Zhang, L.; Chiba, S. Copper-Catalyzed Aerobic Spirocyclization of Biaryl-N-H-imines via 1,4-Aminoxygenation of Benzene Rings. Org. Lett. 2012, 14, 3550. For cobalt, see: (g) Pakula, R. J.; Berry, J. F. Cobalt Complexes of the Chelating Dicharboxylate Ligand "Esp": a Paddlewheel-Type Dimer and a Heptanuclear Coordination Cluster. Dalton Trans. 2018, 47, 13887. For bismuth–rhodium heteroleptic catalysts, see: (h) Collins, L. R.; van Gastel, M.; Neese, F.; Fürstner, A. Enhanced Electroactivity of Heterobimetallic Bi–Rh Paddlewheel Carbene Complexes: A Combined Experimental, Spectroscopic, and Computational Study. J. Am. Chem. Soc. 2018, 140, 13042.

(17) (a) Kornecki, K. P.; Berry, J. F. Introducing a Mixed-Valent Dirhodium(II, III) Catalyst with Increased Stability in C–H Amination. Chem. Commun. 2012, 48, 12097. (b) Kornecki, K. F.; Berry, J. F. Dirhodium Catalysts That Bear Redox Noninnocent Chelating Dicharboxylate Ligands and Their Performance in Intra- and Intermolecular C–H Amination. Eur. J. Inorg. Chem. 2012, 2012, 562.

(18) (a) Rempel, G. L.; Legdzins, P.; Smith, H.; Wilkinson, G. Tetraakis(acetato)dirhodium(II) and Similar Carbonylato Compounds. Inorg. Synth. 2007, 13, 90. (b) Legdzins, P.; Mitchell, R. W.; Rempel, G. L.; Riddick, J. D.; Wilkinson, G. The Protonation of Ruthenium- and Rhodium-Bridged Carbonylates and their Use as Homogeneous Hydrogenation Catalysts for Unsaturated Substances. J. Chem. Soc. A 1970, 3322. (c) Drago, R. S.; Cosmano, R.; Telser, J. EPR spectra and Bonding in the 2:1 Base Adducts of Rh2(carboxylate)4+.

Inorg. Chem. 1984, 23, 3120. (d) Effective preparation using only acetic acid has also been reported (see ref 22a). For preparation from Rh(OH)2H2O, see: (e) Johnson, S.; Hunt, H. R.; Neumann, H. M. Preparation and Properties of Anhydrous Rhodium(II) Acetate and Some Adducts Thereof. Inorg. Chem. 1963, 2, 960. For a seminal preparation from Rh2O3 and acetic acid, see: (f) Stephenson, T. A.; Morehouse, S. M.; Powell, A. R.; Heffer, J. P.; Wilkinson, G. Carbonylates of Palladium, Platinum, Rhodium, and their Adducts. J. Chem. Soc. 1965, 3632.

(20) For the synthesis of Rh(II) catalysts, see: (a) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. The Preparation and Properties of Tris(triarylphosphine)halogenorhodium(I) and Some Reactions Thereof Including Catalytic Homogeneous Hydrogenation of Olefins and Acetylenes and Their Derivatives. J. Chem. Soc. A 1966, 1711. Osborn, J. A.; Wilkinson, G. Tris-(Triarylphosphine)Halorhodium(I). Inorg. Synth. 2007, 10, 67. (c) Giordano, G.; Crabtree, R. H. Di-μ-chloro-bis[η4-1,5-cyclooctadiene]dirhodium(I). Inorg. Synth. 2007, 28, 88. For the synthesis of Cp*Rh(III) catalysts, see: (d) Herrmann, W. A.; Zybill, C. Bis[μ-chloro]chloro(η5-pentamethylcyclopentadienyl)rhodium]. In Synthetic Methods of Organometallic and Inorganic Chemistry – Vol. I: Literature, Laboratory Techniques, and Common Starting Materials; Herrmann, W. A., Salzer, A., Eds.; Georg Thieme Verlag, 1959, pp 148. (e) White, C.; Yates, A.; Maitlis, P. M. (η5-Pentamethylcyclopentadienyl)Rhodium and -Iridium Compounds. Inorg. Synth. 2007, 29, 228.

(21) (a) Montesinos-Magraner, M.; Costantini, M.; Ramírez-Contreras, R.; Muratore, M.; Johansson, M. J.; Mendoza, A. General Cyclopropane Assembly via Enantioselective Transfer of a Redox-Active Carbene to Aliphatic Olefins. Angew. Chem., Int. Ed. 2019, 58, 5930. (b) Yu, Z.; Mendoza, A. Enantioselective Assembly of Cyclopropanes using Redox-Active Aryldiazoacetates. ACS Catal. 2019, 9, 7870.
(b) Roos, G. H. P.; McKervey, M. A. A Facile Synthesis of Homochiral Rh(II) Carboxylates. *Synth. Commun.* 1992, 22, 1751.

(23) For synthesis and applications of Rh,Piv ω see: (a) Miura, T.; Funakoshi, Y.; Murakami, M. Intramolecular Deearomatizing [3 + 2] Annulation of α-Imino Carbenoids with Aryl Rings Furnishing 3,4-Fused Indole Skeletons. *J. Am. Chem. Soc.* 2014, 136, 2272.

(24) For late-stage functionalization of complex molecules using Rh₂Oct₄ see: (a) He, J.; Hamann, L. G.; Davies, H. M. L.; Beckwith, R. E. J. Late-stage C–H Functionalization of Complex Alkaldoids and Drug Molecules Via Intermolecular Rhodium-Carbenoid Insertion. *Nature Commun.* 2015, 6, 5943. For an early-stage multi-gram scale NH-insertion in total synthesis, see: (b) Malinowski, J. T.; Sharpe, R. J. A.; Johnson, J. S. Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic. *Science* 2013, 340, 180. For an early-stage vinlycarbene cycloaddition in total synthesis, see: For creative azavinyl carbene methods, see: (c) Jackson, K. L.; Henderson, J. A.; Motoyoshi, H.; Phillips, A. J. A Total Synthesis of Norhalichondrin B. *Angew. Chem.*, Int. Ed. 2009, 48, 2346. (d) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. Stereoselective 1,3-Insertions of Rhodium(II) Vinylcarbenes. *J. Am. Chem. Soc.* 2014, 136, 195. (f) Selander, N.; Worrell, B. T.; Fokin, V. V. Ring Expansion and Rearrangements of Rhodium(II) vinylcarbenes. *Angew. Chem.*, Int. Ed. 2012, 51, 13054.

(25) For synthesis and applications of Rh₂TPA₄ see: (a) Lebel, H.; D.; Bacsa, J.; Davies, H. M. L. Site-Selective and Stereoselective Properties of the Platinum Metals. *Platinum Met. Rev.* 1959, 3, 100.

(26) (1) Muñoz, E.; N.; Van Mylinder, J.; de Zoubov, N. Electrochemical Platinum Nanoparticles. *J. Am. Chem. Soc.* 2015, 137, 14516. (c) Qin, C.; Davies, H. M. L. Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C–H Functionalization of Activated Primary C–H Bonds. *J. Am. Chem. Soc.* 2014, 136, 5972. (d) Liu, K.; Negretti, S.; Musaev, D. G.; Davies, H. M. L. Site-Selective and Stereoselective Functionalization of Unactivated C–H Bonds. *Nature 2016*, 533, 230. (e) Our group has recently applied this family in asymmetric cyclopropanations with redox-active carbenes (see ref 21b).

(27) For synthesis and applications of Rh₂(TBSP)₄ see: (a) Davies, H. M. L.; Peng, Z.-Q.; Houser, J. H. Asymmetric Synthesis of 1,4-Cycloheptadienes and Bicyclo[3.2.1]octa-2,6-dienes by Rhodium(II) N-([tetra-butyl]) phenylsulfonyle)proline Catalyzed Reactions between Vinyldiazomethanes and Dienes. *Tetrahedron Lett.* 1994, 35, 8939. (b) Davies, H. M. L.; Walji, A. M.; Nagashima, T. Simple Structured for the Immobilization of Dirhodium Tetrapropionate Catalysts, using a Pyridine-Linked Solid Support. *J. Am. Chem. Soc.* 2004, 126, 4271. (c) Our group has recently used Rh₂(TBSP)₄ in the scalable asymmetric synthesis of the congested TPCP ligand (see ref 21b).

(28) Harris, D. C. Quantitative Chemical Analysis, 8th ed.; W.H. Freeman & Co, 2010; p AP25.

(29) For a study on the variation of the reoxid-potential with pH, see: Pourbaix, M. J. N.; Van Mylinder, J.; de Zoubov, N. Electrochemical Properties of the Platinum Metals. *Platinum Met. Rev.* 1959, 3, 100.

(30) Kataoka, Y.; Yano, N.; Kawamoto, T.; Handa, M. Isolation of a Tetranuclear Intermediate Complex in the Synthesis of Paddlewheel-Type Dirhodium Tetracatate. *Eur. J. Inorg. Chem.* 2015, 2015, 5650.

(31) Rhodium nanoparticles can be synthesized by reduction in basic ethanol: Li, F.; Weng, H.; Shang, Y.; Ding, Z.; Yang, Z.; Cheng, S.; Lin, M. Environmentally Friendly and Facile Synthesis of Rh Nanoparticles at Room Temperature by Alkaline Ethanol Solution and their Application for Ethanol Oxidation. *RSC Adv.* 2017, 7, 3161.

(32) For seminal work in the oxidative rearrangement of 1,3-diketones, see: (a) Mannich, C. Über die α,α′-α′-Bis-[Tetramethyl-hydroxy]-Adipinsäure. Ein Fall von Vinylogie. *Ber. Dtsch. Chem. Ges.* 1941, 74, 1007. (b) Payne, G. B. Reactions of Hydrogen Peroxide. X. Oxidative Rearrangements with Certain β-Diketones. *J. Org. Chem.* 1961, 26, 4793. (c) Cocker, W.; Grayson, D. H. Reactions of Some Dicharboxy Compounds. Part III. Oxidation of some β-Diketones with Alkaline Hydrogen Peroxide. *J. Chem. Soc., Perkin Trans. 1* 1975, 1347.

(33) (a) Johnson, A. W.; Markham, E.; Price, R. 3-Methylpentane-2,4-Dione. *Org. Synth.* 1962, 42, 75. (b) Kallaiatzakis, D.; Rozzell, J. D.; Smonou, I.; Kambourakis, S. Synthesis of Valuable Chiral Intermediates by Isolated Ketoreductases: Application in the Synthesis of α-Alkyl-β-hydroxy Ketones and 1,3-Diol. *Adv. Synth. Catal.* 2006, 348, 158.

(34) In acetonitrile, extensive deacylation of the substrate was observed.

(35) (a) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. D₂-Symmetric Dirhodium Catalyst Derived from a 1,2,2-Triarylcyclopropanecarboxylate Ligand: Design, Synthesis and Application. *J. Am. Chem. Soc.* 2011, 133, 19198. (b) Qin, C.; Davies, H. M. L. Rh₂(R-TCP)₄-Catalyzed Enantioselective [3 + 2]-Cycloaddition between Nitrones and Vinyldiazacetates. *J. Am. Chem. Soc.* 2013, 135, 14516. (c) Qin, C.; Davies, H. M. L. Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C–H Functionalization of Activated Primary C–H Bonds. *J. Am. Chem. Soc.* 2014, 136, 5972. (d) Luo, K.; Negretti, S.; Musaev, D. G.; Bacs, J.; Davies, H. M. L. Site-Selective and Stereoselective Functionalization of Unactivated C–H Bonds. *Nature 2016*, 533, 230. (e) Our group has recently applied this family in asymmetric cyclopropanations with redox-active carbenes (see ref 21b).