Risk assessment of metabolic syndrome prevalence involving sedentary occupations and socioeconomic status

Ming-Shu Chen, Chi-Hao Chiu, Shih-Hsin Chen

ABSTRACT

Objectives To determine whether occupation type, distinguished by socioeconomic status (SES) and sedentary status, is associated with metabolic syndrome (MetS) risk.

Methods We analysed two data sets covering 73,506 individuals. MetS was identified according to the criteria of the modified Adult Treatment Panel III. Eight occupational categories were considered: professionals, technical workers, managers, salespeople, service staff, administrative staff, manual labourers and taxi drivers; occupations were grouped into non-sedentary; sedentary, high-SES; and sedentary, non-high-SES occupations. A multiple logistic regression was used to determine significant risk factors for MetS in three age-stratified subgroups. R software for Windows (V.3.5.1) was used for all statistical analyses.

Results MetS prevalence increased with age. Among participants aged ≤40 years, where MetS prevalence was low at 6.23%, having a non-sedentary occupation reduced MetS risk (OR=0.88, p<0.0295). Among participants aged >60 years, having a sedentary, high-SES occupation significantly increased (OR=1.39, p<0.0247) MetS risk.

Conclusions The influence of occupation type on MetS risk differs among age groups. Non-sedentary occupations and sedentary, high-SES occupations decrease and increase MetS risk, respectively, among younger and older adults, respectively. Authorities should focus on individuals in sedentary, high-SES occupations.

INTRODUCTION

Metabolic syndrome (MetS) is a public health concern in many countries, particularly those in the West. In the USA, 34% of the population has MetS, according to criteria formulated in the National Cholesterol Education Programme Adult Treatment Panel (ATP) III; in particular, US adults older than 60 years of age are more prone to having MetS. The health status of the Taiwanese population was estimated in 2002 using the data of 75,660 participants in a nationwide cross-sectional population-based survey: the Taiwanese Survey on Prevalence of Hyperglycaemia, Hyperlipidemia, and Hypertension. Hwang et al reported that the prevalence of MetS in women increases rapidly after menopause to a level higher than that in their male counterparts; they also noted MetS’ high correlations with age and overweight and obesity. MetS is also a public health problem in other Asian countries, and studies on MetS have been conducted in Thailand, Malaysia, South Korea, and Japan as well as Taiwan. MetS is highly correlated with overweight and obesity, and it comprises a constellation of inter-related metabolic disorders—including hypertension, type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) and stroke. In addition, having MetS increases the risk of having diabetes by fivefold. Studies have overwhelmingly indicated that individuals with MetS or a sedentary occupation have an increased risk of T2DM and coronary heart disease and increased mortality due to CVD. A study also reported that reduced muscular strength is associated with increased risk of CVD and CVD-related mortality.

The causes for MetS should thus be investigated. The risk factors for MetS include ageing, a sedentary lifestyle, long working hours, physical inactivity, a Western diet, sleep duration greater than 7 hours and high occupational stress. Socioeconomic
status (SES) and lifestyle are the possible risk factors for MetS. Among these factors, prolonged sitting is notable because it affects people of all ages and is becoming increasingly common because of the rapid automation of the workplace. Scholars have recently investigated the relationship of a sedentary occupation with MetS or CVD risk.

Bakrania et al demonstrated that sedentary behaviour affects not only physical but also cognitive health. Leischik et al compared the health of 97 firefighters, 55 police officers and 46 sedentary office workers in Germany, and they reported that having a sedentary occupation increased the likelihood of being obese and having MetS in their middle-aged sample. Another study on workers in a petroleum company reported that a sedentary lifestyle—specifically, being sedentary for 10 hours/day with two-thirds of those 10 hours spent sitting at work—was significantly associated with cardiometabolic risk factors.

An individual having a sedentary occupation is substantially more likely to be obese. Strauß et al reported that office workers had a significantly greater abdominal waist circumference (WC) than did firefighters and that 33% of sedentary German office workers had MetS. In a subsequent study, Strauss et al evaluated the 10-year cardiovascular risk of 46 office workers in Germany using the Framingham Score and observed that office workers had a higher risk of CVD and MetS.

However, the association of MetS risk with not only occupation type but also SES must be determined. SES is a concept encompassing salary, social status and education and can be indicated by an individual’s occupation. Al-Thani et al and Mehrdad et al reported that occupation type and seniority in a company, respectively, are not significantly associated with MetS risk. Therefore, this study conducted in Taiwan focused on the relationship of type of occupation with MetS prevalence as well as with the biochemical indexes of related chronic diseases. Specifically, this study focused on sedentary occupations and occupations associated with different SESs.

Finally, although numerous studies have analysed several occupations or SESs in relation to MetS risk, this study is the first to focus on occupations that are sedentary or associated with a high SES. Occupations were segmented into (1) Non-sedentary, (2) Sedentary and associated with high SES (sedentary, high-SES), and (3) Sedentary and not associated with high SES (sedentary, non-high-SES) occupations. We hypothesised that sedentary, high-SES occupations differ from sedentary, non-high-SES occupations in the magnitude of their positive correlation with MetS prevalence and that both types of occupations are associated with increased MetS risk.

METHODS

Definition of a sedentary occupation and SES

According to the US Department of Labour’s Dictionary of Occupational Titles, sedentary work is the occasional exertion of 4.54 kilograms of force and/or a frequent exertion of a negligible amount of force. In this definition, ‘occasional’ and ‘frequent’ are defined as being present less than a third and a third to two-thirds of the time, respectively. Such force can be used to lift, carry, push, pull or move objects—including the human body. Sedentary work involves sitting most of the time, but it may involve walking or standing for brief periods (https://www.thehortongroup.com/resources/the-strength-test-levels). Thus, a job was defined to be sedentary if walking and standing are required only occasionally, and all other sedentary criteria are met. In this study, we selected taxi drivers, clerical jobs and administrative jobs as representative of sedentary, non-high-SES occupations.

We focused on eight types of workers: professionals, technical workers, managers, salespeople, service staff, administrative staff, manual labourers and taxi drivers. Table 1 presents the occupations in the professional, technical and managerial categories. Jans et al reported that occupations in the Netherlands differed with respect to the time a worker spends sitting. We put the occupation categories into three groups: general sedentary-related (Group-I), non-sedentary (Group-II) and sedentary-related and high-SES (Group-III), based on occupational environment and SES of occupations. The arrangement of the eight works is illustrated in Table 2.

Definition of MetS

MetS was defined in this study according to guidelines from the Health Promotion Administration of Taiwan’s Ministry of Health and Welfare. MetS’ prevalence was evaluated using the definitions of the modified ATP III and the MetS criteria for Taiwanese people. Five major factors were used to determine whether a person had MetS: WC, high blood pressure, fasting blood sugar (BS), triglyceride (TG) level and high-density lipoprotein.
Cholesterol (HDL-C) level. High blood pressure was determined in terms of systolic blood pressure (SBP) and diastolic blood pressure (DBP). A Taiwanese person is defined as having MetS if they have three or more of the following five conditions in ATP III: abdominal obesity, high TG, low HDL-C, hypertension and hyperglycaemia; Table 3 presents the criteria for defining MetS.

### Data resource and data collection
We obtained two data sets from the New Taipei City Government Annual Taxi Health Examination Survey and from the MJ Health Check-Up-Based Population Database (MJPD). The data in the first data set covered the 2012–2016 period and were collected by Far Eastern Memorial Hospital (FEMH) (FEMH is one of the only hospitals that mainly undertakes the annual health check-up of taxi drivers in New Taipei City, and it is also the hospital with the most significant number of services and the largest hospital in New Taipei City). This data set shall be termed ‘the FEMH data set’ in the remaining portion of the paper. The second MJPD data set was collected from four MJ clinics, which provide periodic health examinations to their members; this data set is accessible to any researcher on request (http://www.mjhrf.org/main/page/release1/en/release01).

The data sets were authorised for use in this study and provided to us by the MJPD Health Research Foundation with FEMH Institutional Review Board approval. The laboratory data of the two databases were obtained from the same biochemical examination apparatus (Hitachi-7600). The two data sets conform to the International Organization for Standardization 15189 guidelines.

### Data preprocessing
Because age is a key factor influencing MetS risk, we stratified our sample into ≤40, 40–60, and ≥60-year-old subgroups, which we refer to as the ‘younger’, ‘middle-aged’ and ‘older’ subgroups, respectively. We focused on the effect on MetS risk from occupation—distinguished first by whether the field is sedentary or non-sedentary and second by the occupation’s association with SES.

### Statistical analysis
Data analysis, including multiple logistic regression with all variables, and data visualisation were conducted in R (V.3.5.1) software. A value of p<0.05 indicated a statistically significant difference between two groups. In univariate analysis, a two-sample independent t test was used to determine the differences in the mean values of continuous variables between participants with and without

### Table 3 MetS criteria
| No. | Factors                                     | Abnormal condition     |
|-----|---------------------------------------------|------------------------|
| 1   | Fasting plasma glucose (FPG)                | FPG ≥100 mg/dL         |
| 2   | High-density lipoprotein cholesterol (HDL-C)| Male <40 mg/dL or female <50 mg/dL |
| 3   | High blood pressure                         | SBP ≥130 mm Hg or DBP ≥85 mm Hg |
| 4   | Triglyceride (TG)                           | TG ≥150 mg/dL         |
| 5   | Waist circumference (WC)                    | Male ≥90 cm or female ≥80 cm |

Table 3 presents the criteria for defining MetS.

### Table 4 MetS characteristics of male participants
| Variables     | Total          | Without (n=31 454) | With (n=12 328) | P value |
|---------------|----------------|--------------------|-----------------|---------|
|               | Mean | SD | Mean | SD | Mean | SD |         |
| Weight (kg)   | 72.8 | 11.3 | 69.7 | 9.3 | 80.9 | 12.1 | <0.001  |
| SBP (mm Hg)   | 120.6 | 15 | 116.8 | 13 | 130.3 | 15.4 | <0.001  |
| DBP (mm Hg)   | 77.4 | 10.5 | 74.8 | 9.2 | 84 | 10.6 | <0.001  |
| WC (cm)       | 84.1 | 8.7 | 81.2 | 7.0 | 91.5 | 8.3 | <0.001  |
| Body fat (%)  | 24.3 | 5.5 | 22.8 | 4.8 | 28 | 5.3 | <0.001  |
| FPG (mg/dl)   | 103.2 | 18.7 | 99.5 | 12.6 | 112.6 | 26.8 | <0.001  |
| TG (mg/dl)    | 136.8 | 103.5 | 113.6 | 74.7 | 196 | 137.7 | <0.001  |
| Cholesterol   | 197.5 | 34.2 | 195.4 | 33.1 | 202.8 | 36.1 | <0.001  |
| HDL-C (mg/dl) | 52 | 11.4 | 54.3 | 11.3 | 46 | 9.3 | <0.001  |
| LDL-C (mg/dl) | 124.8 | 32.1 | 122.9 | 31.1 | 129.6 | 33.9 | <0.001  |
| BMI (kg/m²)   | 24.8 | 4.8 | 23.7 | 3.7 | 27.4 | 5.3 | <0.001  |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; SBP, systolic blood pressure; TG, triglyceride; WC, waist circumference.
MetS. An exact $\chi^2$ test was used to determine the differences in categorical variables between groups.

**Patient and public involvement**

This is a secondhand deidentified data analysis, and it does not need patient and public direct involvement.

**RESULTS**

Gender, height, weight, WC, blood pressure, TG level, Cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), SBP, DBP and fasting BS were used as covariates; body mass index (BMI) was also computed from data on height and weight.

Descriptive statistics

Among the 73,506 participants, 57,932 did not have MetS and 15,574 had MetS. The MetS prevalence in this study was thus 21.19%. Tables 4 and 5 present the descriptive statistics of physiological parameters, such as weight, SBP and DBP, for the participants with different sex, respectively. Compared with participants with MetS, participants without MetS were healthier; their weight, SBP, WC, TG level and BMI were lower, and their HDL-C level was higher. All physiological parameters were significantly related to MetS risk (p<0.001).

**Table 5** MetS characteristics of female participants

| Variables       | Total (n=73406) | Without (n=26478) | With (n=3246) | P value |
|-----------------|-----------------|-------------------|---------------|---------|
| Weight (kg)     | 55.78 (9.35)    | 54.32 (7.76)      | 67.7 (12.28)  | <0.001  |
| SBP (mm Hg)     | 107.49 (14.89)  | 105.48 (13.15)    | 123.88 (17.81)| <0.001  |
| DBP (mm Hg)     | 68.44 (10.06)   | 67.32 (9.22)      | 77.65 (11.76)| <0.001  |
| WC (cm)         | 71.08 (7.91)    | 69.71 (6.49)      | 82.22 (9.52)  | <0.001  |
| Body fat (%)    | 29.03 (6.75)    | 27.97 (5.83)      | 37.76 (7.44)  | <0.001  |
| FPG (mg/dl)     | 97.02 (14.89)   | 95.04 (9.38)      | 113.2 (29.78)| <0.001  |
| TG (mg/dl)      | 86.99 (50.01)   | 78.01 (43.4)      | 160.16 (97.19)| <0.001  |
| CHOL            | 190.61 (32.57)  | 189.36 (31.96)    | 200.81 (35.56)| <0.001  |
| HDL-C (mg/dl)   | 65.33 (14.78)   | 67.12 (14.21)     | 50.8 (10.78)  | <0.001  |
| LDL-C (mg/dl)3  | 109.23 (29.83)  | 107.12 (28.84)    | 126.33 (32.18)| <0.001  |
| BMI (kg/m²)4    | 22.03 (3.48)    | 21.43 (2.83)      | 26.93 (4.31)  | <0.001  |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; SBP, systolic blood pressure; TG, triglyceride; WC, waist circumference.

**Table 6** MetS characteristics of male participants in age-stratified subgroups

| Variables       | Age ≤40 years (n=21410) | Age >40 years (n=52056) | Age >60 years (n=1807) |
|-----------------|-------------------------|--------------------------|------------------------|
| Weight (kg)     | 70.8 (9.7)              | 68.7 (8.5)               | 64.9 (8.5)             |
| SBP (mm Hg)     | 115.9 (11.7)            | 117.1 (13.7)             | 125.8 (17.2)           |
| DBP (mm Hg)     | 73.4 (8.6)              | 76.1 (9.5)               | 77.8 (10.5)            |
| WC (cm)         | 80.8 (7.2)              | 81.6 (6.7)               | 83.0 (7.4)             |
| Body fat (%)    | 23.3 (5.0)              | 22.3 (4.5)               | 21.3 (4.8)             |
| FPG (mg/dl)     | 97.8 (9.3)              | 101.2 (14.7)             | 103.3 (21.0)           |
| TG (mg/dl)      | 109.1 (74.0)            | 120.1 (77.0)             | 101.1 (47.2)           |
| CHOL            | 192.1 (32.8)            | 196.0 (132.2)            | 173.7 (103.5)          |
| HDL-C (mg/dl)   | 54.4 (11.2)             | 54.2 (11.9)              | 55.3 (11.8)            |
| LDL-C (mg/dl)3  | 120.6 (31.1)            | 128.7 (34.0)             | 122.0 (32.0)           |
| BMI (kg/m²)4    | 23.7 (2.9)              | 23.7 (2.5)               | 23.8 (2.8)             |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; SBP, systolic blood pressure; TG, triglyceride; WC, waist circumference.
the younger, middle-aged and older subgroups, respectively. Among women, the MetS prevalence was 6.23%, 15.68% and 32.07% for the younger, middle-aged and older subgroups, respectively. These findings are consistent with the finding that MetS prevalence increases with age.1 15 Furthermore, as noted in tables 6 and 7, most factors (such as weight, SBP, DBP and WC) were significantly related (p<0.001) to MetS prevalence in all age-stratified subgroups, which was identical to the findings for the unstratified sample (tables 4 and 5).

χ² exact test and multiple logistic regression analysis
We used a χ² test to analyse the relationships that categorical variables had with MetS risk; tables 8 and 9 present the findings for the male and female participants, respectively (key findings are marked in bold). Age and occupation were significantly associated with MetS risk (p<0.001).

The eight occupational categories were significantly associated with MetS risk (p<0.001), among which taxi driving had the highest MetS prevalence rate (33.41% and 60.71% among men and women, respectively). As an aside, the female taxi drivers in our study were underrepresented in this occupation (at only 44 individuals) and had a much higher MetS prevalence than either the average woman or man (28.16% and 10.92%, respectively) in our overall sample. Furthermore, managers and salespeople had the second-highest and third-highest MetS prevalence at 32.52% and 29.53%, respectively. Among female participants, manual labourers and managers had

Table 7  MetS characteristics of female participants in age-stratified subgroups

| Variables         | Age ≤40 years (n=15 972) | 40 years < age ≤60 years (n=13 172) | Age >60 years (n=580) |
|-------------------|--------------------------|-------------------------------------|-----------------------|
|                   | Non-MetS Mean (SD) | MetS Mean (SD) | P value | Non-MetS Mean (SD) | MetS Mean (SD) | P value | Non-MetS Mean (SD) | MetS Mean (SD) | P value |
| Weight (kg)       | 54.06 72.86            | 54.69 65.8         | <0.001  | 63.56 64.47         | <0.001         |         | 53.5 61.22         | <0.001         |         |
| SBP (mm Hg)       | 103.1 120.02           | 109.8 125.09       | <0.001  | 68.54 78.43         | <0.001         |         | 114.69 131.14      | <0.001         |         |
| DBP (mm Hg)       | 66.3 76.32             | 68.54 78.43        | <0.001  | 70.85 81.28         | <0.001         |         | 71.42 76.18        | <0.001         |         |
| WC (cm)           | 68.78 84.36            | 28.54 36.7         | <0.001  | 96.89 114.45        | <0.001         |         | 29.12 35.18        | <0.001         |         |
| Body fat (%)      | 27.51 40.42            | 70.85 81.28        | <0.001  | 112.66 127.47       | <0.001         |         | 121.36 129.99      | 0.0047         |         |
| FPG (mg/dl)       | 93.45 109.35           | 68.89 78.43        | <0.001  | 96.89 114.45        | <0.001         |         | 29.12 35.18        | <0.001         |         |
| TG (mg/dl)        | 73.05 149.66           | 84.23 165.27       | <0.001  | 91.55 159.6         | <0.001         |         | 207.74 212.53      | 0.1437         |         |
| CHOL              | 183.75 192.51          | 196.28 203.75      | <0.001  | 196.28 203.75       | <0.001         |         | 207.74 212.53      | 0.1437         |         |
| HDL-C (mg/dl)     | 67.05 49.48            | 67.18 51.13        | <0.001  | 67.18 51.13         | <0.001         |         | 67.84 54.21        | <0.001         |         |
| LDL-C (mg/dl)     | 102.6 123.23           | 112.66 127.47      | <0.001  | 112.66 127.47       | <0.001         |         | 121.36 129.99      | 0.0047         |         |
| BMI (kg/m²)       | 21.08 28.26            | 21.87 26.39        | <0.001  | 21.87 26.39         | <0.001         |         | 22.49 25.71        | <0.001         |         |

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome; SBP, systolic blood pressure; TG, triglyceride; WC, waist circumference.

Table 8  χ² test results of differences in categorical variables between ages and between occupations among men

| Variables          | Item                        | Non-MetS | %   | MetS | n   | %   | P value |
|--------------------|-----------------------------|----------|-----|------|-----|-----|---------|
|                   | Age (years)                 |          |     |      |     |     |         |
|                   | Age ≤40                     | 16 483   | 76.99 | 4927 | 23.01 | <0.001 |         |
|                   | 40< age ≤60                 | 13 813   | 67.17 | 6752 | 32.83 |         |         |
|                   | Age >60                     | 1158     | 64.08 | 649  | 35.92 |         |         |
|                   | Occupation                  |          |     |      |     |     |         |
|                   | Professional-1              | 1936     | 74.18 | 674  | 25.82 |         |         |
|                   | Technical-2                 | 12603    | 74.5 | 4314 | 25.5 |         |         |
|                   | Managerial-3                | 5704     | 67.48 | 2749 | 32.52 |         |         |
|                   | Sales-4                     | 4516     | 70.47 | 1892 | 29.53 | <0.001 |         |
|                   | Service-5                   | 1557     | 71.32 | 626  | 28.68 |         |         |
|                   | Clerical and administrative-6| 1558   | 73.94 | 549  | 26.06 |         |         |
|                   | Manual labor-7              | 2127     | 72.79 | 795  | 27.21 |         |         |
|                   | Taxi driver-8               | 1453     | 66.59 | 729  | 33.41 |         |         |

MetS, metabolic syndrome.
the second-highest and the third-highest MetS prevalence at 18.97% and 12.41%, respectively.

We analysed the associations between the major factors of the three age groups in a multiple logistic regression model in tables 10–12. BMI (%), body weight (kg), body fat percentage (%) and total cholesterol (mg/dL) were seen to be the important risk factors for MetS (p<0.01 or even p<0.001). There are significant differences in gender between the young and middle-aged groups. That is, men run a higher risk of having MetS. However, there is no difference between the male and female genders when age >60 years.

Tables 10–12 present the multiple logistic regression results for the three age-stratified subgroups, respectively. BMI (%), body weight (kg), body fat percentage (%) and total cholesterol (mg/dL) were revealed to be the most significant risk factors for MetS (p<0.01 or p<0.001). Men were significantly more likely to have MetS than women in only the young and middle-aged subgroups.

With regard to the three occupational groups (table 10), in the younger subgroup, individuals with a non-sedentary occupation were less likely to have MetS (OR=0.88, 95% CI 0.78 to 0.99, p=0.0295) than those in other occupations. The three occupational groups did not differ with respect to MetS prevalence in the middle-aged group. In the older subgroup, MetS prevalence was higher among individuals in sedentary, high-SES occupations (OR=1.39, CI 1.04 to 1.85, p=0.0247) than among individuals in other occupations and higher among men than women. Men and women were not significantly different with respect to MetS prevalence.

**DISCUSSION**

Owen et al reported that the average person spends (1) 71% of their daily waking hours in an inactive state and (2) Only 30 min daily on moderate-intensity physical activity on most days of a week. As noted in the literature review in the Introduction

---

**Table 9** $\chi^2$ test results of differences in categorical variables between ages and between occupations among women

| Variables      | Item               | Non-MetS |       | MetS |       | P value |
|----------------|--------------------|----------|-------|------|-------|---------|
|                |                    | N        | %     | n    | %     |         |
| Age (years)    | Age ≤40            | 14977    | 93.77 | 995  | 6.23  | <0.001  |
|                | 40< age ≤60        | 11107    | 84.32 | 2065 | 15.68 |         |
|                | Age >60            | 394      | 67.93 | 186  | 32.07 |         |
| Occupation     | Professional-1     | 3410     | 91.23 | 328  | 8.77  | <0.001  |
|                | Technical-2        | 2313     | 91.06 | 227  | 8.94  |         |
|                | Managerial-3       | 2809     | 87.59 | 398  | 12.41 |         |
|                | Occupation         | 4738     | 89.87 | 534  | 10.13 |         |
|                | Service-5          | 2655     | 88.15 | 357  | 11.85 |         |
|                | Clerical and administrative-6 | 9334 | 89.81 | 1059 | 10.19 |         |
|                | Manual labor-7     | 1175     | 81.03 | 275  | 18.97 |         |
|                | Taxi driver-8      | 44       | 39.29 | 68   | 60.71 |         |

MetS, metabolic syndrome.

**Table 10** Multiple logistic regression results for factors associated with MetS risk among participants aged ≤40 years

| Variables   | Condition         | OR      | 95% CI         | P value |
|-------------|-------------------|---------|----------------|---------|
| Occupation  | Group-I*          | 1.00    |                |         |
|             | Group-II†         | 0.88    | 0.78 to 0.99   | 0.0295  |
|             | Group-III‡        | 1.03    | 0.95 to 1.12   | 0.4825  |
| Gender      | Male              | 1.00    |                |         |
|             | Female            | 0.43    | 0.37 to 0.51   | <0.001  |
| Weight (kg) |                   | 1.04    | 1.03 to 1.05   | <0.001  |
| BMI         |                   | 1.26    | 1.22 to 1.29   | <0.001  |
| Body fat percentage (%) | | 1.07    | 1.06 to 1.08   | <0.001  |
| LDL-C (mg/dL) |               | 1.00    | 1.00 to 1.01   | 0.0012  |
| Total cholesterol (mg/dL) | | 1.00    | 1.00 to 1.00   | 0.0406  |

*Group-I: general sedentary-related occupations.
†Group-II: non sedentary-related occupations.
‡Group-III: sedentary-related occupations with high socioeconomic status.
BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome.
section, leading a sedentary lifestyle significantly increases the risk of MetS. A sedentary lifestyle also increases the risk of obesity, poor cardiometabolic health and poor cognitive health. An increasing number of researchers have begun to investigate the correlation between a sedentary occupation and MetS or CVD risk. However, most MetS risk factors have centred on a lack of physical activity rather than on a sedentary occupation. Studies have also demonstrated that lifestyle and SES are significant risk factors for MetS and CVD. However, Kim et al argued that a causal relationship between SES and MetS and CVD risk, as indicated by the Framingham Risk Score, cannot be inferred from the current body of cross-sectional evidence. Furthermore, scholars have yet to investigate the role of occupation in MetS risk, let alone in a fine-grained manner with occupation further distinguished by level of physical activity and association with SES. In particular, MetS risk is likely to differ between those working in typically sedentary, white-collar occupations (such as doctors, professors, managers and engineers) and those working in sedentary blue-collar occupations (such as administrative staff, service staff and taxi drivers).

Our findings indicate that age and occupation are significant MetS risk factors among men and women (tables 8 and 9, respectively). Managers and taxi drivers, regardless of gender, were more likely to have MetS than those in other occupations. Notably, salesmen, despite having a relatively physically active job, had the third-highest (and still high) MetS prevalence rate. The reasons for this finding should be investigated in future research. Furthermore, MetS prevalence was low among women younger than 60 years (tables 8 and 9) but high (at 32.07%, similar to that of their male counterparts) among women older than 60 years. This is attributable to a decrease in oestrogen levels after menopause.46

Due to the age group influencing the highest prevalence of MetS, this study compared the three occupation categories under different age groups. In table 10, we found the non-sedentary occupation group had less chance of having MetS. In table 11, there is no difference among the three occupational groups which implies occupational effects might not

| Variables | Condition | OR  | 95% CI   | P value |
|-----------|-----------|-----|----------|---------|
| Occupation | Group-I | 1.00 |          |         |
|           | Group-II| 1.01| 0.93 to 1.10 | 0.817  |
|           | Group-III| 0.98| 0.91 to 1.05 | 0.5618 |
| Gender    | Male     | 1.00 |          |         |
|           | Female   | 0.46| 0.4 to 0.52 | <0.001 |
| Weight (kg)|         | 1.03| 1.02 to 1.03 | <0.001 |
| BMI       |          | 1.30| 1.27 to 1.33 | <0.001 |
| Body fat percentage (%) | 1.07| 1.06 to 1.08 | <0.001 |
| LDL-C (mg/dl)| 1.00| 1.00 to 1.00 | 0.2922 |
| Total cholesterol (mg/dl)| 1.00| 1.00 to 1.00 | <0.001 |

BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome.

| Variables | Condition | OR  | 95% CI   | P value |
|-----------|-----------|-----|----------|---------|
| Occupation | Group-I | 1.00 |          |         |
|           | Group-II| 1.16| 0.89 to 1.53 | 0.2708 |
|           | Group-III| 1.39| 1.04 to 1.85 | 0.0247 |
| Gender    | Male     | 1.00 |          |         |
|           | Female   | 0.99| 0.65 to 1.5 | 0.9657 |
| Weight (kg)|         | 1.06| 1.04 to 1.08 | <0.001 |
| BMI       |          | 1.10| 1.03 to 1.18 | 0.0059 |
| Body fat percentage (%) | 1.08| 1.05 to 1.11 | <0.001 |
| LDL-C (mg/dl)| 1.00| 0.99 to 1 | 0.1646 |
| Total cholesterol (mg/dl)| 1.00| 1.00 to 1.01 | 0.19 |

BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; MetS, metabolic syndrome.
to have MetS (table 10). The three occupational groups did not differ with respect to MetS prevalence (table 11), which implies that occupation is not a key factor for MetS. However, among participants in the older subgroup, having a sedentary, high-SES occupation was associated with a higher risk of MetS (table 12). Thus, individuals in sedentary, high-SES occupations should avoid prolonged sitting. 46

CONCLUSIONS
Although prolonged sitting is a seemingly novel risk factor for health outcomes across all ages, its association must be determined under occupational conditions. 32 Our findings indicate that age and occupation type are risk factors for MetS. We found that lawyers, teachers, accountants, doctors, nurses, engineers, managers and taxi drivers constitute high-risk groups for MetS. For individuals 40 years old, having a non-sedentary occupation lowers the risk of MetS. For individuals >60 years old, having a sedentary, high-SES occupation significantly increases the risk of MetS. Government authorities should focus on sedentary, high-SES workers by tailoring health promotion programmes—involving, for example, aerobic exercise 47 or physical activity 28, 48—for this group of workers.

Acknowledgements: The authors thank Dr Yen-Ling Chiu (Nephrologist) and Dr Yen-Wen Wu (Cardiologist) from FEMH.

Contributors: M-SC conceived and designed the experiments; M-SC and C-CH performed the experiments; C-CH and S-CH analysed the data; M-SC supervised the study and contributed material for investigation; M-SC, C-CH and S-CH wrote this paper together. S-CH submitted this paper. S-CH is the paper’s guarantor.

Funding: This research was funded by grants from the Ministry of Science and Technology in Taiwan (grant numbers: MOST-107-2221-E-101-002 and MOST-108-2221-E-161-003-MY2; M-SC (grant number: NSC-106-1-12-504).

Competing interests: None declared.

Patient and public involvement: Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication: Not applicable.

Ethics approval: Ethical approval was obtained from the Research Ethics Review Committee at FEMH in New Taipei City, Taiwan (IRB approval number: FEMH-IRB-107126-E, v.02; board meeting and approval date: 10 September 2018). The MJ Health Research Foundation also approved this study. This study also has a PPS receipt (ClinicalTrials.gov ID: NCT04142593; Date: 25 October 2019).

Provenance and peer review: Not commissioned; externally peer reviewed.

Data availability statement: Data may be obtained from a third party and are not publicly available. We aggregated two databases from the New Taipei City Government Annual Taxi Health Examination Survey by FEMH and from the MJD (for 2012–2016). Access to the first data set by the wider scholarly community is restricted by the Research Ethics Review Committee of FEMH (FEMH-IRB-107126-E, v.02) out of concern for participant privacy. The second data set is accessible to any researcher upon request. Please contact M-SC (email: tree1013@gmail.com) to obtain further information.

Open access: This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs: Ming-Shu Chen http://orcid.org/0000-0002-2713-3546
Chi-Hao Chiu http://orcid.org/0000-0002-6807-8387
Shih-Hsin Chen http://orcid.org/0000-0001-5635-536X

REFERENCES
1 Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. Natl Health Stat Report 2009;13:1–8.
2 Hwang L-C, Bai C-H, Chen C-J. Prevalence of obesity and metabolic syndrome in Taiwan. J Formos Med Assoc 2006;105:626–35.
3 Worachartcheewan A, Nantasenamat G, Isanankura-Na-Ayudhya C, et al. Identification of metabolic syndrome using decision tree analysis. Diabetes Res Clin Pract 2010;90:e15–18.
4 Ching YK, Chin YS, Appukutty M, et al. Prevalence of metabolic syndrome and its associated factors among vegetarians in Malaysia. Int J Environ Res Public Health 2018;15:2031.
5 Song S, Young Paik H, Song WO, et al. Metabolic syndrome risk factors are associated with white rice intake in Korean adolescent girls and boys. Br J Nutr 2015;113:479–87.
6 Matsuru H, Mure K, Nishiu N, et al. Relationship between coffee consumption and prevalence of metabolic syndrome among Japanese civil servants. J Epidemiol 2012;22:190–6.
7 Chen M-S, Chen S-H. A data-driven assessment of the metabolic syndrome criteria for adult health management in Taiwan. Int J Environ Res Public Health 2019;16:92.
8 Yang X, Tao Q, Sun F, et al. The impact of socioeconomic status on the incidence of metabolic syndrome in a Taiwanese health screening population. Int J Public Health 2012;57:551–9.
9 Strauß M, Fosch P, Przybylek B, et al. Occupation and metabolic syndrome: is there correlation? A cross sectional study in different work activity occupations of German firefighters and office workers. Diabetol Metab Syndr 2016;8:57.
10 Bonora E, Kiechl S, Willeit J, et al. Carotid atherosclerosis and coronary heart disease in the metabolic syndrome: prospective data from the Bruneck study. Diabetes Care 2003;26:1251–7.
11 Henryson J, Dunstan DW, Davies MJ, et al. Sedentary behaviour as a new behavioural target in the prevention and treatment of type 2 diabetes. Diabetes Metab Res Rev 2016;32 Suppl 1:213–20.
12 Hanson RL, Imperatore G, Bennett PH, et al. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes 2002;51:3130–7.
13 Wilson PWF, D’Agostino RB, Parise H, et al. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005;112:3066–72.
14 Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001;24:683–9.
15 McNeill AM, Katz R, Girman CJ, et al. Metabolic syndrome and cardiovascular disease in older people: the cardiovascular health study. J Am Geriatr Soc 2006;54:1317–24.
16 Ibrahim MS, Pang D, Randhawa G, et al. Risk models and scores for metabolic syndrome: systematic review protocol. BMJ Open 2019;9:e027326.
17 Bakrania K, Edwardson CL, Bodicoat DH, et al. Associations of mutually exclusive categories of physical activity and sedentary time with markers of cardiometabolic health in English adults; a cross-sectional analysis of the health survey for England. BMC Public Health 2016;16:25.
18 Carbone S, Kirkman DL, Garten RS, et al. Muscular strength and cardiovascular disease: an updated state-of-the-art narrative review. J Cardiopulm Rehabil Prev 2020;40:302–9.
19 Brocato J, Wu F, Chen Y, et al. Association between sleeping hours and cardiometabolic risk factors for metabolic syndrome in a Saudi Arabian population. BMJ Open 2015;5:e008590.
20 Huang J-H, Li P-H, Huang S-L, et al. Lifestyle factors and metabolic syndrome among workers: the role of interactions between smoking.
and alcohol to nutrition and exercise. Int J Environ Res Public Health 2015;12:15967–78.
21 Liao C-M, Lin C-M. Life course effects of socioeconomic and lifestyle factors on metabolic syndrome and 10-year risk of cardiovascular disease: a longitudinal study in Taiwan adults. Int J Environ Res Public Health 2018;15:2178.
22 Mehrdad R, Pouryaghoub G, Moradi M. Association between metabolic syndrome and job RANK. Int J Occup Environ Med 2018;9:45–51.
23 Bankoski A, Harris TB, McClain JJ, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care 2011;34:497–503.
24 Owen N, Healy GN, Matthews CE, et al. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev 2010;38:105.
25 Aguilar M, Bhuket T, met al. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 2015;313:1973–4.
26 Bakrania K, Edwardson CL, Khunti K, et al. Associations between sedentary behaviors and cognitive function: cross-sectional and prospective findings from the UK Biobank. Am J Epidemiol 2018;187:441–54.
27 Cho DY, Koo J-W. Differences in metabolic syndrome prevalence by employment type and sex. Int J Environ Res Public Health 2018;15:1798.
28 Lavie CJ, Oxemek C, Carbone S, et al. Sedentary behavior, exercise, and cardiovascular health. Circ Res 2019;124:799–815.
29 Sakuraya A, Watanabe K, Kawakami N, et al. Work-Related psychosocial factors and onset of metabolic syndrome among workers: a systematic review and meta-analysis protocol. BMJ Open 2017;7:e016716.
30 Shin SY, Lee CG, Song HS, et al. Cardiovascular disease risk of bus drivers in a city of Korea. Ann Occup Environ Med 2013;25:34.
31 Leischik R, Foshag P, Strauß M, et al. Aerobic capacity, physical activity and metabolic risk factors in firefighters compared with police officers and sedentary clerks. PLoS One 2015;10:e0133113.
32 Jalayondeja C, Jalayondeja W, Mekhora K, et al. Break in sedentary behavior reduces the risk of noncommunicable diseases and cardiometabolic risk factors among workers in a petroleum company. Int J Environ Res Public Health 2017;14:501.
33 Strauss M, Foshag P, Leischik R. Prospective evaluation of cardiovascular, cardiorespiratory, and metabolic risk of German office workers in comparison to international data. Int J Environ Res Public Health 2020;17:1590.