Prognostic value of von Willebrand factor in patients with atrial fibrillation
A meta-analysis

Cheng Zhong, MM*, Minghua Xin, MM, Lang He, MM, Guojian Sun, MM, Farong Shen, MM

Abstract
Background: Studies on the prognostic role of von Willebrand factor (vWF) in patients with atrial fibrillation (AF) are conflicting. This meta-analysis aimed to evaluate the association of elevated circulating vWF level with adverse outcomes in patients with AF.

Methods: PubMed and Embase were used to search literature through August 2017. Prospective observational studies that evaluated the association of elevated vWF level with major adverse cardiac events (MACEs) and all-cause mortality in patients with AF were deemed eligible. The MACEs included death, stroke/transient ischemic attack, heart failure, myocardial infarction, and systemic/peripheral embolism.

Results: A total of 6 studies were included this meta-analysis. Patients with AF with the highest vWF level were independently associated with greater risk of MACEs (risk ratio [RR] 2.20; 95% confidence intervals [CI] 1.61–3.01) and all-cause mortality (RR 1.63; 95% CI 1.39–1.91). Subgroup analysis showed that the prognostic role of higher vWF level was consistently observed in each defined subgroups.

Conclusion: Patients with AF with elevated vWF level are independently associated with a higher risk of MACEs and all-cause mortality. However, more well-designed prospective studies are needed to confirm these findings.

Abbreviations: AF = atrial fibrillation, CI = confidence intervals, MACEs = major adverse cardiac events, NOS = Newcastle–Ottawa scale, RR = risk ratio, vWF = von Willebrand factor.

Keywords: all-cause mortality, atrial fibrillation, major adverse cardiac events, meta-analysis, von Willebrand factor

1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with increased global public health burden. The age-adjusted prevalence of AF was 596 per 100000 men and 373 per 100,000 women worldwide. The estimated annual incidence of AF was 3.88 per 100000 men and 1.88 per 100000 women.

The current meta-analysis sought to evaluate the predictive value of the vWF in patients with AF, in terms of major adverse cardiac events (MACEs) and all-cause mortality. However, no previous meta-analysis has assessed the association of vWF level with adverse outcomes in patients with AF.

2. Materials and methods

2.1. Search strategy

A comprehensive literature search was conducted in PubMed and Embase databases from their inception to August 2017. Search keywords used to identify relevant articles were “von Willebrand Factor” OR “vWF” OR “hemostatic” AND “atrial fibrillation” AND “major adverse cardiac events” OR “mortality” OR “death”.

In addition, we also reviewed the reference lists of relevant articles to identify any additional studies. No limitation was imposed on language in the literature search. All literature searches were performed by 2 independent authors. This meta-analysis was...
conducted according to the checklist of the Meta-Analysis of Observational Studies in Epidemiology.[15] Ethical approval was not required because the present study reviewed the published studies.

2.2. Study selection

Inclusion criteria were the following: prospective studies enrolling patients with AF; baseline circulating vWF level as exposure; outcome of interests were MACEs and all-cause mortality; and provided multivariate-adjusted risk ratios (RRs) and 95\% confidence intervals (CIs) for MACEs or all-cause mortality for the highest versus lowest category of vWF level. Exclusion criteria were studies provided risk estimate by continuous vWF level, and participants were not in the AF population.

2.3. Data extraction and quality assessment

Using a standard data extraction form, 2 authors independently extracted the following data: author’s surname, year of publication, country of origin, study design, sample size, gender, mean age or age range of participants, vWF cutoff value, definition of MACEs, number of adverse events, mean or median follow-up time, multivariate-adjusted risk estimate, and maximum adjusted covariates. Two authors independently assessed the study quality using the Newcastle–Ottawa scale (NOS) for the cohort studies.[16] Total NOS score ranged from 0 to 9 stars. Studies achieving ≥7 stars were deemed as good quality. Any discrepancy in data extraction and quality assessment was resolved through discussion.

2.4. Statistical analyses

Meta-analyses were conducted using a generic inverse variance approach with STATA Version 12.0 (Stata, College Station, TX). The pooled RR with 95\% CI of MACEs or all-cause death was calculated for the highest versus the reference low category of vWF level. A pooled RR > 1 suggested a worse prognosis in patients with AF with increased vWF level. The presence of statistical heterogeneity across studies was tested using Cochran Q statistic and I\(^2\) statistic. For \(P < .10\) values of the Cochran Q statistic or I\(^2\) statistic ≥ 50\%, the assumption of heterogeneity was present and a random-effects model was selected. Subgroup analyses were planned for the length of follow-up, cutoff value of vWF, sample size, anticoagulated drugs, and form of AF. A leave-one-out sensitivity analysis was performed to examine the magnitude of influence of each study on pooled risk estimate. Begg rank correlation test and Egger regression test were used to detect publication bias.

3. Results

3.1. Search results and study characteristics

A total of 175 articles were identified from the initial literature search. We removed 156 articles after abstracts or titles were scanned, leaving 19 potentially relevant articles for full-text evaluation. After applying our predefined inclusion criteria, 13 articles were further removed. Thus, 6 studies[12,13,17–20] were finally included in the meta-analysis (Fig. 1).

Table 1 summarizes the baseline characteristics of the individual studies. All of these studies were published between 2003 and 2017. These studies were conducted in Germany,[12] Italy,[19] Spain,[20] Austria,[13] and United Kingdom.[17,18] A total of 4008 patients with AF were identified and analyzed. Individual study sample sizes varied from 269 to 1215, and the length of the follow-up ranged from 1.58 years to 7.0 years. Three studies[13,17,20] with 7 NOS stars were considered as good quality, and others[12,18,19] achieved 6 stars indicating moderate quality.

3.2. Major adverse cardiac events

Six studies[12,13,17–20] reported the association of vWF level with MACEs. Meta-analysis showed that the pooled multivariate RR for MACEs was 2.20 (95\% CI 1.61–3.01) for the highest versus the lowest category of vWF level in a random effect model (Fig. 2). A substantial heterogeneity between studies was observed (\(I^2 = 66.9\%\); \(P = .010\)). There was no evidence of publication bias according to the results of Begg rank correlation test (\(P = 1.000\)) or Egger regression test (\(P = .924\)). A leave-one-out sensitivity analysis did not alter the statistical significance of the pooled risk estimate. A subgroup analysis showed that the association of the increased vWF level with MACEs was consistently observed in the length of follow-up, cutoff value of vWF, sample sizes, anticoagulated drugs, and form of AF subgroups (Table 2).

3.3. All-cause mortality

Four studies[12,13,18,20] reported the association of vWF level with all-cause mortality. As shown in Figure 3, there was no evidence of significant heterogeneity (\(I^2 = 28.7\%\); \(P = .024\)) across the included studies. Meta-analysis showed that the pooled multivariate RR for all-cause mortality was 1.63 (95\% CI 1.39–1.91) for the highest versus lowest category of vWF level in a fixed-effect model.

4. Discussion

This meta-analysis summarized the evidence to date regarding the association of elevated circulating vWF level with clinical adverse outcomes in patients with AF. The main findings of our meta-analysis indicated that patients with AF with elevated vWF level
were significantly increased risk of all-cause mortality and MACEs. Determination of vWF level may contribute to risk stratification among patients with AF. In addition, the presence of increased vWF level may be incorporated into clinical scores for AF risk stratification and treatment strategies.

This is the first meta-analysis that provided evidence for an independent association of elevated vWF level with all-cause mortality and MACEs in patients with AF. Previous meta-analysis failed to show an association of higher vWF level with stroke event in patients with AF. Prognostic value of circulating vWF for the development of all-cause mortality and MACEs among patients with AF was demonstrated in our meta-analysis. Prognostic role of increased vWF level may be different in various subtype of AF. Subgroup analysis revealed that increased vWF level likely exhibited a stronger impact on MACEs in nonvalvular AF than any other form of AF. Our subgroup analysis also showed the association of increased vWF level with MACEs risk seemed to be stronger for longer follow-up. Also, vWF as a
continuous variable was also predictive for all-cause mortality in patients with AF.[11]

Endothelial damage/dysfunction and inflammation are important pathologic alteration in AF.[22] vWF itself plays a pathogenetic role in atherogenesis and regulates the balance between hemostasis and thrombosis.[23] The increased risk of all-cause death and MACEs in AF may be correlated with the presence of a prothrombotic or hypercoagulable condition. Therefore, vWF could be considered as a potential clinical biomarker.

In line with these included studies, the significant and independent association of increased circulating vWF level with adverse outcomes was also reported in the general and other specific disease populations. vWF was an independent predictor of all-cause death in the population of community dwelling Japanese,[24] diabetic, and nondiabetic patients.[25] In patients with angiographically proven coronary artery disease, vWF was independent predictors of future cardiovascular mortality.[26] Increased vWF level was predictive of adverse cardiovascular outcome and death during 1-year follow-up in acute coronary syndrome and stable angina pectoris patients.[27]

Several limitations of the current meta-analysis need to be considered. First, the number of studies available for meta-analyses was relatively small and substantial heterogeneity was present across studies in pooling MACEs ($I^2 = 70.0\%$; $P = .005$). The source of heterogeneity may be correlated with the type of AF, follow-up length, cutoff value of vWF, or different definition of MACEs. Second, included studies used different cutoff value of vWF to define higher vWF level and this meta-analysis could not determine the optimal cutoff value of vWF for predicting adverse outcomes. Third, circulating vWF level was only measured at baseline, and repeat measurements during follow-up of patients would improve diagnostic accuracy. Fourth, circulating vWF level is affected by several factors including vWF polymorphisms, systemic inflammation, blood type, and ADAMTS13 activity.[28] Lack of adjustment for these residual confounding factors in the statistical model could have slightly overestimated the risk estimate. Finally, the patients with AF analyzed in the current study included studies with different follow-up duration, sample size, and type of AF.

Table 2

Subgroup	No of studies	Pooled RR 95% CI	Heterogeneity between studies
Type of AF			
Nonvalvular	3	2.54	1.46–4.40; $P = .005$; $I^2 = 81.0\%$; $\hat{I} = 81.0\%$
Any type	3	1.92	1.30–2.83; $P = .149$; $I^2 = 47.5\%$; $\hat{I} = 47.5\%$
Sample size			
≥800	2	1.85	1.44–2.38; $P = .375$; $I^2 = 0.0\%$; $\hat{I} = 0.0\%$
<800	4	2.30	1.48–3.57; $P = .010$; $I^2 = 73.5\%$; $\hat{I} = 73.5\%$
Cutoff value of vWF			
Tertile	2	3.46	2.45–4.87; $P = .360$; $I^2 = 74.3\%$; $\hat{I} = 74.3\%$
Single cutoff	4	1.87	1.47–2.38; $P = .248$; $I^2 = 27.3\%$; $\hat{I} = 27.3\%$
Follow-up duration, y			
≥5	2	1.72	1.35–2.20; $P = .050$; $I^2 = 61.5\%$; $\hat{I} = 61.5\%$
<5	4	2.58	1.75–3.81; $P = .050$; $I^2 = 61.5\%$; $\hat{I} = 61.5\%$
Regular anticoagulant drugs			
Yes	2	2.12	1.40–3.21; $P = .095$; $I^2 = 64.1\%$; $\hat{I} = 64.1\%$
No	4	2.22	1.55–3.66; $P = .011$; $I^2 = 73.0\%$; $\hat{I} = 73.0\%$

AF = atrial fibrillation, CI = confidence interval, RR = risk ratio, vWF = von Willebrand factor.

Figure 3. Forest plots showing pooled risk ratio (RR) with 95% confidence interval (CI) of all-cause mortality for the highest versus the lowest category of von Willebrand factor level.
meta-analysis were predominantly elderly people, so generation of our findings to the younger patients should be with caution.

5. Conclusion
Elevated vWF level at baseline is significantly associated with higher risk of MACEs and all-cause mortality in elderly patients with AF. This risk seems more pronounced in patients with nonvalvular AF. However, more well-designed prospective studies are needed to confirm these findings.

Author contributions
Conceptualization: Cheng Zhong.
Data curation: Minghua Xin, Lang He.
Formal analysis: Minghua Xin, Lang He.
Methodology: Cheng Zhong, Minghua Xin.
Project administration: Cheng Zhong, Minghua Xin, Lang He.
Supervision: Guojian Sun.
Validation: Cheng Zhong.
Writing – original draft: Guojian Sun.
Writing – review & editing: Farong Shen.

References
[1] Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 2014;129:387–47.
[2] Bai Y, Wang YL, Shantsila A, et al. The global burden of atrial fibrillation and stroke: a systematic review of the clinical epidemiology of atrial fibrillation in Asia. Chest 2017;152:810–20.
[3] Zhou Z, Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J Epidemiol 2008;18:209–16.
[4] Camm AJ, et al. European Heart Rhythm Association, European Association for Cardio-Thoracic SurgeryGuidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010;31:2369–429.
[5] Ouduty A, Wong CX, Hsiao AJ, et al. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. BMJ 2016;354:i4482.
[6] Viscer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 2006;4:1186–93.
[7] Watson J, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010;31:2369–429.
[8] Giblin JP, Hewlett LJ, Hannah MJ. Basal secretion of von Willebrand factor from human endothelial cells. Blood 2008;112:937–64.
[9] Lopez-Castaneda S, Valencia-Hernandez I, Arean C, et al. Von Willebrand factor: multimeric structure and functional activity in patients with atrial fibrillation with and without oral anticoagulation. Clin Appl Thromb Hemost 2018;24:647–54.
[10] Weymann A, Sabashnikov A, Ali-Hasan-Al-Saegh S, et al. Predictive role of coagulation, fibrinolysis, and endothelial markers in patients with atrial fibrillation, stroke, and thromboembolism: a meta-analysis, meta-regression, and systematic review. Med Sci Monit Basic Res 2017;23:97–140.
[11] Alonso A, Tang W, Agarwal SK, et al. Hemostatic markers are associated with the risk and prognosis of atrial fibrillation: the ARIC study. Int J Cardiol 2012;155:217–22.
[12] Ehrlich JR, Kaluzny M, Baumann S, et al. Biomarkers of structural remodelling and endothelial dysfunction for prediction of cardiovascular events or death in patients with atrial fibrillation. Clin Res Cardiol 2011;100:1029–36.
[13] Freyhofer MK, Gruber SC, Bruno V, et al. Prognostic value of plasma von Willebrand factor and its cleaving protease ADAMTS13 in patients with atrial fibrillation. International journal of cardiology 2013;168:317–25.
[14] Herrunga J, Conway DS, van der Kuip DA, et al. A longitudinal population-based study of prothrombotic factors in elderly subjects with atrial fibrillation: the Rotterdam Study. J Thromb Haemost 2006;4:1944–9.
[15] Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-Analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008–12.
[16] Wells G, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed October 1, 2017.
[17] Conway DS, Pearce LA, Chin BS, et al. Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation 2003;107:3141–5.
[18] Roldan V, Munn F, Muna B, et al. Plasma von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J Am Coll Cardiol 2011;57:2496–504.
[19] Krishnamoorthy S, Khoo CW, Lim HS, et al. Prognostic role of plasma von Willebrand factor and soluble E-selectin levels for future cardiovascular events in a ‘real-world’ community cohort of patients with atrial fibrillation. Eur J Clin Invest 2013;43:1032–8.
[20] Garcia-Fernández A, Roldan V, Rivera-Caravaca JM, et al. Does von Willebrand factor improve the predictive ability of current risk stratification scores in patients with atrial fibrillation? Sci Rep 2017;7:41565.
[21] Wu N, Chen X, Cai T, et al. Association of inflammatory and hemostatic markers with stroke and thromboembolic events in atrial fibrillation: a systematic review and meta-analyses. Can J Cardiol 2015;31:278–86.
[22] Lip GY, Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 1997;34:255–63.
[23] Luo GP, Ni B, Yang X, et al. von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J Am Coll Cardiol 2011;57:2496–504.
[24] Ehrlich JR, Kaluzny M, Baumann S, et al. Biomarkers of structural remodelling and endothelial dysfunction for prediction of cardiovascular events or death in patients with atrial fibrillation. Clin Res Cardiol 2011;100:1029–36.
[25] Wells G, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed October 1, 2017.
[26] Conway DS, Pearce LA, Chin BS, et al. Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation 2003;107:3141–5.
[27] Roldan V, Munn F, Muna B, et al. Plasma von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J Am Coll Cardiol 2011;57:2496–504.
[28] Krishnamoorthy S, Khoo CW, Lim HS, et al. Prognostic role of plasma von Willebrand factor and soluble E-selectin levels for future cardiovascular events in a ‘real-world’ community cohort of patients with atrial fibrillation. Eur J Clin Invest 2013;43:1032–8.
[29] Garcia-Fernández A, Roldan V, Rivera-Caravaca JM, et al. Does von Willebrand factor improve the predictive ability of current risk stratification scores in patients with atrial fibrillation? Sci Rep 2017;7:41565.
[30] Wu N, Chen X, Cai T, et al. Association of inflammatory and hemostatic markers with stroke and thromboembolic events in atrial fibrillation: a systematic review and meta-analyses. Can J Cardiol 2015;31:278–86.
[31] Lip GY, Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 1997;34:255–63.
[32] Luo GP, Ni B, Yang X, et al. von Willebrand factor levels are an independent risk factor for adverse events including mortality and major bleeding in anticoagulated atrial fibrillation patients. J Am Coll Cardiol 2011;57:2496–504.