Exploring Integrative Analysis Using the BioMedical Evidence Graph

Adam Struck, MSc; Brian Walsh, BS; Alexander Buchanan, BS; Jordan A. Lee, MS; Ryan Spangler, MS; Joshua M. Stuart, PhD; and Kyle Ellrott, PhD

PURPOSE The analysis of cancer biology data involves extremely heterogeneous data sets, including information from RNA sequencing, genome-wide copy number, DNA methylation data reporting on epigenetic regulation, somatic mutations from whole-exome or whole-genome analyses, pathology estimates from imaging sections or subtyping, drug response or other treatment outcomes, and various other clinical and phenotypic measurements. Bringing these different resources into a common framework, with a data model that allows for complex relationships as well as dense vectors of features, will unlock integrated data set analysis.

METHODS We introduce the BioMedical Evidence Graph (BMEG), a graph database and query engine for discovery and analysis of cancer biology. The BMEG is unique from other biologic data graphs in that sample-level molecular and clinical information is connected to reference knowledge bases. It combines gene expression and mutation data with drug-response experiments, pathway information databases, and literature-derived associations.

RESULTS The construction of the BMEG has resulted in a graph containing > 41 million vertices and 57 million edges. The BMEG system provides a graph query–based application programming interface to enable analysis, with client code available for Python, Javascript, and R, and a server online at bmeg.io. Using this system, we have demonstrated several forms of cross-data set analysis to show the utility of the system.

CONCLUSION The BMEG is an evolving resource dedicated to enabling integrative analysis. We have demonstrated queries on the system that illustrate mutation significance analysis, drug-response machine learning, patient-level knowledge-base queries, and pathway level analysis. We have compared the resulting graph to other available integrated graph systems and demonstrated the former is unique in the scale of the graph and the type of data it makes available.

JCO Clin Cancer Inform 4:147-159. © 2020 by American Society of Clinical Oncology

INTRODUCTION Biological data produced by large-scale projects now routinely reach petabyte levels thanks to major advances in sequencing and imaging. With multiple profiling methods, platforms, versions, formats, and pipelines, a major unaddressed issue is querying across the increasingly heterogeneous data. When faced with the substantial labor and computation costs, researchers may use outdated and/or only a fraction of publicly available data.

Graph databases are useful tools for integrating complex and interconnected data. In the commercial sector, several major data aggregators have successfully used graph databases to integrate heterogeneous data. Facebook (Menlo Park, CA) uses the “Social Graph” to represent the connections between people and their information, whereas Google’s search engine (Alphabet, Mountain View, CA) uses Google’s “Knowledge Graph” to connect various facts about different subjects. On the basis of these observations, we have built the BioMedical Evidence Graph (BMEG) to allow for complex integration and analysis of heterogeneous biological data.

The BMEG was created by importing several cancer-related resources and transforming them into a coherent graph representation. These resources include patient and sample information, mutations, gene expression, drug response data, genomic annotations, and literature-based analysis (Appendix Table A1). The BMEG contains data on 15,000 patients, 52,000 samples, 6.8 million alleles, 640,000 drug-response experiments, and 50,000 literature-derived genotype-to-phenotype associations.

We describe a resource that enables analysts to quickly access data from multiple sources and perform queries that integrate them with clear graph-based
CONTEXT

Key Objective
Can a graph database help researchers access multiple integrated data sets for cancer omics analysis?

Knowledge Generated
We have developed and tested an integrated graph database, BioMedical Evidence Graph, that connects patient sample data, cell-line drug-response data, and multiple knowledge bases. Simple queries to this system allowed cross-data set analysis in seconds when the same questions would have required days or weeks of manual effort otherwise.

Relevance
Analysis of cancer systems biology data requires a large variety of different kinds of data. The BioMedical Evidence Graph system provides a uniform interface for data interrogation that will make it easier to pose a variety of clinically relevant queries.

METHODS

Graph Schema
At the core of BMEG’s metadata is a tree representing the organization of all the different data elements (Fig 1). Program node represents the root of the tree, defining a cohort of samples studied by a consortium. For example, The Cancer Genome Atlas (TCGA; National Cancer Institute, Bethesda, MD) is one such “program” and cohorts for different tumor types can be selected using the program’s child node called “Project.” Each tumor type is then populated by a number of Case nodes, which in turn have multiple Sample nodes, which can then be subdivided into a number of Aliquot nodes. The BMEG schema builds on this base structure to include data from a number of additional sources including: (1) genome reference, (2) gene and pathway annotations, (3) somatic variants, (4) gene expression data, and (5) knowledge bases.

Data Sources
Initial data sources (Appendix Table A1) for the BMEG were centered on large cohorts of patient-derived samples, with DNA and RNA profiling, cell lines with drug-response data, and literature-derived drug-phenotype associations. The goal was to provide uniform input data for analysis and machine learning.

RNA-Sequencing Data
To identify the best methods for RNA analysis, we launched the somatic mutation calling–RNA challenge, which benchmarked isoform quantification methods to prioritize the methods used for processing data that would be ingested into the BMEG. For example, for transcript abundances we used results from Kallisto (Patcher Lab, University of California, Berkeley, Berkeley, CA), a top contending method in the somatic mutation calling–RNA challenge, to process the TCGA and Cancer Cell Line Encyclopedia (CCLE) data sets. In addition, the Genotype-Tissue Expression project (National Institutes of Health, Bethesda, MD) provided gene-level, transcript-per-million-mapped reads estimates for normal tissues that could be contrasted with tumors. Combinations of these resources provide 36,000 vertices to the BMEG graph.

TCGA Metadata
The Genomic Data Commons (GDC; National Cancer Institute, Bethesda, MD) created a data system to track the clinical and administrative meta-data of the TCGA samples and files. We used their web application programming interface (API) to obtain TCGA patient and sample meta-data for the evidence graph.

TCGA Genomic Data
To determine the best methods for somatic mutation calling, we partnered with the Dialogue on Reverse Engineering Assessment of Methods (DREAM) consortium, Sage BioNetworks (Seattle, WA), and the Ontario Institute for Cancer Research to launch the International Cancer Genome Consortium–TCGA Somatic Mutation Calling challenge. Many methods evaluated by this effort were incorporated into pipelines that would be deployed on the TCGA’s 10,000 exomes as part of the Multi-Center Mutation Calling in Multiple Cancers (MC3) project. The MC3 adds 10,000 vertices that connect to 3 million alleles (2.6 million
distinct alleles) in the graph. For the set of copy-number alteration events, we used the Gistic data from the Broad Institute’s Firehose system (Massachusetts Institute of Technology, Cambridge, MA).

Cell-Line Drug-Response Data

Cell-line clinical attributes and drug-response data has been collated by the DepMap (Broad Institute) and Pharmacodb (BHKLAB, Princess Margaret Cancer Centre – University Health Network, Toronto, ON, Canada) projects, respectively. This includes response curves, half maximal inhibitory concentration and half maximal effective concentration (EC50) scores from CCLE, Cancer Therapeutics Response Portal (CTRP) and Genomics of Drug Sensitivity in Cancer. In addition, the DepMap and Cell Model Passports (Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK) provided variant calls for a number of cell lines.

Variant Drug Associations

The Genotype To Phenotype (G2P; Wellcome Sanger Institute) schema was designed to enable several different cancer knowledge-base resources to be aggregated into a coherent resource. The entries from these knowledge bases typically demarcate associations such as “the T41A mutation in CTNNB1 causes sensitivity to imatinib.” With this resource, the BMEG has aggregated associations from

FIG 1. The BioMedical Evidence Graph schema showing the vertex types and connections of the graph. Numbers on vertices represent the total instances of a specific type defined by the vertex (e.g., the Gene vertex includes 63,677 distinct protein-coding, microRNAs, and other gene entries); numbers on an edge connecting two vertices represent the total connections between any instance of the first vertex to any instance of the second vertex (e.g., there are 214,804 connections from transcripts to the genes that encode them). Pfam, protein families.
six prominent cancer knowledge bases, including 50,000 associations vertices.

Pathway Data
Pathway Commons (https://www.pathwaycommons.org/) aggregates, normalizes, and integrates data from 22 public pathway databases. At 1.5 million interactions and 400,000 detailed biochemical reactions, it is the largest curated pathway database available. It aggregates pathway relationships from Reactome (Wellcome Sanger Institute; European Molecular Biology Laboratory, Heidelberg, Germany),21 HumanCyc (SRI International, Menlo Park, CA),22 PANTHER Pathway,23 MSigDB (Broad Institute, Massachusetts Institute of Technology, Cambridge, MA),24 ReCon X,25 Comparative Toxicogenomics Database (North Carolina State University, Raleigh, NC),26 KEGG Pathway (Kyoto University, Kyoto, Japan),27 Integrating Network Objects with Hierarchies,28 NetPath (SolarWinds Worldwide, Austin, TX),29 and WikiPathways.30 Once loaded into the graph, these resources provided approximately 2 million vertices that could be queried by the user.

Reference Data
The BMEG uses Ensembl identifiers31 as a global identifier to unite various genomic components present across the ingested biologic reference data and experimental results. The genomic annotations from Ensembl were modeled into the graph to provide a consistent chromosomal coordinate system for any sequence-level sample information. Part of the import pipeline includes annotating sample variants using Variant Effect Predictor32 to connect them to gene, transcript, and exon data from Ensembl. These, in turn, link to Protein and Pfam (protein family)33 assignments, as well as Gene Ontology34 functional annotations.

Queries Using a Graph Language
To enable various analytical queries and provide a framework for analysts to build custom queries, we developed the Graph Integration Platform (GRIP) to design queries to use the BMEG. GRIP stores multiple forms of data and has the ability to hold thousands of data elements per vertex and per edge of the graph. This allows it to store sparse relationship data, such as pathways and ontologies, as well as dense matrix-formatted data, such as expression levels for thousands of genes across hundreds of samples.

The query language implements most operations needed for subgraph selection, as well as aggregation of features. A general purpose end point places more emphasis on the client side, building smart queries to obtain the data they need rather than having custom server-side components provide specialized facets. Because of this, clients can easily create new queries, unanticipated by the server developers, that still have the correct desired effect. The API is available via Python (Python Software Foundation, Wilmington, DE), Javascript (PluralSight, Farmington, UT), and R (R Foundation, https://www.r-project.org/) clients.

RESULTS
To test the utility of the BMEG and its query engine, we have crafted example queries that traverse different parts of the graph, to demonstrate how the system can quickly provide an analyst with connected data. Although it would be possible for an analyst to find the solutions to the following exercises without using the BMEG, the analyst would need to download and merge data from multiple different repositories such as from the TCGA’s GDC system, somatic mutations predicted from Broad Institute’s CCLE collection and the TCGA’s MC3 variant-calling project, seven different somatic variant-to-phenotype association catalogs, PubChem for the names and modes of action of molecular compounds, pathway gene sets from Pathway Commons, and three different drug-response databases. Thus, the benefits of ingesting all into a uniform graph data structure should provide a more seamless presentation that users will find easier to use once the API becomes familiar.

The GRIP Query Language is a traversal-based graph-selection language inspired by Gremlin.35 The user describes a series of steps that will be undertaken by a “traveler.” An example traversal would start on a vertex with label Project, move to edges labeled samples, then move along edges labeled aliquots. The engine then scans the graph for all valid paths that can be completed given the instructions. Each of the traversal instructions is based on the graph schema seen in Figure 1. The commands are written using the Python version of the client, but they could be executed similarly in R or Javascript. These queries can be visualized as paths traversed through the BMEG graph (Fig 2).

We begin with an example that counts the mutations per gene in a cancer cohort. This is a useful statistic to gauge one aspect of whether a gene may be a driver of progression, as evidenced by its prevalence in a subpopulation (in this case, breast cancer). As seen in example 1 in the following section, the query starts on a breast cancer project node (TCGA-BRCA) then traverses to the Case, Sample, and Aliquot nodes while filtering out any data properties that do not belong to the previous node information. As it passes the Sample node, it filters for tumor samples. Once on the Aliquot node, it continues to the SomaticCallset, which represents sets of variants produced by a single mutation calling analysis. The traversal then identifies the edges that connect the SomaticCallset to different alleles, this time using the outE command to land on the edge rather than the destination vertex. With the gene identifier in hand, it then uses the aggregate method to count the various terms that occur in the ensemble_gene field.
Example 1: Count Mutations per Gene in Breast Cancer

Query. For example 1, the query is written as follows:

- G.query().V("Project:TCGA-BRCA")

FIG 2. Example queries. A diagram showing how each of the different queries described in this article traverse the graph. Each separate query is labeled by the example number in the text.
Example 2: Identify Pathways Containing Mutated Genes

There may be a theme among the most frequently mutated genes in breast cancer. The next two example queries address this by finding the most frequently affected pathways. First, example 2 identifies pathways containing mutated genes. Example 3 tallies the number of genes per pathway. To identify the pathways involved in mutations, the example derives a list of all mutated genes, finds their associated pathways, and retrieves the tuples of every gene-pathway pair, using the as_ command (the underscore is added to avoid clashing with the Python-reserved word as) to store the gene and then using the render function to display only the needed data.

Query.

- G.query().V(genes).as_("gene")
- .out("pathways").render(["$gene._gid","$._gid"])

Result. The result returns all the pathways for which each gene is a member. This query uses data extracted from Ensembl and Pathway Commons.

- ENSG00000155657 (pathwaycommons.org/pc11/Pathway_6bf6d39c0284b6...)
- ENSG00000181143 (identifiers.org/reactome/R-HSA-432142)
- ENSG0000000938 (identifiers.org/reactome/R-HSA-977606)
- ENSG0000000971 (identifiers.org/reactome/R-HSA-977606)
- ENSG0000001036 (pathwaycommons.org/pc11/Pathway_4b5817426aa06d...)

Example 3: Determine the Number of Mutations in Each Pathway

Continuing in this investigation to derive the most affected pathways, the next step is to aggregate the mutations per pathway and then sum them. To do this, the preceding listed information can be combined with the previously found result tabulating the mutations per pathway. To sum all the mutations in all the genes in a particular pathway, the traversal starts on the Pathway vertex marked for later retrieval using the as_ command. Once the traveler has split and moved out to the multiple child Gene vertices, the select command recalls the stored pathway vertex and moves the traveler back. At this point, an aggregation is called to count the number of travelers on each Pathway vertex.

Query.

- G.query().V().hasLabel("Pathway").as_("pathway")
- .out("genes").select("pathway")
- .aggregate(gripql.term("pathwayGeneCount", "$._gid"))

Result. The result lists the number of mutations for each pathway found.

- identifiers.org/reactome/R-HSA-191273 (n = 439)
- identifiers.org/reactome/R-HSA-381753 (n = 393)
- identifiers.org/reactome/R-HSA-212436 (n = 341)
- pathwaycommons.org/pc11/Pathway_4b5817426aa06d... (n = 340)

Example 4: Find Publications Relevant to Phenotypic Consequences of Mutations

A biologist may wish to find evidence in the literature for any known phenotypic consequences of a collection of mutations, providing clues about the mechanisms involved in carcinogenesis. To this end, example 4 shows how the mutations found in the Breast Cancer Carcinoma (BRCA) cohort are linked to publications referenced by the G2P associations. In this use case, the aggregate method is called on the _gid variable, which represents a unique global identifier for each vertex.

Query.

- G.query().V("Project:TCGA-BRCA")
- .out("cases").out("samples")
- .has(gripql.eq("gdc_attributes.sample_type", "Primary Tumor"))
- .out("aliquots").out("somatic_callsets").out("alleles")
- .out("g2p_associations").out("publications")
- .aggregate(gripql.term("pub", "_gid"))

Result. The result returns a list of the number of mutations for all genes connected in each of the returned papers. This query connects data from the GDC, the knowledge bases imported from the G2P project, and PubMed.

- Publication:ncbi.nlm.nih.gov/pubmed/27269946 (n = 1,033)
- Publication:ncbi.nlm.nih.gov/pubmed/27174596 (n = 1,029)
- Publication:ncbi.nlm.nih.gov/pubmed/19223544 (n = 858)
- Publication:ncbi.nlm.nih.gov/pubmed/20619739 (n = 664)

Example 5: Find Drugs Described in the Literature to Treat Phenotypes Linked to Mutations

The phenotypes in the G2P associations, linked to the collected breast cancer mutations, may be associated with drugs that treat specific conditions. Example 5 defines a traversal of the graph to uncover compounds linked to phenotypes on the basis of specific alleles. The traversal is much like the one illustrated in example 4; however, it also includes a distinct operation to identify unique pairs of cases and compounds. If there are multiple known association records from different publications and these
publications link one allele to the same drug-response phenotype, then only one relationship will be noted per patient.

Query.
- `G.query().V("Project:TCGA-BRCA")`
- `.out("cases")`.as_(_."case").out("samples")
- `.has(gripql.eq("gdc_attributes.sample_type","Primary Tumor"))`
- `.out("aliquots")`.out("somatic_callsets")`.out("alleles")
- `.out("g2p_associations")`.out("compounds")
- `.distinct("$sample._gid","_gid")`
- `.aggregate(gripql.terms("compound", "_gid"))`

Result. The result lists the number of times compounds were associated to mutations in patients. This query uses data in the graph derived from the GDC, the MC3 callset, the G2P knowledge bases and PubChem.

- Compound:CID104741 (n = 345)
- Compound:CID11717001 (n = 340)
- Compound:CID66649450 (n = 327)
- Compound:NO_ONTOLOGY:CID24989044 (n = 313)

Example 6: Find Drugs Tested in Breast Cancer Cell Lines

Taking the analysis one step further, the next two examples identify drugs proven effective against breast cancer cell lines as determined in the CTRP project. Example 6 identifies those compounds that have been tested in breast cancer cell lines as part of the CTRP project. The query uses the drugs found in example 5 through a list named `compounds` as a starting point.

Query.
- `G.query().V(compounds).as_(_."compound")`.out("projects")
- `.has(gripql.eq("project_id","CTRP_Breast_Cancer"))`
- `.select("compound").render(\"_gid","synonym\")`

Result. The result lists those drugs that were profiled in the CTRP effort. For example, at the top of the list, one finds that the compound fulvestrant has been tested against breast cancer cell lines in the CTRP project.

- Compound:CID104741: FULVESTRANT
- Compound:CID11717001: CHEMBL525191
- Compound:CID17755052: PICTILISIB
- Compound:CID24964624: CHEMBL1079175
- Compound:CID42611257: VEMURAFENIB
- Compound:CID66649450: ALPELISIB

Example 7: Find the Sensitivity of Breast Cancer Cell Lines to a Drug

To get a sense of the effectiveness of each of these drugs, a natural extension of this line of inquiry is to find out how sensitive the cells are to them. The EC50 measures the concentration achieving a response midway between the baseline and maximum when cells are exposed to a drug. It is a widely used measure of sensitivity (although a measure, GR50, that factors in growth rate, has been shown to be more useful) and available for compounds tested in the CTRP project. To this end, example 7 searches for the EC50 values for the breast cancer cell lines tested against fulvestrant.

This query includes a call to the `render` method, which shapes the output into a custom JavaScript Object Notation structure (JSON). In this case, it forms a tuple with the stored sample identifier and EC50 value. The list of tuples returned by the client can then be passed directly into a Pandas DataFrame.

Query.
- `G.query().V("Program:CTRP")`.out("projects")
- `.out("cases")`.out("samples")_.as_("sample")
- `.out("aliquots")`.out("drug_response").as_("response")
- `.out("compounds")`.hasId("Compound:CID104741")
 .render(\"$sample._gid","$response.submitter_compound_id","$response.ec50\")

Result. The result lists the EC50 values for each of the BRCA cell lines to fulvestrant, connecting the data from CTRP to PubChem entries.

- Sample:CTRP:ACH-000037: fulvestrant (n = 3.075000e−01)
- Sample:CTRP:ACH-000076: fulvestrant (n = 2.317000e−02)
- Sample:CTRP:ACH-000983: fulvestrant (n = 3.114000e−05)
- Sample:CTRP:ACH-000045: fulvestrant (n = 3.055000e−01)

Example 8: Find Gene Expression Data Linked to Cell Lines

Drug response data often are not available for patient samples; thus, machine-learning methods that can use more widely available data, such as gene expression data from RNA sequencing, to predict drug response are highly promising. Example 8 illustrates how associated transcriptomic data can be obtained for the cell lines collected in the previous steps. There is no RNA sequencing available from the CTRP project; however, many of the cell lines were assayed as part of the complementary CCLE project. To identify these samples, example 8 follows the edge connecting the list named `samples` found in example 7 to their parent cases. It then follows the `same_as` edge to identify Case vertices in other projects that have overlapping identifiers, and then follows the tree down to the `GeneExpression` node to obtain the expression values. Again, the example uses the `render` function to return properly formatted data structures that can be passed directly into Pandas.
Data Releases. The BMEG resource was designed to be portable and open, with multiple ways to access the data (Fig 3). The graph query engine that runs the system is open source and easy to install, and all the compiled source files are made available for bulk download. This will allow other researchers to build on our existing system and to reuse the collected data. We provide translations of the BMEG to make it compatible with a number of different query engines. Part of the BMEG toolkit is a set of scripts to translate the data set and load it into other graph database systems, including Neo4J (San Mateo, CA) and Dgraph (Dgraph Labs, San Francisco, CA).

DISCUSSION
Recently, several graph-based data integration projects have appeared, including biograkn,39 Biograph,40 Bio2RDF,42 and Hetionet.43 Many of these systems were built to aggregate pathway and link genotype to phenotype. The BMEG holds genomic, transcriptomic, and phenotypic data from cancer cases, as well as from cell-line samples, pathway data, genomic descriptions, and extractions from genome-variant knowledge bases. The system includes unit tests composed of built-in Python conversion code, implemented in a Travis continuous integration facility, for technical validation to ensure data are copied and represented accurately. The unique accumulation of various high-quality data types differentiates the BMEG from other data systems. As demonstrated in the example queries, data interrogation can traverse sample mutations, pathway descriptions, knowledge bases, and drug-response data, all within a few lines of query code.

Ensembl Gene Name	Sample: CTRP: ACH-000004	Sample: CTRP: ACH-000007	Sample: CTRP: ACH-000012	Sample: CTRP: ACH-000013	Sample: CTRP: ACH-000015
ENSG00000000003	2.615887	4.066089	5.820945	5.533875	4.821200
ENSG00000000005	0.000000	0.000000	0.000000	0.056584	0.000000
ENSG000000000419	5.323370	5.889960	6.006522	7.532161	6.948484

Abbreviation: CTRP, Cancer Therapeutics Response Portal.

FIG 3. BioMedical Evidence Graph (BMEG) architecture diagram. (A) The Extract Transform Load (ETL) processes used to build the graph. (B) The database and query engine used to power the bmeg.io site. (C) The different client-side options for communicating with the system. (D) Graph engines that can be used with the BMEG export code to move the BMEG data to other graph databases. GripQL, Graph Integration Platform query language.
The fundamental idea of the BMEG is to define a connected data set to enable many possible investigations without the effort needed to collect, normalize, and merge information across disparate systems, thus saving time and effort to focus on research questions rather than data wrangling. Adopting systems like the BMEG will drive analyses that can tap a wide range of sample data, with structured annotations, allowing for a number of feature and prediction label combinations for machine-learning applications to support new pattern discovery.

REFERENCES

1. Yoon B-H, Kim S-K, Kim S-Y: Use of graph database for the integration of heterogeneous biological data. Genomics Inform 15:19-27, 2017
2. Have CT, Jensen LJ: Are graph databases ready for bioinformatics? Bioinformatics 29:3107-3108, 2013
3. Lysenko A, Roznov AT, Saqi M, et al: Representing and querying disease networks using graph databases. BioData Min 9:23, 2016
4. Ugander J, Karner B, Backstrom L, et al: The anatomy of the Facebook Social Graph. arXiv:1111.4503 (cs.SI), 2011. http://arxiv.org/abs/1111.4503
5. Tatlow PJ, Piccolo SR: A cloud-based workflow to quantify transcript-expression levels in public cancer compendia. Sci Rep 6:39259, 2016
6. Lonsdale J, Thomas J, Salvatore M, et al: The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580-585, 2013
7. Boutros PC, Ewing AD, Ellrott K, et al: Global optimization of somatic variant identification in cancer genomes with a global community challenge. Nat Genet 46:318-319, 2014
8. Ellrott K, Bailey MH, Saksena G, et al: Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst 6:271-281.e7, 2018
9. Mermel CH, Schumacher SE, Hill B, et al: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41, 2011
10. Ghandi M, Huang FW, Jané-Valbuena J, et al: A cloud-based workflow to quantify transcript-expression levels in public cancer compendia. Sci Rep 6:39259, 2016
11. Smirnov P, Kofia V, Maru A, et al: PharmacoDB: An integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res 46:6994-D1002, 2018
12. Barretina J, Caponigro G, Stransky N, et al: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603-607, 2012 [Addendum: Nature 565:E5-E6, 2019]
13. Basu A, Bodycombe NE, Cheah JH, et al: An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154:1151-1161, 2013
14. Rees MG, Seashore-Ludlow B, Cheah JH, et al: Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 12:109-116, 2016
15. Yang W, Soares J, Greninger P, et al: Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:9595-9561, 2013
16. van der Meer D, Barthorpe S, Yang W, et al: Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res 47:9293-9299, 2019
17. Wagner AH, Walsh B, Mayfield G, et al: A harmonized meta-knowledgebase of clinical interpretations of cancer genomic variants. bioRxiv 366856, 2018. https://www.biorxiv.org/content/10.1101/366856v2
18. Cerami EG, Gross BE, Demir E, et al: Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685-D690, 2011
19. Fabregat A, Jupe S, Matthews L, et al: The Reactome Pathway Knowledgebase. Nucleic Acids Res 46:D649-D655, 2018
20. Schaefer CF, Anthony K, Krupa S, et al: PID: The Pathway Interaction Database. Nucleic Acids Res 37:D674-D679, 2009 (suppl 1)
21. Hornbeck PV, Zhang B, Murray B, et al: PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512-D520, 2015
22. Romero P, Wag J, Green ML, et al: Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2, 2005
23. Mi H, Huang X, Muruganujan A, et al: PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:D183-D189, 2017
24. Subramanian A, Tamayo P, Mootha VK, et al: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545-15550, 2005
25. Thiele I, Swainston N, Fleming RM, et al: A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419-425, 2013
26. Davis AP, Gondin CJ, Johnson RJ, et al: The Comparative Toxicogenomics Database: Update 2017. Nucleic Acids Res 45:O972-O978, 2017
27. Wroczek C, Büchel F, Ruff M, et al: Precise generation of systems biology models from KEGG pathways. BMC Syst Biol 7:15, 2013
28. Yamamoto S, Sakai N, Nakamura H, et al: INOH: Ontology-based highly structured database of signal transduction pathways. Database (Oxford) 2011:bar052, 2011
29. Kandasamy K, Mohan SS, Raju R, et al: NetPath: A public resource of curated signal transduction pathways. Genome Biol 11:R3, 2010
30. Pico AR, Keider T, van Iersel MP, et al: WikiPathways: Pathway editing for the people. PLoS Biol 6:e184, 2008
31. Hubbard T, Barker D, Birney E, et al: The Ensembl genome database. Nucleic Acids Res 34:36-41, 2006
32. McLaren W, Hunt SE, et al: The Ensembl variant effect predictor. Genome Biol 17:122, 2016
33. Finn RD, Bateman A, Clements J, et al: Pfam: The protein families database. Nucleic Acids Res 42(D1):D222-D230, 2014
34. Carbon S, Mungall C: Gene Ontology Data Archive. 2018.
35. Rodriguez MA: The Gremlin Graph Traversal Machine and Language. arXiv:1508.03843 (cs.DB). 2015. http://arxiv.org/abs/1508.03843
36. McKinney W: Data structures for statistical computing in python, in Proceedings of the 9th Python in Science Conference, Austin, TX, 2010:51-56
37. Selaklaropoulos T, Vougas K, Narang S, et al: A deep learning framework for predicting response to therapy in cancer. Cell Rep 29:3367-3373.e4, 2019
38. Costello JC, Heiser LM, Georgii E, et al: A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 32:1202-1212, 2014
39. Messina A, Priabadi H, Stitchbury J: BioGra:K: A knowledge graph-based semantic database for biomedical sciences, in Baroli K, Terzo O, eds: Complex, Intelligent, and Software Intensive Systems. New York, NY, Springer International Publishing, 2018:299-309.
40. Messina A, Fiannaca A, La Paglia L, et al: BioGraph: A web application and a graph database for querying and analyzing bioinformatics resources. BMC Syst Biol 12:98, 2018
41. Reference deleted
42. Belleau F, Nolin M-A, Tourigny N, et al: Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 41:706-716, 2008
43. Reference deleted
44. Flicek P, Amode MR, Barrett D, et al: Ensembl 2011. Nucleic Acids Res 39:D800-D806, 2011
45. Ashburner M, Ball CA, Blake JA, et al: Gene ontology: Tool for the uniﬁcation of biology. Nat Genet 25:25-29, 2000
46. Mungall CJ, McMurry JA, Blake JA, et al: The Monarch Initiative: An integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res 45:D712-D722, 2017
47. Liberzon A, Subramaniam A, Pinchback R, et al: Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739-1740, 2011
48. El-Gebali S, Mistry J, Bateman A, et al: The Pfam protein families database in 2019. Nucleic Acids Res 47:D427-D432, 2019
49. Kim S, Thiessen PA, Bolton EE, et al: PubChem substance and compound databases. Nucleic Acids Res 44:D1202-D1213, 2016
50. Liberzon A, Subramaniam A, Pinchback R, et al: Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739-1740, 2011
51. Stark C, Breitkreutz B-J, Reguly T, et al: BioGRID: A general repository for interaction datasets. Nucleic Acids Res 34:D535-D539, 2006
52. McLaren W, Gil L, Hunt SE, et al: The Ensembl variant effect predictor. Genome Biol 17:122, 2016
53. Hubbard T, Barker D, Birney E, et al: The Ensembl genome database. Nucleic Acids Res 34:36-41, 2006
54. Keshava Prasad TS, Goel R, Kandasamy K, et al: Human Protein Reference Database
55. Orchard S, Ammari M, Aranda B, et al: The MIntAct project
56. Keshava Prasad TS, Goel R, Kandasamy K, et al: Human Protein Reference Database
57. Rask-Andersen M, Almén MS, Schiöth HB: The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 54:9-26, 2014
58. Rask-Andersen M, Almén MS, Schiöth HB: Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579-590, 2011
59. Zhu F, Han B, Kumar P, et al: Update of TTD: Therapeutic target database. Nucleic Acids Res 38:D787-D791, 2010 (suppl 1)
| Resource | Description | Contains Resource | License | First Author | |
|---|---|---|---|---|---|
| TCGA | TCGA profiles the DNA, RNA, protein, and epigenetic levels of >10,000 individuals across 33 cancer types. | – | – | – |
| MC3 | TCGA cancer genomics data set includes >10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. | – | Ellrott8 | – |
| GTEx | The Genotype-Tissue Expression project | – | Lonsdale6 | – |
| PharmacoDB | An integrative database for mining drug sensitivity data for >650,000 experiments involving 1,600 cancer cell lines and 750 compounds. | CCLE https://depmap.org/portal/ccle/terms_and_conditions | Smirnov11 | Barretina12 |
| CCLE | The Cancer Cell Line Encyclopedia: gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. | GDSC CC BY-NC-ND 2.5 | Yang15 | – |
| CCLE | Gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. | – | https://depmap.org/portal/ccle/terms_and_conditions | Barretina12 | – |
| Cell Model Passports | The Cell Model Passports provides manual and programmatic access to a cancer cell model database containing curated patient, sample, and model relationship information as well as genomic and functional data sets. | – | https://cellmodelpassports.sanger.ac.uk/documentation/cellmodelpassports/datasets | – | – |
| Ensembl | The Ensembl project has been aggregating, processing, integrating, and redistributing genomic data sets since the initial release of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. | – | https://uswest.ensembl.org/info/about/legal/disclaimer.html | Flicek44 | – |
| GO | Gene Ontology Consortium is a controlled vocabulary describing knowledge of gene and protein roles in cells. | – | CC BY 4.0 | Ashburner45 | – |
| MonDO | The Monarch Disease Ontology merges in multiple disease resources to yield a coherent ontology. | – | CC BY 3.0 | Mungall46 | – |
| MSigDB | The Molecular Signatures Database is a collection of annotated gene sets. | – | CC BY 4.0 | Liberzon47 | – |

(Continued on following page)
Resource	Description	Contains Resource	License	First Author
Pfam	Pfam is a database of protein families and annotations.	–	CCO	El-Gabali⁴⁶
PubChem	PubChem is a public repository containing information about chemical substances and their biologic activities.	–	–	Kim⁴⁹
PubMed	PubMed is an archive of biomedical and life sciences journal literature.	–	https://www.nlm.nih.gov/databases/download/terms_and_conditions.html	
VICC G2P	The VICC G2P is a framework for aggregating and harmonizing variant interpretations to produce a meta-knowledge base of 12,856 aggregate interpretations covering 3,437 unique variants in 415 genes, 357 diseases, and 791 drugs.	–	–	Wagner¹⁷
Pathway Commons	Pathway Commons integrates public pathway and interaction databases.	–	–	Cerami²⁸
BIND		–	Open Access	Bader⁶⁰
BioGRID		–	MIT	Stark⁵¹
CORUM		https://www.helmholtz-muenchen.de/en/data-protection-statement/index.html	Giurgiu⁵²	
CTD		http://ctdbase.org/about/legal.jsp	Thiele²⁶	
DIP		CC BY-ND 3.0	Salwinski⁶³	
HPRD		http://hprd.org/download	Keshava Prasad⁵⁴	
HumanCyc		SRI	Romero²²	
INOH		CC BY-SA	Mi²⁶	
IntAct		Open Access	Orchard⁶⁵	
KEGG Pathway			Wrzodek²⁷	
NetPath		CC0	Kandasamy²⁸	
Panther		GNU GPL V2	Mi²⁸	
PhosphositePlus		CC BY-NC-SA 3.0	Hornbeck²⁴	
Protein Interaction Database			Schaefer²⁰	
Reactome		CCO	Fabregat¹⁹	
Recon X		CC BY-NC 2.0	Thiele⁵⁵	
WikiPathways		CCO	Pico³⁰	

(Continued on following page)
Resource	Description	Contains Resource	License	First Author
DGIDB	The Drug Gene Interaction Database integrates public interaction databases.	–	–	Cotto56
CancerCommons				Edwards57
ChEMBL Interactions	CC BY-SA 3.0			Benbo58
Clarity Foundation: biomarkers				
Clarity Foundation: clinical trials				
DoCM	CC BY 4.0			Ainscough59
FDA biomarkers				
Guide to Pharmacology: interactions				Pawson60
My Cancer Genome	https://www.mycancergenome.org/content/page/legal-policies-licensing/			
NCI Cancer Gene Index				
TALC				Simon61
TDG clinical trials				Rask-Andersen62
TEND				Rask-Andersen63
TTD				Zhu64

Abbreviations: CCLE, Cancer Cell Line Encyclopedia; CTRP, Cancer Therapeutics Response Portal; FDA, Food and Drug Administration; G2P, genotype to phenotype; GDSC, Genomics of Drug Sensitivity in Cancer; GTex, Genotype-Tissue Expression; MC3, Multicenter Mutation Calling in Multiple Cancers; MIT, Massachusetts Institute of Technology; NCI, National Cancer Institute; Pfam, protein families; TCGA, The Cancer Genome Atlas; TTD, Therapeutic Target Database; VICC, Variant Interpretation for Cancer Consortium.