Nanocarbon Additives Application in the Polyvinyl Chloride Siding Panels Manufacture

M V Kopylov¹, N L Kleymenova¹, I N Bolgova¹, E Y Zheltoukhova¹
¹FSBEI HE "Voronezh State University of Engineering Technologies" (FSBEI HE «VSTU»), Revolution Av., 19, Voronezh, 394036, Russia

E-mail: kopylov-maks@yandex.ru

Abstract. With the development of building technologies, there is a need for new finishing materials that must meet the requirements of modern standards. This concerns not only the pricing policy, but also the high quality of promising materials, that first of all, is manifested in strength characteristics. In order to strengthen and preserve the heat-insulating properties and corrosion resistance, it is proposed to introduce schungite of type III of various grades in the formulation of siding panels made of polyvinyl chloride (PVC). The analysis of the quality indicators of PVC panels was carried out and three main indicators were identified: melt flow rate; Charpy impact strength; bending stress. PVC siding panels with the addition of schungite were produced by injection molding. As a result of experimental studies, the dependence of the Charpy impact strength of PVC panel samples without notching and bending stress on the bulk density of schungite was revealed, and scattering diagrams of the dependence of the melt flow rate on the polymerization time and the melt flow rate on the PVC concentration were constructed. The effect of schungite concentration of various grades on the melt flow rate was revealed. The dependence of schungite application as a reinforcing filler on the decrease in the melt flow rate in comparison with the traditional filler is determined.

1. Introduction

In the conditions of human society urbanization one can observe a transition to a new generation of construction technologies that increase the construction industrialization [1,2]. Modern building materials should have lightness, strength, corrosion resistance, presentable appearance, thermal insulation properties, be environmentally friendly, require less energy for their production. These requirements are met by building materials made on the basis of polymers [3-6].

Recently, various mineral fillers have been used to obtain desired properties, increase economic efficiency and environmental safety in the formulation of composite materials. Research work in this field indicates its promise [7-10].

PVC siding panels are widely used in modern construction as finishing materials [11]. However, Russian siding panels still lag behind the requirements of international standards at the technical level [12,13]. So the problem of making technological adjustments in the production process aimed at their quality indicators improving arises [14,15]. One of the drawbacks of the soft profile for PVC siding panels is the tendency to curvature. To eliminate such disadvantages, it is necessary to introduce reinforcing dispersed additives, one of which may be carbon black [16,17]. Natural mineral carbon-containing materials have recently found wide application in industrial practice [18,19]. Method of
polymer compositions strengthening with ultrafine carbon materials based on nanotechnology is proposed for use in the article [20]. These materials are polymer chains modifiers, have chemical activity and serve as reinforcing additives [21, 23].

2. Aims and objectives
The aim of the study is the transition from soft to hard PVC; reducing the thickness of PVC siding panels with an increase in their strength.

The objective is to study the effect of shungite on the physico-mechanical characteristics of the mixture for polyvinyl chloride obtaining and its properties control.

3. Methods and materials
Shungite of type III of various dispersiveness and carbon content of 20-35% of Novocarbon grades - 10, 20, 40 and 80 (N-10, N-20, N-40, N-80) was used as a strengthening additive [22]. PVC was selected as the polymer matrix for the reinforcing agent.

Charpy impact strength was determined on five panel samples. They were cut from the front side along the longitudinal axis with a thickness of at least 2/3 of the wall thickness. The final result was the arithmetic mean value of the test results for the five samples studied so that each result was at least 10 kJ/m².

The method for determining the bending stress consisted in the fact that the test sample of rectangular cross-section was supported and was bent in the middle at a constant speed until it collapsed or to a predetermined deflection value. During the test, the load of the sample and the deflection values in the middle between the supports were determined. The samples had the following parameters, in mm:
- length (80 ± 2);
- width (10.0 ± 0.2);
- thickness (4.0 ± 0.2).

For the samples studied, it is not allowed that the deviation in thickness from its average value is more than 2%, and the deviation in width is more than 3%, the cross section is rectangular, without rounding the corners in the central third of the length. All test samples were obtained by injection molding. During the test, the width (measurement error ≤ ± 0.1 mm) and the thickness (measurement error ± 0.01 mm) in the center of the test sample were measured (Figure 1).

![Figure 1. Cross section of an injection molded sample with a contraction pattern due to shrinkage.](image)

The average thickness \(h_{av} \) for the tested samples of this batch was calculated. Those samples in which \(h \) differed by more than 2% from the average value became unusable and went to rejection, and samples of another batch were used instead. The thickness result for \(h \) with a deviation from \(h_{av} \) of not more than 0.1 mm due to shrinkage was accepted (Figure 1). The distance between the supports was calculated by the formula \(L=(16±1) \times h_{av}, \text{ mm.} \)

Then, the test sample was symmetrically mounted on the supports with the wide side and a preliminary load was applied in the middle between the supports, taking into account the speed of the movable crosshead of 1 mm / min. Then the results of the deflection measuring system were reset. The modulus of elasticity was determined with a standard test speed.

The stratification method was used to process data on melt flow rate.

The melt flow rate was determined with an extrusion plastomer.
4. Results
At the preliminary stage of the work, the analysis of the most important defects of PVC siding panels with the Pareto diagram was carried out (Figure 2).

![Pareto Diagram](image)

Figure 2. Defects of PVC siding panels (Pareto diagram): 1 - melt flow rate; 2 - Charpy impact strength without notching; 3 — bending stress; 4 - Vicat softening temperature (VST); 5 - cracks; 6 - bubbles; 7 - other.

Following the Pareto 80/20 principle in analyzing the diagram (Figure 2), we can conclude that the most significant are deviations from the normative indicators of melt flow, Charpy viscosity and bending stress.

As a result of the study of PVC panels samples produced with the addition of schungite of various grades, the dependences of the change in Charpy impact strength without notching and bending stress (table 1) on the added schungite quantity were obtained. It can be seen from the data presented that with an increase in the filling of schungite, the viscosity increases more and more, and the stress during bending gradually decreases.

Table 1. The dependence of the change in Charpy impact strength without notching and bending stress.

Shungite content, % (mass.)	PVC	N-10	N-20	N-30	N-40	N-50	N-60	N-70	N-80
Charpy impact strength without notching, kJ/m²	15	–	10	12	15	16	–	42	43
Bending stress, MPa	14	–	–	–	14	–	–	44	45
PVC	30	–	10	12	15	16	–	42	43
PVC	40	–	20	26	30	32	–	37	41
PVC	50	–	40	50	60	65	–	35	39

The scatter plot of the melt flow rate dependence on the polymerization time is shown in Figure 3, and the dependences of the melt flow rate on the PVC concentration are shown in Figure 4.
Using scattering diagrams, it was found that with an increase in the melt flow rate, a decrease in the polymerization time for PVC, as well as an increase in the PVC concentration, is observed. The dependence between melt flow rate and schungite concentration is shown in table 2. To study the effect of schungite influence on the PVC properties, tests on the melt flow rate were carried out and it was concluded that schungite Novokarbon-10 reduces the melt flow rate the least of all grades.

Table 2. The dependence between melt flow rate and schungite concentration.

Shungite grade	Shungite concentration, %	Melt flow rate, g/10 min
N-10	10	25
	20	22.5
	30	20
	40	18
	50	16
	60	15
	70	14

The dependence between melt flow rate and schungite concentration is shown in table 3.

Table 3. The dependence between melt flow rate and schungite concentration.

Filler	Filler concentration, % (mass.)	Melt flow rate, g/10 min
Chalk	10	25
	20	22.5
	30	20
	40	18
	50	16
	60	15
	70	14
Shungite	10	23.5
	20	20
	30	18
	40	16
	50	14
	60	12
	70	11

Table 3 shows that the use of schungite as a reinforcing filler can reduce the melt flow rate to a lesser extent than chalk, which is a traditional filler.

5. Conclusion
The studies revealed that schungite is a reinforcing filler that reduces the melt flow rate, while the decrease in melt flow rate is much lower than that one of a traditional filler. Therefore, it has the best technological properties. According to this, it can be assumed that a greater amount of schungite should be added to the mixture, thereby reducing the cost of the formulation.
The analysis of the dependences of the bending stress and Charpy impact strength without a notching suggests that an increase in the filling of the composite material with schungite improves its quality indicators.

The application of schungite fillers will improve the properties of finishing building materials.

6. References

[1] Zhou T, Zhang P, Xiao W and other 2019 Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading (United Kingdom: Composite Structures) Elsevier vol 226 111081

[2] Taghizadeh S A, Farrokhabadi A, Liaghat G and other 2019 Characterization of compressive behavior of PVC foam infilled composite sandwich panels with different corrugated core shape (United Kingdom: Thin-Walled Structures) Elsevier vol 135 pp 160-172

[3] Kazankapova M K, Nauryzbaev M K, Efremov S A et al 2019 Preparation of activated schungite and characterization of its chemical composition and adsorption properties (Moscow: Solid Fuel Chemistry) Allerton Press vol 53 pp 241-247

[4] Filippov M M, Deines Y E 2019 Prospects for reproduction of schungite reserves in Karelia (Moscow: Gorny Zurnal) Ore & Metals Publishing House vol 3 pp 66-70

[5] Lesovik V S et al 2019 Properties of composite gypsum binders depending on multicomponent mineral additives (Switzerland: Materials Science Forum) Trans Tech Publications vol 945 pp 238-243

[6] Salleh Z, Masdek N R N, Hylie K M, Yunus S 2017 Mechanical properties study on different types of kenaf PVC wall panel product (Malaysia: Journal of Science and Technology) Universiti Putra Malaysia vol 25 8 pp 199-208

[7] Mostafa A, Shankar K, Morozov E V 2014 Theoretical and Numerical Investigation of the Flexural Behaviour of the Composite Sandwich Panels with PVC Foam Core (Netherlands: Applied Composite Materials) Kluwer Academic Publishers vol 21(4) pp 661-675

[8] Xu Q, Jin C, Zachar M, Majlingova A 2013 Test flammability of PVC wall panel with cone calorimetry (Netherlands: Procedia Engineering) Elsevier vol 62 pp 754-759

[9] Michel M A, Tutikian B F, Ortolan V et al 2019 Fire resistance performance of concrete-PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork (Brazil: Journal of Materials Research and Technology) Elsevier vol 8 (5) pp 4094-4107

[10] Juliyana M, Santhana Krishnan R 2018 Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel (United Kingdom: Materials Research Express) IOP Publishing vol 5 (2) 025307

[11] Kopylov M V, Bolgova I N, Kleymenova N L 2019 Research of Wastewater Treated with Shungite of Novocarbon 10 grade (United Kingdom: International science and technology conference "Earth and Environmental science") IOP Publishing vol 272 № 022075

[12] Nasyrov I A 2017 Petroleum containing wastewater products purification by carbon-containing wastes pyrolysis products (Turkey: Turkish online journal of design art and communication) İstanbul Aydın University vol 7 pp 1713-1728

[13] Sychova A M et al 2019 Scientific and Practical Bases of a Method of Reception of Thin-Layer Heat-Insulating Coverings (Switzerland: Materials Science Forum) Trans Tech Publications vol 945 pp 257-262

[14] Palawat et al Natsuda 2019 Hybrid Nanocomposites of Poly (Lactic Acid) Thermoplastic Polyurethane with Nanosilica Montmorillonite (Switzerland: Materials Science Forum) Trans Tech Publications vol 947 pp 77-81

[15] Zain et al Norazwani Muhammad 2019 Scratch Hardness Properties of Waste Palm Cooking Oil Based Polycaprolactone Urethane Coatings (Switzerland: Materials Science Forum) Trans Tech Publications vol 947 pp 178-182
[16] Zainathul A S et al 2019 Tensile properties and dynamic mechanical behaviour of natural rubber compound filled with rice husk silica produced via solvent-thermal extraction method (Switzerland: Materials Science Forum) Trans Tech Publications vol 947 pp 195-199

[17] Paul S, Radavelli G F, da Silva A R 2015 Experimental evaluation of sound insulation of light steel frame façades that use horizontal inter-stud stiffeners and different lining materials (United Kingdom: Building and Environment) Elsevier vol 94 pp 829-839

[18] Oluwabusi O E, Toubia E A 2019 In-Plane shear characterization of composite GFRP-foam sandwich panels (United States: Journal of Composites for Construction) American Society of Civil Engineers vol 23(5) 04019034

[19] Umi N N, Norazman M N, Daud N M et al Heat Conductivity Resistance of Concrete Wall Panel by Water Flowing in Different Orientations of Internal PVC pipe (United Kingdom: International science and technology conference "Earth and Environmental science") IOP Publishing vol 140(1) 012111

[20] Brachman R W I, LeBlanc J M 2017 Short-term lateral response of a buried modular polymer stormwater collection structure to compaction and overburden pressure (United States: Journal of Geotechnical and Geoenvironmental Engineering) American Society of Civil Engineers vol 143(9) 04017070

[21] Pulingern T, Eakintumas W et al 2017 Compressive load, thermal and acoustic properties of wood/polyvinyl chloride composite log-wall panels (United States: Journal of Reinforced Plastics and Composites) SAGE Publications vol 36(16) pp 1183-1193

[22] Ali N, Öchsner A, Ahmed W 2010 Carbon Based Nanomaterials (Switzerland: Materials science foundations) Trans Tech Publications vol 65-66

[23] Skorikov D S, Solovev D B 2018 Consideration of an Ecosystem From the Standpoint of Theory and Practice of Managing Production Systems IOP Conference Series: Materials Science and Engineering 463 Paper № 022003. [Online]. Available: https://doi.org/10.1088/1757-899X/463/2/022003