DATA NOTE

The genome sequence of the meadow field syrph, *Eupeodes latifasciatus* (Macquart, 1829) [version 1; peer review: 3 approved]

Steven Falk¹, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Physilia Chua², Darwin Tree of Life Consortium

¹Independent researcher, Kenilworth, Warwickshire, UK
²Wellcome Trust Sanger Institute, Hinxton, UK

Abstract

We present a genome assembly from an individual female *Eupeodes latifasciatus* (meadow field syrph; Arthropoda; Insecta; Diptera; Syrphidae). The genome sequence is 846 megabases in span. The majority of the assembly (96.8%) is scaffolded into 4 chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 18.5 kilobases in length. Gene annotation of this assembly on Ensembl has identified 12,848 protein coding genes.

Keywords

Eupeodes latifasciatus, meadow field syrph, genome sequence, chromosomal, Lepidoptera

This article is included in the [Tree of Life gateway](https://www.tol.org/tol/home).
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Syrphoidea; Syrphidae; Syrphinae; Syrphini; Eupeodes; Eupeodes; Eupeodes latifasciatus (Macquart, 1829) (NCBI:txid1124558).

Background
The meadow field syrph, *Eupeodes latifasciatus*, is a type of hoverfly from the Syrphid family. Its wingspan is between 6.5 to 8.5 mm. It is similar to another hoverfly species, *Eupeodes corollae*, but it can be distinguished from the yellow markings on its body which are fused into bands on segments three and four (van Veen, 2004).

E. latifasciatus can be found across the Palaearctic from the south of Fennoscandia to the Mediterranean basin (Peck, 1988). It is widespread in the UK but occurs more frequently in the south, preferring lush vegetation and damp meadows to gardens (*Eupeodes Latifasciatus* (Macquart, 1829) n.d.). Some of the common flowers that *E. latifasciatus* visits are white umbellifers, *Euphorbia*, and *Ranunculus* (de Buck, 1990). While adults feed only on nectar, *E. latifasciatus* larvae feed on small insects from the insect order Hemiptera such as aphids and scale insects (Stubbs & Falk, 1983). The flight period is usually from May to September but occurs from April to October in southern Europe. This high-quality *E. latifasciatus* genome was assembled as part of the Darwin Tree of Life project which aims to genetically describe all species found in the UK.

Genome sequence report
The genome was sequenced from a single female *E. latifasciatus* collected from Wytham Woods, Berkshire, UK (Figure 1). A total of 27-fold coverage in Pacific Biosciences single-molecule HiFi long reads and 47-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 492 missing/ misjoins and removed 17 haplotypic duplications, reducing the assembly size by 1.20% and the scaffold number by 38.33%, and increasing the scaffold N50 by 437.36%.

The final assembly has a total length of 846 Mb in 436 sequence scaffolds with a scaffold N50 of 189.4 Mb (Table 1). The majority, 96.8%, of the assembly sequence was assigned to 4 chromosomal-level scaffolds, representing 3 autosomes (numbered by sequence length) and the X sex chromosome (Figure 2–Figure 5; Table 2). Two regions of this assembly are particularly fragmented: the centromeric and pericentromeric region of chromosome 1 and all of chromosome X.

Project accession data	
Assembly identifier	idEupLati1.1
Species	*Eupeodes latifasciatus*
Specimen	idEupLati1 (genome assembly, Hi-C, RNA-Seq)
NCBI taxonomy ID	1124558
BioProject	PRJEB47320
BioSample ID	SAMEA7746776
Isolate information	Female. Thorax (genome assembly); head (Hi-C); abdomen (RNA-Seq)

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6808042; ERR6939266
10X Genomics Illumina	ERR6688742-ERR6688745
Hi-C Illumina	ERR6688741
PolyA RNA-Seq Illumina	ERR9435022

Genome assembly	
Assembly accession	GCA_920104205.1
Accession of alternate haplotype	GCA_920104105.1
Span (Mb)	846
Number of contigs	1233
Contig N50 length (Mb)	2.7
Number of scaffolds	436
Scaffold N50 length (Mb)	189.4
Longest scaffold (Mb)	410.99

BUSCO* genome score	
C= complete [S= single copy, D=duplicated, F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/idEupLati1.1/dataset/CAKKTC01/busco.	

BUSCO scores based on the diptera_odb10 BUSCO set using v5.3.2. C= complete [S= single copy, D=duplicated, F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/idEupLati1.1/dataset/CAKKTC01/busco.
Figure 2. Genome assembly of *Eupeodes latifasciatus*, idEupLati1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 846,356,614 bp assembly. The distribution of chromosome lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (410,988,561 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 chromosome lengths (189,435,894 and 60,440,373 bp), respectively. The pale grey spiral shows the cumulative chromosome count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the diptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idEupLati1.1/dataset/CAKKTC01/snail.
Figure 3. Genome assembly of *Eupeodes latifasciatus*, idEupLati1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idEupLati1.1/dataset/CAKKTC01/blob.

The assembly has a BUSCO v5.3.2 (Manni et al., 2021) completeness of 96.3% (single 95.3%, duplicated 1.0%) using the diptera_odb10 reference set (n=3,285). While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Genome annotation report
The idEupLati1.1 genome has been annotated using the Ensembl rapid annotation pipeline (Table 1; https://rapid.ensembl.org/Eupeodes_latifasciatus_GCA_920104205.1/). The resulting annotation includes 21,916 transcribed mRNAs from 12,848 protein-coding and 2,996 non-coding genes.

Wellcome Open Research 2022, 7:253 Last updated: 17 MAR 2023
Methods
Sample acquisition and nucleic acid extraction
A single female *E. latifasciatus* specimen (idEupLati1) was collected using a net from Wytham Woods, Berkshire, UK (latitude 51.769, longitude -1.339) by Steven Falk (University of Oxford). The specimen was identified by Steven Falk and snap-frozen on dry ice.

DNA was extracted at the Tree of Life Laboratory, Wellcome Sanger Institute. The idEupLati1 sample was weighed and dissected on dry ice with tissue set aside for Hi-C sequencing. Thorax tissue was disrupted using a Nippi Powermasher fitted with a BioMasher pestle. Fragment size analysis of 0.01–0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was
Table 2. Chromosomal pseudomolecules in the genome assembly of *Eupeodes latifasciatus*, idEupLati1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OV049924.1	1	410.99	33.8
OV049925.1	2	157.65	32.8
OV049926.1	3	189.44	33.1
OV049927.1	X	60.44	34.5
OV049928.1	MT	0.02	17.7
-	Unplaced	27.83	36.1

Figure 5. Genome assembly of *Eupeodes latifasciatus*, idEupLati1.1: Hi-C contact map. Hi-C contact map of the idEupLati1.1 assembly, visualised in HiGlass. Chromosomes are arranged in size order from left to right and top to bottom. The interactive Hi-C map can be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=ZqcIjWudjRdakQ7z0HdB-xg.

RNA was extracted from abdomen tissue of idEupLati1 in the Tree of Life Laboratory at the WSI using TRIzol, according to the manufacturer’s instructions. RNA was then eluted in 50 μl RNase-free water and its concentration was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.
Sequencing
Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina NovaSeq 6000 (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated in the Tree of Life laboratory from head tissue of idEupLat1 using the Arima v2 kit and sequenced on a NovaSeq 6000 instrument.

Genome assembly
Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination as described previously (Howe et al., 2021). Manual curation was performed using HiGlass (Kerpedjiev et al., 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performs annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Genome annotation
The Ensembl gene annotation system (Aken et al., 2016) was used to generate annotation for the Eupeodes latifasciatus assembly (GCA_920104205.1). Annotation was created primarily through alignment of transcriptomic data to the genome, with gap filling via protein-to-genome alignments of a select set of proteins from UniProt (UniProt Consortium, 2019).

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.15.3	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/ genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	2.0	Uliano-Silva et al., 2021
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpag/ PretextView
BlobToolKit	3.2.6	Challis et al., 2020

Ethics/compliance issues
The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and supplied to, the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability
European Nucleotide Archive: Eupeodes latifasciatus (meadow field syrph). Accession number PRJEB47320; https://identifiers.org/ena.embl/PRJEB47320.

The genome sequence is released openly for reuse. The Eupeodes latifasciatus genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.6418202.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.6418156.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.6866293.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.6125046.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.6418363.
References

Aken BL, Ayling S, Barrett D, et al.: The Ensembl Gene Annotation System. Database (Oxford). 2016; 2016: baw093. PubMed Abstract | Publisher Full Text | Free Full Text

Alioto R, Schomaker-Bastos A, Rodrigues I, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Nove Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 170–75. PubMed Abstract | Publisher Full Text | Free Full Text

de Buck N: Bloembezoek En Bestuivingsecologie van Zweefvliegen (Diptera, Syrphidae) in Het Bijzonder van België. Documents de Travail de l'Institut Royal Des Sciences Naturelles de Belgique. 1990; 60: 1–167. Reference Source

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.3907. 2012. Publisher Full Text

Ghurye J, Rhie A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotype Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896–98. PubMed Abstract | Publisher Full Text | Free Full Text

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. GigaScience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdennur N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021; 38(10): 4647–54. PubMed Abstract | Publisher Full Text | Free Full Text

NBN Atlas: Eupeodes Latifasciatus (Macquart, 1829). n.d. Accessed May 13, 2022. Reference Source

Peck LV: Syrphidae. Insect Systematics & Evolution. 1988: 11–230.

Rao SSP, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7): 1665–80. PubMed Abstract | Publisher Full Text | Free Full Text

Stubbs AE, Falk SJ: British Hoverflies: An Illustrated Identification Guide. British Entomological & Natural History Society. 1983. Reference Source

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: McCarthy. marcelauliano/ MitoHiFi: mitohifi_v2.0. 2021. Publisher Full Text

UniProt Consortium: UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019; 47(D1): D506–15. PubMed Abstract | Publisher Full Text | Free Full Text

van Veen MP: Hoverflies of Northwest Europe: Identification Keys to the Syrphidae. KNNV Publishing. 2004. Reference Source
Open Peer Review

Current Peer Review Status: 🟢 🟢 🟢

Version 1

Reviewer Report 17 March 2023

https://doi.org/10.21956/wellcomeopenres.20084.r55470

© 2023 Obbard D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Darren J Obbard
University of Edinburgh,, Edinburgh, UK

This data note reports the sequencing and assembly of the genome of *Eupeodes latifasciatus* as part of the “Darwin Tree of Life” programme. In common with other data notes from this research effort, the reporting is standardised and quite brief. As such, I have very few comments to make.

The approach is state-of-the-art, the raw data appear to be of a suitably high quality, and the assembly methods are appropriate. The public availability of raw data and genome assembly are appropriate. The resulting genome is likely to be of very high quality, and I have no doubt that it will be of great value to any researchers working on this group of flies, or on the comparative or evolutionary genomics of insects more generally. The writing is clear, concise, and easy to read.

Two issue already raised:
- I agree with the previous reviewer: “change 'type of hoverfly from the Syrphid family'. to 'species of hoverfly in the fly family Syrphidae.'”
- I agree with the previous reviewer: “added complementary information ... In the section of Background:”. I would hope for another 2-3 more sentences on what basic biology is known (if any!), ideally citing 2-3 references that provide a links with the wider scientific literature.

Small textual suggestions:
- “assembly on Ensembl”: perhaps “assembly by Ensembl”, as I think Ensembl is a project, not a platform?
- “between 6.5 to 8.5 mm”: should probably either be “from X to Y” or “between X and Y”
- “The flight period is usually from May to September but occurs from April to October in southern Europe.” Could perhaps be “The flight period is usually from May to September in the UK and norther Europe, but is from April to October in southern Europe.”

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Population genetics, genomics, and phylogenetics of invertebrates and their pathogens

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Yokomi N Lozano-Sardaneta
Universidad Nacional Autónoma de México, Ciudad de México, Mexico

The authors present the genome assembly of the UK meadow *Eupeodes latifasciatus*. The analysis is clear and concise, with adequate description of: genome assembly, sequences and genome annotation.

I would recommend added complementary information as follows:

In the section of Background:
- I think it would be important to mention the biological relevance of this species, for example if it is a pollinator, a pest, or serve as biological control (*e.g.* aphids), etc.

In the section of Methods:
- I have a question, why was only one female analyzed and the male not included? Was it the only specimen you found? I consider it important to briefly explain why only one female specimen.
- Add the taxonomic keys used for Steven Falk for perform the taxonomic identification.

Is the rationale for creating the dataset(s) clearly described?
Yes
Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: insect taxonomy and phylogenetics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 February 2023

https://doi.org/10.21956/wellcomeopenres.20084.r54238

© 2023 Wiegmann B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brian M. Wiegmann
North Carolina State University, Raleigh, USA

This is a fine description of a genome sequence, assembly and gene content assessment for the hoverfly species *Eupeodes latifasciatus*. The analyses are appropriate and clearly presented with good visualization of scaffold coverage, mapping and completeness of the assembly.

I would recommend that some small editorial changes be made in the "Background" section, as follows:
- change 'type of hoverfly from the Syrphid family'. to 'species of hoverfly in the fly family Syrphidae.' This provides more formalized language for the sentence.
- Please add a citation or website address for the Darwin Tree of Life project to the last sentence in "Background".

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: insect phylogenetics and evolutionary biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.