Exploring the diversity of blood-sucking Diptera in caves of Central Africa

Judicaël Obame-Nkoghe, Nil Rahola, Diego Ayala, Patrick Yangari, Davy Jiolle, Xavier Allene, Mathieu Bourgarel, Gael Maganga, Nicolas Berthet, Eric Leroy, et al.

To cite this version:

Judicaël Obame-Nkoghe, Nil Rahola, Diego Ayala, Patrick Yangari, Davy Jiolle, et al.. Exploring the diversity of blood-sucking Diptera in caves of Central Africa. Scientific Reports, Nature Publishing Group, 2017, 7, pp.250. 10.1038/s41598-017-00328-z. hal-02013650

HAL Id: hal-02013650
https://hal.umontpellier.fr/hal-02013650
Submitted on 11 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exploring the diversity of blood-sucking Diptera in caves of Central Africa

Judicaël Obame-Nkoghe1,2, Nil Rahola1,2, Diego Ayala1,2, Patrick Yangari2, Davy Jiolle1,2, Xavier Allene3, Mathieu Bourgarel3, Gael Darren Maganga2, Nicolas Berthet3,4, Eric-Maurice Leroy1,2 & Christophe Paupy1,2

Caves house pathogenic microorganisms, some of which are transmitted by blood-sucking arthropods. In Africa, previous studies identified mosquitoes, sand flies and biting midges as the main potential vectors of cave-dwelling pathogens. However, to understand their involvement in pathogen spillover, it is crucial to characterize their diversity, community composition and dynamics. Using CDC light traps, we collected hematophagous Diptera in six caves of Gabon during one-shot or longitudinal sampling, and investigated their species diversity and dynamics in relation with external rainfall. Overall, we identified 68 species of mosquitoes, sand flies and biting midges, including 45 new records for Gabon. The dominant species were: *Uranotaenia nigromaculata*, *Anopheles smithii* s.l., *Culex. rima* group and *Culex quassiuarti* for mosquitoes, *Spelaeophlebotomus gigas* and *Spelaemomyia emilii* for sand flies and the *Culicoides trifasciellus* group and *Culicoides fulvithorax* group for biting midges. The survey revealed that species assemblages were cave-specific and included mainly troglophilous and trogloxenous species. Both diversity and abundance varied according to the cave and sampling time, and were significantly associated with rainfall. These associations were modulated by the cave specific environmental conditions. Moreover, the presence of trogloxenous and troglophilous species could be of high significance for pathogen transfers between cave and epigeous hosts, including humans.

Cave ecosystems house many different pathogenic microorganisms, including opportunistic pathogens, such as viruses, Haemopiridia, Trypanosomatida, bacteria and fungi1–5 that infect cave-dwelling vertebrates, especially bats6–10. Some of them require blood-sucking arthropod vectors for their transmission11–14. In Africa, the growing anthropization of caves (for mining, tourism, resource gathering or spiritual purposes) has increased the risk of spillover of emerging pathogens that naturally infect the fauna living inside the caves6. Studies carried out in African caves have helped inventoried the main potential vectors among mosquitoes (*Culicidae*), sand flies (*Phlebotominae*) and biting midges (*Ceratopogonidae*)15–17. Several cavernicolous mosquito species from the *Anopheles* (*An.*) and *Uranotaenia* (*Ur.*) genera, such as *An. vanhouphi* Wanson & Lebied, *An. rhodani* Leleup & Lips, *An. faini* Leleup, *An. cavernicola* Abonnenc, *An. vanthieli* Laarmen, *An. caroni* Adam, *An. smithii*, *Ur. cavernicola* Mattingly, have been described15–17. Similarly, five sand flies species belonging to the *Spelaeophlebotomus* (*Sl.*) Theodor, *Phlebotomus* (*Ph.*) Loew and *Spelaemomyia* (*Sa.*) Theodor genera have been reported in Afro-tropical caves, including *Sl. gigas* Parrot & Schewtz, *Sa. mirabilis* Parrot & Wanson, *Ph. balmicola* Abonnenc, *Sa. moucheti* Vattier-Bernard & Abonnenc and *Sa. emilii* Parrot and Wanson16. Conversely, little is known about cavernicolous biting midges. To date, only three species of the *Culicoides* genus (a genus that includes the predominant biting midges species known to be both hematophagous and potential vectors of pathogens18) have been reported in African caves: *C. grenieri* Vattier-Bernard & Adam, *C. rageaui* Vattier-Bernard & Adam and *C. brossetti* Vattier-Bernard & Adam20, 21. Although it has been suggested that these blood-sucking Diptera (mosquitoes, sand flies and biting midges) are potential important actors in the spillover of emerging diseases22, their role in pathogen epidemiology within cave ecosystems has rarely been investigated.

In Gabon, blood-sucking mosquitoes, sand flies and biting midges have previously been studied. With about 100 known species, mosquito taxa are the more documented23. Conversely, biting midges (six reported species: *C.
austeni Carter, C. brossetti, C. brucei Austen, C. grahamii Austen, C. jouberti Huttel, Huttel & Verdier, C. tristanii Huttel, Huttel & Verdier)24 and sand flies (five reported species: Sl. gigas, Sergentomyia antennata Newstead, Se. schwetzi Adler, Theodor & Parrot, Se. africana Newstead, Ph. multihamatus Rahola, Depaquit & Paupy)25 remain largely under-documented. In caves, blood-sucking dipterans have occasionally been studied, but only in the region of the Belinga mountains (North-East of the country). Therefore, except for the report of two mosquitoes (An. smithii s.l., Culex sp. in Faucon cave), one sand fly (Sl. gigas in Zadie cave) and one biting midge (C. brossetti in Faucon cave) species20, 26, data on the diversity of cavernicolous insects of medical or veterinary interests are very limited. Moreover, almost nothing is known about their biology, population dynamics and community structure. To fill this gap, we performed an entomological survey in several caves of Gabon (Fig. 1). We focused on the diversity and population dynamics of Culicidae, Phlebotominae and Ceratopogonidae in relation with relevant environmental parameters, particularly external rainfall.

Results
Inventory and diversity of Diptera assemblages. During the study period, 4395 mosquitoes, 1449 sand flies and 363 biting midges were collected. In all sampled caves mosquitoes dominated the Diptera assemblages with the exception of Zadie cave where sand flies were predominant. The highest apparent density (AD) of mosquitoes (i.e., number of specimens per trap and per day) was observed in Faucon cave with a value of 39.5 (Table 1). Biting midges were observed only in Kessipoughou and Djibilong caves and showed low AD values (1.1 and 0.6 respectively) (Table 1).

Mosquitoes belonged to 52 species (including 30 new records for Gabon) from 12 genera, particularly Anopheles (An.), Culex (Cx.) and Uranotaenia (Ur.) (Table 2). Eleven species of sand fly were observed belonging to four genera: Spelaeophlebotomus (Sl.), Spaelacomyia (Sa.), Sergentomyia (Se.) and Phlebotomus (Ph.). Eight of these sand fly species were never reported in Gabon before. Five biting midges species from the genera Culicoides (C.) and Forcipomyia (F.) were collected. All were new records for Gabon.

The number of species collected in the different caves (i.e., species richness S) ranged from 3 (Faucon) to 40 (Djibilong) for mosquitoes, and from 0 (Faucon) to 7 (Djibilong) for sand flies. For biting midges, only 2 and 5 species were collected in Kessipoughou and Djibilong, respectively, during the entire study (Table 1). Mosquitoes appeared to be more diversified in the caves of Djibilong (S = 40, and Shannon diversity index H = 1.1) and Siyou (S = 9, H = 0.8) than in the other caves. The diversity of sand flies was highest in Djibilong (S = 7, H = 0.6) and Zadie (S = 5, H = 0.6) and of biting midges in Djibilong cave (S = 5, H = 0.6).

To assess whether sampling was representative of the species assemblages living in Kessipoughou and Djibilong caves, species accumulation curves (as an estimate of species richness) were plotted for 44 sampling
However, the lack of representativeness for the mosquito community inside Djibilong cave was confirmed by the important number of estimated non-sampled species ($NS = 13.1$, Table 1), extrapolated from the Chao index (a species richness estimator)27. The NS value was particularly valuable for the caves where insects were collected by one-shot sampling. Indeed, in Zadie cave it was 6.0 for mosquitoes and 8.0 for sand flies, suggesting that a significant number of species escaped capture with our sampling procedure. Conversely, it was zero or close to zero for the Faucon, Itsoulou and Siyou caves where insects were also captured by one-shot sampling (Table 1).

Concerning each Diptera group, species assemblages greatly differed between caves for mosquitoes and biting midges (Morisita-Horn similarity index C mostly < 0.5) (Supplementary Table S1), but not for sand flies ($C > 0.6$) (Supplementary Table S1). For each Diptera group, we assumed that species assemblages differed between caves where Diptera were observed and caves where they were not, despite the NA values (Supplementary Table S1).

The species composition of communities and also the dominance pattern considerably varied among caves (Table 2). Among mosquitoes, $An.~smithii$ s.l. was the most dominant species in Siyou ($d = 0.37$) and Itsoulou ($d = 0.85$), $Ur.~nigrromaculata$ in Kessipoughou ($d = 0.73$), $Cx.~quasiquartii$ in Djibilong ($d = 0.37$) and $Cx.~rima$ group in Faucon ($d = 0.93$). In all caves, $Sl.~gigas$ was the dominant sand fly species (d ranged from 0.4 to 1), followed by $Sa.~emilii$ (d ranged from 0 to 0.3), with the exception of Zadie cave where $Sc.~congolensis$ was the second dominant species ($d = 0.25$). Biting midges were represented mainly by the $C.~trifasciellus$ group in Kessipoughou ($d = 0.99$) and by $C.~fulvithorax$ in Djibilong cave ($d = 0.53$).

Among all collected mosquitoes, only two species (3.8%; $Ur.~cavernicola$ and $An.~faini$) were previously known to be restricted to caves ecosystems and were defined as “true cavernicolous” (i.e., troglobitic species that spend their entire life cycle exclusively in caves) (Table 2). The proportion of true cavernicolous species was higher events (Fig. 2). Except for mosquitoes in Djibilong cave, sampling representativeness seemed good for each insect group in both caves. The lack of representativeness for the mosquito community inside Djibilong cave was confirmed by the important number of estimated non-sampled species ($NS = 13.1$, Table 1), extrapolated from the Chao index (a species richness estimator)27. The NS value was particularly valuable for the caves where insects were collected by one-shot sampling. Indeed, in Zadie cave it was 6.0 for mosquitoes and 8.0 for sand flies, suggesting that a significant number of species escaped capture with our sampling procedure. Conversely, it was zero or close to zero for the Faucon, Itsoulou and Siyou caves where insects were also captured by one-shot sampling (Table 1).

Table 1. Density and diversity of the Diptera assemblages in the different caves. The number of sampling events was 44 in both Kessipoughou and Djibilong caves, 4 in Faucon, Zadie and Itsoulou caves, and 2 in Siyou cave. —, not applicable” or not calculated data; **“Total” refers to the total number of collected species for the species richness (S), and to the sum of non-sampled (NS) species for the NS column in all caves; AD, apparent density (number of specimens collected per trap and per day; sp/t/d); H, diversity index.

AD (sp/t/d)	S	Shannon index (H)	Estimated NS											
Culicidae														
Kessipoughou	6.8	9	0.45	0.5										
Djibilong	7.1	40	1.1	13.1										
Faucon	39.5	3	0.1	0										
Zadie	0.2	4	0.7	6										
Siyou	4.2	8	0.8	1.5										
Itsoulou	19.9	5	0.3	0										
Total	—	52	—	21.1										
Phlebotominae														
Kessipoughou	1.3	6	0.09	1.5										
Djibilong	4.8	7	0.6	0										
Faucon	0	0	—	0										
Zadie	0.5	5	0.6	8										
Siyou	3	1	0	0										
Itsoulou	4.2	1	0	0										
Total	—	11	—	4.5										
Ceratopogonidae														
Kessipoughou	1.1	2	0.01	0										
Djibilong	0.6	5	0.6	0										
Faucon	0	0	—	0										
Zadie	0	0	—	0										
Siyou	0	0	—	0										
Itsoulou	0	0	—	0										
Total	—	5	—	0										
All Diptera groups														
Kessipoughou	9.2	17	0.7	5										
Djibilong	12.5	52	1.3	15.1										
Faucon	39.5	3	0.1	0										
Zadie	0.7	9	0.9	21										
Siyou	7.2	9	0.8	0.5										
Itsoulou	24.1	6	0.5	0										
Total	—	68	—	41.6										
Species	KESS	DJIB	FAUC	ZAD	SIY	ITSO	Number of specimens	Dominance index d	KESS	DJIB	FAUC	ZAD	SIY	ITSO
---------	------	------	------	-----	-----	-----	----------------------	------------------	------	------	------	-----	-----	-----
Ur. nigromaculata	1114	126	62	0	11	28	0.7397	0.09	0.0654	0	0.2156	0.0877		
Ur. cavernicola*	189	0	1	1	8	12	0.1254	0	0.001	0.25	0.1568	0.0376		
An. smithii s.l.*+	110	0	0	0	19	272	0.0730	0	0	0	0.3625	0.8526		
Cx. rima group	65	244	886	0	6	6	0.0431	0.155	0.9336	0	0.11	0.019		
An. faime*	13	2	0	0	0	0	0.0086	0.001	0	0	0	0		
Ur. nigripes*	11	0	0	0	0	0	0.0074	0	0	0	0	0		
An. funestus	2	0	0	0	0	0	0.0014	0	0	0	0	0		
Cx. nebulosus	1	0	0	0	0	0	0.0007	0	0	0	0	0		
Cx. ambripes*	1	0	0	0	0	0	0.0007	0	0	0	0	0		
Cx. quasiguiarti*	0	590	0	0	3	0	0.376	0	0	0.0571	0	0		
Fi. uniformis*	0	136	0	0	0	0	0.086	0	0	0	0	0		
Ur. caliginosa*	0	102	0	0	0	0	0.065	0	0	0	0	0		
Ur. caeruleocephala*	0	76	0	0	0	0	0.048	0	0	0	0	0		
Ur. machadoi*	0	75	0	0	0	0	0.047	0	0	0	0	0		
Ur. bilineata*	0	65	0	0	0	0	0.041	0	0	0	0	0		
Cx. triflatus	0	56	0	0	0	0	0.035	0	0	0	0	0		
Lu. tigripes	0	27	0	0	0	0	0.017	0	0	0	0	0		
Cx. watti*	0	7	0	0	0	0	0.004	0	0	0	0	0		
An. theileri*	0	7	0	0	0	0	0.004	0	0	0	0	0		
Ur. pallidocephala	0	6	0	0	0	0	0.004	0	0	0	0	0		
An. marshalli	0	4	0	0	0	0	0.002	0	0	0	0	0		
Ur. balfouri	0	4	0	0	0	0	0.002	0	0	0	0	0		
Ur. choleraei*	0	3	0	0	0	0	0.002	0	0	0	0	0		
Co. pseudocopopas*	0	3	0	0	0	0	0.002	0	0	0	0	0		
Cx. andersoni*	0	3	0	0	0	0	0.002	0	0	0	0	0		
Mi. plumosa	0	3	0	0	0	0	0.002	0	0	0	0	0		
Co. aurites	0	2	0	0	0	0	0.001	0	0	0	0	0		
Culex sp.	0	2	0	1	0	0	0.001	0	0.25	0	0	0		
An. jebudensis*	0	2	0	0	0	0	0.001	0	0	0	0	0		
An. obscura	0	2	0	0	0	0	0.001	0	0	0	0	0		
Cx. zambesiensis*	0	2	0	0	0	0	0.001	0	0	0	0	0		
Er. grahami*	0	2	0	0	0	0	0.001	0	0	0	0	0		
Ca. argenteopunctata	0	2	0	0	1	0	0.001	0	0	0.0196	0	0		
Cx. cinctellus*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Finlaya sp.*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
An. nili	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Co. versicolor*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Cx. semibrasmeus*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Cx. annulioris	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Co. microannulata*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
An. natalensis*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Cx. simpsoni*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Er. chrysogaster	0	1	0	0	0	0	0.0006	0	0	0	0	0		
An. schwetzi*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Ur. albodorsalis*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Ps. kummi*	0	1	0	0	0	0	0.0006	0	0	0	0	0		
Cx. cinereus*	0	1	0	0	0	0	0.0006	0	0	0	0	0		

Phlebotominae

| Sl. gigas *+ | 268 | 428 | 6 | 37 | 68 | 0.9675 | 0.4056 | 0 | 0.5 | 0 | 1 | 1 |
| Sa. emili | 4 | 352 | 0 | 1 | 0 | 0 | 0.0145 | 0.3336 | 0 | 0.0834 | 0 | 0 |

Continued
Gabonese caves; †Species previously known as “true cavernicolous” \(\text{Eretmapodites} \).

The diversity of mosquito species (mean \(t \)-value) varied significantly over time and some drastic shifts in species dominance were observed (Fig. 4). In Kessipoughou cave (Supplementary Fig. S1). Analysis of the community dynamics of each Diptera group in both caves revealed major density variations along time (Fig. 3). Although mosquitoes were sampled in both caves throughout the year, the highest densities were observed between July and October in Kessipoughou (Fig. 3a1), and between May and July in Djibilong cave (Fig. 3b1). Moreover, the species composition of mosquito assemblages in both caves varied over time and some drastic shifts in species dominance were observed (Fig. 4). In Kessipoughou cave, \(\text{Uranotaenia} \), \(\text{Anopheles} \), \(\text{Ca}: \) Catageiomyia, \(\text{Ps}: \) Pseudoarmigeres, \(\text{Ae}: \) Aedes. \(\text{Sl}: \) Spelacophlebotomus, \(\text{Sa}: \) Spelaeomyia, \(\text{Se}: \) Sergentomyia, \(\text{Ph}: \) Phlebotomus, \(\text{C}: \) Culicoides. *New records for Gabon; **species previously recorded in Gabonese caves; *Species previously known as “true cavernicolous”. The index \(d \) value of dominant species is marked in bold.

Species	KESS	DJIB	FAUC	ZAD	SIY	ITSO	KESS	DJIB	FAUC	ZAD	SIY	ITSO
Se. bedfordi group*	2	12	0	0	0	0	0.0072	0.0114	0	0	0	0
Ph. rodhaini*	1	214	0	0	0	0	0.0036	0.2029	0	0	0	0
Se. ingrami*	1	46	0	0	0	0	0.0036	0.0437	0	0	0	0
Se. dubia*	1	0	0	0	0	0	0.0036	0	0	0	0	0
Se. congolensis*	0	0	0	3	0	0	0	0	0	0.25	0	0
Se. africana*	0	0	0	1	0	0	0	0	0	0.0833	0	0
Se. magna*	0	0	0	1	0	0	0	0	0	0.0833	0	0
Sa. moucheti	0	1	0	0	0	0	0	0	0.0009	0	0	0
Sa. balmicola*	0	2	0	0	0	0	0	0	0.0019	0	0	0

Comparison of the \(H \) values for the three Diptera groups collected by longitudinal sampling showed that diversity was significantly higher in Djibilong than in Kessipoughou cave (Supplementary Fig. S1). Analysis of the community dynamics of each Diptera group in both caves revealed major density variations along time (Fig. 3). Although mosquitoes were sampled in both caves throughout the year, the highest densities were observed between July and October in Kessipoughou (Fig. 3a1), and between May and July in Djibilong cave (Fig. 3b1). Moreover, the species composition of mosquito assemblages in both caves varied over time and some drastic shifts in species dominance were observed (Fig. 4). In Kessipoughou cave, \(\text{Uranotaenia} \), \(\text{Anopheles} \), \(\text{Ca}: \) Catageiomyia, \(\text{Ps}: \) Pseudoarmigeres, \(\text{Ae}: \) Aedes. \(\text{Sl}: \) Spelacophlebotomus, \(\text{Sa}: \) Spelaeomyia, \(\text{Se}: \) Sergentomyia, \(\text{Ph}: \) Phlebotomus, \(\text{C}: \) Culicoides. *New records for Gabon; **species previously recorded in Gabonese caves; *Species previously known as “true cavernicolous”. The index \(d \) value of dominant species is marked in bold.

Spatio-temporal dynamics of Diptera assemblages. Comparison of the \(H \) values for the three Diptera groups collected by longitudinal sampling showed that diversity was significantly higher in Djibilong than in Kessipoughou cave (Supplementary Fig. S1). Analysis of the community dynamics of each Diptera group in both caves revealed major density variations along time (Fig. 3). Although mosquitoes were sampled in both caves throughout the year, the highest densities were observed between July and October in Kessipoughou (Fig. 3a1), and between May and July in Djibilong cave (Fig. 3b1). Moreover, the species composition of mosquito assemblages in both caves varied over time and some drastic shifts in species dominance were observed (Fig. 4). In Kessipoughou cave, \(\text{Uranotaenia} \), \(\text{Anopheles} \), \(\text{Ca}: \) Catageiomyia, \(\text{Ps}: \) Pseudoarmigeres, \(\text{Ae}: \) Aedes. \(\text{Sl}: \) Spelacophlebotomus, \(\text{Sa}: \) Spelaeomyia, \(\text{Se}: \) Sergentomyia, \(\text{Ph}: \) Phlebotomus, \(\text{C}: \) Culicoides. *New records for Gabon; **species previously recorded in Gabonese caves; *Species previously known as “true cavernicolous”. The index \(d \) value of dominant species is marked in bold.

Table 2. Composition of mosquito, sand fly and biting midge species assemblages in the Gabonese caves under study. KESS: Kessipoughou, DJIB: Djibilong, FAUC: Faucon, ZAD: Zadie, SIY: Siyou, ITSO: Itsoulou. \(\text{Ur}: \) Uranotaenia, \(\text{An}: \) Anopheles, \(\text{Cx}: \) Culex, \(\text{Fi}: \) Ficalbia, \(\text{Lu}: \) Lutzia, \(\text{Co}: \) Coquillettidia, \(\text{Mi}: \) Mimomyia, \(\text{Er}: \) Eretmapodites. \(\text{Ca}: \) Catageiomyia, \(\text{Ps}: \) Pseudoarmigeres, \(\text{Ae}: \) Aedes. \(\text{Sl}: \) Spelacophlebotomus, \(\text{Sa}: \) Spelaeomyia, \(\text{Se}: \) Sergentomyia, \(\text{Ph}: \) Phlebotomus, \(\text{C}: \) Culicoides. *New records for Gabon; **species previously recorded in Gabonese caves; *Species previously known as “true cavernicolous”. The index \(d \) value of dominant species is marked in bold.

Sand flies also were collected in both caves throughout the year; however, their density was higher from July to September and in March in Kessipoughou cave (Fig. 4a2), and from June to July and in January in Djibilong cave (Fig. 4b2). \(\text{Sl}: \) gigas was the predominant species during the entire survey period in Kessipoughou cave (Fig. 4a2). Conversely, a more complex dominance pattern with dominance shifts from \(\text{Sl}: \) gigas to \(\text{Ph}. \) rodhaini and \(\text{Sa}. \) emilii was observed in Djibilong cave (Fig. 4b2). Sand fly diversity (mean \(H \) value) did not significantly change over time in both caves (Supplementary Fig. S2). In Djibilong cave, rainfall was negatively associated with mosquito diversity in Djibilong (\(t \)-value = \(-3.3, p = 0.0008\)) and with mosquito density in Kessipoughou cave (\(t \)-value = \(-3.6, p = 0.0004\)).

Discussion

In all the caves we investigated in Gabon, Diptera assemblages were always dominated by mosquitoes, except in Zadie cave where sand flies were the most abundant. This observation suggests that these caves offer conditions that are suitable particularly for mosquito development. On the other hand, the micro-environmental conditions within Zadie cave could be less suitable for mosquitoes or biting midges than for sand flies, as previously observed\(^{26}\). Indeed, Zadie cave is relatively drier than the other explored caves, with few potential breeding sites
for mosquitoes or biting midges (their immature stages need a humid substratum), whereas sand flies could easily breed on the powdery substratum, despite the lower relative humidity. Moreover, in all explored caves, we collected Ceratopogonidae. However, we recorded blood-feeding species (i.e., belonging to the genera Culicoides and Forcipomyia) only in Kessipoughou and Djibilong caves. Although a previous study reported Culicoides brossetti
species that belong to the *Culicoides trifasciellus* group in the deepest zone of Faucon cave, we did not capture *C. brossetti* or *C. brossetti*-like individuals in Faucon cave (where we conducted one-shot sampling in January and February year). It could be possible that this sampling time was not suitable for capturing individuals of the *C. trifasciellus* group (i.e., *C. brossetti* or *C. brossetti*-like) in Faucon cave, thus explaining their absence in our study. However, even in Kessipoughou and Djibilong caves where we carried out longitudinal sampling, the density of blood-feeding Ceratopogonidae was lower than that of mosquitoes and sand flies. Therefore, blood-feeding Ceratopogonidae (e.g., *C. trifasciellus* group) could be present also in the other caves, but at very low density. Longitudinal sampling in these caves could bring more insights into this issue.

Our study allowed us to significantly increase the number of recorded species in Gabon. Specifically, our work adds 50 Culicidae species (including 30 new records for Gabon) to the two previously known mosquito species collected in Gabonese caves. *Ur. nigromaculata* and the *Cx. rima* group dominated the mosquito species assemblages. Similarly, we found 11 species of sand flies (including 8 new records for Gabon) in these caves, compared with the only five species previously known in Gabon, but *Sl. gigas* was the dominant one. Finally, the community of cavernicolous biting midges included five taxa, all new for the country and dominated by the *C. trifasciellus* group.

Some of the species reported here have been previously found in caves of other African countries. For instance, the mosquito species *Ur. cavernicola*, *An. smithii* s.l. and *An. faini* have been previously collected in caves of Democratic Republic of Congo and Cameroon. *Sl. gigas* is widely distributed throughout Africa, whereas *Sa. emilii* have been previously recorded in Congo-Brazzaville, Cameroon and Gabon, *Se. balcicola* in Congo-Brazzaville, Cameroon and Gabon, and *Sa. moucheti* in Cameroon, Central African Republic and Gabon. Conversely, the two biting midge species we detected (*C. grenieri* and *C. rageaui*) have never been reported in African caves before. Our analysis (particularly, species accumulation curves and NS values) suggests that sampling was exhaustive for all Diptera groups and in all caves, except for mosquitoes in Zadie cave, probably due to the low number of captured individuals, and in Djibilong cave where the extrapolated number of non-sampled species was quite important. Thus, with more than 50% of all known mosquito species in Gabon (in any ecosystems) and several new records of sand flies and biting midges, this study improves the knowledge about cavernicolous blood-sucking Diptera in Gabon and in Central Africa.

We observed that Kessipoughou cave is a very deep cave, less opened to the outside. In this cave, there are several mosquito breeding sites and large colonies of bats (a potential major blood source) that might favor the development of only few potentially well adapted troglophilous or troglobitic species. This could explain the high density and low diversity observed in this cave. Conversely, Djibilong cave is less deep and more opened to the outside, thus favoring the entry of several species from the outside environment and explaining the high diversity observed. Therefore, the difference in mosquito assemblages observed in these two caves could be the consequence of these habitat differences.

In this study, potential true cavernicolous (troglobitic) species were generally a minority compared with the other species. Indeed, the proportion of previously known true cavernicolous species was very low (3.8%) for mosquitoes and low (36.3%) for sand flies. *Anopheles smithii* s.l. was known to be restricted to caves, although it has been occasionally recorded inside human habitations in Koulamoutou, Gabon. Some species from epigeous environments showed high densities inside the six caves under study (*Ur. nigromaculata*, *Cx. rima* group and *Cx.
Methods

Study areas. Mosquitoes, sand flies and biting midges were collected inside six caves that are located in the eastern part of Gabon (Fig. 1) and are among the most anthropized in this country, mainly for mining, hunting and tourism purposes. The Faucon (01.07287N 13.20739E) and Zadie (00.98595N 13.19745E) caves are in the heart of the Belinga Mountains, whereas the Kessipoughou cave (00.86722S 12.77389E), which is currently considered one of the biggest known caves in Gabon, is in a forested area in the middle east of the country, near Lastoursville. The Siyou (00.80889S 12.76334E) and Itsoulou (00.80639S 12.77389E) caves also are in the rainforest around Lastoursville. The Djibilong cave (01.36261 S13.46296E) is located in a patch of forest surrounded by savanna, north of Franceville. More details about these caves were previously published44. All studied caves are

Study areas. Mosquitoes, sand flies and biting midges were collected inside six caves that are located in the eastern part of Gabon (Fig. 1) and are among the most anthropized in this country, mainly for mining, hunting and tourism purposes. The Faucon (01.07287N 13.20739E) and Zadie (00.98595N 13.19745E) caves are in the heart of the Belinga Mountains, whereas the Kessipoughou cave (00.86722S 12.77389E), which is currently considered one of the biggest known caves in Gabon, is in a forested area in the middle east of the country, near Lastoursville. The Siyou (00.80889S 12.76334E) and Itsoulou (00.80639S 12.77389E) caves also are in the rainforest around Lastoursville. The Djibilong cave (01.36261 S13.46296E) is located in a patch of forest surrounded by savanna, north of Franceville. More details about these caves were previously published44. All studied caves are
characterized by the presence of bat colonies and all of them, except Zadie cave, are crossed by internal free-flowing rivers (Kessipoughou, Itsoulou, Siyou) or contain stagnant water ponds of variable size and depth, depending on the season (Djibilong and Faucon). In Zadie cave, the environment is drier because water ingress or seepage is very limited during the rainy seasons.

Insect sampling and species identification. Arthropods were collected using CDC light traps without CO₂ during one-shot sampling in the Faucon, Zadie, Siyou and Itsoulou caves and longitudinal sampling in the Kessipoughou and Djibilong caves. Four (Faucon, Zadie, Siyou and Itsoulou) to five traps (Kessipoughou and Djibilong) were positioned in each cave, taking care to minimize the competition between them. In Kessipoughou and Djibilong, trap positions remained fixed throughout the duration of the longitudinal survey. Traps were turned on during: 1) 48 consecutive hours per month in Faucon, Zadie (January 2011 to February 2011) and Siyou (August 2013); 2) 96 consecutive hours per month in Itsoulou (August 2013) as well as in Kessipoughou and Djibilong (11 months between May 2012 and April 2013). Overall, the total trapping effort was of 11,904 hours. Collection bags were replaced each 24 hours and placed at −20°C for 1 hour to kill the collected insects that were subsequently sorted in mosquitoes, sand flies and biting midges. Mosquitoes were morphologically identified (species or group of species) using “homemade” taxonomic keys based on updates of the Edwards’ identification keys for Ethiopian mosquitoes64. Species were named according to the on-line list of valid species (http://mosquito-taxonomic-inventory.info). Sand flies and biting midges were morphologically identified by observation of head, wings, genitalia and spermatheca using a microscope. The body parts used for identification were dissected and ephemerally mounted in Marc-André solution66 heated at 60°C. The taxonomic identification of sand flies and biting midges was done using the keys for African Phlebotominae66 and African Ceratopogonidae, respectively65,67,68.

Data analysis. All statistical analyses were performed using R v3.0.2 (https://www.r-project.org/). To determine the sampling efficiency in the Kessipoughou and Djibilong caves, species accumulation curves were plotted according to a randomization procedure using the vegan package67 and by fixing the number of permutations to 1000. The apparent density (AD) of insects was estimated for each insect group as the number of specimens collected per trap and per day (sp/t/d). Species richness (S) was determined as the number of insect species collected. In addition to (S), the diversity of communities was assessed using the Shannon index (H)68 calculated with the “diversity” command of the vegan package. For each cave, the number of non-sampled species (NS) was extrapolated by estimating the Chao index27 using the “estimatorR” command of the vegan package. The dominant species index (d) in each group was estimated using the Berger-Parker equation69: $d = \frac{N_i}{N}$, where N_i is the number of individuals of the i^{th} species and N the total number of sampled individuals (all species). It ranges from 0 to 1, and d values close to 1 indicate high dominance.

To investigate the cave similarity in terms of species composition and density, the Morisita-Horn similarity index (C)60 between sites was calculated using the “vegdist” command of the vegan package. Because “vegdist” is an analysis of dissimilarity (C), $C = 1 - C'$ was used for this study. C ranges from 0 (0% of similarity) to 1 (100% of identity between sites).

The relationships between monthly rainfall (chosen as environmental variable) and the variations of insect density and diversity indices during the study period were analysed in the Kessipoughou and Djibilong caves. To this aim, Generalized Linear Models (GLM) were fitted with identity links for each insect group using the lme4 package71 and monthly “rainfall” was used as explanatory variable. The monthly estimates of accumulated precipitations were from the United States Department of Commerce, National Weather Service/Climate Prediction Center (http://www.cpc.ncep.noaa.gov/products/fews/africa). Data for each cave were retrieved using their GPS coordinates.

References

1. Jurado, V. et al. Pathogenic and opportunistic microorganisms in caves. *Int. J. Speleol.* 39, 15–24 (2010).
2. Saiz-Jimenez, C. Microbiological and environmental issues in show caves. *Ann. Speleo* 53–60, doi:10.1111/zph.12118 (2015).
3. Anti, P. et al. Human-Bat Interactions in Rural West Africa. *Emerg. Infect. Dis.* 21, 1418–1421, doi:10.3201/eid2108.140125 (2015).
4. Bausch, D. G. et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. *R. Soc. Trop. Med. Hyg.* 67, 6–7 (1973).
5. Reeves, W. K., Loftis, A. D., Gore, J. A. & Dasch, G. A. Molecular evidence for novel species in *Hematozoon* and *Piroplasma* from African bats of the Chiroptera. *Emerg. Infect. Dis.* 11, 56–61 (2005).
6. Konstantinov, O. K., Diallo, S. M., Inapogi, A. P., Ba, A. & Kamara, S. K. The mammals of Guinea as reservoirs and carriers of arboviruses. *Trans. R. Soc. Trop. Med. Hyg.* 60, 281–286 (1999).
7. Adam, J. P. et al. Human-Bat Interactions in Rural West Africa. *Emerg. Infect. Dis.* 21 (2015).
8. Bausch, D. G. et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. *R. Soc. Trop. Med. Hyg.* 67, 6–7 (1973).
9. Konstantinov, O. K., Diallo, S. M., Inapogi, A. P., Ba, A. & Kamara, S. K. The mammals of Guinea as reservoirs and carriers of arboviruses. *Trans. R. Soc. Trop. Med. Hyg.* 60, 281–286 (1999).
10. Reeves, W. K., Loführer, A. D., Gore, J. A. & Dasch, G. A. Molecular evidence for novel Bartonella species in *Trichobius major* (Diptera: Streblidae) and *Cimex adjunctus* (Hemiptera: Cimicidae) from two southeastern bat caves, U.S.A. *J. Vector. Ecol.* 30, 339–341 (2005).
11. Diallo, M., Tomson, J., Mounounou, T.-L. & Fontenille, D. Vectors of Chikungunya virus in Senegal: current data and transmission cycles. *Am. J. Trop. Med. Hyg.* 60, 281–286 (1999).
12. Adam, J. P. Transmission of haemosporidia by Anopheles cavernicola in the caves of Congo (Brazzaville). *Bull. World. Health. Organ.* 32, 598–602 (1965). French.
13. Adam, J. P. Hématozoaires des chiroptères d’Afrique Centrale. Cah. ORSTOM. Ser. Entomol. Med. Parasitol. collection de Référence no 6075 (1973).
14. Thompson, N. N. et al. Seroepidemiology of Selected Alphaviruses and Flaviviruses in Bats in Trinidad. *Zoonoses. Public Health.* 56, 53–60, doi:10.1111/zph.12118 (2015).
15. Adam, J. P. Les Cimicidae cavernicola du Congo et de l’Afrique intertropicale. *Ann. Speleo* 20, 409–423 (1965).
16. Adam, J. P. Recherches sur les vecteurs de *Plasmodium* de petits mammifères au Congo et Etats voisins d’Afrique équatoriale et contribution à l’étude de la transmission de *Plasmodium chabaudi* et yoeli. *Cah. O.R.S.T.O.M. Ser. Ent. Med. Parasitol.* N°1106 (1967).

17. Vattier-Bernard, G. & Adam, J. P. [Current knowledge on the geographical distribution of African cavernicolous sand flies; Considerations about habitat and biology]. *Ann. Speleol.* 24, 143–161 (1969). French.

18. Vattier-Bernard, G. Notes sur la biologie de deux espèces de phlébotomes cavernicoles africains. *Bull. Soc. Ecol. 2*, 293–301 (1971). French.

19. Cornet, M. Ceratopogonidae. Durand Jean-René (ed.), Lévêque Christian (ed.). Flore et faune aquatiques de l’Afrique sahélo-soudanienne: Paris: ORSTOM 2, 625–641 (1981).

20. Vattier-Bernard, G. & Adam, J. P. Capture de Ceratopogonidae (Diptera) dans les grottes du Gabon. In *O.R.S.T.O.M.* 1–31 French (1966).

21. Vattier-Bernard, G. & Adam, J. P. Les Ceratopogonidae des grottes de la République du Congo. *Ann. Speleol.* 21, 711–773 (1966).

22. Grard, G. et al. A Novel Rhabdovirus Associated with Acute Hemorrhagic Fever in Central Africa. *Plos. Pathog.* 8, 10.1371/journal.ppat.1002924 (2012).

23. VRBU, Walter Reed Biosystematics Unit. *www.mosquitocatalog.org* (2016).

24. Delecotte, J.-C., Paspy, C., Rahola, N. & Mathieu, B. Description morphologique et moléculaire d’une nouvelle espèce de Culicoides (Avarticia) du Gabon (Diptera, Ceratopogonidae). *Bull. Soc. Entomol. France 118*, 513–519 (2013).

25. Rahola, N., Depaquit, J., Makanga, B. K. & Paspy, C. Phlebotomus (Lergeromyia) multilamatus subg. nov., sp nov from Gabon (Diptera: Psychodidae). *Mem. Inst. Oswaldo. Cruz.* 108, 845–849, doi:10.1590/S0074-027620130102 (2013).

26. Adam, J. P. Rapport sur une mission au Gabon pour l’étude préliminaire de la faune de quelques grottes de la région de Makokou. In *O.R.S.T.O.M.* 1–21 French (1966).

27. Chao, A. Estimating the population size for capture-recapture data with unequal catchability. *Biometrics.* 43 (1987).

28. Gillies, M. T. & De Meillon, B. Anopheline of Africa south of the Sahara (Ethiopian Zoogeographical region). *South African Institute for Medical Research Publication* 34 (1968).

29. Mattingly, P. F. Notes on Ethiopian Uranotaenia (Diptera-Culicidae) with description of a new species. *Proc. R. Ent. Soc. Lond. (B)* 23, 166–171 (1954).

30. Rahola, N. et al. A molecular study of the genus *Spelaemia* (Diptera: Phlebotominae) with description of the male of *Spelaemia moucheti*. *Parasit. Vectors.* 9 (2016).

31. Service, M. W. Contribution to the knowledge of the mosquitoes (Diptera, Culicidae) of Gabon. *Cah. ORSTOM. Ser. Entomol. Med. Parasitol.* 14, 239–263 (1976).

32. Edwards, F. W. Mosquitoes of the Ethiopian Region. *British Museum (Natural history).* London. 499pp (1941).

33. Brat, A. et al. Epidemiological study of cutaneous leishmaniasis in Saesie Tsaeda-embda district, eastern Tigray, northern Ethiopia. *Parasit. Vectors.* 8, 758–758, doi:10.1186/1307-0157-8-758 (2015).

34. Kan, E., Anjili, C. O., Saini, R. K., Hidaka, T. & Githure, J. I. Phlebotomine sandflies (Diptera: Psychodidae) collected in Mukusu, Machakos District, Kenya and their nocturnal flight activity. *Applied Entomology and Zoology 39*, 651–659, doi:10.1303/seo.2004.651 (2004).

35. Asimeng, E. J. Natural habitats of phlebotomine sandflies in northern Nigeria. *Insect. Sci. Appl.* 13, 113–119 (1992).

36. Depaquit, J. et al. Phlebotomine sand flies from Ouagadougou, Burkina Faso: first record of Phlebotomus (Larroussius) longicuspis south of the Sahara. *Med. Vet. Entomol.* 19, 322–325, doi:10.1111/j.1365-2915.2005.0061.x (2005).

37. Canute, P., Khamala, M. & Kettle, D. S. The *Polychromophilus melanipherus* and potential role in *Plasmodium yoelii* transmission. *Parasit. Vectors.* 5, 113–119 (2012).

38. Chao, A. et al. The effects of simulated rainfall on immature population dynamics of *Aedes albopictus* and female *O. soubrensis* oviposition. *J. Bio. Med. Vet. Entomol.* 65, 143–161 (1974).

39. Fatma, M. T. et al. [First isolations of arboviruses from phlebotomine sand flies in West Africa. *Trans. R. Ent. Soc. Lond.* 123, 1–95 (1971).

40. Cornet, M. Les Culicids de l’Ouest africain (1ère notes). *Cah. ORSTOM. Ser. Entomol. Med. Parasitol.* 7, 341–364 (1969).

41. Cornet, M., Neill, E. M. & Walker, A. R. Notes sur les Culicidés (Diptera, Ceratopogonidae) du groupe de *C. micini Aesten*, 1909, en Afrique orientale et australe. *Cah. ORSTOM. Ser. Entomol. Med. Parasitol.* 12, 231–243 (1974).

42. Glick, J. I. Culicids Biting Midges (Diptera: Ceratopogonidae) of Kenya. *J. Med. Entomol.* 27, 85–190 (1990).

43. Dia, I., Lochouarn, L., Boccollini, D., Costantini, C. & Fontenille, D. Spatial and temporal variations of the chromosomal inversion polymorphism of *Anopheles funestus* in Senegal. *Parasite.* 7, 179–184 (2000).
Nationale des Parcs Nationaux ANPN (Agence CSAR and N° AR0011/13/MENERSI/CENAREST/CG/CST/CSAR). We are also very grateful to the (authorizations N° AR0006/12/MENERSI/CENAREST/CG/CST/du Développement Technologique du GABON for co-funding this work. All insect collections were authorized by the Ministère de la Recherche Scientifique et Initiative-METABIOTA and the Centre International de Recherches Médicales de Franceville (CIRMF), the Global Viral Forecasting OVI) and Claire Garros from CIRAD for providing facilities and expertise in biting midge identification. We are data, Karien Labuschagne from the Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-IRD) (Institut de Recherche pour le Développement) for the technical support and PPR-FTH) housed at the Institut de Recherche pour le Développement (IRD) for co-funding this work. All insect collections were authorized by the Ministère de la Recherche Scientifique et du Développement Technologique du GABON (authorizations N° AR0006/12/MENERSI/CENAREST/CG/CST/CSAR and N° AR0011/13/MENERSI/CENAREST/CG/CST/CSAR). We are also very grateful to the Agence Nationale des Parcs Nationaux (ANPN) and the Centre National de la Recherche Scientifique et Technologique (CENAREST) of Gabon that approved this study and facilitated access to the different sites. We thank Roger Kowe, André Delicat, Lilian-Brice Mangama Koumba and Boris Makanga for their technical assistance in the field and laboratory. We specially thank Daniel Couret from IRD for providing the estimated external rainfalls data, Karien Labuschagne from the Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI) and Claire Garros from CIRAD for providing facilities and expertise in biting midge identification. We are grateful to the Poun/gui Canton Association (Lastoursville, Gabon) and we deeply thank the Ranch of LEKABI staff (Gabon) and its director Pascal Pommeret for his support and assistance in this study. This research was co-funded by the Centre International de Recherches Médicales de Franceville (CIRMF), the Global Viral Forecasting Initiative-METABIOTA and the Programme Pilote Régional Forêts Tropicales Humides (PPR FTH) housed at the Institut de Recherche pour le Développement (IRD).

Acknowledgements

We thank the International Center for Medical Researches of Franceville (CIRMF) for the technical support and for funding this work. We thank the Global Viral Forecasting Initiative-METABIOTA and the Programme Pilote Régional-Forêts Tropicales Humides (PPR-FTH) housed at the Institut de Recherche pour le Développement (IRD) for co-funding this work. All insect collections were authorized by the Ministère de la Recherche Scientifique et du Développement Technologique du GABON (authorizations N° AR0006/12/MENERSI/CENAREST/CG/CST/CSAR and N° AR0011/13/MENERSI/CENAREST/CG/CST/CSAR). We are also very grateful to the Agence Nationale des Parcs Nationaux (ANPN) and the Centre National de la Recherche Scientifique et Technologique (CENAREST) of Gabon that approved this study and facilitated access to the different sites. We thank Roger Kowe, André Delicat, Lilian-Brice Mangama Koumba and Boris Makanga for their technical assistance in the field and laboratory. We specially thank Daniel Couret from IRD for providing the estimated external rainfalls data, Karien Labuschagne from the Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI) and Claire Garros from CIRAD for providing facilities and expertise in biting midge identification. We are grateful to the Poun/gui Canton Association (Lastoursville, Gabon) and we deeply thank the Ranch of LEKABI staff (Gabon) and its director Pascal Pommeret for his support and assistance in this study. This research was co-funded by the Centre International de Recherches Médicales de Franceville (CIRMF), the Global Viral Forecasting Initiative-METABIOTA and the Programme Pilote Régional Forêts Tropicales Humides (PPR FTH) housed at the Institut de Recherche pour le Développement (IRD).

Author Contributions

O.N.J., L.E.M. and P.C. designed the research; O.N.J., R.N., B.M., Y.P., M.G.D., J.D., A.X. and P.C. performed the research; O.N.J., A.D., B.N. and P.C. analysed the data, and O.N.J. and P.C. wrote the paper. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-00328-z

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017