Prognostic Significance of Clinicopathological Factors Influencing Overall Survival and Event-Free Survival of Patients with Cervical Cancer: A Systematic Review and Meta-Analysis

Shengwei Kang
Junxiang Wu
Jie Li
Qing Hou
Bin Tang

Background: Cervical cancer (CC) is the most frequent type of cancer among women and its poor prognosis is a main concern, while the prognostic factors for CC have still remained controversial. We conducted this systematic review and meta-analysis to identify the prognostic significance of clinicopathological factors, influencing overall survival (OS), and event-free survival (EFS) of CC patients.

Material/Methods: The electronic databases of PubMed, Embase, and the Cochrane library were systematically searched for identification of eligible studies published until June 2021. The pooled hazard ratio (HR) with 95% confidence interval (CI) were calculated using the random-effects model. Sensitivity and subgroup analyses and assessment of publication bias were also conducted.

Results: We selected 140 studies that involved 47,965 patients for the meta-analysis. The results revealed that age, cell type, depth of tumor invasion, the International Federation of Gynecology and Obstetrics stage, hemoglobin level, histological grade, leukocytosis, lymph node involvement, lymph-vascular space invasion, neutrophil-to-lymphocyte ratio, parametrial invasion, platelet-to-lymphocyte ratio, resection margin, squamous cell carcinoma antigen level, thrombocytosis, tumor grade, tumor size, and tumor volume were clinicopathological factors influencing OS and EFS of CC patients (P<0.05).

Conclusions: This study comprehensively identified the prognostic significance of clinicopathological factors, influencing OS, and EFS of CC patients. However, further large-scale prospective studies should be conducted to verify our findings and develop more accurate prognostic models for CC.

Keywords: Pathological Conditions, Signs and Symptoms • Prognosis • Uterine Cervical Neoplasms

Abbreviations: CC – cervical cancer; CI – confidence interval; EFS – event-free survival; FIGO – International Federation of Gynecology and Obstetrics; HR – hazard ratio; LNI – lymph node involvement; LVS1 – lymph-vascular space invasion; NLR – neutrophil-to-lymphocyte ratio; NOS – Newcastle-Ottawa Scale; OS – overall survival; PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analysis; PLR – platelet-to-lymphocyte ratio; SCCA – squamous cell carcinoma antigen

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/934588
Background

Cervical cancer (CC) is a frequent gynecologic malignancy and is the primary cause of cancer-related deaths in women worldwide [1,2]. A total of 604,127 new cases and 341,831 CC-related deaths were reported in 2020, accounting for 7.7% of all cancer-related deaths in women [1]. The HPV infection rate is rising, particularly in developing countries, where the incidence and prevalence of CC are still high, which can be attributed to the lack of a universal and integrated vaccination program for CC [3,4]. The prognosis of CC could be improved by a variety of treatment strategies on the basis of the disease stage, metastasis, or recurrence [2,5]. The International Federation of Gynecology and Obstetrics (FIGO) staging system has been widely used for predicting the prognosis of CC patients, while the prognosis of CC patients with the same FIGO stage varies [6]. Several prognostic models have already been introduced to predict the prognosis of CC on the basis of tumor and demographic characteristics [7-10], but the practicality of these models is limited by uneven quality and various characteristics of clinical setting, outcomes, and predictors. Therefore, additional prognostic factors should be explored to improve the prognosis of CC patients.

We therefore attempted to construct a prognostic model using the previously defined factors to predict the prognosis of CC patients. Numerous systematic reviews and meta-analyses have been performed to identify the prognostic significance of other variables in estimating the rates of overall survival (OS) and event-free survival (EFS) [11-15]. However, the other clinicopathological characteristics influencing the prognosis of CC patients were not assessed. There is an urgent need to summarize the prognostic variables to establish more comprehensive prognostic models. We therefore conducted the present systematic review and meta-analysis to identify the prognostic factors for CC and we also investigated the prognostic significance of these factors for CC.

Material and Methods

Search Strategy and Selection Criteria

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement was utilized, as described previously [16]. Studies on the prognostic significance of clinicopathological factors, influencing OS, and EFS of CC patients were selected, and the language was restricted to English. No restriction was placed on publication status, including published, in press, or in progress. The electronic databases of PubMed, EmBase, and the Cochrane library were systematically searched for retrieving potential studies published until June 2021 using the following text word or Medical Subject Heading terms: (“cervical cancer” OR “cervical carcinoma” OR “cervical intraepithelial neoplasia” OR “uterine cervix cancer”) AND (“prognosis” OR “prognostic” OR “survival” OR “recurrence”). We also manually searched the reference lists of relevant reviews and original articles to identify eligible studies.

The literature search and study selection were independently performed by 2 reviewers, and the inconsistencies between reviewers were resolved by group discussion until a consensus could be reached. The following inclusion criteria were considered: (1) Study design: prospective or retrospective studies; (2) Patients: all patients who were diagnosed with CC; (3) Exposure: the clinicopathological factors reported ≥3 studies, including patients’ age, cell type, depth of tumor invasion, FIGO stage, hemoglobin level, histological grade, leukocytosis, lymph node involvement (LNI), lymph-vascular space invasion (LVS1), neutrophil-to-lymphocyte ratio (NLR), parametrical invasion, platelet-to-lymphocyte ratio (PLR), resection margin, squamous cell carcinoma antigen (SCCA), thrombocytosis, tumor grade, tumor size, and tumor volume; and (4) Clinical outcomes: OS or EFS. Reviews and abstracts were excluded because they contain no original data or have an unclear definition of prognostic factors.

Data Collection and Quality Assessment

Two reviewers independently abstracted the following items: characteristics of studies (the first author’s full name, year of publication, the first author’s country of residence, and study design), sample size, mean or median age, FIGO stage, follow-up duration, clinical outcomes, and prognostic factors. Then, these 2 reviewers assessed the quality of each study using the Newcastle-Ottawa Scale (NOS) score, which ranges from 0-9 stars for assessment of quality of each study [17]. Studies were classified into low quality (0-6 stars), medium quality (7-8 stars), and high quality (9 stars). Any disagreement between reviewers for data collection and quality assessment was resolved via reading the full-text of the included studies by the third reviewer.

Statistical Analysis

The prognostic factors, influencing OS and EFS of CC patients were presented as hazard ratio (HR) and 95% confidence interval (CI) for each individual study, and the pooled HRs and 95% CIs were calculated using the random-effects model, as described elsewhere [18,19]. Heterogeneity among the included studies was assessed using the Cochran’s Q-statistic and the I²-statistic, and a significant heterogeneity was defined as I² ≥50.0% or P<0.10 [20,21]. To determine sources of heterogeneity, we performed a leave-one-out sensitivity analysis via exclusion of individual studies one at a time, and the pooled estimates were recalculated for the remaining studies [22].

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]
[Chemical Abstracts/CAS]
Subgroup analyses were undertaken on the basis of the first author’s country of residence, FIGO stage, cutoff value, and study quality, and the subgroups were calculated using the chi-square test to explore the differences in the estimates between subgroups [23]. The Eastern countries contained Asia, while Western countries including Europe, America, and Oceania. Assessment of publication bias was carried out by using Egger's and Begg's tests, which compared the summary estimate of each study to its precision for outcomes that were reported in more than 5 studies [24,25]. The trim and fill method was applied to adjust pooled results if significant publication bias was observed [26]. Two-sided \(P \leq 0.05 \) was regarded as statistically significant. The STATA 10.0 software was used to conduct the statistical analyses (Stata Corporation, College Station, TX, USA).

Results

Literature Search

The search strategy resulted in retrieving 18,912 articles, and 9,141 articles were retained after exclusion of 9,771 studies owning to duplicate publication. Then, 8,762 studies were excluded because of irrelevant titles, the review of the reference lists of potentially relevant studies indicated 21 studies, and a total of 380 studies were retrieved for further full-text evaluations. Next, 240 studies were removed because they investigated other interventions (n=169), had inadequate outcomes (n=46), and were review articles (n=25). The remaining 140 studies were selected for the final meta-analysis (Figure 1), and characteristics of the eligible studies are presented in Table 1 [27-166].

Characteristics of the Eligible Studies

Of 140 included studies, 7 were designed as prospective cohorts, 132 as retrospective cohorts, and the remaining 1 study had both prospective and retrospective design. The sample size of the included studies ranged from 38 to 3797, and a total of 47,965 patients were involved. Forty-seven studies were conducted in Western countries and the remaining 93 studies were performed in Eastern countries. In addition, 106 and 99 studies reported the prognostic significance of clinicopathological characteristics, influencing OS and EFS of CC patients, respectively. Moreover, 41 studies were of medium quality (7 stars), and a total of 99 studies were of low quality (6 stars (69 studies) versus 5 stars (30 studies)).

Overall Survival

The summary results for the prognostic factors on OS in CC patients are shown in Figure 2. The pooled results found older patients (HR: 1.10; 95% CI: 1.00-1.20; \(P=0.040 \)), cell types other than squamous type (HR: 1.64; 95% CI: 1.47-1.83; \(P<0.001 \)), deep depth of tumor invasion (HR: 1.92; 95% CI: 1.53-2.40; \(P<0.001 \)), high FIGO stage (HR: 2.00; 95% CI: 1.76-2.28; \(P<0.001 \)), low hemoglobin level (HR: 1.84; 95% CI: 1.36-2.50; \(P<0.001 \)), high histological grade (HR: 1.52; 95% CI: 1.27-1.83; \(P<0.001 \)), leukocytosis (HR: 2.21; 95% CI: 1.55-3.15; \(P<0.001 \)), LNI (HR: 2.59; 95% CI: 2.30-2.92; \(P<0.001 \)), LVSI (HR: 2.09; 95% CI: 1.75-2.49; \(P<0.001 \)), high NLR (HR: 1.69; 95% CI: 1.36-2.11; \(P<0.001 \)), parametrial invasion (HR: 2.18; 95% CI: 1.84-2.59; \(P<0.001 \)), high PLR (HR: 1.98; 95% CI: 1.45-2.71; \(P<0.001 \)), positive resection margin (HR: 1.97; 95% CI: 1.45-2.69; \(P<0.001 \)), high SCCA level (HR: 1.65; 95% CI: 1.28-2.15; \(P<0.001 \)), thrombocytosis (HR: 1.69; 95% CI: 1.32-2.17; \(P<0.001 \)), large tumor volume (HR: 2.87; 95% CI: 2.03-4.04; \(P<0.001 \)), high tumor grade (HR: 1.74; 95% CI: 1.24-2.43; \(P=0.001 \)), and large tumor size (HR: 1.81; 95% CI: 1.59-2.07; \(P<0.001 \)) were associated with shorter OS. There was significant heterogeneity for age, cell type, depth of tumor invasion, FIGO stage, hemoglobin, histological grade, leukocytosis, LNI, LVSI, NLR, parametrial invasion, resection margin, tumor grade, and tumor size. The pooled conclusions were stability for OS related to cell type, depth of tumor invasion, FIGO stage, hemoglobin level, histological grade, leukocytosis, LNI, LVSI, NLR, parametrial invasion, PLR, resection margin, SCCA level, tumor grade, and tumor size (data not shown).

Subgroup analysis indicated the statistically significant prognostic significance of age in OS of patients with FIGO stages I-II CC or studies with low quality; cell type did not affect OS of patients with FIGO stages III-IV CC; depth of tumor invasion...
Table 1. The baseline characteristics of included studies.

Study	Country	Study design	Sample size	Age (years)	FIGO stage	Follow-up (years)	Reported outcomes	Prognostic factors	NOS score
Sevin 1995 [27]	USA	Retro	301	43.5	I-II	5.0	DFS	CT, TS, LVSI, LNI, TV, FIGO, RM, CT, TG, age	6
Werner-Wasik 1995 [28]	USA	Retro	125	55.0	I-II	5.0	DFS	LNI, LVSI, PI, He, TS, FIGO, CT, TG	5
Tsai 1999 [29]	China	Retro	222	50.0	I-II	5.0	DFS	FIGO, TS, age, CT, SCC, He, LNI, PI, LVSI, RM	6
Lai 1999 [30]	China	Retro	891	NA	I-II	5.0	DFS	TG, FIGO, TS, DI	7
Nakanishi 2000 [31]	Japan	Retro	509	49.3	I	9.3	OS, DFS	CT, LNI, and TS	6
Hernandez 2000 [32]	USA	Retro	291	49.3	II-IV	5.0	DFS	Th, LNI, TS, age, and FIGO	7
Alfsen 2001 [33]	Norway	Retro	505	53.0	I-IV	5.0	OS	LNI, FIGO, and age	7
Flores-Luna 2001 [34]	Mexico	Retro	378	52.2	I-IV	12.5	OS	FIGO, TG, TS, and age	5
Trattner 2001 [35]	Austria	Retro	113	46.1	I-II	4.7	OS	TV, LNI, LVSI, FIGO, PI, RM, CT, TG, and age	5
Yanoh 2001 [36]	Japan	Retro	751	45.0	I	> 5.0	DFS	LNI, PI, TS, DI, and LVS	6
Takeda 2002 [37]	Japan	Retro	187	48.2	I-II	6.9	OS	FIGO, CT, LVSI, TS, DI, PI, and LNI	6
Gasinska 2002 [38]	Poland	Retro	152	55.0	I-III	2.1	OS	Age, TG, and He	6
Martin-Loeches 2002 [39]	Spain	Retro	114	49.1	I-II	10.0	OS	TS, TV, DI	5
Brun 2003 [40]	France	Retro	308	53.0	I-IV	7.8	OS	Age, TG, and PI	6
Morice 2003 [41]	France	Retro	193	37.0	I-II	5.0	OS	FIGO, TS, LVSI, and LNI	6
Kodaira 2003 [42]	Japan	Retro	164	68.0	II-III	1.9	DFS	TV, LNI, and FIGO	6
Grisaru 2003 [43]	Canada	Pro	871	42.1	I	4.1	DFS	LNI, TG, LVSI, RM, and CT	7
Huang 2003 [44]	China	Pro	157	44.0	I-II	5.0	OS, DFS	TS, age, CT	6
Shinohara 2004 [45]	Japan	Retro	130	49.0	I-II	14.4	DFS	LVSI, LNI, and DI	6
Ho 2004 [46]	China	Retro	197	47.4	I-II	5.8	OS, DFS	Age, FIGO, CT, TG, TS, DI, LVSI, LNI, PI	5
Ayhan 2004 [47]	Turkey	Retro	393	48.5	I	2.6	OS, DFS	TS, LVSI, PI, and age	6
Choi 2006 [48]	Korea	Retro	85	50.0	I-IV	3.0	OS, DFS	Age, CT, FIGO, TS, LNI, SCC, and He	5
Chittithaworn 2007 [49]	Thailand	Retro	205	44.2	I	4.7	DFS	DI, LVSI, RM, and LNI	5
Grigiene 2007 [50]	Lithuania	Retro	162	52.0	II-III	2.7	DFS	FIGO, He	7
Horn 2007 [51]	Germany	Retro	245	43.0	II	4.5	OS	TS, LNI, FIGO	6
Atahan 2007 [52]	Turkey	Retro	183	54.0	I-III	3.8	OS, DFS	Age, PI, FIGO, TS, CT, LNI	7
Garcia-Arias 2007 [53]	Mexico	Retro	294	49.4	I-IV	2.3	OS	Le, He, age, CT, and FIGO	7
Choi 2008 [54]	Korea	Retro	143	58.0	I-IV	2.2	PFS	FIGO, TS	6
Behnash 2009 [55]	Iran	Retro	203	49.8	I-II	3.5	OS, DFS	Age, CT, FIGO, TS, LNI, PI, LVSI, DI	6
Table 1 continued. The baseline characteristics of included studies.

Study	Country	Study design	Sample size	Age (years)	FIGO stage	Follow-up (years)	Reported outcomes	Prognostic factors	NOS score
Jacobson 2009	USA	Retro	436	52.3	I-IV	8.0	OS	FIGO, CT	7
Zusterzeel 2009	Netherlands	Retro	167	42.0	I-IV	2.8	OS, DFS	FIGO, CT, TG, LVS, DI, TS	7
Polterauer 2010	Austria	Retro	88	49.9	I-IV	3.1	OS, DFS	FIGO, TG, CT	7
Munagala 2010	India	Retro	89	46.0	I-III	5.0-7.0	OS, DFS/PFS	Age, FIGO, LNI, PI, CT, TG, and TS	6
Huang 2010	China	Retro	960	45.0	I-II	5.0	OS	FIGO, SCC, DI, PI	6
Touboul 2010	France	Retro	150	47.0	I-IV	3.6	OS	FIGO, CT, RM, LNI	7
Horn 2010	Germany	Retro	194	44.0	I-II	5.1	OS	LNI, TG, FIGO	6
Kodama 2010	Japan	Retro	97	46.0	I-IV	8.4	OS, DFS	Age, FIGO, DI, TS, PI, LVS, LNI	5
Lee 2010	Korea	Retro	134	58.0	II-IV	3.2	OS, PFS	FIGO	5
Tseng 2010	China	Pro	251	48.6	II-IV	6.3	OS	SCC, TS, PI, LNI	6
Nugent 2010	USA	Retro/Pro	111	51.0	I-II	1.4	OS, PFS	FIGO	6
Srisomboon 2011	Thailand	Retro	680	44.5	I	4.0	DFS	LNI, LVS, CT, DI, PI, TG, RM	6
Seamon 2011	USA	Retro	381	47.0	I-IV	3.3	OS, DFS	FIGO, CT	7
Polterauer 2011	Austria	Retro	178	49.2	I-IV	3.8	OS, DFS	FIGO, LNI, TG, age, CT	7
Mabuchi 2011	Japan	Retro/Pro	536	57.5	I-IV	6.4	OS, PFS	Age, FIGO, CT, TS	6
Min 2011	China	Retro	88	NA	I-II	5.0	OS	Age, TS, CT, TG, FIGO, LNI	5
Biewenga 2011	Netherlands	Retro	710	41.0	I-II	5.2	DFS	CT, TG, DI, PI, LNI, LVS, RM	7
Polterauer 2012	Austria	Retro	528	47.9	I-IV	3.8	OS	Age, FIGO, TS, CT, LNI, PI	7
Kim 2012	Korea	Retro	174	50.0	I-II	2.5	OS, PFS	FIGO, LNI, TS	6
Lee 2012	Korea	Retro	1,061	50.0	I-IV	4.4	OS, PFS	NLR, FIGO, CT	7
Okazawa 2012	Japan	Retro	311	51.0	I-II	5.2	PFS	Age, CT, LNI, PI, RM, DI, LVS, TS, He	7
Wang 2012	China	Retro	179	47.0	I-IV	4.3	OS, DFS	FIGO, LNI, RM	6
Yan 2012	China	Retro	148	42.0	I	2.3	OS	Age, CT, TG, TS, DI, LVSI, LNI	5
Cibula 2012	Czech Republic	Retro	645	46.0	I-II	3.3	OS, DFS	Age, FIGO, PI, LNI	6
Singh 2012	Australia	Retro	196	NA	I-II	6.1	OS, DFS	Age, LVS, LNI, PI, TS, DI	7
Wang 2013	China	Retro	424	NA	I-II	7.0	DFS	Age, CT, TG, FIGO, LNI	5
Tsubamoto 2013	Japan	Retro	73	47.0	I-II	5.9	OS, DFS	Age, FIGO, CT, TS, LNI	6
Song 2013	Korea	Retro	268	57.0	I-IV	5.0	OS, DFS	FIGO, age, LNI, CT, He	6
Cho 2013	Korea	Retro	185	50.0	I-II	5.9	DFS	Age, FIGO, LNI, RM, PI, TS, DI, LVS	6
Zhang 2014	China	Retro	460	44.0	I-II	5.8	OS, PFS	FIGO, LNI, NLR	7
Horn 2014	Germany	Retro	366	40.0	I	7.8	OS, DFS	TS, LNI, TG	7
Study	Country	Study design	Sample size	Age (years)	FIGO stage	Follow-up (years)	Reported outcomes	Prognostic factors	
---	---------	--------------	-------------	-------------	-------------	------------------	-------------------	---	
Noh 2014 [87]	Korea	Retro	1,323	50.0	I-II	6.3	OS, DFS	CT, age, FIGO, TS, LNI, PI, LVSI, DI, RM	
Yu 2014 [88]	China	Retro	153	NA	II	5.0	DFS	TS, LVSI, LNI	
Liu 2014 [89]	China	Retro	184	46.0	I-II	5.8	DFS	Age, TS, CT, FIGO, DI, LVSI, LNI	
Kawano 2015 [90]	Japan	Retro	286	63.6	I-IV	6.7	OS	age, FIGO, PNI, CT, TS, He, Th	
Ruengkachorn 2015 [91]	Thailand	Retro	331	48.6	I-II	7.0	DFS	He, CT, FIGO, PNI, CT, DI, LVSI	
Bradbury 2015 [92]	UK	Retro	92	39.5	I	4.8	OS, DFS	Age, TS, CT, TS, TG, LVSI, LNI, RM	
Yuan 2015 [93]	China	Retro	38	40.4	I-II	5.0	DFS	PI	
Mizunuma 2015 [94]	Japan	Retro	56	65.1	I-IV	6.7	DFS	FIGO, TS, He, LNI	
Endo 2015 [95]	Japan	Retro	84	62.0	I-II	6.7	OS	Age, CT, He, TS, LNI	
Zhao 2015 [96]	China	Retro	220	NA	I-II	5.0	DFS	Age, FIGO, CT, TS, DI, LSNI	
Takatori 2015 [97]	Japan	Retro	33	42.0	I-II	2.8	OS	Age, FIGO, TS, SCC	
Huang 2016 [98]	China	Retro	643	NA	I-II	3.1	OS, DFS	Age, CT, TS, FIGO, DI, LVSI, LNI, PI, RM	
Li 2016 [99]	China	Retro	347	51.6	I-II	3.1	OS, DFS	Age, FIGO, CT, TS, LNI, He, Le, NLR	
Cho 2016 [100]	Korea	Retro	2,456	56.0	I-IV	5.4	OS, DFS	Age, FIGO, CT, TS, LNI, He, Le, NLR	
Matsumiya 2016 [101]	Japan	Retro	54	55.0	I-II	1.0	OS	CT	
Usami 2016 [102]	Japan	Retro	111	51.0	I-II	1.4	OS	Age, CT	
Chen 2016 [103]	China	Retro	407	44.0	I-II	5.0	OS, DFS	Age, CT, TS, DI, LVSI, LNI, FIGO, PI, PLR, NLR	
Oishi 2016 [104]	Japan	Retro	85	55.0	IV	0.8	OS	Age, CT, TS, TG, He, SCC	
Onal 2016 [105]	Turkey	Retro	235	57.0	I	5.8	OS, DFS	Age, FIGO, TS, LNI, NLR	
Wu 2016 [106]	USA	Retro	71	49.0	I-I	2.1	OS, DFS	FIGO, CT, TG	
Xia 2016 [107]	China	Retro	274	43.0	I-II	2.4	OS, DFS	Age, FIGO, CT, TS, TG, DI, LVSI, RM, PI, LNI	
Lee 2017 [108]	Korea	Retro	231	58.0	I-IV	2.3	OS, DFS	Age, LNI, FIGO, SCC, TV	
Barquet-Muñoz 2017 [109]	Mexico	Retro	202	49.5	I-II	5.0	OS, DFS	Age, CT, TS, DI, LVSI, RM, PI, LNI	
Jung 2017 [110]	Korea	Retro	1,113	48.7	I-II	7.6	OS, DFS	CT, FIGO, TS, DI, LNI, LVSI, PI, RM	
Chung 2017 [111]	Korea	Retro	103	48.0	I-II	2.4	DFS	FIGO, TS, LNI, PI, DI, LVSI	
Zheng 2017 [112]	China	Retro	795	49.5	I-II	5.2	OS	FIGO, He, TG, LVSI, LNI, TS, PI, RM	
Obrzut 2017 [113]	Poland	Pro	102	48.0	I-II	10.0	OS, DFS	FIGO, CT, TG, LNI, LVSI, RM	
Cho 2017 [114]	Korea	Retro	105	NA	II	4.8	PFS	Age, CT, TS, LNI, NLR	
Table 1 continued. The baseline characteristics of included studies.

Study	Country	Study design	Sample size	Age (years)	FIGO stage	Follow-up (years)	Reported outcomes	Prognostic factors
Chandeying 2017	Thailand	Retro	626	45.0	I	7.7	OS, DFS	CT, age, TS, FIGO, RM, PI, LNI, LVS, DI
Yokoi 2017	Japan	Retro	249	61.5	II-IV	5.0	PFS	Age, FIGO, LNI, CT, He
Lim 2017	Korea	Retro	180	NA	I-II	5.0	OS, DFS	PI, LNI
Xu 2018	China	Retro	40	45.5	I-IV	5.0	OS	Age, FIGO, LNI, LVS, DI, TS
Wen 2018	China	Retro	99	NA	II-IV	4.0	DFS	Age, TS, CT, FIGO, SCC, PI
Joo 2018	Korea	Retro	397	45.0	I-II	4.0	OS, DFS	CT, FIGO, LNI, PI, LVI, DI, TS
Dai 2018	China	Retro	302	45.1	I-II	5.0	OS	FIGO, TS, TG, DI, LVS, PI, LNI
Zhu 2018	China	Retro	365	45.0	I-II	3.7	OS, DFS	FIGO, TS, PI, LNI, LVI, PI
Zhou 2018	China	Retro	312	46.0	I-II	4.7	OS, DFS	Age, FIGO, TS, TG, DI, LVS, LNI
Liu 2018	China	Retro	98	52.0	I-III	3.1	OS, DFS	TS, LNI
Xie 2018	China	Retro	810	46.3	I-II	5.0	OS	FIGO, LNI
Taarnhøj 2018	Denmark	Retro	1,523	NA	I	5.0	DFS	FIGO, CT, age, DI, LVS, DI
Zhang 2018	China	Retro	235	46.0	I-II	6.4	OS, DFS	Age, FIGO, TS, CT, LVS, LNI, DI, NLR
Je 2018	Korea	Retro	1,069	49.0	I-II	5.0	DFS	CT, PI, LVS, DI, TS, LNI
Ishimura 2018	Japan	Retro	103	NA	I-II	10.0	DFS	CT, TS, DI, LVS, PI, LNI, RM
Kwon 2018	Korea	Retro	259	47.0	I-II	5.8	DFS	CT, LVS, I
Zhu 2019	China	Retro	110	51.5	I-II	4.0	OS, DFS	Age, TS, LNI, FIGO, TG, Ly
Yan 2019	China	Retro	347	NA	I-II	3.3	OS, DFS	Age, FIGO, LNI, TG, LVS, DI
Wang 2019	China	Retro	559	51.0	I-IV	3.3	DFS	Age, SCC, FIGO, TS, LNI
Farzaneh 2019	Iran	Retro	307	40.4	I-III	5.0	DFS	RM, NLR
Sawada 2019	Japan	Retro	107	46.0	I-II	4.8	OS	FIGO, CT, TS, LNI, PI
Khalkhali 2019	Iran	Retro	109	50.1	I-IV	3.2	OS	Age, FIGO
Yildirim 2019	Turkey	Retro	104	56.0	I-IV	4.4	DFS	TS, FIGO, LNI
Gai 2019	China	Retro	79	51.0	I-IV	5.0	OS	FIGO, LNI, LVS, DI
Chen 2019	China	Retro	88	48.0	I-II	2.2	DFS	Age, CT, FIGO, TG, LVSI
Guani 2019	France	Pro	139	NA	I	3.0	DFS	LNI, CT, TS, FIGO, LVS, age
Huang 2019	China	Retro	458	45.0	I-II	3.9	OS	Age, TG, TS, LNI, LVS, FIGO, NLR
Queiroz 2019	Brazil	Retro	127	50.8	II-IV	4.1	OS, DFS	Age, CT, TS, LNI
Gillani 2019	Malaysia	Pro	3,797	57.3	I-II	6.1	OS	Age, FIGO, TS, LNI, CT
de Foucher 2019	France	Retro	501	54.0	I-II	3.0	OS, DFS	FIGO, LNI
Yoshino 2019	Japan	Retro	128	65.0	I-IV	2.5	OS	FIGO, CT
Zhang 2019	China	Retro	89	40.5	I-IV	4.8	OS	FIGO, TS, LNI, LVS, DI
Table 1 continued. The baseline characteristics of included studies.

Study	Country	Study design	Sample size	Age (years)	FIGO stage	Follow-up (years)	Reported outcomes	Prognostic factors	NOS score
Seebacher 2019 [147]	Austria	Retro	116	52.1	I-IV	1.7	OS	Age, FIGO, CT, SCC	5
Holub 2019 [148]	Spain	Retro	151	52.8	I-IV	3.7	OS	TS, FIGO, age, NLR	6
Theplib 2020 [149]	Thailand	Retro	196	41.0	I-IV	5.0	OS, DFS	LVSI, PI, LNI, DI	6
Maulard 2020 [150]	France	Pro	238	45.9	I-IV	4.4	OS	FIGO, CT, LNI	7
An 2020 [151]	China	Retro	278	45.5	I-II	5.0	OS, DFS	Age, CT, FIGO, TG, TS, LVSI, LNI, DI, RM, He	6
Casarin 2020 [152]	Italy	Retro	428	45.0	I	4.7	DFS	TS, LVSI, TG, LNI	7
Wang 2020 [153]	China	Retro	120	59.0	I-III	3.2	OS	LNI, age, FIGO, TG, TS	6
Zyla 2020 [154]	Canada	Retro	285	41.0	I	4.0	OS, DFS	TG, CT, LVSI	6
He 2020 [155]	China	Retro	1,414	NA	I-II	3.6	OS, DFS	Age, FIGO, CT, TG, LNI, CT, RM, LNI, LVSI	7
Zeng 2020 [156]	China	Retro	251	46.0	I-III	3.9	OS, DFS	FIGO, LNI	6
Liu 2020 [157]	China	Retro	73	NA	I-II	5.7	OS	Age, CT, FIGO, TG, TS, SCC	5
Kim 2020 [158]	Korea	Retro	47	45.0	I-II	2.4	OS, DFS	FIGO, SCC, DI, RM, PI, LNI, LVSI	5
Anfinan 2020 [159]	Saudi Arabia	Retro	190	54.2	I-IV	3.1	OS	FIGO, TG, PI	6
Lee 2020 [160]	Korea	Retro	125	53.7	II-III	4.2	OS, DFS	Age, CT, FIGO, LNI, SCC, NLR	6
Zong 2020 [161]	China	Retro	384	46.3	I-II	3.6	OS, DFS	Age, FIGO, TG, TS, PI, LVI, DI, RM	6
Asian 2020 [162]	Turkey	Retro	185	50.0	III	3.8	OS, DFS	Age, CT, DI, PI, TS, LVSI, RM, FIGO	7
Gülseren 2020 [163]	Turkey	Retro	194	NA	I-II	5.0	DFS	FIGO, TS, PI, LVI	6
Kim 2021 [164]	Korea	Retro	55	52.6	I-II	4.5	DFS	Age, FIGO, CT, LNI, RM	7
Okadome 2021 [165]	Japan	Retro	82	NA	II	5.8	DFS	CT, LNI, TS	6
Buda 2021 [166]	Italy	Retro	573	45.5	I-II	3.8	DFS	Age, CT, FIGO, LVI	6

CT – cell type; DI – depth of invasion; He – hemoglobin; Retro – retrospective; Pro – prospective; PI – parametrial invasion; Le – leukocytosis; LVS – lymph vascular space invasion; LNI – lymph node involvement; Ly – lymphocyte; RM – resection margin; SCC – squamous cell carcinoma antigen; TG – tumor grade; Th – thrombocytosis; TS – tumor size; TV – tumor volume; NA – not available; NLR – neutrophil/lymphocyte ratio.

did not influence OS of patients with FIGO stages III-IV or I-IV CC; high FIGO stage did not influence OS of patients with FIGO stages III-IV CC; hemoglobin level did not influence OS of patients with FIGO stages I-II or III-IV CC; LVSI was not associated with OS in patients with FIGO stages III-IV CC; parametrial invasion did not affect OS of patients with FIGO stages III-IV CC; high PLR was not associated with OS of patients with FIGO stages III-IV CC; high FIGO stage did not influence OS of patients with FIGO stages III-IV CC; age, FIGO stage, CT, TG, PI, RM did not influence OS of patients with FIGO stages III-IV CC, according to the results of pooled analyses conducted in the Western countries, and cutoff value ≥10; high tumor grade was not associated with OS of patients with FIGO stages I-IV CC, according to the pooled analyses conducted in the Western countries, or studies with high quality; and tumor size did not influence OS of patients with FIGO stages III-IV CC (Table 2).

There was significant publication bias for the prognostic significance of FIGO stage (P (Egger’s test) <0.001; P (Begg’s test)=0.044; P (Begg’s test)=0.024); high SCCA level was not associated with OS of patients with FIGO stages III-IV CC; high SCCA level was not associated with OS of patients with FIGO stages III-IV CC; high SCCA level was not associated with OS of patients with FIGO stages III-IV CC, according to the results of pooled analyses conducted in the Western countries, and cutoff value ≥10; high tumor grade was not associated with OS of patients with FIGO stages I-IV CC, according to the pooled analyses conducted in the Western countries, or studies with high quality; and tumor size did not influence OS of patients with FIGO stages III-IV CC (Table 2).
Event-Free Survival

The summary results for the prognostic factors on EFS in CC patients are shown in Figure 3. The pooled analyses indicated that older patients (HR: 1.22; 95% CI: 1.06-1.40; P=0.004), cell types other than squamous type (HR: 1.62; 95% CI: 1.42-1.86; P<0.001), deep depth of tumor invasion (HR: 1.72; 95% CI: 1.48-2.00; P<0.001), high FIGO stage (HR: 1.87; 95% CI: 1.67-2.08; P<0.001), low hemoglobin level (HR: 1.31; 95% CI: 1.12-1.53; P<0.001), high histological grade (HR: 1.43; 95% CI: 1.18-1.74; P<0.001), leukocytosis (HR: 2.08; 95% CI: 1.25-3.45; P=0.005), LNI (HR: 2.32; 95% CI: 2.03-2.64; P<0.001), LVSI (HR: 1.87; 95% CI: 1.60-2.18; P<0.001), high NLR (HR: 1.73; 95% CI: 1.33-2.25; P<0.001), parametrial invasion (HR: 1.91; 95% CI: 1.66-2.21; P<0.001), high PLR (HR: 2.05; 95% CI: 1.35-3.10; P=0.001), positive resection margin (HR: 1.99; 95% CI: 1.56-2.52; P<0.001), high SCCA level (HR: 1.80; 95% CI: 1.33-2.45; P<0.001), thrombocytosis (HR: 1.47; 95% CI: 1.08-1.98; P=0.013), large tumor volume (HR: 1.86; 95% CI: 1.40-2.47; P<0.001), high tumor grade (HR: 1.37; 95% CI: 1.14-1.66; P=0.001), and large tumor size (HR: 1.68; 95% CI: 1.48-1.90; P<0.001) were associated with shorter EFS. There was significant heterogeneity for age, cell type, depth of tumor invasion, FIGO stage, hemoglobin, histological grade, leukocytosis, LNI, LVSI, NLR, parametrial invasion, PLR, resection margin, SCCA level, and tumor size. The pooled conclusions were stability for EFS related to age, cell type, depth of tumor invasion, FIGO stage, hemoglobin level, histological grade, LNI, LVSI, NLR, parametrial invasion, PLR, resection margin, SCCA level, tumor grade, and tumor size (Data not shown).

Subgroup analysis indicated the statistically significant prognostic significance of age in EFS was observed for studies performed in Eastern countries, patients with FIGO stages I-II CC, the cutoff value of age was ≥50.0, and studies with low quality; depth of tumor invasion did not influence EFS of patients with FIGO stages III-IV or I-IV CC; high FIGO stage did not influence EFS of patients with FIGO stages III-IV CC; EFS were not affected by hemoglobin when pooled studies with high quality; histological grade did not influence EFS of patients with FIGO stages I-II CC; leukocytosis did not impact EFS of patients with FIGO stages I-II CC, and cutoff value ≥10 000, or studies with low quality; LVSI was not associated with EFS in patients with FIGO stages III-IV or I-IV CC; PLR did not influence EFS of patients with FIGO stages I-IV CC, studies conducted in...
Table 2. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups
Age	OS	Countries	Eastern	1.11 (1.00-1.23)	0.052	61.8	<0.001	0.703
			Western	1.08 (0.86-1.36)	0.489	72.0	<0.001	
FIGO stage			I-II	1.23 (1.10-1.38)	<0.001	56.2	<0.001	
			III-IV	1.13 (0.76-1.69)	0.539	0.0	0.719	0.070
			Both	0.94 (0.79-1.13)	0.524	72.7	<0.001	
Cutoff value			≥50.0	1.09 (0.97-1.23)	0.162	68.2	<0.001	0.592
			<50.0	1.13 (0.96-1.33)	0.140	58.4	<0.001	
Study quality			High	1.03 (0.86-1.24)	0.723	71.9	<0.001	0.206
			Low	1.15 (1.03-1.28)	0.016	59.8	<0.001	
EFS		Countries	Eastern	1.19 (1.02-1.38)	0.024	67.4	<0.001	0.082
			Western	1.40 (0.99-1.98)	0.061	67.5	0.002	
FIGO stage			I-II	1.31 (1.13-1.52)	<0.001	56.3	<0.001	
			III-IV	0.91 (0.59-1.40)	0.666	–	–	<0.001
			Both	1.03 (0.76-1.39)	0.864	77.7	<0.001	
Cutoff value			≥50.0	1.23 (1.04-1.46)	0.016	70.1	<0.001	0.022
			<50.0	1.20 (0.96-1.51)	0.116	59.0	0.001	
Study quality			High	0.90 (0.76-1.08)	0.251	65.2	<0.001	
			Low	1.49 (1.29-1.73)	<0.001	37.6	0.019	<0.001
Cell type	OS	Countries	Eastern	1.74 (1.52-1.98)	<0.001	39.9	0.007	0.047
			Western	1.44 (1.20-1.73)	<0.001	18.6	0.231	
FIGO stage			I-II	1.65 (1.43-1.91)	<0.001	24.2	0.120	
			III-IV	1.58 (0.89-2.78)	0.115	0.0	0.521	0.963
			Both	1.63 (1.36-1.95)	<0.001	51.3	0.002	
Study quality			High	1.79 (1.53-2.09)	<0.001	42.6	0.015	0.049
			Low	1.50 (1.29-1.74)	<0.001	26.5	0.090	
EFS		Countries	Eastern	1.68 (1.43-1.97)	<0.001	62.9	<0.001	0.008
			Western	1.50 (1.18-1.91)	0.001	58.8	0.001	
FIGO stage			I-II	1.56 (1.31-1.86)	<0.001	65.2	<0.001	
			III-IV	2.33 (1.38-3.94)	0.002	–	–	0.490
			Both	1.71 (1.37-2.13)	<0.001	59.8	0.001	
Study quality			High	1.88 (1.57-2.24)	<0.001	67.4	<0.001	0.004
			Low	1.43 (1.17-1.74)	<0.001	56.7	<0.001	
Table 2 continued. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups	
Depth of invasion	OS	Countries	Eastern	2.09 (1.66-2.63)	<0.001	59.1	<0.001	0.024	
			Western	1.11 (0.52-2.38)	0.790	75.3	0.003		
	FIGO	stage	I-II	2.09 (1.65-2.63)	<0.001	62.1	<0.001		
			III-IV	0.89 (0.42-1.89)	0.761	-	-		
			Both	1.01 (0.43-2.37)	0.979	58.9	0.088		
	Cutoff	value	≥1/2	2.02 (1.59-2.57)	<0.001	37.2	0.053	0.782	
			<1/2	1.73 (1.15-2.61)	0.009	77.1	<0.001		
	Study	quality	Low	2.02 (1.51-2.40)	<0.001	62.6	<0.001		
			High	1.75 (1.20-2.55)	0.004	-	-		
	EFS	Countries	Eastern	1.83 (1.60-2.09)	<0.001	28.1	0.070	0.010	
			Western	1.29 (0.75-2.22)	0.359	80.7	<0.001		
	FIGO	stage	I-II	1.77 (1.52-2.06)	<0.001	51.6	<0.001		
			III-IV	0.93 (0.51-1.71)	0.815	-	-		
			Both	0.86 (0.32-2.31)	0.765	-	-		
	Cutoff	value	≥1/2	1.67 (1.39-2.00)	<0.001	43.8	0.019	0.549	
			<1/2	1.77 (1.37-2.29)	<0.001	60.5	<0.001		
	Study	quality	Low	1.77 (1.49-2.09)	<0.001	34.6	0.047		
			High	1.64 (1.23-2.16)	0.001	-	-		
	FIGO	stage	OS	Western	2.36 (1.73-3.21)	<0.001	85.9	<0.001	<0.001
			I-II	1.60 (1.41-1.82)	<0.001	73.4	<0.001		
			III-IV	1.47 (0.85-2.54)	0.168	-	-		
			Both	2.51 (2.04-3.09)	<0.001	81.7	<0.001		
	Cutoff	value	IA or IB	1.92 (1.65-2.23)	<0.001	87.6	<0.001	<0.001	
			II-III	2.24 (1.78-2.81)	<0.001	64.9	<0.001		
	Study	quality	High	2.40 (1.87-3.07)	<0.001	86.9	<0.001	<0.001	
			Low	1.80 (1.57-2.06)	<0.001	78.9	<0.001		
	EFS	Countries	Eastern	1.83 (1.60-2.08)	<0.001	69.1	<0.001	0.355	
			Western	1.97 (1.61-2.41)	<0.001	62.4	<0.001		
	FIGO	stage	I-II	1.70 (1.50-1.93)	<0.001	52.6	<0.001		
			III-IV	1.01 (0.55-1.83)	0.984	-	-		
			Both	2.11 (1.75-2.54)	<0.001	75.5	<0.001		
	Cutoff	value	IA or IB	1.80 (1.59-2.04)	<0.001	68.1	<0.001	0.021	
			II-III	2.04 (1.65-2.52)	<0.001	62.5	<0.001		
	Study	quality	High	1.70 (1.45-2.00)	<0.001	73.9	<0.001	0.023	
			Low	1.99 (1.72-2.31)	<0.001	61.3	<0.001		
Table 2 continued. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups
Hemoglobin	OS	Countries	Eastern	1.56 (1.15-2.10)	0.004	58.1	0.019	0.001
			Western	3.05 (2.01-4.64)	<0.001	0.0	0.608	
FIGO stage		III	1.39 (0.99-1.95)	0.061				
		I-IV	1.81 (0.90-3.64)	0.097		75.7	0.001	0.720
		Both	2.07 (1.00-1.99)	0.001				
Cutoff value		10	1.94 (1.13-3.36)	0.017		80.2	<0.001	0.156
		>10	1.77 (1.39-2.27)	<0.001				
Study quality		High	2.01 (1.00-4.04)	0.050		88.0	<0.001	0.337
		Low	1.70 (1.33-2.17)	<0.001		0.0	0.740	
EFS		Countries	Eastern	1.20 (1.07-1.34)	0.002	4.3	0.401	0.004
		Western	2.25 (1.48-3.41)	<0.001		0.0	0.580	
FIGO stage		I-II	1.58 (1.19-2.09)	0.001		0.0	0.778	
		III-IV	–	–	–	–		
		Both	1.24 (1.03-1.50)	0.022		53.6	0.044	0.071
Cutoff value		10	1.50 (1.11-2.04)	0.009		58.9	0.023	0.248
		>10	1.19 (1.04-1.35)	0.010		0.0	0.733	
Study quality		High	1.30 (0.86-1.96)	0.216		67.5	0.026	0.718
		Low	1.70 (1.33-2.17)	<0.001		0.0	0.740	
Histological grade	OS	Countries	Eastern	1.56 (1.24-1.96)	<0.001	56.3	0.004	0.460
		Western	1.48 (1.08-2.02)	0.014		55.0	0.011	
FIGO stage		I-II	1.44 (1.19-1.74)	<0.001		41.6	0.030	
		III-IV	–	–	–	–		
		Both	1.75 (1.13-2.72)	0.012		72.6	0.001	0.414
Cutoff value		1	1.52 (1.20-1.92)	0.001		61.8	<0.001	0.424
		2	1.56 (1.17-2.07)	0.002		32.6	0.157	
Study quality		High	1.43 (1.16-1.76)	0.001		29.1	0.160	0.839
		Low	1.62 (1.20-2.19)	0.001		66.2	<0.001	
EFS		Countries	Eastern	1.47 (1.09-1.97)	0.011	73.4	<0.001	0.377
		Western	1.38 (1.07-1.78)	0.013		44.0	0.051	
FIGO stage		I-II	1.49 (1.17-1.89)	0.001		66.7	<0.001	
		III-IV	–	–	–	–		
		Both	1.24 (0.99-1.57)	0.066		0.0	0.517	0.340
Cutoff value		1	1.47 (1.13-1.90)	0.004		72.5	<0.001	0.746
		2	1.41 (1.15-1.73)	0.001		0.0	0.447	
Study quality		High	1.43 (1.12-1.84)	0.005		64.5	0.001	0.308
		Low	1.45 (1.05-2.01)	0.025		58.7	0.013	
Table 2 continued. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups
Leukocytosis	OS	Countries	Eastern	2.20 (1.48-3.26)	<0.001	75.2	0.001	0.726
			Western	2.46 (1.15-5.26)	0.020	-	-	-
	FIGO stage	I-II	1.55 (1.16-2.05)	0.003	0.0	0.623	0.013	
		III-IV	3.04 (1.52-6.07)	0.002	-	-	-	
		Both	2.66 (1.53-4.64)	0.001	73.7	0.010	-	
	Cutoff value	≥10000	2.05 (1.25-3.35)	0.004	50.6	0.132	0.242	
		<10000	2.35 (1.39-4.00)	0.002	79.8	0.002	-	
	Study quality	High	1.74 (1.18-2.56)	0.005	9.6	0.293	0.148	
		Low	2.41 (1.51-3.85)	<0.001	76.6	0.002	-	
EFS	Countries	Eastern	2.08 (1.25-3.45)	0.005	69.6	0.011	-	
		Western	-	-	-	-	-	
	FIGO stage	I-II	1.66 (0.52-5.26)	0.389	-	-	-	
		III-IV	-	-	-	-	-	
	Both	2.14 (1.20-3.81)	0.010	76.8	0.005	-		
	Cutoff value	≥10000	1.63 (0.66-4.05)	0.290	0.0	0.964	0.526	
		<10000	2.22 (1.16-4.24)	0.016	84.3	0.002	-	
	Study quality	High	2.10 (1.62-2.74)	<0.001	-	-	0.685	
		Low	2.00 (0.86-4.65)	0.109	76.9	0.005	-	
LNI	OS	Countries	Eastern	2.49 (2.17-2.85)	<0.001	71.4	<0.001	0.007
		Western	2.90 (2.29-3.67)	<0.001	60.5	<0.001	-	
	FIGO stage	I-II	2.97 (2.57-3.43)	<0.001	65.8	<0.001	-	
		III-IV	-	-	-	-	-	
	Both	2.04 (1.66-2.51)	<0.001	72.3	<0.001	-		
	Study quality	High	2.52 (2.08-3.04)	<0.001	68.5	<0.001	0.639	
		Low	2.64 (2.26-3.09)	<0.001	70.7	<0.001	-	
EFS	Countries	Eastern	2.37 (2.03-2.77)	<0.001	81.0	<0.001	0.001	
		Western	2.18 (1.75-2.72)	<0.001	61.6	<0.001	-	
	FIGO stage	I-II	2.54 (2.14-3.01)	<0.001	81.8	<0.001	-	
		III-IV	-	-	-	-	-	
	Both	1.89 (1.57-2.26)	<0.001	61.5	<0.001	0.998		
	Study quality	High	2.16 (1.73-2.70)	<0.001	87.0	<0.001	<0.001	
		Low	2.40 (2.10-2.75)	<0.001	51.3	<0.001	-	
Table 2 continued. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups
LVSI	OS	Countries	Eastern	1.99 (1.64-2.43)	<0.001	63.2	<0.001	0.036
			Western	2.49 (1.72-3.60)	<0.001	36.3	0.100	
FIGO stage			I-II	2.08 (1.70-2.55)	<0.001	64.6	<0.001	
			III-IV	2.10 (0.32-13.68)	0.438	–	–	0.539
			Both	2.20 (1.66-2.90)	<0.001	0.0	0.976	
Study quality			High	1.78 (1.41-2.24)	<0.001	47.4	0.029	0.046
			Low	2.30 (1.80-2.94)	<0.001	62.0	<0.001	
EFS			Eastern	1.87 (1.62-2.16)	<0.001	48.0	0.001	<0.001
			Western	1.80 (1.33-2.46)	<0.001	80.5	<0.001	
FIGO stage			I-II	1.92 (1.68-2.18)	<0.001	51.1	<0.001	
			III-IV	0.94 (0.36-2.44)	0.899	–	–	<0.001
			Both	1.02 (0.95-1.09)	0.572	–	–	
Study quality			High	1.77 (1.34-2.32)	<0.001	85.6	<0.001	<0.001
			Low	1.91 (1.63-2.23)	<0.001	43.0	0.004	
NLR	OS	Countries	Eastern	1.48 (1.23-1.79)	<0.001	52.9	0.038	0.001
			Western	2.50 (1.39-4.50)	0.002	50.5	0.155	
FIGO stage			I-II	1.78 (1.37-2.31)	<0.001	0.0	0.476	0.004
			III-IV	–	–	–	–	
			Both	1.62 (1.22-2.14)	0.001	72.7	0.003	
Cutoff value			≥3.0	2.40 (1.75-3.28)	<0.001	0.0	0.494	<0.001
			<3.0	1.35 (1.15-1.59)	<0.001	41.1	0.131	
Study quality			High	1.58 (1.23-2.03)	<0.001	75.7	0.001	0.005
			Low	2.04 (1.43-2.92)	<0.001	0.0	0.926	
EFS			Eastern	1.56 (1.23-1.98)	<0.001	76.6	<0.001	<0.001
			Western	3.58 (2.11-6.08)	<0.001	–	–	
FIGO stage			I-II	1.99 (1.51-2.63)	<0.001	0.0	0.816	<0.001
			III-IV	–	–	–	–	
			Both	1.61 (1.17-2.21)	0.003	86.1	<0.001	
Cutoff value			≥3.0	2.12 (1.28-3.52)	0.004	58.4	0.065	<0.001
			<3.0	1.51 (1.16-1.98)	0.002	81.7	<0.001	
Study quality			High	1.65 (1.16-2.36)	0.006	85.8	<0.001	<0.001
			Low	1.85 (1.24-2.78)	0.003	60.6	0.038	
Table 2 continued. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups
Parametrical invasion	OS	Countries	Eastern	2.16 (1.81-2.58)	<0.001	31.7	0.060	0.828
		Western	2.26 (1.44-3.55)	<0.001	67.5	0.001		
	FIGO stage	I-II	2.15 (1.81-2.55)	<0.001	31.4	0.053		
		III-IV	1.11 (0.53-2.32)	0.782				
		Both	2.26 (1.31-3.89)	0.003	68.9	0.007		
	Study quality	High	1.90 (1.36-2.66)	<0.001	66.1	0.001		
		Low	2.36 (1.96-2.64)	<0.001	22.9	0.146		
EFS	Countries	Eastern	1.89 (1.63-2.21)	<0.001	37.6	0.019		
	Western	2.03 (1.66-2.21)	<0.001	58.0	0.015			
	FIGO stage	I-II	1.96 (1.68-2.28)	<0.001	42.7	0.005		
		III-IV	3.70 (1.14-11.96)	0.029				
		Both	1.48 (1.01-2.15)	0.044	24.9	0.262		
	Study quality	High	1.54 (1.32-1.80)	<0.001	12.1	0.321		
		Low	2.23 (1.86-2.69)	<0.001	32.7	0.056		
PLR	OS	Countries	Eastern	2.20 (1.62-3.00)	<0.001	0.0	0.531	
	Western	1.54 (0.73-3.25)	0.260	69.8	0.069			
	FIGO stage	I-II	2.10 (1.51-2.91)	<0.001	0.0	0.486		
		III-IV						
		Both	1.86 (0.97-3.59)	0.062	65.6	0.055		
	Cutoff value	≥150	2.59 (1.68-3.99)	<0.001	0.0	0.862		
		<150	1.72 (1.12-2.65)	0.014	48.4	0.121		
	Study quality	High	1.55 (0.98-2.43)	0.059	45.1	0.162		
		Low	2.54 (1.76-3.66)	<0.001	0.0	0.805		
EFS	Countries	Eastern	2.47 (1.80-3.38)	<0.001	0.0	0.914		
	Western	1.01 (0.60-1.70)	0.973					
	FIGO stage	I-II	2.44 (1.71-3.48)	<0.001	0.0	0.779		
		III-IV						
		Both	1.58 (0.63-3.95)	0.333	78.8	0.030		
	Cutoff value	≥150	2.59 (1.58-4.23)	<0.001	0.0	0.992		
		<150	1.82 (0.96-3.46)	0.069	71.3	0.030		
	Study quality	High	1.56 (0.62-3.93)	0.343	76.7	0.038		
		Low	2.44 (1.72-3.46)	<0.001	0.0	0.779		

e934588-15

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Table 2 continued. Subgroup analysis for overall survival and event-free survival based on countries, FIGO stage, and cutoff value.

Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	\(P \) value	\(I^2 \) (%)	Q statistic	\(P \) value between subgroups
Resection margin	OS	Countries	Eastern	1.88 (1.29-2.75)	0.001	65.7	0.002	0.268
			Western	2.22 (1.25-3.95)	0.006	44.1	0.111	
FIGO stage	I-II	Countries	Eastern	1.89 (1.36-2.62)	<0.001	57.3	0.004	
			Western	2.26 (1.20-2.37)	0.003	39.3	0.106	
	III-IV		Eastern	1.55 (0.86-2.81)	0.148			
			Western	1.69 (1.20-2.37)	0.003	39.3	0.106	
Study quality	High		Eastern	2.13 (1.24-3.66)	0.006	74.6	<0.001	0.569
			Western	1.75 (1.27-2.40)	0.001	18.3	0.285	
EFS	Countries	Eastern	2.16 (1.56-2.99)	<0.001	52.2	0.006	0.129	
			Western	1.67 (1.20-2.37)	0.003	39.3	0.106	
FIGO stage	I-II	Countries	Eastern	1.86 (1.43-2.43)	<0.001	45.2	0.012	
			Western	1.71 (1.20-2.43)	0.003	0.0	0.925	
	III-IV		Eastern	1.80 (1.33-2.45)	<0.001	53.3	0.015	0.218
Study quality	Low		Eastern	2.26 (1.53-3.33)	<0.001	45.7	0.032	
SCC	OS	Countries	Eastern	1.72 (1.26-2.35)	0.001	42.0	0.078	0.884
			Western	1.50 (0.92-2.45)	0.105			
FIGO stage	I-II	Countries	Eastern	1.81 (1.22-2.68)	0.003	0.0	0.737	
			Western	1.00 (0.55-1.82)	0.992			
	III-IV		Eastern	1.97 (1.25-3.10)	0.003	63.1	0.028	
Cutoff value	≥10		Eastern	1.39 (0.76-2.53)	0.288	20.4	0.285	0.654
	<10		Western	1.77 (1.29-2.42)	<0.001	45.4	0.076	
Study quality	High		Eastern	2.61 (1.42-4.83)	0.002	37.0	0.204	0.019
			Western	1.36 (1.15-1.60)	<0.001	0.0	0.440	
EFS	Countries	Eastern	1.80 (1.33-2.45)	<0.001	43.7	0.087		
			Western	–	–	–	–	
FIGO stage	I-II	Countries	Eastern	1.17 (0.61-2.22)	0.637	34.4	0.218	
			Western	–	–	–	–	
	III-IV		Eastern	2.08 (1.51-2.87)	<0.001	36.6	0.177	
Cutoff value	≥10		Eastern	1.63 (0.56-4.76)	0.370	77.4	0.035	0.954
	<10		Western	1.83 (1.33-2.53)	<0.001	37.6	0.156	
Study quality	High		Eastern	1.70 (1.14-2.56)	0.010	52.4	0.122	0.469
			Western	–	–	–	–	

Kang S. et al: Clinicopathological factors influencing overall survival and event-free survival… © Med Sci Monit, 2022; 28: e934588

META-ANALYSIS

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]
Prognostic factors	Outcome	Variables	Subgroups	HR and 95% CI	P value	I² (%)	Q statistic	P value between subgroups
Tumor grade	OS	Countries	Eastern	2.00 (1.37-2.93)	<0.001	61.5	0.016	0.007
			Western	1.07 (0.78-1.45)	0.678	0.0	0.899	
FIGO stage		I-II	Eastern	2.00 (1.37-2.93)	<0.001	61.5	0.016	0.007
		III-IV	Western	--	--	--	--	
		Both	Eastern	1.07 (0.78-1.45)	0.678	0.0	0.899	
Study quality		High	Western	1.67 (0.90-3.10)	0.101	--	--	0.721
		Low	Western	1.76 (1.21-2.57)	0.003	69.4	0.002	
EFS		Countries	Eastern	1.39 (1.14-1.71)	0.001	39.2	0.130	0.480
		Western	1.16 (0.60-2.26)	0.661	11.6	0.288		
FIGO stage		I-II	Eastern	1.41 (1.17-1.70)	<0.001	30.3	0.186	0.226
		III-IV	Western	--	--	--	--	
		Both	Eastern	0.89 (0.41-1.94)	0.769	--	--	
Study quality		High	Western	1.35 (0.96-1.89)	0.084	54.1	0.113	0.754
		Low	Western	1.38 (1.05-1.82)	0.021	29.1	0.217	
Tumor size	OS	Countries	Eastern	1.76 (1.52-2.05)	<0.001	71.7	<0.001	0.004
		Western	1.95 (1.51-2.53)	<0.001	59.9	0.001		
FIGO stage		I-II	Eastern	1.66 (1.41-1.97)	<0.001	70.6	<0.001	
		III-IV	Western	1.09 (0.55-2.15)	0.811	45.3	0.176	<0.001
		Both	Eastern	2.17 (1.78-2.65)	<0.001	59.1	<0.001	
Cutoff value	≥4.0 cm	Western	1.72 (1.48-2.00)	<0.001	69.6	<0.001	<0.001	
	<4.0 cm	Western	2.09 (1.61-2.70)	<0.001	64.8	<0.001		
Study quality		High	Western	1.87 (1.52-2.31)	<0.001	66.1	<0.001	0.010
		Low	Western	1.78 (1.51-2.11)	<0.001	70.7	<0.001	
EFS		Countries	Eastern	1.70 (1.46-1.98)	<0.001	77.8	<0.001	<0.001
		Western	1.67 (1.25-2.22)	0.001	74.4	<0.001		
FIGO stage		I-II	Eastern	1.67 (1.45-1.93)	<0.001	66.9	<0.001	
		III-IV	Western	1.59 (0.89-2.83)	0.115	--	--	<0.001
		Both	Eastern	1.75 (1.34-2.28)	<0.001	86.1	<0.001	
Cutoff value	≥4.0 cm	Western	1.66 (1.39-1.98)	<0.001	78.5	<0.001	0.062	
	<4.0 cm	Western	1.76 (1.43-2.17)	<0.001	77.1	<0.001		
Study quality		High	Western	1.48 (1.28-1.72)	<0.001	68.3	<0.001	0.053
		Low	Western	1.90 (1.54-2.35)	<0.001	81.3	<0.001	
Figure 3. The results of the meta-analysis of the prognostic factors influencing EFS.

Table 3. Publication bias for clinicopathological factors.
the Western countries, cutoff value <150, or studies with high quality; high SCCA level did not affect EFS of patients with FIGO stages I-II CC, or cutoff value ≥10; high tumor grade was not associated with EFS of patients with FIGO stages I-IV CC, according to the pooled analyses conducted in the Western countries, or studies with high quality; and tumor size did not influence EFS of patients with FIGO stages III-IV CC (Table 2).

There was significant publication bias for the prognostic significance of age (P (Egger’s test) <0.001; P (Begg’s test)=0.010), FIGO stage (P (Egger’s test)=0.016; P (Begg’s test)=0.061), hemoglobin level (P (Egger’s test)=0.026; P (Begg’s test)=0.024), LNI (P (Egger’s test) <0.001; P (Begg’s test)=0.460), LVSI (P (Egger’s test) <0.001; P (Begg’s test)=0.273), NLR (P (Egger’s test)=0.006; P (Begg’s test)=0.210), and tumor size (P (Egger’s test) <0.001; P (Begg’s test)=0.082) in EFS (Table 3). The pooled conclusions for EFS were not altered after adjusting for potential publication bias.

Discussion

The results of this study showed that the potential risk factors for OS and EFS were age, cell type, depth of tumor invasion, FIGO stage, hemoglobin level, histological grade, leukocytosis, LNI, LVSI, NLR, parametrial invasion, PLR, resection margin, SCCA level, thrombocytosis, tumor grade, tumor size, and tumor volume. Moreover, we noted that the first author’s country of residence could affect the prognostic significance of cell type, depth of tumor invasion, FIGO stage, hemoglobin level, LNI, LVSI, NLR, tumor stage, and tumor size in OS, and the prognostic significance of cell type, depth of tumor invasion, hemoglobin level, LNI, LVSI, NLR, PLR, and tumor size in EFS was influenced by the first author’s country of residence. Furthermore, FIGO stage could affect the prognostic significance of age, FIGO stage, hemoglobin level, LNI, LVSI, NLR, parametrial invasion, resection margin, SCCA level, thrombocytosis, tumor grade, and tumor volume in EFS. Therefore, we conducted the present systematic review and meta-analysis to identify the prognostic significance of clinicopathological factors influencing OS and EFS of patients with CC.

Compared with previous studies, this study revealed that FIGO stage, tumor size, parametrial invasion, resection margin, LNI, LVSI, and depth of tumor invasion could affect the prognosis of CC patients, which may be related to the fact that these factors could directly reflect distant metastasis and are associated with a poor prognosis of CC patients [168-170]. Furthermore, we studied additional prognostic factors, such as age, cell type, hemoglobin level, histological grade, leukocytosis, NLR, PLR, SCCA level, thrombocytosis, tumor grade, and tumor volume. The above-mentioned results could be explained as follows: (1) The incidence of CC varies among different age-based groups, and the FIGO stage of CC also significantly differs among various age-based groups [2]; (2) Compared with squamous cell carcinoma, patients with adenocarcinoma may tend to have other extracervical spread, associating with a poor prognosis of CC patients [171]; (3) The hemoglobin level is significantly correlated to the tumor size and infiltrative phenotypes of tumors [172,173]; Moreover, the hemoglobin level may act as a surrogate marker of tumor hypoxia, which is significantly associated with resistance to radiotherapy [174]; (4) Histological grade, tumor grade, and tumor volume are significantly correlated to tumor extension and invasion, which may influence the prognosis of CC patients; (5) Leukocytosis in CC patients is associated with a poor prognosis, which may be related to a poor response to radiation therapy [100]; (6) Increased NLR is markedly associated with a large tumor size, advanced clinical stage, and positive LNI, resulting in shorter OS and EFS [15]; (7) Elevated PLR can induce inflammatory cytokines and chemokines, promoting the progression of cancer cells [175]; (8) Increased SCCA concentration can reflect the degree of cell proliferation for patients with CC [176]; and (9) Cancer treatment can induce thrombocytosis, cytokines or growth factors, receptors, and downstream effectors, playing an important role in the prognosis of CC [177].

The current meta-analysis indicated the prognostic significance of cell type, depth of tumor invasion, FIGO stage, hemoglobin level, LNI, LVSI, NLR, PLR, tumor stage, and tumor size, which significantly differed in patients studied in the Eastern and...
Western countries. The results were based on the diagnosis of CC patients at various FIGO stages in different countries. Moreover, the vaccination rate in the Eastern and Western countries is different, influencing the incidence and prognosis of CC. Moreover, the effects of age, depth of tumor invasion, leukocytosis, LNI, LVSI, NLR, parametrial invasion, resection margin, tumor grade, and tumor size on the prognosis of CC patients could be influenced by FIGO stage. Additionally, the effects of age, FIGO stage, NLR, and tumor size on the prognosis of CC patients could be affected by the cutoff value.

The strengths of our study include: (1) our study contained 18 clinicopathological factors, which provide relatively comprehensive prognostic factors for CC; (2) the analysis was based on a large number of included studies, and the pooled conclusions are potentially more robust than are those of any individual study; and (3) subgroup analyses were performed for prognostic factors reported by more than 5 studies, which could assess the prognostic role of clinicopathological factors on OS and EFS according to studies’ characteristics. Several shortcomings of this study should be pointed out: (1) the majority of the included studies had a retrospective design, and selection or confounder biases were therefore inevitable; (2) the noticeable changes of the cutoff values partly expanded the range of the results of subgroup analyses; (3) the heterogeneity among the included studies was not fully explained by the results of the sensitivity and subgroup analyses; (4) the treatment strategies for CC significantly differed among the included studies, which could influence the prognosis of CC patients; (5) several other outcomes should be addressed in further large-scale prospective studies, including response to chemotherapy, remission rates, hospitalization rates, and complication rates; (6) the transparency of our study was restricted because it was not registered in PROSPERO; and (7) inherent limitations of meta-analysis of previously published articles are noteworthy.

Conclusions

This study comprehensively identified the prognostic significance of clinicopathological factors and influencing OS and EFS of patients with CC, including age, cell type, depth of tumor invasion, FIGO stage, hemoglobin level, histological grade, leukocytosis, LNI, LVSI, NLR, parametrial invasion, PLR, resection margin, SCCA level, thrombocytosis, tumor grade, tumor size, and tumor volume. However, further large-scale prospective studies should be conducted to verify our findings and develop more accurate prognostic models for CC.

Declaration of Figures’ Authenticity

All figures submitted have been created by the authors who confirm that the images are original with no duplication and have not been previously published in whole or in part.

References:

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71:19-49
2. Arbyn M, Weiderpass E, Brunì I, et al. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob Health. 2020;8:e191-203
3. Lei J, Ploner A, Elfström KM, et al. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med. 2020;383:1340-48
4. Williams EA, Newberg J, Williams KJ, et al. Prevalence of high-risk nonvaccine human papillomavirus types in advanced squamous cell carcinoma among individuals of African vs Non-African ancestry. JAMA Netw Open. 2021;4:e216481
5. Huang H, Feng YL, Wan T, et al. Effectiveness of sequential chemoradiation vs concurrent chemoradiaation or radiation alone in adjuvant treatment after hysterectomy for cervical cancer: The STARS phase 3 randomized clinical trial. JAMA Oncol. 2021;7:361-69
6. Wang J, Wang T, Yang Y, et al. Patient age, tumor appearance and tumor size are risk factors for early recurrence of cervical cancer. Mol Clin Oncol. 2015;3:363-66
7. Zhang S, Wang X, Li Z, et al. Score for the overall survival probability of patients with first-diagnosed distantly metastatic cervical cancer: A novel nomogram-based risk assessment system. Front Oncol. 2019;9:1106
8. Paik ES, Lim MC, Kim MH, et al. Prognostic model for survival and recurrence in patients with early-stage cervical cancer: A Korean Gynecologic Oncology Group study (KGOG 1028). Cancer Res Treat. 2019;52:320-33
9. Lora D, Gómez de la Cámara A, Fernández SP, et al. Prognostic models for locally advanced cervical cancer: External validation of the published models. J Gynecol Oncol. 2017;28:e58
10. Yoon WS, Yang DS, Lee JA, et al. Validation of nomograms for survival and metastases after hysterectomy and adjuvant therapy in uterine cervical cancer with risk factors. Biomed Res Int. 2017;2017:2917925
11. Jiang S, Liu J, Chen X, et al. Platelet-lymphocyte ratio as a potential prognostic factor in gynecologic cancers: A meta-analysis. Arch Gynecol Obstet. 2019;300:829-39
12. Zhang J, Liu J, Zhu C, et al. Prognostic role of vascular endothelial growth factor in cervical cancer: A meta-analysis. Oncotarget. 2017;8:24797-803
13. Cheng J, Zeng Z, Ye Q, et al. The association of pretreatment thrombocytosis with prognosis and clinicopathological significance in cervical cancer: A systematic review and meta-analysis. Oncotarget. 2017;8:24527-36
14. Liu Z, Shi H. Prognostic role of squamous cell carcinoma antigen in cervical cancer: A meta-analysis. Dia Markers. 2019;2019:6710352
15. Wu J, Chen M, Liang C, Su W. Prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in cervical cancer: A meta-analysis and systematic review. Oncotarget. 2017;8:13400-12
16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n771
17. Wells G, Shea B, O’Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa (ON): Ottawa Hospital Research Institute 2009. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm
18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88
19. Ades AE, Lu G, Higgins JP. The interpretation of random-effects metaanalysis in decision models. Med Decis Making. 2005;25:646-54
42. Kodaira T, Fuwa N, Toita T, et al. Comparison of prognostic value of MRI

39. Martin-Loeches M, Ortí RM, Cazorla E, et al. Multivariate analysis of the

38. Gasinska A, Urbanski K, Adamczyk A, et al. Prognostic significance of in

36. Yanoh K, Takeshima N, Nishida H, et al. Prognostic value of the colposcopic tu

35. Trattner M, Graf AH, Lax S, et al. Prognostic factors in surgically treated

32. Hernandez E, Donohue KA, Anderson LL, et al. The significance of thrombo

30. Lai CH, Hong JH, Hsueh S, et al. Preoperative prognostic variables and the

28. Werner-Wasik M, Schmid CH, Bornstein L, et al. Prognostic factors for lo

27. Sevin BU, Nadji M, Lampe B, et al. Prognostic factors of early-stage cervi

20. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-

19. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-

18. Martin-Loeches M, Ortí RM, Cazorla E, et al. Multivariate analysis of the

17. Sevin BU, Nadji M, Lampe B, et al. Prognostic factors of early-stage cervi

16. Trattner M, Graf AH, Lax S, et al. Prognostic factors in surgically treated

15. Martin-Loeches M, Ortí RM, Cazorla E, et al. Multivariate analysis of the

14. Yanoh K, Takeshima N, Nishida H, et al. Prognostic value of the colposcopic tu

13. Trattner M, Graf AH, Lax S, et al. Prognostic factors in surgically treated stage

12. Martin-Loeches M, Ortí RM, Cazorla E, et al. Multivariate analysis of the

11. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-

10. Martin-Loeches M, Ortí RM, Cazorla E, et al. Multivariate analysis of the

9. Martin-Loeches M, Ortí RM, Cazorla E, et al. Multivariate analysis of the

8. Werner-Wasik M, Schmid CH, Bornstein L, et al. Prognostic factors for lo

7. Sevin BU, Nadji M, Lampe B, et al. Prognostic factors of early-stage cervi

6. Jacobson G, Lammli J, Zamba G, et al. Thromboembolic events in patients

5. Trattner M, Graf AH, Lax S, et al. Prognostic factors in surgically treated stage

4. Flores-Luna L, Salazar-Martinez E, Escudero-De los Rios P, et al. Prognostic factors

3. Fliegen GC, Kristensen GB, Skovlund E, et al. Histologic subtype has minor

2. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-

1. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-

0. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Indexed in: [Current Contents/Clinical Medicine] [ISI Journalists Master List] [Index Medicus/MEDLINE] [SCI Expanded] [ISI Alerting System] [Chemical Abstracts/CAS]
92. Ruengkhachorn I, Therasakvichya S, Warmisorn M, et al. Pathologic risk factors and oncologic outcomes in early-stage cervical cancer patients treated by radical hysterectomy and pelvic lymphadenectomy at a Thai University Hospital: A 7 year retrospective review. Asian Pac J Cancer Prev. 2015;16:5951-56
93. Bradbury M, Founta C, Taylor W, et al. Pathological risk factors and outcomes in women with stage IB2 cervical cancer treated with primary radical surgery versus chemoradiotherapy. Int J Gynecol Cancer. 2015;25:1476-83
94. Yuan L, Jiang H, Lu Y, et al. Prognostic factors of surgically treated early-stage small cell neuroendocrine carcinoma of the cervix. Int J Gynecol Cancer. 2015;25:1315-21
95. Mizunuma M, Yokoyama Y, Futagami M, et al. The pretreatment neutrophil-to-lymphotocyte ratio predicts therapeutic response to radiation therapy and concurrent chemoradiation therapy in uterine cervical cancer. Int J Clin Oncol. 2015;20:989-96
96. Endo D, Todo Y, Okamoto K, et al. Prognostic factors for patients with cervical cancer treated with concurrent chemoradiotherapy: A retrospective analysis in a Japanese cohort. J Gynecol Oncol. 2015;26:12-18
97. Zhao K, Deng H, Qin Y, et al. Prognostic significance of pretreatment plasma fibrinogen and platelet levels in patients with early-stage cervical cancer. Gynecol Oncol Invest. 2015;79:25-33
98. Takatori E, Shoji T, Omi H, et al. Analysis of prognostic factors for patients with bulky squamous cell carcinoma of the uterine cervix who underwent neoadjuvant chemotherapy followed by radical hysterectomy. Int J Clin Oncol. 2015;20:345-50
99. Huang B, Cai J, Xu X, et al. High-grade tumor budding stratifies early-stage cervical cancer with recurrence risk. PLoS One. 2016;11:e016311
100. Li J, Wu MF, Lu HW, et al. Impact of hyperglycemia on outcomes among patients receiving neoadjuvant chemotherapy for bulky early stage cervical cancer. PLoS One. 2016;11:e016612
101. Cho Y, Kim KH, Yoon HJ, et al. Tumor-related leukocytosis is associated with poor radiation response and clinical outcome in uterine cervical cancer patients. Ann Oncol. 2016;27:2067-74
102. Matsumiya H, Todo Y, Okamoto K, et al. A prediction model of survival for patients with bone metastasis from uterine cervical cancer. J Gynecol Oncol. 2016;27:e55
103. Usami T, Takahashi A, Matoda M, et al. Review of treatment and prognosis of stage IB2 cervical carcinoma. Int J Gynecol Cancer. 2016;26:1239-45
104. Chen L, Zhang F, Sheng XG, et al. Peripheral platelet/lymphocyte ratio predicts lymph node metastasis and acts as a superior prognostic factor for cervical cancer when combined with neutrophil: Lymphocyte. Medicine (Baltimore). 2016;95:e381
105. Oishi S, Kudaka W, Toita T, et al. Prognostic factors and treatment outcome for patients with stage IB2 cervical cancer. Anticancer Res. 2016;36:3471-75
106. Oral C, Guler OC, Yildirim BA. Prognostic use of pretreatment hematologic parameters in patients receiving definitive chemoradiotherapy for cervical cancer. Int J Gynecol Cancer. 2016;26:1169-75
107. Wu ES, Oduyobo T, Cobb LP, et al. Lymphopenia and its association with survival in patients with locally advanced cervical cancer. Gynecol Oncol. 2016;140:76-82
108. Xia X, Xu H, Wang Z, et al. Analysis of prognostic factors affecting the outcome of stage IB2-IB3 cervical cancer treated by radical hysterectomy and pelvic lymphadenectomy. Am J Clin Oncol. 2016;39:604-8
109. Lee JH, Lee SW, Kim JR, et al. Tumour size, volume, and marker expression during radiation therapy can predict survival of cervical cancer patients: A multi-institutional retrospective analysis of KROG 16-01. Gynecol Oncol. 2017;147:577-84
110. Barquet-Muñoz SA, Cruz-Rodríguez E, Cantú De León DF, et al. Histology as prognostic factor in early-stage cervical carcinoma. Experience in a third-level institution. Rev Invest Clin. 2017;69:286-92
111. Jung EI, Byun YM, Kim YN, et al. Cervical adenocarcinoma has a poorer prognosis and a higher propensity for distant recurrence than squamous cell carcinoma. Int J Gynecol Cancer. 2017;27:1228-36
112. Chung HH, Cheon GJ, Kim JW, et al. Prognostic importance of lymph node-to-primary tumor standardized uptake value ratio in invasive squamous cell carcinoma of the uterine cervix. Eur J Nucl Med Mol Imaging. 2017;44:1862-69
113. Zheng RR, Huang YW, Liu WY, et al. Nomogram predicting overall survival in operable cervical cancer patients. Int J Gynecol Cancer. 2017;27:987-93
114. Obrutz B, Semczuk A, Narod M, et al. Prognostic factors for patients with cervical cancer FIGO stages IA2-IIA: A long-term follow-up. Oncology. 2017;93:106-14
114. Cho Q, Noh OK, Oh YT, et al. Hematological parameters during concurrent chemoradiotherapy as potential prognosticators in patients with stage IIIB cervical cancer. Tumour Biol. 2017;39:1010428317694936

115. Chandeying N, Hanprasertpong J. The prognostic impact of histological type on clinical outcomes of early-stage cervical cancer patients whom have been treated with radical surgery. J Obstet Gynaecol. 2017;37:347-54

116. Yokoi E, Maebuchi S, Takahashi R, et al. Impact of histological subtype on survival in patients with locally advanced cervical cancer that were treated with definitive radiotherapy. Adenocarcinoma/adenosquamous carcinoma versus squamous cell carcinoma. J Gynecol Oncol. 2017;28:e19

117. Lim S, Cho K, Lee S, et al. Effect of number of retrieved lymph node on prognosis in FIGO stage IB-IIA cervical cancer patients treated with primary radical surgery. J Obstet Gynaecol Res. 2017;43:211-19

118. Xu F, Ma J, Yi H, et al. Clinicopathological aspects of small cell neuroendocrine carcinoma of the uterine cervix: A multicenter retrospective study and meta-analysis. Cell Physiol Biochem. 2018;50:1113-22

119. Wen YF, Cheng TT, Chen XL, et al. Elevated circulating tumor cells and squamous cell carcinoma antigen levels predict poor survival for patients with locally advanced cervical cancer treated with radiotherapy. PLoS One. 2018;13:e0204334

120. Joo JH, Kim YS, Nam JH. Prognostic significance of lymph node ratio in node-positive cervical cancer patients. Medicine (Baltimore). 2018;97:e11711

121. Dai YF, Xu M, Zhong LY, et al. Prognostic significance of solitary lymph node metastasis in patients with stages IA2 to IIA cervical carcinoma. J Int Med Res. 2018;46:6802-91

122. Zhu M, Feng M, He F, et al. Pretreatment neutrophil-lymphocyte and platelet-lymphocyte ratio predict clinical outcome and prognosis for cervical Cancer. Clin Chim Acta. 2018;483:296-302

123. Zhou J, Chen Y, Xu X, et al. Postoperative clinicopathological factors affecting cervical adenocarcinoma: Stages I-IIB. Medicine (Baltimore). 2018;97:e9523

124. Liu YM, Ni LQ, Wang SS, et al. Outcome and prognostic factors in cervical cancer patients treated with surgery and concurrent chemoradiotherapy: A retrospective study. World J Surg Oncol. 2018;16:18

125. Xie X, Song K, Cui B, et al. A comparison of the prognosis between adeno carcinoma and squamous cell carcinoma in stage IB-IIA cervical cancer. Int J Clin Oncol. 2018;23:522-31

126. Taarnhøj GA, Christensen JI, Løjer H, et al. Risk of recurrence, prognosis, and follow-up for Danish women with cervical cancer in 2005-2013: A national cohort study. Cancer. 2018;124:943-51

127. Zhang W, Liu K, Ye B, et al. Pretreatment C-reactive protein/albumin ratio is associated with poor survival in patients with stage IB-IIA cervical cancer. Cancer Med. 2018;7:105-13

128. Je HU, Han S, Kim YM, et al. Risk prediction model for disease-free survival in women with early-stage cervical cancers following postoperative (chemo)radiotherapy. Tumour. 2018;104:105-10

129. Ishikawa M, Kamatsutri T, Tsuda H, et al. Prognostic factors and optimal therapy for stages I-II neuroendocrine carcinomas of the uterine cervix: A multi-center retrospective study. Gynecol Oncol. 2018;148:139-46

130. Kwon J, Eom KY, Kim YS, et al. Prognostic impact of the number of metastatic lymph nodal and a new prognostic scoring system for recurrence in early-stage cervical cancer with high risk factors: A multicenter cohort study (KRGD 15-04). Cancer Res Treat. 2018;50:964-74

131. Zhu J, Wang H, Gao MJ, et al. Prognostic values of lymphocyte and eosinophil counts in resectable cervical squamous cell carcinoma. Future Oncol. 2019;15:3467-81

132. Yan W, Qiu S, Ding Y, et al. Prognostic value of lymphovascular space invasion in patients with early stage cervical cancer in Jinli, China: A retrospective study. Medicine (Baltimore). 2019;98:e17301

133. Wang W, Liu X, Hou X, et al. Posttreatment squamous cell carcinoma antigen predicts treatment failure in patients with cervical squamous cell carcinoma treated with concurrent chemoradiotherapy. Gynecol Oncol. 2019;155:224-28

134. Farzanefar F, Faghhi N, Hosseini MS, et al. Evaluation of neutrophil-lymphocyte ratio as a prognostic factor in cervical intraepithelial neoplasia recurrence. Asian Pac J Cancer Prev. 2019;20:2365-72

135. Sawada M, Oshi T, Komatsu H, et al. Serum vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 as prognostic biomarkers for uterine cervical cancer. Int J Clin Oncol. 2019;24:1612-19

136. Khalkhali HR, Gharagheizhi R, Valizadeh R, et al. Ten years’ survival in patients with cervical cancer and related factors in West Azerbaijan province: Using of Cox proportion hazard model. Asian Pac J Cancer Prev. 2019;20:1345-1351.

137. Yildirim BA, Guler OC, Kose F, et al. The prognostic value of haematologic parameter changes during treatment in cervical cancer patients treated with definitive chemoradiotherapy. J Obstet Gynecol. 2019;39:695-701

138. Gai J, Wang X, Meng Y, et al. Clinicopathological factors influencing the prognosis of cervical cancer. J BUON. 2019;24:291-95

139. Chen P, Zhang W, Yang D, et al. Human papillomavirus status in primary lesions and pelvic lymph nodes and its prognostic value in cervical cancer patients with lymph node metastases. Med Sci Monit. 2019;25:1894-902

140. Guan B, Dorez M, Maagd L, et al. Impact of micrometastasis or isolated tumor cells on recurrence and survival in patients with early cervical cancer: SENTICOL Trial. Int J Gynecol Cancer. 2019;29:447-52

141. Huang H, Liu Q, Zhu J, et al. Prognostic value of preoperative systemic immune-inflammation index in patients with cervical cancer. Sci Rep. 2019;9:3284

142. Queiroz ACM, Fabri V, Mantoan H, et al. Risk factors for pelvic and distant recurrence in locally advanced cervical cancer. Eur J Obstet Gynecol Reprod Biol. 2019;235:6-12

143. Gillani SW, Zaghloul HA, Ansari IA, et al. Multivariate analysis on the effects of diabetes and related clinical parameters on cervical cancer survival probability. Sci Rep. 2019;9:10844

144. de Foucher T, Bendifallah S, Ouldamer L, et al. Patterns of recurrence and prognosis in locally advanced FIGO stage IB2 to IIB cervical cancer: Retrospective multicentre study from the FRANCOCYP group. Eur J Surg Oncol. 2019;45:659-65

145. Yoshino Y, Taguchi A, Shimizuuchi T, et al. A low albumin to globulin ratio with a high serum globulin level is a prognostic marker for poor survival in cervical cancer patients treated with radiation based therapy. Int J Gynecol Cancer. 2019;29:17-22

146. Zhang X, Lv Z, Lou H. The clinicopathological features and treatment modalities associated with survival of neuroendocrine cervical carcinoma in a Chinese population. BMC Cancer. 2019;19:22

147. Seebacher V, Sturza D, Bergmeister B, et al. Factors associated with post-relapse survival in patients with recurrence in patients with cancer. The value of the inflammation-based Glasgow Prognostic Score. Arch Gynecol Obstet. 2019;299:1055-62

148. Holub K, Biete A. Impact of systemic inflammation biomarkers on the survival outcomes of cervical cancer patients. Clin Transl Oncol. 2019;21:836-44

149. Theplph A, Hanprasertpong J, Leetanaporn K. Safety and prognostic impact of ovarian preservation during radical hysterectomy for early-stage adenocarcinoma and adenosquamous cervical cancer. Biomed Res Int. 2020;2020:5791381

150. Moulard A, Chargari C, Faron M, et al. A new score based on biomarker values to predict the prognosis of locally advanced cervical cancer. Gynecol Oncol. 2020;2019:351-63

151. An Q, Liu W, Yang Y, et al. Preoperative fibrinogen-to-albumin ratio, a potential prognostic factor for patients with stage IB-IIA cervical cancer. BMC Cancer. 2020;20:691

152. Casarin J, Buda A, Bogani G, et al. Predictors of recurrence following laparoscopic radical hysterectomy for early-stage cervical adenocarcinoma and adenosquamous cervical cancer. Biomed Res Int. 2020;2020:5791381

153. Wang H, Chen WM, Zhou YH, et al. Combined PLT and NE to predict the prognosis of patients with locally advanced cervical cancer. Sci Rep. 2020;10:11120

154. Zyla RE, Gien LT, Vicus D, et al. The prognostic role of horizontal and circumferential tumor extent in cervical cancer: Implications for the 2019 FIGO staging system. Gynecol Oncol. 2020;158:266-72

155. He F, Liu W, Yu P, et al. Influence of uterine corpus invasion on prognosis in stage IIA-IB cervical cancer: A multicenter retrospective cohort study. Gynecol Oncol. 2020;158:273-81

156. Zeng J, Qu P, Hu Y, et al. Clinicopathological risk factors in the light of the revised 2018 International Federation of Gynecology and Obstetrics staging system for early cervical cancer with staging IB2: A single center retrospective study. Medicine (Baltimore). 2020;99:e19714

157. Liu T, Kong W, Liu Y, et al. Efficacy and prognostic factors of concurrent chemoradiotherapy in patients with stage IB3 and IIa2 cervical cancer. Ginekol Pol. 2020;91:57-61
158. Kim JH, Shim SH, Nam SH, et al. Prognostic factors and impact of minimally invasive surgery in early-stage neuroendocrine carcinoma of the cervix. J Minim Invasive Gynecol. 2020;27:1558-65

159. Anfinan N, Salt K. Indicators of survival and prognostic factors in women treated for cervical cancer at a tertiary care center in Saudi Arabia. Ann Saudi Med. 2020;40:25-35

160. Lee HJ, Kim JM, Chin YJ, et al. Prognostic value of hematological parameters in locally advanced cervical cancer patients treated with concurrent chemoradiotherapy. Anticancer Res. 2020;40:451-58

161. Zong L, Zhang Q, Kong Y, et al. The tumor-stroma ratio is an independent predictor of survival in patients with 2018 FIGO stage IIIC squamous cell carcinoma of the cervix following primary radical surgery. Gynecol Oncol. 2020;156:676-81

162. Aslan K, Meydanli MM, Oz M, et al. The prognostic value of lymph node ratio in stage IIC cervical cancer patients triaged to primary treatment by radical hysterectomy with systematic pelvic and para-aortic lymphadenectomy. J Gynecol Oncol. 2020;31:e1

163. Gülseren V, Kocaer M, Çakır İ, et al. Postoperative nomogram for the prediction of disease-free survival in lymph node-negative stage I-IIA cervical cancer patients treated with radical hysterectomy. J Obstet Gynaecol. 2020;40:699-704

164. Kim SI, Kim TH, Lee M, et al. Lymph node ratio is a strong prognostic factor in patients with early-stage cervical cancer undergoing minimally invasive radical hysterectomy. Yonsei Med J. 2021;62:231-39

165. Okadome M, Nagayama R, Shimokawa M, et al. Prognosis of bulky pT1B2 cervical cancer treated by radical hysterectomy comparing adenoarcinoma with squamous cell carcinoma using propensity score matching. Int J Gynaecol Obstet. 2021;153:56-63

166. Buda A, Casarin J, Mueller M, et al. The impact of low-volume metastasis on disease-free survival of women with early-stage cervical cancer. J Cancer Res Clin Oncol. 2021;147:1599-606

167. Zhang Q, Xiong Y, Ye J, Zhang L, Li L. Influence of clinicopathological characteristics and comprehensive treatment models on the prognosis of small cell carcinoma of the cervix: A meta-analysis. PLoS One. 2018;13:e0192784

168. Chan JK, Loizzi V, Burger RA, et al. Prognostic factors in neuroendocrine small cell cervical carcinoma: A multivariate analysis. Cancer. 2003;97:568-74

169. Wang Y, Mei K, Xiang MF, et al. Clinicopathological characteristics and outcome of patients with small cell neuroendocrine carcinoma of the uterine cervix: case series and literature review. Eur J Gynaecol Oncol. 2013;34:307-10

170. Small W Jr, Bacon MA, Bajaj A, et al. Cervical cancer: A global health crisis. Cancer. 2017;123:2404-12

171. Nakanishi T, Wakai K, Ishikawa H, et al. A comparison of ovarian metastasis between squamous cell carcinoma and adenocarcinoma of the uterine cervix. Gynecol Oncol. 2001;82:504-9

172. Kapp KS, Stuecklschweiger GF, Kapp DS, et al. Prognostic factors in patients with carcinoma of the uterine cervix treated with external beam irradiation and IR-192 high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys. 1998;42:531-40

173. Barkati M, Fortin I, Milesklin L, et al. Hemoglobin level in cervical cancer: A surrogate for an infiltrative phenotype. Int J Gynecol Cancer. 2013;23:724-29

174. Höckel M, Schlenger K, Höckel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res. 1999;59:4525-28

175. Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow? Lancet. 2001;357:539-45

176. Huang EY, Wang CJ, Chen HC, et al. Multivariate analysis of para-aortic lymph node recurrence after definitive radiotherapy for stage IB-IVA squamous cell carcinoma of uterine cervix. Int J Radiat Oncol Biol Phys. 2008;72:834-42

177. Cao W, Yao X, Cen D, Zhi Y, Zhu N, Xu L. Prognostic role of pretreatment thrombocytosis on survival in patients with cervical cancer: A systematic review and meta-analysis. World J Surg Oncol. 2019;17:132.