First Principles Phase Diagram Calculation for the 2D TMD system

\(WS_2 - WTe_2 \).

B. P. Burton

Materials Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; benjamin.burton@nist.gov

Abstract

First principles phase diagram calculations, that included van der Waals interactions, were performed for the bulk transition metal dichalcogenide system \((1 - X) \cdot WS_2 - (X) \cdot WTe_2\). To obtain a converged phase diagram, a series of cluster expansion calculations were performed with increasing numbers of structure-energies, \(N_{str}\) up to \(N_{str} = 435\), used to fit the cluster expansion Hamiltonian. All calculated formation energies are positive and all ground-state analyses predict that formation energies for supercells with 16 or fewer anion sites are positive; but when \(\approx 150 N_{str} \leq 376\), false ordered ground-states are predicted. With \(N_{str} \geq 399\), only a miscibility gap is predicted, but one with dramatic asymmetry opposite to what one expects from size-effect considerations; i.e. the calculations predict more solubility on the small-ion S-rich side of the diagram and less on the large-ion Te-rich side. This occurs because S-rich low-energy metastable ordered configurations have lower energies than their Te-rich counterparts.

Keywords: WS\(_2\) – WTe\(_2\); First Principles; Phase diagram calculation; van der Waals; transition metal dichalcogenide, TMD.

1. Introduction

There is great interest in two-dimensional (2D) transition metal dichalcogenide (TMD) materials \(MX_2\), where \(M = \text{Mo, W, Nb, Re, etc. and } X = \text{S, Se, or Te}\). \([1, 2]\). Currently, interest is focused on applications such as: band-gap engineering \([3,4]\); nano-electronic devices \([2,5,6,7]\); photovoltaic devices \([8,9]\); valleytronics applications \([10,11]\); 2D building blocks for electronic heterostructures \([12]\); and as sensors \([13]\).

The bulk 2H crystal structure (P6\(_3\)/mmc space group) has AB-stacking of three-atom-thick 2D-layers that are bonded by van der Waals forces. Hence van der Waals forces influence bulk and multilayer phase relations and therefore anion order-disorder and/or phase separation in TMD solid solutions. The results presented below, for bulk \(WS_2 - WTe_2\), imply that van der Waals interactions may strongly affect phase stabilities, either between adjacent layers in bulk or few-layer samples, or between monolayers and substrates.

Previous work on bulk \((1 - X) \cdot MoS_2 - (X) \cdot MoTe_2\) \([14]\) predicted two entropy stabilized incommensurate phases at \(X \approx 0.46\), and this work was done to see if a similar prediction applies to the structurally analogous \((1 - X) \cdot WS_2 - (X) \cdot WTe_2\) system. In the \(WS_2 - WTe_2\) system, however, only a miscibility gap is predicted, but a very large number of formation energy calculations, \(N_{str} \geq 400\), is required to suppress false ground-states (GS). Also, the asymmetry of the calculated phase diagram is the opposite of what one expects from a size-effect argument; typically there is more solubility of the smaller ion in larger-ion-rich solutions (more S-solubility in Te-rich solutions) than vice versa; \(R_s = 1.84 \text{ Å}; R_{Te} = 2.21 \text{ Å}\). \([15]\)

2. Methodology

2.1. Total Energy Calculations

Total structure energies, \(\Delta E_{str}\) were calculated for fully relaxed \(WS_2\), \(WTe_2\) and for 433 \(W_{4\times 4}\)(S\(_m\)Te\(_n\)) supercells. The Vienna \textit{ab initio} simulation program (VASP, version 5.3.3 \([16,17]\)) was used for all density-functional theory (DFT) calculations, with projector augmented waves (PAW) and a generalized gradient approximation (GGA)
for exchange energies. Electronic degrees of freedom were optimized with a conjugate gradient algorithm. Valence electron configurations were: W_{pv} 5p^65d^6, S_{s} 2s^2, Te_{s} 2s^2. Van der Waals interactions modeled with the non-local correlation functional of Klimes et al.\[18\]. A 500 eV cutoff-energy was used in the "high precision" option, which converges absolute energies to within a few meV/mol (a few tenths of a kJ/mol of exchangeable S- and Te-anions). Precision is at least an order of magnitude better. Residual forces of order 0.02 eV or less were typical.

2.2. The Cluster Expansion Hamiltonian

Cluster expansion Hamiltonians (CEH)\[19\], were fit to sets of 71, 253, 295, 399, and 435 formation energies, \(\Delta E_f\), solid dots (green online) in Figs. 1a-5a:

\[
\Delta E_f = (E_{Str} - mE_{WS_2} - nE_{WTe_2})/(2(m + n))
\]

Here: \(E_{Str}\) is the total energy of the \(W_{m+n}(S_mTe_n)_2\) supercell; \(E_{WS_2}\) is the energy/mol of WS\(_2\); \(E_{WTe_2}\) is the energy/mol of WTe\(_2\).

Fittings of the CEHs were performed with the Alloy Theoretic Automated Toolkit (ATAT)\[17, 20, 21, 22\] which automates most CEH construction tasks\[21\].

3. Results

3.1. Ground-State Analyses

Filled circles (green online) in Figs. 1a - 3a indicate values of \(\Delta E_f\) that were calculated with the VASP package, i.e. \(\Delta E_{VASP}\). Large open squares in Figs. 1a - 5a (red online) indicate the CEH-fit to \(\Delta E_{VASP}\). Smaller open squares (\(\Delta E_{GS}\); blue online) indicate the results of a ground-state (GS) analyses that included all ordered configurations with 16 or fewer anion sites, 151,023 structures. Calculated values for cross validation scores, (CV)\(^2\), and the numbers of structures, \(N_{Str}\), are plotted on the figures.

Additional GS analyses were performed by Monte-Carlo (MC) simulations at fixed bulk compositions, via decreasing temperature (T) scans down to T=0. The 0K \(\Delta E_f\) values from these calculations are plotted as solid (predicted stable) or open-diamonds (metastable; blue online) in Figs. 2a and 3a; and as small filled down-facing triangles (blue online) in Figs. 4a and 5a. Because the calculated formation energies for the ordered configurations in Figs. 2a and 3a are negative, they constitute (false) predicted large-cell ordered-GS. If their formation energies are positive they can be regarded as low-energy microstructures. Note that these formation energies from MC-simulations are always upper bounds, because MC-simulations don’t yield perfectly ordered simulation boxes.

3.2. Phase Diagram Calculations

First principles phase diagram calculations that were performed with the ATAT package\[20, 21, 22\] are plotted in Figs. 1b-5b. Additional symbols on Figs. 2b, 3b, and 4b are used to indicate various phase fields that were identified, by visual inspections of MC-snapshots: large filled down-pointing triangles (orange online) indicate disorder; up-pointing triangles (cyan online) indicate a layer structure (e.g. Fig. 2c); and striped circles (black and red online) indicate two-phase, assemblages, ordered plus disordered or two ordered phases.

4. Discussion

One expects that fitting CEHs to larger and larger sets of \(\Delta E_{VASP}\) ultimately leads to a converged result for the calculated phase diagram. The results presented here indicate that the fits with \(N_{Str} = 71, 253, 295,\) and 376 (not shown) are not sufficient because: false GS are predicted, typically at \(X = 1/3\) and \(X = 1/2\); and qualitatively different phase diagrams are predicted with each increase in \(N_{Str}\). Standard ground-state analyses for the sets with \(N_{Str} = 253, 295,\) and 376 (not shown) predicted no ordered GS with 16 or fewer anion sites, but MC T-scans down to T=0K, predicted false GS based on unit cells with more than 16 anion sites. The diagrams for \(N_{Str} = 399\) or 435 are essentially identical, and may represent a converged result. One can, however, never rule out the possibility that a fit based on \(N_{Str} > 435\), might yield a different result.
Figure 1: For $N_{5p} = 71$: (a) Ground-State analysis; (b) calculated phase diagram. In (a): ΔE_{VASP} filled circles (green online); ΔE_{Fit} large open squares, (red online) is the CE-fit to the DFT set; ΔE_{CE} smaller open squares, (blue online) are the CE-based ground-state analysis; All $\Delta E_f > 0$ implies that there are no ordered GS, with 16 or fewer anion sites, and suggests that the phase diagram will have a miscibility gap. Note the small cross-validation score, $(CV)^2 = 0.00265$, which suggests a very good CEH-fit, and in (b) the near absence of asymmetry in the miscibility gap.

Figure 2: For $N_{5p} = 253$: (a) ground-state analysis; (b) calculated phase diagram. Filled diamond symbols in (a) indicate predicted GS structures as shown in the MC-snapshots of: (c) honeycomb structure at $X = 1/3$, and (d) a striped-phase at $X = 1/2$. The open diamond symbol at $X = 2/3$ indicates a low-energy metastable honeycomb-ordered structure. Additional symbols in (b): large filled down-pointing triangles (orange online) indicate disorder; up-pointing triangles (cyan online) indicate a layer structure (d); large checkered circles (red online) indicate a honeycomb structure (c); and striped circles (black and red online) indicate two-phase, assemblages, ordered plus disordered or two ordered phases.
Figure 3: For $N_{SD}=295$: (a) ground-state analysis; (b) calculated phase diagram. Open diamonds in (a) (blue online) indicate: (c) an ordered structure at $X=1/3$; and low-energy, mostly striped, microstructures at $X=1/2$ and $X=2/3$. Note however, that the $X=1/3$- and $X=1/2$-phases appear to be stable at elevated temperatures.

Figure 4: For $N_{SD}=399$: (a) ground-state analysis; (b) calculated phase diagram. Small down-pointing triangles in (a) are ΔE_{CE} values for MC-simulation T-scans from a low-T value to $T=0$. Note the asymmetry in these values. Additional symbols in (b) have the same meanings as in Fig. 3.
Figure 5: For $N_{St} = 435$: (a) ground-state analysis; (b) calculated phase diagram. Down-pointing triangles in (a) are ΔE_{CS} values for MC-simulation T-scans from a low-T value to $T=0$. Note the asymmetry in these values, which is opposite to what one expects from a size-effect argument. Compare the nearly symmetric miscibility gap in Fig. [1] with the dramatic asymmetries of Figs. [4] and [5].

Two generalizations apply to all calculated phase diagrams for models with $150 < N_{St} < 376$: (1) When false GS are predicted, they are always in the S-rich bulk composition range $0 < X < 0.5$; (2) The range range $0.5 < X < 1.0$ is dominated by phase separation at $T > 1050K$. (1) above indicates that low-energy ordered configurations on the S-rich side of the system drive the asymmetry of phase separation that is noted in (2).

Kang et al. [3] performed first principles phase diagram calculations (with ATAT; $N_{St} \approx 40$) for monolayer $WS_2 - WTe_2$, and reported a phase diagram with its’ consolute point at $(X, T) \approx (0.55, 680K)$; i.e. without the dramatic asymmetry exhibited in Figs. [4] and [5] where $(X, T) \approx (0.7, 1075K)$.

5. Conclusions

A CEH-fit to at least $N_{St} \approx 400$ is required to calculate a realistic phase diagram for the $WS_2 - WTe_2$ TMD system. Low cross-validation scores, and routine GS analyses are not sufficient for systems such as TMDs because very low-energy metastable ordered states imply that an apparently well-fit CEH can predict false GS phases. It is likely that the $WS_2 - WTe_2$ system has a highly asymmetric miscibility gap as shown in Fig. [5] and that the predicted asymmetry is driven by low-energy metastable ordered states on the S-rich side of the system.

6. ACKNOWLEDGEMENTS

This work was supported by NIST-MGI.

References

[1] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano, Nature Nanotech. 7, 699 (2012).
[2] R. Ganatra and Q. Zhang ACS nano 8(5), 4074 (2014).
[3] J. Kang, S. Tongay, J. Li and J. Wu, J. Appl. Phys. 113, 143703 (2013).
[4] A. Kutana, E. S. Penev and B. I. Yakobson, Nanoscale 6, 5820 (2014).
[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Nature nanotechnology, 6(3): 147, (2011).
[6] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller. Nano Letters, 13(1): 100, (2013).
[7] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios. Nano Letters, 12(9):4674, (2012).
[8] D. Jariwala, V. K. Sangwan, L.J. Lauhon, T. J. Marks, and M. C. Hersam. ACS nano, 8(2): 1102, (2014).
[9] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara. Scientific reports, 3, 1634 (2013).
[10] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui. Nature nanotechnology, 7(8): 490, (2012).
[11] K. F. Mak, K. He, J. Shan, and T. F. Heinz. Nature nanotechnology, 7(8): 494, (2012).
[12] Nature, 499, 419 (2013).
[13] S.X. Wu, Z.Y. Zeng, Q.Y. He, Z.J. Wang, S.J. Wang, Y.P. Du, et al. Small, 8, 2264 (2012) T.Y. Wang, H.C. Zhu, J.Q. Zhuo, Z.W. Zhu, P. Papakonstantinou, G. Lubarsky, et al. Anal. Chem, 85, 10289 (2013).
[14] B. P. Burton and A. K. Singh J. Appl. Phys. 120, 155101 (2016); http://dx.doi.org/10.1063/1.4964868
[15] http://absulata.mt.ic.ac.uk/shannon/patable.php
[16] G. Kresse, and J. Hafner, Phys. Rev. B47: 558 (1993); G. Kresse. Thesis, Technische Universität Wien (1993); Phys. Rev. B49: 14 251 (1994). G. Kresse, and J. Furthmüller, (1996) Comput. Mat. Sci. 6: 15-50; Phys. Rev. B54: 11169 (1996); cf. http://tpf.tuwien.ac.at/~vasp/guide/vasp.html.
[17] Reference to specific software packages does not imply a NIST endorsement.
[18] J. Klimes, D. R. Bowler, and A. Michaelides, Phys. Rev. B83: 195131 (2011), and J. Phys. Condens. Matter 22: 022201 (2010).
[19] J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica 128A, 334 (1984).
[20] A. van de Walle, M. Asta and G. Ceder, CALPHAD Journal 26, 539 (2002).
[21] A. van de Walle and G. Ceder, Journal of Phase Equilibria, 23, 348 (2002).
[22] A. van de Walle, and M. Asta, Modelling Simul. Mater. Sci. Eng., 10, 521 (2002).