Effect of silver and silica nanoparticles on the larvae of pink stem borer
Sesamia cretica Lederer, 1857 (Lepidoptera: Noctuidae)
and maize plants *Zea mays* Linneaus, 1753

Sameha A. Metwally¹, Mohamed A. A. Abd-Elaziz², Samir I. El- Sherif³, Sayeda S. Ahmed¹

¹ Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt.
² Department of Maize Research, Field Crops Research, Agriculture Research Center, Giza, Egypt.
³* Corresponding author: Samiha_badr@yahoo.com

Abstract: This study was aimed to evaluate the toxicological and biological effects of three nanoparticles (silver, hydrophilic and hydrophobic silica) at four concentrations (100, 200, 400 and 800 ppm) against 1st instar larvae of *Sesamia cretica* Lederer, 1857 and its effects on some maize characters. Each concentration and control was repeated 4 times (10 larvae/replicate). Larvae were fed on treated stem maize and mortality rate was recorded. After treatment with LC₅₀ values, the survival larvae were collected and the larval duration, pupal duration, pupal weight, pupation percentage and adult longevity were recorded. Seedling maize plants were sprayed with three concentrations (50, 100 and 200 ppm) at 4 categories (every 1, 3, 7 and 14 days) to detect the effect of nanoparticles on leaf area, extended height and leaf chlorophyll content. Results showed that hydrophilic silica nanoparticle was the most effective, followed by silver nanoparticle then hydrophobic silica nanoparticle with LC₅₀ 121.19, 405.71 and 416.82 ppm, respectively. All nanoparticles led to increase in larval durations, reduction of egg number per female and decrease of eggs hatchability rate. All nanoparticles caused positive effect on leaf area, extended height and chlorophyll content. These nanoparticles may be recommended to control *S. cretica* with positive effects on plant characters.

Keywords: Stem borer, corn, botanical characteristic, nanotechnology, larval mortality, biological aspects

Introduction

Maize (*Zea mays* Linneaus, 1753) is an important economic cereal crop. In developing countries, maize grain-flour is essential for making bread. Green maize plants, silage and maize grains represent a significant source for livestock fodder worldwide. Moreover, several food industries stand on processing maize grains and their byproducts (Orhun 2013).

In Egypt, maize plantations are usually subject to a variety of insect pests. The most economically serious of these pests are a group of insects, commonly and collectively known as “Corn Borers”. A corn borer that represents a real threat to maize plantations, particularly at the early stages of plant growth, is the “pink stem borer” *Sesamia cretica* Lederer, 1857 (Lepidoptera: Noctuidae) which is a key pest that destroys corn plantation especially in eastern Mediterranean countries, as well as in Africa and Asia (Onukogu 1984, Moyal *et al.* 2002). In Egypt, maize plantation are severely attacked by *S. cretica* especially those sown early from late March to mid-May (Metwally *et al.* 2015).

Stem borers affect maize yields through reducing the photosynthetic area of green leaves as well as the death of the growing points surrounded by whale leaves and early leaf senescence, reduced translocation, lodging and direct damage to ears. Secondary losses may also occur due to bacterial infections via entry points created by stem borers within plant tissue (Ndiritu 1999). To reduce dependency on chemical insecticides for the control of stem borers seeking for other alternatives becomes a significant requirement. Among such alternatives, nanotechnology seemed to be one of the
promising recent approaches for stem borer control. Nanoparticles represent a new generation of environmental remediation technologies that could provide a cost-effective solution to some of the most challenging environmental clean-up problems and help to produce new pesticides, insecticides and insect repellants (Cicek & Nadaroglu 2015). Among the most important nanoparticles used for the control of insect pests is silver and silica nanoparticles. Literatures refer to the toxic effects of silica and silver nanoparticles on insect pests specially the lepidopterous insects as Spodoptera littoralis (Boisdruval, 1833), Spodoptera litura (Fabricius, 1775), Tuta absoluta (Meyrick, 1917) and Helicoverpa armigera (Hübner, 1808). Nanoparticles may lead to a negative impact on the insect's biological and physiological properties that led to a reduction in insect’s populations. (Chakravarthy et al. 2012, Elbendary & El-Helaly 2013, Devi et al. 2014, Yasur & Usha Rani 2015, El-Helaly et al. 2016, Ayoub et al. 2017, Abd El Naby 2019, Ahmed et al. 2019).

Nanoparticles proved an effective role in controlling stored grain pests as Sitophilus oryzae (Linnaeus, 1763), Corcyra cephalonica (Stainton, 1866), Tribolium castaneum (Herbst, 1797) and Callosobruchus maculates (Fabricius, 1775) (Rouhani et al. 2012, Abduz Zahir et al. 2012, Vani & Brindhaa 2013, El-Samahy et al. 2014, Abd-El-Salam et al. 2015, Osman et al. 2015).

Applications of the nanoparticles in agriculture may play an important role in the global food security by helping to develop improved plant varieties with high productivity (Parisi et al. 2015). The unique properties of silver and silica nanoparticles allow them to cope with agricultural damage that may occur through climate change and/or abiotic stress and thus may be used in horticultural practices as a potential plant growth regulator (Tripathi et al. 2012, Byczyńska 2017). The effects of nanoparticles can be investigated at different levels in plants. These effects can vary according to size, shape and concentration of the nanoparticles as well as age and species of plants (Rico et al. 2011). Nano silica is considered the most widely used nano structural preparation in the field of agricultural insect’s pest control. In addition to its role in increasing the productive efficiency of plants in general, silica (whether in its pulk or nanoparticles forms) plays a major role in increasing plant growth, improving its ability to resist pest infestations (Siddiqui et al. 2015), as well as reducing the toxicity of mineral pollutants, salinity tolerance, drought, and frost effects (Marafon & Endres 2013). As for maize plants, silica and silica nanoparticles increase the efficiency of water use through reducing transpiration from leaves, increasing the rate of water flow in woody vessels, increase the rate of photosynthesis and in addition to increasing the leaf surface area (Suriyaprabha et al. 2012) which ultimately leads to increased grain production (Zhiming 2014). Also silver nanoparticles are regarded as one of the useful substances that can increase the growth and efficiency of maize plants by increasing leaf surface area, the percentage of germination, roots elongation in addition to raising the proportion of chlorophyll, carbohydrates and protein (Salama 2012, Almutairi & Alharbi 2015).

This study evaluates the effect of silver, hydrophilic silica and hydrophobic silica nanoparticles on the (neonate) first instar larvae of S. cretica and their effect on the various biological aspects under laboratory conditions as well as on the characteristics of maize plants related to infestation with S. cretica under field conditions.

Materials and Methods

Handling insect material

Full-grown larvae of the maize borer, S. cretica were hand-collected from maize fields and maintained on fresh maize stem cuttings at Corn Borers Research Laboratory (CBRL), Department of Economic Entomology
and Pesticides, Faculty of Agriculture, Cairo University until pupation. A stock culture of the study insect was reared and maintained for several generations under constant laboratory conditions of 27±2°C and 60±10% RH. The collected larvae were reared inside glass boxes with screen lids, fed on stem maize plants until pupal stage. Pupae were sexed by examining the ventral aspects of their terminal abdominal ends which show 3 genital pores in females and only 2 genital pores in males. Sexed pupae were then individually placed on moist cotton wool in glass tubes plugged with cotton wool until the emergence of adult moths. Every adults (4 females and 6 males) was introduced into a lantern glass cage, fitted on a plastic pot 10 cm in diameter and containing three maize seedlings (15 to 20 cm height) to serve as egg-deposition sites. Oviposition cages were covered with muslin and each supplied with a cotton piece saturated with 10% sugar solution then incubated at 25°C. Egg masses were collected daily by carefully dissecting the seedlings to gather the egg-masses laid on the inner surfaces of the leaf-sheaths. Egg masses were then kept in Petri dishes or glass tubes (2.5 × 9 cm.) tightly closed with cotton and incubated at 27–28°C and 75–80% R.H. until hatching. Newly hatched larvae were treated with LC50 values of the three tested nanoparticles (121.19, 416.82 and 405.71 ppm) for hydrophilic silica, hydrophobic silica and silver nanoparticles supplied by Nano Tech. Company, Egypt.

Nano materials

Three nano materials were used in this investigation, these are silver, hydrophilic silica and hydrophobic silica nanoparticles supplied by Nano Tech. Company, Egypt.

Characterization of Nano materials

The size, morphology and composition of the three tested nano materials were determined by a high resolution Transmission Electron Micrograph (JEOL 20100) (HR-TEM). The transmission electron microscope (TEM) images were carried out at the Faculty of Agriculture, Cairo University, Giza, Egypt. Dispersed nanoparticle samples in absolute ethanol were dropped on to coated copper grids and allowed to evaporate. Micrographs were obtained using a high-resolution transmission electron microscope (HR-TEM) (FEI TECNAI 02) with the software TECNAI G2. The HR-TEM is a JOEL JEM-M2100 operating at 200 kV equipped with a Gatan Erlangshen ES500 digital camera.

Bioassay

Four concentrations for each tested nanoparticle are used (100, 200, 400, and 800 ppm) against 1st instar larvae of *S. cretica* by leaf dipping technique of fresh seedling 3–4 weeks old after germination. Four replicates were devoted for each tested concentration with 10 neonate larvae for each. Small stem pieces of maize seedling (3 cm in length) were dipped into each of the different tested concentrations for 5 min. The stem pieces were placed on a paper towels until dried. Newly hatched larvae of *S. cretica* were then gently placed by fine camel-hair brush into glass vials (2.5 × 9 cm), each supplied with treated stem pieces (Osman et al. 2014). Vials encountering neonate larvae and stem pieces were closed with cotton then kept in under the above mentioned laboratory conditions. Control treatments received the same protocol using distilled water. The experiment was divided into three groups and checked after 1, 3 and 7 days for the first, second and third group, respectively after exposure and recording numbers of dead larvae. The mortality percentages were corrected according to Abbott’s formula (Abbott 1925) and the LC50 and LC90 values for all treatments were calculated.

Biological studies

One hundred newly-hatched larvae of *S. cretica* were treated with LC50 values of the three tested nanoparticles (121.19, 416.82 and 405.71 ppm) for hydrophilic silica, hydrophobic silica and silver nanoparticles,
respectively and control was treated with distilled water. Vials were examined after 7 days and surviving larvae were kept individually in glass jars containing untreated maize cutting and maintained at 27±2°C and 60±5% R.H. Jars were examined daily until pupation occurred to determine the larval duration. Obtained pupae were carefully weighted before their transfer individually to glass vials (4 × 10 cm) covered with muslin fitted with rubber band. All vials were kept under the previously mentioned conditions, checked daily until adult emergence and the pupal duration recorded. Newly-emerged adults, each one male and one female were transferred into new glass vials provided with cotton wool saturated with 10% honey solution and covered with muslin fitted with rubber band and examined daily. Female longevity, male longevity, number of eggs laid per female, pre oviposition period were recorded. Newly laid eggs (50 per replicate per treatment) were kept in petri dishes and incubated until hatching to record both incubation period and percentage of hatchability.

Plant characteristics

The study was conducted at the experimental Station of the Faculty of Agricultural, Cairo University, Giza, Egypt throughout 2019 maize growing season to evaluate the effect of three tested nanoparticles (hydrophilic silica, hydrophobic silica and silver) each at three concentrations (50, 100 and 200 ppm) on certain maize plant characteristics (leaf area, extended height and leaf chlorophyll content) which related to infestation with *S. cretica* under field conditions.

The maize variety (single cross 2031) was chosen for the field evaluation as susceptible to infestation with *S. cretica* (Metwally 2015). Seeding occurred during the 2nd week of April, 2019. An experimental area of about 200 m² was divided into 37 equal plots (5.6 m² in area for each). Treatments were distributed in a randomized complete blocks design with four replicates. Each plot was 2.8 x 2.0 meters separated by ridges and irrigation canals of suitable size. Every plot consisted of 4 rows 2 meters long and 70 cm. apart. Each plot represented concentration and each row represents a spraying period. Ten days after germination, spray treatments was started performed and three concentrations (50, 100 and 200 ppm) of nanoparticles were applied for 4 categories; every day, every 3 days, every week and every 2 weeks. The control plants were sprayed with distilled water. Plant samples were examined after 30 days from the commencement of spraying. At every sampling date a sample of 10 plants were randomly selected from each treatment and the following data were recorded:

a. Extended height (EH) in cm. to represents the maximum length of the plant with all of its leaves extended up to their tips (Metwally 2015).

b. Leaf chlorophyll content (LCh) for the 3rd bottom leaf of the plant using a chlorophyll meter.

c. Leaf area (LA) which was measured by multiplying: Leaf length by maximum width by 0.75 (Francis et al. 1969).

Statistical analysis

Duncan post hoc test was applied to calculate the mortality rates of larvae and evaluate significant differences for all treatment and were performed with SPSS computing program (Version 16, SPSS Inc., Chicago, IL, USA). Concentration-mortality response curve for probit analysis were conducted as described by (Finney 1952). Bioassay data were pooled and analyzed (LC₅₀ and LC₉₀ confidence limit values) according to the methods described by Noack & Reichmuth (1978). The results are displayed as mean ± standard error with a 95% confidence level.
Table 1. Corrected mortality percentage of newly hatched larvae of Sesamia cretica treated with silver, hydrophilic silica and hydrophobic silica nanoparticles. Means followed by same letters are non-significant, small letters represent significant differences between concentrations.

Nanoparticle	Conc.	Corrected mortality percentages (mean ± SE)	F. value	P. value		
		Days after exposure				
		1	3	7		
Silver	100	0.00 ± 0.00aA	6.25 ± 0.48bA	18.75 ± 0.63cA	437.500	<0.001
	200	6.25 ± 0.48bB	12.50 ± 0.65bb	31.25 ± 0.48cB	580.357	<0.001
	400	12.50 ± 0.29aC	12.50 ± 0.29ab	56.25 ± 0.48bC	4835.526	<0.001
	800	12.50 ± 0.65aC	18.75 ± 0.48bC	62.50 ± 0.29cD	3053.571	<0.001
F. value		196.429	108.696	1 819.444	<0.001	<0.001
P. value		<0.001	<0.001	<0.001		
Hydrophilic silica	100	0.00 ± 0.00aA	25.00 ± 0.41bA	43.75 ± 0.75cA	1 982.143	<0.001
	200	12.50 ± 1.04aB	43.75 ± 0.75bb	62.50 ± 0.29cB	1 106.928	<0.001
	400	12.50 ± 0.65aB	43.75 ± 0.85bb	75.00 ± 0.71cC	1 780.063	<0.001
	800	31.25 ± 0.48aC	62.50 ± 0.29bC	81.25 ± 0.63cD	2 702.206	<0.001
F. value		384.036	608.108	709.459		
P. value		<0.001	<0.001	<0.001		
Hydrophobic silica	100	0.00 ± 0.00aA	6.25 ± 0.49bA	18.75 ± 0.48cA	596.591	<0.001
	200	6.25 ± 0.48aB	25.00 ± 0.82bB	37.50 ± 0.65cB	565.476	<0.001
	400	6.25 ± 0.48aB	31.25 ± 0.48bC	50.00 ± 0.71cC	1 508.152	<0.001
	800	12.50 ± 0.65aC	50.00 ± 0.71bB	62.50 ± 0.29cD	2 031.250	<0.001
F. value		119.048	801.282	1 133.475		
P. value		<0.001	<0.001	<0.001		

Table 2. Influences of different nanoparticles LC50 on some biological aspects of the greater corn borer Sesamia cretica. Means followed by same letters are non-significant.

Biological aspects (Mean ±SE)	Nanoparticles	Hydrophilic silica	Hydrophobic silica	Control	F. value	P. value
Larval duration	Silver	44.88 ± 1.47b	42.56 ± 2.32b	43.55 ± 0.91b		35.60 ± 0.65a
		16.714	<0.001			
Pupal weight		0.10 ± 0.01b	0.12 ± 0.01b	0.12 ± 0.01b	0.19 ± 0.01a	44.059
		<0.001	<0.001			
Pupal duration		8.50 ± 0.42b	9.00 ± 0.44b	7.36 ± 0.41a	7.24 ± 0.12a	8.156
		8.156	<0.001			
Male longevity		5.00 ± 0.45c	6.00 ± 0.00b	6.20 ± 0.37b	8.36 ± 0.11a	32.102
		32.102	<0.001			
Female longevity		6.40 ± 0.245b	6.40 ± 0.25b	6.20 ± 0.20b	7.75 ± 0.45a	4.569
		4.569	0.014			
Pre-oviposition period		3.60 ± 0.245b	2.20 ± 0.20a	2.20 ± 0.20a	2.60 ± 0.25a	8.733
		8.733	0.001			
No of Eggs laid / female		43.80 ± 16.87b	40.00 ± 14.75b	41.40 ± 17.61b	94.80 ± 13.47a	2.845
		2.845	0.071			
Incubation period	Non	4.40 ± 0.25b	5.40 ± 0.25c	3.60 ± 0.25a	13.556	0.001
		13.556	0.001			
Hatchability %	Non	34.40 ± 15.47b	39.00 ± 13.53b	84.80 ± 2.87a	12.726	<0.001

Results

Characterization of Nano materials

The TEM clearly shows that the size of silver nanoparticles was found to be 13±5.5 nm compared to <50 nm for hydrophilic silica nanoparticles and >50+10 nm for hydrophobic silica nanoparticles. The shape of the 3 tested nanoparticles was spherical-like shape as shown in Fig. 1.
Table 3. Effect of silver, hydrophilic silica and hydrophobic silica nanoparticles concentrations on extended-height (cm) of maize plants. Means followed by same letters are non-significant, small letters represent differences between dates of spraying and capital letters represent differences between concentrations, "n.s" refer to non-significant.

Nanoparticle	Conc.	Extended-height (cm) (Mean ± SE)	Frequency of spraying (Days)	F. value	P. value			
		Control	1	3	7	14		
Silver	50	138.2 ± 3.50a	187.5 ± 2.50dA	186.3 ± 2.39dA	166.8 ± 2.69cA	154.3 ± 2.18b	61.493	<0.001
	100	138.2 ± 3.50a	196.3 ± 2.39dAB	193.8 ± 2.39dA	176.8 ± 2.69cB	156.3 ± 2.39b	84.269	<0.001
	200	138.2 ± 3.50a	200.0 ± 4.08dB	198.3 ± 1.18dB	179.3 ± 3.25cB	160.0 ± 4.08b	59.958	<0.001
Hydrophilic silica	50	138.2 ± 3.50a	195.7 ± 3.25c	193.0 ± 1.78c	168.7 ± 4.27b	140.2 ± 1.84a	80.058	<0.001
	100	138.2 ± 3.50a	197.2 ± 4.92c	195.7 ± 3.38c	170.0 ± 4.08b	142.5 ± 4.79a	45.206	<0.001
	200	138.2 ± 3.50a	198.0 ± 4.55c	198.7 ± 5.15c	172.5 ± 4.33b	146.2 ± 2.39a	47.448	<0.001
Hydrophobic silica	50	138.2 ± 3.50a	151.2 ± 4.27b	147.5 ± 3.23ab	147.5 ± 1.44ab	138.7 ± 2.39a	3.481	0.034
	100	138.2 ± 3.50a	155.0 ± 3.54c	148.7 ± 4.27bc	148.0 ± 1.78abc	139.5 ± 2.10ab	4.818	0.011
	200	138.2 ± 3.50a	157.5 ± 4.79c	152.5 ± 2.50c	148.7 ± 1.25bc	141.2 ± 1.25ab	7.049	0.002

Effect of the different nanoparticles materials on larval stage

Nanoparticles induced a toxic effect on the 1st larval instar of *Sesamia creatica*. Toxicity increased with increase of exposure time (Table 1). For silver nanoparticles, 100 ppm concentration caused 0.00, 6.25 and 18.75% mortalities at 1, 3 and 7 days post treatment, respectively—while percentage were 6.25, 12.50 and 31.25% at 1, 3 and 7 days post treatment, respectively, for the concentration 200 ppm. Mortality increased with concentration as well, up to 12.50, 18.75 and 62.50% mortality after 1, 3 and 7 days post treatment, respectively with 800 ppm.

A similar effect occurred in hydrophobic silica nanoparticles, mortality percentages ranged (0.00% for 100 ppm) to (12.50% for 800 ppm) concentration at 1 day post treatment. While increased to 6.25, 25.00, 31.25 and 50.00% at 3 days post treatments at 100, 200, 400 and 800 ppm concentration, respectively. Also at 7 days post treatments, reached 18.75, 37.50, 50.00 and 62.50% for the concentrations, respectively.

A high toxic effect occurred when the larvae were treated with hydrophilic silica nanoparticles where one day post treatment mortality percentage received 0.00, 12.50, 62.50% and 31.25% for 100, 200, 400 and 800 ppm, respectively. 3 days post treatment,
Table 4. Effect of silver, hydrophilic silica and hydrophobic silica nanoparticles concentrations on leaf area (cm2) of maize plants. Means followed by same letters are non-significant, small letters represent differences between dates of spraying and capital letters represent differences between concentrations, "n.s" refer to non-significant.

Nanoparticle	Conc.	Leaf area (cm2) (Mean ± SE)	Frequency of spraying (Days)	F. value	P. value		
		Control	1	3	7	14	
Silver	50	220.3 ± 10.55a	427.8 ± 4.64d	413.7 ± 8.59d	349.5 ± 7.51c	250.9 ± 11.84b	109.184 <0.001
	100	220.3 ± 10.55a	437.4 ± 12.71c	431.1 ± 10.32d	354.4 ± 9.38b	251.3 ± 9.29a	90.732 <0.001
	200	220.3 ± 10.55a	444.3 ± 13.07d	436.4 ± 7.56d	375.4 ± 12.22c	265.1 ± 11.57b	82.357 <0.001
F. value			0.584	1.785	1.993	0.545	
P. value			n.s	n.s	n.s	n.s	
Hydrophilic silica	50	220.3 ± 10.55a	359.2 ± 10.34c	335.2 ± 9.54abC	307.2 ± 7.75b	242.6 ± 8.20a	40.612 <0.001
	100	220.3 ± 10.55a	388.2 ± 12.58c	386.3 ± 17.11BC	335.7 ± 11.23b	254.3 ± 6.09a	40.492 <0.001
	200	220.3 ± 10.55a	398.9 ± 17.36c	387.1 ± 13.32BC	341.4 ± 13.54b	257.4 ± 2.94a	40.030 <0.001
F. value		2.244	4.736	2.719	1.638		
P. value		n.s	0.039	n.s	n.s	n.s	
Hydrophobic silica	50	220.3 ± 10.55a	251.6 ± 4.80b	243.9 ± 3.21BA	230.4 ± 5.03ab	229.0 ± 8.75ab	3.196 0.044
	100	220.3 ± 10.55a	262.1 ± 6.75b	261.8 ± 9.08BA	231.3 ± 6.66a	233.0 ± 5.11a	5.897 0.005
	200	220.3 ± 10.55a	265.3 ± 7.22b	265.1 ± 4.55bB	233.5 ± 9.46a	233.1 ± 5.90a	6.841 0.002
F. value		1.267	3.421	0.048	0.117		
P. value		n.s	0.079	n.s	n.s	n.s	

mortality was 25.00, 43.75, 43.75 and 62.50% respectively for the same previous concentrations. As well as, mortality percentage increased to 43.75, 62.50, 75.00 and 81.25% after 7 days of treatments for the same previous concentrations, respectively. Differences between concentrations and days after exposure for each used nanoparticles were statistically highly significant (P<0.001).

Effect of the three nanoparticles on the first larval instar of *S. cretica* under constant laboratory conditions (27–28°C and 75–80% R.H.) is shown in Fig. 2. According to lethal concentration (LC$_{50}$), Hydrophilic silica nanoparticles was relatively more effective (LC$_{50}$=121.19) than silver nanoparticles (LC$_{50}$=405.72) followed by silica hydrophobic nanoparticles which was the least effective (LC$_{50}$=416.82).

Effect of nanoparticles on biological aspects

Different biological parameters were determined for the larvae of *S. cretica* when they were exposed to nanoparticles LC$_{50}$ illustrated in Table 2. There were statistically significant differences between all biological parameters in the treatments and those in the control. Silver nanoparticles prolonged the total larval duration to an average of 44.88 days followed by larvae exposed to hydrophobic silica nanoparticles recording an average of 43.55 days then the treatment of hydrophilic silica nanoparticles which recorded
Table 5. Effect of silver, hydrophilic silica and hydrophobic silica nanoparticles concentrations on leaf-chlorophyll content % of maize plants. Means followed by same letters are non-significant, small letters represent differences between dates of spraying and capital letters represent differences between concentrations, "n.s" refer to non-significant.

Nanoparticle	Conc.	Leaf-chlorophyll content % (Mean ± SE)	Frequency of spraying (Days)	F. value	P. value
Silver	50	41.4 ± 1.15a	45.8 ± 1.39b	3.080	0.049
	100	41.4 ± 1.15a	46.0 ± 0.50b	12.138	<0.001
	200	41.4 ± 1.15a	47.3 ± 0.45b	12.227	<0.001
Hydrophilic silica	50	41.4 ± 1.15a	45.5 ± 0.69b	5.098	0.009
	100	41.4 ± 1.15a	45.3 ± 0.58b	6.986	0.002
	200	41.4 ± 1.15a	45.3 ± 0.57bc	6.281	0.004
Hydrophobic silica	50	41.4 ± 1.15	41.4 ± 0.67	0.187	n.s
	100	41.4 ± 1.15	41.6 ± 0.43	0.052	n.s
	200	41.4 ± 1.15	42.1 ± 0.31	0.391	n.s

...an average of 42.56 days compared with an average 35.60 days in the control. While average weight of pupa decreased to 0.10, 0.12 and 0.12 g in silver, hydrophobic silica and hydrophilic silica nanoparticles treatments, respectively compared to the control (0.19 g). Treatment with hydrophilic silica nanoparticles increased average of pupal duration to (9.00 days) more than silver nanoparticles (8.50 days) and hydrophobic silica (7.36 days) compared to the control (7.24 days). Decreasing in male longevity was observed in the treatments which was 6.20, 6.00 and 5.00 days at hydrophobic silica, hydrophilic silica and silver nanoparticles, respectively compared to 8.36 days at control. Likewise at female longevity means decreased to 6.20, 6.40 and 6.40 days at hydrophobic silica, hydrophilic silica and silver nanoparticles, respectively compared to 7.75 days in control. The longest pre-oviposition period was achieved in silver nanoparticles treatments (with average 3.60 days) while both of hydrophobic silica and hydrophilic silica nanoparticles treatments revealed shorter longevity (with the same average 2.20 days) than that in control (with average 2.60 days. The three tested nanoparticles decreased number of eggs laid by female to 43.80, 41.40 and 40.00 eggs for silver, hydrophobic silica and hydrophilic silica nanoparticles, respectively compared to 94.80 eggs in...
control. No hatching eggs occurred at silver nanoparticles treatments but, percentage of hatchability was 34.40 and 39.00% with incubation period, 4.40 and 5.40 days at hydrophilic silica and hydrophobic silica nanoparticles, respectively compared to 84.80% and 3.60 days for control. There are significant differences between nanoparticles and control.

Effect of nanoparticles on certain botanical characteristics of the maize plant seedlings

Extended height (EH), leaf area (LA) and leaf chlorophyll content (LCh) for maize seedlings sprayed with 50, 100 and 200 ppm of each silver, hydrophilic silica and hydrophobic silica nanoparticles through 4 foliar spraying categories; every 1, 3, 7 and 14 days after germination are shown in Tables 3, 4 and 5.

1. **Extended height (EH)**

Effect of nanoparticles on the extended height of maize plants was illustrated in Table 3. For silver nanoparticles, increased in concentration and spraying rate caused increasing in extended height of maize plants. Highly impact on extended height was at spraying every day with means 187.5, 196.3 and 200.0 cm in 50, 100 and 200 ppm respectively. Furthermore, the lowest plant height was recorded at spraying every 14 days with means, 154.3, 156.3 and 160.0 cm for the same concentrations respectively, compared to 138.2 cm for control. Differences between all concentrations at all spraying rates except spraying every 14 days were statistically significant and there were non-significant differences between spraying every day and 3 days in all concentrations.

With regard to hydrophilic silica nanoparticles, extended height of maize plants appeared at the same trend where increased by increasing concentration and spraying rate. High impact on extended plant height with means 195.7, 197.2 and 198.0 cm was at spraying every day for 50, 100 and 200 ppm respectively, compared to 138.2 cm for control. Differences between spraying dates were statistically significant but, there were non-significant differences between all concentrations at all spraying rates.

Also for hydrophobic silica nanoparticles, spraying every day was the most effective with increasing concentration. Means were 151.2, 155.0 and 157.5 cm for 50, 100 and 200 ppm concentrations, respectively compared to 138.2 cm for control. Differences between spraying dates were statistically significant but, there was non-significant differences between all concentrations at all spraying rates.

In general, silver nanoparticles had the highest impact on extended plant height followed by hydrophilic silica nanoparticles then hydrophobic silica nanoparticles which revealed the lowest impact.
Fig. 2. Lethal concentration of different nanoparticles for first larval instar of Sesamia cretica after 7 days post treatment.

2. Leaf area (LA)

Table 4 shows the effect of nanoparticles on leaf area. Nanoparticles have positive effect on leaf area that nearly reach double at 200 ppm of silver nanoparticles which revealed the highest impact compared to control where leaf area increased to 427.8, 437.4 and 444.3 cm at spraying every day in 50, 100 and 200 ppm, respectively compared to 220.3 cm for control. Differences between spraying dates were statistically significant but, there was non-significant differences between all concentrations at all spraying rates.

For hydrophilic silica nanoparticles, the same positive impact was observed, spraying every day had the highest effect on leaf area with means 359.2, 388.2 and 398.9 for 50, 100 and 200 ppm, respectively compared to 220.3 cm for control. While the effect gradually decreased with spacing of the spraying periods. Differences between spraying dates were statistically significant but, there was non-significant differences between concentrations at spraying rates except spraying every 3 days.

In general, silver nanoparticle was the highest impact on leaf area followed by hydrophilic silica nanoparticles then hydrophobic silica nanoparticles which had the lower impact.

3. Leaf chlorophyll content (LCh)

As shown in Table 5, the largest leaf chlorophyll content occurred in plants that spraying every day with silver nanoparticle and the effect increased by increasing concentration (45.8, 46.0 and 47.3% for concentrations 50, 100 and 200 ppm, respectively). Leaf chlorophyll content gradually decreased with increased interval between spraying periods in each concentration. Differences between spraying dates were statistically significant but, there was non-significant differences between concentrations at spraying rates except spraying every 7 days.
Effect of hydrophilic silica nanoparticles on leaf chlorophyll content varied with different spraying periods. Concentration 50 ppm achieved the highest effect on the chlorophyll content at spraying every day and every 3 days. Where means were 45.5, 45.3 and 45.3% for 50, 100 and 200 ppm concentration at spraying every day, respectively. And 45.3, 43.7 and 43.6% for 50, 100 and 200 ppm concentration at spraying every 3 days, respectively. But leaf chlorophyll content decreased to (40.9 and 41.1%) for 100 ppm and (41.0%) for 200 ppm at spraying every 7 days and every 14 days compared with control (41.4%). Differences between spraying dates were statistically significant but, there was non-significant differences between all concentrations at spraying rates.

Effect of hydrophobic silica nanoparticles on leaf chlorophyll content was statistically non-significant. The means ranged (41.4–40.3%), (41.6–41.1%) and (42.1–41.0%) for 50, 100 and 200 ppm concentrations at frequency of spraying periods compared with control (41.4%).

Discussion

Several studies confirmed the efficiency of certain nanoparticles on Lepidopterous insect pests (Chakravarthy et al. 2012, El-Samahy et al. 2014, Devi et al. 2014, Osman et al. 2015, Yasur & Usha Rani 2015, El-Helaly et al. 2016, Ahmed et al. 2019, Hashem et al. 2019). However, apparently the effect of nanoparticles on the corn borer, *S. cretica* was scarcely investigated. Hence the present study is supposed to be the first to investigate the toxic effect of silver, hydrophilic silica and hydrophobic silica nanoparticles on the first larval instar of *S. cretica* under laboratory conditions. Hydrophilic silica caused the highest mortality percentage (81.25%) after 7 days post treatment by 800 ppm with LC50=121.19 ppm. In general, toxic effect increased by increasing exposure time in agreement with El-bendary & El-Helaly (2013) and El-Helaly et al. (2016) who stated that hydrophilic silica nanoparticles caused highest mortality percentage on neonate larvae of *S. littoralis* (Boisduval, 1833) after 15 days of treatment. Toxic effect for the same insect may be different by different plant species and exposure conditions to nanoparticles, El-Bendary & El-Helaly (2013) reported that treatment with 350 ppm of hydrophilic silica nanoparticles caused 98.24% mortality at neonate larvae of *S. littoralis* (Boisduval, 1833) on tomato plants but treatment with 500 ppm caused 89.82% on squash plants which stated by El-Helaly et al. (2016). Also El-Samahy et al. (2014) indicated that reduction rate of *Tuta absoluta* (Meyrick, 1917) larvae in tomato after treatment with 300 ppm silica nanoparticles increased gradually to maximum 100% after 15 days of treatment. The toxicity of SiO2 nanoparticles is due to their binding to the insect cuticle, followed by physico-sorption of waxes and lipids, leading to insect dehydration (Benelli 2018).

Hydrophobic silica nanoparticles caused lower toxic effect (LC50=416.82 ppm) than silica hydrophilic nanoparticles with highest toxicity (LC50=121.19 ppm) and which caused 62.50% mortality for 1st larval instar after treated with 800 ppm concentration. However, Abd El Naby (2019) stated that hydrophobic silica nanoparticles caused the highest mortality 83.0% than hydrophilic silica nanoparticles 69.0% on 2nd larval instar of *S. littoralis* (Boisduval, 1833) when treated with 20 g/L after 24 h of treatment on castor leaf plant.

In the present study, silver nanoparticles caused acceptable mortality rates when applied at high concentrations (LC50=405.71 ppm) against the 1st larval instar of *S. cretica* comparing with hydrophilic silica nanoparticles but effected on long run on biological aspects. While silver nanoparticles increased larval duration and pupal duration, reduce male and female longevity than control and prevent eggs hatchability. That is possible due to mode of action of silver nanoparticles which is up and
down regulate key insect genes, reducing protein synthesis and gonadotrophin release, leading to developmental damages and reproductive failure (Benelli 2018). This result tends to agree with Yasur & Usha Rani (2015) who indicated that larval and pupal body weights of *S. litura* (Fabricius, 1775) and *Achaea janata* insects increased along with the increase of the concentrations of silver nanoparticles. Also Chakravarthy et al. (2012) stated that Nano-Ag caused maximum 56.89% mortality at 2400 ppm on the 2nd larval instar of *S. litura* (Fabricius, 1775) with LC50=1 403.14 ppm and reduced insect growth with prolonged larval period and larvae became sluggish movement and the oozing of the body contents eventually lead them to death. As that Ahmed et al. (2019) indicated that LC50 up to 1000.9 ppm for 2nd larval instar of *S. littoralis* (Boisduval, 1833) when treatment with silver nanoparticles where concentration 999 ppm caused 50% mortality. But the results disagreed with the results of Devi et al. (2014) where found that silver nanoparticles LC50 value decreased to 33.383 ppm for first larval instar of *H. armigera* (Hübner, 1808) on cotton leaves where treatment with 100 ppm caused 94.0% mortality. This differences may be due to the differences in insect species.

Both types of silica nanoparticles which used in this study effect on biological aspects of *S. cretica* where increased larval duration, pupal duration but reduced pupal weight, male longevity, female longevity, No. of eggs laid by female, incubation period and hatchability percentage. Similar observation was observed by El-Bendary & El-Helaly (2013) and El-Helaly et al. (2016) when treatment neonate larvae of *S. littoralis* (Boisduval, 1833) with hydrophilic silica nanoparticles. Also, Abd El Naby (2019) stated that treatment the 2nd larval instar of *S. littoralis* (Boisduval, 1833) with both hydrophilic silica (LC50=10.76 g/L) and hydrophobic silica nanoparticles (LC50=10.05 g/L) increased larval duration but reduced all of pupal duration, pupal weight, adult longevity, number of eggs laid by female and hatchability percentage. Osman et al. (2015) also confirmed that silica nanoparticles have a toxic effect on the 2nd larval instar of *S. littoralis* (Boisduval, 1833) where reduced the 6th larval instar weight, pupation rate pupal weight and adult emergence rate. This effect increased by increasing concentration.

Besides the negative effect of nanoparticles on the previously mentioned biological aspects of insect life, nanoparticles play an important role in the improvement of plant growth and some botanical characteristics including leaf area, stem height, chlorophyll content, germination, number of leaves and yield (Salama 2012, Lu et al. 2015, Roohizadeh et al. 2015, El-Helaly et al. 2016, Yassen et al. 2017, Amer & El- Emary 2018, Prihastanti et al. 2018). Several investigations referred to a splendid effect of nanoparticles especially on maize plants (Yuvakkumara et al. 2011, Salama 2012, Suriyaprabha et al. 2012, Suriyaprabha et al. 2014, Jafari et al. 2018, Sehnal et al. 2019).

Recent studies indicated that there was a strong relationship between maize infestations with *S. cretica* and some botanical characteristic of maize plants including the leaf angle and extended plant height and chlorophyll content. Plants with narrow leaf angle and short extended height may receive relatively less infestation with *S. cretica* in maize fields (Al-Naggar et al. 2000, Saad El-Deen 2008 and Metwally 2015). Leaf chlorophyll content is closely related to the resistance of maize plants to *S. cretica*. It is anticipated to increase of chlorophyll content in maize leaves promotes resistance to the *S. cretica* as mentioned by Metwally (2015) who stated that increasing leaf chlorophyll content may be a point to the lower infestation by *S. cretica*.

This study confirmed that foliar spraying of silver, hydrophilic silica and hydrophobic silica nanoparticles increased both the leaf area and extended height of maize plants. Effect of the frequency spraying of maize plants with nanoparticles indicated that daily spraying
induced a positive effect on the leaf area which decreased by prolong the spraying intervals. This means that spraying every day was the most effective followed by spraying every 3 days then every 7 days then every 14 days. Also leaf area increased by increasing concentration, 200 ppm was the most effective than 100 pm and 50 ppm. Similar results were observed by Suriyaprabha et al. (2012) who treated the soil with silica nanoparticles, leaf area and stem height increased by increasing concentration after 20 days from plantation. Also Berahmand et al. (2012) indicated that treatment with silver nanoparticles in the irrigation water increased maize plant height.

Effect of nanoparticles on leaf chlorophyll content was varied according to type of nanoparticles, concentration used and frequency of spraying. For silver nanoparticles, spraying every day was the most effective with increasing concentration followed by spraying every 3 days then every 7 days and spraying every 14 day was the least effective on leaf chlorophyll content. But this result is not with the same line with Salama (2012) who stated that the low concentration of silver nanoparticle lesser than 60 ppm increased leaf area and chlorophyll content of maize plants but high concentrations up to 60 ppm have inhibitory effect. This difference may be due to the method of application.

Hydrophobic silica nanoparticles increased the chlorophyll content of maize plants in concentration of 50 ppm but the effect decreased by increasing concentration and the extending of the spraying intervals. In other meaning the high concentrations of silica nanoparticles had a negative effect on chlorophyll content. Similar observation was obtained by Suriyaprabha et al. (2012) who stated that high concentration of silica nanoparticles more than 10 kg/ha of soil reduce leaf chlorophyll content of maize plants. Also Suriyaprabha et al. (2014) confirmed that foliar spraying with 15 g/L of silica nanoparticles increased leaf chlorophyll content of maize plants.

On the other hand, our results disagree with Amer & El-Emary (2018) who stated that under foliar application with high concentration 300 mg/L of silica nanoparticles, leaf chlorophyll content increased and that may be due to increased leaf area that renders better light absorption and photosynthetic activity of chlorophyll a and b.

For hydrophobic silica nanoparticles, the spraying every day increased leaf chlorophyll content gradually with increasing concentration. But frequency of spraying every 3, 7 and 14 days reduced leaf chlorophyll content at all concentrations. Although the leaf area increases with increasing concentration, the chlorophyll content decreases with increasing concentration and this can be explained by anatomical studies and the effect on absorption of elements. These previous results agreed with Suriyaprabha et al. (2012) who mentioned that despite of increasing leaf area in maize plants treated with silica nanoparticles, the leaf chlorophyll content decreased.

In general, silver nanoparticle revealed the most effective on botanical characteristics of the maize plants at all concentrations and frequency of spraying followed by hydrophilic silica nanoparticles, then hydrophobic silica nanoparticles.

Conclusion

In this study, silver, hydrophilic silica and hydrophobic silica nanoparticles have a toxic effect on the first larval instar of S. cretica under laboratory condition. Hydrophilic silica was the most effective followed by Silver then hydrophobic silica nanoparticles. All nanoparticles increased larval duration, pupal duration and incubation period for eggs but reduced pupal weight, male and female longevity, number of eggs laid per female and hatchability percentage in comparison with control. Three types of nanoparticles had a noticeable effect on botanical characteristics of maize, in particular on increasing plant
height and leaf area. The effect strengthened by increasing concentration and spraying periods. The same effect occurred on leaf chlorophyll content with silver nanoparticles, but high concentration of hydrophilic silica nanoparticles reduced chlorophyll content while hydrophobic silica nanoparticles have no statistically significant effect on leaf chlorophyll content. This study recommends that the application of nanoparticles improve plant strength and have a toxic effect on corn borer insect pest *S. cretica*.

References

Abbott WS. 1925. A method of computing the effectiveness of an insecticide. *Journal of Economic Entomology*, 18: 265–267.

Abd El Naby KM. 2019. Effect on nano silica on some biological and histological aspects of cotton leaf worm larvae *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae). Thesis, Faculty of Agriculture, Cairo University, 104 pp.

Abd-El-Salam SA, Hamzah AM, El-Taweelah NM. 2015. Aluminum and zinc oxides nanoparticles as a new method in controlling the red flour beetle, *Tribolium castaneum* (Herbest) compared to malathion insecticide. *International Journal Scientific Research in Agricultural Science*, 2: 1–6.

Abdul Rahuman A. 2012. Efficacy of plant-mediated synthesized silver nanoparticles against *Sitophilus oryzae*. *Journal of Biopesticides*, 5: 95–102.

Ahmed KS, Mikhail WZA, Sobhy HM, Radwan EMM, Salaheldin TA. 2019. Impact of nano silver-profenofos on cotton leafworm, *Spodoptera littoralis* (Boisd.) larvae. *Bulletin of the National Research Centre*, 43(46): 1–9.

Almutairi ZM, Alharbi A. 2015. Effect of Silver Nanoparticles on Seed Germination of Crop Plants. *Journal of Advanced in Agriculture*, 4(1): 280–285.

Al-Naggar AM, El-Ganayni AA, El-Lakany AM, El-Sherbeiny HY, Soliman MSM. 2000. Combining ability and associations of some maize traits with relation to resistance to *Sesamia cretica*. *Egyptian Journal of Plant Breeding*, 4: 55–70.

Amer MM, El-Emary FA. 2018. Impact of Foliar with Nano–silica in Mitigation of Salt Stress on Some Soil Properties, Crop–Water Productivity and Anatomical Structure of Maize and Faba Bean. *Environment, Biodiversity & Soil Security*, 2: 25–38.

Ayoub HA, Khairy M, Rashwan FA, Abdel-Hafez HF. 2017. Synthesis and characterization of silica nanostructures for cotton leaf worm control. *Journal of Nanostructure in Chemistry*, 7(2): 91–100.

Benelli G. 2018. Mode of action of nanoparticles against insects. *Environmental Science and Pollution Research*, 25: 12329–12341.

Berahmand AA, Panahi AG, Sahabi H, Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A, Karimpour H, Gallehgor O. 2012. Effects Silver Nanoparticles and Magnetic Field on Growth of Fodder Maize (*Zea mays* L.). *Biological Trace Element Research*, 149: 419–424.

Byczyńska A. 2017. Nano–silver as a potential biostimulant for plant - a review. *World Scientific News*, 86(3): 180–192.

Chakravarty A, Chandrashekaraiya K, Kandakoor SB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P. 2012. Bio efficacy of inorganic nanoparticles CdS nano-Ag and nano-TiO2 against *Spodoptera litura* F (Lepidoptera: Noctuidae). *Current Biotica*, 6(3): 271–281.

Chinnamuthu CR, Murugesu BP. 2009. Nanotechnology and Agroecosystem. *Madras Agricultural Journal*, 96: 17–31.

Cicek S, Nadaroglu H. 2015. The use of nanotechnology in the agriculture. *Advanced Nano Research*, 3(4): 207–223.

Devi GD, Murugan K, Selvam CP. 2014. Green synthesis of silver nanoparticles using *Euphorbia hirta* (Euphorbiaceae) leaf
extract against crop pest of cotton bollworm, *Helicoverpa armigera* (Lepidoptera: Noctuidae). *Journal of Bionpesticides, 7*: 54–66.

El-Bendary HM, El-Helaly AA. 2013. First record nanotechnology in agriculture: silica nanoparticles a potential new insecticide for pest control. *Applied Scientific Reports, 4*(3): 241–246.

El-Helaly AA, El-Bendary HM, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S. 2016. The silica-nano particles treatment of squash foliage and survival and development of *Spodoptera littoralis* (Bosid.) larvae. *Journal of Entomology and Zoology Studies, 4*(1): 175–180.

El-Samahy MFM, El-Ghobary AM, Khafagy IF. 2014. Using silica nanoparticles and neemol extract as new approaches to control *Tuta absoluta* (Meyrick) in tomato under field conditions, *International Journal of Plant & Soil Science, 3*(10): 1355–1365.

Finney DJ. 1952. Probit analysis. IIndEdition. Cambridge University Press, 318 pp.

Francis CA, Rutger JN, Palmer AFE. 1969. A rapid method for plant leaf area estimation in maize (*Zea mays* L.). *Crop Science, 9*: 537–539.

Lu MMD, De Silva DMR, Peralta EK, Fajardo AN, Peralta MM. 2015. Effects of Nanosilica Powder from Rice Hull Ash on Seed Germination of Tomato (*Lycopersicon esculentum*). *Philippine e-Journal for Applied Research and Development, 5*: 11–22.

Hashem MY, Sabbour MM, Ahmed SS, Abd Elrhaman A, Montaser AS, Mohamed KM. 2019. Efficacy of silica nanoparticles on cotton leaf worm larvae, *Spodoptera littoralis* (Bosid.) (Lepidoptera: Noctuidae). *Plant Archives, 19*(2): 2601–2607.

Jafari S, Davoodi D, Jonoubi P, Majd A, Alizadeh H, Shobbar ZS. 2018. Anatomical assessment of maize (*Zea mays* L.) seedlings exposed to colloidal silver nanoparticles. *Applied Ecology and Environmental Research, 16*(3): 2391–2401.

Marafon AC, Endres L. 2013. Silicon: fertilization and nutrition in higher plants. *Amazonian Journal of Agricultural and Environmental Sciences, 56*(4): 380–388.

Metwally SA. 2015. The relative susceptibility of certain maize (*Zea mays* L.) cultivars to infestation with the pink stem borer, *Sesamia cretica* Led. (Lepidoptera: Noctuidae). M. Sc. Thesis, Fac. Agric., Cairo Univ., Egypt, 132 pp.

Metwally SA, Ahmed SS, Safina SA, Semeada AM, El-Sherif SI. 2015. The relative susceptibility of certain recommended maize (*Zea mays* L.) cultivars to infestation with the Pink Stem Borer, *Sesamia cretica* Led. (Lepidoptera: Noctuidae) under natural infestation conditions at two different ecosystems in Egypt. *Journal of Agri-Food and Applied Sciences, 3*(3): 46–52.

Moyal P, El-Said MM, Mosad MM. 2002. Spatio-temporal distribution and enumerative sampling of the pink borer, *Sesamia cretica* Led. (Lepidoptera: Noctuidae), in maize fields in Egypt. *Insect Science and Its Application, 22*(1): 29–40.

Ndiritu CG. 1999. Biotechnology in Africa; Why the controversy? In: Persley GJ, Lantin MM (Eds.). 2000. Agricultural biotechnology and the poor: Proceedings of an International Conference, Washington, D. C., pp. 109–114.

Noack S, Reichmuth CH. 1978. Ein rechnerisches verfahren zur bestimmung von beliebigen dosis-werten eines wirkstoffes aus empirisch ermittelten dosis-wirkung-datem-mitt. *Die Biologische Bundesanstalt für Land-und Forstwirtschaft, 185*: 1–49.

Onukogu FA. 1984. Oviposition behaviour, biology, and host plants resistance studies of the West African maize borer, *Sesamia calamistis* Hmps. Maydica, 24: 121–132.

Orhun GE. 2013. “Maize for life,” *International Journal of Food Science and Nutrition Engineering, 3*(2): 13–16.

Osman HH, Abdel-Hafez HF, Khidr AA. 2015. Comparison between the Efficacy of Two
Nano-Particles and Effective Microorganisms on Some Biological and Biochemical Aspects of Spodoptera littorals. *International Journal of Advance Research and Innovation*, 3(6): 2319–1473.

Osman MAM, Mosleh YY, Mahmoud MF. 2014. Toxicity and biochemical impacts of spinosad on the Pink Corn Stem Borer Sesamia cretica Led. (Lepidoptera: Noctuidae). *Munis Entomology & Zoology*, 9(1): 429–439.

Parisi C, Vigani M, Rodríguez-Cerezo E. 2015. Agricultural nanotechnologies: what are the current possibilities?. *Nano Today*, 10(2): 124–127.

Prihastanti E, Subagyo A, Ngadiwiyana N. 2018. Effect of combination of NPK and nano silica on the levels of β-carotene and nutritional value of corn (Zea mays L.). *IOP Conference Series: Materials Science and Engineering*, 434: 1–6.

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-videa JR, Gardea-Torresdey JL. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. *Journal of Agriculture and Food Chemistry*, 58(9): 3485–3498.

Roohizadeh G, Arbabian S, Tajadod G, Majd A, Salimpour F. 2015. The study of Nano silica effects on the total protein content and the activities of Catalase, Peroxidase and Superoxide Dismutase of Vicia faba L. *Tropical Plant Research*, 2(1): 47–50.

Rouhani M, Samih MA, Kalantari S. 2012. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). *Journal of the Entomological Research Society*, 4(4): 297–305.

Saad El-Deen EH. 2008. Effect of some maize genotypes on growth and reproduction of Sesamia cretica Led. under natural and artificial infestation conditions. M. Sc. Thesis, Faculty of Agriculture, Cairo University, Egypt, 112 pp.

Salama HMM. 2012. Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). *International Research Journal of Biotechnology*, 3(10): 190–197.

Sehnal K, Hosnedlova B, Docekalova M, Stankova M, Uhlirova D, Tothova Z, Kepinska M, Milnerowicz H, Fernandez C, Ruttikay-Nedeky B, Nguyen H, Ofomaja A, Sochor J, Kizek R. 2019. An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves (Salvia officinalis L.) on Germinated Plants of Maize (Zea mays L.) *Nanomaterials*, 9: 1550.

Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY. 2015. Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Firoz M. (Eds). *Nanotechnology and Plant Sciences*. Springer International Publishing Switzerland, pp. 19–35.

Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. *Journal of Nanoparticle Research*, 1: 1–14.

Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N. 2014. Foliar Application of Silica Nanoparticles on the Phytochemical Responses of Maize (Zea mays L.) and Its Toxicological Behavior. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*, 44(8): 1128–1131.

Tripathi DK, Singh VP, Kumar D, Chauhan DK. 2012. Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. *Acta Physiologiae Plantarum*, 34(1): 279–289.

Vani C, Brindhaa U. 2013. Silica nanoparticles as nanocides against Corcyra cephaonica (S.), the stored grain pest. *International Journal of Pharma and Bio Sciences*, 4(3): 1108–1118.

Yassen A, Abdallah E, Gaballah M, Zaghloul S. 2017. Role of Silicon Dioxide Nano Fertilizer
in Mitigating Salt Stress on Growth, Yield and Chemical Composition of Cucumber (Cucumis sativus L.). *International Journal of Agricultural Research*, 12: 130–135.

Yasur J, Usha Rani P. 2015. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. *Chemosphere*, 124: 92–102.

Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P. 2011. Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). *International Journal of Green Nanotechnology*, 3(3): 180–190.

Zhiming X, Fengbin S, Hongwen X, Hongbo S, Ri S. 2014. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. *The Scientific World Journal*, 1: 1–6.

Received: 13.01.2021
Accepted: 05.03.2021
Published online: 09.06.2021