The risk of smoking on multiple sclerosis: a meta-analysis based on 20,626 cases from case-control and cohort studies

Peng Zhang, Rui Wang, Zhijun Li, Yuhan Wang, Chunshi Gao, Xin Lv, Yuanyuan Song, Bo Li

Background. Multiple sclerosis (MS) has become a disease that represents a tremendous burden on patients, families, and societies. The exact etiology of MS is still unclear, but it is believed that a combination of genetic and environmental factors contribute to this disease. Although some meta-analyses on the association between smoking and MS have been previously published, a number of new studies with larger population data have published since then. Consequently, these additional critical articles need to be taken into consideration. Method. We reviewed articles by searching in PubMed and EMBASE. Both conservative and non-conservative models were used to investigate the association between smoking and the susceptibility to MS. We also explored the effect of smoking on the susceptibility to MS in strata of different genders and smoking habits. The association between passive smoking and MS was also explored. Results. The results of this study suggest that smoking is a risk factor for MS (conservative model: odds ratio (OR) 1.55, 95%CI: 1.48-1.62, p<0.001; non-conservative model: 1.57, 95%CI: 1.50-1.64, p<0.001). Smoking appears to increase the risk of MS more in men than in women and in current smokers more than in past smokers. People who exposed to passive smoking have higher risk of MS than those unexposed. Conclusion. This study demonstrated that exposure to smoking is an important risk factor for MS. People will benefit from smoking cessation, and policymakers should pay attention to the association between smoking and MS.
The risk of smoking on multiple sclerosis: A meta-analysis based on 20,626 cases from case-control and cohort studies.

Peng Zhang1 Rui Wang1 Zhijun Li1 Yuhan Wang1 Chunshi Gao1 Xin Lv1 Yuanyuan Song1 Bo Li1

1 Department of Epidemiology and Biostatistics, Jilin University School of Public Health, Changchun, Jilin, China

Corresponding author:

Bo Li

1163 Xinmin Street, Changchun, Jilin 130021, China

E-mail: li_bo@jlu.edu.cn
Abstract:

Background. Multiple sclerosis (MS) has become a disease that represents a tremendous burden on patients, families, and societies. The exact etiology of MS is still unclear, but it is believed that a combination of genetic and environmental factors contribute to this disease. Although some meta-analyses on the association between smoking and MS have been previously published, a number of new studies with larger population data have published since then. Consequently, these additional critical articles need to be taken into consideration.

Method. We reviewed articles by searching in PubMed and EMBASE. Both conservative and non-conservative models were used to investigate the association between smoking and the susceptibility to MS. We also explored the effect of smoking on the susceptibility to MS in strata of different genders and smoking habits. The association between passive smoking and MS was also explored.

Results. The results of this study suggest that smoking is a risk factor for MS (conservative model: odds ratio (OR) 1.55, 95%CI: 1.48-1.62, p<0.001; non-conservative model: 1.57, 95%CI: 1.50-1.64, p<0.001). Smoking appears to increase the risk of MS more in men than in women and in current smokers more than in past smokers. People who exposed to passive smoking have higher risk of MS than those unexposed.

Conclusion. This study demonstrated that exposure to smoking is an important risk factor for MS. People will benefit from smoking cessation, and policymakers should pay attention to the association between smoking and MS.
Introduction:

Multiple sclerosis (MS) is an inflammatory disease that occurs when the spinal cord and the insulating covers of the nerve cells in the brain are damaged. This damage affects the nervous system’s ability to communicate, resulting in a number of physical and mental problems (Compston & Coles 2002; Compston & Coles 2008). Evidence indicates that MS is an autoimmune disease that directly affects the central nervous system (CNS) myelin or oligodendrocytes. A variety of neurological signs and symptoms are determined by the distribution of white matter lesions in the nervous system that may occur in sudden attacks or build up over time (Compston & Coles 2008).

In 2013, there were about 1.5 million people who suffered from MS around the world, with rates varying widely in different regions and populations (WHO 2013). 19,800 people died from MS in 2013, a statistic that was up from 12,400 people in 1990 (Collaborators. 2015). The disease usually occurs between the ages of 20 to 50, occupying the leading position of disability among young adults. The risk of MS for females is two times as high as males (Milo & Kahana 2010).

The cause of MS is still not clear, but through rigorous epidemiological investigation, genetic variations, the Epstein-Barr virus infection, vitamin D nutrition and cigarette smoking have been identified as likely causal factors for MS (Handel et al. 2010; Ramagopalan et al. 2009; Simon et al. 2012).

A previous meta-analysis published in 2014 reported a pooled odds ratio (OR) of 1.51 (95%CI: 1.38-1.65) for the association between smoking and MS susceptibility (O’Gorman & Broadley 2014). However, the evidence was suggestive rather than sufficient about the role of
smoking in the etiology of MS because the sample sizes were relatively small. Many recent studies have explored the association between smoking and MS either directly or indirectly. Therefore, we conducted this meta-analysis to investigate the association in a larger sample. Moreover, we aimed to detect the effect of smoking on the incidence of MS in strata of different genders and smoking habits.

Materials and methods

Search strategy

We identified published studies that explored the association between smoking and the risk of MS by searching the PubMed and EMBASE databases from January 1st, 1980 to March 31st, 2015. The following search terms were used: “multiple sclerosis”, “case-control”, “cohort study”, “birth cohort”, “survival analysis”, “cigarette smoking”, “tobacco smoking” and “cigars”. In addition, the reference list of retrieved papers was also reviewed to identify additional relevant studies.

Selection criteria

The eligible studies needed to meet the following criteria: (1) the study must be an original study, (2) the study must investigate the association between smoking and the incidence of multiple sclerosis, (3) the study must include at least 50 cases, and (4) the study must report the odds ratio (OR), relative risk (RR) with its corresponding 95% confidence interval (95%CI), or the number of events to calculate them.

Study selection and data extraction

The articles retrieved from the database were independently evaluated by two reviewers
(Peng Zhang and Rui Wang) based on the aforementioned selection criteria. Studies designed as systematic review and duplicate studies of the same population were excluded. Articles that contained multiple study populations were divided into separate studies. Disagreements were resolved by discussion. Articles in which disagreements could not be resolved were all included. The following information were extracted from the eligible studies: first author, year of publication, country of origin, OR or RR with its 95%CI, study design, the method of information collection, method of MS diagnosis, and the relationship between disease onset and the duration of smoking.

Statistical analysis

The rare disease assumption was used to combine the odds ratio (OR) and relative risk (RR) (Clayton & Hills 1993). If the RR or OR and its 95% CI were not reported but sufficient information was available, we used previously described methods to calculate it (Bland & Altman 2000). Stata12.0 was used to compute the pooled ORs and their 95% CI, to generate forest plots and to assess the heterogeneity of the included studies. As described in the former meta-analysis (Handel et al. 2011), we also performed this meta-analysis using conservative (including only studies where smoking behavior was described prior to disease onset) and non-conservative (all studies regardless of whether smoking behavior occurred before onset or concurrently) models. To test the stability of the results, we investigated the influence of a single study on the overall effect value by removing one study each time. ORs were calculated among the subgroups of studies and compared across them. Possible publication bias was assessed using Begg’s funnel plot and Egger’s test (Begg & Mazumdar 1994; Egger et al. 1997).
Results

Search result and study characteristics

After selecting studies according to the inclusion criteria, 47 articles considered for further review. Six of these 47 articles could not provide outcome information (Brosseau et al. 1993; Guimond et al. 2014; Lauer 2006; Nortvedt et al. 2005; Senecal-Quevillon et al. 1986; Turner et al. 2007). We could not obtain the full article for 5 of the 47 articles (Dobosz et al. 2012; Frutos-Alegria et al. 2002; Frutos Alegria et al. 2002; Ragonese P et al. 2007; Rodriguez Regal et al. 2009). Ten of these 47 articles contained duplicate study populations (Baarnhielm et al. 2012; Hedstrom et al. 2011a; Hedstrom et al. 2009; Hedstrom et al. 2013a; Hedstrom et al. 2014b; Hedstrom et al. 2011b; Munger et al. 2009; Munger et al. 2003; Sundqvist et al. 2012; Sundstrom et al. 2008). Ultimately, 26 eligible articles containing 29 study populations were identified (Al-Afasy et al. 2013; Alonso et al. 2011; Asadollahi et al. 2013; Briggs et al. 2014; Carlens et al. 2010; Ghadirian et al. 2001; Gustavsen et al. 2014; Hedstrom et al. 2013b; Hernan et al. 2005; Hernan et al. 2001; Jafari et al. 2009; Kotzamani et al. 2012; Maghzi et al. 2011; Mansouri et al. 2014; O’Gorman et al. 2014; Pekmezovic et al. 2006; Ragnedda et al. 2015; Ramagopalan et al. 2013; Riise et al. 2003; Russo et al. 2008; Silva et al. 2009; Simon et al. 2015; Simon et al. 2010; Thorogood & Hannaford 1998; Villard-Mackintosh & Vessey 1993; Zorzon et al. 2003). A flow chart for the study selection process was shown in Fig. 1. There were 19,834 cases of MS and 21,350 controls in case-control studies; 792 cases of MS occurred in 601,492 individuals in cohort studies. Among these studies, 4 were conducted in Iran, 4 in America, 3 in England, 3 in Norway, 2 in Canada, 3 in Sweden, 1 in Brazil, 1 in Greece, 2 in Australia, 1 in the Netherlands, 1 in Kuwait,
3 in Italy, 1 in Serbia. The main characteristics of the included studies are summarized in Table 1.

Smoking and MS susceptibility

The conservative model contained 24 studies that investigated the association between smoking and MS. Moderate heterogeneity was detected ($I^2=37.2\%, p=0.035$). As described in Fig. 2, the pooled OR was 1.55 (95%CI: 1.48-1.62, $p<0.001$), indicating that ever-smoking increases the risk of MS by 55% compared with never-smoking individuals. When including all 29 studies in the non-conservative model, we obtained similar results (OR=1.57, 95%CI: 1.50-1.64, $p<0.001$, heterogeneity: $I^2=47.3\%, p=0.003$; Fig. 3). There were no significant differences among the subgroups based on study designs, diagnostic criteria, or the data collection methods; however, not adjusting for confounders may overestimate the risk between smoking and MS susceptibility (Table 2).

Different effects of genders and smoking habits

In total, 10 studies provided enough information to report the association between smoking and MS within genders (Asadollahi et al. 2013; Carlens et al. 2010; Hedstrom et al. 2009; Hernan et al. 2001; Kotzamani et al. 2012; Maghzi et al. 2011; O'Gorman et al. 2014; Simon et al. 2010; Thorogood & Hannaford 1998; Villard-Mackintosh & Vessey 1993). Significant differences were detected between different genders ($\chi^2=11.21$, $p=0.001$, Fig. 4). Smoking in men is more dangerous than women. Similarly, we included 7 studies that provided data about the effects of different smoking habits on susceptibility to MS (Carlens et al. 2010; Hedstrom et al. 2013a;
Hernan et al. 2005; Hernan et al. 2001; Jafari et al. 2009; O’Gorman et al. 2014; Zorzon et al. 2003). Being a current smoker increases the risk of MS by 83% risk compared with nonsmokers; past smoking increases the risk of MS by 58% compared with nonsmokers. Significant differences were detected between the effects of current and past smoking versus non-smokers ($\chi^2=12.66$, $p<0.001$, Fig. 5). In order to explore the impact of passive smoking (active smokers were excluded) on the risk of MS, we identified 3 eligible articles containing 4 study populations (Hedstrom et al. 2014a; Hedstrom et al. 2013b; Ramagopalan et al. 2013). As described in Fig. 6, the pooled OR was 1.24 (95%CI: 1.03-1.49, $p=0.028$), indicating that exposure to passive smoking increases the risk of MS by 24% compared with unexposed individuals.

Sensitivity analysis and publication bias

Fig. 7 implied the funnel plot was symmetrical, suggesting no publication bias. The Begg rank correction test and Egger linear regression showed no asymmetry (Begg, $p=0.612$; Egger, $p=0.204$).

Fig. 8 showed the result of the sensitivity analysis by removing one study in each turn. This procedure showed that the study by Hedstrom in 2013 significantly impacted the main result. When switched from fixed effects model to random effects model, the OR changed from 1.57 (95%CI: 1.50-1.64, $p<0.001$) to 1.63 (95%CI: 1.51-1.76, $p<0.001$), suggesting that the result was robustness.
Discussion

Our meta-analysis showed there was a strong association between smoking and MS susceptibility. Ever-smoking could increase the risk of MS by a more than 50% risk compared with never-smoking population. The non-conservative model obtained a similar result compared with the conservative model, suggesting a robustness of the results. The subgroup analyses showed that different study designs, diagnostic criteria and types of information resource had little impact on the relationship between smoking and MS susceptibility. However, inadequate adjustment may overestimate the risk between smoking and MS susceptibility. The sensitivity analysis showed the study by Hedstrom2013 significantly impacted the main result. Therefore, we reviewed this article and found that it included 6990 cases (no snuff use) and 8279 controls (no snuff use) that constituted 46.32% of the entire meta-analysis. Male smokers were shown to have a higher risk of developing MS than female, but the exact number of cigarettes consumed by different genders per day due to different lifestyle habits was unavailable, so we were unable to draw a firm conclusion. Significant differences were detected between the effects of current and former smokers compared with non-smokers. Current smoking is more dangerous than past smoking, which informed individuals of the benefits of smoking cessation. Passive smoking is a risk factor for MS in non-smoking population. Smoke-free environment in public places and home is vital to people’s health.

Comparing with three former meta-analyses (Hawkes 2007 (OR=1.34), Handel 2011 (OR=1.52), O’Gorman 2014 (OR=1.51)), our study obtained a greater effect estimates between smoking and MS susceptibility (OR=1.57) (Handel et al. 2011; Hawkes 2007; O’Gorman & Broadley 2014). Studies published from 2013 to 2015 accounted for 78.62% of the entire meta-
analysis and reported higher effect estimates.

The etiology of MS is still unknown, and both genetic and environmental factors may contribute to this disease (Compston & Coles 2008). MS is more common with the increasing latitude, except for some ethnic groups such as the New Zealand Moori (Pugliatti et al. 2002), Canada’s Inuit (Milo & Kahana 2010) and inland Sicilians (Grimaldi et al. 2001); however, the reasons for these geographical distributions are still controversial (Milo & Kahana 2010). Some people believe that a possible explanation could be that decreased exposure to sunlight results in decreased levels of vitamin D (Ascherio & Munger 2007; Ascherio et al. 2010), while others believe that it is a consequence of the distribution of the northern European populations that had a high prevalence of MS (Milo & Kahana 2010). Although MS is not considered to be a hereditary disease, the probability of MS is higher if there is a family history of the disease (Compston & Coles 2002). Differences of specific genes in the human leukocyte antigen (HLA) system that serve as the major histocompatibility complex (MHC) may be associated with MS susceptibility (Compston & Coles 2008).

The causal link between cigarette smoking and MS is still unclear (Jafari & Hintzen 2011). There are more than 4500 types of possible toxic substances, including nicotine and nitric oxide in cigarette smoke. Some nerve lesions, such as axonal degeneration, have been caused by exposure to nitric oxide (Scolding & Franklin 1998; Smith et al. 1999). A study in Sweden showed the inhalation of non-nicotinic components of cigarette smoke are more influential than nicotine in the etiology of MS (Carlens et al. 2010). This finding suggests the real reason for the elevated risk of MS is the irritation of cigarette smoke in the lungs, triggering the pro-inflammatory effect
of smoking via toll-like receptors (Mortaz et al. 2009; Pace et al. 2008). As a type of lymphocyte, T-cells enter the brain by destroying the blood-brain barrier in the inflammatory process. The T-cell recognized myelin as exogenous material and attacked it, causing the loss of myelin (Compston & Coles 2008). Further damage of the blood-brain barrier will lead to a number of other effects, such as the activation of cytokines and modification of proteins that may break self-tolerance, resulting in autoimmune responses against antigens of the nervous system (Makrygiannakis et al. 2008).

Most of the studies included in this meta-analysis focus on the risk of MS between having ever smoked and never smoking; however, the exact dose of cigarette consumption as well as how these data were recorded vary from study to study (pack-years, per day etc.). Therefore, it is difficult to assess the association between the degree of MS susceptibility and the degree of cigarette consumption based on current studies.

Conclusions

Our meta-analysis suggests that exposure to smoking is an important risk factor for MS. People would benefit from quitting smoking, and policymakers should pay attention to this association. Further research is needed to assess the dose-response effect between smoking and MS.

Acknowledgments

None.

References

Al-Afasy HH, Al-Obaidan MA, Al-Ansari YA, Al-Yatama SA, Al-Rukaibi MS, Makki NI, Suresh A, and Akhtar S. 2013. Risk
factors for multiple sclerosis in Kuwait: a population-based case-control study. *Neuroepidemiology* 40:30-35.

232 Alonso A, Cook SD, Maghzi AH, and Divani AA. 2011. A case-control study of risk factors for multiple sclerosis in Iran. *Mult Scler* 17:550-555.

234 Asadollahi S, Fakhri M, Heidari K, Zandieh A, Vafaee R, and Mansouri B. 2013. Cigarette smoking and associated risk of multiple sclerosis in the Iranian population. *J Clin Neurosci* 20:1747-1750.

236 Ascherio A, and Munger KL. 2007. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. *Ann Neurol* 61:504-513.

238 Ascherio A, Munger KL, and Simon KC. 2010. Vitamin D and multiple sclerosis. *Lancet Neurol* 9:599-612.

240 Baarnhielm M, Hedstrom AK, Kockum I, Sundqvist E, Gustafsson SA, Hillert J, Olsson T, and Alfredsson L. 2012. Sunlight is associated with decreased multiple sclerosis risk: no interaction with human leukocyte antigen-DRB1*15. *Eur J Neurol* 19:955-962.

242 Begg CB, and Mazumdar M. 1994. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50:1088-1101.

244 Bland JM, and Altman DG. 2000. Statistics notes. The odds ratio. *Bmj* 320:1468.

246 Briggs FB, Acuna B, Shen L, Ramsay P, Quach H, Bernstein A, Bellessis KH, Kockum IS, Hedstrom AK, Alfredsson L et al. 2014. Smoking and risk of multiple sclerosis: evidence of modification by NAT1 variants. *Epidemiology* 25:605-614.

248 Brosseau L, Philippe P, Methot G, Duquette P, and Haraoui B. 1993. Drug abuse as a risk factor of multiple sclerosis: case-control analysis and a study of heterogeneity. *Neuroepidemiology* 12:6-14.

250 Carlens C, Hergens MP, Grunewald J, Ekbom A, Eklund A, Hoglund CO, and Askling J. 2010. Smoking, use of moist snuff, and risk of chronic inflammatory diseases. *Am J Respir Crit Care Med* 181:1217-1222.

252 Clayton D, and Hills M. 1993. *Statistical models in epidemiology*. Oxford: Oxford University Press.

253 Collaborators. GMaCoD. 2015. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet* 385:117-171.

255 Compston A, and Coles A. 2002. Multiple sclerosis. *Lancet* 359:1221-1231.

257 Compston A, and Coles A. 2008. Multiple sclerosis. *Lancet* 372:1502-1517.

259 Dobosz C, Tyrpien K, and Pierzchala K. 2012. [Assessment of exposure to tobacco smoke in a selected group of patients with multiple sclerosis from the Upper Silesia region]. *Przegl Lek* 69:940-943.

260 Egger M, Davey Smith G, Schneider M, and Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. *Bmj* 315:629-634.

262 Frutos-Alegria MT, Beltran-Blasco I, Quilez-Iborra C, Molto-Jorda J, Diaz-Marin C, and Matias-Guiu J. 2002. [A control and case study of multiple sclerosis in the Alicante and Villajoyosa areas]. *Rev Neurol* 34:1013-1016.

264 Frutos-Alegria MT, Beltran-Blasco I, Quilez-Iborra C, Molto-Jorda J, Diaz-Marin C, and Matias-Guiu J. 2002. [The epidemiology of multiples sclerosis in Alcoi. Analytical data]. *Rev Neurol* 34:813-816.

266 Ghadirian P, Dadgostar B, Azani R, and Maisonneuve P. 2001. A case-control study of the association between socio-demographic, lifestyle and medical history factors and multiple sclerosis. *Can J Public Health* 92:281-285.

268 Grimaldi LM, Salesi G, Grimaldi G, Rizzo A, Marziolo R, Lo Presti C, Maimone D, and Savettieri G. 2001. High incidence and increasing prevalence of MS in Enna (Sicily), southern Italy. *Neurology* 57:1891-1893.

270 Guimond C, Lee JD, Ramagopalan SV, Dyment DA, Hanwell H, Giovannoni G, Criscuoli M, Yee IM, Vorobechik G,
271 Ebers GC et al. . 2014. Multiple sclerosis in the Iranian immigrant population of BC, Canada: prevalence and
risk factors. Mult Scler.
272 Gustavsen MW, Page CM, Moen SM, Bjolgerud A, Berg-Hansen P, Nygaard GO, Sandvik L, Lie BA, Celius EG, and
273 Harbo HF. 2014. Environmental exposures and the risk of multiple sclerosis investigated in a Norwegian
case-control study. BMC Neurol 14:196.
274 Handel AE, Handunnetthi L, Giovannoni G, Ebers GC, and Ramagopalan SV. 2010. Genetic and environmental factors
275 and the distribution of multiple sclerosis in Europe. Eur J Neurol 17:1210-1214.
276 Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, and Ramagopalan SV. 2011. Smoking and multiple
277 sclerosis: an updated meta-analysis. PLoS One 6:e16149.
278 Hawkes CH. 2007. Smoking is a risk factor for multiple sclerosis: a metanalysis. Mult Scler 13:610-615.
279 Hedstrom AK, Akerstedt T, Hillert J, Olsson T, and Alfredsson L. 2011a. Shift work at young age is associated with
280 increased risk for multiple sclerosis. Ann Neurol 70:733-741.
281 Hedstrom AK, Baarnhielm M, Olsson T, and Alfredsson L. 2009. Tobacco smoking, but not Swedish snuff use,
282 increases the risk of multiple sclerosis. Neurology 73:696-701.
283 Hedstrom AK, Bomfim IL, Barcellos LF, Briggs F, Schaefer C, Kockum I, Olsson T, and Alfredsson L. 2014a. Interaction
284 between passive smoking and two HLA genes with regard to multiple sclerosis risk. Int J Epidemiol 43:1791-
285 1798.
286 Hedstrom AK, Hillert J, Olsson T, and Alfredsson L. 2013a. Nicotine might have a protective effect in the etiology of
287 multiple sclerosis. Mult Scler 19:1009-1013.
288 Hedstrom AK, Hillert J, Olsson T, and Alfredsson L. 2013b. Smoking and multiple sclerosis susceptibility. Eur J
289 Epidemiol 28:867-874.
290 Hedstrom AK, Hillert J, Olsson T, and Alfredsson L. 2014b. Alcohol as a modifiable lifestyle factor affecting multiple
291 sclerosis risk. JAMA Neurol 71:300-305.
292 Hedstrom AK, Sundqvist E, Baarnhielm M, Nordin N, Hillert J, Kockum I, Olsson T, and Alfredsson L. 2011b. Smoking
293 and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 134:653-
294 664.
295 Hernan MA, Jick SS, Logroscino G, Olek MJ, Ascherio A, and Jick H. 2005. Cigarette smoking and the progression of
296 multiple sclerosis. Brain 128:1461-1465.
297 Hernan MA, Olek MJ, and Ascherio A. 2001. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol
298 154:69-74.
299 Jafari N, and Hintzen RQ. 2011. The association between cigarette smoking and multiple sclerosis. J Neurol Sci
300 311:78-85.
301 Jafari N, Hoppenbrouwers IA, Hop WC, Breteler MM, and Hintzen RQ. 2009. Cigarette smoking and risk of MS in
302 multiplex families. Mult Scler 15:1363-1367.
303 Kotzamanis D, Panou T, Mastorodemos V, Tzagournissakis M, Nikolakaki H, Spanaki C, and Plaitakis A. 2012. Rising
304 incidence of multiple sclerosis in females associated with urbanization. Neurology 78:1728-1735.
305 Lauer K. 2006. Divergent risk of multiple sclerosis in two anabaptist communities in America. Med Hypotheses
306 67:969-974.
307 Maghzi AH, Etemadifar M, Heshmat-Ghahdarijani K, Moradi V, Nonahal S, Ghorbani A, and Minagar A. 2011.
308 Cigarette smoking and the risk of multiple sclerosis: a sibling case-control study in Isfahan, Iran.
309 Neuroepidemiology 37:238-242.
Makrygiannakis D, Hermansson M, Ulfgren AK, Nicholas AP, Zendman AJ, Eklund A, Grunewald J, Skold CM, Klareskog L, and Catrina AI. 2008. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. *Ann Rheum Dis* 67:1488-1492.

Mansouri B, Asadollahi S, Heidari K, Fakhrizadeh A, Assarzadehgan F, Nazari M, and Divani A. 2014. Risk factors for increased multiple sclerosis susceptibility in the Iranian population. *J Clin Neurosci* 21:2207-2211.

Milo R, and Kahana E. 2010. Multiple sclerosis: geoenvironmental, genetics and the environment. *Autoimmun Rev* 9:A387-394.

Mortaz E, Lazar Z, Koenderman L, Kranerveld AD, Nijkamp FP, and Folkerts G. 2009. Cigarette smoke attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the release of IL-8 in response to TLR-9 stimulation. *Respir Res* 10:47.

Munger KL, Chitnis T, and Ascherio A. 2009. Body size and risk of MS in two cohorts of US women. *Neurology* 73:1543-1550.

Munger KL, Peeling RW, Hernan MA, Chasan-Taber L, Olek MJ, Hankinson SE, Hunter D, and Ascherio A. 2003. Infection with *Chlamydia pneumoniae* and risk of multiple sclerosis. *Epidemiology* 14:141-147.

Nortvedt MW, Riise T, and Maeland JG. 2005. Multiple sclerosis and lifestyle factors: the Hordaland Health Study. *Neurol Sci* 26:334-339.

O'Gorman C, and Broadley SA. 2014. Smoking and multiple sclerosis: evidence for latitudinal and temporal variation. *J Neurol* 261:1677-1683.

O'Gorman C, Bukhari W, Todd A, Freeman S, and Broadley SA. 2014. Smoking increases the risk of multiple sclerosis in Queensland, Australia. *J Clin Neurosci* 21:1730-1733.

Pace E, Ferraro M, Siena L, Melis M, Montalbano AM, Johnson M, Bonsignore MR, Bonsignore G, and Gjomarkaj M. 2008. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. *Immunology* 124:401-411.

Pekmezovic T, Drulovic J, Milenkovic M, Jarebinski M, Stojasavljevic N, Mesaros S, Kusic D, and Kostic J. 2006. Lifestyle factors and multiple sclerosis: A case-control study in Belgrade. *Neuroepidemiology* 27:212-216.

Pugliatti M, Sotgiu S, and Rosati G. 2002. The worldwide prevalence of multiple sclerosis. *Clin Neurol Neurosurg* 104:182-191.

Ragnedda G, Leoni S, Parpinel M, Casetta I, Riise T, Myhr KM, Wolfson C, and Pugliatti M. 2015. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnViMS study. *J Neurol* 262:1271-1277.

Ragonese P, Castiglia G, Cusimano V, Battaglieri F, and G S. 2007. Cigarette smoking, coffee consumption and multiple sclerosis risk: a case-control study. *ACTA MEDICA MEDITERRANEA* 23:133-140.

Ramagopalan SV, Lee JD, Yee IM, Guimond C, Traboulsee AL, Ebers GC, and Sadovnick AD. 2013. Association of smoking with risk of multiple sclerosis: a population-based study. *J Neurol* 260:1778-1781.

Ramagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment DA, DeLuca GC, Herrera BM, Chao MJ, Sadovnick AD et al. 2009. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. *PLoS Genet* 5:e1000369.

Riise T, Nortvedt MW, and Ascherio A. 2003. Smoking is a risk factor for multiple sclerosis. *Neurology* 61:1122-1124.

Rodriguez Regal A, del Campo Amigo M, Paz-Esquete J, Martinez Feijoo A, Cebrian E, Suarez Gil P, and Mourino MA. 2009. [A case-control study of the influence of the smoking behaviour in multiple sclerosis]. *Neurologia* 24:177-180.
Russo C, Morabito F, Luise F, Piromalli A, Battaglia L, Vinci A, Trapani Lombardo V, de Marco V, Morabito P, Condino F et al. 2008. Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. *J Neurol* 255:64-69.

Scolding N, and Franklin R. 1998. Axon loss in multiple sclerosis. *Lancet* 352:340-341.

Senecal-Quevillon M, Duquette P, and Richer CL. 1986. Analysis of sister-chromatid exchanges (SCEs) in familial and sporadic multiple sclerosis. *Mutat Res* 161:65-74.

Silva KR, Alvarenga RM, Fernandez YFO, Alvarenga H, and Thuler LC. 2009. Potential risk factors for multiple sclerosis in Rio de Janeiro: a case-control study. *Arq Neuropsiquiatr* 67:229-234.

Simon KC, O'Reilly EJ, Munger KL, Finerty S, Morgan AJ, and Ascherio A. 2012. Epstein-Barr virus neutralizing antibody levels and risk of multiple sclerosis. *Mult Scler* 18:1185-1187.

Simon KC, Schmidt H, Loud S, and Ascherio A. 2015. Risk factors for multiple sclerosis, neuromyelitis optica and transverse myelitis. *Mult Scler* 21:703-709.

Simon KC, van der Mei IA, Munger KL, Ponsonby A, Dickinson J, Dwyer T, Sundstrom P, and Ascherio A. 2010. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1*1501 on multiple sclerosis risk. *Neurology* 74:1365-1371.

Smith KJ, Kapoor R, and Felts PA. 1999. Demyelination: the role of reactive oxygen and nitrogen species. *Brain Pathol* 9:69-92.

Sundqvist E, Sundstrom P, Linden M, Hedstrom AK, Aloisi F, Hillert J, Kockum I, Alfredsson L, and Olsson T. 2012. Lack of replication of interaction between EBNA1 IgG and smoking in risk for multiple sclerosis. *Neurology* 79:1363-1368.

Sundstrom P, Nystrom L, and Hallmans G. 2008. Smoke exposure increases the risk for multiple sclerosis. *Eur J Neurol* 15:579-583.

Thorogood M, and Hannaford PC. 1998. The influence of oral contraceptives on the risk of multiple sclerosis. *Br J Obstet Gynaecol* 105:1296-1299.

Turner AP, Kivilhan DR, Kazis LE, and Haselkorn JK. 2007. Smoking among veterans with multiple sclerosis: prevalence correlates, quit attempts, and unmet need for services. *Arch Phys Med Rehabil* 88:1394-1399.

Villard-Mackintosh L, and Vessey MP. 1993. Oral contraceptives and reproductive factors in multiple sclerosis incidence. *Contraception* 47:161-168.

WHO. 2013. *Atlas: Multiple Sclerosis Resources in the World*. Geneva: World Health Organization.

Zorzon M, Zivadinov R, Nasuelli D, Dolfini P, Bosco A, Bratina A, Tommasi MA, Locatelli L, and Cazzato G. 2003. Risk factors of multiple sclerosis: a case-control study. *Neurol Sci* 24:242-247.
Summary of the Studies Selection Process.

- Articles identified through database searching: 39
- Additional articles identified by other resources: 8

Total articles: 47

- Articles not available: 5
- Articles can't calculate the outcome: 6
- Articles contained the same population: 10

Eligible articles remaining: 36

Articles included eventually: 26
Forest Plot of Smoking and Multiple Sclerosis Risk (conservative model).

Study ID	OR (95% CI)	Weight(%)
Ragnedda 2015 (Norwegian)	2.00 (1.88, 2.38)	7.06
Ragnedda 2015 (Italian)	1.55 (1.28, 1.88)	5.79
Simon 2014	1.40 (1.10, 1.90)	2.87
Mansouri 2014	1.93 (1.31, 2.73)	1.59
Briggs 2014	1.27 (1.03, 1.58)	4.68
Hedstrom 2013	1.48 (1.40, 1.59)	52.85
Asadollahi 2013	1.78 (1.22, 2.59)	1.51
Al-Afasy 2012	1.70 (0.90, 3.40)	0.48
Kotzamani 2012	1.90 (1.50, 2.41)	3.81
Maghzi 2011	2.67 (1.70, 4.21)	1.04
Alonso 2011	1.72 (0.90, 3.30)	0.51
Carlens 2010	2.50 (1.70, 3.60)	1.52
Simon 2010 (Nurses' Health Studies)	1.40 (1.00, 2.00)	1.78
Simon 2010 (Tasmanian MS Study)	1.50 (1.00, 2.40)	1.12
Simon 2010 (Swedish MS Study)	1.40 (0.80, 2.40)	0.71
Jafari 2009	1.09 (0.68, 1.73)	0.98
Pekmezovic 2006	1.60 (1.08, 2.37)	1.39
Hernan 2005	1.30 (1.00, 1.70)	3.04
Zorzon 2003	1.50 (0.90, 2.40)	0.89
Riise 2003	1.81 (1.13, 2.82)	0.95
Ghadirian 2001	1.60 (1.00, 2.40)	1.12
Hernan 2001	1.60 (1.20, 2.10)	2.73
Thorogood 1998	1.20 (0.80, 1.80)	1.30
Villard 1993	1.50 (0.80, 3.30)	0.29
Overall (I-squared = 37.2%, p = 0.035)	1.55 (1.48, 1.62)	100.00
3

Forest Plot of Smoking and Multiple Sclerosis Risk (non-conservative model).
Forest Plot of Smoking and Risk of Multiple Sclerosis in different Genders.

Study ID	OR (95% CI)	Weight(%)
male		
Asadollahi 2013	2.12 (1.03, 4.35)	1.63
Kotzamani 2012	2.10 (1.42, 3.11)	5.51
Maghzi 2011	2.38 (1.47, 3.85)	3.65
Carlens 2010	2.50 (1.70, 3.60)	6.01
Hedstrom 2009	1.80 (1.30, 2.50)	7.92
O'Gorman 2014	2.30 (1.30, 4.10)	2.57
Subtotal (I-squared = 0.0%, p = 0.850)	2.14 (1.80, 2.55)	27.29
female		
Asadollahi 2013	1.53 (0.92, 2.52)	3.33
Kotzamani 2012	1.77 (1.26, 2.50)	7.21
Simon 2010(Nurses's Health Studies)	1.40 (1.00, 2.00)	7.05
Hedstrom 2009	1.40 (1.20, 1.70)	27.91
Hernan 2001	1.60 (1.20, 2.10)	10.81
Villard 1993	1.50 (0.60, 3.30)	1.17
Thorogood 1998	1.20 (0.80, 1.80)	5.15
O'Gorman 2014	1.80 (1.40, 2.50)	10.07
Subtotal (I-squared = 0.0%, p = 0.716)	1.50 (1.35, 1.68)	72.71
Heterogeneity between groups: p = 0.001		
Overall (I-squared = 26.7%, p = 0.167)	1.66 (1.51, 1.82)	100.00
Forest Plot of Smoking and Risk of Multiple Sclerosis in Different Smoking Habits.

Study ID	OR (95% CI)	Weight(%)
current smoking		
O'Gorman 2014	3.60 (2.60, 5.30)	7.50
Hedstrom 2013	1.56 (1.45, 1.67)	14.13
Jafari 2009	1.03 (0.81, 1.73)	4.81
Herman 2005	1.40 (1.00, 1.90)	8.26
Herman 2001	1.80 (1.20, 2.10)	9.22
Carlens 2010	2.80 (1.90, 4.20)	6.71
Zorzon 2003	1.90 (1.10, 3.20)	4.66
Subtotal (I-squared = 81.1%, p = 0.000)	1.83 (1.42, 2.37)	55.29

past smoking		
O'Gorman 2014	1.60 (1.20, 2.10)	9.22
Hedstrom 2013	1.35 (1.24, 1.47)	13.91
Jafari 2009	1.19 (0.64, 2.20)	3.79
Herman 2005	1.00 (0.60, 1.80)	4.48
Herman 2001	1.20 (0.90, 1.60)	9.03
Carlens 2010	1.80 (0.90, 2.80)	4.28
Subtotal (I-squared = 0.0%, p = 0.592)	1.35 (1.25, 1.46)	44.71
Heterogeneity between groups:p<0.001		
Overall (I-squared = 75.1%, p = 0.000)	1.58 (1.38, 1.82)	100.00
Forest Plot of Passive Smoking and Multiple Sclerosis Risk

Study	OR (95% CI)	Weight(%)
Ramagopalan 2013	0.87 (0.71, 1.41)	16.46
Hedstrom(EIMS) 2014	1.25 (1.03, 1.51)	27.58
Hedstrom(KPNC) 2014	1.67 (1.28, 2.18)	21.45
Hedstrom(GEMS) 2013	1.21 (1.08, 1.35)	34.52
Overall (I-squared = 67.0%, p = 0.028)	1.24 (1.03, 1.49)	100.00
Funnel Plot Based on Related Risk for Association between Smoking and Multiple Sclerosis
Forest Plot of Sensitivity Analysis by Removing Each Study in Each Turn
Table 1 (on next page)

The main characteristics of the included studies.
1st author and year of publication	cases	Controls or observational individual	OR or RR(95%CI) Versus never-smoking	Information collecting	Type	Diagnostic criteria	Smoking and the onset of MS		
Ragnedda 2015 (Norwegian)	894	1610	2.00(1.68,2.38)[ever-smoking]	questionnaire	case-control	McDonald	before onset		
Ragnedda 2015 (Italian)	617	1161	1.55(1.28,1.88)[ever-smoking]	questionnaire	case-control	McDonald	before onset		
Simon 2014	1190	454	1.4(1.1,1.9)[ever-smoking]	face interview	case-control	N/A	before onset		
Gustavsen 2014	530	918	2.29(1.82,2.89)[ever-smoking]	questionnaire	case-control	McDonald or Poser	current		
Mansouri 2014	1217	787	1.93(1.31,2.73)[ever-smoking]	face interview	case-control	McDonald or Poser	before onset		
O’Gorman 2014	560	480	1.9(1.5,2.5)[ever-smoking]	questionnaire	case-control	physician	current		
Briggs 2014	1012	576	1.27(1.03,1.58)[ever-smoking]	telephone questionnaire	case-control	McDonald	before onset		
Asadollahi 2013	662	394	1.78(1.22,2.59)[ever-smoking]	Face or telephone interview	case-control	McDonald or Poser	before onset		
Hedström 2013	6990	8279	1.49(1.40,1.59)[ever-smoking]	questionnaire	case-control	McDonald	before onset		
Ramagopalan 2013	3157	756	1.32(1.10,1.60)[ever-smoking]	questionnaire	case-control	N/A	current		
Kotzamani 2012	504	591	1.9(1.50,2.41)[ever-smoking]	questionnaire	case-control	N/A	before onset		
Al-Afasy 2010	101	202	1.7(0.9,2.4)[ever-smoking]	face interview	case-control	neurologist	before onset		
Maghzi 2011	516	1090	2.67(1.70,4.21)[ever-smoking]	questionnaire	case-control	McDonald	before onset		
Alonso 2011	394	394	1.72(0.90,3.30)[ever-smoking]	telephone interview	case-control	McDonald	before onset		
Simon 2010a	210	420	1.4(1.0,2.0)[ever-smoking]	questionnaire	case-control	N/A	before onset		
Simon 2010b	136	272	1.5(1.0,2.4)[ever-smoking]	interview	case-control	Poser	before onset		
Reference	N	Cases	Cohort	Method	Study Type	Design	Follow-up	Outcome	Follow-up
-----------------	----	-------	--------	--------------	------------	--------	-----------	---------	-----------
Simon 2010c	96	173	cohort	questionnaire	case-control	N/A	before onset	1.4(0.8,2.4) ever-smoking	before onset
Carless 2010	214	277777	cohort	questionnaire	case-control	N/A	before onset	2.5(1.7,3.6) ever-smoking	before onset
Jafari 2009	136	204	case-control	case-control	McDonald	N/A	before onset	1.09(0.68,1.73) ever-smoking	before onset
Silva 2009	81	81	case-control	face interview	case-control	Poser	current	2.0(0.9,4.3) current-smoking	before onset
Russo 2008	94	53	case-control	face interview	case-control	Poser	before onset	1.83(0.86,3.87) ever-smoking	before onset
Pekmezovic 2006	196	210	case-control	face interview	case-control	Poser	before onset	1.6(1.08,2.37) ever-smoking	before onset
Hernán 2005	210	1913	case-control	questionnaire	case-control	Poser	before onset	1.3(1.0,1.7) ever-smoking	before onset
Riise 2003	87	22312	cohort	questionnaire	cohort	Self-report	1.81(1.13,2.92) ever-smoking	before onset	
Zorzon 2003	140	131	case-control	face interview	case-control	McDonald	before onset	1.50(0.90,2.40) ever-smoking	before onset
Hernán 2001	314	238371	cohort	questionnaire	cohort	physician	1.6(1.2,2.1) current-smoking	before onset	
Ghadirian 2001	200	202	case-control	face interview	case-control	N/A	before onset	1.6(1.0,2.4) ever-smoking	before onset
Thorogood 1998	114	46000	cohort	N/A	cohort	physician	1.2(0.8,1.8) 1-14/day	before onset	
Villard 1993	63	17032	cohort	N/A	cohort	N/A	before onset	1.5(0.6,3.3) ever-smoking	before onset
Table 2 (on next page)

Odds ratio and 95% confidence intervals for different subgroups of studies.
Subgroups	Number of studies	Odds ratio	95% CIs	p-value for comparison
Case-control	24	1.56	1.49-1.63	0.362
Cohort	5	1.70	1.42-2.03	0.674
McDonald/ Poser criteria	16	1.70	1.52-1.90	0.124
Physician/self-reported/not reported	13	1.52	1.39-1.66	0.124
Adjustment for covariates	15	1.51	1.43-1.59	0.005
No adjustment	14	1.74	1.60-1.89	0.005
Self-administrated questionnaire	14	1.58	1.43-1.74	0.674
Face or telephone interview/not report	15	1.63	1.47-1.82	0.005