High Cytoplasmic and Membranous Versus Nuclear Talin-1 Expression Associated With Malignancy Potential and Poor Survival in Clear Cell Renal Cell Carcinoma

Leili Saeednejad Zanjani (✉ saeednejad.l@iums.ac.ir)
Iran University of Medical Sciences

Somayeh Vafaei
Iran University of Medical Sciences

Maryam Abolhasani
Iran University of Medical Sciences

Fahimeh Fattahi
Iran University of Medical Sciences

Zahra Madjd
Iran University of Medical Sciences

Research Article

Keywords: Talin-1 protein, Bioinformatics analysis, Renal cell carcinoma (RCC), Clear cell RCC (ccRCC), Tissue microarray (TMA).

DOI: https://doi.org/10.21203/rs.3.rs-153865/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Using bioinformatics analysis Talin-1 protein was indicated as a potential prognostic focal adhesion factor in renal cell carcinoma (RCC). We, therefore, examined its protein expression levels and prognostic significant of Talin-1 with clinical follow-up in total of 269 tissue specimens from three important subtypes of RCC and 30 adjacent normal samples using tissue microarrays (TMAs). Then, we used combined analysis with B7-H3 to confirm that Talin-1 may be related to metastasis. The results showed that high membranous and cytoplasmic expression of Talin-1 was significantly associated with advanced nucleolar grade ($P < 0.001$, all), microvascular invasion ($P = 0.007$, $P = 0.004$, respectively), histological tumor necrosis ($P = 0.020$, $P = 0.018$), and invasion to Gerota's fascia ($P = 0.025$, $P = 0.050$) in ccRCC. In addition, high membranous and cytoplasmic expression of Talin-1 was associated with significantly poorer disease-specific survival ($P = 0.043$, $P = 0.024$, respectively) and progression-free survival ($P = 0.046$, in cytoplasm). Moreover, increased cytoplasmic expression of Talin-1 HIGH/B7-H3 HIGH compared to the other phenotypes was associated with poor prognosis and progression of the disease in patients with distant metastasis. Collectively, these observations indicate that Talin-1 is an important molecule involved in the spread and progression of ccRCC when expressed particularly in cytoplasm and may serve as a novel prognostic biomarker in this subtype.

Introduction

Renal cell carcinoma (RCC) is the most common type of kidney cancer found in adults. It represents approximately 3% of adult malignancies and 90–95% of all neoplasms arising from the kidney. The RCC incidence rates have been increasing during the decade. According to the American Cancer Society, an estimated 73,750 new cases (45,520 in males and 28,230 in females) and 14,830 deaths (9,860 in males and 4,970 in females) from RCC will occur in 2020. If cancer has not metastasized, the 5-year survival rate is 65–90%, but this is lowered considerably when cancer has spread so that the 5-year survival rates for patients with stage IV disease are less than 20%. Unfortunately, ~ 20–30% of RCC patients have distant metastasis at initial diagnosis. In addition, about 25–40% of RCCs would relapse and ultimately develop into metastatic disease after resection of the primary tumor. Moreover, increasing resistance to targeted therapies have been occurred in advanced RCC patients. Therefore, prognostic and predictive biomarkers will be an urgent requirement to assist in early diagnosis and identify novel therapeutic targets for RCC.

To date, several subtypes of RCC have been defined, of which clear cell RCC (ccRCC) is the most common subtype (75–80%), followed by papillary RCC (pRCC) 15%, and chromophobe RCC (chRCC) around 5%. In this study, we have focused on all these three important histological subtypes of RCC.

High throughput proteomics was introduced as an innovative novel approach that paves the way for cancer diagnostic or prognostic biomarker discovery. The advantages of these types of studies can be the identification of effective proteins with a different expression and cellular functions in the samples in various diseases. Although a high level of variance exists in proteomics data, network, and enrichment analysis explore the hub genes and their related biological significance among results. In the present study, protein-protein interaction (PPI) network analysis was performed for proteomics data of available studies that had reported proteins with significant differential expression in RCC tissue samples compared to adjacent normal tissues. Enrichment analysis of hub genes was obtained for a better understanding of influential genes in the RCC network. It was found that TLN1 (Talin-1) is one of the hub genes that could be practical as a prognostic marker in renal cancer.

Talin-1 is a ubiquitous cytoskeleton-associated protein with a high-molecular-weight which has been shown to play an essential role in regulating the activity of the integrin family of cell adhesion proteins using coupling integrins to F-actin. Also, Talin-1 is responsible for binding to critical adhesion molecules, including integrins, vinculin, actin, and other focal adhesion kinases (FAKs) and induce cell cytoskeletal remodeling. Therefore increased expression of Talin-1 could lead to the development of tumor and migration. A number of studies have demonstrated that overexpression of Talin-1 was...
associated with advanced disease and reduced overall survival (OS) in patients, including oral squamous cell carcinoma (OSCC) 16, prostate cancer 17, colon cancer 18, and nasopharyngeal carcinoma (NPC) 19. To date, the expression levels and clinical significance of Talin-1 in the RCC tumors remain unclear. Thus, in the current study, to validate and confirm the Talin-1 protein obtained from the network analysis on results of proteomics studies in RCC samples, we have investigated the membranous, cytoplasmic, and nuclear expression levels of Talin-1 protein in three important subtypes of RCC from formalin-fixed paraffin-embedded (FFPE) tissue samples which assembled on tissue microarrays (TMAs) using the immunohistochemistry (IHC) technique. Then, we sought to determine the association between expression levels of Talin-1 protein and clinicopathological parameters, including nucleolar grade, tumor stage, microvascular invasion, and other important clinicopathological characteristics of RCC as well as survival outcomes. Finally, we used combined analysis with another marker of our previous study, namely B7-H3 20 which is useful for predicting progression and metastasis in ccRCC to confirm that Talin-1 may be related to metastasis.

Results

Bioinformatics approach

Significant differential expression of proteins from tumor tissues in comparison to adjacent normal tissues was obtained of selected previous studies that include 1055, 589, and 983 proteins for ccRCC, pRCC, and chRCC, respectively (Supplementary Table 1). The results of the Venn diagram analysis illustrated 110 common differential expression proteins between subtypes of RCC (Fig. 1). PPI network analysis result explored 52 hub genes with the highest confidence > 0.9 (Fig. 2) that 24 key genes have reported for cancer on both Jensen and DisGeNET databases (Supplementary Table 1). Pathway analysis displays that most key genes contribute to metabolism pathways and several genes involved in FAK and degradation of extracellular matrix (ECM) pathways (Fig. 3). The major part of GO analysis results for 24 key genes indicates these genes are present in the microbody and play role in fatty acid catabolic process. Also, the basement membrane organization is a remarkable part of gene annotation results (Supplementary Fig. 1). According to these results, key genes involved in FAK and pathways related to ECM, as key drivers for both development and cancer progression 21, were highlighted for selection marker. Our key genes list, including COL4A1, LAMB2, NID1, and TLN1 (Talin-1) were evaluated among literature and led to the selection of Talin-1 as our final biomarker for investigation in RCC. Talin-1 as a master integrin-associated protein is a focal adhesion (FK) complex that mediates ECM proteolysis through different matrix metalloproteinases (MMPs) expression 22. FAK activation triggers the following processes, including survival, angiogenesis, cell growth, migration, and invasion. Since FAK functions potentially regulate gene expression to affect cancer progression 23, it seems that its signaling to be vital in the neoplastic cells invasion, and its activity inhibition decrease RCC metastasis both in vitro and in vivo 24–26. Although the FAK signaling pathway is deregulated in different cancer types and its importance approved in the regulation of cell adhesion and motility due to the tumor invasive behavior 27–29, its evidence in RCC is few and it is necessary to explore which is crucial 22. Further, UALCAN database revealed a higher expression of Talin-1 protein in ccRCC tissue samples compared to normal samples (Fig. 4).

Characteristics of RCC patients

Two hundred and ninety-five RCC patients were included in this study, while technical problems led to a loss of some cases, and finally, 269 cases remained for evaluating. These samples include 195 (73.58%) ccRCC, 20 (7.43%) pRCC type I, 20 (7.43%) pRCC type II, and 34 (12.63%) chRCCs. The patients’ clinicopathological characteristics were summarized in Table 1 based on whole RCC samples and histological subtypes of RCC.

| Table 1. Patients and tumor pathological characteristics of histological subtypes of renal cell carcinoma (RCC) |
Patients and tumor characteristics	Total samples N (%)														
	RCC	ccRCC %	pRCC %	chRCC %											
Mean age, years (Range)			Type I	Type II											
≤ Mean age	56 (25-82)	57 (25-82)	57 (33-76)	51 (25-73)	49 (27-76)										
> Mean age	135 (50.2)	98 (50.3)	11 (55.0)	10 (50.0)	17 (50.0)										
Gender															
Male	183 (68.0)	130 (66.7)	17 (85.0)	16 (80.0)	20 (58.8)										
Female	86 (32.0)	65 (33.3)	3 (15.0)	4 (20.0)	14 (41.2)										
(Male/Female)	2.1	2.0	5.6	4.0	1.4										
Tumor size (cm)															
<4	52 (19.3)	41 (21.0)	4 (20.0)	3 (15.0)	4 (11.8)										
4.1–7	97 (36.1)	68 (34.9)	8 (40.0)	6 (30.0)	15 (44.1)										
7.1–10	61 (22.7)	49 (25.1)	3 (15.0)	4 (20.0)	5 (14.7)										
>10	59 (21.9)	37 (19.0)	5 (25.0)	7 (35.0)	10 (29.4)										
Nucleolar grade															
I	11 (4.1)	11 (5.6)	0 (0.0)	0 (0.0)	0 (0.0)										
II	130 (48.3)	114 (58.5)	13 (65.0)	3 (15.0)	0 (0.0)										
III	82 (30.5)	58 (29.7)	7 (35.0)	17 (85.0)	0 (0.0)										
IV	12 (4.5)	12 (6.2)	0 (0.0)	0 (0.0)	0 (0.0)										
Primary tumor (PT) stage															
pT1	80 (29.7)	66 (33.8)	7 (35.0)	2 (10.0)	5 (14.7)										
pT2	27 (10.0)	18 (9.2)	6 (30.0)	1 (5.0)	2 (5.9)										
pT3	145 (53.9)	100 (51.3)	7 (35.0)	12 (60.0)	26 (76.5)										
pT4	17 (6.3)	11 (5.6)	0 (0.0)	5 (25.0)	1 (2.9)										
Microvascular invasion (MVI)															
Present	53 (19.7)	36 (18.5)	2 (10.0)	6 (30.0)	9 (26.5)										
Absent	215 (79.9)	159 (81.5)	18 (90.0)	14 (70.0)	24 (70.6)										
Not identified	1 (0.4)	0 (0.0)	0 (0.0)	0 (0.0)	1 (2.9)										
Lymph node invasion (LNI)															
Involved	14 (5.2)	10 (5.1)	1 (5.0)	3 (15.0)	0 (0.0)										
None	208 (77.3)	141 (72.3)	17 (85.0)	16 (80.0)	34 (100.0)										
Not identified	47 (17.5)	44 (22.6)	2 (10.0)	1 (5.0)	0 (0.0)										
Renal vein invasion															
	Present	Absent	Not identified												
----------------------	---------	--------	---------------	---------	--------	---------------	---------	--------	---------------	---------	--------	---------------	---------	--------	---------------
Present	24 (8.9)	245 (91.1)	21 (10.8)	214 (89.2)	20 (100.0)	17 (85.0)	0 (0.0)	34 (100.0)							
Absent															
Histological tumor necrosis (TN)															
Present	109 (40.5)	102 (39.8)	12 (60.0)	11 (50.0)	15 (75.0)	10 (29.4)	0 (0.0)	34 (100.0)							
Absent	157 (58.4)	122 (46.7)	8 (40.0)	8 (40.0)	5 (25.0)	22 (64.7)	0 (0.0)	34 (100.0)							
Not identified	3 (1.1)	1 (0.5)	0 (0.0)	0 (0.0)	0 (0.0)	2 (5.9)									
Renal sinus fat invasion															
Present	149 (55.4)	104 (53.3)	3 (15.0)	17 (85.0)	25 (73.5)										
Absent	120 (44.6)	91 (46.7)	17 (85.0)	3 (15.0)	9 (26.5)										
Renal pelvis invasion															
Present	30 (11.2)	23 (11.8)	0 (0.0)	7 (35.0)	0 (0.0)										
Absent	239 (88.8)	172 (88.2)	20 (100.0)	13 (65.0)	34 (100.0)										
Perirenal fat invasion															
Present	59 (21.9)	46 (23.6)	3 (15.0)	4 (20.0)	6 (17.6)										
Absent	210 (78.1)	149 (76.4)	17 (85.0)	16 (80.0)	28 (82.4)										
Gerota's fascia invasion															
Present	19 (7.1)	19 (9.7)	0 (0.0)	0 (0.0)	0 (0.0)										
Absent	250 (92.9)	176 (90.3)	20 (100.0)	20 (100.0)	34 (100.0)										
Distant metastasis															
Present	55 (20.4)	46 (23.6)	1 (5.0)	5 (25.0)	3 (8.8)										
Absent	214 (79.6)	149 (76.4)	19 (95.0)	15 (75.0)	31 (91.2)										
Tumor recurrence															
Yes	41 (15.2)	35 (17.9)	1 (5.0)	2 (10.0)	3 (8.8)										
No	228 (84.8)	160 (82.1)	19 (95.0)	18 (90.0)	31 (91.2)										
Total	269	195	20	20	34										

Expression of Talin-1 protein in the subtypes of RCC and adjacent normal tissue samples

The expression level of Talin-1 protein was evaluated using the IHC method on TMA sections by three scoring methods, including the intensity of staining, percentage of positive tumor cells, and H-score in histological subtypes of RCC and adjacent normal samples. Talin-1 protein was expressed at different intensities in the cell membrane, cytoplasm, and nucleus in the samples (Table 2) (Fig. 5), however, the expression of Talin-1 protein in adjacent normal tissue samples was less compared to tumor samples.
Table 2
Membranous, cytoplasmic, and nuclear Talin-1 protein expression (Intensity of staining, percentage of positive tumor cells, and H-score) in histological subtypes of RCC

Scoring system	Membranous expression N (%)	Cytoplasmic expression N (%)	Nuclear expression N (%)								
	ccRCC	pRCC (Type I & II)									
Intensity of staining											
No staining (0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	15 (7.7)	17 (42.5)	17 (42.5)	17 (42.5)	9 (26.5)
Weak (+1)	22 (11.3)	1 (2.5)	3 (8.8)	29 (14.9)	5 (14.7)	17 (42.5)	70 (35.9)	14 (35.0)	6 (17.6)		
Moderate (+2)	74 (37.9)	18 (45.0)	8 (23.5)	70 (35.9)	17 (50.0)	74 (37.9)	5 (12.5)	8 (23.5)			
Strong (+3)	99 (50.8)	21 (52.5)	23 (67.6)	96 (49.2)	12 (35.3)	36 (18.5)	0 (0.0)	2 (5.0)	15 (12.8)	12 (35.3)	
Percentage of positive tumor cells											
<25%	2 (1.0)	2 (5.0)	0 (0.0)	0 (0.0)	2 (5.0)	2 (5.9)	25 (12.8)	19 (47.5)	12 (35.3)		
25–50%	19 (9.7)	3 (7.5)	1 (1.9)	2 (1.0)	25 (12.8)	3 (7.5)	38 (19.5)	5 (12.5)	4 (11.8)		
51–75%	174 (89.2)	33 (82.5)	29 (85.3)	168 (86.2)	26 (76.5)	23 (11.8)	109 (55.9)	15 (37.5)	3 (8.8)		
>75%											
H-score cut off											
Low	99 (50.8)	21 (52.5)	18 (52.9)	102 (52.3)	23 (57.5)	22 (64.7)	99 (50.8)	23 (57.5)	17 (50.0)		
High	96 (49.2)	19 (47.5)	16 (47.1)	93 (47.7)	17 (42.5)	12 (35.3)	96 (49.2)	17 (42.5)	17 (50.0)		
Total	195	40	34	195	40	34	195	40	34		

*H-score; histological score
*RCC; renal cell carcinoma
**ccRCC; clear cell renal cell carcinoma, pRCC; papillary renal cell carcinoma, chRCC; chromophobe renal cell carcinoma*

Comparison of Talin-1 protein expression based on histological subtypes of RCC

The results of the Kruskal–Wallis test revealed a statistically significant difference between the membranous and cytoplasmic Talin-1 protein expression levels in different RCC subtypes ($P < 0.001$, $P = 0.003$, respectively). Also, Mann–Whitney U test showed a statistically significant difference in the median levels of membranous and cytoplasmic Talin-1 protein expression between ccRCC and pRCC (type I & II) ($P < 0.001$, $P = 0.001$, respectively) and also pRCC and chRCC ($P = 0.006$, $P = 0.029$, respectively) (Fig. 6A, B). In contrast, the Kruskal-Wallis test showed that there is no statistically significant difference between the median expression level of nuclear Talin-1 protein in different subtypes of RCC ($P = 0.904$) (Table 3). Moreover, we did not find a statistically significant difference in the median expression level of nuclear Talin-1 protein between the RCC subtypes (Fig. 6C).
Table 3
Association between median membranous, cytoplasmic, and nuclear Talin-1 protein expression patterns and histological subtypes of RCC

Histological subtypes	Membranous	P-value	Median	Cytoplasmic	P-value	Median	Nuclear	P-value	Median
ccRCC	200	< 0.001	200–300	200	0.003	160–270	100	0.904	50–200
pRCC Type I	200		200–300	200		185–300	35		0-100
pRCC Type II	220		145–300	220		145–300	50.0		0-100
chRCC	240		200–300	200		120–240	135		0-210

P value is based on Kruskal-Wallis test

Values in bold are statistically significant

*RCC; renal cell carcinoma

cRCC; clear cell renal cell carcinoma, pRCC; papillary renal cell carcinoma, chRCC; chromophobe renal cell carcinoma

Associations between membranous, cytoplasmic, and nuclear Talin-1 protein expression and clinicopathological parameters

ccRCC:

In ccRCC, membranous and cytoplasmic expression of Talin-1 protein were observed in 195 (100.0%) patients and nuclear Talin-1 expression in 180 (92.3%) cases.

The results of Pearson's chi-square test showed a highly significant association between expression of membranous and cytoplasmic Talin-1 protein and increased nucleolar grades (I + II versus III + IV) (Pearson's chi-square, *P* < 0.001, all) (Table 4). Kruskal-Wallis and Mann-Whitney *U* tests also showed that statistically significant differences in the median levels of membranous and cytoplasmic Talin-1 protein expression in various nucleolar grades (*P* = 0.001, *P* < 0.001, respectively) (Fig. 7A, B). Moreover, Pearson's chi-square test revealed that significant differences between higher levels of expression of membranous and cytoplasmic Talin-1 protein and MVI (*P* = 0.007, *P* = 0.004, respectively), histological TN (*P* = 0.020, *P* = 0.018, respectively) as well as Gerota's fascia invasion (*P* = 0.025, *P* = 0.050, respectively). Furthermore, there was a statistically significant difference between higher level of membranous Talin-1 protein expression and invasion to renal pelvis (*P* = 0.038). Kruskal-Wallis and Mann-Whitney *U* tests also indicated a statistically significant difference between the median expression levels of membranous and cytoplasmic Talin-1 protein and MVI (*P* = 0.022, *P* = 0.007, respectively) (Fig. 7C, D). Bivariate analysis (Spearman's correlation) showed a significant direct correlation between membranous and cytoplasmic expression and advanced in nucleolar grades (Spearman's rho, *P* < 0.001, *P* = 0.001, respectively), MVI (*P* = 0.007, *P* = 0.004, respectively), histological TN (*P* = 0.015, *P* = 0.014, respectively), and invasion to Gerota's fascia (*P* = 0.025, *P* = 0.050, respectively). The results of Spearman's correlation analysis also revealed that membranous Talin-1 protein expression and renal pelvis (*P* = 0.038) were directly correlated. In this study, we did not find any significant association and correlation between nuclear Talin-1 protein expression and clinicopathological features in ccRCC cases (Table 4).

Table 4. The association between Talin-1 protein expression and clinicopathological parameters of clear cell renal cell carcinoma (ccRCC)
Patient and tumor characteristics	Total samples	Membranous expression N (%)	Cytoplasmic expression N (%)	Nuclear expression N (%)							
	N (%)	H-score (cut off = 200) N (%)	P-value	H-score (cut off = 200) N (%)	P-value	H-score (cut off = 100) N (%)	P-value				
		Low (≤ 200)	High (> 200)	Low (≤ 200)	High (> 200)	Low (≤ 100)	High (> 100)				
ccRCC	195 (72.5)	99 (50.8)	96 (49.2)	102 (52.3)	93 (47.7)	99 (50.8)	96 (49.2)				
Mean age, years (Range)	57 (25-82)	52 (52.5)	46 (47.9)	0.520	55 (53.9)	43 (46.2)	0.284	52 (52.5)	46 (47.9)	0.520	
≤ Mean age	98 (50.3)	47 (47.5)	50 (52.1)	0.520	47 (46.1)	50 (53.8)	0.520				
> Mean age	97 (49.7)	52 (52.5)	46 (47.9)	0.520	55 (53.9)	43 (46.2)	0.284	52 (52.5)	46 (47.9)	0.520	
Gender		130 (66.7)	67 (67.7)	63 (65.6)	0.761	70 (68.6)	60 (64.5)	0.543	66 (66.7)	64 (66.7)	0.100
Male	65 (33.3)	67 (67.7)	63 (65.6)	0.761	70 (68.6)	60 (64.5)	0.543	66 (66.7)	64 (66.7)	0.100	
Female	65 (33.3)	32 (32.3)	33 (34.4)	0.761	32 (31.4)	33 (35.5)	0.543	33 (33.3)	32 (33.3)	0.543	
Tumor size (cm)		41 (21.0)	23 (23.2)	18 (18.8)	0.564	23 (22.5)	18 (19.4)	0.564	18 (18.2)	23 (24.0)	0.523
<4	68 (34.9)	30 (30.3)	38 (39.6)	0.564	32 (31.4)	36 (38.7)	0.564	34 (34.3)	34 (35.4)	0.564	
4.1-7	68 (34.9)	30 (30.3)	38 (39.6)	0.564	32 (31.4)	36 (38.7)	0.564	34 (34.3)	34 (35.4)	0.564	
7.1-10	68 (34.9)	30 (30.3)	38 (39.6)	0.564	32 (31.4)	36 (38.7)	0.564	34 (34.3)	34 (35.4)	0.564	
>10	49 (25.1)	27 (27.3)	22 (22.9)	0.564	28 (27.5)	21 (22.6)	0.564	29 (29.3)	20 (20.8)	0.564	
37 (19.0)	19 (19.2)	18 (18.8)	19 (18.6)	0.564	18 (18.2)	19 (19.8)	0.564				
Nucleolar grade		125 (64.1)	77 (77.8)	48 (50.0)	0.001	78 (76.5)	47 (50.5)	0.001	60 (60.6)	65 (67.7)	0.301
I + II	125 (64.1)	77 (77.8)	48 (50.0)	0.001	78 (76.5)	47 (50.5)	0.001	60 (60.6)	65 (67.7)	0.301	
III + IV	70 (35.9)	22 (22.2)	48 (50.0)	0.001	24 (23.5)	46 (49.5)	0.001	39 (39.4)	31 (32.3)	0.001	
Primary tumor (PT) stage		84 (43.1)	45 (45.5)	39 (40.6)	0.496	45 (44.1)	39 (41.9)	0.759	46 (46.5)	38 (39.6)	0.332
pT1 + pT2	111 (56.9)	54 (54.5)	57 (59.4)	0.496	57 (55.9)	54 (58.1)	0.496	53 (53.5)	58 (60.4)	0.496	
pT3 + pT4	111 (56.9)	54 (54.5)	57 (59.4)	0.496	57 (55.9)	54 (58.1)	0.496	53 (53.5)	58 (60.4)	0.496	
Microvascular invasion (MVI)		36 (18.5)	11 (11.1)	25 (26.0)	0.007	11 (10.8)	25 (26.0)	0.007	17 (17.2)	19 (19.8)	0.007
Present	159 (81.5)	88 (88.9)	71 (74.0)	0.007	91 (89.2)	68 (73.1)	0.007	82 (82.8)	77 (80.2)	0.007	
Absent	159 (81.5)	88 (88.9)	71 (74.0)	0.007	91 (89.2)	68 (73.1)	0.007	82 (82.8)	77 (80.2)	0.007	
	Involved	None	Not identified								
------------------------------	----------	------	---------------								
Lymph node invasion (LNI)	10 (5.1)	6	4								
Involved	141 (72.3)	65 (67.7)	63 (67.7)								
Not identified	44 (22.6)	24 (25.0)	23 (24.7)								
Renal vein invasion	10 (5.1)	44 (22.6)	44 (22.6)								
Present	21 (10.8)	10 (10.1)	10 (10.1)								
Absent	174 (89.2)	85 (88.5)	85 (88.5)								
Histological tumor necrosis (TN)	21 (10.8)	10 (10.1)	10 (10.1)								
Present	72 (36.9)	44 (45.8)	44 (45.8)								
Absent	122 (62.6)	51 (53.1)	51 (53.1)								
Not identified	1 (0.5)	0 (0.0)	1 (1.0)								
Renal sinus fat invasion	104 (53.3)	56 (58.3)	56 (58.3)								
Present	104 (53.3)	56 (58.3)	56 (58.3)								
Absent	91 (46.7)	40 (41.7)	40 (41.7)								
Renal pelvis invasion	23 (11.8)	16 (16.7)	16 (16.7)								
Present	23 (11.8)	16 (16.7)	16 (16.7)								
Absent	172 (88.2)	80 (83.3)	80 (83.3)								
Perirenal fat invasion	46 (23.6)	27 (28.1)	27 (28.1)								
Present	46 (23.6)	27 (28.1)	27 (28.1)								
Absent	149 (76.4)	69 (71.9)	69 (71.9)								
Gerota's fascia invasion	19 (9.7)	14 (14.6)	14 (14.6)								
Present	19 (9.7)	14 (14.6)	14 (14.6)								
Absent	176 (90.3)	82 (85.4)	82 (85.4)								
Distant metastasis	46 (23.6)	25 (26.0)	25 (26.0)								
Present	46 (23.6)	25 (26.0)	25 (26.0)								
Absent	149 (76.4)	71 (74.0)	71 (74.0)								
Tumor recurrence	3 (3.0)	7 (7.3)	7 (7.3)								
0.250	78 (76.5)	63 (67.7)	63 (67.7)								
0.237	67 (67.7)	74 (77.1)	74 (77.1)								
0.340	0.760	0.994	0.994								
0.020	4 (2.9)	23 (24.7)	23 (24.7)								
0.018	0.094	0.066	0.066								
0.018	36 (36.4)	53 (53.5)	53 (53.5)								
0.954	0.038	0.073	0.073								
0.111	0.142	0.170	0.170								
0.117	0.125	0.050	0.050								
0.256	0.427	0.720	0.720								
0.057	0.237	0.707	0.707								
0.057	0.237	0.707	0.707								
0.057	0.237	0.707	0.707								
Table 5. The association between Talin-1 protein expression and clinicopathological parameters of papillary renal cell carcinoma (pRCC) Type I

Yes	No
35 (17.9)	160 (82.1)
17 (17.2)	82 (82.8)
18 (18.8)	78 (81.3)
0.774	84 (82.4)
0.908	76 (81.7)
20 (20.2)	79 (79.8)
15 (15.6)	81 (84.4)

P value; Pearson's chi-square

H-score; histological score

Values in bold are statistically significant

pRCC (type I & II) and chRCC:

Membranous and cytoplasmic expression of Talin-1 protein was observed in all cases 20 (100.0%), 20 (100.0%), and nuclear Talin-1 expression in 11 (55.0%), 12 (60.0%) patients of pRCC type I and pRCC type II, respectively. In the cases of chRCC, membranous and cytoplasmic Talin-1 protein expression were found in 34 (100.0%) patients and nuclear expression in 25 (73.5%) cases. The results of Pearson's chi-square and Spearman's correlation tests revealed that there are no significant association and correlation between membranous, cytoplasmic, and nuclear Talin-1 protein expression and clinicopathological parameters in pRCC (type I & II) (Tables 5, 6). In chRCC, we observed a statistically significant association between membranous expression of Talin-1 and tumor stage (*P* = 0.050) (Table 7). Moreover, Spearman's correlation analysis showed a statistically significant positive correlation between increased Talin-1 protein expression and higher tumor stage (Spearman's rho, *P* = 0.023).

Table 5. The association between Talin-1 protein expression and clinicopathological parameters of papillary renal cell carcinoma (pRCC) Type I
Patient and tumor characteristics	Total samples N (%)	Membranous expression N (%)	Cytoplasmic expression N (%)	Nuclear expression N (%)					
		H-score (cut off = 200) N (%)	P-value	H-score (cut off = 35) N (%)	P-value				
		Low (≤ 200)	High (> 200)		Low (≤ 35)	High (> 35)			
pRCC Type I	20 (7.45)	11 (55.0)	9 (45.0)	13 (65.0)	7 (35.0)	10 (50.0)	10 (50.0)	0.639	
Mean age, years (Range)									
≤ Mean age	55 (33-76)	11 (45.5)	2 (22.2)	6 (46.2)	1 (14.3)	4 (40.0)	3 (30.0)	0.279	
> Mean age	9 (45.0)	6 (54.5)	7 (77.8)	7 (53.8)	6 (85.7)	6 (60.0)	7 (70.0)	0.154	
Gender								0.060	
Male	17 (85.0)	9 (81.8)	8 (88.9)	11 (84.6)	6 (85.7)	7 (70.0)	10 (100.0)		
Female	3 (15.0)	2 (18.2)	1 (11.1)	2 (15.4)	1 (14.3)	3 (30.0)	0 (0.0)		
Tumor size (cm)								0.675	
<4	4 (20.0)	2 (18.2)	2 (22.2)	3 (23.1)	1 (14.3)	3 (30.0)	1 (10.0)		
4.1-7	8 (40.0)	6 (54.5)	2 (22.2)	6 (46.2)	2 (28.6)	4 (40.0)	4 (40.0)		
7.1-10	3 (15.0)	2 (18.2)	1 (11.1)	3 (23.1)	0 (0.0)	1 (10.0)	2 (20.0)		
>10	5 (25.0)	1 (9.1)	4 (44.4)	1 (7.7)	4 (57.1)	2 (20.0)	3 (30.0)		
Nucleolar grade								0.639	
I + II	13 (65.0)	7 (63.6)	6 (66.7)	8 (61.5)	5 (71.4)	7 (70.0)	6 (60.0)		
III + IV	7 (35.0)	4 (36.4)	3 (33.3)	5 (38.5)	2 (28.6)	3 (30.0)	4 (40.0)		
Primary tumor (PT) stage								0.639	
pT1 + pT2	13 (65.0)	8 (72.7)	5 (55.6)	9 (69.2)	4 (57.1)	7 (70.0)	6 (60.0)		
pT3 + pT4	7 (35.0)	3 (27.3)	4 (44.4)	4 (30.8)	3 (42.9)	3 (30.0)	4 (40.0)		
Microvascular invasion (MVI)								0.639	
Present	2 (10.0)	1 (9.1)	1 (11.1)	1 (7.7)	1 (14.3)	1 (10.0)	1 (10.0)	1.00	
Absent	18 (90.0)	10 (90.9)	8 (88.9)	12 (92.3)	6 (85.7)	9 (90.0)	9 (90.0)		
Lymph node invasion (LNI)									
Involved	1 (5.0)	0 (0.0)	1 (11.1)	0 (0.0)	1 (14.3)	0 (0.0)	1 (10.0)		
None	Not identified	Renal vein invasion	Present	0 (0.0)	Absent	20 (100.0)			
------	---------------	---------------------	--------	---------	--------	-------------			
17 (85.0)	10 (90.9)	7 (77.8)	0 (0.0)	11 (84.6)	6 (85.7)	9 (90.0)	8 (80.0)	0.589	
2 (10.0)	1 (11.1)	2 (15.4)	0 (0.0)	2 (15.4)	7 (100.0)	1 (10.0)	1 (10.0)		
Renal vein invasion	Present	Absent							
Histological tumor necrosis (TN)	Present	Absent							
12 (60.0)	6 (54.5)	6 (66.7)	0.582	7 (53.8)	5 (71.4)	0.444	4 (40.0)	8 (80.0)	0.068
8 (40.0)	5 (45.5)	3 (33.3)	7 (53.8)	6 (46.2)	2 (28.6)	6 (60.0)	2 (20.0)		
Renal sinus fat invasion	Present	Absent							
3 (15.0)	2 (18.2)	1 (11.1)	0.660	2 (15.4)	1 (14.3)	0.948	1 (10.0)	2 (20.0)	0.531
17 (85.0)	9 (81.8)	8 (88.9)	3 (23.1)	10 (76.9)	7 (100.0)	9 (90.0)	8 (80.0)		
Renal pelvis invasion	Present	Absent							
0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	*	
20 (100.0)	11 (100.0)	9 (100.0)	13 (100.0)	7 (100.0)	10 (100.0)	10 (100.0)			
Perirenal fat invasion	Present	Absent							
3 (15.0)	2 (18.2)	1 (11.1)	0.660	3 (23.1)	0 (0.0)	0.168	2 (20.0)	1 (10.0)	0.531
17 (85.0)	9 (81.8)	8 (88.9)	10 (76.9)	7 (100.0)	8 (80.0)	9 (90.0)			
Gerota's fascia invasion	Present	Absent							
0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	*	
20 (100.0)	11 (100.0)	9 (100.0)	13 (100.0)	7 (100.0)	10 (100.0)	10 (100.0)			
Distant metastasis	Present	Absent							
1 (5.0)	0 (0.0)	1 (11.1)	0.257	0 (0.0)	1 (14.3)	0.162	0 (0.0)	1 (10.0)	0.305
19 (95.0)	11 (100.0)	8 (88.9)	13 (100.0)	6 (85.7)	10 (100.0)	9 (90.0)			
Tumor recurrence	Yes	No							
1 (5.0)	0 (0.0)	1 (11.1)	0.257	0 (0.0)	1 (14.3)	0.162	0 (0.0)	1 (10.0)	0.305
19 (95.0)	11 (100.0)	8 (88.9)	13 (100.0)	6 (85.7)	10 (100.0)	9 (90.0)			

P value, Pearson's chi-square

H-score, histological score
*: No statistical are computed because the parameter is constant

Table 6. The association between Talin-1 protein expression and clinicopathological parameters of papillary renal cell carcinoma (pRCC) Type II
Patient and tumor characteristics	Total samples N (%)	Membranous expression N (%)	Cytoplasmic expression N (%)	Nuclear expression N (%)																
		H-score (cut off = 220) N (%)	H-score (cut off = 220) N (%)	H-score (cut off = 50) N (%)																
		Low (≤ 220)	High (> 220)	P- value	Low (≤ 220)	High (> 220)	P- value													
pRCC Type II																				
20 (7.45)																				
Mean age, years (Range)	53 (25-73)																			
≤ Mean age	10 (50.0)	7 (70.0)	3 (30.0)	0.074	7 (70.0)	3 (30.0)	0.074													
> Mean age	10 (50.0)	3 (30.0)	7 (70.0)		3 (30.0)	7 (70.0)														
Gender																				
Male	16 (80.0)	8 (80.0)	8 (80.0)	1.000	8 (80.0)	8 (80.0)	1.000													
Female	4 (20.0)	2 (20.0)	2 (20.0)		2 (20.0)	2 (20.0)														
Tumor size (cm)																				
<4	3 (15.0)	3 (30.0)	0 (0.0)	0.246	3 (30.0)	0 (0.0)	0.246													
4.1-7	6 (30.0)	3 (30.0)	3 (30.0)		3 (30.0)	3 (30.0)														
7.1-10	4 (20.0)	3 (30.0)	3 (30.0)		3 (30.0)	3 (30.0)														
>10	7 (35.0)	1 (10.0)	4 (40.0)		1 (10.0)	4 (40.0)														
Nucleolar grade																				
I + II	3 (15.0)	2 (20.0)	1 (10.0)	0.531	2 (20.0)	1 (10.0)	0.531													
III + IV	17 (85.0)	8 (80.0)	9 (90.0)		8 (80.0)	9 (90.0)														
Primary tumor (PT) stage																				
pT1 + pT2	3 (15.0)	1 (10.0)	2 (20.0)	0.531	1 (10.0)	2 (20.0)	0.531													
pT3 + pT4	17 (85.0)	9 (90.0)	8 (80.0)		9 (90.0)	8 (80.0)														
Microvascular invasion (MVI)																				
Present	6 (30.0)	4 (40.0)	2 (20.0)	0.329	4 (40.0)	2 (20.0)	0.329													
Absent	14 (70.0)	6 (60.0)	8 (80.0)		6 (60.0)	8 (80.0)														
Lymph node invasion (LNI)																				
	Present	Absent																		
------------------	---------	--------	---------	--------	---------	--------	---------	--------	---------	--------	---------	--------	---------	--------	---------	--------	---------	--------	---------	--------
Involved None	3 (15.0)	0 (0.0)	3 (15.0)	0 (0.0)	3 (15.0)	0 (0.0)	2 (18.2)	0 (0.0)	1 (11.1)	0 (0.0)	0.082	0.082	0.060	0.060	0.606	0.606	0.121	0.121	0.564	0.660
Not identified	16 (80.9)	0 (0.0)	10 (100.0)	0 (0.0)	10 (100.0)	0 (0.0)	1 (10.0)	0 (0.0)	1 (10.0)	0 (0.0)	0.060	0.060	0.121	0.121	0.531	0.531	0.160	0.160	0.364	0.413
Renal vein invasion Present	3 (15.0)	0 (0.0)	3 (15.0)	0 (0.0)	3 (15.0)	0 (0.0)	2 (18.2)	0 (0.0)	1 (11.1)	0 (0.0)	0.060	0.060	0.121	0.121	0.531	0.531	0.160	0.160	0.364	0.413
Absent	17 (85.0)	10 (100.0)	7 (70.0)	10 (100.0)	7 (70.0)	10 (100.0)	9 (81.8)	10 (100.0)	9 (81.8)	0.082	0.082	0.121	0.121	0.531	0.531	0.160	0.160	0.364	0.413	
Histological tumor necrosis(TN) Present	15 (75.0)	9 (90.0)	6 (60.0)	9 (90.0)	6 (60.0)	9 (90.0)	8 (72.7)	7 (77.8)	3 (27.3)	2 (22.2)	0.160	0.160	0.060	0.060	0.060	0.060	0.888	0.888		
Absent	5 (25.0)	4 (40.0)	1 (10.0)	4 (40.0)	1 (10.0)	4 (40.0)	3 (27.3)	2 (22.2)	0.060	0.060	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888		
Renal sinus fat invasion Present	17 (85.0)	9 (90.0)	8 (80.0)	9 (90.0)	8 (80.0)	9 (90.0)	10 (90.9)	7 (77.8)	3 (33.3)	2 (22.2)	0.364	0.364	0.060	0.060	0.060	0.060	0.888	0.888		
Absent	3 (15.0)	2 (20.0)	1 (10.0)	2 (20.0)	1 (10.0)	2 (20.0)	1 (9.1)	2 (22.2)	0.060	0.060	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888		
Renal pelvis invasion Present	7 (35.0)	5 (50.0)	2 (20.0)	5 (50.0)	2 (20.0)	5 (50.0)	4 (36.4)	3 (33.3)	0.369	0.369	0.888	0.888	0.888	0.888	0.888	0.888				
Absent	13 (65.0)	8 (80.0)	5 (50.0)	8 (80.0)	5 (50.0)	8 (80.0)	6 (66.7)	6 (66.7)	0.369	0.369	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888		
Perirenal fat invasion Present	4 (20.0)	1 (10.0)	3 (30.0)	1 (10.0)	3 (30.0)	1 (10.0)	3 (27.3)	1 (11.1)	0.369	0.369	0.888	0.888	0.888	0.888	0.888	0.888				
Absent	16 (80.0)	9 (90.0)	7 (70.0)	9 (90.0)	7 (70.0)	9 (90.0)	8 (72.7)	8 (88.9)	0.369	0.369	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888		
Gerota's fascia invasion Present	0 (0.0)	0 (0.0)	0 (0.0)	*	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.060	0.060	0.060	0.060	0.194	0.194				
Absent	20 (100.0)	10 (100.0)	10 (100.0)	10 (100.0)	10 (100.0)	10 (100.0)	11 (100.0)	9 (100.0)	0.178	0.178	0.178	0.178	0.178	0.178	0.178	0.178				
Distant metastasis Present	5 (25.0)	2 (20.0)	3 (30.0)	2 (20.0)	3 (30.0)	2 (20.0)	4 (36.4)	1 (11.1)	0.369	0.369	0.888	0.888	0.888	0.888	0.888	0.888				
Absent	15 (75.0)	7 (70.0)	8 (80.0)	7 (70.0)	8 (80.0)	7 (70.0)	8 (80.0)	8 (88.9)	0.369	0.369	0.888	0.888	0.888	0.888	0.888	0.888				
Tumor recurrence Yes	2 (10.0)	1 (10.0)	1 (10.0)	1 (10.0)	1 (10.0)	1 (10.0)	1 (10.0)	0 (0.0)	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060				
No	18 (90.0)	9 (90.0)	9 (90.0)	9 (90.0)	9 (90.0)	9 (90.0)	9 (90.0)	9 (90.0)	0.178	0.178	0.178	0.178	0.178	0.178	0.178	0.178				
Table 7. The association between Talin-1 protein expression and clinicopathological parameters of chromophobe renal cell carcinoma (chRCC)

\[P \text{ value, Pearson's chi-square} \]
\[H\text{-score, histological score} \]
\[\star: \text{No statistical are computed because the parameter is constant} \]
Patient and tumor characteristics

Patient and tumor characteristics	Total samples N (%)	Membranous expression N (%)	Cytoplasmic expression N (%)	Nuclear expression N (%)						
		H-score (cut off = 240) N (%)	P-value	H-score (cut off = 200) N (%)	P-value	H-score (cut off = 135) N (%)	P-value			
		Low (≤ 240)	High (> 240)	P-value	Low (≤ 200)	High (> 200)	P-value	Low (≤ 135)	High (> 135)	P-value
chRCC	34 (12.6)	18 (52.9)	16 (47.1)	0.492	22 (64.7)	12 (35.3)	0.151	17 (50.0)	17 (50.0)	0.303
Mean age, years (Range)	49 (27-76)	8 (44.4)	9 (56.3)	0.492	9 (40.9)	8 (66.7)	0.151	7 (41.2)	10 (58.8)	0.303
≤ Mean age	17 (50.0)	10 (55.6)	7 (43.8)	0.492	13 (59.1)	4 (33.3)	0.151	10 (58.8)	7 (41.2)	0.303
> Mean age	17 (50.0)	10 (55.6)	7 (43.8)	0.492	13 (59.1)	4 (33.3)	0.151	10 (58.8)	7 (41.2)	0.303
Gender										
Male	20 (58.8)	10 (55.6)	10 (62.5)	0.681	12 (54.5)	8 (66.7)	0.493	10 (58.8)	10 (58.8)	0.100
Female	14 (41.2)	8 (44.4)	6 (37.5)	0.681	10 (45.5)	4 (33.3)	0.493	7 (41.2)	7 (41.2)	0.100
Tumor size (cm)										
<4	4 (11.8)	3 (16.7)	1 (6.3)	0.554	3 (13.6)	1 (8.3)	0.918	10 (58.8)	10 (58.8)	0.352
4.1-7	15 (44.1)	9 (50.0)	6 (37.5)	0.554	9 (40.9)	6 (50.0)	0.918	10 (58.8)	10 (58.8)	0.352
7.1-10	5 (14.7)	2 (11.1)	3 (18.8)	0.554	3 (13.6)	2 (16.7)	0.918	2 (11.8)	3 (17.6)	0.352
>10	10 (29.4)	4 (22.2)	6 (37.5)	0.554	7 (31.8)	3 (25.0)	0.918	4 (23.5)	6 (35.3)	0.352
Primary tumor (PT) stage										
pT1 + pT2	7 (20.6)	6 (33.3)	1 (6.3)	0.050	4 (18.2)	3 (25.0)	0.639	5 (29.4)	2 (11.8)	0.203
pT3 + pT4	27 (79.4)	12 (66.7)	15 (93.8)	0.050	18 (91.8)	9 (75.0)	0.639	12 (70.6)	15 (88.2)	0.203
Microvascular invasion (MVI)										
Present	9 (26.5)	2 (11.1)	7 (43.8)	0.075	6 (27.3)	3 (25.0)	0.389	5 (29.4)	4 (23.5)	0.574
Absent	24 (70.6)	15 (83.3)	9 (56.3)	0.075	16 (72.7)	8 (66.7)	0.389	12 (70.6)	12 (70.6)	0.574
Not identified	1 (2.9)	1 (5.6)	0 (0.0)	0.050	0 (0.0)	1 (8.3)	0.389	0 (0.0)	1 (5.9)	0.574
Lymph node invasion (LNI)										
Involved	0 (0.0)	0 (0.0)	0 (0.0)	*	0 (0.0)	0 (0.0)	*	0 (0.0)	0 (0.0)	*
None	34 (100.0)	18 (100.0)	16 (100.0)	0.050	22 (100.0)	12 (100.0)	0.389	17 (100.0)	17 (100.0)	0.574
Renal vein										
	Present	Absent	Not identified							
----------------	---------	--------	---------------							
invasion	0 (0.0)	0 (0.0)	0 (0.0)							
	34 (100.0)	18 (100.0)	16 (100.0)							
	22 (100.0)	12 (100.0)	17 (100.0)							
Histological tumor necrosis(TN)	10 (29.4)	5 (27.8)	5 (31.3)	0.389						
	22 (64.7)	11 (61.1)	11 (68.8)	0.851						
	2 (5.9)	2 (11.1)	0 (0.0)	0.056						
Renal sinus fat invasion	25 (73.5)	13 (72.2)	12 (75.0)	0.503						
	17 (77.3)	8 (66.7)	4 (23.5)	1.000						
Renal pelvis invasion	0 (0.0)	0 (0.0)	0 (0.0)	0.070						
Perirenal fat invasion	6 (17.6)	2 (11.1)	4 (25.0)	0.618						
Gerota's fascia invasion	0 (0.0)	0 (0.0)	0 (0.0)	0.545						
Distant metastasis	3 (8.8)	2 (11.1)	1 (6.3)	0.087						
Tumor recurrence	3 (8.8)	3 (16.7)	0 (0.0)	0.941						

P value, Pearson's chi-square

H-score, histological score

Values in bold are statistically significant

*: No statistical are computed because the parameter is constant
Prognostic value of expression of Talin-1 protein for clinical outcomes in subtypes of RCC

In the current study, the mean and median duration of the follow-up time for DSS were 52 (SD = 27.5) months and 49 (Q1, Q3 = 34, 71) and for PFS were 49 (SD = 29.6) and 47 (Q1, Q3 = 31, 71) months, respectively. Also, the minimum and maximum of follow-up time were 1 and 117 months and the range was 116 months. The results of the analysis showed that distant metastasis and tumor recurrence occurred in 55 (20.4%) and 41 (15.2%) patients, respectively whereas, 214 (79.6%) and 228 (84.8%) were not positive for mentioned parameters. Also, 63 (23.4%) patients were positive for distant metastasis or tumor recurrence and 206 (76.6%) were not positive for these features. During the follow-up, cancer-related death occurred in 40 patients (14.9%) and disease-related death in 5 (1.9%). The main characteristics of patients enrolled for survival analysis according to the histological subtypes of RCC were summarized in (Table 8).

Table 8. The main characteristics of patients enrolled for survival analysis according to histological subtypes of RCC

Features	ccRCC N (%)	pRCC N (%)	chRCC N (%)	
	Type I	Type II		
Number of patients (N)	195	20	20	34
Follow-up period (month)	117	80	77	77
Mean duration of follow-up time (month) (SD)	53 (30.2)	54 (19.9)	46 (21.3)	48 (15.3)
Median duration of follow-up time (month) (Q1, Q3)	51 (31, 74)	53 (41, 76)	41 (28, 66)	47 (36, 61)
Cancer-related death (N %)	34 (17.4)	1 (5.0)	3 (15.0)	2 (5.9)
Distant metastasis during follow-up (N %)	48 (24.6)	1 (5.0)	5 (25.0)	3 (8.8)
Tumor recurrence during follow-up (N %)	37 (19.0)	1 (5.0)	2 (10.0)	3 (8.8)
Alive patients without distant metastasis and tumor recurrence (N %)	140 (71.8)	19 (95.0)	15 (75.0)	30 (88.2)

RCC; renal cell carcinoma
ccRCC; clear cell renal cell carcinoma, pRCC; papillary renal cell carcinoma, chRCC; chromophobe renal cell carcinoma

Survival outcomes based on the expression of Talin-1 protein in RCCs

ccRCC:

Survival outcomes based on membranous Talin-1 protein expression

The results of the Kaplan–Meier curve demonstrated that significant differences between DSS and the patients with high and low membranous expression of Talin-1 protein (Log-rank test: $P = 0.043$) (Fig. 8A). The mean DSS time for patients with high and low membranous expression of Talin-1 protein was 91 (SD = 4.6) and 103 (SD = 3.5) months, respectively. Additionally,
the 5-year survival rates for DSS in patients whose specimens expressed high and low membranous expression of Talin-1 protein were 78 and 88%, respectively (Log-rank test: \(P = 0.050 \)). Moreover, the results of the Kaplan-Meier analysis for PFS showed that there are no significant differences between PFS and the patients with high and low expression of membranous Talin-1 protein (Log-rank test: \(P = 0.081 \)) (Fig. 8B).

Survival outcomes based on cytoplasmic Talin-1 protein expression

Our finding of Kaplan–Meier curves analysis in the cytoplasmic expression of Talin-1 revealed that significant differences between DSS (Log-rank test: \(P = 0.024 \)) or PFS (Log-rank test: \(P = 0.046 \)) and the patients with high and low cytoplasmic Talin-1 protein expression, respectively (Fig. 8C, D). Further, the mean DSS or PFS time for patients with high and low cytoplasmic expression of Talin-1 protein were 90 (SD = 4.7), 87 (SD = 5.0) and 103 (SD = 3.4), 99 (SD = 3.9) months, respectively. The 5-year survival rates for DSS or PFS of patients with high cytoplasmic Talin-1 protein expression were 77 and 72% and with low expression were 89 and 85% (Log-rank test: \(P = 0.044, P = 0.050 \), respectively).

Survival outcomes based on nuclear Talin-1 protein expression

Kaplan Meier survival curves showed that there are no significant differences between DSS or PFS and the patients with high and low nuclear expression of Talin-1 protein in ccRCC cases (Log-rank test: \(P = 0.160, P = 0.219 \), respectively) (Fig. 9A, B).

The results from univariate and multivariate analysis were summarized in Tables 9, 10. As demonstrated in Tables 9 and 10, nucleolar grade was the only independent prognostic factor for DSS or PFS in the multivariate analysis. Expression of membranous and cytoplasmic Talin-1 for DSS and cytoplasmic expression of Talin-1 for PFS were not significant risk factors for prognosis in the multivariate analysis.
Table 9
Univariate and multivariate cox regression analyses of potential prognostic factors for disease-specific survival (DSS) in patients with clear cell RCC (ccRCC)

Covariate	Univariate analysis	Multivariate analysis (Membranous)	Multivariate analysis (Cytoplasmic)		
	HR (95% CI)	P-value	HR (95% CI)	P-value	
Membranous Talin-1 expression High versus low	2.024 (1.007–4.067)	0.048	1.434 (0.667–3.084)	0.356	
Cytoplasmic Talin-1 expression High versus low	2.188 (1.089–4.398)	0.028	-	1.601 (0.756–3.394)	0.219
Nuclear Talin-1 expression High versus low	0.615 (0.310–1.222)	0.165	-	-	-
Tumor size (cm) 4.1-7 versus <4	1.656 (0.439–6.241)	0.009	1.203 (0.309–4.683)	0.354	
7.1–10 versus <4	3.694 (1.042–13.095)	0.457	2.225 (0.549–9.018)	0.263	
10 versus <4	5.632 (1.588–19.974)	0.007	2.688 (0.634–11.400)	0.180	
Nucleolar grade III + IV versus I + II	4.144 (2.059–8.339)	< 0.001	2.563 (1.119–5.869)	0.026	
Primary tumor (PT) stage	2.266 (1.085–4.732)	0.029	1.223 (0.533–2.805)	0.635	
pT3 + pT4 versus pT1 + pT2	0.292 (0.148–0.575)	< 0.001	-	-	
Microvascular invasion (MVI)	0.349 (0.159–0.770)	0.009	-	-	
Histological tumor necrosis (TN)	0.397 (0.203–0.773)	0.007	-	-	
Renal pelvis invasion	0.0422 (0.191–0.932)	0.033	-	-	
Perirenal fat invasion	0.265 (0.137–0.515)	< 0.001	-	-	
Gerota's fascia invasion	0.341 (0.153–0.758)	0.008	-	-	
Distant metastasis	0.012 (0.003–0.052)	< 0.001	-	-	
Covariate	Univariate analysis	Multivariate analysis (Membranous)	Multivariate analysis (Cytoplasmic)		
-------------------	---------------------	------------------------------------	------------------------------------		
	HR (95% CI)	P-value	HR (95% CI)	P-value	
Tumor recurrence	0.060 (0.029–0.127)	<0.001	-	-	

*HR; hazard ratio, CI; confidence interval

The variables with *P* value less than 0.05 and HR more than 1.0 were included in multivariable analyses

Values in bold are statistically significant
Table 10

Univariate and multivariate cox regression analyses of potential prognostic factors for progression-free survival (PFS) in patients with clear cell RCC (ccRCC)

Covariate	Univariate analysis	Multivariate analysis (Cytoplasmic)		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Membranous Talin-1 expression High versus low	1.748 (0.922–3.316)	0.087	-	-
Cytoplasmic Talin-1 expression High versus low	1.889 (1.000- 3.584)	0.050	1.430 (0.715–2.863)	0.312
Nuclear Talin-1 expression High versus low	0.675 (0.359–1.272)	0.225	-	-
Tumor size (cm)				
4.1-7 versus < 4	1.892 (0.512–6.990)	0.004	1.543 (0.408–5.840)	0.142
7.1–10 versus < 4	4.327 (1.243–15.063)	0.339	3.152 (0.818–12.141)	0.523
10 versus < 4	6.315 (1.814–21.987)	0.021	3.702 (0.921–14.878)	0.095
Nucleolar grade				
III + IV versus I + II	3.666 (1.929–6.968)	<0.001	2.243 (1.061–4.739)	0.034
Primary tumor (PT) stage				
pT3 + pT4 versus pT1 + pT2	1.986 (1.008–3.913)	0.047	1.044 (0.492–2.217)	0.910
Microvascular invasion (MVI)	0.310 (0.163–0.588)	<0.001	-	-
Renal vein invasion	0.350 (0.166–0.737)	0.006	-	-
Histological tumor necrosis (TN)	0.445 (0.239–0.827)	0.010	-	-
Perirenal fat invasion	0.239 (0.128–0.444)	<0.001	-	-
Gerota's fascia invasion	0.396 (0.181–0.864)	0.020	-	-
Distant metastasis	0.032 (0.014–0.074)	<0.001	-	-
Tumor recurrence	0.080 (0.041–0.155)	<0.001	-	-

HR: hazard ratio, *CI*: confidence interval

The variables with *P* value less than 0.05 and HR more than 1.0 were included in multivariable analyses. Values in bold are statistically significant.

pRCC (type I & II) and chRCC:

Kaplan–Meier survival analysis showed that there is no statistically significant association between membranous, cytoplasmic, and nuclear Talin-1 protein expression and patients’ survival outcomes in pRCC (type I & II) and chRCC patients. Additionally, univariate and multivariate analyses demonstrated that the listed clinicopathologic variables are not significant factors affecting the DSS or PFS of patients with papillary and chRCC.

Combined analysis of Talin-1/B7-H3 populations
In this part of the study, we first chose the samples which have stained in two markers. The results showed that a statistically significant correlation between expression of cytoplasmic Talin-1 and cytoplasmic B7-H3 proteins (Spearman’s rho, 0.318; $P < 0.001$), however, in membranous expression, we did not find any significant correlation between two markers (Spearman’s rho, 0.026; $P = 0.756$). Therefore, we examined the association between co-expression of cytoplasmic Talin-1 and cytoplasmic B7-H3 proteins with clinicopathologic parameters. The expression levels of Talin-1 and B7-H3 were divided into two categories based on median expression and four phenotypes including Talin-1 $^\text{High}/$B7-H3 $^\text{High}$, Talin-1 $^\text{High}/$B7-H3 $^\text{Low}$, Talin-1 $^\text{Low}/$B7-H3 $^\text{High}$, and Talin-1 $^\text{Low}/$B7-H3 $^\text{Low}$ (Table 11). The analysis showed that a highly significant association between cytoplasmic Talin-1 $^\text{High}/$B7-H3 $^\text{High}$ phenotype and nucleolar grade ($P = 0.002$). The cytoplasmic Talin-1 $^\text{High}/$B7-H3 $^\text{High}$ phenotype was more often found in patients with MVI present ($P = 0.002$), histological TN present ($P = 0.026$), Gerota’s fascia invasion ($P = 0.043$), and distant metastasis ($P = 0.022$) compared to patients without MVI and histological TN, as well as no invasion to Gerota’s fascia and no distant metastasis (Table 11).

Table 11. The association between cytoplasmic Talin-1/B7-H3 phenotypes and clinicopathological parameters of clear cell renal cell carcinoma (ccRCC)
Patient and tumor characteristics	Total samples	Talin-1/B7H3 phenotypes	\(P\)-value			
	N (%)	Talin-1 High \(B7-H3\) High	Talin-1 High \(B7-H3\) Low	Talin-1 Low \(B7-H3\) High	Talin-1 Low \(B7-H3\) Low	
ccRCC	138 (100.0)	41 (29.7)	21 (15.2)	26 (18.8)	50 (36.2)	
Mean age, years (Range)						
\(\leq\) Mean age	65 (47.1)	18 (43.9)	10 (47.6)	16 (61.5)	21 (42.0)	0.412
> Mean age	73 (52.9)	23 (56.1)	11 (52.4)	10 (38.5)	29 (58.0)	
Gender						
Male	91 (65.9)	27 (65.9)	11 (52.4)	18 (69.2)	35 (70.0)	0.530
Female	47 (34.1)	14 (34.1)	10 (47.6)	8 (30.8)	15 (30.0)	
Tumor size (cm)						
<4	29 (21.0)	7 (17.1)	5 (23.8)	6 (23.1)	11 (22.0)	
4.1-7	49 (35.5)	13 (31.7)	10 (47.6)	6 (23.1)	20 (40.0)	0.599
7.1-10	32 (23.2)	10 (24.4)	5 (23.8)	7 (26.9)	10 (20.0)	
>10	28 (20.3)	11 (26.8)	1 (4.8)	7 (26.9)	9 (18.0)	
Nucleolar grade						
I + II	86 (62.3)	18 (43.9)	13 (61.9)	14 (53.8)	41 (82.0)	0.002
III + IV	52 (37.7)	23 (56.1)	8 (38.1)	12 (46.2)	9 (18.0)	
Primary tumor (PT) stage						
pT1 + pT2	54 (39.1)	14 (34.1)	11 (52.4)	12 (46.2)	17 (34.0)	0.381
pT3 + pT4	84 (60.9)	27 (65.9)	10 (47.6)	14 (53.8)	33 (66.0)	
Microvascular invasion (MVI)						
Present	29 (21.0)	16 (39.0)	2 (9.5)	7 (26.9)	4 (8.0)	0.002
Absent	109 (79.0)	25 (61.0)	19 (90.5)	19 (73.1)	46 (92.0)	
Lymph node invasion (LNI)						
Involved	7 (5.1)	5 (12.2)	1 (4.8)	0 (0.0)	1 (2.0)	
None	108 (78.3)	28 (68.3)	18 (85.7)	20 (76.9)	42 (84.0)	0.177
Not identified	23 (16.7)	8 (19.5)	2 (9.5)	6 (23.1)	7 (14.0)	
Renal vein invasion						
Present	13 (9.4)	3 (7.3)	0 (0.0)	5 (19.2)	5 (10.0)	0.148
Absent	125 (90.6)	38 (92.7)	21 (100.0)	21 (80.8)	45 (90.0)	
Histological tumor necrosis (TN)						
Present						
Invasion Type	Present	Absent				
-------------------------------	---------	--------				
Renal sinus fat invasion	77 (55.8)	61 (44.2)				
Renal pelvis invasion	10 (7.2)	128 (92.8)				
Perirenal fat invasion	28 (20.3)	110 (79.7)				
Gerota's fascia invasion	10 (7.2)	128 (92.8)				
Distant metastasis	36 (26.1)	102 (73.9)				
Tumor recurrence	29 (21.0)	109 (79.0)				

Values in bold are statistically significant.

Survival outcomes of Talin-1/B7-H3 expressions

The survival rate of patients with co-expression of cytoplasmic Talin-1^{High}/B7-H3^{High} phenotype was compared with other phenotypes. Higher cytoplasmic expression of Talin-1^{High}/B7-H3^{High} phenotype was associated with worse DSS and PFS than another phenotype (Log-rank test; *P* = 0.007, *P* = 0.021, respectively) (Fig. 10A, B). Further, the 5-year survival rates for DSS and PFS were 87.0% and 83.0% in cytoplasmic Talin-1^{High}/B7-H3^{High} phenotype expression, and 67.0% and 65.0% in another phenotype of cytoplasmic Talin-1/B7-H3 expression (Log-rank test; *P* = 0.010, *P* = 0.029, respectively). Moreover, the stratified analysis indicated that in the patients with distant metastasis, the differences in DSS between patients with cytoplasmic Talin-1^{High}/B7-H3^{High} phenotype and other phenotypes of Talin-1/B7-H3 expression is significant (*P* = 0.050) (Fig. 10C, D). Tumor size and nucleolar grade were the significant risk factors affecting the DSS or PFS of patients with ccRCC in univariate analysis.

Discussion

Although much progress has been made big changes in the treatment of RCC, drug resistance to targeted therapies brings more failures in advanced RCC patients' treatment. Thus, it is urgently needed to explore novel and practical clinical prognostic markers of RCC in the patient's early diagnosis in future renal cancer therapy.
The bioinformatics analysis would be conducive to molecular markers research in clinical RCC. This study set out with the aim to identify the novel biomarker that was potentially involved in the various RCC subtypes. In this regard, we focused on PPI network analysis for proteomics results of other studies related to RCC subtypes and used bioinformatics software investigations to identify hub genes. The hub genes were generated based on the highest degree of connectivity and were screened on Enricher for cancer disease. Besides, enrichment analysis determined the involved pathways and molecular function of hub genes. These results suggested several proteins as hub genes related to cancer, which among them we selected Talin-1 and warranted further investigation. Therefore, to validate the Talin-1 protein as a prognostic marker for RCC, for the first time, expression levels of Talin-1 protein was investigated in a well-characterized series of 269 tissues specimen from patients treated with radical nephrectomy in three main subtypes of RCC including 195 (73.58%) ccRCC, 20 (7.43%) pRCC type I, 20 (7.43%) pRCC type II, and 34 (12.63%) chRCC tissue samples through IHC on TMA slides and evaluation of the association between its expression and clinicopathological characteristics as well as patient survival outcomes. The pattern of Talin-1 protein expression in RCCs also was classified into membranous, cytoplasmic, and nuclear expression.

It is important to investigate histological subtypes of specific cancer, giving consideration to various subtypes which may be associated with different biologic behavior, pattern, and prognosis, hence each of them needs different treatment. The evaluation of the staining pattern in each subtype of RCC displayed differential expression of Talin-1 protein in membrane, cytoplasm, and nucleus with a range of intensities from weak to strong as well as the percentage of staining area. Further, there was a statistically significant association between the membranous and cytoplasmic expression of Talin-1 protein but not in nuclear expression and the RCC subtypes. Subsequently, a statistically significant difference was observed in the median levels of membranous and cytoplasmic Talin-1 protein expression between ccRCC and pRCC (type I & II) as well as pRCC and chRCC subtype, indicating that expression of Talin-1 protein in membrane and cytoplasm versus nucleus are more important in subtypes of RCC and also these expression patterns vary among the histological RCC subtypes, thus this may affect on the prognostic value of them and treatment options.

IHC analysis of human RCCs compared to adjacent normal tissue samples demonstrated that Talin-1 protein expression is upregulated in RCCs. The present study also considered the expression of Talin-1 on UALCAN database, containing a large amount of proteomics data which showed that increased expression of Talin-1 in ccRCCs rather than normal samples. Thus, these results are in line with our findings of Talin-1 protein expression using IHC on ccRCCs.

The advantage of analyzing the expression and subcellular distribution of Talin-1 in RCCs is, the protein in different subcellular localization may have a specific function. Our finding showed that membranous and cytoplasmic expression of Talin-1 protein is positively associated with the important clinicopathological parameters, including advanced nucleolar grade, MVI, histological TN, invasion to Gerota's fascia, and renal pelvis, while in nuclear expression, there was no any association between expression of Talin-1 protein and clinicopathological features in ccRCC cases. Importantly, our results exhibited the increased expression of the median membranous and cytoplasmic Talin-1 protein expression in the high grade of RCC compared with the low grade of RCC and also increased expression in patients with MVI present rather than MVI absent which exhibited the association of membranous and cytoplasmic Talin-1 protein expression with the aggressiveness of ccRCC. In addition, in this study nucleolar grade was found as an independent prognostic factor for DSS and PFS in membranous and cytoplasmic Talin-1 protein expression in multivariate analysis. After the tumor stage, one the strongest prognosticators of survival in patients with RCC is the nucleolar grade, and tumors with a high nucleolar grade display a more aggressive phenotype; thus they are associated with local invasion and distant metastasis. Previous studies demonstrated that MVI is related to cancer progression and survival in RCC and is the most significant prognostic variable for prognostication of metastatic spread and survival outcome independent from macrovascular invasion. Histological TN also has proposed to be a sign of tumor aggressiveness that generally leads to poor survival outcomes. A recently systematic review and meta-analysis study suggested that histological TN is associated with DSS, OS, RFS (recurrence-free survival), and PFS of RCC patients and may serve as a predictor of poor prognosis in RCC patients. Moreover, in this study tumor size and tumor stage were found as prognostic variables in univariate analysis that depicted the associations between these parameters and more aggressive tumor behaviors. The tumor stage is one of the most factors for predicting tumor
progression and recurrence in RCC and tumor size has shown significantly associated with the risk of metastasis. Therefore, these results indicated that membranous and cytoplasmic Talin-1 protein expression compared with nuclear expression are related to the degree of malignancy and progression of disease in ccRCC cases.

Our results from Kaplan-Meier survival curves in ccRCC cases showed that higher membranous and cytoplasmic Talin-1 protein expression is associated with significantly worsened DSS as well as worsened DSS or PFS compared to low Talin-1 protein expression, respectively. In addition, ccRCC patients, who expressed a high level of membranous and cytoplasmic Talin-1, had shorter 5-year DSS or PFS compared with those with low expression. However, the pattern of Talin-1 protein expression was not a predictor of survival in multivariate analysis, indicating the long term follow-up is needed to increase the events and prognosis.

Investigations have shown that increased expression of Talin-1 could lead to the progression of tumor cell adhesion and migration because of Talin-1 as a FA protein is able to mediate integrin interaction with ECM and can bind to a variety of adhesion molecules and induce cell cytoskeleton remodeling. B7-H3, also a member of the B7 family of immunoregulatory proteins which is overexpressed in many types of malignancies and is linked to poor prognosis, increased tumor grade, and metastasis. Previous studies have been reported a correlation between expression levels of B7-H3 and progression of disease in ccRCC. To confirm that whether Talin-1 is related to metastasis, we used the combined analysis of both Talin-1 protein and our previous data of B7-H3 protein in ccRCC. The co-expression of cytoplasmic Talin-1 High/B7-H3 High was observed to be associated with more aggressive tumor behavior and metastasis. Further, Tumor size and nucleolar grade were the significant risk factors affecting the DSS or PFS which depict tumor aggressiveness. Moreover, increased cytoplasmic expression of Talin-1 High/B7-H3 High compared to the other phenotypes was associated with poor prognosis and progression of the disease, especially in patients with distant metastasis, therefore, our findings revealed that increased cytoplasmic expression of Talin-1 is associated with invasiveness and metastasis in ccRCC.

Several previous studies revealed that overexpression of Talin-1 is associated with advanced disease and poor prognosis. Lai et al confirmed that increased expression of Talin-1 in OSCC is associated with poor prognosis and knockdown of Talin-1 expression inhibited ability of proliferation and invasion. In a recent study by Ji Ling et al. using IHC analysis on colorectal cancer (CRC) and adjacent normal tissue demonstrated that Talin-1 protein expression is upregulated in CRC and knockdown of Talin-1 reduces the proliferation and migration via the epithelial–mesenchymal transition (EMT) signaling pathway. Xu N et al. showed that the upregulation of Talin-1 protein in prostate cancer is significantly associated with advanced pathological parameters and predicts lymph node metastases and biochemical recurrence. In NPC, authors exhibited that high Talin-1 expression is associated with significantly poorer OS. Our present data further is in line with these previous studies and suggest that Talin-1 protein is an important molecule involved in the spread and progression of ccRCC. However, Talin-1 has a different expression in other cancers such as hepatocellular carcinoma (HCC). A previous study by Kanamori et al. showed that high-level expression of Talin-1 in HCC tissues while another study demonstrated that Talin-1 is downregulated in HCC, while others showed that expression levels of Talin-1 in serum is significantly higher. In addition, Talin was found to be completely absent in endometriosis and endometrioid carcinomas. Therefore, it seems that expression levels of Talin-1 are different in various cancers and more investigations are needed to explore the exact mechanism and function of Talin-1 for finding the new ways for therapeutic targeting.

In the present study, for the first time, we showed that membranous, cytoplasmic, and nuclear Talin-1 protein expression in other important subtypes of RCC. We found no significant association between Talin-1 protein and clinicopathological features and patients' outcomes in pRCC cases. In chRCCs, a significant association was observed between membranous Talin-1 protein expression and increased tumor stage. More investigations need to be performed to support these findings using a larger number of cases of each pRCC and chRCC subtypes.

Conclusion
In summary, bioinformatics analysis indicated Talin-1 protein as a potential focal adhesion prognostic marker in RCC. Our finding also demonstrated that Talin-1 protein is upregulated in human RCC tissues compared to adjacent normal tissues. Further, our results for the first time revealed that the statistically significant differences between membranous and cytoplasmic Talin-1 expression in various histological subtypes of RCC. A better understanding of the histological subtypes in RCC is urgently needed for further development of treatment options. Moreover, the current study indicates that membranous and cytoplasmic Talin-1 protein expression, particularly cytoplasmic expression compared to nuclear expression plays an important role in more aggressive tumor behaviors, metastasis, and progression of ccRCC. In addition, high membranous and cytoplasmic expression of Talin-1 protein was identified as a worse prognostic variable affecting DSS or PFS in univariate analysis, indicating that Talin-1 may serve as a novel prognostic biomarker in ccRCC if follow up time more extended. However, further studies on the function and mechanism of action of Talin-1 is a requirement to provide new opportunities for therapeutic targeting of RCC.

Methods

Data source and network analysis

Search on PRoteomics IDEntifications database (PRIDE) (https://www.ebi.ac.uk/pride/) from 2019 to 2020 led to identifying three RCC studies that each of them included the proteomics information of one of the RCC subtypes and adjacent normal tissues. The results of proteomics analysis were downloaded from the supplementary information of their published articles. Venn diagram analysis was performed to find common significant differential proteins in three subtypes of RCC by OriginPro 2019 (https://www.originlab.com/2019, OriginLab Corporation, Northampton, MA, USA). PPI network was constructed using stringapp (https://string-db.org/) with medium confidence > 0.4 in Cytoscape (https://cytoscape.org/). Hub genes were identified with the highest degree of connectivity of PPI network analysis (highest confidence > 0.9). Next, hub genes highly associated with cancer (P-value > 0.5).

In both Jensen and DisGeNET RDF v7.0 (https://academic.oup.com/nar/article/48/D1/D845/5611674) disease libraries on Enrichr (amp.pharm.mssm.edu/Enrichr/) were selected as key genes of RCC network for subsequent analysis. Enrichment analysis was done with ClueGO plugin (http://apps.cytoscape.org/apps/cluego) based on gene ontology (GO) (http://geneontology.org/) and pathways, including Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.genome.jp/kegg/), Reactome (https://reactome.org/) and WikiPathways (https://www.wikipathways.org/index.php/WikiPathways) for key genes. GO analysis was contained cellular component (CC), biological process (BP), and molecular function (MF) domains. Finally, one hub gene was selected for the evaluation of expression using the IHC method in RCC tissues. Also, protein expression level for the selected hub gene was considered in divers tumors on UALCAN database (http://ualcan.path.uab.edu/) which provides protein expression analysis option using data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) (https://proteomics.cancer.gov/programs/cptac).

Study population

Two hundred-ninety five FFPE tissues from RCC tumor specimen who underwent radical nephrectomy were collected from a major referral university-based urology–nephrology center, the Hasheminejad Hospital, in Tehran, Iran, during 2008–2015. It was confirmed that none of the patients had received radiotherapy or chemotherapy. Three important subtypes of RCC were comprised in this study including ccRCC, pRCC (type I & II), and chRCC. Hematoxylin and eosin (H&E) stained pathology slides and clinical and pathological information were obtained from medical archival records. The following variables were included age, gender, the maximum diameter of tumor size, nucleolar grade, tumor stage, microvascular invasion (MVI), lymph node invasion (LNI), renal vein invasion, histological tumor necrosis (TN), renal sinus fat, and renal sinus invasion, periureteral fat invasion, Gerota's fascia invasion, distant metastasis, and tumor recurrence.

Clinical follow-up was available for all patients until July 2015. Information of disease-specific survival (DSS) was defined as the time from the first operation to death due to renal cancer. Progression-free survival (PFS) was defined as the interval...
between primary operation and the last follow-up visit without any disease, evidence of tumor recurrence, or metastasis. In addition, tumor stage and nucleolar grade were defined according to the pTNM classification for RCC\(^{57-59}\). Moreover, it was agreed that chRCC should not be graded\(^ {58}\).

Tissue microarray (TMA) construction

The tissue samples were brought into a TMA format as follow, briefly, H & E slides were examined and the most representative areas of the tumor were marked by pathologists. 0.6-mm tissue cylinders were punched out from the selected regions of each donor tumor tissue blocks and transferred into a recipient paraffin block using tissue arrayer MiniCore (ALPHELYS, Plaisir, France). The TMA blocks were constructed in triplicate for each specimen. The mean of the three scores was calculated as the final score. Previous studies have shown that three cores are highly representative of the whole Sect.\(^ {60,61}\). Finally, 4-µm sections were cut from array blocks and transferred to adhesive slides. In each TMA block, adjacent normal renal tissue samples (totally, 30 samples) were included to compare the expression pattern of Talin-1 protein compared to the tumor tissue samples.

Immunohistochemistry (IHC) for Talin-1 protein expression

IHC was applied to detect the expression of Talin-1 protein. Briefly, all TMA sections were deparaffinized at 60°C for 20 min and were transferred in xylene and rehydrated via a series of graded alcohols. 3% H2O2 was used to block endogenous peroxides and non-reactive staining for 20 min at room temperature. Antigen retrieval was performed by immersing the tissues in citrate buffer (pH 6.0) for 10 min in an autoclave. Sections were then incubated with a primary rabbit polyclonal antibody to Talin-1 (1:100, ab71333, Abcam Inc., Cambridge, MA, UK) at 4°C overnight. For isotype control, rabbit immunoglobulin G (IgG) (1:100, Invitrogen, Thermo Fisher Scientific, USA) was used. Then, TMA slides were incubated with anti-rabbit/anti-mouse Envision (Dako, Glostrup, Denmark) as a secondary antibody for 30 min. Afterward, the sections were visualized by diaminobenzidine (DAB) (Dako, Glostrup, Denmark) and stained with hematoxylin (Dako, Glostrup, Denmark). Finally, the slides were dehydrated in alcohol, cleared in xylene, and mounted for examination. In each run of the experiment, human normal kidney tissue was used as a positive control and replacement of the primary antibody with Tris-buffered saline (TBS) as a negative control to confirm the nonspecific bindings of the secondary antibody.

Immunohistochemistry evaluation

The evaluation procedure of the IHC was reviewed by one independent pathologist (M.A) without any related clinical data-informed. The intensity and percentage of the staining area were considered as two important components of the scoring system for Talin-1 protein expression. The intensity of staining was scored by applying a semi-quantitative system, ranging from negative to strong as follows: 0 (no staining), 1 (weak), 2 (moderate), and 3 (strong). The percentage of staining area was categorized according to the positive tumor cells: less than 25% positive cells, 25–50% positive cells, 51–75% positive cells, and more than 75% positive cells. The final Talin-1 protein expression score was calculated by multiplying the value of the intensity score by the percentage of positive tumor cells which ranged from 0 to 300, namely histochemical score (H-score). In this study, the median H-score was chosen to categorize samples with high or low Talin-1 protein expression.

Combined analysis of Talin-1/B7-H3 markers

Previous studies have shown that an association between increased expression of B7-H3 and potential to metastasize\(^ {20,62}\), therefore we applied our previous data of B7-H3 in ccRCC\(^ {20}\) to used combined analysis to confirm that Talin-1 may be related to metastasis.

Statistical analysis

Analyses were performed using the "statistical software SPSS, version 22.0. Armonk, NY: IBM Corp". To verify the significance of association and correlation between Talin-1 protein expression and clinicopathological parameters, Pearson's chi-square and Spearman's correlation tests were performed. Kruskal-Wallis and Mann-Whitney \(U\) tests were applied for pairwise comparison between groups. Survival curves by Talin-1 status were estimated using the Kaplan–Meier method with 95%
confidence interval (CI) and compared by the log-rank test. Univariate Cox proportional hazard models were fit to identify factors significantly related to DSS or PFS. To assess whether Talin-1 and the other variables were an independent predictor of survival, multivariate Cox models were also assessed. The data were expressed as the mean; standard deviation (SD) and median; quartile (Q1, Q3). The difference was considered statistically significant at a P-value < 0.05.

Declarations

Authors’ contributions

LS designed and supervised the work, gathered the paraffin embedded tissues, collected the patient data, prepared the information of patient survival outcomes, analyzed and interpreted the data as well as wrote the manuscript; SV performed the immunohistochemistry examinations and contributed to write the some sections of the manuscript; MA examined hematoxylin and eosin slides, marked the most representative areas in different parts of the tumor for preparing the TMAs blocks, and scored TMAs slides after immunohistochemical staining; FF performed the bioinformatic analysis and wrote the bioinformatic sections in the manuscript. ZM provided for us the laboratory equipment and some materials in this project. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to participate

This study was approved by the Iran University of Medical Sciences Human Research Ethics Committee in Iran (Ref no: IR.IUMS.REC.1398.938). All procedures performed in this study were in accordance with the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all individual participants included in the study at the time of sample collection with routine consent forms.

Funding

This work was supported by the grant from Iran University of Medical Sciences (Ref no: 16289).

Additional information

Supplementary information is available for this paper.

References

1. Kantarjian, H., Koller, C. A. & Wolff, R. A. *The MD Anderson manual of medical oncology* (McGraw-hill, New York, NY, USA, 2011).
2. Street, W. Cancer Facts & Figs. 2019. *American Cancer Society: Atlanta, GA, USA* (2019).
3. Capitanio, U. *et al.* Epidemiology of renal cell carcinoma. *European urology.* 75, 74–84 (2019).
4. Siegel Rebecca, L. & Ahmedin, M. K. D. J. Cancer statistics, 2020.[J]. *CA. Cancer J Clin.* 70, 7–30 (2020).
5. Patil, S. *et al.* Improvement in overall survival of patients with advanced renal cell carcinoma: prognostic factor trend analysis from an international data set of clinical trials. *The Journal of urology.* 188, 2095–2100 (2012).
6. Lalani, A. K. A. *et al.* Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: current paradigms, use of immunotherapy, and future directions. *European urology.* 75, 100–110 (2019).
7. Duran, I. *et al.* Resistance to targeted therapies in renal cancer: the importance of changing the mechanism of action. *Targeted oncology.* 12, 19–35 (2017).
8. Motzer, R. J. et al. Kidney cancer, version 3. 2015. *Journal of the National Comprehensive Cancer Network*. **13**, 151–159 (2015).

9. Shruthi, B. S., Palani Vinodh kumar, S. & Proteomics A new perspective for cancer. *Advanced biomedical research* **5** (2016).

10. Pan, S. et al. High throughput proteome screening for biomarker detection. *Molecular & Cellular Proteomics*. **4**, 182–190 (2005).

11. Wu, X., Al Hasan, M. & Chen, J. Y. Pathway and network analysis in proteomics. *Journal of theoretical biology*. **362**, 44–52 (2014).

12. Critchley, D. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. *Biochem. Soc. Trans.* **32**, 831–836 (2004).

13. Kanamori, H. et al. Identification by differential tissue proteome analysis of talin-1 as a novel molecular marker of progression of hepatocellular carcinoma. *Oncology*. **80**, 406–415 (2011).

14. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. *science* **285**, 1028–1033 (1999).

15. Sakamoto, S., McCann, R. O., Dhir, R. & Kyprianou, N. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. *Cancer research*. **70**, 1885–1895 (2010).

16. Lai, M. T. et al. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. *The Journal of pathology*. **224**, 367–376 (2011).

17. Xu, N. et al. Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer. *Medicine* **95** (2016).

18. Bostanci, O. et al. A novel screening test for colon cancer: Talin-1. *Eur Rev Med Pharmacol Sci*. **18**, 2533–2537 (2014).

19. Xu, Y. F. et al. High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. *BMC cancer*. **15**, 332 (2015).

20. Zanjani, L. S. et al. Cytoplasmic expression of B7-H3 and membranous EpCAM expression are associated with higher grade and survival outcomes in patients with clear cell renal cell carcinoma. *Annals of Diagnostic Pathology*, 151483 (2020).

21. Maziveyi, M. & Alahari, S. K. Cell matrix adhesions in cancer: the proteins that form the glue. *Oncotarget*. **8**, 48471 (2017).

22. Alizadeh, A. M., Shiri, S. & Farsinejad, S. Metastasis review: from bench to bedside. *Tumor biology*. **35**, 8483–8523 (2014).

23. Yoon, H., Dehart, J. P., Murphy, J. M. & Lim, S. T. S. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. *Journal of Histochemistry & Cytochemistry*. **63**, 114–128 (2015).

24. Aye, J. M. et al. The effects of focal adhesion kinase and platelet-derived growth factor receptor beta inhibition in a patient-derived xenograft model of primary and metastatic Wilms tumor. *Oncotarget*. **10**, 5534 (2019).

25. Tai, G., Hohenstein, P. & Davies, J. A. FAK–Src signalling is important to renal collecting duct morphogenesis: discovery using a hierarchical screening technique. *Biology open*. **2**, 416–423 (2013).

26. Béraud, C. et al. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. *International journal of cancer*. **137**, 1549–1559 (2015).

27. Murphy, J. M., Rodriguez, Y. A., Jeong, K., Ahn, E. Y. E. & Lim, S. T. S. Targeting focal adhesion kinase in cancer cells and the tumor microenvironment. *Experimental & Molecular Medicine* **1–10** (2020).

28. Zhou, J., Yi, Q. & Tang, L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. *Journal of Experimental & Clinical Cancer Research*. **38**, 250 (2019).

29. Golubovskaya, M. V. Focal adhesion kinase as a cancer therapy target. *Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents)*. **10**, 735–741 (2010).

30. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. *European urology*. **67**, 913–924 (2015).

31. Lang, H. et al. Prognostic value of microscopic venous invasion in renal cell carcinoma: long-term follow-up. *European urology*. **46**, 331–335 (2004).
32. Bedke, J. et al. Microvascular and lymphovascular tumour invasion are associated with poor prognosis and metastatic spread in renal cell carcinoma: a validation study in clinical practice. *BJU Int.* **121**, 84–92 (2018).

33. Ito, K. et al. Tumor necrosis is a strong predictor for recurrence in patients with pathological T1a renal cell carcinoma. *Oncology letters.* **9**, 125–130 (2015).

34. Zhang, L. et al. Tumor necrosis as a prognostic variable for the clinical outcome in patients with renal cell carcinoma: a systematic review and meta-analysis. *BMC cancer.* **18**, 1–13 (2018).

35. Laird, A. et al. Differential expression of prognostic proteomic markers in primary tumour, venous tumour thrombus and metastatic renal cell cancer tissue and correlation with patient outcome. *PloS one.* **8**, e60483 (2013).

36. Thompson, R. H. et al. Metastatic renal cell carcinoma risk according to tumor size. *The Journal of urology.* **182**, 41–45 (2009).

37. Ahmad, A. A. et al. Papillary Renal Cell Carcinomas Rewire Glutathione Metabolism and Are Deficient in Both Anabolic Glucose Synthesis and Oxidative Phosphorylation. *Cancers.* **11**, 1298 (2019).

38. Flem-Karlsen, K., Fodstad, Å., Tan, M. & Nunes-Xavier, C. E. B7-H3 in cancer—beyond immune regulation. *Trends in Cancer.* **4**, 401–404 (2018).

39. Li, M. et al. Overexpression of B7-H3 in CD14 + monocytes is associated with renal cell carcinoma progression. *Med. Oncol.* **31**, 349 (2014).

40. Ji, L., Jiang, F., Cui, X. & Qin, C. Talin1 knockdown prohibits the proliferation and migration of colorectal cancer cells via the EMT signaling pathway. *Oncology letters.* **18**, 5408–5416 (2019).

41. Zhang, J. L., Qian, Y. B., Zhu, L. X. & Xiong, Q. R. Talin1, a valuable marker for diagnosis and prognostic assessment of human hepatocellular carcinomas. *Asian Pac J Cancer Prev.* **12**, 3265–3269 (2011).

42. Youns, M. M., Wahab, A., Hassan, A. H. A., Attia, M. S. & Z. A. & Serum talin-1 is a potential novel biomarker for diagnosis of hepatocellular carcinoma in Egyptian patients. *Asian Pacific journal of cancer prevention.* **14**, 3819–3823 (2013).

43. Slater, M., Cooper, M. & Murphy, C. The cytoskeletal proteins α-actinin, Ezrin, and talin are de-expressed in endometriosis and endometrioid carcinoma compared with normal uterine epithelium. *Applied Immunohistochemistry & Molecular Morphology.* **15**, 170–174 (2007).

44. Vizcaino, J. A. et al. 2016 update of the PRIDE database and its related tools. *Nucleic acids research.* **44**, D447–D456 (2016).

45. Koch, E. et al. Transcriptome-proteome integration of archival human renal cell carcinoma biopsies enables identification of molecular mechanisms. *American Journal of Physiology-Renal Physiology.* **316**, F1053–F1067 (2019).

46. Xiao, Y. et al. Decreased mitochondrial DNA content drives OXPHOS dysregulation in chromophobe renal cell carcinoma. *Cancer Research* (2020).

47. Doncheva, N. T., Morris, J. H., Gorodkin, J. & Jensen, L. J. Cytoscape StringApp: network analysis and visualization of proteomics data. *Journal of proteome research.* **18**, 623–632 (2018).

48. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome research.* **13**, 2498–2504 (2003).

49. Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X. & Jensen, L. J. DISEASES: Text mining and data integration of disease–gene associations. *Methods.* **74**, 83–89 (2015).

50. Queralt-Rosinach, N., Piñero, J., Bravo, Å., Sanz, F. & Furlong, L. I. DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases. *Bioinformatics.* **32**, 2236–2238 (2016).

51. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic acids research.* **44**, W90–W97 (2016).

52. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. *Bioinformatics.* **25**, 1091–1093 (2009).
53. Ayob, A. Z. & Ramasamy, T. S. Cancer stem cells as key drivers of tumour progression. *Journal of biomedical science.* **25**, 1–18 (2018).

54. Sidiropoulos, K. *et al.* Reactome enhanced pathway visualization. *Bioinformatics.* **33**, 3461–3467 (2017).

55. Slenter, D. N. *et al.* WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. *Nucleic acids research.* **46**, D661–D667 (2018).

56. Chandrashekar, D. S. *et al.* UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. *Neoplasia.* **19**, 649–658 (2017).

57. Trpkov, K. *et al.* Handling and staging of renal cell carcinoma: the International Society of Urological Pathology Consensus (ISUP) conference recommendations. *The American journal of surgical pathology* **37**, 1505–1517 (2013).

58. Delahunt, B. *et al.* The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. *The American journal of surgical pathology.* **37**, 1490–1504 (2013).

59. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. *European urology.* **70**, 93–105 (2016).

60. Jourdan, F. *et al.* Tissue microarray technology: validation in colorectal carcinoma and analysis of p53, hMLH1, and hMSH2 immunohistochemical expression. *Virchows Arch.* **443**, 115–121 (2003).

61. Langer, R. *et al.* Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. *Journal of clinical pathology* **59**, 631–634 (2006).

62. Picarda, E., Ohaegbulam, K. C. & Zang, X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. *Clin. Cancer Res.* **22**, 3425–3431 (2016).