A Review of Cyber-Ranges and Test-Beds: Current and Future Trends

Elochukwu Ukwandu 7, Mohamed Amine Ben Farah 3, Hanan Hindy 4, David Brosset 2, Dimitris Kavallieros 5, Robert Atkinson 1, Christos Tachtatzis 1, Miroslav Bures 3, Ivan Andonovic 1, and Xavier Bellekens 1

1 Dept. of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom; mohamed.ben-farah,robert.atkinson,christos.tachtatzis,ivan.andonovic,xavier.bellekens@strath.ac.uk
2 Naval Academy Research Institute, Arts et Métiers Institute of Technology, France; david.brosset@ecole-navale.fr
3 Department of Computer Science, FEE, Czech Technical University in Prague; buresm3@fel.cvut.cz
4 Department of Cyber-Security, Abertay University, United Kingdom; 1704847@abertay.ac.uk
5 The Center for Security Studies (KEMEA);
6 University of Peloponnese, Department of Informatics and Telecommunications;
7 Dept. of Computer Science, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom; eaukwandu@cardiffmet.ac.uk
* Correspondence: xavier.bellekens@strath.ac.uk

Received: date; Accepted: date; Published: date

Abstract: Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs different dimensions, as well as, highlighting a diminishing differentiation between application areas.

Keywords: Cyber-Ranges; Test-Beds; Cyber-Security; Threat Simulations; Training; Education; Scenario: Virtual Environment; Cyber-Situation Awareness; Taxonomy

1. Introduction

In the recent past, a proliferation in the number and complexity of cyber-security incidents with deeper consequences is evident as attackers become more skilled, sophisticated and persistent. The extent of cyber-incidents targeting critical infrastructures and the public has been fueled further by global events such as the recent COVID-19 pandemic, impacting a plethora of organisations and fueling a clear
and immediate need for increased cyber-situational awareness [1]. Furthermore, in the recent past, the
cyber-security industry has undergone a significant shift in respect of acknowledging the importance of
security training of users, transitioning from “users are the weak link of cyber-security” towards “users
can be trained like muscles hence, improving a company’s overall security posture”. The evolving change
of stance is a fundamental trigger for change in cyber-security procedures, in turn stimulating a growing
demand for training platforms. Cyber-Ranges (CR) and Test-Beds (TB) are the foundation for the creation
and emulation of adaptable Information Technology (IT) and Operational Technology (OT) networks,
respectively. Scenarios replicating a spectrum of cyber-attacks can be established, enhancing the training of
operators and users within recognisable environments in the identification of, and mitigation strategies to
arrest cyber-breaches. Training in an emulated environment accelerates effective learning of best practice
and the ‘real-time’ dynamic interaction promotes a deeper understanding of the consequences of any
action. CR/TB facilitate the establishment of an extended range of attack scenarios with varying levels
of complexity, governed by the stage of training. Groups of users can also train on a remotely accessible
platform to define, optimise and evaluate the impact of a coordinated response to cyber-attacks, e.g.
‘blue team’, ‘red team’, back and ‘front office’ of (say) a bank. Group training involving multiple teams
comprising varying knowledge sets enhance the cyber-situational awareness of the organisation and
improve the response time to identify and arrest a cyber-attack.

In response to the pressuring demand to respond to exponentially evolving cyber-attacks, this paper
presents an extensive and thorough analysis of CRs and TBs based on the recent prominent research and
manuscripts. To the best of the authors knowledge, this thorough analysis is not available in the literature,
thus limiting the presence of an adequate resource for researchers. Moreover, to complete the study, two
taxonomies targeted towards the different dimensions of CRs and TBs are developed and presented in this
manuscript.

The remainder of the paper is organised as follows. Section 2 details the methodology applied to
execute on a review of the state-of-the-art in CRs/TBs; Section 3 presents a summary of existing knowledge
in the disciplines. Section 4 provides a critical assessment on reported CRs/TBs classified by the domain of
applications, user classes, method of experimentation and implementation. Section 5 covers the scenarios
and applications of CRs/TBs. Section 6 focuses on CR/TB taxonomies informed by the findings of the
review. Section 7 describes the training methods implemented through CRs/TBs with the dynamics and
methods used in analysing threats summarised in Section 8. Section 9 elaborates on the future evolution
and use of CRs/TBs, providing evidence of the narrowing gap between their different application areas.
Conclusions are drawn in Section 10.

2. Methodology

This section provides detailed of how the review was conducted and method used.

2.1. Overview

The review presented here adopts a high-level systematic methodology based on planning, selection,
extration, and execution in line with the guidance prescribed by Okoli and Schabram in [2] and Okoli
in [3]. The review is stand-alone focusing on existing knowledge, evaluation, and synthesis in the domains
of CR and TB, the principle aim being to provide evidence of the growing density of cyber-attacks events
harnessing the features of Artificial Intelligence (AI) and Bio-inspired systems to automate attack processes
with increasing levels of stealth and sophistication in both landscape and execution. Furthermore, the
increasing degrees of network inter-connectivity as a consequence, for example, of emerging Industry 4.0
‘smart-everything’ scenarios and the concomitant changes in the dynamics and scope of the threat surface,
translates into a major challenge in determining evolving cyber situational awareness for researchers,
educators, and trainers. The prediction of future trends, scenarios, and possible application areas using current operational environments presents significant challenges. Therefore, this paper - a study with these aims has not been reported to date - projects the training requirements for cyber situational awareness within these evolving infrastructures utilising the existing knowledge within the literature and current sector practices as the seed.

2.2. Aim and Objectives

The literature review aims to identify and analyse the current state-of-the-art in the use and applications of CRs/TBs within cyber-security training and map the range of applications provisioned by these platforms. The objectives are as follows:

- Classifying CRs and TBs.
- To identify and review state-of-the-art trends, scenarios, applications, and training methods.
- Identifying threat dynamics and analysis methods.
- To leverage the knowledge reported to date as the seed to provide insights into emerging future trends, scenarios, technologies, application areas, and training methods fit aligned with the evolution of data-driven practices such as Industry 4.0
- To help equip cyber-security professionals, educators, and trainers with the relevant skills to combat cyber-threats in next generation highly inter-connected, multi-domain infrastructures
- Aims to establish new taxonomies for future CRs/TBs informed by the findings from the survey.

2.3. CRs and TBs Survey

A comprehensive literature review of the state-of-the-art in CRs/TBs disciplines was carried out to establish a reference of current platform features and training tools, the foundation for the development of the main contributions presented in the paper.

2.3.1. Classification and Research Criteria

As CR and TB migrate towards convergence, the literature search used the following keywords to surface the most relevant publications:

1. “Cyber-ranges” + (“Military” + “Defense” + “Intelligence”) or (“Industry” + “Commercial”) or (“Education” + “Research”)
2. “Test-bed” + (“IoT” or “Smart Grid” or “Cloud”) + cyber

Furthermore, the review only considered papers published within the last 5 years of 2015-2020.

2.3.2. Selection Criteria

Searches in five databases were executed: ScienceDirect, IEEE Explore, Springer, Wiley, and ACM. However, fundamental research relevant to the study outwith the specified search period were taken into consideration. The graphs presented in Figures 1a, 1b and 1c depict the evolution of the number of publications from 2015 to 2020 on Test-beds in the Internet-of-Things (IoT), Smart Grid and Cloud disciplines. Increases in the number of publications for all domains is clearly evident, demonstrating extensive research in cyber-security and Test-beds [4].

2.3.3. Extraction Criteria and Results

The review was restricted further to consider only the current dominant area of application for TBs - Smart Grids - and the future area of IoT/smart devices, driven by the goal of predicting future requirements seeded by the current state-of-the-art.
Figures 1d, 1e, 1f, 1g, 1h, 1i, 2b and 2c present the results of the review; Figures 1d, 1e, 1f, 1g, 1h, 1i summarise the publication types in Test-bed within the Springer and ScienceDirect databases. The percentage of papers on IoT Test-beds from the Springer database in Figure 1d shows that 25% of publications are journal articles, while 44% are conference papers; 11% of papers were published in conferences proceedings in Smart Grids (Figure 1e); those published in the Cloud domain represent the highest percentage at (80%) (Figure 1f).

Similarly, the review for CRs was restricted to the current prominent applications areas within Military, Defence and Intelligence (Military), Education and Research (Education), and Industry and Commercial sectors (Industry). The data targeted focused on gaining insights on threat dynamics/proliferation, and emerging countermeasure strategies, a foundation for predicting future trends, technologies, and application areas.

On inspection of Figure 2, it is evident that ACM publishes a greater number of papers in relation to CRs with progressive growth in number from 2015 through to 2019 (Figure 2a). Journal articles account for 64% of publications, book chapters 25% and conference proceedings 11% (Figure 2b). Also clear is that researched-based articles are more readily accepted for publication at a rate of 82% compared to other types of articles such as Book Chapters at 13% and Review articles at 5% (Figure 2c).
Further, ACM has published more Cyber-range related papers in the three domains of Military, Education, and Industry, followed by Wiley, ScienceDirect, Springer and IEEE (Figure 3). Cyber-range papers published in ACM are predominately in Education, followed by Industry and then Military. Wiley, ScienceDirect, Springer, and IEEE published more Industry-related Cyber-range papers than those in Education and Military.
3. Related Work

CR and TB solutions have been applied in both commercial and public settings such as the military/defence, intelligence, education, research, and training [5]. The extensive usage is driven by the need to be cyber-security prepared against persistent threats to critical infrastructures and businesses. The first publicly reported CR was the National Cyber-Range (NCR) [6], created by the US Department of Defence. However, as described in [6], other ‘stealthy’ CRs and TBs existed across the world for cyber-warfare training in advance of the NCR.

Leblanc et al. [7] surveyed the state-of-the-art of 13 simulation-centric CRs categorising them into private, academic or public sector research. The review, while useful, dates back to 2011 and given the significant advances in the functionality of technologies and complexity of threat dynamics limits the value of their findings in the goal of predicting the future evolution.

Davis and Magrath in [5] conducted a survey of CRs in the public domain focusing on 30 existing systems in 2013. The review focused primarily on the merits of each approach in respect of their functionalities with emphasis on cost-effectiveness. The classification was segmented in terms of military and government; academic; and commercial and further categorised as either simulation or emulation-driven implementations. The authors concluded that emulation-driven CRs utilised TBs and were proven to be effective environments for training and test. The trade-off between highly functional, robust training environments and the concomitant cost implications as a result of the complexity of the implementations was stressed. Inherent within the trade-off, is the provision for the sharing of resources and/or virtualisation. Conversely, simulation-based CRs are implemented solely through software that model real world scenarios, and are thus easily scalable. However, emulation-driven CRs can be validated more readily for performance [5].

As the review [5] was carried out considering CRs and TBs before 2013, the conclusions on the trade-off between functionalities and cost-effectiveness has limited value in the determination of the future evolution of the platforms.

Priyadarshini [8] also reported the results of a review on CRs in 2018, culminating in the definition of the features and capabilities of an ‘Ideal CR; the components, scenarios, and capabilities of the CR at the University of Delaware (CRUD) were used as the foundation for the definition of the future platform. The bench-marking did not consider the needs of the applications viz. to facilitate training, education, and research addressing recent and future threat profiles, their proliferation and modes of attack.

The most recent literature by Yamin et al. [9] reviews unclassified CRs and security TBs. The authors propose a taxonomy with reference to the architecture, scenarios, capabilities, roles, and tools as the criteria. The main output is a proposed baseline to aid the development and evaluation of CRs.

The above reviews provided valuable insights into CR/TB technologies with potential to facilitate training in the management of persistent cyber-threats, their changes in perspective, execution, and patterns. However, as a consequence of the dynamic and rapid development of technologies and the enhanced capabilities they provide, the conclusions are limited in the goal of predicting the evolution of future CR/TB platform capabilities and the scope of training they support. The taxonomy that captures these dynamic trends needs to be re-established in the light of advances made in the recent past.

4. Systematic Review

A systematic review to bring to fore the context of this paper is presented using this section.

4.1. Cyber-Ranges and Test-Beds

Table 1 is a summary of CRs and TBs covering a period of five years, the basis for a systematic review to predict the threat landscape, dimension and proliferation taking into consideration continual
technological advancement. The Table is segmented into a number of categories viz. Military, Defense and Intelligence (MDI), Academic (Aca), Enterprise and Commercial (EC), Service Providers (SP), Open Source (OS), Law Enforcement (LE), Government (Gvt), Mode of Deployment (Deploy), Area of Specialties (Specialty), Types (Type), The Team it supports (Team), The Testing Environment (TE) and Method of Experimentation (ME).

Table 1. Summary Table of Related Works

Categories	Ref	MDI	Aca	EC	SP	OS	LE	Govt	Deploy	Specialty	Type	Team	TE	ME
NCR	[6]	Y	N	N	N	N	N	Y	C, VPN	ST, NS	Fed	R, B, Gy	VM	E
Virginia CR	[10]	N	Y	N	N	N	N	N	C	ST	Pub, Prv	R, B	VM	N
Michigan CR	[8]	Y	N	N	N	Y	N	N	C, VPN	ST, AS, CSE	Pub, Prv	R, B	VM, SB	N
Pinecone CR	[8]	N	N	Y	N	N	N	N	N	N	N	N	N	
IBM X-Force	[8]	N	Y	N	N	N	N	N	C	N	Prv	R, B	VM, SB	N
Cyberbit CR	[8]	N	N	N	Y	N	N	N	N	N	N	N	N	
Arizona CWR	[8]	N	N	N	N	Y	N	N	C	N	CSE	N	N	
CRATE	[11]	Y	N	N	N	N	N	N	C, VPN	N	Fed	R, B	VM	N
Cisco CR	[8]	N	Y	Y	N	N	N	N	C, VPN	N	Pub, Prv	R, B	VM	N
NATO CR	[12]	Y	N	N	N	N	N	N	C, VPN	N	Fed	R, B, G, W, Y	VM, SB	N
DoD CR	[13]	Y	N	N	N	N	N	N	C, VPN	N	Fed	R, B	VM, SB	N
Raytheon CR	[8]	Y	N	Y	N	N	N	N	C, VPN	N	Fed	R, B	N	N
Baltimore CR	[8]	Y	N	Y	N	N	N	Y	C, VPN	N	Pub, Prv	R, B	N	N
Florida CR	[8]	Y	Y	N	N	N	N	Y	C	PT, EH, NS, SS	Fed, Pub, Prv	R, B	N	N
CRUD	[8]	Y	Y	N	N	N	N	N	N	N	N	R, B, P	VM	N
Regent CR	[8]	Y	Y	Y	N	N	N	N	N	N	RA, M, TV, DF	N	N	N
Wayne CR	[8]	Y	N	Y	N	N	N	N	C	EH, CTF, PT, EH	N	N	SB	N
Arkansas CR	[8]	Y	N	N	N	N	N	N	C	PT	N	N	VM	N
Georgia CR	[8]	N	N	Y	N	N	Y	N	N	CSE	Pub	N	N	
SIMTEX	[5]	Y	N	N	N	N	Y	N	CSE	Pub	N	N	S	
CAAJED	[14]	Y	N	N	N	N	N	N	CSE	Pub	N	N	S	

Continued...
Categories	Ref	MDI	Aca	EC	SP	OS	LE	Govt	Deploy	Specialty	Type	Team	TE	ME
SAST	[15]	Y	N	N	N	N	N	N	N	CSE	Pub	N	N	S
StealthNet	[16]	Y	N	N	N	N	N	N	N	CSE	Pub	N	N	S
SECUSIM	[17]	N	Y	N	N	N	N	N	N	CSE	Pub	N	N	S
RINSE	[18]	N	Y	N	N	N	N	N	N	CSE	Pub	N	N	S
NetENGINE	[19]	N	Y	N	N	N	N	Y	N	CSE	Prv	N	N	S
ARENA	[20]	N	Y	N	N	N	N	N	N	CSE	Pub	N	N	S
OPNET-based	[21]	N	N	N	N	N	N	N	N	NA	Pub	N	N	N
LARIAT	[22]	Y	N	N	N	N	N	N	N	CSE	Pub	N	N	S
VCSTC	[23]	N	Y	N	N	N	N	Y	N	CSE	Pub	N	N	S
Breaking Point	[5]	N	N	Y	N	N	N	N	N	Training	Prv	N	N	S
Exata	[5]	Y	N	Y	N	N	N	N	N	Training	Prv	N	N	S
PlanetLab	[5]	N	N	N	N	N	N	N	N	Training, CSE	Fed, Pub	N	N	O
X-Bone	[5]	N	N	N	N	N	N	N	N	CSE	Prv	N	N	O
JIOR	[5]	Y	N	N	N	N	N	Y	N	CSE, Training	Fed	N	N	E
INL	[24]	Y	N	N	N	N	N	Y	N	CSE, Training	Fed	N	N	E
Emulab	[25]	N	Y	N	N	N	N	N	N	CSE, Research	Fed	N	N	E
DETER	[5]	N	Y	N	N	N	N	N	N	CSE, Research	Fed	N	N	E
Virtualised CR	[26]	N	Y	N	N	N	N	N	N	CSE, Research	Fed	N	N	E
Reassure	[27]	N	Y	N	N	N	N	N	N	Research	Pub	N	N	E
Northrop G	[5]	Y	N	Y	N	N	N	N	N	CSE, Training	Prv	N	N	E
Counter HC	[5]	N	N	Y	N	N	N	N	N	Training, CSE	Prv	N	N	NA
Detica	[5]	N	N	Y	N	N	N	N	N	Training	Prv	N	N	N
ATC	[28]	N	N	Y	N	N	N	N	N	Training	Prv	N	N	LS
Testbed@TWISC	[29]	N	Y	N	N	N	N	N	C	Research, ST	Prv	N	SB	E

Continued...
• **Application Domains:** A total of 44 CRs were categorised, including the CRs surveyed by [5] and [8]. Figure 4 shows that CRs have been predominantly used for academic purposes in education and research at 31%. The result differs from that of Davis and Magrath [5] of 2013, where the predominant use of CRs was in the training for cyber-security, a paradigm shift in the main application. The trend is also consistent with the findings presented in Section 2; that the bulk of CR papers were published by the academic community reporting on applications in teaching, learning, and research; followed by Enterprises and Commercial organisations, as well as, Military Defence and Intelligence for training purposes such as cyber-defence preparedness both at 24% respectively. The use in of CRs in Government was at 15% rate, while other application areas such as Law Enforcement, Service Providers, and Open-Source constitute only 2% of the manuscripts surveyed.

![Figure 4. Cyber-Range Domain of Applications](image)

Only five TBs were identified (Table 1), of which three were applied in academia for the purposes of education and research; Testbed@TWISC [29], CyberVan [31], and INSALATA [30]. SoftGrid [32] and systems such as LARIAT [33] [22], have been applied in defence and intelligence training.
• **Types:** Figure 5 shows that public and federated CRs are predominant in use at 30% respectively, private at 24%, a combination of Public-Private at 11%, a combination of Federated-Public-Private at 3% and Federated-Public at 2%. A link between the cyber-security preparedness application with the type of technology is evident. The predominant domain of application is for academic purposes and the institutions that provide education and research are mostly public with international collaborative perspectives, thereby suggesting an inter-relationship.

![Figure 5. Cyber-Range Types](image)

CyberVan [31] is a public type of Test-bed, while Testbed@TWISC [29], INSALATA [30], SoftGrid [32] and LARIAT [33] [22] are private TBs.

• **Team Formation:** Team formations are central to training through exercises emulating operations. Teams are formed depending on the type of exercise; (1) Red team acts as adversaries by launching attacks on the network system; (2) Blue team is responsible for defending against an adversary attack; (3) White team for administrative management; (4) Purple team sets objectives for offensive and defensive strategies; (5) Green team is responsible for maintaining network efficiency; (6) Grey team conducts non-malicious activity; and (7) Yellow team acts as a motivator during each exercise. From the survey Red-Blue team formation is most prominent at 67%, an indication that many CRs are dedicated to cyber-attack and defence training and exercises, followed by Red-Blue-Grey teams at 9% and others such as Red-Blue-Green, Red-Blue-Green-White-Yellow and Red-Blue-Purple with 8% each as shown in Figure 6. The training of teams on operational environments is restrictive in the scope of threat conditions that can be established as it compromises business continuity.

![Figure 6. Cyber-Range Teams](image)

• **Methods of Experimentation:** Figure 7 highlights that simulation is the most common implementation methodology at 60%, followed by emulation at 38%, overlay at 8%, and finally live scenario demonstrations at 4%.
Figure 7. Cyber-Range Methods of Experimentation

Testbed@TWISC [29], INSALATA [30], SoftGrid [32] and LARIAT [33] [22] all use emulation techniques except CyberVan [31] that is based on simulation.

4.2. Technologies

Figure 8 and Figure 9 summarise CR Core technologies segmented as virtualisation, simulation, containerisation, and physical hardware; some CRs provide a combination of these technologies such as virtualisation with physical hardware. TB implementations target the training of cyber situational awareness for domain experts in the areas of control and information technology networks. The platforms also enable training in operational technologies with few employing simulation and emulation but the bulk are based on physical hardware. Table 2 presents an overview of CRs/TBs technologies used based on the available literature with focus on the selected application areas.

4.2.1. Core Technologies

The modelling of certain infrastructures underpinning a particular application require the use of a combination of methods, in effect a hybrid implementation as shown in Figure 10, where the combination of Virtualisation with Physical Hardware technologies is presented. These combinations enhance the capabilities of CR - by allowing operational and information technologies to be part of a scenario - embody features of both CR and TB.

Containerisation such as Docker is summarised in Figure 11. Containerisation is a light-weight approach to virtualisation, a uniform structure in which any application can be containerised (stored), transported, and deployed (run). Hardware virtualisation, on the other hand, implies Virtual Machine (VM) deployment i.e., a layer between the hardware and the host operating system, managed by a hypervisor as shown in Figure 12. The use of containers is more scaleable compared to VMs, but the latter provide a more flexible and secure system. Their application depends largely on need but there is the possibility of VMs and Container technologies merging into a form of cloud portability.

Emulation replicates the operations within the target infrastructure through a mirror system, while simulation replicates the behaviour of the target system through a model; thus, simulation is preferred in virtual training applications.
4.2.2. Infrastructure Technologies

Technologies that establish, manage, and control CRs are located between the core and front-end layers (Figure 8). Their selection vary widely based on CR developers’ preference and the goal application of the CR. The range of technologies are readily available, example being virtualisation management solutions such as vSphere and Wisper.

A number of CR implementations [6] [13] utilise a combination of physical servers with virtual solutions. In these cases, the physical server has direct and exclusive access to the physical hardware, and the virtualisation has virtual hardware emulated by the hypervisor, which in turn controls all access to the underlying physical hardware. Virtualisation acts as a layer in between the hardware and the host operating system. Two types of hypervisor are in routine use, referred to as Type 1 and Type 2. Type 1
hypervisor runs directly on the host machine’s physical hardware, while Type 2 - more commonly known as a hosted hypervisor - is installed on top of an existing operating system. A hypervisor employs four main virtual resources; vCPU, vMemory, vNetwork (vSwitch), and vDisk.

SCADA-based TBs employ Human Machine Interfaces (HMI) server software, software-based Relay Terminal Units (RTUs) and Relay Programmers, as a consequence of the need to reproduce an exact model of the inter-dependencies between components. Accuracy of the model is essential in the evaluation of the effectiveness of cyber-attacks and their corresponding countermeasures [34] [35].

Since many CR articles do not reveal the underlying infrastructural technology in use, e.g. vSphere, Wisper in their design and implementation, the use of ‘Available’ in the Table 2 indicates an infrastructure technology in use that cannot be specified, while ‘Not Available’ indicates that no information on the infrastructure technology was reported. Both are included for completeness.
4.2.3. Front-End Technologies

The bridge between end user and the CR - Core and Infrastructure - is the Front-End; the Core, infrastructure and user type determine the features of the Front-End. The basic elements of a web server as shown in Figure 13 represent the Hardware and Software components, the former is the physical server used by the hosting providers and the latter comprises an operating system and Hyper-Text Transfer Protocol (HTTP) server databases and scripting languages that enhance the capabilities of the web server. A Web server such as Apache or Nginx is deployed at the back-end coupled with a Content Management System (CMS) compiling results from scripting languages, databases, and HTML files to generate content for to the user. Web technologies provide the front-end interface as shown in Figure 8 such as HTML5-based console simulators.
TBs, on the other hand, rarely use front-end technologies as the environments being modelled are predominately Operational and Information Technology (OT/IT) systems on Human Machine Interface (HMI) servers, Historians, Software-based Remote Terminal Units (RTUs) and Relay Programmers [34]. Table 2 provides an overview of the available literature on CR Core, Infrastructure and Front-end technologies.

![A Simple Web Server Architecture](image)

Figure 13. A Simple Web Server Architecture

Classification	Ref.	Year	Core Technology	Infrastructure Technology	Front-End Technology
Cyber-SHIP	[36]	2019	Live Scenario	Not Available	Not Available
ICSRange	[37]	2019	Simulation	Not Available	Not Available
Clusus	[38]	2019	Simulation	Available	Available
Testbed@TWISC	[29]	2018	Emulation	Available	Available
CYRAN	[39]	2018	Hybrid	Available	Available
INSALATA	[30]	2017	Emulation	Available	Available
Virginia CR	[10]	2017	Simulation	Available	Available
CyberVan	[31]	2016	Simulation	Available	Available
SoftGrid	[32]	2016	Emulation	Available	Available
SCADA-SST	[40]	2016	Simulation	Available	Available
KYPO	[41][42]	2015	Simulation	Available	Available
CRATE	[11]	2015	Emulation	Available	Available
DoD CR	[13]	2014	Simulation	Available	Available
SCADAVT-A	[43]	2013	Live Scenario	Available	Available
StealthNet	[16]	2011	Simulation	Available	Available
NCR (DARPA)	[6][13]	2011	Emulation	Available	Available
PowerCyber	[34]	2010	Simulation	Available	Available
Reassure	[27]	2009	Simulation	Available	Available
ATC	[28]	2008	Live Scenario	Not Available	Not Available
CAAJED	[14]	2008	Simulation	Available	Available
DETER	[44]	2006	Simulation	Available	Available
RINSE	[18]	2005	Simulation	Not Available	Not Available
ViSe	[45]	2005	Emulation	Available	Available
NetENGINE	[19]	2003	Simulation	Available	Available
LARIAT	[22]	2002	Hybrid	Available	Available
5. Scenarios and Applications

Different scenarios and application areas of CRs and TBs technologies will be the focus of this section.

5.1. CRs and TBs Scenarios

Scenarios are simulated or emulated networks comprising traffic as well as potential threats in the network layer (PAN, LAN, MAN, WAN), software and hardware implemented through virtual machines (VMs), Containers or Sandboxes. In a bid to comprehensively represent target networks, the scenario can also feature other system peripherals and appliances. The simulated network environment is injected with traffic representative of user activities e.g. web surfing, email, and other server communications and real-life attack scenarios such as in Control or Data centres (Figure 14) are deployed. A predefined attack scenario library as well as custom-built scenarios are integral to the platform.

![Figure 14. Attack scenarios types](image)

Yamin et al. [9] state that scenarios consist of Purpose, Environment, Storyline, Type, Domain and Tools, features to appropriately classifying a scenario aligned with the objectives of the exercise/training.
The major differences between TB and CR scenarios are in the attack scenarios being simulated or emulated (Figure 14). TBs predominately simulate attacks in critical infrastructures such as energy sub-stations e.g. re-configuring a relay systems/devices Denial of Service (DoS), modifying/disrupting valid alarms, producing fake alarms, sending incorrect commands to the relay, manipulating readings from a relay, and injecting incorrect data to historian [34], whilst CRs most often simulate multi-connected network such as Control Centres, Data Centres, and Internet-enabled IT/OT system attacks e.g. SQL Injection, Apache Shutdown, Web Defacement, Trojan Data Leakage, Java Network Monitoring System (NMS) Kill, Database (DB) Dump via File Transfer Protocol, Ransomware, DDoS, Synchronise (SYN) Flood, SCADA Human Machine Interface (HMI).

Scenarios depend largely on the application and the architecture of the network and adapt to the training goals. The relationship between the goals of the training and the optimum scenario remains fundamental in the assessment of the positive value of CR or TB.

Table 4 presents a list of attacks and their associated settings in the last five years. Attacks are classified by scenario complexity and type; ‘Low’ for scenarios with at least one attack test; ‘Medium’ for scenarios with two classical attacks; and ‘High’ for sophisticated or more than two attacks.

5.1.1. Scenario Design, Validation and Deployment

• **Design:** The definition of functional and non-functional as well as user and team-related requirements are essential pre-requisites in the design of a CR scenario. While the functional requirements pertain to the services the system provides, non-functional requirements describe how the system reacts to inputs and its dynamic responses. The team-related requirements are the tools and resources inherent within the exercise for use by teams. [46]. Furthermore, ab initio a set of attack trees based on an understanding of how an attacker can gain access to the domain under study is imperative to an effective attack scenario design. Thus a comprehensive vulnerability assessment must be established, and coupled with the impact scenarios, are combined produce a set of attack trees, the foundation for establishing a representative real-life breach condition and in turn enabling an evaluation of the optimum countermeasures to arrest the attack [34][47].

• **Validation:** Russo *et al.* [48] report on a framework for automating model validation of scenarios through a Scenario Definition Language (SDL) on the OASIS Topology and Orchestration Specification for Cloud Application (TOSCA) [49]. SDL/TOSCA based implementations automate the validation of the scenario against specified design errors, such as incorrect hardware/software bindings. The approach translates a SDL design into a Data Log specification, before verifying if the specification satisfies the goals of the scenario. A design modification is triggered whenever the validation fails, otherwise the scenario is automatically deployed. While developed for CR applications, the solution is also applicable to TBs but is dependent on the domain of study, most relevant in attack scenarios in targeting Control Centres (Figure 14).

• **Deployment:** A number of other approaches to activating scenarios have been reported. CRACK [50] are a SDL/TOSCA scenario definition, design and deployment languages and Automated Deployment of Laboratory Environments Systems (ADLES) [51], an open source specification language and associated deployment tool, achieve the same goals. ADLES provides an instructor a tool-set to design, specify, and semi-automatically deploy the training scenario together with tutorials as well as competitions. Furthermore, efficient sharing of classes together with the associated computing environment are provisioned to participants. The ADLES deployment begins with the verification and fixing of Master instances by converting them into templates followed by the use of these instances to clone services, create virtual networks and folders. The full exercise
scenario on the specified virtualisation platform is then deployed. While these implementations are current state-of-art deployments, it is important to acknowledge that within the foreseeable future, the effectiveness of these tools will be diluted as the sophistication and complexity of cyber-attacks evolve powered through AI-based and Bio-Inspired attack strategies, motivating the need to migrate to Real-Time Auto-configurable systems.

5.2. CR and TB Applications

Figure 14 illustrates a clear trend in the convergence of CRs/TBs cyber-awareness training. While it is acknowledged that CRs cover a broader applications than TBs in the recent past, a number of domains where CRs are in particular use is becoming more evident, such as in industries for commercial purposes, education and research for academic purposes, military, defence and intelligence and in the defence of critical national infrastructure. TBs, although in use within these domains, are applied more extensively in Smart Grids and IoT architecture due to the embedded nature of HMI, Historian, RTUs, Relays implementations which better define the type of attack scenarios witnessed in these specific domains.

- **Industrial and Commercial**: IBM X-Force Command Centre ([8]) is the first commercial malware simulator that tests for the security of systems. At the heart of the simulator is a mobile Command Cyber Tactical Operations Center (C-TOC) that provides cyber-range and watch floor services. The C-TOC can be configured both as an immersive training CR, a platform for Red teaming and capture-the-flag competitions, as well as a watch floor for special security events. The Ixia Breaking Point, advertised as providing CR capabilities [5], is also a commercially available. The single rack-mountable appliance provides traffic generation and a ‘Strike Pack’ of network security and malware attacks. Exata is yet another commercially available simulation-based CR. A number of emulation-based CR are currently on offer, a good example being the ATC [28].

- **Education and Research**: Cohen [52] presents the development of SECUSIM [53], a highly customisable system with integrated Graphic User Interface (GUI) capabilities, the first example of the education and research community creating a training platform for simulating the impact of attacks on computer networks [5]. The University of Illinois has developed the Real Time Immersive Network Simulation Environment (RINSE) in 2006, also primarily for training [18]. Other implementations in academia for modelling computer networks and intrusion detection systems (IDSs) attacks include the Virginia CR [10], Emulab [25], Virtualised CR [26], ARENA [20]. NetENGINE [19] has been designed for training on the strategies to combat cyber-attacks in large IP networks comprising a Virtual Cyber-Security Testing Capability (VCSTS) for the automated testing of new devices to assess its security robustness before deployment [23].

- **Military, Defence and Intelligence**: Davis and Magrath [5] assert that the USA Air Force (USAF) used CR around 2002, an element of the Simulator Training Exercise Network (SIMTEX) referred to as the Black Demon. The first reported CR was the Defence Advanced Research Projects Agency (DARPA)’s National Cyber Range (NCR) representing the foundation in the training of their military, defence and intelligence agencies on cyber warfare initiated by the United State military in 2009 as a consequence of the US Department of Defence classified military computer networking infrastructure being significantly compromised in 2008 [54]. Although NCR was largely a military-sponsored initiative, its use and application cut across the military, commercial, academic, and Government sectors [5] [6]. Fourteen (14) CR applications in Military, Defense and Intelligence have been recorded to date ranging from CRATE [11], DoD CR [13], CAAJED [14], SAST [15],
StealthNet [16], LARIAT [22] to INL [24]. Their role is not only to train the security agencies of sovereign countries on counter cyber-terrorism and warfare, but also to protect the nation’s critical infrastructure such as Naval, Power and Aviation. SoftGrid [32] and CyberVan [31] are examples of TBs found in these application sectors.

- **Smart Grids**: The predominate area of application for TBs is Smart Grids owing to the reliance for the effective operation of an ever-evolving power network on an enabling communication network with information flow managing the power delivery. Consequently, the security of equipment and the critical signals that control the power system becomes essential for the safe, flexible and uninterrupted provision of the supply of energy.

A Smart Grid Test-bed can be cast as two simulation environments (Figure 15), one for the power, the other for the cyber/communication network. Co-simulator segmentation is a necessity as a hacker can target operations within both networks [55]. Here, TBs are classified into two categories; off-line and real-time. An off-line environment is the most prevalent approach realised, most readily, by SCADA systems [56]; refer to Table 3 for details. OMNET++ or NS2 are invariably at the core of most cyber simulators, with the TCP/IP protocol used to communicate between simulators. Synchronisation is central to the co-ordination of operations in the two domains. Real-time TBs have been proven to facilitate efficient training outcomes [57].

- **IoT Devices**: In the recent past, Internet-of-Things (IoT) architectures have evolved rapidly characterised by a growing complexity of inter-connections of an ever-increasing number of nodes (‘things’). The proliferation of highly connected environments translates into an enhanced spectrum of vulnerabilities/opportunities for cyber criminals. Furthermore, IoT-inspired data-driven solutions have been adopted by key industry sectors as a means to implement business transformation. Securing network infrastructures consisting for example, of medical records, financial credential information against breaches becomes even more challenging. The training of security operators in these new classes of threats is essential. IoT Test-beds that can simulate different kinds of attacks play an important role in supporting the delivery of dynamically changing training requirements. Example IoT Test-Beds have been reported in [58], [59] and [60].

![Figure 15. Co-Simulation Test-bed](image)

5.3. CR and TB Realisation

The flowchart in Figure 16 describes the steps in its realisation;

1. Evaluate the weaknesses in the infrastructure; the architecture of the local network, past attacks, and the current security strategy should be examined.
2. Map the basic solutions; e.g. a firewall or control of external devices.
3. Assess current security policies; to enhance the security level of an infrastructure.
4. Training by simulation of attack exercises and scenarios; the definition of an appropriate virtual TB for training should adopt the following steps;

Step 1

A classification of the infrastructure is an essential step in advance of the realisation of the TB. Validation tests on the infrastructure may are required for an accurate classification.

Step 2

The vulnerabilities of the infrastructure should be identified; the localisation of vulnerabilities is important in informing on the security deficiencies within the infrastructure.

Step 3

Selection of the most appropriate software dependent on the application domain and the infrastructure. As an example, in the Smart Grid environment, OPAL-RT can be chosen to simulate the electric power and a discrete event network simulator to simulate the communication network.

Step 4

A modular approach is adopted to describe the infrastructure, with the input/output of each module verified.

Step 5

A database of different tests and scenarios is created, fundamental for the validation of the TB.

Step 6

Users are trained to respond to a range of attacks and threat scenarios, with the relevant reports being extracted from the interface module of the TB.

6. Analysis and Taxonomies

Two taxonomies in Figures 17 and 18 for treating CRs/TBs have been established based upon the reviewed literature. Current taxonomies encompass both CR and TB due to the close coupling between platforms, however, each offers different services governed by their implementation and training aims. The differentiation is captured in order to compile evidence demonstrating that CRs are mostly applied in IT while TB are preferred in OT environments. Moreover, CR are orientated towards end-users with a
Table 4. Some Cyber-Attacks and their Domain in the last 5 years

Ref	Year	Domain	Tool	Complexity	Attack type	Commentary
.						
[61]	2020	Smart Grid	OPAL-RT	Medium	test-bed cyber events	Cyber attack needed to validate
[58]	2020	IoT	Open source platform	High	Extensive analysis/Automated tests	Time analysis needed to show the efficiency of Test-bed
[56]	2019	Smart Grid (PSCADA)	OMNET	Low	DoS/FDI	Lack of testes and scenarios
[62]	2019	IoT (SCADA)	–	Medium	DNS attack	security tests required
[63]	2019	IoT	QEMU emulator	Low	DDOS attack	Few attacks are tested
[64]	2018	Water storage (SCADA)	–	High	Packet injection/ARP spoofing/DoS	Real-time implementation discussion missed
[65]	2018	Information centric network	CONET	High	Input traffic pattern	Adding further experiences
[57]	2017	Smart Grid	OPAL-RT	High	Access to communication link	Real-time implementation of OPF model
[66]	2017	IoT	FIT/IoT LAB	Low	No attack tested	lack of security tests
[67]	2017	Cloud	Open source	Low	No attack tested	lack of security tests
[68]	2017	Industrial control system (SCADA)	–	Medium	Availability attack/Integrity attack	Detection tool should be implemented
[60]	2017	IoT(SCADA)	Hardware-based test bed	High	5 kinds of attack	Test bed with IDS
[69]	2016	IoT	Software-based OpenFlow switches	Low	No attacks	Software defined networking testbed
[70]	2016	Smart Grid	Real Time Digital Simulator	Low	Man-in-the-Middle attack	Test bed with Attack Resilient Control algorithm
[40]	2016	SCADA	C++	Low	Denial of Service attack	Test-bed based on SCADA simulation environment (SCADA-SST)
[71]	2016	SCADA	–	Low	Man-in-the-Middle Attack	Test-bed using CPS topology
[72]	2016	Power System	Real Time Digital Simulator (RTDS)	Medium	Aurora Attack/Network Based Cyber-Attacks	WAMS cyber-physical test-bed
[73]	2015	Power System	Real Time Digital Simulator (RTDS)	Medium	Measurement attack/Control attacks	PowerCyber CPS security Test-bed

A general understanding of the simulated architecture, while test-beds often require domain knowledge. The differentiation confirms the need for two separate taxonomies.

6.1. Cyber-Ranges

The definition of the cyber-range taxonomy is informed by future developments as inferred from the reviews conducted in this paper.
6.1.1. Management

The management layer presents a range of interfaces to various users, administering the collection, storage and analysis of the data describing scenarios and user-interactions. Information is presented to users through a dashboard along with the available scenarios and attack types per scenario. The layer also administers users and their roles as well as being responsible for reporting.

6.1.2. Monitoring

The component monitors users on the platform, capturing progress and assessing performance throughout the different scenarios as well as being responsible for connections of remote users to the platform, their actions, inputs paths selection and team formations. This component also validates the health of the platform and the various services and scenarios provisioned.

6.1.3. Econometrics

Understanding the impact of the actions taken by an user is essential, especially to estimate the level of situational awareness. The component executes an evaluation of the economic impact of actions taken by users within the various scenarios.
6.1.4. Types

Hardware based CRs allow training on operational technologies such as programmable logic controllers. Simulation/Emulation based CRs allow an infrastructure to be replicated, are scalable and cost effective, however, it is often challenging to replicate architecture accurately due to software limitations. A federated approach may be adopted where multiple CRs are clustered, each CR dedicated to simulating a single environment e.g. Large Enterprise Network and a Power Network and creating scenarios that span across all CRs. The hybrid solution, while similar, often depicts CRs composed of Hardware and Software solutions to provide both scalability, and affordability.
6.1.5. **Teaming**

Teams are at the heart of managing cyber protection services for organisations and consequently CRs are required to provide the appropriate environments for appropriate training. The *Yellow* team comprises application developers and software architects managing the CR. The *Green* team focuses on enhancing the security provision, the automation of tasks and ensure that the code is of the highest quality. The *Orange* team facilitates the education and is responsible for the creation and development of scenarios. The *Blue* team focuses on developing defensive actions, to protect the network and define the most effective countermeasure to arrest the breach. The *Red* team adopts an offensive stance, often competing against the Blue team. Finally, the *Purple* team is composed of users with both Blue and Red team skills, with knowledge of both defensive and offensive tactics.

6.1.6. **Recovery**

The recovery component ensures that all policies and patches remain up to date. The component maintains the operational state of the CR during an exercise, executes regular back-ups and restricts cyber-attacks spilling from the CR. The function is central for digital forensic purposes post incident/cyber-attack.

6.1.7. **Attack Types**

The component encompasses descriptions of the different attacks including the security configurations for the vulnerabilities within scenarios. A database of the vulnerabilities, as well as a high/low level description of each mapped against the OSI model is established.

6.1.8. **Scenarios**

The scenario component is subdivided in five sub-components focusing on I) the Narrative - it is essential for a scenario to have a target goal as well as the consequences of any action. A desire, dilemma and conflicts can also be added to enrich the learning environment. II) the Domain defines the context in which the scenario is currently being simulated. III) the Education supports users to navigate and learn the skills necessary to complete the scenario through tutoring, scoring, demonstration, analysis and review of actions with the user in a role base fashion or through a specific case study. IV) Gamification is used to embed game mechanics to drive and maintain the level of user engagement e.g. encourage users to engage with the platform and/or to perform a specific task by enticing with a lure aligned to user behaviour/preferences. V) the type of scenario can be either static with a single goal or dynamic evolving with each action of the user.

6.2. **Test-Beds**

In line with the CR taxonomy discussed earlier, the focus of the proposed TB taxonomy is also informed by future developments/technologies.

6.2.1. **Education**

The Education component is used to explore new security scenarios, most often utilised by the evaluation team to develop and confirm the scenario for the optimum learning outcomes best students. Such exercises may include the evaluation of the formative assessment and ease of implementation.
6.2.2. Model

The Modelling component provides control as well as directs process on the innovation cycle. A model of the innovation is created and processed in a controlled environment satisfying a set of constraints.

6.2.3. Generation

The Generation component provisions comprehensive information on the underlying technology and vendors, inputs that inform the features of the innovation and its deployment.

6.2.4. Execution

Real-time, configuration-based remote creation of innovation provide insights into its impact on the behaviours of the system being modelled or tested. Essential to the test of the resilience of the targeted system is an evaluation of the behaviour at different execution scenarios, optimally executed within a controlled environment as that provided by a test-bed.

6.2.5. Evaluation

Evaluation of model within a TB can be done manually or automatically. The former is executed with human intervention, the latter harnesses an algorithm established with considerations of the key variables of the system.

6.2.6. Management

The Management components like CRs, present a number of interfaces as a function of the type of users. The services ranging from managing human-machine interface between the user and the TB helping to mitigate the limitations of these interactions, to managing the traffic for anomaly detection and representative domain traffic. The module also provides log statistics of user activities, generates reports and feedback. For example, SCADA-based TBs employ Human Machine Interfaces server software, software-based Relay Terminal Units and Relay Programmers. An accurate model of the inter-dependencies between the energy and cyber components is essential to the evaluation of the impact of cyber-attacks and in informing on the most effective countermeasure.
6.2.7. Types

Cyber-based TBs test innovation in an Internet-enabled environment; stand-alone physical TBs operate within an controlled environment, isolated from an operational network. The hybrid TB solution is a combination of Cyber and Physical TBs, comprising hardware and software in a networked as well as an isolated environment to provide training in OT, scalability, and affordability.

6.2.8. Post-Incident

The component ensures the integrity of the post incident procedures, the basis for an investigation of the performance of an innovation as well as confirming the validity of the process used in testing an attack or a failure of an innovation. Standard and Forensics are two types of Post-Incidence investigation, the former used to provide a detailed review that helps to understand each phase of an incident, from start to finish. In a situation awareness review, such components are one step in the incident response process that requires a cross-functional participation from all individuals to determine the root cause and full scope of the attack. Forensic, on the other hand, enables a scientifically derived and proven method to collect, validate, identify, analyse and interpret evidence derived from digital sources. An evidence-based review that characterises an incident from start to finish is generated.

6.2.9. Recovery

Recovery ensures that all policies are up to date, that the operational state is maintained and that regular back-ups are being carried out. The component is also of use for digital forensic purposes after an incident, helping to mitigate further failure or attack. Furthermore, in the process of surfacing the root causes of failures, it helps in isolating and disconnecting the system under investigation.

6.2.10. Attacks

The Attack component encompasses descriptions of potential attacks including the security configurations for the vulnerabilities within scenarios. A database of the vulnerabilities is created together with a high/low level description of each vulnerability mapped against the OSI model.

6.2.11. Trainee

The Trainee component contains specific domain knowledge required for and records the progress of each trainee with regard to specific modules and performance measures. A report is usually displayed in the trainee dashboard.

7. Training Methods

The spine of the training is founded on strategies informed by educational methodologies and is most often segmented into two classes. The first is centred on the relationship between coach and trainee using classical training methods characterised by the use of a number of support tools such as online courses, certification, training, and presentation. The second method relies more heavily on new elements such as gamification and video-assisted techniques.

Classical Training: The fundamental goal is to train trainees to acquire new skills. In the cyber-security context, the theoretical background and knowledge of security terminologies is considered the minimum level of achievement. In general, the information flow between a coach and a trainee is one-way. For instance, online courses and presentations which, for example, describe the architecture of an infrastructure is such a case, the trainee being a passive information recipient.
Classical training methods adopt a three-prong approach to learning ranging from getting acquainted with facts, followed by logical tools for the organisation of facts, culminating in the ability to critically analyse and draw conclusions [74]. The methodology inculcates the ability to comprehend and take timely and appropriate actions in dealing with cyber-related malicious activities both at the technical and operator level. The resultant knowledge on the successes and failures inherent in cyber defence scenarios, is central to a comprehensive cyber situation awareness training program in both the public and private sectors [75].

CR and TB Training Methods Simulation environments implemented through CRs are one of principle routes to establishing realistic scenarios of target systems, facilitating training through a rich illustration of real-life security incidents and threats dynamics, thereby preparing and equipping operators in the selection of the most appropriate responses. The predominant training role of TBs is to emulate the impact of a range of attack scenarios and test the strategies to arrest such attacks. The trainee is able to modify the parameters of attacks, test the effectiveness of responses and extract an analysis from the output reports. The result is an assessment of the security level of the infrastructure as a function of different attack scenarios. TBs are the foundation of the practical elements of the overall training.

The commonly used strands of the training scope can be classified as:

- **Gamification**: Gamification has been adopted to make cyber-security training more engaging and motivating [76]. The principle is to enhance exercises through a compelling experience utilising graphics and play. The aim is to enrich the challenge, engagement, as well as motivating the trainees owing to increased levels of interaction. The concept of ‘Attacker-centric Gamification’ was introduced by Adams and Makramalla in [77] with the goal empowering trainees to assume the roles of attacker combining gamification with entrepreneurial perspectives with an emphasis on surfacing their abilities, skills, knowledge, motivation, and resources [78].

- **Mock Attack Training**: The training method, developed by Sadeh *et al.* [79], embodies an approach that senses user actions which expose that user’s infrastructure to cyber threats. The action could be as a result of a mock attack delivered to the user through a messaging service from any device, a wireless communication service or a fake malware application. The system selects the most appropriate training from a list of available training routines based on the users’ reaction to the message in so doing delivering the most targeted training.

- **Role-Based Training**: One practical training approach through CR-enabled scenarios is to assign unique roles to trainees. Such roles, for example emulating or taking the place of a hacker in a real life situation, cyber offensive operator, cyber defender, or training instructor [80] can be dynamic depending on the exercise, defined or selected using databases that contain predefined roles. Furthermore, customisation to better emulate real-life enterprise is also possible.

- **Exercises**: Competitions such as [81], [82], [83], [84], [85], are aimed at developing problem solving techniques, proficiency, teamwork and cyber defense skills by providing the participants with sets of hands-on cyber-security exercises in real-world scenarios to the participants. ‘Catch-The-Flag’ is an example, a distributed, wide-area security hacking competition involving multiple teams. ‘Cyber Defense Exercise (CDX)’ is another form of such an exercise in a larger setting where an inter-agency academy of an institution competes in the design, implementation, management and defend a network of computers. CDX is established by setting objectives, selecting an approach, defining a network topology, creating a scenario, stipulating the rules and choosing the right metrics
with which to determine the lessons learnt [86].

8. Threat Dynamics and Analyses

8.1. Threat Dynamics

8.1.1. AI-based Attacks

The recent advances in Artificial Intelligence (AI) has been embraced by cyber-criminals to automate attack processes [87], [88], taking advantage of technologically enhanced learning and automation capabilities offered by deep and reinforcement learning. The trend has necessitated the pressing need to develop appropriate training methods, scenarios and technologies in response.

Kaloudi and Li [87] reported a list of existing AI-enhanced cyber-attacks; (1) Next Generational Malware such as DeepLocker [89] and Smart Malware [52]. (2) Voice Synthesis such as Stealthy Spyware [90]. (3) Password-based Attacks such as Next-generation password brute-force attack [91] and PassGAN [92]. (4) Social Bots such as: SNAP_ R [93], DeepPhish [94] and Fake reviews attack [95]. (5) Adversarial Training such as MalGAN [96], DeepDGA [97] and DeepHack. The majority of these attacks targeted interconnected and software dependent new generational embedded systems known as Smart Cyber Physical Systems such as smart traffic management systems, smart healthcare systems, smart grids, smart buildings, autonomous automotive systems, autonomous ships, robots, smart homes and intelligent transport systems.

8.1.2. Bio-Inspired Attacks

The Backtracking Search Optimisation Algorithm (BSA) and Particle Swarm Optimisation (PSO) are two Active System Identification attacks developed by [98] using bio-inspired meta-heuristics [99] and tested in a controlled environment. The goal was to highlight the potential impacts of automated attacks, especially their degree of accuracy in damaging the Network Controlled Systems, as a stimulus to develop solutions that counter this attack class. Chen et al. [100] coined the term ‘A Bio-inspired Transmissive Attack’, a scenario exemplified in Stuxnet [101], [102], [103], [104], best described as a stealthy breach utilising a biological epidemic model in the communication system to propagate the attack. In addition to the hidden nature of the attack, the hacker need not be conversant with the network topology to succeed. Hence, the linkage between transmissive attacks and epidemic models.

8.2. Threat Analyses

The essence of threat analysis is to determine the potential threats, weaknesses, and vulnerabilities that can be exploited to achieve malicious goals [105]. An understanding of the possible threats and their characteristics informs on the optimum prevention, and mitigation measures. The optimum response is also governed by the existing risk mitigation policies for a specific architecture, functionality, and configuration as defined by regulating bodies. One of the challenging requirements is the metrics to be used to determine the status of the network security performance, the basis to define approaches to increase its robustness.

8.2.1. Intrusion Detection System

A number of Intrusion Detection Systems (IDS) have been reported in the last decade aimed at detecting and preventing the effects of threats and network attacks. According to Hindy et al. [106] for an IDS to be considered effective, the key metrics to be measured are the high detection rates, low false
positive rate, transparency, safety of the overall system, memory requirements, power consumption and throughput. However, due to the diversity of attacks and the severity of their impact, a range of IDS based on deep learning, genetic algorithms, and artificial intelligence have been developed, presented in the research papers summarised in Table 6.

IDS can be classified into two groups; firstly, classical IDS based on signature detection, where only known attacks are detected and considered and secondly, anomaly-based IDS, which exploit predefined packages in training and testing [107]. Moreover, these kinds of IDS cannot differentiate between new attack scenarios and normal traffic. Thus, a new generation of IDS based on machine learning and artificial intelligence have been proposed, such as the work of Hodo et al. [108] on the use of Artificial Neural Network (ANN) in IoT networks to help detect Distributed Denial of Service (DDoS) and Denial of Service (DoS) attacks. The aim is to distinguish automatically, without human intervention, between normal and malicious packages.

8.2.2. Modelling-based Approach

The aim is to predict the behaviours of unknown attacks and to create models able to prevent threats. the actual vulnerability and security default of the system is core in order to conceptualise such a model, such as presented in Table 5. The configuration and architecture of the local network is a requirement in the development of a cyber-threat detection model.

Ibrahim et al. [136] proposed the use of a formal logic known as Secure Temporal Logic of Action [S-TLA.sup+] as a modelling-based approach for reconstructing evidence of Voice Over Internet Protocol (VoIP) malicious attacks. The goal of the research was to generate related additional evidence and to measure the consistency against existing approaches using the [S-TLA.sup+] model checker.

Mace et al. [137] reported on a multi-modelling-based approach to assessing the security of smart buildings. The approach was based on an Integrated Tool Chain for Model-based Design of Cyber-Physical Systems (INTO-CPS), a suite of modelling, simulation, and analysis tools for designing cyber-physical systems. The study was motivated by the evolution to smart buildings controlled by multiple systems that provide critical services such as heating, ventilation, lighting, and access control, all highly susceptible to cyber-attacks. The stages of a systemic methodology to assessing the security when subjected to Man-in-the-Middle attacks on the data connections between system components by using a fan coil unit case study was presented.

9. The Future of CRs and TBs

9.1. Future Trends

• **Real-Time Auto-configurable Systems**: MIT’s Lincoln Laboratory developed an advanced tool for cyber-ranges referred to as Automatic Live Instantiation of a Virtual Environment (ALIVE), [153], a range application extension to LARIAT. ALIVE has the capability of ingesting configuration files from Common Cyber Event Registration (CCER) to automate the building out of Virtual Machines and networking infrastructure of the CR [154]. In addition to the capability to create virtual networks, it can also automate most of the system network build-outs, creating end hosts, routers, firewalls, and servers needed to support traffic generation. The host software packages and user accounts can also be installed.

The Cyber-Range Instantiation System (CyRIS), an open source tool for facilitating cyber-range creation [155], can execute efficient instantiation of cyber-ranges automatically. CyRIS automatically aids in the preparation and management of CRs using a pre-defined specification provided by
the scenario managers or instructors. The tool contains both basic functions for establishing the infrastructure as well its security settings.

ALPACA [156] is one of the modern auto-configurable CR with the facility to set user-specified constraints to generate complex cyber-ranges. The core of the implementation are an AI planning engine, a database of vulnerabilities and machine specific configuration parameters with the ability to generate a VM that includes the sequences of vulnerabilities and exploits.

• **Smart, Mobile and Integrated Technologies:** Pharos [157], a TB for Mobile Cyber-Physical Systems, is aimed at supporting mobile cyber-physical system evaluation in live networks. It is a networked system of independent mobile devices with its fundamental building block based on Proteus (an autonomous mobile system with highly modular software and hardware), with the capability of relating with each other and with networks of embedded sensors and actuators. Push-button repeatability facilitating the recreation of the same scenarios multiple times is an important feature of the TB.

Cybertropolis [158] is aimed at breaking the paradigm of CRs and TBs by providing what is referred to as Cyber-electromagnetic (CEMA) range facilities, which merges the features of CRs and TBs to yield a hybrid type of cyber-security training system. Cybertropolis was developed as a one-of-kind cyber-range that can be used in the areas of industrial control systems, cyber-physical devices, IoT and wireless systems. The platform provides the ability to create a heterogeneous network consisting of virtual Information and Communication Technology (ICT) systems with integrated live cyber-physical systems, live Radio Frequency (RF), and Internet of Things (IoT) systems into a virtual environment.

• **Training with Augmented Reality Technology:** Augmented Reality (AR) is increasingly viewed as an important dimension in learning in different domains and is being considered as another impactful technology in future CR and TB training. AR offers the possibility of interaction with different parts of the systems, in so doing enriching the training owing to enhanced visualisation. Augmented reality TB or CR create a new interactive experience able to modify the trainee view of the progression of attacks. AR solution also gates portable solutions, as an example, the attack reaction could be modelled anywhere without infrastructure dependence. The environment can be modified and the programmer can add new attack scenarios.

9.2. Future Technologies

• **5G/6G Technologies:** 5th and 6th Generation (5G, 6G) networks will transform services using mobile and wireless network infrastructures by provisioning connections with advantageous features ranging from low latency with high network bandwidth capability through to machine-to-machine communication. 5G solutions enable better services using Virtualisation and Cloud technologies [159], extending to Network Functions Virtualisation (NFV) which enhances server virtualisation to network devices. Tranoris et al. [159], utilised these capabilities to demonstrate real-time remote monitoring and video streaming between Vehicle-to-Vehicle (V2V) in an assisted overtaking application [160], showcasing the potential impact from emerging 5G and beyond. Mitra and Agrawal [161], described a highly futuristic connected society - “smart living”: Vehicle Ad-hoc Networks (VANET) cloud for network connected transport systems managing dynamic real-time traffic demands; and massive M2M communications. West [162] also added that the revolution will
bring about IoT-enabled health services while Letaief et al. [163] postulate that 6G will bring about ubiquitous AI-based services. The self-same capabilities present leveraging opportunities for CR and TB engineers and users to provide a seamless, faster, and low latency-based CR and TB deployments using virtual machines, sandboxes or containerised technologies.

Containerisation Technologies: The impact of hypervisor-enabled virtualisation technology in CRs/TBs cyber-warfare training has been highly beneficial. VMs provide the required isolation from operational networks but present users with real-life training scenarios. The deployment of applications to implement VMs on data centres needs a dedicated guest operating system on each VM, on occasion different from the host operating system. Containerisation technology has been introduced as light-weight virtualised technology to that of VMs in order to manage these concomitant accrued overheads. A study conducted by Bhardwaj and Krishna [164] compared the use of the pre-copy VM migration scheme with that of the LXD/CR container migration technique, concluding that the use of latter reduces system downtime by 76.66%, migration time by 65.55%, scalability (volume of data transferred) by 76.63%, throughput (number of transferred pages) by 76.78%, overhead costs were reduced with regards to CPU utilisation by 55.89% and RAM utilisation by 76.52%. Thus, containerised technology costs less, guarantees more system up-time and saves times. Other studies that highlight the benefits of containerised technologies are Lovas et al. [165], on their software container-based simulation platform in order to achieve scalability and portability; Mucci and Blumbers [166] to gain flexibility, reduce complexity while providing extensibility; and Kyriakou et al. [167], to ease deployment, management and resilience of their cloud-based environment.

9.3. Future Application Areas

Smart Cyber-Physical Systems: Smart Cyber-Physical Systems (sCPS) are large-scale software intensive and pervasive systems, that are intelligent, self-aware, self-managing and self-configuring [168]. In line with other data driven artificially intelligence powered systems, sCPS utilise multiple data streams to manage real-world processes efficiently and through these offers a broad range of new applications and services in housing, hospital, transportation and automobile applications.

In recent times, cyber-criminals have up-skilled their skills through AI techniques to automate attacks, augment their strategies, launch more sophisticated attacks and by implication increase the success rates [87], [88]. ICT tools and AI techniques have not only enriched the opportunities for cyber-criminals as a new form of threat landscape has suddenly emerged. There is a pressing obligation for cyber-range based training to evolve as a consequence implementing the detection as well as informing on optimum mitigation of these new threat dynamics.

Smart Cities and Industry 4.0: The 4th Industrial revolution, also referred to as Industry 4.0, are data driven, network connected, digitalised industrial systems, heralding an era of automated manufacturing and service delivery with strong potential of process optimisation, imbued with new business practices. The evolution is, however, not without its attendant new cyber-threats. CyberFactory#1 [169] is designed to proffer a solution between future digital factories and security threats gated by digitalisation. The principles on which the environment is established are conscious design, development, and demonstration of a System-of-Systems embracing the technical, economical, human and societal dimension of future factories [55]. The platform demonstrates sets of major enabling capabilities that foster optimisation and resilience of next generation manufacturing and service delivery industries. As the evolution unfolds, there is a need to continue to propose new
solutions capable of mitigating the dilemma between the deployment of future factories/smart cities and cyber-threats.

A body of available literature stresses that cyber threats and privacy concerns will increase significantly in smart systems due to high degrees of network inter-connectivity; Reys et al. in [170], Baig et al. in [171], Vitunaskaite et al. in [172], Mylrea et al. in [173], Srivastava et al. in [174], Aldairi et al. in [175], Cerrudo et al. in [176], Alibasic et al. in [177] and Braun et al. in [178]. Wang et al. in [179] and Farahat et al. in [180] focused on data security as well as threat modeling for smart city infrastructures. Vattapparamban et al. in [181] expect that drones will be used in service delivery in highly connected smart cities environments of the future and hence will become a factor in defining the scope of cyber-attacks. Li et al. in [182] report on the intelligent management of network traffic to avoid congestion while reducing cyber-security concerns in Smart cities.

Aerospace and Satellite Industries: The evolution of the aerospace and satellite industries and the significant contribution the sector makes to the health of the economy has made them a central interest for cyber-attacks. CRs and TBs are essential to model the impact of cyber-attack effects and enhance the ability of protecting this critical infrastructure. The goal is to understand and overcome the spectrum of possible attacks by taking into account the sensitivity of information used. Virtualisation using a simulation-based system is a potential solution to implement TBs, but a total recognition of several parts of such critical infrastructure should be studied. The prediction of the hacker’s strategies and aims remain the core to understanding the optimum countermeasure against class of attack.

10. Conclusion

The rapid proliferation in the automation of cyber-attacks is diminishing the gap between information and operational technologies and in turn stimulating an increased reliance on training to inculcate robust cyber-hygiene knowledge for cyber-security professionals, trainers and researchers. Cyber-Situational awareness is now viewed as a central spine in the effective provision of practices that protect organisations/infrastructures against a cohort of more sophisticated cyber-attackers. From necessity, the training must be delivered through non-operational environments that provide real-time information on cyber-threats, their early identification/characterisation and effective countermeasures. This paper presents an evaluation of prominent CR and TB platforms segmented by type, technology, threat scenarios, applications and the scope of attainable training. Furthermore, a novel taxonomy for CRs and TBs is presented which represents the foundation for the prediction of the evolution of CRs/TBs. In all, this automation has accentuated a rapidly diminishing differentiation between CRs and TBs respective areas of application.

Funding: The research is supported by the European Union Horizon 2020 Programme under Grant Agreement no. 833673. The content reflects the authors’ view only and the Agency is not responsible for any use that may be made of the information within the paper.

Conflicts of Interest: The authors declare no conflict of interest

References

1. Lallie, H.S.; Shepherd, L.A.; Nurse, J.R.C.; Erola, A.; Epiphaniou, G.; Maple, C.; Bellekens, X. Cyber Security in the Age of COVID-19: A Timeline and Analysis of Cyber-Crime and Cyber-Attacks during the Pandemic, 2020, [arXiv:cs.CR/2006.11929].
2. Okoli, C.; Schabram, K. A guide to conducting a systematic literature review of information systems research 2010.
3. Okoli, C. A guide to conducting a standalone systematic literature review 2015.
4. Bures, M.; Klima, M.; Rechtberger, V.; Bellekens, X.; Tachtatzis, C.; Atkinson, R.; Ahmed, B.S. Interoperability and Integration Testing Methods for IoT Systems: A Systematic Mapping Study. Software Engineering and Formal Methods; de Boer, F.; Cerone, A., Eds.; Springer International Publishing: Cham, 2020; pp. 93–112.
5. Davis, J.; Magrath, S. A survey of cyber ranges and testbeds. Technical report, DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION EDINBURGH (AUSTRALIA) CYBER AND ..., 2013.
6. Ranka, J. National Cyber Range. Technical report, DEFENSE ADVANCED RESEARCH PROJECTS AGENCY ARLINGTON VA STRATEGIC TECHNOLOGY ..., 2011.
7. Leblanc, S.P.; Partington, A.; Chapman, I.M.; Bernier, M. An overview of cyber attack and computer network operations simulation. SpringSim (MMS), 2011, pp. 92–100.
8. Priyadarshini, I. Features and architecture of the modern cyber range: a qualitative analysis and survey. PhD thesis, University of Delaware, 2018.
9. Yamin, M.M.; Katt, B.; Gkioulos, V. Cyber Ranges and Security Testbeds: Scenarios, Functions, Tools and Architecture. Computers & Security 2019, p. 101636.
10. Radziwill, N.M. Virginia cyber range. Software Quality Professional 2017, 19, 46.
11. Sommestad, T. Experimentation on operational cyber security in CRATE. NATO STO-MP-IST-133 Specialist Meeting, 2015, pp. 7–1.
12. Pernik, P. Improving cyber security: NATO and the EU. International Centre for Defense Studies 2014.
13. Ferguson, B.; Tall, A.; Olsen, D. National cyber range overview. 2014 IEEE Military Communications Conference. IEEE, 2014, pp. 123–128.
14. Mudge, R.S.; Lingley, S. Cyber and air joint effects demonstration (caaied). Technical report, AIR FORCE RESEARCH LAB ROME NY INFORMATION DIRECTORATE, 2008.
15. Meitzler, W.D.; Ouderkirk, S.J.; Hughes, C.O. Security Assessment Simulation Toolkit (SAST) Final Report. Technical report, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2009.
16. Varshney, M.; Pickett, K.; Bagrodia, R. A live-virtual-constructive (LVC) framework for cyber operations test, evaluation and training. 2011-MILCOM 2011 Military Communications Conference. IEEE, 2011, pp. 1387–1392.
17. Chi, S.D.; Park, J.S.; Lee, J.S. A role of DEVs simulation for information assurance. International Workshop on Information Security Applications. Springer, 2003, pp. 27–41.
18. Liljenstam, M.; Liu, J.; Nicol, D.; Yuan, Y.; Yan, G.; Grier, C. Rinse: The real-time immersive network simulation environment for network security exercises. Workshop on Principles of Advanced and Distributed Simulation (PADS’05). IEEE, 2005, pp. 119–128.
19. Brown, B.; Cutts, A.; McGrath, D.; Nicol, D.M.; Smith, T.P.; Tofel, B. Simulation of cyber attacks with applications in homeland defense training. Sensors, and command, control, communications, and intelligence (c3i) technologies for homeland defense and law enforcement ii. International Society for Optics and Photonics, 2003, Vol. 5071, pp. 63–71.
20. Kuhl, M.E.; Sudit, M.; Kistner, J.; Costantini, K. Cyber attack modeling and simulation for network security analysis. 2007 Winter Simulation Conference. IEEE, 2007, pp. 1180–1188.
21. Zhou, M.; Lang, S.D. A frequency-based approach to intrusion detection. Proc. of the Workshop on Network Security Threats and Countermeasures, 2003.
22. Rossey, L.M.; Cunningham, R.K.; Fried, D.J.; Rabek, J.C.; Lippmann, R.P.; Haines, J.W.; Zissman, M.A. LARIAT: Lincoln adaptable real-time information assurance testbed. Proceedings, IEEE Aerospace Conference. IEEE, 2002, Vol. 6, pp. 6–6.
23. Pederson, P.; Lee, D.; Shu, G.; Chen, D.; Liu, Z.; Li, N.; Sang, L. Virtual Cyber-Security Testing Capability for Large Scale Distributed Information Infrastructure Protection. 2008 IEEE Conference on Technologies for Homeland Security. IEEE, 2008, pp. 372–377.
24. Anderson, R.S. Cyber security and resilient systems. Technical report, Idaho National Laboratory (INL), 2009.
25. Sietterlis, C.; Garcia, A.P.; Genge, B. On the use of Emulab testbeds for scientifically rigorous experiments. *IEEE Communications Surveys & Tutorials* 2012, 15, 929–942.

26. Mayo, J.; Minnich, R.; Rudish, D.; Armstrong, R. Approaches for scalable modeling and emulation of cyber systems: LDRD final report. *Sandia report, SAND2009-6068, Sandia National Lab* 2009.

27. Thomas, J.; Meunier, P.; Eugster, P.; Vitek, J. Mandatory access control for experiments with malware. *Proceedings of the 10th Annual Information Security Symposium*, 2009, pp. 1–1.

28. Brueckner, S.; Guaspardi, P.; Adelstein, F.; Weeks, J. Automated computer forensics training in a virtualized environment. *Digital investigation* 2008, 5, S105–S111.

29. Tsai, P.W.; Yang, C.S. Testbed@ TWISC: A network security experiment platform. *International Journal of Communication Systems* 2018, 31, e3446.

30. Herold, N.; Wachs, M.; Dorflhuber, M.; Rudolf, C.; Liebald, S.; Carle, G. Achieving reproducible network environments with INSALATA. IFIP International Conference on Autonomous Infrastructure, Management and Security. Springer, Cham, 2017, pp. 30–44.

31. Chadha, R.; Bowen, T.; Chiang, C.Y.J.; Gottlieb, Y.M.; Poylisher, A.; Sapello, A.; Serban, C.; Sugrim, S.; Walther, G.; Marvel, L.M.; others. Cybervan: A cyber security virtual assured network testbed. MILCOM 2016-2016 IEEE Military Communications Conference. IEEE, 2016, pp. 1125–1130.

32. Gunathilaka, P.; Mashima, D.; Chen, B. Softgrid: A software-based smart grid testbed for evaluating substation cybersecurity solutions. *Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy*, 2016, pp. 113–124.

33. Haines, J.W.; Rossey, L.M.; Lippmann, R.P.; Cunningham, R.K. Extending the darpa off-line intrusion detection evaluations. *Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX’01*. IEEE, 2001, Vol. 1, pp. 35–45.

34. Hahn, A.; Kregel, B.; Govindarasu, M.; Fitzpatrick, J.; Adnan, R.; Sridhar, S.; Higdon, M. Development of the PowerCyber SCADA security testbed. *Proceedings of the sixth annual workshop on cyber security and information intelligence research*, 2010, pp. 1–4.

35. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.; Bellekens, X. Improving SIEM for Critical SCADA Water Infrastructures Using Machine Learning. Computer Security; Katsikas, S.K.; Cuppens, F.; Cuppens, N.; Lambrinoudakis, C.; Antón, A.; Gritzalis, S.; Mylopoulos, J.; Kalloniatis, C., Eds.; Springer International Publishing: Cham, 2019; pp. 3–19.

36. Tam, K.; Jones, K. Cyber-SHIP: Developing Next Generation Maritime Cyber Research Capabilities 2019.

37. Giuliano, V.; Formicola, V. ICSrange: A Simulation-based Cyber Range Platform for Industrial Control Systems. *arXiv preprint arXiv:1909.01910* 2019.

38. Hildebrand, E.; Flinterman, R.; Mulder, J.; Smit, A. Clusus: A cyber range for network attack simulations 2019.

39. Hallaq, B.; Nicholson, A.; Smith, R.; Maglaras, L.; Janicke, H.; Jones, K. CYRAN: a hybrid cyber range for testing security on ICS/SCADA systems. In *Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications*; IGI Global, 2018; pp. 622–637.

40. Ghaleb, A.; Zhioua, S.; Almulhem, A. SCADA-SST: a SCADA security testbed. 2016 World Congress on Industrial Control Systems Security (WCICSS). IEEE, 2016, pp. 1–6.

41. Čeleda, P.; Čegan, J.; Vykopal, J.; Tovarhák, D. Kypro—a platform for cyber defence exercises. *M&S Support to Operational Tasks Including War Gaming, Logistics, Cyber Defence. NATO Science and Technology Organization* 2015.

42. Vykopal, J.; Ošlejšek, R.; Čeleda, P.; Vizvary, M.; Tovarhák, D. Kypro cyber range: Design and use cases 2017.

43. Almalawi, A.; Tari, Z.; Khalil, I.; Fahad, A. SCADAVT-A framework for SCADA security testbed based on virtualization technology. 38th Annual IEEE Conference on Local Computer Networks. IEEE, 2013, pp. 639–646.

44. Benzel, T.; Braden, R.; Kim, D.; Neuman, C.; Joseph, A.; Sklower, K.; Ostrenga, R.; Schwab, S. Experience with deter: a testbed for security research. 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006. IEEE, 2006, pp. 10–pp.

45. Richmond, M. ViSe: A virtual security testbed. *University of California, Santa Barbara, Tech. Rep* 2005.
46. Marrocco, D. DESIGN AND DEPLOYMENT OF A VIRTUAL ENVIRONMENT TO EMULATE A SCADA NETWORK WITHIN CYBER RANGES. PhD thesis, Politecnico di Torino, 2018.
47. Ten, C.W.; Liu, C.C.; Govindarasu, M. Vulnerability assessment of cybersecurity for SCADA systems using attack trees. 2007 IEEE Power Engineering Society General Meeting. IEEE, 2007, pp. 1–8.
48. Russo, E.; Costa, G.; Armando, A. Scenario design and validation for next generation cyber ranges. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). IEEE, 2018, pp. 1–4.
49. Binz, T.; Breitenbücher, U.; Kopp, O.; Leymann, F. TOSCA: portable automated deployment and management of cloud applications. In Advanced Web Services; Springer, 2014; pp. 527–549.
50. Russo, E.; Costa, G.; Armando, A. Building Next Generation Cyber Ranges with CRACK. Computers & Security 2020, p. 101837.
51. de Leon, D.C.; Goes, C.E.; Haney, M.A.; Krings, A.W. ADLES: Specifying, deploying, and sharing hands-on cyber-exercises. Computers & Security 2018, 74, 12–40.
52. Cohen, F. Simulating cyber attacks, defences, and consequences. Computers & Security 1999, 18, 479–518.
53. Park, J.S.; Lee, J.S.; Kim, H.K.; Jeong, J.R.; Yeom, D.B.; Chi, S.D. Secusim: A tool for the cyber-attack simulation. International Conference on Information and Communications Security. Springer, 2001, pp. 471–475.
54. Lynn III, W.F. Defending a new domain-the Pentagon’s cyberstrategy. Foreign Aff. 2010, 89, 97.
55. Vozikis, D.; Darra, E.; Kuusk, T.; Kavallieros, D.; Reintam, A.; Bellekens, X. On the Importance of Cyber-Security Training for Multi-Vector Energy Distribution System Operators. Proceedings of the 15th International Conference on Availability, Reliability and Security; Association for Computing Machinery: New York, NY, USA, 2020; ARES '20. doi:10.1145/3407023.3409313.
56. Hammad, E.; Ezeme, M.; Farraj, A. Implementation and development of an offline co-simulation testbed for studies of power systems cyber security and control verification. International Journal of Electrical Power & Energy Systems 2019, 104, 817–826.
57. Poudel, S.; Ni, Z.; Malla, N. Real-time cyber physical system testbed for power system security and control. International Journal of Electrical Power & Energy Systems 2017, pp. 124–133.
58. Waraga, O.A.; Bettayeb, M.; Nasir, Q.; Talib, M.A. Design and implementation of automated IoT security testbed. Computers & Security 2020, 88, 101648.
59. Kim, Y.; Nam, J.; Park, T.; Scott-Hayward, S.; Shin, S. SODA: A software-defined security framework for IoT environments. Computer Networks 2019, 163, 106889.
60. Lee, S.; Lee, S.; Yoo, H.; Kwon, S.; Shon, T. Design and implementation of cybersecurity testbed for industrial IoT systems. The Journal of Supercomputing 2018, 74, 4506–4520.
61. Wang, Y.; Nguyen, T.L.; Xu, Y.; Shi, D. Distributed control of heterogeneous energy storage systems in islanded microgrids: Finite-time approach and cyber-physical implementation. International Journal of Electrical Power & Energy Systems 2020, 119, 105898.
62. De La Torre, G.; Rad, P.; Choo, K.K.R. Implementation of deep packet inspection in smart grids and industrial Internet of Things: Challenges and opportunities. Journal of Network and Computer Applications 2019.
63. Kumar, A.; Lim, T.J. A Secure Contained Testbed for Analyzing IoT Botnets. International Conference on Testbeds and Research Infrastructures. Springer, 2018, pp. 124–137.
64. Alves, T.; Das, R.; Werth, A.; Morris, T. Virtualization of SCADA testbeds for cybersecurity research: A modular approach. Computers & Security 2018, 77, 531–546.
65. Siracusano, G.; Salsano, S.; Ventre, P.L.; Detti, A.; Rashed, O.; Blefari-Melazzi, N. A framework for experimenting ICN over SDN solutions using physical and virtual testbeds. Computer Networks 2018, 134, 245–259.
66. Papadopoulos, G.Z.; Gallais, A.; Schreiner, G.; Jou, E.; Noel, T. Thorough IoT testbed characterization: From proof-of-concept to repeatable experimentations. Computer Networks 2017, 119, 86–101.
67. Liu, X.F.; Shahriar, M.R.; Al Sunny, S.N.; Leu, M.C.; Hu, L. Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed. Journal of Manufacturing Systems 2017, 43, 352–364.
68. Bernieri, G.; Miciolino, E.E.; Pascucci, F.; Setola, R. Monitoring system reaction in cyber-physical testbed under cyber-attacks. Computers & Electrical Engineering 2017, 59, 86–98.
69. Flauzac, O.; Gonzalez, C.; Nolot, F. Developing a distributed software defined networking testbed for IoT. *Procedia Computer Science* 2016, 83, 680–684.
70. Ashok, A.; Sridhar, S.; McKinnon, A.D.; Wang, P.; Govindarasu, M. Testbed-based performance evaluation of attack resilient control for agc. 2016 Resilience Week (RWS). IEEE, 2016, pp. 125–129.
71. Deshmukh, P.P.; Patterson, C.D.; Baumann, W.T. A hands-on modular laboratory environment to foster learning in control system security. 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 2016, pp. 1–9.
72. Adhikari, U.; Morris, T.; Pan, S. WAMS cyber-physical test bed for power system, cybersecurity study, and data mining. *IEEE Transactions on Smart Grid* 2016, 8, 2744–2753.
73. Ashok, A.; Wang, P.; Brown, M.; Govindarasu, M. Experimental evaluation of cyber attacks on automatic generation control using a CPS security testbed. 2015 IEEE Power & Energy Society General Meeting. IEEE, 2015, pp. 1–5.
74. Bauer, S.W. What is Classical Education? *The Well-Trained Mind* 1999.
75. Brynielsson, J.; Franke, U.; Varga, S. Cyber situational awareness testing. In *Combating Cybercrime and Cyberterrorism*; Springer, 2016; pp. 209–233.
76. Boopathi, K.; Sreejith, S.; Bithin, A. Learning cyber security through gamification. *Indian Journal of Science and Technology* 2015, 8, 642–649.
77. Adams, M.; Makramalla, M. Cybersecurity skills training: an attacker-centric gamified approach. *Technology Innovation Management Review* 2015, 5.
78. Bellekens, X.; Jayasekara, G.; Hindy, H.; Bures, M.; Brosset, D.; Tachtatzis, C.; Atkinson, R. From Cyber-Security Deception to Manipulation and Gratification Through Gamification. HCI for Cybersecurity, Privacy and Trust; Moallem, A., Ed.; Springer International Publishing: Cham, 2019; pp. 99–114.
79. Sadeh-Koniecpol, N.; Wescoe, K.; Brubaker, J.; Hong, J. Mock attack cybersecurity training system and methods, 2017. US Patent 9,558,677.
80. Toth, P.; Klein, P. A role-based model for federal information technology/cyber security training. *NIST special publication* 2013, 800, 1–152.
81. Glumich, S.M.; Kropa, B.A. Defex: Hands-on cyber defense exercise for undergraduate students. Technical report, Air Force Research Lab Rome NY Information Directorate, 2011.
82. Conklin, J. The use of a collegiate cyber defense competition in information security education. Proceedings of the 2nd annual conference on Information security curriculum development, 2005, pp. 16–18.
83. Dodge, R.; Ragsdale, D.J. Organized cyber defense competitions. IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings. IEEE, 2004, pp. 768–770.
84. Augustine, T.; Dodge, R.C.; others. Cyber defense exercise: meeting learning objectives thru competition 2006.
85. Mattson, J.A. Cyber defense exercise: A service provider model. Fifth World Conference on Information Security Education. Springer, 2007, pp. 81–86.
86. Patriciu, V.V.; Furtuna, A.C. Guide for designing cyber security exercises. Proceedings of the 8th WSEAS International Conference on E-Activities and information security and privacy. World Scientific and Engineering Academy and Society (WSEAS), 2009, pp. 172–177.
87. Kaloudi, N.; Li, J. The ai-based cyber threat landscape: A survey. *ACM Computing Surveys (CSUR)* 2020, 53, 1–34.
88. Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.; Garfinkel, B.; Dafoe, A.; Scharre, P.; Zeitzoff, T.; Filar, B.; others. The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. *arXiv preprint arXiv:1802.07228* 2018.
89. Kirat, D.; Jang, J.; Stoecklin, M. Deeplocker–Concealing Targeted Attacks with AI Locksmithing. *Blackhat USA* 2018.
90. Zhang, R.; Chen, X.; Lu, J.; Wen, S.; Nepal, S.; Xiang, Y. Using ai to hack ia: A new stealthy spyware against voice assistance functions in smart phones. *arXiv preprint arXiv:1805.06187* 2018.
91. Trieu, K.; Yang, Y. Artificial Intelligence-Based Password Brute Force Attacks 2018.
93. Seymour, J.; Tully, P. Weaponizing data science for social engineering: Automated E2E spear phishing on Twitter. *Black Hat USA 2016*, 37, 1–39.

94. Bahnsen, A.C.; Torroledo, I.; Camacho, L.D.; Villegas, S. DeepPhish: Simulating Malicious AI. 2018 APWG Symposium on Electronic Crime Research (eCrime), 2018, pp. 1–8.

95. Yao, Y.; Viswanath, B.; Cryan, J.; Zheng, H.; Zhao, B.Y. Automated crowdturfing attacks and defenses in online review systems. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1143–1158.

96. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on gan. *arXiv preprint arXiv:1702.05983 2017*.

97. Anderson, H.S.; Woodbridge, J.; Filar, B. DeepDGA: Adversarially-tuned domain generation and detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security, 2016, pp. 13–21.

98. de Sa, A.O.; da Costa Carmo, L.F.R.; Machado, R.C.S. Bio-inspired active attack for identification of networked control systems. 10th EAI International Conference on Bio-Inspired Information and Communications Technologies. European Alliance for Innovation (EAI), 2017, p. 88.

99. Farah, M.B.; Farah, A.; Farah, T. An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. *Nonlinear Dynamics 2019*, pp. 1–24.

100. Chen, P.Y.; Lin, C.C.; Cheng, S.M.; Hsiao, H.C.; Huang, C.Y. Decapitation via digital epidemics: A bio-inspired transmissive attack. *IEEE Communications Magazine 2016*, 54, 75–81.

101. Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. *IEEE Security & Privacy 2011*, 9, 49–51.

102. Farwell, J.P.; Rohozinski, R. Stuxnet and the future of cyber war. *Survival 2011*, 53, 23–40.

103. Chen, T.M.; Abu-Nimeh, S. Lessons from stuxnet. *Computer 2011*, 44, 91–93.

104. Lindsay, J.R. Stuxnet and the limits of cyber warfare. *Security Studies 2013*, 22, 365–404.

105. Stango, A.; Prasad, N.R.; Kyriazanos, D.M. A threat analysis methodology for security evaluation and enhancement planning. 2009 Third International Conference on Emerging Security Information, Systems and Technologies. IEEE, 2009, pp. 262–267.

106. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A taxonomy and survey of intrusion detection system design techniques, network threats and datasets. *arXiv preprint arXiv:1806.03517 2018*.

107. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.K.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A Taxonomy of Network Threats and the Effect of Current Datasets on Intrusion Detection Systems. *IEEE Access 2020*, 8, 104650–104675.

108. Hodo, E.; Bellekens, X.; Hamilton, A.; Dubouilh, P.L.; Iorkyase, E.; Tachtatzis, C.; Atkinson, R. Threat analysis of IoT networks using artificial neural network intrusion detection system. 2016 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2016, pp. 1–6.

109. Siboni, S.; Sachidananda, V.; Shabtai, A.; Elovici, Y. Security Testbed for the Internet of Things. *arXiv preprint arXiv:1610.05971 2016*.

110. Wang, X.; Yu, G.; Zha, X.; Ni, W.; Liu, R.P.; Guo, Y.J.; Zheng, K.; Niu, X. Capacity of blockchain based internet-of-things: testbed and analysis. *Internet of Things 2019*, p. 100109.

111. Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. *Future Generation Computer Systems 2020*.

112. Zolanvari, M.; Teixeira, M.A.; Jain, R. Effect of imbalanced datasets on security of industrial IoT using machine learning. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). IEEE, 2018, pp. 112–117.

113. Elnoun, M.; Meskin, N.; Khan, K.; Jain, R. A Dual-Isolation-Forests-Based Attack Detection Framework for Industrial Control Systems. *IEEE Access 2020*, 8, 36639–36651.

114. Molina Zarca, A.; Bernal Bernabe, J.; Farris, I.; Khettab, Y.; Taleb, T.; Skarmeta, A. Enhancing IoT security through network softwarization and virtual security appliances. *International Journal of Network Management 2018*, 28, e2038.
115. Arockia Baskaran, A.G.R.; Nanda, P.; Nepal, S.; He, S. Testbed evaluation of Lightweight Authentication Protocol (LAUP) for 6LoWPAN wireless sensor networks. *Concurrency and Computation: Practice and Experience* 2019, 31, e4868.

116. Hahn, A.; Ashok, A.; Sridhar, S.; Govindarasu, M. Cyber-physical security testbeds: Architecture, application, and evaluation for smart grid. *IEEE Transactions on Smart Grid* 2013, 4, 847–855.

117. Adepu, S.; Kandasamy, N.K.; Mathur, A. Epic: An electric power testbed for research and training in cyber physical systems security. In *Computer Security*; Springer, 2018; pp. 37–52.

118. Fujdiak, R.; Blazek, P.; Chmelar, P.; Dittrich, P.; Voznak, M.; Mlynek, P.; Slacik, J.; Musil, P.; Jurka, P.; Misurec, J. Communication Model of Smart Substation for Cyber-Detection Systems. International Conference on Computer Networks. Springer, 2019, pp. 256–271.

119. Cheng, Z.; Chow, M.Y. The Development and Application of a DC Microgrid Testbed for Distributed Microgrid Energy Management System. IEEE 2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018, pp. 300–305.

120. Liu, R.; Srivastava, A. Integrated simulation to analyze the impact of cyber-attacks on the power grid. 2015 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). IEEE, 2015, pp. 1–6.

121. Oyewumi, I.A.; Jillepalli, A.A.; Richardson, P.; Ashrafuzzaman, M.; Johnson, B.K.; Chakhchoukh, Y.; Haney, M.A.; Sheldon, F.T.; de Leon, D.C. ISAAC: The Idaho CPS smart grid cybersecurity testbed. 2019 IEEE Texas Power and Energy Conference (TPEC). IEEE, 2019, pp. 1–6.

122. Kezunovic, M.; Qian, C.; Seidl, C.; Ren, J. Testbed for Timing Intrusion Evaluation and Tools for Lab and Field Testing of Synchrophasor System. 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA). IEEE, 2019, pp. 1–8.

123. Marino, D.L.; Wickramasinghe, C.S.; Amarasinghe, K.; Challa, H.; Richardson, P.; Jillepalli, A.A.; Johnson, B.K.; Rieger, C.; Manic, M. Cyber and Physical Anomaly Detection in Smart-Grids 2019.

124. Konstantinou, C.; Saizos, M.; Maniatakos, M. FLEP-SGS 2: a Flexible and Low-cost Evaluation Platform for Smart Grid Systems Security. 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2019, pp. 1–5.

125. Patil, R.; Dudeja, H.; Modi, C. Designing an efficient security framework for detecting intrusions in virtual network of cloud computing. *Computers & Security* 2019, 85, 402–422.

126. Celesti, A.; Fazio, M.; Galletta, A.; Carnevale, L.; Wan, J.; Villari, M. An approach for the secure management of hybrid cloud–edge environments. *Future Generation Computer Systems* 2019, 90, 1–19.

127. Mishra, P.; Verma, I.; Gupta, S. KVMInspector: KVM Based introspection approach to detect malware in cloud environment. *Journal of Information Security and Applications* 2020, 51, 102460.

128. Van, V.N.; Long, N.Q.; Nguyen, G.N.; Le, D.N.; others. A performance analysis of openstack open-source solution for IaaS cloud computing. Proceedings of the Second International Conference on Computer and Communication Technologies. Springer, 2016, pp. 141–150.

129. Ullah, R.; Rehman, M.A.U.; Kim, B.S. Design and Implementation of an Open Source Framework and Prototype for Named Data Networking-Based Edge Cloud Computing System. *IEEE Access* 2019, 7, 57741–57759.

130. Al Sunny, S.N.; Liu, X.; Shahriar, M.R. Remote Monitoring and Online Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTCOM in a Cyber-Physical Manufacturing Cloud. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 2018, pp. 532–539.

131. Sanatinia, A.; Deshpande, S.; Munshi, A.; Kohlbrenner, D.; Yessaillian, M.; Symonds, S.; Chan, A.; Noubir, G. Hyperdrive: a flexible cloud testbed for research and education. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). IEEE, 2017, pp. 1–4.

132. Frank, M.; Leitner, M.; Pahi, T. Design Considerations for Cyber Security Testbeds: A Case Study on a Cyber Security Testbed for Education. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2017, pp. 38–46.
133. Gao, H.; Peng, Y.; Jia, K.; Wen, Z.; Li, H. Cyber-physical systems testbed based on cloud computing and software defined network. 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2015, pp. 337–340.

134. Khorsandroo, S.; Tosun, A.S. Time Inference Attacks on Software Defined Networks: Challenges and Countermeasures. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 2018, pp. 342–349.

135. Kalliola, A.; Lal, S.; Ahola, K.; Oliver, I.; Miche, Y.; Holtmanns, S. Testbed for security orchestration in a network function virtualization environment. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2017, pp. 1–4.

136. Ibrahim, M.; Dehghantanha, A.; others. Modelling based approach for reconstructing evidence of VoIP malicious attacks. *International Journal of Cyber-Security and Digital Forensics (IJCSDF)* 2014, 3, 183–199.

137. Mace, J.; Morisset, C.; Pierce, K.; Gamble, C.; Maple, C.; Fitzgerald, J. A multi-modelling based approach to assessing the security of smart buildings 2018.

138. Al-Hadhrami, Y.; Hussain, F.K. Real time dataset generation framework for intrusion detection systems in IoT. *Future Generation Computer Systems* 2020.

139. Alazzam, H.; Sharieh, A.; Sabri, K.E. A feature selection algorithm for intrusion detection system based on Pigeon Inspired Optimizer. *Expert Systems with Applications* 2020, 148, 113249.

140. Kasongo, S.M.; Sun, Y. A Deep Gated Recurrent Unit based model for wireless intrusion detection system. *ICT Express* 2020.

141. Mahdavi, E.; Fanian, A.; Amini, F. A real-time alert correlation method based on code-books for intrusion detection systems. *Computers & Security* 2020, 89, 101661.

142. Zhang, J.; Ling, Y.; Fu, X.; Yang, X.; Xiong, G.; Zhang, R. Model of the intrusion detection system based on the integration of spatial-temporal features. *Computers & Security* 2020, 89, 101681.

143. Krzysztoń, M.; Marks, M. Simulation of watchdog placement for cooperative anomaly detection in Bluetooth Mesh Intrusion Detection System. *Simulation Modelling Practice and Theory* 2020, 101, 102041.

144. Rajendran, N.; Jawahar, P.; Priyadarshini, R. Cross centric intrusion detection system for secure routing over black hole attacks in MANETS. *Computer Communications* 2019, 148, 129–135.

145. Abusitta, A.; Bellaiche, M.; Dagenais, M.; Halabi, T. A deep learning approach for proactive multi-cloud cooperative intrusion detection system. *Future Generation Computer Systems* 2019, 98, 308–318.

146. Suresh, P.; Sukumar, R.; Ayyasamy, S. Efficient pattern matching algorithm for security and Binary Search Tree (BST) based memory system in Wireless Intrusion Detection System (WIDS). *Computer Communications* 2020, 151, 111–118.

147. Kosmanos, D.; Pappas, A.; Maglaras, L.; Moschyiannis, S.; Aparicio-Navarro, F.J.; Argyriou, A.; Janicke, H. A novel Intrusion Detection System against spoofing attacks in connected Electric Vehicles. *Array* 2020, 5, 100013.

148. Zhang, J.; Li, F.; Zhang, H.; Li, R.; Li, Y. Intrusion detection system using deep learning for in-vehicle security. *Ad Hoc Networks* 2019, 95, 101974.

149. Selvakumar, K.; Karuppiah, M.; SaiRamesh, L.; Islam, S.H.; Hassan, M.M.; Fortino, G.; Choo, K.K.R. Intelligent temporal classification and fuzzy rough set-based feature selection algorithm for intrusion detection system in WSNs. *Information Sciences* 2019, 497, 77–90.

150. Zhou, M.; Han, L.; Lu, H.; Fu, C. Distributed Collaborative Intrusion Detection System for Vehicular Ad Hoc Networks Based on Invariant. *Computer Networks* 2020, p. 107174.

151. AlYousef, M.Y.; Abdelmajeed, N.T. Dynamically Detecting Security Threats and Updating a Signature-Based Intrusion Detection System’s Database. *Procedia Computer Science* 2019, 159, 1507–1516.

152. Condomines, J.P.; Zhang, R.; Larrieu, N. Network intrusion detection system for UAV ad-hoc communication: From methodology design to real test validation. *Ad Hoc Networks* 2019, 90, 101759.

153. Braje, T.M. Advanced Tools for Cyber Ranges. Technical report, MIT Lincoln Laboratory Lexington United States, 2016.
154. Talbot, J.; Pikula, P.; Sweetmore, C.; Rowe, S.; Hindy, H.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A Security Perspective on Unikernels. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 2020, pp. 1–7.

155. Pham, C.D. On Automatic Cyber Range Instantiation for Facilitating Security Training 2017.

156. Eckroth, J.; Chen, K.; Gatewood, H.; Belna, B. Alpaca: Building Dynamic Cyber Ranges with Procedurally-Generated Vulnerability Lattices. Proceedings of the 2019 ACM Southeast Conference, 2019, pp. 78–85.

157. Fok, C.; Petz, A.; Stovall, D.; Paine, N.; Julien, C.; Vishwanath, S. Pharos: A testbed for mobile cyber-physical systems. *Univ. of Texas at Austin, Tech. Rep. TR-ARiSE-2011-001* 2011.

158. Deckard, G.M. Cybertropolis: breaking the paradigm of cyber-ranges and testbeds. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). IEEE, 2018, pp. 1–4.

159. Tranoris, C.; Denazis, S.; Guardalben, L.; Pereira, J.; Sargento, S. Enabling Cyber-Physical Systems for 5G networking: A case study on the Automotive Vertical domain. 2018 IEEE/ACM 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). IEEE, 2018, pp. 37–40.

160. Urquhart, C.; Bellekens, X.; Tachtatzis, C.; Atkinson, R.; Hindy, H.; Seeam, A. Cyber-security internals of a skoda octavia vRS: A hands on approach. *IEEE Access* 2019, 7, 146057–146069.

161. Mitra, R.N.; Agrawal, D.P. 5G mobile technology: A survey. *ICT Express* 2015, 1, 132–137.

162. West, D.M. How 5G technology enables the health internet of things. *Brookings Center for Technology Innovation* 2016, 3, 1–20.

163. Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.J.A. The roadmap to 6G: AI empowered wireless networks. *IEEE Communications Magazine* 2019, 57, 84–90.

164. Bhardwaj, A.; Krishna, C.R. A Container-Based Technique to Improve Virtual Machine Migration in Cloud Computing. *IEEIE Journal of Research* 2019, pp. 1–16.

165. Lovas, R.; Kardos, P.; Gyöngyösi, A.Z.; Bottyán, Z. Weather model fine-tuning with software container-based simulation platform. *IDŐJÁRÁS/QUARTERLY JOURNAL OF THE HUNGARIAN METEOROLOGICAL SERVICE* 2019, 123, 165–181.

166. Mucci, D.; Blumbergs, B. TED: A Container based Tool to Perform Security Risk Assessment for ELF Binaries 2019.

167. Kyriakou, A.; Sklavos, N. Container-based honeypot deployment for the analysis of malicious activity. 2018 Global Information Infrastructure and Networking Symposium (GIIS). IEEE, 2018, pp. 1–4.

168. Delicato, F.C.; Al-Anbuky, A.; Kevin, I.; Wang, K. Smart Cyber–Physical Systems: Toward Pervasive Intelligence Systems, 2020.

169. Bécue, A.; Fourastier, Y.; Praça, I.; Savarit, A.; Baron, C.; Gradusos, B.; Pouille, E.; Thomas, C. CyberFactory# 1—Securing the industry 4.0 with cyber-ranges and digital twins. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE, 2018, pp. 1–4.

170. Reys, N. Smart cities and cyber threats, ControlRisks, 2016.

171. Baig, Z.A.; Szewczyk, P.; Valli, C.; Rabadia, P.; Hannay, P.; Chernyshev, M.; Johnstone, M.; Kerai, P.; Ibrahim, A.; Sansurooah, K.; others. Future challenges for smart cities: Cyber-security and digital forensics. *Digital Investigation* 2017, 22, 3–13.

172. Vitunskaitė, M.; He, Y.; Brandstetter, T.; Janicke, H. Smart cities and cyber security: Are we there yet? A comparative study on the role of standards, third party risk management and security ownership. *Computers & Security* 2019, 83, 313–331.

173. Myleara, M. Singapore’s smart city: securing it from emerging cyber threats 2015.

174. Srivastava, S.; Bisht, A.; Narayan, N. Safety and security in smart cities using artificial intelligence—A review. 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence. IEEE, 2017, pp. 130–133.

175. AlDairi, A.; others. Cyber security attacks on smart cities and associated mobile technologies. *Procedia Computer Science* 2017, 109, 1086–1091.

176. Cerrudo, C. Hacking smart cities. RSA Conference, 2015, pp. 2–18.
177. Alibasic, A.; Al Junaibi, R.; Aung, Z.; Woon, W.L.; Omar, M.A. Cybersecurity for smart cities: a brief review. International Workshop on Data Analytics for Renewable Energy Integration. Springer, 2016, pp. 22–30.

178. Braun, T.; Fung, B.C.; Iqbal, F.; Shah, B. Security and privacy challenges in smart cities. *Sustainable cities and society* 2018, 39, 499–507.

179. Wang, P.; Ali, A.; Kelly, W. Data security and threat modeling for smart city infrastructure. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). IEEE, 2015, pp. 1–6.

180. Farahat, I.; Tolba, A.; Elhoseny, M.; Eladrosy, W. Data security and challenges in smart cities. In *Security in Smart Cities: Models, Applications, and Challenges*; Springer, 2019; pp. 117–142.

181. Vattapparamban, E.; Güvenç, İ.; Yurekli, A.I.; Akkaya, K.; Uluağaç, S. Drones for smart cities: Issues in cybersecurity, privacy, and public safety. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2016, pp. 216–221.

182. Li, Z.; Shahidehpour, M. Deployment of cybersecurity for managing traffic efficiency and safety in smart cities. *The Electricity Journal* 2017, 30, 52–61.
| Domain | Ref | Experimental tests / Scenarios | Tools | | |
|---|---|---|---|---|---|
| IoT | [109]| Network mapping attack/Implementation of profiling module (Training and testing algorithm) | TestStad / Machine Learning Algorithm |
| | [110]| Discrete-time Markov Chain model (DTMC): Analysing the capacity of the block chain | Block mining algorithm and Ethereum protocol |
| | [58] | Manual test: Analysis and attacks of each device, Automated test: process testing of different IoT device | Open Source MS |
| | [60] | DoS massif trafic/Transfert Data/Abnormal code/System crash | DTM by Triangle Micro Works |
| | [59] | Real-world attack scenarios: internal and external network attacks | SDN/network function virtualisation |
| | [111]| Anomaly intrusion/ Attacks traffic | Machine Learning Algorithm/ Feature Extraction |
| | [112]| Command injection attack | Machine Learning Algorithm/ PLC programming by Ladder language |
| | [113]| SWaT/WADI datasets:Normal and attack scenario | Machine Learning Algorithm |
| | [114]| Man-in-the-middle attack | SDN /Python |
| | [115]| LAUP algorithm(authentication)/ key distribution test | COOJA simulator |
| | [56] | Offline co-simulation Test-bed: DoS/FDI attacks | OMNET++ |
| | [57] | Access to communication link ([116]) attack model | OPAL-Rt |
| | [62] | Deep packet inspection | Software Defined Networks/OpenFMB |
| | [117]| Power supply interruption Attack/Physical damage attack | Real world power system/Machine learning |
| | [118]| MMS/GOOSE/SV implementation | IEC 61850 Protocol/Ethernet RaspberryP 3B+ |
| | [119]| HIL simulation/ proof-of-concept validation | Python |
| | [120]| DoS/Man in the middle attacks/TCP SYN Flood Attack | DeterLab/Security Experimentation EnviRonment (SEER) |
| | [121]| Recording network traffic/Poisoning Attack | Real Time Digital Simulator (RTDS) |
| | [122]| Timing Intrusion Attack | Field End-to-End Calibrator/ Gold PMU |
| | [123]| Test of cyber-physical sensor: IREST | Idaho CPS SCADA Cybersecurity (ISAAC) testbed |
| | [124]| MITM attack/DoS attack | Open source software/Raspberry Pis. FLEP-SGS |
| Smart Grid| [56] | Offline co-simulation Test-bed: DoS/FDI attacks | OMNET++ |
| | [57] | Access to communication link ([116]) attack model | OPAL-Rt |
| | [62] | Deep packet inspection | Software Defined Networks/OpenFMB |
| | [117]| Power supply interruption Attack/Physical damage attack | Real world power system/Machine learning |
| | [118]| MMS/GOOSE/SV implementation | IEC 61850 Protocol/Ethernet RaspberryP 3B+ |
| | [119]| HIL simulation/ proof-of-concept validation | Python |
| | [120]| DoS/Man in the middle attacks/TCP SYN Flood Attack | DeterLab/Security Experimentation EnviRonment (SEER) |
| | [121]| Recording network traffic/Poisoning Attack | Real Time Digital Simulator (RTDS) |
| | [122]| Timing Intrusion Attack | Field End-to-End Calibrator/ Gold PMU |
| | [123]| Test of cyber-physical sensor: IREST | Idaho CPS SCADA Cybersecurity (ISAAC) testbed |
| | [124]| MITM attack/DoS attack | Open source software/Raspberry Pis. FLEP-SGS |
| Cloud | [125]| Flood malicious traffic (ICMP/HTTP/SYN) | VMware Esxi hypervisor/A vCenter server/VMs |
| | [126]| Considering small messages (about1–2 KBytes): Fast filling of the buffers | MOM4Cloud architectural model. |
| | [127]| UNM database: Malicious tracing logs | KVM2.6.27 hypervisor/ Python3.4 |
| | [128]| Test of memory usage before/after instance creation | OpenStack: Open-Source cloud operating system |
| | [129]| Evaluation of performance metrics of NDN/edge cloud computing | Cloud VM |
| | [130]| Adding defaults: broken interconnection/Abnormal extruder | MTComm: Online Machine Tool Communication |
| | [131]| Side channel attacks/ stealthy data exfiltration | DHCP server/TFTP Server/HTTP Server/MQTT Server |
| | [132]| SQL Injection attack | OpenStack implementation/Python |
| | [133]| Testing traffic scenarios | Openflow controller/OpenvSwitch/Network virtualization agent |
| | [134]| Time inference attacks | Software Defined Network |
| | [135]| DDoS attack | OpenStack environment |
| Ref | Year | Specification | Domain | Software | Description |
|------|------|---------------------|--------------|------------|--|
| [138]| 2020 | Classical Signature detection | IoT | Cooja | Generation of DoS attacks |
| [139]| 2020 | Classical Signature detection | - | Python | Pigeon Inspired Optimizer |
| [140]| 2020 | RNN | Wireless technology | Python | IDS based on gated recruitment |
| [141]| 2020 | Code-book of attack scenarios | - | C++/Linux environment | Using known attacks to detect anomaly |
| [142]| 2020 | CNN | - | Python/LTS environment | Spatial-temporal feature detection |
| [143]| 2020 | Machine learning | IoT | BMWatchSim | Anomaly detection by watchdogs |
| [144]| 2019 | Rooting efficiency improvement | MANET | NS-2 | Black hole attacks detection |
| [145]| 2019 | Deep learning | Cloud | Python | IDS based on unsupervised training algorithm |
| [146]| 2019 | Signature detection | WLAN | AC algorithm | Hardware approach architecture |
| [147]| 2019 | Machine learning | Electric vehicles | SUMO-OMNET-VEINS | Detection of spoofing attacks |
| [148]| 2019 | DRNN | IoT | MATLAB 2019b | Automated IDS for fog security |
| [149]| 2019 | Deep learning | Vehicle security | Python | IDS for vehicle security by DNN |
| [150]| 2019 | Signature detection | WSN | - | Selection based on Fuzzy logic |
| [151]| 2019 | Signature detection | Vehicular Ad-Hoc | OMNET | Dynamic behavior analysis |
| [152]| 2019 | Hybrid method | UAV Ad-hoc communication | JAVA | Spectral traffic analysis and robust controller |