ALMOST COMMUTING VARIETIES FOR THE SYMPLECTIC LIE ALGEBRAS

IVAN LOSEV

Abstract. In this note we introduce and study the almost commuting varieties for the symplectic Lie algebras.

1. Introduction

The commuting schemes of semisimple Lie algebras is a classical object of study in Lie theory and Invariant theory. Let \(g \) be a semisimple Lie algebra. Consider the subscheme \(C_2(g) \subset g^{\otimes 2} \) defined by the equation \([x, y] = 0\). This is the commuting scheme for \(g \). Note that we can define \(C_k(g) \subset g^{\otimes k} \) analogously but in this note we restrict ourselves to the case of \(k = 2 \).

The algebro-geometric properties of \(C_2(g) \) are largely unknown. It is known that this scheme is irreducible, \([R]\). But it is not known whether \(C_2(g) \) is reduced (or whether \(C_2(g) \) with reduced scheme structure is normal) even in the case of \(g = sl_n \). However, for \(g = sl_n \) there is a related variety, the almost commuting variety. The version we need was introduced and studied in \([GG]\).

We now recall the definition. Consider the vector space \(R := sl_n^{\otimes 2} \oplus \mathbb{C}^n \oplus (\mathbb{C}^n)^* \). We write \((x, y, i, j)\) for a typical element of \(R \). We have the subscheme \(M_n \subset R \) defined by \([x, y] + ij = 0\). The following is the main result of \([GG]\).

Theorem 1.1. (Theorem 1.1.2 in \([GG]\)). The scheme \(M_n \) is a reduced complete intersection. It has \(n + 1 \) irreducible components, all of which have dimension \(n^2 + 2n - 2 \).

The goal of this note is to define the analog of \(M_n \) for the symplectic Lie algebra \(g = sp_{2n} \), study its properties and apply to the study of the categorical quotient \(C_2(g)/\!/G \) (where \(G = Sp_{2n} \)).

We will need a notation. Let \(C^{2n} \) be the tautological representation of \(sp_{2n} \). We can identify \(S^2(C^{2n}) \) with \(sp_{2n} \) in the standard way (the Lie bracket on \(S^2(C^{2n}) \) is the restriction of the Poisson bracket). So for \(i \in C^{2n} \) we can view \(i^2 \in S^2(C^{2n}) \) as an element of \(sp_{2n} \). The almost commuting scheme for \(sp_{2n} \) is defined by

\[
X_n = \{(x, y, i) \in sp_{2n}^{\otimes 2} \oplus C^{2n} | [x, y] + i^2 = 0\}.
\]

Here is our main result concerning \(X_n \). Somewhat surprisingly, its algebro-geometric properties are even better than those of \(M_n \):

Theorem 1.2. The scheme \(X_n \) is a reduced complete intersection of dimension \(2n^2 + 3n \). It is irreducible.

Here is an application of \(X_n \) to the study of the commuting scheme \(C_2(g) \) (with \(g = sp_{2n} \)). Note that \(G \) naturally acts on \(X_n \). Let \(\mathfrak{h}, W \) be the Cartan subalgebra and the Weyl group of \(g \).
Theorem 1.3. We have scheme isomorphisms $X_n//G \isom C_2(\mathfrak{g})//G \isom \mathfrak{h}^\oplus//W$, where W acts on \mathfrak{h}^\oplus diagonally.

Note that the isomorphism $C_2(\mathfrak{g})//G \isom \mathfrak{h}^\oplus//W$ is a special case (for $k = 2$) of the main result of [CN].

Acknowledgements. I would like to thank Tsao-Hsien Chen for his talk on [CN] at Yale which motivated this work. My work was partially supported by the NSF under grant DMS-2001139.

2. Properties of almost commuting variety

2.1. Upper triangularity property. Here we prove the following easy result.

Lemma 2.1. Let $(x, y, i) \in X_n$. Then there is a Borel subalgebra of \mathfrak{sp}_{2n} containing both x and y.

Proof. We note that $\text{rk}[x, y] = \text{rk}(i^2) \leq 1$. So x, y have a common eigenvector, see, e.g., [EG] Lemma 12.7. Denote this vector by v and let v^\perp denote its skew-orthogonal complement. The subspace v^\perp is x- and y-stable. Let x_1, y_1 be the operators on $v^\perp/\mathbb{C}v$ induced by x, y. Then we have $\text{rk}([x_1, y_1]) \leq \text{rk}([x, y]) \leq 1$. So we can argue by induction to show that x, y preserve a lagrangian flag. Equivalently, they are contained in some Borel subalgebra of \mathfrak{g}.

Here is a standard corollary.

Corollary 2.2. Let $(x, y, i) \in X_n$ be such that $G(x, y, i)$ is closed. Then $[x, y] = 0, i = 0$ and x, y are semisimple. Conversely, the orbit of such a triple is closed.

Remark 2.3. One can ask for which simple Lie algebras \mathfrak{g} the claim Lemma 2.1 holds, where we consider the condition $[x, y] \in \mathfrak{O}_{\text{min}}$ for the minimal nilpotent orbit $\mathfrak{O}_{\text{min}}$. By [EG] Lemma 12.7, it holds for $\mathfrak{g} = \mathfrak{sl}_n$. And it also holds for $\mathfrak{g} = \mathfrak{sp}_{2n}$. In fact, it does not hold for any other simple Lie algebra. Indeed, $\dim \mathfrak{O}_{\text{min}} > 2 \dim \mathfrak{h}$ for all \mathfrak{g} different from $\mathfrak{sl}_n, \mathfrak{sp}_{2n}$. Assuming the inequality holds, consider a regular element $x \in \mathfrak{h}$. For any element $z \in \mathfrak{O}_{\text{min}} \cap \mathfrak{h}^\perp$ we can find $y \in \mathfrak{g}$ with $[x, y] = z$. On the other hand, if x, y lie in a Borel subalgebra \mathfrak{b}, then \mathfrak{b} is one of \mathfrak{h} Borel subalgebras of \mathfrak{g} containing x. For any such \mathfrak{b}, we have $\dim(\mathfrak{O}_{\text{min}} \cap \mathfrak{b}) = \frac{1}{2} \dim \mathfrak{O}_{\text{min}}$, see, e.g., [CG] Theorem 3.3.7. If $\dim(\mathfrak{O}_{\text{min}} \cap \mathfrak{h}^\perp) > \dim(\mathfrak{O}_{\text{min}} \cap \mathfrak{b})$, then we can find y such that x and y do not lie in the same Borel subalgebra but $[x, y] \in \mathfrak{O}_{\text{min}}$.

2.2. Local structure. The goal of this section is to describe the structure of X_n near a closed G-orbit. Recall that the closed orbits are described by Corollary 2.2.

Let $p := (x, y, 0)$ be a point with closed G-orbit. Then x, y are commuting semisimple elements. The common centralizer, L, of x and y is a Levi subgroup in G, hence has the form $\prod_{i=1}^k GL_{n_i} \times \mathfrak{Sp}_{2n_0}$ for a partition $n = n_0 + n_1 + \ldots + n_k$ into the sum of positive integers. Consider the subscheme $\mathbb{C}^{2k} \times \prod_{i=1}^k M_{n_i} \times X_{n_0} \subset \mathbb{C}^{2k} \oplus \mathbb{C}^{2n}$, where M_{n_i} was defined in Section A and \mathbb{C}^{2k} is identified with $\mathfrak{u}(l)^{\oplus 2}$. It comes with an action of L. We can form the homogeneous bundle $G \times_L (\mathbb{C}^{2k} \oplus \prod_{i=1}^k M_{n_i} \times X_{n_0})$. Let $X^n_{n_0\mathfrak{c}G\mathfrak{p}}$ denote the spectrum of the completion of $\mathbb{C}[X_n]$ at the ideal of all functions vanishing at Gp. Similarly, we can consider the scheme $\left(G \times_L (\mathbb{C}^{2k} \times \prod_{i=1}^k M_{n_i} \times X_{n_0})\right)^{\wedge_G//L}$, here we complete with respect to the ideal of all functions on $G \times_L (\mathbb{C}^{2k} \times \prod_{i=1}^k M_{n_i} \times X_{n_0})$ vanishing at the orbit $G \times L \{0\}$.
Lemma 2.4. We have a G-equivariant scheme isomorphism

$$X_n^G \cong \left(G \times L \left(\mathbb{C}^{2k} \times \prod_{i=1}^{k} M_{n_i} \times X_{n_0} \right) \right)^{\wedge_{G/L}}.$$

Proof. Note that the action of G on $\mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2n}$ is Hamiltonian with moment map $\mu : \mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2n} \to \mathfrak{g}$ given by $\mu(x, y, i) = [x, y] + i^2$. So we can apply the main result of [L] to this action and the point p. Note that this result is stated in [L] for neighborhoods in the usual topology, but it works for formal neighborhoods as well. We get the isomorphism we have μ locus of the moment map in $(\mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2n})^G$. On the other side, we have $\left(T^*(G \times L) \times \mathbb{C}^{2n} \right)^{\wedge_{G/L}}$ with natural symplectic form and moment map. The zero locus of the moment map in $(\mathfrak{g}^{\oplus 2} \oplus \mathbb{C}^{2n})^G$ (as a scheme) is X_n^G. The analogous locus in $\left(T^*(G \times L) \times \mathbb{C}^{2n} \right)^{\wedge_{G/L}}$ is $\left(G \times L \left(\mathbb{C}^{2k} \times \prod_{i=1}^{k} M_{n_i} \times X_{n_0} \right) \right)^{\wedge_{G/L}}$. This yields the required isomorphism. □

Remark 2.5. Using Lemma [2.4] and the fact that M_n is not irreducible, one sees that X_n is not normal.

2.3. Dimension bound. Here we are going to prove a technical lemma. Consider the map $\pi : X_n \to \mathfrak{g}$ given by projection to the first component. Let $\mathcal{O} \subset \mathfrak{g}$ be an adjoint orbit.

Lemma 2.6. We have $\dim \pi^{-1}(\mathcal{O}) < 2n^2 + 3n$.

Proof. Fix $x \in \mathcal{O}$. We need to show that $X_{n,x} := \{(y, i)|[x, y] = i^2\}$ has dimension less then $\dim \mathfrak{g}(x) + 2n$. Also consider the varieties

$$X_{n,x} := \{(y, z)|[x, y] = z, z \in \mathcal{O}_{\min}\}, Y_{n,x} := \mathcal{O}_{\min} \cap [\mathfrak{g}, x].$$

We have the natural maps $\rho_1 : X_{n,x} \hookrightarrow Y_{n,x}$, $\rho_2 : X_{n,x} \to Y_{n,x}$, $(y, z) \mapsto z$. We note that ρ_1 is finite, while ρ_2 is an affine bundle with fiber of dimension $\dim \mathfrak{g}(x)$. So we reduce to proving that $\dim Y_{n,x} < 2n = \dim \mathcal{O}_{\min}$, equivalently, that $Y_{n,x} \neq \mathcal{O}_{\min}$, equivalently, $\mathcal{O}_{\min} \not\subset [\mathfrak{g}, x]$. Note that \mathcal{O}_{\min} is G-stable. So if $\mathcal{O}_{\min} \subset [\mathfrak{g}, x]$, then $[\mathfrak{g}, x]$ contains a nonzero G-stable subspace. Since \mathfrak{g} is a simple Lie algebra, this is impossible. This contradiction finishes the proof. □

Remark 2.7. Note that a direct analog of this lemma holds for M_n: if π denotes the projection $(x, y, i, j) \mapsto x$, then $\dim \pi^{-1}(\mathcal{O}) < n^2 + 2n - 2$. The proof essentially repeats that of Lemma [2.6].

2.4. Proof of Theorem [1.2]. The proof requires two technical statements. Consider the regular semisimple locus $\mathfrak{g}_{reg} \subset \mathfrak{g}$ and set $X_{n,reg} := \pi^{-1}(\mathfrak{g}_{reg})$. This is an open subscheme in X_n.

1. We will show that $X_{n,reg}$ is dense in X_n.
2. We will show that $X_{n,reg}$ is irreducible.

These two statements are proved in the lemmas below. After that we will easily finish the proof of Theorem [1.2].

Lemma 2.8. $X_{n,reg}$ is dense in X_n.
Proof. The subscheme X_n is defined by $\dim \mathfrak{g} + 2n$. So the dimension of every irreducible component of X_n is at least $\dim \mathfrak{g} + 2n$. For the sake of contradiction, let Z be a component that does not intersect X_n^{reg}. Let $p := (x, y, 0)$ be a point in a closed orbit in Z that maps to a Zariski generic point in the image of Z in $\mathfrak{g}//G$ (via $Z \xrightarrow{\sim} \mathfrak{g} \rightarrow \mathfrak{g}//G$). Let L be the centralizer of x and y. Recall, Lemma 2.4 that locally near Gp the scheme X_n looks like $(G \times L (\mathbb{C}^{2k} \times \prod_{i=1}^{k} M_{n_i} \times X_{n_0}))^{^\wedge G/L}$. The stabilizer of every closed orbit in Z contains a conjugate of L by the construction of the latter. It follows that the image of $(G \times L (\mathbb{C}^{2k} \times \prod_{i=1}^{k} M_{n_i} \times X_{n_0}))^{^\wedge G/L} \cap Z$ under taking the categorical quotient lies in $(\mathbb{C}^{2k})^{^\wedge 0}$. So the intersection of Z with $(\prod_{i=1}^{k} M_{n_i} \times X_{n_0})^{^\wedge 0}$ lies in the nilpotent locus. Using Lemma 2.6 (for the X_{n_0}-factor) and Remark 2.7 (for the M_{n_i}-factor) we conclude that the dimension of the intersection does not exceed $\sum_{i=1}^{k} (n_i^2 + 2n_i - 2 - 1) + 2n_0^2 + 3n_0 - 1$. Therefore the dimension of Z does not exceed

$$\dim G/L + 2k + \sum_{i=1}^{k} (n_i^2 + 2n_i - 2 - 1) + 2n_0^2 + 3n_0 - 1 = \dim \mathfrak{g} + 2n - 1.$$

This contradicts the observation that $\dim Z \geq \dim \mathfrak{g} + 2n$. \hfill \Box

Lemma 2.9. The scheme X_n^{reg} is irreducible.

Proof. Recall that $\mathfrak{g}^{reg} = G \times N_G(T) \mathfrak{h}^{reg}$. Set $X_n^0 = \{(x, y, i) | x \in \mathfrak{t}^{reg}, [x, y] = i^2\}$ so that $X_n^{reg} = G \times N_G(T) X_n^0$. We need to show that the Weyl group $W = N_G(T)/T$ acts transitively on the irreducible components of X_n^0. Set $Y_n = \{i \in \mathbb{C}^{2n} | i^2 \in \mathfrak{h}^\bot\}$. We have a forgetful map $X_n^0 \rightarrow Y_n \times \mathfrak{h}^{reg}$ forgetting y. This map is an affine bundle. So we need to show that W transitively acts on the set of irreducible components of Y_n. Let $p_1, \ldots, p_n, q_1, \ldots, q_n$ be Darboux coordinates on \mathbb{C}^{2n}. Then Y_n is given by

$$\{(p_1, \ldots, p_n, q_1, \ldots, q_n) | p_i q_i = 0, \forall i = 1, \ldots, n\}.$$

So there are 2^n irreducible components of Y_n: we need to choose if $p_i = 0$ or $q_i = 0$ for all $i = 1, \ldots, n$. It is clear that W permutes these components transitively – in fact, $\{\pm 1\}^n \subset W$ acts simply transitively on them. \hfill \Box

Proof of Theorem 1.3. Lemmas 2.8 and 2.9 imply that X_n is irreducible. Note that μ is a submersion at points with free G-orbit. There is a point in X_n with free orbit: for example we can take $(x, 0, i)$, where $x \in \mathfrak{h}^{reg}$ and i is given by (in the notation of the proof of Lemma 2.9) by $p_1 = \ldots = p_n = 1, q_1 = \ldots = q_n = 0$. It follows that $\dim X_n = \dim \mathfrak{g} + 2n$ and that X_n is generically reduced. Since X_n is a complete intersection, we see that X_n is reduced. \hfill \Box

3. Application to commuting scheme

The goal of this section is to prove Theorem 1.3. Namely, we have inclusions $\mathfrak{h}^{\otimes 2} \hookrightarrow C_2(\mathfrak{g}) \hookrightarrow X_n$ that give rise to morphisms of categorical quotients

$$\mathfrak{h}^{\otimes 2}/W \rightarrow C_2(\mathfrak{g})//G \rightarrow X_n//G.$$

Proof of Theorem 1.3. We need to prove that the morphisms in (3.1) are isomorphisms. We note that the second morphism is a closed embedding. Also thanks to Corollary 2.2 it is bijective. Thanks to Theorem 1.2 X_n is reduced, hence so is $X_n//G$. It follows that the second morphism in (3.1) is an isomorphism, and, in particular, $C_2(\mathfrak{g})//G$ is reduced.
The first morphism in (3.1) is bijective. It remains to show that it is a full embedding, equivalently, that the pullback homomorphism $\mathbb{C}[C_2(\mathfrak{g})]^G \rightarrow \mathbb{C}[\mathfrak{h}^{\oplus 2}]^W$ is an isomorphism. Note that both algebras are Poisson. For the source this holds because $\mathbb{C}[C_2(\mathfrak{g})]^G$ is obtained from $\mathbb{C}[\mathfrak{g}^{\oplus 2}]$ by Hamiltonian reduction. The homomorphism $\mathbb{C}[C_2(\mathfrak{g})]^G \rightarrow \mathbb{C}[\mathfrak{h}^{\oplus 2}]^W$ intertwines the Poisson brackets. To see this note that this homomorphism becomes a Poisson isomorphism after tensoring with $\mathbb{C}[\mathfrak{g}^{\text{reg}}]^G \cong \mathbb{C}[\mathfrak{h}^{\text{reg}}]^W$ (in the first coordinate) and $\mathbb{C}[\mathfrak{h}^{\oplus 2}]^W \hookrightarrow \mathbb{C}[\mathfrak{h}^{\text{reg}}]^W \otimes_{\mathbb{C}[\mathfrak{h}]} \mathbb{C}[\mathfrak{h}^{\oplus 2}]^W$. By results of [W], the Poisson algebra $\mathbb{C}[\mathfrak{h}^{\oplus 2}]^W$ is generated by the two subalgebras $\mathbb{C}[\mathfrak{h}]^W$ (in the first and the second coordinates). To finish the proof it remains to notice that the homomorphism $\mathbb{C}[C_2(\mathfrak{g})]^G \rightarrow \mathbb{C}[\mathfrak{h}^{\oplus 2}]^W$ restricts to $\mathbb{C}[\mathfrak{g}]^G \hookrightarrow \mathbb{C}[\mathfrak{h}]^W$ (for both the first and the second copy). □

References

[CN] T.-H. Chen, B.C. Ngo, Invariant theory for the commuting scheme of symplectic Lie algebras. arXiv:2102.01849.
[CG] N. Chriss, V. Ginzburg, Representation theory and complex geometry. Birkhäuser Boston, Inc., Boston, MA, 1997.
[GG] W.L. Gan, V. Ginzburg, Almost-commuting variety, D-modules, and Cherednik algebras. With an appendix by Ginzburg. IMRP Int. Math. Res. Pap. 2006, 26439, 1–54.
[EG] P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147 (2002), no. 2, 243–348.
[L] I.V. Losev. Symplectic slices for reductive groups. Mat. Sbornik 197(2006), N2, p. 75-86 (in Russian). English translation in: Sbornik Math. 197(2006), N2, 213-224.
[R] R.W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups. Compositio Math. 38 (1979), no. 3, 311–327.
[W] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations. J. Amer. Math. Soc. 6 (1993), no. 4, 779–816.