SHORT COMMUNICATION

Fine mapping the TAGAP risk locus in rheumatoid arthritis

R Chen1,2,3, EA Stahl1,2,3, FAS Kurreeman1,2,3,4, PK Gregersen5, KA Siminovitch6, J Worthington7, L Padyukov8, S Raychaudhuri1,2,3 and RM Plenge1,2,3

1Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, USA; 2Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA; 3Broad Institute, Program in Medical and Population Genetics, Cambridge, MA, USA; 4Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands; 5The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA; 6Department of Medicine, University of Toronto, Mount Sinai Hospital and University Health Network, Toronto, Ontario, Canada; 7Arthritis Research Campaign (arc)–Epidemiology Unit, The University of Manchester, Manchester, UK and 8Rheumatology Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden

A common allele at the TAGAP gene locus demonstrates a suggestive, but not conclusive association with risk of rheumatoid arthritis (RA). To fine map the locus, we conducted comprehensive imputation of CEU HapMap single-nucleotide polymorphisms (SNPs) in a genome-wide association study (GWAS) of 5500 RA cases and 22 621 controls (all of European ancestry). After controlling for population stratification with principal components analysis, the strongest signal of polymorphisms (SNPs) in a genome-wide association study (GWAS) of 5500 RA cases and 22 621 controls (all of European ancestry). After controlling for population stratification with principal components analysis, the strongest signal of association was to an imputed SNP, rs212389 (P

Introduction

Contemporary genome-wide association studies (GWASs) test common single-nucleotide polymorphisms (SNPs) for association with disease risk. The underlying biological model is that the causal mutation is in linkage disequilibrium (LD) with tagging SNPs on the genotyping array.1 If the causal mutation is also common, then it likely resides in close proximity to the disease-associated SNP. To fine map the strongest signal of association, it is necessary to perform dense genotyping in large patient collections, followed by stepwise conditional regression and haplotype analysis.2 Genome-wide imputation from a reference panel, such as HapMap, facilitates this process by providing high-density coverage of common alleles across a locus of interest.3

Rheumatoid arthritis (RA) is a common autoimmune disease of unclear etiology. Family studies estimate that >50% of the variance in disease risk is genetic.4 To date, >20 risk loci have been identified conclusively at P<5 × 10−8.5,6 In an initial RA GWAS meta-analysis of 15855 case–control samples, with replication in an additional 19 915 independent samples, we found strong but not conclusive evidence that a common SNP near TAGAP is associated with risk of RA (rs394581, PGWAS = 5.6 × 10−4, Poverall = 3.8 × 10−7 in all 35 770 case–control samples combined).7 This GWAS meta-analysis did not include complete imputation of all CEU HapMap SNPs, but rather included only 336 721 SNPs genotyped on the Affymetrix 50K platform (Affymetrix, Santa Clara, CA, USA) passing genotype quality control filters. In a follow-up GWAS meta-analysis of 5539 autoimmune-positive RA cases and 20 269 controls, we imputed 2.56 million SNPs from CEU HapMap and found continued evidence of association at the previous TAGAP RA risk SNP (rs394581, PCWAS = 7.7 × 10−4).8 However, we also found suggestive evidence for additional risk alleles at the TAGAP locus, including an allele associated with risk of celiac disease and type I diabetes (T1D).8,9

The purpose of the current study is to refine the signal of association at the TAGAP locus using our second GWAS meta-analysis with genome-wide imputation. Our results show that an imputed SNP at the TAGAP locus provides a much stronger signal of association than the previously published SNP in RA.

Results and discussion

The initial goals of this study were to use genome-wide imputation and conditional analysis to determine if any
of the known RA risk alleles had either (1) a better signal of association or (2) an independent, second signal of association in the associated risk locus. We included those RA risk loci with conclusive \((P<5 \times 10^{-8})\) and highly suggestive \((P<10^{-6})\) with independent replication at \(P<0.01\) association with risk of RA.

Our GWAS meta-analysis was conducted using the six case-control collections shown in Table 1. Within each collection, we first filtered SNPs and individuals, and then ran Eigenstrat\(^6\) on genotyped SNPs to calculate principal components, as previously described.\(^6\) We used filtered SNPs to impute 2.56 million SNPs present at \(>1\%\) allele frequency in CEU HapMap.\(^3\) GWAS association analyses were performed using logistic regression (SNPTEST and R), incorporating the top five principal components as covariates to control for population stratification. We combined the results of the GWAS for each data set by weighting the logistic regression estimates (beta values) by the inverse variance of each data set.\(^11\) In our final analysis of 5,500 RA cases and 22,621 controls (all of European ancestry) with genotype data at 2.56 million SNPs, we found no evidence of systemic bias (\(I^2 = 1.01\)). In comparison with the published GWAS by Stahl et al.,\(^\text{et al.}\) here we added 2,352 additional shared controls because we incorporated PCs into the GWAS to correct for stratification. In doing so, we removed 39 RA cases because they were determined to be genetic outliers by PCs in the expanded data set.

To refine the signal of association at each RA risk locus, we conditioned on the previously described SNP genotype to look for additional statistical evidence of association at other nearby SNPs. For each of the known RA risk loci, we assessed association statistics, both before and after conditional analysis, of SNPs within a 1-Megabase (Mb) region centered on the known RA risk allele. In our analysis conditional on the previously associated SNP, the \(\text{TAGAP}\) locus had a clear signal that was different than the previously reported SNP (Supplementary Table 1). The \(\text{TNFAIP3, CCL2, CTLA4-CO2}\) and \(\text{ANKRD55-IL6ST}\) loci showed evidence of independent, second signals of association, consistent with previous reports.\(^5,7,12\) No other loci showed strong evidence for association after analysis conditional on the previously associated RA SNP (conditional \(P<10^{-6}\)). Because of these findings, we focused solely on refining the signal of association at the \(\text{TAGAP}\) locus. We note, however, that our study design has limited power to detect independent rare alleles or common alleles of more modest effect.

Case-control samples for GWAS meta-analysis	Controls	Genotyping platform
Case-control collection	Shared controls	Canada and shared controls
Epidemiological Investigation of Rheumatoid Arthritis (EIRA)	Toronto, Canada	Illumina 317K
Rheumatoid Arthritis Genetic Epidemiology of Rheumatoid Arthritis (RAGET)	Netherlands	Illumina 317K
Rheumatoid Arthritis Genetic Epidemiology of Rheumatoid Arthritis (RAGET)	Sweden	Illumina 317K
North American Rheumatoid Arthritis Consortium (NARAC) I & II	North America	Illumina 317K
Wellcome Trust Case Control Consortium (WTCCC)	UK	Illumina 317K

Abbriviations: CCP, cyclic citrullinated peptide; GWAS, genome-wide association study; RF, rheumatoid factor.

The characteristics of the six case-control collections used in the GWAS meta-analysis are shown.
In contrast, conditioning on the new TAGAP SNP abrogated any remaining signal across the entire 1-Mb region, including any signal at the previously reported TAGAP SNP (rs394581; \(P = 0.07 \); Figure 1c). The same TAGAP locus is associated with risk of celiac disease and TID. The celiac/TID risk allele appears different than the RA risk allele, as the new RA SNP demonstrates evidence of association even after analysis conditioning on the celiac/TID SNP, rs1738074 (\(P = 1.7 \times 10^{-10} \)). These results are consistent with the patterns of LD between the pairs of SNPs: the celiac/TID SNP, rs1738074, has \(r^2 = 0.32 \) with the new RA risk SNP, rs212389, and \(r^2 = 0.35 \) with the previously reported RA risk SNP, rs394581.

As the new TAGAP SNP was imputed in all six GWAS collections, we wanted to ensure that the signal of association was not driven by any one GWAS collection, and that the association was not an artifact of imputation. As shown in Figure 2, the new TAGAP SNP (rs212389) demonstrated a signal of association in all six GWAS collections. For the new TAGAP SNP, the imputation scores were higher for those samples genotyped using the Illumina platform, Illumina (San Diego, CA, USA; Epidemiological Investigation of Rheumatoid Arthritis (EIRA), North American Rheumatoid Arthritis Consortium (NARAC) 1 & 2, and Canada; Supplementary Table 2).

To further fine map the signal of association, we used our GWAS meta-analysis to construct haplotypes generated by these three SNPs (new RA SNP, previous RA SNP and celiac/TID SNP). As the imputation scores were higher for those samples genotyped using the Illumina platform, we analyzed only on those 3501 RA cases and 10,433 controls genotyped on Illumina (see Table 1). As shown in Figure 3, our haplotype analysis indicated that the best genetic model is one in which the haplotype tagged by the G allele of rs212389 (new RA) and the T allele of rs1738074 (celiac/TID SNP) confers protection from RA (\(P = 1.1 \times 10^{-10} \)). A similar but more significant result is obtained when we use all six GWAS collections in our analysis (\(P = 1.8 \times 10^{-10} \)). To test whether risk is best explained by the rs212389-G/rs1738074-T common haplotype, rather than either allele alone, we performed an analysis in which we compared three risk models: G allele of rs212389 (new RA), T allele of rs1738074 (celiac/TID) and rs212389-G/rs1738074-T common haplotype. Consistent with our other analyses, we found that the rs212389-G/rs1738074-T model was significantly better than either model, which included only a single SNP (\(P = 0.01 \); Supplementary Table 3). Although this analysis suggests that the causal allele resides on the rs212389-G/rs1738074-T, additional genotyping in large multi-ethnic sample
collections will be required to formally identify the best genetic model at the TAGAP locus.

Under a model in which the causal allele is common and tagged by the common G-.rs212389/T-rs1738074 haplotype, then the causal allele should be catalogued within the 1000 Genomes Project, as this haplotype is common (present in \~31% of control chromosomes). We used phased 1000 Genomes data to identify all variants in high LD ($r^2 > 0.80$) with the new risk haplotype (Supplementary Table 4). At this LD threshold, we identified only 10 potential causal variants. However, none of these variants were within the protein-coding sequence of TAGAP or other neighboring genes, and none disrupted an obvious non-coding functional motif (for example, transcription factor binding site).

Although TAGAP is the most promising biological candidate gene, four other genes map to the region of LD: EZR, OSTC1/LOC202459, RSPH3 and FNDC1 (Figure 1). TAGAP gene is expressed at high levels in the immune system, including B- and T-lymphocyte cells, dendritic cells, natural killer cells and monocytes. The protein product is predicted to function as a Rho GTPase-activating protein. Otherwise, little is known about the function of TAGAP in the immune system.

There are several important limitations of our study. First, we did not genotype the new RA-associated SNP in any samples. The imputation quality score (Supplementary 2) and the consistency of the effect across the different cohorts (Figure 2) provide strong evidence that the signal of association at the imputed SNP is not because of a technical artifact. Second, no re-sequencing was done to discover variants not present in either HapMap or 1000 Genomes data. Formally speaking, our results could be consistent with a genetic model in which multiple causal rare variants reside on the common G-rs212389/T-rs1738074 haplotype, rather than a single causal allele that resides on this haplotype. Third, our study is underpowered to detect independent alleles of modest effect, especially those that are of low allele frequency (for example, 1–5%). Last, we did not perform experiments to determine whether the new RA SNP (rs212389) or any variants from the 1000 Genomes data in LD with the common G-rs212389/T-rs1738074 haplotype are functional.

In conclusion, our study provides conclusive evidence that the TAGAP locus is associated with risk of RA. In doing so, we have refined the signal of association at the TAGAP locus either to rs212389 (new RA SNP) or to a haplotype tagged by the G allele of rs212389 (new RA SNP) and the T allele of rs1738074 (celiac/TID SNP). Comprehensive imputation was essential to refine this association, as the new SNP was not genotyped directly on either the Affymetrix or Illumina platforms.
Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

RMP is supported by grants from the NIH (R01-AR057108, R01-AR056768, U01-GM092691), and holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund. SR is supported by an NIH Career Development Award (1K08AR055688-01A1). FASK is supported by a Marie Curie International Outgoing Fellowship for Career Development from the European Community’s FP7 (Grant Agreement number PIOF-GA-2009-237280).

References

1 Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6: 95–108.
2 Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LR, Baechler EC et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA 2007; 104: 6758–6763.
3 Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007; 39: 906–913.
4 MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43: 30–37.
5 Raychaudhuri S. Recent advances in the genetics of rheumatoid arthritis. Curr Opin Rheumatol 2010; 22: 109–118.
6 Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010; 42: 508–514.
7 Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, Guiducci C et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 2009; 41: 1313–1318.
8 Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, Bruinenberg M et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 2008; 40: 395–402.
9 Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K et al. Shared and distinct genetic variants in Type 1 diabetes and celiac disease. N Engl J Med 2008; 359: 2767–2777.
10 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.
11 de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 2008; 17: R122–R128.
12 Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007; 39: 1477–1482.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/