On C-embedded subspaces of the Sorgenfrey plane
O. Karlova

1. Introduction

Recall that a subset A of a topological space X is called functionally open (functionally closed) in X if there exists a continuous function $f : X \rightarrow [0,1]$ such that $A = f^{-1}((0,1])$ ($A = f^{-1}(0)$). Sets A and B are completely separated in X if there exists a continuous function $f : X \rightarrow [0,1]$ such that $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$.

A subspace E of a topological space X is

- **C-embedded** (C^*-embedded) in X if every (bounded) continuous function $f : E \rightarrow \mathbb{R}$ can be continuously extended on X;
- **z-embedded** in X if every functionally closed set in E is the restriction of a functionally closed set in X to E;
- **well-embedded in X** if E is completely separated from any functionally closed set of X disjoint from E.

Clearly, every C-embedded subspace of X is C^*-embedded in X. The converse is not true. Indeed, if $E = \mathbb{N}$ and $X = \beta \mathbb{N}$, then E is C^*-embedded in X (see [4, 3.6.3]), but the function $f : E \rightarrow \mathbb{R}$, $f(x) = x$ for every $x \in E$, does not extend to a continuous function $f : X \rightarrow \mathbb{R}$.

A space X has the property $(C^* = C)$ if every closed C^*-embedded subset of X is C-embedded in X. The classical Tietze-Urysohn Extension Theorem says that if X is a normal space, then every closed subset of X is C^*-embedded and X has the property $(C^* = C)$. Moreover, a space X is normal if and only if every its closed subset is z-embedded (see [3, Proposition 3.7]).

The following theorem was proved by Blair and Hager in [2, Corollary 3.6].

Theorem 1.1. A subset E of a topological space X is C^*-embedded in X if and only if E is z-embedded and well-embedded in X.

A space X is said to be δ-normally separated if every closed subset of X is well-embedded in X. The class of δ-normally separated spaces includes all normal spaces and all countably compact spaces. Theorem 1.1 implies the following result.

Corollary 1.2. Every δ-normally separated space has the property $(C^* = C)$.

According to [15] every C^*-embedded subspace of a completely regular first countable space is closed. The following problem is still open:

Problem 1.3. [12] Does there exist a first countable completely regular space without property $(C^* = C)$?

H. Ohta in [11] proved that the Niemytzki plane has the property $(C^* = C)$ and asked does the Sorgenfrey plane S^2 (i.e., the square of the Sorgenfrey line S) have the property $(C^* = C)$?

In the given paper we obtain some necessary conditions on a set $E \subseteq S^2$ to be C^*-embedded. We prove that every C^*-embedded subset of S^2 is a hereditarily Baire subspace of \mathbb{R}^2. We also characterize C^*- and C^*-embedded subspaces of the anti-diagonal $D = \{(x, -x) : x \in \mathbb{R}\}$ of S^2. Namely, we prove that for a subspace $E \subseteq D$ of S^2 the following conditions are equivalent: (i) E is C^*-embedded in S^2; (ii) E is C^*-embedded in S^2; (iii) E is a countable G_δ-subspace of \mathbb{R}^2 and (iv) E is a countable functionally closed subspace of S^2.

2. Every finite power of the Sorgenfrey line is a hereditarily α-favorable space

Recall the definition of the Choquet game on a topological space X between two players α and β. Player β goes first and chooses a nonempty open subset U_0 of X. Player α chooses a nonempty open subset V_1 of X such that $V_1 \subseteq U_0$. Following this player β must select another nonempty open subset $U_1 \subseteq V_1$ of X and α must select a nonempty open subset $V_2 \subseteq U_1$. Acting in this way, the players α and β obtain sequences of nonempty open sets $(U_n)_{n=0}^{\infty}$ and $(V_n)_{n=1}^{\infty}$ such that $U_{n+1} \subseteq V_n \subseteq U_n$ for every $n \in \mathbb{N}$. The player α wins if $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$. Otherwise, the player β wins. If there exists a rule (a strategy) such that α wins if he plays according to this rule, then X is called α-favorable. Respectively, X is called β-unfavorable if the player β has no winning strategy. Clearly, every α-favorable space X is β-unfavorable. Moreover, it is known [13] that a topological space X is Baire if and only if it is β-unfavorable in the Choquet game.

If A is a subspace of a topological space X, then \overline{A} and $\text{int}A$ mean the closure and the interior of A in X, respectively.
Lemma 2.1. Let $X = \bigcup_{k=1}^{n} X_k$, where X_k is an α-favorable subspace of X for every $k = 1, \ldots, n$. Then X is an α-favorable space.

Proof. We prove the lemma for $n = 2$. Let $G = G_1 \cup G_2$, where $G_i = \text{int} X_i$, $i = 1, 2$. We notice that for every $i = 1, 2$ the space X_i is α-favorable, since it contains dense α-favorable subspace. Then G_i is α-favorable as an open subspace of the α-favorable space X_i. It is easy to see that the union G of two open α-favorable subspaces is an α-favorable space. Therefore, X is α-favorable, since G is dense in X. \hfill \Box

Let $p = (x, y) \in \mathbb{R}^2$ and $\varepsilon > 0$. We write

$$B(p; \varepsilon) = [x, x + \varepsilon] \times [y, y + \varepsilon],$$

$$B(p; \varepsilon) = (x - \varepsilon, x + \varepsilon) \times (y - \varepsilon, y + \varepsilon).$$

If $A \subseteq \mathbb{S}^2$ then the symbol $cl_{\mathbb{S}^2} A$ ($cl_{\mathbb{R}^2} A$) means the closure of A in the space \mathbb{S}^2 (\mathbb{R}^2).

We say that a space X is hereditarily α-favorable if every its closed subspace is α-favorable.

Theorem 2.2. For every $n \in \mathbb{N}$ the space \mathbb{S}^n is hereditarily α-favorable.

Proof. Let $n = 1$ and $\emptyset \neq F \subseteq S$. Assume that β chose a nonempty open in F set $U_0 = (a_0, b_0) \cap F$, $a_0 \in F$. If U_0 has an isolated point $x \in S$, then α chooses $V_1 = \{x\}$ and wins. Otherwise, α put $V_1 = [a_0, c_0] \cap F$, where $c_0 \in (a_0, b_0) \cap F$ and $c_0 - a_0 < 1$. Now let $U_1 = (a_1, b_1) \cap F \subseteq V_1$ be the second turn of β such that $a_1 \in F$ and the set $(a_1, b_1) \cap F$ has no isolated points in S. Then there exists $c_1 \in (a_1, b_1) \cap F$ such that $c_1 - a_1 < \frac{1}{2}$.

Let $V_2 = [a_1, c_1] \cap F$. Repeating this process, we obtain sequences $(U_m)_{m=0}^{\infty}$, $(V_m)_{m=1}^{\infty}$ of open subsets of F and sequences of points $(a_m)_{m=0}^{\infty}$, $(b_m)_{m=0}^{\infty}$ and $(c_m)_{m=1}^{\infty}$ such that $(a_m, b_m) \supseteq [a_m, c_m) \supseteq [a_{m+1}, b_{m+1})$, $c_m - a_m < \frac{1}{m+1}$, $c_m \in F$, $U_m = (a_m, b_m) \cap F$ and $V_{m+1} = [a_m, c_m] \cap F$ for every $m = 0, 1, \ldots$. According to the Nested Interval Theorem, the sequence $(c_m)_{m=1}^{\infty}$ is convergent in S to a point $x^* \in \bigcap_{m=0}^{\infty} V_m$. Since F is closed in S, $x^* \in F$. Hence, $F \cap \bigcap_{m=0}^{\infty} V_m \neq \emptyset$. Consequently, F is α-favorable.

Suppose that the theorem is true for all $1 \leq k \leq n$ and prove it for $k = n + 1$.

Consider a set $\emptyset \neq F \subseteq \mathbb{S}^{n+1}$. Let the player β chooses a set $U_0 = [a_0, b_0, k_0] \cap \mathbb{S}^n$ with $a_0 = (a_0, k_0)_{k=1}^{n+1} \in F$. Denote $U_0^+ = \prod_{k=1}^{n+1} (a_0, k_0, b_0, k_0)$ and consider the case $U_0^+ \cap F = \emptyset$. For every $k = 1, \ldots, n + 1$ we set $U_0, k = (a_0, k) \times \prod_{i \neq k}^{n} (a_i, b_i, k)$ and $F_0, k = F \cap U_0, k$. Since U_0, k is homeomorphic to \mathbb{S}^n, by the inductive assumption the space F_0, k is α-favorable for every $k = 1, \ldots, n + 1$. Then F is α-favorable according to Lemma 2.1. Now let $U_0^+ \cap F \neq \emptyset$. If there exists an isolated point $x \in U_0^+$, then α put $V_1 = \{x\}$ and wins. Assume U_0 has no isolated points in \mathbb{S}^{n+1}. Then there is $c_0 = (c_0, k_0)_{k=1}^{n+1} \in U_0^+ \cap F$ such that $\text{diam}(\prod_{k=1}^{n+1} (a_0, k_0, k)) < 1$. We put

$V_1 = F \cap \prod_{k=1}^{n+1} (a_0, k_0, k)$. Let $U_1 = F \cap \prod_{k=1}^{n+1} (a_1, k_1, k)$. Then, using the inductive assumption, we obtain that $U_1 \subseteq V_1$. Again, if $U_1 \cap F = \emptyset$, where $U_1^+ = \prod_{k=1}^{n+1} (a_1, k_1, b_1, k)$, then, using the inductive assumption, we obtain that for every $k = 1, \ldots, n + 1$ the space $F \cap (\prod_{i \neq k}^{n+1} (a_i, b_i, k))$ is α-favorable. Then α has a winning strategy in F by Lemma 2.1. If $U_1^+ \cap F \neq \emptyset$ and U_1 has no isolated points in \mathbb{S}^{n+1}, the player β chooses a point $c_1 = (c_1, k_1)_{k=1}^{n+1} \in U_1^+ \cap F$ such that $\text{diam}(\prod_{k=1}^{n+1} (a_1, k_1, c_1)) < 1/2$ and put $V_2 = F \cap \prod_{k=1}^{n+1} (a_1, k_1, c_1)$. Repeating this process, we obtain sequences of points $(a_m)_{m=0}^{\infty}$, $(b_m)_{m=0}^{\infty}$ and $(c_m)_{m=0}^{\infty}$, and of sets $(U_m)_{m=0}^{\infty}$ and $(V_m)_{m=0}^{\infty}$, which satisfy the following properties:

1. $U_m = F \cap \prod_{k=1}^{n+1} (a_m, k, b_m, k)$;
2. $a_m \in F$, $c_m \in U_m \cap F$;
3. $V_{m+1} = F \cap \prod_{k=1}^{n+1} (a_m, k, c_m, k)$;
4. $V_{m+1} \subseteq U_m \subseteq V_m$;
5. $\text{diam}(V_{m+1}) < \frac{1}{m+1}$.

for every \(m = 0, 1, \ldots \). We observe that the sequence \((c_m)_{m=0}^{\infty}\) is convergent in \(\mathbb{R}^{n+1} \) and \(x^* = \lim_{m \to \infty} c_m \in \bigcap_{m=0}^{\infty} V_m \). Since \(c_m \to x^* \) in \(S^{n+1} \), \(c_m \in F \) and \(F \) is closed in \(S^{n+1} \), \(x^* \in F \cap (\bigcap_{m=0}^{\infty} V_m) \). Hence, \(F \) is \(\alpha \)-favorable.

3. Every \(C^* \)-embedded subspace of \(S^2 \) is a hereditarily Baire subspace of \(\mathbb{R}^2 \).

Lemma 3.1. A set \(E \subseteq \mathbb{R}^2 \) is functionally closed in \(S^2 \) if and only if

1) \(E \) is \(G_\delta \) in \(\mathbb{R}^2 \); and

2) if \(F \) is \(\mathbb{R}^2 \)-closed set disjoint from \(E \), then \(F \) and \(E \) are completely separated in \(S^2 \).

Proof. Necessity. Let \(f : S^2 \to \mathbb{R} \) be a continuous function such that \(E = f^{-1}(0) \). According to [10] Theorem 2.1, \(f \) is a Baire-one function on \(\mathbb{R}^2 \). Consequently, \(E \) is a \(G_\delta \) subset of \(\mathbb{R}^2 \).

Condition (2) follows from the fact that every \(\mathbb{R}^2 \)-closed set is, evidently, a functionally closed subset of \(S^2 \).

Sufficiency. Since \(E \) is \(G_\delta \) in \(\mathbb{R}^2 \), there exists a sequence of \(\mathbb{R}^2 \)-closed sets \(F_n \) such that \(X \setminus E = \bigcup_{n=1}^{\infty} F_n \).

Clearly, \(E \cap F_n = \emptyset \). Then condition (2) implies that for every \(n \in \mathbb{N} \) there exists a continuous function \(f_n : S^2 \to \mathbb{R} \) such that \(E \subseteq f_n^{-1}(0) \) and \(F_n \subseteq f_n^{-1}(1) \). Then \(E = \bigcap_{n=1}^{\infty} f_n^{-1}(0) \). Hence, \(E \) is functionally closed in \(S^2 \). \(\square \)

Lemma 3.2. Let \(X \) be a metrizable space, \(A \subseteq X \) be a set without isolated points and let \(B \subseteq X \) be a countable set such that \(A \cap B = \emptyset \). Then there exists a set \(C \subseteq A \) without isolated points such that \(\overline{C} \cap B = \emptyset \).

Proof. Let \(d \) be a metric on \(X \), which generates its topological structure. For \(x_0 \in X \) and \(r > 0 \) we denote \(B(x_0, r) = \{ x \in X : d(x, x_0) < r \} \) and \(B[x_0, r] = \{ x \in X : d(x, x_0) \leq r \} \). Let \(B = \{ b_n : n \in \mathbb{N} \} \). We put \(A_0 = \emptyset \) and construct sequences \((A_n)_{n=1}^{\infty}\) and \((V_n)_{n=1}^{\infty}\) of nonempty finite sets \(A_n \subseteq A \) and open neighborhoods \(V_n \) of \(b_n \) which for every \(n \in \mathbb{N} \) satisfy the following conditions:

(1) \(A_{n-1} \subseteq A_n \);

(2) \(\forall x \in A_n \exists y \in A_n \setminus \{ x \} \text{ with } d(x, y) \leq \frac{1}{n} \);

(3) \(d(A_n, \bigcup_{1 \leq i \leq n} V_i) > 0 \).

Let \(A_1 = \{ x_1, y_1 \} \), where \(d(x_1, y_1) \leq 1 \) and \(x_1 \neq y_1 \). We take \(\varepsilon > 0 \) such that \(A_1 \cap B[1, \varepsilon] = \emptyset \) and put \(V_1 = B(b_1, \varepsilon) \). Assume that we have already defined finite sets \(A_1, \ldots, A_k \) and neighborhoods \(V_1, \ldots, V_k \) of \(b_1, \ldots, b_k \) respectively, which satisfy conditions (1)–(3) for every \(n = 1, \ldots, k \). Let \(A_k = \{ a_1, \ldots, a_m \} \), \(m \in \mathbb{N} \). Taking into account that the set \(D = A \setminus \bigcup_{1 \leq i \leq k} V_i \) has no isolated points, for every \(i = 1, \ldots, m \) we take \(c_i \in D \) with \(c_i \neq a_i \) and \(d(a_i, c_i) \leq \frac{1}{k+1} \). Put \(A_{k+1} = A_k \cup \{ c_1, \ldots, c_m \} \). Take \(\delta > 0 \) such that \(A_{k+1} \cap B[b_k+1, \delta] = \emptyset \). Let \(V_{k+1} = B(b_{k+1}, \delta) \). Repeating this process, we obtain needed sequences \((A_n)_{n=1}^{\infty}\) and \((V_n)_{n=1}^{\infty}\). \(\square \)

The following results will be useful.

Theorem 3.3 (8). A subspace \(E \) of a topological space \(X \) is \(C^* \)-embedded in \(X \) if and only if every two disjoint functionally closed subsets of \(E \) are completely separated in \(X \).

Theorem 3.4 (16). The Sorgenfrey plane \(S^2 \) is strongly zero-dimensional, i.e., for any completely separated sets \(A \) and \(B \) in \(S^2 \) there exists a clopen set \(U \subseteq S^2 \) such that \(A \subseteq U \subseteq S^2 \setminus B \).

Recall that a space \(X \) is hereditarily Baire if every its closed subspace is Baire.

Theorem 3.5. Let \(E \) be a \(C^* \)-embedded subspace of \(S^2 \). Then \(E \) is a hereditarily Baire subspace of \(\mathbb{R}^2 \).

Proof. Assume that \(E \) is not \(\mathbb{R}^2 \)-hereditarily Baire space and take an \(\mathbb{R}^2 \)-closed countable subspace \(E_0 \) without \(\mathbb{R}^2 \)-isolated point (see [3]). Notice that \(E \) is \(S^2 \)-closed according to [15] Corollary 2.3]. Therefore, \(E_0 \) is \(S^2 \)-closed set. By Theorem 2.2 the space \(E_0 \) is \(\alpha \)-favorable, and, consequently, \(E_0 \) is a Baire subspace of \(S^2 \).

Let \(E_0' \) be a set of all \(S^2 \)-nonisolated points of \(E_0 \). Since \(E_0' \) is the set of the first category in \(S^2 \)-Baire space \(E_0 \), the set \(G = E_0 \setminus E_0' \) is \(S^2 \)-dense open discrete subspace of \(E_0 \). We notice that \(G \) is \(\mathbb{R}^2 \)-dense subspace of
that A and B be any \mathbb{R}^2-dense in F disjoint sets such that $F = A \cup B$. Evidently A and B are clopen subsets of F, since F is \mathbb{S}^2-discrete space. Notice that F is z-embedded in E, because F is countable. Moreover, F is \mathbb{R}^2-closed in E. Hence, F is \mathbb{S}^2-functionally closed in E. By Theorem 4.3.1 the set F is C^*-embedded in \mathbb{S}^2 set E. Consequently, F is C^*-closed in \mathbb{S}^2. Therefore, Theorem 3.3 and Theorem 3.4 imply that there exist disjoint clopen set $U, V \subseteq \mathbb{S}^2$ such that $A = U \cap F$ and $B = V \cap F$. According to Lemma 3.1 the sets U and V are G_δ in \mathbb{R}^2. Let $D = cl_{\mathbb{R}^2}F$. Then $U \cap D$ and $V \cap D$ are \mathbb{R}^2-dense in D disjoint G_δ-sets, which contradicts to the baireness of D.

\section*{4. Every discrete C^*-embedded subspace of \mathbb{S}^2 is a countable G_δ-subspace of \mathbb{R}^2.}

Lemma 4.1. Let X be a metrizable separable space and $A \subseteq X$ be an uncountable set. Then there exists a set $Q \subseteq A$ which is homeomorphic to the set Q of all rational numbers.

Proof. Let A_0 be the set of all points of A which are not condensation points A (a point $a \in A$ is called a condensation point of A in X if every neighborhood of a contains uncountably many elements of A). Notice that A_0 is countable, since A has a countable base. Put $B = A \setminus A_0$. Then the inequality $|A| > \aleph_0$ implies that every point of B is a condensation point of B. Take a countable subset $Q \subseteq B$ which is dense in B. Clearly, every point of Q is not isolated. Hence, Q is homeomorphic to Q by the Sierpiński Theorem [14].

Lemma 4.2. Let E be an \mathbb{R}^2-hereditarily Baire z-embedded subspace of \mathbb{S}^2. Then the set E^0 of all isolated points of E is at most countable.

Proof. Assume E^0 is uncountable. Notice that E^0 is an F_σ-subset of E, since E^0 is an open subset of E and \mathbb{S}^2 is a perfect space by [6]. Then $E^0 = \bigcup_{n=1}^{\infty} E_n$, where every set E_n is closed in E. Take $N \in \mathbb{N}$ such that E_N is uncountable. According to Lemma 3.1 there exists a set $Q \subseteq E_N$ which is homeomorphic to Q. Since Q is clopen in E_N and E_N is a clopen subset of a z-embedded in \mathbb{S}^2 set E, there exists a functionally closed subset Q_1 of \mathbb{S}^2 such that $Q = E \cap Q_1$. By Lemma 4.1 the set Q_1 is a G_δ-set in \mathbb{R}^2. Then Q is a G_δ-subset of a hereditarily Baire space E. Hence, Q is a Baire space, a contradiction.

Theorem 4.3. If E is a discrete C^*-embedded subspace of \mathbb{S}^2, then E is a countable G_δ-subspace of \mathbb{R}^2.

Proof. Theorem 3.3 and Lemma 4.2 imply that E is a countable hereditarily Baire subspace of \mathbb{R}^2. According to Proposition 12 the set E is G_δ in \mathbb{R}^2.

The converse implication in Theorem 4.3 is not valid as Theorem 4.5 shows.

Lemma 4.4. Let A be an \mathbb{S}^2-closed set, $\varepsilon > 0$ and $L(A; \varepsilon) = \{p \in \mathbb{S}^2 : B[p; \varepsilon] \subseteq A\}$. Then $L(A; \varepsilon)$ is \mathbb{R}^2-closed.

Proof. We take $p_0 = (x_0, y_0) \in cl_{\mathbb{R}^2}L(A; \varepsilon)$ and show that $p_0 \in L(A; \varepsilon)$. We consider $U = int_{\mathbb{R}^2}B[p_0; \varepsilon]$ and prove that $U \subseteq A$. Take $p = (x, y) \in U$ and put $\delta = \min\{(x - x_0)/2, (y - y_0)/2, (x_0 + \varepsilon - x)/2, (y_0 + \varepsilon - y)/2\}$. Let $p_1 \in B(p_0; \delta) \cap L(A; \varepsilon)$. It is easy to see that $p \in B[p_1; \varepsilon]$. Then $p \in A$, since $p_1 \in L(A; \varepsilon)$. Hence, $U \subseteq A$. Then $B[p_0; \varepsilon] = cl_{\mathbb{R}^2}U \subseteq cl_{\mathbb{R}^2}A = A$, which implies that $p_0 \in L(A; \varepsilon)$. Therefore, $L(A; \varepsilon)$ is closed in \mathbb{R}^2.

Theorem 4.5. There exists an \mathbb{S}^2-closed countable discrete G_δ-subspace E of \mathbb{R}^2 which is not C^*-embedded in \mathbb{S}^2.

Proof. Let C be the standard Cantor set on $[0, 1]$ and let $(I_n)_{n=1}^{\infty}$ be a sequence of all complementary intervals $I_n = (a_n, b_n)$ to C such that $\text{diam}(I_{n+1}) \leq \text{diam}(I_n)$ for every $n \geq 1$. We put $p_n = (b_n, 1 - a_n)$, $E = \{p_n : n \in \mathbb{N}\}$ and $F = \{(x, 1 - x) : x \in \mathbb{R}\} \cap (C \times [0, 1])$. Notice that E is a closed subset of \mathbb{S}^2, F is functionally closed in \mathbb{S}^2 and $E \cap F = \emptyset$.

Let $N' \subseteq \mathbb{N}$ be a set such that $\{b_n : n \in N'\}$ and $\{b_n : n \in \mathbb{N} \setminus N'\}$ are dense subsets of C. To show that E is not C^*-embedded in \mathbb{S}^2 we verify that disjoint clopen subsets

$E_1 = \{p_n : n \in N'\}$ and $E_2 = \{p_n : n \in \mathbb{N} \setminus N'\}$

of E can not be separated by disjoint clopen subsets in \mathbb{S}^2. Assume the contrary and take disjoint clopen subsets W_1 and W_2 of \mathbb{S}^2 such that $W_i \cap E = E_i$ for $i = 1, 2$.

We prove that $W_1 \cap F$ is \mathbb{R}^2-dense in F. To obtain a contradiction we take an \mathbb{R}^2-open set O such that $O \cap F \cap W_1 = \emptyset$. Since the set $U = \mathbb{S}^3 \setminus W_1$ is clopen, $U = \bigcup_{n=1}^{\infty} L(U; \frac{1}{n})$, where $L(U; \frac{1}{n}) = \{p \in \mathbb{S}^2 : B[p; 1/n] \subseteq U\}$ and the set $F_n = L(U; \frac{1}{n})$ is \mathbb{R}^2-closed by Lemma 4.3 for every $n \in \mathbb{N}$. Since $O \cap F$ is a Baire subspace of \mathbb{R}^2,
there exist $N \in \mathbb{N}$ and an \mathbb{R}^2-open in F subset $I \subseteq F$ such that $I \cap O \subseteq F_N \cap F \subseteq S^2 \setminus E_1$. Taking into account that $\text{diam}(I_n) \to 0$, we choose $n_1 > N$ such that $b_n - a_n < \frac{1}{n} n_1$ for all $n \geq n_1$. Since the set $\{a_n : n \in N\}$ is dense in C, there exists $n_2 \in N$ such that $n_2 > n_1$ and $p = (a_{n_2}; 1 - a_{n_2}) \in I$. Clearly, $p \in F$. Consequently, $B[p; \frac{1}{n_2}] \cap E_1 = \emptyset$. But $p_{n_2} \in B[p; \frac{1}{n_2}] \cap E_1$, a contradiction.

Similarly we can show that $W_1 \cap F$ is also \mathbb{R}^2-dense in F.

Notice that W_1 and W_2 are G_δ in \mathbb{R}^2 by Lemma 3.1. Hence, $W_1 \cap F$ and $W_2 \cap F$ are disjoint dense G_δ-subsets of a Baire space F, which implies a contradiction. Therefore, E is not C^*-embedded in S^2. □

5. A CHARACTERIZATION OF C-EMBEDDED SUBSETS OF THE ANTI-DIAGONAL OF S^2.

By \mathbb{D} we denote the anti-diagonal $\{(x, -x) : x \in \mathbb{R}\}$ of the Sorgenfrey plane. Notice that \mathbb{D} is a closed discrete subspace of S^2.

Theorem 5.1. For a set $E \subseteq \mathbb{D}$ the following conditions are equivalent:

1) E is C-embedded in S^2;
2) E is C^*-embedded in S^2;
3) E is a countable G_δ-subspace of \mathbb{R}^2;
4) E is a countably functionally closed subspace of S^2.

Proof. The implication (1) \Rightarrow (2) is obvious. The implication (2) \Rightarrow (3) follows from Theorem 4.1.

We prove (3) \Rightarrow (4). To do this we verify condition (2) from Lemma 4.1. Let F be an \mathbb{R}^2-closed set disjoint from E. Denote \(D = F \cap \mathbb{D} \) and \(U = \bigcup_{p \in D} B[p; 1] \). We show that U is clopen in S^2. Clearly, U is open in S^2. Take a point $p_0 \in cl_{S^2} U$ and show that $p_0 \in U$. Choose a sequence $p_n \in U$ such that $p_n \to p_0$ in S^2. For every n there exists $q_n \in D$ such that $p_n \in B(q_n, 1)$. Notice that the sequence $(q_n)_{n=1}^\infty$ is bounded in \mathbb{R}^2 and take a convergent in \mathbb{R}^2 sequence $(y_n)_{n=1}^\infty$ of $(q_n)_{n=1}^\infty$. Since D is \mathbb{R}^2-closed, $q_0 = \lim_{k \to \infty} y_n \in D$. Then $p_0 \in cl_{S^2} B(q_0, 1)$. If $p_0 \in B(q_0, 1)$, then $p_0 \in U$. Assume $p_0 \notin B(q_0, 1)$ and let $q_0 = (x_0, y_0)$. Without loss of generality we may suppose that $p_0 \in [x_0, x_0 + 1] \times (y_0 + 1)$. Since $p_{n_k} \to p_0$ in S^2, $q_{n_k} \in (-\infty, x_0] \times [y_0, +\infty)$ for all $k \geq k_0$ and $p_0 \in [x_0, x_0 + 1] \times \{y_0 + 1\}$. Then $p_0 \in \bigcup_{k=1}^\infty B(q_{n_k}, 1) \subseteq U$. Hence, U is clopen and $D = U \cap \mathbb{D}$. Since \mathbb{D} and $F \setminus U$ are disjoint functionally closed subsets of S^2, there exists a clopen set V such that $\mathbb{D} \cap V = \emptyset$ and $F \setminus U \subseteq V$. Then $F \subseteq U \cup V \subseteq S^2 \setminus E$. Consequently, F and E are completely separated in S^2. Therefore, E is functionally closed in S^2 by Lemma 3.1.

(4) \Rightarrow (1). Notice that E satisfies the conditions of Theorem 1.1. Indeed, E is z-embedded in S^2, since $|E| \leq \aleph_0$. Moreover, E is well-embedded in S^2, since E is functionally closed.

□

Remark 5.2. Notice that a subset E of \mathbb{R}^2 is countable G_δ if and only if it is scattered in \mathbb{R}^2. Indeed, assume that E is countable G_δ-set which contains a set Q without isolated points. Then Q is a G_δ-subset of \mathbb{R}^2 which is homeomorphic to Q, a contradiction. On the other hand, if E is scattered, then Lemma 4.1 implies that E is countable. Since E is hereditarily Baire and countable, E is G_δ in \mathbb{R}^2.

Finally, we show that the Sorgenfrey plane is not a δ-normally separated space. Let $E = \{(x, -x) : x \in \mathbb{Q}\}$ and $F = \mathbb{D} \setminus E$. Then E is closed and F is functionally closed in S^2, since F is the difference of the functionally closed set \mathbb{D} and the functionally open set $\bigcup_{p \in E} B[p, 1]$. But E and F cannot be separated by disjoint clopen sets in S^2, because E is not G_δ-subset of \mathbb{D} in \mathbb{R}^2.

References

[1] W. Bade, Two properties of the Sorgenfrey plane, Pacif. J. Math., 51 (2) (1974), 349–354.
[2] R. Blair, A. Hager, Extensions of zero-sets and of real-valued functions, Math. Zeit. 136 (1974), 41–52.
[3] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (3) (1988), 199–206.
[4] R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989).
[5] L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand, Princeton (1960).
[6] R. Heath, E. Michael, A property of the Sorgenfrey line, Comp. Math., 23 (2) (1971), 185–188.
[7] T. Hoshina, K. Yamazaki, Weak C-embedding and P-embedding, and product spaces, Topol. Appl. 125(2002) 233–247.
[8] O. Kalenda, J. Spurný, Extending Baire-one functions on topological spaces, Topol. Appl. 149 (2005), 195–216.
[9] O. Karlova, On α-embedded sets and extension of mappings, Comment. Math. Univ. Carolin., 54 (3) (2013), 377–396.
[10] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265–272.
[11] H. Ohita, Extension properties and the Nemytskii plane, Appl. Gen. Topol. 1 (1) (2000), 45–60.
[12] H. Ohita, K. Yamazaki, Extension problems of real-valued continuous functions, in: ”Open problems in topology II”, E. Pearl (ed.), Elsevier, 2007, 35–45.
[13] J. Saint-Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc. 87:3 (1983), 499–504.
[14] W. Sierpiński, Sur une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 11–16.
[15] Y. Tanaka, *On closedness of C- and C*-embeddings*, Pasif. J. Math., 68 (1) (1977), 283–292.
[16] J. Terasawa, *On the zero-dimensionality of some non-normal product spaces*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 167–174.