Supplement of

Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high magic-angle spinning frequencies

Jennifer S. Gómez et al.

Correspondence to: Olivier Lafon (olivier.lafon@univ-lille.fr)
and Jean-Paul Amoureux (jean-paul.amoureux@univ-lille.fr)

The copyright of individual parts of the supplement might differ from the article licence.
Supporting Information

Table S1. Selected $R_{NN}^\nu \ |m\ |$ = 2 SQ hetero-nuclear dipolar recoupling for $\nu_R = 20$ kHz.

R	R_{NN}^ν	ϕ°	ν_1/ν_R	κ	$\kappa/\parallel K_{(1,2)}^{DD_1\times DD_2} \parallel_2$	$\kappa/\parallel K_{(1,2)}^{CSA\times CSA} \parallel_2$	$\kappa/\parallel K_{(1,2)}^{\delta iso\times \delta iso} \parallel_2$
R223_2	57	5.5	0.178	162	7.12	17.58	
1800_0	R285_3	51	4.67	0.176	156	5.08	18.29
R185_2	50	4.5	0.175	140	7.20	18.49	

Table S2. Selected $R_{NN}^\nu \ |m\ |$ = 2 SQ hetero-nuclear dipolar recoupling with $45^\circ \leq \phi \leq 135^\circ$ for $\nu_R = 62.5$ kHz.

R	R_{NN}^ν	ϕ°	ν_1/ν_R	κ	$\kappa/\parallel K_{(1,2)}^{DD_1\times DD_2} \parallel_2$	$\kappa/\parallel K_{(1,2)}^{CSA\times CSA} \parallel_2$	$\kappa/\parallel K_{(1,2)}^{\delta iso\times \delta iso} \parallel_2$
900_02400_0900_0	R103_4	54	2.92	0.227	39.63	2.82	12.63
R145_6	64.3	2.72	0.232	36.33	1.87	12.39	
R124_5	60	2.80	0.230	36.08	2.25	12.47	
R128_7	120	2.00	0.227	35.96	1.61	7.72	
2700_0900_180	R166_7	67.5	2.28	0.150	17.96	1.85	3.50×10^{10}
R16$^{10}_7$	112.5	2.28	0.150	17.96	1.85	3.50×10^{10}	
R145_6	64.3	2.33	0.150	15.90	2.33	3.58×10^{10}	
R149_6	115.7	2.33	0.150	15.90	2.15	3.58×10^{10}	
900_0450_0450_0900_45	R103_4	54	1.88	0.186	16.70	2.97	15.07
R185_7	50	1.93	0.189	15.73	1.98	25.49	
R145_6	64.3	1.75	0.177	15.55	2.09	5.49	
R124_5	60	1.80	0.181	15.17	2.47	8.11	
1800_0	R145_6	64.3	1.16	0.085	5.35	2.26	1.34
R149_6	115.7	1.16	0.085	5.35	2.26	1.34	
R166_7	67.5	1.14	0.082	4.90	1.98	1.09	
R16$^{10}_7$	112.5	1.14	0.082	4.90	1.98	1.09	

Table S3. Selected $R_{NN}^\nu \ |m\ |$ = 2 SQ hetero-nuclear dipolar recoupling built from single π pulses with $20^\circ \leq \phi \leq 160^\circ$ and $\kappa \geq 0.15$ for $\nu_R = 62.5$ kHz.
\(R \)	\(\text{RNN}^v_n \)	\(\phi/\degree \)	\(v_1/v_R \)	\(\kappa \)	\(\| K_{DD_1 \times DD_2}^{\text{D}} \|_2 \)	\(\| K_{CSA \times CSA}^{\text{D}} \|_2 \)	\(\| K_{\delta \text{iso} \times \delta \text{iso}}^{\text{D}} \|_2 \)
180\(_0\)	R28\(_5^4\)	101	4.66	0.131	63.17	16.48	9.31
	R20\(_5^1\)	99	4.66	0.131	60.68	16.59	14.45
	R12\(_3^7\)	79	4.66	0.131	45.52	15.76	13.60
R28\(_7^3\)	64	4.66	0.131	44.55	14.06	11.98	
	R20\(_5^9\)	81	4.66	0.131	44.30	15.95	14.46
	R12\(_3^5\)	75	4.66	0.131	43.91	15.40	12.83
SR4\(_1^2\)	90	4.66	0.131	42.37	22.65	10.48	
90\(_0\)-240\(_0\)-90\(_0\)	R28\(_7^7\)	71	3	0.191	39.81	10.05	6.10
	R20\(_5^8\)	72	3	0.191	39.74	10.26	5.49
	R8\(_2^3\)	67.5	3	0.191	39.43	9.42	7.88
	R8\(_2^3\)	67.5	3	0.191	39.43	9.42	7.88
R24\(_5^4\)	75	3	0.191	39.32	10.66	4.22	
	R28\(_7^7\)	64.3	3	0.191	38.82	8.65	10.13
	R12\(_3^5\)	75	3	0.191	38.33	10.66	4.22
SR4\(_1^2\)	90	3	0.191	19.95	19.48	1.33	
90\(_0\)-45\(_0\)-90\(_0\)-45	R24\(_5^4\)	75	3	0.191	39.32	10.66	4.22
	R28\(_7^7\)	64.3	3	0.191	38.82	8.65	10.13
	R12\(_3^5\)	75	3	0.191	38.33	10.66	4.22
SR4\(_1^2\)	90	3	0.191	19.95	19.48	1.33	
270\(_0\)-90\(_180\)	R24\(_5^1\)	82.5	4	0.212	33.12	25.46	8.67 \times 10^{10}
	R20\(_5^9\)	81	4	0.212	31.85	25.19	8.67 \times 10^{10}
	R20\(_5^3\)	99	4	0.212	31.85	25.19	8.67 \times 10^{10}
R16\(_4^7\)	78.8	4	0.212	28.56	24.69	8.67 \times 10^{10}	
	R16\(_4^9\)	101.2	4	0.212	28.56	24.69	8.67 \times 10^{10}
	R12\(_3^5\)	75	4	0.212	20.84	23.58	8.67 \times 10^{10}

Table S4. Selected \(\text{RNN}^v_n \) \(|m| = 2 \) two-spin order hetero-nuclear dipolar recoupling.
Figure S1: 1H MAS spectrum of AlPO$_4$-14 acquired at $B_0 = 18.8$ T and $\nu_R = 20$ kHz by averaging 16 transients separated by a recycle interval of 1 s, using the DEPTH pulse sequence for probe background suppression, with $\nu_1 \approx 208$ kHz (Cory and Ritchey, 1988).
Figure S2: 27AlO$_4$ signal of AlPO$_4$-14 at $\nu_R = 20$ kHz as function of ν_1 or $\nu_{1,\text{max}}$ of the recoupling for PRESTO-R22$^2_2(180\theta)$ and -R18$^5_2(180\theta)$ as well as RINEPT-CWc-SR42_1(tt), -SR4$^2_1(270\theta90\nu_{180})$ and -R12$^5_3(270\nu_{90180})$. For each curve, τ was fixed to its optimum value given in Table 2.

Figure S3: 27AlO$_4$ signal of AlPO$_4$-14 at $\nu_R = 20$ kHz as function of offset of the recoupling for PRESTO-R22$^7_2(180\theta)$ and -R18$^5_2(180\theta)$ as well as RINEPT-CWc-SR42_1(tt), -SR4$^2_1(270\theta90\nu_{180})$ and -R12$^5_3(270\nu_{90180})$. For each curve, τ and ν_1 or $\nu_{1,\text{max}}$ were fixed to their optimum values given in Table 2.
Figure S4: 27AlO$_4$ signal of AlPO$_4$-14 at $\nu_R = 62.5$ kHz as function of ν_1 or $\nu_{1,\text{max}}$ of the recoupling for PRESTO-R$16_6^5(270_90_{180})$ and -R$14_6^5(270_90_{180})$ as well as RINEPT-CWc-SR4_1^2 (tt), -SR4_1^2 (270_90_{180}) and -R12_3^5 (270_90_{180}). For each curve, τ was fixed to its optimum value given in Table 4.

Figure S5: 27AlO$_4$ signal of AlPO$_4$-14 at $\nu_R = 62.5$ kHz as function of offset of the recoupling for PRESTO-R$16_6^5(270_90_{180})$ and -R$14_6^5(270_90_{180})$ as well as RINEPT-CWc-SR4_1^2 (tt), -SR4_1^2 (270_90_{180}) and -R12_3^5 (270_90_{180}). For each curve, τ and ν_1 or $\nu_{1,\text{max}}$ were fixed to their optimum values given in Table 4.
Figure S6: Skyline projections along F₂ of ¹H-²⁷Al HETCOR 2D spectra of AlPO₄-14 recorded with RINEPT-CWC-SR₄₂ (270°, 90°, 180°), SR₄₂(tt), SR₄₂(180°, 90°, 180°) and PRESTO-R16₆ (270°, 90°, 180°) transfers. All 2D spectra were acquired using NUS 25% in 72 min.

Figure S7: Skyline projections along F₁ of ¹H-²⁷Al HETCOR 2D spectra of AlPO₄-14 recorded with RINEPT-CWC-SR₄₁ (270°, 90°, 180°), SR₄₁(tt), SR₄₁(180°, 90°, 180°) and PRESTO-R16₆ (270°, 90°, 180°) transfers. All 2D spectra were acquired using NUS 25% in 72 min.
Table S5. Distances between the different hydrogen atoms and their closest Al neighbours in the structure of isopropylamine templated AlPO₄-14 determined from X-ray diffraction. (Broach et al., 2003) The H and Al atoms are numbered according to the cif file.

		r_{HAI}/Å
H1 (OH)	Al4O₆	2.496
	Al4O₆	2.499
	Al1O₅	2.503
	Al2O₄	4.299
H2 (NH₃)	Al4O₆	3.069
	Al2O₄	3.779
H3 (NH₃)	Al3O₄	3.778
	Al4O₆	3.960
H4 (NH₃)	Al2O₄	3.479
	Al1O₅	3.801
H5 (CH)	Al2O₄	3.737
	Al1O₅	4.850
H6 (CH₃)	Al1O₅	3.655
	Al3O₄	4.594
H7 (CH₃)	Al3O₄	4.082
	Al1O₅	4.320
H8 (CH₃)	Al2O₄	3.772
	Al3O₄	4.651
H9 (CH₃)	Al4O₆	3.888
	Al3O₄	4.124
H10 (CH₃)	Al4O₆	3.509
	Al3O₄	4.502
H11 (CH₃)	Al4O₆	3.970
	Al3O₄	4.048

Broach, R. W., Wilson, S. T., Kirchner, R. M.: Corrected crystallographic tables and figure for as-synthesized AlPO₄-14, Microporous and Mesoporous Materials, 57, 211–214, https://doi.org/10.1016/S1387-1811(02)00563-2, 2003.
Pulse sequence for D-RINEPT using $SR\alpha_1^2$ (270°90°) or $R_1\alpha_3^5$ (270°90°) recouplings

; INEPT for non-selective polarization transfer
; with decoupling during acquisition
; made of 2 pulses
; different recoupling sequences and composite pulses available

; modified by Julien Trébosc and Jennifer Gómez (2020)
; AVANCE NEO

:d0 initial t1 evolution time (=0)
:d6 probe dead time (should be D6=DE)
:d7 RF offset delay
:d5 Delay after last recoupling for Tr/2
:d8 Delay after last recoupling for Tr/4
:pl1 p1 and p2 power level
:pl12 Heteronuclear dipolar decoupling
:pl19 Presat pulse
:pl20 Presat pulse
:pl21 p3 and p4 power level
:pl22 initial spin lock
:pl33 CW23 decoupling
:pl43 CW45 decoupling
:pl44 CW67 decoupling
:pl11 dipolar recoupling power (sr4/sfam)
:spnam5 dipolar recoupling shape pulse
:pl16 : requested recoupling time
:pl17 : actual recoupling time
:l11 sr4/sfam repetition
:cnst30: Tanh/tan offset
:cnst31: spinning speed in Hz
:cnst3: Tanh/tan shape pulse step (ns)
:p1 90 degree pulse for X
:p2 180 degree pulse for X
:p3 90 degree pulse for 1H
:p4 180 degree pulse for 1H
:p19 presat pulse for 1H
:p20 presat pulse for X
:p22 initial spin lock for Tr/2
:p23 initial spin lock for Tr/4
:p33 CW45 decoupling for Tr/2
:p34 CW45 decoupling for Tr/4
:p43 CW23 decoupling for Tr/2
:p44 CW67 decoupling for Tr/2
:: CW23 decoupling for Tr/4
:: CW67 decoupling for Tr/4
:: d1: relaxation delay; 1-5 * T1
:: NS: 16 * n, total number of scans: NS * TD0
:: DS: 16
:: cpd1: decoupling during R3
:: cpdprg1: decoupling during R3
:: cpd2: decoupling during AQ and t1
:: cpdprg2: decoupling during AQ and t1
:: cpd3: decoupling during AQ
:: cpdprg3: decoupling during AQ

#include <Avance.incl>

; storeVC option to store VClst used when popting MAS
#ifndef storeVC
#define VCstored vclab, 1u \n lo to vclab times c
#else
#define VCstored
#endif

#include "presat.incl"

ifndef PRESATf2
#undef PRESAT2
#define PRESAT2(f2)
#endif

ifndef PRESATf1
#undef PRESAT1
#define PRESAT1(f1)
#endif

ifndef decF2
#define decF2off do:f2
#define decF2aqon cpds2:f2
#else
#define decF2aqon
#define decF2off
#endif

define delay RF
define delay dummy
```
#define phaseRN (360) \{\{90 270 270 90\}*2\}^180^240
  "p6=0.25s/cnst31"
  "p7=p6*3/4.0" ; p270 deg
  "p8=p6/4.0"  ; p90 deg
 ; we have p6 = p7 + p8
 ;"l11=trunc((p16/p6)/4+0.5)" ; +0.5 will round to nearest integer
  "p17=2*p6*2*l11"
  "RF=250e3/p8"
  "dummy=RF+p17"
#endif

#define phaseRN (360) 75 255 285 105
  "p6=0.25s/cnst31"
  "p7=p6*3/4.0" ; p270 deg
  "p8=p6/4.0"  ; p90 deg
 ; we have p6 = p7 + p8
 ;"l11=trunc((p16/p6)/4+0.5)" ; +0.5 will round to nearest integer
  "p17=2*p6*2*l11"
  "RF=250e3/p8"
  "dummy=RF+p17"
#endif

;d24=p3
  "p2=p1*2"
  "p4=p3*2"
 ;"d6=de"
  "p22=0.5s/(cnst31)-p3/2.0"
  "p23=0.25s/(cnst31)-p3/2.0"
  "d5=0.5s/(cnst31)-d6"
  "d8=0.25s/(cnst31)-d6"
  "p33=0.5s/(cnst31)-p3"
  "p34=0.25s/(cnst31)-p3-p4"
  "p44=0.5s/(cnst31)-p4/2.0"
  "p46=0.25s/(cnst31)-p4/2.0"
  "p55=0.5s/(cnst31)-d6"
  "p43=0.5s/(cnst31)-p4/2.0-p3"
  "p45=0.25s/(cnst31)-p4/2.0"
  "d7=0.00000005s"
  "plw43=plw33"
  "plw44=plw33"

"in0=inf1"

#define delay showInAsed
  "showInAsed=cnst3+dummy"
```
l ze
VCstored
"showInAsed=cnst3+dummy"

2 30m decF2off
PRESAT2(f2)
d1 rpp16 rpp17 rpp14 rpp15 ; not necessary to use different phases and reset but...
PRESAT1(f1)
(10u pl21):f2 (10u pl1 ph2):f1
(p3 ph1):f2

#ifndef _iSL
if "l11 % 2 == 0"
{
 (p22 pl22 ph27):f2
}
else
{
 (p23 pl22 ph27):f2
}
#endif

d0

sr4_1, (p7 pl11 ph16^):f2
(p8 pl11 ph16^):f2
(p7 pl11 ph16^):f2
(p8 pl11 ph16^):f2
lo to sr4_1 times l11

if "l11 % 2 == 0"
{
 (center (p3 pl21 ph18 p43 pl43 ph21 p4 pl21 ph2 p43 pl43 ph22 p3 pl21 ph18):f2 (p2 ph11):f1)
}
else
{
 (center (p45 pl43 ph18 p4 pl21 ph2 p45 pl43 ph18):f2 (p2 ph11):f1)
}

sr4_2, (p7 pl11 ph17^):f2
(p8 pl11 ph17^):f2
(p7 pl11 ph17^):f2
(p8 pl11 ph17^):f2
lo to sr4_2 times l11

if "l11%2 == 0"
{
 (center (p3 pl21 ph18 p33 pl33 ph23 p33 pl33 ph24 p3 pl21 ph3):f2 (p1 ph12):f1)
}
} else
{ (center (p4 pl21 ph5 p3 pl21 ph3 p34 pl33 ph21 p34 pl33 ph22 p4 pl21 ph5 p3 pl21 ph3):f2 (p1 ph12):f1)
}

sr4_3, (p7 pl11 ph15^):f2
 (p8 pl11 ph15^):f2
 (p7 pl11 ph15^):f2
 (p8 pl11 ph15^):f2
lo to sr4_3 times l11

if "l11%2 == 0"
{ (center (p44 pl44 ph25 p4 pl21 ph2 p44 pl44 ph26):f2 (p2 ph13):f1)
}
else
{ (center (p46 pl44 ph25 p4 pl21 ph2 p46 pl44 ph26):f2 (p2 ph13):f1)
}

sr4_4, (p7 pl11 ph14^):f2
 (p8 pl11 ph14^):f2
 (p7 pl11 ph14^):f2
 (p8 pl11 ph14^):f2
lo to sr4_4 times l11

if "l11%2 == 0"
{ d5 decF2aqon
}
else
{ d8 decF2aqon
}
go=2 ph31
10u decF2off
30m mc #0 to 2 F1PH(ip1,id0)

HaltAQ, 1m

exit

ph0=0
ph2=0

ph3=0
ph4=0
ph5= (360) 45
ph6=0
ph7=0
ph10=0
ph11={\{0\}*2}^2
ph12={\{0\}*4}^2
ph13={\{0\}*8}^2^1^3
ph18=1
ph21=0
ph22=2
ph23=0
ph24=2
ph25=0
ph26=2
ph27=0 2
ph28=0
ph29=3
ph16= phaseRN
ph17= phaseRN
#ifdef opt1D
ph1=1 3 0 2
ph31=3 1 2 0
#else
ph1=1 3
ph31={\{1 3\}^0}^2^0^2^2
#endif
presatPH

SIMPSON input file for D-RINEPT-CW$_c$-SR4^2_1(tt)

spinsys {
 channels 1H 13C
 nuclei 1H 13C 1H 1H 1H
 # single pair
 shift 1 0 6000 0 0 30 0
 dipole 1 2 -2575 0 0 0
 # 2 1H
 shift 3 0 6000 0 0 30 0
 dipole 3 2 0 0 109 0
 dipole 1 3 -7000 0 109 0
 # 3 1H
 shift 4 0 6000 0 0 30 0
 dipole 4 2 0 0 109 120
 dipole 1 4 -7000 0 109 120
 dipole 3 4 -7000 0 90 30
 # 4 1H
 shift 5 0 6000 0 0 30 0
 dipole 5 2 0 0 109 240
 dipole 1 5 -7000 0 109 240
\begin{verbatim}
dipole 3 5 -7000 0 90 90
dipole 4 5 -7000 0 90 330
}

par {
 proton_frequency 400e6
 spin_rate 12500
 sw spin_rate/2.0
 np 30
 crystal_file rep66
 gamma_angles 7
 start_operator I1z
 detect_operator I2p
 verbose 1101
 variable HRF 100000
 variable DRF 92000
 variable CRF 100000
 variable RFmax spin_rate*11
 variable offmax 200000
 variable I 1.0/2.0
}

proc gen_tanhtan_shape {pulse_length steps offmax xi K} {
 # generate a tanhtan shape with given:
 # pulse_length : length of pulse in us
 # steps : number of steps defining the shape
 # offset : maximum frequency offset of tanhtan sweep
 # xi : tanhtan xi parameter
 # K : tanhtan kappa parameter
 set nhalf [expr $steps/2]
 set amp_list [list]
 set phase_list [list]
 for {set i 0} {$i < $steps} {incr i} {
 set x [expr 1.0*$i/(1.0*$steps)]
 if {$i<$nhalf} {
 lappend amp_list [expr tanh(2*$xi*$x)]
 } else {
 lappend amp_list [expr tanh(2*$xi*(1-$x))]
 }
 lappend phase_list [expr -360*$offmax*$pulse_length*(1e-6)*log(abs(cos($K*(1-2*$x))))/(2*tan($K)*$K)]
 }
 set Tinc [expr 1.0*$pulse_length/$steps]
 return [list $amp_list $phase_list $Tinc]
}

proc tanhtan_pulse {shape RF phase} {
 # generate simpson pulse following shape argument containing amplitude and phase lists
 # shape: as generated by gen_tanhtan_shape procedure
 # RF : global maximum RFfield of shape
 # phase : global phase of shape
\end{verbatim}
```
set amp_list [lindex $shape 0]
set phase_list [lindex $shape 1]
set Tinc [lindex $shape 2]
foreach amp $amp_list phi $phase_list {
    pulse $Tinc [expr $amp*$RF] [expr $phase+$phi] 0 0
}
proc pulseq {} {
    global par
    maxdt 6.0
    set H90  [expr 0.25e6/$par(HRF)]
    set H180 [expr 0.50e6/$par(HRF)]
    set C90  [expr 0.25e6/$par(CRF)]
    set C180 [expr 0.50e6/$par(CRF)]
    set Taur [expr 1.0e6/$par(spin_rate)]
    set Td90  [expr 0.5e6/$par(spin_rate)-$H90/2]
    set Td180 [expr 0.5e6/$par(spin_rate)-$H180/2]
    # RN_n^nu parameters
    set N 4.
    set nu 2.
    set n 1.
    set phi [expr 180*$nu/$N]
    set S90 [expr 0.25e6/$par(RFmax)]
    set S180 [expr 0.50e6/$par(RFmax)]
    set n 100
    set Tp [expr 0.25*$Taur]
    set Tpd [expr 0.25*$Taur]
    set xi 10.0
    set K   atan(20)
    set pi   [expr atan(1)*4]
    set shape [gen_tanhtan_shape $Tp $n $par(offmax) $xi $K ]
    set ph1 0
    set ph2 120
    set ph3 240
    # SR4 using tanhtan inversion
    # full block with supercycling
    set superCycling {0 180 120 300 240 60}
    reset
    foreach ph1 $superCycling {
        reset
        for {set s 0 } {$s<$N/2} {incr s } {
            delay [expr $Tpd/2-$Tp/2]
        }
    }
```
tanhtan_pulse $shape $par(RFmax) [expr $php+$ph1]
 delay [expr $Tpd/2-$Tp/2]
 delay [expr $Tpd/2-$Tp/2]
tanhtan_pulse $shape $par(RFmax) [expr -$php+$ph1]
 delay [expr $Tpd/2-$Tp/2]
}
store $ph1
}
reset [expr -$H90]
pulse $H90 $par(HRF) 90 0 0
 # pulse $Td90 $par(DRF) 0 0 0
 store 19
reset
pulse $Td180 $par(DRF) 0 0 0
pulse $H180 $par(HRF) 0 $par(CRF) 0
pulse $Td180 $par(DRF) 180 0 0
store 20
reset
pulse $Td90 $par(DRF) 0 0 0
pulse $H90 $par(HRF) 0 $par(CRF) 0
pulse $Td90 $par(DRF) 180 0 0
store 20
reset
pulse $Td180 $par(DRF) 0 0 0
pulse $H180 $par(HRF) 0 $par(CRF) 0
pulse $Td180 $par(DRF) 180 0 0
store 22
reset
 # prop [expr (0%[llength $superCycling])*[lindex $superCycling 1]]
 prop [lindex $superCycling 0]
 store 10
for {set i 0} {$i < $par(np)} {incr i} {
 #reset
 reset [expr -$H90]
 # pulseid $H90 $par(HRF) 90 0 0
 prop 19
 prop 10
 prop 20
 prop 21
 prop 10
 prop 22
 prop 10
}
pulse [expr $Taur/2.0] $par(DRF) 0 0 0
acq
reset
prop 10
puts [expr (($i+1)%[llength $superCycling])*[lindex $superCycling 1]]
prop [expr (($i+1)%[llength $superCycling])*[lindex $superCycling 1]]
prop [lindex $superCycling [expr (($i+1)%6)]]
store 10
}
}
proc main {} {
 global par
 set FileRe [open "$par(name)-Re.res" w]
 set FileIm [open "$par(name)-Im.res" w]
 set FileAbs [open "$par(name)-Abs.res" w]
 set f [fsimpson]
 set c 0
 for {set i 1} {$i <= $par(np)} {incr i} {
 incr c
 set Sr [findex $f $c -re]
 set Si [findex $f $c -im]
 puts $FileRe "[expr 1.0e3*$i/$par(sw)] [expr $Sr]"
 puts $FileIm "[expr 1.0e3*$i/$par(sw)] [expr $Si]"
 puts $FileAbs "[expr 1.0e3*$i/$par(sw)] [expr sqrt($Sr**2+$Si**2)]"
 }
 funload $f
 close $FileRe
 close $FileIm
 close $FileAbs
}