EX VIVO 3H-SPIROPERIDOL BINDING TO RAT STRIATUM AND THE INHIBITORY EFFECTS OF NEUROLEPTICS

Tohru NAKAJIMA, Emiko EGAWA and Isami KURUMA
Department of Pharmacology, Nippon Roche Research Center, 200 Kajiwara, Kamakura, Kanagawa 247, Japan
Accepted September 25, 1980

Abstract—Neuroleptic drugs were given to rats and at different time intervals the animals were decapitated and 3H-spiroperidol binding to the striatal homogenates was determined in vitro. Two hours after an intraperitoneal administration of spiroperidol, perphenazine, haloperidol, chlorpromazine or thioridazine in doses of 0.03–30 mg/kg, 3H-spiroperidol binding to the striatal homogenates was inhibited dose-dependently with an ID50 value of 0.11, 0.23, 1.1, 3.7 or 9.4 mg/kg, respectively. After a single intramuscular administration of fluphenazine enanthate (10 mg/kg), a long-acting neuroleptic drug, long-lasting inhibitory effect (over 4 weeks) on the binding was also observed. These results indicate that ex vivo 3H-spiroperidol binding method may be useful to measure the duration and the potency of anti-dopaminergic activities of drugs.

In vitro 3H-neuroleptics binding studies, because of their simplicity, sensitivity and specificity, are particularly suitable for investigating the biochemical properties of neuroleptic binding sites and for screening of neuroleptic drugs (1). With the ex vivo 3H-neuroleptics binding methods, it is possible to show directly whether the neuroleptics and/or their metabolites interact with dopaminergic receptors, and pharmacokinetic characteristics can be elucidated. The present study was carried out to demonstrate the validity of the ex vivo 3H-spiroperidol binding method.

MATERIALS AND METHODS

Pilot experiments to select the tissue preparation and the optimum ligand concentration for ex vivo study: Male Sprague-Dawley rats (180–250 g) were given saline or 3 mg/kg chlorpromazine (CPZ i.p.). Two hr later, the rats were decapitated and the striata homogenized in 35 volumes of ice-cold water. Aliquots (3 ml) of the striatal homogenates were further centrifuged at 20,000 \times g for 20 min at 4°, and the pellets resuspended in 3 ml of ice-cold water. To assess the degree of CPZ incorporation among these fractions, striatal homogenates (0.5 ml, obtained from rat treated with CPZ), membrane fraction (0.5 ml, CPZ) or supernatant fraction (0.5 ml, CPZ) plus membrane fraction (0.5 ml, control) were incubated for 15 min at 37$^\circ$ with 62.5 pM 3H-spiroperidol, according to the method of Fields et al. (2) with slight modification.

In the kinetic study, high affinity 3H-spiroperidol binding to striatal homogenates was determined at five different ligand concentrations $-0.031, 0.0625, 0.125, 0.25$ and 0.5 nM. The incubation mixture (in triplicate) with a total volume of 10 ml...
contained \(^{3}\)H-spiroperidol at the required concentration, 50 mM Tris-maleate buffer (pH 7.5), 0.1 mM EGTA and 0.5 ml of tissue preparation (about 1.5 mg protein, the specific \(^{3}\)H-spiroperidol binding has been proved to be almost linear with tissue concentration up to 1.5 mg protein/assay). After incubation for 15 min at 37\(^{\circ}\), the samples were rapidly filtered through Whatman GF/B glass fiber filters, under reduced pressure. The filters were washed three times with 5 ml of ice-cold buffer, and were subsequently counted by liquid scintillation spectrometer. The binding of \(^{3}\)H-spiroperidol to rat striatal tissue in the presence of 1 \(\mu\)M trifluperidol was referred to as the non-specific binding of \(^{3}\)H-spiroperidol.

Effects of neuroleptics on \textit{ex vivo} \(^{3}\)H-spiroperidol binding: Male Sprague-Dawley rats (180–250 g) were given various doses of neuroleptics either i.m. or i.p. At different time intervals, the animals were decapitated, and the striata was homogenized in 35 volumes of ice-cold water. In routine studies, 0.5 ml of striatal homogenates was incubated with 62.5 \(\mu\)M \(^{3}\)H-spiroperidol. Under the standard assay conditions in the presence of 62.5 \(\mu\)M \(^{3}\)H-spiroperidol, the specifically bound radioactivity was about 90\% of the total bound radioactivity.

Protein was determined by the method of Lowry et al. (3) using bovine albumin as the standard.

Chemicals used were as follows: chlorpromazine (Meiji), haloperidol (Dainippon), perphenazine (Yoshitomi), amitriptyline (Yamanouchi), fluphenazine enanathe (Nippon-Squibb), trifluperidol, spiroperidol, thioridazine, clozapine (Hoffmann-La Roche), and 1-phenyl-4-\(^{3}\)H-spiroperidol (spec. act. 25.64 Ci/mmole, New England Nuclear).

RESULTS

Pilot experiments to select the tissue preparation and the optimum ligand concentration for \textit{ex vivo} study: After administration of 3 mg/kg i.p. of chlorpromazine, \textit{ex vivo} \(^{3}\)H-spiroperidol binding was carried out both in the whole homogenates and in the membrane fraction at the ligand concentration of 62.5 pM (Fig. 1). About 40\% inhibition of \(^{3}\)H-spiroperidol binding was observed in both preparations, but the binding to striatal membrane fraction obtained from salinized rats was slightly inhibited by addition of the supernatant fraction of chlorpromazine treated animals. This means that most of the chlorpromazine was retained in membrane fractions after injection of this drug and only

\begin{tabular}{|c|c|c|}
\hline
\textbf{Fraction} & \textbf{\(^{3}\)H-Spiroperidol Specifically Bound (cpm/assay)} & \textbf{\% Inhibition} \\
\hline
Sal (hom) & 2667 & \\
CPZ (hom) & 1611 & 40 \\
Sal (mem) & 2134 & \\
CPZ (mem) & 1310 & 39 \\
Sal (mem)+ Sal (sup) & 2043 & \\
Sal (mem)+ CPZ (sup) & 1872 & 8 \\
\hline
\end{tabular}

Fig. 1. Effect of chlorpromazine administration on \(^{3}\)H-spiroperidol binding to striatal preparations. The striata was dissected from saline (Sal) or 3 mg/kg chlorpromazine (CPZ) treated rat 2 hr after the i.p. administration. Striatal homogenates (hom), membrane fraction (mem), or membrane fractions plus supernatant fraction (sup) were incubated for 15 min at 37\(^{\circ}\) with 62.5 \(\mu\)M \(^{3}\)H-spiroperidol in a total volume of 10 ml containing 50 mM Tris-maleate buffer, pH 7.5, 0.1 mM EGTA. Non-specific binding was determined in the presence of 1 \(\mu\)M trifluperidol. Each value represents the mean from a typical single experiment performed in triplicate.
Fig. 2. Saturation curve and Scatchard plot of 3H-spiroperidol binding to saline or 3 mg/kg chlorpromazine (i.p., 2 hr) treated rat striatal homogenates. The striatal homogenates were incubated with increasing concentrations of 3H-spiroperidol (0.031-0.5 nM) for 15 min at 37°C. Points shown are those from a typical single experiment performed in triplicate.

a small amount of the drug remained or was liberated into the supernatant fraction. Figure 2 shows the saturation curves of 3H-spiroperidol binding to striatal homogenates of saline or chlorpromazine treated animals. The Scatchard analysis in the preparation obtained from both treated rats indicated a single component of binding with apparent dissociation constants (K_d) of 0.05 nM (control) and 0.11 nM (CPZ) and the inhibition of binding observed was of a competitive nature, making the lower ligand concentration the more sensitive. Based on the above mentioned pilot experiments, the whole homogenates were chosen as tissue preparations, and the ligand concentration was set at 62.5 pM (in typical case, total binding: 2800 cpm, non-specific binding: 200 cpm) in further studies.

Effects of neuroleptics on ex vivo 3H-spiroperidol binding: As shown in Fig. 3, 2 hr after a single i.p. administration of spiroperidol, perphenazine, haloperidol, chlorpromazine or thioridazine in doses of 0.03-30 mg/kg, the dose-dependent inhibitions on 3H-spiroperidol binding were observed and their ID50 values (50% inhibition of 3H-spiroperidol specifically bound) were calculated to be 0.11, 0.23, 1.1, 3.7 or 9.4 mg/kg, respectively.

Duration of anti-dopaminergic potency of chlorpromazine or fluphenazine enanthate in rat striatum as judged by ex vivo 3H-spiroperidol binding: Following a single i.p. administration of chlorpromazine (10 mg/kg), rats were decapitated at various time intervals and 3H-spiroperidol binding to their striatal homogenates was determined (Fig. 4-a). The maximal inhibition of specific 3H-spiroperidol binding by chlorpromazine was attained within the first 2 hr, after which a rapid decrease was seen. Figure 4-b shows the inhibitory effect of a long-acting neuroleptic drug, fluphenazine enanthate, pretreatment (10 mg/kg, i.m.) on specific 3H-spiroperidol binding to the striatal homogenates. Maximal inhibition of specific 3H-spiroperidol binding by this drug was attained within the 3rd day, then declined gradually and about 50% of peak inhibition was still...
Fig. 4. Time course of inhibitory effect of ex vivo 3H-spiroperidol binding to striatum by chlorpromazine (a) or fluphenazine enanthate (b). Ex vivo 3H-spiroperidol binding to striatum was determined at various times after a single administration of chlorpromazine (i.p.) or fluphenazine enanthate (i.m.). Points shown are the means ± S.E.M. from at least five animals.

observed on 28th day. The ID50 value at 7 day was calculated to be 2.9 mg/kg.

DISCUSSION

The results presented here indicate that ex vivo 3H-spiroperidol binding is a simple method and a useful tool to assess the biochemical profile of numerous neuroleptic drugs, as the potency and the duration of anti-dopaminergic activities of drugs can be easily and rapidly measured. The inhibitory potencies of short-acting neuroleptics in ex vivo 3H-spiroperidol binding correlated well with their reported clinical antipsychotic efficacy and also with their increasing potencies of homovanillic acid in the striatum (4). Among the neuroleptics tested, however, haloperidol showed a weak inhibitory effect on ex vivo 3H-spiroperidol binding in comparison with its clinical potency or its in vivo pharmacological activity. In previous work, we found that the binding sites of haloperidol were, in part, different from those of spiroperidol (5). In our study, the neuroleptics we tested all inhibited ex vivo 3H-spiroperidol binding significantly, but promethazine, a phenothiazine without neuroleptic activity, and amitriptyline, a tricyclic antidepressant, did not exert any inhibition at a relatively high dose of 10 mg/kg (i.p., 2 hr, data not shown).

A typical application of this ex vivo 3H-spiroperidol binding would be for the pharmacokinetic studies of long-acting neuroleptics. The inhibitory profile of ex vivo 3H-spiroperidol binding is in good agreement with the pharmacokinetic (6) or the in vivo pharmacological profile (7).

The synthesis and turnover of dopamine are increased acutely by typical short-acting neuroleptics in a manner roughly proportional to their clinical efficacy (8, 9). Scatton et al. (10) reported, however, that striatal dopamine turnover was increased by the acute administration of neuroleptics, but this effect disappeared with repeated administration of neuroleptics. These authors postulated that this phenomenon might be involved in the tolerance formation of extrapyramidal side effects in patients treated chronically with neuroleptics. In the study of a long-acting neuroleptic drug, fluphenazine enanthate, the attenuation of increased homovanillic acid contents in the striatum was also observed 6 days after the administration (11). The explanation for the lack of tolerance to the inhibitory effect on our ex vivo 3H-spiroperidol binding of fluphenazine enanthate probably lies in the estimation of...
biologically active drug and/or the metabolites in striatum, since the inhibition of binding observed was of a competitive nature (data not shown). Therefore, this system might be a useful tool for measuring the duration and potency of anti-psychotic activity but not for measuring the possible tolerance formation of extrapyramidal syndromes. A few days after cessation of chronic neuroleptic treatments, a simple in vitro ³H-spiroperidol binding to the striatum in these animals may assist in understanding mechanisms related to tolerance formation of extrapyramidal syndromes.

It has been suggested that the blockade of dopamine receptors in the mesolimbic or the mesocortical systems by neuroleptics may be more closely related to their antipsychotic activities than the action of these drugs on striatal dopaminergic receptors (12, 13). In the present study, however, we examined the ex vivo ³H-spiroperidol binding to rat striatal homogenates, since it has been recently reported that ³H-spiroperidol apparently binds to serotonin receptors in the rat frontal cortex, although not in the striatum (14, 15).

Laduron et al. (16) and Owen et al. (17) reported the preliminary ex vivo ³H-spiroperidol binding to brain membrane fraction. Our results support these findings. The ex vivo ³H-haloperidol binding to rat striatal homogenates, since it has been recently reported that ³H-spiroperidol apparently binds to serotonin receptors in the rat frontal cortex, although not in the striatum (14, 15).

Laduron et al. (16) and Owen et al. (17) reported the preliminary ex vivo ³H-spiroperidol binding to brain membrane fraction. Our results support these findings. The ex vivo ³H-haloperidol binding was also reported by Burki (18). However, it seems that ³H-spiroperidol is a more suitable ligand for the study of dopamine receptors ex vivo than ³H-haloperidol because of its higher specific radioactivity, its higher affinity to the binding sites and its higher specific/non-specific binding ratio.

REFERENCES

1) Yamamura, H.I., Enna, S.J. and Kuhar, M.J.: Neurotransmitter Receptor Binding. Raven Press, New York (1978)
2) Fields, J.Z., Reisen, T.D. and Yamamura, H.I.: Biochemical demonstration of dopaminergic receptors in rat and human brain using ³H-spiroperidol. Brain Res. 136, 578-584 (1977)
3) Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265-275 (1951)
4) Stawarz, R.J., Hill, H., Robinson, S.E., Setler, P., Dingell, J.V. and Sulser, F.: On the significance of the increase in homovanillic acid (HVA) caused by antipsychotic drugs in corpus striatum and limbic forebrain. Psychopharmacologia 43, 125-130 (1975)
5) Nakajima, T., Egawa, E. and Kuruma, I.: A comparison of ³H-haloperidol and ³H-spiroperidol bindings to dopaminergic receptors. Japan. J. Pharmacol. 29, Supp. 56P (1979)
6) Ebert, A.G. and Hess, S.M.: The distribution and metabolism of fluphenazine enanthate. J. Pharmacol. exp. Ther. 148, 412-421 (1965)
7) Chen, P.C.: Pharmacological studies of long-acting phenothiazines with particular reference to fluphenazine decanoate. Folia pharmacol. japon. 74, 871-883 (1978) (Abs. in English)
8) Nyback, H., Borzechk, Z. and Sedvall, G.: Accumulation and disappearance of catecholamines formed from tyrosine-¹⁴C in mouse brain: Effect of some psychotropic drugs. Europ. J. Pharmacol. 4, 395-403 (1968)
9) Andén, N.-E., Butcher, S.G., Corrodi, H., Fuxe, K. and Understedt, U.: Receptor activity and turnover of brain dopamine and noradrenaline after neuroleptics. Europ. J. Pharmacol. 11, 303-314 (1970)
10) Scatton, B., Garret, C. and Julou, L.: Acute and subacute effects of neuroleptics on dopamine synthesis and release in the rat striatum. Naunyn-Schmiedeberg's Arch. Pharmacol. 289, 419-434 (1975)
11) Clody, D.E. and Beer, B.: Predictability in psychopharmacology. Preclinical and Clinical Correlations, Edited by Sudilovski, A., Gershon, S. and Beer, B., p. 213. Raven Press, New York (1975)
12) Andén, N.-E.: Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptics and antiacetylcholine drugs. J. Pharm. Pharmacol. 25, 905-906 (1972)
13) Andén, N.-E. and Stock, G.: Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J. Pharm. Pharmacol. 25, 346-348 (1973)
14) Leysen, J.E., Niemegeers, C.J.E., Tollenaere, J.P. and Laduron, P.: Serotonergic component of neuroleptic receptors, Nature 272, 168-171 (1978)
15) Creese, I. and Snyder, S.H.: ³H-Spiroperidol
labels serotonin receptors in rat cerebral cortex and hippocampus. Europ. J. Pharmacol. 49, 201–202 (1978)

16) Laduron, P.M., Janssen, P.F. and Leysen, J.E.: Characterization of specific in vivo binding of neuroleptic drugs in rat brain. Life Sci. Oxford. 23, 581–586 (1978)

17) Owen, F., Cross, A.J., Poulter, M. and Waddington, J.L.: Change in the characteristics of 3H-spiperone binding to rat striatal membranes after acute chlorpromazine administration: effects of buffer washing of membranes. Life Sci. Oxford. 25, 385–390 (1979)

18) Burki, H.R.: Correlation between 3H-haloperidol binding in the striatum and brain amine metabolism in the rat after treatment with neuroleptics. Life Sci. Oxford. 23, 437–442 (1978)