BIFURCATIONS OF UNIMODAL MAPS

ARTUR AVILA AND CARLOS GUSTAVO MOREIRA

Abstract. We review recent results that lead to a very precise understanding of the dynamics of typical unimodal maps from the statistical point of view. We also describe the (generalized) renormalization approach to the study of the statistical properties of typical unimodal maps.

1. Introduction

A unimodal map is a smooth (at least C^2) map $f : I \to I$ of an interval $I \subset \mathbb{R}$ with a unique critical point $c \in \text{int } I$ which is a maximum. We will also assume that $f(\partial I) \subset \partial I$. The main examples of unimodal maps are given by the quadratic family of maps $p_a(x) = a - x^2$, where $-1/4 \leq a \leq 2$ is a parameter.

In this work we will describe in detail the properties of “typical” unimodal maps. Here typical is to be understood in the measure-theoretical sense: it should correspond to a generalization of “almost every parameter” for the quadratic family.

1.1. Regular maps. A unimodal map is said to be Kupka-Smale if its critical point is non-degenerate and if it has only hyperbolic periodic orbits.

A unimodal map is said to be hyperbolic if there are finitely many hyperbolic periodic sinks and the dynamical interval can be written as a union $I = U \cup K$ into invariant sets where $f|K$ is uniformly expanding and every $x \in U$ is attracted by some hyperbolic periodic sink. In this case, K has always Lebesgue measure zero. Thus hyperbolic maps have deterministic dynamics.

A unimodal map is said to be regular if it is Kupka-Smale, and if its critical point is attracted to a periodic sink and is not periodic or preperiodic. By a result of Mañé, a regular unimodal map is always hyperbolic, and it follows that the set of regular maps is open. The work of Lyubich, Graczyk-Swiatek and Kozlovski shows that regular maps are dense among quadratic/smooth/analytic unimodal maps. It is easy to see that regular maps are structurally stable: any C^2 small perturbation is still a unimodal map and is topologically conjugate to the original map. Moreover, the converse also holds: if f is structurally stable among quadratic/smooth/analytic maps then f is regular.

Let us say that an analytic family of unimodal maps is non-degenerate if regular parameters are dense. The quadratic family is an example of a non-degenerate family, and it is possible to show that non-degeneracy is a very weak assumption: for instance, any analytic family of unimodal maps with negative Schwarzian derivative\(^1\) is non-degenerate provided it contains one regular parameter (in particular,

\(^1\)That is, $Sf = D^3f - \frac{3}{2}(D^2f)^2 < 0$. This condition defines an open set of maps which contains the quadratic family.
any analytic family C^3 close to the quadratic family is non-degenerate). Throughout this paper, a property will be said to be typical for analytic unimodal maps if it is satisfied for almost every parameter in any non-degenerate analytic family of unimodal maps. For smooth ($C^k, k = 2, 3, \ldots, \infty$) unimodal maps, typical will denote “for almost every parameter in any family belonging to some generic (residual) set of C^k families of unimodal maps”. For instance, Kupka-Smale maps are typical.

Although regular maps are topologically generic, their complement is certainly non-negligible: in the quadratic family, and actually in any family C^2 close to the quadratic family, the set of non-regular parameters has positive Lebesgue measure (a version of Jakobson’s Theorem, see for instance [T1]). Thus, in our description of the dynamics of typical unimodal maps, non-regular maps must be present (and actually form the interesting part of the description).

1.2. Typical non-regular maps: topological description. Let us say that $T \subset I$ is a restrictive interval (of period m) if it contains the critical point c, $f^m(T) \subset T$, $f^m(\partial T) \subset \partial T$, and $f^j(T) \cap \text{int } T = \emptyset$, $1 \leq j \leq m - 1$ (if $m > 1$ then T is also called a renormalization interval). Notice that $f^m : T \to T$ is unimodal. Letting $\hat{T} = [f^{2m}(c), f^m(c)]$, it is easy to see that either $c \in \text{int } \hat{T}$ and $f^m|T$ has trivial dynamics: all orbits are asymptotic to a periodic orbit. The following result was proved in this generality in [AM3], building on the key quadratic case which was proved by Lyubich [L5] and on the work of [ALM].

Theorem 1.1. Let f be a typical non-regular unimodal map. Then:

1. f is Kupka-Smale and has finitely many hyperbolic periodic sinks,
2. f has a smallest restrictive interval T and the first return map $f^m|T$ is conjugate to a quadratic map,
3. There is a decomposition $I = U \cup K$ in invariant sets where U is the set of points $x \in I$ which are either attracted to sinks or are eventually trapped in T, and $f|K$ is uniformly expanding,
4. $f^m : T \to T$ is topologically mixing.

Thus one sees that to understand a typical non-regular unimodal map, one has to understand the dynamics of orbits in the “attractor” $A = \bigcup_{k=0}^{m-1} f^k(\hat{T})$, as the complementary dynamics is hyperbolic.

It turns out that, in a certain sense, the attractor A can not be decomposed further: it is a genuine topological and metric attractor in the sense of Milnor: the set of points $x \in A$ whose orbit is dense in A is both residual and a full measure subset of A (this actually holds under much milder assumption than “typical”, see [L1]).

1.3. Statistical description. In order to describe the dynamics of a typical non-regular map from the statistical point of view, we consider invariant probability measures μ. We say that $x \in I$ is in the basin of μ if for any continuous $\phi : I \to \mathbb{R}$ we have:

\[
\lim_{m} \frac{1}{m} \sum_{k=0}^{m-1} \phi(f^k(x)) = \int \phi d\mu.
\]

We are interested in measures μ which possess a basin of positive Lebesgue measure. Such measures will be called physical. Examples of physical measures are given by
the invariant measures supported on hyperbolic periodic sinks. Other examples are provided by ergodic absolutely continuous invariant probabilities (they are physical measures by Birkhoff’s Ergodic Theorem).

For a typical non-regular map one clearly has (using Theorem 1.1) a finite (possibly zero) number of physical measures corresponding to sinks and possibly other physical measures supported on A. It turns out that $f|A$ is ergodic with respect to Lebesgue measure, so there can be at most one physical measure supported in A, and if it exists then its basin must have full Lebesgue measure in A. A particularly nice situation occurs if f has an ergodic invariant measure equivalent to Lebesgue measure on A (in this case we will say that f is stochastic).

It turns out that there are quadratic maps (with an attractor A as above) without physical measures [Jo]. There are also examples of quadratic maps with rather unexpected physical measures: in [HK] it is shown that the physical measure can be supported on a hyperbolic repelling fixed point (which might be called the “statistical attractor” of the map). So one is naturally led to ask if those possibilities really arise in the typical setting. The following result was proved in [ALM] and [AM3], and is based on the work of Lyubich [L5] which covers the quadratic case.

Theorem 1.2. A typical non-regular unimodal map possesses a unique ergodic invariant measure μ equivalent to Lebesgue measure on A.

To describe further properties of μ, it is convenient to consider the system $f^m|\hat{T}$ which has an absolutely continuous invariant measure $\hat{\mu} = m\mu|\hat{T}$. The system $(f^m|\hat{T}, \hat{\mu})$ is always mixing (actually, a general result of Ledrappier implies that $(f^m|\hat{T}, \hat{\mu})$ is weak Bernoulli) and has a positive Lyapunov exponent. The following result was proved in [ALM] and [AM3] (the quadratic case was covered in [AM1]).

Theorem 1.3. For a typical non-regular unimodal map, $(f^m|\hat{T}, \hat{\mu})$ has exponential decay of correlations and is stochastically stable.

The proof of the previous result is based on Theorem 1.1 coupled with a good description of the critical orbit in terms of hyperbolicity and recurrence. Indeed, Keller-Nowicki [KN] and Young [Y] have shown that if f satisfies the Collet-Eckmann condition, that is, $|Df^n(f(c))| > C \lambda^n$, for some $C > 0$, $\lambda > 1$, then the system $(f^m|\hat{T}, \hat{\mu})$ has exponential decay of correlations provided that f is Kupka-Smale and $f^m|\hat{T}$ is topologically mixing (due to Theorem 1.1 those conditions hold for typical maps). It has been shown by Baladi-Viana [BV] that, under the additional hypothesis of subexponential recurrence of the critical orbit, that is $|f^n(c) - c| > e^{-\alpha n}$ for every $\alpha > 0$ and for every n sufficiently big, the system $(f^m|\hat{T}, \hat{\mu})$ is stochastically stable (they actually assume that f is at least C^3, for the C^2 case one must use a result of Tsujii [T2]). Thus, Theorem 1.3 is actually a consequence of the following:

Theorem 1.4. A typical non-regular unimodal map is Collet-Eckmann and the recurrence of its critical orbit is subexponential.

Better estimates can be given for typical analytic unimodal maps: in this case the recurrence of the critical orbit is actually polynomial with exponent 1, that is,

$$\limsup \frac{-\ln |f^n(c) - c|}{\ln n} = 1.$$

\[2\] It turns out that under those condition, Collet-Eckmann is actually equivalent to exponential decay of correlations, see [NS].
1.4. **Unimodal maps from the point of view of (generalized) renormalization.** It is clear that the complications in the study of the dynamics of unimodal maps arise from the presence of the critical point. In a gross simplification, one can identify two approaches to face the complications posed by the critical point:

1. Focus on the good part, that is, concentrate on the description of the dynamics in large scales and away from the critical point,
2. Focus on the problematic part, that is, concentrate on the description of the dynamics in small scales and near the critical point.

The best example of the first approach is the *inducing method*. This method was used by Jakobson to obtain a positive measure set of parameters in the quadratic family for which he constructed absolutely continuous invariant measures. In his work, he constructs an induced Markov map by finding more and more branches of iterates of \(f \) which reach large scale: in the end he obtains a partition (modulo 0) of the phase space in intervals \(T_j \) such that a suitable iterate \(f^r(T_j) \) is a diffeomorphism over an interval of definite size. To give an example of a more recent application, convenient induced Markov maps can also be used to obtain fine statistical properties of unimodal (and multimodal) maps under convenient assumptions on the critical behavior [BLS].

The best example of the second approach is the *renormalization method*. According to the description of [L6], in this method one considers a sequence of small intervals around the critical point and looks at their first return maps, which are also called generalized renormalizations of the initial system. One application of this method is to show that, under certain combinatorial assumptions, the geometry of the critical orbit is rigid.

Of course, both approaches are not completely separated, but their philosophy is quite distinct. Here we will adopt the renormalization point of view and use it to describe the dynamics of unimodal maps in all respects. We will start with some combinatorial preparation, then describe the Phase-Parameter relation, and finally we will discuss the statistical arguments involved. We will focus on the quadratic case for simplicity, and our presentation can be seen as an informal guide to [AM1].

2. Statistical properties of the quadratic family

Let us normalize the quadratic family as

\[
 f_a(x) = a - 1 - ax^2,
\]

where \(1/2 \leq a \leq 2 \), so that \(p_a \) is a unimodal map in the canonical interval \(I = [-1, 1] \).

2.1. Combinatorics and the phase-parameter relation.

2.1.1. Renormalization. We say that \(f \) is *renormalizable* if there is an interval \(0 \in T \) and \(m > 1 \) such that \(f^m(T) \subset T \) and \(f^j(\text{int } T) \cap \text{int } T = \emptyset \) for \(1 \leq j < m \). The maximal such interval is called the *renormalization interval of period* \(m \), it has the property that \(f^m(\partial T) \subset \partial T \).

The set of renormalization periods of \(f \) gives an increasing (possibly empty) sequence of numbers \(m_i, \ i = 1, 2, ..., \) each related to a unique renormalization interval \(T^{(i)} \) which form a nested sequence of intervals. We include \(m_0 = 1, T^{(0)} = I \) in the sequence to simplify the notation.
We say that \(f \) is finitely renormalizable if there is a smallest renormalization interval \(T^{(k)} \). We say that \(f \in \mathcal{F} \) if \(f \) is finitely renormalizable and \(0 \) is recurrent but not periodic. We let \(\mathcal{F}_k \) denote the set of maps \(f \) in \(\mathcal{F} \) which are exactly \(k \) times renormalizable.

The analysis of infinitely renormalizable maps is quite different from the finitely renormalizable case. The following fundamental result was proved in \([L5]\):

Theorem 2.1. The set of infinitely renormalizable parameters has zero Lebesgue measure in the quadratic family.

The proof of this result goes beyond the scope of this note (see the survey \([L7]\) for a discussion of some of the elements of the proof).

A much simpler argument shows that almost every quadratic map with a non-recurrent critical point is indeed regular. Thus, we may concentrate on quadratic maps \(f \in \mathcal{F} \).

2.1.2. Principal nest. We say that a symmetric interval \(T \subset I \) is nice for \(f \) if \(f^n(\partial T) \cap \text{int} \ T = \emptyset \), \(n \geq 0 \). It is easy to see that the first return map \(R_T \) to a nice interval \(T \) has the following property: its domain is a disjoint union of intervals \(T^j \) and \(R_T[T^j] \) is a diffeomorphism onto \(T \) if \(0 \notin T^j \). On the other hand, the component of \(0 \) (if it exists) is itself a nice interval. We will now introduce a special sequence of nice intervals obtained by iteration of this procedure, which will be the basis of our analysis of finitely renormalizable maps (this sequence is also very important in the analysis of infinitely renormalizable maps as well).

Let \(\Delta_k \) denote the set of all maps \(f \) which have (at least) \(k \) renormalizations and which have an orientation reversing non-attracting periodic point of period \(m_k \) which we denote \(p_k \) (that is, \(p_k \) is the fixed point of \(f^{m_k} \) with \(Df^{m_k}(p_k) \leq -1 \)). For \(f \in \Delta_k \), we denote \(T_0^{(k)} = [-p_k, p_k] \). We define by induction a (possibly finite) sequence \(T_i^{(k)} \), such that \(T_i^{(k)} \) is the component of the domain of \(R_{T^{(k)}_i} \) containing \(0 \). If this sequence is infinite, then either it converges to a point or to an interval.

If \(\cap_i T_i^{(k)} \) is a point, then \(f \) has a recurrent critical point which is not periodic, and it is possible to show that \(f \) is not \(k + 1 \) times renormalizable. Obviously in this case we have \(f \in \mathcal{F}_k \), and all maps in \(\mathcal{F}_k \) are obtained in this way: if \(\cap_i T_i^{(k)} \) is an interval, it is possible to show that \(f \) is \(k + 1 \) times renormalizable.

It is important to notice that the domain of the first return map to \(T_i^{(k)} \) is always dense in \(T_i^{(k)} \). Moreover, the next result shows that, outside a very special case, the return map has a hyperbolic structure.

Lemma 2.2. Assume that \(T_i^{(k)} \) does not have a non-hyperbolic periodic orbit in its boundary. For all \(T_i^{(k)} \), there exists \(C > 0 \), \(\lambda > 1 \) such that if \(x, f(x), ..., f^{n-1}(x) \) do not belong to \(T_i^{(k)} \) then \(|Df^n(x)| > C\lambda^n \).

Since almost every non-regular map belongs to \(\mathcal{F}_\kappa \) for some \(\kappa \), it is enough to work with non-regular maps in some fixed \(\mathcal{F}_\kappa \). Once \(\kappa \) is fixed, we may introduce the following convenient notation for \(f \in \Delta_\kappa \).

Let \(I_n = T_n^{(\kappa)} \), and let \(R_n \) be the first return map to \(I_n \). The domain of \(R_n \) is a union of intervals (labeled by a subset of \(\mathbb{Z} \)) denoted \(I_j^n \), where we reserve the index \(0 \) for the component of the critical point: \(0 \in I_0^n = I_{n+1} \). Since \(I_n \) is nice, \(R_n(I_j^n) \) is a diffeomorphism onto \(I_n \) whenever \(j \neq 0 \). The return to level \(n \) will be called central if \(R_n(0) \in I_{n+1} \).
Let Ω be the set of all finite words $\underline{d} = (j_1, \ldots, j_m)$ of non-zero integers, and let $|\underline{d}| = m$ denote the length of \underline{d}. If $\underline{d} = (j_1, \ldots, j_m) \in \Omega$, let $I_{\underline{d}} = \{x \in I_n, \ R_n^{j_k-1}(x) \in I_{n+k}, \ 1 \leq k \leq m\}$, and define $R_{\underline{d}} : I_{\underline{d}} \to I_n$ by $R_{\underline{d}} = R_{n+m}$. Let $C_{\underline{d}} = (R_{\underline{d}})^{-1}(I_{n+1})$. The map $L_n : \cup_{\underline{d} \in \Omega} C_{\underline{d}} \to I_{n+1}$, $L_n|C_{\underline{d}} = R_{\underline{d}}$ is the first landing map from I_n to I_{n+1}.

The dependence on f is implicit in the above notation. When needed, this dependence will be specified as follows: $I_n[f]$, $R_n[f]$, $I_{n+1}[f]$, ...

2.1.3. Parameter partition. Part of our work is to transfer information from the phase space of some map $f \in \mathcal{F}$ to a neighborhood of f in the parameter space. This is done in the following way. We consider the first landing map L_i: the complement of the domain of L_i is a hyperbolic Cantor set $K_i = I_i \setminus \cup C_{\underline{d}}$. This Cantor set persists in a small parameter neighborhood J_i of f, changing in a continuous way. Thus, loosely speaking, the domain of L_i induces a persistent partition of the interval I_i.

Along J_i, the first landing map is topologically the same (in a way that will be clear soon). However the critical value $R_i[g](0)$ moves relative to the partition (when g moves in J_i). This allows us to partition the parameter piece J_i in smaller pieces, each corresponding to a region where $R_i(0)$ belongs to some fixed component of the domain of the first landing map.

Theorem 2.3 (Topological Phase-Parameter relation). Let $f \in \mathcal{F}_x$. There is a sequence $\{J_i\}_{i \in \mathbb{N}}$ of nested parameter intervals (the principal parapuzzle nest of f) with the following properties.

1. J_i is the maximal interval containing f such that for all $g \in J_i$ the interval $I_{i+1}[g] = T_{i+1}^{(\underline{d})}[g]$ is defined and changes in a continuous way. (Since the first return map to $R_i[g]$ has a central domain, the landing map $L_i[g] : \cup C_{\underline{d}} \to I_{i+1}[g]$ is defined.)

2. $L_i[g]$ is topologically the same along J_i: there exists homeomorphisms $H_i[g] : I_i \to I_i[g]$, such that $H_i[g](C_{\underline{d}}) = C_{\underline{d}}[g]$. The maps $H_i[g]$ may be chosen to change continuously.

3. There exists a homeomorphism $\Xi_i : I_i \to J_i$ such that $\Xi_i(C_{\underline{d}})$ is the set of g such that $R_i[g](0)$ belongs to $C_{\underline{d}}[g]$.

The homeomorphisms H_i and Ξ_i are not uniquely defined, it is easy to see that we can modify them inside each $C_{\underline{d}}$ window keeping the above properties. However, H_i and Ξ_i are well defined maps if restricted to K_i.

This fairly standard phase-parameter result can be proved in many different ways. The most elementary proof is probably to use the monotonicity of the quadratic family to deduce the Topological Phase-Parameter relation from Milnor-Thurston’s kneading theory by purely combinatorial arguments. Another approach is to use Douady-Hubbard’s description of the combinatorics of the Mandelbrot set (restricted to the real line) as does Lyubich in [L4] (see also [AM3] for a more general case).

With this result we can define for any $f \in \mathcal{F}_x$ intervals $J_i^f = \Xi_i(I_i[f])$ and $J_i^{g} = \Xi_i(I_i[g])$. From the description we gave it immediately follows that two intervals $J_{i_1}[f]$ and $J_{i_2}[g]$ associated to maps f and g are either disjoint or nested, and the same happens for intervals J_i^f or J_i^{g}. Notice that if $g \in \Xi_i(C_{\underline{d}}) \cap \mathcal{F}_x$ then $\Xi_i(C_{\underline{d}}) = J_{i+1}[g]$.
2.1.4. Phase-Parameter relation. In order to describe the metric properties of the phase-parameter map Ξ, we will restrict ourselves to a smaller class of maps then F_κ, for which we will be able to give a better description. Those are maps for which only finitely many returns R_n are central, and are called simple maps in \[AM1]. We are able to restrict ourselves to this class of maps due to the following result of Lyubich \[L3]:

Theorem 2.4. Almost every map in F has only finitely many central returns in the principal nest.

Even for simple maps, however, the regularity of Ξ is not great: there is too much dynamical information contained in it. A solution to this problem is to consider restrictions of Ξ that “forget” some dynamical information.

2.1.5. Geometric interpretation. Before getting into those technical details, it will be convenient to make an informal geometric description of the topological statement we just made and discuss in this context the difficulties that will show up to obtain metric estimates.

The sequence of intervals J_i is defined as the maximal parameter interval containing f satisfying two properties: the dynamical interval I_i has a continuation (recall that the boundary of I_i is preperiodic, so the meaning of continuation is quite clear), and the first return map to this continuation has always the same combinatorics. Since it has the same combinatorics, the partition C^d_i also has a continuation along J_i.

Let us represent in two dimensions those continuations. Let $\mathcal{I}_i = \cup_{g \in J_i} \{g\} \times I_i[g]$ represent the “moving phase space” of R_i. It is a topological rectangle, its boundary consists of four analytic curves, the top and bottom (continuations of the boundary points of I_i) and the laterals (the limits of the continuations of I_i as the parameter converges to the boundary of J_i). Similarly, the continuations of each interval C^d_i form a strip C^d_i inside \mathcal{I}_i. The resulting decomposition of \mathcal{I}_i looks like a flag with countable many strips. The top and bottom boundaries of those strips (and the strips themselves) are horizontal in the sense that they connect one lateral of \mathcal{I}_i to the other.

Remark 2.1. The boundaries of the strips are more formally described as forming a laminations in the topological rectangle \mathcal{I}_i, whose leaves are codimension-one, and indeed real analytic graphs over the first coordinate. We remark that in the complex setting, the theory of codimension-one laminations is the same as the theory of holomorphic motions, described in \[L3], and which is the basis of the actual phase-parameter analysis.

Let us now look at the verticals $\{g\} \times I_i[g]$. They are all transversal to the strips of the flag, so we can consider the “horizontal” holonomy map between any two such verticals. If we fix one vertical as the phase space of f while we vary the other, the resulting family of holonomy maps is exactly $H_i[g]$ as defined above.

Consider now the motion of $R_i[g](0)$ (the critical value of the first return map to the continuation of I_i) inside J_i, which we can represent by its graph $\mathcal{D} = \cup_{g \in J_i} \{g\} \times \{R_i[g](0)\}$. It is a diagonal to \mathcal{I}_i in the sense that it connects a corner of the rectangle \mathcal{I}_i to the opposite corner. In other words, if we vary continuously the quadratic map g (inside a slightly bigger parameter window then J_i), we see...
The window J_i appear when $g^{v_i}(0)$ enters $I_i[g]$ from one side and disappear when $g^{v_i}(0)$ escapes from the other side (where v_i is such that $R_i|_{I_i} = f^{v_i}$).

The main content of the Topological Phase-Parameter relation is that the motion of the critical value is not only a diagonal to I_i but to the flag: it cuts each strip exactly once in a monotonic way with respect to the partition. Thus, the diagonal motion of the critical point is transverse in a certain sense to the horizontal motion of the partition of the phase space (strips). The phase-parameter map is just the composition of two maps: the holonomy map between two transversals to the flag (from the “vertical” phase space of f to the diagonal D) followed by projection on the first coordinate (from D to J_i).

Remark 2.2. One big advantage of complex analysis is that “transversality can be detected for topological reasons”. So, while the statement that the critical point goes from the bottom to the top of I_i does not imply that it is transverse to all horizontal strips, the corresponding implication holds for the complex analogous of those statements. This is a consequence of the Argument Principle.

Let us now pay attention to the geometric format of those strips. The set \(\cup_{g \in J_i} \{g\} \times R_i[g](I_0^i[g]) \) is a topological triangle formed by the diagonal D, one of the laterals of I_i (which we will call the right lateral\(^3\)) and either the top or bottom of I_i. In particular, the strip I_0^i is not a rectangle, but a triangle: the left side of I_0^i degenerates into a point. By their dynamical definition, all strips $C_{d_i}^\xi$ also share the same property: the $C_{d_i}^\xi[g]$ are collapsing as g converges to the left boundary of J_i. In particular the partition of the phase space of f must be metrically very different from the partition of the phase space of some g close to the left boundary of J_i.

This shows that it is not reasonable to expect the phase-parameter map $\Xi_i|_{K_i}$ to be very regular (uniformly Hölder for instance\(^4\)): if it was true that the phase-parameter relation is always regular, then the phase partitions of f and g would have to be metrically similar (since a correspondence between both partitions can be obtained as composition the phase-parameter relation for f and the inverse of the phase-parameter relation for g).

Let us now consider the decomposition of I_i in strips I_j^i (the continuations of I_j^i). This new flag is rougher than the previous one: each of its strips I_j^i, $j \neq 0$ can be obtained as the (closure of the) union of $C_{d_i}^\xi$ where d_i starts with j. However, the strips are nicer: they are indeed rectangles if $j \neq 0$, though the “niceness” gets weaker and weaker as we get closer to the central strip. This suggests one way to obtain a regular map from Ξ_i: work with the rougher partition I_j^i outside of a certain small neighborhood of the critical strip (this neighborhood will be introduced in the next section, it will be called the gape interval). This procedure will indeed have the desired effect in the sense that we will be able to prove that for simple maps f the restriction of Ξ_i to $J_i \setminus \cup I_j^i$ has good regularity outside of the gape interval (this is PhPa2 in the Phase-Parameter relation below).

The resulting estimate does not say anything about what happens inside the rough partition by J_j^i. To do so, we consider the finer flag (whose strips are the $C_{d_i}^\xi$)

\(^3\)It is possible to prove that it is indeed located at the right side (with the usual ordering of the real line).

\(^4\)The Hausdorff dimension of $K_i[g]$ is not constant for $g \in J_i$, so Lipschitz estimates are certainly out of reach.
intersected with the rectangles $Q_j^i = \bigcup_{g \in J_j^i} \{ g \} \times I_j^i[g]$ (those rectangles cover the diagonal D formed by the motion of the critical value). While the strips degenerate near the left boundary point of J_i, they intersect each Q_j^i in a nice rectangle (or the empty set). It will be indeed possible to prove that the phase-parameter map restricted to those rectangles is quite regular in the sense that if f is a simple map such that $f \in J_j^i$ (that is, $(f, R_n(0)) \in Q_j^i$), the restriction of Ξ_i to I_j^i has good regularity (this is PhPa1 in the Phase-Parameter relation below).

2.2. Quasisymmetric maps. As we just described, phase-parameter maps can be viewed as holonomy maps of “flags”, which are codimension-one laminations with real analytic leaves. It turns out that such objects inherit some “automatic” regularity from their complexifications: they are quasisymmetric, at least away from the boundary (where we have the bad effects we just described). The theory of quasisymmetric maps is a well developed subject, but we will need just the definition and a couple of elementary properties.

Let $k \geq 1$ be given. We say that a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ is quasisymmetric with constant k if for all $h > 0$

$$\frac{1}{k} \leq \frac{f(x+h) - f(x)}{f(x) - f(x-h)} \leq k.$$

The space of quasisymmetric maps is a group under composition, and the set of quasisymmetric maps with constant k preserving a given interval is compact in the uniform topology of compact subsets of \mathbb{R}. It also follows that quasisymmetric maps are Hölder. Quasisymmetric maps are much better than Hölder though: the key additional property, used to no end in the statistical analysis is that the definition of quasisymmetric maps (and associated constants) is scaling invariant (invariant under affine changes of coordinates).

To describe further the properties of quasisymmetric maps, we need the concept of quasiconformal maps and dilatation so we just mention a result of Ahlfors-Beurling which connects both concepts: any quasisymmetric map extends to a quasiconformal real-symmetric map of \mathbb{C} and, conversely, the restriction of a quasiconformal real-symmetric map of \mathbb{C} to \mathbb{R} is quasisymmetric. Furthermore, it is possible to work out upper bounds on the dilatation γ (of an optimal extension) depending only on k and conversely: it turns out that γ is close to 1 if and only if k is close to 1.

The constant k is awkward to work with: the inverse of a quasisymmetric map with constant k may have a larger constant. We will therefore work with a less standard constant: we will say that h is γ-quasisymmetric (γ-qs) if h admits a quasiconformal symmetric extension to \mathbb{C} with dilatation bounded by γ. This definition behaves much better: if h_1 is γ_1-qs and h_2 is γ_2-qs then $h_2 \circ h_1$ is $\gamma_2 \gamma_1$-qs.

If $X \subset \mathbb{R}$ and $h : X \to \mathbb{R}$ has a γ-quasisymmetric extension to \mathbb{R} we will also say that h is γ-qs.

2.2.1. The Phase-Parameter relation. As we discussed before, the dynamical information contained in ξ_i is entirely given by $\Xi_i|_{K_i}$: a map obtained by Ξ_i by modification inside a C_D^k window has still the same properties. Therefore it makes sense to ask about the regularity of $\Xi_i|_{K_i}$. As we anticipated before we must erase some information to obtain good results.
If $i > 1$, we define the gape interval \tilde{I}_{i+1} as follows. Let d be such that $R_i|_{\tilde{I}_{i+1}} = L_{i-1} \circ R_{i-1} = R^d_{i-1} \circ R_{i-1}$, so that $I_{i+1} = (R_{i-1}|_i)^{-1}(C^d_{i-1})$. The gape interval is defined as $\tilde{I}_{i+1} = (R_{i-1}|_i)^{-1}(I^d_{i-1})$. Notice that $I_{i+1} \subset \tilde{I}_{i+1} \subset I_i$. Furthermore, for each I^i, the gape interval \tilde{I}_{i+1} either contains or is disjoint from I^i.

Let $f \in \mathcal{F}_k$ and let τ_i be such that $R_i(0) \in I^\gamma_i$. We define two Cantor sets, $K_i^\gamma = K_i \cap I^\gamma_i$ which contains refined information restricted to the I^γ_i window and $\hat{K}_i = I_i \setminus (\cup I^1_i \cup \tilde{I}_{i+1})$, which contains global information, at the cost of erasing information inside each I^i window and in \tilde{I}_{i+1}.

Theorem 2.5 (Phase-Parameter relation). Let f be a simple map. For all $\gamma > 1$ there exists i_0 such that for all $i > i_0$ we have

- **PhPa1**: $\Xi_i|_{K_i^\gamma}$ is γ-qs,
- **PhPa2**: $\Xi_i|_{\hat{K}_i}$ is γ-qs,
- **PhPh1**: $H_i[g]|_{K_i^\gamma}$ is γ-qs if $g \in J_i^\gamma$,
- **PhPh2**: the map $H_i[g]|_{\hat{K}_i}$ is γ-qs if $g \in J_i$.

The proof of the Phase-Parameter relation is based on complex methods, and the ideas involved go beyond the scope of this note. The ideas which are necessary in the analysis come from the work of Lyubich in [AM3], where a general method based on the theory of holomorphic motions was introduced to deal with this kind of problem.

A sketch of the derivation of the specific statement of the Phase-Parameter relation from the general method of Lyubich was given in the Appendix A of [AM1]. The reader can find full details (in a more general context than quadratic maps) in [AM3].

2.3. Basic ideas of the statistical analysis.

We will now describe the statistical analysis done in [AM1]. One of the key difficulties to overcome is the fact that the Phase-Parameter relation is not Lipschitz (quasisymmetric maps are not even absolutely continuous in general). Thus, instead of working with Lebesgue measure in phase space, we are lead to work with “quasisymmetric capacities” defined as follows: if $\gamma > 1$, the γ-qs capacity of a set X in an interval T is

$$p_\gamma(X|T) = \sup \frac{|h(X)|}{|h(T)|}$$

(2.2)

where the supremum is taken over all γ-qs maps $h : \mathbb{R} \to \mathbb{R}$.

By design, sets of small capacity in phase space must be taken by the phase-parameter map to sets of small Lebesgue measure in parameter space. There is a price to be paid: capacities are not probabilities (one may have two disjoint sets with capacities close to 1), so we must do some work in order to be able to apply statistical laws as the Law of Large Numbers and the Law of Large Deviations.

The fact that γ-quasisymmetric maps are Hölder (with good constants if γ is close to 1) is not quite enough to do any analysis: scaling invariance is an important part of the renormalization game. We will actually exploit scaling invariance through the following property of capacities: if $T^j \subset T$ is a disjoint family of intervals covering $T \cap X$, then

$$p_\gamma(X|T) \leq p_\gamma(\cup T^j|T) \sup_j p_\gamma(X|T^j),$$

(2.3)

which fits particularly well with the tree structure of the family $\{I^d_i\}_{d \in \Omega}$ (organized by inclusion).
2.3.1. Borel-Cantelli and the parameter exclusion process. The parameter exclusion process consists in obtaining successively smaller (but still full-measure) classes of maps for which we can give a progressively refined statistical description of the dynamics. This is done inductively as follows: we pick a class \(X \) of maps (which we have previously shown to have full measure among non-regular maps) and for each map in \(X \) we proceed to describe the dynamics (focusing on the statistical behavior of return and landing maps for deep levels of the principal nest), then we use this information to show that a subset for which the statistical behavior of the critical orbit is not anomalous) still has full measure. An example of this parameter exclusion process is done by Lyubich in [L3] where he shows using a probabilistic argument that the class of simple maps has full measure in \(F \). Let us now describe our usual argument (based on the argument of Lyubich which in turn is a variation of the Borel-Cantelli Lemma). Assume that at some point we know how to prove that almost every simple map belongs to a certain set \(X \). Let \(Q_n \) be a (bad) property that a map may have (usually some anomalous statistical parameter related to the \(n \)-th stage of the principle nest). Suppose we prove that if \(f \in X \) then the probability that a map in \(J_n(f) \) has the property \(Q_n \) is bounded by \(q_n(f) \) which is shown to be summable for all \(f \in X \). We then conclude that almost every map does not have property \(Q_n \) for \(n \) big enough.

Sometimes we also apply the same argument, proving instead that \(q_n(f) \) is summable where \(q_n(f) \) is the probability that a map in \(J_n(f) \) has property \(Q_n \), (recall that \(\tau_n \) is such that \(f \in J_n^{\tau_n}(f) \)).

In other words, we apply the following simple general result.

Lemma 2.6. Let \(X \subset \mathbb{R} \) be a measurable set such that for each \(x \in X \) is defined a sequence \(D_n(x) \) of nested intervals converging to \(x \) such that for all \(x_1, x_2 \in X \) and any \(n \), \(D_n(x_1) \) is either equal or disjoint to \(D_n(x_2) \). Let \(Q_n \) be measurable subsets of \(\mathbb{R} \) and \(q_n(x) = |Q_n \cap D_n(x)|/|D_n(x)| \). Let \(Y \) be the set of all \(x \in X \) which belong to at most finitely many \(Q_n \). If \(\sum q_n(x) \) is finite for almost any \(x \in X \) then \(|Y| = |X| \).

In practice, we will estimate the capacity of sets in the phase space: that is, given a map \(f \) we will obtain subsets \(Q_n[f] \) in the phase space, corresponding to bad branches of return or landing maps. We will then show that for some \(\gamma > 1 \) we have \(\sum p_\gamma(Q_n[f]|I_n[f]) < \infty \) or \(\sum p_\gamma(Q_n[f]|I_n^{\tau_n}[f]) < \infty \). We will then use PhPa2 or PhPa1, and the measure-theoretical lemma above to conclude that with total probability among non-regular maps, for all \(n \) sufficiently big, \(R_n(0) \) does not belong to a bad set.

2.3.2. A case study. We will now describe in detail how to apply the measure-theoretical argument and the Phase-Parameter relation. In order to illustrate our ideas, we will discuss informally the first statistical result of [AM1], which is quite simple yet particularly important for our strategy.

For a map \(f \in \Delta_n \) (recall that, as always, we work in a fixed level \(\kappa \) of renormalization), let us associate a sequence of “statistical parameters” in some way. A good example of statistical parameter is \(s_n \), which denotes the number of times the critical point 0 returns to \(I_n \) before the first return to \(I_{n+1} \). Each of the points of the sequence \(R_n(0),...,R_n^n(0) \) can be located anywhere inside \(I_n \). Pretending that the distribution of those points is indeed independent and uniform with respect to
Lebesgue measure, we may expect that typical values of s_n concentrate near (in an appropriate sense) c_n^{-1}, where $c_n = |I_{n+1}|/|I_n|$. For the “random model”, near c_n^{-1} may be interpreted in logarithmic scale in terms of the difference

\begin{equation}
\frac{\ln s_n}{\ln c_n^{-1}} - 1,
\end{equation}

and one sees indeed that the concentration is more marked the smaller c_n is (of course for the random model one can obtain much better than logarithmic estimates).

Let us try to make such an estimate rigorous. Consider the set of points $A_k \subset I_n$ which iterate exactly k times in I_n before entering I_{n+1}. Then most points $x \in I_n$ belong to some A_k with k in a (logarithmic) neighborhood of c_n^{-1} (if we forget about distortion, the probability of A_k is $c_n(1-c_n)^k$). By most, we mean that the complementary event has small probability, say q_n, for some summable sequence q_n. This neighborhood has to be computed precisely using a statistical argument. In this case, if we choose the neighborhood $c_n^{-1} + 2\epsilon < k < c_n^{-1} - \epsilon$, we obtain the sequence $q_n < c_n^{\epsilon}$ which is indeed summable for all simple maps f by [L1].

If the phase-parameter relation was Lipschitz, we would now argue as follows: the probability of a parameter be such that $R_n(0) \in A_k$ with k out of the “good neighborhood” of values of k is also summable (since we only multiply those probabilities by the Lipschitz constant) and so, by the measure-theoretical argument of Lemma 2.6, for almost every parameter this only happens a finite number of times.

Unfortunately, the Phase-Parameter relation is not Lipschitz. To make the above argument work, we must have better control of the size of the “bad set” of points which we want the critical value $R_n(0)$ to not fall into. In order to do so, in the statistical analysis of the sets A_k, we control instead the quasisymmetric capacity of the complement of points falling in the good neighborhood. This makes the analysis sometimes much more difficult since capacities are not probabilities. This will usually introduce some error that was not present in the naive analysis, leading to the ϵ in the range of exponents present above. This is why we do not try to do better than estimates in logarithmic scale: if we were not forced to deal with capacities, we could get much finer estimates.

Incidentally, to keep the error low, making ϵ close to 0, we need to use capacities with constant γ close to 1. Fortunately, our Phase-Parameter relation has a constant converging to 1, which will allow us to partially get rid of this error. (Indeed, with γ close to 1, we can get $p_n(A_k|I_n) < c_n^{1-\delta}(1-c_n^{1+\delta})^k$ with δ close to 0, which will be enough for our purposes.)

Coming back to our problem, we see that we should concentrate in proving that for almost every parameter, certain ϵ-bad sets have summable γ-qs capacities for some constant γ independent of n (but which can depend on f and ϵ).

There is one final detail we should pay attention to: there are two phase-parameter statements, and we should use the right one. More precisely, there will be situations where we are analyzing some sets which are union of I_{nj} (return sets), and sometimes the relevant sets are union of C_d (landing sets). In the first case, we should use the PhPa2 and in the second the PhPa1. Notice that our phase-parameter estimates only allow us to “move the critical point” inside I_n with respect to the partition by I_{nj}; to do the same with respect to the partition by C_d.
we must restrict ourselves to I^*_n. In all cases, however, the bad sets considered should be either union of I^*_n or C^n_d.

For our specific example, since the A_k are union of C^n_d, we must use PhPa1. In particular we have to study the capacity of a bad set inside I^*_n. Here is the estimate that we should go after (see Lemma 4.2 of [AM1] for a more precise statement):

Lemma 2.7. For almost every parameter, for every $\epsilon > 0$, there exists γ such that $p_n(X_n|I^*_n)$ is summable, where X_n is the set of points $x \in I_n$ which enter I_{n+1} either before $c^{-1+\epsilon}_n$ or after $c^{-1-\epsilon}_n$ returns to I_n.

We are now in position to use PhPa1 to make the corresponding parameter estimate: using the measure-theoretic argument, we get (in Lemma 4.3 of [AM1]) that with total probability

$$\lim_{n \to \infty} \frac{\ln s_n}{\ln c^{-1}_n} = 1.$$

This particular estimate we chose to describe in this section is extremely important for the analysis to follow: we can use s_n to estimate c_{n+1} directly from below:

$$\lim_{n \to \infty} \frac{\ln c^{-1}_{n+1}}{s_n} \to \infty$$

so this last lemma implies (Corollary 4.4 of [AM1]) that c^{-1}_n grows at least as fast as a tower of 2's of height $n - C$ for some $C > 0$ independent of n (this kind of decay/growth will be called torrential).

For general simple maps, the best information is given by [L1]: c_n decays exponentially (this was actually used to obtain summability of q_n in the above argument). This improvement from exponential to torrential should give the reader an idea of the power of this kind of statistical analysis.

2.4. **Collet-Eckmann and polynomial recurrence: strategy of the proof.** We now describe the key ideas involved in the proof of the main results of [AM1], namely: Almost every non-regular quadratic map f satisfies the Collet-Eckmann condition

$$\liminf_{n \to \infty} \frac{\ln |Df^n(f(0))|}{n} > 0$$

and the orbit of the critical point has polynomial recurrence with exponent 1, that is

$$\limsup_{n \to \infty} \frac{-\ln |f^n(0)|}{\ln n} = 1.$$

2.4.1. **Distribution of the hyperbolicity random variable.** Let us first explain how the information on statistical parameters of a typical non-regular map f can be used to obtain estimates of hyperbolicity along the critical orbit that imply the Collet-Eckmann condition. We make several simplifications, in particular we don’t discuss here the difficulty involved in working with capacities instead of probabilities.

Let us start by thinking of hyperbolicity at a given level n as a random variable $\lambda_n(j)$ (introduced in §7.2 of [AM1]) which associates to each non-central branch of R_n its average expansion, that is, if $R_n|_{I^*_n} = f^{r_n(j)}(r_n(j))$ is the return time of
we let \(\lambda_n(j) = \ln |Df^{r_n}(j)|/r_n(j) \) evaluated at some point \(x \in I^j_1 \), say, the point where \(|Df^{r_n}(j)| \) is minimal\(^5\).

Our tactic is to evaluate the evolution of the distribution of \(\lambda_n(j) \) as \(n \) grows. The basic information we will use to start our analysis is the hyperbolicity estimate of Lemma 2.2, which, together with our distortion estimates, shows that \(\lambda_n = \inf_j \lambda_n(j) > 0 \) for \(n \) big enough. We then fix such a big level \(n_0 \) and the remaining of the analysis will be based on inductive statistical estimates for levels \(n > n_0 \).

Of course, nothing guarantees a priori that \(\lambda_n \) does not decay to 0. Indeed, it turns out that \(\lim \inf_{n \to \infty} \lambda_n > 0 \), but as a consequence of the Collet-Eckmann condition and our distortion estimates. But this is not what we will analyze: we will concentrate on showing that \(\lambda_n(j) > \frac{4n+1}{2n} \lambda_{n_0} > \frac{1}{2} \lambda_{n_0} \) outside of a “bad set” of torrentially small \(\gamma \)-qs capacity. The complementary set of hyperbolic branches will be called good.

To do so, we inductively describe branches of level \(n + 1 \) as compositions of branches of level \(n \). Assuming that most branches of level \(n \) are good, we consider branches of level \(n + 1 \) which spend most of their time in good branches of level \(n \). They inherit hyperbolicity from good branches of level \(n \), so they are themselves good of level \(n + 1 \). To make this idea work we should also have additionally a condition of “not too close returns” to avoid drastic reduction of derivative due to the critical point.

The fact that most branches of level \(n \) were good (quantitatively: branches which are not good have capacity bounded by some small \(q_n \)) should reflect on the fact that most branches of level \(n + 1 \) spend a small proportion of their time (less than 6\(q_n \)) on branches which are not good, and so most branches of level \(n + 1 \) are also good (capacity of the complement is a small \(q_n + 1 \)): indeed the notion of most should improve from level to level, so that \(q_{n+1} \ll q_n \) (in order for this argument to work, the hyperbolicity requirements in the notion of good must become slightly more flexible when we go from level to level). This reflects the tendency of averages of random variables to concentrate around the expected value with exponentially small errors (Law of Large numbers and Law of Large deviations). Those laws give better results if we average over a larger number of random variables. In particular, those statistical laws are very effective in our case, since the number of random variables that we average will be torrential in \(n \): our arguments will typically lead to estimates as \(\ln q_n^{-1} > q_n^{-1+\epsilon} \) (torrential decay of \(q_n \)).

In practice, we will obtain good branches in a more systematic way. We extract from the above crude arguments a couple of features that should allow us to show that some branch is good. Those features define what we call a very good branch:

1. for very good branches we can control the distance of the branch to 0 (to avoid drastic loss of derivative);
2. the definition of very good branches has an inductive component: it must be a composition of many branches, most of which are themselves very good of the previous level (with the hope of propagating hyperbolicity inductively);
3. the distribution of return times of branches of the previous level taking part in a very good branch has a controlled “concentration around the average”.

\(^5\)The choice of the point in \(I^j_1 \) turns out to be not very relevant because it is possible to obtain reasonable (polynomial) “almost sure” bounds on distortion, see Lemma 4.10 of [AM1].
Let us explain the third item above: to compute the hyperbolicity of a branch \(j \) of level \(n + 1 \), which is a composition of several branches \(j_1, \ldots, j_m \) of level \(n \) we are essentially estimating

\[
\frac{\sum r_n(j_i) \lambda_n(j_i)}{\sum r_n(j_i)},
\]

the ratio between the total expansion and the total time of the branch. The second item assures us that many branches \(j_i \) are very good, but this does not mean that their total time is a reasonable part of the total time \(r_{n+1}(j) \) of the branch \(j \). This only holds if we can guarantee some concentration (in distribution) of the values of \(r_n(j) \).

With those definitions we can prove that very good branches are good, but to show that very good branches are “most branches”, we need to understand the distribution of the return time random variable \(r_n(j) \) that we discuss later.

Let us remark that our statistical work so far (showing that good (hyperbolic) branches are most branches) is not yet enough to conclude Collet-Eckmann: indeed we have controlled hyperbolicity only at full returns. To estimate hyperbolicity at any moment of some orbit, we must use good branches as building blocks of hyperbolicity of some special branches of landing maps (cool landings). Branches which are not very good are sparse inside truncated cool landings, so that if we follow a piece of orbit of a point inside a cool landing (not necessarily up to the end), we still have enough hyperbolic blocks to estimate the growth of derivative.

After all those estimates, we use the Phase-Parameter relation to move the critical value into cool landings, and obtain exponential growth of derivative of the critical value (with rate bounded from below by \(\lambda_{n_0}/2 \)).

2.4.2. The return time random variable.

As remarked above, to study the hyperbolicity random variable \(\lambda_n(j) \), we must first estimate the distribution of the return time random variable \(r_n(j) \). It is worth to discuss some key ideas of this analysis (§6 of [AM1]).

Intuitively, the “expectation” of \(r_n(j) \) should be concentrated in a neighborhood of \(c_n^{-1} \); pretending that iterates \(f^k(x) \) are random points in \(I \), we expect to wait about \(|I|/|I_n|\) to get back to \(I_n \). But \(|I_n|/|I| = c_{n-1}c_{n-2}\ldots c_1|I_1|/|I|\). Since \(c_n \) decays torrentially, we can estimate \(|I_n|/|I|\) as \(c_n^{-1-\epsilon} \) (it is not worth to be more precise, since \(\epsilon \) errors in the exponent will appear necessarily when considering capacities). Although this naive estimate turns out to be true, we of course don’t try to follow this argument: we never try to iterate \(f \) itself, only return branches.

The basic information we use to start is again the hyperbolicity estimate of Lemma 2.2. This information gives us exponential tails for the distribution of \(r_n(j) \) (the \(\gamma \)-qs capacity of \(\{r_n(j) > k\} \) decays exponentially in \(k \)). Of course we have no information on the exponential rate: to control it we must again use an inductive argument which studies the propagation of the distribution of \(r_n \) from level to level. The idea again is that random variables add well and the relation between \(r_n \) and \(r_{n+1} \) is additive: if the branch \(j \) of level \(n + 1 \) is the composition of branches \(j_i \) of level \(n \), then \(r_{n+1}(j) \) is the sum of the \(r_n(j_i) \).

Using that the transition from level to level involves adding a large number of random variables (torrential), we are able to give reasonable bounds for the decay of the tail of \(r_n(j) \) for \(n \) big (this step is what we call a Large Deviation estimate). Once we control this tail, an estimate of the concentration of the distribution of return times becomes natural from the point of view of the Law of Large Numbers.
2.4.3. Recurrence of the critical orbit. After doing the preliminary work on the distribution of return times, the idea of the estimate on recurrence (which is done in §8.2 of [AM1]) is quite transparent.

We first estimate the rate that a typical sequence \(R^k_n(x) \) in \(I_n \) approaches 0, before falling into \(I_{n+1} \). If the sequence \(R^k_n(x) \) was random, then this recurrence would clearly be polynomial with exponent 1. The system of non-central branches is Markov with good estimates of distortion, so it is no surprise that \(R^k_n(x) \) has the same recurrence properties, even if the system is not really random. We can then conclude that some inequality as

\[
|R^k_n(x)| > |I_n|2^{-n}k^{-1-\epsilon}
\]

holds for most orbits (summable complement).

We must then relate the recurrence in terms of iterates of \(R_n \) to the recurrence in terms of iterates of \(f \). Since in the Collet-Eckmann analysis we proved that (almost surely) the critical value belongs to a cool landing, it is enough to do the estimates inside a cool landing. But cool landings are formed by well distributed building blocks with good distribution of return times, so we can relate easily those two recurrence estimates.

To see that when we pass from the estimates in terms of iterations by \(R_n \) to iterations in term of \(f \) we still get polynomial recurrence, let us make a rough estimate which indicates that \(R_n(0) = f^{v_n}(0) \) is at distance approximately \(v_n^{-1} \) of 0. Indeed \(R_n(0) \) is inside \(I_n \) by definition, so we have a trivial upper bound \(|R_n(0)| < c_{n-1} \). Using the phase-parameter relation, the critical orbit has controlled recurrence (in terms of (2.9)), thus we get \(|R_n(0)| > 2^{-n}|I_n| > c_{n-1}^{1+\epsilon} \). Together with the upper bound, this implies that \(|R_n(0)| \) is of order \(c_{n-1}^{-1} \). On the other hand, \(v_n \) (number of iterates of \(f \) before getting to \(I_n \)) is at least \(s_{n-1} \) (number of iterates of \(R_{n-1} \) before getting to \(I_n \)). According to (2.5), \(s_{n-1} \) is of order \(c_{n-1}^{-1} \), so this argument gives the lower bound \(v_n > c_{n-1}^{-1+\epsilon} \). On the other hand, \(v_n \) is \(s_{n-1} \) times the average time of branches \(R_{n-1} \): due to our estimates on the distribution of return times,

\[
v_n < s_{n-1}c_{n-2}^{-1-\epsilon} c_{n-1}^{-1-\epsilon} c_{n-2}^{-1-\epsilon} c_{n-1}^{-1-2\epsilon}
\]

(here we use that 0 is a “typical” point for the distribution of return times, since it falls in cool landings). Together with the lower bound, this implies that \(v_n \) is of order \(c_{n-1}^{-1} \), and we get

\[
1 - 4\epsilon < \frac{\ln |R_n(0)|}{\ln v_n} < 1 + 4\epsilon.
\]

2.4.4. Some technical details. The statistical analysis described above is considerably complicated by the use of capacities: while traditional results of probability can be used as an inspiration for the proof (as outlined here), we can not actually use them. We also have to use statistical arguments which are adapted to tree decomposition of landings into returns: in particular, more sophisticated analytic estimates are substituted by more “bare-hands” techniques.

Following the details of the actual proof in [AM1], the reader will notice that we work very often with a sequence of quasisymmetric constants which decrease from level to level but stays bounded away from 1. We don’t work with a fixed capacity because, when adding random variables as above, some distortion is introduced. We can make the distortion small but not vanishing, and the distortion affects the
constant of the next level: if we could make estimates of distribution using some constant γ_n, in the next level the estimates are in terms of a smaller constant γ_{n+1}. These ideas are introduced in §5 of [AM1].

Since the phase-parameter relation has two parts, our statistical analysis of the transition between two levels will very often involve two steps: one in order to move the critical value out of bad branches of the return map R_n, and another to move it inside a given branch of R_n outside of bad branches of the landing map L_n.

Fighting against the technical difficulties is the torrential decay of c_n. The typical values of statistical parameters appearing in the analysis of level n are usually related to c_n or c_{n-1}, up to a small error in the exponent. When statistical parameters of different levels interact usually only one of them will determine the order of magnitude of the result. This is specially true since all our estimates include an ϵ error in the exponent. The reader should get used to estimates as “$c_n c_{n-1}$ is approximately c_n”, in the sense that the ratio of the logarithms of both quantities is actually close to 1 (compare the estimates in the end of the last section, specially relating s_n and v_n). Even if many proofs are quite technical, they are also quite robust due to this.

References

[A] A. Avila. Bifurcations of unimodal maps: the topological and metric picture. Thesis IMPA (2001) (www.math.sunysb.edu/~artur).

[ALM] A. Avila, M. Lyubich, W. de Melo. Regular or stochastic dynamics in real analytic families of unimodal maps. Preprint (www.math.sunysb.edu/~artur). To appear in Inventiones Math.

[AM1] A. Avila, C. G. Moreira. Statistical properties of unimodal maps: the quadratic family. To appear in Annals of Math.

[AM2] A. Avila, C. G. Moreira. Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative. Preprint (www.arXiv.org). To appear in Astérisque.

[AM3] A. Avila, C. G. Moreira. Phase-Parameter relation and sharp statistical properties in general families of unimodal maps. In preparation.

[BBM] V. Baladi, M. Benedicks, V. Maume. Almost sure rates of mixing for i.i.d. unimodal maps. Preprint (1999), to appear Ann. E.N.S.

[BV] V. Baladi, M. Viana. Strong stochastic stability and rate of mixing for unimodal maps. Ann. scient. Ec. Norm. Sup., v. 29 (1996), 483-517.

[BC1] M. Benedicks, L. Carleson. On iterations of $1 - ax^2$ on (-1,1). Ann. Math., v. 122 (1985), 1-25.

[BC2] M. Benedicks, L. Carleson. On dynamics of the Hénon map. Ann. Math., v. 133 (1991), 73-169.

[BLS] H. Bruin, S. Luzzatto, S. van Strien. Decay of correlations in one-dimensional dynamics. Preprint (www.arXiv.org). To appear in Ann. Sci. ENS.

[GS1] J. Graczyk, G. Swiatek. Generic hyperbolicity in the logistic family. Ann. of Math., v. 146 (1997), 1-52.

[GS2] J. Graczyk, G. Swiatek. Induced expansion for quadratic polynomials. Ann. Sci. c. Norm. Supr., IV. Sr. 29, No.4 (1996), 399-482.

[HK] F. Hofbauer, G. Keller. Quadratic maps without asymptotic measure. Comm. Math. Physics, v. 127 (1990), 319-337.

[J] M. Jacobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., v. 81 (1981), 39-88.

[Jo] S. D. Johnson. Singular measures without restrictive intervals. Comm. Math. Phys., 110 (1987), 185-190.

[KN] G. Keller, T. Nowicki. Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps. Comm. Math. Phys., 149 (1992), 31-69.

[L1] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. Math, 140 (1994), 347-404.
[L2] M. Lyubich. Dynamics of quadratic polynomials, I-II. Acta Math., 178 (1997), 185-297.

[L3] M. Lyubich. Dynamics of quadratic polynomials, III. Parapuzzle and SBR measure. Astérisque, v. 261 (2000), 173 - 200.

[L4] M. Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture. Ann. of Math. (2) 149 (1999), no. 2, 319–420.

[L5] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Ann. of Math. (2) 156 (2002), no. 1, 1-78.

[L6] M. Lyubich. Renormalization ideas in conformal dynamics. Current developments in mathematics, 1995 (Cambridge, MA), 155–190, Internat. Press, Cambridge, MA, 1994.

[L7] M. Lyubich. The quadratic family as a qualitatively solvable model of chaos. Notices Amer. Math. Soc. 47 (2000), no. 9, 1042–1052.

[MN] M. Martens, T. Nowicki. Invariant measures for Lebesgue typical quadratic maps. Astérisque, v. 261 (2000), 239 - 252.

[MSS] R. Mañe, P. Sad & D. Sullivan. On the dynamics of rational maps, Ann. scient. Ec. Norm. Sup., 16 (1983), 193-217.

[MvS] W. de Melo, S. van Strien. One-dimensional dynamics. Springer, 1993.

[NS] T. Nowicki, D. Sands. Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math. 132 (1998), no. 3, 633-680.

[Pa] J. Palis. A global view of dynamics and a Conjecture of the denseness of finitude of attractors. Astérisque, v. 261 (2000), 335 - 348.

[T1] M. Tsujii. Positive Lyapunov exponents in families of one-dimensional maps. Invent. Math. 111. 113-137, (1993).

[T2] M. Tsujii. Small random perturbations of one dimensional dynamical systems and Margulis-Pesin entropy formula. Random & Comput. Dynamics. Vol.1 No.1 59-89, (1992).

[Y] L.-S. Young. Decay of correlations for certain quadratic maps. Comm. Math. Phys., 146 (1992), 123-138.

COLLÈGE DE FRANCE – 3 RUE D’ULM, 75005 PARIS – FRANCE.
E-mail address: avila@impa.br

IMPA – ESTR. D. CASTORINA 110, 22460-320 RIO DE JANEIRO – BRAZIL.
E-mail address: gugu@impa.br