Type 1 cluster of differentiation 36 deficiency-related cardiomyopathy accelerates heart failure with co-existing mitral valve prolapse: a case report

Midori Miyazaki1†, Yasunori Suematsu1†, Seiya Kato 2, and Shin-Ichiro Miura1*

1Department of Cardiology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka 814-0180, Japan; and 2Division of Pathology, Saiseikai Fukuoka General Hospital, Tenjin 1-3-46 Fukuoka Chuo-ku, Fukuoka 810-0001, Japan

Received 24 October 2018; first decision 20 November 2018; accepted 20 June 2019; online publish-ahead-of-print 11 July 2019

Background
Free fatty acid is a major energy source in the healthy heart and cluster of differentiation 36 (CD36) partially regulates the rate of myocardial fatty acid uptake. Here, we report a case of CD36 deficiency-related cardiomyopathy with a unique pathophysiology. Heart failure was accelerated by co-existing mitral valve prolapse (MVP) without a distinct phenotype of hypertrophic or dilated cardiomyopathy.

Case summary
A middle-aged man was aware of dyspnoea and hospitalized for heart failure with MVP. Cluster of differentiation 36 deficiency was found based on the absence of myocardial 123I-15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid (BMIPP) uptake by myocardial scintigraphy. Type I CD36 deficiency was further diagnosed by the lack of CD36 in both platelets and monocytes by flow cytometry. Left ventricular muscle was obtained intraoperatively, and a histological examination reflected compensative hypertrophy of cardiomyocytes with myofibrillar loss and reactive fibrosis. The microvascular structure around the cardiomyocytes was highlighted by immunohistochemical staining for CD31, while CD36 expression was absent. He had an operation of mitral valve replacement and improved heart failure.

Discussion
Cluster of differentiation 36 deficiency potentially mediates various pathological conditions in the heart. Incidental CD36 deficiency-related cardiomyopathy may accelerate heart failure in the presence of co-existing heart diseases. BMIPP scintigraphy might be helpful for predicting CD36 deficiency.

Keywords
CD36 deficiency • Myocardial scintigraphy • Cardiomyopathy • Mitral valve prolapse • Case report

Learning points
• Incidental cluster of differentiation 36 (CD36) deficiency-related cardiomyopathy may accelerate heart failure in the presence of co-existing heart diseases.
• 123I-15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid (BMIPP) scintigraphy might be helpful for predicting CD36 deficiency.
Introduction

Cluster of differentiation 36 (CD36) is abundantly expressed in cardiac muscle and partially regulates the rate of myocardial fatty acid uptake in humans. It has been reported that CD36 deficiency is associated with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), but the influence of CD36 deficiency in the heart has not been investigated in detail and pathological reports are scarce. We incidentally diagnosed CD36 deficiency in a heart failure patient with mitral valve prolapse (MVP), based on the absence of myocardial uptake in humans. It has been reported that CD36 deficiency is associated with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), but the influence of CD36 deficiency in the heart has not been investigated in detail and pathological reports are scarce.

Timeline

Time	Events
10 years previously	Started treatment for hypertension
Month 0	Started treatment for heart failure with left ventricular systolic dysfunction and mitral valve prolapse
Month 1	123I-15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid (BMIPP) scintigraphy and flow cytometry detected the absence of cluster differentiation 36 in platelets and monocytes
Month 2	18F-Fluorodeoxyglucose positron emission tomography
Month 3	Collected autologous blood
Month 4	Surgical procedure, sampling of left ventricular heart muscle

Case presentation

A 52-year-old man began to be treated for hypertension in 2006 and blood pressure had been controlled since then and did not have the other any comorbidities. He was aware of dyspnoea in the summer of 2016 and cardiomegaly was noted in a chest X-ray as part of a medical checkup in August 2017. On admission to our hospital, his blood pressure and heart rate were 118/78 mmHg and 66/min, respectively. Heart sounds showed mid-systolic click with systolic murmur. Abnormal lung sound was not noted. Leg oedema was shown and New York Heart Association (NYHA) classification was Class III. Left ventricular systolic dysfunction with severe hypokinesia in inferior area and MVP with severe mitral regurgitation (MR) were noted by echocardiography (Supplementary material online, Figure S1). Left ventricular internal diameter in diastole, left ventricular internal diameter in systole, and left ventricular ejection fraction were 67.6 mm, 56.0 mm, 34.9%, respectively. We started the usual medical treatment for heart failure and performed further examinations. Treatment with beta blocker, angiotensin II receptor blocker, calcium channel blocker, and diuretics was started and brain natriuretic peptide improved from 401 pg/mL to 167 pg/mL. Neither the characteristics of systemic disorders such as Marfan syndrome and Ehlers–Danlos syndrome nor a family history of cardiac diseases including cardiomyopathy, sudden cardiac death, or MVP were noted. In addition, there were no indications of previous infection, hormonal diseases, diabetes, intake of cardiotoxic material, or cardiac hypertrophy due to hypertension. Mild hypokinesis in the inferior wall was detected by echocardiography (Supplementary material online, Figure S1) and perfusion defect was detected by thallium scintigraphy, but angiography did not reveal coronary artery disease. Intramural delayed enhancement with a linear pattern was detected in the interventricular septum by contrast-enhanced magnetic resonance imaging. This patient showed heart failure with reduced ejection fraction (HFrEF). However, the morphological and functional phenotype could not be associated with major prototypical cardiomyopathies such as HCM or DCM.

Notably, the heart lacked BMIPP uptake by BMIPP scintigraphy and showed increased 18F-Fluorodeoxyglucose (18F-FDG) uptake by 18F-FDG positron emission tomography (Figure 1). These results suggested that cardiomyocytes exhibited reduced free fatty acid metabolism and enhanced glucose metabolism. We diagnosed type 1 CD36 deficiency, where both platelets and monocytes lack CD36 by flow cytometry (Supplementary material online, Figure S2). The surgical procedures considered were mitral valve replacement, tricuspid annuloplasty, and left atrial appendage closure, but not mitral annuloplasty. In the latest European Society of Cardiology guideline, MVP constitutes a Class I recommendation for patients with MVP and severe MR. But in the secondary or functional MR which results from an imbalance between closing and tethering forces on the valve secondary to alterations in left ventricular geometry, mitral valve replacement should be considered in patients with unfavourable morphological characteristics. Because of the presence of CD36 deficiency, we were worried about a dysfunctional mitral valve base which could lead to a future exacerbation of mitral valve regurgitation. There was no ruptured mitral chordae tendineae or mitral leaflet perforation. The histological observations of mitral valve showed mild myxoid change and hyalinosis without any specific changes (Supplementary material online, Figure S3). Cardiac muscle was biopsied from the posterior wall of the left ventricle during surgical procedures. Conventional histological observation revealed hypertrophic cardiomyocytes with enlarged nuclei and myofibrillar loss. Perivascular and interstitial fibrosis (i.e. reactive fibrosis but not replacement fibrosis) were moderately associated (Figure 2). The microvascular structure around the cardiomyocytes was highlighted by immunohistochemical staining for CD31 (platelet endothelial cell adhesion molecule-1 (PECAM-1)) (Figure 3A), but CD36 expression was absent in the myocardial tissue (Figure 3B). No specific condition was suggested by transmission electron microscopy (data not shown). After 6 months from surgical procedure, the heart failure was improved and NYHA classification was changed from Class III to Class I. In echocardiography, paravalvular MR was not observed and left ventricular ejection fraction was 44.4%.
Figure 1 BMIPP scintigraphy and 18F-fluorodeoxyglucose positron emission tomography. (A) Image obtained at rest, 30 min after BMIPP administration. The heart showed reduced BMIPP uptake. (B) An axial 18F-fluorodeoxyglucose positron emission tomography image is shown. The heart showed increased 18F-fluorodeoxyglucose uptake.

Figure 2 Conventional histopathology of the left ventricular tissue. (A) Low-power and (B) high-power views of haematoxylin and eosin stain (bar: 100 μm). Cardiomyocytes reflect compensative hypertrophy with nuclear deformity and myofibrillar loss. (C) Low-power and (D) high-power views of Masson’s trichrome (MT) stain (bar: 100 μm). Progression of perivascular and interstitial fibrosis is seen.
Discussion

We encountered a case of Type 1 CD36 deficiency with MVP. Cluster of differentiation 36 deficiency was incidentally found in a heart failure patient. However, loss of myocardial CD36 expression and an advanced cardiomyopathic histology, including compensative hypertrophy, myofibrillar loss, and reactive fibrosis, were confirmed at the post-operative examination. Latent CD36 deficiency-related cardiomyopathy may have accelerated heart failure with co-existing MVP.

Cluster of differentiation 36 is expressed in vascular endothelial cells and cardiomyocytes, where it regulates the rate of myocardial fatty acid uptake in humans. While free fatty acid is a major energy source in the healthy heart, in CD36 deficiency, the heart needs to metabolize other energy sources. It has been reported that, while myocardial concentrations of adenosine triphosphate and phospho-creatine are maintained, genes related to fatty acid metabolism are reduced and those related to ketone body metabolism and glucose metabolism are increased in CD36 knockout mouse. Changes in metabolism may be associated with myocardial damage related to heart failure and cardiomyopathies, but the detailed mechanism remains to be elucidated.

It has been reported that CD36 deficiency is associated with HCM. Kusaka et al. reported that treatment with Sulfo-N-succinimidyl palmitate, an inhibitor of fatty acid transporter, increased heart weight in rat. It has also been reported that CD36 deficiency is associated with DCM. Hirooka et al. reported that improvement of cardiac function by medical treatment was associated with an increase in fatty acid metabolism in a patient with both DCM and CD36 deficiency. Tanaka et al. reviewed 14 cases of CD36 deficiency including HCM, DCM, and pressure-overload cardiac hypertrophy. In the present case, heart failure was not based on such typical phenotypes of primary cardiomyopathies. However, left ventricular histology showed non-specific but advanced myocardial degeneration. Thus, we found CD36-related cardiomyopathy along with exacerbated heart failure with MVP.

Mitral valve prolapse, which is defined as abnormal slack of the mitral valve leaflets into the left atrium, afflicts 2–3% of the general population. Mitral valve prolapse may be hereditary, especially regarding connective tissue disorders such as Marfan syndrome and obstructive HCM. In the present case, no specific hereditary background or mechanical complication of ischaemic heart disease was noted. Although the influence of CD36 deficiency on the development of MVP cannot be fully excluded, the mitral valve morphology was not much different than those in usual MVP cases. The incidence of MVP is much greater than that of CD36 deficiency, and there has been no previous report of a case of CD36 deficiency with MVP. Taken together, our findings suggest that CD36 deficiency and MVP may have occurred together by chance. Not all cases of MVP without progression of MR and heart failure require surgical treatment. Various causes of the progression of MVP have been suggested: for example, genetic modifiers, environmental factors (smoking, diet, body mass index, and hypertension), and non-modifiable characteristics such as race and sex. In the present case, co-existing CD36 deficiency-related cardiomyopathy and MVP may have promoted the progression of heart failure. Cardiac function improved after surgery, but we continue to carefully watch this case for the progression of cardiomyopathy.

Conclusion

We presented a case of Type 1 CD36 deficiency-related cardiomyopathy with MVP. In Japan and other Asian countries, a relatively larger percent of the population is expected to carry CD36 deficiency than elsewhere. BMIPP scintigraphy might be helpful for predicting CD36 deficiency for patients with unexplained left ventricular dysfunction. It should be noted that latent CD36 deficiency-related

Figure 3 Immunostaining for CD31 and CD36. (A) CD31 immunostaining, which is a positive control marker for vascular endothelial cells. (B) Immunostaining for CD36 in the present case. A loss of CD36 immunoreactivity was noted.
cardiomyopathy may accelerate heart failure with co-existing heart diseases. Further studies will be needed to clarify the cardiac involvement of CD36 deficiency.

Lead author biography

Midori Miyazaki is a Cardiologist in the Tokyo Women’s Medical University, Tokyo, Japan from 2006 to 2012, in the Medical intern in Tokyo Women’s Medical University, Tokyo, Japan from 2012 to 2014, Department of Cardiology, Tokyo Women’s Medical University, Tokyo, Japan from 2014 to 2017, and in the Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan in 2017.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The author/s confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: none declared.

References

1. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 2000; 45:279–293.
2. Kintaka T, Tanaka T, Imai M, Adachi I, Narabayashi I, Kitaura Y. CD36 genotype and long-chain fatty acid uptake in the heart. Circ J 2002; 66:819–825.
3. Hirooka K, Yasumura Y, Ishida Y, Komamura K, Hanatani A, Nakatani S, Yamagishi M, Miyatake K. Improvement in cardiac function and free fatty acid metabolism in a case of dilated cardiomyopathy with CD36 deficiency. Jpn Circ J 2003; 67:1605–1612.
4. Kuzuya Y, Tanaka T, Okamoto F, Terasaki F, Matsunaga Y, Miyazaki H, Kawamura K. Effect of sulfo–N-succinimidyl palmitate on the rat heart: myocardial long-chain fatty acid uptake and cardiac hypertrophy. J Mol Cell Cardiol 1995; 27:1605–1612.
5. Tanaka T, Sohmiya K, Kawamura K. Is CD36 deficiency an etiology of hereditary hypertrophic cardiomyopathy? J Mol Cell Cardiol 1997; 29:121–127.
6. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Jung B, Lancellotti P, Larose E, Rodriguez Muñoz D, Rosenhek R, Sjögren J, Tornos P, Vahanian A, Walther T, Wendler O, Windcker S, Zamorano J. ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017; 38:2739–2791.
7. Nakatani K, Watabe T, Masuda D, Imazumi M, Shimosegawa E, Kobayashi T, Sairyo M, Zhu Y, Ohkata T, Kawase R, Nakaoka H, Naito A, Ohashi T, Oka M, Ola T, Akazawa H, Ishida Y, Komuro I, Sakata Y, Hatazawa J, Yamashita S. Myocardial energy provision is preserved by increased utilization of glucose and ketone bodies in CD36 knockout mice. Metabolism 2015; 64:1165–1174.
8. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093–1129.
9. Nozaki S, Tanaka T, Yamashita S, Sohmiya K, Yoshizumi T, Okamoto F, Kitaura Y, Kotake C, Nishida H, Nakata A, Nakagawa T, Matsumoto K, Kameda Takemura K, Takeda S, Kurata Y, Tomiyama Y, Kawamura K, Matsuzawa Y. CD36 mediates long-chain fatty acid transport in human myocardium: complete myocardial accumulation defect of radiolabeled long-chain fatty acid analog in subjects with CD36 deficiency. Mol Cell Biochem 1999; 192:129–135.
10. Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL, Lehman B, Benjamin EJ. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med 1999; 341:141–7.
11. Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation 2014; 129:2158–2170.
12. Hirano K, Kuwasako T, Nakagawa T, Yanab M, Yamashita S, Matsuzawa Y. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc Med 2003; 13:136–141.