Magnetic techniques for the isolation and purification of proteins and peptides
Ivo Safarik*1,2 and Mirka Safarikova1

Address: 1Laboratory of Biochemistry and Microbiology, Institute of Landscape Ecology, Academy of Sciences, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic and 2Department of General Biology, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic

Email: Ivo Safarik* - ivosaf@yahoo.com; Mirka Safarikova - mirkasaf@uek.cas.cz

* Corresponding author

Abstract
Isolation and separation of specific molecules is used in almost all areas of biosciences and biotechnology. Diverse procedures can be used to achieve this goal. Recently, increased attention has been paid to the development and application of magnetic separation techniques, which employ small magnetic particles. The purpose of this review paper is to summarize various methodologies, strategies and materials which can be used for the isolation and purification of target proteins and peptides with the help of magnetic field. An extensive list of realised purification procedures documents the efficiency of magnetic separation techniques.

Introduction
Isolation, separation and purification of various types of proteins and peptides, as well as of other specific molecules, is used in almost all branches of biosciences and biotechnologies. Separation science and technology is thus very important area necessary for further developments in bio-oriented research and technology. New separation techniques, capable of treating dilute solutions or solutions containing only minute amounts of target molecules in the presence of vast amounts of accompanying compounds in both small and large-scale processes, even in the presence of particulate matter, are necessary.

In the area of biosciences and biotechnology the isolation of proteins and peptides is usually performed using variety of chromatography, electrophoretic, ultrafiltration, precipitation and other procedures, affinity chromatography being one of the most important techniques. Affinity ligand techniques represent currently the most powerful tool available to the downstream processing both in term of their selectivity and recovery. The strength of column affinity chromatography has been shown in thousands of successful applications, especially in the laboratory scale. However, the disadvantage of all standard column liquid chromatography procedures is the impossibility of the standard column systems to cope with the samples containing particulate material so they are not suitable for work in early stages of the isolation/purification process where suspended solid and fouling components are present in the sample. In this case magnetic affinity, ion-exchange, hydrophobic or adsorption batch separation processes, applications of magnetically stabilized fluidized beds or magnetically modified two-phase systems have shown their usefulness.

The basic principle of batch magnetic separation is very simple. Magnetic carriers bearing an immobilized affinity or hydrophobic ligand or ion-exchange groups, or magnetic biopolymer particles having affinity to the isolated structure, are mixed with a sample containing target
compound(s). Samples may be crude cell lysates, whole blood, plasma, ascites fluid, milk, whey, urine, cultivation media, wastes from food and fermentation industry and many others. Following an incubation period when the target compound(s) bind to the magnetic particles the whole magnetic complex is easily and rapidly removed from the sample using an appropriate magnetic separator. After washing out the contaminants, the isolated target compound(s) can be eluted and used for further work.

Magnetic separation techniques have several advantages in comparison with standard separation procedures. This process is usually very simple, with only a few handling steps. All the steps of the purification procedure can take place in one single test tube or another vessel. There is no need for expensive liquid chromatography systems, centrifuges, filters or other equipment. The separation process can be performed directly in crude samples containing suspended solid material. In some cases (e.g., isolation of intracellular proteins) it is even possible to integrate the disintegration and separation steps and thus shorten the total separation time [1]. Due to the magnetic properties of magnetic adsorbents (and diamagnetic properties of majority of the contaminating molecules and particles present in the treated sample), they can be relatively easily and selectively removed from the sample. In fact, magnetic separation is the only feasible method for recovery of small magnetic particles (diameter ca 0.1 – 1 μm) in the presence of biological debris and other fouling material of similar size. Moreover, the power and efficiency of magnetic separation procedures is especially useful at large-scale operations. The magnetic separation techniques are also the basis of various automated procedures, especially magnetic-particle based immunoassay systems for the determination of a variety of analytes, among them proteins and peptides. Several automated systems for the separation of proteins or nucleic acids have become available recently.

Magnetic separation is usually very gentle to the target proteins or peptides. Even large protein complexes that tend to be broken up by traditional column chromatography techniques may remain intact when using the very gentle magnetic separation procedure [2]. Both the reduced shearing forces and the higher protein concentration throughout the isolation process positively influence the separation process.

Separation of target proteins using standard chromatography techniques often leads to the large volume of diluted protein solution. In this case appropriate magnetic particles can be used for their concentration instead of ultrafiltration, precipitation etc. [3].

The purpose of this review is to summarize various methodologies and strategies which can be employed for the isolation and purification of target proteins and peptides with the help of magnetic materials. An extensive list of realised purification procedures documents the efficiency of magnetic separation techniques. All these information will help the scientists to select the optimal magnetic material and the purification procedure.

Necessary materials and equipment

The basic equipment for laboratory experiments is very simple. Magnetic carriers with immobilized affinity or hydrophobic ligands, magnetic particles prepared from a biopolymer exhibiting affinity for the target compound(s) or magnetic ion-exchangers are usually used to perform the isolation procedure. Magnetic separators of different types can be used for magnetic separations, but many times cheap strong permanent magnets are equally efficient, especially in preliminary experiments.

Magnetic carriers and adsorbents can be either prepared in the laboratory, or commercially available ones can be used. Such carriers are usually available in the form of magnetic particles prepared from various synthetic polymers, biopolymers or porous glass, or magnetic particles based on the inorganic magnetic materials such as surface modified magnetite can be used. Many of the particles behave like superparamagnetic ones responding to an external magnetic field, but not interacting themselves in the absence of magnetic field. This is important due to the fact that magnetic particles can be easily resuspended and remain in suspension for a long time. In most cases, the diameter of the particles differs from ca 50 nm to approx. 10 μm. However, also larger magnetic affinity particles, with the diameters up to millimetre range, have been successfully used [4]. Magnetic particles having the diameter larger than ca 1 μm can be easily separated using simple magnetic separators, while separation of smaller particles (magnetic colloids with the particle size ranging between tens and hundreds of nanometers) may require the usage of high gradient magnetic separators.

Commercially available magnetic particles can be obtained from a variety of companies. In most cases polystyrene is used as a polymer matrix, but carriers based on cellulose, agarose, silica, porous glass or silanized magnetic particles are also available. Examples of magnetic particles used (or usable) for proteins and peptides separation can be found elsewhere [5-7].

Particles with immobilised affinity ligands are available for magnetic affinity adsorption. Streptavidin, antibodies, protein A and Protein G are used most often in the course of protein and peptides isolation. Magnetic particles with above mentioned immobilised ligands can also serve as
generic solid phases to which native or modified affinity ligands can be immobilised (e.g., antibodies in the case of immobilised protein A, protein G or secondary antibodies, biotinylated molecules in the case of immobilised streptavidin).

Also some other affinity ligands (e.g., nitrilotriacetic acid, glutathione, trypsin, trypsin inhibitor, gelatine etc.) are already immobilised to commercially available carriers. To immobilise other ligands of interest to both commercial and laboratory made magnetic particles standard procedures used in affinity chromatography can be employed. Usually functional groups available on the surface of magnetic particles such as -COOH, -OH or -NH₂ are used for immobilisation, in some cases magnetic particles are available already in the activated form (e.g., tosyl-activated, epoxyactivated etc).

In the laboratory magnetite (or similar magnetic materials such as maghemite or ferrites) particles can be surface modified by silanization. This process modifies the surface of the inorganic particles so that appropriate functional groups become available, which enable easy immobilisation of affinity ligands [8]. In exceptional cases enzyme activity can be decreased as a result of usage of magnetic particles with exposed iron oxides. In this case encapsulated microspheres, having an outer layer of pure polymer, will be safer.

Biopolymers such as agarose, chitosan, kappa carrageenan and alginate can be easily prepared in a magnetic form. In the simplest way the biopolymer solution is mixed with magnetic particles and after bulk gel formation the magnetic gel formed is mechanically broken into fine particles [9]. Alternatively biopolymer solution containing dispersed magnetite is dropped into a mixture with hardening solution [4] or water-in-oil suspension technique is used to prepare spherical particles [10].

Basically the same procedures can be used to prepare magnetic particles from synthetic polymers such as polyacrylamide, poly(vinylalcohol) and many others [11].

In another approach used standard affinity or ion-exchange chromatography material was post-magnetised by interaction of the sorbent with water-based ferrofluid. Magnetic particles accumulated within the pores of chromatography adsorbent thus modifying this material into magnetic form [12,13]. Alternatively magnetic Sepharose or other agarose gels were prepared by simple contact with freshly precipitated or finely powdered magnetite [12,14].

Magnetoliposomes (magnetic derivatives of standard liposomes), either in the original form or after immobilization of specific proteins, have the potential for the separation of antiphospholipid antibodies [15], IgG antibodies [16] and other proteins of interest [17].

Recently also non-spherical magnetic structures, such as magnetic nanorods have been tested as possible adsorbent material for specific separation of target proteins [18].

Magnetic separators are necessary to separate the magnetic particles from the system. In the simplest approach, a small permanent magnet can be used, but various magnetic separators employing strong rare-earth magnets can be obtained at reasonable prices. Commercial laboratory scale batch magnetic separators are usually made from magnets embedded in disinfectant-proof material. The racks are constructed for separations in Eppendorf micro-tubes, standard test tubes or centrifugation cuvettes, some of them have a removable magnetic plate to facilitate easy washing of separated magnetic particles. Other types of separators enable separations from the wells of microtitration plates and the flat magnetic separators are useful for separation from larger volumes of suspensions (up to approx. 500 – 1000 ml). Examples of typical batch magnetic separators are shown in Fig. 1.

Flow-through magnetic separators are usually more expensive, and high gradient magnetic separators (HGMS) are the typical examples. Laboratory scale HGMS is composed from a column packed with fine magnetic grade stainless steel wool or small steel balls which is placed between the poles of an appropriate magnet. The suspension is pumped through the column, and magnetic particles are retained within the matrix. After removal the column from the magnetic field, the particles are retrieved by flow and usually by gentle vibration of the column.

For work in dense suspensions, open gradient magnetic separators may be useful. A very simple experimental set-up for the separation of magnetic affinity adsorbents from litre volumes of suspensions was described [19].

Currently many projects require the analysis of a high number of individual proteins or variants. Therefore, methods are required that allows multiparallel processing of different proteins. There are several multiple systems for high throughput nucleic acid and proteins preparation commercially available. The most often used approach for proteins isolation is based on the isolation and assay of 6xHis-tagged recombinant proteins using magnetic beads with Ni-nitriloacetic acid ligand [20]. The commercially available platforms can be obtained from several companies such as Qiagen, USA (BioRobot and BioSprint series), Tecan, Japan (Te-MagS) or Thermo Electron Corporation, USA (KingFisher).
Figure 1
Examples of batch magnetic separators applicable for magnetic separation of proteins and peptides. A: Dynal MPC-S for six microtubes (Dynal, Norway); B: Dynal MPC – I for one test tube (Dynal, Norway); C: Dynal MPC – L for six test tubes (Dynal, Norway); D: magnetic separator for six Eppendorf tubes (New England BioLabs, USA); E: MagneSphere Technology Magnetic Separation Stand, two position (Promega, USA); F: MagnaBot Large Volume Magnetic Separation Device (Promega, USA); G: MagneSphere Technology Magnetic Separation Stand, twelve-position (Promega, USA); H: Dynal MPC – 96 S for 96-well microtitre plates (Dynal, Norway); I: MagnaBot 96 Magnetic Separation Device for 96-well microtitre plates (Promega, USA); J: BioMag Solo-Sep Microcentrifuge Tube Separator (Polysciences, USA); K: BioMag Flask Separator (Polysciences, USA); L: MagneSil Magnetic Separation Unit (Promega, USA); M: MCB 1200 processing system for 12 microtubes based on MixSep process (Sigris Research, USA); N: PickPen magnetic tool (Bio-Nobile, Finland). Reproduced with the permission of the above mentioned companies; the photos were taken from their www pages.
Basic principles of magnetic separations of proteins and peptides

Magnetic separations of proteins and peptides are usually convenient and rapid. Nevertheless, several hints may be helpful to obtain good results.

Proteins and peptides in the free form can be directly isolated from different sources. Membrane bound proteins have to be usually solubilised using appropriate detergents. When nuclei are broken during sample preparation, DNA released into the lysate make the sample very viscous. This DNA may be sheared by repeated passage up and down through a 21 gauge hypodermic syringe needle before isolation of a target protein. Alternatively, DNase can be added to enzymatically digest the DNA.

Magnetic beads in many cases exhibit low non-specific binding of non-target molecules present in different samples. Certain samples may still require preclearing to remove molecules which have high non-specific binding activity. If preclearing is needed, the sample can be mixed with magnetic beads not coated with the affinity ligand. In the case of immunomagnetic separation, magnetic beads coated with secondary antibody or with irrelevant antibodies have been used. The non-specific binding can also be minimised by adding a non-ionic detergent both in the sample and in the washing buffers after isolation of the target.

In general, magnetic affinity separations can be performed in two different modes. In the direct method, an appropriate affinity ligand is directly coupled to the magnetic particles or biopolymer exhibiting the affinity towards target compound(s) is used in the course of preparation of magnetic affinity particles. These particles are added to the sample and target compounds then bind to them. In the indirect method the free affinity ligand (in most cases an appropriate antibody) is added to the solution or suspension to enable the interaction with the target compound. The resulting complex is then captured by appropriate magnetic particles. In case antibodies are used as free affinity ligands, magnetic particles with immobilised secondary antibodies, protein A or protein G are used for capturing of the complex. Alternatively the free affinity ligands can be biotinylated and magnetic particles with immobilised streptavidin or avidin are used to capture the complexes formed. In both methods, magnetic particles with isolated target compound(s) are magnetically separated and then a series of washing steps is performed to remove majority of contaminating compounds and particles. The target compounds are then usually eluted, but for specific applications (especially in molecular biology, biochemical analysis or environmental chemistry) they can be used still attached to the particles, such as in the case of polymerase chain reaction, magnetic ELISA etc.

The two methods perform equally well, but, in general, the direct technique is more controllable. The indirect procedure may perform better if affinity ligands have poor affinity for the target compound.

In most cases, magnetic batch adsorption is used to perform the separation step. This approach represents the simplest procedure available, enabling to perform the whole separation in one test-tube or flask. If larger magnetic particles (with diameters above ca 1 µm) are used, simple magnetic separators can be employed. In case magnetic colloids (diameters ranging between tens and hundreds of nanometres) are used as affinity adsorbents, high-gradient magnetic separators have usually to be used to remove the magnetic particles from the system.

Alternatively magnetically stabilised fluidised beds (MSFB), which enable a continuous separation process, can be used. The use of MSFB is an alternative to conventional column operation, such as packed-bed or fluidised bed, especially for large-scale purification of biological products. Magnetic stabilisation enables the expansion of a packed bed without mixing of solid particles. High column efficiency, low pressure drop and elimination of clogging can be reached [21,22].

Also non-magnetic chromatographic adsorbents can be stabilized in magnetically stabilized fluidized beds if sufficient amount of magnetically susceptible particles is also present. The minimum amount of magnetic particles necessary to stabilize the bed is a function of various parameters including the size and density of both particles, the magnetic field strength, and the fluidization velocity. A variety of commercially available affinity, ion-exchange, and adsorptive supports can be used in the bed for continuous separations [23].

Biocompatible two phase systems, composed for example from dextran and polyethylene glycol, are often used for isolation of biologically active compounds, subcellular organelles and cells. One of the disadvantages of this system is the slow separation of the phases when large amounts of proteins and cellular components are present. The separation of the phases can be accelerated by the addition of fine magnetic particles or ferrofluids to the system followed by the application of a magnetic field. This method seems to be useful when the two phases have very similar densities, the volumetric ratio between the phases is very high or low, or the systems are viscos. magnetically enhanced phase separation usually increases the speed of phase separation by a factor of about 10 in well-behaved systems, but it may increase by a factor of many thousands in difficult systems. The addition of ferrofluids and/or iron oxide particles was shown to have usually no
influence on enzyme partitioning or enzyme activity [24,25].

Proteins and peptides isolated using magnetic techniques have to be usually eluted from the magnetic separation materials. In most cases bound proteins and peptides can be submitted to standard elution methods such as the change of pH, change of ionic strength, use of polarity reducing agents (e.g., dioxane or ethyleneglycol) or the use of deforming eluents containing chaotropic salts. Affinity elution (e.g., elution of glycoproteins from lectin coated magnetic beads by the addition of free sugar) may be both a very efficient and gentle procedure.

Table 1: Examples of proteinases and peptidases purified by magnetic techniques

Purified enzyme	Source	Magnetic carrier	Affinity ligand	Further details	Reference
Aminopeptidase	*Arabidopsis*	Amine-terminated magnetic beads Dynabeads	N-1-Naphthylphthalamic acid Polyclonal antibodies	KCl gradient elution	[54]
Angiotensin-converting enzyme	Pig lung membranes	Poloxacryl acid – iron oxide magnetic nanoparticles	Elution with SDS-PAGE buffer		[57]
Bromelain	Commercial preparation	Magnetic agarose	Ni-NTA	Elution with KCl solution	[59]
Caspase (recombinant, histidine-tagged)	Human cells	Magnetic agarose	Ni-NTA	Elution with KCl solution	[60]
Chymotrypsin	Commercial preparation	Magnetic core and nickel-silica composite matrix	Elution with N-acetyl-D-tryptophan		[62]
Nla-protease (recombinant, histidine-tagged)	Plum Pox Virus	Magnetic cross-linked erythrocytes	Ni^{2+}	Elution with imidazole containing buffer	[36]
Proteinases	Commercial sources	Magnetic cross-linked erythrocytes	Elution with low pH buffer		[46]
Proteinase, bacterial (Savinase)	*Bacillus clausii*	Silanized magnetite particles	Bacitracin		[84]
Trypsin	Porcine pancreatin	Silanized magnetite particles	p-Aminobenzamidine	Elution with low pH buffer	[50]
	Porcine pancreatin	Magnetic polymer particles	Soybean trypsin inhibitor	Elution with low pH solution	[86]
	Commercial preparation	Silanized ferrite powder	Soybean trypsin inhibitor	Elution with low pH solution	[87]
	Commercial preparation	Magnetic *κ*-carrageenan particles	Soybean trypsin inhibitor	Elution with low pH solution	[88][89]
	Commercial preparation	Magnetic polyacrylamide beads	Soybean trypsin inhibitor	Elution with low pH solution	[90]
	Commercial preparation	Magnetic chitosan particles	Aprotinin	Elution with low pH solution	[91]
	Commercial preparation	Magnetic cross-linked erythrocytes	Elution with low pH buffer	Elution with low pH buffer; separation from large volume sample	[19]
	Commercial preparation	Magnetic dextran, agarose, polyvinyl alcohol, polyhydroxyethyl methacrylate microspheres	Elution with low pH buffer	Elution with low pH buffer; separation from large volume sample	[93]

Examples of magnetic separations of proteins and peptides

Magnetic affinity and ion-exchange separations have been successfully used in various areas, such as molecular biology, biochemistry, immunochemistry, enzymology, analytical chemistry, environmental chemistry etc [26-29]. Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 show some selected applications of these techniques for proteins and peptides isolation.

In the case of proteins and peptides purifications, no simple strategy for magnetic affinity separations exists. Various affinity ligands have been immobilised on magnetic particles, or magnetic particles have been prepared from biopolymers exhibiting the affinity for target enzymes or lectins. Immunomagnetic particles, i.e. magnetic particles with immobilised specific antibodies against the target...
Table 2: Purification of lysozyme by magnetic techniques

Purified enzyme	Source	Magnetic carrier	Affinity ligand	Further details	Reference
Lysozyme	Hen egg white	Magnetic chitin	Elution with 0.01 M HCl	[71]	
	Hen egg white	Magnetic acetylated chitosan	Elution with 0.01 M HCl	[9]	
	Commercial preparation	Magnetic poly(2-hydroxyethyl methacrylate)	Cibacron Blue F3GA	[72]	
	Commercial preparation	Magnetic chitosan beads	Elution with 0.01 M KSCN	[73]	
	Ornithodoros moubata	Magnetic chitin	Elution with alkaline, high salt buffer	[74]	
	Commercial preparation	Magnetic cross-linked polyvinylalcohol	Cibacron blue F3GA	[52]	
	Commercial preparation	Magnetite – polyacrylic acid nanoparticles	Elution with high salt buffer	[75]	
	Commercial preparation	Magnetic cross-linked polyvinylalcohol beads	Adsorption study	[76]	
	Commercial preparation	Magnetic agarose beads	Cibacron blue F3GA	[77]	
	Commercial preparation	Magnetic chitosan	Cibacron blue F3GA	[78]	
	Commercial preparation	Ferrofluid modified sawdust	Elution with 0.5 M NaCl	[79]	
	Commercial preparation	Nano-sized magnetic particles	Elution with NaH2PO4 and NaSCN	[80]	
Lysozyme (recombinant, histidine-tailed)	T4	BioMag, amine terminated	Iminodiacetic acid charged with Cu²⁺	[81]	

Table 3: Examples of polysaccharide and disaccharide hydrolases purified by magnetic techniques

Purified enzyme	Source	Magnetic carrier	Affinity ligand	Further details	Reference
α-Amylases	Porcine pancreas, Bacillus subtilis, wheat germ	Magnetic alginate beads	Elution with 1 M maltose	[4]	
	Bacillus amyloliquefaciens, porcine pancreas	Magnetic alginate microbeads	Elution with 1 M maltose	[10]	
β-Amylase	Sweet potato	Magnetic alginate beads	Elution with 0.5 M NaCl	[55]	
β-Galactosidase	Escherichia coli homogenate	Silanized magnetite	Elution with borate buffer, pH 10	[58]	
β-Galactosidase (fusion protein comprising the DNA-binding lac repressor)	Bacterial lysate	Magnetic beads	DNA containing Escherichia coli lac operator	[64]	
Glucoamylase	Aspergillus niger	Magnetic alginate beads	Elution with 1 M maltose	[55]	
Pectinase	Commercial preparation	Magnetic alginate beads	Elution with 1 M maltose	[82]	
Pullulanase	Bacillus acidopullulyticus	Magnetic alginate beads	Elution with 1 M maltose	[55]	
Purified enzyme	Source	Magnetic carrier	Affinity ligand	Further details	Reference
------------------------------------	--	-----------------------------------	---------------------------------	--	-----------
Alcohol dehydrogenase	Yeast homogenate	Magnetic cross-linked polyvinylalcohol	Cibacron blue 3GA	Elution with high salt buffer	[52]
	Saccharomyces cerevisiae extract	Magnetic core and nickel-silica composite matrix	PEG with bound Cibacron blue Ni²⁺	Magnetic two-phase system	[53]
Aldolase (recombinant, histidine tagged)	Pea	Magnetic agarose beads	Iminodiacetic acid charged with Zn²⁺	Elution with low pH buffer	[56]
	Escherichia coli cells extracts	Magnetic agarose beads	D-Asparagine	Elution with D-Asparagine solution	[58]
Asparaginase	Escherichia coli homogenate	Magnetic polyacrylamide gel particles	Elution with imidazole containing buffer		
Carbonic anhydrase	Model mixture	Magnetic agarose beads	Elution with high salt buffer		[14]
Catalase	Bovine liver, commercial preparation	Magnetic poly(EGDMA-MAH) beads	Fe³⁺	Elution with NaSCN solution	[61]
Cytocrome c Hors (Candida krusei)	Amine terminated iron oxide particles	Iminodiacetic acid charged with Cu²⁺	Binding studies		[63]
	Commercial preparation	Au/magnetic particles	MALDI MS analysis		[31]
	Horse heart	Magnetic agarose beads	Elution with EDTA containing buffer	Protein binding studies	[61]
	Bovine heart	Magnetic ion-exchange particles			
Glucose-6-phosphate dehydrogenase	Saccharomyces cerevisiae extract	Ferrofluid modified Sepharose 4B	ADP		[65]
Hexokinase	Escherichia coli homogenate	PEG with bound Cibacron blue	Elution with 1 mM NADH		[53]
	PEG with bound Cibacron blue	AMP	Elution with 1 mM NADH		[13]
Lactate dehydrogenase	Beef heart	Ferrofluid modified Sepharose 4B	Specific antibody	Activity of bound enzyme measured	[83]
	Ferrofluid modified Sepharose 4B	AMP	Elution with lactose analogue	Elution with lactose analogue	[64]
	Magnetic agarose beads	Reactive Red 120			
	Sweet whey	Magnetic cation exchanger			
Luciferase (histidine-tagged)	Escherichia coli homogenate	MagneHis™ system	Ni²⁺		[69,70]
Phosphatase, alkaline	Human placenta	Dynabeads M-450	DNA antibody	Activity of bound enzyme measured	[83]
Phosphatase, alkaline (fusion protein comprising the DNA-binding lac repressor)	Bacterial lysate	Magnetic beads		Elution with lactose analogue	[64]
Phosphofructokinase	Saccharomyces cerevisiae extract	Ferrofluid modified Sepharose 4B	DNA containing Escherichia coli lac operator		
6-Phosphogluconate dehydrogenase	Saccharomyces cerevisiae extract	PEG with bound Cibacron blue	Elution with 1 mM NADH		[53]
Thioredoxin (recombinant, histidine-tagged)	Escherichia coli	Magnetic agarose beads	Ni-NTA	Elution with imidazole containing buffer	[20]
tRNA methionyl synthetase (recombinant, histidine-tagged)	Escherichia coli	Magnetic agarose		Rapid detection and quantitation of isolated protein	[85]
Uricase (recombinant, histidine-tailed)	Bacillus	Ion-chelating magnetic agarose beads	Ni²⁺	Elution by cleavage with proteinase K	[92]
structures, have been used for the isolation of various antigens, both molecules and cells [5] and can thus be used for the separation of specific proteins.

Magnetic separation procedures can be employed in several ways. Preparative isolation of the target protein or peptide is usually necessary if further detailed study is intended. In other cases, however, the magnetic separation can be directly followed (after elution with an appropriate buffer) with SDS electrophoresis. Magnetically separated proteins and peptides can also be used for further mass spectroscopy characterization [30,31]. The basic principles of magnetic separations can be used in the course of protein or peptide determination using various types of solid phase immunoassays. Usually immuno-magnetic particles directly capture the target analyte, or magnetic particles with immobilised streptavidin are used to capture the complex of biotinylated primary antibody and the analyte. The separated analyte is then determined (usually without elution) using an appropriate method. A combination of magnetic separation with affinity capillary electrophoresis is also possible [32].

Enzyme isolation is usually performed using immobilised inhibitors, cofactors, dyes or other suitable ligands, or magnetic beads prepared from affinity biopolymers can be used (see Tables 1, 2, 3, 4).

Genetic engineering enables the construction of gene fusions resulting in fusion proteins having the combined properties of the original gene products. To date, a large number of different gene fusion systems, involving fusion partners that range in size from one amino acid to whole proteins, capable of selective interaction with a ligand immobilized onto magnetic particles or chromatography matrices, have been described. In such systems, different types of interactions, such as enzyme-substrate, receptor-target protein, polyhistidines-metal ion, and antibody-antigen, have been utilized. The conditions for purification differ from system to system and the environment tolerated by the target protein is an important factor for deciding which affinity fusion partner to choose. In addition, other factors, including protein localization, costs for the affinity matrix and buffers, and the possibilities of removing the fusion partner by site-specific cleavage, should also be considered [33,34]. As an example, isolation of recombinant oligohistidine-tagged proteins is based on the application of metal chelate magnetic adsorbents [35,36]. This method has been used successfully for the purification of proteins expressed in bacterial, mammalian, and insect systems.

Antibodies from ascites, serum and tissue culture supernatants can be efficiently isolated using magnetic particles with immobilized Protein A, Protein G or anti-immu-

Table 5: Examples of antibodies purified by magnetic techniques

Purified antibody	Source	Magnetic carrier	Affinity ligand	Further details	Reference
Anti-BODIPY-fluorescein antibodies	Systemic lupus erythematosus patient plasma	Magnetoliposomes	BODIPY-fluorescein	Desorption with 1 M NaSCN solution	[94]
Anti-DNA antibody	Murine ascites supernatants	Magnetic poly(2-hydroxyethyl-methacrylate) beads	DNA	Antibody concentration	[95]
Anti-human chorionic gonadotropin antibody	Sample from affinity chromatography	Magnetic cellulose beads	Human chorionic gonadotropin	Antibody concentration	[96]
Antibody (from rat)	Rabbit serum	Dynabeads M-280	Sheep anti-rabbit IgG	Elution with 0.5 M acetic acid	[97]
Monoclonal antibodies	Mouse hybridoma culture broth	Magnetite particles	Protein A	Immobilization by the carbodiimide method	[98]
Anti-bovine serum albumin antibodies	Commercial preparation	Thermosensitive magnetic microspheres	Bovine serum albumin	Elution with 1 M NaCl	[99]
Immunoglobulin G, human					
Immunoglobulin G	Blood serum	Carboxyl-terminated magnetic particles	MproteinAG		[100]
IgE antibodies	Allergic patients sera	Dynabeads M-280	Sheep anti-rabbit IgG	Elution with 0.5 M acetic acid	[101]
Murine anti-fibroblast growth factor receptor IgM	Thermosensitive magnetic microspheres	Magnetic cellulose beads	Antigenic proteins		[100]
noglobulin antibodies. Protein A, isolated from *Staphylococcus aureus*, binds the Fc region of IgG of most mammalian species with high affinity, leaving antigen specific sites free. Protein G, isolated from *Streptococcus* sp., reacts with a larger number of IgG isotypes. It has a higher binding affinity to immunoglobulins than Protein A, however, it also interacts with the Fab regions of IgG, although the affinity is ten times lower than for the Fc region [37]. Antiphospholipid antibodies were successfully isolated using magnetoliposomes [15].

Aptamers are DNA or RNA molecules that have been selected from random pools based on their ability to bind other molecules. Aptamers binding proteins can be immobilised to magnetic particles and used for isolation of target proteins.

Table 6: Examples of DNA/RNA/oligonucleotide/aptamer binding proteins purified by magnetic techniques

Purified protein	Source	Magnetic carrier	Affinity ligand	Further details	Reference
CUG binding proteins	Human myoblasts or fibroblasts	Dynabeads M-280 streptavidin	Biotinylated(CUG)$_{10}$	Elution with 1 M NaCl	[103]
Transcription factor τ	Saccharomyces cerevisiae	Dynabeads M-280 streptavidin	Biotinylated tRNA$_{\text{Glu}}$ gene fragment	Elution with high salt buffer	[104, 105]
DNA-binding proteins	Crude tissue extract	Magnetic phospho cellulose particles	Biotinylated DNA fragment	Elution with high salt buffer	[106]
DNA-binding proteins	*Escherichia coli*	Magnetic phospho cellulose particles	Biotinylated DNA fragment	Elution with high salt buffer	[107]
DNA-binding proteins	HeLa nuclear extracts	Dynabeads M-280 streptavidin	Biotinylated DNA fragment	Elution with 2 M NaCl	[108]
Vaccinia virus early transcription factor	*Vaccinia virions*	Dynabeads M-280 streptavidin	Biotinylated double-stranded DNA	Elution with high salt buffer	[109]
Ecdysteroid receptor	Drosophila melanogaster nuclear extract	Dynabeads M-280 streptavidin	Biotinylated double-stranded oligonucleotide	Elution with 0.4 M KCl	[110]
NanR protein (recombinant) $p27$	*Escherichia coli*	Dynabeads M-280 streptavidin	Biotinylated DNA fragment	Elution with high salt buffer	[111]
Pigpen protein	Endothelial cells	Magnetic streptavidin beads	Guanine-rich single-stranded DNA	Elution with NaCl solution	[112]
RNA binding proteins	*Saccharomyces cerevisiae*	Dynabeads M-280 streptavidin	Biotinylated DNA fragment	Elution with 1 M NaCl	[113]
Single-stranded telomere binding protein (sTBP)	Nuclei from vertebrate tissues	Dynabeads M-280 streptavidin	Biotinylated single-stranded DNA$_{\text{TTAGGG}}$ repeats	Elution with high salt buffer	[114]
Transcription proteins	Human myeloid cells	Dynabeads M-280 streptavidin	Biotinylated serum inducible element (hSIE)	Elution with high salt buffer	[115]
Transcription factor γRF-1	Human monocytes and epidermal cells	Dynabeads M-280 streptavidin	Biotinylated DNA containing γRF-1 sequences	Elution with 0.6 M KCl	[116]
Protein factor MS2	Murine skeletal myotubes	Dynabeads	Double-stranded DNA	Elution with 100 mM sodium acetate, pH 4.2	[117]
Guide RNA binding protein	*Trypanosoma brucei*	Dynabeads M-450 goat streptavidin	Monoclonal antibody	Elution with low pH buffer cont. SDS	[118]
RNA binding proteins	*Trypanosoma brucei*	Dynabeads M-280 streptavidin	Biotinylated oligonucleotides	Elution with SDS buffer	[119]
DNA binding protein	*Schistosoma mansoni*	Dynabeads M-280 streptavidin	Biotinylated DNA	Elution with sodium acetate buffer	[120]
ssDNA binding proteins	Transfected mouse fibroblasts	Dynabeads anti-rabbit IgG	Rabbit antibody	Indirect method	[121]
Tenascin-C	Glioblastoma cells	Dynabeads streptavidin	Biotinylated aptamer	Elution with high salt buffer	[122]
Thermostable brain factor (ThBF)	Rat brain	Dynabeads streptavidin	Biotinylated aptamer	Elution with high salt buffer	[123]
TTF1 protein	*Escherichia coli* lysate	Dynabeads M-280 streptavidin	Biotinylated aptamer	Elution with 0.7 M KCl	[124]
DNA/RNA binding proteins (e.g., promoters, gene regulatory proteins and transcription factors) are often short-lived and in low abundance. A rapid and sensitive method, based on the immobilization of biotinylated DNA/RNA fragments containing the specific binding sequence to the magnetic streptavidin particles, can be used. The bound DNA/RNA binding proteins are usually eluted with high salt buffer or change of pH [38]. Other types of proteins were isolated using specific affinity-based procedures. For example, plasminogen immobilized on magnetic particles was used to separate scrapie and bovine spongiform encephalopathy associated prion protein PrPSc from its conformer which is a cellular protein called PrPC. In fact, plasminogen represents the first endogenous factor discriminating between normal and pathological prion protein. This unexpected property may be exploited for diagnostic purposes [39,40].

Magnetic separation was also successfully used for the recovery of proteins expressed in the form of inclusion bodies, involving at first chemical extraction from the host cells, then adsorptive capture of the target protein onto small magnetic adsorbents, followed by rapid collection of the product-loaded supports with the aid of high gradient magnetic fields [41]. A new approach for analytical ion-exchange separation of native proteins and proteins enzymatic digest products has been described recently [31]. Magnetite particles were covered with a gold layer and then stabilized with ionic agents. These charged stabilizers present at the surface of the gold particles are capable of attracting oppositely charged species from a sample solution through electrostatic interactions. Au@magnetic particles having negatively charged surfaces are suitable probes for selectively trapping positively charged proteins and peptides from aqueous solutions. The species trapped by the isolated particles were then characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) after a simple washing.

Magnetic solid phase extraction (MSPE) enables to preconcentrate target analytes from larger volumes of solutions or suspensions using relatively small amount of magnetic specific adsorbent. Up to now this procedure

| Table 7: Purification of albumin and haemoglobin by magnetic techniques |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Purified protein | Source | Magnetic carrier | Affinity ligand | Further details | Reference |
| Albumin, bovine serum | Commercial preparation | Magnetic agar beads | Cibacron blue 3GA | Adsorption experiments | [126] |
| | Commercial preparation | Magnetic cross-linked polyvinylalcohol | Cibacron blue 3GA | Adsorption experiments | [76,127] |
| | Commercial preparation | Magnetic chitosan microspheres | Cibacron blue 3GA | Anion exchange separation | [78] |
| | Commercial preparation | Magnetic poly(glycidyl methacrylate-triaryl isocyanurate-divinylbenzene) particles | Cibacron blue 3GA | Elution with 1.0 M NaSCN | [129] |
| Albumin, human serum | Commercial preparation | Magnetic poly(ethylene glycol dimethacrylate-co-N-methacryloyl-(L)-histidine methyl ester) microbeads | Cu2+ | Elution with 1.0 M NaSCN | [129] |
| | Human plasma | Magnetic poly(2-hydroxyethylmethacrylate) beads | Iminodiacetic acid charged with Cu2+ | Elution with 1.0 M NaSCN | [130] |
| | Commercial preparation | Magnetic poly(2-hydroxyethyl methacrylate) beads | Cibacron blue F3GA | Elution with 0.5 M NaSCN | [131] |
| | Commercial preparation | Magnetic particles covered with thermosensitive polymer | - | Desorption by decreasing temperature | [132,133] |
| Albumin, human serum (recombinant, FLAG tagged) | Yeast cells | Magnetic glass beads | Anti-FLAG antibody | Elution with EDTA containing buffer | [1] |
| Glycated haemoglobin | Human blood | Magnetic poly(vinyl alcohol) beads | m-Aminophenylboronic acid | Elution with sorbitol | [138] |
| Haemoglobin | Bovine, commercial preparation | Amine terminated iron oxide particles | Iminodiacetic acid charged with Cu2+ | Elution with imidazole containing buffer used for affinity immunoassay | [63] |
| Haemoglobin A1c | Human blood | Magnetic particles isolated from Magnetospirillum magneticum AMB-1 | m-Aminophenylboronic acid | - | [150] |
Table 8: Examples of other proteins purified by magnetic techniques

Purified protein	Source	Magnetic carrier	Affinity ligand	Further details	Reference
Aprotinin	Bovine pancreatic powder	Magnetic chitosan particles	Trypsin	Elution with low pH buffer	[134]
Concanavalin A	Jack bean extract	Magnetic particles	Dextran	Elution with low pH buffer	[68,135]
Solanum tuberosum lectin	Potato tuber	Magnetic chitosan		Elution with low pH buffer	[136]
Green fluorescent protein (histidine tagged)		Magnetic nanoparticles	Ni-NTA	Elution with imidazole containing buffer	[137]
SIRT2 protein (recombinant, histidine tagged)	Human	Magnetic agarose beads	Ni-NTA	Elution with imidazole containing buffer	[139]
Elongation factor (recombinant, histidine tagged)	Caenorhabditis elegans	Magnetic agarose beads	Ni-NTA	Elution with imidazole containing buffer	[140]
Protein A	Recombinant Escherichia coli	Magnetic Eudragit	Human IgG	Magnetic two-phase system Solid phase immunoassay	[141]
Tumor necrosis factor (TNF)		Dynabeads M-280	Mouse monoclonal antibody		[142]
Anti-MUC1 diabody fragment	Recombinant Escherichia coli	Magnetic agarose beads	Specific peptide		[143]
MHC class II molecules	MDCK cells	Dynabeads M-450 rat anti-mouse IgG1	Specific antibodies	Elution with SDS-PAGE buffer	[144]
Lamin B1	Xenopus egg extracts	Dynabeads	Specific antibodies	Elution with 6 M urea	[44]
6x-His-tagged proteins	Human fibroblasts	Magnetic agarose beads	Ni-NTA	Elution with imidazole containing buffer	[145]
Estrogen receptor	Adipose tissue	Dynabeads M-280 streptavidin	Biotinylated monoclonal mouse anti-human estrogen receptor antibody	Indirect method	[146]
Thiol-reactive chromatin restriction fragments	Mouse fibroblasts	Mercurated agarose magnetic beads	p-Hydroxymercuronbenzoate	Elution with 0.5 M NaCl and 20 mM dithiothreitol	[147]
L1 coat protein	Human papillomavirus	Magnetic polyglutaraldehyde particles	Iminodiacetic acid charged with Cu^{2+}	Elution with imidazole containing buffer	[41]
Insulin receptor	Rat muscle or liver extract	Dynabeads M-450	Anti-PS antibody	SDS PAGE analysis	[148]
Stat3	DER cells	Dynabeads	Biotinylated tyrosine phosphorylated peptides	SDS PAGE analysis	[149]
Transferrin receptor	Human	Dynabeads M-450 sheep anti-mouse IgG1	Anti-human transferrin receptor monoclonal antibody	SDS analysis	[151]
Prion protein PrP^Sc	Brain extract	Dynabeads M-280 tosyl activated	Plasminogen	SDS analysis	[39,40]
Biotinylated proteins from extracellular matrix	Bipolaris sorokiniana	Dynabeads	Streptavidin	SDS analysis	[152]
Cryoprotectin	Leaves of cold-acclimated cabbage	Dynabeads-protein A	Specific antibody		[153]
Prostate specific antigen	Serum from a prostate cancer suffering patient	Streptavidin-coated magnetic beads	Biotinylated monoclonal antibody	Elution with low pH solution	[154,155]
Estrogen receptor	In vitro translation	Magnetic beads	Antibody	Elution with SDS buffer	[156]
VHDL receptor	Helicoverpa zea	Streptavidin-coated magnetic beads	VHDL-biotin ligand		[157]
Fructosyllysine-specific binding protein	U937 cells	Dynabeads M-280 tosylactivated Nickel-gold nanorods	Polyl-L-lysine-glucose conjugate	Two proteins isolated	[158]
Ubiquitin (histidine tagged)				Elution with acidic buffer	[18]
was used for preconcentration of low-molecular weight xenobiotics [42,43] but using suitable magnetic adsorbents the MSPE could be used to preconcentrate target proteins and peptides as well.

Sometimes the removal of certain proteins will reveal functions involving the depleted proteins or will help in the course of subsequent protein isolation. As an example, Dynabeads have been used to remove involved proteins from *Xenopus* egg extracts for analyses of the cell mitosis mechanisms [44,45]. Rapid removal of contaminating proteolytic enzymes from the crude samples could increase yields of sensitive proteins due to the limitation of their proteolysis [46].

A combination of mechanical cell disintegration and magnetic batch affinity adsorption was used to simplify the isolation of intracellular proteins. Magnetic glass beads were used because of their hardness and rigidity [1].

An example of quite different protein purification strategy can also be mentioned. Proteins associated with the endocytic vesicles of *Dictyostelium discoideum* were separated after magnetic isolation of the vesicles that was accomplished by feeding the amoebae with dextran-stabilized iron oxide particles. The cells were broken, the labelled vesicles were magnetically separated and then disrupted to release proteins which were resolved by SDS-PAGE. After „in-gel” digestion with endoproteinase Lys-C or Asp-N the generated peptides were used for amino acid sequencing. This strategy allowed the identification of the major protein constituents of the vesicles [47]. Analogous procedure was used for the separation and study of peroxisomes proteins when at first peroxisomes were separated using magnetic beads with immobilized specific antibodies and then the protein content of the separated peroxisomes was analysed [48].

Conclusions

Standard liquid column chromatography is currently the most often used technique for the isolation and purification of target proteins and peptides. Magnetic separation techniques are relatively new and still under development. Magnetic affinity particles are currently used mainly in molecular biology (especially for nucleic acids separation), cell biology and microbiology (separation of target cells) and as parts of the procedures for the determination of selected analytes using magnetic ELISA and related techniques (especially determination of clinical markers and environmental contaminants). Up to now separations in small scale prevail and thus the full potential of these techniques has not been fully exploited.

It can be expected that further development will be focused at least on two areas. The first one will be focused on the laboratory scale application of magnetic affinity separation techniques in biochemistry and related areas (rapid isolation of a variety of both low- and high-molecular weight substances of various origin directly from crude samples thus reducing the number of purification steps) and in biochemical analysis (application of immunomagnetic particles for separation of target proteins from the mixture followed by their detection using ELISA and related principles). Such a type of analysis will enable to construct portable assay systems enabling e.g. near-patient analysis of various protein disease markers. New methodologies, such as the application of chip and microfluidics technologies, may result in the development of magnetic separation processes capable of magnetic separation and detection of extremely small amount of target biologically active compounds [49].
In the second area, larger-scale (industrial) systems are believed to be developed and used for the isolation of biologically active compounds directly from crude culture media, wastes from food industry etc., integrating three classical steps (clarification, concentration and initial purification) into a single unit operation [50]. It is not expected that extremely large amounts of low cost products will be isolated using magnetic techniques, but the attention should be focused onto the isolation of minor, but highly valuable components present in raw materials. Of course, prices of magnetic carriers have to be lowered and special types of low-cost, biotechnology applicable magnetic carriers and adsorbents prepared by simple and cheap procedures have to become available. The existence of inexpensive and effective magnetic separators enabling large-scale operations is necessary, as well.

In the near future quite new separation strategies can appear. A novel magnetic separation method, which utilizes the magneto-Archimedes levitation, has been described recently and applied to separation of biological materials. By using the feature that the stable levitation position under a magnetic field depends on the density and magnetic susceptibility of materials, it was possible to separate biological materials such as haemoglobin, fibrinogen, cholesterol, and so on. So far, the difference of magnetic properties was not utilized for the separation of biological materials. Magneto-Archimedes separation may be another way for biological materials separation [51].

It can be expected that magnetic separations will be used regularly both in biochemical laboratories and biotechnology industry in the near future.

Acknowledgements
The research is a part of ILE Research Intention No. AV0Z6087904. The work was supported by the Ministry of Education of the Czech Republic (Project No. ME 583) and Grant Agency of the Czech Academy of Sciences (Project No. IBS6087204).

References
1. Schuster M, Wasserbauer E, Ortner C, Graumann K, Jungbauer A, Hammerschmid F, Werner G: Short cut of protein purification by integration of cell-disruption and affinity extraction. Bioprocess 2000, 9:59-67.
2. Hofmann I, Schnolzer M, Kaufmann I, Franke WW: Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol Biol Cell 2002, 13:1665-1676.
3. Alche JD, Dickinson K: Affinity chromatographic purification of antibodies to a biotinylated fusion protein expressed in Esherichia coli. Protein Expr Purif 1998, 12:138-143.
4. Teotia S, Gupta MN: Purification of alpha-amylases using magnetic alginate beads. Appl Biochem Biotechnol 2001, 90:211-220.
5. Safarik I, Safarikova M: Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci 1999, 722:33-53.
6. Sinclair B: To bead or not to bead: Applications of magnetic bead technology. Scientist 1998, 12:17.
7. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T: Synthesis, characterisation and application of silica-magnetic nanocarbons. J Magn Magn Mater 2004, 284:145-160.
8. Weetall HH, Lee MJ: Antibodies immobilized on inorganic supports. Appl Biochem Biotechnol 1989, 22:311-330.
9. Safarik I, Safarikova M: Batch isolation of hen egg white lysosome with magnetic chitin. J Biochem Biophys Methods 1993, 22:327-330.
10. Safarikova M, Roy I, Gupta MN, Safarik I: Magnetic alginate micro particles for purification of alpha-amylases. J Biotechnol 2003, 105:255-260.
11. Tanyolac D, Ozdural AR: A new low cost magnetic material: magnetic polyvinylbutyral microbeads. React Funct Polym 2000, 43:279-286.
12. Nixon L, Koval CA, Noble RD, Stalff GS: Preparation and characterization of novel magnetite-coated ion-exchange particles. Chem Mater 1992, 4:117-121.
13. Moshbach K, Anderson JR: Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 1977, 270:259-261.
14. Hirschbein BL, Whitesides GM: Affinity separation of enzymes from mixtures containing suspended solids. Comparisons of magnetic and nonmagnetic techniques. Appl Biochem Biotechnol 1982, 1:157-176.
15. Rocha FM, de Pinho SC, Zollner RL, Santana MHA: Preparation and characterization of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies. J Magn Magn Mater 2001, 225:101-108.
16. Zollner TCA, Zollner RD, de Cuyper M, Santana MHA: Adsorption of isotype "E" antibodies on affinity magnetoliposomes. J Dispersion Sci Technol 2003, 24:615-622.
17. Bucak S, Jones DA, Laibinis PE, Hatton TA: Protein separations using colloidal magnetic nanoparticles. Biotechnol Progr 2003, 19:477-484.
18. Lee KB, Park S, Mirkin CA: Multicomponent magnetic nanorods for biomolecular separations. Angew Chem – Int Edit 2004, 43:3048-3050.
19. Safarik I, Pascova L, Safarikova M: Large-scale separation of magnetic bioaffinity adsorbents. Biotechnol Lett 2001, 23:1953-1956.
20. Schaefer F, Romer U, Emmerlich M, Blumer J, Lubenow H, Steiner K: Automated high-throughput purification of 6×His-tagged proteins. J Biotechnol 2002, 101:131-142.
21. Lochmuller CH, Ronnick CS, Wigman LS: Fluidized-bed separators reviewed: a low pressure drop approach to column chromatography. Prep Chromatogr 1988, 1:93-108.
22. Burns MA, Graves DJ: Continuous affinity chromatography using a magnetically stabilized fluidized bed. Biotechnol Progr 1985, 1:95-103.
23. Chetty AS, Burns MA: Continuous protein separations in a magnetically stabilized fluidized bed using nonmagnetic supports. Biotechnol Bioeng 1991, 38:963-971.
24. Wikstrom P, Flygare S, Grondalen A, Larsson PO: Magnetic aqueous two-phase separation: a new technique to increase rate of phase-separation, using dextran-ferrofluid or larger iron oxide particles. Anal Biochem 1987, 167:331-339.
25. Larsson P-O: Magnetically enhanced phase separation. Meth Enzymol 1994, 228:112-117.
26. Safarik I, Safarikova M: Biologically active compounds and xenobiotics: Magnetic affinity separations. In Encyclopedia of Separation Science Edited by: Wilson ID, Adlard RR, Poole CF, Cook MR. London: Academic Press; 2000:2163-2170.
27. Safarik I, Safarikova M: Overview of magnetic separations used in biochemical and biotechnological applications. In Scientific and Clinical Applications of Magnetic Carriers Edited by: Hafele U, Schutt W, Teller J, Zborowski M. New York and London: Plenum Press; 1997:323-340.
28. Safarikova M, Safarik I: The application of magnetic techniques in biosciences. Magn Elecrt Lett 2001, 10:223-252.
29. Saiyed ZM, Telang SD, Ramchand CN: Application of magnetic techniques in the field of drug discovery and biomedicine. BioMagn Res Technol 2003, 1:2.
30. Yaneva M, Tempst P: Affinity capture of specific DNA-binding proteins for mass spectrometric identification. Anal Chem 2003, 75:6437-6448.
recovery polyhistidine-tailed T4 lysozyme from a crude E. coli extract. J Biotechnol 1997, 54:53-67.

82. Tyagi R, Gupta MN: Purification and immobilization of Aspergillus niger pectinase on magnetic latex beads. Biocatal Biotransform 1995, 12:293-298.

83. Hendrix PG, Hoylaerts MF, Nouwen EJ, Van de Voorde A, De Broe ME: Magnetic beads in suspension enable a rapid and sensitive immunomagnetic enrichment of human placental alkaline phosphatase. Eur J Clin Chem Clin Biochem 1993, 30:343-347.

84. Hubbuch JJ, Matthiesen DB, Hobley TJ, Thomas ORT: High gradient magnetic separation versus expanded bed adsorption: a first principle comparison. Bioseparation 2001, 10:99-112.

85. Lochnurmer CH, Wigram LS: Affinity separations in magnetically stabilized fluidized beds. Synthesis and performance of packing materials. Sep Sci Technol 1987, 22:2111-2125.

86. Halling PJ, Dunpill P: Recovery of free enzymes from product liquors by bio-affinity adsorption: Trypsin binding by immobilised soybean inhibitor. European J Appl Microbiol 1979, 6:195-205.

87. Li X, Li CX, He BL: A novel purification for recombinant DNA-binding proteins using magnetizable phosphocellulose. Protein Expr Purif 2002, 25:426-429.

88. Dong YS, Liang F, Jin HX, Xi Q, Chang JH: The use of derivatized magnetoliposomes for extraction of antibodies from aqueous solutions. IEEE Trans Mag 2001, 37:2932-2934.

89. Odaimei M, Denzil A: Polyhydroxyethylmethacrylate-based magnetic DNA-affinity beads for anti-DNA antibody removal from systemic lupus erythematosus patient plasma. J Chromatogr B 2001, 760:137-148.

90. Li X, Li CX: He BL: Preparation of magnetic affinity adsorbent based on magnetic cellulose beads. Chin J Chin Pharm 1998, 23:1013-1017.

91. Nishiya Y, Hibi T, Oda JL: A purification method of the diagnostic enzyme Bocillus uricase using magnetic and non-specific proteins. Protein Expr Purif 2002, 25:426-429.

92. Dong YS, Liang F, Jin HX, Xi Q, Chang JH: Preparation of novel magnetic affinity adsorbents and application for purification of urokinase. J Chem chin Univ – China 2002, 23:1013-1017.

93. Dumitrascu G, Kumbhar A, Zhou WL, Rosenzweig Z: One-step magnetic purification of recombinant DNA-binding proteins using magnetizable phosphocellulose. Protein Expr Purif 1995, 2:627-277.

94. An XN, Su ZX: Affinity purification of a new DNA-binding protein. Protein Expr Purif 1997, 53:103-40.

95. DNA affinity purification of yeast transcription factor proteins which bind to RNA CUG repeats: Significance for immunoglobulin-G purification in a magnetically stabilized fluid bed chromatography matrix. Biotechnol Bioeng 1997, 53:299-307.

96. Schmidt L, Kar S, Jonsson T, Rosengren Z: The use of derivatized magnetoliposomes for extraction of antibodies from aqueous solutions. IEEE Trans Mag 2001, 37:2932-2934.

97. Nishiya Y, Hibi T, Oda JL: A purification method of the diagnostic enzyme Bocillus uricase using magnetic and non-specific proteins. Protein Expr Purif 2002, 25:426-429.

98. Dong YS, Liang F, Jin HX, Xi Q, Chang JH: Preparation of novel magnetic affinity adsorbents and application for purification of urokinase. J Chem chin Univ – China 2002, 23:1013-1017.

99. Nishiya Y, Hibi T, Oda JL: A purification method of the diagnostic enzyme Bocillus uricase using magnetic and non-specific proteins. Protein Expr Purif 2002, 25:426-429.

100. Dong YS, Liang F, Jin HX, Xi Q, Chang JH: The use of derivatized magnetoliposomes for extraction of antibodies from aqueous solutions. IEEE Trans Mag 2001, 37:2932-2934.

101. Odaimei M, Denzil A: Polyhydroxyethylmethacrylate-based magnetic DNA-affinity beads for anti-DNA antibody removal from systemic lupus erythematosus patient plasma. J Chromatogr B 2001, 760:137-148.

102. Li X, Li CX: He BL: Preparation of magnetic affinity adsorbent based on magnetic cellulose beads. Chin J Chin Pharm 1998, 23:1013-1017.

103. Nishiya Y, Hibi T, Oda JL: A purification method of the diagnostic enzyme Bocillus uricase using magnetic and non-specific proteins. Protein Expr Purif 2002, 25:426-429.

104. Dong YS, Liang F, Jin HX, Xi Q, Chang JH: The use of derivatized magnetoliposomes for extraction of antibodies from aqueous solutions. IEEE Trans Mag 2001, 37:2932-2934.
127. Xue B, Tong XD, Sun Y: Characterization of PVA-based magnetic affinity support for protein adsorption. Sep Sci Technol 2001, 36:2499-2501.

128. Xue B, Sun Y: Fabrication and characterization of a rigid magnetic matrix for protein adsorption. J Chromatogr A 2002, 947:185-193.

129. Akgol S, Turkmen D, Denizli A; Cu(II)-incorporated, histidine-containing magnetic-metal-complexing beads as specific sorbents for the metal chelate affinity of albumin. J Appl Polym Sci 2004, 93:2669-2677.

130. Odabasi M, Uzun L, Denizli A: Porous magnetic chelator support for albumin adsorption by immobilized metal affinity separation. J Appl Polym Sci 2004, 93:2501-2510.

131. Odabasi M, Denizli A: Cibacron Blue F3G-A-attached magnetic poly-(2-hydroxyethyl methacrylate) beads for human serum albumin adsorption. Polym Int 2004, 53:332-338.

132. Ding XB, Sun ZH, Zhang WC, Peng YX, Wan GX, Jiang YY: Adsorption of human protein on magnetic particles covered with thermosensitive polymers. J Appl Polym Sci 2000, 77:2915-2920.

133. Ding XB, Sun ZH, Wan GX, Jiang YY: Interactions between thermosensitive magnetic polymer microspheres and proteins. Acta Polym Sinica 2000:9-13.

134. An XN, Su ZX, Zheng HM: Preparation of highly magnetic chitosan particles and their use for affinity purification of enzymes. J Chem Technol Biotechnol 2003, 78:596-560.

135. Heeboll-Nielsen J, Dalkjaer M, Hubbuch JJ, Thomas ORT: Super-paramagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts. Biotechnol Bioeng 2004, 87:311-323.

136. Safarikova M, Safarik I: One-step partial purification of Solanum tuberosum tuber lectin using magnetic chitosan particles. Biotechnol Lett 2000, 22:941-945.

137. Xu CJ, Xu XM, Gu HW, Zhong XF, Guo ZH, Zeng RK, Zhang XZ, Xu B: Nitroliotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 2004, 126:3392-3393.

138. Muller-Schulte D, Brunner H: Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection of glycoconjugates. J Chromatogr A 1995, 711:53-60.

139. Dryden SC, Nathas FA, Nowak JE, Goustin A-S, Tainsky MA: Role for human SIRT2 NAD-dependent deacetylase activity control of mitotic exit in the cell cycle. Mol Cell Biol 2003, 23:3173-3185.

140. Ohtsuki T, Sakurai M, Sato A, Watanabe K: Characterization of the interaction between the nucleotide exchange factor EF-Ts from nematode mitochondria and elongation factor Tu. Nucleic Acids Res 2002, 30:5444-5451.

141. Suzuki M, Kaminoh M, Shiraiishi T, Takeuchi H, Kobayashi T: Affinity partitioning of protein A using a magnetic aqueous two-phase system. J Ferment Bioeng 1995, 80:78-84.

142. Libalnik NB, Nustad K, Espvik T: A rapid and sensitive immunoassay for tumor necrosis factor using magnetic monodisperse polymer particles. J Immunol Methods 1990, 134:253-259.

143. Zhang ZR, O'Sullivan DA, Lydiatt A: Magnetically stabilised fluidised bed adsorption: practical benefits of uncoiling bed expansion from fluid velocities in the purification of a recombinant protein from Escherichia coli. J Chem Technol Biotechnol 1999, 74:270-274.

144. Knutson VP, Donnelly PV, Balba Y, Lopez-Reyes M: Insulin resistance is mediated by a proteolytic fragment of the insulin receptor. Biochem Biophys Res Commun 1997, 249:724-9.

145. Chakraborty A, Dyer KF, Cascio M, Mietzner TA, Tweardy DJ: Identification of a novel Stat3 recruitment and activation motif within the granulocyte colony-stimulating factor receptor. Blood 1999, 93:15-24.

146. Tanaka T, Matsunaga T: Detection of HbA(1c) by boronate affinity immunosassay using bacterial magnetic particles. Biosens Bioelectron 2001, 16:1089-1094.

147. Harlooss GB, Platt FM: Analysis and isolation of human transferrin receptor using the OKT-9 monoclonal antibody covalently cross-linked to magnetic beads. Anal Biochem 1991, 199:219-222.

148. Apoga D, Ek B, Tunlid A: Analysis of proteins in the extracellular matrix of the plant pathogenic fungus Bipolaris sorokiniana using 2-D gel electrophoresis and MS/MS. FEMS Microbiol Lett 2001, 197:145-150.

149. Hincha DK, Neumann B, Sror HAM, Sieg F, Weckworth W, Ruckels M, Mullerin-Pellerin Y, Schroder W, Schmitt JM: Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiol 2001, 125:835-846.

150. Peter J, Unverzagt C, Leza H, Hoeseel W: Purification of prostate-specific antigen from human serum by indirect immunosorption and elution with a hapten. Anal Biochem 1999, 273:98-104.

151. Peter J, Unverzagt C, Krogh TN, Vorm O, Hoesel W: Identification of precursor forms of free prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry. Cancer Res 2001, 61:957-962.

152. Yang Y-S, Yang M-CW, Wang B, Weisssler JC: BR22, a novel protein, interacts with thyroid transcription factor-1 and activates the human surfactant protein B promoter. Am J Respir Cell Mol Biol 2001, 24:30-37.

153. Persaud DR, Youssell Y, Haunerland N: Efficient isolation, purification, and characterization of the Helicoverpa zea VHDL receptor. Protein Expr Purif 2003, 32:260-264.

154. Salazar R, Brandt R, Kellermann J, Kranz S: Purification and characterization of a 200 kDa fructosyllysine-specific binding protein from cell membranes of U937 cells. Glycconjugate J 2000, 17:713-716.

155. Girault S, Chassaing G, Blais JC, Brunot A, Bolbach G: Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Anal Chem 1996, 68:2122-2126.

156. Ji Z, Pinon DJ, Miller LJ: Development of magnetic beads for rapid and efficient metal-chelate affinity purifications. Anal Biochem 1996, 240:197-201.

157. Samson I, Rozenek J, Vanaerschot A, Samyn B, Vanbeeumen J, Herdevijn P: Screening of a synthetic pentapeptide library composed of D-amino acids against fructose-1,6-biphosphate aldolase. Lett Pept Sci 1995, 2:129-260.

158. Seino S, Kinoshita T, Otome Y, Nakayama T, Okitsu K, Nakayama T, Sekine T, Nihara K, Yamamoto TA: Radiation-induced synthesis of Au/Fe oxide nanocomposite particles for magnetic separation of biomolecules. J Ceram Process Res 2004, 5:136-139.

159. Prioul G, Turcotte C, Labarre L, Lacroix C, Fiss L: Rapid purification of nisin Z using specific monoclonal antibody-coated magnetic beads. Int Dairy J 2000, 10:627-633.

Publish with BioMed Central and every scientist can read your work free of charge

“BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime.”

Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp