Anisotropic and crystalline mean curvature flow of mean-convex sets

Antonin Chambolle *, Matteo Novaga †

We consider a variational scheme for the anisotropic (including crystalline) mean curvature flow of sets with strictly positive anisotropic mean curvature. We show that such condition is preserved by the scheme, and we prove the strict convergence in BV of the time-integrated perimeters of the approximating evolutions, extending a recent result of De Philippis and Laux to the anisotropic setting. We also prove uniqueness of the flat flow obtained in the limit.

Keywords: Anisotropic mean curvature flow, crystal growth, minimizing movements, mean convexity, arrival time, 1-superharmonic functions.

MSC (2020): 53E10, 49Q20, 58E12, 35A15, 74E10.

Contents

1. Introduction

2. Preliminary definitions
 2.1. Outward minimizing sets
 2.2. The discrete scheme
 2.3. Preservation of the outward minimality

3. The arrival time function

4. Examples
 4.1. The case $\delta = 0$
 4.2. Continuity of the volume up to $t = 0$

A. 1-superharmonic functions

*CMAP, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France, e-mail: antonin.chambolle@polytechnique.fr
†Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, e-mail: matteo.novaga@unipi.it
1. Introduction

We are interested in the anisotropic mean curvature flow of sets with positive anisotropic mean curvature. More precisely, following [11, 9] we consider a family of sets \(t \mapsto E(t) \) governed by the geometric evolution law

\[
V(x, t) = -\psi(\nu_{E(t)}) \kappa^\phi_{E(t)}(x),
\]

where \(V(x, t) \) denotes the normal velocity of the boundary \(\partial E(t) \) at \(x \), \(\phi \) is a given norm on \(\mathbb{R}^d \), \(\kappa^\phi_{E(t)} \) is the anisotropic mean curvature of \(\partial E(t) \) associated with the anisotropy \(\phi \), and \(\psi \) is another norm (usually called mobility) evaluated at the (outer) unit normal \(\nu_{E(t)} \) to \(\partial E(t) \). We recall that when \(\phi \) is differentiable in \(\mathbb{R}^N \setminus \{0\} \), then \(\kappa^\phi_{E(t)} \) is given by the tangential divergence of the so-called Cahn-Hoffman vector field \[6\]

\[
\kappa^\phi_{E(t)} = \text{div}_t C(\nabla \phi(\nu_{E(t)})), \tag{2}
\]

while in general \[2\] should be replaced with the differential inclusion

\[
\kappa^\phi_{E(t)} = \text{div}_t C(n^\phi_{E(t)}), \quad n^\phi_{E(t)} \in \partial \phi(\nu_{E(t)}).
\]

It is well-known that \[1\] can be interpreted as gradient flow of the anisotropic perimeter

\[
P_\phi(E) = \int_{\partial E} \phi(\nu_E)d\mathcal{H}^{d-1},
\]

and one can construct global-in-time weak solutions by means of the variational scheme introduced by Almgren, Taylor and Wang [1] and, independently, by Luckhaus and Sturzenhecker [14]. Such scheme consists in building a family of discrete-in-time evolutions by an iterative minimization procedure and in considering any limit of these discrete evolutions, as the time step \(h > 0 \) vanishes, as an admissible solution to the geometric motion, usually referred to as a flat flow. The problem which is solved at each step takes the form \[1, \S 2.6\] \(E^n_h := T_h E^{n-1}_h \), where \(T_h E \) is the solution of

\[
\min_F P_\phi(F) + \frac{1}{h} \int_F d^\psi_{E}(x)dx, \tag{3}
\]

where \(d^\psi_{E} \) is the signed distance function of \(E \), with respect to the (non necessarily symmetric) “norm” \(\psi \), which is defined as

\[
d^\psi_{E}(x) := \inf_{y \in E} \psi(x - y) - \inf_{y \not\in E} \psi(y - x). \tag{4}
\]

In [1] it is proved that the discrete solution \(E_h(t) := E_{h}^{[t]} \), with \(\psi = 1 \) and \(\phi \) smooth, converges to a limit flat flow which is contained in the zero-level set of the (unique) viscosity solution of \[1\]. Such a result has been extended in [11, 9] to general anisotropies \(\psi, \phi \). In the isotropic case \(\phi = \psi = | \cdot | \) it is shown in [14] that \(E_h(t) \) converges to a distributional solution \(E(t) \) of \[1\], under the assumption that the perimeter is continuous in the limit, that is,

\[
\lim_{h \to 0} \int_0^T P(E_h(t)) dt = \int_0^T P(E(t)) \quad \text{for } T > 0. \tag{5}
\]

Recently, in [12] the authors proved that the continuity of the perimeter holds if the initial set is outward minimizing for the perimeter (see Section 2.1), a condition which implies the mean convexity and which is preserved by the variational scheme [3] as already shown in [17].

In this paper we generalize the result in [12] to the general anisotropic case, where the continuity of the perimeter was previously known only in the convex case [5], as a consequence of the convexity
preserving property of the scheme. Such result is obtained under a stronger condition of strong outward minimality of the initial set, which is also preserved by the scheme and implies the strict positivity of the anisotropic mean curvature. As a corollary, we obtain the continuity of the volume and of the (anisotropic) perimeter of the limit flat flow.

The plan of the paper is the following: In Section 2 we introduce the notion of outward minimizing set, and we recall the variational scheme proposed by Almgren, Taylor and Wang in [1]. We also show that the scheme preserves the strict outward minimality. In section 3 we show the strict BV-convergence of the discrete arrival time functions, we prove the uniqueness of the limit flow, and we show continuity in time of volume and perimeter, and in Section 4 we give some examples. Eventually, in Appendix A we recall some results on 1-superharmonic functions, adapted to the anisotropic setting.

2. Preliminary definitions

2.1. Outward minimizing sets

Definition 2.1. Let \(\Omega \) be an open subset of \(\mathbb{R}^d \) and let \(E \subset \subset \Omega \) be a finite perimeter set. We say that \(E \) is outward minimizing in \(\Omega \) (see [12, 17]) if

\[
P_\phi(E) \leq P_\phi(F) \quad \forall F \supset E, F \subset \subset \Omega.
\]

(MC)

Note that, if \(E, \phi \) are regular, (MC) implies that the \(\phi \)-mean curvature of \(\partial E \) is non-negative.

We observe that such a set (or rather its complement) satisfies the following density bound: there exists \(\gamma > 0 \) such that for all \(x \in E \) such that \(|B(x, \rho) \setminus E| > 0 \) for all \(\rho > 0 \), one has:

\[
\frac{|B(x, \rho) \setminus E|}{|B(x, \rho)|} \geq \gamma
\]

(6)

whenever \(B(x, \rho) \subset \Omega \). A consequence is that whenever \(x \in E \) is a point of Lebesgue density one, then there is \(\rho \) small such that (6) does not hold, and it follows that for a smaller radius \(\rho' \), \(|B(x, \rho') \setminus E| = 0 \).

(This is even quantitative in the following sense: if \(|B(x, \rho) \setminus E| < \gamma 2^{-d}|B(x, \rho)| \) then \(|B(y, \rho/2) \setminus E| < \gamma |B(y, \rho/2)| \) for all \(y \in B(x, \rho/2) \) so that \(|B(x, \rho/2) \setminus E| = 0 \).) Identifying thus \(E \) with its points of Lebesgue density one, one will always assume that \(E \) is an open subset of \(\mathbb{R}^d \).

Conversely if \(E \subset \mathbb{R}^d \) is bounded and \(C^2, \phi \in C^2(\mathbb{R}^d \setminus \{0\}) \), and its mean curvature is positive, then one can find \(\Omega \supset E \) such that \(E \) is outward minimizing in \(\Omega \). More precisely, if \(E \) is of class \(C^2 \) then, in a neighborhood of \(\partial E \), \(d_{\phi}^E \) is \(C^2 \), while in a smaller neighborhood we even have \(\text{div} \nabla \phi(d_{\phi}^E) \geq \delta \) for some \(\delta > 0 \). Let \(E \) be the union of \(E \) and this smaller neighborhood, and set \(n_{\phi}^E := \nabla \phi(d_{\phi}^E) \); then if \(E \subset F \subset \subset \Omega \),

\[
P_\phi(F) \geq \int_{\partial \ast F} n_{\phi}^E \cdot \nu_F dH^{d-1} = -\int_{\Omega} n_{\phi}^E \cdot D\chi_F
\]

while by construction \(P_\phi(E) = -\int_{\Omega} n_{\phi}^E \cdot D\chi_E \). Hence,

\[
P_\phi(F) \geq P_\phi(E) - \int_{\Omega} n_{\phi}^E \cdot D(\chi_F - \chi_E) = P_\phi(E) + \int_{F \setminus E} \text{div} n_{\phi}^E \geq P_\phi(E) + \delta |F \setminus E|.
\]

Observe (see [12, Lemma 2.5]) that equivalently, one can express this as:

\[
P_\phi(E \cap F) \leq P_\phi(F) - \delta |F \setminus E| \quad \forall F \subset \subset \Omega.
\]

(MC\delta)

Clearly, condition (MC\delta) is stronger and reduces to (MC) whenever \(\delta = 0 \).
Remark 2.2 (Non symmetric distances). As in the standard case (that is when \(\psi^0 \) is smooth and even), the signed “distance” function defined in [11] is easily seen to satisfy the usual properties of a signed distance function. First, it is Lipschitz continuous, hence differentiable almost everywhere. Then, if \(x \) is a point of differentiability, \(d_E^\psi(x) > 0 \) and \(y \in \partial E \) is such that \(\psi^0(x - y) = d_E^\psi(x) \), then for \(s > 0 \) small and \(h \in \mathbb{R}^d \), \(d_E^\psi(x + sh) \geq \psi^0(x + sh - y) \geq \psi^0(x - y) + s\cdot h \) for any \(z \in \partial \psi^0(x - y) \) and one deduces that \(\partial \psi^0(x - y) = \{ \nabla d_E^\psi(x) \} \). If \(d_E^\psi(x) < 0 \), one writes that \(\psi^0(y - x) = -d_E^\psi(x) \) for some \(y \in \partial E \) and uses \(\psi^0(y - x - sh) \geq \psi^0(y - x) - s\cdot h \) for some \(z \in \partial \psi^0(y - x) \), hence \(d_E^\psi(x + sh) - d_E^\psi(x) \leq s\cdot h \) to deduce now that \(\partial \psi^0(y - x) = \{ \nabla d_E^\psi(x) \} \). In all cases, one has \(\phi(\nabla d_E^\psi(x)) = 1 \) a.e. in \(\{ d_E^\psi \neq 0 \} \) (while of course \(\nabla d_E^\psi(x) = 0 \) a.e. in \(\{ d_E^\psi = 0 \} \)), and \(\nabla d_E^\psi(x) \cdot (x - y) = d_E^\psi(x) \), which shows that \(y \in x - d_E^\psi(x) \partial \phi(\nabla d_E^\psi(x)) \).

2.2. The discrete scheme

We now consider here the discrete scheme introduced in [14] [1] and its generalisation in [5] [11] [10]. It is based on the following process: given \(h > 0 \), and \(E \) a (bounded) finite perimeter set, we define \(T_h E \) as a minimizer of

\[
\min_{F \subset E} P_\phi(F) + \frac{1}{h} \int_F d_E^\psi(x) dx \tag{ATW}
\]

where \(d_E^\psi \) is defined in [11]. If \(E \) satisfies \((MC)\) in \(\Omega \), it is clear that for \(h > 0 \) small enough, one has \(T_h E \subset E \). Indeed, for \(h \) small enough one has \(\overline{T_h E} \subset \Omega \), and it follows from \((MC)\) that

\[
P_h(T_h E \cap E) + \frac{1}{h} \int_{T_h E \cap E} d_E^\psi(x) dx \leq P_h(T_h E) + \frac{1}{h} \int_{T_h E} d_E^\psi(x) dx - \frac{1}{h} \int_{T_h E \setminus E} d_E^\psi(x) dx,
\]

showing that \(|T_h E \setminus E| = 0 \). We recall in addition that in this case, \(T_h E \) is also \(\phi \)-mean convex in \(\Omega \), see the proof of [12] Lemma 2.7. If \(E \) satisfies \((MC)\) for \(\delta > 0 \), we can improve the inclusion \(T_h E \subset E \):

Lemma 2.3. Assume that \(E \) satisfies \((MC)\), \(\delta > 0 \). Then for \(h > 0 \) small enough, \(T_h E + \{ \psi^0 \leq \delta h \} \subset E \). In particular, \(d_{T_h E}^\psi \geq d_E^\psi + \delta h \) and \(T_h E \subset \{ d_E^\psi \leq -\delta h \} \).

Proof. Assume \(h \) is small enough so that \(T_h E \subset E \) and \(E + \{ \psi^0 \leq \delta h \} \subset \Omega \). Choose \(\tau \) with \(\psi^0(\tau) < \delta h \) and consider \(F := T_h E + \tau \). We show that also \(F \subset \Omega \). The set \(F \subset \Omega \) is a minimizer of

\[
P_\phi(F) + \frac{1}{h} \int_F d_E^\psi(x - \tau) dx.
\]

In particular, we have

\[
P_\phi(F) + \frac{1}{h} \int_F d_E^\psi(x - \tau) dx \leq P_\phi(F \cap E) + \frac{1}{h} \int_{F \cap E} d_E^\psi(x - \tau) dx \leq P_\phi(F) + \frac{1}{h} \int_F d_E^\psi(x - \tau) dx - \frac{1}{h} \int_{F \setminus E} d_E^\psi(x - \tau) + \delta h dx.
\]

By definition of the signed distance function, for \(x \notin E \), \(d_E^\psi(x - \tau) \geq -\psi^0(x - (x - \tau)) = -\psi^0(\tau) > -\delta h \) so that if \(|F \setminus E| > 0 \) we have a contradiction. We deduce that \(T_h E + \{ \psi^0 \leq \delta h \} \subset E \).

In particular, if \(x \in T_h E \) and \(y \notin E \) is such that \(d_E^\psi(x) = -\psi^0(y - x) \), then \(y' = y - \delta h(y - x)/\psi^0(y - x) \notin T_h E \) hence \(d_{T_h E}^\psi \geq -\psi^0(y' - x) = d_E^\psi(x) - \delta h \). If \(x \in E \setminus T_h E \), \(d_E^\psi(x) = -\psi(y - x) - \delta h \) for some \(y \in \Omega \setminus E \), and \(d_{T_h E}^\psi(x) = \psi(x - y') \) for some \(y' \in T_h E \). Since \(\psi(x - y') + \psi(y - x) \geq \psi(y - y') \geq \delta h \) we conclude. Eventually if \(x \notin E \), for \(y \in T_h E \) with \(d_{T_h E}^\psi(x) = \psi^0(x - y) \) we have
y + δh(x − y)/φ(x − y) ∈ E, so that \(d^w_E(x) \leq φ^s(x − y) − δh = d^w_{T_hE}(x) − δh \). This shows that
\(d^w_{T_hE} \geq d^w_E + δh \). □

Corollary 2.4. For any \(n \geq 1 \), \(T_h^{n+1}E + \{ψ^c ≤ δh\} \subset T_h^nE \), and \(d^w_{T_hE} \geq d^w_E − δnh \).

Proof. The first statement is obvious by induction: assuming that for \(τ \) with \(ψ^c(τ) ≤ δh \) one has \(T_h^nE + τ \subset T_h^{n-1}E \) (which is true for \(n = 1 \)), one has applying \(T_h \) again and using the translational covariance that \(T_h^{n+1}E + τ \subset T_h^nE \). The second statement is obviously deduced, as in the previous proof. □

Remark 2.5 (Density estimates). There exists \(γ > 0 \), depending only on \(φ \) and the dimension, and \(r_0 > 0 \), depending also on \(ψ \), such that the following holds: for \(x \) such that \(|B(x, r) \cap T_hE| > 0 \) for all \(r > 0 \) one has \(|B(x, r) \cap T_hE| ≥ γr^d \) if \(r < r_0h \). For the complement, as \(T_hE \) is \(φ \)-mean convex in \(Ω \), we have as before that for \(x \) such that \(|B(x, r) \cap T_hE| > 0 \) for all \(r > 0 \), one has \(|B(x, r) \cap T_hE| ≥ γr^d \) for all \(r \) with \(B(x, r) \subset \Omega \), cf [6].

2.3. Preservation of the outward minimality

In the sequel, we show some further properties of the discrete evolutions and their limit. An interesting result in [12] is that the \((MC_δ)\)-condition is preserved during the evolution. We prove that it is also the case in the anisotropic setting.

We first show the following result:

Lemma 2.6. Assume \(E \) satisfies \((MC_δ)\) in \(Ω \), with \(δ > 0 \). Then for any \(F \subset Ω \), \(δ|F| ≤ P_φ(F) \).

Proof. Since \(δ|F| = δ|F \cap E| + δ|F \setminus E| ≤ δ|F \cap E| + (P_φ(F) − P_φ(F \cap E)) \) (using \((MC_δ)\)), it is enough to show the result for \(F \subset E \). We introduce for any \(s > 0 \) the largest minimizer of

\[
P_φ(E_s) + \frac{1}{s} \int_{E_s} d^w_E \, dx.
\]

which is obtained as the level set \(\{w_s ≤ 0\} \) of the (Lipschitz continuous) solution \(w_s \) of the equation

\[-s\text{div} \, z_s + w_s = d^w_{E_s}, \quad z_s \in \partial φ(∇ w_s),\]

see for instance [3] for details. It turns out that there exists some \(s_0 > 0 \) such that for \(s < s_0 \), \(E_s \subset Ω \). This is true because by comparison it is easy to show that \(E_s \subset E + B(0, C\sqrt{s}) \) for some constant \(C \) depending only on \(φ, ψ \), but in fact, as soon as the minimizer of the same problem [2] with \(P_φ \) replaced with \(P_φ(\cdot; Ω) \) is strictly in \(Ω \) (hence in \(E_s \), cf Lemma [2,3]), then it coincides with \(E_s \) and it even follows that \(E_s \subset E \). In addition, \(ψ(∇ w_s) ≤ 1 = ψ(∇ d^w_{E_s}) \) a.e. in \(R^d \). For \(s < s_0 \), we denote also \(E'_s = \{w_s < 0\} \) the smallest minimizer of [7].

As \(P_φ(E_s) ≤ P_φ(E), \lim_{s \to 0} P_φ(E_s) = P_φ(E) \) and one deduces that for any \(F \subset E \), \(\lim_{s \to 0} P_φ(F \cap E_s) = P_φ(F) \). Indeed,

\[P_φ(F \cap E_s) + P_φ(F \cup E_s) ≤ P_φ(F) + P_φ(E),\]

and \(F \cup E_s \to E \), so that

\[P(E) + \limsup_s P_φ(F \cap E_s) ≤ P_φ(F) + P_φ(E),\]

which shows the claim.
Thanks to Lemma 2.3 one has that $d_E^{w_o} \leq -s\delta$ on $\partial E_s = \{w_s \leq 0\}$. Now if $x \in E_s$ and $y \in \partial E_s$, $w_s(x) \geq w_s(y) - \psi_o(y - x) = -\psi_o(y - x)$ (using $\psi_o(\nabla w_s) \leq 1$). If $z \notin E$ and $y \in [x, z] \cap \partial E_s$, one has $\psi_o(z - x) = \psi_o(z - y) + \psi_o(y - x)$ (by one-homogeneity) so that $0 \leq w_s(x) + \psi_o(y - x) = w_s(x) + \psi_o(z - x) - \psi_o(z - y) \leq w_s(x) + \psi_o(z - x) - s\delta$. Taking the infimum over z, we see that $s\delta \leq w_s(x) - d_E^{w_o}(x)$. Hence $\text{div} z_s \geq \delta$ a.e. in E.

Let now $F \subset E$, one has $P_\delta(F \cap E_s) \geq \int_\Omega \text{div} z_s \chi_{F \cap E_s} \geq \delta |F \cap E_s|$. The lemma follows letting $s \to 0$.

We can then deduce the following:

Lemma 2.7. Let $\delta > 0$, E (open) satisfy (MC_δ) in Ω, $h > 0$ small and $T_h E \subset E$ the solution of (ATW). Then $T_h E$ satisfies (MC_δ).

Proof. We remark that the sets E_s, E'_s built in the previous proof satisfy $E_s \subset E'_s$ for $s > s'$. This follows from the fact that the term $s \mapsto d_E^{w_o}(x)/s < 0$ is increasing for $x \in E$. In particular, if $s_n \to s$, $s_n < s$, then $E_{s_n} \to E_s$, while if $s_n > s$, $\Omega \setminus E'_s$ converges to $\Omega \setminus E'_s$. Moreover, as the sets satisfy uniform density estimates (for s large enough), these convergences are also in the Hausdorff sense. In particular, we deduce that $E \setminus E'_s = \bigcup_{0 < s' < s} (E_s \setminus E'_s)$ (we recall $E_s \setminus E'_s = \{w_s = 0\}$).

Let $\varepsilon > 0$. The previous analysis also shows that there exists $\eta > 0$ (depending only on ϕ) such that for any $s \in (0, s_0)$, in $N_s = \{x : \text{dist}(x, E_s) < \eta\}$, one has $\text{div} z_s \geq \delta - \varepsilon$ (we use here that $w_s - d_E^{w_o}$ is Lipschitz continuous).

Let $h > s > 2 > 0$. The set $E_s \setminus E'_s$ is covered by the open sets $N_s \setminus E'_s$, $0 < s < h$. Hence one can extract a finite covering indexed by $s_1 > s_2 > \cdots > s_{N-1}$. We observe that necessarily, $h > s_1 > s$ and we let $s_N := s$. Let $F \subset \subset \Omega$ and up to an infinitesimal translation, assume $H^{d-1}(\partial^s F \cap \partial E_s) = 0$ for $i = 1, \ldots, N$. One has for $i \in \{1, \ldots, N\}$

$$P_\delta(E_{s_{i-1}} \cap F) - P_\delta(E_{s_i} \cap F) \geq \int_{\partial^s(F \cap E_{s_{i-1}} \setminus E_{s_i})} z_{s_i} \nu \, dH^{d-1} \geq \int_{F \cap E_{s_{i-1}} \setminus E_{s_i}} \text{div} z_{s_i} \, dx \geq (\delta - \varepsilon) |F \cap E_{s_{i-1}} \setminus E_{s_i}|$$

so that, summing from $i = 1$ to N, we find that

$$P_\delta(E_{s_1} \cap F) \leq P_\delta(E \cap F) - (\delta - \varepsilon) |E \setminus E_{s_1} \cap F|.$$

Since E_s is outward minimizing, $P_\delta(E_s \cap F) \leq P_\delta(E \cap F) \leq P_\delta(F) - (\delta - \varepsilon) |F \setminus E|$, so that:

$$P_\delta(E_{s_1} \cap F) \leq P_\delta(F) - (\delta - \varepsilon) (|F \setminus E| + |E \setminus E_{s_1} \cap F|).$$

Sending $s < s_1$ to h and s to 0, we deduce that $P_\delta(E_h \cap F) \leq P_\delta(F) - (\delta - \varepsilon) |F \setminus E_h|$ hence the thesis holds, since ε is arbitrary.

3. The arrival time function

Consider an open set $\Omega \subset \mathbb{R}^d$ and a set $E^0 \subset \subset \Omega$ such that (MC_δ) holds for some $\delta > 0$. As usual [13] we let $E_h(t) := T_h^{[t/h]}(E^0)$, here $[\cdot]$ denotes the integer part. Being the sets $T_h^{[t/h]}(E^0)$ mean-convex, we can choose an open representative. We can define the discrete arrival time function as

$$u_h(x) := \max\{t \chi_{E_h(t)}(x), t \geq 0\},$$

6
which is a l.s.c. function\(^4\) which, thanks to the co-area formula, satisfies
\[
\int_{\Omega} \phi(-Du_h) \leq \int_{\Omega} \phi(-Dv)
\]
for any \(v \in BV(\mathbb{R}^d)\) with \(v \geq u_h, v = 0\) in \(\mathbb{R}^d \setminus \Omega\) — hence a \((\phi, 1)\)-superharmonic function in the sense of [24], see Sec. A. One easily sees that \((u_h)_h\) is uniformly bounded in \(BV(\Omega)\) so that a subsequence \(u_{h_k}\) converges in \(L^1(\Omega)\) to some \(u\) (which again is \(1\)-superharmonic).

In addition, as \(E^0\) satisfies \((MC\delta)\), we have thanks to Corollary 2.3 that \(u_h\) has a sort of global Lipschitz bound. More precisely, for \(x, y \in \Omega\) there holds
\[
u_h(x) - u_h(y) \leq h + \frac{\phi(\delta)(y - x)}{\delta}
\]
Indeed, one has \(u_h(x) = t \Rightarrow u_h(x + \tau) \geq t - h\) for any \(t \geq 0\) and \(\tau\) with \(\phi(\delta)(\tau) \leq \delta h\). The claim follows by induction.

As a consequence we obtain that \(u_h\) converges uniformly, up to a subsequence, to a limit function \(u\), which is also Lipschitz continuous, and satisfies
\[
u(x) - u(y) \leq \frac{\phi(\delta)(y - x)}{\delta}
\]
for any \(x, y \in \Omega\). Moreover, recalling Lemma 2.7 we have that the functions \(u_h\) and \(u\) are \((\phi, \delta)\)-superharmonic, in the sense of Definition 11.1 below.

We will show that the function \(u\) is unique, and is the arrival time function of the anisotropic curvature flow starting form \(E^0\), in the sense of [9].

Theorem 3.1. Under the previous assumption on \(E^0\), the arrival time function \(u_h\) converge to a unique limit \(u\), as \(h \to 0\), which is such that \((x, t) \mapsto \{u(x) \leq t\}\) is a solution of \((MCF)\) starting from \(E\). Moreover, there holds
\[
\lim_{h \to 0} \int_{\Omega} \phi(-Du_h) = \int_{\Omega} \phi(-Du).
\]

Proof. Let us denote \(E^s\) the (open) sets \(\{u > s\}\). Since given \(x, \rho\) with \(B(x, \rho) \subset E\), one knows that the curvature flow starting from \(B(x, \rho)\) will contain \(x\) for a time of order \(\rho^2\), one has \(u(x) \gtrsim \rho^2\). It follows that \(x \in E^s\) for some \(s \sim \rho^2\) so that \(\bigcup_{s>0} E^s = E\).

As a consequence of the existence and uniqueness result in [11] [24], for a.e. \(s > 0\) the arrival time functions \(u^s_h \leq u_h\) of the discrete flows \(T_{h}^{\tau/h}E^s\) converge uniformly to a unique limit \(u^s\). In particular, considering the subsequence \(u_{h_k}\), one has \(u^s \leq \rho\). On the other hand, thanks to Corollary 2.3 and the Remark 2.3, given \(s > 0\) there is \(s > 0\) such that \(T_h^{\tau/h}E^0 \subset E^s\). Then, \(T_{h}^{\tau/h}E^0 \subset E_{\rho}\) for \(\rho\) small enough by induction so that \(u_h - \tau_h \leq u^s\). If \(v\) is the limit of a converging subsequence of \((u_h)_h\), we deduce \(v - \tau_h \leq u^s \leq u\). Sending \(s \to 0\) we deduce \(v \leq u\). Since this is true for any pair \((u, v)\) of limits of converging subsequences of \((u_h)_h\), this limit is unique and \(u_h \to u\).

The last statement is already proved in [24] in a simple way: clearly, one just needs to show that
\[
\limsup_h \int_{\Omega} \phi(-Du_h) \leq \int_{\Omega} \phi(-Du).
\]
As \((u_h)_h\) converges uniformly to \(u\), given \(\varepsilon > 0\), one has \(u_h \leq u + \varepsilon\) for \(h\) small enough. On the other hand, since all these functions vanish out of \(E\), it follows \(u_h \leq u + \varepsilon\). Hence, being \(u_h\) \(\phi, 1\)-superharmonic,
\[
\int_{\Omega} \phi(-Du_h) \leq \int_{\Omega} \phi(-Du + \varepsilon\chi_E) = \int_{\Omega} \phi(-Du) + \varepsilon P_\phi(E)
\]
for \(h\) small enough, and the thesis follows.

\(^4\)We can say that \(u_h\) is a function in \(BV(\Omega)\) with compact support and such that its approximate lower \(u_h^\phi\) is lower semicontinuous.
Theorem 3.1 shows that the scheme starting from a strict \(\phi \)-mean convex set always converges to a unique flow, with no loss of (anisotropic) perimeter. In particular, in the smooth and elliptic case, following \[13\] it allows to show that the limit satisfies a distributional formulation of the anisotropic curvature flow.

Remark 3.2 (Continuity of volume and perimeter). As is well-known for general flat flows (see \[13\]), the limit motion \(t \mapsto \{u \geq t\} \) is \(1/2\)-Hölder in \(L^1(\Omega) \), in the sense that, for \(s \geq t > 0 \),

\[
||\{s > u \geq t\} \cap \Omega|| \leq C |t - s|^{1/2},
\]

where \(C \) depends on the dimension and on the perimeter of the initial set. In particular, \(|\{u = t\}| = 0 \) for all \(t > 0 \), so that up to a negligible set, \(\{u > t\} = \{u \geq t\} \). (For \(t = 0 \) it may happen that \(|\{u > 0\}| > 0 \), as shown in the second example below.)

In addition, since each set \(\{u > t\} \) is \(\delta \)-superharmonic for \(t > 0 \), for \(s > t \geq 0 \) one also has that

\[
P_\phi(\{u > s\}) + \delta |\{s \geq u > t\}| = P_\phi(\{u > t\})
\]

so that \(t \mapsto P_\phi(\{u > t\}) \) is strictly decreasing, until extinction. Since
\(\bigcup_{s > t} \{u > s\} = \{u > t\} \) one also sees that \(t \mapsto P_\phi(\{u > t\}) \) is right-continuous. On the other hand, whether it could jump or not remains an open question.

4. Examples

4.1. The case \(\delta = 0 \)

If the initial datum \(E^0 \) satisfies \((MC)\) we should distinguish two cases: If \(\phi \) is smooth and elliptic, \(\psi \) is smooth and \(\partial E^0 \) is also smooth, then there exists a smooth solution to \((1)\) on a time interval \([0, \tau)\), for some \(\tau > 0 \) (see \[13\] Chapter 8)). Moreover, by the parabolic maximum principle, the solution \(E(t) \) become strictly mean-convex for \(t > 0 \). In particular, for any \(\varepsilon \in (0, \tau) \) there exist \(\delta_\varepsilon > 0 \) and an open set \(\Omega_\varepsilon \) such that \(E(t_\varepsilon) \subset \subset \Omega_\varepsilon \), \(\delta_\varepsilon \to 0 \) as \(\varepsilon \to 0 \), and \(E(t) \) satisfies \((MC_{\delta_\varepsilon})\) in \(\Omega_\varepsilon \) for \(t \in (\varepsilon, \tau) \).

As a consequence, the previous results hold in all the time intervals \([\varepsilon, +\infty)\), so that and the limit function \(u \) it is still unique and continuous, and it is locally Lipschitz continuous in the interior of \(E^0 \).

On the other hand, for an arbitrary anisotropy \(\phi \), the function \(u \) could be discontinuous on the boundary of \(E^0 \). As an example let us consider, in two dimensions, the case \(\psi(\xi, \eta) = \phi(\xi, \eta) = |\xi| + |\eta| \) (and \(\psi^0 \leq 1 \) = \(\{(x, y) : |x| \leq 1, |y| \leq 1\} \)), and the cross-shaped initial datum

\[
E^0 := ([-1, 1] \times [-2, 2]) \cup ([-2, 2] \times [-1, 1]) \subset \mathbb{R}^2.
\]

It is easy to check that \(E^0 \) is outward minimizing, so that \(E(t) \subset E^0 \) is also outward minimizing for all \(t > 0 \). Moreover, the solution \(E(t) = \{(x, y) : u(x, y) \geq t\} \) is unique (see for instance \[13\]), and can be explicitly described as follows:

\[
E(t) = \begin{cases}
([-1, 1] \times [-2 + t, 2 - t]) \cup ([-2 + t, 2 - t] \times [-1, 1]) & \text{for } t \in [0, 1] \\
[-\sqrt{1 - 2(t - 1)}, \sqrt{1 - 2(t - 1)}] & \text{for } t \in [1, \frac{3}{2}] \\
\emptyset & \text{for } t \geq \frac{3}{2},
\end{cases}
\]

(10)

In particular, the function \(u \in BV(\mathbb{R}^2) \) is discontinuous on \(\partial E^0 \setminus \partial([-2, 2] \times [-2, 2]). \)
We observe that formula (10) for $E(t)$ can be easily obtained by finding explicit solutions to (ATW), starting from $E_L = ([−1, 1] \times [−L, L]) \cup ([−L, L] \times [−1, 1])$, $L > 1$. An approach is as follows: a “calibration” is given by the vector field (which one defines only in E_L):

$$z(x, y) = \begin{cases} (x, y) & \text{if } |x| \leq 1, |y| \leq 1, \\ (x, ±1) & \text{if } |x| \leq 1, 1 \leq y \leq L, \\ (±1, y) & \text{if } 1 \leq ±x \leq L, |y| \leq 1. \end{cases}$$

One has $\text{div} z = 1 + \chi_{[-1,1]^2}$ in E_L, $z(x, y) \in \{\psi^\circ \leq 1\}$, and $P_\phi(E_\ell) = \int_{\partial E_\ell} z \cdot \nu \, dH^1$ for any $1 \leq \ell \leq L$. Hence, if $L - h \geq 1$ and $F \subset E_L$, we have

$$P_\phi(F) + \int_F \frac{dE_\ell^\circ}{h} \, dx \geq \int_{\partial F} \nu \cdot z \, dH^1 + \int_F \frac{dE_\ell^\circ}{h} \, dx
= \int_{\partial F} \nu \cdot z \, dH^1 - \int_{\partial E_L-h} \nu \cdot z \, dH^1 + P_\phi(E_{L-h}) + \int_F \frac{dE_\ell^\circ}{h} \, dx
= \int z \cdot (D\chi_{E_{L-h}} - D\chi_{F}) + P_\phi(E_{L-h}) + \int_{E_{L-h}} \frac{dE_\ell^\circ}{h} \, dx + \int_{E_L} (\chi_{F} - \chi_{E_{L-h}}) \frac{dE_\ell^\circ}{h} \, dx
= P_\phi(E_{L-h}) + \int_{E_{L-h}} \frac{dE_\ell^\circ}{h} \, dx + \int_{E_L} (\chi_{F} - \chi_{E_{L-h}}) \left(\frac{dE_\ell^\circ}{h} + 1 + \chi_{[-1,1]^2}\right) \, dx.$$
Case 1. \(|F \cap B(x_n, d_n)| \geq d_n^2 / C\). In this case we have

\[
P(F) \geq P(E_n) + \left(1 + \frac{1}{n}\right) \delta |F \setminus E_n|
\]
\[
\geq P(E_{n+1}) - 2 \pi r_n + \left(1 + \frac{1}{n+1}\right) \delta |F \setminus E_n| + \left(\frac{1}{n} - \frac{1}{n+1}\right) \delta |F \cap B(x_n, d_n)|
\]
\[
\geq P(E_{n+1}) + \left(1 + \frac{1}{n+1}\right) \delta |F \setminus E_{n+1}| + \left(\frac{1}{n} - \frac{1}{n+1}\right) \frac{\delta d_n^2}{C} - 2 \pi r_{n+1}
\]

where in the last inequality we used (1).

Case 2. \(|F \cap B(x_n, d_n)| \leq d_n^2 / C\) and \(H^1(F \cap \partial B(x_n, r)) = 0\) for some \(r \in (r_{n+1}, d_n)\). In this case, we write \(F = F_1 \cup F_2\), with \(F_1 = F \cap B(x_n, r) \supset B(x_n, r_{n+1})\) and \(F_2 = F \setminus B(x_n, r) \supset E_n\), and we have

\[
P(F_1) \geq P(B(x_n, r_{n+1})) + 2 \delta |F_1 \setminus B(x_n, r_{n+1})|
\]
\[
P(F_2) \geq P(E_n) + \left(1 + \frac{1}{n}\right) \delta |F_2 \setminus E_n|.
\]

Summing up the two inequalities above, we get

\[
P(F) = P(F_1) + P(F_2) \geq P(E_{n+1}) + \left(1 + \frac{1}{n}\right) \delta (|F_1 \setminus B(x_n, r_{n+1})| + |F_2 \setminus E_n|)
\]
\[
= P(E_{n+1}) + \left(1 + \frac{1}{n}\right) \delta |F \setminus E_{n+1}|.
\]

Case 3. \(|F \cap B(x_n, d_n)| \leq d_n^2 / C\) and \(H^1(F \cap \partial B(x_n, r)) > 0\) for a.e. \(r \in (r_{n+1}, d_n)\). In this case, by coarea formula we have

\[
|F \cap \left(B \left(x_n, \frac{d_n}{3}\right) \setminus B \left(x_n, \frac{d_n}{6}\right)\right)| = \int_{\frac{d_n}{6}}^{\frac{d_n}{3}} H^1(F \cap \partial B(x_n, r)) \, dr \leq \frac{d_n^2}{C}.
\]

It follows that there exists \(r_1 \in (d_n/6, d_n/3)\) such that

\[
H^1(F \cap \partial B(x_n, r_1)) \leq \frac{6d_n}{C}.
\]

Similarly we have

\[
|F \cap \left(B(x_n, d_n) \setminus B \left(x_n, \frac{2d_n}{3}\right)\right)| = \int_{\frac{2d_n}{3}}^{d_n} H^1(F \cap \partial B(x_n, r)) \, dr \leq \frac{d_n^2}{C},
\]

and there exists \(r_2 \in (2d_n/3, d_n)\) such that

\[
H^1(F \cap \partial B(x_n, r_2)) \leq \frac{3d_n}{C}.
\]

Using that \(H^1(F \cap \partial B(x_n, r)) > 0\) for all \(r \in (r_{n+1}, d_n)\) we deduce that either for a.e. \(r \in (r_1, r_2)\), \(H^0(\partial^* F \cap B(x_n, r)) \geq 2\) and it follows that \(P(F \cap B(x_n, r_2) \setminus B(x_n, r_1)) \geq 2(r_2 - r_1) \geq 2d_n/3\), or for a set of positive measure of radii \(r \in (r_1, r_2)\) one has \(H^1(F \cap \partial B(x_n, r)) = 2\pi r\), however this implies \(P(F \cap B(x_n, r_2) \setminus B(x_n, r_1)) \geq 2\pi r_1 - 6d_n/C \geq d_n(\pi/3 - 6/C) \geq 2d_n/3\) provided we have chosen \(C \geq 18/(\pi - 2)\).
Then, proceeding as in the previous case we let $F_1 = F \cap B(x_n, r_1)$ and $F_2 = F \setminus B(x_n, r_2)$, and we have

$$P(F) = P(F_1) + P(F_2) - \mathcal{H}^1(F \cap \partial B(x_n, r_1)) - \mathcal{H}^1(F \cap \partial B(x_n, r_2)) + P(F, B(x_n, r_2) \setminus B(x_n, r_1))$$

$$\geq P(E_{n+1}) + \left(1 + \frac{1}{n}\right) \delta |F \setminus E_{n+1}| - \left(1 + \frac{1}{n}\right) \delta \frac{2d_n}{C} - \frac{9d_n}{2} + \frac{2d_n}{3}$$

$$\geq P(E_{n+1}) + \left(1 + \frac{1}{n}\right) \delta |F \setminus E_{n+1}| - \frac{2\delta + 9}{C} d_n + \frac{2d_n}{3}$$

$$\geq P(E_{n+1}) + \left(1 + \frac{1}{n}\right) \delta |F \setminus E_{n+1}|,$$

as long as we choose $C \geq 3(2\delta + 9)/2$.

We proved that E_n satisfies (MC_δ) for all $n \in \mathbb{N}$, therefore also the limit set

$$E = \bigcup_{n \in \mathbb{N}} E_n = \bigcup_{n \in \mathbb{N}} B(x_n, r_n)$$

satisfies (MC_δ) in Ω. In this case, the solution u in Theorem 3.1 is explicit and is given by

$$u(x) = \sum_{n \in \mathbb{N}} \frac{r_n^2 - |x - x_n|^2}{2(d - 1)}.$$

Notice that we have

$$\partial\{u > 0\} = \partial E = B(0, 1) \setminus E,$$

so that $|\partial\{u > 0\}| = \pi - |E| > 0$.

A. 1-superharmonic functions

The goal of this appendix is to recall some results proved in [16] on 1-superharmonic functions, to give precise statements in the anisotropic case, and to propose some simple proofs, when possible.

Definition A.1. We say that u is $((\phi, \delta))$-1-superharmonic in Ω if $\{u \neq 0\} \subset \subset \Omega$ and for any v with $v \geq u$, $\{v \neq 0\} \subset \subset \Omega$, one has

$$\int_\Omega \phi(-Du) \leq \int_\Omega \phi(-Dv),$$

or, equivalently, for any v with compact support in Ω,

$$\int_\Omega \phi(-D(u \wedge v)) \leq \int_\Omega \phi(-Dv). \quad (SH)$$

Given $\delta > 0$, we say that u is $((\phi, \delta))$-1-superharmonic in Ω if $\{u \neq 0\} \subset \subset \Omega$ and one has:

$$\int_\Omega \phi(-D(u \wedge v)) \leq \int_\Omega \phi(-Dv) - \delta \int_\Omega (v - u)^+ dx \quad \forall v, \{v \neq 0\} \subset \subset \Omega. \quad (SH_\delta)$$

Equivalently, u is a minimizer of

$$\int_\Omega \phi(-Du) - \delta \int_\Omega udx,$$

with respect to larger competitors with the same boundary condition.
Obviously then, $u \geq 0$ (using $v = u^+$ in (SH)). Notice that χ_E is 1-superharmonic if and only if the set E is outward minimizing.

Observe that, in this case, the set $E^0 = \{ u > 0 \}$ has finite perimeter and satisfies (MC_δ). Indeed, for $E \subset F \subset \Omega$, letting $v = \varepsilon \chi_F$ for $\varepsilon > 0$, we have

\[
\int_\Omega \phi(-D(u \wedge \varepsilon \chi_F)) = \int_0^\varepsilon P_\phi(\{ u > s \} \cap F) ds
\leq \varepsilon P_\phi(F) - \delta \int_\Omega (\varepsilon \chi_F - u)^+ dx = \varepsilon \left(P_\phi(F) - \delta \int_\Omega (\chi_F - u/\varepsilon)^+ dx \right).
\]

Hence:
\[
\int_0^1 P_\phi(\{ u > t \varepsilon \} \cap F) dt \leq P_\phi(F) - \delta \int_\Omega (\chi_F - u/\varepsilon)^+ dx.
\]

Sending $\varepsilon \to 0$, we deduce (MC_δ).

In particular, it follows from Lemma 2.6 that for any $v \in BV(\Omega)$ compactly supported, $\delta \int_\Omega |v| dx \leq \int_\Omega \phi(-Dv)$. We then deduce that if u satisfies (SH_δ) also $u \wedge T$ for any $T > 0$. Indeed,
\[
\int_\Omega \phi(-D((u \wedge T) \wedge v)) \leq \int_\Omega \phi(-D(v \wedge T)) - \delta \int_\Omega ((v \wedge T) - u)^+ dx
\]

On the other hand,
\[
\int_\Omega \phi(-D(v \wedge T)) = \int_\Omega \phi(-Dv) - \int_\Omega \phi(-D(v - T)^+) \leq \int_\Omega \phi(-Dv) - \delta \int_\Omega (v - T)^+ dx,
\]

and it follows
\[
\int_\Omega \phi(-D((u \wedge T) \wedge v)) \leq \int_\Omega \phi(-Dv) - \delta \int_\Omega (v - (u \wedge T))^+ dx.
\]

Then, the following characterization holds:

Proposition A.2. Let u satisfy (SH_δ). Then there exists $z \in L^\infty(\Omega; \{ \phi^o \leq 1 \})$ with $\text{div } z \geq \delta$, $[z, Du^+] = |Du|$ in the sense of measures (equivalently, $\int_\Omega u^+ \text{div } z \ dx = \int \phi(\partial u^+)$), and $\text{div } z = \delta$ on $\{ u = 0 \}$.

Corollary A.3. Let u satisfy (SH_δ). Then for any $s > 0$, $\{ u^+ \geq s \}$ and $\{ u^+ > s \}$ satisfy (MC_δ).

Here, u^+ is as usual the superior approximate limit of u (defined \mathcal{H}^{d-1}-a.e.) and $[z, Du^+]$ the pairing in the sense of Anzellotti [4].

Proof. For $n \geq 1$, let v_n be the unique minimizer of
\[
\min_{v=0} \int_\Omega \phi(-Dv) + \int_\Omega \frac{n}{2} (v - u \wedge n)^2 - \delta v \ dx.
\]

(12)

(the boundary condition is to be intended in a relaxed sense, adding a term $\int_{\partial \Omega} |\text{Tr} \cdot \phi(v_n) d\mathcal{H}^{d-1}$ in the energy if the trace of v on the boundary does not vanish). The Euler-Lagrange equation for this problem asserts the existence of a field $z_n \in L^\infty(\Omega; \{ \phi^o \leq 1 \})$ with bounded divergence such that

\[
\text{div } z_n + nv_n = n(u \wedge n) + \delta
\]
a.e. in Ω, and $\int_\Omega \text{div } z_n v_n \ dx = \int_\Omega \phi(-Dv_n)$. On the other hand $\int_\Omega \phi(-Dv_n) \leq \int_\Omega \phi(-D(u \wedge n)) \leq \int_\Omega \phi(-Du)$ and we have $v_n \to u$, $\int_\Omega \phi(-Dv_n) \to \int_\Omega \phi(-Du)$ as $n \to \infty$.
We show that \(v_n \leq u \wedge n \). Indeed, \(\int_{\Omega} \phi(-D(v_n \wedge u \wedge n)) \leq \int_{\Omega} \phi(-Dv_n) - \delta \int_{\Omega} (v_n - (u \wedge n))^+ \, dx \), while \(\int_{\Omega} (v_n - (u \wedge n))^+ \, dx \geq \int_{\Omega} ((v_n \wedge u \wedge n) - (u \wedge n))^2 \). Hence,

\[
\int_{\Omega} \phi(-D(v_n \wedge u \wedge n)) + \frac{n}{2} \int_{\Omega} ((v_n \wedge u \wedge n) - (u \wedge n))^2 - \delta \int_{\Omega} (v_n \wedge u \wedge n) \, dx
\leq \int_{\Omega} \phi(-Dv_n) + \frac{n}{2} \int_{\Omega} (v_n - (u \wedge n))^2 \, dx - \delta \int_{\Omega} v_n \, dx
+ \delta \int_{\Omega} (v_n - (v_n \wedge u \wedge n)) - (v_n - (u \wedge n))^+ \, dx
\]

\[
= \int_{\Omega} \phi(-Dv_n) + \frac{n}{2} \int_{\Omega} (v_n - (u \wedge n))^2 \, dx - \delta \int_{\Omega} v_n \, dx
\]

and as the minimizer \(v_n \) of (12) is unique, we deduce \(v_n = v_n \wedge u \wedge n \). In particular, it follows \(\text{div} \, z_n \geq \delta \).

(Observe that since \(v_n \geq 0 \), one also has \(\text{div} \, z_n \leq \delta + n(u \wedge n) \), in particular \(\text{div} \, z_n = \delta \) a.e. in \(\{u = 0\} \). Also, \(\int_{\{u > 0\}} \text{div} \, z_n \leq P_{\phi}(E^0) \), hence \(\text{div} \, z_n \) are uniformly bounded Radon measures. Hence, up to a subsequence, we may assume that \(z_n \overset{*}{\rightharpoonup} z \) weakly-* in \(L^\infty(\Omega; \{\phi \leq 1\}) \) while \(z_n \overset{*}{\rightharpoonup} z \) weakly-* in \(M^1(\Omega; \mathbb{R}_+) \), that is, as positive measures.

We now write

\[
\int_{\Omega} \phi(-Du) = \int_{\Omega} v_n \, dx \leq \int_{\Omega} (u \wedge n) \, dx = \int_{0}^{n} \int_{\{x \geq s\}} \text{div} \, z_n \, dx \, ds,
\]

hence, \(v_n \rightarrow u \),

\[
\int_{\Omega} \phi(-Du) \leq \limsup_{n \rightarrow \infty} \int_{0}^{n} \int_{\{x \geq s\}} \text{div} \, z_n \, dx \, ds \leq \lim_{n \rightarrow \infty} \int_{0}^{\infty} \int_{\{x \geq s\}} \text{div} \, z_n \, dx \, ds
\]

thanks to Fatou’s lemma (and the fact \(\int_{\{x \geq s\}} \text{div} \, z_n \, dx \leq P_{\phi}(E^0) \) are uniformly bounded).

We now study the limit of \(\int_{\{x \geq s\}} \text{div} \, z_n \, dx \), for \(s \) given, assuming \(\{u > s\} \) has finite perimeter (this is true for a.e. \(s \), and in fact one could independently check that \(s \mapsto P_{\phi}(\{u \geq s\}) \) is nonincreasing).

We consider a set \(F = \{u \geq s\} \) with finite perimeter, and we recall \(D\chi_F \) is supported on the reduced boundary \(\partial^* F \). By inner regularity, given \(\varepsilon > 0 \), we find a compact set \(K \subset \partial^* F \) with \(|D\chi_F|(\Omega \setminus K) < \varepsilon \). We observe that \(H^{d-1}\text{-a.e. on } K \) (which is countably rectifiable), \(\chi_F \) has an upper an lower trace, respectively \(\chi_F^+ = 1 \) and \(\chi_F^- = 0 \). By the Meyers-Serrin Theorem (or its BV version, cf. [3] or [2] Theorem 3.9), there exists \(\phi_k \) a sequence of functions in \(C^\infty(\Omega \setminus K; [0, 1]) \) with \(\phi_k \rightarrow \chi_F \) and

\[
\int_{0}^{1} H^{d-1}(\{x \in \Omega \setminus K : \phi_k(x) = k\}) = \int_{\Omega \setminus K} |\nabla \phi_k| \, dx \rightarrow |D\chi_F|(\Omega \setminus K) < \varepsilon.
\]

Moreover, by construction the traces of \(\phi_k \) in \(K \) coincide with the traces of \(\chi_F \) (see [2] Section 3.8)).

We choose for each \(k \) \(s_k \in [1/4, 3/4] \) such that \(H^{d-1}(\partial \{\phi_k \geq s_k\} \setminus K) \leq 2\varepsilon \). We then define the closed (compact) sets \(F_k := \{\phi_k \geq s_k\} \cup K \). One has \(\int_{\Omega} |D\chi_F - D\chi_{F_k}| = \int_{\Omega \setminus K} |D\chi_F - D\chi_{F_k}| \leq 3\varepsilon \).

(This shows that \(F \) can be approximated strongly in \(\text{BV} \) norm by closed sets.)

Then, one has \(\limsup \int_{F_k} \text{div} \, z_n \, dx \leq \int_{F_k} \text{div} \, z \) as the measures are nonnegative and \(\chi_{F_k} \) is scs. On the other hand, \(|D\chi_F - \chi_{F_k}| \) is scs, so that

\[
\limsup_{n \rightarrow \infty} \int_{F} \text{div} \, z_n \, dx \leq 3\varepsilon + \int_{F} \text{div} \, z + \int (\chi_{F_k} - \chi_F) \, dx \leq 3\varepsilon + \int_{F} \text{div} \, z + \int (\chi_{F_k} - \chi_F)^+ \, dx \, dz.
\]

Notice that it is important to specify precisely the set \(F \) that we consider in the last inequality: We pick for \(F \) the complement \(F^+ \) of its points of density zero, equivalently \(F^+ = \{u^+ \geq s\} \). In that case,
up to a set of zero \mathcal{H}^{d-1}-measure, $\chi_G := (\chi_{F_k} - \chi_{F^+})^+ = \chi_{F_k \setminus F^+}$ vanishes on K pointwise, moreover at \mathcal{H}^{d-1}-a.e. $x \in K$, G has Lebesgue density 0. Hence G coincides \mathcal{H}^{d-1}-a.e. with a Caccioppoli set strictly inside Ω and with $\int_\Omega |D\chi_G| \leq 3\varepsilon$. Thanks to [13] Thm 5.12.4 it follows $\text{div} (G) \leq C \varepsilon$ for C depending only on ϕ and the dimension (see also [16] Prop. 3.5]). As a consequence, since $\varepsilon > 0$ is arbitrary,

$$\limsup_{n \to \infty} \int_{\{u \geq s\}} \text{div} z_n dx \leq \int_{\{u^+ \geq s\}} \text{div} z.$$

We obtain that

$$\int_{\Omega} \phi(-Du) \leq \int_{\Omega} u^+ \text{div} z.$$

The reverse inequality also holds thanks to [16] Prop. 3.5, (3.9)], and can be proved by localizing and smoothing with kernels depending on the local orientation of the jump. We also deduce that, for a.e. $s > 0$,

$$\int_{\{u^+ \geq s\}} \text{div} z = P_\phi(\{u \geq s\}).$$

Note that $s \mapsto \text{div} \{u^+ \geq s\}$ is left-continuous, and $s \mapsto \text{div} \{u^+ > s\}$ is right-continuous, whereas $s \mapsto P_\phi(\{u^+ \geq s\})$ is left-semicontinuous, which implies the thesis.

References

[1] Fred Almgren, Jean E. Taylor, and Lihe Wang. Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31(2):387–438, 1993.

[2] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

[3] G. Anzellotti and M. Giaquinta. BV functions and traces. Rend. Sem. Mat. Univ. Padova, 60:1–21 (1979), 1978.

[4] Gabriele Anzellotti. Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. (4), 135:293–318 (1984), 1983.

[5] Giovanni Bellettini, Vicent Caselles, Antonin Chambolle, and Matteo Novaga. Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal., 179(1):109–152, 2006.

[6] J. W. Cahn and D. W. Hoffmann. A vector thermodynamics for anisotropic surfaces-ii. curved and faceted surfaces. Acta Metallurgica, 22:1205–1214, 05 1974.

[7] David G. Caraballo. Flat ϕ curvature flow of convex sets. Taiwanese J. Math., 16(1):1–12, 2012.

[8] V. Caselles and A. Chambolle. Anisotropic curvature-driven flow of convex sets. Nonlinear Anal., 65(8):1547–1577, 2006.

[9] Antonin Chambolle, Massimiliano Morini, Matteo Novaga, and Marcello Ponsiglione. Existence and uniqueness for anisotropic and crystalline mean curvature flows. Jour. Amer. Math. Soc., 32(3):779–824, 2019.

[10] Antonin Chambolle, Massimiliano Morini, Matteo Novaga, and Marcello Ponsiglione. Generalized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE, 12(3):789–813, 2019.
[11] Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione. Existence and uniqueness for a crystalline mean curvature flow. *Comm. Pure Appl. Math.*, 70(6):1084–1114, 2017.

[12] Guido De Philippis and Tim Laux. Implicit time discretization for the mean curvature flow of mean convex sets. *arXiv:1806.02716*, Jun 2018. to appear on Ann. Sc. Norm. Sup. Pisa Cl. Sci.

[13] M.-H. Giga and Y. Giga. Generalized motion by nonlocal curvature in the plane. *Arch. Ration. Mech. Anal.*, 159(4):295–333, 2001.

[14] Stephan Luckhaus and Thomas Sturzenhecker. Implicit time discretization for the mean curvature flow equation. *Calc. Var. Partial Differential Equations*, 3(2):253–271, 1995.

[15] Alessandra Lunardi. *Analytic semigroups and optimal regularity in parabolic problems*. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995.

[16] Christoph Scheven and Thomas Schmidt. BV supersolutions to equations of 1-Laplace and minimal surface type. *J. Differential Equations*, 261(3):1904–1932, 2016.

[17] Emanuele Spadaro. Mean-convex sets and minimal barriers. *arXiv:1112.4288*, Dec. 2011.

[18] William P. Ziemer. *Weakly differentiable functions*, volume 120 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1989.