Primary Desmoplastic Small Round Cell Tumor of the Mandible: A Case Report and Literature Review

jiayu zhou
Xiangya Hospital Central South University

Qingling Li
Xiangya Hospital Central South University

Baihua Luo
Xiangya Hospital Central South University

Xiaodan Fu
Xiangya Hospital Central South University

Chunlin Ou
Xiangya Hospital Central South University

Xiaomei Gao
Xiangya Hospital Central South University

Deyun Feng
Xiangya Hospital Central South University

Keda Yang (✉ YKD820909@163.com)
Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha City, 410008 Hunan Province China

Case Report

Keywords: Desmoplastic small round cell tumor, Mandible, Markers, Diagnose, Case report

DOI: https://doi.org/10.21203/rs.3.rs-414294/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Desmoplastic small round cell tumor (DSRCT) is a sporadic, highly malignant tumor with a poor prognosis. The abdomen and pelvis have been reported as the primary localization sites. However, to the best of our knowledge, there are few reports on primary DSRCT in the mandible.

Case presentation: We have reported a case of a 26-year-old Chinese man who presented with a mass in the right mandible. Imaging studies showed a hypoechoic mass in the right mandibular region. Intraoperative pathology revealed that the tumor tissue was composed of small round tumor cells and a dense desmoplastic stroma. On immunostaining, the tumor cells showed markers of epithelial, mesenchymal, myogenic, and neural differentiation. The EWSR1 gene rearrangement was detected by fluorescence in situ hybridization. Based on the overall morphological features and immunohistochemical findings, a final diagnosis of DSRCT was made. The patient was treated with comprehensive anti-tumor therapy mainly based on radiotherapy and chemotherapy.

Conclusions: DSRCT is a very uncommon disease in which mandibular involvement is rare. Considering DSRCT in the differential diagnosis of small round blue cell tumors, even in extraperitoneal locations, is beneficial for a precise diagnosis. Full recognition of the clinicopathological features will help to better diagnose this disease.

Background

Desmoplastic small round cell tumor (DSRCT) is an extremely rare and aggressive neoplasm that most commonly affects adolescents and young adults and has a male predominance [1,2,43-45]. DSRCT preferentially involves the abdominal and pelvic cavities. DSRCT in the pleura, lung, eye, ear, and testis has been reported in only a few cases (<5%) [3-7], but it is not consistently associated with any specific organ. DSRCT has no specific clinical symptoms. It can metastasize in the early stage and quickly recurs despite treatment [18,36,38,39]. Hence, its prognosis is poor. Here, we have presented a rare case of primary DSRCT in the mandible. In addition, we have described and summarized the clinicopathological features of DSRCT and discussed its diagnosis and treatment based on literature review.

Case Presentation

Clinical history

A 26-year-old Chinese man with a chief complaint of a mass in the right mandible for 1 year was admitted to Xiangya Hospital, Central South University, Hunan, China. He had no significant past medical or family history. Routine physical and laboratory examinations were performed. Ultrasonography revealed a hypoechoic mass measuring approximately 28 mm×18 mm in the right mandibular region, with irregular shape, clear boundary (Fig. 1). Abdominal computer tomography (CT) scan revealed no other lesion elsewhere. There was no evidence of metastasis to the local or distant organs. Hence, lumpectomy was performed under general anesthesia.
Pathology

Histological examination showed sheets, cords, and nests of small round cells separated focally by desmoplastic stroma (Fig.2a). Under higher magnification, tumor cells showed round to oval hyperchromatic nuclei with an increased nuclear/cytoplasmic ratio and inconspicuous nucleoli. The cytoplasm of the tumor cells was scanty, and the cell borders were indistinct (Fig.2b). Mitotic activity and individual cell necrosis were common. Immunohistochemical analysis was performed using formalin-fixed paraffin embedded (FFPE) sections of representative tumor blocks and the antibodies listed in Table 1. Immunohistochemical results typically indicated the multi-directional differentiation of tumor cells. The immunohistochemistry results were as follows: Pan cytokeratin (CK-Pan) (+), Epithelial membrane antigen (EMA) (+), Vimentin (+), neuron specific enolase (NSE) (+), CD56 (+), chromogranin-A (+), synaptophysin (weakly positive [+/-]), CD99 (+), desmin (+), myogenin (-), S-100 and WT1 (Fig.3). Moreover, the Ki-67 proliferation index was estimated as 50%. The tumor cells were negative for Epstein-Barr virus-encoded small RNA (EBER) on fluorescence in situ hybridization (FISH). And FISH analysis with a break-apart probe proved that the EWSR1 gene split in the neoplastic cells (Fig.4). However, EWSR1-WT1 fusion by RT-PCR was not performed due to limited conditions. Based on the above findings and imaging findings, primary lesions in the abdominal cavity and pelvic cavity were excluded, and a final diagnosis of mandibular DSRCT was made.

Follow-up

Comprehensive anti-tumor therapy mainly based on chemotherapy and radiotherapy was first proposed. However, synchronous chemotherapy was not performed because of bone marrow suppression. Therefore, cyclophosphamide combined with doxorubicin and vincristine chemotherapy was used for maintenance treatment. The patient is currently alive and well with no evidence of recurrence.

Discussion

Desmoplastic small round cell tumor (DSRCT), which was first described as a specific disease by Gerald and Rosai [8,9], is a rare and aggressive soft-tissue sarcoma. Generally, DSRCT originates from the serosal surface of the abdominal cavity [30-33], but it can also be found in the lung, sinus, bone, and mediastinum [3,12-14,49-53]. Clinical symptoms are usually associated with the tumor sites and lack specificity. Most patients have the initial symptoms of abdominal mass, constipation, ascites, and vomiting [18,32,33,35-38]. It can be accompanied by the manifestations of cachexia, such as fatigue and emaciation. Patients may develop intestinal obstruction, hydronephrosis, and urinary tract irritation owing to tumor compression [15]. The clinical features of previously published DSRCT cases in the last 5 years are summarized in Supplementary Table 2, Additional File 1. In our patient, a right mandibular mass without apparent clinical manifestations was detected incidentally. DSRCT is often widely disseminated throughout the peritoneal cavity, and some patients may present with metastasis to the lymph nodes, liver, and occasionally the lungs [16,18,30]. Hence, its prognosis is exceedingly poor.
Imaging examinations of DSRCT lack characteristic features. Ultrasound examination usually shows a lobulated soft tissue mass with an uneven internal echo [17]. Computed tomography (CT) usually reveals single or multiple lobular nodules or lumpy soft tissue masses, with an uneven density of the tumor body and multiple spotted calcifications [32]. The lesions tend to crowd out, surround and invade the surrounding tissues [43]. DSRCT is usually accompanied by flakes of low intensity when there is a necrotic area in the tumor. Enhanced CT presents mild uneven enhancement, and edge enhancement may be observed in some larger masses. Moreover, positron emission tomography (PET)-CT have the potential to monitor residual disease and detect relapse or tumor progression at the early stages [14]. Imaging findings are non-specific, but they can indicate the location, size, and the number of tumors, thereby contributing to biopsy, surgery, and radiotherapy.

The definitive diagnosis of DSRCT is based on typical morphological and immunohistochemical features, especially distinctive molecular characteristics. The pathological and molecular features of previously published cases of DSRCT in the last 5 years are summarized in Supplementary Table 3, Additional File 2. Histologically, the tumor tissue consists of small round cells and peripheral desmoplastic stroma, which can be accompanied by cystic degeneration and hemorrhagic necrosis. The tumor had a variegated histology revealing pseudopapillary architecture, rhabdoid, clear or pleomorphic cells in addition to typical small round cell morphology. Moreover, the tumor can have intermittent areas of primitive tubules or rosette-like structures [18]. Immunohistochemically, tumor cells show a pattern of multi-phenotypic differentiation [30,39-41]. This multiple antigen expression profile is a characteristic of DSRCT and can be used to distinguish DSRCT from the other histologically related small round cell tumors. Further, para nuclear dot-like desmin positivity has important diagnostic significance. However, in our case, immunohistochemical staining showed a diffuse perinuclear staining pattern with desmin, but characteristic dot positivity was not prominent. Almost all cases of DSRCT are positive for WT1 and show cytoplasmic and paranuclear staining. Although the immunohistochemical analysis of classic cases of DSRCT tend reveal WT1 positivity, N- and C-terminals may be useful as a form of “molecular immunohistochemistry” to identify the EWS–WT1 transcript as the immunostaining pattern may be altered by variant transcripts and WT1 immunostaining may be negative (as in our case) [46-48]. To establish a DSRCT diagnosis, the interpretation of WT1 immunostaining requires knowledge of antibody target epitopes and correlations with clinical, morphological, and molecular findings.

In the present case, the tumor was composed of nests of small to medium-sized cells, which might be misdiagnosed as small cell carcinoma. Small cell carcinoma can also show the immunoreactivity for epithelial and neuroendocrine markers. But in our case, immunohistochemical analysis of the co-expression of epithelial, mesenchymal, and neural markers by tumor cells, strongly support a diagnosis of DSRCT. DSRCT should also be distinguished from other carcinomas such as malignant melanoma, malignant lymphoma and metastatic neuroblastoma. However, the current case was negative for Melan-A and S100, which made malignant melanoma unlikely. And the positivity for epithelial markers helped to rule out the possibility of malignant lymphoma, which often involves lymph nodes, bone marrow and peripheral blood. In addition, stroma of massive nerve fiber network is a characteristic feature in neuroblastoma, which might be a diagnostic clue. Due to the histological features of small round cells in
the present tumor, it must be distinguished from other small round cell tumors such as rhabdomyosarcoma, primitive neuroectodermal tumor (PNET) and Ewing sarcoma (EWS). Rhabdomyosarcoma is more common in children; the tumor cells are commonly positive for myogenic markers (such as MYOD1, myogenin), but negative for epithelial and neuroendocrine markers. Morphologically, DSRCT and PNET can revealed chrysanthemum-like structure, and both of them have positive expression of CD99 and NSE. In our case, immunohistochemical results show the positivity for desmin and epithelial markers, which strongly favors a diagnosis of DSRCT over that of PNET. EWS shares histological and immunophenotypic similarities with DSRCT. The diffuse membranous positivity of CD99 is typical of EWS, and desmin positivity is exceedingly rare. Both EWS and DSRCT harbor EWSR1 rearrangements, the break-apart FISH assay for EWSR1 will not be helpful in the differential diagnosis between them. But characteristic translocation of EWS involves EWSR1 and the ETS family of transcription factors, not WT1. Convincingly, documentation of EWSR1-WT1 fusion is the “gold standard” for the diagnosis of DSRCT [35,39,40]. It was not performed in our case due to limited conditions. But immunohistochemically, a distinctive pattern of multi-phenotypic differentiation is useful and important for the diagnosis of DSRCT.

DSRCT is distinguished by the t (11;22) (p13; q12) chromosomal translocation involving a fusion between the transcriptional activating domain of EWSR1 and the WT1 gene [19-21]. Studies have also suggested that the EWSR1-WT1 fusion protein can induce the expression of PDGFA. PDGFA can induce the growth and proliferation of fibroblasts and the production of collagenous stroma, which may explain the characteristic reactive fibrosis of DSRCT [22]. Downstream activation of EWSR1-WT1 gene fusion includes signaling pathways of vascular endothelial growth factor (VEGF), IL2RB, and insulin growth factor (IGF)-1 [23-25]. A better understanding of the effects of these target genes will provide avenues for future treatment.

Despite multimodality treatment, DSRCT is highly aggressive and has a poor prognosis. The overall survival in patients is <3–5 years after diagnosis, and the 5-year survival rate is <20% [18,26,39,48]. There is no standardized approach for the treatment of this malignant disease. Effective cytoreduction combined with comprehensive therapies, as the best treatment strategy presented in most studies, may prolong patient survival [27,37-41]. With the in-depth analysis of molecular genetics of DSRCT, targeted therapy, immunotherapy, and other methods have been used for the treatment of DSRCT in recent years [28,29].

Conclusions

In summary, DSRCT is a poorly understood malignant tumor with characteristic morphology, immunophenotype, and cytogenetic features. The disease does not present with specific clinical signs or symptoms. PET-CT may help diagnose recurrent disease at an earlier stage. The EWSR1-WT1 fusion by RT-PCR is the gold standard for the diagnosis of DSRCT. When it is not feasible, definitive diagnosis mainly depends on histological and immunohistochemical studies. The mandible is an unusual site for
DSRCT, suggesting that the tumor may not have a site-specific predilection. Further studies are needed to investigate this disease in future studies.

List Of Abbreviations

DSRCT: Desmoplastic small round cell tumor
CT: Computed tomography
PET: Positron emission tomography
FFPE: Formalin-fixed paraffin embedded
CK-Pan: Pan cytokeratin
EMA: Epithelial membrane antigen
NSE: Neuron specific enolase
EBER: Epstein-Barr virus-encoded small RNA
FISH: Fluorescence in situ hybridization
RT-PCR: Reverse transcription-polymerase chain reaction
PNET: Primitive neuroectodermal tumor
EWS: Ewing sarcoma

Declarations

Authors’ contributions

Jiayu Zhou is a major contributor in writing the manuscript and compiling figures. Qingling Li, Baihua Luo and Xiaodan Fu contributed to the design and format of figures and tables. Chunlin Ou and Xiaomei Gao helped revising the manuscript. Deyun Feng and Keda Yang confirmed the pathological analysis. Keda Yang designed and organized the study. All authors read and approved the final manuscript.

Acknowledgments

We thank the Department of Pathology, Xiangya Hospital, Central South University, Hunan, China for assistance with pathological diagnosis.

Funding

Not applicable.
Availability of data and materials

All data generated or analyzed during this case are included within the article.

Ethics approval and consent to participate

This case study was approved by the Institutional Ethics Committee of Xiangya Hospital Central South University, Hunan Province, China.

Consent for publication

Written informed consent was obtained from the patient for the publication of this case report and any accompanying images.

Competing interests

The authors declare that they have no competing interests.

References

1. Honoré C, Delhorme JB, Nassif E, et al. Can we cure patients with abdominal Desmoplastic Small Round Cell Tumor? Results of a retrospective multicentric study on 100 patients. Surgical Oncology 2019; 29: 107-12.

2. Gani F, Goel U, Canner JK, Meyer CF, Johnston FM. A national analysis of patterns of care and outcomes for adults diagnosed with desmoplastic small round cell tumors in the United States. Journal of Surgical Oncology 2019; 119(7): 880-6.

3. Jin D, Chen M, Wang B, Gou Y. Mediastinal desmoplastic small round cell tumor. Medicine (Baltimore) 2020; 99(44): e22921.

4. Suhag S, Byrd RH, Jaiswal K. Rare Case of Thoracic Desmoplastic Small Round Cell Tumor in a Three-Year-Old Boy. J Oncol Pract 2019; 15(11): 617-20.

5. He XR, Liu Z, Wei J, Li WJ, Liu T. Primary desmoplastic small round cell tumor in the left orbit: a case report and literature review. Int Ophthalmol 2019; 39(2): 471-5.

6. Xu J, Yao M, Yang X, et al. Desmoplastic small round cell tumor of the middle ear: A case report. Medicine (Baltimore) 2018; 97(17): e0494.

7. Sedig L, Geiger J, Mody R, Jasty-Rao R. Paratesticular desmoplastic small round cell tumors: A case report and review of the literature. Pediatr Blood Cancer 2017; 64(12).

8. Gerald WL, Rosai J. Case 2. Desmoplastic small cell tumor with divergent differentiation. Pediatr Pathol 1989; 9(2): 177-83.

9. Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol 1991; 15(6): 499-513.
10. Scheer M, Vokuhl C, Blank B, et al. Desmoplastic small round cell tumors: Multimodality treatment and new risk factors. Cancer Medicine 2019; 8(2): 527-42.
11. Tsoukalas N, Kiakou M, Nakos G, et al. Desmoplastic small round-cell tumour of the peritoneal cavity: case report and literature review. Ann R Coll Surg Engl 2020; 102(4): e77-e81.
12. Syed S, Haque AK, Hawkins HK, Sorensen PH, Cowan DF. Desmoplastic small round cell tumor of the lung. Arch Pathol Lab Med 2002; 126(10): 1226-8.
13. Tao Y, Shi L, Ge L, Yuan T, Shi L. Sinonasal desmoplastic small round cell tumor: a case report and review of the literature. BMC Cancer 2019; 19(1): 868.
14. Xuesong D, Hong G, Weiguo Z. Primary desmoplastic small round cell tumor of the tibia: PET/CT and MRI presentation of a rare case and review of the literature. J Bone Oncol 2020; 20: 100272.
15. Lee HJ, Hyun JS, Jang HS, Sul H, Park SG. Paraneoplastic secondary hypertension due to a renin-secreting desmoplastic small round cell tumor: A case report. Oncol Lett 2014; 8(5): 1986-92.
16. Hayes-Jordan A, Anderson PM. The diagnosis and management of desmoplastic small round cell tumor: a review. Curr Opin Oncol 2011; 23(4): 385-9.
17. Pickhardt PJ, Fisher AJ, Balfe DM, Dehner LP, Huettner PC. Desmoplastic Small Round Cell Tumor of the Abdomen: Radiologic-Histopathologic Correlation. Radiology 1999; 210(3): 633-8.
18. Ertoy Baydar D, Armutlu A, Aydin O, Dagdemir A, Yakupoglu YK. Desmoplastic small round cell tumor of the kidney: a case report. Diagn Pathol 2020; 15(1): 95.
19. Mohamed M, Gonzalez D, Fritchie KJ, et al. Desmoplastic small round cell tumor: evaluation of reverse transcription-polymerase chain reaction and fluorescence in situ hybridization as ancillary molecular diagnostic techniques. Virchows Archiv 2017; 471(5): 631-40.
20. Gedminas JM, Chasse MH, McBrairty M, Beddows I, Kitchen-Goosen SM, Grohar PJ. Desmoplastic small round cell tumor is dependent on the EWS-WT1 transcription factor. Oncogenesis 2020; 9(4): 41.
21. Sawyer JR, Tryka AF, Lewis JM. A Novel Reciprocal Chromosome Translocation t(11;22)(p13;q12) in an Intraabdominal Desmoplastic Small Round-Cell Tumor. The American Journal of Surgical Pathology 1992; 16(4).
22. Lee SB, Kolquist KA, Nichols K, et al. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Nat Genet 1997; 17(3): 309-13.
23. Loktev A, Shipley JM. Desmoplastic small round cell tumor (DSRCT): emerging therapeutic targets and future directions for potential therapies. Expert Opin Ther Targets 2020; 24(4): 281-5.
24. Wong JC, Lee SB, Bell MD, et al. Induction of the interleukin-2/15 receptor beta-chain by the EWS-WT1 translocation product. Oncogene 2002; 21(13): 2009-19.
25. Yamaguchi U, Hasegawa T, Morimoto Y, et al. A practical approach to the clinical diagnosis of Ewing's sarcoma/primitive neuroectodermal tumour and other small round cell tumours sharing EWS rearrangement using new fluorescence in situ hybridisation probes for EWSR1 on formalin fixed, paraffin wax embedded tissue. J Clin Pathol 2005; 58(10): 1051-6.
26. Stiles ZE, Dickson PV, Glazer ES, et al. Desmoplastic small round cell tumor: A nationwide study of a rare sarcoma. J Surg Oncol 2018; 117(8): 1759-67.
27. Zhang J, Xu H, Ren F, Yang Y, Chen B, Zhang F. Analysis of clinicopathological features and prognostic factors of desmoplastic small round cell tumor. Pathol Oncol Res 2014; 20(1): 161-8.
28. Hendricks A, Boerner K, Germer CT, Wiegering A. Desmoplastic Small Round Cell Tumors: A review with focus on clinical management and therapeutic options. Cancer Treat Rev 2021; 93: 102140.
29. Mello CA, Campos FAB, Santos TG, et al. Desmoplastic Small Round Cell Tumor: A Review of Main Molecular Abnormalities and Emerging Therapy. Cancers (Basel) 2021; 13(3).
30. Tian Y, Cheng X, Li Y. Chemotherapy combined with apatinib for the treatment of desmoplastic small round cell tumors: A case report. J Cancer Res Ther 2020; 16(5): 1177-81.
31. Chen HM, Feng G. Use of anlotinib in intra-abdominal desmoplastic small round cell tumors: a case report and literature review. Onco Targets Ther 2019; 12: 57-61.
32. Ofori E, Ramai D, Nigar S, Xiao P, Shahzad G, Reddy M. Desmoplastic Small Round Cell Tumor: A Rare Case of Extraluminal Bowel Obstruction and Review of the Literature. J Gastrointest Cancer 2019; 50(3): 560-3.
33. Butt SU, Bull JMH, Scott A. Desmoplastic Small Round-Cell Tumor in a Young Indigenous Australian Man: A Case Report. J Glob Oncol 2017; 3(1): 79-81.
34. Phulware RH, Roy M, Singh N, Kumar S, Mathur SR. Desmoplastic small round cell tumor of the ovary: A rare but poor prognostic disease in a young woman! Indian J Pathol Microbiol 2021; 64(1): 206-9.
35. Vujić G, Mikuš M, Matak L, et al. Desmoplastic Small Round Cell Tumor of the Ovary: A Case Report with a New Modality of Treatment and Review of the Literature. Rev Bras Ginecol Obstet 2020; 42(5): 297-302.
36. Lee SY, Koo YJ, Lee DH. Desmoplastic small round cell tumour with ovarian involvement: a case report. J Obstet Gynaecol 2020; 40(1): 141-2.
37. Atef A, Gaballa K, Zuhdy M, et al. Primary desmoplastic small-round-cell tumor of the ovary. J Egypt Natl Canc Inst 2019; 31(1): 4.
38. Altal OF, Aleshawi AJ, Tashtush NA, Alhowary A. A 23-Year-Old Jordanian Woman with a Desmoplastic Small Round Cell Tumor Involving the Ovary. Am J Case Rep 2019; 20: 1675-8.
39. Galliani CA, Bisceglia M, Del Giudice A, Creti G. Desmoplastic Small Round Cell Tumor of the Kidney: Report of a Case, Literature Review, and Comprehensive Discussion of the Distinctive Morphologic, Immunohistochemical, and Molecular Features in the Differential Diagnosis of Small Round Cell Tumors Affecting the Kidney. Adv Anat Pathol 2020; 27(6): 408-21.
40. Saleh D, Al-Maghrabi S, Al-Maghrabi H, Al-Maghrabi J. Desmoplastic Small Round Cell Tumor of Pancreatic Origin in a Young Child: A Case Report and Review of Literature. Am J Case Rep 2020; 21: e922762.
41. Asadbeigi SN, Zhang L, Linos K. Subcutaneous desmoplastic small round-cell tumor: An unusual primary location expanding the differential of superficial round-cell tumors. J Cutan Pathol 2020; 47(8): 768-75.
42. Huang J, Sha L, Zhang H, Tang X, Zhang X. Desmoplastic small round cell tumor in transverse colon: report of a rare case. Int Surg 2015; 100(5): 809-13.
43. Huang A, Patel N. Orbital desmoplastic small round cell tumor in an infant. Digit J Ophthalmol 2018; 24(4): 31-5.
44. Wang P, Liu Y, Liu X, Yan Q, Wang L. Solid-pattern desmoplastic small round cell tumor of the orbit: a case report. Int J Clin Exp Pathol 2018; 11(5): 2864-8.
45. Bengu Cobanoglu H, Hanna EY, Bell D, Esmaeli B. Desmoplastic Small Round Cell Tumor Presenting as an Ocular Mass: Unusual Localization and Remarkable Surgical Approach. Curr Oncol Rep 2017; 19(12): 80.
46. Guedes-Corrêa JF, Amorim RP, Pereira M, et al. Multimodal treatment of an extremely rare desmoplastic small round cell tumor primary to the brachial plexus - A case report and review of literature. Surg Neurol Int 2019; 10: 140.
47. Faras F, Abo-Alhassan F, Hussain AH, Sebire NJ, Al-Terki AE. Primary desmoplastic small round cell tumor of upper cervical lymph nodes. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120(1): e4-e10.
48. Thondam SK, du Plessis D, Cuthbertson DJ, et al. Intracranial desmoplastic small round cell tumor presenting as a suprasellar mass. J Neurosurg 2015; 122(4): 773-7.
49. Cai Z, Zhang L, Karni RJ, Saluja K, Liu J, Zhu H. Desmoplastic Small Round Cell Tumor of Parotid Gland: A Rare Entity With Diagnostic Challenge. Int J Surg Pathol 2020; 28(7): 782-6.
50. Ninchritz-Becerra E, González-García J, García-Iza L, Chiesa Estomba CM, Sr. Desmoplastic Small Round Cell Tumor: A Rare Location in the Parotid Gland. Cureus 2020; 12(8): e10068.
51. Lozano MD, Landa A, Tobar LG, et al. A comprehensive diagnosis of a desmoplastic small round cell tumor of unusual location based on fine-needle aspiration cytology: Report of a case arising in the parotid gland and review of the literature. Diagn Cytopathol 2020; 48(9): 827-32.
52. Hatanaka KC, Takakuwa E, Hatanaka Y, et al. Desmoplastic small round cell tumor of the parotid gland-report of a rare case and a review of the literature. Diagn Pathol 2019; 14(1): 43.
53. Rubinstein JD, Gupta A, Szabo S, Pressey JG. A case of submandibular desmoplastic small round cell tumor: Diagnostic and management approaches to an atypical presentation of a rare tumor. Pediatr Blood Cancer 2020; 67(4): e28178.

Tables

Table 1 List of immunohistochemical antibodies used in diagnosis
Antibody	Clone	Dilution	Source	Result
IDH1	MX031	Ready-to-use	Maixin China	+
CK-Pan	AE1/AE3	Ready-to-use	Maixin China	+
EMA	757F5D6	Ready-to-use	Baidao China	+
vimentin	MX034	Ready-to-use	Maixin China	+
NSE	5E2	Ready-to-use	Zhongshan China	+
CD56	MX039	Ready-to-use	Maixin China	+
synaptophysin	214A4G5	Ready-to-use	Baidao China	Focal+
chromogranin A	193A4C7	Ready-to-use	Baidao China	+
desmin	MX046	Ready-to-use	Maixin China	+
CD99	O13	Ready-to-use	Maixin China	+
FLI1	365H5A6	Ready-to-use	Baidao China	+
AR	EP120	Ready-to-use	Maixin China	+
CD117	YR145	Ready-to-use	Maixin China	–
WT1	MX012	Ready-to-use	Maixin China	–
myogenin	F5D	Ready-to-use	Maixin China	–
S-100	503F1E9	Ready-to-use	Baidao China	–
Melan-A	A103	Ready-to-use	Maixin China	–
CK20	120B1A5	Ready-to-use	Baidao China	–
HHF35	H HF35	Ready-to-use	Zhongshan China	–
P63	MX013	Ready-to-use	Maixin China	–
TTF-1	MX011	Ready-to-use	Maixin China	–
CK5/6	MX040	Ready-to-use	Maixin China	–
Ki-67	MX006	Ready-to-use	Maixin China	50%

CK-Pan: Pan cytokeratin; EMA: Epithelial membrane antigen; NSE: Neuron specific enolase;

+: Positive, –: Negative
Figures

![Figure 1](image1)

Figure 1

Cervical US: A hypoechoic, well-defined mass measuring 28 mm × 18 mm located in the right mandibular region; no obvious blood flow signal was observed in the lesion.

(a) Tumor cells were irregular sheet-like and nest-like distribution, surrounded by proliferative fibrous stroma. (H&E, magnification ×200). (b) The tumor cells are small round or oval, with few cytoplasm,
unclear cell boundaries, round or oval hyperchromatic nuclei and unclear nucleoli (H&E, magnification ×400).

Figure 3

Immunohistochemical analysis was performed to analyze the expression of strong desmin (a), neuron specific enolase (NSE) (b), CK-Pan(c), vimentin(d), synaptophysin (e), CD99(f) expression by neoplastic cells.

Figure 4

Dual Color Break Apart specific locus FISH probe targeting EWSR1 gene; green and red signals mark the 5' and 3' ends of the gene respectively.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1.doc
- Additionalfile2.doc
- Additionalfile3.pdf
- Additionalfile41.pdf
- Additionalfile42.png