Effective proton-neutron interaction near the drip line from unbound states in 25,26F

M. Vandebrouck, A. Lepailleur, O. Sorlin, T. Aumann, C. Caesar, M. Holl, V. Panin, F. Wamers, S.R. Stroberg, J.D. Holt, et al.

To cite this version:

M. Vandebrouck, A. Lepailleur, O. Sorlin, T. Aumann, C. Caesar, et al.. Effective proton-neutron interaction near the drip line from unbound states in 25,26F. Physical Review C, American Physical Society, 2017, 96, pp.054305. <10.1103/PhysRevC.96.054305>. <in2p3-01568314>

HAL Id: in2p3-01568314
http://hal.in2p3.fr/in2p3-01568314
Submitted on 25 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
I. INTRODUCTION

The study of odd-odd nuclei is experimentally challenging, as such systems display many states of angular momentum \(J \) built from the coupling of the odd proton \(j_p \) and neutron \(j_n \), leading to \(|j_p - j_n| \leq J \leq |j_p + j_n| \) multiplets. Moreover, long-lived isomers are often present when states of extreme \(|j_p - j_n| \) and \(|j_p + j_n| \) values lie close in energy, and different experimental techniques may be required to determine the energy \(E(J) \) of all states in a given multiplet. Such studies on odd-odd nuclei close to doubly magic ones, however, are rewarded by the wealth of information obtained on proton-neutron interactions [1], when an independent-particle shell model (IPSM) scheme is used. For the members of a given multiplet, the experimental energies \(E(J) \) of the states are empirically observed to vary parabolically as a function of \(J(J+1) \) [2]. These \(E(J) \) are used to determine the proton-neutron interactions, \(\text{Int}(J) \), derived from a shift of \(E(J) \), in order to obtain \(\text{Int}(J) = 0 \) when the proton and neutron added to the closed shells do not interact ([3] and Sect. IV D of the present work). It follows that a parabolic law can be applied to \(\text{Int}(J) \) as a function of \(J(J+1) \) as well. When interpreted in terms of a low-order multipole expansion, the monopole part, which is the \((2J+1) \)-weighted average of \(\text{Int}(J) \), contains information on the strength of the nuclear interaction. The dominant quadrupole part, which depends in principle on the relative orientation between the interacting valence proton and neutron only, breaks the degeneracy between multiplet levels and generate the observed parabolic behavior [4]. This simple picture restricts to nuclei near closed shells as it neglects effects of the coupling to other bound or unbound states of similar \(J^\pi \) values, that can modify the shape of the parabola.

Further complications to this simple model arise for nuclei near the drip lines, where some (if not all) states comprising multiplets become unbound. Besides the fact that their characterization (i.e. energy, width, orbital angular momentum \(\ell \)) is less certain than for bound states, unbound states with pure configurations exhibit large widths, due to their large overlap with states in the \((A-1)\) nucleus. Resonances are expected to broaden as their energy increases, leading progressively to a continuum of indistinguishable, overlapping resonances. Deviations to this global trend occur when unbound states are trapped in the nuclear potential by high centrifugal barriers, or have a very poor configuration overlap with the available decay channels (see e.g.[5]).

Though challenging, the extension of these experimental investigations to the drip-line regions would provide new information on the behavior of \(\text{Int}(J) \) in extreme proton-neutron asymmetries and when one or more states of the multiplet are unbound. The validity of a bound...
single-particle approach to drip-line nuclei is of interest for the study of drip-line phenomena such as nuclear halos, islands of inversion, and in nuclear astrophysics for the modeling of neutron stars.

Two recent studies provided some first insights into these questions. The comparison of the two odd-odd mirror nuclei ^{16}N and ^{16}F, the first being bound, the second being proton-unbound, both having rather pure single-particle configuration, showed an orbital- and binding-energy-dependent reduction of the experimental proton-neutron interaction (monopole part) of up to 40% between the two mirror nuclei. This effect was attributed to the large radial extension of certain orbits that probe the continuum [6]. Studies of the $N=17$ odd-odd isotones towards the neutron drip line (from $Z=13$ to $Z=9$) have suggested, making use of a tentative assignment of the daughter nucleus ^{26}Ne at 271(37) keV above the neutron threshold using the one-neutron knockout reaction at relativistic energies [20]. An unbound neutron orbitals, respectively. We moreover point out that the one-neutron knockout reaction may have occurred from such a case, the resulting one-neutron knockout momentum distribution from a weakly bound $bd_{3/2}$ orbit may be mimicking the one corresponding to an $1s_{1/2}$ orbit. In

the case of single-particle proton excitations, $J^\pi = 1^+, 2^+$ states are formed by the $(\pi s_{1/2})^1(\nu d_{3/2})^1$ configuration (Fig. 6(c)). None of these states has yet been observed.

In this article we have studied unbound states in ^{26}F produced by the one-proton knockout reaction at the GSI facility. The knockout of a $0d_{5/2}$ proton from ^{27}Ne should leave the ^{26}F nucleus in the $(\pi d_{5/2})^1(\nu 0d_{3/2})^1$ configuration (Fig. 6(a)) and favor the production of the $1^+ - 4^+$ multiplet of states, including the 3^+. The ^{26}F nucleus, also produced by one-proton knockout reaction from ^{26}Ne, has been studied as well. In both cases, results are compared to previous experimental values.

To gauge the validity of the IPSM nature of these multiplets, we compare to predictions of other theoretical models described in Section III: the phenomenological shell-model, which implicitly contains some aspects of continuum physics and three-nucleon (3N) forces, and the ab initio valence-space in-medium similarity renormalization group (IM-SRG) [21–24] based on two-nucleon (NN) and 3N forces, but neglecting the influence of the continuum.

II. EXPERIMENTAL SETUP

A stable beam of ^{40}Ar was accelerated by the linear accelerator UNILAC and by the synchrotron SIS-18 at the GSI facility to an energy of 490 A MeV and impinged on a 4 g/cm2-thick ^4Be target to induce fragmentation reactions, in which the ^{27}Ne and ^{26}Ne nuclei were produced. They were subsequently selected by the FRAGMENT Separator (FRS) [25], whose magnetic rigidity was set to 9.05 T m in order to favor the transmission of nuclei with $A/Z \sim 2.7$. These secondary nuclei were transmitted to the R3B/LAND experimental setup [26], where they were identified on an event-by-event basis using $i)$ their energy-loss in the Position Sensitive silicon Pin diode (PSP) detector, $ii)$ their time of flight measured between two plastic scintillators, one located at the end of the FRS beam line, and the other (start detector POS) placed a few meters before a 922 mg/cm2 CH$_2$ reaction target. A total of 2.5×10^5 (3.8×10^5) nuclei of ^{27}Ne (^{26}Ne) impinged on the CH$_2$ target, with an energy at the entrance of 432 (456) A MeV.

This secondary target was surrounded by the 159 NaI crystals of the 4π Crystall Ball detector [27], each having a length of 20 cm and covering a solid angle of ~ 77 msr. It allowed the detection of photons from excited fragments decaying in-flight and recoil protons at angles larger than $\pm 7^\circ$ in the laboratory frame. Each crystal was equipped with phototubes having a gain adapted for the detections of photons. In addition, the photomultipliers of the 64 most forward crystals had a second lower-gain readout, for the detection of recoil protons originating from knockout reactions. Two pairs of double-sided silicon strip detectors (DSSSD), with active areas of 72×41 mm2 and strips 300 μm thick (110 μm pitch), were placed before and after the reaction target.

1. The structure of the ground state of ^{26}F was also investigated by the one-neutron knockout reaction at relativistic energies [20]. The narrow inclusive momentum distribution of the ^{25}F residue pointed to the presence of valence neutrons in the $1s_{1/2}$ state, in apparent contradiction with the neutron $0d_{3/2}$ configuration of the 14 ground state proposed above. An exclusive one-neutron knockout experiment is needed to isolate the contributions leading to ^{25}F in either ground state or excited states, that would correspond to the knock-out from the last occupied or more deeply bound neutron orbitals, respectively. We moreover point out that the one-neutron knockout reaction may have occurred from the, at that time unknown, weakly bound 4^+ 2 ms-isomer. In such a case, the resulting one-neutron knockout momentum distribution from a weakly bound $bd_{3/2}$ orbit may be mimicking the one corresponding to an $1s_{1/2}$ orbit.
to determine the energy loss and to track the incoming and outgoing nuclei, e.g. 27Ne and 26F, respectively, in the case of a one-proton knockout reaction from 27Ne populating bound states in 26F.

After having passed the downstream pair of DSSSDs, nuclei were deflected in the large dipole magnet ALADIN. Their horizontal position was measured at the dispersive plane of ALADIN in two scintillating fiber detectors (GFIs), each composed of 480 fibers, covering a total active area of 50×50 cm2. Their energy loss, position and time-of-flight were determined based on the information provided by the time-of-flight wall (TFW) placed 523 cm behind the last GFI. The TFW is composed of plastic scintillator paddles, 14 horizontal ones in the first plane and 18 vertical ones in the second plane, read-out on both sides by photomultipliers. The atomic number Z of the transmitted nuclei was obtained from the determination of their energy losses in the DSSSD, placed after the target, and in the TFW. The mass (A) identification is obtained from the combined position information of the fragments in the DSSSD placed after the target, in the two GFIs and in the TFW, and from their velocity β, which was deduced from their time-of-flight between the POS detector and the TFW [28, 29]. The identification plots of the reacted nuclei in (Z, A) obtained from all these pieces of information are shown in Fig. 1(a) and 1(b).

When produced in an unbound state during the proton knockout reaction, nuclei may emit neutrons that are detected in the forward direction using the large area neutron detector LAND [30]. It is composed of 10 planes with 20 paddles each, placed alternatively in horizontal and vertical directions, each paddle covering an area of 200×10 cm2 and having a thickness of 10 cm. Each paddle is made of 11 iron and 10 scintillator sandwiched sheets, so that, when a neutron interacts with iron nuclei, secondary protons are produced and detected with the plastic scintillators. A specific algorithm is used to reconstruct the hit profiles in LAND, and obtain from them the position of the first neutron-LAND interaction (with a spatial resolution of 5 cm FWHM) and the neutron time-of-flight (with a resolution of 370 ps FWHM). The LAND detector was positioned 13 m downstream of the reaction target, covering forward angles of ± 79 mrad.

The intrinsic efficiency for a ~ 450 MeV neutron is about 60%, and the geometric acceptance is 100% up to a fragment-neutron relative energy of 3 MeV.

III. MODELS

In this work, we consider predictions from three models. The first, the independent-particle shell model (IPSM), assumes that nuclear states are well described by one configuration, i.e., pure single-particle excitations. While generally not a viable picture, the potential simplicity of configurations in 25,26F could allow it to be a reasonable first-order description of low-lying states.

Furthermore, all experimental considerations associated with assignments of ℓ values are done by comparison with this model.

To gauge the validity of the IPSM picture in describing low-lying states in 25,26F, and to provide a more realistic account, we also compare to phenomenological shell-model calculations and ab initio valence-space IM-SRG. For the former, we use the well-established USDA Hamiltonian [31], optimized to reproduce energy levels for all sd-shell nuclei. As in Ref. [9], we choose USDA instead of USDB, since the latter is known to predict a too small excitation energy of the $J^\pi = 4^+$ state in 26F. Valence-space IM-SRG has been shown to predict ground and excited states throughout the oxygen, fluorine, and neon isotopic chains [22–24, 32]. Beginning from nuclear forces derived from chiral effective field theory (EFT) [33, 34], 3N forces between core and valence nucleons are typically captured by normal ordering with respect to the 16O reference. Without these initial 3N forces, the spec-
The excitation energies E interaction [50], but with protons restricted to the p-shell we are also interested in exploring negative-parity states, of harmonic-oscillator spacings of radial nodes, $\hbar\omega$ and exponentially extrapolate to ℓ between the neutron and the de-exciting γ-ray of energy E_{γ}. In the latter case, a coincidence between the neutron and the de-exciting γ-ray is observed. The excitation energies E_{exc} of the unbound states in ^{25}F correspond to:

$$
E_{\text{exc}}^i = S_n + E_r^i = S_n + E_{\text{rel}}^i + (E_{\gamma})
$$

(1)

where S_n is the neutron emission threshold. The relative energy was reconstructed on an event-by-event basis using the invariant mass equation with the momentum vectors of the fragment ^{24}F and of the neutron:

$$
E_{\text{rel}} = \sqrt{m_{\text{frag}}^2 + m_n^2 + 2 \left(\frac{E_{\text{frag}}E_n}{c^4} - \frac{p_{\text{frag}}p_n}{c^2} \cos\theta \right) c^2} - m_{\text{frag}}c^2 - m_nc^2
$$

(2)

In this equation, m_{frag} and m_n are the rest masses of the fragment and the neutron, E_{frag} and E_n their total energies, p_{frag} and p_n their momenta, and θ their relative angle. As shown in Fig. 2, the $(^{24}\text{F}+n)$ relative energy spectrum displays three resonances. Each was described by a Breit-Wigner function whose width depends on its energy and on the orbital angular momentum ℓ of the emitted neutron [52]:

$$
f_{\ell}(E_{\text{rel}}; E^i_{\text{rel}}, \Gamma_{r}) \propto \frac{\Gamma_{r}(E_{\text{rel}})}{(E_{\text{rel}} + \Delta_{\ell}(E_{\text{rel}}) - E_{\text{rel}})^2 + \Gamma_{r}(E_{\text{rel}})^2/4}
$$

(3)

with the apparent width defined as:

$$
\Gamma_{r}(E_{\text{rel}}) = \Gamma_{r} \times \frac{P_{\ell}(E_{\text{rel}})}{P_{\ell}(E_{\text{rel}}^i)}
$$

(4)

and the energy shift given by:

$$
\Delta_{\ell}(E_{\text{rel}}) = \Gamma_{r} \times \frac{S_{\ell}(E_{\text{rel}}^i) - S_{\ell}(E_{\text{rel}})}{2P_{\ell}(E_{\text{rel}}^i)},
$$

(5)

where P_{ℓ} and S_{ℓ} are the penetrability and shift functions, respectively. This prescription, taken from Ref. [16], ensures that the energy shift is eliminated at the resonance energy. The width, Γ_{r}, extracted here in the one-proton knockout reaction is not corrected for the possible change of the overlap between the initial and final wavefunctions.

In order to extract the energy E_{rel}^i and the intrinsic width Γ_{r}^i of the resonances, the spectrum of Fig. 2 is fitted, using the log likelihood method, with a linear combination of three f_{ℓ} functions which have been folded to include the resolution of the LAND detector, i.e. $\sigma \sim 260$ keV at $E_{\text{rel}} = 1$ MeV. In this fit, orbital angular momentum values ℓ between 0 and 2 were tested for each resonance, and the ℓ dependence is weak. A first resonance has been identified at $E_{\text{rel}}^1 = 49(9)$ keV ($\Gamma_{r}^1 = 51(49)$ keV), a second one at $E_{\text{rel}}^2 = 389(27)$ keV ($\Gamma_{r}^2 = 73(70)$ keV), and a third one at $E_{\text{rel}}^3 = 1546(106)$ keV ($\Gamma_{r}^3 = 2500(440)$ keV). The extracted resonance centroids (E_{rel}^i) and widths (Γ_{r}^i) are based on the fit that uses (f_1, f_2, f_2) for the first, second and third resonances respectively, this combination
will be justified in the section IV B. The uncertainties correspond to one sigma and include only statistical error. For the $\ell = 2$ resonances, the width of the resonances cannot be extracted easily due to the saturation of the Breit-Wigner line shape when the width Γ_r is increasing [10]. To overcome this problem, another fit was performed in order to extract Γ_r for $\ell = 2$ resonances. This fit uses simple Breit-Wigner functions without energy shift ($\Delta\epsilon(E_{\text{rel}} = 0)$) and without angular dependence of the width ($\Gamma_{\ell}(E_{\text{rel}}) = \Gamma_r$). It should be noted that a non-resonant continuum has been estimated using the event-mixing procedure, which is based on the measured pairs of fragment + neutron [53]. This component was added as a free parameter in the fit. However, its contribution has been found to be negligible.

At this point, the relative energy spectrum and resonance energies of 25F (E_{rel}^i) can be compared to those obtained previously at the National Superconducting Cyclotron Laboratory at Michigan State University [7] using the same knockout reaction. While an almost continuous energy spectrum was obtained in [7], the better resolution achieved in the present work clearly allows us, despite the lower statistics, to distinguish at least three resonances. The energies of the three resonances proposed in Ref. [7], ($E_{\text{rel}}^1 = 28(4)$ keV, $E_{\text{rel}}^2 \approx 350$ keV and $E_{\text{rel}}^3 \approx 1200$ keV), compare reasonably well with ours, considering the method-dependent determination of energy centroids in the case of broad resonances or for states lying very close to the neutron threshold.

It is generally assumed, as in Ref. [7], that unbound states decay with the largest available neutron energy. This means that the resonances would all decay to the ground state of 24F to maximize the Q-value of the neutrons. This assumption is often valid, except if the loss in Q-value when decaying to an excited state is compensated by a better matching between initial and final states. Neutron-γ coincidences are used to infer the energy of the resonances, E_i^3, when the neutron decay proceeds to an excited state in 24F followed by the emission of a γ ray with energy E_{γ} (Eq. 1). Figure 3(a) shows the presence of a peak near 510 keV in the neutron-gated γ-ray spectrum of 25F. This peak likely corresponds to the decay of the 2^+_1 to the 3^+ ground state of 24F, observed at an energy of 521(1) keV in the β decay of 24O to 24F [32]. Its presence in coincidence with neutron detection suggests that the decay of one or several resonances in 25F proceeds through this 2^+_1 excited state, rather than directly to the ground state.

![Fig. 2](image.png)

FIG. 2. (Color online) Relative energy spectrum of 25F. The solid black line shows the result of the fit composed of three resonances, marked in different colors, whose energies are written with uncertainties. Corresponding widths are given in Table I. In the fitting procedure, resonances were folded with the resolution of the LAND detector, enhancing their widths as compared to the intrinsic value.

![Fig. 3](image2.png)

FIG. 3. (Color online) (a) γ-ray spectrum obtained from the 26Ne(-1p)25F reaction, in coincidence with 24F and the detection of at least one neutron in LAND. (b) Relative energy spectrum for 25F, gated on the ~ 510 keV γ-ray transition in 24F.

2 We note that the 2% energy difference observed between these two γ-rays is also observed in 26F: the decay of the 2^+_1 to the 1^+ ground state is observed, in our work, near 643 keV instead of 657(7) keV in Ref. [17].
threshold of the served in coincidence, indicates that the second resonance γ number of observed neutrons, and the fact that no other produced in E approximately 40 and 100 neutrons should have been observed, nances observed in the singles spectrum in Fig. 2, approx- Indeed, from the amplitudes of the second and third resonances are given in keV with calculated single-particle widths Γsp(ℓ) of the three resonances are given as follows that the energy of the first resonance is E1 = 570(9) keV, single particle widths of Γsp(ℓ) = 1139 keV, Γsp(1) = 71 keV and Γsp(2) = 0.5 keV are calculated assuming pure configurations. The presently observed width of 51(49) keV, is compatible with the ℓ = 1 assumption. This is in contradiction to the earlier proposed 1/2− spin-parity, derived from its observed decay to the 2+ excited state of 24F. As for the resonance at 389(27) keV, among the calculated widths of Γsp(ℓ) = 3243 keV, Γsp(1) = 1136 keV and Γsp(2) = 86 keV, a better agreement with the experimental width of Γ2 = 73(70) keV is obtained with the ℓ = 2 configuration. This state would have a 5/2+ assignment if it corresponds to the configuration where a proton is knocked out from the π0d3/2 orbit, with a neutron (ν1s1/2)−2(ν0d3/2)2 excitation (Fig. 4(d)) in which neutrons are coupled to J = 0. Other states (1/2−9/2+) are considered when neutrons are coupled to J = 2 (Fig. 4(d)). With two neutrons in the 0d3/2 orbit, this tentative 5/2+ state likely decays through an ℓ = 2 neutron, leading to a final configuration (π0d3/2)1(ν1s1/2)−2(ν0d3/2)1 in 24F. This coupling leads to Jπ = 1−2+ states that were searched for by Caceres et al. [32]. However, being at too high excitation energy, the 5/2+ state can only decay to the Jπ = 3+ ground state of 24F, which has a (π0d3/2)1(ν1s1/2)−2 configuration. It follows that the decay occurs through the low admixture of the (π0d3/2)1(ν1s1/2)−2(ν0d3/2)1 component in the Jπ = 3+ ground state. This feature implies an ℓ = 2 decay to the ground state with a low spectroscopic factor value. For the resonance at 1546(106) keV, the width Γ2 = 2500(440) keV could correspond to several Γsp(2) states originating from the (1/2+9/2+) multiplet (Fig. 4(d)). It could alternatively correspond to another ℓ = 1 state. The characteristics of the identified resonances in 25F are summarized in Table I.

TABLE I. Characteristics of the 25F resonances populated via one-proton-knockout 26Ne(-1p) under the assumption that Sα = 4270(100) keV [13]. Resonance energies Ei, excitation energies E′i, and widths Γi of the three resonances are given in keV with calculated single-particle widths Γsp(ℓ) at the energy of Ei = 570(9) keV corresponds to the first peak in the relative energy spectrum of Fig. 2 at Erel = 49(9) keV, to which the coincident γ-ray energy of Eγ = 521(1) keV has been added (see text for details).

i	Ei	E′i	Γi	Γsp(ℓ=0)	Γsp(ℓ=1)	Γsp(ℓ=2)
1	570(9)	4840(100)	51(49)	1139	71	0.5
2	389(27)	4659(104)	73(70)	3243	1136	86
3	1546(106)	5816(146)	2500(440)	6848	4836	1799

a. The resonance located at the energy of E2 = 570(9) keV corresponds to the first peak in the relative energy spectrum of Fig. 2 at Erel = 49(9) keV, to which the coincident γ-ray energy of Eγ = 521(1) keV has been added (see text for details).

B. Discussion on the results of 25F

In a simplified description of the 26Ne(-1p) reaction, protons are removed from the π0d3/2 orbit, leading primarily to the production of positive-parity (mostly bound) states in 25F (Fig. 4(a,b)). If the 26Ne ground state contains some 2p2h neutron excitations (ν1s1/2)−2(ν0d3/2)2, positive parity states can also be produced at higher excitation energy (likely above Sα) from a similar π0d3/2 proton knockout (Fig. 4(d)). Protons can be removed as well from the deeply bound π0p1/2 orbit, leading to negative parity states with mainly 1/2− spin-parity value (Fig. 4(c)). We propose that the state at 4840 keV, which decays with a low energy of 49 keV to the excited state of 24F, rather than with a larger energy of 570 keV to the ground state, is a good candidate for a 1/2− state, since during the decay to the 2+ state in 24F, an ℓ = 1 neutron is emitted. A direct decay to the 3+ ground state of 25F would imply that the neutron carried a larger angular momentum of ℓ = 3, which is strongly hindered.

It can be informative to compare experimental to calculated single-particle widths Γsp(ℓ) using various assumptions on ℓ values, ranging from 0 to 2. From this procedure, we would ideally obtain further information on the nature and purity of each resonance. Using a Woods-Saxon potential whose depth is adjusted to reproduce the energy centroid of the resonance at 570(9) keV, single particle widths of Γsp(ℓ=0) = 1139 keV, Γsp(1) = 71 keV and Γsp(2) = 0.5 keV are calculated assuming pure configurations. The presently observed width of 51(49) keV, is compatible with the ℓ = 1 assumption. This is in contradiction to the earlier proposed 1/2− spin-parity, derived from its observed decay to the 2+ excited state of 24F. As for the resonance at 389(27) keV, among the calculated widths of Γsp(ℓ) = 3243 keV, Γsp(1) = 1136 keV and Γsp(2) = 86 keV, a better agreement with the experimental width of Γ2 = 73(70) keV is obtained with the ℓ = 2 configuration. This state would have a 5/2+ assignment if it corresponds to the configuration where a proton is knocked out from the π0d3/2 orbit, with a neutron (ν1s1/2)−2(ν0d3/2)2 excitation (Fig. 4(d)) in which neutrons are coupled to J = 0. Other states (1/2−9/2+) are considered when neutrons are coupled to J = 2 (Fig. 4(d)). With two neutrons in the 0d3/2 orbit, this tentative 5/2+ state likely decays through an ℓ = 2 neutron, leading to a final configuration (π0d3/2)1(ν1s1/2)−2(ν0d3/2)1 in 24F. This coupling leads to Jπ = 1−2+ states that were searched for by Caceres et al. [32]. However, being at too high excitation energy, the 5/2+ state can only decay to the Jπ = 3+ ground state of 24F, which has a (π0d3/2)1(ν1s1/2)−2 configuration. It follows that the decay occurs through the low admixture of the (π0d3/2)1(ν1s1/2)−2(ν0d3/2)1 component in the Jπ = 3+ ground state. This feature implies an ℓ = 2 decay to the ground state with a low spectroscopic factor value. For the resonance at 1546(106) keV, the width Γ2 = 2500(440) keV could correspond to several Γsp(2) states originating from the (1/2+9/2+) multiplet (Fig. 4(d)). It could alternatively correspond to another ℓ = 1 state. The characteristics of the identified resonances in 25F are summarized in Table I.

In Fig. 4 (right panel), we compare the measured ex-
FIG. 4. (Color online) Left: Illustrative picture of the expected configurations populated in 25F from the 26Ne(-1p) reaction. Right: Experimental level scheme of 25F compared to shell-model calculations performed using the phenomenological USDA [31] and WBP [50] interactions and with ab initio valence-space Hamiltonians derived from IM-SRG [23, 24]. The unbound states above $S_n = 4270(100)$ keV were obtained in the present work, while the bound states were studied in Ref. [54]. Grey rectangles shown in the experimental spectrum and in the IM-SRG predictions, with a J^π-dependent horizontal widths, correspond to uncertainties on the energy centroids of the states. These uncertainties on calculated energies overlap between 4 and 7 MeV, where many resonances are present. The bound states come mainly from $(\pi^0d_{5/2})^{-1}(\nu1s_{1/2})^{1}$ (case (a)) and $(\pi^0d_{5/2})^{-1}(\nu1s_{1/2})^{2}(\nu0d_{3/2})^{2}$ (case (c)) configurations. We propose that unbound states come mainly from $(\pi^0p_{1/2})^{-1}(\pi^0d_{5/2})^{2}$ (case (b)) and $(\pi^0d_{5/2})^{-1}(\nu1s_{1/2})^{2}(\nu0d_{3/2})^{2}$ (case (d)) configurations.

Experimental spectrum with the theoretical results. While both IM-SRG and USDA agree for a few excited states, the density of states given by USDA is higher than IM-SRG. The $5/2^+$ state predicted by both USDA and IM-SRG to be a $(\pi0d_{5/2})^{-1}(\nu1s_{1/2})^{-1}(\nu0d_{3/2})^{2}$ configuration (Fig. 4(b)) agrees well with the experimental state at 4.2 MeV. The $5/2^+$ state from IM-SRG lies at 6.2 MeV but only contains a contribution from the neutron $2p2h$ configuration $(\nu1s_{1/2})^{-2}(\nu0d_{3/2})^{2}$ (Fig. 4(d)) on the order of a few percent. In USDA, the $5/2^+$ and $5/2^+_4$ states are close in energy at 5.7 MeV and 6.1 MeV, and both exhibit a very similar $2p2h$ character of approximately 30%. We also note that the $J^\pi = 1/2^-$ and $5/2^+_4$ states, calculated in Ref. [7] at energies slightly above S_n using the psd-shell WPM interaction are good candidates for the above resonances. By using the WPB interaction
mentioned in Section III, the newly proposed 1/2− resonance, that corresponds to a predominant proton cross-shell excitation, is calculated at 5.2 MeV, in reasonable agreement with experiment.

C. Experimental results for 26F

Unbound states of 26F were produced using the one-proton knockout reaction from 27Ne projectiles. The relative energy spectrum for 26F (25F+n system), shown in Fig. 5(a), displays two resonances. No gamma is found in coincidence with them, implying that they decay directly to the ground state of 25F and that E^i\text{rel} = E^i_r. Since the additional neutron in 26F likely occupies the ν0d_{5/2} orbital, an angular momentum ℓ = 2 has been used in the fit of each resonance, leading to E^1\text{rel} = 323(33) keV and E^2\text{rel} = 1790(290) keV. Pure ℓ = 0 resonances would be expected to be much broader, as shall be confirmed later in the discussion. The uncertainties correspond to one sigma confidence level. To check the sensitivity of the method, another fit was performed with a zero-energy shift in the f_{r,ℓ} function. In this way the extracted centroids of the resonances correspond to the maxima of the Breit-Wigner function. In this way the extracted centroids of the resonances correspond to the maxima of the peaks [55]. A compatible result is found, with resonances at 350(50) keV and 1750(150) keV (Figure 5(b)).

In order to determine the width Γ_r of these ℓ = 2 resonances, the same procedure as for 25F was applied (see paragraph IV A). Γ^1_r = 570(480) keV and Γ^2_r = 4200(2500) keV were extracted for the first and second resonance widths. Owing to the fact that this fitting function is less adapted to the shape of the resonances, the errors bars on these energy centroids are larger, E^1\text{rel} = 366(119) keV and E^2\text{rel} = 2430(650) keV, but the centroids themselves are fully compatible with those obtained previously and listed in Table II.

Single-particle widths Γ^\ell\text{sp}(ℓ=0) = 3080 keV, Γ^\ell\text{sp}(ℓ=1) = 1038 keV, and Γ^\ell\text{sp}(ℓ=2) = 74 keV are calculated for the first resonance at 323 keV (see Table II), which, within the large uncertainties, is compatible with an ℓ = 2 component. As for the second resonance at 1790 keV, Γ^\ell\text{sp}(ℓ=0) = 7941 keV, Γ^\ell\text{sp}(ℓ=1) = 6127 keV and Γ^\ell\text{sp}(ℓ=2) = 2966 keV are obtained. Considering the large uncertainty on the width of this resonance, it is difficult to conclude which ℓ assignment is preferred, and whether it corresponds to a single or to multiple overlapping resonances. The characteristics of the resonances identified in 25F, as well as the calculated single-particle widths, are summarized in Table II.

D. Discussion on the results of 26F

It is reasonable to interpret low-lying states of 26F, which can be considered as one proton and one neutron outside a 24O core or one proton and three neutrons outside a 22O core, in terms of the IPSM. The simplest configuration would be (π0d_{5/2})^1(ν0d_{3/2})^1 coupled above 24O, which generates the J^π = 1^+ − 4^+ multiplet (Fig. 6(a)). Among these states, only the J = 3^+ has not been experimentally observed. The next most likely multiplets in the IPSM arise from the (∏π0d_{5/2})^1(ν1s_{1/2})^−1(ν0d_{3/2})^2 configuration above 24O, leading to a J^π = 2^+, 3^+ doublet (Fig. 6(b)), and the

![Diagram](image)

FIG. 5. (Color online) Relative energy spectrum for 26F. The solid black line shows the result of a Breit-Wigner fit using two ℓ = 2 resonances whose centroid values are given in the figure. These resonances are folded with the resolution of the LAND detector. (a) With the energy shift Δi(E_{rel}) defined as in Eq. 5. (b) Assuming Δi(E_{rel}) = 0.

ℓ	E^i_r	E^i_{exc}	Γ^1_r	Γ^2_r	Γ^1\text{sp}(ℓ=0)	Γ^1\text{sp}(ℓ=1)	Γ^1\text{sp}(ℓ=2)
1	323(33)	1394(134)	570(480)	3080	1038	74	
2	1790(290)	2861(318)	4200(2500)	7941	6127	2966	

TABLE II. Characteristics of the resonances measured in 26F populated via the one-proton knockout reaction 27Ne(-1p) under the assumption that S_n = 1071(130) keV [18]. Resonance energies E^i_r, excitation energies E^i_{exc}, and widths Γ^i_r of the three resonances are given in keV with calculated single-particle widths Γ^\ell\text{sp}, assuming various ℓ values of the resonance.
as the two proton orbits are relatively close in energy configuration above \(^{24}\text{O}\), leading to a \(J^\pi = 1^+\), \(2^+\) doublet (Fig. 6(c)).

A resonance 271(37) keV above the neutron threshold was previously observed in \(^{26}\text{F}\) using the nucleon-exchange reaction \(^{26}\text{Ne} \rightarrow ^{26}\text{F}\) [7], in which one \(\pi 0d_{5/2}\) proton in \(^{26}\text{Ne}\) is converted into a neutron in the \(\nu 0d_{3/2}\) orbital, and should produce all states of the \(J^\pi = 1^+ - 4^+\) multiplet. As favored by this reaction mechanism, the 271(37) keV resonance could correspond to the missing \(J^\pi = 3^+\) state of the multiplet, but no spin assignment was proposed in Ref. [7]. The knockout of a \(\pi 0d_{5/2}\) proton from \(^{27}\text{Ne}\) will also leave the \(^{26}\text{F}\) nucleus in a similar \((\pi 0d_{5/2})^1(\nu 0d_{3/2})^1\) configuration and produce the same multiplet of states (Fig. 6(a)). Therefore, the fact that the same resonance is observed in the two experiments, at 271(37) keV in Ref. [7] and at 323(33) keV in the present work, gives further confidence in the assignment of this resonance as a \(J^\pi = 3^+\) state. The width of the resonance, in accordance with an \(\ell = 2\) emission, also supports this assignment.

No other resonance was observed in Ref. [7]. In the knockout reaction, higher energy resonances would be produced only when some neutron or proton admixture is present in the \(^{27}\text{Ne}\) ground state. Results of the \(^{26}\text{Ne}(d,p)^{27}\text{Ne}\) [56] transfer reaction have revealed that some neutron excitations across \(N = 16\) occur, i.e., \((\nu 1s_{1/2})^{-1}(\nu 0d_{3/2})^2\), as indicated by the partial vacancy of the \(\nu 1s_{1/2}\) orbit and the increased occupancy of the \(\nu 0d_{3/2}\) orbit. This offers the possibility to produce the \(J^\pi = 2^+, 3^+\) states in \(^{26}\text{F}\) from the knockout of \(^{27}\text{Ne}\) (Fig. 6(b)), making the second (broad) resonance a good candidate for one or two of these states.

Proton \((\pi 0d_{5/2})^{-2}(\pi 1s_{1/2})^2\) admixtures in the ground state configuration of \(^{27}\text{Ne}\) are also possible (Fig. 6(c)), as the two proton orbits are relatively close in energy (a \(1^2\) state, originating from the \((\pi 0d_{5/2})^{-2}(\pi 1s_{1/2})^2\) configuration, has been proposed at 1720(15) keV in \(^{26}\text{F}\) [54]). This would produce \(J^\pi = 1^+, 2^+\) resonances in \(^{26}\text{F}\), populated in the knockout reaction from \(^{27}\text{Ne}\). While not excluded, such \(2p2h\) proton excitations in \(^{27}\text{Ne}\) are unlikely for two reasons. First, the pairing energy, which scales with \((2j+1)\), in principle favors keeping protons in the \(\pi 0d_{5/2}\) orbit rather than promoting them to the upper \(\pi 1s_{1/2}\) orbit. Second, from the analysis of the one-proton knockout reaction in \(^{26}\text{Ne}\), we find an upper value of 8% for the direct feeding of the \(1^2\) state at 1720(15) keV in \(^{26}\text{F}\) and therefore for the \(2p2h\) content of the \(^{26}\text{Ne}\) ground state. If the two \(2^+\) states (of the \(J^\pi = 2^+, 3^+\) and the \(J^\pi = 1^+, 2^+\) multiplets) were produced from these neutron or proton excitations, their configuration would likely be mixed, especially if the resonances lie close in energy. Comparison with shell-model calculations will now help complete this qualitative discussion.

In Fig. 6 (right panel), the proposed experimental level scheme for \(^{26}\text{F}\) is compared to results of phenomenological shell-model calculations from the USDA Hamiltonian and ab initio valence-space IM-SRG. Both calculations reproduce the energies of the two bound excited states in \(^{26}\text{F}\), \(J^\pi = 3^+\) and \(4^+\). In addition the one proton separation energy predicted by IM-SRG of \(S_n = 1020(100)\) keV agrees well with experiment. The first excited state above the neutron threshold likely corresponds to the \(J^\pi = 3^+\) state belonging to the \(J^\pi = 1^+ - 4^+\) multiplet, lying within several hundred keV of both USDA and IM-SRG predictions. Its calculated neutron occupancies, which are approximately 1.9 \(\nu 1s_{1/2}\) and 1.3 \(\nu 0d_{3/2}\), for both IM-SRG and USDA, correspond to a predominant \((\nu 1s_{1/2})^2(\nu 0d_{3/2})^1\) single-particle configuration (Fig. 6(a)). Moreover, these occupancies are nearly identical to those of all other members of the \(J^\pi = 1^+ - 4^\) multiplet for both interactions. The calculations also predict unbound \(J^\pi = 2^+, 3^+\), and \(3^+\) states at higher excitation energies, with occupancies corresponding to the IPSM configurations estimated earlier. From IM-SRG and USDA, the \(J^\pi = 2^+, 3^+\) states have approximately a 1.9 and 2.0 \(\nu 0d_{3/2}\) occupancy, respectively, compatible with a \(2p1h\) excitation. With an occupancy of 0.8 in the \(\pi 1s_{1/2}\) orbital, both calculations predict the \(J^\pi = 1^+\) state to correspond to the proton excitation configuration of Fig. 6(c). The \(J^\pi = 2^+\), however, has a more mixed configuration between a proton excitation to the \(\pi 1s_{1/2}\) orbital and a neutron promoted to the \(\nu 0d_{3/2}\) orbital. Experimentally, only a broad resonance, centered at about 1790 keV, is observed. This broad component can encompass the three lowest calculated resonances \(2^+, 1^+\), and \(3^+\) that lie within 1 MeV of excitation energy. Despite this general agreement, we note a systematic shift of several hundred keV between IM-SRG predictions and the experimental resonances that probably arise from the fact that the IM-SRG calculations use harmonic oscillator basis and treat unbound states as if they were bound.

One important word of caution must be added concerning the \(S_n\) value of \(^{26}\text{F}\) and its consequence on a possible shift in excitation energy of the resonances. The tabulated \(S_n\) value of 0.80(12) MeV was derived from a time-of-flight measurement of \(^{26}\text{F}\) nuclei produced in a fragmentation reaction [18] in which the existence of the \(4^+\) isomer at 643 keV [3] was not known. Therefore, this value possibly contains some mixture of the ground state and isomeric states, and should be considered as a lower value of \(S_n\). By assuming an isomeric ratio of 42(8)% derived from the production of \(^{26}\text{F}\) in the same fragmentation reaction [3], the \(S_n\) value is increased by 270(50) keV, yielding \(S_n = 1.07(13)\) MeV. This corresponds to the \(S_n\) value adopted in Fig. 6 (right panel). If the isomeric ratio were 100%, the \(S_n\) value would reach 1.44(12) MeV, and the excitation energy of all resonances would increase by 373 keV, bringing the \(3^+\) closer to the USDA and IM-SRG theoretical predictions.

We now turn to experimental interaction energies, \(\text{Int}(J)^\text{exp}\), which in the IPSM limit would correspond to the interaction between a \(0d_{5/2}\) proton and a \(0d_{3/2}\) neutron above a \(^{24}\text{O}\) core coupled to different spin orientations \(J\). We define this quantity in terms of the ex-
FIG. 6. (Color online) Left: Illustrative picture of the expected configurations populated in \(^{26}\text{F}\) from the \(^{27}\text{Ne}\)(-1p) reaction. Right: Experimental level scheme of \(^{26}\text{F}\) compared to shell-model calculations performed using the phenomenological USDA interaction \([31]\) and with ab initio valence-space Hamiltonians derived from IM-SRG \([23, 24]\). The energies of unbound states, above \(S_n = 1071(130)\) keV, were newly measured in this work, while those of the bound states are taken from Refs. \([3, 17, 19]\). Grey rectangles shown in the experimental spectrum and in the IM-SRG predictions correspond to uncertainties on the energies centroids of the states and of the \(S_n\). The bound states \(J^\pi = 1^+, 2^+, 4^+\) as well as the unbound \(J^\pi = 3^+\) state are proposed to come from \((\pi 0d_{5/2})^1(\nu 0d_{3/2})^1\) (case (a)) configuration, while the second unbound state could come from \((\pi 0d_{5/2})^1(\nu 1s_{1/2})^{-1}(\nu 0d_{3/2})^2\) (case (b)) and/or \((\pi 1s_{1/2})^1(\nu 0d_{3/2})^1\) (case (c)) configurations.

Experimental energies in \(^{25,26}\text{F}\), \(^{24}\text{O}\) and \(^{25}\text{O}\) following the formalism of Ref. \([3]\):

\[
\text{Int}(J) = \text{BE}(^{26}\text{F})_J - \text{BE}(^{26}\text{F})_{\text{free}},
\]

where

\[
\text{BE}(^{26}\text{F})_{\text{free}} = \text{BE}(^{25}\text{F}) + \text{BE}(^{25}\text{O}) - \text{BE}(^{24}\text{O}),
\]

and \(\text{BE}(^{26}\text{F})_J\) is the energy of a given \(J^\pi\) state in \(^{26}\text{F}\). Values of \(\text{Int}(1,2,4)_{\text{exp}}\), obtained in Ref. \([3]\), and \(\text{Int}(3)_{\text{exp}} = -0.45(19)\) MeV, derived from the \(3^+\) energy measured in the present work, are listed in Table III. The corresponding effective experimental monopole interaction (i.e., the \(J\)-averaged interaction energy) amounts to \(V_{\text{pn}}^{\text{exp}} \simeq -1\) MeV.

For comparison, we first consider \(\text{Int}(J)\), calculated in a simple picture of a proton-neutron system interacting via a zero-range \(\delta\)-interaction, decomposed into radial \(F_R(n_p, \ell_p, n_n, \ell_n)\) and angular \(A(j_p, j_n, J)\) parts \([57]\):

\[
\text{Int}(j_p, j_n, J) = F_R(n_p, \ell_p, n_n, \ell_n)A(j_p, j_n, J),
\]

where the radial overlap between the proton and neutron wave functions is:

\[
F_R(n_p, \ell_p, n_n, \ell_n) = \frac{V_0}{4\pi} \int_0^\infty \frac{1}{r^2} |R_{n_p, \ell_p}(r)R_{n_n, \ell_n}(r)|^2 dr.
\]

We account for the unknown strength of the nuclear interaction \(V_0\), by normalizing \(\text{Int}(J)\) to experimental data, i.e. in the present case to \(\text{Int}(1)_{\text{exp}}\). The angular part, \(A(j_p, j_n, J)\), lifts the degeneracy between the different \(J\) states of the multiplet and is independant of the choice of the nuclear interaction. In Fig. 7, the values
of $\text{Int}(J)^{\text{exp}}$ display an upward parabola as a function of $J(J+1)$. As expected, $\text{Int}(1)^{\text{exp}}$ and $\text{Int}(4)^{\text{exp}}$, that correspond to the coupling of a proton in $0d_{5/2}$ and a neutron in $0d_{3/2}$ in coplanar orbits, have the strongest intensities.

Contrary to well bound systems, the radial overlap between the proton and the neutron becomes poorer from one J state to another as the neutron becomes less and less bound. This introduces an implicit J-dependence of the radial part $F_R(n_p,\ell_p,n_n,\ell_n)$ that we shall characterize by a reduction factor $R(J)$. To determine $R(J)$, the proton-neutron radial overlap was calculated using experimental neutron binding energies in the ^{26}F system. The corresponding wave functions were obtained by solving the Schrödinger equation in a Woods-Saxon potential, with a depth adjusted to reproduce the observed neutron or proton binding energies for the states of the ^{26}F multiplet. Compared to the 1^+ state, smaller radial overlaps are found for other J states, which we characterize with the reduction factors, $R(J)$, shown in Table III.

Being the least bound, the $J = 3$ state experiences the largest correction factor $R(J)$ of 74%. Applying this J-dependent correction $R(J)$ on the radial wave function, that leads to $\text{Int}(J)^{\delta+\text{corr}}$. Despite the largest reduction factor $R(J)$ for the $J = 3$ state, the $\text{Int}(3)^{\delta} = -0.37$ MeV is only slightly modified by about 100 keV ($\text{Int}(3)^{\delta+\text{corr}} = -0.28$ MeV) owing to its weak intensity. As shown in Table III, both calculated interaction energies, $\text{Int}(J)^{\delta}$ and $\text{Int}(J)^{\delta+\text{corr}}$, compare reasonably well with experimental values, $\text{Int}(J)^{\text{exp}}$. This shows that a fairly good description of the amplitude of the multiplet is obtained with this schematic model, with a modest shift of the unbound $J = 3$ state as compared to if it was treated as a bound state.

We add for comparison in Table III and Fig. 7 interaction energies obtained from the USDA and IM-SRG calculations using equations 6 and 7. This way, experimental and theoretical $\text{Int}(J)$ are directly comparable, since they include correlations on equal footing. For USDA and IM-SRG the monopole interaction V_{pn} amounts to about -1.4 MeV. This is larger than the experimental value of -1.06 MeV, pointing to a smaller monopole interaction as compared to calculations. As seen in Table

J	$\text{Int}(J) [\text{MeV}]$	$R(J) [%]$				
exp	δ	$\delta + \text{corr}$	IM-SRG	USDA		
1	$-1.85(13)^a$	-1.85^b	$-2.24(07)$	-2.47	100b	
2	$-1.19(14)$	-0.90	-0.82	$-1.86(05)$	-1.51	91
3	$-0.45(19)$	-0.37	-0.28	$-0.53(04)$	-0.69	74
4	$-1.21(13)$	-1.32	-1.21	$-1.56(04)$	-1.54	91

$V_{pn}^{\text{exp}} = -1.06$ MeV or $V_{pn}^{\text{USDA}} = -1.40$ MeV.

a Obtained when using $S_n = 1.07(13)$ MeV[3, 18].

b Normalized to $\text{Int}(1)^{\text{exp}}$.
and in Fig. 7, the amplitude of the multiplet parabola of USDA is also larger than experiment, while the energy of the $J = 3$ state is in good agreement. This suggests that the residual energy, that lifts the degeneracy between the J-components of the multiplet, is smaller than calculated. Both effects of smaller monopole and residual interactions, as compared to calculations, could be interpreted (with the word of caution concerning the binding energy of the 26F ground state mentioned before) as an effect of the proximity of the continuum on the effective proton-neutron interaction. We note that the IM-SRG values, not normalized to any experimental data, reproduce the $\text{Int}(J)_{\exp}$ values, though with some overbinding. This is likely due to the starting SRG-evolved NN+3N Hamiltonians, which are known to gradually overbind with increasing nucleon number past 16O [23, 24].

V. CONCLUSION

Unbound states in 25,26F have been studied using the one-proton knockout reaction from 26,27Ne projectiles. Resonances at 49(9) keV, 389(27) keV, and 1546(106) keV were measured in 25F. Being in coincidence with the 521 keV γ transition, the energy of the $2^+_1 \to \text{g.s.}$ transition in 24F, the energy of the first resonance must be shifted upward compared to the value derived in Ref. [7], where γ-ray detection was not available. This state at $E^{\text{exc}} = 4840(100)$ keV is a good candidate for a proton $\pi 0p_{1/2}$ hole (1/2$^-$ state) configuration, as discussed in comparison to shell-model calculations using the WBP interaction.

Unbound states in 26F have been studied using the same procedure. Two resonances have been observed at 323(33) keV and 1790(290) keV. The first resonance has been identified as a convincing candidate for the 3^+_1 state of the $J^\pi = 1^+_1 - 4^+_1$ multiplet, based on its observation in the two selective reactions of charge exchange from 26Ne and of knockout from 27Ne, as well as its relatively narrow width pointing to $\ell = 2$ neutron configuration. The second broad resonance, not observed in previous studies, might reflect several states that could not be distinguished, corresponding to neutron ($2p1h$) or proton ($1p$) components.

These $J^\pi = 1^+_1 - 4^+_1$ states, arising from the $(\pi 0d_{5/2})^1(\nu 0d_{3/2})^1$ coupling, are particularly adapted to probe the evolution of $\text{Int}(J)$ close to the neutron drip line. A resulting effective interaction $V_{\text{eff}} \approx -1$ MeV has been found for this proton in the $0d_{5/2}$ orbital and this neutron in the $0d_{3/2}$ orbital. Energies of these $J^\pi = 1^+_1 - 4^+_1$ states have been compared with phenomenological shell-model calculations using the USDA interaction and ab initio valence-space IM-SRG calculations. In the two cases, an overall good agreement between predicted and measured energies is found for the bound states. However, higher-lying states are found to be too high in energy, highlighting the need to include coupling to continuum in the models for broad resonances. It is deduced here that, as compared to models that use an harmonic oscillator basis to determine the wave functions of the nucleons independently of their binding energy, (i) the overall effective interaction is weakened by about 30-40% and (ii) the amplitude of the multiplet of $J^\pi = 1^+_1 - 4^+_1$ states is more compressed, though correlations (overlap between the 0d$_{5/2}$ proton and the 0d$_{3/2}$ neutron wave functions) are still strong enough to lift the degeneracy between these J states.

To summarize, as shown in this paper and in references [3, 6, 7, 9, 17], 26F, which is close to the doubly magic 24O nucleus, is particularly adapted to study the effects of the coupling to continuum through the changes in binding energy and the width of its unbound states. These studies provide stringent constraints for future theoretical development including the treatment of the continuum and aiming at a better description of shell evolution at the drip lines. In the future, the increased granularity of the neutron detectors, as well as a longer time-of-flight basis, will lead to a better energy resolution. This will allow to disentangle overlapping resonances, here with providing access to their width and to their coupling to bound or unbound states. We finally note that a large part of the conclusions drawn here rely on the S_n values of 26F that is subject to uncertainties because its atomic mass was measured with an unknown fraction of the $J = 4^+$ isomer at 643 keV. We therefore strongly encourage to confirm the S_n value of 26F to put the comparison between experiment and theory on a more reliable basis.

ACKNOWLEDGMENTS

P. Van Isacker and M. Ploszajczak are greatly acknowledged for fruitful discussions and suggestions on how to improve the manuscript. TRIUMF receives funding via a contribution through the National Research Council of Canada. This work was supported in part by NSERC, the NUCLEI SciDAC Collaboration under the U. S. Department of Energy Grants No. DE-SC0008533 and DE-SC0008511, the National Science Foundation under Grants No.PHY-1404149, the European Research Council Grant No.307986 STRONGINT, the Deutsche Forschungsgesellschaft under Grant SFB 1245, and the BMBF under Contracts No. 05P15RDFN1 and 05P15WOIFNA. This work has also been supported by the Spanish MINECO via project FA2013-41267-P, FA2015-64969-P and by the Portuguese FCT, Project PTDC/FIS/103902/2008. Computations were performed with an allocation of computing resources at the Jülich Supercomputing Center, Ohio Supercomputer Center (OSC), and the Michigan State University High Performance Computing Center (HPCC)/Institute for Cyber-Enabled Research (iCER). C. A. Bertulani acknowledges support from U. S. DOE Grant DE-FG02-08ER41533 and the U. S. NSF Grant No.1415656. M. Petri acknowledges support from the Helmholtz Inter-
national Center for FAIR within the framework of the LOEWE program launched by the State of Hesse.

[1] J. P. Schiffer and W. W. True, Rev. Mod. Phys. 48, 191 (1976).
[2] V. Paar, Nucl. Phys. A 331, 16 (1979).
[3] A. Lepailleur, et al., Phys. Rev. Lett. 110, 082502 (2013).
[4] R. Casten, Nuclear structure from a simple perspective, Vol. 23 (Oxford University Press on Demand, 2000).
[5] F. de Grancey, et al., Physics Letters B 758, 26 (2016).
[6] I. Stefan, et al., Phys. Rev. C 90, 014307 (2014).
[7] N. Frank, et al., Phys. Rev. C 84, 037302 (2011).
[8] M. Basunia and A. Hurst, Nuclear Data Sheets 134, 1 (2016).
[9] A. Lepailleur, et al., Phys. Rev. C 92, 054309 (2015).
[10] C. Hoffman, et al., Physics Letters B 672, 17 (2009).
[11] K. Tshoo, et al., Phys. Rev. Lett. 109, 022501 (2012).
[12] M. Wang, et al., Chin. Phys. C 36, 1603 (2012).
[13] Y. Kondo, et al., Nucl. Instrum. and Methods in Phys. Res. Sect. A 396, 034313 (2013).
[14] C. Caesar, et al. (R3B collaboration), Phys. Rev. C 88, 034313 (2013).
[15] C. R. Hoffman, et al., Rev. Mod. Phys. 74, 346 (2012).
[16] A. Lepailleur, et al., Phys. Rev. Lett. 100, 152502 (2008).
[17] M. Stanoiu, et al., Phys. Rev. C 85, 017303 (2012).
[18] B. Jurado, et al., Physics Letters B 649, 43 (2007).
[19] A. T. Reed, et al., Phys. Rev. C 60, 024311 (1999).
[20] C. Rodríguez-Tajes, et al., Phys. Rev. C 82, 024305 (2010).
[21] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. C 85, 061304(R) (2012).
[22] S. K. Bogner, et al., Phys. Rev. Lett. 113, 142501 (2014).
[23] S. R. Stroberg, et al., Phys. Rev. C 93, 051301 (2016).
[24] S. R. Stroberg, et al., Phys. Rev. Lett. 118, 032502 (2017).
[25] H. Geissel, et al., Nucl. Instrum. and Methods in Phys. Res. Sect. B 70, 286 (1992).
[26] T. Aumann, Progress in Particle and Nuclear Physics 59, 3 (2007).
[27] V. Metag, et al., Detectors in Heavy-Ion Reactions, edited by W. von Oertzen, Lecture Notes in Physics, Vol. 178 (Springer Verlag, Berlin, 1983) pp. 163 – 178.
[28] A. Lepailleur, Étude du noyau peu lié de 26F pour sonder l’évolution des forces nucléaires à l’approche de la limite de liaison nucléaire, Theses, Université de Caen (2013).
[29] C. Caesar, Beyond the Neutron Drip-Line: Superheavy Oxygen Isotopes, Ph.D. thesis, Technische Universität, Darmstadt (2012).
[30] T. Blaich, et al., Nucl. Instrum. and Methods in Phys. Res. Sect. A 314, 136 (1992).
[31] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[32] L. Cáceres, et al., Phys. Rev. C 92, 014327 (2015).
[33] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
[34] R. Machleidt and D. Entem, Physics Reports 503, 1 (2011).
[35] T. Otsuka, et al., Phys. Rev. Lett. 105, 032501 (2010).
[36] K. Hebeler, et al., Ann. Rev. Nucl. Part. Sci. 65, 457 (2015).
[37] G. Hagen, et al., Phys. Rev. Lett. 108, 242501 (2012).
[38] J. D. Holt, J. Menéndez, and A. Schwenk, Eur. Phys. J. A 49, 39 (2013).
[39] R. Roth, et al., Phys. Rev. Lett. 109, 052501 (2012).
[40] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013).
[41] H. Hergert, et al., Phys. Rev. Lett. 110, 242501 (2013).
[42] J. Simonis, et al., Phys. Rev. C 93, 011302 (2016).
[43] J. D. Holt, et al., Journal of Physics G: Nuclear and Particle Physics 39, 085111 (2012).
[44] G. Hagen, et al., Phys. Rev. Lett. 109, 032502 (2012).
[45] A. T. Gallant, et al., Phys. Rev. Lett. 109, 032506 (2012).
[46] F. Wienholtz, et al., Nature 498, 346 (2013).
[47] V. Somá, et al., Phys. Rev. C 89, 061301 (2014).
[48] H. Hergert, et al., Phys. Rev. C 90, 041302 (2014).
[49] J. D. Holt, et al., Phys. Rev. C 90, 024312 (2014).
[50] F. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C 41, 1147 (1990).
[51] B. Brown and W. Rae, Nuclear Data Sheets 120, 115 (2014).
[52] A. M. Lane and R. G. Thomas, Reviews of Modern Physics 30, 257 (1958).
[53] G. Randisi, et al., Phys. Rev. C 89, 034320 (2014).
[54] Z. Vajta, et al., Phys. Rev. C 89, 054323 (2014).
[55] J. Leconey, Étude des systèmes non liés 16B et 13Be, Thesis, Université de Caen (2002).
[56] S. M. Brown, et al., Phys. Rev. C 85, 011302 (2012).
[57] K. L. G. Heyde, The Nuclear Shell Model (Springer-Verlag, Berlin Heidelberg, 1994).