Binding of Tissue-type Plasminogen Activator by the Mannose Receptor*

Marlies Otter, Marrie M. Barrett-Bergshoeff, and Dingeman C. Rijken

From the Gaubius Institute TNO, Leiden, The Netherlands

Previous studies have shown that tissue-type plasminogen activator (t-PA) in blood is cleared by the liver partially through a mannose-specific uptake system. The present study was undertaken to investigate, in a purified system, whether t-PA is recognized by the mannose receptor which is expressed on macrophages and liver sinusoidal cells. The mannose receptor was isolated and purified from bovine alveolar macrophages and migrated as a single protein band at Mr, 175,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Ligand blotting revealed that this protein specifically bound t-PA. The t-PA-receptor interaction was further characterized in a binding assay, which showed saturable binding with an apparent dissociation constant of 1 nM. t-PA binding required calcium ions and was negligible in the presence of EDTA or at acid pH. Mannose-albumin was an effective inhibitor, whereas galactose-albumin did not have a significant effect. From a series of monosaccharides tested, D-mannose and L-fucose were the most potent inhibitors, N-acetyl-D-glucosamine was a moderate inhibitor, whereas D-galactose and N-acetyl-D-galactosamine were ineffective. t-PA, deglycosylated by endoglycosidase H, did not interact with the receptor. It is concluded that the mannose receptor specifically binds t-PA, probably through its high mannose-type oligosaccharide.

Receptor-mediated endocytosis refers to a general process which permits cells to internalize macromolecules and particles from the extracellular surroundings (1, 2). A group of receptors involved in this process is formed by membrane-bound lectins, which recognizes specific glycoproteins or glycoconjugates (3, 4). Examples of these lectins are the asialoglycoprotein receptor (3), the Kupffer cell galactose/fucose receptor (5), the chicken hepatic lectin (3), and the mannose receptor of macrophages and hepatic sinusoidal cells. The latter receptor was isolated from rabbit (6, 7), rat (8), and human (9, 10) cells or tissues and appeared to consist of a single subunit of Mr, ~175,000. Recently, the primary structure of the human mannose receptor was deduced from the sequence of cDNA clones (11). It appeared that the receptor contains multiple motifs resembling carbohydrate-recognition domains, also found in other surface glycoprotein receptors.

The mannose receptor probably has a physiological function in host defense mechanisms by mediating phagocytosis of mannose-containing microorganisms (12, 13). In addition, it has been proposed that the receptor functions as a scavenger for secreted lysosomal enzymes, such as a-hexosaminidase and b-glucuronidase, bearing high mannose-type carbohydrates (14, 15). It has been demonstrated recently (16) that the circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells.

Tissue-type plasminogen activator (t-PA) is a highly specific proteinase, which is synthesized by vascular endothelial cells and secreted into the bloodstream. The enzyme plays a key role in the fibrinolytic system, which constitutes the natural counterpart of the blood coagulation system and is responsible for a timely degradation of fibrin structures in blood clots and thrombi (17, 18). Recombinant t-PA is presently used as a thrombolytic drug, for instance after myocardial infarction (19). t-PA is a glycoprotein with a molecular weight of about 70,000 (20). It contains one high mannose-type oligosaccharide and one or two complex-type oligosaccharides (21-24). The high mannose-type oligosaccharide may be involved in the rapid clearance of t-PA from plasma by the liver (t1/2 ≈ 5 min). Kuiper et al. (25), as well as other investigators (26-34) have provided evidence that t-PA is partially cleared by a specific uptake system on parenchymal cells and partially by a mannose-specific uptake system on liver endothelial cells and Kupffer cells (reviewed in Ref. 35). The latter route may be mediated by the Mr, 175,000 mannose receptor.

The aim of the present study was to establish in a purified system whether or not t-PA fulfills the requirements for a specific interaction with the mannose receptor and thus could be considered as a physiological ligand.

EXPERIMENTAL PROCEDURES

Materials—PMSF, leupeptin, chymostatin, BSA (product A7030), mannos-oligosaccharide containing 20-30 mol of monosaccharide per mol albumin (product A4664), galactose-albumin containing 15-25 mol of monosaccharide per mol albumin (product A1169), t-fucose, and D-galactose were obtained from Sigma; iodoacetamide from BDH Chemicals (Poole, UK); D-mannose and N-acetyl-D-galactosamine from Aldrich-Chemie (Steinheim, Germany); N-acetyl-D-glucosamine from Janssen Pharmaceutica (Beerse, Belgium); and Endo-H from Boehringer Mannheim. t-PA was purified from a human melanoma cell line (36, 37) by Dr. J. H. Verheijen of the IVVO-TNO Gaubius Laboratory and consisted for 70% of the single-chain form and for 30% of the two-chain form; concentrations were based on amino acid analysis. t-PA was radiolabeled with [35S] (specific radioactivity 4 × 104 cpm/μg protein) by using the IODO-GEN method (38) and

* Financial support was obtained by Grant 86.057 and Established Investigatorship of D.C.R. from the Netherlands Heart Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: IVVO-TNO Gaubius Laboratory, P.O. Box 430, 2300 AK Leiden, The Netherlands. Tel.: 31-71181818; Fax: 31-71181900.
purified as described earlier (39). Mannose-albumin was coupled to CNBr-activated Sepharose 4B (Pharmacia LKB Biotechnology Inc.) at a concentration of 5 mg/ml gel.

Isolation of the Mannose Receptor—Alveolar macrophages were isolated from bovine lung, washed five times with 15 mM phosphate buffer, pH 7.4, 0.5 M NaCl (PBS) at 4°C, and stored frozen in PBS, containing 1 mM PMSF, 5 mM iodoacetamide, 1 µg/ml leupeptin, and 1 µg/ml chymostatin and (5%) 2-propanol to keep PMSF in solution. Macrophase membranes were prepared and then extracted with 1% Triton X-100 as described by Lennartz et al. (7). The PMSF concentration in the buffers was, however, enhanced from 0.1 mM to 1 mM. Fifteen ml of extract (derived from 1.5 x 10^9 cells) was applied twice on a 4-ml mannose-albumin-Sepharose column, previously equilibrated with 10 mM Tris-HCl, pH 7.4, 1.25 M NaCl, 15 mM CaCl2, 1% Triton X-100, containing the inhibitors specified above. The column was washed with equilibration buffer and eluted with equilibration buffer supplemented with 0.5 M mannose. The column fractions containing the mannose receptor (as shown by SDS-PAGE) were pooled and stored at -70°C. When indicated, this pool was dialyzed extensively against equilibration buffer to remove mannose and then reapplied on the mannose-albumin-Sepharose column. Elution was accomplished as described above, but now without Triton X-100 in the buffer, which resulted in a yield of about 25%. Detergent-free mannose receptor was used in the binding assay (see below). All procedures were carried out at 4°C.

SDS-PAGE and Ligand Blotting—SDS-PAGE was performed according to the method of Laemmli (40). High molecular weight standard protein markers were obtained from Bio-Rad and low molecular weight markers from Pharmacia (not shown) and could not be used in binding studies.

FIG. 1. SDS-PAGE of the purified mannose receptor (A) and ligand blotting with t-PA (B). Aliquots of 0.2 µg of mannose receptor (lanes 2 and 3) or standard proteins (lanes 1 and 4) were subjected to SDS-PAGE on 6% gels and stained by silver staining (lanes 1 and 2 reduced, lanes 3 and 4 nonreduced). Aliquots of 0.5 µg of mannose receptor (lanes 6 and 8) or standard proteins (lanes 5 and 7) were run under nonreduced conditions, transferred to nitrocellulose, incubated with 1 µg/ml t-PA in the absence (lanes 5 and 6) or presence (lanes 7 and 8) of 0.1 M mannose, and immunostained as described under “Experimental Procedures.” The standard proteins were myosin (200,000), ß-galactosidase (116,250), phosphorylase b (97,400), BSA (66,200), and ovalbumin (42,699).

RESULTS

Isolation and Purification of the Mannose Receptor—The mannose receptor was extracted from bovine alveolar macrophage membranes and purified by affinity chromatography on mannose-albumin-Sepharose. The final yield was 10-50 µg of receptor protein per 1.5 x 10^9 cells. SDS-PAGE of the purified protein, both before and after reduction with 2-mercaptoethanol, showed one main band corresponding with a M₀ of 175,000 (Fig. 1A). Occasionally a trace component at M₀ > 200,000 was observed (Fig. 1A), possibly representing an aggregated form of the receptor. The isolation procedure is a modification of that developed for the mannose receptor from rabbit alveolar macrophages (7). The major modification is that the protease inhibitors were not only present during washing and extraction of the macrophage membranes but also during washing and elution of the mannose-albumin-Sepharose column. In addition, the PMSF concentration was enhanced from 0.1 to 1.0 mM. Without these modifications the purified receptor lost its activity rapidly and completely (not shown) and could not be used in binding studies.

Ligand Blotting—The mannose receptor was subjected to SDS-PAGE, blotted onto nitrocellulose, incubated with t-PA, and stained by using antibodies against t-PA. Fig. 1B (lane 5) shows a clear band at M₀ 175,000, suggesting that the mannose receptor bound t-PA. No other bands were visible, indicating that the receptor preparation did not contain other proteins which interacted with t-PA in this technique. Two out of the five molecular weight markers were also stained (lane 6), which may possibly be ascribed to the affinity of t-PA for some denatured proteins (42). The binding of t-PA to the mannose receptor was fully blocked by addition of 0.1 M mannose (lane 8), pointing to a specific binding phenomenon. By contrast, the apparent binding of t-PA to the molecular weight markers was unaffected by mannose (lane 7).

Binding Assay—In order to further investigate the interaction between the mannose receptor and t-PA, a binding assay was developed by immobilizing detergent-free mannose receptor onto microtitration plates. The immobilized receptor was incubated with iodinated t-PA before incubation with the immobilized receptor. Inhibition curves were fitted by nonlinear regression analysis with a computer program (GraphPAD, ISI Software, Philadelphia, PA).

Endo-H Treatment—[125I]t-PA (3 x 10⁶ cpm/ml) in 40 mM Tris/80 mM acetate, pH 7.0, 0.8 M NaCl, 0.01% Tween 80 was incubated with or without 40 µM/ml Endo-H for 3 h at 37°C. The effect of the Endo-H treatment on the structure of [125I]t-PA was studied by SDS-PAGE and autoradiography. The interaction of Endo-H-treated [125I]t-PA with the mannose receptor was determined in the binding assay.

A: SILVER STAINING
B: LIGAND BLOTTING

Table 1 shows a clear band at M₀ 175,000, suggesting that the mannose receptor bound t-PA. No other bands were visible, indicating that the receptor preparation did not contain other proteins which interacted with t-PA in this technique. Two out of the five molecular weight markers were also stained (lane 6), which may possibly be ascribed to the affinity of t-PA for some denatured proteins (42). The binding of t-PA to the mannose receptor was fully blocked by addition of 0.1 M mannose (lane 8), pointing to a specific binding phenomenon. By contrast, the apparent binding of t-PA to the molecular weight markers was unaffected by mannose (lane 7).

Binding Assay—In order to further investigate the interaction between the mannose receptor and t-PA, a binding assay was developed by immobilizing detergent-free mannose receptor onto microtitration plates. The immobilized receptor was incubated with iodinated t-PA before incubation with the immobilized receptor. Inhibition curves were fitted by nonlinear regression analysis with a computer program (GraphPAD, ISI Software, Philadelphia, PA).

Endo-H Treatment—[125I]t-PA (3 x 10⁶ cpm/ml) in 40 mM Tris/80 mM acetate, pH 7.0, 0.8 M NaCl, 0.01% Tween 80 was incubated with or without 40 µM/ml Endo-H for 3 h at 37°C. The effect of the Endo-H treatment on the structure of [125I]t-PA was studied by SDS-PAGE and autoradiography. The interaction of Endo-H-treated [125I]t-PA with the mannose receptor was determined in the binding assay.

Table 1 shows a clear band at M₀ 175,000, suggesting that the mannose receptor bound t-PA. No other bands were visible, indicating that the receptor preparation did not contain other proteins which interacted with t-PA in this technique. Two out of the five molecular weight markers were also stained (lane 6), which may possibly be ascribed to the affinity of t-PA for some denatured proteins (42). The binding of t-PA to the mannose receptor was fully blocked by addition of 0.1 M mannose (lane 8), pointing to a specific binding phenomenon. By contrast, the apparent binding of t-PA to the molecular weight markers was unaffected by mannose (lane 7).

Binding Assay—In order to further investigate the interaction between the mannose receptor and t-PA, a binding assay was developed by immobilizing detergent-free mannose receptor onto microtitration plates. The immobilized receptor was incubated with iodinated t-PA before incubation with the immobilized receptor. Inhibition curves were fitted by nonlinear regression analysis with a computer program (GraphPAD, ISI Software, Philadelphia, PA).

Endo-H Treatment—[125I]t-PA (3 x 10⁶ cpm/ml) in 40 mM Tris/80 mM acetate, pH 7.0, 0.8 M NaCl, 0.01% Tween 80 was incubated with or without 40 µM/ml Endo-H for 3 h at 37°C. The effect of the Endo-H treatment on the structure of [125I]t-PA was studied by SDS-PAGE and autoradiography. The interaction of Endo-H-treated [125I]t-PA with the mannose receptor was determined in the binding assay.

Table 1 shows a clear band at M₀ 175,000, suggesting that the mannose receptor bound t-PA. No other bands were visible, indicating that the receptor preparation did not contain other proteins which interacted with t-PA in this technique. Two out of the five molecular weight markers were also stained (lane 6), which may possibly be ascribed to the affinity of t-PA for some denatured proteins (42). The binding of t-PA to the mannose receptor was fully blocked by addition of 0.1 M mannose (lane 8), pointing to a specific binding phenomenon. By contrast, the apparent binding of t-PA to the molecular weight markers was unaffected by mannose (lane 7).

Binding Assay—In order to further investigate the interaction between the mannose receptor and t-PA, a binding assay was developed by immobilizing detergent-free mannose receptor onto microtitration plates. The immobilized receptor was incubated with iodinated t-PA before incubation with the immobilized receptor. Inhibition curves were fitted by nonlinear regression analysis with a computer program (GraphPAD, ISI Software, Philadelphia, PA).

Endo-H Treatment—[125I]t-PA (3 x 10⁶ cpm/ml) in 40 mM Tris/80 mM acetate, pH 7.0, 0.8 M NaCl, 0.01% Tween 80 was incubated with or without 40 µM/ml Endo-H for 3 h at 37°C. The effect of the Endo-H treatment on the structure of [125I]t-PA was studied by SDS-PAGE and autoradiography. The interaction of Endo-H-treated [125I]t-PA with the mannose receptor was determined in the binding assay.
Binding of t-PA by Mannose Receptor

FIG. 2. Effect of mannose-receptor concentration on the binding of 125I-t-PA in the binding assay. The wells of microtiteration plates were coated with varying concentrations of the mannose receptor (0.0015 pg/ml) and then incubated with 125I-t-PA, washed and counted as described under "Experimental Procedures."

FIG. 3. Inhibition of 125I-t-PA binding to the mannose receptor by unlabeled t-PA. 125I-t-PA (13 ng/ml or 0.22 nM) was mixed with varying concentrations of unlabeled t-PA (0-300 nM) and incubated with immobilized receptor in the binding assay (see "Experimental Procedures"). The sigmoid curve was calculated with a fitting program.

cpm/well in the presence of 10 mM EDTA instead of 5 mM CaCl2 and to 28 ± 2 cpm/well in a buffer containing 20 mM acetate, pH 4.0, instead of 20 mM Tris-HCl, pH 7.4.

Carbohydrate Specificity—The involvement of carbohydrates in the interaction between the mannose receptor and t-PA was further studied by measuring the extent of inhibition of 125I-t-PA binding in the binding assay by various glycoproteins and monosaccharides. Fig. 4 shows that mannose-albumin, a standard ligand for the mannose receptor, was an effective inhibitor, whereas galactose-albumin did not have a significant effect. The most potent inhibitors of the monosaccharides tested were D-mannose and L-fucose. N-Acetyl-D-galactosamine was a moderate inhibitor, whereas D-galactose and N-acetyl-D-galactosamine were ineffective (Fig. 5).

Endo-H-treated t-PA—Incubation of 125I-t-PA with Endo-H resulted in a small increase in mobility on SDS-PAGE, corresponding well with the expected elimination of the high mannose-type oligosaccharide of t-PA (Fig. 6, inset). Incubation of 125I-t-PA without Endo-H did not change the mobility. Deglycosylated t-PA appeared to have no affinity for the mannose receptor in the binding assay (Fig. 6), indicating that the high mannose-type chain of t-PA is essential for binding.

FIG. 4. Inhibition of 125I-t-PA binding to the mannose receptor by mannose-albumin and galactose-albumin. 125I-t-PA (10 ng/ml) was mixed with varying concentrations (0.0-7.4 pg/ml) of mannose-albumin (●) or galactose-albumin (▲) and incubated with the immobilized receptor in the binding assay (see "Experimental Procedures").

FIG. 5. Inhibition of 125I-t-PA binding to the mannose receptor by various monosaccharides. 125I-t-PA (10 ng/ml) was mixed with varying concentrations (0-50 mM) of D-mannose (●), L-fucose (▲), N-acetyl-D-glucosamine (▼), D-galactose (○), or N-acetyl-D-galactosamine (△) and incubated with the immobilized receptor in the binding assay (see "Experimental Procedures").

FIG. 6. Effect of deglycosylation of 125I-t-PA by Endo-H on the binding to the mannose receptor. 125I-t-PA binding (mean ± S.D.) was determined in the binding assay both before (A) and after a 3-h incubation period in the absence (B) or presence (C) of Endo-H (see "Experimental Procedures" for details). The inset shows a radioautogram after SDS-PAGE (10% gel) of the three 125I-t-PA preparations. The standard proteins were phosphorylase b (94,000), bovine serum albumin (67,000), ovalbumin (43,000), carbonic anhydrase (30,000), and soybean trypsin inhibitor (20,100).
DISCUSSION

In this study the mannose receptor was isolated and purified from bovine alveolar macrophages, extending the number of species from which a M, 175,000 mannose receptor has been isolated. The functional properties of the receptors isolated from rabbit (6, 7), rat (8), human (9, 10), and bovine (this study) cells or tissues are very similar. The isolation of the bovine receptor required, however, extensive use of proteinase inhibitors to prevent proteolytic inactivation of the receptor. It is interesting to note that the inactivation did not lead to a visible change in electrophoretic mobility on SDS-PAGE under reducing conditions (data not shown), pointing to a proteolytic clip near the extracellular (i.e. N-terminal) end of the receptor. This finding is difficult to reconcile with the presence of the eight potential carbohydrate-recognition domains in the middle of the molecule (11). However, our finding may be in line with a recent suggestion that the ligand-binding domain is located on a N-terminal fragment of M, 35,000 (43).

The main finding of this study is that the mannose receptor specifically bound t-PA. This was found both in ligand blotting experiments and in a binding assay developed for small quantities of receptor protein. The apparent dissociation constant in the binding assay was 1.0 nM and the number of binding sites 3.3 fmol/well (33 pm). The latter value is low with respect to 0.85 nM, the receptor concentration used for coating of the microtitration plates. This may suggest that only 4% of the receptor molecules were capable of binding t-PA. However, other factors might also explain this low value, such as incomplete immobilization of the receptor solution employed, loss of functional activity of the receptor due to immobilization to the polyvinylchloride, and dissociation of immobilized receptor and/or bound 125I-t-PA during the wash steps of the binding assay.

Binding of t-PA did not occur in the presence of EDTA or at acid pH, which is in line with known properties of the receptor (7–10). In addition, the inhibition profile of monosaccharides, d-mannose and l-fucose being the most potent ones (44, 45), and underlines the specificity of the observed t-PA binding.

Both melanoma and recombinant t-PA contain a high mannose-type oligosaccharide in kringle 1, a complex-type in kringle 2 (only present in t-PA variant I), and another complex-type oligosaccharide in the protease domain (22–24). It is probably only the high mannose-type structure which fulfills the minimum requirements for binding and endocytosis by the mannose receptor (46). This was supported by a complete loss of affinity for the mannose receptor of t-PA treated by Endo-H (Fig. 6), which only removes high mannose-type and some hybrid-type chains in glycoproteins (47).

Binding of t-PA to the macrophage mannose receptor, which is very similar to, or identical with, the liver mannose receptor (45), has at least four potentially important implications. First, t-PA is one of the first plasma proteins, shown to be a suitable ligand for the mannose receptor, which is relevant for understanding the function(s) of the mannose receptor especially on liver sinusoidal cells. Although most glycoproteins in plasma have complex-type carbohydrate chains, t-PA is not the only glycoprotein in plasma with a high mannose-type oligosaccharide. Another known example is IgM, which has, however, a relatively long half-life. It has been suggested that the high mannose-type chains in this and other stable proteins are sterically protected from the mannose receptor (48). The high mannose-type oligosaccharide in t-PA should be readily accessible. This assumption is supported by the finding that t-PA, in contrast to many other glycoproteins (47), does not require treatment with agents known to perturb protein configuration in order to become deglycosylated by Endo-H (31, 32, this study).

Second, the finding strongly supports the hypothesis that the mannose receptor is involved in the rapid clearance of t-PA (35). This is helpful in studies developing slower-clearing mutants of t-PA to improve thrombolytic therapy. Not only could glycosylation be prevented as previously described (31), but minor modifications in the carbohydrate structures could also be elaborated by taking into account the minimum required structure for an interaction with the mannose receptor (46). In addition, identification of receptor systems involved in t-PA clearance is essential in strategies to prolong the half-life of t-PA by affecting the receptors directly.

Third, the mannose receptor does not only occur on sinusoidal liver cells but also on macrophages. This may point to an active role of macrophages in regulating t-PA concentrations in tissues and body fluids outside the blood circulation.

Fourth, the binding of t-PA by the mannose receptor could be considered in the light of a recent analysis of the molecular evolution of components of the coagulation, fibrinolysis and complement systems. Patthy (49) has suggested that the coagulation and complement cascades are descendants of a general defense system, which protected the organism both from phagocytosis of microorganisms (12, 13), as well as in the haemostatic system (this study), may represent a relic of the ancestral defense system.

Acknowledgments—We thank Drs. J. M. van Noort and A. C. M. van der Drift (MBL-TNO, Rijswijk, The Netherlands) for advice and assistance in the isolation of the macrophages and Drs. J. Kuiper and Th. J. C. van Berkel (University of Leiden, The Netherlands) for helpful discussions.

REFERENCES

1. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S. (1979) Nature 279, 679–685
2. Stahl, P., and Schwartz, A. L. (1986) J. Clin. Invest. 77, 657–662
3. Ashwell, G., and Harford, J. (1982) Annu. Rev. Biochem. 51, 531–554
4. Sharon, N., and Lis, H. (1989) Science 246, 227–234
5. Lehrman, M. A., and Hill, R. L. (1986) J. Biol. Chem. 261, 7419–7425
6. Wileman, T. E., Lennartz, M. R., and Stahl, P. D. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 2501–2505
7. Lennartz, M. R., Wileman, T. E., and Stahl, P. D. (1987) Biochem. J. 245, 705–711
8. Haltiwanger, R. S., and Hill, R. L. (1986) J. Biol. Chem. 261, 7440–7444
9. Stephenson, J. D., and Shepherd, V. L. (1987) Biochem. Biophys. Res. Commun. 148, 883–888
10. Lennartz, M. R., Cole, F. S., Shepherd, V. L., Wileman, T. E., and Stahl, P. D. (1987) J. Biol. Chem. 262, 9942–9944
11. Taylor, M. E., Conary, J. T., Lennartz, M. R., Stahl, P. D., and Drickamer, K. (1990) J. Biol. Chem. 265, 12156–12162
12. Warr, G. A. (1980) Biochem. Biophys. Res. Commun. 93, 737–745
13. Sung, S.-S. J., Nelson, R. S., and Silverstein, S. C. (1983) J. Cell Biol. 96, 160–166
14. Stahl, P. D., and Schlesinger, P. H. (1980) Trends Biochem. Sci. 5, 194–196
15. Lennartz, M. R., and Stahl, P. D. (1988) J. Cell Sci. Suppl. 9, 121–133
16. Smrets, R., Melkko, J., Risteli, L., and Risteli, J. (1990) Biochem. J. 271, 345–350
17. Danè, K., Andresen, P. A., Grenård-Hansen, J., Kristensen, F., Nielsen, L. S., and Skriver, L. (1985) Adv. Cancer Res. 44, 139–206
18. Bachmann, F. (1987) in Thrombosis and Haemostasis 1987 (Ver.
strae, M., Vermylen, J., Lijsen, H. R., and Arnout, J., eds) pp. 227–265, Leuven University Press, Leuven

19. Colen, D., Lijsen, H. R., Todd, P. A., and Goe, K. L. (1989) Drugs 38, 346–388

20. Rijken, D. C., Wijnjaards, G., Zaal-De Jong, M., and Welbergen, J. (1979) Biochim. Biophys. Acta 580, 140–153

21. Rijken, D. C., Emeis, J. J., and Gerwig, G. J. (1985) Thromb. Haemostasis 54, 788–791

22. Pohl, G., Kenne, L., Nilsson, B., and Einarsson, M. (1987) Eur. J. Biochem. 170, 69–75

23. Spellman, M. W., Basa, L. J., Leonard, C. K., Chakel, J. A., O’Connor, J. V., Wilson, S., and van Halbeek, H. (1989) J. Biol. Chem. 264, 14100–14111

24. Parekh, R. B., Dwek, R. A., Thomas, J. R., Opdenakker, G., Rademacher, T. W., Wittwer, A. J., Howard, S. C., Nelson, R., Siegel, N. R., Jennings, M. G., Harakas, N. K., and Feder, J. (1988) Biochemistry 27, 7644–7662

25. Kuiper, J., Otter, M., Rijken, D. C., and Van Berkel, T. J. C. (1988) J. Biol. Chem. 263, 18220–18224

26. Einarsson, M., Smedsjoel, B., and Pertot, H. (1988) Thromb. Haemostasis 59, 474–479

27. Einarsson, M., Haggroth, L., and Mattsson, C. (1989) Thromb. Haemostasis 62, 1086–1093

28. Bakhit, C., Lewis, D., Billings, R., and Malfroy, B. (1987) J. Biol. Chem. 262, 8716–8720

29. Owenby, D. A., Sobel, B. E., and Schwartz, A. L. (1988) J. Biol. Chem. 263, 10587–10594

30. Lucore, C. L., Fry, E. A., Nachowiak, D. A., and Sobel, B. E. (1988) Circulation 77, 906–914

31. Hotchkiss, A., Refino, C. J., Leonard, C. K., O’Connor, J. V., Crowley, C., McCabe, J., Tate, K., Nakamura, G., Powers, D., Levinson, A., Mohler, M., and Spellman, M. W. (1988) Thromb. Haemostasis 60, 255–261

32. Tanswell, P., Schluter, M., and Krause, J. (1989) Fibrinolysis 3, 79–84

33. Ord, J. M., Owensby, D. A., Billadello, J. J., and Sobel, B. E. (1990) Fibrinolysis 4, 203–209

34. Otter, M., Van Berkel, Th. J. C., and Rijken, D. C. (1989) Thromb. Haemostasis 62, 667–672

35. Rijken, D. C., Otter, M., Kuiper, J., and Van Berkel, Th. J. C. (1990) Thromb. Res. Suppl. X, 63–71

36. Rijken, D. C., and Colen, D. (1981) J. Biol. Chem. 256, 7035–7041

37. Browne, M. J., Dodd, L., Carey, J. E., Chapman, C. G., and Robinson, J. H. (1985) Biochim. Biophys. Acta 580, 140–153

38. Fraker, P. J., and Speck Jr., J. C. (1978) Biochem. Biophys. Res. Commun. 80, 849–857

39. Rijken, D. C., and Emeis, J. J. (1986) Biochem. Biophys. Res. Commun. 80, 849–857

40. Laemmli, U. K. (1970) Nature 227, 680–685

41. Blake, M. S., Johnston, K. H., Russel-Jones, G. J., and Gotschlich, E. C. (1984) Anal. Biochem. 136, 175–179

42. Radcliffe, R., and Heinze, T. (1981) Arch. Biochem. Biophys. 211, 750–761

43. Shepherd, V. L., Abdolrasulnia, R., Stephenson, J., and Crenshaw, C. (1990) Biochem. J. 270, 771–776

44. Shepherd, V. L., Lee, Y. C., Schlesinger, P. H., and Stahl, P. D. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 1019–1022

45. Haltiwanger, R. S., and Hill, R. L. (1986) J. Biol. Chem. 261, 15696–15702

46. Maynard, Y., and Baenziger, J. U. (1981) J. Biol. Chem. 256, 8063–8068

47. Trimble, R. B., and Maley, F. (1984) Anal. Biochem. 141, 512–522

48. Baynes, J. W., and Wold, F. (1976) J. Biol. Chem. 251, 6016–6024

49. Pathy, L. (1990) Blood Coagulation Fibrinolysis 1, 153–166