Amplitude analysis of \(B^\pm \to \pi^\pm K^+K^- \) decays

LHCb collaboration†

Abstract

The first amplitude analysis of the \(B^\pm \to \pi^\pm K^+K^- \) decay is reported based on a data sample corresponding to an integrated luminosity of 3.0 fb\(^{-1}\) of \(pp \) collisions recorded in 2011 and 2012 with the LHCb detector. The data are found to be best described by a coherent sum of five resonant structures plus a nonresonant component and a contribution from \(\pi\pi \leftrightarrow KK \) \(S \)-wave rescattering. The dominant contributions in the \(\pi^\pm K^\mp \) and \(K^+K^- \) systems are the nonresonant and the \(B^\pm \to \rho(1450)^0\pi^\pm \) amplitudes, respectively, with fit fractions around 30%. For the rescattering contribution, a sizeable fit fraction is observed. This component has the largest \(CP \) asymmetry reported to date for a single amplitude of \((-66 \pm 4 \pm 2)\%\), where the first uncertainty is statistical and the second systematic. No significant \(CP \) violation is observed in the other contributions.

Published in Phys. Rev. Lett. 123 (2019) 231802

© 2022 CERN for the benefit of the LHCb collaboration. [CC-BY-4.0 licence](https://creativecommons.org/licenses/by/4.0/)

†Authors are listed at the end of this paper.
Charge-parity (CP) symmetry is known to be broken in weak interactions. In two-body charged B-meson decays, the only CP-violating observable is the difference of the partial decay widths for particle and anti-particle over their sum. For three- and multi-body processes, the decay dynamics is very rich, thanks to possible interfering intermediate resonant and nonresonant amplitudes, and therefore CP violation (CPV) can be manifested as charge asymmetries that may vary and even change sign throughout the different regions of the observed phase space.

Several experiments have reported sizeable localised CP asymmetries in the phase space of charmless three-body B^\pm decays \(^1\)\(^7\). The $B^\pm \to \pi^\pm \pi^+\pi^-$ and $B^\pm \to \pi^\pm K^+K^-$ decays, having the same flavour quantum numbers, are coupled by final-state strong interactions, in particular through the rescattering process $\pi^\pm \pi^- \leftrightarrow K^+K^-$. The $B^\pm \to \pi^\pm \pi^+\pi^-$ decay, with three times larger branching fraction, may proceed through resonances from the $b \to u$ ($\bar{b} \to \bar{u}$) tree transitions as well as from $b \to d$ ($\bar{b} \to \bar{d}$) loop-induced penguin processes. On the other hand, the production of resonances in the $B^\pm \to \pi^\pm K^+K^-$ decay is limited: $\pi^\pm K^\mp$ resonances can only be obtained from penguin transitions; K^+K^- resonances can come from tree-level transitions, but with the $s\bar{s}$ contribution highly suppressed by the OZI rule \(^3\)\(^{10}\). In the $B^\pm \to \pi^\pm K^+K^-$ decay, no significant $\phi(1020) \to K^+K^-$ contribution has been seen \(^11\). However, a concentration of events is observed just above the $\phi(1020)$ region in the K^+K^- invariant-mass spectrum. This corresponds to the region where the S-wave $\pi^+\pi^-$ $\leftrightarrow K^+K^-$ rescattering effect is seen, as shown by elastic scattering experiments \(^{12}\)\(^{13}\). Intriguingly, in this same region, large CP asymmetries have been observed \(^1\)\(^4\). As proposed in Refs. \(^{15}\)\(^{16}\), this could be a manifestation of CPV arising from amplitudes with different rescattering strong phases as well as different weak phases.

A better understanding of the CPV mechanisms occurring in three-body hadronic B decays can be achieved through full amplitude analyses. In this Letter, the first amplitude analysis of the decay $B^\pm \to \pi^\pm K^+K^-$ is performed based on a data sample corresponding to an integrated luminosity of 3.0fb\(^{-1}\) collected in 2011 and 2012. The isobar model formalism \(^{17}\)\(^{18}\), which assumes that the total decay amplitude is a coherent sum of intermediate two-body states, is applied. A rescattering amplitude is also included. The magnitudes and phases of the coupling to intermediate states are determined independently for $B^+ \to \pi^+ K^-K^+$ and $B^- \to \pi^- K^+K^-$ decays, allowing for CP violation.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$ equipped with charged-hadron identification detectors, calorimeters, and muon detectors; and it is designed for the study of particles containing b or c quarks \(^{19}\)\(^{20}\).

Simulated samples, needed to determine the signal efficiency as well as for background studies, are generated using PYTHIA \(^{21}\) with a specific LHCb configuration \(^{22}\). Decays of hadronic particles are described by EVTGEN \(^{23}\), in which final-state radiation is generated using PHOTOS \(^{24}\). The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit \(^{25}\) as described in Ref. \(^{26}\).

In a preselection stage, B^\pm candidates are reconstructed by requiring three charged tracks forming a good-quality secondary vertex, with loose requirements imposed on their momentum, transverse momentum and impact parameter with respect to any primary vertex. The momentum vector of the B candidate should point back to a primary vertex, from which the B^\pm vertex has to be significantly separated. To remove contributions from charm decays, candidates for which the two-body invariant masses $m(K^\pm\pi^\mp)$ and $m(K^+K^-)$ are within 30MeV/c^2 of the known value of the D^0 mass \(^{27}\) are excluded.
A multivariate selection based on a boosted decision tree (BDT) algorithm \[28,29\] is applied to reduce the combinatorial background (random combination of tracks). The BDT is described in Ref. \[1\]; it is trained using a combination of $B^\pm \rightarrow h^+h^-h^-$ samples of simulated events (where h can be either a pion or a kaon) as signal, and data in the high-mass region $5.40 < m(\pi^+\pi^0\pi^-) < 5.58$ GeV/c^2 of a $B^\pm \rightarrow \pi^+\pi^0\pi^-$ sample as background. The $B^\pm \rightarrow \pi^+\pi^0\pi^-$ sample is used as a proxy for the combinatorial background because, among the various $B^\pm \rightarrow h^+h^-h^-$ channels, it is the only one whose high mass region is populated just by combinatorial background. The selection requirement on the BDT response is chosen to maximize the ratio $N_S/\sqrt{N_S+N_B}$, where N_S and N_B represent the expected number of signal and background candidates in data, respectively, within an invariant mass window of approximately 40 MeV/c^2 around the B^\pm mass in the data \[1\].

Particle identification criteria are used to reduce the crossfeed from other b-hadron decays, in particular $K \leftrightarrow \pi$ misidentification. Muons are rejected by a veto applied to each track \[30\]. Events with more than one candidate are discarded.

An unbinned extended maximum-likelihood fit is applied simultaneously to the $\pi^+K^-K^+$ and $\pi^-K^-K^-$ mass spectra in order to obtain the total signal yields and the raw asymmetry, defined as the difference of B^- and B^+ signal yields divided by their sum. Three types of background sources are identified: the residual combinatorial background, partially reconstructed decays (mostly from four-body decays) and crossfeed from other B-meson decays. The parametrisation of crossfeed and partially reconstructed backgrounds is performed using simulated samples that satisfy the same selection criteria as the data. From the result of the fit, yields for signal and background sources are obtained \[1\].

Candidates within the mass region $5.266 < m(\pi^+K^-K^-) < 5.300$ GeV/c^2, referred to as the signal region, are used for the amplitude analysis. This region contains 2052 ± 102 (1566 ± 84) of $B^+ (B^-)$ signal candidates. The relative contribution from the combinatorial background is 23\%, with a charge asymmetry compatible with zero within one standard deviation. The main crossfeed contamination comes from $B^\pm \rightarrow K^\pm \pi^+\pi^-$ decays which contribute in 2.7\% with a charge asymmetry of 2.5\%. Another 0.6\% comes from $\phi(1020)$ mesons randomly associated with a pion, with negligible charge asymmetry.

The distributions of the selected B^\pm candidates, represented by the Dalitz plot \[31\], are shown in Fig. \[1\]. The clear differences between the B^+ and the B^- distributions are due to CPV effects \[1\].

The total $B^+ \rightarrow \pi^+K^-K^+$ decay amplitude, \mathcal{A}, can be expressed as function of $m_{\pi^+K^-}^2$ and $m_{K^-K^+}^2$ as

$$
\mathcal{A}(m_{\pi^+K^-}^2, m_{K^-K^+}^2) = \sum_{i=1}^{N} c_i \mathcal{M}_i(m_{\pi^+K^-}^2, m_{K^-K^+}^2),
$$

(1)

where $\mathcal{M}_i(m_{\pi^+K^-}^2, m_{K^-K^+}^2)$ is the decay amplitude for an intermediate state i. The analogous amplitude for the B^- meson, $\overline{\mathcal{A}}$, is written in terms of \overline{c}_i and $\overline{\mathcal{M}}_i(m_{\pi^-K^+}^2, m_{K^-K^+}^2)$. This description for the total decay amplitude is known as the isobar model. In the amplitude fit, the complex coefficients $c_i = (x_i + \Delta x_i) + i(y_i + \Delta y_i)$ and $\overline{c}_i = (x_i - \Delta x_i) + i(y_i - \Delta y_i)$ measure the relative contribution of each intermediate state i for B^+ and B^-, respectively, with Δx_i and Δy_i being the parameters that allow for CPV. The individual amplitudes
are described by

\[M_i(m^2_{\pi^+K^-}, m^2_{K^+K^-}) = P_i(J, \vec{p}, \vec{q}) F_B(|\vec{p}|) F_i(|\vec{q}|) T_i. \]

(2)

The factor \(P_i \) represents the angular part, which depends on the spin \(J \) of the resonance. It is equal to 1, \(-2\vec{p} \cdot \vec{q}\), and \(\frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 - (|\vec{p}| |\vec{q}|)^2] \), for \(J = 0, 1 \) and 2, respectively; \(\vec{q} \) is the momentum of one of the resonance decay products and \(\vec{p} \) is the momentum of the particle not forming the resonance, both measured in the resonance rest frame. The Blatt–Weisskopf barrier factors \[[32,33], F_B \) for the \(B \) meson and \(F_i \) for the resonance \(i \), account for penetration effects due to the finite extent of the particles involved in the reaction. They are given by \(1, \sqrt{(1 + z_0^2)/(1 + z^2)} \) and \(\sqrt{(z_0^4 + 3z_0^2 + 9)/(z^4 + 3z^2 + 9)} \) for \(J = 0, 1 \) and 2, respectively, with \(z = |\vec{q}|d \) or \(z = |\vec{p}|d \) and \(d \) the penetration radius, taken to be \(4.0 \text{ GeV}/c \) ≈ \(0.8 \text{ fm} \) \[[34,35]. \] The value of \(z \) is \(z_0 \) when the invariant mass is equal to the nominal mass of the resonance. Finally, \(T_i \) is a function representing the propagator of the intermediate state \(i \). By default a relativistic Breit–Wigner function \[[36] \) is used, which provides a good description for narrow resonances such as \(K^*(892)^0 \). More specific lineshapes are also used, as discussed further below.

To determine the intermediate state contributions, a maximum-likelihood fit to the distribution of the \(B^\pm \rightarrow \pi^\pm K^+ K^- \) candidates in the Dalitz plot is performed using the LAURA++ package \[[37,38]. \] The total probability density function (PDF) is a sum of signal and background components, with relative contributions fixed from the result of the \(B^\pm \rightarrow \pi^\pm K^+ K^- \) mass fit. The background PDF is modelled according to its observed structures in the higher \(m(\pi^\pm K^+ K^-) \) sideband, the contribution from \(B^\pm \rightarrow K^\pm \pi^+ \pi^- \) crossfeed decays, using the model introduced by the BaBar collaboration \[[6], and an additional 0.6% relative contribution from \(\phi(1020) \) mesons randomly associated with a pion. The signal PDF for \(B^+ (B^-) \) decays is given by \(|A|^2 (|\overline{A}|)^2 \) multiplied by a function describing the variation of efficiency across the Dalitz plot. A histogram representing this efficiency map is obtained from simulated samples with corrections to account for known differences between data and simulation. The \(B^+ \) and \(B^- \) candidates are simultaneously fitted, allowing for \(CP \) violation. The \(CP \) asymmetry, \(A_{CPi} \), and fit fraction, \(FF_i \), for each
component are given by
\[A_{CP_i} = \frac{|\tau_i| - |c_i|^2}{|\tau_i| + |c_i|^2} = \frac{-2(x_i \Delta x_i + y_i \Delta y_i)}{x_i^2 + (\Delta x_i)^2 + y_i^2 + (\Delta y_i)^2}, \]
(3)

\[FF_i = \frac{\int (|c_i \mathcal{M}_i|^2 + |\tau_i \mathcal{M}_i|^2) dm_{\pi^+ K^0}^2 dm_{K^+ K^-}^2}{\int (|A|^2 + |\bar{A}|^2) dm_{\pi^+ K^0}^2 dm_{K^+ K^-}^2}. \]
(4)

The contribution of the possible intermediate states in the total decay amplitude is tested
through a procedure in which each component is taken in and out of the model, and that
which provides the best likelihood is then maintained, and the process is repeated. In
some regions of the phase space the observed signal yields could not be well described
with only known resonance states and lineshapes, and thus alternative parameterisations
were also tested.

In the $\pi^\pm K^\mp$ system, a nonresonant amplitude involving a single-pole form factor
of the type $1 + m^2(\pi^\pm K^\mp)/\Lambda^2$, as proposed in [14], is included. This component,
hereafter called single-pole amplitude, is a phenomenological description of the partonic
interaction. The parameter Λ sets the scale for the energy dependence and the proposed
value of 1 GeV/c^2 is used.

In the $K^+ K^-$ system, a dedicated amplitude accounting for the $\pi \pi \leftrightarrow KK$ rescattering
is used. It is expressed as the product of the nonresonant single-pole form factor described
above and a scattering term which accounts for the S-wave $\pi \pi \leftrightarrow KK$ transition amplitude,
with isospin equal to 0 and $J = 0$, given by the off-diagonal term in the S-matrix for the
$\pi \pi$ and KK coupled channel. The scattering term is expressed as $\sqrt{1 - \nu^2} e^{2i\delta}$, where the
inelasticity (ν) and phase shift (δ) parametrisations are taken from Ref. [39].

For all models tested in the analysis, the channel $B^\mp \rightarrow (K^{*+}(892)^0 K^\mp$ is used as
reference, with its real part x fixed to one, y and Δy fixed to zero, while Δx is free to
vary. The values of $x, y, \Delta x$ and Δy for all other contributions are free parameters. The
masses and widths of all resonances are fixed [27].

The fit results are summarised in Table 1. Seven components are required to provide
an overall good description of data; three of them correspond to the structure in the $\pi^\pm K^\mp$
system, and four for the $K^+ K^-$ system. Statistical uncertainties are derived from the
fitted values of $x, y, \Delta x$ and Δy, with correlations and error propagation taken into account;
sources of systematic uncertainty are also evaluated as described later.

The $\pi^\pm K^\mp$ system is well described by the contributions from the $K^{*+}(892)^0$ and
$K_0^*(1430)^0$ resonances plus the single-pole amplitude. The inclusion of the latter provides a
Table 1: Results of the Dalitz plot fit, where the first uncertainty is statistical and the second systematic. The fitted values of c_i (\tilde{c}_i) are expressed in terms of magnitudes $|c_i|$ ($|\tilde{c}_i|$) and phases $\arg(c_i)$ ($\arg(\tilde{c}_i)$) for each B^+ (B^-) contribution. The top row corresponds to B^+ and the bottom to B^- mesons.

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase [°] (B^+/B^-)
$K^+(892)^0$	7.5 ± 0.6 ± 0.5	+12.3 ± 8.7 ± 4.5	0.94 ± 0.04 ± 0.02	0 (fixed)
	1.06 ± 0.04 ± 0.02			0 (fixed)
$K^0_S(1430)^0$	4.5 ± 0.7 ± 1.2	+10.4 ± 14.9 ± 8.8	0.74 ± 0.09 ± 0.09	-176 ± 10 ± 16
	0.82 ± 0.09 ± 0.10			136 ± 11 ± 21
Single pole	32.3 ± 1.5 ± 4.1	-10.7 ± 5.3 ± 3.5	2.19 ± 0.13 ± 0.17	-138 ± 7 ± 5
	1.97 ± 0.12 ± 0.20			166 ± 6 ± 5
$\rho(1450)^0$	30.7 ± 1.2 ± 0.9	-10.9 ± 4.4 ± 2.4	2.14 ± 0.11 ± 0.07	-175 ± 10 ± 15
	1.92 ± 0.10 ± 0.07			140 ± 13 ± 20
$f_2(1270)$	7.5 ± 0.8 ± 0.7	+26.7 ± 10.2 ± 4.8	0.86 ± 0.09 ± 0.07	-106 ± 11 ± 10
	1.13 ± 0.08 ± 0.05			-128 ± 11 ± 14
Rescattering	16.4 ± 0.8 ± 1.0	-66.4 ± 3.8 ± 1.9	1.91 ± 0.09 ± 0.06	-56 ± 12 ± 18
	0.86 ± 0.07 ± 0.04			-81 ± 14 ± 15
$\phi(1020)$	0.3 ± 0.1 ± 0.1	+9.8 ± 43.6 ± 26.6	0.20 ± 0.07 ± 0.02	-52 ± 23 ± 32
	0.22 ± 0.06 ± 0.04			107 ± 33 ± 41

A future analysis with the addition of the Run 2 data recorded with the LHCb detector should be able to better pinpoint this effect.

In the K^+K^- system, two main signatures can be highlighted: a strong destructive interference localised between 0.8 and 3.3 GeV2/c4 in $m_{K^+K^-}^2$ and projected between 12 and 20 GeV2/c4 in $m_{K^+K^-}^2$, as shown in Fig. 1 and the large CP asymmetry for $m_{K^+K^-}^2$ corresponding to the $\pi\pi \leftrightarrow KK$ rescattering region, as shown in Fig. 3. For the former, a good description of the data is achieved only when a high-mass vector amplitude is included in the Dalitz plot fit, producing the observed pattern through the interference with the $f_2(1270)$ amplitude. The data are well described by assuming this contribution to be the $\rho(1450)^0$ resonance, included in the fit with mass and width fixed to their known values [27]. The corresponding $B^\pm \rightarrow \rho(1450)^0\pi^\pm$ fit fraction is approximately 30%, a rather large contribution not expected for the K^+K^- pair as the dominant decay mode is $\pi\pi$ and the $\rho(1450)^0$ contribution in $B^\pm \rightarrow \pi^\mp\pi^\mp$ is observed to be much lower [40, 41]. A future analysis with the addition of the Run 2 data recorded with the LHCb detector should be able to better pinpoint this effect.

With respect to the low $m_{K^+K^-}^2$ region, shown in Fig. 3, a significant contribution with a fit fraction of 16% from the $\pi\pi \leftrightarrow KK$ S-wave rescattering amplitude is found. This contribution alone produces a CP asymmetry of $(\pm 66 \pm 4 \pm 2\%)$, which is the largest CPV manifestation ever observed for a single amplitude. This must be directly related to the total inclusive CP asymmetry observed in this channel, which was previously reported to be $(\pm 12.3 \pm 2.1\%)$. For the coupled channel $B^\pm \rightarrow \pi^\pm\pi^\mp$, with a branching fraction three times larger than that of $B^\pm \rightarrow \pi^\pm K^+K^-$, a positive CP asymmetry has been measured [4]. This gives consistency for the interpretation of the large CPV observed here originates from rescattering effects. Finally, the inclusion of the $\phi(1020)$ resonance...
Figure 2: Distribution of $m^2_{\pi\pm K\mp}$. Data are represented by points for B^+ and B^- candidates separately, with the result of the fit overlaid.

in the amplitude model also improves the data description near the K^+K^- threshold, however with a statistically marginal contribution. The model is also not perfect in other regions in $m^2_{K^+K^-}$, for instance for B^+ decays in a few bins above 2.5 GeV/c2.

A second solution is found in the fit, presenting a large CP asymmetry of 76% in the $K^*_0(1430)^0$ component, compensated by a similarly large negative asymmetry in the interference term between the $K^*_0(1430)^0$ and the single-pole amplitudes. The net effect is a negligible CP asymmetry near the $K^*_0(1430)^0$ region, matching what is seen data. This solution presents a large sum of fit fractions for the B^- decay, of about 130%, indicating this is probably a fake effect created by the fit. As such, this solution is interpreted as unphysical. More data are necessary to understand this feature.

Several sources of systematic uncertainty are considered. These include possible mismodellings in the mass fit, the efficiency variation and background description across the Dalitz plot, the uncertainty associated to the fixed parameters in the Dalitz plot fit and possible biases in the fitting procedure.

The impact of the systematic studies affect differently each of the amplitudes. The main contribution comes from the variation of the masses and widths of the resonances; their central values and uncertainties are taken from Ref. [27] and are randomised according to a Gaussian distribution. This effect is particularly important for the $K^*_0(1430)^0$ and single-pole components, the two broad scalar contributions in the $\pi^\pm K^\mp$ system. The absolute uncertainties on their fractions are found to be 0.8% and 3.0%, respectively.
Figure 3: Distribution of m_{KK}^2 up to 3.5 GeV/c2. Data are represented by points for B^+ and B^- separately, with the result of the fit overlaid.

The second main contribution comes from the $\pi^\pm K^+ K^-$ mass fit, impacting most on the $K^*(892)^0$, $K_0^*(1430)^0$ and single-pole fractions with uncertainties of 0.4%, 0.8% and 2.0%, respectively. The systematic uncertainty associated to efficiency variation across the Dalitz plot is studied by performing several fits to data with efficiency maps obtained by varying the bin contents of the original efficiency histogram according to their uncertainty; this results in uncertainties in the fit fractions that range from 0.01% to 0.1%. The systematic uncertainty due to the background models is evaluated with a similar procedure, also resulting in small uncertainties. The B^\pm production and kaon detection asymmetry effects are taken into account following Ref. [42], with associated uncertainties less than 0.1%. All systematic uncertainties are added in quadrature and represent the second uncertainty in Table 1.

In summary, the resonant substructure of the charmless three-body $B^\pm \to \pi^\pm K^+ K^-$ decay is determined using the isobar model formalism, providing an overall good description of the observed data. Three components are obtained for the $\pi^\pm K^\mp$ system: two resonant states ($K^*(892)^0$, $K_0^*(1430)^0$) with a CP asymmetry consistent with zero, and a nonresonant single-pole form factor contribution with a fit fraction of about 30%. Two other components are found, $\rho(1450)$ and $f_2(1270)$, which provide a destructive interference pattern in the Dalitz plot. The rescattering amplitude, acting in the region $0.95 < m(K^+K^-) < 1.42$ GeV/c2, produces a negative CP asymmetry of $(-66 \pm 4 \pm 2)\%$, which is the largest CP violation effect observed from a single amplitude.
Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

References

[1] LHCb collaboration, R. Aaij et al., Measurement of CP violation in the three-body phase space of charmless B± decays, Phys. Rev. D90 (2014) 112004. arXiv:1408.5373.

[2] Belle collaboration, C. L. Hsu et al., Measurement of branching fraction and direct CP asymmetry in charmless B+ → K+K−π+ decays at Belle, Phys. Rev. D96 (2017) 031101. arXiv:1705.02640.

[3] BaBar collaboration, B. Aubert et al., Observation of the Decay B+ → K+K−π+, Phys. Rev. Lett. 99 (2007) 221801. arXiv:0708.0376.

[4] BaBar collaboration, B. Aubert et al., Dalitz Plot Analysis of B± → π±π±π∓ Decays, Phys. Rev. D79 (2009) 072006. arXiv:0902.2051.

[5] BaBar collaboration, J. P. Lees et al., Study of CP violation in Dalitz-plot analyses of B0 → K+K−K0S, B+ → K+K−K+, and B+ → K0S K+K+, Phys. Rev. D85 (2012) 112010. arXiv:1201.5897.

[6] BaBar collaboration, B. Aubert et al., Evidence for direct CP violation from Dalitz-plot analysis of B± → K±π±π∓, Phys. Rev. D78 (2008) 012004. arXiv:0803.4451.

[7] Belle collaboration, A. Garmash et al., Evidence for large direct CP violation in B± → ρ(770)0K± from analysis of the three-body charmless B± → K±π±π∓ decay, Phys. Rev. Lett. 96 (2006) 251803. arXiv:hep-ex/0512066.

[8] S. Okubo, φ-meson and unitary symmetry model, Phys. Lett. 5 (1963) 165.
[9] G. Zweig, An SU$_3$ model for strong interaction symmetry and its breaking; Version 1, Tech. Rep. [CERN-TH-401], CERN, Geneva, 1964.

[10] J. Iizuka, Systematics and phenomenology of meson family, Prog. Theor. Phys. Suppl 37 (1966) 21

[11] LHCb collaboration, R. Aaij et al., Measurement of the charge asymmetry in $B^\pm \to \phi K^\pm$ and search for $B^\pm \to \phi \pi^\pm$ decays, Phys. Lett. B728 (2014) 85, arXiv:1309.3742.

[12] P. Estabrooks et al., $\pi\pi$ phase shift analysis from 600 to 1900 MeV, AIP Conf. Proc 13 (1973) 206

[13] D. H. Cohen et al., Amplitude Analysis of the K^-K^+ system produced in the reactions $\pi^- p \to K^-K^+ n$ and $\pi^+ n \to K^-K^+ p$ at 6-GeV/c, Phys. Rev. D22 (1980) 2595

[14] J. H. Alvarenga Nogueira et al., CP violation: Dalitz interference, CPT, and final state interactions, Phys. Rev. D92 (2015) 054010.

[15] L. Wolfenstein, Final state interactions and CP violation in weak decays, Phys. Rev D43 (1991) 151

[16] I. I. Bigi and A. I. Sanda, CP violation, Camb. Monogr. Part. Phys. Nucl. Phys Cosmol. 9 (2009) 1

[17] G. N. Fleming, Recoupling Effects in the Isobar Model. 1. General Formalism for Three-Pion Scattering, Phys. Rev. 135 (1964) B551

[18] D. Herndon, P. Soding, and R. J. Cashmore, Generalized isobar model formalism, Phys. Rev. D11 (1975) 3165

[19] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005

[20] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352

[21] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820

[22] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047

[23] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth A462 (2001) 152

[24] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026

[25] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
[26] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[27] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev. D98 (2018) 030001.

[28] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.

[29] B. P. Roe et al., Boosted decision trees, an alternative to artificial neural networks, Nucl. Instrum. Meth. A 543 (2005) 577.

[30] F. Archilli et al., Performance of the muon identification at LHCb, JINST 8 (2013) P10020, arXiv:1306.0249.

[31] R. H. Dalitz, On the analysis of τ-meson data and the nature of the τ-meson, Phil Mag. Ser. 7 44 (1953) 1068.

[32] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics, Springer, New York, 1952.

[33] F. von Hippel and C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes, Phys. Rev. D5 (1972) 624.

[34] LHCb collaboration, R. Aaij et al., Dalitz plot analysis of $B^0_s \rightarrow \bar{D}^0 K^- \pi^+$ decays, Phys. Rev. D90 (2014) 072003, arXiv:1407.7712.

[35] BaBar collaboration, B. Aubert et al., Dalitz-plot analysis of the decays $B^\pm \rightarrow K^\mp \pi^\mp \pi^\mp$, Phys. Rev. D72 (2005) 072003, Erratum ibid. 74 (2006) 099903.

[36] J. D. Jackson, Remarks on the phenomenological analysis of resonances, Nuovo Cim 34 (1964) 1644.

[37] J. Back et al., LAURA++: A Dalitz plot fitter, Comput. Phys. Commun. 231 (2018) 198, arXiv:1711.09854.

[38] E. Ben-Haim, B. Aubert, B. Echenard, and T. E. Latham, JFIT: a framework to obtain combined experimental results through joint fits, arXiv:1409.5080.

[39] J. R. Pelaez and F. J. Yndurain, The pion-pion scattering amplitude, Phys. Rev. D71 (2005) 074016.

[40] LHCb collaboration, R. Aaij et al., Amplitude analysis of the $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay, arXiv:1909.05212.

[41] LHCb, R. Aaij et al., Observation of several sources of CP violation in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ decays, arXiv:1909.05211.

[42] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays, JHEP 07 (2014) 041, arXiv:1405.2797.
A. Fernandez Prieto, A. Brossa Gonzalo, V. Batozskaya, T. Blake, J. Arnau Romeu, G. Alkhazov, B. Alves Jr, S. Alves, S. Amato, S. Amor, Y. Amhis, L. An, L. Anderlini, G. Andreassi, M. Andreotti, J.E. Andrews, F. Archilli, J. Arnau Romeu, A. Artamonov, M. Artuso, K. Arzymatov, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, J.J. Back, S. Bakes, V. Balagura, W. Baldini, A. Baranov, R.J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Barryshnikov, V. Batozskaya, B. Batskii, A. Battig, V. Battista, A. Bay, J. Beddow, F. Bedeschi, I. Bediaga, A. Beiter, L.J. Bej, S. Belin, N. Belli, V. Bellec, N. Bellolli, K. Belous, I. Belyaev, G. Benvenuti, E. Ben-Haim, S. Benson, B. Beranek, A. Berezhnoy, R. Bernet, D. Berninghoff, E. Bertholet, A. Bertolin, C. Betancourt, F. Bettii, M. Bette, I.O. Bettei, Ia. Bezhvilye, S. Bhasin, J. Bhom, M.S. Bieker, S. Bifani, P. Billoir, A. Birnkrantz, A. Bizzeti, M. Bjorn, M.P. Blago, T. Blake, F. Blaauw, S. Blusk, D. Bobulka, V. Bocci, O. Boente Garcia, T. Boettcher, A. Bondar, N. Bondar, S. Borghi, M. Borisivak, M. Borsato, M. Boudin, T.J.V. Bowcock, C. Bozzi, S. Braun, M. Brodsksi, J. Brodzicka, A. Brossa, D. Brudu, E. Buchanan, A. Buonaura, C. Bursche, J. Buytaert, W. Byczynski, S. Caddeo, H. Cai, R. Calabrese, R. Calladine, M. Calvi, M. Calvo Gomez, A. Camboni, P. Campana, D.H. Campora Perez, L. Capriotti, A. Carboni, G. Carboni, R. Cardinale, A. Cardini, P. Carniti, K. Carvalho Akiba, G. Cassette, G. Cavalleri, R. Cenci, M.G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, M. Cheffeville, V. Chekalina, C. Chen, S. Chen, S.-G. Chitic, V. Chobanova, M. Chrzaszewicz, A. Chubynkin, P. Ciambrone, X. Cid Vidal, G. Ciezarek, F. Cindolo, P.L. Clarke, M. Clemencic, H.V. Cliffr, J. Closier, V. Coco, J.A.B. Coelho, J. Cogan, E. Cogneras, L. Cojocar, P. Collins, T. Colombo, A. Comerma-Montells, A. Contu, G. Coombs, S. Coquerand, G. Corti, M. Corvo, C.M. Costa Sobral, B. Couturier, G.A. Cowan, D.C. Craik, A. Crocombe, M. Cruz Torres, R. Currie, F. Da Cunha Marinho, C.L. Da Silva, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, A. Dauniliu, P. D’Argento, A. Davis, O. De Aguiar, K. De Bruyn, S. De Capua, M. De Cian, J.M. De Miranda, L. De Paula, M. De Serio, P. De Simone, J.A. de Vries, C.T. De, W. Dei, D. Decamp, L. Del Buono, B. Delaney, H.-P. Dembinski, M. Demmer, A. Dendek, D. Derkach, O. Deschamps, F. Desse, F. Dettori, B. Dey, A. Di Canto, P. Di Nezza, S. Didenko, H. Dijkstra, F. Dorda, M. Dorigo, A.C. dos Reis, A. Dosil, C. Suarez, L. Douglas, A. Dovbnya, K. Dreimanis, L. Dufour, G. Dujany, P. Durante, J.M. Durham, D. Dutta, R. Dzhelyadin, M. Dziwiek, A. Dzurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, X.S., S. Eisenhardt, U. Eitschberger, E. Ekelof, L. Eklund, S. Ely, A. Ene, S. Escher, S. Esi, T. Evans, A. Falabella, C. Färber, N. Farley, S. Farry, D. Fazzini, M. Féo, P. Fernandez Declara, A. Fernandez Prieto, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, M. Ferro-Luzzi, S. Filipov, R.A. Fini, M. Fiorini, M. Firlej, C. Fitzpatrick, T. Fitiowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, V. Franco Lima, M. Frank, C. Frei, J. Fu, W. Funk, E. Gabriel, A. Gallas Torreira, D. Galli, S. Gallorini, S. Gambetta, Y. Gan, M. Gandelman, P. Gandini, Y. Gao, L.M. Garcia Martin, J. Garcia Pardiñas, B. Garcia Planas, J. Garra Tico, L. Garrido, D. Gascon, C. Gaspar, G. Gazzoni, D. Gerick, E. Gersabeck, M. Gersabeck, T. Gershon, D. Gerstel, Ph. Ghez, V. Gibson, O.G. Girard, P. Gironella Gironell, L. Giubega, K. Gizdov, V.V. Gligorov, C. Göbel, D. Golubkov, A. Golutvin, LHCb Collaboration
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria, associated to
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
South China Normal University, Guangzhou, China, associated to
School of Physics and Technology, Wuhan University, Wuhan, China, associated to
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to
National Research Centre Kurchatov Institute, Moscow, Russia, associated to
National University of Science and Technology “MISIS”, Moscow, Russia, associated to
National Research University Higher School of Economics, Moscow, Russia, associated to
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to
University of Michigan, Ann Arbor, United States, associated to
Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to
Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
Sezione INFN di Trieste, Trieste, Italy
School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
Physics and Micro Electronic College, Hunan University, Changsha City, China
Lanzhou University, Lanzhou, China
†Deceased