Clinical Features of COVID-19 on Patients With Neuromyelitis Optica Spectrum Disorders

Samira Luisa Apostolos-Pereira, MD, PhD,* Lis Campos Ferreira, MD,* Mateus Boaventura, MD,* Nise Alessandra de Carvalho Sousa, MD, Gabriela Joca Martins, MD, José Arthur d’Almeida, MD, PhD, Milena Pitombeira, MD, Lucas Silvestre Mendes, MD, Thiago Fukuda, MD, Hideraldo Luiz Souza Cabeça, MD, PhD, Luciano Chaves Rocha, MD, Bianca Santos de Oliveira, MD, Carla Renata Vieira Stella, MD, Enedina Maria Lobato de Oliveira, MD, PhD, Leizian de Souza Amorim, MD, Andréa Ferrari de Castro, MD, Antonio Pereira Gomes Neto, MD, Guilherme Diogo Silva, MD, Lucas Bueno, MD, Maria de Morais Machado, MD, Rafael Castello Dias-Carneiro, MD, MS, Ronaldo Maciel Dias, MD, Alvaro Porto Moreira, MD, Ana Piccolo, MD, Anderson Kuntz Grzesiuk, MD, Andre Muniz, MD, Caio Diniz Disserol, MD, Claudia Ferreira Vasconcelos, MD, PhD, Damacio Kaimen-Maciel, MD, Denise Sisterolli Diniz, MD, PhD, Elizabeth Comini-Frata, MD, PhD, Fernando Coronetti Rocha, MD, PhD, Gutemberg Augusto Cruz dos Santos, MD, PhD, Heloisa Helena Siqueira, MD, Henrique Hoity Sato, MD, José Alexandre Figueiredo, Jr., MD, Leandro Cortoni Calia, MD, Maria Emílio Teixeira Durado, Jr., MD, Leticia Scialli, MD, Herval Ribeiro Soares Neto, MD, Luiz Melges, MD, Marcus Vinicius Magno Gonçalves, MD, PhD, Maria Lucí Vellutini Pimentel, MD, PhD, Marlise de Castro Ribeiro, MD, Omar Gurrola Arambula, MD, Paulo Diniz da Gama, MD, PhD, Renata Leite Menon, MD, Rodrigo Barbosa Thomaz, MD, Rogério de Rizzo Morales, MD, PhD, Silvana Sobreira, MD, Suzana Nunes Machado, MD, PhD, Taysa Gonsalves Jubé Ribeiro, MD, Valéria Coelho Santa Rita Pereira, MD, Vanessa Maia Costa, MD, Adauto Wanderley da Nóbrega Junior, MD, Soniza Vieira Alves-Leon, MD, PhD, Maria Do Carmo Sarmento Ribeiro, MD, Renata Paiva Vieira, MD, PhD, Sidney Gomes, MD, Maria Brito Ferreira, MD, PhD, Dagoberto Callegaro, MD, PhD, Maria Fernanda Mendes, MD, PhD, Doralina Brum, MD, PhD, and Felipe von Glehn, MD, PhD, and the Neuroimmunology Brazilian Study Group

From the Hospital das Clínicas (S.L.A., M.B., G.D.S., L.B., C.C.D.D., D.C.), FM-USP, São Paulo; Universidade Federal de Sergipe and Univ. Tiradentes (L.C.R.), Aracaju; Hospital Univ. Getúlio Vargas (N.A.d.C.S.), Manaos; Hospital Geral de Fortaleza (G.J.M., J.A.D.A., M.S.P., L.S.M.); Universidade Federal da Bahia/Ebserh (T.F.), Salvador; Hospital Ophir Loyola (H.L.S., L.C.R.), Belem; FUNAB (J.A.P.), João Pessoa; UNICAMP (C.R.A.), Campinas; Universidade Federal do São Paulo (E.M.L., L.d.S.A.), UNIFESP; Universidade Metropolitana de Santos (A.A.F.d.C., Y.O.F.); Santa Casa (A.P.G.), Belo Horizonte; Hospital da Restauração (M.I.d.M., A.J.P.); Recife; Santa Casa (R.P.C., M.F.M.), São Paulo; Hospital de Base do Distrito Federal (R.M.D.), Brasília; Hospital Santa Marcelina (A.C.P.), São Paulo; Private Service (A.K.); Cuiabá; Clínica AMOC (A.M.), Salvador; Hospital Universitário Gaffre e Guinle (C.C.F.V.), Rio de Janeiro; Santa Casa (D.R.K.M.), Londrina; Universidade Federal de Goiás (D.S.D.), Goiânia; Private Service (E.R.C.-F.), Belo Horizonte; Faculdade de Medicina de Botucatu (F.C.G.D.R, D.G.B.), UNESP; Santa Casa and ABEM-Assoc. Brasileira de Escroérse Múltipla (G.S.d.O.), São Paulo; Universidade Federal de São João del-Rei (M.S.P.); Universidade Federal de Minas Gerais (D.C.G.), Belo Horizonte; Universidade Federal Fluminense (H.R.), Niterói; Universidade Federal do Mato Grosso (H.H.S., J.A.F., L.S.), Cuiabá; Privada Service (H.K.S.), Cuiabá; IAMSPE (H.R.S.), São Paulo; Private Service (L.C.C.), São Paulo; Faculdade de Medicina de Marília (L.D.M.); Univ. da Região de Joinville (Univille) (M.V.M.G.); Santa Casa (M.L.V.P.), Rio de Janeiro; Univ. Federal R G Norte (M.E.T.D.); Natal; Univ. Federal Ciências da Saúde de Porto Alegre (M.d.C.R.); PUC (P.D.d.G.), Sorocaba; Hospital Israelita Albert Einstein (R.B.T.), São Paulo; Univ. Federal de Uberlândia (R.d.R.M.); Hospital de Emergência Pública de São Paulo; Hospital Municipal São José (S.S.); rede D’OR; Recife; Univ. Federal do Rio de Janeiro (S.N.M., V.C.S.R.P.); Private Service (S.N.M.), Florianópolis; Univ. Federal de Goiás (T.A.G.R.), Goiânia; Hospital Neurologico de Goiânia (V.M.C.); Pontifícia Universidade Católica de Campinas (M.M.d.M.P.); Hospital Universitário da Universidade Federal de Santa Catarina (A.W.d.N.); Florianópolis; Faculdade de Medicina de Ribeirão Preto (E.A.D.), USP; Hospital Sírio-Libanês (T.A.), São Paulo; and Faculty of Medicine (F.V.G.), University of Brasilia, Brazil.

Go to Neuroradiology.org/NF for full disclosures. Funding information is provided at the end of the article.

The Article Processing Charge was funded by Brazilian Academy of Neurology.

Correspondence: Felipe von Glehn; felipeglehn@gmail.com

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Glossary

AQP4 = aquaporin 4; CBA = cell-based assay; CI = confidence interval; COVID-19 = coronavirus disease 2019; DMT = disease-modifying therapy; MS = multiple sclerosis; NMOSD = neuromyelitis optica spectrum disorders; OR = odds ratio; pwNMOSD = patients with NMOSD; RT-PCR = reverse transcription-polymerase chain reaction; SARS = severe acute respiratory syndrome.

(1) NMOSD diagnosis according to the 2015 International Panel Criteria and (2) confirmed SARS-CoV2 infection (reverse transcription-polymerase chain reaction or serology) or clinical suspicion of COVID-19, diagnosed according to Center for Disease Control / Council of State and Territorial Epidemiologists (CDC/CSTE) case definition. Demographic and NMOSD-related clinical data, comorbidities, disease-modifying therapy (DMT), COVID-19 clinical features, and severity were described.

Results

Among the 2,061 pwNMOSD followed up by Brazilian neurologists involved on the registry of COVID-19 in pwNMOSD at the REDONE.br platform, 34 patients (29 women) aged 37 years (range 8–77), with disease onset at 31 years (range 4–69) and disease duration of 6 years (range 0.2–20.5), developed COVID-19 (18 confirmed and 16 probable cases). Most patients exhibited mild disease, being treated at home (77%); 4 patients required admission at intensive care units (severe cases); and 1 patient died. Five of 34 (15%) presented neurologic manifestations (relapse or pseudoexacerbation) during or after SARS-CoV2 infection.

Discussion

Most NMOSD patients with COVID-19 presented mild disease forms. However, pwNMOSD had much higher odds of hospitalization and intensive care unit admission comparing with the general Brazilian population. The frequency of death was not clearly different. NMOSD disability, DMT type, and comorbidities were not associated with COVID-19 outcome. SARS-CoV2 infection was demonstrated as a risk factor for NMOSD relapses. Collaborative studies using shared NMOSD data are needed to suitably define factors related to COVID-19 severity and neurologic manifestations.

Coronavirus disease 2019 (COVID-19), as an unprecedented challenge to global public health, requires international data collection to address the effect of the disease in groups at potential increased risk. Brazil, one of the main epicenters of the COVID-19 pandemic, reached the unfortunate milestone of more than 2 million severe acute respiratory syndrome (SARS-CoV2) infection cases and more than 100k deaths (accessed on August 8, Johns Hopkins COVID19 resource center). The international community has rapidly launched several patient registries to ascertain the overall effect of the COVID-19 in neuroimmunologic diseases, particularly multiple sclerosis (MS). Notwithstanding, some series of MS patients have been recently reported. Scarce data are available about the effect of SARS-CoV2 infection on patients with neuromyelitis optica spectrum disorders (NMOSD), a severe CNS autoimmune astrocytopathy treated with immunosuppressant therapy.

Compared with MS, patients with NMOSD (pwNMOSD) are older at disease onset and present higher disability, higher rate of hospitalization, and early-age risk of mortality. Because NMOSD prognosis is relapse-related, it is mandatory to start disease-modifying therapy (DMT) soon after the index clinical event. Many of the commonly used DMTs for NMOSD are cell-depleting immunosuppressants, which may potentially increase the risk of viral and bacterial infections. The effect of SARS-CoV2 infection on pwNMOSD is a gap of knowledge. The purpose of this study was to describe the frequency and clinical features of COVID-19 in a cohort of patients with NMOSD.

Methods

Study Design and Participants

This was a prospective observational cohort study developed by the Brazilian Academy of Neurology using the REDONE.br (Brazilian Registry of Neurological Diseases) platform, starting on March 19, 2020, and punctually closed on July 25, 2020, to be resumed afterward. REDONE.br invited 51 neuroimmunology university and private centers distributed across all 27 Brazilian states. Forty-seven of 51 centers (92%) from 19 states (70%) participated in this study. Each referral center received a link to register all flu-like symptoms among pwNMOSD using a web-based case report form. Neurologists have continuously updated the REDONE.br database reporting the longitudinal follow-up of patients during the SARS-CoV-2 pandemic. Inclusion criteria: (1) patients diagnosed according to the 2015 International Panel for NMOSD criteria and (2) flu-like illness presenting a SARS-CoV2 positive test classified as a confirmed case (reverse transcription-polymerase chain reaction [RT-PCR] and/or IgA/IgM or IgG seropositivity), or clinical suspicion of COVID-19 diagnosed according to CDC/CSTE case definition, classified as a possible case. The cell-based assay (CBA) test to detect antibodies against aquaporin 4 (AQP4-IgG) was performed in most
patients. Exclusion criteria for this study included confirmed infections by H1N1, H3N2, or influenza B and myelin oligodendrocyte protein (MOG)-IgG seropositivity. The anti-MOG IgG was detected using an in-house CBA in live human embryonic kidney (HEK)-293 cells as described elsewhere.11

Standard Protocol Approvals, Registrations, and Patient Consents
This study was approved by the Ethics Committee of the “Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (Unesp)” under the internal review board number CAAE 31021220.2.0000.5411. All participants signed a written informed consent form before enrollment. This study was conducted according to the latest Declaration of Helsinki.

NMOSD Characteristics
Data collection was related to specific variables such as sex, comorbidities, age at disease onset, disease duration, disability at the last follow-up evaluated by Expanded Disability Status Scale (EDSS), previous use of DMT, maintenance or not during the pandemic, and relapse after infection.

COVID-19 Features
Data regarding COVID-19 included diagnostic criteria (confirmed or probable) and clinical presentation. Chest CT data were recorded when available.

Clinical Outcome
Clinical outcome and disease severity of COVID-19 were evaluated in the pwNMOSD considering the variables: treatment at home (mild cases) or at hospital (moderate cases) and the development of critical conditions (severe cases), such as sepsis, septic shock, acute respiratory syndrome, and need of ventilatory support. In addition, demographic and clinical features of COVID-19 in pwNMOSD were compared with those reported for the general Brazilian population, using similar features as observed for patients with NMOSD (home treatment, hospital admission, intensive care unit [ICU] admission, death, sex, age range [15–59 years], and comorbidity). Data from the Brazilian population were obtained at official national sources at antigoo.saude.gov.br/images/pdf/2020/July/30/Boletim-epidemiologico-COVID-24.pdf and opendatasus.saude.gov.br/dataset/bd-srag-2020.12 Data collection from both groups started from the beginning of the pandemics in Brazil till the closure date of this study (July 25, 2020). For both groups, we considered patients who exhibited positive results for SARS-CoV2 by RT-PCR or serology (as defined by the Brazilian Ministry of Health) from the beginning of the pandemics in Brazil till the closure date of this study (July 25, 2020).

Statistical Analysis
Demographic data, NMOSD clinical and disability profile, COVID-19 clinical features, and outcome were descriptively reported. The comparison of means between groups’ home treatment and hospital admission was made using the Student t test. The comparison of the proportions between groups for the categorized variables was performed by the test of difference of proportions, analogous to the χ^2 test. The odds ratio (OR) and the 95% confidence interval (95% CI) were obtained through the contingency table of the association between groups and the categorized variables of interest. In addition, the clinical outcome of COVID-19 in patients with NMOSD was compared with the Brazilian general population, using the 2-tailed Fisher’s exact test, estimating the OR and the 95% CI. Considering the exploratory nature of the study, no adjustment for multiple comparison was made, and p values ≤ 0.05 were significant. All analyzes were performed using the SAS for the Windows v9.4 program.

Data Availability
Anonymized patient data are available on request.

Results
A total of 34 cases of SARS-CoV2 infection, classified as confirmed (n = 18) or probable (n = 16), were identified in a cohort of 2,061 pwNMOSD, distributed among all 5 Brazilian regions (north = 82 patients, northeast = 643, midwest = 140, southeast = 1,119, and south = 77). Most COVID-19 probable or confirmed cases were from the southeast region (n = 15; 44%), followed by northeast (n = 13; 38%) and north (n = 6; 18%) regions.

Demographic, clinical, and laboratory features of NMOSD patients exhibiting COVID-19 are summarized in Table 1. The women:men ratio was of 6:1. The mean age was 37 years old (range 8–77), and only 3 of 34 patients were older than 50. The mean age at NMOSD diagnosis was 31 years (range 4–69), and disease duration was 6 years (range 0.2–20.5). The median EDSS was 3.5, ranging from 0 to 8.5. Fifteen of 27 patients (56%) exhibited AQP4-IgG, 12 patients did not exhibit anti-AQP4 IgG, and 7 patients were not tested; however, all patients fulfilled the 2015 International Panel Criteria.

More than half of patients (56%) had no comorbidity, whereas 24% of patients exhibited more than 1 comorbidity. Hypertension (21%), obesity (24%), diabetes (15%), and dyslipidemia (15%) were the most common comorbidities. Nine patients presented lymphopenia, which was severe in 2 patients (364 and 600/mm³), and none of these patients needed to be hospitalized for COVID-19 treatment.

General COVID-19 characteristics in pwNMOSD are listed in Table 2. Main symptoms included fever or chill (79%), dry cough (56%), myalgia (65%), fatigue (53%), coryza (47%), and dyspnea (38%). Gastrointestinal symptoms that occurred in 7 of 34 patients are diarrhea (7; 21%) and abdominal pain (3; 9%). Neurologic symptoms included headache (62%), anosmia (50%), ageusia (24%), and delirium (3%). Most patients (77%) exhibited mild COVID-19 forms being treated at home, and 8 patients (23%) needed to be hospitalized (moderate and severe cases). No differences were observed...
Table 1 Demographic, Clinical, and Treatment Features of Patients With Neuromyelitis Optica Spectrum Disorders Who Developed COVID-19

	Total (n = 34)	Home treatment (n = 26)	Hospital admission (n = 8)	p Value or (95% CI)
Age (mean, range)	37 (8–77)	42 (8–56)	36 (16–77)	0.72
Age of NMOSD onset (mean, range)	31 (4–69)	35 (4–54)	31 (14–69)	0.89
Disease duration - y (mean, range)	6 (0.2–20.5)	6 (0.2–20.5)	5 (2–8.5)	0.41
EDSS (median, range)	3.5 (0–8.5)	3 (0–8.5)	4 (1–8.5)	0.25
Sex (n, %)				
Female	29 (85)	22 (85)	7 (87.5)	0.84; 0.8 (0.1–8.2)
Male	5 (15)	4 (15)	1 (12.5)	
Color (n, %)				
White	9 (27)	6 (23)	3 (37)	0.73; 0.5 (0.1–2.7)
African descent	23 (67)	19 (73)	4 (50)	0.43; 2.7 (0.5–13.9)
Asian descent	1 (3)	1 (4)	0	1.00
Not informed	1 (3)	0	1 (13)	1.00
No. of comorbidities (n, %)				
No comorbidities	19 (56)	15 (58)	4 (50)	1.00; 1.4 (0.3–6.7)
1 comorbidity	7 (21)	5 (19)	2 (25)	1.00; 0.71 (0.1–4.7)
>1 comorbidity	8 (23)	6 (23)	2 (25)	1.00; 0.9 (0.1–5.7)
Comorbidities (n, %)				
Obesity	8 (24)	6 (23)	2 (25)	1.00; 0.9 (0.1–5.7)
Hypertension	7 (21)	5 (19)	2 (25)	1.00; 0.7 (0.1–4.7)
Diabetes	5 (15)	3 (12)	2 (25)	0.71; 0.4 (0.1–2.9)
Dyslipidemia	5 (15)	2 (8)	3 (38)	0.13; 0.1 (0.02–1.1)
Cardiomyopathy	1 (3)	0	1 (13)	1.00
Neoplasm	1 (3)	1 (4)	0	1.00
Other autoimmune disease	3 (9)	3 (12)	0	0.77
Smoking	1 (3)	1 (4)	0	1.00
Treatment (n, %)				
No treatment	2 (6)	1 (4)	1 (13)	0.96; 0.3 (0.02–5.1)
AZT	10 (30)	9 (35)	1 (13)	0.45; 3.7 (0.3–35)
MTX	1 (3)	1 (4)	0	1.00
MMF + PD	1 (3)	0	1 (13)	1.00
RTX	12 (35)	9 (35)	3 (38)	1.00; 0.9 (0.2–4.6)
AZT + RTX	1 (3)	0	1 (13)	1.00
AZT + PD	5 (15)	4 (15)	1 (13)	1.00; 0.9 (0.1–10)
RTX + PD	2 (6)	2 (8)	0	1.00

Abbreviations: AD = autoimmune disease; AZT = azathioprine; CI = confidence interval; MTX = methotrexate; MMF = mycophenolate mofetil; NMOSD = neuromyelitis optica spectrum disorders; PD = prednisone; RTX = rituximab.
regarding demographic and clinical features comparing confirmed and probable COVID-19 cases, except for ageusia, which was more frequent in confirmed cases (44% vs 6%, p = 0.02).

Considering the hospitalized patients, 6 of 8 patients exhibited ground glass opacity, and 4 of 8 patients presented 1 or more comorbidities and used immunosuppressive drugs. Among the 8 hospitalized patients, (1) 4 patients required intensive care support (severe cases); (2) 2 women without comorbidities (16 years old, EDSS 3.5, rituximab and 32 years old, EDSS 4.0, azathioprine) and 1 patient with dyslipidemia (46 years old, EDSS 7.0, azathioprine and prednisone) needed mechanical ventilation; (3) 1 patient needed ICU but no mechanical ventilation, and although patient was treated with rituximab, she was also an elderly patient (77 years old) exhibiting multiple comorbidities, including hypertension, diabetes, dyslipidemia, and cardiomyopathy; and (4) a 46-year-old patient with EDSS 7.0 using azathioprine plus prednisone and presenting dyslipidemia died after evolving SARS, sepsis, and shock septic. Clinical characteristics of hospitalized and critical patients are summarized in eTable 1, links.lww.com/NXI/A540.

NMOSD treatment was suspended in 1 patient during the pandemic and in another during the active COVID-19. Fifteen patients (44%) used rituximab either as a monotherapy (12; 35%) or combined with other oral immunosuppressive drugs (3; 9%). Sixteen of 34 patients (56%) used azathioprine as monotherapy (10; 29%) or combined with prednisone (5; 15%) or rituximab (1; 3%). Four of 8 hospitalized patients and 11 of 26 patients treated at home were in use of rituximab. Among the hospitalized patients, 2 patients used prednisone (with mycophenolate or azathioprine) and 1 used only azathioprine. One patient did not use any immunosuppressive drugs.

Five of 34 patients (15%) with NMOSD presented neurologic manifestations (relapse or pseudoexacerbation) during or after SARS-CoV2 infection. A 48-year-old patient, EDSS 3.0, using rituximab, presented a new right optic neuritis 7 days after the viral infection onset, being treated with oral corticosteroids, with complete recovery (patient 1). A 25-year-old patient, EDSS 5.0, who had a previous optic neuritis, evolved with flu-like syndrome and visual acuity worsening, being treated with IV methylprednisolone with good recovery (patient 2). A 16-year-old patient, EDSS 3.5, also had optic neuritis and presented total recovery after therapy with corticosteroids (patient 3). A 22-year-old patient had myelitis, being treated with IV methylprednisolone with poor recovery (EDSS 8.5) (patient 4). A 32-year-old patient exhibited a 1-point increase in EDSS (EDSS 4.0 to 5.0), even after 50 days after being discharged from the intensive care unit (patient 5). These patients who presented neurologic manifestations requiring hospital admission are given in eTable 1, links.lww.com/NXI/A540.

No associations were observed regarding EDSS (≤4.0 or >4.0) and the duration (≤17 or >17 days) of COVID-19 and its outcomes (home treatment, hospital admissions, ICU, cure, and death) in pwNMOSD. Similarly, no associations were observed between DMT type (azathioprine or rituximab) and comorbidities (without or at least 1 comorbidity) with COVID-19 outcomes (home treatment, hospital admission, ICU, cure, or death) (all p values > 0.05, data not shown).

Demographics and clinical features of COVID-19 in pwNMOSD were compared with those reported for the general Brazilian

Table 2 Clinical and Neurologic Features, and Outcome of COVID-19 in Patients With Neuromyelitis Optica Spectrum Disorders (NMOSD), Encompassing Confirmed (n = 18) and Probable (n = 16) Cases
COVID-19 laboratory diagnosis
Real-time reverse transcription-polymerase chain reaction severe acute respiratory syndrome-CoV2
General symptoms (n, %)
Fever
Chill
Dry cough
Myalgia
Fatigue
Arthralgia
Coryza
Sore throat
Diarrhea
Abdominal pain
Nausea
Dyspnea
Neurologic symptoms (n, %)
Headache
Anosmia
Ageusia
Delirium
Severity (n, %)
Hospitalization
Intensive care unit (ICU)
Death

Only the frequency of ageusia was different in these groups, being more frequent in confirmed cases (44% vs 6%, p = 0.02).
population (Table 3). pwNMOSD presented with a higher frequency of hospital treatment (33% vs 11% OR 4.6 [95% CI 1.6–12.0] \(p = 0.01 \)) and a higher frequency of ICU treatment (22% vs 3% OR 9.2 [95% CI 2.6–26.8] \(p = 0.002 \)). An increased risk of death was not seen.

Discussion

To date, this study included the greatest number of probable and confirmed cases of COVID-19 among pwNMOSD. The estimated prevalence of NMOSD in Latin America is 5 of 100,000 inhabitants.\(^{13}\) Taking account that the Brazilian population is estimated to have 210,147,125 inhabitants by July 25, 2020, the total number of Brazilian patients with NMOSD may be roughly estimated to 10,590. Therefore, the coverage of the REDONE.br registry was approximately 20% of national cases, a number that can be considered a representative sample. The distribution of COVID-19 in patients with NMOSD was heterogeneous among the 5 major Brazilian regions, agreeing with the more populated areas exhibiting higher COVID-19 incidence rates in the general population.\(^{14}\)

The preponderance of women and African descents in pwNMOSD with COVID-19 is in accordance with the known demographic profile of the disease.\(^{13}\) Although male sex and older age have been associated with severity of COVID-19,\(^{1}\) it is possible that the female preponderance and low median age (only 1 of 34 patient was aged >60 years) as observed in this cohort may be responsible for the predominance of mild COVID-19 cases in pwNMOSD.

Chronic diseases such as hypertension, diabetes mellitus, heart disease, asthma, and obesity are already known to increase COVID-19 severity.\(^{15}\) The prevalence of known risk factors associated with severe COVID-19, such as hypertension and obesity, is also high in patients with MS and NMOSD.\(^{16,17}\) Although obesity, hypertension, dyslipidemia, and diabetes were observed in this series, more than half (56%) of pwNMOSD did not present comorbidities. Although comorbidities play an important role in COVID-19 outcome, this scenario is multifaceted and cannot be resolved by this case series.\(^{18}\)

Besides underlying disorders, patients with NMOSD have an additional morbidity factor associated with DMT and disability related to NMOSD (EDSS). Scarce and inconclusive theoretical efforts based on the use of immunosuppressive drugs in autoimmune disorders during the pandemic or during the SARS-CoV2 infection have challenged neurologists on the decision to maintain or suspend the NMOSD treatment.\(^{19}\) In this series, 97% (33/34) of patients maintained immunosuppressive drugs during the pandemic and even 97% (32/33) during the infection. Almost half of the patients were treated with rituximab and the other half with azathioprine in mono or combined treatment.

To understand the effect of COVID-19 on pwNMOSD, we compared the NMOSD demographic and clinical features with those reported for the general Brazilian population exhibiting COVID-19, using data available at the Brazilian Ministry of Health Databank. As given in Table 3, pwNMOSD presented a higher rate of hospitalization and of ICU admission than the general population. By contrast, the frequency of death was not

Table 3 Demographic and Clinical Features of COVID-19 in 18 PCR-Confirmed Patients With NMOSD Compared With Those Reported for the General Brazilian Population

	NMOSD	General Brazilian population	\(p \) Value	OR (CI)
Severe acute respiratory syndrome-CoV2 infection by PCR testing or serology (confirmed COVID-19)	n = 18	n = 2,394,513	—	—
Home treatment	12 (67%)	2,157,661 (90%)\(^{a}\)	—	—
Hospital treatment	6 (33%)	236,852 (11%)	0.01	4.6 (1.6–12.0)
Hospital ICU	4 (22%)	71,826 (3%)\(^{a}\)	0.002	9.2 (2.6–26.8)
Death	1 (6%)	86,449 (4%)	0.62	1.6 (0.1–8.7)

Hospitalized patients

Men	0	134,468 (57%)	—	—
Women	6 (100%)	102,317 (43%)	0.01	2.0-undefined
Age <60 y (15–59)	5 (83%)	101,707 (43%)\(^{a}\)	0.06	0.9–158.1
At least 1 comorbidity	2 (33%)	138,499 (58%)\(^{a}\)	0.25	0.05–2.0

Abbreviations: CI = confidence interval; ICU = intensive care unit; NMOSD = neuromyelitis optica spectrum disorders; OR = odds ratio; PCR = polymerase chain reaction.

\(^{a}\) antigo.saude.gov.br/images/pdf/2020/July/30/Boletim-epidemiologico-COVID-24.pdf and opendatasus.saude.gov.br/dataset/bd-srag-2020
clearly higher between pwNMO (n = 1; 6%) and the general Brazilian population (n = 86,449; 4%). On the search for factors that could contribute to higher severity of COVID-19 in pwNMO, we analyzed variables such as sex, adjusted age range (15–59 years), and comorbidities between the 2 groups. A difference was observed regarding women having a higher frequency of hospital admission, which could be explained by known disease-associated incidence in women and a low number of cases included in this study. Further studies are needed to confirm this result (Table 3).

Because of the low prevalence of NMO,13 it is understandable that only case report8 and small sample size7 have been reported. Considering that there are expectations about the potential risk of interrupt treatment on patients with NMO30 and pondering the conflicting data regarding the use of anti-CD207,8,21 collaborative studies with sharing data are needed to clarify the effect of immunosuppressive drugs on COVID-19 severity and clinical outcome in these patients.22 Neurologic symptoms reported in this series included headache, anosmia, ageusia, and delirium, which were already described as neurologic manifestations in recently published articles.23 Another important issue refers to the effect of SARS-CoV2 infection on NMO features. Among the patients who exhibited neurologic manifestations during COVID-19, 2 patients presented new neurologic manifestations and increased EDSS and poorly responded to methylprednisolone treatment. An additional patient exhibited a new episode of optic neuritis 7 days after COVID-19 recovery. These patients may be classified as NMO relapses. The other 2 patients exhibited exacerbation of their previous neurologic manifestations and presented a good response to methylprednisolone therapy. Whether these 2 patients exhibited relapse or pseudoexacerbation during COVID-19 is challenging because imaging procedures were not performed. Despite the small number of patients, the coincidence between SARS-CoV2 infection and NMO neurologic manifestations (e.g., relapse and pseudoexacerbation) deserves further investigation to ascertain whether the virus itself or the host inflammation associated with COVID-19 may contribute to impair previous or promote new neurologic findings.24

Major methodological limitations of this study included the following: (1) the low number of tests for COVID-19 diagnosis at the time of the study and (2) the electronic communication between patients and their neurologists. Despite these limitations, this is the first data collection on patients with NMO in the context of the superimposed COVID-19 infection in a severely affected country.

In conclusion, most NMO patients with COVID-19 presented mild disease forms, particularly among women. However, pwNMO had much higher odds of hospitalization and ICU admission comparing with the general Brazilian population. The frequency of death was not clearly different. NMO disability, DMT type, and comorbidities were not associated with COVID-19 outcome. SARS-CoV2 infection was demonstrated as a risk factor for NMO relapses. Collaborative studies using shared NMO data are needed to suitably define factors related to COVID-19 severity and neurologic manifestations.

Acknowledgment
The authors would like to thank the support of the Brazilian Academy of Neurology for the continuous incentive to strengthen the Registry of Neurological Diseases (REDONE.br). Developers of System of DataBank (administrative, technical, or material support) are Wang Sen Feng (Prontmed, São Paulo, SP), Adalberto Garcia Garces, and Lucas Frederico Arantes (Hospital das Clínicas da Faculdade de Medicina de Botucatu). Suzana Nunes Machado is deceased.

Study Funding
Brazilian Registry of Neurological Diseases of the Brazilian Academy of Neurology (REDONE.br).

Disclosure
S.L. Apostolos-Pereira, L. C. Ferreira, M. Boaventura, and F. von Glehn report no disclosures relevant to the manuscript. S.N. Machado is deceased; disclosures are not included for this author. In general, the authors from the Neuroimmunology Brazilian Study Group report no disclosures relevant to the manuscript. Go to Neurology.org/NN for full disclosures.

Publication History
Received by Neurology: Neuroimmunology & Neuroinflammation September 2, 2020. Accepted in final form June 4, 2021.

Appendix Authors

Name	Location	Contribution
Samira Luisa Apostolos Pereira, MD, PhD	Hospital das Clínicas, FM-USP, São Paulo, Brazil	Design and conceptualized study, analyzed the data, and drafted the article for intellectual content
Lis Campos Ferreira, MD	Universidade Federal de Sergipe and Univ. Tiradentes, Aracaju, Brazil	Drafted the article for intellectual content and analyzed and interpreted the data
Mateus Boaventura, MD	Hospital das Clínicas, FM-USP, São Paulo, Brazil	Drafted the article for intellectual content and analyzed and interpreted the data
Nise Alessandra de Carvalho Sousa, MD	Hospital Univ. Getúlio Vargas, Manaus, Brazil	Design and conceptualized study, revised the article for intellectual content, and major role in the acquisition of data
Gabriela Joca Martins, MD	Hospital Geral de Fortaleza, Fortaleza, Brazil	Major role in the acquisition of data
José Arthur d’Almeida, PhD	Hospital Geral de Fortaleza, Fortaleza, Brazil	Major role in the acquisition of data
Milena S. Pitombeira, MD	Hospital Geral de Fortaleza, Fortaleza, Brazil	Major role in the acquisition of data
Appendix (continued)

Name	Location	Contribution
Lucas Silvestre Mendes, MD	Hospital Geral de Fortaleza, Fortaleza, Brazil	Major role in the acquisition of data
Thiago Fukuda, MD	Universidade Federal da Bahia/Ebserh, Salvador, Brazil	Major role in the acquisition of data
Hideraldo Luís Souza Cabeça, PhD	Hospital Ophir Loyola, Belém, Brazil	Major role in the acquisition of data
Luciano Chaves Rocha, MD	Hospital Ophir Loyola, Belém, Brazil	Major role in the acquisition of data
Bianca Etelevina Santos de Oliveira, MD	FUNAD, João Pessoa, Brazil	Major role in the acquisition of data
Carla Renata Aparecida Vieira Stella, MD	UNICAMP, Campinas, Brazil	Major role in the acquisition of data
Enedina Maria Loboato de Oliveira, PhD	Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil	Design and conceptualized study and major role in the acquisition of data
Leizian de Souza Amorim, MD	Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil	Major role in the acquisition of data
Andréa Anacleti Ferrari de Castro, MD	Universidade Metropolitana de Santos, Santos, Brazil	Major role in the acquisition of data
Antonio Pereira Gomes Neto, MD	Santa Casa, Belo Horizonte, Brazil	Major role in the acquisition of data
Guilherme Diogo Silva, MD	Hospital das Clínicas, FM-USP, São Paulo, Brazil	Major role in the acquisition of data
Lucas Bueno, MD	Hospital das Clínicas, FM-USP, São Paulo, Brazil	Major role in the acquisition of data
Maria Íris de Moraes Machado, MD	Hospital da Restauração, Recife, Brazil	Major role in the acquisition of data
Rafael Paternô Castello Dias-Carneiro, MD	Santa Casa, São Paulo, Brazil	Major role in the acquisition of data
Ronaldo Maciel Dias, MD	Hospital de Base do Distrito Federal, Brasília, Brazil	Major role in the acquisition of data
Alvaro Jose Porto Moreira, MD	Hospital da Restauração, Recife, Brazil	Major role in the acquisition of data
Ana Claudia Piccolo, MD	Hospital Santa Marcelina, São Paulo, Brazil	Major role in the acquisition of data
Anderson Kuntz Gresiuk, MD	Private Service, Cuiabá, Brazil	Major role in the acquisition of data
Andre Muniz, MD	Clínica AMO, Salvador, Brazil	Major role in the acquisition of data
Caio César Diniz Disserol, MD	Hospital das Clínicas, FM-USP, São Paulo, Brazil	Major role in the acquisition of data
Claudia Cristina Ferreira Vasconcelos, MD, PhD	Hospital Universitário Gaffre e Guinle, Rio de Janeiro, Brazil	Major role in the acquisition of data

Appendix (continued)

Name	Location	Contribution
Herval Ribeiro Soares Neto, PhD	Universidade Federal do Mato Grosso, Cuiabá, Brazil	Major role in the acquisition of data
José Alexandre Figueiredo, PhD, Jr	IAMSPE, São Paulo, Brazil	Major role in the acquisition of data
Leandro Cortoni Calia, PhD	Private Service, São Paulo, Brazil	Major role in the acquisition of data
Mario Emilio Teixeira Sourado Jr, MD	Univ. Federal R G Norte, Natal, Brazil	Major role in the acquisition of data
Leticia Scolari, MD	Universidade Federal do Mato Grosso, Cuiabá, Brazil	Major role in the acquisition of data
Herval Ribeiro Soares Neto, PhD	IAMSPE, São Paulo, Brazil	Major role in the acquisition of data
Luiz D Melges, MD	Faculdade de Medicina de Marília, Marília, Brazil	Major role in the acquisition of data
Marcus Vinicius Magno Gonçalves, MD	Univ. da Região de Joinville (Univille), Joinville, Brazil	Major role in the acquisition of data
Maria Lucia Vellutini Pimentel, MD	Santa Casa, Rio de Janeiro, Brazil	Major role in the acquisition of data
Marlise de Castro Ribeiro, MD	Univ. Federal Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil	Major role in the acquisition of data
Appendix (continued)

Name	Location	Contribution
Omar Gurrola Arambula, MD	Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, Brazil	Major role in the acquisition of data
Paulo Diniz da Gama, PhD	PUC, Sorocaba, Brazil	Major role in the acquisition of data
Renata Leite Menon, MD	Santa Casa, Londrina, Brazil	Major role in the acquisition of data
Rodrigo Barbosa Thomaz, MD	Hospital Israelita Albert Einstein, São Paulo, Brazil	Major role in the acquisition of data
Rogério de Rizo Morales, PhD	Univ. Federal de Uberlândia, Uberlândia, Brazil	Major role in the acquisition of data
Silvana Sobreira, MD	Hospital Memorial São José, rede D’OR, Recife, Brazil	Major role in the acquisition of data
Suzana Nunes Machado, MD (In memoriam)	Private Service, Florianópolis, Brazil	Major role in the acquisition of data
Taysa A Gonsalves Judé Ribeiro, MD	Univ. Federal de Goiás, Goiânia, Brazil	Major role in the acquisition of data
Valéria Coelho Santa Rita Pereira, MD	Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil	Major role in the acquisition of data
Vanessa Maia Costa, MD	Hospital Neurológico de Goiânia, Goiânia, Brazil	Major role in the acquisition of data
Adauto Wanderley da Nóbrega Junior, MD	Hospital Universitário da Universidade Federal de Santa Catarina, Florianópolis, Brazil	Major role in the acquisition of data
Marília Mamprim de Moraes Perin, MD	Pontifícia Universidade Católica de Campinas, Campinas, Brazil	Major role in the acquisition of data
Soniza Vieira Alves-Leon, PhD	Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil	Major role in the acquisition of data
Eduardo Antonio Donadi, PhD	Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, Brazil	Revised the article for intellectual content
Tarso Adoni, PhD	Hospital Sirio-Libânios, São Paulo, Brazil	Revised the article for intellectual content
Sidney Gomes, MD	Hospital Beneficência Portuguesa, São Paulo, Brazil	Major role in the acquisition of data
Maria Lucia Brito Ferreira, MD	Hospital da Restauração, Recife, Brazil	Major role in the acquisition of data
Dagoberto Callegaro, PhD	Hospital das clínicas, FM-USP, São Paulo, Brazil	Major role in the acquisition of data
Maria Fernanda Mendes, PhD	Santa Casa, São Paulo, Brazil	Design and conceptualized study and revised the article for intellectual content

References

1. Centers for Disease Control and Prevention. People who are at higher risk for severe illness[CDC, Atlanta, GA: Centers for Disease Control and Prevention; 2020].
2. Peeters LM, Parciak T, Walton C, et al. COVID-19 in people with multiple sclerosis: a global data sharing initiative. Mult Scler. 2020;26(10):1157-1162.
3. Sormani MP. An Italian programme for COVID-19 infection in multiple sclerosis. Lancet Neurol. 2020;19(6):481-482.
4. Louapre C, Collongues N, Starkov B, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol. 2020;77(9):1079-1088.
5. Parrotta E, Kaster I, Chavet L, et al. COVID-19 outcomes in MS: observational study of early experience from NYU Multiple Sclerosis Comprehensive Care Center. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e835.
6. Bowen JD, Brink J, Brown TR, et al. COVID-19 in MS: initial observations from the Pacific Northwest. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e783.
7. Sahraian MA, Anzini A, Navard C, Rezaieanmaleh N, Naser Moghadasi A. Evaluation of COVID-19 infection in patients with neuromyelitis optica spectrum disorder (NMOSD): a report from Iran. Mult Scler Relat Disord. 2020;44:102245.
8. Creed MA, Ballestros E, Jr LG, Imotola J. Mild COVID-19 infection despite chronic B cell depletion in a patient with aquaporin-4 positive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2020;44:102199.
9. Center for Disease Control and Prevention. Surveillance and Data Analytics—the Latest in COVID-19 Data and Surveillance; 2020.
10. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177-189.
11. Oliveira LM, Apostolos-Pereira SK, Pitombeira MS, Brasil Torretta P, Callegaro D, Silva DK. Persistent MOG-IgG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis. Mult Scler. 2019;25:1907-1914.
12. DATASUS/SVS/MS. Painel de casos de doença pelo coronavírus 2019 (COVID-19) no Brasil pelo Ministério da Saúde [Internet]. Coronavírus//Brazil. 2020.
13. Alvarez MP, Schimmidh S, Alvarez RF. Epidemiology of neuromyelitis optica in Latin America. Mult Scler J Exp Transl Clin. 2017;3(3):2052173717730998.
14. Ministério da Saúde. Coronavírus Brasil. 2020.
15. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-2059.
16. Sarootim P, Zweig SA, Conway DS, Briggs FBS. Cardiovascular conditions in persons with multiple sclerosis, neuromyelitis optica and transverse myelitis. Mult Scler Relat Disord. 2018;25:21-25.
17. Ajmery MR, Boscoe A, Mauskopf JC, Cannelli SD, Levy M. Evaluation of comorbidities and health care use among patients with highly active neuromyelitis optica. J Neurol Sci. 2018;384:96-103.
18. Carnero Contenti E, Correa J. Immunosuppression during the COVID-19 pandemic in neuromyelitis optica spectrum disorders: a new challenge. Mult Scler Relat Disord. 2020;41:102097.
19. Amor S, Baker D, Khoury SJ, Schmiesser K, Giovananni G. SARS-CoV-2 and multiple sclerosis: not all immune depleting DMTs are equal or bad. Ann Neurol. 2020;87(6):794-797.
20. Abboud H, Zheng C, Kar I, Chen CK, Su C, Serra A. Current and emerging therapeutic options for neuromyelitis optica spectrum disorder: relevance to the COVID-19 pandemic. Mult Scler Relat Disord. 2020;44:102249.
21. Fan M, Qiu W, Lu B, et al. Risk of COVID-19 infection in MS and neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e787.
22. Brownlee W, Bourdette D, Brodley S, Kilentenstein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020;94(22):949-952.
23. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: a literature review. J Clin Neurosci. 2020;77:8-12.
24. Kessler RA, Mealy MA, Levy M. Early indicators of relapses vs pseudorelapses in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e269.
Clinical Features of COVID-19 on Patients With Neuromyelitis Optica Spectrum Disorders

Samira Luisa Apostolos-Pereira, Lis Campos Ferreira, Mateus Boaventura, et al.

Neurol Neuroimmunol Neuroinflamm 2021;8;
DOI 10.1212/NXI.0000000000001060

This information is current as of August 26, 2021
