An unexplained fetal intracranial hemorrhage with extensive and multifocal hemorrhagic lesions
A case report
Baorong Gao, PhD, MD, Li Zhang, MD*, Qiang Wei, MD

Abstract
Rationale: Fetal intracranial hemorrhage (ICH) is an extremely rare complication of pregnancy, with subsequent neurological sequelae or fetal death. The diagnosis of fetal ICH is primarily based on ultrasound or magnetic resonance imaging.

Patient concerns: An asymptomatic woman at 31 weeks of gestation was referred for a detailed anomaly scan because routine fetal ultrasonography showed suspected fetal ICH.

Diagnoses: Fetal ICH with extensive and multifocal hemorrhagic lesions was diagnosed by ultrasound and magnetic resonance imaging and finally confirmed by postmortem examination.

Interventions: The woman opted for pregnancy termination after medical consultation. Labor was induced by mifepristone and rivanol infusion.

Outcomes: The patient delivered a stillborn male infant weighing 1522 g. We tried our best to screen the possible etiology contributing to fetal ICH; unfortunately, no evidence of obvious causes or predisposing factors was identified.

Lessons: Medically unexplained massive fetal ICH may cause an unfavorable prognosis, and prompt termination of pregnancy is appropriate, although there is no consensus on the optimal mode of delivery.

Abbreviations: ICH = intracranial hemorrhage, MRI = magnetic resonance imaging, PI = pulsatility index.

Keywords: case report, diagnosis, fetal intracranial hemorrhage, predisposing factors

1. Introduction
Intracranial hemorrhage (ICH) refers to bleeding within the cerebral ventricles, including the brain parenchyma and surrounding meningeal spaces. Hemorrhages may occur in utero, and an estimated incidence of 1 in 10 000 pregnancies has been reported.[1] Although advances in prenatal ultrasonography and magnetic resonance imaging (MRI) have increased the ability to identify fetal ICH,[2,3] fetal ICH remains a rare prenatal event. The most relevant risk factors for fetal ICH include maternal trauma and fetal coagulation disorders[1,3,4] however, in many cases, predisposing risk factors have not been identified. According to the four-grade classification based on the location and severity of hemorrhage,[5,6] the poor outcomes have often been linked to higher-grade ICH.

2. Case report
A 27-year-old nulliparous woman was referred for a detailed anomaly scan because routine fetal ultrasonography revealed suspected ICH at 31 weeks of gestation. The patient reported an uneventful pregnancy. Her medical, family, and obstetric histories were noncontributory, and she denied drug ingestion.

Obstetric ultrasonography revealed ventriculomegaly with an irregular choroid plexus. The pulsatility index (PI) of the fetal middle cerebral artery was 1.5. Fetal MRI was performed to confirm ventriculomegaly with diffuse and multifocal hypointense masses in the bilateral ventricle, third ventricle, and frontal and parietal lobes, with the midline slightly shifted to the left side. A small subdural hematoma under the tentorium of the cerebellum was observed (Fig. 1). According
to the classification modified by Ghi et al., fetal ICH was classified as grade III or greater.

The patient underwent further investigation, including toxoplasmosis, rubella, cytomegalovirus, and herpes, parvovirus B19, assays for isoimmune and alloimmune thrombocytopenia, platelet count, prothrombin time, partial thromboplastin time, plasminogen, von Willebrand factor, factor V Leiden, anticoagulant protein S, activated protein C, and antiplatelet antibodies, all of which appeared normal. After consultation with neonatology and pediatric neurology specialists and discussion of possible neurologic sequelae, the patient decided to terminate the pregnancy. Labor was induced by mifepristone and rivanol infusion. She delivered a stillborn male infant weighing 1522g. Postmortem examination of both the fetus and placenta was obtained after parental consent was obtained. The mother was discharged on postpartum day 2.

Autopsy confirmed the prenatal diagnosis, and all fetal analysis tests were reported with normal results.

3. Ethic statement

The requirement for institutional review board approval was waived owing to the retrospective nature of the study. Written informed consent was obtained from the patient for the publication of this case report.

4. Discussion

ICH is thought to be uncommon in prenatal fetuses, because fetal ICHs are always without any clinical symptoms, and most of them are detected fortuitously by routine obstetric ultrasonography scan; however, evaluation of fetal ICH cannot be based on ultrasonographic findings alone because it has low sensitivity for minor hemorrhages, and MRI scan will be helpful in establishing the diagnosis as a valuable complementary tool with more accuracy. In our case, the diagnosis of fetal ICH was primarily detected by ultrasound evaluation, and intra-uterine MRI aided in confirming the exact location of the hemorrhages, which were finally confirmed by autopsy.

Intracerebral hemorrhage accounts for over 80% of fetal ICH, carries very high morbidity and mortality rates, and occurs in less than 20% of patients. To date, only 1 case of combined intracerebral and subdural hemorrhage has been reported, and this case was added to the previous case and provided further evidence for multifocal hemorrhagic lesions.

The etiology of fetal ICH has not been firmly established, and predisposing factors such as infectious disease, maternal trauma, drug exposure, seizures, hypoxia, immune thrombocytopenia, coagulation disorders, twin-to-twin transfusion syndrome, demise of a co-twin in monochorionic placentation, fetal thrombophilia, cord entanglement, and fetal alloimmune
thrombocytopenia have been attributed to the cause.\(^2\,^7\) When
common causes of fetal ICH cannot be identified, genetic
disorders\(^8\,^9\) such as COL4A1 and COL4A2 should be
considered.\(^8\) From the available evidence, our patient had
none of the known risk factors mentioned above, but the
disease history hidden by the patient cannot be completely ruled
out, and this is difficult to prove. A previous study suggested
that a decreased PI of the middle cerebral artery may contribute
to antenatal hemorrhage,\(^4\) but a mildly decreased PI in our
case is unlikely to cause severe bleeding. Moreover, cerebro-
vascular malformations have been reported as extremely rare
conditions that may lead to ICH; however, the diagnosis of
malformations relies on contrast-enhanced CT or MRI, and
intravascular contrast media are contraindicated in pregnant
women.

According to the available data, the prognosis of fetal ICH
generally depends on the grade of hemorrhagic lesions. ICH
classified as grade III or grade IV appears to have a poorer
prognosis than grade I or grade II.\(^1\,^3\,^5\) However, given the
limited number of reported cases, it is difficult to establish firm
prognostic figures. In our case, owing to the unfavorable
prognosis, prompt termination of pregnancy was appropriate,
although there is currently no consensus on the optimal mode of
delivery. When fetal ICH is diagnosed, neonatology specialist
counseling, neurological sequelae evaluation, and parental
discussion are required.

5. Conclusion

Although the etiology of fetal ICH has been explored over the
last decade, some cases remain medically unexplained. When
massive and multifocal fetal ICH is confirmed, prompt
termination of pregnancy is appropriate owing to the unfavor-
able prognosis.

Acknowledgment

The authors wish to thank Dr. Fenglin Jia and Dr. Yannmei He for
providing the original MRI images and reports.

Author contributions

Conceptualization: Baorong Gao, Li Zhang.
Drafting the manuscript: Baorong Gao.
Resources: Qiang Wei.
Writing – original draft: Baorong Gao, Li Zhang.
Writing – review & editing: Li Zhang.
Writing – review and language polish: Li Zhang.

References

[1] Vergani P, Strobelt N, Locatelli A, et al. Clinical significance of fetal
intracranial hemorrhage. Am J Obstet Gynecol 1996;175:536–43.
[2] Adiego B, Martínez-Ten P, Bermejo C, et al. Fetal intracranial
hemorrhage. Prenatal diagnosis and postnatal outcomes. J Matern Fetal
Neonatal Med 2019;32:21–30.
[3] Ghi T, Simonazzi G, Perolo A, et al. Outcome of antenatally diagnosed
intracranial hemorrhage: case series and review of the literature. Ultrasound Obstet Gynecol 2003;22:121–30.
[4] Huang YP, Chen WC, Tseng JJ, et al. Fetal intracranial hemorrhage (fetal
stroke): report of four antenatally diagnosed cases and review of the
literature. Taiwan J Obstet Gynecol 2006;45:135–41.
[5] Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of
subependymal and intraventricular hemorrhage: a study of infants with
birth weights less than 1500 gm. J Pediatr 1978;92:529–34.
[6] Inder TEPJM, Volpe JJ. Volpe’s Neurology of the Newborn. 6th.
Philadelphia: Elsevier; 2018.
[7] Dunbar MJ, Woodward K, Leijser LM, et al. Antenatal diagnosis of fetal
intraventricular hemorrhage: systematic review and meta-analysis. Dev Med Child Neurol 2021;63:144–55.
[8] Maurice P, Guilbaud L, Garel J, et al. Prevalence of COL4A1 and
COL4A2 mutations in severe fetal multifocal hemorrhagic and/or
ischemic cerebral lesions. Ultrasound Obstet Gynecol 2021;57:783–9.
[9] Cavaliere AF, Turriti I, Pallottini M, et al. Genetic profiling of idiopathic
antenatal intracranial haemorrhage: what we know? Genes (Basel) 2021;12:573.