DOMAINS OF HOLOMORPHY FOR IRREDUCIBLE UNITARY REPRESENTATIONS OF SIMPLE LIE GROUPS

BERNHARD KRÖTZ
1. Introduction

Let us consider a unitary irreducible representation \((\pi, \mathcal{H})\) of a simple, non-compact and connected algebraic Lie group \(G\). Let us denote by \(K\) a maximal compact subgroup of \(G\). According to Harish-Chandra, the Lie algebra submodule \(\mathcal{H}_K\) of \(K\)-finite vectors of \(\pi\) consists of analytic vectors for the representation, i.e. for all \(v \in \mathcal{H}_K\) the orbit map

\[f_v : G \rightarrow \mathcal{H}, \ g \mapsto \pi(g)v \]

is real analytic. For these functions \(f_v\) we determine, and in full generality, their natural domain of definition as holomorphic functions (see Theorem 5.1 below):

Theorem 1.1. Let \((\pi, \mathcal{H})\) be a unitary irreducible representation of \(G\). Let \(v \in \mathcal{H}\) be a non-zero \(K\)-finite vector and \(f_v\) be the corresponding orbit map. Then there exists a unique maximal \(G \times K_C\)-invariant domain \(D_\pi \subseteq G_C\), independent of \(v\), to which \(f_v\) extends holomorphically. Explicitly:

(i) \(D_\pi = G_C\) if \(\pi\) is the trivial representation.
(ii) \(D_\pi = \Xi^+ K_C\) if \(G\) is Hermitian and \(\pi\) is a non-trivial highest weight representation.
(iii) \(D_\pi = \Xi^- K_C\) if \(G\) is Hermitian and \(\pi\) is a non-trivial lowest weight representation.
(iv) \(D_\pi = \Xi K_C\) in all other cases.

In the theorem above \(\Xi, \Xi^+, \Xi^-\) are certain \(G\)-domains in \(X_C = G_C/K_C\) over \(X = G/K\) with proper \(G\)-action. These domains are studied in this paper because of their relevance for the theorem above (see [5]). Let us mention that \(\Xi\) is the familiar crown domain and that the inclusion \(\Xi K_C \subset D_\pi\) traces back to our joint work with Robert Stanton ([6], [7]).

Acknowledgment: I am happy to point out that this paper is related to joint work with Eric M. Opdam [5]. Also I would like to thank Joseph Bernstein who, over the years, helped me with his comments to understand the material much better.

Finally I appreciate the work of a very good referee who made many useful remarks on style and organization of the paper.
2. Notation

Throughout this paper G shall denote a connected simple non-compact Lie group. We denote by G_C the universal complexification of G and suppose:
- $G \subseteq G_C$;
- G_C is simply connected.

We fix a maximal compact subgroup $K < G$ and form $X = G/K$, the associated Riemannian symmetric space of the non-compact type. The universal complexification K_C of K will be realized as a subgroup of G_C. We set

$$X_C = G_C/K_C$$

and call X_C the affine complexification of X. Note that

$$X \hookrightarrow X_C, \quad gK \mapsto gK_C$$
defines a G-equivariant embedding which realizes X as a totally real form of the Stein symmetric space X_C. We write $x_0 = K_C \in X_C$ for the standard base point in X_C.

However, the natural complexification of X is not X_C, but the crown domain $\Xi \subset X_C$ whose definition we recall now. We shall provide the standard definition of Ξ, see [1].

Lie algebras of subgroups $L < G$ will be denoted by the corresponding lower case German letter, i.e. $l < g$; complexifications of Lie algebras are marked with a C-subscript, i.e. l_C is the complexification of l.

Let us denote by p the orthogonal complement to \mathfrak{f} in \mathfrak{g} with respect to the Cartan-Killing form. We set

$$\hat{\Omega} = \{ Y \in p \mid \text{spec(ad} Y) \subset (-\pi/2, \pi/2) \}.$$

Then

$$\Xi = G \exp(i\hat{\Omega}) \cdot x_0 \subset X_C$$
is a G-invariant neighborhood of X in X_C, commonly referred to as crown domain. Sometimes it is useful to have an alternative, although less invariant picture of the crown domain: if $\mathfrak{a} \subset \mathfrak{p}$ is a maximal abelian subspace and $\Omega := \hat{\Omega} \cap \mathfrak{p}$, then

$$\Xi = G \exp(i\Omega) \cdot x_0.$$
The set Ω is nicely described through the restricted root system $\Sigma = \Sigma(g, a)$:

$$\Omega = \{ Y \in a \mid \alpha(Y) < \pi/2 \ \forall \alpha \in \Sigma \}.$$

If W is the Weyl group of Σ, then we note that Ω is W-invariant.

Sometimes we will employ the root space decomposition $g = a \oplus m \oplus \bigoplus_{\alpha \in \Sigma} g^\alpha$ with $m = \mathfrak{z}(a)$ as usual. We choose a positive system $\Sigma^+ \subset \Sigma$ and form the nilpotent subalgebra $n = \bigoplus_{\alpha \in \Sigma^+} g^\alpha$.

2.1. The example of $G = \text{Sl}(2, \mathbb{R})$

For illustration and later use we will exemplify the above notions at the basic case of $G = \text{Sl}(2, \mathbb{R})$.

We let $K = \text{SO}(2, \mathbb{R})$ be our choice for the maximal compact subgroup and identify $X = G/K$ with the upper half plane $D^+ := \{ z \in \mathbb{C} \mid \text{Im } z > 0 \}$. We recall that

$$X_C = \mathbb{P}^1(\mathbb{C}) \times \mathbb{P}^1(\mathbb{C}) \setminus \text{diag}[\mathbb{P}^1(\mathbb{C})]$$

with G_C acting diagonally by fractional linear transformations. The G-embedding of $X = D^+$ into X_C is given by

$$z \mapsto (z, \overline{z}) \in X_C.$$

If D^- denotes the lower half plane, then the crown domain is given by

$$\Xi = D^+ \times D^- \subseteq X_C.$$

In addition we record two G-domains in X_C which sit above Ξ, namely:

$$\Xi^+ = D^+ \times \mathbb{P}^1(\mathbb{C}) \setminus \text{diag}[\mathbb{P}^1(\mathbb{C})],$$

$$\Xi^- = \mathbb{P}^1(\mathbb{C}) \times D^- \setminus \text{diag}[\mathbb{P}^1(\mathbb{C})].$$

Observe that $\Xi = \Xi^+ \cap \Xi^-.$

3. Remarks on G-invariant domains in X_C with proper action

One defines elliptic elements in X_C by

$$X_{C,\text{ell}} = G \exp(i\mathfrak{p}) \cdot x_0 = G \exp(i\mathfrak{a}) \cdot x_0.$$

The main result of [1] was to show that Ξ is a maximal domain in $X_{C,\text{ell}}$ with G-action proper. In particular, G acts properly on Ξ.

It was found in [5] that Ξ in general is not a maximal domain in X_C for proper G-action: the domains Ξ^+ and Ξ^- from (2.2)-(2.3) yield
counterexamples. To know all maximal domains is important for the theory of representations [5], Sect. 4.

That Ξ in general is not maximal for proper action is related to the unipotent model for the crown which was described in [5]. To be more precise, we showed that there exists a domain $\hat{\Lambda} \subseteq \mathfrak{n}$ containing 0 such that

\begin{equation}
\Xi = G \exp(i\hat{\Lambda}) \cdot x_0.
\end{equation}

Now there is a big difference between the unipotent parametrization (3.1) and the elliptic parametrization (2.1): If we enlarge Ω the result is no longer open; in particular, $X_{\mathbb{C},\text{ell}}$ is not a domain. On the other hand, if we enlarge the open set $\hat{\Lambda}$ the resulting set is still open; in particular $X_{\mathbb{C},\text{u}} := G \exp(i\mathfrak{n}) \cdot x_0$ is a domain. Thus, if there were a bigger domain than Ξ with proper action, then it is likely by enlargement of $\hat{\Lambda}$.

We need some facts on the boundary of Ξ.

3.1 Boundary of Ξ

Let us denote by $\partial \Xi$ the topological boundary of Ξ in $X_{\mathbb{C}}$. One shows that

$\partial_{\text{ell}} \Xi := G \exp(i\partial \Omega) \cdot x_0 \subseteq \partial \Xi$

(cf. [7]) and calls $\partial_{\text{ell}} \Xi$ the elliptic part of $\partial \Xi$. We define the unipotent part $\partial_{\text{u}} \Xi$ of $\partial \Xi$ to be the complement to the elliptic part:

\[\partial_{\text{u}} \Xi = \partial \Xi \setminus \partial_{\text{ell}} \Xi. \]

The relevance of $\partial_{\text{u}} \Xi$ is as follows. Let $X \subset D \subseteq X_{\mathbb{C}}$ denote a G-domain with proper G-action. Then $D \cap \partial_{\text{ell}} \Xi = \emptyset$ by the above cited result of [1]. Thus if $D \not\subset \Xi$, then one has

$D \cap \partial_{\text{u}} \Xi \neq \emptyset$.

Let us describe $\partial_{\text{u}} \Xi$ in more detail. For $Y \in \mathfrak{a}$ we define a reductive subalgebra of $\mathfrak{g}_{\mathbb{C}}$ by

$\mathfrak{g}_{\mathbb{C}}[Y] = \{ Z \in \mathfrak{g}_{\mathbb{C}} \mid e^{-2i\text{ad}(Y)} \circ \sigma(Z) = Z \}$

with σ the Cartan involution on $\mathfrak{g}_{\mathbb{C}}$ which fixes $\mathfrak{k} + i\mathfrak{p}$. Then there is a partial result on $\partial_{\text{u}} \Xi$, for instance stated in [2]:

\begin{equation}
\partial_{\text{u}} \Xi \subseteq \{ G \exp(e) \exp(iY) \cdot x_0 \mid Y \in \partial \Omega, \}
\end{equation}

\begin{equation}
0 \neq e \in \mathfrak{g}_{\mathbb{C}}[Y] \cap i\mathfrak{g} \text{ nilpotent}.
\end{equation}

If Y is such that only one root, say α, attains the value $\pi/2$, then we call Y and as well the elements in the boundary orbit $G \exp(e) \exp(iY)$.
Accordingly we define the regular unipotent boundary $\partial_{u,\text{reg}} \Xi = \{ z \in \partial \Xi | z \text{ regular} \}$. Note that $g_C[Y]$ is of especially simple form for regular Y, namely

$$g_C[Y] = i a \oplus m \oplus g[\alpha]^{-\theta} \oplus i g[\alpha]^{\theta}$$

where $g[\alpha] = g^\alpha \oplus g^{-\alpha}$. Hence, in the regular situation, one can choose e above to be in $i g[\alpha]^{\theta} + i a$. We summarize our discussion:

Proposition 3.1. Let $X \subset D \subset X_C$ be a G-invariant domain with proper G-action which is not contained in Ξ. Then $D \cap \partial_{u,\text{reg}} \Xi \neq \emptyset$. More precisely, there exists $Y \in \partial \Omega$ regular (with $\alpha \in \Sigma$ the unique root attaining $\pi/2$ on Y) and a non-zero nilpotent element $e \in i g[\alpha]^{\theta} + i a$ such that

$$\exp(e) \exp(i Y) \cdot x_0 \in \partial_{u,\text{reg}} \Xi \cap D.$$

4. Maximal domains for proper action

The aim of this section is to classify all maximal G-domains in X_C which contain X and maintain proper action. The answer will depend whether G is of Hermitian type or not.

4.1. Non-Hermitian groups.

The objective is to prove the following theorem:

Theorem 4.1. Suppose that G is not of Hermitian type. If $X \subset D \subset X_C$ is a G-invariant domain with proper G-action, then $D \subset \Xi$.

Before we can give the proof of the theorem some preparation is needed. The proof relies partly on a structural fact characterizing non-Hermitian groups (see Lemma 4.4 below) and on a precise knowledge of the basic case of $G = \text{Sl}(2, \mathbb{R})$.

Let us begin with the relevant facts for $G = \text{Sl}(2, \mathbb{R})$. With $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ our choices for a and n are

$$a = \mathbb{R} \cdot T \quad \text{and} \quad n = \mathbb{R} \cdot E.$$

Note that $\Omega = (-\pi/4, \pi/4)T$.

The a slight modification of results in [5], Sect. 3 and 4 yield:

Lemma 4.2. Let $G = \text{Sl}(2, \mathbb{R})$ and $J \subset \mathbb{R}$ be an open subset. Then

$$\Xi_J := G \exp(i J \cdot E) \cdot x_0$$

is a G-invariant open subset of X_C and the following holds:
(i) G does not act properly if $\{-1, 1\} \subset J$.
(ii) $\Xi = \Xi_{(-1,1)}$.
(iii) $\Xi^{+} = \Xi_{(-1,\infty)}$.
(iv) $\Xi^{-} = \Xi_{(-\infty,1)}$.

We also need that $\partial \Xi$ is a fiber bundle over the affine symmetric space G/H where $H = SO_{e}(1,1)$. Notice that H is the stabilizer of the boundary point

$$z_{H} := \exp(-i\pi T/4) \cdot x_{0} = (1, -1) \in \partial_{\text{aff}} \Xi.$$

Write τ for the involution on G, resp. g, fixing H, resp. h, and denote by $g = h + q$ the corresponding eigenspace decomposition. The h-module q breaks into two eigenspaces $q = q^{+} \oplus q^{-}$ with

$$q^{\pm} = \mathbb{R} \cdot e^{\pm} \quad \text{where} \quad e^{\pm} = \begin{pmatrix} 1 & \mp 1 \\ \pm 1 & -1 \end{pmatrix}.$$

Finally write

$$C = \mathbb{R}_{\geq 0} \cdot e^{+} \cup \mathbb{R}_{\geq 0} \cdot e^{-}$$

and $C^{\times} = C \setminus \{0\}$. Note that both C and C^{\times} are H-stable. We cite [5], Th. 3.1:

Lemma 4.3. Let $G = \text{Sl}(2,\mathbb{R})$. Then the map

$$G \times_{H} C \rightarrow \partial \Xi, \quad [g, e] \mapsto g \exp(i e) \cdot z_{H}$$

is a G-equivariant homeomorphism. Moreover,

(i) $\partial_{\text{aff}} \Xi = G \cdot z_{H} \simeq G/H$,
(ii) $\partial_{u} \Xi = G \exp(i C^{\times}) \cdot z_{H} \simeq G \times_{H} C^{\times}$,
(iii) $\partial_{u} \Xi = G \exp(i E) \cdot x_{0} \Pi G \exp(-i E) \cdot x_{0}$.

As a last piece of information we need a structural fact which is only valid for non-Hermitian groups.

Lemma 4.4. Suppose that G is not of Hermitian type. Then for all $\alpha \in \Sigma$ and $E \in g^{\alpha}$ there exists an $m \in M = Z_{K}(a)$ such that

$$\text{Ad}(m)E = -E.$$

Proof. Let us remark first that we may assume that G is of adjoint type. If G is complex, then the assertion is clear as $T := \exp(i a) \subset M$ provides us with the elements we are looking for. More generally for $\dim g^{\alpha} > 1$ one knows (Kostant) that $M_{0} = \exp(m)$ acts transitively on the unit sphere in g^{α} (cf. [3]).

In the sequel we use the terminology and tables of the classification of real simple Lie algebras as found in the monograph [3], App. C. As G is not Hermitian, Kostant’s result leaves us with the following cases.
for \(\mathfrak{g} \): \(\mathfrak{sl}(n, \mathbb{R}) \) for \(n \geq 3 \), \(\mathfrak{so}(p, q) \) for \(0, 2 \neq p, q \) and \(p + q > 2 \), \(E \), \(E I, E V, E VI, E VII, E IX, F I \) and \(G \).

Now we make the following observation. The lemma is true for \(G = \text{Sl}(3, \mathbb{R}) \) as a simple matrix computation shows. Suppose that \(\alpha \) is such that it can be put into an \(A_2 \)-subsystem of \(\Sigma \). As \(\dim \mathfrak{g}^\alpha \) is one-dimensional (by our reduction) this means that we can put \(E \in \mathfrak{g}^\alpha \) in a subalgebra isomorphic to \(\mathfrak{sl}(3, \mathbb{R}) \). Now it is important to recall the nature of the component group of \(M \), see \cite{3}, Th. 7.55. It follows that the \(M \)-group of \(\text{Sl}(3, \mathbb{R}) \) (isomorphic to \((\mathbb{Z}/2\mathbb{Z})^2\)) embeds into the \(M \)-group of \(G \).

The \(A_2 \)-reduction described above deletes most of the cases in our list. We remain with the orthogonal cases \(\text{so}(p, q) \) for \(0, 2 \neq p, q \) and \(p \neq q \). A simple matrix computation, which we leave to the reader, finishes the proof. \(\square \)

Proof. (of Theorem 4.1) Suppose that \(G \) is not of Hermitian type. Let \(X \subset D \subset \Xi \) be a \(G \)-invariant domain with proper \(G \)-action which is not contained in \(\Xi \). We shall show that \(D \) does not exist.

According to Proposition 3.1 we find a regular \(Y \in \partial \Omega \) and a non-zero nilpotent \(e \in \mathfrak{g}_C[Y] \cap i\mathfrak{g} \) such that

\[
\exp(e) \exp(iY) \cdot x_0 \in \partial_{u, \text{reg}} \Xi \cap D.
\]

Let \(\alpha \in \Sigma \) be the root corresponding to \(Y \). Write \(Y = Y^\alpha + Y' \) with \(Y^\alpha, Y' \in \mathfrak{a} \) such that \(\alpha(Y') = 0 \). It is known that \(Y^\alpha \in \partial \Omega \) and \(Y' \in \Omega \). Hence we may use \(\mathfrak{sl}(2) \)-reduction which in conjunction with Lemma 4.3 implies the existence of \(E^\alpha \in \mathfrak{g}^\alpha \) such that:

- \(\{E^\alpha, \theta(E^\alpha), [E^\alpha, \theta(E^\alpha)]\} \) is an \(\mathfrak{sl}(2) \)-triple,
- \(\exp(iE^\alpha) \exp(iY') \cdot x_0 \in \partial_{u, \text{reg}} \Xi \cap D \),

Now, as \(G \) is not of Hermitian type, Lemma [\?] implies that there exists an element \(m \in M \) such that \(\text{Ad}(m)E^\alpha = -E^\alpha \). Hence

\[
\exp(-iE^\alpha) \exp(iY') \cdot x_0 \in \partial_{u, \text{reg}} \Xi
\]

as well. But this contradicts Lemma 4.2(i). \(\square \)

4.2. Hermitian groups

Let now \(G \) be of Hermitian type and \(G \subseteq P^- K^- P^+ \) be a Harish-Chandra decomposition of \(G \) in \(G_C \). We define flag varieties

\[
F^+ = G_C/K^- P^+ \quad \text{and} \quad F^- = G_C/K^- P^-
\]

and inside of them we declare the flag domains

\[
D^+ = G K^- P^+ / K^- P^+ \quad \text{and} \quad D^- = G K^- P^- / K^- P^- .
\]
Then
\[(4.1) \quad X^C \hookrightarrow F^+ \times F^-, \quad gK_C \mapsto (gK_CP^+, gK_CP^-)\]
identifies \(X^C\) as a Zariski open affine piece of \(F^+ \times F^-\). In more detail: As \(G\) is of Hermitian type, there exist \(w_0 \in N_{G_C}(K_C)\) such that \(w_0P^\pm w_0^{-1} = P^\mp\). In turn, this element induces a \(G_C\)-equivariant biholomorphic map:
\[\phi : F^+ \to F^-, \quad gK_CP^+ \mapsto gw_0K_CP^- .\]
With that the embedding (4.1) gives the following identification of \(X^C\):
\[(4.2) \quad X^C = \{(z, w) \in F^+ \times F^- | \phi(z) \, \mathbf{T} w\},\]
where \(\mathbf{T}\) stands for the transversality notion in the flag variety \(F^-\). We recall what it means to be transversal. First note that the notion is \(G_C\)-invariant, i.e. for \(z, w \in F^-\) and \(g \in G_C\) one has \(z \, \mathbf{T} w\) if and only if \(gz \, \mathbf{T} gw\). Now for the base point \(z^- = K_CP^- \in F^-\) one has \(z^- \, \mathbf{T} w\) if and only if \(w \in P^- w_0z^-\).

We keep the realization of \(X^C\) in \(F^+ \times F^-\) (cf. (4.1) in mind and recall the description of \(\Xi\):
\[\Xi = D^+ \times D^-\]
(see [7]).

For subsets \(X^\pm \subset F^\pm\) we write \(X^+ \times_\mathbf{T} X^-\) for those elements \((x^+, x^-) \in X^+ \times X^-\) which are transversal, i.e. \(\phi(x^+) \, \mathbf{T} x^-\). With this terminology in mind we finally define
\[\Xi^+ = D^+ \times_\mathbf{T} F^- , \quad \Xi^- = F^+ \times_\mathbf{T} D^- .\]

4.2.1. Basic structure theory of \(\Xi^+\) and \(\Xi^-\). It is obvious that both \(\Xi^+\) and \(\Xi^-\) are open and \(G\)-invariant. However, as was pointed out by the referee, it is a priori not clear that they are connected. In order to see this let \(p_+ : \Xi^+ \to D^+\) be the projection onto the first factor. Likewise we define \(p_- : \Xi^- \to D^-\).

Proposition 4.5. Let \(\epsilon \in \{-, +\}\). The map \(p_\epsilon : \Xi^\epsilon \to D^\epsilon\) induces the structure of a holomorphic fiber bundle with fiber isomorphic to \(P^\epsilon\).

Proof. We confine ourselves with the case \(\epsilon = +\).

As \(p_+\) is \(G\)-equivariant and \(D^+\) is \(G\)-homogeneous, it is sufficient to determine the fiber \(p_+^{-1}(z^+)\). Recall that \(z^+ = K_CP^+ \in F^+\) is the base point. Now
\[p_+^{-1}(z^+) = \{(z^+, w) \in F^+ \times F^- | \phi(z^+) \, \mathbf{T} w\} .\]
Observe that $\phi(z^+) = w_0z^-$ and that $w_0z^- \tau w$ is equivalent to $z^- \tau w_0^{-1}w$. By the definition of transversality this means that $w_0^{-1}w \in P^-w_0z^-$ or $w \in w_0P^-w_0z^-$. It is no loss of generality to assume that $w_0 = w_0^{-1}$. So we arrive at $w \in P^+z^-$ and this concludes the proof of the proposition.

\textbf{Corollary 4.6.} Both Ξ^+ and Ξ^- are contractible.

It was observed by the referee that Proposition 4.5 allows the following interesting reformulation.

\textbf{Corollary 4.7.} The map $G \times_K P^+ \to \Xi^+$, $[g,p] \mapsto (gz^+, gpz^-)$ is a G-equivariant diffeomorphism. In particular Ξ^+ is G-biholomorphic to $T^{0,1}D^+$, the antiholomorphic tangent bundle of D^+. Likewise, Ξ^- is G-biholomorphic to $T^{0,1}D^-$.

Corollary 4.7 combined with the Harish-Chandra decomposition implies that $\Xi^\epsilon \simeq D^\epsilon \times P^\epsilon$ as complex manifolds. In particular Ξ^ϵ is Stein.

The fact that K_C normalizes P^ϵ allows us to speak of $G \times P^\epsilon$-invariant domains in X_C. It follows from [1.1] and Corollary 4.7 that Ξ^ϵ is $G \times P^\epsilon$-invariant.

\textbf{Proposition 4.8.} Let $\epsilon \in \{-, +\}$. The real group G acts properly on Ξ^ϵ. Moreover Ξ^ϵ is a maximal $G \times P^\epsilon$-invariant domain in X_C for proper G-action.

\textbf{Proof.} As the G-action is proper on D^ϵ, it follows that G acts properly on Ξ^ϵ. In the sequel we deal with $\epsilon = +$ only. It remains to show that Ξ^+ is a maximal $G \times P^+$-invariant domain in X_C for proper G-action.

We argue by contradiction and suppose that $D \supset \Xi^+$ is a $G \times P^+$-domain in X_C with proper G-action. Then $D = (D_0 \times F^-) \cap X_C$ with $D_0 \supset D^+$ a G-domain with proper action. Now recall the following facts:

- There are only finitely many G-orbits in F^+.
- There are precisely two orbits with proper G-action: D^+ and $\phi^{-1}(D^-)$.

The assertion follows.

\textbf{Remark 4.9.} Suppose that G is of Hermitian type. Then it can be shown that if $X \subseteq D \subseteq X_C$ is a G-invariant domain with proper G-action, then $D \subseteq \Xi^+$ or $D \subseteq \Xi^-$.

As we will not need this fact, we refrain from a proof.
If \(D \subseteq X_C \) is a subset, then we write \(DK_C \) for its preimage in \(G_C \) under the canonical projection \(G_C \to X_C \).

Proposition 4.10. The following assertions hold:

(i) \(\Xi^+ K_C = GK_C P^+ \),

(ii) \(\Xi^- K_C = GK_C P^- \).

Proof. It suffices to prove (i). Recall the embedding (4.1), and the definition of transversality condition. We deduce that \(P^+ \subset \Xi^+ K_C \). As \(\Xi^+ K_C \) is \(G \times K_C \)-invariant, it follows that \(GP^+ K_C = GK_C P^+ \subset \Xi^+ K_C \).

Conversely, Corollary [4.7] implies that \(GP^+ \) maps onto \(\Xi^+ \) and thus \(\Xi^+ \subset GP^+ K_C \). \(\square\)

We conclude this subsection with some easy facts on the structure of \(\Xi^+ \) and \(\Xi^- \) which will be used later on.

4.2.2. Unipotent model for \(\Xi^+ \) and \(\Xi^- \)

We begin with the unipotent parameterization of \(\Xi^+ \) and \(\Xi^- \). Some terminology is needed.

According to C. Moore, \(\Sigma \) is of type \(C_n \) or \(BC_n \). Hence we find a subset \(\{ \gamma_1, \ldots, \gamma_n \} \) of long strongly orthogonal restricted roots. We fix \(E_j \in \mathfrak{g}^{\gamma_j} \) such that \(\{ E_j, \theta(E_j), [E_j, \theta E_j] \} \) becomes an \(\mathfrak{sl}(2) \)-triple. Set \(T_j := 1/2[E_j, \theta E_j] \) and note that

\[
\Omega = \bigoplus_{j=1}^n (-\pi/2, \pi/2) T_j.
\]

We set \(V = \bigoplus_{j=1}^n \mathbb{R} \cdot E_j \) and take a cube inside \(V \) by

\[
\Lambda = \bigoplus_{j=1}^n (-1, 1) E_j.
\]

In [5], Sect. 8, we have shown that

\[
\Xi = G \exp(i\Lambda) \cdot x_0.
\]

In this parametrization of \(\Xi \) the unipotent boundary piece has a simple description:

\[
(4.3) \quad \partial_u \Xi = G \exp(i\partial\Lambda) \cdot x_0.
\]

The strategy now is to enlarge \(\Xi \) by enlarging \(\Lambda \) while maintaining that the object stays a domain on which \(G \) acts properly. But now we have to be a little bit careful with our choice of \(E_j \). Replacing \(E_j \) by \(-E_j \) has no effect for the matters cited above, but for the sequel.
Our choice is such that $\gamma_1, \ldots, \gamma_n$ are positive roots (this determines the non-compact roots in Σ^+ uniquely). We set

$$\Lambda^+ = \bigoplus_{j=1}^n (-1, \infty) E_j \quad \text{and} \quad \Lambda^- = \bigoplus_{j=1}^n (-\infty, 1) E_j.$$

Then, a direct generalization of Lemma 4.2(iii),(iv) yields:

Proposition 4.11. The following assertions hold:

(i) $\Xi^+ = G \exp(i\Lambda^+) \cdot x_0$,

(ii) $\Xi^- = G \exp(i\Lambda^-) \cdot x_0$.

Remark 4.12. If we define subcones of the nilcone $N \subseteq \mathfrak{g}$ by

$$N^+ = \text{Ad}(K) \left[\bigoplus_{j=1}^n [0, \infty) E_j \right] \quad \text{and} \quad N^- = -N^+,$$

then one can show that the maps

$$G \times_K N^\pm \to \Xi^\pm, \quad [g, Y] \mapsto g \exp(iY) \cdot x_0$$

are homeomorphic.

5. **Representation theory**

Let (π, \mathcal{H}) be a unitary representation of G and \mathcal{H}_K the underlying Harish-Chandra module of K-finite vectors. Notice that \mathcal{H}_K is naturally a module for K_C.

We say that (π, \mathcal{H}) is a highest, resp. lowest, weight representation if G is of Hermitian type and $\mathfrak{p}^+ = \text{Lie}(P^+)$, resp. \mathfrak{p}^-, acts on \mathcal{H}_K in a finite manner.

We turn to the main result of this paper.

Theorem 5.1. Let (π, \mathcal{H}) be a unitary irreducible representation of G. Let $v \in \mathcal{H}$ be a non-zero K-finite vector and

$$f_v : G \to \mathcal{H}, \quad g \mapsto \pi(g)v$$

the corresponding orbit map. Then there exists a unique maximal $G \times K_C$-invariant domain $D_\pi \subseteq G_C$, independent of v, to which f_v extends holomorphically. Explicitly:

(i) $D_\pi = G_C$ if π is the trivial representation.

(ii) $D_\pi = \Xi^+ K_C$ if G is Hermitian and π is a non-trivial highest weight representation.

(iii) $D_\pi = \Xi^- K_C$ if G is Hermitian and π is a non-trivial lowest weight representation.
(iv) $D_x = \Xi K_C$ in all other cases.

Proof. If π is trivial, then the assertion is clear. So let us assume that π is non-trivial in the sequel. Fix a nonzero K-finite vector v and consider the orbit map $f_v : G \to H$. We recall the following two facts:

- f_v extends to a holomorphic G-equivariant map $f_v : \Xi K_C \to H$ (see [7], Th. 1.1).
- If $D_v \subseteq G C$ is a $G \times K_C$-invariant domain to which f_v extends holomorphically, then G acts properly on D_v/K_C (see [5], Th. 4.3).

We begin with the case where G is not of Hermitian type. Here the assertion follows from the bulleted items above in conjunction with Theorem 4.1. So we may assume for the remainder that G is of Hermitian type. If π is a highest weight representation, then it is clear that f_v extends to a holomorphic map $G K_C P^+ \to H$. Thus, in this case $\Xi^+ K_C = G K_C P^+$ (cf. Proposition 4.10) is a maximal domain of definition for f_v by Proposition 4.8 and the second bulleted item from above. Likewise, if (π, H) is a lowest weight representation, then $\Xi^- K_C$ is a maximal domain of definition of f_v. As both Ξ^+ and Ξ^- are simply connected with sufficiently regular boundary, it follows that these maximal domains are in fact unique.

It remains to show:

- If f_v extends holomorphically on a domain $D \supset \Xi$ such that $D \cap [\Xi^+ \setminus \Xi] \neq \emptyset$, then (π, H) is a highest weight representation.
- If f_v extends holomorphically on a domain $D \supset \Xi$ such that $D \cap [\Xi^- \setminus \Xi] \neq \emptyset$, then (π, H) is a lowest weight representation.

It is sufficient to deal with the first case. So suppose that f_v extends to a bigger domain D such that $D \cap [\Xi^+ \setminus \Xi] \neq \emptyset$. Taking derivatives and applying the fact that $d\pi(U(g_C))v = H_K$, we see that f_u extends to D for all $u \in H_K$. By Proposition 3.1 (4.3) and our assumption we find $1 \leq j \leq n$ be such that $\exp(iE_j) \exp(iY) \cdot x_0 \in D$ for some $Y \in \Omega$ with $\gamma_j(Y) = 0$. Let $G_j < G$ be the analytic subgroup corresponding to the $\mathfrak{sl}(2)$-triple $\{E_j, \theta(E_j), [E_j, \theta(E_j)]\}$. Basic representation theory of type I-groups in conjunction with [5], Th. 4.7, yields that $\pi |_{G_j}$ breaks into a direct sum of highest weight representations. Applying $N_K(a)$ (which in particular permutes the G_k and preserves H_K) we see that above matters hold for any other G_k as well (note that Y might change but this does not matter as Ω is $N_K(a)$-invariant). It follows that π is a highest weight representation and completes the proof of the theorem. □
Remark 5.2. The domains Ξ, Ξ^+ and Ξ^- are independent of the choice of the connected group G. Accordingly, the above theorem holds for all simple connected non-compact Lie groups G, i.e. we can drop the assumption that $G \subseteq G_C$ and G_C simply connected.

Problem 5.3. The above theorem should hold true for all irreducible admissible Banach representations of G under the reservation that (i) gets modified to : $D_\pi = G_C$ if π is finite dimensional.

References

[1] D.N. Akhiezer and S.G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1-12.
[2] G. Fels and A. Huckleberry, Characterization of cycle domains via Kobayashi hyperbolicity, Bull. Soc. Math. France 133 (2005), no. 1, 121–144.
[3] A. W. Knapp, Lie Groups Beyond an Introduction, 2nd edition, Progress in Math. 140, Birkhäuser.
[4] B. Kostant, A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem, Noncommutative harmonic analysis, 291–353, Progr. Math. 220, Birkhäuser
[5] B. Krötz and E.M. Opdam, Analysis on the crown domain, math.RT/0606213, to appear in GAFA
[6] B. Krötz and R. Stanton, Holomorphic extensions of representations: (I) automorphic functions, Ann. Math. 159 (2004), 641–724.
[7] —, Holomorphic extensions of representations: (II) geometry and harmonic analysis, GAFA 15 (2005), 190–245.