Searching for Earth-mass planets around \(\alpha \) Centauri: precise radial velocities from contaminated spectra

Christoph Bergmann\(^1\), Michael Endl\(^2\), John B. Hearnshaw\(^1\), Robert A. Wittenmyer\(^3\) and Duncan J. Wright\(^3\)

\(^1\)Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
e-mail: christoph.bergmann@pg.canterbury.ac.nz
\(^2\)McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA
\(^3\)Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney 2052, Australia

Abstract: This work is part of an ongoing project which aims to detect terrestrial planets in our neighbouring star system \(\alpha \) Centauri using the Doppler method. Owing to the small angular separation between the two components of the \(\alpha \) Cen AB binary system, the observations will to some extent be contaminated with light coming from the other star. We are accurately determining the amount of contamination for every observation by measuring the relative strengths of the H-\(\alpha \) and NaD lines. Furthermore, we have developed a modified version of a well-established Doppler code that is modelling the observations using two stellar templates simultaneously. With this method we can significantly reduce the scatter of the radial velocity (RV) measurements due to spectral cross-contamination and hence increase our chances of detecting the tiny signature caused by potential Earth-mass planets. After correcting for the contamination we achieve RV precision of \(\sim 2.5 \text{ m s}^{-1} \) for a given night of observations. We have also applied this new Doppler code to four southern double-lined spectroscopic binary systems (HR159, HR913, HR7578 and HD181958) and have successfully recovered radial velocities for both components simultaneously.

Key words: \(\alpha \) Centauri, data analysis, HR7578, radial velocities, spectroscopic binaries, planetary systems.

Received 4 July 2014, accepted 23 July 2014, first published online 19 August 2014

Introduction

Since the discovery of the first extrasolar planet around a main sequence star (Mayor & Queloz 1995) about two decades ago, almost 2000 extrasolar planets have been discovered, owing in part to the vast success of NASA’s Kepler mission (Borucki et al. 2010). The long-desired goal of finding an Earth-mass planet in the habitable zone (HZ) of a Sun-like star, which is often referred to as the ‘holy grail’ of planet hunting, is now within reach, as the recent discovery of Kepler-186f proves (Quintana et al. 2014). Even more intriguing, if such a planet is found orbiting a nearby Sun-like star, the potential for extensive follow-up observations will be enormous.

Dumusque et al. (2012) announced the discovery of an Earth-mass planet in a 3.24 d orbit around \(\alpha \) Cen B using 459 precise RV measurements taken with the HARPS spectrograph (Mayor et al. 2003). Although this would place the planet far from the star’s HZ (Kaltenegger & Haghighipour 2013), it remains an intriguing claim, as it shows that the tiny RV signals from Earth-mass planets may be detectable even if they are buried in the RV noise. However, Hatzes (2013) reanalysed the HARPS data and his findings did not confirm the existence of the planet. It is, therefore, important that the reality of the purported planet be double-checked with an independent dataset.

We have undertaken an observationally intensive campaign to detect Earth-mass planets in our neighbouring star system, \(\alpha \) Centauri, including those which may lie within the respective HZ of either star. Over the last 5 years we have taken about 26 500 spectra of \(\alpha \) Cen A and about 20 000 spectra of \(\alpha \) Cen B with the HERCULES spectrograph (Hearnshaw et al. 2002) attached to the 1 m McLellan telescope at Mt John University Observatory (MJUO), New Zealand, to measure radial velocities of both stars. We have also obtained between 100 and 200 spectra of each of four moderately bright double-lined spectroscopic binaries (SB2s). Our observational campaign was described in much more detail by Hearnshaw et al. (2013), Wittenmyer et al. (2014) and Endl et al. (2014).

Here we present our approach to overcoming the problem of spectral cross-contamination in the spectra of the \(\alpha \) Cen AB binary system. When we started observing in 2009 the angular separation between the two components was about 8", but unfortunately it is steadily decreasing (only \(\sim 4.5" \) at present, decreasing to a local minimum of \(\sim 4" \) in December 2015). The typical seeing conditions at MJUO are \(\sim 2.5" \) and the optical fibre connecting the telescope to the spectrograph subtends an angle of \(\sim 4.5" \) on the sky. Therefore, when taking a spectrum of either \(\alpha \) Cen A or B, some light from the other star will enter the fibre as well, especially for observations taken in poorer seeing conditions. In order to alleviate that problem we are using a 3" diameter pinhole, but that does not solve...
Linear correlation between line index ratio and the correlation between the amount of contamination and the effective shift in the measured RV if the contamination is not accounted for (diamonds). When accounting for the contamination (dots), the RV is independent of the amount of contamination. All data points were produced using synthetic observations of α Cen B with varying amounts of contamination from α Cen A, with ΔRV = 2 km s\(^{-1}\). Right panel: Linear correlation between line index ratio \(R\) and spurious shift in the uncorrected RVs for observations of α Cen B from an observing run in March/April 2012 (right panel). Greater values of \(R\) mean more contamination from α Cen A.

The basic idea is to treat α Centauri as a double-lined spectroscopic binary system with a very large and variable flux ratio. We developed a routine that uses the line index ratio (a measure of relative line strengths) of the H-α and NaD lines to quantify the amount of contamination, that is, to determine the flux ratio of a given observation. The amount of contamination mainly depends on the seeing conditions and on imperfect telescope guiding. From that we can in principle derive the corresponding uncontaminated velocities given that the correlation between the line index ratio and the corresponding RV shift is known.

However, more reliable results can be obtained using the flux ratio as well as the difference in RV due to the binary orbit (Pourbaix et al. 2002) as input parameters to a modified version of a well-established Doppler code described above. Figure 2 shows both the corrected (contaminated) velocities for 1307 observations of α Cen B from an observing run in March/April 2012 (right panel). The true uncontaminated velocities were obtained using the known binary orbit and also the differences in convective blueshift and gravitational redshift between the two stars (from Pourbaix et al. 2002).

Methods

The true uncontaminated velocities were obtained using the modified Doppler code described above. Figure 2 shows both the uncorrected (contaminated) velocities and the corrected (uncontaminated) velocities for 1307 observations of α Cen B taken during an observing run in March/April 2012. The root mean square (RMS) for one night is typically 2.5 m s\(^{-1}\) after correcting for the contamination, while it is typically 20 m s\(^{-1}\) during the contamination period. This contamination results in a net velocity shift as the two stars have a RV difference due to their binary orbit (currently about 2.8 km s\(^{-1}\), increasing by \(\sim 1.2\) m s\(^{-1}\) d\(^{-1}\)). In order to detect the tiny Doppler wobble of the stars due to a potential terrestrial planet (\(\sim 1\) m s\(^{-1}\)), it is imperative that the true uncontaminated velocities can be obtained.

\[
g(\lambda) = \kappa \left[f_1(\lambda + \Delta \lambda_1) + \epsilon f_2(\lambda + \Delta \lambda_2) f_{\text{i}}(\lambda) \right] \otimes \phi, \tag{1}
\]

where \(\kappa\) is a normalization factor, \(f_1\) and \(f_2\) are the stellar templates, \(\Delta \lambda_1\) and \(\Delta \lambda_2\) are their respective Doppler shifts, \(f_{\text{i}}\) is the iodine template, \(\epsilon \ll 1\) is the amount of contamination, \(\phi\) is the instrumental profile and \(\otimes\) denotes a convolution.
The question whether or not we would be able to detect the proposed planet around α Cen B in our dataset has been addressed in a recent study by Endl et al. (2014). After injecting a simulated planetary signal and pre-whitening the dataset by removing the binary orbit and the intrinsic stellar signals due to the long-term magnetic cycle and stellar rotational activity (similar to Dumusque et al. 2012; Hatzes 2013), it was found that the simulated planetary signal emerges from the noise in the periodogram even if the white noise is as large as 8 m s\(^{-1}\). The same study found that a super-Earth inside the HZ around α Cen B, which ranges from about 226 to 523 days in orbital period (the narrow HZ as defined in Kaltenegger & Haghhighipour 2013), with a minimum mass of 3.2 M\(_{⊕}\) and a period of 234 days should be detectable if the white noise does not exceed 3 m s\(^{-1}\). We are therefore confident that the

Summary and discussion

We have used the line index ratio of the H-α and NaD lines to determine the amount of contamination in the spectra of α Cen A and B. Using the flux ratio from the line index ratio analysis and the binary orbit as an input to a modified Doppler code we can determine the true RV of the main target for observations of α Cen A or B.
signal of the proposed 3.24 d planet should be detectable with our data if it exists, and we might also be able to detect a potential super-Earth in the habitable zone. Besides, recent studies have shown that planetary signals can be detected even if the signal is smaller than the overall RMS of the velocities (e.g. Dumusque et al. 2012; Tuomi et al. 2013; Jenkins & Tuomi 2014).

In addition, we have successfully applied the new Doppler code to four double-lined spectroscopic binaries and have obtained velocities for both components simultaneously. The RV precision predictably depends on spectral type, but at present the precision of this method is mostly limited by the choice of the template stars. Using synthetic templates or more appropriate single stars as templates would almost certainly improve the RV precision still further. We have been able to improve the orbital parameters for these systems, in some cases substantially. Perhaps more importantly, the level of precision that can be obtained with this method will eventually allow us to search for planets in SB2 systems, which are usually excluded from RV planet search programmes, thus opening up new grounds for planet hunting.

To our knowledge the only other survey aimed at detecting planets in SB2 systems (Ratajczak et al. 2012) has not produced any discoveries. The potential discovery of a Jupiter-mass planet in a close triple system by Konacki (2005) could not be confirmed by Eggenberger et al. (2007). Eventually, this method could even be used to search for circumbinary planets as also proposed by Konacki et al. (2009).

Acknowledgements

The work of CB has been supported by the University of Canterbury Doctoral Scholarship as well as by Marsden grant UOC1007, administered by the Royal Society of New Zealand. The Mt John programme is also funded by Marsden grant UOC1007, administered by the Royal Society of New Zealand. This project is furthermore supported in part by the Australian Research Council Discovery Grant DP110101007. The authors acknowledge McDonald Observatory, University of Texas at Austin, for allowing the use of their Sandiford iodine cell at MJUO. We would also like to thank the referee N. Haghighipour for his insightful comments, which helped improving this manuscript.

REFERENCES

Borucki, W.J. et al. (2010). Science 327, 977.
Dumusque, X. et al. (2012). Nature 491, 207.
Eggenberger, A., Udry, S., Mazeh, T., Segal, Y. & Mayor, M. (2007). Astron. Astrophys. 466, 1179.
Endl, M., Kürster, M. & Els, S. (2000). Astron. Astrophys. 362, 585.
Endl, M., Bergmann, C., Hearnshaw, J., Barnes, S.I., Wittenmyer, R.A., Ramm, D., Kilmartin, P., Gunn, F. & Brogt, E. (2014). Int. J. Astrobiol, doi: http://dx.doi.org/10.1017/S1473550414000081.
Fekel, F.C. Jr. & Beavers, W.I. (1983). Astrophys. J. 267, 682.
Hatzes, A.P. (2013). Astrophys. J. 770, 133.
Hearnshaw, J.B., Barnes, S.I., Kershaw, G.M., Frost, N., Graham, G., Ritchie, R. & Nankivell, G.R. (2002). Exp. Astron. 13, 59.
Hearnshaw, J., Barnes, S., Endl, M. & Wittenmyer, R. (2013). Planets in the Solar System and beyond. In Proc. of the 11th Asian-Pacific Regional IAU Meeting, National Astronomical Research Institute of Thailand, Thailand.
Jenkins, J.S. & Tuomi, M. (2014). arXiv:1406.3093.
Kaltenegger, L., & Haghighipour, N. (2013). Astrophys. J. 777, 165.
Konacki, M. (2005). Nature 436, 230.
Konacki, M., Muterspaugh, M.W., Kulkarni, S.R. & Helminiak, K.G. (2009). Astrophys. J. 704, 513.
Mayor, M. & Queloz, D. (1995). Nature 378, 355.
Mayor, M. et al. (2003). The Messenger 114, 20.
Pourbaix, D. et al. (2002). Astron. Astrophys. 386, 280.
Quintana, E.V. et al. (2014). Science 344, 277.
Ratajczak, M., Konacki, M., Kulkarni, S.R. & Muterspaugh, M.W. (2012). From interacting binaries to exoplanets: essential modeling tools. In Proc. of the IAU Symp. 282, Cambridge University Press, UK.
Tuomi, M. et al. (2015). Astron. Astrophys. 551, A79.
Wang, S.X. et al. (2012). Astrophys. J. 761, 46.
Wittenmyer, R.A., Endl, M., Bergmann, C., Hearnshaw, J., Barnes, S.I. & Wright, D. (2014). Formation, detection, and characterization of extrasolar habitable planets. In Proc. of the IAU Symp. 293, Cambridge University Press, UK.
Wright, J.T. & Howard, A.W. (2009). Astrophys. J. Suppl. 182, 205.
Wright, J.T. & Howard, A.W. (2013). Astrophys. J. Suppl. 205, 22.