Quantitative ubiquitylomics reveals the ubiquitination regulation landscape in oral adenoid cystic carcinoma

Wen Li1,2,3, Xiaobin Wang1,2,3, Qian Zhang1,2,3, Hanlin Wang3, Wenxin Zuo4, Hongliang Xie4, Jianming Tang4, Mengmeng Wang4, Zhipeng Zeng4, Wanxia Cai4, Donge Tang4*, Yong Dai4*

1 Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen Guangdong 518000, China
2 Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
3 Health Science Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
4 Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China

*To Whom correspondence should be addressed:
Donge Tang, Tel: +86-0755-22942106; Email: donge66@126.com.
Yong Dai, Tel: +86-0755-22942780; Email: daivong22@aliyun.com.
Postal address: 1017 Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong Province, China
Abstract

Adenoid cystic carcinoma (ACC) is an extremely rare salivary gland tumor with a poor prognosis and needs attention on molecular mechanisms. Protein ubiquitination is an evolutionarily conserved post-translational modification (PTM) for substrates degradation and control diverse cellular functions. The broad cellular function of ubiquitination network holds great promise to detect potential targets and identify respective receptors. Novel technologies are discovered for in-depth research and characterization the precise and dynamic regulation of ubiquitylomics in multiple cellular processes during cancer initiation, progression and treatment. In this study, 4D label free quantitative techniques of ubiquitination proteomics were used and we identified a total of 4152 ubiquitination sites in 1993 proteins. We also performed a systematic bioinformatics analysis for differential modified proteins and peptides containing quantitative information through the comparison between OACC tumor with adjacent normal tissues, as well as the identification of 8 protein clusters with motif analysis. Our findings offered an important reference of potential biomarkers and effective therapeutic targets for ACC.

Keywords

Adenoid Cystic Carcinoma, PTM, Protein Ubiquitination, Proteomic, Biomarker, Therapeutic Target
Introduction

Adenoid cystic carcinoma (ACC) is discovered a long time ago with location in the major and minor salivary glands [1,2] and other organs [3], which can be divided into tubular form (Grade I), cribriform (Grade II) and solid form (Grade III) [4]. Clinical staging had more significant importance than histological grade on prognosis [5]. The ten-year survival rates are about 73% (Stage I), 43% (Stage II) and 15% (Stage III and IV) [4]. Studies on oral ACC (OACC) are even more uncommon and insufficient. Surgery and postoperative radiotherapy are the standard treatment of ACC for a long time [6] with poor prognosis (up to 40% of recurrent rate and 60% of metastatic rate) [7]. Several factors had been studied to associate with the clinicopathological parameters and prognosis of ACC, including p53 [8], SOX2 [9], mutated ATM [10], MACC1 [11], WHSC1 [12], EpCAM [13], PSMA [14], TRAF6 [15], HSP27 [16], PRRX1 [17], hypoxia-related genes [18], the EGFR pathway genes [19], MYB–NFIB fusion genes [20-23], as well as NOTCH1-HEY1 pathway [24] and Akt signaling pathway [25,26]. Considering the aggressive behavior, it is urgent to figure out more efficient clinical pathological and biomolecular prognostic factors for therapeutic choices.

Protein post-translational modifications (PTMs) exist in both eukaryotes and prokaryotes at one or more sites [27]. More than 200 types of PTMs are identified in humans [28]. Ubiquitination is the covalently conjugation in proteins by conserved small protein ubiquitin and ubiquitin-like (Ubl) proteins either as a monomer or as a polyubiquitin chain. [29] Ubiquitin-activating protein E1, ubiquitin-conjugating protein E2 and ubiquitin-ligase E3 are involved to form a transient reaction, which can be reversed by deubiquitylating enzymes (DUBs) [30-32]. The modified substrates are degraded after binding to a multi-subunit protease complex [29]. The dynamic changes of ubiquitination form an enzymatic and complete ordered system to control subcellular processes [33], which affects pathophysiological states in cancer under various conditions [34,35]. Both oncogenes and tumor-suppressor genes undergo ubiquitination [36]. Several studies mentioned the potential of ubiquitination
related proteins as OACC biomarkers. From Nanostring nCounter miRNA assay, ubiquitin-like modifier activating enzyme 2 (UBA2) was identified increased in primary and recurrent tumors than normal tissue, revealing the potential connection between UBA2 and tumor recurrence and metastasis [37]. The expression of Ubiquitin-specific protease 22 (USP22) in salivary adenoid cystic carcinoma (SACC) was higher in the tumor group than in the adjacent normal group, which was associated with a poor prognosis [38]. The low expression of the tumor suppressor gene cylindromatosis (CYLD), which has deubiquitinating enzyme activity, corrected with salivary gland tumor progression through NF-κB pathway [39]. Notwithstanding, there is lack of relevant research on the molecular mechanisms and related pathogenesis of ubiquitination network in OACC.

A global and comprehensive information about ubiquitin system is difficult due to the challenge for high-throughput analysis [40]. Another obstacle is that these revisable modifications can be easily lost or not easily detected during the experiment. The mass spectrometry (MS) based proteomic approaches have been widely used in qualitative and quantitative analysis of cellular biology [41]. The organic combination of non-standard quantitative and MS based proteomic technology can effectively identify ubiquitination substrates and modification network in OACC.

In our project, 4D label free quantitative ubiquitination proteomics was carried out. A total of 4152 ubiquitination sites were identified on 1993 proteins, in which 1648 loci of 859 proteins contained quantitative information. We also conducted a systematic bioinformatics analysis, including protein annotation, functional classification, functional enrichment and cluster analysis based on functional enrichment proteins. The proteomic methodologies in our work illustrating ubiquitination landscape in OACC can be applied to the search and identification of novel molecular biomarkers, provide valuable information for diagnosis and help discovering novel therapeutic anti-cancer strategies.

Materials and Methods

Sample preparation
Four pairs of OACC tumor and adjacent normal tissues were collected from Shenzhen People’s Hospital. This study was carried out following the Declaration of Helsinki and approved by the Medical Ethics Committee of Shenzhen People’s Hospital (No. LL-KY-2019173). Participants were informed about the introduction of this study, signed an informed consent, and agreed to take tissue samples after surgical resection for scientific research. Parts of the clinical information of patients are listed in Table I.

Protein extraction

Appropriate number of samples were added with liquid nitrogen to grind to powder and added with 4 times of powder lysis buffer (1% Triton X-100, 1% protease inhibitor, 50 μm PR-619, 3 μm TSA, 50 mm NAM) for ultrasonic pyrolysis. After centrifugation in 12000 g for 10 min, the supernatant was transferred to a new centrifuge tube. The protein concentration was determined by BCA kit.

Trypsin digestion

TCA was slowly added in each sample, followed by precipitating at 4 °C. The supernatant was discarded after centrifugation in 4500 g for 5 min. The precipitate was washed with pre-cooled acetone, dried in the air and dissolved by 200 mm TEAB buffer. Trypsin was added and the reaction was maintained overnight. After the incubation by dithiothreitol at 56 °C for 30 min, iodoacetamide (IAA) was added. The samples were then incubated at room temperature for 15 min in dark.

Mass spectrometry

The digested peptides were dissolved by liquid chromatography mobile phase A (containing 0.1% formic acid and 2% acetonitrile) and separated by NanoElute ultra performance liquid chromatography system. The flow rate was 450.00nl/min, and the gradient of mobile phase B (containing 0.1% formic acid and 100% acetonitrile) was set as follows: 6%-22%: 0-43 min; 22%-30%: 43-56 min; 30%-80%: 56-58 min; 80%: 58-60 min. The peptides were separated by Ultra Performance Liquid Chromatography (UPLC) and injected into Capillary Ion Source for ionization to be analyzed by Tims-TOF Pro mass spectrometry. The voltage of ion source was 2.0 kV,
and the peptide parent ion and its secondary fragments were detected and analyzed by high resolution TOF. The scanning range of secondary MS is set to 100-1700. The data acquisition mode is PASEF. After the collection of a first-order mass spectrum, the second-order mass spectrum with charge number of parent ion in the range of 0-5 was collected 10 times in PASEF mode, and the dynamic exclusion time of tandem mass spectrometry scanning was set to 30s.

Database searching

Maxquant 1.6.6.0 was used to retrieve the secondary MS data. The proteins were detected in Homo sapiens 9606 (20366 sequences) with the common contamination database. The additional reverse database was added to calculate the false positive rate (FDR) caused by random matching. The FDR of protein identification and PSM identification was set to 1%. Enzyme digestion: trypsin / P. Number of missed sites: 4. Minimum length: 7. Maximum modification number: 5. Mass error tolerance of primary parent ion: 20.0 ppm in first search and 20 ppm in main search. Mass error tolerance of secondary fragment ion: 20.0 ppm. Cysteine alkylation carbamidomethyl (c) was set as fixed modification, and the variable modification was [‘acetyl (protein N-term) ’,’oxidation (m)’,‘glygly (k) ’]. The quantitative method was set to LFQ.

Results

Systematic profiling of protein ubiquitination in OACC samples

In order to globally reveal the involvement of ubiquitin in the progression and regulation of OACC, we performed 4D label free quantitative ubiquitination proteomics study through comparing OACC tumor samples (OACC_T) with the adjacent normal samples (OACC_N) in 4 patients who had not received any drug treatment before operation. The identification data were filtered as localization probability > 0.75. After MS analysis and database search, a total of 63282 secondary spectra were obtained, of which 15172 were available. The relative quantitative value was obtained according to the intensity of the modified site between different samples. According to this method, 7956 peptides and 4116 modified peptides were identified. Among 4152 ubiquitination sites in 1993 proteins, 1648 sites in 859 proteins were
quantified (Fig. 1a). OACC_T showed 555 ubiquitination sites upregulated (≥1.5 fold, P value < 0.05) in 385 proteins and 112 ubiquitination sites downregulated (≤0.67 fold, P value < 0.05) in 95 proteins compared with normal samples (Fig. 1b). The top 20 proteins and the corresponding sequence were listed in Table II.

Functional classification of differentially ubiquitinated proteins (DUPs)

In order to better study the ubiquitinated proteins in OACC, we firstly investigated the subcellular location of DUPs. Nearly half of the ubiquitinated proteins located in cytoplasm (n=196, 43.36%), followed by plasma membrane (n=73, 16.15%) and nucleus (n=65, 14.38%) (Fig. 1c). We also performed the up- and down- subcellular localization classification, respectively (Fig. S1a; Fig. S1b).

The Gene Ontology (GO) knowledgebase, or GO terms, can provide specific definition of protein functions. It contains three kinds of non-overlapping ontologies: Biological Process (BP), Cellular Component (CC) and Molecular Function (MF). A total of 2573 proteins (53%) were analyzed in the BP classification, in which most of the proteins were associated with cellular process, biological regulation and response to stimulus. Within the definition of CC category to 1632 proteins (33%), the DUPs were mainly involved in the cell, organelle and membrane. The MF category of 671 proteins (14%) showed that 318 and 158 proteins were associated with the binding and catalytic activity, respectively (Fig. 1d). The GO definition of up- and down-regulated protein were established (Fig. S1c; Fig. S1d). COG (clusters of original groups) is also defined as homologous protein cluster. We classified DUPs into COG functional groups, in which the most abundant are posttranslational modification, protein turnover and chaperones (Fig. 1e).

Functional enrichment analysis of DUPs

We conducted the functional enrichment analyses with GO annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Followed by phagocytic vesicle membrane, cytosolic ribosome and ribosomal subunit were most differed in CC category. In MF category, the most differentially ubiquitinated proteins were concentrated in insulin-like growth factor receptor
binding, structural constituent of ribosome and structural constituent of cytoskeleton. Meanwhile, cytoplasmic translation, protein localization to endoplasmic reticulum, co-translational protein targeting to membrane and protein targeting to ER were most altered in BP category (Fig. 2a; Supplementary Table SI).

According to the KEGG pathway analysis, we identified 25 pathways from up-regulated and 10 pathways from up-regulated DUPs. The most significantly up-regulated were phototransduction (map04744), glyoxylate and dicarboxylate metabolism (map00630), and phototransduction-fly (map04745). Meanwhile, aldosterone-regulated sodium reabsorption (map04960), fatty acid elongation (map00062) and terpenoid backbone biosynthesis (map00900) were the mostly down-regulated (Fig. 2b; Table SII). Protein domain is the unit of protein evolution, which has similar sequence, structure and function. We performed enrichment analysis on the domain level (Fig. 2c). Regarding the BRO1-like domain, the most significantly up-regulated domains contained ALIX V-shaped domain binding to HIV, Regulated-SNARE-like domain and XPC-binding domain. Furthermore, PLD-like domain was the most significantly down-regulated domain (Table SIII).

Cluster analysis of differential modified proteins

In order to test the rationality and accuracy of the identified Fig. 2b, we used cluster analysis to aggregate the proteins according to the trend of expression. In order to find the correlation of protein functions in different fold change, we divide DUPs into four clusters according to OACC_T/OACC_N ratio, which were called Q1 (Ratio < 0.5), Q2 (Ratio between 0.5-0.667), Q3 (Ratio between 1.5-2) and Q4 (Ratio > 2) (Fig. 3a).

In GO enrichment analysis, chromaffin granule membrane, cytosolic small ribosomal subunit, myelin sheath and polysome differed the most in each cluster by cellular component category. In molecular function category of each cluster, the most enriched were acid-ammonia (or amide) ligase activity, neurexin family protein binding, ion channel binding and ADP binding. In addition, filopodium assembly, mitochondrial RNA metabolic process, positive regulation of stress fiber assembly and sarcomere organization were the top regulated in biological process category in each cluster.
According to the p-value of Fisher's exact test obtained by enrichment analysis, hierarchical clustering method is used to gather the related functions in different groups and draw a Heatmap. Regarding KEGG analysis, terpenoid backbone biosynthesis (map00900), fatty acid elongation (map00062), glyoxylate and dicarboxylate metabolism (map00630), and phototransduction (map04744) enriched most in each cluster (Fig. 3b; Table SV). XPC-binding domain, BRO1-like domain, CD80-like C2-set immunoglobulin domain, cullin protein neddylation domain, ENTH domain and lamin tail domain were mostly enriched in Q3 cluster according to protein domain enrichment analysis (Fig. 3c; Table SVI).

Protein-protein interaction (PPI) network of differential modified proteins

PPI network is composed of proteins through their interactions. In the network diagram, nodes represent proteins, and nodes are labeled with the names of these proteins. The interaction between two proteins is connected by wires. According to the protein interaction database of STRING (v.10.5) [42], we performed PPI network by selecting the top 50 proteins based on degree. The interaction relationship of DUPs was extracted according to the confidence score > 0.7 (high confidence) (Fig. 4a; Supplementary Table SVII). According to analysis by software Cytoscape, the top 10 hub proteins were listed (Table III).

Motif analysis of protein modification

Protein motif analysis calculates the regular trend of amino acid sequences in the region of modification sites. This kind of analysis can find the sequence characteristics, so as to speculate or determine the modification related enzymes. We identified 8 conserved ubiquitination motifs analyzed by Motif-X (Fig. 4b). The enrichment of specific amino acids neighboring the ubiquitination sites were exhibit (Fig. 4c).

Discussion

ACC of the salivary glands performs the properties of slow-growing, local and/or distant spread, nodal positivity and high-mortality, as well as high rate of occurrence and metastasis [43,44]. Several specific prognostic factors had been identified the
association with ACC [45]. Meanwhile, most of the related studies are based on the statistics and correlation analysis of clinical cases, and lack of more detailed and in-depth biological mechanism research on the occurrence and progress of the disease. The ubiquitination modification plays a significant role in cancer pathology [46]. Mass spectrometry can be used to analyze the role of protein PTMs in human diseases, and PTM-based protein variants can be explored as deeply as possible.

Ribosomal protein S27a (RPS27A) is the top differentially up-regulated protein in our identification. RPS27A performs multi-function in ribosome biogenesis and protein PTMs, contributing to progression of leukemia or solid tumors [47,48]. A ubiquitin fused RPS27A protein (Uba80) was reported related to apoptotic cell death and over-expressed in colon and renal cancer [49-52]. However, the molecular mechanism of RPS27A-related ubiquitination in tumors remains to be studied. Phosphoglycerate dehydrogenase (PHGDH) is the rate limiting enzyme of de novo serine biosynthesis pathway, which is closely related to the occurrence and development of many kinds of tumors [53,54]. The serine synthesis during cancer progression was suppressed when PHGDH went through Parkin-related ubiquitination and degradation [55,56]. PHGDH is also a ubiquitination substrate of RNF5 in the study of breast cancer cells [57]. The PHGDH ubiquitination in OACC has not been reported. TMEM87A, also named as Elkin1, is important in cell-cell adhesin and metastasis with limited studies [58]. The insulin receptor (INSR) is a key regulator in metabolic homeostasis through diverse signal pathways including PI3K/AKT and MAPK [59]. Although phosphorylation is critical in INSR-dependent signal cascade, the ubiquitin/proteasome system modulate degradation of transducers in this pathway [60,61]. The biological function of these targets in OACC and their combination with metabolic abnormalities and immune regulation will drive us to further study how gene changes modulate the behavior of cancer cells, so as to unlock more effective treatment methods.

In addition, ATP1A1, TUBA1B and ITGA9 are the top down-regulated according to OACC_T/OACC_N Ratio. As a membrane bound ion pump, Na+/K+-ATPase
shows tissue-specific profile [62]. The overexpression of α1 subunit of Na⁺/K⁺-ATPase (ATP1A1) were observed in esophageal squamous cell carcinoma [63], non-small cell lung cancer and hepatocellular carcinoma, contributing to cancer proliferation and migration [64,65]. However, ATP1A1 were significantly down-regulated in prostate cancer [66,67], colorectal cancer [68]and renal cell carcinoma [69]. The function and PTM regulation of ATP1A1 in OACC is not yet fully clear. Tubulin alpha 1b (TUBA1B) belongs to cytoskeleton compartment with a central function in cell shape maintenance and cellular process regulation, especially in cell division [70]. The higher expression of TUBA1B and poor prognosis were reported in hepatocellular carcinoma [71]. Interestingly, the ubiquitination at different sites of TUBA1B shows different up- and down-regulation trends in tumor tissues (Table II). This suggests that TUBA1B ubiquitination regulation may have different biological functions. With the continuous deepening of cytoskeleton related research, the importance of microtubules in tumor metastasis has begun to become prominent. The integrin subunit α9 (ITGA9) belongs to integrin protein family and a partner of β1 subunit facilitating the interaction of cell-cell and cell-extracellular matrix [72]. Depletion of ITGA9 suppressed breast cancer progression and metastasis through GSK3/β-catenin pathway [73]. The decreased expression of ITGA9 in lung cancer indicated potential genetic and epigenetic regulation mechanism [74]. Besides TUBA1B and ITGA9, other cell cytoskeleton and cell adhesion associated proteins were also identified in our results, including ACTA2, MCAM, ACTG1, VIM and CDH11. Due to the high recurrence and metastasis of OACC, research on the modification of cytoskeleton and cell adhesion will help to further clarify the mechanism of OACC metastasis.

Considering the hub genes of interaction regulation by Cytoscape analysis, we found they all belong to ribosomal proteins. Ribosomal proteins are abnormally expressed in a variety of tumors, which affect the apoptosis, aging, growth, invasion, drug and radiation resistance [75]. The expression level of ribosomal protein has become a potential indicator of tumor diagnosis, treatment and prognosis [76].
Through the in-depth study of abnormal expression and ubiquitination modification of ribosomal proteins in tumor tissue, we can further understand the role of high expression of ribosomal protein gene in malignant tumor.

Protein ubiquitination plays a very important role in cellular processes such as subcellular localization, growth, apoptosis and metabolism. The ubiquitination modification omics based on mass spectrometry has been used for disease biomarkers and pathogenic mechanism analysis [77,78]. In this project, we studied the ubiquitin proteomics of OACC tumor and adjacent normal tissues, identified the different ubiquitin modification sites, analyzed the function of the identified ubiquitinated proteins, and obtained 8 protein clusters. Our work enriched the scope of OACC research and became a reference for the development of novel targets. These results also supported the possible functions of the ubiquitination of cell skeleton and extracellular matrix associated proteins in OACC development and metastasis. However, whether the selected differential protein can be used as a therapeutic target for OACC still needs more detailed in vivo and in vitro experiments to verify, so as to better carry out precise treatment for OACC, add further knowledge specifically for patients, and explore more promising combination therapy.

Author information

Corresponding Authors

Donge Tang - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China; Phone: +86 0755-22942106; Email: donge66@126.com

Yong Dai - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and
Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China;
Phone: +86 0755-22942780; Email: daiyong22@aliyun.com

Authors

Wen Li - Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen Guangdong 518000, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Health Science Center, School of Medicine, Shenzhen University, Shenzhen 518060, China;
Email: 446340172@qq.com

Xiaobin Wang - Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen Guangdong 518000, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Health Science Center, School of Medicine, Shenzhen University, Shenzhen 518060, China;
Email: wangxiaobin@szu.edu.cn

Qian Zhang - Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen Guangdong 518000, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Health Science Center, School of Medicine, Shenzhen University, Shenzhen 518060, China;
Email: zhangqianbisheng@163.com

Hanlin Wang - Health Science Center, School of Medicine, Shenzhen University, Shenzhen 518060, China; Email: 764858751@qq.com

Wenxin Zuo - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China; Email: 664827056@qq.com

Hongliang Xie - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China; Email: 83207882@qq.com

Jianming Tang - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China; Email: 18801558@qq.com

Mengmeng Wang - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China; Email: 1046758772@qq.com

Zhipeng Zeng - Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China; Email: 911850847@qq.com

Wanxia Cai - Clinical Medical Research Center, Guangdong Provincial Engineering
Acknowledgements

No applicable.

Funding

The present study was supported by the Science and Technology Planning Project of Shenzhen (No. JCYJ20190807145815129 and JCYJ20180306140810282), the National Natural Science Foundation of China (No. 82003114), and the Applied Basic Research Project of Sichuan Science and Technology Department (No. 2020YJ0174).

Authors’ contributions

The research was designed and the manuscript was conducted by Yong Dai, Donge Tang and Wen Li. The experiments were carried out by Wen Li, Xiaobin Wang, Qian Zhang, Hanlin Wang, Hongliang Xie and Jianming Tang. Wen Li, Hongliang Xie, Mengmeng Wang, Zhipeng Zeng, Wenxin Zuo and Wanxia Cai performed data analysis. All the authors approved the final manuscript.

Ethics approval and consent to participate

The study was carried out following the Declaration of Helsinki for experiments involving humans and was approved by the Medical Ethics Committee of Shenzhen People's Hospital.

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Competing interest

The authors declare no competing financial interests or personal relationships that could affect the work published in this paper.
Figure legends

Figure 1. Identification of protein ubiquitination. (a) Number of proteins and modification sites identified according to MS data. (b) Differentially modified sites and proteins in tumor and normal samples, respectively (Filtered with threshold value of expression fold change >1.5 and P value < 0.05). (c) Subcellular location of differentially ubiquitinated proteins. (d) Functional category of differentially ubiquitinated proteins in GO terms. BP: Biological Process, CC: Cellular Component, MF: Molecular Function. (e) COG functional classification of differentially ubiquitinated proteins.

Figure 2. Functional classification of differentially ubiquitinated proteins. (a) GO enrichment analysis, (b) KEGG pathway analysis, and (c) protein domain enrichment of differentially ubiquitinated proteins. In the bubble chart, the vertical axis is the functional classification or pathway, and the horizontal axis is the log2 converted value of the proportion of different proteins in the functional type compared with the proportion of identification proteins. The circle color indicates the enrichment of significant p-value, and the circle size indicates the number of differential proteins in functional class or pathway.

Figure 3. Cluster analysis of differential modified proteins. (a) Protein number in each cluster. (b) KEGG pathway enrichment analysis of all clusters by heatmap. The color blocks corresponding to the functional description of the differentially expressed proteins in different groups indicated the degree of enrichment. Red indicates strong enrichment and blue indicates weak enrichment. (c) Protein domain enrichment analysis in Q3 cluster.

Figure 4. PPI network and Motif analysis of ubiquitination sites. (a) PPI network analyses of differentially expressed ubiquitinated proteins analyzed by STRING database. The red circles marked top 10 hub proteins based on degree value analyzed by software Cytoscape. (b) Significantly enriched ubiquitination motifs by Motif-X. (c) Motif enrichment heat map of ubiquitination. Red indicates that the amino acid is significantly enriched near the ubiquitination sites, and green indicates that the amino
acid is significantly reduced near the ubiquitination sites.

Figure S1. Functional classification of up- and down-regulated proteins. (a) Up-regulated and (b) down-regulated subcellular localization classification. The GO definition of (c) up-regulated and (d) down-regulated proteins.

References
1 Stell, P.M. (1986) Adenoid cystic carcinoma. Clin Otolaryngol Allied Sci 11, 267-291, 10.1111/j.1365-2273.1986.tb01928.x
2 Bradley, P.J. (2004) Adenoid cystic carcinoma of the head and neck: a review. Curr Opin Otolaryngol Head Neck Surg 12, 127-132, 10.1097/00020840-200404000-00013
3 Li, N., Xu, L., Zhao, H., El-Naggar, A.K. and Sturgis, E.M. (2012) A comparison of the demographics, clinical features, and survival of patients with adenoid cystic carcinoma of major and minor salivary glands versus less common sites within the Surveillance, Epidemiology, and End Results registry. Cancer-Am. Cancer Soc. 118, 3945-3953, 10.1002/cncr.26740
4 Jones, A.S., Hamilton, J.W., Rowley, H., Husband, D. and Helliswell, T.R. (1997) Adenoid cystic carcinoma of the head and neck. Clin Otolaryngol Allied Sci 22, 434-443, 10.1046/j.1365-2273.1997.00041.x
5 Spiro, R.H. and Huvos, A.G. (1992) Stage means more than grade in adenoid cystic carcinoma. Am. J. Surg. 164, 623-628, 10.1016/s0002-9610(05)80721-4
6 Bradley, P.J. (2017) Adenoid cystic carcinoma evaluation and management: progress with optimism!. Curr Opin Otolaryngol Head Neck Surg 25, 147-153, 10.1097/MO.0000000000000347
7 Lorini, L., Ardighieri, L., Bozzola, A., Romani, C., Bignotti, E. and Buglione, M. et al. (2021) Prognosis and management of recurrent and/or metastatic head and neck adenoid cystic carcinoma. Oral Oncol. 115, 105213, 10.1016/j.oraloncology.2021.105213
8 Li, Q., Huang, P., Zheng, C., Wang, J. and Ge, M. (2017) Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis. Oncotarget 8, 29458-29473, 10.18632/oncotarget.15297
9 Thierauf, J., Weissinger, S.E., Veit, J.A., Affolter, A., Laureano, N.K. and Beutner, D. et al. (2018) Low SOX2 expression marks a distinct subset of adenoid cystic carcinoma of the head and neck and is associated with an advanced tumor stage. Plos One 13, e194989, 10.1371/journal.pone.0194989
10 Bazarsad, S., Kim, J.Y., Zhang, X., Kim, K.Y., Lee, D.Y. and Ryu, M.H. et al. (2018) Ataxia-Telangiectasia-Mutated Protein Expression as a Prognostic Marker in Adenoid Cystic Carcinoma of the Salivary Glands. Yonsei Med. J. 59, 717-726, 10.3349/ymj.2018.59.6.717
11 Li, H., Liao, X., Liu, Y., Shen, Z., Gan, X. and Li, H. et al. (2015) The expression of MACC1 and its role in the proliferation and apoptosis of salivary adenoid cystic carcinoma. J. Oral Pathol. Med. 44, 810-817, 10.1111/jop.12309
12 Liu, C., Jiang, Y.H., Zhao, Z.L., Wu, H.W., Zhang, L. and Yang, Z. et al. (2019) Knockdown of Histone Methyltransferase WHSC1 Induces Apoptosis and Inhibits Cell Proliferation and Tumorigenesis in Salivary Adenoid Cystic Carcinoma. Anticancer Res. 39, 2729-2737, 10.21873/anticancer.13399
13 Lee, S.J., Chung, K.Y., Kwon, J.E., Yoon, S.O. and Kim, S.K. (2018) Expression of EpCAM in adenoid cystic carcinoma. *Pathology* **50**, 737-741, 10.1016/j.pathol.2018.08.013

14 Klein, N.T., Valstar, M.H., Smit, L.A., Smeele, L.E., Zuithoff, N. and de Keizer, B. et al. (2020) Prostate-specific membrane antigen (PSMA) expression in adenoid cystic carcinoma of the head and neck. *BMC Cancer* **20**, 519, 10.1186/s12885-020-06847-9

15 Liang, Y., Jiao, J., Liang, L., Zhang, J., Lu, Y. and Xie, H. et al. (2018) Tumor necrosis factor receptor-associated factor 6 mediated the promotion of salivary adenoid cystic carcinoma progression through Smad-p38-JNK signaling pathway induced by TGF-beta. *J. Oral Pathol. Med.* **47**, 583-589, 10.1111/jop.12709

16 Chen, W., Ren, X., Wu, J., Gao, X., Cen, X. and Wang, S. et al. (2018) HSP27 associates with epithelial-mesenchymal transition, stemness and radiosensitivity of salivary adenoid cystic carcinoma. *J. Cell. Mol. Med.* **22**, 2283-2298, 10.1111/jcmm.13510

17 Jiang, Y.P., Tang, Y.L., Wang, S.S., Wu, J.S., Zhang, M. and Pang, X. et al. (2020) PRRX1-induced epithelial-to-mesenchymal transition in salivary adenoid cystic carcinoma activates the metabolic reprogramming of free fatty acids to promote invasion and metastasis. *Cell Prolif* **53**, e12705, 10.1111/cpr.12705

18 de Mendonca, R.P., Chemelo, G.P., Mitre, G.P., Branco, D.C., Da, C.N. and Tuji, F.M. et al. (2020) Role of hypoxia-related proteins in adenoid cystic carcinoma invasion. *Diagn. Pathol.* **15**, 47, 10.1186/s13000-020-00967-3

19 Sakane, T., Murase, T., Okuda, K., Saida, K., Masaki, A. and Yamada, T. et al. (2019) A mutation analysis of the EGFR pathway genes, RAS, EGFR, PIK3CA, AKT1 and BRAF and TP53 gene in thymic carcinoma and thymoma type A/B3. *Histopathology* **75**, 755-766, 10.1111/his.13936

20 Stenman, G., Persson, F. and Andersson, M.K. (2014) Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. *Oral Oncol.* **50**, 683-690, 10.1016/j.oraloncology.2014.04.008

21 Park, S., Vora, M., van Zante, A., Hunttsoe, J., Kim, H.S. and Yom, S. et al. (2020) Clinicopathologic implications of Myb and Beta-catenin expression in adenoid cystic carcinoma. *J Otolaryngol Head Neck Surg* **49**, 48, 10.1186/s40463-020-00446-1

22 Togashi, Y., Dobashi, A., Sakata, S., Sato, Y., Baba, S. and Seto, A. et al. (2018) MYB and MYBL1 in adenoid cystic carcinoma: diversity in the mode of genomic rearrangement and transcripts. *Mod Pathol* **31**, 934-946, 10.1038/s41379-018-0008-8

23 Warner, K.A., Oklejas, A.E., Pearson, A.T., Zhang, Z., Wu, W. and Divi, V. et al. (2018) UM-HACC-2A: MYB-NFIB fusion-positive human adenoid cystic carcinoma cell line. *Oral Oncol.* **87**, 21-28, 10.1016/j.oraloncology.2018.10.012

24 Xie, J., Lin, L.S., Huang, X.Y., Gan, R.H., Ding, L.C. and Su, B.H. et al. (2020) The NOTCH1-HEY1 pathway regulates self-renewal and epithelial-mesenchymal transition of salivary adenoid cystic carcinoma cells. *Int. J. Biol. Sci.* **16**, 598-610, 10.7150/ijbs.36407

25 Branco, K., Ribeiro, A., de Mendonca, R.P., de Jesus, V.P.J., Da, S.K.M. and Arnaud, M. et al. (2018) Abnormal activation of the Akt signaling pathway in adenoid cystic carcinoma. *Eur Arch Otorhinolaryngol* **275**, 3039-3047, 10.1007/s00405-018-5182-2

26 Ouyang, D.Q., Liang, L.Z., Ke, Z.F., Zheng, G.S., Weng, D.S. and Yang, W.F. et al. (2017) Association between high expression of phosphorylated Akt and mammalian target of rapamycin and improved survival in salivary gland adenoid cystic carcinoma. *Head Neck* **39**, 1145-1154, 10.1002/hed.24732
19

27 Walsh, C.T., Garneau-Tsokdikova, S. and Gatto, G.J. (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. *Angew Chem Int Ed Engl* **44**, 7342-7372, 10.1002/anie.200501023

28 Santos, A.L. and Lindner, A.B. (2017) Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. *Oxid. Med. Cell. Longev.* **2017**, 5716409, 10.1155/2017/5716409

29 Hochstrasser, M. (2009) Origin and function of ubiquitin-like proteins. *Nature* **458**, 422-429, 10.1038/nature07958

30 Lee, I. and Schindelin, H. (2008) Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. *Cell* **134**, 268-278, 10.1016/j.cell.2008.05.046

31 Amerik, A.Y. and Hochstrasser, M. (2004) Mechanism and function of deubiquitinating enzymes. *Biochim Biophys Acta* **1695**, 189-207, 10.1016/j.bbamcr.2004.10.003

32 Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M. and Sixma, T.K. et al. (2005) A genomic and functional inventory of deubiquitinating enzymes. *Cell* **123**, 773-786, 10.1016/j.cell.2005.11.007

33 Eisenberg-Lerner, A., Ciechanover, A. and Merbl, Y. (2016) Post-translational modification profiling - A novel tool for mapping the protein modification landscape in cancer. *Exp Biol Med (Maywood)* **241**, 1475-1482, 10.1177/1535370216651732

34 Schwartz, A.L. and Ciechanover, A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. *Annu Rev Pharmacol Toxicol* **49**, 73-96, 10.1146/annurev.pharmtox.051208.165340

35 Scheffner, M., Huibregtse, J.M., Vierstra, R.D. and Howley, P.M. (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. *Cell* **75**, 495-505, 10.1016/0092-8674(93)90384-3

36 Popovic, D., Vucic, D. and Dikic, I. (2014) Ubiquitination in disease pathogenesis and treatment. *Nat. Med.* **20**, 1242-1253, 10.1038/nm.3739

37 Feng, X., Matsuo, K., Zhang, T., Hu, Y., Mays, A.C. and Browne, J.D. et al. (2017) MicroRNA Profiling and Target Genes Related to Metastasis of Salivary Adenoid Cystic Carcinoma. *Anticancer Res.* **37**, 3473-3481, 10.21873/anticancerres.11715

38 Dai, W., Yao, Y., Zhou, Q. and Sun, C.F. (2014) Ubiquitin-specific peptidase 22, a histone deubiquitinating enzyme, is a novel poor prognostic factor for salivary adenoid cystic carcinoma. *PLoS One* **9**, e87148, 10.1371/journal.pone.0087148

39 Fukuda, M., Fukuda, F., Horiuchi, Y., Oku, Y., Suzuki, S. and Kusama, K. et al. (2006) Expression of CYLD, NF-kappaB and NF-kappaB-related factors in salivary gland tumors. *In Vivo* **20**, 467-472

40 Yen, H.C., Xu, Q., Chou, D.M., Zhao, Z. and Elledge, S.J. (2008) Global protein stability profiling in mammalian cells. *Science* **322**, 918-923, 10.1126/science.1160489

41 Kirkpatrick, D.S., Denison, C. and Gygi, S.P. (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. *Nat. Cell Biol.* **7**, 750-757, 10.1038/nchb0805-750

42 Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D. and Huerta-Cepas, J. et al. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. *Nucleic Acids Res.* **43**, D447-D452, 10.1093/nar/gku1003

43 Huang, M., Ma, D., Sun, K., Yu, G., Guo, C. and Gao, F. (1997) Factors influencing survival rate in adenoid cystic carcinoma of the salivary glands. *Int J Oral Maxillofac Surg* **26**, 435-439, 10.1016/s0901-5027(97)80008-2

44 Khafif, A., Anavi, Y., Haviv, J., Fienmesser, R., Calderon, S. and Marshak, G. (2005) Adenoid
cystic carcinoma of the salivary glands: a 20-year review with long-term follow-up. Ear Nose Throat J 84, 662, 664-667

45 Terhaard, C.H., Lubsen, H., Van der Tweel, I., Hilgers, F.J., Eijkenboom, W.M. and Marres, H.A. et al. (2004) Salivary gland carcinoma: independent prognostic factors for locoregional control, distant metastases, and overall survival: results of the Dutch head and neck oncology cooperative group. Head Neck 26, 681-692, 692-693, 10.1002/hed.10400

46 Foot, N., Henshall, T. and Kumar, S. (2017) Ubiquitination and the Regulation of Membrane Proteins. Physiol. Rev. 97, 253-281, 10.1152/physrev.00012.2016

47 Wang, H., Yu, J., Zhang, L., Xiong, Y., Chen, S. and Xing, H. et al. (2014) RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. Biochem Biophys Res Commun 446, 1204-1210, 10.1016/j.bbrc.2014.03.086

48 Gunasekaran, V.P. and Ganeshan, M. (2014) Inverse correlation of ribosomal protein S27A and multifunctional protein YB-1 in hepatocellular carcinoma. Clin. Biochem. 47, 1262-1264, 10.1016/j.clinbiochem.2014.05.004

49 Kirschner, L.S. and Stratakis, C.A. (2000) Structure of the human ubiquitin fusion gene Uba80 (RPS27a) and one of its pseudogenes. Biochem Biophys Res Commun 270, 1106-1110, 10.1006/bbrc.2000.2568

50 Han, X.J., Lee, M.J., Yu, G.R., Lee, Z.W., Bae, J.Y. and Bae, Y.C. et al. (2012) Altered dynamics of ubiquitin hybrid proteins during tumor cell apoptosis. Cell Death Dis. 3, e255, 10.1038/cddis.2011.142

51 Barnard, G.F., Mori, M., Staniunas, R.J., Begum, N.A., Bao, S. and Puder, M. et al. (1995) Ubiquitin fusion proteins are overexpressed in colon cancer but not in gastric cancer. Biochim Biophys Acta 1272, 147-153, 10.1016/0925-4439(95)00079-8

52 Kanayama, H., Tanaka, K., Aki, M., Kagawa, S., Miyaji, H. and Satoh, M. et al. (1991) Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res. 51, 6677-6685

53 Yoshino, H., Enokida, H., Osako, Y., Nohata, N., Yonemori, M. and Sugita, S. S. et al. (2020) Characterization of PHGDH expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation. Mol Oncol 14, 2190-2202, 10.1002/1878-0261.12697

54 Song, Z., Feng, C., Lu, Y., Lin, Y. and Dong, C. (2018) PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642, 43-50, 10.1016/j.gene.2017.11.014

55 Pencheva, R. and Todorov, T. (1988) [Genetic analysis of heteroclones of Streptomyces erythreus. I. Determination of the arrangement of genetic loci on its map]. Acta Microbiol Bulg 23, 3-10

56 Dalton, W.B. (2020) Parkin on serine: a Parkinson disease gene suppresses serine synthesis in cancer. J. Clin. Invest. 130, 2820-2822, 10.1172/JCI1137411

57 Wang, C., Wan, X., Yu, T., Huang, Z., Shen, C. and Qi, Q. et al. (2020) Acetylation Stabilizes Phosphoglycerate Dehydrogenase by Disrupting the Interaction of E3 Ligase RNF5 to Promote Breast Tumorigenesis. Cell Rep. 32, 108021, 10.1016/j.celrep.2020.108021

58 Patkunarajah, A., Stear, J.H., Moroni, M., Schroeter, L., Blaszkiewicz, J. and Tearle, J.L. et al. (2020) TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. Elife 9, 10.7554/eLife.53308

59 Payankaulam, S., Raicu, A.M. and Arnosti, D.N. (2019) Transcriptional Regulation of INSR, the
Insulin Receptor Gene. *Genes (Basel)* **10**, 10.3390/genes10120984

60 Balaji, V., Pokrzywa, W. and Hoppe, T. (2018) Ubiquitylation Pathways In Insulin Signaling and Organismal Homeostasis. *Bioessays* **40**, e1700223, 10.1002/bies.201700223

61 Nagarajan, A., Petersen, M.C., Nasiri, A.R., Butrico, G., Fung, A. and Ruan, H.B. et al. (2016) MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. *Nat. Commun.* **7**, 12639, 10.1038/ncomms12639

62 Wu, I.C., Chen, Y.K., Wu, C.C., Cheng, Y.J., Chen, W.C. and Ko, H.J. et al. (2016) Overexpression of ATPase Na+/+ transporting alpha 1 polypeptide, ATP1A1, correlates with clinical diagnosis and progression of esophageal squamous cell carcinoma. *Oncotarget* **7**, 85244-85258, 10.18632/oncotarget.13267

63 Mijatovic, T., Roland, I., Van Quaquebeke, E., Nilsson, B., Mathieu, A. and Van Vynckt, F. et al. (2007) The alpha1 subunit of the sodium pump could represent a novel target to combat non-small cell lung cancers. *J. Pathol.* **212**, 170-179, 10.1002/path.2172

64 Glotzer, M. (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. *Nat Rev Mol Cell Biol* **10**, 9-20, 10.1038/nrm2609

65 Lu, C., Zhang, J., Lin, H.P., Yang, P. and Humphries, B. et al. (2017) Integrin alpha9 depletion promotes beta-catenin degradation to suppress triple-negative breast cancer tumor growth and metastasis. *Int. J. Cancer* **145**, 2767-2780, 10.1002/ijc.32359

66 Hoye, A.M., Couchman, J.R., Wewer, U.M., Fukami, K. and Yoneda, A. (2012) The newcomer in the integrin family: integrin alpha9 in biology and cancer. *Adv Biol Regul* **52**, 326-339, 10.1016/j.jbior.2012.03.004

67 Wang, Z., Li, Y., Xiao, Y., Lin, H.P., Yang, P. and Humphries, B. et al. (2019) Integrin alpha9 depletion promotes beta-catenin degradation to suppress triple-negative breast cancer tumor growth and metastasis. *Int. J. Cancer* **145**, 2767-2780, 10.1002/ijc.32359

68 Anedchenko, E.A., Dmitriev, A.A., Krasnov, G.S., Kondrat’Eva, T.T., Kopantsev, E.P. and Vinogradova, T.V. et al. (2008) [Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer]. *Mol Biol (Mosk)* **42**, 965-976
Lessard, F., Brakier-Gingras, L. and Ferbeyre, G. (2019) Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress. Bioessays 41, e1800183, 10.1002/bies.201800183

Panda, A., Yadav, A., Yeerna, H., Singh, A., Biehl, M. and Lux, M. et al. (2020) Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res. 48, 7079-7098, 10.1093/nar/gkaa485

Sun, Y., Zheng, X., Yuan, H., Chen, G., Ouyang, J. and Liu, J. et al. (2020) Proteomic analyses reveal divergent ubiquitylation patterns in hepatocellular carcinoma cell lines with different metastasis potential. J. Proteomics 225, 103834, 10.1016/j.jprot.2020.103834

Liu, M., Yan, M., Lv, H., Wang, B., Lv, X. and Zhang, H. et al. (2020) Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Rep. 32, 107990, 10.1016/j.celrep.2020.107990
Gender	Age (years)	Tumor size (cm)	Tumor location	Pathological diagnosis	Neuro recidivist	Lymph node metastasis
Female	32	1.5	Right submandibular	ACC	Yes	No
Male	58	3.0	Left submandibular	ACC	Yes	Yes
Female	23	1.0	Palate	ACC	Yes	No
Male	64	2.5	Parotid gland and neck	ACC	Yes	Yes
Table II. Top 20 up- and down-regulated proteins and the corresponding sequence (normalized modification sites quantitation)

Protein accession	Gene name	Modified sequence	OACC_T /OACC_N Ratio	Regulated Type
P62979	RPS27A	IQDK(1)EGIPPDQQR	26.637	Up
O43175	PHGDH	AWAGSPK(1)GTIQVITQGTSLK	16.252	Up
Q8NBN3	TMEM87A	FAFSPLSEEEEEDEQK(0.944)EPMLK(0.056)	11.91	Up
P54725	RAD23A	IDEK(1)NFVVVMVTK	8.567	Up
P54727	RAD23B	IDEK(1)NFVVVMVTK	8.17	Up
P54727	RAD23B	IDIDPEETVK(0.996)ALK(0.004)	8.17	Up
P68363	TUBA1B	AYHEQLSVAEITNACFEPANQMVK(1)CDPR	8.154	Up
P06213	INSR	GGK(1)GLLPVR	6.307	Up
P62736	ACTA2	K(1)DLYANVLSGGTMYPGIADR	6.263	Up
P68363	TUBA1B	TIGGDDSFFNTFFSETGAGK(1)HVPR	6.208	Up
P62873	GNB1	K(1)ACADATLSQITNNIDPVGR	6.169	Up
Q5BJD5	TMEM41B	AVK(1)WSQQVER	6.09	Up
P43121	MCAM	SDK(1)LPEEMGLLGQSGSDK	6.085	Up
P63261	ACTG1	K(1)DLYANVLSGGTMYPGIADR	5.928	Up
P08670	VIM	ETNLDSLPLVDTHSK(1)R	5.9	Up
Q9Y487	ATP6V0A2	VTK(1)TFVK	5.834	Up
P15311	EZR	LTPK(1)IGFPWSEIR	5.442	Up
O75881	CYP7B1	DDFLK(0.999)FDDK(0.001)	5.421	Up
P83731	RPL24	AITGASLADIMAK(1)R	5.359	Up
P55287	CDH11	K(1)EPLIVFEEEDVR	5.357	Up
P05023	ATP1A1	AAVPDAVGK(1)CR	0.031	Down
P68363	TUBA1B	LSVDYGK(0.98)K(0.946)SK(0.074)	0.033	Down
Accession	Name	Amino acid sequence	Score	Status
-----------	-----------	---	-------	--------
Q13797	ITGA9	YK(1)EIIEAEK	0.062	Down
Q8WZ42	TTN	ITNYIVEK(1)CATTAER	0.175	Down
Q13797	ITGA9	EIIEAEK(1)NR	0.202	Down
Q9HCU0	CD248	WVIHAGSK(1)SPTEPMPPR	0.219	Down
P62841	RPS15	EAPPMEKPEVVK(1)THLR	0.244	Down
P15104	GLUL	K(1)DPNK(1)LVLCEVFK	0.245	Down
Q99808	SLC29A1	SLTAVFMWPGLK(1)DSR	0.267	Down
P49411	TUFM	K(1)YEEIDNAPEER	0.268	Down
Q05086	UBE3A	AAK(1)HLIER	0.268	Down
Q7L1W4	LRRC8D	DGEQAK(1)ALFEK	0.291	Down
Q43707	ACTN4	K(1)HEAFESDLAAHQDR	0.294	Down
P23229	ITGA6	EIK(0.003)DEK(0.997)YIDNLEK	0.324	Down
P08133	ANXA6	PANDFNPDADAK(1)ALR	0.331	Down
P35555	FBN1	GQCIK(1)PLFGAVTK	0.331	Down
Q96D96	HVCN1	LK(1)QMNVQLAAK	0.334	Down
P09525	ANXA4	ISQK(1)DIEQSIK	0.335	Down
P42167	TMPO	YVPLADVK(0.95)SEK(0.05)	0.336	Down
P19388	POLR2E	GQVVK(1)IIR	0.343	Down
Table III. Top 10 hub proteins in PPI network based on degree value

Name	Degree	Betweenness Centrality	Closeness Centrality	Neighborhood Connectivity	Clustering Coefficient
RPS16	28	0.021698041	0.804878049	23.21428571	0.82010582
RPS11	28	0.021698041	0.804878049	23.21428571	0.82010582
RPS3	28	0.021698041	0.804878049	23.21428571	0.82010582
RPS17	28	0.021698041	0.804878049	23.21428571	0.82010582
RPS15A	27	0.020608616	0.785714286	23.2962963	0.823361823
RPS15	27	0.017387074	0.76744186	23.48148148	0.84045584
RPS27A	26	0.222127935	0.825	24.15384615	0.886153846
RPS23	26	0.00803387	0.76744186	24.38461538	0.907692308
RPS14	26	0.010250981	0.75	24.11538462	0.886153846
RPL19	25	0.002430965	0.75	25	0.96
