A Rasch and factor analysis of an Indonesian version of the Student Perception of Opportunity Competence Development (SPOCD) questionnaire

Wardani Rahayu, Muhammad Dwirifqi Kharisma Putra, Deni Iriyadi, Yuli Rahmawati & Rekha B. Koul

To cite this article: Wardani Rahayu, Muhammad Dwirifqi Kharisma Putra, Deni Iriyadi, Yuli Rahmawati & Rekha B. Koul (2020) A Rasch and factor analysis of an Indonesian version of the Student Perception of Opportunity Competence Development (SPOCD) questionnaire, Cogent Education, 7:1, 1721633

To link to this article: https://doi.org/10.1080/2331186X.2020.1721633

© 2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Published online: 31 Jan 2020.

Submit your article to this journal

Article views: 451

View related articles

View Crossmark data
A Rasch and factor analysis of an Indonesian version of the Student Perception of Opportunity Competence Development (SPOCD) questionnaire

Wardani Rahayu, Muhammad Dwirifqi Kharisma Putra, Deni Iriyadi, Yuli Rahmawati and Rekha B. Koul

Abstract: This study is the first to investigate and validate the psychometric properties of an Indonesian translation of the Student Performance Opportunity of Competence Development (SPOCD) questionnaire that covers five key competencies related to the mathematics learning process, namely: (1) thinking; (2) relating to others; (3) using language, symbols and text; (4) managing self, and; (5) participating and contributing. The SPOCD questionnaire comprises 30 items, with a 5-point Likert scale. A total of 1413 Indonesian high-school students (46.4% male, 53.6% female) from three regions (eastern, western and central Indonesia), aged from 16 to 19 years and ranging from the 10th to the 12th grade, completed the SPOCD questionnaire. A Rasch rating scale model (RSM) and confirmatory factor analysis were applied to evaluate the psychometric characteristics and factor structure of the SPOCD questionnaire. The results indicated that assumptions of unidimensionality, local independence and monotonicity of the SPOCD questionnaire were met. In the Rasch RSM assessment, the SPOCD questionnaire response
set worked well, matched the threshold estimates and functioned as an appropriate model for the response categories. The SPOCD questionnaire showed excellent psychometric characteristics for use in measuring the development of competence in middle school students in Indonesia.

Subjects: Factor Analysis, SEM, Multilevel & Longitudinal Modeling; Educational Research; Education Studies; Assessment

Keywords: factor analysis; Rasch modeling; rating scale model; Student Performance Opportunity of Competence Development (SPOCD) questionnaire

1. Introduction

With a population of around 271 million people, Indonesia is the fourth largest country in terms of population in the world, on 17,000 islands with more than 200 ethnic groups speaking 300 different languages/dialects (Worldometers, 2019). Such a diverse pattern of population demographics closely relates to differences in student academic performance. The underperformance of Indonesian students in international assessment programs has become a cause for concern and provided an impetus to calls for major national education reform (Wihardini, 2016). One cause of this underperformance is low performance related to poor mathematical competencies found in large-scale assessments and in computer-based national exams for Indonesian students, where mathematics has been reported as being “too hard” from the student perspective (Swaragita, 2018; Zulkardi, Putri, & Wijaya, 2019). There is a high cost to low educational performance, especially in Indonesia, despite the efforts of so many involved in education to improve education performance.

Addressing deficiencies in mathematical competencies has become a growing concern of the Indonesian government, following the implementation of a competence-based curriculum in 2004 by the Indonesian Ministry of National Education. However, despite wishing to promote mathematical literacy, when the Indonesian government changed the educational curriculum in 2013, competency development in mathematics education was not subject to investigation, specifically when related to student perceptions in the context of the mathematics learning process. This situation reveals a shortcoming in the Indonesian educational curriculum, especially when compared to many other countries.

One interesting approach to competency development was put forward by the Ministry of Education in New Zealand concerning the New Zealand education curriculum (Ministry of Education of New Zealand, 2007), where five key competencies were identified, namely: thinking; using language, symbols, and texts; managing self; relating to others; and participating and contributing. These key competencies were not simply a New Zealand Ministry of Education proposal, but had been adapted from an Organization for Economic Cooperation and Development project, and many other countries have their own version, meaning there was already a rich research base and a wealth of practical ideas that New Zealand could draw on (Ministry of Education, New Zealand, 2015).

These five key student competencies are developed through the learning process when applying various learning strategies, learning models and assessment techniques that are appropriate to the subject matter. In the learning process, teachers organize the learning environment so that students can interact with each other, with teachers and with the learning resources. Students can discuss issues and conduct self-monitoring in order to be able to understand the mathematics material well. The quality of the learning process is key to improving student competency, and any classroom learning activity can help students learn and influence their competencies (Brown, McNamara, Hanley, & Jones, 1999).

Previous studies have also examined mathematical competencies, including these five competencies. Theorizing has occurred on how competence with written mathematical symbols develops...
Mathematical thinking was explored within the context of the Scottish Curriculum for Excellence reform (Hudson, Henderson, & Hudson, 2014). More specifically, it has been claimed that mathematics self-efficacy can be thought of as part of one of the key five competencies, managing self, which is “associated with self-motivation, a ‘can-do’ attitude, and with students seeing themselves as capable learners” (Bonne & Lawes, 2016). How the competency “relating to others” can be applied has been explored among New Zealand students (Tait-McCutcheon, 2014). Furthermore, another study has analyzed the collective learning process occurring in the classroom in terms of the evolution of classroom mathematical practices (Cobb, Stephan, McClain, & Gravemeijer, 2001). These studies have illustrated the importance of certain key competencies in the mathematical context.

However, these competencies, specifically the five key competencies previously identified, have never been measured in students in Indonesia especially in the context of mathematics learning, due to the unavailability of relevant instruments. The availability of appropriate and readily usable measuring instruments is very important because of Indonesia’s vast geographical area and the distance between large cities and remote areas. It is also essential that any potential instruments can be used by mathematics teachers in Indonesia, which precludes the use of English-language instruments as teachers in Indonesia are generally not required to speak English, especially in remote areas.

Although this kind of measurement has never been undertaken with Indonesian students and there are few measurement instruments available, we identified an appropriate measurement tool that measures the same competencies as classified in the New Zealand Education curriculum, and also an appropriate context-based measure, for mathematics. To assess the development of student competence in terms of the five key competencies in learning mathematics, a Student Perception of Opportunity Competence Development (SPOCD) questionnaire was adopted for use. The five key competencies provided the scale factors of the SPOCD questionnaire for measuring students’ perceptions of development opportunities concerning mathematics competence. Although various reports have discussed research using the SPOCD questionnaire instrument, the validity of the SPOCD questionnaire in evaluating the five key competencies has not been assessed. This study is the first to address this gap. We adapted the SPOCD questionnaire for use in the Indonesian language, and sought to validate the SPOCD questionnaire and to assess its factor structure, as well as its psychometric characteristics, for the first time.

The psychometric evaluation of this type of instrument has typically been conducted using classical test theory. However, within the psychological sciences and for educational measurement, there has been a growing shift to using modern test theory, such as item response theory and the Rasch measurement model (Kean, Brodke, Biber, & Gross, 2018). A Rasch measurement model allows for investigation of many aspects of a measure. These include the response format, the fit of individual items and persons, dimensionality, local independence testing and the use of Wright maps (Andrich & Marais, 2019). A key feature of this model is the notion of parameter separation for the person and item estimates, which allows users to compare persons and items directly without reference to each other (Wright, 1968; Wright & Masters, 1982). Furthermore, many studies, while using confirmatory factor analysis (CFA) to validate the factor structure of a scale (Flora & Flake, 2017), have also used Rasch analysis “as a contrasting statistical approach” (Allison, Baron-Cohen, Stone, & Muncer, 2015). Given that CFA allows for formal statistical tests of multiple aspects of hypothesized models and provides a strong empirical basis concerning the factor structure of a model (Brown, 2015), we considered that a combination of both methods would provide relevant information on the psychometric characteristics of the SPOCD questionnaire from differing perspectives.

Consequently, the aim of this study was to investigate the dimensionality or factor structure and measurement properties of the SPOCD questionnaire, using both modern psychometrics analysis, such as CFA, and item and sample independent models, such as Rasch models. As a result of this
study, we hope that the SPOCD questionnaire may subsequently be used directly by teachers to measure student perceptions of their mathematics competence without concern for the validity, reliability and score interpretative quality of the SPOCD questionnaire.

1.1. The student performance opportunity of competence development (SPOCD) questionnaire

The SPOCD questionnaire was developed at Curtin University, Australia, as an instrument to measure students’ perceptions of competency development in the learning process of mathematics, although no publications have as yet resulted concerning its development. The SPOCD questionnaire covers 5 competencies, namely: (1) thinking: involving the use of creative and critical processes to make sense of information, experiences, and ideas; (2) relating to others: that is, listening actively, recognizing different points of view, negotiating and sharing ideas; (3) using language, symbols and text: concerning how students make meaning—how they express and communicate our ideas, experiences, and information using a rich mix of language, symbols and texts, including spoken and written language, visual language such as photos and video, the symbols used in mathematics and much more; (4) managing self: that is, being self-motivated, having a can-do attitude, and understanding oneself as a learner, and; (5) participating and contributing: including contributing in a group, making connections with others and creating opportunities for others in a group (Ministry of Education, New Zealand, 2007, 2015; Tait-McCutcheon, 2014).

Each competency consists of 6 items, evaluated using a 5-point Likert scale (see Appendix A for item wording). The response options are almost never, seldom, sometimes, often and almost always. In this study, we assumed that all the SPOCD questionnaire items together would constitute a single construct, which we termed opportunity for competence development. This construct allowed for a bipolar dimension (less-more), with a single line representing a single (unidimensional) construct, with the relevant person located at some point along the line. This approach enables a global score from the SPOCD questionnaire to be produced that can be understood by mathematics teachers throughout Indonesia for use as an evaluation and diagnostic tool. Higher scores would indicate that the students perceived greater opportunities to develop competence in the mathematics learning context.

The SPOCD questionnaire was translated into Bahasa (an Indonesian language). The translation process complied with the standards set by International Test Commission Guidelines for Test Adaptation (International Test Commission, 2018). The original English version of the SPOCD questionnaire used in this study was translated into Bahasa by two qualified translators who are Indonesian and lecturers at our university. They are fluent in English and have post graduate degrees from Australian universities. The Bahasa version of the SPOCD questionnaire was then translated back into English by English native translators. A committee of experts, comprising the first author and two lecturers fluent in English with more than 15 years of teaching experience, reviewed the original English versions, the English back translation, and the Bahasa versions of the SPOCD questionnaire in order to confirm an agreed and acceptable translation of the SPOCD questionnaire. The questionnaires were in paper-and-pencil format. Participation was voluntary and the purpose of the study was stated in a letter that accompanied the questionnaires. Participating persons were required to sign the informed consent form, also attached to the questionnaire.

2. Methods

2.1. Participants

Respondents for this study comprised 1413 (46.4% male, 53.6% female) high school students from six types of school in Indonesia, namely: public high schools (SMAN; sekolah menengah atas negeri), private high schools (SMAS; sekolah menengah atas swasta), public vocational high schools (SMKN; sekolah menengah kejuruan negeri), private vocational high schools (SMKS; sekolah
menengah kejuruan swasta), public Islamic high schools (MAN; madrasah Aliyah negeri), and private Islamic high schools (MAS; madrasah Aliyah swasta). Samples were taken using nonprobability sampling methods. These respondents came from 12 of 34 provinces in Indonesia that covered three region: central Indonesia (Bali, East Kalimantan, South Sulawesi), western Indonesia (Daerah Khusus Ibukota Jakarta, Banten, Lampung, West Java, Central Java, Jambi, West Kalimantan), eastern Indonesia (Maluku, North Maluku). Table 1 provides their socio-demographic characteristics.

2.2. The Rasch model

The probabilistic model proposed by Rasch (1960) revolutionized psychometrics (Mair, 2018). The Rasch model is an advanced measurement approach, which is able to overcome some limitations of classical test theory, such as a lack of control over the difficulty level of scale items and appropriate ordering of ordinal response categories (Mitchell-Parker, Medvedev, Krageloh, & Siegert, 2018). Although mathematically simple, it is extremely effective in terms of measurement, and can be used when constructing a scale that meets the highest standards of measurement (Mair, 2018). Rasch measurement models, such as the Rasch rating scale model (RSM) and the dichotomous Rasch model, are distinguished from other latent trait models by a fundamental statistical characteristic, namely, separable person and item parameters; thus providing a more complete set of statistical data. This feature makes possible “specifically objective” comparisons of persons and items, enabling comprehensive measurement (Masters & Wright, 1984).

The Rasch RSM is appropriate for assessing polytomous data using a rating scale, as employed in this study (Andrich, 1978). Where applicable, a response rating scale yields ordinal data that need to be transformed into an interval scale to be useful. A Rasch RSM generally follows the equation:

\[
\log \left(\frac{P_{nk}}{P_{n(k-1)}} \right) = B_n - D_i - F_k
\]

where \(P_{nk} \) is the probability that person \(n \) on encountering item \(i \) would be observed in category \(k \), \(P_{n(k-1)} \) is the probability that person \(n \) would be in category \(k - 1 \), \(B_n \) is the latent ability level of person \(n \),
\(D_i\) is the difficulty of item \(i\) (difficulty for respondents to endorse the item) and \(F_k\) is the probability of being observed in category \(k\) relative to category \(k - 1\). In this study, estimates of item difficulty (\(D_i\)) and respondent trait level (\(B_n\)) were expressed on a scale of log odd ratios or logits. The average logit was arbitrarily set at 0, with positive logits indicating higher than average estimates and negative logits lower than average estimates. A threshold indicates the location on the trait level scale at which a respondent had a 50/50 chance of choosing a higher category than the current one (Luo et al., 2009).

A Rasch RSM requires tenable assumptions for accurate estimation, including (1) construct unidimensionality, (2) local independence, and (3) a monotonic scale (that is, higher scores refer to higher levels of the latent construct) (de Ayala, 2009). In addition, a Rasch RSM requires that the rating scale categories increase in line with endorsement difficulty, and that the thresholds for each item are ordered (DiStefano & Morgan, 2010).

2.3. Data analyses

2.3.1. Confirmatory factor analysis (CFA)

A CFA model specifies how the observed variables are related to the latent variables. CFA is one type of structural equation model and provides a powerful method for testing a variety of hypotheses about a set of measured variables (Flora & Curran, 2004). In this study, the factorial structure of the translated version of the SPOCD questionnaire was tested using CFA. We investigated three hypothesized models, namely, first-order, five-factor and higher-order models of the SPOCD questionnaire. Analysis was conducted with Mplus version 8.3 (Muthén & Muthén, 1998/2017), using the weighted least squares mean and variance corrected estimator.

Several indices for goodness-of-fit were used in this study to check the adequacy of the hypothesized models. The chi-square test were used to evaluate the individual model, and the standardized root mean squared residual (SRMR) and the root mean square error of approximation (RMSEA) (Browne & Cudeck, 1993) were used to estimate the lack of fit in the model compared with a perfect model. The larger the value the greater the misspecification, as an RMSEA value of less than 0.05 is considered indicative of an adequate fitting model and smaller values for the SRMR are associated with better fitting models, with scores below 0.05 considered as evidence of good fit (Maydeu-Olivares & Joe, 2014). Finally, an incremental fit index measure, namely, the comparative fit index (CFI) (Bentler, 1990) was also employed. The CFI enabled a comparison to be made of the fit between the specified model and a null model. For the CFI, a value of .90 is generally considered to indicate an acceptable model (Hu & Bentler, 1999).

2.3.2. Rasch analysis

An analysis was conducted employing the Rasch RSM to calibrate the SPOCD questionnaire items, using the Winsteps (v. 3.65) statistical package (Linacre, 2008). Person and item parameters were estimated using joint maximum likelihood estimation. In order to establish the psychometric properties of each of the subscales, the following analyses were performed: (1) an analysis of the dimensionality of each version to check for expected unidimensionality in the Rasch RSM using principal component analysis of the residuals (PCAR); (2) local independence assumption testing using the \(Q_3\) statistic; (3) a verification of the fit of each of the questions to the model, taking into account the mean squares (MNSQ) statistics when using the Rasch RSM; (4) a verification of the adequacy of the response categories to establish the functioning of their order and their rating scale discrimination; (5) a verification of reliability for persons and items, and; (6) a construction of a graphical representation using a Wright map and data concerning the test information function of the scales.

3. Results

3.1. Confirmatory factor analysis

The fit indices of the unidimensional, five-dimensional, and higher order models were compared using the entire sample. Results of the CFA indicated that the higher order factor model fit the data
reasonably well \(\chi^2 (400) = 1397.144, p < 0.001; \) RMSEA = 0.042 (90% CI = 0.040–0.044), CFI = 0.905, SRMR = 0.038] compared to the unidimensional model \(\chi^2 (405) = 1742.349, p < 0.001; \) RMSEA = 0.048 (90% CI = 0.046–0.051), CFI = 0.873, SRMR = 0.042] and the five-factor model \(\chi^2 (405) = 4681.959, p < 0.001; \) RMSEA = 0.086 (90% CI = 0.084–0.089), CFI = 0.592, SRMR = 0.245]. Thus, the results indicated that the higher order model, composed of five first-order competency factors (thinking; relating to others; using language, symbols and text; managing self; and participating and contributing) and a single second-order competency factor were satisfactory and provided alternative representations of the underlying structure of our construct. All items loaded significantly (ranging from 0.48 to 0.92) in relation to their respective competency factors, at a p < 0.01 significance level.

3.2. Dimensionality
In testing the unidimensionality assumption of the measuring instrument used, PCAR was performed (Chou & Wang, 2010; Smith, 2002). The measurement model of the SPOCD questionnaire proved to be unidimensional. Therefore, the results of this analysis confirmed that the Rasch RSM assumption of unidimensionality had been met, and that further analysis was worthwhile. According to PCAR, it can be concluded that a test only measures a dimension when the minimum variance explained by the measure is >30% (Linacre, 1998). The test employed here showed a single dimension (unidimensionality), as values above 35.6% (16.6 in eigenvalues unit) of the variance explained by the measure were found. This finding is in line with the results concerning the factor structure following CFA analysis, as noted earlier.

3.3. Local independence
The Rasch RSM is based on the specification of “local independence”. Local independence means that, for a given examinee or examinees of a given proficiency level, the performance on one item is independent of the performance on another item (Mair, 2018). After the assumption of unidimensionality was shown to have been met, the assumption of local independence was tested using the Q3 statistic (Yen, 1984). When using Q3 statistic index criteria in which it is specified that the raw residual correlation between pairs of items is never > 0.30 (Christensen, Makransky, & Horton, 2017; Das Nair, Moreton, & Lincoln, 2011) no items were found to have local dependence. The items that had the highest raw residual correlations were items 29 and 30, each at 0.28, which is < 0.30. In other words, the assumption of local independence in this study was met.

3.4. Item fit
Item fit measures such as infit and outfit MNSQ statistics can also be used to determine how well each item contributes to defining one common construct as evidence of scale unidimensionality. An infit or outfit MNSQ value of 1 is considered ideal according to Rasch RSM specifications, and values in the range of 0.5–1.5 are effective for measurement (Andrich & Marais, 2019; Bond & Fox, 2015).

 All 30 items of the SPOCD questionnaire, using infit and outfit MNSQ statistics, were found to be in the acceptable range (0.5–1.5). In addition, the point measure correlation range for the SPOCD questionnaire ranged from 0.44 to 0.74, as set out in Table 2, indicating that all the items had moved in one direction (Bond & Fox, 2015). This result further supported the findings of the Rasch RSM in this study. In general, Rasch item-fit statistics supported the SPOCD questionnaire scale’s unidimensionality.

3.5. Rating scale diagnostics
In practice, most rating scales tend to be unequally spaced instead of conforming to the assumption of equal spacing between points in a response set. Rasch measurement diagnostics were used to evaluate how well the SPOCD questionnaire’s response set functioned to create an interpretable measure (Kim & Kyllonen, 2006). For each item, we examined the number of endorsements, the shape of the distribution of endorsements, and the MNSQ statistics of each response for the SPOCD questionnaire (Table 3).
As presented in Table 3, the distribution of the observed frequencies was negatively skewed, with no more than 7% of the total endorsements falling into the first category (almost never). However, there was no threshold dis ordering because the thresholds were ordered from negative to positive. This conclusion was supported further with none of the infit and outfit MNSQ measures being greater than 2 (Linacre, 2010), indicating that no noise was introduced into the measurement process. Based on this information, we concluded that the SPOCD questionnaire’s response set functioned well.

Results of the analysis of the scale are presented graphically in Figure 1 to represent the category response function of the SPOCD questionnaire. The graph shows the recommended pattern, where each scale competency was linked to the most probable response at each ability level. In summary, the analysis indicated that the overall rating scale functioned appropriately.

Item	Measure	Infit	Outfit	PTMEA
17	0.56	1.07	1.06	0.61
10	0.44	1.22	1.23	0.58
18	0.42	0.92	0.92	0.64
9	0.39	0.86	0.86	0.64
27	0.34	1.23	1.22	0.58
22	0.31	0.96	0.96	0.60
13	0.23	0.90	0.90	0.60
2	0.20	0.96	0.99	0.50
26	0.19	1.06	1.06	0.59
16	0.15	0.94	0.93	0.61
20	0.14	0.84	0.84	0.61
6	0.06	1.00	1.01	0.56
14	0.05	1.08	1.07	0.56
19	0.02	0.83	0.84	0.58
24	0.02	0.94	0.98	0.53
5	0.01	0.99	0.99	0.55
4	-0.01	0.98	1.01	0.52
3	-0.03	1.00	1.03	0.49
21	-0.05	0.96	0.98	0.56
1	-0.06	0.88	0.92	0.52
23	-0.08	0.90	0.93	0.58
8	-0.11	0.90	0.92	0.55
15	-0.22	1.12	1.12	0.51
28	-0.22	1.10	1.11	0.52
25	-0.24	1.00	1.02	0.53
7	-0.27	0.96	0.96	0.54
11	-0.40	1.11	1.10	0.49
12	-0.42	1.09	1.13	0.46
30	-0.62	1.10	1.14	0.44
29	-0.79	1.16	1.21	0.42

Note: Infit & outfit: a mean-square statistic. This is a chi-squared statistic divided by its degrees of freedom. Its expectation is 1.0. Values of 0.5–1.5 are productive of measurement.
PTMEA: an observed point-measure correlation. Negative reported PTMEA correlations suggest that the orientation of the scoring on the item may be opposite to the orientation of the latent variable.
3.6. Reliability

In the Rasch RSM, reliability is estimated for both persons and items. The person separation reliability (Wright & Masters, 1982), which estimates how well the instrument differentiates persons on the measured variable, was 0.91 for the SPOCD questionnaire. The person separation index for estimating the spread of persons on the measured variable was 3.17, expressed in standard error units. This value indicated good separation among persons. Reliability and separation for items, estimated in the same manner as for persons, were 0.99 and 10.56, respectively, indicating excellent psychometric characteristics for the SPOCD questionnaire. A separation index criterion of 1.5 is considered sufficient to carry out an individual level analysis and a magnitude of > 2.5 is considered sufficient to conduct a comparative analysis at the group level (Tennant & Conaghan, 2007); and these criteria were met in this study.

3.7. Wright map

To investigate the sixth research question, we evaluated the items in the SPOCD questionnaire to determine which behaviors were “harder” for students to endorse. Calibrated scores for both person and items in relation to the opportunity for mathematics competence development construct are provided in Figure 2, plotted using a Wright map (Wilson & Draney, 2002). A Wright map

Category	Threshold	Observed count (%)	Observed average	Infit	Outfit
Almost Never	None	3007 (7)	−0.48	1.01	1.06
Seldom	−1.07	6463 (15)	−0.14	0.98	1.02
Sometimes	−0.58	12,135 (29)	0.24	0.96	0.97
Often	0.43	12,181 (29)	0.66	0.92	0.93
Almost Always	1.21	8574 (20)	1.07	1.05	1.04

Note: Threshold: Rasch-Andrich thresholds. These are the relationships between adjacent categories, and correspond to the points where adjacent category probability curves cross.

Observed count and %: the count of occurrences of this category.

Infit & Outfit: a mean-square statistic. Its expectation is 1.0. Values of 0.5–1.5 are productive of measurement.

Table 3. Rating scale diagnostic table

![Figure 1. Category response curve of all SPOCD items.](image-url)
combines basic construct map concepts with a Rasch RSM to produce an effective map for interpreting the results of measurements undertaken. In such a map, the overall results between persons and items can be easily compared. The Wright map depicting the results of the Indonesian version of SPOCD questionnaire can be seen in Figure 2.

From Figure 2, it is clear that the least endorsed item was 17: “Pekerjaan yang saya lakukan dalam pembelajaran matematika ditampilkan di dalam kelas dalam bentuk grafik, poster, dan bentuk lainnya (Work that I do in mathematics is displayed around the room on charts, posters and in other ways)”. In contrast, the most endorsed item was 29: “Saya bekerja dalam kelompok matematika, dengan teman sebangku, dan teman sekelas (I sometimes work in a mathematics group, sometimes with a partner and sometimes with the whole class)”. The mean person measure value was 0.43 [standard deviation (SD) = 0.74], suggesting that the average student’s opportunity for competence development in mathematics was higher than the average level of item difficulty of the scale (zero). Furthermore, the person distribution spread ranged from −1.70 to 5.86, which exceeded the item difficulty range (−0.79 to 0.56).
3.8. Test information function

Once the relevant information has been determined for each item, it is of considerable interest to find the point along the ability scale at which a test provides the most precise measure of ability. The test information function (TIF) is simply the sum of the individual item information functions (Doran, 2005), and the TIF of the scale can be seen in Figure 3, below:

Figure 3 shows a graph concerning the measurement information function of the SPOCD questionnaire. The findings for SPOCD questionnaire indicated that the highest information function was at the moderate opportunity level for competence development, with the information obtained from the measurements being considerable. At a high opportunity level for competence development, the information obtained from the measurements was relatively low, as was the latent trait level. These results showed that the SPOCD questionnaire produced optimal information when given to individuals with moderate trait levels.

4. Discussion and conclusion

The need for more effective competence development measures has increased. In this study, we used the Rasch RSM and CFA to assess and validate the SPOCD questionnaire. The findings from this study indicated that the items in the SPOCD questionnaire were generally adequate and appropriate for the measurement of opportunities for competence development in mathematics as perceived by Indonesian students. The Rasch RSM proved particularly useful in assessing the SPOCD questionnaire and in validating it. In addition, the investigation of the construct validity of the SPOCD questionnaire using CFA provided evidence of a higher-order dimensionality structure of the scale after comparing the quality of goodness-of-fit indices with one- and five-factor models.

The results of validation analyses using Rasch RSM indicated that the SPOCD questionnaire had acceptable item and person reliability. Even a perfectly unidimensional scale will not be useful in practice if the resultant scale score has unacceptably low reliability (Gerbing & Anderson, 1988); acceptable Rasch reliabilities of the SPOCD questionnaire can make the scores useful in practice. The SPOCD questionnaire also demonstrated responsiveness to competence developmental change and was able to differentiate between students giving differing levels of responses. The Rasch RSM analysis offered further support to these findings through an additional analysis of the performance of each item and response category of the SPOCD questionnaire. The Rasch RSM assessment indicated that all the SPOCD questionnaire items had acceptable infit and outfit MNSQ.
statistics, suggesting that, in general, the SPOCD questionnaire items were consistent with the measurement of a single underlying construct. The CFA results supported a similar conclusion, as the higher order model fit to the data reasonably well.

Person measures from Rasch analysis are the single score representing opportunities for competence development in mathematics. A researcher can convert the total ordinal scores into interval-level data based on person estimates of the Rasch model (Andrich & Marais, 2019); Indonesian teachers have had guidelines on and were trained to carry out such conversions since the mid-1970s by the Ministry of Education and Culture, Republic of Indonesia (Nasoetion et al., 1976). Although the original conceptual of the Rasch model and the results of our analyses support the use of the SPOCD to produce a single score, some researchers may wish to produce separate scores for the five subscales. The good psychometric properties of the higher order CFA model of SPOCD that was taking account of individual subscales as a first order factor suggests that it would be reasonable to use the subscales factor scores if needed (cf. Brown & Croudace, 2015). However, it should be noted that the scores generated from the CFA (i.e., EAP or MAP scores) are different from the Rasch measure because of different estimators and models (de Ayala, 2009). Further work is needed to explore the analytical procedure that uses subscale factor scores in relation to other variables.

The Rasch RSM assessment also revealed adequate performance of the five SPOCD questionnaire response categories, through showing that: 1) the average measure estimate for each response category increased monotonically and in the expected direction as the response categories moved from lower to higher categories; 2) the thresholds of the adjacent response categories increased monotonically and in the expected direction, and; 3) each of the five response categories showed acceptable infit and outfit MNSQ statistics. This was one of benefits of using the Rasch model (Tennant & Conaghan, 2007).

Some limitations of this study were that, first, although the sampled individuals were representative of the high school student populations from which they were selected, the use of a nonprobability sampling approach may not provide an accurate representation of this population in the study areas. However, the use of Rasch RSM analysis was likely to have overcome this issue as its methodology does not depend on the sampling involved, enabling generalization concerning the effective measurement properties of the SPOCD questionnaire. Second, more research is needed to fully understand the gender differences that come into play when considering opportunities for competence development in mathematics.

In summary, the application of the Rasch RSM and CFA to the SPOCD questionnaire helped to confirm the accuracy and usefulness of the SPOCD questionnaire summary scores, because all individuals have their own standard errors, and provided this scale with additional psychometric support. The findings from this study should help to facilitate use of the SPOCD questionnaire in future educational evaluation studies and encourage awareness, understanding and use of the scale among students, teachers, and decision-makers. Although the current study focused on the SPOCD questionnaire, the same method may be used to assess and validate other educational performance assessment scales.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author details
1 Wardani Rahayu
E-mail: wardani-rahayu@unj.ac.id
Muhammad Dwirifqi Kharisma Putra
E-mail: muhammad.dwirifqi@gmail.com
Deni Iriyadi
E-mail: deni.iriyadi@rocketmail.com
Yuli Rahmawati
E-mail: yrahmawati@unj.ac.id
Rekha B. Kou
E-mail: r.koul@curtin.edu.au

1 Research and Evaluation of Education Department, Universitas Negeri Jakarta, Jakarta, Indonesia.
2 Faculty of Psychology, Gadjah Mada University, Yogyakarta, Indonesia.
3 School of Education, Curtin University, Western Australia.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Citation information
Cite this article as: A Rasch and factor analysis of an Indonesian version of the Student Perception of Opportunity Competence Development (SPOCD)
questionnaire, Wardani Rahayu, Muhammad Dwirifqi, Kharisma Putra, Deni Iriyadi, Yuli Rahmatwati & rekha B. Koul, Cogent Education (2020), 7: 1721633.

References
Allison, C., Baron-Cohen, S., Stone, M. H., & Muncer, S. J. (2015). Rasch model and confirmatory factor analysis of the Systemizing Quotient-Revised (SQ-R) Scale. Spanish Journal of Psychology, 18, 1–11. doi:10.1017/spj.2015.19
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573. doi:10.1007/BF02293814
Andrich, D., & Marais, I. (2019). A course in rasch measurement theory: Measuring in the educational, social and health sciences. Singapore: Springer Nature Singapore Pte Ltd.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. doi:10.1037/0033-2909.107.2.238
Bond, T., & Fox, C. (2015). Applying the Rasch model: Fundamental measurement in the human sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum & Associates.
Bonne, L., & Lawes, E. (2016). Assessing students’ maths self-efficacy and achievement. Assessment in Education, 2, 60–63.
Brown, A., & Croudace, T. J. (2015). Scoring and estimating score precision using multidimensional IRT models. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response modeling: Applications to typical performance assessment (pp. 307–333). New York, NY: Routledge.
Brown, T., McNamara, O., Hanley, U., & Jones, L. (1999). Primary student teachers’ understanding of mathematics and its teaching. British Educational Research Journal, 25, 299–322. doi:10.1080/0141129990250303
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York, NY: Guilford Press.
Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Structural equation models (pp. 136–162). Newbury Park, CA: Sage.
Chou, Y.-T., & Wang, W.-C. (2010). Checking dimensionality in item response models with principal component analysis on standardized residuals. Educational and Psychological Measurement, 70, 717–731. doi:10.1177/0160289609379322
Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical values for Yen’s Q3: Identification of local dependence in the Rasch model using residual correlations. Applied Psychological Measurement, 41, 179–194. doi:10.1177/0146621616675260
Cobb, P., Stephan, M., McClain, K., & Gravermeijer, K. (2001). Participating in classroom mathematical practices. The Journal of Learning Sciences, 10, 113–163. doi:10.1207/S15327809JLS10-1_2_6
Das Nair, R., Moreton, B. J., & Lincoln, N. B. (2011). Rasch analysis of the Nottingham extended activities of daily living scale. Journal of Rehabilitation Medicine, 43, 944–950. doi:10.2340/16501977-0858
de Ayala, R. J. (2009). The theory and practice of item response theory. New York, NY: Guilford Press.
DiStefano, C., & Morgan, G. B. (2010). Evaluation of the BISS TRS-CA using the Rasch rating scale model. School Psychology Quarterly, 25, 202–212. doi:10.1037/a0021509
Doran, H. C. (2005). The information function for the one parameter logistic model: Is it reliability? Educational & Psychological Measurement, 65, 665–675. doi:10.1177/0013164404272500
Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. doi:10.1037/1082-989X.9.4.466
Flora, D. B., & Fiske, J. K. (2017). The purpose and practice of exploratory and confirmatory factor analysis in psychological research: Decisions for scale development and validation. Canadian Journal of Behavioural Science, 49, 78–88. doi:10.1037/cbs0000069
Gerbing, D. W., & Anderson, J. C. (1988). An updated paradigm for scale development incorporating uni-dimensionality and its assessment. Journal of Marketing Research, 25, 186–192. doi:10.1177/002224378802500207
Hiebert, J. (1986). A theory of developing competence with written mathematical symbols. Educational Studies in Mathematics, 19, 333–355. doi:10.1007/BF00312451
Hu, L., & Bentler, P. M. (1999). Cutoff criteria in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. doi:10.1080/10705519909540318
Hudson, B., Henderson, S., & Hudson, A. (2014). Developing mathematical thinking in the primary classroom: Liberating students and teachers as learners of mathematics. Journal of Curriculum Studies, 46, 374–398. doi:10.1080/00220272.2014.979233
International Test Commission. (2010) ITC guidelines for translating and adapting tests second edition. International Journal of Testing, 18, 101–134. doi:10.1080/15305058.2017.1398166
Kean, J., Brodkle, D. S., Biber, J., & Gross, P. (2018). An introduction to item response theory and Rasch analysis of the Eating Assessment Tool (EAT-10). Brain Impairment, 19, 91–102. doi:10.1017/brimp.2017.31
Kim, S., & Kyllonen, P. C. (2006). Rasch rating scale modeling of data from the standardized letter of recommendation (ETS Research Report RR-06-33). Princeton, NJ: Educational Testing Service.
Linacre, J. M. (1998). Detecting multidimensionality: Which residual data-type works best? Journal of Outcome Measurement, 2, 266–283.
Linacre, J. M. (2008). WINSTEPS Rasch measurement computer program (Version 3.65.0). Chicago, IL: Winsteps.com.
Linacre, J. M. (2010). Predicting responses from Rasch measures. Journal of Applied Measurement, 11, 1–10.
Luo, X., Cappelleri, J. C., Cella, D., Li, J. Z., Charbonneau, C., Kim, S. T., ... Motzer, R. J. (2009). Using the Rasch model to validate and enhance the interpretation of the functional assessment of cancer therapy-kidney symptom index—disease-related symptoms scale. Value in Health, 12, 580–586. doi:10.1111/j.1524-4733.2008.00473.x
Mair, P. (2018). Modern psychometrics with R. Cham, Switzerland: Springer International Publishing AG.
Masters, G. N., & Wright, B. D. (1984). The essential process in a family of measurement models. Psychometrika, 49, 529–544. doi:10.1007/BF02302590
Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49, 305–328. doi:10.1080/00221335.2014.911075
Ministry of Education of New Zealand. (2007). The New Zealand curriculum. Wellington, NZ: Ministry of Education by Learning Media Limited.
Ministry of Education of New Zealand. (2015). Capable kids: Working with the key competencies. Retrieved
Mitchell-Parker, K., Medvedev, O. N., Krageloh, C. U., & Siegert, R. J. (2018). Rasch analysis of the frost multidimensional perfectionism scale. *Australian Journal of Psychology, 70*, 258–268. doi:10.1111/ajpy.2018.70.issue-3

Muthén, L. K., & Muthén, B. O. (1998/2017). *Mplus user’s guide: Statistical analysis with latent variables* ((8th ed.). Los Angeles, CA: Muthén & Muthén.

Nasoetion, N., Djalil, A., Musa, I., Soelistyo, S., Choppin, B. H., & Postlethwaite, T. N. (1976). The development of educational evaluation models in Indonesia. Paris, France: International Institute for Educational Planning.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen, Denmark: Danish Institute for Educational Research.

Smith, E. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. *Journal of Applied Measurement, 3*, 205–231.

Swaragita, G. (2018). Indonesian exams ‘too hard’, students ‘want to die’. Retrieved from https://www.thejakartapost.com/news/2018/04/14/indonesian-exams-too-hard-students-want-to-die.html

Tait-McCutcheon, S. L. (2014). Teacher practice in primary mathematics classroom: A story of positioning. Doctoral dissertation, Victoria University of Wellington.

Tennant, A., & Conaghan, P. (2007). The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? *Arthritis Care and Research, 5*, 1358–1362. doi:10.1002/acr.23108

Wilhardini, D. (2016). An investigation of the relationship of student performance to their opportunity-to-learn in PISA 2012 mathematics: The case of Indonesia. Doctoral dissertation, University of California: Berkeley.

Wilson, M., & Draney, K. (2002). A technique for setting standards and maintaining them over time. In S. Nishisato, Y. Baba, H. Bozdogan, & K. Kanefugi (Eds.), *Measurement and multivariate analysis* (pp. 325–332). Tokyo, Japan: Springer-Verlag.

Worldometers. (2019). Indonesia population. Retrieved from https://www.worldometers.info/world-population/indonesia-population/

Wright, B. D. (1968). Sample-free test calibration and person measurement. *Proceedings of the 1967 Invitational Conference on Testing Problems*, (pp. 85–101). Princeton, NJ: Educational Testing Service.

Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago, IL: MESA Press.

Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. *Applied Psychological Measurement, 8*, 125–145. doi:10.1177/014662168400800201

Zulkardi, Z., Putri, R. I. I., & Wijaya, A. (2019). Two decades of realistic mathematics education in Indonesia. In M. van den Heuvel-panhuizen (Ed.), *International reflections on the Netherlands didactics of mathematics* (pp. 325–340). Cham, Switzerland: Springer Nature Switzerland AG.
Appendix A. Item wording of SPOCD

Scales and items	Indonesian version	English version
Thinking		
T1	Saya berdiskusi dengan teman sekelas saya tentang perbedaan cara pikir mengenai suatu ide atau penyelesaian masalah matematika.	I talk with my classmates about different ways of thinking about ideas or solving maths problems.
T2	Saya merasa dapat membuat suatu permasalahan, memikirkan permasalahan tersebut, dan belajar dari permasalahan tersebut tanpa diinstruksikan.	I feel able to make mistakes, think about them and learn from them without getting told off.
T3	Saya didorong untuk memikirkan apa yang saya ketahui dan menggunakan pengetahuan saya tersebut dalam menyelesaikan hal yang tidak saya ketahui.	I am encouraged to think about what I already know and to use this to help me work out things I don’t know.
T4	Saya mengetahui bahwa dalam pembelajaran Matematika saya harus memikirkan bagaimana belajar melalui suatu masalah dan hal tersebut lebih penting dari sekedar memberikan jawaban.	I know that in maths I need to think about how I am going to work through a problem and that this is just as important as giving an answer.
T5	Saya didorong untuk menanyakan tentang bagaimana atau kenapa sesuatu bisa terjadi agar saya bisa memahami matematika dalam kelompok.	I am encouraged to ask questions like how or why something works and to really understand maths.
T6	Dalam pembelajaran matematika, saya didorong untuk berbicara tentang pikiran saya sendiri dan menjelaskan jawaban saya.	In maths I am encouraged to talk about my own thinking and to justify (explain) my answers.
Relating to others		
R1	Saya bekerja pada aktivitas matematika dalam kelompok untuk berbagi pendapat dan saling membantu satu sama lain.	I work on maths activities in group in which we share ideas and help each other.
R2	Guru senang terhadap saya saat memperhatikan dengan seksama siswa lain berbagi pendapat karena saya dapat belajar dari mereka.	My teacher likes me to listen carefully when other people share their ideas because I can learn from them.
R3	Dalam pembelajaran Matematika saya didorong untuk memberikan umpan balik kepada siswa lain dan meminta mereka juga untuk memberikan umpan balik kepada saya.	In our maths class I am encouraged to give feedback to others and to ask them to give feedback to me.
R4	Saya bergiliran dengan siswa yang lain untuk menjadi ketua dalam kelompok diskusi.	I take turns with others in leading maths groups or class activities.
R5	Guru membantu saya untuk memahami cara belajar siswa lain dan menghargai terhadap pendapat mereka juga.	The teacher helps me to understand other people, the way they learn and to respect their ideas too.

(Continued)
Appendix A. (Continued)

Scales and items	Indonesian version	English version
R6	Ketika guru kami bekerja dengan kelompok lain, saya tetap bekerja dengan teman untuk menyelesaikan tugas.	When our teacher is working with another group, I work considerately alongside others, completing the tasks that are set.
Using language, symbols and text		
U1	Saya didorong untuk membaca beberapa hal yang berkaitan dengan Matematika dan memperoleh pemikiran matematis dari banyak tempat yang berbeda.	I am courage to read about maths and to get my maths ideas from lots of different places.
U2	Guru mengajarkan kepada kami cara berbeda untuk mencatat pemikiran dan penyelesaian matematis menggunakan kata, simbol, dan peta konsep.	My teacher shows us lots of different ways of recording our maths thinking and solutions, using word, symbols and diagrams.
U3	Dalam kelompok belajar, guru menuliskan permasalahan matematika dan mencatat pendapat kami. Hal ini membantu kami agar lebih paham.	In our groups lessons our teacher writes maths problems and records our ideas and this helps me to understand better.
U4	Saya berdiskusi dengan banyak orang tentang makna dari kata dan simbol matematika.	I talk a lot with others about what maths words and symbols mean.
U5	Pekerjaan yang saya lakukan dalam pembelajaran matematika ditampilkan di dalam kelas dalam bentuk grafik, poster, dan bentuk lainnya.	Work that I do in maths is displayed around the room on charts, posters and in other ways.
U6	Saya didorong untuk menuliskan dan mempresentasikan pemikiran matematika saya dalam banyak cara yang berbeda.	I am encouraged to write and present my maths ideas in lots of different.
Managing self		
M1	Dalam pembelajaran matematika, saya selalu mengerti apa dan kenapa saya mempelajari materi tersebut.	In maths I always know what I am learning and why.
M2	Saya menyisihkan waktu untuk memikirkan atau mendiskusikan hal yang telah saya pelajari dan apa yang harus saya lakukan selanjutnya.	I am given time to think or talk about what I have learned and what I need to work on next (what my goals are).
M3	Dalam pembelajaran matematika, ketika guru bekerja dengan kelompok lain, saya tetap belajar secara mandiri dan tetap bertanggungjawab dengan proses belajar saya.	In maths, when the teacher is working with another group, I am expected to work independently and to take responsibility for my own learning.
M4	Ketika saya dapat memilih dalam pembelajaran matematika, saya akan memilih untuk melakukan hal yang lebih menantang daripada memilih hal yang biasa saja.	When I can choose in the maths, I know I need to make sensible decisions about what activity will challenge me not just choose the easy ones.
Scales and items

Indonesian version	English version
M5 Saya diharapkan untuk mengatur dan menyiapkan diri dalam pembelajaran matematika.	I am expected to always be well organized and ready for maths.
M6 Saya mengerti apa yang harus saya lakukan hanya ketika belajar matematika karena instruksi yang jelas, hal ini diatur dengan baik dan saya mengerti dimana saya bisa menemukan dan mengembalikan perlengkapan yang saya gunakan.	I know just what to do at maths time because instructions as clear, it is well organized and I know exactly where to find and return the equipment I use.

Participating and contributing

Indonesian version	English version
P1 Saya merasa nyaman ketika mengajukan pertanyaan dan mengemukakan pendapat.	I felt comfortable asking question and sharing my ideas.
P2 Guru saya memperhatikan, mencatat apa yang saya kerjakan serta menggunakan pendapat dan saran saya dalam pembelajaran matematika.	My teacher really listens to me, notices what I do and uses my ideas and suggestions in math time.
P3 Guru mengingatkan untuk membicarakan apa yang saya pelajari dalam kelas matematika di sekolah kepada orang tuas dan keluarga agar mereka juga bisa membantu.	My teacher reminds me to talk with my parent and family about what I am learning in maths at school so they can help too.
P4 Guru mendorong saya untuk berpikir bagaimana menggunakan matematika dalam kehidupan sehari-hari dan kenapa matematika penting.	My teacher encourages me to think about how I can use maths in everyday life and why maths is important to me.
P5 Saya bekerja dalam kelompok matematika, dengan teman sebangan, dan teman sekelas.	I sometimes work in a maths groups, sometimes with a partner and sometimes with whole class.
P6 Guru senang jika kami berbagi pendapat dan menjelaskan bagaimana kami menyelesaikan masalah sehingga kami bisa belajar bersama.	My teacher really likes us to share our ideas and to show others how to do things so that we can all learn together.
