Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review

Jiang-Jiang Qin 1,2*, Xiang-Dong Cheng 2, Jia Zhang 3 and Wei-Dong Zhang 4,5*

Abstract
Pancreatic cancer (PC) is one of the most fatal diseases with a very high rate of metastasis and low rate of survival. Despite the advances in understanding this devastating disease, PC still accounts for 3% of all cancers and causes almost 7% of death of cancer patients. Recent studies have demonstrated that the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) and its key negative regulator Kelch-like ECH-associated protein 1 (Keap1) are dysregulated in PC and the Keap1-Nrf2 pathway is an emerging target for PC prevention and therapy. Indeed, Nrf2 plays an either tumor-suppressive or promoting function in PC, which depends on the developmental stages of the disease and the cellular context. Several natural-product Nrf2 activators have been developed to prevent pancreatic carcinogenesis, while the Nrf2 inhibitors have been examined for their efficacy in inhibiting PC growth and metastasis and reversing chemoresistance. However, further preclinical and clinical studies for determining the effectiveness and safety of targeting the Keap1-Nrf2 pathway for PC prevention and therapy are warranted. In this review, we comprehensively discuss the dual roles of the Keap1-Nrf2 signaling pathway in PC as well as the current targeting strategies and known activators and inhibitors of Nrf2. We also propose new strategies that may be used to address the current issues and develop more specific and more effective Nrf2 activator/inhibitors for PC prevention and therapy.

Keywords: Keap1, Nrf2, Pancreatic cancer, Tumor-suppressive and promoting roles, Small molecule activators and inhibitors, Prevention and therapy

Background
Pancreatic cancer (PC) remains the most aggressive and most lethal cancer with the worst survival and prognosis, although significant advances have been made in PC research, especially in its molecular mechanisms, epidemiology, pathophysiology, and treatment in the past decades [1–4]. Because the initiation of PC is often quite nonspecific and subtle, this notorious disease is very difficult to be diagnosed in its early phases and it is always detected at the advanced stages with metastasis [3]. Since only about 10 to 15% PC are diagnosed at the resectable stage and can be treated with surgery, many patients prolong their lives by relying on radiotherapy and chemotherapy, which may also decrease the quality of their lives due to the side effects [5]. Numerous studies on molecular abnormalities in PC have been performed, leading to the identification of several driver mutations, such as KRAS, TP53, CDKN2A, and SMAD4, which contribute to the initiation and development of PC [6, 7]. Targeted agents that specifically inhibit these molecular changes have been developed, e.g. Erlotinib and Larotrectinib [8]. Although these targeted therapies alone or in combination with chemotherapy, e.g. gemcitabine have shown some efficacy in patients with unresectable PC, only a very limited increase in survival time of patients has been observed [8]. Therefore, identifying novel molecular targets and developing safe and effective targeted therapeutics are still urgent for PC prevention and therapy.

The abnormal expression and activation of the transcription factor nuclear factor-erythroid 2-related factor...
2 (Nrf2) and its major negative regulator Kelch-like ECH-associated protein 1 (Keap1) have been observed at different stages of PC and correlated with its initiation, progression, metastasis, and chemoresistance (as shown in Fig. 1) [9, 10]. During the early stage of pancreatic carcinogenesis, Nrf2 exerts a tumor-suppressive role by binding to antioxidant response elements (AREs) and activating its downstream target genes that regulate the cellular antioxidant/detoxification response and immune surveillance [11–13]. However, in the PC progression and metastasis phases, Keap1 mutation and silencing are frequently observed and cause the aberrant stabilization of Nrf2 [9]. Consequently, Nrf2 is constitutively activated and promotes PC growth, metastasis, and chemoresistance by regulating the downstream genes that are involved in proliferation, cell cycle progression, apoptosis, ferroptosis, senescence, autophagy, stem cell self-renewal, angiogenesis, metastasis, drug resistance, and metabolic reprogramming [9, 10, 14, 15]. Recent studies have also shown the preventive efficacy of Nrf2 activators in pancreatic tumorigenesis and the suppressive effects of Nrf2 inhibitors on PC growth and metastasis [16–19]. Because of the opposite roles of Nrf2 at the early and progression stages of PC, a better understanding of the Keap1-Nrf2 pathway and its role in PC may provide a promising strategy for developing novel preventive and therapeutic agents for this dreadful disease.

In the present review, we comprehensively discuss the new findings related to the regulation of the Keap1-Nrf2 pathway, its target genes, and its dual roles in PC initiation, progression, metastasis, and drug resistance. We also review various activators and inhibitors of Nrf2 as well as the current strategies for identifying new Nrf2-targeted agents for PC prevention and therapy.

Structures of Keap1 and Nrf2 proteins

The transcription factor Nrf2 contains 605 amino acids distributed into seven highly conserved Nrf2-ECH homology (Neh) domains, Neh1–Neh7, as depicted in Fig. 2a.
Among these domains, Neh1 has a cap ‘n’ collar (CNC) basic-region leucine zipper (bZIP) domain, which is critical for binding to DNA and forming heterodimers with small MAF (sMAF) proteins [20]. In addition, Neh1 contains a nuclear localization signal (NLS) which is required for the nuclear translocation of Nrf2. Neh3, Neh4, and Neh5 domains are necessary for transactivation. Neh7 is important for binding with an Nrf2 repressor, the retinoic X receptor α (RXRα). Keap1 comprises an N-terminal region (NTR), a broad complex, Tramtrack and Bric-à-Brac (BTB) domain, an intervening region (IVR), six Kelch repeats, and a C-terminal region (CTR). Among these domains, BTB domain is responsible for the homodimerization of Keap1 and the binding with Cullin3 (Cul3) E3 ligase [28]. The Kelch repeats contain binding sites that are important for interacting with Nrf2, p62, and other E/STGE proteins. IVR contains a nuclear export signal (NES), which regulates the cytoplasmic localization of Keap1.

Regulation of Keap1-Nrf2 signaling pathway in pancreatic cancer

Keap1-Nrf2 signaling pathway

The Keap1-Nrf2 signaling pathway has been extensively reviewed recently [33–35]. Here, we present a brief overview of the Keap1-Nrf2 signaling pathway and its key regulators which are depicted in Fig. 3. Under normal physiological conditions, Nrf2 activity and stability are
tightly controlled by Keap1 [33]. Keap1 homodimer directly interacts with Cullin3 (Cul3) and forms the Keap1-Cul3-RBX1 (Ring box protein-1) E3 ligase complex, which targets Nrf2 and induces its polyubiquitination and protein degradation by the 26S proteasome [36]. Under oxidative stress, electrophiles and ROS react with the cysteine residues, especially cysteine 151 in Keap1, which leads to the alteration of Keap1 conformation and its inactivation. Consequently, Nrf2 is released from Keap1-Cul3-RBX1 complex and translocates into the nucleus. The nuclear Nrf2 then forms heterodimers with sMAF proteins and binds to the antioxidant response elements (AREs), activating the transcription of ARE-driven genes [33].

Nrf2 is also negatively regulated by the E3 ubiquitin ligase complex β-TrCP in a glycogen synthase kinase 3β (GSK-3β)-dependent but Keap1-independent manner (Fig. 3) [37]. Nrf2 is phosphorylated by GSK3β at Ser342 and Ser347 residues in the Neh6 domain, which is required for the binding of Nrf2 to β-TrCP as well as the subsequent ubiquitination and degradation [23]. In addition, the E3 ubiquitin ligase HRD1 also compromises Nrf2 activation under endoplasmic reticulum (ER) stress and ROS, independent of Keap1 and β-TrCP [38]. The activation of the ER stress pathway upregulates X-box-binding protein 1 (XBP1)-mediated expression of HRD1, which then directly interacts with Nrf2 and promotes its ubiquitination and proteasomal degradation (Fig. 3) [38]. Moreover, the autophagy substrate p62 directly interacts with the Nrf2-binding site on Keap1, competitively inhibits the binding of Nrf2 to Keap1, and

Fig. 3 The Keap1-Nrf2 signaling pathway. Under normal physiological conditions, the Nrf2 protein level is tightly controlled by Keap1. Keap1 dimerizes through the N-terminal BTB domain and forms E3 ubiquitin ligase complexes with Cullin3 (Cul3) and Ring box protein-1 (RBX1), then promoting Nrf2 ubiquitination and degradation. Nrf2 is also negatively regulated by the E3 ubiquitin ligase complexes, the β-TrCP-SKP1-Cullin1 (Cul1)-RBX1 and HRD1. When cells are exposed to electrophiles or ROS or under endoplasmic reticulum (ER) stress, the Nrf2 protein level is increased. Nrf2 then translocates into the nucleus, forms heterodimers with sMAF proteins, binds to the antioxidant response elements (AREs), and then activates the transcription of ARE-driven genes. p62 also interacts with the Nrf2-binding site on Keap1 and releases Nrf2 from Keap1-mediated protein degradation.
protects Nrf2 from Keap1-Cul3-RBX1-mediated protein degradation [30].

Direct regulation of Keap1 in pancreatic cancer

Several Keap1 regulators have recently been found to modulate the expression of Keap1 and Keap1-mediated Nrf2 degradation, consequently affecting PC growth and metastasis (as summarized in Table 1). The epigenetic regulator UHRF1 (ubiquitin-like containing PHD and RING finger domains) is overexpressed in PC and correlated to tumor growth [39]. Recent studies have shown that UHRF1 suppresses Keap1 expression by inducing KEAP1 promoter methylation, which causes Nrf2 activation and promotes PC cell proliferation and cell cycle progression [39]. Another epigenetic repressor, MBD1 (methyl-CpG binding domain protein 1) is also highly expressed in PC and negatively regulates the expression of Keap1 by enhancing KEAP1 promoter methylation, in which c-Myc plays a critical role [40].

In addition to p62, two new Keap1-binding proteins, aPKC (atypical protein kinase Ci) and PALB2 (partner and localizer of BRCA2) have been reported to inhibit ROS and promote tumor growth and drug resistance by inducing Nrf2 accumulation, nuclear translocation, and activation (Table 1) [41, 42]. Mechanistically, aPKC and PALB2 share with Nrf2 a highly conserved Keap1-binding motif and compete with Nrf2 for Keap1 binding, protecting Nrf2 from Keap1-mediated protein degradation [41, 42]. Moreover, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been found to regulate the expression of Keap1 in PC [43, 52]. A lncRNA, KRAL (Keap1 regulation-associated lncRNA) directly interacts with miR-141 as a competing endogenous RNA (ceRNA) and increases the expression of Keap1, leading to the inactivation of Nrf2 and the enhancement of chemosensitization to cancer cells [43].

Direct regulation of Nrf2 in pancreatic cancer

Except for Keap1-mediated Nrf2 degradation, several regulators have been reported to modulate the expression and transcriptional activity of Nrf2 in PC in a Keap1-independent manner (as summarized in Table 1). The oncogene aldolase A (ALDOA) promotes PC cell proliferation and invasion by increasing the expression of its downstream targets, including Nrf2 [44]. The oncogene Kras also increases the expression of Nrf2, in which ERK (extracellular signal-regulated kinase) and PIN1 (Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1) play a critical role [45–47]. The Kras/ERK/Nrf2 signaling pathway has also been found to promote PC cell growth and cause drug resistance [47]. Also, the glucose regulatory protein 78 (GRP78)-mediated unfolded

Table 1 Regulators of Keap1-Nrf2 pathway and their biological effects in pancreatic cancer

Regulators	Keap1/Nrf2	Biological consequences	Refs
Cullin3	Keap1	Forms the Keap1-Cul3-RBX1 E3 ligase complex and induces Nrf2 polyubiquitination and proteasomal degradation	[36]
UHRF1	Keap1	Down-regulates Keap1 expression by enhancing KEAP1 promoter methylation	[39]
MBD1	Keap1	Down-regulates Keap1 expression by enhancing KEAP1 promoter methylation	[40]
p62	Keap1	Directly binds to Keap1, competitively inhibits the binding of Nrf2 to Keap1, and protects Nrf2 from protein degradation	[30]
aPKCι	Keap1	Directly binds to Keap1, competitively inhibits the binding of Nrf2 to Keap1, and protects Nrf2 from protein degradation	[41]
PALB2	Keap1	Directly binds to Keap1, competitively inhibits the binding of Nrf2 to Keap1, and protects Nrf2 from protein degradation	[42]
KRAL	Keap1	Directly interacts with miR-141 and increases the expression of Keap1	[43]
β-TrCP	Nrf2	Directly binds to Nrf2 and promotes its ubiquitination and proteasomal degradation	[23]
HRD1	Nrf2	Directly interacts with Nrf2 and promotes its ubiquitination and proteasomal degradation	[38]
GSK-3β	Nrf2	Phosphorylates Nrf2 at Ser342 and Ser347 in Neh6 domain	[23]
ALDOA	Nrf2	Increases the expression of Nrf2	[44]
Kras/ERKaxis	Nrf2	Increases the expression of Nrf2	[45–47]
GRP78/UPR	Nrf2	Increases the activity of Nrf2	[48]
STAT3	Nrf2	Increases the expression of Nrf2	[14]
APE1/Ref-1	Nrf2	Directly interacts with Nrf2 and inhibits its activity	[49]
dCK	Nrf2	Negatively regulates the Nrf2 transcriptional activity	[50]
NRAL	Nrf2	Directly binds to miR-340-5p, inhibits miR-340-5p-mediated repressing activity of the Nrf2–3'UTR, and increases Nrf2 expression	[51]
protein response (UPR) increases the Nrf2 activity and the resistance of PC cells to gemcitabine [48]. The transcription factor STAT3 (signal transducer and activator of transcription 3) has also been shown to upregulate the expression of Nrf2 and induce EMT (epithelial-to-mesenchymal transition) in PC [14].

Several negative regulators of Nrf2 have been found and correlated to PC growth, metastasis, and drug resistance (Table 1). Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) directly interacts with Nrf2 and inhibits its activity in PC cells [49]. Ref-1 also associates with the HMOX-1 (heme oxygenase-1) promoter via the Nrf2-binding site, competitively inhibits the Nrf2-HMOX-1 promoter binding, and down-regulates the expression of HMOX-1 [49]. Decreased deoxycytidine kinase (dCK) has been shown to inhibit PC cell growth and metastasis and sensitize PC cells to gemcitabine treatment by down-regulating the Nrf2 transcriptional activity and decreasing the expression of ARE-driven antioxidant genes [50]. LncRNAs and miRNAs are also involved in the regulation of Nrf2 expression in PC [52]. A lncRNA, termed NRAL (Nrf2 regulation-associated lncRNA) directly binds to miR-340-5p and inhibits the miR-340-5p-mediated repressing activity of the Nrf2–3’UTR, therefore increasing the expression of Nrf2 and inducing drug resistance in PC cells [51].

The dual roles of Keap1-Nrf2 signaling pathway in pancreatic cancer initiation and progression

The Keap1-Nrf2 signaling pathway has been shown to affect PC initiation and progression in a dual manner, which mainly depends on the stages of this disease and the statuses of Keap1 and Nrf2. In the early phase of pancreatic tumorigenesis, Nrf2 activation prevents carcinogen-induced carcinogenesis by activating the transcription of genes (as summarized in Table 2) that regulate detoxification, antioxidation, and immune surveillance whereas Keap1 inhibits Nrf2 stability and activity and promotes pancreatic carcinogenesis [12, 13, 74, 80, 81]. However, at the stage of cancer progression, the loss-of-function mutations in Keap1 and the activating mutations in Nrf2 often happen and lead to the disruption of Keap1-Nrf2 binding and the stabilization and constitutive activation of Nrf2, herein increasing the expression of genes (as summarized in Table 2) that are important for cancer cell proliferation, stem cell self-renewal, cell cycle arrest, apoptosis, ferroptosis, senescence,

Functions	Downstream target genes	Refs
Antioxidant	Upregulated: NQO1, HO-1, SOD1, GCLC, HMOX1	[12]
Proliferation	Upregulated: NOTCH1, NPHN, BMPR1A, KIF1, ITGB2, PDGFRC, VEGFC, JAG1	[53, 54]
Serine and glycine biosynthesis	Upregulated: ATF4, PHGDH, PSAT1, PSPH, SHMT1, SHMT2	[55, 56]
Stem cell self-renewal	Upregulated: NOTCH1, SIRT1, OCT4, NANOG, SOX2, BMI-1, BCL-2, TERT	[57, 58]
Cell cycle arrest	Upregulated: CDKN2B, CDKN1A, MDM2	[54, 59, 60]
Apoptosis	Upregulated: BCL-2, BCL-xl, HIPK2	[61]
Ferroptosis	Upregulated: MT-1G, FTI1, TH1, SLC11A3, AKR1C1, GPX4	[62, 63]
Senescence	Upregulated: MDM2, NOTCH1	[57, 64]
Autophagy	Upregulated: SQSTM1/p62, CALCOCO, ULK1, ATG5, GABARAP1	[65]
Angiogenesis	Upregulated: NQO1, HMOX1, G6PD, PGK, TALDO1, SLC7A11, PDGFR, FGFR2	[66, 67]
Metastasis	Upregulated: NOTCH1, MMP2, MMP9, SPP1, GLO1, CDH2, FN1, TWIST2, SNAIL, SLUG	[14, 53, 68, 69]
Drug resistance	Upregulated: MRP1, MRP2, MRP3, MRP4, MRP5, ABCG2	[12, 18, 70]
Metabolic reprogramming	Upregulated: G6PD, PGD, PDK, TALDO1, ME1, IDH1, PPAT, MTHFD2, GLS	[71–73]
Immune surveillance	Upregulated: ATFG, IL-17D, CDH2, FAS, SCD1, FADD2, ELOV12, ELOV16	[13, 74]
Genome stability	Upregulated: OGG1,3BP1	[75, 76]
Proteotoxic stress	Upregulated: HMOX1, HSP70, SQSTM1/p62, ATFG, PSMA1, PSMA4, PSMA5, PSMB3, PSMB6, PSMC1, PSMC3, PSMD4, PSM12, POMP,	[77–79]
autophagy, angiogenesis, metastasis, drug resistance, metabolic reprogramming, genome stability and proteotoxic stress [9, 12, 18, 53–73, 75–79, 82]. Of note, somatic mutations in Keap1 (e.g. G333C, G350S, L413R, D236H) and the methylation of the Keap1 promoter are frequently observed in lung cancer whereas Nrf2 mutations (e.g. W24C, E82D, D77V) happen more often in esophageal cancer, which have been reviewed recently [83]. However, there is few study on the accurate detection of mutations in Keap1 and Nrf2 in pancreatic cancer, and the detailed investigations on these mutations are urgently needed.

Nrf2 also promotes mRNA translation and supports efficient protein synthesis, which are partially responsible for Nrf2-regulated redox homeostasis, initiation, and maintenance of PC [10]. More importantly, the high nuclear expression of Nrf2 predicts a worse survival of PC patients, and Nrf2 may be a promising prognostic factor in PC [84]. Recently, Nrf2 has also been found to be elevated in early precursor lesions in the pancreas and contributes to pancreatic carcinogenesis [85–87]. These controversial results can at least partially be explained by recent analyses of the Nrf2-responsive genes in PC cells, which have shown that Nrf2 regulates the expression of both oncogenes and tumor suppressor genes [9, 88]. In this section, we present a comprehensive overview of the dual roles of the Keap1-Nrf2 pathway in PC.

The tumor suppressive role of Keap1-Nrf2 pathway in pancreatic cancer
Recent studies have provided new evidence showing the preventive effects of Nrf2 on pancreatic carcinogenesis and pancreatic tumor growth and metastasis. Kim et al have recently shown that Nrf2 activation by oxidative stress protects pancreatic beta cells from damage and apoptotic cell death, which is important for preventing pancreatic carcinogenesis induced by oxidents and carcinogens [89]. Nrf2 activation by a natural product has also been found to inhibit PC cell growth and induce apoptosis by upregulating HO-1, although the direct association of Nrf2 activation and the anticancer efficacy still needs further investigation [90]. Satoh et al have demonstrated a critical role of Nrf2 in preventing lung metastasis using an Nrf2-null (Nrf2^{−/−}) and Keap1-knockdown (Keap1^{−/−}) mouse model [91]. It has been reported that Nrf2 is highly expressed in Keap1^{−/−} mice, decreases the ROS in the immunosuppressive myeloid-derived suppressor cells (MDSCs), and prevents cancer cell metastasis to the lung after implantation of a lung carcinoma cell line 3LL [91]. However, the Nrf2-deficient Keap1^{−/−} mice showed a significantly higher lung metastatic rate after they lost the ability to maintain the redox balance in the immune and hematopoietic systems [91].

The carcinogenic role of Keap1-Nrf2 pathway in pancreatic cancer
Despite the protective effects of Nrf2 on oxidative stress-induced carcinogenesis, a large number of studies have demonstrated a carcinogenic role of the Keap1-Nrf2 pathway in PC. Previous studies have shown that the Kras oncogene induces Nrf2 expression via the Kras/ERK/NRF2 axis [47, 92]. Kras-mediated Nrf2 expression and activation causes low intracellular ROS levels and promotes pancreatic tumorigenesis and metastasis while Nrf2 inhibition blocks Kras-induced cell proliferation, tumorigenesis, and metastasis [46, 85, 87, 93]. Namada et al have recently examined the role of Nrf2 in pancreatic carcinogenesis using a mouse model carrying pancreas-specific Kras and p53 mutations, named KPC mouse model [85]. It has been found that Nrf2 deletion in the KPC mice causes a decrease in the formation of precancerous lesions and slows down the development of invasive pancreatic cancer. Furthermore, two cell lines from Nrf2 deleted KPC tumors (KPCN) have been established and lack the expression of Nrf2 and its downstream target genes, including NQO1. However, the KPCN-derived cell lines still maintain similar features as the cell lines from KPC tumors, except for their increased sensitivity to oxidative stress and gemcitabine [85].

Interestingly, the simultaneous activation of Kras and Nrf2 by Kras mutation and Keap1 deletion, respectively, does not promote PC development as expected but causes pancreatic atrophy [94]. Namada et al have also generated a pancreatic cancer mouse model harboring pancreas-specific K-ras mutation and Keap1 deletion (KC::Keap1) and a KPC mouse model carrying Keap1 deletion (KPC::Keap1) [94]. Both KC::Keap1 and KPC::Keap1 mice contain constitutively activated Nrf2 due to Keap1 deletion, which does not promote the development of pancreatic cancer but causes the progressive atrophy of pancreatic parenchyma. Consequently, these Keap1 deletion mice become weak and even start to die around 40 days after birth [94]. Further studies have shown that Nrf2 deletion can rescue the phenotypic changes in KC::Keap1 mice, which confirms the role of Nrf2 in pancreatic atrophy. Kras also activates Nrf2 by driving the expression of UHRF1, which preserves Keap1 promoter methylation and inhibits Keap1 expression [39]. Deletion of UHRF1 inhibits PC cell growth and induces cell cycle arrest at G2/M phase and apoptosis by reducing the expression of Nrf2 and increasing ROS level. However, concomitant deletion of Keap1 and UHRF1 rescues cells from G2/M phase arrest by restoring Nrf2 expression [39].

Nrf2 exerts its carcinogenic role not only by activating the transcription of its target genes but also by promoting mRNA translation [10, 34, 95]. Kha et al have recently discovered that Nrf2 activation protects premalignant
pancreatic ductal epithelial (PDE) cells from apoptosis and accelerates the formation and growth of pancreatic tumors by inducing the expression of a splicing variant of ATF3 (activating transcription factor 3), termed ΔZip2 [96]. Nrf2 also attenuates TGF-β1 (transforming growth factor-β1)-mediated growth inhibition of PDE cells by decreasing the expression levels of p21, phosphor-p38 and phosphor-Smad3 [86]. Moreover, Nrf2 inhibits PC cell apoptosis by upregulating the expression of anti-apoptotic proteins (e.g., Bcl2) and other cytoprotective proteins and enzymes [97].

Pancreatic stellate cells (PSC)-secreted SDF-1α (stromal-derived factor-1α) and IL-6 (interleukin-6) activates Nrf2, which further induces metabolic reprogramming and ROS detoxification and promotes PC cell proliferation [98]. Further studies have shown that PSC-secreted IL-6 also promotes EMT in PC cells by activating the JAK (Janus kinase)/STAT3/Nrf2 pathway. It has been observed that Nrf2 activation upregulates the expression of N-cadherin, fibronectin, Twist2, Snail, and Slug, which contribute to the increased EMT phenotypes [14]. Nrf2 has also been reported to induce EMT by regulating the cancer cells and macrophages interaction [99]. PC cells elevate the intracellular ROS level in macrophages via lactate secretion, which further activates Nrf2, induces macrophage M2 phenotype transformation, and increases VEGF (vascular endothelial growth factor) expression. The cancer cell-educated macrophages then induce Nrf2 activation in PC cells via VEGF secretion and promote EMT [99].

Pancreatitis-induced autophagy substrate p62 has been found to promote PC progression by activating the Keap1-Nrf2/MDM2 (murine double minute 2) signaling pathway [60, 100]. Mechanistically, p62 accumulation stabilizes Nrf2 protein and increases Nrf2-mediated MDM2 expression, which further accelerates the progression of pancreatic intraepithelial neoplasia (PanIN) to PC through both p53-dependent and p53-independent mechanisms [60]. These results also support that directly inhibiting MDM2 may be effective in preventing PanIN to PC progression, regardless of the p53 status [101, 102]. In addition to the regulation by the autophagy adaptor p62, Nrf2 has been reported to promote autophagy by targeting miR-129-3p in PC cells under the treatment of histone deacetylase inhibitors (HDACis) [103]. Further studies have indicated that mammalian target of rapamycin (mTOR) is a target of miR-129-3p and the Nrf2-miR-129-3p-mTOR axis is mainly responsible for HDACis-induced autophagy in PC cells [103]. However, Nrf2 activation has also shown a negative interaction with autophagy under ROS stress [104]. ROS stimulation induces both Nrf2 activation and autophagy in PC cells and inhibiting either Nrf2 or autophagy will lead to the enhancement of another one [104]. Interestingly, the combined inhibition of Nrf2 pathway and autophagy also increases PC cell apoptosis by chemotherapy, which may provide a new treatment approach for PC patients [105].

The Keap1-Nrf2 pathway is also involved in chemoresistance in PC by regulating the expression of drug resistance-associated genes and cytoprotective antioxidant genes (Table 2) [15, 106]. Furthermore, ALDH1A1 (aldehyde dehydrogenase 1 family, member A1) and ALDH3A1 (aldehyde dehydrogenase 3 family, member A1) are up-regulated by Nrf2 and may also contribute to drug resistance in PC [107]. lncRNAs, KRAL and NRAL have been reported to exert an opposite role in mediating the drug resistance by regulating the miR-141/Keap1 axis and the miR-340-5p/Nrf2 axis, respectively [43, 51]. Chemotherapies, e.g. gemcitabine have also been found to increase Nrf2 expression, while pretreatment with Nrf2 inhibitors enhances the sensitivity of PC cells to chemotherapy [108].

Targeting Keap1-Nrf2 signaling pathway for pancreatic cancer prevention and therapy

The Keap1-Nrf2 pathway has been considered as a potential target for PC prevention and therapy. Several Nrf2 activators and inhibitors have been identified and shown efficacy in PC models in vitro and in vivo (as summarized in Table 3). In this section, we focus on the current activators and inhibitors, their efficacy and mechanisms of action. We also review known targeting strategies and propose new targeting strategies (Fig. 4) that may be used to develop more specific and effective Nrf2-targeted agents for PC prevention and therapy.

Nrf2 activators

Considering the critical role of Keap1 in regulating Nrf2 stability, targeting the Keap1-Nrf2 binding has been demonstrated as a promising strategy for identifying specific activators of Nrf2 (as shown in Fig. 4). A recent study has discovered a dihydroxy coumarin derivative, termed esculetin that directly binds to Keap1 and inhibits its binding to Nrf2 [109]. The released Nrf2 by esculetin has been observed to reduce ROS level, inhibit cell growth, arrest cells at G1 phase, and induce apoptosis and loss of mitochondrial membrane potential in PC cells in vitro [109]. The activation of caspase cascade and inhibition of NF-κB (nuclear factor-κB) also contribute to the anticancer activity of esculetin. However, the selectivity of esculetin to Keap1 and its in vivo efficacy still need further investigation in clinically relevant models of PC. Because Keap1 is often deleted and mutated in pancreatic cancer cells, which also causes the aberrant activation of Nrf2, disrupting the Keap1-Nrf2 binding for reactivating Nrf2 could not be an effective strategy for PC therapy. Therefore, it is possible that the reactivation of Nrf2 by esculetin may not be mainly responsible for its anticancer activity.
Currently, most of the identified Nrf2 activators, including MT477 [16], oleanolic acid (OA) [45], fisetin [110], QD325 [17], resveratrol [61], sulforaphane (SFN) [90], and alphalipoic acid [111] have been found to increase Nrf2 expression and/or enhance Nrf2 activity (Table 3). Among them, OA and SFN have been demonstrated to activate the upstream regulators Nrf2 pathway, ERK and AMPK (AMP-activated protein kinase), respectively, which are important for the increased expression of Nrf2 by these compounds [45, 90]. However, OA-induced Nrf2 activation has been found to compromise its anticancer activity and the suppression of ERK/Nrf2 pathway enhances OA-induced cancer cell apoptosis in vitro and its inhibitory effects on the growth of xenograft tumors in vivo [45]. Although SFN has been shown to inhibit PC cell growth and invasion in vitro and suppress tumor growth in both Panc-1 xenograft model and a transgenic mouse model in vivo [90], the importance of Nrf2 activation in SFN’s anti-PC activity as well as the detailed molecular mechanisms should be further investigated.

Table 3 Summary of compounds targeting Keap1-Nrf2 pathway and their mechanisms of action

Compounds	Mechanisms of action	In vitro activity	In vivo activity	Refs
Nrf2 activators				
Esculetin	Binds to Keap1, disrupts Keap1-Nrf2 interaction, and activates Nrf2	Inhibits cell growth, arrests cells at G1 phase, and induces cell apoptosis	NR	[109]
MT477	Activates Nrf2 signaling pathway	Inhibits cell survival	Suppresses tumor growth in MiaPaca-2 xenograft model	[16]
Oleanolic acid (OA)	Activates ERK/Nrf2 signaling pathway	Suppression of ERK/Nrf2 pathways strengthens OA-induced apoptosis	Suppression of ERK/Nrf2 pathways enhances OA’s efficacy in a xenograft model	[45]
Fisetin	Activates Nrf2 signaling pathway	Inhibits cell growth	NR	[110]
QD325	Induces substantial ROS and activates Nrf2 signaling pathway	Inhibits cell growth	Suppresses tumor growth and enhances the efficacy of gemcitabine in MiaPaca-2 xenograft model	[17]
Resveratrol	Increases the expression and activity of Nrf2 and decreases the expression of NAF-1	Inhibits cell growth, induces cell apoptosis, and enhances cell sensitivity to gemcitabine	NR	[61]
Sulforaphane	Increases the expression and activity of Nrf2 through activating AMPK	Inhibits cell growth and invasion		
Alphalipoic acid	Increases the expression and activity of Nrf2	NR	Suppresses tumor growth in CFPAC-1 xenograft model	[111]
Nrf2 inhibitors				
Brusatol	Inhibits Nrf2 expression and activity increases ROS accumulation	Enhances growth inhibition and apoptosis caused by gemcitabine		[112]
Digoxin	Decreases Nrf2 mRNA level through inhibiting PI3K/Akt pathway	Enhances growth inhibition and apoptosis caused by gemcitabine	Sensitizes SW1990/Gem cells-derived xenografts to gemcitabine	[19]
PIK-75	Induces Nrf2 proteasomal degradation	Inhibits cell proliferation and survival and potentiates gemcitabine-induced cytotoxicity		
Clobetasol propionate (CP)	Prevents Nrf2 nuclear accumulation and induces its degradation	Inhibits growth of cancer cells with mutations in Keap1 or both in Keap1 and LKB1 alone or in combination with rapamycin	Suppresses growth of tumors containing mutations in both Keap1 and LKB1 alone or in combination with rapamycin	[113]
ML385	Directly binds to the CNC-bZIP domain of Nrf2 and inhibits its DNA binding activity	Exerts selective cytotoxicity against cancer cells with Keap1 mutations alone or in combination with carboplatin	Suppresses growth of tumors with Keap1 mutations alone or in combination with carboplatin	[114]
AEM1	Inhibits Nrf2 transcriptional activity	Inhibits the growth of cancer cells harboring Keap1 alone or in combination with chemotherapy		
Pterostilbene	Inhibits Nrf2 nuclear translocation and activity	Inhibits cell viability	Suppresses tumor growth in AsPC-1 xenograft model	[116]

NR, Not reported
All the other known Nrf2 activators have also been shown to inhibit PC cell survival in vitro and/or suppress the growth of PC xenograft tumors in vivo (Table 3). Among them, both MT477 and QD325 have shown in vivo efficacy in MiaPaca-2 xenograft model [16, 17], whereas alphasinoic acid has been found to inhibit the growth of CFPAC-1(2,121),(182,281) xenograft tumor [111]. However, it is still unknown whether Nrf2 activation is responsible for their anti-PC activities. They may activate Nrf2 by inducing cellular ROS accumulation and/or affecting Nrf2 upstream regulators, which need to be investigated for the detailed molecular mechanisms. More importantly, the mutations in Keap1 and constitutive activation of Nrf2 are frequently observed in various cancers, including PC, the safety and feasibility of using Nrf2 activators for treating PC should be carefully examined.

Nrf2 inhibitors

The currently identified Nrf2 inhibitors have been reported to suppress Nrf2 expression, induce Nrf2 protein degradation, or inhibit Nrf2 nuclear translocation (as shown in Fig. 4). A natural product termed brusatol has been reported to reduce Nrf2 protein levels without affecting the expression of Keap1 in PC cells [112]. The down-regulation of Nrf2 by brusatol further caused the repression of its downstream targets that are responsible for drug resistance (MRD1 and MRP5) and antioxidant response (HQQ1 and HO-1). Because the upregulation...
of Nrf2 contributes to gemcitabine resistance, brusatol has also been evaluated in combination with gemcitabine. As expected, brusatol significantly enhanced the anticancer activity of gemcitabine in PC cells in vitro and in vivo [112]. However, brusatol has been reported to be a broad inhibitor of protein translation and could not be used as a specific Nrf2 inhibitor. Another natural-product Nrf2 inhibitor, digoxin has been found to down-regulate Nrf2 expression at the transcription level by inhibiting PI3K (Phosphoinositide 3-kinase)/Akt pathway [19]. Consistently, digoxin-induced Nrf2 inhibition also reverses the resistance of gemcitabine-resistant PC cells to gemcitabine in vitro and in vivo [19].

Nrf2 protein stability is mainly mediated by the ubiquitin-proteasome system. There are at least three E3 ubiquitin ligase complexes, including Keap1-Cul3-RBX1 complex, β-TrCP, and HRD1 that control the ubiquitination of Nrf2 [23, 36, 38]. Therefore, inducing Nrf2 ubiquitination and proteasomal degradation may be an effective approach to inhibit Nrf2. PIK-75, a previously reported PI3K/DNA-PK inhibitor has recently been identified to inhibit Nrf2 by inducing its proteasome-mediated protein degradation [18]. Further studies have also shown its inhibitory effects on Nrf2 transcriptional activity. The anticancer efficacy of PIK-75 alone or in combination with gemcitabine has been demonstrated in PC models in vitro and in vivo [18]. Very recently, a drug-repositioning screening of ~4000 clinical compounds has been performed and led to the identification of a potent Nrf2 inhibitor, clobetasol propionate (CP) [113]. CP has been shown to prevent Nrf2 nuclear accumulation and promote its protein degradation in a glucocorticoid receptor-, GSK3β-, and β-TrCP-dependent manner. More importantly, CP not only inhibits the growth of tumors with Keap1 and/or LKB1 (liver kinase B1) mutations but also enhances the anticancer activity of rapamycin in vitro and in vivo [113]. These results have suggested that CP could be developed as a therapeutic agent for cancers, especially those with Nrf2 activation and Keap1 and LKB1 mutations.

Directly targeting the active domain of Nrf2 has recently been considered as a potential strategy for developing Nrf2 inhibitors. Singh et al have performed a high-throughput screening of ~400,000 small molecules and identified a specific Nrf2 inhibitor, termed ML385, which directly binds to the CNC-bZIP domain of Nrf2 and inhibits the DNA binding activity of the MafG-Nrf2 protein complex [114]. Further studies have shown that ML385 exerts selective cytotoxicity against cancer cells with Keap1 mutations and increases the toxicity of carboplatin in vitro and in vivo [114]. However, it is still unclear whether ML385 is a selective Nrf2 inhibitor or a broad inhibitor of various transcription factors. Another high-throughput screening has also led to the identification of a novel Nrf2 inhibitor, named AEM1, which can inhibit Nrf2 transcriptional activity and decrease the expression of its target genes [115]. AEM1 alone and in combination with chemotherapy has been shown to inhibit the growth of cancer cells harboring mutant Keap1 and constitutively activated Nrf2 in vitro and in vivo [115]. However, the cellular target of AEM1, as well as its associated molecular mechanism, is still unknown. In addition, the inhibition of nuclear Nrf2 and its transcription activity has been reported to be involved in the anti-PC activity of pterostilbene in vitro and in vivo, but the detailed molecular mechanisms are still not clear yet [116].

As summarized in Fig. 4 and Table 3, most of the known Nrf2 activators and inhibitors have been developed to (1) modulate Nrf2 expression, (2) target Nrf2 upstream regulators, (3) affect the nuclear translocation of Nrf2, or (4) target Keap1-Nrf2 binding. However, there are still several strategies that need to be further examined for developing novel and specific Nrf2-targeted agents, such as (5) affecting Nrf2 ubiquitination and degradation by targeting the β-TrCP-Nrf2 binding and HRD1-Nrf2 binding or developing Nrf2-targeted PROTACs (proteolysis targeting chimeras), (6) modulating the binding of Nrf2 with its co-activators in the nucleus, and (7) modulating the binding of Nrf2 with its downstream target genes.

Conclusions and future direction
During the early stage of pancreatic tumorigenesis, Nrf2 is tightly controlled by Keap1. Nrf2 activation by oxidative stress prevents PC initiation by regulating antioxidant and detoxification response and immune surveillance. In the phases of PC progression and metastasis, Keap1 is mutated or deleted and Nrf2 is constitutively activated. At this stage, the role of Nrf2 is switched from tumor suppression to tumor promotion. Nrf2 can promote pancreatic tumor growth, metastasis, and chemoresistance by activating its downstream target genes and promoting mRNA translation. It has been shown that Nrf2 activators can prevent pancreatic tumorigenesis but may also induce chemoresistance. Conversely, Nrf2 inhibitors can inhibit pancreatic tumor growth and metastasis and sensitize PC cells to chemotherapies, especially gemcitabine. However, the feasibility of the clinical application of Nrf2-targeted agents for PC prevention and therapy still needs further investigation due to the controversial roles of Nrf2 at different stages of PC. Furthermore, the majority of the current Nrf2 activators and inhibitors have been found to have other molecular targets and more specific Nrf2-targeted compounds should be developed. Several unexplored strategies, i.e. targeting the β-TrCP-Nrf2 binding and HRD1-Nrf2 binding or developing Nrf2 PROTACs may be investigated for specific Nrf2-targeted agents for PC prevention and therapy.
Abbreviations
ALDH1A1: Aldehyde dehydrogenase 1 family, member A1; ALDH3A1: Aldehyde dehydrogenase 3 family, member A1; ALDOA: Aldolase A; AMPPK: AMP-activated protein kinase; APE1/Ref-1: Apurinic/apyrimidinic endonuclease/rexoder factor-1; aPKC: Atypical protein kinase C; AREs: Antioxidant response elements; ATF3: Activating transcription factor 3; BTB domain: Broad complex, Transl with Bric-a-brac domain; bZIP: Basic-region leucine zipper; celRNA: Competing endogenous RNA; CNC: Cap N' collar; CP: Clobetasol propionate; CTR: C-terminal region; Cul: Cullin1; Cul3: Cullin3; dCK: Deoxycytidine kinase; EMT: Epithelial-to-mesenchymal transition; ER: Endoplasmic reticulum; ERR: Extracellular signal-regulated kinase; GRP78: Glucose regulatory protein 78; GSK-3β: Glycogen synthase kinase 3β; HDACis: Histone deacetylase inhibitors; HMBOX-1: Heme oxygenase-1; IL-6: Interleukin-6; IVR: Intervening region; JAK: Janus kinase; Keap1: Kelch-like ECH-associated protein 1; KPC::Keap1 mice: KPC mice bearing Keap1 deletion; KC: Keap1 mice; Mice harboring pancreas-specific K-ras mutation and Keap1 deletion; Keap1: Kelch-like ECH-associated protein 1; KPC: Keap1 mice: KPC mice bearing Keap1 deletion; KPCN mice: KPC mice bearing Nf2 deletion; KRAL: Keap1 regulation-associated IncRNA; LKB1: Liver kinase B1; LncRNA: Long non-coding RNA; MB01: Methyl-CpG binding domain protein 1; MD2M: Murine double minute 2; MDM2: Murine double minute 2; MDA: Mouse-derived suppressor cells; miRNAs: MicroRNAs; mTOR: Mammalian target of rapamycin; NHE: Nf2-E2 homology; NES: Nuclear export signal; NF-κB: Nuclear factor-κB; NLS: Nuclear localization signal; NRAL: Nf2 regulation-associated IncRNA; NF2: Nuclear factor-erythroid 2-related factor 2; NTR: N-terminal region; OA: Oleanolic acid; PALB2: Partner and localizer of BRCA2; PanIN: Pancreatic intraepithelial neoplasia; PC: Pancreatic ductal epithelial; PI3K: Phosphoinositide 3-kinase; PIN1: Peptidyl-prolyl cis/trans isomerase; p53: Phosphoinositide 3-kinase; PIN1: Peptidyl-prolyl cis/trans isomerase; NIMA-interacting 1; PROTACs: Proteolysis targeting chimeras; PSC: Pancreatic stellate cells; RBX1: Ring box protein-1; ROS: Reactive oxygen species; RXR: Retinoic X receptor α; SDH: Stomat-derived factor-1α; SFN: Sulforaphane; SMAF: Small MAF; STAT3: Signal transducer and activator of transcription 3; TGF-β1: Transforming growth factor-β1; UHRF1: Ubiquitin-like containing PHD and RING finger domains 1; UPR: Unfolded protein response; VEGF: Vascular endothelial growth factor; XBP1: X-box-binding protein 1; β-TRC: β-transducin repeat-containing protein

Acknowledgements
We thank the current and former members of our laboratories and collaborators for their contributions to the publications cited in this review article. The research field in Keap1 and NF2 is rapidly growing, and we apologize for not being able to cite all the recent publications, due to space limitation.

Authors’ contributions
JJQ and WDZ conceptualized the manuscript. JJQ, XDC, and JZ collected the literature, wrote the manuscript and made the figures. JJQ and WDZ edited and made significant revisions to all manuscripts. All authors read and approved the final manuscript.

Funding
JJQ was supported by National Natural Science Foundation of China (81903842) and Zhejiang Chinese Medical University Startup Funding (1111006014). WDZ was supported by Professor of Chang Jiang Scholars Program, NSFC (8151008030, 21472238), Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products (16DZ2280200), the Scientific Foundation of Shanghai Chang (14401900103, 14401900101), and the National Key Research and Development Program of China (2017YFC1700200). XDC was supported by the Zhejiang Provincial Science and Technology Projects (2018C37045) and Zhejiang Provincial Medical and Healthy Science and Technology Projects (WKJ-ZJ-1728 and 2016KYB220).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binlin Road, Binjiang District, Hangzhou 310053, Zhejiang, China. 2 Zhejiang Cancer Hospital, Hangzhou 310022, China. 3 Xianxi Institute of Traditional Chinese Medicine, Taizhou 318001, China. 4 School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai 200433, China. 5 Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Received: 13 July 2019 Accepted: 2 September 2019
Published online: 11 September 2019

References
1. Collisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20.
2. Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg. 2019;3(2):130–7.
3. Idachaba S, Dada O, Abimbola O, Olayinka O, Uma A, Olunu E, Fakoya AOJ. A review of pancreatic cancer: epidemiology, genetics, screening, and management. Open Access Maced J Med Sci. 2019;7(4):663–71.
4. Annese T, Tamma R, Ruggeri S, Rabbitti D. Angiogenesis in pancreatic cancer. Pre-clinical and clinical studies. Cancers (Basel). 2019;11(3):381.
5. Heinrich S, Lang H. Neoadjuvant therapy of pancreatic cancer: definitions and benefits. Int J Mol Sci. 2017;18(8):1622.
6. Strimpakos A, Saif MW, Syrigos KN. Pancreatic cancer: from molecular pathogenesis to targeted therapy. Cancer Metastasis Rev. 2008;27(3):495–522.
7. Tanaka S. Molecular pathogenesis and targeted therapy of pancreatic cancer. Ann Surg Oncol. 2016;23(Suppl 2):S197–205.
8. Chandana S, Babiker HM, Mahadevan D. Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC). Expert Opin Inv Drug. 2019;28(2):161–77.
9. Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP, et al. Nf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37.
10. Choi IC, Jafarnejad SM, Ponz-Sanz M, Park Y, Rivera K, Palm W, Wilson J, Sangar V, Hsu H, Cheng W, et al. Nf2 promotes tumor maintenance by modulating miRNA translation in pancreatic cancer. Cell. 2016;166(6):963–76.
11. Thimmulappa RK, Mai KH, Srivasa S, Kessler TW, Yamamoto M, Biwal S. Identification of Nf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62(18):5196–203.
12. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:23–60.
13. Saddawi-Konefka R, O’Sullivan T, Gross ET, Washington A Jr, Bui JD. Tumor-expressed IL-17D recruits NK cells to reject tumors. Oncoimmunology. 2014; 3(12):e958453.
14. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nf2 pathway in pancreatic cancer cells. Biochim Biophys Acta Gen Subj. 2017;1861(2):296–305.
15. Sano M, Homma T, Hayashi E, Noda H, Amano Y, Tsujimura R, Yamada T, Quattrrochi B, Nemoto N. Clinicopathological characteristics of anaplastic carcinoma of the pancreas with haddobid features. Virchows Arch. 2014; 465(3):531–8.
16. Jasinski P, Zvolak P, Terai K, Vogel RI, Borja-Cacho D, Dudek AZ. MT477 acts in tumor cells as an AURKA inhibitor and strongly induces NRF-2 signaling. Anticanancer Res. 2011;31(4):1181–7.
17. Kuang Y, Sechi M, Nurra S, Ljungman M, Neoptolemos J, Design and synthesis of novel reactive oxygen species inducers for the treatment of pancreatic ductal adenocarcinoma. J Med Chem. 2018;61(4):1576–94.
18. Dong HQ, Yi Y, Wang H, Hong Y, Tang W, Wang A, Seong BS, Ye I. Inhibition of NFR2 by Pit-75 augments sensitivity of pancreatic cancer cells to gemcitabine. Int J Oncol. 2014;44(3):959–69.
19. Zhou Y, Zhou Y, Yang M, Wang K, Liu Y, Zhang M, Yang Y, Jin C, Wang R, Hu R. Diginox sensitizes gemcitabine-resistant pancreatic cancer cells to
gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol. 2019;22:
101131.

20. Sun Z, Chin YE, Zhang DD. Acetylation of Nrf2 by p300/CBP augments
promoter-specific DNA binding of Nrf2 during the antioxidant response.
Mol Cell Biol. 2009;29(10):2658–72.

21. Theodore M, Kawai Y, Yang J, Klishchenko Y, Reddy SP, Villetta F, Arinez U.
Multiple nuclear localization signals function in the nuclear import of the
transcription factor Nrf2. J Biol Chem. 2008;283(14):8984–94.

22. Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M,
Hayes JD, Itoh K, Yamamoto M. Evolutionary conserved N-terminal domain of
Nrf2 is essential for the Keap1-mediated degradation of the protein by
proteasome. Arch Biochem Biophys. 2005;433(2):342–50.

23. Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T,
Tobon-Velasco JC, Devilver H, Garcia-Mayoral MF, Van Leuven F, et al.
Structural and functional characterization of Nrf2 degradation by the
glycogen synthase kinase 3 beta-TRCP axis. Mol Cell Biol. 2012;32(17):
3486–99.

24. Noi P, Nguyen T, Sherratt PJ, Pickett CB. The carboxy-terminal Neh3 domain of
Nrf2 is required for transcriptional activation. Mol Cell Biol. 2005;25(24):
10895–906.

25. Katoh Y, Iida K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two
domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and
synergistically activate transcription. Genes Cells. 2001;6(10):857–68.

26. Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li L, Luo L, Hayes JD,
et al. RbXAlpha inhibits the Nrf2-ARE signaling pathway through a
direct interaction with the Neh7 domain of Nrf2. Cancer Res. 2013;
73(10):3097–108.

27. Li X, Zhang D, Hannink M, Beamer LJ. Crystal structure of the Kelch domain of
human Keap1. J Biol Chem. 2004;279(52):54750–5.

28. Zipper LM, Mulcahy RT. The Keap1 BTB/POZ dimerization function is required to
sequester Nrf2 in cytoplasm. J Biol Chem. 2002;277(39):
36544–52.

29. Hayes JD, McMahon M. Nrf2 and KEAP1 mutations: permanent activation
of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–88.

30. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou
YS, Ueno I, Sakamaki A, Tong KI, et al. The selective autophagy substrate
p62 activates the stress responsive transcription factor Nrf2 through
inactivation of Keap1. Nat Cell Biol. 2010;12(3):213–23.

31. Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, Yamamoto M.
Keap1 is a forked-stem dimer structure with two large spheres enclosing
the intervening, double glycine repeat, and C-terminal domains. Proc Natl
Acad Sci U S A. 2010;107(7):2842–7.

32. McMahon M, Lamont DJ, Beattie KA, Hayes JD. Keap1 perceives stress via
three sensors for the endogenous signaling molecules nitric oxide, zinc, and
alkalins. Proc Natl Acad Sci U S A. 2010;107(44):18838–43.

33. Pandey P, Singh AK, Singh M, Tewari M, Shukla HS, Gambhir IS. The see-saw
of Keap1-Nrf2 pathway in cancer. Crit Rev Oncol Hematol. 2011;76:15–9.

34. Rojo de la Vega M, Chapman E, Zhang DD. Nrf2 and the hallmarks of
cancer. Cancer Cell. 2018;34(1):21–43.

35. Cloer EW, Goldfarb D, Schrunk TP, Weissman BE, Major MB. Nrf2 activation in
cancer: from DNA to protein. Cancer Res. 2019;79(5):889–900.

36. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C,
Shyur C, Wakabayashi N, Kensler TW. Regulation of notch1 signaling by
nrf2. Implications for tissue regeneration. Sci Signal. 2010;3(130):ra52.

37. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link
of binding sites for Nrf2 identifies novel targets in cell survival response
through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010;
38(17):5718–34.

38. De Nicola GM, Chen PH, Mullarky E, Suddherd JA, Hu Z, Wu D, Tang H, Xie Y,
Asara JM, Huffman KE, et al. Nrf2 regulates selenium biosynthesis in non-cell
small cell lung cancer. J Nat Genet. 2015;47(12):1475–81.

39. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J. Identification of
activating transcription factor 4 (ATF4) as an Nrf2-interacting protein.
Implication for heme oxygenase-1 gene regulation. J Biol Chem. 2001;
276(24):20888–95.

40. Yoon DS, Choi Y, Lee JW. Cellular localization of Nrf2 determines the self-
renewal and oncogenic differentiation potential of human MScs via the
P3-SIRT1 axis. Cell Death Dis. 2016;7:e2093.

41. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link
and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29.

42. Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD. Direct
interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-
mediated antioxidant response. Mol Cell. 2009;34(6):663–73.

43. Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S,
Fagman JB, Browne CD, et al. Stress-activated Klf4/MDM2 cascade controls
neoplastic progression in pancreas. Cancer Cell. 2017;32(6):824–39 e828.

44. Cheng L, Yan B, Chen K, Jiang Z, Zhou C, Cao J, Qian W, Li J, Sun L, Ma J, et al.
Reververatrol-induced downregulation of NAF1–1 enhances the sensitivity of
pancreatic cancer cells to gemcitabine via the ROS/NFκB signaling pathways.
Oxidative Med Cell Longev. 2018;2018:9482018.

45. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-
Keap1-Nrf2 pathway protects against ferroptosis in hepatocellular carcinoma
cells. Hepatology. 2016;63(1):173–84.
63. Osburn VO, Wakabayashi N, Misra V, Nilles T, Biswal S, Trush MA, Kenstler TW. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch Biochem Biophys. 2006;454(1):7–15.

64. You A, Nam CW, Wakabayashi N, Yamamoto M, Kenstler TW, Kwak MK. Transcription factor Nrf2 maintains the basic expression of Amdr2: an implication of the regulation of p53 signaling by Nrf2. Arch Biochem Biophys. 2011;507(2):356–64.

65. Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, Van Leuven F, Rabano A, Yamamoto M, Rojo AL, Cuadrado A. Transcription factor NFE2L2/Nrf2 is a regulator of macroautophagy genes. Autophagy. 2012;10(8):1902–16.

66. Toth RK, Warfel NA. Strange bedfellows: Nuclear factor, erythroid 2-Like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants. (Basel). 2016;7(22).

67. Oh ET, Kim JW, Kim JM, Kim SJ, Lee JS, Hong SS, Goodwin J, Rutenborg RJ, Jung MG, Lee HJ, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1alpha. Nat Commun. 2016;7:13593.

68. Zhao Q, Mao A, Guo R, Zhang L, Yan J, Sun C, Tang J, Ye Y, Zhang Y, Zhang H. Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-notch axis. Oncotarget. 2017;8(22):36603–13.

69. Wagner PJ, Park HR, Wang Z, Kircher W, Rei Y, Su L, Stanfield K, Guillarte TR, Wright RO, Christian DC, et al. In vitro effects of lead on gene expression in neural stem cells and associations between up-regulated genes and cognitive scores in children. Environ Health Perspect. 2017;125(4):721–9.

70. Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, Lee JM, Kallakury BV, Lee JI. Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells. Pancreas. 2010;39(4):463–72.

71. Heiss EH, Schachner D, Zimmermann K, Dirsch VM. Glucose availability promotes mutant K-ras/p53-driven pancreatic carcinogenesis: an in vivo model. Carcinogenesis. 2010;31(10):1833–43.

72. Chio II, Tuveson DA. ROS in translation: chink in the armor. Cell Cycle. 2017;16(4):297–8.

73. DeNicola GM, Karreth FA, Gopinathan A, Wei C, Frese K, Mangal D, Yu RH, Eoe CJ, Calhoun ES, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106–9.

74. Hamada S, Shimosegawa T, Taguchi K, Nishimura T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314(1):G65–74.

75. Tummall KS, Kottakis F, Bardeesy N. Nrf2: translating the redox code. Trends Mol Med. 2016;22(10):829–31.

76. Kha ML, Hesse L, Deisinger F, Sipos B, Rocken C, Arlt A, Sebens S, Helm O, Klaassen CD. Beneficial role of Nrf2 in regulating NADPH–cytochrome P450 reductase activity and hypoxia-inducible factor-1:359 HIF-1α. Nat Commun. 2016;7:85.

77. Xiong X, Jiang Z, Chen K, Li X, Wang Z, Wu Z, Ma Q, Duan W. Activation of Nrf2 via sulfophosphate inhibits high glucose-induced progression of pancreatic cancer via AMPK dependent signaling. Cell Physiol Biochem. 2018;50(3):1201–15.

78. Xiao C, Li RE, Qin JJ, Voruganti S, Nijampatnam B, Velu S, Zhou M. Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-notch axis. Oncotarget. 2017;8(22):36603–13.

79. Nahdi A, John A, Raza H. Elucidation of molecular mechanisms of streptozocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-SF pancreatic beta-cells. Oxidative Med Cell Longev. 2017;2017:7054272.

80. Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I. Soluble factors from stellate cells induce pancreatic cancer cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification. Oncotarget. 2016;7(24):36719–32.

81. Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, Shimada M. Nrf2 activation drive macrophage polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal. 2018;16(1):54.

82. Tanaka N, Moriguchi T, Motohashi H, Nakayama K, et al. Nrf2 suppresses DeltaZip2. Oncogene. 2019;38(9):1461–9.

83. Wang W, Qin JJ, Voruganti S, Nijampatnam B, Velu S, Zhou M. HIF-1α promotes mutant K-ras/p53-driven pancreatic carcinogenesis. Carcinogenesis. 2017;38(6):661–70.

84. Genrich G, Gruppa M, Lenk L, Helm O, Broich A, Freitag-Wolf S, Rocken C, Sipos B, Schafer H, Sebens S. The anti-oxidative transcription factor nuclear factor E2 related factor-2 (Nrf2) counteracts TGFBETA-1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGFBeta-1. BMC Cancer. 2016;16:1515.

85. Al Saati T, Clerc P, Hanoun N, Peuget S, Lulka H, Gigoux V, Capilla F, Beluchon B, Couvelard A, Selves J, et al. Oxidative stress induced by inactivation of TP53NIP1 cooperates with Ka6G12D to initiate and promote pancreatic carcinogenesis in the murine pancreas. Am J Pathol. 2019;182(6):1996–2004.

86. Yi YW, Oh S. Comparative analysis of Nrf2-responsive gene expression in AcPc-1 pancreatic cancer cell line. Genes Genomics. 2015;37(3):97–109.

87. Kim MH, Kim EH, Jung HS, Yang D, Park EY, Jun HS. EX4 stabilizes and activates Nrf2 via PKCdelta, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol Appl Pharmacol. 2017;315:60–9.

88. Chen X, Jiang Z, Chen K, Li X, Wang Z, Wu Z, Ma Q, Duan W. Activation of Nrf2 via sulfophosphate inhibits high glucose-induced progression of pancreatic cancer via AMPK dependent signaling. Cell Physiol Biochem. 2018;50(3):1201–15.

89. Sato H, Morinaga T, Taguchi K, Takai J, Maher JM, Suzuki T, Winnard PT Jr, Raman V, Ebina M, Nukiwa T, et al. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis. 2010;31(10):1833–43.
105. Li X, Liang M, Jiang J, He R, Wang M, Guo X, Shen M, Qin R. Combined inhibition of autophagy and Nrf2 signaling augments bortezomib-induced apoptosis by increasing ROS production and ER stress in pancreatic cancer cells. Int J Biol Sci. 2018;14(10):1291–305.

106. Ju HQ, Gocho T, Aguilar M, Wu M, Zhuang ZN, Fu J, Yanaga K, Huang P, Chiao PJ. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol Cancer Ther. 2015;14(3):788–98.

107. Duong HQ, You KS, Oh S, Kwak SJ, Seong YS. Silencing of Nrf2 reduces the expression of ALDH1A1 and ALDH4A1 and sensitizes to S-FU in pancreatic cancer cells. Antioxidants (Basel). 2017;6(3):52.

108. Palam LR, Gore J, Craven KE, Wilson JL, Koc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 2015;6:e1913.

109. Arora R, Sawney S, Saini V, Steffi C, Tivari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15(1):64.

110. Youns M, Abdel Halim Hegazy W. The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PloS One. 2017;12(1):e0169335.

111. Sun H, Guo X, Wang Z, Wang P, Zhang Z, Dong J, Zhuang R, Zhou Y, Ma G, Cai W. Alphalipoic acid prevents oxidative stress and peripheral neuropathy in nab-paclitaxel-treated rats through the Nrf2 signalling pathway. Oxidative Med Cell Longev. 2019;2019:42732.

112. Xiang Y, Ye W, Huang C, Yu D, Chen H, Deng T, Zhang F, Lou B, Zhang J, Shi K, et al. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxidative Med Cell Longev. 2018;2018:2360427.

113. Choi TJ, Jung BJ, Lee SH, Yoo HS, Shin EA, Ko HJ, Chang S, Kim SY, Jeon SM. A clinical drug library screen identifies clobetasol propionate as an Nrf2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 2017;36(37):5285–95.

114. Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, et al. Small molecule inhibitor of Nrf2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016;11(11):2314–25.

115. Bollong MJ, Yun H, Sherwood L, Woods AK, Laison LL, Schultz PG. A small molecule inhibits deregulated Nrf2 transcriptional activity in cancer. ACS Chem Biol. 2015;10(10):2193–8.

116. Benlloch M, Obrador E, Valles SL, Rodriguez ML, Sirerol JA, Alcacer J, Pellicer JA, Salvador R, Cerda C, Saez GT, et al. Pterostilbene decreases the antioxidant defenses of aggressive cancer cells in vivo: a physiological glucocorticoids- and Nrf2-dependent mechanism. Antioxid Redox Signal. 2016;24(17):974–90.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.