Medusa: software to build and analyze ensembles of genome-scale metabolic network reconstructions

Gregory L. Medlock¹ and Jason A. Papin¹,²,³,*

¹Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
²Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
³Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
*Corresponding author, papin@virginia.edu

Abstract

Uncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy package for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object, providing functions for the generation of ensembles using experimental data, and extending constraint-based analyses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles, perform ensemble simulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index (https://pypi.org/) and from github (https://github.com/gregmedlock/Medusa/), and comprehensive documentation is available at https://medusa.readthedocs.io/en/latest/.

Introduction

Hypothesis-driven computational models of biological systems are being increasingly applied to guide experimentation [1]. In hypothesis-driven modeling, in contrast to data-driven modeling [2], hypothesized biological parts, functions, and interactions are mathematically formalized to allow in silico experimentation. These models take many forms, ranging in complexity from a single linear equation relating two quantities to systems of nonlinear differential equations describing dynamic systems.

Across all hypothesis-driven modeling frameworks, the choice of model scope and parameter values may strongly influence simulation results. For some types of hypothesis-driven models in biology, approaches from other fields have been applied to quantify the influence of parameter values on simulation outcomes, such as sensitivity analysis of dynamical models [3]. For network-based models of biological systems such as metabolic or signaling networks, the presence or absence of a network component may be uncertain due to lack of characterization or uncertainty in data itself. Traditional sensitivity analysis methods have recently been reformulated for these systems to analyze sensitivity to topological variation, but these methods have not seen wide adoption [4]. While uncertainty in network structure poses analytic difficulties, it also presents an actionable framework to accelerate biological discovery. Alternative network structures can guide experimental design, allowing comparison of simulation results for alternative networks to experimental data to identify the network structure most consistent with biological behavior (i.e. model selection) [5]. This uncertainty can also be used to prioritize experiments that will maximally improve confidence in the simulations performed with a model (i.e. uncertainty reduction) [6].

In studies of metabolism, genome-scale metabolic network reconstructions (GENREs) have emerged as a useful formalism for hypothesis-driven modeling [7]. In conjunction with biological objective functions, such as maximization of growth rate, GENREs can be used to construct genome-scale metabolic models (GEMs). In addition to topological uncertainty (e.g. presence/absence of reactions in a network), simulations with GEMs generally yield many alternative solutions. Even the simplest simulations that can be performed with GEMs exhibit this behavior. This is the case for flux balance analysis (FBA), in which a pseudo-steady state is assumed, and flux values are found for all reactions in a GEM such that an objective function is optimized [8]. While a single global maximum value for the objective is guaranteed to be found, flux through every other component of the network is only constrained within a solution space, not to a single value. As a result, even though performing FBA yields a single
value for the flux through reactions in a network, there are an infinite number of feasible flux values within the range determined by the solution space for some reactions. Techniques such as flux variability analysis and flux sampling have been developed to explore the space of alternative solutions in this scenario [9, 10].

A myriad of additional algorithms have been developed for the analysis of GEMs for strain engineering, contextualization of experimental data, and building cell- and tissue-type specific GEMs [11–13]. In addition to optimization problems that can be solved using linear programming such as FBA, problems have been formulated to take advantage of mixed integer linear programming (MILP; see [14] for a review of optimization problems in systems biology). MILP employs binary state variables during optimization to solve problems that involve discrete activation or inactivation of variables. MILP problems are particularly well-suited to network-based models, since they allow switch-like behavior that can include or exclude network components (e.g. shutting reactions off/on). MILP has been used widely for gap-filling of GEMs, a process in which constraints or objectives are set to recapitulate a known phenotype by adding biochemical functions from a universal set of reactions [15]. In MILP problems used for gap-filling, the objective function is generally minimization of the number of modifications to a GEM that must be made to satisfy the constraints imposed (e.g. metabolite uptake or secretion, production of biomass). One consequence of this formulation is that alternative solutions, which contain unique sets of reactions which need to be altered in the network or added, are common for large networks that have a large space of potential solutions to draw from (e.g. a large universal set of reactions). These alternative optima in MILP problems are increasingly being considered and leveraged to understand redundancy in solutions and whether or not portions of a solution may be spurious [16–18].

It has been shown that the order in which separate instances of gap-filling are applied to the same network (e.g. gap-filling for growth on individual carbon sources iteratively) strongly influences which reactions are included in the resulting network [19]. In this same study, the alternative solutions generated during this process were used to improve gene essentiality predictions using EnsembleFBA, a technique in which sets of alternative GEMs are used to perform FBA to determine gene essentiality. Using the entire ensemble, performance can be tuned by varying the voting threshold required to make a specific prediction. This is analogous to the threshold-based voting procedure used to construct receiver operating characteristic curves for ensemble-based machine learning models such as random forest [20]. This approach is likely to be highly beneficial for studies of organisms for which little biochemical data are available, which typically have many gaps in their GENRE and thus have many highly-variable alternative gap-filling solutions. Although a nascent approach for studying GENREs, we have built on these observations, and ensemble generation and analysis have been applied in several cases [6, 19, 21, 22].

Here, we present Medusa, a Python package for the generation and analysis of ensembles of GENREs. Medusa provides a framework for compactly representing ensembles of GENREs, avoiding the redundanccy of storing many separate models while still being flexible enough to represent variation in any component within a GENRE. Medusa manages ensemble storage and indexing during simulation, allowing users to interact with an
entire ensemble in the same way they would interact with an individual GENRE using any constraint-based reconstruction and analysis (COBRA) method. Furthermore, by standardizing the representation of ensembles and their interface with existing COBRA methods, Medusa enables the application of supervised and unsupervised machine learning to gain insight into the influence of varying components within an ensemble of GENREs on the predictions they make. The architecture and functionality of Medusa were designed to make ensemble analyses as accessible and usable as COBRA methods applied to single networks.

Design and Implementation

Architecture overview and dependencies

Medusa is built on top of COBRApy, a Python-based package in which many COBRA methods are implemented [23]. Although a dependency-free approach in which ensemble simulation methods are implemented from the ground up could be more efficient, we chose to extend COBRApy to greatly decrease the size and complexity of the codebase and to reduce the domain-specific knowledge required to use Medusa and understand the source code (i.e. decrease the effort for existing COBRApy users and contributors). As such, the architecture of Medusa closely mimics COBRApy (Figure 1).

At the time of this writing, GENREs are represented within COBRApy using a Model class. The Model class manages the interface between COBRApy and numerical solvers through optlang, a Python package for formulating and solving optimization problems that extends the symbolic mathematics package SymPy [24, 25]. GENREs are represented by a Model using additional classes with biological analogs (Metabolite, Reaction, and Gene). Objects belonging to each of these classes are stored within container-like objects (metabolites, reactions, and genes, respectively) that are each an attribute of a Model. Each Metabolite, Reaction, and Gene has attributes which might affect simulations performed using the Model, such as the lower and upper bounds of flux through each Reaction or the gene-protein-reaction relationship for each Reaction, which link them to specific Genes.

In Medusa, ensemble functionality is introduced using three new classes. The first, Feature, describes a GENRE component which has a parameter that varies across an ensemble (e.g. a reaction that is reversible in some ensemble members but irreversible in others). The second, Member, describes individual GENREs within an ensemble and their state for each Feature. The third is the Ensemble class, which references all Features and Members associated with an ensemble of GENREs, as well as a COBRApy Model, referred to as the “base model”. This base model holds all COBRApy objects that might be associated with any Member in the Ensemble. Within an Ensemble, each Feature references the component within the base model (Metabolite, Reaction, or Gene) for which it encodes alternative parameter values, as well as the attribute within that component that is modified (e.g. the upper bound of flux through a reaction). When a simulation is to be performed using a particular GENRE within an Ensemble, Medusa changes the state of the base model to represent the proper state for the corresponding Member for every Feature. Thus, the Ensemble can represent any number of variants in GENRE structure throughout an ensemble (e.g. reaction presence/absence, reversibility, alternative gene-protein-reaction relationships) and can be used to apply any methods implemented in COBRApy. Furthermore, this implementation has a memory footprint only slightly larger than a single COBRApy Model, and facilitates queuing of simulations for parallel processing.

Medusa is developed partially with test-driven development. Unit tests are implemented using the pytest package (https://docs.pytest.org/en/latest/) and are run automatically with each modification to the Medusa github repository via continuous integration with TravisCI (Travis CI, GMBH, Berlin, Germany). Support is provided for Python version 3.4 and later.

Results

Performing ensemble simulations

Currently, users can perform FBA, flux variability analysis (FVA), single gene deletions, and single reaction deletions using an ensemble in Medusa. In each case, the simulations are performed with a single function, which returns a collection of results, where each entry corresponds to the simulation results for a single ensemble member. Users have the option of performing simulations using the entire ensemble, a specific set of Members, or a random fraction of Members. For the currently implemented analyses, the collection of results are returned as a DataFrame from the pandas Python package, where each column corresponds to the entry normally populating the results for a single network (e.g. a reaction ID for FBA/FVA, a gene ID for single gene deletions), and each row corresponds to an ensemble Member (except for FVA, where two columns are required for each ensemble member to describe the minimum and maximum). See Figure 2 for a schematic describing how the shape of data describing simulation results changes for each simulation method.

Because the Ensemble object implemented in Medusa maintains a COBRApy Model object, users can also per-
form any custom simulation they would like by 1) manipulating the COBRApy Model to be suitable for their simulations (e.g. set custom constraints or objectives), 2) setting the state of the model to represent an ensemble member using Medusa functionality, 3) performing their simulation, then 4) iterating through any other ensemble members they would like and performing steps 2-3.

Comparing ensemble simulations

When performing simulations with an ensemble rather than a single model, results shift from single values to distributions. While this explicitly accounts for uncertainty, it also requires that statistical approaches are applied to interpret differences in distributions. In the simplest case, performing ensemble FBA to predict growth rate on each of two different media conditions for a single bacterial species generates two distributions of predicted growth rates (Figure 3A). A paired univariate test (e.g. t-test or a non-parametric equivalent) can be used to determine whether the predicted growth rate is equal in these two conditions. This example is demonstrated in full in the Medusa documentation at https://medusa.readthedocs.io/en/latest/stats_compare.html.

Coupling ensemble modeling with machine learning

The availability of ensemble generation and simulation methods in Medusa provides ample opportunity to apply machine learning to leverage variation in ensembles. One application area that we have developed focuses on guiding the curation of genome-scale metabolic network reconstructions by attributing simulation uncertainty to network components in the ensemble, then prioritizing curation of these components based on how much they contribute to simulation uncertainty [6]. This approach can be broken down into four steps: 1) ensemble generation, 2) ensemble simulations, 3) unsupervised learning to summarize simulation uncertainty, and 4) supervised learning to associate uncertainty in network structure with uncertainty in simulations. In addition to our published work utilizing Medusa for this purpose, we provide an example in the Medusa documentation that applies this method to a single ensemble FBA simulation: https://medusa.readthedocs.io/en/latest/machine_learning.html.

In this example, a previously generated ensemble is loaded into Medusa, media conditions are set to allow up-take of any metabolites with transporters in the ensemble,
and ensemble FBA is performed. Then, a random forest regressor is used to predict the simulated values for flux through biomass (e.g. the values generated with ensemble FBA) for each ensemble member using the Medusa states for the same ensemble member as input. Examining the most predictive feature in the random forest regressor, we perform a literature search and find that the feature is likely not present for the bacterial species under study (i.e. the species does not have the ability to catalyze the reaction described by the feature). Based on this examination, we disable the feature (which is a reaction in this case), perform ensemble FBA again, and find that this curation step has reduced the average predicted flux through biomass (Figure 3B). Although we use this approach to guide curation, we also envision the same process having great utility for attributing simulation uncertainty more generically, such as with simulations performed using an ensemble generated using omics integration methods [11].

Generating ensembles from phenotypic data

Medusa implements a previously-developed algorithm for gapfilling GENREs using growth phenotyping data [6, 19]. The algorithm takes a GENRE with an objective function and a dataset of binary growth/no-growth calls on defined media conditions as input. The objective function is then set as a constraint with bounds such that any feasible flux distribution must enable activity within the bounds (e.g. at least some amount of flux through biomass production or a demand reaction). A new objective function is set to minimize the sum of fluxes through reactions in the reaction database, and the problem is solved to identify reactions taking part in this minimal flux activity. To generate a single gapfilled ensemble member, the draft GENRE is iteratively gapfilled on each positive growth media condition. Variation is introduced by randomizing the order in which media conditions are used for gapfilling. See Figure 4A-B for a schematic summarizing this approach.

This gapfilling process is implemented in Medusa through a single function, and a full example of preparing a model and all data necessary for this process are provided in the Medusa documentation at https://medusa.readthedocs.io/en/latest/creating_ensemble.html. Although Medusa implements the previously published version of this approach, it also allows users to randomly subsample a fraction of conditions to generate more variation in the resulting gap-filled GENREs.

Availability and Future Directions

Stable releases of Medusa are available through the Python package index (PyPI, https://pypi.org/)
Figure 4: **Iterative gapfilling strategy used to generate ensembles implemented in Medusa.**

A) Given a list of conditions in which an organism satisfied some objective (e.g., secretion of a specific metabolite, growth) and a draft GENRE for the organism, gapfilling is performed sequentially on each condition. After each gapfill step on a single condition, reactions in the gapfill solution are added to the GENRE before starting gapfilling on the next condition. In this schematic, all conditions are used, but Medusa also allows users to randomly subsample a fraction of conditions to generate more variation in the resulting gapfilled GENREs. Here, gapfilling is performed to enable growth in the presence of each individual metabolite (indicated by a green arrow for a single condition during each gapfill step).

B) Medusa iteratively performs gapfilling as shown in panel A, then shuffles the order of conditions to introduce variation in the gapfill solution. After a user-defined number of cycles through the process shown in panel A, Medusa generates an ensemble containing all unique GENREs that resulted from gapfilling.

as well as github (https://github.com/gregmedlock/Medusa/). Documentation is available through Readthedocs at https://medusa.readthedocs.io. Current development efforts are focused on parallelization and integrating Medusa with other Python-based tools in the COBRA community.

Currently, the only high-level function available to users of Medusa to share ensembles generates a serialized version of the Ensemble object using the pickle package (the standard Python library package for serializing objects). Alternatively, users can save the base_model for any Ensemble as a Systems Biology Markup Language (SBML, [26]) file using COBRApy, then choose the formatting option of their liking to save Feature and Member information for the Ensemble. In SBML, there is not currently a standardized way to represent ensembles as required in Medusa. We plan on extending the Flux Balance Constraints package, an extension to SBML intended for constraint-based models, to enable standardized sharing of Medusa ensembles. Until then, we recommend users include both an SBML file for the base_model of each Ensemble and the serialized pickle at time of publication.

Acknowledgements

We acknowledge funding from the National Institutes of Health R01GM108501, T32LM012416, the Thomas F. and Kate Miller Jeffress Memorial Trust, and a Wagner
predoctoral fellowship to GLM. We thank members of the Papin lab for feedback on documentation and usability of Medusa.

References

[1] H Kitano. “Systems biology: a brief overview”. In: Science 295.5560 (Mar. 2002), pp. 1662–1664.
[2] KA Janes and MB Yaffe. “Data-driven modelling of signal-transduction networks”. In: Nature Reviews Molecular Cell Biology 7.11 (Nov. 2006), pp. 820–828. DOI: 10.1038/nrm2041.
[3] S Marino, IB Hogue, CJ Ray, and DE Kirschner. “A methodology for performing global uncertainty and sensitivity analysis in systems biology”. In: J. Theor. Biol. 254.1 (Sept. 2008), pp. 178–196.
[4] AC Babtie, P Kirk, and MPH Stumpf. “Topological sensitivity analysis for systems biology”. In: Proc. Natl. Acad. Sci. U. S. A. 111.52 (Dec. 2014), pp. 18507–18512.
[5] D Silk et al. “Model selection in systems biology depends on experimental design”. In: PLoS Comput. Biol. 10.6 (June 2014), e1003650.
[6] GL Medlock and JA Papin. “Guiding the refinement of biochemical knowledgebases with ensembles of metabolic networks and semi-supervised learning”. In: bioRxiv (Nov. 2018), p. 460071.
[7] MA Oberhardt, BO Palsson, and JA Papin. “Applications of genome-scale metabolic reconstructions”. en. In: Mol. Syst. Biol. 5.1 (Jan. 2009), p. 320.
[8] JD Orth, I Thiele, and BO Palsson. “What is flux balance analysis?” In: Nat. Biotechnol. 28 (Mar. 2010), p. 245.
[9] R Mahadevan and CH Schilling. “The effects of alternate optimal solutions in constraint-based genome-scale metabolic models”. In: Metab. Eng. 5.4 (Oct. 2003), pp. 264–276.
[10] J Schellenberger and BO Palsson. “Use of randomized sampling for analysis of metabolic networks”. In: J. Biol. Chem. 284.9 (Feb. 2009), pp. 5457–5461.
[11] AS Blazier and JA Papin. “Integration of expression data in genome-scale metabolic network reconstructions”. In: Front. Physiol. 3 (Aug. 2012), p. 299.
[12] D Machado and M Herrgård. “Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism”. In: PLoS Comput. Biol. 10.4 (Apr. 2014), e1003580.
[13] L Wang, S Dash, CY Ng, and CD Maranas. “A review of computational tools for design and reconstruction of metabolic pathways”. In: Synth Syst Biotechnol 2.4 (Dec. 2017), pp. 243–252.
[14] JR Banga. “Optimization in computational systems biology”. In: BMC Systems Biology 2.1 (May 2008), p. 47. ISSN: 1752-0509. DOI: 10.1186/1752-0509-2-47.
[15] JL Reed et al. “Systems approach to refining genome annotation”. In: Proc. Natl. Acad. Sci. U. S. A. 103.46 (Nov. 2006), pp. 17480–17484.
[16] PD Karp, D Weaver, and M Latendresse. “How accurate is automated gap filling of metabolic models?” In: BMC Syst. Biol. 12.1 (June 2018), p. 73.
[17] S Robaina-Estévez and Z Nikolski. “On the effects of alternative optima in context-specific metabolic model predictions”. In: PLoS Comput. Biol. 13.5 (May 2017), e1005568.
[18] S Rossell, MA Huynen, and RA Notebaart. “Inferring metabolic states in uncharacterized environments using gene-expression measurements”. In: PLoS Comput. Biol. 9.3 (Mar. 2013), e1002988.
[19] MB Biggs and JA Papin. “Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA”. In: PLoS Comput. Biol. 13.3 (Mar. 2017), e1005413.
[20] L Breiman. “Random Forests”. en. In: Mach. Learn. 45.1 (Oct. 2001), pp. 5–32.
[21] D Machado, S Andrejev, M Tramontano, and KR Patil. “Fast automated reconstruction of genome-scale metabolic models for microbial species and communities”. In: bioRxiv (2018).
[22] GL Medlock et al. “Inferring Metabolic Mechanisms of Interaction within a Defined Gut Microbiota”. In: Cell Syst 7.3 (Sept. 2018), 245–257.e7.
[23] A Ebrahim, JA Lerman, BO Palsson, and DR Hyeok. “COBRApy: COnstraints-Based Reconstruction and Analysis for Python”. In: BMC Syst. Biol. 7 (Aug. 2013), p. 74.
[24] K Jensen, J Cardoso, et al. “Optlang: An algebraic modeling language for mathematical optimization”. In: Journal of Open Source (2016).
[25] A Meurer et al. “SymPy: symbolic computing in Python”. en. In: PeerJ Comput. Sci. 3 (Jan. 2017), e103.
[26] M Hucka et al. “The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models”. In: Bioinformatics 19.4 (Mar. 2003), pp. 524–531.