Research Article
On the Inequality Theorem for a Wider Class of Analytic Functions with Hadamard Product

Ma’moun I. Y. Alharayzeh\(^1\) and Maslina Darus\(^2\)

\(^1\)Department of Basic Scientiﬁc Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan
\(^2\)Department of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor D. Ehsan, Malaysia

Correspondence should be addressed to Ma’moun I. Y. Alharayzeh; mamoun@bau.edu.jo

Received 14 January 2022; Accepted 14 March 2022; Published 13 June 2022

Academic Editor: Teodor Bulboaca

Copyright © 2022 Ma’moun I. Y. Alharayzeh and Maslina Darus, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we discuss a well known class studied by Ramesha in 1995 and later by Janteng in 2006, and we then extend the class to a wider class of functions \(f \) denoted by \(n^\alpha \) which are normalized and univalent, in the unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) satisfying the condition \(\text{Re}((a^{2^\alpha} g'/(g(z))) + (z f'/(z))) > \beta \), \(0 < a < 1 \), \(0 < \beta < 1 \), where \(g \) is analytic function in \(\mathbb{D} \), such that \(g(z) \neq 0 \), with a new condition that is introduced. The main purpose of this paper is to give an estimate for the same \(|a_3 - \mu a_2^2| \) when \(f \) belongs to the class \(n^\alpha \).

1. Introduction and Deﬁnition

Let \(S \) denote the class of normalized analytic univalent functions \(f \) of the form
\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad a_n \text{ is complex number},
\]
where \(z \in \mathbb{D} = \{ z : |z| < 1 \} \). Also, let \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \), \(\phi(z) = z + \sum_{n=2}^{\infty} k_n z^n \), and \(\psi(z) = z + \sum_{n=2}^{\infty} d_n z^n \) be analytic functions in \(\mathbb{D} \) where \(b_n, k_n, d_n > 0 \) and \(k_n > d_n \). We define the Hadamard product as follows:
\[
g(z) \ast \phi(z) = z + \sum_{n=2}^{\infty} b_n k_n z^n,
\]
\[
g(z) \ast \psi(z) = z + \sum_{n=2}^{\infty} b_n d_n z^n.
\]

Earlier in 1933, Fekete and Szego [1] states that for \(f \in S \) and given by (1),
\[
|a_3 - \mu a_2^2| \leq 1 + 2 \exp\left(\frac{-2\mu}{1 - \mu}\right),
\]
for \(0 \leq \mu \leq 1 \) and the inequality is sharp.

The Fekete–Szegö problems for the subclass of \(S \) consisting of the families, convex functions \(C \), starlike functions \(S^\star \), and close-to-convex functions \(C \) have been completely solved in the literature. Among others are Keogh and Merkes [2], Koepf [3], Darus and Thomas [4, 5], Frasin and Darus [6], Ebadian et al. [7], and Mohammed et al. [8]. In particular, for \(f \in C \) and be given by (1), Keogh and Merkes [2] showed that
\[
|a_3 - \mu a_2^2| \leq \begin{cases} 3 - 4\mu, & \text{if } \mu \leq \frac{1}{3} \\
\frac{1}{3} + \frac{4}{9\mu}, & \text{if } \frac{1}{3} \leq \mu \leq \frac{2}{3} \\
1, & \text{if } \frac{2}{3} \leq \mu \leq 1, \\
4\mu - 3, & \text{if } \mu \geq 1,
\end{cases}
\]
and for each \(\mu \), there is a function in \(C \) for which equality holds.
Moreover, an estimate is given for the same functional for the new class $n_{\alpha}^{\beta,\gamma}$ defined as follows.

Definition 1. For $0 \leq \alpha < 1$, $0 \leq \beta < 1$, and $0 \leq \gamma < 1$, let the function f be given by (1). Then, the function $f \in n_{\alpha}^{\beta,\gamma}$ if and only if there exists a function g analytic, $g(z) \neq 0$, such that for $z \in \mathbb{D}$,

$$\Re\left(\frac{az^2f''(z)}{g(z)} + \frac{z f'(z)}{g(z)}\right) > \beta,$$

(5)

$$\Re\left(\frac{g(z) \phi(z)}{g(z) \psi(z)}\right) > \gamma, \quad g(z) \psi(z) \neq 0, \quad \text{for } z \in \mathbb{D}.$$

(6)

This class is extended from Ramesha et al. [10] and Janteng [11], for suitable choices of ϕ, ψ, we easily obtain the various subclasses of S. For example, if $\phi(z) = z/(1-z)^2$ and $\psi(z) = z/(1-z)^2$ satisfy (6), we have the class of starlike functions g of order $\gamma (0 \leq \gamma < 1)$ denoted by S^γ. Also if $\phi(z) = z + z^2/(1-z)^3$ and $\psi(z) = z/(1-z)^2$ satisfy (6), we get the class of convex functions g of order $\gamma (0 \leq \gamma < 1)$ denoted by $C\gamma$.

To establish our main theorems in this paper, we first state some preliminary lemmas, required in proving of our theorem.

2. Preliminary Results

Lemma 1 (see [9]). Let h be analytic in \mathbb{D} with $\Re(h(z)) > 0$ and be given by

$$h(z) = 1 + c_1z + c_2z^2 + \ldots,$$

for $z \in \mathbb{D}$, then,

$$|c_n| \leq 2 \text{ and } \Re\left(\frac{c_n}{c_n}\right) \leq 2 - \frac{|c_n|^2}{2},$$

(7)

Lemma 2 (see [2]). Let $g \in S^\alpha$, the starlike function with $g(z) = z + b_2z^2 + b_3z^3 + \ldots$. Then, for μ real,

$$|b_2 - \mu b_3|^2 \leq \max\{1, |3 - 4\mu|\}.$$

(8)

The first result for the class $n_{\alpha}^{\beta,\gamma}$ is as follows.

Lemma 3. Let the function f given by (1) belong to the class $n_{\alpha}^{\beta,\gamma}$. Then,

$$\begin{align*}
(a + 1)|a_2| &\leq \frac{(k_2 - d_2)(1 - \beta) + 1 - \gamma}{k_2 - d_2}, \\
3(2a + 1)|a_3| &\leq \frac{4(1 - \gamma)^2d_2}{(k_3 - d_3)(k_2 - d_2)} + \frac{4(1 - \gamma)(1 - \beta)}{k_2 - d_2} + \frac{2(1 - \gamma)}{k_3 - d_3} + 2(1 - \beta),
\end{align*}$$

(9)

where $0 \leq \alpha < 1$.

Proof. From (6), we get

$$g(z) \phi(z) = (p(z)(1 - \gamma) + \gamma)(g(z) \psi(z)),$$

(10)

Now, equating coefficients, we get

$$b_2(k_2 - d_2) = p_1(1 - \gamma),$$

(12)

$$b_3(k_3 - d_3) = b_2d_2p_1(1 - \gamma) + p_2(1 - \gamma).$$

(13)

It also follows from (5) that

$$a z^2 f''(z) + z f'(z) = g(z) h(z)(1 - \beta) + \beta,$$

(14)

where $\Re(h(z)) > 0$, and writing $h(z) = 1 + c_1z + c_2z^2 + \ldots$, where $c_1, c_2, \ldots \in \mathbb{C}$, and equating coefficients give

$$2(\alpha + 1)a_2 = c_1(1 - \beta) + b_2,$$

(15)

$$3(2\alpha + 1)a_3 = (1 - \beta)(c_2 + b_2c_1) + b_3.$$

(16)

The result now follows after applying the classical inequalities: $|p_1| \leq 2, |p_2| \leq 2, |c_1| \leq 2, |c_2| \leq 2$, and the inequalities $|b_2| \leq 2(1 - \gamma)/k_2 - d_2$ and $|b_3| \leq 4d_2(1 - \gamma)^2/(k_2 - d_2)(k_3 - d_3) + 2(1 - \gamma)/k_3 - d_3$ which follow from (12) and (13).

Now we will display the main result for the class $n_{\alpha}^{\beta,\gamma}$. □
3. Main Result

Theorem 1. Let the function \(f \) be given by (1) and belong to the class \(\mathcal{K}_\alpha \). Then, for \(0 \leq \alpha < 1 \),

\[
3(2\alpha + 1)[a_3 - \mu a_2^3] \leq \begin{cases}
\frac{4(1 - \gamma)^2 d_2}{(k_3 - d_3)(k_2 - d_2)} + \frac{2(1 - \gamma)}{k_3 - d_3} + 2(1 - \beta) + \frac{4(1 - \gamma)(1 - \beta)}{k_2 - d_2} - \frac{2\mu(1 - \gamma + (1 - \beta)(k_2 - d_2))^2}{\mu_1(k_2 - d_2)^2} & \text{if } \mu \leq \mu_*; \\
\frac{4(1 - \gamma)^2 d_2}{(k_3 - d_3)(k_2 - d_2)} - \frac{4(1 - \gamma)^2}{(k_2 - d_2)^2} + \frac{2(1 - \gamma)}{k_3 - d_3} + 2(1 - \beta) + \frac{2\mu_1(1 - \gamma)^2}{\mu(k_2 - d_2)^2} & \text{if } \mu_* \leq \mu \leq \mu_1; \\
\frac{4(1 - \gamma)^2 d_2}{(k_3 - d_3)(k_2 - d_2)} - \frac{2(1 - \gamma)^2}{(k_2 - d_2)^2} + \frac{2(1 - \gamma)}{k_3 - d_3} + 2(1 - \beta) & \text{if } \mu_1 \leq \mu \leq \mu_2; \\
\frac{4(1 - \gamma)^2 d_2}{(k_3 - d_3)(k_2 - d_2)} - \frac{2(1 - \gamma)}{k_3 - d_3} - 2(1 - \beta) - \frac{4(1 - \gamma)(1 - \beta)}{k_2 - d_2} + \frac{2\mu(1 - \gamma + (1 - \beta)(k_2 - d_2))^2}{\mu_1(k_2 - d_2)^2} & \text{if } \mu_2 \leq \mu;
\end{cases}
\]

where

\[
\mu_* = \frac{\mu_1(1 - \gamma)}{1 - \gamma + (1 - \beta)(k_2 - d_2)^2},
\]

\[
\mu_1 = \frac{2(\alpha + 1)^2}{3(2\alpha + 1)},
\]

\[
\mu_2 = \frac{\mu_*(k_3 - d_2)^2}{1 - \gamma + (1 - \beta)(k_2 - d_2)^2} \left(\frac{4(1 - \gamma)d_2}{(k_3 - d_3)(k_2 - d_2)} + \frac{2(1 - \beta)}{k_3 - d_3} + \frac{2(1 - \beta)}{k_2 - d_2} - \frac{1 - \gamma}{(k_2 - d_2)^2} \right).
\]

The inequalities are sharp for all cases. However, the proofs for the case \(\mu = \mu_2 \) are still unsolved.

Proof. Write

\[
3(2\alpha + 1)(a_3 - \mu a_2^3) = 3(2\alpha + 1)a_3 - 3(2\alpha + 1)\mu a_2^3.
\]

From (15) and (16), we have \(3(2\alpha + 1)(a_3 - \mu a_2^3) = c_2 (1 - \beta) + b_2 c_1 (1 - \beta) + b_3 - 3(2\alpha + 1)\mu c_2^2 (1 - \beta)^2 + b_2^2 + 2c_1 b_2 (1 - \beta)/4(\alpha + 1)^2 \). Then, we get

\[
3(2\alpha + 1)(a_3 - \mu a_2^3) = b_3 - \frac{3(2\alpha + 1)\mu b_2^2}{4(\alpha + 1)^2} + c_2 (1 - \beta) + c_2^2 (1 - \beta)^2 \left[\frac{2(\alpha + 1)^2 - 3(2\alpha + 1)\mu}{4(\alpha + 1)^2} - \frac{1}{2} \right] + b_2 c_1 (1 - \beta) \left[1 - \frac{3(2\alpha + 1)\mu}{2(\alpha + 1)^2} \right].
\]
From (20), we have

\[3(2\alpha + 1)|a_3 - \mu a_2|^2 \leq \left| b_3 - \frac{3(2\alpha + 1)\mu b_2^2}{4(\alpha + 1)^2} \right| + c_2(1 - \beta) - \frac{c_1^2(1 - \beta)^2}{2}
\]

\[+ \frac{1}{4(\alpha + 1)^2}2(\alpha + 1)^2 - 3(2\alpha + 1)\mu |c_1|^2 (1 - \beta)^2 \]

\[+ \frac{|b_2||c_1(1 - \beta)|}{2(\alpha + 1)^2}2(\alpha + 1)^2 - 3(2\alpha + 1)\mu. \]

(21)

Now, consider the first case for all \(\mu \leq \frac{2(\alpha + 1)^2}{3(2\alpha + 1)}\)

that is, having \(b_3 - 3(2\alpha + 1)\mu b_2^2/4(\alpha + 1)^2 > 0\) and \(2(\alpha + 1)^2 - 3(2\alpha + 1)\mu > 0\).

Inequalities

\[3(2\alpha + 1)|a_3 - \mu a_2|^2 \leq \frac{4(1 - \gamma)^2 2d_2}{(k_3 - d_3)(k_2 - d_2)} \frac{2(1 - \gamma)}{k_2 - k_3} + 2(1 - \beta)
\]

\[- \frac{3(2\alpha + 1)(1 - \gamma)^2 \mu}{(\alpha + 1)^2(k_2 - d_2)^2} - \frac{3(2\alpha + 1)(1 - \beta)^2 |c_1|^2}{4(\alpha + 1)^2}
\]

\[+ \frac{(1 - \beta)(2(\alpha + 1)^2 - 3(2\alpha + 1)\mu)|c_1|}{(\alpha + 1)^2(k_2 - d_2)} = \phi(x), \text{ say with, } x = |c_1|. \]

(22)

(23)

(24)

Now, after doing some operations, the function \(\phi\) achieves its maximum value at

\[x^* = \frac{2[2(\alpha + 1)^2 - 3\mu(2\alpha + 1)](1 - \gamma)}{3 \mu (2\alpha + 1)(k_2 - d_2)(1 - \beta)}. \]

(25)

(26)

Next, we find

\[\phi(x^*) = \frac{4(1 - \gamma)^2 2d_2}{(k_3 - d_3)(k_2 - d_2)} - \frac{4(1 - \gamma)^2}{(k_2 - d_2)^2} + \frac{2(1 - \gamma)}{k_3 - d_3} + 2(1 - \beta)
\]

\[+ \frac{4(1 - \gamma)^2 (\alpha + 1)^2}{3(2\alpha + 1)(k_2 - d_2)^2} \mu \]

\[+ \frac{4(1 - \gamma)^2 2d_2}{(k_3 - d_3)(k_2 - d_2)} - \frac{4(1 - \gamma)^2}{(k_2 - d_2)^2} + \frac{2(1 - \gamma)}{k_3 - d_3} + 2(1 - \beta)
\]

\[+ \frac{4(1 - \gamma)^2 (\alpha + 1)^2}{3(2\alpha + 1)(k_2 - d_2)^2} \mu \]

\[\leq \mu. \]

(27)

(28)

(29)

Now since we know \(|x^*| \leq 2\), we get the interval

\[2(\alpha + 1)^2 (1 - \gamma) \leq \mu. \]

Hence, result (28) concludes for the case.
We shall be certain that the result of this case is sharp. Let $c_1 = 2(1 - \gamma) [2(\alpha + 1)^2 - 3(\alpha + 1)\mu] / [3(\alpha + 1)(1 - \gamma + (1 - \beta)(k_2 - d_2))]$, $c_2 = 2p_1 = 2, p_2 = 2, b_2 = 2(1 - \gamma)/k_2 - d_2$ and $b_3 = 4(1 - \gamma)^2d_2/(k_3 - d_3)(k_2 - d_2) + 2(1 - \gamma)/k_3 - d_3$, in (20).

Secondly, we consider the case $\mu \leq \mu_\ast = 2(\alpha + 1)^2(1 - \nu)/3(\alpha + 1)(1 - \nu + (1 - \beta)(k_2 - d_2))$.

\[
3(\alpha + 1)\vert a_3 - \mu a_3^2 \vert \leq 3(\alpha + 1)\vert a_3 - \mu_\ast a_3^2 \vert + 3(\alpha + 1)\vert \mu - \mu_\ast \vert a_3^2,
\]

\[
= \frac{4(1 - \gamma)^2d_2}{(k_3 - d_3)(k_2 - d_2)} + \frac{2(1 - \gamma)}{k_3 - d_3} + \frac{4(1 - \gamma)(1 - \beta)}{k_2 - d_2}
\]

\[
+ 2(1 - \beta) - \frac{3(\alpha + 1)\mu(1 - \gamma + (1 - \beta)(k_2 - d_2))^2}{(\alpha + 1)^2(k_2 - d_2)^2},
\]

Thus, the proof for this case is complete.

Here, to find $3(\alpha + 1)(a_3 - \mu a_3^2)$ we use the previous result of (28), for $\mu = \mu_\ast = 2(\alpha + 1)^2(1 - \nu)/3(\alpha + 1)(1 - \nu + (1 - \beta)(k_2 - d_2))$.

After that, the result is sharp for this case. Upon choosing $c_1 = c_2 = p_1 = p_2 = 2, b_2 = 2(1 - \gamma)/(k_2 - d_2), and b_3 = 4(1 - \gamma)^2d_2/(k_3 - d_3)(k_2 - d_2) + 2(1 - \gamma)/k_3 - d_3$ and substituting in (20), we get the result sharp.

Next we consider the case $2(\alpha + 1)^2/3(\alpha + 1) \leq \mu \leq \mu_\ast$.

The results for this case are correct and sharp, but we have problems to solve for the value $\vert a_3 - \mu a_3^2 \vert$. As for $\mu = 2(\alpha + 1)^2/3(\alpha + 1)$, it is very easy and can be directly obtained from the previous result (28).

Without any doubt, we can assure that

\[
3(\alpha + 1)\vert a_3 - \mu_\ast a_3^2 \vert \leq \frac{4(1 - \gamma)^2d_2}{(k_3 - d_3)(k_2 - d_2)} + \frac{2(1 - \gamma)}{k_3 - d_3} + \frac{2(1 - \beta)}{k_2 - d_2},
\]

which is left as conjecture for the readers to solve. Without loss of generality, we would suggest that in the case $\mu_\ast \leq \mu \leq \mu_\ast$.

This is sharp on choosing $c_1 = p_1 = 0, p_2 = 2, c_2 = 4(1 - \gamma)^2d_2/(k_3 - d_3)(k_2 - d_2)(1 - \beta) - 2(1 - \gamma)/k_3 - d_3$ in (20). Thus, we get the desired equality.
Finally, for the case $\mu_2 \leq \mu$, we achieve the following easily.

Write

$$a_3 - \mu a_2^2 = a_3 - \mu_2 a_2^2 + (\mu_2 - \mu)a_2^2,$$

and by using the inequality $|a_2| \leq 1 - \gamma + (1 - \beta)(k_2 - d_2)/(k_2 - d_2)(\alpha + 1)$, we obtain the following:

$$3(2\alpha + 1)|a_3 - \mu a_2^2| \leq 3(2\alpha + 1)|a_3 - \mu_2 a_2^2| + 3(2\alpha + 1)|\mu_2 - \mu||a_2|^2$$

$$= \frac{-4(1 - \gamma)^2 d_2}{(k_1 - d_3)(k_2 - d_2)} - \frac{2(1 - \gamma)}{k_3 - d_3} - 2(1 - \beta)$$

$$- \frac{4(1 - \gamma)(1 - \beta)}{k_2 - d_2} + \frac{3(2\alpha + 1)|\mu(1 - \gamma + (1 - \beta)(k_2 - d_2))|}{(\alpha + 1)^2(k_2 - d_2)^2}.$$

and hence the proof is complete for this case.

We used result (34) for

$$\mu = \mu_2.$$

At last, it remains to show that the result is sharp, upon choosing $c_1 = p_1 = 2i$, $c_2 = p_2 = -2$, $b_2 = 2i(1 - \gamma)/k_1 - d_2$, and $b_3 = -4(1 - \gamma)^2 d_2/(k_3 - d_3)(k_2 - d_2) - 2(1 - \gamma)/k_3 - d_3$ and substituting in (20).

$$\square$$

4. Conclusion

This article aims at finding a new class of analytic univalent functions on the open unit disc defined by Hadamard product. Further to study their inequality theorem, one of the main requirements needed to satisfy certain classes. This approach, for example, can provide several many fascinating features.

Data Availability

No data were used or available upon request or included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Fekete and G. Szegö, "Eine büstf," Journal of the London Mathematical Society, vol. 1, no. 2, pp. 85–89, 1933.
[2] F. R. Keogh and E. P. Merkes, “A coefficient inequality for certain classes of analytic functions,” Proceedings of the American Mathematical Society, vol. 20, no. 1, pp. 8–12, 1969.
[3] W. Koepf, “On the Fekete-Szegö problem for close-to-convex functions,” Proceedings of the American Mathematical Society, vol. 101, no. 1, pp. 89–95, 1987.
[4] M. Darus and D. K. Thomas, “On the Fekete-Szegö theorem for close-to-convex functions,” Math. Japonica, vol. 44, no. 3, pp. 507–511, 1996.
[5] M. Darus and D. K. Thomas, “The Fekete-Szegö problem for strongly close-to-convex functions,” Scientiae mathematicae, vol. 3, no. 2, pp. 201–212, 2000.
[6] B. A. Frasin and M. Darus, “On the Fekete- Szegö using the hadamard product,” Internat. Math. J, vol. 3, no. 12, pp. 1297–1304, 2003.
[7] A. Ebadian, T. Bulboaca, N. E. Cho, and E. Analouei Adegani, "Coefficient bounds and differential subordinations for analytic functions associated with starlike functions," Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 114, no. 3, p. 128, 2020.
[8] N. H. Mohammed, E. A. Adegani, T. Bulboaca, and N. E. Cho, “A family of holomorphic functions defined by differential inequality,” Mathematical Inequalities and Applications, vol. 25, no. 1, pp. 27–39, 2022.
[9] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[10] C. Ramesha, S. Kumar, and K. S. Padmanabhan, "A sufficient condition for starlikeness," Chinese J. Math, vol. 23, pp. 167–171, 1995.
[11] A. Janteng, "Assortment of problems for certain classes of analytic functions," Ph. D thesis, University of Malaya, K.L. Malaysia, 2006.