Changes in nuclear factor kappa B components expression in the ovine spleen during early pregnancy

S. Hao, H. Fang, S. Fang, T. Zhang, L. Zhang and L. Yang*

Hebei University of Engineering, School of Life Sciences and Food Engineering, No. 19 Taiji Road, Handan 056038, China

KEY WORDS: nuclear factor kappa B component, pregnancy, sheep, spleen

ABSTRACT. Normal pregnancy is characterised by a systemic immunological tolerance against foetal antigens, and the spleen contributes to the adaptive immune tolerance during pregnancy. Nuclear factor kappa B (NF-κB) signalings participate in splenic immune regulation, but it is unclear whether there are changes in NF-κB components expression in the ovine spleen during early pregnancy. The objective of this study was to explore the effects of early pregnancy on the expression of NF-κB components in the maternal spleen in sheep. The spleens were sampled on day 16 of the oestrous cycle, and on days 13, 16 and 25 of gestation. The expression of NF-κB components, including NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB and C-Rel, were detected by quantitative real-time PCR, Western blot analysis and immunohistochemical analysis. The results showed that NF-κB1 and RelB mRNA and proteins decreased at days 13 and 16 of pregnancy, but increased at day 25 of pregnancy in comparison with that on day 16 of the oestrous cycle. Nevertheless, NF-κB2 and RelA mRNA and proteins peaked at days 13 and 16 of pregnancy. In addition, early pregnancy inhibited C-Rel expression at days 16 to 25 of pregnancy in the maternal spleen. In conclusion, the variable expression of individual NF-κB components was found in the ovine spleen during early pregnancy, which may be related with pregnancy recognition, and essential for the embryo implantation and pregnancy maintenance.

Introduction

There is an immunological tolerance against foetal antigens, which is induced by hormonal changes during pregnancy (Fuhler, 2020). Progesterone (P4) from corpus luteum (CL), pregnancy recognition signal (interferon tau, IFNT) from the conceptus and prostaglandins secreted by the endometria affect uterine functions, and contribute to conceptus elongation, implantation and establishment of pregnancy in ruminants (Spencer et al., 2016). Conceptus signal (IFNT) and high concentrations of P4 contribute to immunological forbearance through regulating innate immune system in the uterus, peripheral immune cells and other tissues during early pregnancy in ruminants (Ott, 2020). Interferon tau, with its paracrine and endocrine actions, adjusts the maternal innate immune system and avoids conceptus rejection, and other immune regulators, such as the pattern recognition receptors, work in parallel with IFNT during early pregnancy in ruminants (Rocha et al., 2021). Pattern recognition receptors contribute to the activation of nuclear factor kappa B (NF-κB) to result in the downstream activation of innate immune responses (Heilmann et al., 2017).

Nuclear factor kappa B family consists of NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB and c-Rel that are involved in the regulation of development of the immune system, inflammation, and innate and adaptive immune responses in
mammals (Patel et al., 2017). Prolactin reduces lipopolysaccharide-induced inflammatory cytokines via suppressing NF-κB signalling in the cultured explants from human placentas, and has beneficial effects on trophoblast growth, placental angiogenesis and immunomodulation (Olmos-Ortiz et al., 2019). Lipopolysaccharide increases the expression of phosphatase and tensin homolog deleted on chromosome 10 via NF-κB pathway in trophoblasts, and reduces the ability of trophoblasts to invasion, which contributes to preeclampsia in a rat model (Xue et al., 2020). Tubulin polymerization-promoting protein 3 (TPPP3) contributes to the decidualization, and TPPP3 inhibition attenuates NF-κB transcriptional promoter activity in human endometrial stromal cells, and has adverse effects on decidualization and embryo implantation (Shukla et al., 2019). Autophagy suppression enhances the invasiveness of the trophoblastic cell lines and NF-κB activity, but NF-κB inhibitor attenuates the trophoblast invasion (Oh et al., 2020). In addition, normal morula embryos and tumour necrosis factor α (TNF-α)-treated morula embryos have differential effects on the expression of genes and proteins in uterine tissues and spleen through NF-κB pathway during preimplantation pregnancy in mice (Buska-Mach et al., 2021). It is unclear whether the expression of NF-κB components in the spleen is changed during early pregnancy in ewes.

As the centre of the blood defense system, the spleen works together with the liver and bone marrow to activate the defense response through innate and adaptive immunity in humans (Kashimura, 2020). Oestrogen contributes to haematopoietic stem-cell self-renewal and erythropoiesis in the spleen during pregnancy in mice (Nakada et al., 2014). Pregnancy induces changes in the erythroid lineage and the immune system, and there is increase in the expression of erythropoietin receptor and a decrease in the expression of death receptor Fas in the spleen during pregnancy (Norton et al., 2009). It has been reported that there is up-regulation of interferon stimulated genes (ISGs), P4 receptor, P4-induced blocking factor, TNF-β, interleukin (IL)-2, IL-5, IL-6, IL-10, cyclooxygenase 2, aldo-keto reductase family 1, member B1, melatonin receptor 1 (MT1), gonadotropin releasing hormone and its receptor, and down-regulation of MT2 in the ovine maternal spleen during early pregnancy (Yang et al., 2018; Li et al., 2019; Wang et al., 2019; Bai et al., 2020; Cao et al., 2021). So, it was hypothesised that there are changes in NF-κB components expression in the ovine spleen during early pregnancy. The goal of this study was to compare the expression of NF-κB1, NF-κB2, RelA, RelB and c-Rel in the maternal spleen during early pregnancy stages in sheep.

Material and methods

Animals and experimental design

The study was performed in the Department of Animal Science of the Hebei University of Engineering, Handan (China) on 24 Small-tail Han ewes. Animal procedures were approved by the Ethics Committee of the Hebei University of Engineering. After detection of oestrus (day 0) with a nepididymectomized ram, the females were randomly divided into four groups (n = 6 for each group). The ewes from the group of day 16 of the oestrous cycle were not exposed to a fertile ram. The other 18 animals were randomly divided into three groups (days 13, 16 and 25 of pregnancy), and exposed to fertile rams. The effects of early pregnancy on the expression of prostaglandin (PG) synthases in the ovine thymuses and thymic weight are mainly due to P4 and IFNT. The reasons that expression of NF-κB components in the ovine spleen is changed during early pregnancy are mainly due to P4 and IFNT. There are significantly higher concentrations of P4 on days 12–13 in plasma, and lower concentrations of P4 on days 15–16 during the ovine oestrous cycle (McNatty et al., 1973). IFNT (Protein X) and additional proteins are detected between days 14 and 21 in sheep (Godkin et al., 1982). Day 13 of the oestrous cycle is almost similar to day 13 of pregnancy according to above reasons, and at this time there are no high concentrations of P4 and IFNT on day 16 of the oestrous cycle. The spleens were collected from 24 ewes on days 13, 16 and 25 post-breeding, and from ewes on day 16 of the oestrous cycle at the time of slaughter. Pregnancy was verified by observing a conceptus in the uterus for the pregnant ewes. The splenic transverse pieces (0.5 cm³) were fixed in fresh 4% (w/v) paraformaldehyde (Sigma-Aldrich Corp., St. Louis, MO, USA) in phosphate buffered saline (PBS) (pH 7.4), and the remaining portions were frozen in a liquid nitrogen for subsequent mRNA and protein analyses.

RNA extraction and qRT-PCR assay

Total RNA extraction was performed using TRIzol reagent (Invitrogen, California, USA) in accordance with manufacturer’s instruction. Concentrations and purity of the total RNA were determined using spectrophotometry (Thermo Fisher Scientific, Wilmington, DE, USA), and absorbance ratio values (260/230) ranged between 2.0 to 2.2. Genomic DNA removal and complementary DNA synthesis
from the total RNA were performed using a Fast-
Quant RT kit (Tiangen Biotech Co., Ltd., Beijing,
China). A Bio-rad CFX96 real-time PCR system
(Bio-Rad Laboratories, Inc., CA, USA) was used for
quantitative real-time PCR (qRT-PCR) assay with
a SuperReal PreMix Plus kit (Tiangen Biotech Co.,
Ltd., Beijing, China). The optimized primer pairs of
NF-κB1, NF-κB2, RelA, RelB, C-Rel and GAPDH
were designed and synthesized by Shanghai Sangon
Biotech Co., Ltd. (Shanghai, China) (Table 1)
based on the mRNA sequence of target genes on
Genbank (https://www.ncbi.nlm.nih.gov/genbank/).

Table 1. Primers used for RT-qPCR

Gene	Primer	Sequence	Size, bp	Accession No.
NF-κB1	Forward	CAAGCACAAGAAGGCAGCACAAC	113	XM_027970852.2
	Reverse	CAGCCATCAGCAGCAGAAGCAGA		
NF-κB2	Forward	GCCTGCTGAATGCCTGTCTG	146	XM_042238744.1
	Reverse	CTCCTGTTCTCCTCAGGACCTG		
RelA	Forward	TGCCGAGAACGACAGCAGCAGC	92	XM_027959295.2
	Reverse	TGACCGGGAGATGCGGACTG		
RelB	Forward	CGCTGACCTCCTCTGGTCCTCTTC	93	XM_015100238.3
	Reverse	AAGCCGAAACGCAACTGATGAGC		
C-Rel	Forward	TCCTCGCTGGCTGACATCTGCAAG	104	XM_004005929.4
	Reverse	GTGGGGTGGGGGATTGATGAC		
GAPDH	Forward	GGGTGATCATCCTCGTGACCT	176	NM_001190390.1
	Reverse	GGTCATAAGTCCCTCCAGCA		

The PCR reaction consisted of 95 °C for 10 s,
60–62 °C (60 °C for NF-κB1 and NF-κB2, 61 °C for
C-Rel, 62 °C for RelA and RelB) for 20 s, and 72 °C
for 25 s, and the number of PCR cycle was 40. Glyc-
ceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as the reference gene, and the condition
of GAPDH PCR reaction was the same as the tar-
get genes, respectively. The 2-ΔΔCt analysis method
(Livak and Schmittgen, 2001) was used to de-
termine the relative expression values for qRT-PCR
assay. The relative levels of the target genes were nor-
malized using the mean cycle threshold (CT) values
from the group of day 16 of the oestrous cycle.

Western blot analysis

Splenic samples were lysed in a RIPA buffer
(BL504A, Biosharp, Hefei, China) at 4 °C, and
protein concentration was determined using a bicine-
chonic acid protein assay kit (Tiangen Biotech Co.,
Ltd., Beijing, China) The extracts were boiled
in loading buffer for 5 min, and equal amounts of
proteins were analysed by a SDS–polyacrylamide
gel electrophoresis. Proteins were transferred to pol-
vinylidene fluoride membranes (Millipore Corp.,
Billericia, MA) that were blotted with 5% nonfat
milk at 4 °C overnight. The membranes were incu-
bated with a mouse anti-NF-κB1 monoclonal anti-
body (sc-8414, 1:1000; Santa Cruz Biotechnology,
Inc., CA, USA), a mouse anti-NF-κB2 monoclonal
antibody (sc-7386, 1:1000; Santa Cruz Biotechno-
logy, Inc., CA, USA), a mouse anti-RelA monoclonal
antibody (sc-8008, 1:1000; Santa Cruz Biotechnol-
ogy, Inc., CA, USA), a mouse anti-RelB monoclonal
antibody (sc-166416, 1:1000; Santa Cruz Bio-
technology, Inc., CA, USA), and a mouse anti-c-Rel
monoclonal antibody (sc-6955, 1:1000; Santa Cruz
Biotechnology, Inc., CA, USA) at 4 °C overnight,
respectively. The secondary antibody was anti-
mouse IgG-HRP (BL001A; Biosharp, Hefei, China)
at a concentration of 0.05 μg/ml, and blots were vis-
ualized by enhanced chemiluminescence (Tiangen
Biotech Co., Ltd., Beijing, China). Quantity One
V452 (Bio-Rad Laboratories, Hercules, CA, USA)
was used to digitally quantified the band intensities
that were normalized using GAPDH with an anti-
GAPDH antibody (sc-20357, 1:1000; Santa Cruz
Biotechnology, Inc., CA, USA).

Immunohistochemical analysis

Immunohistochemistry for RelA protein in the
maternal spleen was performed as described pre-
viously (Wang et al., 2019). The 5-μm thick sec-
tions from paraffin-embedded splenic tissue were
incubated at room temperature with the primary
antibody specific to RelA (sc-8008, 1:200; Santa
Cruz Biotechnology, Inc., CA, USA) in a humid-
ified chamber at 4 °C overnight. Specific binding
sites were visualized with a DAB kit (Tiangen Bio-
technology Co., Ltd., Beijing, China), and then counter-
stained with haematoxylin (Sigma-Aldrich Corp.,
St. Louis, MO, USA). Negative controls were per-
formed using antisera-specific isotype diluted at
concentrations equivalent to the primary antibody.
The sections were observed with a light microscope
(Nikon Eclipse E800, Japan), and photographed with
a digital camera DP12. The images were examined
independently by 4 observers in a blinded fashion, and the staining intensities for RelA were analyzed by assigning an immunoreactive intensity of a scale of 0 to 3, as described previously (Kandil et al., 2007).

Statistical analysis

The experimental design was completely randomized, and relative abundance levels of mRNA and protein expression were analyzed by least-squares ANOVA using a MIXED procedure of SAS software (Version 9.2; SAS Institute Inc., Cary, NC, USA). Data obtained from different spleens of ewes were analyzed for the main effects of day and status (cyclic or pregnant), and their interaction between day and status. All data were presented as the mean ± standard error of the mean (SEM). Values of $P < 0.05$ were deemed significant.

Results

Relative expression levels of NF-κB1, NF-κB2, RelA, RelB and C-Rel mRNA in the spleen

As shown in the Figure 1, the relative expression levels of NF-κB1 and RelB mRNA were down-regulated at days 13 and 16 of pregnancy, but up-regulated at day 25 of pregnancy in comparison with that on day 16 of the oestrous cycle ($P < 0.05$). However, the relative expression levels of NF-κB2 and RelA were higher at days 13 and 16 of pregnancy than that at day 25 of pregnancy and on day 16 of the oestrous cycle ($P < 0.05$). In addition, early pregnancy induced down-regulation of C-Rel mRNA at days 16 to 25 of pregnancy in comparison with that on day 13 of pregnancy and day 16 of the oestrous cycle, but there was no significant difference between day 13 of pregnancy and day 16 of the oestrous cycle in the maternal spleen ($P > 0.05$; Figure 1).

Expression of NF-κB1, NF-κB2, RelA, RelB and c-Rel proteins in the spleen

The expression levels of NF-κB1 and RelB proteins were higher on day 25 of pregnancy than on day 16 of the oestrous cycle ($P < 0.05$), and NF-κB1 and RelB proteins were undetected on days 13 and 16 of pregnancy (Figure 2). However, the expression levels NF-κB2 and RelA proteins were up-regulated on day 13 and 16 of pregnancy, but there was no expression of RelA protein on day 16 of the oestrous cycle. In addition, the c-Rel protein level was significantly decreased at days 16 and 25 of pregnancy in comparison with that on day 25 of pregnancy in comparison with that on day 13 of pregnancy ($P < 0.05$).

Figure 1. Relative expression values of NF-κB1, NF-κB2, RelA, RelB and C-Rel mRNA in the spleens of non-pregnant and pregnant ewes (n = 6 for each group) measured by quantitative real-time PCR.

DN16 – day 16 of non-pregnancy, DP13 – day 13 of pregnancy, DP16 – day 16 of pregnancy, DP25 – day 25 of pregnancy; abc – bars with different superscripts are significantly different at $P < 0.05$.
Figure 2. Expression of NF-κB1, NF-κB2, RelA, RelB and c-Rel proteins in the spleens of non-pregnant and pregnant ewes (n = 6 for each group) analyzed with Western blot.
DN16 – day 16 of non-pregnancy, DP13 – day 13 of pregnancy, DP16 – day 16 of pregnancy, DP25 – day 25 of pregnancy; abc – bars of the same colour with different superscripts are significantly different at P < 0.05.
day 13 of pregnancy and day 16 of the oestrous cycle (\(P > 0.05\); Figure 2), and there was no significant difference between that at day 13 of pregnancy and on day 16 of the oestrous cycle, as well as between that at day 16 of pregnancy and at day 25 of pregnancy in the maternal spleen (\(P > 0.05\); Figure 2).

Immunohistochemistry for RelA protein in the spleen

The RelA protein was mainly limited to the capsule, trabeculae and splenic cords (Figure 3). The staining intensities for RelA protein were 0, 0, 2+, 2+, and 1+ for the negative control, the spleens from day 16 of the oestrous cycle, and spleens from days 13, 16, and 25 of pregnancy, respectively (Figure 3). The staining intensity was as follows: 0 = negative; 1+ = weak; 2+ = strong.

Discussion

In this study, NF-κB1 decreased in the maternal spleen at days 13 and 16 of pregnancy, but increased at day 25 of pregnancy. NF-κB1 plays a key role in controlling lymphocyte and macrophage functions in immune and inflammatory responses, and NF-κB1 knockout displays multifocal defects in immune system function in mice (Beinke and Ley, 2004). The expression level of \(NFKB1\) gene in the endometrium at day 0 of the oestrous cycle was high in comparison with that during early pregnancy, but increased during early pregnancy, which contributes to the establishment and maintenance of pregnancy in the pig (Ross et al., 2010). Endometrial polyp is a factor for sub-fertility with a higher level of NF-κB1 in the endometrium, but hysteroscopic polypectomy leads to a significant decrease in endometrium NF-κB1 activity in humans (Bozkurt et al., 2015). NF-κB1 is mainly localized in the endometrial epithelium, and increases during the implantation period, which is essential for embryo implantation in mice (Nakamura et al., 2004). Thus, the expression of NF-κB1 in the maternal spleen is changed during early pregnancy,
The pregnancy recognition signal IFNT (type I interferon) participates in the implantation and establishment of pregnancy in ruminants (Spencer et al., 2016), and also induces expression of ISGs in the ovine maternal spleen during early pregnancy (Yang et al., 2018; Wang et al., 2019). RelB is a negative regulator of the type I interferon signalling pathway in dendritic cells (Saha et al., 2020), and up-regulation of ISGs in the ovine maternal spleen may be related to the down-regulation of RelB in the spleen. RelB plays a key role in silencing or inhibiting the expression of the pro-inflammatory cytokines, and in a strong constitutive activation of RelB in decidual endothelial cells is beneficial for both avoiding pregnancy failure and immune tolerance to microorganisms during pregnancy (Masat et al., 2015). Therefore, it is suggested that the low level of RelB in the maternal spleen at days 13 and 16 of pregnancy may be related to the pregnancy recognition, and the up-regulation of RelB at day 25 of pregnancy may be important for the embryo implantation and avoidance of pregnancy failure.

Our data indicated that early pregnancy induced expression of NF-κB2 at days 13 and 16 of pregnancy. NF-κB2 is an inhibitor of κB protein, and heterozygous NFKB2 mutations lead to a syndrome of immunodeficiency and autoimmunity in humans (Wirasinha et al., 2021). There was a marked decrease in the B cell compartment in the spleen in NF-κB2-deficient mice, suggesting that NF-κB2 is essential for the maintenance of the peripheral B cell population, humoral responses, and normal spleen architecture (Caamaño et al., 1998). There were increases in NF-κB2 protein in the CL on days 12, 14, and 16 of pregnancy, which is necessary for the survival of CL, secretion of P4 and the establishment of pregnancy in sheep (Lee et al., 2016). Therefore, the up-regulation of NF-κB2 in the maternal spleen at days 13 and 16 of pregnancy may be related to the establishment of pregnancy.

RelA protein increases in CL on days 12, 14, and 16 of pregnancy, which is related to CL survival, P4 secretion and the establishment of pregnancy in sheep (Lee et al., 2016). In vivo oestrogen treatment suppresses the expression of RelA protein in mouse splenocytes, which contributes to the regulation of the immune system (Dai et al., 2007). It is has been reported that there is significantly lower plasma concentration of oestradiol-17β at days 10 and 20 of gestation in sheep (Hamon and Heap, 1990). Therefore, the up-regulation of RelA in the capsule, trabeculae and splenic cords of the maternal spleen during early pregnancy may be related to a lower concentration of plasma oestradiol-17β, and so it could be beneficial for the establishment of pregnancy.

In this study, there was a decrease in the c-Rel expression at days 16 and 25 of pregnancy in the maternal spleen. NF-κB subunit c-Rel is predominantly expressed in B cells that mediate humoral immune response and participate in the regulation of cellular immune response (Basavarajappa and Ramakrishnan, 2020), and is also involved in the maintenance of B cell mature in the spleen (Yamazaki and Kurosaki, 2003). The c-Rel level down-regulates the myometrium of pregnant women in comparison with nonpregnant controls, which is beneficial for pregnancy maintenance (Chapman et al., 2004). The expression of c-Rel protein in villi of the normal placenta is weak, which is related to the invasion and migration of choriocarcinoma cells (Sekiya et al., 2017). Thus, the decline of c-Rel at days 16 and 25 of pregnancy may be related to B cell mature in the spleen, and it contributes to the pregnancy maintenance.

Conclusions

A variable expression of individual NF-κB components in the maternal spleen during early pregnancy may be related to pregnancy recognition, embryo implantation, and pregnancy maintenance in sheep.

Acknowledgments

The current study was supported by the grants from Natural Science Foundation of Hebei Province, China (C2021402019), and Hebei Science and Technology Bureau, China (21326601D).

Conflicts of interest

The authors declare that there is no conflict of interest.
References

Bai J., Zhang L., Zhao Z., Li N., Wang B., Yang L., 2020. Expression of melatonin receptors and CD4 in the ovine thymus, lymph node, spleen and liver during early pregnancy. Immunology 160, 52–63, https://doi.org/10.1111/imn.13180

Basavarajappa S.C., Ramakrishnan P., 2020. Regulation of B-cell function by NF-kappaB-RhoA and NF-kappaB-Rho kinase. Cell Mol. Life Sci. 77, 3325–3340, https://doi.org/10.1007/s00018-020-03488-w

Baud V., Collares D., 2016. Post-translational modifications of RelB NF-kappaB subunit and associated functions. Cells 5, 22, https://doi.org/10.3390/cells5020022

Beinke S., Ley S.C., 2004. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem. J. 382, 393–409, https://doi.org/10.1042/BJ20040544

Bozkurt M., Şahin L., Ulaş M., 2015. Hysteroscopic polypectomy for systemic immune modulation during early pregnancy in mice. Front. Vet. Sci. 2, 641553, https://doi.org/10.3389/fvets.2015.03132

Buska-Mach K., Kedzierska A.E., Lepczynski A. et al., 2021. Differential signals from TNFα-treated and untreated embryos in uterine tissues and splenic CD4+ T lymphocytes during pre-implantation pregnancy in mice. Front. Vet. Sci. 8, 641553, https://doi.org/10.3389/fvets.2021.641553

Caamaño J.H., Rizzo C.A., Barton D.S., Raventós-Suárez C., Snapper C.M., Bravo R., 1998. Nuclear factor (NF)-kappa B p100/p52 is required for normal splenic microarchitecture and B cell-mediated immune responses. J. Exp. Med. 187, 185–196, https://doi.org/10.1084/jem.187.2.185

Cao N., Cao L., Gao M., Wang H., Zhang L., Yang L., 2021. Changes in mRNA and protein levels of gonadotropin releasing hormone receptor in ovine thymus, lymph node, spleen, and liver during early pregnancy. Domest. Anim. Endocrinol. 76, 106607, https://doi.org/10.1016/j.domend.2021.106607

Chapman N.R., Europe-Finnner G.N., Robson S.C., 2004. Expression and deoxyribonucleic acid-binding activity of the nuclear factor kappaB family in the human myometrium during pregnancy and labor. J. Clin. Endocrinol. Metab. 89, 5683–5693, https://doi.org/10.1210/jc.2004-0873

Dai R., Phillips R.A., Ahmed S.A., 2007. Despite inhibition of nuclear localization of NF-kappaB B p65, c-Rel, and RelB, 17-beta estradiol up-regulates NF-kappaB signaling in mouse splenocytes: the potential role of Bcl-3. J. Immunol. 179, 1776–1783, https://doi.org/10.4049/jimmunol.179.3.1776

Fuhler G.M., 2020. The immune system and microbiome in pregnancy. Best Pract. Res. Clin. Gastroenterol. 44–45, 101671, https://doi.org/10.1016/j.bpg.2020.101671

Godkin J.D., Bazer F.W., Moffatt J., Sessions F., Roberts R.M., 2007. Glypican-3 immunocytchemistry in liver fine-needle aspirates: a novel stain to assist in the differentiation of benign and malignant liver lesions. Cancer 111, 316–322, https://doi.org/10.1002/cncr.22954

Kashimura M., 2020. The human spleen as the center of the blood defense system. Int. J. Hematol. 112, 147–158, https://doi.org/10.1007/s12185-020-02912-y

Lee J., Banu S.K., McCracken J.A., Aroh J.A., 2016. Early pregnancy modulates survival and apoptosis pathways in the corpus luteum in sheep. Reproduction 151, 187–202, https://doi.org/10.1530/REP-15-0302

Li N., Zhao Z., Bai J., Liu B., Mi H., Zhang L., Li G., Yang L., 2019. Characterization of the Th cytokines profile in ovine spleen during early pregnancy. J. Appl. Anim. Res. 47, 386–393, https://doi.org/10.1097/01.jaap.0000619082.1634077

Livak K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408, https://doi.org/10.1016/ mech.2001.1262

Masat E., Gaspanni C., Bossi F., Radiollo O., De Seta F., Tamassia N., Cassatella M.A., Bulla R., 2015. RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure? Sci. Rep. 5, 14847, https://doi.org/10.1038/srep14847

McNatty K.P., Revefeile K.J., Young A., 1973. Peripheral plasma progesterone concentrations in sheep during the oestrous cycle. J. Endocrinol. 59, 219–225, https://doi.org/10.1677/joe.0.0582019

Nakada D., Oguro H., Levi B.P., Ryan N., Kitano A., Saltow Y., Takeichi M., Wendt G.R., Morrison S.J., 2014. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558, https://doi.org/10.1038/nature12932

Nakamura H., Kimura T., Ogita K., Nakamura T., Takemura K., Shimoya K., Koyama S., Tsujie T., Koyama M., Murata Y., 2004. NF-kappaB activation at implantation window of the mouse uterus. Am. J. Reprod. Immunol. 51, 16–21, https://doi.org/10.1046/ajri.2003.00116.x

Norton M.T., Fortner K.A., Bizargity P., Bonney E.A., 2009. Pregnancy alters the proliferation and apoptosis of mouse splenic erythroid lineage cells and leucocytes. Biol. Reprod. 81, 457–464, https://doi.org/10.1093/biolreprod.109.076976

Oh S.Y., Hwang J.R., Choi M., Kim Y.M., Kim J.S., Sub Y.L., Choi S.J., Roh C.R., 2020. Autophagy regulates trophoblast invasion by targeting NF-kB activity. Sci. Rep. 10, 14033, https://doi.org/10.1038/s41598-020-70959-2

Olmos-Ortiz A., Déciga-García M., Preciado-Martínez E. et al., 2019. Prolactin decreases LPS-induced inflammatory cytokines by inhibiting TLR-4/NFkB signaling in the human placenta. Mol. Hum. Reprod. 25, 660–667, https://doi.org/10.1093/molehr/ago038

Ott T.L., 2020. Immunological detection of pregnancy: Evidence for systemic immune modulation during early pregnancy in ruminants. Theriogenology 150, 457–464, https://doi.org/10.1016/j.theriogenology.2020.04.010

Patel H., Zaghlioul N., Lin K., Liu S.F., Miller E.J., Ahmed M., 2017. Hypoxia-induced activation of specific members of the NF-kB family and its relevance to pulmonary vascular remodeling. Int. J. Biochem. Cell Biol. 92, 141–147, https://doi.org/10.1016/j.biocel.2017.09.022

Prusty B.K., Hedau S., Singh A., Kar P., Das B.C., 2007. Selective suppression of NF-kBp65 in hepatitis virus-infected pregnant women manifesting severe liver damage and high mortality. Mol. Med. 13, 518–526, https://doi.org/10.2119/2007-00055. Prusty

Kandil D., Leiman G., Allegretta M., Trotman W., Pantanowitz L., Goullart R., Evans M., 2007. Glypican-3 immunocytchemistry in liver fine-needle aspirates: a novel stain to assist in the differentiation of benign and malignant liver lesions. Cancer 111, 316–322, https://doi.org/10.1002/cncr.22954

Nuclear factor-kappa B components in the spleen

Hamon M.H., Heap R.B., 1990. Progesterone and oestrogen concentrations in plasma of Barbery sheep (Ovis aries, Ammotragus lervia) compared with those of domestic sheep and goats during pregnancy. J. Reprod. Fertil. 90, 207–211, https://doi.org/10.1530/jrf.0.0800207

Heilmann R.M., Allenspach K., 2017. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review. J. Vet. Diagn. Invest. 29, 761–787, https://doi.org/10.1177/1040638717728545
Rocha C.C., da Silveira J.C., Forde N., Binelli M., Pugliesi G., 2021. Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim. Reprod. 18, e20200048, https://doi.org/10.1590/1984-3143-AR2020-0048

Ross J.W., Ashworth M.D., Mathew D., Reagan P., Ritchey J.W., Hayashi K., Spencer T.E., Lucy M., Geisert R.D., 2010. Activation of the transcription factor, nuclear factor kappa-B, during the estrous cycle and early pregnancy in the pig. Reprod. Biol. Endocrinol. 8, 39, https://doi.org/10.1186/1477-7827-8-39

Saha I., Jaiswal H., Mishra R. et al., 2020. RelB suppresses type I Interferon signaling in dendritic cells. Cell Immunol. 349, 104043, https://doi.org/10.1016/j.cellimm.2020.104043

Sekiya Y., Yamamoto E., Niimi K., Nishino K., Nakamura K., Kotani T., Kaiyama H., Shibata K., Kikkawa F., 2017. c-Rel promotes invasion of choriocarcinoma cells via PI3K/AKT signaling. Oncology 92, 299–310, https://doi.org/10.1159/000458529

Shukla V., Kaushal J.B., Sankhwar P., Manohar M., Dwivedi A., 2019. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J. Endocrinol. 240, 417–429, https://doi.org/10.1530/JOE-18-0459

Spencer T.E., Forde N., Lonergan P., 2016. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 99, 5941–5950, https://doi.org/10.3168/jds.2015-10070

Wang Y., Han X., Zhang L., Cao N., Cao L., Yang L., 2019. Early pregnancy induces expression of STAT1, OAS1 and CXCL10 in ovine spleen. Animals 9, 882, https://doi.org/10.3390/ani9110882

Wirasingha R.C., Davies A.R., Srivastava M. et al., 2021. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J. Exp. Med. 218, e20200476, https://doi.org/10.1084/jem.20200476

Xue P., Fan W., Diao Z. et al., 2020. Up-regulation of PTEN via LPS/AP-1/NF-κB pathway inhibits trophoblast invasion contributing to preeclampsia. Mol. Immunol. 118, 182–190, https://doi.org/10.1016/j.molimm.2019.12.018

Yamazaki T., Kurosaki T., 2003. Contribution of BCAP to maintenance of mature B cells through c-Rel. Nat. Immunol. 4, 780–786, https://doi.org/10.1038/nij949

Yang L., Guo R., Yao X., Yan J., Bai Y., Zhang L., 2018. Expression of progesterone receptor and progesterone-induced blocking factor in the spleen during early pregnancy in ewes. Livest. Sci. 209, 14–19, https://doi.org/10.1016/j.livsci.2018.01.004

Yang L., Liu Y., Lv W., Wang P., Wang B., Xue J., Zhang L., 2018. Expression of interferon-stimulated gene 15-kDa protein, cyclooxygenase (COX) 1, COX-2, aldo-keto reductase family 1, member B1, and prostaglandin E synthase in the spleen during early pregnancy in sheep. Anim. Sci. J. 89, 1540–1548, https://doi.org/10.1111/asj.13101