Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses

Naima Iram¹, Emad Kavehei¹, Damien. T. Maher², Stuart. E. Bunn¹, Mehran Rezaei Rashti¹, Bahareh Shahrabi Farahani¹, Maria Fernanda Adame¹

¹Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
²School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia

Correspondence to: Naima Iram (naima.iram@griffithuni.edu.au)
Abstract. Coastal wetlands are essential for regulating the global carbon budget through soil carbon sequestration and greenhouse gas fluxes (GHG: CO₂, CH₄ and N₂O). The conversion of coastal wetlands to agricultural land alters the magnitude and direction (uptake/release) of these fluxes. However, the extent and drivers of change of GHG fluxes is still unknown for many tropical regions. We measured soil GHG fluxes from three natural coastal wetlands: mangroves, saltmarsh, and freshwater tidal forests, and two alternative agricultural land use, sugarcane farming and pastures for cattle grazing (ponded and dry conditions). We assessed variations throughout different climatic conditions (dry-cool, dry-hot and wet-hot) within two years of measurements (2018-2020) in tropical Australia. The wet pasture had by far the highest CH₄ emissions with 1,231 ± 386 mg m⁻² d⁻¹, which were 200-fold higher than any other site. Dry pastures and sugarcane were the highest emitters of N₂O with 55 ± 9 mg m⁻² d⁻¹ (wet-hot period) and 11 ± 3 mg m⁻² d⁻¹ (hot-dry period, coinciding with fertilisation), respectively. Dry pastures were also the highest emitters of CO₂ with 20 ± 1 g m⁻² d⁻¹ (wet-hot period). Comparatively, the three coastal wetlands measured had lower emission, with saltmarsh up taking -0.55 ± 0.23 of N₂O and -1.19 ± 0.08 g m⁻² d⁻¹ of CO₂ during the dry-hot period. During the sampled period, sugarcane and pastures had higher total cumulative soil GHG emissions (CH₄ + N₂O) of 7,142 and 56,124 CO₂eq kg ha⁻¹ y⁻¹ compared to coastal wetlands with 144 to 884 CO₂eq kg ha⁻¹ y⁻¹. Converting unproductive sugarcane land or pastures (especially ponded ones) to coastal wetlands could provide significant GHG mitigation.
1 Introduction

Coastal wetlands are found at the interface of terrestrial and marine ecosystems and account for 10% of the global wetland area (Lehner and Döll 2004). They are highly productive and provide various ecosystem services such as water quality improvement, biodiversity, and carbon sequestration (Duarte et al, 2013). For instance, mangroves can accumulate five times more soil carbon than terrestrial forests (Kauffman et al, 2020). However, the high productivity and anoxic soil conditions that promote carbon sequestration can also favour potent greenhouse gas emissions (GHGs), including CO₂, CH₄ and N₂O (Whalen, 2005; Conrad, 2009).

The GHG emissions in coastal wetlands primarily result from microbial processes in the soil-water-atmosphere interface (Bauza et al, 2002; Whalen, 2005). The emission of CO₂ is a result of respiration, where fixed carbon by photosynthesis is partially released back into the atmosphere (Oertel et al., 2016). Emissions of CH₄ result from anaerobic and aerobic respiration by methanogenic bacteria, mostly in waterlogged conditions (Angle et al., 2017; Saunois et al, 2020). Finally, N₂O emissions are caused by denitrification in anoxic conditions and nitrification in aerobic soils, both driven by nitrogen content and soil moisture (Ussiri and Lal 2013). Thus, the total GHG emissions from a wetland are driven by environmental conditions that favour these microbial processes, all of which result in highly variable emissions from wetlands worldwide (Kirschke et al., 2013; Oertel et al. 2016).

Despite potential high GHG emissions from coastal wetlands, these are likely to be lower than those from alternative agricultural land uses (Knox et al., 2015), which emit GHGs from their construction throughout their productive lives. Firstly, when wetlands are converted to agricultural land, the oxidation of sequestered carbon in the organic-rich soils release significant amounts of CO₂ (Drexler, de Fontaine, & Deverel, 2009; Hooijer et al, 2012). Secondly, removing tidal flow and converting coastal wetlands to freshwater systems, such as during the creation of ponded pastures, dams or agricultural ditches, can result in very high CH₄ emissions (Deemer et al., 2016; Grinham et al, 2018; Ollivier et al, 2019). For instance, agricultural ditches contribute up to 3% of the total anthropogenic CH₄ emissions globally (Peacock et al., 2021). Finally, the use of fertilisers significantly increases N₂O emissions (Rashti et al, 2015). Thus, emissions of GHG from land-use change can be mitigated through the reversal of these activities, for instance, reduction of fertiliser use and the reinstallation of tidal flow on unused agricultural land (Rashti et al, 2016; Kroeger et al. 2017).

This study measured the annual GHG fluxes (CO₂, CH₄ and N₂O) from three natural coastal wetlands (mangroves, saltmarsh and freshwater tidal forests) and two agricultural land use sites (sugarcane plantation and pasture) in tropical Australia. The objectives were to assess the difference in GHG fluxes throughout different seasons that characterise tropical climates (dry-cool, dry-hot and wet-hot) and to identify environmental factors associated with these GHG fluxes. These data
will inform emission factors for converting wetlands to agricultural land uses and vice versa, filling in a knowledge gap identified in Australia (Ballock et al., 2012) and tropical regions worldwide (IPCC, 2013).

2 Materials and Methods

2.1 Study sites

The study area is located within the Herbert River catchment in Queensland, northeast Australia (Fig 1a). The region has a tropical climate with a mean monthly minimum temperature from 14 to 23°C and mean monthly maximum temperature from 25 to 33°C (Australian Bureau of Meteorology, ABM, 2020; 1968-2020; Table S3). The average rainfall is 2,158 mm y⁻¹ with the highest values of 476 mm during February (ABM 2020; 1968-2020; Table S3). The Herbert basin covers 9,842 km², from which 56% is grazing, 31% is conserved wetlands and forestry, 8% is sugarcane, and 4% is other land uses (Department of Science and Environment, QLD, DES, WetlandInfo, 2020). Wetlands in this region were heavily deforested in the past century (1943-1996) due to rapid agricultural development, primarily for sugarcane farming (Griggs. 2018). Before clearing, the land was mostly covered by rainforest and coastal wetlands, mainly Melaleuca forest, grass and sedge swamps (Johnson, Ebert, & Murray, 1999).

We selected five sites, including three natural coastal wetlands (Fig. 1): a mangrove forest (18° 53’ 42” S, 146° 15’ 51” E), a saltmarsh (18° 53’ 43” S, 146° 15’ 52” E) and a freshwater tidal forest (18° 53’ 45” S, 146° 15’ 52” E), and two common agricultural land use types of the region, a sugarcane farm (18° 53’ 44.6” S, 146° 15’ 53.2” E) and a pasture for fodder grazing. The pasture had different levels of inundation; some areas were covered with shallow ponds (50-100 cm depth), wet grassy areas (hereafter “wet pasture”; 18° 43’ 8” S, 146° 15’ 50” E) and drier areas (hereafter, “dry pasture”; 18° 43’ 7” S, 146° 15’ 50” E). The natural coastal wetlands and the sugarcane site were located within the same property at Insulator Creek, while the ponded pasture was 20 km north at Mungalla Station. The mangroves were dominated by Avicennia marina with few plants of Rhizophora stylosa, and the saltmarsh was dominated by Sueda salsa and Sporobolus spp. Landwards, the freshwater tidal freshwater forest, a wetland commonly known as “tea tree swamp”, was dominated by Melaleuca quinquenervia trees. While the mangroves and saltmarsh are directly submerged by tides (5-30 cm), the tidal freshwater forest is indirectly affected by tidal fluctuations, such as during large spring tides, when tidal water can push groundwater above the forest. The coastal wetlands were adjacent to a sugarcane farm with an area of ~110 ha (Fig. 1b). The sugarcane is fertilised once a year with urea at a rate of 135 kg N ha⁻¹ and harvested during May-June, while the foliage is left on the soil surface (trash blanket) after harvest. The ponded pastures in Mungalla Station extend over 2,500 ha and support ~900 cattle throughout the year by providing fodder to cattle during dry periods. The selected ponded pastures were covered by Eichhornia crassipes (water hyacinth) and Hymenachnae amplificaulis (Fig. 1g-h). Each of the five sites was sampled during three periods dry-cool (May-September), dry-hot (October-December) and wet-hot (January-April; Table 1). During each time, soil physicochemical properties and GHG fluxes were measured as detailed below.
Figure 1: a) Location of sampling sites (Insulator Creek and Mungalla) in the Herbert River catchment, northeast Australia, (b) natural wetlands adjacent to sugarcane farm in Insulator Ck and sampling locations, and (c) mangroves, (d) saltmarsh, (e) freshwater tidal forest, (f) sugarcane, (g) dry pasture and (h) wet pasture. Pictures by N. Iram and MF Adame.
Table 1. Mean daily air temperature and rainfall (Ingham, Qld. weather station) during sampling.

Season	Study period	Daily min temperature (°C)	Daily max temperature (°C)	Rainfall (mm d⁻¹)
Dry-cool	17/06/2018	13.4 - 14.6	27.7 - 28.2	0
Dry-hot	23-29/10/2018	15.7 - 21.1	32.2 - 36.2	0
Dry-cool	31/05 to 6/06/2019	10.9 - 17.5	21.6 - 28.2	0-25
Wet-hot	17-22/02/2020	23.9 - 25.3	33.6 - 34.5	0-86

2.2 Soil sampling and analysis of physicochemical properties

Soil physicochemical characteristics were measured by taking composite soil samples next to each gas chamber location (n = 5; 0-30 cm) for all study sites during the dry-hot season. The samples were obtained by inserting an open steel corer to a depth of 30 cm; the core was divided into three depths: 0-10, 10-20 and 20-30 cm. Soil samples were oven-dried at 105 °C for 48 h to determine volumetric water content through gravimetric analysis. The volumetric water content was divided by total soil porosity to determine water-filled pore space (WFPS). Total soil porosity was calculated through the following equation from Rashti et al. (2015, Eq. 1).

\[
\text{Total soil porosity} = 1 - [(\text{soil bulk density (mg cm}^{-3})/ 2.65)]
\]

Equation 1.

Soil texture analysis (% sand, silt, clay) was done with a simplified method for particle size determination (Kettler et al, 2001). Soil electrical conductivity (EC) and pH were measured using a conductivity meter (WP-84 TPS, Australia) in soil/water slurry at 1:5. Soil subsamples were air-dried, sieved (2mm), ground (Retch™ mill) and analysed for %N and %C using an elemental analyser connected to a gas-isotope ratio mass spectrometer (EA-Delta V Advantage IRMS, Griffith University). Additionally, soil samples from the top 10 cm were collected during each sampling to measure gravimetric soil moisture content and bulk density.

2.3 Greenhouse gas fluxes

We measured GHG fluxes (CO₂, CH₄ and N₂O) at each site for three consecutive days during each sampling period except for the dry-cool period of 2018, when mangroves, saltmarsh and sugarcane were surveyed for one day. The sampling was done between 9:00 to 11:00 am, representing the mean daily temperatures, thus, minimising variability of cumulative seasonal fluxes.
based on intermittent manual flux measurements (Reeves et al, 2016). Additionally, we assessed the variability of our measurements with tidal inundation in mangroves and saltmarsh, which were regularly inundated (~10-30 cm). For this, we measured GHG emissions during a low (0.7m) and a high tide (2.8m; Lucinda, 18º 31’ S; 146º 23’ E) in the dry-cool period of 2019. We found that CH₄ fluxes did not significantly vary between the low and high tide within all coastal wetlands. Contrarily, for saltmarsh, CO₂ was taken during the high tide (1.12 ± 0.24 g m⁻² d⁻¹) but emitted (0.69 ± 0.4 g m⁻² d⁻¹) during the low tide ($F_{1,28} = 20.06, p < 0.001$). Finally, for N₂O, fluxes differed in all coastal wetlands, with higher uptakes in the high tide for mangroves ($F_{1,28} = 38.28, p < 0.001$; $F_{1,28} = 13.53, p = 0.001$) and higher release for saltmarsh ($F_{1,28} = 38.31, p < 0.001$) during low tide (Table S4). These results suggested that for CO₂ and N₂O fluxes, there was a probability of variation depending on the time of sampling. Thus, further sampling was conducted only during low tides.

We used static, manual gas chambers made of high-density, round polyvinyl chloride pipe, which consisted of two units: a base (r =12 cm, h =18 cm) and a detachable collar (h =12 cm; Hutchinson and Mosier, 1981; Kavehei et al, 202). The chambers had lateral holes that could be left covered with rubber bungs at low water levels and left open at high water levels to allow for water movement between sampling events. When the wetlands were inundated for the experiments, we used PVC extensions (h = 18 cm). Five chambers were set ~ 5cm deep in the soil at random locations one day before sampling to minimise the disturbance of installation during the experiment (Rashti et al, 2015). The chambers were selectively located on soil with minimal vegetation, roots, and crab burrows. We were careful not to tramp around the chambers during installation and sampling. The fact that emissions were not significantly different among days ($p >0.05$) provided us with confidence that disturbance due to installation was not problematic.

At the start of the experiment, gas chambers were closed. A sample was taken at time zero and then after one hour with a 20 ml syringe and transferred to a 12 mL-vacuumed extainer (Exetainer, Labco Ltd., High Wycombe, UK). During the dry-hot season, linearity tests of GHG fluxes with time were conducted by sampling at 0, 20, 40 and 60 min (Rashti et al, 2016). For the rest of the experiments, linearity tests were performed in one of the five chambers at each site; R^2 values were consistently above 0.70. During each experiment, soil temperature was measured next to each chamber. At the end of the experiment, the depth of the base was recorded from five points within each chamber to calculate the headspace volume. The obtained volumetric unit concentrations were converted to mass-based units using the Ideal Gas Law (Hutchinson and Mosier, 1981).

The GHG concentrations of all samples were analysed within two weeks of sampling with a gas chromatograph (Shimadzu GC-2010 Plus). For N₂O analysis, an electron capture detector was used with helium as the carrier gas, while CH₄ was analysed on a flame ionisation detector with nitrogen as the carrier gas. For CO₂ determination, the gas chromatograph was equipped with a thermal conductivity detector. Peak areas of the samples were compared against standard curves to
determine concentrations (Chen et al, 2012). Seasonal cumulative GHG fluxes were calculated by modifying the equation described by Shaaban et al. (2015; Eq. 2):

\[
\text{Seasonal cumulative GHG fluxes} = \sum_{i=1}^{n} (R_i \times 24 \times D_i \times 17.381)
\]

Equation 2

Where:

\(R_i\) = Gas emission rate (mg m\(^{-2}\) hr\(^{-1}\) for CO\(_2\) and \(\mu\)g m\(^{-2}\) hr\(^{-1}\) for CH\(_4\) and N\(_2\)O),

\(D_i\) = number of the sampling days in a season,

17.38 = number of weeks in each period, assuming these conditions were representative of the annual cycle (see Table 1).

Annual cumulative soil GHG fluxes (CH\(_4\) + N\(_2\)O) were calculated by integrating cumulative seasonal fluxes. These estimations did not account for soil CO\(_2\) values as our methodology with dark chambers only accounted for emissions from respiration and excluded uptake from primary productivity. The CO\(_2\)-equivalent (CO\(_2\)-eq) values were estimated by multiplying CH\(_4\) and N\(_2\)O emissions by 25 and 298, respectively (Solomon, 2007), which represent the radiative balance of these gases (Neubauer, 2021).

2.4 Statistical analyses

GHG flux data were tested for normality through Kolmogorov-Smirnov and Shapiro-Wilk tests. The data was then analysed for spatial and temporal differences with one-way Analyses of Variance (ANOVA), where site and season were the predictive factors and the replicate (chamber) was the random factor of the model. When data were not normal, they were transformed (\(\log_{10}\) or \(1/x\)) to comply with the assumptions of normality and homogeneity of variances. Some variables were not normally distributed despite transformations and were analysed with the non-parametric Kruskal-Wallis test and Mann-Whitney U Test. A Pearson correlation test was run to evaluate the correlation of GHG with measured environmental factors. Analyses were done with SPSS (v25, IBM, New York, USA), and values are presented as mean \(\pm\) standard error (SE).

3 Results

3.1 Soil physicochemical properties

Soil physical and chemical parameters (mean values 0-30 cm) varied among sites (Table 2, see full results of statistical analyses in Supplementary Material). As expected, gravimetric moisture content was highest in the coastal wetlands and wet pasture (> 26%) and lowest in the sugarcane and the dry pasture (< 14%). All soils were acidic, especially the freshwater tidal forest and the wet pastures with values < 5 throughout the sediment column; mangroves had the highest pH with 6.0 \(\pm\) 0.1. The lowest EC was recorded in the pastures (247 \(\pm\) 38 and 190 \(\pm\) 39 \(\mu\)S cm\(^{-1}\) for the dry and wet pasture, respectively), and highest in the
three natural coastal wetlands with 1,418 ± 104, 8,049 ± 276 and 8,930 ± 790 µS cm⁻¹ for tidal freshwater wetland, saltmarsh and mangroves, respectively.

Soil bulk density was highest in sugarcane (1.5 ± 0.1 g cm⁻³) and lowest in the freshwater tidal wetland (0.6 ± 0.1 g cm⁻³). For all sites, %C was highest in the top 10 cm of the soil and decreased with depth, with highest values in the freshwater tidal wetland (5.1 ± 0.6%) and lowest in the saltmarsh (1.2 ± 0.1%). Soil %N ranged from 0.1 ± 0.0 to 0.4 ± 0.1% at all sites, except in the freshwater tidal wetland, where it reached values of 0.6 ± 0.0% in the top 10 cm (Table 2).

3.2 Greenhouse gas fluxes

Soil emissions for CO₂ were significantly different among sites and times of the year (t =155.09, n =237, p < 0.001; Fig. 2a). The highest CO₂ emissions were measured during the wet-hot period in the dry pasture, where values reached 20.31 ± 1.95 g m⁻² d⁻¹ while the lowest values were measured in the saltmarsh, the only site that acted as a sink of CO₂ with an uptake rate of -0.59 ± 0.15 g m⁻² d⁻¹. In the pastures, CO₂ emissions were twice as high when dry with cumulative annual emissions of 5,748 ± 303 g m⁻² y⁻¹ compared to when wet, with 2,163 ± 465 g m⁻² y⁻¹. For the coastal wetlands, cumulative annual CO₂ emissions were highest in freshwater tidal forests with 2,213 ± 284 g m⁻² y⁻¹, followed by mangroves with 1,493 ± 111 g m⁻² y⁻¹ and lowest at the saltmarsh with uptake rates of -264 ± 29 g m⁻² y⁻¹.

For CH₄ fluxes, significant differences were observed among sites and seasons (t = 182.33, n =237, p < 0.001). The differences between different sites were substantial, with wet pasture having significantly higher CH₄ emissions than any other site, with rates ~200 times higher throughout the measured period (Fig. 2b). For tidal coastal wetlands, emissions of CH₄ were highest during the wet-hot season in all the sites except for the mangroves, which had similar emissions throughout the year (Fig. 2b). Overall, cumulative annual CH₄ emissions were 209 ± 36 g m⁻² y⁻¹ for the wet pasture followed by mangroves (0.73 ± 0.13 g m⁻² y⁻¹), dry pasture (0.15 ± 0.03 g m⁻² y⁻¹), freshwater tidal forest (0.14 ± 0.03 g m⁻² y⁻¹), saltmarsh (0.04 ± 0.01 g m⁻² y⁻¹), and sugarcane (-0.04 ± 0.02 g m⁻² y⁻¹).

For N₂O fluxes, the highest emissions (55 ± 9 mg m⁻² d⁻¹) were measured in the dry pasture in the hot-wet season, followed by sugarcane (20 ± 3 mg m⁻² d⁻¹) during the hot-dry period, which coincides with the post-fertilisation period (Fig. 2c). Overall, dry pastures had the highest cumulative annual N₂O emissions (7.99 ± 2.26 mg m⁻² d⁻¹), followed by sugarcane (2.37 ± 0.68 mg m⁻² d⁻¹), wet pasture (1.32 ± 0.33 mg m⁻² d⁻¹), saltmarsh (0.33 ± 0.11 mg m⁻² d⁻¹), freshwater tidal forests (0.04 ± 0.00 mg m⁻² d⁻¹) and finally, mangroves (0.02 ± 0.04 mg m⁻² d⁻¹). However, these differences were only statistically significant when considering the interaction between time of the year and site (t =100.21, n =237, p < 0.001).

The wet pasture had the highest total cumulative soil GHG emissions (CH₄ + N₂O) with 56,124 CO₂eq kg ha⁻¹ y⁻¹ followed by dry pasture 23,890 CO₂eq kg ha⁻¹ y⁻¹ and sugarcane 7,142 CO₂eq kg ha⁻¹ y⁻¹. While coastal wetlands had comparatively very lower total cumulative soil GHG emissions with 884, 235 and 144 CO₂eq kg ha⁻¹ y⁻¹ for saltmarsh,
mangroves and freshwater tidal forests, respectively. Overall, the three coastal wetlands measured in this study had lower total cumulative GHG emissions at 1,263 CO$_2$-eq kg ha$^{-1}$ yr$^{-1}$ compared to the alternate agricultural land uses, which emitted 87,156 CO$_2$-eq kg ha$^{-1}$ yr$^{-1}$.

3.3 Greenhouse gas emissions and environmental factors

Overall, we found that not one single parameter measured in this study could explain GHG fluxes for all sites except land-use. The CO$_2$ emissions were not significantly correlated to bulk density ($R^2 = 0.026$ $p = 0.918$ $n =18$), % WFPS ($R^2 =-0.003$ $p = 0.99$ $n = 18$), or soil temperature ($R^2 = 0.296$ $p = 0.233$, $n =18$). Soil CH$_4$ emissions were neither correlated with bulk density ($R^2 = -0.096$ $p = 0.706$ $n = 18$), % WFPS ($R^2 = 0.224$ $p = 0.372$, $n = 18$) or soil temperature ($R^2 = 0.286$ $p = 0.25$ $n = 18$). Finally, no correlation was found between N$_2$O emissions and bulk density ($R^2 = -0.349$ $p = 0.156$ $n =18$), % WFPS ($R^2 = -0.34$ $p = 0.168$ $n =18$), or soil temperature ($R^2 = -0.241$ $p = 0.335$ $n = 18$). See full raw dataset at Table 1S and S4.
Table 2. Physicochemical characteristics for the soil of natural coastal wetlands, sugarcane and pastures (dry and ponded) for the top 30 cm of soil in tropical Australia. C = carbon, N = Nitrogen, EC = Electrical Conductivity. Values are mean ± standard error ($n = 5$).

Site	Depth (cm)	Gravimetric moisture content (%)	pH	EC (μS cm$^{-1}$)	Bulk density (g cm$^{-3}$)	%C	%N	
Mangroves	0-10	41.7 ± 1.1	5.9 ± 0.1	12,550 ± 524	1.14 ± 0.05	2.3 ± 0.1	0.18 ± 0.01	
	10-20	34.6 ± 0.7	5.9 ± 0.3	12,164 ± 5,560	1.34 ± 0.03	1.7 ± 0.2	0.12 ± 0.01	
	20-30	31.3 ± 0.6	6.2 ± 0.1	5,560 ± 365	1.95 ± 0.12	0.9 ± 0.1	0.07 ± 0.01	
	Mean	35.9 ± 1.2	6.0 ± 0.1	8,930 ± 790	1.48 ± 0.10	1.6 ± 0.2	0.12 ± 0.01	
Saltmarsh	0-10	25.6 ± 1.2	5.8 ± 0.2	8,442 ± 435	1.12 ± 0.04	1.4 ± 0.1	0.11 ± 0.01	
	10-20	26.6 ± 0.3	5.8 ± 0.1	8,666 ± 437	1.47 ± 0.05	1.3 ± 0.1	0.12 ± 0.01	
	20-30	26.4 ± 0.2	5.9 ± 0.3	7,040 ± 316	1.56 ± 0.03	1.0 ± 0.3	0.10 ± 0.02	
	Mean	26.2 ± 0.4	5.8 ± 0.1	8,049 ± 276	1.38 ± 0.06	1.2 ± 0.1	0.11 ± 0.01	
Freshwater tidal forest	0-10	33.4 ± 0.5	4.4 ± 0.2	1,099 ± 17	0.46 ± 0.05	7.8 ± 0.1	0.62 ± 0.03	
	10-20	24.9 ± 0.6	4.2 ± 0.0	1,272 ± 164	0.71 ± 0.02	5.4 ± 0.0	0.46 ± 0.04	
	20-30	22.4 ± 0.7	4.2 ± 0.1	1,882 ± 47	0.83 ± 0.03	2.2 ± 0.1	0.10 ± 0.00	
	Mean	26.9 ± 1.3	4.3 ± 0.1	1,418 ± 104	0.59 ± 0.05	5.1 ± 0.6	0.39 ± 0.06	
Sugarcane	0-10	9.1 ± 0.4	5.7 ± 0.1	429 ± 12	1.35 ± 0.08	1.5 ± 0.1	0.10 ± 0.00	
	10-20	12.1 ± 0.6	5.3 ± 0.3	365 ± 11	1.46 ± 0.06	1.5 ± 0.1	0.12 ± 0.01	
	20-30	13.7 ± 0.2	4.7 ± 0.2	351 ± 2	1.64 ± 0.10	1.3 ± 0.1	0.10 ± 0.00	
	Mean	11.7 ± 0.6	5.2 ± 0.2	382 ± 11	1.48 ± 0.05	1.4 ± 0.1	0.11 ± 0.00	
Pasture	Dry	0-10	12.4 ± 0.3	4.1 ± 0.0	3.78 ± 0.21	0.78 ± 0.06	3.1 ± 0.3	0.26 ± 0.03
		10-20	13.6 ± 0.1	4.4 ± 0.1	2.79 ± 0.60	1.21 ± 0.14	1.6 ± 0.4	0.12 ± 0.04
		20-30	14.5 ± 0.7	4.4 ± 0.3	3.84 ± 0.4	1.32 ± 0.19	1.6 ± 0.2	0.12 ± 0.02
		Mean	13.5 ± 0.3	4.3 ± 0.1	2.47 ± 0.38	1.10 ± 0.10	2.1 ± 0.3	0.17 ± 0.02
	Wet	0-10	52.1 ± 0.4	4.8 ± 0.0	3.58 ± 0.71	0.62 ± 0.06	3.6 ± 0.3	0.29 ± 0.02
		10-20	47.7 ± 0.4	4.9 ± 0.1	1.17 ± 0.11	1.30 ± 0.02	1.7 ± 0.1	0.10 ± 0.01
		20-30	46.4 ± 0.2	5.1 ± 0.1	0.95 ± 0.6	1.31 ± 0.02	1.5 ± 0.1	0.10 ± 0.00
		Mean	48.7 ± 0.7	4.9 ± 0.0	1.90 ± 0.39	1.07 ± 0.09	2.3 ± 0.3	0.16 ± 0.03
Figure 2: Greenhouse gas fluxes of (a) CO$_2$ (g m$^{-2}$ d$^{-1}$), (b) CH$_4$ (mg m$^{-2}$ d$^{-1}$) and (c) N$_2$O (mg m$^{-2}$ d$^{-1}$) from soils of tropical coastal wetlands: mangroves, saltmarsh, freshwater (Fw) tidal forest, and two alternative land uses: sugarcane and pastures (wet and dry) during three periods of the year: dry-cold, dry-hot and wet-hot.
4 Discussion

In this study, we found that the three coastal tropical wetlands measured in this study (mangroves, saltmarshes and freshwater tidal forests) had significantly lower GHG emissions compared to two alternative land uses common in tropical Australia (sugar cane and grazing pastures). Notably, we found that coastal wetlands had 200 times lower CH₄ emissions and seven times lower N₂O compared to wet pastures and sugarcane soils, respectively. While future studies should measure GHG from other wetlands, land uses, and within other tropical regions, these results support the idea that the management or conversion of unused agricultural land could be converted to coastal wetlands could result in significant GHG mitigation.

The variability of GHG fluxes was best explained by land use and wetland type; however, some trends with seasons were evident. For instance, CO₂ and N₂O emissions were lowest during the dry-cool periods. Reduced emissions at low temperatures are expected as the temperature is a main driver of any metabolic process, including respiration and nitrification-denitrification. Mangroves tend to have higher CO₂ emissions as temperature increases (Liu and Lai 2019), and terrestrial forests have significantly higher N₂O emissions during warm seasons (Schindlbacher et al, 2004). Emissions of CH₄ also tend to increase with temperature as the activity of soil methane-producing microbes (Ding et al, 2004) and the availability of carbon is higher in warmer conditions (Yvon-Durocher et al, 2011). However, as most of the studies on GHG fluxes, were conducted in temperate and subtropical locations where differences in temperature throughout the year are much larger than those in tropical regions. For tropical regions, increased GHG emissions are likely to be strongly affected by the “Birch effect”, which refers to short-term but a substantial increase of respiration from soils under the effect of precipitation during the early wet season (Fernandez-Bou et al, 2020).

The main factor associated with GHG fluxes was land use and type of wetland. Notably, coastal wetlands, even the freshwater tidal forests, had much lower emissions compared to the wet pastures. This large difference could be attributed to the presence of terminal electron acceptors in the soils (e.g. iron, sulphate, manganese) of the coastal wetlands, which could inhibit methanogenesis (Kögel-Knabner et al, 2010; Sahrawat, 2004). Sulphate reducing bacteria are also likely to outcompete methane-producing bacteria (methanogens) in the presence of high sulphate concentrations in tidal wetlands, resulting in low CH₄ production. Competition between methanogens and methanotrophs may result in a net balance of low CH₄ production despite freshwater conditions (Maietta et al. 2020). Additionally, microorganism living within the bark of *Melaleuca* trees can consume CH₄ (Jeffrey et al, 2021), so it is possible that similar bacteria within the soil could reduce CH₄ emissions. Interestingly, variability within CH₄ fluxes among sites was very high, despite them being very close to each other (Fig. 1b). These differences highlight the importance of land use in GHG fluxes, which are likely to significantly alter the microbial community composition and abundance, which can change rapidly over small spatial scales (Martiny et al, 2006; Drenovsky et al, 2009).
Our results are consistent with other studies, which have shown the importance of land use in GHG emissions. For instance, in a Mediterranean climate, drained agricultural land use types, pasture and corn, were larger CO\textsubscript{2} emitters compared to restored wetlands (Knox et al. 2015). Clearing of wetlands for agricultural development, such as the drainage of peatlands, results in very high CO\textsubscript{2} emissions (Nieveen et al, 2005; Veenendaal et al, 2007; Hirano et al, 2012), and restoration of these wetlands could decrease these emissions (Cameron et al, 2020). Additionally, some of the wetland types, such as marshes, were occasional sinks of CO\textsubscript{2} and CH\textsubscript{4}, consistent with previous studies where intertidal wetlands sink of GHG at least under some conditions or during some times of the year (Knox et al, 2015; Maher et al, 2016).

The fluxes measured in the coastal wetlands of this study (-1.191 to 10.970 mg m-2 d-1 for CO\textsubscript{2}, -0.2 to 3.9 mg m-2 d-1 for CH\textsubscript{4}, and -0.2 to 2.8 mg m-2 d-1 for N\textsubscript{2}O) are within the range of those measured in other wetlands, worldwide. For CO\textsubscript{2}, fluxes can range between -139 and 22,000 mg m-2 d-1 (Stadmark and Leonardson 2005; Morse et al. 2012), for CH\textsubscript{4}, from -1 to 418 mg m-2 d-1 (Allen et al. 2007; Mitsch et al 2013; Cabezas et al. 2018), and for N\textsubscript{2}O, from -0.3 to 3.9 mg m-2 d-1 (Hernandez and Mitsch 2006; Morse et al. 2012). Despite being in tropical regions, the fluxes from this study were not notably higher compared to wetlands in other climates. The general lower nitrogen pollution in Australia’s soils and waterways compared to other countries may partially explain the lower emissions. However, the GHG flux measurements from this study did not account for the effects of vegetation, which can alter fluxes. For instance, some plant species of rice paddies (Timilsina et al., 2020) and Miscanthus sinensis (Lenhart et al., 2019) can increase N\textsubscript{2}O emissions, and some tree species can facilitate CH\textsubscript{4} efflux from the soil (Pangala et al. 2013). Finally, changes in emissions between low and high tides were detected for CO\textsubscript{2} and N\textsubscript{2}O. Thus, future studies that include vegetation and changes within tidal cycles will improve GHG flux estimates for coastal wetlands.

4.1 Management implications

Under the Paris Agreement, Australia has committed to reducing GHG emissions 26 - 28% below its 2005 levels by 2030. With annual emissions of 153 million tonnes of carbon dioxide equivalent (Mt CO\textsubscript{2}-eq y-1), Queensland is a major GHG emitter in Australia (~ 28.7% of the total in 2016; DES, 2016). Of these emissions, about 18.3 Mt CO\textsubscript{2}-eq y-1 (14%) are attributed to agriculture, while land-use change and forestry emit 12.1 Mt CO\textsubscript{2}-eq y-1 (DES, 2016). Production of CH\textsubscript{4} from ruminant animals, primarily cattle, contribute 82% of agriculture-related emissions (DES, 2016). Therefore, any GHG mitigation strategy from land-use change could be important for Australia to achieve its national goals.

This study supports the application of three management actions that could reduce GHG emissions. First, the conversion of ponded pastures to coastal wetlands is likely to reduce soil GHG emissions. Our results showed that wet pastures emit 56 ton CO\textsubscript{2}-eq ha-1 y-1 of total GHG (CH\textsubscript{4} + N\textsubscript{2}O) compared with 0.2 ton CO\textsubscript{2}-eq ha-1 y-1, 0.1 ton CO\textsubscript{2}-eq ha-1 y-1 and 0.9 ton
CO$_2$-eq ha$^{-1}$ yr$^{-1}$ from mangroves, freshwater tidal forest, and saltmarshes, respectively. This implies that about 55 ton CO$_2$-eq ha$^{-1}$ yr$^{-1}$ emissions from the soils could be potentially avoided by converting wet pastures to coastal wetlands. The carbon mitigation for GHG emissions from soil solely could provide ~ AUD 860 ha$^{-1}$ yr$^{-1}$: assuming a carbon value of AUD 15.37 per ton of CO$_2$-eq (Australian Government Clean Energy Regulator, 2018). This mitigation could be added up to the carbon sequestration through sediment accumulation and tree growth that results from wetland restoration. Legal enablers in Queensland are in place to manage unproductive agricultural land this way (Bell-James and Lovelock 2019), and could provide an alternative income source for farmers.

A second management option would be to reduce the time pastures are kept under water. Dry pastures produced significantly less CH$_4$ with ~0.005 kg ha$^{-1}$ d$^{-1}$ than wet pastures with 6 kg ha$^{-1}$ d$^{-1}$. For comparison, an average cow produces 141 g CH$_4$ d$^{-1}$ (McGinn et al, 2004), and our study area supported around 900 cattle over 2,500 ha throughout the year, equivalent to 19 kg ha$^{-1}$ yr$^{-1}$ compared to 2 kg ha$^{-1}$ yr$^{-1}$ and 2090 kg ha$^{-1}$ yr$^{-1}$ CH$_4$ from dry and wet pasture respectively. This implies that nearly 99% of the CH$_4$ emissions came from wet pastures, while dry pasture and grazing cattle had a low share in total CH$_4$ emissions. Therefore, land use management of wet pastures which are used to feed grazing cattle in Queensland may be a significant opportunity to reduce agriculture-related CH$_4$ emissions. Future studies should increase the number of sites of ponded pastures to account for variability in hydrology, fertilisation, and cattle use. However, the very high difference (2-3 orders of magnitude) between dry and ponded pastures provides confidence that pasture management could provide significant GHG mitigation throughout the year.

Finally, fertiliser management in sugarcane could reduce N$_2$O emissions. Higher N$_2$O emissions of 17.63 mg m$^{-2}$ d$^{-1}$ were measured in sugarcane following fertilisation during the dry-hot season. Comparatively, natural wetlands had low N$_2$O emissions (0.16 to 2.79 mg m$^{-2}$ d$^{-1}$); even the saltmarsh was an occasional sink. Thus, improved management of fertiliser applications could result in GHG emission mitigation. Some activities include split application of nitrogen fertiliser in combination with low irrigation, reduction in fertiliser application rates, the substitution of nitrate-based fertiliser for urea (Rashti et al, 2015), removing mulch layer before fertiliser application (Pinheiro et al, 2019; Xu et al, 2019 Zaehle and Dalmonche, 2011) or conversion of unproductive sugarcane to coastal wetlands.

5 Conclusion

The GHG emissions from three coastal wetlands in tropical Australia (mangroves, saltmarsh and freshwater tidal forests) were consistently lower than those from two common agricultural land use of the region (sugarcane and pastures) throughout three climatic conditions (dry-cool, dry-hot and wet-hot). Ponded pastures, which emitted 200 times more CH$_4$, and sugarcane emitted seven times more than any natural coastal wetland. If these high emissions are persistent in other locations and within
other tropical regions, conversion of pastures and sugarcane to similar coastal wetlands could provide significant GHG mitigation. As nations try to reach their emission reduction targets, projects aimed at converting or restoring coastal wetland can financially benefit farmers and provide additional co-benefits derived from coastal wetland restoration.

Author contribution
Iram, N. and M.F. Adame designed the project, Iram, N, B. Shahrabi Farahani and E. Kavehei carried out experiments, Iram, N., E. Kavehei and M.F. Adame analysed the data. Iram, N and M.F. Adame prepared the manuscript with contributions from D.T. Maher, S.E., Bunn, and M. Rezaei Rashti.

Competing interests
The authors declare that they have no conflict of interest.

Acknowledgements
We acknowledge the Traditional Owners of the land in which the field study was conducted, especially the Nywaigi people from Mungalla Station, where this study was conducted. We are also thankful to Sam and Santo Lamari for allowing us to work on their property and for sharing their local knowledge. We are thankful to Charles Cadier and Julieta Gamboa for their contribution to the fieldwork. This project was financially supported by an Advance Queensland Industry Research Fellowship to MF Adame.
References

Allen, D.E., Dalal, R.C., Rennenberg, H., Meyer, R.L., Reeves, S., and Schmidt, S.: Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere, Soil Biol. Biochem., 39, 622–631, https://doi.org/10.1016/j.soilbio.2006.09.013, 2007.

Angle, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S.: Greenhouse gas emissions from soils—A review, Geochemistry, 76, 327-352, https://doi.org/10.1016/j.chemer.2016.04.002, 2016.

Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J., Borton, M. A., Rey-Sanchez, C., Daly, R. A., Mirfenderesgi, G., Hoyt, D. W., Riley, W. J., Miller, C. S., Bohrer, G., and Wrighton, K. C.: Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions, Nat. Commun., 8,1-9, https://doi.org/10.1038/s41467-017-01753-4, 2017.

Australian Government Clean Energy Regulator: http://www.cleanenergyregulator.gov.au/Infohub/Markets/buying-accus/australian-carbon-credit-unit-market-updates/december-2018#f4, last access: 6 February 2021, 2020.

Baldock, J. A., Wheeler, I., McKenzie, N., and McBratney, A.: Soils and climate change: potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture, Crop Pasture Sci., 63, 269-283, http://dx.doi.org/10.1071/CP11170, 2012.

Bauza, J. F., Morell, J. M., and Corredor, J. E.: Biogeochemistry of nitrous oxide production in the red mangrove (Rhizophora mangle) forest sediments, Estuar. Coast. Shelf S., 55, 697-704, https://doi.org/10.1006/ecss.2001.0913, 2002.

Bell-James, J. and Lovelock, C. E.: Legal barriers and enablers for reintroducing tides: an Australian case study in reconverting ponded pasture for climate change mitigation, Land Use Policy, 88, 1-9, https://doi.org/10.1016/j.landusepol.2019.104192, 2019.

Cabezas, A., Mitsch, W. J., MacDonnell, C., Zhang, L., Bydalek, F., and Lasso, A.: Methane emissions from mangrove soils in hydrologically disturbed and reference mangrove tidal creeks in southwest Florida, Ecol. Eng., 114, 57-65, https://doi.org/10.1016/j.ecoleng.2017.08.041, 2018.

Cameron, C., Hutley, L. B., Munksgaard, N. C., Phan, S., Aung, T., Thinn, T., Aye, W. M., and Lovelock, C. E.: Impact of an extreme monsoon on CO₂ and CH₄ fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar, Sci. Total Environ., 760, 1-11, https://doi.org/10.1016/j.scitotenv.2020.143422, 2021.

Chen, G.C, Tam, N. FY, and Yong, Y.: Spatial and seasonal variations of atmospheric N₂O and CO₂ fluxes from a subtropical mangrove swamp and their relationships with soil characteristics, Soil Biol. Biochem., 48, 175-181, https://doi.org/10.1016/j.soilbio.2012.01.029, 2012.

Conrad, R.: The global methane cycle: recent advances in understanding the microbial processes involved, Env. Microbiol. Rep., 1, 285–292, https://doi.org/10.1111/j.1758-2229.2009.00038.x, 2009.
Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N., ... & Vonk, J. A. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. *BioScience*, 66(11), 949-964, https://doi.org/10.1093/biosci/biw117, 2016.

Department of Environment and Science, Queensland, 2016. Total greenhouse gas emissions. https://www.stateoftheenvironment.des.qld.gov.au/pollution/greenhouse-gas-emissions/total-annual-greenhouse-gas-emissions. Last assessed, 25/02, 2020.

Department of Science and Environment. 2020. WetlandInfo, 2020. Herbert River drainage sub-basin — facts and maps, https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/sub-basin-herbert-river/ viewed 20 March 2020.

Ding, W., Cai, Z., and Tsuruta, H.: Cultivation, nitrogen fertilisation, and set-aside effects on methane uptake in a drained marsh soil in Northeast China, *Glob. Change Biol.*, 10, 1801-1809, https://doi.org/10.1111/j.1365-2486.2004.00843.x, 2004.

Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., and Scow, K. M.: Land use and climatic factors structure regional patterns in soil microbial communities, *Global Ecol. Biogeogr.*, 19, 27-39, https://doi.org/10.1111/j.1466-8238.2009.00486.x, 2009.

Drexler, J. Z., de Fontaine, C. S., & Deverel, S. J. (2009). The legacy of wetland drainage on the remaining peat in the Sacramento—San Joaquin Delta, California, USA. *Wetlands*, 29(1), 372-386.

Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marba, N.: The role of coastal plant communities for climate change mitigation and adaptation, *Nat. Clim. Change*, 3, 961–968, https://doi.org/10.1038/nclimate1970, 2013.

Fernandez-Bou, A.S., Dierick, D., Allen, M. F., Harmon, T. C.: Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a Neotropical wet forest, *Glob. Change Biol.*, 26, 5303–5319, https://doi.org/10.1111/gcb.15194, 2020.

Griggs, P. D. Too much water: drainage schemes and landscape change in the sugar-producing areas of Queensland, 1920–90. *Australian Geographer*, 49(1), 81-105, https://doi.org/10.1080/00049182.2017.1336965, 2018.

Grinham, A., Albert, S., Deering, N., Dunbabin, M., Bastviken, D., Sherman, B., ... & Evans, C. D. The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. *Hydrology and Earth System Sciences*, 22(10), 5281-5298. https://doi.org/10.5194/hess-22-5281-2018, 2018.

Hernandez, M. E., & Mitsch, W. J. Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. *Wetlands*, 26(3), 862-877, 2006.

Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., and Osaki, M.: Effects of disturbances on the carbon balance of tropical peat swamp forests, *Glob. Change Biol.*, 18, 3410–3422, https://doi.org/10.1111/j.1365-2486.2012.02793.x, 2012.

Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. Subsidence and carbon loss in drained tropical peatlands. *Biogeosciences*, 9(3), 1053-1071, doi:10.5194/bg-9-1053-2012, 2012.

Hutchinson, G.L. and Mosier, A.R.: Improved soil cover method for field measurements of nitrous oxide fluxes, *Soil Sci. Soc. Am. J.*, 45, 311–316, https://doi.org/10.2136/sssaj1981.03615995004500020017x, 1981.
IPCC 2013. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands ed T Hiraishi, T Krug, K Tanabe, N Srivastava, J Baasansuren, M Fukuda and T G Troxler (Geneva: Intergovernmental Panel on Climate Change).

Jeffrey, Luke C., Damien T. Maher, Eleonora Chiri, Pok Man Leung, Philipp A. Nauer, Stefan K. Arndt, Douglas R. Tait, Chris Greening, and Scott G. Johnston. “Bark-dwelling methanotrophic bacteria decrease methane emissions from trees.” *Nature communications* 12 (1), 1-8, https://doi.org/10.1038/s41467-021-22333-7. 2021.

Johnson, A.K.L., Ebert, S.P., and Murray, A.E. 1999. Distribution of coastal freshwater wetlands and riparian forests in the Herbert River catchment and implications for management of catchments adjacent the Great Barrier Reef Marine Park. 1999. Environ. Conserv. 26: 229-235.

Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Garcia, M. del C. J., MacKenzie, R. A., Megenigal, J. P., Murdiyarso, D., Simpson, L., and Trejo, H. H.: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients, Ecol. Monogr., 90, 1-18, https://doi.org/10.1002/ecm.1405, 2020.

Kavehei, E., Iram, N., Rashti, M. R., Jenkins, G. A., Lemckert, C., and Adame, M. F.: Greenhouse gas emissions from stormwater bioretention basins, Ecol. Eng., 159, 1-9, https://doi.org/10.1016/j.ecoleng.2020.106120, 2021.

Kettler, T. A., Doran, J. W., and Gilbert, T. L.: Simplified method for soil particle-size determination to accompany soil-quality analyses, Soil Sci. Soc. Am. J., 65, 849-852, https://doi.org/10.2136/sssaj2001.653849x, 2001.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J., Langenfelds, R. L., le Quere, C., Naik, V., O’Doherty, S., Plamer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Rinegeal, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahn, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks. Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.

Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J., & Baldocchi, D. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. *Global change biology*, 21(2), 750-765, doi: 10.1111/gcb.12745. 2015.

Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., and Schlote, M.: Biogeochemistry of paddy soils, Geoderma, 157,1–14, https://doi.org/10.1016/j.geoderma.2010.03.009, 2010.

Kroeger, K. D., Crooks, S., Moseman-Valtierra, S., and Tang, J.: Restoring tides to reduce methane emissions in impounded wetlands: A new and potent blue carbon climate change intervention, Scientific reports, 7, 1-12. https://doi.org/10.1038/s41598-017-12138-4, 2017.

Lehner, B., and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1-22, https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Lenhart, K.; Behrendt, T.; Greiner, S.; Steinkamp, J.; Well, R.; Giesemann, A.; Keppler, F. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytol. 221, 1398–140, https://doi.org/10.1111/nph.15455, 2019.

Liu, J., and Lai, D. Y.: Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons, Agric. For. Meteorol., 278, 107644, https://doi.org/10.1016/j.agrformet.2019.107644, 2019.

Maher DT, Sippo JZ, Tait DR, Holloway C, Santos IR. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701. doi:10.1038/srep25701. 2016.

Maietta, C. E., Hondula, K. L., Jones, C. N., and Palmer, M. A.: Palmer. “Hydrological conditions influence soil and methane-cycling microbial populations in seasonally saturated wetlands.” Front. Environ. Sci. 8:593942, doi: 10.3389/fenvs.2020.593942, 2020.

Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumsins, J. A., Kuske, C. R., Morin, P. J., Naemat, S., Øvreås, L., Reysenbach, A. L., Smith, V. H. and Staley, J. T.: Microbial biogeography: putting microorganisms on the map, Nat. Rev. Microbiol., 4, 102–112, https://doi.org/10.1038/nrmicro1341, 2006.

McGinn, S. M., D. Turner, N. Tomkins, E. Charmley, G. Bishop-Hurley, and D. Chen. Methane Emissions from Grazing Cattle Using Point-Source Dispersion. J. Environ. Qual. 40:22-27. doi:10.2134/jeq2010.0239, 2011.

Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. E., and Brix, H.: Wetlands, carbon, and climate change. Landscape Ecol., 28, 583–597. https://doi.org/10.1007/s10980-012-9758-8, 2013.

Morse, J. L., Ardón, M., and Bernhardt, E. S.: Greenhouse gas fluxes in southeastern US coastal plain wetlands under contrasting land uses, Ecol. Appl., 22, 264-280, https://doi.org/10.1890/11-0527.1, 2012.

Neubauer, S. C. Global Warming Potential Is Not an Ecosystem Property. Ecosystems, 1-11. https://doi.org/10.1007/s10021-021-00631-x, 2021.

Nieveen, J.P., Campbell, D.I., Schipper, L.A., Blair, I.J.: Carbon exchange of grazed pasture on a drained peat soil, Glob. Chang. Biol., 11, 607–618, https://doi.org/10.1111/j.1365-2486.2005.00929.x, 2005.

Ollivier, Q. R., Maher, D. T., Pitfield, C. and Macreadie, P. I.: Punching above their weight: Large release of greenhouse gases from small agricultural dams, Glob. Chang. Biol., 25, 721–732, doi:10.1111/gcb.14477, 2019.

Pangala R.S., Moore, S., Hornibrook, E.R.C., Gauci, V. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologists. 197: 524-531. doi: 10.1111/nph.12031. 2013.

Peacock, M., Audet, J., Bastviken, D., Futter, M. N., Gauci, V., Grinham, A., ... & Evans, C. D. Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters, 16(4), 044010. https://doi.org/10.1088/1748-9326/abeb36, 2021.

Pinheiro, P. L., Recous, S., Dietrich, G., Weiler, D. A., Schu, A. L., Bazzo, H. L. S., and Giacomini, S. J.: N₂O emission increases with mulch mass in a fertilised sugarcane cropping system, Biol. Fertil. Soils, 55, 511-523, https://doi.org/10.1007/s00374-019-01366-7, 2019.
Rashti, M. R., Wang, W. J., Harper, S. M., Moody, P. W., Chen, C. R., Ghadiri, H., and Reeves, S. H.: Strategies to mitigate greenhouse gas emissions in intensively managed vegetable cropping systems in subtropical Australia, Soil Res., 53, 475-484, https://doi.org/10.1071/SR14355, 2015.

Rashti, M. R., Wang, W. J., Reeves, S. H., Harper, S. M., Moody, P. W., and Chen, C. R.: Linking chemical and biochemical composition of plant materials to their effects on N\textsubscript{2}O emissions from a vegetable soil, Soil Biol. Biochem., 103, 502-511, https://doi.org/10.1016/j.soilbio.2016.09.019, 2016.

Reeves, S., Weijin W, Barry S, and Neil H.: Quantifying nitrous oxide emissions from sugarcane cropping systems: Optimum sampling time and frequency, Atmospheric environment, 136, 123-133, https://doi.org/10.1016/j.atmosenv.2016.04.008, 2016.

Sahrawat, K.L.: Terminal electron acceptors for controlling methane emissions from submerged rice soils, Commun. Soil Sci. Plant Anal. 35, 1401–1413, https://doi.org/10.1081/CSS-120037554, 2004.

Saunois, M., R. Stavert, A., Poulter, B., Bousquet, P., G. Canadell, J., B. Jackson, R., A. Raymond, P., J. Dlugokencky, E., Houweling, S., K. Patra, P., Ciais, P., K. Arora, V., Bastviken, D., Bergamaschi, P., R. Blake, D., Brailsford, G., Bruhwiler, L., M. Carlson, K., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., M. Crill, P., Covey, K., L. Curry, C., Etoipe, G., Frankenberg, C., Gedney, N., I. Hegglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., M. Jensen, K., Joos, F., Kleinen, T., B. Krummel, P., L. Langenfelds, R., G. Laruelle, G., Liu, L., MacHida, T., Makaryutov, S., C. McDonald, K., McNorton, J., A. Miller, P., R. Melton, J., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., J. Parker, R., Peng, C., Peng, S., P. Peters, G., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., J. Riley, W., A. Rosentreter, J., Segers, A., J. Simpson, I., Shi, H., J. Smith, S., Paul Steele, L., F. Thornton, B., Tian, H., Tohjima, Y., N. Tubiello, F., Tsuruta, A., Violy, N., Vougarakis, A., S. Weber, T., Van Weele, M., R. Van Der Werf, G., F. Weiss, R., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q. and Zhuang, Q.: The global methane budget 2000-2017, Earth Syst. Sci. Data, 12, 1561–1623, doi:10.5194/essd-12-1561-2020, 2020.

Schindlbacher, A., Zechmeister-Boltenstern, S., & Butterbach-Bahl, K. Effects of soil moisture and temperature on NO, NO\textsubscript{2}, and N\textsubscript{2}O emissions from European forest soils. Journal of Geophysical Research: Atmospheres, 109(D17).doi:10.1029/2004JD004590, 2004.

Shaaban, M., Peng, Q. A., Hu, R., Wu, Y., Lin, S., & Zhao, J. Dolomite application to acidic soils: a promising option for mitigating N\textsubscript{2}O emissions. Environmental Science and Pollution Research, 22(24), 19961-19970. DOI 10.1007/s11356-015-5238-4 2015

Solomon, S. (2007, December). IPCC (2007): Climate change the physical science basis. In Agudfall meeting abstracts (Vol. 2007, pp. U43D-01).

Stadmark, J., and Leonardson, L.: Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecological Engineering, 25, 542-551. https://doi.org/10.1016/j.ecoleng.2005.07.004, 2005.

Timilsina, A., Bizimana, F., Pandey, B., Yadav, R. K. P., Dong, W., & Hu, C. Nitrous oxide emissions from paddies: understanding the role of rice plants. Plants, 9(2), 180, https://doi.org/10.3390/plants9020180, 2020.
Ussiri, D., & Lal, R. *Soil emission of nitrous oxide and its mitigation*. Springer Science & Business Media. Germany, 378, ISBN 978-94-007-5364-8, 2012.

Veenendaal E. M., Kolle, O., Leffelaar, P.A., Schrier-Uijl, Huissteden, J., V., Moller, F., and Berendse, F.: CO₂ exchange and carbon balance in two grassland sites on eutrophic drained peat soils, Biogeosciences, 4, 1027–1040, https://doi.org/10.5194/bg-4-1027-2007, 2007.

Whalen, S.: Biogeochemistry of methane exchange between natural wetlands and the atmosphere, Environ. Eng. Sci., 22, 73–94, https://doi.org/10.1089/ees.2005.22.73, 2005.

Xu, C., Han, X., Ru, S., Cardenas, L., Rees, R. M., Wu, D., and Meng, F. Crop straw incorporation interacts with N fertiliser on N₂O emissions in an intensively cropped farmland, Geoderma, 341, 129-137, https://doi.org/10.1016/j.geoderma.2019.01.014, 2019.

Yvon-Durocher, G., Montoya, J.M., Woodward, G., Jones, J.I., and Trimmer, M.: Warming increases the proportion of primary production emitted as methane from freshwater mesocosms, Glob. Change Biol., 17, 1225-1234, https://doi.org/10.1111/j.1365-2486.2010.02289.x, 2011.

Zaehle, S., and Dalmonech, D.: Carbon-nitrogen interactions on land at global scales: Current understanding in modelling climate biosphere feedbacks, Curr. Opin. Environ. Sustain, 3, 311–320, https://doi.org/10.1016/j.cosust.2011.08.008, 2011.