Response surface methodology optimization and kinetics study for anthracene adsorption onto MIL-88(Fe) and NH2-MIL-88(Fe) metal-organic frameworks

Z U Zango 1,2*, A Ramli 1, K Jumbri 1, N S Sambudi 3, H A Isiyaka 1, N H H Abu Bakar 4, B Saad 1

1Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia.
2Chemistry Department, Al-Qalam University Katsina, Nigeria
3Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia.
4School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia.
Corresponding author: (zakariyya_17008416@utp.edu.my, zakariyyazango4@gmail.com)

Abstract. The experimental adsorption of Anthracene (ANT), a model polycyclic aromatic hydrocarbon (PAHs) was optimized using central composite design (CCD) of response surface methodology (RSM). MIL-88(Fe) and NH2-MIL-88(Fe) Metal-organic frameworks (MOFs) were employed as the potential adsorbents. The model was described as the significant according to the analysis of variance (ANOVA) for the statistical fittings of R² (0.991 and 0.992), and adequate precision (43.55 and 47.82) with the lack of fit F-values (2.15 and 1.59) for the MIL-88(Fe) and NH2-MIL-88(Fe) respectively. The highest adsorption efficiency achieved were 99.55 and 95.67 % for the MIL-88(Fe) and NH2-MIL-88(Fe) respectively based on the RSM optimized conditions. The pseudo-second-order kinetic model has been described as the best mechanism for the adsorption process.

Keywords: Adsorption, anthracene, kinetics, response surface methodology.

1. Introduction

Adsorption process has been a powerful technique for wastewater remediation and is receiving much attention among the researchers for the last three decades [1]. However, the batch adsorption experiment has been mostly conducted using the conventional trial and error method, where the process parameters are optimized individually through a series of experiments to obtain the optimum conditions [2]. This is tedious and one could not predict the number of experiments required to obtain the best condition and thus, large amount of reagents are consumed [3]. To alleviate these difficulties, advanced methods of design of experiments (DOE) was introduced. Several techniques of experimental design and optimization of the experimental conditions have been developed. Among the DOE techniques available, the most widely employed are the RSM and Taguchi designs [4]. Depending on the application, the methods can be applied individually or in combination when comparison studies are aimed. These techniques are applicable to various branches of knowledge and technology. In short, they are extensively employed by engineers and scientists to design different experiments.

RSM is a powerful tool used for DOE to perform process optimizations using modeling techniques. It is a collection of statistical and mathematical techniques used to set series of experimental designs for determining the optimum conditions based on the model input variables to predict the output variables [5][6]. Thus, the RSM method is valuable to describe the adsorptive studies of pollutants from wastewater and for evaluating the effects of primary parameters involved.

An empirical model is chosen for the design based on the minimum and maximum predefined control parameters of interest. This generates a set of experiments for the defined conditions and the hypothetical statistical analysis is conducted to determine the experimental responses for the respective sets of experiments [7]. The most widely employed DOE technique for adsorption studies is central
composite design (CCD) and Box-Behnken design (BBD). The set of experimental runs is dictated by the factorial design according to the levels and factors [8]. Along the RSM design using the CCD and BBD techniques, analysis of variance (ANOVA) in a quadratic polynomial model and other hypothetical tests such as Fischer (t-test), probability (probability > F), and lack of fit tests, etc., are carried out to determine the significance of the model [9].

Several researchers have reported the application of RSM for wastewater remediations. Nair et al., (2014), reviewed the systematic application of RSM for the wastewater remediations of coagulation-flocculation, advanced oxidation, electrochemical remediations, and adsorption [10]. RSM studies on the adsorptive removal of dissolved solids in wastewater were conducted by Ani et al., (2019) using activated coal as an adsorbent using CCD. The response was expressed in terms of adsorption efficiency (%R) for the minimum number of 21 runs [11]. Adsorption of the azo dye sunset yellow (SY), malachite green (MG), and methylene blue (MB) from tannery wastewater onto copper nanostructured composites were reported by Dastkhoom et al., (2017) with the experimental parameters optimized by the CCD. The input variables studied were pH, adsorbent mass, sonication time, and the adsorbents concentration within 33 experimental points [12]. Brahmi et al., (2019) explored the adsorption of acid dye onto AC obtained from wild date stones. The number of experiments was restricted at 30 runs as designed by the CCD and the prediction was made for the percentage removals and compared with the corresponding experimental values [13]. Zhang et al., (2017) described the CCD optimized adsorption of antibiotics onto desiccated rice husk-derived AC. Four factorial design was employed with 30 number of experiments and the adsorption capacity was obtained as the response variables [14]. RSM for heavy metals removal was reported by Thuan et al., (2017) with a minimum number of 20 runs for the Cu^{2+}, Ni^{2+}, and Pb^{2+} adsorption onto AC obtained from banana peel. The significance of the model was described by a lack of fit of 0.22 [15]. Polycyclic aromatic hydrocarbons (PAHs) are among the most widely detected organic pollutants from wastewater. They are organic compounds consisted of fused benzene-rings with hydrophobic properties [16]. They usually resulted from industrial production such as fuel exploration and refining, petrochemical processing, textile dyeing and to a small extent, burning of biomass [17,16]. When released in form of effluents into the environment usually exert various toxic effects to living organisms. They are listed as priority pollutants by USEPA due to their endocrine disrupting properties [18], acute toxicities even at low concentrations [19,20]. Anthracene has been a frequently detected PAHs in environmental wastewater [21,22]. It is known to have carcinogenic potency associated with hazardous effect such as respiratory complication, eye irritation, diarrhoea, defect in reproduction system, cardiovascular disorder [23,24]. They have low solubility in water, hence resistance to various forms of remediation such as biodegradation and photolysis [25,26]. Thus, it is important to explore other techniques for the effective remediation of these pollutants from the environment. Adsorption has been considered as efficient, cheap and greener remediation technique for their elimination from environmental waters.

Metal-organic frameworks (MOFs) have been recently recognized as highly porous and efficient materials for wastewater remediation process such as adsorption and photocatalytic degradation [27][28]. The tunability of the MOFs frameworks, selectivity, water stability and reusability of some MOFs have been emphasized as their characteristic superiority for adsorption application over the conventional adsorbents used for the removal of organic and inorganic pollutants from wastewater [29][30]. Thus, this work is aimed at exploring RSM optimization for the adsorption of Anthracene (ANT) as a model PAHs from aqueous medium using MIL-88(Fe) and NH2-MIL-88(Fe) MOFs. The mechanism for the adsorption will also be studied using the well-established models of pseudo-first-order, pseudo-second-order and intra-particles diffusion.

2. Materials and Methods

Anthracene standard, iron (III) chloride, benzene-1,4-dicarboxylic acid and 2-aminobenzene-1,4-dicarboxylic acid was purchased from Sigma Aldrich, USA. N,N-dimethylformamide (DMF), acetone and ethanol were supplied by Avantis Laboratory, Malaysia. All the materials were analytically graded and are used as received with no further purifications.
2.1 Synthesis of MIL-88(Fe) and NH2-MIL-88(Fe) MOFs
The synthesis of MIL-88(Fe) and MIL-88(Fe) was described by Xu et al., (2016) [31], with some modifications reported in our previous article [32].

2.2 RSM for batch adsorption study
For the batch study of ANT adsorption, the experiment was designed using CCD comprising of five parameters as the input variables: contact time (5 - 45 min), adsorbent dosage (2 - 6 mg), initial concentration (1 - 5 mg/L), pH (2 - 10) and temperature (25 - 45 °C) according to the Table 1. Thus, 47 sets of experimental runs were generated under different conditions described in Table 2.

Table 1. CCD for the adsorption of ANT, CRY and PYR onto the Zr-based and Fe-based MOFs

Factors	Levels
Contact time (min)	5, 15, 25, 35, 45
Adsorbent dosage (mg)	2, 3, 4, 5, 6
Initial concentration (mg/L)	1, 2, 3, 4, 5
pH	2, 4, 6, 8, 10
Temperature (°C)	25, 30, 35, 40, 45

The adsorption was carried out in 100 mL flask containing 30 mL of the ANT solution in an incubator shaker (Incubator ES 20/60, bioSan) at 200 rpm at under room temperature. The sample aliquot was withdrawn at regular time interval and filtered with syringe membrane (0.45µm) prior to UV-visible spectrophotometer (GENESYS 30) analysis at 377 nm. All the analysis were conducted in triplicates for reproducibility.

The adsorption capacity at a given time \(q_t \) was calculated from the formula:

\[
q_t = \frac{(C_0 - C_t)V}{w}
\]

(1)

While the adsorption capacity at equilibrium \(q_e \) was calculated from the formula:

\[
q_e = \frac{(C_0 - C_e)V}{w}
\]

(2)

And the adsorption efficiency (%R) was calculated from the formula:

\[
%R = \frac{C_0 - C_e}{C_0} \times 100
\]

(3)

Where \(C_0, C_t, \) and \(C_e \) are the initial, time and equilibrium concentrations (mg/L), respectively and \(w \) is the weight of the adsorbent (g), and \(V \) is the volume of the solution (L).

3. Results and discussion
Optimization studies for the adsorption of the ANT onto the MIL-88(Fe) and NH2-MIL-88(Fe) was conducted according to full factorial design of CCD with five central points based on the five input variables described in section 2.2. The adsorption efficiency with respect to the different experimental conditions were presented in the tables 2. The highest adsorption efficiency recorded by MIL-88(Fe) was 99.55, 95.67% for the MIL-88(Fe) and NH2-MIL-88(Fe) respectively at run 23 under the described experimental conditions (contact time 35 minutes; MOF dosage 4 mg; initial concentrations 2mg/L; pH 2; and temperature 30 °C). The 3D graphs for the removal efficiency based on the RSM optimized conditions was depicted in Figure 1a and 1b for the MIL-88(Fe) and NH2-MIL-88(Fe) respectively.
Table 2. CCD optimization for ANT adsorption onto Fe-based MOFs

Run	Time	Dosage	Conc	pH	Temp	MIL-88(Fe) ANT removal (%)	NH₂-MIL-88(Fe) ANT removal (%)
1	15	4	2	4	30	87.65	81.22
2	5	3	6	25	25	67.22	63.15
3	25	5	1	2	25	98.75	92.11
4	15	6	2	4	30	87.12	83.75
5	15	4	2	4	30	86.35	82.14
6	25	5	1	6	25	97.46	93.62
7	25	3	1	6	35	92.33	89.25
8	15	2	2	4	30	81.12	77.25
9	15	4	2	4	45	86.62	82.17
10	15	4	4	4	30	83.19	79.45
11	45	4	2	4	30	98.36	94.11
12	25	5	3	6	35	98.15	93.65
13	15	4	2	8	30	88.34	82.55
14	5	5	1	6	35	69.22	65.16
15	15	4	5	4	30	83.92	76.22
16	15	4	2	10	30	85.52	77.75
17	25	3	1	2	35	96.46	91.17
18	5	3	1	6	25	67.82	63.32
19	5	5	1	6	25	70.16	65.27
20	25	3	3	2	25	94.55	88.35
21	5	5	3	2	25	66.85	63.22
22	25	3	1	6	25	97.18	89.77
23	35	4	2	4	30	99.55	93.75
24	5	3	1	2	25	67.25	62.15
25	15	4	2	4	30	88.64	82.11
26	5	3	3	6	25	66.22	62.26
27	5	3	3	2	35	65.75	62.05
28	5	3	3	2	25	66.17	62.22
29	25	5	3	6	25	98.77	91.85
30	25	3	3	6	35	90.25	89.14
31	15	4	2	4	30	86.77	82.11
32	25	5	3	2	25	97.17	90.45
33	5	3	1	6	35	64.55	64.23
34	5	5	3	2	35	67.16	63.53
35	25	3	1	2	25	97.64	89.33
36	15	4	2	4	40	87.22	82.11
37	5	5	1	2	35	67.11	64.13
38	25	5	1	6	35	98.33	92.25
39	25	3	3	2	35	93.52	86.61
40	15	4	2	4	30	87.22	83.65
41	5	5	1	2	35	67.86	64.11
42	5	3	3	6	35	66.45	62.52
43	25	3	3	6	25	95.12	89.95
44	25	5	3	2	35	97.53	90.08
45	5	5	3	6	35	67.83	63.84
46	25	5	1	2	35	98.22	93.22
47	5	5	1	2	25	67.45	64.25
Figure 1. RSM 3D graph for ANT adsorption onto (a) MIL-88(Fe) and (b) NH$_2$-MIL-88(Fe)MOFs

The ANOVA fitting for the RSM optimization of the ANT adsorption onto the MIL-88(Fe) and NH$_2$-MIL-88(Fe) was presented in Table 3. The linear regression analysis and the statistical values for the Fisher-test (F), degree of freedom (df), sum of the square and mean square error and the p-values of the main variables interactions with 95% confidence level were highlighted. According to the table, the p-
values <0.0001 were described as significant for the adsorption study. Thus, the significant interactions for the input variables of the ANT adsorption onto the Fe-based MOFs were A, B, C, AB, BD, BE, A², B² and A, B, C, D, AB, A², B², D² for the MIL-88(Fe) and NH₂-MIL-88(Fe) respectively. Similarly, the lack of fit test for the model was non-significant with F-values of 2.15 and 1.59 with the respective p-values of 23.97% and 35.29% attributed to the pure error that could occur due to noise for the MIL-88(Fe) and NH₂-MIL-88(Fe) respectively. The non-significant lack of fit has been desirable for the fitting of the model.

According to the values presented in the table, good agreement has been seen between the adjusted and predicted R², likewise, the values of the adequate precision were greater than 4, implying the significance of the model to navigate the design space.

Table 3 ANOVA for the adsorption of ANT onto Fe-based MOFs

Source	Sum of square	df	Mean square	F-value	p-value	Sum of square	df	Mean square	F-value	p-value
Model	7596.00	20	379.80	248.20	<0.0001	6657.63	20	332.88	248.20	<0.0001
A-Contact time	7134.71	1	7134.71	4662.51	<0.0001	6181.60	1	6181.60	4662.51	<0.0001
B-Adsorbent dosage	63.15	1	63.15	41.27	<0.0001	53.71	1	53.71	41.27	<0.0001
C-Initial Concentration	10.77	1	10.77	7.04	<0.0134	12.12	1	12.12	7.04	<0.0134
D-pH	0.0209	1	0.0209	0.0137	<0.9078	0.0205	1	0.0205	0.0137	<0.9078
E-Temperature	5.21	1	5.21	3.40	0.0765	6.962	1	6.962	3.40	0.0765
AB	8.40	1	8.40	5.49	<0.0270	6.10	1	6.10	5.49	<0.0270
AC	0.3916	1	0.3916	0.2559	0.6172	0.0205	1	0.0205	0.2559	0.6172
AD	3.20	1	3.20	2.09	0.1601	0.5177	1	0.5177	2.09	0.1601
AE	2.33	1	2.33	1.52	0.2280	0.4489	1	0.4489	1.52	0.2280
BC	1.55	1	1.55	1.01	0.3237	3.125E-06	1	3.125E-06	1.01	0.3237
BD	8.18	1	8.18	5.35	<0.0289	0.3507	1	0.3507	5.35	<0.0289
BE	6.57	1	6.57	4.29	<0.0483	0.0014	1	0.0014	4.29	<0.0483
CD	0.7813	1	0.7813	0.5105	0.4813	1.73	1	1.73	0.5105	0.4813
CE	0.5512	1	0.5512	0.3602	0.5536	0.4348	1	0.4348	0.3602	0.5536
DE	3.52	1	3.52	2.30	0.1412	0.1213	1	0.1213	2.30	0.1412
A²	852.20	1	852.20	556.91	<0.0001	675.49	1	675.49	556.91	<0.0001
B²	20.57	1	20.57	13.44	<0.0011	6.19	1	6.19	13.44	<0.0011
C²	5.07	1	5.07	3.31	0.0803	13.13	1	13.13	3.31	0.0803
D²	1.22	1	1.22	0.7983	0.3798	20.07	1	20.07	0.7983	0.3798
E²	0.2590	1	0.2590	0.1693	0.6841	0.3195	1	0.3195	0.1693	0.6841
Residual	39.79	26	1.53	29.94	26	1.53	29.94	26	1.53	29.94
Lack of Fit	36.68	22	1.67	26.87	22	1.67	26.87	22	1.67	26.87
Pure Error	3.10	4	0.7761	3.07	4	0.7761	3.07	4	0.7761	3.07
Cor Total	7635.78	46		6687.57	46					
Adjusted R²	0.9908			0.9921						
Predicted R²	0.9762			0.9821						
Adequate precision	43.5539			47.8242						
Thus, the derived quadratic equations for the model representing the removal efficiency of the MIL-88(Fe) and NH\textsubscript{2}-MIL-88(Fe) for the ANT adsorption were given by the equations (4) and (5) respectively.

\textbf{ANT adsorption onto MIL-88(Fe) (%R)} = 86.9400 + 14.5998A + 1.2565B - 0.5672C + 0.02501D - 0.3944E + 0.5125AB - 0.1106AC - 0.31625AD - 0.27AE + 0.22BC + 0.505625BD + 0.453125BE + 0.15625CD + 0.13125CE - 0.33187DE - 3.7472A2 - 0.8833B2 - 0.28901C2 - 0.1419D2 + 0.06532E2

(4)

\textbf{ANT adsorption onto NH\textsubscript{2}-MIL-88(Fe) (%R)} = 82.0899 + 13.5897A + 1.15875B - 0.60178C + 0.4506D + 0.14422E + 0.43656AB - 0.02531AC + 0.1272AD - 0.11844AE - 0.0033BC + 0.1047BD + 0.0065BE + 0.2328CD - 0.1166CE - 0.0616DE - 3.3362A2 - 0.4847B2 - 0.4651C2 - 0.5751D2 - 0.0726E2

(5)

From the effect of contact time, rapid adsorption of the ANT has been seen at the initial stage of the adsorption process, which was attributed to the abundant active sites on the surface of the MOFs as previously reported in article [21][33]. An equilibrium has been achieved within 30 minutes with the ANT concentration of 4 mg/L and the MOFs dosage of 5 mg. The removal efficiency was 98.09 and 89.48% with the corresponding adsorption capacity of 23.54 and 21.48 mg/g for the MIL-88(Fe) and NH\textsubscript{2}-MIL-88(Fe) respectively. The adsorption capacity of the MOFs at various contact time was shown in the figure 2. It described the affinity of both MIL-88(Fe) and NH\textsubscript{2}-MIL-88(Fe) for the ANT adsorption from the aqueous medium [34]. Thus, the abundant adsorption sites on the surfaces of the Fe-based MOFs has been the driving force for the adsorption of various pollutants such as heavy metals [35], dye [36] and other organic pollutants [37].

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Effect of contact time for ANT adsorption onto the MIL-88(Fe) and NH\textsubscript{2}-MIL-88(Fe) MOFs}
\end{figure}

The mechanism and the rate controlling steps for the ANT adsorption has been studied according to the kinetics models of pseudo-first-order, pseudo-second order and intra-particle diffusion models conducted at concentration ranges of 1 – 5 mg/L. Table 4 presented the values of the models evaluated. According, the values obtained, the pseudo-second-order model was the best to describe the adsorption according to the linear statistical fittings of R2, R2 adjusted, MSE, RMSE and AIC. Similarly, the
calculated adsorption capacities (Q_{cal}, mg/g) of the pseudo-second-order model were in good agreement with the experimental values (Q_{exp}, mg/g) [38]. Intra-particle diffusion also implies that the adsorption proceeds via two steps (data not shown). The first step being the diffusion of the pollutants from the aqueous phase to the surface of the MOFs which took place at faster rate. The second step represent the adsorption of the pollutants to the active pores of the MOFs.
Table 4 Kinetics study values for ANT adsorption onto MIL-88(Fe) and NH₂-MIL-88(Fe) MOFs

Models	MIL-88(Fe)	NH₂-MIL-88(Fe)								
	1 mg/L	2 mg/L	3 mg/L	4 mg/L	5 mg/L	1 mg/L	2 mg/L	3 mg/L	4 mg/L	5 mg/L
Qₑ (Experimental mg/g)	23.780	23.814	23.678	23.542	22.966	22.085	22.153	21.678	21.475	20.935
Pseudo-first order						15.740	16.276	16.440	16.490	15.004
Qₑ (Calculated mg/g)	0.117	0.276	0.33	0.116	0.289	0.273	0.339	0.286	0.180	
K₁ (1/min)	0.960	0.685	0.630	0.971	0.961	0.697	0.695	0.674	0.749	0.977
R²	0.950	0.622	0.556	0.963	0.952	0.637	0.634	0.609	0.699	0.973
R² adj	0.099	0.904	9.124	0.057	0.091	5.082	4.570	7.783	3.848	0.104
MSE	0.315	2.214	3.021	0.239	0.302	2.255	2.138	2.790	1.962	0.323
RMSE	-12.286	12.773	17.121	-15.591	-12.789	13.029	12.281	16.008	11.077	-14177
AIC						-12.286	12.773	17.121	-15.591	-12.789
Pseudo-second order						24.631	24.510	24.450	24.331	23.810
Qₑ (Calculated mg/g)	0.024	0.023	0.022	0.022	0.029	0.029	0.030	0.028	0.030	
K₂ (g/mg/min)	0.998	0.998	0.998	0.998	0.998	0.999	0.999	0.999	0.999	
R²	0.998	0.998	0.998	0.998	0.998	0.999	0.999	0.999	0.999	
R² adj	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MSE	0.016	0.016	0.015	0.017	0.016	0.012	0.011	0.011	0.011	
RMSE	-47.805	-47.728	-48.714	-48.082	-48.037	-51.851	-52.476	-52.813	-52.051	-45.787
AIC	-25.203	24.875	24.618	24.350	24.028	24.562	24.501	24.326	23.962	23.688

Intra-particle diffusion

Kₚ	1.252	1.254	1.258	1.254	1.231	1.148	1.151	1.134	1.132	1.100
C	8.750	8.369	8.354	8.208	8.009	8.323	8.230	8.190	7.972	7.871
R²	0.655	0.666	0.675	0.682	0.684	0.636	0.639	0.638	0.649	0.641
R² adj	0.586	0.599	0.611	0.619	0.621	0.563	0.567	0.566	0.579	0.570
MSE	28.948	27.620	26.626	25.625	24.474	26.414	26.186	25.539	24.244	23.676
RMSE	5.380	5.256	5.160	5.062	4.947	5.139	5.117	5.054	4.924	4.866
AIC	25.203	24.875	24.618	24.350	24.028	24.562	24.501	24.326	23.962	23.688
4. Conclusion

RSM was used to optimize the adsorption of ANT onto MIL-88(Fe) and NH₂-MIL-88(Fe) MOFs based on the CCD. The significant fitting of the model was described by the ANOVA test with R² of 0.991 and 0.992 and adequate precision of 43.55 and 47.82 for the ANT adsorption onto the MIL-88(Fe) and NH₂-MIL-88(Fe) MOFs respectively. The highest optimized adsorption efficiency achieved were 99.55 and 95.67% for the MIL-88(Fe) and NH₂-MIL-88(Fe) respectively. The kinetic data was best described as pseudo-second-order model according to the statistical linear fitting of R², RMSE and AIC for the adsorption process.

5. References

[1] Zango Z U, Sambudi N S, Jumbri K, Ramli A, Hana N, Abu H, Saad B, Nur M, Rozaini H, Isiyaka H A, Osman A M and Sulieman A 2020 An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater 1–40

[2] Shojaeimehr T, Rahimpour F, Khadivi M A and Sadeghi M 2014 A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu²⁺ adsorption optimization using light expended clay aggregate (LECA). J. Ind. Eng. Chem. 20 870–80

[3] Jasni A B, Kamyah H, Chelliapen S, Arumugam N, Krishnan S and Din M F M 2020 Treatment of wastewater using response surface methodology: A brief review Chem. Eng. Trans. 78 535–40

[4] de Oliveira L G, de Paiva A P, Balestrassi P P, Ferreira J R, da Costa S C and da Silva Campos P H 2019 Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review Int. J. Adv. Manuf. Technol. 104 1785–837

[5] Massoudinejad M, Ghaderpoori M, Shahsavani A and Amini M M 2016 Adsorption of fluoride over a metal organic framework UiO-66 functionalized with amine groups and optimization with response surface methodology J. Mol. Liq. 221 114857

[6] Khuri A I 2017 A General Overview of Response Surface Methodology Biometrics Biostat. Int. J. 5 87–93

[7] Zango Z U, Ramli A, Jumbri K, Soraya N, Ahmad H I, Hana N, Abu H and Saad B 2020 Optimization studies and artificial neural network modeling for pyrene adsorption onto UiO-66(Zr) and NH₂-UiO-66(Zr) metal organic frameworks Polyhedron 192 114857

[8] Franco D S P, Tanabé E H and Dotto G L 2017 Continuous Adsorption of a Cationic Dye on Surface Modified Rice Husk: Statistical Optimization and Dynamic Models Chem. Eng. Commun. 204 625–34

[9] Jafarjui J and Yaghmaeian K 2019 Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM) Chemosphere 217 447–55

[10] Nair A T, Makwana A R and Ahammed M M 2014 The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: A review Water Sci. Technol. 69 464–78

[11] Ani J U, Okoro U C, Aneyeke L E, Onukwuli O D, Obi I O, Akpomie K G and Ofomatah A C 2019 Application of response surface methodology for optimization of dissolved solids adsorption by activated coal Appl. Water Sci. 9 1–11

[12] Dastkhoom M, Ghaedi M, Asfaram A, Goudarzi A, Mohammadi S M and Wang S 2017 Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies Ultrason. Sonochem. 37 94–105

[13] Brahi L, Kaouah F, Bousama S and Trari M 2019 Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones Appl. Water Sci. 9 1–13

[14] Zhang B, Han X, Gu P, Fang S and Bai J 2017 Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk J. Mol. Liq. 238 316–25

[15] Van Thuan T, Quynh B T P, Nguyen T D, Ho V T T and Bach L G 2017 Response surface methodology approach for optimization of Cu²⁺, Ni²⁺ and Pb²⁺ adsorption using KOH-
activated carbon from banana peel *Surfaces and Interfaces* **6** 209–17

[16] Kalantari M, Zhang J, Liu Y and Yu C 2019 Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene *Chemosphere* **215** 716–24

[17] Luo Y, Guo W, Hao H, Duc L, Ibney F, Zhang J, Liang S and Wang X C 2014 A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment *Sci. Total Environ.* **474** 619–41

[18] Godlewksa P, Siatecka A, Kończak M and Oleszczuk P 2019 Adsorption capacity of phenanthrene and pyrene to engineered carbon-based adsorbents produced from sewage sludge or sewage sludge-biomass mixture in various gaseous conditions *Bioresour. Technol.* **280** 421–9

[19] Huang Y, Zhang W, Li X, Du F and Li J 2018 Reduced Graphene Oxide-Hybridized Polymeric High-Internal Phase Emulsions for Highly Efficient Removal of Polycyclic Aromatic Hydrocarbons from Water Matrix *Langmuir* **34** 3661–8

[20] Kumar J A, Amarnath D J, Jabasingh S A, Kumar P S, VijaiAnand K, Narendrakumar G, Namasiyam S K R, Krithiga T, Sunny S, Puma and Yuvarajan D 2019 One pot Green Synthesis of Nano magnesium oxide-carbon composite: Preparation, characterization and application towards anthracene adsorption *J. Clean. Prod.* **237** 117691

[21] Zango Z U, Jumbri K, Sambudi N S, Abu Bakar N H H, Abdullah N A F, Basheer C and Saad B 2019 Removal of anthracene in water by MIL-88(Fe), NH₂-MIL-88(Fe), and mixed-MIL-88(Fe) metal–organic frameworks *RCS Adv.* **9** 41490–501

[22] El M, Saad K, Khiairi R, Elaloui E and Moussaoui Y 2014 Adsorption of anthracene using activated carbon and Posidonia oceanica *Arab. J. Chem.* **7** 109–13

[23] Kamińska G, Dudziak M, Kudlek E and Bohdziewicz J 2019 Preparation, Characterization and Adsorption Potential of Grainy Halloysite-CNT Composites for Anthracene Removal from Aqueous Solution *Nanomaterials* **9** 890

[24] Alegbeleye O O, Opeolu B O and Jackson V A 2017 Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation *Environ. Manage.* **60** 758–83

[25] Rani M and Shanker U 2019 Sunlight mediated improved photocatalytic degradation of carcinogenic benz[a]anthracene and benzo[a]pyrene by zinc oxide encapsulated hexacyanoferrate nanocomposite *J. Photochem. Photobiol. A Chem.* **111861

[26] Zango Z U, Jumbri K, Sambudi N S, Ramli A, Bakar N H H, Saad B, Rozaini M N H, Isiyaka H A, Jagaba A H, Aldaghti O and Sulieman A 2020 A critical review on metal-organic frameworks and their composites as advanced materials for adsorption and photocatalytic degradation of emerging organic pollutants from wastewater *Polymers (Basel)*. **12** 1–42

[27] Rasheed T, Hassan A A, Bilal M, Hussain T and Rizwan K 2020 Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater *Chemosphere* **259

[28] Petit C 2018 Present and future of MOF research in the field of adsorption and molecular separation *Curr. Opin. Chem. Eng.* **20** 132–42

[29] Zango Z U, Sambudi N S, Jumbri K, Abu Bakar N H H, Abdullah N A F, Negim E S M and Saad B 2020 Experimental and molecular docking model studies for the adsorption of polycyclic aromatic hydrocarbons onto UiO-66(Zr) and NH₂-UiO-66(Zr) metal-organic frameworks *Chem. Eng. Sci.*

[30] Ayati A, Shahراك M N, Tanhaei B and Sillanpää M 2016 Emerging adsorptive removal of azo dye by metal–organic frameworks *Chemosphere* **160** 30–44

[31] Xu B, Yang H, Cai Y, Yang H and Li C 2016 Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles *Inorg. Chem. Commun.* **67** 29–31

[32] Zango Z U, Abu Bakar N H H, Sambudi N S, Jumbri K, Abdullah N A F, Abdul Kadir E and Saad B 2019 Adsorption of chrysene in aqueous solution onto MIL-88(Fe) and NH₂-MIL-88(Fe) metal-organic frameworks: kinetics, isotherms, thermodynamics and docking simulation studies *J. Environ. Chem. Eng.*

[33] Zango Z U, Sambudi N S, Jumbri K, Abu Bakar N H H and Saad B 2020 Removal of Pyrene from Aqueous Solution Using Fe-based Metal-organic Frameworks *IOP Conf. Ser. Earth Environ. Sci.* **549** 012061
[34] Hou S, Wu Y, Feng L, Chen W and Wang Y 2018 Green synthesis and evaluation of an iron-based metal–organic framework MIL-88B for efficient decontamination of arsenate from water *Doltons Trans* **47** 2222–31

[35] Thi H, Thanh M, Thi T, Phuong T, Thi P, Hang L, Thanh T, Toan T and Mil F 2018 Journal of Environmental Chemical Engineering Comparative study of Pb (II) adsorption onto MIL–101 and Fe–MIL–101 from aqueous solutions *J. Environ. Chem. Eng.* **6** 4093–102

[36] Alqadami A A, Naushad M, Alothman Z A and Ahamad T 2018 Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism *J. Environ. Manage.* **223** 29–36

[37] Guo, Hongxu Baitong Niu, Xuemin Wu, Yi Zhang S Y 2018 Effective removal of 2, 4, 6 - trinitrophenol over hexagonal metal–organic framework NH$_2$-MIL-88B(Fe) *Appl. Organomet. Chem.* 1–11

[38] Wanjeri V W O, Sheppard C J, Prinsloo A R E, Ngila J C and Ndungu P G 2018 Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine *J. Environ. Chem. Eng.* **6** 1333–46

Acknowledgement

This project was sponsored by UIR-UTP International Grant with cost center 015MEO-038 and YUTP grant with cost center 015-LCO-211.