Small-Deviation Inequalities for Sums of Random Matrices

Xianjie Gao, Chao Zhang,∗ Hongwei Zhang
School of Mathematical Sciences, Dalian University of Technology
Dalian, Liaoning, 116024, P.R. China
xianjiegao@foxmail.com; chao.zhang@dlut.edu.cn; hwzhang@dlut.edu.cn

Abstract

Random matrices have played an important role in many fields including machine learning, quantum information theory and optimization. One of the main research focuses is on the deviation inequalities for eigenvalues of random matrices. Although there are intensive studies on the large-deviation inequalities for random matrices, only a few of works discuss the small-deviation behavior of random matrices. In this paper, we present the small-deviation inequalities for the largest eigenvalues of sums of random matrices. Since the resulting inequalities are independent of the matrix dimension, they are applicable to the high-dimensional and even the infinite-dimensional cases.

Keywords: Large-deviation inequality; small-deviation inequality; random matrix; the largest singular value

1 Introduction

Random matrices have been widely used in many problems, for example, the compressed sensing (Chandrasekaran et al., 2012), the high-dimensional data analysis (Bühlmann and Van De Geer, 2011), the matrix approximation (Halko et al., 2011; Gittens and Mahoney, 2016) and the dimension reduction (Clarkson and Woodruff, 2013). In the literature, one of main research issues is to study the deviation behavior of the eigenvalues (or singular values) of random matrices. In general, there are two types of deviation results studied in probability theory: one is the large-deviation inequality that describes the behavior of the probability $P(|x| > t)$ for large t; and the other is the small-deviation (or small-ball) inequality that controls the probability $P(|x| < \epsilon)$ for small ϵ.

The early large-deviation inequalities for sums of random matrices can be dated back to the work of Ahlswede and Winter (2002). Tropp (2012) improved their results and developed a user-friendly framework to obtain the large-deviation inequalities for sums of random matrices. To overcome the limitation of the matrix-dimension dependence, Hsu et al. (2012) and Minsker (2017) introduced the concepts of intrinsic dimension and effective dimension to tighten the large-deviation inequalities, respectively. Moreover, Zhang et al. (2017) applied a diagonalization method to obtain the dimension-free large-deviation random for largest singular value of sums of

∗Corresponding author
random matrices, while it remains a challenge to select the auxiliary matrices and functions. In the scenario of single random matrix, Ledoux (2007) studied the largest eigenvalues of Gaussian unitary ensemble matrices and Vershynin (2010) studied the singular values of the sub-Gaussian and sub-exponential matrices.

Small-deviation problems were stemmed from some practical applications, e.g., approximation problem (Li et al., 1999), Brownian pursuit problems (Li and Shao, 2001), quantization problem (Dereich et al., 2003) and convex geometry (Klartag and Vershynin, 2007). For more details, we refer to the bibliography maintained by Lifshits (2006). There have been some works on the small-deviation inequalities for the specific types of random matrices. Aubrun (2005) obtained the small-deviation inequalities for the largest eigenvalue of a single Gaussian unitary ensemble matrix. Rudelson and Vershynin (2010) presented the small-deviation inequalities for the smallest singular value of the random matrix with independent entries. Volodko (2014) estimated the small-deviation probability of the determinant of the matrix BB^T, where B is a $d \times \infty$ random matrix whose entries obey a centered joint Gaussian distribution. To the best of our knowledge, there are few works on the small-deviation inequalities for sums of random matrices.

1.1 Related Works

Let $\{X_1, X_2, \cdots, X_K\} \subset \mathbb{C}^{d \times d}$ be a finite sequence of independent random Hermitian matrices. It follows from Markov’s inequality that

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_k X_k\right) \geq t\right\} \leq \inf_{s>0} \{e^{-s t} \cdot \text{tr}\left(\mathbb{E} e^{s \sum_k X_k}\right)\},$$

where λ_{\max} denotes the largest eigenvalue. By using Golden-Thompson inequality, Ahlswede and Winter (2002) bounded the trace of the matrix moment generating function (mgf) in the following way:

$$\text{tr}\left(\mathbb{E} e^{s \sum_k X_k}\right) \leq \text{tr}(I) \cdot \left[\prod_k \lambda_{\max}\left(\mathbb{E} e^{s X_k}\right)\right] = d \cdot \exp\left(\sum_k \lambda_{\max}\left(\log \mathbb{E} e^{s X_k}\right)\right),$$

where $\text{tr}(A)$ stands for the trace of the matrix A. By applying Lieb’s concavity theorem, Tropp (2012) achieved a tighter matrix mgf bound than the above one:

$$\text{tr}\left(\mathbb{E} e^{s \sum_k X_k}\right) \leq d \cdot \exp\left(\lambda_{\max}\left(\sum_k \log \mathbb{E} e^{s X_k}\right)\right),$$

where “the eigenvalue of sum of matrices” is smaller than “the sum of eigenvalues of matrices” in the right-hand side of (1). However, there still remains a shortcoming that the result (2) is dependent with the matrix dimension d, and its right-hand side will become loose for high-dimensional matrices.

To overcome the shortcoming, Hsu et al. (2012) employed the intrinsic dimension $\frac{\text{tr}(X)}{\lambda_{\max}(X)}$ to replace the ambient dimension d in the case of real symmetric matrices. Minsker (2017) provided a dimension-free version of Bernstein’s inequality for sequences of independent random matrices. Zhang et al. (2017) introduced a diagonalization method to obtain the tail bounds for LSV of the sum of random matrices. Although their bounds are independent of the matrix dimension
and overcame the aforementioned first shortcoming, there still remains a challenge to select the appropriate parameters to obtain the tighter bounds.

There are also some small-deviation results on one single random matrix. Edelman (1988) presented the small-deviation behavior of the smallest singular value of a Gaussian matrix:

\[
\lim_{d \to \infty} \mathbb{P}\left\{ s_{\min}(A) \leq \frac{\epsilon}{\sqrt{d}} \right\} = 1 - \exp\left(-\epsilon^2 \frac{\epsilon^2}{2}\right),
\]

where \(A \) is a \(d \times d \) random matrix whose entries are independent standard normal random variables. Rudelson and Vershynin (2008) studied the the small-deviation bound of the smallest singular value of a sub-gaussian matrix:

\[
\mathbb{P}\left\{ s_{\min}(B) \leq \frac{\epsilon}{\sqrt{d}} \right\} \leq C \cdot \epsilon + c^d,
\]

where \(C > 0, c \in (0, 1) \) is only depend on the sub-gaussian moment of its entries and \(B \) is a \(d \times d \) random matrix whose entries are i.i.d. sub-gaussian random variables with zero mean and unit variance. However, to the best of our knowledge, there is few work on the small-deviation inequalities for sums of random matrices.

1.2 Overview of Main Results

In this paper, we present the small-deviation inequalities for the largest eigenvalue for sums of independent random Hermitian matrices, that is, the upper bound of

\[
\mathbb{P}\left\{ \lambda_{\max}\left(\sum_k X_k \right) \leq \epsilon \right\}.
\]

In particular, we first present some basic small-deviation results of random matrices. We then obtain several types of small-deviation inequalities for the largest eigenvalue of sums of independent random positive semi-definite (psd) matrices. Different from the large-deviation inequalities for random matrices, the resulting small-deviation inequalities are independent of the matrix dimension \(d \) and thus our finding are applicable to the high-dimensional and even infinite-dimensional cases.

The rest of this paper is organized as follows. In Section 2, we introduce some useful notations and then give some basic results on small-deviation inequalities for random matrices. The small-deviation results for sums of random psd matrices are presented in Section 3. The last section concludes the paper.

2 Basic Small-Deviation Inequalities for Random Matrices

In this section, we first introduce the necessary notations and then present some basic small-deviation results of random matrices.
2.1 Necessary Notations

Given a Hermitian matrix \(A \), denote \(\lambda_{\text{max}}(A) \) and \(\lambda_{\text{min}}(A) \) as the largest and the smallest eigenvalues of \(A \), respectively. Denote \(\text{tr}(A) \) and \(\|A\| \) as the trace and the spectral norm of \(A \), respectively. Let \(I \) be the identity matrix, \(U \) be the unitary matrix and \(U^* \) stand for the Hermitian adjoint of \(U \).

By the spectral mapping theorem, given a real-value function \(f : \mathbb{R} \to \mathbb{R} \), then
\[
 f(A) = U \cdot f(\Lambda) \cdot U^*,
\]
where \(A = U \Lambda U^* \). If \(f(a) \leq g(a) \) for \(a \in I \) when the eigenvalues of \(A \) lie in \(I \), then there holds that \(f(A) \preceq g(A) \).

2.2 Basic Small-Deviation Inequalities for Random Matrices

Subsequently, we come up with the small-deviation inequalities for random matrices. First, we consider a small-deviation bound for one single matrix:

Lemma 2.1 Let \(Y \) be a random Hermitian matrix. Then for any \(\epsilon > 0 \),
\[
 \mathbb{P}\{\lambda_{\text{max}}(Y) \leq \epsilon\} \leq \inf_{\theta > 0} \left\{ \frac{1}{d} \cdot e^{\theta \epsilon} \cdot \mathbb{E}\text{tr}(e^{-\theta Y}) \right\}.
\]

Proof: For any \(\theta > 0 \), we have
\[
 \mathbb{P}\{\lambda_{\text{max}}(Y) \leq \epsilon\} = \mathbb{P}\{e^{-\lambda_{\text{max}}(\theta Y)} \geq e^{-\theta \epsilon}\}
 \leq \mathbb{E} e^{-\lambda_{\text{max}}(\theta Y)} \cdot e^{\theta \epsilon} \quad \text{[by Markov’s inequality]}
 = \mathbb{E} e^{\lambda_{\text{min}}(-\theta Y)} \cdot e^{\theta \epsilon} \quad \text{[since \(-\lambda_{\text{max}}(A) = \lambda_{\text{min}}(-A)\)]}
 = \mathbb{E} \lambda_{\text{min}}(e^{-\theta Y}) \cdot e^{\theta \epsilon} \quad \text{[by Spectral mapping theorem]}
 \leq \frac{1}{d} \cdot e^{\theta \epsilon} \cdot \mathbb{E}\text{tr}(e^{-\theta Y}).
\]

The last inequality holds because the minimum eigenvalue of a positive definite (pd) matrix is dominated by the \(\text{tr}(\cdot)/d \). Since this inequality holds for any \(\theta > 0 \), taking an infimum over \(\theta > 0 \) completes the proof. \(\square \)

Then, by using the subadditivity of the matrix cumulant generating function (see Tropp, 2012, Lemma 3.4), we obtain the small-deviation bound for sums of random matrices:

Theorem 2.1 Let \(\{X_1, X_2, \ldots, X_K\} \) be a finite sequence of independent random Hermitian matrices. Then for any \(\epsilon > 0 \),
\[
 \mathbb{P}\left\{ \lambda_{\text{max}}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \inf_{\theta > 0} \left\{ e^{\theta \epsilon} \cdot \exp \left(\lambda_{\text{max}}\left(\sum_k \log \mathbb{E} e^{-\theta X_k} \right) \right) \right\}, \quad (3)
\]
Proof: By combining Lemma 2.1 and Lemma 3.4 of (Tropp, 2012), we have for any \(\theta > 0 \),
\[
\mathbb{P}\left\{ \lambda_{\max}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \frac{1}{d} \cdot e^{\theta \epsilon} \cdot \mathbb{E}\tr(e^{-\theta \sum_k X_k}) \\
\leq \frac{1}{d} \cdot e^{\theta \epsilon} \cdot \tr\left(\exp\left(\sum_k \log \mathbb{E}e^{-\theta X_k} \right) \right) \\
\leq \frac{1}{d} \cdot e^{\theta \epsilon} \cdot \lambda_{\max}\left(\exp\left(\sum_k \log \mathbb{E}e^{-\theta X_k} \right) \right) \\
= e^{\theta \epsilon} \cdot \exp\left(\lambda_{\max}\left(\sum_k \log \mathbb{E}e^{-\theta X_k} \right) \right).
\]
Taking the infimum over \(\theta > 0 \) completes the proof. \(\blacksquare \)

Note that the above small-deviation bound is independent of the matrix dimension \(d \), and thus it is applicable to the scenarios of high-dimensional and even infinite-dimensional matrices. In addition, we also derive the following small-deviation bounds for sums of random matrices.

Corollary 2.1 Let \(\{X_1, X_2, \cdots, X_K\} \) be a sequence of independent random Hermitian matrices. Assume that there are a function \(g(\theta) \) and a sequence \(\{A_k\} \) of fixed Hermitian matrices such that
\[
\mathbb{E}e^{-\theta X_k} \preceq e^{g(\theta) \cdot A_k}, \quad \forall \theta > 0.
\]

(i) Define the scalar parameter
\[
\eta_1 := \lambda_{\max}\left(\sum_k A_k \right).
\]
If \(g(\theta) > 0 \), then for any \(\epsilon > 0 \),
\[
\mathbb{P}\left\{ \lambda_{\max}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \inf_{\theta > 0} \left\{ \exp \left(\theta \epsilon + g(\theta) \cdot \eta_1 \right) \right\}.
\]

(ii) Define the scalar parameter
\[
\eta_2 := \lambda_{\min}\left(\sum_k A_k \right).
\]
If \(g(\theta) < 0 \), then for any \(\epsilon > 0 \),
\[
\mathbb{P}\left\{ \lambda_{\max}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \inf_{\theta > 0} \left\{ \exp \left(\theta \epsilon + g(\theta) \cdot \eta_2 \right) \right\}.
\]

Proof: It follows from (4) that
\[
\log \mathbb{E}e^{-\theta X_k} \preceq g(\theta) \cdot A_k,
\]
and substituting it into Theorem 2.1 leads to the result (5). Then, the fact \(\lambda_{\max}(-X) = -\lambda_{\min}(X) \) leads to the result (6). This completes the proof. \(\blacksquare \)

By using the logarithm operation, we then obtain another small-deviation bound for sums of random matrices:
Corollary 2.2 Let \(\{X_1, X_2, \cdots, X_K\} \) be a sequence of independent random Hermitian matrices. Then for any \(\epsilon > 0 \),

\[
P\left\{ \lambda_{\text{max}}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \inf_{\theta > 0} \exp \left(\theta \epsilon + K \cdot \log \lambda_{\text{max}}\left(\frac{1}{n} \sum_{k=1}^K \mathbb{E} e^{-\theta X_k} \right) \right).
\]

Proof: Since the matrix logarithm is operator concave, for each \(\theta > 0 \), we have

\[
\sum_{i=1}^K \log \mathbb{E} e^{-\theta X_k} = K \cdot \frac{1}{K} \sum_{i=1}^K \log \mathbb{E} e^{-\theta X_k} \leq K \cdot \log \left(\frac{1}{K} \sum_{i=1}^K \mathbb{E} e^{-\theta X_k} \right).
\]

According to (3), we then arrive at

\[
P\left\{ \lambda_{\text{max}}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \frac{1}{d} \cdot e^{\theta \epsilon} \cdot \text{tr} \exp \left(K \cdot \log \left(\frac{1}{K} \sum_{i=1}^K \mathbb{E} e^{-\theta X_k} \right) \right).
\]

Since the trace of a matrix can be bounded by \(d \) times of its maximum eigenvalue, taking the infimum over \(\theta > 0 \) completes the proof. \(\blacksquare \)

The following presents the relationship between one random psd matrix and a sum of psd random matrices.

Lemma 2.2 Let \(\{X_1, X_2, \cdots, X_K\} \) be a sequence of independent random Hermitian psd matrices. Then for any \(\epsilon > 0 \),

\[
P\left\{ \lambda_{\text{max}}\left(\sum_k X_k \right) \leq \epsilon \right\} \leq \prod_k P\left\{ \lambda_{\text{max}}(X_k) \leq \epsilon \right\} \leq P\left\{ \lambda_{\text{max}}(X_k) \leq \epsilon \right\}.
\]

Proof: Since \(\{X_1, X_2, \cdots, X_K\} \) are psd, we have

\[
P\left\{ \lambda_{\text{max}}\left(\sum_k A_k \right) \leq \epsilon \right\} \leq P\left\{ \max \left(\lambda_{\text{max}}(X_1), \cdots, \lambda_{\text{max}}(X_K) \right) \leq \epsilon \right\}
\]

\[
= \prod_k P\left\{ \lambda_{\text{max}}(X_k) \leq \epsilon \right\}
\]

\[
\leq P\left\{ \lambda_{\text{max}}(X_k) \leq \epsilon \right\}.
\]

The last inequality holds for any \(k = 1, 2 \cdots, K \). This completes the proof. \(\blacksquare \)

This lemma shows that the small-deviation probability for sums of random matrices can be bounded by using the small-deviation probability for one single matrix. This fact suggests that the small-deviation bound could be independent of the size of matrix sequence, while this phenomenon will not arise in the large-deviation scenario.

3 Small-deviation Inequalities for Positive Semi-Definite Random Matrices

In this section, we present several types of small-deviation inequalities for the largest eigenvalue of sums of independent random psd matrices. Similar to the scalar version of small-deviation
inequalities, there remains a challenge to bound the term $Ee^{-\theta X_k}$. Here, we adapt some methods to handle this issue.

First, we introduce the negative moment estimate for the largest eigenvalue to derive a small-deviation inequality for sums of random matrices:

Theorem 3.1 Let $\{X_1, X_2, \cdots, X_K\}$ be a sequence of independent random Hermitian psd matrices. Given a $p > 0$, if there exists a positive constant C_p such that

$$\left[\lambda_{\text{max}}\left(\sum_k E X_k\right)\right]^{-p} < C_p,$$

then there holds that for any $\epsilon > 0$,

$$\mathbb{P}\left\{\lambda_{\text{max}}\left(\sum_k X_k\right) \leq \epsilon\right\} \leq C_p \epsilon^p.$$

Proof: It follows from Jensen’s inequality that

$$\mathbb{E} \left(\lambda_{\text{max}}\left(\sum_k X_k\right)\right)^{-p} \leq \left(\mathbb{E} \lambda_{\text{max}}\left(\sum_k X_k\right)^{-p}\right) \leq \left[\lambda_{\text{max}}\left(\sum_k E X_k\right)\right]^{-p} < \infty.$$

Then, the Markov’s inequality yields

$$\mathbb{P}\left\{\lambda_{\text{max}}\left(\sum_k X_k\right) \leq \epsilon\right\} = \mathbb{P}\left\{\left[\lambda_{\text{max}}\left(\sum_k X_k\right)^{-p}\right] \geq \epsilon^{-p}\right\} \leq \epsilon^{-p} \cdot \mathbb{E} \left(\lambda_{\text{max}}\left(\sum_k X_k\right)\right)^{-p} \leq C_p \epsilon^p.$$

This completes the proof.

In this theorem, we impose an assumption that the negative moment of $\lambda_{\text{max}}\left(\sum_k X_k\right)$ is bounded. In general, this assumption is mild and can be satisfied in most cases. The following small-deviation results are derived under that condition that the eigenvalues of the matrices $\{X_k\}$ are bounded:

Theorem 3.2 Let $\{X_1, X_2, \cdots, X_K\}$ be a sequence of independent random Hermitian psd matrices such that $\lambda_{\text{max}}(X_k) \leq L (\forall k = 1, 2, \cdots, K)$ almost surely. Then for any $\epsilon > 0$,

$$\mathbb{P}\left\{\lambda_{\text{max}}\left(\sum_k X_k\right) \leq \epsilon\right\} \leq \left(\frac{\mu}{\epsilon}\right)^{\epsilon/L} \cdot \exp\left(\frac{\epsilon - \mu}{L}\right),$$

where

$$\mu := \lambda_{\text{min}}\left(\sum_k E X_k\right).$$

Furthermore, there holds that for any $\epsilon > 0$,

$$\mathbb{P}\left\{\lambda_{\text{max}}\left(\sum_k X_k\right) \leq \epsilon\right\} \leq \left(\frac{1}{\epsilon}\right)^{K \epsilon/L} \cdot \left(\prod_{k=1}^K \mu_k\right)^{\epsilon/L} \cdot \exp\left(\frac{K \epsilon - \sum_k \mu_k}{L}\right),$$

where $\lambda_{\text{min}}(X_k) := \mu_k$.

This completes the proof.

In this theorem, we impose an assumption that the negative moment of $\lambda_{\text{max}}\left(\sum_k X_k\right)$ is bounded. In general, this assumption is mild and can be satisfied in most cases. The following small-deviation results are derived under that condition that the eigenvalues of the matrices $\{X_k\}$ are bounded:

Theorem 3.2 Let $\{X_1, X_2, \cdots, X_K\}$ be a sequence of independent random Hermitian psd matrices such that $\lambda_{\text{max}}(X_k) \leq L (\forall k = 1, 2, \cdots, K)$ almost surely. Then for any $\epsilon > 0$,

$$\mathbb{P}\left\{\lambda_{\text{max}}\left(\sum_k X_k\right) \leq \epsilon\right\} \leq \left(\frac{\mu}{\epsilon}\right)^{\epsilon/L} \cdot \exp\left(\frac{\epsilon - \mu}{L}\right),$$

where

$$\mu := \lambda_{\text{min}}\left(\sum_k E X_k\right).$$

Furthermore, there holds that for any $\epsilon > 0$,

$$\mathbb{P}\left\{\lambda_{\text{max}}\left(\sum_k X_k\right) \leq \epsilon\right\} \leq \left(\frac{1}{\epsilon}\right)^{K \epsilon/L} \cdot \left(\prod_{k=1}^K \mu_k\right)^{\epsilon/L} \cdot \exp\left(\frac{K \epsilon - \sum_k \mu_k}{L}\right),$$

where $\lambda_{\text{min}}(X_k) := \mu_k$.

This completes the proof.
where

\[\mu_k = \lambda_{\min}(\mathbb{E}X_k). \]

Proof: For any \(\theta > 0 \) and \(x \in [0, L] \), there holds that

\[e^{-\theta x} \leq 1 + \frac{e^{-\theta L} - 1}{L} \cdot x \leq \exp \left(\frac{e^{-\theta L} - 1}{L} \cdot x \right). \]

According to transfer rule, we have,

\[\log \mathbb{E}e^{-\theta X_k} \leq \frac{e^{-\theta L} - 1}{L} \mathbb{E}X_k. \quad (9) \]

By substituting (9) into the Corollary 2.1, we then have for any \(\theta > 0 \),

\[\mathbb{P} \left\{ \lambda_{\max} \left(\sum_k X_k \right) \leq \epsilon \right\} \leq e^{\theta \epsilon} \cdot \exp \left(\lambda_{\max} \left(\sum_k \frac{e^{-\theta L} - 1}{L} \mathbb{E}X_k \right) \right) \]

\[= \exp \left(\theta \epsilon + \lambda_{\max} \left(\frac{e^{-\theta L} - 1}{L} \sum_k \mathbb{E}X_k \right) \right) \]

\[= \exp \left(\theta \epsilon + \frac{e^{-\theta L} - 1}{L} \cdot \lambda_{\min} \left(\sum_k \mathbb{E}X_k \right) \right) \]

\[= \exp \left(\theta \epsilon + \frac{e^{-\theta L} - 1}{L} \cdot \mu \right). \]

The infimum is achieved at \(\theta = \frac{1}{L} \log \left(\frac{\mu}{\epsilon} \right) \), which leads to the result of (7).

Moreover, the combination of Lemma 2.1 and (9) leads to

\[\mathbb{P} \left\{ \lambda_{\max}(X_k) \leq \epsilon \right\} \leq \left(\frac{\mu_k}{\epsilon} \right)^{\epsilon/L} \cdot \exp \left(\frac{\epsilon - \mu_k}{L} \right). \]

Then, the result (8) is derived from Lemma 2.2. This completes the proof. \(\blacksquare \)

Actually, the above results are derived from the geometric point of view, where the term \(e^{-\theta x} \) is bounded by the linear function \(1 + \frac{e^{-\theta L} - 1}{L} \cdot x \) for any \(x \in [0, L] \). Finally, we study the small-deviation inequalities for random matrix series \(\sum_k x_k A_k \), which is a sum of fixed Hermitian psd matrices \(A_k \) weighted by random variables \(x_k \).

Theorem 3.3 Let \(\{A_1, A_2, \ldots, A_K\} \) be a sequence of fixed Hermitian psd matrices, and \(\{x_1, x_2, \ldots, x_K\} \) be a finite sequence of independent variables. If there exist the constants \(C > 0 \) and \(\alpha > 0 \) such that

\[\mathbb{E}e^{-\theta x_k} \leq C \cdot \theta^{-\alpha}, \quad (10) \]

then there holds that for any \(0 < \epsilon < \frac{Kk}{e} \cdot \frac{\alpha K}{C^\alpha} \),

\[\mathbb{P} \left\{ \lambda_{\max} \left(\sum_k x_k A_k \right) \leq \epsilon \right\} \leq \left(\frac{\epsilon e}{K^\alpha} \right)^{\alpha K} \cdot \left(\frac{C^\alpha K}{K} \right)^K, \quad (11) \]
where
\[\nu = \lambda_{\text{max}} \left(\sum_k A_k^{-\alpha} \right). \]

Furthermore, for any \(0 < \epsilon < (\alpha/e) \cdot C^{-\frac{1}{\alpha}} \cdot \left(\prod_{k=1}^K \nu_k \right)^{-\frac{1}{\alpha K}}, \)
\[
\mathbb{P} \left\{ \lambda_{\text{max}} \left(\sum_k x_k A_k \right) \leq \epsilon \right\} \leq \left(\prod_{k=1}^K \nu_k \right) \cdot C^K \cdot \left(\frac{\epsilon e}{\alpha} \right)^K, \tag{12}
\]
where
\[\nu_k = \lambda_{\text{max}}(A_k^{-\alpha}). \]

Proof: According to transfer rule, we have,
\[\mathbb{E} e^{-\theta x_k A_k} \preceq C \cdot (\theta A_k)^{-\alpha}. \tag{13} \]

By substituting (13) into the Corollary 2.2, we then have for any \(\theta > 0, \)
\[
\mathbb{P} \left\{ \lambda_{\text{max}} \left(\sum_k x_k A_k \right) \leq \epsilon \right\} \leq \exp \left(\theta \epsilon + K \cdot \log \lambda_{\text{max}} \left(\frac{1}{K} \sum_{k=1}^K C \cdot (\theta A_k)^{-\alpha} \right) \right) = \exp \left(\theta \epsilon + K \cdot \log \lambda_{\text{max}} \left(\frac{C\theta^{-\alpha}}{K} \sum_{k=1}^K A_k^{-\alpha} \right) \right) = \exp \left(\theta \epsilon + K \cdot \log \frac{C\nu}{K\theta^\alpha} \right). \]

The infimum will be attained at \(\theta = \frac{\alpha K}{\epsilon}, \) and it leads to the result of (11). Moreover, the combination of Lemma 2.1 and (13) leads to
\[
\mathbb{P} \{ \lambda_{\text{max}}(x_k A_k) \leq \epsilon \} \leq C \cdot \nu_k \cdot \left(\frac{\epsilon e}{\alpha} \right)^\alpha. \]

Then, the result (12) is resulted from Lemma 2.2. This completes the proof. \(\square \)

The above results hold under the condition (10) that \(\mathbb{E} e^{-\theta x_k} \) has a power-type upper bound of \(C \cdot \theta^{-\alpha}. \) This condition is mild and we refer to Li (2012) for the details. Moreover, to keep the results (11) and (12) non-trivial, their right-hand sides should be less than one, and thus we arrive at \(\epsilon < \frac{K\alpha}{e} \cdot \sqrt{\frac{K}{C^p}} \) and \(\epsilon < (\alpha/e) \cdot C^{-\frac{1}{\alpha}} \cdot \left(\prod_{k=1}^K \nu_k \right)^{-\frac{1}{\alpha K}}, \) respectively.

4 Conclusion

In this paper, we present the small-deviation inequalities for the largest eigenvalues of sums of random matrices. In particular, we first give some basic results on small-deviation inequalities for random matrices. We then study the small-deviation inequalities for sums of independent random psd matrices. Different from the large-deviation inequalities for random matrices, our results are independent of the matrix dimension \(d \) and thus can be applicable to the scenarios of high-dimensional and even infinite-dimensional matrices. In addition, by using the Hermitian dilation (see Tropp, 2012, Section 2.6), our small-deviation results can also be extended to the scenario of non-Hermitian random matrices.
Acknowledgement

This work is partially supported by the Fundamental Research Funds for the Central Universities: DUT13RC(3)068 and DUT17LK46; the National Natural Science Foundation of China: 11401076 and 61473328; Dalian High Level Talent Innovation Support Program: 2015R057.

References

Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels. *IEEE Transactions on Information Theory*, 48(3):569–579, 2002.

Guillaume Aubrun. A sharp small deviation inequality for the largest eigenvalue of a random matrix. *Séminaire de Probabilités XXXVIII*, pages 320–337, 2005.

Peter Bühlmann and Sara Van De Geer. *Statistics for high-dimensional data: methods, theory and applications*. Springer Science & Business Media, 2011.

Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S Willsky. The convex geometry of linear inverse problems. *Foundations of Computational Mathematics*, 12(6):805–849, 2012.

Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity time. In *Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing*, pages 81–90. ACM, 2013.

Steffen Dereich, Franz Fehringer, Anis Matoussi, and Michael Scheutzow. On the link between small ball probabilities and the quantization problem for gaussian measures on banach spaces. *Journal of Theoretical Probability*, 16(1):249–265, 2003.

Alan Edelman. Eigenvalues and condition numbers of random matrices. *SIAM Journal on Matrix Analysis and Applications*, 9(4):543–560, 1988.

Alex Gittens and Michael W Mahoney. Revisiting the nyström method for improved large-scale machine learning. *The Journal of Machine Learning Research*, 17(1):3977–4041, 2016.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Review*, 53(2):217–288, 2011.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Tail inequalities for sums of random matrices that depend on the intrinsic dimension. *Electronic Communications in Probability*, 17(14):1–13, 2012.

Bo’az Klartag and Roman Vershynin. Small ball probability and dvoretzkys theorem. *Israel Journal of Mathematics*, 157(1):193–207, 2007.

Michel Ledoux. Deviation inequalities on largest eigenvalues. In *Geometric Aspects of Functional Analysis*, pages 167–219. Springer, 2007.
Wenbo V Li. Ten Lectures on Small Value Probabilities and Applications.
http://www.jamesyli.com/wenboli_backup/papers/CBMS-10Lectures.pdf, 2012.

Wenbo V Li and Qi-Man Shao. Capture time of brownian pursuits. Probability Theory and Related Fields, 121(1):30–48, 2001.

Wenbo V Li, Werner Linde, et al. Approximation, metric entropy and small ball estimates for gaussian measures. The Annals of Probability, 27(3):1556–1578, 1999.

MA Lifshits. Bibliography of small deviation probabilities. Updated version downloadable from http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf, 2006.

Stanislav Minsker. On some extensions of bernstein’s inequality for self-adjoint operators. Statistics & Probability Letters, 127:111–119, 2017.

Mark Rudelson and Roman Vershynin. The littlewood–offord problem and invertibility of random matrices. Advances in Mathematics, 218(2):600–633, 2008.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular values. arXiv preprint arXiv:1003.2990, 2010.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389–434, 2012.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027, 2010.

Nadezhda V Volodko. Small deviations of the determinants of random matrices with gaussian entries. Statistics & Probability Letters, 84:48–53, 2014.

Chao Zhang, Lei Du, and Dacheng Tao. Lsv-based tail inequalities for sums of random matrices. Neural Computation, 29(1):247–262, 2017.