Citation for published version (APA):
Richardson, J. P., & Moyes, D. L. (2015). Adaptive immune responses to Candida albicans infection. Virulence, 6(4), 327-337. https://doi.org/10.1080/21505594.2015.1004977
Adaptive immune responses to Candida albicans infection

Jonathan P Richardson & David L Moyes

To cite this article: Jonathan P Richardson & David L Moyes (2015) Adaptive immune responses to Candida albicans infection, Virulence, 6:4, 327-337, DOI: 10.1080/21505594.2015.1004977

To link to this article: http://dx.doi.org/10.1080/21505594.2015.1004977

© 2015 The Author(s). Published with license by Taylor & Francis Group, LLC
Jonathan P Richardson and David L Moyes

Accepted author version posted online: 21 Jan 2015.
Published online: 21 Jan 2015.

Submit your article to this journal

Article views: 444

View related articles

View Crossmark data
Adaptive immune responses to *Candida albicans* infection

Jonathan P Richardson and David L Moyes*

Mucosal and Salivary Biology Division; Dental Institute; King's College London; London, UK

Keywords: adaptive immunity, *Candida albicans*, fungal infection

Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. *Candida albicans* is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against *C. albicans* is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against *C. albicans* infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to *Candida albicans* infections.

Introduction

The human body is a complex environment which is colonised both internally and externally by a huge number of different microbial species including bacteria, fungi and viruses. The maintenance of tissue homeostasis in the face of such overwhelming microbial diversity is critical to health and is dependent upon effective immune surveillance. *Candida albicans* is a polymorphic fungus found in the digestive tract and on other mucosal surfaces of the body (e.g. oral cavity and vagina). The fungus is considered to be a normal constituent of the microflora in ~50% of the human population and is the cause of superficial mucosal infections such as oral and vaginal thrush which can occur following perturbations in the localized mucosal environment. *C. albicans* is also capable of causing life threatening illness and accounts for significant rates of mortality (40%) in the immunocompromised and those receiving immunosuppressive therapies. The dichotomy between harmless carriage and the onset of potentially life threatening infection stems from 2 critically important factors, namely the presence or absence of an effective immune response and the ability of the fungus to alter its morphology.

C. albicans can grow in a number of distinct physical forms including unicellular yeast, pseudohyphae and hyphae. The morphological transition(s) which occur during growth are reversible, and such physical plasticity is believed to facilitate pathogenicity. Growth of *C. albicans* as unicellular yeast is typically associated with harmless colonisation (commensalism) whereas pseudohyphal and hyphal growth is more closely associated with infection. However, it is important to emphasize that this mutually exclusive view of morphology during health or disease is somewhat oversimplified, and may not accurately reflect the true situation during clinical pathogenesis where multiple morphologies are often encountered simultaneously. While infections of the mucosal surfaces are predominantly associated with the hyphal form of the fungus, widespread dissemination throughout the body is facilitated by the yeast morphology where cells bud-off from pre-established hyphae and transit to remote tissues and organs such as the kidneys.

A complex and dynamic relationship exists between *C. albicans* and the human host, the balance of which is influenced greatly by the immune system. Indeed, the pathogenic potential of *C. albicans* is primarily determined by the effectiveness of the host immune response. A state of relative co-existence is maintained between host and fungus in healthy individuals, whereby growth is restricted to the harmless commensal form. However, the morphological restrictions imposed upon fungal growth during health are removed in the absence of effective immune surveillance, which allow fungal burdens to increase as growth continues unchecked. The hyphae of *C. albicans* can breach mucosal surfaces causing infection. Hyphal growth causes damage to the underlying tissue and if it progresses to the point where access to the host vasculature is enabled, the fungus can disseminate throughout the body. Furthermore, many fungal infections also result from the use of indwelling medical devices including intravenous lines, catheters and drains, which bypass the physical barrier provided by the mucosal surface, facilitating access to the bloodstream. Such deep-seated systemic infections are a significant threat to life, and patients suffering from HIV/AIDS and those receiving immunosuppressive therapy are particularly susceptible.

Defense against microbial infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system which function together to eliminate pathogens from the body. In this review we will summarise the basic features of the adaptive immune response to *C. albicans* infection,
describing recent advances in our understanding of adaptive immunity to this medically important fungus.

Host Recognition of Candida albicans:

Dendritic cells (DCs) are specialized antigen presenting cells (APCs) that play a central role in immune defense against pathogens, serving as a critical conduit between the innate and adaptive immune responses. DCs are vital for the initiation of adaptive T-cell-mediated immune protection against *C. albicans*. Immature DCs patrol the peripheral tissues beneath mucosal surfaces and are recruited to the site of infection in response to chemokines and antimicrobial peptides (e.g., CCL20 and β-defensin), secreted by epithelial cells in response to microbial infection. Once recruited, recognition of *C. albicans* by DCs occurs through interactions between pattern recognition receptors (PRRs) expressed on the surface of the DC and pathogen-associated molecular patterns (PAMPs) present on the fungal cell wall.

PRRs including C-type lectin receptors (CLRs) such as dectin-1, dectin-2 and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), mannose receptor (MR), Mincle, Galectin-3, toll-like receptors (TLRs) and complement receptor 3 (CR3) have all been associated with recognition of fungi. PRRs involved in fungal detection recognize conserved structural motifs present as part of the fungal cell wall, such as N-linked and O-linked mannans and β-glucans. Although this initial interaction between host and fungus is driven primarily through innate rather than adaptive recognition, it is nevertheless a crucial event required for the initiation of an adaptive immune response. Once detected, the fungal cells are phagocytosed by DCs and degraded, providing a source of exogenous protein which is processed into antigenic peptides within acidified vesicles. These fungal peptide antigens are assembled onto class II molecules of the DCs, degraded, and presented through the MHC I pathway for display to CD8+ T-cells while simultaneously inhibiting the development of CD8+ cytotoxic T-lymphocyte (CTL) responses. In contrast, Langerin+ dermal DCs stimulate both Th1 and CTL responses while simultaneously inhibiting the development of the Th17 response. Induction of a CTL response indicates that antigens derived from phagocytosis of fungal cells were cross-presented through the MHC I pathway for display to CD8+ T-lymphocytes. Thus, mixed populations of DCs have non-redundant functionality and can drive CD4+ and CD8+ T-cell responses against *C. albicans*.

T-lymphocytes sample the antigen presented to them using T-cell receptors (TCRs) expressed on their surface. Specificity to a potentially unlimited number of antigenic molecules is enabled by random variations in the amino acid sequence (and hence structure) of the antigen binding region of the TCR. Binding of the TCR to either MHC I or MHC II molecules displaying processed fungal antigen is facilitated by the expression of the co-receptors CD8+ and CD4+ respectively, and authenticated through interactions between CD28 expressed on the T-cell and CD80/CD86 on the APC. Recognition of antigen is accompanied by the secretion of cytokines which drive the activation and differentiation of the naive T-lymphocyte into one of a number of different possible T-helper (Th) subsets.

Signaling Events in DCs that Drive Th Subset Differentiation

The recognition of PAMPs by PRRs results in the activation of signaling pathways within the DC which ultimately results in the induction of a specific adaptive cellular immune response. The signaling events that transpire following fungal recognition by the DC and the induction of cellular immunity are both dynamic and complex, and have yet to be characterized in full.

The CLR dectin-1 is expressed on the surface of APCs and plays a central role in the orchestration of responses to *C. albicans*. Dectin-1 is comprised of an extracellular carbohydrate recognition domain and a partial immunoreceptor tyrosine-based activation (ITAM) motif and is the receptor for fungal cell wall β-glucan. The recognition of fungal β-glucan by dectin-1 triggers receptor activation through phosphorylation of the cytoplasmic domain, which in turn leads to recruitment and activation of the spleen tyrosine kinase (SYK) and in turn leads to recruitment and activation of the spleen tyrosine kinase (SYK) (Fig. 1A). Association of phosphorylated dectin-1 with Syk triggers the assembly of the caspase recruitment domain (CARD) complex consisting of CARD9, Bcl-10 and MALT1. The importance of this process in adaptive immune responses to *C. albicans* can be demonstrated as CARD9−/− mice are unable to mount Th17 responses to oral infection.

Assembly of the CARD complex leads to activation of the IkB kinase complex which promotes activation and nuclear translocation of the transcription factor NF-κB (Fig. 1B). Gene transcription mediated via NF-κB signaling results in secretion of pro-inflammatory cytokines and the concomitant upregulation of co-stimulatory molecules on the APC surface (Fig. 1D), the net effect being the induction and differentiation of naive T-cells into distinct Th lineages (Th1, Th2, Th17, Threg). In addition to the "classical" signaling mediated through Syk and p65, dectin-1 can also signal through the non-cannonical NF-κB subunit RelB and importantly, through a second, Syk-independent pathway dependent upon Raf-1. All these pathways converge on NF-κB to drive Th1 and Th17 polarization, and subsequent adaptive immunity against *C. albicans*.

Other CLRs have also been reported as playing a role in driving adaptive immune responses to *C. albicans*, including dectin-2. However in contrast to dectin-1 which, during canonical
signaling, interacts with Syk directly, dectin-2 induces signaling through Syk indirectly by association with the FeRγ chain. Blockade of dectin-2 expressed on DCs has been reported to reduce Th17 responses during systemic infection with C. albicans.

T-cell Responses to *Candida albicans*

T-lymphocytes (T-cells) are an integral component of the host adaptive immune response to *C. albicans* infection and provide direct and indirect means of controlling fungal proliferation. Both CD4+ (T helper cells) and CD8+ (CTL) T-cells have been shown to play a role in anti-fungal immunity, and their activation is controlled by dendritic cell populations. Although CTLs have been shown to inhibit the growth of *C. albicans* hyphae *in vitro*, the principal mechanism of adaptive immune priming employed by DCs occurs through the presentation of fungal antigen to naive CD4+ T-cells, generating a T-helper (Th) response. The CD4+ Th cell response is the predominant cell-mediated adaptive immune response to *C. albicans* infection at mucosal surfaces. Unlike CTLs, CD4+ T-cells do not possess direct cytolytic activity but nevertheless play a crucial role in the cellular adaptive response to fungal infection. The importance of the Th cellular response in driving protective immunity against *C. albicans* is highlighted by the prevalence of oropharyngeal candidiasis (OPC) in HIV/AIDS patients where the CD4+ T-cell count is depleted. Indeed, the correlation between HIV/AIDS and *C. albicans* infection in the oral cavity is now such that the presence of OPC is now widely regarded as a reliable predictor of low CD4+ cell count.

There are 4 different Th subsets (Th1, Th2, Th17 and Treg), and the development of each specific subset is dictated by the cytokines and microenvironment present at the instance of naive CD4+ T-cell priming by DCs. The cytokines that drive the differentiation of each particular Th phenotype are inhibitory to the development of the others, thereby maximising the potential that only one type of Th response is initiated at any one time. This so-called “polarization” of Th differentiation has a profound impact on the outcome of the adaptive response and is heavily dependent upon the prevailing cytokine milieu. Th1 responses were

![Figure 1. Overview of adaptive T-cell responses to *Candida albicans* infection. A fungal PAMP (β-glucan) engages with the PRR dectin-1 (A), stimulating receptor phosphorylation and recruitment of the spleen tyrosine kinase (Syk). The association of dectin-1 with Syk activates assembly of the CARD complex (CARD9, BCL10 and MALT1), which stimulates nuclear translocation of the transcription factor NF-κB (B). The NF-κB transcription factor drives the expression of pro-inflammatory cytokines and co-stimulatory molecules required during antigen presentation. As well as signaling and gene transcription, activation of dectin-1 and recruitment of Syk triggers phagocytosis of *C. albicans* (C). The phagocytosed fungus is degraded in the phagocytic compartment and fungal antigens are loaded onto MHC II molecules for presentation to naive CD4+ T-cells. Recognition of antigen by a T-cell receptor (TCR) in the presence of co-stimulation from CD28 and CD80/86 (D) is followed by cytokine-directed polarization to one of the 4 known Th subsets (E). Th1 and Th17 cellular responses confer immune protection, whereas Th2 responses are considered refractory to fungal clearance.](https://www.tandfonline.com/doi/pdf/10.1089/vir.2016.0020)
historically regarded as being the predominant defensive cellular response to *C. albicans*, resulting in fungal clearance from the oral cavity and gastrointestinal tract. However, this view of the importance and effective contribution of the Th1 phenotype to protection against *C. albicans* infection at mucosal surfaces has since been superseded by the Th17 response. In contrast to the protective Th17/Th1 phenotypes, induction of a Th2 phenotype is more closely associated with increased growth and dissemination of the fungus.

DCs that phagocytose *C. albicans* yeast cells are stimulated to produce interleukin-12 (IL-12), which drives polarization to the Th1 subset. Upon stimulation with IL-12, Th1 cells initiate autocrine signaling via secretion of interferon-gamma (IFN-γ) which serves to upregulate the expression of the IL-12Rβ2 receptor rendering the cells increasingly sensitive to IL-12 stimulation, thereby perpetuating differentiation to the Th1 phenotype. In contrast, polarization to the Th2 phenotype is driven by IL-4 and is accompanied by further secretion of IL-4.

IL-17 secreting T-lymphocytes (Th17 cells) are an additional subset of Th cell which express the chemokine receptors CCR4 and CCR6 on their surface and are developmentally distinct from the Th1 and Th2 lineages. Th17 cells secrete numerous cytokines including IL-17A, IL-17F and IL-22 and are critically important for immune protection against *C. albicans* at the majority of mucosal sites in the body. Indeed, such is the involvement of Th17 cells in the immune response to oral and dermal candidiasis they are now regarded as the predominant cell type that confer protection against *C. albicans* at these locations. Interestingly, IL-17 and IL-22 do not contribute to immune protection in vaginal mucosa, highlighting the subtle differences in immune response requirements at different mucosal sites. IL-17 plays a key role in recruiting and activating neutrophils, while IL-22 enhances epithelial barrier function. Differentiation of naive CD4+ T-cells to the Th17 phenotype is driven initially by IL-1β, while maturation and terminal differentiation is dependent upon IL-23 signaling. Th17 differentiation is further influenced by IL-6, which has been shown to be produced by epithelial cells in response to *C. albicans* infection. Notably, the production of both IL-6 and IL-23 from antigen presenting cells results from recognition of *C. albicans* mannans.

More recently, an additional class of natural Th17 (nTh17) cells have been described that are phenotypically distinct from conventional CD4+ Th17 cells. nTh17 cells function as innate sentinels in the oral mucosa and together with γδ T cells, secrete IL-17 in response to *C. albicans*. Notably, γδ T cells produce large quantities of IL-17, yet again highlighting the close relationship between innate recognition of *C. albicans* and downstream adaptive immune responses. It is also important when considering immune responses to *C. albicans* to be aware that many of the cytokines now thought to be important in these responses (e.g. IL-17A, IL-22) can also be produced by innate lymphoid cells (ILCs) such as the aforementioned nTh17 cells, γδ T cells, as well as ILC3 cells. Further, many of the in vivo models of mucosal *C. albicans* infection are skewed toward assaying innate rather than adaptive immune responses given the timescales over which these models are carried out.

The importance of the Th17 phenotype cytokines in anti-*Candida* responses is most vividly portrayed by data from both knockout mice and human patients. Mice unable to produce IL-23 are highly susceptible to OPC, while mice lacking IL-17 receptor-A (IL-17RA−/−) or IL-23p19 (IL-23p19−/−) have increased susceptibility to both OPC and systemic candidiasis. Moreover, IL-17RC−/− mice (deficient in the second IL-17 receptor chain) are also susceptible to OPC. Both IL-17 and IL-23 are essential in preventing fungal skin infections and Th17 cells secrete IL-22 which limits fungal growth. In addition to acquired disorders of CD4+ T-cell immunity that predispose to *C. albicans* infection (HIV/AIDS), the critical nature of the protection provided by IL-17/Th17 cells is further emphasized when one considers the impact of inherited genetic mutations which affect the efficacy of IL-17/Th17 responses in otherwise healthy individuals.

Patients with inherited disorders in Th17-mediated anti-fungal immunity frequently present with chronic mucocutaneous candidiasis (CMC), which manifests as severe infection of the nails, skin and upper gastrointestinal tract. IL-12 and IL-23 are important cytokines for the development of Th1 and Th17 responses respectively. The human IL12RB1 gene encodes for an integral component of the receptor to IL-12 and IL-23, and approximately 25% of patients deficient in IL-12RB1 are prone to CMC. In patients with autosomal dominant Hyper-IgE syndrome, the differentiation, development and number of circulating Th17 cells is significantly reduced due to mutations in Signal Transducer and Activator of Transcription 3 (STAT3), and CMC is a key phenotype in these individuals. Further, Th17 development and associated anti-fungal activity is also impaired by gain-of-function mutations in STAT1.

A marked reduction in the number of IL-17 secreting T-cells is observed in patients carrying the dominant-negative autosomal recessive Q258X mutation in caspase recruiting domain-containing protein 9 (CARD9) and this mutation has been associated with increased susceptibility to fungal infection. Furthermore, individuals with autosomal recessive autoimmune polyendocrinopathy syndrome 1 (APS-1), caused by mutations in the gene encoding the human autoimmune regulator protein (AIRE) produce neutralising antibodies against IL-17A, IL-17F and IL-22. The continual depletion of these key Th17 cytokines results in an associated CMC. Importantly, the susceptibility of APS-1 patients to opportunistic pathogens is seemingly restricted to *C. albicans* alone, highlighting the specific and essential contribution of IL-17 to anti-*C. albicans* immunity. Moreover, both an autosomal recessive mutation of glutamine 284 to a premature termination codon in the receptor for IL-17A (IL-17 RA) and an autosomal dominant mutation (S65L) in IL-17F also predispose individuals to CMC. A T536I mis-sense mutation in ACT1 (an adaptor protein involved in IL-17 signaling) is reported to reduce activity and impaired IL-17A and IL-17F-mediated immunity. Patients harbouring the ACT1 mutation have T-cells which are unresponsive to IL-17E and an increased prevalence of CMC.

One of the classical hallmarks of adaptive immunity is the establishment of permanent immunological memory against a specific antigen, which can be brought to bear against a pathogen
in the face of a secondary immune challenge. Long-term adaptive immunity against *C. albicans* has been observed in mice challenged and then re-challenged with the fungus. In this system, a stable and robust antigen-specific adaptive Th17 immune response against *C. albicans* was reported,\(^{34}\) but the establishment of *bona fide* immunological memory remains to be fully demonstrated. Taken collectively, these studies clearly demonstrate the essential role that Th17 cells, their associated cytokines and by extension, adaptive immunity, play in combating *C. albicans* infections.

Antibody Responses to Candida albicans

Endogenous antibody responses to *C. albicans* infection in humans are regarded as playing a relatively minor role in immune protection against the fungus, and are widely considered to be significantly less effective than cellular (Th17/Th1) responses. Due to their accessibility, molecules displayed on the cell surface of *C. albicans* provide ideal targets for antibody-mediated immune protection. Mannoproteins with complex O- and N-linked mannose polysaccharides are an integral component of the *C. albicans* cell wall\(^{65}\) and are a major target for anti-*Candida* antibodies. The binding of antibodies to exposed cell surface components of the infecting fungus may serve to hinder or prevent biological function. Indeed, monoclonal antibodies generated against mannoprotein interfere with fungal adhesion to host substrates and germ tube formation,\(^{66}\) while patient-derived antibodies against a 58 kDa cell surface mannoprotein of the fungus prolonged survival following systemic infection in mice.\(^{67}\)

Antibodies generated in mice against the surface mannan of *C. albicans* can confer varying degrees of protection, depending upon whether the subsequent fungal infection is mucosal or systemic.\(^{68}\) Vaccination with *C. albicans* mannan rendered mice less susceptible to disseminated candidiasis and polyclonal serum from vaccinated animals conferred protection to both naive mice and those with severe combined immune-deficiency (SCID).\(^{69}\) Administration of a recombinant human monoclonal antibody against *C. albicans* mannan to mice enabled prolonged survival following an otherwise lethal inoculum of the fungus.\(^{70}\)

The agglutinin-like sequence proteins of *C. albicans* also reside at the cell surface, and monoclonal antibodies which bind to Als3p interfere with adhesion to epithelial surfaces, filamentation, acquisition of iron, and also possess fungicidal activity.\(^{71,72}\) Interestingly, antibody-mediated protection against *C. albicans* is not restricted to cell surface molecules alone. Antibody-mediated inhibition of secreted aspartyl proteinase (SAP) activity was reported to bestow increased protection against vaginal infection in rats,\(^{73}\) while human antibodies specific for *C. albicans* heat shock protein 90 (Hsp90) protected against systemic candidiasis in mice.\(^{74}\)

Despite these observations, there is the paradox that B-cell deficiency in mice does not cause increased susceptibility to *C. albicans* infection,\(^{75-77}\) highlighting the lack of robust antibody-mediated protection and emphasizing the predominance of adaptive cellular responses.

Given the extremely modest levels of protection conferred by antibodies in response to *C. albicans* infection, it could be argued that the inherent immunogenicity of *C. albicans* antigens is limited in their natural context when presented to B-cells. However, it is also clear that purified antigens, when presented to the immune system in conjunction with a suitable carrier protein and adjuvant are capable of eliciting the production of antigen-specific antibodies that can confer some, albeit limited, protection (see Vaccines to *Candida albicans*).

Subversion of adaptive immune responses by Candida albicans

As with most pathogens, *C. albicans* has developed mechanisms for avoiding immune responses. This can include evasion of recognition events or even subversion of normal immune responses. The mechanisms by which *C. albicans* manages this are varied. For example, the cellular immune response driven during infection can be influenced by fungal morphology. Monocytes that phagocytose *C. albicans* yeast cells or germ tubes were unable to differentiate into DCs, and internalisation of germ tubes was reported to render cells incapable of inducing Th polarization.\(^{78}\) Further, the yeast and hyphal forms of *C. albicans* exert opposing effects on DCs, skewing Th polarization induced both *in vitro* and *in vivo*.\(^{79,80}\) Such a polarization of the cytokine response may function to subvert Th subset differentiation to those which enable fungal persistence within the host. DCs which phagocytose *C. albicans* yeast cells or those pulsed with yeast cell RNA promote development of Th1 responses, leading to fungal clearance, whereas DCs that internalise hyphae or those which receive hyphal RNA generate Th2 responses leading to fungal perpetuation.\(^{79,80}\) Importantly, DCs pulsed *ex vitro* with yeast but not hyphae were reported to confer anti-fungal protection when adoptively transferred into mice.\(^{79}\) In addition to morphological influences, *C. albicans* can secrete a soluble factor which reduces IL-17 production from human peripheral blood mononuclear cells *in vitro*,\(^{81}\) suggesting that the fungus may have the potential to dampen host Th17 responses. Furthermore, it has also been suggested that the presence of IL-17A may facilitate fungal adaptation to the host environment.\(^{82}\)

T-regulatory (Treg) cells are known to play a central role in the regulation of cellular immune responses to microbial infection. The induction of disseminated candidiasis in mice was reported to drive the expansion of a population of splenic Foxp3\(^+\) Treg cells resulting in the exacerbation of disease pathology. Interestingly, subsets of Foxp3\(^+\) Treg cells were observed to induce Th17 responses, albeit to the detriment of the host.\(^{83}\) In contrast to these findings is the observation that Treg cells consume IL-2 (thereby preventing IL-2-mediated inhibition of Th17 polarization), assisting the generation of protective Th17 responses mounted during murine OPC.\(^{84}\) Clearly, the roles(s) played by Treg cells in response to *C. albicans* infection have yet to be characterized in full.

Taken together it appears probable, whether intentional or otherwise, that *C. albicans* is able to influence the outcome of the
host immune response in some circumstances, possibly to circumvent immune clearance and facilitate persistence.

The role of the inflammasome in the adaptive immune response to *Candida albicans*

The complex interplay between innate and adaptive immune responses that enables fungal clearance is further demonstrated by the involvement of the inflammasome in response to fungal challenge. Inflammasomes are cytosolic multi-protein complexes consisting of a PRR, an adaptor protein (e.g., ASC) and caspase-1, whose assembly is triggered via innate recognition of PAMPs by intracellular nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins or AIM2-like receptors (ALRs).\(^8\) It is becoming increasingly clear that these structures play an important functional role in the adaptive immune response to fungal infection. The end point of inflammasome activation is the production of fully mature inflammatory cytokines IL-1β and IL-18. IL-1β and IL-18 are produced as inactive precursors that undergo caspase-mediated cleavage to yield biologically active molecules. Inflammasome activity is required to drive caspase-dependent maturation of IL-1β and IL-18, with subsequent effects on adaptive Th1 and Th17 cellular responses.\(^38,86,87\) Accordingly, while the initiation of inflammasome activity is associated with innate immunity, the production of functionally mature IL-1β and IL-18 nevertheless influence the outcome of the adaptive immune response.

A number of different inflammasomes are known to be involved in the response to *C. albicans* infection. By far the best characterized of these is the NLRP3 inflammasome which consists of Nlrp3 complexed with apoptosis-associated speck-like protein with caspase recruitment domain (ASC) and caspase-1. The ability to produce mature IL-1β and IL-18 through the NLRP3 inflammasome is crucial for adaptive cellular protection against *C. albicans*. Activation of the NLRP3 inflammasome is triggered by *C. albicans* hyphae,\(^88\) and has an impact in signaling through other PRRs involved in anti-*Candida* immunity. For example, NLRP3/ASC caspase-1 activity is a critical factor in SYK/CARD9 signaling induced by TLR2 and dectin-1.\(^89,90\) Further, secretion of IL-1β from DCs stimulated with fungal β-glucan required NLRP3 inflammasome activity and cells deficient in either Nlrp3 or ASC were impaired in their ability to secrete IL-1β.\(^91\) The importance of the NLRP3 inflammasome in anti-*Candida* responses can be seen in studies using knock-out mice. Mice lacking in either TLR2, dectin-1, caspase-1 or Nlrp3 are highly susceptible to systemic *C. albicans* infection,\(^88,90\) while mice unable to produce caspase-1 or ASC were more susceptible to disseminated candidiasis and exhibited reduced Th1/Th17 reactivity concomitant with increased fungal burden in the kidneys.\(^92\) These inflammasome effects are important for more than cell-mediated immunity, with studies showing that NLRP3 activity was required for the generation of antigen-specific antibody mediated immune protection against *C. albicans* in vivo.\(^93\) In addition to NLRP3-mediated protection, immune defense against *C. albicans* infection can also be orchestrated through the NLRC4 inflammasome which functions to regulate resistance to infection in the oral cavity and limits early systemic dissemination following oral infection in vivo.\(^93\)

NLRP10 is another member of the NLR family which contributes to adaptive immune protection against disseminated candidiasis in vivo\(^94\) and is expressed on DCs and CD4\(^+\) T-cells. Mice lacking NLRP10 exhibited impaired Th1 and Th17 responses to *C. albicans* infection concomitant with an increased presence of both yeast and hyphae in the renal cortex and medulla.\(^94\) Importantly, while adaptive cellular responses were negatively affected by the absence of NLRP10, activation of the NLRP3 inflammasome and secretion of IL-1β were not affected, indicating that while both NLRP3 and NLRP10 contribute to adaptive protection against *C. albicans* infection, they do so by different pathways.\(^94\) As can be seen, the exact role of inflammasome activation in adaptive immune responses is difficult to isolate, given the parallel role these complexes play in innate immunity. The reality is likely to be a multifaceted interplay between the different inflammasome complexes and fungal PAMPs, resulting in complementary activation of both innate and adaptive immunity. It should be noted that the cytokine cocktail produced by inflammasome activity (IL-1β and IL-18) will help drive the development of a Th17 phenotype in naive T-cells, thus the innate immune activation of inflammasomes can still have an impact on adaptive immune responses.

Since NLRs are intracellular receptors, the activation of inflammasome assembly typically proceeds following phagocytosis/internalisation of the infecting fungus. However, recognition of *C. albicans* by DCs expressing the extracellular PRR dectin-1 can also trigger the assembly of a non-canonical inflammasome complex consisting of CARD9, Bcl-10, MALI, ASC and caspase-8, rather than caspase-1.\(^95\) Assembly of this multi-protein complex enables processing of inactive IL-1β to the active form in a caspase-8 dependent manner. Intriguingly, while activation of the NLRP3/caspase-1 inflammasome by *C. albicans* is dependent upon internalisation of the fungus, blocking the internalisation of *C. albicans* does not affect caspase-8-dependent maturation of IL-1β from the non-canonical inflammasome complex.\(^95\) Hence, induction of protective Th17-based immunity against *C. albicans* can be triggered following intracellular and extracellular recognition of the fungus in a manner dependent upon the activity of classical and non-canonical inflammasomes respectively.

Compartmentalisation of Immunity

C. albicans is known to infect multiple mucosal sites including the oral and vaginal cavities in particular. Each of these surfaces has their own immune mechanisms and susceptibilities to infection. For example, while oral thrush is generally associated with significant underlying changes, such as denture use or immune deficiencies (AIDS, transplantation therapy, cancer treatments), vulvovaginal candidiasis (VVC) is a much more common occurrence in the general population. Indeed, ~75% of women of fertile age will experience at least one incidence of VVC\(^96,97\) and it has been estimated that 5–10% of women will suffer from
repeated or chronic episodes of VVC.98,99 It is therefore highly likely that there are differences in the immunity generated at each of these different sites. Interestingly, adaptive Th17 responses appear to play no role in vaginal protection to \textit{C. albicans}, with no change in the vaginal fungal burden of IL-23p19101, IL-17RA102 and IL-22103 mice compared with wild type controls.104 This highlights the fact that although there are common anti-fungal mucosal immune responses, it is also highly likely that there is a varying degree of specificity for each of these mucosal surfaces to the fungus. In particular, it is noteworthy that responses to systemic infection differ from responses at mucosal surfaces. Systemic responses for example, are still regarded as being predominantly Th1, while mucosal responses are now known to be predominantly Th17 in nature.

The contribution of adaptive immune responses against \textit{C. albicans} during vaginal infection remains somewhat unclear. Despite participating in adaptive immune protection at a number of different sites in the body,101-103 Th1 cells play no significant role in protection against \textit{C. albicans} in the vaginal environment,104 and a precise biological role for this so called “compartmentalisation of immunity” has yet to be unequivocally established.

In an experimental model of VVC, DCs were detected in the draining lymph nodes of the surrounding vaginal tissue. However, the predominant subset of DC found within the nodes were plasmacytoid dendritic cells (pDCs),105 which are associated with immunological tolerance and poor induction of T-cell proliferation,106 rather than myeloid DCs which promote inflammatory responses and fungal clearance. Importantly, the pDCs were detected prior to, and throughout the entire course of infection and did not upregulate expression of MHC II, CD80 or CD86,105 consistent with a localized, tissue-specific tolerance to the fungus.

The involvement of Th17 responses to \textit{C. albicans} infection in the vagina have yet to be fully elucidated. Induction of VVC in mice stimulated the production of both IL-17 and IL-23,107 however, despite participating in adaptive immune protection at a number of different sites in the body,101-103 Th1 cells play no significant role in protection against \textit{C. albicans} in the vaginal environment,104 and a precise biological role for this so called “compartmentalisation of immunity” has yet to be unequivocally established.

In contrast to the above study, recruitment of neutrophils during vaginal infection was observed in response to the presence of S100A8 and S100A9 alarmins,35 and no role for the involvement of either IL-17 or the Th17 pathway was demonstrated.106 Given the involvement of the S100 alarmins and \(\beta\)-defensins, defense against \textit{C. albicans} in the vaginal environment thus appears to be mediated through innate rather than adaptive means in murine models of VVC. Indeed, the PRRs TLR4 and SIGNR1 have been implicated in S100 alarmin signaling \textit{in vitro}, although the situation appears to be more complex \textit{in vivo}.108 Importantly, and in keeping with the observations made above, the symptoms caused by intravaginal challenge with live, un attenuated \textit{C. albicans} in human subjects was attributed to potent innate rather than adaptive responses.109

Vaccines to \textit{Candida Albicans}

Much attention is now being given to the development of vaccines to establish long-lived immunological memory against \textit{C. albicans} such that a robust and targeted adaptive immune response can be rapidly invoked upon secondary fungal challenge. The proteins selected for inclusion into anti \textit{C. albicans} vaccines are predominantly (but not exclusively) those factors considered to be a requirement for virulence. One such class of molecules are the agglutinin-like sequence (Als) adhesins, which are required for the attachment of \textit{C. albicans} to host surfaces during infection.110,111

By far the most well studied candidate for an anti \textit{C. albicans} vaccine is Als3p (amino acids 17–432, referred to as NDV-3). Subcutaneous injection of NDV-3 in the presence of an adjuvant stimulated adaptive Th1/Th17 immune protection against \textit{C. albicans} bloodstream infection in mice, resulting in the recruitment of activated phagocytes which facilitated fungal clearance from infected tissues.112 Consistent with the differences in immune responses at different mucosal surfaces, vaccination of mice with NDV-3 results in the production of anti-Als3p IgG and IgA antibodies and reduced fungal burdens in vaginal tissues in a manner dependent upon both Th1 and B-lymphocytes, rather than the purely cell-mediated protection seen in bloodstream infections.113 NDV-3 was also reported as being highly efficacious in a mouse model of OPC.114 It has proven itself to be safe and immunogenic in human subjects, and is now being assessed in clinical trials.115

Mice vaccinated with an N-terminal region of Als1p are protected against a lethal inoculum of \textit{C. albicans},116 with vaccination resulting in reduced fungal burdens in tissue following infection with \textit{C. albicans}117 and other \textit{Candida} species.118 Importantly, protection afforded by this vaccine is mediated via cellular rather than humoral means, as vaccination is still successful in B-cell deficient mice.116 An MHC II-bound peptide fragment corresponding to a conserved region of ALS family proteins has been isolated from DCs infected with \textit{C. albicans}.119 The isolated peptide has been reported to act as a Th17 epitope and was observed to protect mice from fatal systemic candidiasis.119

Other families of \textit{C. albicans} virulence factors have also shown promise as potential vaccine candidates, including the secreted aspartyl proteinases (Saps).120 Immunisation of mice with Sap2p confers protective immunity in the face of an otherwise lethal systemic challenge of \textit{C. albicans}.121 Rats receiving intravaginal immunisation with amino acids 77–400 of Sap2p were protected against subsequent vaginal challenge with \textit{C. albicans} in a manner dependent upon the generation of anti-Sap2p IgG and IgA.122 As well as virulence factor vaccines, other formulations have been designed based on structural motifs. A vaccine containing the algal \(\beta\)-glucan laminarin has been reported to improve immune protection against123 both vaginal (mucosal) and systemic \textit{C. albicans}.124
albicans infection in mice.2,3 Despite this progress, success remains limited. No vaccines to \textit{C. albicans} are clinically available at the time of writing. However, given the prevalence of fungal infections, particularly in the face of increasing resistance to commonly used anti-fungal therapies, the field of \textit{C. albicans} vaccine design will no doubt continue to flourish and remain an area of intense study.

Concluding Remarks

Adaptive immune responses to \textit{C. albicans} are crucial to the successful eradication of infecting fungus. Despite tremendous advances in our understanding of the molecular events that underpin adaptive immunity to this opportunistic fungal pathogen, there is still much to be discovered. It is worth noting here that much of our understanding of the adaptive immune responses to \textit{C. albicans} is based on \textit{in vitro} studies. However, these studies have so far correlated with \textit{in vivo} findings and have provided us with a map of events in adaptive immune responses to this medically important fungal pathogen. Critically, as our understanding of the complex relationship between innate and adaptive immunity to \textit{C. albicans} continues to evolve, and \textit{in vivo} data are continually refined, future developments will no doubt enable the provision of improved medical outcomes for those who suffer from \textit{C. albicans} infections.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Oddi FC. \textit{Candida} and \textit{Candidosis}. London: Baillière Tindall, 1988.
2. Giusiano G, Mangiaterra M, Garcia Saito V, Rojas F, Gomez V, Dia CM. Fluconazole and itraconazole resistance of yeasts isolated from the bloodstream and catheters of hospitalized pediatric patients. Chemotherapy 2006; 52:254-9; PMID:16899774; http://dx.doi.org/10.1159/000094687.
3. Brau BR, Johnson AD. Control of filament formation in \textit{Candida albicans} by the transcriptional repressor TUP1. Science 1997; 277:105-9; PMID:9204892; http://dx.doi.org/10.1126/science.277.5322.105.
4. Brau BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in \textit{C. albicans}, is down-regulated during filament induction. EMBO J 2001; 20:4753-61; PMID:11532938; http://dx.doi.org/10.1093/emboj/20.17.4753.
5. Murad AM, Leng P, Straffon M, Wishart J, Maca-skili S, Callum-Dunn C, Schnell N, Talib D, Morechel D, Tekaija T, et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in \textit{Candida albicans}. EMBO J 2001; 20:4742-52; PMID:11532938; http://dx.doi.org/10.1093/emboj/20.17.4742.
6. Thotrey AJ, Goldsaw P, Young A, Telety PD. Primary human alveolar type II epithelial cell CCL20 (macrophage inflammatory protein-3alpha)-induced dendritic cell migration. Am J Respir Cell Mol Biol 2006; 35:69-76; PMID:16548886; http://dx.doi.org/10.1165/rccmb.2005-03129.
7. Sierro F, Dubois B, Coste A, Kaiserlian D, Kraehenbuhl JP, Sirad C. Flagellin stimulation of intestinal dendritic cells. Proc Natl Acad Sci U S A 2001; 98:13722-7; PMID:11717433; http://dx.doi.org/10.1074/jbc.M606542200.
8. Dieu-Nosjean MC, Massacrier C, Homey B, Vanzulli JP, Sirard JC. Skin-resident murine dendritic cell subsets promote distinct and opposing responses to fungal infection. J Exp Med 2009; 206:2543-50; PMID:19122654; http://dx.doi.org/10.1084/jem.20082818.
9. Taylor PR, Tsion SY, Wallatt JA, Dennehy KM, Gross O, Verbeek JS, Ruland J, Cardin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 2006; 281:38585-96; PMID:17050534; http://dx.doi.org/10.1074/jbc.M606542200.
10. Beno DW, Stover AG, Mathews HL. Growth inhibition of \textit{Candida albicans} hyphae by CDR+ lymphocytes. J Immunol 1995; 154:5273-81; PMID:7730631.
11. de Repentigny L, Lewandowski D, Jolicoeur P. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for \textit{C. albicans}. J Immunol 2005; 174:507-17; PMID:15845484; http://dx.doi.org/10.1159/000080650.
12. Auzinet C, Bostedt C, Kussel T, Peschel C, F€orster I, Ruland J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442:561-9; PMID:16462125; http://dx.doi.org/10.1038/nature04926.
13. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Lub-Phelps K, Kimberly RP, Underhill D, Cruz PD Jr, Arizumi, K. \textit{C. albicans} in vitro studies. Nature 2010; 469:527-38; PMID:20320751; http://dx.doi.org/10.1038/nature09426.
regulates IL-18R alpha expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor beta 2 expression. J Immunol 2002; 168:6165-72; PMID:12055229; http://dx.doi.org/10.4049/jimmunol.168.11.6165.

31. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanavecchia A, Sallusto F, Napoli G. Surface phenotype and antigenic specificity of human interleukin-17-producing T helper cells. J Immunol 2007; 182:8365-66; PMID:17486092; http://dx.doi.org/10.4049/jimmunol.182.12.8365.

32. Harrington LE, Hariton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the Th-1 helper type 1 and 2 lineages. Nat Immunol 2005; 6:1123-32; PMID:16200070; http://dx.doi.org/10.1038/ni1254.

33. Kagami S, Ruzio HL, Kurtz SE, Miller LS, Blaeva A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 2010; 185:15433-62; PMID:20921529; http://dx.doi.org/10.4049/jimmunol.0901153.

34. Hernandez MC, Huppeler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 2013; 6:900-13; PMID:23250275; http://dx.doi.org/10.1038/mi.2012.165.

35. Yano J, Lilly E, Barouche M, Fidel PL, Jr. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun 2010; 78:5126-37; PMID:20882320; http://dx.doi.org/10.1128/IAI.00388-10.

36. Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2009; 200:999-1006; PMID:19542941; http://dx.doi.org/10.1086/422329.

37. De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallica R, Kang HS, Ma L, Watowich SS, Jetten AM, Cua D, Kubo M. Natural occurring IL-17-producing CD4+ T cells that lack the IL-17A-containing cytokine signature are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206:299-311; PMID:19204411; http://dx.doi.org/10.1084/jem.20081463.

38. Howard CA, Shen F, Coni HR, Patel N, Childs EF, Peterson AC, Hernandez-Santos N, Kolls JK, Kane LP, Ouagag W, et al. IL-17C is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J Immunol 2010; 185:10363-70; PMID:20594764; http://dx.doi.org/10.4049/jimmunol.0903739.

39. Ouederni D, Salan O, Ikinciogullari A, Tetzan I, Dogu F, Sologuren I, Pedraza-Sanchez J, Koning S, Israel L, Chrabieh M, Audry M, et al. IL-17 producing CD4+ T cells are required to drive long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 2013; 6:204-13; PMID:24186907; http://dx.doi.org/10.1038/mi.2012.105.

40. de Besançon L, Samara A, Buxantaz J, Cobar A, Boisson-Dupuis S, Feinberg J, Almuhens S, Jannière L, Rose Y, de Serein M, et al. Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 2010; 89:581-402; PMID:21057261; http://dx.doi.org/10.4049/jimmunol.0901153.

41. de Beaucadery L, Puel A, Filipe-Santos O, Cobar A, Ghanali P, Chabrier M, Feinberg J, von Bernuth H, Samara A, Jannière L, et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 2008; 205:1543-50; PMID:18591412; http://dx.doi.org/10.1084/jem.20083021.

42. Ma CS, Chew GS, Simpson N, Priyadarshi A, Wong KM, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, et al. Dominant-negative mutations in the DNA-binding domain in the cytoplasmic tail. J Immunol 2010; 184:10541-50; PMID:20655038; http://dx.doi.org/10.4049/jimmunol.0900373.

43. de Beaucadery L, Puel A, Filipe-Santos O, Cobar A, Ghanali P, Chabrier M, Feinberg J, von Bernuth H, Samara A, Jannière L, et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 2008; 205:1543-50; PMID:18591412; http://dx.doi.org/10.1084/jem.20083021.

44. Renner ED, Rylaarsdam S, Anover-Sombke S, Rack T, Duquesnoy RJ, et al. Natural occurring IL-17 producing CD4+ T cells that lack the IL-17A-containing cytokine signature are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206:299-311; PMID:19204411; http://dx.doi.org/10.1084/jem.20081463.

45. Cui S, Chen Y, Foo J, Snodgrass A, Murphy KM, Weaver CT. Interleukin-17 immune signaling via an extended SEF/IL-17R signal-transduction physical and transcriptional mapping of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res 1997; 7:820-9; PMID:9267809.

46. Sallusto F. Pathogen-induced human TH17 cells promote long-term adaptive immunity to oral mucosal Candida albicans. J Exp Med 2010; 207:299-308; PMID:20123959; http://dx.doi.org/10.1084/jem.20091669.

47. Puel A, Dolfinger R, Natalvad A, Chabrier M, Barcenas-Morales G, Picard C, Cobat A, Ouachiche-Chardin M, Toulon A, Bostantemne J, et al. Autoantibodies targeting the IL-17 receptor in hyper-IgE syndrome with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 2010; 207:291-7; PMID:20123958; http://dx.doi.org/10.1084/jem.20091985.

48. Kissian KD, Besedovsky HO, Podzorov KJ, Tietzel L, Kissian KV, Erslev A, Perheentupa J, Eichens MM, Bradic N, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytoxic T cells. J Exp Med 2010; 207:299-308; PMID:20123959; http://dx.doi.org/10.1084/jem.20091669.

49. Puel A, Cypowyj S, Bostantemne J, Wright JD, Liu L, Lim HK, Migaud M, Israel L, Chabrier M, Audry M, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011; 332:625-8; PMID:21350122; http://dx.doi.org/10.1126/science.1200439.

50. Boisson B, Wang C, Pedregosa V, Wu L, Cypowyj S, Rybojad M, Belkadi A, Picard C, Abel S, Fieschi C, et al. An ACTI mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunology 2011; 133:567-86; PMID:21412031; http://dx.doi.org/10.1111/j.1365-2567.2011.03302.x.

51. Chaffin WL. Candida albicans cell wall proteins. Microbiol Mol Biol Rev 2008; 72:495-544; PMID:18772287; http://dx.doi.org/10.1128/MMBR.00032-07. www.tandfonline.com

Virulence
Virulence

106. Oria TB, Orstoochkova M, Seguin-Devaux C, Diamond-McCarth B, Stolz DB, Watkins SC, Pillemer B, Ray P, Ray A. Dynamics of dendritic cell phenotype and interactions with CD4+ T cells in airway inflammation and tolerance. J Immunol 2005; 174:854-63; PMID:15634907; http://dx.doi.org/10.1088/0952-4744/23/4/008

107. Pietrella D, Rachini A, Pinos M, Pandey N, Mosci P, Bistoni F, d’Enfert C, Vecchiarelli A. Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PLoS One 2011; 6:e22770; PMID:21818837; http://dx.doi.org/10.1371/journal.pone.0022770

108. Yano J, Palmer GE, Eberle KE, Peters BM, Vogt T, McKenzie AN, Fidel PL Jr. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 2014; 82:783-92; PMID:24478092; http://dx.doi.org/10.1128/IAI.73.5.6191-6193.2005

110. de Groot PW, Bader O, de Boer AD, Weig M, Hoyer LL, Green CB, Oh SH, Zhao X. Discovering Fidel PL, Jr., Barousse M, Espinosa T, Ficarra M, Yano J, Palmer GE, Eberle KE, Peters BM, Vogt T, McKenzie AN, Fidel PL Jr. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 2014; 82:783-92; PMID:24478092; http://dx.doi.org/10.1128/IAI.73.5.6191-6193.2005

111. Lin L, Irahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE, Jr. Spillberg B, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 2009; 5: e1000703

112. Lin L, Irahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE, Jr. Spillberg B, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 2009; 5: e1000703

113. Ibrahim AS, Luo G, Gehbremariam T, Lee H, Schmidt CS, Hennessy JP, Jr., French SW, Yeaman MR, Filler SG, Edwards JE Jr. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 2013; 31:5549-56; PMID:24063977; http://dx.doi.org/10.1016/j.vaccine.2013.09.016

114. Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT, Filler SG, Yeaman MR, Edwards JE Jr. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 2006; 194:256-60; PMID:16779733; http://dx.doi.org/10.1086/504691

115. Schmidt CS, White CJ, Ibrahim AS, Filler SG, Fu Y, Yeaman MR, Edwards JE Jr. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 2012; 30:7594-600; PMID:23099329; http://dx.doi.org/10.1016/j.vaccine.2012.10.038

116. Ibrahim AS, Spellberg BJ, Avanesian V, Fu Y, Filler SG, Edwards JE Jr. Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, but not humoral, immunity. Infect Immun 2005; 73:999-1005; PMID:15664943; http://dx.doi.org/10.1128/IAI.73.2.999-1005.2005

117. Spellberg BJ, Ibrahim AS, Avenissian V, Filler SG, Yeaman MR, Edwards JE Jr. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun 2006; 74:3039-41; PMID:16622247; http://dx.doi.org/10.1128/IAI.74.5.3039-3041.2006

118. Ibrahim AS, Spellberg BJ, Avanesian V, Fu Y, Edwards JE Jr. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun 2006; 74:3039-41; PMID:16622247; http://dx.doi.org/10.1128/IAI.74.5.3039-3041.2006

119. Bar E, Gladiator A, Bastidas S, Roschitzki B, Acha-Orbea H, Ouerissie A, Lebund-Guit-Landmann S. A novel Th cell epitope of Candida albicans mediates protection from fungal infection. J Immunol 2012; 188:5636-43; PMID:22529294; http://dx.doi.org/10.4049/jimmunol.1200594

120. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67:400-28, table of contents; PMID:12966142; http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003

121. Vilanova M, Tetteira L, Caramalho I, Torrado E, Marques A, Madureira P, Ribeiro A, Ferreira P, Gama M, Demengeot J. Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology 2004; 111:334-42; PMID:15094935; http://dx.doi.org/10.1111/j.1365-2567.2004.01819.x

122. Sandini S, La Valle R, Degrillo S, Malavasi F, Cassone A, De Bernardis F. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (Sap2s) of Candida albicans as a mucosal anticanidial vaccine. FEMS Microbiol Med Microbiol 2011; 62:215-24; PMID:21535228; http://dx.doi.org/10.1111/j.1574-695X.2011.00802.x

123. Torsontucci A, Bromuro C, Chiani P, De Bernardis F, Berri F, Galli C, Norelli F, Bellucci C, Polonelli L, Costantino P. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 2005; 202:597-606; PMID:16147977; http://dx.doi.org/10.1084/jem.20050749