Emerging role of signal transducer and activator of transcription 3 (STAT3) in pituitary adenomas

Cyndy Liu¹, Tae Nakano-Tateno¹, Motoyasu Satou¹,², Constance Chik¹ and Toru Tateno¹

¹Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
²Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan

Abstract. Pituitary adenomas are benign tumours that can cause an individual various clinical manifestations including tumour mass effects and/or the diverse effects of abnormal pituitary hormone secretion. Given the morbidity and limited treatment options for pituitary adenomas, there is a need for better biomarkers and treatment options. One molecule that is of specific interest is the signal transducer and activator of transcription 3 (STAT3), a transcription factor that plays a critical role in mediating cytokine-induced changes in gene expression. In addition, STAT3 controls cell proliferation by regulating mitochondrial activity. Not only does activation of STAT3 play a crucial role in tumorigenesis, including pituitary tumorigenesis, but a number of studies also demonstrate pharmacological STAT3 inhibition as a promising treatment approach for many types of tumours, including pituitary tumours. This review will focus on the role of STAT3 in different pituitary adenomas, in particular, growth hormone-producing adenomas and null cell adenomas. Furthermore, how STAT3 is involved in the cell proliferation and hormone regulation in pituitary adenomas and its potential role as a molecular therapeutic target in pituitary adenomas will be summarized.

Key words: Signal transducer and activator of transcription 3 (STAT3), Pituitary adenomas, Biomarker

Introduction

Pituitary adenomas are common, occurring in almost 17% of the population over the lifetime [1, 2]. They represent approximately 10% of all intracranial tumours [3]. They have the ability to cause a plethora of problems, including headaches (neurological problems), hormone hypersecretion (endocrinological problems) and loss of vision (ophthalmological problems). Currently, there are few treatment options for pituitary adenomas including surgery, radiotherapy and medical therapy. Transsphenoidal surgery is the first treatment option for most of the patients with adrenocorticotropic hormone (ACTH)-, growth hormone (GH)-, thyroid-stimulating hormone (TSH)-producing pituitary adenoma and non-functioning pituitary macroadenomas. Dopamine agonists and somatostatin analogues are two main classes of medications used for medical therapy for pituitary adenomas. In general, dopamine agonists are first-line medical therapy primarily for hormonal and tumour size control for prolactin (PRL)-producing pituitary adenomas and somatostatin analogues are used post transsphenoidal surgery and occasionally primary medical therapy for GH-producing adenomas. Both classes of medications have been used as second- or third-line therapy for other types of pituitary adenomas. However, these methods are not suited for every patient and thus research is currently being conducted in order to identify potential biomarkers that can act as a therapeutic target and/or predict pituitary tumour behaviours. In this review, we examined the potential role of signal transducer and activator of transcription 3 (STAT3), a transcription factor that plays a critical role in mediating cytokine-induced changes in gene expression in pituitary adenomas, as this molecule has been found to be overexpressed and/or overactivated in a wide variety of tumours, including pituitary adenomas.

STAT3

STAT proteins are part of cytoplasmic inducible transcription factors that are responsible for transducing extracellular signals to the nucleus from the surface of the cell [4-9]. There are seven members of the STAT family: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6 [4-7, 10]. Within the STAT family, STAT3 is responsible for the expression of genes relating
to cancer progression. Additionally, STAT3 can upregulate genes that promote anti-apoptosis, angiogenesis, metastasis, and cell cycle progression as well as down regulating growth suppressor genes [4-6, 10, 11]. The tyrosine phosphorylated STAT3 (pY-STAT3) regulates the transcription of target genes, and the phosphorylation of the serine residue in 727 (pS-STAT3) increases mitochondrial function, resulting in enhanced cell growth.

STAT3 Expression in Human Pituitary Tumours

Previous studies suggest the importance of STAT3 in a variety of cancers as well as in *in vitro* and *in vivo* models of pituitary adenomas, which will be reviewed in detail in later sections. The highest STAT3 expression level is detected in GH-producing pituitary adenomas by immunohistochemistry, suggesting the specific role of STAT3 in this type of pituitary adenoma [12]. With regard to pS-STAT3 in human pituitary adenoma tissues, we examined pS-STAT3 expression levels in 23 pituitary adenoma tissues by immunohistochemistry [13]. Most of the somatotroph adenomas have strong immunoreactivity for pS-STAT3. Expression profiles of STAT3 and its upstream molecules in sporadic pituitary null cell adenomas have also been investigated. Feng J *et al.* reported the association between activation of the IL6-R/JAK2/STAT3/MMP9 pathway and invasiveness of pituitary null cell adenomas based on clinicopathological features in 52 patients [14]. As previously mentioned, a study conducted on 23 pituitary adenoma tissues reveals strong STAT3 serine phosphorylation in human somatotroph adenomas but negative or weak immunoreactivity in other types of pituitary adenomas [13]. Another study investigates the role of STAT3 gene promoter methylation and mRNA expression in 102 patients with pituitary adenomas [15]. Low STAT3 methylation status is associated with invasive pituitary adenomas as only 12.1% of invasive pituitary adenomas have methylated STAT3 gene promoters. Additionally, PRL, IGF-1, ACTH and more than one hormone hypersecretion is more commonly found in adenomas with unmethylated STAT3. As the specific rs744166 STAT3 polymorphism is associated with an increased risk of cancer development [16-19], polymorphisms of STAT3 has been examined in order to uncover any associations between STAT3 rs744166 and pituitary adenoma characteristics such as invasiveness, hormonal activity, and recurrence [20]. The STAT3 rs744166 G/G genotype is associated with recurrence of pituitary adenomas. Taken together, these studies support the potential role of STAT3 as a biomarker for treatment of different pituitary adenomas.

Potential Link between STAT3 and Pituitary Carcinomas

Currently, there are no articles discussing the direct link between STAT3 and pituitary carcinomas. Additionally, there are few molecular studies of pituitary carcinomas, presumably due to the rarity of this type of pituitary tumour. One study analyzed the patterns of gene expression in pituitary carcinomas and pituitary adenomas through high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR and protein expression [21]. The results showed higher expression of galectin-3 gene in pituitary carcinomas compared to pituitary adenomas which indicate its potential important role in the development of pituitary carcinomas. Galectin-3 was seen to increase phosphorylation of tyrosine STAT3 [22]. Higher expression levels of galectin-3 is associated with enhanced cancer cell proliferation and resistance to chemotherapy [23]. Silencing of galectin-3 in cultured human osteosarcomas resulted in decreased cell migration and invasion abilities as well as inhibition of phosphorylated STAT3 expression [24]. These studies exhibit the potential link from STAT3 expression to development of pituitary carcinomas with a focus on the expression of galectin-3. However, more studies are required in order to confirm the direct link between STAT3 expression and pituitary carcinoma development.

STAT3 in the Normal Pituitary Gland

Normal pituitary cells were reported to have the lower STAT3 expression compared to somatotroph adenoma cells and non-functioning pituitary adenoma cells [12]. Currently, there are no publications indicating a direct impact on pituitary development by the STAT family. However, certain signaling pathways involved in regulating pituitary development also control the activity of STATs. Such a pathway is the FGF signaling pathway, thus linking the plausible implication of the STAT family in pituitary development [25]. Further examples suggesting the involvement of STAT family in pituitary development include research concerning leukemia inhibitory factor (LIF) [26]. The LIF-related cytokines presumably act through promoting activity of the JAK family and this allows the phosphorylation of STAT family members to occur. Evidence indicates that LIF stimulates proopiomelanocortin (POMC) in fetal pituitary corticotrophs, offering support that it has a role in pituitary development [25]. In relation to the STAT family, the study offered support for the hypothesis that multiple STAT family members are involved in mediating LIF effects in AtT20 cells. This was seen as STAT1 and STAT3 tyrosyl phosphorylation was influenced by LIF in AtT20 cells.
which further supports the involvement of STAT families through multiple signaling pathways in pituitary development.

Insight into the importance of STAT3 was further provided in studies using knockout mice. Activity of STAT3 was found early within the development of the mouse therefore suggesting its importance in early embryogenesis. This is further supported by results showing STAT3-deficient mice dying earlier in embryogenesis. Additionally, in STAT3-deficient T cells, it was discovered that they exhibit a reduced proliferative response to IL-6 which can be attributed to the defect in IL-6-mediated suppression of apoptosis [27]. Further studies using pituitary-specific STAT3 knockout mice and/or transgenic mice expressing a constitutively active form of STAT3 (STAT3-CA) in pituitary cells are required to uncover the role of STAT3 in pituitary development.

STAT3 in Experimental Models of Pituitary Adenomas

Several lines of evidence support the emerging roles of STAT3 in the pituitary tumorigenesis and pituitary hormone regulation. STAT3 acts as a transcriptional factor in pituitary adenomas, which regulates several genes responsible for hormone regulation and cell proliferation of pituitary adenomas. STAT3 also regulates mitochondrial functions, which are associated with cell proliferation and resistance to somatostatin analogues. The following sections review the roles of STAT3 using in vitro and in vivo models of pituitary adenomas. Representative transformed immortalized pituitary adenoma cell lines [28-35] (Table 1) have been used to investigate the regulation of hormone production and secretion, cell proliferation, migration, invasion, and apoptosis. Cell responses to hormones might vary among different cell lines [36, 37].

Roles of STAT3 in the Regulation of Pituitary Hormones

Analysis of the GH gene reveals several prospective STAT3 binding sites in the promoter region of the GH gene [12], indicating that GH could potentially be a direct STAT3 target. The involvement of tyrosine phosphorylated STAT3 in GH production has been demonstrated using in vitro models. Not only did insulin and IGF-1 play a role in the negative-feedback system at the pituitary gland to inhibit GH expression [38], they also activate pY-STAT3 and inhibit GH expression in rat mammosomatotroph pituitary adenoma cells, GH4 cells [13]. In addition, genetic STAT3 down-regulation or overexpression of dominant negative form of STAT3 (STAT3-Y705F) results in increased GH production in GH4 cells. In contrast, introduction of STAT3-CA increased GH expression and reduced PRL expression in rat mammosomatotroph GH3 cells. Also, pharmacological inhibition of STAT3 suppressed GH production but augmented PRL production [12]. Zhou C et al. reported that a specific STAT3 inhibitor, S3I-201, suppresses GH mRNA expression and GH secretion in primary cells from human somatotroph adenomas in a concentration-dependent manner [12]. A recent study demonstrated that atiprimod, a novel compound belonging to the azaspirane class of cationic amphiphilic drugs, can reduce GH expression in GH3 cells [39]. Furthermore, GH was shown to activate pY-STAT3 [40]. These findings suggest that enhanced GH production itself may accelerate its expression, and therefore pharmacological inhibition of STAT3 would be a novel therapeutic approach to suppress enhanced GH production.

pY-STAT3 is activated by a novel germline mutation

Table 1 Pituitary adenoma cell lines

Cell line	Hormone	Origin	Species	Reference
GH1	GH, PRL	Mammosomatotroph adenoma	Rat	[28]
GH3	GH, PRL	Mammosomatotroph adenoma	Rat	[29]
GH4C1	GH, PRL	Mammosomatotroph adenoma	Rat	[29]
M/t/S/M	GH, PRL	Mammosomatotroph adenoma	Rat	[30]
MMQ	PRL	Lactotroph adenoma	Rat	[31]
PRL235	PRL	Lactotroph adenoma	Rat	[32]
RC-4B/C	GH, PRL, ACTH, FSH, LH, TSH	Mixed	Rat	[33]
AtT20	ACTH	Corticotroph adenoma	Mouse	[34]
HP75	FSH, LH, gonadotropin α-subunit	Gonadotroph adenoma	Human	[35]

GH, Growth hormone; PRL, Prolactin; ACTH, Adrenocorticotropic hormone; FSH, Follicle-stimulating hormone; LH, luteinizing hormone; TSH, thyroid stimulating hormone
of Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene, which is associated with familial pituitary adenomas [41]. The deletion of the AIP gene by clustered regularly interspaced short palindromic repeats (CRISPR) can enhance pY-STAT3, resulting in an increase in GH secretion in GH3 cells [41]. Another mutation of the AIP gene associated with familial isolated pituitary adenoma was reported to suppress STAT3 tyrosine phosphorylation in GH3 cells [42].

There are a limited number of studies investigating the role of STAT3 in the regulation of other pituitary hormones. Tomida M et al. demonstrated that cytokines, including LIF and IL-6, phosphorylate STAT3 tyrosine and inhibit PRL secretion in rat pituitary MtT/SM cells [43]. Overexpression of STAT3-CA leads to disruption of the negative-feedback system in AtT-20 cells [44]. However, STAT3 serine phosphorylation has no impact on hormone regulation [12, 13, 44].

Involvement of STAT3 in the Pituitary Cell Proliferation

With regard to the effect of pY-STAT3 on pituitary cell proliferation, overexpression of STAT3 as well as STAT3-CA were reported to enhance pituitary adenoma cell proliferation [12, 13]. GH3 cells with pY-STAT3 activated by deletion of AIP gene lead to increased cell proliferation [41]. The roles of microRNAs (miRs) in the regulation of STAT3 in pituitary adenomas were reported by Grzywa et al. [45]. miR-410-3p can upregulate cell proliferation and invasiveness via STAT3 in AtT-20 cells and RC-4B/C cells but inhibit them in GH3 cells. Additionally, enhanced STAT3 serine phosphorylation via Src by FGF4R388 leads to STAT3 translocation to the mitochondria [13]. The mitochondrial serine STAT3 can enhance mitochondrial function, resulting in increased pituitary adenoma cell proliferation [13, 46]. Further studies using mouse models of pituitary adenomas are required to determine if STAT3 is involved in the initiation and/or progression of pituitary adenoma.

With regard to pharmacological STAT3 inhibition, a STAT3 inhibitor, S3I-201, can reduce GH-producing pituitary adenoma cell growth in vitro and in vivo in a concentration-dependent manner [12]. Also, another STAT3 inhibitor, atiprimod was reported to induce caspase-dependent apoptosis by targeting STAT3 in GH3 cells [39]. BP-1-102, which can inhibit STAT3 phosphorylation, dimerization, and DNA-binding activity, suppresses cell proliferation and induces apoptosis in AtT20 cells [47]. Taken together, pharmacological inhibition of STAT3 would be a promising approach to suppress pituitary tumour growth.

The Effects of Pituitary-targeting Drugs on STAT3

A limited number of studies reported the effects of pituitary-targeting drugs on pY-STAT3, which may explain mechanisms underlying the suppressive effects of these drugs on hormone production and pituitary tumour cell growth. An et al. reported the inhibitory effect of metformin, an antidiabetic drug, on GH secretion in vitro and in vivo [48], which is mediated by inhibition of STAT3 signaling. Bromocriptine can reduce pY-STAT3 in the skeletal muscle tissues in a concentration-dependent manner [49]. Octreotide reduced STAT3 tyrosine phosphorylation in GH3 cells [50]. Also, pasireotide, a somatostatin analog with higher affinity to somatostatin receptor 5 compared to octreotide, inhibits STAT3 serine phosphorylation and its translocation to mitochondria via phosphatase 2A. These findings suggest that pasireotide can be a better treatment option for pituitary adenomas with serine-phosphorylated STAT3 [46]. Further studies are required to determine the effects of these therapeutic agents on the STAT3 pathway in pituitary adenomas and establish a better treatment approach based on the phosphorylation status of STAT3.

Roles of STAT3 in Normal Cells and Cancer Cells

The following sections review the roles of STAT3 in normal cells and cancer cells as well as STAT3 inhibitors, which have been under development in recent years.

STAT3 Pathway

In terms of the STAT3 pathway, cytokines, such as interleukin-6 (IL-6), bind to their receptors and lead to the homodimerization of glycoprotein 130 (gp130) [51, 52]. The dimerization of gp130 results in activation of janus kinases (JAKs) that phosphorylate tyrosine residues [4-6, 53]. Within the JAK family, JAK1 and JAK2 are the ones mainly associated with STAT3 [4-6, 54]. STAT3 activity occurs for the most part due to pY-STAT3 which allows functional dimers to be formed and binding to DNA, hence regulating transcription of target genes [4-6, 55].

STAT3 can also go through various post-translational modifications and one of these modifications is pS-STAT3. Serine phosphorylation is mediated by several kinases such as mitogen-activated protein kinases (MAPKs), protein kinase C epsilon (PKCe), and the mammalian target of rapamycin (mTOR) and these occur downstream of activation of STAT3 by cytokines [56]. In addition, STAT3 serine phosphorylation can modify
STAT3 activation through inhibition of the tyrosine phosphorylation and is responsible for important factors within the mitochondria organelle [57-59]. pS-STAT3 enhances mitochondrial function, leading to promotion of cell growth [57-62].

Negative Regulators of STAT3

The major endogenous negative regulators of STAT3 include protein inhibitor of activated STAT3 (PIAS3), suppressor of cytokine signaling (SOCS), and protein tyrosine phosphatase (PTPs) [63-71]. Most notably, in tumours with increased levels of phosphorylated STAT3, there is a lower level of Src homology region 2 (SH2)-containing protein tyrosine phosphatase (SHP) 2 thus supporting how SHP2 can act as a tumour suppressor [72].

STAT3 in Cancer

STAT3 has been identified as an oncogenic transcription factor that is involved in malignant transformation. In a variety of cancer cells [73-80], there is upregulation and constitutive activation of STAT3, which can be linked to cell proliferation, angiogenesis, invasion, anti-apoptosis, immune invasion and metastasis. Additionally, most transformed cells are reliant on STAT3 for proliferation and survival, suggesting that STAT3 remains an ideal therapeutic target [81].

Activators of STAT3 include growth factors, cytokines and hormones, which are regulated and terminated by negative feedback loops. There are four mechanisms involved in the activation of STAT3 which include: disrupting the negative regulation system, positive feedback mechanism, excessive stimulation by upstream kinases and somatic mutations within STAT3 [82].

PIAS3 are directly involved with STAT3 by interacting and limiting downstream transcriptional events [64, 83]. Reduced SOCS3 expression is related to constitutively active STAT3, which promotes tumour development in a variety of cancers [64]. As well, PTPs can negatively control STAT3 signaling through dephosphorylation of their binding partners as described through the loss of SHP1 in cancers [64].

Dysregulated positive feedback systems lead to activation of STAT3 by receptor tyrosine kinases resulting in cancer cell growth. Small molecules, such as NF-kB [84], IL-6 [85, 86], plasminogen activator inhibitor 1 (PAI1) [87], are involved in the activated STAT3 pathway in cancer. Changes in upstream kinases, such as JAK, Src, EGFR, can lead to constitutive activation of STAT3 and thus promotes malignancies [85, 88, 89]. Mutations that drive constitutive activation of STAT3 are found in human neoplasms [90-95]. miRs are non-coding RNAs that can have oncogenic or tumour suppressor properties depending on the malignancy. The use of miRs to inhibit STAT3 through interactions with upstream kinases or negative modulators can promote apoptosis [96, 97].

Serine phosphorylation of STAT3 also plays an important role in cell survival as phosphorylated serine STAT3 can promote aerobic glycolysis. When translocated to the mitochondria, the serine phosphorylated form of STAT3 can regulate respiration and control signaling within the organelle and lead to increased cancer growth, indicating the importance of STAT3 in tumour development [57-62].

STAT3 Inhibitors for Cancer

Overexpression and/or hyperactivation of STAT3 are found in a variety of cancers. Aggressive cancer behaviours may be associated with the status of phosphorylated tyrosine and/or serine STAT3. This led to studies of inhibition of STAT3 as a therapeutic target for cancer treatment. Studies using different STAT3 inhibitors ranging from proteins to drugs, small molecules and allosteric inhibitors are summarized in Table 2.

S3I-201 is a chemical inhibitor of STAT3 activity by blocking dimerization and STAT3 DNA-binding and transcriptional activities. S3I-201 has been shown to suppress tumour growth and induce apoptosis in breast cancer cells and pituitary adenoma cells [12, 98, 99]. CYD0618 [100], MM-206 [101], C188 [102] and K116 [103] are allosteric STAT3 inhibitors, which reduce cancer growth in vitro and/or in vivo (Table 2). Although the allosteric STAT3 inhibitors have high selectivity, they have some drawbacks [104]. Most of these inhibitors have relatively low aqueous solubility and bioavailability. Mutations of allosteric sites in STAT3 may be associated with the status of phosphorylated serine STAT3.

Future Directions

In summary, lines of evidence discussed in this review support the importance of STAT3 in the pituitary
tumorigenesis and hormone regulation in pituitary adenomas as depicted in Fig. 1 and Table 3. STAT3 regulates cellular functions in pituitary adenomas, including cell proliferation and hormone regulation, suggesting STAT3 as a potential biomarker and molecular therapeutic target for pituitary adenomas. As pituitary tumours are located outside the blood-brain-barrier, novel drugs targeting STAT3 can be delivered to pituitary tumours. Studies in the form of basic, preclinical, and clinical studies are still required to confirm the relevance and importance of STAT3 in pituitary adenomas.

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the authorship and/or publication of this article.
Table 3 The roles of STAT3 in pituitary tumorigenesis and hormone production/secretion

STAT3	Pituitary tumour growth, invasion, recurrence	Hormone production/secretion	Pituitary adenoma models	References
pY-STAT3	correlation with invasiveness	↑GH	Human null cell adenomas	[14]
	↑cell-growth		Human somatotroph adenoma cells	[12]
	↑cell-growth	↑GH	GH3 cells	[12, 41]
	↑cell-growth	↑GH	GH4 cells	[13]
	unknown	↑PRL	M1T/SM cells	[43]
	no effect	↑ACTH	AtT20 cells	[44]
	↑cell-growth	unknown	AtT20 cells	[47]
pS-STAT3	unknown	strong immunoreactivity in human somatotroph adenomas		[13]
	↑cell-growth	no effect	GH4 cells	[13, 46]
	↑cell-growth	no effect	AtT20 cells	[44]
Low STAT3 methylation status	correlation with invasiveness	correlation with PRL, IGF-1, and/or ACTH immunoreactivity	Human pituitary adenomas	[15]
STAT3 rs744166 G/G genotype	correlation with recurrence	unknown	Human pituitary adenomas	[16]

Acknowledgment

This project was supported by Start-up funds from the University of Alberta and by a grant from the University Hospital Foundation. Liu C. is a recipient of Summer Research Studentship from Alberta Innovates.

Note

During the peer review of this article, a new paper was published showing the involvement of STAT3/5 in the transcriptional regulation of the POMC gene in corticotroph adenomas (Araki T, Tone Y, Yamamoto M, Kameda H, Ben-Shlomo A, et al. Two distinctive POMC promoters modify gene expression in Cushing’s disease. *J Clin Endocrinol Metab.* (2021) Jun 1; dgab387 Epub ahead of print).

References

1. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, et al. (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. *J Clin Endocrinol Metab* 91: 4769–4775.
2. Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). *Clin Endocrinol (Oxf)* 72: 377–382.
3. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, et al. (2004) The prevalence of pituitary adenomas: a systematic review. *Cancer* 101: 613–619.
4. Levy DE, Lee CK (2002) What does Stat3 do? *J Clin Invest* 109: 1143–1148.
5. Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and approaches of targeting STAT3 for cancer treatment. *ACS Chem Biol* 11: 308–318.
6. Arora L, Kumar AP, Arfuso F, Chng WJ, Sethi G (2018) The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies. *Cancers (Basel)* 10: 327.
7. Fathi N, Rashidi G, Khodadadi A, Shahi S,Sharifi S (2018) STAT3 and apoptosis challenges in cancer. *Int J Biol Macromol* 117: 993–1001.
8. Zhou YB, Zhou H, Li L, Kang Y, Cao X, et al. (2019) Hydrogen sulfide prevents elastin loss and attenuates calcification induced by high glucose in smooth muscle cells through suppression of Stat3/Cathepsin S signaling pathway. *Int J Mol Sci* 20: 4202.
9. Shanmugam MK, Lee JH, Chai EZ, Kanchi MM, Kar S, et al. (2016) Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. *Semin Cancer Biol* 40–41: 35–47.
10. Wong AL, Soo RA, Tan DS, Lee SC, Lim JS, et al. (2015) Phase I and biomarker study of OPB-51602, a novel signal...
transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. *Ann Oncol* 26: 998–1005.

11. Akira S (2000) Roles of STAT3 defined by tissue-specific gene targeting. *Oncogene* 19: 2607–2611.

12. Zhou C, Jiao Y, Wang R, Ren SG, Wawrowsky K, et al. (2015) STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion. *J Clin Invest* 125: 1692–1702.

13. Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A, et al. (2011) The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. *PLoS Genet* 7: e1002400.

14. Feng J, Yu SY, Li CZ, Li ZY, Zhang YZ (2016) Integrative proteomics and transcriptomics revealed that activation of the IL-6R/IAK2/STAT3/MMP9 signaling pathway is correlated with invasion of pituitary null cell adenomas. *Mol Cell Endocrinol* 436: 195–203.

15. Valiulyte I, Steponaitis G, Skiriute D, Tamasauskas A, Vaitkiene P (2017) Signal transducer and activator of transcription 3 (STAT3) promoter methylation and expression in pituitary adenoma. *BMJ Med Genet* 18: 72.

16. Rocha GA, Rocha AM, Gomes AD, Faria CL Jr, Melo FF, et al. (2015) STAT3 polymorphism and Helicobacter pylori CagA strains with higher number of EPIYA-C segments independently increase the risk of gastric cancer. *BMC Cancer* 15: 528.

17. Yuan K, Liu H, Huang L, Ren X, Liu J, et al. (2014) rs744166 polymorphism of the STAT3 gene is associated with risk of gastric cancer in a Chinese population. *Biomed Res Int* 2014: 527918.

18. Ryan BM, Wolff RK, Valeri N, Khan M, Robinson D, et al. (2014) An analysis of genetic factors related to risk of inflammatory bowel disease and colon cancer. *Cancer Epidemiol* 38: 583–590.

19. Jiang B, Zhu ZZ, Liu F, Yang LJ, Zhang WY, et al. (2011) STAT3 gene polymorphisms and susceptibility to non-small cell lung cancer. *Genet Mol Res* 10: 1856–1865.

20. Glebauskiene B, Vilkeviciute A, Liukieviciene R, Jakstiene S, Kriauciuniene L, et al. (2017) Association of FGFR2 rs2981582, SIRT1 rs12778366, STAT3 rs744166 gene polymorphisms with pituitary adenoma. *Oncof Lett* 13: 3087–3099.

21. Ruebel KH, Leontovich AA, Jin L, Stilling GA, Zhang H, et al. (2006) Patterns of gene expression in pituitary carcinomas and adenomas analyzed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR, and protein expression. *Endocrine* 29: 435–444.

22. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, et al. (2010) Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. *J Immunol* 185: 7037–7046.

23. Dong R, Zhang M, Hu Q, Zheng S, Soh A, et al. (2018) Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). *Int J Mol Med* 41: 599–614.

24. Park GB, Kim DJ, Kim YS, Lee HK, Kim CW, et al. (2015) Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and β-catenin expression and increases susceptibility to chemotherapeutic agents. *Int J Oncol* 46: 185–194.

25. Davis SW, Ellsworth BS, Perez Millan MI, Gergics P, Schade V, et al. (2013) Pituitary gland development and disease: from stem cell to hormone production. *Curr Top Dev Biol* 106: 1–47.

26. Ray DW, Ren SG, Melmed S (1996) Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway. *J Clin Invest* 97: 1852–1859.

27. Akira S (1999) Functional roles of STAT family proteins: lessons from knockout mice. *Stem Cells* 17: 138–146.

28. Yasamura Y, Tashjian AH Jr., Sato GH (1966) Establishment of four functional, clonal strains of animal cells in culture. *Science* 154: 1186–1189.

29. Tashjian AH Jr., Yasumura Y, Levine L, Sato GH, Parker ML (1968) Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. *Endocrinology* 82: 342–352.

30. Inoue K, Hattori M, Sakai T, Inukai S, Fujimoto N, et al. (1990) Establishment of a series of pituitary clonal cell lines differing in morphology, hormone secretion, and response to estrogen. *Endocrinology* 126: 2313–2320.

31. Judd AM, Logins I, Kovacs K, Ross PC, Spangelo BL, et al. (1988) Characterization of the MMQ cell, a prolactin-secreting clonal cell line that is responsive to dopamine. *Endocrinology* 123: 2341–2350.

32. Reymond MJ, Nansel DD, Burrows GH, Neaves WB, Porter JC (1984) A new clonal strain of rat pituitary tumour cells: a model for non-regulated secretion of prolactin. *Acta Endocrinol (Copenh)* 106: 459–470.

33. Bérault A, Noël N, Hurbain-Kosmath I, Polkowska I, Bohin A, et al. (1990) Characterization of the MMQ cell, a prolactin-secreting clonal cell line that is responsive to dopamine. *Endocrinology* 123: 2341–2350.

34. Buonassisi V, Sato G, Cohen AI (1962) Hormone-producing cultures of adrenal and pituitary tumor origin. *Proc Natl Acad Sci U S A* 48: 1184–1190.

35. Jin L, Kulig E, Qian X, Scheithauer BW, Eberhardt NL, et al. (1998) A new pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen. *Endocr Pathol* 9: 169–184.

36. Luque RM, Kineman RD, Park S, Peng XD, Gracia-Navarro F, et al. (2004) Homologous and heterologous regulation of pituitary receptors for ghrelin and growth hormone-releasing hormone. *Endocrinology* 145: 3182–3189.

37. Rosenthal SM, Silverman BL, Wehenberg WB (1991) Exogenous growth hormone inhibits bovine but not murine pituitary growth hormone secretion in vitro: evidence for a direct feedback of growth hormone on the pituitary. *Neuroendocrinology* 53: 597–600.

38. Melmed S, Yamashita S, Yamasaki H, Fagin J, Namba H,
et al. (1996) IGF-I receptor signalling: lessons from the somatotroph. Recent Prog Horm Res 51: 189–215; discussion 215–216.

39. Coker-Gurkan A, Ayhan-Sahin B, Keceloglu G, Obakan-Yerlikaya P, Arisan ED, et al. (2019) Atiprimod induce apoptosis in pituitary adenoma: endoplasmic reticulum stress and autophagy pathways. J Cell Biochem 120: 19749–19763.

40. Dehkoda F, Lee CMM, Medina J, Brooks AJ (2018) The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Front Endocrinol (Lausanne) 9: 35.

41. Fukuda T, Tanaka T, Hamaguchi Y, Kawanami T, et al. (2017) FGFR4 poly-...
65. Chung CD, Liao J, Liu B, Rao X, Jay P, et al. (1997) Specific inhibition of Stat3 signaling in human epidermal growth factor receptor-mediated cell growth in vitro. J Clin Invest 102: 1385–1392.
66. Grandis JR, Drenning SD, Chen MC, Melhem MF, et al. (2000) Constitutive activation of Stat3 signaling contributes to squamous cell carcinogenesis in vivo. Proc Natl Acad Sci U S A 97: 4227–4232.
67. Catlett-Falcone R, Landowski TH, Oshiro MM, Turck J, Leitvski J, et al. (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10: 105–115.
68. Lee JH, Mohan CD, Basappa S, Rangappa S, Chinnathambi A, et al. (2019) The IkB kinase inhibitor ACHP targets the Stat3 signaling pathway in human non-small cell lung carcinoma cells. Biomolecules 9: 875.
69. Diaz N, Minton S, Cox C, Bowman T, Gritsko T, et al. (2006) Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12: 20–28.
70. Gritsko T, Williams A, Turck J, Kaneko S, Bowman T, et al. (2006) Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: 11–19.
71. Wang Z, Si X, Xu A, Meng X, Gao S, et al. (2013) Activation of STAT3 in human gastric cancer cells via interleukin-6-type cytokine signaling correlates with clinical implications. PLoS One 8: e75788.
72. Hughes K, Watson CJ (2018) The multifaceted role of STAT3 in mammary gland involution and breast cancer. Int J Mol Sci 19: 1695.
73. Liu et al. 2013 Stat proteins and oncogenesis. J Clin Invest 109: 1139–1142.
74. Hu YS, Han X, Liu XH (2019) STAT3: a potential drug target for tumor and inflammation. Curr Top Med Chem 19: 1305–1317.
75. Dabir S, Kluge A, Kresak A, Yang M, Fu P, et al. (2014) Low PIAS3 expression in malignant mesothelioma is associated with increased STAT3 activation and poor patient survival. Clin Cancer Res 20: 5124–5132.
76. Gritsko T, Williams A, Turck J, Kaneko S, Bowman T, et al. (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking metastasis to cancer. Mol Cell 39: 493–506.
77. Liu X, Lin BW, Chen XL, Zheng BL, Xiao XJ, et al. (2017) PAI-1/PIAS3/Stat3/miR-34a forms a positive feedback loop to promote EMT-mediated metastasis through Stat3 signaling in Non-small cell lung cancer. Biochem Biophys Res Comm 493: 1464–1470.
78. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, et al. (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117: 3846–3856.
79. Zhang HF, Lai R (2014) STAT3 in cancer-friend or foe? Cancers (Basel) 6: 1408–1440.
80. Pilati C, Amessou M, Bihl MP, Balabaud C, Nhieu JT, et al. (2011) Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. J Exp Med 208: 1359–1366.
81. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, et al. (2012) Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366: 1905–1913.
82. Ohgami RS, Ma L, Merker JD, Martinez B, Zehnder JL, et al. (2013) STAT3 mutations are frequent in CD30+ T-cell lymphomas and T-cell large granular lymphocytic leukemia. Leukemia 27: 2244–2247.
83. Ohgami RS, Ma L, Monabati A, Zehnder JL, Arber DA (2014) STAT3 mutations are present in aggressive B-cell lymphomas including a subset of diffuse large B-cell lymphomas with CD30 expression. Haematologica 99: e105–e107.
84. Kucuk C, Jiang B, Hu X, Zhang W, Chan JK, et al. (2015) Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun 6: 6025.
85. Shahmarvand N, Naga A, Shahyari J, Ohgami RS (2018) Mutations in the signal transducer and activator of
transcription family of genes in cancer. *Cancer Sci* 109: 926–933.

96. Zhao XD, Zhang W, Liang HJ, Ji WY (2013) Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. *PLoS One* 8: e56395.

97. Liao XH, Xiang Y, Yu CX, Li JP, Li H, et al. (2017) STAT3 is required for MiR-17-5p-mediated sensitization to chemotherapy-induced apoptosis in breast cancer cells. *Oncotarget* 8: 15763–15774.

98. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, *et al.* (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. *Proc Natl Acad Sci U S A* 104: 7391–7396.

99. Zhang X, Yue P, Fletcher S, Zhao W, Gunning PT, *et al.* (2019) A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3. *J Biol Chem* 294: 17471–17486.

100. Krueger MJ, Minus M, Liu W, Long X, Stevens AM, *et al.* (2015) A novel STAT3 inhibitor has potent activity in preclinical models of acute myeloid leukemia that incorporate the stromal environment. *Blood* 126: 569.

101. He LJ, Yang DL, Chen HY, Huang JH, Zhang YJ, *et al.* (2015) Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the Signal Transducer and Activator of Transcription 3 (STAT3). *Mol Oncol* 9: 1194–1206.

102. Oh DY, Lee SH, Han SW, Kim MJ, Kim TM, *et al.* (2015) Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. *Cancer Res Treat* 47: 607–615.

103. Ohkusa T, Ueno H, Ikeda M, Mitsunaga S, Ozaka M, *et al.* (2015) Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. *Hepatol Res* 45: 1283–1291.