Highlighting altruism in geoscience careers aligns with diverse US student ideals better than emphasizing working outdoors

Samantha C. Carter, Elizabeth M. Griffith, Theresa A. Jorgensen, Karin G. Coifman & W. Ashley Griffith

A common approach to attract students in the United States to the geosciences is to emphasize outdoor experiences in the natural world. However, it is unclear how successful this strategy is. Specifically, the geosciences have been less successful than other sciences at recruiting a diverse workforce that reflects different perspectives and life experiences. Here we present a survey of students enrolled in College Algebra at a Hispanic-serving institution in the southwestern United States where, of 1550 students surveyed, 55.3% identified as an underrepresented minority (URM). We find that surveyed students care little about working outdoors. Instead, they rate altruistic factors, such as helping people or the environment, as most important. Female respondents rate these factors higher than male respondents. We also find that many respondents know little about what a career in geoscience entails. We argue that better informing students about the altruistic potential of geoscience careers would be an effective strategy to broaden recruitment.
Over the past several decades, there have been considerable efforts made toward broadening the participation of underrepresented students—women and underrepresented minority (URM) students—within the geosciences. These efforts have been met with mixed success. Although there has been a significant improvement of gender imbalances, ethnic and racial diversity in the Earth and physical sciences as defined by the US National Science Foundation remains the lowest among STEM majors at all degree levels. Less than 16% of geoscience Bachelor’s degrees in the US were awarded to Hispanic, Black African American, or Native American students in 2019. Furthermore in 2019, fewer than 7% of geoscience Ph.Ds in the US were awarded to Hispanic, Black, African American, or Native American students, and in 2012 only 3.8% of tenured or tenure track faculty positions were held by Hispanic, Black, African American, or Native American scientists. In particular, Hispanic, Black, African American, or Native American women are vastly underrepresented, making up ~1.46% of geoscience doctorates awarded in over 40 years.

Diversity and inclusion within STEM are beneficial not only from the perspective of equity and social justice but also to scientific advancement as a whole. Different perspectives and life experiences spur innovation and novelty, and collaborations among diverse groups produce more creative solutions to problems and lead to a higher level of scientific motivation. Furthermore, increasing diversity in the geoscience field is necessary to meet future US workforce needs. Projections suggest that the United States will be a majority-minority country by 2050. Therefore, in order to grow Earth Sciences degree programs and the geoscience workforce, it is necessary to ensure the geosciences attract and support students from diverse backgrounds. To ensure the geoscience workforce is a valuable and trusted member of the scientific community, we must welcome and include scientists from all parts of society.

Our study tests (i) whether altruistic factors, personal achievement, or work environment are most important to college students (early in their undergraduate program) for their future careers, (ii) whether the ratings of these ideals differ between male/female, URM/non-URM, and first-generation/non-first-generation college students, and (iii) how student perceptions of the geosciences regarding those ideals compare to other STEM fields. We suggest that in order to more successfully recruit (and retain) underrepresented students into the geosciences, it is important to understand what prospective students value most in an ideal career early in their college experience. Current recruitment to the geosciences is characterized by an emphasis on experiences in the natural world (e.g., field photographs in beautiful and exotic places). Our results suggest instead that recruitment and outreach efforts should be tailored to highlight the altruistic outcomes of careers in the geosciences, thereby better aligning with students’ ideals and bringing more underrepresented students into the geosciences, retaining these students, and increasing diversity in the geoscience education community and workforce.

Results and discussion

We surveyed students enrolled in College Algebra at a large, urban, Hispanic-serving, R1 public university in the southwestern United States (see “Methods” section and Supplementary Methods). This class typically has a high percentage of STEM-intended majors (59.4% of students surveyed) and is one of the first courses for many students in college (on average students surveyed have completed less than two semesters of college and the average age was 19.8 years [SD = 4.1]). The data span five semesters, from Fall 2018 through Spring 2020 (Supplementary Data 1).

The survey was composed of demographic questions as well as questions using the Likert scale, in which students rated how much they agreed or disagreed with a particular statement regarding descriptions of their “ideal career.” Students were also asked to rate statements about careers in different science fields and engineering. Demographic questions were included at the end of the survey in order to mitigate stereotype threat. Due to the nature of how the data were collected in this study, there are inherent limitations to the conclusions that can be made. This was a multiple cohort one-shot survey, which assessed students’ perceptions of their values in single-item measures. No data were collected on future behaviors of students to determine if their values align with career choice. Single-item measures also limit measurement error quantification. Additionally, the survey was designed to be combined into a single item as they evaluate different ideals. Indeed, Cronbach’s α-value for the six questions was low, 0.45, indicating the items should not be grouped. However, items are combined based on the level of correlation using Spearman’s ρ or r_s and the Mann–Whitney U-test (see Supplementary Statistical Results). There are six “career ideal” questions analyzed, which are not designed to be combined into a single item as they evaluate different ideals. Indeed, Cronbach’s α-value for the six questions was low, 0.45, indicating the items should not be grouped. However, items are combined based on the level of correlation using Spearman’s ρ, discussed in further detail in the next section. To evaluate statistically significant differences between student perceptions of geoscience and the other STEM fields, Friedman tests were performed. Within each family of tests, significance levels were corrected for multiple tests using a Bonferroni correction.

The reported demographics of the student population in this dataset are unique compared to previously published data due to a large number of Hispanic students and a large sample size allowing for robust comparisons between all groups except Native Americans. Due to the ordinal nature of the survey items (Likert scale questions), we use standard nonparametric statistical techniques to report differences amongst populations, namely Spearman’s rank-order correlations (Spearman’s ρ or r_s) and the Mann–Whitney U-test (see Supplementary Statistical Results). There are six “career ideal” questions analyzed, which are not designed to be combined into a single item as they evaluate different ideals. Indeed, Cronbach’s α-value for the six questions was low, 0.45, indicating the items should not be grouped. However, items are combined based on the level of correlation using Spearman’s ρ, discussed in further detail in the next section. To evaluate statistically significant differences between student perceptions of geoscience and the other STEM fields, Friedman tests were performed. Within each family of tests, significance levels were corrected for multiple tests using a Bonferroni correction.

The reported demographics of the student population in this study are very similar to that of the university where the study took place (data from 2018), which has been designated a Hispanic-serving institution since 2014. Although the university has a diverse student body (~55% URM), this is not reflected in students majoring in Earth and Environmental Sciences (EES) at the university. Only 35% of EES majors were URM students in fall 2018 (Fig. 1). The large disparity between EES and university
student demographics reflects the ongoing issue of persistent underrepresentation of minoritized Hispanic, Black, African American, or Native American students in the geosciences.

Factors for an ideal career. Students enrolled in College Algebra at this university were asked to state how much they agree with the importance of six factors in describing their ideal career, on a five-point Likert scale (Fig. 2). Two factors, “helping people and society” and “helping the environment” are rated the most important (i.e., students chose “strongly agree” or “agree” in the highest proportion). These two factors deemed the altruistic factors, represent the desire for student survey respondents to have meaningful careers that give back to their communities and align well with “communal goals” (e.g., intimacy, affiliation, and altruism)\(^ {15-17} \). The factor that was most important (i.e., students chose “strongly agree” or “agree” in the highest proportion) was “helping people and society,” with 96.8% of students reporting “strongly agree” or “agree” (SA/A), 3.0% “neutral” (N), and only 0.1% “strongly disagree” or “disagree” (SD/D). This is followed closely by “helping the environment” (92.6% SA/A, 6.8% N, 0.6% SD/D). There is a moderate to a strong positive correlation between these two factors (\(r_s = 0.478, p < 0.001 \)) meaning student respondents tend to rank these two values with correlatively high importance. Due to the correlation and similarity of these two factors, they are combined in further statistical analyses.

The importance of personal achievement is represented by the next two factors, “making a lot of money” (67.1% SA/A, 28.4% N, and 4.5% SD/D) and “having prestige” (54.3% SA/A, 35.2% N, and 10.6% SD/D), which are highly rated by survey respondents, though not as high as the first two (Fig. 2). These two factors align well with “agentic goals” (e.g., power, achievement, and seeking new experiences or excitement)\(^ {15-17} \) and had a moderate positive correlation between them (\(r_s = 0.382; p < 0.001 \)). They were therefore combined in further statistical analyses. The final two factors represent the importance of the work environment and were largely the lowest-rated factors, with a much higher percentage of student respondents reporting neutral. These two factors were “working outdoors” (30.4% SA/A, 51.0% N, and 18.6% SD/D) and “working in an office” (20.1% SA/A, 53.6% N, and 26.3% SD/D). The work environment factors did not correlate with any other factors and thus were not combined.

These results show that, on average, student survey respondents of all backgrounds largely rate altruistic factors as most important in their ideal career—in agreement with findings from prior work that communal goals are typically highly endorsed (e.g., ref. \(^{18} \)). The student survey respondents in this study care least about the physical environment in which they work. Recruitment efforts in the geosciences highlighting experiences in the natural world may therefore not be the most effective technique for attracting students. Although positive field experiences and outdoor interests tend to be a commonly reported influencing factor among students currently in Earth Sciences in their choice of a major\(^ {19,20} \), this does not reflect the priorities of the majority of prospective students when considering their future ideal careers, according to the sample of students included in this study. In other words, recruiting students based on the allure of the great outdoors may be an inherently self-selecting strategy that leads to the persistent underrepresentation of female and minority students in Earth Sciences. Since a majority of student survey respondents do not value careers in the outdoors, we are missing the opportunity to promote the inclusiveness of students with a diversity of backgrounds. There are many facets of the Earth Sciences that do not take place outdoors, relying on computational or laboratory techniques across a range of workplaces. The results of this study suggest that showcasing the variety of activities in which earth scientists are involved—and emphasizing altruistic outcomes and therefore one’s ability to help people, society, and the environment—promise to promote inclusiveness and improve recruitment of a more diverse student body. Career aspirations of adolescents are thought to be a good predictor of the jobs they have as adults, but new work suggests that vocational interests may change between STEM careers over time\(^ {21} \). Furthermore, opportunities that involve collaboration, helping, and altruism are likely necessary.
Recruiting underrepresented students into the Earth Sciences.

To determine if the career ideals of student survey respondents line up with their perception of careers in the geosciences, we...
asked questions about careers in the geosciences and compare responses to the same questions about other STEM fields. For each question asked, geoscience is less positively perceived compared to biology or engineering (Fig. 3 and Table 2). Although careers in the geosciences are, on average, rated positively by the surveyed students for their ability to achieve the altruistic factors, students agree more strongly that careers in biology and engineering align with those goals (Fig. 3 and Table 2). Because certain goals are believed to be more strongly associated with certain careers, the idea that geoscience careers do not help people or the environment as much as other science fields could result in students choosing other careers that allow them to fulfill their goals. Today, science fields that draw the most women are those fields (e.g., biology) that are most recognizably related to careers which help people.

Student survey respondents also rate the geosciences less positively regarding one’s ability to make a lot of money compared to other STEM fields (Fig. 3 and Table 2). The personal achievement factors, though not rated as important as the altruistic factors, were rated highly by a majority of student respondents, and especially by URM male students. However, there is little evidence that low salaries repel men from occupations or attract women. Additionally, very few of these same students know what careers exist in the geosciences (only 13.1% responded strongly agree or agree), in contrast to careers in biology (58.8% responded strongly agree or agree). Most students, largely uncertain of what career opportunities exist in the geosciences and whether or not these careers align with their goals, will likely not choose geosciences as a major, and this represents a potentially important area of improvement for future recruitment.

Programs that introduce high school students to the geosciences, with an intentional focus on highlighting career opportunities, found students more likely to choose geoscience as a college major, and have been successful in the recruitment of underrepresented students to the geosciences. Partnerships between minority-serving institutions and research universities have also proven successful gateways to careers in other physical sciences disciplines and may increase pathways into the Earth Sciences. Other successful avenues for diverse student engagement and recruitment include place-based courses (focused on connecting concepts with history, environment, and culture of a specific place) and service learning projects that allow students to apply their knowledge to real-world problems.

Table 2 Differences in student perception of geoscience and other STEM fields.

Biomedical Engineering	Biologic Engineering	Geology	Friedman test	Pairwise comparisons
I have a good idea of what careers exist for a [STEM field] major	Strongly Disagree	Strongly Agree	(0.003)	
People who graduate with a degree in [STEM field] make a lot of money	Strongly Disagree	Strongly Agree	(0.045)	
People who graduate with a degree in [STEM field] think it would be hard to find a job with a degree	Strongly Disagree	Strongly Agree	(1.10)	
Altruistic factors	Strongly Disagree	Strongly Agree	(0.24)	
People who graduate with a degree in [STEM field]	Strongly Disagree	Strongly Agree	(0.16)	
People who graduate with a degree in [STEM field] think it would be hard to find a job with a degree	Strongly Disagree	Strongly Agree	(0.08)	
Numbers shown under pairwise comparisons are the difference in the mean of geology and the other designated field. Positive numbers indicate that survey respondents agreed more with the statement in regard to the first field compared to the second. For tests that reported p-values, the significance levels corrected for multiple tests using a Bonferroni correction. For Friedman tests and post hoc pairwise comparisons, with significance levels corrected for multiple tests using a Bonferroni correction.				

Fig. 3 Perception of the geoscience by survey respondents compared with other STEM fields. The points show the average response of the entire survey population. The error bars show the standard deviation of the average response. Altruistic factors include a combination of the two items “[STEM field] careers offer opportunities to help people and society” and “[STEM field] careers offer opportunities to help the environment.”
location such as “Geology of Mexico”) in college at the introductory level which positively increase attitudes toward, and understanding of, geology as a career path in an ethnically diverse classroom. However, based on results from this study, we suggest programs that aim to increase recruitment of students into the Earth Sciences should rely less on the allure of the great outdoors and more on the altruistic endeavors of Earth Science careers.

In other STEM fields, URM doctoral students are more likely to be motivated by altruistic values and a desire to give back to their community than their non-URM peers. The results shown here suggest this desire is strong in most all undergraduate students surveyed and clearly demonstrate that these students early in their college coursework, particularly students who are underrepresented in the Earth Sciences, value careers with altruistic outcomes. Future work is needed to test whether shifting emphasis away from personal achievement, seeking new altruistic outcomes and understanding of, geology as a career path in an ethnically balanced environment, is likely affected by the differences seen between URM and non-URM students is likely affected by the gender imbalance between the groups. Therefore, further research that uses extra credit as an incentive, potentially reducing the generalization of the findings. However, this study had a very high rate of participation amongst students, with a demographic distribution similar to that of the university as a whole (described in Supplementary Student Population), suggesting a representative sample.

Of the 1611 surveys completed, 61 of these were excluded from statistical analyses because respondents provided invalid responses consistent with minimal engagement in the survey (e.g., rating the same value across all questions). The 61 excluded students were majority male (70.5%, or 43 students), however, the ethnic diversity demographics of the excluded students were similar to those of the course as a whole. The online surveys were made up primarily of questions using a five-point Likert scale in which students rated how much they agreed or disagreed with a particular statement (see Supplementary information Appendix S1 for survey questions). Responses could vary from “strongly agree” (with a rating of 5) to “strongly disagree” (with a rating of 1) with “neutral” in the middle (with a rating of 3). Statements related to STEM fields revolved largely around how students felt about classes and careers in these fields. Questions were chosen from similar surveys. In addition to Likert scale questions, there were also questions regarding demographics such as gender, ethnicity, age, declared college major, mathematics background, and parental level of education (Supplementary Fig. 1).

Descriptive statistics for each of the groups were examined (see Supplementary Tables 1, 2, 4 and Supplementary Figs. 2–6). These results show the average response for each question by different gender (male/female), ethnicity group responses, URN and non-URN, and whether the student was a first-generation college student or not. To examine differences between male and female students and different ethnicity group responses, Mann–Whitney U-tests were performed (Supplementary Table 3). Significance levels were corrected for multiple tests using a Bonferroni correction for each family of career ideal tests. There were significant differences between URN and non-URN student responses; however, these results are skewed due to the fact that the relative percentages of male and female students within each ethnicity group were not equivalent. Because there are such large differences between male and female responses identified previously, the differences seen between URN and non-URN students is likely affected by the gender imbalance between the groups. Therefore, further U-tests were performed by splitting male and female students and comparing ethnicity groups within each. Effect sizes for the Mann–Whitney U-tests are r values, calculated using $r = \frac{k}{N}$ where Z is the standardized value for the U value and n is the sample size (Table 1). Effect sizes for Friedman tests (Table 2) are Kendall’s \tilde{W}, calculated using $W = \frac{\tilde{W}}{\binom{n}{2}}$ where \tilde{W} is the Friedman test statistic value, n is the sample size, and k is the number of measurements per subject. Effect sizes for pairwise comparisons are r values calculated using $r = \frac{Z}{\sqrt{N}}$ where N is the number of observations (sample size n). The larger the number, the larger the effect. A large effect is shown by a W or r value of 0.5, a medium effect by 0.3, and a small effect by 0.137.

To determine if the differences between student responses were robust, we also performed chi-square tests of independence to ensure students responses in different semesters did not respond significantly different. For each factor, the chi-square test is not significant, showing there is no evidence for differences in student responses and the semester in which the class was taken. For additional details see Supplementary Table 5 and Supplementary Fig. 7.

The university institutional review board (IRB) at The University of Texas at Arlington approved all study procedures (IRB# 2017-0717.3).

Data availability
The complete survey data generated during the current study is available on Zenodo, https://doi.org/10.5281/zenodo.5140552.

Received: 3 December 2020; Accepted: 22 September 2021; Published online: 07 October 2021

References
1. National Science Foundation. Women, Minorities, and Persons with Disabilities in Science and Engineering (National Science Foundation, 2019).
2. Bernard, R. E. & Cooperdock, E. H. G. No progress on diversity in 40 years. Nat. Geosci. 11, 292–295 (2018).
3. Gonzalez, L. & Keane, C. in Geoscience Currents, Data Brief 2020-023 (American Geosciences Institute, 2020).
4. Nelson, D. J. In Diversity in the Scientific Community Volume 1: Quantifying Diversity and Formulating Success (eds. Nelson, D. J., & Cheng, H. N.) Ch. 2 (American Chemical Society, 2017).
5. Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl. Acad. Sci. USA 117, 9284–9291 (2020).
6. Hong, L. & Page, S. E. Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl. Acad. Sci. USA 101, 16385–16389 (2004).
7. Velasco, A. A. & de Velasco, E. J. Striving to diversify the geosciences workforce. Eos Trans. Am. Geophys. Union 91, 289 (2010).
8. Colby, S. L. & Ortman, J. M. Projections of the size and composition of the U.S. population: 2014 to 2060. U.S. Dept. Commer. Econ. Stat. Adm. U.S. Census Bur. (2015).
9. McGran, J. R., Mandauc, C. A., Iverson, E. R. & Orr, C. H. Looking in the right places: minority-serving institutions as sources of diverse earth science learners. J. Geosci. Educ. 65, 407–415 (2017).
10. Levine, R., González, R., Cole, S., Fuhrman, M. & Le Flock, K. C. The geoscience pipeline: a conceptual framework. J. Geosci. Educ. 55, 488–468 (2007).
11. Sexton, J. M., O’Connor, S., Banning, J. & Most, D. Characteristics and culture of geoscience departments as interpreted from their website photographs. J. Women Minor. Sci. Eng. 20, 257–278 (2014).
12. Gilovich, T., Keltner, D. & Nisbett, R. E. Social Psychology (W. W. Norton, 2006).
13. Williams, T. L. ‘Underrepresented minority’ considered harmful, racist language. Commun. ACM https://cacm.acm.org/blogs/blog-cacm/245710-underrepresented-minority-considered-harmful-racist-language/fulltext (2020).
14. Dika, S. L. & D’Amico, M. M. Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. J. Res. Sci. Teach. 53, 368–383 (2016).
15. Bakam, D. The Duality of Human Existence: An Essay on Psychology and Religion (Rand McNally, 1966).
16. Pohlmann, K. Agency- and communion-orientation in life goals: Impacts on goal pursuit strategies and psychological well-being. In Life Goals and Well-being: Towards a Positive Psychology of Human Striving (eds. Schmuck, P. & Sheldon, K. M.), (Hogrefe and Huber, 2001).
17. Diekmann, A. B., Brown, E. R., Johnston, A. M. & Clark, E. K. Seeking congruity between goals and roles: a new look at why women opt out of science, technology, engineering, and mathematics careers. Psychol. Sci. 21, 1051–1057 (2010).
