PARTITIONED SECOND ORDER METHOD FOR MAGNETOHYDRODYNAMICS IN ELSÄSSER VARIABLES

YONG LI
Department of Mathematics
301 Thackeray Hall, University of Pittsburgh
Pittsburgh, PA 15260, USA

CATALIN TRENCEA
Department of Mathematics
301 Thackeray Hall, University of Pittsburgh
Pittsburgh, PA 15260, USA

ABSTRACT. Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes equations coupled with Maxwell equations via Lorentz force and Ohm’s law. Monolithic methods, which solve fully coupled MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve subproblems in parallel, and thus reduce the computational cost.

This paper is devoted to the design and analysis of a partitioned method for the MHD system in the Elsässer variables. The stability analysis shows that for magnetic Prandtl number of order unity, the method is unconditionally stable. We prove the error estimates and present computational tests that support the theory.

1. Introduction. Magnetohydrodynamics (MHD) studies the interaction between the electrically conducting fluids and the electromagnetic fields. Initiated by Alfvén in 1942 (see e.g., [1]), MHD is widely exploited in numerous branches of science including astrophysics, geophysics, and engineering [19, 27, 13, 10, 9, 3, 5, 12]. Understanding MHD flows is central to many important applications, e.g., liquid metal cooling of nuclear reactors [2, 16, 30], process metallurgy [7], and MHD propulsion [23, 26].

The MHD flows entail two distinct physical processes: the motion of fluid is governed by hydrodynamics equations, and the magnetic field is governed by Maxwell equations. One approach to solve the coupled problem is by monolithic methods, or implicit (fully coupled) algorithms (e.g., [36]). In these methods, the globally coupled problem is assembled at each time step and then solved iteratively. Thus although robust and stable, they are quite demanding in computational time and resources.

10 Mathematics Subject Classification. 76W05, 65M12, 65M60, 76D05, 35Q30, 35Q61.
Key words and phrases. Magnetohydrodynamics, Elsässer variables, partitioned scheme, backward differentiation formula BDF2, stability, long time stability, error estimates.

The first author was partially supported by the AFOSR under grant FA 9550-16-1-0355, and by the NSF grant DMS-1522574. The second author is partially supported by the AFOSR under grant FA 9550-12-1-0191, and by the NSF grant DMS-1522574.

Corresponding author.
In contrast, partitioned methods are semi-implicit algorithms that treat sub-physics/subdomain problems implicitly and the coupling terms explicitly. Hence such methods are able to solve subproblems in parallel and significantly reduce the computational complexity. Partitioned methods are widely used in ocean-atmosphere models, see e.g., [6]. However, there has been much less work on time-dependent MHD. To the best of our knowledge, such methods are proposed in [32], [35] and [22]. The first two papers developed unconditionally stable, first order and second order partitioned methods for full MHD based on decoupling Elsässer variables respectively, while the last paper presented such methods for reduced MHD.

In this report we propose a partitioned method for decoupling the MHD in Elsässer variables. It is a two step, second order method that adopts implicit discretization on the subproblem terms and explicit discretization on coupling terms. The stability analysis shows that the method is unconditionally stable if the magnetic Prandtl number, Pr_m, satisfies $1/2 < Pr_m < 2$, and is conditionally stable otherwise. In addition, the algorithm is shown to be long-time stable, i.e., the energy is bounded uniformly in time. We also perform numerical tests to verify the theory.

To specify the problem considered, we describe the full MHD equations below (see [4, 28] for more details). Given a bounded domain $Ω ⊂ \mathbb{R}^d$, $d = 2$ or 3, and time $T > 0$, the fluid velocity field u, the magnetic field B (rescaled to give it dimensions of a velocity), and the total pressure p (kinetic and magnetic) satisfy

$$\begin{align*}
\frac{∂u}{∂t} + u \cdot ∇u - B \cdot ∇B - νΔu + ∇p &= f, \\
∇ \cdot u &= 0, \\
\frac{∂B}{∂t} + u \cdot ∇B - B \cdot ∇u - ν_m ΔB &= 0, \\
∇ \cdot B &= 0,
\end{align*}$$

where $ν$ is the kinematic viscosity, $ν_m$ is the magnetic resistivity, and f is a body force.

An important dimensionless parameter in MHD is the magnetic Prandtl number $Pr_m := ν/ν_m$. In practice it may vary considerably depending on the medium, for instance $Pr_m = 7$ for water, $≃ 0.7$ for air, and $≃ 10^{-5}$ in the liquid core of the Earth. In a number of laboratory simulation, however, the magnetic Prandtl number is taken to be unity, or of order unity, see e.g., [4, 17, 25, 31] and references therein.

The magnetic field can be split in two parts, $B = B_0 + \tilde{B}$, where B_0 and \tilde{B} are mean and fluctuation, respectively. The Elsässer variables [11]

$$z^+ = u + \tilde{B}, \quad z^- = u - \tilde{B},$$

merge the physical properties of the Navier-Stokes and Maxwell equations. By adding (1.1) and (1.2), and subtracting (1.2) from (1.1), we obtain the momentum equations in Elsässer variables:

$$\begin{align*}
\frac{∂z^±}{∂t} + (B_0 \cdot ∇)z^± + (z^± \cdot ∇)z^± - \frac{ν + ν_m}{2} Δz^± - \frac{ν - ν_m}{2} Δz^\mp + ∇p &= f, \\
∇ \cdot z^± &= 0,
\end{align*}$$

The interesting property of the Elsässer variables is that there is no self-coupling in the nonlinear term in (1.3), but only cross-coupling of z^+ and z^-. This is the basis of the Alfven effect, which describes a fundamental interaction process, see [20, 21, 8, 24, 33, 29, 14, 15, 34]. From the point of computational view, this property may suggest the use of partitioned methods.
The paper is organized as follows. Section 2 introduces notation and necessary preliminaries. We then describe the partitioned method and perform stability analysis in Section 3. The error estimate is derived in Section 4, and two numerical tests are presented in Section 5. Finally, Section 6 concludes the paper.

2. Notation and preliminaries. Throughout this paper, we denote the $L^2(\Omega)$-norm by $\| \cdot \|$ and the corresponding inner product by (\cdot, \cdot), and the norm in $H^k(\Omega)$ by $\| \cdot \|_k$. For functions $v(x,t)$ defined in $\Omega \times (0,T)$, we introduce the following norms

$$\|v\|_{\infty,k} := \text{ess sup}_{t \in [0,T]} \|v(\cdot,t)\|_k,$$

and

$$\|v\|_{m,k} := \left(\int_0^T \|v(\cdot,t)\|_k^m \right)^{1/m},$$

as well as the discrete norms

$$\|v\|_{\infty,k}^\Delta := \max_{0 \leq n \leq T/\Delta t} \|v_n\|_k,$$

$$\|v\|_{2,k} := \left(\frac{\Delta t}{T} \sum_{n=0}^{T/\Delta t} \|v_n\|_k^2 \right)^{1/2},$$

where Δt denotes the time step.

Recall that the G-norm of a function $w = (w_1, w_2)^T \in (L^2(\Omega))^2$ is defined by

$$\|w\|_G^2 := (w, Gw),$$

where G is a 2×2, symmetric positive definite matrix. The specific G matrix in our problem is given by

$$G = \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix},$$

and consequently, $\|w\|_G^2 = \frac{1}{2} (\|w_1\|^2 + \|2w_1 - w_2\|^2)$. In finite element spaces, G is a block matrix that matches the dimension of the spaces. Introducing the central difference operator $D_2v_{n+1} = v_{n+1} - 2v_n + v_{n-1}$, and letting $w_n = (v_n, v_{n-1})^T$, we have the following identity:

$$(3v_{n+1} - 4v_n + v_{n-1}, v_{n+1}) = \|w_{n+1}\|_G^2 - \|w_n\|_G^2 + \frac{1}{2} \|D_2v_{n+1}\|^2.$$

Note that G-norm is equivalent to norm on $(L^2(\Omega))^2$ in the sense that

$$\left(\frac{3 - 2\sqrt{2}}{2} \right) \|w\| \leq \|w\|_G \leq \left(\frac{3 + 2\sqrt{2}}{2} \right) \|w\|.$$ \hspace{1cm} (2.1)

The spaces of Elsässer variables and pressure are defined by, respectively,

$$X = (H_0^1(\Omega))^d = \left\{ v \in (L^2(\Omega))^d, \nabla v \in (L^2(\Omega))^{d \times d}, \ n = 0 \text{ on } \partial \Omega \right\},$$

$$Q = L^2(\Omega) = \left\{ q \in L^2(\Omega), \int q \, dx = 0 \right\},$$

and the divergence-free function space is

$$V = \{ v \in X : (\nabla \cdot v, q) = 0, \ \forall q \in Q \}.$$

Define the bilinear form $a(\cdot, \cdot) : X \times X \to \mathbb{R}$,

$$a(u, v) := (\nabla u, \nabla v),$$
which is continuous and coercive. Due to the divergence-free condition, we write the nonlinear term \((u \cdot \nabla v, w)\) in a trilinear form,
\[
b(u, v, w) := \frac{1}{2} \left[(u \cdot \nabla v, w) - (u \cdot \nabla w, v)\right].
\]

Note that there exists a generic constant \(C = C(\Omega)\) such that (see e.g., [28])
\[
|b(u, v, w)| \leq C\|\nabla u\|\|\nabla v\|\|\nabla w\|,
\]
\[
|b(u, v, w)| \leq C\|\nabla u\|^{1/2}\|u\|^{1/2}\|\nabla v\|\|\nabla w\|,
\]
\[
|b(u, v, w)| \leq C\|\nabla u\|\|\nabla v\|\|\nabla w\|^{1/2}\|w\|^{1/2}.
\] (2.2)

The variational formulation for the continuous problem (1.3) is: find \((z^+, z^-, p) : [0, T] \to X \times X \times Q\) satisfying
\[
\left(\frac{\partial z^\pm}{\partial t}, v\right) = b(B_0, z^\pm, v) + b(z^\mp, z^\pm, v)
\]
\[
+ \nu^+ a(z^\pm, v) + \nu^- a(z^\mp, v) - (p, \nabla \cdot v) = (f, v) \quad \forall v \in X,
\] (2.3)
where \(\nu^\pm = (\nu \pm \nu_m)/2\).

Denote \(X_h\) and \(Q_h\) the finite element spaces for \(X\) and \(Q\) respectively, built on a conforming, edge to edge triangulation with the maximum triangle parameter denoted by a subscript “\(h\)”. Likewise, the discrete divergence-free space is denoted by
\[
V_h = X_h \cap \{v_h \in X_h : (\nabla \cdot v_h, q_h) = 0, \forall q_h \in Q_h\}.
\]

We assume that the finite element spaces satisfy the inverse inequality: \(\forall v_h \in X_h\),
\[
b\|\nabla v_h\| \leq C_{I,NV}\|v_h\|,
\] (2.4)

The semi-discrete approximation of (2.3) is to find \((z_h^+, z_h^-, p_h) : [0, T] \to X_h \times X_h \times Q_h\) satisfying
\[
\left(\frac{\partial z_h^\pm}{\partial t}, v_h\right) = b(B_0, z_h^\pm, v_h) + b(z_h^\mp, z_h^\pm, v_h)
\]
\[
+ \nu^+ a(z_h^\pm, v_h) + \nu^- a(z_h^\mp, v_h) - (p_h, \nabla \cdot v_h) = (f, v_h), \quad \forall v_h \in X_h
\] (2.5)
\[
(\nabla \cdot z_h^\pm, q_h) = 0 \quad \forall q_h \in Q_h.
\]

3. The partitioned method. The method we propose and analyze herein is a combination of a two-step implicit method with the coupling terms treated by an explicit discretization. Due to the symmetry of the Elsässer variables, we shall use the same time step \(\Delta t\) in both subproblems. The method is described as follows: find \((z_{h,n+1}^+, z_{h,n+1}^-, p_{h,n+1}) \in X_h \times X_h \times Q_h, n \geq 2,\) such that \(\forall v_h \in X_h\) and \(\forall q_h \in Q_h\)
\[
\left(3z_{h,n+1}^\pm - 4z_{h,n}^\pm + z_{h,n-1}^\pm, v_h\right)
\]
\[
+ b\left((2z_{h,n}^\mp - z_{h,n-1}^\mp), z_{h,n+1}^\pm, v_h\right)
\]
\[
+ \nu^+ a(z_{h,n+1}^\pm, v_h) + \nu^- a((2z_{h,n}^\mp - z_{h,n-1}^\mp), v_h) - (p_{h,n+1}^\pm, \nabla \cdot v_h) = (f_{n+1}, v_h),
\] (3.1)
\[
(\nabla \cdot z_{h,n+1}^\pm, q_h) = 0.
\]
Note that the momentum equations in $z_{h,n+1}^+$ and $z_{h,n+1}^-$ are decoupled, however, the corresponding momentum equations of fluid velocity field u and magnetic field B are not: $\forall v_h \in X_h, q_h \in Q_h$

$$\left(\frac{3u_{h,n+1} - 4u_{h,n} + u_{h,n-1}}{2\Delta t} , v_h \right) + b(2u_{h,n} - u_{h,n-1}, u_{h,n+1}, v_h) = -\frac{1}{2} \left(p_{h,n+1}^+ + p_{h,n+1}^-, \nabla \cdot v_h \right) = (f_{n+1}, v_h),$$

$$\left(\frac{3B_{h,n+1} - 4B_{h,n} + B_{h,n-1}}{2\Delta t} , v_h \right) + b(2B_{h,n} - B_{h,n-1}, B_{h,n+1}, v_h) = 0, \quad (\nabla \cdot B_{h,n+1}, q_h) = 0.$$

3.1. Long-time stability of the partitioned method. The goal of this section is to demonstrate the stability of the method (3.1). It will be shown that the stability depends on the magnetic Prandtl number. More specifically, the partitioned method is unconditionally stable for $1/2 < Pr_m < 2$; otherwise it is conditionally stable under the Courant–Friedrichs–Lewy (CFL) condition (3.13).

Lemma 3.1. If $1/2 < Pr_m < 2$, the solution to the partitioned method (3.1) satisfies the following energy identity for any $N \geq 1$,

$$\|w_{h,N}^+\|_G^2 + \|w_{h,N}^-\|_G^2 + \frac{1}{2} \sum_{n=1}^{N-1} \left(\|D_2 z_{h,n+1}^+ \|^2 + \|D_2 z_{h,n+1}^- \|^2 \right) + 2\Delta t \left(\nu^+ \frac{3|\nu^-|}{2} \right) \left(\|\nabla z_{h,n}^+ \|^2 + \|\nabla z_{h,n}^- \|^2 \right)$$

$$+ 2\Delta t \left(\nu^+ \frac{5|\nu^-|}{2} \right) \left(\|\nabla z_{h,n-1}^+ \|^2 + \|\nabla z_{h,n-1}^- \|^2 \right)$$

$$+ 2\Delta t \left(\nu^+ - 3|\nu^-| \right) \sum_{n=2}^{N-2} \left(\|\nabla z_{h,n}^+ \|^2 + \|\nabla z_{h,n}^- \|^2 \right) + \sum_{n=1}^{N-1} P_{n+1}$$

$$= \|w_{h,1}^+\|_G^2 + \|w_{h,1}^-\|_G^2 + 3|\nu^-| \Delta t \left(\|\nabla z_{h,1}^+ \|^2 + \|\nabla z_{h,1}^- \|^2 \right)$$

$$+ |\nu^-| \Delta t \left(\|\nabla z_{h,0}^+ \|^2 + \|\nabla z_{h,0}^- \|^2 \right) + 2\Delta t \sum_{n=1}^{N-1} \left((f_{n+1}, z_{h,n+1}^+) + (f_{n+1}, z_{h,n+1}^-) \right),$$

where $w_{h,n}^\pm = (z_{h,n}^\pm, z_{h,n-1}^\pm)^T$ and each P_{n+1} is a positive term

$$P_{n+1} = 2\Delta t |\nu^-| \left(\|z_{h,n+1}^+ + \text{sign}(\nu^-) z_{h,n}^- \|^2 + \|z_{h,n+1}^- + \text{sign}(\nu^-) z_{h,n}^+ \|^2 \right)$$

$$+ \Delta t |\nu^-| \left(\|z_{h,n+1}^- - \text{sign}(\nu^-) z_{h,n-1}^+ \|^2 + \|z_{h,n+1}^+ - \text{sign}(\nu^-) z_{h,n-1}^- \|^2 \right).$$
Proof. Note that $1/2 < Pr_m < 2$ implies $\nu^+ > 3|\nu^-|$. Set $v_h = z_{h,n+1}^\pm$ in (3.1), then the coupling terms vanish due to the skew symmetry of the trilinear form b. Thus we obtain

$$
\frac{1}{2\Delta t} \left(\|w_{h,n+1}^+\|^2_G - \|w_{h,n}^+\|^2_G \right) + \frac{1}{4\Delta t} \|D_2 z_{h,n+1}^\pm\|^2
+ \nu^+ \|\nabla z_{h,n+1}^\pm\|^2 + \nu^- a \left((2z_{h,n}^\pm - z_{h,n-1}^\pm), z_{h,n+1}^\pm \right) = \left(f_{n+1}, z_{h,n+1}^\pm \right).$$

(3.3)

It follows from simple calculation that

$$
\nu^- a \left((2z_{h,n}^\pm - z_{h,n-1}^\pm), z_{h,n+1}^\pm \right)
= -\nu^- \text{sign}(\nu^-) \left(\|\nabla z_{h,n+1}^\pm\|^2 + \|\nabla z_{h,n}^\pm\|^2 - \|\nabla z_{h,n+1}^\pm + \text{sign}(\nu^-) \nabla z_{h,n}^\pm\|^2 \right)
- \frac{\nu^-}{2} \text{sign}(\nu^-) \left(\|\nabla z_{h,n+1}^\pm\|^2 + \|\nabla z_{h,n}^\pm\|^2 - \|\nabla z_{h,n+1}^\pm - \text{sign}(\nu^-) \nabla z_{h,n}^\pm\|^2 \right)
= -\frac{3|\nu^-|}{2} \|\nabla z_{h,n+1}^\pm\|^2 - \nu^- \|\nabla z_{h,n}^\pm\|^2 - \frac{|\nu^-|}{2} \|\nabla z_{h,n+1}^\pm\|^2
+ |\nu^-| \|\nabla z_{h,n+1}^\pm + \text{sign}(\nu^-) \nabla z_{h,n}^\pm\|^2 + \frac{|\nu^-|}{2} \|\nabla z_{h,n+1}^\pm - \text{sign}(\nu^-) \nabla z_{h,n}^\pm\|^2.

(3.4)

Combining (3.3) and (3.4) yields

$$
\frac{1}{2\Delta t} \left(\|w_{h,n+1}^+\|^2_G - \|w_{h,n}^+\|^2_G \right) + \frac{1}{4\Delta t} \|D_2 z_{h,n+1}^\pm\|^2
+ \left(\nu^+ - \frac{3|\nu^-|}{2} \right) \|\nabla z_{h,n+1}^\pm\|^2 - |\nu^-| \|\nabla z_{h,n}^\pm\|^2 - \frac{|\nu^-|}{2} \|\nabla z_{h,n+1}^\pm\|^2
+ |\nu^-| \|\nabla z_{h,n+1}^\pm + \text{sign}(\nu^-) \nabla z_{h,n}^\pm\|^2 + \frac{|\nu^-|}{2} \|\nabla z_{h,n+1}^\pm - \text{sign}(\nu^-) \nabla z_{h,n}^\pm\|^2,

(3.5)

$$
= \left(f_{n+1}, z_{h,n+1}^\pm \right).

By adding the Els"asser variables together and summing up (3.5) from $n = 1$ to $N - 1$, and finally multiplying by $2\Delta t$, we obtain (3.2).

Theorem 3.1. Assume that $1/2 < Pr_m < 2$, then we have the following results.

1°. The partitioned method (3.1) is unconditionally stable, i.e., for any $N \geq 1$ there holds

$$
\|w_{h,N}^+\|^2_G + \|w_{h,N}^-\|^2_G + \frac{1}{2} \sum_{n=1}^{N-1} \left(\|D_2 z_{h,n+1}^+\|^2 + \|D_2 z_{h,n+1}^-\|^2 \right)
+ \Delta t \left(\nu^+ - 3|\nu^-| \right) \sum_{n=2}^{N} \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2 \right)
\leq \|w_{h,1}^\pm\|^2_G + \|w_{h,1}^\pm\|^2_G + \frac{\Delta t C_p^2}{(\nu^+ - 3|\nu^-|)} \sum_{n=1}^{N-1} \|f_{n+1}\|^2
+ 3\Delta t |\nu^-| \left(\|\nabla z_{h,1}^+\|^2 + \|\nabla z_{h,1}^-\|^2 + \|\nabla z_{h,0}^+\|^2 + \|\nabla z_{h,0}^-\|^2 \right).

(3.6)

2°. Assuming $f \in L^\infty(0,T; L^2(\Omega))$, the solution is uniformly bounded for all time: there exist $0 < \lambda_1 < 1$, $0 < \lambda_2 < \infty$ such that

$$
\|z_{h,N}^+\|^2 + \|z_{h,N}^-\|^2 \leq \lambda_1 N + \lambda_2,

(3.7)
$$
where
\[
E_1 = \|w_{h,1}^+\|_G^2 + \|w_{h,1}^-\|_G^2 + \frac{\Delta t (\nu^+ + 3|\nu^-|)}{2} \left(\|\nabla z_{h,1}^+\|^2 + \|\nabla z_{h,1}^-\|^2\right) + \Delta t |\nu^-| \left(\|\nabla z_{h,0}^+\|^2 + \|\nabla z_{h,0}^-\|^2\right).
\]

Then (3.6) follows from (3.9) and by dropping the positive term \(P_N\).

Proof. 1°. Due to the Poincaré inequality and Young’s inequality, the forcing terms in (3.2) are bounded by
\[
2\Delta t \left(f_{n+1}, z_{h,n+1}^+ \right) \leq \Delta t (\nu^+ - 3|\nu^-|)\|\nabla z_{h,n+1}^+\|^2 + \frac{\Delta t C_p^2}{(\nu^+ - 3|\nu^-|)} \|f_{n+1}\|^2. \tag{3.9}
\]

Then (3.6) follows from (3.9) and by dropping the positive term \(P_N\).

2°. Combining (3.5) (multiply by 2\(\Delta t\) and drop \(\frac{1}{2}\left(\|D_2 z_{h,n+1}^+\|^2 + \|D_2 z_{h,n+1}^-\|^2\right)\)) and (3.9) gives
\[
\|w_{h,n+1}^+\|_2^2 + \|w_{h,n+1}^-\|_2^2 + \Delta t \nu^+ \left(\|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2\right)
\leq \|w_{h,n}^+\|_G^2 + \|w_{h,n}^-\|_G^2 + 2\Delta t |\nu^-| \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2\right)
+ \Delta t |\nu^-| \left(\|\nabla z_{h,n-1}^+\|^2 + \|\nabla z_{h,n-1}^-\|^2\right) + \frac{\Delta t C_p^2}{(\nu^+ - 3|\nu^-|)} \|f_{n+1}\|^2.
\]

Adding \(\frac{\Delta t (\nu^+ - 3|\nu^-|)}{2} \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2\right)\) to both sides of the above inequality, we obtain
\[
\|w_{h,n+1}^+\|_G^2 + \|w_{h,n+1}^-\|_G^2 + \Delta t \nu^+ \left(\|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2\right)
+ \Delta t (\nu^+ - 3|\nu^-|) \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2\right)
\leq \|w_{h,n}^+\|_G^2 + \|w_{h,n}^-\|_G^2 + \Delta t (\nu^+ + 3|\nu^-|) \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2\right)
+ \Delta t |\nu^-| \left(\|\nabla z_{h,n-1}^+\|^2 + \|\nabla z_{h,n-1}^-\|^2\right) + \frac{\Delta t C_p^2}{(\nu^+ - 3|\nu^-|)} \|f_{n+1}\|^2,
\]

which is equivalent to
\[
E_{n+1} + \frac{\Delta t (\nu^+ - 3|\nu^-|)}{2} \left(\|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2\right)^2 + \|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2 + \|\nabla z_{h,n}^-\|^2)^2
\leq E_n + \frac{\Delta t C_p^2}{(\nu^+ - 3|\nu^-|)} \|f_{n+1}\|^2, \tag{3.10}
\]

where
\[
E_n = \|w_{h,n}^+\|_G^2 + \|w_{h,n}^-\|_G^2 + \frac{\Delta t (\nu^+ + 3|\nu^-|)}{2} \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2\right)
+ \Delta t |\nu^-| \left(\|\nabla z_{h,n-1}^+\|^2 + \|\nabla z_{h,n-1}^-\|^2\right).
\]
Applying the Poincaré inequality and the equivalence of G-norm and L^2-norm (2.1), we have

$$ \frac{\Delta t(\nu^+ - 3|\nu^-|)}{2} \left(\|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2 + \|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2 \right) $$

$$ \geq \frac{\Delta t(\nu^+ - 3|\nu^-|)}{4} \left(\|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2 \right) $$

$$ + \frac{\Delta t(\nu^+ - 3|\nu^-|)}{4\beta^2C_p^2} \left(\|w_{h,n+1}^+\|^2 + \|w_{h,n+1}^-\|^2 \right). $$

Thus, by setting $C_1 = \min \left\{ \frac{\nu^+ - 3|\nu^-|}{2\Delta t(\nu^+ + 3|\nu^-|)}, \frac{(\nu^+ - 3|\nu^-|)}{2(3 - 2\nu^+ - 3|\nu^-|)} \right\}$, we have from (3.10) that

$$(1 + C_1 \Delta t)E_{n+1} \leq E_n + \frac{\Delta tC_p^2}{\nu^+ - 3|\nu^-|} \|f_{n+1}\|^2,$$

which, by induction, implies

$$ E_{n+1} \leq \frac{E_1}{(1 + C_1 \Delta t)^{2p}} + \frac{C_p^2(1 + C_1 \Delta t)}{\nu^+ - 3|\nu^-|} \max_i \|f_i\|^2. $$

Setting

$$ \lambda_1 = \frac{1}{1 + C_1 \Delta t}, \quad \lambda_2 = \frac{C_p^2(1 + C_1 \Delta t)}{\nu^+ - 3|\nu^-|} \max_i \|f_i\|^2, $$

we complete the second part (3.7).

3°. Finally, if $f \equiv 0$, the series in (3.6)

$$ \sum_{n=2}^{\infty} \left(\|\nabla z_{h,n}^+\|^2 + \|\nabla z_{h,n}^-\|^2 \right) $$

converges and therefore (3.8) follows.

\[\square \]

Lemma 3.2. If $Pr_m \geq 2$ or $Pr_m \leq 1/2$, the solution to the partitioned method (3.1) satisfies the following energy identity for any $N \geq 1$,

$$ \|w_{h,N}^+\|^2_G + \|w_{h,N}^-\|^2_G + \frac{3\Delta t}{2}(\nu^+ - |\nu^-|) \sum_{n=1}^{N-1} \left(\|\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^-\|^2 \right) $$

$$ + \sum_{n=1}^{N-1} \tilde{P}_{n+1} + \frac{1}{2} \sum_{n=1}^{N-1} \left(\|D_2 z_{h,n+1}^+\|^2 + \|D_2 z_{h,n+1}^-\|^2 \right) $$

$$ - \frac{2\Delta t|\nu^-|^2}{(\nu^+ - |\nu^-|)} \sum_{n=1}^{N-1} \left(\|\nabla D_2 z_{h,n+1}^+\|^2 + \|\nabla D_2 z_{h,n+1}^-\|^2 \right) $$

$$ = \|w_{h,1}^+\|^2_G + \|w_{h,1}^-\|^2_G + 2\Delta t \sum_{n=1}^{N-1} \left((f_{n+1}, z_{h,n+1}^+) + (f_{n+1}, z_{h,n+1}^-) \right), $$

where each \tilde{P}_{n+1} is a positive term

$$ \tilde{P}_{n+1} $$

$$ = 2\Delta t|\nu^-| \left(\|\nabla z_{h,n+1}^- + \text{sign}(\nu^-)\nabla z_{h,n+1}^+\|^2 + \|\nabla z_{h,n+1}^+ + \text{sign}(\nu^-)\nabla z_{h,n+1}^-\|^2 \right) $$

$$ + 2\Delta t \left\| \frac{\sqrt{\nu^+ - |\nu^-|}}{2} \nabla z_{h,n+1}^+ - \text{sign}(\nu^-) \frac{|\nu^-|}{\sqrt{\nu^+ - |\nu^-|}} \nabla D_2 z_{h,n+1}^- \right\| $$
Applying the above equality to (3.3) gives
\[\nu \text{ case, the term associated with } \nu^- \text{ in (3.3) is equivalent to} \]
\[\nu^- a \left((2z^+_h, _n - z^-_{h,n-1}), z^\pm_{h,n+1} \right) \]
\[= \nu^- \left(\nabla z^+_h, _n, \nabla z^-_{h,n+1} \right) - \nu^- \left(\nabla D_2z^+_h, _n, \nabla z^-_{h,n+1} \right) \]
\[= -\frac{\nu^-}{2} \left(\| \nabla z^+_h, _n, \|^2 + \| \nabla z^-_{h,n+1} \|^2 \right) + \frac{\nu^-}{2} \| \nabla z^+_h, _n, \|^2 + \text{sign}(\nu) \| \nabla z^-_{h,n+1} \|^2 \]
\[- \frac{\nu^+ - |\nu^-|}{4} \| \nabla z^+_h, _n, \|^2 - \frac{\nu^-}{\nu^+ - |\nu^-|} \| \nabla D_2z^+_h, _n, \|^2 \]
\[+ \frac{\nu^+ - \nu^-}{2} \nabla z^+_h, _n, - \text{sign}(\nu^-) \frac{\nu^-}{\sqrt{\nu^+ - \nu^-}} \nabla D_2z^+_h, _n, \|^2 \].

Applying the above equality to (3.3) gives
\[\| w^+_h, _{n+1} \|_G^2 + \| w^-_{h,n} \|_G^2 + \frac{3\Delta t}{2} (\nu^+ - |\nu^-|) \left(\| \nabla z^+_h, _n, \|^2 + \| \nabla z^{-}_{h,n+1} \|^2 \right) \]
\[+ \frac{\nu^-}{2} \left(\| \nabla D_2z^+_h, _n, \|^2 + \| \nabla D_2z^{-}_{h,n+1} \|^2 \right) \]
\[- \frac{2\Delta t|\nu^-|^2}{(\nu^+ - |\nu^-|)} \left(\| \nabla D_2z^+_h, _n, \|^2 + \| \nabla D_2z^{-}_{h,n+1} \|^2 \right) \]
\[= \| w^+_h, _n \|_G^2 + \| w^-_{h,n} \|_G^2 + 2\Delta t \left((f_{n+1}, z^+_h, _n) + (f_{n+1}, z^-_{h,n+1}) \right). \]

Therefore, (3.11) follows by summing (3.12) from \(n = 1 \) to \(N - 1 \). \(\square \)

Theorem 3.2. If \(Pr_m \geq 2 \) or \(Pr_m \leq 1/2 \) the partitioned method (3.1) is stable under the CFL condition
\[\Delta t \leq \frac{\nu^+ - |\nu^-|}{4C^2 L_N V |\nu^-|^2} h^2. \] (3.13)

More precisely, for any \(N \geq 1 \) there holds
\[\| w^+_h, _N \|_G^2 + \| w^-_{h,N} \|_G^2 + \Delta t (\nu^+ - |\nu^-|) \sum_{n=1}^{N-1} \left(\| \nabla z^+_h, _n, \|^2 + \| \nabla z^{-}_{h,n+1} \|^2 \right) \]
\[\leq \| w^+_h, _1 \|_G^2 + \| w^-_{h,1} \|_G^2 + \frac{2\Delta t C^2}{\nu^+ - |\nu^-|} \sum_{n=1}^{N-1} \| f_{n+1} \|^2. \] (3.14)

If \(f \in L^\infty(0,T;L^2(\Omega)) \), then the solution is uniformly bounded for all time. In addition, if \(f \equiv 0 \), then
\[z^+_h, _N \rightarrow 0 \quad \text{and} \quad z^-_{h,N} \rightarrow 0 \] (3.15)
in \(H^1(\Omega) \) as \(N \rightarrow \infty \).

Proof. Using the inverse inequality (2.4), we have
\[\frac{1}{2} \| D_2z^+_h, _{n+1} \|^2 - \frac{2\Delta t |\nu^-|^2}{(\nu^+ - |\nu^-|)} \| \nabla D_2z^+_h, _n, \|^2 \] (3.16)
\[\frac{h^2}{2C_{TV}^2} \| \nabla D_2 z_{h,n+1}^\pm \|^2 - \frac{2\Delta t |\nu^-|^2}{(\nu^+ - |\nu^-|)} \| \nabla D_2 z_{h,n+1}^\pm \|^2 = \left(\frac{h^2}{2C_{TV}^2} - \frac{2\Delta t |\nu^-|^2}{(\nu^+ - |\nu^-|)} \right) \| \nabla D_2 z_{h,n+1}^\pm \|^2. \]

The forcing terms are bounded due to the Poincaré inequality and Young’s inequality

\[2\Delta t \left(f_{n+1}, z_{h,n+1}^\pm \right) \leq \frac{\Delta t (\nu^+ - |\nu^-|)}{2} \| \nabla z_{h,n+1}^\pm \|^2 + \frac{2\Delta t C_p^2}{\nu^+ - |\nu^-|} \| f_{n+1} \|^2. \quad (3.17) \]

Combining (3.12), (3.16), (3.17) and dropping \(\hat{P}_{n+1} \) yields

\[\| w_{h,n+1}^+ \|_G^2 + \| w_{h,n+1}^- \|_G^2 + \Delta t (\nu^+ - |\nu^-|) \left(\| \nabla z_{h,n+1}^+ \|^2 + \| \nabla z_{h,n+1}^- \|^2 \right) \quad (3.18) \]

\[+ \left(\frac{h^2}{2C_{TV}^2} - \frac{2\Delta t |\nu^-|^2}{(\nu^+ - |\nu^-|)} \right) \| \nabla D_2 z_{h,n+1}^\pm \|^2 \leq \| w_{h,n}^+ \|_G^2 + \| w_{h,n}^- \|_G^2 + \frac{2\Delta t C_p^2}{\nu^+ - |\nu^-|} \| f_{n+1} \|^2. \]

Note that the numerical dissipation term, in the second line above, is positive under the CFL condition (3.13). By a telescope sum, we obtain (3.14).

Next, we add \(\frac{\Delta t (\nu^+ - |\nu^-|)}{2} \left(\| \nabla z_{h,n}^+ \|^2 + \| \nabla z_{h,n}^- \|^2 \right) \) to both sides of (3.18) and let

\[E_n = \frac{1}{2} \left(\| w_{h,n}^+ \|_G^2 + \| w_{h,n}^- \|_G^2 \right) + \frac{\Delta t (\nu^+ - |\nu^-|)}{2} \left(\| \nabla z_{h,n}^+ \|^2 + \| \nabla z_{h,n}^- \|^2 \right) \]

\[+ \frac{\Delta t (\nu^+ - |\nu^-|)}{4} \left(\| \nabla z_{h,n-1}^+ \|^2 + \| \nabla z_{h,n-1}^- \|^2 \right). \]

Then (3.12) implies

\[E_{n+1} + \frac{\Delta t (\nu^+ - |\nu^-|)}{2} \left(\| \nabla z_{h,n}^+ \|^2 + \| \nabla z_{h,n}^- \|^2 \right) \quad (3.19) \]

\[+ \frac{\Delta t (\nu^+ - |\nu^-|)}{4} \left(\| \nabla z_{h,n-1}^+ \|^2 + \| \nabla z_{h,n-1}^- \|^2 \right) \leq E_n + \frac{2\Delta t C_p^2}{\nu^+ - |\nu^-|} \| f_{n+1} \|^2. \]

The rest of the proof follows analogously as in Theorem 3.1, i.e., utilizing the Poincaré inequality and the equivalence of G-norm and \(L^2 \)-norm (2.1). \(\square \)

Remark 3.1. The time step condition (3.13) is reasonably large for \(Pr_m \) of order unity. To this end, we write the time step condition as follows,

\[\frac{\Delta t}{h^2} \leq \min \{ \nu, \nu_m \} \frac{C_{TV}^2}{C_{TV}^2 + (Pr_m - 1)^2} \]

which implies that

\[\frac{\Delta t}{h^2} \sim \mathcal{O} \left(\frac{1}{\nu_m} \right), \quad \text{for} \ Pr_m \sim \mathcal{O}(1). \]
4. Error analysis. In this section, we study the convergence of the method (3.1), where spatial discretization is effected using finite element methods. Recall that our finite element spaces satisfy the discrete inf-sup conditions. To establish the optimal error estimates for the approximation, we assume that the true solutions satisfy regularity conditions

\[z^\pm \in L^\infty \left(0, T; (H^{k+1}(\Omega))^d\right) \cap H^1 \left(0, T; (H^{k+1}(\Omega))^d\right) \cap H^2 \left(0, T; (H^{k+1}(\Omega))^d\right), \]

\[p \in L^2 \left(0, T; (H^{s+1}(\Omega))^d\right). \] (4.1)

The errors are denoted by \(e_n^\pm = z_n^\pm - z_{h,n}^\pm \). Similar to the stability analysis, the error estimate depends on the values of magnetic Prandtl number in the sense of time step restriction. Nevertheless, the convergence rate is the same with respect to the mesh size and time step in both situations. For the sake of readability, the proofs are given in the Appendix.

Theorem 4.1. Assume that the Prandtl number \(1/2 < Pr_m < 2 \), and suppose that \((z^\pm, p)\) satisfies the weak formulation (2.3) and regularity conditions (4.1). If \((z^\pm_h, p^\pm_h)\) is given by the algorithm (3.1) with \(n \in \{1, 2, \cdots, T/\Delta t\} \), we have the following error estimate.

\[
\frac{1}{2} \left(\|e_n^+\|^2 + \|e_n^-\|^2 + \|2e_n^+ - e_{n-1}^+\|^2 + \|2e_n^- - e_{n-1}^-\|^2 \right) + \Delta t(\nu^+ - 3\nu^-) \sum_{j=2}^{n} (\|\nabla e_j^+\|^2 + \|\nabla e_j^-\|^2) + \frac{1}{2} \sum_{j=1}^{n-1} (\|D_2e_{j+1}^+\|^2 + \|D_2e_{j+1}^-\|^2) \leq C_0 \left\{ \|z_1^+ - z_{h,1}^+\|^2 + \|z_1^- - z_{h,1}^-\|^2 + \|z_0^+ - z_{h,0}^+\|^2 + \|z_0^- - z_{h,0}^-\|^2 \\
+ \|\nabla(z_1^+ - z_{h,1}^+\|2)^2 + \|\nabla(z_1^- - z_{h,1}^-\|2)^2 + \|\nabla(z_0^+ - z_{h,0}^+\|2)^2 + \|\nabla(z_0^- - z_{h,0}^-\|2)^2 \\
+ h^{2k+2}\|z_{\infty,k+1}^+\|^2 + h^{2k+2}\|z_{\infty,k+1}^-\|^2 \right\}.
\] (4.2)

Theorem 4.2. Assume that the Prandtl number \(Pr_m \leq 1/2 \) or \(Pr_m \geq 2 \). Then under the CFL condition (3.13), we have the error estimate

\[
\frac{1}{2} \left(\|e_n^+\|^2 + \|e_n^-\|^2 + \|2e_n^+ - e_{n-1}^+\|^2 + \|2e_n^- - e_{n-1}^-\|^2 \right) + \Delta t(\nu^+ - \nu^-) \sum_{j=2}^{n} (\|\nabla e_j^+\|^2 + \|\nabla e_j^-\|^2) + \frac{1}{4} \sum_{j=1}^{n-1} (\|D_2e_{j+1}^+\|^2 + \|D_2e_{j+1}^-\|^2) \leq C_0 \left\{ \|z_1^+ - z_{h,1}^+\|^2 + \|z_1^- - z_{h,1}^-\|^2 + \|z_0^+ - z_{h,0}^+\|^2 + \|z_0^- - z_{h,0}^-\|^2 \\
+ \|\nabla(z_1^+ - z_{h,1}^+\|2)^2 + \|\nabla(z_1^- - z_{h,1}^-\|2)^2 + \|\nabla(z_0^+ - z_{h,0}^+\|2)^2 + \|\nabla(z_0^- - z_{h,0}^-\|2)^2 \\
+ h^{2k+2}\|z_{\infty,k+1}^+\|^2 + h^{2k+2}\|z_{\infty,k+1}^-\|^2 \right\}.
\] (4.3)
the rate of convergence of the SDC method is slightly less than two.

Consequently, for Taylor-Hood elements, i.e., \(k = 2, \ s = 1 \), we have the following result.

Corollary 4.1. Suppose that \((X^h, Q^h) \) is given by \(P_2-P_1 \) Taylor-Hood approximation elements, i.e., piecewise quadratic finite elements for \(z^k_h \) and piecewise linear finite elements for \(p^k_h \). Then there is a positive constant \(C_0 \) such that

\[
\|e^+\|_{\infty,0}^2 + \|e^-\|_{\infty,0}^2 + \|\nabla e^+\|_{2,0}^2 + \|\nabla e^-\|_{2,0}^2 \leq C_0(\Delta t^4 + h^4). \tag{4.4}
\]

5. Numerical tests.

5.1. 2D electrically conducted traveling wave problem. In this section we verify the rate of convergence of the method (3.1) on an electrically conducted two-dimensional traveling wave problem (see [35]). The true solutions (in Els"asser variables) are

\[
z^+ = \left(\begin{array}{c}
\frac{3}{4} + \frac{1}{4} \cos(2\pi(x-t)) \sin(2\pi(y-t)) e^{-8\pi^2 vt} + \frac{1}{10} (y+1)^2 e^{\nu m t} \\
-\frac{1}{4} \sin(2\pi(x-t)) \cos(2\pi(y-t)) e^{-8\pi^2 vt} + \frac{1}{10} (y+1)^2 e^{\nu m t}
\end{array} \right),
\]

\[
z^- = \left(\begin{array}{c}
\frac{3}{4} + \frac{1}{4} \cos(2\pi(x-t)) \sin(2\pi(y-t)) e^{-8\pi^2 vt} - \frac{1}{10} (y+1)^2 e^{\nu m t} \\
-\frac{1}{4} \sin(2\pi(x-t)) \cos(2\pi(y-t)) e^{-8\pi^2 vt} - \frac{1}{10} (y+1)^2 e^{\nu m t}
\end{array} \right),
\]

\[
p = -\frac{1}{64} (\cos(4\pi(x-t)) + \cos(4\pi(y-t))) e^{-16\pi^2 vt},
\]

defined on the domain \(\Omega = [0.5,1.5]^2 \). The kinematic viscosity and magnetic resistivity are set to \(\nu = \nu_m = 2.5 \times 10^{-4} \) so that \(Pr_m = 1 \). The time interval is \(0 \leq t \leq 1 \). We adopt piecewise quadratic finite elements for \(z^k_h \) and piecewise linear finite elements for \(p^k_h \). The initial data and source terms are chosen to correspond the exact solutions. According to the convergence analysis (4.4), the errors are second order with respect to the mesh size \(h \) and time step \(\Delta t \). Therefore we take \(\Delta t = h \) to easily observe the convergence.

Table 1 presents and confirms the rate of convergence provided by Corollary 4.1, where \(\| \cdot \|_{\infty} = \| \cdot \|_{L^\infty(0,T;L^2(\Omega))} \) and \(\| \cdot \|_2 = \| \cdot \|_{L^2(0,T;L^2(\Omega))} \). Figure 1 shows the log-log plot of the error for backward-Euler-forward-Euler (BEFE) (see [32]), spectral deferred correction (SDC) (see [35]) and the algorithm (3.1). Interestingly, the rate of convergence of the SDC method is slightly less than two.

\(\Delta t = h \)	\(\|z^+ - z_h^+\|_{\infty} \) rate	\(\|\nabla z^+ - \nabla z_h^+\|_2 \) rate	\(\|z^- - z_h^-\|_{\infty} \) rate	\(\|\nabla z^- - \nabla z_h^-\|_2 \) rate
\(1/16 \)	4047e-2	2.978e+0	3.653e-2	2.923e+0
\(1/32 \)	6.701e-3	2.590	8.755e-1	8.536e-3
\(1/64 \)	1.360e-3	1.676e-1	1.911e-1	1.812e-1
\(1/128 \)	3.359e-4	2.029e-2	3.900e-2	4.342e-2

Table 1. Convergence rate for algorithm (3.1).

5.2. Long-time stability. In this test we examine the 2D electrically conducted traveling wave problem from Section 5.1, where we keep all parameters the same, except the time horizon $[0, 200]$, the time step $\Delta t = 5$ and the magnetic Prandtl number $Pr_m = 1.5$. With the energy defined as the sum of the L^2-norm of z^+ and z^- at each time step, we verify the stability and the long-time stability of the partitioned method. The energy plot in Figure 2 confirms the theoretical results of Theorems 3.1, 3.2.

5.3. 3D Taylor-Green flow generalized to MHD. In this section we consider three-dimensional Taylor-Green problem. The domain is $\Omega = [-0.5, 0.5]^3$ on which the velocity field is:

$$u = e^{-\nu t} \begin{pmatrix} \cos(2\pi x) \sin(2\pi y) \cos(2\pi z) \\ -\sin(2\pi x) \cos(2\pi y) \cos(2\pi z) \\ 0 \end{pmatrix},$$
The magnetic field is:

\[b = e^{-\nu m t} \begin{pmatrix} \cos(2\pi x) \sin(2\pi y) \sin(2\pi z) \\ \sin(2\pi x) \cos(2\pi y) \sin(2\pi z) \\ -2\sin(2\pi x) \sin(2\pi y) \cos(2\pi z) \end{pmatrix}, \]

and the pressure is:

\[p = -\left(\cos(2\pi x) + \cos(2\pi y) + \cos(2\pi z) \right) e^{-4\nu t}. \]

We choose \(\nu = 0.03, \nu_m = 0.02, B_0 = [1, 1, 1]^T \), and time interval \([0, 1]\). Once the problem is re-written in Els"asser variables, we adopt quadratic finite elements for \(z^\pm \) and piecewise linear finite elements for \(p^\pm_h \). Table 2 shows the \(L^2 \) error for the algorithm (3.1) at the final time with respect to several time steps.

| \(\Delta t/h \) | \(||z^+_T - z^+_T,h||_2 \) | rate | \(||z^-_T - z^-_T,h||_2 \) | rate |
|-----------------|-----------------|------|-----------------|------|
| 1/10 | 8.4849e-3 | | 8.4844e-3 | |
| 1/20 | 1.0152e-3 | 3.0651 | 1.0143e-3 | 3.0510 |
| 1/30 | 3.0062e-4 | 3.0174 | 2.9832e-4 | 3.0180 |
| 1/40 | 1.3455e-4 | 2.7345 | 1.2995e-4 | 2.7996 |

Table 2. Convergence rate for algorithm (3.1).

6. Conclusion. The evolutionary coupled MHD studies the dynamics of the electrically conducting fluids and the electromagnetic fields. When solving a fully coupled MHD, it is usually computationally expensive to use a monolithic method. In contrast, a partitioned method is an attractive approach due to the decoupling of the subproblems and thus, the ability to solve them in parallel. However, to the best of our knowledge, there has been less work dedicated to partitioned methods. Perhaps, this is because of the complex (self- and cross-) couplings of the fluid velocity field and the magnetic field, which may impose a restrictive stability condition on the partitioned methods compared with monolithic methods. The Els"asser variables merge the physical properties of the Navier-Stokes and Maxwell equations. An interesting property of the MHD equations in the Els"asser variables is that it contains only the cross-coupling between \(z^+ \) and \(z^- \), which may suggest the use of partitioned methods. In fact, it turns out that a partitioned method in Els"asser variables is no longer a partitioned method in the fluid velocity field and magnetic field.

In this paper, we proposed and analyzed a such method (3.1) applied on the Els"asser variables, aiming to reduce the computational complexity. We presented a complete analysis on the long-time stability and error estimate. Depending on the magnetic Prandtl number, the algorithm may or may not be unconditionally stable. Yet the convergence of the error coincides in both situations.

Many open problems remain, such as developing more stable partitioned methods for large or small magnetic Prandtl number (see [18] for a recent study), and preserving the divergence-free condition of the magnetic field on the discrete level.

7. Appendix A. Proof of Theorem 4.1. The true solution \((z^\pm, p)\) at time \(t_{n+1} \) satisfies

\[
\left(\frac{3z^\pm_{n+1} - 4z^\pm_n + z^\pm_{n-1}}{2\Delta t}, v_h \right) \equiv b \left(B_0, z^\pm_{n+1}, v_h \right) + b \left(z^\pm_{n+1}, z^\pm_{n+1}, v_h \right)
\]
\[+ \nu^+ a \left(z_{n+1}^+, v_h \right) + \nu^- a \left(z_{n+1}^-, v_h \right) - \left(p_{n+1}, \nabla \cdot v_h \right) = \left(r_{n+1}^+, v_h \right), \]
\[\left(\nabla \cdot z_{n+1}^+, q_h \right) = 0, \]
(7.1)
where
\[r_{n+1}^\pm := \frac{3z_{n+1}^\pm - 4z_{n}^\pm + z_{n-1}^\pm - \frac{\partial z_{n+1}^\pm}{\partial t}}{2\Delta t}. \]
Let \(e_{n+1}^\pm = z_{h,n+1}^\pm - z_{h,n+1}^\pm \) denote the error. We decompose it as
\[e_{n+1}^\pm = \left(z_{n+1}^\pm - z_{n+1}^\pm \right) + \left(z_{n+1}^\pm - z_{h,n+1}^\pm \right) := \eta_{n+1}^\pm + \xi_{n+1}^\pm, \]
where \(z_{h,n+1}^\pm \) is the interpolation of \(z_{n+1}^\pm \) onto \(V_h \). For notational simplicity, we denote \(\xi_{n+1}^\pm = \xi_{n+1}^\pm \). Subtract (3.1) from (7.1) and set \(v_h = e_{n+1}^\pm \), we obtain
\[\frac{1}{4\Delta t} \left(||e_{n+1}^\pm||^2 + 2\xi_{n+1}^\pm - \xi_{n+1}^\pm ||^2 \right) - \frac{1}{4\Delta t} \left(||\xi_{n+1}^\pm||^2 + 2\xi_{n+1}^\pm - \xi_{n+1}^\pm ||^2 \right) \]
\[+ \frac{1}{4\Delta t} ||D_2 \xi_{n+1}^\pm||^2 + \nu^+ ||\nabla \xi_{n+1}^\pm||^2 \]
\[= - \left(\frac{3\eta_{n+1}^\pm - 4\eta_{n+1}^\pm + \eta_{n-1}^\pm}{2\Delta t} \right) + \left(r_{n+1}^\pm, \xi_{n+1}^\pm \right) \]
\[+ \left(p_{n+1} - p_{h,n+1}^\pm, \nabla \cdot \xi_{n+1}^\pm \right) + \mathcal{N}_{n+1}^\pm - \mathcal{M}_{n+1}^\pm \]
where
\[\mathcal{N}_{n+1}^\pm := \pm b \left(B_0, \eta_{n+1}^\pm, \xi_{n+1}^\pm \right) - b \left(z_{h,n+1}^\pm - z_{h,n+1}^\pm, \xi_{n+1}^\pm \right) \]
\[+ b \left(2z_{h,n+1}^\pm - z_{h,n-1}^\pm, z_{h,n+1}^\pm, \xi_{n+1}^\pm \right) \]
and
\[\mathcal{M}_{n+1}^\pm := \nu^+ a \left(\eta_{n+1}^\pm, \xi_{n+1}^\pm \right) + \nu^- a \left(z_{n+1}^\pm, \xi_{n+1}^\pm \right) - \nu^- a \left(2z_{h,n+1}^\pm - z_{h,n-1}^\pm, \xi_{n+1}^\pm \right). \]
We bound the first three terms on the right-hand side of (7.2) as follows,
\[\left(\frac{3\eta_{n+1}^\pm - 4\eta_{n+1}^\pm + \eta_{n-1}^\pm}{2\Delta t}, \xi_{n+1}^\pm \right) \leq \epsilon ||\nabla \xi_{n+1}^\pm||^2 + \frac{C^2}{4\epsilon 4\Delta t} \int_{t_{n-1}}^{t_{n+1}} ||\eta_{n+1}^\pm||^2 dt, \]
(7.3)
\[\left(r_{n+1}^\pm, \xi_{n+1}^\pm \right) \leq \epsilon ||\nabla \xi_{n+1}^\pm||^2 + \frac{C^2}{4\epsilon 4\Delta t} \int_{t_{n-1}}^{t_{n+1}} ||\xi_{n+1}^\pm||^2 dt, \]
(7.4)
and
\[\left(p_{n+1} - p_{h,n+1}^\pm, \nabla \cdot \xi_{n+1}^\pm \right) \leq \epsilon ||\nabla \xi_{n+1}^\pm||^2 + \frac{C^2}{4\epsilon} ||p_{n+1} - p_{h,n+1}^\pm||^2, \]
(7.5)
By adding and subtracting \(b(2z_{h,n+1}^\pm - z_{h,n-1}^\pm, z_{h,n+1}^\pm, \xi_{n+1}^\pm) \) to the nonlinear term \(\mathcal{N}_{n+1}^\pm \), it follows that
\[\mathcal{N}_{n+1}^\pm = \pm b \left(B_0, \eta_{n+1}^\pm, \xi_{n+1}^\pm \right) - b \left(D_2 z_{n+1}^\pm, \xi_{n+1}^\pm \right) \]
\[- b \left(2z_{n-1}^\pm - z_{h,n-1}^\pm, \xi_{n+1}^\pm \right) - b \left(2z_{h,n+1}^\pm - z_{h,n-1}^\pm, \xi_{n+1}^\pm \right) \]
\[= \pm b \left(B_0, \eta_{n+1}^\pm, \xi_{n+1}^\pm \right) - b \left(D_2 z_{n+1}^\pm, \xi_{n+1}^\pm \right) \]
\[- b \left(2z_{n-1}^\pm - z_{h,n-1}^\pm, \xi_{n+1}^\pm \right) + b \left(\xi_{n+1}^\pm \right). \]
Using (2.2), each term above is estimated as

\[-b\left(2z_{h,n}^\pm, e_{n+1}^\pm, \xi_{n+1}^\pm\right) + b\left(z_{h,n+1}^\pm, e_{n+1}^\pm, \xi_{n+1}^\pm\right). \]

Using (2.2), each term above is estimated as

\[
\pm b\left(B_0, \eta_{n+1}^\pm, \xi_{n+1}^\pm\right) \leq C||B_0||^2||\nabla \eta_{n+1}^\pm||^2 + C^2 \frac{c}{4e} ||B_0||^2 ||\nabla \eta_{n+1}^\pm||^2, \]

(7.6)

\[
b\left(D_2 z_{n+1}^\pm, z_{n+1}^\pm, e_{n+1}^\pm\right) \leq \varepsilon ||\nabla \xi_{n+1}^\pm||^2 + \frac{C^2}{4e} ||\nabla z_{n+1}^\pm||^2 ||\nabla D_2 z_{n+1}^\pm||^2
\]

\[
\leq \varepsilon ||\nabla \xi_{n+1}^\pm||^2 + \frac{C^2}{4e} ||\nabla z_{n+1}^\pm||^2 \left(\Delta t^3 \int_{t_{n-1}}^{t_{n+1}} ||\nabla z_t^\pm||^2 dt\right), \]

(7.7)

\[
b\left(2e_{n+1}^\pm, z_{n+1}^\pm, \xi_{n+1}^\pm\right)
= 2b\left(\eta_{n+1}^\pm, z_{n+1}^\pm, \xi_{n+1}^\pm\right) + b\left(2z_{n+1}^\pm, e_{n+1}^\pm, \xi_{n+1}^\pm\right)
\leq C||\nabla \eta_{n+1}^\pm||^2 ||\nabla z_{n+1}^\pm||^2 + C||\nabla \xi_{n+1}^\pm||^2 \left(\Delta t^3 \int_{t_{n-1}}^{t_{n+1}} ||\nabla z_t^\pm||^2 dt\right)
\]

(7.8)

\[
b\left(2z_{n+1}^\pm, z_{n+1}^\pm, \xi_{n+1}^\pm\right)
= b\left(2z_{n+1}^\pm, z_{n+1}^\pm, \xi_{n+1}^\pm\right) + b\left(2z_{n+1}^\pm, e_{n+1}^\pm, \xi_{n+1}^\pm\right)
\leq C||\nabla \eta_{n-1}^\pm||^2 ||\nabla z_{n+1}^\pm||^2 + C||\nabla \xi_{n-1}^\pm||^2 \left(\Delta t^3 \int_{t_{n-1}}^{t_{n+1}} ||\nabla z_t^\pm||^2 dt\right)
\]

(7.9)

Using the a priori bound from the stability analysis, i.e., \(\|z_{h,n}^T\| \leq C\), we have

\[
b\left(2z_{h,n}^T, e_{n+1}^\pm, \xi_{n+1}^\pm\right) = 2b\left(z_{h,n}^T, \eta_{n+1}^\pm, \xi_{n+1}^\pm\right)
\]
Next, we add and subtract these terms as follows:

\[
\begin{align*}
&\quad \leq C \| \nabla z_{h,n}^\pm \|^2 + \| z_{h,n}^\pm \| \| \nabla \eta_{n+1}^\pm \| \| \nabla \xi_{n+1}^\pm \| \\
&\quad \leq \varepsilon \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{C^2}{4\varepsilon} \| \nabla z_{h,n}^\pm \| \| z_{h,n}^\pm \| \| \nabla \eta_{n+1}^\pm \| ^2 \\
&\quad \leq \varepsilon \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{C}{4\varepsilon} \| \nabla z_{h,n}^\pm \| \| \nabla \eta_{n+1}^\pm \| ^2.
\end{align*}
\]

(7.10)

and similarly

\[
\begin{align*}
&\quad b \left(2z_{h,n-1}^\pm, \eta_{n+1}^\pm, \xi_{n+1}^\pm \right) = 2b \left(z_{h,n-1}^\pm, \eta_{n+1}^\pm, \xi_{n+1}^\pm \right) \\
&\quad \leq C \| \nabla z_{h,n-1}^\pm \| ^{1/2} \| \nabla \eta_{n+1}^\pm \| ^{1/2} \| \nabla \xi_{n+1}^\pm \| \\
&\quad \leq \varepsilon \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{C}{4\varepsilon} \| \nabla z_{h,n-1}^\pm \| \| \nabla \eta_{n+1}^\pm \| ^2.
\end{align*}
\]

(7.11)

Next, we add and subtract \(\nu^{-} a \left((2z_{n}^\pm - z_{n-1}^\pm), \xi_{n+1}^\pm \right) \) to the linear term \(M_{n+1}^\pm \) so that

\[
M_{n+1}^\pm = \nu^{+} a \left(\eta_{n+1}^\pm, \xi_{n+1}^\pm \right) + \nu^{-} a \left(D_{2z_{n}^\pm}, \xi_{n+1}^\pm \right) + \nu^{-} a \left((2z_{n}^\pm - e_{n}^\pm), \xi_{n+1}^\pm \right).
\]

These terms will be estimated as follows:

\[
\begin{align*}
\nu^{+} a \left(\eta_{n+1}^\pm, \xi_{n+1}^\pm \right) &\leq \nu^{+} \| \nabla \eta_{n+1}^\pm \| \| \nabla \xi_{n+1}^\pm \| \leq \varepsilon \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{(\nu^{+})^2}{4\varepsilon} \| \nabla \eta_{n+1}^\pm \| ^2,
\end{align*}
\]

(7.12)

\[
\begin{align*}
\nu^{-} \left(D_{2z_{n+1}^\pm}, \nabla \xi_{n+1}^\pm \right) &\leq \varepsilon \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{|\nu^{-}|^2}{4\varepsilon} \| \nabla D_{2z_{n+1}^\pm} \| ^2 \\
&\leq \varepsilon \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{|\nu^{-}|^2}{4\varepsilon} \left(\Delta t^3 \int_{t_{n-1}}^{t_{n+1}} \| \nabla z_{n}^\pm \| ^2 \right),
\end{align*}
\]

(7.13)

and

\[
\begin{align*}
\nu^{-} a \left((2z_{n}^\pm - e_{n}^\pm), \xi_{n+1}^\pm \right) &\quad = \nu^{-} \left(\nabla \left(2z_{n}^\pm - e_{n}^\pm \right), \nabla \xi_{n+1}^\pm \right) + \nu^{-} \left(\nabla \left(2z_{n}^\pm - \xi_{n+1}^\pm \right), \nabla \xi_{n+1}^\pm \right) \\
&\quad \leq 2|\nu^{-}||\nabla \eta_{n}^\pm||\nabla \xi_{n+1}^\pm| + |\nu^{-}||\nabla \xi_{n}^\pm||\nabla \xi_{n+1}^\pm| \\
&\quad + 2|\nu^{-}||\nabla \xi_{n}^\pm||\nabla \xi_{n+1}^\pm| + |\nu^{-}||\nabla \xi_{n}^\pm||\nabla \xi_{n+1}^\pm| \\
&\quad \leq 2\varepsilon\|\nabla \xi_{n+1}^\pm\|^2 + \frac{|\nu^{-}|^2}{|\epsilon|} \| \nabla \xi_{n}^\pm \| ^2 + \frac{|\nu^{-}|^2}{4\varepsilon} \| \nabla \eta_{n-1}^\pm \| ^2 \\
&\quad + |\nu^{-}||\nabla \xi_{n}^\pm||^2 + |\nu^{-}||\nabla \xi_{n+1}^\pm||^2 + \frac{|\nu^{-}|^2}{2} \| \nabla \xi_{n+1}^\pm \| ^2 + \frac{|\nu^{-}|^2}{2} \| \nabla \xi_{n+1}^\pm \| ^2.
\end{align*}
\]

(7.14)

Combine (7.3)-(7.14) with \(\varepsilon = (\nu^{+} - 3|\nu^{-}|)/34 \), then (7.2) becomes

\[
\begin{align*}
&\quad \frac{1}{4\Delta t} \left(\| \xi_{n+1}^\pm \|^2 + 2\| \xi_{n+1}^\pm - \xi_{n-1}^\pm \|^2 \right) - \frac{1}{4\Delta t} \left(\| \xi_{n}^\pm \|^2 + 2\| \xi_{n}^\pm - \xi_{n-1}^\pm \|^2 \right) \\
&\quad + \frac{1}{4\Delta t} \| D_{2z_{n+1}^\pm} \| ^2 + \left(\nu^{+} - \frac{3}{2}|\nu^{-}| - \frac{15}{34}(\nu^{+} - 3|\nu^{-}|) \right) \| \nabla \xi_{n+1}^\pm \| ^2 \\
&\quad - \left(|\nu^{-}| + \frac{1}{34}(\nu^{+} - 3|\nu^{-}|) \right) \| \nabla \xi_{n}^\pm \| ^2 - \left(\frac{|\nu^{-}|}{2} + \frac{1}{34}(\nu^{+} - 3|\nu^{-}|) \right) \| \nabla \xi_{n-1}^\pm \| ^2 \\
&\quad \leq \frac{C^4}{64\varepsilon^2 \Delta t} \| \xi_{n}^\pm \| ^2 + \frac{C^2}{4\varepsilon} \| z_{n}^\pm \| ^2 \int_{t_{n-1}}^{t_{n+1}} dt + \frac{C^2}{4\varepsilon} \| p_{n+1} \| ^2 + \frac{C^2}{4\varepsilon} \| p_{h,n+1} \| ^2.
\end{align*}
\]
We then sum up (7.15) from $n = 1$ to $n = N - 1$ and multiply by $2\Delta t$. Applying the Gronwall inequality results in

$$
\left\{ \begin{array}{l}
\frac{1}{2} \left(\| \xi_n^+ \|^2 + \| 2\xi_n - \xi_{n-1}^0 \|^2 \right) + \frac{1}{2}
\sum_{n=1}^{N-1} \| D_2 \xi_n^+ + \Delta t (\nu^+ - 3\nu^-) \| \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{4\epsilon} \sum_{n=1}^{N-1} \int_{t_{n-1}}^{t_n} \| \eta_t^+ \|^2 dt + \frac{C^2}{4\epsilon} \sum_{n=1}^{N-1} \int_{t_{n-1}}^{t_n} \| z_{t, t}^+ \|^2 dt \\
+ \frac{C^2}{4\epsilon} \sum_{n=1}^{N-1} \| p + p_{n+1}^+ - p_{n+1}^- \|^2 + \frac{C^2}{4\epsilon} \| B_0 \|^2 \sum_{n=1}^{N-1} \| \nabla \eta_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \sum_{n=1}^{N-1} \int_{t_{n-1}}^{t_n} \| \nabla \eta_n^+ \|^2 dt + \frac{C^2}{2\epsilon} \sum_{n=1}^{N-1} \| \nabla \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \sum_{n=1}^{N-1} \| \nabla \nabla \xi_n^+ \|^2 + \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \| z_{t, t}^+ \|^2 \sum_{n=1}^{N-1} \| \nabla \eta_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 + \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 + \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 + \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 + \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 \\
+ \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 + \frac{C^2}{2\epsilon} \| \nabla \nabla \xi_n^+ \|^2 \\
\end{array} \right\}
$$

\leq C_1 \exp(CN\Delta t) \left\{ \begin{array}{l}
\| z_{t, t}^+ - z_{t, t}^- \|^2 + \| z_{t, t}^- - z_{t, t}^+ \|^2 + \| \nabla (z_{t, t}^+ - z_{t, t}^-) \|^2 \\
+ \| \nabla (z_{t, t}^+ - z_{t, t}^-) \|^2 + h^{2k+2} \| z_{t, t}^- \|^2 \| z_{t, t}^- \| \| \nabla \eta_n^+ \|^2 \| \nabla \eta_n^+ \|^2 \\
+ h^{2k+2} \| p \| \| \nabla \eta_n^+ \|^2 + h^{2k+2} \| z_{t, t}^- \|^2 \| \nabla \eta_n^+ \|^2 + h^{2k+2} \| z_{t, t}^- \|^2 \| \nabla \eta_n^+ \|^2 \\
\end{array} \right\},
$$

where we used the standard interpolation error estimates. As a consequence, there exists a positive constant C_0 such that
\[
\frac{1}{2} \left(\|\xi_N^+\|^2 + \|\xi_N^-\|^2 + \|2\xi_N - \xi_{N-1}^-\|^2 + \|2\xi_N^- - \xi_{N-1}^-\|^2 \right) \\
+ \Delta t (\nu^+ - 3\nu^-) \sum_{n=2}^N \left(\|\nabla \xi_n^+\|^2 + \|\nabla \xi_n^-\|^2 \right) + \frac{1}{2} \sum_{n=1}^{N-1} \left(\|\delta \xi_{n+1}^+\|^2 + \|\delta \xi_{n+1}^-\|^2 \right)
\]
\[
\leq C_0 \left\{ \|z_{n+1}^+ - z_{h,n+1}^+\|^2 + \|z_n^- - z_{h,n}^-\|^2 + \|z_0^- - z_{h,0}^-\|^2 + \|z_0^+ - z_{h,0}^+\|^2 + \|z_{h,0}^- - z_{h,0}^+\|^2 \\
+ \|\nabla (z_{n+1}^+ - z_{h,n+1}^+)^2 + \|\nabla (z_n^- - z_{h,n}^-)^2 + \|\nabla (z_0^- - z_{h,0}^-)^2 + \|\nabla (z_0^+ - z_{h,0}^+)^2 + \|\nabla (z_{h,0}^- - z_{h,0}^+)^2 \\
+ \Delta t^2 \|z_{n+1}^+\|^2 + \Delta t^2 \|z_{h,n+1}^-\|^2 + \Delta t^4 \|z_{n+1}^+\|^2 + \Delta t^4 \|z_{h,n+1}^-\|^2 + \Delta t^4 \|z_{n+1}^-\|^2 + \Delta t^4 \|z_{h,n+1}^+\|^2 \\
+ h^{2+k+2} \|p\|\|z_{n+1}^+\|^2 + h^{2+k} \|z_n^-\|^2 + h^{2+k} \|z_{h,n+1}^-\|^2 + h^{2+k+2} \|z_0^-\|^2 + h^{2+k+2} \|z_{h,0}^-\|^2 + h^{2+k+2} \|z_0^+\|^2 + h^{2+k+2} \|z_{h,0}^+\|^2 \right\}.
\]

To complete the error estimates, we add both sides of (7.16) with

\[
\text{Extra terms} = \frac{1}{2} \left(\|\eta_N^+\|^2 + \|\eta_N^-\|^2 + \|2\eta_N^- - \eta_{N-1}^-\|^2 + \|2\eta_N^- - \eta_{N-1}^-\|^2 \right)
+ \Delta t (\nu^+ - 3\nu^-) \sum_{n=2}^N \left(\|\nabla \eta_n^+\|^2 + \|\nabla \eta_n^-\|^2 \right)
+ \frac{1}{2} \sum_{n=1}^{N-1} \left(\|D_2 \eta_{n+1}^+\|^2 + \|D_2 \eta_{n+1}^-\|^2 \right),
\]

and apply the triangle inequality for the left-hand side. Noticing that the upcoming new terms are already contained in the right hand side of (7.16), we conclude the proof.

\textbf{Proof of Theorem 4.2.} In this case we would add and subtract \(\nu^- a \left(z_{n+1}^+, \xi_{n+1}^+ \right)\) to the linear term \(\mathcal{M}_{n+1}^\pm\), which becomes

\[
\mathcal{M}_{n+1}^\pm = \nu^- a \left(\eta_{n+1}^+, \xi_{n+1}^+ \right) + \nu^- a \left(\epsilon_{n+1}^+, \xi_{n+1}^+ \right) + \nu^- a \left(D_2 z_{h,n+1}^+, \xi_{n+1}^+ \right).
\]

The last terms is bounded by

\[
\nu^- a \left(D_2 z_{h,n+1}^+, \xi_{n+1}^+ \right)
= \nu^- a \left(D_2 z_{h,n+1}^+ - D_2 \eta_{n+1}^+ - D_2 \xi_{n+1}^+ \right)
\leq |\nu^-| \left(\|\nabla D_2 z_{h,n+1}^+\| \|\nabla \xi_{n+1}^+\| + \|\nabla D_2 \eta_{n+1}^+\| \|\nabla \xi_{n+1}^+\| + \|\nabla D_2 \xi_{n+1}^+\| \|\nabla \xi_{n+1}^+\| \right)
\leq 3|\nu^-| \|\nabla \xi_{n+1}^+\|^2 + \frac{|\nu^-|^2}{4\varepsilon} \left(\|\nabla D_2 z_{h,n+1}^+\|^2 + \|\nabla D_2 \eta_{n+1}^+\|^2 + \|\nabla D_2 \xi_{n+1}^+\|^2 \right)
\leq 3|\nu^-| \|\nabla \xi_{n+1}^+\|^2 + \frac{|\nu^-|^2}{4\varepsilon} \left(\|\nabla D_2 z_{h,n+1}^+\|^2 + \|\nabla D_2 \eta_{n+1}^+\|^2 + \|\nabla D_2 \xi_{n+1}^+\|^2 \right).
\]

where we used the inverse inequality at the last step. Treating all the other terms analogously as in the previous proof, we obtain (4.3).
REFERENCES

[1] H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405.
[2] L. Barleon, V. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401–412.
[3] J. D. Barrow, R. Maartens and C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131–171.
[4] D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003.
[5] P. Bodenheimer, G. P. Laughlin, M. Różycka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007.
[6] J. Connors, J. Howell and W. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50 (2012), 1297–1319.
[7] P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
[8] M. Dobrowolny, A. Mangeney and P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45 (1980), 144–147.
[9] E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169.
[10] E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Université Joseph Fourier, Grenoble, 2007.
[11] W. M. Elsasser, The hydromagnetic equations, Phys. Rev., 79 (1950), 183–183.
[12] A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics.
[13] J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17.
[14] S. Galtier, S. V. Nazarenko, A. C. Newell and A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536 (2000), 291–330.
[15] P. Goldreich and S. Sridhar, Toward a theory of interstellar turbulence. II: Strong Alfvénic turbulence, ApJ, 438 (1995), 763–775.
[16] H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431–1438.
[17] N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308.
[18] T. Heister, M. Mohenjijaman and L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71 (2017), 21–43.
[19] W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
[20] P. S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. A.J., 7 (1964), 566–571.
[21] R. H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8 (1965), 1385–1387.
[22] W. Layton, H. Tran and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014), 1083–1102.
[23] T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvvhNwAACAAJ.
[24] E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991, 145–156.
[25] M. Meneguzzi, U. Frisch and A. Pouquet, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47 (1981), 1060–1064.
[26] D. Mitchell and D. Gubser, Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1 (1988), 349–364.
[27] B. Punsly, *Black Hole Gravitohydromagnetics*, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008.

[28] M. Sermange and R. Temam, *Some mathematical questions related to the MHD equations*, Comm. Pure Appl. Math., 36 (1983), 635–664.

[29] J. V. Shebalin, W. H. Matthaeus and D. Montgomery, *Anisotropy in MHD turbulence due to a mean magnetic field*, J. Plasma Phys., 29 (1983), 525–547.

[30] S. Smolentsev, R. Moreau, L. Bühler and C. Mistrangelo, *MHD thermofluid issues of liquid-metal blankets: Phenomena and advances*, Fusion Eng. Des., 85 (2010), 1196–1205.

[31] D. Sondak and A. A. Oberai, *Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation*, Phys. Plasmas, 19 (2012), 102308.

[32] C. Trenchea, *Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows*, Appl. Math. Lett., 27 (2014), 97–100.

[33] M. K. Verma, *Statistical theory of magnetohydrodynamic turbulence: Recent results*, Phys. Rep., 401 (2004), 229–380.

[34] I. Veselovsky, *Turbulence and waves in the solar wind formation region and the heliosphere*, Astrophys. Space Sci., 277 (2001), 219–224.

[35] N. Wilson, A. Labovsky and C. Trenchea, *High accuracy method for magnetohydrodynamics system in Elsässer variables*, Comput. Methods Appl. Math., 15 (2015), 97–110.

[36] G. Yuksel and R. Ingram, *Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers*, Int. J. Numer. Anal. Model., 10 (2013), 74–98.

Received March 2017; revised August 2017.

E-mail address: yol34@pitt.edu
E-mail address: trenchea@pitt.edu