A microbial transformation using *Bacillus subtilis* B7-S to produce natural vanillin from ferulic acid

Peng Chen¹*, Lei Yan²*, Zhengrong Wu³, Suyue Li³, Zhongtian Bai⁴, Xiaojuan Yan³, Ningbo Wang³, Ning Liang³ & Hongyu Li¹

Bacillus subtilis strain B7-S screened from 18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by *Bacillus subtilis* B7-S (*B. subtilis* B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by *B. subtilis* B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of *B. subtilis* plays a role in the induction of ferulic acid tolerance. These results demonstrate that *B. subtilis* B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

Vanillin (C₈H₈O₃, 4-hydroxy-3-methoxy-benzaldehyde), one of the most important flavor compounds, is widely used in the food, beverage, cosmetic, pharmaceutical and medical industries¹⁻². The increasing market demand necessitates improvements in the yield of vanillin. At present, the market demand for vanillin exceeds 15,000 tons, of which only 2,000 tons are obtained naturally; the remainder is produced by chemical synthesis³. However, due to the low yield of natural vanillin production and the slow growth of plant tissues, vanillin production by extraction from plant products is limited⁴⁻⁵. Furthermore, the productions rate of vanilla cell culture and vanilla bean extract are extremely low and the method is expensive. Nowadays, vanillin is mainly produced chemically via guaiacol and lignin, leading to a cheaper product but of lower quality, environmentally unfriendly production processes and lacks substrate selectivity, which might reduce the process efficiency and increase downstream costs⁶⁻⁷. Moreover, according to UK and EU legislations, synthesized vanillin are artificial or nature-identical and can thus not be considered for the making of natural product⁸. Thus, the demand of society for consumption of natural flavor additives has been a great effect on the flavor-producing industries, as the majority of today’s flavors need to be natural. Moreover, natural vanillin is sought after in the worldwide market, and its price is 80–267 times higher than that of the synthetic product⁹.

The use of microbial cells and their enzymes as bioconversion in the synthesis of fine chemicals has attracted much attention in the field green chemistry and white biotechnology¹. As an alternative to traditional methods, bioconversion has been recognized as an effective technique for the production of natural vanillin. Compared to the chemical methods mentioned above, biotransformation of vanillin produces extraordinary increases in productions natural characteristics and health care and is efficient, ecologically safe. There is a growing tendency in the production of vanillin from natural materials by bioconversion, which can then be considered as a natural aroma chemical⁹. Bioconversion can be defined as the catalysis of the conversion of potential precursors (ferulic acid, vanillic acid, eugenol, isoeugenol, phenolic stilbenes, aromatic amino acid, and so on) by isolated enzymes or by microorganisms¹⁰⁻¹¹. Enzymatic catalysis cannot match the large-scale synthesis and production

¹School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, PR China. ²College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China. ³Gansu Institute of Business and Technology, Yannan Road No. 449, Lanzhou, 730010, PR China. ⁴The First Hospital of Lanzhou University, Donggang West Road No. 1, Lanzhou, 730020, PR China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to H.L. (email: lihy@lzu.edu.cn)

OPEN
of vanillin, and bioconversion using whole microbial cells is therefore considered an important and efficient tool for the mass production of vanillin\(^7,12,13\). Recently, research into the production of vanillin by bioconversion has increased due to its important advantages, such as the relatively mild reaction conditions, the high substrate selectivity, and fewer environmental problems\(^14–16\). Among the above-mentioned vanillin precursors, ferulic acid (4-hydroxy-3-methoxycinnamic acid) is an extremely abundant natural aromatic product in plants, and it occurs as a component of the cell walls in many agriculturally important crops, such as rice, wheat, maize, and sugarcane\(^4,17\). It has been reported that agro waste containing ferulic acid can be cost-effectively used to produce natural vanillin through microbial conversion rather than conventional chemical reagents\(^3\).

Although vanillin production via conversion of ferulic acid has been widely reported in various microorganisms, including Pseudomonas acidovorans, Saccharomyces cerevisiae, Rhodotorula rubra, Streptomyces setonii, Bacillus coagulans, Streptomyces halstedii, Schizothrichum commune, Bacillus licheniformis, Delftia acidovorans, Pseudomonas putida, and Sphingomonas paucimobilis\(^18–24\). These studies mainly focused on the isolation and identification of transforming strains and the yield of vanillin. Generally, the bioconversion of ferulic acid is a complex process, and many factors may influence the microbial catalysis. However, to the best of our knowledge, there has been no report on the systemic investigation of factors that affect the conversion of ferulic acid. The ability of bacteria to produce natural vanillin from ferulic acid is worthy of study. The fundamental knowledge derived from this study should provide a valuable platform for further investigation into the behavior of bacteria involved in ferulic acid bioconversion and has potential biotechnological applications in natural vanillin production.

In the current study, we screened ferulic acid-degrading bacteria and found a novel strain of Bacillus subtilis (B. subtilis), labeled as B7-S, capable of biotransformation of ferulic acid to vanillin. The behavior of B. subtilis B7 in response to different initial concentrations of ferulic acid was investigated in a series of batch experiments. To industrialize the conversion of ferulic acid by B. subtilis B7-S, the small-scale batch experiments was carried out in a 5-L fermenter based on the results of a bioconversion study. In addition, the experimental data on ferulic acid bioconversion were analyzed and simulated by mathematical models.

Results and Discussion

As shown in Table 1, the production of vanillin by bacteria and actinomyces (>0.010 g/L) is higher than that by fungi (<0.010 g/L). Among the strains screened here, the productions of vanillin by B. subtilis, Enterobacter cloacae, and Bacillus coagulans were the highest, and the productions of vanillin by Cantharellus cibarius, Boletus edulis, and Club fungi were the lowest (<0.003 g/L).

Microorganism	GenBank Accession numbers	Molar conversion rate (%)	Conversion efficiency (%)
Bacillus subtilis B7	JQ086378	13.33%	42.45%
Bacillus subtilis B7-S	JQ086379	18.42%	63.30%
Bacillus steatotherophilus	ND\(^a\)	3.59%	12.61%
Enterobacter cloacae Y219	JQ086381	9.59%	29.25%
Bacillus coagulans	ND	7.25%	24.74%
Enterobacter aerogenes	ND	3.79%	10.97%
Corynebacterium glutamicum	ND	2.21%	10.27%
Pseudomonas putida	ND	4.48%	12.44%
Escherichia coli BL21	ND	2.55%	16.17%
Candida kefir	ND	1.69%	3.99%
Kluyveromyces lactis B9	JQ086382	1.37%	3.86%
Rhodotorula lactosa C8	JQ086383	2.46%	7.08%
Kluyveromyces marxianus D10	JQ086384	2.59%	7.64%
Kluyveromyces marxianus 15D	JQ086385	1.24%	5.08%
Rhodotorula rubra	ND	1.18%	7.57%
Streptomyces thermophilia	ND	5.90%	16.72%
Boletus edulis X920NG	JQ086386	0.99%	4.92%
Cantharellus sp. KXS60JY	JQ086387	0.92%	7.45%
Artomyces pyxidatus KX320SH	JQ086388	0.92%	9.06%

Table 1. Microbial conversion of ferulic acid by various microorganisms. \(^a\)ND, no detection.
Acid conversion by eukaryotes was previously described by Zheng, who found that the molar conversion rate of *Aspergillus niger* SW-33 was as high as 29.35%\(^2\). Moreover, the results shown in Table 1 revealed that although eukaryotes show strong conversion ability, they also possess a strong vanillin decomposition capacity. Therefore, conversion processes involving eukaryotes will require two-step methodologies.

On the other hand, the results showed that the conversion rates of bacteria and actinomyces (>10%) were higher than that of fungi (<10%). The production of vanillin by *B. subtilis*, *Enterobacter cloacae*, and *Bacillus coagulans* was higher than the production by other strains. Among the 18 strains tested, the conversion rate of *B. subtilis* B7 was the highest. Meanwhile, we also planned to adopt the most effective one-step method in this experiment. Therefore, we chose *B. subtilis* B7 as the original strain for the following domestication induction experiment to improve its conversion capability (Fig. 1).

Ferulic acid and vanillin both have an inhibitory effect on bacteria growth. Although *B. subtilis* could acquire energy from the medium to convert ferulic acid into vanillin, its growth is affected by the substrate concentration. The bacteria could grow and convert ferulic acid to vanillin when the ferulic acid concentration was between 0.2–0.8 g/L (Fig. 2(a)). However, when the ferulic acid concentration was higher than 0.8 g/L, the conversion capability was lower. When the ferulic acid concentration was 1.3 g/L, the rate of conversion by *B. subtilis* reached the lower limit. The bacteria could not grow on a medium with this high concentration of ferulic acid. To increase the tolerance concentration of the strains to ferulic acid, we chose an initial concentration of ferulic acid of 0.8–1.0 g/L. At this concentration, the production of vanillin by the bacteria began to decrease. Figure 2(b) shows the conversion rate at different concentrations of ferulic acid. When the ferulic acid concentration was low (0.2 g/L ferulic acid), the conversion rate was quite high; however, with the increase of the concentration of ferulic acid, the conversion rate by the bacteria was reduced. When the concentration reached 1.2 g/L, the conversion rate was lower than 5%. When it reached 1.6 g/L, the conversion rate was lower than 1%.

When the ferulic acid concentration was 0.8 g/L, during the continuous passage of *B. subtilis* B7, the vanillin concentration reached a peak at 96 h (Fig. 3(a)). The experimental data were analyzed by the Gaussian peak function, and the results showed that when the ferulic acid concentration was 0.8 g/L, it took 96 hours to reach the peak concentration of vanillin, which was 0.188 g/L (Fig. 3(b)). While the ferulic acid concentration was 0.9 g/L, it took 48 hours to reach the peak concentration of vanillin, which was 0.159 g/L (Fig. 3(d)). Compared to the process with a ferulic acid concentration of 0.8 g/L, the conversion process was 48 hours shorter. When the ferulic acid concentration was 1.0 g/L, it took 48 hours to reach the peak concentration of vanillin (Fig. 3(e)). However, Fig. 3(f) shows that when the initial ferulic acid concentration was 0.8 g/L, the peak concentration of vanillin was 0.198 g/L, which is higher 105.2% than the initial production.

When the initial ferulic acid concentrations were 0.8 and 0.9 g/L, the conversion rates were 19% and 19.86%, respectively (Fig. 4(a)). While the initial ferulic acid concentration was 1.0 g/L, the molar conversion rate was 24.75%. This result shows that tolerance to ferulic acid by *B. subtilis* was enhanced, and the conversion capability was improved. To further analyze the changes in the conversion rate, we carried out a conversion experiment with the continuous passage of 5 generations, and the results are shown in Fig. 4(b). When the initial ferulic acid concentration was 0.8, 0.9, or 1.0 g/L, during the first 3 generations of conversion process, the molar efficiency was.
and it can also improve the bioconversion. Therefore, according to the above analysis, the optimum conversion was 200 r/min, as shown in Fig. 5(f). The lower the volume of culture medium or the higher the shaking speed, the conversion efficiency increased. The effects of the initial fermentation volume and shaking speed on the bioconversion were shown in Fig. 5(c) and Fig. 5(f). The conversion efficiency increased significantly when the fermentation volume was less than 5%, as shown in Fig. 5(c). Furthermore, the conversion efficiency increased with an increase in the shaking speed, as shown in Fig. 5(f). The conversion efficiency increased significantly with increases in the shaking speed and the maximum conversion efficiency was 83.4% when the shaking speed was 200 r/min, as shown in Fig. 5(f). The lower the volume of culture medium or the higher the shaking speed, the higher the conversion efficiency. The high oxygen concentration promotes the growth of microbial cells and it can also improve the bioconversion. Therefore, according to the above analysis, the optimum conversion is 200 r/min.

It is well known that the pH plays a crucial role in microbial growth and bioconversion processes. Generally, variations in pH can strongly influence the chemistry of the substrate, regulate the activity of functional groups on the microbial cell walls, and alter enzymes involved in the conversion reaction. The effect of the initial pH on the bioconversion of ferulic acid by B. subtilis B7-S is graphically presented in Fig. 5(a). As shown in the figure, the conversion efficiency did not vary significantly over a temperature range of 25–30 °C, whereas it decreased significantly when the temperature was above 35 °C. The maximum conversion efficiency was 72% at 35 °C. The results indicated that the temperature might be an important factor for the energy-dependent mechanisms in ferulic acid bioconversion by microbial cells.

Figure 5(a) shows the effect of temperature on the bioconversion of ferulic acid by B. subtilis B7-S at five different temperatures (25, 30, 35, 40 and 45 °C). As shown in the figure, the conversion efficiency did not vary significantly over a temperature range of 25–30 °C, whereas it decreased significantly when the temperature was above 35 °C. The maximum conversion efficiency was 72% at 35 °C. The results indicated that the temperature might be an important factor for the energy-dependent mechanisms in ferulic acid bioconversion by microbial cells.

In the bioconversion efficiency with the increase of the initial concentration of ferulic acid may be attributed to a lack of available microbial cells to accommodate additional ferulic acid in the solution. Ferulic acid was reported to be toxic to microorganisms, and it may damage intracellular hydrophobic sites and cause ion leakage by altering membrane permeability, leading to cell death at high concentrations. Moreover, vanillin is also toxic to many living organisms. Therefore, in the case of a lower initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency. With the increase of the initial concentration, the substrate has no effect on the bioconversion efficiency.

Figure 2. Ferulic acid resistance and conversion rate under different initial ferulic acid concentrations. (a) Effect of the initial ferulic acid concentration on the bioconversion of ferulic acid by B. subtilis B7-S and (b) Efficiency of bioconversion by B. subtilis B7-S at different initial concentrations of ferulic acid.
conditions for the production of vanillin with *B. subtilis* B7-S may be summarized as follows: temperature, 35 °C; initial pH, 9.0; inoculum volume, 5%; ferulic acid concentration, 0.6 g/L; volume of culture medium, 20%; and shaking speed, 200 r/min.

Based on the results of shake-flask fermentation, repeated batch fermentation was carried out in a 5-L fermenter. Suspensions of *B. subtilis* B7-S were used as inoculums, and the medium and operating conditions were as described in Section 2.3 and Section 2.4, respectively. The molar conversion ratio and conversion efficiency were simultaneously determined for the period (approximately 1 h) of the first fermentation. As shown in the figure, the maximum molar conversion was achieved within 30 h (65%), and thereafter, the conversion efficiency decreased to a value below 9% as the fermentation time increased, as shown in Fig. 6(a). This result was attributed to the high density of biomass and the low conversion efficiency. When the maximum vanillin concentration was detected, the fermented broth was replaced. Therefore, a second fermentation experiment was carried out over a 30-h period. The molar conversion ratio and conversion efficiency attained a maximum value after 3 h of fermentation, and thereafter, they did not show any significant change, as presented in Fig. 6(b).

To further investigate the stability of the fermentation process, eight small-scale fermentation experiments were performed. As shown in Fig. 6(c), the conversion efficiency changed significantly and the value increased

Figure 3. Adaptation of *Bacillus subtilis* B7-S to improve tolerance to ferulic acid. (a) Bioconversion of 0.8 g/L ferulic acid by *B. subtilis* B7-S (b) A test for the nonlinear model using 0.8 g/L ferulic acid (c) Bioconversion of 0.9 g/L ferulic acid by *B. subtilis* B7-S (d) A test for the nonlinear model using 0.9 g/L ferulic acid (e) Bioconversion of 1.0 g/L ferulic acid by *B. subtilis* B7-S (f) A test for the nonlinear model using 1.0 g/L ferulic acid.
from 8.19% to 36.48% from the 1st to the 4th fermentation batch. However, the conversion efficiency tended to stabilize between 55% and 63%, thus attaining the current rate of bioconversion using microorganisms in industrial applications.

The FT-IR spectra of the standard and crude vanillin were taken to investigate the nature of the bioconversion product (Fig. 6(d)). The FT-IR peaks at 3171, 2924, 2475, 1667, 1591, 1372, 1152, 1026, 859, and 629 cm$^{-1}$ of the standard vanillin corresponded to the -OH, -NH, -CH, amide I, and amide II bands of protein peptide bonds, the -COOH groups, and the -CN stretching, C=\equivO stretching and -CN stretching vibrations. The IR spectrum of sample c was closer to sample b. The primary reason is that sample b dried for 3 days, while sample c dried for 6 days. These FT-IR spectra can be used as a quality standard to assess the vanillin produced by bioconversion.

More recently, in EU Commission Regulation (EC) No. 629/2008 29, the maximum level of lead for all food supplements was set at 3.0 mg/kg. Although no maximum level has yet been established in Europe for arsenic, the report on the exposure of the European population to heavy metals in the diet showed that the concentration of arsenic is generally less than 0.25 mg/kg29. The ICP-AES analysis indicated that the concentrations of lead and arsenic in crude vanillin were both less than 0.018 mg/kg. These results implied that the vanillin produced from ferulic acid via bioconversion is safe.

Figure 7(b) shows domestic B. $subtilis$ B7-S, which is significantly different in cell morphology, changing from a rodlike morphology to a sphere, which is relevant to the adaptation to the environment. At higher concentrations of ferulic acid, the bacteria became spherical to reduce the area in contact with the ferulic acid. Figure 8 shows the TEM analysis of the original strain and the domestic strain. Figure 8(A,C) show the original B7-S strain, the non-domestic strain and the induced wild strain. The bacteria are rodlike with a thicker cell wall and flagella outside the cell. Figure 8(B,D) show domestic B. $subtilis$ B7-S, which has an irregular spherical morphology, a thinner cell wall, a rough external cell surface, reduced cytoplasm, and cytosol close to the side of the cell wall; the flagella could not be detected. Thus, the cell morphology was altered to adapt to the high concentration of ferulic acid. Furthermore, ferulic acid has an inhibitory effect on cell survival.

Methods

Microorganism strains and culturing conditions. Ferulic acid and 2-thiobarbituric acid were purchased from Qin Chemical Reagent Co., Ltd. (Shanghai, China). Vanillin was purchased from Sigma–Aldrich and Tianxin Chemical Reagent Co., Ltd. (Tianjin, China). All other chemicals were analytical grade. Several bacteria, yeast and fungi can employ ferulic acid as substrate to produce vanillin. The strains screened are listed in Table 1. B. $subtilis$ B7-S (CCTCC M2011162) was deposited in the China Center for Type Culture Collection (CCTCC).

Nucleotide sequence accession number. The draft sequence of B. $subtilis$ B7-S under this whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. AZN100000000. The full length of 16S rRNA gene of B. $subtilis$ B7-S are deposited at GenBank with an accession number JQ86379.

Optimization of bioconversion of ferulic acid. All batch experiments were carried out in Erlenmeyer flasks on a horizontal water-bath shaker. To investigate the influence of temperature, initial pH, inoculum volume, substrate concentration, volume of culture medium and shaking speed on the bioconversion of ferulic acid by B. $subtilis$ B7-S, different conditions of temperature (25–45 °C), pH (5.0–9.0), inoculum volume (5–20%), substrate concentration (0.6–1.0 g/L), volume of culture medium (10–60%) and shaking speed (0-200 r/min) were evaluated in this study. The pH of the solutions was adjusted by adding 1.0 M HCl or 1.0 M NaOH.
Small-scale bioconversion experiments. The small-scale bioconversion experiments was carried out in a 5-L fermenter with a 3-L working volume with a 5% inoculum volume at an incubation temperature of 35 °C, an agitation speed of 200 r/min, an aeration rate of 0.5 L/min and 0.1 MPa pressure. Time-course samples for the batch experiments and small-scale bioconversion experiments were all taken and analyzed. All experiments were conducted in triplicate, and the average values were reported.

Analytical procedures. The vanillin content was determined by the colorimetric thiobarbituric acid assay with the modifications. The cell concentration was determined in terms of the optical dispersion of the culture samples at a wavelength of 600 nm using a UV–Vis Spectrophotometer. The metal content in the supernatant liquid was analyzed by an inductively coupled plasma atomic emission spectrometer (ICP-AES, IRIS Advantage ER/S, Thermo Jarrell Ash, USA). FT-IR spectroscopy was used to characterize the bioconversion products based on the procedure of Yan et al. The microscopic features of the samples were observed through JEOL scanning electron microscope (SEM; JSM-5600LV, Tokyo, Japan) operated at 20 kV and JEOL transmission electron microscope.
spectroscopy (TEM; JEM-1230, Japan) operated at 100 kV. The sample preparation method for SEM analysis was previously described33.

The molar conversion ratio (molar yield) of vanillin was obtained by Equation (1), and the conversion efficiency of vanillin was calculated by Equation (2). The data were analyzed using a non-linear curve fitting analysis with the Amplitude version of the Gaussian peak function in the Origin Pro 8.0 package (OriginLab, USA). The Gaussian peak model is shown in Equation (3).

\[M_y = \frac{M_v}{M_I} \times 100\% \]

Figure 6. Results for different fermentation batches. (a) Results of the first fermentation experiment (b) Results of the second fermentation experiment (c) Results of 1st through the 8th fermentation batches (d) FT-IR spectra of the crude and standard vanillin (a: standard vanillin; b,c: treated vanillin).

Figure 7. An SEM image of the surface of B. subtilis B7. (A) Unadapted Bacillus subtilis B7 before bioconversion (scale bar = 1 μm) (B) The adaptation of Bacillus subtilis B7 after bioconversion (scale bar = 2 μm).
where M_y and R are the molar conversion ratio (%) and conversion efficiency (%), respectively, M_v and M_f are the molar number of vanillin and ferulic acid in medium, respectively, and B is the cell concentration (OD_{600nm}).

$$R = \frac{M_y}{B} \times 100\%$$ \hspace{1cm} (2)

where A is the amplitude (peak height), w is the peak width of $A_{1/2}$, and X_c is the center of the peak value, respectively.

Figure 8. An TEM image of the surface of *B. subtilis* B7. (A,C) Unadapted *Bacillus subtilis* B7 before bioconversion (B,D) The adaptation of *Bacillus subtilis* B7 after bioconversion (A,B) scale bar = 1 μm; (C,D) scale bar = 200 nm.

References

1. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H. & Momenbeik, E. Conversion of Isoeugenol to Vanillin by *Psychrobacter* sp. Strain CSW4. *Appl Biochem Biotechnol* 166, 1–12, doi: 10.1007/s12010-011-9397-6 (2012).
2. Lirdprapamongkol, K. *et al.* Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. *J Sci Food Agr* 57, 3055–3063, doi: 10.1021/jf033666b (2009).
3. Zamzuri, N. A. & Abd-Azi, S. Biovanillin from agro wastes as an alternative food flavour. *J Sci Food Agr* 93, 429–438 (2013).
4. Di Giosi, D. *et al.* Metabolic engineering of *Pseudomonas fluorescens* for the production of vanillin from ferulic acid. *J Biotechnol* 156, 309–316, doi: http://dx.doi.org/10.1016/j.jbiotec.2011.08.014 (2011).
5. Hrazdina, G. Aroma Production by Tissue Cultures. *J Agric Food Chem* 55, 1116–1123, doi: 10.1021/jf053146w (2006).
6. Longo, M. A. & Sanromán, M. A. Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies. *Food Technol Biotechnol* 44, 335–353 (2006).
7. Xu, P., Hua, D. & Ma, C. Microbial transformation of propenylbenzenes for natural flavour production. *Trends Biotechnol* 25, 571–576, doi: 10.1016/j.tibtech.2007.08.011 (2007).
8. Li, X., Yang, J., Gu, W., Huang, J. & Zhang, K. Q. The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by *Enterobacter* sp. P6-4 isolated from *Vanilla* root. *Process Biochem* 43, 1132–1137 (2008).
9. Ashengroth, M., Nahvi, I., Zarkesh-Esfahani, H. & Momenbeik, F. Candida galli strain PGO6: a novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic acid. *Carr Microbiol* 62, 990–998, doi:10.1007/s00288-010-9815-y (2011).

10. Vaithanomsat, P. & Apiwatanapiwat, W. Feasibility study on vanillin production from *Jatropha curcas* stem using steam explosion as a pretreatment. *Int J Chem Biomol Eng* 2, 211–214 (2009).

11. Van den Heuvel, R. H., Fraanje, M. W., Laane, C. & Van Berkel, W. J. Enzymatic synthesis of vanillin. *J Agric Food Chem* 49, 2954–2958, doi:10.1021/jf010095x (2001).

12. Serra, S., Fuganti, C. & Brenna, E. Biocatalytic preparation of natural flavours and fragrances. *Trends Biotechnol* 23, 193–198 (2005).

13. Ruiz-Teran, F., Perez-Amador, I. & Lopez-Muñoz, A. Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. *J Agric Food Chem* 49, 5207–5209, doi:10.1021/jf010723h (2001).

14. Mathew, S. & Abraham, T. E. Bioconversions of Ferulic Acid, an Hydroxycinnamic Acid. *Crit Rev Microbiol* 32, 115–125, doi:10.1080/1040841060079628 (2006).

15. Zhang, Y., Xu, P., Han, S., Yan, H. & Ma, C. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of *Bacillus subtilis* HSR. *Appl Microbiol Biotechnol* 73, 771–779, doi:10.1007/s00253-006-0544-a (2006).

16. Negishi, O., Sugiuara, K. & Negishi, Y. Biosynthesis of vanillin via ferulic acid in Vanilla planifolia. *J Agric Food Chem* 57, 9956–9961, doi:10.1021/jf070020m (2009).

17. Karmakar, B. et al. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of *bacillus coagulans*. *J Biotechnol* 80, 195–202, doi:10.1016/S0168-1656(00)00248-0 (2000).

18. Abdelkafi, S. et al. Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by *Halomonas elongata* DSM 2581T testing cells. *World J Microbiol Biotechnol* 24, 675–680, doi:10.1007/s11274-007-9523-8 (2008).

19. Cortez, D. V. & Roberto, I. C. Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by a thermophilic fungus *Sporotrichum thermophile*. *LWT-Food Sci Technol* 41, 212–215 (2008).

20. Ghosh, S., Sachan, A., Sen, S. K. & Mitra, A. Microbial transformation of ferulic acid to vanillic acid by *streptomyces sariannensis* MTCC 6637. *J Ind Microbiol Biotechnol* 34, 131–138 (2007).

21. Ji, L. et al. Enhanced resistance of *Saccharomyces cerevisiae* to vanillin by expression of *lacA* from *Trametes* sp. AH28-2. *Biotechnol Technol* 102, 8105–8109, doi:10.1016/j.biotech.2011.06.057 (2011).

22. Tsujiyama, S. & Ueno, M. Formation of 4-vinyl guaiacol as an intermediate in bioconversion of ferulic acid by *Schizosphyllum commune*. *Biosci Biotechnol Biochem* 72, 212–215 (2008).

23. Yoon, S.-H. et al. Production of vanillin from ferulic acid using recombinant strains of *Eschericia coli*. *Biotechnol Bioproc Eng* 10, 378–384, doi:10.1007/BF02931859 (2005).

24. Zheng, L. et al. Production of vanillin from waste residue of rice bran oil by *Acidithiobacillus ferrooxidans* sp. AH28-2. *Appl Microbiol Biotechnol* 100, 1115–1119, doi:10.1007/s00253-006-0328 (2007).

25. Zheng, Z., Zhu, S. & Sun, Z. Microbial transformation for producing vanillic acid and vanillin. *Industrial Microbiology* 32, 1–6 (2002).

26. Zhao, L. Q., Sun, Z. H., Zheng, P. & He, J. Y. Biotransformation of isoeugenol to vanillin by *Bacillus fusiformis* CGMCC1347 with the addition of resin HD-8. *J Biolog Biochem* 41, 1673–1676 (2006).

27. Topakas, E., Kalogeris, E., Kekos, D., Macris, B. J. & Christakopoulos, P. Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus *Sporotrichum thermophile*. *IWT-Food Sci Technol* 36, 561–565, doi:10.1016/s0023-6438(03)00060-4 (2003).

28. Winkelk, J. & Kao, K. C. Transcriptional analysis of lactobacillus brevis to n-butanol and ferulic acid stress responses. *Plasone* 6, e21438, doi:10.1371/journal.pone.0021438 (2011).

29. Baer, I. et al. IMEP-28: Total arsenic, cadmium, lead and mercury in food supplements. *JRC Scientific and Technical Reports JRC55271*, 1–46 (2009).

30. Chen, P. et al. Draft Genome Sequence of *Bacillus subtilis* Type Strain B7-S, Which Converts Ferulic Acid to Vanillin. *Genome Announcements* 2, e00027–00014, doi:10.1128/genomeA.00027-14 (2014).

31. Ashengroth, M., Nahvi, I. & Zarkesh-Esfahani, H. A bioconversion process using a novel isolated strain of *Pseudomonas* sp. ISP3C2 to produce natural vanillin from isoeugenol. *J Res Pharmaceut Sci* 3, 41–47 (2009).

32. Yan, L. et al. Biosorption of inorganic and organic arsenic from aqueous solution by *Acidithiobacillus ferrooxidans* BY-3. *J Hazard Mater* 178, 209–217 (2010).

33. Chen, P. et al. Biodegrading of redgar by *Acidithiobacillus ferrooxidans* using ferrous iron and elemental sulfur as the sole and mixed energy sources. *Biotechnol Technol* 102, 3260–3267, doi:10.1016/j.biotechnol.2010.11.059 (2011).

Acknowledgements

This work was supported by Gansu Province Science Foundation for Distinguished Young Scholars (Grant No. 1308RJDA014), Longyuan Support Project for Young Creative Talents (Grant No. GANZUTONGZI [2014] no. 4), Technology Program of Gansu Province (Grant No. 1205TCYA034), Technology Program of Lanzhou City (Grant No. 2013-4-115, Grant No. 2015-3-93), The Fundamental Research Funds for the Central Universities of China (Grant No. Izuyhj-2015-57), Natural Science Foundation of Gansu Province (Grant No. 1208RJZA219), Program of Science and Technology Innovation Teams Building in Heilongjiang Province (Grant No. 2012TD006) and Scientific Research Fund of Heilongjiang Provincial Education Department (Grant No. 12511361).

Author Contributions

H.Y.L. initiated and supervised the study, P.C., X.J.Y., N.B.W. and S.Y.L. draft the manuscript and performed the project. P.C., L.Y., Z.R.W., Z.T.B., N.L. and H.Y.L. revised the manuscript. All authors read and approved the final manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chen, P. et al. A microbial transformation using *Bacillus subtilis* B7-S to produce natural vanillin from ferulic acid. *Sci. Rep.* 6, 20400; doi: 10.1038/srep20400 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/