SUPPORTING INFORMATION

Strategies for Design of Potential Singlet Fission Chromophores Utilizing a Combination of Ground State and Excited State Aromaticity Rules

Ouissam El Bakouri,1 Joshua R. Smith,1,2 and Henrik Ottosson1*

1 Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden. 2 Department of Chemistry, Humboldt State University, One Harpst Street, Arcata, CA 95521, USA.
TABLE OF CONTENTS

CHOICE OF COMPUTATIONAL METHOD ... 5

Table S1. Electronic excitation energies (eV) of cyclobutadiene (CBD), benzene, pentacene and 1,3-diphenylisobenzofuran (DPB). ... 5

FULVENES.. 6

Table S2. The $E(T_1)_a$, $E(T_1)_a$, $E(S_1)$ and $E(T_2)$ of the differently substituted fulvenes sorted by substituents X and Y. .. 6
Table S3. The $E(T_1)_a$, $E(T_1)_a$, $E(S_1)$ and $E(T_2)$ of the differently substituted fulvenes sorted by $E(T_1)_a$. ... 12
Table S4. Absolute S_0, T_1, S_1 and T_2 energies (in a.u.) for the differently substituted fulvenes listed. .. 16
Table S5. NICS(1)$_{zz}$ values in the S_0 and T_1 states of the differently substituted fulvenes. .. 22
Table S6. MCI values for ten fulvenes .. 27
Table S7. Electronic excitation energies of the selected tetrasubstituted fulvenes. 28
Table S8. Comparison of experimental $E(S_1)$ and $E(T_1)$ and computed $E(S_1)$, $E(T_1)_a$ and adiabatic $E(T_1)_a$ of a DBP, pentacene, tetracene and four fulvenes. .. 28
Table S9. Spin-orbit coupling elements and %TAE([T]) values for a small selection of fulvenes. ... 29
Figure S1: Plots of HOMO and LUMO of the fulvene with X = CN and Y = NH$_2$, and the fulvene with X = NH$_2$ and Y = CN. .. 30
Table S10. Diradical (y$_0$) and tetraradical (y$_0$) character. 31
Figure S2. Two plots showing how $E(T_1)_a$, $E(S_1)$ and $E(T_2)$ vary as functions of the CC bond lengths marked in red of four fulvenes. .. 32
Table S11. The $\Delta E(S_1-T_1)$ of the parent fulvene and substituted fulvenes in Figure 2 and Figure S2 .. 32
Figure S3: The $E(S_1)$ and $E(T_1)_a$ plotted vs. ΔNICS(1)$_{zz,T1-S0}$, $E(T_2)$ and $E(S_1)$ plotted vs. ΔNICS(1)$_{zz,T1-S0}$, the $E(S_1)$ and $E(T_1)_a$ plotted vs. ΔHOMA$_{T1-S0}$, $E(T_2)$ and $E(S_1)$ plotted vs. ΔHOMA$_{T1-S0}$, the $E(S_1)$ and $E(T_1)_a$ plotted vs. ΔNICS(1)$_{zz,T1v-S0}$ and $\Delta E(S_1-T_1)_v$ plotted vs. ΔNICS(1)$_{zz,T1v-S0}$.. 33
Figure S4: The $E(T_1)$ plotted vs. NICS(1)$_{T1}$ and HOMAT$_{T1}$, HOMAT$_{T1}$ vs. NICS(1)$_{T1}$ and ΔHOMA$_{T1-S0}$ vs. ΔNICS(1)$_{T1-S0}$... 34
Figure S5. A comparison of the dependence of $E(S_1)$ and $E(T_1)_a$ on NICS(1)$_{zz,S0}$ and HOMA$_{S0}$ of fulvenes. ... 35

SUBSTITUTED CBDS .. 36

Figure S6. Percentage of the singly excited HOMO to LUMO configuration in the S_1 state of CBD and substituted CBDs (SCBD)$_8$. .. 36
Table S12. Coefficients of the major configurations from Gaussian output of the CBD derivatives .. 36
Table S13. The $\Delta E(S_1-T_1)_v$ of CBD and substituted CBDs (SCBD). 36
Figure S7. Dependence of $E(T_1)$ and $E(S_1)$ on ΔNICS(1)$_{zz,T1-S0}$ of the SCBD derivatives. R^2 is the squared correlation coefficient. .. 37

SUBSTITUTED PENTALENES ... 38
SUBSTITUTED INDACENES ... 40

BENZANNELATED CBDs .. 43

BENZANNELATED PENTALENES ... 52
Table S25: HOMA values of pentalene (PENT) and of the pentalene unit in benzannelated pentalenes in the T \textsubscript{1} state. ... 55
Figure S22. Electronic excitation energies (eV) and spin density of BENZPENT\textsubscript{5}, bis(styryl)BENZPENT\textsubscript{5} and BENZPENT\textsubscript{20}. ... 57
Figure S23. Additional plots of the variations in E(T\textsubscript{1})\textsubscript{a}, E(S\textsubscript{1}) and E(T\textsubscript{2}) as functions of benzannelation in selected benzannelated pentalenes. .. 58
Figure S24. NICS-XY scan of pentalene... 59
Figure S25. NICS-XY scans of BENZPENT\textsubscript{2}, BENZPENT\textsubscript{4}, BENZPENT\textsubscript{5} and BENZPENT\textsubscript{6} in their S\textsubscript{0} and T\textsubscript{1} states ... 59
Figure S26. NICS-XY scans of BENZPENT\textsubscript{8}, BENZPENT\textsubscript{9}, BENZPENT\textsubscript{10} and BENZPENT\textsubscript{11} in their S\textsubscript{0} and T\textsubscript{1} states ... 60
Figure S27. NICS-XY scans of BENZPENT\textsubscript{12}, BENZPENT\textsubscript{13}, BENZPENT\textsubscript{14}, BENZPENT\textsubscript{15}, BENZPENT\textsubscript{16} and BENZPENT\textsubscript{17} in their S\textsubscript{0} and T\textsubscript{1} states 61
Figure S28. NICS-XY scans of BENZPENT\textsubscript{18} and BENZPENT\textsubscript{19} in their S\textsubscript{0} and T\textsubscript{1} states ... 62
Figure S29. Comparison of NICS-XY scans of BENZPENT\textsubscript{1}, BENZPENT\textsubscript{3} and BENZPENT\textsubscript{7} using M06-2X, B3LYP and CAM-B3LYP.. 63
Figure S30. Full IUPAC names of BENZPENTs.. 64
Table S26. Excitation energies and ratios of a few benzannelated CBDs and pentalenes. 65

OTHER MOLECULES .. 66

Figure S31: Electronic excitation energies of the parent triafulvene and substituted triafulvenes. .. 66
Table S27. The $\Delta E(S_1\textsubscript{T_1})$\textsubscript{va} of the parent triafulvene and substituted triafulvenes.......... 66
Figure S32: Electronic excitation energies of the parent heptafulvene and substituted heptafulvenes. .. 66
Table S28. The $\Delta E(S_1\textsubscript{T_1})$\textsubscript{va} of the parent heptafulvene and substituted heptafulvenes..... 66
Figure S33. Electronic excitation energies of the parent silole and substituted siloles. 67
Table S29. The $\Delta E(S_1\textsubscript{T_1})$ of the parent silole and substituted siloles. 67
Figure S34. 1,1-Disubstituted tetraphenylsilole with X = H, Me, CF\textsubscript{3}, F, SiH\textsubscript{3} and SiMe\textsubscript{3}. 68
Figure S35. HOMO and LUMO and HOMO of the siloles with X = H, X = F and X = SiMe\textsubscript{3}. .. 68
Figure S36. Electronic excitation energies of thieno-annelated benzopentalenes............ 69
Table S30. The $\Delta E(S_1\textsubscript{T_1})$\textsubscript{va} of thieno-annelated benzopentalenes......................... 69
Figure S37: Additional schematic drawings of the changes in $E(T\textsubscript{1})$ and $E(S\textsubscript{1})$ as functions of increased T\textsubscript{1} and S\textsubscript{1} aromatic character for a compound class. 70

References .. 71
CHOICE OF COMPUTATIONAL METHOD
Choosing the method for computing excitation energies is important. Kaupp and co-workers used a TD-DFT-based protocol for the screening of singlet fission chromophores, and they proposed vertical excitation energies computed with local hybrid functionals. Yet, M06-2X was found to perform similarly, and we used this functional as we showed earlier that it gives good T1 state geometries for substituted fulvenes when compared to the T1 state geometries calculated with CASPT2. We first used the computational scheme derived by Zeng, Hoffmann, and Ananth which gives the correct ordering of the T1, S1, and T2 states of pentacene. This approach uses adiabatic excitations to the T1 state and vertical excitations to the S1 (T2) states from the S0 (T1) optimized structures. Additionally, the vertical excitations to the T1 state were computed for most of the compounds. To assess the performance of M06-2X in the present study we compare experimental excitation energies of two compounds known to undergo singlet fission; pentacene and 1,3-diphenylisobenzofuran (DPB). The same energy ordering is obtained with the M06-2X based protocol as in the experiments. Moreover, both singlet fission criteria are satisfied for pentacene and nearly satisfied in case of DPB, which reveals that M06-2X should be a suitable method. For benzene and CBD, the arrangement of the electronic excited states is the same in both methods.

NICS-XY scans have also been carried out using B3LYP and CAM-B3LYP, apart from M06-2X, in order for us to see how the different amounts of exact exchange as well as range-corrections impacted on the NICS-XY scans of extensively \(\pi \)-conjugated compounds.

Table S1. Electronic excitation energies (eV) of cyclobutadiene (CBD), benzene, pentacene and 1,3-diphenylisobenzofuran (DPB) computed at TD-M06-2X/def2-TZVPD//M06-2X/6-311+G(d,p) and, in parenthesis, CASPT2/ANO-RCC-VDZP//M06-2X/6-311+G(d,p) levels.

Compound	\(E(T_1)^a \)	\(S_1^b \)	\(T_2^b \)	\(E(S_1)/E(T_1) \)	\(E(T_2)/E(S_1) \)
CBD	0.51 (0.49)	2.70 (2.94)	4.69 (5.27)	5.29 (6.00)	1.66 (1.79)
Benzene	4.49 (3.96)	5.57 (5.09)	6.64 (6.10)	1.24 (1.29)	1.19 (1.20)
Pentacene	0.98 (0.86)	2.28 (2.30)	2.38 (>2.00)	2.33 (2.67)	1.04 (0.87)
DPB	1.64 (1.41)	3.22 (3.01)	3.58 (3.16)	1.96 (2.13)	1.11 (1.05)

\(^a\) \(T_1 \) adiabatic excitation energies computed at the M06-2X or CASPT2 triplet optimized geometry depending on the system.

\(^b\) \(S_1 \) (\(T_2 \)) vertical excitations computed from the \(S_0 \) (\(T_1 \)) optimized geometry.

\(^c\) Energies in parenthesis computed at the CASPT2/ANO-RCC-VDZP level.

\(^d\) Energies in parenthesis correspond to experimental data (for pentacene see ref. S3 and, for DPB see ref. S4, S5).
FULVENES

Table S2. The $E(T_1)v$, $E(T_2)v$, $E(S_1)$ and $E(T_2)$ of the differently substituted fulvenes sorted by substituents X and Y. The label “REARRANGED” means that the optimal structure is not the one expected due to the rearrangement of the substituents or the formation of chemical bonds between substituents. Such cases are therefore not corresponding to original fulvenic structures.

X=H	Y = H	2.53	1.72	3.64	3.20	2.12	0.88	1.86			
X = BF₂	Y = BF₂	2.22	1.39	3.31	2.63	2.39	0.79	1.89			
Y = BH₂	2.03	1.13	3.23	3.39	2.85	1.05	2.99				
Y = CF₃	2.46	1.45	3.57	2.36	2.46	0.66	1.62				
Y = Cl	2.08	1.07	3.03	2.73	2.83	0.90	2.55				
Y = CN	2.15	1.30	3.32	2.53	2.56	0.76	1.95				
Y = F	1.86	0.83	2.74	2.90	3.30	1.06	3.49				
Y = Me	1.91	0.92	2.74	2.63	2.98	0.96	2.86				
Y = NH₂	REARRANGED										
Y = NMe₂	REARRANGED										
Y = NO₂	REARRANGED										
Y = OH	1.89	0.72	2.78	3.81	3.84	1.37	5.26				
Y = OMe	1.93	0.83	2.79	3.89	3.37	1.39	4.71				
Y = SH	2.35	0.92	3.40	3.02	3.68	0.89	3.27				
Y = SiH₃	2.04	1.21	2.91	2.52	2.41	0.87	2.09				
X = BH₂	Y = BF₂	T₁ excitation is different to that of the parent fulvene									
Y = BF₂	REARRANGED										
Y = CF₃	T₁ excitation is different to that of the parent fulvene										
Y = Cl	2.43	1.28	3.12	2.93	2.67	0.86	2.29				
Y = CN	2.39	1.53	3.59	2.69	2.35	0.75	1.76				
Y = F	2.39	0.88	3.39	2.82	3.87	0.83	3.23				
Y = Me	Degenerate states										
Y = NH₂	REARRANGED										
Y = NMe₂	REARRANGED										
Y = NO₂	REARRANGED										
Y = OH	S₁ state has charge transfer char. as LUMO is localized on X subst.										
Y = OMe	2.29	0.87	3.17	3.01	3.65	0.95	3.46				
Y = SH	REARRANGED										
Y = SiH₃	REARRANGED										
X = Cl	Y = BF₂	2.38	1.73	3.56	2.78	2.06	0.78	1.61			
Y = BH₂	2.21	1.59	3.47	2.77	2.18	0.80	1.74				
Y = CF₃	2.59	1.83	3.70	2.79	2.02	0.76	1.53				
Y = Cl	2.06	1.31	2.97	2.92	2.27	0.98	2.23				
Y = CN	2.14	1.55	3.25	2.83	2.09	0.87	1.82				
Y = F	2.13	1.27	3.07	3.22	2.41	1.05	2.53				
Y = Me	2.25	1.46	3.18	3.05	2.18	0.96	2.10				
X	Y	X = CN	Y = BF₂	Y = BH₂	Y = CF₃	Y = Cl	Y = CN	Y = F	Y = Me	Y = NH₂	Y = NH₂
-----	-------	--------	---------	---------	---------	--------	--------	--------	---------	---------	----------
											T₀ ground state
Y = NH₂	1.62	0.46	2.42	3.29	3.81	1.36	5.17				
Y = NMe₂	1.81	0.97	2.56	3.38	2.65	1.32	3.50				
Y = NO₂	2.33	1.65	3.37	2.57	2.04	0.76	1.56				
Y = OH	1.85	1.06	2.70	3.32	2.54	1.23	3.12				
Y = OMe	1.93	1.19	2.76	3.30	2.32	1.20	2.78				
Y = SH	1.67	1.02	2.47	3.13	2.42	1.27	3.06				
Y = SiH₃	2.45	1.72	3.47	2.93	2.02	0.84	1.70				
X = CN	Y = BF₂	2.06	1.31	3.01	2.45	2.29	0.81	1.86			
Y = BH₂	1.94	1.24	2.98	3.04	2.40	1.02	2.45				
Y = CF₃	2.13	1.36	3.03	2.44	2.23	0.81	1.80				
Y = Cl	1.49	0.78	2.23	2.61	2.87	1.17	3.36				
Y = CN	1.72	1.10	2.63	2.39	2.40	0.91	2.18				
Y = F	1.54	0.72	2.32	2.72	3.21	1.17	3.77				
Y = Me	1.63	0.90	2.36	2.69	2.61	1.14	2.97				
Y = NH₂	1.03	0.21	1.63	3.41	7.77	2.10	16.29				
Y = NMe₂	1.99	1.25	2.91	2.41	2.32	0.83	1.93				
Y = NO₂	1.19	0.45	1.89	2.84	4.20	1.50	6.30				
Y = OH	1.22	0.53	1.90	2.86	3.59	1.50	5.40				
Y = OMe	0.98	0.38	1.62	2.70	4.24	1.67	7.08				
Y = SH	1.93	1.23	2.73	2.54	2.22	0.93	2.06				
Y = SiH₃	2.62	2.03	4.02	3.09	1.98	0.77	1.52				
Y = BF₂	2.25	1.82	3.78	2.85	2.08	0.76	1.57				
Y = BH₂	2.88	2.12	4.18	3.36	1.97	0.80	1.58				
Y = CF₃	2.43	1.66	3.51	3.27	2.11	0.93	1.96				
Y = Cl	2.40	1.82	3.70	3.27	2.03	0.88	1.79				
Y = F	2.52	1.60	3.64	3.29	2.28	0.91	2.07				
Y = Me	2.61	1.76	3.72	3.13	2.12	0.84	1.78				
Y = NH₂	2.00	0.93	2.94	3.31	3.17	1.12	3.57				
Y = NMe₂	2.18	1.23	3.07	3.39	2.49	1.10	2.74				
Y = NO₂	Not a clear HOMO-to-LUMO excitation										
Y = OH	2.28	1.39	3.29	3.34	2.37	1.02	2.41				
Y = OMe	2.36	1.50	3.34	3.31	2.23	0.99	2.21				
Y = SH	2.09	1.35	3.02	3.16	2.24	1.04	2.33				
Y = SiH₃	2.73	2.01	3.94	3.13	1.96	0.79	1.55				
X = H	Y = BF₂	2.43	1.83	3.76	2.85	2.06	0.76	1.56			
Y = BH₂	LUMO primarily localized on the Y substituents										
Y = CF₃	2.66	1.88	3.87	3.07	2.06	0.79	1.64				
Y = Cl	2.18	1.43	3.18	3.29	2.22	0.44	2.30				
Y = CN	2.22	1.61	3.45	3.02	2.13	0.88	1.87				
Y = F	2.21	1.36	3.24	3.45	2.38	1.06	2.53				
Y = Me	2.31	1.53	3.31	3.35	2.16	1.01	2.18				
Y = NH₂	1.74	0.87	2.59	3.70	2.98	1.43	4.27				
Y = NMe₂	1.93	1.09	2.76	3.65	2.52	1.32	3.34				

S7
X = NO₂	Y = NH₂	REARRANGED
Y = OH	2.31	1.70
Y = OMe	0.76	1.59
Y = SH	2.06	1.22
Y = SiH₃	2.51	1.78
Y = BF₂	T₁ excitation is different to that of the parent fulvene	
Y = NH₂	LUMO primarily localized on the Y substituents	
Y = SiH₃	Not a clear HOMO-to-LUMO excitation	

X = Me	Y = BF₂	T₁ excitation is different to that of the parent fulvene
Y = BH₃	LUMO primarily localized on the Y substituents	
X = NH₂	REARRANGED	
Y = BF₂	REARRANGED	
X = CF₃	Both T₁ and S₁ excitations are different to that of the parent fulvene	
Y = Cl	2.30	1.52
Y = CN	2.31	1.75
Y = F	2.38	1.53
Y = Me	2.46	1.62
Y = NH₂	1.96	0.99
Y = NMe₂	2.13	1.18
Y = NO₂	Not a clear HOMO-to-LUMO excitation	
Y = OH	2.14	1.29
Y = OMe	2.24	1.49
Y = SH	1.99	1.29
Y = SiH₃	2.64	1.92

X = NMe₂	Y = BF₂	REARRANGED
Y = BH₂	REARRANGED	
X = CF₃	Both T₁ and S₁ excitations are different to that of the parent fulvene	
Y = Cl	2.97	2.26
Y = CN	3.01	2.00
Y = F	2.92	2.25
Y = Me	2.78	1.97
Y = NH₂	2.37	1.23
Y = NMe₂	2.56	1.69
Y = NO₂	Both T₁ and S₁ excitations are different to that of the parent fulvene	
Y = OH	T₁ excitation is different to that of the parent fulvene	

S8
X = NO₂	Y = BF₂	T₁ excitation is different to that of the parent fulvene						
Y = SH	Both T₁ and S₁ excitations are different to that of the parent fulvene							
Y = SiH₃	Both T₁ and S₁ excitations are different to that of the parent fulvene							
X = NO₂	Y = BF₂	T₁ excitation is different to that of the parent fulvene						
Y = BF₂	2.11	0.67	3.06	3.08	4.57	1.01	4.60	
Y = BH₂	REARRANGED							
Y = CF₃	2.24	1.30	2.22	2.43	2.48	0.72	1.87	
Y = Cl	1.70	0.79	2.49	2.58	3.16	1.04	3.27	
Y = CN	1.86	1.16	2.84	2.61	2.46	0.92	2.26	
Y = F	1.70	0.73	2.52	2.85	3.44	1.13	3.90	
Y = Me	1.78	0.85	2.54	2.67	2.98	1.05	3.15	
Y = NMe₂	Not a clear HOMO-to-LUMO excitation							
Y = NO₂	2.10	1.29	3.09	2.34	2.40	0.76	1.82	
Y = OH	1.43	0.44	2.17	2.86	4.94	1.31	6.49	
Y = OMe	1.46	0.50	2.17	2.86	4.32	1.32	6.07	
Y = SH	1.50	0.45	2.19	2.82	4.84	1.29	6.23	
Y = SiH₃	2.00	1.18	2.81	2.76	2.39	0.98	2.34	
X = OH	Y = BF₂	Both T₁ and S₁ excitations are different to that of the parent fulvene						
Y = BH₂	Both T₁ and S₁ excitations are different to that of the parent fulvene							
Y = CF₃	T₁ excitation is different to that of the parent fulvene							
Y = Cl	2.49	1.76	3.52	3.50	2.00	0.99	1.99	
Y = CN	LUMO primarily localized on the Y substituents							
Y = F	2.57	1.72	3.63	3.67	2.11	1.01	2.13	
Y = Me	2.63	1.85	3.69	3.49	2.00	0.94	1.89	
Y = NH₂	1.98	1.06	2.87	3.50	2.70	1.22	3.30	
Y = NMe₂	HOMO is of a different character compared to that of the parent fulvene							
Y = NO₂	REARRANGED							
Y = OH	2.69	1.94	3.69	3.86	1.90	1.05	1.99	
Y = OMe	2.41	1.48	3.34	3.25	2.26	0.97	2.19	
Y = SH	2.16	1.48	3.06	3.53	2.08	1.15	2.39	
Y = SiH₃	LUMO primarily localized on the Y substituents							
Y=H	Y = BF₂	1.91	1.13	2.75	2.87	2.43	1.04	2.54
Y = BH₂	1.88	1.06	2.64	2.60	2.49	0.99	2.45	
Y = CF₃	2.16	1.34	3.13	3.10	2.33	0.99	2.31	
Y = Cl	2.42	1.60	3.44	2.93	2.15	0.85	1.83	
Y = CN	1.91	1.14	2.74	2.52	2.41	0.92	2.21	
Y = F	2.79	1.94	4.00	3.05	2.06	0.76	1.57	
Y = Me	2.64	1.85	3.75	3.11	2.03	0.83	1.68	
Y = NH₂	Both T₁ and S₁ excitations are different to that of the parent fulvene							
Y = NMe₂	T₁ excitation is different to that of the parent fulvene							
Y = NO₂	1.96	1.13	2.80	2.90	2.47	1.03	2.56	
Y = OH	2.80	2.00	3.94	3.33	1.97	0.85	1.66	
Y = OMe	3.03	1.99	4.15	3.29	2.09	0.79	1.66	
Y = SH	2.44	1.63	3.41	2.85	2.08	0.84	1.74	
X=SiH₃	Y	2.30	1.46	3.27	2.90	2.24	0.89	1.99
X=BF₂	Y	Both T₁ and S₁ excitations are different to that of the parent fulvene						
X=BF₂	Y	Both T₁ and S₁ excitations are different to that of the parent fulvene						
X=CF₃	Y	T₁ excitation is different to that of the parent fulvene						
X=Cl	Y	T₁ excitation is different to that of the parent fulvene						
X=CN	Y	T₁ excitation is different to that of the parent fulvene						
X=F	Y	2.33	1.46	3.23	3.14	2.22	0.97	2.16
X=Me	Y	2.30	1.40	3.16	2.79	2.25	0.88	1.99
X=NH₃	Y	2.05	0.66	2.86	3.33	4.36	1.17	5.08
Y=NM₃	Not a clear HOMO-to-LUMO excitation							
Y=NO₂	2.09	1.68	3.32	2.92	1.98	0.88	1.74	
Y=OH	2.09	1.29	2.92	3.15	2.25	1.08	2.43	
Y=OMe	2.18	1.42	2.99	3.10	2.11	1.04	2.18	
Y=SH	1.81	1.05	2.54	2.76	2.43	1.09	2.64	
Y=SiH₃	LUMO is of a different character compared to that of the parent fulvene							
X=CF₃	Y=BF₂	2.20	1.33	3.27	2.83	2.47	0.87	2.13
X=BF₂	Y=BF₂	2.10	1.35	3.23	3.26	2.40	0.81	2.42
X=BF₂	Y=BF₂	2.26	1.33	3.29	1.95	2.48	0.59	1.47
X=Cl	Y=Cl	1.68	0.84	2.50	2.59	2.96	1.04	3.07
X=CN	Y=CN	1.90	1.22	2.94	2.66	2.41	0.91	2.18
X=F	Y=F	1.77	0.86	2.65	3.01	3.08	1.13	3.49
X=Me	Y=Me	1.81	0.94	2.63	2.75	2.79	1.05	2.92
X=NH₃	T₀ ground state							
X=NM₃	Y=NM₃	1.46	0.22	2.14	2.72	9.67	1.28	12.32
X=NO₂	Y=NO₂	2.18	1.38	3.25	2.44	2.35	0.75	1.76
X=OH	Y=OH	1.44	0.57	2.23	2.99	3.91	1.34	5.24
X=OMe	Y=OMe	1.48	0.66	2.23	3.00	3.39	1.35	4.56
X=SH	Y=SH	1.60	0.61	2.38	2.81	3.90	1.18	4.59
X=SiH₃	Y=SiH₃	2.16	1.40	3.10	2.82	2.21	0.91	2.01
X=OMe	Y=BF₂	LUMO primarily localized on the Y substituents						
X=BF₂	Y=BF₂	HOMO and LUMO primarily localized on the Y substituents						
X=CF₃	Y=CF₃	T₁ excitation is different to that of the parent fulvene						
X=Cl	Y=Cl	2.54	1.97	3.75	3.22	1.91	0.86	1.64
X=Cl	Y=Cl	2.45	1.71	3.44	3.41	2.01	0.99	1.99
X=F	Y=F	2.79	1.82	3.80	3.84	2.09	1.01	2.11
X=Me	Y=Me	2.57	1.79	3.60	3.42	2.01	0.95	1.91
X=NH₃	Y=NH₃	1.95	1.03	2.81	3.44	2.74	1.22	3.35
X=NM₃	Y=NM₃	2.32	1.34	3.18	3.37	2.37	1.06	2.52
X=NO₂	Y=NO₂	T₁ excitation is different to that of the parent fulvene						
X=OH	Y=OH	Not a clear HOMO-to-LUMO excitation						
X=OMe	Y=OMe	Not a clear HOMO-to-LUMO excitation						
X=SH	Y=SH	2.13	1.45	3.00	3.46	2.07	1.15	2.39
X=SiH₃	Y=SiH₃	2.72	2.02	3.84	3.21	1.90	0.83	1.59
X=SiH₃	Y=BF₂	2.34	1.65	3.50	2.40	2.12	0.69	1.45

S10
	Y = BH₂		REARRANGED				
Y = CF₃	2.47	1.63	3.55	2.44	2.18	0.69	1.50
Y = CN	2.09	1.46	3.19	2.58	2.19	0.81	1.77
Y = Cl	1.95	1.16	2.82	2.72	2.43	0.97	2.34
Y = F	1.99	1.12	2.89	3.16	2.58	1.09	2.82
Y = Me	2.02	1.20	2.87	2.77	2.39	0.97	2.31
Y = NH₂	1.69	0.52	2.44	3.11	4.67	1.27	5.94
Y = NMe₂	1.88	0.98	2.58	3.39	2.62	1.31	3.45
Y = NO₂	Not a clear HOMO-to-LUMO excitation						
Y = OH	1.72	0.91	2.52	3.22	2.77	1.28	3.55
Y = OMe	1.78	1.01	2.55	3.28	2.53	1.28	3.24
Y = SH	2.22	0.93	3.17	2.71	3.40	0.86	2.91
Y = SiH₃	2.32	1.51	3.28	2.67	2.17	0.81	1.77
Table S3. The $E(T_1)\nu$, $E(T_1)\alpha$, $E(S_1)$ and $E(T_2)$ of the differently substituted fulvenes sorted by $E(T_1)\alpha$. For label “REARRANGED” see Table S2.

X	Y	$E(T_1)\nu$	$E(T_1)\alpha$	$E(S_1)$	$E(T_2)$	$E(T_2)/E(S_1)$	$E(T_2)/E(T_1)$	
NO₂	NMē₂	1.65	0.10	2.33	2.92	23.80	1.25	29.83
CN	NMē₂	1.03	0.21	1.63	3.41	7.77	2.10	16.29
CF₃	NMē₂	1.46	0.22	2.14	2.72	9.67	1.28	13.32
CN	SH	0.98	0.38	1.62	2.70	4.24	1.67	7.08
NO₂	OH	1.43	0.44	2.17	2.86	4.94	1.31	6.49
CN	OH	1.19	0.45	1.89	2.84	4.20	1.50	6.30
NO₂	SH	1.50	0.45	2.19	2.82	4.84	1.29	6.23
NO₂	OMe	1.46	0.50	2.17	2.86	4.32	1.32	5.70
SiH₃	NH₂	1.69	0.52	2.44	3.11	4.67	1.27	5.94
CN	OMe	1.22	0.53	1.90	2.86	3.59	1.50	5.40
CF₃	OH	1.44	0.57	2.23	2.99	3.91	1.34	5.24
CF₃	SH	1.60	0.61	2.38	2.81	3.90	1.18	4.59
Cl	NH₂	1.62	0.64	2.42	3.29	3.81	1.36	5.17
SH	NH₂	2.05	0.66	2.86	3.33	4.36	1.17	5.08
CF₃	OMe	1.48	0.66	2.23	3.00	3.39	1.35	4.56
NO₂	BF₂	2.11	0.67	3.06	3.08	4.57	1.01	4.60
CN	F	1.54	0.72	2.32	2.72	3.21	1.17	3.77
BF₂	OH	1.89	0.72	2.78	3.81	3.84	1.37	5.26
NO₂	F	1.70	0.73	2.52	2.85	3.44	1.13	3.90
CN	Cl	1.49	0.78	2.23	2.61	2.87	1.17	3.36
NO₂	Cl	1.70	0.79	2.49	2.58	3.16	1.04	3.27
BF₂	OMe	1.93	0.83	2.79	3.89	3.37	1.39	4.71
BF₂	F	1.86	0.83	2.74	2.90	3.30	1.06	3.49
CF₃	Cl	1.68	0.84	2.50	2.59	2.96	1.04	3.07
NO₂	Me	1.78	0.85	2.54	2.67	2.98	1.05	3.15
CF₃	F	1.77	0.86	2.65	3.01	3.08	1.13	3.49
H	NH₂	1.74	0.87	2.59	3.70	2.98	1.43	4.27
BH₂	OMe	2.29	0.87	3.17	3.01	3.65	0.95	3.46
BH₂	F	2.39	0.88	3.39	2.82	3.87	0.83	3.23
CN	Me	1.63	0.90	2.36	2.69	2.61	1.14	2.97
SiH₃	OH	1.72	0.91	2.52	3.22	2.77	1.28	3.55
BF₂	Me	1.91	0.92	2.74	2.63	2.98	0.96	2.86
BF₂	SH	2.35	0.92	3.40	3.02	3.68	0.89	3.27
F	NH₂	2.00	0.93	2.94	3.31	3.17	1.12	3.57
SiH₃	SH	2.22	0.93	3.17	2.71	3.40	0.86	2.91
CF₃	Me	1.81	0.94	2.63	2.75	2.79	1.05	2.92
Cl	NMē₂	1.81	0.97	2.56	3.32	2.65	1.22	3.50
SiH₃	NMē₂	1.88	0.98	2.58	3.39	2.62	1.31	3.45
Me	NH₂	1.96	0.99	2.83	3.32	2.84	1.18	3.34
SiH₃	OMe	1.78	1.01	2.55	3.28	2.53	1.28	3.24
X	Y	1.67	1.02	2.47	3.13	2.42	1.27	3.06
----	-----	------	------	------	------	------	------	------
Cl	SH							
Cl	OMe	1.95	1.03	2.81	3.44	2.74	1.22	3.35
Cl	SH	1.81	1.05	2.54	2.76	2.43	1.09	2.64
H	BH	1.88	1.06	2.64	2.60	2.49	0.99	2.45
H	NH2	1.98	1.06	2.87	3.50	2.70	1.22	3.30
Cl	OH	1.85	1.06	2.70	3.32	2.54	1.23	3.12
Cl	Cl	2.08	1.07	3.03	2.73	2.83	0.90	2.55
H	OH	1.97	1.08	2.89	3.74	2.67	1.29	3.45
H	NMe2	1.93	1.09	2.76	3.65	2.52	1.32	3.34
CN	CN	1.72	1.10	2.63	2.39	2.40	0.91	2.18
SiH3	F	1.99	1.12	2.89	3.16	2.58	1.09	2.82
H	BF2	1.91	1.13	2.75	2.87	2.43	1.04	2.54
H	NO2	1.96	1.13	2.80	2.90	2.47	1.03	2.56
BF2	BH2	2.03	1.13	3.23	3.39	2.85	1.05	2.99
H	CN	1.91	1.14	2.74	2.52	2.41	0.92	2.21
NO2	CN	1.86	1.16	2.84	2.61	2.46	0.92	2.26
SiH3	Cl	1.95	1.16	2.82	2.72	2.43	0.97	2.34
NO2	SiH3	2.00	1.18	2.81	2.76	2.39	0.98	2.34
Me	NMe2	2.13	1.18	2.97	3.06	2.51	1.03	2.59
Cl	OMe	1.93	1.19	2.76	3.30	2.32	1.20	2.78
SiH3	Me	2.02	1.20	2.87	2.77	2.39	0.97	2.31
BF2	SiH3	2.04	1.21	2.91	2.52	2.41	0.87	2.09
CF3	CN	1.90	1.22	2.94	2.66	2.41	0.91	2.18
H	SH	2.06	1.22	2.98	3.46	2.44	1.16	2.83
NMe2	NH2	2.37	1.23	3.04	3.94	2.46	1.30	3.20
CN	SiH3	1.93	1.23	2.73	2.54	2.22	0.93	2.06
F	NMe2	2.18	1.23	3.07	3.39	2.49	1.10	2.74
CN	BH2	1.94	1.24	2.98	3.04	2.40	1.02	2.45
CN	NO2	1.99	1.25	2.91	2.41	2.32	0.83	1.93
Cl	F	2.13	1.27	3.07	3.22	2.41	1.05	2.53
BH2	Cl	2.43	1.28	3.42	2.93	2.67	0.86	2.29
Me	OH	2.14	1.29	3.07	3.48	2.39	1.13	2.70
NO2	NO2	2.10	1.29	3.09	2.34	2.40	0.76	1.82
Me	SH	1.99	1.29	2.86	3.09	2.21	1.08	2.39
SH	OH	2.09	1.29	2.92	3.15	2.25	1.08	2.43
BF2	CN	2.15	1.30	3.32	2.53	2.56	0.76	1.95
NO2	CF3	2.24	1.30	3.22	2.43	2.48	0.76	1.87
Cl	Cl	2.06	1.31	2.97	2.92	2.27	0.98	2.23
CN	BF2	2.06	1.31	3.01	2.45	2.29	0.81	1.86
H	OMe	2.05	1.32	2.94	3.56	2.23	1.21	2.70
CF3	BF2	2.20	1.33	3.27	2.83	2.47	0.87	2.13
CF3	CF3	2.26	1.33	3.29	1.95	2.48	0.59	1.47
OMe	NMe2	2.32	1.34	3.18	3.37	2.37	1.06	2.52
H	CF3	2.16	1.34	3.13	3.10	2.33	0.99	2.31
CF3	BH2	2.10	1.35	3.23	3.26	2.40	1.01	2.42
X = F	Y = SH	2.09	1.35	3.02	3.16	2.24	1.04	2.33
X = H	Y = F	2.21	1.36	3.24	3.45	2.38	1.06	2.53
X = CN	Y = CF₃	2.13	1.36	3.03	2.44	2.23	0.81	1.80
X = CF₃	Y = NO₂	2.18	1.38	3.25	2.44	2.35	0.75	1.76
X = F	Y = OH	2.28	1.39	3.29	3.34	2.37	1.02	2.41
X = BF₂	Y = BF₂	2.22	1.39	3.31	2.63	2.39	0.79	1.89
X = SH	Y = Me	2.30	1.40	3.16	2.79	2.25	0.88	1.99
X = CF₃	Y = SiH₃	2.16	1.40	3.10	2.82	2.21	0.91	2.01
X = SH	Y = Cl	2.22	1.41	3.07	2.73	2.17	0.89	1.93
X = SH	Y = OMe	2.18	1.42	2.99	3.10	2.11	1.04	2.18
X = H	Y = Cl	2.18	1.43	3.18	3.29	2.22	1.04	2.30
X = BF₂	Y = CF₃	2.46	1.45	3.57	3.66	2.46	0.66	1.62
X = OMe	Y = SH	2.13	1.45	3.00	3.46	2.07	1.15	2.39
X = SiH₃	Y = CN	2.09	1.46	3.19	2.58	2.19	0.81	1.77
X = Cl	Y = Me	2.25	1.46	3.18	3.05	2.18	0.96	2.10
X = SH	Y = F	2.33	1.46	3.23	3.14	2.22	0.97	2.16
Y = H	Y = SiH₃	2.30	1.46	3.27	2.90	2.24	0.89	1.99
X = OH	Y = SH	2.16	1.48	3.06	3.53	2.08	1.15	2.39
X = OH	Y = OMe	2.41	1.48	3.34	3.25	2.26	0.97	2.19
X = Me	Y = OMe	2.24	1.49	3.14	3.41	2.11	1.08	2.29
X = F	Y = OMe	2.36	1.50	3.34	3.31	2.23	0.99	2.21
X = SiH₃	Y = SiH₃	2.32	1.51	3.28	2.67	2.17	0.81	1.77
X = Me	Y = Cl	2.30	1.52	3.28	2.99	2.15	0.91	1.96
X = BH₂	Y = CN	2.39	1.53	3.59	2.69	2.35	0.75	1.76
X = Me	Y = F	2.38	1.53	3.41	3.41	2.23	1.00	2.22
X = H	Y = Me	2.31	1.53	3.31	3.35	2.16	1.01	2.18
X = Cl	Y = CN	2.14	1.55	3.25	2.83	2.09	0.87	1.82
X = Cl	Y = BH₂	2.21	1.59	3.47	2.77	2.18	0.80	1.74
X = F	Y = F	2.52	1.60	3.64	3.29	2.28	0.91	2.07
Y = H	Y = Cl	2.42	1.60	3.44	2.93	2.15	0.85	1.83
X = H	Y = CN	2.22	1.61	3.45	3.02	2.13	0.88	1.87
X = Me	Y = Me	2.46	1.62	3.46	3.04	2.14	0.88	1.88
X = SiH₃	Y = CF₃	2.47	1.63	3.55	2.44	2.18	0.69	1.50
Y = H	Y = SH	2.44	1.63	3.41	2.85	2.08	0.84	1.74
X = SiH₃	Y = BF₂	2.34	1.65	3.50	2.40	2.12	0.69	1.45
X = Cl	Y = NO₂	2.33	1.65	3.37	2.57	2.04	0.76	1.56
X = F	Y = Cl	2.43	1.66	3.51	3.27	2.11	0.93	1.96
X = SH	Y = NO₂	2.09	1.68	3.32	2.92	1.98	0.88	1.74
X = NMe₂	Y = NMe₂	2.56	1.69	3.20	3.38	1.90	1.05	2.00
X = H	Y = NO₂	2.31	1.70	3.58	2.71	2.10	0.76	1.59
X = OMe	Y = Cl	2.45	1.71	3.44	3.41	2.01	0.99	1.99
X = H	Y = H	2.53	1.72	3.64	3.20	2.12	0.88	1.86
X = OH	Y = F	2.57	1.72	3.63	3.67	2.11	1.01	2.13
X = Cl	Y = SiH₃	2.45	1.72	3.47	2.93	2.02	0.84	1.70
X = Cl	Y = BF₂	2.38	1.73	3.56	2.78	2.06	0.78	1.61
X = Me	Y = CN	2.31	1.75	3.54	2.90	2.03	0.82	1.66
X = F	Y = Me	2.61	1.76	3.72	3.13	2.12	0.84	1.78
X = OH	Y = Cl	2.49	1.76	3.52	3.50	2.00	0.99	1.99
X = H	Y = SiH$_3$	2.51	1.78	3.62	3.14	2.03	0.87	1.76
X = OMe	Y = Me	2.57	1.79	3.60	3.42	2.01	0.95	1.91
X = F	Y = BH$_2$	2.25	1.82	3.78	3.50	2.08	0.76	1.57
X = OMe	Y = F	2.79	1.82	3.80	3.84	2.09	1.01	2.11
X = F	Y = CN	2.40	1.82	3.70	3.27	2.03	0.88	1.79
X = H	Y = BF$_2$	2.45	1.83	3.76	2.85	2.06	0.76	1.56
X = Cl	Y = CF$_3$	2.59	1.83	3.70	2.79	2.02	0.76	1.53
Y = H	Y = Me	2.64	1.85	3.75	3.11	2.03	0.83	1.68
X = OH	Y = Me	2.63	1.85	3.69	3.49	2.00	0.94	1.89
X = H	Y = CF$_3$	2.66	1.88	3.87	3.07	2.06	0.79	1.64
X = Me	Y = SiH$_3$	2.64	1.92	3.75	2.96	1.95	0.79	1.54
Y = H	Y = F	2.79	1.94	4.00	3.05	2.06	0.76	1.57
X = OH	Y = OH	2.69	1.94	3.69	3.86	1.90	1.05	1.99
X = OMe	Y = CN	2.54	1.97	3.75	3.22	1.91	0.86	1.64
X = NH$_2$	Y = Me	2.78	1.97	3.58	3.16	1.81	0.88	1.60
Y = H	Y = OMe	3.02	1.99	4.15	3.29	2.09	0.79	1.66
Y = H	Y = OH	2.80	2.00	3.94	3.33	1.97	0.85	1.66
X = F	Y = SiH$_3$	2.73	2.01	3.94	3.13	1.96	0.79	1.55
X = OMe	Y = SiH$_3$	2.72	2.02	3.84	3.21	1.90	0.83	1.59
X = F	Y = BF$_2$	2.62	2.03	4.02	3.09	1.98	0.77	1.52
X = F	Y = CF$_3$	2.88	2.12	4.18	3.36	1.97	0.80	1.58
X = NH$_2$	Y = F	2.94	2.14	3.80	3.59	1.78	0.95	1.68
X = NH$_2$	Y = F	3.01	2.20	4.01	3.86	1.82	0.96	1.76
X = NH$_2$	Y = Cl	2.93	2.20	3.68	3.46	1.67	0.94	1.57
X = NH$_2$	Y = Me	2.92	2.25	3.92	3.59	1.74	0.92	1.59
X = NH$_2$	Y = Cl	2.97	2.26	3.93	3.71	1.74	0.94	1.64
X = H	Y = H	S_0	T_{1v}	T_{1a}	S_1	T_2		
-------	-------	-----	--------	--------	-----	-----		
		-232.16818	-232.07504	-232.10509	-232.03447	-232.05073		
X = BF_2	Y = BF_2	-1128.59274	-1128.51119	-1128.54170	-1128.47097	-1128.49622		
Y = BH_2		-731.24552	-731.17102	-731.20383	-731.12681	-731.12909		
Y = CF_3		-1354.55364	-1354.46329	-1354.50034	-1354.42243	-1354.46709		
Y = Cl		-1599.57939	-1599.50293	-1599.54005	-1599.46791	-1599.47894		
Y = CN		-864.86817	-864.78923	-864.82049	-864.74607	-864.77522		
Y = F		-878.86766	-878.79925	-878.83710	-878.76690	-878.76099		
Y = Me		-758.99406	-758.92397	-758.96021	-758.89320	-758.89739		
Y = NH_2		REARRANGED	REARRANGED	REARRANGED	REARRANGED	REARRANGED		
Y = NMe_2		REARRANGED	REARRANGED	REARRANGED	REARRANGED	REARRANGED		
Y = NO_2		REARRANGED	REARRANGED	REARRANGED	REARRANGED	REARRANGED		
Y = OH		-830.83764	-830.76816	-830.81104	-830.73551	-830.69773		
Y = OMe		-909.43153	-909.36052	-909.40116	-909.32903	-909.38457		
Y = SH		-1476.75853	-1476.67200	-1476.72460	-1476.63373	-1476.64747		
Y = SiH_3		-1261.73166	-1261.65662	-1261.68738	-1261.62477	-1261.63904		

X = BH_2	Y = BF_2	T_1 excitation is different to that of the parent fulvene				
		REARRANGED				
Y = CF_3		T_1 excitation is different to that of the parent fulvene				
Y = Cl		-1202.24183	-1202.15237	-1202.19480	-1202.11619	-1202.13407
Y = CN		-467.53374	-467.44607	-467.47764	-467.40188	-467.43486
Y = F		-481.35239	-481.34605	-481.49171	-481.39948	
Y = Me		REARRANGED	Degenerate states			
Y = NH_2		REARRANGED				
Y = NMe_2		REARRANGED				
Y = NO_2		REARRANGED				
Y = OH		-830.83764	-830.76816	-830.81104	-830.73551	-830.69773
Y = OMe		-909.43153	-909.36052	-909.40116	-909.32903	-909.38457
X = Cl		-1599.58440	-1599.49688	-1599.52100	-1599.45356	-1599.48212
Y = BF_2		-1202.23997	-1202.15864	-1202.18144	-1202.11234	-1202.13807
Y = BH_2		-1825.55035	-1825.45521	-1825.48309	-1825.41445	-1825.44767
Y = CF_3		-2070.56753	-2070.49192	-2070.51940	-2070.45840	-2070.46024
Y = Cl		-1335.86857	-1335.79011	-1335.81152	-1335.74907	-1335.76447
Y = F		-1349.86426	-1349.78607	-1349.81749	-1349.75144	-1349.74578
Y = Me		-1229.99303	-1229.91025	-1229.93952	-1229.87623	-1229.88086
Y = NH_2		-1262.08434	-1262.02485	-1262.06097	-1261.99531	-1261.96552
Y = NMe_2		-1419.27915	-1419.21259	-1419.24363	-1419.18492	-1419.15480
Y = NO_2		-1560.37626	-1560.29053	-1560.31560	-1560.25228	-1560.28165
Y = OH		-1380.41824	-1380.34721	-1380.37457	-1380.31674	-1380.29683
Y = OMe		-1947.74538	-1947.68405	-1947.70785	-1947.65470	-1947.63040
Y = SiH₂	-1732.73598	-1732.64585	-1732.67265	-1732.60832	-1732.62831	
Y = BF₂	-864.86234	-864.78650	-864.81405	-864.75159	-864.77236	
Y = BH₂	-467.52201	-467.45081	-467.47648	-467.41265	-467.41034	
Y = CF₃	-1090.82697	-1090.74869	-1090.77696	-1090.71550	-1090.73714	
Y = Cl	-1335.84963	-1335.79493	-1335.82113	-1335.76787	-1335.75372	
Y = CN	-601.13844	-601.07509	-601.09811	-601.04165	-601.05031	
Y = F	-615.14276	-615.08625	-615.11624	-615.05758	-615.04279	
Y = Me	-495.28097	-495.22114	-495.24772	-495.19432	-495.18220	
Y = NMe₂	-684.57038	-684.53259	-684.56268	-684.51055		
Y = NH₂	T₀ ground state					
Y = NO₂	-825.64838	-825.57529	-825.60237	-825.54162	-825.55979	
Y = OH	-567.11015	-567.06645	-567.09359	-567.04053	-567.00583	
Y = OMe	-645.70442	-645.65955	-645.68494	-645.63449	-645.59929	
Y = SH	-1213.02633	-1212.99016	-1212.91320	-1212.96679	-1212.92704	
Y = SiH₃	-998.01801	-997.94696	-997.97269	-997.91756	-997.92463	
X = F	Y = BF₂	-878.90114	-878.85053	-878.82649	-878.75325	-878.78762
Y = BH₂	-481.48555	-481.47281	-481.46815			
Y = CF₃	-1104.86773	-1104.76181	-1104.78970	-1104.71407	-1104.74438	
Y = Cl	-1349.88269	-1349.79342	-1349.82160	-1349.75586	-1349.76265	
Y = CN	-615.17933	-615.09122	-615.11236	-615.04326	-615.05920	
Y = F	-629.17403	-629.08135	-629.11541	-629.04033	-629.05297	
Y = Me	-509.30598	-509.21003	-509.24144	-509.16931	-509.19078	
Y = NH₂	-541.39654	-541.32306	-541.36246	-541.28850	-541.27501	
Y = NMe₂	-698.59242	-698.51214	-698.54703	-698.47959	-698.46799	
Y = NO₂	Not a clear HOMO-to-LUMO excitation					
Y = OH	-581.13773	-581.05392	-581.08681	-581.01688	-581.01490	
Y = OMe	-659.72987	-659.63415	-659.67475	-659.60716	-659.60805	
Y = SH	-1227.05818	-1226.98155	-1227.00846	-1226.94703	-1226.94209	
Y = SiH₃	-1012.04590	-1011.94548	-1011.97193	-1011.90124	-1011.93091	
X = H	Y = BF₂	-680.39326	-680.30386	-680.32617	-680.25493	-680.28852
Y = BH₂	LUMO primarily localized on the Y substituents					
Y = CF₃	-906.35935	-906.26178	-906.29037	-906.21714	-906.24643	
Y = Cl	-1151.37702	-1151.29683	-1151.32448	-1151.26020	-1151.25604	
Y = CN	-416.67229	-416.59062	-416.61296	-416.54566	-416.56138	
Y = F	-430.66647	-430.58516	-430.61650	-430.54741	-430.53986	
Y = Me	-310.79305	-310.70828	-310.73667	-310.67128		
Y = NH₂	-342.88483	-342.82102	-342.85299	-342.78979	-342.74887	
Y = NMe₂	-500.07957	-500.00860	-500.03937	-499.97831	-499.94547	
Y = NO₂	-641.19470	-641.10997	-641.13224	-641.06331	-641.09529	
Y = OH	-382.62961	-382.55720	-382.58975	-382.52333	-382.49212	
Y = OMe	-461.22166	-461.14634	-461.17322	-461.11353	-461.09072	
Y = SH	-1028.55044	-1028.47484	-1028.50549	-1028.44092	-1028.42314	
Y = SiH₃	-813.53102	-813.43893	-813.46562	-813.39813	-813.41579	
X = Me	Y = BF₂	T₁ excitation is different to that of the parent fulvene				
X = NH₂	Y = BF₂	REARRANGED				
---	---	---				
Y = BH₂		REARRANGED				
Y = CF₃		Both T₁ and S₁ excitations are different to that of the parent fulvene				
Y = Cl	-1262.12506	-1262.01607	-1261.98048	-1261.98881		
Y = CN	-541.41743	-541.30693	-541.33670	-541.27022	-541.27555	
Y = F	-421.52981	-421.42265	-421.44698	-421.38583	-421.39771	
Y = Me	-578.69759	-578.61918	-578.65408	-578.58826	-578.58508	
Y = NO₂		Not a clear HOMO-LUMO excitation				
Y = OH	-719.81119	-719.72153	-719.74341	-719.68055	-719.70183	
Y = OMe	-461.25056	-461.17185	-461.20322	-461.13759	-461.12272	
Y = SH	-539.84182	-539.75944	-539.78722	-539.72639	-539.71662	
Y = SiH₃	-1107.16687	-1107.09370	-1107.11938	-1107.06188	-1107.05331	

X = NMe₂	Y = BF₂	REARRANGED			
Y = BH₂		REARRANGED			
Y = CF₃		Both T₁ and S₁ excitations are different to that of the parent fulvene			
Y = Cl	-1419.31419	-1419.20666	-1419.23321	-1419.17903	-1419.18704
Y = CN	-698.60304	-698.49494	-698.52455	-698.46356	-698.47096
Y = F	-578.71613	-578.61403	-578.64368	-578.58469	-578.59987
Y = Me	-610.80961	-610.72258	-610.76435	-610.69805	-610.66489
Y = NMe₂	-768.00926	-767.91536	-767.94729	-767.95414	
Y = NO₂		Both T₁ and S₁ excitations are different to that of the parent fulvene			
Y = OH		T₁ excitation is different to that of the parent fulvene			
Y = OMe		T₁ excitation is different to that of the parent fulvene			
Y = SH		Both T₁ and S₁ excitations are different to that of the parent fulvene			
Y = SiH₃		Both T₁ and S₁ excitations are different to that of the parent fulvene			

X = NO₂	Y = BF₂		REARRANGED		
Y = BH₂		REARRANGED			
Y = CF₃	-1315.33487	-1315.25244	-1315.28710	-1315.21654	-1315.24540

Both T₁ and S₁ excitations are different to that of the parent fulvene.
X	Y	T1 Excitations	S1 Excitations	T2 Excitations	S2 Excitations	
OH	Cl	-1560.35805	-1560.29554	-1560.32911	-1560.26655	-1560.26331
	CN	-825.64763	-825.57923	-825.60515	-825.54310	-825.55155
	F	-839.65194	-839.58934	-839.62503	-839.55937	-839.54709
	Me	-719.78958	-719.72417	-719.75834	-719.69636	-719.69132
	NH2	Not a clear HOMO-to-LUMO excitation				
	NMe2	-909.07684	-909.01616	-909.07324	-908.99111	-908.96940
	NO2	-1050.16616	-1050.08901	-1050.11879	-1050.05265	-1050.08007
	OH	-791.61972	-791.56703	-791.60355	-791.53991	-791.51479
	OMe	-870.21378	-870.16012	-870.19535	-870.13419	-870.10868
	SH	-1437.53764	-1437.48248	-1437.52098	-1437.45701	-1437.43392
	BF3	-1222.52954	-1222.45595	-1222.48633	-1222.42615	-1222.42827
	H	Both T1 and S1 excitations are different to that of the parent fulvene				
	BH2	Both T1 and S1 excitations are different to that of the parent fulvene				
	CF3	T1 excitation is different to that of the parent fulvene				
	Cl	-1301.84726	-1301.75558	-1301.78272	-1301.71789	-1301.71861
	CN	LUMO primarily localized on the Y substituents				
	F	-581.13922	-581.04478	-581.07595	-581.00584	-581.00448
	Me	-461.26637	-461.16957	-461.19848	-461.13070	-461.13820
	NH2	-493.35983	-493.28708	-493.32082	-493.25443	-493.23118
	NMe2	HOMO is of a different character compared to that of the parent fulvene				
	NO2	REARRANGED				
	OH	-533.11923	-533.02052	-533.04791	-532.98378	-532.97752
	OMe	-611.68979	-611.60113	-611.63540	-611.56695	-611.57049
	SH	-1179.02369	-1178.94417	-1178.96942	-1178.91106	-1178.89395
	SiH3	LUMO primarily localized on the Y substituents				
	BF3	-680.37725	-680.30703	-680.33567	-680.27608	-680.27184
	BH2	-283.02474	-282.95564	-282.98574	-282.92779	-282.92922
	CF3	-906.34182	-906.26261	-906.29250	-906.22680	-906.22808
	Cl	-1151.37446	-1151.28553	-1151.31568	-1151.24810	-1151.26662
	CN	-416.65755	-416.58752	-416.61568	-416.55682	-416.56493
	F	-430.68265	-430.58013	-430.51154	-430.53584	-430.57065
	Me	-310.79405	-310.69687	-310.72617	-310.65615	-310.67989
	NH2	Both T1 and S1 excitations are different to that of the parent fulvene				
	NMe2	T1 excitation is different to that of the parent fulvene				
	NO2	-641.17081	-641.09862	-641.12914	-641.06776	-641.06431
	OH	-382.64517	-382.54219	-382.57160	-382.50037	-382.52277
	OMe	-461.23032	-461.11891	-461.15732	-461.07799	-461.10939
	SH	-1028.55370	-1028.49405	-1028.49364	-1028.42856	-1028.44891
	SiH3	-813.52405	-813.43957	-813.47039	-813.40391	-813.41739
	BF3	Both T1 and S1 excitations are different to that of the parent fulvene				
	BH2	Both T1 and S1 excitations are different to that of the parent fulvene				
	CF3	T1 excitation is different to that of the parent fulvene				
	Cl	-1947.75175	-1947.67019	-1947.69975	-1947.63899	-1947.65157
	CN	T1 excitation is different to that of the parent fulvene				
X = CF₂	Y = BF₂	T₁ excitation is different to that of the parent fulvene				
--------	--------	--				
Y = BH₂	Not a clear HOMO-to-LUMO excitation					
Y = CF₃	Not a clear HOMO-to-LUMO excitation					
Y = Cl	Not a clear HOMO-to-LUMO excitation					
Y = F	Not a clear HOMO-to-LUMO excitation					
Y = Me	Not a clear HOMO-to-LUMO excitation					
X = OMe	Y = BF₂	T₁ excitation is different to that of the parent fulvene				
Y = BH₂	Not a clear HOMO-to-LUMO excitation					
Y = CF₃	Not a clear HOMO-to-LUMO excitation					
Y = Cl	Not a clear HOMO-to-LUMO excitation					
Y = F	Not a clear HOMO-to-LUMO excitation					
Y = Me	Not a clear HOMO-to-LUMO excitation					
Y = NH₂	-924.23791	-924.17569	-924.21870	-924.14820	-924.12374	
Y = NMe₂	-1081.43770	-1081.36877	-1081.40155	-1081.34281	-1081.31300	
Y = NH₂	Not a clear HOMO-to-LUMO excitation					
Y = OH	-963.98477	-963.92161	-963.95142	-963.89223	-963.86629	
Y = OMe	-1042.57818	-1042.51277	-1042.54106	-1042.48444	-1042.45782	
Y = SH	-1609.89753	-1609.81582	-1609.86328	-1609.78105	-1609.79777	
Y = SiH₃	-1394.87748	-1394.79215	-1394.82202	-1394.75711	-1394.77940	
Table S5. NICS(1)zz values in the S\(_0\) and T\(_1\) states of the differently substituted fulvenes. For label “REARRANGED” see Table S2.

X=H	Y=H	S\(_0\)	T\(_1\)	HOMA	
X=BF\(_2\)	Y=BF\(_2\)	-2.7	-0.1	-0.39	0.21
Y=BH\(_2\)	-2.7	-10.9	-0.38	0.34	
Y=CF\(_3\)	-2.4	9.1	-0.46	0.29	
Y=Cl	4.2	-4.2	-0.50	0.49	
Y=CN	-5.2	1.8	-0.20	0.20	
Y=F	10.7	-6.4	-0.66	0.62	
Y=Me	11.6	-8.1	-0.83	0.38	
Y=NH\(_2\)	REARRANGED				
Y=NMe\(_2\)	REARRANGED				
Y=NO\(_2\)	REARRANGED				
Y=OH	9.1	-9.6	-0.52	0.59	
Y=OMe	10.4	-10.0	-0.55	0.55	
Y=SH	-0.6	-11.4	-0.37	0.43	
Y=SiH\(_3\)	5.4	-3.2	-0.83	0.17	

X=BF\(_2\) Y=BF\(_2\) T\(_1\) excitation is different to that of the parent fulvene

Y=BH\(_2\)	REARRANGED			
Y=CF\(_3\)	T\(_1\) excitation is different to that of the parent fulvene			
Y=Cl	-6.5	0.2	-0.03	0.48
Y=CN	-15.2	7.5	0.25	0.14
Y=F	-2.1	-4.3	-0.20	0.63
Y=Me	Degenerate states			
Y=NH\(_2\)	REARRANGED			
Y=NMe\(_2\)	REARRANGED			
Y=NO\(_2\)	REARRANGED			
Y=OH	Existence of another excitation with charge transfer character			
Y=OMe	-0.5	-7.7	-0.14	0.54
Y=SH	REARRANGED			
Y=SiH\(_3\)	REARRANGED			

X=Cl Y=BF\(_2\) T\(_1\) excitation is different to that of the parent fulvene

Y=BF\(_2\)	-4.6	10.1	-0.08	-0.14
Y=BH\(_2\)	-8.0	9.1	-0.07	-0.31
Y=CF\(_3\)	-4.4	15.9	-0.24	0.12
Y=Cl	-1.3	2.7	-0.44	0.38
Y=CN	-7.9	9.0	0.05	-0.02
Y=F	2.0	-0.4	-0.40	0.53
Y=Me	-1.1	2.5	-0.59	0.26
Y=NH\(_2\)	3.8	-9.5	-0.66	0.54
Y=NMe\(_2\)	3.1	-8.4	-0.65	0.42
Y=NO\(_2\)	-4.3	15.0	0.09	0.23
Y=OH	5.6	-4.6	-0.48	0.51
X = CN	Y = OMe	5.0	-4.2	-0.49	0.46
Y = SH	-0.8	-3.4	-0.46	0.35	
Y = SiH₃	-5.7	9.3	-0.31	-0.04	
X = F	Y = BF₂	2.5	1.7	-0.33	0.17
Y = BH₂	0.9	-6.1	-0.36	0.39	
Y = CF₂	5.4	5.7	-0.47	0.31	
Y = Cl	11.7	-3.5	-0.59	0.49	
Y = CN	1.5	2.6	-0.22	0.21	
Y = F	-5.7	5.0	-0.61	0.50	
Y = Me	13.0	-4.8	-0.75	0.41	
Y = NH₂	T₀ ground state				
Y = NMe₂	21.5	-10.5	-0.66	0.46	
Y = NO₂	4.9	3.1	-0.26	0.42	
Y = OH	20.3	-8.6	-0.64	0.62	
Y = OMe	22.7	-9.1	-0.62	0.58	
Y = SH	16.0	-8.1	-0.66	0.49	
Y = SiH₃	4.5	0.4	-0.59	0.20	
X = F	Y = BF₂	-14.0	15.5	0.18	-0.31
Y = BH₂	-13.5	16.2	0.19	-0.50	
Y = CF₂	-9.8	12.3	0.09	0.08	
Y = Cl	-5.5	1.8	-0.09	0.41	
Y = CN	-12.4	7.9	0.26	-0.07	
Y = F	-3.1	1.7	-0.20	0.50	
Y = Me	-4.9	4.1	-0.24	0.35	
Y = NH₂	0.9	-9.9	-0.35	0.63	
Y = NMe₂	0.1	-7.8	-0.34	0.57	
Y = NO₂	Not a clear HOMO-to-LUMO excitation				
Y = OH	-1.1	-4.2	-0.22	0.59	
Y = OMe	0.1	-2.2	-0.22	0.54	
Y = SH	-3.9	-4.1	-0.15	0.49	
Y = SiH₃	-10.7	10.6	-0.04	0.03	
X = H	Y = BF₂	-10.5	14.4	-0.07	-0.20
Y = BH₂	LUMO primarily localized on the Y substituents				
Y = CF₂	-5.5	10.5	-0.21	0.18	
Y = Cl	1.7	-0.7	-0.38	0.39	
Y = CN	-7.2	6.0	-0.06	0.02	
Y = F	3.3	-2.0	-0.46	0.55	
Y = Me	3.3	-2.0	-0.53	0.29	
Y = NH₂	10.4	-11.3	-0.59	0.54	
Y = NMe₂	8.0	-9.3	-0.57	0.38	
Y = NO₂	-5.6	14.4	-0.05	0.07	
Y = OH	6.2	-8.9	-0.47	0.57	
Y = OMe	7.3	-6.0	-0.47	0.48	
Y = SH	1.6	-6.4	-0.39	0.44	
Y = SiH$_3$	-4.8	5.1	-0.39	0.00	
X = Me	Y = BF$_2$	T_1 excitation is different to that of the parent fulvene			
Y = BH$_2$	LUMO primarily localized on the Y substituents				
Y = CF$_3$	T_1 excitation is different to that of the parent fulvene				
Y = Cl	-5.5	6.1	-0.27	0.32	
Y = CN	-12.3	12.6	0.10	0.12	
Y = F	-1.8	1.9	0.37	0.49	
Y = Me	-4.9	6.0	-0.51	0.21	
Y = NH$_2$	-1.6	-6.6	-0.54	0.52	
Y = NMe$_2$	-0.7	-4.0	-0.55	0.39	
Y = NO$_2$	Not a clear HOMO-to-LUMO excitation				
Y = OH	-0.4	-3.7	-0.43	0.51	
Y = OMe	0.1	-1.0	-0.40	0.41	
Y = SH	-5.5	-0.4	-0.33	0.34	
Y = SiH$_3$	-10.5	14.3	-0.25	-0.15	

X = NH$_2$	Y = BF$_2$	REARRANGED		
Y = BH$_2$	REARRANGED			
Y = CF$_3$	Both T_1 and S_1 excitations are different to that of the parent fulvene			
Y = Cl	-17.7	10.7	0.46	0.19
Y = CN	LUMO primarily localized on the Y substituents			
Y = F	-15.0	7.7	0.36	0.42
Y = Me	-15.6	8.6	0.22	0.19
Y = NH$_2$	T_1 excitation is different to that of the parent fulvene			
Y = NMe$_2$	Not a clear HOMO-to-LUMO excitation			
Y = NO$_2$	Both T_1 and S_1 excitations are different to that of the parent fulvene			
Y = OH	Not a clear HOMO-to-LUMO excitation			
Y = OMe	Not a clear HOMO-to-LUMO excitation			
Y = SH	Both T_1 and S_1 excitations are different to that of the parent fulvene			
Y = SiH$_3$	Both T_1 and S_1 excitations are different to that of the parent fulvene			

X = NMe$_2$	Y = BF$_2$	REARRANGED		
Y = BH$_2$	REARRANGED			
Y = CF$_3$	Both T_1 and S_1 excitations are different to that of the parent fulvene			
Y = Cl	-18.9	13.2	0.64	0.26
Y = CN	LUMO primarily localized on the Y substituents			
Y = F	-15.9	9.0	0.42	0.45
Y = Me	-17.0	11.6	0.36	0.20
Y = NH$_2$	-11.1	9.2	0.26	0.52
Y = NMe$_2$	-13.5	-2.1	0.35	0.37
Y = NO$_2$	Both T_1 and S_1 excitations are different to that of the parent fulvene			
Y = OH	T_1 excitation is different to that of the parent fulvene			
Y = OMe	T_1 excitation is different to that of the parent fulvene			
Y = SH	Both T_1 and S_1 excitations are different to that of the parent fulvene			
Y = SiH$_3$	Both T_1 and S_1 excitations are different to that of the parent fulvene			

X = NO$_2$ | Y = BF$_2$ | 3.2 | -18.3 | -0.49 | 0.66 |
Y = BH$_2$	REARRANGED
Y = CF$_3$	3.6 2.0 -0.61 0.38
Y = Cl	10.8 -7.2 -0.65 0.54
Y = CN	2.8 -3.2 -0.37 0.24
Y = F	14.2 -8.4 -0.72 0.66
Y = Me	14.5 -9.7 -0.87 0.45
Y = NH$_2$	Not a clear HOMO-to-LUMO excitation
Y = NMe$_2$	8.3 -10.9 -0.64 0.36
Y = NO$_2$	5.2 2.4 -0.37 0.45
Y = OH	17.3 -10.9 -0.70 0.63
Y = OMe	19.5 -11.3 -0.68 0.59
Y = SH	11.1 -12.3 -0.71 0.45
Y = SiH$_3$	6.6 -7.6 -0.79 0.26

X = OH Y = BF$_2$ Both T1 and S1 excitations are different to that of the parent fulvene

Y = BH$_2$	Both T1 and S1 excitations are different to that of the parent fulvene
Y = CF$_3$	T$_1$ excitation is different to that of the parent fulvene
Y = Cl	-8.3 3.8 0.04 0.29
Y = CN	LUMO primarily localized on the Y substituents
Y = F	-5.7 1.5 -0.06 0.48
Y = Me	-7.2 3.9 -0.14 0.19
Y = NH$_2$	-0.1 -8.1 -0.30 0.60
Y = NMe$_2$	HOMO is of a different character compared to that of the parent fulvene

Y = NO$_2$	REARRANGED
Y = OH	-9.6 0.5 0.15 0.49
Y = OMe	-2.4 2.3 -0.13 0.42
Y = SH	-7.1 -2.1 -0.01 0.35
Y = SiH$_3$	LUMO primarily localized on the Y substituents

| Y = H | Y = BF$_2$ | 8.8 -5.8 -0.75 0.42 |
|----------|-------------|
| Y = BH$_2$ | 6.2 -2.8 -0.64 0.45 |
| Y = CF$_3$ | 5.6 -4.0 -0.70 0.38 |
| Y = Cl | 1.7 5.7 -0.21 0.31 |
| Y = CN | 9.2 -1.4 -0.47 0.47 |
| Y = F | -9.7 9.1 -0.03 0.32 |
| Y = Me | -8.0 9.0 -0.18 0.22 |
| Y = NH$_2$ | Both T1 and S1 excitations are different to that of the parent fulvene |
| Y = NMe$_2$ | T$_1$ excitation is different to that of the parent fulvene |

Y = NO$_2$	9.3 -8.3 -0.65 0.47
Y = OH	-11.4 9.1 0.10 0.20
Y = OMe	18.0 9.8 0.28 0.21
Y = SH	-4.9 8.2 -0.13 0.31
Y = SiH$_3$	-0.8 1.5 -0.53 0.33

X = SH Y = BF$_2$ Both T1 and S1 excitations are different to that of the parent fulvene

Y = BH$_2$	Both T1 and S1 excitations are different to that of the parent fulvene			
Y = CF$_3$	T$_1$ excitation is different to that of the parent fulvene			
Y = Cl	-6.9	6.4	-0.10	0.40
-------	------	-----	--------	-----
Y = CN	T1 excitation is different to that of the parent fulvene			
Y = F	-4.4	2.7	-0.12	0.53
Y = Me	-4.5	3.8	-0.40	0.30
Y = NH2	-4.8	-10.8	-0.23	0.50
Y = NMe2	Not a clear HOMO-to-LUMO excitation			
Y = NO2	-14.0	22.0	0.43	0.43
Y = OH	-3.5	-0.7	-0.18	0.53
Y = OMe	-2.3	1.1	-0.19	0.48
Y = SH	-3.6	-3.3	-0.20	0.41
Y = SiH3	LUMO is of a different character compared to that of the parent fulvene			

X=CF3	Y = BF3	2.3	-0.7	-0.68	0.13
Y = BH2	1.6	-6.7	-0.63	0.18	
Y = CF3	3.5	14.1	-0.88	0.32	
Y = Cl	11.3	-3.2	-0.80	0.47	
Y = CN	2.2	0.9	-0.50	0.14	
Y = F	13.5	-5.4	-0.78	0.61	
Y = Me	14.7	-5.7	-1.06	0.35	
Y = NH2	14.6	-9.7	-0.89	0.45	
Y = NMe2	14.9	-9.7	-0.89	0.45	
Y = NO2	2.9	7.2	-0.50	0.35	
Y = OH	17.5	-8.5	-0.83	0.59	
Y = OMe	19.9	-9.0	-0.80	0.55	
Y = SH	10.6	-9.4	-0.90	0.45	
Y = SiH3	5.1	-1.6	-0.99	0.09	

X=OMe	Y = BF3	-5.3	15.1	-0.36	0.12
Y = BH2	REARRANGED				
Y = CF3	-2.7	15.0	-0.59	0.12	
Y = CN	3.5	-0.2	-0.24	0.02	
Y = Cl	-6.8	8.7	-0.62	0.40	
The cyclopentadienyl cation (Cp⁺) in its lowest singlet and triplet states represent references for, respectively, Hückel-antiaromaticity (MCI = -0.034) and Baird-aromaticity (MCI = 0.097). The cyclopentadienyl anion (Cp⁻) in its lowest singlet and triplet states is Hückel-aromatic (MCI = 0.068) and Baird-antiaromatic (MCI = 0.026), respectively. When analyzing MCI, it is better to investigate the differences, *i.e.* ΔMCI(T₁-S₀). In case of Cp⁺ such difference is highly positive (0.131) indicating that the molecules gains aromaticity from the S₀ to the T₁ state. On the other hand, for Cp⁻ the difference is negative (-0.042) revealing loss of aromaticity. Also, it is worth mentioning that Cp⁺ in the triplet state has a higher MCI (0.097) compared to Cp⁻ and that is indicative that Cp⁺ is more Baird-aromatic than Cp⁻.

Note on Cartesian coordinates: The coordinates of the optimized geometries of the substituted fulvenes, listed in Tables S2-S6, in their S₀ and T₁ states are available upon request from the authors.
Table S7. Electronic excitation energies (eV) of the selected tetrasubstituted fulvenes at TD-M06-2X/def2-TZVPD and CASPT2(14in14)/ANO-RCC-VDZP (in italics) levels.

Fulvene	$E(T_1)_{a}$	$E(S_1)c$	$E(T_2)d$	$E(S_1)/E(T_1)_{a}$	$E(T_2)/E(S_1)$	$E(T_2)/E(T_1)_{a}$
X = CN, Y = NMe₂	0.21, 0.56	1.63, 2.04	3.41, 3.28	7.76, 3.64	2.09, 1.61	16.24, 5.86
X = NO₂, Y = NH₂	0.28, 0.21	1.68, 1.52	3.21, 3.32	6.00, 7.24	1.91, 2.18	11.46, 15.78
X = CF₃, Y = NMe₂	0.46, 0.66	2.18, 2.55	2.89, 3.17	4.74, 3.86	1.33, 1.24	6.28, 4.79
X = CN, Y = OMe	0.53, 0.61	1.90, 2.26	2.86, 3.13	3.58, 3.70	1.51, 1.38	5.40, 5.11
X = CN, Y = F	0.72, 0.93	2.32, 2.66	2.72, 3.07	3.22, 2.86	1.17, 1.15	3.78, 3.29
X = BF₂, Y = F	0.83, 0.77	2.74, 3.04	2.90, 2.96	3.30, 3.95	1.06, 0.97	3.49, 3.83
X = OMe, Y = NH₂	1.03, 1.26	2.81, 3.10	3.44, 3.62	2.73, 2.46	1.22, 1.17	3.34, 2.88
X = CN, Y = SiH₃	1.23, 1.25	2.73, 3.04	2.54, 2.75	2.22, 2.43	0.93, 0.90	2.07, 2.19

*a The active space includes five occupied valence π-orbitals, the two highest occupied σ-orbitals and the corresponding virtual ones. In case that the compound has only three occupied valence π-orbitals, the four highest occupied σ-orbitals are taken.

*b Adiabatic triplet M06-2X/def2-TZVPD excitation energies computed at M06-2X/6-311+G(d,p) triplet geometry.

*c First singlet TD-M062X/def2-TZVPD vertical excitations computed from the M06-2X/6-311+G(d,p) ground state optimized structure.

*d Second triplet TD-M062X/def2-TZVPD vertical excitations computed from the M06-2X/6-311+G(d,p) lowest triplet optimized structure.

Table S8. Comparison of experimental $E(S_1)$ and $E(T_1)$ and computed $E(S_1)$, $E(T_1)_a$ and adiabatic $E(T_1)_a$ of a DPB, pentacene, tetracene and four fulvenes. Corresponding ratios $E(S_1)/E(T_1)$ are also provided. Energies computed at TD-M06-2X/def2-TZVPD level except the ones in parenthesis which are computed at CASPT2/ANO-RCC-VDZP/ TD-M06-2X/def2-TZVPD level.

	$E(S_1)_{exp}$	$E(S_1)_a$	$E(T_1)_{exp}$	$E(T_1)_a$	$E(S_1)/E(T_1)_a$	$E(S_1)/E(T_1)$	$E(S_1)_a/E(T_1)_a$	
DPB	3.22	3.01	1.41	2.11	1.64	2.13	1.53	1.96
pentacene	2.30	2.28	0.86	1.33	0.98	2.67	1.72	2.33
tetracene	2.32	2.83	1.25	1.57	1.44	1.86	1.80	1.97
TCIDMF	3.48	3.29	1.98	2.40	1.58	1.76	1.37	2.08
TCIDPF	3.62	3.46	2.17	2.76	2.09	1.67	1.26	1.66
6,6-DMF*	3.50	3.75	1.98	2.64	1.85	1.76	1.42	2.02
TBuEDCF	-	1.74	-	1.02	0.64	-	1.71	2.72
NDPDCF	-	2.05	-	1.51	0.94	-	1.36	2.18
PDPDCF	-	1.84	-	1.23	0.69	-	1.50	2.67
DMDPDCF	-	2.23	-	1.57 (1.95)	0.92	-	1.42	2.42
DCIDPDCF	-	2.38	-	1.70 (2.26)	0.96	-	1.40	2.48
TCIDCF	2.29	2.48	< 1.18	1.67 (2.16)	0.82	-	1.49	3.02

* 6,6-DMF = 6,6-dimethylfulvene
Spin-orbit coupling calculations

As the T₁ excitons formed in an efficient singlet fission chromophore should be long-lived, we investigated the probability for spin-forbidden T₁/S₀ state processes such as intersystem crossing and phosphorescence in fulvenes. If a triplet exciton is close to a T₁/S₀ crossing point with high spin-orbit coupling (SOC), leading to rapid decay to the S₀ state, the efficiency will be hampered. However, the SOC elements for T₁/S₀ in our eight fulvenes computed at TD-M06-2X level range from 0.4 to 2.8 cm⁻¹ (Table S7) which is typical of weak couplings and indicating that intersystem crossing will not impede the singlet fission process.

Table S9. Spin-orbit coupling (∂T₁[H]|S₀>) elements (in cm⁻¹) and %TAE([T]) values computed at CCSD(T)/aug-cc-pVDZ level for a small selection of fulvenes.

| System | <T₁|H|S₀> | %TAE([T]) |
|--------|-------|----------|
| X = CN | 1.0 | 3.145 |
| Y = NMe₂ | | |
| X = NO₂ | 1.1 | 3.216 |
| Y = NH₂ | | |
| X = CF₃ | 1.8 | 2.516ᵃ |
| Y = NMe₂ | | |
| X = CN | 0.3 | 2.831 |
| Y = OMe | | |
| X = NO₂ | 1.3 | 2.738 |
| Y = BF₂ | | |
| X = CN | 0.4 | 3.766 |
| Y = F | | |
| X = BF₂ | 1.7 | 2.613 |
| Y = F | | |
| X = OMe | 1.7 | 2.964 |
| Y = NH₂ | | |
| X = CN | 0.4 | 4.105 |
| Y = SiH₃| | |
| X = CN | 2.8 | 3.629 |
| Y = BF₂ | | |
| X = BF₂ | 0.5 | 3.235ᵃ |
| Y = CF₃ | | |
| X = BF₂ | 0.4 | 1.968 |
| Y = NO₂ | | |
| X = NH₂ | 1.9 | 2.624ᵃ |
| Y = NMe₂ | | |

ᵃ Computed at CCSD(T)/cc-pVDZ due to memory issues
Assessment of the multiconfigurational character in fulvenes

Excitation energies calculated with TDDFT are reliable only if there is no evidence of multiconfigurational character, at least at the geometry in the S_0 state. To probe for multiconfigurational character, we used the $\%\text{TAE}_e(T)$, i.e., the percentage of the perturbative triples correction (T) to the total CCSD(T) atomization energy, proposed by Karton et al. 5 The computed $\%\text{TAE}_e(T)$ values for the S_0 states of the fulvenes in Figure 5 are found in the range 2.0 - 4.1 % (Table S7), indicating lack of multiconfigurational character as the values are below the recommended threshold of 10%. 4

Figure S1: Plots of HOMO and LUMO of (A) the fulvene with $X = \text{CN}$ and $Y = \text{NH}_2$, and (B) the fulvene with $X = \text{NH}_2$ and $Y = \text{CN}$. Calculated for the S_0 state at M06-2X/6-311+G(d,p) level.
Calculation of the diradical character

The diradical character was computed using the spin-projected spin-unrestricted Hartree-Fock (PUHF) proposed by Yamaguchi given by,

\[y_n = 1 - \frac{2T_n}{1 + T_n^2} \]

where \(T_n \) is the orbital overlap between the corresponding orbital pairs than can be also expressed in the terms of natural occupation numbers, \(\eta \), of UHF natural orbitals as,

\[T_n = \frac{\eta_{HOMO-n} - \eta_{LUMO}}{2} \]

Diradical (\(n=0 \)) and tetraradical (\(n=1 \)) characters have been calculated (Table Y).

Table S10. Diradical (\(y_0 \)) and tetraradical (\(y_1 \)) character.

	\(y_0 \)	\(y_1 \)
Fulvenes		
X = Cl Y = NH\(_2\)	0.037	0.001
X = CN Y = SH	0.077	0.002
X = CN Y = OH	0.052	0.002
X = CN Y = NH\(_2\)	0.087	0.002
X = CN Y = OMe	0.047	0.001
X = CF\(_3\) Y = OH	0.045	0.002
X = CF\(_3\) Y = SH	0.057	0.002
X = CN Y = NMe\(_2\)	0.059	0.002
X = CF\(_3\) Y = NMe\(_2\)	0.043	0.001
X = NO\(_2\) Y = SH	0.061	0.002
X = NO\(_2\) Y = OMe	0.040	0.001
X = CF\(_3\) Y = NH\(_2\)	0.073	0.002
X = NO\(_2\) Y = NMe\(_2\)	0.038	0.001
TCIDCF(H\(_2\))\(^{2+}\)	0.129	0.002
CBD	0.191	0.004
parent pentalene	0.259	0.006
Cyclopentadienyl cation	0.956	0.003
Substituted CBDs		
SCBD1	0.189	0.004
SCBD2	0.244	0.005
SCBD3	0.192	0.004
SCBD4	0.151	0.003
Benzannelated CBDs		
BENZCBD1	0.109	0.009
BENZCBD2	0.226	0.023
BENZCBD5	0.281	0.036
Benzannelated pentalenes		
BENZPENT1	0.179	0.016
BENZPENT3	0.261	0.030
BENZPENT4	0.264	0.030
BENZPENT6	0.479	0.020
BENZPENT7	0.299	0.034
BENZPENT11	0.598	0.043
BENZPENT19	0.011	0.000
Figure S2. Two plots showing how $E(T_1)$, $E(S_1)$, and $E(T_2)$ vary as functions of the CC bond lengths marked in red of four fulvenes, (A) $X = CN$, $Y = H$, (B) $X = NH_2$, $Y = H$, (C) $X = F$, $Y = BF_2$, and (D) $X = F$, $Y = NH_2$. Calculations at TD-M06-2X/6-311+G(d,p) level.

Table S11. The $\Delta E(S_1-T_1)$ of the parent fulvene and substituted fulvenes in Figure 2 and Figure S2.

X	C2-C3 bond	C1-C2/C3-C4
H	1.00 – 1.13	1.04 – 1.16
CN	0.83 – 0.86	0.84 – 0.96
NH$_2$	1.04 – 1.48*	1.04 – 1.17
F, BF$_2$	1.40 – 1.49	1.41 – 1.51
F, NH$_2$	0.92 – 0.98	0.94 – 1.08

* The S_1 and T_1 excitations of this fulvene is not described by the same configurations, *i.e.* the singly excited configuration involving the proper HOMO and LUMO.
Figure S3: (A) The $E(S_1)_{v}$ and $E(T_1)_{a}$ plotted vs. ΔNICS(1)$_{zz,T1-S0}$, (B) $E(T_2)$ and $E(S_1)_{v}$ plotted vs. ΔNICS(1)$_{zz,T1-S0}$, (C) the $E(S_1)_{v}$ and $E(T_1)_{a}$ plotted vs. ΔHOMA$_{T1-S0}$, (D) $E(T_2)$ and $E(S_1)_{v}$ plotted vs. ΔHOMA$_{T1-S0}$, (E) the $E(S_1)_{v}$ and $E(T_1)_{a}$ plotted vs. ΔNICS(1)$_{zz,T1v-S0}$, and (F) $\Delta E(S_1-T_1)_{av}$ plotted vs. ΔNICS(1)$_{zz,T1v-S0}$ calculated at GIAO/(U)M06-2X/6-311+G(d,p) level.
Figure S4: The $E(T_{1a})$ plotted vs. (A) NICS(1)$_{T1}$ and (B) HOMA$_{T1}$, (C) HOMA$_{T1}$ vs. NICS(1)$_{T1}$ and (D) ΔHOMA$_{T1-S0}$ vs. ΔNICS(1)$_{T1-S0}$ calculated at GIAO/(U)M06-2X/6-311+G(d,p) level.

The poorer correlation of plot B when compared to plot A comes from the fact that HOMA is not ideal to describe the T_1 aromaticity of molecules with small four- and five-membered rings. A clear example is cyclopentadienyl cation (Cp^+), a Baird-aromatic reference, which has an HOMA value (0.73), significantly for below the ideal aromatic HOMA value of 1.0.
Figure S5. A comparison of the dependence of $E(S_1)_v$ and $E(T_1)_v$ on (A) NICS(1)$_{zz,S0}$ and (B) HOMA$_{S0}$ of fulvenes. R^2 is the squared correlation coefficient. Calculations at M06-2X/6-311+G(d,p).
SUBSTITUTED CBDs
Weights of the singly excited HOMO to LUMO configurations of substituted CBDs
In all cases the major configuration in the S_1 state is the HOMO to LUMO transition.

![Diagram](image)

$R = \text{i}^\text{Bu} \, (\text{SCBD}_1)$
$R = \text{SiMe}_3 \, (\text{SCBD}_2)$

$95\% \quad 98\%$

$R = \text{H}_2\text{C}-\text{CH}_2 \, (\text{SCBD}_3)$
$R = \text{CH}_2 \, (\text{SCBD}_4)$

$98\% \quad 98\%$

Figure S6. Percentage of the singly excited HOMO to LUMO configuration in the S_1 state of CBD and substituted CBDs (SCBD)s.

Table S12. Coefficients of the major configurations from Gaussian output of the CBD derivatives.
SCBD1
SCBD2
SCBD3
SCBD4

Table S13. The $\Delta E(S_{1}-T_{1})_{va}$ of CBD and substituted CBDs (SCBD).
CBD
SCBD1
SCBD2
SCBD3
SCBD4
Figure S7. Dependence of $E(T_1)$ and $E(S_1)$ on ΔNICS(1)$_{zz,T1-S0}$ of the SCBD derivatives. R^2 is the squared correlation coefficient. The correlation does not include the red points which correspond to SCBD1. Calculations at M06-2X/6-311+G(d,p).
SUBSTITUTED PENTALENES

Weights of the singly excited HOMO to LUMO configurations of substituted pentalenes
In all cases the major configuration in the S_1 state is the HOMO to LUMO transition.

![Diagram of substituted pentalenes]

Figure S8. Percentage of the singly excited HOMO to LUMO configuration in the S_1 state of pentalene (PENT) and substituted pentalenes (SPENT).

Table S14. Coefficients of the major configurations from the Gaussian output of pentalene and the substituted pentalenes (SPENT1 - SPENT4).

	Excited State												
	I: Singlet-A	1											
PENT	1.8917 eV	655.43 nm	f=0.0000	$<S**2>$=0.000 27 -> 28	0.71079								
SPENT1	1.9308 eV	642.14 nm	f=0.0000	$<S**2>$=0.000 43 -> 44	0.70925								
SPENT2	1.8166 eV	682.52 nm	f=0.0001	$<S**2>$=0.000 91 -> 92	0.70861								
SPENT3	1.5529 eV	798.42 nm	f=0.0001	$<S**2>$=0.000 99 -> 108	-0.11086								

Table S15. $\Delta E(S_1-T_1)_{va}$ of pentalene (PENT) and substituted pentalenes (SPENT).

	$\Delta E(S_1-T_1)_{va}$
PENT	1.26
SPENT1	1.33
SPENT2	1.22
SPENT3	1.07
Figure S9. HOMO-1, HOMO and LUMO of the parent pentalene calculated at M06-2X/6-311+G(d,p) level.
SUBSTITUTED INDACENES
Weights of the singly excited HOMO to LUMO configurations of substituted s- and as-indacenes. In all the cases the major configuration in the S_1 state is the HOMO to LUMO transition.

![Diagram of substituted indacenes]

	s-IND	s-SIND1	s-SIND2
R = H	100%	100%	98%
R = Me			
R = Ph			

Figure S10. Percentage of the singly excited HOMO to LUMO configuration in the S_1 state of s- and as-indacenes and substituted derivatives.

Table S16. Coefficients of the major configurations from Gaussian output of s- and as-indacenes and substituted derivatives.

s-IND	Excited State	1: Singlet-AG	1.6716 eV	741.70 nm	$f=0.0000$
	$<S^2>=0.000$	40 -> 41	0.70765		
s-SIND1	Excited State	1: Singlet-A	1.8081 eV	685.72 nm	$f=0.0000$
	$<S^2>=0.000$	56 -> 57	0.70683		
s-SIND2	Excited State	1: Singlet-A	1.5378 eV	806.25 nm	$f=0.0000$
	$<S^2>=0.000$	120 -> 121	0.69690		
as-IND	Excited State	1: Singlet-B2	1.5509 eV	799.41 nm	$f=0.0092$
	$<S^2>=0.000$	39 -> 41	0.16152		
		40 -> 41	0.69091		
as-SIND1	Excited State	1: Singlet-A	1.6079 eV	771.12 nm	$f=0.0103$
	$<S^2>=0.000$	47 -> 49	0.16615		
		48 -> 49	0.68925		
as-SIND2	Excited State	1: Singlet-A	1.5184 eV	816.52 nm	$f=0.0109$
	$<S^2>=0.000$	79 -> 81	0.15058		
		80 -> 81	0.69153		
as-SIND3	Excited State	1: Singlet-B	1.7056 eV	726.94 nm	$f=0.0071$
	$<S^2>=0.000$	55 -> 57	-0.17151		
		56 -> 57	0.68633		
With regard to s-indacenes, they satisfy the $2E(T_1) < E(S_1)$ criterion, but $E(T_2)$ is so far below $E(S_1)$ that none of the substituted s-indacenes are suitable. In contrast, both singlet fission criteria are satisfied in the parent and in several substituted as-indacenes, yet these compounds have very low $E(T_1)$. Combined, this suggests that indacenes are not suitable for singlet fission, at least not in connection to silicon solar cell technology.

Figure S11. The parent and substituted s- and as-indacenes and their excitation energies (in eV) computed at TD-M06-2X/def2-TZVPD//M06-2X/6-311+G(d,p) level.

Table S17. The $\Delta E(S_1-T_1)_{va}$ of s- and as-indacenes and substituted derivatives.

	$\Delta E(S_1-T_1)_{va}$
s-IND	0.95
s-SIND1	1.06
s-SIND2	0.87
as-IND	1.41
as-SIND1	1.39
as-SIND2	1.38
as-SIND3	1.41
Figure S12. HOMO and LUMO of the parent s-indacene (A) and as-indacene (B) obtained at M06-2X/6-311+G(d,p). Symmetries are given in parenthesis.
BENZANNELATED CBDs

Weights of the major configurations of substituted BENZCBDs. In all cases except BENZCBD7 the major configuration in the S_1 state is the HOMO to LUMO transition.

![Diagram of benzannelated CBDs]

Figure S13. Percentage the singly excited HOMO to LUMO configuration in the S_1 state of benzannelated CBDs (BENZCBD).

Table S18. Coefficients of the major configurations from Gaussian output of benzannelated CBDs (BENZCBD) derivatives.

BENZCBD	Excited State	Singlet	Energy (eV)	Wavelength (nm)	f	$<S^2>$
BENZCBD1	Singlet-B2	3.1464	394.05	0.000	0.70546	0.000
BENZCBD2	Singlet-A'	2.5678	482.84	0.000	0.68931	0.0056
BENZCBD3	Singlet-B2	3.4082	363.78	0.000	0.69960	0.0021
BENZCBD4	Singlet-B2	3.5941	344.96	0.000	0.70153	0.0000
BENZCBD5	Singlet-B2	2.3528	526.96	0.000	-0.10722	0.0293
Table S19. Oscillator strengths for the \(S_1 \) transition of benzannelated CBDs (BENZCBD).

BENZCBD	f
BENZCBD1	0.003
BENZCBD2	0.006
BENZCBD3	0.002
BENZCBD4	0.000
BENZCBD5	0.029
BENZCBD6	0.012
BENZCBD7	0.130
BENZCBD8	0.042
BENZCBD9	0.000
BENZCBD10	0.011
BENZCBD11	0.000

Table:

		53 -> 54	53 -> 58	\(\langle S^2 \rangle \)	Excited State	E \((eV) \)	\(\lambda \) nm	f
BENZCBD6	3.0363	0.68787	0.12273	0.68582	Singlet-A'	3.0363 eV	408.35 nm	0.0121
BENZCBD7	3.9019	0.58997	0.12273	0.68582	Singlet-A1	3.9019 eV	317.76 nm	0.1300
BENZCBD8	2.8436	0.68748	0.11588	0.68748	Singlet-B2	2.8436 eV	436.01 nm	0.0416
BENZCBD9	2.5661	0.69558		0.69558	Singlet-AG	2.5661 eV	483.16 nm	0.0000
BENZCBD10	2.3637	0.69583		0.69583	Singlet-A'	2.3637 eV	524.54 nm	0.0106
BENZCBD11	2.1581	0.69816		0.69816	Singlet-B3G	2.1581 eV	574.50 nm	0.0000
Table S20. The $\Delta E(S_1-T_1)_{va}$, $\Delta E(S_1-T_1)_{vv}$, $E(S_1)/E(T_1)_{a}$ and $E(S_1)/E(T_1)_{v}$ of benzannelated CBDs (BENZCBD). The subscripts a, v, va and vv stand for adiabatic, vertical, vertical-adiabatic and vertical-vertical. The average $\Delta E(S_1-T_1)_{va}$ is 1.36 eV.

	$\Delta E(S_1-T_1)_{va}$	$\Delta E(S_1-T_1)_{vv}$	$E(S_1)/E(T_1)_{a}$	$E(S_1)/E(T_1)_{v}$
BENZCBD1	1.69	0.79	2.17	1.33
BENZCBD2	1.59	0.79	2.62	1.33
BENZCBD3	1.57	1.01	1.85	1.42
BENZCBD4	1.31	0.90	1.57	1.33
BENZCBD5	1.61	0.82	3.18	1.33
BENZCBD6	1.27	0.92	1.73	1.44
BENZCBD7	0.94	0.99	1.32	1.34
BENZCBD8	1.29	0.92	1.83	1.48
BENZCBD9	1.22	0.89	1.90	1.53
BENZCBD10	1.22	0.65	2.08	1.38
BENZCBD11	1.25	0.66	2.36	1.44

Figure S14. HOMO-1, HOMO and LUMO of BENZCBD1 (A) and BENZCBD2 (B) obtained at M06-2X/6-311+G(d,p). Orbital symmetries are in parenthesis.
Energy tuning of BENZCBD2 by structural distortion

Despite being suitable as singlet fission chromophore the bent naphthoCBD has a calculated $E(T_1)$ which is \sim0.2 eV below the ideal $E(T_1)$ value. To examine if $E(T_1)$ can be increased this tunability we regarded the C$_8$-C$_9$ bond and investigated if an elongation of this bond stabilizes HOMO due to lessened antibonding character and destabilize LUMO due to lessened bonding character. Yet, in contrast to the observation made for fulvenes, bond length distortions did not extensively impact on $E(T_1)$, $E(S_1)$ and $E(T_2)$ of naphthoCBD (Figure S7). The maximal change in $E(T_1)$ and $E(S_1)$ are 0.18 and 0.14 eV, respectively. Thus, bond length distortions as a design tool is inefficient for PAAHs (also small PAAHs) as the frontier orbitals extend over too many bonds leading to only small relative impact from each bond on the orbital energy.

Figure S15. (A) The $E(T_1)$, $E(S_1)$ and $E(T_2)$ energies of bent BENZCBD2 as a function of the r_{C8-C9} distance, and (B) HOMO and LUMO for the S$_0$ state. Computations at TD-M06-2X/def2-TZVPD//(U)M06-2X/6-311+G(d,p) level.
Figure S16. The variation in $E(T_1)$, $E(S_1)$ and $E(T_2)$ as a function of benzannelation in selected benzannelated CBDS. Computations at TD-M06-2X/def2-TZVPD//(U)M06-2X/6-311+G(d,p) level. The * at the $E(S_1)$ value of BENZCBD7 indicates the two-configurational character of this state, leading to an energy lowering.

Table S21: HOMA values for pentalene and a few BENZCBD in the T_1 state.

HOMA	
CBD	0.41
BENZCBD1	0.02
BENZCBD2	0.28
BENZCBD3	-0.33
BENZCBD4	-0.16
BENZCBD5	0.41
BENZCBD6	-0.09
BENZCBD7	0.14
BENZCBD8	0.03
BENZCBD9	0.13
BENZCBD10	0.21
BENZCBD11	0.27
Figure S17. NICS-XY scans of (A) BENZCBD3, (B) BENZCBD4, (C) BENZCBD6, (D) BENZCBD7, (E) BENZCBD8, (F) BENZCBD9, (G) BENZCBD10 and (H) BENZCBD11 in their S_0 and T_1 states calculated at GIAO/M06-2X/6-311+G(d,p) level.
Figure S18. Comparison of NICS-XY scans of (A) BENZCBD1, (B) BENZCBD2 and (C) BENZCBD5 using M06-2X, B3LYP and CAM-B3LYP.
Figure S19. ACID of BENZOCBD1, BENZOCBD2 and BENZCBD5 in their S_0 and T_1 states calculated at TD-M06-2X/def2-TZVPD//M06-2X/6-311+G(d,p) level.
Full IUPAC names of the benzannelated CBDs

BENZCBD1
benzocyclobutadiene

BENZCBD2
cyclobuta[a]naphthalene

BENZCBD3
cyclobuta[b]naphthalene

BENZCBD4
biphenylene

BENZCBD5
cyclobuta[1]phenanthrene

BENZCBD6
benzo[a]biphenylene

BENZCBD7
benzo[b]biphenylene

BENZCBD8
benzo[3,4]cyclobuta-[1,2-]phenanthrene

BENZCBD9
dibenzo[a,g]biphenylene

BENZCBD10
naphtho[1',2':3,4]cyclobuta-[1,2-]phenanthrene

BENZCBD11
cyclobuta[1,2-;3,4-]-diphenanthrene

Figure S20. Full IUPAC names of the BENZCBDs.
BENZANNELATED PENTALENES

Weights of the singly excited HOMO to LUMO configurations of substituted BENZPENTs. In all cases except one the major configuration in the S_1 state is the HOMO to LUMO transition. The exception is BENZPENT10 for which the S_1 transition is a two-configurational transition described by the HOMO-2 to LUMO configuration (63%) and HOMO to LUMO (37%).

Figure S21. Percentage the singly excited HOMO to LUMO configuration in the S_1 state of benzannelated pentalenes (BENZPENT).
Table S22. Coefficients of the major configurations from Gaussian output of benzannelated pentalenes (BENZPENT).
BENZPENT1
Excited State 1: Singlet-A'
<S**2>=0.000
40 -> 41
0.70549
BENZPENT2
Excited State 1: Singlet-A'
<S**2>=0.000
52 -> 54
0.18111
53 -> 54
0.67621
BENZPENT3
Excited State 1: Singlet-A'
<S**2>=0.000
51 -> 54
-0.10499
52 -> 54
0.10685
53 -> 54
0.68813
BENZPENT4
Excited State 1: Singlet-A'
<S**2>=0.000
51 -> 54
0.13553
53 -> 54
0.69017
BENZPENT5
Excited State 1: Singlet-AG
<S**2>=0.000
53 -> 54
0.70286
BENZPENT6
Excited State 1: Singlet-A'
<S**2>=0.000
63 -> 67
-0.10523
66 -> 67
0.68837
BENZPENT7
Excited State 1: Singlet-A'
<S**2>=0.000
66 -> 67
0.68727
BENZPENT8
Excited State 1: Singlet-A'
<S**2>=0.000
64 -> 67
-0.10364
66 -> 67
0.69199
BENZPENT9
Excited State 1: Singlet-A'
<S**2>=0.000
65 -> 67
0.56288
66 -> 67
-0.41235
BENZPENT10
Excited State 1: Singlet-A'
<S**2>=0.000
65 -> 67
0.56288
66 -> 67
-0.41235
BENZPENT11
Excited State 1: Singlet-A'
<S**2>=0.000
66 -> 67
0.69908
BENZPENT12
Excited State 1: Singlet-A'
<S**2>=0.000
79 -> 80
0.69072
BENZPENT13
Excited State 1: Singlet-A'
<S**2>=0.000
79 -> 80
0.69368
BENZPENT14
<S**2>=0.000
BENZPENT15
<S**2>=0.000
BENZPENT16
<S**2>=0.000
BENZPENT17
<S**2>=0.000
BENZPENT18
<S**2>=0.000
BENZPENT19
<S**2>=0.000

Table S23. Oscillator strengths for the S\(^1\) transition of benzannelated pentalenes (BENZPENT).

f
BENZPENT1 0.007
BENZPENT2 0.007
BENZPENT3 0.001
BENZPENT4 0.010
BENZPENT5 0.000
BENZPENT6 0.006
BENZPENT7 0.005
BENZPENT8 0.004
BENZPENT9 0.002
BENZPENT10 0.009
BENZPENT11 0.036
BENZPENT12 0.011
BENZPENT13 0.020
BENZPENT14 0.000
BENZPENT15 0.020
BENZPENT16 0.000
BENZPENT17 0.001
BENZPENT18 0.003
BENZPENT19 0.000
Table S24. The $\Delta E(S_1-T_1)_{va}$, $\Delta E(S_1-T_1)_{vv}$, $E(S_1)/E(T_1)_a$ and $E(S_1)/E(T_1)_v$ of pentalene (PENT) and benzannelated pentalenes (BENZPENT). The subscripts a, v, va and vv stand for adiabatic, vertical, vertical-adiabatic and vertical-vertical. The average $\Delta E(S_1-T_1)_{va}$ is 1.08 eV.

	$\Delta E(S_1-T_1)_{va}$	$\Delta E(S_1-T_1)_{vv}$	$E(S_1)/E(T_1)_a$	$E(S_1)/E(T_1)_v$
PENT	1.26	0.80	3.00	1.73
BENZPENT1	1.26	0.73	2.21	1.46
BENZPENT2	1.34	0.75	2.16	1.43
BENZPENT3	1.11	0.44	2.30	1.29
BENZPENT4	0.93	0.44	2.11	1.29
BENZPENT5	0.99	0.62	1.58	1.30
BENZPENT6	1.16	0.57	10.74	1.80
BENZPENT7	1.08	0.44	2.49	1.32
BENZPENT8	1.01	0.63	1.76	1.37
BENZPENT9	0.99	0.63	1.74	1.37
BENZPENT10	1.12	0.71	1.63	1.33
BENZPENT11	1.08	0.50	3.11	1.46
BENZPENT12	1.02	0.57	1.88	1.35
BENZPENT13	0.93	0.61	1.85	1.43
BENZPENT14	0.93	0.6	1.83	1.41
BENZPENT15	1.09	0.66	1.76	1.36
BENZPENT16	1.31	0.99	1.73	1.47
BENZPENT17	0.93	0.58	3.39	1.78
BENZPENT18	0.94	0.61	1.96	1.47
BENZPENT19	1.11	0.39	2.32	1.28

Table S25: HOMA values of pentalene (PENT) and of the pentalene unit in benzannelated pentalenes (BENZPENT) in the T$_1$ state.

	HOMA
PENT	0.86
BENZPENT1	0.37
BENZPENT2	0.37
BENZPENT3	0.72
BENZPENT4	0.73
BENZPENT5	0.51
BENZPENT6	0.42
BENZPENT7	0.80
BENZPENT8	0.47
BENZPENT9	0.54
BENZPENT10	0.23
BENZPENT11	0.49
BENZPENT12	0.54
BENZPENT13	0.68
BENZPENT14	0.67
BENZPENT15	0.30
BENZPENT16	0.42
BENZPENT17	0.60
BENZPENT18	0.70
BENZPENT19	0.75
Figure S22. Electronic excitation energies (eV) and spin density of BENZPENT5, bis(styryl)BENZPENT5 and BENZPENT20. Computations at TD-M06-2X/def2-TZVPD//U-M06-2X/6-311+G(d,p) level.

Bis(styryl)BENZPENT15 has shown to provide an entry point to singlet fission as the excitation occurs in the S2 state, and such molecule compared to BENZPENT5 satisfies the criteria. The spin density is accumulated on the pentalene unit in the case of BENZPENT5 while in bis(styryl)BENZPENT5, it is concentrated on C1/C4 and C3/C6. For BENZPENT5, the S1 excitation is from HOMO to LUMO, yet for bis(styryl)BENZPENT5, the excitation if from HOMO-1 to LUMO. Yet, as the S1 state of bis(styryl)BENZPENT5 has double excitation character, TD-DFT is not suitable to describe the excitation energies. As a comparison, for 1,8-diphenyloctatetraene, $E(S_1) = 3.37$ eV and $E(T_1) = 1.88$ eV; for bis(styryl)BENZPENT5, $E(S_1) = 2.46$ eV and $E(T_1) = 1.59$ eV; for BENZPENT5, $E(S_1) = 2.69$ eV and $E(T_1) = 2.07$ eV.
Figure S23. Additional plots of the variations in $E(T_1)$, $E(S_1)$ and $E(T_2)$ as functions of benzannelation in selected benzannelated pentalenes. Computations at TD-M06-2X/def2-TZVPD//(U)M06-2X/6-311+G(d,p) level.
Figure S24. NICS-XY scan of pentalene.

Figure S25. NICS-XY scans of (A) BENZPENT2, (B) BENZPENT4, (C) BENZPENT5 and (D) BENZPENT6 in their S_0 and T_1 states calculated at GIAO/M06-2X/6-311+G(d,p) level.
Figure S26. NICS-XY scans of (A) BENZPENT8, (B) BENZPENT9, (C) BENZPENT10 and (D) BENZPENT11 in their S\(_0\) and T\(_1\) states calculated at GIAO/M06-2X/6-311+G(d,p) level.
Figure S27. NICS-XY scans of (A) BENZPENT12, (B) BENZPENT13, (C) BENZPENT14, (D) BENZPENT15, (E) BENZPENT16 and (F) BENZPENT17 in their S_0 and T_1 states calculated at GIAO/M06-2X/6-311+G(d,p) level. BENZPENT17 is unsymmetric in the S_0 state.
Figure S28. NICS-XY scans of (A) BENZPENT18 and (B) BENZPENT19 in their S_0 and T_1 states calculated at GIAO/M06-2X/6-311+G(d,p) level.
Figure S29. Comparison of NICS-XY scans of (A) BENZPENT1, (B) BENZPENT3 and (C) BENZPENT7 using M06-2X, B3LYP and CAM-B3LYP.
Full IUPAC names of the benzannelated pentalenes

Figure S30. Full IUPAC names of BENZPENTs.
Table S26. Excitation energies and ratios of a few benzannelated CBDs and pentalenes computed at CASPT2/ANO-RCC-VDZP//CASSCF/ ANO-RCC-VDZP level. The subscripts a, v, va and vv stand for adiabatic, vertical, vertical-adiabatic and vertical-vertical.

	$E(T_1)_v$	$E(T_1)_a$	$E(S_1)_v$	$E(S_1)_a$	$E(S_1)_v/E(T_1)_v$	$E(S_1)_a/E(T_1)_a$	$E(S_1)_v/E(S_1)_a$	$E(T_1)_v - E(T_1)_a$	
BENZCBD1	1.37	2.26	3.48	2.58	1.54	2.54	1.88	1.35	0.90
BENZCBD2	1.00	1.78	2.79	1.99	1.57	2.79	1.99	1.40	0.80
BENZCBD3	1.70	2.58	3.71	3.05	1.44	2.18	1.80	1.22	0.66
BENZCBD4	2.16	2.82	3.70	3.27	1.31	1.71	1.52	1.13	0.43
BENZPENT1	1.08	1.85	2.60	2.23	1.40	2.41	2.07	1.16	0.37
OTHER MOLECULES

Figure S31: Electronic excitation energies (eV) of the parent triafulvene and substituted triafulvenes at TD-M06-2X/def2-TZVPD level.

Table S27. The $\Delta E(S_1-T_1)_{va}$ of the parent triafulvene and substituted triafulvenes.

	$\Delta E(S_1-T_1)_{va}$
NO$_2$	0.92
CN	1.83
H	1.86
Me	2.01
OH	2.09
NH$_2$	2.97

Figure S32: Electronic excitation energies (eV) of the parent heptafulvene and substituted heptafulvenes at TD-M06-2X/def2-TZVPD.

Table S28. The $\Delta E(S_1-T_1)_{va}$ of the parent heptafulvene and substituted heptafulvenes.

	$\Delta E(S_1-T_1)_{va}$
CN	1.47
H	1.54
Cl	2.08
F	1.79
NH$_2$	1.83
Figure S33. Electronic excitation energies (eV) of the parent silole and substituted siloles.

Table S29. The $\Delta E(S_1-T_1)$ of the parent silole and substituted siloles.

X, Y	$\Delta E(S_1-T_{1,\alpha})$	$\Delta E(S_1-T_{1,\nu})$
$X = H$	2.34	1.65
$X, Y = F$	2.29	1.60
$X = F$ $Y = Me$	2.27	1.58
$X = F$ $Y = SiH_3$	2.14	1.44
$X = F$ $Y = SiMe_3$	2.14	1.44
$X, Y = CF_3$	2.27	1.59
$X = CF_3$ $Y = F$	2.22	1.53
$X = CF_3$ $Y = Me$	2.29	1.61
$X = CF_3$ $Y = SiH_3$	2.23	1.55
$X = CF_3$ $Y = SiMe_3$	2.25	1.56
$X, Y = Me$	2.33	1.65
$X = Me$ $Y = SiH_3$	2.24	1.56
$X = Me$ $Y = SiMe_3$	2.24	1.57
$X, Y = SiH_3$	2.22	1.55
$X = SiH_3$ $Y = SiMe_3$	2.23	1.56
$X, Y = SiMe_3$	2.22	1.57
Figure S34. 1,1-Disubstituted tetraphenylsilole with X = H, Me, CF₃, F, SiH₃ and SiMe₃.

Figure S35. HOMO and LUMO and HOMO of the siloles with (A) X = H, (B) X = F and (C) X = SiMe₃ obtained at M06-2X/6-311+G(d,p) level.
Figure S36. Electronic excitation energies (eV) of thieno-annelated benzopentalenes (THIOBENZPENT).

Table S30. The $\Delta E(S_1-T_1)_{va}$ of thieno-annelated benzopentalenes (THIOBENZPENT).

Compound	$\Delta E(S_1-T_1)_{va}$
THIOBENZPENT2	1.26
THIOBENZPENT3	1.15
THIOBENZPENT7	1.06
THIOBENZPENT12	0.95
THIOBENZPENT18	0.90
THIOBENZPENT19	0.86
Figure S37: Additional schematic drawings of the changes in $E(T_1)$ and $E(S_1)$ as functions of increased T_1 and S_1 aromatic character for a compound class. Given certain relationships between the parent compound in a certain compound class “a” and the parent compound in the reference compound class “0”, the following will be the situation:

A: If “a” and “0” have the same $E(T_1)$ but $2K_{H,L}$ of “a” is higher than $2K_{H,L}$ of “0”, then the singlet fission threshold $2E(T_1) = E(S_1)$ will be placed at less T_1 aromatic compounds for the compound class “a” than for the reference compound class “0”.

S70
B: If \(E(T_1) \) of “a” is higher than \(E(T_1) \) of “0” and \(2K_{H,L} \) of “a” is higher than \(2K_{H,L} \) of “0”, then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at less \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

C: If “a” and “0” have the same \(E(T_1) \) but \(2K_{H,L} \) of “a” is lower than \(2K_{H,L} \) of “0”, then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at more \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

D: If \(E(T_1) \) of “a” is lower than \(E(T_1) \) of “0” and \(2K_{H,L} \) of “a” is lower than \(2K_{H,L} \) of “0”, then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at more \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

E: If \(E(T_1) \) of “a” is higher than \(E(T_1) \) of “0”, and “a” and “0” have the same \(2K_{H,L} \), then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at more \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

F: If \(E(T_1) \) of “a” is lower than \(E(T_1) \) of “0”, and “a” and “0” have the same \(2K_{H,L} \), then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at less \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

G: If \(E(T_1) \) of “a” is lower than \(E(T_1) \) of “0” and \(2K_{H,L} \) of “a” is higher than \(2K_{H,L} \) of “0”, then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at less \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

H: If \(E(T_1) \) of “a” is higher than \(E(T_1) \) of “0” and \(2K_{H,L} \) of “a” is lower than \(2K_{H,L} \) of “0”, then the singlet fission threshold \(2E(T_1) = E(S_1) \) will be placed at more \(T_1 \) aromatic compounds for the compound class “a” than for the reference compound class “0”.

References

S1 Grotjahn, R.; Maier, T. M.; Michl, J.; Kaupp, M. Development of a TDDFT-Based Protocol with Local Hybrid Functionals for the Screening of Potential Singlet Fission Chromophores. *J. Chem. Theory Comput.* **2017**, *13*, 4984–4996.

S2 Zeng, T.; Hoffmann, R.; Ananth, N. The Low-Lying Electronic States of Pentacene and Their Roles in Singlet Fission. *J. Am. Chem. Soc.* **2014**, *136*, 5755–5764.

S3 Zimmerman, Paul M.; Zhang, Zhiyong; Musgrave, Charles B. Singlet fission in pentacene through multi-exciton quantum states. *Nat. Chem.* **2010**, 2, 648–652.

S4 Johnson, Justin C.; Michl, Josef. 1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission. *Top. Curr. Chem.* **2017**, *375*, 80.

S5 Japhahuge, Achini; Zeng, Tao. Theoretical Studies of Singlet Fission: Searching for Materials and Exploring Mechanisms. *ChemPlusChem* **2018**, *83*, 146–182.

S6 Karton, A.; Rabinovich, E.; Martin, J. M. L.; Ruscic, B. W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. *J. Chem. Phys.* **2006**, *125*, 144108.
Yamaguchi, K. Self-Consistent Field: Theory and Applications (Studies in Physical and Theoretical Chemistry); Carbo, R., Klobukoswki, M., Eds.; Elsevier Science: Amsterdam, 1990; p 727.