Factors determining the amount of residual urine in men with bladder outlet obstruction: Could it be a predictor for bladder contractility?

Mostafa M. Elmissiry*, Amr G. Ali, Ahmed Abulfotooh, Ahmed A. Moussa, Gaber A. Ali

Section of Voiding Dysfunction, Urology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt

Received 6 January 2014, Received in revised form 20 March 2014, Accepted 26 March 2014
Available online 9 May 2014

Abstract Objective: To determine from urodynamic data what causes an increased postvoid residual urine volume (PVR) in men with bladder outlet obstruction (BOO), urethral resistance or bladder failure, and to determine how to predict bladder contractility from the PVR.

Patients and methods: We analysed retrospectively the pressure-flow studies (PFS) of 90 men with BOO. Nine patients could not void and the remaining 81 were divided into three groups, i.e. A (30 men, PVR < 100 mL), B (30 men, PVR 100–450 mL) and C (21 men, PVR > 450 mL). The division was made according to a receiver operating characteristic curve, showing that using a threshold PVR of 450 mL had the best sensitivity and specificity for detecting the start of bladder failure.

Results: The filling phase showed an increase in bladder capacity with the increase in PVR and a significantly lower incidence of detrusor overactivity in group C. The voiding phase showed a significant decrease in voided volume and maximum urinary flow rate (Q_{max}) as the PVR increased, while the urethral resistance factor (URF) increased from group A to B to C. The detrusor pressure at Q_{max} ($P_{\text{det}Q_{\text{max}}}$) and opening pressure were significantly higher in group B, which had the highest bladder contractility index (BCI) and longest duration of contraction. Group C had the lowest BCI and the lowest $P_{\text{det}Q_{\text{max}}}$.

* Corresponding author. Tel./fax: +20 002 03 4860029.
E-mail address: mostafa_elmissiry@yahoo.com (M.M. Elmissiry).
Peer review under responsibility of Arab Association of Urology.
Conclusions: In men with BOO, PVR results from increasing outlet resistance at the start and up to a PVR of 450 mL, where the bladder reaches its maximum compensation. At volumes of >450 mL, both the outlet resistance and bladder failure are working together, leading to detrusor decompensation.

© 2014 Production and hosting by Elsevier B.V. on behalf of Arab Association of Urology.
prostatic enlargement in 76 (prostate volume 55–90 mL) and bladder-neck obstruction in 14. Cystoscopy of these 14 patients showed a narrow and high bladder neck that was pliable, without contracture or fibrosis, suggesting a bladder neck dysfunction. Clinically, obstructive urinary symptoms were more common in groups A and B than C (mean IPSS 22, 28 and 13, respectively) with a statistically significant difference ($P < 0.001$). Overflow incontinence and nocturnal wetting were more apparent in group C than groups A and B (10/21, 0/30 and 2/30 patients, respectively, $P < 0.001$). Renal impairment and bilateral hydronephrosis (assessed by ultrasonography) were also more prevalent in group C than in groups A and B (mean serum creatinine levels of 2.3, 1 and 0.9 mg/dL, respectively; $P < 0.001$).

Analysis of the results of the filling phase of the urodynamic studies showed that the bladder capacity increased with the increase in the PVR among the three groups. Assessing the mean (SD) PVR in the three groups compared with the mean (SD) bladder capacity, the PVR was <20%, 20–70% and >70% of the bladder capacity in groups A, B and C, respectively.

The detrusor compliance was also low in all groups but with no statistically significant difference. Detrusor overactivity was significantly lower in group C than in groups A and B ($P = 0.048$; Table 1).

In the voiding phase, the voided volume and Q_{max} decreased significantly as the PVR increased ($P < 0.001$ and 0.015, respectively; Table 1). The urethral resistance increased from group A to B to C, as shown by the significantly greater URF in group B than in group A ($P = 0.005$) and the further increase in group C above both groups A and B ($P < 0.001$ and 0.096, respectively; Table 1).

The $P_{\text{det}}Q_{\text{max}}$ was significantly high in group B, followed by group A then group C ($P = 0.028$ and 0.018, respectively). The effect on the opening pressure was similar, being significantly higher in group B than group A and group C ($P = 0.01$ and 0.04, respectively; Table 1). Group C had the lowest BCI, with a statistically significant difference from both groups A and B ($P < 0.001$). However, group B had a higher BCI than both groups A and C ($P < 0.001$). Also, group B had the longest duration of contraction, with statistically significant difference from group A ($P < 0.02$) but not from group C ($P = 0.4$; Table 1).

Discussion

The precise definition of the detrusor compensatory response to BOO is still controversial [11,12]. To date there is no agreement among urologists about the exact time at which detrusor compensation reaches its maximum limit before the bladder starts to fail [13,14]. We attempted to find a urodynamic explanation for the natural progress of chronic retention in men.

In the present study men with BOO were divided into one of three groups, with group A having obstructive symptoms with an obstructed voiding pattern on PFS but with an insignificant PVR. Group B had a significant PVR and an obstructed PFS pattern but still had good contractility. In group C the contractility was weakened, resulting in a greater PVR with an obstructed PFS pattern.

We tried to determine the cause of the progressive accumulation of the PVR in these patients; is it an increased outlet resistance, or bladder failure, or both. In group B the bladder contractility was good and even higher than that in group A, and the only factor responsible for the PVR was the increased outlet resistance. However, group C had a continuous increase in the urethral resistance with a concomitant decrease in the contractility, implying that both factors contributed to a greater PVR.

Most of the urodynamic variables showed that group B had the best contractility amongst the three groups, as shown by the highest $P_{\text{det}}Q_{\text{max}}$, the highest BCI and the longest duration of contraction. However, group C had the lowest contractility amongst the three groups, as shown by the lowest $P_{\text{det}}Q_{\text{max}}$, lowest BCI and, interestingly, the lowest incidence of detrusor overactivity (which requires a working detrusor muscle).

The ROC curve and scatter blots were very helpful for determining the point at which bladder compensation reaches its maximum limit before the bladder contractility changes from good to weak. The ROC curve showed that a PVR threshold of 450 mL had the best sensitivity and specificity to detect this change (Fig. 1). This was confirmed by scatter blots, where most of the data from patients with good contractility (BCI ≥ 100) were in the area with a PVR of <450 mL (Fig. 2).
There is still a debate about the use of the PVR as a predictor of acute urinary retention (AUR) in patients with BPH or after TURP. Some authors believe that the PVR is not a strong predictor of AUR [15,16], while others report that men were 3.6 times more likely to have a recurrence of AUR after TURP if they had a preoperative PVR of \(P \geq 500 \text{ mL} \) [17]. The present study supports the second opinion, because in this group of patients the bladder contractility is very weak, raising the possibility of postoperative AUR.

In conclusion, in men with BOO, the PVR results from an increasing outlet resistance at the start and up to a PVR of 450 mL, where the bladder reaches its maximum compensation and power of contractility. With a PVR of \(P > 450 \text{ mL} \) both the outlet resistance and bladder failure operate together, leading to detrusor decompensation.

![Figure 2](image-url)
Conflict of interest

None.

Source of funding

None.

References

[1] Sullivan M, Yalla S. Detrusor contractility and compliance characteristics in adult male patients with obstructive and non-obstructive voiding dysfunction. J Urol 1996;155:1995–2000.
[2] Smith J, Pierce J. The development of vesical trabeculation. In: Hinman F, Boyarsky J, editors. Benign prostatic hypertrophy. New York: Springer-Verlag; 1983. p. 682–8.
[3] Sullivan M, DuBeau C, Resnick N, Cravalho EG, Yalla SV. Continuous occlusion test to determine detrusor contractile performance. J Urol 1995;154:1834–7.
[4] Elbadawi A, Yalla S, Resnick N. Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction. J Urol 1993;150:1691–4.
[5] Abarbanel J, Marcus E. Impaired detrusor contractility in community-dwelling elderly presenting with lower urinary tract symptoms. Urology 2007;69:436–9.
[6] Gallien P, Reymann J, Amarenco G, Nicolas B, de Sèze M, Bellissant E. Placebo controlled randomized double blind study of the effects of botulinum A toxin in detrusor sphincter dyssynergia in multiple sclerosis patients. J Neurol Neurosurg Psychiatry 2005;76:1670–3.
[7] Botker-Rasmussen I, Bagi B, Jorgenson JB. Is bladder outlet obstruction normal in elderly men without lower urinary tract symptoms? Neurourol Urodyn 1999;18:545–8.
[8] Ghalayini I, Al-Ghazo M, Pickard R. A prospective randomized trial comparing transurethral prostatic resection and clean intermittent self-catheterization in men with chronic urinary retention. BJU Int 2005;96:93–7.
[9] Abrams P. Bladder outlet obstruction index, bladder contractility index and bladder voiding efficiency: three simple indices to define bladder voiding function. BJU Int 1999;84:14–5.
[10] Eckhardt MD, van Venrooij GE, Boon TA. Urethral resistance factor (URA) versus Schäfer’s obstruction grade and Abrams-Griffiths (AG) number in the diagnosis of obstructive benign prostatic hyperplasia. Neurourol Urodyn 2001;20:175–85.
[11] Kaplan S, Wein A, Staskin D, Roehrborn CG, Steers WD. Urinary retention and post-void residual urine in men: Separating truth from tradition. J Urol 2008;180:47–54.
[12] Rosier P, deWildt M, de la Rosette J, Debruyne FM, Wijkstra H. Analysis of maximum detrusor contraction power in relation to bladder emptying in patients with lower urinary tract symptoms and benign prostatic enlargement. J Urol 1996;145:2137–42.
[13] Abrams P, Dunn M, George N. Urodynamic finding in chronic retention of urine and their relevance to results of surgery. BMJ 1978;162:1258–60.
[14] George N, O’Reilly P, Barnard R, Blacklock NJ. High pressure chronic retention. BMJ 1983;286:1780–3.
[15] Roehrborn C, Kaplan S, Lee M, et al. Baseline post void residual urine volume as a predictor of urinary outcomes in men with BPH in MTOPS study. J Urol 2005;173:443 [abstract 1638].
[16] Crawford E, Wilson S, McConnell J, Slawin KM, Lieber MC, Smith JA, et al. Baseline factors as predictors of clinical progression of benign prostatic hyperplasia in men treated with placebo. J Urol 2006;175:1422–5.
[17] Klarskov P, Anderson J, Asmussen C, Brenæ J, Jensen SK, Jensen IL, et al. Symptoms and signs predictive of the voiding pattern after acute urinary retention in men. Scand J Urol 1987;21:23–6.