Impact of Spherical Anatase TiO_2 Nanoparticles on Thermal Properties of Polypropylene Resin

Ahlem Bendaoued¹,², Mouna Messaoudi,² Omar Harzallah³, Sophie Bistac³ and Rached Salhi²

¹Laboratory of Advanced Materials LR01ES26, National School of Engineers, University of Sfax, 3038 Sfax, Tunisia
²Laboratory of Physics and Mechanics Textiles, University of Haute Alsace, 11 Rue Alfred Werner, 68093 Mulhouse Cedex, France
³Laboratory of Macromolecular Photochemistry and Engineering, University of Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France

Abstract

Ceramics Nano metric reinforced polymer composite is a significant material for catalysis, solar cells, production of hydrogen and energy applications, etc. In order to take benefit from the interesting mechanical properties and thermal stability of TiO_2, this ceramic nanomaterial's was synthesized by the Sol-Gel process in attempt to study the thermal stability, structure, and morphology of the resulting nanoparticles powders. The obtained results revealed that, the sphere is composed of 20-30 nm nanoparticles with excellent thermal stability of nano-TiO_2. This work focused on the thermal characterization and the study of Nano composite x%TiO_2/PP (x=0, 2.5, 5, 7.5 mol%). In this study, the obtained results revealed that the molar ratio of TiO_2 influences the final thermal stability and degree of crystallinity of the composite. It was found that the use of TiO2 seems to be an effective and very promising way to increase the thermal properties of the resulting composite. The greatest degree of crystallinity (54.80%) and thermal degradation stability are obtained for composite reinforced by 7.5 wt% TiO_2.

Keywords

Aerogel • Polymer • Sol-Gel • Thermal stability • Nano-TiO_2

Abbreviation

DTA: Differential Thermal Analysis; TG: Thermo Gravimetric; SEM: Scanning Electron Microscopy; TEM: Transmission Electron Microscopy; XRD: X-Ray Diffraction • MEB: Minimum Expenditure Basket; DSC: Differential Scanning Calorimetry; DTG: Derivative Thermo Gravimetry; MPD: Multipurpose X-ray Diffraction System

Introduction

Polymer composite materials are attractive for several technological applications because of their enhanced specific properties [1]. Thermal degradation, in combinations with their degree of crystallinity influences the physical and thermal behavior of polymer materials [2]. The correlation between structural and mechanical properties is one of the approaches to develop new Nano-materials for various applications. Recent overwhelming use of composites has motivated the reinforcement by nanoparticles for improving the interfacial bonding strength and thermal performances. According to several researchers, polypropylene has been used in several fields of application because of its excellent chemical stability [3,4]. It is widely used in advanced technologies due to its low density, low processing temperature and high stiffness [5].

In the present work, synthesis revealed the impact spherical anatase TiO_2 nanoparticles on the thermal performances of polypropylene resin. DTA/TG, SEM, TEM and XRD analysis determined the thermal, structural and morphology behavior of the TiO_2 nanoparticles. In this research study, details of Nano-composites synthesis were presented. MEB analysis revealed the nanoparticle dispersion in the Nano composites. Thermal degradation stability and degree of crystallinity were observed using DSC and TG/DTG.

Materials and Methods

Elaboration of TiO_2 Nano powder

In order to synthesize TiO_2 Nano powder, methanol and acetic acid (CH_3COOH) used as catalysts and Titanium Tetra Iso-Propoxide (TTIP) precursor were mixed in the order shown. The mixture was stirred for 30 minutes at a constant speed to obtain the TiO_2 sol. Then, the resulting sols were introduced into autoclave heated up to 243°C and pressurized to overcome the critical point of ethanol (T_c=243°C, P_c=63 bar). After maintaining temperature at 243°C for 1 hour, the sol gelation occurred. To evacuate the interstitial solvent, depressurization for 1 hour down to room temperature was conducted with nitrogen gas. To avoid cracking of the sample due to thermal strain, the autoclave was opened after 24 hour to slowly achieve thermal equilibrium. Finally, TiO_2 aerogels was obtained and then annealed in air at 500°C for 1 hour.

Nano composites preparation

A For TiO_2/PP Nano composite preparation, commercially available isotropic PP (density=0.9 g.cm⁻³) was purchased from National Industrialization Company JSC (TASNEE). Then, Nano composites were prepared with different nano-TiO_2 contents (0 wt%, 2.5 wt%, 5 wt% and 7.5% wt% TiO_2). To do so, TiO_2 Nano powder was added to PP resin and dispersed by using a mixer (30 min at room temperature). Then, the different Nano composites were prepared using a twin screws extruder MEG DS32-1A (screw diameter of 35/80 mm and T_s=210°C). Then, the solidified Nano composites were pelletized with a crusher, and traction specimen were obtained by injection molding (SM-120 TSCE, T_s=30°C).

Materials characterization

TiO_2 Nano powder characterization: For morphological characterization, the prepared aerogel was examined by Scanning Electron Microscopy (SEM) (FE-SEM, PhilipsXL30) using an accelerating voltage of 20 keV, a working distance of 11.3 mm and a transmission electron microscope (TEM, JEOL 2011) operating at 200 kV.
In order to study the structural properties and phase identification, TiO$_2$ Nano powder was analyzed using PANalyticalX’Pert Pro MPD diffractometer with Cu Kα radiation (λ=1.5418 Å) for X-Ray Diffraction (XRD) measurements recorded in the 20°-85° 2θ range at room temperature with an incidence angle of 0.05. From XRD patterns, average crystal sizes were calculated using Scherrer’s formula.

The thermal stability of the nano-TiO$_2$ was studied by DTA and TG analysis. The DTA and TG analyzes were performed in an atmosphere from temperature to 800°C with a heating rate of 20°C/min. For the analysis, it was used approximately 10 mg of sample.

Nano composites characterization: Differential Scanning Calorimetry (DSC, TA Instruments model Q200) was used to measure the effect of Nano filler on thermal properties of PP such as melting temperature and melt crystallization. The DSC analysis were performed in a temperature range from -60°C to 180°C in two cycles (heating rate of 10°C/min and a cooling rate of 20°C/min). The thermal analyses of the different Nano composites are submitted to Thermo Gravimetric Analysis (TGA, TA Instruments Model TGA 500). The TGA analyses were performed from ambient temperature to 650°C with a heating rate of 10°C/min.

The morphological observation of the samples (surface and cross section) was conducted according to SEM with accelerating voltage of 15 KV.

Results and Discussion

TiO$_2$ Nano powder study

The thermal analyses (DTA/TG) of TiO$_2$ nanoparticle are given in Figure 1. The endothermic peaks observed near 224°C related of the evaporation and the release of free water is the phenomenon of dehydration of the sample so it also reflects to the removal of hydroxyl groups it is the phenomenon of dehydroxylation. The second exothermic peak, located at 288°C, corresponds to the partial decomposition and departure of organic matter (carbon dioxide...), and it can be attributed to the oxidation elimination of the Ti precursor (alcoxide). The corresponding mass losses are localized at 138°C of the order of 3.84%. This loss is characterized by the endothermic peak, which reflects the phenomenon of dehydration and the phenomenon of dehydroxylation. The second mass loss characterizes an exothermic accident. It is fast and important located between 138°C and 450°C of the order of 5.7%. It corresponds to the partial decomposition of titanium dioxide. The recorded mass loss could be related by the evaporation of absorbed water which corresponds to a significant endothermic effect [6]. It is worth ion to mention that the excellent stability of TiO$_2$ anatase phase from 288°C to 800°C.

Polypropylene nano-composites study

Morphology analysis of surface and fracture for nano-composites: The micrograph of polypropylene (Figure 5a) surfaces presents a matrix micro-cracking and pot holes. The morphology study shows that, for 2.5 Wt%
TiO$_2$/PP Nano composite, the SEM images of surface reveals the Nano fillers dispersed into the matrix (Figure 5b). The fracture surfaces indicated the presence of porous material resulting from agglomerated particles. In addition, the homogeneous mixture between nano TiO$_2$ and polypropylene observed at 5 Wt% TiO$_2$ (Figure 5c). After comparison with the morphology of pure TiO$_2$, we observe a considerable modification of the size of grains as well as distribution. The sizes of the crystallites are of in the Nano metric order. The figure represents the microstructure of composite 7.5% TiO$_2$/PP consisting of agglomeration of spheres. The spherical Nano crystallite aggregates are formed of fine nanoparticles (similar to pure 2.5 TiO$_2$) (Figure 5d).

Figure 5a. SEM images of the PP Nano composites of Polypropylene.

Figure 5b. SEM images of the PP Nano composites of 2.5 Wt% TiO$_2$.

Figure 5c. SEM images of the PP Nano composites of 5 Wt% TiO$_2$.

Figure 5d. SEM images of the PP Nano composites of 7.5 Wt% TiO$_2$.

Thermal properties

Differential scanning calorimetry (DSC): The degree of crystallinity and the presence of polymorphisms into Nano composites were investigated by DSC analysis. The temperatures and enthalpy of fusion of the virgin PP and Nano composites were determined. The phase-change latent heat for calculation ranges from 81°C to 122°C. During the melting and solidification process, DSC thermo grams curve for PP reveals the presence of the phase-change peak (Tp) at 169.26°C and 111.22°C. As a result, the onset temperature (T$_o$) be 154.96°C and 116.83°C, and the latent heat of phase change was 90.28 and 107.1 kJ/kg for polypropylene, respectively (Figure 6a). The addition of varying content of nano-TiO$_2$ alters the endothermic and exothermic curve of PP. The degree of crystallinity of PP increases by the addition of nano-TiO$_2$ as reported in literature [7]. The degree of crystallinity first increased with the addition of 2.5 Wt%TiO$_2$ (Figure 6b), and then reached a maxima of 53.23%. At these conditions, the nanoparticles are acting as nucleating agents for PP and consequently increased the crystallization rate. Thus, the polymer crystals switched from homogeneous nucleation to heterogeneous nucleation, which facilitated crystallization. The addition of 5% Wt. nano-TiO$_2$ was found to increase the endothermic and exothermic peaks and delayed the end of the melting point during the phase change. Table 1 summarizes the DSC experimental results of the polypropylene and the different Nano composites for the melting and solidification processes with different concentrations of the nano-TiO$_2$ (Figure 6c). For the 5 Wt% TiO$_2$/PP Nano composite, the increase of crystallinity may be attributed to the accelerating effect of nano-TiO$_2$ on the PP crystals and the physical hindrance of nano-TiO$_2$ particles to the motion of the polymer’s molecular chains [8,9]. As a result, incorporation of 7.5 Wt% nano-TiO$_2$ into the polypropylene matrix increases the degree of crystallinity (Figure 6d).

Figure 6a. DSC curves of the PP and Nano composites during the heating process of Polypropylene.

Figure 6b. DSC curves of the PP and Nano composites during the heating process of 2.5 Wt% TiO$_2$.

Figure 6c. DSC curves of the PP and Nano composites during the heating process of 5 Wt% TiO$_2$.

Figure 6d. DSC curves of the PP and Nano composites during the heating process of 7.5 Wt% TiO$_2$.
Incorporation of 2.5 Wt% nano TiO$_2$ into the polypropylene matrix increases the thermal stability with the decomposition temperature was found to be 433.42°C. The decomposition temperature was decreasing with nano-TiO$_2$ content increasing (Figure 7c). At 7.5 Wt% TiO$_2$, (Figure 7d) the result indicates that the decomposition temperature for the Nano composites is around 429°C (Table 2). It was reported that the incorporation of Nano TiO$_2$ with molar ratio in the range of 1%–3%, the degradation temperature for Nano composites shifts to high temperature (above 54°C) [10,11]. It should be noted that interaction degree between polymer matrix and Nano fillers is connected to the concentration of base phase, crystallite sizes of Nano fillers and acquisition condition of Nano composites. This confirms the presence of an interphase or border layer between Nano fillers and matrix with properties that differ from matrix properties in the bulk [11]. The crystalline structure in the transition regions of the polymer boundary layer are form in the Nano composites, at this time is formed the structural activity of nanoparticles and whereby the thermodynamic conditions of the crystallization of molecular chains in the boundary layer are likely to improve [10].

Table 2. Decomposition temperature of the tested nano-composites.

T (°C)
Polypropylene
2.5 Wt% TiO$_2$
5 Wt% TiO$_2$
7.5 Wt% TiO$_2$

Conclusion

In this study, the nano-TiO$_2$ with spherical morphology and Nano metric crystallite size has been synthesized using hydrothermal-assisted sol-gel technique. Diffraction peaks reveal the anatase TiO$_2$ phase. From the TEM images, the sphere is composed of 20-30 nm nanoparticles. This article aimed at presenting the impact of the nano-TiO$_2$ powders in the morphology and thermal performances of the polypropylene resin. The thermal degradation stability of the polypropylene increased with the addition of Nano TiO$_2$. The results obtained show that the incorporation of Nano TiO$_2$ into the polypropylene matrix, the degree of crystallinity was relatively increased. Therefore, the interfacial interactions increased with the presence of anatase Nano fillers in polyester matrix.
References

1. Harizi, Walid, Chaki S, Bourse G, and Ourak M, "Mechanical Damage Characterization of Glass Fiber-Reinforced Polymer Laminates by Ultrasonic Maps". Compos B Eng 70 (2015):131-137.

2. Zhang, Peng, Kraus T, "Anisotropic Nanoparticles as Templates for the Crystalline Structure of an Injection-Molded Isotactic Polypropylene/TiO₂ Nanocomposite". Polym J 130 (2017):161-169.

3. Hansen, Betina, Borsoi C, Dahlem M.A., and Catto A.L., "Thermal and Thermo-Mechanical Properties of Polypropylene Composites using Yerba Mate Residues as Reinforcing Filler". Ind Crops Prod 140 (2018):111896.

4. Khaskhoussi, Amani, Calabrese L, Bouaziz J, and Proverbio E, "Effect of TiO₂ Addition on Microstructure of Zirconia/Alumina Sintered Ceramics". Ceram Int 43 (2017):10392–10402.

5. Kumar, Nityanshu, Mireja S, Khandelwal V, and Arun B, et al. "Light-Weight High-Strength Hollow Glass Microspheres and Bamboo Fiber Based Hybrid Polypropylene Composite: A Strength Analysis and Morphological Study". Compos B Eng 108 (2017):277–285.

6. Salhi, Rached, Deschanvres J.L., "Efficient Green and Red Up-Conversion Emissions in Er/Yb Co-Doped TiO₂ Nanopowders Prepared by Hydrothermal-Assisted Sol-Gel Process". J Lumin 178 (2016):260–269.

7. Esthappan, Saisy Kudill, Kutappan S.K, Joseph R, "Thermal and Mechanical Properties of Polypropylene/Titanium Dioxide Nanocomposite Fibers". Mater Des 37 (2012):537–542.

8. Aydemir, Deniz, Uzun G, Gümüş H, and Yıldız S, et al. "Nano Composites of Polypropylene Nano Titanium Dioxide: Effect of Loading Rates of Nano Titanium Dioxide". J Mater Sci 22 (2016):364–369.

9. Sun, Fei, Li TT, Ren H, and Jiang Q, et al. "PP/TiO₂ Melt-Blown Membranes for Oil/Water Separation and Photocatalysis: Manufacturing Techniques and Property Evaluations". Polym J 11 (2019):775.

10. Ramazanov, MA, Hajiyeva FV, Maharramov AM, "Structure and Properties of PP/TiO₂ Based Polymer Nano Composites". Integr Ferroelectr 192 (2018):103–112.

11. Maharramov, AM, Ramazanov MA, Ahmadova AB, and Hajiyeva FV, et al. "Thermal and Mechanical Properties of Polymer-Based Nano Composites of Isotactic Polypropylene and Titanium Nano Particles". Dig J Nanomater Bios 11 (2018):365-372.

How to cite this article: Bendaoued, Ahlem, Mouna Messaoud, Omar Harzallah and Sophie Bistac, et al. "Impact of Spherical Anatase TiO₂ Nanoparticles on Thermal Properties Of Polypropylene Resin." J Nanosci Curr Res 06(2021): 135.