Two new Truncatelloidea species from Melissotrypa Cave in Greece (Caenogastropoda)

Andrzej Falniowski¹, Serban Sarbu²

¹ Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland ² Grupul de Explorari Subacvatice si Speologice, str Frumoasa 31-B, Bucuresti, Romania

Corresponding author: Andrzej Falniowski (andrzej.falniowski@uj.edu.pl)

Academic editor: M. Schilthuizen | Received 23 July 2015 | Accepted 24 September 2015 | Published 28 October 2015

Citation: Falniowski A, Sarbu S (2015) Two new Truncatelloidea species from Melissotrypa Cave in Greece (Caenogastropoda). ZooKeys 530: 1–14. doi: 10.3897/zookeys.530.6137

Abstract
In the small lake located in the cave Melissotrypa in Thessalia, Greece, truncatelloidean gastropods representing two species were found, new to science. One of them, represented by two specimens only, has been described based on the shell characters only; with its cytochrome oxidase sequence it has been assigned to the genus Iglica, and to the family Moitessieriidae, Iglica hellenica sp. n. For the other species, represented by 30 collected specimens, the shell, protoconch, radula, head, penis and female reproductive organs have been described; all the morphological characters and cytochrome oxidase sequences have confirmed its assignment to the genus Daphniola (Hydrobiidae: Sadlerianinae), Daphniola magdalenae Falniowski, sp. n.

Keywords
Gastropoda, Hydrobiidae, Moitessieriidae, aquatic snails, morphology, cytochrome oxidase, taxonomy, troglobionts

Introduction
In June 2014, in Melissotrypa Cave in Greece (39°52′38″N and 22°02′58″E), several specimens of Truncatelloidea gastropods were collected. This was the third visit by the second author to this cave, but the snails were found for the first time.

The cave is located in Melissotrypa Kefalovriso Elassona, north of Larissa, and is the largest known underground karstic form of karst system Kranias Elassona, drilled
in marbles. The character of the cave is demonstrated by the remaining forms of dissolution and growth of the cave, the gypsum and detected hydrogen sulfide in the lakes of the cave. The cave covers an area 0.06 km² and has a total length of mapped passageways about 2103.6 m. The elevation in the region of the inlet orifice is 299 m while the interior reaches a depth up -47.3 m i.e. absolute altitude 251.7 m. The depth of the precipitous entry is 14.6 m (http://7gym-laris.lar.sch.gr/perivalon/spilaia.htm).

Many specimens of gastropods were concentrated in just one area in the sulfuric lake, close to the shore in a depth of approximately 10 cm. In the vicinity of the lake there are no terrestrial animals, although there are microbial biofilms and organic matter. The aquatic fauna is highly interesting: the most abundant form is an amphipod *Niphargus*, which swims upside down, seemingly an adaptation to such water chemistry. The snails do not live everywhere, but only in one place on a limestone wall, at 5–10 cm beneath the water surface. There were hundreds of individuals gathered in a compact group. Maybe there are more such groups, but the water is deep and one cannot reach the walls except by means of a small boat, the lake being very narrow. In this cave, there is also another lake, at several hundred meters away from the former, in which the water has no sulfur, and which is sometimes dry. No snails have been found in it.

Only two specimens with a turriform shell were collected, and approximately 30 specimens with a valvatiform shell. The aim of the paper is to describe these two snails collected in Melissotrypa Cave.

Materials and methods

The snails were collected by hand and placed directly in 95% ethanol. The ethanol was changed twice, and the material stored at -20 °C.

The shells were photographed with a CANON EOS 50D digital camera, attached to a NIKON SMZ18 stereoscope microscope with dark field. They were dissected using a NIKON SMZ18 stereoscope microscope with a NIKON drawing apparatus, and a NIKON DS-5 digital camera. Radulae and protoconchs were examined using a JEOL JSM-5410 scanning electron microscope, applying the techniques described by Falniowski (1990).

DNA was extracted from foot tissue of two specimens. The tissue was hydrated in TE buffer (3 × 10 min); total genomic DNA was then extracted with the SHERLOCK extracting kit (A&a Biotechnology), and the final product was dissolved in 20 µl TE buffer. The PCR reaction was performed with the following primers: LCO1490 (5’-GGTCAACAAATCATAAGATATTGG-3’) (Folmer et al. 1994) and COR722b (5’-TAAACTTCAGGGTGACCAAAAAATYA-3’) (Wilke and Davis 2000) for the cytochrome oxidase subunit I (COI) mitochondrial gene.

The PCR conditions were as follows: initial denaturation step of 4 min at 94 °C, followed by 35 cycles of 1 min at 94 °C, 1 min at 55 °C 2 min at 72 °C, and a final extension of 4 min at 72 °C. The total volume of each PCR reaction mixture was
50 µl. To check the quality of the PCR products 10 µl of the PCR product was ran on 1% agarose gel. The PCR products were purified using Clean-Up columns (A&A Biotechnology) and were then amplified in both directions using BigDye Terminator v3.1 (Applied Biosystems), following the manufacturer’s protocol and with the primers described above. The sequencing reaction products were purified using Ex Terminator Columns (A&A Biotechnology); DNA sequences then underwent electrophoresis on an ABI Prism sequencer.

The COI sequences were aligned by eye using BioEdit 5.0.0 (Hall 1999). The saturation test of Xia et al. (2003) was performed using DAMBE (Xia 2013). Sequences obtained from the snails from Melissotrypa Cave in the present work were used in a phylogenetic analysis with other sequences obtained from GenBank (Table 1). A maximum likelihood (ML) approach was conducted in RAxML v8.0.24 (Stamatakis 2014). One thousand searches were initiated with starting trees obtained through randomized stepwise addition maximum parsimony method. The tree with the highest likelihood score was considered as the best representation of the phylogeny. Bootstrap support was calculated with 1000 replicates and summarized onto the best ML tree. RAxML analyses were performed using free computational resource CIPRES Science Gateway (Miller et al. 2010). Genetic p-distances between the species of Daphniola were calculated using MEGA6 (Tamura et al. 2013), with standard errors estimated by 1,000 bootstrap replications with pairwise deletion of missing data. The maximum composite likelihood distance and Tajima relative rate tests of local clock-like behavior (Tajima 1993) were performed using MEGA6.

Systematic part

Family Moitessieriidae Bourguignat, 1863

Genus Iglica Wagner, 1927

Iglica hellenica sp. n.

http://zoobank.org/44EEDD4D-448D-4ABB-9128-E6AFC35F5B51

Holotype. Ethanol-fixed specimen, Melissotrypa Cave, Thessalia, Greece, 39°52’38”N, 22°02’58”E, sulphidic lake, near the shore, June 2014, S. Sarbu coll., ZMUJ-M.2107.

Paratype. One specimen destroyed for DNA extraction details as for holotype.

Diagnosis. One specimen destroyed for DNA extraction details as for holotype.

Description. Shell (Fig. 1) up to 4.04 mm tall, 5.5 whorls, spire height 281% width of shell. Holotype measurements: shell height 4.04 mm, spire height 1.85 mm, body whorl breadth 1.44 mm, aperture height 1.22 mm, aperture breadth 1.05 mm, whorls number 5½. Teleoconch whors highly convex, evenly rounded. Aperture nar-
Table 1. Taxa used for phylogenetic analyses, with their GenBank Accession Numbers and references.

Species	COI GB#	References
Adrioinsulana conovula	AF367628	Wilke et al. (2001)
Agrafia wiktori	JF906762	Szarowska and Falniowski (2011)
Aloniella finalina	AF367650	Wilke et al. (2001)
Anagastina setatalis	EF070616	Szarowska (2006)
Arenonius brevis	AF367638	Wilke et al. (2001)
Belgrandiella kusceri	KT218520	Falniowski and Beran (2015)
Bithynia tentaculata	AF367643	Wilke et al. (2001)
Boleana umbilicata	KT218521	Falniowski and Beran (2015)
Bythinella austriaca	FJ545132	Falniowski et al. (2009)
Bythiopeum	AF367634	Wilke et al. (2001)
Bythiopeum acutum	HM107120	unpublished, from GenBank
Bythiopeum francomontanum	HM107131	unpublished, from GenBank
Bythiopeum hungaricum	KP296923	unpublished, from GenBank
Bythiopeum humannii	HM107134	unpublished, from GenBank
Bythiopeum pellucidum	HM107124	unpublished, from GenBank
Bythiopeum suevicum	HM107118	unpublished, from GenBank
Dalmatinella flaviatilis	KC344541	Falniowski and Szarowska (2013)
Daphniola exigua	EU047767	Falniowski et al. (2007)
Daphniola haderi	JF916477	Falniowski and Szarowska (2011a)
Daphniola gneca	EF070618	Szarowska (2006)
Daphniola louisii	EU047769	Falniowski et al. (2007)
Daphniola sp.	KM887915	Szarowska et al. (2014)
Daphniola magdalaeae	KT825578-80	present study
Diatella thyesiana	AY676127	Szarowska et al. (2005)
Fissuria boai	AF367654	Wilke et al. (2001)
Graecoarganiella parnassiana	JN202348	Falniowski and Szarowska (2011b)
Grassianna alpestris	AF367641	Wilke et al. (2001)
Grossuana codreanui	EF061919	Szarowska et al. (2007)
Hauffenia tellini	AF367640	Wilke et al. (2001)
Helobia dubitatica	AF367631	Wilke et al. (2001)
Horatia kirczakia	KJ159128	Szarowska and Falniowski (2014)
Hydrobia acuta	AF278808	Wilke and Davis (2000)
Iglica hellenica	KT825581	present study
Islamia piristoma	AF367639	Wilke et al. (2001)
Lithophagus naticeoides	AF367642	Wilke et al. (2001)
Marstoniopsis insubrica	AY027813	Falniowski and Wilke (2001)
Motteseria cf. puteana	AF367635	Wilke et al. (2001)
Montenegropeus bogici	KM875510	Falniowski et al. (2014)
Pseudannicola lucensis	AF367651	Wilke et al. (2001)
Pyrgula annulata	AY341258	Szarowska et al. (2005)
Radomaniola callosa	AF367649	Wilke et al. (2001)
Rosa labiosa	AY676128	Szarowska et al. (2005)
Sadleriana fluminensis	AY273996	Wilke et al. (2001)
Tannusia zrmanjae	Xx	Beran et al. (2015)
Trichonia kephalovrisiosa	EF070619	Szarowska (2006)
Ventrosia ventrosa	AF118335	Wilke and Davis (2000)
Two new Truncatelloidea species from Melissotrypa Cave in Greece (Caenogastropoda)

Figure 1. Shells of Iglica hellenica sp. n.: A holotype B sequenced specimen. Scale bar 1 mm.

row, ovate, weakly angled adapically, separated from body whorl by a broad groove. Parietal lip complete, adnate, no umbilicus. Outer lip simple, orthocline. Shell glossy with no sculpture, periostracum yellowish. Soft parts pinkish, with no pigment. External morphology and anatomy unknown.

Etymology. The specific epithet (hellenica) is a Greek adjective meaning Greek.

Distribution and habitat. Known from two specimens from the type locality only.
Family Hydrobiidae Troschel, 1857
Subfamily Sadlerianinae Radoman, 1973
Genus Daphniola Radoman, 1973

Daphniola magdalenae Falniowski, sp. n.
http://zoobank.org/AF91ADE8-10B4-4737-8022-7EFDDC316EAD

Types. Ethanol-fixed specimens, Melissotrypa Cave, Thessalia, Greece, 39°52’38”N, 22°02’58”E, sulphidic lake, near the shore, June 2014, S. Sarbu coll., holotype: ZMUJ-M.2109; 20 paratypes: ZMUJ-M.2110–ZMUJ-M.2130.

Diagnosis. Shell relatively big, valvatiform-trochiform; soft parts with no pigment, no eyes, penis with long and slender filament and big outgrowth on the left side. Readily distinguished from geographically and closely related *D. exigua* (= *D. graeca*) by its bigger size (2.5 vs. 1.5 mm), reddish operculum, broader base and longer and thinner filament of the penis. Differentiated from *D. louisi* (from Kessariani at Athens) by its larger size, higher spire, longer and thinner filament and more prominent outgrowth on the left side of the penis. Differs from *D. hadei* (from Gythion at Peloponnese) by its double size, higher spire and much more prominent outgrowth on the left side of the penis.

Description. Shell (Fig. 2A–D) valvatiform-trochiform, up to 2.68 mm tall, having 3.5–3.75 whorls, spire height 16% height of shell, and 13–16% width of shell. Teleoconch whorls moderately convex, evenly rounded, growing rapidly in diameter. Aperture circular, parietal lip complete, umbilicus very broad, outer lip simple, orthoeline. Teleoconch with delicate growth lines, periostracum pinkish. Shell parameters for a series of paratypes are given in Table 2. On the surface there are numerous pellets of sediment, most probably of sulfuric bacteria.

Inner and outer sides of operculum smooth. Operculum pink (Fig. 2A–D). Protoconch of 1.25–1.40 whorls growing slowly (Fig. 3), with a net-like pattern of dense depressions, their shape irregular (Fig. 4), covering all the protoconch and initial part of the teleoconch.

Radula (Figs 5–7): taenioglossate, typically hydrobiid; the cusps on the central, lateral and inner marginal teeth prominent, long and sharp; the central tooth trapezoid (Figs 5–6), with one pair of big basal cusps arising from the tooth face (Fig. 5) and numerous long cusps along the cutting edge, the basal tongue broadly V-shaped and about equal in length to the lateral margins, lateral cusps five–six. Lateral teeth (Figs 6–7) having four cusps on inner, and five cusps on outer side, central cusp broad and blunt. Inner marginal tooth (Fig. 7) with 35–36 cusps, outer marginal teeth (Figs 6–7) with 21–23 cusps.

Animal brownish, with no pigment, and no eyes (Fig. 8). Penis (Figs 9–11) having broad base bent U-shaped in natural position (Fig. 8), long and narrow filament and prominent outgrowth on its left edge. Female reproductive organs (Fig. 12) with big bursa copulatrix with long duct and two small receptacula seminis.

Etymology. Named in memory of Dr Magdalena Szarowska, a malacologist, wife and best friend of the first author.

Distribution and habitat. Known from the type locality only.
Molecular relationships of the new taxa

The saturation test of Xia et al. (2003) revealed a significant degree of saturation in the third position of the sequences. In rissooids, COI approaches saturation with approximately 18.6% or 120 nucleotide differences (Davis et al. 1998), which seems to happen after approximately 10 million years. However, to avoid a substantial loss of information in the case of closely related species, this position was not excluded from
the dataset and it was used for the analysis. The maximum likelihood tree (Fig. 13) was characterized by low bootstrap values at deep nodes, which is typical of cytochrome oxidase-based phylogenies, but clearly showed that *Daphniola magdalenae* sp. n. belonged to the genus *Daphniola* (bootstrap value 63%), although it was clearly a distinct species. Its closest relatives were *Daphniola* sp. from Khios and Rhodes islands, and *D. exigua/D. graeca* from Tembi valley (bootstrap support 79%). The bootstrap support of the clade of *Daphniola*, *Trichonia* Radoman, 1973, and *Grossuana* Radoman, 1973 was 89%. The p-distance between *Daphniola magdalenae* sp. n. and *D. exigua* was p = 0.1325. The relative rates test for all the *Daphniola* species confirmed the ultrametricity of the data. The tree also confirmed close relationships of *Iglica hellenica* sp. n. with “*Bythiospeum*” *hungaricum* (bootstrap value/support 64%), and that both *Iglica hellenica* and “*Bythiospeum*” *hungaricum* do not belong to the genus *Bythiospeum* Bourguignat, 1882.

Discussion

With one (since the other had to be destroyed for DNA extraction) available specimen of *Iglica hellenica* sp. n. it has not been possible to study its soft parts. However, nearly all the representatives of *Bythiospeum*, *Paladilhoiopsis*, *Iglica*, etc. are known as empty...
shells only. The distinction between these genera remains unclear. The molecular tree, as well as the phylogeny presented by Wilke et al. (2013), does not confirm even the close relationships between *Bythiospeum*, *Iglica hellenica* sp. n., and *Moitessieria*. It also does not confirm that “*Bythiospeum* hungaricum” belongs to the genus *Bythiospeum*, but confirms its close relationships with *Iglica hellenica*. From Greece there are four known species of *Iglica*: *I. sidarensis* Schütt, 1980 from Corfu, *I. maasseni* Schütt, 1980 from Rhodes, and two species from the Peloponnese: *I. wolfischeri* A. & P. Reischutz, 2004 and *I. alpheus* A. & P. Reischutz, 2004. With the exception of *I. alpheus*, the shells of all are similar to the one of *I. hellenica*, but much smaller with shell heights of 1.5–2.3 mm, compared with 4.04 mm in *I. hellenica*. The representatives of another cave-inhabiting genus *Paladilhiopsis* Pavlovic, 1913 should also be considered. From Greece there are three species in this genus: *P. blanci* (Westerlund, 1886) from the is-

Figures 8–11. Head and penes of *Daphniola magdalenae*: 8 head with penis, 9–11 penes. Scale bar: 250 µm.
lands Cephalonia and Lefkada, *P. janinensis* Schütt, 1962 from the springs at the shore
of Pamvotis Lake (now the springs are completely dry), and *P. thessalica* Schütt, 1970,
from Pyrgetos at Tembi Valley. This locality is only 46 km away from Melissotrypa
Cave. However, the shell but especially the aperture of *I. hellenica* is typical of *Iglica*,
not of *Paladilhiopsis* (e. g. Schütt 1980). Moreover, the 18S sequence of *I. hellenica* (unpublished data)
was very different from the one of *Paladilhiopsis carpatica* Soós, 1940 from Vadu Crisul Cave in Romania (Szarowska 2006). Thus the assignment of *I.
hellenica* to the genus *Iglica* remains justified based on the available data.

The shells of *Daphniola exigua* are highly variable (Falniowski et al. 2007), including
the similar shells of *D. magdalenae* sp. n., but are much smaller (maximum 1.58 mm *vs.*
2.68 in *D. magdalenae*). The shells of the other species of *Daphniola* have lower spires,
and are also maximum 1.5 mm tall (Falniowski et al. 2007, Falniowski and Szarowska
2011a). The penis of *Daphniola magdalenae* sp. n. differs in its long and narrow, sharply
pointed filament of the penes from those of *D. exigua* and *D. graeca* (Radoman 1983,
Szarowska 2006), and *D. louisi* (Falniowski & Szarowska, 2000). A similar filament,

Figure 12. Renal and pallial section of female reproductive organs of *Daphniola magdalenae* (bc – bursa copulatrix, cbc – duct of bursa copulatrix, ga – albuminoid gland, gn – nidamental gland, gp – gonoporus, ov – oviduct, ovl – loop of (renal) oviduct, rs₁, rs₂ – receptacula seminis, nomenclature after Radoman (1973, 1983), vc – ventral canal). Scale bar 1 mm.
Figure 13. Maximum likelihood tree computed for cytochrome oxidase I sequences, bootstrap supports given if > 50%.
but less prominent outgrowth on the left side of the penis is characteristic of *D. hadei* (Falniowski and Szarowska 2011a). The female reproductive organs of *D. magdalenae* are characteristic of *Daphniola* (Radoman 1973, 1983, Szarowska 2006). Some differences in size proportions of the receptacula and bursa could be observed between the species, but the variability is high; even the genera of the Hydrobiidae with two receptacula could not always be recognized with this character (Falniowski et al. 2012). *Daphniola exigua* inhabits two springs in Tembi Valley, approximately 50 km from Melissotripa cave, but in the molecular tree it is not the sister species of *D. magdalenae* sp. n.. The genetic distance between *D. magdalenae* and *D. exigua* is $p = 0.1325$. Based on mtCOI clock calibrations of 1.83% per million years for European Hydrobiidae (Wilke 2003) and 1.62% per million years for *Pyrgulopsis* (Hershler and Liu 2008), the estimated divergence times of the two species ranged from 7.24 to 8.20 mya, thus the very beginning of the Messinian or even upper Tortonian in the Miocene.

The molecular tree confirms relationships of both new species *Iglesia hellenica* and *Daphniola magdalenae*. As it is based on one short fragment of mitochondrial DNA, it presents the phylogeny of this fragment, certainly not of the species/genera (e.g., Avise 2000), and its deep nodes are not supported. Thus the tree cannot be interpreted as phylogeny of the Truncatelloidea. However, it seems sufficient to detect the closest relatives of the new species described in this paper.

Acknowledgements

The study was supported by a grant from the National Science Centre (2012/05/B/NZ8/00407).

References

Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, Cambridge, MA and London, 447 pp.

Beran L, Hofman S, Falniowski A (2015) *Tanousia zrmanjae* (Brusina, 1866) (Caenogastropoda: Hydrobiidae): a living fossil. Folia Malacologica 23(3): 11–15.

Davis GM, Wilke T, Spolsky C, Qiu C-P, Qiu D-C, Xia M-Y, Zhang Y, Rosenberg G (1998) Cytochrome oxidase I-based phylogenetic relationships among the Pomatiopsidae, Hydrobiidae, Rissoidae and Truncatellidae (Gastropoda: Caenogastropoda: Rissoacea). Malacologia 40: 251–266.

Falniowski A (1990) Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica 4: 53–142.

Falniowski A, Beran L (2015) *Belgrandiella A.J. Wagner, 1928* (Caenogastropoda: Truncatelloidea: Hydrobiidae): how many endemics? Folia Malacologica 23.

Falniowski A, Pešić V, Glöer P (2014) *Montenegropeum Pešić et Glöer, 2013*: a representative of Moitessieriidae? Folia Malacologica 22: 263–268.
Falniowski A, Szarowska M (2000) A new species of Daphniola Radoman, 1973 (Gastropoda: Hydrobiidae) from Greece. Folia Malacologica 8: 181–188. doi: 10.12657/folmal.008.013
Falniowski A, Szarowska M (2011a) Genus Daphniola Radoman, 1973 (Caenogastropoda: Hydrobiidae) in the Peloponnese, Greece. Folia Malacologica 19: 131–137. doi: 10.2478/v10125-011-0020-9
Falniowski A, Szarowska M (2011b) A new genus and new species of valvatiform hydrobiid (Rissooidea; Caenogastropoda) from Greece. Molluscan Research 31(3): 189–199.
Falniowski A, Szarowska M (2013) Phylogenetic relationships of Dalmatinella fluviatilis Radoman, 1973 (Caenogastropoda: Rissooidea). Folia Malacologica 21: 1–7. doi: 10.12657/folmal.021.001
Falniowski A, Szarowska M, Glöer P, Pešić V (2012) Molecules vs. morphology in the taxonomy of the Radomaniolata Grossuana group of Balkan Rissooidea (Mollusca: Caenogastropoda). Journal of Conchology 41: 19–36.
Falniowski A, Szarowska M, Grzmil P (2007) Daphniola Radoman, 1973 (Gastropoda: Hydrobiidae): shell biometry, mtDNA, and the Pliocene flooding. Journal of Natural History 41: 2301–2311. doi: 10.1080/00222930701630733
Falniowski A, Szarowska M, Sirbu I (2009) Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Bythinellidae) in Romania: species richness in a glacial refugium. Journal of Natural History 43: 2955–2973. doi: 10.1080/00222930903359636
Falniowski A, Wilke T (2001) The genus Marstoniopsis (Gastropoda: Rissooidea): intra- and intergeneric phylogenetic relationships. Journal of Molluscan Studies 67: 483–488. doi: 10.1093/mollus/67.4.483
Folmer O, Black M, Hoeh W, Lutz RA, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hershler R, Liu H-P (2008) Ancient vicariance and recent dispersal of springsnails (Hydrobiidae: Pyrgulopsia) in the Death Valley system, California-Nevada. The Geological Society of America Special Paper 439: 91–101. doi: 10.1130/2008.2439(04)
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov., New Orleans, LA, 1–8. doi: 10.1109/gce.2010.5676129
Radoman P (1973) New classification of fresh and brackish water Prosobranchia from the Balkans and Asia Minor. Posebna Izdanja, Prirodnjacki Musej u Beogradu 32: 1–30.
Radoman P (1983) Hydrobioidea a superfAMILY of Prosobranchia (Gastropoda). I. Systematics. Monographs Serbian Academy of Sciences and Arts, DXLVI, Department Sciences 57: 1–256.
Reischütz A, Reischütz PL (2004) Helleniká pantoia, 8: Olympische Idylle - Neue Hydrobiiden (Gastropoda: Prosobranchia: Hydrobiidae) und einige andere seltene Arten aus dem Genist des Alfios bei Olimbia (Ilia, Peloponnes, Griechenland). Nachrichtenblatt der Ersten Vorarlberger Malakologischen Gesellschaft 12: 3–4.
Schütt H (1980) Zur Kenntnis griechischer Hydrobiiden. Archiv für Molluskenkunde 110: 115–149.
Stamatakis A (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 30: 1312–1313. doi: 10.1093/bioinformatics/btu033
Szarowska M (2006) Molecular phylogeny, systematics and morphological character evolution in the Balkan Rissooidea (Caenogastropoda). Folia Malacologica 14: 99–168. doi: 10.12657/folmal.014.014

Szarowska M, Falniowski A (2011) An unusual, flagellum-bearing hydrobiid snail (Gastropoda: Rissooidea: Hydrobiidae) from Greece, with descriptions of a new genus and a new species. Journal of Natural History 45: 2231–2246. doi: 10.1080/00222933.2011.591067

Szarowska M, Falniowski A (2014) Horatia Bourguignat, 1887: is this genus really phylogenetically very close to Radomaniola Szarowska, 2006 (Caenogastropoda: Truncatelloidea)? Folia Malacologica 22: 31–39. doi: 10.12657/folmal.022.003

Szarowska M, Falniowski A, Riedel F, Wilke T (2005) Phylogenetic relationships of the subfamily Pyrgulinae (Gastropoda: Caenogastropoda: Hydrobiidae) with emphasis on the genus Dianella Gude, 1913. Zootaxa 891: 1–32.

Szarowska M, Grzmil P, Falniowski A, Sirbu I (2007) Grossuana codreanui (Grossu, 1946) and the phylogenetic relationships of the East Balkan genus Grossuana (Radoman, 1973) (Gastropoda: Rissooidea). Hydrobiologia 579: 379–391. doi: 10.1007/s10750-006-0530-4

Szarowska M, Hofman S, Osikowski A, Falniowski A (2014) Daphniola Radoman, 1973 (Caenogastropoda: Truncatelloidea) at east Aegean islands. Folia Malacologica 22: 11–20. doi: 10.12657/folmal.022.021

Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135: 599–607.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. doi: 10.1093/molbev/mst197

Wilke T (2003) Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential relict of the Messinian Salinity Crisis. Zoological Journal of the Linnean Society, 137: 319–336. doi: 10.1046/j.1096-3642.2003.00049.x

Wilke T, Davis GM (2000) Intraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia ventrosa (Hydrobiidae: Rissoacea: Gastropoda): Do their different life histories affect biogeographic patterns and gene flow? Biological Journal of the Linnean Society 70: 89–105. doi: 10.1111/j.1095-8312.2000.tb00202.x

Wilke T, Davis GM, Falniowski A, Giusti F, Bodon M, Szarowska M (2001) Molecular systematics of Hydrobiidae (Gastropoda: Rissooidea): testing monophyly and phylogenetic relationships. Proceedings of the Academy of Natural Sciences of Philadelphia 151: 1–21. doi: 10.1635/0097-3157(2001)151[0001:MSOHMG]2.0.CO;2

Wilke T, Haase M, Hershler R, Liu HP, Misof B, Ponder W (2013) Pushing short DNA fragments to the limit: Phylogenetic relationships of ‘hydrobioid’ gastropods (Caenogastropoda: Rissooidea). Molecular Phylogenetics and Evolution 66: 715–736. doi: 10.1016/j.ympev.2012.10.025

Xia X (2013) DAMBE: A comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728. doi: 10.1093/molbev/mst064

Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7. doi: 10.1016/S1055-7903(02)00326-3