The current available results of the isotope effect on the superconducting transition temperature T_c in Fe-based high-temperature superconductors (HTS) are highly controversial. The values of the Fe isotope effect (Fe-IE) exponent α_{Fe} for various families of Fe-based HTS were found to be as well positive, as negative, or even be exceedingly larger than the BCS value $\alpha_{\text{BCS}} \equiv 0.5$. Here we demonstrate that the Fe isotope substitution causes small structural modifications which, in turn, affect T_c. Upon correcting the isotope effect exponent for these structural effects, an almost unique value of $\alpha \sim 0.35 - 0.4$ is observed for at least three different families of Fe-based HTS.

In conventional phonon mediated superconductors like simple metals, alloys, etc. α, typically, ranges from 0.2 to 0.5, see, e.g., Ref. [1] and references therein. The only exceptions are Ru and Zr exhibiting zero isotope effect and PdH(D) with $\alpha_{\text{H(D)}} = -0.25$. The negative isotope effect of PdH(D) is explained, however, by the presence of strong lattice anharmonicity caused by the double-well potential in the proton (deuteron) bond distribution. This was confirmed by neutron scattering data where the large zero point motion of H in comparison with that of Deuterium results in 20% change of the lattice force constants. A similar finding exists in organic superconductors where the H(D) isotope effect changes sign as compared, e.g., to ^{34}S, ^{13}C, and ^{15}N isotope replacements, see, e.g., Ref. [3] and references therein. Again, an unusually strong anharmonic lattice dynamics are attributed to this observation.

The cuprate high-temperature superconductors (HTS) are characterized by a vanishingly small but positive isotope effect exponent in optimally doped compounds which increases in a monotonic way upon decreasing doping. For the optimally doped cuprate HTS the smallest value of the oxygen-isotope exponent $\alpha_O \simeq 0.02$ was obtained for $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ and $\text{Bi}_2\text{Sr}_2\text{Cu}_2\text{O}_{8+\delta}$, while it reaches $\alpha_O \simeq 0.25$ for $\text{Bi}_2\text{Sr}_1\text{La}_0.4\text{CuO}_{6+\delta}$. In addition, it was demonstrated that in underdoped materials α_O exceeds substantially the BCS limit $\alpha_{\text{BCS}} \equiv 0.5$. It is important to note here that the values of both, the oxygen and the copper isotope exponents in cuprate HTS are always positive. Similar tendencies, with the only few above mentioned exceptions, are realized in a case of conventional phonon mediated superconductors.

Since the discovery of superconductivity in Fe-based compounds few attempts to measure the isotope effect on T_c in these materials were made. Currently we are aware of four papers reporting, however, rather contradictory results. Liu et al. and Khasanov et al. have found a positive Fe isotope effect (Fe-IE) exponent α_{Fe} for $\text{Ba}_0.6\text{K}_0.4\text{Fe}_2\text{As}_2$, $\text{SmFeAsO}_{0.85}\text{Fe}_{0.15}$, and $\text{FeS}_1\text{Fe}_{1-x}$ with the corresponding values $\alpha_{\text{Fe}} = 0.34(3)$, $0.37(3)$, and $0.81(15)$, respectively. Note that $\alpha_{\text{Fe}} = 0.81(15)$ for $\text{FeS}_1\text{Fe}_{1-x}$ exceeds grossly the BCS value. In the other two studies Shirage et al. have reported a negative $\alpha_{\text{Fe}} = -0.18(3)$ and $-0.024(15)$ for $\text{Ba}_0.6\text{K}_0.4\text{Fe}_2\text{As}_{2\delta}$ and SmFeAsO_{1-y}, respectively. These controversial results are unlikely to stem from different pairing mechanisms to be realized in different Fe-based superconductors. Especially, in the case of $\text{Ba}_0.6\text{K}_0.4\text{Fe}_2\text{As}_2$, nominally identical samples were isotope replaced with one exhibiting a positive and the other a negative isotope exponent. Note, that the sign reversed isotope exponent seen by Shirage et al. was attributed to multiband superconductivity with different pairing channels, namely a phononic one and an antiferromagnetic (AF) fluctuation dominated one. On the other hand a multiband model cannot exhibit any sign reversed isotope exponent even if solely AF fluctuations were the pairing glue.

In the present study we demonstrate that the very controversial results for α_{Fe} are caused by small structural changes occurring simultaneously with the Fe isotope exchange. As such, we decompose the Fe-IE exponent into one related to the structural changes $\alpha_{\text{Fe}^{\text{str}}}$ and the genuine (intrinsinc) $\alpha_{\text{Fe}^{\text{int}}}$ to arrive at:

$$\alpha_{\text{Fe}} = \alpha_{\text{Fe}^{\text{int}}} + \alpha_{\text{Fe}^{\text{str}}}.$$ \hfill (1)

By comparing the c-axis lattice constants for the pairs of isotopically substituted samples we observe that $\alpha_{\text{Fe}^{\text{str}}}$ is negative for $\text{Ba}_0.6\text{K}_0.4\text{Fe}_2\text{As}_2$ and SmFeAsO_{1-y} studied by Shirage et al., in Refs. [16] and [17] positive for $\text{FeS}_1\text{Fe}_{1-x}$ from Ref. [18] and close to 0 for $\text{Ba}_0.6\text{K}_0.4\text{Fe}_2\text{As}_2$ and $\text{SmFeAsO}_{0.85}\text{Fe}_{0.15}$ measured in Ref. [19]. By taking into account the sign of $\alpha_{\text{Fe}^{\text{str}}}$ we arrive at the conclusion that $\alpha_{\text{Fe}^{\text{int}}}$ is positive for all so far studied Fe-based HTS.

Our motivation to separate the isotope coefficient into the above mentioned two components, see Eq. (1), stems from the fact that superconductivity in these compounds is intimately related to small structural changes as re-
The sample with the natural Fe isotope (light with the lighter (Ba13) transition temperature

FIG. 1: (color online) Dependence of the superconducting transition temperature T_c on the height of the anion atom (h_{An}, An=As, Se, P) for various families of Fe-based HTS, after Mizuguchi et al. (21). The closed symbols represent the samples which are relevant for the present study. The lines are guided for the eye. The red/blue area represents part of T_c vs. h_{An} diagram where T_c increases/decreases with increasing h_{An}.

Sample	Reference	$T_c^{(\text{nat Fe})}$ (K)	α_{Fe}	$\Delta c/c$	$\Delta T_c/T_c$	$\Delta h_{An}/h_{An}$
FeSe$_{1-x}$	Ref. 18	8.21(4)	0.81(15)	5.48683(9)	5.48787(9)	>0
Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$	Ref. 15	37.30(2)	0.37(3)	13.289(7)	13.288(7)	~0
SmFeAsO$_{0.85}$F$_{0.15}$	Ref. 16	41.40(2)	0.34(3)	8.490(2)	8.491(2)	~0 ~0 ~0.35
SmFeAsO$_{1-y}$	Ref. 17	54.02(13)	-0.024(15)	8.4428(8)	8.4440(8)	≥0 <0 <0.35

The use of the empirical T_c vs. h_{An} relation from Ref. 21 combined with the intrinsic relation of the proportionality between the c-axis constant and the anion height ($\Delta c \propto \Delta h_{An}$), see Refs. 23–25, enables us to determine the sign of the structurally related shift of T_c induced by isotopic exchange. By defining the shift of a given quantity X as $\Delta X/X = (X^{\text{nat Fe}} - X^{\text{heavy Fe}})/X^{\text{heavy Fe}}$ and following Mizuguchi et al., see also Fig. 1, the sign of $(\Delta c/c)_c/\Delta h_{An}/h_{An}$ is positive for SmFeAsO(F) as well as for various Fe-based HTS belonging to ReFeAs(F) family (Re=Nd, Ce, La) and negative for (BaK)Fe$_2$As$_2$ and FeSe$_{1-x}$. Consequently the change of the c-axis constant caused by Fe isotope substitution as presented in Table 1 results in an additional structurally related shift of T_c. The sign of $\Delta T_c/T_c$ is negative for FeSe$_{1-x}$ and positive for Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and SmFeAsO$_{1-y}$, and close to 0 for Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and SmFeAsO$_{0.85}$F$_{0.15}$.

TABLE I: Summary of Fe isotope effect studies for FeSe$_{1-x}$, Ref. 18, SmFeAsO$_{0.85}$F$_{0.15}$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$, Ref. 15. Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$, Ref. 10 and SmFeAsO$_{1-x}$, Ref. 17. The parameters are: T_c - superconducting transition temperature for the sample with the natural Fe isotope ($^{\text{nat}}$Fe); α_{Fe} - Fe isotope effect exponent; c - the c-axis lattice constant for the sample with the lighter (light Fe) and the heavier (heavy Fe) Fe isotope; $\Delta c/c$ - the relative shift of the c-axis constant caused by the Fe isotope substitution; α_{Fe}^{str} and α_{Fe}^{int} - the structural and the intrinsic contributions to α_{Fe}. See text for details.
lead to the shift of genuine (intrinsic) $\alpha_{\text{Fe}}^{\text{int}}$ in the direction of 0.35–0.4, see Fig. 2.

Note that the above mentioned discussion allows only to determine the sign of the structurally related isotope effect but not the absolute value. The reasons are the following. First, the relative change of the c-axis constant is proportional, but not identical to the one of h_{As}. As an example, ^{56}Fe to ^{54}Fe isotope substitution in FeSe$_{1-x}$ leads to an increase of the c-axis constant by approximately 0.02%, while the change of the Se height amounts to $\simeq 0.22\%$, see Ref. 18. Second, the height of the anion atom is clearly not the only parameter which is crucial for T_c of Fe-based HTS as already mentioned above. However, the lack of a consistent structural characterization limits this study to a single parameter which was emphasized to be of uppermost relevance to T_c.

FIG. 2: (color online) Fe isotope effect exponent α_{Fe} as a function of the superconducting transition temperature T_c for the samples considered in the present study: FeSe$_{1-x}$ Ref. 18, $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ and SmFeAsO$_{0.85}\text{Fe}_{0.15}$ Ref. 15, $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ Ref. 14, and SmFeAsO$_{1-x}$ Ref. 17. Arrows indicate the direction of the shift from the “intrinsic” Fe-isotope effect exponent $\alpha_{\text{Fe}}^{\text{int}} \approx 0.35 – 0.4$ caused by the structural effects. $\alpha_{\text{BCS}} \equiv 0.5$ is the BCS value for electron-phonon mediated superconductivity. See text for details.

The analysis of the structural data together with the dependence of T_c on Se height in FeSe$_{1-x}$, as well as on Se(Fe) – Fe(Se) angle and the a-axis constant in FeSe$_{1-x}$y for $y \leq 0.5$ admits to extract the “structural” Fe isotope effect exponent $\alpha_{\text{str}}^{\text{Fe}} \approx 0.4$ for ^{56}Fe to ^{54}Fe substituted FeSe$_{1-x}$ samples. The absence of precise structural data complicates the precise analysis as outlined in Refs. 15, 17. However, a zero, within the experimental accuracy, Fe isotope shift of the c-axis lattice constant for $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ as reported by Liu et al. 14 is a clear indication that no structural effect is present for this particular set of the samples. Consequently, the negative isotope effect exponent $\alpha_{\text{Fe}} \approx -0.18$ obtained for nominally identical doped $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ by Shirage et al. stems from summing both effects, i.e., $-0.18(\alpha_{\text{Fe}}) = 0.35(\alpha_{\text{Fe}}^{\text{int}}) - 0.52(\alpha_{\text{Fe}}^{\text{str}})$, see Eq. 11. It is important to recognize that for SmFeAsO(F) a similar analysis is impossible since samples with different doping levels (different T_c’s, see Table I and Fig. 2) were studied in Refs. 15 and 17.

Recently Bussmann-Holder et al. 22 investigated a multiple gap scenario of superconductivity in Fe-based HTS with the aim to search for possible sources of the isotope effect on T_c. Typical phonon mediated scenarios were contrasted to polaronic effects and found to have very different impacts on the isotope effect. While phonon mediated superconductivity slightly suppresses the isotope effect as compared to the BCS value $\alpha_{\text{BCS}} \equiv 0.5$, polaronic effects can largely enhance it. The scenario of electron-phonon mediated superconductivity within the dominant gap channel predicts a T_c independent isotope effect with the α value being slightly smaller than 0.5 thus agreeing rather well with that observed for FeSe$_{1-x}$ 18, $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ 15,16 and SmFeAsO$_{0.85}\text{Fe}_{0.15}$. Indeed, for these particular samples, which belong to 3 different families of Fe-based HTS and have T_c’s between 8 and 44 K, the “intrinsic” Fe isotope exponent is almost constant with $\alpha_{\text{Fe}}^{\text{int}} \approx 0.35 – 0.4$, see Table I and Fig. 2. As such, the independent on T_c value of $\alpha_{\text{Fe}}^{\text{int}}$ would suggest $\alpha_{\text{Fe}}^{\text{str}} \approx -0.4$ for SmFeAsO$_{1-x}$ studied by Shirage et al. 17.

To conclude, the currently available Fe isotope effect data on the superconducting transition temperature T_c for various Fe-based HTS were reanalyzed by separating the measured Fe-IE exponent α_{Fe} into a structural and an intrinsic (unrelated to the structural changes) component. Accounting for the empirical relation between T_c and the anion atom height h_{As}, we have demonstrated that the structural contribution to the Fe-IE exponent is negative for $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ and SmFeAsO$_{1-x}$ studied by Shirage et al. 15,17 positive for FeSe$_{1-x}$ and close to 0 for SmFeAsO$_{0.85}\text{Fe}_{0.15}$ and $\text{Ba}_{0.6}\text{K}_{0.4}\text{Fe}_2\text{As}_2$ measured by Liu et al. 14. By taking such corrections into account we infer that the value of the genuine Fe-IE exponent is close to $\alpha_{\text{Fe}}^{\text{str}} \approx 0.35 – 0.4$ for compounds belonging to at least three different families of Fe-based HTS. We are convinced that the analysis presented in our paper helps in clarifying the existing controversy on the isotope effect in Fe-based superconductors.

1 C.P. Poole, *Handbook of Superconductivity*, Academic press, 24-28 Oval Road, London, (2000).
2 W. Buckel and B. Strizker, Phys. Letters 43A, 403 (1973); J.E. Schirber and C.J.M. Northrup, Jr., Phys. Rev. B 10, 3818 (1974).
3 M. Yussouff, B.K. Rao, and P. Jena Sol. State. Commun. 94, 549 (1995).
4 A. Rahman, K. Sköld, C. Pelizzari, S. K. Sinha, and H. Flo
tow, Phys. Rev. B 14, 3630 (1976).

* Corresponding author: rustem.khasanov@psi.ch
4

5 J.A. Schlueter, A.M. Kini, B.H. Ward, U. Geiser, H.H. Wang, J. Mohtasham, R.W. Winter and G.L. Gard, Physica C 351, 261 (2001).
6 M.H. Whangbo, J.M. Willimas, A.J. Schultz, T.J. Emge, and M.A. Beno, J. Am. Chem.Soc., 109, 90 (1997).
7 B. Batlogg, G. Kourouklis, W. Weber, R.J. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, and E.A. Rietman, Phys. Rev. Lett. 59, 912 (1987).
8 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
9 B. Batlogg, G. Kourouklis, W. Weber, R.J. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, and E.A. Rietman, Phys. Rev. Lett. 59, 912 (1987).
10 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
11 B. Batlogg, G. Kourouklis, W. Weber, R.J. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, and E.A. Rietman, Phys. Rev. Lett. 59, 912 (1987).
12 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
13 B. Batlogg, G. Kourouklis, W. Weber, R.J. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, and E.A. Rietman, Phys. Rev. Lett. 59, 912 (1987).
14 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
15 B. Batlogg, G. Kourouklis, W. Weber, R.J. Cava, A. Jayaraman, A.E. White, K.T. Short, L.W. Rupp, and E.A. Rietman, Phys. Rev. Lett. 59, 912 (1987).
16 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
17 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
18 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.
19 J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991); J.P. Franck, in Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg (World Scientific, Singapore, 1994), pp. 189–293.