Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine

Tong-Ming Liu

Mesenchymal stem cells (MSCs) exhibit great potential in regenerative medicine. However, the clinical application of primary MSCs has been greatly hampered by the limitations of primary MSCs. MSCs derived from human pluripotent stem cells (hPSC-MSCs) are an attractive source of cells to overcome such problems with primary MSCs. This review summarizes the various derivation approaches and applications of hPSC-MSCs in regenerative medicine. Lastly, the challenges with the use of hPSC-MSCs are also discussed, which indicate that more efforts are needed for...
INTRODUCTION

Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology and plastic adherence. They express MSC surface antigens such as CD73, CD90, and CD105 but lack hematopoietic markers such as CD11b, CD19, CD34, and CD45[1]. More importantly, MSCs can give rise to multiple mesenchymal lineages, including bone, cartilage, and fat cells[1-3]. Friedenstein and colleagues first described an adherent subpopulation in bone marrow termed as marrow stromal cells[4-7]. The term of MSCs was later introduced in 1991 to refer to these cells[8]. MSCs reside in nearly all tissues, including bone marrow and adipose tissues, among others. Due to their expandability, multipotency, immunosuppression, and limited ethical concerns as compared to other types of stem cells, human MSCs have emerged as an attractive cell source for regenerative medicine. As a fast-growing field in regenerative medicine, MSCs represent the most clinically used stem cells with over 1000 registered clinical trials with an established safety record in patients that can efficaciously treat more than 30 diseases. However, there are several limitations of primary MSCs that greatly hamper their clinical application. They include limited cell proliferative capacity, gradual loss of differentiation potential during in vitro expansion, variation across donors, rarity in organs, invasive procedures required for harvesting, etc.

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), represent a promising solution to overcome the issues associated with primary MSCs. Due to the pluripotency of hPSCs, they exhibit unlimited proliferation ability and are able to differentiate into various types of cells, including MSCs. Therefore, hPSCs can provide unlimited and uniform MSCs as an alternative cell source to primary MSCs. This review summarizes the derivation approaches and various applications of hPSC-MSCs, and ultimately the challenges associated with safety and efficacy of hPSC-MSCs are discussed.

DERIVATION OF HPSC-MSCS

Although primary MSCs have been widely used for clinical application, the previously mentioned limitations with the use of primary MSCs significantly hamper their clinical applications. To overcome the problems with primary MSCs, substantial advancements have been made to develop a number of approaches for derivation of MSCs from hPSCs, including hESCs and iPSCs. These approaches include spontaneous differentiation via coculture with OP9, fetal bovine serum (FBS)-containing media, and embryonic body (EB), or directed differentiation via delicate control of signalling pathways. The principle of these approaches is to deprive pluripotent signals of hPSCs, thereby driving differentiation into MSCs.

During embryonic development, MSCs develop from neural crest cells (NCCs), lateral plate mesoderm, or paraxial mesoderm, which further develop into craniofacial skeleton, appendicular skeleton, and axial skeleton, respectively. The neural crest is a transient structure formed through epithelial-mesenchymal transition (EMT) with potential to differentiate into a wide range of cell types, including MSCs. It was shown that neural crest cells were derived from hPSCs[9-13], which were able to develop or differentiate into MSCs[14-16]. Morikawa et al[15] showed that MSCs in the adult bone marrow had at least two developmental origins, one of which was the neural crest. By lineage tracing, Takashima et al[16] showed that Sox1+ neuroepithelium gave rise to...
MSCs in part through a neural crest intermediate stage. The combination of the
glycogen synthase kinase 3 beta inhibitor and transforming growth factor-beta (TGFβ)
inhibitor very efficiently induced hPSCs towards hNCCs (70%-80%), which further
differentiated into MSCs with chemically defined medium[14]. The mesoderm is a
major source of MSCs, and we recently reported a stepwise, serum-free, chemically
defined and highly efficient protocol to generate hPSC-MSCs via lateral plate
mesoderm. The resultant iPSC-MSCs displayed similar MSC surface antigen profile,
gene expression profile, and epigenetic profile. iPSC-MSCs had three lineage
differentiation. Significantly, hPSC-MSCs were able to repair cartilage defects, similar to bone
marrow-MSCs (BM-MSCs)[17]. Upon differentiation, mESCs gave rise to VEGFR2/
PDGFRβ population followed by VEGFR2/PDGFRβ population via paraxial mesoderm
[18]. hESC-derived KDR/PDGFRα paraxial mesoderm-like cells showed robust
chondrogenic activity and generated a hyaline-like translucent cartilage particle whereas STRO1+ BM-MSCs showed relatively weaker chondrogenesis and formed
more fibrotic cartilage particles in vitro[19].

MSCs in the placenta develop from trophoblasts in the extraembryonic tissue
chorion[20]. MSCs can also be derived via trophoblasts. hESCs cultured in serum
containing medium[21] and serum free medium[22] containing BMP4 and A83-01
were able to differentiate into trophoblasts and then into MSCs. Trophoblast-derived
MSCs produced less interleukin 6 (IL-6), C-X-C motif chemokine ligand 10, and C-C
motif chemokine ligand 2 but more programmed death-ligand 1 in response to IFN
gamma (IFNγ) treatment as compared with MSCs[21]. Compared with MSCs from
serum containing medium, serum free approach took longer than serum containing
approach to derive MSCs, but serum-free derived MSCs grew faster and produced less
IL-6 and interleukin 8[22].

Barberi et al[23] first reported that MSCs were derived from hESCs by coculturing
hESCs with monolayer of murine OP9 stromal cells. However, the undefined
condition in this approach inevitably led to spontaneous differentiation, giving rise to an undesired type of cells. Besides MSCs, non-MSCs such as CD34 (+) primitive
hematopoietic cells, were also present[24]. Vodyanik et al[25] showed that MSCs were
derived from a common precursor of mesenchymal and endothelial cells called
mesenchymoangioblast by coculturing hESCs with OP9.

Culturing hPSCs in the undefined condition of FBS-containing MSC medium is
another way to derive hPSC-MSCs by providing growth factors required for differen-
tiation towards MSCs. When hESCs or iPSCs were cultured in FBS-containing MSC
medium for 4 wk to derive hPSC-MSCs, hPSC-MSCs inhibited cell proliferation
and cytolytic function of natural killer (NK) cells in the same fashion that BM-MSCs did.
However, they were more resistant to preactivated NK cells as compared with adult
BM-MSCs[26]. A high density of hESCs on a porcine gelatin-coated dish were cultured
in a medium containing 10% FBS for 7 d to outgrow the cells and then enrich hESC-
MSCs by 1-2 passages[27]. Functional iPSC-MSCs were also derived on coating with
gelatin, and the resultant iPSC-MSCs pre-induced into osteogenesis for 4 d formed
bone in the calvaria defects confirmed by human specific nuclear antigen and
mitochondrial antibodies[28]. hESC/iPSCs were seeded onto collagen coating and
cultured in FBS-containing medium for 10 d to generate hESC/iPSC-MSCs[29].
Spontaneously differentiated cells (raclures) from feeder-free hESCs were cultured in
FBS-containing MSC medium for 4 wk, and hESC-MSCs were enriched by following
passage[30]. Chen et al[31] reported the derivation of hPSC-MSCs by serum-free
medium containing TGFβ1 inhibitor and EMT inducer (SB431542) for 10 d to induce the
mesoderm followed by induction of MSCs in FBS-containing MSC medium. The
resultant hPSC-MSCs had robust osteogenesis and chondrogenesis but weaker
adipogenesis. This approach does not require EB and feeder cell coculture.

To mimic in vivo development, Brown et al[32] derived hESC-MSCs via EB in MSC
medium and enriched them by sorting for CD73 and CD105. EBs from iPSCs were
exposed to TGFβ1-containing medium, and two types of MSCs were generated.
Although early (aimMSCs) and late (tiMSCs) outgrowing cells were similar in surface
antigen profile and three lineage differentiation, aimMSCs were better in osteogenesis
than tiMSCs and BM-MSCs. Compared with BM-MSCs, aimMSCs were more of
stemness whereas tiMSCs were more osteogenic, and in vivo bone formation was
confirmed via ectopic injection[33].

The use of undefined components (such as FBS and feeder) or animal-derived
components affects clinical applications of hPSC-MSCs. To overcome the problems
from undefined conditions, serum-free and chemically defined protocols are desired to
generate clinically compliant hPSC-MSCs. Lian et al[34,35] reported a clinically
compliant protocol to generate hESC-MSCs and iPSC-MSCs. After 1 wk of differen-
tiation, MSCs were enriched by FACS for CD24- CD105+ cells. The transplanted iPSC-
MSCs were superior to BM-MSCs in attenuating severe hindlimb ischemia, which may result from better \textit{in vivo} survival and trophic factors of iPSC-MSCs, and higher proliferation of iPSC-MSCs related to increased hEAG1 potassium channel expression\cite{36}. The use of animal products, such as gelatin for coating, compromises the application of hPSC-MSCs. To generate xeno-free MSCs, FBS was replaced with human serum, and porcine gelatin was replaced with human gelatin. Transplanted hESC-MSCs into renal capsule formed cartilage\cite{27}. Human platelet lysate is an alternative to FBS for the generation of hPSC-MSCs. Compared with the FBS-containing medium, the hPL-supplemented medium generated significantly more MSCs\cite{37}.

\section*{COMPARISON BETWEEN PRIMARY MSCS AND HPSC-MSCS}

hPSC-MSCs are similar to primary MSCs in morphology, immunophenotype, differentiation potential, gene expression profile, and epigenetic modification\cite{17,22,38-40}. However, there are some differences observed between primary MSCs and hPSC-MSCs. hPSC-MSCs are smaller in size and proliferate faster than BM-MSCs and adipose tissue-MSCs\cite{22,36,39-41}. hPSC-MSCs express higher levels of cell proliferation-related genes whereas BM-MSCs express higher levels of immune-related genes, therefore hPSC-MSCs had a superior proliferative ability to BM-MSCs\cite{39,42,43}. In addition, iPSC-MSCs express higher levels of pluripotent genes and lower levels of mesodermal genes compared with original MSCs, which harbor mtDNA mutations from original MSCs as well as iPSCs. Compared with primary MSCs, iPSC-MSCs express a lower level of VCAM1, leading to lower initiating cell frequency of HSCs after long-term culture with iPSC-MSCs as feeder\cite{44}. Compared with dental tissue-derived MSCs, re-differentiated iPSC-MSCs expressed higher levels of pluripotent genes and lower levels of mesodermal genes, but displayed lower mitochondrial respiration\cite{45}. iPSC-MSCs also express the lowest level of the HLA-II upon stimulation with IFN\textgamma{} compared with BM-MSCs and fetal-MSCs. Compared with BM-MSCs, more iPSC-MSCs survived, and less inflammatory cell accumulations and better recovery of hind limb ischemia were also observed upon transplant. These suggest that iPSC-MSCs are not sensitive to IFN\textgamma{} stimulation and have a stronger immune privilege after transplantation\cite{46}. In differentiation potential, hPSC-MSCs differentiated less effectively along the adipogenic, osteogenic, or chondrogenic lineages compared with BM-MSCs\cite{42}, especially poorer adipogenesis\cite{31,47,48}. Both hESCs and iPSCs inefficiently formed hyaline cartilage compared with BM-MSCs\cite{43}. In immunosuppression, iPSC-MSCs were impaired in suppressing T cell proliferation compared with primary MSCs but were rejuvenated with regard to age-related DNA methylation, and this suggests that iPSC-MSCs reacquire incomplete immunomodulatory function, and MSC-specific DNA methylation pattern associates with tissue type and aging\cite{38} (Table 1).

\section*{DISEASE MODELLING AND DRUG SCREENING}

The understanding of the pathological mechanism is critical to developing the therapeutic drugs for the treatment of various genetic diseases. \textit{In vitro} models to mimic \textit{in vivo} development are very useful to investigate the pathology of human genetic diseases and further develop therapeutic drugs. However, due to inaccessible human tissues and the lack of animal models, research on human genetic diseases and drug screening remains very limited. With the breakthrough in iPSC technology, it makes it possible to model human diseases and develop their therapeutic drugs \textit{in vitro}. The iPSC-MSC platform can recapitulate the embryonic bone and cartilage development, and therefore provide new insights into pathological progression of human genetic bone and cartilage diseases for disease modelling and further the development of therapeutic drugs.

Hutchinson-Gilford progeria syndrome (HGPS) is a rare but fatal genetic disorder caused by progerin, a truncated and farnesylated form of Lamin A, which causes systemic accelerated aging in children. Zhang \textit{et al}\cite{49} generated iPSC-MSCs from HGPS patients and showed that HGPS-iPSC-MSCs displayed abnormalities, including increased nuclear dysmorphology, DNA damage, and accumulation of calponin-staining inclusion bodies, leading to their compromised viability under stress, especially to hypoxia. Using HGPS iPSC-MSCs platform, seven compounds were screened from 2800 small molecules, including all-trans retinoic acid and 13-cis-retinoic acid, which decreased ALP activity and progerin expression\cite{50}.
Table 1 Comparison between primary mesenchymal stem cells and mesenchymal stem cells derived from human pluripotent stem cells

Comparison	Primary MSCs	hPSC-MSCs	Ref.
Cell number	Limited	Unlimited	[17,36]
Proliferation	Slower	Faster	[36,39,42,43,48,57]
Life span	Shorter	Longer	[17]
Variation	Higher	Lower	[119]
Differentiation	Higher	Lower, esp. adipogenesis	[31,43,47,48]
Potential	Higher	Lower	[36,40]
Immunosuppression	Higher	Lower	[45]
Pluripotent genes	Lower	Higher	[45]
Mesenchymal genes	Higher	Lower	[44]
VCAM1	Higher	Lower	[46]
HLA-II	Higher	Lower	

MSCs: Mesenchymal stem cells; hPSC-MSCs: Human pluripotent stem cells derived MSCs; VCAM1: Vascular cell adhesion molecule 1; HLA-II: Human leukocyte antigen gene complex class II.

Fibrodysplasia ossificans progressiva (FOP) is an inherited disease characterized by heterotopic endochondral ossification in soft tissues after birth and caused by a point mutation in ACVR1. iPSC-MSCs from FOP patients were generated, and it was found that SMAD1/5/8 and SMAD2/3 were activated and chondrogenesis was enhanced via MMP1 and PAI1 in FOP-iMSCs [51-53]. Hino et al [54] screened 6809 small molecule compounds using high-throughput screening, and mTOR signaling was identified to be a critical pathway for aberrant chondrogenesis. Further mechanism study showed that ectonucleotide pyrophosphatase/phosphodiesterase 2 linked FOP-ACVR1 to mTOR signaling, causing FOP pathogenesis.

APPLICATIONS OF HPSC-MSCS IN REGENERATIVE MEDICINE

Due to the multipotency, immunosuppression, and unlimited cell sources, hPSC-MSCs have been used for various applications in regenerative medicine (Table 2).

Bone regeneration

Like BM-MSCs, iPSC-MSCs had osteogenic potential, and therefore they could form typically calcified structure in the scaffolds[55]. iPSC-MSCs had good viability and osteogenic differentiation on the CPC scaffold[56]. iPSC-MSCs were similar to BM-MSCs in preventing bone loss and promoting bone repair for the necrosis region of the femoral head[57]. Engineered non-native peptides increased the attachment of iPSC-MSCs to the scaffolds and enhanced bone and vasculature formation in vivo[38]. Bisfunctional agents, such as Arg-Gly-Asp (RGD), improved the proliferation and bone mineralization of iPSC-MSCs[59]. When iPSC-MSCs were treated with metformin, a widely used drug for diabetes, they showed enhanced bone formation and increased osteogenic markers and mineralized nodule formation, suggesting that metformin might be used to improve bone and periodontal regeneration[60]. Recently increasing reports have shown that MSCs exerted their pleiotropic effects by the secretion of soluble paracrine factors rather than their differentiation potential[61]. MSC-derived exosomes contain cytokines, growth factors, miRNAs, and regulatory miRNAs[62], iPSC-MSC exosomes increased the proliferation, migration, and osteogenesis of BM-MSCs[63], significantly prevented bone loss, and promoted local angiogenesis by activating the PI3K/Akt signalling pathway in endothelial cells in a steroid-induced rat osteonecrosis model[64] (Figure 1).

Genetic modification can improve the bone formation of iPSC-MSCs. Distal-less homeobox 3 (DLX3) overexpression enhanced bone formation of iPSC-MSCs as shown by increased osteogenic genes and mineralized nodules at the expense of decreased proliferation[65]. Bone morphogenetic protein 2 overexpression enhanced bone formation on RGD-grafted calcium phosphate cement (CPC) of iPSC-MSCs [66]. Neural EGFL like 1 (NELL1) overexpression greatly improved osteogenesis of iPSC-MSCs on
Table 2 Mesenchymal stem cells and mesenchymal stem cells derived from human pluripotent stem cells

hPSC-MSCs	Disease model or application	Animal model or human	Therapeutic effects	Ref.
iPSC-MSCs	CKD	Rat	Protect the kidney against CKD injury	[85]
iPSC-MSCs	Adriamycin nephropathy	Mouse	Prevent adriamycin nephropathy	[82]
iPSC-MSCs	Obesity-associated Kidney injury	Mouse	Ameliorate endoplasmic reticulum stress	[83]
iPSC-MSCs	UUO	Mouse	Protect against kidney fibrosis in vivo and in vitro	[84]
hESC-MSCs	LN	Mouse	Prevent the progression of LN	[81]
iPSC-MSCs	TNBC	Mouse	Significantly decrease the incidence and burden of metastases	[117]
iPSC-MSCs	Breast cancer	Mouse	Decrease EMT, invasion, stemness, and growth of cancer cells	[119]
iPSC-MSCs	Skin wounds, pressure ulcers, and osteoarthritis	Mouse	Have therapeutic potential in skin wounds, pressure ulcers, and osteoarthritis	[127]
hESC-MSCs	Arthritis	Mouse	Ameliorate collagen-induced arthritis by inducing IDO1	[72]
iPSC-MSCs	Osteonecrosis of the femoral head	Rat	Prevent osteonecrosis of the femoral head	[84]
iPSC-MSCs	Vascularized composite allograft transplantation	Rat	Induce T cell hyporesponsiveness to prolong hind limb survival	[106]
iPSC-MSCs	Limb ischemia	Mouse	Exosomes of iPSC-MSCs attenuate limb ischemia by promoting angiogenesis	[121]
iPSC-MSCs	Limb ischemia	Mouse	Insensitivity of iPSC-MSCs to interferon γ potentiates repair efficiency of hind limb ischemia	[46]
iPSC-MSCs	Limb ischemia	Mouse	Attenuate limb ischemia	[35]
iPSC-MSCs	Periodontal defects	Rat	Aid periodontal regeneration	[68]
iPSC-MSCs	Bone defects	Mouse	Regenerate non-union bone defects more efficiently than BM-MSCs upon BMP6 overexpression	[33]
iPSC-MSCs	Calvaria defects	Mouse	Repair calvaria defects	[28]
iPSC-MSCs	Osteochondral defects	Rat	iPSC-MSCs are able to repair cartilage defects	[17]
iPSC-MSCs	FOP		FOP-iPSC-MSCs enhance chondrogenesis via activin A enhanced mTOR signalling	[53, 54]
hESC-MSCs	Lupus and uveitis	Mouse	Increase survival of lupus-prone mice and decrease symptoms of uveitis	[40]
hESC-MSCs	EAE model of multiple sclerosis	Mouse	Improve EAE symptoms	[101]
hESC-MSCs	EAE	Monkey	Attenuate disease progression in a primate EAE model	[41]
hESC-MSCs	EAU	Mouse	Slow down the development of EAU	[103]
iPSC-MSCs	Inflammatory bowel disease models	Mouse	Promote intestinal repair via TSG-6	[111]
hESC-MSCs	Experimental inflammatory bowel disease	Mouse	Protect against experimental inflammatory bowel disease	[107]
iPSC-MSCs	SS	Mouse	Prevent the progression of SS	[112]
iPSC-MSCs	Allergic rhinitis		Modulate T-cell phenotypes towards Th2 suppression through inducing Treg expansion	[108]
iPSC-MSCs	Asthma Inflammation	Mouse	Alleviate asthma inflammation by CX43-mediated mitochondrial transfer	[110]
iPSC-MSCs	Corneal injury	Mouse	Exert therapeutic effects in the cornea by reducing inflammation	[99]
iPSC-MSCs	Skin wound	Rat	iPSC-MSC-Exos improve cutaneous wound healing by promoting collagen synthesis and	[120]
Figure 1 Signaling pathways of mesenchymal stem cells derived from human pluripotent stem cells in improving various diseases. Mesenchymal stem cells derived from human pluripotent stem cells (hPSC-MSCs) improve diseases or prevent against injury through immunosuppression or paracrine effects. hPSC-MSCs secrete a variety of soluble paracrine factors to exert their therapeutic effects on immunosuppression, proliferation, differentiation, anti-apoptosis, angiogenesis, etc. PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; BDNF: Brain-derived neurotrophic factor; NGF: Nerve growth factor; HGF: Hepatocyte growth factor; IGBP1: Insulin-like growth factor-binding protein 1; TNFα: Tumor necrosis factor; IL6: Interleukin 6; Bax: BCL2-associated X; SIRT6: Sirtuin 6; IL10: Interleukin 6; TSG6: TNFα-stimulated gene-6; IFNγ: Interferon γ; ERK1/2: Extracellular signal-regulated protein kinases 1 and 2.

Due to osteogenic differentiation potential, iPSC-MSCs have the capacity for periodontal regeneration. When transplanted into periodontal defects, iPSC-MSCs formed new mineralized tissues and significantly improved regeneration, suggesting that iPSC-MSCs represent a promising stem cell source for clinical application in periodontitis[68].

Cartilage repair
Articular cartilage has limited intrinsic healing potential, leading to a loss of joint function. Like BM-MSCs, iPSC-MSCs can differentiate into chondrocytes in vitro[69]. In view that autologous chondrocytes and primary MSCs are limited in cell number, iPSC-MSCs are gaining attention as a new cell therapy for cartilage regeneration due to unlimited cells and chondrogenic differentiation potential. Our previous data showed that primary BM-MSCs were able to repair cartilage defects effectively[70]. Multiple injections of hESC-MSCs into knee joint of osteoarthritis (OA) rats induced by anterior cruciate ligament transection repaired cartilage better than the single dose and negative control groups in a rat OA model[71]. hESC-MSCs also ameliorated collagen-induced arthritis by inducing indoleamine 2,3-dioxygenase 1 (IDO1) in mice[72]. In addition, exosomes from hESC-MSCs prevented cartilage destruction by maintaining the chondrocyte function[73]. By our defined, step-wise and chemically defined protocol, we generated iPSC-MSCs via lateral plate mesoderm and have shown that iPSC-MSCs repaired osteochondral defects similar to BM-MSCs[17].

Lung repair
As an attractive candidate for cell-based therapy, MSCs are therapeutically beneficial
to improving lung disease or repairing lung damage. iPSC-MSCs protected lung cells against mitochondrial dysfunction and apoptosis induced by oxidative stress to reduce lung injury and inflammation in in vivo models of lung disease[74]. iPSC-MSCs reduced airway inflammation and hyperresponsiveness to protect against lung diseases induced by oxidative stress, such as chronic obstructive pulmonary disease [75]. iPSC-MSCs protected the lung against ischemia-reperfusion injury (IRI) by suppressing the inflammatory, oxidative stress, and autophagic signalling pathways [76]. Treatment with iPSC-MSCs also significantly prevented airway allergic inflammation, decreased Th2 cytokine levels, and changed long non-coding RNAs profiles [77]. iPSC-MSCs ameliorated cigarette smoke (CS)-induced apoptosis and proliferation imbalance of airway cells partly through the paracrine section of stem cell factor (SCF) [78]. Asthma is a chronic disease with inflamed airways. iPSC-MSCs were able to prevent chronic allergic airway inflammation[79]. Compared with BM-MSCs, iPSC-MSCs transferred mitochondria to bronchial epithelial cells more effectively via tunnelling nanotubes. Therefore, iPSC-MSCs were superior to BM-MSCs in attenuating CS-induced airspace enlargement[80].

Kidney disease

hPSC-MSCs improved both acute and chronic adriamycin nephropathy (AN) by preventing renal function loss. hESC-MSCs prevented the progression of fatal lupus nephritis in a mouse model by significantly decreasing two inflammatory cytokines associated with systemic lupus erythematosus, tumour necrosis factor α (TNFα) and IL-6[81]. iPSC-MSCs prevented the apoptosis of tubular cells by downregulating B-cell lymphoma 2 associated X (Bax) and Bax/B-cell lymphoma 2 and upregulating survivin in the short-term AN model whereas iPSC-MSCs inhibited fibrosis via hedgehog signalling in the long-term AN model[82]. iPSC-MSCs also ameliorated palmitic acid-induced lipotoxic kidney injury by alleviating endoplasmic reticulum (ER) stress, inflammation, and apoptosis to suppress ER stress and its downstream pro-inflammatory and pro-apoptotic effects via hepatocyte growth factor (HGF)/c-Met signalling[83]. Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function over time due to renal fibrosis[84]. Intravenously administrated iPSC-MSCs effectively protected the kidney against CKD injury in CKD parenchyma[85]. iPSC-MSCs were also able to effecte ischemia-reperfusion injury[86]. hPSC-MSC-derived exosomes reduced the renal fibrosis, decreased inflammatory reactions, and improved renal function in unilateral ureteral obstruction mice by increasing SIRT6 and decreasing β-catenin[84] (Figure 1).

Cardiovascular diseases

MSCs have the potential to improve cardiovascular diseases. Coculture with hESC-MSCs promoted the maturation of hESC-derived cardiomyocyte microtissues[87]. iPSC-MSCs increased the level of M2 macrophages and decreased the level of M1 macrophages after cardiac arrest (Figure 1), suggesting that iPSC-MSCs play a crucial role in immunomodulation during cardiopulmonary resuscitation[88]. iPSC-MSCs improved CS-induced cardiac remodelling and dysfunction better than BM-MSCs as shown by an increase in percentage of left ventricular ejection fraction and fractional shortening, iPSC-MSCs attenuated cardiac pro-inflammatory cytokines and restored anti-inflammatory cytokines[89]. Conditioned medium from iPSC-MSCs alleviated heart failure and reduced cardiomyocyte apoptosis and fibrosis better than that from BM-MSCs, showing that iPSC-MSCs could provide cell-free therapeutic cardioprotection[90]. Extracellular vesicles (EVs) of iPSC-MSCs mitigated arterial ageing by attenuating age-associated vascular endothelial dysfunction, arterial stiffness, and hypertension[91]. In addition, overexpression of myocardin in iPSC-MSCs resulted in partial transdifferentiation into cardiomyocyte phenotype[92].

Neurological diseases

MSCs demonstrate significant neuroprotection and promote functional recoveries of the pathological nervous system. MSCs were shown to secret brain-derived neurotrophic factor and nerve growth factor, which supported neuronal cell survival and induced nerve regeneration (Figure 1). Conditional medium of hESC-MSCs could significantly ameliorate neurological deficits and infarct volume in middle cerebral artery occlusion (MCAO) rats[93]. hESC-MSCs differentiated into neural-like cells in standard neurogenic differentiation medium, and hESC-MSCs in sphere secreted more HGF and IGFBP1 than those in single-cell suspension[94] (Figure 1). hPSC-MSCs expressed higher levels of neural genes than BM-MSCs and rapidly differentiated into neural-like cells when differentiated into neural lineage[95]. Although ESC-MSCs
induced autophagy similar to BM-MSCs, ESC-MSCs survived better in amyloid-β (Aβ) -induced cellular models and reduced more intracellular Aβ levels compared with BM-MSCs. ESC-MSCs significantly decreased Aβ-induced cell death and promoted autophagolyosomal clearance of Aβ in a rat model of Alzheimer’s disease, leading to higher memory performance. Intra-arterially transplanted ESC-MSCs were safe and free from cerebral ischemia[96]. iPSC-MSCs markedly decreased brain-infarct volume and improved neurological function mainly by inhibiting inflammation[97]. ESC-MSCs had a superior neuroprotective capacity over fetal MSCs in mouse hypoxic-ischemic brains[98].

In addition, hESC-MSC EVs also protected retinal ganglion cells and preserved retinal function in a mouse model of optic nerve injury by improving retinal ganglion cell (RGC) survival and preventing retinal nerve fiber layer degeneration. iPSC-MSCs significantly reduced corneal opacity by reducing inflammation similar to BM-MSCs [99]. Transplanted iPSC-MSCs significantly improved the survival of RGCs by effectively transferring functional mitochondria to RGCs[100].

Multiple sclerosis (MS) is a potentially disabling disease of the central nervous system caused by an attack of the protective sheath by the immune system, leading to communication problems between the brain and the rest of the body. As yet, there is no cure for MS, the most common demyelinating disease. Compared with BM-MSCs, hESC-MSCs improved efficacy in a mouse experimental autoimmune encephalitis (EAE) model of MS due to its lowered IL-6 expression. In addition, hESC-MSCs are less vulnerable than BM-MSCs in therapeutic capacity during in vitro culture[101]. After hESC-MSCs were intrathecally injected into the central nervous system of EAE-induced monkeys, hESC-MSCs greatly decreased clinical symptoms, brain lesions, and neuronal demyelination in the EAE monkeys. hESC-MSCs could transdifferentiate into neural cells in vivo in the CNS of the treated monkeys as shown by elevated expression of genes for neuronal markers, neurotrophic factors, and neuronal myelination[41].

Immune disease

hPSC-MSCs have a strong immune regulatory effect during anti-inflammation. Microphages serve as a bridge between innate and specific immune responses. hPSC-MSCs altered macrophage polarization by suppressing the Notch-1 signalling pathway[102] (Figure 1). Due to the immunosuppression property of iPSC-MSCs, they have been used for the treatment of various immune diseases. hESC-MSCs slowed down the development of severe experimental autoimmune uveitis through systemic immune modulation[103], whereas iPSC-MSCs inhibited proliferation, shifted the secretome of peripheral blood mononuclear cells, and significantly suppressed CD8 T proliferation, activation, and differentiation[104]. iPSC-MSCs also suppressed T-cell effector cells of Th1/Th2 and increased regulatory T cell (Treg) response[105]. iPSC-MSCs prolonged hind limb survival by reducing mononuclear cell infiltration, lowering TNFα and IFNγ, increasing interleukin 10, and thus protecting against acute rejection in a rat vascularized composite allotransplantation model[106] (Figure 1). iPSC-MSCs disrupted NK cell cytolytic machinery to prevent allograft rejection by decreasing activation markers and ERK1/2 signalling, leading to impaired immunologic synapses and secreted cytotoxic granules. However, iPSC-MSCs were more resistant than BM-MSCs to pro-activate NK cells[26]. hESC-MSCs could protect against an experimental model of inflammatory bowel disease[107]. iPSC-MSCs modulated T-cell phenotypes towards Th2 suppression by inhibiting lymphocyte proliferation and promoting Treg response, suggesting that iPSC-MSCs can treat allergic airway diseases[108]. iPSC-MSCs regulate T cell responses by decreasing secreted soluble factors[109]. iPSC-MSCs also improved asthma inflammation by connexin 43-mediated mitochondrial transfer[110]. iPSC-MSCs accelerated intestinal epithelial cell proliferation to promote intestinal repair in murine colitis through tumor necrosis factor-stimulated gene-6 (TSG-6) via Akt-dependent interaction between the extracellular matrix HA and CD44+ cells[111]. iPSC-MSC EVs prevented the progression of Sjögren’s syndrome (SS), a chronic autoimmune disease, by suppressing activation of immune cells and proinflammation factors essential for SS progression[112]. Due to intrinsic immunosuppression, MSCs significantly prolonged the survival of humanized mouse model of graft vs host disease (GvHD)[113]. The first iPSC-MSC clinical trial was reported in 2020. iPSC-MSCs were produced using an optimized and good manufacturing practice-compliant manufacturing process to treat steroid-resistant acute GvHD. Based on the complete response, overall response, and overall survival of participants, the higher dose level of iPSC-MSC showed better outcomes than the lower dose, and iPSC-MSCs were safe and well tolerated without serious adverse events reported[114].
Cancer treatment
Like primary MSCs, hPSC-MSCs also have therapeutic potentials in treating cancer or repairing tissue damages caused by cancers. hPSC-MSCs can overcome the limitation of drug delivery. iPSC-MSCs expressing cytosine deaminase limited tumor growth and decreased lung metastases in a mouse xenogeneic model of human breast cancer [115]. EVs from hPSC-MSCs also showed promising results to improve cancer treatment. hESC-MSC microvesicles decreased the proliferation of leukemia cells[116]. Treatment with iPSC-MSC nanovesicles showed no detectable immunogenicity and significantly decreased the incidence of metastases from triple-negative breast cancer in mouse models[117]. iPSC-MSC nanovesicles also significantly decreased tumor growth of metastatic prostate cancer[118]. These suggest that iPSC-MSC nanovesicle is a promising platform to improve the treatment of metastatic cancer. iPSC-MSCs can home to cancers with a similar efficiency as BM-MSCs. As compared with BM-MSCs, iPSC-MSCs expressed lower levels of interleukin-1 and TGFβ receptors, downstream pro-tumor factors, and hyaluronan and its cofactor TSG6, and therefore iPSC-MSCs have much less potential to promote tumours than BM-MSCs by promoting the EMT, invasion, stemness, and growth of cancer cells[119].

Other applications
hPSC-MSCs are also used for other applications. iPSC-MSC exosome improved cutaneous wound healing by promoting collagen synthesis and angiogenesis[120]. Furthermore, iPSC-MSC exosome via intramuscular injection could enhance microvessel density and blood perfusion by activating angiogenesis-related molecule expression and promoting HUVEC migration, proliferation, and tube formation[121]. iPSC-MSCs supported the proliferation of hematopoietic stem and progenitor cells (HPCs), and maintained a primitive immunophenotype and colony forming unit of CD34+ HPCs. Long-term culture initiating cell frequency was lower compared with primary MSCs, suggesting that iPSC-MSCs are less suitable than primary MSCs as feeder cells[44]. iPSC-MSCs also can be used as feeder cells to culture human iPSCs. Human iPSCs cultured on human iPSC-MSC feeder were slightly thinner and flatter than the other feeder system. However, iPSC-MSCs still maintain the proliferation and pluripotency of iPSCs[122]. hESC-MSCs restored the structure of the injured ovarian structure and function in premature ovarian failure via paracrine effect and ovarian cell survival to rescue fertility in mice[123,124]. hESC-MSC secreted trophic factors to support hepatocytes on an acute liver failure model[125]. hESC-MSC EVs ameliorated cirrhosis in thioacetamide-induced chronic liver injury[126].

DISCUSSION
Primary MSCs have drawbacks due to their limited scalability, interdonor variability, and inconsistent outcomes of clinical trials. iPSC-MSCs have the potential to overcome the fundamental limitations of conventional and donor-derived MSC production processes. The derivation of hPSC-MSCs has made substantial progress with an increasing number of reports on the use of hPSC-MSCs for regenerative medicine over the past years. However, the issues and challenges related to safety and efficacy of hPSC-MSCs remain to be understood and addressed. These include the effects of cell origins and derivation approaches on hPSC-MSCs, the understanding of difference between hPSC-MSCs and primary MSCs, MSC stemness/potency biomarkers, the differentiation potential of hPSC-MSCs, choice of autologous or allogeneic hPSC-MSC source, manufacturing of clinical grade hPSC-MSCs, etc.

Effects of cell origins and derivation approaches on the features of hPSC-MSCs
The use of MSCs is already in various phases of clinical applications. However, little is known about the difference in features of hPSC-MSCs from different origins, particularly in their differentiation potential, a critical feature to their clinical application. Although hPSC-MSCs derived from various approaches exhibit MSC morphology and express MSC surface antigens, their differentiation potential is not as efficient as BM-MSCs, especially in adipogenesis[31,47]. Due to epigenetic memory or incomplete reprogramming, iPSC variations exist, and iPSC-MSCs exhibit preferential differentiation into their original cell lineage. Eto et al[127] showed that iPSC-MSCs via the mesoderm and neuroepithelium had the capacity for self-renewal and multipotency as well as therapeutic potential in skin wounds, pressure ulcers, and OA in a mouse model. However, different therapeutic effects of iPSC-MSCs from different origins were also observed, suggesting that the therapeutic efficacy of hPSC-MSCs is
dependent on cell origins. In addition, hPSC-MSCs derived by differentiation approaches vary extensively in their quality and efficiency. The use of fibroblast growth factor in the differentiation medium\cite{27,47,128} promotes MSC proliferation at the expense of its differentiation potential\cite{129}. Therefore, the effects of cell origins and differentiation approaches on iPSC-MSCs need to be elucidated.

Mechanisms underlying difference between hPSC-MSCs and primary MSCs

Compared with primary MSCs, hPSC-MSCs have advantages of faster proliferation, longer life span, more reliable and homogeneous cell source, but somehow immature differentiation potential and impaired immunosuppression. What are intrinsic and extrinsic mechanisms underlying the difference between iPSC-MSCs and primary MSCs?

The lack of MSC stemness/potency biomarkers to identify good quality of MSCs

So far, little is known about regulators or biomarkers associated with MSC stemness/potency, and there is no critical quality attribute available for use to distinguish good MSCs from bad ones before cellular manufacturing. The mechanism underlying MSC stemness or potency remains poorly understood, which greatly hampers the clinical application of hPSC-MSCs. It was shown that kindlin-2 increased the survival, proliferation, stemness, and migration of iPSC-MSCs. Kindlin-2 knockdown increased apoptosis and differentiation response whereas kindlin-2 overexpression increased proliferation, decreased apoptosis, and slowed down trilineage differentiation. More significantly, kindlin-2 overexpression increased the migration of iPSC-MSCs in the wound-scratch assay\cite{130}. In the future, substantial efforts are needed to explore MSC stemness/potency-related regulators or biomarkers for clinical application.

Differentiation potential of hPSC-MSCs

It is well accepted that MSCs have potential to differentiate into multiple mesenchymal lineages, such as osteoblasts, chondrocytes, and adipocytes. However, it is still controversial that MSCs can directly differentiate into other types of functional cells, such as cardiomyocytes-like cells\cite{131}, hepatocytes\cite{132}, neuron-like cells\cite{133}, and pancreatic β cells\cite{134}. The underlying mechanism of iPSC-MSCs improving these conditions need to be elucidated.

Autologous vs allogeneic hPSC-MSCs

MSCs have anti-inflammatory and immune-modulatory properties. However, patient-derived autologous hPSC-MSCs still represent a better option for regenerative medicine as there are lesser concern regarding the immune response compared with allogeneic MSCs.

Clinical grade hPSC-MSCs

Although iPSCs are generated by integration-free methods and iPSC-MSCs are derived by a number of approaches, there are few approaches available to regenerate clinical-grade hPSC-MSCs for clinical application. Most protocols have used undefined components, such as FBS, feeder cells, and other animal-derived components, which compromise the clinical application of iPSC-MSCs. To generate clinical grade iPSC-MSCs, reliable, efficient, scalable, and clinically compliant approaches are required throughout the whole manufacturing process of iPSC-MSCs. These processes include generation and expansion of iPSCs, freezing and thawing of iPSCs, differentiation of iPSCs towards MSCs, expansion of iPSC-MSCs, freezing and thawing iPSC-MSCs, etc. In addition, comprehensive assays should be established to evaluate the safety, quality, or potency of hPSC-MSCs during cellular manufacturing for clinical application.

CONCLUSION

hPSC-MSCs have enormous potential for regenerative medicine, and can be used for disease modelling, drug screening, and treatment of various diseases in regenerative medicine. Although multiple approaches have been reported in deriving MSCs from hPSCs, the use of undefined and animal-derived components greatly compromises the clinical application of hPSC-MSCs. Much effort is needed to derive clinically relevant and sufficient hPSC-MSCs with good quality for clinical application, and criteria need be established to evaluate the safety and efficacy of hPSC-MSCs before clinical
application. In addition, many issues or challenges with hPSC-MSCs also need to be addressed.

REFERENCES

1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multipotential adult human mesenchymal stem cells. Science 1999; 284: 149-150 [PMID: 10102814 DOI: 10.1126/science.284.5411.143]

2. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007; 25: 750-760 [PMID: 17095706 DOI: 10.1634/stemcells.2006-0394]

3. Poutous I, Jones E, Tzioupi C, McGonagle D, Giammoudis PV. Growing bone and cartilage. The role of mesenchymal stem cells. J Bone Joint Surg Br 2006; 88: 421-426 [PMID: 16567773 DOI: 10.1302/0301-620X.88A16.2006-0394]

4. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3: 393-403 [PMID: 5520303 DOI: 10.1111/j.1356-281X.1970.tb00347.x]

5. Friedenstein AJ, Deriglasova UF, Kalugina NN, Panasuk AF, Rudakova SF, Lurié EA, Ruadkow IA. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83-92 [PMID: 4455512]

6. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6: 230-247 [PMID: 5654088]

7. Friedenstein AJ, Piagetzy-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morph 1966; 16: 381-390 [PMID: 5352610]

8. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-650 [PMID: 18700029 DOI: 10.1002/jor.1100090504]

9. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPSC cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27: 275-280 [PMID: 19252848 DOI: 10.1038/nbt.1529]

10. Menendez L, Kulik MJ, Page AT, Park SS, Lauderdale JD, Cunningham ML, Dalton S. Directed differentiation of human pluripotent stem cells to neuronal stem cells. Nat Protoc 2013; 8: 203-212 [PMID: 23288230 DOI: 10.1038/nprot.2012.156]

11. Menendez L, Yaktievych TA, Antin PB, Dalton S. Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A 2011; 108: 19240-19245 [PMID: 22084120 DOI: 10.1073/pnas.1113746108]

12. Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 2013; 3: 1140-1152 [PMID: 23583175 DOI: 10.1016/j.celrep.2013.03.025]

13. Milet C, Monsoro-Burq AH. Embryonic stem cell strategies to explore neural crest development in human embryos. Dev Biol 2012; 366: 96-99 [PMID: 22306197 DOI: 10.1016/j.ydbio.2012.01.016]

14. Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, Matsumoto Y, Yamamoto T, Umeda K, Heike T, Okumura N, Koizumi N, Sato T, Nakahata T, Saito M, Otsuka T, Kinoshita S, Ueno M, Ikeya M, Toguchida J. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 2014; 9: e112291 [PMID: 25464501 DOI: 10.1371/journal.pone.0112291]

15. Morikawa S, Mahuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, Shimamura S, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 2009; 379: 1114-1119 [PMID: 19161980 DOI: 10.1016/j.bbrc.2009.01.031]

16. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 2007; 129: 1377-1388 [PMID: 17604725 DOI: 10.1016/j.cell.2007.04.028]

17. Liu TM, Yildirim ED, Li P, Fang HT, Denslin V, Kumar V, Loh YH, Lee EH, Cool SM, Teh BT, Hui JH, Lim B, Shyh-Chang N. Ascorbate and Iron Are Required for the Specification and Long-Term Self-Renewal of Human Skeletal Mesenchymal Stromal Cells. Stem Cell Reports 2020; 14: 210-225 [PMID: 32004493 DOI: 10.1016/j.stemcr.2020.01.002]

18. Sakurai H, Era T, Jakt LM, Okada M, Nakai S, Nishikawa S. In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 2006; 24: 575-586 [PMID: 16363996 DOI: 10.1634/stemcells.2005-0256]

19. Umeda K, Zhao J, Simmons P, Stanley E, Elefanty A, Nakayama N. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2012; 2: 455 [PMID: 22701159 DOI: 10.1038/srep00455]

20. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9: 12 [PMID: 21569606 DOI: 10.1186/1478-811X-9-12]
Liu TM. Application of hPSC-MSCs in regenerative medicine

21 Wang X, Lazorchak AS, Song L, Li E, Zhang Z, Jiang B, Xu RH. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage. *Stem Cells* 2016; 34: 380-391 [PMID: 26523849 DOI: 10.1002/stem.2242]

22 Li E, Zhang Z, Jiang B, Yan L, Park JW, Xu RH. Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in a Complete Serum-free Condition. *Int J Biol Sci* 2018; 14: 1901-1909 [PMID: 30443192 DOI: 10.7150/ijbs.25306]

23 Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. *PLoS Med* 2005; 2: e161 [PMID: 15971941 DOI: 10.1371/journal.pmed.0020161]

24 Trivedi P, Hemati P. Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. *Exp Hematol* 2007; 35: 146-154 [PMID: 17198833 DOI: 10.1016/j.exphem.2006.09.003]

25 Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. *Cell Stem Cell* 2010; 7: 718-729 [PMID: 21125656 DOI: 10.1016/j.stem.2010.11.011]

26 Giuliani M, Oudhrihi N, Noman ZM, Vernecyet A, Chouaib S, Azzarone B, Durrbach A, Bennaceur-Griscelli A. Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. *Blood* 2011; 118: 3254-3262 [PMID: 21803852 DOI: 10.1182/blood-2010-12-325524]

27 Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS, Lindahl A, Hyllner J, Strehl R. Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. *Stem Cell Res* 2009; 3: 39-50 [PMID: 19515562 DOI: 10.1016/j.scr.2009.05.002]

28 Villa-Braz L, Brown SE, Liu Y, Ross AM, Lahann J, Parent JM, Krebsbach PH. Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. *Stem Cells* 2012; 30: 1174-1181 [PMID: 22415987 DOI: 10.1002/stem.1084]

29 Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT. One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. *PLoS One* 2012; 7: e33225 [PMID: 22457746 DOI: 10.1371/journal.pone.0033225]

30 Olivier EN, Rybicki AC, Bouhassira EE. Differentiation of human embryonic stem cells into bipotential mesenchymal stem cells. *Stem Cells* 2006; 24: 1914-1922 [PMID: 16644919 DOI: 10.1634/stemcells.2005-0648]

31 Chen YS, Pelekanos RA, Ellis RL, Horne R, Wolvetang EJ, Fisk NM. Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells. *Stem Cells Transl Med* 2012; 1: 83-95 [PMID: 23197758 DOI: 10.5966/sgtm.2011-0022]

32 Brown SE, Tong W, Krebsbach PH. The derivation of mesenchymal stem cells from human embryonic stem cells. *Cells Tissues Organs* 2009; 189: 256-260 [PMID: 18728355 DOI: 10.1159/000151746]

33 Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z. Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. *Stem Cell Transl Med* 2016; 5: 1447-1460 [PMID: 27400789 DOI: 10.5966/stemcell.2015-0311]

34 Lian Q, Lye E, Yuan Y, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK. Derivation of clinically compliant MScs from CD105+, CD24-differentiated human ESCs. *Stem Cells* 2007; 25: 425-436 [PMID: 17053208 DOI: 10.1634/stemcells.2006-0420]

35 Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. *Circulation* 2010; 121: 1113-1123 [PMID: 20176987 DOI: 10.1161/CIRCULATIONAHA.109.898312]

36 Zhang J, Chan YC, Ho JC, Siu CW, Lian Q, Tse HF. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-a-go-go-1 (hEAG1) potassium channel. *Am J Physiol Cell Physiol* 2012; 303: C115-C125 [PMID: 22357737 DOI: 10.1152/ajpcell.00326.2011]

37 Lazzani C, Neiman G, Garate X, Questa M, Solari C, Fernandez Espinosa D, García M, Errecalde AL, Gubernau A, Scassa ME, Sevlever GE, Romorini L, Miriuca SG. A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. *Stem Cell Res Ther* 2015; 6: 6 [PMID: 25582222 DOI: 10.1186/sctr540]

38 Frobel J, Hemeda H, Lenz M, Abagana G, Jousset S, Denecke B, Sarić T, Zenke M, Wagner W. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. *Stem Cell Reports* 2014; 3: 411-422 [PMID: 25241740 DOI: 10.1016/j.stemcr.2014.07.003]

39 Yen ML, Hou CH, Peng KY, Tseng PC, Jiang SS, Shun CT, Chen YC, Kuo ML. Efficient derivation and concise gene expression profiling of human embryonic stem cell-derived mesenchymal progenitors (EMPs). *Cell Transplant* 2011; 20: 1529-1545 [PMID: 21396155 DOI: 10.3727/096368910X564067]

40 Kimbrel EA, Koursis NA, Yavanian GJ, Chu J, Qin Y, Yan L, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. *Stem Cells Dev* 2014; 23: 1611-1624 [PMID: 24650034 DOI: 10.1089/scd.2013.0554]

41 Yan L, Jiang B, Niu Y, Wang H, Li E, Yan Y, Sun H, Duan Y, Chang S, Chen G, Ji W, Xu RH, Si
W. Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discov 2018; 4: 28 [PMID: 30131877 DOI: 10.1038/s41420-018-0091-0]

Brown PT, Squire MW, Li WJ. Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. J Tissue Res 2014; 358: 149-164 [PMID: 25127918 DOI: 10.1007/s00414-014-1926-5]

Sfougatakis I, Varela I, Stefanaki K, Karagiannidou A, Roubelakis MG, Kalodimou V, Papathanasious I, Traeger-Synodinos I, Kitsiou-Tzeli S, Kanavakis E, Kitra V, Tsezou A, Tzetzis M, Gouassitis E. Proliferative and chondrogenic potential of mesenchymal stromal cells from pluriplotent and bone marrow cells. Histol Histopathol 2020; 35: 1415-1426 [PMID: 32959885 DOI: 10.14670/HH-18-259]

Vasko T, Frobel J, Lubberich R, Goecke TW, Wagner W. iPSC-derived mesenchymal stromal cells are less supportive than primary MSCs for co-culture of hematopoietic progenitor cells. J Hematol Oncol 2016; 9: 43 [PMID: 27098268 DOI: 10.1186/s13045-016-0273-2]

Park J, Lee Y, Shin J, Lee HJ, Son YB, Park BW, Kim D, Rho GJ, Kang E. Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluriplotent stem cells. BMB Rep 2019; 52: 689-694 [PMID: 31234953 DOI: 10.4838/BMBRep.2019.52.12.045]

Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y, Chiu SM, Liang X, Gao F, Chan CW, Tse HF, Shi J, Fu QL, Lian Q. Insensitivity of Human iP Cells Derived Mesenchymal Stem Cells to Interferon-γ induced HLA Expression Potentiates Repair Efficiency of Hind Limb Ischemia in Immune Humanized NOD SCID Gamma Mice. Stem Cells 2015; 33: 3452-3467 [PMID: 26175298 DOI: 10.1002/stem.2094]

Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL. Human embryonic stem cell-derived mesoderm-like epithilum transitions to mesenchymal progenitor cells. Tissue Eng Part A 2009; 15: 1897-1907 [PMID: 19196144 DOI: 10.1089/tend.tea.2008.0351]

Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, Bünger C, Bolund L, Luo Y. Mesenchymal stem cells derived from human induced pluriplotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther 2015; 6: 144 [PMID: 26282538 DOI: 10.1186/s13287-015-0137-7]

Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 2011; 8: 31-45 [PMID: 21185252 DOI: 10.1016/j.stem.2010.12.002]

Lo Cicero A, Jaskowiak AL, Egesipe AL, Tournois J, Brinon B, Pitez PR, Ferreira L, de Sandre-Giovannoli A, Levy N, Nissan X. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells. Sci Rep 2016; 6: 34798 [PMID: 27739443 DOI: 10.1038/rep34798]

Matsumoto Y, Hayashi Y, Schlieve CR, Ikeya M, Kim H, Nguyen TD, Sami S, Baba S, Barruet E, Nasu A, Asaka I, Otsuka T, Yamanaka S, Conklin BR, Toguchida J, Hsiao EC. Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet J Rare Dis 2013; 8: 190 [PMID: 24321451 DOI: 10.1186/1750-1172-8-190]

Matsumoto Y, Ikeya M, Hino K, Horigome K, Fukuta M, Watanabe M, Nagata S, Yamamoto T, Otsuka T, Toguchida J. New Protocol to Optimize iPSC Cells for Genome Analysis of Fibrodysplasia Ossificans Progressiva. Stem Cells 2015; 33: 1730-1742 [PMID: 25773749 DOI: 10.1002/stem.1981]

Nakajima T, Shihata M, Nishio M, Nagata S, Alev C, Sakurai H, Toguchida J, Ikeya M. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 2018; 145 [PMID: 30139810 DOI: 10.1242/dev.165431]

Hino K, Horigome K, Nishio M, Komura S, Nagata S, Zhao C, Jin Y, Kawakami K, Yamada Y, Ohta A, Toguchida J, Ikeya M. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest 2017; 127: 3339-3352 [PMID: 28758906 DOI: 10.1172/JCI93521]

Zou L, Luo Y, Chen M, Wang G, Ding M, Petersen CC, Kang R, Dagnaeus-Hansen F, Zeng Y, Lv N, Ma Q, Le DQ, Besenbacher F, Bolund L, Jensen TG, Kjems J, Pu WT, Bünger C. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep 2013; 3: 2243 [PMID: 23873182 DOI: 10.1038/rep02243]

Tang M, Chen W, Liu J, Weir MD, Cheng L, Xu HH. Human induced pluriplotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Eng Part A 2014; 20: 1295-1305 [PMID: 24279686 DOI: 10.1089/tend.TEA.2013.0211]

Zhou M, Xi J, Cheng Y, Sun D, Shu P, Chi S, Tian S, Ye S. Reprogrammed mesenchymal stem cells derived from iPSCs promote bone repair in steroid-associated osteonecrosis of the femoral head. Stem Cell Res Ther 2021; 12: 175 [PMID: 33712030 DOI: 10.1186/s13287-021-02249-1]

Ramaraju H, Kohn DH. Cell and Material-Specific Phage Display Peptides Increase iP-MSC Mediated Bone and Vasculature Formation In Vivo. Adv Healthc Mater 2019; 8: e1801356 [PMID: 30835955 DOI: 10.1002/adhm.201801356]

TheinHlan W, Liu J, Tang M, Chen W, Cheng L, Xu HH. Induced pluriplotent stem cell-derived mesenchymal stem cell seeding on biofunctionalized calcium phosphate cements. Bone Res 2013; 4: 371-384 [PMID: 24839581 DOI: 10.4248/BR201340008]
60 Wang P, Ma T, Guo D, Hu K, Shu Y, Xu HHK, Schneider A. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. *J Tissue Eng Regen Med* 2018; 12: 437-446 [PMID: 28494141 DOI: 10.1002/term.2470]

61 Warnecke A, Prenzlter N, Harre J, Köhl U, Gärtnert L, Lenarz T, Laner-Plamberger S, Wietzorrek G, Staecker H, Lassacher T, Hollerweiger J, Gimona M, Rohde E. First-in-human intracocular application of human stromal cell-derived extracellular vesicles. *J Extracell Vesicles* 2021; 10: e12094 [PMID: 34136510 DOI: 10.1002/jex2.12094]

62 Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. *Front Bioeng Biotechnol* 2021; 9: 652970 [PMID: 34095095 DOI: 10.3389/fbioe.2021.652970]

63 Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, Li Q, Zhao B, Xie Z, Wang Y. Exosomes/tricilamic phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. *Stem Cell Res Ther* 2016; 7: 136 [PMID: 27650895 DOI: 10.1186/s13287-016-0391-3]

64 Liu X, Li Q, Niu X, Hu B, Chen S, Song W, Ding J, Zhang C, Wang Y, Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. *Int J Biol Sci* 2017; 13: 232-244 [PMID: 28255275 DOI: 10.7150/ijbs.16951]

65 Li J, Lin Q, Lin Y, Lai R, Zhang W. Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. *Mol Med Rep* 2021; 23: [PMID: 33655330 DOI: 10.3892/mmr.2021.11871]

66 Liu J, Chen W, Zhao Z, Xu JH. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. *Biomaterials* 2013; 34: 7862-7872 [PMID: 23891395 DOI: 10.1016/j.biomaterials.2013.07.029]

67 Liu J, Chen W, Zhao Z, Xu HHK. Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement. *Acta Biomater* 2014; 10: 5128-5138 [PMID: 25220281 DOI: 10.1016/j.actbio.2014.08.016]

68 Hynes K, Menicainin D, Han J, Marino V, Mrozik K, Gronthos S, Bartold PM. Mesenchymal stem cells from iPSCs facilitate periodontal regeneration. *J Dent Res* 2013; 92: 833-839 [PMID: 23884555 DOI: 10.1177/0022034513498258]

69 Guzzo RM, Gibson J, Xu RH, Lee FY, Drissi H. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. *J Cell Biochem* 2013; 114: 480-490 [PMID: 22961870 DOI: 10.1002/jcb.24384]

70 Liu TM, Guo XM, Tan HS, Hui JH, Lim B, Lee EH. Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. *Arthritis Rheum* 2011; 63: 2711-2720 [PMID: 21547890 DOI: 10.1002/art.30430]

71 Xing D, Wang K, Wu J, Zhao Y, Liu W, Li JI, Gao T, Yan D, Wang L, Hao J, Lin J. Clinical-Grade Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Ameliorate the Progression of Osteoarthritis in a Rat Model. *Molecules* 2021; 26: [PMID: 33498966 DOI: 10.3390/molecules26030604]

72 Gonzalo-Gil E, Pérez-Lorenzo MJ, Galindo M, Díaz de la Guardia R, López-Millán B, Bueno C, Menéndez P, Pablos JL, Criado G. Human embryonic stem cell-derived mesenchymal stromal cells ameliorate collagen-induced arthritis by inducing host-derived indoleamine 2,3 dioxygenase. *Arthritis Res Ther* 2016; 18: 77 [PMID: 27036118 DOI: 10.1186/s13075-016-0979-0]

73 Yang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H, Liu H. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. *Stem Cell Res Ther* 2017; 8: 189 [PMID: 28807034 DOI: 10.1186/s13287-017-0632-0]

74 Michaudolos C, Li X, Mak JCW, Bhavsar PK. Study of Mesenchymal Stem Cell-Mediated Mitochondrial Transfer in In Vitro Models of Oxidant-Mediated Airway Epithelial and Smooth Muscle Cell Injury. *Methods Mol Biol* 2021; 2269: 93-105 [PMID: 33686744 DOI: 10.1007/978-1-0716-1225-5_7]

75 Li X, Michaudolos C, Zhang Y, Wiegman CH, Adcock IM, Liao Q, Mak JCW, Bhavsar PK, Chung KF. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. *J Allergy Clin Immunol* 2018; 141: 1634-1645.e5 [PMID: 28911970 DOI: 10.1016/j.jaci.2017.08.017]

76 Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogenic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. *Cell Transplant* 2020; 29: 963689720954140 [PMID: 33050736 DOI: 10.1177/0963689720954140]

77 Wang SY, Fan XL, Yu QN, Deng MX, Sun YQ, Gao WX, Li CL, Shi JB, Fu QL. The IncRNAs involved in mouse airway allergic inflammation following induced pluripotent stem cell-mesenchymal stem cell treatment. *Stem Cell Res Ther* 2017; 8: 2 [PMID: 28057064 DOI: 10.1186/s13287-016-0456-3]

78 Li X, Zhang Y, Liang Y, Cui Y, Yeung SC, Ip MS, Tse HF, Lian Q, Mak JC. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced
Model of Alzheimer's Disease. Intra-Arterial Administration of Embryonic Stem Cell Derived-Mesenchymal Stem Cells in Animal

1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusion

References

1. Zhang H, Fan XL, Fang SB, Lin YD, Wen W, Fu QL. Human pluripotent stem cell-derived mesenchymal stem cells prevent chronic allergic airway inflammation via TGF-β1-Smad2/3 signaling pathway in mice. Mol Immunol 2019; 109: 151-157 [PMID: 30832246 DOI: 10.1016/j.molimm.2019.02.017]

2. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, Ip MS, Tse HF, Mak JC, Lian Q. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to avascular epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol 2014; 51: 455-465 [PMID: 24738760 DOI: 10.1165/rcmb.2013-0529OC]

3. Thiel A, Yavarian G, Nastke MD, Morales P, Kouris NA, Kimbrel EA, Lanza R. Human embryonic stem cell-derived mesenchymal cells preserve kidney function and extend lifespan in NZW/F1 mouse model of lupus nephritis. Sci Rep 2015; 5: 17685 [PMID: 26628350 DOI: 10.1038/srep17685]

4. Wu HJ, Yiu WH, Wong DWL, Li RX, Chan LYY, Leung JCK, Zhang Y, Lian Q, Lai KN, Tse HF, Tang SCW. Human induced pluripotent stem cell-derived mesenchymal stem cells prevent adriamycin nephropathy in mice. Oncotarget 2017; 8: 103640-103656 [PMID: 29262590 DOI: 10.18632/oncotarget.21760]

5. Li B, Leung JCK, Chan LYY, Yiu WH, Li Y, Lok SWY, Liu WH, Chan KW, Tse HF, Lai KN, Tang SCW. Amelioration of Endoplasmic Reticulum Stress by Mesenchymal Stem Cells via Hepatocyte Growth Factor/c-Met Signaling in Obesity-Associated Kidney Injury. Cells Transf Sci 2019; 8: 898-910 [PMID: 31054183 DOI: 10.1002/cets.18-0265]

6. Liu L, Wu Y, Wang P, Shi M, Wang J, Ma H, Sun D. PSC-MSC-Derived Exosomes Protect against Kidney Fibrosis In Vivo and In Vitro through the SIRT6/Catenin Signaling Pathway. Int J Stem Cells 2021; 14: 310-319 [PMID: 34158415 DOI: 10.15283/ijsc20184]

7. Sheu JJ, Sung PH, Wallace CG, Yang CC, Chen KH, Shao PL, Chu YC, Huang CR, Chen YL, Ko SF, Lee MS, Yip HK. Intravenous administration of iPS-MSC-secreted TGF-b and effectively preserved residual renal function in CKD rat. J Cell Mol Med 2020; 24: 3593-3610 [PMID: 32061051 DOI: 10.1111/jcmm.15050]

8. Ko SF, Chen YT, Wallace CG, Chen KH, Sung PH, Cheng BC, Huang TH, Chen YL, Li YC, Chang HW, Lee MS, Yang CC, Yip HK. Inducible pluripotent stem cell-derived mesenchymal stem cell therapy effectively protected kidney from acute ischemia-reperfusion injury. Am J Transl Res 2018; 10: 3053-3067 [PMID: 30416650]

9. Varzideh F, Mahmoudi E, Pahlavan S. Coculture with noncardiac cells promoted maturation of human stem cell-derived cardiomyocyte microtissues. J Cell Biochem 2019; 120: 16681-16691 [PMID: 31090105 DOI: 10.1002/jcb.28926]

10. Yu Y, Wang D, Li H, Fan J, Liu Y, Zhao X, Wu J, Jing X. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation. Brain Res 2019; 1720: 146293 [PMID: 31028184 DOI: 10.1016/j.brainres.2019.06.012]

11. Liang Y, Li X, Zhang Y, Yeung SC, Zhen Z, Ip MSM, Tse HF, Lian Q, Mak JCW. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction. Front Pharmacol 2017; 8: 501 [PMID: 28804458 DOI: 10.3389/fphar.2017.00501]

12. Zhang Y, Liang X, Liao S, Wang W, Wang J, Li X, Ding Y, Liang Y, Gao F, Yang M, Fu Q, Xu A, Chai YH, He J, Tse HF, Lian Q. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy. Sci Rep 2015; 5: 11235 [PMID: 26057572 DOI: 10.1038/srep11235]

13. Feng R, Ullah M, Chen K, Ali Q, Lin Y, Sun Z. Stem cell-derived extracellular vesicles mitigate ageing-associated arterial stiffness and hypertension. J Extracell Vesicles 2020; 9: 1783869 [PMID: 32939234 DOI: 10.1002/jexv.28926]

14. Zhang J, Ho JC, Chan YC, Lian Q, Siu CW, Tse HF. Overexpression of myocardin induces partial transdifferentiation of human-induced pluripotent stem cell-derived mesenchymal stem cells into cardiomycocytes. Physiol Rep 2014; 2: e00237 [PMID: 24749096 DOI: 10.1002/ptr.2237]

15. Asgari Taee A, Nasoshi S, Hassanzadeh G, Kadivar M, Dargahi L. Farnhamifar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 2021; 140: 111709 [PMID: 34020250 DOI: 10.1016/j.biopha.2021.111709]

16. Lee EJ, Xu L, Kim GH, Kang SK, Lee SW, Park SH, Kim S, Choi TH, Kim HS. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials 2012; 33: 7039-7046 [PMID: 22795857 DOI: 10.1016/j.biomaterials.2012.06.047]

17. Peng KY, Lee YW, Hsu PJ, Wang HH, Wang Y, Liou JY, Hsu SH, Wu KK, Yen BL. Human pluripotent stem cell (PSC)-derived mesenchymal stem cells (MSCs) show potent neurogenic capacity which is enhanced by cytoskeletal rearrangement. Oncotarget 2016; 7: 43949-43959 [PMID: 27304057 DOI: 10.18632/oncotarget.9947]

18. Kim DY, Choi SH, Lee JS, Kim HJ, Kim HN, Lee JE, Shin JY, Lee PH. Feasibility and Efficacy of Intra-Arterial Administration of Embryonic Stem Cell Derived-Mesenchymal Stem Cells in Animal Model of Alzheimer’s Disease. J Alzheimers Dis 2020; 76: 1281-1296 [PMID: 32597802 DOI: 10.3233/JAD-200141]
97 Chen KH, Lin KC, Wallace CG, Li YC, Shao PL, Chiang JY, Sung PH, Yip HK. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am J Transl Res 2019; 11: 6232-6248 [PMID: 31632590]

98 Hawkins KE, Corelli M, Dowding K, Rasztoki AM, Vlahova F, Hau KL, Junan J, Peebles D, Gressens P, Hagger H, de Coppi P, Hristova M, Guillot PV. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain. Stem Cells Transl Med 2018; 7: 439-449 [PMID: 29489062 DOI: 10.1002/strm.17-0260]

99 Yun YI, Park SY, Lee HJ, Ko JH, Kim MK, Wee WR, Reger RL, Gregory CA, Choi H, Fulcher SF, Prokop DJ, Oh JY. Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury. Cytotherapy 2017; 19: 28-35 [PMID: 27840134 DOI: 10.1016/j.jcyt.2016.10.007]

100 Jiang D, Xiong G, Feng H, Zhang Z, Chen P, Yan B, Chen L, Gandhervin K, Ma C, Li C, Han S, Zhang Y, Liao C, Lee TL, Tse HF, Fu QL, Chiu K, Lian Q. Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics 2019; 9: 2395-2410 [PMID: 31149036 DOI: 10.7150/thno.29422]

101 Wang X, Kimbrel EA, Iijichi K, Paul D, Lazorchak AS, Chu J, Kouris NA, Yavanian GJ, Lu SJ, Pachter JS, Crocker SJ, Lanza R, Xu RH. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports 2014; 3: 115-130 [PMID: 2568126 DOI: 10.1016/j.stem.2014.04.020]

102 Yu Y, Wang D, Li H, Liu Y, Xiang Z, Wu J, Jia J. iPSCM exclusion analysis in RAW 264.7 cells following oxygen and glucose deprivation reveals a distinct function for cardiopulmonary resuscitation. Mol Med Rep 2018; 17: 8212-8220 [PMID: 29656608 DOI: 10.3892/mmr.2018.8864]

103 Qin Y, Chan AM, Chang YL, Matynia A, Kouris NA, Kimbrel EA, Ashki N, Parikh S, Gorin MB, Lanza R, Levinson RD, Gordon LK. Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Decrease the Development of Severe Experimental Autoimmune Uveitis in B10.RIII Mice. Ocul Immunol Inflamm 2018; 26: 1228-1236 [PMID: 28914568 DOI: 10.1080/09273947.2017.1343356]

104 Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, Liu KJ, Yen BL. Differentiation of Mesenchymal Stem Cells from Human Induced Pluripotent Stem Cells Results in Downregulation of c-Myec and DNA Replication Pathways with Immunomodulation Toward CD4 and CD8 Cells. Stem Cells 2018; 36: 903-914 [PMID: 29396902 DOI: 10.1002/stem.2795]

105 Ng J, Hynes K, White G, Sivanathan KN, Vandyke K, Bartold P, Gromthos S. Immunomodulatory Properties of Induced Pluripotent Stem Cell-Derived Mesenchymal Cells. J Cell Biochem 2016; 117: 2844-2853 [PMID: 27167140 DOI: 10.1002/jcb.25596]

106 Mizutawa S, Ikeuchi R, Aoyama T, Ando M, Takeuchi H, Yurie H, Oda H, Noguchi T, Ohta S, Zhao C, Ikeda M, Matsuda S. Induced pluripotent stem cell-derived mesenchymal stem cells prolong hind limb survival in a rat vascularized composite allotransplantation model. Microsurgery 2019; 39: 737-747 [PMID: 31471984 DOI: 10.1002/micr.30507]

107 Sánchez L, Gutierrez-Aranda I, Ligero G, Rubio R, Muñoz-López M, García-Pérez JL, Ramos V, Real PJ, Bueno C, Rodríguez R, Delgado M, Menendez P. Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells 2011; 29: 251-262 [PMID: 21732483 DOI: 10.1002/stem.569]

108 Fu QL, Chow YY, Sun SJ, Zeng QX, Li HB, Shi JB, Sun YQ, Wen W, Tse HF, Lian Q, Xu G. Immunomodulatory Properties of Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells. Cell Death Dis 2019; 10: 718 [PMID: 31558705 DOI: 10.1038/s41419-019-1957-7]

109 Li J, Leng Y, Zhao B, Guo C, Du FF, Jin N, Lian QZ, Xu SY, Yan GL, Xia JJ, Zhuang GH, Fu QL, Qi ZQ. Human iPSC-MSC-Derived Xenografts Modulate Immune Responses by Inhibiting the Cleavage of Caspases. Stem Cells 2017; 35: 1719-1732 [PMID: 28520232 DOI: 10.1002/stem.2638]

110 Yao Y, Fan XL, Jiang D, Zhang Y, Li X, Xu ZB, Fang SB, Chiu S, Tse HF, Lian Q, Fu QL. Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. Stem Cell Reports 2018; 11: 1120-1135 [PMID: 30344008 DOI: 10.1016/j.stemcr.2018.09.012]

111 Yang H, Feng R, Fu Q, Xu S, Hao X, Qiu Y, Feng T, Zeng Z, Chen M, Zhang S. Human induced pluripotent stem cell-derived mesenchymal stem cells promote healing via TNF-a-stimulated gene-6 in inflammatory bowel disease models. Cell Death Dis 2019; 10: 718 [PMID: 31558705 DOI: 10.1038/s41419-019-1957-7]

112 Hai B, Shigemoto-Kuroda T, Zhao Q, Lee RH, Liu F. Inhibitory Effects of iPSC-MSCs and Their Extracellular Vesicles on the Onset of Sialadenitis in a Mouse Model of Sjögren's Syndrome. Stem Cells Int 2018; 2018: 2092315 [PMID: 29736173 DOI: 10.1155/2018/2092315]

113 Ozay EI, Vijayaraghavan J, Gonzalez-Perez G, Shanthalingam S, Sherman HL, Garrigan DT, Jr., Chandran K, Torres JA, Osborne BA, Tew GN, Slukvin, II, Macdonald RA, Kelly K, Minter LM. Cymerus™ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graff-vi-host disease. Stem Cell Res 2019; 35: 101401 [PMID: 30738321 DOI: 10.1016/j.scr.2019.101401]

10.3233/JAD-200026
Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes.

Banas A, Gratch YS, Iqbal F, Librach CL. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells. J Vis Exp 2017 [PMID: 28627682 DOI: 10.3892/jvisexp.101246]

Szaraz P, Prockop DJ. MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proc Natl Acad Sci U S A 2015; 112: 530-535 [PMID: 25548183 DOI: 10.1073/pnas.1420081112]

Zhao Q, Hai B, Zhang X, Xu J, Koehler B, Liu F. Biomimetic nanovesicles made from iPSC cell-derived mesenchymal stem cells for targeted therapy of triple-negative breast cancer. Nanomedicine 2020; 24: 102146 [PMID: 31884039 DOI: 10.1016/j.nano.2019.102146]

Zhao Q, Hai B, Kelly J, Wu S, Liu F. Extracellular vesicle mimics made from iPSC cell-derived mesenchymal stem cells improve the treatment of metastatic prostate cancer. Stem Cell Res Ther 2021; 12: 29 [PMID: 33413659 DOI: 10.1186/s13287-020-02097-5]

Zhao Q, Gregory CA, Lee RH, Reger RL, Qin L, Hai B, Park MS, Yoon N, Clough B, McNeill E, Prockop DJ, Liu F. MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proc Natl Acad Sci U S A 2015; 112: 530-535 [PMID: 25548183 DOI: 10.1073/pnas.1420081112]

Zhang J, Guan J, Niu X, Hu G, Guo S, Li X, Qie Z, Zhang C, Wang Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13: 49 [PMID: 25638205 DOI: 10.1186/s12967-015-0417-0]

Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CQ, Wang Y, Deng ZF. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 2015; 6: 10 [PMID: 26268554 DOI: 10.1186/s13287-014-0456-4]

Havasi P, Nabioni M, Soleimani M, Bakhshandeh B, Parivar K. Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Mol Biol Rep 2013; 40: 3023-3031 [PMID: 23287378 DOI: 10.1007/s11033-012-2576-3]

Bahrehbar K, Rezaazadeh Valojerdi M, Esfandiari F, Fathi R, Hassani SN, Baharvand H. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure. World J Stem Cells 2020; 12: 857-878 [PMID: 32952863 DOI: 10.4245/wjst.v12.i8.857]

Yoon SY, Yoon JA, Park M, Shin EY, Jung S, Lee JE, Eum JH, Song H, Lee DR, Lee WS, Lyu SW. Recovery of ovarian function by human embryonic stem cell-derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice. Stem Cell Res Ther 2020; 11: 255 [PMID: 32586410 DOI: 10.1186/s13287-020-01769-6]

Lotfinia M, Kadivar M, Piryaeei A, Pournasr B, Sardari S, Sodeifi N, Sayahpour FA, Baharvand H. Effect of Secreted Molecules of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells on Acute Hepatic Failure Model. Stem Cells Dev 2016; 25: 1898-1908 [PMID: 27676103 DOI: 10.1089/scd.2016.0244]

Mardpour S, Hassani SN, Mardpour S, Sayahpour F, Vosough M, Ai J, Aghdami N, Hamidieh AA, Baharvand H. Extracellular vesicles derived from human embryonic stem-cell-MSCs ameliorate cirrhosis in thioacetamide-induced chronic liver injury. J Cell Physiol 2018; 233: 9330-9344 [PMID: 29266258 DOI: 10.1002/jcp.26413]

Eto S, Goto M, Soga M, Kaneko Y, Uehara Y, Mizuta H, Era T. Mesenchymal stem cells derived from human iPSCs via mesoderm and neuroepithelium have different features and therapeutic potentials. PLoS One 2018; 13: e0200790 [PMID: 30044827 DOI: 10.1371/journal.pone.0200790]

Lian Q, Zhang Y, Liang X, Guo F, Tse HF. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells. Methods Mol Biol 2016; 1416: 289-298 [PMID: 27266769 DOI: 10.1007/978-1-4939-3384-0_17]

Lai WT, Krishnappa V, Phinney DG. Fibroblast growth factor 2 (Fgf2) inhibits differentiation of mesenchymal stem cells by inducing Twist2 and Srya, blocking extracellular regulated kinase activation, and altering Fgf receptor expression levels. Stem Cells 2011; 29: 1102-1111 [PMID: 21608080 DOI: 10.1002/stem.661]

Moslem M, Eggeschwerler R, Wichmann C, Buhmann R, Cantz T, Henschler R. Kindlin-2 Modulates the Survival, Differentiation, and Migration of Induced Pluripotent Cell-Derived Mesenchymal Stromal Cells. Stem Cells Int 2017; 2017: 7316354 [PMID: 28163724 DOI: 10.1155/2017/7316354]

Szaraz P, Gratch YS, Iqbal F, Librach CL. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells. J Vis Exp 2017 [PMID: 28829419 DOI: 10.3791/55757]

Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007; 46: 219-228 [PMID: 17596885 DOI: 10.1002/hep.21704]
133 Takeda YS, Xu Q. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. *PLoS One* 2015; 10: e0135111 [PMID: 26248331 DOI: 10.1371/journal.pone.0135111]

134 Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. *World J Gastroenterol* 2004; 10: 3016-3020 [PMID: 15378785 DOI: 10.3748/wjg.v10.i20.3016]
