Journal Pre-proof

Acute phase response and clinical manifestation in outbreaks of interdigital phlegmon in dairy herds

Miia Kontturi, Reijo Junni, Minna Kujala-Wirth, Erja Malinen, Eija Seuna, Sinikka Pelkonen, Timo Soveri, Heli Simojoki

PII: S0147-9571(19)30172-9
DOI: https://doi.org/10.1016/j.cimid.2019.101375
Reference: CIMID 101375
To appear in: Comparative Immunology, Microbiology and Infectious Diseases

Received Date: 19 June 2019
Revised Date: 13 October 2019
Accepted Date: 23 October 2019

Please cite this article as: Kontturi M, Junni R, Kujala-Wirth M, Malinen E, Seuna E, Pelkonen S, Soveri T, Simojoki H, Acute phase response and clinical manifestation in outbreaks of interdigital phlegmon in dairy herds, Comparative Immunology, Microbiology and Infectious Diseases (2019), doi: https://doi.org/10.1016/j.cimid.2019.101375

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.
ACUTE PHASE RESPONSE OF INTERDIGITAL PHLEGMON

Acute phase response and clinical manifestation in outbreaks of interdigital phlegmon in dairy herds

Mii a Kontturi a, Reijo Junni a, Minna Kujala-Wirth a, Erja Malinen b, Eija Seuna b, Sinikka Pelkonen b, Timo Soveri a and Heli Simojoki a

a Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Finland

b Bacteriology and Pathology Unit, Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland

* Corresponding Author: m iia. kontturi@helsinki.fi

Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Finland

Reijo Junni reijo.junni@gmail.com

Minna Kujala-Wirth minna.kujala-wirth@helsinki.fi

Erja Malinen erja.malinen@welho.com

Eija Seuna eijaseuna@gmail.com

Sinikka Pelkonen sinikka.pelkonen@foodauthority.fi

Timo Soveri timo.soveri@helsinki.fi

Heli Simojoki heli.simojoki@helsinki.fi
Highlights:

- The acute phase response of interdigital phlegmon (IP) was distinct.
- The response was most apparent in herds of high morbidity in IP.
- Combination of *F. necrophorum* and *D. nodosus* affects the severity of IP.

Abstract

Several Finnish dairy herds have suffered from outbreaks of interdigital phlegmon (IP). In these new types of outbreaks, morbidity was high and clinical signs severe, resulting in substantial economic losses for affected farms. In our study, we visited 18 free stall dairy herds experiencing an outbreak of IP and 3 control herds without a similar outbreak. From a total of 203 sampled cows, 60 suffered from acute stage IP. We demonstrated that acute phase response of bovine IP was evident and therefore an appropriate analgesic should be administered in the treatment of affected animals. The response was most apparent in herds with high morbidity in IP and with a bacterial infection comprising *Fusobacterium necrophorum* and *Dichelobacter nodosus*, indicating that combination of these two bacterial species affect the severity of the disease.

Key words: interdigital phlegmon; foot rot; interdigital necrobacillosis; foul-in-the-foot; acute phase response; serum amyloid A; haptoglobin; albumin; infectious hoof disease

Abbreviations

Alb albumin, APP acute phase protein APR acute phase response, DD digital dermatitis, heel horn erosion (HHE), ID interdigital dermatitis, IP interdigital phlegmon, Hp haptoglobin, SAA serum amyloid A
1. Introduction

Several Finnish dairy herds have recently suffered from outbreaks of interdigital phlegmon (IP). The affected herds have been naïve – with no previous history of IP. It is also evident that an apparent trauma in the interdigital cleft was not detected prior to the cases of IP. In these outbreaks, morbidity of IP has usually been high and clinical signs severe, resulting in sizeable economic losses for affected herds [1]. Prior to these new type outbreaks, infectious hoof diseases were quite rare in Finland.

Most countries with a modern dairy industry have experience with infectious hoof diseases, of which digital dermatitis (DD) is currently considered the most problematic [2], [3]. However, cases of IP also appear regularly [4], [5] and there are a few earlier reports of outbreaks of IP [6], [7]. Typically, the clinical signs of IP are lameness, a symmetric swelling of the interdigital area and the bulbs of the heels, and a fetid odor. A fissure with swollen protruding edges can appear along the interdigital cleft. In severe cases, systemic signs, including fever, recumbency or anorexia appear [8], [9]. IP reduces milk yield [10] and can lead to early culling of affected cows [11].

Fusobacterium necrophorum is considered to be a major pathogen of IP [12], [13], [14], although in the disease process several other bacteria, including *Dichelobacter nodosus*, *Porphyromonas levii*, *Prevotella melaninogenica*, *Treponema* species and *Trueperella pyogenes* play a probable role [8], [13], [15], [16], [17]. In our recent study, we frequently detected both *F. necrophorum* and *D. nodosus* in IP, and *D. nodosus* was associated with higher morbidity [14].

Several review articles describe an acute phase response (APR) as an early systemic, non-specific response of the host to infection, inflammation or trauma, with the purpose of restoring normal body functions [18], [19], [20], [21], [22]. APR includes multiple metabolic, endocrinal and hematological changes, and it is often expressed by clinical signs – fever, anorexia, apathy and pain [18]. APR is induced by cytokines acting as messengers between the local sites of injury and leads to the hepatic
synthesis of acute phase proteins (APP) [19], [20], [21]. APPs are likely to participate directly in the protection of the host [20]. APPs are a measurable element of APR, and are classified as positive or negative, and according to the magnitude of their increase as minor, moderate or major [19], [20], [21].

Reports of APPs in hoof diseases and lameness have been published previously [23], [24], [25]. These studies mainly include detection of two major APPs in cattle: serum amyloid A (SAA) and haptoglobin (Hp). Also, some studies of albumin (Alb), a negative APP, exist [26]. However, studies that include cases of infectious hoof diseases and APR are scant[27], [28], [29]. Thus, we investigated the association between clinical signs and APR in IP, to evaluate the degree of inflammation in naturally occurring IP. Furthermore, we investigated the characteristics of these new type outbreaks of IP and tested our hypothesis that presence of D. nodosus alongside F. necrophorum affects the severity of IP.

2. Materials and methods

We carried out a research project on infectious hoof diseases in Finland in 2012–2015. As a part of the project we made a cross-sectional study, visiting several dairy herds affected by outbreaks of IP and control herds.

2.1. Study herds

The study herds, selection of sampled animals, and sampling are described in detail in our previous study [14]. One outbreak herd was excluded from the current study due to missing data and dissimilar barn construction; manure pack flooring in a non-insulated free stall. Only cows with complete blood sample analysis were included in the study.
We collected samples from 21 commercial free stall dairy herds. Eighteen herds suffered from an outbreak of IP (IP herd) and three herds had been free of IP for at least a decade. The criteria for visiting an outbreak of IP herd were; at least three cows affected in one week, and no previous cases of IP in the herd for at least ten years. The outbreak herds were further divided into two categories, herds with high morbidity in the first two months of the outbreak (morbidity ≥50%) and herds with moderate morbidity (9 – 33%).

The study herds were located in three large provinces in Finland: western (11 farms), eastern (7) and southern (3). The average herd size was 76 lactating cows (range 37 – 140, median 62) and the average milk yield of the herds was 9,207 kg (8,000 – 10,914 kg, median 9,219). All free stalls were constructed or extended at most seven years before the farm visit. Cows were milked twice a day in a milking parlor in 4 herds, whereas 16 herds were milked using an automatic milking system, and one herd had both. The alleys had slatted concrete floors in 10 barns, slatted floors with rubber in 3, solid with rubber in 7 and in 1 barn solid concrete. During summer, 4 herds had access to pasture, 2 herds access to an outdoors pen and of these 6 herds 2 had access outdoors during winter. A total or partial mixed ration was fed in 13 herds whereas in 8 herds concentrates and silage were fed separately.

During the farm visits we collected background data on barn construction and herd management. An additional checkup was made a year after the visit by phone interview.

2.2. Selection and clinical inspection of the animals

The cows were selected for sampling on the grounds of lameness, prolonged lying-time, or a trouble report from an automatic milking system. All feet were carefully inspected in a trimming chute. Primarily, samples were collected from cows that had IP. If several feet of a cow were affected, the foot with the most severe lesion in the interdigital cleft was selected for sampling. The bacteriological
samples were taken from the lesion site. The IP lesions were further classified as acute infection (hereafter termed acute IP) or a healing stage of IP (healing IP). The diagnosis of IP was made according to Gupta et al. [8]: acute IP was diagnosed if the distal foot near the claws was swollen symmetrically with or without a fissure detected in the interdigital cleft, and the healing IP was defined by proliferation tissue or scar formation being apparent in the affected region. Some IP cows had also other hoof diseases, like heel horn erosion (HHE), DD or white line disease. If IP was considered the main reason for lameness the cow was sampled as IP cow.

Some samples were taken from cows that suffered from DD (n = 14). DD diagnosis was made according to Döpfer et al. [30]. All DD lesions represented either stage M1, M2 or M3 and were less than 3 cm in diameter. If observed, we also sampled cows with other hoof diseases, including interdigital dermatitis (ID), sole ulcer, or white line abscess (hereafter termed Other, n = 34).

The study cows were checked for lameness and classified into lame or non-lame categories (0/1) while standing or walking to and from the trimming chute. Cows were scored according to Sprecher et al [31] so that the category of non-lame cows included cows 1-2 and lame cows 3-5 on this scale. Their body temperature was measured and previous antimicrobial treatments from one month before the herd visit were recorded. A separate form was used to enter all data relating to the cows.

The control cows in both herd types, IP herds and IP-free herds, were selected from non-lame, non-pyretic (T ≤ 39.2 °C), otherwise clinically healthy cows. Their feet were lifted in a trimming chute, and those with no signs of IP, DD, ID, sole ulcer or white line disease were selected as control cows. Occasionally on some farms, it was impossible to find healthy control cows without any hoof diseases. Therefore, a mild HHE i.e. superficial loss of heel horn as categorized 0 on a scale of 0/1 by Manske et al [32], was accepted on some control cows. In outbreak herds, the control cows are later referred to as control cows (IP herd), and in herds with no outbreak of IP, as control cows (IP-free herd). All the diagnoses were made by one of two experienced veterinarians and were based on
clinical signs only. All feet were photographed in a trimming chute and diagnoses were standardized between the two veterinarians by studying the photographs together.

In this study, a total of 203 cows were sampled: 117 (57.6%) were Ayrshire and 86 (42.4%) Holstein. Moreover, 95 (46.8%) were heifers or first parity cows, 46 (22.7%) second parity and 57 (28.1%) third or more parity cows. The lactation stage data for sampled cows were: 71 (35.0%) early lactation (1 – 120 DIM), 84 (41.4%) late lactation (121 – 305 DIM) and 43 (21.2%) either over 305 DIM, dry cows or heifers. All study heifers (n = 8) were in late pregnancy, 0 – 2 months prior to calving. The information on parity and lactation stage was missing for 5 (2.5%) cows.

2.3. Blood samples and analysis of acute phase proteins

We collected the blood samples (9 ml Z Serum Clot Activator, Vacuette, Austria) from jugular or mammary veins for subsequent analysis of APPs. The whole blood samples were centrifuged at 3500 rpm for 15 minutes, serum was placed in a 2 ml tube (Sarstedt, Germany) and frozen at – 20 °C within 24 hours of sampling.

We analyzed SAA, Hp and Alb. Serum SAA concentration was measured with a commercially available solid phase sandwich ELISA kit (Phase TM Range Multispecies SAA ELISA kit, Tridelta Development Ltd., Ireland) according to the manufacturer’s instructions for bovines. The lower detection limit was 9.4 µg/ml and all samples with concentrations <9.4 µg/ml were set to 9.4 µg/ml. Serum Hp concentration was determined using a hemoglobin-haptoglobin binding assay (Phase TM Range Haptoglobin kit, Tridelta Development Ltd., Ireland). Spectrophotometric methods were used for the determination of Alb [33] and were performed with an automatic chemistry analyzer (KONE Pro, Thermo Fisher Scientific, Finland).
2.4. Bacteriological sampling and analysis of hoof samples

The sampling methods, and the results of the bacteriological analyses are described in detail in Kontturi et al. [14]. Briefly, the sampling was performed in a trimming chute and the affected foot was lifted and the two claws were spread with an extensor. The hoof region was cleaned carefully with a hose, rinsed with saline, and dried with gauze. The cytobrush samples were taken from the inflamed region – samples from IP cows were collected primarily from a lesion in the interdigital cleft.

The primary culture was performed on the farm and further analysis and PCR in a laboratory of the Finnish Food Authority, Helsinki. The species detected in the study were: *D. nodosus*, *F. necrophorum*, *P. levii*, *P. melaninogenica*, *Treponema* spp and *T. pyogenes*. In most of the acute IP samples (66.7%), both *F. necrophorum* and *D. nodosus* were detected and a significant association was established between *D. nodosus* in IP lesions and high morbidity outbreak in the herd [14]. Therefore, we tested the effect of *F. necrophorum* and *D. nodosus* together, in comparison with *F. necrophorum* without *D. nodosus* on APPs in samples from acute IP cows.

2.5. Statistical analysis and models

Data recorded during the herd visits and during the phone interviews, the APP values and bacteriological data were collated in Excel spreadsheets. The statistical analyses were carried out using Stata IC version 15 (Stata Corporation, Texas, USA).

The study animals were divided into six disease categories: 1) control cows (IP-free herd), 2) control cows (IP herd), 3) acute IP, 4) healing IP, 5) DD and 6) other. Possible antimicrobial treatment of the cows was divided into three categories; 1) no current or previous antimicrobial treatment during last month, 2) current antimicrobial treatment or treatment within 6 days before sampling and 3) previous
treatment with antimicrobials within 7–30 days prior to sampling. The lactation stage was categorized into three groups: 1–120 DIM, 121–305 DIM and >305 DIM, in which we also included heifers and dry cows. Moreover, the parity of the cows was categorized into three groups: 1) heifers and first parity 2) second parity and 3) third or more parity cows. The breed of the cows was a dichotomous variable, 0) Ayrshire and 1) Holstein.

Each APP was analyzed separately. The values were described by means, standard errors and 95% confidence intervals. A T-test with unequal variances was performed within various animal groups when comparing mean APP values of cows in high and moderate morbidity and control herds, and when comparing mean APP values for acute IP in *F. necrophorum* positive cows with or without *D. nodosus*. A *P*-value < 0.05 was considered statistically significant.

We studied the association of APPs and various disease categories. The values of SAA and Hp did not adhere to a normal distribution and were transformed into a 0/1 variable. The 90% values of both groups of control cows (IP-free herd and IP herd) were used as a reference value for a healthy animal. The cut-off values were 80 µg/ml for SAA, and 0.27 g/l for Hp. Logistic mixed models were used to study the association of SAA and Hp and various disease categories. The values for Alb were normally distributed and a regression mixed model was applied. A possible antimicrobial treatment, DIM, parity and breed were considered as confounding variables and were kept in all models, and the herd was included as a random factor. From a total of 203 cows, 198 had a complete dataset and were included in statistical models.

We tested all biologically plausible interactions but detected no significant association. The models were evaluated by sensitivity and specificity test and roc-curve of the model. The assumptions of the model were controlled by normality and scatter plots of the residuals.
2.6. Ethical review

Viikki Campus Research Ethics Committee of Helsinki University reviewed and approved our research protocol. A written informed consent to use the animals in our study was obtained from the herd owners before sampling. After sampling, the farm veterinarian treated IP and DD cows.

3. Results

3.1. Characteristics of the IP outbreak herds and sampled cows

During the first two months of the IP outbreak, the morbidity was high (≥50%) in 7 herds, moderate (9 – 33%) in 11 herds, and no herd had an intermediate morbidity. In 6 herds (33.3%), also cattle less than 2 years old i.e. calves or young heifers had IP cases. In 11/18 herds (61.1%), 1 – 3 cows had to be culled because of IP. The highest culling rate was 12.2% (11/90) of the current herd average. Of all producers, 15 (83.3%) felt that cows were cured well of IP with parenteral antimicrobial treatment. Approximately one year after the outbreak, 8 herds (44.4%) still regularly had new sporadic cases of IP.

Several events were reported for the study herds before the IP outbreaks. All 18 outbreak herds included newly purchased cattle during the year before the outbreak; 2 herds (11.1%) included fewer than five animals, whereas 16 (88.9%) more. An enlargement of the barn or construction of a new barn had taken place on 12 farms (66.7%) in the two years before the outbreak. A change in feeding had occurred within one month before the outbreak on 12 farms (66.7%). Eleven producers (61.1%) reported that feces of the milking cows had been either too watery or had contained undigested feed particles before the outbreak. Either one or both of these feeding related problems had occurred in 16 farms (88.9%). In the compartment of milking cows, 2 herds (11.1%) were overstocked and 6
producers (33.3%) reported problems with the cow flow. Additionally, 7 producers (38.9%) reported at least minor problems in ventilation systems. For 13 outbreak herds (72.2%), producers were unsatisfied with the cleanliness of the alleys, and for 10 herds (44.4%) with the cleanliness of the cows.

The descriptive statistics for the study cows, their clinical signs and possible antimicrobial treatment is presented in Table 1. At the time of sampling, 148 (72.9%) of all sampled cows were not treated with antimicrobials, 35 (17.2%) had current, and 20 (9.9%) previous antimicrobial treatment.

3.2. Acute phase response

The increase of SAA and Hp and decrease of Alb was evident in acute IP cows. Table 2 contains the means, standard errors and 95% confidence intervals of APPs in various disease groups.

In the analyses of APPs, the upper limit for reference value for SAA was 80 µg/ml, and 0.27 g/l for Hp. The probability of SAA and Hp exceeding the reference value with acute IP cows was apparent (Table 3). Table 3 presents the results of logistic mixed models of SAA and Hp, and Table 4 the regression mixed model of Alb. The herd affected values for Hp ($P = 0.05$) and Alb ($P = 0.02$) and a trend existed for SAA ($P = 0.06$).

3.3. APP values in high and moderate morbidity herds

We compared the APP values in various disease categories among herds of various morbidity and control herds. The mean values for SAA and Hp of acute IP were elevated in herds of high morbidity in comparison with moderate morbidity herds ($P < 0.01$). Figure 1 shows the mean values and
standard errors of APPs in various disease categories in high morbidity, moderate morbidity and control herds (IP-free herds).

Furthermore, we compared various APPs of acute IP cows with *F. necrophorum* and *D. nodosus* (n=31) and *F. necrophorum* without *D. nodosus* (n=13) in high and moderate morbidity herds (n=44). The mean value and SE for SAA was 450.7 µg/ml ± 59.3 in cows with *F. necrophorum* and *D. nodosus*, and 140.2 µg/ml ± 41.1 in cows with *F. necrophorum* without *D. nodosus*. The mean values for Hp were 2.85 g/l ± 0.4 and 1.54 g/l ± 0.4, and Alb 36.4 g/l ± 0.6 and 35.7 g/l ± 0.7, respectively. The values for Alb did not differ between acute IP cows from herds of various morbidities. Figure 2 shows the results for SAA and Hp in both morbidity categories. Statistical difference existed between acute IP cows with *F. necrophorum* and *D. nodosus* in high (n=21) and moderate morbidity (n=10) herds in SAA (P < 0.01) and in haptoglobin (P < 0.05) values.

4. Discussion

We investigated the association among clinical signs, bacteriological findings and APPs to evaluate the degree of infection in naturally occurring IP. The study cows with clinical signs of acute IP had clearly elevated levels of SAA and Hp, and decreased concentrations of Alb, the negative APP, when compared with clinically healthy control cows. Our findings show that IP causes a strong APR, which was more evident than for DD and other hoof diseases included in this study, and other causes of lameness previously investigated [23], [24], [25]. Furthermore, the APR was more distinguishable in herds with high morbidity of IP (>50%) in comparison with herds of moderate morbidity (9 – 33%). This could indicate presence of a more virulent agent in high morbidity herds, a higher infection pressure or a weaker immunity. Moreover, the acute IP cows with both *F. necrophorum* and *D. nodosus* had more elevated concentrations of SAA and Hp than acute IP cows with *F. necrophorum* without *D. nodosus*, and the values were further increased in cows of high morbidity herds. In our
earlier study, we demonstrated that in most of the acute IP samples, both *F. necrophorum* and *D. nodosus* were detected and a significant association was established between *D. nodosus* in IP lesions and a high morbidity outbreak in the herd [14]. Thus, our new findings for APR in IP support our hypothesis of *D. nodosus* affecting the severity of IP. Previously, *D. nodosus* was detected in healthy hooves [34] and was associated with ID [34] and DD [34], [35], [36]. Rasmussen et al. [37] speculated that *D. nodosus* could break down the epidermal barrier, creating a suitable environment for secondary invaders. *F. necrophorum* is regarded as being the major pathogen in IP [12], [13], [14]. However, there remain difficulties in establishing absolute clarity for the role of other bacteria than *F. necrophorum* in the pathogenesis of IP and further studies on IP bacteriology and on virulence of both *F. necrophorum* and *D. nodosus* are merited.

The values for SAA and Hp were considerably increased in the acute stage of IP. This was expected because SAA and Hp are major APPs in cattle [19], [21]. The current understanding is that SAA is the first line and Hp the second line APP; first line APPs are primarily induced by IL-1 type cytokines whereas second line APPs are induced by IL-6 type [18], [20]. Because we do not know the exact date of the IP onset at the time of sampling, our cases of IP, especially the group of healing IP, can be somewhat divergent. This may be the reason why we observed only a trend (p=0.06) among Hp values in our group of healing IP cows i.e. during the later stage of IP. Horadagoda et al. [38] postulated that an increase in both SAA and Hp in comparison with an increase solely in SAA could indicate that a greater inflammatory reaction has occurred.

Alb is a major plasma protein, featuring the plasma colloidal osmotic pressure and being associated with the balance of body fluids [39, 40]. Hypoalbuminemia is detected in several pathologic processes or in physiological conditions [40]. During APR, synthesis of Alb is probably down-regulated and amino acids are used for the synthesis of the positive APPs [18]. In our study cows, the values of Alb were decreased in acute IP, but they were also affected by DIM and parity. Also feeding is known to
influence the blood albumin levels in cattle [41], [42]. Thus, albumin alone cannot be regarded as a useful marker of infection in a single cow.

Our previous survey detected animal purchase and enlargement of the barn as risk factors for an outbreak of IP to occur [43]. Similarly, every outbreak herd in the current study included newly purchased animals within one year before the outbreak, and 12 (66.7%) herds had undergone an enlargement or construction of the barn during the two years before the outbreak. Interestingly, in this study, feeding-related problems for several IP herds (88.9%) were reported just prior to the outbreak. Because of the low number of herds in this study, risk factors could not be investigated, and further research should be performed to confirm this speculation.

Previous research on APR on hoof diseases has typically included various diagnoses in the same study. Kujala et al.[23] reported elevated SAA concentrations in 16 dairy cattle with either sole ulcer, white line disease or both, but did not detect any variation in Hp values between lame and control groups. Tóthová et al. [26] had a group of 35 lame heifers with various causes of lameness and was able to detect a difference between lame and non-lame groups in SAA and Hp, but not in Alb. Tadich et al. [24] studied lame dairy cows and revealed elevated concentrations of Hp for all levels of lameness (locomotion score >1), when locomotion was scored on a scale of 1–5. O’Driscoll et al. [25] investigated differences in metabolite status of dairy cows with or without sole ulcer and detected higher Hp levels for lame cows.

Earlier studies of infectious hoof diseases and APR are scant. A study of Smith et al. [27] included 7 IP cases, all with elevated Hp concentrations compared with controls. An Iranian study [28] measured Hp and SAA in a lameness group, a F. necrophorum-positive lameness group and a healthy group, and established a significant difference for values of both lameness groups when compared with controls. The cows were diagnosed as ID in the study, but the description of the signs of the affected cows in the article resembles that of IP as described by Gupta et al. [8]. The nomenclature of infectious
hoof diseases has varied and therefore, interpretation of older results is occasionally difficult. Tóthová et al. [29] detected significantly lower Alb values in 23 dairy cows with hoof diseases than in controls. In their study hoof diseases included cases of DD, pododermatitis, laminitis and sole ulcer.

Our study design depended on occurrence of IP outbreaks. Due to long distances between farms in Finland, it was occasionally difficult to reach a farm on time and get enough samples from cows during the early acute stage of IP and which had not yet been treated with antimicrobials. Considering the severe clinical signs of the cows, the treatment was not delayed for study purposes. However, in both high and moderate morbidity herds we were able to collect almost the same number of samples from acute IP cows. In each herd, we only examined and sampled cows on a single day and thus we did not follow up the healing process of an individual cow. The diagnosing was based on clinical signs only and was occasionally challenging. Even though the cows were categorized as IP or DD cows, in some cases also other hoof diseases may have been present. The control cows were chosen among clinically healthy cows in each herd. However, it is possible some of these cows might have experienced a subclinical disease at the time of sampling.

These results suggest that SAA and Hp could be used in the determination of the severity of IP infection and to a certain extent they can add information on predicting the possible outcome of the disease. Furthermore, these results should be borne in mind when deciding on the treatment of a cow suffering from IP. Considering the strong APR, IP cows should be treated as quickly as possible and an appropriate analgesic should be administered in addition to antimicrobials.
Acknowledgements

The authors thank the study farms, veterinarians, hoof trimmers and others who helped during the farm visits. We also thank Taina Rahkonen and Merja Pöytäkangas at the University of Helsinki for the analysis of APPs.

References

[1] J. Häggman, R. Junni, H. Simojoki, J. Juga, T. Soveri, 2015

The costs of interdigital phlegmon in four loose-housed Finnish dairy herds

Acta Vet. Scand. 57:90 https://doi.org/10.1186/s13028-015-0181-4

[2] W. Refaai, M. Van Aert, A.M. Abd El-Aal, A.E.Behery, G. Opsomer

Infectious diseases causing lameness in cattle with a main emphasis on digital dermatitis (Mortellaro disease)

Livest. Sci. 156 (2013) 53–63. https://doi.org/10.1016/j.livsci.2013.06.004

[3] N.J. Evans, R.D. Murray, S.D. Carter

Bovine digital dermatitis: Current concepts from laboratory to farm

Vet. J. 211 (2016) 3–13. https://doi.org/10.1016/j.tvjl.2015.10.028

[4] G. Cramer, K. D. Lissemore, C. L. Guard, K. E. Leslie, D. F. Kelton
Herd- and cow-level prevalence of foot lesions in Ontario dairy cattle

J. Dairy Sci. 91 (2008) 3888–3895. https://doi.org/10.3168/jds.2008-1135

[5] J.M. DeFrain, M. T. Socha, D. J. Tomlinson

Analysis of foot health records from 17 confinement dairies

J. Dairy Sci. 96 (2013) 7329–7339. https://doi.org/10.3168/jds.2012-6017

[6] G.P. David

Severe foul-in-the-foot in dairy cattle

Vet. Rec. 132 (1993) 567–568.

[7] M. Doherty, H. Bassett, B. Markey, A. Healy, D. Sammin

Severe foot lameness in cattle associated with invasive spirochaetes

Ir. Vet. J. 51 (1998) 195–198.

[8] R.B. Gupta, M. G. Fincher, D. W. Bruner

A study of the etiology of foot-rot in cattle

Cornell Vet. 54 (1964) 66–77.

[9] D.C. Van Metre

Pathogenesis and treatment of bovine Foot Rot

Vet. Clin. N. Am-Food A. 33 (2017) 183–194. https://doi.org/10.1016/j.cvfa.2017.02.003
[10] J. Hernandez, J. K. Shearer, D. W. Webb

Effect of lameness on milk yield in dairy cows

J. Am. Vet. Med. Assoc. 220 (2002) 640–644.

[11] C.J. Booth, L. D. Warnick, Y. T. Gröhn, D. O. Maizon, C. L. Guard and D. Janssen

Effect of lameness on culling in dairy cows

J. Dairy Sci. 87 (2004) 4115–4122.

[12] J.C. Flint, R. Jensen

Pathology of necrobacillosis of the bovine foot

Am. J. Vet. Res. 12 (1951) 5–13.

[13] J.N. Berg, R. W. Loan

Fusobacterium necrophorum and Bacteroides melaninogenicus as etiologic agents of foot rot in cattle

Am. J. Vet. Res. 36 (1975) 1115–1122.

[14] M. Kontturi, R. Junni, H. Simojoki, E. Malinen, E. Seuna, K. Klitgaard, M. Kujala-Wirth, T. Soveri, S. Pelkonen, 2019

Bacterial species associated with interdigital phlegmon outbreaks in Finnish dairy herds

BMC Vet. Res. 15:44 https://doi.org/10.1186/s12917-019-1788-x

[15] D.L. Emery, J. A. Vaughan, B. L. Clark, J. H. Dufty, D. J. Stewart
Cultural characteristics and virulence of strains of *Fusobacterium necrophorum* isolated from the feet of cattle and sheep

Aust. Vet. J. 62 (1985) 43–46.

[16] D.W. Morck, M. E. Olson, T. J. Louie, A. Koppe, B. Quinn

Comparison of ceftiofur sodium and oxytetracycline for treatment of acute interdigital phlegmon (foot rot) in feedlot cattle

J. Am. Vet. Med. Assoc. 212 (1998) 254–257.

[17] M. Sweeney, J. Watts, E. Portis, M. Lucas, R. Nutsch, D. Meeuwse, D. J. Bade, V. Oliver, D. Morck, D. Shinabarger, S. Poppe, M. Peterson, D. Sweeney, M. Knechtel, G. Zurenko, 2009

Identification of *Porphyromonas levii* isolated from clinical cases of bovine interdigital necrobacillosis by 16s rRNA sequencing

Vet. Ther. 10(4): E1–10

[18] C. Gabay, I. Kushner

Acute-phase proteins and other systemic responses to inflammation

N. Engl. J. Med. 340 (1999) 448–454.

[19] H. Murata, N. Shimada, M. Yoshioka

Current research on acute phase proteins in veterinary diagnosis: An overview

Vet. J. 168 (2004) 28–40.
[20] H. Petersen, J. Nielsen, P. Heegaard

Application of acute phase protein measurements in veterinary clinical chemistry

Vet. Res. 35 (2004) 163–187. https://doi.org/10.1051/vetres:2004002

[21] P.D. Eckersall, R. Bell

Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine

Vet. J. 185 (2010) 23–27. https://doi.org/10.1016/j.tvjl.2010.04.009

[22] F. Ceciliani, J. J. Ceron, P. D. Eckersall, H. Sauerwein

Acute phase proteins in ruminants

J. Proteomics. 75 (2012) 4207–4231. https://doi.org/10.1016/j.jprot.2012.04.004

[23] M. Kujala, T. Orro, T. Soveri

Serum acute phase proteins as a marker of inflammation in dairy cattle with hoof diseases

Vet. Rec. 166 (2010) 240–241. http://dx.doi.org.libproxy.helsinki.fi/10.1136/vr.b4770

[24] N. Tadich, C. Tejeda, S. Bastias, C. Rosenfeld, L. E. Green

Nociceptive threshold, blood constituents and physiological values in 213 cows with locomotion scores ranging from normal to severely lame

Vet. J. 197 (2013) 401–405. https://doi.org/10.1016/j.tvjl.2013.01.029

[25] K. O'Driscoll, M. McCabe, B. Earley
Differences in leukocyte profile, gene expression, and metabolite status of dairy cows with or without sole ulcers

J. Dairy Sci. 98 (2015) 1685–1695. https://doi.org/10.3168/jds.2014-8199

[26] C. Tóthová, O. Nagy, H. Seidel, P. Iveta, G. Kováč

The influence of hoof diseases on the concentrations of some acute phase proteins and other variables of the protein profile in heifers

Acta Vet. 61 (2011) 141–150.

[27] B.I. Smith, J. Kauffold, L. Sherman

Serum haptoglobin concentrations in dairy cattle with lameness due to claw disorders

Vet. J. 186 (2010) 162–165.

[28] S. Nazifi, Z. Esmailnezhad, M. Haghkhah, S. Ghadirian, A. Mirzaei

Acute phase response in lame cattle with interdigital dermatitis

World J. Microbiol. Biotechnol. 28 (2012) 1791–1796.

[29] C. Tóthová, P. Mudroň, O. Nagy

The electrophoretic pattern of serum proteins in dairy cows with inflammatory diseases

Acta Vet. 67 (2017) 178–190.

[30] D. Döpfer, A. Koopmans, F. A. Meijer, I. Szakáll, Y. H. Schukken, W. Klee, R. B. Bosma, J. L. Cornelisse, A. J. A. M. Van Asten, A. A. H. M. ter Huurne
Histological and bacteriological evaluation of digital dermatitis in cattle, with special reference to spirochaetes and Campylobacter faecalis

Vet. Rec. 140 (1997) 620–623.

[31] D. J. Sprecher, D. E. Hostetler and J. B. Kaneene

A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance

Theriogenology 47 (1997) 1179-1187. https://doi.org/10.1016/S0093-691X(97)00098-8

[32] T. Manske, J. Hultgren, C Bergsten

Prevalence and interrelationships of hoof lesions and lameness in Swedish dairy cows

Prev. Vet. Med. 25 (2002) 247-63.

[33] B.T. Doumas, W. Ard Watson, H. G. Biggs

Albumin standards and the measurement of serum albumin with bromcresol green

Clin. Chim. Acta. 31 (1971) 87–96.

[34] M. Knappe-Poindecker, M. Gilhuus, T. K. Jensen, K. Klitgaard, R. B. Larssen, T. Fjeldaas

Interdigital dermatitis, heel horn erosion, and digital dermatitis in 14 Norwegian dairy herds

J. Dairy Sci. 96 (2013) 7617–7629. https://doi.org/10.3168/jds.2013-6717
[35] L.E. Sullivan, S. R. Clegg, J. W. Angell, K. Newbrook, R. W. Blowey, S. D. Carter, J. Bell, J. S. Duncan, D. H. Grove-White, R. D. Murray, N. J. Evans

High-level association of bovine digital dermatitis *Treponema* spp. with contagious ovine digital dermatitis lesions and presence of *Fusobacterium necrophorum* and *Dichelobacter nodosus*

J. Clin. Microbiol. 53 (2015) 1628–1638.

[36] T.F. Moreira, E. J. F. Filho, A. U. Carvalho, M. L. Strube, M. W. Nielsen, K. Klitgaard, T. K. Jensen, 2018

Pathology and bacteria related to digital dermatitis in dairy cattle in all year round grazing system in Brazil

PLoS ONE. 13:3. https://doi.org/10.1371/journal.pone.0193870

[37] M. Rasmussen, N. Capion, K. Klitgaard, T. Rogdo, T. Fjeldaas, M. Boye, T. K. Jensen

Bovine digital dermatitis: Possible pathogenic consortium consisting of *Dichelobacter nodosus* and multiple *Treponema* species

Vet. Microbiol. 160 (2012) 151–161. https://doi.org/10.1016/j.vetmic.2012.05.018

[38] N.U. Horadagoda, K. M. Knox, H. A. Gibbs, S. W. Reid, A. Horadagoda, S. E. R. Edwards, P. D. Eckersall

Acute phase proteins in cattle: Discrimination between acute and chronic inflammation

Vet. Rec. 144 (1999) 437–441.
[39] W.O. Reece, Body fluids and homeostasis, in: W. O. Reece, H. H. Erickson, J. P. Goff, and E. E. Uemura (Eds.) Duke’s physiology of domestic animals. John Wiley & Sons, Incorporated, Hoboken, 2015, pp. 103–154

[40] P.D. Eckersall, Proteins, Proteomics, and the Dysproteinemias, in: J.J. Kaneko, J.W. Harvey, and M.L. Bruss (Eds.) Clinical biochemistry of domestic Animals:, 6th ed., Elsevier inc. US 2008, pp. 117-155

[41] H. Amanlou, T. A. Farahani, N. E. Farsuni

 Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows

 J. Dairy Sci. 100 (2017) 3628–3640. https://doi.org/10.3168/jds.2016-11794

[42] R. Zhang, W. Zhu, L. Jiang, S. Mao, 2017

 Comparative metabolome analysis of ruminal changes in Holstein dairy cows fed low- or high-concentrate diets

 Metabolomics. 13:74. https://doi.org/10.1007/s11306-017-1204-0

[43] M. Kontturi, M. Kujala, R. Junni, E. Malinen, E. Seuna, S. Pelkonen, T. Soveri, H. Simojoki, 2017

 Survey of interdigital phlegmon outbreaks and their risk factors in free stall dairy herds in Finland

 Acta Vet. Scand. 59:46. https://doi.org/10.1186/s13028-017-0313-0
Figure legends

Figure 1. The mean values and standard errors for A) serum amyloid A, B) haptoglobin and C) albumin in various disease categories in high and moderate morbidity outbreak herds and control herds. The disease categories were control cows, acute interdigital phlegmon (Acute IP), healing stage of IP (healing IP), digital dermatitis (DD) and a group of other hoof diseases (Other) that included cases of ID, sole ulcer and white line abscess. The number of sampled animals (n) in each group is presented under the columns of albumin values. Statistical difference is indicated with * (P < 0.01).
Figure 2. The concentrations of A) serum amyloid A and B) haptoglobin in high and moderate morbidity herds of cows suffering from acute interdigital phlegmon with *Fusobacterium necrophorum* (Fn) and with *F. necrophorum* and *Dichelobacter nodosus* (FnDn). The number of sampled animals in each group is presented under the columns of haptoglobin values. In box and whiskers plots, the median is represented as a line that divides the box into two parts. The box represents the mid 50% of the values while the whiskers scores outside the mid 50%. Statistical difference existed between FnDn cows in high and moderate morbidity herds in SAA (*P* < 0.01) and in haptoglobin (*P* < 0.05) values.

A) Serum amyloid A **
B) Haptoglobin *

Serum amyloid A (µg/ml)

High morbidity

Moderate morbidity

Haptoglobin (g/l)

High morbidity

Moderate morbidity

Journal Pre-proof
Table 1. Descriptive data for the sampled cows (N = 203); affected foot, clinical signs and possible antimicrobial treatment prior to sampling in various disease groups¹. Number of animals and the percentage in each group is presented.

Variable	Control (IP free herd)	Control (IP herd)	Acute IP	Healing IP	DD
Cow	19 (9.4%)	42 (20.7%)	60 (29.6%)	34 (16.7%)	14 (6.9%)
Front feet²	0 (0%)	5 (2.5%)	11 (5.4%)	3 (1.5%)	1 (0.5%)
Hind feet²	19 (9.3%)	37 (18.2%)	49 (24.1%)	31 (15.3%)	13 (6.4%)
Clinical signs					
Lameness	0/19 (0%)	0/42 (0%)	36/53 (68.9%)³	16/29 (55.2%)³	3/13 (23.1%)
Swelling	0/19 (0%)	0/42 (0%)	57/69 (96.5%)³	31/34 (91.2%)	4/14 (28.6%)
Odor	0/19 (0%)	0/42 (0%)	8/43 (18.6%)³	0/26 (0%)³	4/9 (44.4%)
Antimicrobial treatment					
None	19/19 (100%)	42/42 (100%)	35/60 (58.3%)	6/34 (17.7%)	12/14 (85.8%)
Current	0/19 (0%)	0/42 (0%)	19/60 (31.7%)	15/34 (44.1%)	1/16 (7.1%)
Previous	0/19 (0%)	0/42 (0%)	6/60 (10.0%)	13/34 (38.2%)	1/16 (7.1%)

¹ Control cows with no outbreak of interdigital phlegmon (IP-free herd), control cows in herds with an outbreak of interdigital phlegmon (IP herd, acute IP, healing stage of IP, digital dermatitis (DD) and other hoof diseases (Other). In a group of other hoof diseases were cases of interdigital dermatitis, sole ulcer, and white line abscess. IP = interdigital phlegmon

² Percentage of all sampled feet

³ Missing data for some sampled cows.
Table 2. The number of cows, means, standard errors and 95% confidence intervals for serum amyloid A, haptoglobin and albumin in blood samples from cows in the various disease groups¹.

	n	Mean	SE	95% CI
Serum amyloid A (µg/ml)				
Control (IP-free herd)	19	52.59	16.49	20.08–85.10
Control (IP herd)	42	33.00	6.13	20.83–45.02
Acute IP	60	308.05	38.65	231.83–384.27
Healing IP	34	74.12	18.50	37.65–110.60
DD	14	90.91	40.70	10.66–171.15
Other	34	89.33	19.40	51.07–127.59
Haptoglobin (g/l)				
Control (IP-free herd)	19	0.23	0.07	0.08–0.37
Control (IP herd)	42	0.16	0.03	0.11–0.21
Acute IP	60	2.15	0.25	1.66–2.64
Healing IP	34	0.50	0.13	0.25–0.76
DD	14	0.17	0.29	0.11–0.23
Other	34	0.55	0.15	0.24–0.87
Albumin (g/l)				
Control (IP-free herd)	19	39.54	0.58	38.39–40.69
Control (IP herd)	42	37.79	0.38	37.04–38.55
Acute IP	60	35.91	0.36	35.20–36.62
Healing IP	34	36.76	0.44	35.90–37.63
DD	14	37.70	0.59	36.53–38.86
Other	34	37.50	0.39	36.72–38.28

¹ Control cows with no outbreak of interdigital phlegmon (IP-free herd), control cows in herds with an outbreak of IP (IP herd), IP in acute stage (acute IP) and healing stage (healing IP), digital dermatitis (DD) and other hoof diseases (other).

n = number of cows, SE = standard error; 95% CI = 95% confidence interval; IP = interdigital phlegmon
Table 3. The final logistic mixed models for serum amyloid A to elevate over 80 µg/ml and haptoglobin to elevate over 0.27 g/l with cow-level factors and herd as a random factor\(^1\) (N = 198).

Disease category	Serum amyloid A OR	P-value	95% CI.	Wald	Haptoglobin OR	P-value	95% CI.	Wald
Control (IP herd)	1				1			
Control (IP-free herd)	1.63	0.63	0.23–11.76	0.86	0.89	0.09–7.61		
Acute IP	38.16	<0.01	9.08–160.37	37.93	0.01	8.98–160.29		
Healing IP	2.59	0.31	0.41–16.16	4.96	0.08	0.83–29.51		
DD	6.42	0.05	0.98–42.08	2.83	0.29	0.41–19.54		
Other	3.48	0.09	0.84–14.38	3.58	0.08	0.86–14.82		
Antimicrobial treatment			0.24		0.19			
None	1				1			
Current	1.29	0.71	0.34–4.84	2.62	0.18	0.64–10.61		
Previous	0.26	0.16	0.04–1.68	0.71	0.69	0.13–3.87		
DIM			0.17		0.14			
1–120	1				1			
121–305	0.41	0.06	0.16–1.05	0.37	0.05	0.14–0.99		
>305	0.55	0.27	0.19–1.59	0.65	0.43	0.23–1.87		
Parity			0.29		0.37			
≤1st	1				1			
2nd	1.06	0.91	0.37–3.04	0.80	0.68	0.27–2.33		
≥3rd	2.12	0.13	0.80–5.64	1.76	0.25	0.68–4.65		
Breed								
Ayrshire	1				1			
Holstein	0.43	0.06	0.17–1.04	0.70	0.44	0.05–1.71		
Constant	0.42	0.31	0.08–2.27	0.27	0.13	0.05–1.47		

\(^1\) The disease categories were control cows with an outbreak of interdigital phlegmon (IP herd), control cows in herds with no outbreak of IP (IP free herd), IP in acute stage (acute IP), and healing stage (healing IP), digital dermatitis (DD) and other hoof diseases (Other). In a group of other hoof diseases were cases of interdigital dermatitis, sole ulcer, and white line abscess.
IP = interdigital phlegmon; OR = odds ratio; 95% CI = 95% confidence interval; Wald = Wald-test was used to test the overall P-value of the variable.
Table 4. The final regression mixed model for albumin in various disease categories with cow-level factors and herd as a random factor \(^1\) (N = 198).

Disease category	Coefficient	\(P\)-value	95\% CI	Wald
Control (IP herd)	1			<0.01
Control (IP-free herd)	1.23	0.12	-0.30 to 2.77	
Acute IP	-1.85	<0.01	-2.90 to -0.81	
Healing IP	-0.92	0.20	-2.31 to 0.47	
DD	-0.76	0.34	-2.32 to 0.79	
Other	-0.82	0.14	-1.68 to 0.52	
Antimicrobial treatment				0.53
None	1			
Current	-0.60	0.30	-1.68 to 0.52	
Previous	-0.06	0.94	-1.51 to 1.39	
DIM				<0.01
1–120	1			
121–305	1.62	<0.01	0.99 to 2.34	
>305	1.66	<0.01	0.76 to 2.55	
Parity				0.04
\(\leq1\text{st}\)	1			
2nd	0.76	0.07	-0.05 to 1.58	
\(\geq3\text{rd}\)	0.90	0.03	0.11 to 1.68	
Breed				
Ayrshire	1			
Holstein	0.51	0.16	-0.20 to 1.21	
Constant	35.88	<0.01	34.57 to 37.20	

\(^1\) The disease categories were control cows with an outbreak of interdigital phlegmon (IP herd), control cows in herds with no outbreak of IP (IP-free herd), IP in acute stage (acute IP), and healing stage (healing IP), digital dermatitis (DD) and other hoof diseases (Other). In a group of other hoof diseases were cases of interdigital dermatitis, sole ulcer, and white line abscess.

IP = interdigital phlegmon; 95\% CI = 95\% confidence interval; Wald = Wald-test was used to test the overall \(P\)-value of the variable.