NON-HAUSDORFF ÉTALE GROUPOIDS AND C*-ALGEBRAS OF LEFT CANCELLATIVE MONOIDS

SERGEY NESHVEYEV AND GAUTE SCHWARTZ

Abstract. We study the question whether the representations defined by a dense subset of the unit space of a locally compact étale groupoid are enough to determine the reduced norm on the groupoid C*-algebra. We present sufficient conditions for either conclusion, giving a complete answer when the isotropy groups are torsion-free. As an application we consider the groupoid $G(S)$ associated to a left cancellative monoid S by Spielberg and formulate a sufficient condition, which we call C*-regularity, for the canonical map $C_r^*(G(S)) \to C_r^*(S)$ to be an isomorphism, in which case S has a well-defined full semigroup C*-algebra $C_r^*(S) = C_r^*(G(S))$. We give two related examples of left cancellative monoids S and T such that both are not finitely aligned and have non-Hausdorff associated étale groupoids, but S is C*-regular, while T is not.

Introduction

The C*-algebras of non-Hausdorff locally compact groupoids were introduced by Connes in [Con82], where the main examples were given by the holonomy groupoids of foliations. It is known that some of the basic properties of groupoid C*-algebras of Hausdorff groupoids can fail in the non-Hausdorff case. One of such properties is that to compute the reduced norm it suffices to consider the representations $\rho_x : C_c(G) \to B(L^2(G_x))$ for x running through any dense subset $Y \subset G^{(0)}$. A simple counterexample is provided by the line with a double point. The first systematic study of which extra conditions on Y one needs was carried out by Khoshkam and Skandalis [KS02]. Our starting point is the simple observation, which can be viewed as a reformulation of a result in [KS02], that for étale groupoids it suffices to require that for every point $x \in G^{(0)} \setminus Y$ there is a net in Y converging to x and having no other accumulation points in G_x^τ. As we show, this condition is in general not necessary, but it becomes so if the isotropy groups G_x^τ do not have too many finite subgroups, in particular, if they are torsion-free.

Our motivation for studying these questions comes from the problem of defining a full semigroup C*-algebra of a left cancellative monoid. Every such monoid S has a regular representation on $l^2(S)$ and hence a well-defined reduced C*-algebra $C_r^*(S)$. It is natural to try to define the full semigroup C*-algebra as a universal C*-algebra generated by isometries v_s, $s \in S$, such that $v_s v_t = v_{st}$, but one quickly sees that more relations are needed to get an algebra that is not unreasonably bigger than $C_r^*(S)$. A major progress in this old problem was made by Li [Li12], who realized that in $C_r^*(S)$ there are extra relations coming from the action of S on the constructible ideals of S, which are right ideals of the form $s_1^{-1}t_1 \ldots s_n^{-1}t_n S$. Soon afterwards Norling [Nor14] observed that this has an interpretation in terms of the left inverse hull $I_L(S)$ of S: the C*-algebra $C_r^*(S)$ is obtained by reducing the reduced C*-algebra of the inverse semigroup $I_L(S)$ to an invariant subspace of its regular representation, and so the new relations in $C_r^*(S)$ arise from those in $C_r^*(I_L(S))$. Since the representations of inverse semigroups are a well-studied subject and the corresponding C*-algebras have groupoid models defined by Paterson [Pat99], this opened the possibility to defining $C^*(S)$ as a groupoid C*-algebra.

Date: January 26, 2022; revised January 9, 2023.
S.N. is supported by the NFR project 300837 “Quantum Symmetry”.

1
Specifically (see Section 2 for details), the subrepresentation of the regular representation of \(I_t(S) \) defining \(C_r^*(S) \) gives rise to a reduction \(\mathcal{G}_P(S) \) of the Paterson groupoid of \(I_t(S) \) and to a surjective homomorphism \(C_r^*(\mathcal{G}_P(S)) \to C_r^*(S) \). When this map is an isomorphism, it is natural to define \(C^*(S) \) as \(C^*(\mathcal{G}_P(S)) \). This \(C^* \)-algebra can be described in terms of generators and relations, since there is such a description for \(C^*(I_t(S)) \), and simultaneously its definition as a groupoid \(C^* \)-algebra subsumes a number of results on (partial) crossed product decompositions of semigroup \(C^* \)-algebras. The trouble, however, is that this does not work for all \(S \), the map \(C_r^*(\mathcal{G}_P(S)) \to C_r^*(S) \) is not always an isomorphism.

In [Sp20] Spielberg introduced, in a more general context of left cancellative small categories, a quotient \(\mathcal{G}(S) \) of \(\mathcal{G}_P(S) \) that kills some “obvious” elements in the kernel of \(C_r^*(\mathcal{G}_P(S)) \to C_r^*(S) \) (see Proposition 2.13). But as he showed, the canonical homomorphism \(C_r^*(\mathcal{G}(S)) \to C_r^*(S) \) can still have a nontrivial kernel. It should be said that the kernel of \(C_r^*(\mathcal{G}(S)) \to C_r^*(S) \) is small: under rather general assumptions (for example, for all countable \(S \) with trivial group of units) \(C_r^*(S) \) can be identified with the essential groupoid \(C^* \)-algebra \(C^*_{\text{ess}}(\mathcal{G}(S)) \) of \(\mathcal{G}(S) \), as defined by Kwaśniewski and Meyer [KM21]. Still, we do not think that this is enough to call \(C^*(\mathcal{G}(S)) \) the full semigroup \(C^* \)-algebra of \(S \) when \(C_r^*(\mathcal{G}(S)) \neq C_r^*(S) \).

Spielberg showed that there are two sufficient conditions for the equality \(C_r^*(\mathcal{G}(S)) = C_r^*(S) \), one is that \(\mathcal{G}(S) \) is Hausdorff, the other is that \(S \) is finitely aligned, which is equivalent to saying that every constructible ideal of \(S \) is finitely generated. Already the first condition covers, for example, all group embeddable monoids. For such monoids we have \(\mathcal{G}(S) = \mathcal{G}_P(S) \), and the corresponding full semigroup \(C^* \)-algebras \(C^*(S) = C^*(\mathcal{G}(S)) = C^*(\mathcal{G}_P(S)) \) have been recently comprehensively studied by Laca and Schmeling [LS22].

For general \(S \), the question whether \(C_r^*(\mathcal{G}(S)) \to C_r^*(S) \) is an isomorphism is exactly the type of question we started with: can the reduced norm on \(C_r(\mathcal{G}(S)) \) be computed using certain dense subset \(Y = \{ \chi_s \mid s \in S \} \) of \(\mathcal{G}(S)^{(0)} \)? In this formulation it is immediate that the answer is “yes” when \(\mathcal{G}(S) \) is Hausdorff. In the non-Hausdorff case we can try to use our general results to arrive to either conclusion. This leads to a simple (to formulate, but in general not to check) sufficient condition for the equality \(C_r^*(\mathcal{G}(S)) = C_r^*(S) \) that we call \(C^* \)-regularity. We give an example of a \(C^* \)-regular monoid \(S \) that is not finitely aligned and such that the groupoid \(\mathcal{G}(S) \) is non-Hausdorff. A small modification of \(S \) gives a monoid \(T \) with \(C_r^*(\mathcal{G}(T)) \neq C_r^*(T) \). It is interesting that the kernel of \(C_r^*(\mathcal{G}(T)) \to C_r^*(T) \) has nonzero elements already in the \(* \)-algebra generated by the canonical elements \(u_t, t \in T \), so in some sense \(\mathcal{G}(T) \) is a wrong groupoid model for the semigroup \(* \)-algebra of \(T \) already at the purely algebraic level.

Let us finally mention that an interesting related problem is to find groupoid models for boundary quotients of semigroup \(C^* \)-algebras, but we are not going to touch it in the present paper.

1. \(C^* \)-algebras of non-Hausdorff étale groupoids

Assume \(\mathcal{G} \) is a locally compact, not necessarily Hausdorff, étale groupoid. By this we mean that \(\mathcal{G} \) is a groupoid endowed with a locally compact topology such that

- the groupoid operations are continuous;
- the unit space \(\mathcal{G}^{(0)} \) is a locally compact Hausdorff space in the relative topology;
- the range map \(r: \mathcal{G} \to \mathcal{G}^{(0)} \) and the source map \(s: \mathcal{G} \to \mathcal{G}^{(0)} \) are local homeomorphisms.

For an open Hausdorff subset \(V \subset \mathcal{G} \), consider the usual space \(C_c(V) \) of continuous compactly supported functions on \(V \). Every such function can be extended by zero to \(\mathcal{G} \); in general this extension is not a continuous function on \(\mathcal{G} \). This way we can view \(C_c(V) \) as a subspace of the space of functions \(\text{Func}(\mathcal{G}) \) on \(\mathcal{G} \). For arbitrary open subsets \(U \subset \mathcal{G} \) we denote by \(C_c(U) \subset \text{Func}(\mathcal{G}) \) the linear span of the subspaces \(C_c(V) \subset \text{Func}(\mathcal{G}) \) for all open Hausdorff subsets \(V \subset U \). Instead of all possible \(V \) it suffices to take a collection of open bisections covering \(U \).
The space $C_c(G)$ is a $*$-algebra with the convolution product
$$ (f_1 * f_2)(g) := \sum_{h \in G^{r(o)}} f_1(h)f_2(h^{-1}g) \quad \text{for} \quad g \in G, $$
and involution $f^*(g) = \overline{f(\overline{g^{-1}})}$, where $G^x = r^{-1}(x)$. The full groupoid C^*-algebra $C^*(G)$ is defined as the C^*-enveloping algebra of $C_c(G)$.

For every $x \in G^{(0)}$, define a representation $\rho_x: C_c(G) \to B(\ell^2(G_x))$, where $G_x = s^{-1}(x)$, by
$$ (\rho_x(f)\xi)(g) = \sum_{h \in G^{r(o)}} f(h)\xi(h^{-1}g). $$
Then the reduced C^*-algebra $C^r_c(G)$ is defined as the completion of $C_c(G)$ with respect to the norm
$$ \|f\|_r = \sup_{x \in G^{(0)}} \|\rho_x(f)\|. $$

Recall (see, e.g., [Exc08, Section 3]) that for all $f \in C_c(G)$ we have the inequalities $\|f\|_\infty \leq \|f\|_r \leq \|f\|$, where $\|\cdot\|_\infty$ denotes the supremum-norm, and if $f \in C_c(U)$ for an open bisection U, then
$$ \|f\| = \|f\|_r = \|f\|_\infty. $$

For a closed (in $G^{(0)}$) invariant subset $X \subset G^{(0)}$, denote by G_X the subgroupoid $r^{-1}(X) = s^{-1}(X) \subset G$. In the second countable case the next result and the subsequent corollary follow easily from Renault’s disintegration theorem, cf. [Ren91] Remark 4.10. The case of étale groupoids allows for the following elementary proof without any extra assumptions on G.

Proposition 1.1. Assume G is a locally compact étale groupoid and $X \subset G^{(0)}$ is a closed invariant subset. Then the following sets coincide:

1. the kernel of the $*$-homomorphism $C^*(G) \to C^*(G_X)$, $C_c(G) \ni f \mapsto f|_{G_X}$;
2. the closure of $C_c(G \setminus G_X)$ in $C^*(G)$;
3. the closed ideal of $C^*(G)$ generated by $C_0(G^{(0)} \setminus X) \subset C_0(G^{(0)})$.

Proof. The sets in (2) and (3) coincide, since $C_c(G \setminus G_X)$ is an ideal in $C_c(G)$ (with respect to the convolution product) and for every $f \in C_c(G \setminus G_X)$ we can find $f' \in C_c(G^{(0)} \setminus X)$ such that $f * f' = f$. It is also clear that $C_c(G \setminus G_X)$ is contained in the kernel of the $*$-homomorphism $C^*(G) \to C^*(G_X)$. It follows that in order to prove the proposition it suffices to show that every representation of $C_c(G)$ on a Hilbert space that vanishes on G_X is an ideal in $C_c(G \setminus G_X)$ factors through $C_c(G_X)$. For this, in turn, it suffices to prove that $C_c(G \setminus G_X)$ is dense, with respect to the norm on $C^*(G)$, in the space of functions $f \in C_c(G)$ such that $f|_{G_X} = 0$.

Let us first prove the following claim. Assume $f = \sum_{i=1}^n f_i \in C_c(G)$ satisfies $\|f|_{G_X}\|_\infty < \varepsilon$ for some $\varepsilon > 0$, $f_i \in C_c(U_i)$ and open bisections U_i. Then there exist functions $\tilde{f}_i \in C_c(U_i)$ such that
$$ f - \sum_{i=1}^n \tilde{f}_i \in C_c(G \setminus G_X) \quad \text{and} \quad \|\tilde{f}_i\|_\infty < 2^n \varepsilon \quad \text{for} \quad i = 1, \ldots, n. $$

The proof is by induction on n. As the base of induction we take $n = 0$, meaning that $f = 0$. In this case there is nothing to prove. So assume the claim is true for some $n \geq 0$. For the induction step assume $f \in C_c(G)$ satisfies $\|f|_{G_X}\|_\infty < \varepsilon$ and we can write $f = \sum_{i=1}^{n+1} f_i$ for some $f_i \in C_c(U_i)$ and open bisections U_i. Let $K_{n+1} \subset U_{n+1}$ be the support of $f_{n+1}|_{U_{n+1}}$. Consider the set $K = K_{n+1} \setminus \bigcup_{i=1}^n U_i$. As $f = f_{n+1}$ on K, we have $\|f_{n+1}|_{K \cap G_X}\|_\infty < \varepsilon$. Hence there exists an open neighbourhood U of $K \cap G_X$ in U_{n+1} such that $\|f_{n+1}|_{U}\|\infty < \varepsilon$. Let V be an open neighbourhood of $K \setminus U$ in U_{n+1} such that $V \cap U_{n+1} \cap G_X = \emptyset$. Then the open sets $U_1 \cap U_{n+1}, \ldots, U_n \cap U_{n+1}, U, V$
cover K_{n+1}. Hence we can find functions $\rho_1, \ldots, \rho_n, \rho_U, \rho_V \in C_c(U_{n+1})$ taking values in the interval $[0,1]$ such that $supp \rho_i \subset U_i \cap U_{n+1}$, $supp \rho_U \subset U$, $supp \rho_V \subset V$ and
\[\sum_{i=1}^n \rho_i(g) + \rho_U(g) + \rho_V(g) = 1 \quad \text{for all} \quad g \in K_{n+1}. \]

Define $f'_i = f_i + \rho_i f_{n+1}$ (pointwise product) for $i = 1, \ldots, n$, $f' = \sum_{i=1}^n f'_i$ and $\tilde{f}_{n+1} = \rho_U f_{n+1}$. Then $f'_i \in C_c(U_i)$, $\tilde{f}_{n+1} \in C_c(U_{n+1})$ and we have
\[f - f' - \tilde{f}_{n+1} = \rho_V f_{n+1} \in C_c(G \setminus G_X). \]
We also have $\|\tilde{f}_{n+1}\|_\infty \leq \|f_{n+1}\|_U < \varepsilon < 2^{n+1}\varepsilon$. It follows that
\[\|f'|_{G_X} \| = \|(f - \tilde{f}_{n+1})|_{G_X} \| \leq \|f|_{G_X} \| + \|\tilde{f}_{n+1}|_{G_X} \| \leq 2\varepsilon. \]
We can therefore apply the inductive hypothesis to f' and 2ε and find functions $\tilde{f}_i \in C_c(U_i)$, $i = 1, \ldots, n$, such that
\[f' - \sum_{i=1}^n \tilde{f}_i \in C_c(G \setminus G_X) \quad \text{and} \quad \|\tilde{f}_i\|_\infty < 2^n 2\varepsilon = 2^{n+1}\varepsilon \quad \text{for} \quad i = 1, \ldots, n. \]

Then the functions $\tilde{f}_1, \ldots, \tilde{f}_{n+1}$ have the required properties.

Now, if $f \in C_c(G)$ satisfies $f|_{G_X} = 0$, we write $f = \sum_{i=1}^n f_i$ for some $f_i \in C_c(U_i)$ and open bisections U_i and apply the above claim to an arbitrarily small $\varepsilon > 0$. Recalling that the norms $\|\cdot\|$ and $\|\cdot\|_\infty$ coincide on $C_c(U)$ for any arbitrary small $\varepsilon > 0$. Recalling that the norms $\|\cdot\|$ and $\|\cdot\|_\infty$ coincide on $C_c(U)$ for any open bisection U, we conclude that there is a function $\tilde{f} = \sum_{i=1}^n \tilde{f}_i \in C_c(G)$ such that $f - \tilde{f} \in C_c(G \setminus G_X)$ and $\|\tilde{f}\| \leq n2^n \varepsilon$. Hence f lies in the closure of $C_c(G \setminus G_X)$. \hfill \Box

Corollary 1.2. We have a short exact sequence
\[0 \to C^*(G \setminus G_X) \to C^*(G) \to C^*(G_X) \to 0. \]

Proof. Since the restriction map $C_c(G) \to C_c(G_X)$ is surjective, the fact that the sets in (1) and (2) coincide implies that we have an exact sequence $C^*(G \setminus G_X) \to C^*(G) \to C^*(G_X) \to 0$. Therefore we only need to explain why the map $C^*(G \setminus G_X) \to C^*(G)$ is injective. For this it suffices to show that any nondegenerate representation $\pi: C^*(G \setminus G_X) \to B(H)$ extends to $C^*(G)$. Since $C_c(G \setminus G_X)$ is an ideal of $C_c(G)$, we can define a representation $\tilde{\pi}$ of $C_c(G)$ on $\pi(C_c(G \setminus G_X)) H$ by possibly unbounded operators in the standard way: for $f \in C_c(G)$, put $\tilde{\pi}(f)\pi(f')\xi = \pi(f \ast f')\xi$. On $C_c(G(0))$ this agrees with the unique extension of $\pi|_{C_0(G(0) \setminus X)}$ to a representation of $C_0(G(0))$. Hence $\|\tilde{\pi}(f)\| \leq \|f\|_\infty$ for $f \in C_c(G(0))$, and then $\|\tilde{\pi}(f)\| \leq \|f\|$ for any open bisection U and $f \in C_c(U)$, as $f \ast f \in C_c(G(0))$. \hfill \Box

Remark 1.3 (cf. [CN22] Remark 2.9). Since the ideal $C_c(G \setminus G_X) \subset C_c(G)$ is dense with respect to the norm on $C^*(G)$ in the space of functions $f \in C_c(G)$ such that $f|_{G_X} = 0$, it is also dense with respect to the reduced norm. It follows that there is a C^*-norm on $C_c(G_X)$ dominating the reduced norm such that for the corresponding completion $C^*_e(G_X)$ the sequence
\[0 \to C^*_e(G \setminus G_X) \to C^*_e(G) \to C^*_e(G_X) \to 0 \]
is exact. \hfill \Diamond

We now turn to the question when a set of representations ρ_y, $y \in Y \subset G(0)$, determines the reduced norm on $C_c(G)$. It is easy to see that if Y is G-invariant, which we may always assume since the equivalence class of ρ_x depends only on the orbit of x, a necessary condition is that Y is dense in $G(0)$. But this is not enough in the non-Hausdorff case. We start with the following sufficient condition.
Proposition 1.4. Let \mathcal{G} be a locally compact étale groupoid, $Y \subset \mathcal{G}^{(0)}$ and $x \in \mathcal{G}^{(0)} \setminus Y$. Assume there is a net $(y_i)_i$ in Y such that x is the only accumulation point of $(y_i)_i$ in $\mathcal{G}^x = \mathcal{G}_x \cap \mathcal{G}^x$. Then the representation ρ_x of $C^*_r(\mathcal{G})$ is weakly contained in $\bigoplus_{y \in Y} \rho_y$.

Proof. We may assume that $y_i \to x$. For every $g \in \mathcal{G}_x$ we then choose a net $(g_i)_i$ converging to g as follows. Let U be an open bisection containing g. Then for all i large enough we have $y_i \in s(U)$, and for every such i we take the unique point $g_i \in U \cap \mathcal{G}_{y_i}$. For all other indices i we put $g_i = y_i$.

Take $g, h \in \mathcal{G}_x$. Observe that by our assumptions if $g \neq h$, then $g_i \neq h_i$ for all i large enough, since otherwise we could first conclude that $r(g) = r(h)$ and then that $g^{-1}h \in \mathcal{G}_x^e$ is an accumulation point of $(y_i)_i$.

Next, take an open bisection V and $f \in C_c(V)$. Then

$$(\rho_x(f)\delta_g, \delta_h) = f(hg^{-1}), \quad (\rho_{y_i}(f)\delta_{g_i}, \delta_{h_i}) = f(h_i^{-1}g_i^{-1}).$$

These equalities and the observation above imply that in order to prove the proposition it suffices to show that $f(h_i^{-1}g_i^{-1}) \to f(hg^{-1})$.

Assume first that $hg^{-1} \notin V$. As V is open and $h_i^{-1}g_i^{-1} \to hg^{-1}$, it follows that eventually $h_i^{-1}g_i^{-1} \notin V$. But then $f(h_i^{-1}g_i^{-1}) \to f(hg^{-1})$ by the continuity of f on V.

Assume next that $hg^{-1} \in V$. It is then enough to show that eventually $h_i^{-1}g_i^{-1}$ does not lie in the support K of $f|_V$. Suppose this is not the case. Then by passing to a subnet we may assume that $h_i^{-1}g_i^{-1} \to w$ for some $w \in K$. Since we also have $h_i^{-1}g_i^{-1} \to hg^{-1}$, we must have $r(w) = r(h)$ and $s(w) = r(g)$. Then $h^{-1}wg \in \mathcal{G}_x^e$, $h^{-1}wg \neq x$ and $y_i = h_i^{-1}(h_i^{-1}g_i^{-1})g_i \to h^{-1}wg$, which contradicts our assumptions. \qed

Remark 1.5. The above proposition can also be deduced from results in [KS02, Section 2]. In order to make the connection to [KS02] more transparent, let us reformulate the assumptions of Proposition 1.4 as follows. The functions $f|_{\mathcal{G}^{(0)}}$ for $f \in C_c(\mathcal{G})$ generate a C^*-subalgebra B of the algebra of bounded Borel functions on $\mathcal{G}^{(0)}$ equipped with the supremum-norm. Let Z be the spectrum of B. As every point of $\mathcal{G}^{(0)}$ defines a character of B, we have an injective Borel map $i: \mathcal{G}^{(0)} \to Z$ with dense image. We claim that a net as in Proposition 1.4 exists if and only if $i(x) \in \bar{i(Y)}$.

In order to show this, assume first that $(y_i)_i$ is a net in Y converging to x and having no other accumulation points in \mathcal{G}_x^e. We claim that then $i(y_i) \to i(x)$. It suffices to show that $f(y_i) \to f(x)$ for every open bisection U and $f \in C_c(U)$. If $x \in U$, this is true by continuity of $f|_U$. If $x \notin U$, then the net $(y_i)_i$ does not have any accumulation points in U and therefore it eventually lies outside the support of $f|_U$, so in fact $f(y_i) \to f(x)$. Conversely, assume we have a net $(y_i)_i$ in Y such that $i(y_i) \to i(x)$. Then obviously $y_i \to x$. Take $g \in \mathcal{G}_x^e \setminus \{x\}$, an open bisection U containing g and $f \in C_c(U)$ such that $f(g) \neq 0$. As $f(y_i) \to f(x) = 0$ by assumption, we conclude that g cannot be an accumulation point of $(y_i)_i$.

Remark 1.6. For some $n \geq 1$, there are elements $g_1, \ldots, g_n \in \mathcal{G}_x^e \setminus \{x\}$, open bisections U_1, \ldots, U_n such that $g_k \in U_k$ and a neighbourhood U of x in $\mathcal{G}^{(0)}$ satisfying $Y \cap U \subset U_1 \cup \cdots \cup U_n$.

Indeed, if this condition is satisfied, then any net in Y converging to x has one of the elements g_1, \ldots, g_n as its accumulation point. Conversely, assume Condition 1.6 is not satisfied. For every $g \in \mathcal{G}_x^e \setminus \{x\}$ choose an open bisection U_g containing g. Then for every finite set $F = \{g_1, \ldots, g_n\} \subset \mathcal{G}_x^e \setminus \{x\}$ and every neighbourhood U of x in $\mathcal{G}^{(0)}$ we can find $y_{F,U} \in (Y \cap U) \setminus (U_{g_1} \cup \cdots \cup U_{g_n})$. Then $(y_{F,U})_{F,U}$, with the obvious partial order defined by inclusion of F’s and containment of U’s, is the required net.
Remark 1.7. Following the terminology of [KM21], a point \(x \in \mathcal{G}^{(0)} \) is called dangerous if there is a net in \(\mathcal{G}^{(0)} \) converging to \(x \) and to a point in \(G^+ \setminus \{ x \} \). Therefore the set of points \(x \in (\mathcal{G}^{(0)} \cap Y) \setminus Y \) satisfying Condition 1.6 is a subset of dangerous points. As a consequence, if \(Y \) is dense in \(\mathcal{G}^{(0)} \) and \(\mathcal{G} \) can be covered by countably many open bisections, then by [KM21] Lemma 7.15 the set of points \(x \in \mathcal{G}^{(0)} \setminus Y \) satisfying Condition 1.6 is meager in \(\mathcal{G}^{(0)} \).

If \(Y \) is \(\mathcal{G} \)-invariant and Condition 1.6 is satisfied for \(n = 1 \), then \(\rho_x \) is not weakly contained in \(\bigoplus_{y \in Y} \rho_y \). In order to see this, take an open neighbourhood \(V \subset U \) of \(x \) such that \(V \subset \tau(U_1) \cap s(U_1) \) and a function \(f \in C_c(V) \) such that \(f(x) \neq 0 \). Then it is easy to check that \(0 \neq f * (1_{U_1} - 1_U) * f \in \ker \rho_y \) for all \(y \in Y \). A simple example of such a situation is the real line with a double point at 0, cf. [KS02] Example 2.5.

But in general, as we will see soon, Condition 1.6 is not enough to conclude that \(\rho_x \) is not weakly contained in \(\bigoplus_{y \in Y} \rho_y \). A sufficient extra condition is given by the following proposition.

Proposition 1.8. Assume \(\mathcal{G} \) is a locally compact étale groupoid, \(Y \subset \mathcal{G}^{(0)} \) is a \(\mathcal{G} \)-invariant subset and \(x \in \mathcal{G}^{(0)} \setminus Y \) is a point satisfying Condition 1.6 such that
\[
\sum_{k=1}^{n} \frac{1}{\text{ord}(g_k)} < 1,
\]
where \(\text{ord}(g_k) \) is the order of \(g_k \) in \(G_x^* \). Then \(\rho_x \) is not weakly contained in \(\bigoplus_{y \in Y} \rho_y \).

For the proof we need the following simple lemma.

Lemma 1.9. Let \(A = C^*(a) \) be a \(C^* \)-algebra generated by a contraction \(a \). Assume that for some \(m \in \{ 2, 3, \ldots, +\infty \} \) we have a \(*\)-homomorphism \(\pi: A \to C^*(\mathbb{Z}/m\mathbb{Z}) \) such that \(\pi(a) = u \), where \(u \) is the unitary generator of \(C^*(\mathbb{Z}/m\mathbb{Z}) \). Take numbers \(\alpha > 0 \) and \(\varepsilon > 0 \) and denote by \(\Omega_{\alpha,\varepsilon} \) the convex set of states \(\varphi \) on \(A \) such that
\[
\varphi \geq \alpha \sum_{l=1}^{p} \lambda_l \chi_l
\]
for some \(p \geq 1 \), \(\lambda_1, \ldots, \lambda_p \geq 0 \), \(\sum_{l=1}^{p} \lambda_l = 1 \), and characters \(\chi_1, \ldots, \chi_p: A \to \mathbb{C} \) such that \(|1 - \chi_l(a)| < \varepsilon \) for all \(l \). Then, for every \(\alpha > 1/m \), there is \(\varepsilon > 0 \) depending only on \(m \) and \(\alpha \) such that \(\tau \circ \pi \) does not belong to the weak* closure of \(\Omega_{\alpha,\varepsilon} \), where \(\tau \) is the canonical trace on \(C^*(\mathbb{Z}/m\mathbb{Z}) \).

Here we use the convention \(\mathbb{Z}/m\mathbb{Z} = \mathbb{Z} \) for \(m = +\infty \).

Proof. Assume first that \(m \) is finite. Consider the positive element \(b \in A \) defined by
\[
b = \frac{1}{m^2} \sum_{k,l=1}^{m} (a^k)^* a^l.
\]
Then \(\tau(\pi(b)) = 1/m \). On the other hand, if \(\chi \) is a character on \(A \) such that \(|1 - \chi(a)| < \varepsilon \), then
\[
|1 - \chi(a)^k| \leq k|1 - \chi(a)| < m\varepsilon \quad \text{for all} \quad 1 \leq k \leq m,
\]
hence, assuming \(m\varepsilon < 1 \), we have
\[
\chi(b) = \left| \frac{1}{m} \sum_{k=1}^{m} \chi(a)^k \right|^2 > (1 - m\varepsilon)^2
\]
and therefore
\[
\varphi(b) \geq \alpha(1 - m\varepsilon)^2 \quad \text{for all} \quad \varphi \in \Omega_{\alpha,\varepsilon}.
\]
It follows that \(\tau \circ \pi \notin \Omega_{\alpha,\varepsilon} \) as long as \(\varepsilon \) is small enough so that \(\alpha(1 - m\varepsilon)^2 > 1/m \).

Assume now that \(m = +\infty \). Choose \(m' \geq 1 \) such that \(1/m' < \alpha \). Then the same arguments as above with \(m \) replaced by \(m' \) show that \(\tau \circ \pi \notin \Omega_{\alpha,\varepsilon} \) as long as \(1 - m'\varepsilon > 1/\sqrt{m'\alpha} \). \(\square \)
Proof of Proposition 1.8. Let g_1, \ldots, g_n be as in the formulation of the proposition and U, U_1, \ldots, U_n be given by Condition 1.6. Choose functions $f_k \in C_c(U_k)$ such that $0 \leq f_k \leq 1$ and $f_k(g_k) = 1$. Consider the C^*-subalgebras A_k of $C^*_r(G)$ generated by f_k.

Consider the restriction map $C_c(G) \to C_c(G^*_k)$, $f \mapsto f|G^*_k$. It extends to a completely positive contraction $\vartheta_{x,r} : C^*_r(G) \to C^*_r(G^*_k)$, with the elements f_k contained in its multiplicative domain, see [CN22] Lemmas 1.2 and 1.4. By restricting $\vartheta_{x,r}$ to A_k we therefore get \ast-homomorphisms $\pi_k : A_k \to C^*_r(G^*_k)$. The image of π_k is $C^*(G_k) \subset C^*_r(G^*_k)$, where G_k is the subgroup of G^*_k generated by g_k. Therefore if we let $m_k = \text{ord}(g_k)$, then we can view each π_k as a \ast-homomorphism $A_k \to C^*(\mathbb{Z}/m_k\mathbb{Z})$.

Choose numbers $\alpha_k > 1/m_k$ such that $\sum_{k=1}^n \alpha_k < 1$. Let $\varepsilon > 0$ be given by Lemma 1.3 for the homomorphism $\pi_k : A_k \to C^*(\mathbb{Z}/m_k\mathbb{Z})$, $\alpha = \alpha_k$ and $a = f_k$. Put $\varepsilon = \min_{1 \leq k \leq n} \varepsilon_k$. Choose an open neighbourhood V of x in $G^{(0)}$ such that $V \subset U$ and

$$f_k(g) > 1 - \varepsilon \quad \text{for all} \quad g \in r^{-1}(V) \cap U_k \quad \text{and} \quad 1 \leq k \leq n.$$

(1.1)

Let $f \in C_c(V)$ be such that $0 \leq f \leq 1$ and $f(x) = 1$.

Now, denote $\bigoplus_{y \in Y} \rho_y$ by ρ_Y and assume that ρ_x is weakly contained in ρ_Y. Denoting the canonical trace on $C^*_r(G^*_k)$ by τ, it follows that $\tau \circ \vartheta_{x,r} = (\rho_x(\cdot)\delta_x, \delta_x)$ lies in the weak* closure of the states φ of the form

$$\varphi = \sum_{i=1}^N (\rho_Y(\cdot)\xi_i, \xi_i),$$

(1.2)

where ξ_i are finitely supported functions on $s^{-1}(Y)$ such that

$$\sum_{i=1}^N ||\xi_i||^2 = \sum_{i=1}^N \sum_{g \in s^{-1}(Y)} |\xi_i(g)|^2 = 1.$$

As $\tau(\vartheta_{x,r}(f)) = f(x) = 1$, it suffices to consider states such that

$$\varphi(f) > \sum_{k=1}^n \alpha_k.$$

Since

$$\varphi(f) = \sum_{i=1}^N \sum_{g \in s^{-1}(Y)} f(r(g))|\xi_i(g)|^2 = \sum_{i=1}^N \sum_{g \in r^{-1}(Y)} f(r(g))|\xi_i(g)|^2,$$

where we used that $r^{-1}(Y) = s^{-1}(Y)$ by the invariance of Y, and f is zero outside V, this implies that

$$\sum_{i=1}^N \sum_{g \in r^{-1}(Y \cap V)} |\xi_i(g)|^2 > \sum_{k=1}^n \alpha_k.$$

(1.3)

We claim that then for some k we must have $\varphi|_{A_k} \in \Omega^{(k)}_{\alpha_k, \varepsilon}$, where $\Omega^{(k)}_{\alpha_k, \varepsilon}$ is defined as in Lemma 1.9.

Denote by X_k the finite set of pairs (i, g), $1 \leq i \leq N$, $g \in r^{-1}(Y \cap V)$, such that $\xi_i(g) \neq 0$ and $r(g) \in U_k$. As $Y \cap V \subset U_1 \cup \cdots \cup U_n$ by assumption, the inequality (1.3) implies

$$\sum_{k=1}^n \sum_{(i, g) \in X_k} |\xi_i(g)|^2 > \sum_{k=1}^n \alpha_k.$$

(1.4)

It follows that for some k we have

$$\sum_{(i, g) \in X_k} |\xi_i(g)|^2 > \alpha_k.$$

7
If \((i,g) \in X_k\), then
\[
\rho_Y(f_k)\delta_g = \rho_Y(f_k^g)\delta_g = f(r(g))\delta_g.
\]
Therefore every such point \((i,g)\) defines a one-dimensional subrepresentation of \(\rho_Y|_{A_k}\) and a character \(\chi_{i,g}: A_k \to \mathbb{C}\) satisfying \(\chi_{i,g}(f_k) > 1 - \varepsilon\) by (1.4). Then on \(A_k\) we have
\[
(\rho_Y(\cdot)\xi_i, \xi_i) = (\rho_Y(\cdot)\tilde{\xi}_i, \tilde{\xi}_i) + \sum_{g(i,g) \in X_k} |\xi_i(g)|^2 \chi_{i,g},
\]
where \(\tilde{\xi}_i(g) = \xi_i(g)\) if \((i,g) \notin X_k\) and \(\tilde{\xi}_i(g) = 0\) otherwise. By (1.4) this implies that \(\varphi|_{A_k} \in \Omega_{\alpha_k,\varepsilon}\), proving our claim.

It follows that if there is a net of states of the form (1.2) that converges weakly* to \(\tau \circ \vartheta_{x,r}\), then by passing to a subnet \((\varphi_j)_j\) we can find an index \(k\), \(1 \leq k \leq n\), such that \(\varphi_j|_{A_k} \in \Omega_{\alpha_k,\varepsilon}\) for all \(j\). This contradicts Lemma 1.9.

By combining this with Proposition 1.8 we get the following criterion.

Corollary 1.10. Let \(G\) be a locally compact étale groupoid, \(Y \subset G^{(0)}\) a \(G\)-invariant subset and \(x \in (G^{(0)} \cap Y) \setminus Y\). Assume that for every finite set of distinct cyclic nontrivial subgroups \(G_1, \ldots, G_n\) of \(G_x\) we have
\[
\sum_{k=1}^n \frac{1}{|G_k|} < 1. \tag{1.5}
\]
Then \(\rho_x\) is weakly contained in \(\bigoplus_{y \in Y} \rho_y\) if and only if Condition 1.6 is not satisfied (equivalently, if and only if there is a net in \(Y\) such that \(x\) is its unique accumulation point in \(G_x\)).

Proof. The “only if” part follows from Proposition 1.8 by observing that if Condition 1.6 is satisfied for \(g_1, \ldots, g_n\) and some elements \(g_k\) and \(g_l\) \((k \neq l)\) generate the same subgroup, then Condition 1.6 is still satisfied if we omit \(g_k\) or \(g_l\). Therefore in Condition 1.6 we may assume in addition that the elements \(g_1, \ldots, g_n\) generate different subgroups.

Condition (1.5) is most probably not optimal, but as the following example shows, some assumptions are needed for the conclusion of the corollary to be true.

Example 1.11. Let \(X\) be the disjoint union of countably many copies of \(\{0,1\}\). Consider the involutive map \(S: X \to X\) that acts as a flip on every copy of \(\{0,1\}\). Take three copies \(X_1, X_2, X_3\) of \(X\) and let \(X^+\) be the one-point compactification of the discrete set \(X_1 \sqcup X_2 \sqcup X_3\). Define an action of \(\Gamma = (\mathbb{Z}/2\mathbb{Z})^2\) on \(X^+\) as follows: the element \((1,0)\) acts by \(S\) on \(X_1\) and \(X_2\) and trivially on \(X_3\) and \(\infty\), the element \((0,1)\) acts by \(S\) on \(X_2\) and \(X_3\) and trivially on \(X_1\) and \(\infty\). Consider the corresponding groupoid of germs \(\mathcal{G}\), so \(\mathcal{G}\) is the quotient of the transformation groupoid \(\Gamma \times X^+\) by the equivalence relation defined by \((h,x) \sim (g,x)\) iff \(hy = gx\) for all \(g\) in a neighbourhood of \(x\).
Thus, if we ignore the topology on \(\mathcal{G}\), our groupoid is the disjoint union of \(\Gamma \times \{\infty\} \cong \Gamma\) and three copies of \((\mathbb{Z}/2\mathbb{Z}) \ltimes_s X\).

Consider the set \(Y = X^+ \setminus \{\infty\}\) and the point \(x = \infty\). Condition 1.6 is satisfied for \(n = 3\), since \(Y\) is discrete and for every point \(y \in Y\) there is \(g \in \Gamma \setminus \{0\}\) that acts trivially on \(y\). We claim that nevertheless \(\rho_x\) is weakly contained in \(\bigoplus_{y \in Y} \rho_y\).

We have a short exact sequence
\[
0 \to C^*_r(\mathcal{G} \setminus G_x^+) \to C^*_r(\mathcal{G}) \xrightarrow{\rho_x} C^*(\Gamma) \to 0.
\]
It has a canonical splitting \(\psi: C^*(\Gamma) \to C^*_r(\mathcal{G})\) defined as follows. For every \(g \in \Gamma\) consider the image \(U_g\) of the set \(\{(g,x^+) \mid x^+ \in X^+\} \subset \Gamma \times X^+\) in \(\mathcal{G}\). The sets \(U_g \subset \mathcal{G}\) are bisections and their characteristic functions span a copy of \(C^*(\Gamma)\) in \(C^*_r(\mathcal{G})\). We define \(\psi(\lambda_g) = \mathbb{1}_{U_g}\).
For \(i = 1, 2, 3 \), let \(x_{in} \) be 0 in the \(n \)th copy of \(\{0, 1\} \) in \(X_i \). Then every \(f \in C_c(G \setminus G_x^0) \) is contained in \(\ker \rho_{x_{in}} \) for all \(n \) sufficiently large. On the other hand, \(\rho_{x_{in}} \circ \psi \) is equivalent to the representation \(\lambda_i \) obtained by composing the regular representation of \(C^*(\mathbb{Z}/2\mathbb{Z}) \) with the homomorphism \(C^*(\Gamma) \rightarrow C^*(\mathbb{Z}/2\mathbb{Z}) \) defined by one of the three nontrivial homomorphisms \(\Gamma \rightarrow \mathbb{Z}/2\mathbb{Z} \). Namely, for \(i = 1 \) we get the homomorphism that maps \((1, 0)\) and \((1, 1)\) into \(1 \in \mathbb{Z}/2\mathbb{Z} \), for \(i = 2 \) it maps \((1, 0)\) and \((0, 1)\) into \(1 \), and for \(i = 3 \) it maps \((0, 1)\) and \((1, 1)\) into \(1 \). As \(\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \) is a faithful representation of \(C^*(\Gamma) \) and \(C_c(G \setminus G_x^0) + \psi(C^*(\Gamma)) \) is dense in \(C^*_r(G) \), it follows that \(\rho_x \) is weakly contained in \(\bigoplus_{n=1}^{\infty} \bigoplus_{i=1}^{3} \rho_{x_{in}} \).

We finish the section with a short discussion of essential groupoid \(C^* \)-algebras. Following [KM21], define
\[
J_{\text{sing}} = \{ a \in C^*_r(G) \mid \text{the set of } x \in G^{(0)} \text{ such that } \rho_x(a) \delta_x \neq 0 \text{ is meager} \}.
\]
This is a closed ideal in \(C^*_r(G) \); in order to see that it is a right ideal, note that if \(U \subset G \) is an open bisection and \(f \in C_c(U) \), then for all \(x \in s(U) \) we have
\[
\| \rho_x(a \ast f) \delta_x \| = |f(g_x)| \| \rho_{T(x)}(a) \delta_{T(x)} \|,
\]
where \(g_x \) is the unique element in \(U \cap G_x \) and \(T : s(U) \rightarrow r(U) \) is the homeomorphism defined by \(T(x) = r(g_x) \). The essential groupoid \(C^* \)-algebra of \(G \) is defined by
\[
C^*_{\text{ess}}(G) = C^*_r(G)/J_{\text{sing}}.
\]

Proposition 1.12 (cf. [KM21 Proposition 7.18]). Assume \(G \) is a locally compact étale groupoid that can be covered by countably many open bisections. Let \(D_0 \subset G^{(0)} \) be the set of points \(x \in G^{(0)} \) satisfying the following property: there exist elements \(g_1, \ldots, g_n \in G_x^0 \setminus \{x\} \), open bisections \(U_1, \ldots, U_n \) and an open neighbourhood \(U \) of \(x \) in \(G^{(0)} \) such that \(g_k \in U_k \) for all \(k \) and \(U \setminus (U_1 \cup \cdots \cup U_n) \) has empty interior. Let \(Y \) be a dense subset of \(G^{(0)} \setminus D_0 \). Then
\[
J_{\text{sing}} = \{ a \in C^*_r(G) \mid \text{the set of } x \in G^{(0)} \text{ such that } \rho_x(a) \neq 0 \text{ is meager} \} = \bigcap_{y \in Y} \ker \rho_y.
\]
In particular, if \(D_0 = \emptyset \), then \(J_{\text{sing}} = 0 \).

Before we turn to the proof, let us make the connection to [KM21] more explicit. Let \(D \subset G^{(0)} \) be the set of dangerous points [KM21], that is, points \(x \in G^{(0)} \) such that there is a net in \(G^{(0)} \) converging to \(x \) and to an element of \(G_x^0 \setminus \{x\} \). It is easy to see then that \(D_0 \subset D \). (Should the points of \(D_0 \) be called extremely dangerous?)

Proof of Proposition 1.12. Let \((U_n) \) be a sequence of open bisections covering \(G \). For every \(n \), let \(T_n : s(U_n) \rightarrow r(U_n) \) be the homeomorphism defined by \(U_n \) and \(g_n : s(U_n) \rightarrow U_n \) be the inverse of \(s : U_n \rightarrow s(U_n) \), so \(T_n(x) = r(g_n(x)) \). Similarly to (1.6), for all \(a \in C^*_r(G) \) and \(x \in s(U_n) \), we have
\[
\| \rho_x(a) \delta_{g_n(x)} \| = \| \rho_{T_n(x)}(a) \delta_{T_n(x)} \|.
\]
It follows that if \(a \in J_{\text{sing}} \), then the set \(A_n \) of points \(x \in s(U_n) \) such that \(\rho_x(a) \delta_{g_n(x)} \neq 0 \) is meager in \(G^{(0)} \). Then the set \(\cup_n A_n \) is meager as well. Since it coincides with the set of points \(x \in G^{(0)} \) such that \(\rho_x(a) \neq 0 \), this proves the first equality of the proposition.

For the second equality, observe first that if \(x \in G^{(0)} \setminus D \) and \(\rho_x(a) \neq 0 \) for some \(a \in C^*_r(G) \), then \(\rho_z(a) \neq 0 \) for all \(z \) close to \(x \). This follows from [KM21] Lemma 7.15 or our Proposition 1.14 since otherwise we could find a net \((x_i) \) converging to \(x \) such that \(\rho_x(a) = 0 \) for all \(i \) and then conclude that \(\rho_x(a) = 0 \), as \(\rho_x \) is weakly contained in \(\bigoplus_{i=1}^{\infty} \rho_{x_i} \).

The observation implies that if \(a \in \cap_{y \in Y} \ker \rho_y \), then \(\rho_x(a) = 0 \) for all \(x \in \bar{Y} \setminus D \). The set \(D \) is meager by [KM21] Lemma 7.15. As \(D_0 \subset D \), it follows that \(Y \) is dense in \(G^{(0)} \). Therefore if \(a \in \cap_{y \in Y} \ker \rho_y \), then \(\rho_x(a) \) can be nonzero only for elements \(x \) of the meager set \(D \), hence \(a \in J_{\text{sing}} \).
Conversely, assume \(a \in J_{\text{sing}} \). Then the observation above implies that \(\rho_x(a) = 0 \) for all \(x \in G^{(0)} \setminus D \). Therefore to finish the proof it suffices to show that \(\rho_x(a) = 0 \) for all \(x \in D \setminus D_0 \). By Proposition \[4.3\] for this, in turn, it suffices to show that for every \(x \in D \setminus D_0 \) Condition \[4.6\] is not satisfied for \(Y = G^{(0)} \setminus D \). Assume this condition is satisfied for some \(x \in D \), that is, there exist elements \(g_1, \ldots, g_n \in G_{x}^{(0)} \setminus \{x\} \), open bisections \(U_1, \ldots, U_n \) such that \(g_k \in U_k \) and a neighbourhood \(U \) of \(x \) in \(G^{(0)} \) satisfying \(U \setminus D \subset U_1 \cup \cdots \cup U_n \). As the set \(D \) is meager, this implies that \(x \in D_0 \). □

2. \(\text{C}^* \)-algebras associated with left cancellative monoids

Let \(S \) be a left cancellative monoid with identity element \(e \). Consider its left regular representation
\[
\lambda : S \to B(\ell^2(S)), \quad \lambda_s \delta_t = \delta_{st}.
\]
The reduced \(\text{C}^* \)-algebra \(C_r^*(S) \) of \(S \) is defined as the \(\text{C}^* \)-algebra generated by the operators \(\lambda_s, s \in S \).

Consider the left inverse hull \(I_e(S) \) of \(S \), that is, the inverse semigroup of partial bijections on \(S \) generated by the left translations \(S \to S \). Whenever convenient we view \(S \) as a subset of \(I_e(S) \) by identifying \(s \) with the left translation by \(s \). For \(s \in S \), we denote by \(s^{-1} \in I_e(S) \) the bijection \(ss^{-1} \to S \) inverse to the bijection \(S \to ss^{-1}, t \mapsto st \). If the map with the empty domain is present in \(I_e(S) \), we denote it by 0.

Let \(E(S) \) be the abelian semigroup of idempotents in \(I_e(S) \). Every element of \(E(S) \) is the identity map on its domain of definition \(X \subseteq S \), which is a right ideal in \(S \) of the form
\[
X = s_1^{-1}t_1 \ldots s_n^{-1}t_nS
\]
for some \(s_1, \ldots, s_n, t_1, \ldots, t_n \in S \). Such right ideals are called constructible \[Li12\]. We denote by \(J(S) \) the collection of all right constructible ideals. It is a semigroup under the operation of intersection, and we have an isomorphism \(E(S) \cong J(S) \). Denote by \(p_X \in E(S) \) the idempotent corresponding to \(X \in J(S) \).

Denote by \(\widehat{E(S)} \) the collection of semi-characters of \(E(S) \), that is, semigroup homomorphisms \(E(S) \to \{0,1\} \) that are not identically zero, where \(\{0,1\} \) is considered as a semigroup under multiplication. Note that every semi-character \(\chi \in \widehat{E(S)} \) must satisfy \(\chi(p_S) = 1 \). If \(0 \in I_e(S) \), then denote by \(\chi_0 \) the semi-character that is identically one. This is the unique semi-character satisfying \(\chi_0(0) = 1 \). The set \(\widehat{E(S)} \) is compact Hausdorff in the topology of pointwise convergence.

Consider the Paterson groupoid \(G(I_e(S)) \) associated with \(I_e(S) \) \[Pat99\]:
\[
G(I_e(S)) = \Sigma / \sim_P, \quad \text{where} \quad \Sigma = \{(g, \chi) \in I_e(S) \times \widehat{E(S)} | \chi(g^{-1}g) = 1\}
\]
and the equivalence relation \(\sim_P \) is defined by declaring \((g_1, \chi_1) \) and \((g_2, \chi_2) \) to be equivalent if and only if
\[
\chi_1 = \chi_2 \quad \text{and there exists} \quad p \in E(S) \quad \text{such that} \quad g_1p = g_2p \quad \text{and} \quad \chi_1(p) = 1.
\]
We denote by \([g, \chi]\) the class of \((g, \chi) \in \Sigma \) in \(G(I_e(S)) \). The product is defined by
\[
[g, \chi][h, \psi] = [gh, \psi] \quad \text{if} \quad \chi = \psi(h^{-1} \cdot h).
\]
In particular, the unit space \(G(I_e(S))^{(0)} \) can be identified with \(\widehat{E(S)} \) via the map \(\widehat{E(S)} \to G(I_e(S)) \), \(\chi \mapsto [p_S, \chi] \), the source and range maps are given by
\[
s([g, \chi]) = \chi, \quad r([g, \chi]) = \chi(g^{-1} \cdot g),
\]
while the inverse is given by \([g, \chi]^{-1} = [g^{-1}, \chi(g^{-1} \cdot g)]\).

For a subset \(U \) of \(\widehat{E(S)} \), define
\[
D(g, U) = \{[g, \chi] \in G(I_e(S)) | \chi \in U\}.
\]
Then the topology on $G(I_{\ell}(S))$ is defined by taking as a basis the sets $D(g,U)$, where $g \in I_{\ell}(S)$ and U is an open subset of the clopen set $\{\chi \in \hat{E}(S) \mid \chi(g^{-1}g) = 1\}$. This turns $G(I_{\ell}(S))$ into a locally compact, but not necessarily Hausdorff, étale groupoid.

For every $s \in S$ define a semi-character $\chi_s \in \hat{E}(S)$ by

$$\chi_s(p_X) = 1_X(s).$$

The following lemma is a groupoid version of the observation of Norling [Nor14, Section 3] on a connection between the regular representations of S and $I_{\ell}(S)$. A closely related result was also proved by Spielberg [Spi20, Proposition 11.4].

Lemma 2.1. Put $G = G(I_{\ell}(S))$ and $Z = G^{(0)} = \widehat{E(S)}$. Then the map $S \to G_{\chi_e}$, $s \mapsto [s, \chi_e]$, is a bijection. If we identify S with G_{χ_e} using this map, so that the representation ρ_{χ_e} of $C^*_r(G)$ is viewed as a representation on $\ell^2(S)$, then

$$\rho_{\chi_e}(C^*_r(G)) = C^*_r(S) \text{ and } \rho_{\chi_e}(1_D(s,Z)) = \lambda_s \text{ for all } s \in S.$$

Proof. Since $\chi_e(p_J) = 0$ for every constructible ideal J different from S, we have $[s, \chi_e] = [t, \chi_e]$ only if $s = t$. This shows that the map $S \to G_{\chi_e}$, $s \mapsto [s, \chi_e]$, is injective. In order to prove that it is surjective, assume that $(g, \chi_e) \in S$, that is, $\chi_e(g^{-1}g) = 1$, for some $g \in I_{\ell}(S)$. This means that the domain of definition of g contains e, and since this domain is a right ideal, it must coincide with S. But then if $s \in S$ is the image of e under the action of g, we must have $g(t) = g(e)t = st$ for all $t \in S$, so $g = s$, which proves the surjectivity.

Next, as $\chi_e(t^{-1}, t) = \chi_t$ and $[s, \chi_e][t, \chi_e] = [st, \chi_e]$, we immediately get that $\rho_{\chi_e}(1_D(s,Z)) = \lambda_s$ for all $s \in S$. It is not difficult to see that the C^*-algebra $C^*_r(G)$ is generated by the elements $1_D(s,Z)$. (One can also refer to [Pat99, Theorem 4.4.2] that shows that the C^*-algebra $C^*_r(G)$ is the reduced C^*-algebra of the inverse semigroup $I_{\ell}(S)$, which is generated by S.) Hence $\rho_{\chi_e}(C^*_r(G))$ is exactly $C^*_r(S)$. \qed

This lemma leads naturally to a candidate for a groupoid model for $C^*_r(S)$: define

$$G_P(S) := G(I_{\ell}(S))\Omega(S),$$

where $\Omega(S) \subset G(I_{\ell}(S))^{(0)}$ is the closure of the $G(I_{\ell}(S))$-orbit of χ_e. As $\chi_e(s^{-1} \cdot s) = \chi_s$, by Lemma 2.1 this orbit is exactly the set of semi-characters χ_s, $s \in S$. The closure of this set is known and easy to find, cf. [CELY17, Corollary 5.6.26]: the set $\Omega(S) = \{\chi_s \mid s \in S\} \subset \hat{E}(S)$ consists of the semi-characters χ satisfying the properties

(i) if $0 \in I_{\ell}(S)$, then $\chi \neq \chi_0$ (equivalently, $\chi(0) = 0$);
(ii) if $\chi(p_X) = 1$ and $X = X_1 \cup \cdots \cup X_n$ for some $X, X_1, \ldots, X_n \in J(S)$, then $\chi(p_{X_i}) = 1$ for at least one index i.

The groupoid $G_P(S)$ is denoted by $I_{\ell} \ltimes \Omega$ in [Li21].

We are now in the setting of Section 1 with $G = G_P(S)$ and $Y = \{\chi_s \mid s \in S\}$ a dense invariant subset of $G^{(0)}$. Negation of Condition 1.6 leads to the following definition.

Definition 2.2. We say that S is strongly C^*-regular if, given elements $h_1, \ldots, h_n \in I_{\ell}(S)$ and constructible ideals $X, X_1, \ldots, X_m \in J(S)$ satisfying

$$\emptyset \neq X \setminus \bigcup_{i=1}^m X_i \subset \bigcup_{k=1}^n \{s \in S : h_k s = s\},$$

then
there are constructible ideals $Y_1, \ldots, Y_l \in \mathcal{J}(S)$ and indices $1 \leq k_j \leq n \ (j = 1, \ldots, l)$ such that
\[X \setminus \bigcup_{i=1}^m X_i \subseteq \bigcup_{j=1}^l Y_j \quad \text{and} \quad h_{kj}p_{Y_j} = p_{Y_j} \quad \text{for all} \quad 1 \leq j \leq l. \quad (2.2) \]

Lemma 2.3. Condition 1.6 is not satisfied for $\mathcal{G} = \mathcal{G}_F(S), Y = \{\chi_s \mid s \in S\}$ and every $x \in \mathcal{G}^{(0)} \setminus Y$ if and only if S is strongly C^*-regular.

Proof. Assume first that S is strongly C^*-regular. Suppose there is $\chi \in \mathcal{G}^{(0)} \setminus Y$ such that Condition 1.6 is satisfied for $x = \chi$, and let $g_k = [h_k, \chi], U_k (1 \leq k \leq n)$ and U be as in that condition. We may assume that $U_k = D(h_k, \Omega(S))$ and
\[U = \{\eta \in \Omega(S) \mid \eta(p_X) = 1, \eta(p_{X_s}) = 0 \text{ for } i = 1, \ldots, m\} \quad (2.3) \]
for some $X, X_1, \ldots, X_m \in \mathcal{J}(S)$. Then Condition 1.6 says that for every $s \in X \setminus \bigcup_{i=1}^m X_i$ there is k such that $\chi_s \in U_k$, that is, $h_k s = s$. By the strong C^*-regularity we can find $Y_1, \ldots, Y_l \in \mathcal{J}(S)$ satisfying (2.2). As $\chi \in \Omega(S)$, there must exist j such that $\chi(p_{Y_j}) = 1$. But then $g_{kj} = [h_{kj}, \chi] = \chi$, which contradicts the assumption that g_1, \ldots, g_n are nontrivial elements of the isotropy group G^*_X.

Assume now that S is not strongly C^*-regular, so there are elements $h_1, \ldots, h_n \in I_\ell(S)$ and constructible ideals $X, X_1, \ldots, X_m \in \mathcal{J}(S)$ such that (2.1) holds but (2.2) doesn’t for any choice of Y_j and k_j. In other words, if we consider the set \mathcal{F} of all constructible ideals J such that there is k (depending on J) satisfying $h_{kj}p_J = p_J$, then for any finite set $F \subset \mathcal{F}$ we have
\[X \setminus \left(\bigcup_{i=1}^m X_i \cup \bigcup_{J \in F} J \right) \neq \emptyset. \]

Pick a point s_F in the above set and consider a cluster point χ of the net $(\chi_{s_F})_F$, where F’s are partially ordered by inclusion. Then χ lies in the set U defined by (2.2), and $\chi(p_{s_F}) = 0$ for all $J \in \mathcal{F}$. The semi-character χ cannot be of the form χ_s, since otherwise we must have $s \in X \setminus \bigcup_{i=1}^m X_i$, and then $s \in \mathcal{F}$ and $\chi(p_{s \in \mathcal{F}}) = \chi(p_{s \in \mathcal{F}}) = 1$, which is a contradiction.

We claim that it is possible to replace U by a smaller neighbourhood of χ and discard some of the elements h_k in such a way that Condition 1.6 gets satisfied for $x = \chi, g_k = [h_k, \chi]$ and $U_k = D(h_k, \Omega(S))$. Namely, if $(h_k, \chi) \not\subseteq \Sigma$ for some k, then we add dom h_k to the collection $\{X_1, \ldots, X_m\}$ and discard such h_k. If $(h_k, \chi) \subseteq \Sigma$ but $\chi(h_k^{-1} \cdot h_k) \neq \chi$, then $\chi(h_k^{-1} \cdot h_k) \neq \chi$ for all χ close χ, so by replacing X by a smaller ideal and adding more constructible ideals to $\{X_1, \ldots, X_m\}$ we may assume that $\chi(h_k^{-1} \cdot h_k) = \chi_s$ for all $\chi_s \in U$ and again discard such h_k. For the remaining elements h_k and the new U we have that for every $s \in S$ such that $\chi_s \in U$ there is an index k satisfying $h_k s = s$. Then, in order to show that Condition 1.6 is satisfied, it remains to check that the elements $g_k = [h_k, \chi]$ of G^*_X are nontrivial. But this is clearly true, since $\chi(p_{s_F}) = 0$ for every $J \in \mathcal{J}(S)$ such that $h_{kj}p_J = p_J$. \hfill \qed

Remark 2.4. From the last part of the proof we see that in Definition 2.2 we may assume in addition that $X \subseteq \text{dom } h_k$ for all k. More directly this can be seen as follows. Assume (2.1) is satisfied. Consider the nonempty subsets $F \subset \{1, \ldots, n\}$ such that
\[X_F := X \cap \left(\bigcap_{k \in F} \text{dom } h_k \right) \not\subseteq \bigcup_{i=1}^m X_i \cup \bigcup_{k \not\in F} \text{dom } h_k. \]
Then (2.1) is satisfied for $X_F, \{X_1, \ldots, X_m, \text{dom } h_k \ (k \not\in F)\}$ and $\{h_k \ (k \in F)\}$ in place of $X, \{X_1, \ldots, X_m\}$ and $\{h_k \ (1 \leq k \leq n)\}$. Since
\[X \setminus \bigcup_{i=1}^m X_i \subseteq \bigcup_{F} \left(X_F \setminus \left(\bigcup_{i=1}^m X_i \cup \bigcup_{k \not\in F} \text{dom } h_k \right) \right), \]
we conclude that if for every F condition $[22]$ can be satisfied for X_F, \{X_1, \ldots, X_m, \text{dom} \ h_k \ (k \notin F)\}$ and \{h_k \ (k \in F)\}, then it can be satisfied for X, \{X_1, \ldots, X_m\} and \{h_k \ (1 \leq k \leq n)\} as well. \hfill \Box

Since the points χ_s, $s \in S$, lie on the same $G_P(S)$-orbit, the corresponding representations ρ_{χ_s} of $C^*_\text{e}(G_P(S))$ are mutually equivalent. Thus, by Lemma 2.1 and Proposition 1.4 we get the following result.

Proposition 2.5. If S is a strongly C^*-regular left cancellative monoid, then the representation ρ_{χ_e} of $C^*_\text{e}(G_P(S))$ defines an isomorphism $C^*_\text{e}(G_P(S)) \cong C^*(S)$.

Therefore if S is strongly C^*-regular, it is natural to define the full semigroup C^*-algebra of S by

$$C^*(S) := C^*(G_P(S)).$$

As $C^*(G(I_\ell(S)))$ has a known description in terms of generators and relations [Pat99], we can quickly obtain such a description for $C^*(G_P(S))$ as well.

Proposition 2.6 (cf. [Spi20] Theorem 9.4,[LS22] Definition 3.6). Assume S is a countable left cancellative monoid. Consider the elements $v_s = 1_{p_s(\Omega(S)))} \in C^*(G_P(S))$, $s \in S$. Then $C^*(G_P(S))$ is a universal unital C^*-algebra generated by the elements v_s, $s \in S$, satisfying the following relations:

(R1) $v_e = 1$;
(R2) for every $g = s_1^{-1}t_1 \ldots s_n^{-1}t_n \in I_\ell(S)$, the element $v_g := v_{s_1}^*v_{t_1} \ldots v_{s_n}^*v_{t_n}$ is independent of the presentation of g;
(R3) if $0 \in I_\ell(S)$, then $v_0 = 0$;
(R4) if $X = X_1 \cup \cdots \cup X_n$ for some $X, X_1, \ldots, X_n \in \mathcal{J}(S)$, then

$$\prod_{i=1}^n (v_{p_{X_i}} - v_{p_{X}}) = 0.$$

Note that relation (R4) is unambiguous, since relation (R2) implies that the elements $v_{p_{X_i}}$, $X \in \mathcal{J}(S)$, are mutually commuting projections.

Proof. Consider a universal unital C^*-algebra with generators v_s, $s \in S$, satisfying relations (R1) and (R2). This is nothing else than the full C^*-algebra $C^*(I_\ell(S))$ of the inverse semigroup $I_\ell(S)$, which is by definition generated by elements v_g, $g \in I_\ell(S)$, satisfying the relations

$$v_g v_h = v_{gh}, \quad v_g^* = v_{g^{-1}}.$$

By [Pat99] Theorem 4.4.1, we can identify $C^*(I_\ell(S))$ with $C^*(G(I_\ell(S)))$. As $G_P(S) = G(I_\ell(S))_{\Omega(S)}$, it follows that in order to prove the proposition it remains to show that relations (R3) and (R4) describe the quotient $C^*(G(I_\ell(S))_{\Omega(S)})$ of $C^*(G(I_\ell(S)))$. By Proposition 1.4, the kernel of the map $C^*(G(I_\ell(S))) \to C^*(G(I_\ell(S))_{\Omega(S)})$ is generated as a closed ideal by the functions

$$f \in C(G(I_\ell(S))_{\Omega(S)}) \to C(\bar{E}(S))$$

vanishing on $\Omega(S)$. The C^*-algebra $C(\bar{E}(S))$ is a universal C^*-algebra generated by the projections $e_X := 1_{U_X}$, $X \in \mathcal{J}(S)$, where $U_X = \{\eta \in E(S) : \eta(p_X) = 1\}$, satisfying the relations $e_X e_Y = e_{X \cap Y}$. By the definition of $\Omega(S)$, relations (R3) and (R4), with e_X instead of $v_{p_{X}}$, describe the quotient $C(\Omega(S))$ of $C(\bar{E}(S))$. This gives the result. \hfill \Box

Remark 2.7. The assumption of countability of S is certainly not needed in the above proposition, we added it to be able to formally apply results of [Pat99].

Remark 2.8. Relation (R2) can be slightly relaxed, cf. [LS22] Definition 3.6: it suffices to require that the elements v_g are well-defined only for $g = p_X$, $X \in \mathcal{J}(S)$. Indeed, then, given $g = a_1^{-1}b_1 \ldots a_n^{-1}b_n = c_1^{-1}d_1 \ldots c_m^{-1}d_m \in I_\ell(S)$, for the elements $v = v_{a_1}^*v_{b_1} \ldots v_{a_n}^*v_{b_n}$ and $w = v_{c_1}^*v_{d_1} \ldots v_{c_m}^*v_{d_m}$ we have $v^*v = v^*w = w^*v = w^*w$, hence $(v - w)^*(v - w) = 0$ and $v = w$. \hfill \Box
Let us next give a few sufficient conditions for strong C^*-regularity. Recall that a left cancellative monoid S is called finitely aligned [Spi20], or right (ideal) Howson [ES18], if the right ideal $sS \cap tS$ is finitely generated for all $s, t \in S$. If S is finitely aligned, then by induction on n one can see that the constructible ideals $s_1^{-1}t_1 \ldots s_n^{-1}t_nS$ are finitely generated.

Proposition 2.9. A left cancellative monoid S is strongly C^*-regular if either of the following conditions is satisfied:

1. the groupoid $G_P(S)$ is Hausdorff;
2. the monoid S is group embeddable;
3. the monoid S is finitely aligned.

We remark that apart from the easy implication (2) \Rightarrow (1), which will be explained shortly, there are no relations between conditions (1)–(3). For example, certain Baumslag–Solitar monoids are group embeddable but are not finitely aligned [Spi12, Lemma 2.12]. Examples of finitely aligned monoids with non-Hausdorff $G_P(S)$ can be found among the Zappa–Szép products $G \bowtie X^*$ defined by self-similar actions of groups on free monoids with infinite number of generators [Law08]; see Remark 3.9 for a related in spirit example with trivial group of units. Nevertheless, if S is finitely aligned and right cancellative, then $G_P(S)$ is Hausdorff, see [Spi20, Lemma 7.1] or [Li21, Remark 4.3].

Proof of Proposition 2.9. Condition (1) is obviously sufficient for strong C^*-regularity, since Condition 1.6 can be satisfied only for non-Hausdorff groupoids.

Condition (2) is known, and is easily seen, to be stronger than (1): if S is a submonoid of a group G, then every nonzero element g of $I_t(S)$ acts by the left translation by an element $h_g \in G$, and we have either $h_g = e$ and $D(g, \Omega(S)) \subset G_P(S)(0)$ or $h_g \neq e$ and $D(g, \Omega(S)) \cap G_P(S)(0) = \emptyset$.

Assume now that S is finitely aligned and (2.1) is satisfied. Choose a finite set of generators of the right ideal X. Let s_1, \ldots, s_l be those generators that do not lie in $X_1 \cup \ldots \cup X_m$. By assumption, for every $1 \leq j \leq l$ we can find $1 \leq k_j \leq n$ such that $h_{k_j}s_j = s_j$. Then (2.2) is satisfied for $Y_j = s_jS$.

Remark 2.10. By [Li21, Lemma 4.1], the groupoid $G_P(S)$ is Hausdorff if and only if whenever $g \in I_t(S)$ and $\{s \in S \mid gs = s\} \neq \emptyset$, there are $Y_1, \ldots, Y_l \in \mathcal{J}(S)$ such that $\{s \in S \mid gs = s\} = Y_1 \cup \ldots \cup Y_l$. Using this characterization one can easily see that (1) implies strong C^*-regularity without relying on Lemma 2.3.

In addition to $G_P(S)$ there is another closely related groupoid associated to S, which was introduced by Spielberg [Spi20] and which we will now turn to.

Consider the collection $\mathcal{J}(S)$ of subsets of S obtained by adding to $\mathcal{J}(S)$ all sets of the form $X \setminus \bigcup_{i=1}^m X_i$ for $X, X_1, \ldots, X_m \in \mathcal{J}(S)$. It is a semigroup under intersection. When we want to view $E(S)$ as its subsemigroup, we will write p_X instead of X for the elements of $\mathcal{J}(S)$. Every $\chi \in \Omega(S)$ extends to a semi-character on $\mathcal{J}(S)$ by letting $\chi(p_X \setminus \bigcup_{i=1}^m X_i) = 1$ for $X, X_1, \ldots, X_m \in \mathcal{J}(S)$ if $\chi(p_X) = 1$ and $\chi(p_{X_i}) = 0$ for all i, and $\chi(p_X \setminus \bigcup_{i=1}^m X_i) = 0$ otherwise.

Now, define an equivalence relation \sim on $G_P(S)$ by declaring $[g, \chi] \sim [h, \chi]$ iff there exists $X \in \mathcal{J}(S)$ such that $\chi(p_X) = 1$ and $g|_X = h|_X$. Consider the quotient groupoid

$$G(S) := G_P(S)/\sim.$$

This groupoid is denoted by $G_2(S)$ in [Spi20] and by $I_t \bowtie \Omega$ in [Li21].

Similarly to Lemma 2.1, the representation ρ_{χ_s} of $C^*_\sigma(G(S))$ defines a surjective $*$-homomorphism $C^*_\sigma(G(S)) \to C^*_\sigma(S)$. Negation of Condition 1.6 for $G = G(S)$, $Y = \{\chi_s \mid s \in S\}$ and all $x \in G^{(0)} \setminus Y$ leads to the following definition.

14
Definition 2.11. We say that S is C^*-regular if, given $h_1, \ldots, h_n \in I_\ell(S)$ and $X \in \mathcal{J}(S)$ satisfying
\[
\emptyset \neq X \subset \bigcup_{k=1}^{n} \{s \in \{h_k s = s\},
\]
there are sets $Y_1, \ldots, Y_l \in \mathcal{J}(S)$ and indices $1 \leq k_j \leq n$ ($j = 1, \ldots, l$) such that
\[
X \subset \bigcup_{j=1}^{l} Y_j \quad \text{and} \quad h_{k_j}|_{Y_j} = \text{id} \quad \text{for all} \quad 1 \leq j \leq l.
\]

Note that by the same argument as in Remark 2.4 in order to check C^*-regularity it suffices to consider $X = X_0 \setminus (X_1 \cup \cdots \cup X_m)$ ($X_i \in \mathcal{J}(S)$) and h_k such that $X_0 \subset \text{dom} h_k$ for all k. Note also that the only difference between C^*-regularity and strong C^*-regularity is that the sets Y_j are required to be in $\mathcal{J}(S)$ in the first case and in $\mathcal{J}(S)$ in the second. In particular, strong C^*-regularity implies C^*-regularity.

Similarly to Proposition 2.5 we get the following result.

Proposition 2.12. If S is a C^*-regular left cancellative monoid, then the representation ρ_{χ_e} of $C^*_r(\mathcal{G}(S))$ defines an isomorphism $C^*_r(\mathcal{G}(S)) \cong C^*_r(S)$.

Thus, if S is C^*-regular, we can define, following [Spi20], the full semigroup C^*-algebra of S by
\[
C^*(S) := C^*(\mathcal{G}(S)).
\]

A presentation of $C^*(\mathcal{G}(S))$ in terms of generators and relations is given in [Spi20] Theorem 9.4.

We therefore have two candidates for a groupoid model of $C^*_r(S)$, and hence two potentially different definitions of full semigroup C^*-algebras associated with S. As the following result shows, it is $\mathcal{G}(S)$ which is the preferred model and we have only one candidate for $C^*(S)$.

Proposition 2.13. Assume S is a left cancellative monoid such that ρ_{χ_e} defines an isomorphism $C^*_r(\mathcal{G}_P(S)) \cong C^*_r(S)$. Then $\mathcal{G}_P(S) = \mathcal{G}(S)$.

Proof. Assume $\mathcal{G}_P(S) \neq \mathcal{G}(S)$. Then there exists $[g, \chi] \in \mathcal{G}_P(S)$ such that $[g, \chi] \neq \chi$ but $[g, \chi] \sim \chi$. Let $X, X_1, \ldots, X_m \in \mathcal{J}(S)$ be such that $\chi(p_X) = 1, \chi(p_{X_i}) = 0$ for all i and $gs = s$ for all $s \in X \setminus \bigcup_{i=1}^{m} X_i$. Consider the clopen set $U \subset \mathcal{G}_P(S)^{(0)}$ defined by (2.3) and the function $f = 1_{\mathcal{G}_P(S)} - 1_U$ on $\mathcal{G}_P(S)$. Then $f \neq 0$, but if $g = s_1^{-1} t_1 \cdots s_m^{-1} t_n$ and we identify $\ell^2(\mathcal{G}_P(S)_{\chi_e})$ with $\ell^2(S)$, then
\[
\rho_{\chi_e}(f) = (\lambda_{s_1} \lambda_{t_1} \cdots \lambda_{s_n} \lambda_{t_n} - 1) 1_{X \setminus \bigcup_{i=1}^{m} X_i} = 0.
\]

Therefore $\rho_{\chi_e} : C^*_r(\mathcal{G}_P(S)) \to C^*_r(S)$ has a nontrivial kernel. \hfill \Box

Corollary 2.14. If S is strongly C^*-regular, then S is C^*-regular and $\mathcal{G}_P(S) = \mathcal{G}(S)$.

Proof. The first statement follows from the definitions, as was already observed after Definition 2.11. The equality $\mathcal{G}_P(S) = \mathcal{G}(S)$ follows from Propositions 2.5 and 2.13. \hfill \Box

In particular, by Proposition 2.9 if $\mathcal{G}_P(S)$ is Hausdorff or S is finitely aligned, then $\mathcal{G}_P(S) = \mathcal{G}(S)$. This has been already known, see [Li21] Lemma 3.2.

The equality $\mathcal{G}_P(S) = \mathcal{G}(S)$ in the strong C^*-regular case is also an immediate consequence of the following criterion.

Lemma 2.15. For every left cancellative monoid S, we have $\mathcal{G}_P(S) = \mathcal{G}(S)$ if and only if S has the following property: given $g \in I_\ell(S)$ and $X, X_1, \ldots, X_m \in \mathcal{J}(S)$ such that $gs = s$ for all $s \in X \setminus \bigcup_{i=1}^{m} X_i \neq \emptyset$, there are $Y_1, \ldots, Y_l \in \mathcal{J}(S)$ such that
\[
X \setminus \bigcup_{i=1}^{m} X_i \subset \bigcup_{j=1}^{l} Y_j \quad \text{and} \quad g \mathsf{p} Y_j = p Y_j \quad \text{for all} \quad 1 \leq j \leq l.
\]
Proof. Assume first that the condition in the formulation of the lemma is satisfied. In order to prove that $\mathcal{G}_P(S) = \mathcal{G}(S)$, we have to show that if $[g, \chi] \sim \chi$ for some $g \in I_t(S)$ and $\chi \in \Omega(S)$, then $[g, \chi] = \chi$. Let $X, X_1, \ldots, X_m \in \mathcal{J}(S)$ be such that $\chi(p_X) = 1$, $\chi(p_{X_i}) = 0$ for all i and $gs = s$ for all $s \in X \setminus \bigcup_{i=1}^m X_i$. By assumption, there are $Y_1, \ldots, Y_l \in \mathcal{J}(S)$ such that $X \setminus \bigcup_{i=1}^m X_i \subset \bigcup_{j=1}^l Y_j$ and $gp_{Y_j} = p_{Y_j}$ for all $1 \leq j \leq l$. But then $\chi(p_{Y_j}) = 1$ for some j, hence $[g, \chi] = \chi$.

Assume now that the condition in the formulation is not satisfied. Then, similarly to the proof of Lemma 2.3, we can find $g \in I_t(S)$, $X, X_1, \ldots, X_m \in \mathcal{J}(S)$ and $\chi \in \Omega(S)$ such that $\chi(p_X) = 1$, $\chi(p_{X_i}) = 0$ for all i, $\chi(p_J) = 0$ for all $J \in \mathcal{J}(S)$ satisfying $gp_J = p_J$, and $gs = s$ for all $s \in X \setminus \bigcup_{i=1}^m X_i$. Then $[g, \chi] \sim \chi$ and $[g, \chi] \neq \chi$, so $\mathcal{G}_P(S) \neq \mathcal{G}(S)$. □

We finish this section by showing that under rather general assumptions $C^*_r(S)$ coincides with the essential groupoid C^*-algebras of $\mathcal{G}_P(S)$ and $\mathcal{G}(S)$.

Proposition 2.16. Let S be a countable left cancellative monoid. Assume that for any nontrivial units $u_1, \ldots, u_k \in S^* \setminus \{e\}$ and every $X \in \mathcal{J}(S)$ containing e, there is $Z \in \mathcal{J}(S)$ such that $\emptyset \neq Z \subset X$ and $u_is \neq s$ for all $s \in Z$ and $i = 1, \ldots, k$. Then the maps $\rho_{\chi_e}: C^*_r(\mathcal{G}_P(S)) \to C^*_r(S)$ and $\rho_{\chi_e}: C^*_r(\mathcal{G}(S)) \to C^*_r(S)$ define isomorphisms

$$C^*_r(\mathcal{G}_P(S)) \cong C^*_r(S) \cong C^*_r(\mathcal{G}(S)).$$

Proof. Consider the groupoid $\mathcal{G}_P(S)$. Let $Y = \{\chi_s | s \in S\}$ and D_0 be the set defined in Proposition 1.12. As Y is dense in $\Omega(S)$ and $\ker \rho_{\chi_e}$ is independent of s, by Proposition 1.12 in order to prove the first isomorphism it suffices to show that $D_0 \cap Y = \emptyset$.

Since both sets D_0 and Y are invariant, it is enough to show that $\chi_e \notin D_0$. By Lemma 2.1, the isotropy group $\mathcal{G}_P(S)_{\chi_e}$ consists of the elements $[u, \chi_e], u \in S^*$. Therefore we need to show that if $u_1, \ldots, u_k \in S^* \setminus \{e\}$ and U is a neighbourhood of χ_e in $\Omega(S)$, then the set $U \setminus \bigcup_{i=1}^k D(u_i, \Omega(S))$ has nonempty interior. By the definition of the topology on $\Omega(S)$, we can find $X \in \mathcal{J}(S)$ such $e \in X$ and $\{\chi | \chi(p_X) = 1\} \subset U$. Let $Z \in \mathcal{J}(S)$ be as in the formulation of the proposition. Then the clopen set $V = \{\chi | \chi(p_Z) = 1\}$ is contained in U. We claim that it does not intersect $D(u_i, \Omega(S))$ for all i.

Assume $\chi \in V \cap D(u_i, \Omega(S))$ for some i. This means that $[u_i, \chi] = [e, \chi]$, that is, there is $W \in \mathcal{J}(S)$ such that $\chi(p_W) = 1$ and $u_is = s$ for all $s \in W$. But then $\chi(p_{Z \cap W}) = 1$, so $Z \cap W$ is nonempty, contradicting the property $u_is \neq s$ for all $s \in Z$.

This proves the proposition for $\mathcal{G}_P(S)$, the proof for $\mathcal{G}(S)$ is essentially the same. □

3. Example of a regular monoid

Consider the monoid S given by the monoid presentation

$$S = \langle a, b, x_n, y_n \, | \, n \in \mathbb{Z} \rangle : abx_n = bx_n, aby_n = by_{n+1} \, (n \in \mathbb{Z}) \rangle. \quad (3.1)$$

Our goal is to prove the following.

Proposition 3.1. The monoid S defined by (3.1) is left cancellative and strongly C^*-regular. It is not finitely aligned and the groupoid $\mathcal{G}_P(S) = \mathcal{G}(S)$ is not Hausdorff.

The proof is divided into several lemmas. But first we need to introduce some notation. Consider the set S of finite words (including the empty word) in the alphabet $\{a, b, x_n, y_n \, | \, n \in \mathbb{Z}\}$. We say that two words are equivalent if they represent the same element of S. Let $\tau \subset S \times S$ be the symmetric set of relations defining S, so

$$\tau = \{(abx_n, bx_n), (bx_n, abx_n), (aby_n, by_{n+1}), (by_{n+1}, aby_n) \, | \, n \in \mathbb{Z} \}.$$
By a τ-sequence we mean a finite sequence s_0, \ldots, s_n of words such that for every $i = 1, \ldots, n$ we can write $z_{i-1} = c_ip_i d_i$ and $z_i = c_i q_i d_i$ with $(p_i, q_i) \in \tau$. Then by definition two words s and t are equivalent if and only if there is a τ-sequence s_0, \ldots, s_n with $s_0 = s$ and $s_n = t$.

Lemma 3.2. The monoid S is left cancellative.

Proof. It will be convenient to use the following notation. For words s and t, let us write $s \perp_0 t$ if every word abx_n, bx_n, aby_n, by_n ($n \in \mathbb{Z}$) in st that begins in s ends in s. We write $s \perp t$ if for all words s' and t' such that $s \sim s'$ and $t \sim t'$, we have $s' \perp_0 t'$. We will repeatedly use that if $s \perp t$ and $st \sim w$ for a word w, then $w = s't'$ for some $s' \sim s$ and $t' \sim t$.

In order to prove the lemma, it suffices to show that for all letters x and words w, w', the equivalence $xw \sim xw'$ implies that $w \sim w'$.\vspace{1ex}

Case $x = x_n y_n$:
The only word equivalent to x is x itself, and we have $x \perp w$, so the equivalence $xw \sim xw'$ furnishes the equivalence $w \sim w'$.

Case $x = a$:
Write $xw = a^kv$ ($k \geq 1$), with v not starting with a. Consider several subcases.

Assume v is empty or starts with x_n or y_n. Then $a^k \perp v$. The only word equivalent to a^k is a^k itself. It follows that $xw' = a^kv'$, with $v' \sim v$, and therefore $w = a^{k-1}v \sim a^{k-1}v' = w'$.

Assume now that v starts with b and write $xw = a^kbv$. Assume u is empty or starts with a or b. Then $a^kb \perp u$. The only word equivalent to a^kb is a^kb itself. It follows that $xw' = a^kbv'$, with $v' \sim u$, hence $w \sim w'$.

Assume next that u starts with x_n and write $xw = a^k bv_n z$. Then $a^k bv_n \perp z$. The words equivalent to $a^k bv_n$ are $a^m bv_n$ ($m \geq 0$). It follows that $xw' = a^m bv_n z'$ for some $m \geq 1$ and $z' \sim z$, hence $w \sim w'$.

Similarly, if u starts with y_n, write $xw = a^kby_n z$. Then $a^kby_n \perp z$. The words equivalent to a^kby_n are a^mby_n ($m \geq 0$). It follows that $xw' = a^mby_n z'$ for some $m \geq 1$ and $z' \sim z$, hence $w \sim w'$.

Case $x = b$:
If w is empty or starts with a or b, then $x \perp w$ and we are done similarly to the first case above.

If w starts with x_n, write $xw = bx_nv$. Then $bx_n \perp v$. The words equivalent to bx_n are $a^m bx_n$ ($m \geq 0$), and the only one among them beginning with b is bx_n itself. It follows that $xw' = bx_nv'$, with $v' \sim v$, hence $w \sim w'$. The case when w starts with y_n is similar, since the only word beginning with b that is equivalent to by_n is by_n itself. □

Next we want to describe the constructible ideals of S. We start with the following lemma.

Lemma 3.3. We have:

1. if $x \in \{x_n, y_n (n \in \mathbb{Z})\}$, $y \in \{a, b, x_n, y_n (n \in \mathbb{Z})\}$ and $x \neq y$, then $xS \cap yS = \emptyset$;

2. for all $k \geq 1$,
 $$bS \cap a^kS = bS \cap a^kS = \bigcup_{n \in \mathbb{Z}} bx_nS \cup \bigcup_{n \in \mathbb{Z}} by_nS.$$

Proof. (1) None of the words occurring in the defining relations of S begins with x_n or y_n. From this it follows that a word beginning with x_n, resp., y_n, can only be equivalent to a word beginning with x_n, resp., y_n. Thus, $xS \cap yS = \emptyset$.

(2) Since we have $bx_n = a^k bx_n$ and $by_n = a^k by_n - k$ for all n and k, it is clear that

$$\bigcup_{n} bx_nS \cup \bigcup_{n} by_nS \subset bS \cap a^k bS \subset bS \cap a^k S.$$
To prove the opposite inclusions, assume \(s \in bS \cap a^kS \). Take words \(w \) and \(w' \) in \(S \) such that \(s \) is represented by \(bw \) and \(a^kw' \). There is a \(\tau \)-sequence \(z_0, \ldots, z_m \) such that \(bw = z_0 \) and \(a^kw' = z_m \). We have \(z_{i-1} = c_ip_id_i \) and \(z_i = c_iq_id_i \), with \((p_i, q_i) \in \tau \). There must be an index \(i \) such that \(c_i = 0 \) and \(p_i \) starts with \(b \). But then \(p_i = bx_n \) or \(p_i = by_n \) for some \(n \), since these are the only words in the defining relations of \(S \) that begin with \(b \). Therefore \(s \) lies in \(bx_nS \) or in \(by_nS \).

This lemma already implies that \(S \) is not finitely aligned, since \(b^{-1}aS = \bigcup_n x_nS \cup \bigcup_n y_nS \) by (2) and the sets \(x_nS, y_mS \) are disjoint for all \(n \) and \(m \) by (1), so the right ideal \(b^{-1}aS \) is not finitely generated.

Lemma 3.4. The constructible ideals of \(S \) are

\[
\emptyset, \quad sS, \quad \bigcup_{n \in \mathbb{Z}} sx_nS \cup \bigcup_{n \in \mathbb{Z}} sy_nS \quad (s \in S).
\]

(3.2)

Proof. By Lemma 3.3, the ideals in (3.2) are constructible. In order to prove the lemma it is then enough to show that for every \(x \in \{a, b, x_n, y_n \ (n \in \mathbb{Z})\} \) and \(s \in S \), the right ideals \(x^{-1}sx_nS \) and \(\bigcup_n x^{-1}sx_nS \cup \bigcup_n x^{-1}sy_nS \) are again of the form (3.2). This is obviously true when \(s \in xS \). By Lemma 3.3(1) this is also true if \(s = e \). So from now on we assume that \(s \notin xS \) and \(s \neq e \).

Case \(x = x_n, y_n \):

In this case, from Lemma 3.3(1) we see that the sets \(x^{-1}sx_nS \) and \(\bigcup_n x^{-1}sx_nS \cup \bigcup_n x^{-1}sy_nS \) are empty.

Case \(x = a \):

Again, Lemma 3.3(1) tells us that the sets \(a^{-1}sa \) and \(\bigcup_n a^{-1}sx_nS \cup \bigcup_n a^{-1}sy_nS \) are empty if \(s \in x_mS \) or \(s \in y_mS \) for some \(m \). As \(s \notin aS \) and \(s \neq e \), we may therefore assume that \(s \in bS \).

Consider several subcases.

Assume \(s = b \). Then, by Lemma 3.3(2), \(aS \cap bS = \bigcup_n bx_nS \cup \bigcup_n by_nS \). As \(a \) maps this set onto itself, we conclude that both \(a^{-1}bS \) and \(\bigcup_n x^{-1}bx_nS \cup \bigcup_n a^{-1}by_nS \) are equal to \(\bigcup_n bx_nS \cup \bigcup_n by_nS \).

Next, assume \(s \in baS \) or \(s \in b^2S \). From the defining relations we see that every word in \(S \) that starts with \(ba \) or \(b^2 \) can only be equivalent to a word that again starts with \(ba \) or \(b^2 \). Hence the sets \(a^{-1}baS \) and \(a^{-1}b^2S \) are empty, and therefore \(a^{-1}S \) and \(\bigcup_n a^{-1}sx_nS \cup \bigcup_n a^{-1}sy_nS \) are empty as well.

It remains to consider the subcase when \(s \in bx_mS \) or \(s \in by_mS \). But then \(s \in aS \), which contradicts our assumption on \(s \).

Case \(x = b \):

Similarly to the previous case, we may assume that \(s \in aS \). Write \(s = a^kt \) for some \(k \geq 1 \) and \(t \in S \) such that \(t \) can be represented by a word not starting with \(a \). Consider several subcases.

Assume \(t = e \). Then, using Lemma 3.3(2), we get

\[
b^{-1}a^kS = b^{-1}(bS \cap a^kS) = b^{-1}\left(\bigcup_n bx_nS \cup \bigcup_n by_nS \right) = \bigcup_n x_nS \cup \bigcup_n y_nS.
\]

Every word in \(S \) that starts with \(a^kx_n \) can only be equivalent to a word that again starts with \(a^kx_n \). The same is true for \(y_n \) in place of \(x_n \). Hence

\[
\bigcup_n b^{-1}a^kx_nS \cup \bigcup_n b^{-1}a^ky_nS = \emptyset. \tag{3.3}
\]

Next, assume \(t \in x_mS \) or \(t \in y_mS \). Then (3.3) implies that both \(b^{-1}a^ktS \) and \(\bigcup_n b^{-1}a^ktx_nS \cup \bigcup_n b^{-1}a^ky_nS \) are empty.

It remains to consider the subcase \(t \in bS \). This splits into several subsubcases.
If \(t = b \), then using Lemma 3.3(2) again,
\[
b^{-1} a^k b S = b^{-1} \left(b S \cap a^k b S \right) = b^{-1} \left(\bigcup_n b x_n S \cup \bigcup_n b y_n S \right) = \bigcup_n x_n S \cup \bigcup_n y_n S.
\]
As \(a \) maps \(\bigcup_n b x_n S \cup \bigcup_n b y_n S \) onto itself, we also have
\[
\bigcup_n b^{-1} a^k b x_n S \cup \bigcup_n b^{-1} a^k b y_n S = \bigcup_n x_n S \cup \bigcup_n y_n S.
\]
Assume next that \(t \in baS \) or \(t \in b^2 S \). Every word in \(S \) that starts with \(a^k b a \) or \(b^2 \) can only be equivalent to a word that again starts with \(a^k b a \) or \(b^2 \). Hence the sets \(b^{-1} a^k b a S \) and \(b^{-1} a^k b^2 S \) are empty, and therefore \(b^{-1} a^k b t S \) and \(\bigcup_n b^{-1} a^k b x_n S \cup \bigcup_n b^{-1} a^k b y_n S \) are empty as well.

Finally, assume \(t \in bx_m S \) or \(t \in by_m S \). Then \(s = a^k t \in b S \), which contradicts our assumption on \(s \).

We now look at the topology on \(G_P(S) \). We will need the following lemma.

Lemma 3.5. The constructible ideals that contain at least two elements \(bx_n \) are
\[
S, \quad a^k b S \ (k \geq 0), \quad \bigcup_{n \in \mathbb{Z}} bx_n S \cup \bigcup_{n \in \mathbb{Z}} by_n S. \tag{3.4}
\]

Proof. It is clear that the ideals in (3.4) contain \(bx_n \) for all \(n \in \mathbb{Z} \). Assume \(X \in J(S) \) contains \(bx_l \) and \(bx_m \) for some \(l \neq m \). Observe that the words in \(S \) equivalent to \(bx_l \) for a fixed \(l \) are \(a^k bx_l \), \(k \geq 0 \). It follows that if \(bx_l \in s S \) for some \(s \), then any word in \(S \) representing \(s \) has the form \(a^k \), \(a^k b \) or \(a^k bx_l \) for some \(k \geq 0 \). Consider two cases.

Assume \(X = s S \). By the above observation, the only possibilities for \(s \) to have \(bx_l, bx_m \in s S \) are \(s = a^k \) or \(s = a^k b \) for some \(k \geq 0 \), so \(X \) has the required form.

Assume \(X = \bigcup_n s x_n S \cup \bigcup_n s y_n S \). If \(bx_l \in s x_n S \) for some \(n \), then by the above observation \(n = l \) and \(s = a^k b \) for some \(k \geq 0 \), so \(X \) has the required form. Otherwise we must have \(bx_l \in s y_n S \) for some \(n \), but this is not possible, again by the above observation.

This lemma implies that the semi-characters \(\chi_{bx_n} \) on \(E(S) \) converge as \(n \to \pm \infty \) to a semi-character \(\chi \) such that \(\chi(p_X) = 1 \) for all \(X \) in (3.4) and \(\chi(p_X) = 0 \) for all other constructible ideals.

Lemma 3.6. The semi-characters \(\chi_{bx_n} \) converge in \(G_P(S) \) to the different elements \(\chi \) and \([a, \chi]\), so \(G_P(S) \) is not Hausdorff.

Proof. The convergence \(\chi_{bx_n} \to [a, \chi] \) follows from the fact that \([a, \chi_{bx_n}] = [e, \chi_{bx_n}]\) for all \(n \), because \(a \) fixes \(bx_n \). The element \([a, \chi] \in G_P(S)^{\chi}\) is nontrivial, since by Lemma 3.5 if \(X \in J(S) \) and \(\chi(p_X) = 1 \), then \(X \) contains the elements \(by_n \) that \(a \) does not fix.

It remains to show that \(S \) is strongly C*-regular. Recall that by Definition 2.2 and Remark 2.3, this means that, given elements \(h_1, \ldots, h_N \in I_\ell(S) \) and constructible ideals \(X, X_1, \ldots, X_M \in J(S) \) satisfying
\[
X \subset \bigcap_{k=1}^N \text{dom} \ h_k, \quad \emptyset \neq X \setminus \bigcup_{i=1}^M X_i \subset \bigcup_{k=1}^M \{ s \in S : h_k s = s \},
\]
we need to show that there are constructible ideals \(Y_1, \ldots, Y_L \in J(S) \) and indices \(1 \leq k_j \leq N \) \((j = 1, \ldots, L)\) such that
\[
X \setminus \bigcup_{i=1}^M X_i \subset \bigcup_{j=1}^L Y_j \quad \text{and} \quad h_{k_j} p_{Y_j} = p_{Y_j} \quad \text{for all} \quad 1 \leq j \leq L.
\]
We will actually show more: there is an index \(k \) such that \(h_k p_X = p_X \).
This is obviously true when \(X \) is a principal right ideal, cf. Proposition 2.9(3). Therefore we need only to consider \(X = \bigcup_{n \in \mathbb{Z}} x_n S \cup \bigcup_{n \in \mathbb{Z}} y_n S \). By replacing \(X, X_i \) and \(h_k \) by \(s^{-1}X, s^{-1}X_i \) and \(s^{-1}h_k s \) we may assume that

\[
X = \bigcup_{n \in \mathbb{Z}} x_n S \cup \bigcup_{n \in \mathbb{Z}} y_n S.
\]

Lemma 3.7. The only constructible ideals that contain \(y_n \) for a fixed \(n \) are \(S, y_n S \) and \(X \).

Proof. A principal ideal \(sS \) contains \(y_n \) only if \(s = e \) or \(s = y_n \), since the only word in \(S \) that is equivalent to \(y_n \) is \(y_n \) itself. For the same reason if an ideal \(\bigcup_k s x_k S \cup \bigcup_k s y_k S \) contains \(y_n \), then we must have \(s = e \), so the ideal is \(X \).

Since by assumption \(X \backslash \bigcup_{i=1}^M X_i \neq \emptyset \), it follows that every ideal \(X_i \) contains at most one element \(y_n \). Therefore \(X \backslash \bigcup_{i=1}^M X_i \) contains \(y_n \) for all but finitely many \(n \)'s. In particular, there are indices \(m \) and \(k \) such that \(h_k y_m = y_m \). To finish the proof of strong \(C^* \)-regularity it is now enough to establish the following.

Lemma 3.8. If \(h \in I_\ell(S) \) fixes \(y_m \) for some \(m \) and satisfies \(\text{dom } h \supset X = \bigcup_n x_n S \cup \bigcup_n y_n S \), then \(h = p_S = e \) or \(h = p_X \).

Proof. For \(k \geq 1 \), consider the element \(g_k = a^{-k}b \in I_\ell(S) \). Note that by Lemma 3.3(2) we have \(\text{dom } g_k = X \) and \(g_k X = b X \). For \(k \in \mathbb{Z} \setminus \{0\} \), consider \(g_k' = b^{-1}a^k b \in I_\ell(S) \). The domain and range of \(g_k' \) is \(X \).

We will show that if \(h \in I_\ell(S) \) satisfies \(\text{dom } h \supset X \), then \(h \) must be of the form

\[
sg_k p_J, \quad sg_k' p_J \quad \text{or} \quad sp_J \quad (s \in S, J \in \mathcal{J}(S)).
\]

This will yield the proposition. Indeed, first of all, we then have \(J = S \) or \(J = X \), since by Lemma 3.7 these are the only constructible ideals containing \(X \). Then \(h y_m = s b y_{m+k}, h y_m = s y_{m+k} \) or \(h y_m = s y_m \), resp., and this equals \(y_m \) only in the third case with \(s = e \).

Take \(h \in I_\ell(X) \) that is not of the form (3.5). We will show that \(\text{dom } h \not\supset X \). Begin by writing \(h \) as a word in the generators of \(S \) and their inverses. We may assume that there are no occurrences of \(x^{-1}x \) or \(xx^{-1} \) in this word for each generator \(x \). Indeed, \(x^{-1}x = e \) can be omitted, while \(xx^{-1} = p_s S \) and if \(h = h_1 h_2 p_s h_2 \), then \(h = h_1 h_2 p_s h_2 \). Let's consider \(h_1 h_2 \). We may also assume that there are no occurrences of \(a^k b x_n \) and \(a^k b y_n \) for \(k \in \mathbb{Z} \setminus \{0\} \) and \(n \in \mathbb{Z} \), as these can be simplified to \(bx_n \) and \(by_{n+k} \), resp. We then may say that \(h \) (or, more precisely, our word for \(h \)) is reduced.

The assumption that \(h \) is not of the form (3.5) implies that our word for \(h \) has the form \(h_1 x^{-1} w g \), where \(h_1 \) is a word in the generators and their inverses, \(x \) is one of the generators, \(w \) is a word in the generators and we have one of the following options for \(g \): (i) \(g = g_k' \); (ii) \(g = g_k \) and either \(w \) is not trivial or \(x \neq a, b \); (iii) \(g = e \) and neither \(x = a \) and \(w = b \) nor \(x = b \) and \(w = a^m b \) for some \(m \geq 1 \). Without loss of generality we may assume that \(h_1 \) is trivial. We are not going to distinguish between the word \(w \in S \) and the element of \(S \) it represents.

Case \(x = x_n, y_m \):

By the proof of Lemma 3.4 for every word \(v \) in the generators, we have \(x^{-1} v S = \emptyset \) unless \(v \) is empty or starts with \(x \). Since \(w \) does not start with \(x \) and we have \(g_k X = b X \), it follows that \(x^{-1} w g X = \emptyset \) unless \(w \) is empty and either \(g = g_k' \) or \(g = e \). In order to deal with the remaining cases we have to show that \(g_k' X = X \not\subseteq x S \), which is clearly true by Lemma 3.3(1).

Case \(x = a \):

By the proof of Lemma 3.4 for every word \(v \) in the generators, we have \(a^{-1} v S = \emptyset \) unless \(v \) is empty, \(v = b \) or \(v \) starts with \(a, bx_n \) or \(by_n \). Since \(w \) cannot start with \(a, bx_n \) or \(by_n \), it follows that \(a^{-1} w g X = \emptyset \) unless we have one of the following: (i) \(w \) is empty and \(g = g_k' \); (ii) \(w = b \) and \(g = g_k' \);
(iii) $w = b$ and $g = e$. Cases (i) and (iii) are not possible by our assumptions on x, w and g. Case (ii) is not possible either, as the word $bg_k' = bb^{-1}a^kb$ is not reduced.

Case $x = b$.

By the proof of Lemma 4.1, for every word v in the generators, we have $b^{-1}vS = \emptyset$ unless v is empty, $v = a^m$, or v starts with b, $a^{m}bx_n$ or $a^{m}by_n$ ($m \geq 1$, $n \in \mathbb{Z}$). Since w cannot start with b, $a^{m}bx_n$ or $a^{m}by_n$, it follows that $b^{-1}wgX = \emptyset$ unless we have one of the following: (i) w is empty and $g = g_k$; (ii) $w = a^m$ and $g = g_k$; (iii) $w = a^mb$ and $g = g_k'$; (iv) $w = a^mb$ and $g = e$. Cases (i) and (iv) are not possible by our assumptions on x, w and g. Cases (ii) and (iii) are not possible either, as the words $a^{m}g_k = a^{m}a^{-k}b$ and $a^{m}bg_k' = a^{m}bb^{-1}a^{k}b$ are not reduced. □

This finishes the proof of Proposition 3.1

Remark 3.9. If we drop the generator b and consider

$$
\tilde{S} = \langle a, x_n, y_n \mid n \in \mathbb{Z} \rangle : ax_n = x_n, ay_n = y_{n+1} \quad (n \in \mathbb{Z}),
$$

then we get a left cancellative right LCM monoid, meaning that every constructible ideal is either empty or principal. Similarly to Lemma 3.6, the semi-characters χ_{x_n} converge to different elements χ and $[a, \chi]$, so the groupoid $\mathcal{G}_p(\tilde{S}) = \mathcal{G}(\tilde{S})$ is not Hausdorff.

4. EXAMPLE OF A NONREGULAR MONOID

Consider a small modification T of the monoid S from the previous section:

$$
T = \langle a, b, c, x_n, y_n \mid n \in \mathbb{Z} \rangle : abx_n = bx_n, aby_n = by_{n+1},
$$

$$
cbx_n = bx_{n+1}, cby_n = by_n \quad (n \in \mathbb{Z}).
$$

(4.1)

For this monoid we have the following result.

Proposition 4.1. The monoid T defined by (4.1) is left cancellative. It is not C^*-regular, furthermore, the homomorphism $\rho_\chi : C^*_r(\mathcal{G}(T)) \to C^*_r(T)$ has nontrivial kernel.

A large part of the analysis of T is similar to that of S, so we will omit most of it.

The claim that T is left cancellative is proved similarly to Lemma 3.2, the main difference being that powers of a get replaced by products of a and c. The description of the constructible ideals is exactly the same as for S (Lemma 3.4):

Lemma 4.2. The constructible ideals of T are

$$
\emptyset, \quad tT, \quad \bigcup_{n \in \mathbb{Z}} tx_nT \cup \bigcup_{n \in \mathbb{Z}} ty_nT \quad (t \in T).
$$

The next result is similar to Lemma 3.5.

Lemma 4.3. The constructible ideals of T that contain at least two elements bx_n or at least two elements by_n are

$$
T, \quad tby_n \quad (t \text{ is a product of } a, c), \quad \bigcup_{n \in \mathbb{Z}} bx_nT \cup \bigcup_{n \in \mathbb{Z}} by_nT.
$$

(4.2)

This lemma implies that the semi-characters χ_{bx_n} converge as $n \to \pm \infty$ to a semi-character χ such that $\chi(x) = 1$ for all X in (4.2) and $\chi(x) = 0$ for all other $X \in \mathcal{J}(T)$. The semi-characters χ_{by_n} converge to χ as well. The following lemma finishes the proof of Proposition 4.1.

Lemma 4.4. The representation ρ_χ of $C^*_r(\mathcal{G}(T))$ is not weakly contained in ρ_{χ_0}, hence

$$
\rho_\chi : C^*_r(\mathcal{G}(T)) \to C^*_r(T)
$$

has nontrivial kernel.
Proof. Consider the constructible ideal \(X = \bigcup_n bx_n T \cup \bigcup_n by_n T \), the neighbourhood \(U = \{ \eta \in \Omega(T) : \eta(p_X) = 1 \} \) of \(\chi \) and the elements \(g_1 = [a, \chi] \) and \(g_2 = [c, \chi] \) of \(G(T)_X^\chi \). That \(g_1 \) and \(g_2 \) are indeed nontrivial elements of the isotropy group is proved as in Lemma \(\ref{lemma:nontrivial_elements} \). Furthermore, we can see that these are elements of infinite order generating a copy of \(\mathbb{Z}^2 \). Now, if \(\chi_t \in U \) for some \(t \in T \), then \(t \in X \) and hence \(t \) is fixed by \(a \) or \(b \). It follows that either \(\chi_t \in D(a, U) \) or \(\chi_t \in D(c, U) \). We thus see that \(x = \chi \) satisfies Condition \(\ref{condition:condition1} \) for \(Y = \{ \chi_t : t \in T \} \). By Proposition \(\ref{proposition:condition} \) we conclude that \(\rho \chi \) is not weakly contained in \(\rho \chi_e \).

At this point it is actually not difficult to exhibit an explicit nonzero element of \(\ker \rho \chi_e \): consider, for example, the function

\[
(\mathbb{1}_{D(a, \Omega(T))} - \mathbb{1}_{\Omega(T)}) * (\mathbb{1}_{D(c, \Omega(T))} - \mathbb{1}_{\Omega(T)}) * \mathbb{1}_U \in C_c(G(T)).
\]

Its restriction to \(G(T)_X^\chi \) is nonzero, since \(g_1 \) and \(g_2 \) are nontrivial elements of \(G(T)_X^\chi \). It lies in the kernel of \(\rho \chi_e \), since

\[(\lambda_a - 1)(\lambda_c - 1)\mathbb{1}_X = 0 \quad \text{ on } \ell^2(T). \]

Therefore \(G(T) \) does not provide a groupoid model for \(C^*_r(T) \). Since the unit group of \(T \) is trivial, by Proposition \(\ref{proposition:trivial_unit} \) we nevertheless have

\[C^*_r(T) \cong C^*_{es}(G(T)). \]

Remark 4.5. An argument similar to the proof of Lemma \(\ref{lemma:nontrivial_elements} \) shows that if \(h \in I_e(T) \) fixes \(x_k \) and \(y_m \) for some \(k \) and \(m \) and satisfies \(\text{dom } h \supseteq X = \bigcup_n x_n T \cup \bigcup_n y_n T \), then \(h = p_T \) or \(h = p_X \). Using this it is not difficult to show that \(G_P(T) = G(T) \).

References

[CN22] J. Christensen and S. Neshveyev, \textit{(Non)exotic Completions of the Group Algebras of Isotropy Groups}, Int. Math. Res. Not. IMRN 19 (2022), 15155–15186, \texttt{DOI:10.1093/imrn/rnab127} MR4490951

[Con82] A. Connes, \textit{A survey of foliations and operator algebras}, Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628. MR679730

[CELY17] J. Cuntz, S. Echterhoff, X. Li, and G. Yu, \textit{K-theory for group C^*-algebras and semigroup C^*-algebras}, Oberwolfach Seminars, vol. 47, Birkhäuser/Springer, Cham, 2017. MR3618901

[Exe08] R. Exel, \textit{Inverse semigroups and combinatorial C^*-algebras}, Bull. Braz. Math. Soc. (N.S.) 39 (2008), no. 2, 191–313, \texttt{DOI:10.1007/s00574-008-0080-7} MR2419901

[ES18] R. Exel and B. Steinberg, \textit{Representations of the inverse hull of a 0-left cancellative semigroup}, preprint (2018), available at \texttt{arXiv:1802.06281 [math.OA]}

[KS02] M. Khoshkam and G. Skandalis, \textit{Regular representation of groupoid C^*-algebras and applications to inverse semigroups}, J. Reine Angew. Math. 546 (2002), 47–72, \texttt{DOI:10.1515/crll.2002.045}

[KM21] B. K. Kwaśniewski and R. Meyer, \textit{Essential crossed products for inverse semigroup actions: simplicity and pure infiniteness}, Doc. Math. 26 (2021), 271–335. MR246403

[LS22] M. Laca and C. Sehnem, \textit{Toeplitz algebras of semigroups}, Trans. Amer. Math. Soc. 375 (2022), no. 10, 7443–7507, \texttt{DOI:10.1090/tran/8743} MR4191431

[Law08] M. V. Lawson, \textit{A correspondence between a class of monoids and self-similar group actions. I}, Semigroup Forum 76 (2008), no. 3, 489–517, \texttt{DOI:10.1007/s00233-008-9052-x} MR2395198

[Li12] X. Li, \textit{Semigroup C^*-algebras and amenability of semigroups}, J. Funct. Anal. 262 (2012), no. 10, 4302–4340, \texttt{DOI:10.1016/j.jfa.2012.02.020} MR290468

[Li21] X. Li, \textit{Left regular representations of Garside categories I. C^*-algebras and groupoids}, preprint (2021), available at \texttt{arXiv:2110.04501 [math.OA]}

[Nor14] M. D. Norling, \textit{Inverse semigroup C^*-algebras associated with left cancellative semigroups}, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 2, 533–564, \texttt{DOI:10.1017/S0013091513000540} MR3200323

[Pat99] A. L. T. Paterson, \textit{Groupoids, inverse semigroups, and their operator algebras}, Progress in Mathematics, vol. 170, Birkhäuser Boston, Inc., Boston, MA, 1999. MR1724106

[Ren91] J. Renault, \textit{The ideal structure of groupoid crossed product C^*-algebras}, J. Operator Theory 25 (1991), no. 1, 3–36. With an appendix by Georges Skandalis. MR1191252
[Spi12] J. Spielberg, C^*-algebras for categories of paths associated to the Baumslag-Solitar groups, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 728–754, DOI:10.1112/jlms/jds025 MR3000828

[Spi20] J. Spielberg, Groupoids and C^*-algebras for left cancellative small categories, Indiana Univ. Math. J. 69 (2020), no. 5, 1579–1626, DOI:10.1512/iumj.2020.69.7969 MR4151331

University of Oslo, Mathematics Institute

Email address: sergeyn@math.uio.no

Email address: gautesc@math.uio.no