Global Ramifications of Dust and Sandstorm Microbiota

Hayedeh Behzad1,2, Katsuhiko Mineta1,3, and Takashi Gojobori1,2,*

1King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
2King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
3King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia

*Corresponding author: E-mail: takashi.gojobori@kaust.edu.sa.
Accepted: June 28, 2018

Abstract

Dust and sandstorm events inject substantial quantities of foreign microorganisms into global ecosystems, with the ability to impact distant environments. The majority of these microorganisms originate from deserts and drylands where the soil is laden with highly stress-resistant microbes capable of thriving under extreme environmental conditions, and a substantial portion of them survive long journeys through the atmosphere. This large-scale transmission of highly resilient alien microbial contaminants raises concerns with regards to the invasion of sensitive and/or pristine sink environments, and to human health—concerns exacerbated by increases in the rate of desertification. Further increases in the transport of dust-associated microbiota could extend the spread of foreign microbes to new ecosystems, increase their load in present sink environments, disrupt ecosystem balance, and potentially introduce new pathogens. Our present understanding of these microorganisms, their phylogenetic affiliations and functional significance, is insufficient to determine their impact. The purpose of this review is to provide an overview of available data regarding dust and sandstorm microbiota and their potential ramifications on human and ecosystem health. We conclude by discussing current gaps in dust and sandstorm microbiota research, and the need for collaborative studies involving high-resolution meta-omic approaches in conjunction with extensive ecological time-series studies to advance the field towards an improved and sufficient understanding of these invisible atmospheric travelers and their global ramifications.

Key words: dust and sandstorms microbiota, global spread, stress resistant and pathogenic microorganisms, human and ecosystem health, metagenomics and multiomics, monitoring.

Introduction

Dust and sandstorm events inject substantial quantities of foreign microorganisms to downwind atmosphere, terrestrial, and aquatic environments, and are known as one of the most far-reaching vehicles for transport of highly stress resistant and potentially invasive/pathogenic microorganisms across the globe (Kellogg and Griffin 2006; Favet et al. 2013; Smith et al. 2013; Weil et al. 2017). Significant increases in the concentration of bacteria and fungi are commonly detected in dust clouds during sandstorm events (Kellogg and Griffin 2006; Griffin 2007; Vijayakumar et al. 2017; Tang et al. 2018). Since microorganisms are fundamental players in ecosystem processes (Schulz et al. 2013; Bernhard and Kelly 2016; Graham et al. 2016), large-scale transport of highly stress resistant, foreign, and potentially invasive/pathogenic microorganisms could have wide ranging impacts on downwind environments and our health (Griffin and Kellogg 2004; Gonzalez-Martin et al. 2014). African dusts were linked to the meningitis outbreaks in sub-Saharan Africa (Agier et al. 2013; Jusot et al. 2017) and the coral reef decline in the Caribbean (Shinn et al. 2000). Dust storms are known to correlate with increased hospital emergency visits due to asthma exacerbations and other respiratory and cardiovascular complications (Gyan et al. 2005; Mallone et al. 2011; Tam et al. 2012; Lee et al. 2013; Meo et al. 2013). However, the few studies investigating the roles of dust storm microbiota in disease outbreaks found correlation, but did not explore clinical evidence for causal effects (Chen et al. 2010; Rodo et al. 2014; Wang et al. 2016). Although these studies provide a link between sandstorms and disease outbreaks, they were constrained in terms of number and scope.
Expanded study is needed since dust activity is predicted to rise substantially in the future due to global climate changes and anthropogenic causes. The world’s drylands have expanded over the past 60 years, and their expansion is projected to continue well into the 21st century (Huang et al. 2017). Dryland regions cover approximately 40% of earth’s total landmass (White and Nackoney 2003), and are spread throughout the globe, with the largest percentage localized in Africa and Asia, as shown in figure 1. Increased aridity, frequent draughts, low precipitation, low soil fertility, and excessive anthropogenic exploitations have made dryland soils exceptionally vulnerable to desertification, degradation, and erosion by wind (Fu and An 2002; Maestre et al. 2014; Tao 2014; Zhou et al. 2016). Approximately 12×10⁶ hectares of arable land is lost annually to desertification, which is 30–35 times greater than expected based on historic rates (UNCCD). Desertification generates new grounds for dust activities (Moulin and Chiapello 2006; McConnell et al. 2007; Johnson et al. 2011; Issanova et al. 2015; Sharma et al. 2015), and could increase microbial load in the atmosphere. The overall escalation in dust activities could alter the equilibrium in sink environments by increasing their share of foreign microbes, extremophiles, and potentially invasive/pathogenic species. It could also spread dust masses beyond present sink environments affecting new ecosystems.

The ramifications of dust and sandstorm microbiota are potentially significant. In order to understand impact, we need to have detailed information on the agents of impact. The research in the field of dust and sandstorm aeromicrobiology and its impact on downwind ecology is still in its infancy. Our current knowledge of these microorganisms and their functional attributes is insufficient to determine a cause and effect relationship between their spread and threats to downwind ecosystems. Understanding the breadth of microbial diversity in dust clouds, their viability, invasiveness/pathogenicity, and their long-term impacts on global ecosystems will require comprehensive, collaborative studies and novel approaches. In recent years, with the advent of culture-independent metagenomics, we are beginning to realize the vast extent of microbial diversity in sandstorm dust clouds and the extent of their reach (Smith et al. 2013; Rosselli et al. 2015; Cha et al. 2017; Maki et al. 2017b; Weil et al. 2017). These novel findings opened our eyes to a frontier of previously unknown microbial diversity, and the research in the field is gaining momentum due to pertinent discoveries. We aim to draw attention to this novel frontier of microbial ecology by examining: 1) The current understanding of dust and sandstorm derived microbiota (DSM), and their global spread; 2) Potential ramifications of DSM on human and ecosystem health; and 3) Perspectives to guide future research towards comprehensive understanding of DSM role at a global level.

Dust and Sandstorm Derived Microbiota (DSM) and Their Global Spread

Dust and Sandstorm Derived Microbiota

The majority of DSM originates from large deserts (Griffin 2007). Deserts are laden with highly stress resistant microorganisms capable of thriving in harsh environmental conditions with restricted water and nutrients availability, extremes of temperatures, and UV irradiation (Kuske et al. 1997; Dose et al. 2001; Varin et al. 2012; Makhalanyane et al. 2015;
Desert microbiota have increased abundance of genes involved in osmoregulation and dormancy, which likely contribute to their survival in hostile desert soil (Fierer et al. 2012). Microorganisms play significant roles in soil ecosystems, from their vital symbiotic interactions with plants, to their major roles in maintenance of biological soil crust, biodegradation of organic matters, and biogeochemical cycling of nutrients (Ortiz-Castro et al. 2009; Abed et al. 2010; Makhalanyane et al. 2015). Microbial diversity in soil is dependent on its pH, nutrient, and moisture contents (Fierer and Jackson 2006; Schulz et al. 2013). Some variations exist in the diversity of taxa that dwell in different deserts, with cold arctic deserts bearing lower microbial diversity compared with hot deserts (Pointing et al. 2009; Fierer et al. 2012; Lee et al. 2012). Some of the major bacterial taxa that frequently dwell in desert soil with high relative abundance include Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, and cyanobacteria (Fierer et al. 2012; An et al. 2013). Arctic and Antarctic deserts are potential allergens (Oh et al. 2014). Archaea including Thaumarchaeota and Euryarchaeota were also found in the air (Frohlich-Nowoisky et al. 2014). DNA sequences from a diversity of viruses, including those related to plant-associated geminiviruses and animal-infecting circoviruses, were also found in air (Whon et al. 2012). Airborne microbiota are known to resist adverse atmospheric conditions (Rothschild and Mancinelli 2001), and the atmosphere is believed to be a source of both beneficial and pathogenic microorganisms (Polymenakou 2012; Nicolaisen et al. 2017).

There is limited data on the extent of microbial diversity and taxonomic details of DSM. These details are required to study the functional and ecological significance of these microbes in their native environments and larger ecosystems.

Global Spread of DSM and Their Wide-Ranging Reach

According to different studies, each year between 0.5 billion and 5 billion tons of dust is injected into the atmosphere (Perkins 2001), the majority of which originate from the Sahara Deserts and Sahel regions in Africa, and the Gobi and Taklamakan Deserts in Asia (Griffin 2007). Sandstorms from the Sahara Deserts transmit roughly a billion tons of dust across the atmosphere, and are considered as one of the major sources of the intercontinental dust transport (Moulin et al. 1997; Griffin 2007). Figure 2 shows NASA satellite images of a strong sandstorm that blew off the west coast of Africa on October 13, 2017, carrying massive amounts of African dusts across the Atlantic Ocean. The dust plume generated from this particular storm stretched for a few thousand kilometers over the Atlantic, and reached the Caribbean within 5–6 days. Sandstorms such as this are common occurrences in the region, and can transport substantial quantities of African dust thousands of kilometers from the source; depending on the strength and direction of the wind, these dust can move westward across the Atlantic Ocean to the Americas and the Caribbean (Propero and Carlson 1981; Swap et al. 1992; Perry et al. 1997; Prenni et al. 2009), or north and eastward over the Mediterranean Sea to Europe and the Middle East, respectively (Nawa et al. 1991; Franzén et al. 1995; Loepold and Martin 1996; Kubilay et al. 2000; Rodríguez et al. 2001). Gobi and Taklamakan Deserts in Asia, the second largest source of long-range dust transport, inject approximately 100–460 Mt/year (Laurent et al. 2006) to 800 Mt/year (Zhang et al. 1997) of dust into the atmosphere (Bishop et al. 2002; Griffin 2007). The dust plumes generated from Asia sandstorms frequently disturb the air quality in East Asia (Iwasaka et al. 1983; Choi et al. 2001; Trochikine et al. 2003), and can reach as far as the Americas (Husar et al. 2001; VanCuren and Cahill 2002), the Alps (Grousset et al. 2003), the Arctic (Huang et al. 2015), and even circle around the globe (Uno et al. 2009). Strong sandstorms originating from African and Asian deserts are known to carry a large enough quantity of dust to affect air quality in destinations thousands of kilometers away from the source (Propero 1999; Griffin 2007). Considering that one gram of soil can harbour 10^8–10^9 prokaryotes (Whitman et al. 1998), this could translate into transport of trillions upon trillions of microbes into the air and downwind destinations along their intermediate path. Increases in the concentration of microbes in sandstorm dust clouds have been documented extensively by both culture dependent and independent approaches (Kellogg and Griffin 2006; Griffin 2007; Nishimura et al. 2010; Yamaguchi et al. 2014).
A few studies examined the impact of increased transport of DSM on ambient airborne microbiota in leeward environments. A recent metagenomic analysis of air samples collected during an Asian dust event in South Korea showed a significant increase in the number of bacterial Operational Taxonomic Units (OTU) with significantly different microbial composition including potential human pathogens, compared with control nondust samples (Cha et al. 2017). A similar analysis of air samples in Northern China demonstrated substantial increases in airborne bacterial diversity and concentration in dust versus nondust air samples (Tang et al. 2018). Asian dust was shown to carry substantial increases in the proportion of endospore forming *Bacillus* as well as other bacterial genera including *Modestobacter* (Cha et al. 2016), which are resistant to desiccation and UV irradiation (Gtari et al. 2012). Examination of two transpacific Asian air plumes at Mt. Bachelor Observatory (2.8 km above sea level) in North America revealed a richness of microbiota tantamount to those found in surface environments; the plumes carried increased level of Gram-positive bacteria that included many spore forming species adapted to survive in extreme conditions (Smith et al. 2013). Similarly, analysis of airborne bacterial communities in the free troposphere at high altitude (500–3,000 m above ground level) over the Noto Peninsula in Japan during Asian dust days showed a high diversity of bacteria, dominated by natural-sand/terrestrial-associated taxa including endospore forming *Bacillus* members (Maki et al. 2017a). Hara et al. (2015) isolated a number of UV tolerant endospore forming cultivable bacteria in air samples collected over the East China Sea during Asian dust events, demonstrating that dust storms carry viable bacteria.

At present, we do not know exactly what percentage of DSM survives the long journey through the atmosphere. It is also uncertain whether these alien microbial contaminants can adapt to disparate new environmental conditions upon arrival, and if they could significantly alter their new host ecosystems. Findings from a recent culture independent metagenomic study by Weil et al. revealed that a massive sandstorm originating from the Sahara Deserts deposited a large fraction of the entire microbial communities from Saharan soil to snow covered Alpine mountains in Italy (Weil et al. 2017). Within these deposits, the authors found a number of putative pathogens and some of the most highly stress resistant microorganisms ever detected on the planet.
Surprisingly, some of these microorganisms might have survived in the frozen Alpine soil and still remained viable upon melting of the snow (Weil et al. 2017). In a similar study, the snow samples collected at Mont Blanc glaciers (French Alps) during Sahara dust storms showed high indices of bacterial diversity with a dominance of phylotypes commonly found in desert and arid soils (Chuvochina et al. 2011a, 2011b), some of which belonged to genera known to carry resistance to adverse environmental conditions including extreme cold, UV irradiation, and desiccation; these traits could enable them to remain viable during atmospheric transport and subsequently adapt to the snow covered environment despite the physical and physiological stress associated with these events. Comparison of microbial data with their closest relatives in the GenBank identified 15 phylotypes as potential snow colonizers (Chuvochina et al. 2011b). In another study, sandstorm originating from the Sahara Desert was shown to change the bacterial assemblage and composition of a pristine fresh water lake in Austrian Alps, and increased viable bacterial concentration in these waters (Peter et al. 2014). These findings raise significant concerns over invasion and alteration of pristine and sensitive sink environments, and further suggest the spread of human diseases by alien microbial contaminants. However, the prevailing data on sandstorm microbiota is exceedingly sparse and insufficient to estimate the potential global effect exerted by these microorganisms.

Potential Ramifications of DSM on Human and Ecosystem Health

The Impact of DSM on Human Health

A primary concern with the dispersal of microorganisms via sandstorms is the potential impact on human health. A few studies have found correlations between DSM and disease outbreaks, but no major attempts were made to establish cause and affect relationships. The annual meningitis outbreaks in Sahel region of Africa were linked to the occurrence of seasonal changes including high temperatures, dry air, and increased dust activities from African deserts (Sultan et al. 2005; Griffin 2007; Agier et al. 2013; Jusot et al. 2017). Inhalation of hot and dry dusty air is thought to impair host immune response, leading to an increase in the nasopharyngeal carriage of precolonized or airborne bacterial pathogens, their direct aspiration into the lung, and dissemination into blood and brain (Jusot et al. 2017). The potential role of dust borne microbiota in the spread of meningitis in the region, however, is not clear and requires detailed investigations. Interestingly, several OTUs potentially belonging to meningitis pathogens were detected in the Sahara dust deposits within the snow packs in Swiss Alps (Meola et al. 2015). The outbreaks of Kawasaki disease (KD), a serious heart complication acquired in childhood, in Japanese children was linked to Candida species found in tropospheric winds originating from China (Rodo et al. 2014). The seasonal occurrence of KD in US children similarly showed a significant association with the strong wind currents that originated from central Asia (Rodo et al. 2011; Rodo et al. 2014). Another infectious disease presumably caused by wind dissemination of microorganisms is Valley Fever, whose fungal causative agents *Coccidioides immitis* and *Coccidioides posadasi* are primarily found in hot and arid desert soil (Kirkland and Fierer 1996). In particular, positive correlations were found between the intensification of sandstorms and the epidemics of Valley Fever in Southern United States in the last decade (Tong et al. 2017). The incidence of measles in Western China was positively correlated with dust events in the region (Ma et al. 2017). The epidemics of pulmonary tuberculosis, a chronic infectious disease of the lung caused by *Mycobacterium tuberculosis*, was similarly linked to Asian dust storms (ADS) in China (Wang et al. 2016). A significant increase in the concentration of ambient influenza type A virus was detected in air samples collected in Taiwan during ADS (Chen et al. 2010); and the highly pathogenic H5N1 avian influenza virus outbreaks in 2003–2005 in Japan and South Korea, positioned downwind of ADS, were potentially caused by increases in the influenza virus load during ADS (Chen et al. 2010). A strong association between increased particulate matter (PM2.5) levels and the risk of acquiring influenza-like illness was reported in Beijing, China across all the age categories studied (Feng et al. 2016). Outbreak of the foot-and-mouth disease (FMD) in Miyazaki, Japan in July–March 2010 which led to the slaughter of 289,000 domestic animals was linked to transport of the FMD virus via yellow sandstorms that originated from China (Maki et al. 2012). Dust events typically lead to increased hospital emergency visits due to asthma exacerbations and other respiratory and cardiovascular complications (Yang et al. 2005; Kanatani et al. 2010; Tam et al. 2012; Meo et al. 2013), but the potential link between sandstorm microbiota and these human health concerns have rarely been investigated even though mounting evidence suggest that microorganisms contribute to the establishment and/or exacerbations of asthma (Glezen et al. 2000; Denning et al. 2006; Hilty et al. 2010; Huang et al. 2011). Airborne dissemination of microorganisms could also greatly increase the range and influence of horizontal gene transfer. This would be particularly problematic when antibiotic resistant genes (ARGs) are acquired by pathogenic microorganisms rendering them resistant to antibiotic treatments (Martinez 2008).

Current data on the potential link between DSM and disease outbreaks show correlation, but are insufficient for establishing causation. Establishing a cause-and-effect relationship between DSM and human health concerns is difficult since the majority of these microorganisms are not yet characterized, and their viability, pathogenic potential, and geographical distributions remain mostly unknown. A comprehensive database of DSM, environmental metadata, and implementation of disease surveillance strategies in
Global Ramifications of Dust and Sandstorm Microbiota

downwind environments are all prerequisites for establishing a clear link between DSM and human health concerns. Surveillance strategies based on emerging biosensor technologies with high sensitivity and specificity for detection of windborne pathogens could provide advanced warning system for at-risk populations (Yoo et al. 2017).

The Impact of DSM on Aquatic Environments

Over two-third of our planet is covered with aquatic ecosystems including oceans, marines, lakes, rivers, and estuaries. Microorganisms are essential players in the natural functioning of these ecosystems from their major roles in biogeochemical cycling of nutrients, to their involvement in food chains through primary productivity, and the sequestration and export of atmospheric CO₂. Dust storms could have significant impacts on these processes through 1) replenishing of essential nutrients (i.e., P and N) and trace metals (i.e., Fe) needed for growth and propagation of indigenous microorganisms; and 2) deposit of a large supply of foreign microbes, including potentially pathogenic microorganisms.

The majority of previous research on dust impact in aquatic environments primarily examined the influence of dust nutrients on indigenous microorganisms with little to no focus on the potential impact of DSM. These studies suggest that dust nutrients could promote or inhibit propagation of certain species over others depending on the trophic status of marine environments (oligotrophic vs. eutrophic) and the richness/toxicity/anthropogenic content of the dust source (Herut et al. 2005; Paytan et al. 2009; Lekunberri et al. 2010; Romero et al. 2011; Gallisai et al. 2014; Guieu et al. 2014; Westrich et al. 2016). Concomitant with the deposit of nutrients, dust storms can deliver copious supplies of highly stress resistant foreign microorganisms to aquatic environments. In a microcosm bioassay experiment, when dust samples from different deserts with distinct microbial communities were added to presterilized Mediterranean seawater, a significant increase in bacterial production and nitrogen fixation was detected within a short period following dust addition suggesting that dust borne microorganisms were alive and metabolically active (Rahav et al. 2016). Peter et al. (2014) compared the viability, composition, and abundance of bacteria in a fresh water lake in Austrian Alps during rain events influenced by Saharan versus non-Saharan dust days, and showed that the bacterial assemblage and composition in the lake differed significantly between the two events, with Gamma Proteobacteria dominating the Saharan dust intrusion events and Beta Proteobacteria dominating the non-Saharan events. The authors found a rapid increase in bacterial cell count in sterile lake water samples upon addition of the rain from Saharan dust days demonstrating that the bacteria in the wet deposits were alive and able to readily propagate. These studies, although limited in their number, focus, and temporal scope, suggest that sandstorms could significantly impact the makeup of microbial community structures in downwind aquatic environments in part through deposit of large supplies of foreign microorganisms. Intrusion of large quantities of potentially stress resistant foreign microorganisms could affect microbial community interactions and equilibrium in these environments; but the long-term impact or threats to the ecology of pristine settings such as the alpine lakes is not known.

In addition to their predicted impact on ecosystem maintenance and sustainability, dust borne microorganisms could have pathogenic ramifications on aquatic organisms. One of the best studied examples is the potential link between increased dust activities and the rapid decline in the coral reef status in the Caribbean, which receives hundreds of millions of tons of dust from Sahara Deserts annually (Shinn et al. 2000). Aspergillus sydowii, the fungal causative agent of Aspergillosis or sea fan disease, was isolated from both the Sahara-derived dust samples in the Caribbean and from the diseased sea fan corals in the region (Weir et al. 2000; Garrison et al. 2003). Later, it was shown that inoculation of healthy sea fans with Aspergillus spp. isolated from dust samples in the Caribbean produced Aspergillosis-like disease morphology in the infected corals and the fungi was successfully reisolated from the diseased animals (Weir-Brush et al. 2004). In a tissue culture bioassay, A. sydowii was shown to impede the motility of dinoflagellate symbiont, the coral symbiont that plays essential roles in coral fitness and energy production (Hallegraeff et al. 2014). Considering that coral reefs house some of the most vibrant marine ecosystems, these studies support the notion that escalation in dust activities could have a negative impact on marine health through increased deposit of dust borne pathogens.

Long term monitoring of sandstorm spread using advanced satellite technologies combined with fieldwork analysis of DSM in downwind environments over the Ocean and terrestrial regions, and close observations of infectious outbreaks could reveal more concrete links between pathogenic DSM and major disease outbreaks in aquatic ecosystems.

The Impact of DSM on Agriculture

Long-range transport of atmospheric dust could have both positive and negative implication on plants and agriculture in sink environments. A clear example of the positive impact of intercontinental dust transport is the continuous fertilization of nutrient depleted soils in the Amazon. By transport of nutrients, in particular phosphorus, and topsoil to the Amazon, Sahara sandstorms are believed to be major contributors to the fertility and productivity of the Amazon rainforest (Yu et al. 2015). However, dust storms can also have negative impacts on downwind agriculture through transport of substantial quantities of foreign, stress resistant and/or pathogenic microorganisms, which could potentially change the make-up of soil microbial communities or introduce...
pathogenic microorganisms to crops and plants. Since modern crops lack genetic diversity and are susceptible to similar set of pathogens, aerial dispersion of plant pathogens and invasive microorganisms by sandstorms could have major implications in agricultural productivity and the global economy. Understanding the mechanisms involved in regional and long-range aerial transport of crop pathogens, and monitoring their spread could help instigate remediation strategies to combat the global spread of plant infectious diseases.

The majority of the studies on aerial dispersal of plant pathogens (phytopathogens) have primarily focused on fungi, since over a thousand species of fungi are responsible for 70% of all known plant diseases (Shi et al. 2016). Fungi form spores that can withstand adverse environmental conditions (Wainwright et al. 2003; Griffin 2004; Sterflinger et al. 2012), enabling them to survive long journeys through the atmosphere (Griffin et al. 2001; Prospero et al. 2005). Several species of fungi known to cause common plant diseases, such as leaf spot, rust, rot, wilt, inhibition of growth, black mold, and early blights, were identified in Asian and African dusts collected thousands of kilometers in sink environments (Yeo and Kim 2002; Kellogg et al. 2004; Wu et al. 2004; Ho et al. 2005; Griffin 2007; Kakikawa et al. 2008; Palmero et al. 2011; Grishkan et al. 2012; Smith et al. 2012). Brown and Hovmöller surveyed the global outbreaks of plant diseases caused by intercontinental dispersion of fungal spores and uncovered a number of fungal diseases that affected plantations of tobacco, coffee, banana, sugarcane, potato, wheat and cereal worldwide (Brown and Hovmöller 2002). Many species of the genus Puccinia with well-known long-range wind dispersion patterns are the causative agents of major crop disease outbreaks worldwide. Long distance dissemination of airborne Puccinia spores by winds, for example, were responsible for the crop stem rust in the North American continent (Eversmeyer and Kramer 2000), the wheat leaf rust in the Indian subcontinent (Nagarajan and Singh 1990), the sugarcane rust, stem rust, and stripe rust across different continents (Watson and De Sousa 1983; Purdy et al. 1985; Wellings and McIntosh 1990), and the loss of the cereal crops worldwide (Narayanasamy 2011). Other important fungal crop pathogens such as Hemileia vastatrix causing the coffee leaf rust (Bowden et al. 1971) and Phakopsora pachyrhizi causing the soybean rust (Pan et al. 2006) were introduced to North America by windborne dissemination from Africa and Asia, respectively. Since the long-range spread of crop diseases by pathogenic fungi could cause significant economic downturn and food insecurities globally, effective surveillance and management strategies are needed to halt the spread of infections (Mahaffee and Stoll 2016). Periodic monitoring of air with molecular approaches, such as quantitative PCR (qPCR) to identify specific pathogens and/or culture independent metagenomics to screen the entire airborne microbiota, are powerful tools that could be more commonly implemented to monitor and identify potential threats as early as possible (Nicolaïsen et al. 2017). Early pathogen detection would enable implementation of well-informed disease management strategies to combat infections.

Studies on potential long distant aerial spread of plant pathogenic bacteria have not been as extensive as those of fungi. Although a large number of putative bacterial plant pathogens were found in regional and intercontinental dust samples (Griffin et al. 2001; Kellogg et al. 2004; Kakikawa et al. 2008; Chuvoschina et al. 2011b; Munday et al. 2013), no evidence of a direct link between the long-range aerial transport of bacteria and the spread of plant infectious diseases has been found. The majority of well-known phytopathogenic bacteria, including Agrobacterium, Xanthomonas, Pseudomonas, Erwinia, Clavibacter, and Rhodococcus species (Francis et al. 2010; Mansfield et al. 2012), do not form endospores, which make them unlikely candidates for long distant transport, unless they possess other mechanisms for resisting adverse atmospheric conditions. Microorganisms can improve their viability in the atmosphere by acting as cloud condensation nuclei (CCN), which can help increase the relative humidity of their surrounding environment, and protect them against desiccation and harmful UV irradiation. The ability to form CCN potentially played a role in the long distant aerial spread of Erwinia carotovora, the causal agent of potato blackleg disease, from the source waters off the west coast of the United States (US) to inland destinations in Colorado (US), where the disease was prevalent (Franc 1994). Pseudomonas syringae, another known plant pathogen with the ability to act as CCN (Lindow et al. 1982), could use a similar strategy for long-range aerial transport and disease spread. The mechanisms involved in long distance aerial spread of phytopathogenic bacteria warrant closer examination in light of their potential ramifications on disease spread.

Unlike fungi and bacteria, plant viruses usually require vectors for transmission of infection. The main route for transmission of plant viruses is by means of insect vectors including aphids, whiteflies, leafhoppers, beetles, and many other insects (Maramorosch 1980; Agrios 2005; Ng and Perry 2004). Aphids are known to carry and spread a large diversity of viruses including the barley yellow dwarf viruses (BYDV) that affects wide varieties of cereal crops worldwide (Miller and Rasochova 1997; Hall et al. 2010). Plant viruses can also transmit infections by means of infected seeds and pollens (Mink 1993). Little is known about the potential long-range atmospheric transport of plant pathogenic viruses and disease transmission in sink environment, although large number of viral DNA sequences, in particular those belonging to plant associated viruses, have been found in the air (Whon et al. 2012). The identification of airborne plant viral DNA sequences does not necessarily indicate the presence of viable viruses that could transmit infection. Viral particles are particularly sensitive to lengthy exposure to desiccation, extreme temperatures, and UV irradiation (Prussin et al. 2014), and are
extremely unlikely to remain viable during long-range atmospheric transport unless they are carried inside host vectors such as plant debris, pollen, bacteria, fungi, or insects. Before any decision can be made regarding the potential ramifications of aerial spread of viral plant pathogens on global agriculture, we need to acquire a more extensive knowledge of the airborne viral community structures, their role in the atmosphere, and the potential mechanisms involved in their viability, virulence, and spread throughout the atmosphere.

Perspectives

Our present knowledge of sandstorm microbiota is limited with regard to their diversity, function, and impact. The majority of our knowledge comes from culture-based studies. By many accounts, over 90% of environmental microbiota cannot be cultured in laboratories; also since microorganisms are grown in isolation in growth culture media, culture-based approaches cannot provide information on microbial community structures in their natural environments. This information is essential for understanding their potential impact on host ecosystems. Regardless of their potential limitations, these studies confirmed that a large number of viable microorganisms, including known and opportunistic human and plant pathogens, are transported via sandstorms (Kellogg and Griffin 2006; Vijayakumar et al. 2017). Culture-based approaches in their current state can only provide a small glimpse into sandstorm-associated microbial diversity and function, unless significant improvements are made to make it possible to grow the majority of environmental microbiota (Vester et al. 2015).

In recent years, with the advent and significant progress in culture-independent metagenomic approaches, we are beginning to realize the vast extent of microbial diversity spread via sandstorms. Table 1 provides a list of some of the most recent publications on dust and sandstorm microbiology, showing that culture independent metagenomics approaches are gaining momentum. As can be seen from the table, the majority of recent studies were conducted on Asian and African dust events, with a few focusing on Arabian and Australian dust storms. Endospore forming, stress resistant microorganisms were commonly found in dust samples from different studies. These studies, although promising, are limited in terms of number and scope, and in particular studies of viral metagenomics is noticeably lacking. Metagenomics could provide the ability to study the entire microbiota and their community composition through direct sequencing and characterization of environmental DNA without the need for prior cultivation. In this paper, we use the term metagenomics to denote both the targeted amplicons sequencing (TAS) and the whole-genome shotgun sequencing (WGS) approaches. Although metagenomics is frequently used in studies of microbiome from different environments, few studies have adopted it for microbial analysis of air and sandstorm samples (Behzad et al. 2015). Culture-independent phylogenetic studies using TAS revealed that surprisingly diverse microbial communities are transported by sandstorm; in particular those by Weil et al. (2017) who showed that a strong sandstorm originating from the Sahara Deserts in Africa deposited a large fraction of the entire desert microbiome to a pristine remote mountain in Italy. In order to understand “impact”, we need to more fully characterize microbial diversity and function. Few of the published sandstorm metagenomic studies thus far have provided detailed phylogenetic analysis of sandstorm microbiota at species and strain levels, which is needed for determining the ecological significance and invasiveness/pathogenicity of these microorganisms. This could be due to the sole use of TAS, which is known for its low-resolution power amongst closely related species, sequencing errors, amplification biases, and inability to detect viruses (Hong et al. 2009; Quince et al. 2009; Quince et al. 2011; Wylie et al. 2012; Logares et al. 2014; Sharpton 2014). A more insightful approach, which is not commonly in practice in sandstorm research, is analysis of the entire microbial genomes in the environmental samples using WGS. This approach has significantly improved our understanding of microbial community structure, genes, and function in many environments including marine and soil (Simon and Daniel 2011) and would benefit sandstorm research. Although considerable advances in DNA sequencing platforms and bioinformatics analysis have been made in recent years, the approach still suffers from an inability to completely characterize the entire microbiota in environmental samples mainly due to: 1) inefficient assembly of the entire sample metagenome; and 2) inability to annotate a substantial fraction of these metagenomes since current databases lack representative sequences for many environmental microorganisms. Further improvements in air/dust sample collection (Behzad et al. 2015), DNA extraction methodologies, sequencing approaches and platforms, bioinformatics tools and software, and the availability of larger database of annotated environmental microbiota could help further advance sandstorm metagenomic research. A combined metagenomic and single cell genomic approach could also overcome the current shortcomings of metagenomics by improving the single cell genome and metagenome assembly and annotations (Lasken and McLean 2014). Metatranscriptomics, meta-proteomics, and metabolomics are other omic approaches rarely used in studies of sandstorm aeromicrobiology. The multi-omic approaches could help unravel not only the entire community and their genome makeup but also the functional and ecological significance of these microorganisms in their native environments and global biosphere.

In order to exert impact, DSM needs to survive the long journey across the atmosphere, and continue to remain viable and propagate in their new host ecosystems. On the subject of viability, current culture dependent and independent approaches do not provide accurate representation of the
Table 1
Culture Independent Metagenomic Approaches Are Increasingly Used in More Recent Studies to Detect DSM

Bacteria or Archaea	Fungi	Dust Source	Collection Site	Methods of Identification	Potential Impact	References
Actinobacteria; Bacteroidetes; Proteobacteria; Acidobacteria; Chloroflexi		Asian dust	Northern China	High throughput Metagenomics: 16S rRNA gene sequencing	Human; Agriculture	(Tang et al. 2018)
Deinococcus-Thermus; Chloroflexi; Cyanobacteria; Gemmatimonadetes; Acidobacteria; Geodermatophilus; Bacillus; Deinococcus; Gemmatimonas; Arthrobacter; Nocardiodes; Rubrobacter; Solirubrobacter	Aurebasidium; Periconia; Pleosporaceae; Montagnulaceae; Embellisia; Davidiella	Sahara dust	Israel	High throughput Metagenomics: 16S rRNA gene sequencing	Human	(Gat et al. 2017)
Dominated by Bacillus members	Fusarium; Cladosporium; Ulocladium; Aspergillus; Alternaria	Arabian dust	Saudi Arabia	High throughput Metagenomics: 16S rRNA gene sequencing	Human	(Vijayakumar et al. 2017)
Bacillus subtilis		Asian dust	Noto Peninsula, Japan	High throughput Metagenomics: 16S rRNA gene sequencing	N/D	(Maki et al. 2017a)
-Bacterial Quantity		Asian dust	Beijing, China	High throughput Metagenomics: 16S rRNA gene sequencing	N/D	(Zhen et al. 2017)
-Bacterial communities		Asian dust	Seoul, Korea	High throughput Metagenomics: 16S rRNA gene sequencing	Human	(Cha et al. 2017)
Bacillus; Bacillus circulans; Modestobacter; Methylbacterium iners; Sphingomonas starnbergensis; Micrococcus terreus; Rubellimicrobium roseum; Rubellimicrobium aerolatum	s-proteobacteria; Firmicutes (Bacilli) Bacteroidetes	Asian dust	Mongolia	High throughput Metagenomics: 16S rRNA gene sequencing	N/D	(Maki et al. 2017b)
Taxonomic Group	Location	Sampling Method	Analytical Method	Domain/Species/Phylum	Sample Type	
-----------------------------	-------------------	----------------------------------	------------------------------------	--	----------------------	
Gemmatimonadetes; Adhaeribacter; Arthrobacter; Bacillus; Balneimonas; Cellulomonas; Geodermatophilus; Pantibacter; Rubellimicrobiun; Rubrobacter; Sporosarcina	Sahara dust Eastern Mediterranean	High throughput Metagenomics: -16S rRNA gene sequencing	Human (Mazar et al. 2016)			
Bacteroidetes; Actinobacteria; Proteobacteria; Firmicutes; Bacillus spp.; Rubellimicrobiun spp.; Rubellimicrobiun mesophilum; R. roseum	Asian dust Beijing, China	Culture independent: -DGGE profile of 16S rRNA gene -16S rRNA gene clone library sequencing	Human; Agriculture (Yamaguchi et al. 2016)			
Bacillus circulans; Methylobacterium iners; Sphingomonas stambergensis; Micrococcus terreus; Rubellimicrobiun roseum; Rubellimicrobiun aerolatum	Asian dust S. Korea	High throughput Metagenomics: -16S rRNA gene sequencing Bacterial abundance: qPCR	Human (Cha et al. 2016)			
Actinobacteria; Cyanobacteria; Acidobacteria; Bacilli; γ-proteobacteria; β-proteobacteria; Clostridia; α-proteobacteria; Deinococci	Asian dust Osaka, Japan	High throughput Metagenomics: -16S rRNA gene sequencing Bacterial abundance: qPCR	N/D (Park et al. 2016)			
Alternaria; Ulocladium; Aspergillus; Penicillium; Fusarium; Acremonium; Phoma	North Westerly dust Kuwait	Fungal culture: - Morphology and culture traits -18S rRNA sequencing	Agriculture (Al-Bader et al. 2016)			
Bacillus spp. Mycosporium spp	Arabian dust Iran	Culture dependent	Human (Nourmoradi et al. 2015)			
Bacillus; Streptococcus; Lactococcus; Anaerbacillus; Corynebacterium; Brevundimonas; Paracoccus; Sphingomonas; Methylobacterium; Caulobacter	African dust Sardinia, Italy	High throughput Metagenomics: -16S rRNA gene sequencing Culture dependent: -MALDI-TOF	Human (Rosselli et al. 2015)			
Aspergillus spp.	Asian dust Over East China Sea	Culture dependent: -16S rRNA sequencing	N/D (Hara et al. 2015)			

(continued)
Bacteria or Archaea	Fungi	Dust Source	Collection Site	Methods of Identification	Potential Impact	References
Massilia; Planococcus; Carnobacterium; Planomicrobium; Pontibacter; Pedobacter; Lysobacter; Sanguiibacter; Ohtaekwangia Gemmatimonadetes; Deinococcus-Thermus; Flavobacteriaceae; Chloroflexi; Cytophagaceae; Oxalobacteriaceae; Comamonadaceae; Myxococcales; Janthinobacterium; Neisseriaceae; Neisseria; Streptococcus		Asian dust	China; S. Korea	High throughput Metagenomics: 16S rRNA gene sequencing	Human	(An et al. 2014)
		Sahara dust	Swiss Alps	High throughput Metagenomics: 16S rRNA gene sequencing		
				Bacterial abundance: qPCR		
				Human		
				Animal; Agriculture		
				Marine	(Hallegraeff et al. 2014)	
				Human; Agriculture	(Katra et al. 2014)	
				Aqueous ecosystems	(Peter et al. 2014)	
				In situ growth experiment		
				Bacterial abundance: DAPI		
				Aquatic systems	(Vila-Costa et al. 2013)	
				Culture independent metagenomic: 16S rRNA gene clone library sequencing		
				High throughput Metagenomics: 16S rRNA gene sequencing		
				Microbial abundance: DAPI, FISH		
				Culture independent metagenomic: 16S rRNA gene library sequencing		
				Culture dependent characterization		
				N/D	(Smith et al. 2013)	
Geobios. Sci. Evol.: 1081:1970–1987	doi:10.1093/gebi/5/baye134 Advance Access Publication June 29, 2018 1981					
-------------------------------------	---	-----------------	-----------------			
Global Ramifications of Dust and Sandstorm Microbiota	**GBE**	**Genome Biol. Evol.**	**10(8):1970–1987 doi:10.1093/gbe/evy134 Advance Access publication June 29, 2018 1981**			
Staphylococcaceae, Streptococcaceae	Ascomycota; Basidiomycota; Chytridiomycota; Microsporidia; Glomeromycota	**African dust**	Chad, Africa; Cape Verde Islands	High throughput Metagenomics: 16S rRNA gene sequencing Microscopic structure: SEM Culture dependent characterization Human; Animal; Agriculture (Favet et al. 2013)		
Firmicutes-Bacillaceae; Actinobacteria-Geodermatophilaceae, Nocardioidaeae, Solirubrobacteraceae; Proteobacteria-Oxalobacteraceae, Rhizobiales, Sphingomonadaceae; Bacteroidetes-Cytophagaceae	Actinobacteria; Firmicutes (B. Subtilis); Proteobacteria; Ascomycota; Basidiomycota; Chytridiomycota; Microsporidia; Glomeromycota	**Asian dust (Kosa)**	Mt. Tateyama, Japan	Culture dependent and independent: DGGE-16S rRNA gene sequencing Physiological culture Ecosystem; Human (Maki et al. 2011)		
Actinobacteria (Crossiella cryophilus); ɣ-Proteobacteria (Devosia limi); Deinococcus Thermus (D. claudonis); Cyanobacteria (Anabaena sp.); Bacteroidetes (Hyphomicrobacter soil)	Sahara dust	Mont Blanc glacier (French Alps)	Culture independent metagenomics: 16S rRNA gene clone library sequencing Ecosystem (Chuvchina et al. 2011a)			
Firmicutes (Bacillus species); Actinobacteria; ɣ-Proteobacteria; Planctomycetes; Deinococcus Thermus	**Asian dust**	Seoul, Korea	Culture dependent and independent: -DGGE profile of 16S rRNA gene -16S rRNA gene clone library sequencing N/D (Jeon et al. 2011)			
Bacillus species; Pseudomonas species	Australian dust	Canberra and Melbourne (Australia)	Culture dependent: -DGGE-16S rRNA sequencing Human; Plant (Lim et al. 2011)			
percent-viability of DSM before and upon arrival in destination. Knowledge of microbial viability is essential for determining the spread and propagation of foreign, pathogenic or invasive microorganisms. The presence of DNA sequences belonging to pathogenic microorganisms in environmental metagenome does not necessarily indicate that the pathogen is alive and able to propagate. Culture dependent approaches could provide better metrics for assessment of viability but currently greater than 90% of environmental microbes cannot be cultured using standard culturing media. Dust samples contain diverse groups of microorganisms that propagate in different environmental conditions; whereas some microbes prefer standard conditioned media for growth, others have specific growth requirements that need to be met. A combination of culture dependent and independent methodologies could be employed to circumvent the shortcomings associated with either of the two approaches (Vester et al. 2015). Culturing requirements could be improved by using culture independent multi-omic approaches to obtain information on the complexity of the microbiota in dust samples and their metabolic needs; this information could then be used to design specific culture media formulations to improve percent cultivability of environmental microbiota (Gutleben et al. 2018). This would help resolve questions pertaining to viability, and also advance studies of microbial diversity and function in culture settings.

Since sandstorms are recurring events and their impacts potentially additive, time-series studies are needed to determine potential long-term ramifications of increased DSM transmission on the ecology of downwind ecosystems (Chuvochina et al. 2011b; Weil et al. 2017). These studies could establish microbial fingerprints of various environments and enable tracking variations in microbial patterns in response to different environmental changes, including sandstorms (Faust et al. 2015). Comparative analysis of microbiota and environmental metadata from source and destination environments could enable identification of influential variables, including invasive/pathogenic microorganisms, involved in ecosystem alterations. The ideal settings for such studies would be environments with minimal external influence, and reduced seasonal variability (Hervas et al. 2009; Mladenov et al. 2011).

Time series studies place particular demands on consistency and reproducibility of data since they typically involve collaboration among multiple laboratories. Such collaborations require standardized approaches to enable comparison of data collected across different time and space, by multiple laboratories. Metagenomic approaches are particularly sensitive to variability in methodology; metagenomic studies that use different approaches and protocols generate different outcomes concerning microbial quantity, diversity, and composition (Clooney et al. 2016). Currently there is no consensus within the field on best methodologies, or standardization between multiple laboratories. Standardized Operating
Global Ramifications of Dust and Sandstorm Microbiota

Protocols (SOP) would help unify the methodologies used by all the collaborators involved in the field. These SOPs require considerable investments of time and resources to develop and perfect; however, their use by wider research community could provide long-term benefits that could substantially advance DSM research. Collaborative work, in particular time-series studies, should address potential relationships between global climate changes, expansion of desertification, increased and widespread injection of DSM into downwind ecosystems, and their human health and ecological ramifications.

Conclusions

Dust activities are expected to rise globally due to climate changes and the rise in desertification caused by natural and anthropogenic events. This could lead to a substantial increase in transport of foreign, invasive, and potentially new pathogenic microorganisms that could alter equilibrium balance in downwind ecosystems, remodel pristine environments, and/or affect human and ecosystem health. Previous attempts to make concrete connections between DSM and human and environmental health concerns have been largely unsuccessful due to lack of substantive data. Inadequate knowledge of sandstorm microbiota limits our understanding of their broader significance. In recent years, TAS metagenomic studies have uncovered a large diversity of microbiota in dust clouds but the significance of these findings remains unknown due to the low-resolution power of TAS-based approaches. To gain a better insight into the phylogenetic diversity and functional and ecological significance of DSM, we recommend a combination of high-resolution strategies including WGS metagenomics, single cell genomics, and multiomic approaches in conjunction with improved culture-based methodologies. Given the increased prevalence of these highly stress resistant, diverse, and potentially pathogenic microorganisms in global atmosphere and downwind ecosystems, there is now a clear need for large-scale collaborative efforts to address potential relationships between the widespread injection of DSM in global atmosphere, ecosystem alterations, and global climate changes, through extensive ecological time-series studies.

Acknowledgments

The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST), under award numbers BAS/1/1059/01/01 and URF/1/1976/03/01. We thank Martin Ibarra for his assistance with literature search. Figure 1 was produced by Ivan Gromicho, scientific illustrator at King Abdullah University of Science and Technology (KAUST).

Literature Cited

Abed RMM, Al Kharusi S, Schramm A, Robinson MD. 2010. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the sultanate of Oman. Fems Microbiol Ecol. 72(3):418–428.
Aeger L, et al. 2013. Seasonality of meningitis in Africa and climate forcing: aerosols stand out. J R Soc Interface 10(79):20120814.
Agrios G. 2005. Plant pathology. Boston, MA: Elsevier Academic Press.
Al-Bader D, Alqadaiby A, Suleman P. 2016. Characterization of fungi transferred by dust storms in Kuwait and their plant pathogenicity. Aerobiologia 32(2):335–345.
An S, Couteau C, Luo F, Neveu J, DuBow MS. 2013. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microb Ecol. 66(4):850–860.
An S, Sin HH, DuBow MS. 2014. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea. Heredit 114(5):460–467.
Angel R, Soares MIM, Ungar ED, Gillor O. 2010. Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J. 4(4):553–563.
Behzad H, Gojbori T, Mineta K. 2015. Challenges and opportunities of airborne metagenomics. Genome Biol Evol. doi: 10.1093/gbe/evv064.
Bernhard AE, Kelly JJ. 2016. Editorial: linking ecosystem function to microbial diversity (vol 7, 1041, 2016). Front Microbiol. 7:1041.
Bishop JK, Davis RE, Sherman JT. 2002. Robotic observations of dust storm enhancement of carbon biomass in the north pacific. Science (New York, NY) 298(5594):817–821.
Bowden J, Gregory PH, Johnson CG. 1971. Possible wind transport of coffee leaf rust across the Atlantic Ocean. Nature 229(5285):500–501.
Bowers RM, et al. 2009. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol. 75(15):5121–5130.
Brodie EL, et al. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci USA. 104(1):299–304.
Brown JKM, Hovmoller MS. 2002. Epidemiology: aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science (New York, NY) 297(5581):537–541.
Burrows SM, Elbert W, Lawrence MG, Pöschl U. 2009. Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys. 9(23):9263–9280.
Cha S, et al. 2016. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Sci Rep. 6(1):37271.
Cha S, et al. 2017. Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during December 2014. Asian dust event. PLoS One 12(1):e0170693.
Chen PS, et al. 2010. Ambient influenza and Asian influenza virus during dust storm days and background days. Environ Health Perspect. 118(9):1211–1216.
Choi JC, Lee M, Chun Y, Kim J, Oh S. 2001. Chemical composition and source signature of spring aerosol in Seoul, Korea. J Geophys Res. 106(D16):18067–18074.
Chuvochina MS, Alekhina IA, Normand P, Petit JR, Bulat SA. 2011. Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phyotypes. Microbiology 80(1):125–131.
Chuvochina MS, et al. 2011. Community variability of bacteria in Alpine snow (Mont Blanc) containing Saharan dust deposition and their snow colonisation potential. Microbes Environ. 26(3):237–247.
Clark JS, Campbell JH, Grizzle H, Acosta-Martínez V, Zak JC. 2009. Soil microbial community response to drought and precipitation variability in the Chihuahuan desert. Microb Ecol. 57(2):245–260.
Clooney AG, et al. 2016. Comparing apples and oranges?: next generation sequencing and its impact on microbiome analysis. PLoS One 11(2):e0148028.

Conley CA, Ishikhanova G, McKay CP, Collings K. 2006. A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6(4):521–526.

Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. 2006. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 27(3):615–626.

Dose K, et al. 2001. Survival of microorganisms under the extreme conditions of the Atacama Desert. Origins Life Evol B. 31(3):287–303.

Etemadifar Z, Ghokami M, Derikvand P. 2016. UV-resistant bacteria with multiple-stress tolerance isolated from desert areas in Iran. Geomicrobiol J. 33(7):1–598.

Eversmeyer MG, Kramer CL. 2000. Epidemiology of wheat leaf and stem rust in the Central Great Plains of the USA. Annu Rev Phytopathol. 38:491–513.

Faust K, Lahti L, Gonzalez P, de Vos WM, Raes J. 2015. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol. 25:56–66.

Favet J, et al. 2013. Microbial hitchhikers on intercontinental dust: catching a lift in chad. ISME J. 7(4):850–867.

Feng C, Li J, Sun WJ, Zhang Y, Wang QY. 2016. Impact of ambient fine particulate matter (pm2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China. Environ Health Glob. 15(1).

Fierer N, et al. 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol. 73(21):7059–7066.

Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 103(3):626–631.

Fierer N, et al. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 109(52):21390–21395.

Franc GD. 1988. Long distance transport of Erwinia carotovora in the atmosphere and surface water. Ph.D. dissertation, Colorado State University, Fort Collins, CO, 131 pp. [Available from Dept. of Bioagricultural Sciences and Pest Management, Fort Collins, CO 80523–1177.]

Franc GD. 1994. Atmospheric transport of Erwinia carotovora. Proceedings 21st Conference on Agricultural and Forest Meteorology and 11th Conference on Biometeorology and Aerobiology, San Diego, CA, Amer. Meteor. Soc., 435–437.

Francis I, Holsters M, Vereecke D. 2010. The Gram-positive side of plant communities and their functional attributes. Proc Natl Acad Sci USA. 107(3):626–631.

Grifuin DW. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 103(3):626–631.

Grifuin DW, Kellogg CA. 2004. Dust storms and their impact on ocean and human health: dust in earth’s atmosphere. EcoHealth 1(3):284–295.

Gat D, Mazur Y, Cytryn E, Rudich Y. 2017. Origin-dependent variations in the atmospheric microbiome community in Eastern Mediterranean dust storms. Environ Sci Technol. 51(12):6709–6718.

Glezen WP, Greenberg SB, Atmar RL, Pedra PA, Couch RB. 2000. Impact of respiratory virus infections on persons with chronic underlying conditions. JAMA 283(4):499–505.

Gonzalez-Martin C, Teigeli-Perez N, Valladares B, Griffin DW. 2014. The global dispersion of pathogenic microorganisms by dust storms and its relevance to agriculture. Adv Agron. 127:1–41.

Graham EB, et al. 2016. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?. Front Microbiol. 7:214.

Grousette F, Ginoux P, Biscaye PE. 2003. Case study of a Chinese dust plume reaching the French Alps. Geophys Res Lett. 30(6):1277.

Hall GS, Peters JS, Little DP, Power AG. 2010. Plant community diversity of aerosols settling in Israel following dust storms. Atmos Res. 95(1–3):271–275.

Hara K, et al. 2015. UV-tolerant culturable bacteria in an Asian dust plume transported over the East China Sea. Aerosol Air Qual Res. 15(2):591–599.

Herut B, et al. 2005. Response of east Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep Sea Res II 52(22–23):3024–3040.

Hervas A, Camarero L, Reche I, Casamayor EO. 2009. Viability and potential for growth of airborne fungal “bloom” in coastal waters. Appl Environ Microbiol. 80(11):3315e20.

Hily M, et al. 2010. Disordered microbial communities in mountain lakes in Europe. Environ Microbiol. 12(1):1–12.

Hong SH, Bunge J, Leslin C, Jeon S, Epstein SS. 2009. Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J. 3(12):1365–1373.

Huang J, et al. 2017. Dryland climate change: recent progress and challenges. Rev Geophys. 55(3):719–778.

Ho HM, et al. 2005. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ. 39(32):5839–5850.

Hilty M, et al. 2010. Disordered microbial communities in mountain lakes in Europe. Environ Microbiol. 12(1):1–12.
Huang YJ, et al. 2011. Airway microbiota and bronchial hyperresponsive-
ness in patients with suboptimally controlled asthma. J Allergy Clin
Immun. 127(2):372–381.

Huang ZW, et al. 2015. Short-cut transport path for Asian dust directly to
the arctic: a case study. Environ Res Lett. 10(11):114018.

Huras RB, et al. 2001. Asian dust events of April 1998. J Geophys Res.
106(D16):18317–18330.

Issanova G, Abuduwaili J, Galayeva O, Semenov O, Bazarbayeva T. 2015.
Aeolian transportation of sand and dust in the Aral Sea region. Int J
Environ Sci Technol. 12(10):3213–3224.

Iwasaka Y, Minoura H, Nagaya K. 1983. The transport and spacial scale of
Asian dust-storm clouds: a case-study of the dust-storm event of April
1979. Tellus B 35(3):189–196.

Jeon EM, et al. 2011. Impact of Asian dust events on airborne bacterial
community assessed by molecular analyses. Atmos Environ. 45(25):4313–4321.

Johnson MS, Meschede N, Killyanplakkil VP, Gass S. 2011.
Understanding the transport of patagonian dust and its influence on
marine biological activity in the South Atlantic Ocean. Atmos Chem
Phys. 11(6):2487–2502.

Jusot JF, et al. 2017. Airborne dust and high temperatures are risk factors
for invasive bacterial disease. J Allergy Clin Immun. 139(3):977.

Kakikawa M, et al. 2008. Dustborne microorganisms in the atmosphere
over an Asian dust source region, Dunhuang. Air Qual Atmos Health
11(4):195–202.

Kanatari KI, et al. 2010. Desert dust exposure is associated with increased
risk of asthma hospitalization in children. Am J Resp Crit Care
182(12):1475–1481.

Katra I, et al. 2014. Richness and diversity in dust stormborne biomes at
the southeast mediterranean. Sci Rep. 4(1):5265.

Kellogg C, et al. 2004. Characterization of aerosolized bacteria and fungi
from desert dust events in Mali, West Africa. Aerobiologia
20(2):99–110.

Kellogg CA, Griffin DW. 2006. Aerobiology and the global transport of
desert dust. Trends Ecol Evol. 21(11):638–644.

Kirkland TN, Fierer J. 1996. Coccidiodomycosis: a reemerging infectious
disease. Emerg Infect Dis. 2(3):192–199.

Kubilay N, Nickovic S, Moulin C, Dulac F. 2000. An illustration of the
global dust cycle from desert dust events in Mali, West Africa. Aerobiologica
27(4):277–290.

Maki T, et al. 2011. Characterization of halotolerant and oligotrophic
bacterial communities in Asian desert dust (kosha) bioaerosol accumu-
lated in layers of snow on mount Tateyama, central Japan.
Aerobiologia 27(4):277–290.

Maki T, et al. 2017a. Variations in airborne bacterial communities at high
altitudes over the noto peninsula (Japan) in response to Asian dust
events. Atmos Chem Phys. 17(19):11877–11897.

Maki T, et al. 2012. Outbreak of foot-and-mouth disease in Miyazaki from
March to July 2010—effect of yellow sand and local surface wind. J
And Land Stud. 22(1):167–170.

Maki T, et al. 2017. Variations in the structure of airborne bacterial commu-
nities in toto-ovoo of Gobi desert area during dust events. Air Qual
Atmos Health 10(3):249–260.

Maki T, et al. 2014. Variations in the structure of airborne bacterial commu-
nities in a downwind area during an Asian dust (Kosa) event. Sci
Total Environ. 488:489-75–84.

Mallone S, et al. 2011. Saharan dust and associations between particulate
matter and daily mortality in Rome, Italy. Environ Health Perspect.
119(10):1409–1414.

Mansfield J, et al. 2012. Top 10 plant pathogenic bacteria in molecular
plant pathology. Mol Plant Pathol. 13(6):614–629.

Maramorosch K. 1980. Spread of plant viruses and spiroplasmas through
airborne vectors. Ann N Y Acad Sci. 353(1):179–185.

Maron PA, et al. 2005. Assessing genetic structure and diversity of air-
borne bacterial communities by DNA fingerprinting and 16s rDNA
clone library. Atmos Environ. 39(20):3687–3695.

Martinez JL. 2008. Antibiotics and antibiotic resistance genes in natural
environments. Science 321(587):365–367.

Mazur Y, Cytyn E, Ere Y, Rudich Y. 2016. Effect of dust storms on the
atmospheric microbiome in the eastern mediterranean. Environ Sci
Technol. 50(8):4194–4202.

McConnell JR, Aristarain AJ, Banta JR, Edwards PR, Simoes JC. 2007.
20th-century doubling in dust archived in an Antarctic Peninsula ice core
parallels climate change and desertification in South America. Proc
Natl Acad Sci USA. 104(14):5743–5748.

Meo SA, Al-Kheraifi MJ, Alfaraj ZF, Alwehaibi NA, Aldereihim AA. 2013.
Respiratory and general health complaints in subjects exposed to sand-
storm at Riyadh, Saudi Arabia. Pakistan J Med Sci. 29(2):642–646.
