All-viral tracing of monosynaptic inputs to single birthdate-defined neurons in the intact brain

Graphical abstract

Highlights
- Modified rabies virus is used to trace inputs to single cells in deep brain areas
- Local and distant monosynaptic inputs to single hippocampal cells can be identified
- Input cells can be functionally characterized in vivo
- Cells can be targeted based on their birthdate during development

Authors
R. Irene Jacobsen, Rajeevkumar R. Nair, Horst A. Obenhaus, Flavio Donato, Torstein Slettenoen, May-Britt Moser, Edvard I. Moser

Correspondence
ragnhild.i.jacobsen@ntnu.no (R.I.J.), edvard.moser@ntnu.no (E.I.M.)

In brief
Jacobsen et al. develop a method that enables inputs to individual cells in deep brain areas to be identified without first removing overlaying tissue. Cells can be targeted based on when they are born during development, and their inputs can be characterized with electrophysiology or imaging techniques in vivo.

Jacobsen et al., 2022, Cell Reports Methods 2, 100221
May 23, 2022 © 2022 The Author(s).
https://doi.org/10.1016/j.crmeth.2022.100221
All-viral tracing of monosynaptic inputs to single birthdate-defined neurons in the intact brain

R. Irene Jacobsen,1,* Rajeevkumar R. Nair,1 Horst A. Obenhaus,1 Flavio Donato,1,2 Torstein Slettmoen,1 May-Britt Moser,1 and Edvard I. Moser1,3,*

1Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim 7030, Norway
2Present address: Biozentrum, Universität Basel, Basel 4056, Switzerland
3Lead contact
*Correspondence: ragnhild.i.jacobsen@ntnu.no (R.I.J.), edvard.moser@ntnu.no (E.I.M.)

https://doi.org/10.1016/j.crmeth.2022.100221

SUMMARY

Neuronal firing patterns are the result of inputs converging onto single cells. Identifying these inputs, anatomically and functionally, is essential to understand how neurons integrate information. Single-cell electroporation of helper genes and subsequent local injection of recombinant rabies viruses enable precise mapping of inputs to individual cells in superficial layers of the intact cortex. However, access to neurons in deeper structures requires removal of tissue that may be part of the circuit under investigation. We developed a virus-based method that enables individual cells in subcortical areas of wild-type mice to be targeted and their monosynaptic inputs to be identified without removing overlaying tissue.

INTRODUCTION

The firing properties of individual neurons are the result of a convergence of multiple inputs. Genetically engineered rabies viruses enable identification of monosynaptic inputs to populations of cells (Wickersham et al., 2007; Reardon et al., 2016; Ciabatti et al., 2017; Chatterjee et al., 2018) and have had a significant impact on our ability to dissect neural circuits. However, to understand the input/output transformation in neurons, we need to map the inputs to individual cells, which is not easy to achieve in vivo. Currently, it is possible to target a single "starter cell" in superficial cortical layers in vivo using single-cell electroporation (Marshei et al., 2010; Wertz et al., 2015; Rompani et al., 2017; Rossi et al., 2020; Geiller et al., 2021), patch clamping (Rancz et al., 2011; Vélez-Fort et al., 2014), or stamping (Schubert et al., 2017) techniques. However, targeting cells in deeper structures with these methods requires invasive procedures, including removal of overlaying tissue (Rompani et al., 2017) that may be part of the circuit under investigation.

We set out to develop a method that allows us to target individual neurons for monosynaptic rabies tracing in deep brain areas without the need for tissue aspiration. To demonstrate our method, we chose the hippocampal trisynaptic circuit as this is a network that has received considerable attention because of its importance for learning, memory, and navigation. As a result, the different hippocampal subfields and firing properties of the principal cell types within it, as well as the gross connectivity of the circuit, are well understood. Monosynaptic rabies tracing has been used previously to identify inputs to large populations of hippocampal neurons (Nakashiba et al., 2012; Deshpande et al., 2013; Sun et al., 2014, 2017; Tao et al., 2021) and, very recently, also inputs to individual CA1 pyramidal cells (Geiller et al., 2021). However, the constellation of inputs that single cells in deeper hippocampal subfields receive remains unknown. This is in part because rabies-mediated input mapping of single hippocampal cells with existing methods requires removal of substantial amounts of overlaying tissue, including parts of CA1 to reach the dentate gyrus and CA3, which disrupts the trisynaptic circuit. To target single cells in these subfields and identify their monosynaptic inputs in the intact hippocampus, we first performed an in utero injection of a virus carrying Cre recombinase to achieve sparse expression of Cre in the adult brain.
Subsequently, by locally injecting a custom helper virus that reaches only a single neuron in this sparsely Cre-labelled population, we can, in a single cell, express the receptor and G-protein necessary for rabies infection and spread, respectively. We show that our approach enables identification of local and distant inputs to these individual starter cells in the hippocampal-entorhinal circuit. Our in utero approach has the added benefit of enabling cells to be targeted based on their birthdate during development, making it possible to investigate inputs to cells with specific developmental origins. We demonstrate how this method can be used to determine the functional properties of monosynaptic inputs to such cell populations with in vivo electrophysiology combined with optogenetic tagging or calcium imaging. Specifically, we provide proof of concept for determining the spatial tuning properties of cells in the medial entorhinal cortex (MEC) that project directly to birthdate-defined cell populations in the hippocampus.

By enabling individual cells in subnecortical brain structures to be targeted for monosynaptic input mapping in a minimally invasive manner, this method extends rabies virus-based circuit mapping tools to deeper regions. This, in turn, will expand our understanding of afferent connectivity and the functional integration of inputs that occurs in single cells in these circuits.

RESULTS

A virus-based method for targeting a single cell and identifying its inputs

We first designed and produced the viruses necessary to perform rabies-mediated tracing based on the Challenge Virus Standard N2c variant (CVS-N2c) strain because this strain spreads to more input cells and is less cytoxic than the Street-Alabama-Dufferin B19 variant (SAD-B19) strain (Reardon et al., 2016). We produced three different EnvA-pseudotyped, G-protein-deleted CVS-N2c recombinant rabies viruses expressing a gene of interest (RABV-GO1) each; specifically, tdTomato (RABV-tdTomato), channelrhodopsin 2 (RABV-ChR2-YFP), or GCaMP6f (RABV-GCaMP6f), to enable anatomical circuit mapping, optogenetic tagging, and calcium imaging of input cells, respectively (Figure 1 A). These pseudotyped RABVs require the TVA receptor to enter cells and a G-protein to spread to input cells (Figure S1A). We incorporated TVA and the G-protein from the CVS-N2c strain into a single Cre-dependent adeno-associated virus (helper virus; AAV-hS-FLEX-TVA-HA-N2cG, Figure 1 A), preventing unspecific and undetected starter cell labeling, which can occur when these components are introduced separately using multiple helper viruses; for example, by resulting in secondary jumping from cells that express G but not TVA. We selected an hemagglutinin (HA) tag as a surrogate marker instead of a fluorescent one to facilitate efficient packaging of viral particles. The transgenes were separated by 2A self-cleaving peptide sequences (de Felipe et al., 2006; Tang et al., 2009), providing 2A peptide epitopes for immunodetection. These strategies enabled us to perform immunohistochemical identification of HA or 2A “helper tags” (Figure 1 B) in cells infected with our single helper virus and ensured compatibility with RABVs expressing different fluorescent payloads.

Next we used these viruses to label monosynaptic inputs to cells in the hippocampus by first expressing Cre in wild-type mice. To target a single cell, we performed in utero injections of an AAV carrying Cre under the control of the CaMKII promoter (AAV-CaMKII-Cre) diluted in PBS on embryonic day 13 (E13; Figure 1 B; Table S1), when cells in the hippocampal subfields are born (Angevine, 1965; Deguchi et al., 2011), and the lateral ventricles are still clearly visible (Figure 1 B). Using ultrasound to guide the pipette, we targeted one of the lateral ventricles and injected approximately 30 nL into every embryo. Because of the rapid turnover of cerebrospinal fluid and, hence, the restricted temporal exposure of cells lining the ventricles to the virus (Donato et al., 2017), only a few cells express Cre in the adult hippocampus of these animals (Figure S1 B). Next we injected approximately 50 nL of the helper virus carrying Cre-dependent TVA and G under control of the human synapsin promoter (AAV-hS-FLEX-TVA-HA-N2cG) unilaterally into the adult hippocampus, targeting the CA3 and dentate gyrus (Figure 1 B). At least 2 weeks later, a separate injection of the pseudotyped RABV carrying tdTomato (RABV-tdTomato) resulted in infection of TVA-expressing cells (starter cells) and, with time, G-protein-mediated spread of the RABV carrying tdTomato to monosynthetically connected input cells (Figure 1 B). To determine the number of starter cells targeted, we perfused all animals within 1 month of the rabies injection (when we waited longer, the infected cells started to look unhealthy; Figure 7 A). We next sectioned the ipsilateral hemisphere, keeping all sections and taking care to maintain their original order. Antibodies were then used to label cells expressing a helper tag (Figure 1 B) as well as those expressing tdTomato (to ensure that rabies-infected cells were not missed because of weak tdTomato expression). All tdTomato-expressing cells in the dorsal hippocampus and entorhinal cortex were scanned at 40x with a confocal microscope to check for co-expression with the helper tag. Cells labeled with both the helper tag and tdTomato were identified as starter cells, whereas cells only expressing tdTomato were classified as input cells (Figure 1 B). No starter cells were found in the MEC. Because of the difficulties associated with antibody detection of helper tags (Discussion), we split the animals into two groups (STAR Methods): those in which starter cells could be clearly detected (“conclusive” animals) and those in which it was ambiguous whether starter cells were present (“ inconclusive” animals).

With this approach, we could unambiguously target four or fewer starter cells in 48% of animals (15 of 31) (Figure 2 A). In this group, a single starter cell was labeled 33% of the time (5 of 15) (Figure 2 A), resulting in an overall success rate of 16% (5 of 31) for targeting a single cell in the hippocampus. As expected, longer expression times of the RABV increased the number of rabies-positive cells (Figure 2 B), the anatomical area over which they were found in the dorsal hippocampus (Figure S2 A), as well as the number of input cells labeled in the more distant MEC (Figure S2 B). Hence, we can identify local hippocampal and distant MEC inputs to single cells in the hippocampus (Figures 3 and 4). The identity of the inputs reflected the identity of the starter cell (Figures 3 and 4), which is an important indication that the RABV is indeed transsynaptic. For example, the constellation of inputs a single pyramidal neuron and a single interneuron received was very different despite them being located in neighboring regions (distal CA3 and CA2) in the hippocampus (Figure 3).

However, it is important to consider potential spurious rabies expression that can occur in the absence of Cre around the
This can be due to the presence of unpseudotyped RABVs, which is a possibility given the currently used viral production processes (Watabe-Uchida et al., 2012), and/or leaky, Cre-independent expression of TVA (Miyamichi et al., 2013). The former does not seem to be an issue here (Figure S1A), and to minimize the effect of the latter, we used the split-ATG strategy (Fischer et al., 2019) when designing the helper virus. We also checked the extent of non-specific labeling by repeating the method described above in animals not injected with Cre. Although some spurious rabies expression was observed in the hippocampus, the number and anatomical

Figure 1. A virus-based method for targeting a single cell and identifying its inputs

(A) Schematics of the viral vectors used in this project: AAV-hS-FLEX-TVA-HA-N2cG (top left), AAV-CKII-Cre (center left), the top left vector after Cre-mediated recombination (bottom left), and EnvA-pseudotyped ΔG-CVS-N2c rabies virus (RABV-GOI, right). EnvA, envelope protein from the subgroup A avian sarcoma and leukosis virus; ITR, inverted terminal repeat; hS, human synapsin promoter; ATG, start codon; blue overlapping triangles, FLEX cassette consisting of loxP and lox2272 sites; N2cG, CVS-N2c rabies glycoprotein; 2A, self-cleaving peptide element; HA, hemagglutinin; TVA, start codon-removed avian-specific receptor; W, woodchuck hepatitis virus post-transcriptional regulatory element; pA, bovine growth hormone polyadenylation signal; CKII, CaM kinase II promoter; N, P, M, and L, genes coding the necessary viral proteins for the RABV; GOI, gene of interest.

(B) Timeline of the experimental protocol, which starts when a male and female mouse are introduced for breeding at E0 (embryonic day 0) for up to 24 h. E13: a diluted AAV carrying Cre is injected into one of the lateral ventricles (Lvs) of a mouse embryo under ultrasound guidance, resulting in Cre expression (gray cells in the schematic) in a sparse number of cells in the adult hippocampus. Post-natal day 90 (P90)+: in combination with sparse Cre expression, a small-volume injection of a single rabies helper virus (green) into the hippocampus leads to expression of TVA and G in a single hippocampal cell. A large-volume injection of a G-protein-deleted, EnvA-pseudotyped RABV (magenta) in the same area weeks later (≥2 weeks) results in infection of the single TVA- and G-expressing cell (green and magenta cells in the schematic) and spread of the RABV to monosynaptically connected input cells (magenta-only cells) locally in the hippocampus and in distant regions, such as the MEC. P118+: starter and input cells can be distinguished with antibody staining against HA or 2A epitope proteins introduced by the helper virus (i.e., providing a helper tag). Cells that show colocalization of the helper tag and the GOI introduced by the RABV (such as tdTomato) are identified as starter cells, whereas cells only expressing the GOI are identified as input cells. Images are single z-plane confocal images.

injection site (Watabe-Uchida et al., 2012; Miyamichi et al., 2013). This can be due to the presence of unpseudotyped RABVs, which is a possibility given the currently used viral production processes (Watabe-Uchida et al., 2012), and/or leaky, Cre-independent expression of TVA (Miyamichi et al., 2013). The former does not seem to be an issue here (Figure S1A), and to minimize the effect of the latter, we used the split-ATG strategy (Fischer et al., 2019) when designing the helper virus. We also checked the extent of non-specific labeling by repeating the method described above in animals not injected with Cre. Although some spurious rabies expression was observed in the hippocampus, the number and anatomical
spread of rabies-positive cells was significantly lower than in conclusive animals (Figures 2B and S2A), and spread to the MEC did not occur (Figure S2B), not even when a larger volume (2.5 times more) and higher titer \((10^{11} \text{ infectious particles/ml})\) of the helper virus were used (Figure S1C). These control animals were also inconclusive, suggesting that minimal expression of Cre-independent TVA led to rabies infection of a subset of cells, but not enough to detect them as starter cells (Discussion) or enough G to permit distant spread. These results highlight the importance of including survival-time-matched controls to estimate local, Cre-independent background expression, especially in cases where spread to distant input areas is not observed or when those areas are not the main regions of interest.

Targeting single starter cells in the hippocampus highlights granule-granule cell connectivity

Keeping these limitations in mind, a striking finding from the animals in which we achieved single starter cell labeling of hippocampal granule cells was the high proportion of inputs from other granule cells. After 20 days of rabies expression, one granule cell was found to receive input from another granule cell located several hundred micrometers away along the longitudinal axis of the hippocampus (Figure 4A). After 26 days (in a different animal), the virus had spread to a total of 35 input cells in the hippocampus, 80% of which were other granule cells (Figure 4B). Even when accounting for background expression, granule cells were still the dominant input type (subtracting the highest number of rabies-positive cells observed in the control animals from only the number of granule cell inputs observed here: \((28 \text{ observed granule cell inputs} - 18 \text{ background cells})/(35 \text{ total observed hippocampal input cells} - 18 \text{ background cells}) = 58.8\% \text{ granule cell inputs}\)). Although the starter cells themselves were located in the middle of the granule cell layer, indicating that they are mature granule cells, a substantial number of their inputs was found in the subgranular zone (1 of 1 granule cell inputs after 20 days, 11 of 28 after 26 days), which suggests that these are immature granule cells. Although this type of granule-granule cell connection was unexpected, weak connections from adult-born to mature granule cells have been described (Drew et al., 2016), and connections going in the opposite direction have been identified previously with rabies tracing (Vivar et al., 2012). Additional studies are necessary to confirm our preliminary findings, but, in combination with the mentioned literature, they suggest that in the case of hippocampal granule cells, RABVs might preferentially target synapses shared with other granule cells.
The functional properties of input cells to birthdate-defined cell populations can be determined with optogenetics in vivo

Apart from enabling sparse Cre expression in adult animals, our in utero approach also provides unique opportunities for developmental studies. By varying the time point at which the virus carrying Cre is injected, different populations of birthdate-matched cells can be targeted in wild-type animals (Donato et al., 2017). To determine the functional properties of inputs to such cell populations, our protocol can be adapted to (1) increase the number of starter cells and (2) include techniques for measuring neural activity.

The number of starter cells can be adjusted by varying the amount of the Cre-carrying virus injected in utero and the amount of helper virus injected in the adult brain. By increasing both, we were able to target populations of hippocampal cells born on different embryonic days for RABV-mediated tracing (E12, Figures 5B and S1A; E14, Figure 6A). Inputs to these birthdate-defined populations can also be compared with the inputs a general population of hippocampal cells receives by leaving out the in utero injection and introducing the Cre-carrying virus along with the helper virus in the adult brain instead (Figure S3A). Both approaches led to broad labeling of these populations’ input cells in the superficial MEC (Figures 5B, 6A, S1A, and S3A), which we next sought to characterize functionally. To do so, we first tested the feasibility of using in vivo electrophysiology combined with optogenetic tagging. We injected a RABV carrying ChR2 (RABV-ChR2-YFP) in the dorsal hippocampus and implanted tetrodes with an optic fiber attached into the ipsilateral MEC (Figure 5A), a major input region containing cell types that have been well characterized with in vivo electrophysiology (Rowland et al., 2016). In these experiments, input cells could be detected in the MEC from approximately 2 weeks after the rabies injection. We started each session by recording single-unit activity in the MEC while the mice explored an open field environment. We found several functional cell types, including grid, head direction, and border cells (Figures 5C and S4), indicating that the network as a whole was not affected by the widespread rabies expression in the entorhinal-hippocampal network. Next we placed the mice in a separate holding box and shone a 473-nm laser through the implanted optic fiber to determine whether any of these cells responded to laser stimulation; i.e., whether they express ChR2 introduced by the RABV and, therefore, project directly to the hippocampus. Cells that responded robustly to laser stimulation with a 2- to 4-ms latency (demonstrating direct activation as opposed to later,
Figure 4. Local and distant inputs to three different single starter cells in the DG
Examples of single starter cells are shown in the left column and their inputs in the right.
(A) Confocal maximum-intensity projection showing a single starter cell in the DG granule cell layer in the dorsal hippocampus highlighted with an arrow and a yellow dotted circle (left). 20 days after the rabies injection, a single hippocampal input cell (right, also a granule cell and highlighted with an arrow) is found more than 320 μm away, along the longitudinal axis, from the starter cell. Image insets are single z-plane confocal images showing colocalization of antibody staining for a tag introduced by the helper virus and tdTomato introduced by the RABV (left insets, starter cell) and only tdTomato expression (right insets, input cell, n = 1 input cell to a single starter cell).

(B) Confocal maximum intensity projection showing a single starter cell in the DG granule cell layer in the dorsal hippocampus highlighted with an arrow and a yellow dotted circle (left). Image insets are single z-plane confocal images showing colocalization of antibody staining for a tag introduced by the helper virus and tdTomato introduced by the helper virus (starter cell). The pie chart (right) shows the proportions of hippocampal input cell types to the cell highlighted on the left 26 days after the rabies injection (n = 35 input cells to a single starter cell).

(C) Epifluorescence images showing a single starter cell in the DG of the dorsal hippocampus highlighted with an arrow and a yellow dotted circle (left, potentially a molecular layer perforant path-associated interneuron) and one of its input cells in the dorsal MEC (center right, arrow). Image insets are single z-plane confocal (legend continued on next page)
secondary activation via stimulation of upstream inputs) included grid cells (Figure 5C). This finding confirms a previous study (Zhang et al., 2013) and indicates that rabies expression does not preclude functional identification of input cells. The firing properties of an individual input cell were also found to remain stable for at least 3 days of continuous rabies expression (Figure S3), and responsive cells with clear spatial firing patterns could be identified for at least 19 days after the rabies injection (Figure 5C). These results show that it is possible to functionally identify and characterize distant inputs to developmentally defined cell populations through rabies-mediated optogenetic tagging in vivo.

In vivo two-photon calcium imaging enables functional detection of distant input cells to birthdate-defined cell populations

Although optogenetics is a powerful way to identify and characterize cells that are monosynaptically connected to birthdate-defined cell populations in the hippocampus, this approach is limited by the number of cells that can be recorded and stimulated at the same time. This is especially true when the labeled input cells are anatomically sparse. This becomes a pertinent issue when using RABVs because it usually takes days or weeks to position tetrodes, and long-term expression of RABVs will eventually lead to deterioration of cell health, which limits the time window for locating cells. We therefore tested the possibility of using calcium imaging to see whether a RABV carrying GCaMP (RABV-GCaMP6f) injected into the hippocampus could be used to identify several input cells simultaneously in the MEC. We employed a similar approach to that described for the optogenetic experiments, except we implanted a prism between the MEC and cerebellum to obtain optical access to the superficial layers of the MEC (Figure 6A). This enabled us to perform two-photon imaging in awake, head-fixed mice and identify several cells projecting to a population of birthdate-matched cells in the hippocampus (Figure 6B).

Finally, to extend the time window for imaging experiments and ensure that the calcium signal itself is not altered by overexpression of rabies proteins in the cell, we considered an alternative approach. By first introducing the calcium indicator with a separate AAV in the MEC of Cre- and helper virus-injected animals, dense population labeling can be achieved, and imaging can be performed for as long as required. Then a RABV carrying a red fluorescent tag can be injected into the hippocampus to identify which of the imaged cells project there before the brain is preserved. This also enables activity profiles of targeted input cells to be compared with neighboring cells (Figure 7A). For these reasons, this approach may be especially useful when attempting to identify inputs to a small number of starter cells to help ensure their identification before their health deteriorates because of RABV overexpression. When following our protocol for targeting a single hippocampal starter cell, we injected an AAV carrying GCaMP6m (AAV-Syn-GCaMP6m) into the MEC and implanted a gradient-index (GRIN) lens and prism doublet during the same surgery as the helper virus injection (Figure 7A). By keeping the craniotomy used for the helper virus injection free from cement and temporarily closing it with a silicone sealant, we could reopen it several weeks later to introduce the RABV carrying tdTomato (RABV-tdTomato). When the RABV reached the MEC, we were able to identify a cell expressing both the calcium indicator and tdTomato in vivo with a two-photon microscope (Figure 7B; Zong et al., 2017, 2021; Obenhaus et al., 2022), demonstrating the feasibility of using this approach to characterize the spatial firing properties of input cells in freely moving mice.

DISCUSSION

We developed a virus-based method that allows individual neurons to be targeted for monosynaptic rabies tracing in deep brain structures without the need for tissue aspiration. By applying this method to the hippocampus, we identify local and distant inputs to single cells. We also demonstrate how this method can be used to determine the functional properties of monosynaptic inputs to birthdate-defined cell populations with in vivo electrophysiology combined with optogenetic tagging, or two-photon calcium imaging.

This method achieves a success rate similar to that of existing approaches (few studies report the overall success rate, but the 12% [successful transsynaptic spread in 14 of 119 electroporated cells] attained by Marshel et al. (2010) seems representative). However, it also offers several additional and unique advantages. First, it allows rabies-mediated circuit mapping to be extended to single cells in subnecrotical regions without the need for removal of overlaying tissue. Second, the in utero viral injection approach enables cells born at specific times to be targeted and, hence, identification of inputs to cells with different developmental origins to be compared (in utero electroporation can also be used here, although this requires an additional electrical pulse delivery step). Third, the use of viruses allows specific cell types, dividing cells, or clones to be targeted by utilizing cell-type-specific gene-regulatory elements (Nair et al., 2020) or different virus types (such as retroviruses) during embryonic development (with the Cre-carrying virus) or in adult animals (with the TVA- and G-carrying helper virus). Fourth, by simply varying the concentration and/or amount of virus used, any number of cells can be targeted for input mapping, from single neurons to populations of cells. Fifth, it can be used in wild-type animals, circumventing the need to generate and breed transgenic lines. Sixth, in theory, this approach can be used in any species in which these viruses express and in utero/early postnatal injections are possible.

However, although modified RABVs are currently the only tools available for large-scale monosynaptic input tracing in vivo, they also have disadvantages that need to be considered. Specifically, though the CVS-N2c strain used here is less toxic than

Images showing colocalization of antibody staining for a tag introduced by the helper virus and tdTomato introduced by the RABV (left, starter cell). The pie chart (center left) shows the proportions of hippocampal input cell types to the single starter cell highlighted on the left 28 days after the rabies injection (n = 34 input cells in the hippocampus to a single starter cell). A schematic (right) illustrates the location of all input cells to the same single starter cell across 400 μm of the mediolateral extent of the MEC (n = 4 input cells in the MEC to a single starter cell in the hippocampus). A, anterior; D, dorsal; P, posterior; V, ventral.
the SAD-B19 strain (Reardon et al., 2016), it does eventually lead to death of the infected cells, a constraint it shares with all RABV-based approaches regardless of how cells are targeted. Although the virus needs time to spread to distant input regions (e.g., to the MEC from the hippocampus; Figure S2B), waiting too long will result in cytotoxicity of the initially infected cells (Figure 7A) and, hence, an inability to determine the number of starter cells. From our experience, it appears that the rate at which this occurs differs based on the concentration and amount of virus that the cells are exposed to (Lavin et al., 2020), their cell type, and the circuit in which targeted cells are embedded. However, with recent bioengineering efforts, the limitation of rabies-mediated cytotoxicity can now be overcome and long-term functional studies enabled, though additional viruses and/or transgenic animals are required to achieve this (Ciabatti et al., 2017, 2020; Chatterjee et al., 2018). Another limitation, also independent of the targeting approach, is the lack of knowledge regarding how RABVs spread to input cells. The number of input cells that project to a single cell remains subject to estimates but is likely to be substantially higher than what has been reported in single-cell rabies tracing studies (typically around 100 input cells and up to 846 in the visual cortex; Wertz et al., 2015). Although time is a major determinant of how many input cells are labeled, the relatively low number typically seen raises the question of whether the virus exhibits a bias to cross synapses of certain types, strengths, or activity profiles. This remains an open question because a detailed “ground truth” connectivity map to which rabies tracing results can be compared does not yet exist. The question of whether transmission of RABVs is strictly synapse specific is also under debate. It is therefore advisable to use RABV tracing for comparative and explorative studies rather than aiming for complete quantification of all monosynaptic

Figure 5. The functional properties of input cells to birthdate-defined cell populations can be determined with optogenetics in vivo

(A) Schematic of the experimental design. A population of birthdate-matched (E12) starter cells in the hippocampus was targeted by introducing an undiluted Cre virus during embryonic development and injecting a large volume (eight times higher than for the single-cell experiments) of the helper virus in the adult hippocampus. In a separate surgery, a RABV carrying ChR2 and YFP was injected into the hippocampus, and tetrodes with an optic fiber attached were implanted in the ipsilateral MEC.

(B) Left: confocal maximum-intensity projection of the dorsal hippocampus, showing cells expressing helper proteins and/or ChR2-YFP 30 days after the rabies injection. Right: confocal maximum-intensity projection showing part of the tetrode track (white dotted lines) and input cells expressing ChR2-YFP in the MEC. The inset is a single z-plane confocal image highlighting two example cells (arrows) near the tetrode track.

(C) The functional identity of cells was determined in an open field with a rectangular cue card on one wall while the mouse foraged for cookie crumbs. Afterward, the mouse was placed in a separate holding box for laser stimulation trials to identify cells that express ChR2, which means they provide monosynaptic input to the hippocampus. Corresponding path and laser stimulation plots from three example cells that show robust and reliable responses to laser stimulation (blue vertical line) are shown. These include a grid cell (left, 19 days after rabies injection), a high-firing-rate cell (center, 17 days after rabies injection), and a low-firing-rate cell (right, 17 days after rabies injection). Gray lines indicate the path of the mouse in the open field, and black dots indicate locations (path plots) or timing relative to the laser stimulation (laser stimulation plots) at which units from an individual cell were recorded. Right-centered values above path plots show the average firing rate for the open field session. T, tetrode number; C, cell ID; L, latency; F, fidelity.

See also Figures S3 and S4.
inputs to cells (see Rogers and Beier [2021] for a comprehensive review of these limitations). This point becomes particularly pertinent when using Cre-dependent viruses because leaky expression of TVA can result in spurious rabies expression in cells that (combined with the staining issues described below) might be wrongly identified as input cells (Figure 2B; Miyamichi et al., 2013). Importantly, distant input cells should also be checked for the presence of helper tags because some AAV serotypes infect cells via axons (see e.g., Aschauer et al., 2013). Background expression because of the potential presence of unpseudotyped RABVs, on the other hand, shows promise of being eliminated with the use of new cell lines (Sumser et al., 2021).

The success rate of our method is chiefly determined by the ability to achieve satisfactory labeling of starter cells. In roughly half of the animals (Figure 2A), we could not determine how many starter cells were present because the antibody staining of helper tags was ambiguous. The reason for this could be (1) death of starter cells or (2) staining issues (e.g., limited Cre availability resulting in few recombination events and/or inadequate amounts of helper proteins for our detection method). The latter explanation seems more likely for several reasons. First, we typically did not see cell damage until more than 30 days after the rabies injection when attempting to target single cells (Figure 7A). Second, we limited the amount of Cre and helper virus used to keep the number of starter cells low, which could result in reduced transgene expression from the helper virus (low expression levels of G could also explain the relatively low number of input cells observed). Third, animals that went through the same protocol but were not injected with the Cre virus (Figures 2B and S2) or not injected with a RABV (n = 4 animals; data not shown), also showed inconclusive staining of helper tags. Fourth, antibody staining for helper proteins is clearer and easier to detect in animals injected with...
larger amounts of Cre and helper virus (Figures 5, 6 and S3). Fifth, the spread of the RABV over time followed a similar trend for the inconclusive and conclusive cases (Figures 2B and S2), indicating that the overall numbers of starter cells were similar in both groups (a notable exception is the inconclusive cases, where a low number of local rabies-positive cells is present despite long survival times; these likely represent cases of background expression because they seem to overlap with the Cre-independent controls; Figure 2B). Sixth, based on the relatively low number of input cells observed, it seems unlikely that we are underestimating the number of starter cells. If anything, based on the low number of input cells we see, the number of starter cells should be even lower than what we report. Finally, antibody staining to detect starter cells is known to be challenging because highly efficient interactions between the EnvA-pseudotyped RABV and its receptor TVA enable minimal expression of the latter for infection (Federspiel et al., 1994; Seider et al., 2008). As a result, direct detection of the receptor or associated protein expression for starter cell identification can be difficult to achieve (Hafner et al., 2019; Lavin et al., 2020; Faulkner et al., 2021). Development of more sensitive and/or novel antibodies (for example, against TVA or G specifically) will therefore likely improve the success rate of the present method and rabies tracing studies in general.

Rabies-mediated tracing from single cells is a powerful technique to map monosynaptic inputs, which is necessary to understand how neurons integrate information. With the present in-utero-based virus injection method, rabies tracing can be achieved from individual cells located far beneath the brain’s surface. It thus extends detailed circuit mapping and functional characterization of local and distant inputs to deeper brain structures and to cells with defined developmental origins.

Limitations of the study
Although our method can target single cells in subneocortical regions for input mapping, it relies on RABV-mediated tracing and...
in utero ventricular injections. The latter limits the cells that can be targeted to those that line the ventricles at the time of injection. Although that does include cortical cell types, existing methods to target these cells, such as single-cell electroporation (Marshel et al., 2010; Wertz et al., 2015; Rossi et al., 2020), patch clamping (Rancz et al., 2011; Vélez-Fort et al., 2014) or stamping (Schubert et al., 2017) may be preferable. This is because reaching single cells in more readily accessible cortical areas involves minimal tissue damage and does not require embryonic injections. Our in utero protocol does, however, also enable our method to be used for developmental studies.

Rabies-mediated tracing itself carries several limitations (Discussion), and here unambiguous detection of starter cells is key. This is currently limited by spurious leaky viral vectors and low antibody sensitivity, which can lead to Cre-independent expression of TVA at levels undetectable by current antibodies and result in “invisible” starter cells. Although these cells do not enable spread of the RABV to distant input regions, development of tighter viral vectors and more sensitive and/or novel antibodies against helper proteins will be important to improve rabies tracing studies in general and the present method in particular.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead contact
 - Materials availability
 - Data and code availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
- METHOD DETAILS
 - Helper virus (AAV-HS-FLEX-TVA-HA-N2cG)
 - Rabies virus (RABV-GOI)
 - In utero injections
 - Adult injections
 - Optrode construction
 - Optrode implantation
 - In vivo electrophysiology
 - Prism implantation with RABV-GCaMP6f
 - Lens + prism implantation with RABV-tdTomato
 - In vivo two-photon calcium imaging
 - Histology and immunohistochemistry
 - Microscopy of stained sections
- QUANTIFICATION AND STATISTICAL ANALYSIS
 - Conclusive/inconclusive classification
 - Spike sorting
 - Analysis of electrophysiology data
 - Analysis of calcium imaging data

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.crmeth.2022.100221.

ACKNOWLEDGMENTS

We thank S. Ball, A.M. Amundsgård, K. Haugen, K. Jenssen, E. Kräkvik, I. Ul-saker-Janke, and H. Waade for technical assistance; M.P. Witter for help with identifying cell types; and C. Kentros for discussions regarding the experimental protocol. We are also grateful to Tom M. Jessell and his lab at Columbia University for gifting us the essential reagents and cell lines to produce CSVS-N2c rabies strain viruses when the project started in 2016. We are also thankful to Weijian Zong for providing us with a two-photon microscope for recording GCaMP fluorescent activity in rabies virus-injected mice. In addition, we want to thank Schedr.io for making high-quality drawings available, including contributions by Ann Kennedy of a mouse profile (https://doi.org/10.5281/zenodo.3925921). This work was supported by a GRIDCODE ERC Advanced Investigator grant (338865 to E.I.M.), the Research Council of Norway (RCN Center of Excellence grant 223262 to M.-B.M. and E.I.M.), an RCN infrastructure grant (NORBRAIN, 295721 to E.I.M. and M.-B.M.), and the Kavli Foundation to M.-B.M. and E.I.M.

AUTHOR CONTRIBUTIONS

Conceptualization, R.I.J., F.D., M.-B.M., and E.I.M.; methodology, R.I.J., R.R.N., and F.D.; software, H.A.O.; investigation, R.I.J., H.A.O., F.D., and T.S.; resources, R.R.N.; writing – original draft, R.I.J.; writing – review & editing, R.I.J., R.R.N., H.A.O., F.D., T.S., M.-B.M., and E.I.M.; visualization, R.I.J. and R.R.N.; supervision, M.-B.M. and E.I.M.; funding acquisition, M.-B.M. and E.I.M.

DECLARATION OF INTERESTS

R.R.N. is the manager and M.-B.M. and E.I.M. the scientific directors of the Viral Vector Core at the Kavli Institute for Systems Neuroscience, NTNU.

INCLUSION AND DIVERSITY

We worked to ensure sex balance in the selection of non-human subjects. One or more of the authors of this paper self-identifies as a member of the LGBTQ+ community.

Received: October 18, 2021
Revised: February 14, 2022
Accepted: April 26, 2022
Published: May 23, 2022

REFERENCES

Angerveine, J.B. (1965). Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol. 11, 1–70. https://doi.org/10.1016/0014-4886(65)90121-4.

Aschauer, D.F., Kreuz, S., and Rumpel, S. (2013). Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One, e76310. https://doi.org/10.1371/journal.pone.0076310.

Chatterjee, S., Sullivan, H.A., MacLennan, B.J., Xu, R., Hou, Y., Lavin, T.K., Lea, N.E., Michalski, J.E., Babcock, K.R., Dietrich, S., et al. (2018). Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat. Neurosci. 21, 638–646. https://doi.org/10.1038/s41593-018-0091-7.

Ciabatti, E., Gonzalez-Rueda, A., Mariotti, L., Morgese, F., and Tripodi, M. (2017). Life-long genetic and functional access to neural circuits using self-inactivating rabies virus. Cell 170, 382–392.e14. https://doi.org/10.1016/j.cell.2017.06.014.

Ciabatti, E., Gonzalez-Rueda, A., de Malmazet, D., Lee, H., Morgese, F., and Tripodi, M. (2020). Genomic stability of self-inactivating rabies. Preprint at bioRxiv. https://doi.org/10.1101/2020.09.19.304683.

Deguchi, Y., Donato, F., Galimberti, I., Cabuy, E., and Caroni, P. (2011). Temporally matched subpopulations of selectively interconnected principal
neurons in the hippocampus. Nat. Neurosci. 14, 495–504. https://doi.org/10.1038/nn.2768.
Deshpande, A., Bergami, M., Ghanem, A., Conzelmann, K.K., Lepier, A., Gotz, M., and Berninger, B. (2013). Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc. Natl. Acad. Sci. U S A 110, E1115–E1116. https://doi.org/10.1073/pnas.1218991110.
Donato, F., Jacobsen, R.I., Moser, M.B., and Moser, E.I. (2017). Stellate cells drive maturation of the entorhinal-hippocampal circuit. Science 355, eaai8178. https://doi.org/10.1126/science.aai8178.
Drew, L.J., Kheirbek, M.A., Luna, V.M., Denny, C.A., Cloyd, M.A., Wu, M.V., Jain, S., Scharfman, H.E., and Hen, R. (2016). Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 26, 763–778. https://doi.org/10.1002/hipo.22557.
Faulkner, R.L., Wall, N.R., Callaway, E.M., and Cline, H.T. (2021). Application of tdtate granule cells mediate pattern separation, whereas old granule cells drive maturation of the entorhinal-hippocampal circuit. Science 355, 188–201. https://doi.org/10.1126/science.aai8178.
Kim, Y.S., Deisseroth, K., Callaway, E.M., Oberhuber, M., et al. (2019). Mapping cell-type-specific circuit connectivity of hippocampal CA1 neurons revealed by single-cell-initiated transsynaptic tracing. Neuron 93, 767–776.e6. https://doi.org/10.1016/j.neuron.2017.01.028.
Rossant, C., Kadir, S.N., Goodman, D.F.M., Schulman, J., Hunter, M.L.D., Saleem, A.B., Grosmark, A., Belluscio, M., Denfield, G.H., Ecker, A.S., et al. (2016). Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641. https://doi.org/10.1038/nn.4268.
Rossi, L.F., Harris, K.D., and Cardinini, M. (2020). Spatial connectivity matches direction selectivity in visual cortex. Nature 588, 648–652. https://doi.org/10.1038/s41586-020-2894-4.
Rowland, D.C., Roudi, Y., Moser, M.B., and Moser, E.I. (2016). Ten years of grid cells. Annu. Rev. Neurosci. 39, 19–40, annurev-neuro-070815-013824. https://doi.org/10.1146/annurev-neuro-070815-013824.
Rowland, D.C., Obenhaus, H.A., Skytofen, E.R., Zhang, Q., Kontess, C.G., Moser, E.I., and Moser, M.B. (2018). Functional properties of stellate cells in medial entorhinal cortex layer ii. eLife 7. https://doi.org/10.7554/eLife.36664.
Seghier, M., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 672–682. https://doi.org/10.1038/nmeth.2019.
Schubert, R., Trenholm, S., Balint, K., Kosche, G., Cowan, C.S., Mohr, M.A., Munz, M., Martinez-Martin, D., Flaschner, G., Newton, R., et al. (2017). Virus stamping for targeted single-cell infection in vitro and in vivo. Nat. Biotechnol. 35, 81–88. https://doi.org/10.1038/nbt.4034.
Seidler, B., Schmidt, A., Mayr, U., Nakhai, H., Schmidt, R.M., Schneider, G., and Saur, D. (2008). A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc. Natl. Acad. Sci. U S A 105, 10137–10142. https://doi.org/10.1073/pnas.0800467105.
Sumser, A., Joesch, M., Jonas, P., and Ben-Simon, Y. (2021). An extended toolkit for production and use of rdg4-cvs-n2c rabies viral vectors uncovers hidden hippocampal connections. Preprint at bioRxiv. https://doi.org/10.1101/2021.12.23.554270.
revealed through cre-dependent rabies tracing. Cell Rep. 7, 269–280. https://doi.org/10.1016/J.CELREP.2014.02.030.

Sun, Y., Grieco, S.F., Holmes, T.C., and Xu, X. (2017). Local and long-range circuit connections to hilar mossy cells in the dentate gyrus. eNeuro 4. https://doi.org/10.1523/ENEURO.0097-17.2017.

Tang, W., Ehrlich, I., Wolff, S.B.E., Michalski, A.M., Wolff, S., Hasan, M.T., Luthi, A., and Sprengel, R. (2009). Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci. 29, 8621–8629. https://doi.org/10.1523/JNEUROSCI.0359-09.2009.

Tao, S., Wang, Y., Peng, J., Zhao, Y., He, X., Yu, X., Liu, Q., Jin, S., and Xu, F. (2021). Whole-brain mapping the direct inputs of dorsal and ventral CA1 projection neurons. Front. Neural Circuits 15. https://doi.org/10.3389/fncir.2021.643230.

Vélez-Fort, M., Rousseau, C., Niedworok, C., Wickersham, I., Rancy, E., Brown, A., Strom, M., and Margrie, T. (2014). The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83, 1431–1443. https://doi.org/10.1016/j.neuron.2014.08.001.

Vivar, C., Potter, M.C., Choi, J., Lee, Jy, Stringer, T.P., Callaway, E.M., Gage, F.H., Suh, H., and van Praag, H. (2012). Monosynaptic inputs to new neurons in the dentate gyrus. Nat. Commun. 3, 1107–1111. https://doi.org/10.1038/ncomms12143.

Watabe-Uchida, M., Zhu, L., Ogawa, S., Vamanrao, A., and Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873. https://doi.org/10.1016/j.neuron.2012.03.017.

Wertz, A., Trenholm, S., Yonehara, K., Hillier, D., Raics, Z., Leinweber, M., Szalay, G., Ghanem, A., Keller, G., Rozsa, B., et al. (2015). Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 70–74. https://doi.org/10.1126/science.aab1687.

Wickersham, I.R., Lyon, D.C., Barnard, R.J., Mori, T., Finke, S., Conzelmann, K.K., Young, J.A., and Callaway, E.M. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647. https://doi.org/10.1016/j.neuron.2007.01.033.

Wickersham, I.R., Sullivan, H.A., and Seung, H.S. (2010). Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat. Protoc. 5, 595–606. https://doi.org/10.1038/nprot.2009.248.

Yatsenko, D., Reimer, J., Ecker, A.S., Walker, E.Y., Sinz, F., Berens, P., Hoenselaar, A., Cotton, R.J., Siapas, A.S., and Tolias, A.S. (2015). Datajoint: managing big scientific data using matlab or python. Preprint at bioRxiv. https://doi.org/10.1101/031658.

Zhang, S.-J., Ye, J., Miao, C., Tsao, A., Cerniauskas, I., Ledergerber, D., Moser, M.B., and Moser, E.I. (2013). Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science 340, 1232627. https://doi.org/10.1126/science.1232627.

Zong, W., Wu, R., Li, M., Hu, Y., Li, Y., Li, J., Rong, H., Wu, H., Xu, Y., Lu, Y., et al. (2017). Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719. https://doi.org/10.1038/nmeth.4305.

Zong, W., Obenhaus, H.A., Skyten, E.R., Eneqvist, H., de Jong, N.L., Vale, R., Jorge, M.R., Moser, M.B., and Moser, E.I. (2021). Large-scale two-photon calcium imaging in freely moving mice. Preprint at bioRxiv. https://doi.org/10.1101/2021.09.20.461015.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-HA, rabbit	Cell Signaling Technology	Cat#3724; RRID:AB_1549585
Anti-2A, rabbit	Merck	Cat#ABS31; RRID:AB_11214282
Anti-rabbit, AF647	Invitrogen	Cat#A31573; RRID:AB_2536183
Anti-rabbit, HRP	Invitrogen	Cat#G-21234; RRID:AB_2536530
Anti-HRP, Cy5	Akoya Biosciences	Cat#NEL745001KT
Anti-RFP, rat	ChromoTek	Cat#ab150166
Anti-rat, AF555	Abcam	Cat#ab150166
Anti-rat, AF594	Invitrogen	Cat#A-21209; RRID:AB_2535795
Anti-GFP, chicken	Abcam	Cat#ab13970; RRID:AB_300798
Anti-chicken, AF488	Invitrogen	Cat#A11039; RRID:AB_2534096
Bacterial and virus strains		
AAV1.CamKII0.4.Cre.SV40 (AAV-CKII-Cre)	UPenn Vector Core	Cat#AV-1-PV2396
AAV-hs-FLEX-TVA-HA-N2cG	This paper / Viral Vector Core at Kavli Institute for Systems Neuroscience	N/A
EnvA-ΔG-CVS-N2cG-RV-tdTomato (RABV-tdTomato)	As above	N/A
EnvA-ΔG-CVS-N2cG-RV-ChR2-YFP (RABV-ChR2-YFP)	As above	N/A
EnvA-ΔG-CVS-N2cG-RV-GCaMP6f (RABV-GCaMP6f)	As above	N/A
AAV1.CAG.Flex.tdTomato.WPRE.bGH	UPenn Vector Core	Cat#AV-1-ALL864
AAV1.Syn.GCaMP6m.WPRE.SV40	UPenn Vector Core	Cat#AV-1-PV2823
Deposited data		
In vivo electrophysiology data	This paper	The DANDI Archive: https://doi.org/10.48324/dandi.000230/0.220506.1516
Experimental models: Cell lines		
Neuro2A-CVS-N2cG	Jessell lab (Reardon et al., 2016)	N/A
Neuro2A-EnvA	Jessell lab (Reardon et al., 2016)	N/A
Neuro2A	American Type Culture Collection (ATCC)	CCL-131; RRID: CVCL_0470
HEK293-TVA800	Callaway lab (Osakada and Callaway, 2013)	N/A
Experimental models: Organisms/strains		
Mice: C57BL/6JbomTac	Taconic	Cat#B&Jbom; RRID: IMSR_TAC:b6jomb
Recombinant DNA		
pAAV-hSyn-FLEX-splltTVA-2A-2xHA-2A-CVS-N2cG	This paper / Viral Vector Core at Kavli Institute for Systems Neuroscience	N/A
Software and algorithms		
KlustaKwik	Kadir et al., 2014; Rossant et al., 2016	https://github.com/klusta-team/klustakwik
Python	Python Software Foundation	https://www.python.org/
Datajoint	Yatsenko et al., 2015	https://github.com/datajoint/datajoint-python
Suite2p python	Pachitariu et al., 2017	https://github.com/MouseLand/suite2p
Fiji (ImageJ)	Schindelin et al., 2012	http://fiji.sc; RRID: SCR_002285
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Edvard I Moser (edvard.moser@ntnu.no).

Materials availability
The helper and rabies viruses used in this paper are available from the Viral Vector Core at the Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU) in Trondheim, Norway.

Data and code availability
- Electrophysiology data used in this manuscript have been deposited online (The DANDI Archive: https://doi.org/10.48324/dandi.000230/0.220506.1516).
- This paper does not report original code.
- Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Experiments were performed in accordance with the Norwegian Animal Welfare Act and the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (permit numbers 6021, 7163 and 18013). C57BL/6J BomTac (Cat#B6JBO; RRID: IMSR_TAC:b6jbom, Taconic) mice were housed in temperature- and humidity-controlled cages with sex-matched siblings when possible with food and water provided *ad libitum*. A reversed 12h light/12h darkness schedule was maintained throughout. Both sexes were used, which did not seem to influence the results (Tables S1 and S2), at embryonic and/or adult developmental stages.

METHOD DETAILS

Helper virus (AAV-hS-FLEX-TVA-HA-N2cG)
A single Cre dependent rabies helper AAV that expresses the avian TVA receptor, 2xHA and rabies CVS-N2cG, under the human synapsin promoter, was designed and synthesized for the monosynaptic tracing experiments. The helper virus was packaged in AAV serotype 2/1 (having a mosaic of capsid 1 and 2). The construct pAAV-hS-FLEX-splitTVA-2A-2xHA-2A-CVS-N2cG was created by replacing EGFP-B19G genes in pAAV-hSyn-FLEX-splitTVA-EGFP-B19G (Cat#52473, Addgene) with a 2xHA-CVS-N2cG sequence. The positive clones were confirmed by restriction digestion analyses and sequencing. Endotoxin free plasmid maxipreps (Cat#12663, Qiagen) were made for AAV preparations. The day before transfection, 7 x 10⁶ AAV-293 cells (Cat#CVCL_6871, Agilent, USA) were seeded in Dulbecco’s Modified Eagle Medium (DMEM, Cat#41965062, Thermo Fisher Scientific) containing 10% fetal bovine serum (FBS, Cat#16000-044, Thermo Fisher Scientific) and penicillin/streptomycin antibiotics (Cat#15140-122, Thermo Fisher Scientific) into 150 mm cell culture plates. Calcium chloride mediated co-transfection was done with 22.5 μg pAAV containing the transgenes, 22.5 μg pHelper, 11.3 μg pRC (Cat#2400071, Agilent, USA) and 11.3 μg pXR1 capsid plasmid (NGVB, IU, USA). After 7 h, the medium was replaced with fresh 10% FBS containing DMEM. The transfected cells were scraped out after 72 h, centrifuged at 200 g and the cell pellet was subjected to lysis using 150 mM NaCl-20 mM Tris pH 8.0 buffer containing 10% sodium deoxycholate. The lysate was then treated with Benzonase nuclease HC (Cat#71206-3, Millipore) for 45 min at 37°C. The Benzonase treated lysate was centrifuged at 3000 g for 15 min and the clear supernatant was then subjected to HiTrap/HC Heparin High Performance (Cat#17-0406-02, GE) affinity column chromatography using a peristaltic pump (McClure et al., 2011). The elute from the Hepar- in column was then concentrated using Amicon Ultra centrifugal filters (Cat# Z648043, Millipore). The titre of the viral stock was determined as approximately 10¹¹ infectious particles/ml and diluted to 3 x 10¹⁰ infectious particles/ml in sterile DPBS (1x Dulbec-co’s Phosphate Buffered Saline, Gibco, Thermo Fisher) before use (a titre also recommended by a recent paper (Roelofs et al., 2021)).

Rabies virus (RABV-GOI)
EnvA-pseudotyped G-deleted CVS-N2c rabies viruses expressing transgenes of interest (EnvA-ΔG-CVS-N2c RABV-GOI) were produced based on previous protocols (Wickersham et al., 2010; Osakada and Callaway, 2013). G-coated ΔG-CVS-N2c rabies viruses expressing transgenes of interest (ΔG-CVS-N2c RV-GOI), supernatants and packaging cell lines were kind gifts from the Jessell lab (Reardon et al., 2016). The uninfected packaging cell cultures were maintained in 10% FBS and Gentamicin (Cat#15750060, ThermoFisher Scientific) containing EMEM (Eagle’s Minimal Essential Medium, Cat#30-2003, ATCC) in a humidified atmosphere of 5% CO₂ at 37°C. ΔG-CVS-N2c RV-GOI viruses were amplified by passaging for several days on N2cG-complementing Neuro2A-N2c(G) cells. During this expansion process, the infected cells were grown in humidified atmosphere of 3% CO₂ at 34°C. The supernatants were harvested, filter sterilized, and frozen every three days for 4–6 weeks. The functional titre of various batches of ΔG-CVS-N2c RV-GOI was determined by infecting Neuro2A cells (Cat#CCL-131, ATCC) and quantifying the GOI positive Neuro2A cells. For pseudotyping
with EnvA, Neo2A-EnvA cells were infected with unpseudotyped ΔG-CVS-N2c RV-GOI particles at a multiplicity of infection less than 0.5. 24 h post-infection, infected cells were washed with DPBS (Dulbecco’s phosphate buffered solution, Cat#14190169, ThermoFisher Scientific), trypsinized with 0.25% trypsin-EDTA (Cat#T4049-500ML, Merck) and reseeded on multiple 150 mm dishes in a humidified atmosphere of 3% CO₂ at 34 °C. For producing high titre EnvA-pseudotyped ΔG-CVS-N2c RABV-GOIs, incubation media was harvested 48 h later, filtered with 0.45 μm filter and viral particles were concentrated by ultracentrifugation at approximately 50,000 g for 2 h at 4 °C. The pellets were resuspended in DPBS and concentrated using Amicon Ultra centrifugal filters (Cat#Z648043, Millipore). EnvA-pseudotyped ΔG-CVS-N2c rabies was titrated by serial dilutions with HEK293-TVA800 cells. The titre of the viral stock (EnvA-ΔG-CVS-N2c RABV-GOI) was determined as approximately 10⁷ infectious particles/ml.

In utero injections

Two females and one male were put in the same cage for 24 h. Embryonic day 1 (E1) was defined as the day on which the male was removed. Females that were suspected to be pregnant were anaesthetised with isoflurane (IsoFlo, Zoetis, 5% isoflurane vapourised in medical air delivered at 0.8-1 L/min for induction, then 1.5%-3%) and the fur covering the abdomen was removed with hair removal cream for sensitive skin (Veet, Canada). If pregnancy was confirmed with ultrasound (Vevo 1100 System with MS-550S probe, Fujifilm Visualsonics) the mouse was prepared for surgery by injecting an analgesic subcutaneously (Metacam, Boehringer Ingelheim, 5 mg/kg and Temgesic, Indivior, 0.05-0.1 mg/kg) and one local anesthetic under the skin covering the skull (Marcain, Aspen, 1-3 mg/kg). The fur on the top of the head was then shaved and the mouse placed in a stereotaxic frame. The craniotomy was then covered with warm ultrasound gel (37-39 °C, Aquasonic 100, Parker). One lateral ventricle in all embryos in both uterine horns were injected with AAV-CkII-Cre (AAV1.CamKII0.4.Cre.SV40, Cat#AV-1-PV2396, titre: 2.71e13 GC/ml, UPenn Vector Core, University of Pennsylvania, USA), diluted when applicable (see Tables S1 and S2) in sterile DPBS (1x Dulbecco’s Phosphate Buffered Saline, Gibco, ThermoFisher), with a pressure-pump (Visualsonics) under ultrasound guidance. Custom made glass micropipettes (outer tip opening: 200 μm, inner tip opening: 50 μm, Origio) were used to inject the virus in six pulses of 50.6 nL each. After the pipette had been retracted, the embryos were wiped clean with sterile gauze and gently returned to the abdominal cavity. Once injections were complete, the peritoneum and skin were sutured (Supramid DS 13, Resorba Medical, Germany) separately. The entire procedure, from first incision to last stitch, was limited to maximum 90 min to minimise stress to the animals. Recovery took place in a heated chamber (33 °C) until mobility and alertness was restored.

Adult injections

Once in utero injected embryos had reached adulthood (minimum 90 days after birth), they were prepared for the second virus injection. After being anaesthetised with isoflurane (IsoFlo, Zoetis, 5% isoflurane vapourised in medical air delivered at 0.8-1 L/min) two analgesics were provided subcutaneously (Metacam, Boehringer Ingelheim, 5 mg/kg or Rimadyl, Pfizer, 5 mg/kg, and Temgesic, Indivior, 0.05-0.1 mg/kg) and one local anesthetic under the skin covering the skull (Marcain, Aspen, 1-3 mg/kg). The fur on the top of the head was then shaved and the mouse placed in a stereotaxic frame, the isoflurane level adjusted to 1%-2% and eye ointment applied to prevent dry eyes (Simplex, Actavis). Next the skull was exposed and a small hole drilled (with Cat#1RF HP 330 104 001 001 005 drill bit from Hagen and Meisinger, Germany) at 1.55 mm lateral from the midline and 1.58 mm posterior from bregma over the right hemisphere. The same coordinates were used to inject the helper virus (AAV-hS-FLEX-TVA-HA-N2cG, made in house) at 1.55 mm lateral from the midline and 1.58 mm posterior from bregma over the right hemisphere. The required volume (see Tables S1 and S2) was injected at a rate of 23 nL/s and the pipette left for 10 min before retracting. The exposed brain was kept wet with saline (NaCl 9 mg/ml, B. Braun Medical) throughout. The craniotomy was then covered with UV curable cement (Venus Diamond Flow, Kulzer) and the skin sutured (Supramid DS 13, Resorba Medical, Germany) after removing the cement-cover with forceps and reopening the craniotomy with a drill if necessary. The incisions were closed with 4-0 resorbable suture (Supramid DS 13, Resorba Medical, Germany). Females that were suspected to be pregnant were anaesthetised with isoflurane (IsoFlo, Zoetis, 5% isoflurane vapourised in medical air delivered at 0.8-1 L/min for induction, then 1.5%-3%) and the fur covering the abdomen was removed with hair removal cream for sensitive skin (Veet, Canada). If pregnancy was confirmed with ultrasound (Vevo 1100 System with MS-550S probe, Fujifilm Visualsonics) the mouse was prepared for surgery by injecting an analgesic subcutaneously (Metacam, Boehringer Ingelheim, 5 mg/kg and Temgesic, Indivior, 0.05-0.1 mg/kg) and one local anesthetic under the skin covering the skull (Marcain, Aspen, 1-3 mg/kg). The fur on the top of the head was then shaved and the mouse placed in a stereotaxic frame. The craniotomy was then covered with warm ultrasound gel (37-39 °C, Aquasonic 100, Parker). One lateral ventricle in all embryos in both uterine horns were injected with AAV-CkII-Cre (AAV1.CamKII0.4.Cre.SV40, Cat#AV-1-PV2396, titre: 2.71e13 GC/ml, UPenn Vector Core, University of Pennsylvania, USA), diluted when applicable (see Tables S1 and S2) in sterile DPBS (1x Dulbecco’s Phosphate Buffered Saline, Gibco, ThermoFisher), with a pressure-pump (Visualsonics) under ultrasound guidance. Custom made glass micropipettes (outer tip opening: 200 μm, inner tip opening: 50 μm, Origio) were used to inject the virus in six pulses of 50.6 nL each. After the pipette had been retracted, the embryos were wiped clean with sterile gauze and gently returned to the abdominal cavity. Once injections were complete, the peritoneum and skin were sutured (Supramid DS 13, Resorba Medical, Germany) separately. The entire procedure, from first incision to last stitch, was limited to maximum 90 min to minimise stress to the animals. Recovery took place in a heated chamber (33 °C) until mobility and alertness was restored.

Optrode construction

Four 17 mm polyimide-coated platinum/iridium (90/10%) wires (California Fine Wire, CA) were twisted to create one tetrode. Four tetrodes were wired to a 16 channel microdrive (Axona Ltd., Herts, UK) via a connected 22G metal cannula encased in an 18G outer cannula (with one end cut and polished smooth to accommodate the brain surface curvature during implantation) and cut to length with sharp scissors. A 100 μm in diameter optic fibre (Cat#MFC_100/125–0.37_17 mm_ZF1.25-C45, Doric Lenses) was
glued to the anterior side of the tetrodes with the tip approximately 200 µm above the tetrode tips. Electrode impedance was reduced to between 183 and 220 kOhm by plating the electrode tips with platinum at 1 kHz and –0.17 µA using a NanoZ device (Neuralynx, Bozeman, USA).

Optrode implantation

One E12 in utero AAV-CKII-Cre (no dilution) injected mouse and one that had the Cre virus introduced with the AAV-hS-FLEX-TVA-HA-N2cG virus (mixed 1:1, total volume 303.6 nL) at the adult stage were used. Virus injections were performed as described under “Adult injections” with the rabies virus carrying ChR2 and YFP (RABV-ChR2-YFP). An optrode was also implanted in the MEC in the ipsilateral (right) hemisphere in the same surgery as the rabies injection as follows: after exposing and scratching the skull with a needle to enhance skull-dental cement adherence, one ground screw with a short wire soldered on (which was then soldered to the optrode at the end/after the surgery) was attached to the occipital bone and one extra screw to the parietal bone, both in the left hemisphere. Tissue adhesive (Histoacryl, B. Braun Surgical) was applied to secure the screws and to attach the skin edges to the lateral edges of the skull. A circular craniotomy was made over and anterior to the transverse sinus in the right hemisphere. An area of the dura slightly bigger than the optrode to be implanted was removed anterior to the sinus. The optrode was implanted 3.5 mm lateral from the midline, 0.4 mm anterior to the sinus and at a 6 degree angle (pointing posteriorly) down to 0.9-1 mm depth below the dura. The outer cannula was gently lowered to touch the dura surrounding the implant. The implant was secured to the skull with UV curable dental cement (Venus Diamond Flow, Kulzer), and dental cement (Paladur, Kulzer) mixed with carbon (CAS number 7440-44-0, Sigma-Aldrich) to reduce transparency and light reflections. 0.5 ml saline (NaCl 9 mg/ml, B. Braun Medical) warmed to below the dura. The outer cannula was gently lowered to touch the dura surrounding the implant. The implant was secured to the skull with UV curable dental cement (Venus Diamond Flow, Kulzer), and dental cement (Paladur, Kulzer) mixed with carbon (CAS number 7440-44-0, Sigma-Aldrich) to reduce transparency and light reflections. 0.5 ml saline (NaCl 9 mg/ml, B. Braun Medical) warmed to body temperature was administered 1-2 times during the procedure to maintain hydration. Recovery took place in a heated chamber (33 °C) until mobility and alertness was restored. A second subcutaneous injection of the analgesic Temgesic (Indivior, 0.05-0.1 mg/kg) was provided approximately 8 h after the first and Metacam (Boehringer Ingelheim, 5 mg/kg) or Rimadyl (Pfizer, 5 mg/kg) was readministered once per day for at least two days after the surgery, all under isoflurane anaesthesia.

In vivo electrophysiology

Animals implanted with an optrode were recorded up to two times per day. Before each recording session the microdrive was connected to a digital acquisition system (Axona) to record spikes, and two LEDs were attached to the drive to enable tracking of position and head direction with a tracking system (Axona). Signals from the tetrodes were amplified 5 000-10 000 times and a 0.3-7 kHz bandpass filter was applied. Individual spikes were stored at 48 kHz (8 bits/sample and 50 samples per waveform) with a 32-bit clock rate (96 kHz clock rate). LED position data were recorded at 50 Hz. Each session consisted of two parts. First, the mouse explored an open field environment (137 cm, lined with a cotton towel) outside and above the open field arena. In this second part, a 473 nm laser (Cobolt 06-MLD, output power max: 100 mW, Hübner Photonics) was connected to the implanted optic fibre via a patch cable (Doric Lenses, Canada) after the power had been adjusted to deliver 7.5-15.14 mW at the end of the patch cable. TTL pulses sent from an Arduino Uno Rev3 (Arduino, Italy) controlled the on/off state of the laser to deliver 1 ms light pulses at 10 Hz continuously. The same TTL was fed in parallel into a spare digital input channel of the Axona acquisition system for precise synchronisation of laser stimuli and electrophysiological data. At the end of each recording session the tetrodes were turned down by 25-50 µm (except when trying to record from the same cell across multiple sessions, Figure S3). To encourage exploration in the open field environment, animals were put on a food restriction schedule outside of the recording sessions. Their weight was monitored daily and on average was maintained at 96% of their baseline weight.

Prism implantation with RABV-GCaMP6f

To visualise distant inputs located in the MEC in vivo, the protocol illustrated in Figure 1 was modified as follows: during the in utero injection (as described under “In utero injections”), the AAV-CKII-Cre virus was not diluted and when the AAV-hS-FLEX-TVA-HA-N2cG virus was injected (as described under “Adult injections”) a larger volume was used (Table S2). This resulted in a large population of starter cells in the hippocampus. In the same surgery as the rabies virus injection (as described under “Adult injections” except here RABV-GCaMP6f was used, see “Rabies virus (RABV-GOI)”), the skull was exposed, the rabies virus injected, and tissue adhesive (Histoacryl, B. Braun Surgical) was applied to attach the skin edges to the lateral edges of the skull. Next, the skull was scratched with a needle to enhance skull-dental cement adherence and a large, circular craniotomy and over and behind the transverse sinus in the right hemisphere was made. The dura connecting the sinus to the cerebellum was carefully cut along the posterior side of the sinus before a 2 mm square microprism with reflective enhanced aluminium coating on the hypoteneuse (Tower Optical, USA) glued (Norland Optical Adhesive 71, Norland Products) to a 4 mm in diameter circular coverslip (64-0724, Warner Instruments) was inserted immediately posterior to the sinus by hand. No brain tissue was removed. A thin, metal cannula attached to the stereotactic frame was used to hold the prism in place after insertion while the coverslip was secured to the skull with UV curable cement (Venus Diamond Flow, Kulzer). Dental cement (Paladur, Kulzer) mixed with carbon (CAS number 7440-44-0, Sigma-Aldrich; to reduce transparency and light reflections) was used to attach a custom-made head bar and to cover the rest of the skull. 0.9 ml saline (NaCl 9 mg/ml, B. Braun Medical) warmed to body temperature was administered subcutaneously at the end of the procedure for hydration. Recovery took place in a heated chamber (33 °C) until mobility and alertness was
restored. A second subcutaneous injection of the analgesic Temgesic (Indivior, 0.05-0.1 mg/kg) was provided approximately 8 h after the first and Rimadyl (Pfizer, 5 mg/kg) was readministered once per day for at least two days after surgery, all under isoflurane anaesthesia.

Lens + prism implantation with RABV-tdTomato

One mouse went through the same ‘single cell experiment’ protocol illustrated in Figure 1 but adapted to enable imaging of distant input cells in the MEC as follows: in the surgery when the AAV-hS-FLEX-TVA-HA-N2cG virus was injected (as described under "Adult injections"), the craniotomy over the hippocampus was not covered but encircled with UV curable cement (Venus Diamond Flow, Kulzer) to create a small well that was filled with a silicone sealant (Kwik-Cast, World Precision Instruments). In addition, tissue adhesive (Histoacryl, B. Braun Surgical) was applied to attach the skin edges to the lateral edges of the skull. Next, a large, oval craniotomy centred over the transverse sinus in the right hemisphere was made. Here, two injections of an AAV-Syn-GCaMP6m virus (AAV1.Syn.GCaMP6m.WPRE.SV40, titre: 3.43e13 GC/ml, Cat#AV-1-PV2823, UPenn Vector Core, University of Pennsylvania, USA) was performed at 3.5 and 3.9 mm lateral from the midline, 0.2 mm anterior to the sinus and at a 7 degree angle (pointing posteriorly) with a microliter syringe (#75, Hamilton Company). The syringe was slowly lowered until it touched the dura covering the MEC (typically after approximately 2 mm). The syringe was then raised by 100 μm before injecting 500 nl at 100 nl/min across 400 μm for each injection. After each injection, the syringe was left in place for 10 min before retracting. The craniotomy was then temporarily covered with a silicone sealant (Kwik-Cast, World Precision Instruments) while a bonding agent (OptiBond All-In-One, Kerr) was applied to the skull. A custom-made head bar was next attached in front of the hippocampus craniotomy with dental cement (Paladur, Kulzer). Once the cement had dried, the ear bars stabilising the skull were removed to ease the pressure on the skull while the headbar ensured that the skull remained fixed in the same position. Then, the silicone sealant covering the MEC craniotomy was removed and the dura connecting the sinus to the cerebellum was carefully cut along the posterior length of the sinus with a needle. Next, a 1 mm in diameter gradient-index (GRIN) lens attached to a 1 mm square prism (total length approximately 4.67 mm, optimised for 920 nm, Grintech, Germany) was slowly inserted between the cerebral cortex and cerebellum at an 8 degree angle (pointing anteriorly) with a custom made holder attached to a stereotactic micromanipulator (Cat#1760, Kopf, USA). No brain tissue was removed. The GRIN lens + prism doublet was positioned as laterally as possible while allowing for most of the prism itself to be immersed and simultaneously moved anteriorly to ensure contact with the surface of the MEC and thereby limit movement during in vivo imaging. Once in place, the craniotomy was covered with another silicone sealant (Kwik-Sil, World Precision Instruments) and a strip of UV curable cement (Venus Diamond Flow, Kulzer) applied to help maintain the sealant and implant in place while removing the lens-holder. The same cement was then used to encase the entire craniotomy and secure the implant before applying dental cement (Paladur, Kulzer) mixed with carbon (CAS number 7440-44-0, Sigma-Aldrich; to reduce transparency and light reflections) on top over the remainder of the skull (avoiding the hippocampus craniotomy). For protection a small piece of micropore tape (3M) was glued over the hippocampus craniotomy.

For miniscope imaging, a custom made setup described in detail by Obenhaus et al. (2022) was used in conjunction with a Ti:Sapphire laser (MaiTai Deepsee eHP DS, Spectra-Physics) tuned to 920 nm to acquire dual-channel images at 512 x 512 pixel resolution with a frame rate of approximately 30 Hz.

For miniscope imaging, a custom made setup described in detail by Obenhaus et al. (2022) was used in conjunction with a Ti:Sapphire laser (MaiTai Deepsee eHP DS, Spectra-Physics) tuned to 920 nm to acquire dual-channel images at 512 x 512 pixel resolution with a frame rate of approximately 7.52 Hz.
Histology and immunohistochemistry

Following induction of very deep anaesthesia with isoflurane (IsoFlo, Zoetis) followed by a 0.3 ml intraperitoneal injection of Pento-barbital (Apotekforeningen, 100 mg/ml), mice were transcardially perfused with saline (0.9% NaCl in purified water) and then day-fresh 4% PFA (paraformaldehyde, CAS Number: 30525-89-4, Alfa Aesar; pH 7.4) in phosphate buffered saline (PBS, P3813, Sigma-Aldrich, Germany). The extracted brains were left in 4% PFA at 4°C for up to 24 h before being transferred to a 30% sucrose solution in PBS for at least 2 days. 40 μm sagittal sections were made on a cryostat (CryoStar NX70, Thermo Scientific, USA), taking care to maintain their sequential order in a 24-well plate (Cat#351147, Falcon) filled with anti-freeze solution (40% PBS, 30% glycerol, 30% ethylene glycol). The sections were stored in a –20°C freezer. Before staining, sections were washed three times in PBS.

Sections were stained to label starter cells using either an antibody against 2A or an antibody against HA as indicated in Tables S1 and S2. For 2A, a standard protocol was used while for HA we employed a TSA Plus (Akoya Biosciences, USA) protocol. The latter was adopted in an attempt to improve labelling of starter cells in animals that went through the ‘single cell experiment’ method illustrated in Figure 1, but both methods yielded comparable results. During all washes and incubations (except the one at 37°C) sections were left on a shaker. All washes were approximately 10 min long.

Standard protocol: three washes in a 0.3% Triton X-100 (Merck) in PBS solution (‘PBS-T’) before incubation in a 3% BSA solution (bovine serum albumin, Cat#a2153, CAS Number: 9048-46-8, Sigma; in PBS-T) with primary antibodies against HA (rabbit, Cat#3724, Cell Signaling Technology, USA; dilution 1:500) or 2A (rabbit, Cat#ABS31, Merck, Germany; dilution 1:500), and RFP (rat, Cat#5f8, ChromoTek, Germany; dilution 1:500) or GFP (chicken, Cat#ab13970, Abcam, UK; dilution 1:1000) as appropriate for two days at approximately 10°C. After three washes in PBS-T, sections were again incubated in the 3% BSA solution but with secondary antibodies against rabbit (with AF647 conjugate, Cat#A31573, Invitrogen; dilution matching the primary antibody), and rat (with AF555 conjugate, Cat#ab150166, Abcam, UK, or AF594 conjugate, Cat#A-21209 Invitrogen; dilution 1:500) or chicken (with AF488 conjugate, Cat#A11039, Invitrogen; dilution 1:1000) as appropriate for 3 h at room temperature (RT). They were then washed three times in PBS before mounting onto Polyshine adhesion slides (Cat#10219280, Brand: J2800AMNZ, Thermo Scientific, US) in PBS and coversedipped with Prolong antifade with DAPI (Cat#P36935, Invitrogen).

TSA Plus protocol: sections were first incubated with 0.01% H2O2 in PBS at RT for 30 min before being washed three times in PBS. They were then incubated in a 3% BSA solution containing primary antibodies as in the standard protocol (except a 1:1000 dilution was used for the antibody against HA) for two days at approximately 10°C. After two washes in TNT (3.03 g Tris, 4.48 g NaCl, 2.5 ml Tween in 500 ml purified water, pH adjusted to 8 with HCl), they were incubated in TNB (TNT with blocking reagent (0.5 g in 100 ml TNT; Cat#FP1012, Akoya Biosciences)) for 1 h at RT before being transferred to TNB containing antibodies against rabbit (with HRP conjugate, goat, Cat#G-21234, Invitrogen, US; dilution 1:400) and rat (with AF555 conjugate, Cat#ab150166, Abcam, UK; dilution 1:1000) for 2 h at 37°C. Two washes in TNT was followed by an incubation in an amplification solution (Cat#FP1498, Akoya Biosciences) containing an antibody against HRP (with Cy5 conjugate, Cat#NEL745001KT, Akoya Biosciences; dilution 1:200) at RT for 30 min. The sections were then washed three times in TNT before mounting as in the standard protocol.

Microscopy of stained sections

All sections containing rabies labelled cells in the dorsal hippocampus and entorhinal cortex were first imaged with an epifluorescence microscope (AxioImager Z1, Zeiss, Germany) using a 10x/0.45NA objective (Cat#1063-139, Zeiss Plan-Apochromat, Zeiss, Germany) to create overview images. They were then incubated in a 3% BSA solution containing primary antibodies as in the standard protocol (except a 1:1000 dilution was used for the antibody against HA) for two days at approximately 10°C. After two washes in TNT (3.03 g Tris, 4.48 g NaCl, 2.5 ml Tween in 500 ml purified water, pH adjusted to 8 with HCl), they were incubated in TNB (TNT with blocking reagent (0.5 g in 100 ml TNT; Cat#FP1012, Akoya Biosciences)) for 1 h at RT before being transferred to TNB containing antibodies against rabbit (with HRP conjugate, goat, Cat#G-21234, Invitrogen, US; dilution 1:400) and rat (with AF555 conjugate, Cat#ab150166, Abcam, UK; dilution 1:1000) for 2 h at 37°C. Two washes in TNT was followed by an incubation in an amplification solution (Cat#FP1498, Akoya Biosciences) containing an antibody against HRP (with Cy5 conjugate, Cat#NEL745001KT, Akoya Biosciences; dilution 1:200) at RT for 30 min. The sections were then washed three times in TNT before mounting as in the standard protocol.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of statistical tests can be found in the figure legends. Animals that went through the ‘single cell experiment’ protocol described in Figure 1 were excluded if one or both adult virus injections missed the hippocampus (n = 2 animals) or a section containing the dorsal hippocampus was lost during histological processing (n = 1 animal). Analysis of electrophysiology and in vivo imaging data were integrated in a custom Datajoint framework (Yatsenko et al., 2015).

Conclusive/inconclusive classification

All rabies positive cells in the dorsal hippocampus were examined manually in Fiji (Schindelin et al., 2012) to check for colocalization with proteins introduced by the helper virus in confocal stacks acquired at 40x. Cells expressing both helper and rabies proteins were determined to be ‘conclusive’ starter cells if their labelling was unambiguous, i.e. the label was in the cell body, clearly distinguishable from background, and visible in more than one optical section. If no conclusive cells were found in an animal, it was considered ‘inconclusive’. Antibodies against 2A and HA (‘helper tags’) produced similar staining results and were treated equally during analysis.
Spike sorting
Spikes recorded from both the first and second part of an electrophysiological recording session were merged and sorted together offline with KlustaKwik (Kadir et al., 2014; Rossant et al., 2016), first automatically and then refined manually (e.g. merging of clusters) in a graphical user interface (KlustaViewa). The respective recordings (open field and laser stimulation trials) were then split apart again for subsequent analysis.

Analysis of electrophysiology data
All data were analyzed with custom Python code (Python Software Foundation) as reported in Rowland et al. (2018). Spike latencies in laser stimulation sessions was calculated as the average time between a laser pulse (a ‘trial’) and the first spike to occur within 10 ms (trials in which a spike did not occur within 10 ms were not included). Fidelity was calculated as the percentage of laser stimulation trials in which a spike occurred within 10 ms of the laser pulse. The head direction score and mean vector length for cells in Figure S4 were calculated as described previously (Rowland et al., 2018).

Analysis of calcium imaging data
All in vivo acquired images were motion corrected and ROIs extracted using the Suite2p (Pachitariu et al., 2017) python library (https://github.com/MouseLand/suite2p). The Suite2p GUI was used to manually refine the ROI selection (e.g. discard obvious artefactual ROIs). ΔF/F was calculated by first multiplying the neuropil fluorescence of every cell with a neuropil coefficient (0.7) and subtracting the resultant trace from the raw fluorescence trace. The baseline for every cell was then subtracted and the result divided by baseline (Zong et al., 2021; Obenhaus et al., 2022). The baseline was calculated as the median of the first 20% of frames sorted ascendingly after smoothing the neuropil corrected trace with a hanning window.