The GALAH survey: Chemical homogeneity of the Orion complex

Janez Kos, 1 ★ Joss Bland-Hawthorn, 2, 3 Sven Buder, 4, 3 Thomas Nordlander, 4, 3 Lorenzo Spina, 5, 3 Kevin L. Beeson, 1 Karin Lind, 6, 7 Martin Asplund, 8 Ken Freeman, 4, 3 Michael R. Hayden, 2, 3 Geraint F. Lewis, 2 Sarah L. Martell, 9, 3 Sanjib Sharma, 2, 3 Gayandhi De Silva, 10, 3 Jeffrey D. Simpson, 9, 3 Daniel B. Zucker, 11, 12 Tomáž Zwitter 1 Klemen Čotar, 1 Jonti Horner, 13 Yuan-Sen Ting (丁源森), 14, 15, 16, 4 Gregor Traven, 17

1 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
2 Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006, Australia
3 ARC Centre for All Sky Astrophysics in 3D, Australia
4 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
5 School of Physics and Astronomy, Monash University, VIC 3800, Australia
6 Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
7 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
8 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany
9 School of Physics, UNSW, Sydney, NSW 2052, Australia
10 Australian Astronomical Optics, Macquarie University, 105 Delhi Rd, North Ryde, 211, Australia
11 Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
12 Macquarie University Research Centre for Astronomy, Astrophysics & Astrophotonics, Sydney, NSW 2109, Australia
13 Centre for Astrophysics, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
14 Institute for Advanced Study, Princeton, NJ 08540, USA
15 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA
16 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA
17 Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-221 00 Lund, Sweden

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT

Due to its proximity, the Orion star forming region is often used as a proxy to study processes related to star formation and to observe young stars in the environment they were born in. With the release of Gaia DR2, the distance measurements to the Orion complex are now good enough that the three dimensional structure of the complex can be explored. Here we test the hypothesis that, due to non-trivial structure and dynamics, and age spread in the Orion complex, the chemical enrichment of youngest stars by early core-collapse supernova can be observed. We obtained spectra of 794 stars of the Orion complex with the HERMES spectrograph at the Anglo Australian telescope as a part of the GALAH and GALAH-related surveys. We use the spectra of ~ 300 stars to derive precise atmospheric parameters and chemical abundances of 25 elements for 15 stellar clusters in the Orion complex. We demonstrate that the Orion complex is chemically homogeneous and that there was no self-pollution of young clusters by core-collapse supernovae from older clusters; with a precision of 0.02 dex in relative alpha-elements abundance and 0.06 dex in oxygen abundance we would have been able to detect pollution from a single supernova, given a fortunate location of the SN and favourable conditions for ISM mixing. We estimate that the supernova rate in the Orion complex was very low, possibly producing no supernova by the time the youngest stars of the observed population formed (from around 21 to 8 Myr ago).

Key words: astrochemistry – surveys – stars: abundances – stars: formation – stars: pre-main-sequence – open clusters and associations

1 INTRODUCTION

The Orion complex, at a distance of around 400 pc, is the nearest and most studied star-forming region. It serves as a proxy for the study of large, highly structured star forming regions with visible
hierarchy. While most of the studies of star formation are focused into the Orion nebula cluster (ONC) and Ori A and their ongoing star formation, there are remnants of recent star formation (starting 21 Myr ago Kos et al. (2019)) in regions to the north and west of the ONC, and possibly in front of it (Alves & Bouy 2012; Kounkel et al. 2017; Fang et al. 2017).

Due to its proximity, the Orion complex is the only large star forming region for which extensive, high resolution spectroscopic studies can be performed; hundreds of stars can be observed in a reasonable time. This fact, together with the interesting structure of the Orion complex (hierarchy, sequential star formation, nontrivial kinematics, unexplained origin), make it a prime case to study the chemical evolution of star forming regions. In the past, it has been observed that there are chemical inhomogeneities between stars and regions of the complex. In a series of papers Cunha & Lambert (1992, 1994); Cunha et al. (1995, 1998) analysed the abundances of Li, C, N, O, Si, and Fe, in a broad range of stellar types (18 B stars and 9 F and G stars) with great care, taking non-LTE effects into account. They discovered a trend of younger regions of the complex having higher abundances of O and Si, while the abundances of C, N, and Fe are constant (Cunha & Lambert 1994). This has been attributed to younger regions being polluted by core collapse supernovae material from older regions. Most massive core collapse supernovae dominantly produce oxygen (Nomoto et al. 2006), so this is indeed the expected signature of self-pollution. Others, however, do not see any correlation between age and chemical abundances in the complex (Simón-Díaz 2010), or even observe the opposite trend, at least in [Fe/H] (Biazzo et al. 2011a,b). Such inconsistency (although the differences in absolute abundances between studies are minuscule) might well be a consequence of small number statistics. In fact, we now resolve more clusters in the Orion complex than the number of stars studied in those papers (Chen et al. 2019; Zari et al. 2019). This exposes another problem: within each region of the Orion complex are clusters of different ages, so by observing only a small number of stars, any analysis of age-abundances trends is ambiguous. Clusters, as well as individual stars, in large hierarchical star forming regions can evolve differently from very early stages of cluster formation (Maschberger et al. 2010), so a large number of stars must be observed to understand the star forming complex entirely. Larger spectroscopic surveys of low-mass stars had been performed (e.g. Masted et al. 2008; Sacco et al. 2008; Bajo et al. 2011), but a comparative chemical analysis of Orion regions had not been conducted with these data.

Open clusters are most commonly used to demonstrate chemical homogeneity and most show a high level of homogeneity (De Silva et al. 2006; Bovy 2016; Casamiquela et al. 2020). However, open clusters represent only a small fraction of the clusters that have survived past 100 Myr. Arguably, these represent the most massive clusters born in the least perturbed environments. The chemical homogeneity of their parent structures – whole star forming regions – is not obvious. Star forming regions can be made inhomogeneous as a result of most massive core collapse supernovae during the gravitational collapse of the cloud or could be intrinsically inhomogeneous due to their size and lack of time for the turbulence to homogenise the ISM (Feng & Krumholz 2014). The Orion complex is perfect for such an inquiry, as it includes the ζ Ori association, which does not appear to have had direct contact with the rest of the complex in its lifetime. There is also a relatively large age spread observed in the complex, which makes the possibility of self-pollution by core collapse supernovae real.

With modern multi-object spectrographs it is possible to observe hundreds of stars with each pointing, effectively making a complete survey of Orion complex members within the limiting magnitude range of such instruments. We use the 400 fibre HERMES instrument at the 3.9 m Anglo-Australian Telescope at the Siding Spring Observatory. Some data were taken by the GALAH survey and most by a dedicated survey performed by the GALAH team members. A similar survey was also done as part of the APOGEE 2 survey (Cottle et al. 2018; Kounkel et al. 2018). While such surveys cannot achieve the quality of dedicated star-by-star observations, the sheer quantity of data and contemporary analysis techniques can give more reliable picture of the chemical state of the complex.

In this paper we consider the hypothesis that the self-pollution in the Orion complex is possible. This is supported by: (i) a relatively large spread of ages of stars (21 Myr to 6.5 Myr in observed regions), (ii) consistent ages within clusters, (iii) non-trivial dynamics of the Orion complex, which puts older clusters into the vicinity of younger clusters at the time of their birth, and (iv) prior observations of chemical inhomogeneity, although observed in a small sample of stars. Above facts are also consistent with a theory of triggered and sequential star formation in the Orion complex (Lee & Chen 2007). It must be noted that we did not observe the youngest regions in the complex (ONC and Ω Ori region), so our findings are based on regions Ori OB1a, OB1b, the ζ Ori association, and stars around NGC 1788. We study the chemical state and history of the Orion complex. Finding a complete history of star formation in the complex is not the scope of this paper, as we lack observations of the youngest stars and stars less massive than 0.35 M⊙. We also trade completeness of our target selection for a more cautious target selection, most suitable for measuring abundances of chemical elements and having high membership probabilities for identified clusters. Dynamics of the complex is not addressed, mostly for the same reasons, but is admittedly of equal importance as ages and chemical composition in figuring out the relations between clusters.

Proving that the younger Orion complex stars are polluted by supernovae ejecta from older stars would be the first time the population of polluting stars is observed alongside the polluted population. On the other hand, observational proof that large, complex, structured star forming regions with measurable intra-region age spreads are chemically homogenous would have important implications as well. This is a proposition on which some techniques in Galactic archaeology rely on. Chemical tagging is a method by which stars from long-ago dispersed structures can be related based on similar chemical abundances. This is inevitably the destiny of the Orion star forming region as well. While some more massive open clusters can survive a few billion years, most (> 90%) stars are dispersed much quickly. Eventually they lose all kinematic similarity to their star forming region and can only be matched to it by their unique chemical signature. Two questions must be answered before chemical tagging of disk stars is deemed feasible: Do stars from the same star forming regions really have similar enough chemical signatures? And are we able to measure chemical abundances with sufficient precision that tens of thousands of different star forming regions can be discerned from each other (Ting et al. 2015)? Nature and technical limitations make answering these questions difficult. There are known chemically non-homogeneous star forming regions, like γ Vel (Spina et al. 2014) and Orion is often pictured like that in the literature. Chemical differences have also been observed in several binaries (Hawkins et al. 2020). On the other hand, star forming regions, even outside the solar neighbourhood, have similar (±0.15 dex) metallicities (Spina et al. 2017).

Our data are described in Section 2. One should also read Kos et al. (2017); Buder et al. (2018), and Buder et al. (2020) for a complete overview of the GALAH survey and the data reduction.
type stars are more suitable than A and B stars. Hence a special survey on a separate proposal was made to observe fainter targets. Instead of using a straightforward selection function, like that for GALAH, we first found Orion complex members using the Gaia DR2 position-proper motion-parallax space and the clustering algorithm presented in Section 3. Radial velocities were ignored at this stage and the clustering was repeated with radial velocities taken into the account once the observations were completed and all the data were reduced. Hence this initial clustering was only used to make the observing strategy as efficient as possible. Then priority was given to stars with $Gaia$ G magnitudes between 12.0 and 14.5 (roughly $12.25 < V_{JK} < 14.75$). The remaining fibres were filled with Orion members up to one magnitude fainter. Orion complex members filled most of the fibre positioner’s 400 fibres and any remaining fibres were positioned to capture field stars in the same magnitude range. The Ori OB1a, OB1b, J. Ori and NGC 1788 regions were covered in the dedicated proposal. The exposure time for the fields in the separate proposal was extended by 60% compared to GALAH fields to accommodate fainter targets. Apart from the selection function, the quality of spectra is therefore comparable in both surveys.

Collectively, in the GALAH survey and the dedicated proposal we observed 16 fields: 11 on a separate proposal, 4 regular GALAH fields and one bright GALAH field. The bright GALAH field only includes one Orion complex member and one regular GALAH field only includes 3. All together we observed 794 members. Most of the observed stars were not analysed fully. Final analysis of chemical homogeneity omits many stars as they are too faint for anything more than a radial velocity measurement (48% of all observed stars). Nevertheless, these stars still help constrain the isochrone fitted for age measurements. Stars are also excluded from the final analysis if they are hotter than $T_{eff} > 7750\, K (6\%)$, rotate faster than $v\sin i > 40\, km\, s^{-1} (4\%)$, or are double lined binary stars (1%). Some spectra were rejected based on poor fits of spectral templates (6%). These statistics are illustrated in Figure 1. Differences between the solid and dashed lines in Figure 1 are due to hot stars (with not enough features for the pipeline to converge), binaries, fast rotators and other peculiar spectra. There are fewer stars in the final sample, as we rejected low S/N spectra (with $S/N < 20$ in the red arm), results with large uncertainties and moderately fast rotators ($v\sin i > 40\, km\, s^{-1}$). Almost 20% of stars were observed repeatedly over an interval of years (due to the overlap between the GALAH program and the dedicated Orion observing program) or days (due to poor weather conditions during the dedicated Orion observing program).

Spectra from all observing programs cover the same wavelength range: 4718 – 4903 Å (blue channel), 5649 – 5873 Å (green channel), 6481 – 6739 Å (red channel), and 7590 – 7890 Å (infra red channel). Nominal resolving power is the same for all channels ($R = 28,000$), but can vary between and within spectra (see Section 4.1.2).

All fields/spectra were reduced with the same GALAH pipeline, regardless from which survey program they were taken. Spectra from the dedicated survey can therefore be used within the GALAH ecosystem. Any repeated observations were combined. Our analysis pipeline, however, is unique and is described in the following two sections.

Figure 1. Signal-to-noise ratio (S/N) distribution of all observed Orion stars (solid lines), spectra where the parameter pipeline converged (dashed lines) and spectra used in the final analysis (filled histograms). S/N per pixel is shown. S/N per resolution element is about twice as large.
3 CLUSTERING AND AGES

3.1 Clustering

Our goal is to measure precise relative chemical abundances, which is much easier to do if measurements of individual stars can be combined to increase precision. Obviously, the measurements over a natural group of stars must be combined. The next largest structures after individual stars in the hierarchy of the complex are clusters. These do not necessarily have to be open clusters, but any reasonably large overdensities we can detect. We consider such clusters the basic building blocks of the complex; stars in each cluster are assumed to be born at the same time, in a small region. Therefore these clusters are most likely – and indeed are assumed to be – chemically homogeneous. Chemical abundances measured as an average over the clusters can then be measured more precisely than the abundances of individual stars.

Clusters in the Orion complex are rarely well isolated from their environment. Clustering the (complex) clusters within the complex is a challenging task and is extensively explored in the literature, particularly succeeding the Gaia DR2 (Kounkel et al. 2018; Zari et al. 2019; Chen et al. 2019; Kos et al. 2019). In general the identified clusters agree between different authors.

In general we employed a similar approach to clustering the Orion complex as in Kos et al. (2019), so we only give a brief review of the method here. Parameters used in the clustering algorithm are positions, proper motions, and parallax from Gaia DR2 (Gaia Collaboration et al. 2016, 2018) and radial velocity, either calculated by us, or taken from Gaia DR2 for stars not observed by us. Clusters were found using ENLINK (Sharma & Johnston 2009) separately for the Ori OB1 region and the Ori OB1b region. The former also included the ONC and ζ Ori cluster. In the Ori OB1 region we fixed the number of clusters to 16, as such clustering seemed plausible given the ENLINK hierarchy. 11 of them lie in our region of interest (see green polygons in Figure 2). Other 5 also had to be considered, otherwise stars belonging to the σ Ori cluster, for example, but lying close to the Ori OB1b clusters could be mis-clustered (note black points inside green polygons in Figure 2). In the ζ Ori association the ENLINK clustering was more ambiguous. A small variation in parameters returned between two and 6 clusters. While two clusters are more likely, we divided the region into four clusters to check for possible chemical variations in stars close to the centre of the association as opposed to two “tails” stretching to the north-west and south-east.

From the ENLINK clustering we only used the centres of clusters and then found cluster members following the same approach (modified K-mean algorithm) as in Kos et al. (2019): we defined a metric

$$d = \frac{\arccos(r \cdot \bar{r})}{1.25^\circ} + \sqrt{\frac{(\mu_\alpha - \mu_\alpha^*)^2 + (\mu_\delta - \mu_\delta^*)^2}{\text{1.0 mas yr}^{-1}}} + \frac{|\varpi - \varpi^*|}{\text{0.22 mas}} + \frac{|v_r - v_r^*|}{\text{15.0 km s}^{-1}},$$

(1)

where bars denote positions, proper motions, parallaxes and the radial velocity of a cluster centre. The first term describes the distance on the sky. Stars with a normalised distance $d < 4.0$ from a cluster centre are made members of that cluster. If more than one cluster centre is within this distance, a star is considered to be a member of only the nearest one. If no cluster centre is within $d < 4.0$ of a star it is designated a field star. Wherever no radial velocity is available, we only use the first three terms in Equation 1 and scale the distance accordingly. This is described in more details in Kos et al. (2019). Radial velocities used here are of similar quality as in Kos et al. (2019); uncertainty of GALAH v_r is around 0.25 km s$^{-1}$, and average Gaia v_r uncertainty is 4.9 km s$^{-1}$.

After each star is assigned a cluster (or is left as a field star) we recalculate cluster centres and repeat the above process until it converges (so more than 98% of stars do not change cluster memberships after the final iteration, approximately 5 iterations are needed). Final cluster members are illustrated in Figure 2. Individual clusters in a 6D space are shown in Appendix A and a list of members is available at CDS. The centres defining the clusters are listed in Table 1. Clusters from Kos et al. (2019) are mostly the same. More radial velocity measurements are used in this paper and border regions now have some overlap with clusters in the Ori OB1b region.

3.2 Isochrones fitting and ages

We use Gaia photometry to derive T_{eff} and log g of each star and calculate ages (see Table 1) of clusters. We generated Padova isochrones (Bressan et al. 2012; Chen et al. 2014; Tang et al. 2014) for the Gaia magnitudes using the photometric system from Maiz Apellániz & Weiler (2018). Which line opacity data and models of stellar atmospheres are used to produce synthetic photometry are described in Bressan et al. (2012). Age and interstellar extinction were the only free parameters. Metallicity was assumed to be [M/H] = −0.05, consistent with the literature (e.g. Biazzo et al. 2011b). We assumed geometric distances from Bailier-Jones et al. (2018). We found the best fitting isochrone by eye, same as in Kos et al. (2019).

Differential reddening is low in the Ori OB1a region (see Kos et al. 2019), but significant everywhere else. Due to the lack of proper data to precisely measure the reddening of individual stars, we determined mean reddening by isochrone fitting and increased the age uncertainty for clusters in regions with higher differential reddening. One can see in Appendix B that the structures of the pre-main sequence (PMS) for less massive stars, its merging into the zero age main sequence (ZAMS), and the main sequence (MS) for more massive stars are clearly visible in HR diagrams for all clusters. Hence we conclude that the differential reddening has a limited effect on measured ages. Note that only a few stars lie on the ZAMS below the PMS-ZAMS merging point. These are field stars that were not rejected by the clustering algorithm. Once the isochrone is determined, the nearest point on the isochrone to each star gives its mass, T_{eff}, log g, etc. Distance to the isochrone is calculated as a minimal distance from the isochrone in a 3D magnitude space (M_G, G_{BP}, G_{RP}). We are looking for a point on the isochrone at mass m, where the distance between the star and the isochrone is minimal:

$$m = \min \left[(M_G - M_G(m))^2 + (G_{BP} - G_{BP}(m))^2 + (G_{RP} - G_{RP}(m))^2 \right]$$

(2)

where M_G etc. are magnitudes of stars and $M_G(m)$ etc. are magnitudes on the isochrone, given as a function of mass. All other parameters in the Padova isochrones are given as a function of mass. Moreover, given the uncertainties of Gaia magnitudes, the probability density functions (PDF) for each parameter can be acquired. Age is used later in this paper to estimate the number of supernova explosions in the observed population (Section 5). Temperature and gravity are needed to correctly marginalise measured stellar parameters over T_{eff} and log g. Stars that are much closer to the binary sequence than the fitted isochrone are considered bi-
Figure 2. Orion complex with stars belonging to our clusters marked in colour. Green polygons show the region analysed in this work. 15 clusters in these regions are marked in colour. Black stars belong to other constituents of the Orion complex and are not analysed in this work.

naries. We choose to weight the distances to the binary sequence and the fitted isochrone with a factor of 0.3 in favour of the fitted isochrone. This way the stars close to the middle point are treated as single stars.

log g is measured from the HR diagram much more accurately than one could from the spectra. The precision of log g in GALAH spectra is extensively discussed in Buder et al. (2018) and is, depending on the method used, typically worse than 0.1 dex. Temperature can be measured much more precisely in this regard. Therefore a small variation in temperature does not change the gravity mea-

MNRAS 000, 1–20 (2020)
measurement much (although both correlate, as seen in Figure 5). Age dependence is the exact opposite, so measuring ages well is critical for gravity estimation from the HR diagram. This is illustrated in Figure 3; a difference of 0.13 dex in log g is equivalent to ~ 7 Myr (or 50%) difference in age for a star on the 15 Myr isochrone. Given our age estimates and typical photometric uncertainties, a typical photometric log g uncertainty is 0.05 dex and a typical photometric temperature uncertainty is 60 K.

4 SPECTROSCOPIC PARAMETERS AND ABUNDANCES

4.1 Bayesian fitting schema

The following subsection gives a general description of our approach to fitting parameters and abundances for our spectral data. Some steps are then described in more detail in Sections 4.1.2 to 4.1.5.

4.1 General description

To fit spectroscopic parameters and abundances we wanted to include the photometric information (T_{eff} and log g) into the fitting schema. In the most basic implementation, one could leave photometric T_{eff} and log g fixed when fitting other spectroscopic parameters, but this approach has a few dangerous drawbacks. Photometric and spectroscopic parameters do not necessary represent the same quantities in practice; photometric and spectroscopic T_{eff}, for example, might not measure the same temperature (Pinsonneault et al. 2004). Even if the definition of T_{eff} is defined consistently, different line opacity data and models of stellar atmospheres can be used for the calculation of the synthetic photometry when generating the isochrones than for the spectroscopic analysis. This can lead to large systematic errors for spectroscopic parameters. But more importantly, when aiming for the most precise chemical abundances possible, one should marginalise the calculated abundances over other measured parameters. This means that a single value for T_{eff} and log g is not sufficient, but a PDF must be used in all calculations. A PDF for T_{eff} and log g is composed from the fitted isochrone and photometric and distance uncertainties.

The above reasoning led us to adopt a Bayesian fitting scheme, where we can propagate photometrically measured T_{eff} and log g throughout the spectral fitting procedure. To fit the spectra we employ the radiative transfer code from the SME software package (Valenti & Piskunov 1996; Piskunov & Valenti 2017) via the iSpec wrapper (Blanco-Cuaresma et al. 2014; Blanco-Cuaresma 2019) to produce synthetic spectra. MARCS atmospheric models (Gustafsson et al. 2008) and Gaia-ESO linelist (Heiter et al. 2021) are used for spectrum synthesis within iSpec. Synthetic spectra are fitted to normalised observed spectra.

Two different fits are made. First we fit the whole spectrum in all four bands covered by the HERMES spectrograph to obtain the overall metallicity ([M/H]), alpha-element abundance ([α/Fe])\(^1\), projected rotational speed ($v \sin i$), and spectroscopic T_{eff} and log g. $v \sin i$ is the only fitted broadening parameter. Micro- and macro-turbulence velocities v_{mic} and v_{mac} are used in the calculation of the synthetic spectra, but are estimated by iSpec from empirical relations (Jofré et al. 2014). Because the observed stars are young, most

1. Alpha elements with lines in the covered bands are Mg, Si, Ca, Ti, and O.
are rotating fast enough that rotational broadening dominates over turbulence broadening. Elemental abundances are fitted separately and each element is fitted independently. Lines and wavelength ranges used for the fitting of elemental abundances are the same as in GALAH’s DR2 (Buder et al. 2018). See this reference for information on the atomic data for each line.

In both cases, to fit atmospheric parameters and abundances, the log-likelihood is written as

$$\ln P(f|\lambda, \sigma_f, \Theta) = -\frac{1}{2} \sum_n \frac{(f_n(\lambda) - s_n(\lambda(\Theta)))^2}{\sigma(\lambda)^2_f}.$$ \hspace{1cm} (3)

where \(f\) and \(s\) represent the observed and synthetic spectra, the former having the uncertainty \(\sigma_f\), \(\Theta\) are parameters of the synthetic spectrum (temperature, gravity, metallicity, etc.), and \(\lambda\) is the wavelength. Summation is done over \(n\) pixels or wavelength bins. The posterior probability for the fitted parameters is

$$P(\Theta|f, \lambda, \sigma_f) \propto P(\Theta) P(f|\lambda, \sigma_f, \Theta).$$ \hspace{1cm} (4)

Prior \(P(\Theta)\) includes all the photometric information.

When fitting the whole spectrum the prior for \(T_{\text{eff}}\) is the PDF of the photometric temperature with the mean value corrected (see discussion on differences between photometric and spectroscopic temperature in Section 4.1.4). The prior for \(\log g\) is just the PDF of the photometric gravity. Due to the proximity of the Orion complex, there is no need to improve distances by taking cluster membership into account. For the remaining parameters (\([M/H]\), \([\alpha/Fe]\), and \(v \sin i\)) we use flat priors; the prior probability distribution is uniform between bounds of the grid given in Table 2 and zero elsewhere. Note that a separate grid is prepared for each star (see Sections 4.1.4 and 4.1.5).

When fitting spectral lines of individual elements, the priors for \(T_{\text{eff}}, \log g, [M/H], [\alpha/Fe]\), and \(v \sin i\) are PDFs of the initial fit. This is a way to propagate global parameters to fits of individual lines, but a PDF is also needed to correctly marginalise the inferred abundances over other parameters. The PDF is represented by a multivariate Gaussian. This is a simplification, but from our experience the aforementioned PDF is indeed similar to a Gaussian and there is no visible improvement when a more complicated representation of the PDF is used.

The posterior distribution is calculated by the emcee code (Foreman-Mackey et al. 2013). It turns out that calculating a synthetic spectrum at every step of the Markov chain Monte Carlo algorithm (MCMC) is too time consuming. Instead we produce a grid of synthetic templates and interpolate a template at each step of the MCMC from that grid. This is much faster only if the number of spectra in a grid can be much smaller than the number of required MCMC steps. Otherwise a synthetic template spectrum should be calculated with every step of MCMC. In general, for a problem like ours, one needs ~ 50 walkers. Based on our experimentation, around 50 steps are needed for the chains to stabilise (in the so-called burn-in phase) and tens more to sample the distribution. On top of that only ~ 20% of the steps are actually accepted. These are the minimum requirements to produce useful results with well-behaved spectra. So in practice one would have to calculate on the order of 10,000 synthetic templates to fit one spectrum with MCMC. One can achieve a significant improvement, if a representative grid can be made from fewer synthetic spectra (see Section 4.1.4).

The results of the fitting process are PDFs for all fitted parameters and abundances. We use PDFs in the rest of our analysis whenever possible. However, sometimes mean values are used, especially to make some illustrations comprehensible.

4.1.2 Resolution equalisation

The observed spectra have a nominal resolving power of 28,000. Actual resolving power varies with wavelength, from fibre to fibre and with time as well. Variation with wavelength is the strongest, with the resolving power dropping to around 23,000 in some corners of the detector. It is followed by fibre-to-fibre variations, as not all fibres produce the same sized beam and are not positioned in the pseudo slit precisely enough. The latter causes some fibre bundles to be slightly out of focus in respect to other bundles. Variations with time can also occur, if the focus of the spectrograph changes throughout the night.

To account for varying resolution, the synthetic spectra must have the same resolution profile as the observed spectra. Synthetic spectra that can be produced at a very high resolution could be degraded to whatever is the resolution profile of the observed spectrum. This approach introduces some complications. Each observed spectrum has a different resolution profile, which requires one more operation each time a synthetic spectrum is calculated. More important is that the resolution profile is not well known. Therefore the observed spectrum and a resolution-corrected synthetic spectrum might still have relatively very different resolution profiles.

Instead we degraded all the observed spectra so they have a constant resolution profile, with \(R = 22,000\). By degrading the resolution of the observed spectra, precise knowledge of the initial resolution profile becomes less important. For a resolution degradation from \(R = 28,000\) to \(R = 22,000\), an uncertainty of 10% in initial resolving power is reduced to an uncertainty of 3.9% in the final lower resolution spectrum. 10% uncertainty is indeed plausible for our initial spectra. Only synthetic spectra with a constant resolving power of \(R = 22,000\) are needed after such an operation.

4.1.3 Spectrum normalisation

Even though the reduction pipeline provides normalised spectra, the normalisation is too crude to be used in the process described here. For this purpose we produce a synthetic spectrum with photometric \(T_{\text{eff}}\) and \(\log g\), \([M/H]\) = \(-0.07\), \([\alpha/Fe]\) = 0 and \(v \sin i\) estimated with iSpec. The observed and synthesised spectra are divided and the result is fitted by a high order polynomial (between orders 9 and 15, depending on the spectral band and the temperature of the star) representing the continuum. Because the spectra are expected to have similar \([M/H]\) and \([\alpha/Fe]\), such a method is reliable and robust and we do not have to change the continuum at any point during the following process, not even calculating a local continuum when fitting individual lines. Normalisation is also stable for small deviations from the correct \(T_{\text{eff}}\) up to 400 K for most sensitive cold stars.

4.1.4 Initial conditions

While the MCMC algorithm itself does not need precise initial conditions, it pays to estimate all the parameters as well as possible before fitting them. The main reason is that we produce a new grid for every star and want it to be as small as possible, as long as it can contain the space sampled by MCMC. Initial conditions thus define the centre of each grid.

The initial condition for \(v \sin i\) is calculated from the spectra themselves by template fitting. Even without a well known \(T_{\text{eff}}\) and metallicity one can estimate the \(v \sin i\) to within a couple of km s\(^{-1}\). It is calculated in a similar way to other parameters later: a grid of synthetic spectra is calculated with different \(v \sin i\) assuming the

...
Figure 4. The difference between photometric and spectroscopic temperatures. Red line shows the relation used to construct the initial conditions for the spectroscopic temperature from its photometric counterpart.

The photometric temperature, $[M/H] = -0.05$ and $[\alpha/Fe] = 0.0$. The grid is then interpolated, and the best matching $v \sin i$ is found.

The initial condition for the temperature is a slightly modified photometric temperature. We found the photometric and spectroscopic temperatures match in first order. However, there is a deviation of ~160 K in the 4700 to 6200 K range (see Figure 4). Figure 4 was produced by fitting the spectra with a flat prior for T_{eff}. For the rest of this work we use a more restrictive prior. The T_{eff} differences are consistent enough that we can guess in advance how different the photometric and spectroscopic temperatures will be to adjust the initial condition accordingly. Such fine tuning is not done to get a better temperature measurement or faster convergence, but to be able to make the grid as small as possible. Improvement of the initial condition by 160 K means the grid can be two or three nodes smaller in the temperature dimension, which results in a significant decrease in computing time.

Because the Orion complex seemed to be very chemically homogeneous at first inspection, the initial conditions for metallicity and α abundance are $[M/H] = -0.05$ and $[\alpha/Fe] = 0.0$. The initial conditions for these two parameters are not that critical, as the grid has to be relatively more extensive for them. A grid that is too small acts as a determinational prior, which we want to avoid, as metallicity and α abundance are the parameters we want to find.

4.1.5 Grid

As justified in Section 4.1.1, it is more feasible to interpolate synthetic spectra from a small grid than producing them at every step of the MCMC algorithm. Here we explore how dense the grid must be to not introduce systematic errors into the synthetic spectra.

To evaluate how dense must the grid be, we produced Figures C1–C4. These figures show the maximum error of grid-interpolated synthetic spectra compared to synthetic spectra calculated directly by the radiative transfer code from the SME software package for the same set of parameters. Only the figures for the step sizes actually used by our analysis are shown ($\Delta T_{\text{eff}} = 70 \text{ K}$, $\Delta [M/H] = 0.05 \text{ dex}$, $\Delta [\alpha/Fe] = 0.05 \text{ dex}$, and $\Delta (v \sin i) = 2.5 \text{ km s}^{-1}$).

Some spectral lines seem to be very susceptible to non-linear effects and cannot be interpolated well, even with higher order splines (cubic splines were used in this work). Surprisingly the non-linear effects are limited to narrow temperature or metallicity ranges. We conclude that such phenomena are a product of SME or iSpec codes and not our interpolation (see Appendix C). These errors can be reduced by a finer grid, but not eliminated. However, a much finer grid is not feasible for our application. Such errors do not exist in the $v \sin i$ plot (Figure C4), as rotational broadening is accounted for by iSpec independently from the SME spectral synthesis code. The errors of the interpolated spectra can be neglected if they are much smaller than the uncertainty of the observed spectra (typical S/N per pixel is 40, but can be as high as 100). This is true in all the cases, except for the aforementioned lines suffering from the strongest non-linear effects. However the number of such lines is small and the error is still smaller than the flux uncertainty (although not much smaller), so they have a negligible influence on the derived stellar parameters.

As with the grid density, the grid boundaries must be as tight as possible to reduce computational time. Figure 5 shows a typical PDF. The precision of metallicity and alpha-element abundance that have otherwise non-determinant priors improve significantly when photometric priors are used. Some correlations also disappear. If the initial conditions (defining the centre of the grid) are chosen well enough, there is no need for the grid to be orders of magnitude larger than the uncertainties. Grid sizes are given in Table 2. Note that such small grids are not suitable to fit atmospheric parameters or abundances for strong outliers. They are, however, large enough to detect them. If the MCMC algorithm requires a synthetic spectrum with parameters outside the grid, a spectrum at the grid edge is returned. This effectively acts as a flat prior for all parameters.

In the process we discovered that our results are the same if we do not marginalise the abundances PDFs over log g but instead assume photometric log g (as we always do for the initial condition). The reason is that log g can be calculated much more precisely from fitted isochrones than we ever could spectroscopically. The likelihood is essentially independent of any log g variability within the photometric log g error bars, which means that having log g as a free parameter is irrelevant. Therefore we can use grids without log g, which reduces computational time significantly.

With the grid sizes discussed above, and the number of spectra in our sample, we conclude that it is more feasible to produce a small grid for each star as opposed to one giant grid spanning the parameter space of all observed stars. The grid is interpolated by cubic splines. The chosen interpolation algorithm is Scipy’s `interpolate.map_coordinates` (Virtanen et al. 2019) for its fast performance in multiple dimensions and ability to choose higher order splines as interpolation functions.
4.2 Evaluation of systematic effects

In Figure 5 we analyse the differences between using photometric T_{eff} and $\log g$ priors in the fitting schema. The mean values for $[\text{M/H}]$ and $[\alpha/\text{Fe}]$ do not change much, but the uncertainty is significantly improved when priors are used. Lower uncertainty consequently has an effect on the level of measured chemical homogeneity as we compare actual PDFs and not just mean values of $[\text{M/H}]$ and $[\alpha/\text{Fe}]$. The uncertainty in $v \sin i$ does not improve, but the mean value does change.

In the fields observed in the special program we targeted members regardless of whether they were already observed in the GALAH survey. Due to poor weather we also observed some fields over several nights. Before combining observations over all epochs, we analysed individual spectra in order to estimate statistical and systematic uncertainties from repeated observations. Most observations were repeated with the same fibre (the same fields observed over several nights), but some were also done with a completely different fibre configuration (overlaps between the GALAH survey and the special program). An analysis of repeated observations is shown in Figure 6. Metallicity and alpha-element abundance are both correlated between repeated observations, although the scatter is larger than for typical observations (see Figures 10 and 11). The reason is that observations were repeated mostly for fields observed in poor weather conditions yielding low S/N. Some repeats were done for the overlap between the main GALAH program and the Orion-dedicated program. Correlation between the repeated observations is naturally better for high S/N observations. We can also conclude from Figure 6 that there are no significant systematic trends related to the S/N of the observation.

Uncertainties calculated by a Bayesian schema are just statistical uncertainties—a consequence of noisy spectra, blended spectral lines, etc. Systematic uncertainties arise mostly from stars being observed with different fibres which are affected by different optical aberrations. We tried to correct for that by reducing and equalising the resolution of observed spectra, but any errors in the resolution profile are still reflected in our parameters and abundances. The scatter in metallicity and alpha-elements abundance in each cluster is larger than one would expect from statistical uncertainties alone. We attribute this to changing resolution across the CCDs, as the discrepancy between the statistical uncertainty and scatter of metallicity and alpha-elements abundance becomes lower, if only spectra with a more consistent resolution profile from the middle of the CCDs are used. This indicates that the resolution profile plays a crucial role, if very precise parameters and abundances are desired.

While the above is true for parameters measured across a wide range of wavelengths ($[M/H],[\alpha/\text{Fe}]$), individual abundances suffer even more from systematic errors. Wavelength ranges where abundances are measured were carefully selected and we did not modify them from what is used in GALAH’s DR2 (Buder et al. 2018). However a small perturbation in continuum or a nearby spectral line that might be characteristic for spectral types considered in this work can contribute some systematic uncertainty. Such contributions are very difficult to analyse and are beyond the scope of this paper. We intend to use the Orion complex and other open clusters observed in GALAH to tackle this problem in the future.

4.3 Detrending and relative abundances

Figures 7, 8, and 9 show the measured metallicity, alpha-elements abundance and abundances of 25 elements as a function of temperature. For metallicity and alpha elements abundance we show values normalised to the solar values\(^2\) and for elemental abundances we show absolute abundances on a $\log e$ scale\(^3\). It is evident that all parameters show trends with temperature that are the same (within our precision) for all clusters, regardless their age or location. Trends have different shapes and amplitudes for different elements. Some elements show simple trends (for example K), while other show a simple trend that plateaus off at high or low temperatures. We attribute trends to non-LTE and 3D effects and the plateau to the range of temperatures where the lines are weak and the element abundance cannot be precisely measured any more (see C, for example). More complicated trends are probably influenced by weak blended lines as well. In general, the following factors contribute to the trends:

(i) LTE approximation. We did no correction for non-LTE or 3D effects, because we detrend all parameters anyway. Assuming the non-LTE and 3D corrections (Asplund 2005) are a smooth function of temperature, they are irrelevant after detrending. (ii) Blended lines. These are particularly important for abundances of individual elements. While only a small region around a line of interest is used to fit a model spectrum to observations, the region is not always clear of other lines. This is sometimes hard to take into the account (by changing region boundaries, for example), especially if stars with a wide range of temperatures are being compared. Large departures of abundances of some elements from the solar value is another tracer of blended lines or wrong gf values. (iii) Insufficient model spectra. Model spectra cannot incorporate all physical processes. This reflects in biases we observe as trends. Some trends might be even more pronounced, as we are dealing with PMS stars, which might not have model spectra calculated as carefully and rigorously as main sequence stars. Chromospheric activity (Carter 1989; Yana Galarza et al. 2019) and strong magnetic fields (Basri et al. 1992; Johns-Krull et al. 1999; Spina et al. 2020) are known to influence PMS stars significantly. (iv) Biased photometric temperature and gravity could have an effect as well, although it must be minor, as this is the only effect we thoroughly analysed.

Detrending removes any systematic and non-LTE trends well, but cannot improve the accuracy of absolute abundances. For absolute abundances we have to know the physical processes responsible for the trend. More precise absolute abundances can only be obtained by taking non-LTE effects into the account. In this work we neglect any non-LTE effects and resort to detrending. However, most of our stars are included in the GALAH DR3 (Buder et al. 2020), where considerable effort was put into non-LTE abundance determination. The drawback of GALAH DR3 is that the precision is lower than in this work, as stars are not assumed to be cluster members anywhere in the analysis process. Our work constrains relative chemical differences in the Orion complex much better than GALAH DR3 (see Table 3 and Appendix D), but GALAH DR3 probably gives better mean absolute abundances. However, absolute abundances must not be always trusted, as most stars are PMS stars, which again are not treated any different to MS stars in the GALAH DR3 pipeline. Detrending can also artificially reduce the intra-cluster spread of chemical abundances, as some removed trends are physical and real. This is a drawback we can neglect, because it should impact all clusters equally, and should not affect differential abundances between clusters.

Most notable differences between this work and GALAH DR3 are for elements Cu, Zn, Ba, and Nd. Cu and Ba probably have underestimated abundances in this work. We use lines and wavelength...
regions defined in GALAH DR2, but here we compare abundances with GALAH DR3, which shows higher abundances for these two elements. A direct comparison of our abundances with GALAH DR2 is impossible, because none of the stars from this paper was included in DR2. Nd abundance is measured from very weak lines and our uncertainties are underestimated, because they do not account for any errors in continuum determination. This is probably the source of large discrepancies between this work and GALAH DR3. Finally, Zn appears to show lower abundances in our work. This is one of the hardest elements to de-trend, as is obvious from Figure 9. This again means that the given uncertainties are underestimated.

For the purpose of relative chemical abundances we assume that none of the observed trends with T_{eff} and $\log g$ or $v \sin i$ are intrinsic. However, we are interested in trends with age or location, which could be a sign of chemical pollution. We do not observe trends of metallicity, alpha-elements abundance or the abundance of any of the 25 elements against any of the remaining measured atmospheric parameters (T_{eff} and $\log g$, $v \sin i$) other than temperature. Relative metallicity, alpha and elemental abundances are then calculated by removing the trend with temperature. A cubic spline is fitted as illustrated in Figures 7, 8, and 9. Nodes were selected at an interval of 250 K, but some were removed, so there were at least 15 data-points between each node. Three steps of a symmetric sigma clipping algorithm with a threshold of 2.5 σ were done for the final fit.

A simple chi-square test shows that the observed region of the Orion complex is chemically homogeneous in metallicity, alpha-elements abundance, and all elements but lithium, whose homogeneity is not expected anyway. Li is gradually depleted early in the star’s life and the abundance evolution of Li is not understood well enough to predict it at the level of homogeneity we observe here for

\[\sigma_{\text{no phot}} = 40.7 \text{ K} \]
\[\sigma_{\text{phot}} = 27.3 \text{ K} \]
\[\sigma_{\text{no phot}} = 0.086 \text{ dex} \]
\[\sigma_{\text{phot}} = 0.037 \text{ dex} \]
\[\sigma_{\text{no phot}} = 0.032 \text{ dex} \]
\[\sigma_{\text{phot}} = 0.021 \text{ dex} \]
\[\sigma_{\text{no phot}} = 0.033 \text{ dex} \]
\[\sigma_{\text{phot}} = 0.024 \text{ dex} \]

\[v \sin i / \text{ km s}^{-1} \]
\[[\text{M/H}] \]
\[[\alpha/\text{Fe}] \]

Figure 5. Corner plot showing the PDF of fitted parameters for one star without (blue) or with (orange) using priors on T_{eff} and $\log g$. Both priors are obtained from the isochrone fitting onto the HR diagram.
Figure 6. Analysis of repeated observations. Differences between repeats are shown for the measured metallicity (left) and alpha-element abundance (right). Circles show observations repeated with the same fibre and crosses show observations repeated with different fibres. Colour marks the lower of the two S/N in the red channel. Only mean values of measured metallicities and alpha-elements abundances are shown here. Scatter around the linear relation is given in each panel.

other elements. The reduced \(\chi^2 \) test calculated for 15 clusters and for element \(x \) is

\[
\chi^2(x) = \frac{1}{14} \sum_{\text{clusters}} \frac{(\bar{\epsilon}_{\text{cluster}}(x) - \bar{\epsilon}(x))^2}{\sigma_{\text{cluster}}(x)^2 + \sigma_{\text{int}}(x)^2},
\]

where \(\bar{\epsilon}_{\text{cluster}}(x) \) is the mean abundance of element \(x \) in one cluster, \(\sigma_{\text{cluster}}(x) \) equals the measured scatter divided by the square-root of number of stars in that cluster, \(\sigma_{\text{int}}(x) \) is the intrinsic uncertainty of individual measurements. For most elements the reduced \(\chi^2 \) value is around 0.4, except for lithium, where it is 2.9. Detrended metallicity, alpha-elements abundance and individual elemental abundances are displayed for each cluster in Figures 10, 11, and 12.

We observe no statistically significant inhomogeneities between different clusters in Figures 10 (metallicity) and 11 (alpha-element abundance) – all clusters have mean metallicity and alpha-element abundance within one standard deviation of the whole region. Some stars deviate by several sigmas from the mean, distorting the violin plots somewhat. These few occurrences can be explained by problems with spectrum reduction. It is also possible they are mis-identified cluster members, but the former explanation is more plausible.

There are more deviations from the mean observed in Figure 12 (elemental abundances). We again claim that outliers are are a product of reduction, as cosmic rays and telluric lines are likely to corrupt few spectral lines used in our analysis. However, more “inhomogeneities” between clusters are observed in elemental abundances plots than for metallicity and alpha-element abundance. In the case of elemental abundances almost all clusters have mean abundances within one standard deviation of the whole region, with only five abundances of any cluster being up to two standard deviations from the mean. We conclude that this is not enough to claim any chemical inhomogeneity. Some clusters show a double-peaked distribution for some elements (Zr is a nice example), which can be a consequence of detrending. A physics-based detrending following non-LTE and 3D corrections might be able to solve this in the future. However, it is evident from the trends plotted in Figure 9 that perhaps bimodal trends would have to be considered, which we find over-complicated for the number of observations used in this work.

4.4 Absolute abundances

Detrending improves the precision of our results, but not so much the accuracy of absolute abundances reported in Table 3. Therefore we report (in Table 3) abundances after they are detrended and then normalised to either the mean or the value at the solar temperature (5770 K). One must be careful when comparing our absolute abundances to other measurements, especially for elements that show strong trends, like O, Y, Rh, Ce, and Zr.

5 ESTIMATING THE NUMBER OF SUPERNOVAE

To discuss the implications of a high degree of chemical homogeneity throughout the Orion complex, we want to estimate the number of SNe that exploded since the first stars in the complex were formed. One way is to integrate the IMF to calculate the expected number of massive stars that have had time to explode as core-collapse SNe.

We estimated the masses of our members from the fitted isochrones. Because our membership selection is not complete (and is in fact quite conservative as we prioritise high membership probability to completeness and large number of targets), we also made a different selection with very relaxed criteria to be complete wherever the Gaia DR2 is. DR2 is complete between 12.0 < G < 17.0 and almost complete between 7.0 < G < 17.0 (Gaia Collaboration et al. 2018). For the purpose of calculating the IMF, we selected stars in a parallax range 1.8 mas < \(\pi \) < 3.5 mas, proper motion...
\[\mu = \sqrt{\mu_\alpha^2 + \mu_\delta^2} < 3.5 \, \text{mas yr}^{-1}, \]
and at all magnitudes (but kept track of the completeness boundaries). Among those stars we selected all that are within \(d < 8.0 \) of any of the 15 clusters, where \(d \) is defined in Equation 1. Allowing distant stars to being members of our clusters means many stars might not have their membership determined well, but the membership of the whole complex is more complete. We also cleared the sample of any stars that can be rejected based on their position on the HR diagram, in the same manner as in the initial membership determination. Thus observed mass distribution is shown in Figure 13. We fitted a Kroupa (Kroupa 2001) IMF using data and their error bars as seen in Figure 13 to the region where our data are complete and obtained a slope \(\alpha = 2.49 \pm 0.15 \). This is a bit steeper than the traditional Kroupa slope of \(\alpha = 2.3 \) (Kroupa 2001) or \(\alpha = 2.27 \pm 0.08 \) measured in the \(\lambda \) Ori association.

Figure 9. Measured mean abundances of 25 elements for each star as a function of effective temperature. Solid red line shows a cubic spline fit to the trend. Horizontal line shows the solar abundance from Asplund et al. (2009). Clusters from the Ori OB1a region are plotted in blue, from the Ori OB1b region in purple, and from the \(\lambda \) Ori region in green, same as in Figure 7.
Chemical homogeneity of the Orion complex

Figure 10. The probability distribution of metallicity for all observed clusters. Each violin plot is composed of all samples of the marginalised metallicity for each analysed star. The number of stars in each cluster is given on the top. The solid horizontal line shows the mean and dashed horizontal lines show the standard deviation of the whole sample. The typical scatter of samples for individual stars is shown on the right, together with a typical scatter in one cluster and the whole region. Vertical lines divide traditional regions of the Orion complex. The colour scheme for the clusters is similar to the one used in Figure 2.

Figure 11. Same as Figure 10 for alpha-element abundances.

We use data from Portinari et al. (1998) to estimate lifetimes of stars as a function of stellar mass. A function

\[
\tau(m) = \left[3.171 \left(\frac{m}{M_\odot}\right)^{-2.178} - 1.151 \cdot 10^{-5} \left(\frac{m}{M_\odot}\right) + 0.00443\right] \text{Gyr}
\]

(6)
describes the relation well for massive stars and \([M/H] = -0.07\). By using our cluster ages and extrapolating and integrating the IMF, we estimate that in the observed population there were between 0.81 and 2.28 (for \(\alpha\) between 2.64 and 2.34) core collapse SNe in the population studied in this paper. This number drops to 0.23 – 0.73 SNe, if we only consider time until 7 Myr ago when the last clusters formed. These estimates do not include any runaway/ejected stars into the IMF, so the actual number is a fraction higher. Assuming a steeper IMF, sometimes quoted in the literature listed above, the number of SNe drops to essentially zero. A much flatter IMF (let's say \(\alpha = 1.8\)), which is not excluded by most massive stars (\(m > 5 M_\odot\)) and is not unprecedented in the literature (De Marchi et al. 2005; Bastian et al. 2010), would produce around ten times more SNe.
Figure 12. Probability distribution of abundances of chemical elements for all observed clusters. Each violin plot is composed of all samples of the marginalised abundance for each analysed star. Number of stars in each cluster is given on the top. Gray horizontal line shows the solar abundance. Red horizontal lines show the mean value (solid) and one standard deviation (dashed) for the abundance of each element across all clusters. Typical scatter of samples for individual stars is shown on the right. Vertical lines divide traditional regions of the Orion complex. Same colours are used for different clusters as in Figure 2.
Figure 12. contd.
abundance measurements are spread over a large range (how many SNe would have to pollute the ISM for the younger T_t the same type of stars for all elements. “Mean normalised” abundances were detrended so the mean remained the same after detrending. “5770 K normalised”

Element	mean normalised	5770 K normalised	mean normalised	5770 K normalised	stat. uncertainty	N. of lines	notes	$e(X)$	[X/Fe]
Li	3.41	3.55	2.36	2.50	0.123	2		3.00±0.10	1.96±0.10
O	9.76	9.04	1.07	0.35	0.063	3	1	9.50±0.14	0.81±0.14
Na	6.02	6.33	-0.21	0.09	0.025	3		6.14±0.06	-0.08±0.06
Mg	7.57	7.64	-0.02	0.04	0.040	3		7.48±0.09	-0.12±0.08
Al	6.47	6.51	0.02	0.06	0.027	4		6.60±0.08	-0.03±0.08
Si	7.45	7.37	-0.05	-0.13	0.081	4		7.56±0.06	0.05±0.07
K	5.20	5.87	0.17	0.84	0.035	1		5.35±0.10	0.27±0.09
Ca	6.36	6.68	0.02	0.34	0.032	5		6.50±0.08	0.19±0.08
Sc	3.13	3.24	-0.01	0.09	0.043	10		3.05±0.07	-0.11±0.06
Ti	4.70	4.56	-0.24	-0.38	0.053	20		5.00±0.08	0.06±0.07
V	3.94	3.91	0.01	-0.01	0.027	17	2	3.98±0.11	0.03±0.10
Cr	5.41	5.24	-0.22	-0.39	0.054	9		5.64±0.10	0.04±0.09
Mn	5.23	5.47	-0.19	0.04	0.049	4		5.42±0.09	0.03±0.08
Fe$^+$	7.34	7.39	-0.15	-0.10	0.016	52		7.48±0.07	-0.02±0.07
Co	4.97	4.99	-0.01	0.00	0.069	3	2	5.05±0.11	-0.03±0.11
Ni	6.39	6.26	0.17	0.04	0.029	7		6.19±0.10	-0.08±0.09
Cu	3.59	3.65	-0.59	-0.53	0.029	2		4.02±0.08	-0.20±0.08
Zn	3.86	3.99	-0.69	-0.56	0.101	2		4.62±0.13	0.09±0.13
Rb	3.38	3.76	0.86	1.24	0.097	1	1	2.63±0.13	0.018±0.14
Y	2.12	1.82	-0.08	-0.38	0.126	4	1, 3	2.50±0.17	0.38±0.17
Zr	2.08	1.70	-0.49	-0.87	0.157	4	1, 2	2.90±0.14	0.22±0.13
Ba	1.91	2.16	-0.26	-0.01	0.029	2		2.54±0.10	0.39±0.09
Ce	2.29	1.67	0.71	0.09	0.214	1	1	1.80±0.21	0.28±0.21
Nd	0.37	0.37	-1.04	-1.04	0.099	5		2.42±0.11	1.02±0.11
Eu	0.43	0.49	-0.08	-0.02	0.057	2		1.07±0.09	0.54±0.09

1 Large range
2 Colder stars dominate
3 Hotter stars dominate
4 $[Fe/H]$ instead of $[X/Fe]$ is given in 4th and 5th columns

Table 3. Absolute abundances of 25 elements averaged over all stars in which each elemental abundance was measured. “Large range” means that the abundance measurements are spread over a large range (> 1 dex) before detrending, so the systematic uncertainty is large. This implies that the reported absolute abundances are unreliable. Some elements have the measurements dominated by cold (note 2) or hot stars (note 3), so the mean is not calculated over the same type of stars for all elements. “Mean normalised” abundances were detrended so the mean remained the same after detrending. “5770 K normalised” abundances were detrended so the value at 5770 K (approximately solar T_t) remained the same. Column N. of lines gives the number of lines used to calculate elemental abundances of each element in this work.

Values in the GALAH DR3 columns are taken from Buder et al. (2020) and are also averaged over all stars in which each elemental abundance was measured.

From Figure 11 we can see that the largest mean alpha-element enhancements are 0.03 dex in the Ori NW and 0.02 dex in Ori OB1b 1 clusters. However, these two clusters are unlikely to be polluted due to supernova explosions originating in older clusters. Ori is too far from old clusters in Ori OB1a, so it is highly unlikely that the two groups came within a few parsecs less than 10 Myr ago (see Table 1). Cluster Ori OB1b 1 is too old and was most likely formed before any supernova explosion took place in the Orion complex, given that the probability for a supernova in the first few million years after first star were born is low. A typical core-collapse supernova with initial mass of 25 M_\odot produces 4 M_\odot of alpha elements (Nomoto et al. 2006). Our largest clusters have masses of around 600 M_\odot. Assuming a star formation efficiency of 0.3 (Da Rio et al. 2014), our clusters are formed from gas clouds of around 2000 M_\odot. Ejecta from one 25 M_\odot supernova, if completely and ideally mixed with such a cloud, would enhance its alpha-element abundance by 0.05 dex, which would be detectable in our observations. Individual clusters to show different chemical abundances. In the following estimate we neglect any physics of ISM mixing or cooling, as this is out of the scope of this paper. We only deal with net yields of core collapse supernovae and observed abundances.

Figure 12. contd.
Chemical homogeneity of the Orion complex

6 CONCLUSIONS AND DISCUSSION

In this work, we consider the question of whether the Orion star forming complex might exhibit evidence of contamination by supernovae in the elemental abundances of different clusters that formed at different times in the complex’s history. To do this, we analyse data obtained using the HERMES instrument on the Anglo-Australian telescope by the GALAH survey, and additional data focusing specifically on the Orion complex obtained by the same instrument during a series of special programs. We find that the various clusters distributed across the complex are chemically homogeneous, with the younger clusters showing no evidence of pollution from supernovae amongst the older clusters.

Our conclusions are based on the Ori OB1a, OB1b, l Ori and NGC 1788 regions. We did not observe the ONC or σ Ori regions due to a number of reasons. These are the regions with the largest differential reddening, which we have no way of properly accounting for. This would result in poorly fitted isochrones and consequently inaccurate photometric temperatures and gravities. We did not analyse how this would impact our spectroscopic analysis, but our approach would definitely have had to be revised to include younger stars and clusters with strong differential reddening. Stars that were included in the analysis are either main sequence stars or PMS stars very close to the main sequence. Stars < 5 Myr old, like the ones in ONC and σ Ori regions would be PMS stars, lying well above the main sequence, and we had concerns that synthetic model codes would not perform well enough on them. This could make calculation of precise relative abundances hard and we would not be able to properly interpret any observed chemical differences. However, we did observe one star that is more likely to belong to the σ Ori cluster and has well determined atmospheric parameters and abundances. It is chemically identical to other stars from this work.

Despite the Orion complex being chemically homogeneous in this study as opposed to some earlier studies, our absolute abundances of chemical elements and metallicity agree well with the literature (Cunha & Lambert 1992, 1994; Cunha et al. 1995, 1998; Simón-Díaz 2010; Biazzo et al. 2011a,b). A notable exception is oxygen, for which we were unable to calculate accurate absolute abundances. For oxygen, the measurements in the literature are done on lines with low excitation potential and therefore inaccurate.

The number of supernovae that have exploded to date in the Orion complex is a highly debated topic. Bubble-like structures (Barnard’s loop, the Orion-Eridanus superbubble, the l Orion bubble) were most likely made by supernova explosions, but the present structure suggests that stellar winds played a significant role as well (Ochsendorf et al. 2015), leading to the formation of a rich substructure. The expansion velocity of the bubbles can be used as an indicator when they were formed – such estimates are inaccurate (Bally 2008) and cannot provide the exact time of the supernova explosions. Brown et al. (1995) estimate the age of the largest bubble – the Orion Eridanus superbubble – is between 1.8 and 5.3 Myr. This suggests that the bubbles are a product of recent supernova explosions (more recent than the time of formation of the youngest stars studied in this paper). A low number of supernovae in the Orion complex is also supported by a shortfall of supernova remnants. G203.2 - 12.3 is the only supernova remnant classified in Orion (Winkler & Reipurth 1992, possibly observed in 483 CE). Another indirect tracer is emission from the radioactive decay of 26Al in Ori OB1a (Voss et al. 2010; Schlafly et al. 2015). Models of SN and stellar wind feedbacks by Voss et al. (2010) suggest that 26Al was produced by a few recent supernovae. 56Fe is another radioactive tracer of SN (Wang et al. 2020), which has not been explored yet in the Orion complex.

More recent studies of the formation of the Orion complex are based on new Gaia distances and 3D velocities and offer a compelling picture. The observed 3D kinematics can be explained with a “few or several” supernovae assuming no other forces (Großschedl et al. 2021). The most major disruption event is thought to have hap-
pened 6 Myr ago (Kounkel 2020; Großschedl et al. 2021), which supersedes the creation of stars studied in this work.

Our results strongly suggest that there were no or at least very few supernovae explosions in the early stages of the Orion complex formation. Young supernova remnants, also in the form of gas bubbles, can be explained by recent supernovae in the past few million years. Such supernovae are younger than observed stars and could not have chemically polluted the ISM from which these stars were born.

A convincing way of proving the chemical homogeneity of clusters is a direct comparison of spectra (Bovy 2016). The method avoids calculating atmospheric parameters and deriving exact chemical abundances. In our case the parameter space is too large and we would struggle to find spectra with similar atmospheric parameters in order to compare lines of interesting elements. One of the reasons this is extremely difficult in young stellar associations (as compared to old open clusters) is that stellar rotation can have a large range of values, which effectively adds another dimension of atmospheric parameters. Another drawback is that clusters of different ages would have to be compared, complicating the case for direct spectral comparison even further.

ACKNOWLEDGEMENTS

Authors are thankful to the referee for a plenty of useful comments. This work is based on data acquired through the Australian Astronomical Observatory, under programmes: A/2019A/01 (Hierarchical star formation in Ori OB1), A/2014A/25, A/2015A/19, A2017A/18 (The GALAH survey); A/2015A/03, A/2015B/19, A/2016A/22, A/2016B/12, A/2017A/14 (The K2-HERMES K2-follow-up program); A/2016B/10 (The HERMES-TESS program); A/2015B/01 (Accurate physical parameters of Kepler K2 planet search targets); S/2015A/012 (Planets in clusters with K2). We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present. JDS acknowledges the support of the Australian Research Council through Discovery Project grant DP180101791. SLM acknowledges support from the UNSW Scientia Fellowship program, and from the Australian Research Council through Discovery Project grant DP180101791. YST is supported by the NASA Hubble Fellowship grant HST-HF2-51425.001 awarded by NASA. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

DATA AVAILABILITY

The data underlying this article are available from CDS, at https://vizier.u-strasbg.fr/viz-bin/VizieR and in online supplementary material.

REFERENCES

Alves J., Bouy H., 2012, A&A, 547, A97
Amarsi A. M., Asplund M., Collet R., Leenaarts J., 2016, MNRAS, 455, 3735
Asplund M., 2005, ARA&A, 43, 481
Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
Bailey-Jones C. A. L., Rybizki J., Fousneau M., Mantelet G., Andrae R., 2018, AJ, 156, 58
Bally J., 2008, Overview of the Orion Complex, p. 459
Barroso-y Navascués D., Stauffer J. R., Bouvier J., 2004, ArXiv e-prints, pp astro-ph/0409499
Basri G., Marcy G. W., Valenti J. A., 1992, ApJ, 390, 622
 Bastian N., Covey K. R., Meyer M. R., 2010, ARA&A, 48, 339
Bayo A., et al., 2011, A&A, 536, A63
Biazzo K., Randich S., Pallà F., 2011a, A&A, 525, A35
Biazzo K., Randich S., Pallà F., Briceño C., 2011b, A&A, 530, A19
Blanco-Cuaresma S., 2019, MNRAS, 486, 2075
Blanco-Cuaresma S., Soubran C., Heiter U., Jofré P., 2014, A&A, 569, A111
Bovy J., 2016, ApJ, 817, 49
Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S., Nanni A., 2012, MNRAS, 427, 127
Brown A. G. A., Hartmann D., Burton W. B., 1995, A&A, 300, 903
Buder S., et al., 2018, MNRAS, 478, 4513
Buder S., et al., 2020, arXiv e-prints, p. arXiv:2011.02505
Carre B. D., 1989, Proceedings of the Astronomical Society of Australia, 8, 68
Casamiquela L., Taricco Y., Soubran C., Blanco-Cuaresma S., Jofré P., Heiter U., Tucci Maia M., 2020, A&A, 635, A8
Chen Y., Girardi L., Bressan A., Marigo P., Barbieri M., Kong X., 2014, MNRAS, 444, 2525
Chen B., D’Onghia E., Alves J., Adano A., 2019, arXiv e-prints, p. arXiv:1905.11429
Cottle J. N., et al., 2018, ApJS, 236, 27
Cunha K., Lambert D. L., 1992, ApJ, 399, 586
Cunha K., Lambert D. L., 1994, ApJ, 426, 170
Cunha K., Smith V. V., Lambert D. L., 1995, ApJ, 452, 634
Cunha K., Smith V. V., Lambert D. L., 1998, ApJ, 493, 195
Da Rio N., Tan J. C., Jaehnig K., 2014, ApJ, 795, 55
De Marchi G., Paresce F., Portegies Zwart S., 2005, The Stellar IMF of Galactic Clusters and Its Evolution. p. 77, doi:10.1007/978-1-4020-3407-7_11
De Marchi G., Paresce F., Portegies Zwart S., 2010, ApJ, 718, 105
De Silva G. M., Sneden C., Paulson D. B., Asplund M., Bland-Hawthorn J., Bessell M. S., Freeman K. C., 2006, AJ, 131, 455
Fang M., et al., 2017, AJ, 153, 188
Feng Y., Krumholz M. R., 2014, Nature, 513, 523
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
Gaia Collaboration et al., 2016, A&A, 595, A1
Gaia Collaboration et al., 2018, A&A, 616, A1
Großschedl J. E., Alves J., Meingast S., Herbst-Kiss G., 2021, A&A, 647, A91
Gustafsson B., Edvardsson B., Eriksson K., Jørgensen U. G., Nordlund A., Plez B., 2008, A&A, 486, 951
Hawkins K., et al., 2020, MNRAS, 492, 1164
Heiter U., et al., 2021, A&A, 645, A106
Jofré P., et al., 2014, A&A, 564, A133
Johns-Krull C. M., Valenti J. A., Koresko C., 1999, ApJ, 516, 900
Kos J., et al., 2017, MNRAS, 464, 1259
Kos J., et al., 2019, A&A, 631, A166
Kounkel M., 2020, ApJ, 902, 122
Kounkel M., Hartmann L., Calvet N., Megeath T., 2017, AJ, 154, 29
Kounkel M., et al., 2018, AJ, 156, 84
Kroupa P., 2001, MNRAS, 322, 231
Lee H.-T., Chen W. P., 2007, ApJ, 657, 884
Maíz Apellániz J., Girardi L., 2018, A&A, 619, A180
Maschberger T., Clarke C. J., Bonnell I. A., Kroupa P., 2010, MNRAS, 404, 1061
Maxted P. F. L., Jeffries R. D., Oliveira J. M., Naylor T., Jackson R. J., 2008, MNRAS, 385, 2210
Morel T., Micela G., 2004, A&A, 423, 677
MNRAS 000, 1–20 (2020)
Chemical homogeneity of the Orion complex

Muench A. A., Lada E. A., Lada C. J., Alves J., 2002, ApJ, 573, 366
Nomoto K., Tomimaga N., Umeda H., Kobayashi C., Maeda K., 2006, Nu-
clear Phys. A, 777, 424
Ochsendorf B. B., Brown A. G. A., Bally J., Tielens A. G. G. M., 2015, ApJ,
808, 111
Pflamm-Altenburg J., Kroupa P., 2006, Monthly Notices of the Royal As-
tronomical Society, 373, 295
Pinsonneault M. H., Terndrup D. M., Hansen R. B., Stauffer J. R., 2004,
ApJ, 600, 946
Piskunov N., Valenti J. A., 2017, A&A, 597, A16
Portinari L., Chiosi C., Bressan A., 1998, A&A, 334, 505
Sacco G. G., Franciosini E., Randich S., Pallavicini R., 2008, A&A, 488,
167
Schlady E. F., et al., 2015, ApJ, 799, 116
Schuler S. C., King J. R., Terndrup D. M., Pinsonneault M. H., Murray N.,
Hobbs L. M., 2006, ApJ, 636, 432
Sharma S., Johnston K. V., 2009, ApJ, 703, 1061
Shen Z. X., Liu X. W., Zhang H. W., Jones B., Lin D. N. C., 2007, ApJ, 660,
712
Simón-Díaz S., 2010, A&A, 510, A22
Spina L., et al., 2014, A&A, 567, A55
Spina L., et al., 2017, A&A, 601, A70
Spina L., et al., 2020, ApJ, 895, 52
Suárez G., Downes J. J., Román-Zúñiga C., Cerviño M., Briceño C., Petr-
Gotzens M. G., Vivas K., 2019, MNRAS, 486, 1718
Tang J., Bressan A., Rosenfield P., Slemmer A., Marigo P., Girardi L., Bianchi
L., 2014, MNRAS, 445, 4287
Ting Y.-S., Conroy C., Goodman A., 2015, ApJ, 807, 104
Valenti J. A., Piskunov N., 1996, A&AS, 118, 595
Virtanen P., et al., 2019, arXiv e-prints, p. arXiv:1907.10121
Voss R., Diehl R., Vink J. S., Hartmann D. H., 2010, A&A, 520, A51
Wang W., et al., 2020, ApJ, 889, 169
Winkler P. F., Reipurth B., 1992, ApJ, 389, L25
Yana Galarza J., et al., 2019, MNRAS, 490, L86
Zari E., Brown A. G. A., de Zeeuw P. T., 2019, A&A, 628, A123

MNRAS 000, 1–20 (2020)
APPENDIX A: CLUSTERING
Figure A1 shows each cluster in 6D space (position on the sky, proper motions and parallaxes).

APPENDIX B: HR DIAGRAMS
Figure B shows HR diagrams for all 15 clusters made with Gaia photometry.

APPENDIX C: GRID INTERPOLATION
Figures C1 to C4 demonstrate the interpolation errors introduced by a grid of stellar parameters. Figure C5 shows a small portion of a spectrum and illustrates the differences between synthetic spectra between grid points. A typical fit of two synthetic spectra to an observed spectrum is also displayed.

APPENDIX D: GALAH DR3 ABUNDANCES
Figure D1 shows mean abundances of 25 elements for a cross-match between our study and GALAH DR3.

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.
Figure A1. Positions, proper motions, parallax distribution, and radial velocity distribution for all 15 clusters.
Figure A1. contd.
Figure A1. contd.
Figure A1. contd.
Chemical homogeneity of the Orion complex

Figure B1. HR diagrams of all 15 clusters used in this work. Age as measured by isochrone fitting is given in each panel. Best fitting isochrone is shown as a solid gray line. Dashed line shows its binary sequence. Red line shows the zero-age main sequence (ZAMS).
Figure B1. contd.

Figure C1. Maximum interpolation error in the T_{eff} dimension of the parameter grid. Colours show the difference between a synthetic spectrum and an interpolated spectrum from a grid. Both spectra are normalized. The interpolated spectrum is always calculated in the middle point between two nodes where the error is expected to be the largest. Errors never exceed the flux of 0.008 (in a normalised spectrum). A spectrum with $T_{\text{eff}} = 5250$ K, $\log g = 4.3$, $[M/H] = -0.05$, $[\alpha/Fe] = 0.0$, and $v\sin i = 10$ km s$^{-1}$ is overplotted to illustrate the shape of a typical spectrum.
Figure C2. Same as Figure C1 but for metallicity.

Figure C3. Same as Figure C1 but for α abundance.
Figure C4. Same as Figure C1 but for $v \sin i$.

$v \sin i$, spline interpolation, $\Delta v \sin i = 2.5 \text{ km s}^{-1}$
Figure C5. Sensitivity of synthetic templates to small variations in parameters. First panel: red lines show the difference when metallicity is varied for ±0.05 dex. Black line shows a spectrum with [M/H] = 5250 K, [M/H] = ±0.05, [α/Fe] = 0.0, v sin i = 5 km s⁻¹, R = 22 000. Adjacent plot shows the differences between red and black lines in more details. Second panel: red lines show the difference when T Eff is varied for ±70 K. Black line shows the same spectrum as before. Third panel: red lines show the difference when resolving power R = λ/Δλ is varied for 2200. Note how a variation in resolution is not degenerated with variations in [M/H] or T Eff. Last panel: Example of an observed spectrum (gray, with thickness corresponding to uncertainty) and best fitting template with a solar mix of elements (blue). Line at 570.02 nm belongs to Cu i, which has much lower abundance than in the Sun. Since the solar mix of elements was used in the fit, the fit deviates significantly for this line. Red line shows the fit with Orion-specific mix of elements (see Table 3).
Figure D1. Measured mean abundances of 25 elements given in GALAH DR3 for the same stars as in Figure 9. Stars without measured abundances in GALAH DR3 are missing from this plot.