A New Proof of a Theorem in Analysis by Generating Integrals and Fractional Calculus

S.C. Woon
Trinity College, University of Cambridge, Cambridge CB2 1TQ, UK
s.c.woon@damtp.cam.ac.uk
MSC-class Primary 28A25, 11M06; Secondary 26A33
Keywords: Theories of Integration; the Riemann zeta function
Analytical Number Theory; Fractional Calculus
December 23, 1998

Abstract

The idea of generating integrals analogous to generating functions is first introduced in this paper. A new proof of the well-known Finite Harmonic Series Theorem in Analysis and Analytical Number Theory is then obtained by the method of Generating Integrals and Fractional Calculus. A generalization of the Riemann zeta function up to non-integer order is derived.

1 The Finite Harmonic Series Theorem

Definition 1 The finite harmonic series is

\[h(n) = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \cdots + \frac{1}{n}. \]

Theorem 1 (The Finite Harmonic Series Theorem)

It is well known [4, p. 16, (1.7.9)] that

\[h(n) = \psi(1+n) + \gamma \]

\[= \log n + \gamma + O(1/n) \quad (1) \]

where the digamma function \(\psi(z) = \frac{d}{dz} \log(\Gamma(z)) = \frac{\Gamma'(z)}{\Gamma(z)} \), the Euler constant \(\gamma = -\Gamma'(1) = 0.577215\cdots \), and the prime denotes differentiation.

The first part (1) of the Theorem can be proved by differentiating the recurrence relation of \(\Gamma(n+1) = n \Gamma(n) \) and summing over \(n \) [2, p. 256]. The second part (2) can be proved by using the Euler-Maclaurin summation formula [4, p. 629].

In this paper, we shall present an alternative elementary proof [3] of the first part (1) of the Theorem by using Fractional Calculus and the idea of generating integrals.
2 Introduction & Motivation of Fractional Calculus

“Thus it follows that $d^{1/2}x$ will be equal to ...from which one day useful consequences will be drawn.” — Leibniz in a letter [5] to L’Hospital.

“When n is an integer, the ratio $d^n p$, p a function of x, to dx^n can always be expressed algebraically. Now it is asked: what kind of ratio can be made if n is a fraction?” — Euler [6].

“The idea of an integral or derivative, of arbitrary non-integral order, was introduced into analysis by Liouville and Riemann. Such integrals and derivatives may be, and have been by different writers, defined in a variety of manners, and different systems of definitions may be the most useful in different fields of analysis.” — Hardy and Littlewood [7].

In this paper, we shall consider D^σ, $\sigma \in \mathbb{R}$, an operator of non-integer order, a notion first pondered upon by Leibniz [5, pp. 301-302], Euler [6, p. 55], Lagrange [8], Laplace [9, p. 85 and p. 186], Fourier [10] and Abel [11] during the late 17th century to early 19th century. We shall briefly review several known and equally valid definitions for D^σ, and then focus on one of the definitions, the Riemann-Liouville (R-L) Fractional Calculus. The foundation of R-L Fractional Calculus was laid by Riemann [12] and Liouville [13] in the late 19th century, and then subsequently developed by Cayley [14], Laurent [15], Heaviside [16], Hardy and Littlewood [7, 17, 18, 19], and many others. It was largely regarded as a mathematical curiosity until only recently when Mandelbrot, the discoverer of Fractals, found an application of the R-L Fractional Calculus in the Brownian motion in a fractal medium, and speculated a possible connection between the analysis of Fractional Calculus and the geometry of Fractals [20].

We shall also introduce the idea of generating integrals by analogy to generating functions. As we shall see, just as a certain generating function is useful for generating a certain desired sequence of numbers, a certain generating integral is similarly useful. While a generating function $f(z)$ generates a sequence of numbers $\{p_n\}$ in the coefficients of the terms of different orders in its power series expansion $\sum_n p_n z^n$, a generating integral generates a sequence of numbers q_n in the coefficient of a term in the result of an n-fold integration.

However, a generating integral has one unique advantage over a generating function. The R-L Fractional Calculus can be used to analytically extend a generating integral of iteration order $n \in \mathbb{Z}^+$ to order $\rho \in \mathbb{R}$. The result is that the sequence of numbers $\{q_n\}$ is in turn analytically extended to a function $q(\rho)$, $\rho \in \mathbb{R}$.
We shall then show how the Riemann-Liouville Fractional Calculus and the idea of generating integrals can be used to prove the well-known Finite Harmonic Series Theorem.

3 Differential-Integral Operator D^n

Definition 2 Let the operator $D_n^x|a$, $n \in \mathbb{Z}$, acting on a function f at the point x be defined as

$$D_n^x|a f(x) = \begin{cases} \frac{d^n}{dx^n} f(x) & (n > 0) \\ f(x) & (n = 0) \\ \int_a^x f(\hat{x})(d\hat{x})^{-n} & (n < 0) \end{cases}$$

(3)

where the n-fold integration is defined inductively as

$$\int_a^x f(\hat{x})(d\hat{x})^{-n} = \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \int_a^{x_2} f(x_1) \, dx_1 \, dx_2 \cdots dx_{n-1} \, dx_n.$$

As an example, consider $f(x) = x^m$.

$$D_n^x|a x^m = \begin{cases} 0 & (m \geq 0, m < n) \\ \frac{m!}{(m-n)!} x^{m-n} = \Gamma(1+m) \Gamma(1+m-n) x^{m-n} & (m \geq 0, m \geq n) \\ (-1)^n \frac{(|m|-1+n)!}{(|m|-1)!} x^{m-n} \bigg|_a^x & (m \leq 0, m < n) \\ = \lim_{\epsilon \to 0} \frac{\Gamma(1+m+\epsilon) \Gamma(1+m+\epsilon-n)}{\Gamma(1+m+\epsilon-n)} x^{m-n} \bigg|_a^x \\ = \int_a^x \left(\int_a^{\hat{x}} \hat{x}^m (d\hat{x})^{|m|} \right) (d\hat{x})^{(m-n)} & (m \leq 0, m \geq n) \\ = (-1)^{m+1} \frac{1}{(|m|-1)!} \int_a^x \log(\hat{x}) (d\hat{x})^{(m-n)} & \end{cases}$$

(4)

where $\hat{x}^{m-n} \bigg|_a^x = (x^{m-n} - a^{m-n})$.

If we tabulate $D_n^x|a x^m$ for $n, m \in \mathbb{Z}$ and omit the constant terms containing a, we can observe a pattern emerges as in Table 1.
4 Riemann-Liouville (R-L) Fractional Calculus

The R-L Fractional Calculus [21] begins with
\[
\int_a^x f(\hat{x}) (d\hat{x})^n \equiv \underbrace{\int_a^x \int_a^{x_2} \cdots \int_a^{x_n} \int_a^{x_1}}_{n\text{-times}} f(x_1) \, dx_1 \, dx_2 \cdots dx_{n-1} \, dx_n \tag{5}
\]
for \(n \in \mathbb{Z^+} \) as the fundamental defining expression, and it can be shown [21, p. 38] to be equal to the Cauchy formula for repeated integration,
\[
\frac{1}{\Gamma(n)} \int_a^x \frac{f(t)}{(x-t)^{1-n}} \, dt . \tag{6}
\]

Definition 3 (R-L Fractional Calculus)

The R-L fractional integral is analytically extended from (6) as
\[
D_{x|a}^\sigma f(x) = \frac{d^\sigma}{dx^\sigma} f(x) = \int_a^x f(x)(dx)^{-\sigma} \text{ by extending (3)}
= \frac{1}{\Gamma(-\sigma)} \int_a^x \frac{f(t)}{(x-t)^{1+\sigma}} \, dt \quad (\sigma < 0, \sigma, a \in \mathbb{R}) \text{ by (8)} ,
\tag{7}
\]
and the R-L fractional derivative is in turn derived from the R-L fractional integral (8) by ordinary differentiation:
\[
D_{x|a}^\sigma f(x) = D_{x|a}^m \left(D_{x|a}^{-(m-\sigma)} f(x) \right) \quad (\sigma > 0, m \in \mathbb{Z^+})
\tag{8}
\]
where \(m \) is chosen such that \(m > 1 + \sigma, \sigma > 0 \).

Lemma 1 The equation (8) is independent of the choice of \(m \) for \(m > 1 + \sigma, \sigma, m \in \mathbb{Z^+}, \sigma \in \mathbb{R}, \sigma > 0 \).
Proof

For $m > 1 + \sigma$, $m \in \mathbb{Z}^+$, $\sigma > 0$, we have $-(m-\sigma) < -1 < 0$ and $(m-\sigma-1) > 0$. The first condition, $-(m-\sigma) < 0$, allows us to use the equation (7) to write

$$D_{x|[a]}^{-1}(m-\sigma) f(x) = \frac{1}{\Gamma(m-\sigma)} \int_a^x \frac{f(t)}{(x-t)^{1+\sigma-m}} dt.$$

From (8),

$$D_{x|[a]}^{-m} \left(D_{x|[a]}^{-1}(m-\sigma) f(x) \right) = \frac{d^m}{dx^m} \left(\frac{1}{\Gamma(m-\sigma)} \int_a^x \frac{f(t)}{(x-t)^{1+\sigma-m}} dt \right) = \frac{1}{\Gamma(m-\sigma)} \int_a^x f(t) \left(\frac{d^m}{dx^m} (x-t)^{m-\sigma-1} \right) dt.$$

The second condition, $(m-\sigma-1) > 0$, and the condition $m > 0$ allow us to use the second case of (8). Thus, (9) becomes

$$\frac{1}{\Gamma(m-\sigma)} \int_a^x f(t) \frac{\Gamma(m-\sigma)}{\Gamma(-\sigma)} (x-t)^{-(1+\sigma)} dt = \frac{1}{\Gamma(-\sigma)} \int_a^x f(t) \frac{(x-t)^{1+\sigma}}{dt} = D_{x|[a]}^{-\sigma} f(x). \quad \Box$$

When $a = 0$, (9) for $f(x) = x^r$ is well-defined only for the half plane $r > -1$. Consequently, in the R-L Fractional Calculus, $D_{x|[a]}^{-\sigma} x^r$ is well-defined only for the half plane $r > -1$.

$$D_{x|[a]}^{-\sigma} x^r = \begin{cases} \frac{\Gamma(1+r)}{\Gamma(1+r-\sigma)} x^{r-\sigma} & (\sigma > 0, \ r > -1) \\ x^r & (\sigma = 0, \ \forall \ r) \\ \frac{\Gamma(1+r)}{\Gamma(1+r-\sigma)} x^{r-\sigma} \bigg|_a^x & (\sigma < 0, \ r > -1) \end{cases}. \quad (10)$$

5 Fractional Calculus by Cauchy Integral

The Cauchy Integral for an analytic function $f(z)$ in the complex plane [22, p. 120] is

$$f^{(n)}(z_0) = \frac{\Gamma(1+n)}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{1+n}} dz. \quad (11)$$

Analytic extension of the Cauchy Integral from $n \in \mathbb{Z}^+$ to $s \in \mathbb{R}^+$ gives an analytic extension of $D^n f(z_0)$. However, the analytic extension is not trivial. The term $(z-z_0)^{1+\sigma}$ will become multi-valued and thus the result may depend on the choice of branch cut and integration path.
6 Fractional Calculus by Fourier Transform

In the theory of Fourier Transforms,

\[\tilde{f}(x) = \int_{-\infty}^{+\infty} f(x) e^{ikx} \, dx, \]
\[f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(x) e^{-ikx} \, dk, \]

and

\[D_\sigma^\sigma f(x) = \int_{-\infty}^{+\infty} \tilde{f}(k) D_\sigma^\sigma (e^{-ikx}) \, dk \quad (\sigma \in \mathbb{R}) \]
\[= \int_{-\infty}^{+\infty} (-ik)^\sigma \tilde{f}(k) e^{-ikx} \, dk. \]

This approach is often known as the pseudo-differential operator approach. It was shown by Závada [23] to be equivalent to the Riemann-Liouville Fractional Calculus and the Fractional Calculus by Cauchy Integral.

7 Functional Analytic Approach

In the functional analytic approach, an example of a functional integral of an operator \(A \) is

\[(-A)^a = -\frac{\sin a\pi}{\pi} \int_0^{\infty} \lambda^{a-1} (\lambda \mathbb{1} - A)^{-1}A \, d\lambda \quad (0 < a < 1, \lambda \in \mathbb{R}). \quad (12) \]

(\(\lambda \mathbb{1} - A \)) is called the kernel of the functional integral. The evaluation of the integral with respect to real variable \(\lambda \) requires various conditions on the spectrum of the operator \(A \).

The analytic extension of \(D \) in the functional approach is then obtained from replacing \(A \) by \(D \) in (12).

For details of this well-developed functional analysis approach, see [24].

8 Differentiating and Integrating in non-integer \(s \)-dimensions

The differential of an integer \(n \)-dimensional function in \(n \)-dimensions can be expressed as

\[\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \cdots \frac{\partial}{\partial x_n} f(x_1, x_2, \ldots, x_n). \]

The corresponding integral can be expressed as

\[\int f(x_1, x_2, \ldots, x_n) \, d^n x \equiv \underbrace{\int x_n \cdots \int x_2}_{n \text{-times}} \int f(x_1, x_2, \ldots, x_n) \, dx_1 dx_2 \cdots dx_n. \]
If f is spherically symmetric, $f = f(r)$, then
\[
\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \ldots \frac{\partial}{\partial x_n} f = \frac{\partial^{n-1}}{\partial r^{n-1}} \frac{\partial}{\partial \Omega_{n-1}} f = \frac{\Gamma(n/2)}{2 \pi^{n/2}} \frac{\partial^{n-1}}{\partial r^{n-1}} f(r) \tag{13}
\]
can then be analytically extended to the differential of a non-integer s-dimensional function in s-dimensions,
\[
\frac{\partial^{s-1}}{\partial r^{s-1}} \frac{\partial}{\partial \Omega_{s-1}} f(r) = \frac{\Gamma(s/2)}{2 \pi^{s/2}} \frac{\partial^{s-1}}{\partial r^{s-1}} f(r) \tag{14}
\]
where $s \in \mathbb{R}$ or $s \in \mathbb{C}$, and Ω is the n-dimensional solid angle.

Similarly, the corresponding integral
\[
\int f \, d^n x \equiv \int_0^\infty r^{n-1} f(r) \, dr \int_0^{2\pi} d\theta_1 \int_0^\pi \sin \theta_2 d\theta_2 \cdots \int_0^{\pi} \sin^{n-2} \theta_{n-1} d\theta_{n-1}
\]
\[
= \int_0^\infty r^{n-1} f(r) \, dr \int d\Omega_{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)} \int_0^\infty r^{n-1} f(r) \, dr \tag{15}
\]
can be analytically extended to
\[
\int f \, d^s x = \frac{2\pi^{s/2}}{\Gamma(s/2)} \int_0^\infty r^{s-1} f(r) \, dr . \tag{16}
\]

This method was developed by 't Hooft and Veltman \[25\] in 1960’s. The method was central to an important technique called Dimensional Regularization in Quantum Field Theory where the method is used to isolate singularities in divergent integrals.

9 Generating Integral of the Finite Harmonic Series

Theorem 2 (Generating Integral of $h(n)$)

\[
h(n) = \log x - \frac{\Gamma(1+n)}{x^n} \int_0^x \log \hat{x} (d\hat{x})^n \quad (n \in \mathbb{Z}) \tag{17}
\]

where
\[
\int_a^x f(\hat{x}) (d\hat{x})^n \equiv \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \int_a^{x_2} f(x_1) \, dx_1 \, dx_2 \cdots dx_{n-1} \, dx_n .
\]

Proof

We observe that $-h(n)/n!$ appears in the coefficient of the x^n term when we repeatedly integrate $\log x$:
\[
\int_0^x \log \hat{x} (d\hat{x}) = x(\log x - 1) ,
\]
\[
\int_0^x \log \hat{x} (d\hat{x})^2 = \frac{x^2}{2} (\log x - \frac{3}{2}) ,
\]
\[
\vdots
\]
\[
\int_0^x \log \hat{x} (d\hat{x})^n = \frac{x^n}{n!} (\log x - h(n)) . \tag{18}
\]
We can prove this observation by induction:

\[
\int_0^x \log \hat{x} (d\hat{x})^{n+1} = \int_0^x \left(\int_0^x \log \hat{x} (d\hat{x})^n \right) (d\hat{x})
\]

\[
= \int_0^x \frac{\hat{x}^n}{n!} (\log \hat{x} - h(n)) (d\hat{x})
\]

\[
= \frac{x^{n+1}}{(n+1)!} (\log x - h(n)) - \frac{x^n}{(n+1)!} (d\hat{x})
\]

\[
= \frac{x^{n+1}}{(n+1)!} \left(\log x - h(n) - \frac{1}{n+1} \right)
\]

\[
= \frac{x^{n+1}}{(n+1)!} (\log x - h(n+1)) .
\]

Rearrangement of (18) yields the Theorem. □

Theorem 3 (Generating Integral of \(h(\rho)\))

\[
h(\rho) = \log x - \frac{\Gamma(1+\rho)}{x^\rho} \int_0^x \log \hat{x} (d\hat{x})^\rho \quad (\rho \in \mathbb{R}) .
\]

(19)

Proof

By analogy to generating functions, we take

\[
\int_0^x \log \hat{x} (d\hat{x})^n
\]

as the *generating integral* of the finite harmonic series \(h(n)\), and so the natural analytic extension of the generating integral takes the form of

\[
\int_0^x \log \hat{x} (d\hat{x})^\rho = \frac{x^\rho}{\Gamma(1+\rho)} (\log x - h(\rho)) .
\]

(20)

Noting that \(\log x\) may be expressed as

\[
\log x = \int_1^x \hat{x}^{-1} d\hat{x} = \lim_{\epsilon \to 0} \int_1^x \hat{x}^{-1+\epsilon} d\hat{x} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} (x^\epsilon - 1) ,
\]

(21)

we can now evaluate the fractional integral in (20) by the **R-L Fractional Calculus** (Definition 3).

\[
\int_0^x \log \hat{x} (d\hat{x})^\rho = \int_0^x \lim_{\epsilon \to 0} \frac{1}{\epsilon} (x^\epsilon - 1) (d\hat{x})^\rho = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^x (\hat{x}^\epsilon - 1) (d\hat{x})^\rho
\]

\[
= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\int_0^x \hat{x}^\epsilon (d\hat{x})^\rho - \int_0^x (d\hat{x})^\rho \right]
\]

\[
= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[D_{\hat{x}}^\rho \hat{x}^\epsilon [0] - D_{\hat{x}}^\rho 1 [0] \right]
\]

\[
= \lim_{\epsilon \to 0} \frac{x^\rho}{\epsilon} \left[\frac{\Gamma(1+\epsilon) x^\epsilon}{\Gamma(1+\epsilon+\rho)} - \frac{1}{\Gamma(1+\rho)} \right]
\]

(22)
where the interchange of the integral and the limit is justified by Arzelà’s theorem on bounded convergence [26, pp. 405-406] as \((x^\varepsilon - 1)/\varepsilon\) is integrable in \(\hat{x} \in [0, x]\).

Combining (22) with (20) gives the analytic extension of the finite harmonic series:

\[
h(\rho) = \log x - \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\frac{\Gamma(1+\varepsilon)}{\Gamma(1+\varepsilon+\rho)} x^\varepsilon - 1 \right]
\]

\[
= \log x - \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (x^\varepsilon - 1) \left[\frac{\Gamma(1+\varepsilon)\Gamma(1+\rho)}{\Gamma(1+\varepsilon+\rho)} \right]
\]

\[
+ \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[1 - \frac{\Gamma(1+\varepsilon)\Gamma(1+\rho)}{\Gamma(1+\varepsilon+\rho)} \right]
\]

\[
= \left[\log x - \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (x^\varepsilon - 1) \right] + \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[1 - \frac{\Gamma(1+\varepsilon)\Gamma(1+\rho)}{\Gamma(1+\varepsilon+\rho)} \right]
\]

\[
= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[1 - \frac{\Gamma(1+\varepsilon)\Gamma(1+\rho)}{\Gamma(1+\varepsilon+\rho)} \right]
\]

\[
= \frac{\Gamma'(1+\rho)}{\Gamma(1+\rho)} - \Gamma'(1)
\]

\[
= \psi(1+\rho) + \gamma
\] \hspace{1cm} (23)

where the limit has been taken with L’Hospital rule.

\[
\int_0^x \log \hat{x} \, (d\hat{x})^\rho = \frac{x^\rho}{\Gamma(1+\rho)} (\log x - \psi(1+\rho) - \gamma) \quad (\rho \in \mathbb{R}).
\] \hspace{1cm} (24)

Figure 1: The curve \(h(\rho) = \psi(1+\rho) + \gamma\) passes through the points \((n, h(n))\) where \(n \in \mathbb{Z}^+, \ h(n) = \sum_{k=1}^n \frac{1}{k}\).

Hence, by the application of the R-L Fractional Calculus to analytically extend the generating integral, we have found an alternative elementary proof of the first part (ii) of the Finite Harmonic Series Theorem.

Theorem 4

\[
\int_0^x \log \hat{x} \, (d\hat{x})^\rho = \frac{x^\rho}{\Gamma(1+\rho)} (\log x - \psi(1+\rho) - \gamma) \quad (\rho \in \mathbb{R}).
\] \hspace{1cm} (24)
Proof
Replacing the \(h(\rho) \) in (24) by (23) gives the Theorem.

\[\square \]

10 The Riemann Zeta Function up to Order \(n \)

The analytic extension (23) can be generalized.

Definition 4 The Riemann zeta function \([27] \)

\[\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} \quad (\text{Re}(s) > 1), \]

(25)

the polygamma functions \([2, \text{p. 260, (6.4.1)}] \)

\[\psi^{(m)}(x) = \frac{d^m}{dx^m} \psi(x) = \frac{d^{m+1}}{dx^{m+1}} \log \Gamma(x) = (-1)^{m+1} m! \sum_{k=0}^{\infty} \frac{1}{(x+k)^{m+1}}, \]

(26)

and the Riemann zeta function up to order \(n \)

\[\zeta(s | n) = \sum_{k=1}^{n} \frac{1}{k^s} = \zeta(s) - \sum_{k=n+1}^{\infty} \frac{1}{k^s} \quad (\text{Re}(s) > 1) \]

(27)

may be combined to write

\[\zeta(m | n) = \sum_{k=1}^{n} \frac{1}{k^m} = \frac{(-1)^m}{(m-1)!} \left(\psi^{(m-1)}(1+n) - \psi^{(m-1)}(1) \right) \]

\[= \frac{(-1)^m}{(m-1)!} \frac{d^m}{dx^m} \log(\Gamma(1+x)) \bigg|_{x=0}^{x=n}. \]

(28)

The analytic extension is then obtained by replacing the derivative in (28) with a fractional derivative:

\[\zeta(s | z) = \frac{w(s)}{\Gamma(s)} D_x^s \log(\Gamma(1+x)) \bigg|_{x=0}^{x=z} (s, z \in \mathbb{C}) \]

(29)

which can be evaluated when \(\log(\Gamma(1+x)) \) is expressed in the form of an asymptotic series \([2, \text{p. 257, (6.1.41)}] \). However, \(w(s) \) depends on the choice of extension to the R-L Fractional Calculus (Definition 3) into the other half plane, \(r \leq -1, \sigma \in \mathbb{R} \).

11 Analytic Extension of R-L Fractional Calculus

Consider the case of \(D_x^n \) where \(a = 0 \). We shall introduce the \((\sigma, r) \) diagram in which the numerical factor of \(D_x^a x^r \) is mapped to the point at coordinate \((\sigma, r) \) of the diagram. The \((\sigma, r) \) diagram of \(D_x^a x^r \) can be characterised into 4 regions as in Figure 3.
Definition 5 (Regions of \((\sigma, r)\))

The zero region \(Z_{zer} = \{ (\sigma, r) : r < \sigma, r \geq 0 \} \);
the upper region \(U_{up} = \{ (\sigma, r) : r \geq \sigma, r \geq 0 \} \);
the lower region \(L_{ow} = \{ (\sigma, r) : r < \sigma, r < 0 \} \);
the log region \(L_{og} = \{ (\sigma, r) : r \geq \sigma, r < 0 \} \).

A point lying on the right of the \(r\)-axis \((\sigma > 0)\) is a differentiation; a point on the left \((\sigma < 0)\) is an integration.

The \((\sigma, r)\) diagram at integer grid points everywhere except in the log region gives numerical factors identical to those in Table 1.

An extension of R-L Fractional Calculus to the other half plane \(r \leq -1\) is given by

\[
D_x^\sigma x^r = \begin{cases}
\lim_{\epsilon \to 0} \frac{\Gamma(1+r+\epsilon)}{\Gamma(1+r+\epsilon-\sigma)} x^{r-\sigma} & \text{elsewhere} \\
\lim_{\epsilon \to 0} \frac{\Gamma(1+r+\epsilon)}{\Gamma(1+r+\epsilon-\sigma)} x^{r-\sigma} & \text{in } \Omega
\end{cases}
\]

where \(\Omega = \{ (\sigma, r) : \sigma \in \mathbb{R}, r \in \mathbb{Z}^- \}\), the set of horizontal lines in lower and log regions.

\(\Gamma(1+r)/\Gamma(1+r-\sigma)\) is finite everywhere in the zero and upper regions.
\(\lim_{\epsilon \to 0} \Gamma(1+r+\epsilon)/\Gamma(1+r+\epsilon-\sigma)\) is well-defined everywhere in the lower and log regions except in \(\Omega \setminus (\mathbb{Z}^- \times \mathbb{Z}^-)\). Following Theorem 4, the R-L fractional integral of \(\log x\) can be evaluated exactly and expressed in only elementary functions,

\[
D_x^\sigma \log x = \begin{cases}
\frac{x^{-\sigma}}{\Gamma(1-\sigma)} \left(\log x - \psi(1-\sigma) - \gamma \right) & (\sigma \in \mathbb{R} \setminus \mathbb{Z}) \\
\lim_{\epsilon \to 0} \frac{\Gamma(1+r+\epsilon)}{\Gamma(1+r+\epsilon-\sigma)} x^{r-\sigma} & (\sigma \in \mathbb{Z})
\end{cases}
\]
is thus well-defined.

To analytically extend from $D^\sigma_x x^r$ on the real plane (σ, r) to $D^s_x x^r$ on the product of complex plane and real line, $(s, r) \in \mathbb{C} \times \mathbb{R}$, we simply replace $\sigma \in \mathbb{R}$ in (30) by $s \in \mathbb{C}$.

12 Open Problems

1. Generalize (30) for $D^s_{z-c} z^w$, $s, w, z, c \in \mathbb{C}$. For the complex function z^w, one has to specify, in addition, the integration contour for $\text{Re}(s) < 0$.

2. Find the exact expression for $\log(\Gamma(1+x))$ and $w(s)$ in terms of elementary functions in analytic extension of the R-L Fractional Calculus given by (30).

13 Tables of Generating Integrals

“Nature laughs at the difficulties of integration.” — Laplace

An interesting consequence is that objects of the form $\int x^r (\log x)^a (dx)^\rho$, $r, a, \rho \in \mathbb{R}$, exist and can be generating integrals for certain functions. Perhaps it may be worthwhile to introduce, in the future editions of Tables of Integrals, a new section which gives the coefficient of the x^k term, $w(\rho, r, a, k)$, corresponding to these generating integrals to facilitate the evaluation of integrals of similar forms.

References

[1] H. Bateman, Higher Transcendental Functions, Vol 1. (McGraw-Hill, New York, 1953).

[2] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

[3] S.C. Woon, “Generating Integrals and an Elementary Proof of the Finite Harmonic Series Theorem by Fractional Calculus”, Am. Math. Mon., 105(10) (1998).

[4] R. Courant and F. John, Introduction to Calculus and Analysis, Vol 1., Interscience Publishers, 1965, 629.

[5] G.W. Leibniz, Letter dated September 30, 1695 to G.A. L’Hospital. Leibnizen Mathematische Schriften, Vol. 2 (Olms Verlag, Hildesheim, 1962).
[6] L. Euler, “De Progressionibus Transcentibus, sev Quarum Terminii Algebraice Dari Nequent”, Comment. Acad. Sci. Imperialis Petropolitanae 5, 38-57 (1738).

[7] G. H. Hardy and J. E. Littlewood, “Some Properties of Fractional Integrals”, Proc. London Math. Soc. [2], 24, pp. xxxvii-xli (Records of Proceedings at Meetings) (1925).

[8] J.L. Lagrange, “Sur une nouvelle espèce de calcul relatif à la différentiation et à l’intégration des quantités variables”, Nouv. Mém. Acad. Roy. Sci. Belles-Lett. Berlin 3, 185-206 (1772).

[9] P.S. Laplace, Théorie Analytique des Probabilités (Courcier, Paris, 1820).

[10] J.B.J. Fourier, “Théorie Analytique de la Chaleur”, Oeuvres de Fourier, Vol. 1, 508 (1822).

[11] N.H. Abel, “Solution de quelques problèmes à l’aide d’intégrales définies”, Werke 1, 10 (1823).

[12] B. Riemann, “Versuch einer allgemeinen Auffassung der Integration und Differentiation”, The Collected Works of Bernhard Riemann (H. Weber, ed.), 2nd ed. (Dover, New York, 1953).

[13] J. Liouville, “Mémoire sur quelques Questions de Géométrie et de Mécanique, et sur un nouveau genre de Calcul pour résoudre ces Questions”, J. Ecole Polytech. 13, Section 21, 1-69 (1832).

[14] A. Cayley, “Note on Riemann’s Paper”, Math. Ann. 16, 81-82.

[15] H. Laurent, “Sur le calcul des dérivées à indices quelconques”, Nouv. Ann. Math. [3] 3, 240-252 (1884).

[16] O. Heaviside, Electromagnetic Theory, Vol. II., (Dover, New York, 1950).

[17] G.H. Hardy, “On Some Properties of Integrals of Fractional Order”, Messenger Math. 47, 145-150 (1917).

[18] G. H. Hardy and J. E. Littlewood, “Some Properties of Fractional Integrals, I”, Math. Z. 27, 565-606 (1928).

[19] G. H. Hardy and J. E. Littlewood, “Some Properties of Fractional Integrals, II”, Math. Z. 34, 403-439 (1932).

[20] B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, San Francisco, 1982).

[21] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[22] L.V. Ahlfors, *Complex Analysis 2nd ed.* (McGraw-Hill, New York, 1966).

[23] P. Závada, “Operator of fractional derivative in the complex plane”, e-Print [funct-an/9608002](http://arxiv.org/abs/funct-an/9608002).

[24] T. Kato, J. Math. Soc. Japan, 13, 246 (1961).

[25] ‘t Hooft and Veltman, Nucl. Phys., 44B, 189 (1972).

[26] Tom M. Apostol, *Mathematical Analysis*, Addison-Welsey, 1957, 405-406.

[27] E.C. Titchmarsh, *The Theory of the Riemann zeta-function* (OUP, Oxford, 1986).