Data Article

Data supporting the improvement of forecasting and control of electricity consumption in hotels

José Cabello Eras a,*, Vladimir Sousa Santos a, Alexis Sagastume Gutierrez a, Carlo Vandecasteele b

a Universidad de la Costa, Calle 50 No 55-66, PBX 336 22 00, Calle 58 # 55 e 66, Atlántico, Barranquilla, Colombia
b Department of Chemical Engineering, University of Leuven, de Croylaan 46, B-3001 Heverlee, Belgium

ARTICLE INFO

Article history:
Received 4 April 2019
Received in revised form 8 May 2019
Accepted 4 June 2019
Available online 12 June 2019

Keywords:
Energy management
Buildings energy efficiency
Electricity consumption

ABSTRACT

Improving and managing the electricity efficiency in hotel facilities is essential to reduce the hotel operation costs and its environmental impacts. The data presented shows the evolution of the electricity consumption and management between 2013 and 2015 in two hotel facilities in Cuba (one beach hotel and one city hotel). The data additionally includes the daily measures used to develop control tools for an energy management system. The data presented in the article relates to the research study: Tools to improve forecasting and control of the electricity consumption in hotels Cabello et al., 2016, and it corresponds to the energy audits developed in one beach hotel (Hotel A) and one city hotel (Hotel B) in Cuba.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The data includes the occupied rooms per day (ORD), the outdoor temperature and the electricity consumption on daily and on monthly basis. It additionally includes the parameters calculated and

* Corresponding author.
E-mail address: jcabello2@cuc.edu.co (J.C. Eras).

https://doi.org/10.1016/j.dib.2019.104147
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
used to develop the electricity management of the hotel facilities (i.e. room degree-day (RDD), energy performance indicators (EnPI), energy baselines (EnB) and control graphics), to forecast and control the electricity consumption in hotels A and B, by highlighting their main sources of inefficiencies. Originally, the dataset [1] considered data from 2011 to 2012 to develop the EnBs and EnPIs used. This data was updated up to 2015 to show the evolution of the electricity management system and the control tools over time.

Fig. 1 and Fig. 2 show the average electricity consumption of the different areas for hotels A (Fig. 1) and B (Fig. 2). Moreover, Fig. 3 and Fig. 4 show the electricity consumption between 2011 and 2014 for both hotels, and additionally show the Energy Performance Indicators (EnPI) developed for hotels A and B. Furthermore, the daily control graphs, developed for each month based on the daily electricity consumption measured in each hotel are shown in Fig. 5 and Fig. 6. Finally, Fig. 7 shows a scatter analysis between the measured and the forecasted electricity consumption in hotels A and B. In addition, Table 1 shows the monthly electricity consumption measured between January 2011 and December 2014 and the reference parameters calculated based on the measurements. Moreover, Table 2 shows the monthly electricity consumption measured during 2015 and the reference parameters calculated based on the measurements. The data used to develop Figs. 1–6 is available in the article.

2. Experimental design, materials, and methods

The monthly electricity consumption was taken from the electric bills of each hotel, while the daily consumption was taken from the mandatorily measures take every day at 7 a.m. in the electric meter of every hotel by the maintenance staff, as requested by the Cuban Ministry of Tourism to keep track of the electricity consumption of the tourist sector. Other data (e.g. occupied rooms per days, occupied rooms per month, etc.), was taken from each hotel records.

The electricity consumption per areas used to identify the main electricity uses (as depicted in Figs. 1 and 2), was measured with two IP power meter of four channels to measure 4 areas simultaneously.
Fig. 1. Pareto of the electricity consumption by areas (Hotel A). * Kitchen and restaurant, ** Outdoor lighting, † Shops and dance club, ‡ Beach snack bar.

Fig. 2. Pareto of the electricity consumption by areas (Hotel B). * Kitchen and restaurant, ** Outdoor lighting, † Shops and dance club.

Fig. 3. Monthly EnPl and control graphics (Hotel A).
Fig. 4. Monthly EnPI and control graphics (Hotel B).

Fig. 5. Daily control graphs (Hotel A).
Fig. 6. Daily control graphs. Hotel B.

Fig. 7. Scatter analysis of the measured and forecasted electricity consumption on monthly basis (2015).
with each one. Additionally, a power quality and energy analyzer Fluke 435 series 6 was used. Moreover, the electricity consumption of the hotel was directly taken from the hotel electric meter. The areas on each hotel were measured during one month, Figs. 1 and 2 shows the average values.

Similar to Ganguly [4], the climatic year (i.e. a continuous 12-month period with a complete annual cycle), developed using 30 years of daily temperature data [5], available in the Weather Underground Database [6], was used to forecast the daily outdoor temperature.

Table 1
Monthly data and reference parameters calculated (January 2011–December 2014).

Month	Hotel A				Hotel B			
Electricity	5,798	5,678,256	55,990	1,294	176,015			
Month	5,247	640,055	49,887	1,292	157,605			
	5,544	831,600	61,064	1,404	210,600			
	3,970	877,370	68,912	1,357	299,897			
	2,860	742,170	63,896	940	243,930			
	3,088	883,168	60,154	644	184,184			
	2,773	837,466	68,000	963	290,826			
	3,267	1,007,870	67,996	948	292,458			
Sep-2011	1,970	556,525	59,959	530	149,725			
Oct-2011	2,220	580,530	64,738	1,002	262,023			
Nov-2011	3,262	606,732	63,982	1,363	253,518			
Dec-2011	2,987	492,855	61,124	1,158	191,070			
Jan-2012	5,788	784,274	59,868	1,385	187,532			
Feb-2012	6,190	755,087	57,778	1,344	163,948			
Mar-2012	6,358	953,700	60,949	1,397	209,550			
Apr-2012	5,129	1,133,509	63,225	1,311	289,731			
May-2012	3,860	1,001,670	64,899	1,210	313,995			
Jun-2012	3,910	1,118,260	72,670	891	254,826			
Jul-2012	3,524	1,087,154	73,937	1,043	321,766			
Aug-2012	2,866	815,205	58,759	672	189,640			
Sep-2012	3,196	835,754	60,804	1,023	267,515			
Oct-2012	5,584	1,038,628	56,876	1,200	223,200			
Nov-2012	3,759	620,235	54,006	1,118	184,470			
Dec-2012	5,323	637,760	60,786	1,304	209,944			
Jan-2013	5,461	660,781	55,705	1,224	149,310			
Feb-2013	5,430	814,500	60,141	1,387	147,203			
Mar-2013	5,401	1,003,018	65,085	1,260	278,460			
Apr-2013	5,430	602,300	64,705	1,046	275,098			
May-2013	5,401	1,118,260	72,670	891	254,826			
Jun-2013	5,461	660,781	55,705	1,224	149,310			
Jul-2013	5,430	814,500	60,141	1,387	147,203			
Aug-2013	5,401	1,003,018	65,085	1,260	278,460			
Sep-2013	5,401	602,300	64,705	1,046	275,098			
Oct-2013	5,430	814,500	60,141	1,387	147,203			
Nov-2013	5,401	1,003,018	65,085	1,260	278,460			
Dec-2013	5,430	814,500	60,141	1,387	147,203			
Jan-2014	5,401	1,003,018	65,085	1,260	278,460			
Feb-2014	5,430	814,500	60,141	1,387	147,203			
Mar-2014	5,401	1,003,018	65,085	1,260	278,460			
Apr-2014	5,430	814,500	60,141	1,387	147,203			
May-2014	5,401	1,003,018	65,085	1,260	278,460			
Jun-2014	5,430	814,500	60,141	1,387	147,203			
Jul-2014	5,401	1,003,018	65,085	1,260	278,460			
Aug-2014	5,430	814,500	60,141	1,387	147,203			
Sep-2014	5,401	1,003,018	65,085	1,260	278,460			
Oct-2014	5,430	814,500	60,141	1,387	147,203			
Nov-2014	5,401	1,003,018	65,085	1,260	278,460			
Dec-2014	5,430	814,500	60,141	1,387	147,203			
The Room Degree Day (RDD) is calculated as:

$$ \text{RDD} = \text{ORD} - \text{CDD} $$

where CDD stands for Cooling Degree Day, which is calculated as [7]:

$$ \text{CDD} = \sum (\text{\(\varphi_0\)} - \text{\(\varphi_b\)}) $$

where \(\varphi_0\) is the outdoor temperature, and \(\varphi_b\) is the reference temperature (maximum outdoor temperature at which no cooling is required to maintain the thermal comfort in a building). The reference temperature must be individually determined for each building [7].

The monthly electricity consumption was forecasted during 2013 and 2014 using the correlation between the electricity consumption and the RDD for hotels A (equation (3)) and B (equation (4)), originally with data from 2011 to 2012:

$$ E = 6.47 \cdot 10^{-5} \cdot \text{RDD} + 40.262 $$

$$ E = 8.69 \cdot 10^{-5} \cdot \text{RDD} + 41.856 $$

Figs. 3 and 4 show the monthly EnBs used during 2013 and 2014, based on data from 2011 to 2012, which was updated in 2015 using data from 2013 to 2014. Additionally, Figs. 3 and 4 show the EnPl control graphs for hotels A and B on monthly basis. Moreover, Figs. 5 and 6 show the daily control graphs used for each month in hotels A and B. Finally, Fig. 7 shows a scatter analysis between the measured and forecasted electricity consumption in hotels A and B.

Equations (3) and (4) were updated including data from 2013 to 2014 to forecast and manage the consumption during 2015:

$$ E = 6 \cdot 10^{-5} \cdot \text{RDD} + 40.756 $$

$$ E = 6 \cdot 10^{-5} \cdot \text{RDD} + 48.302 $$

Table 2

Month	Hotel A		Hotel B								
	ORD	CDD	RDD	ECM*	ECF**		ORD	CDD	RDD	ECM*	ECF**
Jan	5,323	120	638,760	83.802	79.082	1,304	161	209,944	56.625	60.899	
Feb	5,461	121	660,781	76.383	80.403	1,224	122	149,310	56.221	57.262	
Mar	5,430	150	814,500	85.512	89.626	1,387	147	203,889	61.528	60.535	
Apr	4,601	218	1,003,018	99.338	100.937	1,260	221	278,460	62.950	65.010	
May	2,321	260	602,300	69.875	76.964	1,046	263	275,098	68.790	64.808	
Jun	2,733	282	770,706	84.897	86.998	716	286	204,776	61.598	60.589	
Jul	1,901	302	574,102	73.197	75.202	1,087	301	327,187	71.760	67.933	
Aug	1,727	306	528,462	67.432	72.464	986	309	304,181	68.512	66.582	
Sep	1,843	283	520,648	69.408	72.050	479	280	134,120	54.262	56.349	
Oct	2,137	264	564,168	69.565	74.606	863	262	225,675	62.866	61.868	
Nov	4,616	186	858,576	83.424	92.271	1,256	189	237,384	60.559	62.545	
Dec	3,512	162	568,944	77.189	74.893	1,096	165	180,840	61.152	59.152	

*ECM – electricity consumption measured; **ECF – electricity consumption forecasted
Table 1 shows the monthly electricity consumption and the reference parameters between January 2011 and December 2014, while Table 2 shows the same data measured and calculated during 2015, when the updated control tools, depicted in figures Figs. 3—6 were implemented. Additionally, Table 2 includes the electricity consumption forecasted with the updated EnPI and the monthly reference parameters during 2015.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104147.

References

[1] J. Cabello, V. Sousa, A. Sagastume, M. Alvarez-Guerra, D. Haeseldonckx, C. Vandecasteele, Tools to improve forecasting and control of the electricity consumption in hotels, J. Clean. Prod. 137 (2016) 803–812.
[4] W. Underground, Weather Underground, Available online, 2019 (03.04.2019), http://www.wunderground.com.
[5] G. Krese, M. Prek, V. Butala, Analysis of building electric energy consumption data using an improved cooling degree-day method, J. Mech. Eng. 58 (2012) 107–114, 2012.
[6] A. Sagastume, J.J. Cabello, D. Huisingh, C. Vandecasteele, L. Hens, The current potential of low-carbon economy and biomass-based electricity in Cuba. The case of sugarcane, energy cane and marabu (Dichrostachys cinerea) as biomass sources, J. Clean. Prod. 172 (2018) 2108–2122.
[7] J. Cabello, D. Garcia, A. Sagastume, R. Priego, L. Hens, C. Vandecasteele, An approach to sustainable development: the case of Cuba. Environment, Dev. Sustain. 14 (2012) 573–591.