Supplementary Materials for

Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model

Jordy Tasserie, Lynn Uhrig, Jacobo D. Sitt, Dragana Manasova, Morgan Dupont, Stanislas Dehaene, Béchir Jarraya*

*Corresponding author. Email: bechir.jarraya@cea.fr

Published 18 March 2022, Sci. Adv. 8, eabl5547 (2022)
DOI: 10.1126/sciadv.abl5547

This PDF file includes:

Supplementary Text
Figs. S1 to S12
Tables S1 to S7
Supplementary Text

-Extended Materials and Methods

Deep brain stimulation (DBS) methodology

Surgery using neuro-navigation

We implanted a four-lead (0, 1, 2, 3) MRI-compatible clinical DBS electrode (Medtronic 3389, USA) in two macaques (monkey N and T) with the ultimate goal of performing simultaneous DBS-fMRI acquisitions. Electrode leads were 1.5 mm long and spaced by 0.5 mm. The external diameter was 1.27 mm. We targeted the right centro-median thalamus (CM) and performed aseptic stereotaxic surgery under general anesthesia using a neuro-navigation system (BrainSight, Rogue, Canada) guided by anatomical 3T MRI (Prisma Fit, Siemens, Germany) (MPRAGE, T1 weighted, repetition time TR = 2200ms; inversion time TI=900ms, 0.80mm isotropic voxel size, sagittal orientation, mono-channel 1Tx-1Rx circular surface coil of 12.5 cm diameter). The head of the monkey was placed in a stereotaxic frame and maintained with ears and ocular bars. All devices were built in plastic and MR compatible materials. Gadolinium fiducials were placed on the frame, as well as on the macaque skull and the temporary headpost that held additional fiducials. These landmarks, recognized by the neuro-navigation system, were put all around the skull in a non-coplanar manner. Pre-operative MRI images aimed at defining the target and trajectory. We assessed the target location and trajectory according to the MNI macaque brain coordinates (x, y, z) and Paxinos Atlas reference space (L, B, S). We confirmed the contact spot following three other approaches: i) anterior-posterior commissure (AC-PC) system; ii) distance to different anatomical area landmarks such as the right caudate nucleus and iii) Saleem Atlas. Lead placement trajectory was simulated with the neuro-navigation module prior to surgery.

We drilled craniotomy, positioned a plastic cannula to guide the DBS electrode and fixed an anchoring device system (Stim-lock, Medtronic, USA) covering the craniotomy. This element aimed at stabilizing and blocking the lead extremity to avoid lead migration. Per-operative MRI were acquired to control convergence between the theoretical and the practical implantation spot (effective target reached during surgery versus desired planned location). The extracranial part of the lead was
protected with a plastic MR compatible chamber that was home-made by 3D-printing and was fixed to the skull with screws and dental acrylic.

Verification of the DBS settings and underlying behavioral responses

To ensure efficiency across experiments, impedances between leads and through electrode to an external reference were first measured outside the MRI environment with the DBS programmer device provided by the manufacturer (8840 N’Vision, Activa Clinician DBS Programmer, Medtronic, USA). Ultimately, we used an oscilloscope (Wave Runner 44XI, LeCroy, USA) to check the electrical current delivered to each lead at the beginning and at the end of each experimental session. The stimulation also generated an artifact on the EEG signal, which provided a final benchmark during the fMRI acquisitions.

Behavioral responses (see behavioral assessment section) to electrical thalamic stimulation were assessed in each animal outside the scanner at least 20 days after the DBS implantation. We empirically explored different voltage amplitudes and pulse widths while keeping a monopolar stimulation at a frequency of 130Hz, applied successively to each of the four DBS contacts. The DBS lead targeted the centro-median thalamus. On the target contact (centered in CM), we determined the voltage level for high central thalamic (CT) DBS as the voltage just above the threshold at which a significant behavioral response was observed. Low CT-DBS corresponded to a lower current delivery below the voltage level that led to an arousal pattern. For comparison and reproducibility purposes, we kept the exact same DBS settings for the control stimulation site (ventro-lateral thalamus (VL) DBS).

fMRI statistical analysis

Block-design fMRI analysis

We generated plots by extracting the activations responses to high CT-DBS with the hemodynamic function in frontal (area 6V; 9/46; 8A), parietal (ventral intraparietal VIP, parietal area PFG), cingulate (anterior ACC: posterior PCC) and temporal cortex (temporo-parieto-occipital area TPO). Activity profiles were plotted as percentage of signal changes across time.
Resting-state fMRI analysis

For the static resting state, we calculated for each experimental condition and sessions the average of positive and negative Z-values and performed a Student t-test with the null hypothesis of zero correlation to test for statistical significance of connectivity between the different experimental conditions.

We computed the static functional correlations by estimating for each experimental condition (noted e) for the awake state, anesthesia, low CT-DBS, high CT-DBS, low VL-DBS and high VL-DBS and acquired run (noted r) the covariance matrix $C_{e,r}$. This value was obtained by extracting and averaging across all runs r the time series of all voxels included in each selected anatomical ROI. We referred as static functional correlation or stationary functional connectivity the entry matrix $C_{e,r}(i,j)$ where each cell represented the mean strength of the functional correlation between the i-j pair. For each covariance matrix, a Fisher transformation was applied to calculate the Z-score. The Z-score matrices were averaged across runs to obtain one matrix per experimental condition. To assess statistical significance, Student t-test at the threshold p value<0.0001 and a false discovery rate correction were applied on the correlations of all pairs of brain regions.

Dynamic resting state fMRI analysis

Covariance values between all ROIs were included ($[82\times(82-1)]/2=3,321$ features per matrix). $Z_{e,s,w}$ matrices were subsampled along the time dimension (w) before clustering. The resulting centroids or median clusters (BS$_n$ with n=1–7; each BS$_n$ is sized 82×82) were then used to initialize a clustering of all data, obtaining a matrix of brain states $B_{e,s,w}$, which, for a given arousal condition e and session s, is a vector of length 464, valued 1–7, because each matrix in $Z_{e,s,p,w}$ is assigned a BS$_n$.

The similarity score was computed from the correlation coefficient between the vectorized structural matrix and each vectorized brain state from the clustering analysis. All brain states were ordered in ascending order of similarity to the structure using the similarity score. To quantify the relation between the probability of occurrence of a BS and the similarity score, for each arousal condition, a regression analysis was done, to quantify the beta value (β), the R^2 and a P value. The differences in BS composition across arousal states was evaluated through a fixed-effects ANOVA, with mean rank similarity, that is, the result of averaging each BS time series, valued from 1 to 7, as a dependent
variable and the vigilance condition as the in-dependent variable. A fixed-effects ANOVA was run to quantify the effect of sedation on the probability of brain state 7. For this, we followed the same procedure, but the mean rank similarity was calculated considering only BS 7 (window w valued at 1; any other state window w valued at 0).

To explore specifically the fluctuations of intervoxel correlation within nodes of the “macaque global neuronal workspace” and sensori-motor areas (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, PFCdl; frontal eye fields, FEF; dorsolateral premotor cortex, PMCdl; primary somatosensory cortex, S1; primary motor cortex, M1; intraparietal cortex, Peip; primary auditory cortex, A1; inferior temporal cortex, TCi; visual area 1, V1 and posterior cingulate cortex, PCC), we extracted the values from the whole brain matrices and applied a one-way analysis of variance (ANOVA). FC across the brain states were highlighted by displaying Z-score in inter-region matrices.

Event-related task fMRI analysis

We generated plots by obtaining the β-weight of SPM regressions of individual macaque data with the hemodynamic functions of the appropriate stimulus categories and then plotted the mean and SE of these β-weights. These values estimate, in percentages of the whole-brain fMRI signal, the size of the fMRI activation relative to the implicit rest baseline that divides trials.

The first level analyses consisted in the convolution of the stimulus categories with the MION canonical hemodynamic response function (HRF) and its time derivative. We also added motion regressors and heart rate as variables of non-interest to the event-related regressors. Activation time series of all the fMRI voxels were computed for each fMRI run and signal change expressed in T-score maps for the different stimulus categories relative to rest periods. Global standard trials that immediately followed a global deviant trial were excluded.

-Extended Results

Thalamic DBS effects on resting-state networks in anesthetized macaques

Static Functional Correlations (Figure 4, S6)

To test for statistical significance of connectivity between brain regions in different experimental
conditions, Student t-tests were performed with the null hypothesis of zero correlation. We calculated for each experimental condition c and sessions the average of positive and negative Z values of Z_{c,s}.

The average positive Z-value was 0.43+/-2.9e-4 in the awake state, 0.22+/-2.6e-4 under anesthesia, 0.27+/-2.5e-4 during low CT-DBS, 0.39+/-2.8e-4 during high CT-DBS, 0.28+/-3.1e-4 during low VL-DBS and 0.19+/-2.4e-4 during high VL-DBS (Figure 4A). Positive Z-values were significantly different under anesthesia and high CT-DBS (p < 0.001, FDR corrected) (Figure 4A). The average negative Z-value was 0.24+/-4.2e-4 in the awake state, 0.09+/-1.7e-4 under anesthesia, 0.12+/-2.7-4 during low CT-DBS, 0.11+/-3.2e-4 during high CT-DBS, 0.08+/-2.7e-4 during low VL-DBS and 0.08+/-2.2e-4 during high VL-DBS (Figure 4A). Negative Z-values were significantly different under anesthesia and high CT-DBS (p < 0.001, FDR corrected) (Figure 4A). In the awake state, the frontal cortex (areas 9/46, 8A, 6V and M1), parietal cortex (parietal area PFG and ventral intraparietal area), anterior and posterior cingulate cortices, temporal cortex (area A1) and occipital cortex (area V1) were strongly correlated to each other (left column, Figure 4B).

Dynamic Functional Correlations (Figure 5, S7-S8, Table S4)

We applied k-means to the whole acquired dataset (including all experimental conditions) to cluster brain states (Figure S7). We also applied k-means to two data subsets, subset CT and subset VL, to specifically characterize the effects of CT-DBS and VL-DBS respectively. Subset CT included data from awake, anesthesia and anesthesia + high CT-DBS conditions (Figure 5A-C). Subset VL included data from awake, anesthesia and anesthesia + high VL-DBS conditions (Figure 5D-E).

- **Clustering subset CT (data from awake, anesthesia and anesthesia + high CT-DBS conditions) (Figure 5A-C)**

In the awake state, all 7 brain states were represented with a similar probability of occurrence (β=0.45; R^2=0.22; p=0.28). During anesthesia, state 7 (with the highest function-structure similarity) was dominant and state 1 (with the lowest function-structure similarity) never occurred (β=1.91; R^2=0.67; p=0.02). Under high CT-DBS, consistent with partial recovery of consciousness, the probability of occurrence of state 7 decreased in favor of all the other brain states, especially state 2 and 3 (β=0.64; R^2=0.28; p=0.22). We computed the slope of the linear relation between structural and functional
correlations for each recording session and compared the slope distributions in the awake, anesthesia and DBS conditions. Awake and high CT-DBS slopes were significantly lower than the anesthesia slopes, indicating that a greater diversity of states were explored in the wake state (awake versus anesthesia: t-test, p=6e-5 and BF10=338, high CT-DBS versus anesthesia: t-test, p=0.001 and BF10=23). Importantly no differences were observed between awake and high CT-DBS slopes (t-test, p=0.42, BF01=3.28) (Figure 5A-B, Table S6). In the awake state, the mean rank of brain states was 4 (4.38±1.28), for anesthesia, the mean rank was 6 (5.70±1.40) and during high CT-DBS, the mean rank was 5 (4.55±1.17). This brain state distribution was significantly different (ANOVA; F(2;120)=12.52; p=1.15e-7). Also, the frequency of brain state 7 was moderate in the awake experiments (probability=0.24), high during anesthesia (probability=0.58) and low again during high CT-DBS (probability=0.26; p<0.0001) (Figure 5B). The probability of brain state 7 was higher in anesthesia compared to the awake state (t-test, p=1e-6, BF10=9063) and to high CT-DBS (t-test, p=1e-5, BF10=1017) which did not differ significantly (t-test, p=0.74, BF01=4.18). The mean similarity with the anatomical connectivity was also significantly different with 0.24 (±0.06) for the awake state, 0.31 (±0.07) for anesthesia and 0.25 (±0.06) for high CT-DBS (ANOVA; F(2;120)=14.75; p=1.87e-6).

Anatomically, the functional brain states 1, 2 and 3, that were most characteristic of the awake, presented strong correlations within the “macaque GNW” prefrontal (dorsolateral prefrontal cortex, PFCdl; dorsolateral premotor cortex, PMCdl), parietal (intraparietal cortex, PCip) and cingulate nodes (anterior cingulate cortex, ACC; posterior cingulate cortex, PCCr), whereas state 7 displayed low or null Z-score values across the same entire cortical network (Figure 5C). During high CT-DBS, the average duration of brain state 7 decreased compared to anesthesia (high CT-DBS versus anesthesia, p=2.48e-3; bootstrap analysis) and was similar to the awake state (Figure S8).

- Clustering subset VL (data from awake, anesthesia and anesthesia + high VL-DBS conditions) (Figure 5D-E)

In the awake state, all seven brain states were present (β=0.16; R²=0.02; p=0.74). Under anesthesia, brain state 7 was dominant (β=1.21; R²=0.33; p=0.18), as under high VL-DBS (β=1.69; R²=0.43; p=0.11) (Figure 5F-G). We also computed the slope corresponding to each recording session and
compared the slope distributions in the awake, anesthesia and high VL-DBS conditions. Awake slopes were significantly lower compared to anesthesia and high VL-DBS slopes (awake versus anesthesia: t-test, p=0.0007 and BF10=39, awake versus high CT-DBS: t-test, p=1e-8 and BF10=636824). The slopes under anesthesia were smaller than the high VL-DBS slopes (t-test, p=0.01, BF10=3.81).

For the awake state, the mean rank of brain states was 4 (4.41±0.93), under anesthesia, the mean rank was 6 (5.81±1.39) and under high VL-DBS, the mean rank was 6 (6.41±0.38). The brain state distribution was significantly different (ANOVA; F(2;102)=32.03; p=1.61e-11). Brain state 7 was balanced in the awake state (awake brain state 7 probability=0.19), dominant under anesthesia (anesthesia brain state 7 probability=0.60) and high VL-DBS (high VL-DBS brain state 7 probability=0.72; p<0.0001) (Figure 5F). The probability of state 7 was smaller in the awake state compared to anesthesia (t-test, p=10e-9, BF10=2e7) and compared to high VL-DBS (t-test, p=10e-17, BF10=1e15). However, we found no evidence for a difference nor a similarity between anesthesia and high VL-DBS (t-test, p=0.15, BF10=0.64, BF01=1.54).

Brain state 1 highlighted strong correlations to all the tested cortical areas. Brain state 7 presented weak Z-score values with prefrontal (PFCdl; PMCdl), parietal (PCip) and cingulate cortex (ACC; PCC) (Figure 5C).

With high VL-DBS, the average duration of brain state 7 increased compared to the awake state (high VL-DBS v/s awake, p<0.0001, bootstrap analysis) and was similar to the anesthesia state (Figure S8).

-Clustering the whole dataset (data from awake, anesthesia, low CT-DBS, high CT-DBS, low VL-DBS and high VL-DBS) (Figure S7)

The occurrence of brain states in the awake condition was equiprobable (β=0.05; R²=0.003; p=0.91). Under anesthesia, this probability was shaped by the brain state 7 (β=1.87; R²=0.59; p=0.04). For the DBS sessions, brain state probability of occurrence was partly dominated by brain state 7 in the low CT-DBS condition (β=1.09; R²=0.49; p=0.08), balanced under high CT-DBS (β=0.28; R²=0.059; p=0.6308), partly dominated by the brain state 7 during the low VL-DBS experiments (β=1.52; R²=0.59; p=0.04) and dominated by brain state 7 in the high VL-DBS condition (β=2.57; R²=0.73; p=0.01) (Figure S7).
The mean rank was 4 in the awake state (3.81±1.05), 5 under anesthesia (5.37±1.34), 5 in the low CT-DBS condition (4.81±0.93), 4 in the high CT-DBS condition (4.14±1.03), 5 in the low VL-DBS condition (5.35±0.86) and 6 in the high VL-DBS condition (6.01±0.53). The brain state distribution was significantly different between structural and functional correlations (ANOVA; F(5;193)=19.65; p=8.31e-16) (Figure S7). The probability of occurrence of brain state 7 was low in the awake state (0.20), and high under anesthesia (0.54). Crucially, even though anesthesia continued, low CT-DBS and high CT-DBS reduced this probability down to an aware level (respectively 0.37 and 0.23). The probability of state 7 also decreased with low VL-DBS (0.38) but returned to high (0.63, p<0.001) under high VL-DBS. The mean similarity with the anatomical connectivity was also significantly different with 0.26 (±0.04) for the awake state, 0.32 (±0.06) for anesthesia, 0.29 (±0.04) for low CT-DBS, 0.27 (±0.04) for high CT-DBS, 0.31 (±0.04) for low VL-DBS and 0.35 (±0.03) and for high VL-DBS (ANOVA; F(5;193)=17.72; p=1.94e-14). The average duration of brain state 7 significantly decreased with high CT-DBS compared to the anesthesia state (p=1.61e-9, bootstrap analysis) and was similar to the awake state. Low CT-DBS and low VL-DBS decreased the duration the brain state 7 compared to anesthesia (low CT-DBS v/s anesthesia, p=6.72e-8; low VL-DBS v/s anesthesia, p=1.88e-7, bootstrap analysis). Under high VL-DBS, duration of the brain state 7 was similar to the anesthesia state (high VL-DBS v/s anesthesia, not significant) (Figure S7).
Active contact of the lead for CT-DBS Monkey T

A. Coregistration of the pre and post-operative MRI anatomical images (upper panel) and between MRI post-operative and MNI macaque brain atlas (lower panel) for monkey T. (B) Pre-reconstruction of the electrode lead trajectory using the entry point on the anatomical MRI image and manual correction of electrode localization adjusting the most inferior (contact 0) and most superior (contact 3) DBS contacts according to the electrode artifact in two dimensional planes presented orthogonally. (C) Location of the centro-median (CM) DBS contact and (D) ventral-lateral thalamus (VL) DBS contact in monkey T (left column) and monkey N (right column) on the sagittal, coronal and axial plan. The target is displayed in the CIVM MRI atlas (upper panel), pre-operative structural MRI (middle panel) and post-operative structural MRI (lower panel) warped in the MNI macaque space (73).

Figure S1: Localization of the DBS electrode contacts using the Lead-DBS macaque toolbox (71).
Figure S2: Suppression of EEG artifacts related to MR B₀ field, MR Gradients during fMRI acquisition and DBS. Examples of EEG recordings in anesthetized macaques inside a 3T MRI scanner without and with DBS of central thalamus (CT) thalamus at 3V.
Figure S3: Effects of thalamic DBS on EEG. Examples of EEG recordings in anesthetized macaques inside a 3T MRI scanner with DBS of central thalamus (CT) or ventral-lateral thalamus (VL) at low or high voltages. The DBS-induced changes in cortical activity depends on the anatomical site of the active DBS lead contact and the intensity of the electrical stimulation.
Figure S4: Cortical activity dynamic during and immediately after DBS

Examples of EEG recordings in anesthetized macaques inside a 3T MRI scanner before, during and after DBS of central thalamus (CT) at high voltage.
Figure S5: Modulation of normalized spectral power and median power frequency in the DBS conditions compared to anesthesia.

Distributions of the average values of normalized spectral power of (A) delta (1-4 Hz), (B) theta (4-8 Hz) and (C) alpha (8-13 Hz) oscillatory bands and (D) median power frequency (MSF) calculated on the epochs of the four stimulation conditions and under anesthesia. MSF is the frequency that divides the power spectrum in two equal areas. The figures consist of a distribution - smoothened version of a histogram, a box plot and a representation of the data points. Each dot in the figure represents the average value of a given marker across epochs during one recording session. a.u., arbitrary units. The significance lines represent FDR corrected Mann-Whitney U two-sided tests (see Methods). p-value annotation legend: ns: 5.00e-02 < p ≤ 1.00e+00, *: 1.00e-02 < p ≤ 5.00e-02, **: 1.00e-03 < p ≤ 1.00e-02, ***: 1.00e-04 < p ≤ 1.00e-03, ****: p ≤ 1.00e-04. P-values are FDR corrected.
Figure S6: p values matrices for the ANOVA comparison of the awake state versus different experimental conditions of the static functional correlations within the macaque Global Neuronal Workspace (GNW) nodes and sensori-motor areas.

Statistical p values obtained by ANOVA to compare static functional correlations within the macaque GNW nodes and sensori-motor areas in the different experimental conditions. X-axis displays the experimental conditions (awake, anesthesia, low central thalamic (CT) DBS, high CT-DBS, low ventral-lateral thalamic (VL) DBS and high VL-DBS states), y-axis represents the macaque GNW areas correlated to the seed (p < 0.001, FDR corrected). For each region, the matrix stands for the p value for the comparison of the awake state versus anesthesia, low CT-DBS, high CT-DBS, low VL-DBS and high VL-DBS between the seed and the rest of the macaque GNW nodes and sensori-motor areas.

Anterior cingulate cortex (ACC); Prefrontal cortex (area 9/46, 8A, 6 Ventral); Primary motor cortex (M1); Parietal cortex (area PFG); Ventral Intraparietal sulcus (VIP); Primary auditory cortex (A1); Primary visual area (V1); Posterior cingulate cortex (PCC).
Figure S7: DBS effect on cortical dynamical correlations

(A) Seven functional brain states obtained by unsupervised clustering of the Z score matrix (all conditions pooled together, awake state, anesthesia, low central thalamic (CT) DBS, high CT-DBS, low ventral-lateral thalamic (VL) DBS and high VL-DBS). (B) Structural connectivity matrix derived from the CoCoMac atlas of anatomical macaque cortical connectivity. Colors represent the four grades of connection intensity (black=0; white=1; blue=2 and red=3). (C) Brain renders displaying the 400 strongest links for each functional brain state. Red line represent positive connections between regions of interests; blue represent negative connections. (D) Probability of occurrence of each functional brain state as a function of the similarity with the structural connectivity, for the awake state (green), anesthesia (red), low CT-DBS (light blue), high CT-DBS (dark blue), low VL-DBS (light purple) and high VL-DBS (dark purple). (E) Probability distributions of functional brain states for the for the awake state (green), anesthesia (red), low CT-DBS (light blue), high CT-DBS (dark blue), low VL-DBS (light purple) and high VL-DBS (dark purple). Error bars stand for 1 SEM.
Figure S8: Average life time of brain states in the awake state, under anesthesia and during high central thalamic (CT) DBS (left) or high ventral-lateral thalamic (VL) DBS (right); normalized probability distribution and two-dimensional normalized histograms

Average life time of brain states for the awake, anesthesia and high central thalamic (CT) DBS condition (A) or high ventral-lateral thalamic (VL) DBS (B) for 7 brain states obtained by k-means clustering. Error bars stand for 1 SEM. Normalized probability distribution of all Z values for the functional brain state 1 (the least similar to the structural brain connectivity) and functional brain state 7 (the most similar to the structural brain connectivity) for awake, anesthesia and high CT-DBS resting state pooled together. Similar results were obtained regardless the inputs conditions for the clustering (C). Two-dimensional normalized histograms for functional brain state 1 and functional brain state 7 for the clustering of awake, anesthesia and high CT-DBS condition. (D) Z values as a function of distance between pairs of regions of interest for brain state 1 (upper right) and brain state 7 (lower right) for the clustering of awake, anesthesia and high CT-DBS condition.
Figure S9: Local-global auditory paradigm

Description of the event-related auditory paradigm called local-global used in the auditory event-related fMRI experiments. Local deviants occur at the trial level (1st order) whereas Global deviants occur at the series level (2nd order).

Local effect = Local deviants – Local standards
Global effect = Global deviants – Global standards
fMRI activations during the auditory “Local-global” experiment

Local effect: High CT-DBS > Anesthesia

Individual results: Monkey N

A. Local effect: High CT-DBS > Anesthesia

B. T score p < 0.001 uncorrected

C. Individual results: Monkey T

D. T score p < 0.001 uncorrected

Figure S10: Activations maps for the local effect showing stronger activations under high central thalamic (CT) DBS compared to anesthesia state

Activation maps for the local effect showing stronger activations under high CT-DBS compared to anesthesia state (A, C). fMRI signal changes in areas responsive to the local effect (green cursor) (B,D). Individual results for monkey N (top panel - A,B) and monkey T (lower panel - C,D), p < 0.001, uncorrected.
PaAL, paraauditory cortex, lateral part; PaAc, paraauditroy cortex, caudal part; ProKM, auditory cortex, prokonio cortex, medial part.
Global effect: High CT-DBS > Anesthesia

Individual results: Monkey N

Figure S11: Activations maps for the global effect showing stronger activations under high central thalamic (CT) DBS compared to anesthesia state for monkey N. Activation maps for the local effect showing stronger activations under high CT-DBS compared to anesthesia state (A). fMRI signal changes in areas responsive to the local effect (green cursor) (B). Individual results for monkey N, p < 0.001, uncorrected.

Cd, Caudate nucleus; Pu, Putamen; VPL, ventro-postero-lateral thalamus.
fMRI activations during the auditory “Local-global” experiment

Global effect: High CT-DBS > Anesthesia

Individual results: Monkey T

Figure S12: Activations maps for the global effect showing stronger activations under high central thalamic (CT) DBS compared to anesthesia state for monkey T. Activation maps for the local effect showing stronger activations under high CT-DBS compared to anesthesia state (A). fMRI signal changes in areas responsive to the local effect (green cursor) (B). Individual results for monkey N, p < 0.001, uncorrected.

Depth of Intraparietal sulcus (DIP), Caudate nucleus (Cd); centro-lateral thalamus (Cl).
Table S1: Simulation of the stimulated thalamic nuclei around the DBS lead using the LEAD DBS macaque toolbox

Estimation of the thalamic nuclei that were included in the volume of activated tissue around the DBS lead active contact (71) for monkey N and monkey T across the four experimental conditions (low central thalamic (CT) DBS, high CT-DBS, low ventral thalamic (VL) DBS and high VL-DBS).

Condition	Animal	Heart Rate (HR in bpm)	Oxygen Saturation (SpO₂ in %)	Blood Pressure (SBP in mmHg)	Blood Pressure (DBP in mmHg)	Blood Pressure (MBP in mmHg)	Respiration Rate (RR in breath/min)	End-tidal CO₂ (EtCO₂ in mmHg)	Temperature (T in °C)
Anesthesia	monkey N	111 ± 9	98 ± 2	116 ± 10	59 ± 7	87 ± 9	20 ± 1	41 ± 2	37.0 ± 0.7
	monkey T	116 ± 17	97 ± 3	95 ± 8	46 ± 7	68 ± 9	18 ± 2	37 ± 2	38.3 ± 0.7
Low CT-DBS	monkey N	134 ± 13	99 ± 1	129 ± 13	70 ± 12	101 ± 13	21 ± 2	43 ± 2	37.1 ± 0.3
	monkey T	123 ± 18	99 ± 1	98 ± 12	47 ± 7	71 ± 8	18 ± 2	39 ± 2	38.6 ± 0.3
High CT-DBS	monkey N	164 ± 16	98 ± 2	129 ± 15	71 ± 15	99 ± 14	21 ± 2	45 ± 2	37.3 ± 0.4
	monkey T	181 ± 18	98 ± 2	133 ± 15	74 ± 15	104 ± 14	19 ± 2	43 ± 2	39.6 ± 0.4
Low VL-DBS	monkey T	140 ± 18	98 ± 2	113 ± 12	54 ± 12	81 ± 12	19 ± 2	38 ± 2	39.0 ± 0.4
High VL-DBS	monkey T	163 ± 14	98 ± 1	127 ± 15	71 ± 19	99 ± 19	18 ± 2	42 ± 2	39.1 ± 0.6

Table S2: Physiological data during the fMRI resting-state experiments.

Oxygen saturation (SpO₂); systolic, diastolic and mean blood pressure (respectively SBP, DBP, MBP); respiration rate (RR); end-tidal CO₂ (EtCO₂) and temperature (T) for each animal (monkey N and T) under general anesthesia, general anesthesia plus low central thalamic (CT) DBS, general anesthesia plus high CT-DBS, general anesthesia plus low ventral-lateral thalamic (VL) DBS and general anesthesia plus high VL-DBS.
fMRI activations during the DBS block-design experiment

Area ProM (promotor)

Area	Abbreviation	Hemisphere	T score	p value	p value	T score	p value	T score	p value	T score	p value
Area 13 of cortex	13	Right	n.s			19.15	*p*<10^-12	n.s			
Area 13a of cortex	13a	Left	5.11	*p*<10^-3	5.11	*p*<10^-3	n.s				
Area 14o	14o	Right	n.s		5.91	*p*<10^-4	n.s				
Area 25 of cortex	25	Left	5.48	*p*<10^-4	5.48	*p*<10^-4	n.s				
Orbitofrontal cortex	OPro	Right	n.s		19.15	*p*<10^-12	n.s				

Frontal cortex

Area 4 of cortex (primary motor)	Abbreviation	Hemisphere	T score	p value	p value	T score	p value	T score	p value	T score	p value
Area 4 of cortex, Medial part	4M	Left	n.s			18.47	*p*<10^-12	n.s			
Area 4 of cortex, Caudal subdivision (Matellis F2)	4DC	Right	n.s		6.54	*p*<10^-6	n.s				
Area 4 of cortex, Ventral part, Caudal subdivision (Matellis F4)	4VR	Left	n.s		6.16	*p*<10^-5	n.s				
Area 4 of cortex, Ventral part, Rostral subdivision (Matellis F5)	4DR	Right	n.s		19.15	*p*<10^-12	n.s				
Area 6/32 of cortex	632	Left	4.96	*p*<10^-10	19.15	*p*<10^-12	n.s			9.94	*p*<10^-12
Area 8A of cortex	8A	Right	n.s		5.79	*p*<10^-4	n.s			5.77	*p*<10^-4
Area 8f of cortex, AnteriorOveral part	8AD	Left	7.10	*p*<10^-8	19.47	*p*<10^-12	n.s			12.81	*p*<10^-12
Area 8 of cortex, AnteriorVentral part	8AV	Right	n.s		19.15	*p*<10^-12	n.s			12.81	*p*<10^-12
Area 8 of cortex	8B	Left	n.s		7.10	*p*<10^-8	n.s				
Area 8 of cortex	8B	Right	n.s		19.15	*p*<10^-12	n.s				
Area 9 of cortex, Medial part	9M	Left	n.s		19.15	*p*<10^-12	n.s				
Area 9 of cortex, Ventral part, Caudal subdivision (Matellis F4)	9VR	Right	n.s		14.54	*p*<10^-12	n.s				
Area 9 of cortex	932	Right	7.72	*p*<10^-10	7.24	*p*<10^-10	n.s				
Area 9 of cortex	946	Right	6.98	*p*<10^-8	19.15	*p*<10^-12	n.s			9.94	*p*<10^-12
Area 44 of cortex	44	Left	n.s		6.66	*p*<10^-6	n.s				
Area 45 of cortex	45A	Right	7.30	*p*<10^-9	19.15	*p*<10^-12	n.s			9.94	*p*<10^-12
Area 45 of cortex	45B	Left	n.s		6.66	*p*<10^-6	n.s				
Area 46 of cortex	46D	Right	6.98	*p*<10^-8	19.15	*p*<10^-12	n.s			9.94	*p*<10^-12
Area 46 of cortex	46V	Left	5.27	*p*<10^-3	n.s		n.s				
Area 47 of cortex (old 12) of cortex, Lateral part	47L	Right	6.98	*p*<10^-8	7.08	*p*<10^-8	n.s				
Area 47 of cortex (old 12) of cortex, Orbital part	47O	Left	6.27	*p*<10^-6	8.28	*p*<10^-6	n.s				
Area ProM (promotor)	ProM	Left	n.s		6.66	*p*<10^-6	n.s				
Area PGM/31 of cortex

Area	Abbreviation	Hemisphere	T score	p value						
Area 23 of cortex	23	midline	6.98	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Area 25 of cortex	25	Right	7.38	$p_{\text{FWE}} = 2.08x10^{-8}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Area 26 of cortex	26	Left	6.98	$p_{\text{FWE}} = 2.08x10^{-8}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Area 28 of cortex	28	Right	7.38	$p_{\text{FWE}} = 2.08x10^{-8}$	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.

fMRI activations during the DBS block-design experiment

Area	Abbreviation	Hemisphere	T score	p value						
Area 1 of cortex	1	Left	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
Area 2 of cortex	2	Right	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
Area 3 of cortex	3	Left	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
Area 4 of cortex	4	Right	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
Area 5 of cortex	5	Right	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
Area 6 of cortex	6	Right	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
Area 7 of cortex	7	Right	18.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	9.47	$p_{\text{FWE}} < 1x10^{-12}$	n.s.	n.s.	n.s.
fMRI activations during the DBS block-design experiment

Area	Abbreviation	Hemisphere	T score	p value						
Temporal cortex										
Area PG associated, region of	PGa	Right		n.s	18.47	\(p_{\text{FWE}} = 4.08 \times 10^{-4}\)	n.s	n.s	n.s	n.s
superior temporal sulcus										
Auditory Koilocortex, Lateral part	AKL	Left	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	7.27	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Auditory Koilocortex, Medial part	AKM	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Fundus of Superior Temporal sulcus	FST	Left	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	6.48	\(p_{\text{FWE}} = 3.37 \times 10^{-6}\)	n.s	n.s	n.s	n.s
Medial Superior Temporal area	MST	Left	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Middle Temporal area (visual area 5)	MT	Left	7.27	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s					
ParaAuditory area, Caudal part	PaAC	Left	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	7.27	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
ParaAuditory area, lateral part	PaAL	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
ParaAuditory area, Rostral part	PaAR	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	12.62	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s	n.s	n.s	n.s
ProKoniocortex	ProK	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Retrolinsular area	Rel	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Retrolinsular area, Temporal part	ReIT	Left	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Superior Temporal sulcus area 1	ST1	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	8.83	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Superior Temporal area, gyril part	ST2g	Left	11.36	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Superior Temporal area, sulcal part	ST2s	Left	11.36	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Temporal area T1a	TAla	Right	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Temporal area T1e	Tel	Right	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Temporal area TL, Medial part	TEM	Right	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Temporal area TL, OccipitoMedial part	TEMOM	Right	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Temporal ParietoOccipital associated area in	TPO	Right	7.38	\(p_{\text{FWE}} = 3.90 \times 10^{-9}\)	18.47	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Temporal ParietoOccipital associated area in	TPOC	Right	7.27	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s					
Temporoparietal cortex	Tpt	Left	5.02	\(p_{\text{FWE}} = 1.15 \times 10^{-2}\)	n.s					
	Tpt	Right	7.38	\(p_{\text{FWE}} = 3.90 \times 10^{-9}\)	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s	n.s	n.s	n.s
Occipital cortex										
Visual area 1 (primary visual cortex)	V1	Left	7.22	\(p_{\text{FWE}} = 1.26 \times 10^{-8}\)	n.s					
Visual area 2	V2	Left	5.70	\(p_{\text{FWE}} = 4.08 \times 10^{-4}\)	n.s					
Visual area 3, Dorsal part	V3D	Right	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	7.97	\(p_{\text{FWE}} = 3.94 \times 10^{-11}\)	n.s	n.s	n.s	n.s
Visual area 3A	V3A	Right	n.s	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	7.27	\(p_{\text{FWE}} = 1.52 \times 10^{-8}\)	n.s	n.s	n.s	n.s
Insular cortex										
Dysgranular Insular cortex	DI	Left	6.18	\(p_{\text{FWE}} < 2.9 \times 10^{-5}\)	n.s					
Granular Insular cortex	GI	Left	12.62	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Insular Prokiniocortex	IPro	Right	7.52	\(p_{\text{FWE}} = 2.56 \times 10^{-9}\)	n.s					
Striatum										
Caudate nucleus	Cd	Left	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
Putamen	Pu	Right	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s					
			13.68	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	18.47	\(p_{\text{FWE}} < 1 \times 10^{-12}\)	n.s	n.s	n.s	n.s
Area	Abbreviation	Hemisphere	CT-DBS T score	p value	VL-DBS T score	p value				
---	--------------	------------	----------------	---------	----------------	---------				
Thalamus										
Lateral Geniculate Nucleus	LGN	Right	14.54	n.s	14.47	p<0.000001				
Lateral pulvinar	Lpul	Left	5.20	p<0.00001	5.87	p<0.00001				
Medial Geniculate nucleus, Ventral part	MGV	Right	5.87	p<0.00001	5.55	p<0.00001				
Medial pulvinar	Mpul	Right	5.59	p<0.00001	5.17	p<0.00001				

Area	Abbreviation	Hemisphere	CT-DBS T score	p value	VL-DBS T score	p value
Mediodorsal thalamic nucleus, Central part	MDC	Left	5.65	p<0.00001	3.56	p<0.00001
Mediodorsal thalamic nucleus, Dorsal part	MDD	Left	11.07	p<0.00001	11.07	p<0.00001
Mediodorsal thalamic nucleus, Medial part	MDMA	Left	11.07	p<0.00001	11.07	p<0.00001
Paraventricular thalamic nucleus	PV	Left	6.66	p<0.00001	7.30	p<0.00001
Paraventricular Thalamus	PVT	Right	14.54	p<0.00001	14.54	p<0.00001
Reticular thalamic nucleus	RIH	Right	5.91	p<0.00001	1.22	p<0.00001

Area	Abbreviation	Hemisphere	CT-DBS T score	p value	VL-DBS T score	p value
Hypothalamus	Hy	Left	14.54	p<0.00001	14.54	p<0.00001
Pons	EGP	Left	5.25	p<0.00001	4.91	p<0.00001
Paraseptal subpallium						
Accumbens nucleus, Core	AcbC	Left	18.47	p<0.00001	18.47	p<0.00001
Accumbens nucleus, Shell	AcsSh	Left	18.47	p<0.00001	18.47	p<0.00001
Bterior nucleus, Meynert	BM	Left	14.54	p<0.00001	14.54	p<0.00001
Substancia innominata	Sii	Left	15.09	p<0.00001	5.83	p<0.00001
Subpallial amygdala						
Anterior Amygdaloid area	AA	Left	14.54	p<0.00001	14.54	p<0.00001
Bed nucleus of the Stria	BSTa	Left	15.09	p<0.00001	15.09	p<0.00001
Central amygdaloid nucleus, Lateral division	Cel	Left	14.54	p<0.00001	14.54	p<0.00001
Central amygdaloid nucleus, Medial division	CeM	Left	14.54	p<0.00001	14.54	p<00001
Ventral pallium						
Balloc medial amygdaloid nucleus	BM	Left	14.54	p<0.00001	14.54	p<0.00001
Medical amygdaloid nucleus	Me	Left	14.54	p<0.00001	14.54	p<0.00001
Midbrain	MD	Left	5.83	p<0.00001	8.32	p<0.00001
		Right	11.07	p<0.00001	8.32	p<0.00001
Cerebellum	Cb	Left	8.38	p<0.00001	14.03	p<0.00001
		Right	8.41	p<0.00001	14.03	p<0.00001

Table S3: fMRI activations during low central thalamic (CT), high CT-DBS, low ventral-lateral thalamic (VL) and high VL-DBS

Thalamic DBS-induced fMRI activity during the electrical stimulation block-design experiment, p < 0.05, FWE corrected, ns: non significant.
Interpretation of the Bayes Factors

Value	BF10	BF01
>100	Obvious evidence for H1	Obvious evidence for H0
30 to 100	Very strong evidence for H1	Very strong evidence for H0
10 to 30	Strong evidence for H1	Strong evidence for H0
3 to 10	Substantial evidence for H1	Substantial evidence for H0
1 to 3	Anecdotal evidence for H1	Anecdotal evidence for H0
1	No evidence for H1 or H0	
1 to 0.33	Anecdotal evidence for H0	Anecdotal evidence for H1
0.33 to 0.10	Substantial evidence for H0	Substantial evidence for H1
0.10 to 0.03	Strong evidence for H0	Strong evidence for H1
0.03 to 0.01	Very strong evidence for H0	Very strong evidence for H1
<0.01	Obvious evidence for H0	Obvious evidence for H1

Table S4: Interpretation of the Bayes Factors.

Value of the Bayes Factor BF10 and BF01 to interpret statistical evidence in favor of the H1 or H0 hypothesis. A BF greater than 3 significantly support the evidence of the tested hypothesis.
Local effect

Group

Area	Abbreviation	Hemisphere	T score	p value	T score	p value	T score	p value
Orbitofrontal cortex	OPro	Left	4.44	\(p_{FDR} = 0.047\)	n.s	n.s	4.44	\(p_{FDR} = 0.047\)
Orbital Proisocortex								
Parietal cortex								
Area 3b of cortex (somatosensory)	3b	Left	4.59	\(p_{FDR} = 0.039\)	n.s	n.s	4.24	\(p_{FDR} = 0.044\)
Parietal area PG#1	PG#1	Right	n.s		n.s		n.s	
Visual area 4, Ventral part	V4V	Left	n.s		4.80	\(p_{FDR} = 0.049\)	n.s	
Cingulate cortex								
Parietal area PE, Cingulate part	PECg	Left	4.80	\(p_{FDR} = 0.037\)	n.s	n.s	n.s	
Temporal cortex								
Fundus of Superior Temporal sulcus	FST	Left	4.27	\(p_{FDR} = 0.048\)	n.s	n.s	n.s	
ProKoniocortex, Medial part	ProKM	Left	n.s		n.s		4.59	\(p_{FDR} = 0.040\)
Temporal ParietoOccipital associated area in STS	TPO	Right	n.s		n.s		4.42	\(p_{FDR} = 0.040\)
Temporoparietal cortex	Tpt	Right	n.s		n.s		4.38	\(p_{FDR} = 0.040\)
Occipital cortex								
Visual area 1 (primary visual cortex)	V1	Left	4.41	\(p_{FDR} = 0.047\)	n.s	n.s	n.s	
Striatum								
Caudate nucleus	Cd	Right	4.28	\(p_{FDR} = 0.048\)	n.s	n.s	n.s	
Midbrain	MB	Right	n.s		n.s		4.13	\(p_{FDR} = 0.044\)

Table S5: Cerebral activations for the local effect

fMRI activations for the local effect under anesthesia, high central thalamic (CT) DBS and comparison between high CT-DBS > anesthesia. Group results, \(p < 0.05\), FDR corrected, ns: non significant.
fMRI activations during the auditory “Local-Global” experiment

Global effect

Group	Awake	Anesthesia	High CT-DBS	High CT-DBS > Anesthesia		
Parietal cortex						
Area 3a of the cortex (somatosensory)	3a	Right	n.s.	n.s.	3.66	p_{raw} = 0.023
Area 7a of the cortex (somatosensory)	7a	Left	3.9	p_{raw} = 0.031	4.17	p_{raw} = 0.013
Precentral area	46P	Left	n.s.	n.s.	n.s.	n.s.
Cingulate cortex						
Area 23c or cortex	23c	Left	3.65	p_{raw} = 0.039	3.60	p_{raw} = 0.024
Area 23b or cortex	23b	Right	n.s.	n.s.	n.s.	n.s.
Temporal cortex						
Medial Superior Temporal area	MST	Left	4.01	p_{raw} = 0.019	3.24	p_{raw} = 0.049
Lateral orbitofrontal area, Temporal	OFL	Right	n.s.	n.s.	n.s.	n.s.
Temporal area 17	TPO	Left	n.s.	n.s.	n.s.	n.s.
Temporal Pole	POM	Left	n.s.	n.s.	n.s.	n.s.
Occipital cortex						
Visual area 1 (primary visual cortex)	V1	Left	n.s.	n.s.	n.s.	n.s.
Visual area 2	V2	Right	n.s.	n.s.	n.s.	n.s.
Visual area 3, Ventral part	V3V	Right	n.s.	n.s.	n.s.	n.s.
Visual area 3, Dorsal part	V3D	Right	n.s.	n.s.	n.s.	n.s.
Visual area 5A	V5A	Right	n.s.	n.s.	n.s.	n.s.
Table S6: Cerebral activations for the global effect

fMRI activations for the global effect in the awake, anesthesia and high central thalamic (CT) DBS condition and comparison between high CT-DBS versus anesthesia. For the global effect, no regions are significantly different for the awake > high CT-DBS comparison. Group results, \(p < 0.05 \), FDR corrected, ns: non significant.
Level	Cerebral areas labelling using the CIVM macaque brain atlas Revised version		
Abbreviation	Description	Value	Value
cortex	prefrontal cortex	14	14
medulla	medulla oblongata	15	15
cerebellum	cerebellum	16	16
thalamus	anterior thalamic nuclei	17	17
thalamus	ventromedial thalamic nucleus, lateral part	18	18
thalamus	ventromedial thalamic nucleus, mediodorsal part	19	19
thalamus	ventral anterior thalamic nuclei	20	20
thalamus	ventral anterior thalamic nuclei, lateral part	21	21
thalamus	ventral anterior thalamic nuclei, mediodorsal part	22	22
thalamus	ventral posterior thalamic nuclei	23	23
hypothalamus	hypothalamus	24	24
cerebellum	dentate nucleus	25	25
cerebellum	lateral vestibular nucleus	26	26
cerebellum	lateral vestibular nucleus	27	27
cerebellum	lateral vestibular nucleus	28	28
cerebellum	lateral vestibular nucleus	29	29
cerebellum	lateral vestibular nucleus	30	30
cerebellum	lateral vestibular nucleus	31	31
cerebellum	lateral vestibular nucleus	32	32
cerebellum	lateral vestibular nucleus	33	33
cerebellum	lateral vestibular nucleus	34	34
cerebellum	lateral vestibular nucleus	35	35
cerebellum	lateral vestibular nucleus	36	36
cerebellum	lateral vestibular nucleus	37	37
cerebellum	lateral vestibular nucleus	38	38
cerebellum	lateral vestibular nucleus	39	39
cerebellum	lateral vestibular nucleus	40	40
cerebellum	lateral vestibular nucleus	41	41
cerebellum	lateral vestibular nucleus	42	42
cerebellum	lateral vestibular nucleus	43	43
cerebellum	lateral vestibular nucleus	44	44
cerebellum	lateral vestibular nucleus	45	45
cerebellum	lateral vestibular nucleus	46	46
cerebellum	lateral vestibular nucleus	47	47
cerebellum	lateral vestibular nucleus	48	48
cerebellum	lateral vestibular nucleus	49	49
cerebellum	lateral vestibular nucleus	50	50
cerebellum	lateral vestibular nucleus	51	51
cerebellum	lateral vestibular nucleus	52	52
cerebellum	lateral vestibular nucleus	53	53
cerebellum	lateral vestibular nucleus	54	54
cerebellum	lateral vestibular nucleus	55	55
cerebellum	lateral vestibular nucleus	56	56
cerebellum	lateral vestibular nucleus	57	57
cerebellum	lateral vestibular nucleus	58	58
cerebellum	lateral vestibular nucleus	59	59
cerebellum	lateral vestibular nucleus	60	60
cerebellum	lateral vestibular nucleus	61	61
cerebellum	lateral vestibular nucleus	62	62
cerebellum	lateral vestibular nucleus	63	63
cerebellum	lateral vestibular nucleus	64	64
cerebellum	lateral vestibular nucleus	65	65
cerebellum	lateral vestibular nucleus	66	66
cerebellum	lateral vestibular nucleus	67	67
cerebellum	lateral vestibular nucleus	68	68
cerebellum	lateral vestibular nucleus	69	69
cerebellum	lateral vestibular nucleus	70	70
cerebellum	lateral vestibular nucleus	71	71
cerebellum	lateral vestibular nucleus	72	72
cerebellum	lateral vestibular nucleus	73	73
cerebellum	lateral vestibular nucleus	74	74
cerebellum	lateral vestibular nucleus	75	75
cerebellum	lateral vestibular nucleus	76	76
cerebellum	lateral vestibular nucleus	77	77
cerebellum	lateral vestibular nucleus	78	78
cerebellum	lateral vestibular nucleus	79	79
cerebellum	lateral vestibular nucleus	80	80
cerebellum	lateral vestibular nucleus	81	81
cerebellum	lateral vestibular nucleus	82	82
cerebellum	lateral vestibular nucleus	83	83
cerebellum	lateral vestibular nucleus	84	84
cerebellum	lateral vestibular nucleus	85	85
cerebellum	lateral vestibular nucleus	86	86
cerebellum	lateral vestibular nucleus	87	87
cerebellum	lateral vestibular nucleus	88	88
cerebellum	lateral vestibular nucleus	89	89
cerebellum	lateral vestibular nucleus	90	90
cerebellum	lateral vestibular nucleus	91	91
cerebellum	lateral vestibular nucleus	92	92
cerebellum	lateral vestibular nucleus	93	93
cerebellum	lateral vestibular nucleus	94	94
cerebellum	lateral vestibular nucleus	95	95
cerebellum	lateral vestibular nucleus	96	96
cerebellum	lateral vestibular nucleus	97	97
cerebellum	lateral vestibular nucleus	98	98
cerebellum	lateral vestibular nucleus	99	99
cerebellum	lateral vestibular nucleus	100	100
cerebellum	lateral vestibular nucleus	101	101
cerebellum	lateral vestibular nucleus	102	102
cerebellum	lateral vestibular nucleus	103	103
cerebellum	lateral vestibular nucleus	104	104
cerebellum	lateral vestibular nucleus	105	105
cerebellum	lateral vestibular nucleus	106	106
cerebellum	lateral vestibular nucleus	107	107
cerebellum	lateral vestibular nucleus	108	108
cerebellum	lateral vestibular nucleus	109	109
cerebellum	lateral vestibular nucleus	110	110
cerebellum	lateral vestibular nucleus	111	111
cerebellum	lateral vestibular nucleus	112	112
cerebellum	lateral vestibular nucleus	113	113
cerebellum	lateral vestibular nucleus	114	114
cerebellum	lateral vestibular nucleus	115	115
cerebellum	lateral vestibular nucleus	116	116
cerebellum	lateral vestibular nucleus	117	117
cerebellum	lateral vestibular nucleus	118	118
cerebellum	lateral vestibular nucleus	119	119
cerebellum	lateral vestibular nucleus	120	120
cerebellum	lateral vestibular nucleus	121	121
cerebellum	lateral vestibular nucleus	122	122
cerebellum	lateral vestibular nucleus	123	123
cerebellum	lateral vestibular nucleus	124	124
cerebellum	lateral vestibular nucleus	125	125
cerebellum	lateral vestibular nucleus	126	126
cerebellum	lateral vestibular nucleus	127	127
cerebellum	lateral vestibular nucleus	128	128
cerebellum	lateral vestibular nucleus	129	129
cerebellum	lateral vestibular nucleus	130	130
cerebellum	lateral vestibular nucleus	131	131
cerebellum	lateral vestibular nucleus	132	132
cerebellum	lateral vestibular nucleus	133	133
cerebellum	lateral vestibular nucleus	134	134
cerebellum	lateral vestibular nucleus	135	135
cerebellum	lateral vestibular nucleus	136	136
cerebellum	lateral vestibular nucleus	137	137
cerebellum	lateral vestibular nucleus	138	138
cerebellum	lateral vestibular nucleus	139	139
cerebellum	lateral vestibular nucleus	140	140
cerebellum	lateral vestibular nucleus	141	141
cerebellum	lateral vestibular nucleus	142	142
cerebellum	lateral vestibular nucleus	143	143
cerebellum	lateral vestibular nucleus	144	144

Note: The table above provides a list of cerebral areas labelling using the CIVM macaque brain atlas Revised version. Each area is identified by an abbreviation and a description, followed by numeric values representing specific parameters or values.
Table S7: Whole brain areas labelling of the Center for In Vivo Microscopy atlas (CIVM) atlas Revised (CIVM_R) for functional correlations analysis.

Whole brain regions considered for the functional correlations analysis using the macaque CIVM atlas(76) that was revised into CIVM_R to match fMRI spatial resolution. Regions merged together (for instance dorsal, medial and ventral part of the medullic geniculate nucleus in the original CIVM atlas into medullic geniculate nucleus) share the same abbreviation and value in the CIVM_R. Brackets represent the biggest regions unified. Empty cells stands for deleted regions.