ARITHMETIC OF CURVES OVER TWO DIMENSIONAL LOCAL FIELD

BELGACEM DRAOUIL

ABSTRACT. We study the class field theory of curve defined over two dimensional local field. The approach used here is a combination of the work of Kato-Saito, and Yoshida where the base field is one dimensional

1. Introduction

Let \(k_1 \) be a local field with finite residue field and let \(X \) be a proper smooth geometrically irreducible curve over \(k_1 \). To study the fundamental group \(\pi_{1}^{ab}(X) \), Saito in [8], introduced the groups \(SK_1(X) \) and \(V(X) \) and construct the maps \(\sigma : SK_1(X) \rightarrow \pi_{1}^{ab}(X) \) and \(\tau : V(X) \rightarrow \pi_{1}^{ab}(X)^{g_{\text{co}}} \) where \(\pi_{1}^{ab}(X)^{g_{\text{co}}} \) is defined by the exact sequence

\[
0 \rightarrow \pi_{1}^{ab}(X)^{g_{\text{co}}} \rightarrow \pi_{1}^{ab}(X) \rightarrow \text{Gal}(k_1^{ab}/k_1) \rightarrow 0
\]

The most important results in this context are:

1) The quotient of \(\pi_{1}^{ab}(X) \) by the closure of the image of \(\sigma \) and the cokernel of \(\tau \) are both isomorphic to \(\hat{\mathbb{Z}}^r \) where \(r \) is the rank of the curve.

2) For this integer \(r \), there is an exact sequence

\[
0 \rightarrow (\mathbb{Q}/\mathbb{Z})^r \rightarrow H^2(K, \mathbb{Q}/\mathbb{Z}(2)) \oplus \bigoplus_{v \in P} \mathbb{Q}/\mathbb{Z} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0
\]

where \(K = K(X) \) is the function field of \(X \) and \(P \) designates the set of closed points of \(X \).

These results are obtained by Saito in [8] generalizing the previous work of Bloch where he is reduced to the good reduction case [8, Introduction]. The method of Saito depends on class field theory for two-dimensional local ring having finite residue field. He shows these results for general curve except for the \(p \)-primary part in \(\text{char} k = p > 0 \) case [8, Section II-4]. The remaining \(p \)-primary part had been proved by Yoshida in [11].

There is another direction for proving these results pointed out by Douai in [3]. It consists to consider for all \(l \) prime to the residual characteristic, the group \(\text{Coker} \sigma \) as the dual of the group \(W_0 \) of the monodromy weight filtration of \(H^1(\overline{X}, \mathbb{Q}_l/\mathbb{Z}_l) \)

\[
H^1(\overline{X}, \mathbb{Q}_l/\mathbb{Z}_l) = W_2 \supseteq W_1 \supseteq W_0 \supseteq 0
\]

where \(\overline{X} = X \otimes_{k_1} \overline{k_1} \) and \(\overline{k_1} \) is an algebraic closure of \(k_1 \). This allow him to extend the precedent results to projective smooth surfaces [3].

The aim of this paper is to use a combination of this approach and the theory of the monodromy-weight filtration of degenerating abelian varieties on local fields explained by Yoshida in his paper [11], to study curves over two-dimensional local fields (section 3).

Let \(X \) be a projective smooth curve defined over two dimensional local field \(k \). Let \(K \) be its function field and \(P \) denotes the set of closed points of \(X \). For each \(v \in P \), \(k(v) \) denotes the
residue field at \(v \in P.A \) finite etale covering of \(Z \rightarrow X \) of \(X \) is called a c.s covering, if for any closed point \(x \) of \(X \), \(x \times X Z \) is isomorphic to a finite sum of \(x \). We denote by \(\pi_1^{cs}(X) \) the quotient group of \(\pi_1(X) \) which classifies abelian c.s coverings of \(X \).

To study the class field theory of the curve \(X \), we construct the generalized reciprocity map

\[
\sigma/\ell : SK_2(X)/\ell \rightarrow \pi_1^{ab}(X)/\ell
\]

where \(SK_2(X)/\ell = \text{Coker} \left\{ K_2(K) / \ell \oplus v \in P K_2(k(v))/\ell \right\} \) and \(\tau/\ell : V(X)/\ell \rightarrow \pi_1^{ab}(X)^{\text{c.s}}/\ell \) for all \(\ell \) prime to residual characteristic. The group \(V(X) \) is defined to be the kernel of the norm map \(N : SK_2(X) \rightarrow K_2(k) \) induced by the norm map \(N_{k(v)/k} : K_2(k(v)) \rightarrow K_2(k) \) for all \(v \) and \(\pi_1^{ab}(X)^{\text{c.s}}/\ell \) by the exact sequence

\[
0 \rightarrow \pi_1^{ab}(X)^{\text{c.s}} \rightarrow \pi_1^{ab}(X) \rightarrow \text{Gal}(k^{ab}/k) \rightarrow 0
\]

The cokernel of \(\sigma/\ell \) is the quotient group of \(\pi_1^{ab}(X)/\ell \) that classifies completely split coverings of \(X \); that is; \(\pi_1^{cs}(X)/\ell \).

We begin by proving the exactness of the Kato-Saito sequence (Proposition 4.2):

\[
0 \rightarrow \pi_1^{cs}(X)/\ell \rightarrow H_1(K, \mathbb{Z}/\ell(3)) \rightarrow \bigoplus_{v \in P} H^3(k(v), \mathbb{Z}/\ell(2)) \rightarrow \mathbb{Z}/\ell \rightarrow 0
\]

To determinate the group \(\pi_1^{cs}(X)/\ell \), we need to consider a semi stable model of the curve \(X \) (see Section 5) and the weight filtration on its special fiber. In fact, we will prove in (Proposition 5.1) that \(\pi_1^{cs}(X) \otimes \mathbb{Q}_\ell \) admits a quotient of type \(\mathbb{Q}_{\ell}^r \) where \(r \) is the rank of the first crane of this filtration.

Now, to investigate the group \(\pi_1^{ab}(X)^{\text{c.s}} \), we use class field theory of two-dimensional local field and prove the vanishing of the group \(H^2(k, \mathbb{Q}/\mathbb{Z}) \) (theorem 3.1). This yields the isomorphism

\[
\pi_1^{ab}(X)^{\text{c.s}} \simeq \pi_1^{ab}(\overline{X})_{G_k}
\]

Finally, by the Grothendieck weight filtration on the group \(\pi_1^{ab}(\overline{X})_{G_k} \) and assuming the semi-stable reduction, we obtain the structure of the group \(\pi_1^{ab}(X)^{\text{c.s}} \) and information about the map \(\tau : V(X) \rightarrow \pi_1^{ab}(X)^{\text{c.s}} \).

Our paper is organized as follows. Section 2 is devoted to some notations. Section 3 contains the proprieties which we need concerning two-dimensional local field: duality and the vanishing of the second cohomology group. In section 4, we construct the generalized reciprocity map and study the Bloch-Ogus complex associated to \(X \). In section 5, we investigate the group \(\pi_1^{cs}(X) \).

2. Notations

For an abelian group \(M \), and a positive integer \(n \geq 1, M/nM \) denotes the group \(M/nM \).

For a scheme \(Z \), and a sheaf \(\mathcal{F} \) over the étale site of \(Z \), \(H^1(Z, \mathcal{F}) \) denotes the i-th étale cohomology group. The group \(H^1(Z, \mathbb{Z}/\ell) \) is identified with the group of all continues homomorphisms \(\pi_1^{ab}(Z) \rightarrow \mathbb{Z}/\ell \). If \(\ell \) is invertible on \(\mathbb{Z}/\ell(1) \) denotes the sheaf of \(l \)-th root of unity and for any integer \(i \), we denote \(\mathbb{Z}/\ell(i) = (\mathbb{Z}/\ell(1))^{\otimes i} \).

For a field \(L \), \(K_i(L) \) is the i-th Milnor group. It coincides with the i-th Quillen group for \(i \leq 2 \). For \(\ell \) prime to \(\text{char} \ L \), there is a Galois symbol

\[
h_{\ell, L} : K_iL/\ell \rightarrow H^i(L, \mathbb{Z}/\ell(i))
\]

which is an isomorphism for \(i = 0, 1, 2 \) (\(i = 2 \) is Merkur’jev-Suslin).
A local field k is said to be n-dimensional local if there exists the following sequence of fields k_i $(1 \leq i \leq n)$ such that

(i) each k_i is a complete discrete valuation field having k_{i-1} as the residue field of the valuation ring O_{k_i} of k_i, and

(ii) k_0 is a finite field.

For such a field, and for ℓ prime to $\text{Char}(k)$, the well-known isomorphism

$$H^{n+1}(k, \mathbb{Z}/\ell(n)) \simeq \mathbb{Z}/\ell$$

(3.1)

and for each $i \in \{0, \ldots, n+1\}$ a perfect duality

$$H^i(k, \mathbb{Z}/\ell(j)) \times H^{n+1-i}(k, \mathbb{Z}/\ell(n-j)) \longrightarrow H^{n+1}(k, \mathbb{Z}/\ell(n)) \simeq \mathbb{Z}/\ell(3.2)$$

hold. The class field theory for such fields is summarized as follows: There is a map $h : K_2(k) \longrightarrow \text{Gal}(k_{ab}/k)$ which generalizes the classical reciprocity map for usually local fields. This map induces an isomorphism $K_2(k)/N_{L/k}K_2(L) \simeq \text{Gal}(L/k)$ for each finite abelian extension L of k. Furthermore, the canonical pairing

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \times K_2(k) \longrightarrow H^3(k, \mathbb{Q}_l/\mathbb{Z}_l(2)) \simeq \mathbb{Q}_l/\mathbb{Z}_l$$

(3.3)

induces an injective homomorphism

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \longrightarrow \text{Hom}(K_2(k), \mathbb{Q}_l/\mathbb{Z}_l)$$

(3.4)

It is well-known that the group $H^2(M, \mathbb{Q}/\mathbb{Z})$ vanishes when M is a finite field or usually local field. Next, we prove the same result for two-dimensional local field.

Theorem 3.1. If k is a two-dimensional local field of characteristic zero, then the group $H^2(k, \mathbb{Q}/\mathbb{Z})$ vanishes.

Proof. We proceed as in the proof of theorem 4 of [10]. It is enough to prove that $H^2(k, \mathbb{Q}_l/\mathbb{Z}_l)$ vanishes for all l and when k contains the group μ_l of l-th roots of unity. For this, we prove that multiplication by l is injective. That is, we have to show that the coboundary map

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \xrightarrow{\delta} H^2(k, \mathbb{Z}/l\mathbb{Z})$$

is injective.

By assumption on k, we have

$$H^2(k, \mathbb{Z}/l\mathbb{Z}) \simeq H^2(k, \mu_l) \simeq \mathbb{Z}/l$$

The last isomorphism is well-known for one-dimensional local field and was generalized to non archimedian and locally compact fields by Shatz in [6]. The proof is now reduced to the fact that $\delta \neq 0$;

By class field theory of two dimensional local field, the cohomology group $H^1(k, \mathbb{Q}_l/\mathbb{Z}_l)$ may be identified with the group of continuous homomorphisms $K_2(k) \xrightarrow{\Phi} \mathbb{Q}_l/\mathbb{Z}_l$.

Now, $\delta(\Phi) = 0$ if and only if Φ is a l-th power, and Φ is a l-th power if and only if Φ is trivial on μ_l. Thus, it is sufficient to construct an homomorphism $K_2(k) \longrightarrow \mathbb{Q}_l/\mathbb{Z}_l$ which is non trivial on μ_l.

Let i be the maximal natural number such that k contains a primitive l^i-th root of unity. Then, the image ξ of a primitive l^i-th root of unity under the composite map
\[
\frac{k^e}{k^{zl}} \simeq H^1(k, \mu_l) \simeq H^1(k, \mathbb{Z}/l\mathbb{Z}) \longrightarrow H^1(k, \mathbb{Q}_l/\mathbb{Z}_l)
\]
is not zero. Thus, the injectivity of the map

\[
H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \longrightarrow \text{Hom}(K_2(k), \mathbb{Q}_l/\mathbb{Z}_l)
\]
gives rise to a character which is non trivial on \(\mu_l\). \(\square\)

4. **Curves over two dimensional local field**

Let \(k\) be a two dimensional local field of characteristic zero and \(X\) a smooth projective curve defined over \(k\).

We recall that we denote:

- \(K = K(X)\) its function field,
- \(P\) : set of closed points of \(X\), and for \(v \in P\),
 \(k(v)\) : the residue field at \(v \in P\).

The residue field of \(k\) is one-dimensional local field. It is denoted by \(k_1\).

Let \(\mathcal{H}^n(U, \mathbb{Z}/\ell(3))\), \(n \geq 1\), the Zariski sheaf associated to the presheaf \(U \longrightarrow H^n(U, \mathbb{Z}/\ell(3))\). Its cohomology is calculated by the Bloch-Ogus resolution. So, we have the two exact sequences:

(4.1) \[
H^3(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^2(k(v), \mathbb{Z}/\ell(2)) \longrightarrow H^1(X_{Zar}, \mathcal{H}^3(\mathbb{Z}/\ell(3))) \longrightarrow 0
\]

(4.2) \[
0 \longrightarrow H^0(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3))) \longrightarrow H^4(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^3(k(v), \mathbb{Z}/\ell(2))
\]

4.1. **The reciprocity map.** We introduce the group \(SK_2(X)/\ell\):

\[
SK_2(X)/\ell = \text{CoKer} \left\{ K_3(K)/\ell \oplus \bigoplus_{v \in P} K_2(k(v))/\ell \right\}
\]

where \(\partial_v : K_3(K) \longrightarrow K_2(k(v))\) is the boundary map in K-Theory. It will play an important role in class field theory for \(X\) as pointed out by Saito in the introduction of [8]. In this section, we construct a map

\[
\sigma/\ell : SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell
\]

which describe the class field theory of \(X\).

By definition of \(SK_2(X)/\ell\), we have the exact sequence

\[
K_3(K)/\ell \longrightarrow \bigoplus_{v \in P} K_2(k(v))/\ell \longrightarrow SK_2(X)/\ell \longrightarrow 0
\]

On the other hand, it is known that the following diagram is commutative:

\[
\begin{array}{ccc}
K_3(K)/\ell & \longrightarrow & \bigoplus_{v \in P} K_2(k(v))/\ell \\
\downarrow h^3 & & \downarrow h^2 \\
H^3(K, \mathbb{Z}/\ell(3)) & \longrightarrow & \bigoplus_{v \in P} H^2(k(v), \mathbb{Z}/\ell(2))
\end{array}
\]

where \(h^2, h^3\) are the Galois symbols. This yields the existence of a morphism

\[
h : SK_2(X)/\ell \longrightarrow H^1(X_{Zar}, \mathcal{H}^3(\mathbb{Z}/\ell(2)))
\]

taking in account the exact sequence (4.1). This morphism fit in the following commutative diagram
\[0 \to K_3(K)/\ell \oplus K_2(k(v))/\ell \to SK_2(X)/\ell \to 0 \]

\[0 \to H^3(K,\mathbb{Z}/\ell(2)) \oplus v \in P H^2(k(v),\mathbb{Z}/\ell(2)) \to H^1(X_{\text{Zar}},\mathcal{H}^3(\mathbb{Z}/\ell(2))) \to 0 \]

By Merkur'jev-Suslin, the map \(h^2 \) is an isomorphism, which implies that \(h \) is surjective. On the other hand, the spectral sequence

\[
\begin{align*}
H^p(X_{\text{Zar}},\mathcal{H}^q(\mathbb{Z}/\ell(3))) &\Rightarrow H^{p+q}(X,\mathbb{Z}/\ell(3)) \\
\end{align*}
\]

induces the exact sequence

\[
\begin{align*}
0 &\to H^1(X_{\text{Zar}},\mathcal{H}^3(\mathbb{Z}/\ell(3))) \xrightarrow{e} H^4(X,\mathbb{Z}/\ell(3)) \\
&\to H^0(X_{\text{Zar}},\mathcal{H}^4(\mathbb{Z}/\ell(3))) \to H^2(X_{\text{Zar}},\mathcal{H}^3(\mathbb{Z}/\ell(3))) = 0 \\
\end{align*}
\]

Composing \(h \) and \(e \), we get the map

\[
SK_2(X)/\ell \to H^4(X,\mathbb{Z}/\ell(3))
\]

Finally the group \(H^4(X,\mathbb{Z}/\ell(3)) \) is identified with the group \(\pi_1^{ab}(X)/\ell \) by the duality [4,II, th 2.1]

\[
H^4(X,\mathbb{Z}/\ell(3)) \otimes H^1(X,\mathbb{Z}/\ell) \to H^5(X,\mathbb{Z}/\ell(3)) \simeq H^3(k,\mathbb{Z}/\ell(2)) \simeq \mathbb{Z}/\ell
\]

Hence, we obtain the map

\[
\sigma/\ell : SK_2(X)/\ell \to \pi_1^{ab}(X)/\ell
\]

Remark 4.1. By the exact sequence (4.2) the group \(H^0(X_{\text{Zar}},\mathcal{H}^4(\mathbb{Z}/\ell(3))) \) coincides with the kernel of the map2

\[
H^4(K,\mathbb{Z}/\ell(3)) \to \oplus v \in P H^3(k(v),\mathbb{Z}/\ell(2))
\]

and by localization in étale cohomology

\[
\oplus v \in P H^2(k(v),\mathbb{Z}/\ell(2)) \to H^4(K,\mathbb{Z}/\ell(3)) \to H^4(X,\mathbb{Z}/\ell(3)) \to \oplus v \in P H^3(k(v),\mathbb{Z}/\ell(2))
\]

and taking in account (4.3), we see that \(H^1(X_{\text{Zar}},\mathcal{H}^4(\mathbb{Z}/\ell(3))) \) is the cokernel of the Gysin map

\[
\oplus v \in P H^2(k(v),\mathbb{Z}/\ell(2)) \xrightarrow{g} H^4(X,\mathbb{Z}/\ell(3))
\]

and consequently the morphism \(g \) factorizes through \(H^1(X_{\text{Zar}},\mathcal{H}^4(\mathbb{Z}/\ell(3))) \)

\[
\oplus v \in P H^2(k(v),\mathbb{Z}/\ell(2)) \xrightarrow{g} H^4(X,\mathbb{Z}/\ell(3)) \to H^1(X_{\text{Zar}},\mathcal{H}^4(\mathbb{Z}/\ell(3)))
\]

Then, we deduce the following commutative diagram
\[K_3(K) / \ell \rightarrow \bigoplus_{v \in P} K_2(k(v)) / \ell \rightarrow SK_2(X) / \ell \rightarrow 0 \]
\[H^3(K, \mathbb{Z}/\ell(3)) \rightarrow \bigoplus_{v \in P} H^2(k(v), \mathbb{Z}/\ell(2)) \rightarrow H^1(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3))) \rightarrow 0 \]
\[\pi_1^{ab}(X) / l = H^4(X, \mathbb{Z}/\ell(3)) \]

The surjectivity of the map \(h \) implies that the cokernel of
\[\sigma / \ell : SK_2(X) / \ell \rightarrow \pi_1^{ab}(X) / \ell \]

coincides with the cokernel of \(e \) which is \(H^0(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3))) \). Hence \(\text{Coker} \sigma / \ell \) is the dual of the kernel of the map

(4.4) \[H^1(X, \mathbb{Z}/\ell) \rightarrow \prod_{v \in P} H^1(k(v), \mathbb{Z}/\ell) \]

4.2. The Kato-Saito exact sequence.

Definition 4.2. Let \(Z \) be a Noetherian scheme. A finite etale covering \(f : W \rightarrow Z \) is called a c.s covering if for any closed point \(z \) of \(Z \), \(z \times_Z W \) is isomorphic to a finite scheme-theoretic sum of copies of \(Z \). We denote \(\pi_{1^{c.s}}(Z) \) the quotient group of \(\pi_{1}^{ab}(Z) \) which classifies abelian c.s coverings of \(Z \).

Hence, the group \(\pi_{1}^{c.s}(X) / \ell \) is the dual of the kernel of the map

(4.4) \[H^1(X, \mathbb{Z}/\ell) \rightarrow \prod_{v \in P} H^1(k(v), \mathbb{Z}/\ell) \]

as in [8, section 2, definition and sentence just below]. Now, we are able to calculate the homologies of the Bloch-Ogus complex associated \(X \).

Generalizing [9,Theorem 7], we obtain :

Proposition 4.3. Let \(X \) be a projective smooth curve defined over \(k \). Then for all \(\ell \), we have the following exact sequence

\[0 \rightarrow \pi_{1}^{c.s}(X) / \ell \rightarrow H^1(K, \mathbb{Z}/\ell(3)) \rightarrow \bigoplus_{v \in P} H^3(k(v), \mathbb{Z}/\ell(2)) \rightarrow \mathbb{Z}/\ell \rightarrow 0. \]

Proof. Consider the localization sequence on \(X \)

\[\bigoplus_{v \in P} H^2(k(v), \mathbb{Z}/\ell(2)) \xrightarrow{g} H^4(X, \mathbb{Z}/\ell(3)) \rightarrow H^4(K, \mathbb{Z}/\ell(3)) \]
\[\rightarrow \bigoplus_{v \in P} H^3(k(v), \mathbb{Z}/\ell(2)) \rightarrow H^5(X, \mathbb{Z}/\ell(3)) \rightarrow 0 \]

We know that the cokernel of the Gysin map \(g \) coincides with \(\pi_{1}^{c.s}(X) / \ell \) and we use the isomorphism \(H^5(X, \mathbb{Z}/\ell(3)) \simeq \mathbb{Z}/\ell \) (4.4). \(\square \)
In his paper [8], Saito don’t prove the p– primary part in the char $k = p > 0$ case. This case was developed by Yoshida in [11]. His method is based on the theory of monodromy-weight filtration of degenerating abelian varieties on local fields. In this work, we use this approach to investigate the group $\pi_1^{c,s}(X)$. As mentioned by Yoshida in [11, section 2] Grothendieck’s theory of monodromy-weight filtration on Tate module of abelian varieties are valid where the residue field is arbitrary perfect field.

We assume the semi-stable reduction and choose a regular model X of X over $SpecO_k$, by which we mean a two dimensional regular scheme with a proper birational morphism $f : X \rightarrow SpecO_k$ such that $X \otimes_{O_k} k \simeq X$ and if X_red designates the special fiber $X \otimes_{O_k} k_1$, then $Y = (X_\text{red})$ is a curve defined over the residue field k_1 such that any irreducible component of Y is regular and it has ordinary double points as singularity.

Let $\Gamma = Y \otimes_{k_1} k_1$, where k_1 is an algebraic closure of k_1 and $Y[p] = \bigcup_{i,j < \ldots < i_p} Y_{i_j} \cap \cdots \cap Y_{i_p}$,

$(Y)_{i \in I} =$ collection of irreducible components of Y.

Let $|\Gamma|$ be a realization of the dual graph Γ, then the group $H^1(|\Gamma|, \mathbb{Q}_l)$ coincides with the group $W_0(H^1(Y, \mathbb{Q}_l))$ constituted of elements of weight 0 for the filtration

$$H^1(Y, \mathbb{Q}_l) = W_1 \supseteq W_0 \supseteq 0$$

of $H^1(Y, \mathbb{Q}_l)$ deduced from the spectral sequence

$$E_1^{p,q} = H^q(Y[p], \mathbb{Q}_l) \Longrightarrow H^{p+q}(Y, \mathbb{Q}_l)$$

For details see [2], [3] and [5]

Now, if we assume further that the irreducible components and double points of Y are defined over k_1, then the dual graph Γ of Y go down to k_1 and we obtain the injection

$$W_0(H^1(Y, \mathbb{Q}_l)) \subseteq H^1(Y, \mathbb{Q}_l) \hookrightarrow H^1(X, \mathbb{Q}_l)$$

Proposition 5.1. The group $\pi_1^{c,s}(X) \otimes \mathbb{Q}_l$ admits a quotient of type \mathbb{Q}_l^r, where r is the \mathbb{Q}_l–rank of the group $H^1(|\Gamma|, \mathbb{Q}_l)$

Proof. We know (4.5) that $\pi_1^{c,s}(X) \otimes \mathbb{Q}_l$ is the dual of the kernel of the map

$$\alpha : H^1(X, \mathbb{Q}_l) \longrightarrow \prod_{v \in P} H^1(k(v), \mathbb{Q}_l)$$

We will prove that $W_0(H^1(Y, \mathbb{Q}_l)) \subseteq K_{\alpha}$. The group $W_0 = W_0(H^1(Y, \mathbb{Q}_l))$ is calculated as the homology of the complex

$$H^0(Y[0], \mathbb{Q}_l) \longrightarrow H^0(Y[1], \mathbb{Q}_l) \longrightarrow 0$$

Hence $W_0 = H^0(Y[1], \mathbb{Q}_l)/\text{Im}\{H^0(Y[0], \mathbb{Q}_l) \longrightarrow H^0(Y[1], \mathbb{Q}_l)\}$. Thus, it suffices to prove the vanishing of the composing map

$$H^0(Y[1], \mathbb{Q}_l) \longrightarrow W_0 \subseteq H^1(Y, \mathbb{Q}_l) \hookrightarrow H^1(X, \mathbb{Q}_l) \longrightarrow H^1(k(v), \mathbb{Q}_l)$$

for all $v \in P$.

Let z^v be the 0– cycle in Y obtained by specializing v, which induces a map $z^v_{[1]} \longrightarrow Y^{[1]}$. Consequently, the map $H^0(Y[1], \mathbb{Q}_l) \longrightarrow H^1(k(v), \mathbb{Q}_l)$ factors as follows
But the trace $z_v^{[1]}$ of \overline{Y} on z_v is empty. This implies the vanishing of $H^0(z_v^{[1]}, \mathbb{Q}_\ell)$. \hfill \Box

Let $V(X)$ be the kernel of the norm map $N : SK_2(X) \to K_2(k)$ induced by the norm map $N_{k(v)/k^+} : K_2(k(v)) \to K_2(k)$ for all v. Then, we obtain a map $\tau/l : V(X)/\ell \to \pi_1^{ab}(X)^{\text{geo}}/\ell$ and a commutative diagram

\[
\begin{array}{ccc}
V(X)/\ell & \to & SK_2(X)/\ell \\
\downarrow \tau/l & & \downarrow \sigma/\ell \\
\pi_1^{ab}(X)^{\text{geo}}/\ell & \to & \pi_1^{ab}(X)/\ell & \to & Gal(k^{ab}/k)/l
\end{array}
\]

where the map $h/l : K_2(k)/l \to Gal(k^{ab}/k)/l$ is the one obtained by class field theory of k (section 3). From this diagram we see that the group $\text{Coker} \tau/l$ is isomorphic to the group $\text{Coker} \sigma/l$. Next, we investigate the map τ/l.

We begin by the following result which is a consequence of the structure of the two-dimensional local field k

Lemma 5.2. There is an isomorphism

\[
\pi_1^{ab}(X)^{\text{geo}} \simeq \pi_1^{ab}(X)_{G_k},
\]

where $\pi_1^{ab}(X)_{G_k}$ is the group of coinvariants under $G_k = Gal(k^{ab}/k)$.

Proof. As in the proof of Lemma 4.3 of [11], this is an immediate consequence of (Theorem 3.1). \hfill \Box

Finally, we are able to deduce the structure of the group $\pi_1^{ab}(X)^{\text{geo}}$

Theorem 5.3. The group $\pi_1^{ab}(X)^{\text{geo}} \otimes \mathbb{Q}_\ell$ is isomorphic to $\widehat{\mathbb{Q}}_\ell^r$ and the map $\tau : V(X) \to \pi_1^{ab}(X)^{\text{geo}}$ is a surjection onto $(\pi_1^{ab}(X)^{\text{geo}})_{\text{tor}}$.

Proof. By the preceding lemma, we have the isomorphism $\pi_1^{ab}(X)^{\text{geo}} \simeq \pi_1^{ab}(X)_{G_k}$. On the other hand the group $\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell$ admits the filtration [12, Lemma 4.1 and section 2]

\[
W_0(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell) = \pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell \supseteq W_{-1}(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell) \supseteq W_{-2}(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell)
\]

But, by assumption; the curve X admits a semi-stable reduction, then the group $Gr_0(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell) = W_0(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell)/W_{-1}(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell)$ has the following structure

\[
0 \to Gr_0(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell)_{\text{tor}} \to Gr_0(\pi_1^{ab}(X)_{G_k} \otimes \mathbb{Q}_\ell) \to \widehat{\mathbb{Q}}_\ell^r \to 0
\]

where r' is the $k - \text{rank}$ of X. This is confirmed by Yoshida [11, section 2], independently of the finitude of the residue field of k considered in his paper. The integer r' is equal to the integer $r = H^1(\overline{\Gamma}, \mathbb{Q}_\ell) = H^1(\overline{\Gamma}, \mathbb{Q}_\ell)$ by assuming that the irreducible components and double points of Y are defined over k_1,.
On the other hand, the exact sequence
\[0 \longrightarrow W_{-1}(\pi^{ab}_1(\overline{X})_{G_k}) \longrightarrow \pi^{ab}_1(\overline{X})_{G_k} \longrightarrow Gr_0(\pi^{ab}_1(\overline{X})_{G_k}) \longrightarrow 0 \]
and (Proposition 5.1) allow us to conclude that the group \(W_{-1}(\pi^{ab}_1(\overline{X})_{G_k}) \) is finite and the map \(\tau : V(X) \longrightarrow \pi^{ab}_1(X)^{\text{galois}} \) is a surjection onto \((\pi^{ab}_1(X)^{\text{galois}})^{\text{tor}} \) as established by Yoshida [11] \(\square \)

Remark 5.4. If we apply the same method of Saito to study curves over two-dimensional local fields, we need class field theory of two-dimensional local ring having one-dimensional local field as residue field. This is done by myself in [1]. Hence, one can follow Saito’s method to obtain the same results.

References

[1] Draouil, B. *Cohomological Hasse principle for the ring \(\mathbb{F}_p((t))[X,Y] \)*, Bull. Belg. Math. Soc. Simon Stevin 11, no. 2 (2004), pp 181–190

[2] Draouil, B., Douai, J. C. *Sur l’arithmétique des anneaux locaux de dimension 2 et 3*, Journal of Algebra **213** (1999), pp 499-512.

[3] Douai, J. C. Monodromie et Arithmétique des Surfaces Birkhauser, Février (1993)

[4] Douai, J. C. Le théorème de Tate-Poitou pour le corps des fonctions définies sur les corps locaux de dim N, Journal of Algebra Vol 125 N° II August **15**, (1989) ,pp 181-196.

[5] Morrisson, D. R. *The Clemens-Scmid exact sequence and applications*, in Annals of Mathematics Studies Vol. **106** . , Princeton Univ. Press, Princeton NJ, pp 101-119

[6] Shatz S. S. *Cohomology of Artinian group schemes over local fields*, Annals of Maths (2) **88** (1968), pp 492-517

[7] Saito, S. *Class field Theory for two-dimensional local rings Galois groups and their representations*, Kinokuniya-North Holland Amsterdam, vol 12 (1987), pp 343-373

[8] Saito, S. *Class field theory for curves over local fields*, Journal of Number theory **21** (1985), pp 44-80. 8

[9] Saito, S. *Some observations on motivic cohomology of arithmetic schemes*. Invent.math. **98** (1989), pp 371-404.

[10] Serre, J. P. *Modular forms of weight one and Galois representations*, Algebraic Number Thory, Academic Press, (1977), pp 193-268.

[11] Yoshida, T. *Finiteness theorems in the class field theory of varieties over local fields*, Journal of Number Theory **101** (2003), pp 138-150.

Département de Mathématiques., Faculté des Sciences de Bizerte 7021, Zarzouna Bizerte.

E-mail address: Belgacem.Draouil@fsb.rnu.tn