Search for the Lepton-Flavor-Violating Decay $\tau^- \rightarrow \mu^- \eta$ at Belle

Y. Enari, K. Abe, K. Abe, T. Abe, I. Adachi, H. Aihara, Y. Asano, T. Aso, V. Aulchenko, T. Aushev, A. M. Bakich, Y. Ban, I. Bedny, I. Bizjak, A. Bondar, A. Bozek, M. Bračko, T. E. Browder, Y. Chao, B. G. Cheon, S.-K. Choi, Y. Choi, Y. K. Choi, A. Chuvikov, M. Danilov, L. Y. Dong, S. Eidelman, V. Eiges, D. Epifanov, C. Fukunaga, A. Garmash, Y. Gokhroo, B. Golob, F. Handa, T. Hara, H. Hayashii, S. H. Lee, T. Lesiak, S.-W. Lin, Y. Enari, T. Hokuue, Y. Hoshi, T. Iijima, K. Inami, A. Ishikawa, R. Itoh, H. Iwasaki, M. Iwasaki, J. H. Kang, J. S. Kang, S. U. Kataoka, N. Katayama, H. Kawai, T. Kawasaki, H. Ichimi, J. H. Kim, J. H. Kim, K. Kinoshita, P. Koppenburg, S. Korpar, P. Križan, P. Krokovny, R. Kulasiri, A. Kuzmin, Y.-J. Kwon, G. Leder, S. L. Olsen, S. Okuno, W.-S. Hou, G. Gokhroo, Y. Hoshi, T. Gershon, K. Abe, O. Schneider, S. Stanić, N. Tamura, A. J. Schwartz, N. Parslow, L. E. Piilonen, M. Iwasaki, K. S. Park, K. Tamai, K. Abe, M. Danilov, T. E. Browder, O. Nitoh, O. Koppenburg, Y. Yamada, Y. Yusa, A. Bondar, H. Miyata, G. R. Moloney, T. Nagamine, E. Nakano, M. Nakao, S. Nishida, O. Nitoh, S. Ogawa, T. Ohshima, S. Okuno, S. L. Olsen, W. Ostrowicz, H. Ozaki, P. Pakhlov, C. W. Park, H. Park, K. S. Park, L. E. Piilonen, A. Poluektov, N. Root, H. Sagawa, S. Saitoh, Y. Sakai, O. Schneider, A. J. Schwartz, S. Semenov, K. Senyo, H. Shibuya, B. Shwartz, V. Sidorov, J. B. Singh, S. Soni, S. Stanić, M. Starić, A. Suji, M. Sumisawa, T. Sumiyoshi, S. Y. Suzuki, F. Takasaki, K. Tamai, N. Tamura, M. Tanaka, Y. Teramoto, T. Tomura, T. Tsuboyama, S. Uehara, K. Ueno, S. Uno, G. Varner, C. H. Wang, J. G. Wang, W. Wang, W. Watari, H. Miyake, M. Yamauchi, Heyoung Yang, J. Ying, Y. Yusa, Z. P. Zhang, V. Zhilich, and D. Žontar

(The Belle Collaboration)
Among the possible Lepton Flavor Violating (LFV) decays of the τ-lepton, $\tau^- \to \mu^-\eta$ is the process that provides the most stringent bound on Higgs-mediated LFV. Sher [1] has pointed out that a flavor non-diagonal lepton-lepton-Higgs Yukawa coupling could be induced if slepton mixing is large. The μ-τ-Higgs vertex is particularly promising since mixing between left-handed smuons and staus is large in many supersymmetric models [2]. This mechanism initially led various authors [3] to study the enhancement of the LFV decay $\tau \to 3\mu$ in the minimal supersymmetric standard model (MSSM). However, Sher’s results indicate that $\tau^- \to \mu^-\eta$ is enhanced by a factor of 8.4 compared to $\tau \to 3\mu$, due mainly to a color factor and the mass-squared dependent Higgs coupling at the Higgs-s-s-bar vertex. In some models with reasonable assumptions about MSSM parameters [1,3] the $\tau^- \to \mu^-\eta$ branching fraction is given by

$$B(\tau^- \to \mu^-\eta) = 0.84 \times 10^{-6} \times \left(\frac{\tan \beta}{60} \right)^6 \left(\frac{100 \text{ GeV}}{m_A} \right)^4,$$

where m_A is the pseudoscalar Higgs mass and $\tan \beta$ is the ratio of the vacuum expectation values ($(H_u)/(H_d)$). In such models, $\tau^- \to \mu^-\eta$ and $\tau \to 3\mu$ are particularly sensitive to LFV at large $\tan \beta$.

Previous experimental studies of $\tau^- \to \mu^-\eta$ by ARGUS [4] and CLEO [5] set 90% confidence level upper limits on the branching fraction of 7.3×10^{-5} from 0.387 fb$^{-1}$ of data, and 9.6×10^{-6} from 4.68 fb$^{-1}$ of data, respectively. We present here a new search based on a data sample of 84.3 fb$^{-1}$, equivalent to 76.9M $\tau^+\tau^-$ pairs, collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric e^+e^- collider [6]. A description of the detector can be found in Ref. [7].

For Monte Carlo (MC) studies, the following programs have been used to generate background (BG) events: KORALB/TAUOLA [8] for $\tau^+\tau^-$ processes, QQ [9] for $B\bar{B}$ and continuum, BHLUMI [10] for Bhabha, KKMC [11] for $\mu\mu$ and AAFH [12] for two-photon processes. The $\tau^- \to \mu^-\eta$ decay is initially assumed to have a uniform angular distribution in the τ’s rest frame. The Belle detector response is simulated by a GEANT3 [13] based program. Most kinematical variables are evaluated in the laboratory frame, unless denoted by the superscript “CM” in which case they are evaluated in the center-of-mass frame. Two η decay modes are considered in this analysis: $\eta \to \gamma\gamma$ ($B = 39.43 \pm 0.26\%$) and $\eta \to \pi^+\pi^-\pi^0$ ($B = 22.6 \pm 0.4\%$) [14].

For $\eta \to \gamma\gamma$, we search for events containing exactly two oppositely charged tracks and two or more photons, two of which form an η. The events should be consistent with a $\tau^+\tau^-$ event, in which one τ decays to $\mu\eta$ and the other τ decays to a charged particle other than a muon with any number of γ’s and neutrinos.

To select candidate events we require the momentum of each track, p, and the energy of each photon, E_{γ}, to satisfy $p > 0.1$ GeV/c and $E_{\gamma} > 0.1$ GeV. The tracks and photons are required to be detected in the barrel or endcap of Belle: $-0.886 < \cos \theta < 0.956$. To exclude Bhabha, $\mu\mu$ and two-photon events, the total energy is constrained between 5 and 10 GeV in the CM frame, as shown in Fig. 11(a).

In the CM frame the events are subdivided into two hemispheres by a plane perpendicular to the thrust axis.
The following two criteria are imposed on the missing momentum and energy in the event. To ensure that the missing particles are neutrinos rather than γ's or charged particles that fall outside of the detector acceptance, we require that the direction of the missing momentum should satisfy $-0.866 < \cos \theta_{\text{miss}} < 0.956$. Because neutrinos are emitted only on the tagging side, the direction of the missing momentum should be contained on the tagging side: $\cos \theta_{\text{tag-miss}} < -0.55$. The correlation between the missing momentum, p_{miss}, and the missing mass squared, m_{miss}^2, shown in Figs. 1(c) and (d) for signal and generic $\tau^+\tau^-$ MC, is utilized for additional BG rejection.

The η candidate is selected based on the signal-side $\gamma\gamma$ invariant mass in terms of the resolution-normalized η-mass, $-5 < S_{\gamma\gamma}^\pi < 3$, where $S_{\gamma\gamma}^\pi = (m_{\gamma\gamma} - 0.547 \text{ GeV}/c^2)/\sigma_{\gamma\gamma}^\pi$ and $\sigma_{\gamma\gamma}^\pi$ is 12 MeV/c². The resulting $S_{\gamma\gamma}^\pi$ distributions for signal and generic $\tau^+\tau^-$ MC and data are shown in Fig. 2(a).

The application of these selection criteria to the data set results in a total yield of 18 events. The detection efficiency is measured from MC studies to be $\epsilon(2\gamma) = 9.3\%$. In MC, small backgrounds from the three following processes survive: 8.6±2.2 events from generic $\tau^+\tau^-$, 2.5±1.8 events from $\mu\mu$ and 5.8±2.2 events from the continuum.

For the $\eta \to \pi^+\pi^-\pi^0$ mode, we search for events containing four charged tracks (net charge = 0) and two or more photons. Because of the higher multiplicity compared to the $\eta \to \gamma\gamma$ mode the detection efficiency is smaller; however, the extra reconstruction constraint in the η decay chain improves the background rejection power. The selection criteria are similar to those in the $\eta \to \gamma\gamma$ case with the differences listed below.

The minimum photon energy is reduced from 0.1 GeV to 0.05 GeV, since the photons from this decay mode have a softer energy distribution compared to those in $\eta \to \gamma\gamma$. The signal side hemisphere should have three tracks and two or more photons. One track must be a muon ($P_\mu > 0.9$), but particle identification is not performed on the other two tracks — they are treated as pions. We also require that one π^0 be reconstructed from the photons in the signal hemisphere, such that $-5 < S_{\gamma\gamma}^\pi < 5$. Figure 2(b) shows the reconstructed mass of η.

After the cuts, 67 events remain in the data, while the generic $\tau^+\tau^-$ MC predicts a contribution of 38.0±4.6 events, and the continuum MC predicts 15.6±3.5 events. The detection efficiency is $\epsilon(3\pi) = 5.6\%$.

The final evaluation of the number of signal candidates is performed by defining a signal-region in the $M_{\mu\eta}-\Delta E$ plane, where the candidate $\mu\eta$ system should have an invariant mass ($M_{\mu\eta}$) close to the τ-lepton mass and an energy close to the beam-energy in the CM frame, i.e. $\Delta E = E_{\mu\eta}^{\text{CM}} - E_{\text{beam}}^{\text{CM}} \approx 0$. Figures 3(a) and 3(b) show scatterplots of the signal MC in the $M_{\mu\eta}-\Delta E$ plane for the $\eta \to \gamma\gamma$ and $\eta \to \pi^+\pi^-\pi^0$ modes.
FIG. 2: (a) invariant mass of $\gamma\gamma$ in terms of the resolution normalized η-mass, $S_{\eta\gamma}^0$, in the $\eta \to \gamma\gamma$ case, and (b) η-mass from $\eta \to \pi^+\pi^-\pi^0$ reconstruction. Signal and generic $\pi^+\pi^-$ MC distributions are indicated by the shaded and open histograms, respectively. The selection region is indicated by the arrows.

respectively. The signal exhibits a long low-energy tail due to initial-state radiation and calorimeter energy leakage for photons. By reproducing the $M_{\mu\eta}$ and ΔE distributions around the peak with an asymmetric Gaussian function, the $M_{\mu\eta}$ and ΔE resolutions are evaluated to be $\sigma_{M_{\mu\eta}}^{\text{low/high}} = 25.8\pm0.7/15.3\pm0.4$ MeV/c^2 and $\sigma_{\Delta E}^{\text{low/high}} = 69.7\pm3.0/34.7\pm1.2$ MeV for the $\eta \to \gamma\gamma$ mode, and $\sigma_{M_{\mu\eta}}^{\text{low/high}} = 13.8\pm0.4/9.0\pm0.4$ MeV/c^2 and $\sigma_{\Delta E}^{\text{low/high}} = 44.4\pm2.3/22.6\pm1.3$ MeV for the $\eta \to \pi^+\pi^-\pi^0$ mode, where the “low/high” superscript indicates the lower/higher energy side of the peak. To optimize the sensitivity, we take an elliptically shaped signal region in the $M_{\mu\eta}-\Delta E$ plane, with a signal acceptance of $\Omega = 90\%$, as shown in Fig. 3.

Figure 3 shows the final data distributions over a $\pm 10\delta_{M_{\mu\eta}}$ region in the $M_{\mu\eta}-\Delta E$ plane. In the signal region, there are no events in either the data or background MC. Outside the signal region, 7 events for the $\eta \to \gamma\gamma$ mode and 2 events for the $\eta \to \pi^+\pi^-\pi^0$ mode are observed in data, while MC predicts 3.7 \pm 2.4 and 0.0 \pm 0.0 events, respectively. The observed data yields are consistent with MC. The BG yield in the signal region, estimated from the sidebands, is found to be 0.5 \pm 0.2 for $\eta \to \gamma\gamma$ and 0.0 \pm 0.0 events for $\eta \to \pi^+\pi^-\pi^0$.

As no events are observed, an upper limit on the number of events is set using a Bayesian approach, which gives $s_0 = 2.3$ at 90% C.L. The upper limit on the branching fraction, at 90% C.L., is given by

$$B(\tau^- \to \mu^- \eta) < \frac{s_0}{2 (\epsilon \Omega \times B_{\eta}) \times N_{\tau^+\tau^-}}$$

where B_{η} is the branching fraction of η-decay to either $\gamma\gamma$ or $\pi^+\pi^-\pi^0$. The calculated upper limits, at 90% C.L., are thus found to be 4.6×10^{-7} for the $\eta \to \gamma\gamma$ mode, and 13.1×10^{-7} for the $\eta \to \pi^+\pi^-\pi^0$ mode. Combining the two decay modes, we obtain $\epsilon \Omega \times B_{\eta} = 4.4\%$ and $B(\tau^- \to \mu^- \eta) < 3.4 \times 10^{-7}$ at 90% C.L.

The systematic uncertainties on the detection sensitivity, $2(\epsilon \Omega \times B_{\eta}) \times N_{\tau^+\tau^-}$, arise from the track reconstruction efficiency (2.0% in the $\eta \to \gamma\gamma$ mode and 2.0% in the $\eta \to \pi^+\pi^-\pi^0$ mode), η reconstruction efficiency (2.0% and 4.2%, the latter of which includes the uncertainties of tracking efficiency for $\eta \to \pi^+\pi^-\pi^0$, π^0 veto (5.5% and none), muon identification efficiency (4.0% and 4.0%), trigger efficiency (1.4% and 1.4%), beam background (2.3% and 2.1%), luminosity (1.4% and 1.4%), B_{η} (0.7% and 1.8%) and MC statistics (1.3% and 2.1%). Adding all of these components in quadrature, the total uncertainty is evaluated to be 8.1% for $\eta \to \gamma\gamma$ and 7.3% for $\eta \to \pi^+\pi^-\pi^0$. For the combination of the two decay modes the systematic uncertainty is $\pm 7.9\%$.

This systematic uncertainty is included in the upper limit following Ref. [17], where the detection sensitivity, $2(\epsilon \Omega \times B_{\eta})N_{\tau\tau}$, is modelled by a Gaussian distribution having a width given by the systematic error quoted above. There is no appreciable effect on the branching fraction, B.

The angular distribution of the $\tau^- \to \mu^- \eta$ decay has a strong dependence on the LFV interaction structure and spin correlations between the τs at the signal and tagged sides must be considered. To evaluate the maximum possible variation, V-A and V+A interactions are assumed; no statistically significant difference in the
$M_{\mu\eta} - \Delta E$ distribution or in the efficiency is found compared to the case of the uniform distribution.

As a result, we obtain an upper limit on the branching fraction for the Lepton Flavor Violating $\tau^- \to \mu^- \eta$ decay of

$$\mathcal{B}(\tau^- \to \mu^- \eta) < 3.4 \times 10^{-7},$$

at 90% C.L. This result improves the previous upper limit, $\mathcal{B}(\tau^- \to \mu^- \eta) < 9.6 \times 10^{-6}$, by a factor of 30.

Using Eq. (1), which was derived in a seesaw MSSM with a specific neutrino mass texture, our upper limit restricts the allowed parameter space for m_A and $\tan \beta$, as indicated in Fig. 4, where our boundary is indicated in the cases of 90% and 95% C.L. Figure 4 also shows the 95% C.L. constraints from high energy collider experiments at LEP [18] and CDF [19]. The latter results in a branching fraction six times smaller than that predicted by Babu and Kolda. Eq. (4) taken from [1] is based on the result of Babu and Kolda.

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We are grateful to Y. Okada for fruitful discussions on theoretical aspects of τ spin correlations. We also thank A. Dedes and J. Hisano for important and useful comments about model dependence of limits on SUSY parameters. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.