Association of 370-371insACA, 494T>C, and 1423C>T haplotype in ubiquitin-specific protease 26 gene and male infertility: a meta-analysis

Jia-Dong Xia¹,²*, Jie Chen³*, You-Feng Han¹, Hai Chen¹, Wen Yu¹, Yun Chen¹, Yu-Tian Dai¹

Whether the 370-371insACA, 494T>C, and 1423C>T haplotype in ubiquitin-specific protease 26 (USP26) gene is associated with male infertility is controversial. To clarify this issue, we conducted a meta-analysis based on the most recent studies. Eligible studies were screened by using PubMed and Embase. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated with fixed effect models. Ten studies with 1603 patients and 2505 controls were included. Overall, the results indicated that there was an association between the haplotype and male infertility risk (OR = 1.74, 95% CI: 0.95–2.77). The OR calculated based on the five studies in Asia and three in Europe was 1.96 (95% CI: 1.05–3.67) and 1.54 (95% CI: 0.75–3.16) respectively, however, the OR was 0.86 (95% CI: 0.05–15.29) based on the two investigations in America. In addition, the data from the patients with azoospermia (AZO) showed an increased pooled OR of 2.35 (95% CI: 1.22–4.50). In contrast, the studies with oligoasthenoteratozoospermia (OAT) exhibited that the pooled OR was 0.97 (95% CI: 0.43–2.16). Our analyses indicate that there is an association of alteration in USP26 with male infertility, especially in AZO and Asian population.

Asian Journal of Andrology (2014) 16, 720–724; doi: 10.4103/1008-682X.129134; published online: 23 May 2014

Keywords: haplotype; male infertility; meta-analysis; ubiquitin-specific protease 26

INTRODUCTION
Infertility affects about 10%–15% of couples seeking to conceive, with roughly half of such cases being caused by male factors.¹ The etiology in more than 50% of infertile men cannot be determined. Recently, great attention has been paid to the genetic causes, including Y chromosome microdeletions, chromosomal aberrations, gene mutation, and gene polymorphisms.²

Since men are hemizygous for X-linked genes, meaning that only one single allele is present in an individual, these genes may evolve rapidly when they are exposed to selective pressure.³⁴ Many genes on the X chromosome have been shown to be related to male infertility.⁵ Ubiquitin-specific protease 26 (USP26), initially identified by Wang et al.⁶ in 2001, is reported to be one of these genes. USP26 is located on Xq26.2, with a single exon. The messenger ribonucleic acid sequence of the USP26 is 2794-bp long with a 52-bp non-coding region at the 5'-terminus, and the protein comprises 913 amino acids (GenBank: NM_031907.1). USP26 belongs to the family of deubiquitinating enzymes (DUBs), which play an important role in the removal of histones and regulation of protein turnover during the spermatogenesis. The expression of USP26 is demonstrated to be predominantly, if not exclusively, in the testes of mouse or human.⁷ Because of the importance of DUBs in spermatogenesis, the association of the USP26 gene and male infertility has been attracted more attention.

More than 20 polymorphisms have been reported in the USP26 gene and these polymorphisms may form the cluster of alterations.⁵ A cluster with three mutations (370-371insACA, 494T>C, and 1423C>T) in the USP26 gene is most frequently observed in the male infertile patients. Some investigators demonstrated that this cluster was closely associated with male infertility,²⁻⁵⁻¹⁰ while others did not find such an association.¹¹⁻¹⁴ Moreover, the cluster with the three mutations was even not observed in the patients by Zhang et al.¹⁵ and Christensen et al.¹⁶ Thus, whether the 370-371insACA, 494T>C, and 1423C>T haplotype in USP26 gene is associated with male infertility is controversial. Although a previous meta-analysis on this issue was conducted, the analysis included only four articles and did not separately analyze the data derived from different patients with oligoasthenoteratozoospermia (OAT) or azoospermia (AZO).¹⁷ Therefore, we carried out a meta-analysis, including almost all recently published data, to clarify the association between the cluster alteration in USP26 and male infertility, which should be helpful to understand the host factors in the male infertility.

MATERIALS AND METHODS

Search strategy
PubMed and Embase were searched for all relevant English articles published before October 2013. The following terms (alone and in combination) were applied in the search: "male infertility," "semen analysis," "polymorphism," "alternation," "USP26," and "ubiquitin-specific protease 26." These keywords reflected that the retrieved articles focused on the relationship between USP26 gene...
alternations and male infertility. Two individuals (JDX and JC) independently screened the publications by reviewing titles and abstracts. The references from all original reports and review articles were checked, and the feature of “related citations” in PubMed was also used to further search for possible additional studies.

Inclusion and exclusion criteria
Studies should fulfill all of the following inclusion criteria: (i) published studies or abstracts in English; (ii) case-control association studies on the USP26 alternation and male infertility; and (iii) reported measurement of USP26 polymorphisms among cases and controls. The articles were not included in the analysis if they met any of (i) incomplete data availability; (ii) duplicated or updated data; or (iii) noninclusion of their own data, such as reviews, comments, editorials, letters, and congress reports.

Data extraction
Two authors (JDX and JC) independently extracted the following information from each study: name of first author, publication year, country of origin, ethnicity of the study population, case (infertility and subgroups) and control definitions, the sample size, and genotypic frequencies. In the end, the accuracy of the data extraction was checked in a second review.

Data analysis
We first aimed to quantify the association between 370-371insACA, 494T>C, and 1423C>T haplotype alternation of USP26 and male infertility, and explore potential sources of heterogeneity. For each alternation reported in the included study, we abstracted data into 2 × 2 tables and calculated the odds ratio (OR) and the 95% confidence interval (CI), by retrieving the number of cases and controls. The pooled summary OR was estimated by the inverse-variance fixed-effect model (Mantel-Haenszel method) and random-effect model (DerSimonian and Laird method). The Chi-squared test and inconsistency index (I²) were used to estimate the heterogeneity. We evaluated the summary OR with the fixed-effect model, when the P value for heterogeneity was >0.10 and F < 50%, indicating an absence of heterogeneity between studies. In contrast, we applied the random-effect model if P ≤ 0.10 or F ≥ 50%. Subgroup analyses were further performed by various geographic regions (Europe, America, and Asia) and different case types (OAT and AZO).

In addition, we conducted the one-way sensitivity analysis to assess the impact of each included study on the overall results and evaluated the stability of the results. Begg's and Egger's tests and inverted funnel plots were utilized to explore the potential publication bias with the linear regression asymmetry test. All statistical analyses were carried out using Stata version 11.0 (Stata Corporation, College Station, TX, USA) and P < 0.05 was considered to be significant.

RESULTS

Study characteristics
Initially, a total of 94 articles were identified by searching PubMed and Embase with different combinations of the key terms. After final screening, 10 studies with 1603 cases and 2505 controls were included in the meta-analysis. The results showed that no individual study significantly affected the overall OR for the association between the cluster of three changes in USP26 and male infertility (Figure 3). Publication bias was assessed by a funnel plot, and the Begg's and Egger's tests respectively. As shown in Figure 4, the shapes of the funnel plot revealed no obvious asymmetry, suggesting no publication bias, which was further demonstrated by the statistical evidence of Begg's and Egger's test (P = 0.536 and 0.432, respectively).

DISCUSSION
The studies on the relationship between the USP26 polymorphisms (370-371insACA, 494T>C, and 1423C>T haplotype) and male infertility risk usually recruited limited number of patients and the findings were controversial. In the present study, we carried
out a meta-analysis of 10 studies involving 1603 patients and 2505 controls. The overall results support the hypothesis that the USP26 polymorphisms are associated with male idiopathic infertility. More specifically, the haplotype may increase the infertility risk in AZO patients and Asian male population.

Spermatogenesis is a developmental process, in which the germ stem cells go through proliferation, meiosis and spermiogenesis to form spermatooza. DUBs negatively regulate protein ubiquitination, which is involved in the control of meiosis and reorganization of chromatid structure during spermatogenesis. Based on the recent studies, DUBs are functionally divided into five main families: ubiquitin C-terminal hydrolases, ubiquitin-specific processing proteases (USPs or UBPs), ovarian tumor -domain ubiquitinaldehyde-binding proteins, Jab1/Pad1/MPN-domain-containing metalloenzymes, and Atain-3/Josephin. USP26 belongs to the USPs or UBPs family, and may play an important role in the regulation of protein turnover. Recently, Dirac and Bernards have found that USP26 encodes a nuclear ubiquitin-specific protease 26 (USP26), and that the mutation 1423C>T (H475Y) disturbed the 3D structure of USP26 protein. While the mutation 370-371insACA, resulting in insertion of an additional T at position 123, moved the phosphorylation motif one position ahead, mutation 370-371insACA, 494T>C, and 1423C>T cluster haplotype results in less evolutionary. They also identified three putative phosphorylation motifs: two started at position 123 and the third was initiated at 577. They also identified three putative phosphorylation motifs: two started at position 123 and the third was initiated at 577.

Table 1: Main characteristics of studies included in the meta-analysis

Reference	Country/Ethnicity	Geographic Region	Genotyping Method	Cases (%)	Controls	Patient Description	Control Description
Stouffs et al.7	Belgium/mixed	Europe	PCR and Taqman	8/143 (5.4) NA	8/143 (7.2)	0/152 (0.0)	Sertoli cell-only syndrome, normal karyotype, no Yq microdeletions
Paduch et al.8	USA/unknown	Americas	PCR and HPLC	4/188 NA	4/188 (2.1)	0/17 (0.0)	Non-obstructive azoospermia with no chromosomal aberrations or Yq microdeletions
Ravel et al.11	France/mixed	Europe	PCR and Taqman	4/40 (10.0) 1/59 (1.7) 5/99 (5.1) 75/1334 (4.0)	0/166 (2.4)	0/1030 (0.5)	Azoospermia or oligozoospermia with no Y or gr/gr microdeletions
Stouffs et al.12	Belgium/Caucasian	Europe	PCR and Taqman	0/146 (0.0) 0/146 (0.0) 1/202 (0.5)	0/146 (0.0)	0/200 (0.0)	Without abnormal karyotype or Yq microdeletions
Zhang et al.15	China/Han nationality	Asia	PCR and SSCP	0/44 (0.0)	0/44 (0.0)	0/56 (0.0)	Normal sperm-ogenesis, sperm parameters, or proven fertility
Lee et al.3	China/Han nationality	Asia	PCR and Taqman	0/6200 (3.0)	0/6200 (3.0)	0/200 (0.0)	Normal sperm parameters
Christensen et al.16	USA/unknown	Americas	PCR	0/048 (0.0) 0/048 (0.0) 0/96 (0.0) 0/96 (0.0)	0/6200 (3.0)	0/6200 (3.0)	Azoospermic and oligozoospermic
Ribarski et al.13	Israel/mixed	Asia	PCR and Taqman	0/9300 (3.0)	0/9300 (3.0)	0/287 (2.1)	Normal semen analysis parameters but known paternity
Shi et al.14	China/Han nationality	Asia	PCR	0/14160 (8.3) 19/221 (8.6) 5/101 (5.0)	0/14160 (8.3)	0/14160 (8.3)	Normal semen, at least one child within 3 years without assisted reproductive technologies and no history of miscarriages
Asadpor et al.10	Iran/unknown	Asia	PCR, SSCP, and Taqman	0/166 (2.4)	0/166 (2.4)	1/60 (1.7)	Fertile men with normozoospermia

All values represent number of men; each numerator represents the number of men with the characteristic as indicated in the column header. AZO: azoospermia; HPLC: high performance liquid chromatography; OAT: oligoasthenoteratozoospermia; SSCP: single strand conformation polymorphism; NA: not available; AZF: azoospermia factor; USP26: ubiquitin-specific protease 26; PCR: polymerase chain reaction.

This is in accordance with the findings that men with nonobstructive AZO commonly have genetic abnormalities, our results indicated that the alternation of USP26 is associated with AZO. Thus, USP26 may play an important role in spermatogenesis. On the other hand, OAT is classified as isolated mild (astheno and/or teratospermia), moderate, and severe. The etiology of OAT is associated more closely with environmental factors, such as age, noninflammatory functional and severe. The etiology of OAT is associated more closely with environmental factors, such as age, noninflammatory functional and "subtle" hormonal abnormalities. This is in accordance with the findings that USP26 haplotype is not associated with OAT in the present study.

Interestingly, in the stratified analysis by geographic regions, we found this association was significant only in Asian population. This is in line with Ravel et al. indicating that the association of USP26 haplotype and male infertility is dependent upon the ethnic origins. Some studies also have suggested associations between gene polymorphisms and male infertility may vary in the different ethnics.
such as deleted azoospermia-like and polymerase gamma genes. Hence, the genetic background combined with the environmental factors may lead to spermatogenetic impairment.

A main limitation of the present study is that some studies with small sample size were included, which could increase the likelihood of type I and type II errors. However, totally 10 studies with 1603 cases and 2505 controls were analyzed, which may minimize the statistical bias. In addition, the overall results were analyzed with unadjusted estimates. However, other potential factors such as age, body mass index, and smoke or alcohol habits were not available in the included articles.

Figure 2: Forest plot of the studies assessing the association between the 370‑371insACA, 494T>C, and 1423C>T haplotype in USP26 and male infertility (a), azoospermia (b), and oligoasthenoteratozoospermia (c). Horizontal lines indicate 95% confidence interval (CI); diamonds indicate summary relative risk estimate with its corresponding 95% CI.
REFERENCES

1. Huynh T, Molland R, Trounson A. Selected genetic factors associated with male infertility. Hum Reprod Update 2002; 8: 183–98.

2. Plasienka-Karanfilska D, Noveski P, Plasienki T, Maleva I, Madjunkova S, et al. Genetic causes of male infertility. Balkan J Med Genet 2012; 15: 31–4.

3. Schaffner SF. The X chromosome in population genetics. Nat Rev Genet 2004; 5: 43–51.

4. Torgerson DG, Singh RS. Enhanced adaptive evolution of sperm-expressed genes on the mammalian X chromosome. Hereditas (Edinb) 2006; 96: 39–44.

5. Stouffs K, Tournaye H, Liebena I, Lissensa W. Male infertility and the involvement of the X chromosome. Hum Reprod Update 2009; 15: 623–37.

6. Wang Pj, McCarrery JR, Yang F, Page DC. An abundance of X-linked genes expressed in spermatogonia. Nat Genet 2001; 27: 422–6.

7. Stouffs K, Lissensa W, Tournaye H, Van Steirteghen A, Liebena I. Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet 2005; 13: 336–40.

8. Paduch DA, Mielnik A, Schlegel PN. Novel mutations in testsis-specific ubiquitin probe 26 gene may cause male infertility and hyponogonadism. Reprod Biomed Online 2005; 10: 747–54.

9. Lee WH, Kuan LC, Lin CH, Pan HA, Hsu CC, et al. Association of USP26 haplotypes in men in Taiwan, China with severe spermatogenic defect. Asian J Androl 2008; 10: 896–904.

10. Asadpour U, Totonchi M, Sabbaghian M, Hoseinifar H, Akhoud MR, et al. Ubiquitin-specific probe 26 gene alterations associated with male infertility and recurrent pregnancy loss (RPL) in Iranian infertile patients. J Assist Reprod Gen 2013; 30: 923–31.

11. Ravel C, El Houteb B, Chattot S, Lourenço D, Dumenia A, et al. Haplotypes, mutations and male fertility: the story of the testsis-specific ubiquitin probe 26 gene. Mol Hum Reprod 2006; 12: 643–6.

12. Stouffs K, Lissensa W, Tournaye H, Van Steirteghen A, Liebena I. Alterations of the USP26 gene in Caucasian men. Int J Androl 2006; 29: 614–7.

13. Ribarski I, Lehavi O, Yogev L, Hauser R, Bar-Shina Maymon B, et al. USP26 gene variations in fertile and infertile men. Hum Reprod 2009; 24: 477–84.

14. Shi YC, Wei L, Cui YX, Wang XJ, Wang HY, et al. Association between ubiquitin-specific probe 26 polymorphism and male infertility in Chinese men. Clin Chim Acta 2011; 412: 545–9.

15. Zhang J, Qiu SD, Li SB, Zhou DX, Tian H, et al. Novel mutations in ubiquitin-specific probe 26 gene might cause spermatogenesis impairment and male infertility. Asian J Androl 2007; 9: 809–14.

16. Christensen GL, Griffin J, Carell DT. Sequence analysis of the X-linked USP26 gene in severe male factor infertility patients and fertile controls. Fertil Steril 2008; 90: 851–2.

17. Tüttelmann F, Rajpert-De Meyts E, Nieschlag E, Simoni M. Gene polymorphisms and male infertility – a meta-analysis and literature review. Reprod Biomed Online 2007; 15: 643–58.

18. Robins J, Breslow N, Greenland S. Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 1986; 42: 311–23.

19. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–88.

20. Higgins JP, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.

21. Egger M, Davey Smith G, Schneider M, Ciba R. Bias in meta-analysis detected graphically. BMJ 1997; 315: 629–34.

22. Baarends WM, Roest HP, Grootevaard JA. The ubiquitin system in gametogenesis. Mol Cell Endocrinol 1999; 151: 5–16.

23. Cohen M, Stutz F, Dargent M. Deubiquitination, a new player in Golgi to endoplasmic reticulum retrograde transport. J Biol Chem 2003; 278: 51989–92.

24. Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, et al. Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Mol Biol Cell 2000; 20: 6568–78.

25. Zhang J, Tian H, Hua YW, Zhou DX, Wang HK, et al. The expression of USP26 gene in mouse testis and brain. Asian J Androl 2009; 11: 478–83.

26. Dirac AM, Bernards R. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res 2010; 8: 844–54.

27. Lee JY, Dada R, Sabanegh E, Carpi A, Agarwal A. Role of genetics in azoospermia. Urology 2011; 77: 596–601.

28. World Health Organization. WHO Laboratory Manual for the Examination of Human Semen and Semen-Cervical Mucus Interaction. 4th ed. Cambridge: Cambridge University Press; 1999. p. 1–86.

29. Cappelini G. Male idiopathic oligozoospermia azoospermia. Asian J Androl 2006; 8: 143–57.

30. Wu W, Cai H, Sun H, Lu J, Zhao D, et al. Follicle stimulating hormone receptor G29A, 919A>G, 2039A>G polymorphism and the risk of male infertility: a meta-analysis. Gene 2012; 505: 388–92.

31. Dipple KM, Phelan JK, McCabe ER. Consequences of complexity within biological networks: robustness and health, or vulnerability and disease. Mol Genet Metab 2001; 74: 45–50.

How to cite this article: Xia JD, Chen J, Han YF, Chen H, Yu W, Chen Y, Dai YT. Association of 370-371insACA, 494T>C and 1423C>T haplotype in ubiquitin-specific probe 26 gene and male infertility: a meta-analysis. Asian J Androl 23 May 2014. doi: 10.4103/1008-682X.129134. [Epub ahead of print]