EXISTENCE OF KIRILLOV–RESHETIKHIN CRYSTALS FOR MULTIPLICITY FREE NODES

REKHA BISWAL AND TRAVIS SCRIMSHAW

ABSTRACT. We show that the Kirillov–Reshetikhin crystal $B^{r,s}$ exists when r is a node such that the Kirillov–Reshetikhin module $W^{r,s}$ has a multiplicity free classical decomposition.

1. INTRODUCTION

Kirillov–Reshetikhin (KR) modules are an class of finite-dimensional representation of an affine quantum group $U_q^+(g)$ without the degree operator that is classified by their Drinfel’d polynomials that have received significant attention. We denote a KR module by $W_{r,s}$, where r is a node of the classical (i.e. underlying finite type) Dynkin diagram and $s \in \mathbb{Z}_{>0}$. One construction of a KR module $W_{r,s}$ is by computing the minimal affinization of the highest weight $U_q(\mathfrak{g}_0)$-module $V(s\Lambda_r)$ [Cha95, CP95a, CP96a, CP96b], where \mathfrak{g}_0 is the classical Lie algebra. Another method is by using the fusion construction of [KKM+92] from the image under an R-matrix of an s-fold tensor product of the fundamental module $W_{r,1}$ (see, e.g., [Kas02]). KR modules are also known to have special properties. The classical decomposition, the branchingle rule of $W_{r,s}$ to a $U_q(\mathfrak{g}_0)$-module, is given by a fermionic formula [DFK08, Her10], which leads to the (virtual) Kleber algorithm [Kle98, OS03]. The characters (resp. q-characters) of KR modules also satisfy the Q-system (resp. T-system) relations [Her10, Nak03]. Furthermore, the graded characters of (Demazure submodules of) a tensor product of fundamental modules are (nonsymmetric) Macdonald polynomials at $t = 0$ [LNS+15, LNS+16b] (LNS+17).

One important (conjectural) property [HKO+99, HKO+02] is that the KR module $W_{r,s}$ admits a crystal base [Kas90, Kas91], which is known as a Kirillov–Reshetikhin (KR) crystal and denoted by $B_{r,s}$. Kashiwara showed that all fundamental modules $W_{r,1}$ have crystal bases [Kas02]. It was shown that $B_{r,s}$ exists in all nonexceptional types in [Oka07, OS08] and in types $G_2^{(1)}$ and $D_4^{(3)}$ in [KMOY07, Nao18, Yam98]. For all affine types, the existence of $B_{r,s}$ has been proven when r is adjacent to 0 or in the orbit of 0 under a Dynkin automorphism (equivalently, $W_{r,s}$ is irreducible as $U_q(\mathfrak{g})$-module) [KKM+92].

Our main result is that the KR module $W_{r,s}$ has a crystal base whenever its classical decomposition is multiplicity free in all affine types. We do this by showing the existence of $B_{r,s}$ in the cases not covered by [KKM+92, Oka07, OS08]. More explicitly, we show this for $r = 3,5$ in type $E_6^{(1)}$, for $r = 2,6$ in type $E_7^{(1)}$, for $r = 7$ in type $E_8^{(1)}$, and for $r = 4$ in types $F_4^{(1)}$ and $E_6^{(2)}$, where we label the Dynkin diagrams following [Bou02] (see also Figure 1 for the labeling). Using the techniques developed in [KKM+92], our proof shows the existence of a crystal pseudobase (L,B) by using the fusion construction of $W_{r,s}$ and is similar to [Oka07, OS08] by calculating the prepolarization for certain vectors. From there, we can construct the associated crystal by $B/\{\pm 1\}$.

Let us describe some possible applications of our results. The $X = M$ conjecture [HKO+99, HKO+02] arises from mathematical physics relating vertex models and the Bethe ansatz of Heisenberg spin chains, and the X side requires the existence of KR crystals. A uniform model for $B^{r,1}$ was given using quantum and projected level-zero LS paths [LNS+15, LNS+16a, LNS+16b, NS06, NS08a, NS08b]. Since the KR crystal $B^{r,s}$ exists, we have a partial (conjectural) combinatorial description from [LS18] using $(B^{r,1})^{\otimes s}$, partially mimicking the fusion construction.

2010 Mathematics Subject Classification. 81R50, 17B37.
Key words and phrases. Kirillov–Reshetikhin crystal, crystal, crystal base.
T.S. was partially supported by the Australian Research Council DP170102648.
After completion of this paper, we learned that Naoi independently proved all cases in type $E_{6,7}^{(1)}$ using similar techniques [Nao19].

This paper is organized as follows. In Section 2, we give the necessary background. In Section 3, we show our main result: that the KR modules $W^{r,s}$ has a crystal pseudobase whenever $W^{r,s}$ has a multiplicity free classical decomposition.

Acknowledgements. The authors would like to thank Katsuyuki Naoi and Masato Okado for useful discussions. RB would like to thank Tokyo University of Agriculture and Technology for its hospitality during her visit in Ju This work benefited from computations using SAGEMath [Dev18, SCc08].

2. Background

In this section, we provide the necessary background. Let \mathfrak{g} be an affine Kac–Moody Lie algebra with index set I, Cartan matrix $A = (A_{ij})_{i,j \in I}$, simple roots $(\alpha_i)_{i \in I}$, simple coroots $(h_i)_{i \in I}$, fundamental weights $(\Lambda_i)_{i \in I}$, weight lattice P, dominant weights P^+, coweight lattice P^\vee, and canonical pairing $\langle \cdot, \cdot \rangle : P^\vee \times P \to \mathbb{Z}$ given by $\langle h_i, \alpha_j \rangle = A_{ij}$. We note that we follow the labeling given in [Bou02] (see Figure 1 for the exceptional types and their labellings). Let \mathfrak{g}_0 denote the canonical simple Lie algebra given by the index set $I_0 = I \setminus \{0\}$. Let ∇ denote the natural projection of $\lambda \in P$ onto the weight lattice P_0 of \mathfrak{g}_0, so $\{\nabla \cdot \}_{r \in I_0}$ are the fundamental weights of \mathfrak{g}_0. Let $\omega_r = \Lambda_r - \langle c, \Lambda_r \rangle \Lambda_0$, where c is the canonical central element of \mathfrak{g}, denote the level-zero fundamental weights. Let q be an indeterminate, and we denote

$[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}, \quad [k]_q! = [k]_q[k-1]_q \cdots [1]_q, \quad \begin{bmatrix} m \end{bmatrix}_q = \frac{[m]_q[m-1]_q \cdots [m-k+1]_q}{[k]_q!}$

for $m \in \mathbb{Z}$ and $k \in \mathbb{Z}_{\geq 0}$. Let $q_i = q^{s_i}$ and $K_i = q^{s_i h_i}$, where (s_1, \ldots, s_n) is the diagonal symmetrizing matrix of A.

2.1. Quantum groups. Let $U'_q(\mathfrak{g}) = U_q(\mathfrak{g}, g)$ denote the quantum group of the derived subalgebra of \mathfrak{g}. More specifically, the quantum group $U'_q(\mathfrak{g})$ is the associative $\mathbb{Q}(q)$-algebra generated by e_i, f_i, q^s, where

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{dynkin_diagrams.png}
\caption{Dynkin diagrams for affine type $E_{6,7,8}^{(1)}$, $F_4^{(1)}$, and $E_6^{(2)}$.}
\end{figure}
Let U is a combination of λ_i with e, we will abuse notation and denote the U-dependence relation on the simple roots in U.

For a U-module, we denote the highest weight λ, then we say $\text{wt}(v) = \lambda$. For $\lambda \in P_0^+$, we denote the highest weight U_{λ}-module by $V(\lambda)$.

2.2. Crystal (pseudo)bases and polarizations

Let A denote the subring of $\mathbb{Q}(q)$ of rational functions without poles at 0. A crystal base of an integrable $U_q(g)$-module M is a pair (L, B), where L is a free A-module and B is a basis of the \mathbb{Q}-vector space L/qL, such that

(1) $M \cong \mathbb{Q}(q) \otimes_A L$,
(2) $L \cong \bigoplus_{\lambda \in P} L_\lambda$ with $L_\lambda = L \cap M_\lambda$,
(3) $e_iL \subseteq L$ and $f_iL \subseteq L$ for all $i \in I$,
(4) $B = \bigcup_{\lambda \in P} B_\lambda$ with $B_\lambda = B \cap (L_\lambda/qL_\lambda)$,
(5) $e_iB \subseteq B \cup \{0\}$ and $f_iB \subseteq B \cup \{0\}$,
(6) $f_i b = b'$ if and only if $e_i b' = b$ for all $b, b' \in B$ and $i \in I$.

We say (L, B) is a crystal pseudobase of M if it satisfies the conditions above for $B = B' \cup (-B')$, where B' is a basis of L/qL. For a $U_q(g)$-module M, a prepolarization is a symmetric bilinear form $(\ , \) : M \times M \rightarrow \mathbb{Q}(q)$ that satisfies

\begin{equation}
(q^h v, w) = (v, q^h w), \quad (e_i v, w) = (v, q^{-1} K_i^{-1} f_i w), \quad (f_i v, w) = (v, q^{-1} K_i e_i w),
\end{equation}

for all $i \in I$, and $v, w \in M$.\footnote{For $U_q(g)$-modules M, N, a pairing $(\ , \) : M \times N \rightarrow \mathbb{Q}(q)$ that satisfies (2.1) is often called admissible.} Denote $\|v\|^2 = (v, v)$. If a prepolarization is positive definite with respect to the total order on $\mathbb{Q}(q)$

$$f > g \text{ if and only if } f - g \in \bigcup_{n \in \mathbb{Z}} \{q^n (d + qA) \mid d \in \mathbb{Q}_{>0}\}$$

(with $f \geq g$ defined as $f = g$ or $f > g$) then it is called a polarization.
Proposition 2.1. Let M be a finite-dimensional integrable $U_q'(\mathfrak{g})$-module. Suppose M has a prepolarization $(\ ,\)$ and a $U_q'(\mathfrak{g})_{K_2}$-submodule M_{K_2} such that $(M_{K_2}, M_{K_2}) \subseteq K_2$. Assume $M \cong \bigoplus_{k=1}^m V(\lambda_k)$ as $U_q(\mathfrak{g}_0)$-modules, with $\lambda_k \in P_0^+$ for all k, such that there exists $u_k \in (M_{K_2})_{\lambda_k}$ such that $(u_k, u_k) \in \delta_{kl} + qA$ and $\|e_i u_k\|^2 \in q^{-2}(h_i, \lambda_k)^{-2} qA$. Then $(\ ,\)$ is a polarization and for

$$L = \{ v \in M \mid \|v\|^2 \in A \} , \quad B = \{ b \in (M_{K_2} \cap L)/(M_{K_2} \cap qL) \mid (b, b)_0 = 1 \},$$

where $(\ ,\)_0: L/qL \rightarrow Q$ is the bilinear form induced by $(\ ,\)$, the pair (L, B) is a crystal pseudobase of M.

For an indeterminate z, let M_z denote the $U_q'(\mathfrak{g})$-module $Q(q)[z, z^{-1}] \otimes M$, where e_i and f_i act by $z^{\delta_{0i}} \otimes e_i$ and $z^{-\delta_{0i}} \otimes f_i$ called the **affinization module** of M. For $a \in Q(q)$, define the **evaluation module** $M_a = M_z/(z - a)M_z$. For $v \in M$, let u_a denote the corresponding element in M_a (i.e., the projection of $1 \otimes v$). Let $W(\varpi_r)$ denote the **fundamental module** from [Kas02].

Proposition 2.2 ([Kas02, Prop. 9.3]). Consider nonzero $a, b \in Q(q)$ such that $a/b \in A$. Then for any $r \in I_0$, there exists a unique nonzero $U_q'(\mathfrak{g})$-module homomorphism

$$R_{a,b}: W(\varpi_r)_a \otimes W(\varpi_r)_b \rightarrow W(\varpi_r)_a \otimes W(\varpi_r)_b,$$

that satisfies $R_{a,b}(u_a \otimes u_b) = u_0 \otimes u_a$ for some nonzero $u \in W(\varpi_r)_{\varpi_r}$. The map $R_{a,b}$ is called the (normalized) R-matrix and satisfies the Yang–Baxter equation.

Denote

$$W(\varpi_r; a_1, a_2, \ldots, a_m) = W(\varpi_r)_{a_1} \otimes W(\varpi_r)_{a_2} \otimes \cdots \otimes W(\varpi_r)_{a_m}.$$

Let $\kappa = s_i$ if \mathfrak{g} is of untwisted affine type and $\kappa = 1$ if \mathfrak{g} is of twisted affine type. Since the R-matrix satisfies the Yang–Baxter equation, we can define the map

$$R_\kappa: W(\varpi_r; q^{\kappa(s-1)}, q^{\kappa(s-3)}, \ldots, q^{\kappa(1-s)}) \rightarrow W(\varpi_r; q^{\kappa(s-1)}, q^{\kappa(3-s)}, q^{\kappa(1-s)})$$

by applying the R-matrix on every pair of factors according to the long element of the symmetric group on s letters $(q^{\kappa(s-1)}, q^{\kappa(s-3)}, \ldots, q^{\kappa(1-s)})$. Let $W_{r,s}$ denote the image of R_κ, which is a simple $U_q'(\mathfrak{g})$-module [Kas02], and we call $W_{r,s}$ a **Kirillov–Reshetikhin (KR) module**. From [CP95b, CP98], the module $W_{r,s}$ satisfies the Drinfeld’s polynomial characterization of the usual definition of a KR module.

Lemma 2.3 ([KKM+92, Lemma 3.4.1]). Let M_j and N_j, for $j = 1, 2$, be $U_q'(\mathfrak{g})$-modules such that there exists a pairing $(\ ,\)_j: M_j \times N_j \rightarrow Q(q)$ satisfying (2.1). Then there exists a pairing $(\ ,\): (M_1 \otimes M_2) \times (N_1 \otimes N_2) \rightarrow Q(q)$ defined by

$$(u_1 \otimes u_2, v_1 \otimes v_2) = (u_1, v_1)(u_2, v_2),$$

for all $u_j \in M_j$ and $v_j \in N_j$ with $j = 1, 2$, that satisfies (2.1).

Proposition 2.4 ([KKM+92, Prop. 3.4.3]). Let $u \in W(\varpi_r)_{\varpi_r}$ be a vector such that $\|u\|^2 = 1$.

1. The pairing $(\ ,\) : W_{r,s} \times W_{r,s} \rightarrow Q(q)$ constructed using Lemma 2.3 and the prepolarization on $W_{r,1}$ (see [Kas02]) is a nondegenerate prepolarization on $W_{r,s}$.

2. $\|R_u(u^{\otimes s})\|^2 = 1$.

3. $(W_{r,s})_{K_2}, (W_{r,s})_{K_2} \subseteq K_2$, where

$$(W_{r,s})_{K_2} = R_u\left((U_q'(\mathfrak{g})_{K_2}u)^{\otimes s}\right) \cap \left((U_q'(\mathfrak{g})_{K_2}u)^{\otimes s}\right)$$

is a $U_q'(\mathfrak{g})_{K_2}$-submodule of $W_{r,s}$.

3. Existence of KR crystals

This section is devoted to proving our main result.

Theorem 3.1. Let r be such that $W_{r,s}$ is multiplicity free as a $U_q(\mathfrak{g}_0)$-module for all $s \in \mathbb{Z}_{>0}$. Then $W_{r,s}$ admits a crystal pseudobase. Moreover, the KR crystal $B_{r,s}$ exists.
We prove Theorem 3.1 case-by-case. When \(r \) is adjacent to 0 or in the orbit of 0 under a Dynkin diagram automorphism, Theorem 3.1 was shown in [KKM+92]. Theorem 3.1 was shown in nonexceptional affine types [Oka07, OS08]. Thus, it remains to show Theorem 3.1 for the values given in Table 1.

From Proposition 2.4 and Proposition 2.1, it is sufficient to show for the \(U_q(\mathfrak{g}_0) \)-module decomposition \(W^{r,s} \cong \bigoplus_{k=1}^M V(\lambda_k) \) (where \(\lambda_k \in P_0^+ \)), there exists \(u_k \in (M_{K_k})_{\lambda_k} \) such that

(i) \((u_k, u_\ell) \in \delta_{k\ell} + qA\) and

(ii) \(\|e_i u_k\|^2 \in q^{-2(h_i, \lambda_k)-2}qA\).

Thus, we have

\[
\begin{array}{c|c|c|c|c|c}
g & E_6^{(1)} & E_7^{(1)} & E_8^{(1)} & F_4^{(1)} & E_6^{(2)} \\
\hline 3 & 5 & 2 & 6 & 7 & 4 & 4
\end{array}
\]

Table 1. The nodes \(r \) such that we show \(B^{r,s} \) exists.

The \(U_q(\mathfrak{g}_0) \)-module decomposition of \(W^{r,s} \) is given in [Cha01].

We require the following facts. Since the decomposition is multiplicity free, we have \((u_k, u_\ell) = 0 \) for all \(k \neq \ell \) since \(\text{wt}(u_k) \neq \text{wt}(u_\ell) \). Note that

\[
[m] \in q^{1-m}A, \quad \left[\begin{array}{c} m \\ k \end{array}\right]_q \in q^{-k(m-k)}A.
\]

Let \(M \) be a \(U'_q(\mathfrak{g}) \)-module. We will use this variant of Equation (2.1):

\[
(e_i^{(k)} v, w) = q_i^{k(h_i, \mu)} (v, f_i^{(k)} w), \quad (3.1a)
\]

\[
(f_i^{(k)} v, w) = q_i^{k(h_i, \mu)} (v, e_i^{(k)} w), \quad (3.1b)
\]

for all \(v \in M_{\mu} \). We also require

\[
f_i^{(a)} e_i^{(b)} v = \sum_{k=0}^{\min(a,b)} \left[a-b - \langle h_i, \mu \rangle k \right]_q e_i^{(b-k)} f_i^{(a-k)} v, \quad (3.2)
\]

for any \(v \in M_{\mu} \), which follows from applying the defining relation on \([e_i, f_i]\). By applying Equation (3.1), Equation (3.2), and the bilinearity of \((\ , \)\), we have for any \(v \in M_{\mu} \):

\[
\|e_i v\|^2 = q_i^{-1(h_i, \mu)} (v, f_i e_i v) \\
= q_i^{-1(h_i, \mu)} (v, e_i f_i v + [\langle h_i, \mu \rangle] q_i v) \\
= q_i^{-1(h_i, \mu)} ((v, e_i f_i v) + [\langle h_i, \mu \rangle] q_i (v, v)) \\
= q_i^{-1(h_i, \mu)} \left(q_i^{-(1+h_i, \mu)} \|f_i v\|^2 + [\langle h_i, \mu \rangle] q_i \|v\|^2\right)
\]

Thus, we have

\[
\|e_i v\|^2 = q_i^{-2(h_i, \mu)} \|f_i v\|^2 + q_i^{-1(h_i, \mu)} [\langle h_i, \mu \rangle] q_i \|v\|^2. \quad (3.3)
\]

For the remainder of the proof, we let \(u \in W^{r,s}_{\text{inv}} \) be such that \(\|u\|^2 = 1 \). We have

\[
\|f_i u\|^2 = q_i^{1+\delta_{ir,s}} (u, e_i f_i u) = q_i^{1+\delta_{ir,s}} (u, [\delta_{ir,s}] q_i u) = q_i^{1+\delta_{ir,s}} [\delta_{ir,s}] q_i, \quad (3.4)
\]

for all \(i \in I_0 \) by Equation (3.1a), the defining relation on \([e_i, f_i]\) (or Equation (3.2)), and \(e_i u = 0 \). So we have \(\|f_i u\|^2 \in q_i^2 A \) (note \(f_i u = 0 \) for all \(i \neq r \)).
3.1. **Type $E_6^{(1)}$, $r = 3$.** We claim the elements

$$ u_k := e_6^{(k)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u $$

are the desired elements, where $0 \leq k \leq s$. We have

$$ \text{wt}(u_k) = \lambda_k := (s - k) \Lambda_3 + k \Lambda_6 - (2s - k) \Lambda_6, $$

and from [Cha01], the classical decomposition is $W^{3,s} \cong \bigoplus_{k=0}^{s} V ((s - k) \Lambda_3 + k \Lambda_6)$. Thus, we need to show u_k satisfies (i) and (ii).

We first show (i). We have

$$ \|u_k\|^2 = q_0^{k(k-k)} (e_6^{(k)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u, f_6^{(k)} u_k) $$

from Equation (3.1a). Next, we have

$$ f_6^{(k)} u_k = f_6^{(k)} (e_6^{(k)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u) $$

$$ = \sum_{m=0}^{k} \left[\begin{array}{c} k \\ m \end{array} \right] e_6^{(k-m)} f_6^{(k-m)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u $$

$$ = e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u, $$

where the second equality comes from Equation (3.2) and the third equality follows from the fact $e_i f_j = f_j e_i$ for all $i \neq j$ and $f_6 w = 0$ (so only the $m = k$ term is nonzero). By computations similar to Equation (3.5), we have

$$ \|u_k\|^2 = (e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u, e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u) = \|e_0^{(k)} u\|^2. $$

Moreover, similar to Equation (3.5), we have

$$ \|e_0^{(k)} u\|^2 = (e_0^{(k)} u, e_0^{(k)} u) = q_0^{k(k+2s-2k)} (u, f_0^{(k)} e_0^{(k)} u) $$

$$ = q_0^{k(2s-k)} \sum_{m=0}^{k} \left[\begin{array}{c} 2s \\ m \end{array} \right] (u, e_0^{(k-m)} f_0^{(k-m)} u) = q_0^{k(2s-k)} \left[\begin{array}{c} 2s \\ k \end{array} \right] (u, u) $$

since $f_0 u = 0$. Hence, we have

$$ \|u_k\|^2 = q_0^{k(2s-k)} \left[\begin{array}{c} 2s \\ k \end{array} \right] \in 1 + qA. \quad (3.6) $$

Next, we show (ii). Fix some $i \in I_0$. From Equation (3.3), it remains to compute $\|f_i u_k\|^2$. We compute $\|f_i u_k\|^2$ depending on the value of i. We note that the case of $k = 0$ is done by Equation (3.4). Therefore, we assume $k \geq 1$. For $i = 6$, we have

$$ f_6^{u_k} = \left[\begin{array}{c} 1 - k + k \\ 1 \end{array} \right] q_6 e_6^{(k-1)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u + e_6^{(k-1)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u = e_6^{(k-1)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} u \quad (3.7) $$

by Equation (3.2) and the fact $f_6 u = 0$. Hence, similar to the computation for $\|u_k\|^2$, we have

$$ \|f_6 u_k\|^2 = q_6^{k-1} \left[\begin{array}{c} k \\ k-1 \end{array} \right] \left[\begin{array}{c} k-1 \\ 2s \end{array} \right] $$

$$ = q_6^{k-1} \left[\begin{array}{c} k \\ k-1 \end{array} \right] q_6^{k(2s-k)} \left[\begin{array}{c} 2s \\ k \end{array} \right] q_0. $$

For $i = 1$, we have $f_1 u_k = e_6^{(k)} e_5^{(k)} e_4^{(k)} e_2^{(k)} e_0^{(k)} f_1 u = 0$, and so $\|f_1 u_k\|^2 = 0$. For $i = 5, 4, 2$, we have $f_i u_k = 0$ by applying Equation (3.2) and the Serre relations (e.g., a straightforward calculation shows $e_4^{(k)} e_2^{(k-1)} e_0^{(k)} u = 0$.
by repeatedly applying the Serre relations). Finally, we have $f_{3u_k} = e_{6}^{(k)} e_{5}^{(k)} e_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u}$. Therefore, we have $\|f_{3u_k}\|^2 = \left\| e_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u} \right\|^2$ similar to Equation (3.5). However, for removing $e_{4}^{(k)}$, we obtain

\[
(e_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u}, e_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u}) = q_{4}^{(k-(k+1))} (e_{2}^{(k)} e_{0}^{(k)} f_{3u}, f_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u})
\]

by Equation (3.1a). Furthermore, we have

\[
f_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u} = \sum_{m=0}^{k} \binom{k-1}{m} q_{4}^{(k-m)} e_{2}^{(k)} e_{0}^{(k)} f_{3u} = q_{4}^{(k-1)} e_{2}^{(k)} e_{0}^{(k)} f_{3u} + \binom{k-1}{k} q_{4}^{(k)} e_{0}^{(k)} f_{3u} = e_{4}^{(k)} e_{0}^{(k)} f_{4f_{3u}},
\]

where we note that $\binom{k-1}{k} q_{4} = 0$ (recall that we assumed $k \geq 1$). Thus, by applying Equation (3.1a), we obtain

\[
\left\| e_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{3u} \right\|^2 = q_{4}^{-(k-1)} \left(e_{2}^{(k)} e_{0}^{(k)} f_{3u}, e_{4}^{(k)} e_{2}^{(k)} e_{0}^{(k)} f_{4f_{3u}} \right) = q_{4}^{-(k-1)} \left\| e_{2}^{(k)} e_{0}^{(k)} f_{4f_{3u}} \right\|^2.
\]

Next, we have that

\[
\left\| e_{2}^{(k)} e_{0}^{(k)} f_{4f_{3u}} \right\|^2 = \left\| e_{0}^{(k)} f_{2f_{4f_{3u}}} \right\|^2 = q_{0}^{(2s-1-k)} (f_{2f_{4f_{3u}}}, f_{0}^{(k)} e_{0}^{(k)} f_{2f_{4f_{3u}}}).
\]

We note that $f_{0} f_{2f_{4f_{3u}}} = 0$ for any $w \in W^{3,1}$ from weight considerations and the classical decomposition. So $f_{0} f_{2f_{4f_{3u}}} (w_{1} \otimes \cdots \otimes w_{s}) = 0$ for any $w_{1}, \ldots, w_{s} \in W^{3,1}$ from applying the coproduct $\Delta(f_{i}) = f_{i} \otimes 1 + K_{i} \otimes f_{i}$. Thus, we have $f_{0} f_{2f_{4f_{3u}}} = 0$ from the construction of u and $W^{3,s}$. Therefore, we compute

\[
f_{0}^{(k)} e_{0}^{(k)} f_{2f_{4f_{3u}}} = \sum_{m=0}^{k} \binom{2s-1}{m} q_{0}^{(2s-1-k)} e_{0}^{(k)} f_{2f_{4f_{3u}}} = \binom{2s-1}{k} q_{0}^{(2s-1-k)} f_{2f_{4f_{3u}}}
\]

similar to Equation (3.5) and using the Serre relations. Thus, we have

\[
\left\| e_{0}^{(k)} f_{2f_{4f_{3u}}} \right\|^2 = q_{0}^{(2s-1-k)} \binom{2s-1}{k} q_{0}^{(2s-1-k)} \left\| f_{2f_{4f_{3u}}} \right\|^2.
\]

Next, we see

\[
\left\| f_{2f_{4f_{3u}}} \right\|^2 = q_{2}^{-1} (f_{4f_{3u}}, e_{2f_{4f_{3u}}}) = (f_{4f_{3u}}, [1] q_{2} f_{4f_{3u}}) = q_{4}^{-1} (f_{3u}, e_{4f_{3u}}) = (f_{3u}, [1] q_{4} f_{3u}) = \|f_{3u}\|^2
\]

by a similar computation to Equation (3.4). Hence, we have

\[
\|f_{3u_k}\|^2 = q_{0}^{(2s-1-k)} \binom{2s-1}{k} q_{0}^{(2s-1-k)} \binom{2s-1}{k} q_{0}^{1+s[s] q_{3}^{2} A}
\]

where the last equality is by Equation (3.4). Hence, we have

\[
\|f_{3u_k}\|^2 = q_{0}^{(2s-1-k)} \binom{2s-1}{k} q_{0}^{(2s-1-k)} \binom{2s-1}{k} q_{0}^{1+s[s] q_{3}^{2} A},
\]

where $\langle h_{i}, \lambda_{k} \rangle \geq 0$.

3.2. Type $E_{6}^{(1)}$, $r = 5$. The following are the desired elements in $W^{5,s}$:

\[
u_{k} := e_{1}^{(k)} e_{3}^{(k)} e_{2}^{(k)} e_{0}^{(k)} u_{0} \in W^{5,s}_{(s-k) \otimes w_{s} + k \otimes w_{k}},
\]

where $0 \leq k \leq s$. The proof is the same as $r = 3$ after applying the order 2 diagram automorphism that fixes 0.
3.3. **Type $E_r^{(1)}$, $r = 2$.** The following are the desired elements in $W^{2,s}$:

$$u_k := e_7^{(k)} e_0 e_5 e_4 e_3 e_1 e_0 u_0 \in W^{2,s}_{(s-k)\pi_2 + k\pi_7},$$

where $0 \leq k \leq s$. The proof is similar to the $W^{3,s}$ in type $E_6^{(1)}$, where we compute

$$\|u_k\|^2 = q_0^{2(2s-k)} \left\| \frac{2s}{k} \right\|_{q_1},$$

$$\|f_7 u_k\|^2 = q_{11}^{k-1} \left[\frac{k}{k-1} q_{s} \|u_k\|^2, \right.$$

$$\|f_i u_k\|^2 = 0 \quad (i = 6, 5, 4, 3, 1),$$

$$\|f_2 u_k\|^2 = q_0^{2(2s-k)} \left\| \frac{2s-1}{k} \right\|_{q_2} \|f_2 u\|^2.$$

3.4. **Type $E_r^{(2)}$, $r = 4$.** We claim

$$u_{k',k} := e_0 e_1 e_2 e_3 e_0 u$$

are the desired elements, where $0 \leq k' \leq k \leq s$. We note that

$$\text{wt}(u_{k',k}) = \lambda_{k',k} := (s-k)\Lambda_4 + (k-k')\Lambda_1 - (2s-2k')\Lambda_0.$$

To obtain the parameterization of the classical decomposition

$$W^{4,s} \cong \bigoplus_{t_1, t_2 \geq 0, t_1 + t_2 \leq s} V(t_1\overline{\Lambda}_4 + t_2\overline{\Lambda}_1)$$

given in [Scr17, Prop. 9.31], we set $t_1 = s - k$ and $t_2 = k - k'$ (which is forced by weight considerations). Note that $t_1 \geq 0$ if and only if $k \leq s$; $t_2 \geq 0$ if and only if $k' \leq k$; and $t_1 + t_2 \leq s$ if and only if $0 \leq k'$ (as $t_1 + t_2 = s - k'$). Hence, we have the same classical decomposition.

To show (i), we have

$$\|u_{0,k}\|^2 = q_1^{k(k-k)} \left(e_2 e_3 e_2 e_1 e_0 u, f_1(k) u_{0,k} \right).$$

Next, we compute

$$f_1^{(k)} u_{0,k} = f_1^{(k)} e_1 e_2 e_3 e_2 e_1 e_0 u$$

$$= \sum_{m=0}^{k} \left[\begin{array}{c} k \\ m \end{array} \right] e_1^{(k-m)} f_1^{(k-m)} e_2^{(k)} e_3^{(k)} e_2^{(k)} e_1^{(k)} e_0^{(k)} u$$

$$= \sum_{m=0}^{k} \left[\begin{array}{c} k \\ m \end{array} \right] e_1^{(k-m)} e_3^{(k)} e_2^{(k)} e_2^{(k)} \sum_{p=0}^{k-m} \left[\begin{array}{c} k-m \\ p \end{array} \right] e_1^{(k-p)} f_1^{(k-m-p)} e_0^{(k)} u$$

$$= \sum_{m=0}^{k} \left[\begin{array}{c} k \\ m \end{array} \right] \left[\begin{array}{c} k-m \\ m \end{array} \right] e_1^{(k-m)} e_3^{(k)} e_2^{(k)} e_2^{(k)} e_1^{(m)} e_0^{(k)} u$$

$$= e_2 e_3 e_2 e_1 e_0 u,$$

where the last equality follows from the fact $e_2^{(k)} e_1^{(m)} e_0^{(k)} u = 0$ for all $k > m$ by the Serre relations and $e_2 u = 0$. Hence, we have

$$\|u_{0,k}\|^2 = \left\| e_2 e_3 e_2 e_1 e_0 u \right\|^2 = q_1^{k(k-k)} \left(e_2 e_3 e_2 e_1 e_0 u, f_2 u_{0,k} \right).$$
Now, similar to the previous computation, we obtain
\[f_{2}^{(k)} e_{2}^{(k)} e_{3}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u = \sum_{m=0}^{k} \left[\frac{k}{m} e_{2}^{(k-m)} f_{2}^{(k-m)} e_{3}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u \right. \]
\[= \sum_{m=0}^{k} \left[\frac{k}{m} e_{2}^{(k-m)} e_{3}^{(k)} \sum_{p=0}^{k-m} \left[\frac{k-m}{p} e_{2}^{(k-p)} f_{2}^{(k-p-m)} e_{1}^{(k)} e_{0}^{(k)} u \right. \right. \]
\[= \sum_{m=0}^{k} \left[\frac{k}{m} \left(- \frac{k-m}{m} \right) e_{2}^{(k-m)} e_{3}^{(k)} e_{2}^{(m)} e_{1}^{(k)} e_{0}^{(k)} u \right. \]
\[= e_{3}^{(k)} e_{2}^{(m)} e_{1}^{(k)} e_{0}^{(k)} u \]

since \(e_{3}^{(k)} e_{2}^{(m)} e_{1}^{(k)} e_{0}^{(k)} u = 0 \) for all \(k > m \) by the Serre relations (recall that \(A_{2} = -1 \) and \(e_{3}u = 0 \). Hence, we have
\[\|u_{0,k}\|^2 = \|e_{3}^{(k)} e_{2}^{(m)} e_{1}^{(k)} e_{0}^{(k)} u\|^2 = q_0(2k-k') \left[\frac{2s}{k} \right]_{q_0} \in 1 + qA, \]

where the last equality is shown similar to Equation (3.6).

Next, we consider
\[\|u_{k',k}\|^2 = q_0^{k' (2s-2k')} (u_{0,k}, f_0^{(k')} u_{k',k}). \]

We compute
\[f_0^{(k')} u_{k',k} = f_0^{(k')} e_{0}^{(k')} u_{0,k} = \sum_{m=0}^{k',-m} \left[\frac{2s}{m} e_{0}^{(k'-m)} f_0^{(k'-m)} u_{0,k} \right. \]
\[= \sum_{m=0}^{k'-m} \left[\frac{k'-m-k+2s}{p} e_{0}^{(k-p)} f_0^{(k'-m-p)} u_{0,k} \right] \left[\frac{k'-m-k+2s}{k'-m} e_{0}^{(k'-m+1)} u_{0,k} \right. \]

as \(k' - m \leq k \) (since \(k' \leq k \) and \(m \geq 0 \)) and \(f_0 u = 0 \). Next, we have \(e_{1}^{(k)} e_{0}^{(m)} u = 0 \) for all \(k > m \) by the Serre relations and \(e_{1} u = 0 \), and so the only term that is nonzero in Equation (3.10) is when \(m = k' \). Therefore, we have
\[\|u_{k',k}\|^2 = q_0^{k' (2s-k')} \left[\frac{2s}{k'} \right]_{q_0} \|u_{0,k}\|^2 = q_0^{k' (2s-k')} \left[\frac{2s}{k'} \right]_{q_0} q_0^{k (2s-k)} \left[\frac{2s}{k} \right]_{q_0} \in 1 + qA. \]

To show (ii), it remains to compute \(|f_i u_{k',k}|^2 \) by Equation (3.3), and by Equation (3.4), we can assume \(k \geq 1 \). For \(i \in I_0 \), we have \(f_i u_{k',k} = e_{0}^{(k')} f_i u_{0,k} \), and by the above, we have
\[\|f_i u_{k',k}\|^2 = q_0^{k' (2s-\delta_1-k')} \left[\frac{2s - \delta_1}{k'} \right]_{q_0} \|f_i u_{0,k}\|^2. \]

Next, similar to the computation in Equation (3.7), we have
\[f_{1} u_{0,k} = e_{1}^{(k)} e_{2}^{(k)} e_{3}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u + e_{1}^{(k)} e_{2}^{(k)} e_{3}^{(k)} e_{2}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u \]
\[= e_{1}^{(k)} e_{2}^{(k)} e_{3}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u + e_{1}^{(k)} e_{2}^{(k)} e_{3}^{(k)} e_{2}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u \]
\[= e_{1}^{(k)} e_{2}^{(k)} e_{3}^{(k)} e_{2}^{(k)} e_{1}^{(k)} e_{0}^{(k)} u, \]

where the last equality is using \(e_{2}^{(k)} e_{1}^{(m)} e_{0}^{(k)} u = 0 \) for all \(k > m \). Therefore, we have
\[\|f_{1} u_{0,k}\|^2 = q_1^{k-1} \left[\frac{k}{k-1} \right] q_0^{k (2s-k)} \left[\frac{2s}{k} \right]_{q_0} \]

by a computation similar to Equation (3.6). Similar to Equation (3.9), we have
\[\|f_{4} u_{0,k}\|^2 = q_0^{k (2s-1-k)} \left[\frac{2s-1}{k} \right] \|f_{4} u\|^2. \]
We also have $f_2u_{0,k} = f_3u_{0,k} = 0$ by applying the Serre relations. Thus, we see that (ii) holds.

3.5. **Type $E^{(1)}_7$, $r = 6$.** The following are the desired elements in $W^{6,s}$:

$$u_{k',k} := e_0^{(k')} c_1^{(k')} c_3^{(k')} c_4^{(k')} c_5^{(k')} c_6^{(k')} c_8^{(k')} c_0^{(k')} u \in W^{6,s}_{(s-t_1-t_2)\varpi_6+t_2\varpi_1},$$

where $0 \leq k' \leq k \leq s$. Then $\text{wt}(u_{k',k}) = (s-k)\Lambda_6 + (k-k')\Lambda_1 - (2s-2k')\Lambda_0$. Showing the classical decomposition is the same as in [Cha01] is similar to the $r = 4$ case for type $E^{(2)}_6$. Moreover, it is similar to show that

$$\|u_{k',k}\|^2 = q_0^{k'(2s-k')} \left[\frac{2s}{k'}\right]^{k(2s-k)} \left[\frac{2s}{k}\right]_{q_0},$$

$$\|f_i u_{k',k}\|^2 = q_0^{k'(2s-\delta_i-k')} \left[\frac{2s-\delta_i}{k'}\right]_{q_0} \|f_i u_{0,k}\|^2 \quad (i \in I_0),$$

$$\|f_1 u_{0,k}\|^2 = q_8^{k-1} \left[\frac{k}{k-1}\right]_{q_8} \|u_{0,k}\|^2,$$

$$\|f_2 u_{0,k}\|^2 = 0 \quad (i = 2, 3, 4, 5, 7),$$

$$\|f_6 u_{0,k}\|^2 = q_0^{k(2s-1-k)} \left[\frac{2s-1}{k}\right]_{q_0} \|f_6 u\|^2.$$

3.6. **Type $E^{(1)}_8$, $r = 1$.** The following are the desired elements in $W^{1,s}$:

$$u_{k',k} := e_0^{(k')} e_8^{(k')} e_7^{(k')} e_6^{(k')} e_5^{(k')} e_4^{(k')} e_3^{(k')} e_2^{(k')} e_1^{(k')} e_0^{(k')} u \in W^{1,s}_{(s-t_1-t_2)\varpi_8+t_2\varpi_1},$$

where $0 \leq k' \leq k \leq s$. Then $\text{wt}(u_{k',k}) = (s-k)\Lambda_1 + (k-k')\Lambda_8 - (2s-2k')\Lambda_0$. Showing the classical decomposition is the same as in [Cha01] is similar to the $r = 4$ case for type $E^{(2)}_6$. Moreover, it is similar to show that

$$\|u_{k',k}\|^2 = q_0^{k'(2s-k')} \left[\frac{2s}{k'}\right]^{k(2s-k)} \left[\frac{2s}{k}\right]_{q_0},$$

$$\|f_i u_{k',k}\|^2 = q_0^{k'(2s-\delta_i-k')} \left[\frac{2s-\delta_i}{k'}\right]_{q_0} \|f_i u_{0,k}\|^2 \quad (i \in I_0),$$

$$\|f_8 u_{0,k}\|^2 = q_8^{k-1} \left[\frac{k}{k-1}\right]_{q_8} \|u_{0,k}\|^2,$$

$$\|f_2 u_{0,k}\|^2 = 0 \quad (i = 2, 3, 4, 5, 6, 7),$$

$$\|f_1 u_{0,k}\|^2 = q_0^{k(2s-1-k)} \left[\frac{2s-1}{k}\right]_{q_0} \|f_1 u\|^2.$$

3.7. **Type $F^{(1)}_4$, $r = 4$.** The following are the desired elements in $W^{4,s}$:

$$u_{k',k} := e_0^{(k')} e_1^{(k')} e_2^{(2k')} e_3^{(k')} e_4^{(k')} e_5^{(k')} e_6^{(k')} e_8^{(k')} e_0^{(k')} u \in W^{4,s}_{(s-2k)\varpi_4+(k-k')\varpi_1},$$

where $0 \leq k' \leq k \leq s/2$. Then $\text{wt}(u_{k',k}) = (s-2k)\Lambda_4 + (k-k')\Lambda_1 - (s-2k')\Lambda_0$. To obtain the parameterization of the classical decomposition

$$W^{4,s} \cong \bigoplus_{t_2=0}^{s/2} \bigoplus_{t_1=0}^{t_2} V((s-2t_2)\Lambda_4 + t_1 \Lambda_1)$$

given in [Cha01], we take $t_1 = k - k'$ and $t_2 = k$. Indeed, we have $t_2 \leq s/2$ if and only if $k \leq s/2$; $t_1 \geq 0$ if and only if $k \leq k'$; and $t_1 \leq t_2$ if and only if $0 \leq k'$.
Moreover, it is similar to the $r = 4$ case for type $E_6^{(2)}$ to show that
\[
\|u_0^{k',-k}\|^2 = q_0^{k'(2s-k')} \left[\begin{array}{c} 2s \\ k' \end{array}\right] q_0^{(2s-k)} \left[\begin{array}{c} 2s \\ k \end{array}\right], \\
\|f_i u_0^{k',-k}\|^2 = q_0^{k'(2s-\delta_i-1-k')} \left[\begin{array}{c} 2s - \delta_i \\ k' \end{array}\right] q_0 \|f_i u_0\|^2, \\
\|f_1 u_0\|^2 = q_1^{k} \left[\begin{array}{c} k \\ k-1 \end{array}\right] q_1 \|u_0\|^2, \\
\|f_2 u_0\|^2 = \|f_3 u_0\|^2 = 0, \\
\|f_4 u_0\|^2 = q_0^{k(2s-1-k)} \left[\begin{array}{c} 2s - 1 \\ k \end{array}\right] q_0 \|f_4 u\|^2.
\]

REFERENCES

[Bou02] N. Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by And...
[LNS+16b] Cristian Lenart, Satoshi Naito, Daisuke Sagaki, Anne Schilling, and Mark Shimozono. A uniform model for Kirillov-
Reshetikhin crystals II. Alcove model, path model, and $P = X$. Int. Math. Res. Not. IMRN, 2016.
[LNS+17] Cristian Lenart, Satoshi Naito, Daisuke Sagaki, Anne Schilling, and Mark Shimozono. A uniform model for Kirillov-
Reshetikhin crystals III: Nonsymmetric Macdonald polynomials at $t = 0$ and Demazure characters. Transform.
Groups, pages 1–39, 2017.
[LS18] Cristian Lenart and Travis Scrimshaw. On higher level Kirillov–Reshetikhin crystals, Demazure crystals, and related
uniform models. Preprint, arXiv:1809.02908, 2018.
[Nak03] Hiraku Nakajima. t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent.
Theory, 7:259–274 (electronic), 2003.
[Nao18] Katsuyuki Naoi. Existence of Kirillov-Reshetikhin crystals of type $G_2^{(1)}$ and $D_4^{(3)}$. J. Algebra, pages 47–65, 2018.
[Nao19] Katsuyuki Naoi. Existence of Kirillov-Reshetikhin crystals of type $E_6^{(1)}$. In preparation, 2019.
[NS06] Satoshi Naito and Daisuke Sagaki. Construction of perfect crystals conjecturally corresponding to Kirillov-
Reshetikhin modules over twisted quantum affine algebras. Comm. Math. Phys., 263(3):749–787, 2006.
[NS08a] Satoshi Naito and Daisuke Sagaki. Crystal structure on the set of Lakshmibai-Seshadri paths of an arbitrary level-
zero shape. Proc. Lond. Math. Soc. (3), 96(3):582–622, 2008.
[NS08b] Satoshi Naito and Daisuke Sagaki. Lakshmibai-Seshadri paths of level-zero shape and one-dimensional sums associ-
ated to level-zero fundamental representations. Compos. Math., 144(6):1525–1556, 2008.
[Oka07] Masato Okado. Existence of crystal bases for Kirillov-Reshetikhin modules of type $D_{n}^{(1)}$. Publ. Res. Inst. Math. Sci.,
43(4):977–1004, 2007.
[OS08] Masato Okado and Anne Schilling. Existence of Kirillov-Reshetikhin crystals for nonexceptional types. Represent.
Theory, 12:186–207, 2008.
[OSS03] Masato Okado, Anne Schilling, and Mark Shimozono. Virtual crystals and Kleber’s algorithm. Comm. Math. Phys.,
238(1-2):187–209, 2003.
[SCc08] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic
combinatorics, 2008. http://combinat.sagemath.org.
[Scr17] Travis Scrimshaw. Uniform description of the rigged configuration bijection. Preprint, arXiv:1703.08945, 2017.
[Yam98] Shigenori Yamane. Perfect crystals of $U_q(G_2^{(1)})$. J. Algebra, 210(2):440–486, 1998.