A multi-label classifier estimates the binary label state (relevant vs irrelevant) for each of a set of concept labels, for any given instance. Probabilistic multi-label classifiers provide a predictive posterior distribution over all possible labelset combinations of such label states (the powerset of labels) from which we can provide the best estimate, simply by selecting the labelset corresponding to the largest expected accuracy, over that distribution. For example, in maximizing exact match accuracy, we provide the mode of the distribution. But how does this relate to the confidence we may have in such an estimate? Confidence is an important element of real-world applications of multi-label classifiers (as in machine learning in general) and is an important ingredient in explainability and interpretability. However, it is not obvious how to provide confidence in the multi-label context and relating to a particular accuracy metric, and nor is it clear how to provide a confidence which correlates well with the expected accuracy, which would be most valuable in real-world decision making. In this article we estimate the expected accuracy as a surrogate for confidence, for a given accuracy metric. We hypothesise that the expected accuracy can be estimated from the multi-label predictive distribution. We examine seven candidate functions for their ability to estimate expected accuracy from the predictive distribution. We found three of these to correlate to expected accuracy and are robust. Further, we determined that each candidate function can be used separately to estimate Hamming similarity, but a combination of the candidates was best for expected Jaccard index and exact match.

1. Introduction

Multi-label classifiers model the relationship between an observation vector and a set of label concepts. Multi-label classification is relevant to numerous domains, including categorising documents, tagging images, assigning medical diagnoses, and bioinformatics. A review of some well-known multi-label methods is given in Zhang and Zhou (2013), and more generally a unifying view (with the general case of multi-output learning) is provided by Waegeman et al. (2019).

Formally, given a set of L label concepts $L = \{1, 2, \ldots, L\}$, a labelset can be denoted $y = [y_1, \ldots, y_L] \in \{0, 1\}^L$, where $y_j = 1$ implies that the j-th label is relevant to the corresponding input vector x (and $y_j = 0$ implies that it is not relevant). In other words, y equivalently denotes a subset of label concepts. There are 2^L such possible labelsets (i.e., combinations of labels); i.e., the size of the powerset of L and the domain $\{0, 1\}^L$.

For any input vector x, a probabilistic multi-label classifier provides a distribution $P(Y|x)$ over all 2^L elements of the powerset. This provides a useful measure of confidence $P(\hat{y}|x)$ for any given prediction \hat{y}, so that a practitioner may have some insight into the reliability of the prediction.

Our notation is provided in Table 1. We further clarify with two toy examples as follows, which related to possible applications of multi-label classifiers.

Example 1
Given a patient profile x the task is to estimate if the patient has suffered from any of a number of ailments $L = \{\text{Diabetes}, \text{Hypertension}, \text{SARS-CoV-2}\}$. We want to output a prediction $\hat{y} = [\hat{y}_1, \hat{y}_2, \hat{y}_3]$ to apply to a patient’s medical record, for future reference. For example, if $\hat{y}_3 = 1$ there is
Exact Match. The confidence of our prediction should be different depending on what we are predicting. different evaluation metrics. In Example 1, we might use Hamming Similarity. In Example 2, we might use

However, it is not clear which is the best way to derive that confidence; in particular, with regard to

classification which is, according to the model, quite certain and likely to be correct under the relevant
state of the patient which will be used as a tool for diagnosis. In this case, the accurate detection of combinations alongside the patient profile \(x \) can be crucial. The diseases represented by the first two labels are comorbidities for covid, and therefore it is of utmost importance to detect the correct combination, especially for certain factors represented in \(x \), e.g., indicating an elderly patient. Therefore, we are concerned about the confidence on the predicted combination, and how it might relate to a metric that evaluates labels is combination.

In both examples, beyond a classification \(\hat{y} \), we desire some confidence value \(f \) associated with such a classification; such that – for example – a value from \(f \) near 0 represents low confidence, and near 1 a strong belief that the patient has in the past contracted the covid virus. It is important to have a quantification of how strong that belief is, and how it relates to the expected accuracy. How confident should we be that each of the three assessments – \(\hat{y}_1, \hat{y}_2, \) and \(\hat{y}_3 \) – is correct?

Example 2 Consider the same set of categories as in the previous example, but label-vector \(\hat{y} \) refers to an estimate of the current state of the patient which will be used as a tool for diagnosis. In this case, the accurate detection of combinations alongside the patient profile \(x \) can be crucial. The diseases represented by the first two labels are comorbidities for covid, and therefore it is of utmost importance to detect the correct combination, especially for certain factors represented in \(x \), e.g., indicating an elderly patient. Therefore, we are concerned about the confidence on the predicted combination, and how it might relate to a metric that evaluates labels is combination.

In both examples, beyond a classification \(\hat{y} \), we desire some confidence value \(f \) associated with such a classification; such that – for example – a value from \(f \) near 0 represents low confidence, and near 1 a strong belief that the patient has in the past contracted the covid virus. It is important to have a quantification of how strong that belief is, and how it relates to the expected accuracy. How confident should we be that each of the three assessments – \(\hat{y}_1, \hat{y}_2, \) and \(\hat{y}_3 \) – is correct?

In both examples, beyond a classification \(\hat{y} \), we desire some confidence value \(f \) associated with such a classification; such that – for example – a value from \(f \) near 0 represents low confidence, and near 1 a strong belief that the patient has in the past contracted the covid virus. It is important to have a quantification of how strong that belief is, and how it relates to the expected accuracy. How confident should we be that each of the three assessments – \(\hat{y}_1, \hat{y}_2, \) and \(\hat{y}_3 \) – is correct?

In both examples, beyond a classification \(\hat{y} \), we desire some confidence value \(f \) associated with such a classification; such that – for example – a value from \(f \) near 0 represents low confidence, and near 1 a strong belief that the patient has in the past contracted the covid virus. It is important to have a quantification of how strong that belief is, and how it relates to the expected accuracy. How confident should we be that each of the three assessments – \(\hat{y}_1, \hat{y}_2, \) and \(\hat{y}_3 \) – is correct?

In both examples, beyond a classification \(\hat{y} \), we desire some confidence value \(f \) associated with such a classification; such that – for example – a value from \(f \) near 0 represents low confidence, and near 1 a strong belief that the patient has in the past contracted the covid virus. It is important to have a quantification of how strong that belief is, and how it relates to the expected accuracy. How confident should we be that each of the three assessments – \(\hat{y}_1, \hat{y}_2, \) and \(\hat{y}_3 \) – is correct?
Numerous methods from the literature have been proposed can produce all ingredients of equation (1), offering some mechanism to deal with the inherent complexity. For example, the class of methods often called the ‘label powerset approach’ ([Tsoumakas et al., 2011], [Read et al., 2014]), which implicitly replaces the powerset \(\{0,1\}^L \) with a smaller subset of much smaller dimension. The family of classifier chains ([Read et al., 2021]) offers search mechanisms to efficiently traverse parts of the space with a greedy exploitation of the gain rule ([Read et al., 2011]) or some other approximation ([Mena et al., 2016]). Even when the base classifiers (responsible for individual label predictions) are not inherently probabilistic, such as a decision tree, an approximation to \(P(Y|x) \) can easily be obtained via, e.g., ensemble voting.

Note that in this paper we do not focus on the issue of computational complexity, but rather take an interest in the confidence predictions themselves and more generally, the posterior joint distribution they provide: how confident can we be regarding any given prediction \(\hat{y} \), and specifically the mode \(y^* \)? In other words, given the posterior distribution \(P(Y|x) \) provided by our classifier, with what confidence can we predict \(y^* \), with regard to our chosen accuracy metric? What is the expected accuracy of our prediction? We answer this question in terms of the shape of \(P(y|x) \), and we present seven candidate confidence functions to produce an estimate. We confirm with an empirical investigation on a range of multi-label datasets and a number of different methods.

The article will proceed as follows: Section 2 gives an introduction to probabilistic multi-label learning and describes the research problem of confidence in multi-label predictions. In Section 3 we survey and discuss existing approaches in the literature and connect them to our contribution. In Section 4 we introduce the set of candidate functions that have the potential to measure expected accuracy. The potential of these functions to measure the expected accuracy for multi-label prediction is examined throughout this article. Sections 5–7 provide experimental results and discussion, examining the effectiveness of each candidate expected accuracy function and the effect of data and methods on each. Final concluding remarks and speculation of promising future work is given in Section 8.

2. Confidence for Probabilistic Multi-label Learning

In this section we provide background for discussing confidence in the context of multi-label learning. Later in Section 3 we will address some other relevant prior work, and in Section 4 we develop the candidate functions that we analyse specifically in this work.

2.1. Confidence in binary classification

The confidence of a probabilistic binary (single-label) classifier in its prediction \(\hat{y} \) for some test instance \(x \), is the expected accuracy for providing that prediction versus the unknown true label \(y \). If this accuracy metric is classification accuracy,

\[
S(\hat{y}, y) = [\hat{y} = y]
\]

where \([A]\) is an indicator function, returning 1 if \(A \) is true and 0 otherwise; i.e., \(S(\hat{y}, y) \) provides 1 if the prediction \(\hat{y} \) is identical to the true label \(y \). Then our confidence is

\[
E_S(\hat{y}) = E[S|x] = E_{Y\sim P}([\hat{y} = Y] | x) = \left(\sum_{y \in \{0,1\}} 1_{y=\hat{y}} \cdot P(Y = y|x) \right) = P(Y = \hat{y}|X = x)
\]

i.e., the expected accuracy; expected value of \(S \). Because we do not (at testing time, in practice) know the true value of \(y \), we only have the conditional distribution \(P(Y|x) \) is provided by the probabilistic binary classifier.

For example, if

\[
P(Y = \hat{y}|X = x) = 0.6
\]

we can understand that the model is 60% confidence; or has a 60% chance of the making a correct prediction \(\hat{y} \) for that given observation \(x \); and thus that the expected accuracy is 0.6.

High confidence is equivalent to low uncertainty. The uncertainty is expressed in the form of the expectation, which arises because we have no knowledge of the true \(y \) that random variable \(Y \) takes here.

2.2. Confidence in multi-label classification

A probabilistic multi-label classifier provides

\[
P(Y|X = x)
\]

...
and thus $P(Y = y_i|X = x)$ for any $y_i \in \{0,1\}^L$, i.e., the probability of each label state y_i to be applied to instance x. We provide an example in Table 2 (recall, also, the summary of notation in Table 1). An excellent introduction and analysis in the multi-label context (for readers not already familiar) is provided by Dembczyński et al. (2012).

Table 2.: Example of a distribution $P(y|x)$ under an observation x where $L = 3$, i.e., $\{P(y_i|x)|i = 1,\ldots,2^L\}$, showing each $y_i = [y_1, y_2, y_3]$. This distribution is also shown graphically in Figure 1e. Marginal probabilities for each label, $P(Y_j|x)$, are shown in the final row. The expected accuracy $E[S]$ for the three different metrics S we study, are also appended alongside each labelset/prediction.

| i | y_1 | y_2 | y_3 | $P(Y = y_i|X = x)$ | $E[HS]$ | $E[EM]$ | $E[JS]$ |
|-----|-------|-------|-------|---------------------|---------|---------|---------|
| 1 | 0 | 0 | 0 | 0.000 | 0.611 | 0.000 | 0.000 |
| 2 | 0 | 0 | 1 | 0.333 | 0.500 | 0.333 | 0.333 |
| 3 | 0 | 1 | 0 | 0.250 | 0.556 | 0.250 | 0.333 |
| 4 | 0 | 1 | 1 | 0.000 | 0.444 | 0.000 | 0.347 |
| 5 | 1 | 0 | 0 | 0.250 | 0.556 | 0.250 | 0.333 |
| 6 | 1 | 0 | 1 | 0.000 | 0.444 | 0.000 | 0.347 |
| 7 | 1 | 1 | 0 | 0.167 | 0.500 | 0.167 | 0.417 |
| 8 | 1 | 1 | 1 | 0.000 | 0.389 | 0.000 | 0.389 |

$P(y|x)$ 0.42 0.42 0.33

In multi-label classification, there is the complication of many accuracy metrics being used in the community1. To compute confidence for multi-label classification, we must compute the expected accuracy with respect to the chosen metric.

One may immediately verify that examining the marginal and joint modes shown in Table 2 refer to different tasks/objectives, since the marginal modes indicate a suitable prediction of $\hat{y} = [0,0,0]$ (with a threshold of 0.5), whereas the joint mode suggests $y^* = [0,0,1]$. Further discussion is given in, e.g., Dembczyński et al. (2012).

Here are the similarity metrics S that we consider in this paper, based on their importance and popularity in the multi-label literature (they can be found throughout many papers, e.g., Read et al. (2011); Tsoumakas et al. (2011); ? and references therein), defined over a set of N instances and L labels:

\begin{align*}
\text{Hamming Similarity (HS)} & := \frac{1}{NL} \sum_{n=1}^{N} \sum_{j=1}^{L} \left[y_j^{(n)} = \hat{y}_j^{(n)} \right], \\
\text{Exact Match (EM)} & := \frac{1}{N} \sum_{n=1}^{N} \left[y^{(n)} = \hat{y}^{(n)} \right], \text{ and} \\
\text{Jaccard Similarity (JS)} & := \frac{1}{N} \sum_{i=1}^{N} \frac{|y_i^{(n)} \land \hat{y}^{(n)}|}{|y_i^{(n)} \lor \hat{y}^{(n)}|},
\end{align*}

where $y^{(n)}$ is the labelset associated to the nth instance $x^{(n)}$, where \land and \lor are the bitwise logical AND and OR operations, respectively. Other notation is clarified in Table 1.

The expected multi-label accuracy, extending Eq. (2), is

\begin{align*}
E_S(y_i) = E[S|x] = E_{Y \sim P(Y|x)}[S(y_i,Y)|x] = \left(\sum_{y_j \in \{0,1\}^L} P(y_j|x)S(y_i,y_j) \right)
\end{align*}

which produces the final columns in Table 2 according to each of the metrics of our study.

And so, the multi-label classification task may be posed as

\begin{align*}
\hat{y} = \arg \max_{y_i \in \{0,1\}^L} E_S(y_i)
\end{align*}
As clearly visible in Table 2, the labelset with the greatest similarity [to the true labelset] (shown in bold) depends on that similarity/accuracy function.

Note that by using Exact Match, we obtain the mode of the labelset distribution,

\[
\hat{y} = \arg \max_{y \in \{0,1\}^L} \mathbb{E}_{y \sim P(Y|x)}[\text{EM}(y, Y)|x]
\]

\[
= \arg \max_{y \in \{0,1\}^L} \left(\sum_{y_j \in \{0,1\}^L} \text{EM}(y_i, y_j) P(y_j|x) \right)
\]

\[
= \arg \max_{y \in \{0,1\}^L} P(y_i|x) = y^*
\]

therefore, equation 7 is equivalent to equation 1 when using Exact Match. This is also seen in Table 2.

If we were able to assume independent labels we can expand \(P(y_i|x) \) from equation 1 as a product of independent elements and move the arg max inside, to obtain

\[
\hat{y} = \arg \max_{y_1, \ldots, y_L} [P(y_1|x) \cdots P(y_L|x)]
\]

\[
= [\arg \max_{y_1 \in \{0,1\}} P(y_1|x), \ldots, \arg \max_{y_L \in \{0,1\}} P(y_L|x)]
\]

(8)

If using Hamming Similarity, we obtain,

\[
\hat{y} = \arg \max_{y \in \{0,1\}^L} \mathbb{E}_{y \sim P(Y|x)}[\text{HS}(y, y)]
\]

\[
= \arg \max_{y \in \{0,1\}^L} \left(\sum_{y_j \in \{0,1\}^L} \text{HS}(y_i, y_j) P(y_j|x) \right)
\]

\[
= \arg \max_{y \in \{0,1\}^L} \left(\sum_{y_j \in \{0,1\}^L} 1 \sum_{l=1}^L [y_l = y_j] P(y_j|x) \right)
\]

\[
= \arg \max_{y \in \{0,1\}^L} \left(\sum_{l=1}^L \sum_{y_j \in \{0,1\}^L} [y_l = y_j] P(y_j|x) \right)
\]

\[
= \arg \max_{y \in \{0,1\}^L} \left(\sum_{l=1}^L \mathbb{E}_{Y \sim P(Y|x)} [y_l = y_j] \right)
\]

(9)

The expected value of each label being 0 or 1, is positive, so we can compute the argmax of each element of the sum to obtain the prediction for each label:

\[
\hat{y}_l = \arg \max_{z \in \{0,1\}} (\mathbb{E}_{Y \sim P(Y|x)}[z = y_l]) \text{ for each label } l
\]

which relates to Eq. (8); showing that the chosen labelset consists of the mode for each label (marginal mode). It is worth remarking that the sum comes outside the expectation in the derivation of expected Hamming similarity.

In this paper we study candidate functions \(f \) for measuring confidence in multi-label predictions, based on expected accuracy, for different accuracy metrics. More precisely, \(f \) is based on \(P(Y|x) \) wrt \(S \) – for a given \(x \). We assume that these components are all available and determined.

To illustrate with an example: Figure 1 shows six hypothetical distributions \(P(Y|x) \) over the powerset of three labels, conditioned on some hypothetical instances \(x \). For the prediction, we could provide \(y^* \), the mode labelset of \(P(Y|x) \) known to maximize exact match similarity. For confidence in this prediction we could return \(P(y^*|x) \). Intuitively we would expect that distribution [a] results in a low expected accuracy since all labelset combinations are equally unlikely, whereas distribution [c] should result in high expected accuracy; yet it is not obvious how we should measure the expected accuracy from the remaining distributions. The goal of this paper is to formalise and test such intuitions, and provide a function \(f \) with which to do so.
Figure 1.: Six possible multi-label distributions $P(y|x)$ over three labels for a hypothetical given x. It is clear that the top left distribution should provide the lowest expected accuracy (and correspondingly, the greatest uncertainty), and the bottom right distribution should provide high expected accuracy and the least uncertainty regarding classification, particularly with regard to exact match similarity, but it is not clear what level of expected accuracy we should provide to the remaining distributions. Distribution (e) replicates graphically the distribution given in Table 2.

3. Related Work

As we already mentioned in Section 2, in the multi-label context it is not obvious as in single-label classification where one may simply look at returning a label along with its associated confidence, since many labels are involved. In this section we look at related methods for making decisions under uncertainty in context of classification and, in particular to multi-label classification; in reflection of a posterior distribution $P(Y|x)$.

3.1. Thresholding

A simple approach to gain trust in a probabilistic method is to calibrate a threshold according to desired confidence. For example, to only accept a label (or – labelset – in the multi-label context) if the probability it is relevant is greater than 0.9 (or some other ad-hoc value). Thresholding has been considered in, e.g., Largeron et al. (2012).

This can help reduce false positives, but it does not cover the case where also not applying the labelset (combination of labels) also carries significant risk; it encourages a large number of false negatives. It is also not clear how to set a threshold for labelsets for multi-label classification, since it is rare for any given combination of labels y_i to carry a high value in $P(y_i|x)$ (one may look at the examples in Figure 1).

3.2. Ranking

Many authors, rather than attempting an explicit separation between relevant and irrelevant labels, have instead looked at ranking labels Wu and Zhou (2017), Jain et al. (2010). An intrinsic label-wise ranking is readily available via their marginal scores $P(y_j|x)$ (recall the example from Table 2, which corresponds to two equivalent best rankings: $(1,2,3) \equiv (2,1,3)$ from best to worst, wrt label index).
Our problem is that we want to predict the confidence/accuracy of the instance, i.e., of the labelset combination. And in this article we look at ranking but for investigating the relationship between score functions and expected accuracy; details and examples in Section 4.2. This is different from using the ranking as a direct means to gauge relative label-wise confidence without a threshold.

3.3. Reject Option

Classification with a reject option (also known as abstention), has been an active research area [Bartlett and Wegkamp (2008); Yuan and Wegkamp (2010); Grandvalet et al. (2009)]. This is a natural extension of simple thresholding to express risk on positive (relevance) and negative (not-relevant) labelling of a particular instance. Adding a reject option to a binary problem in this way adds a third state in which the classifier declares that it is not providing a prediction (i.e., it abstains). The three states are defined by partitioning the decision space into three regions \((\hat{y} = 1 \text{ true}, \hat{y} = 0 \text{ false, and reject})\), instead of the usual two partitions for binary classification.

A new and interesting look at abstention in the context of multi-label classification is given in Nguyen and H"ullermeier (2019), building on Pillai et al. (2013) where the rejection region was defined for each label using an upper an lower bound, and computed using a cost function based on a predefined cost for rejection. In the multi-label-setting one can consider partial abstention Nguyen and H"ullermeier (2020), where a model may deliver predictions for a subset of class labels.

In this work, we do not target this specific reject option, but rather the expression of confidence associated to a given labelset prediction.

3.4. Cautious Prediction

One may consider being cautious (or, equivalently, imprecise) about predictions when uncertainty is high, and provide a set of possible labellings in the form of multiple predictions or posterior distributions \(\{P(Y|x)^{m}\}_{m=1}^{M}\) rather than a single one (the index \(m\) is for an entire distribution); and rather than simply accepting the most likely labelset, or refusing to make a decision. In other words, the uncertainty for a given prediction is described by this credal set. These are also known also as distributionally robust models, and they have recently been investigated in the multi-label case Carranza-Alarcon et al. (2020); Destercke (2014). However, the credal set itself does not answer the question we tackle in this study: how to gauge the potential accuracy of a given labelset prediction/combination \(y\) in reference to a given distribution/model \(P(Y|x)\).

3.5. Skeptical Inference

A further step beyond cautious prediction is to be skeptical in the sense of considering as valid only those inferences that are true for every distribution within the credal set. For example (in the binary case) if the credal set involves \(M = 2\) distributions parametrized by \(\{\theta_1, \theta_2\} = \{0.2, 0.7\}\) (where \((P^m(Y = 1|x)) \leftrightarrow \theta_m\) and thus \(P^m(Y = 0|x) = 1 - \theta_m\); then a positive label would not be assigned, since both values are below a cut-off of 0.5. The same process can be used on labelsets, for an appropriate cut-off, but then this produces connections to the threshold and reject options discussed above.

3.6. Bayesian Inference

Bayesian inference is a huge and well-established area of machine learning Barber (2012) where one aims to obtain a posterior \(P(\theta|y,X)\) to model the uncertainty over the parameters \(\theta\) of the classifier. In general, a number of techniques, such as Monte Carlo methods, are needed to deal with obtaining such a model. Bayesian methods are popular particularly where human expert-knowledge can be taken into account into designing the prior distribution over parameters \(P(\theta)\).

The predictive posterior (in Bayesian terminology, in the multi-label case), is still \(P(Y|x)\) (as we have considered so far). In Bayesian inference one is usually interested in returning this full distribution as a guide to uncertainty, but a Bayes classifier (havving to make a point-wise estimate/classification) under 0/1 loss will provide a MAP estimate as per equation [1].

There are numerous other points of overlap. For example, buried in the literature of particle filters (i.e., sequential important sampling; recursive Bayesian estimation; see, e.g., Djuric et al. (2003) in the signal processing community one finds the need to measure the degeneracy of a distribution (the distribution represented by \(L\) weighted particles; specifically, in order to carry out a re-sampling step). This is connected to what we want to achieve in the context of this work: degeneracy refers to a distribution...
which is flat, such as the one in Figure 1a. Measuring this kind of degeneracy is in fact what we intend to do (albeit, for a different purpose). A typical choice in particle filters is the effective sample size

$$\text{ESS} = \left(\sum_{i=1}^{n} P(y_i)^2 \right)^{-1}$$

(we have adapted the notation) which is along the vane of what we study in the following section (indeed, ESS is essentially a form of collision entropy without the log); as we investigate the utility of the using the multi-label distribution for each instance to estimate the expected accuracy of the predicted labelset, where expected accuracy is measured with respect to the chosen similarity function. A side remark: particle filters provide models for $P(y|x)$ where $y \in \mathbb{R}^L$, unlike in our case; where $y \in \{0,1\}^L$; a related treatment for multi-output regression is given in [Read and Martino (2020)].

4. Expected Accuracy Candidates for Multi-Label Classification

We aim to use the posterior distribution $P(Y|x)$ to provide a score representative of expected accuracy,

$$f(P(Y|x)) \in [0, 1] \quad (10)$$

or more specifically $f(x)$, where a value close to 1 indicates that we expect to achieve high accuracy by predicting \hat{y} for x (using $P(Y|x)$ as per equation (7)) and a value close to 0 indicates that this prediction \hat{y} is almost certainly wrong.

In other words, we hypothesise that the expected accuracy is a function of the multi-label label powerset distribution, but it is not clear how to map the distribution to an expected accuracy value (i.e., what is the appropriate f).

We approach this problem of determining f using traditional scientific method, where we propose a set of functions $\{f_s\}$ corresponding to statistics of the distribution, and examine if the statistics provided by the candidate functions are associated to expected accuracy, when taking into account the environmental conditions (such as the data, and parameters used). If an association is found, it provides evidence that f_s is a component of f.

In Section 4.1, we will examine seven functions of this categorical distribution that may be useful for estimating the expected accuracy, in equation (10).

Then in Section 4.2 we discuss how to make use of these functions for evaluating accuracy in practical experimental settings.

4.1. Candidate Expected Accuracy Functions

We desire an expected accuracy function f that, given a labelset distribution $P(Y|x)$, returns a measurement of the distribution indicating the expected accuracy of the prediction for a given instance. There are two conditions that the function must satisfy:

1. $f = 0$ if all labelsets have equal probability (e.g., in Figure 1a).
2. $f = 1$ if the distribution contains one labelset with probability 1 and all others probability 0 (e.g., in Figure 1f).

In the following we examine candidate accuracy functions f that meet these constraints and also provide suitable values $f \in (0, 1)$ for “in-between” distributions (such as the four other distributions in Figure 1).

We will examine these functions in detail to determine which provide values that are most closely associated to the expected accuracy for multi-label prediction using a given similarity metric.

4.1.1. High probability (HP)

The de facto standard for measuring confidence of multi-label predictions due to its use in other forms of classification and minimization of the Exact Match metric:

$$H_{HP} = \max_{y_i \in \{0,1\}^L} P(y_i) \quad (11)$$

It is simply the probability of the labelset that has the greatest probability (mode). To remove the dependence of this function on the label set size, we normalise the function so that the maximum value
of 1 is given when all but one item has zero probability, and minimum value of 0 is given when all items have equal probability;

\[C_{HP} = \max_{y_i \in \{0,1\}^L} \frac{2^L P(y_i) - 1}{2^L - 1} \]

where \(L \) is the number of labels. For example, for 3 labels, a uniform distribution of \(P(y_i) = \frac{1}{8} \) (since there are 8 possible combinations) gives \(C_{HP} = \frac{2^3 \cdot \frac{1}{8} - 1}{2^3 - 1} = 0 \); the lowest expected accuracy. Since this function is the most commonly used, it is used as the baseline in each experiment.

4.1.2. Top Gap (TG)

HP only examines the mode of the multi-label distribution. However, it may well be that the probability for other labelsets are very close to this maximum value, in which case we can be less confident about a correct prediction, as exemplified in Figure 1b.

We also consider as a candidate the difference in probability of the most probable label combination and the second most probable label combination. We call this function Top Gap (TG), which is given as:

\[C_{TG} = \left[\max_{y_i \in \{0,1\}^L} P(y_i) \right] - \left[\max_{y_i \in \{0,1\}^L \setminus \{y^*\}} P(y_i) \right] \]

The intuition behind the function is that a labelset distribution with a large TG implies greater confidence and hence higher expected accuracy, since one labelset has a much greater probability then the others.

If \(C_{TG} \) is small, then there is little difference between the top two probabilities, meaning that there is uncertainty as to which of the associated label combinations is the best choice. If \(C_{TG} \) is large, then there is a large difference in probability between the most probable label combination and all of the other label combinations, meaning that there is a clear choice from the probability distribution.

This function is already appropriately limited between 0 and 1, therefore no normalisation is needed.

4.1.3. Shannon Entropy (SE)

Shannon entropy is a measure of the information content from a channel, given the distribution of symbols transmitted through the channel. The greater the uncertainty of the symbols, the greater the information content. Using our notation, the entropy of the multi-label distribution is:

\[H_{SE} = - \sum_{y_i \in \{0,1\}^L} P(y_i) \log(P(y_i)) \]

which measures the uncertainty provided by the labelset distribution \cite{Shannon1948} \((H = 0 \) means no uncertainty), where \(0 \times \log(0) = 0 \). The range of \(H \) depends on the number of labelset combinations in our multi-label problem. To adjust the range to \([0, 1]\), we can use normalised entropy:

\[H_{SE}^* = - \sum_{y_i \in \{0,1\}^L} P(y_i) \frac{\log(P(y_i))}{\log(2^L)} = - \sum_{y_i \in \{0,1\}^L} P(y_i) \log_{2^L}(P(y_i)) \]

where \(H_{SE}^* = 1 \) is provided when the probability of all class combinations are equal \((\) \). Note that normalised entropy is independent of the entropy log base, since the normalisation converts the base to \(2^L \).

To obtain an expected accuracy candidate, we subtract the entropy score from 1 to obtain

\[C_{SE} = 1 + \sum_{y_i \in \{0,1\}^L} P(y_i) \log_{2^L}(P(y_i)) \]

where \(C_{SE} \in [0, 1] \) is a measure of expected accuracy using Shannon Entropy \((C_{SE} = 0 \) implies no confidence and low expected accuracy, while \(C_{SE} = 1 \) implies full confidence and high expected accuracy for the prediction.

9
4.1.4. Collision Entropy (CE)

Collision entropy (CE) is a commonly used form of Rényi entropy, with parameter $\alpha = 2$.

$$H_{\text{CE}} = -\log \sum_{y_i \in \{0,1\}^L} P(y_i)^2$$

(18)

Collision entropy can be normalised to provide an expected accuracy candidate, giving a score of zero when the distribution is Uniform, and a score of 1 when all but one of the label combinations are zero:

$$C_{\text{CE}} = 1 + \log_2 \sum_{y_i \in \{0,1\}^L} P(y_i)^2$$

(19)

4.1.5. Min Entropy (ME)

The amount of information in (number of bits required to represent) an object is measured as the log of the reciprocal of the object’s probability. Shannon Entropy is the expected value of this information measure across all possible objects. Rather than measuring the expected value (mean), we can measure the minimum information across all objects using Min Entropy (ME):

$$H_{\text{ME}} = -\log \max_{y_i \in \{0,1\}^L} P(y_i)$$

(20)

This entropy measurement can be normalised to obtain a potential measure of expected accuracy:

$$C_{\text{ME}} = 1 + \log_2 \max_{y_i \in \{0,1\}^L} P(y_i)$$

(21)

where $C_{\text{ME}} \in [0,1]$, $C_{\text{ME}} = 0$ implies low expected accuracy, while $C_{\text{ME}} = 1$ implies high expected accuracy (full confidence in the prediction).

4.1.6. Gini Impurity

Gini impurity (GI) is a common measure of impurity, used to determine the branching variables in a decision tree. Gini impurity increases as the distribution approaches Uniform and provides a score of zero for distributions containing probabilities of zero for all but one item. Gini impurity is given as:

$$H_{\text{GI}} = \sum_{y_i \in \{0,1\}^L} P(y_i)(1 - P(y_i))$$

(22)

A normalised form of Gini impurity provides us with an potential measure of expected accuracy:

$$C_{\text{GI}} = 1 - \sum_{y_i \in \{0,1\}^L} \frac{P(y_i)(1 - P(y_i))}{1 - 2^{-L}}$$

(23)

where $C_{\text{GI}} = 0$ when all labels have the same probability, and $C_{\text{GI}} = 1$ when all but one item have zero probability.

4.1.7. Chi-squared Statistic

The Chi-squared statistic (CS) is a measure of difference between the set of expected and observed sample frequencies from a multinomial distribution. The statistic follows a Chi-squared distribution, if the observed frequencies come from the expected distribution. For our use, we compare probabilities rather than frequencies, and we set the expected distribution to be Uniform, so the further the computed distribution is from Uniform, the greater the score.

$$H_{\text{CS}} = \sum_{y_i \in \{0,1\}^L} \frac{(P(y_i) - 2^{-L})^2}{2^{-L}}$$

(24)

The normalised Chi-square statistic ensures a maximum of 1 when all but one of the items have zero probability, and a score of 0 when all items have equal probability.

$$C_{\text{CS}} = \sum_{y_i \in \{0,1\}^L} \frac{(P(y_i) - 2^{-L})^2}{1 - 2^{-L}}$$

(25)
Figure 2.: A comparison of the seven candidate accuracy functions over a probability distribution with three elements. The x axis shows the probability associated to the first of the three elements, the probability of the third element is 0 for the left plot, 1/3 for the middle plot and 1/2 for the right plot; the y axis shows the expected accuracy provided by the candidates. All functions are normalised to provide a value of 1 when all but one item has probability zero, and a value of zero when all items have equal probability.

A comparison of the behaviour of the seven candidate expected accuracy functions C_{HP}, C_{TG}, C_{SE}, C_{CE}, C_{ME}, C_{GL} and C_{CS}, on a multinomial distribution of size three, is shown in Figure 2. The left figure shows the effect of changing the first and second probabilities while holding the third to 0. The normalisation has forced each of the functions to have a score of 1 when the first or second probability is 1 (meaning the remaining probabilities are 0). For the middle plot, the third probability is 1/3. We see that all functions have a value of 0 when all probabilities are equal (all 1/3). The plot on the right has the third probability set to 1/2. The three plots show that High Prob and Top Gap are linear except at the cusp points, Min Entropy is concave, while the remaining functions are convex. All functions show the same decrease then increase shape, except for Top Gap in the right plot, which increases then decreases (due to it only observing the difference between the top two probabilities). We also find that High Prob and Min Entropy are flat in the right plot, since they only depend on the greatest probability, which does not change for this plot. Finally, we find that Chi-Squared and Gini Impurity have provided equal expected accuracy for all probability values in all plots.

4.2. Relative and Absolute Association

The candidate expected-accuracy functions described above (Section 4.1) generically stated in equation (10) provide a measure f for the labelset distribution of each instance. This score provided by f has the potential to be used in practice to determine the suitability of the model for the given instance x (i.e., to estimate the expected accuracy of its prediction for that instance), with higher values (closer to 1) implying that the model is more suitable. For the score to be useful it must have some association to the actual accuracy of the prediction. Therefore, the candidate functions will be assessed based on their association to the true expected accuracy.

We discuss two levels of expected accuracy association: a weaker form of association that we call relative association and stronger form that we call absolute association.

Let $D = \{(x_n, \hat{y}_n)\}_{n=1}^N$ be a data set of N test instances alongside their predictions. Let $r_n \in \{1, \ldots, N\}$ indicate the ranking of the n-th instance, such that $r(f) := r_1, \ldots, r_N$ is a permutation of $1, \ldots, N$, corresponding to rank when scored by candidate function f. In this context, $r_1(f)$ is the index of the instance providing highest score $f(P(y|x_{r_1}))$, and so on. Likewise, let $r_1(E)$ correspond to the index of the instance giving highest expected accuracy (as per equation (6)), i.e., $E(\hat{y}_{r_1})$ is the highest value, and $E(\hat{y}_n)$ is the lowest. Recall that the expected accuracy is with respect to a similarity function of interest, S.

Relative Association: A candidate function f provides a relative association to expected accuracy (with respect to a given similarity function) if the ordering of the instances $r_1(f), \ldots, r_N(f)$ provides a close match (e.g., monotonically increasing) to the ordering of the instances provided by their expected accuracy $r_1(E), \ldots, r_N(E)$. In other words we measure

$$\text{RelativeAssociation}(r(f), r(E))$$
where \(f \) and \(E \) are both associated with some similarity function \(S \). The association will not necessarily be the same for different \(S \).

An example is given in Table 3.

Table 3: An example for \(N = 3 \) instances, \(x_1, x_2, x_3 \), supposing \(f := f_{ME} \) (i.e., using Min Entropy) and \(E := E_{HS} \) (i.e., using Hamming Similarity). In relative association we compare the ranks (columns \(r(E) \) vs \(r(f) \)). In absolute association, we compare columns \(E \) and \(f \). In experiments we do this for different classes of \(f \) and \(E \); and different similarity metrics \(S \).

\(i \)	\(x_i \)	\(\hat{y}_i = [\hat{Y}_1 \ \hat{Y}_2 \ \hat{Y}_3] \)	\(E \)	\(f \)	\(r(E) \)	\(r(f) \)
1	\(x_1 \)	\[0 \ 0 \ 0\]	0.6	0.2	1	3
2	\(x_2 \)	\[0 \ 0 \ 1\]	0.5	0.8	2	2
3	\(x_3 \)	\[0 \ 1 \ 0\]	0.5	3.1	2	1

Absolute Association: A candidate function \(f \) provides an absolute association to expected accuracy if the scores provided by each are associated. In other words we measure

\[
\text{Absolute Association}(f, E)
\]

Absolute association is stronger, since it implies that we are able to predict the expected accuracy from the candidate function. Whereas relative association only provides us with which instances have a greater expected accuracy than others (suggesting that there is a monotonic relationship).

We begin by examining relative association and then follow by examining absolute association to expected accuracy.

When measuring relative expected accuracy, we examine the order (ranking) of the scores, not the values of the scores, therefore some of the candidate expected accuracy functions become equivalent. We find that both CE and Gini impurity, and Min entropy and High probability provide equivalent orderings/rankings.

With regard to min entropy (given in equation (21)), the terms \(1 + \log_2(y) \) are monotonic functions which do not effect the order of \(y \). Therefore the ordering provided by \(C_{ME} \) is equivalent to the ordering provided by \(C_{HP} \).

Gini impurity is given as:

\[
C_{GI} = 1 - \sum_{y_i \in \{0,1\}^L} \frac{P(y_i)(1 - P(y_i))}{1 - 2^{-L}}
\]

\[= 1 - \sum_{y_i \in \{0,1\}^L} \frac{P(y_i) - P(y_i)^2}{1 - 2^{-L}} \quad (27)\]

\[= 1 - \sum_{y_i \in \{0,1\}^L} \frac{1}{1 - 2^{-L}} + \sum_{y_i \in \{0,1\}^L} \frac{P(y_i)^2}{1 - 2^{-L}} \quad (28)\]

\[= 1 - \frac{1}{1 - 2^{-L}} + \sum_{y_i \in \{0,1\}^L} \frac{P(y_i)^2}{1 - 2^{-L}} \quad (29)\]

\[= \frac{-2^{-L}}{1 - 2^{-L}} + \sum_{y_i \in \{0,1\}^L} \frac{P(y_i)^2}{1 - 2^{-L}} \quad (30)\]

which provides an equivalent ordering to \(\sum_{y_i \in \{0,1\}^L} P(y_i)^2 \). By examining equation (19) and again noting that \(1 + \log_2(x) \) is monotonic, we find that CE has an equivalent ordering to \(\sum_{y_i \in \{0,1\}^L} P(y_i)^2 \) and

\[
C_{CS} = \sum_{y_i \in \{0,1\}^L} \frac{(P(y_i) - 2^{-L})^2}{1 - 2^{-L}}
\]

(31)

\[
= \sum_{y_i \in \{0,1\}^L} P(y_i)^2 - 2^{-L} P(y_i) + 2^{-2L}
\]

(32)

\[
= -\frac{2^{1-L}}{1 - 2^{-L}} + \frac{2^{-L}}{1 - 2^{-L}} + \sum_{y_i \in \{0,1\}^L} P(y_i)^2
\]

(33)

\[
= -\frac{2^{-L}}{1 - 2^{-L}} + \sum_{y_i \in \{0,1\}^L} P(y_i)^2
\]

(34)

provides an equivalent ordering to \(\sum_{y_i \in \{0,1\}^L} P(y_i)^2 \) and is identical to \(C_{GI} \). Showing that \(C_{GI} \), \(C_{CE} \) and \(C_{CS} \) provide the same ordering.

Therefore, when analysing relative accuracy, we examine only HP, TG, SE and CE. When analysing absolute accuracy, we examine HP, TG, SE, CE, ME and CS.

4.3. Bias in sample entropy

Estimating the expected accuracy of the multi-label distribution using the seven candidates requires us to first compute the probability of each labelset combination in the \(2^L \) size categorical distribution. Computing this distribution can be time consuming, depending on the number of labels. For example, given 50 labels, we have a categorical distribution with \(2^{50} = 1.1259 \times 10^{15} \) items. If it takes a millisecond to compute the probability of one item, it will take 35702 years to compute the set of \(2^{50} \) probabilities. To avoid this problem, we can either limit ourselves to data with a smaller number of labels, or approximate the distribution.

Each multi-label distribution can be approximated by sampling from the conditional distribution of each label, to obtain a sample from the multi-label distribution. But unfortunately, sample estimates of entropy are biased. Analysis has shown how to correct for such bias [Schürmann 2004], but not for categorical distributions with a huge number of categories. It is easy to see that the problem comes from estimating the long tail probabilities. For example, using 50 labels, leading to a categorical distribution containing \(1.1259 \times 10^{15} \) items, a sample of size \(1,000,000 \) will miss many of the items in the tail and underestimate their contribution to be \(0 (0 \times \log 0) \). Further research must be performed to identify how we can avoid or correct for the bias in sample entropy, but we will leave that for future work.

During our analysis, we want to control as many of the variables as possible to ensure that our experimental results are meaningful and not confounded with unknown effects. We do not want this sample bias to be a factor that influences this analysis, therefore, we will avoid sampling and compute the whole distribution, but limit the data to manageable sizes.

5. Experimental Setup

In this section we describe the experimental setup. Then, in Section 6 and Section 7 we look at and discuss the experimental results with regard to relative and absolute expected accuracy, respectively.

An extensive experimental evaluation is conducted to investigate which candidate functions (of those detailed in Section 4.1) are associated to the expected accuracy, and in which context (which kind of dataset, for what kind of classification method, and under which evaluation metric).

We use three probabilistic methods involving independence (BR), some dependence (CT) and full-dependence (ECC) modelling, described and referenced in Section 1; thus encompassing the full range of possible dependence modelling of the labels. We use three evaluation metrics – Exact Match, Hamming Similarity and Jaccard Similarity – as described in Section 2.2.

Datasets are listed in Table 4; available from the MULAN2, MEKA3 and STARE4 (for the Stare dataset) repositories. Note again that we have selected data containing no more that 25 labels to avoid

2 http://mulan.sourceforge.net/datasets-mlc.html
3 https://sourceforge.net/projects/meka/files/Datasets/
4 http://www.ces.clemson.edu/~ahoover/stare/
sampling bias (described in Section 4.3). This is not an article about extreme multi-label classification (for reference, see, e.g., Liu et al. (2017), therefore we do not consider scalability a primary concern.

Thus, the variables involved in our experiment are: 1) the candidate expected accuracy function, 2) the data set, 3) the accuracy metric; and 4) the method of multi-label classification.

We investigate the utility of the candidate functions in two stages.

1. Relative accuracy identifies if the candidate has an association with expected accuracy.

2. Absolute accuracy identifies the potential for using the candidates estimate for measuring expected accuracy.

We examine these in Section 6 and Section 7, respectively.

6. Relative Expected Accuracy

A candidate function provides high relative expected accuracy if it is weakly monotonically increasing with respect to the chosen evaluation score, implying an association. To examine if an expected accuracy candidate provided a weak increasing monotonic relationship to the evaluation scores, the Kendall’s τ correlation between the accuracy and candidate scores was computed for each combination of variables: candidate function, multi-label method, data set and evaluation function, giving 216 correlation results. These results are presented in Appendix A using HP as the baseline. The results show that TG is generally the same or has lower correlation than HP, but the for remaining candidate functions there are some cases that have higher correlation, some the same and some worse.

According to these results, it is clear that the data, method and metric variables effect the correlation, but it is not clear how they effect the correlation. To obtain insight into the effect of each variable on the [accuracy − candidate score] correlation, we provide a marginal analysis for accuracy and robustness.

6.1. Analysis 1: Accuracy Analysis for Relative Accuracy

Having found that there is merit in the candidate expected accuracy functions other than HP in particular conditions, we now delve deeper and generalise the results. In particular, we examine the marginal effect of each experimental variable (candidate function, dataset and method – under each metric) on the correlation.

We use Fisher’s Z transformation (Hotelling 1953) to provide variance stabilisation for the correlation values to allow us to model the effect of each of the variables on the correlation using a linear fixed effects model. The results are presented in Table 5.

Notice the high R^2 value and small RMSE values for each model, showing that the deviation of the data to this analytical model is small. This implies that the analytical model is appropriate for the correlation data analysis.

The table shows each variable (Expected Accuracy Function, Data, Classifier) using the baseline values High Prob for Function, Emotions for Data and ECC for Classifier. The entries in the table show the bias (change in mean variance stabilised Kendall’s tau correlation) when changing the variable from the baseline to the given value. A positive value implies that the correlation has increased, implying that the candidate function and accuracy are closer to being weakly monotonic, while a negative value implies a reduction in correlation.

The table shows that TG reduces the correlation (shown by its negative coefficient), and that Shannon Entropy and Collision Entropy increase the correlation (shown by their positive coefficients) for each of

Type	N	L	M	LC	
Emotion	593	6	72	1.87	audio
Scene	2407	6	294	1.07	image
Yeast	2417	14	103	4.24	biology
Stare	373	15	44	1.32	medical
Enron	1702	20	1001	3.38	text
Slashdot	3782	22	1079	1.18	text

Table 4.: Data sets and associated statistics, where LC is label cardinality: the average number of labels relevant to each example.
Table 5.: The expected change in variance stabilised Kendall’s τ correlation for the three variables (Expected Accuracy function, Data, Classifier) and standard error in parentheses, with respect to each variable’s baseline, independent of the other variable values. A value of 0 represents no change in the correlation when changing from the baseline to the chosen item, a positive value shows an increase in correlation, a negative value implies a decrease in correlation. The stars represent the statistical significance level of each expected change. The footer of the table shows the goodness of fit statistics for the analytical model.

	Exact	Jaccard	Hamming
Expected Accuracy Function Bias (Baseline: High Prob)			
Top Gap	−0.058 (0.017)***	−0.070 (0.018)***	−0.073 (0.013)***
Shannon Entropy	0.008 (0.017)	0.050 (0.018)***	0.017 (0.013)
Collision Entropy	0.012 (0.017)	0.030 (0.018)*	0.023 (0.013)*
Data Bias (Baseline: Emotions)			
Scene	0.124 (0.021)***	0.094 (0.022)***	0.138 (0.016)***
Yeast	0.109 (0.021)***	0.024 (0.022)	0.070 (0.016)***
Stare	−0.001 (0.021)	−0.006 (0.022)	0.036 (0.016)**
Enron	0.128 (0.021)***	−0.293 (0.022)***	0.157 (0.016)***
Slashdot	−0.050 (0.021)**	−0.094 (0.022)***	−0.018 (0.016)
Classifier Bias (Baseline: ECC)			
Independent	−0.069 (0.015)***	−0.085 (0.015)***	−0.074 (0.011)***
CT	−0.020 (0.015)	−0.027 (0.015)*	−0.046 (0.011)***
R²	0.751	0.886	0.838
Adj. R²	0.710	0.867	0.812
Num. obs.	72	72	72
RMSE	0.051	0.053	0.039

***p < 0.01, **p < 0.05, *p < 0.1
The results of the analysis are in Table 6. The expected change in variance stabilised Kendall’s τ correlation when adjusting four data features (Label Count, Label Comb, Label Card, Feature Count), or changing Classifier or Similarity Function (standard error in parentheses), independent of the other variable values. A value of 0 represents no change in the correlation when changing the Data Feature, or when changing from the baseline to the chosen item, a positive value shows an increase in correlation, a negative value implies a decrease in correlation. The stars represent the statistical significance level of each expected change. The footer of the table shows the goodness of fit statistics for the analytical model.

Table 6: The expected change in variance stabilised Kendall’s τ correlation when adjusting four data features (Label Count, Label Comb, Label Card, Feature Count), or changing Classifier or Similarity Function (standard error in parentheses), independent of the other variable values. A value of 0 represents no change in the correlation when changing the Data Feature, or when changing from the baseline to the chosen item, a positive value shows an increase in correlation, a negative value implies a decrease in correlation. The stars represent the statistical significance level of each expected change. The footer of the table shows the goodness of fit statistics for the analytical model.

![Table 6](image)

The results imply that we should be using HP for Exact, Shannon Entropy for Jaccard and Collision Entropy for Hamming similarity.

The Data section shows that changing the data set does have an effect on the expected correlation, with Enron having the greatest effect.

The Classifier section indicates that using an Independent classifier leads to significantly worse correlation at the 1% level for Exact, Hamming and Jaccard. CT also provides a drop in expected correlation, but is only significant at the 1% level when using Hamming similarity. Since we generally expect that the order from lowest to highest (due to the complexity of each method) would be Independent, CT, ECC, the analysis shows that a more accurate classifier leads to higher expected correlation.

Note that since the analytical model is modeling each variable independently, the significant results for Data and Classifier do not impact the significant results for Expected Accuracy functions.

6.2. Analysis 2: Robustness Analysis for Relative Accuracy

Robustness is very important when measuring expected accuracy, since we require that the results have only small variation based on minor changes in experimental parameters (i.e., the correlation between the accuracy and candidate expected accuracy should not be affected by a change in data, method, or evaluation function, etc). In other words, we want these different parameters to have negligible effect on the correlation between the classifier accuracy and the estimated expected accuracy.

For this analysis, we examined each candidate function independently, and examined the effect of several data features, change in classifier, and change in evaluation function on the candidate expected accuracy to accuracy. The results of the analysis are in Table 7.

The section Data Features Expected Gradient within Table 7 contains Label Count (the number of labels in the multi-label data), Label Comb (the number of unique label combinations found in the data),
Label Card (the average label cardinality for the data set), and Feature Count (the number of prediction features in the data). Each of these are either positive real or positive integer variables, therefore the estimated analytical model coefficient for each is its gradient (the expected increase in Fisher transformed correlation when the associated variable increases by 1). For example, note that the coefficient for Label Count in the HP column is \(-0.046\), telling us that we expect the Fisher transformed correlation for HP to decrease by 0.046 with each additional label in a dataset, implying that there is a dependence of the correlation on the the number of labels in the data.

Note that we are not concerned about the baseline being non-zero; to show robustness, we are required to examine if changes to the experiment variables changes the correlation therefore we are only concerned with the coefficients of the remaining additive effects. An ideal expected accuracy function will have zero for all coefficients (implying that any change in experiment variables does not effect its correlation to accuracy).

We find that the least robust is TG, having statistically significant non-zero coefficients for all but the Hamming coefficient (meaning that if we change the data, classifier, or similarity function, the acceptance score will correlate differently to the prediction accuracy). The most robust is SE, having no statistically significant non-zero coefficients, followed closely by CE, having coefficients with significance only at the 10% level.

It is interesting to see that HP is affected by changing the classifier from ECC to Independent, or changing the accuracy metric to Jaccard. Also the sample gradients for Label Count, Label Card and Feature count are negative (as these increase in the data, the correlation will reduce), while the sample gradient for Label comb is positive (as the number of label combinations increase, the correlation will increase) for all acceptance parameters. However, note that many of these results are not statistically significant.

The goodness of fit statistics (shown at the bottom of the table) are all poor, especially for SE and CE. This is a good sign, showing that the correlation has little association with the data parameters, classifier and accuracy metric. We conclude this section noting that SE is the most robust in terms of Kendall’s correlation to accuracy.

7. Absolute Expected Accuracy

We now examine the potential for each candidate expected accuracy function to provide absolute accuracy, where the value of the candidate expected accuracy is an estimation of the accuracy of the prediction. An accurate absolute accuracy score provides us with a good estimate of the accuracy of a prediction. To measure the accuracy of each candidate for absolute accuracy, we measure the Pearson correlation between the candidate expected accuracy estimate and the accuracy of the prediction. A high correlation implies that there is a linear relationship between the candidate score and the accuracy of a given prediction, which in turn tells us that we are able to use the candidate to estimate the expected accuracy of the prediction. Therefore, we want to find which of the candidates leads to the greatest Pearson correlation.

In the previous analysis we left out the Minimum Entropy (ME) and Chi-Squared (CS) candidates since they provided the same ordering of values to HP and CE respectively but absolute results may be different, hence we include them in this section. Results are presented in Table 7.

All candidate expected accuracy comparisons are relative to HP. Each Expected Accuracy Bias, Data Bias and Classifier Bias is the change in mean Fisher transformed Pearson correlation between the predicted expected accuracy and true expected accuracy; a positive bias means that the change of variable has lead to an increase in correlation, meaning that the confidence function is able to provide a better estimates of expected accuracy.

The Expected Accuracy portion of the table shows that TG is highly significant for Exact, Hamming and Jaccard Similarity and the coefficients are negative; thus, TG is significantly worse that HP. The only other statistically significant coefficient is for SE when using Jaccard Similarity (positive).
Table 7.: The expected change in variance stabilised Pearson’s correlation for the three variables (Expected Accuracy function, Data, Classifier) and standard error in parentheses, with respect to each variable’s baseline, independent of the other variable values. A value of 0 represents no change in the correlation when changing from the baseline to the chosen item, a positive value shows in increase in correlation, a negative value implies a decrease in correlation. The stars represent the statistical significance level of each expected change. The footer of the table shows the goodness of fit statistics for the analytical model.

Expected Accuracy Function Bias (Baseline: High Prob)	Exact	Jaccard	Hamming
TG	-0.073 (0.026)***	-0.093 (0.023)***	-0.096 (0.017)***
SE	0.000 (0.026)	0.067 (0.023)***	0.025 (0.017)
CE	-0.006 (0.026)	0.029 (0.023)	0.024 (0.017)
ME	-0.024 (0.026)	-0.017 (0.023)	-0.010 (0.017)
CS	0.011 (0.026)	0.037 (0.023)	0.024 (0.017)

Data Bias (Baseline: Emotions)			
Scene	0.117 (0.026)***	0.054 (0.023)**	0.113 (0.017)***
Yeast	0.214 (0.026)***	0.102 (0.023)***	0.126 (0.017)***
Stare	-0.028 (0.026)	-0.043 (0.023)*	-0.004 (0.017)
Enron	0.073 (0.026)***	-0.464 (0.023)***	0.136 (0.017)***
Slashdot	-0.032 (0.026)	-0.113 (0.023)***	-0.020 (0.017)

Classifier Bias (Baseline: ECC)			
Independent	-0.071 (0.019)***	-0.089 (0.016)***	-0.087 (0.012)***
CT	-0.019 (0.019)	-0.025 (0.016)	-0.056 (0.012)

R²	0.634	0.900	0.771
Adj. R²	0.587	0.888	0.742
Num. obs.	108	108	108
RMSE	0.079	0.070	0.051

***p < 0.01, **p < 0.05, *p < 0.1
In the Data section, we find that Scene, Yeast and Enron all have a significant effect when using each of the Exact, Hamming and Jaccard similarities, and that Stare and Slashdot also have a significant effect when using Jaccard Similarity.

In the Classifier portion of the table, all of the coefficients are negative, implying that changing from ECC to either Independent or CT will reduce the correlation between accuracy and acceptance, where Independent leads to a greater statistically significant drop.

Finally the goodness of fit statistics show that the three variables (Expected Accuracy function, Data and Classifier) explain the variability in correlation very well when using Jaccard Similarity (shown by the high R^2 value), followed by Hamming and Exact. The R^2 value for Exact is on the low side, indicating that there may additional variables or interactions that we have not taken into account. The small RMSE values give an indication of the expected analytical model error, where all are similar. This leads us to believe that the low R^2 value for Exact is due to the accuracy-candidate expected accuracy correlation having greater total variance.

Thus, results indicate that SE should be used when measuring acceptance for Jaccard Similarity. There was no significant evidence for using other acceptance parameters over the baseline HP.

7.2. Analysis 4: Robustness Analysis for Absolute Accuracy

We now investigate the robustness of each candidate function when used for absolute accuracy. The results of the analysis are shown in Table 8; interpretation is similar to Table 6 of Section 6.2: split into five sections, the first four containing the marginal effects and the last section containing goodness of fit statistics. Each estimated coefficient is accompanied with a standard error directly below it in parentheses.

TG is affected by most of the variables (being significant at the 5% level for most coefficients). Change in any of the variable values for both CE and CS has no significant effect on the accuracy-confidence correlation. Both HP and ME show a significant effect for changing the classifier from ECC to Independent and HP has the addition significant effect when changing from Exact to Jaccard Similarity. SE shows to have a significant effect on two of the data variables (Label card and Feature count), but it is interesting to see that this effect is positive, meaning that the correlation between the candidate function and accuracy when using SE increases as the Label cardinality or Feature count increases.

Examining the Classifier variable, we find that these results reinforce our belief that the accuracy-candidate correlation is dependent on the complexity of the classifier.

Surprisingly, SE has the lowest R^2, therefore the accumulation of all variables must explain more of the variance for CE and CS when compared to SE, even though SE has two significant coefficients.

Hence we see that CE and CS are the most robust in this context. SE was affected by some of the data parameters, but it showed that the correlation improves as the Label cardinality increases, which is usually a function of data size. Therefore, SE should be better suited to large data sets than small data sets.

7.3. Analysis 5: Mixture Analysis for Absolute Accuracy

So far we have examined the potential for each of the candidate expected accuracy function to be used to measure absolute acceptance (we examined correlation, showing a linear relationship), but we have not examined how to map the candidate functions to an estimated accuracy. In this section, we will train models to estimate the Exact, Hamming and Jaccard accuracy using the candidate functions, to assess how well each is able to provide estimates of absolute accuracy.

To estimate the expected accuracy, we build a logistic regression model. Both Exact Match and Hamming similarity lead to this because they can be modelled as Bernoulli and Binomial random variables.

The features of the model are the predicted expected accuracy provided by the candidate function (continuous), the data set name (categorical), and the classification method (categorical). Since the accuracy results vary heavily based on the data set, we also included an interaction term between the candidate function and data set, giving the expected accuracy model:

$$\logit(p_{ijx}) = \beta_i \text{candidate}(x) + \text{data}_i + \text{classifier}_j$$

where candidate(x) is the value provided by the candidate function for instance x, β_i is the candidate coefficient for data set i, data_i is a bias term for data set i (i is either Emotions, Scene, Yeast, Stare,
Table 8: The expected change in variance stabilised Pearson’s correlation when adjusting four data features (Label Count, Label Comb, Label Card, Feature Count), or changing Classifier or Similarity Function (standard error in parentheses), independent of the other variable values. A value of 0 represents no change in the correlation when changing the Data Feature, or when changing from the baseline to the chosen item, a positive value shows an increase in correlation, a negative value implies a decrease in correlation. The stars represent the statistical significance level of each expected change. The footer of the table shows the goodness of fit statistics for the analytical model.

Data Features Expected Gradient (Zero gradient means no effect)	HP	TG	SE	CE	ME	CS
Label Count	−0.020	−0.079**	0.029	0.009	−0.039	0.028
	(0.031)	(0.030)	(0.023)	(0.029)	(0.030)	(0.029)
Label Comb	0.003	0.021**	−0.010	−0.006	0.008	−0.011
	(0.009)	(0.009)	(0.007)	(0.008)	(0.008)	(0.008)
Label Card	−0.068	−0.902**	0.506*	0.302	−0.295	0.525
	(0.388)	(0.381)	(0.295)	(0.364)	(0.376)	(0.365)
Feature Count	−0.000	−0.002**	0.001*	0.001	−0.001	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Classifier Bias (Baseline: ECC)						
Independent	−0.100**	−1.34***	−0.032	−0.068	−1.04**	−0.055
	(0.045)	(0.044)	(0.034)	(0.042)	(0.043)	(0.042)
CT	−0.046	−0.090**	0.026	−0.026	−0.053	−0.010
	(0.045)	(0.044)	(0.034)	(0.042)	(0.043)	(0.042)
Similarity Function Bias (Baseline: Exact)						
Hamming	−0.025	−0.048	−0.000	0.005	−0.010	−0.011
	(0.045)	(0.044)	(0.034)	(0.042)	(0.043)	(0.042)
Jaccard	−0.078*	−0.098**	−0.012	−0.044	−0.072	−0.052
	(0.045)	(0.044)	(0.034)	(0.042)	(0.043)	(0.042)

R²	0.424	0.459	0.261	0.341	0.453	0.327
Adj. R²	0.322	0.363	0.129	0.224	0.355	0.207
Num. obs.	54	54	54	54	54	54
RMSE	0.134	0.131	0.102	0.126	0.130	0.126

***p < 0.01, **p < 0.05, *p < 0.1
Enron, or Slashdot), classifier j is the bias term for classifier j (j is either Independent, CT or ECC), logit is the logit function, and \hat{p}_{ijx} is the estimated accuracy of the prediction for instance x.

Both Hamming Similarity and Exact Match are suited to logistic regression, since they are both proportions (Exact is either 1 or 0, and Hamming is represented as the proportion of correct labels). Modelling Jaccard Similarity is not as straightforward. Since both the numerator and denominator (see equation (5)) are affected by the prediction, we can not simply model the similarity as a proportion. We can instead decompose the Jaccard Similarity into the number of true and false positives and negatives:

$$S_{\text{Jaccard}}(y, \hat{y}) = \frac{TP}{TP + FP + FN} \quad (36)$$

where TP is the number of labels that were predicted as positive and are actually positive, FP is the number of labels that were predicted as positive, but are actually negative, FN is the number of labels that are predicted as negative, but are actually positive, thus $TN = N - TP - FN - FP$ is the number of labels that were predicted as negative and are actually negative (N is the number of labels). The number of labels N is constant for each prediction, therefore the set $\{TP, TN, FP, FN\}$ is equivalent to a multinomial distribution with N trials. Modelling this multinomial distribution will provide estimates for the four true/false positive/negative rates p_{TP}, p_{TN}, p_{FP}, p_{FN} allowing us to model the Jaccard Similarity finally as

$$S_{\text{Jaccard}}(y, \hat{y}) = \frac{p_{TP}}{p_{TP} + p_{FP} + p_{FN}} \quad (37)$$

which can be modelled with as a multinomial distribution using a multinomial logistic regression with the same covariates as in equation (35). The candidate function scores can then be used to predict the true/false positive/negative proportions and then reconstruct the estimate of the Jaccard Similarity.

Using the predictive models for Exact, Hamming and Jaccard Similarity, we examine the utility of HP, SE and CE candidate functions (which so far showed merit) to predict the accuracy. We will also examine the accuracy of a combined model using the model in equation (35) where all candidate functions are linearly combined, rather than only one.

The complete data set (containing all multi-label data sets) was randomly split into 50% training and 50% testing sets and 10-fold cross validation was used on the training set to determine the ridge regularisation parameters of each model. The complete randomised training/testing process was replicated 20 times to obtain distributions of expected accuracy for each fitted model.

To evaluate the results, we must remember that each predicted value is an expected accuracy value; we can evaluate the prediction by comparing it to the actual accuracy for the given instance. For our evaluation, we are also interested in the value of the actual accuracy (e.g. there will be cases when we want a more accurate model for only the high accuracy results rather than all results). So we provide measurements for various ranges of accuracy. The estimated expected accuracies were divided into 0.1 intervals and the associated instances in each interval were used to compute the true expected accuracy (the intervals were size 0.05 for Hamming confidence due to the smaller range of scores). This was applied to the 20 replicates to obtain a distribution over the expected accuracy. The 95% interval of the expected accuracy distribution is reported for each of the Hamming, Jaccard and Exact Match confidence score intervals in Tables 9, 10 and 11 respectively. Ideally, the 95% expected accuracy interval should be contained within the given expected accuracy interval.

First examining the Hamming table (Table 9), the expected Hamming accuracy stays within the estimated expected accuracies for all ranges except for (0.7, 0.75) for High Prob, (0.65, 0.7] for Shannon Entropy, (0.65, 0.7], (0.8, 0.85] for Collision Entropy, and (0.65, 0.7] for the mixture of each candidate function. Each of the four methods of predicting the expected accuracy have performed well. Collision Entropy shows to have the most interval matches (shown in bold), but it provides an overestimate in the range of (0.8, 0.85] which is not desired. Shannon Entropy provides the next most interval matches.

Next examining the Jaccard accuracy interval table (Table 10), the expected Jaccard accuracy lies within the computed accuracy bounds for (0.4, 0.5] and (0.2, 0.3] using HP, SE and CE and (0.9, 1] for the mixture of confidence functions. Each model does provide a greater true expected Jaccard accuracy for each computed confidence range, except for HP, SE and CE for the interval (0.9, 1] and all models for the interval [0, 0.1]. The mixture is preferred in this case, due to it providing a large number of interval matches, and not overestimating the high accuracy values.

Finally, the Exact Match interval table (Table 11) provides the expected Exact Match for each of the models’ computed intervals. The correct predicted intervals were provided at (0.2, 0.3] for HP, (0.1, 0.2] for SE, (0.2, 0.3] and (0.1, 0.2] for CE, and (0.4, 0.5], (0.3, 0.4], (0.1, 0.2] and (0.0, 1] for the mixture. Each
expected accuracy interval was within the range of the computed interval, or greater than the interval for all but three cases for HP, two cases for SE, three cases for CE and two cases for the mixture. For the two cases where the mixture overestimates, the error is small (for the predicted expected accuracy interval \((0.9, 1.0]\) the expected Exact Match accuracy interval is \((0.887, 0.940]\), and for the predicted expected accuracy of \((0.7, 0.8]\) the expected accuracy interval is \((0.691, 0.806]\)). Again, we prefer the Mixture, due to the most interval matches and the fewest overestimates.

Table 9.: The 95% interval for the expected Hamming accuracy for the given range of predicted Hamming confidence when modeled on each of High Prob (HP), Shannon Entropy (SE), Collision Entropy (CE) and a mixture of all confidence functions (MIX). The bold expected Hamming intervals are the closest match to the predicted intervals. The underlined intervals have a lower bound that is lower than the predicted interval.

Exp Acc	HP	SE	CE	MIX
(0.65, 0.7]	NA	0.688, 0.746	\textbf{0.657, 0.754}	0.641, 0.737
(0.7, 0.75]	0.720, 0.772	\textbf{0.707, 0.742}	0.720, 0.747	0.709, 0.733
(0.75, 0.8]	0.750, 0.764	0.767, 0.782	\textbf{0.765, 0.789}	0.763, 0.780
(0.8, 0.85]	0.808, 0.830	\textbf{0.815, 0.848}	0.792, 0.824	0.822, 0.837
(0.85, 0.9]	0.873, 0.885	\textbf{0.866, 0.884}	\underline{0.864, 0.882}	0.871, 0.888
(0.9, 0.95]	0.932, 0.940	0.923, 0.938	\underline{0.925, 0.945}	0.929, 0.935
(0.95, 1]	0.959, 0.962	0.955, 0.959	\underline{0.957, 0.965}	0.961, 0.964

Table 10.: The 95% interval for the expected Jaccard accuracy for the given range of predicted Hamming confidence when modeled on each of High Prob (HP), Shannon Entropy (SE), Collision Entropy (CE) and a mixture of all confidence functions (MIX). The bold expected Jaccard intervals are the closest match to the predicted intervals. The underlined intervals have a lower bound that is lower than the predicted interval.

Exp Acc	HP	SE	CE	MIX
\((0, 0.1]\)	0.362, 0.399	0.362, 0.398	0.362, 0.399	0.328, 0.374
\((0.1, 0.2]\)	0.185, 0.363	0.196, 0.301	0.183, 0.329	\underline{0.092, 0.136}
\((0.2, 0.3]\)	0.236, 0.257	0.226, 0.263	0.246, 0.280	\underline{0.259, 0.308}
\((0.3, 0.4]\)	0.384, 0.480	0.431, 0.483	0.383, 0.462	\underline{0.385, 0.429}
\((0.4, 0.5]\)	\textbf{0.450, 0.495}	0.449, 0.488	0.439, 0.483	0.474, 0.526
\((0.5, 0.6]\)	\textbf{0.579, 0.639}	0.596, 0.679	0.584, 0.642	0.592, 0.647
\((0.6, 0.7]\)	\textbf{0.677, 0.771}	0.779, 0.861	0.726, 0.872	0.698, 0.772
\((0.7, 0.8]\)	0.880, 0.953	0.894, 0.956	0.909, 0.960	\underline{0.845, 0.895}
\((0.8, 0.9]\)	0.904, 0.968	0.889, 0.949	\textbf{0.858, 0.960}	0.924, 0.973
\((0.9, 1]\)	0.785, 1.000	0.817, 0.952	0.771, 1.000	\underline{0.913, 0.968}

Figure 3 presents the expected accuracy for a given predicted expected accuracy score. The ideal expected accuracy function will provide a straight line travelling along the diagonal, meaning that the estimated expected accuracy has a one to one mapping with the true expected accuracy.

We see that the Mixture curve is always the closest to the diagonal line, or has small error, where the other functions may be close to the diagonal at some points, but have large deviations at other points. Both Exact and Hamming similarities have close fits to the diagonal, but Jaccard has a large error at the lower end. It is unclear why this has occurred, but being at the lower end means that it will not impact the use of the expected accuracy functions.

To summarise the results, we have found that when fitting the expected accuracy function (consisting of the candidate functions) to data, any of the candidate functions will provide a good model for Hamming Similarity, and a mixture of the set of candidate functions provides the best estimates for Jaccard and Exact Match.
Table 11.: The 95% interval for the expected Exact Match accuracy for the given range of predicted Hamming confidence when modeled on each of High Prob (HP), Shannon Entropy (SE), Collision Entropy (CE) and a mixture of all confidence functions (MIX). The bold expected Exact Match intervals are the closest match to the predicted intervals. The underlined intervals have a lower bound that is lower than the predicted interval.

Exp Acc	HP	SE	CE	MIX
(0.0, 0.1]	0.051, 0.105	0.066, 0.108	0.066, 0.106	0.056, 0.094
(0.1, 0.2]	0.171, 0.201	0.126, 0.174	0.134, 0.179	0.108, 0.145
(0.2, 0.3]	0.205, 0.236	0.199, 0.222	0.203, 0.231	0.254, 0.305
(0.3, 0.4]	0.256, 0.314	0.317, 0.401	0.334, 0.412	0.319, 0.353
(0.4, 0.5]	0.491, 0.598	0.479, 0.528	0.451, 0.555	0.402, 0.474
(0.5, 0.6]	0.555, 0.659	0.541, 0.638	0.490, 0.583	0.560, 0.648
(0.6, 0.7]	0.652, 0.750	0.568, 0.700	0.617, 0.710	0.691, 0.806
(0.7, 0.8]	0.842, 0.931	0.873, 0.924	0.835, 0.924	0.887, 0.940
(0.8, 0.9]	0.860, 0.956	0.820, 0.894	0.854, 0.964	

Figure 3.: The expected accuracy versus the predicted expected accuracy for the Exact, Hamming and Jaccard Similarity functions, using the candidate functions HP, SE, CE, or a mixture of all. The error bars show the 95% confidence interval for the expected accuracy. The Oracle line shows the ideal values.

8. Conclusion

Probabilistic multi-label classification provides us with a distribution over the power set of labels. The probability of the mode labelset is commonly used as an estimate of the prediction confidence, however this measurement is not directly dependent on the chosen multi-label evaluation metric. Therefore, when taking into account the evaluation metric, the notion of confidence is not clear. Expected accuracy provides the practitioner with a measurement of the estimated accuracy with respect to the evaluation metric.

We hypothesised that expected accuracy of a multi-label prediction is a function of the categorical distribution over the powerset of the labels conditioned on the given observation. In this article we examined the correlation and robustness of seven candidate functions for measuring the expected accuracy of each prediction using the multi-label distribution. We found that three of the candidate functions were indeed highly correlated to expected accuracy and were also robust to changes in variables (such as changes in data).

When fitting a model of expected accuracy with respect to different similarity (performance, evaluation) metrics, we found that each of the three candidate functions were appropriate for predicting Hamming expected accuracy, but a combination of the functions was better suited to estimating Jaccard and Exact expected accuracy.
References

David Barber. *Bayesian Reasoning and Machine Learning*. Cambridge University Press, 2012.

Peter L Bartlett and Marten H Wegkamp. Classification with a reject option using a hinge loss. *Journal of Machine Learning Research*, 9(Aug):1823–1840, 2008.

Yonatan-Carlos Carranza-Alarcon, Soudouss Messoudi, and Sébastien Destercke. Cautious label-wise ranking with constraint satisfaction. In Marie-Jeanne Lesot, Susana Vieira, Marek Z. Reformat, João Paulo Carvalho, Anna Wilbik, Bernadette Bouchon-Meunier, and Ronald R. Yager, editors, *Information Processing and Management of Uncertainty in Knowledge-Based Systems*, pages 96–111, Cham, 2020. Springer International Publishing. ISBN 978-3-030-50143-3.

Krzysztof Dembczyński, Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier. On label dependence and loss minimization in multi-label classification. *Mach. Learn.*, 88(1-2):5–45, July 2012. ISSN 0885-6125. doi: 10.1007/s10994-012-5285-8. URL http://dx.doi.org/10.1007/s10994-012-5285-8

Krzysztof Dembczyński, Willem Waegeman, and Eyke Hüllermeier. An analysis of chaining in multi-label classification. In *ECAI: European Conference of Artificial Intelligence*, volume 242, pages 294–299. IOS Press, 2012. ISBN 978-1-61499-097-0.

Sebastien Destercke. Multilabel prediction with probability sets: the hamming loss case. In *International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems*, pages 496–505. Springer, 2014.

P. M. Djuric, J. H. Kotecha, Jianqui Zhang, Yufei Huang, T. Ghirmai, M. F. Bugallo, and J. Miguez. Particle filtering. *IEEE Signal Processing Magazine*, 20(5):19–38, Sept 2003. ISSN 1053-5888. doi: 10.1109/MSP.2003.1236770.

Yves Grandvalet, Alain Rakotomamonjy, Joseph Keshet, and Stéphane Canu. Support vector machines with a reject option. In *Advances in neural information processing systems*, pages 537–544, 2009.

Harold Hotelling. New light on the correlation coefficient and its transforms. *Journal of the Royal Statistical Society. Series B (Methodological)*, 15(2):193–232, 1953.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 935–944, 2016.

Christine Largeron, Mathias Géry, and Christophe Moulin. MCut: A Thresholding Strategy for Multi-label Classification. In *Eleventh International Symposium on Intelligent Data Analysis (IDA 2012)*, pages 173–184, Helsinki, Finland, October 2012. URL https://hal-ujs.archives-ouvertes.fr/ujm-00730656

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. Deep learning for extreme multi-label text classification. In *Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR ’17, pages 115–124, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5022-8. doi: 10.1145/3077136.3080834. URL http://doi.acm.org/10.1145/3077136.3080834

Deiner Mena, Elena Montañés, José Ramón Quevedo, and Juan José Coz. An overview of inference methods in probabilistic classifier chains for multilabel classification. *Wiley Int. Rev. Data Min. and Knowl. Disc.*, 6(6):215–230, November 2016. ISSN 1942-4787. doi: 10.1002/widm.1185. URL https://doi.org/10.1002/widm.1185

Christoph Molnar. *Interpretable Machine Learning*. 2019. https://christophm.github.io/interpretable-ml-book/.

Vu-Linh Nguyen and Eyke Hüllermeier. Reliable multi-label classification: Prediction with partial abstention. *CoRR*, abs/1904.09235, 2019. URL http://arxiv.org/abs/1904.09235

Vu-Linh Nguyen and Eyke Hullermeier. Reliable multilabel classification: Prediction with partial abstention. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 5264–5271, 2020.
A. Situational Correlation

Relative acceptance implies that the order provided by accuracy and acceptance should be the same; i.e., highly correlated. To measure this correlation (i.e., ordinal similarity), we use Kendall’s τ correlation. Results are presented in Tables 12, 13, and 14 for the different metrics. Each table presents the correlation for the given similarity function broken down by data set and method.

The results show that TG is either equivalent to, or worse than HP in all cases. Also we note that Shannon Entropy and the Collision Entropy equivalents are superior under Slashdot. For all other combinations, the results are mixed; there are cases when HP has the highest correlation and cases where the other candidate acceptance function have higher correlation.

We conclude that candidate acceptance functions other than HP are more appropriate under given conditions.

This is reinforced by Figure 4 which provides a graphical representation of the CT method results from Table 14.
Figure 4.: Mean Jaccard accuracy when choosing only the predictions with greatest acceptance score when using a Classifier Trellis over the six data sets. The x-axis shows the number of predictions accepted (e.g. 1 implies that only the prediction with the greatest acceptance score was included in the mean, and the right most value is when including all predictions in the mean accuracy).
Method	HP, ME	TG	SE	CE, CS, GI
Emotion				
ECC	0.2595	0.1695↓↓	0.2345	0.2523
CT	0.2658	0.1442↓↓	0.2133↓↓	0.2362↓
Indep	0.1272	0.0409↓↓	0.1636	0.1568
Scene				
ECC	0.3440	0.3365	0.3033↓↓	0.3276↓↓↓
CT	0.3073	0.2676↓↓	0.3424↑↑↑	0.3222↑↑
Indep	0.2690	0.2106↓↓	0.3407↑↑↑	0.2994↑↑↑
Yeast				
ECC	0.3167	0.3066	0.2789↓↓	0.2949↓↓↓
CT	0.3117	0.1978↓↓	0.3126	0.3171
Indep	0.3217	0.2448↓↓	0.2548↓↓	0.3383↑↑
Stare				
ECC	0.2651	0.2506	0.1813↓↓	0.2384
CT	0.2452	0.2079	0.2821	0.2490
Indep	0.0889	0.0526↓↓	0.0927	0.0939↑
Enron				
ECC	0.3223	0.2983↓↓	0.2694↓↓	0.3242
CT	0.3122	0.2904↓	0.2662↓	0.3049
Indep	0.3191	0.2981↓↓	0.3483	0.3504↑↑
Slashdot				
ECC	0.1886	0.1018↓↓	0.2618↑↑↑	0.2472↑↑↑
CT	0.1030	0.0219↓↓	0.2316↑↑↑	0.1652↑↑↑
Indep	0.0546	-0.0208↓↓	0.1993↑↑↑	0.1196↑↑↑

Table 12.: Correlation between the chosen acceptance function and the Exact Match accuracy for each data set and each multi-label method. Arrows show a significant difference at the 0.1 (one arrow), 0.05 (two arrows) and 0.01 (three arrows) levels, when compared to HP.
Method	HP, ME	TG	SE	CE, CS, GI
Emotion				
ECC	0.2527	0.1549↓↓↓	0.2280	0.2434
CT	0.2245	0.0506↓↓↓	0.2013	0.2212
Indep	0.1223	0.0216↓↓↓	0.1593↑	0.1503
Scene				
ECC	0.346	0.331↓	0.302↓↓↓	0.330↓↓↓
CT	0.302	0.260↓↓↓	0.328↑↑	0.315↑↑
Indep	0.264	0.205↓↓↓	0.320↑↑↑	0.290↑↑↑
Yeast				
ECC	0.2948	0.2610↓↓	0.2733↓	0.2859
CT	0.2492	0.1176↓↓↓	0.2634	0.2668↑↑
Indep	0.2399	0.1528↓↓↓	0.1534↓↓	0.2719↑↑↑
Stare				
ECC	0.2818	0.2497	0.2301	0.2738
CT	0.2040	0.1537↓↓	0.2469	0.2195
Indep	0.1568	0.0958↓↓	0.1738	0.1662
Enron				
ECC	0.3204	0.2644↓↓↓	0.3200	0.3568↑↑
CT	0.3023	0.2513↓↓↓	0.2988	0.3261
Indep	0.3188	0.2640↓↓↓	0.3951↑↑↑	0.3842↑↑↑
Slashdot				
ECC	0.2003	0.1236↓↓↓	0.2537↑↑↑	0.2493↑↑↑
CT	0.1220	0.0493↓↓↓	0.2256↑↑↑	0.1762↑↑↑
Indep	0.0778	0.0107↓↓↓	0.1927↑↑↑	0.1336↑↑↑

Table 13.: Correlation between the chosen acceptance function and Hamming accuracy for each data set and each multi-label method. Arrows show a significant difference at the 0.1 (one arrow), 0.05 (two arrows) and 0.01 (three arrows) levels, when compared to HP.
Table 14.: Correlation between the chosen acceptance function and Jaccard accuracy for each data set and each multi-label method. Arrows show a significant difference at the 0.1 (one arrow), 0.05 (two arrows) and 0.01 (three arrows) levels, when compared to HP.