Systematic Review/Meta-analysis

Chronic Amiodarone Use and the Risk of Cancer: A Systematic Review and Meta-analysis

Lauren A. Siemers,a Jenny MacGillivray, BSc(Pharm), ACPR, b Jason G. Andrade, MD, FRCPC,b,c,d and Ricky D. Turgeon, BSc(Pharm), ACPR, PharmDa

a Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
b Atrial Fibrillation Clinic, Vancouver General Hospital, Vancouver, British Columbia, Canada
c Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
d Centre for Cardiovascular Innovation, Vancouver, British Columbia, Canada

ABSTRACT

Background: Observational studies have identified inconsistent associations between chronic use of amiodarone and cancer-related outcomes. We performed a systematic review and meta-analysis to evaluate cancer risk among patients receiving amiodarone.

Methods: We searched MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) to May 1, 2020. We included randomized controlled trials (RCTs) with follow-up ≥2 years that compared amiodarone (any dose) to any comparator (placebo, active pharmacologic or interventional comparator, or usual care), and national observational studies that evaluated the association between chronic amiodarone use and cancer risk found conflicting results.10,11 Given the ubiquitous use of amiodarone in cardiology, the association between amiodarone and cancer is concerning, yet no study has comprehensively analyzed the available experimental data on this risk.

The objective of this study was to perform a systematic review and meta-analysis of RCTs to evaluate the risk of cancer and cancer-related death with chronic amiodarone use.

Methods

Search and data sources

We conducted this systematic review and meta-analysis according to the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines.12 We searched MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) from inception to May 1, 2020. The MEDLINE search query is available in Supplemental Appendix S1. Included studies were (i) RCTs reported in any language, (ii) comparing amiodarone at any dose for any indication to any other intervention (placebo, usual care, pharmacotherapy, or interventional or device therapy)

https://doi.org/10.1016/j.cjco.2020.09.013
2589-790X/© 2020 Canadian Cardiovascular Society. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
reported a single outcome of interest. We contacted authors of published chronic amiodarone trials for potentially unreported cancer outcomes. The primary outcome was cancer incidence. Secondary outcomes were cancer-related death and site-specific cancers. We determined risk ratios and 95% confidence intervals using a fixed-effect model, and statistical heterogeneity using $I^2$. We conducted prespecified subgroup and sensitivity analyses for amiodarone indication, amiodarone dose, duration of therapy, and trial-level risk of bias.

**Results:** From 1439 articles, we included 5 RCTs ($n = 4357$). Mean follow-up duration ranged from 21 to 37 months. We included previously unpublished cancer outcome data from 1 RCT. Our primary outcome was not reported in any RCT. There was no significant difference in cancer-related death between amiodarone (1.69%) and the comparator (1.75%) (risk ratio 0.96, 95% confidence interval 0.57-1.63; $I^2 = 0$%). There were no significant interactions from our subgroup or sensitivity analyses.

**Conclusions:** Chronic amiodarone use did not increase cancer-related deaths. Data from RCTs do not support an increased risk of cancer-related harms with amiodarone use, and these concerns should not deter use of amiodarone when indicated.

with (iii) follow-up of at least 2 years (iv) that reported at least one of the outcomes of interest described below.

We incorporated several searches to identify grey literature, including a reverse-citation search using Web of Science, and a manual search of bibliographies of included studies and relevant reviews. Furthermore, when the published reports of otherwise relevant trials did not describe our outcomes of interest, we contacted the original corresponding authors to request data on these outcomes. If we could not contact corresponding authors, we attempted to contact the first or last authors and coauthors from other studies. We sent the last correspondence on May 30, 2020.

**Outcomes**

The primary outcome of interest was cancer incidence, defined as new onset of malignancy in any body system, as originally defined and reported in the studies. Secondary outcomes included cancer-related death and incidence of site-specific cancers.

**Data extraction and quality assessment**

One reviewer (LS) screened the titles, abstracts, and full-text articles of the identified records for inclusion, documented the reasons for exclusion, and then extracted data from included studies using a prespecified form. A second reviewer (RT) replicated study screening and cross-referenced data extraction. We resolved discrepancies via consensus.

We assessed individual study risk of bias using the Cochrane Risk of Bias tool. We evaluated certainty of evidence for each outcome using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.

**Statistical analysis**

We used a Mantel-Haenszel fixed-effect model analysis to calculate the risk ratio and 95% confidence interval for each outcome of interest. We evaluated statistical heterogeneity using the $I^2$ statistic and $\chi^2$ test. We used the threshold of $I^2 > 50\%$ or $\chi^2$ test P-value $< 0.10$ to indicate significant statistical heterogeneity. We conducted prespecified subgroup and sensitivity analyses for each outcome based on study population (atrial fibrillation or ventricular arrhythmias), daily amiodarone dose ($\leq 200$ mg daily, $> 200$ mg daily, or mixed regimen), trial duration (below or above the median study duration), and study risk of bias (low risk of bias in all domains vs high/unclear risk of bias in any domain).

**Results**

**Characteristics of included studies**

Of 1440 identified records, we included 5 RCTs ($n = 4357$) that met the inclusion criteria and reported at least 1 outcome of interest (Fig. 1). Across trials, the mean age was 66 years, and 16% were female (Table 1). In the only trial that reported smoking history, 79% were prior
One trial evaluated patients with atrial fibrillation, and the other 4 trials evaluated patients at risk for ventricular arrhythmias. Three trials compared amiodarone to placebo; 1 trial compared amiodarone to pharmacologic rate control (beta-blocker ± digitalis); and 1 trial compared amiodarone to ventricular tachycardia catheter ablation. The amiodarone maintenance dose was ≤ 200 mg daily in 4 trials and varied in 1 trial. The median length of follow-up was 22 months (range: 21-37 months).

Unpublished data
We contacted the corresponding authors of 37 otherwise relevant published RCTs that did not report on cancer outcomes. The authors of 10 studies responded, and the author of 1 trial provided unpublished cancer data, which we included in the analyses. Four authors who responded reported that they did not have access to the relevant data if it existed, and 6 authors responded that they did not collect data on cancer outcomes.

Risk of bias and certainty of evidence
Only 1 trial was at a low risk of bias in all domains (Fig. 2). In contrast, other trials had a high or unclear risk of bias arising primarily due to unclear or no allocation concealment or blinding of patients and outcome assessors, and 1 trial was not analyzed according to intention-to-treat principles. Overall, we did not judge the risk of bias to be sufficient to downgrade certainty of evidence for this domain. We could not grade the certainty of evidence for our primary outcome of cancer incidence, or for our secondary outcome of site-specific cancer incidence, as these outcomes were not reported in any published RCTs. We graded the certainty of evidence for cancer-related death outcome as moderate, downgraded one category, due to imprecision.

Effect of amiodarone on cancer outcomes
Incident cancer, our primary outcome of interest, and site-specific cancer, were not collected or reported in any of the 5 included trials. Data on cancer-related deaths were available from the 5 included studies. There was no significant increase in cancer-related death in patients treated with amiodarone vs the comparator (risk ratio 0.96, 95% confidence interval 0.57-1.63; \( I^2 = 0\% \); Fig. 3).

Subgroup and sensitivity analyses
There was no significant interaction by indication in the subgroup analysis comparing amiodarone indicated for atrial fibrillation or ventricular arrhythmias \( (P = 0.15 \) for interaction; Supplemental Figure S1). Sensitivity analyses did not demonstrate an interaction with cancer-related death based on amiodarone dose \( (P = 0.92 \) for interaction), trial duration below or above the median \( (P = 0.30 \) for interaction), or trial risk of bias \( (P = 0.48 \) for interaction; Supplemental Figures S2-S4).

Discussion
In this comprehensive systematic review and meta-analysis evaluating the risk of cancer outcomes with use of amiodarone over a median of 22 months, we did not find a significant increased risk of cancer-related death with amiodarone compared with placebo, other pharmacotherapy, or catheter ablation. These results were consistent among patients receiving amiodarone for atrial fibrillation or ventricular arrhythmias, and regardless of dose, duration, or trial-level risk of bias. Overall, we found that few published RCTs of
amiodarone systematically collected any cancer-related data, and no included RCTs evaluated the incidence of cancer. Concerns regarding an association between amiodarone and cancer outcomes have been based largely on case reports, observational studies, and a subset of RCTs. A previous meta-analysis\(^9\) of RCTs designed to evaluate the effect of amiodarone on sudden cardiac death found a statistically borderline increased risk of cancer-related death with amiodarone. However, this review was restricted to patients at high risk of sudden cardiac death, and the observed risk was driven mainly by trials with 6 to 12 months of follow-up. An alternate explanation for these findings is that amiodarone reduced the short-term risk of sudden cardiac death without impacting all-cause mortality, creating shifts among competing causes of death for patients treated with amiodarone.

Data on the association between amiodarone and cancer incidence come from 2 conflicting cohort studies. The first study used the Taiwan National Health Insurance Research database to evaluate the association between amiodarone dose and incident cancer among patients treated with amiodarone for at least 1 month.\(^1\) This study found an association between higher doses of amiodarone and cancer in men, but no association among women. However, these analyses did not account for important sources of confounding, including smoking history. Furthermore, the highest risk was in patients who received amiodarone for less than a year, suggesting that this association may be explained by surveillance bias from increased monitoring required during amiodarone use.

The second study used the Danish National Patient Registry to evaluate the association between amiodarone dose and risk of incident cancer among patients with atrial

### Table 1. Characteristics of included studies

| Characteristic | AF-CHF 2008 | CAMIAT 1997 | EMIAT 1997 | VANISH 2016 | Hamer et al. 1989 |
|---------------|-------------|-------------|-------------|--------------|------------------|
| n             | 1376        | 1202        | 1486        | 259          | 34               |
| Time frame    | 2001-2007   | 1990-1995   | 1990-1995   | 2009-2014    | 1985-1987        |
| Length of follow-up, mo | Mean: 37    | Mean: 21    | Median: 21  | Mean: 28     | Median: 23       |
| Geographic location | North America, South America, Europe | North America | Europe | North America, Europe, Australia | Australia (single centre) |
| Amiodarone indication | AF rhythm control | VT/VF prevention | VT/VF prevention | VT/VF prevention | VT/VF prevention |
| Key inclusion criteria | ECG-confirmed paroxysmal/persistent AF plus HF with LVEF ≤ 35% and: NYHA II-IV or HF hospitalization in previous 6 months, or LVEF ≤ 25% | Prior MI | LVEF ≤ 40% | Prior MI, ICD, VT, failed class I or III AAD therapy | HF NYHA IV at enrolment, LVEF ≤ 27%, medical therapy optimized, no history of symptomatic VT/VF |
| Mean age, y | 66          | 64          | 60          | 70           | 70               |
| Female, %    | 22          | 18          | 16          | 7            | NR               |
| Baseline amiodarone use, % | NR          | NR          | 0           | 66           | NR               |
| Prior smoking, % | NR          | 79          | NR          | NR           | NR               |
| Diabetes, %  | 22          | 15          | 17          | 32           | NR               |
| Heart failure, % | 100         | 21          | 100         | 100          | 100              |
| Intervention | Rhythm control (drug of choice was amiodarone; used in 73%\(^*\) of intervention group) | Amiodarone | Amiodarone | Amiodarone ± mexiletine | Amiodarone |
| Amiodarone dose | 200 mg/d | 10 mg/kg per d for 2 wk, 300-400 mg for 3.5 mo, 200-300 mg for 4 mo, then 200 mg for 5-7 d/wk for 16 mo | 800 mg/d for 14 d, 400 mg/d for 14 wk, then 200 mg/d | 1. If VT/VF with non-amiodarone AAD: 400 mg BID for 2 wk, 400 mg for 4 wk, then 200 mg; 2. If VT/VF with amiodarone < 300 mg/d: 400 mg BID for 2 wk, 400 mg/d for 1 wk, then 300 mg/d; 3. If VT/VF with amiodarone ≥ 300 mg/d: ≥ 300 mg/d plus mexiletine Catheter ablation + previous AAD (64) | 200 mg every 8 h for 2 wk, then 200 mg/d |
| Comparator (proportion taking amiodarone, %) | Placebo (0) | Placebo (0) | Placebo (0) | Catheter ablation + previous AAD (64) | Placebo (0) |

AAD, anti-arrhythmic drug; AF, atrial fibrillation; AF-CHF, Atrial Fibrillation and Congestive Heart Failure; BID, twice daily; CAMIAT, Canadian Amiodarone Myocardial Infarction Arhythmia Trial; ECG, electrocardiogram; EMIAT, European Myocardial Infarct Amiodarone Trial; HF, heart failure; ICD, implantable Cardioverter-Deﬁbrillator; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NR, not reported; NYHA, New York Heart Association; VANISH, Ventricular Tachycardia Ablation vs Enhanced Drug Therapy In Structural Heart Disease VT/VF, ventricular tachycardia/ventricular fibrillation.

\(^*\)At 36 months.

\(^1\)At 12 months.
fibrillation treated with amiodarone. The Danish study found no association between higher doses of amiodarone and risk of all-cause or site-specific (liver, lung, or skin) cancer. Moreover, this study found no difference in the incidence of cancer between patients with atrial fibrillation treated with amiodarone compared with those treated with digoxin. Taken together with the results of our meta-analysis, these data do not support a causal relationship between amiodarone use and cancer outcomes. Therefore, this concern should not deter the use of amiodarone when indicated. Future prospective studies using prospective surveillance for the incidence of overall and site-specific cancers may provide further information on the longer-term safety of chronic amiodarone use.

Limitations

Although this systematic review and meta-analysis is the most exhaustive assessment of data on cancer outcomes with chronic amiodarone use in randomized trials, it does have some limitations inherent to the included studies. First, we could not evaluate the impact of amiodarone on cancer incidence despite a search of published and unpublished data on this outcome, as no included RCTs collected data on this outcome. Therefore, our study conclusions are limited to data on fatal cancers. Second, only 5 included trials provided sufficient data on cause of death to evaluate cancer-related death. Third, although the experimental nature of the data included is not impacted by confounding and can elucidate a cause-and-effect relationship, the results of this analysis are likely impacted by selection bias and detection bias. Finally, it is possible that the included studies may have missed an association between amiodarone and cancer-related events with an extended latency period. Notably, however, there was no signal of increased cancer-related deaths with amiodarone use in the Atrial Fibrillation—Congestive Heart Failure (AF-CHF) trial despite a median and longest follow-up of up to 37 and 74 months, respectively.

Conclusions

Chronic amiodarone did not increase cancer-related deaths. There are no available data from RCTs on the incidence of cancer with chronic amiodarone use. Data from RCTs do not support an increased risk of cancer-related harms with amiodarone, and these concerns should not deter use of amiodarone when indicated. Future prospective surveillance studies may provide further information on the incidence of cancer with longer-term amiodarone use.

Acknowledgements

The authors thank Dr John Sapp and Karen Giddens of the Nova Scotia Health Authority for providing unpublished data on cancer-related deaths from the VANISH trial.

Funding Sources

The authors have no funding sources to declare.
Disclosures
The authors have no conflicts of interest to disclose.

References
1. Vassallo P, Trohman RG. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA 2007;298:1312-22.
2. Drugs.com. Amiodarone hydrochloride monograph for professionals. Available at: https://www.drugs.com/monograph/amiodarone-hydrochloride.html. Accessed October 1, 2019.
3. Connolly SJ. Evidence-based analysis of amiodarone efficacy and safety. Circulation 1999;100:2025-34.
4. Brambilla G, Mattioli F, Robbiano L, Martelli A. Update of carcinogenicity studies in animals and humans of 535 marketed pharmaceuticals. Mutat Res 2012;750:1-51.
5. Saad A, Falciglia M, Steward DL, Nikiforov YE. Amiodarone-induced thyrotoxicosis and thyroid cancer: clinical, immunohistochemical, and molecular genetic studies of a case and review of the literature. Arch Pathol Lab Med 2004;128:807-10.
6. Jarand J, Lee A, Leigh R. Amiodaronoma: an unusual form of amiodarone-induced pulmonary toxicity. CMAJ 2007;176:1411-3.
7. Monk BE. Basal cell carcinoma following amiodarone therapy. Br J Dermatol 1999;141:48-9.
8. Mali P, Salzman MMH, Vidaillet HJ, Rezkalla SH. Amiodarone therapy for cardiac arrhythmias: Is it associated with the development of cancers? World J Cardiovasc Dis 2014;4:109-18.
9. Piccini JP, Berger JS, O’Connor CM. Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. Eur Heart J 2009;30:1243-55.
10. Su VY-F, Hu Y-W, Chou K-T, et al. Amiodarone and the risk of cancer: a nationwide population-based study. Cancer 2013;119:1699-705.
11. Rasmussen PV, Dalggaard F, Gislason GH, et al. Amiodarone treatment in atrial fibrillation and the risk of incident cancers: a nationwide observational study. Heart Rhythm 2020;17:560-6.
12. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100.
13. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
14. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401-6.
15. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 2008;358:2667-77.
16. Julian D, Camm A, Frangin G, et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. Lancet 1997;349:667-74.
17. Caims JA, Connolly SJ, Roberts R, Gent M. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Lancet 1997;349:675-82.
18. Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med 2016;375:111-21.
19. Hamer AWF, Barry Azkes L, Johns JA. Beneficial effects of low dose amiodarone in patients with congestive cardiac failure: a placebo-controlled trial. J Am Coll Cardiol 1989;14:1768-74.
20. Antiarhythmics versus implantable defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997;337:1576-84.
21. Ökçün B, Yigit Z, Arat A, Kucukkoglu MS. Comparison of rate and rhythm control in patients with atrial fibrillation and nonischemic heart failure. Jpn Heart J 2004;45:591-601.
22. Torp-Pedersen C, Metra M, Spark P, et al. The safety of amiodarone in patients with heart failure. J Card Fail 2007;13:340-5.
23. Cosedis Nielsen J, Johannessen A, Raatikainen P, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med 2012;367:1587-95.
24. Greene HL. The CASCADE Study: randomized antiarrhythmic drug therapy in survivors of cardiac arrest in Seattle. Am J Cardiol 1993;72:70F-4F.
25. Navarro-López F, Cosin J, Marrugat J, Guindo J, Bayes de Luna A. Comparison of the effects of amiodarone versus metoprolol on the frequency of ventricular arrhythmias and on mortality after acute myocardial infarction. Spanish Study on Sudden Death. Am J Cardiol 1993;72:1243-8.
26. Connolly SJ, Gent M, Roberts RS, et al. Canadian Implantable Defibrillator Study (CIDS): a randomized trial of the implantable cardioverter-defibrillator against amiodarone. Circulation 2000;101:1297-302.
27. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005;352:225-37.
28. Singh BN, Singh SN, Reda DJ, et al. Amiodarone versus sotalol for atrial fibrillation. N Engl J Med 2005;352:1861-72.
29. Di Biase L, Mohanty P, Mohanty S, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation 2016;133:1637-44.

Supplementary Material
To access the supplementary material accompanying this article, visit CJC Open at https://www.cjcopen.ca/ and at https://doi.org/10.1016/j.cjco.2020.09.013.