Erdős, László; Knowles, Antti; Yau, Horng-Tzer; Yin, Jun
Spectral statistics of Erdős-Rényi graphs II: eigenvalue spacing and the extreme eigenvalues.
(English) Zbl 1251.05162 Commun. Math. Phys. 314, No. 3, 587-640 (2012).

Summary: We consider the ensemble of adjacency matrices of Erdős-Rényi random graphs, i.e. graphs on N vertices where every edge is chosen independently and with probability $p \equiv p(N)$. We rescale the matrix so that its bulk eigenvalues are of order one. Under the assumption $pN \gg N^{2/3}$, we prove the universality of eigenvalue distributions both in the bulk and at the edge of the spectrum. More precisely, we prove

(1) that the eigenvalue spacing of the Erdős-Rényi graph in the bulk of the spectrum has the same distribution as that of the Gaussian orthogonal ensemble; and

(2) that the second largest eigenvalue of the Erdős-Rényi graph has the same distribution as the largest eigenvalue of the Gaussian orthogonal ensemble.

As an application of our method, we prove the bulk universality of generalized Wigner matrices under the assumption that the matrix entries have at least $4 + \epsilon$ moments.

MSC:
05C80 Random graphs (graph-theoretic aspects)
60B20 Random matrices (probabilistic aspects)

Full Text: DOI arXiv

References:
[1] Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Studies in Advanced Mathematics, 118, Cambridge: Cambridge University Press, 2009 · Zbl 1184.15023
[2] Auffinger A., Ben Arous G., Pêché S.: Poisson Convergence for the largest eigenvalues of heavy-tailed matrices. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 589-610 (2009) · Zbl 1177.15037 · doi:10.1214/08-AIHP188
[3] Biroli G., Bouchaud J.-P., Potters M.: On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. 78, 10001 (2007) · Zbl 1149.82328 · doi:10.1209/0295-5075/78/10001
[4] Bleher P., Its A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. 150, 185-266 (1999) · Zbl 0944.42013 · doi:10.2307/121101
[5] Brascamp H. J., Lieb E. H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22, 366-389 (1976) · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[6] Deift P., Kriecherbauer T., McLaughlin K.T-R, Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52, 1335-1425 (1999) · Zbl 0944.42013 · doi:10.1002/(SICI)1097-0325(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
[7] Deift P., Kriecherbauer T., McLaughlin K.T-R, Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52, 1491–1552 (1999) · Zbl 1026.42024 · doi:10.1002/(SICI)1097-0325(199912)52:12<1491::AID-CPA2>3.0.CO;2-
[8] Dyson F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962) · Zbl 0111.32703 · doi:10.1063/1.1703862
[9] Erdos, L.: Universality of Wigner random matrices: a Survey of Recent Results (Lecture notes). http://arxiv.org/abs/1004.0861v2 [math-ph], 2010
[10] Erdos, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of sparse random matrices I: local semicircle law. Preprint http://arxiv.org/abs/1103.1919 , to appear in Ann. Prob.
[11] Erdos L., Schlein B., Yau H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009) · Zbl 1175.60005 · doi:10.1214/08-AOP421
[12] Erdos L., Schlein B., Yau H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287, 641–655 (2009) · Zbl 1186.60005 · doi:10.1007/s00220-008-0636-9
[13] Erdos L., Schlein B., Yau H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Notices. 2010(3), 436–479 (2010) · Zbl 1204.15043
Erdos, L., Schlein, B., Yau, H.-T.: Universality of random matrices and local relaxation flow. http://arxiv.org/abs/0907.5605v5 [math-ph], 2010

Erdos, L., Schlein, B., Yau, H.-T., Yin, J.: The local relaxation flow approach to universality of the local statistics for random matrices. To appear in Ann. Inst. H. Poincaré Probab. Statist. 48, no 1, 1–461 (2012)

Erdos, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. http://arxiv.org/abs/1001.3453v85 [math-ph], 2011

Erdos, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. http://arxiv.org/abs/1007.4652v7 [math-ph], 2011

Erdos L., Yau H.-T., Yin J.: Universality for generalized Wigner matrices with Bernoulli distribution. J. Combinatorics. 2(1), 15–82 (2011) · Zbl 1235.15029 · doi:10.4310/JOC.2011.v2.n1.a2

Erdos, L., Schlein, B., Yau, H.-T., Yin, J.: The local relaxation flow approach to universality of the local statistics for random matrices. To appear in Ann. Inst. H. Poincaré Probab. Statist. 48, no 1, 1–461 (2012)

Erdos, L., Yau, H.-T., Yin, J.: Universality for generalized Wigner matrices with Bernoulli distribution. J. Combinatorics. 2(1), 15–82 (2011) · Zbl 1235.15029 · doi:10.4310/JOC.2011.v2.n1.a2

Erdos, L., Schlein, B., Yau, H.-T., Yin, J.: The local relaxation flow approach to universality of the local statistics for random matrices. To appear in Ann. Inst. H. Poincaré Probab. Statist. 48, no 1, 1–461 (2012)

Erdos, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. http://arxiv.org/abs/1007.4652v7 [math-ph], 2011

Erdos P., Rényi A.: On random graphs. I. Publicationes Mathematicae 6, 290–297 (1959)

Erdos P., Rényi A.: The evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5, 17–61 (1960)

Johansson K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215(3), 683–705 (2001) · Zbl 0978.15020 · doi:10.1007/s002200000328

Johansson K.: Universality for certain Hermitian Wigner matrices under weak moment conditions. Ann. Inst. H. Poincaré Probab. Statist. 48, 47–79 (2012) · Zbl 1279.60014 · doi:10.1214/11-AIHP429

Khorunzhi, O.: High moments of large Wigner random matrices and asymptotic properties of the spectral norm. http://arxiv.org/abs/0907.3743v6 [math.PR], 2011, To appear in Rand. Op. Stoch. Eqs.

Knowles, A., Yin, J.: Eigenvector distribution of Wigner matrices. To appear in Prob. Theor. Rel. Fields., doi: 10.1007/s00440-011-0407-y , 2011

Miller S. J., Novikoff T., Sabelli A.: The distribution of the largest nontrivial eigenvalues in families of random regular graphs. Exper. Math. 17, 231–244 (2008) · Zbl 1151.05043 · doi:10.1080/10586458.2008.10129029

 Miller S. J., Novikoff T., Sabelli A.: The distribution of the largest nontrivial eigenvalues in families of random regular graphs. Exper. Math. 17, 231–244 (2008) · Zbl 1151.05043 · doi:10.1080/10586458.2008.10129029

Pastur L., Shcherbina M.: Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys. 86, 109–147 (1997) · Zbl 0916.15009 · doi:10.1007/BF02180200

Pastur L., Shcherbina M.: Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys. 130, 205–250 (2008) · Zbl 1136.15015 · doi:10.1007/s11095-007-9434-6

Ruzmaikina A.: Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Commun. Math. Phys. 261(2), 277–296 (2006) · Zbl 1130.82313 · doi:10.1007/s00220-005-1386-6

Sarnak, P.: Private communication

Tracy C., Widom H.: Level-Spacing Distributions and the Airy Kernel. Commun. Math. Phys. 159, 151–174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489

Tracy C., Widom H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996) · Zbl 0851.60101 · doi:10.1007/BF02090545

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.