Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Déjà vu: Stimulating open drug discovery for SARS-CoV-2

Sean Ekins¹,8, Melina Mottin²,8, Paulo R.P.S. Ramos², Bruna K.P. Sousa², Bruno Junior Neves², Daniel H. Foil¹, Kimberley M. Zorn¹, Rodolpho C. Braga³, Megan Coffee⁴,⁵, Christopher Southan⁶, Ana C. Puhl¹ and Carolina Horta Andrade²,7

¹Collaborations Pharmaceuticals, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
²LabMol – Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
³In silicAll, São Paulo, SP 04363-090, Brazil
⁴Division of Infectious Diseases and Immunology, Department of Medicine, New York University, NY, USA
⁵Department of Population and Family Health, Mailman School of Public Health, Columbia University, NY, USA
⁶TW2Informatics Ltd, Göteborg 42166, Sweden
⁷Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-864, Brazil

In the past decade we have seen two major Ebola virus outbreaks in Africa, the Zika virus in Brazil and the Americas and the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is a strong sense of déja vu because there are still no effective treatments. In the COVID-19 pandemic, despite being a new virus, there are already drugs suggested as active in in vitro assays that are being repurposed in clinical trials. Promising SARS-CoV-2 viral targets and computational approaches are described and discussed. Here, we propose, based on open antiviral drug discovery approaches for previous outbreaks, that there could still be gaps in our approach to drug discovery.

Introduction
The two major Ebola virus outbreaks in Africa [1], the Zika virus in Brazil [2] and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [3], which was declared by the World Health Organization (WHO) as a pandemic [4,5], have all occurred in the past decade. In each case there is a strong sense of déja vu for those scientists involved in drug discovery. A lack of available antivirals to treat the infected patients leads to a clamoring to test anything available, and some pharmaceutical companies charge in to offer their drugs. We also seem to see similar patterns in response across outbreaks. There is a rush to be ‘first’ and this sense of priority might not lead to the best or even any outcome for patients. Always, there is the immediate proposal to create a vaccine and pronouncements that this will be available in a short time or by the end of the year the actual outbreak in question; and it never happens within these optimistic artificial deadlines. Again, we have experienced this with the current outbreak. For Ebola the vaccine was ready for the second outbreak and has now been approved [6].

Governments are out to calm their populations while, at the same time, needing to be seen to do something that will vanquish the virus. In the case of SARS-CoV-2 it results in pneumonia [7] and shares aspects of pathology and pathogenesis with severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) [8]. SARS-CoV-2, SARS-CoV and MERS-CoV belong to the same family Coronavirusidae and genus Betacoronavirus. Several drug companies immediately made their antivirals available. For example, Abbvie made their HIV approved drug lopinavir/ritonavir combination available to the Chinese government [9]. This
Some researchers had also suggested as early as January 2020 what treatment options might be most likely and these included lopinavir/ritonavir, remdesivir, favipiravir, and arbidol, as well as a broad array of nucleoside analogs, neuraminidase inhibitors, peptides, RNA synthesis inhibitors, anti-inflammatory drugs and traditional Chinese medicines [15–17].

The need for other treatment options will be important as we learn more about its transmission [18] and as we see increases in the number of travel-related infections [19]. Already in the past weeks we have seen the rapid spread to Italy and from there to many other countries including Brazil and beyond. Such virus outbreaks are greatly straining the healthcare systems of affected countries and will test every aspect of our infrastructure, supply chains and preparedness [20]. This raises the question of what we can learn from our past drug discovery efforts in an attempt to develop additional drugs for SARS-CoV-2 more efficiently. The acceleration of global SARS-CoV-2 data generation, effectively just in a couple of months, has been remarkable. However, scientific information gaps that impede progress toward small-molecule treatments can still be perceived. Many of these persist from when they were first outlined for Ebola back in 2015 [21]. We can thus make some ‘then-and-now’ comparisons (see Supplementary material Figs. S1–S4 and Table S1 online) as well as share our own experiences of research on these virus outbreaks.

Ebola drug discovery

Our efforts in Ebola drug discovery initially started in 2014 with a computational pharmacophore analysis of a small number of in vitro Ebola active compounds [22]. This was followed by identifying and summarizing all the FDA-approved drugs that could be used against the virus [23,24] and highlighting various strategies for the next virus outbreak [21]. These steps preceded a pivotal point for us in developing machine learning models for the Ebola virus derived from in vitro data [25,26].

An early drug [22] identified by these screens was the antimalarial amodiaquine, which was subsequently shown to be associated with decreased mortality [27], as the drug (artesunate/amodiaquine) was used for malaria treatment in some Ebola patients, whereas others took a different malaria medicine (artemether/lumefantrine) [27]. Our Ebola machine learning models were used to select three molecules for in vitro testing [28]. We identified pyronaridine, tilorone and quinacrine as having good in

TABLE 1

Compounds screened versus SARS-CoV-2: Vero E6 cells were infected with nCoV- 2019BetaCoV/Wuhan/WIV04/2019 at a multiplicity of infection (MOI) of 0.05 [14]

Molecule	Class	EC₅₀ (µM)	CC₅₀ (µM)	SI	FDA status
Ribavirin	Antiviral for hepatitis C	109.5	>400	3.65	Approved
Penciclovir	Antiviral for herpesvirus	95.96	>400	4.17	Approved
Nafamostat	Anthelmintic agent	2.21	35.53	16.76	Approved
Nitazoxanide	Antiviral agent	0.77	>100	129.87	Phase II/III
Remdesivir	Antimalarial agent	1.13	>100	88.50	Approved
Chloroquine					

...
vitro activity (nM) against the Ebola virus [28]. These preliminary data enabled us to obtain funding from the NIH to take one of the compounds through in vivo testing. We also leveraged NIH support to a collaborator to test the other two compounds as well. These molecules were then each tested in the mouse model for Ebola infection and demonstrated significant efficacy [29–31]. Pyronaridine is currently being pursued in larger animal models of Ebola virus infection. Working on computational models through to in vitro testing happened in the space of a few months, whereas it took several years to obtain funding for our first mouse studies. This is by no means a streamlined approach to drug discovery but it was cost effective for the amount of data ultimately generated and led to revitalized interest in these molecules.

The OpenZika drug discovery experience

In 2016 we pulled together a team of researchers in Brazil and the USA to provide some suggestions for an open drug discovery effort for the Zika virus. These included various computational strategies to repurpose molecules and docking into the Zika proteins [32]. We also described resources and molecules that could be prioritized for testing. This was followed by our homology modeling of every Zika virus protein [33] weeks before the first crystal structures for Zika proteins were released. All of this work was performed in the open and it attracted the attention of the IBM World Community Grid team who requested we submit a proposal to them for a Zika project using their distributed computing facilities. This
Molecule	Class	MERS EC₅₀ (µM)	MERS CC₅₀ (µM)	MERS SI	SARS EC₅₀ (µM)	SARS CC₅₀ (µM)	SARS SI	Ref.	FDA status
Chloroquine	Antimalarial	3.0	58.1	19.4	4.1	>128	31	[66] Approved	
Chlorpromazine	Antipsychotic	4.9	21.3	4.3	8.8	24.3	2.8	[66] Approved	
Loperamide	Antidiarrheal	4.8	15.5	3.2	5.9	53.8	9.1	[66] Approved	
Lopinavir	Antiviral for HIV	8.0	24.4	3.1	17.1	>32	>2	[66] Approved	
Emetine	Anti-protozoal and vomiting inducer	0.014	0.051					[67] Approved	
Chloroquine diphosphate	Antimalarial	6.275	6.538					[67] Yes	
Hydroxychloroquine sulfate	Antimalarial	8.279	7.966					[67] Yes	
Mefloquine	Antimalarial	7.416	15.553					[67] Yes	
Amodiaquine	Antimalarial	6.212	1.274					[67] Approved	
Aloxistatin	Cysteine protease inhibitor	1.275	0.761					[67] Experimental	
Gemcitabine	Antineoplastic agent	1.216	4.957					[67] Approved	
Tamoxifen	Antineoplastic agent	10.117	92.886					[67] Approved	
Molecule	Class	MERS EC50 (µM)	MERS CC50 (µM)	MERS SI	SARS EC50 (µM)	SARS CC50 (µM)	SARS SI	Ref.	FDA status
-------------------	----------------------------	----------------	----------------	---------	----------------	----------------	---------	-----	------------
Toremifene	Antineoplastic agent	12.915	11.969					[67]	Approved
Terconazole	Antifungal agent	12.203	15.327					[67]	Approved
Triparanol	Cholesterol-lowering agent	5.283						[67]	Withdrawn
Anisomycin	Antibacterial agent	0.003	0.191					[67]	Experimental
Cycloheximide	Antifungal agent	0.189	0.043					[67]	Experimental
Homoharringtonine	Antineoplastic agent	0.0718						[67]	Approved
Benztrapine	Anticholinergic agent	16.627	21.611					[67]	Approved
Fluspirilene	Antipsychotic agent	7.477	5.963					[67]	Approved
Thiothixene	Antipsychotic agent	9.297	5.316					[67]	Approved
Fluphenazine	Antipsychotic agent	5.868	21.431					[67]	Approved
became the OpenZika project led by our team in Brazil and the USA and it involved the docking of millions of molecules from the ZINC database in all Zika virus and related flavivirus protein crystal structures [34]. We have since also performed further modeling of Zika proteins [35] and an analysis of the first 2 years following the outbreak [36]. Our most recent efforts have led to the discovery of an inhibitor for NS3 helicase [37].

What we can learn from the OpenZika project to streamline future open science projects would be as follows. We would pick fewer targets to dock molecules into as the OpenZika project created billions of docking results for tens of targets that will take many years to process. We would also suggest that it is best to work with high-resolution crystal structures versus homology models as soon as possible. We would also start with a library of commercially available drugs and antivirals, this would massively limit the number of molecules docked to a few thousand because we found that docking of the ZINC library available at that time led to compounds that were not readily available. Focused libraries are interesting options to perform target-directed virtual screening. Examples are ChemDiv [38] and Asinex [39] databases, which have specific subsets for protease inhibitors, for example facilitating and accelerating the experimental screening. During OpenZika we learnt that having multiple biology labs committed to doing testing in vitro is also very important to have access to experimental results more quickly to validate the computational approach. Working with the IBM World Community Grid did not include any funding. We found it very difficult to obtain NIH funding to support this project from the very beginning (because it was computational) and also attempted small business grants with academic collaborators without success, even though we were leveraging massive computational resources through the World Community Grid. We would recommend that open efforts like this need some funding for in vitro validation. Millions of dollars have been invested by the NIH to fund other Zika research projects since the 2016 outbreak and there is as yet no small molecule of note in the drug discovery pipeline [36]. There is still therefore an unmet medical need for treatments for Zika virus and computational efforts could aid this and be cost-effective.

SARS-CoV-2 drug discovery efforts

The whole genome sequences for SARS-CoV-2 were isolated from patients from several countries, such as Brazil, Canada, China, Germany, Korea and USA, and were made readily available at the Global Initiative on Sharing All Influenza Data (GSAID) platform.
There were 135 genomes sampled between December 2019 and February 2020. The samples were found to be closely related with few mutations relative to a common ancestor. Preliminary genetic analysis indicates that the Brazilian genome differs by three mutations to the Wuhan reference strain [41]. Two of these mutations are shared with its closest sequence—the Germany strain [41].

In the space of a few weeks after the acknowledgement of the latest coronavirus outbreak, several laboratories started to deposit homology models for the main viral protease [42,43], and then for all the SARS-CoV-2 proteins using the server I-TASSER [44]. Others performed docking in these models [45] or developed their own models to understand how the virus enters cells by modeling the Spike (S) protein and human angiotensin-converting enzyme 2 (ACE2) protein interaction [46]. At the time of writing there were structures available for the SARS-CoV-2 main protease in complex with an inhibitor N3 (PDB ID 6LU7) [47] and S1 and S2 subunits of Spike glycoprotein receptor-binding domain up (6VSB), the post fusion core subunit (6LXT) and the HR2 domain (6LVN) [48,49]. A useful overview is provided by searching the entire virus sequence against the Protein Data Bank (PDB) (see Supplementary material Fig. S2 online). In comparison, for Zika it took several months from the beginning of the outbreak until there was a single protein available in the PDB [50].

The Spike glycoprotein is responsible for the fusion of the viral membrane with the host-cell membrane. During virus maturation, it is cleaved to its subunits: S1, which attaches the virion to the cell membrane by interacting with the host receptor; and S2, which mediates the fusion of the virion and cellular membranes. A recent study reports that SARS-CoV-2 Spike protein binds ACE2 with higher affinity than SARS-CoV [48].

Because there was only one Cryo-EM structure of SARS-CoV-2 Spike protein with low resolution (3.46 Å) without the human ACE2 protein [48] at the time of writing this paper, we preferred to build a model by homology modeling (see Supplementary material methods online). Using our SARS-CoV-2 Spike protein model and the available SARS-CoV Spike protein crystal structure (PDB: 2AIF), we aligned both structures to compare the residues in the Spike-ACE2 interface residues for both viruses. As can be seen in Fig. 1, the residues for SARS-CoV are Asn473, Tyr475, Tyr440, Tyr436, Tyr484, Leu472, Tyr442 and Asn479 and for SARS-CoV-2 are Asn167, Tyr169, Tyr133, Tyr129, Gln178, Phe166, Leu135 and Gln173. Moreover, some SARS-CoV-2 residues, such as Gln178, Phe166, Leu135 and Gln173, are not conserved but have the same physical-chemical features, except the residues SARS-CoV-2 Gln178 (polar) and SARS Tyr484 (hydrophobic) (Fig. 1).

The main protease (M^pr^) of coronaviruses is a cysteine protease that participates in the viral replication, cleaving the polyprotein.
Mpro is organized into three domains and is active in a homodimer form [51]. This protease recognizes peptide substrate P4, P2, P1 and P1’ positions through the S4, S2, S1 and S1’ protein subsites, which are critical for substrate binding [53]. The SARS-CoV-2 Mpro S4 pocket is formed by amino acid residue Pro168, the S2 pocket by Met49, the S1 pocket by Ser1, Phe140, His163 and Glu166 and S1’ pocket by His41, Cys145 and Gly143 residues [80]. We aligned the crystal structures of Mpro of SARS-CoV, MERS-CoV and SARS-CoV-2 to
TABLE 3

Drug name	Drug original class	Docking score (kcal mol⁻¹)
RizatRIPTAN	Antimigraine agent	-7.49
DasABUVR	Antiviral for hepatitis C	-7.09
PravASSTATIN	Lipid-lowering agent	-6.17
EmpagLIFLOZIN	Hypoglycemic agent	-6.37

compare the structures and the residues of the catalytic site. The catalytic site for SARS-CoV and SARS-CoV-2 are the same: His41-Cys145 [52], whereas for MERS-Cov it is His41-Cys148 [52] (Fig. 2). This catalytic site is localized between the interface of domain I (residues 8–101) and II (102–184). The third domain (residues 201–303) is C-terminal, and consists of a loop region, required for the dimerization [53–56]. Recently, it has been reported that the structures of MPro of SARS-CoV and SARS-CoV-2 have high identity of 96% [43]. The function and the structural equivalence of MPro of SARS-CoV, MERS-CoV and SARS-CoV-2 demonstrate that the coronavirus proteases are promising targets for development of broad-spectrum antivirals in these viruses.

MERS and SARS repurposing

Drug repurposing offers a potentially faster approach to identify drugs that are already approved for other uses and might work for the disease of interest [57–59]. This type of strategy was attempted for MERS-CoV and SARS-CoV [60,61] and the repurposing of host-based therapies has also been proposed for coronaviruses [62]. Several studies have screened a few hundred molecules and tested the activity against MERS-CoV and SARS-CoV (Table 2) [63,64]. The first screen of 348 FDA-approved drugs identified four FDA-approved drugs including chloroquine, chlorpromazine, loperamide and lopinavir [63]. At the same time, a second screen 290 compounds and identified 27 FDA- and non-FDA-approved drugs including chloroquine among the many hits [64], and the Abl2 kinase inhibitors such as imatinib which impacts the early stages of infection after internalization and endosomal trafficking. This latter molecule appears to work by inhibiting fusion at the viral membrane [65]. Chloroquine is widely used for malaria and loperamide is used for diarrhea. These represent drugs that are readily available in many locations around the world and for which physicians are also familiar with the side-effect profile. The ligand datasets from these and other screens can be used to apply machine learning methods to produce predictive models that can then be used to screen compound libraries and suggest new compounds to test. As an example, we have developed several models for ACE2, SARS-CoV and MERS-CoV using our Assay Central software [66–69] which uses ECFP6 descriptors and the Bayesian algorithm (Fig. 3, the experimental details are described in the Supplementary material online; the Bayesian models are also available at www.assaycentral.org). The advantage of this approach is that the method is fast, does not require crystal structures and it enables small-molecule structures to be scored against many models simultaneously.

Repurposing collections of compounds

As a well-established principle any SARS-CoV-2 relevant enzyme assay, protein–protein interaction antagonism or viral infectivity determination can be run against a collection of approved drugs. However, it is neither trivial to get a definitive list of these structures in silico prepared for docking or to acquire these as a physical collection ready for screening (even though there are various repurposing subsets available from vendors). Notwithstanding, an approximation to a definitive approved set can be selected in PubChem as the intersect between curated drug resources such as DrugBank, DrugCentral and the IUPHAR/BPS Guide to PHARMACOLOGY, with totals of 9135, 4012 and 7674 molecules, respectively. The three-way compounds-in-common total is 1119 chemical identifiers (CID). PubChem indicates that 1197 molecules are available from chemical vendors. Relaxing the stringency of the repurposing provides triage steps that can certainly be useful for docking and/or machine learning or other modeling efforts. In this case the union of all three drug curation sources is 16,468. Other drug-centric solutions include the selection of 9527 international non-proprietory names (INN) CID. The majority of these will have either been progressed to Phase I testing or are close to it.

Computational approaches to accelerate SARS-CoV-2 drug discovery

An alternative to screening every approved drug is to take one class of compounds. For example we have now taken the opportunity to dock FDA-approved HIV-1 protease inhibitors (amprenavir, atazanavir, darunavir, fosamprenavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir and tipranavir) and hepatitis C NS3/4A protease inhibitors (asunaprevir, boceprevir, grazoprevir, paritaprevir, simeprevir and telaprevir) into the MPro structure of SARS-CoV-2. The docking was performed with two different commercial docking software products: Biovia Discovery Studio and Schrödinger Glide [70–73], and the best docking results were compared (see Supplementary material Table S2 online). After medicinal chemistry visual inspection, the results of both docking approaches indicated that atazanavir and lopinavir may be of most interest for in vitro/and/or in vivo testing (Fig. 4). Lopinavir (Fig. 4a) (LigandFit score of 191.196) may interact with MPro by hydrogen bonding with Cys145 residue of the S1’ pocket. The aromatic ring of lopinavir also formed hydrophobic interactions with residues Cys44, Met49 (S2 pocket), Leu50, Pro52, Tyr54, and Cys145 (S1’ pocket). In relation to atazanavir (Fig. 4b) (LigandFit score of 175.497), hydrogen bonds were established between residues Cys145 and Glu166 both from S1’ pocket and nitrogen atoms of carbamate groups. Similar hydrophobic interactions observed with lopinavir occurred also with atazanavir, with residues Met49 (S2 pocket), Pro52 and Tyr54 (Fig. 4). In China and South Korea lopinavir 200 mg/ritonavir 50 mg has already been used for the treatment of COVID-19. From the day after lopinavir/ritonavir administration, the viral load started to decrease and no detectable or little coronavirus titers have been observed since then [11]. Lopinavir, co-formulated with ritonavir is commercially available and known as Kaletra® around the world—it is on formularies for HIV. By contrast, atazanavir is less commonly used. Kaletra® can be widely produced and distributed quickly through existing channels but it will be important to ensure HIV patients do not
lose access to the medications they need. It is also a medication that clinicians are familiar with in terms of side effects, unlike other less commonly used medications. A broader analysis of all FDA-approved drugs docked in this protease structure could point to further drugs worth testing.

We have also performed docking calculations of SARS-CoV-2 spike glycoprotein complexed with the host ACE2 protein against all FDA-approved drugs (~2400 molecules) using Schrödinger Glide software [70–73]. Because there was only one Cryo-EM structure of SARS-CoV-2 Spike protein with low resolution
(3.46 Å) without the human ACE2 protein [48] at the time of doing this analysis, we preferred to build a model by homology modeling, because lower-resolution structures (3 Å or higher) show the basic contours of the protein chain and the atomic structure must be inferred. We built the SARS-CoV-2 Spike subunit S1 model using the SwissModel server [74]. The template used was the SARS-CoV Spike S1 protein (PDB ID 2GHV) [75], which has resolution of 2.2 Å and 73.22% of sequence identity with SARS-CoV-2 Spike protein. After the protein refinement, we added the human ACE2 protein to the model, based on the SARS-CoV Spike–ACE2 structure (PDB ID 2AJF) [76], and built the full SARS-CoV-2 Spike S1–ACE2 model (see Fig. S5 in Supplementary material online). The quality statistics of the modeled SARS-CoV-2 Spike–ACE2 were good: 96.53% of the residues lie in the most favorable regions of the Ramachandran plot and the Molprobity score was 1.66. Our SARS-CoV-2 Spike–ACE2 model is available (see Supplemental material PDB file online). Subsequently, we performed docking-based virtual screening with a grid centered at the Spike–ACE2 interface. As can be seen in Table 3, docking scores indicated that rizatriptan (an antimigraine agent, Glide score = −7.49 kcal mol⁻¹), dasabuvir (an antiviral for hepatitis C, Glide score = −7.09 kcal mol⁻¹), pravastatin (a lipid-lowering agent, Glide score = −6.17 kcal mol⁻¹) and empagliflozin (a hypoglycemic agent, Glide score = −6.37 kcal mol⁻¹) may be of interest for in vitro testing. Details of intermolecular interactions of these drugs with the interface of Spike–ACE2 are shown in Fig. 5. In summary, these drugs form π-cation interactions with Lys31a (ACE2’s residue), π–π interactions with Phe170b (Spike’s residue), and H-bonds with Glu35a and Asp38a residues of ACE2, Gly176b and Ser174b (residues of Spike). In good agreement with our results, a previous study suggests that an early and high dose of a statin (such as pravastatin) could be crucial to surviving MERS-CoV infection [77]. These suggested drugs could be validated in future in vitro experiments with SARS-CoV-2 cell-based assays and with Spike-ACE2 enzymatic assays.
Modern drug discovery efforts try to eliminate inefficiency by increasing knowledge, through extensive utilization of generated data to guide new experiments. Therefore, we have also taken a drug repurposing approach based on polypharmacology using a method called the ‘molecular and biological signature’ [78]. This is a profiling approach, guided by artificial intelligence, capable of presenting the complex relationships between the chemical substance with molecular targets, cells and/or organs. This could create a more complete understanding of the ‘multi-biological profile’ caused by the drug analyzed in response to a disease. As an example, we have applied the drugs ritonavir [9], favipiravir, ribavirin and chloroquine as scaffolds to find new potential molecular and biological signature profiles, to search for non-obvious, mechanism-of-action-based associations between drugs, molecular targets and diseases (Fig. 6; and Supplementary material Fig. S6 and Table S3 online). Comparing the molecular and biological signature of ritonavir with other drugs, we found that the drugs cobicistat, carfilzomib and ombitasvir presented the highest matching scores (81–71%), suggesting that those drugs could be of further interest for SARS-CoV-2.

Concluding remarks

Although there are already several drugs being assessed clinically for SARS-CoV-2, there is still a need to identify additional treatments as alternatives (to offset drug shortages) and possibly discover molecules with increased efficacy, safety and cost-effectiveness. We have previously proposed and applied computational drug discovery approaches such as machine learning and docking to aid in the discovery of new candidate molecules for Ebola and Zika, respectively. What we have learnt in these efforts can be applied to SARS-CoV-2 as we have demonstrated here. However, the research in this case has moved at a much faster pace initially, delivering a first crystal structure in just a few weeks after first public notification of the virus. Companies have mobilized to bring their drugs to patients and clinicians have used prior in vitro research that proposed compounds active against MERS-CoV and SARS-CoV to suggest treatments for SARS-CoV-2. We currently do not clinically use any broad-spectrum antivirals in the USA but they would be invaluable in situations like this for SARS-CoV-2 and other viruses. Identifying medications with side-effect profiles known by clinicians that are already produced at scale and available at local pharmacies around the world will allow more patients to be treated, especially as travel restrictions and quarantines could reduce production and distribution of certain drugs. It will remain important that those who need these medications at baseline, such as HIV patients who take ritonavir/lopinavir, are able to continue to access the medications they need or else there is a risk of poor clinical outcomes and antiviral resistance in these patients. Although other viruses such as the flu might have killed more patients in the USA this season so far, the crippling financial impact of SARS-CoV-2 remains to be seen globally. If past Ebola, ZIKV, MERS-CoV and SARS-CoV outbreaks are anything to go by this SARS-CoV-2 pandemic will be far more significant. Having multiple effective treatments available for SARS-CoV-2 that can be rapidly delivered to patients could save lives. We can also supplement these treatments by a combination of computational screening with machine learning and docking to select additional drugs to test as proposed herein and this can be repeated for future virus outbreaks. The sense of déjà vu will probably be repeated again and again with the next virus outbreaks until we develop broader-spectrum antivirals. Each time we hope to be better prepared. Hope however does not save lives. Effective antiviral treatments do, and we need to have them ready in the future.

Conflict of interest

S.E. is founder and owner of Collaborations Pharmaceuticals. D.H. F., K.M.Z. and A.C.P. are employees of Collaborations Pharmaceuticals. R.C.B. is co-founder and CTO of InsilicAll. C.S. is owner of TW2Informatics. All other authors declare no conflicts of interest. Collaborations Pharmaceuticals owns the trademark for Assay Central™.

Acknowledgments

We kindly acknowledge NIH funding: R21TR001718 from NCATS and R44GM122196-02A1 from NIGMS (PI-Sean Ekins). We also acknowledge Brazilian funding agencies, CNPq, FAPEG and CAPES (Finance Code 001) for the financial support and fellowships. M. M. and C.H.A. thank the support of the Brazilian CNPq/FAPEG (grant 300508/2017-4). C.H.A. also thanks the ‘L’Oréal-UNESCO-ABC Para Mulheres na Ciência’ and ‘L’Oréal-UNESCO International Rising Talents’ for the awards and fellowships received, which partially funded this work. C.H.A. is CNPq research fellow. We kindly acknowledge the support and encouragement of the IBM World Community Grid team, and the community of volunteers who donate their dormant computer power for our docking calculations. S.E. kindly thanks Bovia for providing Discovery Studio and the many collaborators on our Ebola and Zika projects. S.E. acknowledges Dr Alex Clark (Molecular Materials Informatics) for assistance with Assay Central™.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:https://doi.org/10.1016/j.drudis.2020.03.019.

References

1 Furuyama, W. and Marzi, A. (2019) Ebola virus: pathogenesis and countermeasure development. Annu. Rev. Virol. 6, 435–458
2 Musso, D. et al. (2019) Zika virus infection – after the pandemic. N. Engl. J. Med. 381, 1444–1457
3 Gorbalenya, A.E. (2020) Severe acute respiratory syndrome-related coronavirus – the species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. http://dx.doi.org/10.1101/2020.02.07.937862
4 Holshue, M.L. et al. (2020) First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. . http://dx.doi.org/10.1056/nejmoa2001191
5 WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19–11-march–2020
6 FDA (2019) First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response. Case Med. Res. . http://dx.doi.org/10.31525/cmr-24ab0c1
7 Pan, Y. et al. (2020) Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur. Radiol. . http://dx.doi.org/10.1007/s00330-020-06731-x
8 Liu, J. et al. (2020) Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 82, 1620–1632.
9 Abdussamad, D. et al. (2020) Anti-COVID-19 drugs: a systematic review and meta-analysis. Int. J. Pharm. 598, 110943.
10 Lu, H. (2020) Drug discovery for COVID-19: what can we expect? Curr. Opin. Virol. 44, 101–105.
11 Xue, X. et al. (2020) Repurposing of old drugs against SARS-CoV-2. Science 369, 1058–1061.
12 Li, J. et al. (2020) The discovery and development of repurposed drugs for COVID-19. Nature 588, 254–263.
13 Gao, Y. et al. (2020) Biginfilan, a novel antiviral compound against SARS-CoV-2. Bioorg. Med. Chem. 28, 115166.
14 Liu, J. et al. (2020) A systematic review of antiviral drugs for COVID-19. Expert Opin. Investig. Drugs 29, 1251–1265.
15 Li, J. et al. (2020) Repurposing of old drugs against COVID-19: challenges and opportunities. Trends Pharmacol. Sci. 41, 603–610.
16 Xu, X. et al. (2020) Repurposing of old drugs against COVID-19: a systematic review and meta-analysis. J. Med. Virol. 92, 1032–1040.
17 Xue, X. et al. (2020) Repurposing of old drugs against COVID-19: a systematic review and meta-analysis. J. Med. Virol. 92, 1032–1040.
18 Li, J. et al. (2020) Repurposing of old drugs against COVID-19: a systematic review and meta-analysis. J. Med. Virol. 92, 1032–1040.

Drug Discovery Today Volume 25, Number 5 May 2020

491

REVIEW

8 Liu, J. et al. (2020) Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. http://dx.doi.org/10.1002/jmv.25709
9 Abdussamad, D. et al. (2020) Anti-COVID-19 drugs: a systematic review and meta-analysis. Int. J. Pharm. 598, 110943.
10 Lu, H. (2020) Drug discovery for COVID-19: what can we expect? Curr. Opin. Virol. 44, 1058–1061.
11 Xue, X. et al. (2020) Repurposing of old drugs against SARS-CoV-2. Science 369, 105166.
12 Li, J. et al. (2020) The discovery and development of repurposed drugs for COVID-19. Nature 588, 115166.
13 Gao, Y. et al. (2020) Biginfilan, a novel antiviral compound against SARS-CoV-2. Bioorg. Med. Chem. 28, 115166.
70 Friesner, R.A. et al. (2006) Extra Precision Glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196
71 Halgren, T.A. et al. (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759
72 Friesner, R.A. et al. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749
73 Glide, Schrödinger, LLC, New York, NY, 2019. https://www.schrodinger.com/glide
74 Biasini, M. et al. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258
75 Hwang, W.C. et al. (2006) Structural basis of neutralization by a human anti-severe acute respiratory syndrome Spike protein antibody, 80R. J. Biol. Chem. 281, 34610–34616
76 Li, F. (2005) Structure of SARS coronavirus Spike receptor-binding domain complexed with receptor. Science 309, 1864–1868
77 Yuan, S. (2015) Statins may decrease the fatality rate of Middle East respiratory syndrome infection. MBio 6. http://dx.doi.org/10.1128/mBio.01120-15
78 Pushpakom, S. et al. (2018) Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58
79 Schrödinger. The PyMOL Molecular Graphics System, Version 1.8 2015.
80 Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C. and Sauerhering, L. et al. (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80-), . http://dx.doi.org/10.1126/science. abh3405