Abstract

Graphene has been used in industrial application according to its unique properties especially to prepare graphene-based composites. Because of combining characterization of both materials in these composites, they would exhibit significant improvement in structural performance and multifunctional properties. Herein, we review various assembly methods for incorporating graphene filler to polymer matrix in order to achieve the best performance and properties by using the lowest amount of filler as much as possible. In addition, the effect of these techniques to enhance dispersion of graphene in different polymer matrix is investigated to get optimum of filler amount, plus exploring application of graphene-based composites in variety of fields such as electronic devices, sensors and even biomedical concerns is mentioned by this review.

Keywords: Graphene, Graphene Modification, New Applications, Polymer Composites, Polymerization

1. Introduction

Graphene with extraordinary high elastic modulus, and fracture strength (131±10 GPa), and thermal conductivity (5000 W/m K) have unique properties. The fracture strength of graphene is about 199 times higher than carbon steel, making it the strongest material ever prepared. All these properties render graphene showing attractive potential for applications in several technological fields, including structural materials, electronics, optoelectronics, gas sensors, fuel cells, etc. The especial characteristics of graphene compared to polymers are reflected in graphene-based polymer composites. Compared with clay silicates and ceramic nanoparticles, graphene and its derivatives offer additional advantages for reinforcing polymers. Graphene-based polymer composites have the unique mechanical, electrical and flame retardant properties, compared to the neat polymer. Also, surface-to-volume ratio of graphene is higher than carbon nanotubes, rendering graphene potentially more favorable to form functional nanocomposites for industrial applications. It was also showed that the developments in mechanical and electrical characteristics of graphene-based polymer composites are much better in comparison to that of clay or carbon filler based polymer composites. The physicochemical properties of the nanocomposite depend on the distribution of graphene layers in the polymer matrix as well as interfacial bonding between the graphene layers and polymer matrix. Pristine graphene is not compatible with organic polymers and does not form homogeneous composites. In contrast, Graphene Oxide (GO) sheets are more compatible with organic polymers and is more favorable in industrial applications. As a result GO has attracted attention as a nanofiller for polymer nanocomposites. Unlike

*Author for correspondence
graphene, graphene oxide is electrically insulating, which makes it unsuitable for synthesis of conducting nanocomposites. Graphite oxide can be obtained by reacting graphite with strong oxidizers, for example, a mixture of sulfuric acid, sodium nitrate, and potassium permanganate17. Chemical reducing agents, such as hydrazine, hydroquinone, and p-phenylene diamine, can react with GO for eliminating oxygen functionalities, producing the so-called Reduced Graphene Oxide (RGO) or Chemically Modified Graphene (CMG). The Young’s modulus of RGO single sheet is 0.25 TPa18 being a quarter of that of pristine graphene.

2. Preparation Methods of Polymer Nanocomposites

The preparation method depends on the polarity, molecular weight, hydrophobicity, reactive groups etc. present in the polymer, graphene and solvent18. Many methods exist to incorporate nanofillers into the polymer matrix: solution mixing, melt blending, latex blending or in-situ polymerization19,20.

2.1 In Situ Intercalative Polymerization

In situ polymerization requires the use of monomers, an initiator and a high temperature reactor. In the process, GO or modified graphene is dispersed in a solvent, followed by adding a monomer and an appropriate initiator. This process enables the attainment of homogeneous dispersion of graphene nanofillers in the polymer matrix. The high costs of monomer and high temperature vessel are the main limitations of this process. Further, the solvent removal issue is similar to that of the solvent casting technique21,22.

A large number of polymer nanocomposites have been prepared in this method, i.e. polystyrene (PS)/graphene23, Polymethylmethacrylate (PMMA)/Expanded Graphite (EG)24, Polystyrene sulfonate (PSS)/Layered Double Hydroxide (LDH)25, polyimide (PI)/LDH26, polyethylene terephthalate (PET)/LDH27, etc. Potts et al28 synthesized in situ RGO/PMMA nanocomposites using MMA monomer, benzoyl peroxide initiator, GO, and hydrazine. Upon heating, the bond of benzoyl peroxide was cleaved producing free radicals. The radicals reacted with MMA to initiate polymerization, hydrazine was added for reducing GO. Polyamide (PA)-based composites can be synthesized via ring-opening polymerization of caprolactam in the presence of GO, and initiated by 6-aminocaproic acid29 at 250°C. Yang et al.30 synthesized graphene/poly (L-lactide) (PLLA) nanocomposite using in situ ring-opening polymerization of PLLA with graphene (Figure 1).

2.2 Solution Intercalation

In this method, the polymer or pre-polymer is soluble in the solvent system and graphene or modified graphene layers are allowed to swell31. Graphene or modified graphene is dispersed in a suitable solvent like water, acetone, chloroform, Tetrahydrofuran (THF), Dimethyl formamide (DMF) or toluene then the polymer adsorbs on to the delaminated sheets and finally the solvent is evaporated32. Polymer nanocomposites like polyethylene-grafted maleic anhydride (PE-g-MA)/graphite33, epoxy/LDH34, polypropylene (PP)/graphene35, polyvinyl alcohol (PVA)/grapheme36, etc., have been prepared in this method. The advantages of solution mixing are its simplicity and effectiveness for dispersing nanofillers in the polymer matrix. Furthermore, longtime sonication can induce structural defects and reduce the aspect ratios of graphene, resulting in poorer mechanical strength of resulting composites37. Mazinani et al. reported the SEM micrograph of 0.5 wt% TRG/epoxy nanocomposite showing the dispersion of wrinkled TRGs in the matrix (Figure 2)38.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image1.png}
\caption{Synthesis scheme of TRG/PLLA nanocomposite via in situ polymerization30.}
\end{figure}
2.3 Melt Intercalation

In this method, we can mix the graphene or modified graphene with the polymer matrix in molten state. A thermoplastic polymer with using extrusion and injection molding is mixed mechanically with graphene or modified graphene at high temperatures. The polymer bond is then laminated to form nanocomposites. In recent years various type of polymer nanocomposites used in industry have been made by this method, like as polyethylene (HDPE)/EG, Polyphenylene Sulphide (PPS)/EG, Polyamide (PA6)/EG, etc. If we consider other methods, melt blending is less energetic in dispersing graphene or modified graphene in the polymer matrix. Also, high shear forces during melt mixing can reduce the aspect ratio of graphene, leading to impaired mechanical properties.

Mahmoud et al. reported TRGs with acetonitrile agent to further decrease their remaining oxygen groups to form graphene. The final sample is called as foliated graphene sheets (Figure 3). With melt blending processes, they produced graphene/PEO nanocomposites using solution mixing. These nanocomposite sheets dispersed uniformly in the matrix of solution-mixed nanocomposites than the melt-blended counterparts. The TEM images of the 0.3 vol FGS/PEO nanocomposite produced by solvent mixing and melt mixing, shown in Figure 4. The sonication process during solution mixing can further laminate FGS into thin graphene sheet. For melt compounded composite, the polymer bonds joined to accommodate into FGS layers rather than spread between the graphene layers.

3. Nanocomposites of Graphene-based Polymer Application

These structures have been developed for a wide range of applications in various fields such as automotive panel body, gas storage container, electronic devices, automotive tire, super capacitor, battery electrode, energy storage,
sensors application. Nanocomposites of graphene-based polymers have high electrical conductivity, high optical transmittance in the visible range of spectrum and high carrier mobility. Also we can use these structures as electrodes for dye-sensitized solar cells, organic solar cells, liquid crystal devices, Organic Light Emitting Diodes (OLEDs) and field emission devices. According to the large specific area and low Johnson noise, the conductance changing of these materials with function of extent of surface adsorption, these nanocomposites has used to be a development candidate to pH, temperature and gas sensors and pressure. The modified electrode possesses a best electro catalytic activity towards the reduction and oxidation of hemoglobin (Hb). Also, the potential properties of graphene make essentially infinite possibilities for biomedical application. The first report on biomedical usage of graphene studied in 2008.

Table 1. Application of conducting polymers as sensors

Type of sensor	Graphene/polymer Composites used
Temperature	Graphene/PVDF
Hemoglobin	HPCD-GO/TPP
Glucose	Graphene/PEI/GOD, GOD/Pt/Graphene/Chitosan, GOD/Au/Graphene/Nafion
Guanine and Adenine	Graphene/Nafion/GC
Uric acid	Graphene/Chitosan
Methyl parathion	Graphene-Nafion/GCE

Table 2. Graphene/Polymer composites in biomedical field

Applications	Purpose	Graphene/Polymer Composites used
Drug Delivery	CPT delivery	GO-PVA-CPT, CNT-PVAPCPT, PNI-PAM-GS
Gene delivery	Anti cancer drug delivery, pDNA transfection, CPT drug and report, DNA delivery, Si RNA and DOX delivery	NGO-PEG, PEI-GO, GO-Chitosan, GO-PEI
Cancer therapy	Tumor ablation, Multifunctional cancer therapy, Hepatocarcinoma diagnosis	PEG-NGS, ce 6 loaded PEG-GO, GO-PEG-FA/Gd/DOX
Bio-imaging	Cell imaging	NGO-PEG, GO-PEI
Actuators	Artificial muscles	Graphene/PDMS

4. Conclusion

Nanocomposite of Graphene-based polymers has high potential application in various industrial. In this review, we study the current development on the production, characteristics and applications of graphene-filled polymer nanocomposites. According to the interesting properties of Graphene, like as high mechanical, thermal and electrical characteristics, we can use these structures in electronic circuits, transparent, flexible electrodes and sensors for solar cells etc.
5. References

1. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010; 48:2127–50.
2. Stankovich S, Dikin DA, Dommett GHB, Kohlihaas KM, Zimney EJ, Stach EA. Graphene-based composite materials. Nature. 2006; 442:282–6.
3. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Alonso MH, Piner RD. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008; 3:327–31.
4. Lee YR, Raghu AV, Jeong HM, Kim BK. Properties of waterborne polyurethane functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys. 2009; 210:1247–54.
5. Tjong SC. Polymer nanocomposite bipolar plates reinforced with carbon nanotubes and graphite nanosheets. Energy Env Sci. 2011; 4:605–26.
6. Chiacciarelli LM, Rallini M, Monti M, Puglia D. The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring. Compos Sci Technol. 2013; 80:73–9.
7. Ren L, Qiu J, Wang S. Thermo-adaptive functionality of graphene/polydimethylsiloxane nanocomposites. Smart Mater Struct. 2012; 21:105032.
8. Chen Y, Qi Y, Tai Z, Yan X, Zhu F, Xue Q. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur Polym J. 2012; 48:1026–33.
9. Xu Y, Wang Y, Jiajie L, Huang Y, Ma Y, Wan X, Ahybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2009; 2:343–8.
10. Quan H, Zhang B, Zhao Q, Yuen RKK, Li RKY. Facile preparation and thermal degradation studies of Graphite Nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Pt A. 2009; 40:1506–13.
11. Becerril H, Mao J, Liu Z, Stoltenberg M, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008; 2:463–70.
12. Dikin AK, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G. Preparation and characterization of graphene oxide paper. Nature. 2007; 448:457–60.
13. Vickery L, Patil AJ, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater. 2009; 21:2180–4.
14. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater. 2007; 19:4396–404.
15. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite oxide, chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Chem Mater. 2003; 19:6050–5.
16. Stankovich S, Dikin DA, Piner RD, Kohlihaas KA, Kleinhammes A, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007; 45:1558–65.
17. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958; 80:1339–40.
18. Gomez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene shells. Nano Lett. 2008; 8:2045–9.
19. Lerf A, He HY, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B. 1998; 102:4477–82.
20. Matsu Y, Tahara K, Sugie Y. Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide. Carbon. 1997; 35:113–20.
21. Zheng W, Lu X., Wong SC. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci. 2004; 91:2781–8.
22. Hu HT, Wang JC, Wan L, Liu FM, Zheng H, et al. Preparation and properties of graphite nanosheets – polystyrene nanocomposites via in situ emulsion polymerization. Chem Phy Letts. 2010; 484:247–53.
23. Ye L, Meng XY, Ji X, Li ZM, Tang JH. Synthesis and characterization of expanded graphite-poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab. 2009; 94:971–9.
24. Chen G, Wu D, Weng W, Wu C. Exfoliation of graphite flakes and its nanocomposites. Carbon. 2003; 41:619–21.
25. Kornmann X. Synthesis and characterization of thermoset-layered silicate nanocomposites PhD thesis. Sweden: Lulea Tekniska Universitet; 2001.
26. Moujahid EM, Besse JP, Leroux F. Poly(styrene sulfonate) layered double hydroxide nanocomposites Stability and subsequent structural transformation with changes in temperature. J Mater Chem. 2003; 13:258–64.
27. Hsueh HB, Chen CY. Preparation and properties of LDHs/polyimide nanocomposites. Polymer. 2003; 44:1151–61.
28. Geng Y, Liu MY, Li J, Shi XM, Kim JK. Effects of surfactant treatment on mechanical and electrical properties of CNT/polyethylene composites. Compos Pt A 2008; 39:1876–83.
29. Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yang CH, et al. Preparation and properties of carbon nanotube polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sour. 2008; 185:1225–32.
30. Li Y, Wang K, Wei J, Gu Z, Wang Z, Luo J, et al. Tensile properties of long alligned double-walled carbon nanotube. Carbon. 2005; 43:31–5.
31. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties of intrinsic strength of monolayer graphene. Science. 2008;321:858–8.
32. Lee WD, Im SS. Thermomechanical properties and crystallization behavior of layered double hydroxide poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J Polym Sci Pt B Polym Phys. 2007;45:28–40.
33. Hussain F, Hojati M. Okamoto M, Gorga RE. Review article, polymer–matrix nanocomposites, processing, manufacturing, and application, an overview. J Compos Mater. 2006;40:1511–75.
34. Shen JW, Huang WY, Zuo SW, Hou J. Polyethylene/grafted polyethylene/graphite nanocomposites, preparation, structure, and electrical properties. J Appl Polym Sci. 2005;97:51–8.
35. Wanga WP, Pana CY. Preparation and characterization of poly(styrene/graphite composite prepared by cationic grafting polymerization. Polymer. 2004;45:3987–95.
36. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater. 2009;19:2297–302.
37. Renukappa NM, Siddaramaiah, Sudhaker Samuel RD, Sundara Rajan J; Lee JH. Dielectric properties of carbon black, SBR composites. J Mater Sci Mater Electron. 2009;20:648–56.
38. Mazinani S, Ajji A, Dubois C. Morphology, structure and properties of conductive PS CNT nanocomposite electrospun mat. Polymer. 2009;50:3329–42.
39. Kim SK, Kim NH, Lee JH. Effects of the addition of multiwalled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high density polyethylene nanocomposites. Scripta Mater. 2006;55:1119–22.
40. Kim S, Do I, Drzal LT. Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoflakes–LLDPE nanocomposites. Polym Compos. 2009;31:755–61.
41. Chen G, Wu C, Weng W, Wu D, Yan W. Preparation of poly(styrene/graphite nanosheet composites. Polymer. 2003;44:1781–4.
42. Weng W, Chen G, Wu D. Transport properties of electrically conducting nylon 6/exfoliated graphite nanocomposites. Polymer. 2005;46:6250–7.
43. Tjong SC, Xu SA, Li RK, Mai YW. Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber/SEBS/polypropylene hybrid composites. Compos Sci Technol. 2002;62:831–40.
44. Mahmoud WE. Morphology and physical properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by two different techniques. Eur Polym J. 2011;47:1534–40.
Developments of Graphene-based Polymer Composites Processing Based on Novel Methods for Innovative Applications in Newborn Technologies

60. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater. 2009; 19:2782–9.

61. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc. 2008; 130:10876–7.