Subexponential-Time Algorithms for Sparse PCA

Yunzi Ding∗1, Dmitriy Kunisky‡1, Alexander S. Wein§1, and Afonso S. Bandeira¶2

1Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, USA
2Department of Mathematics, ETH Zurich, Switzerland

Abstract

We study the computational cost of recovering a unit-norm sparse principal component \(x \in \mathbb{R}^n \) planted in a random matrix, in either the Wigner or Wishart spiked model (observing either \(W + \lambda xx^\top \) with \(W \) drawn from the Gaussian orthogonal ensemble, or \(N \) independent samples from \(\mathcal{N}(0, I_n + \beta xx^\top) \), respectively). Prior work has shown that when the signal-to-noise ratio (\(\lambda \) or \(\beta \sqrt{N/n} \), respectively) is a small constant and the fraction of nonzero entries in the planted vector is \(\|x\|_0/n = \rho \), it is possible to recover \(x \) in polynomial time if \(\rho \lesssim 1/\sqrt{n} \). While it is possible to recover \(x \) in exponential time under the weaker condition \(\rho \ll 1 \), it is believed that polynomial-time recovery is impossible unless \(\rho \lesssim 1/\sqrt{n} \). We investigate the precise amount of time required for recovery in the “possible but hard” regime \(1/\sqrt{n} \ll \rho \ll 1 \) by exploring the power of subexponential-time algorithms, i.e., algorithms running in time \(\exp(n^\delta) \) for some constant \(\delta \in (0, 1) \). For any \(1/\sqrt{n} \ll \rho \ll 1 \), we give a recovery algorithm with runtime roughly \(\exp(\rho^2 n) \), demonstrating a smooth tradeoff between sparsity and runtime. Our family of algorithms interpolates smoothly between two existing algorithms: the polynomial-time diagonal thresholding algorithm and the \(\exp(pn) \)-time exhaustive search algorithm. Furthermore, by analyzing the low-degree likelihood ratio, we give rigorous evidence suggesting that the tradeoff achieved by our algorithms is optimal.

∗Email: yding@nyu.edu. Partially supported by NSF grant DMS-1712730.
‡Email: kunisky@cims.nyu.edu. Partially supported by NSF grants DMS-1712730 and DMS-1719545.
§Email: awein@cims.nyu.edu. Partially supported by NSF grant DMS-1712730 and by the Simons Collaboration on Algorithms and Geometry.
¶Email: bandeira@math.ethz.ch. Most of this work was done while ASB was with the Department of Mathematics at the Courant Institute of Mathematical Sciences, and the Center for Data Science, at New York University; and partially supported by NSF grants DMS-1712730 and DMS-1719545, and by a grant from the Sloan Foundation.
1 Introduction

1.1 Spiked Matrix Models

Since the foundational work of Johnstone [Joh01], spiked random matrix ensembles have been widely studied throughout random matrix theory, statistics, and theoretical data science. These models describe a deformation of one of several canonical random matrix distributions by a rank-one perturbation or “spike,” intended to capture a signal corrupted by noise. Spectral properties of these spiked models have received much attention in random matrix theory [BBP05, BS06, Pau04, Péc06, FP07, CDMF09, BGN11, PRS13, KY13], leading to a theoretical understanding of methods based on principal component analysis (PCA) for recovering the direction of the rank-one spike [Joh01, JL04, Pau07, Nad08, JL09]. Spiked matrix models have also found more specific applications to problems such as community detection in graphs (see, e.g., [McS01, Vu18, DAM16], or [Moo17, Abb17] for surveys) and synchronization over groups (see, e.g., [Sin11, SS11, JMRT16, PWBM16, PWBM18a]).

We will study two classical variants of the spiked matrix model: the Wigner and Wishart models. The models differ in how noise is applied to the signal vector. In either case, let \(x \in \mathbb{R}^n \) be the signal vector (or “spike”). We will either have \(x \) deterministic with \(\|x\|_2 = 1 \), or \(x \in \mathbb{R}^n \) random for each \(n \) with \(\|x\|_2 \to 1 \) in probability as \(n \to \infty \).

- **Spiked Wigner Model.** Let \(\lambda > 0 \). Observe \(Y = W + \lambda xx^\top \), where \(W \in \mathbb{R}^{n \times n} \) is drawn from the *Gaussian orthogonal ensemble* \(\text{GOE}(n) \), i.e., \(W \) is symmetric with entries distributed independently as \(W_{ii} \sim \mathcal{N}(0, 2/n) \) for all \(1 \leq i \leq n \), and \(W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n) \) for all \(1 \leq i < j \leq n \).

- **Spiked Wishart Model.** Let \(\beta > 0 \) and \(N \in \mathbb{N} \). Observe \(N \) samples \(y^{(1)}, y^{(2)}, \ldots, y^{(N)} \in \mathbb{R}^n \) drawn independently from \(\mathcal{N}(0, I_n + \beta xx^\top) \). The ratio of dimension to number of samples is denoted \(\gamma := n/N \). We will focus on the high-dimensional regime where \(\gamma \) converges to a constant as \(n \to \infty \). We let \(Y \) denote the sample covariance matrix \(Y = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} y^{(i)\top} \).

Each of these planted models has a corresponding null model, given by sampling from the planted model with either \(\lambda = 0 \) (Wigner) or \(\beta = 0 \) (Wishart).

We are interested in the computational feasibility of the following two statistical tasks, to be performed given a realization of the data (either \(Y \) or \(\{y^{(1)}, \ldots, y^{(N)}\} \)) drawn from either the null or planted distribution.

- **Detection.** Perform a simple hypothesis test between the planted model and null model. We say that *strong detection* is achieved by a statistical test if both the type-I and type-II errors tend to 0 as \(n \to \infty \).

- **Recovery.** Estimate the spike \(x \) given data drawn from the planted model. We say that a unit-norm estimator \(\hat{x} \in \mathbb{R}^n \) achieves *weak recovery* if \(\langle \hat{x}, x \rangle^2 \) remains bounded away from zero with probability tending to 1 as \(n \to \infty \). (Note that we cannot hope to distinguish between the planted models with signals \(x \) and \(-x \)).

For high-dimensional inference problems such as the spiked Wigner and Wishart models, these two tasks typically share the same computational profile: with a given computational time budget, strong detection and weak recovery are possible in the same regions of parameter space.

1 We will also consider stronger notions of recovery: *strong recovery* is \(\langle \hat{x}, x \rangle^2 \to 1 \) as \(n \to \infty \) and *exact recovery* is \(\hat{x} = x \) with probability \(1 - o(1) \).
1.2 Principal Component Analysis

Simple algorithms for both detection and recovery are given by *principal component analysis (PCA)* of the matrix Y. For detection, one computes and thresholds the maximum eigenvalue $\lambda_{\text{max}}(Y)$ of Y, while for recovery one estimates x using the leading eigenvector $v_{\text{max}}(Y)$. Both the spiked Wishart and Wigner models are known to exhibit a sharp transition in their top eigenvalue as the model parameters vary. For the Wishart model, the celebrated “BBP transition” of Baik, Ben Arous, and Péché \[BBP05, BS06\] states that the maximum eigenvalue of the sample covariance matrix Y emerges from the Marchenko–Pastur-distributed bulk if and only if $\beta^2 > \gamma$. Similarly, in the Wigner model, the maximum eigenvalue of Y emerges from the semicircular bulk if and only if $\lambda > 1$ [FP07]. More formally, the following statements hold.

Theorem 1.1 \[FP07, BGN11\]. Consider the spiked Wigner model $Y = W + \lambda xx^T$ with $\|x\| = 1$ and $\lambda > 0$ fixed. Then as $n \to \infty$,

- if $\lambda \leq 1$, $\lambda_{\text{max}}(Y) \to 2$ almost surely, and $\langle v_{\text{max}}(Y), x \rangle^2 \to 0$ almost surely (where v_{max} denotes the leading eigenvector);
- if $\lambda > 1$, $\lambda_{\text{max}}(Y) \to \lambda + \lambda^{-1} > 2$ almost surely, and $\langle v_{\text{max}}(Y), x \rangle^2 \to 1 - \lambda^{-2} > 0$ almost surely.

Theorem 1.2 \[BBP05, BS06, Pau04\]. Let Y denote the sample covariance matrix in the spiked Wishart model with $\|x\| = 1$, $\beta > 0$ fixed, and $N = N(n)$ such that $\gamma := n/N$ converges to a constant $\bar{\gamma} > 0$ as $n \to \infty$. Then as $n \to \infty$,

- if $\beta^2 \leq \bar{\gamma}$, $\lambda_{\text{max}}(Y) \to (1 + \sqrt{\bar{\gamma}})^2$ almost surely, and $\langle v_{\text{max}}(Y), x \rangle^2 \to 0$ almost surely (where v_{max} denotes the leading eigenvector);
- if $\beta^2 > \bar{\gamma}$, $\lambda_{\text{max}}(Y) \to (1 + \beta)(1 + \bar{\gamma}/\beta) > (1 + \sqrt{\bar{\gamma}})^2$ almost surely, and $\langle v_{\text{max}}(Y), x \rangle^2 \to (1 - \bar{\gamma}/\beta^2)(1 + \bar{\gamma}/\beta) > 0$ almost surely.

We define the *signal-to-noise ratio (SNR)* $\hat{\lambda}$ by

$$\hat{\lambda} := \begin{cases} \lambda & \text{in the Wigner model}, \\ \beta/\sqrt{\gamma} & \text{in the Wishart model}. \end{cases}$$

Theorems 1.1 and 1.2 then characterize the performance of PCA in terms of $\hat{\lambda}$. Namely, thresholding the largest eigenvalue of Y succeeds at strong detection when $\hat{\lambda} > 1$ and fails when $\hat{\lambda} \leq 1$; similarly, the top eigenvector succeeds at weak recovery when $\hat{\lambda} > 1$ and fails when $\hat{\lambda} \leq 1$. For some distributions of x, including the spherical prior (x drawn uniformly from the unit sphere) and the Rademacher prior (each entry x_i drawn i.i.d. from Unif($\pm 1/\sqrt{n}$)), it is known that the PCA threshold is optimal, in the sense that strong detection and weak recovery are statistically impossible (for any test or estimator, regardless of computational cost) when $\hat{\lambda} < 1$ [OMH13, MRZ15, DAM16, BMV+18, PWBM18b].

1.3 Sparse PCA

Sparse PCA, a direction initiated by Johnstone and Lu [JL04, JL09], seeks to improve performance when the planted vector is known to be sparse in a given basis. While various sparsity assumptions
have been considered, a simple and illustrative one is to take \(x \) drawn from the sparse Rademacher prior, denoted \(X_n^\rho \), in which each entry \(x_i \) is distributed independently as

\[
x_i = \begin{cases}
 \frac{1}{\sqrt{\rho n}} & \text{with probability } \frac{\rho}{2} \\
 -\frac{1}{\sqrt{\rho n}} & \text{with probability } \frac{\rho}{2} \\
 0 & \text{with probability } 1 - \rho
\end{cases}
\]

for some known sparsity parameter \(\rho \in (0, 1] \), which may depend on \(n \). The normalization ensures \(\|x\| \to 1 \) in probability as \(n \to \infty \).

Consider the Wishart model (we will see that the Wigner model shares essentially the same behavior) in the regime \(\hat{\lambda} = \Theta(1) \) with \(\hat{\lambda} < 1 \) (so that ordinary PCA fails at weak recovery). The simple diagonal thresholding algorithm proposed by [JL09] estimates the support of \(x \) by identifying the largest diagonal entries of \(Y \). Under the condition \(\rho \lesssim 1/\sqrt{n \log n} \), this has been shown [AW08] to achieve exact support recovery, i.e., it exactly recovers the support of \(x \) with probability tending to 1 as \(n \to \infty \) (and once the support is known, it is straightforward to recover \(x \)). The more sophisticated covariance thresholding algorithm proposed by [KNV15] has been shown [DM14b] to achieve exact support recovery when \(\rho \lesssim 1/\sqrt{n} \).

On the other hand, given unlimited computational power, an exhaustive search over all possible support sets of size \(\rho n \) achieves exact support recovery under the much weaker assumption \(\rho \lesssim 1/\log(n) \) [PJ12, VL12, CMW13]. Similarly, strong detection and weak recovery are statistically possible even when \(\rho \) is a sufficiently small constant (depending on \(\beta, \gamma \)) [BMV+18, PWBM15], and the precise critical constant \(\rho^* (\beta, \gamma) \) is given by the replica formula from statistical physics (see, e.g., [LKZ15a, LKZ15b, KXZ16, DMK+16, LM19, Mio17, EKJ17, EK18, EKJ18, or Mio18 for a survey). However, no polynomial-time algorithm is known to succeed (for any reasonable notion of success) when \(\rho \gg 1/\sqrt{n} \), despite extensive work on algorithms for sparse PCA [dGJL05, ZHT06, MWA06, dBG08, AW08, WTH09, BR13a, DMI14a, KNV15, BPP18].

In fact, a growing body of theoretical evidence suggests that no polynomial-time algorithm can succeed when \(\rho \gg 1/\sqrt{n} \). Such evidence takes the form of reductions [BR13a, WBS16, BBH18, BB19] from the planted clique problem (which is widely conjectured to be hard in certain regimes [Jer92, DMI15, MPW15, BHK+19]), as well as lower bounds against the sum-of-squares hierarchy of convex relaxations [MW15, HKP+17]. Thus, we expect sparse PCA to exhibit a large “possible but hard” regime when \(1/\sqrt{n} \ll \rho \ll 1 \).

1.4 Our Contributions

In this paper, we investigate precisely how hard the “hard” region \((1/\sqrt{n} \ll \rho \ll 1) \) is in sparse PCA. We consider subexponential-time algorithms, i.e., algorithms with runtime \(\exp(n^{\delta+o(1)}) \) for fixed \(\delta \in (0, 1) \). We show a smooth tradeoff between sparsity (governed by \(\rho \)) and runtime (governed by \(\delta \)). More specifically, our results (for both the Wishart and Wigner models) are as follows.

- **Algorithms.** For any \(\delta \in (0, 1) \), we give an algorithm with runtime \(\exp(n^{\delta+o(1)}) \) that achieves exact support recovery, provided \(\rho \ll n^{(\delta-1)/2} \).

\[\footnote{We analyze our algorithms for a more general set of assumptions on \(x \); see Definition \ref{def:general assumptions}.} \]

\[\footnote{We use \(A \lesssim B \) to denote \(A \leq CB \) for some constant \(C \), and use \(A \ll B \) to denote \(A \leq B/\text{polylog}(n) \).} \]
• **Lower bounds.** Through an analysis of the *low-degree likelihood ratio* (see Section 1.6), we give formal evidence suggesting that the above condition is essentially tight in the sense that no algorithm of runtime $\exp(n^{\delta + o(1)})$ can succeed when $\rho \gg n^{(\delta - 1)/2}$. (Our results are sharper than the sum-of-squares lower bounds of [HKP+17] in that we pin down the precise constant δ.)

Our algorithm involves exhaustive search over subsets of $[n]$ of cardinality $\ell \approx n^{\delta}$. The case $\ell = 1$ is diagonal thresholding (which is polynomial-time and succeeds when $\rho \lesssim 1/\sqrt{n \log n}$) and the case $\ell = \rho n$ is exhaustive search over all possible spikes (which requires time $\exp(\rho n^{1+o(1)})$ and succeeds when $\rho \lesssim 1/(\log n)$). As ℓ varies in the range $1 \leq \ell \leq \rho n$, our algorithm interpolates smoothly between these two extremes. For a given ρ in the range $1/\sqrt{n} \ll \rho \ll 1$, the smallest admissible choice of ℓ is roughly $\rho^2 n$, yielding an algorithm of runtime $\exp(\rho^2 n^{1+o(1)})$.

Our results extend to the case $\lambda \ll 1$, e.g., $\lambda = n^{-\alpha}$ for some constant $\alpha > 0$. In this case, provided $\rho \ll \lambda^2$ (which is information-theoretically necessary [PJ12, VL12, CMW13]), there is an $\exp(n^{\delta+o(1)})$-time algorithm if $\rho \ll \lambda n^{(\delta - 1)/2}$, and the low-degree likelihood ratio again suggests that this is optimal. In other words, for a given ρ in the range $\lambda/\sqrt{n} \ll \rho \ll \lambda^2$, we can solve sparse PCA in time $\exp(\lambda^{-2} \rho^2 n^{1+o(1)})$.

The analysis of our algorithm applies not just to the sparse Rademacher spike prior, but also to a weaker set of assumptions on the spike that do not require all of the nonzero entries to have the same magnitude. Our algorithm is guaranteed (with high probability) to exactly recover both the support of x and the signs of the nonzero entries of x. Once the support is known, it is straightforward to estimate x via the leading eigenvector of the appropriate submatrix.

In independent work [HSV19], a different algorithm for sparse PCA was proposed and shown to have essentially the same subexponential runtime as ours. Also, prior work [KZ14] gave a subexponential-time algorithm for certifying the restricted isometry property, that is somewhat similar in spirit to our algorithm for sparse PCA.

Remark 1.3. Certain problems besides sparse PCA have a similar smooth tradeoff between subexponential runtime requirements and statistical power. These include refuting random constraint satisfaction problems [RRST17] and tensor PCA [BGG+16, BGL16, WEM19]. In contrast, other problems have a sharp threshold at which they transition from being solvable in polynomial-time to (conjecturally) requiring essentially exponential time: $\exp(n^{1-o(1)})$. Examples of this behavior can occur at the spectral transition at $\lambda = 1$ in the spiked Wishart and Wigner matrix models (see [BKW19, KWB19]) as well as at the Kesten–Stigum threshold in the stochastic block model (see [DKMZ17b, DKMZ11a, HST17, Hop18]).

1.5 Background on the Low-Degree Likelihood Ratio

A sequence of recent work on the sum-of-squares hierarchy [BHK+19, HSI17, HKP+17, Hop18] has led to the development of a remarkably simple method for predicting the amount of computation time required to solve statistical tasks. This method—which we will refer to as the *low-degree method*—is based on analyzing the so-called *low-degree likelihood ratio*, and is believed to be intimately connected to the power of sum-of-squares (although formal implications have not been established). We now give an overview of this method; see [Hop18, KWB19] for more details.

We will consider the problem of distinguishing two simple hypotheses \mathbb{P}_n and \mathbb{Q}_n, which are probability distributions on some domain $\Omega_n = \mathbb{R}^{d(n)}$ with $d(n) = \text{poly}(n)$. The idea of the low-degree method is to explore whether there is a low-degree polynomial $f_n : \Omega_n \to \mathbb{R}$ that can distinguish \mathbb{P}_n from \mathbb{Q}_n.
We call Q_n the “null” distribution, which for us will always be i.i.d. Gaussian (see Definitions 2.14 and 2.17). Q_n induces an inner product on L^2 functions $f : \Omega_n \to \mathbb{R}$ given by $\langle f, g \rangle_{L^2(Q_n)} = \mathbb{E}_{Y \sim Q_n}[f(Y)g(Y)]$, and a norm $\|f\|_{L^2(Q_n)} = (\langle f, f \rangle_{L^2(Q_n)})^{1/2}$. For $D \in \mathbb{N}$, let $\mathbb{R}[Y]_{\leq D}$ denote the multivariate polynomials $\Omega_n \to \mathbb{R}$ of degree at most D. For $f : \Omega_n \to \mathbb{R}$, let $f^{\leq D}$ denote the orthogonal projection (with respect to $\langle \cdot, \cdot \rangle_{L^2(Q_n)}$) of f onto $\mathbb{R}[Y]_{\leq D}$. The following result then relates the distinguishing power of low-degree polynomials (in a certain L^2 sense) to the low-degree likelihood ratio.

Theorem 1.4 ([HS17] [HKP+17]). Let P and Q be probability distributions on $\Omega = \mathbb{R}^d$. Suppose P is absolutely continuous with respect to Q, so that the likelihood ratio $L = \frac{dP}{dQ}$ is defined. Then

$$\max_{f \in \mathbb{R}[Y]_{\leq D}\setminus \{0\}} \frac{\mathbb{E}_{Y \sim P}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim Q}[f(Y)]^2}} = \|L^{\leq D}\|_{L^2(Q)}.$$ \tag{3}

(The proof is straightforward: the fraction on the left can be written as $\langle f, L \rangle_{L^2(Q_n)}/\|f\|_{L^2(Q_n)}$, so the maximizer is $f = L^{\leq D}$.) The left-hand side of (3) is a heuristic measure of how well degree-D polynomials can distinguish P from Q: if this quantity is $O(1)$ as $n \to \infty$, this suggests that no degree-D polynomial can achieve strong detection (and indeed this is made formal by Theorem 4.3 of [KWB19]). The right-hand side of (3) is the norm of the low-degree likelihood ratio (LDLR), which can be computed or bounded in many cases, making this heuristic a practical tool for predicting computational feasibility of hypothesis testing.

The key assumption underlying the low-degree method is that, for many natural distributions P_n and Q_n, degree-D polynomials are as powerful as algorithms of runtime $n^{\tilde{O}(D)}$, where \tilde{O} hides factors of $\log n$. This is captured by the following informal conjecture, which is based on [HS17] [HKP+17] [Hop18] in particular, see Hypothesis 2.1.5 of [Hop18].

Conjecture 1.5 (Informal). Suppose $t : \mathbb{N} \to \mathbb{N}$. For “nice” sequences of distributions P_n and Q_n, if $\|L_n^{\leq D(n)}\|_{L^2(Q_n)}$ remains bounded as $n \to \infty$ whenever $D(n) \leq t(n) \cdot \text{polylog}(n)$, then there exists no sequence of functions $f_n : \Omega_n \to \{p, q\}$ with f_n computable in time $n^{t(n)}$ that strongly distinguishes P_n and Q_n, i.e., that satisfies

$$\lim_{n \to \infty} Q_n[f_n(Y) = q] = \lim_{n \to \infty} P_n[f_n(Y) = p] = 1.$$ \tag{4}

On a finer scale, it is conjectured [HS17] [Hop18] that if for some $\varepsilon > 0$ we have $D(n) \geq \log^{1+\varepsilon}(n)$ and $\|L_n^{\leq D(n)}\|_{L^2(Q_n)} = O(1)$, then no polynomial-time algorithm can strongly distinguish P_n from Q_n. In practice, it seems that the converse of Conjecture 1.5 often holds as well, in the sense that if $\|L_n^{\leq D(n)}\|_{L^2(Q_n)} = \omega(1)$ for some $D(n) = t(n)/\text{polylog}(n)$, then there is an $n^{t(n)}$-time distinguishing algorithm (however, see Remark 2.16 for one caveat).

Calculations with the LDLR have been carried out for problems such as community detection [HS17] [Hop18], planted clique [BHK+19] [Hop18], the spiked Wishart model [BKWW19], the spiked Wigner model [KWB19], and tensor PCA [HKP+17] [Hop18] [KWB19] (tensor PCA exhibits a subexponential-time tradeoff similar to sparse PCA; see [KWB19]). In all of the above cases, the low-degree predictions coincide with widely-conjectured statistical-versus-computational tradeoffs.

Various leading algorithmic approaches can be approximated by low-degree polynomials and are thus ruled out by low-degree lower bounds of the form $\|L_n^{\leq D(n)}\|_{L^2(Q_n)} = O(1)$. These approaches include a general class of spectral methods (see Theorem 4.4 of [KWB19]) as well as the algorithms that we present in this paper (see Remark 2.20). The low-degree predictions are also conjectured to coincide with the power of the sum-of-squares hierarchy and are in particular connected to
the pseudo-calibration approach \cite{BHK+19}; see \cite{HKP+17, RSS18, Hop18}. We refer the reader to Section 4 of \cite{KWB19} for further discussion of the implications (both formal and conjectural) of low-degree lower bounds.

Conjecture 1.5 is informal in the sense that we have not specified the meaning of “nice” \(P_n \) and \(Q_n \). Roughly speaking, highly-symmetric high-dimensional problems are considered “nice” so long as \(P_n \) and \(Q_n \) have at least a small amount of noise in order to rule out brittle high-degree algorithms such as Gaussian elimination. (In particular, we consider spiked Wigner and Wishart to be “nice.”) Conjecture 2.2.4 of \cite{Hop18} is one formal variant of the low-degree conjecture, although it uses the more refined notion of coordinate degree and so does not apply to the calculations in this paper.

We remark that if \(\| L_n \|_{L^2(Q_n)} = O(1) \) (the \(D = \infty \) case), then it is statistically impossible to strongly distinguish \(P_n \) and \(Q_n \); this is a commonly-used second moment method (see e.g., \cite{MRZ15, BMV+18, PWBM18b}) of which Conjecture 1.5 is a computationally-bounded analogue.

In this paper we give tight computational lower bounds for sparse PCA, conditional on Conjecture 1.5. Alternatively, one can view the results of this paper as a “stress test” for Conjecture 1.5: we show that Conjecture 1.5 predicts a certain statistical-versus-computational tradeoff and this indeed matches the best algorithms that we know.

Organization. The remainder of the paper is organized as follows. In Section 2, we present our subexponential-time algorithms and our lower bounds based on the low-degree likelihood ratio. In Section 3, we give proofs for the correctness of our algorithms. In Section 4, we give proofs for our analysis of the low-degree likelihood ratio.

Notation. We use standard asymptotic notation \(O(\cdot) \), \(\Omega(\cdot) \), \(\Theta(\cdot) \), always pertaining to the limit \(n \to \infty \). We also use \(\tilde{O}(B) \) to mean \(O(B \cdot \text{polylog}(n)) \) and \(\tilde{\Omega}(B) \) to mean \(\Omega(B/\text{polylog}(n)) \). Also recall that \(f(n) = o(g(n)) \) means \(f(n)/g(n) \to 0 \) as \(n \to \infty \) and \(f(n) = \omega(g(n)) \) means \(f(n)/g(n) \to \infty \) as \(n \to \infty \). An event occurs with high probability if it occurs with probability \(1 - o(1) \). We sometimes use the shorthand \(A \lesssim B \) to mean \(A \leq CB \) for an absolute constant \(C \), and the shorthand \(A \ll B \) to mean \(A \leq B/\text{polylog}(n) \).

2 Main Results

In the analysis of our algorithms, we consider the spiked Wishart and Wigner models with signal \(x \) satisfying the following properties.

Definition 2.1. For \(\rho \in (0, 1] \) and \(A \geq 1 \), a vector \(x \in \mathbb{R}^n \) is called \((\rho, A)\)-sparse if

- \(\| x \|_2 = 1 \) and \(\| x \|_0 = \rho n \), and
- for any \(i \in \text{supp}(x) \), \(\frac{1}{\sqrt{n}} \leq |x_i| \leq A \sqrt{n} \).

Here we have used the standard notations \(\text{supp}(x) = \{ i \in [n] : x_i \neq 0 \} \) and \(\| x \|_0 = |\text{supp}(x)| \). We assume that \(\rho \) (which may depend on \(n \)) is chosen so that \(\rho n \) is an integer.

Remark 2.2. A lower bound on \(|x_i| \) is essential for exact support recovery, since we cannot hope to distinguish tiny nonzero entries of \(x \) from zero entries. The upper bound on \(|x_i| \) is a technical condition that is likely not essential, and is only used for recovery in the Wishart model (Theorem 2.11).
In our calculations of the low-degree likelihood ratio, we instead assume the signal x is drawn from the sparse Rademacher distribution, defined as follows.

Definition 2.3. The sparse Rademacher prior \mathcal{X}^n_ρ with sparsity $\rho \in (0, 1]$ is the distribution on \mathbb{R}^n whereby $x \sim \mathcal{X}^n_\rho$ has i.i.d. entries distributed as

$$
x_i = \begin{cases}
 +1/\sqrt{\rho n} & \text{with probability } \rho/2, \\
 -1/\sqrt{\rho n} & \text{with probability } \rho/2, \\
 0 & \text{with probability } 1 - \rho.
\end{cases}
$$

(5)

Note that $x \sim \mathcal{X}^n_\rho$ has $\|x\|_2 \to 1$ in probability as $n \to \infty$.

2.1 The Wishart Model

We first present our results for the Wishart model. Our algorithms and results for the Wigner model are essentially identical and can be found in Section 2.2.

Definition 2.4 (Spiked Wishart model). The spiked Wishart model with parameters $n, N \in \mathbb{N}_+$, $\beta \geq 0$, and planted signal $x \in \mathbb{R}^n$ is defined as follows.

- Under $P_n = P_{n,N,\beta}$, we observe N independent samples $y^{(1)}, \ldots, y^{(N)} \sim \mathcal{N}(0, I_n + \beta xx^T)$.
- Under $Q_n = Q_{n,N}$, we observe N independent samples $y^{(1)}, \ldots, y^{(N)} \sim \mathcal{N}(0, I_n)$.

We will sometimes specify a prior \mathcal{X}_n for x, in which case P_n first draws $x \sim \mathcal{X}_n$ and then draws $y^{(1)}, \ldots, y^{(N)}$ as above.

Detection. We first consider the detection problem, where the goal is to determine whether the given data $\{y^{(i)}\}$ was drawn from P_n or Q_n.

Algorithm 1: Detection in the spiked Wishart model

Input: Data $\{y^{(i)}\}_{1 \leq i \leq N}$, parameters $\rho \in (0, 1]$, $\beta \geq 0$, $A \geq 1$, $\ell \in \mathbb{N}_+$

1. Compute the sample covariance matrix: $Y \leftarrow \frac{1}{N} \sum_{i=1}^N y^{(i)} y^{(i)^T}$
2. Specify the search set: $\mathcal{I}_{n,\ell} \leftarrow \{v \in \{-1, 0, 1\}^n : \|v\|_0 = \ell\}$
3. Compute the test statistic: $T \leftarrow \max_{v \in \mathcal{I}_{n,\ell}} v^T Y v$
4. Compute the threshold: $T^* \leftarrow \ell (1 + \frac{\beta \ell}{2 A^2 \rho n})$
5. **if** $T \geq T^*$ **then**
6. \hspace{1em} **return** p
7. **else**
8. \hspace{1em} **return** q
9. **end if**

The detection algorithm is motivated by the fact that $v^T Y v = \frac{1}{N} \sum_{i=1}^N \langle v, y^{(i)} \rangle^2$. Under the planted model P_n, $y^{(i)} \sim \mathcal{N}(0, I_n + \beta xx^T)$ and thus $\langle v, y^{(i)} \rangle \sim \mathcal{N}(0, \ell + \beta \langle v, x \rangle^2)$ for any fixed $v \in \mathcal{I}_{n,\ell}$; as a result, if v correctly “guesses” ℓ entries of x with correct signs (up to a global flip), then the contribution of $\langle v, x \rangle^2$ to the variance of $\langle v, y^{(i)} \rangle$ will cause $v^T Y v$ to be large.

Remark 2.5 (Runtime). The runtime of Algorithm 1 is dominated by exhaustive search over $\mathcal{I}_{n,\ell}$ during Step 3, when we compute T. Since $|\mathcal{I}_{n,\ell}| = \binom{n}{\ell} 2^\ell \leq (2n)^\ell$, the runtime is $n^{O(\ell)}$. If $\ell = \lceil n^\delta \rceil$ for a constant $\delta > 0$, then the runtime is $n^{O(n^\delta)} = \exp(n^\delta + o(1))$.

9
Theorem 2.6 (Wishart detection). Consider the spiked Wishart model with a \((\rho, A)\)-sparse signal \(x\), and let \(\{y^{(i)}\}_{i=1}^N\) be drawn from either \(P_n\) or \(Q_n\), and let \(f_n\) be the output of Algorithm 1. Suppose
\[
\rho \leq \min\left(1, \frac{\beta}{A^2}\right) \frac{\beta}{25A^2\gamma \log n}.
\] (6)
Let \(\ell\) be any integer in the interval
\[
\ell \in \left[\frac{25A^4\gamma}{\beta^2} \rho^2 n \log n, \min\left(1, \frac{\beta}{A^2}\right) \frac{A^2}{\beta \rho n}\right],
\] (7)
which is nonempty due to (6). Then, the total failure probability of Algorithm 1 satisfies
\[
P_n[f_n = q] + Q_n[f_n = p] \leq 2 \exp\left(-\frac{\beta^2 \ell^2}{48A^4\gamma \rho^2 n}\right) \leq 2n^{-25\ell/48},
\]
where the last inequality follows from (7).

Remark 2.7. Since the runtime is \(n^{O(\ell)}\), for the best possible runtime we should choose \(\ell\) as small as possible, i.e.,
\[
\ell = \left\lceil \frac{25A^4\gamma}{\beta^2} \rho^2 n \log n \right\rceil.
\]

Remark 2.8. We are primarily interested in the regime \(n \to \infty\) with \(\gamma = \Theta(1)\), \(A = \Theta(1)\), \(\rho = n^{-\tau}\) for a constant \(\tau \in (0,1)\), and either \(\beta = n^{-\alpha}\) for a constant \(\alpha > 0\), or \(\beta = \Theta(1)\) with \(\lambda := \beta/\sqrt{\gamma} < 1\) (in which case \(\alpha := 0\)). In this case, the requirement (6) reads \(\rho \leq \Omega(\lambda^2/\log n)\) (or, in other words, \(\tau > 2\alpha\)), which is information-theoretically necessary up to log factors \([PJ12, VL12, CMW13]\). Choosing \(\ell\) as in Remark 2.7 yields an algorithm of runtime \(n^{O(1+\lambda^2/\log n)} = \text{poly}(n) + \exp(n^{2\alpha-2\tau+1+o(1)})\).

Remark 2.9. For \(S \subseteq [n]\), let \(Y_S\) denote the corresponding principal submatrix of \(Y\) (i.e., restrict to the rows and columns whose indices lie in \(S\)). An alternative detection algorithm would be to threshold the test statistic
\[
T^* := \max_{S \subseteq ([n])} \lambda_{\max}(Y_S),
\]
i.e., the largest eigenvalue of any \(\ell \times \ell\) principal submatrix. One can obtain similar guarantees for this algorithm as for Algorithm 1.

Recovery. We now turn to the problem of exactly recovering the support and signs of \(x\), given data drawn from \(P_n\). The goal is to output a vector \(\bar{x} \in \{-1,0,1\}^n\) such that sign(\(\bar{x}\)) = ±sign(\(x\)) where sign(\(x\)) = sign(\(x_i\)) and
\[
\text{sign}(x) = \begin{cases}
1 & \text{if } x_i > 0, \\
-1 & \text{if } x_i < 0, \\
0 & \text{if } x_i = 0.
\end{cases}
\]
Note that we can only hope to recover sign(\(x\)) up to a global sign flip, because \(xx^\top = (-x)(-x)^\top\).
Algorithm 2: Recovery of supp(x) and sign(x) in the spiked Wishart model

Input: Data $\{y^{(i)}\}_{1 \leq i \leq N}$, parameters $\rho \in (0, 1]$, $\beta \geq 0$, $A \geq 1$, $\ell \in \mathbb{N}_+$

1. $\bar{N} \leftarrow \lfloor N/2 \rfloor$
2. Compute sample covariance matrices: $Y' \leftarrow \frac{1}{\bar{N}} \sum_{i=1}^{\bar{N}} y^{(i)} y^{(i)\top}$, $Y'' \leftarrow \frac{1}{\bar{N}} \sum_{i=\bar{N}+1}^{2\bar{N}} y^{(i)} y^{(i)\top}$
3. Specify the search set: $\mathcal{I}_{n,\ell} \leftarrow \{v \in \{-1, 0, 1\}^n : \|v\|_0 = \ell\}$
4. Compute the initial estimate: $v^* \leftarrow \arg\max_{v \in \mathcal{I}_{n,\ell}} v^\top Y' v$
5. Compute the refined estimate: $z \leftarrow (Y'' - I) v^*$
6. for $j = 1$ to n do
7. $\bar{x}_j \leftarrow \text{sign}(z_j) \cdot 1\{|z_j| > \beta \ell 2\sqrt{3A^2\rho n}\}$
8. end for

Output: \bar{x}

For technical reasons, we divide our N samples into two subsamples of size $\bar{N} = \lfloor N/2 \rfloor$ (with one sample discarded if N is odd) and produce two independent sample covariance matrices Y' and Y''. The first step of the algorithm is similar to the detection algorithm: by exhaustive search, we find the vector $v^* \in \mathcal{I}_{n,\ell}$ maximizing $v^\top Y' v$. In the course of proving that the algorithm succeeds, we will show that v^* has nontrivial correlation with x. The second step is to recover the support (and signs) of x by thresholding $z = (Y'' - I) v^*$. Note that z discards (i.e., does not depend on) the columns of Y'' that do not lie in supp(v^*); since supp(v^*) has substantial overlap with supp(x), this serves to amplify the signal.

Theorem 2.10 (Wishart support and sign recovery). Consider the planted spiked Wishart model \mathbb{P}_n with an arbitrary (ρ, A)-sparse signal x, and let $\gamma = n/N$. Suppose

$$\rho \leq \min \left(1, \frac{\beta}{25A^8} \frac{1}{400\gamma \log n}\right). \tag{8}$$

Let ℓ be any integer in the interval

$$\ell \in \left[\frac{10000 A^4 \gamma}{\beta^2 \rho^2 n \log n}, \min \left(1, \frac{\beta}{25A^8} \frac{25A^8}{\beta \rho n}\right)\right], \tag{9}$$

which is nonempty due to (8). Then the failure probability of Algorithm 2 satisfies

$$1 - \mathbb{P}_n [\text{sign}(\bar{x}) = \pm \text{sign}(x)] \leq 6 \exp \left(-\frac{\beta^2}{6400A^4\gamma \rho^2 n} \frac{\ell}{2}\right) \leq 6n^{-3/2},$$

where the last inequality follows from (9).

Remark 2.11. As for detection, the runtime of Algorithm 2 is $n^{O(\ell)}$, and we can minimize this by choosing

$$\ell = \left[\frac{10000 A^4 \gamma}{\beta^2 \rho^2 n \log n}\right].$$

Once we obtain supp(x) using Algorithm 2, it is straightforward to estimate x (up to global sign flip) using the leading eigenvector of the appropriate submatrix. This step of the algorithm requires only polynomial time.
Theorem 2.12 (Wishart recovery). Consider the planted spiked Wishart model \mathbb{P}_n with an arbitrary (ρ,A)-sparse signal x, and let $\gamma = n/N$. Suppose we have access (e.g., via Algorithm 2) to $I = \text{supp}(x) \subset [n]$. Write $P_I = \sum_{i \in I} e_i e_i^\top$, $y^{(i)}_I = P_I y^{(i)}$ and $Y_I = P_I Y P_I^\top = \frac{1}{n} \sum_{i=1}^N y^{(i)}_I y^{(i)}_I^\top$. Let \tilde{x} denote the unit-norm eigenvector corresponding to the maximum eigenvalue of Y_I. Then, there exists an absolute constant $C > 0$ such that, for any $\epsilon \in \left[\frac{2(1+\beta)\sqrt{\gamma}}{6}, 1\right)$,

$$
\mathbb{P}_n \left[(\tilde{x}, x)^2 \leq 1 - \epsilon \right] \leq 2 \exp \left(- \frac{C^2 \beta^2 n \epsilon^2}{4(1+\beta)^2 \rho} \right) \leq 2 \exp(-n).
$$

Remark 2.13. In the regime we are interested in, $n \to \infty$ with $A = O(1)$, $\beta = O(1)$, and $[8]$ is satisfied. In this case, the conclusion of Theorem 2.12 gives $(\tilde{x}, x)^2 > 1 - o(1)$ with high probability.

Low-degree likelihood. Now, we turn to controlling the low-degree likelihood ratio (LDLR) (see Section 1.5) to provide rigorous evidence that the above algorithms are optimal. In this section we take a fully Bayesian approach, and assume that the planted signal x is drawn from the sparse Rademacher prior \mathcal{X}_n^ρ. Recall that the signal-to-noise ratio is defined as $\hat{\lambda} := \beta / \sqrt{\gamma}$.

As discussed in Section 1.5, we will determine the behavior of $\|L_n^D\|$ in the limit $n \to \infty$: if $\|L_n^D\| = O(1)$, this suggests hardness for $n^{\Omega(D)}$-time algorithms. We allow the parameters D, ρ, β, γ to depend on n, which we sometimes emphasize by writing, e.g., ρ_n. For $D_n = o(n)$, our results suggest hardness for $n^{\Omega(D)}$-time algorithms whenever $\hat{\lambda} < 1$ and $\rho \gg \hat{\lambda} \sqrt{D_n/n}$. This is essentially tight, matching PCA (which succeeds when $\hat{\lambda} > 1$) and our algorithm with $\ell = D_n$ (which succeeds when $\rho \ll \hat{\lambda} \sqrt{D_n/n}$) (however, see Remark 2.16 below for one caveat).

Theorem 2.14 (Boundedness of LDLR for large ρ). Under the spiked Wishart model with spike prior $\mathcal{X} = \mathcal{X}_n^\rho$, suppose $D_n = o(n)$. If one of the following holds for sufficiently large n:

(a) $\limsup_{n \to \infty} \hat{\lambda}_n < 1$ and

$$
\rho_n \geq \max \left(1, \sqrt{\frac{1}{6 \log(1/\hat{\lambda}_n)}} \right) \sqrt{\frac{D_n}{n}},
$$

(b) $\limsup_{n \to \infty} \hat{\lambda}_n < 1 / \sqrt{3}$ and

$$
\rho_n \geq \hat{\lambda}_n \sqrt{\frac{D_n}{n}},
$$

then, as $n \to \infty$, $\|L_n^{\leq D}_{n,N,\beta,\mathcal{X}}\| = O(1)$.

The following result on divergence of the LDLR serves as a sanity check: we show that $\|L_n^{\leq D}\|$ indeed diverges in the regime where we know that a $n^{\Omega(D)}$-time algorithm exists.

Theorem 2.15 (Divergence of LDLR for small ρ). Under the spiked Wishart model with spike prior $\mathcal{X} = \mathcal{X}_n^\rho$, suppose $D_n = o(1)$ and $D_n = o(n)$. If one of the following holds:

(a) $\liminf_{n \to \infty} \hat{\lambda}_n > 1$, or

(b) $\limsup_{n \to \infty} \hat{\lambda}_n < 1$, $|\log \hat{\lambda}_n| = o(\sqrt{D_n})$ and for sufficiently large n,

$$
\rho_n < C \hat{\lambda}_n \log^{-2}(1/\hat{\lambda}_n) \sqrt{\frac{D_n}{n}},
$$

where C is an absolute constant,
then, as $n \to \infty$, $\| L_{n,N,\beta,X}^\leq D \| = \omega(1)$.

Remark 2.16. There is one regime where the above results give some unexpected behavior. Recall first that optimal Bayesian inference for sparse PCA can be performed in time $n^{O(\rho n)}$ by computing the likelihood ratio. Thus if $\| L_{n}^D \| = O(1)$ for some $D_n \gg \rho n$, this suggests that the problem is information-theoretically impossible; from our results above, there are regimes where this occurs (and indeed the problem is information-theoretically impossible), yet $\| L_{n}^D \| = \omega(1)$ for some larger D_n (which incorrectly suggests that there should be an algorithm). This is analogous to a phenomenon where the second moment of the (non-low-degree) likelihood ratio $\| L_n \|$ can sometimes diverge even when strong detection is impossible (see, e.g. [BMNN16, BMV+18, PWBM18b]). Luckily, this issue never occurs for us in the regime of interest $D_n \ll \rho n$, and therefore does not prevent our results from being tight. Note also that none of these observations contradict Conjecture 1.5.

2.2 The Wigner Model

We now state our algorithms and results for the Wigner model. These are very similar to the Wishart case, so we omit some of the discussion.

Definition 2.17 (Spiked Wigner model). The spiked Wigner model with parameters $n \in \mathbb{N}_+$, $\lambda \geq 0$, and planted signal $x \in \mathbb{R}^n$ is defined as follows.

- Under $\mathbb{P}_n = \mathbb{P}_{n,\lambda}$, we observe the matrix $Y = W + \lambda xx^\top$, where $W \sim \text{GOE}(n)$.
- Under \mathbb{Q}_n, we observe the matrix $Y \sim \text{GOE}(n)$.

Algorithm 3: Detection in the spiked Wigner model

Input: Data Y, parameters $\rho \in (0, 1]$, $\lambda > 0$, $A \geq 1$, $\ell \in \mathbb{N}_+$

1. Specify the search set: $I_{n,\ell} \leftarrow \{ v \in \{-1, 0, 1\}^n : \| v \|_0 = \ell \}$
2. Compute the test statistic: $T \leftarrow \max_{v \in I_{n,\ell}} v^\top Y v$
3. Compute the threshold: $T^* \leftarrow \frac{\lambda^2}{2A^2 \rho n}$
4. if $T \geq T^*$ then
5. \hspace{1em} return p
6. else
7. \hspace{1em} return q
8. end if

Remark 2.18 (Runtime). As in the Wishart case (see Remark 2.5), the runtime is $n^{O(\ell)}$. The same holds for Algorithm 4 below.

Theorem 2.19 (Wigner detection). Consider the spiked Wigner model with an arbitrary (ρ, A)-sparse signal x. Let Y be drawn from either \mathbb{P}_n or \mathbb{Q}_n, and let f_n be the output of Algorithm 3. Suppose

$$\rho \leq \frac{\lambda^2}{36A^4 \log n}. \quad (12)$$

Let ℓ be any integer in the interval

$$\ell \in \left[\frac{36A^4}{\lambda^2 \rho^2 n \log n}, \rho n \right], \quad (13)$$
which in nonempty due to (12). Then the total failure probability of Algorithm 3 satisfies

\[P_n[f_n = q] + Q_n[f_n = p] \leq 2 \exp \left(-\frac{\lambda^2 \ell^2}{32A^4 \rho^2 n} \right) \leq 2n^{-9\ell/8}, \]

where the last inequality follows from (13).

Remark 2.20. Since our lower bounds are against the class of low-degree algorithms, it is natural to ask whether our algorithms fall into this class. While our test statistic \(T \) is not a polynomial function of \(Y \), we can instead take as a proxy the degree-2 polynomial \(P(Y) = \sum_{v \in \mathcal{I}_{n,\ell}} (v^\top Y v)^{2k} \) for some choice of \(k \). Our analysis can be adapted to show that \(P \) can be used to solve strong detection under essentially the same conditions as Theorem 2.19, provided \(k \gg \ell \log n \). Note that (up to log factors) this matches the correspondence between runtime and degree in Conjecture 1.5.

Algorithm 4: Recovery of \(\text{supp}(x) \) and \(\text{sign}(x) \) in the spiked Wigner model

Input: Data \(Y \), parameters \(\rho \in (0,1], \lambda > 0, A \geq 1, \ell \in \mathbb{N}_+ \)

1: Sample \(\tilde{W} \sim \text{GOE}(n) \)
2: Compute independent data matrices: \(Y' \leftarrow (Y + \tilde{W})/\sqrt{2} \) and \(Y'' \leftarrow (Y - \tilde{W})/\sqrt{2} \)
3: Specify the search set: \(\mathcal{I}_{n,\ell} \leftarrow \{ v \in \{-1,0,1\}^n : \|v\|_0 = \ell \} \)
4: Compute the initial estimate: \(v^* \leftarrow \arg\max_{v \in \mathcal{I}_{n,\ell}} v^\top Y' v \)
5: Compute the refined estimate: \(z \leftarrow Y'' v^* \)
6: for \(j = 1 \) to \(n \) do
7: \(\bar{x}_j = \text{sign}(z_j) \cdot 1\{|z_j| > \frac{\lambda}{4A^2 \rho n}\} \)
8: end for

Output: \(\bar{x} \)

For technical reasons, our first step is to fictitiously “split” the data into two independent copies \(Y' \) and \(Y'' \). Note that

\[Y' = \frac{\lambda}{\sqrt{2}} xx^\top + \frac{W + \tilde{W}}{\sqrt{2}} \quad \text{and} \quad Y'' = \frac{\lambda}{\sqrt{2}} xx^\top + \frac{W - \tilde{W}}{\sqrt{2}}. \]

Since \(W' := \frac{W + \tilde{W}}{\sqrt{2}} \) and \(W'' := \frac{W - \tilde{W}}{\sqrt{2}} \) are independent \(\text{GOE}(n) \) matrices, \(Y' \) and \(Y'' \) are distributed as independent observations drawn from \(\mathbb{P}_n \) with the same planted signal \(x \) and with effective signal-to-noise ratio \(\lambda = \lambda/\sqrt{2} \).

Theorem 2.21 (Wigner support and sign recovery). Consider the planted spiked Wishart model \(\mathbb{P}_n \) with an arbitrary \((\rho, A)\)-sparse signal \(x \). Suppose

\[\rho \leq \frac{\lambda^2}{338A^4 \log n}. \]

Let \(\ell \) be any integer in the interval

\[\ell \in \left[\frac{338A^4}{\lambda^2 \rho^2 n \log n}, \frac{\rho n}{\lambda^2} \right], \]

which is nonempty due to (14). Then the failure probability of Algorithm 4 satisfies

\[1 - \mathbb{P}_n \left[\text{supp}(\bar{x}) = \text{supp}(x), \text{sign}(\bar{x}) = \pm \text{sign}(x) \right] \leq 4 \exp \left(-\frac{\lambda^2 \ell}{288A^4 \rho^2 n} \right) \leq 4n^{-169/144}, \]

where the last inequality follows from (15).
As in the Wishart case, once we have recovered the support, there is a standard polynomial-time spectral method to estimate x.

Theorem 2.22 (Wigner recovery). Consider the planted spiked Wigner model \mathbb{P}_n with an arbitrary (ρ, A)-sparse signal x. Suppose we have access (e.g., via Algorithm 4) to $I = \text{supp}(x) \subset [n]$. Write $P_I = \sum_{i \in I} e_i e_i^\top$ and $Y_I = P_I Y P_I^\top$. Let \hat{x} denote the unit-norm eigenvector corresponding to the maximum eigenvalue of Y_I. Then for any $\epsilon \in (\frac{4\sqrt{2}}{\rho}, 1)$,

$$\mathbb{P}_n[\langle \hat{x}, x \rangle^2 \leq 1 - \epsilon] \leq 4 \exp \left[-\frac{n}{16} \left(\lambda \epsilon - 4\sqrt{2}\rho \right)^2 \right].$$

Remark 2.23. In the regime we are interested in, $n \to \infty$ with (14) satisfied, so that $\sqrt{\rho}/\lambda \to 0$. In this case, the conclusion of Theorem 2.22 gives $\langle \hat{x}, x \rangle^2 > 1 - o(1)$ with high probability, upon choosing for example $\epsilon = \frac{8}{\sqrt{2}\rho} \lambda$.

We also have the following results on the behavior of the low-degree likelihood ratio.

Theorem 2.24 (Boundedness of LDLR for large ρ). Under the spiked Wigner model with prior $X = X_n$, suppose $D_n = o(n)$. If one of the following holds for sufficiently large n:

(a) $\limsup_{n \to \infty} \lambda_n < 1$ and

$$\rho_n \geq \max \left(1, \sqrt{\frac{1}{6\log(1/\lambda_n)}} \right) \sqrt{\frac{D_n}{n}}, \quad \text{or} \quad (16)$$

(b) $\limsup_{n \to \infty} \lambda_n < 1/\sqrt{3}$ and

$$\rho_n \geq \lambda_n \sqrt{\frac{D_n}{n}}, \quad (17)$$

then, as $n \to \infty$, $\|L^{\leq D}_{n, \lambda, X}\| = O(1)$.

Theorem 2.25 (Divergence of LDLR for small ρ). Under the spiked Wigner model with prior $X = X_n$, suppose $D_n = \omega(1)$ and $D_n = o(n)$. If one of the following holds:

(a) $\liminf_{n \to \infty} \lambda_n > 1$, or

(b) $\limsup_{n \to \infty} \lambda_n < 1$, $|\log \lambda_n| = o(\sqrt{D_n})$ and for sufficiently large n,

$$\rho_n < C\lambda_n \log^{-2}(1/\lambda_n) \sqrt{\frac{D_n}{n}}$$

where C is an absolute constant,

then, as $n \to \infty$, $\|L^{\leq D}_{n, \lambda, X}\| = \omega(1)$.

3 Proofs for Subexponential-Time Algorithms

3.1 The Wishart Model

Proof of Theorem 2.6 (Detection). Under Q_n, for any fixed $v \in I_{n, \ell}$ we have $v^\top y^{(i)} \sim \mathcal{N}(0, \ell)$ for $i \in [N]$ and

$$v^\top Y v = \frac{1}{N} \sum_{i=1}^N (v^\top y^{(i)})^2 \overset{(d)}{=} \frac{\ell}{N} \chi_N^2,$$
where \(\chi^2_N \) is a chi-squared random variable with \(N \) degrees of freedom, i.e., the sum of the squares of \(N \) standard gaussians. Using Corollary A.3 we union bound over \(v \in \mathcal{I}_{n,\ell} \) for any \(t \in (0, \frac{1}{2}) \):

\[
Q_n \left[T \geq \ell(1 + t) \right] \leq |\mathcal{I}_{n,\ell}| \Pr \left[\chi^2_N \geq N(1 + t) \right]
\leq \left(\frac{n}{\ell} \right)^2 \cdot \exp \left(-\frac{Nt^2}{3} \right)
\leq \exp \left(\ell \log(2n) - \frac{Nt^2}{3} \right).
\]

Under the condition

\[
Nt^2 \geq 4\ell \log(2n)
\]

we have

\[
Q_n \left[T \geq \ell(1 + t) \right] \leq \exp \left(-\frac{1}{12} Nt^2 \right).
\]

Meanwhile, under \(\mathbb{P}_n \), when \(v = \bar{v} \) correctly guesses \(\ell \) entries and their signs in the support of \(x \) (which requires \(\ell \leq \rho n \)), for any \(i \in [N] \) we have

\[
\bar{v}^\top y(i) \sim \mathcal{N}(0, \bar{v}^\top (I_n + \beta xx^\top) \bar{v}) = \mathcal{N}(0, \ell + \beta \langle \bar{v}, x \rangle^2).
\]

Therefore,

\[
\bar{v}^\top Y \bar{v} = \frac{1}{N} \sum_{i=1}^{N} (\bar{v}^\top y(i))^2 \overset{(d)}{=} \frac{1}{N} (\ell + \beta \langle \bar{v}, x \rangle^2) \chi^2_N
\]

where \(\langle \bar{v}, x \rangle^2 \geq \frac{\rho^2}{\rho n} \). As a result, by Corollary A.3

\[
\mathbb{P}_n \left[T < \ell(1 + t) \right] \leq \mathbb{P}_n \left[\bar{v}^\top Y \bar{v} < \ell(1 + t) \right]
= \Pr \left[\frac{1}{N} (\ell + \beta \langle \bar{v}, x \rangle^2) \chi^2_N < \ell(1 + t) \right]
= \Pr \left[\chi^2_N < N \left(1 - \frac{\beta \ell - A^2 \rho n t}{\beta \ell + A^2 \rho n} \right) \right]
\leq \exp \left(-\frac{N}{3} \left(\frac{\beta \ell - A^2 \rho n t}{\beta \ell + A^2 \rho n} \right)^2 \right),
\]

the last inequality requiring

\[
0 \leq \frac{\beta \ell - A^2 \rho n t}{\beta \ell + A^2 \rho n} \leq \frac{1}{2}.
\]

To satisfy \(t \in (0, \frac{1}{2}) \), (18) and (19) at the same time, we choose

\[
t = \frac{\beta \ell}{2A^2 \rho n}.
\]

Under the condition

\[
\frac{\beta \ell}{A^2 n} \leq \rho \leq \frac{\beta}{5A^2 \sqrt{\gamma} \sqrt{\ell n \log n}},
\]

which is equivalent to the interval for \(\ell \) given in (17), thresholding the statistic \(T \) at \(\ell(1 + t) \) succeeds at distinguishing \(\mathbb{P}_n \) and \(Q_n \) with total error probability

\[
Q_n \left[T \geq \ell(1 + t) \right] + \mathbb{P}_n \left[T < \ell(1 + t) \right] \leq 2 \exp \left(-\frac{\beta^2}{48A^4 \gamma \rho^2 n} \ell^2 \right),
\]

which completes the proof. \(\square \)
Proof of Theorem 2.10 (Support and Sign Recovery). First, we give a high-probability lower bound on $\langle v^*, x \rangle$. From the analysis of the detection algorithm, we know that under the condition (20),

$$1 - 2 \exp \left(- \frac{\beta^2}{48A^4\gamma} \frac{\ell^2}{\rho^2 n} \right)$$

$$\leq \mathbb{P}_n \left[\ell \left(1 + \frac{\beta\ell}{2A^2\rho n} \right) \leq v^* \right]$$

$$\leq \mathbb{P}_n \left[\ell \left(1 + \frac{\beta\ell}{2A^2\rho n} \right) \leq \frac{1}{N} (\ell + \beta\langle v^*, x \rangle^2) \chi^2_N, \langle v^*, x \rangle^2 < \frac{\ell^2}{3A^2\rho n} \right]$$

$$+ \mathbb{P}_n \left[\ell \left(1 + \frac{\beta\ell}{2A^2\rho n} \right) \leq \frac{1}{N} (\ell + \beta\langle v^*, x \rangle^2) \chi^2_N, \langle v^*, x \rangle^2 \geq \frac{\ell^2}{3A^2\rho n} \right]$$

$$\leq \mathbb{P}_n \left[\ell \left(1 + \frac{\beta\ell}{2A^2\rho n} \right) \leq \frac{1}{N} (\ell + \beta\ell^2 \chi^2 N) + \mathbb{P}_n \left[\langle v^*, x \rangle^2 \geq \frac{\ell^2}{3A^2\rho n} \right] \right],$$

where

$$\mathbb{P}_n \left[\ell \left(1 + \frac{\beta\ell}{2A^2\rho n} \right) \leq \frac{1}{N} (\ell + \beta\ell^2 \chi^2 N) \right] = \mathbb{P}_n \left[\chi^2_N \geq \bar{N} \left(1 + \frac{\beta\ell}{2\beta\ell + 6A^2\rho n} \right) \right]$$

$$\leq \exp \left(- \frac{\bar{N}}{3} \left(\frac{\beta\ell}{2\beta\ell + 6A^2\rho n} \right)^2 \right)$$

$$\leq \exp \left(- \frac{\beta^2}{384A^4\gamma} \frac{\ell^2}{\rho^2 n} \right),$$

hence we have the lower bound

$$\mathbb{P}_n \left[\langle v^*, x \rangle^2 \geq \frac{\ell^2}{3A^2\rho n} \right] \geq 1 - 2 \exp \left(- \frac{\beta^2}{48A^4\gamma} \frac{\ell^2}{\rho^2 n} \right) - \exp \left(- \frac{\beta^2}{384A^4\gamma} \frac{\ell^2}{\rho^2 n} \right)$$

$$\geq 1 - 3 \exp \left(- \frac{\beta^2}{384A^4\gamma} \frac{\ell^2}{\rho^2 n} \right).$$

We now fix v^* satisfying the above lower bound on $\langle v^*, x \rangle^2$. From this point onward, we will only use the second copy Y'' of our data; note that, crucially, Y'' is independent from v^*. To simplify the notation, we will write $y^{(1)}, \ldots, y^{(N)}$ instead of $y^{(N+1)}, \ldots, y^{(2N)}$ for the samples used to form Y''. We now adopt an equivalent representation of the observations: $y^{(i)} = u^{(i)} + \sqrt{\beta}w^{(i)}x$, where $u^{(i)} \sim \mathcal{N}(0, I_n)$ and $w^{(i)} \sim \mathcal{N}(0, 1)$ are independent random gaussian vectors and scalars, respectively. Substituting this into $z = (Y'' - I)v^*$ yields

$$z_j = \frac{1}{N} \sum_{i=1}^N (a_{ij} + b_{ij} + c_{ij} + d_{ij} + e_{ij})$$

where, for $i \in [\bar{N}]$ and $j \in [n],$

$$a_{ij} = (w^{(i)}v^*)(v^*, x)$$

$$b_{ij} = ((u^{(i)}v^*)^2 - 1)v^*_j$$

$$c_{ij} = \sum_{k \neq j} u^{(i)}_j u^{(i)}_k v^*_k$$

$$d_{ij} = u^{(i)} w^{(i)} \sqrt{\beta}\langle v^*, x \rangle$$

$$e_{ij} = \langle u^{(i)}, v^* \rangle w^{(i)} \sqrt{\beta} x_j,$$
with $\mathbb{E}(a_{ij}) = \beta x_j(v^*, x)$ and $\mathbb{E}(b_{ij}) = \mathbb{E}(c_{ij}) = \mathbb{E}(d_{ij}) = \mathbb{E}(e_{ij}) = 0$. We will show separate union bounds for these five contributions to z_j. In the following, we fix the constant $\mu = 1/20$.

Union bound for a_{ij}. For all $j \in \text{supp}(x)$,

$$\frac{\beta \ell}{\sqrt{3A^2 \rho n}} \leq \frac{\beta}{A \sqrt{pm}} \frac{\ell}{\sqrt{3A \sqrt{pm}}} \leq |\beta x_j(v^*, x)| \leq \beta \frac{A \ell}{\sqrt{pm} \sqrt{pm}} = A^2 \beta \ell \rho m,$$

so by Corollary A.3

$$\log \mathbb{P}_n \left[\left| \frac{1}{N} \sum_{i=1}^{N} a_{ij} - \beta x_j(v^*, x) \right| > \mu \frac{\beta \ell}{A^2 \rho n} \right] = \log \mathbb{Pr} \left[\left| \frac{1}{N} \chi_N^2 - 1 \right| > \mu \frac{\beta \ell}{A^2 \rho n} \cdot \frac{1}{|\beta x_j(v^*, x)|} \right]$$

$$\leq \log \mathbb{Pr} \left[\left| \frac{1}{N} \chi_N^2 - 1 \right| > \mu \right]$$

$$\leq - \frac{\mu^2 N}{3A^8}.$$

Therefore, we may union bound over $j \in \text{supp}(x)$:

$$\mathbb{P}_n \left[\left| \frac{1}{N} \sum_{i=1}^{N} a_{ij} - \beta x_j(v^*, x) \right| \leq \mu \frac{\beta \ell}{A^2 \rho n}, \text{ for all } j \in [n] \right]$$

$$\geq 1 - \sum_{j \in \text{supp}(x)} \mathbb{P}_n \left[\left| \frac{1}{N} \sum_{i=1}^{N} a_{ij} - \beta x_j(v^*, x) \right| > \mu \frac{\beta \ell}{A^2 \rho n} \right]$$

$$\geq 1 - \exp \left(\log n - \frac{\mu^2 N}{3A^8} \right)$$

$$\geq 1 - \exp \left(- \frac{\mu^2 n}{7A^8 \gamma} \right).$$

\(21\)

Union bound for b_{ij}. We have b_{ij} nonzero only when $j \in \text{supp}(v^*)$. For such j, by Corollary A.3

$$\log \mathbb{P}_n \left[\left| \frac{1}{N} \sum_{i=1}^{N} b_{ij} \right| > \mu \frac{\beta \ell}{A^2 \rho n} \right] = \log \mathbb{Pr} \left[\left| \frac{1}{N} \chi_N^2 - 1 \right| > \mu \frac{\beta \ell}{A^2 \rho n} \right]$$

$$\leq - \frac{\tilde{N}}{3} \left(\mu \frac{\beta \ell}{A^2 \rho n} \right)^2.$$

Therefore,

$$\mathbb{P}_n \left[\left| \frac{1}{N} \sum_{i=1}^{N} b_{ij} \right| \leq \mu \frac{\beta \ell}{A^2 \rho n}, \text{ for all } j \in [n] \right] \geq 1 - \sum_{j \in \text{supp}(v^*)} \mathbb{P}_n \left[\left| \frac{1}{N} \sum_{i=1}^{N} b_{ij} \right| > \mu \frac{\beta \ell}{A^2 \rho n} \right]$$

$$\geq 1 - \exp \left(\log \ell - \frac{\tilde{N}}{3} \left(\mu \frac{\beta \ell}{A^2 \rho n} \right)^2 \right)$$

$$\geq 1 - \exp \left(- \frac{\mu^2 \beta^2 \ell^2}{12A^4 \gamma \rho^2 n} \right),$$

\(22\)
under the condition
\[\rho \leq \frac{1}{\sqrt{12}} \frac{\mu \beta}{A^2 \sqrt{\gamma}} \sqrt{\frac{\ell}{n \log \ell}}. \]

Union bound for \(c_{ij} \) **and** \(d_{ij} \). In the following, let \(u, u' \) denote independent samples from \(\mathcal{N}(0, I_N) \). Note that
\[\tilde{u}_j^{(i)} := \sum_{k \neq j} u_k^{(i)} v_k^* \sim \mathcal{N}(0, \tilde{\ell}_j), \text{ where } \tilde{\ell}_j = \ell - 1 \{ j \in \text{supp}(v^*) \}, \]
and \(\tilde{u}_j^{(i)} \) is independent from \(u_j^{(i)} \). Therefore,
\[\sum_{i=1}^N c_{ij} = \sum_{i=1}^N u_j^{(i)} \tilde{u}_j^{(i)} \overset{(d)}{=} \tilde{\ell}_j \langle u, u' \rangle. \]

Therefore, by Lemma A.1 for the \(c_{ij} \) we have
\[
\mathbb{P}_n \left[\frac{1}{N} \sum_{i=1}^N c_{ij} \leq \frac{\mu \beta \ell}{A^2 \rho n}, \text{ for all } j \in [n] \right] \geq 1 - \sum_{j=1}^n \mathbb{Pr} \left[|\langle u, u' \rangle| > \mu \frac{\beta \sqrt{\tilde{\ell} N}}{A^2 \rho n} \right] \\
\geq 1 - 2n \exp \left(-\frac{1}{4N} \left(\frac{\beta \sqrt{\tilde{\ell} N}}{A^2 \rho n} \right)^2 \right) \\
\geq 1 - \exp \left(-\frac{\mu^2 \beta^2}{16A^4 \gamma} \frac{\ell}{\rho^2 n} \right). \quad (23)
\]
The last inequality holds under the condition
\[\frac{\mu \beta \sqrt{\ell}}{A^2 \rho n} \leq \frac{1}{2}, \quad \frac{\mu^2 \beta^2}{16A^4 \gamma} \frac{\ell}{\rho^2 n} \geq \log(2n), \]
which follows from
\[\frac{2\mu \beta \sqrt{\ell}}{A^2 n} \leq \rho \leq \frac{\mu \beta}{5A^2 \sqrt{\gamma}} \sqrt{\frac{\ell}{n \log n}}. \]

Meanwhile,
\[\sum_{i=1}^N d_{ij} \overset{(d)}{=} \sqrt{\beta} \langle v^*, x \rangle \langle u, u' \rangle. \]

Therefore, as for the \(c_{ij} \), for the \(d_{ij} \) we have
\[
\mathbb{P}_n \left[\frac{1}{N} \sum_{i=1}^N d_{ij} \leq \frac{\mu \beta \ell}{A^2 \rho n}, \text{ for all } j \in [n] \right] \geq 1 - \sum_{j=1}^n \mathbb{Pr} \left[|\langle u, u' \rangle| > \mu \frac{\sqrt{\beta N}}{A^3 \sqrt{\rho n}} \right] \\
\geq 1 - 2n \exp \left(-\frac{1}{4N} \left(\frac{\sqrt{\beta N}}{A^3 \sqrt{\rho n}} \right)^2 \right) \\
\geq 1 - \exp \left(-\frac{\mu^2 \beta}{16A^6 \gamma} \rho \right). \quad (24)
\]
The last inequality holds under the condition
\[\frac{\mu \sqrt{\beta}}{A^6 \sqrt{\rho n}} \leq \frac{1}{2}, \quad \frac{\mu^2 \beta}{16 A^6 \gamma \rho} \geq \log(2n), \]
which follows from
\[\frac{4 \mu^2 \beta}{A^6 n} \leq \rho \leq \frac{\mu^2 \beta}{17 A^6 \gamma \log n}. \]

Union bound for e_{ij}. We have
\[\sum_{i=1}^{\bar{N}} e_{ij} \xrightarrow{(d)} x_j \sqrt{\beta} \ell \langle u, u' \rangle, \]
which is only nonzero for $j \in \text{supp}(x)$. Therefore,
\begin{align*}
\mathbb{P}_n \left[\left| \frac{1}{\bar{N}} \sum_{i=1}^{\bar{N}} e_{ij} \right| \leq \frac{\mu \beta \ell}{A^2 \rho n}, \text{ for all } j \in [n] \right] & \geq 1 - \sum_{j \in \text{supp}(x)} \Pr \left[|\langle u, u' \rangle| > \mu \sqrt{\beta} \ell \bar{N} \right] \\
& \geq 1 - \sum_{j \in \text{supp}(x)} \Pr \left[|\langle u, u' \rangle| > \mu \frac{\sqrt{\beta} \ell \bar{N}}{A^4 \sqrt{\rho n}} \right] \\
& \geq 1 - 2n \exp \left(-\frac{1}{4 \bar{N}} \left(\mu \frac{\sqrt{\beta} \ell \bar{N}}{A^4 \sqrt{\rho n}} \right)^2 \right) \\
& \geq 1 - \exp \left(-\frac{\mu^2 \beta \ell}{16 A^8 \gamma \rho} \right). \tag{25}
\end{align*}

The last inequality holds under the condition
\[\frac{\mu \sqrt{\beta \ell}}{A^4 \sqrt{\rho n}} \leq \frac{1}{2}, \quad \frac{\mu^2 \beta \ell}{16 A^8 \gamma \rho} \geq \log(2n), \]
which follows from
\[\frac{4 \mu^2 \beta \ell}{A^8 n} \leq \rho \leq \frac{\mu^2 \beta \ell}{17 A^8 \gamma \log n}. \]

Final steps. Now, combining all of the union bounds and conditions from (21), (22), (23), (24) and (25), assuming that $\beta, \gamma = \Theta(1)$ and that $\omega(1) \leq \ell(n) \leq o(n/\log n)$, under the condition
\begin{align*}
\max \left(1, \frac{\beta}{25 A^8} \right) \frac{\ell}{n} \leq \rho \leq \frac{\beta}{100 A^2 \sqrt{\gamma}} \sqrt{\frac{\ell}{n \log n}} \tag{26}
\end{align*}
which is equivalent to the regime for ℓ given in \cite{Ver10} that we are considering, we have
\[
\mathbb{P}_n \left[\text{for some } j, \ |z_j - \beta x_j \langle v^*, x \rangle| > \frac{\beta \ell}{4A^2 \rho m} \right] + \mathbb{P}_n \left[\langle v^*, x \rangle^2 \leq \frac{\ell^2}{3A^2 \rho m} \right] \\
\leq \mathbb{P}_n \left[\text{for some } j, \ \frac{1}{N} \sum_{i=1}^{\tilde{N}} a_{ij} - \beta x_j \langle v^*, x \rangle > \frac{\beta \ell}{A^2 \rho m} \right] \\
\quad + \mathbb{P}_n \left[\text{for some } j, \ \frac{1}{N} \sum_{i=1}^{\tilde{N}} b_{ij} > \frac{\beta \ell}{A^2 \rho m} \right] \\
\quad + \mathbb{P}_n \left[\text{for some } j, \ \frac{1}{N} \sum_{i=1}^{\tilde{N}} c_{ij} > \frac{\beta \ell}{A^2 \rho m} \right] \\
\quad + \mathbb{P}_n \left[\text{for some } j, \ \frac{1}{N} \sum_{i=1}^{\tilde{N}} d_{ij} > \frac{\beta \ell}{A^2 \rho m} \right] \\
\quad + \mathbb{P}_n \left[\text{for some } j, \ \frac{1}{N} \sum_{i=1}^{\tilde{N}} e_{ij} > \frac{\beta \ell}{A^2 \rho m} \right] \\
\quad + \mathbb{P}_n \left[\langle v^*, x \rangle^2 \leq \frac{\ell^2}{3A^2 \rho m} \right] \\
\leq 5 \exp \left(-\frac{\beta^2}{6400A^4 \rho^2 n} \ell \right) + \exp \left(-\frac{\beta^2}{384A^4 \rho^2 n} \ell^2 \right) \\
\leq 6 \exp \left(-\frac{\beta^2}{6400A^4 \rho^2 n} \ell \right) .
\]

Since $|\beta x_j \langle v^*, x \rangle| \geq \frac{\beta \ell}{\sqrt{3A^2 \rho m}}$ for $j \in \text{supp}(x)$ and $|\beta x_j \langle v^*, x \rangle| = 0$ for $j \notin \text{supp}(x)$, we conclude that, with probability at least $1 - 6 \exp \left(-\frac{\beta^2}{6400A^4 \rho^2 n} \ell \right)$, for every $j \in [n]$,
\[j \in \text{supp}(x) \quad \text{if and only if} \quad |z_j| \geq \frac{\beta \ell}{2\sqrt{3A^2 \rho m}}, \]
and
\[\text{sign}(z_j) = \text{sign}(x_j \langle v^*, x \rangle), \]
completing the proof.

\textbf{Proof of Theorem 2.12 (Full Recovery).} By a result in the analysis of covariance matrix estimation for subgaussian distributions (\cite{Ver10}, Remark 5.51), there exists an absolute constant $C > 0$ such that, for any $\delta \in \left(\sqrt{\rho}/C, 1 \right)$, the following holds with probability at least $1 - 2 \exp \left(-\frac{C^2 \delta^2 N}{\rho} \right)$:
\[\|Y_I - (P_I + \beta xx^\top)\| \leq \delta \|P_I + \beta xx^\top\| = \delta(1 + \beta). \]

Whenever this is true, by the definition of spectral norm we have
\[
\delta(1 + \beta) \geq \tilde{x}^\top \left[Y_I - (P_I + \beta xx^\top) \right] \tilde{x} \\
= \|Y_I\| - (1 + \beta \langle \tilde{x}, x \rangle^2) \\
\geq (1 - \delta)(1 + \beta) - (1 + \beta \langle \tilde{x}, x \rangle^2),
\]

21
which is equivalent to $\langle \tilde{x}, x \rangle^2 \geq 1 - \epsilon$ upon taking $\delta = \frac{\beta}{2(1+\beta)}$. Thus, for any $\epsilon \in (\frac{2(1+\beta)\sqrt{\rho}}{1+\beta}, 1)$,

$$\Pr \left[\langle \tilde{x}, x \rangle^2 \leq 1 - \epsilon \right] \leq 2 \exp \left(-\frac{C^2 \beta^2 n\epsilon^2}{4(1+\beta^2)\gamma \rho} \right),$$

which completes the proof. □

3.2 The Wigner Model

Proof of Theorem 2.19 (Detection). For simplicity we denote $t = \frac{\lambda\ell^2}{2A^2 \rho n}$. Under P_n, when \tilde{v} correctly guesses ℓ entries in the support of x with correct signs (which requires $\ell \leq \rho n$),

$$\tilde{v}^\top Y \tilde{v} = \tilde{v}^\top W \tilde{v} + \lambda \langle \tilde{v}, x \rangle^2,$$

where $\tilde{v}^\top W \tilde{v} \sim \mathcal{N}(0, \ell^2 / n)$. Note that

$$\lambda \langle \tilde{v}, x \rangle^2 \geq \frac{\lambda \ell^2}{A^2 \rho n} = 2t.$$

Therefore, a standard Gaussian tail bound gives

$$\Pr \left[T < t \right] \leq \Pr \left[\tilde{v}^\top Y \tilde{v} < t \right] \leq \Pr \left[\mathcal{N}(0, \ell^2 / n) > t \right] \leq \exp \left(-\frac{n \ell^4}{2t^2} \left(\frac{\lambda \ell^2}{2A^2 \rho n} \right)^2 \right) = \exp \left(-\frac{\lambda^2 \ell^2}{8A^4 \rho^2 n} \right).$$

Under Q_n, for each fixed $v \in \mathcal{I}_{n,\ell}$, we have

$$v^\top Y v \sim \mathcal{N}(0, 2\ell^2 / n).$$

By the same tail bound,

$$Q_n \left[v^\top Y v \geq t \right] \leq \exp \left(-\frac{nt^2}{4\ell^2} \right).$$

Now, by a union bound over $v \in \mathcal{I}_{n,\ell}$,

$$Q_n \left[T \geq t \right] \leq |\mathcal{I}_{n,\ell}| \exp \left(-\frac{nt^2}{4\ell^2} \right) = \left(\frac{n}{\ell} \right) 2^\ell \exp \left(-\frac{nt^2}{4\ell^2} \right) \leq \exp \left(\ell \log(2n) - \frac{nt^2}{4\ell^2} \right).$$

Under the condition

$$\frac{nt^2}{8\ell^2} \geq \ell \log(2n) \iff \rho < \frac{\lambda}{6A^2} \sqrt{\frac{\ell}{n \log n}},$$

22
which is equivalent to the interval for ℓ given in (13), we have

$$Q_n [T \geq t] \leq \exp \left(-\frac{n t^2}{8\ell^2} \right) = \exp \left(-\frac{\lambda^2}{32A^4 \rho^2 n} \ell^2 \right).$$

Therefore, by thresholding T at t, under the condition

$$\frac{\ell}{n} \leq \rho \leq \frac{\lambda}{6A^2 \sqrt{n \log n}},$$

we can distinguish P_n and Q_n with total failure probability at most

$$\mathbb{P}_n [T < t] + Q_n [T \geq t] \leq \exp \left(-\frac{\lambda^2}{32A^4 \rho^2 n} \ell^2 \right) + \exp \left(-\frac{\lambda^2}{32A^4 \rho^2 n} \ell^2 \right) \leq 2 \exp \left(-\frac{\lambda^2}{32A^4 \rho^2 n} \ell^2 \right),$$

completing the proof.

Proof of Theorem 2.21 (Support and Sign Recovery). First, we show that v^* has significant overlap with the support of x. From the analysis of the detection algorithm, provided (27) holds, with probability at least $1 - 2 \exp \left(-\frac{\bar{\lambda}^2}{32A^4 \rho^2 n} \ell^2 \right)$ we have

$$\frac{\bar{\lambda} \ell^2}{2A^2 \rho n} \leq v^* \top Y' v^* = \bar{\lambda} \langle v^*, x \rangle^2 + v^* \top W' v^*,$$

where $v^* \top W' v^* \sim \mathcal{N}(0, 2\ell^2/n)$. Therefore, for n sufficiently large,

$$\mathbb{P}_n \left[\langle v^*, x \rangle^2 \geq \frac{\ell^2}{4A^2 \rho n} \right] \geq \left(1 - 2 \exp \left(-\frac{\bar{\lambda}^2}{32A^4 \rho^2 n} \ell^2 \right) \right) \left(1 - \Pr \left[\mathcal{N}(0, 2\ell^2/n) \geq \frac{\bar{\lambda} \ell^2}{4A^2 \rho n} \right] \right) \geq 1 - 2 \exp \left(-\frac{\bar{\lambda}^2}{32A^4 \rho^2 n} \ell^2 \right) - \exp \left(-\frac{\bar{\lambda}^2}{64A^4 \rho^2 n} \ell^2 \right) \geq 1 - 3 \exp \left(-\frac{\bar{\lambda}^2}{64A^4 \rho^2 n} \ell^2 \right).$$

We now fix v^* satisfying the above lower bound on $\langle v^*, x \rangle^2$. From this point onward, we will only use the second copy Y'' of our data; it is important here that Y'' is independent from v^*. We will that x is successfully recovered by thresholding the entries of $z = Y'' v^*$. Entrywise, we have

$$z_i = \bar{\lambda} x_i \langle v^*, x \rangle + e_i \top W'' v^*.$$

For all $i \in \text{supp}(x)$,

$$|\bar{\lambda} x_i \langle v^*, x \rangle| \geq \bar{\lambda} \frac{1}{A \sqrt{\rho n}} \cdot \frac{\ell}{2A \sqrt{\rho n}} = \frac{\bar{\lambda} \ell}{2A^2 \rho n}.$$

For simplicity we denote $s = \frac{\bar{\lambda} \ell}{2A^2 \rho n}$ and $\mu = \frac{1}{3}$. Note that for all $i \in [n], e_i \top W'' v^* \sim \mathcal{N}(0, \|v\|^2/n) = \mathcal{N}(0, \ell/n)$ and therefore

$$\mathbb{P}_n \left[|e_i \top W'' v^*| \geq \mu s \right] \leq 2 \exp \left(-\frac{n \mu^2 s^2}{2\ell} \right).$$

(28)
By a union bound over all $i \in [n]$,

$$
\mathbb{P}_n \left[|e_i^T W'' v^*| \leq \mu s \text{ for all } i \right] \geq 1 - 2n \exp \left(- \frac{n\mu^2 s^2}{2\ell} \right) \\
\geq 1 - \exp \left(\log(2n) - \frac{n\mu^2 s^2}{2\ell} \right) \\
\geq 1 - \exp \left(- \frac{n\mu^2 s^2}{4\ell} \right) \\
= 1 - \exp \left(- \frac{\lambda^2}{144A^4 \rho^2 n} \right)
$$

under the condition

$$
\frac{n\mu^2 s^2}{4\ell} \geq \log(2n) \iff \rho \leq \frac{\bar{\lambda}}{13A^2} \sqrt{\frac{\ell}{n \log n}} = \frac{\lambda}{13\sqrt{2}A^2} \sqrt{\frac{\ell}{n \log n}},
$$

which, combined with (27), is equivalent membership in the interval for ℓ that we are considering per (15). Therefore, with probability at least

$$
1 - 3 \exp \left(- \frac{\bar{\lambda}^2 \ell^2}{64A^4 \rho^2 n} \right) - \exp \left(- \frac{\bar{\lambda}^2 \ell}{144A^4 \rho^2 n} \right) \geq 1 - 4 \exp \left(- \frac{\lambda^2 \ell}{288A^4 \rho^2 n} \right)
$$

for all $j \in [n],

$$
j \in \text{supp}(x) \quad \text{if and only if} \quad |z_j| \geq \frac{s}{2}
$$

and

$$
\text{sign}(z_j) = \text{sign}(x_j(v^*, x)).
$$

Thus, we find that thresholding the entries of z at $s/2$ successfully recovers the support and signs of x, completing the proof.

Proof of Theorem 2.22 (Full Recovery). Since $Y_I \bar{x} = \lambda_{\text{max}}(Y_I) \bar{x}$, we must have $\text{supp}(\bar{x}) \subset I$. Denote $W_T = P_I WP_T^T$ and \bar{W}_T the $\ell \times \ell$ submatrix of W_T with rows and columns indexed by I (the only nonzero rows and columns). Now, the variational description of the leading eigenvector yields

$$
\bar{x}^T W_T \bar{x} + \lambda \langle \bar{x}, x \rangle^2 = \bar{x}^T Y_I \bar{x} \geq x^T Y_I x = x^T W_T x + \lambda.
$$

Therefore,

$$
\langle \bar{x}, x \rangle^2 \geq 1 - \frac{1}{\lambda} (\bar{x}^T W_T \bar{x} - x^T W_T x) \geq 1 - \frac{1}{\lambda} (\lambda_{\text{max}}(W_T) + \lambda_{\text{max}}(-\bar{W}_T)).
$$

Note that \bar{W}_T has the same law as $(\bar{G} + \bar{G}^\top) / \sqrt{2n}$, where \bar{G} is an $\rho n \times \rho n$ matrix whose entries are independent standard normal random variables. Now, for any $\epsilon > \frac{4\sqrt{2}\bar{\lambda}}{\lambda}$, we have $\frac{\sqrt{2n\lambda\epsilon}}{4} > 2\sqrt{\rho n}$, a standard singular value estimate for Gaussian matrices (see [Ver10], Corollary 5.35) gives

$$
\mathbb{P}_n \left[\langle \bar{x}, x \rangle^2 \leq 1 - \epsilon \right] \leq \text{Pr} \left[\lambda_{\text{max}}(\bar{W}_T) + \lambda_{\text{max}}(-\bar{W}_T) \geq \lambda \epsilon \right] \\
\leq 2 \text{Pr} \left[\lambda_{\text{max}}(\bar{W}_T) \geq \frac{\lambda \epsilon}{2} \right] \\
\leq 2 \text{Pr} \left[\sigma_{\text{max}}(\bar{G}) \geq \frac{\sqrt{2n\lambda\epsilon}}{4} \right] \\
\leq 4 \exp \left[- \frac{n}{16} \left(\lambda \epsilon - 4\sqrt{2\rho} \right)^2 \right],
$$

which concludes the proof.

24
4 Proofs for Low-Degree Likelihood Ratio Bounds

4.1 Low-Degree Likelihood Ratio for Spiked Models

We begin by giving expressions for the norm of the low-degree likelihood ratio (LDLR) for the spiked Wigner and Wishart models. These expressions are derived in [KWB19] and [BKW19], respectively.

Lemma 4.1 (D-LDLR for spiked Wigner model [KWB19]). Let $L_{n,\lambda}^{\leq D}$ denote the degree-D likelihood ratio for the spiked Wigner model with parameters n, λ and spike prior \mathcal{X}. Then,

$$
\|L_{n,\lambda}^{\leq D}\|^2 = \mathbb{E}_{v^{(1)},v^{(2)} \sim \mathcal{X}} \left[\sum_{d=0}^{D} \frac{1}{d!} \left(\frac{n}{2} \lambda^2 \langle v^{(1)}, v^{(2)} \rangle^2 \right)^d \right]
$$

(29)

where $v^{(1)}, v^{(2)}$ are drawn independently from \mathcal{X}_n.

Lemma 4.2 (D-LDLR for spiked Wishart model [BKW19]). Let $L_{n,N,\beta}^{\leq D}$ denote the degree-D likelihood ratio for the spiked Wishart model with parameters n, N, β and spike prior \mathcal{X}. Define

$$
\varphi_N(x) := (1 - 4x)^{-N/2}
$$

(30)

$$
\varphi_{N,k}(x) := \sum_{d=0}^{k} x^d \sum_{d_1,\ldots,d_N} \prod_{i=1}^{N} \left(\frac{2d_i}{d_i} \right),
$$

(31)

so that $\varphi_{N,k}(x)$ is the Taylor series of φ_N around $x = 0$ truncated to degree k. Then,

$$
\|L_{n,N,\beta}^{\leq D}\|^2 = \mathbb{E}_{v^{(1)},v^{(2)} \sim \mathcal{X}} \left[\sum_{d=0}^{[D/2]} \varphi_{N,[D/2]} \left(\frac{\beta^2 \langle v^{(1)}, v^{(2)} \rangle^2}{4} \right)^d \right],
$$

(32)

where $v^{(1)}, v^{(2)}$ are drawn independently from \mathcal{X}_n.

We consider a signal x drawn from the sparse Rademacher prior, $\mathcal{X}_n = \mathcal{X}_n^\rho$. The goal of this section is to prove upper and lower bounds on the LDLR expressions in (29) and (32) as $n \to \infty$, for certain regimes of the parameters (λ, ρ for the Wigner model and β, γ, ρ for the Wishart model). These bounds are obtained in several steps. First, we treat the moment terms

$$
A_d := (n\rho)^{2d} \mathbb{E}_{v^{(1)},v^{(2)} \sim \mathcal{X}_n^\rho} \langle v^{(1)}, v^{(2)} \rangle^{2d}
$$

(33)

from (29) and (32) in Section 4.2 with upper bounds given in Lemmas 4.4 and 4.5 and a lower bound given in Lemma 4.6. We then give a precise estimate in Lemma 4.7 of the coefficient

$$
\sum_{d_1,\ldots,d_N} \prod_{i=1}^{N} \left(\frac{2d_i}{d_i} \right)
$$

in the LDLR (32) of the Wishart model. Finally, by combining the above bounds, we show regimes of parameters under which the LDLR either remains bounded or diverges as $n \to \infty$. This yields the proofs of Theorems 2.14 and 2.15 for the Wishart model, and Theorems 2.24 and 2.25 for the Wigner model.
4.2 Introduction and Estimates of A_d

In this section, we carry out combinatorial estimates of the moments A_d defined in (33), which appear in the LDLR expressions (29) and (32). We give upper bounds (Lemmas 4.4 and 4.5) and a lower bound (Lemma 4.6) on these moments.

For independent $v^{(1)}, v^{(2)}$ drawn from the sparse Rademacher prior \mathcal{X}_n^ρ, $(v^{(1)}, v^{(2)})$ has the same distribution as $S_{n, \rho} = \frac{1}{n} \sum_{i=1}^n s_{i, \rho}$ for i.i.d. $s_{i, \rho}$ with

\[
s_{i, \rho} = \begin{cases}
+1/\rho & \text{with probability } \rho^2/2, \\
-1/\rho & \text{with probability } \rho^2/2, \\
0 & \text{with probability } 1 - \rho^2,
\end{cases}
\]

and kth moment (for $k > 0$) given by

\[
E_{s_{i, \rho}}^k = \begin{cases}
0 & \text{for } k \text{ odd}, \\
\rho^{2-k} & \text{for } k \text{ even}.
\end{cases}
\]

Therefore, the moments of $(v^{(1)}, v^{(2)})$ have the combinatorial description

\[
E_{v^{(1)}, v^{(2)} \sim \mathcal{X}_n^\rho} \langle v^{(1)}, v^{(2)} \rangle^{2d} = n^{-2d} E S_{2d}^{2d} = n^{-2d} \sum_{i_1, \ldots, i_{2d} \in [n]} E s_{i_1, \rho} s_{i_2, \rho} \cdots s_{i_{2d}, \rho}
\]

\[
= n^{-2d} \sum_{a_1, \ldots, a_{2d} \geq 0} \left(\frac{2d}{a_1 \cdots 2a_n} \right) E \prod_{a_j > 0} s_{j, \rho}^{2a_j}
\]

\[
= n^{-2d} \sum_{a_1, \ldots, a_{2d} \geq 0} \left(\frac{2d}{a_1 \cdots 2a_n} \right) \prod_{a_j > 0} \rho^{-2a_j}
\]

\[
= n^{-2d} \sum_{a_1, \ldots, a_{2d} \geq 0} \left(\frac{2d}{a_1 \cdots 2a_n} \right) \rho^{2\{a_i > 0\} - 2d}.
\]

Recall, from (35), that

\[
A_d = (n\rho)^{2d} E_{v^{(1)}, v^{(2)} \sim \mathcal{X}_n^\rho} \langle v^{(1)}, v^{(2)} \rangle^{2d} = \sum_{a_1, \ldots, a_{2d} \geq 0} \left(\frac{2d}{2a_1 \cdots 2a_n} \right) \rho^{2\{a_i > 0\}}.
\]

Fix $d \leq D_n$, and let $1 \leq k \leq d$ be the number of positive numbers among the $\{a_i\}$. Suppose $d = wk + r$, where $0 \leq r < k$. For positive integers b_1, b_2, \ldots, b_k such that $\sum b_i = d$, we claim that

\[
\left(\frac{2d}{2b_1 \cdots 2b_k} \right) \leq \left(\frac{2d}{2w \cdots 2w} \right) =: M(k),
\]

and that equality holds if and only if $\{b_i\}$ consists of r copies of $(w + 1)$ and $k - r$ copies of w. This follows from the simple fact that, for any $1 \leq i, j \leq k$ such that $b_i \geq b_j + 2$, we have $(2b_i)!(2b_j) > (2(b_j - 1))!(2(b_j + 1))!$, and therefore the left-hand side of the above inequality becomes strictly larger as we “unbalance” the b_i by replacing b_i and b_j with $b_i - 1$ and $b_j + 1$. As a result, the left-hand side is maximized if and only if the maximum and minimum of $\{b_1, b_2, \ldots, b_k\}$
differ by at most 1. Now, since the total number of positive integer solutions to \(\sum_{i=1}^{k} b_i = d \) is \(\binom{d-1}{k-1} \), we have

\[
A_d \leq \sum_{k=1}^{d} \binom{n}{k} \binom{d-1}{k-1} \rho^{2k} M(k). \tag{38}
\]

Before proceeding to bounds on the \(A_d \), we introduce the following result, which will be useful in several estimates in this section.

Lemma 4.3. Suppose \(D_n = o(n) \). Then, for sufficiently large \(n \),

\[
\frac{n(n-1) \cdots (n-D_n+1)}{n^{D_n}} > \frac{1}{2} e^{-D_n^2/n}.
\]

Proof. By Stirling’s formula, as \(n \to \infty \) and \(n - D_n \to \infty \) (which is ensured by \(D_n = o(n) \)),

\[
\begin{align*}
\frac{n(n-1) \cdots (n-D_n+1)}{n^{D_n}} &= \frac{n!}{(n-D_n)! n^{D_n}} \\
&\sim \frac{\sqrt{2\pi n(n-1) \cdots (n-D_n+1)}}{\sqrt{2\pi (n-D_n)(n-D_n+1) \cdots (n-D_n+D_n-1)}} \\
&\sim \frac{1}{e^{D_n}} \left(1 + \frac{D_n}{n-D_n} \right)^{n-D_n}.
\end{align*}
\]

Here the relation \(\sim \) means that the quotient of the quantities on either side tends to 1 as \(n \to \infty \). Since \(D_n = o(n) \), for large enough \(n \) such that \(D_n < \frac{n}{3} \), we have

\[
\log \left[\frac{1}{e^{D_n}} \left(1 + \frac{D_n}{n-D_n} \right)^{n-D_n} \right] = -D_n + (n-D_n) \log \left(1 + \frac{D_n}{n-D_n} \right) \\
\geq -D_n + (n-D_n) \left(\frac{D_n}{n-D_n} - \frac{D_n^2}{2(n-D_n)^2} \right) \\
\geq -\frac{D_n^2}{n},
\]

and the lemma follows. \(\square \)

Lemma 4.4 (First upper bound on \(A_d \)). In the setting of the spiked Wishart or Wigner model with sparse Rademacher prior \(X_n^0 \), suppose \(D_n = o(n) \). If for some \(\mu > 0 \) we have

\[
\rho \geq \max \left(1, \sqrt{\frac{1}{6\mu}} \right) \sqrt{\frac{D_n}{n}}
\]

then for sufficiently large \(n \) and for any \(1 \leq d \leq D_n \), \(A_d \) defined by (33) satisfies

\[
A_d \leq \sum_{k=1}^{d} G(k) \leq 2d e^{\mu d + \frac{d^2}{2}} G(d) = 2d e^{\mu d + \frac{d^2}{2}} \binom{n}{d} \frac{(2d)!}{2^d} \rho^{2d}, \tag{39}
\]

where

\[
G(k) := \binom{n}{k} \binom{d-1}{k-1} \rho^{2k} M(k).
\]
Proof. Fix $1 \leq d \leq D_n$. Recall that the first inequality in (39) is a restatement of (38). By a simple comparison argument, we observe that $M(k)$ is monotone increasing with respect to k. For any $1 \leq k < \frac{d}{2}$, we have
\[
\frac{G(k + 1)}{G(k)} = \frac{(\binom{n}{k+1})(\binom{d-1}{k})\rho^{2k+1}M(k + 1)}{(\binom{n}{k})(\binom{d-1}{k-1})\rho^{2k}M(k)} \geq \frac{(n-k)(d-k)}{k(k+1)}\rho^2 \geq \frac{(n-d)(\frac{d}{2})}{n(d-k)} \rho^2 > 1
\]
if $\rho \geq \sqrt{\frac{D_n}{n}}$. Therefore,
\[
\sum_{k < \frac{d}{2}} G(k) \leq \left\lfloor \frac{d}{2} \right\rfloor \sum_{k \geq \frac{d}{2}} G(k).
\]
Meanwhile, for $\frac{d}{2} \leq k < d$, by (37),
\[
M(k) = \max_{b_1, \ldots, b_k \geq 0, \sum b_i = d} \left(\begin{array}{c} 2d \\ b_1 \ldots b_k \end{array} \right) = \left(\begin{array}{c} 2d \\ 2 \ldots 2 \ 4 \ldots 4 \end{array} \right) = \frac{(2d)!}{2^d \cdot 2^{2d-k} n^{2d-k-d}},
\]

since the maximum is attained when $\{b_i\}$ has $(d-k)$ occurrences of 2 and $(2k-d)$ occurrences of 1. As a result, with the help of Lemma 4.3
\[
\frac{G(k)}{G(d)} = \frac{(\binom{n}{k})(\binom{d-1}{k})\rho^{2k}M(k)}{(\binom{n}{d})(\binom{d}{d})\rho^{2d}M(d)} \leq \frac{1}{(6\rho^2)^{d-k}} \cdot \frac{d!}{(n-k)(n-k-1)\ldots(n-d+1)!} \cdot \frac{d!}{k!(d-k)!} \leq \frac{1}{(6\rho^2)^{d-k}} \cdot \frac{2e^{d^2/n}}{n^{d-k}} \cdot \left(\begin{array}{c} d! \\ k! \end{array} \right) \cdot \frac{1}{(d-k)!} \leq 2e^{d^2/n} \left(\frac{d^2}{6\rho^2 n} \right)^{d-k} \cdot \frac{1}{(d-k)!}.
\]

Thus for $\rho \geq \sqrt{\frac{D_n}{6\mu n}} \geq \sqrt{\frac{d}{6\mu n}}$ we have $\frac{d^2}{6\rho^2 n} \leq \mu d$ and
\[
\sum_{k=1}^{d} G(k) \leq \left(\left\lfloor \frac{d}{2} \right\rfloor + 1 \right) \sum_{k \geq \frac{d}{2}} G(k) \leq 2e^{d^2/n} \sum_{k \geq \frac{d}{2}} \frac{(\mu d)^{d-k}}{(d-k)!} G(d) \leq 2de^{\mu d + d^2/n} G(d),
\]
completing the proof. \qed

Lemma 4.5 (Second upper bound on A_d). In the setting of the spiked Wishart or Wigner model with sparse Rademacher prior \mathcal{X}_n^ρ, suppose $D_n = o(n)$. If for some $\mu < 1/\sqrt{3}$ we have
\[
\rho \geq \mu \sqrt{\frac{D_n}{n}},
\]
then for sufficiently large n and for any $11 \leq d \leq D_n$,
\[
A_d \leq \sum_{k=1}^{d} G(k) \leq 2e^{d^2/n} \left(\frac{11e}{30} \right)^{d/2} \mu^{-2d} G(d) = \sqrt{de^{d^2/n}} \left(\frac{11e}{30} \right)^{d/2} \mu^{-2d} \left(\frac{n}{d} \right)^{(2d)!} \frac{2d}{d} \rho^{2d},
\]
where A_d is defined in (33) and $G(k)$ is defined as in Lemma 4.4.
Proof. As in the proof of Lemma 4.3 for sufficiently large n and for any $1 \leq d \leq D_n$ and any $1 \leq k < \frac{d}{2}$, we have

$$\frac{G(k+1)}{G(k)} \geq \frac{(n-k)(d-k)}{k(k+1)} \rho^2 \geq \frac{(n-k)(d-k)}{k(k+1)} \left(\frac{\mu^2 d}{n} \right) \geq \mu^2.$$

Therefore,

$$\sum_{k < \frac{d}{2}} G(k) \leq (\mu^{-2} + \mu^{-4} + \cdots + \mu^{-2[\lfloor d/2 \rfloor - 1]}) G(\lfloor d/2 \rfloor) \lesssim \mu^{-2[\lfloor d/2 \rfloor]} \sum_{k \geq \lfloor d/2 \rfloor} G(k).$$

Meanwhile, for $\frac{d}{2} \leq k < d$,

$$\frac{G(k)}{G(D)} \leq 2e^{d^2/n} \left(\frac{d^2}{6\mu^2 n} \right)^{d-k} \cdot \frac{1}{(d-k)!} \leq 2e^{d^2/n} \left(\frac{d}{6\mu^2} \right)^{d-k} \cdot \frac{1}{(d-k)!}.$$

Summing these quantities, we find (the last inequality requiring $d \geq 11$)

$$\sum_{k \geq \lfloor d/2 \rfloor} \frac{G(k)}{G(D)} \leq 2e^{d^2/n} \sum_{k \leq \lfloor d/2 \rfloor} \left(\frac{d}{6\mu^2} \right)^{k} \cdot \frac{1}{k!} \lesssim de^{d^2/n} \left(\frac{d}{6\mu^2} \right)^{\lfloor d/2 \rfloor} \cdot \frac{1}{[\lfloor d/2 \rfloor]!} \lesssim \sqrt{d} e^{d^2/n} \left(\frac{ed}{6\mu^2 \lfloor d/2 \rfloor} \right)^{\lfloor d/2 \rfloor} \lesssim \sqrt{d} e^{d^2/n} \left(\frac{11e}{30} \right)^{\lfloor d/2 \rfloor} \mu^{-2[\lfloor d/2 \rfloor]}.$$

Here we have used the fact that $(d/6\mu^2)^{k}/k!$ is monotone increasing for $1 \leq k \leq \frac{d}{2}$, since $d/6\mu^2 > d/2$. Combining the two cases, we conclude that

$$\frac{\sum_{k=1}^{d} G(k)}{G(D)} \lesssim \frac{1 + \mu^{-2[\lfloor d/2 \rfloor]}}{\sum_{k \geq \lfloor d/2 \rfloor} G(k)} \lesssim \sqrt{d} e^{d^2/n} \left(\frac{11e}{30} \right)^{d/2} \mu^{-2d},$$

completing the proof. \hfill \Box

Lemma 4.6 (Lower bound on A_d). In the settings of the spiked Wishart or Wigner models with sparse Rademacher prior X_n^w, consider a series $d = d_n = o(n)$ with integers $w = w_n$ satisfying $w_n \upharpoonright d_n$. Then, as $d/w \to \infty$, A_d defined by (33) satisfies

$$A_d \geq (1 - o(1)) \left(\frac{n}{d} \right)^{(2d)! \sqrt{w}} \left[2 \left(\frac{d}{ne\rho^2} \right)^{1-\frac{1}{w}} \left(\frac{w}{(2w)!} \right)^{\frac{1}{w}} \right]^d \rho^{2d}.$$

Proof. To obtain a lower bound on A_d, we only consider the contribution to the sum from terms $\{a_i \}$ with $\frac{d}{w}$-many occurrences of w and $(n - \frac{d}{w})$-many occurrences of zero:

$$\rho^{-2d} A_d = \sum_{a_1, \ldots, a_n \geq 0} \left(\begin{array}{c} 2d \vspace{1mm} \\
2a_1 \ldots 2a_n \end{array} \right) \rho^{2\{i: a_i > 0\} - 2d} \geq \left(\begin{array}{c} n \vspace{1mm} \\
d/w \end{array} \right)^{(2d)! \sqrt{w}} \left(\frac{(2d)!}{(2w)!} \right)^{d/w} \rho^{2d} =: T_{n,d}(w).$$

29
Now, we calculate the ratio
\[
\frac{T_{n,d}(w)}{T_{n,d}(1)} = \frac{d!(n-d)!}{(\frac{d}{w})!(n-d\frac{d}{w})!} \frac{2^d}{[(2w)!]^\frac{d}{2w}} \rho^{\frac{2d}{2w} - 2d} = \frac{d!/(\frac{d}{w})!}{(n-d\frac{d}{w})(n-d\frac{d}{w}-1) \cdots (n-d+1)} \left[\frac{2}{[(2w)!]^\frac{1}{2w}} \rho^{2(1-\frac{1}{w})} \right]^d. \tag{40}
\]

By Stirling’s formula, for \(w \) fixed and \(d \) sufficiently large,
\[
\frac{d!}{(\frac{d}{w})!} = (1 + o(1)) \sqrt{w(d/e)^{d-\frac{d}{w}} w^{\frac{d}{w}}}.
\]

Meanwhile,
\[
\left(n-d\frac{d}{w} \right) \left(n-d\frac{d}{w}-1 \right) \cdots (n-d+1) \leq n^{d-\frac{d}{w}}.
\]

Plugging into (40) we get
\[
\frac{T_{n,d}(w)}{T_{n,d}(1)} \geq (1-o(1)) \sqrt{w} \left[2 \left(\frac{d}{n\rho^2} \right)^{\frac{1}{2w}} \left(\frac{w}{(2w)!} \right) \right]^d,
\]
completing the proof. \(\square \)

4.3 The Wishart Model

In this section, we first carry out an estimate on the extra coefficient occurring in the Wishart LDLR \((32)\) (Lemma 4.7), then use the bounds on \(A_d \) (Lemmas 4.4, 4.5 and 4.6) to prove the upper bound (Theorem 2.14) and the lower bound (Theorem 2.15) on \((32)\).

Lemma 4.7 (Bounds on coefficient in Wishart LDLR). Suppose \(D_n = o(N) \). There exist absolute constants \(c_1, c_2 > 0 \) such that, for sufficiently large \(N \), for any \(1 \leq d \leq D_n \),
\[
\frac{(2N)^d}{d!} \leq \sum_{d_1, \ldots, d_N = 1}^{d} \prod_{i=1}^{N} \left(\frac{2d_i}{d_i} \right) \leq c_1 d^{3/2} e^{c_2 d^2/N} \frac{(2N)^d}{d!}. \tag{41}
\]

Proof. For the lower bound, note that for any \(d_i \geq 2 \),
\[
\left(\frac{2d_i}{d_i} \right) = \frac{2d_i(2d_i-1)}{d_i^2} \left(\frac{2(d_i-1)}{d_i-1} \right) \geq \left(\frac{2}{1} \right) \left(\frac{2(d_i-1)}{d_i-1} \right),
\]
so for any \(d_1, \ldots, d_N \geq 0 \) such that \(\sum d_i = d \),
\[
\prod_{i=1}^{N} \left(\frac{2d_i}{d_i} \right) \geq 2^d.
\]

Summing over all of the \(\{d_i\} \), we find
\[
\sum_{d_1, \ldots, d_N = 1}^{d} \prod_{i=1}^{N} \left(\frac{2d_i}{d_i} \right) \geq \left(\frac{N + d - 1}{d} \right) 2^d \geq \frac{(2N)^d}{d!}.
\]
For the upper bound, we separately consider those \(\{d_i\} \)'s with exactly \(k \) positive entries for each \(k = 1, 2, \ldots, d \):

\[
\sum_{d_1, \ldots, d_N} \prod_{i=1}^N \binom{2d_i}{d_i} = \sum_{k=1}^d \binom{N}{k} \sum_{\sum_{i=1}^k c_i = d} \prod_{i=1}^k \binom{2c_i}{c_i} \\
\leq \sum_{k=1}^d \binom{N}{k} \left(\frac{d-1}{k-1} \right) \max_{\sum_{i=1}^k c_i = d} \prod_{i=1}^k \binom{2c_i}{c_i}.
\]

Given any positive integers \(c_1, \ldots, c_k \) such that \(\sum c_i = d \), if there are two entries \(c_j \geq c_\ell \geq 2 \), consider \(\tilde{c}_j = c_j + 1, \tilde{c}_\ell = c_\ell - 1 \) and \(\tilde{c}_i = c_i \) for all \(i \neq j, \ell \). We have the comparison

\[
\prod_{i=1}^k \binom{2\tilde{c}_i}{\tilde{c}_i} = \frac{4 - \frac{2}{c_j+1}}{4 - \frac{2}{c_\ell+1}} > 1.
\]

Therefore, for fixed \(k \), the product \(\prod_{i=1}^k \binom{2c_i}{c_i} \) is maximized when \(\{c_i\} \) is composed of \((k-1) \) occurrences of \(1 \) and one occurrence of \((d-k+1) \). As a result,

\[
\sum_{d_1, \ldots, d_N} \prod_{i=1}^N \binom{2d_i}{d_i} \leq \sum_{k=1}^d \binom{N}{k} \left(\frac{d-1}{k-1} \right) \cdot 2^{k-1} \binom{2(d-k+1)}{d-k+1} =: \sum_{k=1}^d S(k).
\]

Since

\[
S(k) = \binom{N}{k} \left(\frac{d-1}{k-1} \right) \cdot 2^{k-1} \binom{2(d-k+1)}{d-k+1} \leq \frac{N^k}{k!} \binom{d}{k} \cdot 2^k \binom{2(d-k)}{d-k} \tag{42}
\]

and Stirling’s formula gives

\[
k! \gtrsim \left(\frac{k}{e} \right)^k,
\]

\[
\binom{d}{k} \lesssim \frac{d^d}{k^k(d-k)^{d-k}},
\]

\[
\binom{2(d-k)}{d-k} \lesssim 4^{d-k},
\]

\[
d! \lesssim \sqrt{d} \left(\frac{d}{e} \right)^d,
\]

substituting into (42) and denoting \(k = (1-\eta)d \), we find

\[
S(k) \left(\frac{(2N)^d}{d!} \right)^{-1} \lesssim \left(\frac{Ne}{k} \right)^k \cdot \frac{d^d}{k^k(d-k)^{d-k}} \cdot 2^{2d-k} \cdot \left(\frac{1}{\sqrt{d}} \left(\frac{2Ne}{d} \right)^d \right)^{-1} = \sqrt{d} \left(\frac{2d}{Ne\eta} \right)^{\eta d} \frac{1}{(1-\eta)^{2(1-\eta)d}}.
\]

Now, for \(\eta \in (0,1] \), denote

\[
h(\eta) := \left(\frac{2d}{Ne\eta} \right)^{\eta} \frac{1}{(1-\eta)^{2(1-\eta)d}}.
\]
Then,
\[
\sum_{d_1,\ldots,d_N} N \prod_{i=1}^N \left(\frac{2d_i}{d}
ight) \leq \sum_{k=1}^d S(k) \leq d \max_{1 \leq k \leq d} S(k) \lesssim d^{3/2} \left(\frac{2N}{d}\right)^d \left[\sup_{\eta \in (0,1]} h(\eta)\right]^d.
\]
(43)

The last step is to evaluate \(h(\eta) \). Note that
\[
\frac{d}{d\eta} \log h(\eta) = \log \left(\frac{2d}{N}\right) - \log(\eta) + 2\log(1 - \eta).
\]

Since \(\frac{2d}{N} \leq \frac{2D_0}{N} = o(1) \) as \(n \to \infty \), for large \(N \) the unique maximizer of \(h \) has the form
\[
\eta^* = \eta^*(N, d) = \frac{(2 - o(1))d}{N},
\]
and consequently
\[
\sup_{\eta \in (0,1]} h(\eta) = h(\eta^*) = \left(\frac{2}{e(2 - o(1))}\right)^{\eta^*} (1 - \eta^*)^{-2(1-\eta^*)} \leq e^{4\eta^*(1-\eta^*)} \leq e^{2d/N}.
\]

Substituting into (43) then completes the proof.

Proof of Theorem 2.13(a). Suppose (10) holds. Let \(\mu = -\log \hat{\lambda} \). In the setting of Lemma 4.7 note that
\[
\lim_{n \to \infty} \frac{D_n}{N} = 0,
\]
\[
\liminf_{n \to \infty} \left(\frac{1}{2} \log \hat{\lambda}_n\right) = -\frac{1}{2} \log \left(\limsup_{n \to \infty} \hat{\lambda}_n\right) > 0.
\]

For \(n \) large enough so that \((c_2 + \frac{1}{\gamma}) \frac{D_n}{N} < -\frac{1}{2} \log \hat{\lambda}_n \), applying Lemma 4.4 in the expression of (32) yields
\[
\|L_{\leq D}^{X_n, \beta, X}\|_2^2 = \mathbb{E}_{\nu^{(1)}, \nu^{(2)} \sim X_n^d} \sum_{d=0}^{\frac{D}{2}} \sum_{d_1,\ldots,d_N} N \prod_{i=1}^N \left(\frac{2d_i}{d}\right) \left[\beta^2 \left(\nu^{(1)} \cdot \nu^{(2)}\right)^2 \right]^d.
\]
\[
\lesssim \sum_{d=1}^{\frac{D}{2}} \left[d^{3/2} \left(\frac{2N}{d}\right)^d e^{c_2d^2/N} \left(\frac{\beta^2}{d}\right)^d (n\rho)^{-2d} 2de^{\mu + d^2/n} \left(n / d\right)^2 \rho^{2d} \frac{2d!}{2^d \rho^{2d}} \right] \leq \sum_{d=1}^{\frac{D}{2}} 2d^{5/2} e^{c_2dD/N} \left(\frac{2d!}{4^d(d!)}\right) \left(e^{\mu + D/n} \left(n / d\right)^2 \beta^2 \right)^d.
\]
\[
\lesssim \sum_{d=1}^{\infty} d^2 \left(e^{(c_2 + \frac{1}{\gamma})d^2} e^{\mu \lambda^2}\right)^d.
\]
\[
\leq \sum_{d=1}^{\infty} d^2 \left(\lambda^{1/2}\right)^d = O(1),
\]

where the last equality is by the assumption that \(\limsup_{n \to \infty} \hat{\lambda}_n < 1 \).

\[\Box\]
Proof of Theorem 2.14(b). If (41) holds, then \(\hat{\lambda}_n \leq 1/\sqrt{3} \) for sufficiently large \(n \). In the setting of Lemma 4.7, suppose \((c_2 + \frac{1}{2}) \frac{a}{\gamma} < 0.001 \). Then, substituting the estimates in Lemma 4.5 (taking \(\mu = \hat{\lambda} \)) into (32) gives

\[
\|L_{n,N,\beta,x}\|^2 \leq \left[\sum_{d=11}^{\lfloor D/2 \rfloor} d^2 (2N)^d d^2 / d! \right] \left[\left(\frac{\beta^2}{4} \right)^d (n \rho)^{-2d} \cdot \sqrt{d} e^{d^2/n} \left(\frac{11e}{30} \right)^{\frac{d}{2}} \right] \frac{n - 2d}{(n/2)} \frac{(2d)!}{d!} \\
\leq \left[\sum_{d=11}^{\lfloor D/2 \rfloor} d^2 (2N)^d d^2 / d! \right] \left[\left(\frac{\beta^2}{4} \right)^d \left(\frac{N}{n} \right)^{-2d} \left(\frac{11e}{30} \right)^{d/2} \right] \frac{n - 2d}{(n/2)} \frac{(2d)!}{d!} \\
\leq \left[\sum_{d=11}^{\infty} d^2 (2N)^d d^2 / d! \right] \left[\left(\frac{\beta^2}{4} \right)^d \left(\frac{N}{n} \right)^{-2d} \left(\frac{11e}{30} \right)^{d/2} \right] \frac{n - 2d}{(n/2)} \frac{(2d)!}{d!} \\
= O(1),
\]
completing the proof.

Proof of Theorem 2.14(a). In (36), only counting the terms \(\{a_i\} \) with \(d \) occurrences of 1 and \((n-d) \) occurrences of zero yields

\[
\mathbb{E}_{v^{(1)},v^{(2)} \sim \mathcal{X}_n^d} \langle v^{(1)}, v^{(2)} \rangle^{2d} \geq n^{-2d} \left(\frac{n}{d} \right)^2 \frac{(2d)!}{d!}.
\]

(44)

From Lemma 4.3 we have that when \(D_n = o(n) \), for sufficiently large \(n \) and for any \(1 \leq d \leq D_n \),

\[
\binom{n}{d} = \frac{n(n-1) \ldots (n-d+1)}{n^d} \cdot \frac{n^d}{d!} \geq \frac{n^d}{d!} \geq \frac{1}{2} e^{n^d} \frac{n^d}{d!} \geq \frac{1}{2} e^{-dD_n/n} \frac{n^d}{d!}.
\]

(45)

Substituting Lemma 4.7 (44) and (45) into (32) yields, for sufficiently large \(n \),

\[
\|L_{n,N,\beta,x}\|^2 \geq \sum_{d=1}^{D_n} \left[\frac{(2N)^d}{d!} \right] \left[\left(\frac{\beta^2}{4} \right)^d \left(\frac{n}{d} \right)^{-2d} \frac{(2d)!}{d!} \right] \\
\geq \sum_{d=1}^{D_n} \frac{(2d)!}{d!} \left(\frac{\beta^2}{4} \right)^d e^{-dD_n/n} \\
\geq \sum_{d=1}^{D_n} \frac{1}{d!} \left(\frac{\beta^2}{4} \right)^d e^{-dD_n/n} \\
\geq \sum_{d=1}^{D_n} \frac{1}{d!} \\
= \omega(1),
\]

since \(D_n = \omega(1) \), \(\liminf_{n \to \infty} \hat{\lambda}_n > 1 \) and \(e^{-D_n/n} \to 1 \).

\(\square \)

Lemma 4.8. Suppose \(\omega(1) \leq D_n \leq o(n) \). If there exists a series of positive integers \(w_n = o(\sqrt{D_n}) \) such that

\[
\liminf_{n \to \infty} 2\hat{\lambda}_n^2 \left(\frac{D_n}{2ne\rho_n^2} \right)^{1 - \frac{w_n}{(2w_n)!}} \left(\frac{w_n}{(2w_n)!} \right)^{\frac{w_n}{(2w_n)!}} > 1,
\]

(46)

then \(\|L_{n,N,\beta,x}\|^2 \to \infty \) as \(n \to \infty \).
Proof. If (46) holds, we can choose an \(\epsilon > 0 \) such that, for sufficiently large \(n \),
\[
2\lambda_n^2 \left(\frac{D_n}{2ne\rho_n^2} \right)^{1-\frac{1}{w_n}} \left(\frac{w_n}{(2w_n)!} \right)^{\frac{1}{w_n}} > 1 + \epsilon.
\]
Let \(n \) satisfy the above inequality. Pick \(\mu \in (0, 1) \) such that
\[
\mu^{1-\frac{1}{w_n}} (1 + \epsilon) > 1,
\]
which implies
\[
2 \left(\frac{\mu D_n}{2ne\rho_n^2} \right)^{1-\frac{1}{w_n}} \left(\frac{w_n}{(2w_n)!} \right)^{\frac{1}{w_n}} > \frac{\gamma}{\beta^2}.
\]
(47)
In the sum (32), we only consider those \(d \in (\mu D_n/2, |D_n/2|) \) that are multiples of \(w_n \). By Lemma 4.7, Lemma 4.6, and (47),
\[
E_{\nu^{(1)}, \nu^{(2)} \sim \mathcal{X}_n} \left(\sum_{\substack{d_1, \ldots, d_N \in \mathcal{D} \\ d_i \in \mathcal{C}}} \prod_{i=1}^{N} \left(\frac{2d_i}{d_i} \right) \left(\frac{\beta^2 \langle \nu^{(1)}, \nu^{(2)} \rangle}{4} \right)^{d_i} \right)
\geq \frac{(2N)^d}{d!} \left[\left(\frac{\beta^2}{4} \right)^d (n^2)^{-2d} \left(\frac{2d}{2d} \right)! \frac{\sqrt{w_n}}{w_n} \beta^2 \right]^{d_i}
\geq \frac{(2d)!}{4^d(d!)^2} \left(\frac{N\gamma}{n} \right)^d
\geq \frac{1}{\sqrt{d}}
\]
Therefore
\[
\| L_{n,N,\beta,\mathcal{X}}^\leq D_n \|_2^2 \geq \sum_{\mu D_n/2 < d < |D_n/2| \atop w_n \mid d} \frac{1}{\sqrt{d}}
\geq \frac{1}{\sqrt{w_n}} \left(\sqrt{\frac{D_n}{2w_n}} - \sqrt{\frac{\mu D_n}{2w_n}} \right)
= 1 - \sqrt{\frac{\mu}{2}} \frac{\sqrt{D_n}}{w_n}
= \omega(1),
\]
completing the proof.

Proof of Theorem 2.15(b). For sufficiently large \(n \), in Lemma 4.8 we choose
\[
w_n = \lceil \log(1/\lambda_n) \rceil = \lceil \log(\sqrt{\gamma}/\beta) \rceil
\]
which is \(o(\sqrt{D_n}) \). Reorganizing the terms, the condition (46) is satisfied if for sufficiently large \(n \),
\[
\rho_n < 0.99 \frac{1}{\sqrt{2\pi}} \left(\frac{w_n \cdot 2w_n}{(2w_n)!} \right)^{(w_n-1)/2w_n} \sqrt{\frac{D_n}{2w_n}} \lambda_n^{w_n/(w_n-1)}.
\]
(48)
Notice that
\[
\frac{1}{\sqrt{2e}} \left(\frac{w_n \cdot 2^{w_n}}{(2w_n)!} \right)^{1/(w_n-1)} = \Theta(w_n^{-2}) \\
= \Theta(\log^{-2}(1/\hat{\lambda}_n)),
\]
\[
\hat{\lambda}_n^{w_n/(w_n-1)} = \hat{\lambda}_n \cdot \hat{\lambda}_n^{1/([\log(1/\hat{\lambda}_n)]-1)} \\
= \Theta(\hat{\lambda}_n).
\]

Therefore, there exists an absolute constant \(C\) such that, if
\[
\rho_n < C \sqrt{\frac{D_n}{n}} \hat{\lambda}_n \log^{-2}(1/\hat{\lambda}_n),
\]
then (48) is satisfied and the divergence of \(\|L_{n,N,\beta,X}^\leq\|_2^2\) follows from Lemma 4.3.

\[\square\]

4.4 The Wigner Model

In this section, we use the bounds on \(A_d\) (Lemmas 4.4, 4.5, and 4.6) to prove the upper bound (Theorem 2.24) and the lower bound (Theorem 2.25) on the Wigner LDLR (29).

Proof of Theorem 2.24(a). We only work with those \(n\) for which (16) holds. Let \(\mu = -\log \lambda\). Note that
\[
\lim_{n \to \infty} D_n N = 0,
\]
\[
\liminf_{n \to \infty} \left(-\frac{1}{2} \log \hat{\lambda}_n \right) = -\frac{1}{2} \log \left(\limsup_{n \to \infty} \hat{\lambda}_n \right) > 0.
\]

For large enough \(n\) that \(\frac{D_n}{n} < -\frac{1}{2} \log \lambda_n\), applying Lemma 4.4 in the expression of (29) yields
\[
\|L_{n,N,\chi,X}^\leq\|_2^2 = \mathbb{E}_{v^{(1)},v^{(2)} \sim \chi_n} \left[\sum_{d=0}^{D_n} \frac{1}{d!} \left(\frac{n}{2} \lambda^2 \right)^d (v^{(1)}, v^{(2)})^{2d} \right]
\]
\[
\lesssim \sum_{d=1}^{D_n} \frac{1}{d!} \left(\frac{n}{2} \lambda^2 \right)^d (n\rho)^{-2d} \cdot 2de^{\mu d + d^2/n} \left(\frac{n}{d} \right)^{(2d)!} \lambda^{2d}
\]
\[
\lesssim \sum_{d=1}^{D_n} \frac{d(2d)!}{4^d(d!)^2} (e^{\mu + D_n/n} \lambda^2)^d
\]
\[
\lesssim \sum_{d=1}^{D_n} \frac{1}{\sqrt{d}} (\lambda^{1/2})^d
\]
\[
= O(1),
\]
where the last equation is by the assumption \(\limsup_{n \to \infty} \lambda_n < 1\).

Proof of Theorem 2.24(b). By the assumption (17), for sufficiently large \(n\) we have \(\lambda_n \leq 1/\sqrt{3}\). Now, Theorem 2.24(b) immediately follows from Lemma 4.5 (taking \(\mu = \lambda\)), since for large enough
that $\frac{D_n}{n} < 0.001$, we have
\[
\|L_{n,\lambda,X} \|_2^2 \lesssim \sum_{d=1}^{D_n} \frac{1}{d!} \left(\frac{n \lambda^2}{2} \right)^d (n \rho)^{-2d} \cdot \sqrt{d e^{2d/n}} \left(\frac{11 e}{30} \right)^{d/2} \lambda^{-2d} \left(\frac{n}{d} \right)^{2d} \rho^{2d}
\]
\[
\lesssim \sum_{d=1}^{\infty} \frac{\sqrt{d} (2d)!}{4^d (d!)^2} e^{2d/n} \left(\frac{11 e}{30} \right)^{d/2}
\]
\[
\lesssim \sum_{d=1}^{\infty} \left(e^{D_n/n} \sqrt{\frac{11 e}{30}} \right)^d
\]
\[
\lesssim \sum_{d=1}^{\infty} \left(e^{0.001} \sqrt{\frac{11 e}{30}} \right)^d = O(1),
\]
completing the proof.

Proof of Theorem 2.25(a). Substituting (44) and (45) into (29) yields
\[
\|L_{n,\lambda,X} \|_2^2 \geq \sum_{d=1}^{D_n} \frac{1}{d!} \left(\frac{n \lambda^2}{2} \right)^d \cdot n^{-2d} \left(\frac{n}{d} \right)^{2d} \rho^{2d}
\]
\[
\geq \sum_{d=1}^{D_n} \frac{(2d)!}{4^d (d!)^2} \lambda^{2d} e^{-D_n/n}
\]
\[
\geq \sum_{d=1}^{D_n} \frac{1}{\sqrt{d}} \left(\lambda^2 e^{-D_n/n} \right)^d
\]
\[
\geq \sum_{d=1}^{D_n} \frac{1}{\sqrt{d}} = \omega(1),
\]
since $D_n = \omega(1)$, $\liminf_{n \to \infty} \lambda_n > 1$ and $e^{-D_n/n} \to 1$.

Lemma 4.9. Suppose $\omega(1) \leq D_n \leq o(n)$. If there exists a series of positive integers $w_n = o(\sqrt{D_n})$ such that
\[
\liminf_{n \to \infty} 2 \lambda_n^2 \left(\frac{D_n}{n e \rho_n^2} \right)^{1-\frac{1}{w_n}} \left(\frac{w_n}{(2w_n)!} \right)^{\frac{1}{w_n}} > 1
\]
then $\|L_{n,\lambda,X} \|_2^2 \to \infty$ as $n \to \infty$.

Proof. If (49) holds, we can choose an $\epsilon > 0$ such that for sufficiently large n,
\[
2 \lambda_n^2 \left(\frac{D_n}{n e \rho_n^2} \right)^{1-\frac{1}{w_n}} \left(\frac{w_n}{(2w_n)!} \right)^{\frac{1}{w_n}} > 1 + \epsilon.
\]
Let n satisfy the above inequality. Pick $\mu \in (0, 1)$ such that
\[
\mu^{1-\frac{1}{w_n}} (1 + \epsilon) > 1.
\]
In the sum (29) we only consider those \(d > \mu D_n \) that are multiples of \(w_n \). For each of them, Lemma 4.6 gives
\[
\frac{1}{d!} \left(\frac{n^2}{2} \right)^d \mathbb{E} \langle v^{(1)}, v^{(2)} \rangle^{2d} \geq \frac{1}{d!} \left(\frac{n^2}{2} \right)^d \cdot n^{-2d} \left(\frac{n}{d} \right)^{2d} \left(\frac{2d!}{2^d} \right) \left(\frac{d}{n^2 \lambda^2} \right)^{1-w_n} \left(\frac{w_n}{(2w_n)!} \right) \frac{1}{w_n} \gamma^d \\
\geq \frac{(2d)!}{4^d(d!)^2} \cdot \frac{n(n-1) \cdots (n-d+1)}{n^d} \cdot 2\lambda^2 \left(\frac{\mu D_n}{n^2 \lambda^2} \right)^{1-w_n} \left(\frac{w_n}{(2w_n)!} \right) \frac{1}{w_n} \gamma^d \\
\geq \frac{1}{\sqrt{d}}.
\]

Therefore,
\[
\| L_{\leq D_n} \|_2^2 \gtrsim \sum_{\mu D_n < d < D_n \atop w_n \mid d} \frac{1}{\sqrt{d}} \\
\geq \frac{1}{\sqrt{w_n}} \left(\sqrt{\frac{D_n}{w_n}} - \sqrt{\mu D_n \lambda} \right) \\
= (1 - \sqrt{\mu}) \frac{\sqrt{D_n}}{w_n} \\
= \omega(1),
\]
completing the proof. \(\Box\)

Proof of Theorem 2.25(b). For sufficiently large \(n \), in Lemma 4.9 we choose the positive integer
\[
w_n = \lceil \log(1/\lambda_n) \rceil,
\]
which is \(o(\sqrt{D_n}) \). The divergence of \(\| L_{\leq D_n} \|_2^2 \) follows from the condition (49), which is implied by the following sufficient condition: for sufficiently large \(n \),
\[
\rho_n < 0.99 \frac{1}{\sqrt{e}} \left(\frac{w_n \cdot 2^{w_n}}{(2w_n)!} \right)^{1/(w-1)} \sqrt{\frac{D_n}{n^2 \lambda_n}} \lambda_n^{w_n/(w_n-1)}.
\] (50)

Similar to the proof of Lemma 4.8, notice that
\[
\frac{1}{\sqrt{e}} \left(\frac{w_n \cdot 2^{w_n}}{(2w_n)!} \right)^{1/(w-1)} = \Theta(w_n^{-2}) = \Theta(\log^{-2}(1/\lambda_n)); \\
\lambda_n^{w_n/(w_n-1)} = \lambda_n \cdot \lambda_n^{1/([\log(1/\lambda_n)]-1)} = \Theta(\lambda_n),
\]
Thus there exists an absolute constant \(C \) such that, if
\[
\rho_n < C \sqrt{\frac{D_n}{n^2 \lambda_n}} \log^{-2}(1/\lambda_n),
\]
then (50) is satisfied and the divergence of \(\| L_{\leq D_n} \|_2^2 \) follows from Lemma 4.9. \(\Box\)

Acknowledgments

We thank Samuel B. Hopkins, Philippe Rigollet, and Eliran Subag for helpful discussions.
References

[Abb17] Emmanuel Abbe. Community detection and stochastic block models: recent developments. *The Journal of Machine Learning Research*, 18(1):6446–6531, 2017.

[AW08] Arash A Amini and Martin J Wainwright. High-dimensional analysis of semidefinite relaxations for sparse principal components. In *2008 IEEE International Symposium on Information Theory*, pages 2454–2458. IEEE, 2008.

[BB19] Matthew Brennan and Guy Bresler. Optimal average-case reductions to sparse PCA: From weak assumptions to strong hardness. *arXiv preprint arXiv:1902.07380*, 2019.

[BB20] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret leakage. In *Conference on Learning Theory*, pages 648–847. PMLR, 2020.

[BBH18] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational lower bounds for problems with planted sparse structure. *arXiv preprint arXiv:1806.07508*, 2018.

[BBP05] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. *The Annals of Probability*, 33(5):1643–1697, 2005.

[BGG+16] Vijay VSP Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, and Madhur Tulsiani. Multiplicative approximations for polynomial optimization over the unit sphere. In *Electronic Colloquium on Computational Complexity (ECCC)*, volume 23, page 1, 2016.

[BGL16] Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Sum-of-squares certificates for maxima of random tensors on the sphere. *arXiv preprint arXiv:1605.00903*, 2016.

[BGN11] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. *Advances in Mathematics*, 227(1):494–521, 2011.

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. *SIAM Journal on Computing*, 48(2):687–735, 2019.

[BKW19] Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein. Computational hardness of certifying bounds on constrained PCA problems. *arXiv preprint arXiv:1902.07324*, 2019.

[BMNN16] Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-theoretic thresholds for community detection in sparse networks. In *Conference on Learning Theory*, pages 383–416, 2016.

[BMV+18] Jess Banks, Cristopher Moore, Roman Vershynin, Nicolas Verzelen, and Jiaming Xu. Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization. *IEEE Transactions on Information Theory*, 64(7):4872–4894, 2018.
Guy Bresler, Sung Min Park, and Madalina Persu. Sparse PCA from sparse linear regression. In Advances in Neural Information Processing Systems, pages 10942–10952, 2018.

Quentin Berthet and Philippe Rigollet. Computational lower bounds for sparse PCA. arXiv preprint arXiv:1304.0828, 2013.

Quentin Berthet and Philippe Rigollet. Optimal detection of sparse principal components in high dimension. The Annals of Statistics, 41(4):1780–1815, 2013.

Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. Journal of Multivariate Analysis, 97(6):1382–1408, 2006.

Mireille Capitaine, Catherine Donati-Martin, and Delphine Féral. The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. The Annals of Probability, 37(1):1–47, 2009.

T Tony Cai, Zongming Ma, and Yihong Wu. Sparse PCA: Optimal rates and adaptive estimation. The Annals of Statistics, 41(6):3074–3110, 2013.

Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual information for the binary stochastic block model. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 185–189. IEEE, 2016.

Alexandre d’Aspremont, Francis Bach, and Laurent El Ghaoui. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 9(Jul):1269–1294, 2008.

Alexandre d’Aspremont, Laurent El Ghaoui, Michael I Jordan, and Gert R Lanckriet. A direct formulation for sparse PCA using semidefinite programming. In Advances in neural information processing systems, pages 41–48, 2005.

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E, 84(6):066106, 2011.

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Inference and phase transitions in the detection of modules in sparse networks. Physical Review Letters, 107(6):065701, 2011.

Yash Deshpande and Andrea Montanari. Information-theoretically optimal sparse PCA. In 2014 IEEE International Symposium on Information Theory, pages 2197–2201. IEEE, 2014.

Yash Deshpande and Andrea Montanari. Sparse PCA via covariance thresholding. In Advances in Neural Information Processing Systems, pages 334–342, 2014.

Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems. In Conference on Learning Theory, pages 523–562, 2015.
[DMK+16] Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and Lenka Zdeborová. Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula. In *Advances in Neural Information Processing Systems*, pages 424–432, 2016.

[EK18] Ahmed El Alaoui and Florent Krzakala. Estimation in the spiked wigner model: A short proof of the replica formula. In *2018 IEEE International Symposium on Information Theory (ISIT)*, pages 1874–1878. IEEE, 2018.

[EKJ17] Ahmed El Alaoui, Florent Krzakala, and Michael I Jordan. Finite size corrections and likelihood ratio fluctuations in the spiked wigner model. *arXiv preprint arXiv:1710.02903*, 2017.

[EKJ18] Ahmed El Alaoui, Florent Krzakala, and Michael I Jordan. Fundamental limits of detection in the spiked wigner model. *arXiv preprint arXiv:1806.09588*, 2018.

[FP07] Delphine Féral and Sandrine Péché. The largest eigenvalue of rank one deformation of large wigner matrices. *Communications in mathematical physics*, 272(1):185–228, 2007.

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and David Steurer. The power of sum-of-squares for detecting hidden structures. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 720–731. IEEE, 2017.

[Hop18] Samuel Hopkins. *Statistical Inference and the Sum of Squares Method*. PhD thesis, Cornell University, 2018.

[HIS17] Samuel B Hopkins and David Steurer. Bayesian estimation from few samples: community detection and related problems. *arXiv preprint arXiv:1710.00264*, 2017.

[HSS15] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via sum-of-square proofs. In *Conference on Learning Theory*, pages 956–1006, 2015.

[HSV19] Guy Holtzman, Adam Soffer, and Dan Vilenchik. A greedy anytime algorithm for sparse PCA. *arXiv preprint arXiv:1910.06846*, 2019.

[Jer92] Mark Jerrum. Large cliques elude the Metropolis process. *Random Structures & Algorithms*, 3(4):347–359, 1992.

[JL04] Iain M. Johnstone and Arthur Yu Lu. Sparse principal components analysis. *Unpublished manuscript*, 2004.

[JL09] Iain M Johnstone and Arthur Yu Lu. On consistency and sparsity for principal components analysis in high dimensions. *Journal of the American Statistical Association*, 104(486):682–693, 2009.

[JMRT16] Adel Javanmard, Andrea Montanari, and Federico Ricci-Tersenghi. Phase transitions in semidefinite relaxations. *Proceedings of the National Academy of Sciences*, 113(16):E2218–E2223, 2016.
[Joh01] Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. *The Annals of statistics*, 29(2):295–327, 2001.

[KNV15] Robert Krauthgamer, Boaz Nadler, and Dan Vilenchik. Do semidefinite relaxations solve sparse PCA up to the information limit? *The Annals of Statistics*, 43(3):1300–1322, 2015.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. *arXiv preprint arXiv:1907.11636*, 2019.

[KXZ16] Florent Krzakala, Jiaming Xu, and Lenka Zdeborová. Mutual information in rank-one matrix estimation. In *2016 IEEE Information Theory Workshop (ITW)*, pages 71–75. IEEE, 2016.

[KY13] Antti Knowles and Jun Yin. The isotropic semicircle law and deformation of wigner matrices. *Communications on Pure and Applied Mathematics*, 66(11):1663–1749, 2013.

[KZ14] Pascal Koiran and Anastasios Zouzias. Hidden cliques and the certification of the restricted isometry property. *IEEE transactions on information theory*, 60(8):4999–5006, 2014.

[LKZ15a] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel. In *2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pages 680–687. IEEE, 2015.

[LKZ15b] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Phase transitions in sparse PCA. In *2015 IEEE International Symposium on Information Theory (ISIT)*, pages 1635–1639. IEEE, 2015.

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection. *Annals of Statistics*, pages 1302–1338, 2000.

[LM19] Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix estimation. *Probability Theory and Related Fields*, 173(3-4):859–929, 2019.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In *Proceedings 2001 IEEE International Conference on Cluster Computing*, pages 529–537. IEEE, 2001.

[Mio17] Léo Miolane. Fundamental limits of low-rank matrix estimation: the non-symmetric case. *arXiv preprint arXiv:1702.00473*, 2017.

[Mio18] Léo Miolane. Phase transitions in spiked matrix estimation: information-theoretic analysis. *arXiv preprint arXiv:1806.04343*, 2018.

[Moo17] Cristopher Moore. The computer science and physics of community detection: Landscapes, phase transitions, and hardness. *arXiv preprint arXiv:1702.00467*, 2017.

[MPW15] Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted clique. In *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*, pages 87–96. ACM, 2015.
[MRZ15] Andrea Montanari, Daniel Reichman, and Ofer Zeitouni. On the limitation of spectral methods: From the gaussian hidden clique problem to rank-one perturbations of gaussian tensors. In Advances in Neural Information Processing Systems, pages 217–225, 2015.

[MW15] Tengyu Ma and Avi Wigderson. Sum-of-squares lower bounds for sparse PCA. In Advances in Neural Information Processing Systems, pages 1612–1620, 2015.

[MWA06] Baback Moghaddam, Yair Weiss, and Shai Avidan. Spectral bounds for sparse PCA: Exact and greedy algorithms. In Advances in neural information processing systems, pages 915–922, 2006.

[Nad08] Boaz Nadler. Finite sample approximation results for principal component analysis: A matrix perturbation approach. The Annals of Statistics, 36(6):2791–2817, 2008.

[OMH13] Alexei Onatski, Marcelo J Moreira, and Marc Hallin. Asymptotic power of sphericity tests for high-dimensional data. The Annals of Statistics, 41(3):1204–1231, 2013.

[Pau04] Debashis Paul. Asymptotics of the leading sample eigenvalues for a spiked covariance model. Preprint, 2004.

[Pau07] Debashis Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, pages 1617–1642, 2007.

[Péc06] Sandrine Péché. The largest eigenvalue of small rank perturbations of hermitian random matrices. Probability Theory and Related Fields, 134(1):127–173, 2006.

[PJ12] Debashis Paul and Iain M Johnstone. Augmented sparse principal component analysis for high dimensional data. arXiv preprint arXiv:1202.1242, 2012.

[PRS13] Alessandro Pizzo, David Renfrew, and Alexander Soshnikov. On finite rank deformations of wigner matrices. In Annales de l’IHP Probabilités et statistiques, volume 49, pages 64–94, 2013.

[PWBM16] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality and sub-optimality of PCA for spiked random matrices and synchronization. arXiv preprint arXiv:1609.05573, 2016.

[PWBM18a] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Message-passing algorithms for synchronization problems over compact groups. Communications on Pure and Applied Mathematics, 71(11):2275–2322, 2018.

[PWBM18b] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality and sub-optimality of PCA I: Spiked random matrix models. The Annals of Statistics, 46(5):2416–2451, 2018.

[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor PCA. In Advances in Neural Information Processing Systems, pages 2897–2905, 2014.

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random CSPs below the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 121–131. ACM, 2017.
A Chernoff Bounds

In this section, we present two Chernoff-type concentration inequalities used in our proofs.

Lemma A.1 (Local Chernoff bound Gaussian inner products). Let \(u^{(1)}, u^{(2)} \in \mathbb{R}^N \) be independent samples from \(N(0, I_N) \). Then, for any \(0 < t \leq N/2 \),

\[
\Pr \left[|\langle u^{(1)}, u^{(2)} \rangle| \geq t \right] \leq 2 \exp \left(-\frac{t^2}{4N} \right).
\]

Proof. Since by symmetry \(\langle u^{(1)}, u^{(2)} \rangle \) and \(-\langle u^{(1)}, u^{(2)} \rangle \) have the same distribution, it suffices to bound \(\Pr \left[\langle u^{(1)}, u^{(2)} \rangle \geq t \right] \) for \(0 < t \leq N/2 \). By Markov’s inequality on the moment generating function, for any \(\mu > 0 \),

\[
\Pr \left[\langle u^{(1)}, u^{(2)} \rangle \geq t \right] \leq \frac{\mathbb{E} e^{\mu \langle u^{(1)}, u^{(2)} \rangle}}{e^{\mu t}} = e^{-\mu t} (\mathbb{E} e^{\mu x_1 x_2})^N,
\]

where \(x_1, x_2 \) are normal variables.
where x_1, x_2 are independent samples from $\mathcal{N}(0, 1)$. We compute
\[
\mathbb{E}e^{\mu x_1 x_2} = \frac{1}{2\pi} \int_{\mathbb{R}^2} \exp \left(-\frac{x^2}{2} + \mu xy - \frac{y^2}{2} \right) dx \, dy = (1 - \mu^2)^{-\frac{1}{2}}.
\]
Take $\mu = t/N \in (0, \frac{1}{2}]$. Note that $1 - z \geq e^{-3z/2}$ on $z \in (0, \frac{1}{4}]$, and so $1 - \mu^2 \geq e^{-3\mu^2/2}$. Hence
\[
\Pr \left[\langle u^{(1)}, u^{(2)} \rangle \geq t \right] \leq \exp \left(-\frac{t^2}{N} \right) \cdot \exp \left(\frac{3N\mu^2}{4} \right) = \exp \left(-\frac{t^2}{4N} \right),
\]
and the result follows.

The following result may be found in [LM00].

Lemma A.2 (Chernoff bound for χ^2 distribution). For all $0 < z < 1$,
\[
\frac{1}{k} \log \Pr \left[\chi_k^2 \leq zk \right] \leq \frac{1}{2} (1 - z + \log z).
\]
Similarly, for all $z > 1$,
\[
\frac{1}{k} \log \Pr \left[\chi_k^2 \geq zk \right] \leq \frac{1}{2} (1 - z + \log z).
\]

Corollary A.3. For all $0 < t \leq 1/2$,
\[
\frac{1}{k} \log \Pr \left[|\chi_k^2 - k| \geq kt \right] \leq -\frac{t^2}{3}.
\]

Proof. It is easy to check that for $t \in (0, 1/2]$,
\[
t + \log(1 - t) \leq -\frac{t^2}{3},
\]
\[-t + \log(1 + t) \leq -\frac{t^2}{3}.
\]
Therefore, by Lemma A.2,
\[
\frac{1}{k} \log \Pr \left[|\chi_k^2 - k| \geq kt \right] = \frac{1}{k} \log \Pr \left[\chi_k^2 \geq (1 + t)k \right] + \frac{1}{k} \log \Pr \left[\chi_k^2 \leq (1 - t)k \right]
\leq \frac{1}{2} (-t + \log(1 + t)) + \frac{1}{2} (t + \log(1 - t))
\leq -\frac{t^2}{3},
\]
completing the proof. □