WikiTopics: What is Popular on Wikipedia and Why

Byung Gyu Ahn1 and Benjamin Van Durme1,2 and Chris Callison-Burch1
1Center for Language and Speech Processing
2Human Language Technology Center of Excellence
Johns Hopkins University

Abstract

We establish a novel task in the spirit of news summarization and topic detection and tracking (TDT): daily determination of the topics newly popular with Wikipedia readers. Central to this effort is a new public dataset consisting of the hourly page view statistics of all Wikipedia articles over the last three years. We give baseline results for the tasks of: discovering individual pages of interest, clustering these pages into coherent topics, and extracting the most relevant summarizing sentence for the reader. When compared to human judgements, our system shows the viability of this task, and opens the door to a range of exciting future work.

1 Introduction

In this paper we analyze a novel dataset: we have collected the hourly page view statistics1 for every Wikipedia page in every language for the last three years. We show how these page view statistics, along with other features like article text and inter-page hyperlinks, can be used to identify and explain popular trends, including popular films and music, sports championships, elections, natural disasters, etc.

Our approach is to select a set of articles whose daily pageviews for the last fifteen days dramatically increase above those of the preceding fifteen day period. Rather than simply selecting the most popular articles for a given day, this selects articles whose popularity is rapidly increasing. These popularity spikes tend to be due to significant current events in the real world. We examine 100 such articles for each of 5 randomly selected days in 2009 and attempt to group the articles into clusters such that the clusters coherently correspond to current events and extract a summarizing sentence that best explains the relevant event. Quantitative and qualitative analyses are provided along with the evaluation dataset.

\footnote{1The data does not contain any identifying information about who viewed the pages. See http://dammit.lt/wikistats}

We compare our automatically collected articles to those in the daily current events portal of Wikipedia where Wikipedia editors manually chronicle current events, which comprise armed conflicts, international relations, law and crime, natural disasters, social, political, sports events, etc. Each event is summarized with a simple phrase or sentence that links to related articles. We view our work as an automatic mechanism that could potentially supplant this hand-curated method of selecting current events by editors.

Figure 1 shows examples of automatically selected articles for Jan 27, 2009.

Barack Obama
Joe Biden
White House
Inauguration

\ldots

US Airways Flight 1549
Chesley Sullenberger
Hudson River

\ldots

Super Bowl
Arizona Cardinals

Figure 1: Automatically selected articles for Jan 27, 2009.

We further try to explain the clusters by selecting sentences from the articles. For the first cluster, a good selection would be “the inauguration of Barack Obama as the 44th president ... took place on January 20, 2009”. For the second cluster, “Chesley Burnett ‘Sully’ Sullenberger III (born January 23, 1951) is an American com-
mmercial airline pilot, . . . , who successfully carried out the
emergency water landing of US Airways Flight 1549 on
the Hudson River, offshore from Manhattan, New York
City, on January 15, 2009, . . . ” would be a nice sum-
mary, which also provides links to the other articles in
the same cluster. For the third cluster, “Superbowl XLIII
will feature the American Football Conference champion
Pittsburgh Steelers (14-4) and the National Football Con-
ference champion Arizona Cardinals (12-7).” would be
a good choice which delineates the association with Ar-
izona Cardinals.

Different clustering methods and sentence selection
features are evaluated and results are compared. Topic
models, such as K-means (Manning et al., 2008) vector
space clustering and latent Dirichlet allocation (Blei et
al., 2003), are compared to clustering using Wikipedia’s
link structure. To select sentences we make use of NLP
technologies such as coreference resolution, and named
entity and date taggers. Note that the latest revision of
each article on the day on which the article is selected is
used in clustering and textualization to simulate the situa-
tion where article selection, clustering, and textualization
are performed once every day.

Figure 2 illustrates the pipeline of our WikiTopics sys-
tem: article selection, clustering, and textualization.

2 Article selection

We would like to identify an uptrend in popularity of
articles. In an online encyclopedia such as Wikipedia, the
pageviews for an article reflect its popularity. Following
the Trending Topics software2, WikiTopics’s articles se-
lection algorithm determines each articles’ monthly trend
value as increase in pageviews within last 30 days. The
monthly trend value \(t^k \) of an article \(k \) is defined as be-
low:

\[
t^k = \sum_{i=1}^{15} d^k_i - \sum_{i=16}^{30} d^k_i
\]

where

\(d^k_i \) = daily pageviews \(i - 1 \) days ago for an article \(k \)

We selected 100 articles of the highest trend value for
each day in 2009. We call the articles WikiTopics articles.
We leave as future work other possibilities to determine
the trend value and choose articles3, and only briefly dis-
suss some alternatives in this section.

Wikipedia has a portal page called “current events”, in
which significant current events are listed manu-
ally by Wikipedia editors. Figure 3 illustrates spikes in
pageviews of the hand-curated articles related to the in-
auguration of Barack Obama. Pageviews spike on the
same day as the event took place–January 20, 2009.

Figure 3: Pageviews for all the hand-curated articles related
to the inauguration of Barack Obama. Pageviews spike on the
same day as the event took place–January 20, 2009.

There are a few reasons for this. First, there are
much fewer hand-curated articles than WikiTopics arti-
cles: 17,253 hand-selected articles vs 36,4004 WikiTopics
articles; so precision cannot be higher than 47%. Second,
many of the hand-selected articles turned out to have very
low pageviews: 6,294 articles (36.5%) have maximum
daily pageviews less than 1,000 whereas WikiTopics arti-
cles have increase in pageviews of at least 10,000. It is ex-
tremely hard to predict the hand-curated articles based on
pageviews. Figure 4 further illustrates hand-curated arti-
cles’ lack of increase in pageviews as opposed to Wiki-
Topics articles. On the contrary, nearly half of the hand-
curated articles have decrease in pageviews. For the hand-
curated articles, it seems that spikes in pageviews are
an exception rather than a commonality. We therefore
concluded that it is futile to predict hand-curated arti-
cles based on pageviews. The hand-curated articles suffer
from low popularity and do not spike in pageviews often.
Figure 5 contrasts the WikiTopics articles and the hand-
curated articles. The WikiTopics articles shown here do
not appear in the hand-curated articles within fifteen days
before or after, and vice versa. WikiTopics selected arti-
cles about people who played a minor role in the relevant
event, recently released films, their protagonists, popular
TV series, etc. Wikipedia editors selected articles about

2http://www.trendingtopics.org
3For example, one might leverage additional signals of real world
events, such as Twitter feeds, etc.
4One day is missing from our 2009 pageviews statistics.
actions, things, geopolitical or organizational names in the relevant event and their event description mentions all of them.

For this paper we introduce the problem of topic selection along with a baseline solution. There are various viable alternatives to the monthly trend value. As one of them, we did some preliminary experiments with the daily trend value, which is defined by $d^k_1 - d^k_2$, i.e. the difference of the pageviews between the day and the previous day: we found that articles selected using the daily trend value have little overlap—less than half the articles overlapped with the monthly trend value. Future work will consider the addition of sources other than pageviews, such as edit histories and Wikipedia category information, along with more intelligent techniques to combine these different sources.

3 Clustering

Clustering plays a central role to identify current events; a group of coherently related articles corresponds to a current event. Clusters, in general, may have hierarchies and an element may be a member of multiple clusters. Whereas Wikipedia’s current events are hierarchically compiled into different levels of events, we focus on flat clustering, leaving hierarchical clustering as future work, but allow multiple memberships.

In addition to clustering using Wikipedia’s inter-page hyperlink structure, we experimented with two families of clustering algorithms pertaining to topic models: the K-means clustering vector space model and the latent Dirichlet allocation (LDA) probabilistic topic model. We used the Mallet software (McCallum, 2002) to run these topic models. We retrieve the latest revision of each article on the day that WikiTopics selected it. We strip unnecessary HTML tags and Wiki templates with mwlib and split sentences with NLTK (Loper and Bird, 2002). Normalization, tokenization, and stop words removal were performed, but no stemming was performed. The unigram (bag-of-words) model was used and the number

5http://code.pediapress.com/wiki/wiki/mwlib
of clusters/topics K was set to 50, which is the average number of clusters in the human clusters\footnote{K=50 worked reasonably well for the most cases. We are planning to explore a more principled way to set the number.}. For K-means, the common settings were used: tf and tf-idf weighting and cosine similarity (Allan et al., 2000). For LDA, we chose the most probable topic for each article as the cluster in vector space, is in bold.

Test set	# Clusters	B3 F-score
Human-1	48.6	0.70 ± 0.08
Human-2	50.0	0.71 ± 0.11
Human-3	53.8	0.74 ± 0.10
ConComp	31.8	0.42 ± 0.18
OneHop	45.2	0.58 ± 0.17
K-means tf	50	0.52 ± 0.04
K-means tf-idf	50	0.58 ± 0.09
LDA	44.8	0.43 ± 0.08

Table 1: Clustering evaluation: F-scores are averaged across gold standard datasets. ConComp and OneHop are using the link structure. K-means clustering with tf-idf performs best. Manual clusters were evaluated against those of the other two annotators to determine inter-annotator agreement.

The multiplicity B3 scores are evaluated as follows:

$$\text{Prec}(e, e') = \frac{\min(|C(e) \cap C(e')|, |L(e) \cap L(e')|)}{|C(e) \cap C(e')|}$$

$$\text{Recall}(e, e') = \frac{\min(|C(e) \cap C(e')|, |L(e) \cap L(e')|)}{|L(e) \cap L(e')|}$$

The overall B3 scores are evaluated as follows:

$$\text{Prec} = \text{Avg}_{e, e' : C(e) \cap C(e') \neq 0} \text{Prec}(e, e')$$

$$\text{Recall} = \text{Avg}_{e, e' : L(e) \cap L(e') \neq 0} \text{Recall}(e, e')$$

The inter-annotator agreement in the B3 scores are in the range of 67%–74%. K-means clustering performs best, achieving 79% precision compared to manual clustering. OneHop clustering using the link structure achieved comparable performance. LDA performed significantly worse, comparable to ConComp clustering.

Clustering the articles according to the relevance to recent popularity is not trivial even for humans. In WikiTopics articles for February 10, 2009, Journey (band) and Bruce Springsteen may seem to be relevant to Grammy Awards, but in fact they are relevant on this day because they performed the halftime show at the Super Bowl. K-means fails to recognize this and put them into the cluster of Grammy Awards, while ConComp merged Grammy Awards and Super Bowl into the same cluster. OneHop kept the two clusters intact and benefited from putting Bruce Springsteen into both the clusters. LDA clustering does not have such a benefit; its performance might have suffered from our allowing only a single membership for an article. Clustering using the link structure performs comparably with other clustering algorithms without using topic models. It is worth noting that there are a few "octopus" articles that have links to many articles. The United States on January 27, 2009 was disastrous, with its links to 58 articles, causing ConComp clustering to group 89 articles into a single cluster. OneHop clustering’s condition that groups only articles that are one hop away alleviates the issue and it also benefited from putting an article into multiple clusters.

Figure 6: Examples of clusters: K-means clustering on the articles of January 27, 2009 and May 12, 2009.

Test set	# Clusters	B3 F-score
Human-1	48.6	0.70 ± 0.08
Human-2	50.0	0.71 ± 0.11
Human-3	53.8	0.74 ± 0.10
ConComp	31.8	0.42 ± 0.18
OneHop	45.2	0.58 ± 0.17
K-means tf	50	0.52 ± 0.04
K-means tf-idf	50	0.58 ± 0.09
LDA	44.8	0.43 ± 0.08

Test set	# Clusters	B3 F-score
Human-1	48.6	0.70 ± 0.08
Human-2	50.0	0.71 ± 0.11
Human-3	53.8	0.74 ± 0.10
ConComp	31.8	0.42 ± 0.18
OneHop	45.2	0.58 ± 0.17
K-means tf	50	0.52 ± 0.04
K-means tf-idf	50	0.58 ± 0.09
LDA	44.8	0.43 ± 0.08

The overall B3 scores are evaluated as follows:

$$\text{Prec} = \text{Avg}_{e, e' : C(e) \cap C(e') \neq 0} \text{Prec}(e, e')$$

$$\text{Recall} = \text{Avg}_{e, e' : L(e) \cap L(e') \neq 0} \text{Recall}(e, e')$$

The inter-annotator agreement in the B3 scores are in the range of 67%–74%. K-means clustering performs best, achieving 79% precision compared to manual clustering. OneHop clustering using the link structure achieved comparable performance. LDA performed significantly worse, comparable to ConComp clustering.

Clustering the articles according to the relevance to recent popularity is not trivial even for humans. In WikiTopics articles for February 10, 2009, Journey (band) and Bruce Springsteen may seem to be relevant to Grammy Awards, but in fact they are relevant on this day because they performed the halftime show at the Super Bowl. K-means fails to recognize this and put them into the cluster of Grammy Awards, while ConComp merged Grammy Awards and Super Bowl into the same cluster. OneHop kept the two clusters intact and benefited from putting Bruce Springsteen into both the clusters. LDA clustering does not have such a benefit; its performance might have suffered from our allowing only a single membership for an article. Clustering using the link structure performs comparably with other clustering algorithms without using topic models. It is worth noting that there are a few “octopus” articles that have links to many articles. The United States on January 27, 2009 was disastrous, with its links to 58 articles, causing ConComp clustering to group 89 articles into a single cluster. OneHop clustering’s condition that groups only articles that are one hop away alleviates the issue and it also benefited from putting an article into multiple clusters.

Figure 6: Examples of clusters: K-means clustering on the articles of January 27, 2009 and May 12, 2009. The centroid article for each cluster, defined as the closest article to the center of the cluster in vector space, is in bold.

Test set	# Clusters	B3 F-score
Human-1	48.6	0.70 ± 0.08
Human-2	50.0	0.71 ± 0.11
Human-3	53.8	0.74 ± 0.10
ConComp	31.8	0.42 ± 0.18
OneHop	45.2	0.58 ± 0.17
K-means tf	50	0.52 ± 0.04
K-means tf-idf	50	0.58 ± 0.09
LDA	44.8	0.43 ± 0.08

The overall B3 scores are evaluated as follows:

$$\text{Prec} = \text{Avg}_{e, e' : C(e) \cap C(e') \neq 0} \text{Prec}(e, e')$$

$$\text{Recall} = \text{Avg}_{e, e' : L(e) \cap L(e') \neq 0} \text{Recall}(e, e')$$

The inter-annotator agreement in the B3 scores are in the range of 67%–74%. K-means clustering performs best, achieving 79% precision compared to manual clustering. OneHop clustering using the link structure achieved comparable performance. LDA performed significantly worse, comparable to ConComp clustering.

Clustering the articles according to the relevance to recent popularity is not trivial even for humans. In WikiTopics articles for February 10, 2009, Journey (band) and Bruce Springsteen may seem to be relevant to Grammy Awards, but in fact they are relevant on this day because they performed the halftime show at the Super Bowl. K-means fails to recognize this and put them into the cluster of Grammy Awards, while ConComp merged Grammy Awards and Super Bowl into the same cluster. OneHop kept the two clusters intact and benefited from putting Bruce Springsteen into both the clusters. LDA clustering does not have such a benefit; its performance might have suffered from our allowing only a single membership for an article. Clustering using the link structure performs comparably with other clustering algorithms without using topic models. It is worth noting that there are a few “octopus” articles that have links to many articles. The United States on January 27, 2009 was disastrous, with its links to 58 articles, causing ConComp clustering to group 89 articles into a single cluster. OneHop clustering’s condition that groups only articles that are one hop away alleviates the issue and it also benefited from putting an article into multiple clusters.

Figure 6: Examples of clusters: K-means clustering on the articles of January 27, 2009 and May 12, 2009. The centroid article for each cluster, defined as the closest article to the center of the cluster in vector space, is in bold.
To see if external source help better clustering, we explored the use of news articles. We included the news articles that we crawled from various news websites into the same vector space as the Wikipedia articles, and ran K-means clustering with the same settings as before. For each day, we experimented with news articles within different numbers of past days. The results did not show significant improvement over clustering without external news articles. This needs further investigation.

4 Textualization

We would like to generate textual descriptions for the clustered articles to explain why they are popular and what current event they are relevant to. We started with a two-step approach similar to multi-document extractive summarization approaches (McKeown et al., 2005). The first step is sentence selection; we extract the best sentence that describes the relevant event for each article. The second step is combining the selected sentences of a cluster into a coherent summary. Here, we focus on the first step of selecting a sentence and evaluate the selected sentences. The selected sentences for each cluster are then put together without modification, where the quality of generated summary mainly depends on the extracted sentences at the first step. We consider each article separately, using as features only information such as date expressions and references to the topic of the article. Future work will consider sentence extraction, aware of the related articles in the same cluster, and better summarization techniques, such as sentence fusion or paraphrasing.

We preprocess the Wikipedia articles using the Serif system (Boschee et al., 2005) for date tagging and coreference resolution. The identified temporal expressions are in various formats such as exact date (“February 12, 1809”), a season (“spring”), a month (“December 1808”), a date without a specific year (“November 19”), and even relative time (“now”, “later that year”, “The following year”). Some examples are shown in Figure 7. The entities mentioned in a given article are compiled into a list and the mentions of each entity, including pronouns, are linked to the entity as a coreference chain. Some examples are shown in Figure 9.

In our initial scheme, we picked the first sentence of each article because the first sentence is usually an overview of the topic of the article and often relevant to the current event. For example, a person’s article often has the first line with one’s recent achievement or death. An article about an album or a film often begins with the release date. We call this First.

We also picked the sentence with the most recent date to the day on which the article was selected. Dates in the near future are considered in the same way as the recent dates. Dates may appear in various formats, so we make a more specific format take precedence, i.e. “February 20, 2009” is selected over vaguer dates such as “February 2009” or “2009”. We call this scheme Recent.

As the third scheme, we picked the sentence with the most recent date among those with a reference to the article’s title. The reasoning behind this is if the sentence refers to the title of the article, it is more likely to be relevant to the current event. We call this scheme Self.

After selecting a sentence for each cluster, we substitute personal pronouns in the sentence with their proper names. This step enhances readability of the sentence, which often refers to people by a pronoun such as “he”, “his”, “she”, or “her”. The examples of substituted proper names appear in Figure 9 in bold. The Serif system classifies which entity mentions are proper names for the same person, but choosing the best name among the names is not a trivial task: proper names may vary from John to John Kennedy to John Fitzgerald “Jack” Kennedy. We choose the most frequent proper name.

For fifty randomly chosen articles over the five selected days, two annotators selected the sentences that best describes why an article gained popularity recently, among 289 sentences per each article on average from the article text. For each article, annotators picked a single best sentence, and possibly multiple alternative sentences. If there is no such single sentence that best describes a relevant event, annotators marked none as the best sentence and listed alternative sentences that partially explain the relevant event. The evaluation results for all the selection schemes are shown in Table 2. To see inter-annotator agreement, two annotators’ selections were evaluated against each other. The other selection schemes are evaluated against both the two annotators’ selection and their scores in the table are averaged across the two. The precision and recall score for best sentences are determined by evaluating a scheme’s selection of the

7News articles tend to group with other news articles. We are currently experimenting with different filtering and parameters. Also note that we only experimented with all news articles on a given day. Clustering with selective news articles might help.
Gold: The inauguration of Barack Obama as the forty-fourth President of the United States took place on January 20, 2009.

Before: He was inaugurated as President on January 20, 2009.

After: Obama was inaugurated as President on January 20, 2009.

Coref: {Barack Hussein Obama II (brk hsen obm; born August 4,, Barack Obama, Barack Obama as the forty-fourth President, Barack Obama, Sr. , Crain’s Chicago Business naming Obama, Michelle Obama, Obama, Obama in Indonesian, Senator Obama.}

Figure 8: Sentence selection: First selects the first sentence, and often fails to relate the current event. Recent tend to pinpoint the exact sentence that describes the relevant current event, but fails when there are several sentences with a recent temporal expression. Self helps avoid sentences that does not refer to the topic of the article, but suffers from errors propagated from coreference resolution.

Figure 9: Pronoun replacement: Personal pronouns are substituted with their proper names, which are italicized. The coreference chain for the entity is also shown; our method correctly avoids names wrongly placed in the chain. Note that unlike the other sentences, the last one is not related to the current event, Brett Favre’s victory against Green Bay Packers.
Table 2: Textualization: evaluation results of sentence selection schemes. Self fallback scheme first tries to select the best sentence as the Self scheme, and if it fails to select one it falls back to the Recent scheme.

Scheme	Single best Precision	Single best Recall	Alternatives Precision	Alternatives Recall
Human	0.50	0.55	0.85	0.75
First	0.14	0.20	0.33	0.40
Recent	0.31	0.44	0.51	0.60
Self	0.31	0.36	0.49	0.48
Self fallback	**0.33**	**0.46**	**0.52**	**0.62**

best sentences against a gold standard’s selection. To evaluate alternative sentences, precision is measured as the fraction of articles where the test and gold standard selections overlap (share at least one sentence), compared to the total number of articles that have at least one sentence selected according to the test set. Recall is defined by instead dividing by the number of articles that have at least one sentence selected in the gold standard.

The low inter-annotator agreement for selecting the best sentence shows the difficulty of the task. However, when their sentence selection is evaluated by allowing multiple alternative gold standard sentences, the agreement is higher. It seems that there are a set of articles for which it is easy to pick the best sentence that two annotators and automatic selection schemes easily agree on, and another set of articles for which it is difficult to find such a sentence. In the easier articles, the best sentence often includes a recent date expression, which is easily picked up by the Recent scheme. Figure 8 illustrates such cases. In the more difficult articles, there are no such sentences with recent dates. $X2$ (film) is such an example; it was released in 2003. The release of the prequel X-Men Origins: Wolverine in 2009 renewed its popularity and the $X2$ (film) article still does not have any recent dates. There is a more subtle case; the article Farrah Fawcett includes many sentences with recent dates in a section, which describes the development of a recent event. It is hard to pinpoint the best one among them.

Sentence selection heavily depends on other NLP components, so errors in them could result in the error in sentence selection. Serena Williams is an example where an error in sentence splitting propagates to sentence selection. The best sentence manually selected was the first sentence in the article “Serena Jameka Williams . . . ,” as of February 2, 2009, is ranked World No. 1 by the Women’s Tennis Association” The sentence was disastrously divided into two sentences right after “No.” by NLTK during preprocessing. In other words, the gold standard sentence could not be selected no matter how well selection performs. Another source of error propagation is coreference resolution. The Self scheme limits sentence selection to the sentences with a reference to the articles’ title, and it failed to improve over Recent. In qualitative analysis, 3 out of 4 cases that made a worse choice resulted from failing to recognize a reference to the topic of the article. By having it fall back to Recent’s selection when it failed to find any best sentence, its performance marginally improved. Improvements of the components would result in better performance of sentence selection.

WikiTopics’s current sentence extraction succeeded in generating the best or alternative sentences that summarizes the relevant current event for more than half of the articles, in enhanced readability through coreference resolution. For the other difficult cases, it needs to take different strategies rather than looking for the most recent date expressions. Alternatives may consider references to other related articles. In future work, selected sentences will be combined to create summary of a current event, and will use sentence compression, fusion and paraphrasing to create more succinct summaries.

5 Related work

WikiTopics’s pipeline architecture resembles that of news summarization systems such as Columbia Newsblaster (McKeown et al., 2002). Newsblaster’s pipeline is comprised of components for performing web crawls, article text extraction, clustering, classification, summarization, and web page generation. The system processes a constant stream of newswire documents. In contrast, WikiTopics analyzes a static set of articles. Hierarchical clustering like three-level clustering of Newsblaster (Hatzivassiloglou et al., 2000) could be applied to WikiTopics to organize current events hierarchically. Summarizing multiple sentences that are extracted from the articles in the same cluster would provide a comprehensive description about the current event. Integer linear programming-based models (Woodsend and Lapata, 2010) may prove to be useful to generate summaries while global constraints like length, grammar, and coverage are met.

The problem of Topic Detection and Tracking (TDT) is to identify and follow new events in newswire, and to detect the first story about a new event (Allan et al., 1998). Allan et al. (2000) evaluated a variety of vector space clustering schemes, where the best settings from those experiments were then used in our work. This was followed recently by Petrović et al. (2010), who took an approximate approach to first story detection, as applied to Twitter in an on-line streaming setting. Such a system might provide additional information to WikiTopics by helping to identify and describe current events that have yet to be explicitly described in a Wikipedia article. Svore et al. (2007) explored enhancing single-document summarization using news query logs, which may also be applicable to WikiTopics.

Wikipedia’s inter-article links have been utilized to
construct a topic ontology (Syed et al., 2008), word segmentation corpora (Gabay et al., 2008), or to compute semantic relatedness (Milne and Witten, 2008). In our work, we found the link structure to be as useful to cluster topically related articles as well as the article text. In future work, the text and the link structure will be combined as Chaudhuri et al. (2009) explored multi-view hierarchical clustering for Wikipedia articles.

6 Conclusions

We have described a pipeline for article selection, clustering, and textualization in order to identify and describe significant current events as according to Wikipedia content, and metadata. Similarly to Wikipedia editors maintaining that site’s “current events” pages, we are concerned with neatly collecting articles of daily relevance, only automatically, and more in line with expressed user interest (through the use of regularly updated page view logs). We have suggested that Wikipedia’s hand-curated articles cannot be predicted solely based on pageviews. Clustering methods based on topic models and inter-article link structure are shown to be useful to group a set of articles that are coherently related to a current event. Clustering based on only link structure achieved comparable performance with clustering based on topic models. In a third of cases, the sentence that best described a current event could be extracted from the article text based on temporal expressions within an article. We employed a coreference resolution system assist in text generation, for improved readability. As future work, sentence compression, fusion, and paraphrasing could be applied to selected sentences with various strategies to more succinctly summarize the current events. Our approach is language independent, and may be applied to multi-lingual current event detection, exploiting further the online encyclopedia’s cross-language references. Finally, we plan to leverage social media such as Twitter as an additional signal, especially in cases where essential descriptive information has yet to be added to a Wikipedia article of interest.

Acknowledgments

We appreciate Domas Mituzas and Frédéric Schütz for the pageviews statistics and Peter Skomoroch for the Trending Topics software. We also thank three anonymous reviewers for their thoughtful advice. This research was supported in part by the NSF under grant IIS-0713448 and the EC through the EuroMatrixPlus project. The first author was funded by Samsung Scholarship. Opinions, interpretations, and conclusions are those of the authors and not necessarily endorsed by the sponsors.

References

James Allan, Jaime Carbonell, George Doddington, Jonathan Yameron, and Yiming Yang. 1998. Topic Detection and Tracking Pilot Study Final Report. In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop.

James Allan, Victor Lavrenko, Daniella Malin, and Russell Swan. 2000. Detcetions, bounds, and timelines: UMass and TDT-3. In Proceedings of Topic Detection and Tracking Workshop.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr., 12(4):461–486.

D.M. Blei, A.Y. Ng, and M.I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research.

Elizabeth Boschee, Ralph Weisschedel, and Alex Zamanian. 2005. Automatic information extraction. In Proceedings of IA.

Kamalika Chaudhuri, Sham M. Kakade, Karen Livescu, and Karthik Sridharan. 2009. Multi-view clustering via canonical correlation analysis. In Proceedings of ICML.

David Gabay, Ziv Ben-Eliahu, and Michael Elhadad. 2008. Using wikipedia links to construct word segmentation corpora. In Proceedings of AAAI Workshops.

Vasileios Hatzivassiloglou, Luis Gravano, and Ankineedu Maganti. 2000. An investigation of linguistic features and clustering algorithms for topical document clustering. In Proceedings of SIGIR.

Edward Loper and Steven Bird. 2002. NLTK: the Natural Language Toolkit. In Proceedings of ACL.

C. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to information retrieval. Cambridge University Press.

Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Language Toolkit. http://mallet.cs.umass.edu.

Kathleen R. McKeown, Regina Barzilay, David Evans, Vasileios Hatzivassiloglou, Judith L. Klavans, Ani Nenkova, Carl Sable, Barry Schiffman, and Sergey Sigelman. 2002. Tracking and summarizing news on a daily basis with Columbia’s Newsblaster. In Proceedings of HLT.

Kathleen Mckeown, Rebecca J. Passonneau, David K. Elson, Ani Nenkova, and Julia Hirschberg. 2005. Do summaries help? a task-based evaluation of multi-document summarization. In Proceedings of SIGIR.

David Milne and Ian H. Witten. 2008. An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In Proceedings of AAAI Workshops.

Sasa Petrovic, Miles Osborne, and Victor Lavrenko. 2010. Streaming first story detection with application to Twitter. In Proceedings of NAACL.

Krysta M. Svoe, Lucy Vanderwende, and Christopher J.C. Burges. 2007. Enhancing single-document summarization by combining ranknet and third-party sources. In Proceedings of EMNLP-CoLing.

Zareen Saba Syed, Tim Finin, and Anupam Joshi. 2008. Wikipedia as an ontology for describing documents. In Proceedings of ICWSM.

Kristian Woodsend and Mirella Lapata. 2010. Automatic generation of story highlights. In Proceedings of ACL.