BiLQ: AN ITERATIVE METHOD FOR NONSYMMETRIC LINEAR SYSTEMS WITH A QUASI-MINIMUM ERROR PROPERTY

ALEXIS MONTOISON* AND DOMINIQUE ORBAN†

Abstract. We introduce an iterative method named BiLQ for solving general square linear systems $Ax = b$ based on the Lanczos biorthogonalization process defined by least-norm subproblems, and that is a natural companion to BiCG and QMR. Whereas the BiCG (Fletcher, 1976), Cgs (Sonneveld, 1989) and BiCGSTAB (van der Vorst, 1992) iterates may not exist when the tridiagonal projection of A is singular, BiLQ is reliable on compatible systems even if A is ill-conditioned or rank deficient. As in the symmetric case, the BiCG residual is often smaller than the BiLQ residual and, when the BiCG iterate exists, an inexpensive transfer from the BiLQ iterate is possible. Although the Euclidean norm of the BiLQ error is usually not monotonic, it is monotonic in a different norm that depends on the Lanczos vectors. We establish a similar property for the Qmr (Freund and Nachtigal, 1991) residual. BiLQ combines with Qmr to take advantage of two initial vectors and solve a system and an adjoint system simultaneously at a cost similar to that of applying either method. We derive an analogous combination of UsymLQ and UsymQR based on the orthogonal tridiagonalization process (Saunders, Simon, and Yip, 1988). The resulting combinations, named BiLQR and TriLQR, may be used to estimate integral functionals involving the solution of a primal and an adjoint system. We compare BiLQR and TriLQR with Minres-qlp on a related augmented system, which performs a comparable amount of work and requires comparable storage. In our experiments, BiLQR terminates earlier than TriLQR and Minres-qlp in terms of residual and error of the primal and adjoint systems.

Key words. iterative methods, Lanczos biorthogonalization process, quasi-minimal error method, least-norm subproblems, adjoint systems, integral functional, tridiagonalization process, multiprecision

AMS subject classifications. 15A06, 65F10, 65F25, 65F50, 93E24 90C06

1. Introduction. We consider the square consistent linear system

\begin{equation}
Ax = b,
\end{equation}

where $A \in \mathbb{R}^{n \times n}$ can be nonsymmetric, is either large and sparse, or is only available as a linear operator, i.e., via operator-vector products. We assume that A is nonsingular. Systems such as (1.1) arise in the discretization of partial differential equations (PDEs) in numerous applications, including compressible turbulent fluid flow (Chisholm and Zingg, 2009), and in circuit simulation (Davis and Natarajan, 2012). We consider Krylov subspace methods and are interested in generating iterates with guarantees as to the decrease of the error $x_k - x$ in a certain norm, where x_* is the solution of (1.1).

The foundation of Krylov methods is a basis-generation process upon which three methods may be developed: one computing the minimum-norm solution of an under-determined system, one solving a square system and imposing a Galerkin condition, and one solving an over-determined system in the least-squares sense. These methods may be implemented with the help of a LQ, LU or QR factorization of a related operator, respectively.

In this paper, we develop an iterative method named BiLQ of the first type based on the Lanczos (1950) biorthogonalization process. Together with BiCG (Fletcher, 1976) and QMR (Freund and Nachtigal, 1991), BiLQ completes the family of methods

*GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, QC, Canada. E-mail: alexis.montoison@polymtl.ca. Research partially supported by a merit scholarship of the Arbour foundation.

†GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, QC, Canada. E-mail: dominique.orban@gerad.ca. Research partially supported by an NSERC Discovery Grant.
based on the biorthogonalization process. We begin by stating the defining properties of BiLQ, describing its implementation in detail, and illustrating its behavior on numerical examples side by side with BiCG and QMR.

In a second stage, we exploit the fact that the biorthogonalization process requires two initial vectors to develop a combination of BiLQ and QMR that solves (1.1) together with a dual system

\[(1.2) \quad A^T t = c\]

simultaneously at a cost comparable to that of applying BiLQ or QMR only to solve one of those systems. The resulting combination is named BiLQR and is employed to illustrate the computation of superconvergent estimates of integral functionals arising in certain PDE problems.

We note that a similar approach may be developed for the Saunders et al. (1988) orthogonal tridiagonalization process, which also requires two initial vectors, by combining Usymlq and Usymqr. The resulting combination is named TriLQR.

Finally, we compare BiLQR and TriLQR with Minres-qlp on a related augmented system to solve both (1.1) and (1.2) simultaneously. In our experiments, BiLQR terminates earlier than TriLQR and Minres-qlp in terms of residual and error of the primal and adjoint systems.

Our Julia (Bezanson, Edelman, Karpinski, and Shah, 2017) implementation of BiLQ, QMR, UsymLq, UsymQR, BiLQR, TriLQR, and MINRES-QLP are available from github.com/JuliaSmoothOptimizers/Krylov.jl. Thanks to multiple dispatch, a language feature allowing automatic compilation of variants of each method corresponding to inputs expressed in various floating-point systems, our implementations run in any floating-point precision supported.

Related Research. Paige and Saunders (1975) develop one of the best-known minimum error methods, Symmlq, based on the symmetric Lanczos process. Symmlq inspires Estrin, Orban, and Saunders (2019a,b) to develop Lslq and Lnlq for rectangular problems based on the Golub and Kahan (1965) process. Lslq and Lnlq are equivalent to Symmlq applied to the normal equations and normal equations of the second kind, respectively.

Saunders et al. (1988) define UsymLq for square consistent systems based on the orthogonal tridiagonalization process. UsymLq is based on a subproblem similar to that of Symmlq, and coincides with Symmlq in the symmetric case. Its companion method, Usymqr, is similar in spirit to MINRES. Buttari, Orban, Ruiz, and Titley-Peloquin (2019) combine both into a method named Usymlqr designed to solve symmetric saddle-point systems with general right-hand side, and inspire the development of BiLQR and TriLQR in the present paper.

Weiss (1994) describes two types of error-minimizing Krylov methods for square A: one based on a process applied to $A^T A$, and one to A^T. Our approach is to apply the biorthogonalization process directly to A. We defer a numerical stability analysis to future work, but note that Paige, Panayotov, and Zenke (2014) study the augmented stability of the biorthogonalization process. In this sense, we make the implicit assumption that computations are carried out in exact arithmetic. This assumption prompted us to develop our implementations so that they can be applied in any supported floating-point arithmetic.

The simultaneous solution of a system and an adjoint system has attracted attention in the past. Notably, Lu and Darmofal (2003) devise a variant of QMR to solve both systems at once at a cost approximately equal to that of QMR applied
to one of the systems but with an increase in storage requirements. Golub, Stoll, and Wathen (2008) follow a similar approach and use a variant of USYMQR to solve both (1.1) and (1.2). An advantage of USYMQR is to produce monotonic residuals in the Euclidean norm for both systems. We illustrate in Table 3.1 that our methods are cheaper and have smaller storage requirements than those of Liu and Darmofal (2003) and Golub et al. (2008) though residuals are not monotonic in the Euclidean norm.

Notation. Matrices and vectors are denoted by capital and lowercase Latin letters, respectively, and scalars by Greek letters. An exception is made for Givens cosines and sines (c, s) that compose reflections. For a vector v, \(||v|| \) denotes the Euclidean norm of v, and for symmetric and positive-definite N, the N-norm of v is \(||v||_N^2 = v^T N v \). For a matrix M, \(||M||_F \) denotes the Frobenius norm of M. The vector \(e_j \) is the i-th column of an identity matrix of size dictated by the context. Vectors and scalars decorated by a bar will be updated at the next iteration. For \(j = 2, \ldots, k \), we use the compact representation

\[
Q_{j-1,j} = \begin{bmatrix}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1 \\
\end{bmatrix} : \begin{bmatrix}
c_j \\
s_j \\
-c_j \\
\end{bmatrix} = \begin{bmatrix} I_{j-2} & c_j & s_j \\
0 & s_j & -c_j \\
0 & 0 & I_{k-j} \\
\end{bmatrix},
\]

for orthogonal reflections, where \(s_j^2 + c_j^2 = 1 \), where border indices indicate row and column numbers, and where \(I_k \) represents the \(k \times k \) identity operator. We abuse the notation \(\vec{z}_k = (z_{k-1}, \vec{z}_k) \) to represent the column vector \([z_{k-1}^T \quad \vec{z}_k]^T \).

2. Derivation of BiLQ.

2.1. The Lanczos Biorthogonalization Process. The Lanczos biorthogonalization process generates sequences of vectors \(\{v_k\} \) and \(\{u_k\} \) such that \(v_k^T u_j = \delta_{ij} \) in exact arithmetic for as long as the process does not break down. The process is summarized as Algorithm 2.1.

Algorithm 2.1 Lanczos Biorthogonalization Process

Require: A, b, c

1: \(v_0 = 0, u_0 = 0 \)
2: \(\beta_1 v_1 = b, \gamma_1 u_1 = c \) (\(\beta_1, \gamma_1 \)) so that \(v_1^T u_1 = 1 \)
3: for \(k = 1, 2, \ldots \) do
4: \(q = A v_k - \gamma_k u_{k-1}, \alpha_k = u_k^T q \)
5: \(p = A^T u_k - \beta_k u_{k-1} \)
6: \(\beta_{k+1} v_{k+1} = q - \alpha_k v_k \) (\(\beta_{k+1}, \gamma_{k+1} \)) so that \(v_{k+1}^T u_{k+1} = 1 \)
7: \(\gamma_{k+1} u_{k+1} = p - \alpha_k u_k \)
8: end for

We denote \(V_k = [v_1 \ldots v_k] \) and \(U_k = [u_1 \ldots u_k] \). Without loss of generality, we choose the scaling factors \(\beta_k \) and \(\gamma_k \) so that \(v_k^T u_k = 1 \) for all \(k \geq 1 \), i.e., \(V_k^T U_k = I_k \). After \(k \) iterations, the situation may be summarized as

\[
(2.1a) \quad AV_k = V_k T_k + \beta_{k+1} v_{k+1} e_k^T = V_{k+1} T_{k+1,k} \\
(2.1b) \quad A^T U_k = U_k T_k^T + \gamma_{k+1} u_{k+1} e_k^T = U_{k+1} T_{k,k+1}^T
\]
where

\[
T_k = \begin{bmatrix}
\alpha_1 & \gamma_2 \\
\beta_2 & \alpha_2 & \ddots \\
& \ddots & \ddots \\
& & \beta_k & \gamma_k & \alpha_k
\end{bmatrix}, \quad T_{k,k+1} = [T_k \ 0], \quad T_{k+1,k} = \begin{bmatrix} T_k & T_k \end{bmatrix}.
\]

The columns of \(V_k \) and \(U_k \) form a basis for \(K_k := \text{Span}\{b, Ab, \ldots, A^{k-1}b\} \) and \(L_k := \text{Span}\{c, A^T c, \ldots, (A^T)^{k-1}c\} \), respectively. Though \(V_k \) cannot be expected to be orthogonal to \(U_k \) in inexact arithmetic, and therefore \(U_k^T V_k = T_k \) cannot be expected to hold, (2.1) usually holds to within machine precision.

2.2. Definition of BiLQ

By definition, BiLQ generates an approximation \(x^k \) to a solution of (1.1) of the form \(x^k = V_k y^k \), where \(y^k \in \mathbb{R}^k \) solves

\[
\text{(2.2) minimize } \|y\| \text{ subject to } T_{k-1,k} y = \beta_1 e_1.
\]

By contrast, BiCG (Fletcher, 1976) generates \(x^c_k = V_k y^c_k \) where \(y^c_k \in \mathbb{R}^k \) solves

\[
\text{(2.3) } T_k y = \beta_1 e_1,
\]

and QMR (Freund and Nachtigal, 1991) generates \(x^\omega_k = V_k y^\omega_k \) where \(y^\omega_k \in \mathbb{R}^k \) solves

\[
\text{(2.4) minimize } \|T_{k+1,k} y - \beta_1 e_1\|.
\]

When \(A \) is symmetric and \(b = c \), Algorithm 2.1 coincides with the symmetric Lanczos process and the three above methods are equivalent to SYMMLQ (Paige and Saunders, 1975), CG (Hestenes and Stiefel, 1952), and MINRES (Paige and Saunders, 1975), respectively.

2.3. An LQ factorization

We determine \(y^k \) solution to (2.2) via the LQ factorization of \(T_{k-1,k} \), which we obtain from the LQ factorization

\[
\text{(2.5a) } T_k = \tilde{L}_k Q_k, \quad \text{where}
\]

\[
\text{(2.5b) } \tilde{L}_k = \begin{bmatrix}
\delta_1 & \lambda_1 & \delta_2 & \lambda_2 & \delta_3 & \lambda_3 & \cdots & \delta_k & \lambda_k \\
\varepsilon_1 & \lambda_1 & \delta_2 & \lambda_2 & \delta_3 & \lambda_3 & \cdots & \delta_k & \lambda_k \\
& \varepsilon_2 & \lambda_2 & \delta_3 & \lambda_3 & \cdots & \delta_k & \lambda_k \\
& & \ddots \\
& & & \varepsilon_{k-3} & \lambda_{k-2} & \delta_{k-1} & \lambda_{k-1} & \delta_k \\
& & & & \varepsilon_{k-2} & \lambda_{k-2} & \delta_{k-1} & \lambda_{k-1} & \delta_k
\end{bmatrix} = \begin{bmatrix} L_{k-1} & 0 \\
\varepsilon_{k-2} & \lambda_{k-1} \delta_k \\
\varepsilon_{k-3} & \lambda_{k-2} \delta_{k-1} & \lambda_{k-1} \delta_k
\end{bmatrix},
\]

and \(Q_k = Q_{1,2} Q_{2,3} \cdots Q_{k-1,k} \) is orthogonal and defined as a product of Givens reflections. Indeed, the above yields the LQ factorization

\[
\text{(2.6) } T_{k-1,k} = \begin{bmatrix} L_{k-1} & 0 \end{bmatrix} Q_k.
\]

If we initialize \(\bar{\delta}_1 := \alpha_1, \bar{\lambda}_1 := \beta_2, c_1 = -1, \) and \(s_1 = 0, \) individual factorization steps may be represented as an application of \(Q_{k-2,k-1} \) to \(T_k Q_{k-2}^T: \)

\[
\begin{bmatrix}
k-2 & k-1 & k \\
k-1 & k & \gamma_k
\end{bmatrix} \begin{bmatrix}
k-2 & k-1 & k \\
k-1 & k-1 & k
\end{bmatrix} \begin{bmatrix}
k-2 & k-1 & k \\
k-1 & k & \gamma_k
\end{bmatrix} = \begin{bmatrix}
k-2 & k-1 & k \\
k-1 & k & \gamma_k
\end{bmatrix}.
\]
followed by an application of $Q_{k-1,k}$ to the result:

$$
\begin{pmatrix}
\delta_{k-2} & \varepsilon_{k-2} & \gamma_k \\
\lambda_{k-2} & \delta_{k-1} & \alpha_k \\
\varepsilon_{k-2} & \lambda_{k-1} & \delta_k \\
\end{pmatrix}
\begin{pmatrix}
k-2 & k-1 & k \\
k-2 & k-1 & k \\
k-2 & k-1 & k \\
\end{pmatrix}
\begin{pmatrix}
c_k \\
s_k \\
c_k - c_k \\
\end{pmatrix}
= \begin{pmatrix}
\delta_{k-2} \\
\lambda_{k-2} \\
\varepsilon_{k-2} \\
\end{pmatrix}
\begin{pmatrix}
\delta_{k-1} \\
\lambda_{k-1} \\
\delta_k \\
\end{pmatrix}.
$$

The reflection $Q_{k-1,k}$ is designed to zero out γ_k on the superdiagonal of T_k and affects three rows and two columns. It is defined by

$$\delta_{k-1} = \sqrt{\delta_{k-1}^2 + \gamma_k^2}, \quad c_k = \delta_{k-1}/\delta_{k-1}, \quad s_k = \gamma_k/\delta_{k-1},$$

and yields the recursion

\begin{align*}
\varepsilon_{k-2} &= s_{k-1} \beta_k, & k \geq 3, \\
\lambda_{k-1} &= -c_{k-1} \beta_k, & k \geq 3, \\
\lambda_{k-1} &= c_k \lambda_{k-1} + s_k \alpha_k, & k \geq 2, \\
\delta_k &= s_k \lambda_{k-1} - c_k \alpha_k, & k \geq 2.
\end{align*}

2.4. Definition and update of the BiLQ and BiCG iterates.

In order to compute y_k^i solution of (2.2) using (2.6), we solve $[L_{k-1} \ 0] Q_k y_k^i = \beta_1 e_1$. If $z_{k-1} := (\zeta_1, \ldots, \zeta_{k-1})$ is defined so that $L_{k-1} z_{k-1} = \beta_1 e_1$, then the minimum-norm solution of (2.2) is $y_k^i = Q_k^T \begin{bmatrix} z_{k-1} \\ 0 \end{bmatrix}$, and $\|y_k^i\| = \|z_{k-1}\|$.

We may compute y_k^c in (2.3) simultaneously as a cheap update of y_k^i. Indeed, (2.3) and (2.5) yield $\bar{L}_k Q_k y_k^c = \beta_1 e_1$. Let $\bar{z}_k := (\zeta_k, \bar{\zeta}_k)$ be defined so $\bar{L}_k \bar{z}_k = \beta_1 e_1$. Then, $y_k^c = Q_k^T \bar{z}_k$. If $\bar{\delta}_k = 0$, y_k^c and the BiCG iterate x_k^c are undefined. The components of \bar{z}_k are computed from

\begin{align*}
\eta_k &= \begin{cases}
\beta_1, & k = 1, \\
-\lambda_1 \zeta_1, & k = 2, \\
-\varepsilon_k - 2 \bar{\zeta}_k - \lambda_{k-1} \zeta_{k-1}, & k \geq 3,
\end{cases} \\
\zeta_{k-1} &= \eta_{k-1} / \bar{\delta}_{k-1}, & k \geq 2, \\
\bar{\zeta}_k &= \eta_k / \bar{\delta}_k, \quad \text{if } \bar{\delta}_k \neq 0.
\end{align*}

By definition, $x_k^c = V_k y_k^c$ and $x_k^c = V_k y_k^c$. To avoid storing V_k, we let

$$\bar{D}_k := V_k Q_k^T = \begin{bmatrix} d_1, & d_2, & \cdots, & d_{k-1}, & d_k \end{bmatrix}, \quad \bar{d}_1 = v_1,$$

defined by the recursion

\begin{align*}
d_{k-1} &= c_k \bar{d}_{k-1} + s_k v_k, \\
\bar{d}_k &= s_k \bar{d}_{k-1} - c_k v_k.
\end{align*}

Finally,

\begin{align*}
x_k^i &= V_k y_k^i = \bar{D}_k \begin{bmatrix} \bar{z}_{k-1} \\ 0 \end{bmatrix} = D_{k-1} \bar{z}_{k-1} = x_{k-1}^i + \zeta_{k-1} d_{k-1}, \\
x_k^c &= V_k y_k^c = \bar{D}_k \bar{z}_k = D_{k-1} \bar{z}_{k-1} + \bar{\zeta}_k \bar{d}_k = x_k^i + \bar{\zeta}_k \bar{d}_k.
\end{align*}

We see from (2.12b) that it is possible to transfer from x_k^i to x_k^c cheaply provided $\bar{\zeta}_k \neq 0$. Such transfer was described by Paige and Saunders (1975) as an inexpensive update from the SYMMLQ to the CG point in the symmetric case.
2.5. Residuals estimates. The identity (2.1a) allows us to write the residual associated to \(x_k = V_k y_k \) as
\[
r_k = b - A x_k = \beta_1 v_1 - A V_k y_k = \beta_1 v_1 - V_{k+1} T_{k+1, k} y_k.
\]
Thus, (2.2) yields the residual at the BiLQ iterate:
\[
r_k^L = V_{k-1}(\beta_1 e_1 - T_{k-1, k} y_k^L) - (\beta_2 e_{k-1} + \alpha_k e_k) y_k^L v_k - \beta_{k+1} e_k^T y_k^L v_{k+1},
\]
and (2.3) yields the residual at the BiCG iterate:
\[
r_k^C = V_k(\beta_1 e_1 - T_{k-1, k} y_k^C) - \beta_{k+1} v_{k+1} e_k^T y_k^C = -\beta_{k+1} e_k^T y_k^C v_{k+1}.
\]
Because \(Q_k^T = Q_{1, 2} Q_{2, 3} \cdots Q_{k-1, k} \), we have
\[
e_{k-1}^T Q_k^T = e_{k-1}^T Q_{k-2, k-1} Q_{k-1, k} = s_{k-1} e_{k-2}^T - c_{k-1} e_k e_k - c_{k-1} s_{k-1} e_k^T = s_{k-1} e_{k-2}^T - c_{k-1} e_k^T,
\]
so that
\[
e_{k-1}^T y_k = e_{k-1}^T Q_k^T \begin{bmatrix} z_{k-1} \\ 0 \end{bmatrix} = s_{k-1} t_{k-2} - c_{k-1} e_k z_{k-1},
\]
\[
e_k^T y_k = e_k^T Q_k^T \begin{bmatrix} z_{k-1} \\ 0 \end{bmatrix} = s_k t_{k-1},
\]
\[
e_k^T y_k = e_k^T Q_k^T \begin{bmatrix} z_{k-1} \\ 0 \end{bmatrix} = s_k t_{k-1} - c_k z_k.
\]
Therefore, if we define \(\mu_k = \beta_k(s_{k-1} t_{k-2} - c_{k-1} e_k z_{k-1}) + \alpha_k s_k t_{k-1} \) and \(\omega_k = \beta_{k+1} s_k t_{k-1} - c_k z_k \), we obtain
\[
||r_k^L|| = \sqrt{\mu_k^2 ||v_k||^2 + \omega_k^2 ||v_{k+1}||^2 + 2\mu_k \omega_k v_k^T v_{k+1}}.
\]
and
\[
||r_k^C|| = ||\rho_k|| v_{k+1}.
\]
We summarize the complete procedure as Algorithm 2.2. For simplicity, we do not include a lookahead procedure, although a robust implementation should in order to avoid serious breakdowns (Parlett, Taylor, and Liu, 1985). Table 2.1 summarizes the cost per iteration of BiLQ, BiCG and QMR. Each method requires one operator-vector product with \(A \) and one with \(A^T \) per iteration. We assume that in-place “gemv” updates of the form \(y \leftarrow A v + \gamma y \) and \(y \leftarrow A^T u + \beta y \) are available. Otherwise, each method requires two additional \(n \)-vectors to store \(A v \) and \(A^T u \). In the table, “dots” refers to dot products of \(n \)-vectors, “scal” refers to scaling an \(n \)-vector by a scalar, and “axpy” refers to adding a multiple of one \(n \)-vector to another one.

Table 2.1

	n-vectors	dots	scal	axpy
BiLQ	6	2	3	7
BiCG	6	2	3	6
QMR	7	2	4	7

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400
Algorithm 2.2 BiLQ

Require: A, b, c
1. $\beta_1 v_1 = b$, $\gamma_1 u_1 = c$
2. $\alpha_1 = u_1^T A v_1$
3. $\beta_2 v_2 = A v_1 - \alpha_1 v_1$
4. $\gamma_2 u_2 = A^T u_1 - \alpha_1 u_1$
5. $c_1 = -1$, $s_1 = 0$, $\delta_1 = \alpha_1$
6. $\eta_1 = \beta_1$, $d_1 = v_1$, $x_1^+ = 0$
7. for $k = 2, 3, \ldots$ do
8. $q = A v_k - \gamma_k v_{k-1}$, $\alpha_k = u_k^T q$
9. $p = A^T u_k - \beta_k u_{k-1}$
10. $\beta_{k+1} v_{k+1} = q - \alpha_k v_k$
11. $\gamma_{k+1} u_{k+1} = p - \alpha_k u_k$
12. $\delta_{k-1} = (\delta_{k-1}^2 + \gamma_k^2)^{\frac{1}{2}}$
13. $c_k = \delta_{k-1}/\delta_k$
14. $s_k = \gamma_k/\delta_{k-1}$
15. $\varepsilon_{k-2} = s_{k-1} \beta_k$
16. $\lambda_{k-1} = -c_{k-1} c_k \beta_k + s_k \alpha_k$
17. $\delta_k = -c_{k-1} s_k \beta_k - c_k \alpha_k$
18. $\zeta_{k-1} = \eta_{k-1}/\delta_{k-1}$
19. $\eta_k = -\varepsilon_{k-2} \zeta_{k-2} - \lambda_{k-1} \zeta_{k-1}$
20. $\mu_k = \beta_k (s_{k-1} \zeta_{k-2} - c_{k-1} c_k \zeta_{k-1}) + \alpha_k s_k \zeta_{k-1}$
21. $\omega_k = \beta_{k+1} s_k \zeta_{k-1}$
22. $\|r_k^c\| = (\mu_k^2 \|v_k\|^2 + \omega_k^2 \|v_{k+1}\|^2 + 2 \mu_k \omega_k v_k^T v_{k+1})^{\frac{1}{2}}$
23. if $\delta_k \neq 0$ then
24. $\zeta_k = \eta_k/\delta_k$
25. $\rho_k = \beta_{k+1} (s_k \zeta_{k-1} - c_k \zeta_k)$
26. $\|r_k^c\| = |\rho_k| \|v_{k+1}\|$ if $\delta_k \neq 0$ then
27. $d_{k-1} = c_k d_{k-1} + s_k v_k$
28. $d_k = s_k d_{k-1} - c_k v_k$
29. $x_k = x_{k-1} + \zeta_{k-1} d_{k-1}$
30. $x_k^+ = x_k^+ + \zeta_k d_k$
31. end if
32. end for

2.6. Properties. By construction, assuming Algorithm 2.1 does not break down, there exists an iteration $p \leq n$ such that $x_{p+1}^c = x_p^c = x_*$, the exact solution of (1.1). In particular, there exists y_* such that $x_* = V_p y_*$. The definition (2.2) of y_k^c ensures that $\|y_k^c\|$ is monotonically increasing while $\|y_k^c - y_*\|$ is monotonically decreasing. Because $V_k^T U_k = I_k$ at each iteration, the iteration-dependent norm

$$\|x_k^c\|_{V_k^T U_k^T} = \|y_k^c\|$$
is monotonically increasing. Because we may write
\[(2.16)\]
\[x_k^l = V_k y_k = V_p \begin{bmatrix} y_k^l \\ 0 \end{bmatrix},\]
\[\|x_k^l\|_{U_k U_p^T} = \|x_k^l\|_{U_k U_k^T}\]
is also monotonically increasing, and the error norm
\[(2.17)\]
\[\|x_k^l - x_*\|_{U_k U_p^T}\]
is monotonically decreasing. Note that (2.15) is readily computable as \(\|z_{k-1}\|\), and can be updated as
\[\|x_{k+1}\|^2_{U_{k+1} U_{k+1}^T} = \|x_k^l\|^2_{U_k U_k^T} + \zeta_k^2.\]
A lower bound on the error (2.17) can be obtained as \(\|z_{k-d} - z_{k-1}\|\) for a user-defined delay of \(d\) iterations. Such a lower bound may be used to define a simple, though not robust, error-based stopping criterion \(\text{(Estrin et al., 2019b)}\).

The following result establishes properties of \(x_k^l\) that are analogous to those of the SYMLQ iterate in the symmetric case.

Proposition 1. Let \(x_*\) be as above. The \(k\)th BiLQ iterate \(x_k^l\) solves
\[(2.18)\]
\[
\min_x \|x\|_{U_k U_k^T} \quad \text{subject to } x \in \text{Range}(V_k), \ b - Ax \perp \text{Range}(U_{k-1}),
\]
and
\[(2.19)\]
\[
\min_x \|x - x_*\|_{U_k U_k^T} \quad \text{subject to } x \in \text{Range}(V_p V_p^T A^T U_{k-1}).
\]

Proof. The first set of constraints of (2.18) imposes that there exist \(y \in \mathbb{R}^k\) such that \(x = V_k y\). By biorthogonality, the objective value at such an \(x\) can be written \(\|V_k y\|_{U_k U_k^T} = \|y\|\). Biorthogonality again and (2.13) show that \(y_k\) defined in (2.2) is primal feasible for (2.18). Dual feasibility of (2.18) requires that there exist a vector \(q\) such that \(y = V_k^T A^T U_{k-1} q\). By (2.1b) and biorthogonality one more time, this amounts to \(y = T_{k-1,k} q\), which is the same as dual feasibility for (2.2). Thus, \(V_k y_k\) is, optimal for (2.18).

To establish primal feasibility of \(x_k^l\) for (2.19), note first that (2.1b) yields \(A^T U_{k-1} = U_k T_{k-1,k}^T\). Let \(V_{p-k}\) denote the last \(p-k\) columns of \(V_p\). Biorthogonality yields
\[V_p^T U_k = \begin{bmatrix} V_k^T \\ V_{p-k}^T \end{bmatrix} U_k = \begin{bmatrix} I_k \\ 0 \end{bmatrix}, \quad \text{and } V_p V_p^T U_k = V_k.
\]
As in the first part of the proof, \(y_k^l = T_{k-1,k} q\) for some \(q \in \mathbb{R}^{k-1}\), and therefore, \(x_k^l = V_p V_p^T A^T U_{k-1} q\). Dual feasibility imposes that
\[
0 = U_{k-1}^T A V_p V_p^T U_p U_p^T (x_k^l - x_*),
\]
\[
= U_{k-1}^T A V_p U_p^T V_p \begin{bmatrix} y_k^l \\ 0 \end{bmatrix} - y_*
\]
\[
= U_{k-1}^T A (x_k^l - x_*),
\]
\[
= -U_{k-1}^T r_k^l,
\]
where we used biorthogonality, and (2.16), and is satisfied because of (2.13).
Note that (2.18) continues to hold if the objective is measured in the $U_p U^T$-norm. Although this norm is no longer iteration dependent, it is unknown until the end of the biorthogonalization process.

In the symmetric case, where $V_k = U_k$ is orthogonal and $T_k = T_k^T$, the SYMMLQ iterate solves the problem

\[
\text{minimize } \|x - x_\star\| \text{ subject to } x \in \text{Range}(AV_{k-1}),
\]

which coincides with (2.19).

2.7. Numerical experiments. Non-homogeneous linear PDEs with variable coefficients of the form

\[
\sum_{i=1}^{n} \sum_{j=1}^{p} a_{i,j}(x) \frac{\partial^j u(x)}{\partial x_i^j} = b(x)
\]

are frequent when physical phenomena are modeled in polar, cylindrical or spherical coordinates. The discretization of (2.21) often leads to a nonsymmetric square system.

Such is the case with Poisson’s equation $\Delta u = f$ used, for instance, to describe the gravitational or electrostatic field caused by a given mass density or charge distribution. The 2D Poisson equation in polar coordinates with Dirichlet boundary conditions is

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u(r, \theta)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u(r, \theta)}{\partial \theta^2} = f(r, \theta), \quad (r, \theta) \in (0, R) \times [0, 2\pi)
\]

where $R > 0$, the source term f and the boundary condition g are given. We discretize (2.22) using centered differences using 50 discretization points for r and 50 for θ, with $g(\theta) = 0$, $f(r, \theta) = -3\cos(\theta)$ and $R = 1$ so that (2.22) models the response of an attached circular elastic membrane to a force. The resulting matrix has size 2,500 with 12,400 nonzeros, and is block tridiagonal with extra diagonal blocks in the northeast and southwest corners. Each block on the main diagonal is tridiagonal but not symmetric. Each off-diagonal block is diagonal. More details on the discretization used are given by Lai (2001). The exact solution is represented in Figure 2.1.

We compare BiLQ with our implementation of QMR without lookahead. We also simulate BiCG by way of the transition from x_L^k to x_C^k in Algorithm 2.2. Figure 2.2 reports the residual and error history of BiLQ, BiCG and QMR on (2.22). To compute $\|r_k\|$ and $\|e_k\|$, residuals $b - Ax_k$ and errors $x_k - x_\star$ are explicitly calculated at each iteration. We compute a reference solution with Julia’s backslash command. We run each method with an absolute tolerance $\varepsilon_a = 10^{-10}$ and a relative tolerance $\varepsilon_r = 10^{-7}$ such that algorithms stop when $\|r_k\| \leq \varepsilon_a + \|b\|\varepsilon_r$.

We also compare BiLQ with BiCG and QMR on matrices SHERMAN5 and RAEFSKY1, with their respective right-hand side, from the UFL collection of Davis and Hu (2011). System SHERMAN5 has size 3,312 with 20,793 nonzeros and RAEFSKY1 has size 3,242 with 293,409 nonzeros. A Jacobi preconditioner is used for both systems.

Figure 2.2, Figure 2.3 and Figure 2.4 all show that in BiLQ, neither the residual nor the error are monotonic in general. They also appear more erratic than those of QMR. As in the symmetric case, both generally lag compared to those of BiCG and

\[1\]Now the SuiteSparse Matrix Collection sparse.tamu.edu.
Fig. 2.1. Solution $u(r, \theta) = r(1 - r) \cos(\theta)$ of (2.22) with $g(\theta) = 0$, $f(r, \theta) = -3 \cos(\theta)$ and $R = 1$.

Fig. 2.2. Convergence curves of BiLQ, BiCG and QMR iterates on (2.22). The figures show the residual (left) and error (right) history for each method.

QMR, but are not far behind. We experimented with other systems and observed the same qualitative behavior. As showed in section 2.6, although BiLQ is a minimum-error-type method, this error is minimized over a different space than that where x_k^L and x_k^C reside—see Proposition 1. This situation is analogous to that between SYMMLQ and CG in the symmetric case (Estrin, Orban, and Saunders, 2019c). Thus, the possibility of transferring to the BiCG point, when it exists, is attractive. Because the BiCG residual is easily computable, transferring based on the residual norm is readily implemented. The determination of upper bounds on the error suitable as stopping criteria remains the subject of active research (Estrin et al., 2019a,b,c).

2.8. Discussion. Like QMR, the BiLQ iterate is well defined at each step even if T_k is singular, whereas x_k^C is undefined when $\delta_k = 0$. A simple example is

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}, \quad b = c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

According to Algorithm 2.1, $\beta_1 = \gamma_1 = 1$, $v_1 = u_1 = b = c$. Then $\alpha_1 = u_1^T A v_1 = 0$, $T_1 = [\alpha_1]$ is singular, and $T_1 y_1 = \beta_1$ is inconsistent. BiCG and its variants CGS (Sonneveld, 1989) and BiCGSTAB (van der Vorst, 1992) all fail. However, T_2 is
not singular and the BiCG point exists, although we cannot compute it without lookahead. In finite precision arithmetic, such exact breakdown are rather rare. But near-breakdowns ($\delta_k \approx 0$) may happen and lead to numerical instabilities in ensuing iterations. An additional drawback of BiCG is that the LU decomposition of T_k might not exist without pivoting even if T_k is nonsingular whereas the LQ factorization of $T_{k-1,k}$ is always well defined.

3. Adjoint systems. Motivated by fluid dynamics applications, Pierce and Giles (2000) describe a method for doubling the order of accuracy of estimates of integral functionals involving the solution of a PDE. Consider a well-posed linear PDE $Lu = f$ on a domain Ω subject to homogeneous boundary conditions, where L is a differential operator of the form (2.21) and $f \in L^2(\Omega)$. Suppose we wish to evaluate the functional $J(u) := \langle u, g \rangle$, where $g \in L^2(\Omega)$ and $\langle \cdot, \cdot \rangle$ represents an integral inner product on $L^2(\Omega)$. The problem may be stated equivalently as evaluating the functional $\langle v, f \rangle$ where v solves the adjoint PDE $L^*v = g$ because $\langle v, f \rangle = \langle v, Lu \rangle = \langle L^*v, u \rangle = \langle g, u \rangle$.

Let the discretization of L yield the linear system $Au_D = f_D$ with D a set of points that define a grid on Ω. For certain types of PDEs and certain discretization schemes, A^T is an appropriate discretization of L^*. Pierce and Giles (2000) provide examples with linear operators such as Poisson’s equation discretized by finite differences in 1D and by finite elements in 2D, but their discretizations are symmetric. Their method
also applies to cases where $A \neq A^T$ but in such cases, the discretization of the primal and dual equations commonly differ. Therefore, there is a need for methods that solve an unsymmetric primal system and its adjoint simultaneously. Lu and Darmofal (2003) and Golub et al. (2008) were also interested in this problem for scattering amplitude evaluation. Lu and Darmofal (2003) devise a modification of QMR in which the two initial vectors are b and c and a quasi residual is minimized for both the primal and adjoint systems via an updated QR factorization. Golub et al. (2008) apply Usymqr (Saunders et al., 1988) to both the primal and the adjoint system simultaneously by updating two QR factorizations. The advantage of their approach is that it produces monotonic residuals for both systems.

Assume we use a method to compute u_D and to solve $A^T v_D = g_D$ such that $\|u - u_D\| \in O(h^p)$ and $\|v - v_D\| \in O(h^p)$, where h describes the grid coarseness. From u_D and v_D we compute approximations $u_h \approx u$ and $v_h \approx v$ over Ω by way of an interpolation of higher order than the discretization. Define $f_h := Lu_h$ and $g_h := L^* v_h$. Instead of $J(u) \approx \langle u_h, g \rangle$, an approximation of order p, we may obtain one of order $2p$ via the identity

\[\langle g, u \rangle = \langle g, u_h \rangle - \langle v_h, f_h - f \rangle + \langle g_h - g, u_h - u \rangle. \]

The first two terms constitute our new approximation while the remaining error term can be expressed as $\langle g_h - g, L^{-1}(f_h - f) \rangle = O(h^{2p})$.

From this point, we consider, in addition to (1.1), the adjoint system

\[A^T t = c. \]

Solving simultaneously primal and dual systems can also be formulated as solving the symmetric and indefinite system

\[\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} t \\ x \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix}. \]

Minres or Minres-qlp (Choi, Paige, and Saunders, 2011) are prime candidates for (3.3) and will serve as a basis for comparison.

In the context of Algorithm 2.1, we can take advantage of the two initial vectors b and c to combine BiLQ and QMR and solve both the primal and adjoint systems simultaneously at no other extra cost than that of updating solution and residual estimates. We call the resulting method BiLQR. Contrary to the approach of Lu and Darmofal (2003), no extra factorization updates are necessary. Instead of approximating u_D and v_D by minimizing two quasi residuals, BiLQR minimizes one quasi residual and computes the second approximation via a minimum-norm subproblem.

A similar method based on the orthogonal tridiagonalization process of Saunders et al. (1988) can be derived by combining USYMLQ and USYMQR, which we call TrILQR, and which is to the approach of Golub et al. (2008) as BiLQR is to that of Lu and Darmofal (2003). TrILQR remains well defined for rectangular A.

3.1. Description of BiLQR. BiLQR updates an approximate solution $t_{k-1}^Q = U_{k-2} f_{k-1}^Q$ of $A^T t = c$ by solving the QMR least-squares subproblem

\[\minimize_f \|T_{k-1,k} f - \gamma_1 e_1\| \iff \minimize_f \left\| \begin{bmatrix} L_{k-1}^T \\ 0 \end{bmatrix} f - Q_k \gamma_1 e_1 \right\| \]

\[\text{Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400} \]
At the next iteration, Algorithm 3.2 states the complete procedure. The components of \tilde{h}_k are updated according to

\begin{align*}
(3.5a) & \quad \bar{\psi}_1 = \gamma_1, \\
(3.5b) & \quad \bar{\psi}_k = c_{k+1} \bar{\psi}_k, \quad k \geq 1, \\
(3.5c) & \quad \bar{\psi}_{k+1} = s_{k+1} \bar{\psi}_k, \quad k \geq 1.
\end{align*}

The solution of (3.4) is $t^k_{k-1} = L^T_{k-1} h_{k-1}$ and the least-squares residual norm is $|\bar{\psi}_k|$. To avoid storing U_k, we define $W_k = U_k L_k^{-T}$, which can be updated as

\begin{align*}
(3.6a) & \quad w_1 = u_1 / \delta_1, \\
(3.6b) & \quad w_2 = (u_2 - \lambda_1 w_1) / \delta_2, \\
(3.6c) & \quad w_k = (u_k - \lambda_{k-1} w_{k-1} - \varepsilon_{k-2} w_{k-2}) / \delta_k, \quad k \geq 3.
\end{align*}

At the next iteration, t^k_{k-1} can be recursively updated according to

$$
t^k_{k-1} = U_k f^k_{k-1} = U_k L_k^{-T} h_k = W_{k-1} h_{k-1} + \tilde{\psi}_k w_k = t^k_{k-1} + \tilde{\psi}_k w_k.
$$

The QMR residual is

$$
r^k_{k} = c - A^T t^k_{k} = U_{k+1} (\gamma_1 e_1 - T^T_{k,k+1} f^k_{k}) = \bar{\psi}_{k+1} U_{k+1} Q^T_{k+1} e_{k+1},
$$

so that

$$
\|r^k_{k}\| \leq \|U_{k+1}\|_F \|\bar{\psi}_{k+1} Q^T_{k+1} e_{k+1}\| \leq \|\bar{\psi}_{k+1}\| \sqrt{\tau_{k+1}},
$$

where $\tau_{k+1} = \sum_{i=1}^{k+1} \|u_i\|^2 = \tau_k + \|u_{k+1}\|^2$. If the u_k are normalized, then $\tau_k = k$. Algorithm 3.2 states the complete procedure.

The following result states a minimization property of the QMR residual in an iteration-dependent norm.

Proposition 2. The $(k-1)$th QMR iterate t^k_{k-1} solves

$$
\text{(3.7) minimize } \|c - A^T t\|_{V^T_k V_k} \text{ subject to } t \in \text{Range}(U_{k-1}).
$$

In addition, $\|r^k_{k}\|_{V^T_k V_k}$ is monotonically decreasing.

Proof. The set of constraints of (3.7) imposes that there exist $f \in \mathbb{R}^{k-1}$ such that $t = U_{k-1} f$. By biorthogonality, the objective value at such an t can be written

$$
\|c - A^T U_{k-1} f\|_{V^T_k V_k} = \|c - U_{k} T^T_{k-1,k} f\|_{V^T_k V_k} = \|\gamma_1 e_1 - T^T_{k-1,k} f\|.
$$

We recover the subproblem (3.4).

For the second part, $\|r^k_{k}\|_{V^T_{k+1} V_{k+1}} = \|\bar{\psi}_{k+1}\| = \|s_{k+1}\| |\bar{\psi}_k| = |s_{k+1}| \|r^k_{k}\|_{V^T_k V_k}$. \(\square\)

Note that Proposition 2 continues to hold if r^k_{k} is measured in the $V^T_p V^T_p$-norm.

3.2. Description of TrilQR. The Saunders et al. (1988) tridiagonalization process generates sequences of vectors $\{v_k\}$ and $\{u_k\}$ such that $v^T_i v_j = \delta_{ij}$ and $u^T_i u_j = \delta_{ij}$ in exact arithmetic for as long as the process does not break down. The process is summarized as Algorithm 3.1.

At the end of the k-th iteration, we have

\begin{align*}
(3.8a) & \quad A U_k = V_k T_k + \beta_{k+1} v_{k+1} e^T_{k} = V_{k+1} T_{k+1,k}, \\
(3.8b) & \quad A^T V_k = U_k T^T_k + \gamma_{k+1} u_{k+1} e^T_{k} = U_{k+1} T^T_{k+1,k+1},
\end{align*}

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400
Algorithm 3.1 Tridiagonalization Process

Require: A, b, c

1. $v_0 = 0, u_0 = 0$
2. $\beta_1 v_1 = b, \gamma_1 u_1 = c$
3. for $k = 1, 2, \ldots$ do
 4. $q = Av_k - \gamma_k v_{k-1}, \alpha_k = v_k^Tq$
 5. $p = A^T v_k - \beta_k u_{k-1}$
 6. $\beta_{k+1} v_{k+1} = q - \alpha_k v_k$
 7. $\gamma_{k+1} u_{k+1} = p - \alpha_k u_k$
4. end for

Algorithm 3.1 can be compared with (2.1).

Saunders et al. (1988) develop two methods based on Algorithm 3.1. USYMLQ generates an approximation to a solution of (1.1) of the form $x_{LQ}^k = U_k y_{LQ}^k$, where $y_{LQ}^k \in \mathbb{R}^k$ solves

$$\min_y \| y \| \text{ subject to } T_{k-1,k} y = \beta_1 e_1.$$

(3.9)

With (3.8) and (3.9), we have the following analogue of Proposition 1 and (2.20).

Proposition 3. Let x_* be the exact solution of (1.1). The kth USYMLQ iterate x_{LQ}^k solves

$$\min_x \| x \| \text{ subject to } x \in \text{Range}(U_k), \ b - Ax \perp \text{Range}(U_{k-1}),$$

and

$$\min_x \| x - x_* \| \text{ subject to } x \in \text{Range}(A^T V_{k-1}).$$

Proof. The proof is nearly identical to that of Proposition 1 and relies on the fact that $r_{LQ}^k := b - A x_{LQ}^k$ is a combination of u_k and u_{k+1} (Buttari et al., 2019, §3.2.2).

The second method, USYMRQR, generates an approximation $t_{QR}^k = V_k f_{QR}^k$ where $f_{QR}^k \in \mathbb{R}^k$ solves

$$\min_f \| T_{k,k+1}^T f - \gamma_1 e_1 \|.$$

(3.12)

The following property applies to t_{QR}^k due to our assumption that (1.1) is consistent.

Proposition 4 (Buttari et al., 2019, Theorem 1). Assume $b \in \text{Range}(A)$. Then USYMRQR finds the minimum-norm solution of

$$\min_t \| A^T t - c \|.$$

Of course, A nonsingular implies that the solution to (3.2) is unique but Proposition 4 applies more generally to rectangular and/or rank-deficient A.

When $A = A^T$ and $b = c$, Algorithm 3.1 coincides with the symmetric Lanczos process, and USYMLQ and USYMRQR are equivalent to SYMMLQ and MINRES (Paige and Saunders, 1975), respectively. Besides the orthogonalization process, differences between those methods and BiLQ and QMR are the definition of D_k and W_k, and the fact that u_k and v_k are swapped. If stopping criteria are based on residual norms,
expressions derived for methods based on Algorithm 2.1 apply to methods based on Algorithm 3.1, but their expressions can be simplified because V_k and U_k are orthogonal. USYMMQR and USYMLQ can be combined into TrILQR to solve both the primal and adjoint system simultaneously. We summarize the complete procedure as Algorithm 3.3 and highlight lines with differences between the two algorithms.

Algorithm 3.2 BiLQR	Algorithm 3.3 TrILQR
Require: A, b, c	**Require:** A, b, c
$\beta_1 v_1 = b$, $\gamma_1 u_1 = c$	$\beta_1 v_1 = b$, $\gamma_1 u_1 = c$
$\alpha_1 = u_1^T Av_1$	$\alpha_1 = u_1^T Av_1$
$\beta_2 v_2 = Av_1 - \alpha_1 v_1$	$\beta_2 v_2 = Av_1 - \alpha_1 v_1$
$\gamma_2 u_2 = A^T u_1 - \alpha_1 u_1$	$\gamma_2 u_2 = A^T v_1 - \alpha_1 u_1$
$c_1 = -1$, $s_1 = 0$, $\delta_1 = \bar{\alpha}_1$	$c_1 = -1$, $s_1 = 0$, $\delta_1 = \bar{\alpha}_1$
$\eta_1 = \bar{\alpha}_1$, $\bar{d}_1 = v_1$, $\psi_1 = \tau_1$	$\eta_1 = \bar{\alpha}_1$, $\bar{d}_1 = u_1$, $\psi_1 = \gamma_1$
$v_0^1 = 0$, $\tau_0^1 = 0$	$x_1^L = 0$, $\tau_0^L = 0$
for $k = 2, 3, \ldots$ **do**	**for** $k = 2, 3, \ldots$ **do**
$q = Av_k - \gamma_k v_{k-1}$, $\alpha_k = u_k^T q$	$q = Av_k - \gamma_k v_{k-1}$, $\alpha_k = v_k^T q$
$p = A^T u_k - \beta_k u_{k-1}$	$p = A^T v_k - \beta_k u_{k-1}$
$\beta_k v_{k+1} = q - \alpha_k v_k$	$\beta_k u_{k+1} = q - \alpha_k v_k$
$\gamma_k u_{k+1} = p - \alpha_k u_k$	$\gamma_k v_{k+1} = p - \alpha_k u_k$
$\delta_k = \left(\frac{\gamma_k^2}{\delta_{k-1}} + \frac{\gamma_k}{\alpha_k} \right)^{\frac{1}{2}}$	$\delta_k = \left(\frac{\gamma_k^2}{\delta_{k-1}} + \frac{\gamma_k}{\alpha_k} \right)^{\frac{1}{2}}$
$s_k = \gamma_k / \delta_k$	$s_k = \gamma_k / \delta_k$
$\varepsilon_{k-2} = s_{k-1} \delta_k$	$\varepsilon_{k-2} = s_{k-1} \delta_k$
$\lambda_{k-1} = \frac{c_k - s_{k-1} \lambda_k}{c_k}$	$\lambda_{k-1} = \frac{c_k - s_{k-1} \lambda_k}{c_k}$
$\beta_k = \frac{c_k - s_{k-1} \lambda_k}{c_k}$	$\beta_k = \frac{c_k - s_{k-1} \lambda_k}{c_k}$
$\bar{\alpha}_k = \frac{c_k - s_{k-1} \lambda_k}{c_k}$	$\bar{\alpha}_k = \frac{c_k - s_{k-1} \lambda_k}{c_k}$
$\psi_{k-1} = c_k \bar{\psi}_{k-1}$	$\psi_{k-1} = c_k \bar{\psi}_{k-1}$
$\bar{\psi}_{k-1} = s_k \bar{\psi}_{k-1}$	$\bar{\psi}_{k-1} = s_k \bar{\psi}_{k-1}$
$\bar{w}_{k-1} = \frac{\bar{w}_{k-1} - \lambda_{k-2} w_{k-2} - \varepsilon_{k-3} w_{k-3}}{s_{k-1}}$	$\bar{w}_{k-1} = \frac{\bar{w}_{k-1} - \lambda_{k-2} w_{k-2} - \varepsilon_{k-3} w_{k-3}}{s_{k-1}}$
$x^L_k = x^L_{k-1} + \lambda_{k-1} d_{k-1}$	$x^L_k = x^L_{k-1} + \lambda_{k-1} d_{k-1}$
$t^Q_k = t^Q_{k-1} + \varepsilon_{k-1} w_{k-1}$	$t^Q_k = t^Q_{k-1} + \varepsilon_{k-1} w_{k-1}$
end for	**end for**
if $\delta_k \neq 0$ then	if $\delta_k \neq 0$ then
$\bar{\zeta}_k = \eta_k / \delta_k$	$\bar{\zeta}_k = \eta_k / \delta_k$
$x_k = x_k^L + \bar{\zeta}_k \bar{d}_k$	$x_k = x_k^L + \bar{\zeta}_k \bar{d}_k$
end if	**end if**

BiLQR and TrILQR both need nine n-vectors: $u_k, u_{k-1}, v_k, v_{k-1}, w_k, w_{k-1}, \bar{d}_k, \bar{x}_k$ and \bar{t}_{k-1} whereas MINRES-QLP applied to (3.3) can be implemented with five (2n)-vectors. Two more n-vectors are needed when in-place “gemv” updates are not explicitly available. Table 3.1 summarizes the cost of BiLQR, TrILQR, MINRES-QLP

Commit 497000d by Alexis Monteison on 2019-10-03 11:42:35 -0400
and variants from Lu and Darmofal (2003) and Golub et al. (2008), developed for adjoint systems. An advantage of Minres-QLP and TriLQR is that adjoint systems can be solved even if $b^T c = 0$, which is not possible with BiLQR. In addition, serious breakdowns $q^T p = 0$ with $p \neq 0$ and $q \neq 0$ are not a problem with TriLQR. TriLQR is similar in spirit to the recent method USYMLQR of Buttari et al. (2019) for solving symmetric saddle-point systems, but is slightly cheaper.

Table 3.1

Method	n-vectors	dots	scal	axpy
BiLQR	9	2	5	10
TriLQR	9	2	5	10
Minres-QLP	10	4	8	14
Lu and Darmofal (2003)	10	2	6	10
Golub et al. (2008)	10	2	6	10

3.3. Applications

For the purpose of a simple illustration, we consider a one-dimensional ODE and a two-dimensional PDE. Consider first the linear ODE with constant coefficients

\[
\chi_1 u''(x) + \chi_2 u'(x) + \chi_3 u(x) = f(x) \quad x \in \Omega \\
b(x) = 0 \quad x \in \partial \Omega,
\]

where $\Omega = [0, 1]$, and say we are interested in the value of the linear functional

\[
J(u) = \int_{\Omega} u(x) g(x) \, d\Omega,
\]

where u solves (3.13) and $g \in L^2(\Omega)$. The adjoint equation can be derived from (3.13) using integration by parts:

\[
\chi_1 v''(x) - \chi_2 v'(x) + \chi_3 v(x) = g(x) \quad x \in \Omega \\
v(x) = 0 \quad x \in \partial \Omega.
\]

Note that the only difference between the primal and adjoint equations resides in the sign of odd-degree derivatives. The discussion in section 3 ensures that

\[
G(v) := \int_{\Omega} f(x) v(x) \, d\Omega = J(u).
\]

Consider the uniform discretization $x_i = ih$, $i = 0, \ldots, N+1$, where $h = 1/(N+1)$. We use centered finite differences of order 2, i.e.,

\[
u'(x_i) = \frac{u_{i+1} - u_{i-1}}{2h} + O(h^2), \quad u''(x_i) = \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} + O(h^2).
\]

We obtain $u(x_i)$ for $x_i \in D := \{x_i \mid i \in 1, \ldots, N\}$ from the tridiagonal linear system

\[
\begin{bmatrix}
-2\chi_1 + \chi_3 h^2 & \chi_1 + \chi_2 h \\
\chi_1 - \chi_2 h & -2\chi_1 + \chi_3 h^2 \\
\vdots & \ddots \\
\chi_1 - \chi_2 h & -2\chi_1 + \chi_3 h^2 \\
\end{bmatrix}
\begin{bmatrix}
u(x_1) \\
\vdots \\
\vdots \\
u(x_N) \end{bmatrix} = h^2
\begin{bmatrix}
f(x_1) \\
\vdots \\
\vdots \\
f(x_N) \end{bmatrix}.
\]
More compactly, we write $Au_D = f_D$. Similarly, we compute $v(x_i)$ for $x_i \in D$ from $A^T v_D = g_D$. Next, we compute an approximation of u and v over Ω by cubic spline interpolation, and the resulting functions are denoted u_h and v_h. We impose that $Lu_h = f$ and $L^* v_h = g$ on $\partial \Omega$. We subsequently obtain $f_h(x) := \chi_1 u_h''(x) + \chi_2 u_h'(x) + \chi_3 u_h(x)$. The end points conditions of the cubic splines impose that f_h coincide with f on $\partial \Omega$. Finally, we compute the improved estimate (3.1) using a three-point Gauss quadrature to approximate each

$$\int_{x_i}^{x_{i+1}} g(x) u_h(x) \, dx - \int_{x_i}^{x_{i+1}} v_h(x)(f_h(x) - f(x)) \, dx$$

on each subinterval to ensure that the numerical quadrature errors are smaller than the discretization error.

We choose $n = 50$, $\chi_1 = \chi_2 = \chi_3 = 1$, $g(x) = e^x$ and $f(x)$ such that the exact solution of (3.13) is $u_*(x) = \sin(\pi x)$. The resulting linear system has dimension 50 with 148 nonzeros. Those parameters ensure that $J_* = \langle g, u_* \rangle = (\pi (e + 1))/\pi^2 + 1$. Figures 3.1 and 3.2 report the evolution of the residual and error on (1.1) and (3.2) for (3.13) and (3.15), respectively. BiLQR terminates in 51 iterations, TriLQR in 87 iterations and MINRES-QLP in 198 iterations. The left plot of Figure 3.3 illustrates the error in the evaluation of $J(u)$ as a function of h using the naive $J(u) \approx J(u_h)$ and improved (3.1) approximations.

![Fig. 3.1. Residuals and errors norms of BiLQR, TriLQR and MINRES-QLP iterates for on (3.13).](image1)

![Fig. 3.2. Residuals and errors norms of BiLQR, TriLQR and MINRES-QLP iterates on (3.15).](image2)
The steady-state convection-diffusion equation with constant coefficients

\begin{align}
(3.17a) & \quad \kappa_1 \Delta u(x) + \kappa_2 \nabla \cdot u(x) = f(x) \quad x \in \Omega \\
(3.17b) & \quad u(x) = 0 \quad x \in \partial \Omega,
\end{align}

where $f \in L_2(\Omega)$, describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. Assume as before that we are interested in the linear functional (3.14). The adjoint equation of (3.17), again obtained via integration by parts, reads

\begin{align}
(3.18a) & \quad \kappa_1 \Delta v(x) - \kappa_2 \nabla \cdot v(x) = g(x) \quad x \in \Omega \\
(3.18b) & \quad v(x) = 0 \quad x \in \partial \Omega,
\end{align}

and duality ensures (3.16).

In the case of heat transfer, $u(x)$ represents temperature and $f(x)$ sources or sinks. For example, with $g(x) = 1/\text{vol}(\Omega)$, $J(u)$ represents the average temperature in Ω.

We choose $\Omega = [0, 1] \times [0, 1]$ and discretize (3.17) on a uniform $N \times N$ grid with the finite difference method such that the step along both coordinates is $h = 1/(N+1)$. With centered second-order differences for first and second derivatives, the discretized operator has the structure

\[
A = \begin{bmatrix}
T & D_U \\
D_L & T
\end{bmatrix},
\quad T = \begin{bmatrix}
-4\kappa_1 & \kappa_1 + \frac{1}{2}\kappa_2 h \\
\kappa_1 - \frac{1}{2}\kappa_2 h & -4\kappa_1 \\
\kappa_1 - \frac{1}{2}\kappa_2 h & \frac{1}{2}\kappa_2 h
\end{bmatrix},
\quad D_U = \text{diag}(\kappa_1 + \frac{1}{2}\kappa_2 h),
\quad D_L = \text{diag}(\kappa_1 - \frac{1}{2}\kappa_2 h),
\]

where the right-hand sides b and c include the h^2 term. Solutions u_D and v_D contain an approximation of u and v at grid points stored column by column. The discretization of (3.18) with the same scheme yields A^T. We compare BiLQR, TrilQQR and MINRES-QLP on (3.17) and (3.18) with $\kappa_1 = 5$, $\kappa_2 = 20$, $N = 50$, $g(x, y) = e^{x+y}$ and $f(x, y)$ such that the exact solution of (3.17) is $u_*(x, y) = \sin(\pi x)\sin(\pi y)$. The resulting linear system has dimension 2,500 with 12,300 nonzeros. We use an absolute tolerance $\varepsilon_a = 10^{-10}$ and a relative tolerance $\varepsilon_r = 10^{-7}$, and terminate when both $\|r_k\| \leq \varepsilon_a + \|b\|\varepsilon_r$ for (1.1) and $\|r_k\| \leq \varepsilon_a + \|c\|\varepsilon_r$ for (3.2) hold.
Figures 3.4 and 3.5 report the evolution of the residual and error on (1.1) and (3.2) for (3.17) and (3.18), respectively. In this numerical illustration, residuals and errors are computed explicitly at each iteration as \(b - Ax, c - A^T t, x - x_\star \), and \(t - t_\star \) in order to discount errors in the approximation formulae for those expressions. In this example, BiLQR terminates in about four times fewer iterations than TriLQR and six times fewer iterations than Minres-qlp. Only the Usymlq error and the Usymqr residual are monotonic. Although the Minres-qlp residual on (3.3) is monotonic, individual residuals on (1.1) and (3.2) are not.

We use bicubic spline interpolation and \(3 \times 3 \) points Gauss quadrature to compute estimates of \(J(u) \) with and without correction term. With the \(u_\star \) given above, \(J_\star := J(u_\star) = (\pi (e + 1))^2 / (\pi^2 + 1)^2 \). The right plot of Figure 3.3 illustrates the error in the evaluation of \(J(u) \) as a function of \(h \) using the naive \(J(u) \approx J(u_h) \) and improved (3.1) approximations.

4. Discussion. BiLQ completes the family of Krylov methods based on the Lanczos biorthogonalization process, and is a natural companion to BiCG and QMR. It is a quasi-minimum error method, and in general, neither the error nor the residual norm are monotonic.

Contrary to the Arnoldi (1951) and the Golub and Kahan (1965) processes, the Lanczos biorthogonalization and orthogonal trigonalization processes require two initial
vectors. This distinguishing feature makes them readily suited to the simultaneous solution of primal and adjoint systems. A prime application is the superconvergent estimation of integral functionals in the context of discretized ODEs and PDEs. In our experiments, we observed that BiLQR outperforms both TriLQR and MINRES-QLP applied to an augmented system in terms of error and residual norms.

Our Julia implementation of BiLQ, QMR, BiLQR, TriLQR and MINRES-QLP are available from github.com/JuliaSmoothOptimizers/Krylov.jl and can be applied in any floating-point arithmetic supported by the language. In our experiments with adjoint systems, we run both the primal and adjoint solvers until both residuals are small. A slightly more sophisticated implementation would interrupt the first solver that converges and only apply the other until it too converges. That is the strategy applied by Buttari et al. (2019).

MINRES applied to (3.3) does not produce monotonic residuals in the individual primal and adjoint systems. In our experiments, we explicitly computed those residuals but Herzog and Soodhalter (2017) devised a modification of MINRES that allows to monitor block residuals that could be of use in the context of estimating integral functionals.

Although the BiLQ error is not monotonic in the Euclidean norm, it is in the $U_p^2 U_p^T$-norm, which is not iteration dependent, but is unknown until the end of the biorthogonalization process. The same property holds for the QMR residual. Exploiting such properties to obtain useful bounds on the BiLQ and BiCG error in Euclidean norm that could help devise useful stopping criteria is the subject of ongoing research.

References.

W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. _Q. Appl. Math._, 9:17–29, 1951. DOI: 10.1090/qam/42792.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing. _SIAM Rev._, 59(1):65–98, 2017. DOI: 10.1137/141000671.

A. Buttari, D. Orban, D. Ruiz, and D. Titley-Peloquin. USYMLQR: A tridiagonalization method for symmetric saddle-point systems. _SIAM J. Sci. Comput._, 2019. To appear.

T. T. Chisholm and D. W. Zingg. A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows. _J. Comput. Phys._, 228:3490–3507, 2009. DOI: 10.1016/j.jcp.2009.02.004.

S. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems. _SIAM J. Sci. Comput._, 33(4):1810–1836, 2011.

T. Davis and Y. Hu. The University of Florida sparse matrix collection. _ACM Trans. Math. Software_, 38(1):1–25, 2011. DOI: 10.1145/2049662.2049663.

T. Davis and E. P. Natarajan. Sparse matrix methods for circuit simulation problems. In _Scientific computing in electrical engineering SCEE 2010. Selected papers based on the presentations at the 8th conference, Toulouse, France, September 2010_, pages 3–14. Springer, Berlin, 2012.

R. Estrin, D. Orban, and M. A. Saunders. LSLQ: An iterative method for least-squares with an error minimization property. _SIAM J. Matrix Anal. Appl._, 40(1):254–275, 2019a. DOI: 10.1137/17M113552.

R. Estrin, D. Orban, and M. A. Saunders. LNLQ: An iterative method for least-norm problems with an error minimization property. _SIAM J. Matrix Anal. Appl._, 40(3):1102–1124, 2019b. DOI: 10.1137/18M1194948.

R. Estrin, D. Orban, and M. A. Saunders. Euclidean-norm error bounds for SYMMLQ and CG. _SIAM J. Matrix Anal. Appl._, 40(1):235–253, 2019c. DOI: 10.1137/16M1094816.

R. Fletcher. Conjugate gradient methods for indefinite systems. In _Numerical analysis_, pages 73–89. Springer, 1976. DOI: 10.1007/BFb0080116.

R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear systems. _Numer. Math._, 60(1):315–339, 1991. DOI: 10.1007/BF01385726.
G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. *SIAM J. Numer. Anal.*, 2(2):205–224, 1965. DOI: 10.1137/0702016.

G. H. Golub, M. Stoll, and A. Wathen. Approximation of the scattering amplitude and linear systems. *ETNA*, 31(2008):178–203, 2008.

R. Herzog and K. Soodhalter. A modified implementation of MINRES to monitor residual subvector norms for block systems. *SIAM J. Comput.*, 36(6):A2645–A2663, 2017. DOI: 10.1137/16M1093021.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. *J. Res. Natl. Bur. Stand.*, 49(6):409–436, 1952. DOI: 10.6028/jres.049.044.

M. Lai. A note on finite difference discretizations for Poisson equation on a disk. *Numer. Meth. Part. D. E.*, 17(3):199–203, 2001. DOI: 10.1002/num.1.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. *J. Res. Natl. Bur. Stand.*, 45:225–280, 1950. DOI: 10.6028/jres.045.026.

J. Lu and D. Darmofal. A quasi-minimal residual method for simultaneous primal-dual solutions and superconvergent functional estimates. *SIAM J. Sci. Comput.*, 24(5):1693–1709, 2003. DOI: 10.1137/S1064827501390625.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. *SIAM J. Numer. Anal.*, 12(4):617–629, 1975. DOI: 10.1137/0712047.

C. C. Paige, I. Panayotov, and J.-P. M. Zemke. An augmented analysis of the perturbed two-sided Lanczos tridiagonalization process. *Linear Algebra and its Applications*, 447:119–132, 2014. DOI: 10.1016/j.laa.2013.05.009.

B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric matrices. *Math. Comp.*, 44:105–124, 1985.

N. A. Pierce and M. B. Giles. Adjoint recovery of superconvergent functionals from PDE approximations. *SIAM Rev.*, 42(2):247–264, 2000. DOI: 10.2307/2653107.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric linear equations. *SIAM J. Numer. Anal.*, 25(4):927–940, 1988. DOI: 10.1137/0725052.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. *SIAM J. Sci. and Statist. Comput.*, 10(1):36–52, 1989. DOI: 10.1137/0910004.

H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. *SIAM J. Sci. and Statist. Comput.*, 13(2):631–644, 1992. DOI: 10.1137/0913035.

R. Weiss. Error-minimizing Krylov subspace methods. *SIAM J. Sci. Comput.*, 15:511–527, 1994. DOI: 10.1137/0915034.