Understanding the intersection of the biology of pain, opioid therapy, and disease progression and survival is complicated and potentially of great importance in cancer care. Pain occurs in two-thirds of patients with advanced malignancy and continues to impact a third of patients with cancer even after completion of curative treatment.\(^1\) Pain and other symptoms affect quality of life (QoL) during and after treatment.\(^5,43,48,59\) In addition, pain itself has been associated with shorter survival in diverse malignancies.\(^72\) As long as the benefits clearly outweigh risks, and opioids are safe and effective for cancer-related pain, this therapy is an important option.\(^9,46\) Like all medical drugs, however, opioids have unavoidable adverse effects. These include constipation, nausea, sedation, cardiovascular instability, respiratory depression, central nervous system toxicity, hyperalgesia, tolerance, and opioid use disorder.\(^46\) Such risks are well understood and typically discussed with patients. On the other hand, there is less awareness about the potential adverse effects of pain and opioids on the growth of certain cancers. Here, we review the evidence regarding opioid therapy, disease progression, and survival to raise awareness and stimulate greater dialogue regarding these issues among stakeholders in the cancer and pain communities. By doing so, our goal is that patients with cancer will be better positioned to address their coexisting priorities of pain relief and survival.

The analgesic activity of opioids is mediated through mu-opioid receptors (MORs) in the central nervous system. Mu-opioid receptors are also present on endothelial cells\(^32\) and in human tumors (peripheral MORs), including prostate and lung cancer.\(^23,39,40,52\) Preclinical studies show that opioids promote angiogenesis by stimulating endothelial proliferation and migration and by activating survival- and growth-promoting signaling through protein kinase B (Akt) and mitogen-activated protein kinase pathways, respectively, in the endothelium (Fig. 1).\(^16,24,36\) In addition to promoting tumor angiogenesis, chronic morphine treatment also stimulates lymphangiogenesis, activates mast cells, promotes tumor growth and metastasis, impairs survival in mouse models of breast cancer,\(^2,33,45\) and is immunosuppressive.\(^47,62\)

Furthermore, MORs and receptor tyrosine kinases are expressed and colocalized in advanced lung cancer, which may play a role in cancer growth and spread.\(^39,53\) Preclinical studies provide strong evidence that in animal models of several different malignancies, activation of peripheral MORs (on endothelial cells and tumors) by clinically used opioid medications promotes tumor progression through several different mechanisms. These involve signal transducers and activators of transcription 3 (STAT3), mitogen-activated protein kinase/extracellular signal-regulated kinase and Akt signaling pathways, nitric oxide synthesis, cyclooxygenase (COX)-2 activation, prostaglandin E2 production, cross-activation of epithelial growth factor receptor and vascular endothelial growth factor receptor 2 (VEGFR2), release of substance P, and mast cell activation.\(^8,11,12,24,27,33,36,40\) Our recent findings on morphine-induced retinal neovascularization in mice with sickle cell disease further validate the role of morphine in promoting angiogenesis through coactivation of VEGFR2 and the contribution of inflammatory cytokines and the STAT3 pathway in stimulating expression of endothelial MOR.\(^54\) Heightened inflammation as well as activation of VEGFR2 and STAT3 signaling are the rule, not the exception, in most cancers. Importantly, opioids through MORs contribute to epithelial mesenchymal transformation in lung cancer, a process critical for progression of this cancer.\(^25\) Recent clinical studies raise the possibility that these mechanisms may play a role in both cancer progression and nociception in patients. These mechanistic insights also provide targets for intervention to ameliorate the inadvertent effect of opioids on cancer progression and QoL (Fig. 1).

Pain also increases circulating endogenous opioid (eg, endorphin) levels and causes significant immunosuppression.\(^37,62\) Therefore, it is possible that even in patients who are not receiving opioid medications, elevated levels of endogenous opioids may activate peripheral MORs and cross-activate signaling pathways that influence tumor progression. Patients with inadequate pain control after major surgery also develop significant immunosuppression.\(^62\) These mechanisms may contribute to the known adverse prognostic effect of pain in malignancies.\(^43,50,59,72\)

Several lines of evidence suggest that pain, systemic opioid exposure, and opioid receptor activity may be associated with adverse cancer outcomes in humans. In early-stage cancers (primarily those treated with potentially curative surgery), some retrospective studies reported that exposure to systemic opioids during anesthesia for cancer surgery was associated with a higher incidence of recurrence and metastases,\(^14\) but other studies noted no such association.\(^6\) Opioid reduction strategies with multimodal analgesia have been investigated as a potential...
surgery or any other clinical setting, further research has been conducted to evaluate the effects of adjuvant analgesics in reducing cancer after oncologic procedures. Although there is no definitive evidence to recommend the use of any of the gabapentinoids, there is some evidence to suggest that gabapentinoids may affect survival, proliferation, and metastatic activity in cancer cells, and may modulate the immune system. Gabapentinoids have been shown to induce apoptosis in oral squamous carcinoma and glioblastoma cells and to have significant anti-inflammatory effects when given to cancer patients. In addition, gabapentinoids have been hypothesized to increase vascular permeability, which is critical to tumor cell infiltration and metastasis, thus promoting cancer progression and metastasis. Although most of the strong evidence is from human tumor and endothelial cells and mouse models of cancer and metastasis, there are emerging data from clinical studies (mostly retrospective) showing the association of MOR with these signaling pathways and/or cellular activation in lung, prostate, and pancreatic cancer, leading to cancer progression and shorter survival. Conversely, antitumor effects of morphine/opioids through modulation of HIF1α, p38 MAPK, VEGF, MMPs, and TIMPs in endothelial and/or tumor cells lead to inhibition of cancer progression in mice. However, the only study in a clinical setting failed to replicate the preclinical observations on MMPs. COX2, cyclooxygenase 2; EGFR, epidermal growth factor receptor; VEGF, vascular endothelial growth factor; PGE2, prostaglandin E2; ROCK, rho-associated protein kinase; RTK, receptor tyrosine kinase; S1P3R, sphingosine 1 phosphate receptor 3; Stat3, signal transducer and activator of transcription 3; TIMP, tissue inhibitor of metalloprotease; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.

In patients with advanced, metastatic cancers, retrospective studies reported that higher MOR expression is associated with poorer clinical outcomes in advanced cancers of the prostate, lung, stomach, and esophagus, and that impaired opioid receptor activity is associated with longer survival in breast cancer. In the first study to simultaneously examine the association of quantitative long-term opioid use and level of MOR expression with cancer outcomes, we reported that higher MOR expression and greater opioid requirement are independently associated with shorter progression-free and overall survival in patients with metastatic prostate cancer receiving first-line androgen deprivation therapy. We also found that reduction of opioid consumption by implementation of regional anesthesia during oncologic surgery would be associated with lower rates of cancer recurrence or longer recurrence-free survival. After an initial report in 2006 that use of regional anesthesia was associated with a significant decrease in breast cancer recurrence after mastectomy, more than 20 retrospective studies have reported conflicting results. Accordingly, a recent consensus article by the American and European Societies of Regional Anesthesia concluded that there is insufficient evidence to recommend regional anesthesia to reduce cancer recurrence.

Figure 1. Mechanisms of opioid activity in cancer. Preclinical and clinical studies demonstrate multiple signaling pathways and cellular effects stimulated by morphine and/or MOR, leading to progression of cancer and metastasis (left side). MOR directly and through coactivation of receptor tyrosine kinases for growth factors, VEGFR2, EGFR, and PDGFRβ stimulates mitogenic and survival-promoting signaling through MAPK/ERK, Stat3, and PKB/Akt in endothelial and/or tumor cells. Simultaneously, morphine activates S1PR3 through Rho/ROCK pathway after the recruitment of p115 Rho GEF by MOR, leading to increased vascular permeability. Inhibition of NK cells and activation of mast cells by morphine further abrogates protective antitumor effects and simultaneous release of proangiogenic cytokines and neuropeptides such as substance P, respectively. In addition, stimulation of COX2 leads to formation of PGE2, which has proangiogenic and pronociceptive activity and thus may even increase pain. Together, morphine/opioid-induced cellular effects and signaling pathways lead to endothelial and tumor cell proliferation, migration, invasion, EMT, immunosuppression, and increased vascular permeability, which is critical to tumor cell infiltration and metastasis, thus promoting cancer progression and metastasis. Although most of the strong evidence is from human tumor and endothelial cells and mouse models of cancer and metastasis, there are emerging data from clinical studies (mostly retrospective) showing the association of MOR with these signaling pathways and/or cellular activation in lung, prostate, and pancreatic cancer, leading to cancer progression and shorter survival. Conversely, antitumor effects of morphine/opioids through modulation of HIF1α, p38 MAPK, VEGF, MMPs, and TIMPs in endothelial and/or tumor cells lead to inhibition of cancer progression in mice. However, the only study in a clinical setting failed to replicate the preclinical observations on MMPs. COX2, cyclooxygenase 2; EGFR, epidermal growth factor receptor; VEGF, vascular endothelial growth factor; PGE2, prostaglandin E2; ROCK, rho-associated protein kinase; RTK, receptor tyrosine kinase; S1P3R, sphingosine 1 phosphate receptor 3; Stat3, signal transducer and activator of transcription 3; TIMP, tissue inhibitor of metalloprotease; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.

Figure 1. Mechanisms of opioid activity in cancer. Preclinical and clinical studies demonstrate multiple signaling pathways and cellular effects stimulated by morphine and/or MOR, leading to progression of cancer and metastasis (left side). MOR directly and through coactivation of receptor tyrosine kinases for growth factors, VEGFR2, EGFR, and PDGFRβ stimulates mitogenic and survival-promoting signaling through MAPK/ERK, Stat3, and PKB/Akt in endothelial and/or tumor cells. Simultaneously, morphine activates S1PR3 through Rho/ROCK pathway after the recruitment of p115 Rho GEF by MOR, leading to increased vascular permeability. Inhibition of NK cells and activation of mast cells by morphine further abrogates protective antitumor effects and simultaneous release of proangiogenic cytokines and neuropeptides such as substance P, respectively. In addition, stimulation of COX2 leads to formation of PGE2, which has proangiogenic and pronociceptive activity and thus may even increase pain. Together, morphine/opioid-induced cellular effects and signaling pathways lead to endothelial and tumor cell proliferation, migration, invasion, EMT, immunosuppression, and increased vascular permeability, which is critical to tumor cell infiltration and metastasis, thus promoting cancer progression and metastasis. Although most of the strong evidence is from human tumor and endothelial cells and mouse models of cancer and metastasis, there are emerging data from clinical studies (mostly retrospective) showing the association of MOR with these signaling pathways and/or cellular activation in lung, prostate, and pancreatic cancer, leading to cancer progression and shorter survival. Conversely, antitumor effects of morphine/opioids through modulation of HIF1α, p38 MAPK, VEGF, MMPs, and TIMPs in endothelial and/or tumor cells lead to inhibition of cancer progression in mice. However, the only study in a clinical setting failed to replicate the preclinical observations on MMPs. COX2, cyclooxygenase 2; EGFR, epidermal growth factor receptor; VEGF, vascular endothelial growth factor; PGE2, prostaglandin E2; ROCK, rho-associated protein kinase; RTK, receptor tyrosine kinase; S1P3R, sphingosine 1 phosphate receptor 3; Stat3, signal transducer and activator of transcription 3; TIMP, tissue inhibitor of metalloprotease; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.
chronic pain and greater opioid requirement early after diagnosis are independently associated with shorter survival in advanced non–small cell lung cancer. However, the retrospective clinical studies had limitations, including some that used analgesic intake as an indicator for cancer pain, thus making it difficult to determine whether pain or opioid therapy was more relevant in impacting survival. Some prospective studies indicate that reducing systemic opioid exposure may improve survival in advanced cancer; eg, by celiac plexus block in pancreatic cancer and administration of opioids through intrathecal pump in various malignancies. Retrospective studies also reported that pain is independently associated with shorter survival in metastatic prostate, lung, and various other malignancies.

By contrast, other basic and preclinical studies suggest a potentially protective effect of certain opioids in cancers. For example, methadone increases sensitivity of some cancer cell lines to chemotherapy. Methadone is a racemic mixture of the 2 enantiomeric forms, d-methadone and l-methadone, with the l form having 10 times more affinity to MOR than the d form. It is a unique opioid with agonist activity at the mu and delta opioid receptors and antagonist activity at the N-methyl-D-aspartate receptor. Methadone seems to have an anticancer effect by activating apoptosis pathways by caspase activation and down-regulation of X-linked apoptosis protein and B-cell lymphoma-extra-large. Methadone also overcomes apoptosis resistance and chemotherapy resistance in leukemic cells by activating apoptosis pathways, and may sensitize glioma cells to doxorubicin. Other in vitro experiments showed that high concentrations of MOR agonists such as morphine (1-10 μM) and D. L-methadone (1-10 μg/mL) had direct proapoptotic effects on gastric cancer, leukemia, and glialblasta cells. Similar effects were observed in animals: Chronic treatment with fentanyl (>14 days, 0.4 mg/kg, twice the analgesic dose) suppressed tumor growth in mice implanted with a gastric cancer cell line. In addition, very high doses of morphine (30 vs 0.5-5 mg/kg) induced tumor shrinkage through antiangiogenesis in a mouse model of lung cancer. Also, in vitro and in vivo studies have shown that MOR agonists inhibited metastatic mechanisms in breast and colon cancer cells. Some antimetastatic effects were linked to inhibition in production and release of matrix metalloproteinase-2 and -9 and adhesion molecules including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin. However, in a clinical setting, there was no correlation between perioperative morphine intake and MOR activation or matrix metalloproteinases.

Another line of research has targeted MORs for anticancer therapy. Preclinical studies demonstrated that MOR antagonists inhibited tumorigenic and metastatic behaviors in colorectal and lung cancer cells and synergistically potentiated the antiangiogenic effects of chemotherapeutic agents such as 5-fluorouracil, bevacizumab, and mammalian target of rapamycin inhibitors through protein tyrosine phosphatase receptor signaling. In animals, low doses of naltrexone enhanced the anticancer effects of cisplatin in a mouse model of ovarian cancer. In vivo studies are in agreement with the antitumoral effects of MOR antagonists not only in cancer cells but also in cells of the tumor microenvironment. As an example, the MOR antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) reverses the immune-suppressive effects of opioids. One clinical study has reported (in a post hoc analysis) the association between the administration of a MOR antagonist, methylnaltrexone, and overall survival of patients with advanced malignancies. This study included patients from 2 randomized controlled trials designed to assess the efficacy of methylnaltrexone vs placebo for treatment of opioid-induced constipation. Methylnaltrexone administration was associated with significantly longer overall survival in patients with cancer, but not in patients without cancer. This finding suggests that the beneficial effect of opioids on overall survival may be specific to cancer pathogenesis.

In summary, although preclinical evidence linking opioids to cancer growth appears robust, whether and how this phenomenon may be occurring in humans requires further investigation. What may be true in theory or in laboratory and animal studies may be quite different from phenomena occurring in humans. Furthermore, most of the preclinical data are for morphine, whereas other opioids such as hydromorphone, methadone, or fentanyl, which are often used to treat pain in advanced malignancies, have not been investigated as extensively. Taken as a whole, the current status of understanding of adverse effects of pain and opioid therapy on tumor progression and overall survival is complicated and not definitive. In fact, we do not even have the first series of clinical trials on opioids and disease progression to guide us. In existing studies, it is difficult to determine the specific contribution of opioids to overall results and outcomes. This is an important area for future research.

Current awareness of the opioid epidemic has led to initiatives aimed at discovering nonopioid analgesics. However, many recent nonpharmacologic strategies such as deep brain stimulation and spinal cord stimulation function by releasing endogenous opioids. Therefore, the roles of pharmacologic as well as endogenous opioids need to be investigated in prospective clinical studies, to identify their inadvertent effects and develop specific preventive strategies (Fig. 2).

Taken together, these findings lead potentially to both a practical and ethical predicament. It is not conscionable to undertreat pain or to not consider existing research on potential adverse effects of opioid therapy on cancer progression and overall survival. A delicate balance needs to be accomplished between treating pain with opioids to improve functional status and tolerability of cancer treatment while preventing overprescribing of opioids which may cause undesirable side effects and potentially affect cancer outcomes. Providers will need to remain

Possible therapeutic strategies to be tested in prospective studies

- **Opioid-sparing strategies**
- **Pharmacological opioids**
- **Endogenous opioid receptor ligands**
- **Central and peripheral opioid receptors**
- **Selective peripheral opioid receptor antagonists**

Activate signaling pathways, cancer growth, and metastases

Worse QoL and survival

Figure 2. Proposed mechanism-based interventions to ameliorate opioid-induced cancer progression.
updated about the rapidly evolving evidence base regarding the potential adverse effects of pain or opioid therapy in patients with advanced malignancies. It is understandable that the lack of definitive findings about the adverse roles of pain and opioid therapy may be challenging for patients and physicians when deciding on pain management strategies. Given the primarily preclinical and emerging clinical evidence base regarding opioids, pain, and survival, it may be premature to discuss such information in great detail when obtaining initial informed consent for pain treatment. Reduction of patient suffering remains the foremost treatment goal, together with the ethical obligation to provide sufficiently informed, patient-centered care. When safe and appropriate, providers can recommend the use of nonopioid therapies and other pain management interventions, and use opioids sparingly and for a short period, in early-stage curable cancer where pain is usually due to cancer treatment or related to noncancer conditions. On the other hand, patients with advanced cancer, who experience pain related to progressive cancer, may be enrolled in studies testing strategies to reduce the potential adverse impact of long-term opioids on tumor progression. One such ongoing study (ClinicalTrials.gov #03087708) is the first prospective, multicenter, randomized, placebo-controlled, double-blind study testing whether a peripheral opioid receptor antagonist improves QoL and cancer outcomes in patients with advanced non–small cell lung cancer. It is our hope that the relevant safety and ethical obligations of pain management and opioid therapy among patients with cancer will be openly and transparently discussed among the diverse stakeholders, including patients, health care providers, regulatory and governmental agencies, pharmaceutical industry, and other interest groups. It is also our hope that prospective studies will investigate the efficacy of opioid-sparing strategies and novel nonopioid analogues. We recommend that opioid use be recorded for all patients with cancer, including (1) the etiology of pain for which opioids are required (ie, cancer vs noncancer pain), (2) the specific opioids and doses taken, (3) whether opioids were taken before a diagnosis of malignancy and, if so, for how long and for what condition, and (4) the doses, effectiveness, and tolerability of opioids taken on an ongoing basis after diagnosis of cancer. Such a registry would contain data generated during the course of active cancer treatment and survivorship and could provide information about opioid use and tumor growth. Registry data have informed acute and chronic fields of pain medicine. By doing the same in cancer pain, we hope there will be improved understanding of the roles of pain and opioid therapy on tumor progression and overall survival. Until such prospective data are available, opioids should continue to be used as needed to control cancer pain adequately.

Conflict of interest statement

K. Gupta is a consultant for Novartis and Tautona group and has received funding for drug research from 1910 Genetics and Girfols. The remaining authors have no conflicts of interest to declare.

Acknowledgements

Dr P. Gupta received support from the Veterans Health Administration; Dr K. Gupta is thankful to NIH/NHLBI 1U01 HL117664-01 for funding. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

[1] Armstrong AJ, Garrett-Mayer E, Ou Yang YC, Carducci MA, Tannock IJ, de Wit R, Eisenberger M. Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J Clin Oncol 2002;20:3965–70.

[2] Bimonte S, Barbieri A, Rea D, Palma G, Luciano A, Cuorvo A, Arra G, Izzo F. Morphine promotes tumor angiogenesis and increases breast cancer progression. BioMed Res Int 2015;2015:1–8.

[3] Börner C, Warnick B, Smida M, Hartig R, Lindquist JD, Schraven B, Hölt V, Kraus J. Mechanisms of opioid-mediated inhibition of human T cell receptor signaling. J Immunol 2009;183:882–9.

[4] Bortsov AV, Milikan RC, Beller I, Boortz-Marx RL, Arora H, McLean SA. Mu-opioid receptor gene A118G polymorphism predicts survival in patients with breast cancer. Anesthesiology 2012;116:896–902.

[5] Breivik H, Cherry B, Collett F, de Conno F, Filibert M, Foubert AJ, Cohen R, Dow L. Cancer-related pain: a pan-European survey of prevalence, treatment, and patient attitudes. Ann Oncol 2000;11:1129–33.

[6] Cata JP, Gottumukkala V, Thakar D, Keerty D, Geibhardt R, Liu DD. Effects of postoperative epidural analgesia on recurrence-free and overall survival in patients with nonsmall cell lung cancer. J Clin Anesth 2014;26:317–23.

[7] Cata JP, Singh V, Lee BM, Villareal J, Mehran JR, Yu J, Gottumukkala V, Lavon H, Ben-Eliyahu S. Lyn, and Src inhibitor, use of demethasone is associated with decreased overall survival after lung cancer surgery. J Anaesthesiol Clin Pharmacol 2017;33:317–31.

[8] Chen C, Farooqui M, Gupta K. Morphine stimulates vascular endothelial growth factor-like signaling in mouse retinal endothelial cells. Curr Neurowesc Res 2006;3:171–80.

[9] Connor SR, Pyenson B, Fitch K, Spence C, Iwasaki K. Comparing intermittent and continuous epidural morphine for postoperative pain management. Anesthesiology 2004;100:184–9.

[10] de Bonis J, Logothetis CJ, Molina A, Fizzoli K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, Staffurth JN, Maimarwting, Parwinar, S, Saffa, T Saig W, Hutson TE, Cheng T, Patterson H, Hainworth JD, Ryan CJ, Stemberg ON, Ellard SL, Flickson A, Saleh M, Scholz M, Efstathiou E, Zvi A, Blanchini D, Loriot Y, Chefos N, Kneos H, Harpp OM, Scher HI. Ablateranne and increased survival in metastatic prostate cancer. N Engl J Med 2011;364:1995–2005.

[11] de Bonis J, Oudard S, Ozuguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO, TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomized open-label trial. Lancet 2010;376:1147–54.

[12] Donahue RN, McLaughlin PJ, Zagon IS. Low-dose naltrexone suppresses ovarian cancer and exhibits enhanced inhibition in combination with cisplatin. Exp Biol Med 2011;236:883–95.

[13] Dong W, Chen MH, Yang YH, Zhang X, Huang MJ, Yang XJ, Wang HZ. The effect of demethasone on expressions of inflammatory factors in patients with radical resection of gastric cancer. Eur Rev Med Pharmacol Sci 2017;21:3510–5.

[14] Du KN, Feng L, Newhouse A, Mehta J, Lasala J, Mena GE, Hofstadter WL, Cata JP. Effects of intraoperative opioid use on recurrence-free and overall survival in patients with esophageal adenocarcinoma and squamous cell carcinoma. Anesth Analu 2018;127:210–16.

[15] Exadaktylos AK, Buggage DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 2006;105:680–4.

[16] Farooqui M, Li Y, Rogers T, Poonawala T, Griffin RJ, Song CW, Gupta K. COX-2 inhibitor celecoxib prevents chronic morphine-induced abrogation of angiogenesis, tumor growth, metastasis and mortality, without compromising analgesia. Br J Cancer 2007;97:1523–31.

[17] Forget P, Machiels JP, Coulle PG, Berliere M, Poncelet AJ, Tombal B, Stainier A, Legrand C, Canon JL, Kremer Y, De Kock M. Neutrophil: lymphocyte ratio and intraoperative use of ketorolac or doloferon are prognostic factors in different cohorts of patients undergoing lung, breast, and kidney cancer surgery. Ann Surg Oncol 2015;20:650–60.

[18] Forget P, Vanderherende J, Berliere M, Machiels JP, Nussbaum B, Legrand C, De Kock M. Do intraoperative analgesics influence breast
cancer recurrence after mastectomy? A retrospective analysis. Anesth Analg 2010;110:1630–5.

[10] Friesen C, Hormann I, Roscher M, Fichtner I, Alt A, Hilger R, Debatin KM, Miltner E. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma. Cell Cycle 2014;13:1560–70.

[11] Friesen C, Roscher M, Hormann I, Alt A, Hilger R, Debatin KM, Miltner E. Cell death sensitization of leukemia cells by opioid receptor activation. Onco Targets Ther 2013;6:677–90.

[12] Fujitaka N, Nguyen J, Chen C, Li Y, Pasjaz T, Niehans G, Johnson KN, Gupta V, Kratkeza RA, Gupta K. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg 2011;113:1533–64.

[13] Gach K, Szemraj J, Wysnbska J, Janecka A. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol Biol Rep 2010;38:1231–6.

[14] Gupta K, Chen C, Lutty G, Hebbel RP. Morphine promotes neovascularizing retinopathy in transgenic sickle mice. Blood Adv 2019;3:1073–85.

[15] Halabi S, Vogelzang NJ, Kornblith AB, Ou SS, Kornblith AB, Ou SS, Kantoff PW, Dawson NA, Small EJ, Paun NN. Pain and its impact on overall survival in men with metastatic castration-resistant prostate cancer. J Clin Oncol 2008;26:2544–9.

[16] Harimaya Y, Koizumi K, Andoh T, Nojima H, Kuraishi Y, Saiki I. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells. Cancer Lett 2002;187:121–7.

[17] He G, Li L, Guan E, Chen J, Qin Y, Xie Y. Fentanyl inhibits the progression of human gastric carcinoma MGC-803 cells by modulating NF-kappaB-dependent gene expression in vivo. Onc Lett 2016;15:563–71.

[18] Herndon JE II, Fleishman S, Kornblith AB, Kosty M, Green MR, Holland J. Heron JED, IL Fleishman S, Kornblith AB, Kosty M, Green MR, Holland J. Herndon JE II, Fleishman S, Kornblith AB, Kosty M, Green MR, Holland J. Morphin inhibits the progression of human gastric carcinoma MGC-803 cells by modulating NF-kappaB-dependent gene expression in vivo. Onc Lett 2016;15:563–71.

[19] Iwakawa S, Gupta K, Chang L, Schwartz R, Law PY, Yee D, Hebbel RP. Morphine stimulates angiogenesis by activating proangiogenic and survival-promotion signaling and promotes breast tumor growth. Cancer Res 2002;62:4491–8.

[20] Kob Bold L, Ramakrishnan S, Roy S. Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway. Am J Pathol 2010;177:984–97.

[21] Kohsagi S, Gupta K, Chang L, Schwartz R, Law FY, Yee D, Hebbel RP. Morphine stimulates angiogenesis by activating proangiogenic and survival-promotion signaling and promotes breast tumor growth. Cancer Res 2002;62:4491–8.

[22] Lavon H, Matzner P, Benbenishty A, Sorski L, Rossene E, Haldar E, Elbaz E, Cate JP, Guttumukula V, Ben-Eliyahu S. Dexametomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br J Anaesth 2018;120:188–96.

[23] Lennon FE, Mirzapaozova T, Mambsetsn B, Poroyko VA, Saliga R, Moss J, Singleton PA. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS One 2014;9:e98377.

[24] Lennon FE, Mirzapaozova T, Mambsetsn B, Saliga R, Moss J, Singleton PA. Overtreatment of the μ-opioid receptor in human non-small cell lung cancer promotes Ak and mTOR activation, tumor growth, and metastasis. Anesthesiology 2012;116:940–5.

[25] Lillenm OE, Reiners I, Kosty M, Green MR, LaRiviere PJ, Chen CT, Garcia JG, Salgia R, Smith MY, Sobel RE, Wallace CA. Monitoring the long-term safety of morphine: a pooled analysis of in- and out-patient studies. Eur J Clin Pharmacol 2018;64:597–605.

[26] Little P, Neudorf D, Thirion J, Hallett M, DeClerck F, Hebbel RP. Morphine stimulates angiogenesis by activating proangiogenic and survival-promotion signaling and promotes breast tumor growth. Cancer Res 2002;62:4491–8.

[27] Lunnin FE, Moss J, Singleton PA. The μ-opioid receptor in cancer progression: is there a direct effect? Anesthesiology 2012;116:940–5.

[28] Lillenm OE, Reiners I, Kosty M, Green MR, LaRiviere PJ, Chen CT, Garcia JG, Salgia R, Moss J, Singleton PA. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anes Analg 2011;112:558–67.

[29] Min TJ, Park SJ, Yi YH, Lee YS, Kim TW, Kim JH, Kim WY, Park YC. Morphine attenuates endothelial cell adhesion molecules induced by the supernatant of LPS-stimulated colon cancer cells. J Korean Med Sci 2011;26:747–52.

[30] Motz A, Lillemoe KD, Cameron JL, Kaufman HS, Yeo CJ, Pitt HA, Sauter PK. Mirza and Ilinden MM, Draeger M, Carroll B, Thiel T, VonWiller R, Rosenblatt MA, Eisenberg MA. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502–12.

[31] Tegeder I, Grosch S, Schmidtko A, Hausler A, Schmidt H, Niederberger E, Scholich K, Geisslinger G. G protein-independent G1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Oncogene 2003;22:1593–3.

[32] Trafton JA, Ramani A. Methadone: a new old drug with promises and pitfalls. Curr Pain Headache Rep 2009;13:24–30.

[33] Trajkov-Vidakovic M, de Graaf A, Voest EE, Teunissen SC. Symptoms tell it all: a systematic review of the value of symptom assessment to predict survival in advanced cancer patients. Crit Rev Oncol Hematol 2012;80:130–48.

[34] Uozaki S, Kobayashi K, Ohno S, Sakagami H, Kohase H, Nagashima M. Induction of non-apoptotic cell death by adrenergic agonists in human squamous cell carcinoma cell lines. Anticancer Res 2019;39:3519–29.
[61] van den Beuken-van Everdingen MH, Hochstenbach LM, Joosten EA, Tjan-Heijnen VC, Janssen DJ. Update on prevalence of pain in patients with cancer: systematic review and meta-analysis. J Pain Symptom Manage 2016;51:1070–90.

[62] Wang RD, Zhu Y, Ge YS, Xu GL, Jia WD. Perioperative analgesia with parecoxib sodium improves postoperative pain and immune function in patients undergoing hepatectomy for hepatocellular carcinoma. J Eval Clin Pract 2019. doi: 10.1111/jep.13256. [Epub ahead of print].

[63] Wolfe F, Michaud K. The national data bank for rheumatic diseases: a multi-registry rheumatic disease data bank. Rheumatol 2011;50:16–24.

[64] Wu Q, Chen X, Wang J, Sun P, Weng M, Chen W, Sun Z, Zhu M, Miao C. Nalmefene attenuates malignant potential in colorectal cancer cell via inhibition of opioid receptor. Acta Biochim Biophys Sin (Shanghai) 2018; 50:156–63.

[65] Xie N, Khabbazi S, Nassar ZD, Gregory K, Vithanage T, Anand-Apte B, Cabot PJ, Sturgess D, Shaw PN, Parat MO. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion. FASEB J 2017;31:5208–16.

[66] Xie N, Matigian N, Vithanage T, Gregory K, Nassar ZD, Cabot PJ, Shaw PN, Kikpatrick CM, Le Cao KA, Sturgess D, Parat M. Effect of perioperative opioids on cancer relevant circulating parameters: mu opioid receptor and toll-like receptor 4 activation potential, and proteolytic profile. Clin Cancer Res 2018;24:2319–27.

[67] Yao YS, Yao RY, Zhuang LK, Qi WW, Lv J, Zhou F, Qiu WS, Yue L. MOR1 expression in gastric cancer: a biomarker associated with poor outcome. Clin Transl Sci 2015;8:137–42.

[68] Zaslansky R, Rothaug J, Chapman RC, Backström R, Brill S, Engel C, Fletcher D, Fodor L, Furtk P, Gordon D, Komann M, Konrad C, Kopf A, Leykin Y, Pogatzki-Zahn E, Puig M, Rawal N, Schwenkglenks M, Taylor RS, Ullrich K, Volk T, Yahiaoui-Doktor M, Meissner W. Pain out: an international acute pain registry supporting clinicians in decision making and in quality improvement activities. J Eval Clin Pract 2014;20:1090–8.

[69] Zhang YF, Xu QX, Liao LD, Xu YE, Wu JY, Wu ZY, Shen JH, Li EM, Xu LY. Association of mu-opioid receptor expression with lymph node metastasis in esophageal squamous cell carcinoma. Dis Esophagus 2014;28:196–203.

[70] Zylla D, Gourley BL, Vang D, Jackson S, Boatman S, Lindgren B, Kuskowski MA, Le C, Gupta K, Gupta P. Opioid requirement, opioid receptor expression, and clinical outcomes in patients with advanced prostate cancer. Cancer 2013;119:4103–10.

[71] Zylla D, Kuskowski MA, Gupta K, Gupta P. Association of opioid requirement and cancer pain with survival in advanced non-small cell lung cancer. Br J Anaesth 2014;113:109–16.

[72] Zylla D, Steele G, Gupta P. A systematic review of the impact of pain on overall survival in patients with cancer. Support Care Cancer 2017;25:1687–98.