A Greedy Partition Lemma for Directed Domination

1Yair Caro and 2Michael A. Henning*

1Department of Mathematics and Physics
University of Haifa-Oranim
Tivon 36006, Israel
Email: yacaro@kvgeva.org.il

2Department of Mathematics
University of Johannesburg
Auckland Park 2006, South Africa
Email: mahenning@uj.ac.za

Abstract

A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex $u \in V(D) \setminus S$ has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by $\gamma(D)$, is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted $\Gamma_d(G)$, which is the maximum directed domination number $\gamma(D)$ over all orientations D of G. The directed domination number of a complete graph was first studied by Erdős [Math. Gaz. 47 (1963), 220–222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α denotes the independence number of a graph G, we show that $\alpha \leq \Gamma_d(G) \leq \alpha(1 + 2\ln(n/\alpha))$.

Keywords: directed domination; oriented graph; independence number.

AMS subject classification: 05C69

*Research supported in part by the South African National Research Foundation
1 Introduction

An asymmetric digraph or oriented graph \(D \) is a digraph that can be obtained from a graph \(G \) by assigning a direction to (that is, orienting) each edge of \(G \). The resulting digraph \(D \) is called an orientation of \(G \). Thus if \(D \) is an oriented graph, then for every pair \(u \) and \(v \) of distinct vertices of \(D \), at most one of \((u, v)\) and \((v, u)\) is an arc of \(D \). A directed dominating set, abbreviated DDS, in a directed graph \(D = (V, A) \) is a set \(S \) of vertices of \(V \) such that every vertex in \(V \setminus S \) is dominated by some vertex of \(S \); that is, every vertex \(u \in V \setminus S \) has an adjacent vertex \(v \) in \(S \) with \(v \) directed to \(u \). Every digraph has a DDS since the entire vertex set of the digraph is such a set.

The directed domination number of a directed graph \(D \), denoted by \(\gamma(D) \), is the minimum cardinality of a DDS in \(D \). A DDS of \(D \) of cardinality \(\gamma(D) \) is called a \(\gamma(D) \)-set. Directed domination in digraphs is well studied (cf. [2, 3, 9, 10, 12, 16, 17, 19, 22, 24]).

The directed domination number of a graph \(G \), denoted \(\Gamma_d(G) \), is defined in [7] as the maximum directed domination number \(\gamma(D) \) over all orientations \(D \) of \(G \); that is,

\[
\Gamma_d(G) = \max \{ \gamma(D) \mid \text{over all orientations } D \text{ of } G \}.
\]

The directed domination number of a complete graph was first studied by Erdős [14] albeit in disguised form. In 1962, Schütte [14] raised the question of given any positive integer \(k > 0 \), does there exist a tournament \(T_{n(k)} \) on \(n(k) \) vertices in which for any set \(S \) of \(k \) vertices, there is a vertex \(u \) which dominates all vertices in \(S \). Erdős [14] showed, by probabilistic arguments, that such a tournament \(T_{n(k)} \) does exist, for every positive integer \(k \). The proof of the following bounds on the directed domination number of a complete graph are along identical lines to that presented by Erdős [14]. This result can also be found in [24]. Throughout this paper, \(\log \) is to the base 2 while \(\ln \) denotes the logarithm in the natural base \(e \).

Theorem 1 (Erdős [14]) For \(n \geq 2 \), \(\log n - 2 \log(\log n) \leq \Gamma_d(K_n) \leq \log(n + 1) \).

In [7] this notion of directed domination in a complete graph is extended to directed domination of all graphs.

1.1 Notation

For notation and graph theory terminology we in general follow [18]. Specifically, let \(G = (V, E) \) be a graph with vertex set \(V \) of order \(n = |V| \) and edge set \(E \) of size \(m = |E| \), and let \(v \) be a vertex in \(V \). The open neighborhood of \(v \) is \(N_G(v) = \{ u \in V \mid uv \in E \} \) and the closed neighborhood of \(v \) is \(N_G[v] = \{ v \} \cup N_G(v) \). If the graph \(G \) is clear from context, we simply write \(N(v) \) and \(N[v] \) rather than \(N_G(v) \) and \(N_G[v] \), respectively. For a set \(S \subseteq V \), the subgraph induced by \(S \) is denoted by \(G[S] \). If \(A \) and \(B \) are subsets of \(V(G) \), we let \([A, B]\) denote the set of all edges between \(A \) and \(B \) in \(G \).
We denote the degree of \(v \) in \(G \) by \(d_G(v) \), or simply \(d(v) \) if the graph \(G \) is clear from context. The average degree in \(G \) is denoted by \(d_{av}(G) \). The minimum degree among the vertices of \(G \) is denoted by \(\delta(G) \), and the maximum degree by \(\Delta(G) \). The parameter \(\gamma(G) \) denotes the domination number of \(G \). The parameters \(\alpha(G) \) and \(\alpha'(G) \) denote the (vertex) independence number and the matching number, respectively, of \(G \), while the parameters \(\chi(G) \) and \(\chi'(G) \) denote the chromatic number and edge chromatic number, respectively, of \(G \). The covering number of \(G \), denoted by \(\beta(G) \), is the minimum number of vertices that covers all the edges of \(G \).

A vertex \(v \) in a digraph \(D \) out-dominates, or simply dominates, itself as well as all vertices \(u \) such that \((v, u) \) is an arc of \(D \). The out-neighborhood of \(v \), denoted \(N^+(v) \), is the set of all vertices \(u \) adjacent from \(v \) in \(D \); that is, \(N^+(v) = \{ u \mid (v, u) \in A(D) \} \). The out-degree of \(v \) is given by \(d^+(v) = |N^+(v)| \), and the maximum out-degree among the vertices of \(D \) is denoted by \(\Delta^+(D) \). The in-neighborhood of \(v \), denoted \(N^-(v) \), is the set of all vertices \(u \) adjacent to \(v \) in \(D \); that is, \(N^-(v) = \{ u \mid (u, v) \in A(D) \} \). The in-degree of \(v \) is given by \(d^-(v) = |N^-(v)| \). The closed in-neighborhood of \(v \) is the set \(N^-[v] = N^-(v) \cup \{ v \} \). The maximum in-degree among the vertices of \(D \) is denoted by \(\Delta^-(D) \).

1.2 Known Results

We shall need the following inequality chain established in \([7]\).

Theorem 2 \([7]\) For every graph \(G \) on \(n \) vertices, \(\gamma(G) \leq \alpha(G) \leq \Gamma_d(G) \leq n - \alpha'(G) \).

2 The Greedy Partition Lemma and its Applications

In this section we present our key lemma, which we call the Greedy Partition Lemma, and its applications. The Greedy Partition Lemma is a generalization of earlier results by Caro \([5, 6]\), Caro and Tuza \([8]\), and Jensen and Toft \([20]\).

First we introduce some additional terminology. Let \(G \) be a hypergraph and let \(P \) be a hypergraph property. Let \(P(G) = \max \{|V(H)| \mid H \text{ is an induced subhypergraph of } G \text{ that satisfies property } P \} \). Let \(\chi(G, P) \) be the minimum number \(q \) such that there exist a partition \(V(G) = (V_1, V_2, \ldots, V_q) \) such that \(V_i \) induces a subhypergraph having property \(P \) for all \(i = 1, 2, \ldots, q \). For example, if \(P \) is the property of independence, then \(P(G) = \alpha(G) \), while \(\chi(G, P) = \chi(G) \). If \(P \) is the property of edge independence, the \(P(G) = \alpha'(G) \), while \(\chi(G, P) = \chi'(G) \). If \(P \) is the property of being \(d \)-degenerate (recall that a \(d \)-degenerate graph is a graph \(G \) in which every induced subgraph of \(G \) has a vertex with degree at most \(d \)), then \(P(G) \) is the maximum cardinality of a \(d \)-degenerate subgraph and \(\chi(G, P) \) is the minimum partition of \(V(G) \) into induced \(d \)-degenerate graphs. For a subhypergraph \(H \) of a hypergraph \(G \), we let \(G - H \) be the subhypergraph of \(G \) with vertex set \(V(G) \setminus V(H) \).

We are now in a position to state the Greedy Partition Lemma.
Lemma 3 (Greedy Partition Lemma) Let \mathcal{H} be a class of hypergraphs closed under induced subhypergraphs. Let $t \geq 2$ be an integer and let $f : [t, \infty) \to [1, \infty)$ be a positive nondecreasing continuous function. Let P be a hypergraph property such that for every hypergraph $G \in \mathcal{H}$ the following holds.

(a) If $|V(G)| \leq t$, then $\chi(G, P) \leq |V(G)|$.

(b) If $|V(G)| \geq t$, then $|V(G)| \geq P(G) \geq f(|V(G)|)$.

Then for every hypergraph $G \in \mathcal{H}$ of order n,

$$\chi(G, P) \leq t + \int_t^{\max(n, t)} \frac{1}{f(x)} \, dx.$$

Proof. We proceed by induction on n. We first observe that the value of the given integral is always non-negative. If $n \leq t$, then by condition (a), $\chi(G, P) \leq n \leq t$, and the inequality holds trivially. This establishes the base case. For the inductive hypothesis, assume the inequality holds for every hypergraph in \mathcal{H} with less than n vertices and let $G \in \mathcal{H}$ of order n. As observed earlier, if $n \leq t$, then the inequality holds trivially. Hence we may assume that $n > t$. Let $P(G) = z = |V(H)|$ be the cardinality of the largest induced subhypergraph H of G that has property P. By condition (b), $z \geq f(n)$. If $z \geq n - t + 1$, then $n - z = |V(G) \setminus V(H)| \leq t - 1$, and so by condition (a), $\chi(G - H, P) \leq t - 1$. Hence, $\chi(G, P) \leq \chi(G - H, P) + 1 \leq t$ and the inequality holds trivially. Therefore we may assume that $z \leq n - t$, and so $|V(G) \setminus V(H)| \geq t$. Thus applying the inductive hypothesis to the induced subhypergraph $G - H \in \mathcal{H}$, and using condition (b), we have that

$$\int_t^n \frac{1}{f(x)} \, dx = \int_t^{n-z} \frac{1}{f(x)} \, dx + \int_{n-z}^n \frac{1}{f(x)} \, dx$$

$$\geq \chi(G - H, P) - t + \int_{n-z}^n \frac{1}{f(x)} \, dx$$

$$\geq \chi(G - H, P) - t + \int_{n-z}^n \frac{1}{f(n)} \, dx$$

$$= \chi(G - H, P) - t + z/f(n)$$

$$\geq \chi(G, P) - 1 - t + 1$$

$$\geq \chi(G, P) - t,$$

which completes the proof of the Greedy Partition Lemma. ☐

We next discuss several applications of the Greedy Partition Lemma. For this purpose, we shall need the following lemma. Recall that $d_{av}(G)$ denotes the average degree in a graph G.

4
Lemma 4 For \(k \geq 1 \) an integer, let \(G \) be a graph with \(k \geq \alpha(G) \) and let \(D \) be an orientation of \(G \). Let \(H \) be an induced subgraph of \(G \) of order \(n_H \geq k \) and size \(m_H \), and let \(D_H \) be the orientation of \(H \) induced by \(D \). Then the following holds.

(a) \(m_H \geq n_H(n_H - k)/2k \).
(b) \(\Delta^+(D_H) \geq (n_H - k)/2k \).

Proof. Since \(H \) is an induced subgraph of \(G \), every independent set in \(H \) is an independent set in \(G \). In particular, \(k \geq \alpha(G) \geq \alpha(H) \). Thus applying the Caro-Wei Theorem (see [4, 25]), we have

\[
\sum_{v \in V(H)} \frac{1}{d_H(v) + 1} \geq \frac{n_H}{d_{av}(H) + 1} = \frac{n_H}{(2m_H/n_H) + 1} = \frac{n_H^2}{2m_H + n_H},
\]

or, equivalently, \(m_H \geq n_H(n_H - k)/2k \). This establishes part (a). Part (b) follows readily from Part (a) and the observation that

\[
n_H \cdot \Delta^+(D_H) \geq \sum_{v \in V(D_H)} d^+(v) = m_H. \quad \Box
\]

2.1 Independence Number

Using the Greedy Partition Lemma we present an upper bound on the directed domination number of a graph in terms of its independence number. First we introduce some additional notation. Let \(\alpha \geq 1 \) be an integer and let \(\mathcal{G}_\alpha \) be the class of all graphs \(G \) with \(\alpha \geq \alpha(G) \). Since every induced subgraph \(F \) of \(G \in \mathcal{G}_\alpha \) satisfies \(\alpha \geq \alpha(G) \geq \alpha(F) \), the class \(\mathcal{G}_\alpha \) of graphs is closed under induced subgraphs.

Theorem 5 For \(\alpha \geq 1 \) an integer, if \(G \in \mathcal{G}_\alpha \) has order \(n \geq \alpha \), then

\[
\Gamma_d(G) \leq \alpha(1 + 2 \ln(n/\alpha)).
\]

Proof. If \(\alpha = 1 \), then \(G = K_n \) and by Theorem 4 \(\Gamma_d(G) \leq \log(n + 1) \leq 1 + 2 \ln n = \alpha(1 + 2 \ln(n/\alpha)). \) Hence we may assume that \(\alpha \geq 2 \), for otherwise the desired bound holds. We now apply the Greedy Partition Lemma with \(t = \alpha \) and with \(f(x) \) the positive nondecreasing continuous function on \([\alpha, \infty)\) defined by \(f(x) = (x - \alpha)/2\alpha + 1 \) where \(x \geq [\alpha, \infty) \). Let \(P(G) = 1 + \min\{\Delta^+(D)\} \), where the minimum is taken over all orientations \(D \) of \(G \). Then, \(\Gamma_d(G) \leq \chi(G, P) \). To show that the conditions of the Greedy Partition Lemma are satisfied, we consider an arbitrary graph \(H \in \mathcal{G}_\alpha \), where \(H \) has order \(|V(H)| = n_H \). If \(|V(H)| \leq \alpha \), then \(\Gamma_d(H) \leq \chi(H, P) \leq \alpha \) since in this case \(H \) may be the empty graph on \(\alpha \) vertices. Thus condition (a) of Lemma 3 holds. If \(|V(H)| \geq \alpha \) and \(D \) is an arbitrary orientation of \(H \), then by Lemma 4 \(\Delta^+(D) \geq (n_H - \alpha)/2\alpha \), and so \(|V(H)| \geq P(H) \geq \)}
\[(n_H - \alpha)/2\alpha + 1 = f(n_H).\] Therefore condition (b) of Lemma 3 holds. Hence by the Greedy Partition Lemma,

\[
\Gamma_d(G) \leq \alpha + \int_{\alpha}^{n} \frac{1}{(x - \alpha)/2\alpha + 1} \, dx \\
= \alpha + 2\alpha \int_{\alpha}^{n} \frac{1}{x + \alpha} \, dx \\
= \alpha + 2\alpha \ln((n + \alpha)/2\alpha) \\
\leq \alpha + 2\alpha \ln(n/\alpha) \\
= \alpha(1 + 2\ln(n/\alpha)). \tag*{\Box}
\]

Observe that for every graph \(G\) of order \(n\), we have \(\chi(G) \geq n/\alpha(G)\) and \(d_{av}(G) + 1 \geq n/\alpha(G)\). Hence as an immediate consequence of Theorem 5, we have the following bounds on the directed domination number of a graph.

Corollary 1 Let \(G\) be a graph of order \(n\). Then the following holds.

(a) \(\Gamma_d(G) \leq \alpha(G)(1 + 2\ln(\chi(G)))\).
(b) \(\Gamma_d(G) \leq \alpha(G)(1 + 2\ln(d_{av}(G) + 1))\).

2.2 Degenerate Graphs

A \(d\)-degenerate graph is a graph \(G\) in which every induced subgraph of \(G\) has a vertex with degree at most \(d\). The property of being \(d\)-degenerate is a hereditary property that is closed under induced subgraphs, as is the property of the complement of a graph being \(d\)-degenerate. For \(d \geq 1\) an integer, let \(\mathcal{F}_d\) be the class of all graphs \(G\) whose complement is a \(d\)-degenerate graph. Thus the class \(\mathcal{F}_d\) of graphs is closed under induced subgraphs. We shall need the following lemma.

Lemma 6 For \(d \geq 1\) an integer, let \(G \in \mathcal{F}_d\) and let \(H\) be an induced subgraph of \(G\) of order \(n_H\). If \(D\) is an orientation of \(G\) and \(D_H\) is the orientation of \(H\) induced by \(D\), then \(\Delta^+(D_H) > (n_H - 1)/2 - d\).

Proof. Since \(G \in \mathcal{F}_d\), the graph \(G\) is the complement of a \(d\)-degenerate graph \(\overline{G}\). Let \(G\) have order \(n\) and size \(m\), and let \(\overline{G}\) have size \(\overline{m}\). It is a well-known fact that we can label the vertices of the \(d\)-degenerate graph \(\overline{G}\) with vertex labels \(1, 2, \ldots, n\) such that each vertex with label \(i\) is incident to at most \(d\) vertices with label greater than \(i\), implying that \(\overline{m} \leq dn - d(d + 1)/2\). Therefore, \(m \geq n(n - 1)/2 - dn + d(d + 1)/2\). This is true for every graph \(G\) whose complement is a \(d\)-degenerate graph. In particular, this is true for the induced subgraph \(H\) of \(G\). Therefore if \(H\) has size \(m_H\), we have \(\sum_{v \in V(H)} d^-_{D_H}(v) = m_H \geq n_H(n_H - 1)/2 - dn_H + d(d + 1)/2\). Hence, \(\Delta^+(D_H) > (n_H - 1)/2 - d\). \(\Box\)
Theorem 7 For \(d \geq 1 \) an integer, if \(G \in \mathcal{F}_d \) has order \(n \), then
\[
\Gamma_d(G) \leq 2d + 1 + 2\ln(n - 2d + 1)/2.
\]

Proof. We apply the Greedy Partition Lemma with \(t = 2d + 1 \) and with \(f(x) = (x - 1)/2 - d + 1 \) where \(x \geq [2d + 1, \infty) \). Let \(P(G) = 1 + \min\{\Delta^+(D)\} \), where the minimum is taken over all orientations \(D \) of \(G \). Then, \(\Gamma_d(G) \leq \chi(G, P) \). To show that the conditions of the Greedy Partition Lemma are satisfied, we consider an arbitrary graph \(H \in \mathcal{F}_d \), where \(H \) has order \(|V(H)| = n_H \). If \(|V(H)| \leq 2d + 1 \), then \(\Gamma_d(H) \leq \chi(H, P) \leq 2d + 1 \) since in this case \(H \) may be the empty graph on \(2d + 1 \) vertices. Thus condition (a) of Lemma 3 holds. If \(|V(H)| \geq 2d + 1 \) and \(D \) is an arbitrary orientation of \(H \), then by Lemma 6, \(\Delta^+(D) \geq (n_H - 1)/2 - d \), and so \(|V(H)| \geq P(H) \geq (n_H - 1)/2 - d + 1 = f(n_H) \). Therefore condition (b) of Lemma 3 holds. Hence by the Greedy Partition Lemma,
\[
\Gamma_d(G) \leq 2d + 1 + \int_{2d+1}^{n} \frac{1}{(x - 1)/2 - d + 1} \, dx
\]
\[
= 2d + 1 + \int_{2d+1}^{n} \left(\frac{2}{x - 2d + 1} \right) \, dx
\]
\[
= 2d + 1 + 2 \int_{2}^{n-2d+1} \frac{1}{x} \, dx
\]
\[
\leq 2d + 1 + 2\ln(n - 2d + 1)/2. \square
\]

2.3 \(K_{1,m} \)-Free Graphs

In this section, we establish an upper bound on the directed domination number of a \(K_{1,m} \)-free graph. We first recall the well-known bound for the usual domination number \(\gamma \), which was proved independently by Arnautov in 1974 and in 1975 by Lovász and by Payan.

Theorem 8 (Arnautov [1], Lovász [21], Payan [23]) If \(G \) is a graph on \(n \) vertices with minimum degree \(\delta \), then \(\gamma(G) \leq n(\log(\delta + 1) + 1)/(\delta + 1) \).

We show that the above bound on \(\gamma \) is nearly preserved by the directed domination number \(\Gamma_d \) when we restrict our attention to \(K_{1,m} \)-free graphs. For this purpose, we shall need the following result due to Faudree et al. [15].

Theorem 9 ([15]) If \(G \) is a \(G \) is a \(K_{1,m} \)-free graph of order \(n \) with \(\delta(G) = \delta \) and \(\alpha(G) = \alpha \), then \(\alpha \leq (m - 1)n/(\delta + m - 1) \).

We shall prove the following result.
Theorem 10 For $m \geq 3$, if G is a $K_{1,m}$-free graph of order n with $\delta(G) = \delta$, then
\[\Gamma_d(G) < (2(m - 1)n \ln(\delta + m - 1))/ (\delta + m - 1).\]

Proof. If $\delta < (\sqrt{e} - 1)(m - 1)$, where e is the base of the natural logarithm, then $\delta < m - 1$ and so $(2(m - 1)n \ln(\delta + m - 1))/ (\delta + m - 1) > n \ln(\delta + m - 1) > n$. Hence we may assume that $\delta \geq (\sqrt{e} - 1)(m - 1)$, for otherwise the desired upper bound holds trivially. By Theorem 9, $\alpha \leq (m - 1)n/(\delta + m - 1)$. Substituting $\delta \geq (\sqrt{e} - 1)(m - 1)$ into this inequality, we get $\alpha \leq (m - 1)n / ((\sqrt{e} - 1)(m - 1) + m - 1) = (m - 1)n / (\sqrt{e}(m - 1) = n / \sqrt{e}$. Since the function $x(1 + 2 \ln(n / x))$ is monotone increasing in the interval $[1, n / \sqrt{e}]$, we get, by Theorem 5, that
\[\Gamma_d(G) \leq \alpha(1 + 2 \ln(n / \alpha)) \leq ((m - 1)n / (\delta + m - 1))(1 + 2 \ln(n(\delta + m - 1) / (m - 1)n)) = ((m - 1)n / (\delta + m - 1))(1 + 2 \ln((\delta + m - 1)/(m - 1))) = 2(m - 1)n(1/2 + \ln((\delta + m - 1)/(m - 1)))/ (\delta + m - 1) = 2(m - 1)n(\ln \sqrt{e} + \ln((\delta + m - 1)/(m - 1)))/ (\delta + m - 1) < (2(m - 1)n \ln(\delta + m - 1)/ (\delta + m - 1),\]
as $\sqrt{e} < m - 1$. □

We observe that as a special case of Theorem 10, we have that if G is a claw-free graph of order n with $\delta(G) = \delta$, then $\Gamma_d(G) \leq (4n(\log(\delta + 2)))(\delta + 2)$.

2.4 Nordhaus-Gaddum-Type Bounds

In this section we consider Nordhaus-Gaddum-type bounds for the directed domination of a graph. Let \mathcal{G}_n denote the family of all graphs of order n. We define
\[\text{NG}_{\min}(n) = \min \left\{ \Gamma_d(G) + \Gamma_d(\overline{G}) \right\}\]
\[\text{NG}_{\max}(n) = \max \left\{ \Gamma_d(G) + \Gamma_d(\overline{G}) \right\}\]
where the minimum and maximum are taken over all graphs $G \in \mathcal{G}_n$. Chartrand and Schuster [11] established the following Nordhaus-Gaddum inequalities for the matching number: If G is a graph on n vertices, then $\lceil n / 2 \rceil \leq \alpha'(G) + \alpha'(\overline{G}) \leq 2 \lceil n / 2 \rceil$.

Theorem 11 The following holds.
(a) $c_1 \log n \leq \text{NG}_{\min}(n) \leq c_2 (\log n)^2$ for some constants c_1 and c_2.
(b) $n + \log n - 2 \log(\log n) \leq \text{NG}_{\max}(n) \leq n + \lceil n / 2 \rceil$.

Proof. (a) By Ramsey’s theory, for all graphs $G \in \mathcal{G}_n$ we have $\max \{ \alpha(G), \alpha(G) \} \geq c \log n$ for some constant c. Hence by Theorem 2(a), $\Gamma_d(G) + \Gamma_d(\overline{G}) \geq \alpha(G) + \alpha(\overline{G}) \geq c \log n$.
for some constant c_1. Further by Ramsey’s theory there exists a graph $G \in \mathcal{G}_n$ such that $\max\{\alpha(G), \alpha(\overline{G})\} \leq d \log n$ for some constant d. Hence by Theorem 3 $\Gamma_d(G) + \Gamma_d(\overline{G}) \leq 2d \log n(1 + 2 \log(n/d \log n)) \leq c_2(\log n)^2$ for some constant c_2. This establishes Part (a).

(b) By Theorem 1 $\Gamma_d(K_n) + \Gamma_d(\overline{K}_n) \leq n + \log n - 2 \log(\log n)$. Hence, $\text{NG}_{\text{max}}(n) \geq n + \log n - 2 \log(\log n)$. By Theorem 2(b) and by the Nordhaus–Gaddum inequalities, we have that $\Gamma_d(G) + \Gamma_d(\overline{G}) \leq 2n - (\alpha'(G) + \alpha'(\overline{G})) \leq 2n - \lfloor n/2 \rfloor = n + \lfloor n/2 \rfloor$. \square

3 Two Generalizations

In this section, we present two general frameworks of directed domination in graphs.

3.1 Directed Multiple Domination

For an integer $r \geq 1$, a directed r-dominating set, abbreviated DrDS, in a directed graph $D = (V, A)$ is a set S of vertices of V such that for every vertex $u \in V \setminus S$, there are at least r vertices v in S with v directed to u. The directed r-domination number of a directed graph D, denoted by $\gamma_r(D)$, is the minimum cardinality of a DrDS in D. An DrDS of D of cardinality $\gamma_r(D)$ is called a $\gamma_r(D)$-set. The directed r-domination number of a graph G, denoted $\Gamma_{d,r}(G)$, is defined as the maximum directed r-domination number $\gamma_r(D)$ over all orientations D of G; that is, $\Gamma_{d,r}(G) = \max\{\gamma_r(D) \mid \text{over all orientations } D \text{ of } G\}$. In particular, we note that $\Gamma_d(G) = \Gamma_{d,1}(G)$.

Theorem 12 Let $r \geq 1$ be an integer. Let G be a graph of order n with $\alpha(G) = \alpha$. Then the following holds.

(a) $\Gamma_{d,r}(K_n) \leq r \log(n + 1)$.

(b) $\Gamma_{d,r}(G) \leq r \alpha(1 + 2 \ln(n/\alpha))$.

Proof. (a) By Theorem 3 $\Gamma_d(K_n) \leq \log(n + 1)$. Let D_1 be an orientation of K_n and let S_1 be a $\gamma(D_1)$-set. Then, $|S_1| \leq \log(n + 1)$. We now remove the vertices of the DDS S_1 from D_1 to produce an orientation D_2 of K_{n_1} where $n_1 = n - |S_1|$. Let S_2 be a $\gamma(D_2)$-set. By Theorem 3 $|S_2| \leq \log(n_1 + 1) < \log(n + 1)$. We now remove the vertices of the DDS S_2 from D_2 to produce an orientation D_3 of K_{n_2} where $n_2 = n - |S_1| - |S_2|$ and we let S_3 be a $\gamma(D_3)$-set. Continuing in this way, we produce a sequence S_1, S_2, \ldots, S_r of sets whose union is a DrDS of K_n of cardinality $\sum_{i=1}^{r} |S_i| \leq r \log(n + 1)$. This is true for every orientation D of K_n. Hence, $\Gamma_{d,r}(K_n) \leq r \log(n + 1)$. This establishes Part (a).

(b) By Theorem 3 $\Gamma_d(G) \leq \alpha(1 + 2 \ln(n/\alpha))$. We first consider the case when $\alpha \geq n/\sqrt{e}$. Then, $r \alpha(1 + 2 \ln(n/\alpha)) > n$ for $r = 2$. However the function $x(1 + 2 \ln(n/x))$ is monotone increasing in the interval $[1, n/\sqrt{e}]$ and we may therefore assume that $\alpha \leq n/\sqrt{e}$, for otherwise the desired result holds trivially.
Let D_1 be an arbitrary orientation of G and let S_1 be a DDS of G. We now remove the vertices of S_1 from D_1 to produce an orientation D_2 of the graph $G_1 = G - S_1$ where G_1 has order $n_1 = n - |S|$. Let $\alpha(G_1) = \alpha_1$. Since G_1 is an induced subgraph of G, we have $\alpha_1 \leq \alpha$. By Theorem 13, $\Gamma_d(G_1) \leq \alpha_1 \left(1 + 2\ln \left(n_1/\alpha_1\right)\right) < \alpha_1 \left(1 + 2\ln \left(n/\alpha_1\right)\right)$. Since $\alpha_1 \leq \alpha \leq n/\sqrt{e}$, the monotonicity of the function $x(1 + 2\ln(n/x))$ in the interval $[1, n/\sqrt{e}]$ implies that $\alpha_1 \left(1 + 2\ln \left(n/\alpha_1\right)\right) \leq \alpha \left(1 + 2\ln \left(n/\alpha\right)\right)$. Hence, $\Gamma_d(G_1) < \alpha \left(1 + 2\ln \left(n/\alpha\right)\right)$.

Let S_2 be a $\gamma(D_2)$-set, and so $|S_2| < \alpha \left(1 + 2\ln \left(n/\alpha\right)\right)$. We now remove the vertices of the DDS S_2 from D_2 to produce an orientation D_3 of $G_2 = G_1 - S_2$ where $n_2 = n - |S_1| - |S_2|$ and we let S_3 be a $\gamma(D_3)$-set. Continuing in this way, we produce a sequence S_1, S_2, \ldots, S_r of sets whose union is a DrDS of G of cardinality $\sum_{i=1}^r |S_i| \leq r\alpha \left(1 + 2\ln \left(n/\alpha\right)\right)$. This is true for every orientation D of G. Hence, $\Gamma_{d,r}(G) \leq r\alpha \left(1 + 2\ln \left(n/\alpha\right)\right)$. This establishes Part (b). □

3.2 Directed Distance Domination

Let $D = (V, A)$ be a directed graph. The distance $d_D(u, v)$ from a vertex u to a vertex v in D is the number of edges on a shortest directed path from u to v. For an integer $d \geq 1$, a directed d-distance dominating set, abbreviated DdDDS, in D is a set U of vertices of V such that for every vertex $v \in V \setminus U$, there is a vertex $u \in U$ with $d_D(u, v) \leq d$. The directed d-distance domination number of a directed graph D, denoted by $\gamma(D, d)$, is the minimum cardinality of a DdDDS in D. The directed d-distance domination number of a graph G, denoted $\Gamma_d(G, d)$, is defined as the maximum directed d-distance domination number $\gamma_d(D, d)$ over all orientations D of G; that is, $\Gamma_d(G, d) = \max\{\gamma(D, d) \mid \text{ over all orientations } D \text{ of } G\}$.

In particular, we note that $\Gamma_d(G) = \Gamma_d(G, 1)$.

An independent set U of vertices in D is called a semi-kernel of D if for every vertex $v \in V(D) \setminus U$, there is a vertex $u \in U$ such that $d_D(u, v) \leq 2$. For the proof of our next result we will use the following theorem due to Chvátal and Lovász [13].

Theorem 13 (Chvátal, Lovász [13]) Every directed graph contains a semi-kernel.

Theorem 14 For every integer $d \geq 2$, $\gamma_d(G, d) = \alpha(G)$.

Proof. Let S be a maximum independent set in G and let D be an orientation obtained from G by directing all edges in $[S, V \setminus S]$ from S to $V \setminus S$ and directing all other edges arbitrarily. Every directed d-distance dominating set must contain S since no vertex of S is reachable in D from any other vertex of $V(D)$. Hence, $\Gamma_d(G, d) \geq |S| = \alpha(G)$. However if D^* is an arbitrary orientation of the graph G, then by Theorem 13 the oriented graph D^* has a semi-kernel S^*. Thus, $\gamma(D, d) \leq |S^*| \leq \alpha(G)$. Since this is true for every orientation of G, we have that $\Gamma_d(G, d) \leq \alpha(G)$. Consequently, $\gamma_d(G, d) = \alpha(G)$. □
References

[1] V. I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. *Prikl. Mat. i Programmirovanie Vyp.* 11 (1974), 3-8, 126.

[2] S. Arumugam, K. Jacob, and L. Volkman, Total and connected domination in digraphs. *Australas. J. Combin.* 39 (2007), 283–292.

[3] A. Bhattacharya and G. R. Vijayakumar, Domination in digraphs and variants of domination in graphs. *J. Combin. Inform. System Sci.* 30 (2005), 19–24.

[4] Y. Caro, New results on the independence number. *Tech. Report, Tel-Aviv University* (1979).

[5] Y. Caro, On the covering number of combinatorial structures. *Ars Combin.* 29A (1990), 111–124.

[6] Y. Caro, Colorability, frequency and Graffiti-119. *J. Combin. Math. Combin. Comput.* 27 (1998), 129–134.

[7] Y. Caro and M. A. Henning, Directed domination in oriented graphs, manuscript 2010.

[8] Y. Caro and Z. Tuza, Decomposition of partially ordered sets into chains and antichains of given size. *Order* 5 (1988), 245–255.

[9] G. Chartrand, P. Dankelmann, M. Schultz, and H.C. Swart, Twin domination in digraphs. *Ars Combin.* 67 (2003), 105–114.

[10] G. Chartrand, F. Harary, and B. Quan Yue, On the out-domination and in-domination numbers of a digraph. *Discrete Math.* 197/198 (1999), 179-183.

[11] G. Chartrand and S. Schuster, On the independence numbers of complementary graphs. *Transactions of the New York Academy of Sciences* 36 (1974), 247-251.

[12] G. Chartrand, D. W. VanderJagt and B. Quan Yue, Orientable domination in graphs. *Congr. Numer.* 119 (1996), 51-63.

[13] V. Chvátal, L. Lovász, Every directed graph has a semi-kernel, *Hypergraph Seminar* (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, pp. 175.

[14] P. Erdős, On Schütte problem. *Math. Gaz.* 47 (1963), 220–222.

[15] R. J. Faudree, R. J. Gould, M. S. Jacobson, L. M. Lesniak, and T. E. Lindquester, On independent generalized degree and independence in $K(1,m)$-free graphs. *Discrete Math.* 103 (1992), 17–24.

[16] Y. Fu, Dominating set and converse dominating set of a directed graph. *Amer. Math. Monthly* 75 (1968), 861-863.
[17] J. Ghosal, R. Laskar and D. Pillone, Domination in digraphs. In: *Domination in Graphs, Advanced Topics*. (T.W. Haynes, S.T. Hedetniemi and P.J. Slater, eds.). Marcel Dekker, New York (1998), 401-437.

[18] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc. New York, 1998.

[19] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc. New York, 1998.

[20] T. R. Jensen and B. Toft, Graph coloring problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. xxii+295 pp.

[21] L. Lovász, On the ratio of optimal integral and fractional covers. *Discrete Math.* 13 (1975), 383-390.

[22] C. Lee, Domination in digraphs. *J. Korean Math. Soc.* 35 (1998), 843–853.

[23] C. Payan, Sur le nombre dabsorption d'un graphe simple, Cahiers Centre Études Recherche Opér. 17 (1975), no. 2-4, 307-317, Colloque sur la Théorie des Graphes (Paris, 1974).

[24] K. B. Reid, A. A. McRae, S. M. Hedetniemi, and S. T. Hedetniemi, Domination and irredundance in tournaments. *Australas. J. Combin.* 29 (2004), 157–172.

[25] V. K. Wei, A lower bound on the stability number of a simple graph. *Bell Lab. Tech. Memo.* No. 81-11217-9 (1981).