ABSTRACT: Two-dimensional (2D) semiconductors have been proposed for heterogeneous integration with existing silicon technology; however, their chemical vapor deposition (CVD) growth temperatures are often too high. Here, we demonstrate direct CVD solid-source precursor synthesis of continuous monolayer (1L) MoS2 films at 560 °C in 50 min, within the 450-to-600 °C, 2 h thermal budget window required for back-end-of-the-line compatibility with modern silicon technology. Transistor measurements reveal on-state current up to ~140 μA/μm at 1 V drain-to-source voltage for 100 nm channel lengths, the highest reported to date for 1L MoS2 grown below 600 °C using solid-source precursors. The effective mobility from transfer length method test structures is 29 ± 5 cm²/Vs at 6.1 × 10¹² cm⁻² electron density, which is comparable to mobilities reported from films grown at higher temperatures. The results of this work provide a path toward the realization of high-quality, thermal-budget-compatible 2D semiconductors for heterogeneous integration with silicon manufacturing.

KEYWORDS: 2D materials, transition metal dichalcogenides, MoS₂, molybdenum disulfide, BEOL, back-end-of-the-line, chemical vapor deposition, CVD growth, carrier mobility

INTRODUCTION

Since the era of the first integrated circuits, improving semiconductor device density has continuously translated into benefits for more advanced computing systems.¹ The horizontally stacked gate-all-around nanosheet transistor with 3 nm thick Si nanosheets is expected to replace the FinFET structure to continue transistor scaling beyond the 5 nm technology node.² However, further gate length scaling or better control over off-state leakage requires thinner body channel materials,³ making atomically thin two-dimensional (2D) materials extremely appealing for use in next-generation computing devices. While graphene, the first 2D material discovered, is a semimetal with 0 eV band gap,⁴ a class of 2D layered materials known as transition-metal dichalcogenides (TMDs) have band gaps ranging from semimetallic (0 eV) to semiconducting (~2.5 eV) energies.⁵,⁶ TMDs retain sizable band gaps and carrier mobilities down to monolayer thicknesses⁷ less than 1 nm, whereas Si thinned below ~4 nm faces severe mobility degradation issues due to surface roughness fluctuations.⁸–¹⁰

Specifically, MoS₂ has become one of the most promising TMDs due to its band gap (~2.2 eV for monolayer MoS₂¹¹,¹²) and controllable growth of consistent large-area MoS₂ films down to monolayer (1L) thicknesses, making MoS₂ a viable candidate for large-scale semiconductor applications.¹³–¹⁸ Although moving MoS₂ away from tedious and inconsistent mechanical exfoliation techniques has enabled systematic studies for electronics applications,¹⁶,¹⁹,²⁰ the quality of synthesized MoS₂ has not always been ideal, especially from the standpoint of the device fabrication thermal budget. If MoS₂ is to be integrated in the back end (i.e., after silicon) of modern integrated circuits, the fabrication process of as-grown MoS₂ transistors cannot exceed the range of 450–600 °C (depending on the process time) for integration with logic applications,²¹–²⁴ although some three-dimensional (3D) vertical memory applications can withstand >700 °C.²² For example, irreversible degradation of certain silicide contacts, interlayer dielectrics, and diffusion barrier layers have been observed with thermal budgets over 600 °C for 2 h.²¹,²⁶,²⁷

In this work, we report direct chemical vapor deposition (CVD) growth of continuous monolayer MoS₂ films using solid-source precursors at 560 °C in 50 min, within the thermal budget of modern integrated circuit processing. Comparing the
metrics of the I_{on}/I_{off} current ratio, drive current, contact resistance, and carrier mobility, transistors made from these as-grown films show performance levels similar to those reported for monolayer MoS$_2$ grown at higher temperatures. This work provides a path toward the realization of high-quality, thermal-budget-compatible TMD materials, which could further improve future computing and data storage.

GROWTH AND MATERIAL CHARACTERIZATION

The thermal budget for modern silicon integrated circuit processing dictates that fabrication of BEOL (back-end-of-the-line) devices and materials cannot exceed 550 °C for 2 h. This limitation is imposed by gate work function instability and silicide contact degradation. Certain interlayer low-κ dielectrics (e.g., SiCOH) could require even lower thermal budgets, below 450 °C for 2 h, although SiCOH integrity could be maintained up to 525 °C for 2 h using some BEOL processes. Thus, in order to incorporate new materials such as MoS$_2$ into stacked, heterogeneous integrated circuits that increase the transistor density in the third dimension, their BEOL thermal budget becomes crucial. However, direct monolayer (1L) MoS$_2$ growths with good electrical properties have typically been obtained using solid-source precursor CVD above 650 °C. Wafer-scale 1L MoS$_2$ grown using metal–organic CVD (MOCVD) at or below 500 °C appears within the BEOL temperature budget, but the growth times have been >8 h, which limit throughput, and the average carrier mobilities reported remain lower than the best MoS$_2$ grown at higher temperatures. Efforts to develop atomic layer deposition of MoS$_2$ at temperatures as low as 50 °C are also underway, but the resulting films are amorphous and require post-growth anneals above 800 °C to improve their crystallinity.

Here, we grew continuous 1L MoS$_2$ films at 560 °C in 50 min using solid sulfur (S) and molybdenum trioxide (MoO$_3$).
precursors with the aid of perylene-3,4,9,10 tetracarboxylic acid tetrapotassium salt (PTAS).15,15,17,18 PTAS dissolved in water is deposited as droplets around the perimeter of 1.5 \times 2 cm chips with thermally grown SiO\textsubscript{2} on p+ silicon, which also serves as the back-gate for field-effect transistors (FETs).13 The PTAS droplets dry up into “coffee rings” around the perimeter of the substrate before the seeded SiO\textsubscript{2}/Si chips are placed face down on top of an alumina (Al\textsubscript{2}O\textsubscript{3}) crucible containing MoO\textsubscript{3} powder. Trace amounts of PTAS diffuse from the dried “coffee rings” toward the center of the chip to facilitate MoS\textsubscript{2} nucleation during growth. Excess solid sulfur source melted in a quartz boat is placed at an optimal position upstream near the incoming Ar gas flow inlet, all enclosed within a cylindrical quartz tube.

In addition to the PTAS seed layer promoting initial MoS\textsubscript{2} nucleation from which grains grow, the trace amounts of carbon from the diffusing seed layer also act as a catalyst, promoting reduction of MoO\textsubscript{3} powder into volatile suboxide MoO\textsubscript{3−x}.45 The reduction of MoO\textsubscript{3} into MoO\textsubscript{3−x} is crucial for incoming S to react with volatile molybdenum (Mo) species in order to grow MoS\textsubscript{2}. It is important to note that at growth temperatures around 560 °C, MoS\textsubscript{2} reduction is near the limit of reaction with trace amounts of carbon present.37 Both the reduced system pressure of 490 Torr and the incoming volatile sulfur introduced at elevated temperatures promote the reduction of MoO\textsubscript{3} into volatile suboxide MoO\textsubscript{3−x}.45 When sufficient volatile MoO\textsubscript{3−x} is matched with an optimal flux of incoming sulfur atoms on the substrate surface, further reaction occurs to grow 1L MoS\textsubscript{2} films. As shown in Figure 1a,b, relatively clean 1L MoS\textsubscript{2} films can be grown at 560 °C in 50 min on 1.5 \times 2 cm chips. This is the lowest thermal budget that produced clean, sizable (>10 \textmu m) MoS\textsubscript{2} triangular grains merged into a continuous film using solid source precursors in our system. Larger \sim 60 \textmu m triangular grains are seen (a) 7 mm from the edge of the substrate, which merge into a continuous film with overlapping grain boundaries at (b) the center of the substrate.

Raman spectroscopy and photoluminescence (PL) are utilized to confirm that 1L MoS\textsubscript{2} is present from its characteristic phonon (lattice vibrations) and excitonic (electron–hole pair generation) properties, respectively. In order to ensure strong, well-defined detectable signals, all Raman and PL measurements were performed on 1L MoS\textsubscript{2} grown on 90 nm SiO\textsubscript{2}/Si substrates using a green laser with excitation wavelength of 532 nm. Due to the Lorentzian nature of the Raman (and PL) peaks and the Gaussian nature of the laser spatial intensity, pseudo-Voigt curves were used to capture each peak fit.49 Figure 1c shows the Raman spectrum of 1L MoS\textsubscript{2} grown at 560 °C (blue dots). Pseudo-Voigt curves (black lines) fit the Raman peaks of 1L MoS\textsubscript{2}, namely, the in-plane E' mode at 384.5 cm−1 and the out-of-plane A\textsubscript{1} mode at 405.3 cm−1 with a peak separation \Delta f \approx 20.8 cm−1, which is characteristic of as-grown 1L MoS\textsubscript{2} with slight intrinsic tensile strain due to thermal coefficient of expansion mismatch between the 2D material and the underlying SiO\textsubscript{2} substrate.31 Because odd-numbered, few-layer MoS\textsubscript{2} (including 1L MoS\textsubscript{2}) belong to the D\textsubscript{6h} point group, the two main Raman active modes are denoted E' and A\textsubscript{1}.13,52 The 2LA(M) peak is seen around 453.3 cm−1, and the transverse optical (TO) shoulder peak is seen at 378.8 cm−1.53

Characteristic PL measurements are shown in Figure 1d. We note that these probe the optical band gap of 1L MoS\textsubscript{2}, which is smaller than the electronic gap of 1L MoS\textsubscript{2} by the exciton binding energy (0.2 to 0.6 eV),48 and all three of these energies depend on the environmental dielectric screening.54 Pseudo-Voigt curves (black lines) fit the PL spectrum, identifying the ground state A exciton at 1.847 eV and the charged A− trion at 1.810 eV. (The A− trion is a charged exciton with an extra electron coupled to the electron–hole pair.) We did not observe a B exciton in our samples (0.1 to 0.2 eV above the A peak), which has been used to assess nonradiative recombination, with low (or no) B peak suggesting higher sample quality.55

To further show that 1L MoS\textsubscript{2} is grown by CVD at 560 °C, scanning electron microscopy (SEM) is shown in Figure 1e of the continuous 1L MoS\textsubscript{2} film at the center of the substrate, with overlapping grain boundaries. Atomic force microscopy (AFM) of 1L MoS\textsubscript{2} triangular grains on SiO\textsubscript{2}/Si, away from the substrate center, is also shown in Figure 1f. MoS\textsubscript{2} is measured to be \sim 0.72 nm thick from the step height, which is in good agreement with the accepted monolayer MoS\textsubscript{2} thickness (0.615 nm).56 Growth residue (most likely caused by excess partially reduced MoO\textsubscript{3} precursor) is observed on the Mo\textsubscript{2} grains and along the grain edges. Both SEM and AFM indicate that 1L MoS\textsubscript{2} is grown without bilayer (2L) MoS\textsubscript{2} nucleation.

ELECTRICAL RESULTS AND DISCUSSION

Transfer length method (TLM) structures57 were fabricated on 560 °C 1L MoS\textsubscript{2} as-grown on a 50 nm SiO\textsubscript{2} on p+ Si substrate, which also serves as the back-gate for all devices. Figure 2a shows an optical image of the TLM structures as...
fabricated by electron-beam lithography. The large, square probe pads (20 nm SiO2/2 nm Ti/40 nm Au) lead into the fine contacts (70 nm Au). The colorized SEM inset shows the pure Au leads directly contacting the monolayer MoS2 channel, which was etched 18 μm long × 2 μm wide (darker region) after the contact metal deposition. Figure 2b shows the cross-section schematic of the TLM test structure with adjacent contact channel lengths ranging from Lch = 100 to 700 nm, forming a series of back-gated FETs.

Figure 3a shows the measured drain current ID (normalized by width) versus back-gate voltage VGS transfer curves at drain voltages VDS = 0.1 and 1 V for a 100 nm channel device (Lch = 100 nm). The small arrows mark forward (left ID branch) and backward (right ID branch) voltage sweep directions, illustrating small hysteresis. A current ratio ID/ISAT ~ 10^6 is observed, and the SS is estimated to be SS ≈ 1150 mV/dec from the forward sweep at VGS = 0.1 V. (b) Measured ID vs VDS curves at VGS = 5 to 20 V for the same Lch = 100 nm channel device. The maximum drive current achieved was ID(max) ~ 140 μA/μm at VDS = 1 V. Current saturation was not observed because the threshold voltage VT keeps this device in the linear operating region throughout.20 (c) Measured ID vs VGS transfer curves at VDS = 0.1 V for transistors with channel lengths from Lch = 100 to 700 nm. (d) Measured ID vs VDS at VGS = 20 V for transistors with channel lengths from Lch = 100 to 700 nm. ID decreases for increasing channel lengths as expected due to the larger channel resistance. All device channels are 2 μm wide, and all measurements were performed at room temperature in a vacuum probe station. All electrical measurements shown are double sweeps (voltage swept up and down), revealing minimal hysteresis.

Figure 3b shows the measured ID versus VDS output curves at back-gate voltages from VGS = 5 to 20 V for the same Lch = 100 nm device. The maximum drive current achieved was ID(max) ~ 140 μA/μm at VDS = 1 V and VGS = 20 V, which is the highest reported for monolayer MoS2 grown below 600 °C. Current saturation is not observed because the threshold voltage VT is sufficiently small to keep this device in the linear operating region throughout. Relative low hysteresis is again observed from the forward and backward voltage sweeps, indicating minimal charge trapping. The measured ID versus VGS transfer curves at VDS = 0.1 V for channel lengths from Lch = 100 to 700 nm are shown in Figure 3c. The threshold voltage VT ranges from 2.4 to 5.8 V using the linear extrapolation method.16 The measured ID versus VDS output curves at VGS = 20 V for channel lengths from Lch = 100 to 700 nm are shown in Figure 3d. ID decreases for increasing channel lengths, as expected, due to larger channel resistance contribution for a constant VDS and a constant contact resistance (Rc).

We next turn to estimating Rs first and then the electron mobility from TLM structures. In addition to a better estimation of Rs, the MoS2 channel sheet charge resistance (Rsh) can also be accurately extracted from the slope of the linear
TLM extrapolation. The sheet resistance is then used to estimate the effective mobility, \(\mu_{\text{eff}} = (q\rho_{\text{sh}})^{-1} \), where \(q \) is the elementary charge and \(\rho_{\text{sh}} \) is the electron density per unit area. Here, \(n = C_{\text{ox}}(V_{\text{GS}} - V_T - V_{\text{DS}}/2)/q \) as all our transistors remain in the linear regime, where \(C_{\text{ox}} \) is the gate dielectric capacitance per unit area (\(\approx 70 \text{ nF/cm}^2 \) for our 50 nm \(\text{SiO}_2 \)). We note \(V_T \) must be individually assessed for each channel in the TLM to account for any device-to-device variation.

Figure 4a shows the linear TLM fit of the total measured resistance \(R_{\text{tot}} = L_{\text{sh}}R_{\text{sh}} + 2R_C \) normalized by width) versus channel length \(L_{\text{ch}} \) extracted from Figure 3d at a carrier concentration \(n = 6.1 \times 10^{12} \text{ cm}^{-2} \) (at the same gate overdrive, \(V_{\text{OV}} = V_{\text{GS}} - V_T = 14 \text{ V} \)). \(V_T \) is extracted for each channel length in Figure 3c by the linear extrapolation method.\(^{37,61} \) The \(y \)-intercept of the linear fit in Figure 4a corresponds to the total contact resistance, \(2R_C \). We note that it is important to perform such TLM fits using a wide range of channel lengths (from short, dominated by \(2R_C \), to long, dominated by \(L_{\text{sh}}R_{\text{sh}} \)) in order to minimize the \(R_C \) extrapolation error. The remaining uncertainty of the linear TLM fit represents the intrinsic device-to-device variation.

Figure 4b shows the effective mobility \(\mu_{\text{eff}} \) as a function of carrier concentration \(n \), obtained from the TLM plot slope, which is the sheet resistance \((R_{\text{sh}}) \). At \(n = 6.1 \times 10^{12} \text{ cm}^{-2} \), the effective electron mobility is \(\mu_{\text{eff}} = 29 \pm 5 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \), which is comparable to mobilities reported at higher growth temperatures.\(^{15,16,28-31,33,34} \)

Figure 4c shows the contact resistance \(R_C \) normalized by width) also as a function of the carrier concentration \(n \). The contact resistance was \(R_C = 4.9 \pm 1.3 \text{ kΩ} \mu\text{m} \) at \(n = 6.1 \times 10^{12} \text{ cm}^{-2} \) with the error bound corresponding to the 95\% confidence interval of the line fits.

In Figure 5 we compare the room-temperature electron mobility data of our films grown at 560 °C with previous reports for other CVD-grown (and MOCVD-grown\(^{36-41} \)) 1L \(\text{MoS}_2 \) reported in the literature,\(^{15,16,18,20,28-30,32,34,62-67} \) as a function of the growth temperature. We note that some reports are given as effective mobility\(^{15,16,28-30} \) (\(\mu_{\text{eff}} \) TLM, denoted by squares); others are only available as field-effect mobility\(^{18,20,32,34,62-67} \) (\(\mu_{\text{EFF}} \) denoted by triangles). The effective mobility values from this work (grown at 560 °C for 50 min) are marked in yellow. MOCVD data\(^{36-41} \) are \(\mu_{\text{EFF}} \) marked in blue, and solid-source CVD data from the literature\(^{36,37,39,41} \) are hollow symbols. Growth times (at maximum process temperature) are also labeled, indicating significantly longer growths reported for MOCVD to attain full coverage 1L \(\text{MoS}_2 \). The CVD films in this work were grown at 560 °C for 50 min, while MOCVD films were grown at or below 500 °C for 8 to 30 h,\(^{36-41} \) as labeled. The \(\mu_{\text{EFF}} \) from sheet resistance (TLM) measurements tend to be more reliable, while \(\mu_{\text{EFF}} \) could be under- or overestimated depending on the \(V_{\text{GS}} \)-dependence of gated contacts.\(^{36,37,39} \) All mobility data are reported at room temperature. During review, we became aware of recent MOCVD films grown at 320 °C for over 14 h,\(^{27,28} \) a summary of \(\mu_{\text{EFF}} \) data for these films (lighter blue triangles) is shown as the box-and-whisker plot at 320 °C (average \(\mu_{\text{EFF}} \) of 20.4 cm² V⁻¹ s⁻¹ in the blue box).
benchmark two-probe mobility measurements, although more complex four-probe measurements with a threshold voltage correction can yield more accurate mobility values if current shunt paths through the (invasive) inner voltage probes are avoided. In general, we have found no correlation between carrier mobility and growth temperature, only between growth temperature and MoS2 crystallite size or substrate adhesion. Growth times (at maximum process temperature) are also labeled, indicating significantly longer growths reported for MOVD to attain full coverage 1L MoS2. First, comparing the effective 1L MoS2 mobilities (μ_{eff} squares), we observe that our values (29 and 33 cm2 V$^{-1}$ s$^{-1}$ from 560 °C growths at a reduced 490 Torr pressure) are similar to the μ_{eff} from MoS2 grown at higher temperatures, up to 850 °C.$^{13,18,28-30}$ (Recent simulations have shown that mobilities in this range are limited by point defects, most likely, charge impurities and sulfur vacancies.69,70) Field-effect mobility (μ_{FE}) data reported for 1L MoS2 grown at 850 °C (lighter hollow triangles) are also included as a box-and-whisker plot (average μ_{FE} of 34.2 cm2 V$^{-1}$ s$^{-1}$ outlined in the black box),16 in good agreement with the 850 °C effective mobility. For CVD-grown 1L MoS2 using solid-source precursors, our values are the highest reported mobilities to enable 3D integration of such 2D materials for advanced functionalities in memory or power-gating circuits (with low-leakage BEOL transistors) or high-density logic in the third dimension.

METHODS

560 °C 1L MoS2 CVD Growth. PTAS dissolved in water was deposited as droplets around the perimeter of a 1.5 × 2 cm chips of thermally grown 50 nm SiO2 on p$^+$ silicon that were initially rinsed with deionized water.1 The PTAS droplets dried into “coffee rings” around the perimeter of the substrate before the seeded SiO2/Si chips were placed face-down on top of an alumina (Al2O3) crucible containing ~2 mg of MoO3 powder (Alfa Aesar, Puratronic 99.9995% purity) spread into a ~1 cm diameter circle. ~100 mg of excess solid sulfur source (Alfa Aesar, Puratronic 99.9999% purity) melted in a quartz boat was placed ~26 cm away from the center near the incoming Ar gas flow inlet, all enclosed within a 55 mm inner diameter quartz tube. Before each growth, the system was flushed for 5 min using 1500 sccm Ar gas under vacuum before setting the ambient condition to 490 Torr at 22 sccm Ar flow rate, adjusting the throttle valve. For the growth temperature cycle, the tube furnace was first ramped from room temperature to 450 °C in 10 min and then subsequently ramped to 560 °C in 5 min. The temperature was held at 560 °C for 50 min before rapidly cooling down to room temperature by opening the furnace hatch. The partially reduced MoO2 source must be cleaned out and replenished after each growth cycle, while the excess solid sulfur source can be reused in subsequent growths.

MoS2 Device Fabrication. Contact probe pads and coarse contacts were defined by e-beam lithography using a bilayer resist stack of 250 nm methyl methacrylate (MMA)/50 nm poly (methyl methacrylate) (PMMA). This promotes resist undercutting for easier contact metal liftoff which helps maintain MoS2 adhesion to the growth substrate. This was followed by e-beam evaporation of 20 nm SiO2/2 nm Ti/70 nm Au, all layers deposited at 0.5 Å/s at a base-pressure of 10$^{-7}$ Torr. The 20 nm SiO2 layer helps mitigate pad-to-gate leakage through the back-gate dielectric. This was followed by an overnight liftoff in acetone at room temperature. Fine contacts were patterned using e-beam lithography with a 60 nm PMMA 495k/215 nm PMMA 950k bilayer resist stack which provides fine resolution along with sufficient undercutting for effective liftoff. 70 nm Au was then deposited by e-beam evaporation at a deposition rate of 0.5 Å/s at a base pressure below 10$^{-7}$ Torr without any adhesion layer to achieve a clean contact interface. The liftoff was carried out in Remover PG solvent for 30 min at 80 °C. MoS2 was patterned into uniform rectangular channels of 2 μm width by photolithography followed by a gentle O2 plasma etch. The O2 plasma etch was carried out at a power of 10 W in a chamber set to 20 mTorr pressure and 20 sccm O2 flow rate for 60 s.

Optical, Electrical, and AFM Characterizations. Raman and PL data were taken in air, at room temperature, using a HORIBA Labram with a 532 nm excitation laser. All electrical measurements were at room temperature, in the dark and under vacuum (<10$^{-5}$ Torr) after an in situ vacuum anneal at 250 °C for 2 h, in a Janis ST-100 probe station. SEM was conducted using a Thermo Fisher Scientific Apreo S SEM equipped with a NiCo electron column operated in the immersion mode. AFM was conducted using a Bruker Dimension Icon AFM system operated in the tapping mode.

CONCLUSIONS

We have demonstrated direct CVD solid source precursor growth of monolayer (1L) MoS2 at 560 °C in 50 min, with electrical and optical properties very similar to those of CVD MoS2 grown at higher temperatures. Our films are within the 450-to-600 °C, 2 h thermal budget window required for BEOL compatibility with modern silicon integrated circuit processing. These new 1L MoS2 films grewths were enabled by carefully matching an optimized sulfur flux to sufficient volatile MoO3$_{x-z}$ reduced in the presence of the carbon-based PTAS seed layer.
AUTHOR INFORMATION

Corresponding Author
Eric Pop — Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; Department of Materials Science and Engineering and Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0003-0436-8534; Email: epop@stanford.edu

Authors
Alvin Tang — Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0003-4293-2917
Aravindh Kumar — Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-4481-9910
Marc Jaikissoon — Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
Krishna Saraswat — Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; Department of Materials Science and Engineering and Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
H.-S. Philip Wong — Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.1c06812

Author Contributions
A.T. and A.K. contributed equally. A.T., A.K., and E.P. conceived the experiments and wrote the manuscript with input from all authors. A.T. grew MoS2 and performed the Raman and PL characterizations. A.K. and M.J. performed the SEM and AFM characterizations, respectively. A.K., M.J., and A.T. fabricated the devices. A.K. and A.T. performed the electrical measurements and data analysis.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by ASCENT, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA, the National Science Foundation (NSF) EFRI 2-DARE Award 1542883, and member companies of the Advanced Materials Enabling Novel Devices (AMEND) focus area of the Stanford SystemX Alliance, an industrial affiliate program at Stanford University. Work was performed in part at the Stanford Nano fabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF), which received funding from the National Science Foundation (NSF) as part of National Nanotechnology Coordinated Infrastructure Award ECCS-1542152.

REFERENCES

(1) Wong, H.-S. P.; et al. A Density Metric for Semiconductor Technology. Proc. IEEE 2020, 108, 478–482.
(2) Bae, G.; et al. 3nm GAA Technology Featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications. Technical Digest—International Electron Devices Meeting, IEDM; IEEE, 2018; pp 28.7.1–28.7.4.
(3) Yan, R.-H.; Ourmazd, A.; Lee, K. F. Scaling the Si MOSFET: From Bulk to SOI to Bulk. IEEE Trans. Electron Devices 1992, 39, 1704–1710.
(4) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669.
(5) Schmalz, S. D.; Arnold, A. J.; Das, S. Contact Engineering for 2D Materials and Devices. Chem. Soc. Rev. 2018, 47, 3037–3058.
(6) Shen, P.-C.; et al. CVD Technology for 2-D Materials. IEEE Trans. Electron Devices 2018, 65, 4040–4052.
(7) English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 2016, 16, 3824–3830.
(8) Uchida, K.; Koga, J.; Numata, T.; Takagi, S. Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI MOSFETs n- and p-MOSFETs with SOI Thickness less than 5 nm. Technical Digest—International Electron Devices Meeting, IEDM; IEEE, 2002; pp 2.7.1–2.7.4.
(9) Uchida, K.; Koga, J.; Numata, T.; Takagi, S. Experimental Study on Carrier Transport Mechanisms in Double- and Single-Gate Ultrathin-Body MOSFETs—Coulomb Scattering, Volume Inversion, and 6T SOI-induced Scattering. Technical Digest—International Electron Devices Meeting, IEDM; IEEE, 2003; pp 33.5.1–33.5.4.
(10) Schmidt, M.; et al. Mobility Extraction in SOI MOSFETs with Sub 1 nm Body Thickness. Solid-State Electron. 2009, 53, 1246–1251.
(11) Zang, C.; Johnson, A.; Hsu, C.-L.; Li, L.-J.; Shih, C.-K. Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Lett. 2014, 14, 2443–2447.
(12) Hill, H. M.; Rigos, A. F.; Rim, K. T.; Flynn, C. W.; Heinz, T. F. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett. 2016, 16, 4831–4837.
(13) Smithe, K. K. H.; English, C. D.; Suryanarayani, S. V.; Pop, E. Intrinsic Electrical Transport and Performance Projections of Synthetic Monolayer MoS2 Devices. 2D Mater. 2017, 4, 011009.
(14) Kang, K.; et al. High-mobility Three-atom-thick Semiconducting Films with Wafer-scale Homogeneity. Nature 2015, 520, 656–660.
(15) Ling, X.; et al. Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Lett. 2011, 11, 466–472.
(16) Hill, H. M.; Rigos, A. F.; Rim, K. T.; Flynn, C. W.; Heinz, T. F. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett. 2016, 16, 4831–4837.
(17) Lee, Y.-H.; et al. Synthesis and Transfer of Single-layer Transition Metal Disulphides on Diverse Surfaces. Nano Lett. 2013, 13, 1852–1857.
(18) Lee, Y.-H.; et al. Synthesis of Large-area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320–2325.
(19) Wang, H.; et al. Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Lett. 2012, 12, 4674–4680.
(20) Yu, L.; et al. Graphene/MoS2 Hybrid Technology for Large-scale Two-dimensional Electronics. Nano Lett. 2014, 14, 3055–3063.
(21) Deprat, F.; et al. Dielectrics Stability for Intermediate BEOL in 3D Sequential Integration. Microelectron. Eng. 2017, 167, 90–94.
(22) Fenouillet-Beranger, C.; et al. Guidelines for Intermediate Back End of Line (BEOL) for 3D Sequential Integration. European Solid-State Device Research Conference; IEEE, 2017; pp 252–255.
(23) Schmitz, J. Low Temperature Thin Films for Next-generation Microelectronics (Invited). Surf. Coat. Technol. 2018, 343, 83–88.
(24) Fenouillet-Beranger, C.; et al. A Review of Low Temperature Process Modules Leading Up to the First (≤500 °C) Planar FD-SOI CMOS Devices for 3-D Sequential Integration. IEEE Trans. Electron Devices 2021, 68, 3142–3148.
(25) Lisoni, J. G.; et al. Laser Thermal Anneal of Poly-silicon Channel to Boost 3D Memory Performance. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014.
(26) Fenouillet-Beranger, C.; et al. FD-SOI Bottom MOSFET’s Stability versus Top Transistor Thermal Budget Featuring 3D
Monolithic Integration. European Solid-State Device Research Conference; IEEE, 2014; pp 110–113.

(27) Fenouillet-Beranger, C.; et al. New Insights on Bottom Layer Thermal Stability and Laser Annealing Promises for High Performance 3D VLSI. Technical Digest—International Electron Devices Meeting, IEDM; IEEE, 2014; pp 27.5.1–27.5.4.

(28) English, C. D.; Smith, K. K. H.; Xu, R. L.; Pop, E. Approaching Ballistic Transport in Monolayer MoS2 Transistors with Self-aligned 10 nm Top Gates. Technical Digest—International Electron Devices Meeting, IEDM; IEEE, 2016; pp 5.6.1–5.6.4.

(29) McClellan, C. J.; Yalon, E.; Smith, K. K. H.; Suryavanshi, S. V.; Pop, E. High Current Density in Monolayer MoS2 Doped by AlO3. ACS Nano 2021, 15, 1587–1596.

(30) Smith, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-Field Transport and Velocity Saturation in Synthetic Monolayer MoS2. Nano Lett. 2018, 18, 4516–4522.

(31) Sanne, A.; et al. Radio Frequency Transistors and Circuits Based on CVD MoS2. Nano Lett. 2015, 15, 5039–5045.

(32) Wang, Y.; et al. Van der Waals Contacts between Three-Dimensional Metals and Two-dimensional Semiconductors. Nature 2019, 568, 70–74.

(33) Leong, W. S.; et al. Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides. J. Am. Chem. Soc. 2018, 140, 12354–12358.

(34) Dumenceno, D.; et al. Large-area Epitaxial Monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

(35) Sabry Aly, M. M.; et al. Deposition of Two-dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics. Matter 2020, 2, 587–630.

(36) Park, J. H.; et al. Synthesis of High-Performance Monolayer Molybdenum Disulfide at Low Temperature. Small Methods 2021, 5, 2000720.

(37) Mun, J.; et al. Low-temperature Growth of Layered Molybdenum Disulfide with Controlled Clusters. Sci. Rep. 2016, 6, 21854.

(38) Mun, J.; et al. High-Mobility MoS2 Directly Grown on Polymer Substrate with Kinetics-controlled Metal–organic Chemical Vapor Deposition. ACS Appl. Electron. Mater. 2019, 1, 608–616.

(39) Kim, T.; et al. Wafer-scale Production of Highly Uniform Two-dimensional MoS2 by Metal-organic Chemical Vapor Deposition. Nanotechnology 2017, 28, 18LT01.

(40) Cai, J.; Han, X.; Wang, X.; Meng, X. Atomic Layer Deposition of Two-dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics. Matter 2020, 2, 587–630.

(41) Huang, Y.; Liu, L. Recent Progress in Atomic Layer Deposition of Molybdenum Disulfide: A Mini Review. Sci. China Mater. 2019, 62, 913–924.

(42) Yan, L. K.; et al. Atomic Layer Deposition of a MoS2 Film. Nanoscale 2014, 6, 10584–10588.

(43) Jurca, T.; et al. Low-Temperature Atomic Layer Deposition of MoS2 Films. Angew. Chem., Int. Ed. 2017, 56, 4991–4995.

(44) Cadot, S.; et al. A Novel 2-step ALD Route to Ultra-thin MoS2 Films on SiO2 through a Surface Organometallic Intermediate. Nanoscale 2017, 9, 538–546.

(45) Zhang, G.-H.; Wang, D.-H.; Wang, L.; Chou, K.-C.; Dong, A. Preparation of Industrial Grade MoS2 by the Reaction between Industrial Grade MoO3 and Activated Carbon. Metall. Res. Technol. 2018, 115, 416.

(46) Li, X. L.; Li, Y. D. Formation of MoS2 Inorganic Fullerene (IFs) by the Reaction of MoO3 Nanobelts And S. Chem.—Eur. J. 2003, 9, 2726–2731.

(47) Verhagen, T.; Guerra, V. L. P.; Haider, G.; Kalbac, M.; Veijpravova, J. Towards the Evaluation of Defects in MoS2 using Cryogenic Photoluminescence Spectroscopy. Nanoscale 2020, 12, 3019–3028.

(48) Schaubel, K.; et al. Uncovering the Effects of Metal Contacts on Monolayer MoS2. ACS Nano 2020, 14, 14798–14808.

(49) Ahn, G. H.; et al. Strain-engineered Growth of Two-dimensional Materials. Nat. Commun. 2017, 8, 608.

(50) Molina-Sánchez, A.; Wirtz, L. Phonons in Single-layer and Few-layer MoS2 and WS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 155413.

(51) Shi, W.; et al. Phonon Confinement Effect in Two-dimensional Nanocrystals of Monolayer MoS2 to Probe Phonon Dispersion Trends Away from Brillouin-Zone Center. Chin. Phys. Lett. 2016, 33, 057801.

(52) Ryoo, J.; Kim, Y.-S.; Santosh, K. C.; Cho, K. Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors. Sci. Rep. 2016, 6, 29184.

(53) McCreary, K. M.; Hanbicki, A. T.; Sivaram, S. V.; Jonker, B. T. A- and B-exciton Photoluminescence Intensity Ratio as a Measure of Sample Quality for Transition Metal Dichalcogenide Monolayers. APL Mater. 2018, 6, 111106.

(54) Richards, R. G.; Pauling, L. The Crystal Structure of Molybdenite. J. Am. Chem. Soc. 1923, 45, 1466–1471.

(55) Schroder, D. K. Semiconductor Material and Device Characterization; John Wiley & Sons, Inc., 2006.

(56) Illarionov, Y. Y.; et al. Insulators for 2D Nanoelectronics: The Gap to Bridge. Nat. Commun. 2020, 11, 3385.

(57) Bolshakov, P.; et al. Improvement in Top-gate MoS2 Transistor Performance due to High Quality Backside Al2O3 Layer. Appl. Phys. Lett. 2017, 111, 032110.

(58) Li, W.; et al. Uniform and Ultrathin High-κ Gate Dielectrics for Two-dimensional Electronic Devices. Nat. Electron. 2019, 2, 563–571.

(59) Haste, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer, 2009.

(60) Amani, M.; et al. Growth-substrate Induced Performance Degradation in Chemically Synthesized Monolayer MoS2 Field Effect Transistors. Appl. Phys. Lett. 2014, 104, 203506.

(61) Van Der Zande, A. M.; et al. Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide. Nat. Mater. 2013, 12, 554–561.

(62) Zafar, A.; et al. Probing the Intrinsic Optical Quality of CVD Grown MoS2. Nano Res. 2017, 10, 1608–1617.

(63) Zhang, J.; et al. Scalable Growth of High-quality Polycrystalline MoS2 Monolayers on SiO2 with Tunable Grain Sizes. ACS Nano 2014, 8, 6024–6030.

(64) Amani, M.; et al. Electrical Performance of Monolayer MoS2 Field-effect Transistors Prepared by Chemical Vapor Deposition. Appl. Phys. Lett. 2013, 102, 193107.

(65) Yang, P.; et al. Batch Production of 6-inch Uniform Monolayer Molybdenum Disulfide Catalyzed by Sodium in Glass. Nat. Commun. 2018, 9, 979.

(66) Pang, C. S.; et al. Mobility Extraction in 2D Transition Metal Dichalcogenide Devices-Avoiding Contact Resistance Implicated Overestimation. Small 2021, 17, 2100940.

(67) Khan, A. I.; et al. Low Temperature Coefficient of Resistance in Atomically Thin Two-dimensional Semiconductors. Appl. Phys. Lett. 2020, 116, 203105.

(68) Lee, Y.; Fiore, S.; Luisier, M. A. Initial Mobility of Mono-layer MoS2 and WS2: Comparison to Experiments and Impact on the Device Characteristics. Technical Digest—International Electron Devices Meeting, IEDM; IEEE, 2019; pp 24.4.1–24.4.4.

(69) Kozbial, A.; Gong, X.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2). Langmuir 2015, 31, 8429–8435.

(70) Gaur, A. P. S.; et al. Surface Energy Engineering for Tunable Wettability Through Controlled Synthesis of MoS2. Nano Lett. 2014, 14, 4314–4321.
(73) Nasr, J. R.; Schulman, D. S.; Sebastian, A.; Horn, M. W.; Das, S. Mobility Deception in Nanoscale Transistors: An Untold Contact Story. Adv. Mater. 2019, 31, 1806020.

(74) Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov, V. Critical Assessment of Charge Mobility Extraction in FETs. Nat. Mater. 2018, 17, 2–7.