Projective modules over discrete Hodge algebras

Manoj Kumar Keshari
Department of Mathematics, IIT Mumbai, Mumbai - 400076, India; keshari@math.iitb.ac.in

1 Introduction

All the rings are assumed to be commutative Noetherian and all the modules are finitely generated.

Let A be a ring. In ([6], Theorem 1.1), Vorst proved that if all projective modules over polynomial extensions of A are extended from A, then all projective modules over discrete Hodge A-algebras are extended from A (An A-algebra R is a discrete Hodge A-algebra if $R = A[X_0, \ldots, X_n]/I$, where I is an ideal generated by monomials). In this note, we extend the above result of Vorst by proving the following result.

Theorem 1.1 Let A be a ring and $r > 0$ be an integer. Assume that all projective modules of rank r over polynomial extensions of A are extended from A. Then all projective modules of rank r over discrete Hodge A-algebras are extended from A.

We note that Lindel gave another proof of Vorst’s result ([1], Theorem 1.5) and a proof of ([1.1]) is implicit in Lindel’s proof. But the idea of our proof is different from Lindel’s and it also gives other results which we describe below.

Let A be a ring of dimension d and let $r > d/2$. Assume that A is of finite characteristic prime to $r!$. In ([5], Theorem 5), Roitman proved that if P is a projective module of rank r over $R = A[X_1, \ldots, X_n]$ such that $P \oplus R$ is extended from A, then P is extended from A. In particular, if A is a local ring of dimension d, characteristic of A is positive and prime to $d!$, then all stably free modules of rank $> d/2$ over polynomial extensions of A are free.

We will prove the following analogue of Roitman’s result for discrete Hodge A-algebras.

Theorem 1.2 Let A be a ring of dimension d. Assume A is of finite characteristic prime to $r!$. Let R be a discrete Hodge A-algebra and let P be a projective R-module of rank $r > d/2$. If $P \oplus R$ is extended from A, then P is extended from A.

As a corollary to the above result, if A is a local ring of dimension d, characteristic of A is finite and prime to $d!$, then all stably free modules of rank $> d/2$ over discrete Hodge A-algebras are free.

Now, we will describe our last result. Let A be a ring of dimension d and let $R = A[X_1, \ldots, X_n]$. In ([7], Section 4), Wiemers asked the following question: Is the natural map $U_m(R) \rightarrow U_m(R/(X_1X_2\ldots X_k))$ surjective for all r and $1 \leq k \leq n$?

Wiemers ([7], Proposition 4.1) answered the above question in affirmative when $r \geq d + 2$ or $r = d + 1$ and $1/d! \in A$. We will prove the following result which gives a partial answer to Wiemers question in affirmative.
Theorem 1.3 Let A be a ring of dimension d. Assume characteristic of A is positive and prime to $d!$. Let $R = A[X_1, \ldots, X_n]$ and let $I \subset J$ be two ideals of R generated by square free monomials. Then the map $\text{Um}_r(R/I) \to \text{Um}_r(R/J)$ is surjective for $r \geq \frac{d}{2} + 2$.

2 Preliminaries

Given a cartesian diagram of rings

$$
\begin{array}{ccc}
A & \longrightarrow & A_1 \\
\downarrow & & \downarrow j_1 \\
A_2 & \longrightarrow & A_0 \\
\downarrow j_2 & & \downarrow j_0
\end{array}
$$

where j_2 is a surjective map. If P is a projective A-module, then the above diagram induces a cartesian diagram ([2], Section 2)

$$
\begin{array}{ccc}
P & \longrightarrow & P_1 \\
\downarrow & & \downarrow \\
P_2 & \longrightarrow & P_0
\end{array}
$$

where $P_i = P \otimes A_i$ for $i = 0, 1, 2$.

We begin by stating the following two results of A. Wiemers ([7], Proposition 2.1 and Theorem 2.3) respectively.

Proposition 2.1 Given a cartesian square of rings with j_2 surjective and a projective A-module P. Then

(i) If $\text{Aut}_{A_2}(P_2) \to \text{Aut}_{A_0}(P_0)$ is surjective, then so is $\text{Aut}_{A}(P) \to \text{Aut}_{A_1}(P_1)$.

(ii) If $\text{Aut}_{A_2}(P_2) \to \text{Aut}_{A_0}(P_0)$ is surjective and $Q \otimes A_i \xrightarrow{\sim} P_i$, $i = 1, 2$ for another projective A-module Q, then $P \xrightarrow{\sim} Q$. In particular, if P_1 and P_2 have the cancellation property, then so does P.

(iii) Let, in addition, j_1 be surjective. If $\text{Um}(P_2) \to \text{Um}(P_0)$ is surjective, then so is $\text{Um}(P) \to \text{Um}(P_1)$.

Theorem 2.2 Let A be a ring and let J be an ideal of $R = A[X_1, \ldots, X_n]$ generated by square free monomials. Then the natural map $\text{GL}_r(R) \to \text{GL}_r(R/J)$ is surjective.

Given a simplicial subcomplex Σ of Δ_n and a ring A, let $I(\Sigma)$ be the ideal of $A[X_0, \ldots, X_n]$ generated by all square free monomials $X_{i_1}X_{i_2}\cdots X_{i_k}$ with $0 \leq i_1 < i_2 < \cdots < i_k \leq n$ and $\{i_1, \ldots, i_k\}$ is not a face of Σ. By $A(\Sigma)$, we denote the discrete Hodge A-algebra $A[X_0, \ldots, X_n]/I(\Sigma)$.

The following result is due to Vorst ([6], Lemma 3.4) and is very crucial for the proof of our results.

Proposition 2.3 Let Σ be a simplicial subcomplex of Δ_n which is not a simplex. Then there exists an $i \in \{0, 1, \ldots, n\}$ and simplicial subcomplexes $\Sigma_2 \subset \Sigma_1 \subset \Sigma$ such that we have a cartesian square of
Hence, if Q is not a vertex and $C(\Sigma_2)$ is the cone on Σ_2 with vertex i. Note that j_2 is a split surjection and $A(C(\Sigma_2)) = A(\Sigma_2)[X_i]$.

We end this section by stating two results of Wiemers (\cite{7}, Theorem 3.6) and (\cite{8}, Theorem 4.3) respectively which will be used in section 4.

Theorem 2.4 Let A be a ring of dimension d. Let $I \subset J$ be ideals in $R = A[X_1, \ldots, X_n]$ generated by square free monomials. Let P be a projective module over R/I. If either rank $P \geq d + 1$ or rank $P \geq d$ and $1/d! \in A$, then the natural map $\text{Aut}_{R/J}(P) \to \text{Aut}_{R/J}(P/JP)$ with $J = J/I$ is surjective.

Theorem 2.5 Let A be a ring of dimension d with $1/d! \in A$ and $B = A[X_1, \ldots, X_n]$. Let P and P_1 be projective B-modules of rank $\geq d$. Assume $P \oplus B \xrightarrow{\sim} P_1 \oplus B$. If $P/(X_1, \ldots, X_n)P \xrightarrow{\sim} P_1/(X_1, \ldots, X_n)P_1$, then $P \xrightarrow{\sim} P_1$.

In other words, if the projective A-module $P/(X_1, \ldots, X_n)P$ is cancellative, then P is cancellative.

3 Main Theorem

In this section we prove our main results mentioned in the introduction.

Proof of Theorem 1.1: Let $B = A[X_0, \ldots, X_n]/I$ be a discrete Hodge A-algebra and let P be a projective B-module of rank r (here I is a monomial ideal). It is enough to assume that I is a square free monomial ideal. Then $I = I(\Sigma)$ for some simplicial subcomplex Σ of Δ_n and $B = A(\Sigma)$. We will use induction on n.

If $n = 0$, then there is nothing to prove, as $A(\Sigma) = A$ or $A[X_0]$. Let $n > 0$ and assume the result for $n - 1$. We will apply (2.3). By induction hypothesis, all projective modules of rank r over $A_1 = A(\Sigma_1)$ and $A_0 = A(\Sigma_2)$ are extended from A. Also all projective modules of rank r over $A_2 = A(C(\Sigma_2)) = A(\Sigma_2)[X_i]$ are extended from $A[X_i]$ and hence are extended from A.

Write $P_i = P \otimes A A_i$, $i = 0, 1, 2$. Clearly, the natural map $\text{Aut}_{A_2}(P_2) \to \text{Aut}_{A_0}(P_0)$ is surjective. Hence, if $Q = P/(X_0, \ldots, X_n)P$, then $P_1 \xrightarrow{\sim} Q \otimes A_1$ and $P_2 \xrightarrow{\sim} Q \otimes A_2$, by induction hypothesis. Hence, by (2.1(ii)), $P \xrightarrow{\sim} Q \otimes A$, i.e. P is extended from A. This proves the result. \(\square\)

Proof of Theorem 1.2: Let $R = A[X_0, \ldots, X_n]/I$ be a discrete Hodge A-algebra and let P be a projective R-module of rank r (here I is a monomial ideal). Again, it is enough to assume that I is a square free monomial ideal. Then $I = I(\Sigma)$ for some simplicial subcomplex Σ of Δ_n and $R = A(\Sigma)$. We will use induction on n. \(\square\)
When \(n = 0 \), there is nothing to prove as \(R = A \) or \(A[X_0] \). Let \(n > 0 \) and assume the result for \(n - 1 \). We apply \((2.3)\). Let \(A_1 = A(\Sigma_1) \), \(A_2 = A(C(\Sigma_2)) \) and \(A_0 = A(\Sigma_2) \). Write \(P_i = P \otimes_A A_i \) for \(i = 0, 1, 2 \).

Since \(R \rightarrow A_i \) are natural surjections, \(P_i \otimes A_i \) are extended from \(A_i \), \(i = 1, 2 \). Therefore, if \(Q = P/(X_0, \ldots, X_n)P \), \(P_i \xrightarrow{\sim} Q \otimes A_i \), \(i = 1, 2 \). Clearly, the natural map \(\text{Aut}_{A_2}(P_2) \rightarrow \text{Aut}_{A_0}(P_0) \) is surjective. Hence, by \((2.1(ii))\), \(P_\sim \rightarrow Q \otimes A \), i.e. \(P \) is extended from \(A \). This proves the result.

Proof of Theorem 1.3: It is enough to show that the natural map \(U_{mr}(R) \rightarrow U_{mr}(R/J) \) is surjective for every ideal \(J \) of \(R \) generated by square free monomials.

Let \(v \in U_{mr}(R/J) \). We have an exact sequence \(0 \rightarrow \varphi \rightarrow (R/J)^r \rightarrow \varphi(R/J) \rightarrow 0 \).

Since \(P \otimes A/J \) is free, by \((1.2)\), \(P \) is extended from \(A \), i.e. \(P = \varphi \otimes A \), where \(\varphi = P/(X_1, \ldots, X_n)P \).

Hence, we have the following commutative diagram

\[
\begin{array}{c}
0 \rightarrow \varphi \otimes A \rightarrow (R/J)^r \rightarrow \varphi(R/J) \rightarrow 0 \\
\downarrow \searrow \downarrow \leftarrow \downarrow \leftarrow \\
0 \rightarrow \varphi \rightarrow (R/J)^r \rightarrow \varphi(R/J) \rightarrow 0
\end{array}
\]

where \(\varphi(0) \) is the image of \(v \) in \(U_{mr}(A) \) under the map \(R/J \rightarrow A \) given by \(\overline{X_i} \rightarrow 0 \), \(i = 1, \ldots, n \).

Hence, there exists \(\sigma \in \text{GL}_{r}(R/J) \) such that \(\varphi \sigma = \varphi(0) \otimes R \). By \((2.2)\), \(\sigma \) can be lifted to \(\Delta \in \text{GL}_{r}(R) \) and \(\varphi(0) \Delta^{-1} \in U_{mr}(R) \) is a lift of \(v \). This proves the result.

\(\square \)

4 Some Auxiliary Results

As an application of \((2.3)\), we will give an alternative proof of the following result of Wiemers (7, Corollary 4.4).

Theorem 4.1 Let \(A \) be a ring of dimension \(d \) with \(1/d! \in A \). Let \(B = A[X_0, \ldots, X_n]/I \) be a discrete Hodge \(A \)-algebra. Let \(P \) be a projective \(B \)-module of rank \(\geq d \). If the projective \(A \)-module \(P/(X_0, \ldots, X_n)P \) is cancellative, then \(P \) is cancellative.

Proof If \(B \) is a polynomial ring over \(A \), then the result follows from \((2.5)\). It is enough to assume that \(I \) is generated by square free monomials. Hence \(I = I(\Sigma) \) for some simplicial subcomplex \(\Sigma \) of \(\Delta_n \). We will apply induction on \(n \).

By \((2.3)\), we have the following cartesian square

\[
\begin{array}{ccc}
A(\Sigma) & \xrightarrow{i_1} & A(\Sigma_1) \\
\downarrow i_2 & & \downarrow j_1 \\
A(C(\Sigma_2)) & \xrightarrow{j_2} & A(\Sigma_2)
\end{array}
\]
By (2.4), the natural map \(\text{Aut}_{A(C(\Sigma_2))}(P \otimes A(C(\Sigma_2))) \to \text{Aut}_{A(\Sigma_2)}(P \otimes A(\Sigma_2)) \) is surjective and by induction hypothesis on \(n \), \(P \otimes A(C(\Sigma_2)) \) and \(P \otimes A(\Sigma_1) \) are cancellative. Hence, by (2.1(ii)), \(P \) is cancellative. This proves the result.

\[\square \]

Theorem 4.2 Let \(A \) be a ring of dimension \(d \) with \(1/d! \in A \) and \(R = A[X_1, \ldots, X_n] \). Let \(P \) be a projective \(R \)-module of rank \(d \) such that \(P \oplus R \) is extended from \(A \). Then \(P \) is extended from \(A \).

Proof By Quillen’s local-global principle ([3], Theorem 1), it is enough to assume that \(A \) is local. Then \(P \oplus R \) is free. Since \(P/(X_1, \ldots, X_n)P \) is free, by (2.5), \(P \) is free. This proves the result. \[\square \]

Remark 4.3 When \(P \) is stably free, the above result (4.2) is due to Ravi A Rao ([4] Corollary 2.5). More precisely, Rao proved that if \(A \) is a ring of dimension \(d \) with \(1/d! \in A \), then every \(v \in \text{Um}_{d+1}(A[X]) \) is extended from \(A \), i.e. there exists \(\sigma \in \text{SL}_{d+1}(A[X]) \) such that \(v\sigma = v(0) \).

Following the proof of (4.2) and using (4.2), we get the following:

Corollary 4.4 Let \(A \) be a ring of dimension \(d \) with \(1/d! \in A \). Let \(B \) be a discrete Hodge \(A \)-algebra. Let \(P \) be a projective \(B \)-module of rank \(d \) such that \(P \oplus B \) is extended from \(A \), then \(P \) is extended from \(A \). In particular, every stably free \(B \)-module of rank \(d \) is extended from \(A \).

During CAAG VII meeting in Bangalore, Kapil H Paranjape asked if we can extend the above results ([1.1] [1.2] [1.3]) for locally discrete Hodge \(A \)-algebras (Definition: A positively graded \(A \)-algebra \(B \) is a locally discrete Hodge \(A \)-algebra if \(B_p \) is a discrete Hodge \(A_p \)-algebra for every prime ideal \(p \) of \(A \). The answer is yes and follows from the following result of Lindel ([1], Theorem 1.3) which generalises Quillen’s patching theorem ([3], Theorem 1) from polynomial rings to positively graded rings.

Theorem 4.5 Let \(A \) be a ring and let \(M \) be a finitely presented module over a positively graded ring \(R = \oplus_{i \geq 0} R_i, R_0 = A \). Then the set \(J(A, M) \), of all \(a \in A \) for which \(M_a \) is extended from \(A_a \), is an ideal of \(A \).

In particular, if \(M_p \) is extended from \(A_p \) for all prime ideal \(p \) of \(A \), then \(M \) is extended from \(A \).

References

[1] Lindel H., *On projective modules over positively graded rings*, Vector bundles on algebraic varieties (Bombay, 1984), 251–273, Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987.

[2] Milnor J., *Introduction to Algebraic K-Theory*, Annals of Math. Studies, Princeton Univ. Press, Princeton, 1971.

[3] Quillen D., *Projective modules over polynomial rings*, Invent. Math. 36 (1976), 167-171.

[4] Rao Ravi A., *The Bass-Quillen conjecture in dimension three but characteristic \(\neq 2,3 \) via a question of A. Suslin*, Invent. Math. 93 (1988), 609-618.
[5] Roitman M., *On stably extended projective modules over polynomial rings*, Proc. AMS 97 (1986), 585-589.

[6] Vorst T., *The Serre problem for discrete Hodge algebras*, Math. Z. 184 (1983), 425-433.

[7] Wiemers A., *Some properties of projective modules over discrete Hodge algebras*, J. Algebra 150 (1992), 402-426.

[8] Wiemers A., *Cancellation properties of projective modules over Laurent polynomial rings*, J. Algebra 156 (1993), 108-124.