Research progress on soil methane uptakes in different land-use change

Yang W Z1, Jiao Y2,3

1 Water-saving Agricultural Engineering Research Center, Inner Mongolia Normal University, Hohhot 010022, China
2 Inner Mongolia Key laboratory of Environmental Chemistry, Hohhot 010022, China;
3 College of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot 010022, China;
Corresponding author’s e-mail: jiaoyan@imnu.edu.cn (Jiao Y)

Abstract. Land-use changes from the conversion of grassland and cropland are typical agricultural production mode that constitute one of the important sources of atmospheric methane(CH4). Traditional grasslands have been experiencing conversion to croplands for pursuing higher economic benefits over the past decades in the arid and semi-arid lands of Asia. How the land-use changes in grasslands conversion to croplands altered the soil properties and the CH4 uptakes remains unknown. Articles retrieved from SCI periodicals are summed up and refined to find the effects on the CH4 uptake in the land-use change. In order to set up the basis on measures to mitigate greenhouse gas emissions. The results of this study suggest that The production mode of land-use change that traditional grasslands was converted into croplands for pursuing higher economic benefits over the past decades would also probably lead to a higher ecosystem CH4 uptake rate and needs to be stopped in the arid and semi-arid lands of Asia.

1. Introduction
Methane(CH4) is the second most important greenhouse gas in the atmosphere after carbon dioxide (CO2). The atmospheric concentration of CH4 has been increasing by 0.3%·year−1[1]. Although the main sink for atmospheric CH4 is its oxidation in the troposphere by hydroxyl(-OH), aerobic soils are the only biological sinks for atmospheric CH4 with an estimated global sink of 20-45 Tg CH4·year−1[2]. Temperate steppe soils are known to function as a significant sink for atmospheric CH4[3].

2. Basic situation of temperate steppes
The temperate steppes account for approximately 80% of Chinese grasslands[4], of which the grasslands of Inner Mongolia are an important component.

2.1 Inner Mongolia steppes
The transition from livestock grazing to farming causes changes in land-use practice. The grassland in Inner Mongolia is a typical Leymus chinensis temperate steppe, where land-use types are often diverse with frequent changes. The area of the plowed grasslands conversion to croplands is 1.2 million ha.
2.1.1 Geographical sites. The study site is located at The National Field Station of the grassland ecosystem in Inner Mongolia(41° 49′ 52″ N, 115° 13′ 26″ E). The station is positioned on the south side of the Xilin River that ranges in elevation of 1400 m above sea level in northern China.

2.1.2 climate. The area has a semi-arid temperate climate with a mean annual temperature of 1.6°C and a mean monthly temperature that raries from -17.6°C in January to 17.8°C in July. The mean annual precipitation is 400 mm, most of which occurs from late April to early October.

2.1.3 Characteristics of vegetation. The steppe is characterized with farms scattered in the grassland. The study site is the representative of the Eurasian temperate steppe[12] and the grasslands region of Inner Mongolia[13]. The dominate species in this zone are L. chinensis that is the typical vegetation of the grassland[14]. The grassland is native vegetation without grazing and additional treatments, including fertilization and grass seeding.

2.2 CH₄ uptake of temperate steppes

It is for these reasons that the Inner Mongolia steppes are often recognized as a sink for atmospheric CH₄[5]. However, Land-use conversions from grasslands to croplands and vice versa have occurred for pursuing higher economic benefits in the arid and semi-arid lands of Asia (ASAL) over the past decades. The agro-pastoral ecotone of Inner Mongolia in north China is included in the ASAL of Asia.

2.3 The effects of CH₄ uptakes on land-use change

Land-use change are thought to be important factor for the magnitude of CH₄ uptake[15-17]. The changes in land use or intensification of land management directly affect CH₄ uptake and the atmospheric CH₄ budget[18-19]. The conversion of native grasslands into cultivated croplands has been shown to decrease the amount of atmospheric CH₄ that is absorbed into the soil[6,11]. CH₄ uptake in cropland (wheat field and fallow) which were poor in SOC was lower than in uncultivated short grass steppe sites which had greater amount of soil C[20-21]. Changes in land-use may have important consequences for the soil methanotroph and methanogen communities, the overall size of the soil CH₄ sink, and for the atmospheric concentrations[19,21].

2.4 CH₄ uptake of Inner Mongolia steppes

How these changes have altered the CH₄ uptakes remains unknown. Moreover, few data is known regarding CH₄ uptakes specific to agro-pastoral ecotone, and few studies have been conducted on the effect of croplands age or soil properties on CH₄ uptakes in grasslands conversion to croplands.

2.4.1 CH₄ uptakes of conversion from native grasslands into cultivated croplands

Conversion from native grasslands into cultivated croplands has been shown to decrease the sink strength of soils for atmospheric CH₄[17-19,21-24]. Phillips et al.(2001) argued that differences in available C did not lead to obviously difference in CH₄ uptake. CH₄ oxidation may be limited by the flow of C and N to methanotrophs. Mineralizable C and other biochemical attributes of C-cycling (e.g. microbial biomass C, N) influenced CH₄ uptake. The kinetics of methane (CH₄) oxidation in soils is complex and their dependence on soil nitrogen (N) status remains an area of some controversy. The reason of land use change modified atmospheric CH₄ uptake rates appears to be modification in soil texture, bulk density, water status, microbial populations and, in some cases, N fertilization, and the intensification of mechanical soil perturbation by plowing and compaction by tractors or livestock[18]. However, the exact mechanisms influencing the biological or physico-chemical processes involved in methane uptake are not clear.

2.4.2 Influence factor of CH₄ uptakes in soil. Methane uptakes is influenced by several factors including temperature, precipitation, N input and soil properties (e.g., moisture, temperature, texture, pH and C/N ratio). Among these factors, soil properties are considered to be important drivers of the
2.4.3 CH4 uptake on the ages of conversion from grasslands to croplands. This trend has been primarily ascribed to tillage disturbance and N fertilization of soils[6]. However, In the past decades, many measurements of CH4 fluxes have been taken in grasslands, documenting the grasslands as a major sources of CH4[1,6,10]. However, the croplands of different ages from grasslands plowed has become another increasingly adopted agricultural system. The CH4 fluxes from croplands with different age plowed have been rarely investigated, especially when simultaneously taking the adjacent grasslands as a reference. In the Inner Mongolia steppes, information of CH4 uptakes on different time of the plowed grasslands conversion to croplands and these associated soil properties within the Inner Mongolia steppes is still scarce. The effects of the conversion of grasslands to croplands on CH4 uptakes are uncertain. The determining factors that mediate the influence of land-use shift on CH4 uptakes have not been elucidated.

3. The results of literature synthesis
In general, the net CH4 uptake rate in croplands is determined by the final balance of CH4 production, oxidation, and transport processes[11,25], which are associated with a variety of factors. Obviously, great changes would occur following conversion from grasslands to croplands, such as soil properties, nutrition cycling characteristics, and even over the all ecosystem function. Above changes would considerably alter the variation and amount of CH4 uptakes.

4. Research emphasis on greenhouse gas emission reduction
Therefore, it is an important study in the agro-pastoral ecotone to investigate the effects of land-use shift on CH4 uptakes. The objectives were to understand the impact of croplands age and soil properties on CH4 uptakes following the conversion of grasslands to croplands. This study investigated CH4 uptakes over a long period of time in an agro-pastoral ecotone in Inner Mongolia, China. Moreover, grasslands and adjacent croplands from grasslands plowed were compared and were derived from the same parent material under the same climate.

5. Results
This study was designed to address whether land-use shift affects CH4 uptakes and what soil parameters are best for assessing CH4 uptakes following the conversion of grasslands to croplands in the agro-grassland ecotone of Inner Mongolia. In addition, it should be focus of attention that the effects of physical and chemical soil properties on CH4 uptakes were observed in this study in the future. Those results will support future modelling approaches that estimate CH4 fluxes based on soil properties. In addition, further studies that couple CH4 measurements with more analysis of soil methane bacteria over the course are needed. These further efforts will improve our understanding of land-use shift with different ages plowed and microbial impacts on the CH4 uptake in the different land-use change.

Acknowledgments
This work was financially supported by the National Natural Science Foundation of China(41675140); the 2016 Inner Mongolia Youth Innovative Talent Training Program of Prairie Excellence Project. Wenzhu Yang and Yan Jiao conceived and designed the study. Jianghong Zhao and Jianhua Hou
performed the experiments in situ observation and measurement and analyzed the data. Wenzhu Yang and Yan Jiao wrote and edited the manuscript. All authors read and approved the final manuscript.

References
[1] Liu C Y, Holst J, Bruggemann N, Butterbach-Bahl K, Yao Z S, Yue J, Han S H, Han X G, Krummelbein J Horn R and Zheng X H 2007 Atmos. Environ. 41 5948-5958
[2] Khalil M A K. 2000 Atmospheric Methane, I Role in the Global Environment (Berlin: Springer) p 388
[3] IPCC 2014 Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (New York: Cambridge University Press) p 268
[4] Chen Z Z and Wang S P 2000 Chinese Typical Grassland Eco-System (Beijing: Science Press) p 28
[5] Wang Y F, Ma X Z, Ji B M, Du R, Chen Z Z and Wang G C 2003 Acta Phytoecol. Sinica 27 792-796.
[6] Smith K A, Dobbie K E and Ball B C 2000 Global Change Biol. 6 791-803
[7] Verchot L V, Davidson E A, Cattanio J H and Ackerma I L 2000 Ecosystems 3 41-56
[8] Merino A, Perez-batallon P and Macas F 2004 Soil Biol. Biochem. 36 917-925
[9] Smith K A, Ball T, Conen F, Dobbie K E, Massheder J and Rey A 2003 Eur. J. Soil Sci. 54 779–791
[10] Wang Y S, Xue M, Zheng X H, Ji B M and Du R 2005 Chemosphere 58 205-216
[11] Pan D D, Wu X W and Tian G M J. 2012 Food Agric. Environ. 10 1240-1245
[12] Wang Z P, Li L H, Han X G, Li Z Q and Chen Q S 2007 Environ. Exp. Bot. 59 1-10
[13] Tong C, Wu J, Yong S, Yang J and Yong W 2004 J. Arid Environ. 59 133-149
[14] Zou J W, Huang Y and Jiang J Y 2005 Global Biogeochem. Cycles 19 GB2021
[15] Wu R J and He X 2016 Fresen. Environ. Bull. 25 345-354
[16] Ekschmitt K 2008 Fresen. Environ. Bull. 17 1161-1164
[17] Ojima D S, Valentine D W, Mosier A R, Parton W J and Schimel D S 1993 Chemosphere 26 675-685
[18] Mosier A R, Parton W J, Valentine D W, Ojima D S, Schimel DS and Heinemeyer O 1997 Global Biogeochem. Cy. 11 29-42
[19] Smith K A, Dobbie K E, Ball B C, Bakken L R, Sitaula B K, Hansen S, Brumme R, Borken W, Christensen S, Priemé A, Fowler D, Macdonald J A, Skiba U, Klemmedsson L, Kasimir-Klemmedsson A, Degórska A and Orlanski P 2000 Global Change Biol. 6 791-803
[20] Mao D H, Wang Z M, Wu C S, Zhang C H, Ren C Y 2014 Fresen. Environ. Bull. 23 533-541
[21] Mosier A R, Schimel D S, Valentine D, Bronson K and Parton W 1991 Nature 350 330-332
[22] Bronson K F and Mosier A R 1993 Agr. Ecosyst. Environ. 55 133-144
[23] Dobbie K E, Smith K A, Priemé A, Christensen S, Degorska A and Orlansk P 1996 Atmos. Environ. 30 1005-1011.
[24] Willison T W O, Flaherty M S, Thustos P, Goulding K W T and Powlson D S 1997 Nutr. Cycl. Agroecosys. 49 85-90
[25] Chan A S K and Parkin T B 2001 J. Environ. Qual. 30 1896-1903