INTRODUCTION
Dynamic chromatin reorganization affects numerous cellular processes, including differentiation and development. In recent years, it has become apparent that chromatin does not only determine gene expression and epigenetic integrity of nuclear DNA, but directly contributes to the repair of genomic lesions, of which DNA double-strand breaks (DSBs) are the most toxic (Lukas et al., 2011; Shi and Oberdoerffer, 2012; Soria et al., 2012; Smeenk and van Attikum, 2013). The need for chromatin reorganization during eukaryotic DNA repair becomes apparent in light of the tight packaging of DNA in nuclear space: in humans and mice, approximately every 200 bp, 146–147 bp of DNA are wrapped around a nucleosome, which forms the structural core of the chromatin fiber. Each nucleosome consists of a histone octamer containing two molecules of H2A, H2B, H3, and H4, or variants thereof, assembled in one H3–H4 heterotetramer and two H2A–H2B heterodimers. Nucleosomes are subject to further condensation via the H1 linker histones, which contact the exit/entry points of the DNA strand on the nucleosome and facilitate higher order chromatin folding (Juge et al., 1997; Hansen, 2002). DNA lesions that occur in the context of chromatin must, thus, be made accessible to the repair machinery, a process that involves remodeling and/or depletion of nucleosomes as well as an array of epigenetic modifications, which can affect both DNA and histone proteins (Polo and Jackson, 2011; Smeenk and van Attikum, 2013). While the most prevalent epigenetic alterations of DNA are methyl-based modifications of cytosines in CpG context, histones are subject to a wide range of reversible, post-transcriptional modifications including acetylation, methylation, phosphorylation, ubiquitination, sumoylation, and ADP ribosylation (Kouzarides, 2007). Over the past decade, all of these modifications have been implicated in the modulation of DSB repair and genomic integrity in response to DNA damage is tightly linked to controlled changes in the damage-proximal chromatin environment. Many of the chromatin modifying enzymes involved in DNA repair depend on metabolic intermediates as cofactors, suggesting that changes in cellular metabolism can have direct consequences for repair efficiency and ultimately, genome stability. Here, we discuss how metabolites may contribute to DNA double-strand break repair, and how alterations in cellular metabolism associated with both aging and tumorigenesis may affect the integrity of our genomes.

METABOLITES AS MEDIATORS OF CHROMATIN CHANGES
Metabolic programs coordinate energy intake and its use to control cell survival and growth. Eukaryotic cells rely on oxidative metabolism as the most efficient way to produce energy from nutrients. The mitochondrial tricarboxylic acid (TCA) cycle oxidizes pyruvate derived from glucose or fatty acids to CO₂, thereby generating adenosine triphosphate (ATP) and the reduced form of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH₂). Oxidation of NADH and FADH₂ to NAD⁺ and FAD, in turn, promotes the production of ATP via oxidative phosphorylation and the electron transport chain (ETC). ATP and NADH can also be generated from glucose directly via glycolysis. For a detailed description of these metabolic pathways, we refer the reader to a comprehensive review by Locasale and Cantley (2011). In addition to energy production, cellular metabolism ensures the balanced generation of intermediate metabolites, which are required for cell growth and/or serve...
as co-enzymes or substrates for a number of enzymatic processes (Yuan et al., 2013). The latter is particularly relevant during conditions of nutrient excess, when cells were found to switch to what is known as aerobic glycolysis to maintain growth. The same metabolic switch is also observed in many cancer cells, where it was first described by Otto Warburg and is, thus, referred to as Warburg effect (Warburg, 1956; Ward and Thompson, 2012).

Accumulating evidence suggests that metabolic changes associated with age and/or tumor development may not simply be a consequence of the latter. This notion has been discussed in a number of recent reviews, which implicate altered metabolite profiles both in the regulation of p53 activity (Vousden and Ryan, 2009) and the epigenetic control of gene expression in aging and disease (Vousden and Ryan, 2009; Ward and Thompson, 2012; Yun et al., 2012; Crescentino and Mostoslavsky, 2013). Here, we propose that metabolite-associated changes in chromatin may further contribute to aging and malignant transformation through the deregulation of DNA repair. We focus on chromatin modifications that have been extensively investigated in the context of DNA DSB repair and highlight the key metabolite cofactors and/or substrates required for these modifications: specifically we discuss (i) acetyl-CoA-dependent acetylation and NAD⁺-dependent deacetylation of histones, (ii) NAD⁺-dependent poly-ADP ribosylation, and (iii) S-adenosyl-L-methionine (SAM)-dependent methylation as well as FAD/α-ketoglutarate-dependent demethylation of histones and/or DNA (see Figure 1A).
and nucleus and is essential for non-mitochondrial acetyl-CoA production (Bauer et al., 2005). Changes in glucose availability or ACL levels are, thus, expected to have a direct impact on acetyl-CoA-dependent nuclear acetylation reactions. Indeed, Thompson and colleagues demonstrated that depletion of ACL results in reduced histone acetylation and concomitant gene silencing, whereas growth factor signaling as well as increased glucose metabolism resulted in excess acetyl-CoA production, increased acetyl-histone levels and increased gene expression (Witten et al., 2009).

Like the acetylation of histones, their deacetylation can be modulated by metabolite availability. Perhaps the most prominent example are sirtuins, or class III histone deacetylases (HDACs), which depend on the oxidized form of NADH, NAD⁺, as a co-factor. Both overall NAD⁺ abundance and the cellular ratio of NAD⁺/NADH are, therefore, critical determinants of sirtuin activity (Imai et al., 2000; Lin et al., 2002). Notably, sirtuin-dependent deacetylation converts its co-factor NAD⁺ to nicotinamide (NAM), a vitamin B3 precursor that functions as a non-competitive sirtuin inhibitor (Bitterman et al., 2002). NAM can be recycled to NAD⁺ via NAD salvage pathways, and the enzymes involved in this pathway were found to promote sirtuin activity in yeast and mammalian cells (Anderson et al., 2003; Yang et al., 2007). Although sirtuin function has been linked to numerous cellular processes, their impact on chromatin reorganization is emphasized by reports demonstrating sirtuin-dependent gene repression as well as maintenance of repressive chromatin structures, including telomeric and centromeric DNA (Vaquero et al., 2007; Michishita et al., 2008; Obersdorffer et al., 2008; Yang et al., 2009; Haigis and Sinclair, 2010; Palacios et al., 2010).

Taken together, these findings indicate that both nutrient excess and aberrant cell growth may favor an overall increase in histone acetylation and active transcription, by increasing acetyl-CoA production (Bauer et al., 2005). Changes in glucose availability or ACL levels are, thus, expected to have a direct impact on sirtuin activity as well as maintenance of repressive chromatin domains. Densely packed chromatin, or heterochromatin, which is largely inaccessible to the transcription machinery, is highly CpG methylated and harbors characteristic methyl-histone marks, such as H3K9me3 (constitutive heterochromatin) or H3K27me3 (facultative heterochromatin). Notably, histone methylation can also be associated with active transcription, as is the case for promoter-associated H3K4 trimethylation and co-transcriptionally deposited H3K36 trimethylation. For a comprehensive overview of the occurrence and function of DNA and histone methylation, we refer the reader to recent reviews (Cedar and Bergman, 2009; Black et al., 2012).

Both DNA and histone methyltransferase enzymes (DNMTs and HMTs) rely on SAM as a common co-substrate for methyl group transfers. SAM is generated by adding ATP to methionine via methionine adenosyltransferase (MAT). As a result of the methyl transfer reaction, SAM is converted to S-adenosyl homocysteine (SAH), which is a potent inhibitor of both HMT and DNMT activity. SAH can be cleared by hydrolysis to homocysteine and homocysteine. Methyltransfer of DNA and histones is thus sensitive to cellular SAH, SAM, and homocysteine levels (reviewed in Grillo and Colombatto, 2006; Yun et al., 2012). Notably, in addition to being restored to methionine and eventually SAM, homocysteine can serve as a precursor for glutathione (GSH) synthesis. The latter serves as a major cellular redox buffer in response to oxidative stress, which in turn is tightly linked to both cancer and aging (Haigis and Yankner, 2010). Depletion of GSH due to increased reactive oxygen species (ROS) can divert homocysteine away from the methionine recycling pathway, which may, in turn, result in a decrease in SAM and inhibition of methyltransferase activity (Yun et al., 2012).

Although methylation was long considered to be an irreversible epigenetic mark, several enzymes that allow for the conversion and/or removal of methyl groups from DNA and histones have been uncovered in recent years. The first demethylase to be discovered was LSD1, a lysine demethylase, which specifically removes methyl groups from mono- and dimethylated H3K4 (Shi et al., 2004). The LSD1-mediated demethylation reaction requires FAD as a cofactor, which is reduced to FADH2 during the amine oxidation of N-methylated lysine substrates, providing a link between energy consumption and LSD1 activity (Shi et al., 2004; Forneris et al., 2005).

In addition to LSD1, a second, larger family of Jumonji C (JmC) domain containing histone demethylases has been identified, which harbors α-ketoglutarate (α-KG)-dependent
diydroxynase activity (Black et al., 2012). α-KG is a TCA cycle intermediate that is generated from isocitrate by isocitrate dehydrogenase (IDH) 1 (cysolic) and 2 (mitochondrial; Ward et al., 2010). Notably, α-KG levels do not only affect histone demethylases, but also the recently discovered TET family of 5-methylcytosine hydroxylases, which are involved in the demethylation of DNA (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009; Ward and Thompson, 2012). The function of both TET and JmjC enzymes is directly affected by several recurrent somatic mutations of IDH1 and IDH2, which are commonly found in glioma (75%; Parsons et al., 2008) and acute myeloid leukemia (20%; Mardis et al., 2009). These mutations result in aberrant enzyme activity, which converts α-KG to 2-hydroxy-ketoglutаратate (2-HG; Yang et al., 2012). 2-HG is a competitive inhibitor of an α-KG-dependent enzymatic reactions (Xu et al., 2011), which in turn leads to genome-wide alterations in both histone and DNA methylation (Xu et al., 2011; Liu et al., 2012). Together, these observations underline the power of metabolic changes with regard to epigenetic maintenance, be it in response to altered growth conditions and/or nutrient availability, or due to mutations in key metabolic enzymes. In the following we will discuss the possibility that altered metabolite profiles may, at least in part, contribute to age-related genome instability and malignant transformation by altering the regulation of DNA repair through chromatin.

ACETYL-CoA and DSB-ASSOCIATED HISTONE ACETYLATION

Acetyl-CoA-dependent histone acetylation is a central aspect of the DNA damage response, as it facilitates the relaxation of DSB-surrounding chromatin and concomitant repair factor access. The most prominent DSB repair-associated histone acetyltransferase (HAT) is Tip60 (or CAT5). Tip60 is rapidly recruited to sites of DNA damage in a manner that is dependent on the break-sensing Mre11–Rad50–Nbs1 (MRN) complex, and promotes acetylation of DSB-surrounding histone H4 (Murr et al., 2006) as well as the DDR mediator ATM (Sun et al., 2005). The latter was found to amplify ATM activity and is essential for the DSB-induced, ATM-dependent checkpoint response (Sun et al., 2007). Similarly, Tip60-mediated acetylation of histone H4 was found to promote the recruitment of several repair factors central to both HR and NHEJ, including BRCA1, Rad51, and 53BP1 (Murr et al., 2006), suggesting a synergistic effect of Tip60-induced ATM and H4 acetylation. Notably, recent evidence suggests that H4K16 acetylation by Tip60 can selectively interfere with the recruitment of 53BP1, thereby promoting BRCA1 recruitment (Hsiao and Mizzen, 2013; Tang et al., 2013). Moreover, depletion of both Tip60 and its co-factor TRRAP have been shown to inhibit repair DNA by HR, although decreased histone acetylation was also shown to impair NHEJ (Murr et al., 2006; Hsiao and Mizzen, 2013; Tang et al., 2013), suggesting a complex and likely dynamic role for acetylation and deacetylation in the regulation of DNA repair that warrants further investigation. Several additional HATs have been linked to DSB-associated chromatin remodeling over the past years. GCN5 (or KAT2A) links the dynamic acetylation and deacetylation of several residues on H3 and H4 to HR in yeast (Tamburinis and Tyler, 2005). Notably, induction of DSBs in mammalian cells has been linked to a transient reduction in H3K9ac as well as H3K36ac, and GCN5 was identified as a HAT responsible for re-establishing the latter mark (Tjernberg et al., 2009). In addition to GCN5, CREB-binding protein (CBP)/P300 has been shown to promote the acetylation of H3K56 in response to DNA damage or replication stress. Histones bearing acetylated K56 are, in turn, re-assembled into chromatin in yeast, flies, and human cells, forming foci that colocalize with sites of DNA repair (Das et al., 2009). Depletion of CBP/P300 reduced recruitment of the end-joining factors Ku70/80 and, consequently, NHEJ efficiency, supporting a functional link between nucleosome
Metabolite	Modification	Enzyme	Histone/protein target	Effect on DSB repair
Acetyl-CoA	Acetylation	Tip60	H4K16ac	↑ 53BP1 ↑ BRCA1 ↑ Rad51 ↑ ATM ↑
GCN5	H3K56ac ↑			
CBP/P300	H3K56ac ↑			
HAT1	H4K5/K12ac ↑			
NAD⁺	Deacetylation	SIRT1	H3K56ac ↓	Chromatin re-assembly
SIRT2	H3K56ac ↓			
SIRT6	H3K56ac ↓			
PARylation	PARP	unknown	XRCC1/Ligase II ↑	
SAM	Methylation	SETD8	H4K20me2 ↑	53BP1 ↑
DOT1L	H3K9me3 ↑			
SUV420	H3K20me2 ↑			
JHDM1A	H3K36me2/3 ↑			
JMJD2A	H3K36me2/3 ↑		53BP1 ↑	
JMJD2D	H3K36me2/3 ↑		γH2AX turnover	

Turnover and repair by NHEJ (Ogiwara et al., 2011). Similar to the role of H3K56ac, HAT1-mediated H3K12 acetylation of newly synthesized H4 is required for their efficient incorporation into DSB-proximal chromatin. However, HAT1 depletion has been linked to defects in HR rather than NHEJ due to impaired recruitment of the ssDNA binding protein Rad51 (Yang et al., 2013). Interestingly, in addition to and likely preceding HAT1-mediated chromatin re-assembly, increased acetylation of several of the core histones was found to promote their polyubiquitin-independent degradation in response to DNA damage. The resulting chromatin disassembly is thought to facilitate repair factor access and involves the proteasome activator PA200, which binds to acetylated histones (Qian et al., 2013). Notably, both DNA damage and aging have recently been shown to promote histone loss, suggesting a mechanistic link between the two processes, possibly through a common increase in chromatin decondensation (Feser et al., 2010; O'Sullivan et al., 2010). Increased histone acetylation, in turn, was found to activate ATM in the absence of DNA breaks, indicative of a positive feedback that may eventually result in deregulated DDR, genomic instability, and/or cell cycle arrest observed with age (Bakkenist and Kastan, 2003; Kaidi and Jackson, 2013).
Together, these findings demonstrate that the modulation of histone acetylation has a significant, yet complex impact on the DDR and can affect repair via both NHEJ and HR. It will be of interest to determine how changes in the essential HAT co-factor acetyl-CoA, and by extension glucose availability, affect DSB repair and genomic stability in the context of either excessive growth (tumorigenesis) or growth arrest (senescence).

NAD+–Dependent Histon Deacetylation and PARylation in DSB Repair

Double-strand break-associated histone acetylation is a dynamic process that is counteracted by HDACs, which can be sensitive to metabolic availability as is the case for NAD+–dependent sirtuins (see Histone (de)acetylation). To date, at least three of the four nuclear mammalian sirtuins, SIRT1, SIRT2, and SIRT6 have been implicated in DNA damage control (Haigis and Sinclair, 2010). However, although these proteins have been reported to affect both HR and NHEJ by deacetylating non-histone DNA repair proteins, evidence for sirtuin-mediated histone deacetylation at sites of DSBs is largely circumstantial. Both SIRT1 and SIRT6 are recruited to sites of DNA damage (Oberdoerffer et al., 2008; Kaadi et al., 2010; Toiber et al., 2013) and SIRT6 was recently found to mediate DSB-specific H3K56 deacetylation (Toiber et al., 2013). Notably, recruitment of SIRT6 to DSB-flanking chromatin may help activate its deacetylase activity, as the latter was found to require interaction with intact nucleosomes (Gîl et al., 2013). In addition to H3C6ac deacetylation, SIRT6 promotes the recruitment of the SNF2H remodeling factor and concomitant chromatin accessibility at sites of damage. If these processes are functionally linked remains to be determined (Toiber et al., 2013). Similar to SIRT6, SIRT1 and SIRT2 are able to deacetylate H3K56ac, which was found to modulate CBP/P300-dependent H3K56 acetylation and concomitant chromatin re-assembly at DNA breaks (Das et al., 2009). In addition, SIRT1 was shown to deacetylate H4K16ac, which may in turn counteract Tip60 activity and, thus, alter ATM activation as well as the recruitment of DSB repair factors (Vaquero et al., 2004; Tang et al., 2013). Finally, SIRT6 and to a lesser extent SIRT1 can deacetylate H3K9ac, which may have implications for the modulation of DSB-induced chromatin accessibility (Vaquero et al., 2004). However, evidence for sirtuin-dependent, DSB-specific deacetylation of many of these marks is missing. Future work is expected to provide a better understanding of how sirtuins may modulate the DDR via targeted histone deacetylation.

While the role of sirtuins in DSB–associated chromatin reorganization is only emerging, the NAD+–dependent PARP enzymes PARP1 and PARP2 are well-established modulators of DSB-proximal chromatin accessibility and, consequently, DSB repair. PARP activation is one of the first events in the DDR, which results in extensive PARylation in the vicinity of DSBs and facilitates the recruitment of early repair sensors such as Mre11 (Schneider et al., 2006; Vallesio et al., 2011). Deletion of PARP1 and PARP2 results in increased DNA damage sensitivity, increased genomic instability and, in case of PARP1, increased tumor formation (Menissier de Murcia et al., 2003; Tong et al., 2007). PARP1 has been found to interact with the NHEJ factors XRCC1 and lge3 III and is required for NHEJ under conditions that involve minimal end resection (known as alternative NHEJ; Audebert et al., 2004). Notably, the latter is inhibited by 53BP1, suggesting that PARP1 may counteract 53BP1 recruitment (Bowman et al., 2010; Bunting et al., 2010; Chapman et al., 2012). Consistent with this notion, PARP1 was recently shown to promote HR by regulating chromatin expansion and spatial accumulation of the BRCAl/RAP1B complex at DSBs (Smeenk et al., 2013). Interestingly, the DDR-relevant target(s) for PARylation remain to be identified, and although PARylation of histone tails has been reported (Messner et al., 2010), it is unclear whether these modifications affect DSB repair. Notably, SIRT6 was recently found to alter DSB repair by mono-ribosylating and, thus, activating PARP1. SIRT6–dependent activation of PARP is dependent on oxidative stress, suggesting that NAD+–dependent repair factors may help integrate DNA repair and stress signaling pathways (Mao et al., 2011).

Together, these findings indicate that, similar to acetyl-CoA, alterations in cellular NAD+ levels can modulate DSB repair. Consistent with the opposing activities of HAGs and HDACs in the DDR, acetyl-CoA is associated with nutrient excess, whereas NAD+ is elevated under conditions of nutrient deprivation. Notably, PARylation and histone deacetylation appear to have similarly opposing effects on chromatin packaging, yet both PARPs and sirtuins depend on NAD+. It will, thus, be of particular interest to determine if and how PARylation and sirtuin-mediated histone deacetylation cooperate in a scenario where NAD+ is limiting, as observed both with age and in highly glycolytic tumor cells (Elstrom et al., 2004; Brady et al., 2011; Massudi et al., 2012). Interestingly, PARP can negatively regulate SIRT1 expression, underlining the functional crosstalk between the two enzymatic processes (Bai et al., 2011a,b). Consistent with an overall genome-protective role for NAD+, high levels of NAD+ were recently reported to correlate with radio-protection in human gloma cells (Salom et al., 2013), whereas low level NAD+ were associated with increased DSB damage in aged cells (Braidy et al., 2011).

SAM and DSB–Associated Histon Methylolation

Like PARylation and histone acetylation, their methylation is emerging to be an integral aspect of the cellular response to DSBs. And like all acetylation reactions are dependent on acetyl-CoA, all methyl-group additions require a single intermediate metabolite, SAM, as essential co-factor, making both processes intricately linked to nutrient availability and cell growth. However, while acetylation is often thought of as a means to change DSB-proximal chromatin structure and accessibility, methylation of histones appears to be a more selective modulator of repair factor recruitment (van Attikum and Gasser, 2009; Bekker-Jensen and Mailand, 2010; Shu and Oberdoerffer, 2012). Perhaps the most prominent example for the latter is the NHEJ-associated repair factor 53BP1, the recruitment of which to DSBs depends on the binding of a subset of dimethylated histone lysine residues via its conserved tandem tudor domains (Huyen et al., 2004; Botuyan et al., 2006). Both 53BP1 and its yeast ortholog Crb2 show strong affinity for dimethylated H4K20 compared with unmethylated or trimethylated H4K20 (Botuyan et al., 2006). H4K20 methylation appears to be established prior to DNA damage and involves the HMTs SETD8 and SUV420 (Hsiao and Mizzen, 2013), although DSB-induced H4K20 dimethylation via MMS20 has also been reported (Pei et al., 2011). In addition to H4K20, H3K9 was found to
interact with 53BP1 when dimethylated by DOT1L, albeit with weaker affinity (Huyen et al., 2004; Botuyan et al., 2006). Understanding the requirement for dimethyl-histone binding, deletion of the HMT1 responsible for either H4K20me2 or H3K979me2 resulted in impaired formation of 53BP1 foci in response to DNA damage and concomitant DNA repair defects (Huyen et al., 2004). Wako and colleagues demonstrated that 53BP1 recruitment requires the ubiquitination of H2A.K15 as a DSB-induced, additional histone modification for optimal binding to H4K20me2 containing nucleosomes. H2A-K15 ubiquitination is dependent on RNF168, an E3 ligase that is recruited to chromatin following DSB induction (Tractet-Turcotte et al., 2013). Notably, 53BP1 binding to H4K20 dimethylated nucleosomes can also be negatively regulated via acetylation of K16 on the same H4 tail (Tang et al., 2013).

Evidence for the involvement of additional, pre-existing histone methyl marks in the DDR is rapidly accumulating. Both H3K9 and H3K36 trimethylation were shown to activate the HAT activity of DSBA-associating Tip60 (Sun et al., 2009). Indeed, the direct interaction of Tip60 with H3K9me3 at DSBs was found to be essential for Tip60-mediated activation of ATM and the downstream DDR effectors. Consequently, deletion of the enzymes responsible for H3K9 trimethylation, SUV39H1, and SUV39H2, abolished Tip60atal activity in response to DSB induction (Sun et al., 2009). DSB-induced structural changes in break-proximal chromatin have been implicated in the exposure of these trimethylated histone marks, and remarkably, experimentally induced chromatin perturbation can elicit activation of Tip60 in response to DNA damage (Kleitlen and Kastan, 2005; Kodzi and Jackson, 2013).

In addition to pre-existing methyl marks, a number of DSB-induced changes in histone methylation have now been linked to DSB repair: the mixed-lineage leukemia histone methyltransferase MLL was found to activate the S-phase checkpoint in response to DSBs via trimethylation of H3K4 (Liu et al., 2010), although the mechanistic basis for this phenomenon remains to be investigated. SETMAR/Metnase was found to mediate dimethylation of H3K36 at DSBs, which appears to promote NHEJ (Sun et al., 2013). Additionally, structural changes in break-proximal chromatin have been implicated in the exposure of these trimethylated histone marks, and remarkably, experimentally induced chromatin perturbation can elicit activation of Tip60 in response to DNA damage (Kleitlen and Kastan, 2005; Kodzi and Jackson, 2013).

In contrast, several JmjC-type demethylases have been directly linked to DSB repair. JHDM1A (KDM2A) mediated demethylation of H3K36me2 at DSBs was found to counteract SETMAR-mediated H3K36 dimethylation, and concomitantly, repair via NHEJ (Fru et al., 2011). Recently, JHDM2B (KDM4B) was found to promote demethylation of H3K9me2 and H3K9me3 in response to DNA damage and KDM4B depletion resulted in accelerated resolution of DNA breaks as indicated by reduced frequency of γ-H2AX foci late in the DDR (Young et al., 2013). In addition, the closely related KDM4 demethylases JHDM2A (KDM4A) and JHDM2D (KDM4D), which mediate demethylation of trimethylated H3K9/H3K36 or H3K9, respectively (Klose et al., 2006; Whetstone et al., 2006), were shown to interfere with the activation of Tip60 by reducing its binding to DSB-proximal chromatin (Sun et al., 2009). Notably, KDM4A can bind to methylated H4K20 and is degraded following DNA damage, thereby allowing for the accumulation of 53BP1 at DSBs. It is, however, unclear if this process involves demethylation of methyl-H4K20 (Mallette et al., 2012).

Together, these findings suggest that the negative regulation of DNA damage signaling is a common feature of KDM function in DNA repair, whereas inhibition of KDM activity may result in increased DDR activation. It is, therefore, tempting to speculate that the JmjC-type KDM inhibitor 2-HG, which is the product of the tumor-associated gain of function mutation in IDH genes (see Histone and DNA (De)methylation), may alter repair efficiency in tumor cells. Overexpression of IDH mutant enzymes as well as administration of 2-HG have been shown to promote an increase in several histone methyl marks associated with DSB repair, including H3K9me3, H3K27me3, and H3K4me3 and, to a lesser extent H3K36me3 and H3K79me2 (Liu et al., 2012). Increased H3K9me3 abundance may activate Tip60, and consequently ATM-mediated damage signaling. Similarly, increased H3K978 methylation may promote the recruitment of 53BP1. Notably, the latter has been shown to interfere with HR in the absence of BRCA1, thereby promoting the risk of genomic instability observed in BRCA1 mutant tumors (Bouwman et al., 2010; Bunting et al., 2010). Together,
these findings suggest that interference with histone demethylation may contribute to aberrant DDR activation and/or altered repair outcome, which may eventually contribute to genomic instability and, thus, be exploited for genotoxic cancer therapy.

DNA METHYLATION AND DEMETHYLATION AT DSBs

Like the methylation of a variety of histone residues, DNA methylation was found to accumulate at sites of DSBs (Claozzo et al., 2007). This process appears to require the maintenance methyltransferase DNMT1, which is rapidly and transiently recruited to DSB. DNMT1 recruitment is dependent on its ability to interact with both the DNA polymerase processivity factor PCNA and ATR, suggesting a role in DSB repair during DNA replication in S phase. Notably, reduced DNMT1 activity results in aberrant activation of the DDR in the absence of damage (Ha et al., 2011). Consistent with DNMT1 being a suppressor of abnormal DDR activation, deletion of DNMT1 in cancer cells was found to result in cell cycle arrest in G2/M and mitotic catastrophe in escapes (Chen et al., 2007). Like DNMT1, the DNMT1-associated protein 1 (DAPAI) was found to link DSB-associated DNA methylation to DSB repair. DAPAI is selectively enriched in DBS-flanking chromatin and DAPAI depletion can cause (persisting) hypomethylation, suggesting that DAPAI activates DNMT1 preferentially at sites of DNA damage. Notably, DAPAI depletion resulted in enhanced HR, which further supports a repressive role for methylation in this process (Lee et al., 2010). DAPAI was also found to associate with the Tip60-mediated H4K16 acetylation and concomitant ATM activation. Consistent with the latter, DAPAI depletion caused increased IR sensitivity and a decrease in 53BP1 foci formation (Murr et al., 2006; Penicud and Bohr, 2013). It will be interesting to determine if DAPAI-dependent ATM activation involves DNA methylation via DNMT1. Given the inhibitory effect on HR and 53BP1 recruitment, it is further tempting to speculate that DNA methylation and DAPAI can serve as a modulator of repair pathway choice.

In contrast to DNA methylation, evidence for DSB-associated DNA demethylation is missing. Perhaps to most promising candidates for the latter are the TET family of proteins, however, a role for TET proteins in DSB repair remains to be identified.

PERSPECTIVE

The repair of DNA breaks is central to cell survival, genome integrity and proper cell function. The repair machinery is, however, sensitive to perturbations in cellular homeostasis, resulting in increased DNA damage accumulation and defective genome maintenance in both aged and transformed cells. Here, we propose that metabolic changes associated with either of these processes may be a causal contributor to genomic instability due to defective chromatin-directed DSB repair (see Figure 1 and Table 1). Although the link between metabolic changes and altered chromatin organization has been established with regard to the regulation of gene expression, its link to DNA damage control remains to be identified. Based on the observations discussed here, we believe that the latter is not a matter of “all or none,” although many questions remain to be answered. One of the most intriguing aspects of the involvement of metabolites in DSB repair is the potential to modulate repair efficiency by changing nutrient availability, cellular metabolism, and/or metabolite abundance. This may eventually be utilized to promote DNA repair and, thus, prevent damage accumulation and genomic aberrations observed with age. On the other hand, targeted metabolic changes may be employed to impair DSB repair, thus enhancing genotoxic therapy in cancer treatments. However, due to the many facets of chromatin in the regulation of DSB repair, we are still far from being able to predict how even a defined metabolic change may affect repair outcome. Investigating the interplay between metabolism, chromatin, and repair, is thus vital to further our understanding of how aging and tumorigenesis affect our genomes.

ACKNOWLEDGMENTS

We would like to thank J. Phang for critical reading of the manuscript. This work was supported by federal funds from the National Cancer Institute, National Institutes of Health and the NIH intramural research program.

REFERENCES

Anderson, R. M., Bitterman, K. J., Wood, J. G., Moshkalin, G., and Sinclair, D. A. (2005). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 435, 181–185. doi: 10.1038/nature03774

Aubert, M., Sallès, B., and Calson, F. (2004). Involvement of poly(ADP-ribose)polymerase-1 and XRCC1/DNA ligase 3 in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 279, 35117–35126. doi: 10.1074/jbc.M405173200

Bai, P., Canto, C., Brunyanszki, A., Cove, Y., Thomas, C., et al. (2010). PARP-2 inhibition increases mitochondrial metabolism through SIRT1 activation. J. Biol. Chem. 285, 461–468. doi: 10.1074/jbc.M906508200

Bao, F., Canto, C., Brunyanszki, A., Huber, A., Santos, M., Cove, Y., et al. (2011a). PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13, 450–460. doi: 10.1016/j.cmet.2011.03.013

Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cove, Y., Thomas, C., et al. (2010). PARP-2 inhibition increases mitochondrial metabolism through SIRT1 activation. J. Biol. Chem. 285, 461–468. doi: 10.1074/jbc.M906508200

Bekker-Jensen, S., and Mailand, N. (2012). Regulation of chromatin structure by poly(ADP-ribose)ylation. Front. Genet. 3:169. doi: 10.3389/fgene.2012.00169

Bekker-Jensen, S., and Mailand, N. (2010). Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst.) 9, 1219–1228. doi: 10.1016/j.dnarep.2010.09.010

Bekker-Jensen, S., and Mailand, N. (2009). Regulation of chromatin structure by poly(ADP-ribose)ylation. Front. Genet. 3:169. doi: 10.3389/fgene.2012.00169

Bittner, R. J., Anderson, R. M., Cohen, H. V., Laterra, E., and Sinclair, D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277, 45099–45107. doi: 10.1074/jbc.M205970200

Blok, J. C., Van Rechem, C., and Wastin, J. R. (2012). Histone lysine methylation maintains establishment, regulation, and biological impact. Mol. Cell 48, 491–507. doi: 10.1016/j.molcel.2012.11.006

Bouwman, P., Aly, A., Escandell, J. M., Petronis, M., Barlitova, I., van der Gulden, H., et al. (2011).
SRBP1 loss rescues BRCA1 defici-
yency and is associated with triple-
positive and BRCA-mutated breast
cancers. Nat Struct Mol Biol 17, 608–615. doi:10.1038/nsmb.1831

Brady, N., Gaudillier, G. J., Mansour, H., Chane-Legg, T., Polak, A., and Grant, B. (2011). Age related changes in NAD+ metabolism in rat testis and Sertoli activity in Wistar rats. PloS ONE 6:e19949. doi: 10.1371/jour-
nal.pone.0019949

Burnett, S. F., Cullen, E., Wong, N., Chen, H. T., Polans, F., Gama, A., et al. (2010). SRBP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254. doi: 10.1016/j.cell.2010.08.012

Coulis, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: modes and paradigms. Nat Rev Genet. 10, 293–304. doi: 10.1038/nrg2540

Champion, J. P., Taylor, M. R., and Boulton, S. J. (2012). Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47, 495–516. doi: 10.1016/j.molcel.2012.07.027

Chen, T., Heo, S., Cui, F., Tajbakhsh, N., He, T., Zhang, B., et al. (2007). Complete inactivation of Dnmt1 leads to mitotic catastrophe in human cancer cells. Nat Genet. 39, 591–596. doi: 10.1038/ng1982

Chen, D. M., Adamson, B., Dopheire, N. E., Tan, X., Nettles, A. C., Harris, K. E., et al. (2010). A chromatin localization screen reveals potential targets of the repressive polycomb and Nautilus complexes to sites of DNA damage. Proc Natl Acad Sci U S A. 107, 14875–14880. doi: 10.1073/pnas.1008521

Costanzo, C., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with knives. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

Cosentino, C., and Mostoslavsky, R. (2013). 53BP1 and the DNA repair pathway. Semin Cell Dev Biol 24, 128–134. doi: 10.1016/j.semcdb.2013.01.003

Castronuovo, A., Ponzoni, A., Amigliore, T., Morano, A., Lee, B., Di Pardo, T., et al. (2010). A chromatin localization screen reveals potential targets of the repressive polycomb and NuRd complexes to sites of DNA damage. Proc Natl Acad Sci U S A. 107, 5804–5809. doi: 10.1073/pnas.1007110107

Fernandez-Porras, J., Roca, C., Vazquez, E., et al. (2011). Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end joining. Proc Natl Acad Sci U S A. 108, 540–545. doi: 10.1073/pnas.1010796108

Ferraris, P., Brinda, C., Vannoni, M. A., Mattiroli, F., and Bartoccini, E. (2005). 53BP1, a protein significantly catalyzed by LSIID is a flutam-dependent oxidative process. PLoS ONE 2, 2258–2270. doi: 10.1371/journal.pone.0001213

Futagi, T., Kitahara, A., Cao, X., Doherty, P. F., Giaccia, A. J., et al. (2008). DNA damage-induced H2A Lys 15 acetylation of histone H3 targets PARP1 to DNA double-strand breaks. Nature 459, 251–260. doi: 10.1038/nature07844

Fukui, S., Williamson, E. A., De Hoos, L. P., Brenneman, M. W., Weng, J., Shaham, M., et al. (2011). Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end joining. Proc Natl Acad Sci U S A. 108, 540–545. doi: 10.1073/pnas.1010796107

Fu, J., Jia, C., Zhang, Y., Li, F., Jiang, J., et al. (2008). PARP2-mediated PARylation is required for 53BP1 recruitment to DNA double-strand breaks. Nature 456, 540–545. doi: 10.1038/nature07517

Futaki, Y., Yeh, H., Hu, Q., Diehl, R., et al. (2009). The DNA damage response machineregulates chromatin remodeling and double-strand break repair. Mol Cell 35, 157–165. doi: 10.1016/j.molcel.2009.10.006

Futaki, Y., Yeh, H., Hu, Q., Diehl, R., et al. (2009). The DNA damage response machine regulates chromatin remodeling and double-strand break repair. Mol Cell 35, 157–165. doi: 10.1016/j.molcel.2009.10.006

Garcia, C., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with kneto. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

Gasiorowski, A., and Moldesky, R. (2013). 53BP1 and the DNA repair pathway. Semin Cell Dev Biol 24, 128–134. doi: 10.1016/j.semcdb.2013.01.003

Gatti, A., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with kneto. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

Gibbons, A., and Bronner, S. J. (2012). Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47, 495–516. doi: 10.1016/j.molcel.2012.07.027

Ginestet, C., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with kneto. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

González-Mejía, M. C., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with kneto. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

Guan, H., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with kneto. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

Guan, H., and Ethel_slis, S. J. (2010). The DNA damage response: making it safe to play with kneto. Mol Cell 40, 179–204. doi: 10.1016/j.molcel.2010.09.019

Happonen, P., W主要包括两个方面的内容：DNA damage response和DNA repair。DNA damage response主要涉及到DNA损伤的检测、信号转导和修复通路的调控，而DNA repair则涉及DNA损伤的直接修复。这两种过程在细胞应对DNA损伤的过程中起着关键作用。以下是关于DNA damage response和DNA repair的文献内容。

DNA damage response

DNA damage response is a critical cellular response to DNA damage.

DNA repair

DNA repair is a process that repairs DNA damage to maintain genome integrity.

DNA damage response and repair are essential for maintaining genomic stability and are critical for the survival of multicellular organisms. Defects in these processes can lead to cancer and other diseases.

DNA damage response and repair are not only important for maintaining genomic stability but also have roles in other cellular processes, such as cell cycle regulation, senescence, and apoptosis.

DNA damage response involves the activation of a network of protein kinases and phosphatases, which results in the phosphorylation and dephosphorylation of various proteins. These protein modifications lead to the activation or inactivation of downstream targets.

DNA repair is a complex process that involves multiple cellular machineries, such as DNA polymerases, ligases, and nucleases. DNA repair is essential for maintaining genomic stability and is critical for the survival of multicellular organisms.

DNA damage response and repair are not only important for maintaining genomic stability but also have roles in other cellular processes, such as cell cycle regulation, senescence, and apoptosis.

DNA damage response involves the activation of a network of protein kinases and phosphatases, which results in the phosphorylation and dephosphorylation of various proteins. These protein modifications lead to the activation or inactivation of downstream targets.

DNA repair is a complex process that involves multiple cellular machineries, such as DNA polymerases, ligases, and nucleases. DNA repair is essential for maintaining genomic stability and is critical for the survival of multicellular organisms.
Messner, S., Altmeyer, M., Zhao, H., Oberdoerffer, P., Michan, S., McVay, M., Nottke, A. C., Beese-Sims, S. E., Murr, R., Loizou, J. I., Yang, Y. G., Liu et al. Metabolites, chromatin, and DNA repair

Oberdoerffer, P., Ahrendt, T. , et al. (2008). SIRT6 tails.

Tip60 modulates loading of repair enzymes.

Niedergang, C., Huber, K., et al. (2008). SIRT1 redistributes to oxidative stress.

Ahrendt, T ., et al. (2013). The ADP-ribose polymers.

Tang, J., Cho, N. W., Cai, G., Mansi, E. M., Shabanin, N. M., Boteyan, M. V., et al. (2013). Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination.

Shibahara, V., D’Antonio, F., Ame, J. C., and de Marcq, G. (2008). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 7, 517–528. doi: 10.1038/nrm2363

Beese-Sims, S. E., Altmeyer, M., Zhao, H., and Reinberg, D. (2007). DNA damage-induced acetylation of lysine 79 of histone H3 facilitates H3K79 dimethylation by SIRT1. Mol. Cell. Biol. 27, 4092–4103. doi: 10.1128/MCB.25.12.4903-4913.2005

Ahrendt, T ., et al. (2013). The histone methyltransferase Suv39h1 modulates subnuclear localization of the nuclear amine oxidase SMOX.

Nishide, V., Nishimura, S., and Shiozaki, K. (2009). Drosophila poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumorigenesis in mice. Oncogene 28, 5057–5067. doi: 10.1038/onc.2009.119

Toiber, D., Erdel, F., Bouazoune, K., Silberman, D. M., Zheng, L., Mulligan, P. et al. (2013). SIRT1 recruits SRF21 to DNA breaks sites, preventing premature meta- morphosis through chromatin remolding.

Dou, S., Xu, Y., Wu, X., Chen, S., Gefen, B., et al. (2010). Cell cycle-dependent deacetylation of telomeric histone H3K56 by human SirT1.

Rosen, D., J. P., et al. (2009). Screen for DNA-damage-induced chromatin changes arising from a DNA damage signal at telomeres.

Sci. U.S.A. 106, 12805–12810. doi:10.1073/pnas.1102298108

van Attikum, H., and Gasser, S. M. (2009). Crosslink between histone modifications during the DNA damage response. Trends Cell Biol. 19, 207–217. doi: 10.1016/j.tcb.2009.04.005

Vasquez, A., Scher, M., Endruli-Bromage, H., Tempst, P., and Reinbold, D. (2007). SIRT1 regulates the histone methyltransferase SUV39H1 during heterochromatin formation. Nature 450, 440–444. doi:10.1038/nature06394

Vasquez, A., Scher, M., Loc, D., Endruli-Bromage, H., Tempst, P., and Reinbold, D. (2004). Human SirT1 interacts with histone H3 and promotes formation of facultative heterochromatin.

Mol. Cell 15, 95–103. doi:10.1016/j.molcel.2004.01.031

Vossius, K. H., and Bryan, K. M. (2009). NAD+ and metabolism.

Cell 9, 691–700. doi:10.1016/j.cell.2008.12.027

Wakamatsu, T., Wang, Y., Qiu, J., and Wang, X. F. (2012). Rat histone H3.3 demethylase by
DOPII and promotes DNA damage-induced 53BP1 foci at G1/S2 cell-cycle phases. Environ. Mol. Mutagen. 51, 2189–2198. doi: 10.1002/emboj. 2012.50

Warburg, O. (1956). On the origin of cancer cells. Science 123, 308–314. doi: 10.1126/science.123.3191.309

Ward, P. S., Patel, J., Wise, D. R., Abdel-Ward, P. S., and Thompson, C. B. (2012). Metabolites, chromatin, and DNA repair in cancers. Front. Oncol. 2:163. doi: 10.3389/foonc.2012.00163

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received 02 July 2013; accepted 27 August 2013; published online: 27 September 2013.

Copyright © 2013 Liu, Kim and Oberdoerffer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.