An Unbiased Near-infrared Interferometric Survey for Hot Exozodiacal Dust

Steve Erté1,2,3
Jean-Charles Augereau2,3
Olivier Absil5
Denis Defrère5
Jean-Baptiste Le Bouquin2,3
Lindsay Marion4
Amy Bonson6
Jérémy Lébreton7,8

1 ESO
2 Université Grenoble Alpes, France
3 CNRS, Institut de Planétologie et d’Astrophysique de Grenoble, France
4 Département d’Astrophysique, Géophysique et Océanographie, Université de Liège, Belgium
5 Department of Astronomy, Steward Observatory, University of Arizona, USA
6 School of Physics, H. H. Wills Physics Laboratory, University of Bristol, United Kingdom
7 NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, USA
8 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, USA

Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating this dusty emission from the stellar emission. The visitor instrument PIONIER at the Very Large Telescope Interferometer (VLTI) has been used to search for hot exozodiacal dust around a large sample of nearby main sequence stars. The results of this survey are summarised: 9 out of 85 stars show excess exozodiacal emission over the stellar photospheric emission.

Infrared interferometric detection of exozodis

Due to the small extent of exozodiacal systems — one au at a typical distance of 10 pc for nearby stars corresponds to an angular size of 100 milliarcseconds — only interferometry is currently able to spatially resolve them. When used at baselines of a few tens of metres, near-infrared interferometry is able to fully resolve the extended emission of the dust disc while the star still remains largely unresolved. The result is a small deficit in the measured squared visibilities (the main observable of infrared interferometry) compared to the values expected from the star alone (see Figure 1 for an explanation). Using this technique the disc can be spatially disentangled from the star, allowing the disc to be detected and the ratio between the disc and stellar emission measured. This method has so far been the most powerful and efficient tool in the search for faint exozodiacal dust.

However, the dust detected by this method in the near-infrared (NIR) is expected to be very hot, close to its sublimation temperature, and its relation to slightly cooler dust in the habitable zone is unclear. This habitable zone dust is brighter in the mid-infrared (MIR) where it can be detected by the VLTI MID-infrared interferometric instrument (MIDI) for a few bright systems (e.g., Smith et al., 2009) or more efficiently by nulling interferometry. With this latter method the stellar light from two telescopes is brought to destructive interference, while light and dark images of the system are recorded simultaneously. This allows the system to be imaged with sub-arcsecond resolution, limited only by the angular size of the beam formed by the telescope(s). The method has been shown to be capable of detecting extremely faint objects, including exoplanets in their host star’s habitable zones.
The Zodiacal dust has two main origins: large numbers of comets heated when they pass close to the Sun supplies dust. While the interaction with stellar radiation (Poynting–Robertson drag) and the evaporation of comets heated when they get close to the Sun supplies dust. The Zodiacal dust has two main origins: collisions of asteroids in the asteroid belt result in dust that is dragged inwards to regions where it is detected. Furthermore, a higher dust mass would require a larger number of planetesimals which are colliding more often to produce the dust present; this process would in turn destroy the planetesimals faster, so that at the ages of the systems observed, few planetesimals would be left (Wyatt et al., 2007). The production of the observed amounts of dust through comet evaporation would require a large number of comets, approximately one thousand events per year similar to Hale–Bopp reaching its perihelion.

Figure 2. (Below) A diagram (not to scale) to illustrate the scattering of planetesimals by an outer planet, that leads to an exchange of angular momentum and the outward migration of that planet (Bonsor et al., 2014). Some of the scattered particles are ejected, whilst some are scattered into the inner planetary system, where they interact with the inner planets. This scattering leads to a flux of material into the exozodi region.

Potential origins of exozodiacal dust

The fact that many exozodiacal systems have already been found, given the limited sensitivity of present instruments, is surprising (Absil et al., 2013). Such high levels of dust are difficult to sustain. The Zodiacal dust has two main origins: collisions of asteroids in the asteroid belt result in dust that is dragged inwards by the interaction with stellar radiation (Poynting–Robertson drag) and the evaporation of comets heated when they get close to the Sun supplies dust. While these scenarios might work for a few MIR-detected systems, they generally do not work well for more massive systems, as have been detected in the NIR around other stars. If the dust density in the disc is too high, the dust will further collide and be destroyed before being dragged inwards to regions where it is detected. However, such a mechanism puts strong constraints on the architecture of the

required to prepare future exoEarth imaging missions. The Large Binocular Telescope Interferometer (LBTI) is designed to achieve the required sensitivity and will soon start a MIR survey of 50 to 60 carefully chosen nearby main sequence stars (Weinberger et al., 2015).
Strong constraints on the potential origins of exozodiacal dust, described above, can be placed by a statistical analysis of the detection rate and excess levels of exozodiacal dust with respect to other properties of the systems, such as stellar spectral type, age of the system, or the presence of a detectable cool debris disc in the outer regions of the systems. A dependence on the stellar spectral type (i.e., stellar mass), similar to the one that has been found for debris discs and younger protoplanetary discs, would suggest a similar or even common origin of the material detected in these different dust populations. For these systems, more massive discs are present around more massive stars. A strong dependence on the system’s age (most exozodis are detected around very young stars) would suggest that the origin is a collisionally depleting planetesimal belt. Alternatively, a strong correlation with the presence of an outer disc would suggest that the hot material is supplied through some mechanism from this outer reservoir.

Our team carried out the first large, NIR interferometric survey for hot exozodiacal dust in order to statistically address the questions on the origin and evolution of these enigmatic systems (Absil et al., 2013; Ertel et al., 2014). We started our search using CHARA/FLUOR, the first instrument to routinely provide the required accuracy of the measurements. However, FLUOR can only use two telescopes at a time, which results in a limited observational efficiency. Thus, in about seven years, only around 40 stars could be observed with sufficient accuracy, but this still allowed the first statistical conclusions to be drawn (Absil et al., 2013).

The development of the PIONIER instrument for the VLTI, which can use four telescopes simultaneously, allowed a significant increase in our observing efficiency, so that in only 12 nights during 2012 a total of 92 stars could be observed. A cumulative median 1σ accuracy per target of 0.26% on the disc-to-star flux ratio was reached (Figure 3). To increase our sample and thereby to improve our statistics we combined the results from the PIONIER survey with those from FLUOR, resulting in a total of about 130 stars observed and available for the statistical analysis. The targets for both surveys were selected carefully in order to avoid any relevant selection bias that could affect the statistics.

In addition to the higher efficiency, PIONIER provides a few advantages over FLUOR. The simultaneous use of four telescopes allows the closure phase of the detected systems to be measured, which can only be achieved by combining the light from combinations of three telescopes. This quantity measures the deviation of the brightness distribution of an observed target from point symmetry, allowing a star surrounded by a dust disc and a star orbited by a faint, close companion, which otherwise have a very similar observed visibility deficit, to be distinguished. Another advantage is the fact that PIONIER data can be obtained with a small spectral resolution of three or seven spectral channels across the H-band. This information allows one to constrain the spectral slope of the detected excess and thus the emission mechanism and — in case of thermal emission — the temperature of the dust.

Figure 3. Excess distribution (left) and distribution of uncertainties (right) on the disc-to-star flux ratio are shown. The Gaussian overplotted on the excess distribution has a width of $\sigma = 1$ and is used to guide the eye, illustrating that the data are consistent with this ideal behaviour. Vertical dashed lines are plotted at $f = -3\sigma$ and $+3\sigma$ for the excess distribution and at the median uncertainty (2.6×10^{-2}) for the uncertainty distribution.

An unbiased near-infrared interferometric survey

Strong constraints on the potential origins of exozodiacal dust, described above, can be placed by a statistical analysis of the detection rate and excess levels of exozodiacal dust with respect to other properties of the systems, such as stellar spectral type, age of the system, or the presence of a detectable cool debris disc in the outer regions of the systems. A dependence on the stellar spectral type (i.e., stellar mass), similar to the one that has been found for debris discs and younger protoplanetary discs, would suggest a similar or even common origin of the material detected in these different dust populations. For these systems, more massive discs are present around more massive stars. A strong dependence on the system’s age (most exozodis are detected around very young stars) would suggest that the origin is a collisionally depleting planetesimal belt. Alternatively, a strong correlation with the presence of an outer disc would suggest that the hot material is supplied through some mechanism from this outer reservoir.

Our team carried out the first large, NIR interferometric survey for hot exozodiacal dust in order to statistically address the questions on the origin and evolution of these enigmatic systems (Absil et al., 2013; Ertel et al., 2014). We started our search using CHARA/FLUOR, the first instrument to routinely provide the required accuracy of the measurements. However, FLUOR can only use two telescopes at a time, which results in a limited observational efficiency. Thus, in about seven years, only around 40 stars could be observed with sufficient accuracy, but this still allowed the first statistical conclusions to be drawn (Absil et al., 2013).

The development of the PIONIER instrument for the VLTI, which can use four telescopes simultaneously, allowed a significant increase in our observing efficiency, so that in only 12 nights during 2012 a total of 92 stars could be observed. A cumulative median 1σ accuracy per target of 0.26% on the disc-to-star flux ratio was reached (Figure 3). To increase our sample and thereby to improve our statistics we combined the results from the PIONIER survey with those from FLUOR, resulting in a total of about 130 stars observed and available for the statistical analysis. The targets for both surveys were selected carefully in order to avoid any relevant selection bias that could affect the statistics.

In addition to the higher efficiency, PIONIER provides a few advantages over FLUOR. The simultaneous use of four telescopes allows the closure phase of the detected systems to be measured, which can only be achieved by combining the light from combinations of three telescopes. This quantity measures the deviation of the brightness distribution of an observed target from point symmetry, allowing a star surrounded by a dust disc and a star orbited by a faint, close companion, which otherwise have a very similar observed visibility deficit, to be distinguished. Another advantage is the fact that PIONIER data can be obtained with a small spectral resolution of three or seven spectral channels across the H-band. This information allows one to constrain the spectral slope of the detected excess and thus the emission mechanism and — in case of thermal emission — the temperature of the dust.

Figure 3. Excess distribution (left) and distribution of uncertainties (right) on the disc-to-star flux ratio are shown. The Gaussian overplotted on the excess distribution has a width of $\sigma = 1$ and is used to guide the eye, illustrating that the data are consistent with this ideal behaviour. Vertical dashed lines are plotted at $f = -3\sigma$ and $+3\sigma$ for the excess distribution and at the median uncertainty (2.6×10^{-2}) for the uncertainty distribution.
found (Marion et al., 2014). One more star was rejected from the analysis because it shows hints of post-main sequence evolution which could cause other effects, such as mass loss or strong stellar winds that might mimic an exozodi in our data.

A detailed statistical analysis of the combined PIONIER and FLUOR sample (Figure 4) shows that the distribution of the exozodiacal dust detection rate, with respect to the stellar spectral type, is similar to that of debris discs. This suggests that both kinds of dust discs are produced by circumstellar material originating in the protoplanetary disc during the planet formation process. However, there is no correlation between the presence of a debris disc and an exozodi...
Spectral slopes of the excesses detected in the H-band. A consequence of this is that there is indeed no physical correlation between the two phenomena. On the other hand, it is important to note that we are only able to detect the brightest, most extreme exozodis with current instrumentation, and the debris discs detected so far are also at least a few times more massive than the Kuiper Belt in the Solar System. Thus, a significant fraction of both kinds of discs remain undetected and a correlation might be hidden by that fact.

A very surprising result is that the detection rate (Figure 4) and excess levels (Figure 5) of exozodis do not decrease with the ages of the systems. This would be expected for any phenomenon that evolves over time, such as a belt of colliding planetesimals. In contrast, the exozodis seem to be caused by a stochastic process or a process that can be triggered stochastically at any time during the evolution of the planetary system. One example could be a planetary collision; however, given the high detection rate of exozodis, the short lifetime of the dust and the expected scarcity of such events, this is not a likely explanation for the detected systems. Thus, the independence of the detection rate and excess levels from the ages of the systems surveyed remains enigmatic.

An important result from PIONIER derives from the spectrally dispersed data, enabling us to constrain, for the first time, the spectral slopes of a large number of excess detections (Figure 6). The thermal emission of even the hottest dust is increasing towards wavelengths longer than the H-band. A consequence of this thermal emission would be an increasing disc-to-star contrast with wavelength. However, we find for most of our detections that the contrast is rather constant with wavelength, indicating that the emission is dominated by starlight scattered off the dust grains. This unexpected result has important implications for the dust distribution in these systems. While very hot dust emitting significantly in the H-band needs to be very close to the star, in the case of scattered light the dust could be slightly more distant, closer to the habitable zone. At that location, the dust has a stronger impact on the detectability of habitable Earth-like planets.

Future prospects

Our sample of near-infrared bright exozodis provides an excellent basis for further studies. At the same time, our observations are very timely for the new VLTI instruments, GRAVITY and MATISSE, expected to arrive in 2015 and 2016, respectively. GRAVITY will enable us to observe the discs in the K-band, at slightly longer wavelengths than PIONIER, thereby better constraining the slope of the excess and thus the emission mechanism. From the increased emission in the K-band compared to the H-band, GRAVITY will also allow the excesses to be measured at very high significance. This will allow detection of small variations in the excess levels, indicative of variation in the mass and location of the dust, enabling strong constraints to be put on its evolution. MATISSE will cover the range of even longer wavelengths up to the N-band in the MIR, constraining very well the most relevant region in which the dust emits (Figure 7). Combining all VLTI instruments, we will be able to study in detail the dust distribution and composition in these systems. The strength of combined modelling of different interferometric data has — to some extent — already been shown by our team (De Frère et al., 2011; Lebreton et al., 2013).

One of the main questions to be answered concerns the nature of any connections between the hot dust detected in the NIR, the warm dust in the habitable zone and even the colder dust further out. So far there are indications that there might be an anti-correlation...
between the presence of NIR- and MIR-detected dust. This might suggest the presence of planets in the systems with MIR bright dust emission that prevents the dust from the outer regions migrating further in, where it would be detected in the NIR. Instead the dust would pile up near the orbits of those planets.

In the context of future observational perspectives, two instruments in the northern hemisphere will soon provide critical complementary information on exozodis: the CHARA/FLUOR instrument in the NIR and the LBTI in the MIR. A new mode at CHARA/FLUOR will provide spectrally dispersed observations of northern objects inaccessible from Paranal, while the LBTI will observe with unprecedented sensitivity a sample of 50 to 60 nearby main sequence stars to characterise the faint end of the exozodi luminosity function (see first LBTI results in Defrère et al. [2015]). However, the efficiency of both instruments is limited due to the use of only one interferometric baseline at a time and the need for a large number of observations to reach the nominal sensitivity. Furthermore, the LBTI exozodi survey is designed for broadband detection of faint levels of dust and will give limited constraints on the dust properties. Only a complete exploitation with both NIR and MIR observations, and in particular those of the near-future instruments at the VLTI, will allow us to precisely characterise exozodiacal dust and study its origin and evolution, even if this is only possible for systems bright enough to be detected by our survey.

References

Absil, O. et al. 2006, A&A, 452, 237
Absil, O. et al. 2013, A&A, 555, 104
Bonsor, A. et al. 2014, MNRAS, 441, 2380
Czechowski, A. & Mann, I. 2010, ApJ, 714, 89
Defrère, D. et al. 2011, A&A, 534, 5
Defrère, D. et al. 2015, ApJ, 799, 1
Ertel, S. et al. 2014, A&A, 570, 128
Le Bouquin, J.-B. et al. 2011, A&A, 535, 67
Lebreton, J. et al. 2013, A&A, 555, 146
Marion, L. et al. 2014, A&A, 570, 127
Mennesson, B. et al. 2014, ApJ, 797, 119
Smith, R. et al. 2009, A&A, 503, 265
Weinberger, A. J. et al. 2015, ApJS, in press
Wyatt, M. C. et al. 2007, ApJ, 658, 569

VISTA VVV (the Variables in the Via Lactea Public Survey) near-infrared colour image (JHK_s) of the centre of the Galactic H II region M20 (NGC 6514). At near-infrared wavelengths the line emission is weaker than in the optical and the dust extinction lower, so background stars are easily located. Two Cepheid variables on the other side of the Galactic disc at 11 kpc were detected in this field; see Release eso1504 for details.