ON CONVERGENCE OF STRINGY MOTIVES OF WILD p^n-CYCLIC QUOTIENT SINGULARITIES

MAHITO TANNO

Abstract. The wild McKay correspondence, a variant of the McKay correspondence in positive characteristics, shows that stringy motives of quotient varieties equal some motivic integrals on the moduli space of of the Galois covers of a formal disk. In this paper, we determine when the integrals converge for the the case of cyclic groups of prime power order. As an application, we give a criterion for the quotient variety being canonical or log canonical.

1. Introduction

Let k be an algebraically closed field of characteristic $p > 0$, $G = \mathbb{Z}/p^n\mathbb{Z}$ the cyclic group of order p^n, and V a G-representation of dimension d. We identify V with the d-dimensional affine space \mathbb{A}^d. Yasuda proved the wild McKay correspondence theorem [9, Corollary 16.3], which shows that the stringy motive $M_{st}(V/G)$ of the quotient variety V/G equals the integral of the form $\int_{G-Cov(D)} L^{d-\sigma}$. Here G-Cov(D) denotes the moduli space of G-covers of $D = \text{Spec } k[[t]]$ and σ the σ-function associated to given G-representation V. Yasuda and the author [4] give an explicit formula for the σ-function, but it is not easy to compute the integrals in general.

The subject of this paper is the convergence of the integrals $\int_{G-Cov(D)} L^{d-\sigma}$. When $n \leq 2$, we already have criteria [8, 4]. We generalize them to general n and then apply it to study singularities of the quotient varieties V/G.

The moduli space G-Cov(D) can be described by the Artin–Schreier–Witt theory and hence the integral can be written as an infinite series of the form

$$\int_{G-Cov(D)} L^{d-\sigma} = \sum_{f} [G$-$Cov(D; f)]L^{d-\sigma}|_{G-Cov(D; f)},$$

where G-Cov(D) $= \bigsqcup G$-Cov(D; f) is a stratification. Moreover, the value $\sigma(E)$ of the σ-function at $E \in G$-Cov(D; f) can be written in terms of (upper) ramification jumps of the G-extension $L/k((t))$ corresponding to E. By considering the infinite series above as one of functions with upper ramification jumps as variables, we see that the integral $\int_{G-Cov(D)} L^{d-\sigma}$ converges if and only if some linear function tends to $-\infty$. For an indecomposable G-representation V of dimension d, we define the following invariants:

$$s_d^{(m)} := \sum_{0 \leq i_0 + i_1 \cdots + i_{n-1} < d, 0 \leq i_0, i_1, \ldots, i_{n-1} < p} \sum_{0 \leq m \leq n - 1} i_m \quad (0 \leq m \leq n - 1),$$

$$D_V^{(m)} := p^{n-1} \left(s_d^{(m)} - (p-1) \sum_{l=0}^{m-1} p^{m-l-1}s_d^{(l)} \right) \quad (0 \leq m \leq n - 1).$$

We generalize them to decomposable ones in the way that they become additive for direct sums.

2010 Mathematics Subject Classification. Primary 14E16; Secondary 11S15, 14B05, 14E18, 14G17, 14R20.
Theorem 1.1 (Theorem 4.1). Let V be a G-representation of dimension d. The integral
\[\int_{G-Cov(D)} L^{d-\nu} \] converges if and only if the inequalities
\[1 - p^{n-m} - \sum_{i=1}^{n-1} \frac{D^{(i)}_V}{p^{2n-1-i}} < 0 \quad (m = 0, 1, \ldots, n-1) \]
hold.

Using the wild McKay correspondence, we can study singularities of the quotient V/G; for instance, we have the following simple criterion.

Theorem 1.2 (Theorem 5.1). Assume that V is an effective indecomposable G-representation of dimension d which has no pseudo-reflection. Let $X = V/G$ be the quotient variety. The following holds:

1. X is canonical if $d \geq p - 1 + p^n$. Furthermore, if there is a log resolution of X, then the converse is also true.

2. X is log canonical if and only if $d \geq p - 1 + p^n$.

We know when given G-representation has pseudo-reflections [4] Lemma 4.6. Note that an effective indecomposable G-representation of dimension d has no pseudo-reflection if and only if $d > 1 + p^{n-1}$.

The outline of this paper is as follows. In Section 2, we review basic facts for motivic integrals, the moduli space G-Cov(D), the ν-functions, and singularities. We discuss convergence of the integral over connected G-covers in Section 3 and then apply it to the integral $\int_{G-Cov(D)} L^{d-\sigma}$. As application of the main theorem, we give some criteria for whether the quotient variety V/G is canonical (resp. log canonical) or not in Sections 5 and 6.

Notation and convention. Unless otherwise noted, we follow the notation below. We denote by k an algebraically closed field of characteristic $p > 0$, and by $K = k((t))$ the field of formal Laurent power series over k. We set $G = \langle \sigma \rangle$ a cyclic group of order p^n.

Acknowledgments. We would like to thank Takehiko Yasuda and Takahiro Yamamoto for their helpful comments. This work was supported by JSPS KAKENHI JP18H01112 and JP18K18710.

2. Preliminaries

2.1. Motivic integration and stringy motives. To state the wild McKay correspondence theorem, we briefly review motivic integration and define stringy motives.

Let X be a k-variety X of dimension d. We denote by $J_n X$ the space of n-jets and by $J_\infty X$ the space of arcs. The motivic measure μ_X on $J_\infty X$ takes values in the ring $\tilde{\mathcal{M}}$, which is a version of the completed Grothendieck ring of varieties (see [6] for details). The element of $\tilde{\mathcal{M}}$ defined by Y is denoted by $[Y]$. We write $\mathcal{L} = \{ A^d_k \}$. Let $\pi_n : J_n X \to J_n X$ be the truncation map. We call a subset $C \subset J_n X$ stable if there exists $n \in \mathbb{N}$ such that $\pi_n(C) \subset J_n X$ is constructible, $C = \pi_n^{-1}(\pi_n C)$, and the map $\pi_{m+1}(C) \to \pi_m(C)$ is a piecewise trivial A^d_k-bundle for every $m \geq n$. We define the measure $\mu_X(C)$ of a stable subset $C \subset J_n X$ by $\mu_X(C) := [\pi_n(C)]\mathcal{L}^{-nd}$ for $n \gg 0$. For a more general measurable subset, we define its measure as the limit of ones of stable subsets. For a measurable subset $C \subset J_n X$ and a function $F : C \to \mathbb{Z} \cup \{ \infty \}$ such that every fiber is constructible, we define
\[\int_C L^F := \sum_{m \in \mathbb{Z}} \mu_X(F^{-1}(m))\mathcal{L}^m. \]

We assume that X is normal and its canonical sheaf ω_X is invertible. We then define the ω-Jacobian ideal $J_X \subset \mathcal{O}_X$ by $J_X \omega_X = \text{Im} \left(\bigwedge^d \Omega_X/k \to \omega_X \right)$ and the stringy motive $M_{st}(X)$ of X by
\[M_{st}(X) := \int_{J_n X} \mathcal{L}^{-nd} J_X. \]
Here ord denotes the order function associated to an ideal sheaf.

Remark 2.1. In our situation where $G = \mathbb{Z}/p^n\mathbb{Z}$ acts on A^d_k linearly, the quotient variety $X = A^d_k/G$ is 1-Gorenstein, that is, the canonical sheaf ω_X is invertible (see \[1\] Theorem 3.1.8).

2.2. The wild McKay correspondence

Yasuda proved the following.

Theorem 2.2 (the wild McKay correspondence \[9\] Corollary 16.3). Let G be an arbitrary finite group. Assume that G acts on A^d_k linearly and effectively and that G has no pseudo-reflection. Then we have

$$M_{\text{st}}(A^d_k/G) = \int_{G-\text{Cov}(D)} \mathbb{I}^d_{-\nu}.$$

Here $G-\text{Cov}(D)$ denotes the moduli space of G-covers of $D = \text{Spec } k[[t]]$, and ν is the ν-function $\nu: G-\text{Cov}(D) \to \mathbb{Q}$ associated to the G-action on A^d_k.

By a G-cover E of D, we mean the normalization of E in an étale G-cover E' of $D' = \text{Spec } K$. Note that the ν-function depends on the given G-representation. We sometimes write the ν-function as ν_V, referring to the G-representation V in question.

Let us consider the case $G = \mathbb{Z}/p^n\mathbb{Z}$, which is of our principal interest.

We can describe the moduli space $G-\text{Cov}(D)$ by using the Artin–Schreier–Witt theory; there is a one-to-one correspondence between G-covers E and reduced Witt vectors $f = (f_0, f_1, \ldots, f_{n-1}) (f_m \in k[[t]])$. Here reduced means each f_m is of the form $f_m = \sum_{j=0}^m a_{mj} t^{-j}$ ($a_{mj} \in k$). Moreover, we stratify $G-\text{Cov}(D)$ as follows:

$$G-\text{Cov}(D) = \bigsqcup_j G-\text{Cov}(D; j),$$

$$G-\text{Cov}(D; j) \leftrightarrow \{ f = (f_0, f_1, \ldots, f_{n-1}) \mid \text{ord } f_m = -m (m = 0, 1, \ldots, n-1) \},$$

where $j = (j_0, j_1, \ldots, j_{n-1})$ is an n-tuple of positive integers with $p \nmid j_m$ or $-\infty$. Note that we can identify $G-\text{Cov}(D; j)$ with $\prod_{m \neq -\infty} \mathbb{G}_m \times_k A^{m-1-n}/p]$. See \[1\] Section 2 for details.

For the definition of ν-function, see \[7\] Definition 5.4]. In our case $G = \mathbb{Z}/p^n\mathbb{Z}$, we can compute the value $\nu_V(E)$ as follows:

Theorem 2.3 (\[4\] Theorem 3.3]). Let E be a connected G-cover and L/K the corresponding G-extension. Assume that the G-extension L/K is defined by an equation $\varphi(g) = f$, where f is a reduced Witt vector with $-j_m = \text{ord } f_m$ ($j_m \in \mathbb{N} \cup \{-\infty\}$). Note that $j_0 \neq -\infty$ since E is connected. Put

$$u_i = \max\{ p^{l-1-m} j_m \mid m = 0, 1, \ldots, l-1 \},$$

$$l_i = u_0 + (u_1 - u_0) + \cdots + (u_l - u_{l-1}) p.$$

Then

$$\nu_V(E) = \sum_{0 \leq b_i + b_l + \cdots + b_{n-1} < d, \ 0 \leq b_0, b_1, \ldots, b_{n-1} < p} \frac{[i_0 p^{n-1} l_0 + i_1 p^{n-2} l_1 + \cdots + i_{n-1} l_{n-1}]}{p^n}.$$

When E is not connected with a connected component E' and the stabilizer subgroup $G' \subset G$, then we have

$$\nu_V(E) = \nu_V(E'),$$

where V' is the restriction of V to G'.

Remark 2.4. In the situation of Theorem 2.3, we remark that

1. u_i (resp. l_i) are the upper (resp. lower) ramification jumps of the extension L/K,
2. the function ν_V is constant on each stratum $G-\text{Cov}(D; j)$.
2.3. **Singularities.** We can study singularities of quotient varieties via the wild McKay correspondence.

Proposition 2.5 ([6] Proposition 6.6, [9] Corollary 16.4). Let $X = \mathbb{A}^d_k / G$ be the quotient by a finite group G. If the integral $\int_{G\text{-Cov}(D)} \prod d^{-\nu_V}$ converges, then X is canonical. Furthermore, if there is a log resolution of X, then the converse is also true.

Furthermore, we can also estimate discrepancies of quotient varieties $X = \mathbb{A}^d_k / G$ by computing the integral $\int_{G\text{-Cov}(D)} \prod d^{-\nu_V}$. See [5] for details (see also [4] Section 4.4) for the case $G = \mathbb{Z}/p^n\mathbb{Z}$.

3. Integrals over connected G-covers

In this section, we consider integrals over connected G-covers, $\int_{G\text{-Cov}^0(D)} \prod d^{-\nu_V}$, where $G\text{-Cov}^0(D) = \bigsqcup_{j \in \mathbb{Z}} G\text{-Cov}(D; j)$ denotes the set of connected G-covers of the formal disk $D = \text{Spec} \mathbb{k}[[t]]$. As we see in Theorem 2.3 for a connected G-cover E, the value $\nu_V(E)$ is determined by the upper ramification jumps of the corresponding G-extension L/K. By abuse of notation, let us consider ν_V as a function in variables $u = (u_0, u_1, \ldots, u_n)$. The following is well-known (see, for example, [3] Lemma 3.5).

Lemma 3.1. Let $u = (u_0, u_1, \ldots, u_{n-1})$ be an increasing sequence of positive integers. Then u occurs as the set of upper ramification jumps of a G-extension of K if and only if the following conditions hold:

1. $p \nmid u_0$, and
2. for $1 \leq i \leq n - 1$, either
 2.a. $u_i = pu_{i-1}$ or
 2.b. both $u_i > pu_{i-1}$ and $p \nmid u_i$.

We denote by \mathcal{U} the set of increasing sequences of positive integers satisfying the conditions of Lemma 3.1. For $u = (u_0, u_1, \ldots, u_{n-1})$, set

$$\mathcal{J}(u) := \{ j = (j_0, j_1, \ldots, j_{n-1}) \mid u_m = \max\{p^{m-1-i}j_i \mid i = 0, 1, \ldots, m - 1\} \}. $$

Then we obtain

$$\int_{G\text{-Cov}^0(D)} \prod d^{-\nu_V} = \sum_{u \in \mathcal{U}} \left(\sum_{j \in \mathcal{J}(u)} [G\text{-Cov}(D; j)] \right) \prod d^{-\nu_V(u)}.$$

In addition, by definition, we have

$$\dim \sum_{j \in \mathcal{J}(j)} [G\text{-Cov}(D; j)] = d + u_0 - \lfloor u_0/p \rfloor + u_1 - \lfloor u_1/p \rfloor + \cdots + u_{n-1} - \lfloor u_{n-1}/p \rfloor.$$

Therefore, it is enough to study the asymptotic behavior of the function

$$\nu_V(u_0, u_1, \ldots, u_{n-1})$$

in variables $u_0, u_1, \ldots, u_{n-1}$.

Let us define some invariants to study the function ν_V.

Definition 3.2. For a positive integer d ($d \leq p^n$) and a non-negative integer m ($m \leq n-1$), we define

$$S_d^{(m)} := \sum_{0 \leq l_0 + l_1 + \cdots + l_{m-1} < d} l_m.$$

Namely, $S_d^{(m)}$ is the sum of the $(m + 1)$-th digits of the integers $0, 1, \ldots, d - 1$ in base-p notation. We can write them explicitly.
Lemma 3.3. Let $d = d_0 + d_1 p + \cdots + d_{n-1} p^{n-1}$ (0 \leq d_m < p$ for $m = 0, 1, \ldots, n-2; 0 \leq d_{n-1}$). Then the equality

$$S_d^{(m)} = p^m S_d^{(0)} + \sum_{i=0}^{m-1} p^i d_i d_m \quad (m > 0)$$

holds. In addition, we have

$$S_d^{(0)} = (d_1 + d_2 p + \cdots + d_{n-1} p^{n-2}) \left(\frac{p(p-1)}{2} + \frac{d_0(d_0-1)}{2} \right).$$

Proof. The second equality is obvious. Let $q = d_1 + d_2 p + \cdots + d_{n-1} p^{n-2}$. By definition, we have

$$S_d^{(m)} = \sum_{0 \leq k_0+k_1+\cdots+k_{n-1} < d} \sum_{0 \leq k_0+k_1+\cdots+k_{n-1} < q} \sum_{0 \leq l_0+l_1+\cdots+l_{n-1} < p} p^{i_0} d_{l_0} d_{l_1} \cdots d_{l_{n-1}} = p q^{(m-1)} + d_0 d_m.$$

Hence we obtain the first equality by induction.

Definition 3.4. Let V be an indecomposable G-representation of dimension d. We define

$$D_V^{(m)} := p^{m-1} \left(S_d^{(m)} - (p-1) \sum_{i=0}^{m-1} p^{m-1-i} S_d^{(1)} \right).$$

For decomposable G-representations, we define the invariants $D_V^{(m)}$ in the way that they become additive for direct sums.

Lemma 3.5. For integers q_m and r_m ($m = 0, 1, \ldots, n-1$), we have

$$\nu_V(q_0 p^n + r_0, q_1 p^n + r_1, \ldots, q_{n-1} p^n + r_{n-1}) = \sum_{m=0}^{n-1} D_V^{(m)} q_m + \nu_V(r_0, r_1, \ldots, r_{n-1}).$$

Proof. Since the function ν_V and the invariants $D_V^{(m)}$ are additive with respect to direct sums of G-representations, we may assume that V is indecomposable of dimension d.

By direct computing with Theorem 2.3, we obtain

$$\nu_V(q_0 p^n + r_0, q_1 p^n + r_1, \ldots, q_{n-1} p^n + r_{n-1}) = \sum_{0 \leq k_0+k_1+\cdots+k_{n-1} < d} \sum_{0 \leq l_0+l_1+\cdots+l_{n-1} < p} \nu_V(r_0, r_1, \ldots, r_{n-1}).$$

Moreover, we have

$$\sum_{m=0}^{n-1} p^{m-1} q_m (0 + (q_1 - q_0) p + \cdots + (q_m - q_{m-1}) p^m)$$

$$= p^{n-1} q_0 + p^{n-2} q_1 \pm (p-1) q_0 + \pm \cdots + q_{n-1} (-1)^{n-1} (p-1) q_{n-1} + \pm p^{n-2} q_{n-2} + p^{n-1} q_{n-1}$$

$$= p^{n-1} q_0 + \pm p^{n-2} q_1 \pm (p-1) q_0 + \pm \cdots + (p-1) q_{n-1} + \pm p^{n-2} q_{n-2} + p^{n-1} q_{n-1}$$

$$= p^{n-1} q_0 + \pm p^{n-2} q_1 \pm (p-1) q_0 + \pm \cdots + (p-1) q_{n-1} + \pm p^{n-2} q_{n-2} + p^{n-1} q_{n-1}$$

$$= \nu_V(r_0, r_1, \ldots, r_{n-1}).$$
The above equalities together with the definition of $D_V^{(m)}$ show the lemma.

We state the following as a conclusion of this section.

Theorem 3.6. Let V be a G-representation of dimension d (not necessarily indecomposable). The integral $\int_{G-\text{Cov}^0(D)} \mathbb{L}^{d-\text{poly}}$ on the space $G-\text{Cov}^0(D)$ of the connected G-covers converges if and only if the strict inequalities

$$1 - \frac{1}{p^{n-m}} - \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2n-1-l}} < 0 \quad (m = 0, 1, \ldots, n-1)$$

hold. If the inequalities ≤ 0 hold, then the integral $\int_{G-\text{Cov}^0(D)} \mathbb{L}^{d-\text{poly}}$ has terms of dimension bounded above.

Proof. It is obvious that the integral $\int_{G-\text{Cov}^0(D)} \mathbb{L}^{d-\text{poly}}$ converges if and only if $[1]$ tends to $-\infty$ as the all variables u_m increase.

From Lemma 3.3 we have

$$u_0 - [u_0/p] + u_1 - [u_1/p] + \cdots + u_{n-1} - [u_{n-1}/p] - u_V(u_0, u_1, \ldots, u_{n-1})$$

$$\equiv_{\text{bdd}} u_0 - u_0/p + u_1 - u_1/p + \cdots + u_{n-1} - u_{n-1}/p - \sum_{m=0}^{n-1} D_V^{(m)} u_m/p^n$$

$$= \sum_{m=0}^{n-1} \left(1 - \frac{1}{p} - \frac{D_V^{(m)}}{p^n} \right) u_m =: f(u),$$

where \equiv_{bdd} means equivalence modulo bounded functions. What we want to study is the limit of the function $f(u)$. Thus we consider $f(u)$ as a function defined on

$$\mathcal{U} := \{ u = (u_0, u_1, \ldots, u_{n-1}) \in \mathbb{R}^n \mid u_0 \geq 1, u_i \geq pu_{i-1} (i = 1, 2, \ldots, n-1) \}$$

instead of \mathcal{U}. For $t \in \mathbb{R}_{\geq 1}$, let $\mathcal{U}_t := \mathcal{U} \cap \{ u_{n-1} = t \}$ be the intersection of the polyhedron \mathcal{U} and the hyperplane $u_{n-1} = t$. Assume $t \geq p^{n-1}$ so that \mathcal{U}_t becomes non-empty. Obviously, \mathcal{U}_t is bounded, that is, it is a polytope. Since f is a linear function, thus the maximum value of $f|_{\mathcal{U}_t}$ is attained at the one of its vertices $(1, p \cdot \ldots \cdot p^{n-2}, t), (1, p \cdot \ldots \cdot p^{n-3}, t/p, t), \ldots, (t/p^{n-1}, \ldots, t/p, t) \in \mathcal{U}_t$.

By substituting, we have

$$f(1, p \cdot \ldots \cdot p^{m-1}, t/p^{n-1-m}, \ldots, t/p, t) \equiv_{\text{bdd}} \sum_{l=m}^{n-1} \left(1 - \frac{1}{p} - \frac{D_V^{(l)}}{p^n} \right) t$$

$$= \left(1 - \frac{1}{p^{n-m}} - \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2n-1-l}} \right) t.$$
hold. If the inequalities \(0 \leq \alpha \leq 1\) hold, then the integral \(\int_{G_{\text{Cov}}(D)} \mathbb{L}^{-d_{\alpha}}\) has terms of dimension bounded above.

Proof. We prove by induction on \(n\). The case \(n = 1\) is just [6 Proposition 6.9]. Let \(H = \mathbb{Z}/p^{n-1}\mathbb{Z}\) be the subgroup of \(G\) of index \(p\) and \(W\) the restriction of \(V\) to \(H\). Let us divide the integral as follows:

\[
\int_{G_{\text{Cov}}(D)} \mathbb{L}^{-d_{\alpha}} = \int_{H_{\text{Cov}}(D)} \mathbb{L}^{-d_{\alpha}} + \int_{G_{\text{Cov}}^2(D)} \mathbb{L}^{-d_{\alpha}}.
\]

Note that the necessary and sufficient condition on convergence of \(\int_{H_{\text{Cov}}(D)} \mathbb{L}^{-d_{\alpha}}\) is given by the induction hypothesis, and one of \(\int_{G_{\text{Cov}}^2(D)} \mathbb{L}^{-d_{\alpha}}\) is by Theorem 3.6. From the lemma below, we have

\[
1 - \frac{1}{p^{n-m}} \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{n-1-l}} = 1 - \frac{1}{p^{n-m}} \sum_{l=m}^{n-1} \frac{pD_W^{(l-1)}}{p^{n-1-l}} = 1 - \frac{1}{p^{n-1-(m-1)}} \sum_{l=m-1}^{n-2} \frac{D_W^{(l)}}{p^{2(n-1)-l}}
\]

for \(m = 1, 2, \ldots, n-1\). Therefore, the convergence of the integral \(\int_{H_{\text{Cov}}(D)} \mathbb{L}^{-d_{\alpha}}\) implies that of the integral \(\int_{G_{\text{Cov}}^2(D)} \mathbb{L}^{-d_{\alpha}}\), and hence the proof is completed. \(\square\)

Lemma 4.2. In the situation of Theorem 4.1 for \(m = 1, 2, \ldots, n-1\), we have \(D_V^{(m)} = pD_W^{(m-1)}\).

Proof. Since the invariants \(D_V^{(m)}\) are additive with respect to direct sum, thus we may assume that \(V\) is indecomposable. Moreover, by [4 Lemma 4.5], we obtain

\[
W \simeq W_{q+1} \oplus W_q^p - r,
\]

where \(d = r + gp\) (\(0 \leq r < p\)) and \(W_q\) denotes the indecomposable \(G\)-representation of dimension \(e\). Put \(d = d_0 + d_1p + \cdots + d_{n-1}p^{n-1}\) (\(0 \leq d_m < p\) for \(m = 0, 1, \ldots, n-2\)). Note that \(r = d_0\) and \(q = d_1 + d_2p + \cdots + d_{n-1}p^{n-2}\). By definition, we have

\[
S_{q+1}^{(m-1)} = \sum_{0 \leq i_0 + \cdots + i_{n-1}p^{n-2}}^{i_m-1} \sum_{0 \leq k_0, k_1, \ldots, k_{n-2}} \frac{1}{p^{n-1}} < p, < q + 1,
\]

and hence

\[
rS_{q+1}^{(m-1)} + (p-r)S_q^{(m-1)} = pS_q^{(m-1)} + rd_m.
\]

Therefore, combining [4], we obtain

\[
S_d^{(m)} = rS_{q+1}^{(m-1)} + (p-r)S_q^{(m-1)}.
\]

Now the lemma follows from the definition of \(D_V^{(m)}\). \(\square\)

Corollary 4.3. Let \(X := V/G\) be the quotient variety.
(1) X is canonical if the strict inequalities $1 - 1/p^{n-m} - \sum_{l=m}^{n-1} D^{(l)}_V/p^l < 0$ hold. Furthermore, if there is a log resolution of X, then the converse is also true.

(2) X is log canonical if and only if the inequalities $1 - 1/p^{n-m} - \sum_{l=m}^{n-1} D^{(l)}_V/p^l \leq 0$ hold.

Proof. (1). If the strict inequalities hold, then the integral $\int_{G_{\text{Conv}(D)}} L^{d-\psi}$ and hence the stringy motive $M_d(X)$ converges. From [8] Proposition 6.6], we obtain the claim.

(2). Holding the inequalities is equivalent to the integral $\int_{G_{\text{Conv}(D)}} L^{d-\psi}$ has terms of dimensions bounded above. Hence, from [9] Corollary 16.4 (1), we obtain desired conclusion.

5. INDECOMPOSABLE CASES

We give more precise estimation for the indecomposable cases.

Theorem 5.1. Assume that V is an indecomposable G-representation of dimension d which has no pseudo-reflection. Let $X := V/G$ be the quotient variety.

(1) X is canonical if $d \geq p + p^{n-1}$. Furthermore, if there is a log resolution of X, then the converse is also true.

(2) X is log canonical if and only if $d \geq p - 1 + p^{n-1}$.

Lemma 5.2. We consider the invariants $D^{(l)}_V$ as functions in variable d. Then the sum $\sum_{l=m}^{n-1} D^{(l)}_V/p^l$ is strictly increasing.

Proof. By definition, we have

$$
\sum_{l=m}^{n-1} p^l D^{(l)}_V = \sum_{l=m}^{n-1} p^l \left(- (p-1) \sum_{j=m}^{l-1} p^{l-j} S^{(j)}_d + S^{(l)}_d \right)
$$

$$
= p^{n-1} (p^m S^{(m)}_d + (- (p-1) p^{m-(m+1)} + p^{m+1}) S^{(m+1)}_d + \cdots + (- (p-1) p^{m-(n-1)} + p^{(m+1)-(n-1)} + \cdots + p^{(n-2)-(n-1)} + p^{n-1}) S^{(n-1)}_d)
$$

$$
= p^{n-1} \sum_{l=m}^{n-1} \left(- (p-1) \sum_{j=m}^{l-1} p^{l-j} + p^l \right) S^{(l)}_d
$$

$$
= p^{n-1} \sum_{l=m}^{n-1} (p^{m-l} - 1 + p^l) S^{(l)}_d
$$

$$
\geq p^{n-1} \left(p^{n-1} S^{(n-1)}_d \right) = p^{n-1} D^{(n-1)}_V.
$$

Since $D^{(n-1)}_V = p^{n-1} S^{(n-1)}_d$ is strictly increasing with respect to d, thus we get the desired conclusion.

Remark 5.3. From the proof above, $\sum_{l=m}^{n-1} p^l D^{(l)}_V$ is monotone decreasing with respect to m. Since $D^{(l)}_V$ is non-negative, thus $D^{(l)}_V$ are all non-negative.

Proof of Theorem 5.1. The cases $n = 1$ and $n = 2$ are proved in [8] and [4] respectively. We assume that $n \geq 3$. It is enough to show that the inequalities in Corollary 4.3 hold.

(2). We consider the case $d = p - 1 + p^{n-1}$. By direct computation, we obtain

$$
S^{(0)}_d = \frac{p^{n-1}(p-1)}{2} + \frac{(p-1)(p-2)}{2},
$$

$$
S^{(m)}_d = \begin{cases} p^{n-1}(p-1)/2 & \text{if } 0 < m < n-1, \\ p-1 & \text{if } m = n-1, \end{cases}
$$
and hence
\[D_V^{(n-1)} = p^{n-1}(p-1), \]
\[D_V^{(n-2)} = p^{n-1}(p-1) \left(\frac{p^{n-1}}{2} - \frac{p-1}{p} \right). \]

For \(m = n-1 \), we have
\[1 - \frac{1}{p^{m-1}} = \frac{D_V^{(n-1)}}{p^{n-1}} = 1 - \frac{p-1}{p} = 0. \]

Since \(D_V^{(m)} \) are strictly increasing with respect to \(d \), from Corollary 4.3 (2), thus \(X \) is not log canonical when \(d < p-1 + p^{n-1} \).

On the other hand, for \(m = 0, 1, \ldots, n-2 \), we have
\[
1 - \frac{1}{p^{m-1}} = \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2m-1-l}} < 1 - \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2m-1-l}} \leq 1 - \frac{D_V^{(n-2)}}{p^{m+1}} \frac{D_V^{(n)}}{p^n}.
\]

Thus we obtain
\[
1 - \left(\frac{D_V^{(n-2)}}{p^{m+1}} + \frac{D_V^{(n-2)}}{p^n} \right) = 1 - \frac{p-1}{p} \left(\frac{p^{n-1}}{2} - \frac{p-1}{p} \right) = \frac{2 - p(p-1)(p^{n-1} - 4)}{2p^3}.
\]

Therefore, we see that the inequalities in Corollary 4.3 (2) hold when \(d \geq p-1 + p^{n-1} \). Hence the quotient \(X = V/G \) is log canonical except when \((p, n) = (2, 3) \). We remark that if \((p, n) = (2, 3) \), the \(G \)-representation \(V \) has pseudo-reflections.

(1) We consider the case \(d = p + p^{n-1} \). Similarly we have
\[
1 - \frac{1}{p^{m-1}} = \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2m-1-l}} < 1 - \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2m-1-l}} \leq 1 - \frac{D_V^{(n-1)}}{p^{m}}.
\]

By direct computing, we obtain
\[S_d^{(n-1)} = p, D_V^{(n-1)} = p^n, \]

and hence
\[
1 - \frac{1}{p^{m-1}} = \sum_{l=m}^{n-1} \frac{D_V^{(l)}}{p^{2m-1-l}} < 1 - \frac{p^n}{p^n} = 0.
\]

Therefore, then the quotient \(X = V/G \) is canonical if \(d \geq p + p^{n-1} \).

6. Finite groups whose \(p \)-Sylow subgroup is cyclic

We can slightly generalize our main result as follows.

Theorem 6.1. Let \(\tilde{G} \) be a finite group whose \(p \)-Sylow subgroup is \(G \cong \mathbb{Z}/p^n \mathbb{Z} \), and \(\tilde{V} \) a \(\tilde{G} \)-representation. Assume that the restriction \(V \) of \(\tilde{V} \) to \(G \) has no pseudo-reflection. Let \(\tilde{X} := \tilde{V}/\tilde{G} \) and \(X := V/G \) be the quotient varieties.

(1) \(\tilde{X} \) is log terminal if the inequalities \(1 - 1/p^{m-1} - \sum_{l=m}^{n-1} D_V^{(l)}/p^{2m-1-l} < 0 \) \((m = 0, 1, \ldots, n-1) \) hold.

(2) \(\tilde{X} \) is log canonical if and only if the inequalities \(1 - 1/p^{m-1} - \sum_{l=m}^{n-1} D_V^{(l)}/p^{2m-1-l} \leq 0 \) \((m = 0, 1, \ldots, n-1) \) hold.
Proof. Let $\pi : X \to \tilde{X}$ be the canonical projection.

(1). If the inequalities hold, then X is canonical. From [5] Theorem 6.5, we see that \tilde{X} is log terminal.

(2). X is log canonical if and only if the inequalities hold. If \tilde{X} is log canonical, from the contraposition of [5] Theorem 6.4], X is log canonical. Conversely, with similar proof as in [5] Theorem 6.5], we see that if X is log canonical, then \tilde{X} is log canonical. □

Remark 6.2. There are only finitely many indecomposable G-representations up to isomorphism. Moreover, an explicit formula for the number of non-isomorphic ones is given in [2].

References

[1] H. E. A. Eddy Campbell and David L. Wehlau, Modular invariant theory, Encyclopaedia of Mathematical Sciences, vol. 139, Springer-Verlag, Berlin, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2759466

[2] G. J. Janusz, Indecomposable representations of groups with a cyclic Sylow subgroup, Trans. Amer. Math. Soc. 125 (1966), 288–295. MR 201528

[3] Andrew Obus and Rachel Pries, Wild tame-by-cyclic extensions, J. Pure Appl. Algebra 214 (2010), no. 5, 565–573. MR 2577662

[4] Mahito Tanno and Takehiko Yasuda, The wild mckay correspondence for cyclic groups of prime power order, 2020, preprint, arXiv: 2006.12048 [math.AG]

[5] Takahiro Yamamoto, Pathological quotient singularities in characteristic three which are not log canonical, Michigan Math. J. (2020), advance publication, arXiv: 1811.05620 [math.AG]

[6] Takehiko Yasuda, The p-cyclic McKay correspondence via motivic integration, Compos. Math. 150 (2014), no. 7, 1125–1168. MR 3230848

[7] ______, Wilder McKay correspondences, Nagoya Math. J. 221 (2016), no. 1, 111–164. MR 3508745

[8] ______, Discrepancies of p-cyclic quotient varieties, J. Math. Sci. Univ. Tokyo 26 (2019), no. 1, 1–14. MR 3929517

[9] ______, Motivic integration over wild Deligne–Mumford stacks, 2019, preprint, arXiv: 1908.02932 [math.AG]

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, JAPAN

Email address: mahito@presche.me

Email address: u529757k@ecs.osaka-u.ac.jp