The stress sigma factor $\sigma^S/RpoS$ counteracts Fur repression of genes involved in iron and manganese metabolism and modulates the ionome of *Salmonella enterica* serovar Typhimurium

Selma Metaane, Véronique Monteil, Sophie Ayrault, Louise Bordier, Corinne Levi-Meyreuis, Françoise Norel

Institut Pasteur, Université de Paris, CNRS UMR3528, Biochimie des Interactions Macromoléculaires, F-75015, Paris, France. Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France. Université Paris-Saclay, 91400, Orsay, France

These authors contributed equally to this work.

Deceased.

francoise.norel@pasteur.fr

Abstract

In many Gram-negative bacteria, the stress sigma factor $\sigma^S/RpoS$, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen *Salmonella enterica* serovar Typhimurium, σ^S is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σ^S in *Salmonella*, including the two paralogous sRNA genes, *ryhB1* and *ryhB2/isrE*. Expression of *ryhB1* and *ryhB2* is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σ^S alleviates Fur-mediated repression of the *ryhB* genes and of additional Fur target genes. Moreover, σ^S induces transcription of the manganese transporter genes *mntH* and *sitABCD* and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a $\Delta rpoS$ mutation on the *Salmonella* ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the $\Delta rpoS$ mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σ^S. This study suggests that σ^S controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the $\Delta rpoS$ mutation extended the lag phase of *Salmonella* grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σ^S and magnesium in the regrowth potential of quiescent cells.
Introduction

In many Gram-negative bacteria, the alternative sigma subunit of RNA polymerase, σ^S/RpoS, remodels global gene expression to reshape the cell physiology and ensure survival under starvation and various stress conditions (the so-called general stress response) [1]. The σ^S network has been intensively studied in the model organism, *Escherichia coli* K-12 (*E. coli*) [1–3]. In the closely related foodborne pathogen *Salmonella enterica* serovar Typhimurium (*S. Typhimurium*), σ^S is required for stress resistance, biofilm formation and virulence [1,4]. Global transcriptomic studies have revealed the composition of the *Salmonella* σ^S network, and a major effect of σ^S on remodeling of membrane and metabolic functions, and have highlighted the importance of down-regulation of gene expression by σ^S [5,6].

Until recently, the σ^S response was believed to be predominantly transcriptional. However, using a MS-based proteomics approach to unravel the impact of σ^S on global protein production, we identified a large number of genes down-regulated at the protein level, but not at the transcript level, suggesting that post-transcriptional regulation plays a larger role in σ^S gene regulation than previously recognized [7]. Small RNAs (sRNAs) might be mediators in some of these post-transcriptional effects. Indeed, we have identified several sRNAs genes under positive control by σ^S in ATCC14028 [5]. σ^S-dependent expression of most of these sRNAs has been subsequently observed by Colgan et al. in another strain of *S. Typhimurium* [8]. Analysis of gene expression in 18 mutants in regulatory genes, including *rpoS*, was reported in the *Salmonella* Gene Expression Compendium (SalCom) database [8], and we noticed that several σ^S-activated sRNA genes were up-regulated in a Δfur mutant (S1 Fig) deficient for the iron-binding global ferric uptake regulator Fur. This observation prompted us to address the possibility that σ^S alleviates Fur-mediated repression of those sRNAs genes when iron is available. The present study addresses this hypothesis focusing on two paralogous sRNA genes, *ryhB1* and *ryhB2/isrE*.

RyhB homologs are found in several bacterial genera [9]. In *E. coli*, the primary function of RyhB is in the iron-sparing response [9–11]. Under iron-rich conditions, RyhB expression is repressed by Fur [12,13]. Upon iron starvation, RyhB is produced and prevents the expression of nonessential iron-using proteins to allow a better usage of the newly acquired iron by essential proteins [9,10]. *S. Typhimurium* carries two *ryhB* orthologs; *ryhB1* (96 bps) that is surrounded by the same flanking genes as in *E. coli*, and *ryhB2* (isrE, 98 bps) that is located on a pathogenicity island [14]. There is a 33 bp sequence of perfect homology between *RyhB1* and *RyhB2* [14]. The production of both sRNAs is influenced in response to iron-availability by the activity of Fur and is induced by σ^S during late stationary phase in rich medium [5,8,14]. The *Salmonella* *RyhB* sRNAs are induced upon invasion of host cells and appear to be involved in diverse functions including acid resistance, oxidative and nitrosative stress resistance, motility and intracellular survival [12,14–19].

In this study, we show that σ^S counteracts Fur-mediated repression of the *Salmonella ryhB* genes and of additional Fur targets. Moreover, σ^S alleviates repression of manganese transporter genes, not only by Fur, but also by the manganese transport regulator MntR. Consistent with a global role for σ^S in ion trafficking, analysis of the *Salmonella* ionome by inductively coupled plasma mass spectrometry demonstrated that the cell content in manganese, magnesium, cobalt and potassium is affected by the ΔrpoS mutation. In addition, transcriptional fusions in genes involved in the transport of these ions through the inner membrane were regulated by σ^S. These findings suggest that σ^S controls the homeostasis of metal ions modulating the survival and/or regrowth potential of quiescent cells. In agreement with this hypothesis, σ^S was required for optimal regrowth of quiescent cells in rich medium in the presence of the
metal ion chelating agent EDTA, and our data pinpoint to a major role for magnesium in this phenomenon.

Material and methods

Bacterial strains, bacteriophage, plasmids and growth conditions

Strains and plasmids are listed in **S1 Table**. Bacteriophage P22HT105/1int was used to transfer mutations and lacZ fusions between *Salmonella* strains by transduction [20]. Green plates, for screening for P22-infected cells or lysogens, were prepared as described previously [21]. Bacteria were routinely grown in LB medium [22] at 37°C under aeration. When indicated, the LB medium was supplemented with the iron chelator 2,2'-dipyridyl (DP), the metal chelating agent ethylenediaminetetraacetic acid (EDTA), magnesium chloride (MgCl₂), iron chloride (FeCl₂) and manganese chloride (MnCl₂), at the indicated concentrations. Antibiotics were used at the following concentrations (in μg per ml): carbenicillin (Cb), 100; chloramphenicol, (Cm) 15 for the chromosomal resistance gene and 30 for the plasmid resistance gene; kanamycin, (Km) 50; and tetracycline, (Tc) 20.

DNA manipulations, lacZ fusions and inactivation of chromosomal genes

Standard molecular biology techniques were used [22,23]. Oligonucleotides were obtained from Sigma-Aldrich and are listed in **S2 Table**. Functional annotations and DNA sequences of ATCC14028 genes were obtained from the KEGG server (www.genome.jp/kegg/kegg2.html). DNA sequencing was performed by Eurofins Genomics (Cologne, Germany). Chromosomal deletions and lacZ fusions were generated in *Salmonella* ATCC14028 using PCR-generated linear DNA fragments (**S2 Table**) and λ-Red recombination-based method [5,6,24–26]. All strains were confirmed to contain the expected mutation by DNA sequencing.

Enzymatic assays

β-galactosidase activity was measured as described by Miller [27] and is expressed in Miller units which normalizes the enzymatic activity to the culture OD₆₀₀.

Northern analysis

Total RNA was isolated from *Salmonella* strains grown aerobically until late stationary phase (18h growth) in LB at 37°C, using TRIzol as previously described [5]. Total RNA was fractionated on an 8% polyacrylamide–7M urea gel and transferred to Hybond-N+ membranes (RPN1520B GE Healthcare). Blots were hybridized to DNA oligonucleotides specific to the RyhB1, RyhB2 and 5S sRNAs (**S2 Table**) labeled at the 5’ ends with T4 polynucleotide kinase using the UltraHyb-OLIGO buffer (AM8663, Ambion). ImageJ (http://rsb.info.nih.gov/ij/index.html) was used to compare the density of bands.

Inductively coupled plasma mass spectrometry (ICP-MS)

Cell-associated contents of twenty-three cell-associated elements were measured as follows. To minimize element contamination to samples by glass materials, we used acid-washed erlens and bottles and disposable polypropylene tubes and pipets (Tubes 14 ml PP Falcon 352059 and pipets 25 ml Falcon 357535). Wild type and ΔrpoS *Salmonella* strains (VF6910 and VF8158 respectively, **S1 Table**) were grown in LB at 37°C for 18h. For complementation experiments, both strains harboring the vector pACYC184 and the cloned rpoS gene on pSTK4 (**S1 Table**) were grown in LB supplemented with chloramphenicol at 37°C for 18h. Three biological replicates of each strain were used. Twenty-eight ml of each culture were centrifuged in
50-ml polypropylene tubes (Sarstedt 62-547-254) for 10 min at 4˚C and 6,300xg. Cell pellets were washed twice with distilled water containing 1 mM EDTA (pH 8) to chelate extracellular traces of metals, and centrifuged again. Cells were resuspended in 2.8 ml distilled water with EDTA (pH 8) 1 mM. The OD\textsubscript{600} was measured and the number of viable cells was subsequently treated in duplicates. Cell suspensions were each transferred in two pre-weighed microtubes (1.3 ml per tube, eppendorf 033297), centrifuged 10 min at 4˚C and pellets were dried in a heat block overnight at 65˚C. Dried cell pellets were digested in 2 ml of nitric acid (67%) and 4 ml H\textsubscript{2}O\textsubscript{2} (30%) in pre-weighed 50-ml polypropylene tubes (DigiTube®, SCP Sciences, France) previously checked for element contamination. The tubes were left at room temperature for 24 hours and then evaporated, at 60˚C for ~2 h and at 95˚C for ~2 h, to near dryness to a final volume of 100 μl, and then diluted to 7.5 ml in 0.5 N HNO\textsubscript{3}. Ultrapure reagents were used (Normatom grade, VWR, France for HNO\textsubscript{3}, and ANALAR Normapur grade, VWR, France for H\textsubscript{2}O\textsubscript{2}). Digestion blanks were run to check for contamination. Major (Na, Mg, Al, K) and trace element concentrations (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Ba, Tl, Pb) were determined in mineralized solutions and in the growth medium using an inductively coupled plasma quadrupolar mass spectrometer (ICP-QMS) (X-Series, CCT II+ Thermo-electron, France). Internal standards (Re, Rh and In; SPEX, SCP Science, France) were used to correct for instrumental drift and plasma fluctuation. To limit interferences, analysis was performed using a collision cell technology (CCT), which introduces a supplementary gas mixture of H\textsubscript{2} (7%) and He (93%) for the determination of V, Cr, Mn, Fe, As, Se, Ag, and Sb concentrations. A certified river water sample (SRM 1640a, NIST, Gaithersburg, USA) was repeatedly analyzed to check for data quality for all elements, except for Ti for which no certified values are provided. The SRM 1640a was 10-fold and 100-fold diluted to fit sample concentration range. The measured concentrations fall with 5% of the certified values for all elements, except Al (6.5%), As (7%) and Sb (8%).

Statistical analysis
Student’s t-test was performed for pairwise comparisons. Values were presented as means ± standard error of the mean (SEM). Differences were considered significant when p ≤ 0.05.

Results and discussion
σS activates transcription of the ryhB1 and ryhB2 sRNA genes
In previous RNA sequencing experiments using wild-type and ΔrpoS strains of S. Typhimurium ATCC14028 grown to stationary phase in LB rich medium, the RyhB1 and RyhB2 sRNAs were detected in lower amounts in the ΔrpoS mutant than in the wild-type strain [5]. The positive effect of σS on these sRNAs levels was also observed in northern experiments [5,14] (Fig 1B and 1F). We used transcriptional lacZ fusions located downstream of the ryhB1 and ryhB2 promoters [14] to demonstrate that this σS control operates at the transcriptional level (Fig 2A). Introduction in the ΔrpoS mutant of plasmid pSTK4, carrying the Salmonella rpoS gene, restored wild-type levels of expression of ryhB1-lacZ and ryhB2-lacZ (Fig 2B), thus confirming that σS activates transcription of both sRNAs. Unexpectedly however, the ΔrpoS mutation did not abolish, and even slightly increased the amounts of RyhB1 and RyhB2 and the expression levels of the ryhB1-lacZ and ryhB2-lacZ fusions in the Δfur mutant (Figs 1A, 1E and 2A). In addition, expression levels of the RyhB1 and RyhB2 sRNAs (Fig 1C, 1D, 1G and 1H) and the ryhB1-lacZ and ryhB2-lacZ fusions (Fig 2A) were increased, in both the wild-type strain and ΔrpoS mutant, by 2,2-dipyridyl (DP) that sequesters free iron and consequently likely impairs
Fur activity. Altogether, these results were consistent with a model where σ^S is required for ryhB1 and ryhB2 transcription under Fur repressing conditions only (Fig 2C). In our global analyses, the ΔrpoS mutation had no effect on the abundance of the fur transcripts [5] and Fur

Fig 1. Regulation of ryhB1 and ryhB2 by σ^S in Salmonella. The RyhB1 and RyhB2 sRNAs (of 96 and 98 nucleotides, respectively) were detected in Northern experiments as previously reported [5]. Blots were stripped and re-probed with 5S RNA probe to confirm loading of equal quantities of total RNA of the strains grown to stationary phase for 18 h at 37˚C. (A, E) Effect of the ΔrpoS mutation on ryhB1 and ryhB2 expression was assessed in a Δfur genetic background. (B, F) Control experiments showing the negative effect of the ΔrpoS mutation on ryhB1 and ryhB2 expression [5]. (C, D, G, H) Detection of the sRNAs in the wild-type and ΔrpoS strains grown in LB supplemented or not with FeCl₂ 100 μM and 2,2’-dipyridyl (DP) 100 μM. Relative quantification of bands intensity (normalized to the 5S RNA) indicated that the ΔrpoS mutation decreased by about ten-fold the amounts of RyhB1 and RyhB2 detected in the wild-type strain, as previously reported [5]. In contrast, in the Δfur background, the ΔrpoS mutation had no major impact on the amount of RyhB2 and increased the amount of RyhB1 by about three-fold. Blocking Fur-mediated repression by DP increased the expression levels of both sRNAs by more than 10-fold in the ΔrpoS mutant. In the wild-type strain, the impact of DP was stronger on RyhB1 than RyhB2 production (10 and 3.5-fold, respectively).

https://doi.org/10.1371/journal.pone.0265511.g001
protein [7], indicating that \(\sigma^S \) does not alleviate \(\text{ryhB1} \) and \(\text{ryhB2} \) repression by decreasing Fur expression.

\(\sigma^S \) counteracts Fur mediated repression of \(\text{ryhB1} \) and \(\text{ryhB2} \) transcription

The \(\text{ryhB1} \) and \(\text{ryhB2} \) promoters show typical features of \(\sigma^{70} \)-dependent promoters [14] which can also be recognized by \(\sigma^S \) [1,2] (Fig 3A). The Fur-binding site of regulated promoters contains a consensus of three imperfect adjacent hexamers 5’-GATAAT-3’ [28] and alignment of
Fig 3. Effect of mutations in Fur binding motifs on regulation of the ryhB1-lacZ and ryhB2-lacZ fusions. (A) DNA sequences corresponding to the 5’ end and upstream regions of the ryhB1 and ryhB2 sRNAs genes are shown. The -10 and -35 promoter regions are underlined. The possible Fur binding sites that match the Fur consensus sequence (gataatgataattc attatc) are indicated by blue lines above the sequences of ryhB1 and ryhB2 [14]. Mutations constructed in AAT motifs are shown (see text for details). (B) Expression of the chromosomal ryhB1-lacZ and ryhB2-lacZ fusions carrying or not the indicated mutations was assessed in Salmonella wild type, ΔrpoS,
Δfur and ΔrpoSΔfur strains (S1 Table) grown 18 h in LB. Bar graphs represent the mean β-galactosidase activity, and error bars represent standard error of the mean of at least three independent experiments (* p<0.05, ns not significant). The finding that mut3 relieves Fur repression of ryhB2 suggests that Fur binds to the more distal predicted binding site.

Fur-regulated genes in S. Typhimurium have underlined the importance of the AAT motifs in Fur binding [29]. Consensus binding sites for Fur overlap the ryhB1 and ryhB2 promoter regions [14] (Fig 3A). Mutations in AAT motifs located upstream of the -10 sequence in the predicted Fur binding sites were introduced in the promoter regions of the ryhB1-lacZ and ryhB2-lacZ chromosomal fusions to assess σ^5 and Fur regulation. Mutations were also introduced in the AAT motif present in the -35 region of ryhB2. The mut1 mutation did not affect the expression level and regulation of the ryhB1-lacZ fusion (Fig 3B). In contrast, the mut2 mutation abolished Fur repression of ryhB1-lacZ and the expression level of ryhB1mut2-lacZ was slightly improved in the absence of σ^5 (Fig 3B). Mut3 was the only mutation preventing Fur repression of the ryhB2-lacZ fusion and expression of ryhB2mut3-lacZ did not require σ^5 (Fig 3B). Altogether, these data suggest that σ^5 favors ryhB1 and ryhB2 transcription by directly counteracting Fur-mediated repression. Since Eσ^5 binds to promoters and is sensitive to repressors in a manner distinct from Eσ^70 [1], it is possible that Eσ^5, but not Eσ^70, competes efficiently with Fur for promoter binding or is productive to some extent in the presence of Fur, and allows transcriptional initiation from the ryhB1 and ryhB2 promoters (Fig 2C). Levels of ryhB1 and ryhB2 expression were slightly higher in the ΔfurΔrpoS mutant than in the Δfur strain (Figs 1A, 1E, 2A and 3B) and the rpoS gene on pSTK4 reduced the expression level of ryhB2-lacZ (and to a lesser extent ryhB1-lacZ) in the presence of DP (Fig 2B). These results suggest that σ^5 is less efficient than σ^70 for ryhB transcription when Fur repression is eliminated. This hypothesis is consistent with previous findings that σ^5 can directly repress gene expression by competing with σ^70 binding at some promoters [6,30,31].

σ^5 alleviates repression of genes involved in iron and manganese metabolism

Among genes that are strongly activated by σ^5 in ATCC14028 [5], some are repressed by Fur [8,32]. We thus addressed the possibility that σ^5 counteracts Fur repression of additional genes, besides ryhB1 and ryhB2. The suf genes encode an alternative system for iron-sulfur clusters assembly repressed by Fur [33,34] and were strongly activated by σ^5 in our transcriptomic and proteomic analyses [5,7]. The sufS-lacZ fusion was up- and down-regulated in the Δfur and ΔrpoS strains, respectively, but its expression in the Δfur mutant did not require σ^5 (Fig 4). Similarly, expression of the lacZ fusions in the irdCDE operon and irdN gene, involved in bioсинthesis and utilization of the salmochelin siderophore [35], and the STM14_5469/yyjZ gene, involved in tolerance to biofuels and antibiotics [36–38] was dependent on σ^5 in the presence of Fur only (Fig 4). These data suggest that σ^5 counteracts Fur repression of these genes, as it was observed for ryhB1 and ryhB2.

The sitABCD and mntH genes, encoding manganese transporters, are also repressed by Fur [39,40] and activated by σ^5 [5], but their expression was still dependent on σ^5 in the absence of Fur (Fig 4). Since these genes are also repressed by the manganese-responsive repressor MntR [39,40], their expression was also assessed in a ΔmntR background. The sitA-lacZ fusion was expressed to similar levels in the wild-type strain and the ΔrpoSΔfurΔmntR mutant (Fig 4), indicating that σ^5 was dispensable only when both repressors were absent. The expression level of the mntH-lacZ fusion increased in the ΔrpoSΔfurΔmntR mutant compared to that in the ΔrpoS strain, but was lower than that in the wild-type strain (Fig 4). This result suggests that, even in the absence of Fur and MntR, σ^5 is necessary, directly or indirectly, for mntH
expression. σ^S might alleviate repression of $mntH$ by a third unknown repressor molecule or favor the production of an activator. Altogether, these data demonstrated that σ^S allows expression of genes involved in iron and manganese metabolism under environmental conditions where their transcription by σ^70 is repressed. Of note, the regulatory interplay between Fur and σ^S, highlighted here, is not a general phenomenon since several genes sensitive to Fur repression are not activated by σ^S in the SalCom database [8] (S2 Fig).

Effects of σ^S on the Salmonella ionome in stationary phase

The observed control by σ^S of genes involved in iron and manganese metabolism prompted us to assess the impact of σ^S on the *Salmonella* ionome. Inductively coupled plasma mass spectrometry (ICP-MS) was used to compare levels of cell-associated metals in the wild-type $\Delta rpoS$, Δfur and $\Delta rpoS\Delta fur$ strains grown for 18 h in LB at 37˚C. For the $sitA$-lacZ and $mntH$-lacZ fusions, effect of the $\Delta mntR$ mutation was also determined. Bar graphs represent the mean β-galactosidase activity, and error bars represent standard error of the mean of at least three independent experiments (* $p<0.05$).

https://doi.org/10.1371/journal.pone.0265511.g004
of cobalt (Co), manganese (Mn), magnesium (Mg) and potassium (K) (Fig 5A, S1 Dataset experiment 1).

To validate these effects of σ^S on the ionome, a complementation experiment was conducted (Fig 5B and S1 Dataset experiment 2). The cloned rpoS gene on pSTK4 was able to restore wild-type levels of Mn, Mg and Co in the ΔrpoS strain, thus confirming the role of σ^S in the control of the cell-associated amount of these cations. The potassium contents of the wild-type strain and ΔrpoS mutant harboring pSTK4 were similar and significantly higher (fold change >2, p < 0.001) than that of wild-type and ΔrpoS strains harboring the empty vector (Fig 5B and S1 Dataset experiment 2). These data were consistent with a positive effect of σ^S on the cell-associated concentration of potassium. However, the potassium amount was not significantly different (fold change 0.96, p > 0.1) between the ΔrpoS mutant and the wild-type strain harboring pACYC184, and was even lower than that in the absence of plasmid (Fig 5A and 5B). The potassium concentration was similar in the batches of LB used in experiments 1 and 2 (S1 Dataset). One possibility is that the presence of pACYC184 (or the tetA gene which is inactivated in pSTK4 by insertion of rpoS) impairs K^+ fluxes thereby masking the effect of σ^S.

In conclusion, σ^S modulates the amount of manganese, magnesium, cobalt and likely potassium associated with quiescent cells.

Regulation by σ^S of genes involved in ions trafficking

A positive effect of σ^S on the total cell concentration of manganese was consistent with our finding that σ^S activates transcription of the mntH and sitABCD genes [5] (Fig 4), even though we cannot exclude the contribution of transport systems for other metals able to accommodate Mn. Mn is a cofactor for several enzymes in bacteria and can contribute to the catalytic detoxification of reactive oxygen species (ROS) [39,40]. Increased cell-associated Mn concentrations
could favor the activity of enzymes requiring Mn\(^{2+}\) as a cofactor and involved in metabolism and protection against oxidative stress. In addition, as previously suggested [5], in stationary phase of growth, Mn\(^{2+}\) might replace the more reactive Fe\(^{2+}\) ion in iron-containing enzymes to reduce oxidative damage to these proteins [40].

The ICP-MS analysis also revealed a positive effect of σ^S on the cell-associated concentration of magnesium. In contrast to Mn\(^{2+}\) that can be transported by transport systems for other cations [41], the chemical properties of Mg\(^{2+}\) suggest that proteins mediating Mg\(^{2+}\) transport have unusual properties [42,43]. Salmonella imports magnesium via three known transporters, MgtA and MgtB produced under conditions of magnesium starvation and CorA, expressed under various growth conditions and able to perform Mg\(^{2+}\) import and efflux [43–46]. In our global transcriptomic analysis in LB, the mgtA and mgtB genes were expressed to similar and very low levels in the wild-type and ΔrpoS strains [5], likely because the magnesium concentration in LB is high enough (S1 Dataset) to prevent activation of these genes by the PhoP-PhoQ system [43,44]. In contrast, the corA gene was downregulated in the ΔrpoS mutant [5], a result that was confirmed by using a transcriptional corA-lacZ fusion (Fig 6). A reduced expression level of corA in the ΔrpoS strain may thus contribute to lower the magnesium content of the mutant, compared to the wild-type strain (Fig 5). Nevertheless, potential differences between the two strains in their membrane composition and/or ribosomes and ATP contents, which represent important reservoirs of magnesium [43,44,47,48], have also to be considered.

The potassium level of quiescent cells is also likely positively controlled by σ^S. Potassium is the major monovalent cation in the bacterial cytoplasm and its concentration is regulated through the activity of a number of different transport and efflux systems [49–51]. Some of the corresponding genes were down regulated in the ΔrpoS mutant in our global analyses [5,7] and this σ^S control was validated by using transcriptional lacZ fusions in these genes (ycgO, trkA, trkD, KdpA, kefF, kefB, Fig 6). Consistent with a role of σ^S in potassium homeostasis, it has been suggested that the small σ^S-dependent protein YgaU/Kbp [5,7] is a cytoplasmic K^+ sensor regulating potassium homeostasis in E. coli [52]. In addition, K^+ stimulates σ^S activity [1,53].

In contrast to the other cations, cobalt was accumulated in the ΔrpoS mutant compared to the wild-type strain (Fig 5). Cobalt is a trace metal in extracellular media [54–56] including LB (S1 Dataset). In Salmonella, the cbiMNQO operon, located amongst the vitamin B12 biosynthesis genes, encodes a high affinity cobalt uptake system [54,55,57]. Transport systems for other metals, such as CorA, can also import cobalt [54,55,57] but are likely inefficient in LB where cobalt concentration is low (S1 Dataset). In our global proteomics profiling experiments [7], we noticed that the ATP-binding protein CbiO showed increased abundance in the ΔrpoS mutant of Salmonella, compared to the wild-type strain. The negative effect of σ^S on the CbiO relative protein levels was confirmed by using a translational cbiO-lacZ fusion (Fig 6). Two genes are annotated as putative efflux systems for cobalt in ATCC14028, STM14_0882/ybgR that encodes a zinc exporter ZitB [58] and STM14_3652/yohM/rcnA encoding an efflux protein for cobalt and nickel in E. coli [59,60]. Transcriptional lacZ fusions in both genes were positively controlled by σ^S (Fig 6). These data suggest that σ^S limits cobalt accumulation in quiescent cells even when cobalt is present at very low extracellular concentrations. Co\(^{2+}\), either as a cofactor or associated with vitamin B12, is required for many biological functions but it can also be toxic due to non-specific interaction with proteins or DNA, the formation of reactive oxygen species and the competition with iron which affects the biogenesis of iron-sulfur clusters [54,56,61]. Quiescent cells may be very susceptible to oxidative damages and the Co effects, thereby requiring a tight control of cobalt accumulation by σ^S.
σ^5 is required for optimal regrowth of quiescent cells in LB depleted for magnesium

Future experiments are required to determine whether the transcriptional effects of σ^5 on genes involved in ion trafficking reported in this study are implicated in the observed modulation of the ionome by σ^5 and whether additional effects of σ^5 on unspecific transport, efflux and storage systems are involved. Nevertheless, the regulation by σ^5 of the cell-associated levels of Co^{2+}, Mn^{2+}, Mg^{2+} and possibly K^+ suggest that a tight control of uptake and availability of these cations might be critical for quiescent bacteria, as an imbalance in homeostasis of these cations may be deleterious for their survival or regrowth potential.

As a first step to address this issue, the regrowth of the wild-type and ΔrpoS strains was examined in LB supplemented either with EDTA, a metal ion chelating agent, or with the iron chelating agent DP. The growth curves of the wild-type and ΔrpoS strains were similar in LB and, for both strains, the entry into stationary phase occurred at lower optical density in the presence of DP (Fig 7A–7C). Interestingly, even though similar numbers of CFU of the wild-type and ΔrpoS strains (2.9 \times 10^7 and 2.6 \times 10^7 CFU/mL, respectively) were inoculated into fresh LB medium supplemented with EDTA, the lag phase of the ΔrpoS mutant was extended, compared to that of the wild-type strain (Figs 7D and S3A). This effect of the ΔrpoS mutation was
complemented by the cloned \(rpoS \) gene on pSTK4 (Figs 7E, 7F and S3B) and was reproducibly observed using another \(\Delta rpoS \) construct (S4 Fig). Add-back experiments showed that magnesium, but not manganese or iron, was able to abolish the effects of EDTA (Figs 8A and S5).

Indeed, EDTA did not extend the lag phase of the \(\Delta rpoS \) strain when \(\text{MgCl}_2 \), but not \(\text{MnCl}_2 \) or

Fig 7. The metal ion chelator EDTA extends the lag phase of the \(\Delta rpoS \) mutant. (A, B, C, D) Kinetics of growth of the wild-type strain (WT, VF6910) and the \(\Delta rpoS \) mutant (VF8158) was followed in LB supplemented or not with EDTA 2 mM or DP 200 \(\mu \text{M} \). (E, F) The empty vector pACYC184 and plasmid pSTK4 carrying the \(rpoS \) gene were used in complementation experiments. The growth phase was determined by the measurement of culture turbidity at OD 600 nm. Similar results were obtained with the two biological replicates of each strain that were tested (see S3A and S3B Fig for the second series of biological replicates). Similar results were also observed using an independent \(\Delta rpoS \) construct (VFC331, S4 Fig).

https://doi.org/10.1371/journal.pone.0265511.g007
FeCl\(_2\), was supplemented at 1 mM suggesting that \(\sigma^S\) was required for optimal regrowth in LB depleted for magnesium. In addition, when supplemented at 10 mM, MgCl\(_2\), but not FeCl\(_2\), alleviated the effect of EDTA on bacterial growth (Figs 8A and S5).

In contrast to magnesium, high concentration of manganese prevented bacterial growth (Fig 8B). It is likely that the toxic effects of manganese on growing cells result from unspecific interactions with transporters of other metal ions or with metallobiomolecules that are important for growth. Interestingly, it has been proposed that excess Mn impairs bacterial growth by competing for magnesium and/or iron [39,62–64].

Conclusion

Even though more studies are required to dissect the molecular mechanisms underlying the \(\sigma^S\)-effects on the *Salmonella* ionome and their impact at the physiological level, this study reveals that \(\sigma^S\) controls the homeostasis and/or usage of Mg, Mn, Co, K and Fe, thereby
suggesting an impact of these cations on the fitness of quiescent cells. Our results pinpoint to the importance of magnesium for optimal regrowth of quiescent cells. The reduced magnesium content of the ΔrpoS mutant, compared to the wild type strain, correlates with a longer lag phase of the mutant when LB was depleted for magnesium. Magnesium concentration may be adjusted by σS in quiescent cells to offer optimal regrowth of cells under conditions of magnesium limitation.

Lag phase is a poorly understood stage of the bacterial growth cycle [65–67]. This period prepares bacteria for the replicative phase and is thus critical for competitive growth of bacteria and possibly antibiotic tolerance. The Salmonella lag phase in LB rich medium was shown to involve transient metal accumulation [65]. The cell-associated concentration of magnesium was maximal in mid-exponential phase of growth but did not change significantly during the lag phase [65]. In contrast, it was shown that iron, calcium, and manganese are accumulated during the lag phase whereas cobalt concentration is reduced [65]. It is tempting to speculate that the effects of σS on the Salmonella ionome and Fur-dependent regulation reported in the present study contribute to this phenomenon. Since σS counteracts Fur repression of several genes, it is likely that expression of these genes provides an advantage to non-actively growing Salmonella cells, either for long-term survival or for exit from dormancy under specific environmental conditions. Interestingly, the sitABCD, mntH, iro and suf genes are induced at the onset of the lag phase in LB [65]. It will be interesting to determine whether σS is involved in this regulation at the early lag phase and contributes to the accumulation of manganese and iron.

No effect of the ΔrpoS mutation was revealed on the cell-associated iron concentration in stationary phase, suggesting that the σS/Fur interplay unraveled in this study does not affect the content, but rather modulates the usage, of iron in quiescent cells. In particular, stationary phase cells likely rely upon the alternative Suf machinery, rather than the housekeeping Isc system, for Fe-S cluster assembly, an hypothesis consistent with the findings that Suf is more resistant to oxidation than Isc and is functional under iron-limiting conditions [34]. Also, σS limits production of non-essential iron containing enzymes, such as the succinate dehydrogenase complex Sdh (directly at the promoter level and post-transcriptionally via ryhB1 expression) and increases the production of iron storage proteins like Dps [5–7]. σS may also relieve repression of genes important for Salmonella regrowth in host and non-host iron limiting environments, such as the iro genes involved in production and utilization of siderophores [35]. Interestingly, siderophore production is associated with oxidative stress protection through iron sequestration or other mechanisms [68–71]. Accumulation of iron can promote the formation of reactive oxygen species through the Fenton reaction [72]. σS may affect iron usage to simultaneously control the intracellular level of free iron during the stationary phase and prepare the cell to a rapid accumulation of iron during the lag phase to support the replicative period and iron sequestration by the host during infection. This strategy would prevent oxidative damage while maintaining the regrowth potential and virulence of quiescent cells.

Supporting information

S1 Fig. Relative expression levels of sRNA genes in Salmonella wild-type and mutants.
Heatmaps were recovered from the Salmonella SalCom database (http://bioinf.gen.tcd.ie/cgi-bin/salcom.pl?header_rotation=45;query=prpB;db=SalComRegulon_HL). As mentioned in Colgan et al. [8], “strains were grown either in Lennox broth to OD600 0.1 (EEP), 0.3 (MEP), 1.0 (LEP) 2.0 (ESP) and 2.0 + 6 h (LSP) or in the InSPI2 condition (slightly acidic pH and limitation of inorganic phosphate) which mimics aspects of the intra-macrophage conditions and
induces expression of SPI2 Type 3 secretion system”.

(TIF)

S2 Fig. Relative expression levels of Top 50 up-regulated genes in a Δfur mutant. Heatmaps were recovered from the Salmonella SalCom database (http://bioinf.gen.tcd.ie/cgi-bin/salcom.pl?header_rotation=45;query=prpB;db=SalComRegulon_HL). As mentioned in Colgan et al. [8], “strains were grown either in Lennox broth to OD600 0.1 (EEP), 0.3 (MEP), 1.0 (LEP) 2.0 (ESP) and 2.0 + 6 h (LSP) or in the InSPI2 condition (slightly acidic pH and limitation of inorganic phosphate) which mimics aspects of the intra-macrophage conditions and induces expression of SPI2 Type 3 secretion system”.

(TIF)

S3 Fig. The metal ion chelator EDTA extends the lag phase of the ΔrpoS mutant. Biological replicates of that in Fig 7.

(TIF)

S4 Fig. The metal ion chelator EDTA extends the lag phase of the ΔrpoS mutant VFC331. Same experiment as in Fig 7A–7D, but using the ΔrpoS mutant VFC331.

(TIF)

S5 Fig. Magnesium abolishes the effect of EDTA in add-back experiments. Independent repeat experiment of Fig 8.

(TIF)

S1 Table. Strains used in this study.

(DOC)

S2 Table. Primers used in this study.

(DOC)

S1 Dataset. ICP-MS data.

(XLSX)

S1 Raw images.

(PDF)

Acknowledgments

This paper is dedicated to the memory of our colleague Corinne Lévi-Meyrueis who passed away before the submission of this manuscript. Françoise Norel accepts responsibility for the integrity and validity of the data collected and analyzed.

We thank Daniel Ladant and all members of the BIM Unit for their kind support.

Author Contributions

Conceptualization: Françoise Norel.

Data curation: Françoise Norel.

Formal analysis: Selma Metaane, Véronique Monteil, Sophie Ayrault, Corinne Levi-Meyreuis, Françoise Norel.

Funding acquisition: Françoise Norel.

Investigation: Selma Metaane, Véronique Monteil, Louise Bordier, Corinne Levi-Meyreuis.

Methodology: Véronique Monteil, Sophie Ayrault.
Supervision: Françoise Norel.
Validation: Véronique Monteil.
Writing – original draft: Selma Metaane, Françoise Norel.
Writing – review & editing: Selma Metaane, Véronique Monteil, Sophie Ayrault, Françoise Norel.

References

1. Hengge R. Stationary-Phase Gene Regulation in Escherichia coli section sign. EcoSal Plus. 2011; 4(2). https://doi.org/10.1128/ecosalplus.5.6.3 PMID: 26442507

2. Landini P, Egli T, Wolf J, Lacour S, sigma S, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. Environmental microbiology reports. 2014; 6(1):1–13. https://doi.org/10.1111/1758-2229.12112 PMID: 24596257

3. Schellhorn HE. Function, Evolution, and Composition of the RpoS Regulon in Escherichia coli. Frontiers in microbiology. 2020; 11:560099. https://doi.org/10.3389/fmicb.2020.560099 PMID: 33042067

4. Dong T, Schellhorn HE. Role of RpoS in virulence of pathogens. Infection and immunity. 2010; 78 (3):887–97. https://doi.org/10.1128/IAI.00882-09 PMID: 19948835

5. Levi-Meyrueis C, Monteil V, Sismeiro O, Dillies MA, Monot M, Jagla B, et al. Expanding the RpoS/sig-maS-network by RNA sequencing and identification of sigmaS-controlled small RNAs in Salmonella. PloS one. 2014; 9(5):e96918. https://doi.org/10.1371/journal.pone.0096918 PMID: 24810289

6. Levi-Meyrueis C, Monteil V, Sismeiro O, Dillies MA, Kolb A, Monot M, et al. Repressor activity of the RpoS/sigmaS-dependent RNA polymerase requires DNA binding. Nucleic acids research. 2015; 43 (3):1456–68. https://doi.org/10.1093/nar/gku1379 PMID: 25578965

7. Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, et al. Proteome remodelling by the stress sigma factor RpoS/sigma(S) in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Scientific reports. 2017, 7(1):2127. https://doi.org/10.1038/s41598-017-02362-3 PMID: 28522802

8. Colgan AM, Kroger C, Diard M, Hardt WD, Puente JL, Sivasankaran SK, et al. The Impact of 18 Ances-tral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium. PLoS genetics. 2016; 12(8):e1006258. https://doi.org/10.1371/journal.pgen.1006258 PMID: 27564394

9. Oglesby-Sherrouse AG, Murphy ER. Iron-responsive bacterial small RNAs: variations on a theme. Metallomics: integrated biometal science. 2013; 5(4):276–86. https://doi.org/10.1039/c3mt20224k PMID: 23340911

10. Salvail H, Masse E. Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis. Wiley interdisciplinary reviews RNA. 2012; 3(1):26–36. https://doi.org/10.1002/wrna.102 PMID: 21793218

11. Chareyre S, Mandin P. Bacterial Iron Homeostasis Regulation by sRNAs. Microbiology spectrum. 2018; 6(2). https://doi.org/10.1128/microbiolspec.RWR-0010-2017 PMID: 29573257

12. Porcheron G, Dozois CM. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Veterinary microbiology. 2015; 179(1–2):2–14. https://doi.org/10.1016/j.vetmic.2015.03.024 PMID: 25888312

13. Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS microbiology reviews. 2003; 27(2–3):215–37. https://doi.org/10.1016/S0168-6445(03)00055-X PMID: 12829269

14. Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, et al. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic acids research. 2008; 36(6):1913–27. https://doi.org/10.1093/nar/gkn050 PMID: 18267966

15. Kim JN. Roles of two RyhB paralogs in the physiology of Salmonella enterica. Microbiological research. 2016; 186–187:146–52. https://doi.org/10.1016/j.micres.2016.04.004 PMID: 27242152

16. Kim JN, Kwon YM. Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype. Microbiological research. 2013; 168(10):621–9. https://doi.org/10.1016/j.micres.2013.06.002 PMID: 23831078
17. Ortega AD, Gonzalo-Asensio J, Garcia-del Portillo F. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA biology. 2012; 9(4):469–88. https://doi.org/10.4161/rna.19317 PMID: 22363761

18. Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y, Schulte LN, et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature. 2016; 529(7587):496–501. https://doi.org/10.1038/nature16547 PMID: 26789254

19. Chen B, Meng X, Ni J, He M, Chen Y, Xia P, et al. Positive regulation of Type III secretion effectors and virulence by RyhB paralogs in Salmonella enterica serovar Enteritidis. Vet Res. 2021; 52(1):44. https://doi.org/10.1186/s13577-021-00915-z PMID: 33691799

20. Schmiegel H. Phage P22-mutants with increased or decreased transduction abilities. Molecular & general genetics: MGG. 1972; 119:75–88. https://doi.org/10.1007/BF00270447 PMID: 4564719

21. Sternberg NR, M. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol. 1991; 204:18–43. https://doi.org/10.1016/0076-6879(91)04004-8 PMID: 19437774

22. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual (2nd edn.). New York: Cold Spring Harbor Laboratory Press. 1989.

23. Robbe-Saule V, Jaumouille V, Prevost MC, Guadagnini S, Talhouarne C, Mathout H, et al. Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar Typhimurium. Journal of bacteriology. 2006; 188(11):3983–94. https://doi.org/10.1128/JB.0033-06 PMID: 16707690

24. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli/K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(12):6640–5. https://doi.org/10.1073/pnas.120163297 PMID: 10829079

25. Gerlach RG, Jackel D, Holzer SU, Hensel M. Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica. Appl Environ Microbiol. 2009; 75(6):1575–80. https://doi.org/10.1128/AEM.02509-08 PMID: 19151186

26. Ellermeier CD, Janakiraman A, Slauch JM. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene. 2002; 290(1–2):153–61. https://doi.org/10.1016/s0378-1119(02)00551-6 PMID: 12062810

27. Miller JH. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York. 1972.

28. Baichoo N, Helmann JD. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol. 2002; 184(21):5826–32. https://doi.org/10.1128/JB.184.21.5826-5832.2002 PMID: 12374814

29. Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC microbiology. 2011; 11:236. https://doi.org/10.1186/1471-2180-11-236 PMID: 22017966

30. Cho BK, Kim D, Knight EM, Zengler K,Palsson BO. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC biology. 2014; 12-4. https://doi.org/10.1186/1471-7007-12-4 PMID: 24461193

31. Yin K, Guan Y, Ma R, Wei L, Liu B, Liu X, et al. Critical role for a promoter discriminator in RpoS control of virulence in Edwardsiella piscicida. PLoS pathogens. 2018; 14(8):e1007272. https://doi.org/10.1371/journal.ppat.1007272 PMID: 30169545

32. Santos-Zavaleta A, Salgado H, Gama-Castro S, Sanchez-Perez M, Gomez-Romero L, Ledezma-Tejieda D, et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli/K-12. Nucleic acids research. 2019; 47(D1):D212–D20. https://doi.org/10.1093/nar/gky1077 PMID: 30395280

33. Blahut M, Sanchez E, Fisher CE, Outten FW. Fe-S cluster biogenesis by the bacterial Sul pathway. Biochim Biophys Acta Mol Cell Res. 2020; 1867(11):118829. https://doi.org/10.1016/j.bbamcr.2020.118829 PMID: 32822728

34. Roche B, Aussel L, Ezraty B, Mandon P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochimica et biophysica acta. 2013; 1827(3):455–69. https://doi.org/10.1016/j.bbadis.2012.01.010 PMID: 23298813

35. Muller SI, Valdebenito M, Hantke K. Salmochein, the long-overlooked catecholate siderophore of Salmonella. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine. 2009; 22(4):691–5. https://doi.org/10.1007/s10529-009-9217-4 PMID: 19214756

36. Banerjee R, Weisenhorn E, Schwartz KJ, Myers KS, Glasner JD, Perna NT, et al. Tailoring a Global Iron Regulon to a Uropathogen. mBio. 2020; 11(2). https://doi.org/10.1128/mBio.00351-20 PMID: 32209682
37. Otoupal PB, Chatterjee A. CRISPR Gene Perturbations Provide Insights for Improving Bacterial Biofuel Tolerance. Front Bioeng Biotechnol. 2018; 6:122. https://doi.org/10.3389/fbioe.2018.00122 PMID: 30234107
38. Erickson KE, Otoupal PB, Chatterjee A. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. mSphere. 2017; 2(1). https://doi.org/10.1128/mSphere.00009-17 PMID: 28217741
39. Papp-Wallace KM, Maguire ME. Manganese transport and the role of manganese in virulence. Annual review of microbiology. 2006; 60:187–209. https://doi.org/10.1146/annurev.micro.60.080805.142149 PMID: 16704341
40. Porcheron G, Garenaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in cellular and infection microbiology. 2013; 3:90. https://doi.org/10.3389/fcimb.2013.00090 PMID: 23467764
41. Karlinsey JE, Maguire ME, Becker LA, Crouch ML, Fang FC. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Molecular microbiology. 2010; 78(3):669–85. https://doi.org/10.1111/j.1365-2958.2010.07357.x PMID: 20807201
42. Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometa ls: an international journal on the role of metal ions in biology, biochemistry, and medicine. 2002; 15(3):203–10. https://doi.org/10.1023/a:1016058229972 PMID: 12206387
43. Papp-Wallace KM, Maguire ME. Magnesium Transport and Magnesium Homeostasis. EcoSal Plus. 2008; 3(1). https://doi.org/10.1128/ecosalplus.5.4.4.2 PMID: 26443723
44. Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg2+ homeostasis, transport, and virulence. Annual review of genetics. 2013; 47:625–46. https://doi.org/10.1146/annurev-genet-051313-051025 PMID: 24079267
45. Maguire ME. Magnesium transporters: properties, regulation and structure. Frontiers in bioscience: a journal and virtual library. 2006; 11:3149–320. https://doi.org/10.2741/2039 PMID: 16720382
46. Moomaw AS, Maguire ME. The unique nature of mg2+ channels. Physiology. 2008; 23:275–85. https://doi.org/10.1152/physiol.00019.2008 PMID: 18927203
47. Akanuma G, Kobayashi A, Suzuki S, Kawamura F, Shiwa Y, Watanabe S, et al. Defect in the formation to cytoplasmic potassium of bacterio logy. 2016; 198(13):1868–82. https://doi.org/10.1128/JB.01029-15 PMID: 27137496
48. Nierhaus KH. Mg2+, K+, and the ribosome. Journal of bacteriology. 2014; 196(22):3817–9. https://doi.org/10.1128/JB.01896-14 PMID: 25218490
49. Epstein W. The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol. 2003; 75:293–320. https://doi.org/10.1016/s0079-6603(03)75008-9 PMID: 14604015
50. Sharma R, Shimada T, Mishra VK, Iupreti S, Sardeasi AA. Growth Inhibition by External Potassium of Escherichia coli Lacking PtsN (ELIANtr) Is Caused by Potassium Limitation Mediated by YcgO. Journal of bacteriology. 2016; 198(13):1868–82. https://doi.org/10.1128/JB.01029-15 PMID: 27137496
51. Verkhovskaya ML, Barquera B, Wikstrom M. Defect of one of two Escherichia coli genes encoding putative Na+/H+ exchangers (ycgO) perturbs cytoplasmic alkali cation balance at low osmolarity. Microbiology (Reading). 2001; 147(Pt 11):3005–13. https://doi.org/10.1099/00221287-147-11-3005 PMID: 11700351
52. Ashraf KU, Josts I, Mosbahi K, Kelly SM, Byron O, Smith BO, et al. The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor. Structure. 2016; 24(5):741–9. https://doi.org/10.1016/j.str.2016.03.017 PMID: 27112601
53. Lee CR, Cho SH, Kim HJ, Kim M, Peterkofsky A, Seok YJ. Potassium mediates Escherichia coli enzyme IIA(Ntr) -dependent regulation of sigma factor selectivity. Molecular microbiology. 2010; 78 (6):1468–83. https://doi.org/10.1111/j.1365-2958.2010.07419.x PMID: 21143318
54. Barras F, Fontecave M. Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallomics: integrated biometal science. 2011; 3(11):1130–4. https://doi.org/10.1039/c1mt00099c PMID: 21952637
55. Rodionov DA, Hebbelin P, Gelfand MS, Eitingier T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. Journal of bacteriology. 2006; 188(1):317–27. https://doi.org/10.1128/JB.188.1.317-327.2006 PMID: 16352848
56. Okamoto S, Eltis LD. The biological occurrence and trafficking of cobalt. Metallomics: integrated biometal science. 2011; 3(10):963–70. https://doi.org/10.1039/c1mt00056j PMID: 21804980
57. Osman D, Cavet JS. Metal sensing in Salmonella: implications for pathogenesis. Advances in microbial physiology. 2011; 58:175–232. https://doi.org/10.1016/B978-0-12-381043-4.00005-2 PMID: 21722794
58. Huang K, Wang D, Frederiksen RF, Rensing C, Olsen JE, Fresno AH. Investigation of the Role of Genes Encoding Zinc Exporters zntA, zitB, and fieF during Salmonella Typhimurium Infection. Front Microbiol. 2017; 8:2656. https://doi.org/10.3389/fmicb.2017.02656 PMID: 29375521

59. Koch D, Nies DH, Grass G. The RcnRA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine. 2007; 20(5):759–71. https://doi.org/10.1007/s10534-006-9039-6 PMID: 17120142

60. Rodrigue A, Effantin G, Mandrand-Berthelot MA. Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. Journal of bacteriology. 2005; 187(8):2912–6. https://doi.org/10.1128/JB.187.8.2912-2916.2005 PMID: 15805538

61. Thorgersen MP, Downs DM. Cobalt targets multiple metabolic processes in Salmonella enterica. Journal of bacteriology. 2007; 189(21):7774–81. https://doi.org/10.1128/JB.00962-07 PMID: 17720790

62. Martin JE. mSphere of Influence: Intermetal Competition during Manganese Toxicity. mSphere. 2020; 5(1). https://doi.org/10.1128/mSphere.00949-19 PMID: 31915224

63. Silver S, Johnsen P, Whitney E, Clark D. Manganese-resistant mutants of Escherichia coli: physiological and genetic studies. Journal of bacteriology. 1972; 110(1):186–95. https://doi.org/10.1128/jb.110.1.186-195.1972 PMID: 4552988

64. Silver S, Clark D. Magnesium transport in Escherichia coli. The Journal of biological chemistry. 1971; 246(3):569–76. PMID: 5542671

65. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of bacteriology. 2012; 194(3):686–701. https://doi.org/10.1128/JB.00962-11 PMID: 22139505

66. Bertrand RL. Lag phase—a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of bacteriology. 2019.

67. Bertrand RL. Lag phase-associated iron accumulation is likely a microbial counter-strategy to host iron sequestration: role of the ferric uptake regulator (fur). Journal of theoretical biology. 2014; 359:72–9. https://doi.org/10.1016/j.jtbi.2014.05.039 PMID: 24929040

68. Bogomolnaya LM, Tilvawala R, Elfenbein JR, Cirillo JD, Andrews-Polymenis HL. Linearized Siderophore Products Secreted via MacAB Efflux Pump Protect Salmonella enterica Serovar Typhimurium from Oxidative Stress. mBio. 2020; 11(3). https://doi.org/10.1128/mBio.00528-20 PMID: 32371597

69. Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 2015; 44(14):6320–39. https://doi.org/10.1039/c4dt03559c PMID: 25764171

70. Achard ME, Chen KW, Sweet MJ, Watts RE, Schroder K, Schembri MA, et al. An antioxidant role for catecholate siderophores in Salmonella. The Biochemical journal. 2013; 454(3):543–9. https://doi.org/10.1042/BJ20121771 PMID: 23805839

71. Peralta DR, Adler C, Corbalan NS, Paz Garcia EC, Pomares MF, Vincent PA. Enterobactin as Part of the Oxidative Stress Response Repertoire. PloS one. 2016; 11(6):e0157799. https://doi.org/10.1371/journal.pone.0157799 PMID: 27310257

72. Imlay JA. Pathways of oxidative damage. Annual review of microbiology. 2003; 57:395–418. https://doi.org/10.1146/annurev.micro.57.030502.090938 PMID: 14527285