Smart face shield for the monitoring of COVID-19 physiological parameters: Personal protective equipment (PPE) for health-care workers (HCW’s) and COVID-19 patients

Sidra Abid Syed1, Taha Mushtaq2, Neha Umar2, Warisha Baig2, Choudhary Sobhan Shakeel2 and Hira Zahid2

Abstract
The COVID-19 pandemic has triggered instabilities in various aspects of daily life. This includes economic, social, financial, and health crisis. In addition, the COVID-19 pandemic with the evolution of different virus strains such as delta and omicron has led to frequent global lockdowns. These lockdowns have caused disruption of trade activities that in turn have led to the shortage of medical supplies, especially personal protective equipment’s (PPE’s). Health-care workers (HCW’s) have been at the forefront of the fight against this pandemic and are responsible for saving millions of lives worldwide. However, the PPE’s available to HCW’s in the form of face shields and face masks only provide face and eye protection without encapsulating the ability to continuously monitor vital COVID-19 parameters including body temperature, heart rate, and SpO2. Hence, in this study, we propose the design and utilization of a PPE in the form of smart face shield. The device has been integrated with the MAX30102 sensor for measuring the heart rate and oxygen saturation (SpO2) and the DS18B20 body temperature measuring sensor. The readings of these sensors are analyzed by a NodeMCU ESP8266 and measurements are displayed on a laptop screen. Also, the Wi-Fi module of NodeMCU ESP8266 enables compatibility with the ThingSpeak mobile application and permits HCW’s and patients recovering from COVID-19 to keep a track of their physiological parameters. Overall, this PPE has been observed to provide reliable readings and the results indicate that the designed prototype can be used for monitoring COVID-19 essential parameters.

Keywords
COVID-19, PPE, face shield, face mask, body temperature, heart rate, SpO2

Date received: 9 February 2022; accepted: 31 August 2022

Introduction
Ever since the first coronavirus case was identified in December 2019, the COVID-19 pandemic has put the entire world in danger affecting people of all age groups and causing disruption in daily activities.1,2 The COVID-19 pandemic has been described as one of the most prominent health devastations of the modern era.3 Apart from exerting impacts on the health field, the COVID-19 pandemic has led to far-reaching social and economic crisis that experts are still trying to measure and cope with.4–6 According to the latest global statistics, the pandemic caused by the COVID-19 has been the cause of 288,598,994 cases, 5,454,996 deaths as of 1st January 2022.7,8 The COVID-19 disease primarily affects the respiratory system of an individual with the mouth and nose serving as the primary modes of transmission.9 Once inside the human body, the it travels through the nasal passages and oral cavity and starts to multiply and spread to other regions of the body.10 The

1Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi, Sindh, Pakistan
2Department of Biomedical Engineering, Ziauddin University, Faculty of Engineering, Science, Technology and Management (ZUFESTM), Karachi, Sindh, Pakistan

Corresponding author:
Sidra Abid Syed, Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi, Sindh, Pakistan.
Email: sidra.agha@yahoo.com
Amin et al.25 were able to provide face and eye protection in relation to COVID-19.22 In a similar study, did not involve any physiological parameter measurement however, this PPE providing eye and face protection study presented an effective decontamination protocol, along with being used only once.

Of 3D printed face shields being manufactured by Duke University medical center introduced the design of measuring physiological parameters associated with COVID-19.23 Another study demonstrated the design and use of an innovative smart face shield capable of exhibiting both the above mentioned features as well as telemedicine and according to the best of our knowledge, no such smart face shield has been developed up till now.

A healthcare worker can be tested before and after work, it would be more beneficial for the healthcare worker to keep a continuous track of COVID-19 related symptoms during engagement with patients as it would help the HCW to work safely and confidently, knowing that his/her health is optimized in order to serve the needs of the patients efficiently. It would also help to decrease the spread of the COVID-19 pandemic. Furthermore, our smart face shield apart from healthcare workers, can be used by patients who are recovering or who have recovered from COVID-19 in order to keep a continuous track of symptoms. This can help such patients with adequate feedback and indicate when to seek immediate medical attention.

Although, this also presents ease of use, as for example, one does not have to wear a pulse oximeter every time in order to check his/her Spo2. Hence, we propose the design and use of an innovative smart face shield capable of measuring essential physiological parameters of heart rate, blood oxygen saturation (SpO2), and body temperature. Furthermore, our proposed face shield is based on telemedicine and is integrated with a mobile application so that information relating to the measured physiological variables can be transmitted easily. Our proposed PPE in the form of a face shield can be used by HCW’s for continuously monitoring COVID-19 related parameters and adhere to protection while treating patients. Also, the face shield can be utilized for post COVID-19 monitoring in individuals so that they can keep a track of their recovery from the virus and ensure that their heart rate, SpO2, and body temperature are at optimal values. A
limitation of our smart face shield is that during the early stages of the COVID-19 disease when an individual does not exhibit any overt physical signs, the smart face shield may not indicate COVID-19 symptoms. However, this is also the case with tests that do give false positive and false negative results. Hence, there is always some chance of error.

The article includes sections including section 2 elaborating the methodology and section 3 describing the results and the findings of the study. Conclusions and future work are described in section 4.

Methodology

Figure 1 demonstrates the working of the proposed face shield in the form of a block diagram and is a representation of the assembly of the components which include a NodeMCU ESP8266, MAX30102 sensor for monitoring heart rate and blood oxygen saturation (SpO2), and DS18B20 temperature monitoring sensor. With the aid of the Wi-Fi component of NodeMCU microcontroller, readings acquired via the MAX30102 and DS18B20 sensors are received, visualized and are wirelessly transmitted to a mobile application known as ThingSpeak. These applications are compatible with the NodeMCU ESP8266. Hence, the readings of heart rate, SpO2, and body temperature are continuously monitored.

The onset of COVID-19 represents symptoms such as fever with serious indications such as difficulty in breathing and shortness of breath.\(^{28,29}\) Hence, this was the primary reason for monitoring parameters including body temperature, heart rate, and SpO2.

The application of the proposed PPE comprising of a face shield is represented in Figure 2. The NodeMCU ESP8266 functions as the microcontroller unit for receiving and transmitting the values of heart rate, SpO2, and body temperature to the mobile applications enabling continuous monitoring of COVID-19 vital symptoms. The flow process in Figure 2 is initiated once the microcontroller unit is powered on and the detection process begins. The MAX30102 sensor is responsible for detecting the heart rate and SpO2 via the fingertip while the DS18B20 obtains the body temperature from the forehead. The reason of choosing the location of forehead for body temperature measurement as it was an easier placement region considering the design of the face shield. Furthermore, temperature acquired via the forehead has been identified to be a reliable indicator of the body temperature.\(^{30}\)

A threshold infrared (IR) value of 50,000 has been set for the MAX30102 sensor and detects the heart rate and SpO2 reading in case the IR value is > 50,000. If the IR value is below the set point of 50,000, no reading of heart rate and SpO2 is going to be measured and the detection process would continue. Moreover, the DS18B20 sensor identifies the true condition and measures the temperature. In case, the true condition is not detected, no temperature is measured and the detection process continues.

The MAX30102 sensor utilized in our designed face shield is manufactured by Mouser Electronics and is an integrated module for the measurement of heart rate and SpO2. It is embedded with internal light emitting diodes (LED’s) and photo-detectors that employ the principle of photoplethysmography and operates by shining light onto the skin via the placed fingertip and the heart rate and SpO2 is measured as a function of the reflected light. The DS18B20 body temperature sensor utilized in our proposed PPE in the form of a face shield is manufactured by Maxim Integrated and is integrated with components such as ramp accumulator, temperature coefficient oscillator, counters, and temperature registers.

A total of 25 participants were recruited for testing of the proposed face shield. Ethical review committee of Ziauddin University granted ethical consent to carry out this study. The recruiting and participation of individuals for testing of the face shield was executed only after acquiring consent through a consent form. An individual was allowed as a participant only by consent.
An exclusion and inclusion criteria was also formulated. Any individual that exhibited a medical condition affecting the body temperature, heart rate, and SpO2 did not participate. Hence, testing of the face shield comprised of only healthy participants. The 25 participants belonged to an age group of 20–40 years and included 15 males and 10 females.

Our proposed face shield comprises of elements such as NodeMCU ESP8266, MAX30102, and DS18B20 sensors. In order to design the face shield, the individual components were embedded in casings including a finger clipper designed for the placement of the MAX30102 sensor as exhibited by Figure 3 and a box case for the location of the NodeMCU ESP8266 as represented by Figure 4. Figure 5 illustrates the placement of the DS18B20 being fixed in the part of the face shield that is in close proximity with the forehead region of the individual. Following the placements of the components, the face shield was assembled with the aid of a glue gun utilizing glue gum and is shown in Figure 6.

NodeMCU ESP8266 has been used in our designed face shield for receiving and interpreting the values of heart rate, body temperature, and SpO2 as well as transmitting the detected values to ThingSpeak mobile application. The built-in Wi-Fi module of NodeMCU ESP8266 enables wireless transmission of data and continuous monitoring of COVID-19 parameters. Furthermore, it has a small size and is portable and easily incorporated within our designed face shield. Also, it can be programed using C language which is commonly used for programing functions.

A feature that we have integrated with our designed face shield for ease of data transmission and COVID-19 symptoms monitoring is the use of open-source software of ThingSpeak mobile application. ThingSpeak open-source software allows the connection of internet connected devices and the user, thereby putting their communication at ease. ThingSpeak allows visualization, collection, and analysis of live data streams. For the interfacing of ThingSpeak, we created a channel on its webpage and then an ID and the application programing interface (API) key of this channel was added in the programing.

Results and discussion
Measurements of body temperature, heart rate, and SpO2 of the 25 individuals that participated were recorded and the operation of the designed PPE in the form of a face shield was analyzed. Table 1 exhibits the
readings obtained from the 15 male participants whereas Table 2 demonstrates the measurements acquired from the 10 female participants. The readings obtained in Tables 1 and 2 signifies the reliable working of our designed face shield and the monitoring of COVID-19 vital parameters.

Figures 7 and 8 illustrate the readings transmitted to the ThingSpeak mobile application which have been interpreted graphically. Figure 7 demonstrates the body temperature, heart rate, and SpO2 obtained for three male participants. Similarly, Figure 8 shows the body temperature, heart rate, and SpO2 for three female participants.

The objective of our study was to design and present the use of a PPE that can be used for monitoring vital physiological parameters during the current COVID-19 pandemic including body temperature, heart rate, and SpO2. Furthermore, the proposed face shield is integrated with ThingSpeak mobile application so that information relating to the measured physiological variables can be communicated and monitored continuously and easily. Even though, PPE’s in the form of face shields and face masks have been manufactured in several studies including Armijo et al.,22 Erickson et al.,23 Skamnelos et al.,24 Amin et al.,25 Chaturvedi et al.,26 and Pan et al.,27 providing eye and face protection, they do not cater to the need of monitoring physiological parameters including body temperature, heart rate, and SpO2. Furthermore, they are also not capable of transmitting data wirelessly to a mobile phone.

Table 1. Body temperature, heart rate, and SpO2 measurements of male participants.

Serial number	Body temperature (°C)	Heart rate (BPM)	SpO2 (%)
1	36.4	83.0	97.4
2	36.6	75.0	98.7
3	36.9	77.0	97.9
4	36.8	98.0	99.4
5	36.5	67.0	99.2
6	36.4	78.0	98.9
7	36.8	78.0	97.7
8	36.7	96.0	96.2
9	37.0	64.0	98.6
10	36.4	85.0	96.9
11	36.4	90.0	97.6
12	36.3	66.0	98.6
13	36.7	89.0	98.2
14	36.9	97.0	98.5
15	36.2	65.0	99.0

Table 2. Body temperature, heart rate, and SpO2 measurements of female participants.

Serial number	Body temperature (°C)	Heart rate (BPM)	SpO2 (%)
1	36.3	79.0	98.4
2	36.7	80.0	96.7
3	36.7	96.0	96.9
4	36.6	88.0	98.4
5	36.5	69.0	99.1
6	36.4	87.0	97.9
7	36.9	92.0	97.5
8	36.7	84.0	98.5
9	36.4	74.0	97.8
10	36.3	89.0	96.3

Figure 7. Graphical representation of measurements on ThingSpeak for three male participants.

Figure 8. Graphical representation of measurements on ThingSpeak for three female participants.
Conclusions

The proposed study introduces the design and utilization of a face shield that can be used by HCW’s in order to ensure protection against COVID-19 as well as the continuous monitoring of their physiological parameters including body temperature, heart rate, and SpO2. Moreover, our designed face shield can also be used by individuals for monitoring post-COVID symptoms and to keep a regular check on their health. Two sensors including MAX30102 for measuring SpO2 and heart rate and the DS18B20 for detection of body temperature have been used so that the manufactured face shield has the ability to monitor important physiological parameters. The NodeMCU ESP8266 serves as the controller unit for receiving the values from the sensors, comparing them with the set thresholds and displaying the results on a laptop. In addition, the NodeMCU ESP8266 allows data to be wirelessly transmitted to the ThingSpeak mobile application which makes it convenient for individuals to monitor COVID-19 parameters on their mobile phones and seek medical assistance in case their parameters deviate from the normal ranges. Work that can be integrated with the existing face shield in the future includes a nasal oxygen mask that be worn by patient in case the blood oxygen saturation level drops below 95%.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Taha Mushtaq https://orcid.org/0000-0001-5642-3633
Choudhary Sobhan Shakeel https://orcid.org/0000-0002-2501-1481

References

1. Kaushik M and Guleria N. The impact of pandemic COVID-19 in workplace. Eur J Bus Manage 2020; 12(15): 1–0.
2. Haleem A, Javaid M and Vaishya R. Effects of COVID-19 pandemic in daily life. Curr Med Res Pract 2020; 10(2): 78–79.
3. Chakraborty I and Maity P. COVID-19 outbreak: migration, effects on society, global environment and prevention. Sci Total Environ 2020; 728: 138882.
4. Bavel JV, Baicker K, Boggio PS, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav 2020; 4(5): 460–471.
5. Ozili PK. COVID-19 pandemic and economic crisis: the Nigerian experience and structural causes. J Econ Adm Sci 2021; 37: 401–418.
6. Shakeel CS, Mujeeb AA, Mirza MS, et al. Global COVID-19 vaccine acceptance: a systematic review of associated social and behavioral factors. Vaccines 2022; 10(1): 110.
7. Bergeri I, Lewis HC, Subissi L, et al. Early epidemiological investigations: World Health Organization UNITY protocols provide a standardized and timely international investigation framework during the COVID-19 pandemic. Influenza Other Respir Viruses 2022; 16(1): 7–13.
8. Khan NA, Al-Thani H and El-Menyar A. The emergence of new SARS-CoV-2 variant (Omicron) and increasing calls for COVID-19 vaccine boosters-The debate continues. Travel Med Infect Dis 2022; 45: 102246.
9. Camporota L, Cronin JN, Busana M, et al. Pathophysiology of coronavirus-19 disease acute lung injury. Curr Opin Crit Care 2022; 28(1): 9–16.
10. Mir T, Almas T, Kaur J, et al. Coronavirus disease 2019 (COVID-19): multisystem review of pathophysiology. Ann Med Surg 2021; 69. DOI: 5
11. Yadav A and Mohite S. A review on novel Coronavirus (COVID-19). Int J Pharma Sci Res 2020; 11(5): 74–76.
12. Sheikh K, Shirzadfar H and Sheikh M. A review on novel coronavirus (COVID-19): symptoms, transmission and diagnosis tests. Res Infect Dis Trop Med 2020; 2(1): 1–8.
13. Platto S, Wang Y, Zhou J, et al. History of the COVID-19 pandemic: origin, explosion, worldwide spreading. Biochem Biophys Res Commun 2021; 538: 14–23.
14. Del Rio C, Omer SB and Malani PN. Winter of Omicron-The evolving COVID-19 pandemic. JAMA 2022; 327: 319–320.
15. Karim SSA and Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet 2021; 398(10317): 2126–2128.
16. Hebbani AV, Pulakuntla S, Pannuru P, et al. COVID-19: comprehensive review on mutations and current vaccines. Arch Microbiol 2021; 204(1): 8–7.
17. Gualano MR, Sinigaglia T, Lo Moro G, et al. The burden of burnout among healthcare professionals of intensive care units and emergency departments during the COVID-19 pandemic: A systematic review. Int J Environ Res Public Health 2021; 18(15): DOI: 2
18. Boškoski I, Gallo C, Wallace MB, et al. COVID-19 pandemic and personal protective equipment shortage: protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointest Endosc 2020; 92(3): 519–523.
19. Cohen J and Rodgers YVDM. Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Prev Med 2020; 141: 106263.
20. Bahlol M and Dewey RS. Pandemic preparedness of community pharmacies for COVID-19. Res Soc Adm Pharm 2021; 17(1): 1888–1896.
21. Bown CP (ed.). Asian Econ Policy Rev 2022; 17(1): 114–135.
22. Armijo PR, Markin NW, Nguyen S, et al. 3D printing of face shields to meet the immediate need for PPE in an anesthesiology department during the COVID-19 pandemic. Am J Infect Control 2021; 49(3): 302–308.
23. Erickson MM, Richardson ES, Hernandez NM, et al. Helmet modification to PPE with 3D printing during the COVID-19 pandemic at Duke University Medical Center: a novel technique. *J Arthroplasty* 2020; 35(7S): S23–S27.

24. Skamnelos A, Murino A, Lazaridis N, et al. Endoscopy during the COVID-19 pandemic: simple construction of a single-use, disposable face shield using inexpensive and readily available materials. *VideoGIE* 2020; 5(9): 399–401.

25. Amin D, Nguyen N, Roser SM, et al. 3D printing of face shields during COVID-19 pandemic: a technical note. *J Maxillofac Oral Surg* 2020; 78(8): 1275–1278.

26. Chaturvedi S, Gupta A, Krishnan S V, et al. Design, usage and review of a cost effective and innovative face shield in a tertiary care teaching hospital during COVID-19 pandemic. *J Orthop* 2020; 21: 331–336.

27. Pan L, Wang C, Jin H, et al. Lab-on-mask for remote respiratory monitoring. *ACS Materials Letters* 2020; 2(9): 1178–1181.

28. Larsen JR, Martin MR, Martin JD, et al. Modeling the onset of symptoms of COVID-19. *Public Health Front* 2020; 8: 473.

29. Nehme M, Braillard O, Alcoba G, et al. COVID-19 symptoms: longitudinal evolution and persistence in outpatient settings. *Ann Intern Med* 2021; 174(5): 723–725.

30. Carpenè G, Henry BM, Mattiuzzi C, et al. Comparison of forehead temperature screening with infra-red thermometer and thermal imaging scanner. *J Hosp Infect* 2021; 111: 208–209.
