The form of nitrogen nutrition affects resistance against
Pseudomonas syringae pv. phaseolicola in tobacco

Kapuganti J. Gupta1,*,†, Yariv Brotman2, Shruthi Segu2, Tatiana Zeier3, Jürgen Zeier3, Stefan T. Persijn4, Simona M. Cristescu5, Frans J. M. Harren5, Hermann Bauwe1, Alisdair R. Fernie2, Werner M. Kaiser6 and Luis A. J. Mur7,†

1 Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-18059, Rostock, Germany
2 Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
3 Institute for Plant Molecular Ecophysiology, Heinrich-Heine-Universität Universitätsstrasse 1 40225 Düsseldorf
4 Dutch Metrology Institute, VSL, Thijssenseweg 11, 2629 JA Delft, The Netherlands
5 Molecular and Laser Physics, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
6 Lehrstuhl Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
7 Aberystwyth University, Institute of Environmental and Rural Science, Edward Llwyd Building, Aberystwyth, UK, SY23 3DA

* Present address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
† To whom correspondence should be addressed. E-mail: jagadis.kapuganti@plants.ox.ac.uk or lum@aber.ac.uk

Received 3 August 2012; Revised 5 November 2012; Accepted 8 November 2012

Abstract

Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)—a pathogen-elicited cell death linked to resistance. HR-eliciting _Pseudomonas syringae pv. phaseolicola_ was infiltrated into leaves of tobacco fed with either NO3− or NH4+. The speed of cell death was faster in NO3−-fed compared with NH4+-fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in NH4+-fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming _P. syringae pv. tabaci_ strain, further suggesting that resistance was compromised with NH4+ feeding.

_PRA_1 is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in NH4+-fed compared with NO3−-fed plants at 24 h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in NH4+-treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following NO3− nutrition, polyamine biosynthesis was predominant, whilst after NH4+ nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby NO3− feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with NH4+, which also increases the availability of nutrients to pathogens, are discussed.

Key words: ammonium, hypersensitive response, nitrate, nitric oxide, _Pseudomonas_, tobacco.
Introduction

The anthropogenic application of nitrogen (N) fertilizer has been a major factor in modern high crop yields and plant quality (Tilman, 1999; Hajjar and Hodgkin, 2007). This has resulted in a doubling of N loads to soil since the beginning of the 20th century (Green et al., 2004) and is continuing with total global N inputs in the region of 150 teragrams of N year$^{-1}$ (Schlesinger, 2009). In agricultural soils, N is supplied in the form of nitrate (NO$_3^-$), ammonium (NH$_4^+$), or a combination of both. Plants will reduce NO$_3^-$ using nitrate reductase (NR) to generate NO$_2^-$, which is further reduced to NH$_4^+$, which can be directly assimilated by glutamine synthetase (GS) to form glutamine. NH$_4^+$ can also enter the soil biosystem via fixation of atmospheric N, as well as by decomposition of organic matter by microorganisms such as bacteria and fungi. NH$_4^+$ can be oxidized to first NO$_2^-$ and subsequently to NO$_3^-$ by the nitrification pathway. Given its widespread use, the agricultural impact of N nutrition on disease development has been extensively examined (Huber and Watson, 1974). However, here we have assessed the effects of the form of N nutrition on a form of resistance to pathogens that is typified by the hypersensitivity response (HR).

When a pathogen first comes into contact with a host, it is assumed to be nutrient starved, meaning that rapid assimilation of host nutrients is essential for successful pathogenesis (Snoeijers et al., 2000). Equally, the host seeks to either prevent this and/or mobilize its nutrients to further defence responses. These opposing aims are well exemplified in the changes in N metabolism seen during plant–pathogen interactions. The accumulation of 4-amino butyric acid (GABA)—a glutamate-derived metabolite—has been observed in response to a range of biotic stresses (Kinnersley and Turano, 2000). In the case of infection of tomato by Cladosporium fulvum, GABA has been shown to be utilized by the pathogen (Kinnersley and Turano, 2000; Solomon and Oliver, 2001), but from the perspective of the host, GABA participates in the so-called ‘GABA shunt’, allowing a direct link between reduced N in the host (as represented in GABA) and the tricarboxylic acid (TCA) cycle (Fromm and Bouche, 2004). This may occur due to the host’s increased bioenergetic requirements following infection (Fait et al., 2008). Some N manipulation can be more obviously favourable to the pathogen. For example, several genes usually associated with N mobilization during senescence, such as specific forms of GS, as well as some senescence-associated genes, are induced during disease (Bender et al., 1999; Pontier et al., 1999; Quirino et al., 1999; Masclaux et al., 2000). Similarly, infection of French bean (Phaseolus vulgaris) by the anthracnose pathogen Colletotrichum lindemuthianum induces GS expression (Tavernier et al., 2007). Furthermore, as C:N assimilatory links are well established (Fritz et al., 2006a; Bauge et al., 2010; Sweetlove et al., 2010), it is unsurprising that N changes correlate with increase host-cell sugar export to influence plant disease susceptibility (Tadge et al., 1998; Thibaud et al., 2004). Thus, whilst N fertilizers improve the nutrient status of the host, they can also promote disease (Huber and Watson, 1974).

Co-application of biocides with N fertilizers may appear to be a worthwhile agricultural strategy to negate any disease-promoting effects of the latter. However, there is increasing pressure to reduce the use of a range of biocides in agriculture (Gullino and Kuijpers, 1994) and to exploit endogenous plant defence mechanisms in plant breeding and agricultural practice. The introgression of resistance (R) genes into elite crop germplasm has been, and remains, an important approach to securing yields (Rommens and Kishore, 2000). One consequence of R gene-mediated resistance is often the elicitation of a programmed cell death—the hypersensitivity response (HR). N effects appear to be a facet of HR-mediated resistance, as elicitation of the HR induces GS and glutamate dehydrogenase via the defence hormone salicylic acid (SA) and could aid in mobilizing N away from the pathogen (Pageau et al., 2006). Another N component in plant defence is nitric oxide (NO), which is a major contributor to the formation of the HR (Delledonne et al., 1998, Gupta, 2011). Crucially, under aerobic conditions, NO is generated by NR acting on the reduced product of a NADPH-dependent nitrite reductase (Molodo et al., 2005; Gupta et al., 2011). As NR cannot act on NH$_4^+$, the type of N nutrition (NO$_3^-$ or NH$_4^+$) would influence whether NO were generated. NO initiates the biosynthesis of SA via a signalling route that involves cyclic GMP and cyclic ADP-ribose (Durner and Klessig, 1999). SA is an important stress signal, and is known to play important roles in HR-type plant defence (Mur et al., 2000, 2008), thermotolerance (Clarke et al., 2004), chilling (Scott et al., 2004), and stomatal regulation (Khokon et al., 2011). The physiological link between NO and SA effects have been shown in localized plant defence (Klessig et al., 2000), systemic acquired resistance (Espunya et al., 2012), and stomatal opening (Sun et al., 2010).

Here, we characterized the influence of NO$_3^-$ or NH$_4^+$ nutrition on HR-mediated resistance, focusing on the impact on NO, SA, and primary plant metabolism. We have shown how NO$_3^-$ feeding augments HR-mediated resistance, whilst NH$_4^+$ can compromise defence by mechanisms, which include increasing nutrient availability for the pathogen.

Materials and methods

Plant materials

Tobacco seeds cv. Gatersleben were germinated on vermiculite in a day/night regime of 14/10h, 24/20 °C, a relative humidity of 80%, and photosynthetic photon flux density (PPFD) of 350–400 µmol m$^{-2}$ s$^{-1}$. After 3 weeks, the plants were transferred to hydroponic culture for an additional 4–8 weeks. Plastic pots, each containing 1.8 l of nutrient solution, were kept in a growth chamber with artificial illumination (HQL 400 W; Schreder, Winterbach, Germany) at PPFD of 300 µmol m$^{-2}$ s$^{-1}$ and with 16 h daily light periods. The day/night temperature regime of the chamber was 24/20 °C. Nutrient solution was prepared according to the method of Planchet et al. (2005). The NO$_3^-$ nutrient solution (pH 6.3) contained 3 mM KNO$_3$, 1 mM CaCl$_2$, 1 mM MgSO$_4$, 25 µM NaFe-EDTA, 0.5 mM K$_2$HPO$_4$, 1 mM KH$_2$PO$_4$, and trace elements according to Planchet et al. (2005). For NH$_4^+$-fed plants, the nutrient solution was: 3 mM NH$_4$Cl, 1 mM K$_2$HPO$_4$, 0.5 mM CaCl$_2$, 1 mM MgSO$_4$, 25 µM NaFe-EDTA, 1 µM MnSO$_4$, and trace elements according to Planchet et al. (2005).
Growth of plant pathogens, plant inoculation, and estimation of in planta bacterial populations

Pseudomonas syringae pv. *phaseolicola* strain 1448A (Psph) and *P. syringae* pv. *tabaci* strain 4152 (Pt) (both rifampicin resistant) were grown at 28 °C in King’s B medium containing rifampicin (10 μM) (both rifampicin resistant) *Pseudomonas syringae* pv. *phaseolicola* strain 1448A (*et al*., 2004). Overnight exponential-phase cultures were washed three times with autoclaved 10 mM MgCl₂ and diluted to a final concentration of 10⁶ cells ml⁻¹. The bacterial suspensions were infiltrated from the abaxial side into a sample leaf using a 1 ml syringe with a needle. Control inoculations were performed with 10 mM MgCl₂. In *planta* bacterial population sizes were assessed to indicate the extent of resistance/susceptibility exhibited by the host. Cores of 1 cm discs (0.79 cm²) were taken using a cork borer and ground down in a mortar and pestle and resuspended in 1 ml of 10 mM MgCl₂. Serial dilutions of the slurry were plated on rifampicin (10 mg ml⁻¹)-supplemented King’s B medium and incubated at 30 °C until colonies formed. Based on the number of colonies and dilution factor, the original *in planta* population was calculated.

Estimations of electrolyte leakage

Loss of membrane integrity was estimated by electrolyte leakage in 1 cm diameter cores as described by Mur *et al.* (1997). This measure was used to suggest the kinetics of cell death.

NO measurement

Quantum cascade laser (QCL) The use of a QCL to detect NO has been described recently (Mur *et al.*, 2011). The system allows real-time NO measurements with a detection limit of 0.8 ppbv s⁻¹ (Cristescu *et al*., 2008). Before each experiment, the QCL was calibrated against gas mixtures prepared from a reference gas mixture (100 ppbv NO in N₂) diluted in NO-free air to cover the range 10–100 ppbv. Infiltrated tobacco leaves that had been detached at the petiole were placed in a 200 ml glass cuvette in an inlet and outlet carrier flow of air via gas tubing, and NO production was monitored at a controlled continuous flow rate of 11 l h⁻¹. During NO measurements, the leaves in the cuvette were maintained in a Sanyo MLR-350 environmental test chamber at 20 °C under a 16 h light (200 μmol m⁻² s⁻¹)/8 dark regime. The humidity within the cuvette was not controlled or measured.

Multiple cuvettes could be monitored in sequence, each being measured for ~13 min. The laser light emitted by the QCL around 1850 cm⁻¹ passed through a multi-pass absorption cell where the NO molecules were transported via the gastube. The intensity of the transmitted laser light was attenuated due to the NO absorption of the light in the multi-pass cell (effective path length=76 m), following the Beer–Lambert law. The detected signal depended on the intensity before the multi-pass cell, the absorption length, and the absorption coefficient of NO at the particular wavelength. The NO concentration was calculated by measuring attenuation of the light coming into the cell relative to the transmitted light (after the cell).

Chemiluminescence

For experiments with detached leaves, the leaves were cut off from the plant and placed in nutrient solution, where the petiole was cut off a second time below the solution surface. The leaves (petiole in nutrient solution) were placed in a transparent lid chamber with 2 or 4 l of air volume, depending on leaf size and number. A constant flow of measuring gas (purified air or N₂) at 1.5 l min⁻¹ was pulled through the chamber and subsequently through the chemiluminescence detector (CLD 770 AL ppt; Eco-Physics, Dürnten, Switzerland; detection limit 20 ppt; 10 s time resolution) by a vacuum pump connected to an ozone destroyer. The ozone generator of the chemiluminescence detector was supplied with dry oxygen (99%). The measuring gas (air or N₂) was made NO free by conducting it through a custom-made charcoal column (1 m long, 3 cm internal diameter, particle size 2 mm). Calibration was carried out routinely with NO-free air (0 ppt NO) and with various concentrations of NO (1–35 ppb) adjusted by mixing the calibration gas (500 ppb NO in N₂; Messer Griesheim, Darmstadt, Germany) with NO-free air. Flow controllers (FC-260; Tylan General, Eching, Germany) were used to adjust all gas flows. Light was provided by a 400 W HQI lamp (Schreder) above the cuvette. Quantum flux density could be adjusted within limits (150–400 μmol m⁻² s⁻¹ PPFD) by changing the distance between the lamp and cuvette. The air temperature in the cuvette was monitored continuously and was usually about 20 °C in the dark and 23–25 °C in the light.

Expression profiling by quantitative real-time RT-PCR (qRT-PCR)

Expression analysis was performed using an expression profiling platform of the response of eight defence genes against *Pseudomonas* in tobacco. Primer sequences were designed using QuantPrime (Arvidsson *et al*., 2008). Fully expanded leaves were collected and pooled from six plants in each treatment. Total RNA was purified using an RNeasy Mini Kit (Qiagen, http://www.qiagen.com) and DNase digestion was performed with a Turbo DNA-free Kit (Ambion, http://www.ambion.com/). Four micrograms of total RNA was used as template for first-strand cDNA synthesis with a RevertAid cDNA Synthesis Kit (Fermentas, http://www.fermentas.com/). cDNA (20 ng) was used for qRT-PCR with Power SYBR Green reagent performed on an ABI PRISM 7900HT sequence detection system (Applied Biosystems, http://www.appliedbiosystems.com/). Data were analysed with the 7900 version 2.0.3 evaluation software (Applied Biosystems). The fold change in the target genes was normalized to a reference gene, elongation factor 1a (*EF1a*). Fold expression relative to control plants was determined using the ΔΔCₚ method, as described by Libault *et al.* (2007). Three biological experiments (with two independent replicates for each experiment) were performed for each treatment. Comparisons of gene expression between the different treatments compared with the control were conducted using a t-test.

Extraction of apoplastic fluid

Apoplastic fluid was extracted from tobacco leaves by direct centrifugation as described by Danel *et al.* (1995), with some modifications. Leaves were cut at the base of the petiole with a sharp razor blade and the petiole immediately immersed in
deionized water. Each leaf was then rolled into several folds and placed into a plastic syringe (25 ml) with the petiole side at the base of the syringe. The syringe was placed in a 50 ml centrifuge tube. Leaf-filled syringes were centrifuged at 4 °C at 4000g and apoplastic fluid was collected from the bottom of the centrifuge tube.

Targeted sugar and total amino acid measurements

Major sugars (glucose, fructose, and sucrose) were separated by anion-exchange chromatography (0.1 N NaOH as the eluent) on a Carbopac column plus pre-column and detected directly by pulsed amperometry (Dionex 4500i; Dionex, Idstein, Germany). Total amino acids were measured by HPLC, as described by Mahmood et al. (2002).

Metabolite profiling

Gas chromatography/mass spectroscopy (GC-MS) analysis was performed as described previously (Lisec et al., 2006). Six replicates each consisting of six pooled plants obtained from two independent experiments were subjected to GC-MS analysis. Metabolite levels were determined in a targeted fashion using the TargetSearch software package (Cuadros-Inostroza et al., 2009). Metabolites were selected by comparing their retention indexes (±2 s) and spectra (similarity >85%) against compounds stored in the Golm Metabolome Database (Kopka et al., 2005). This resulted in 150 metabolites, which were kept in the data matrix. Each metabolite was represented by the observed ion intensity of a selected unique ion, which allowed relative quantification between groups. Metabolite data were log_{10}-transformed to improve normality (Steinfath et al., 2008) and normalized to show identical medium peak sizes per sample group.

Data analyses

Metabolite data were analysed by multivariate approaches using Pychem software (Jarvis et al., 2006). Where the statistical test for significant was between two groups, t-tests were used, but when comparing between three or more groups Tukey’s multiple pairwise comparison test was employed using Minitab version 14 (Minitab, Coventry, UK). The Tukey test outputs represent adjusted P values based on significant differences between differing datasets. Datasets where there were no significant differences are indicated on the figures using alphabetical indicators.

Results

The form of N nutrition influences HR development induced by Psph

To investigate the role of NO3- and NH4+ nutrition on HR-associated defence, tobacco cv. Gatersleben plants were grown in hydroponic solutions containing either 3 mM KNO3 (referred to as NO3- fed plants) or 3 mM NH4Cl (referred to as NH4+-fed plants) for 1 week and then challenged with Psph. Within 24 h post-inoculation (p.i.), leaf discoloration was observed at the inoculation sites of NO3-tREATED plants only (Fig. 1A). To quantify the loss of membrane integrity, which is linked to cell death, electrolyte leakage from isolated explants of Psph-challenged tissue was assessed (Fig. 1B). Leakage was more rapid in NO3-fed compared with NH4+-fed plants, which tallied with the observed differences in macroscopic formation (Fig. 1A). To link these changes with host resistance in planta, Psph population sizes were determined (Fig. 1C). No significant differences in bacterial numbers within NO3-fed compared with NH4+-fed plants were observed, and in both, growth from the initial population (0 d p.i.) was evident. However, at 7 days p.i., whereas in NH4+-fed plants there was a significant (P < 0.001) increase in bacterial numbers compared with 3 days p.i., with NO3-fed plants the bacterial numbers were reduced. This delay in the HR observed for NH4+-treated plants was linked with increased Psph growth in planta (Fig. 1C), suggesting that resistance was compromised. However, with NO3-fed plants, there was a dramatic reduction in bacterial numbers at 7 days p.i., which seemed to be associated with a more rapid cell death (Fig. 1B). To investigate further whether HR-linked resistance was comprised in Psph in NH4+-fed tobacco, comparisons were made with electrolyte leakage and bacterial populations in leaves inoculated with the virulent bacterial pathogen P. in tobacco plants fed with either NH4+ or NO3- (Fig. 1B and C). The rate of electrolyte leakage in Psph-challenged leaves was slower than that seen in less infected tobacco. No NO production could be detected from Psph-challenged NH4+-fed or NO3+-fed plants. Similarly, P. populations were more abundant than Psph in any tobacco plants. Taken together, these results indicated that HR resistance to Psph was reduced but not abolished in NH4+-fed tobacco. Interestingly, P. populations in NO3-fed tobacco were significantly (P < 0.001) reduced compared with NH4+-fed plants but were significantly (P < 0.001) greater than any measured for Psph (Fig. 1C). It has been demonstrated that NO is involved in the cell death process during the HR (Delledonne et al., 1998), and NO3- nutrition is known to influence NO levels (Planchet et al., 2005). Thus, we tested whether N nutrition had an impact on NO generation in the course of an HR elicited by Psph in tobacco. Initially, we used low-nutrient compost-grown tobacco plants, which were supplemented with either NH4+ or NO3- feed. NO production was measured from Psph-infected tobacco plants using a QCL (Mur et al., 2011). We observed that NO production was greater in NO3-fed and Psph-challenged plants compared with their NH4+-fed equivalents (Fig. 2A). NO production could be detected from uninfected plants (data not shown). We partially corroborated these observations by a second independent determination of NO levels in hydroponically grown plants using the gas-phase chemiluminescence method. This indicated greater NO emission from NO3-grown and Psph-challenged leaves compared with NH4+-fed plants (Fig. 2B). The difference in quantitative values for NO emissions measured by chemiluminescence compared with QCL is likely to reflect a difference between Psph-challenged, soil-grown and hydroponically grown tobacco plants, respectively.
Rates of NO production from Pt-inoculated NH₄⁺-fed and NO₃⁻-fed tobacco leaves were also measured in compost-grown plants using QCL (Fig. 2A). NO production in NH₄⁺-fed, Pt-inoculated plants did not differ significantly from those seen with NH₄⁺-fed, Psph-challenged plants. Thus, it was not possible to correlate exactly in planta the bacterial populations in Pt-infected plants and Psph-challenged NH₄⁺-fed plants (Fig. 1C) with NO production. More NO was observed with Pt-infected NO₃⁻-fed plants compared with NH₄⁺-fed plants, which could explain the decreased bacterial populations seen in the latter (Fig. 1C).

To substantiate the link between NO production and cell death and a loss in bacterial resistance, we examined the interaction of Psph with the tobacco NR- mutant Nia30 line (supplied with NO₃⁻ plus NH₄⁺) (Supplementary Fig. S1 at JXB online). Using the QCL method, NO production was shown to be suppressed in Nia30 plants, and indeed more than in inoculated NH₄⁺-treated wild-type plants (Supplementary Fig. S1A). This correlated with a reduction in Psph-associated electrolyte leakage in Nia30 plants (Supplementary Fig. S1B) and increased bacterial numbers in Nia30 plants compared with NH₄⁺-fed wild-type tobacco (Supplementary Fig. S1C). These data could indicate that NR is a major source of NO during Psph infection but that NH₄ feeding could only partially mimic this situation. However, equally, the data could reflect that these plants were grown in low-nutrient compost rather than hydroponic conditions so some NO₃ could have been supplied to the plant.

Fig. 1. Forms of N fertilizer influence the HR elicited by Psph in tobacco. (A) Lesion development (arrows) at 24 h p.i. of NO₃⁻-fed or NH₄⁺-fed tobacco leaves with avirulent Psph. Plants were grown hydrophonically as described in Materials and methods, and 1 week prior to inoculation, the plants were transferred to NO₃⁻ (5 mM) or NH₄⁺ (5 mM) growth medium. Half leaves are shown and illustrate how the responses were more advanced in NO₃⁻-fed compared with NH₄⁺-fed leaves. The results are representative of three independent experiments. Bar, 1 cm. (B) Electrolyte leakage from 1 cm diameter leaf discs sampled from areas of NO₃⁻-fed or NH₄⁺-fed plants and inoculated with Psph, Pt, or 10 mM MgCl₂ (control). Electrolyte leakage from the 10 mM MgCl₂ infiltrated discs shows the baseline changes occurring from simple coring of leaf tissue. (C) Psph and Pt populations in NO₃⁻-fed or NH₄⁺-fed tobacco plants at 3 and 7 d with Psph [n=6; results shown as means ±standard deviation (SD)]. The initial populations of Psph and Pt as assessed immediately after infiltration (at 0 d) are also shown. Different letters denote groupings within which non-significant differences were observed but which were significantly different (P<0.05) from all other groups.
Nitrate nutrition enhances PR1 gene expression and SA accumulation

To assess other effects of N nutrition on the HR, we examined the expression of a range of pathogenesis-related (PR) genes that respond to different signals using qRT-PCR. Given our focus on the HR, all subsequent experimentation used the avirulent strain Psph. Transcript levels of individual genes were normalized to the transcripts level of EF-1a to allow relative quantification of gene expression. This indicated that only PR1a expression induction was significantly (P < 0.05) reduced at 24 h p.i. with NH$_4^+$ compared with NO$_3^-$ feeding (Fig. 3A). No clear differential expression between N treatments was observed at 4 and 8 h p.i. (data not shown). The effects of NO$_3^-$ feeding appeared to dominate over those of NH$_4^+$ feeding, as co-application reversed the effects of the latter. PR1a is a biomarker for SA-mediated events, which are central to HR-mediated resistance (Delaney et al., 2004), so we quantified SA accumulation at 4, 8, and 24 h p.i. with Psph (Fig. 3B). No elevation in total SA levels was observed compared with uninfected controls until 24 h p.i. At this time point, NO$_3^-$-fed plants accumulated more SA than NH$_4^+$-fed tobacco levels.
Increased amino acid and sugar content in \(\text{NH}_4^+ \)-fed tobacco

To assess whether or not the pre-inoculation nutrient status of the plant could be a factor in the differential responses, a series of generalized biochemical assays were undertaken. Assessment of total amino acids indicated that these were significantly \((P < 0.001)\) elevated in \(\text{NH}_4^+ \)-fed compared with \(\text{NO}_3^- \)-fed tobacco plants (Fig. 4A). The response of sugar levels to \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) feeding in uninfected tobacco was also assessed both within the cell and in the apoplast. Both cytosolic and apoplastic sugar (sucrose, fructose, and glucose) contents were much higher in \(\text{NH}_4^+ \)-grown plants (Fig. 4B, C). This suggested either that both sugar synthesis and sugar export are increased by \(\text{NH}_4^+ \) nutrition, or possibly that sugar consumption is suppressed. Due to the very minute sample volume obtained, it was not technically feasible to measure apoplastic amino acid levels.

Metabolomic characterization of \(\text{NO}_3^- \) and \(\text{NH}_4^+ \) effects following inoculation with \(\text{Psph} \)

Metabolic profiling approaches were followed to characterize further the effects of \(\text{NO}_3^- \) and \(\text{NH}_4^+ \) nutrition of tobacco following challenge with \(\text{Psph} \). Extracts of \(\text{Psph} \) and mock-inoculated (10 mM MgCl\(_2\)) samples were analysed...
by GC-MS, as described previously (Liseck et al., 2006). The derived data were examined initially using non-supervised principal component analysis (PCA), and discrimination between NO$_3^-$ and NH$_4^+$ mock and infected material was observed only at 24 h p.i. (Supplementary Fig. S2 at JXB online). To ease interpretation of these complicated data sets, they are also presented as a series of subanalyses separately examining GC-MS profiles from mock-inoculated samples (Fig. 5A), NO$_3^-$-treated (Fig. 5B), and NH$_4^+$-treated (Fig. 5C) plants. In mock-inoculated samples, NO$_3^-$ and NH$_4^+$ effects were relatively poorly differentiated except the 24 h samples which partially separated along principal component 2 (PC2) (Fig. 5A). Based on the loading vectors for PC1 and PC2 (Supplementary Table S1 at JXB online), the most important metabolites contributing to this model appeared to be fumarate and malate, with subsidiary contributions by the amino acids glutamate, glutamine, and proline, as well as inositol and galactose (Fig. 5A). In Fig. 5B and C, PCA discriminated between Psph and mock-inoculated samples, allowing the loading vectors linked to metabolites making major contributions to the observed biological effects to be identified (Supplementary Table S1). Examining the effects of Psph challenge of NO$_3^-$-fed tobacco suggested that, besides those metabolites indicated in Fig. 5A, changes in spermidine and putrescine were important sources of variation (Fig. 5B). With NH$_4^+$ feeding, GABA and putrescine were additional sources of variation over baseline changes, as suggested from an analysis of the mock-inoculated controls (Fig. 3C). Based on the detected metabolites, these observations suggested that two pathways were prominent sources of differentiation between the NO$_3^-$ and NH$_4^+$ effects on the Psph-induced HR: respectively, the polyamine and GABA/TCA cycle metabolites.

The metabolites that form the glutamine–polyamine pathways were examined in isolation (Fig. 6). Challenge with Psph increased the concentrations of glutamine (Fig. 6A) and glutamate (Fig. 6B) but not ornithine (Fig. 6), whether plants were fed NO$_3^-$ or NH$_4^+$ meaning (Fig. 5). Interestingly, citrulline, which is produced from ornithine, exhibited a feeding-specific effect (Fig. 6D). However, proline, which is produced from glutamate, exhibited no infection or nutrition-specific trend (Fig. 5E). Thus, although proline was prominent in the loading vectors that discriminated between the treatment groups (Fig. 5), it could not be readily related to a biological response. By contrast, an alternative pathway leading to putrescine (Fig. 6F) increased in infection following both NO$_3^-$ and NH$_4^+$ feeding. However, different N feeding appeared to encourage a differential processing of putrescine and linked metabolites. At 24 h p.i., a pathway leading to GABA formation appeared to be particularly prominent in NH$_4^+$-fed plants following infection (Fig. 6G), whilst an alternative pathway leading to spermidine accumulation appear to predominate with infected and NO$_3^-$-fed plants (Fig. 6H).

The accumulation of GABA led us to examine the accumulation of metabolites that could be linked to the GABA shunt/TCA cycle (Fig. 7A). Succinate, malate, and fumarate (Fig. 7D–F) showed increased accumulation on infection with either NO$_3^-$-fed or NH$_4^+$-fed plants, but at 24 h p.i., all also exhibited significantly greater accumulation in NH$_4^+$ plants. These observations suggested increased TCA cycle activity in line with the energetic demands of plant defence. In addition, given the increased accumulation of glutamate and GABA (Fig. 7B, C), it is likely that the GABA shunt is a more marked feature of NH$_4^+$-fed plants.

Galactose was prominent in the loading vectors that discriminated between the experimental treatments (Fig. 5). The data for this metabolite were plotted to indicate significantly greater accumulation in Psph-challenged NH$_4^+$-fed tobacco.
Fig. 5. Identifying metabolite changes occurring in NO_3^- or NH_4^+ in tobacco leaves following inoculation with Psph. Results are shown for PCA of 150 metabolites detected by GC-MS in NO_3^--fed and NH_4^+-fed tobacco leaves following infiltration with 10 mM MgCl$_2$ (mock inoculated) (A), and NO_3^--treated and Psph challenged plants (B) or NH_4^+-treated and Psph challenged plants (C). In each case, samples were analysed at 4, 8, and 24 h following inoculation. In (B) and (C), clear separation between mock- and Psph-inoculated plants is delineated and labelled. In (A–C), the loading vectors (listed in Supplementary Table S1) used for the corresponding PC1 and PC2 are plotted. The '+' marks the zero point where loading vectors associated with metabolites make no contribution to the plot shown in (B), whilst the circles correspond to 1 and 2 SD from this zero point. Thus, the metabolites that are major sources of variation are shown.
compared with similarly inoculated NO$_3$-fed tobacco (Supplementary Fig. 3 at JXB online). Galactose accumulation in plants could occur as part the biosynthesis of ascorbate (Laing et al., 2007) or the construction of cell-wall polymers (Seifert et al., 2002). In Supplementary Fig. S3, the data are displayed in terms of the role of galactose in contributing to glycolysis (Plaxton, 1996), as this could be part of the biogenetic changes occurring following Psph challenge. However, the accumulation patterns of other glycolysis-associated metabolites did not correlate with the treatment classes. Inositol also was also highlighted in the list of metabolites that discriminated between the experimental classes (Fig. 5). However, when considering the inositol data in isolation, they did not indicate a clear, biologically relevant trend (Supplementary Fig. S4A at JXB online). This was also the case with all other amino acids measured by GC-MS (Supplementary Fig. S4).

Discussion

A major driver for increased agricultural production in the 20th century has been the extensive use of N fertilizers (Tilman et al., 2002). The increased availability of N is a direct consequence of the Haber–Bosch process where nitrogen gas (N$_2$) is fixed to form NH$_3$ as the end product. NH$_3$ is used to derive N fertilizers such as anhydrous ammonium nitrate (NH$_4$NO$_3$) and urea [CO(NH$_2$)$_2$]. Within the soil ecosystem, the applied NH$_4$ is readily oxidized by microbial nitrification processes to form NO$_3$. NO$_3$ is the main source of inorganic N for plants, but mainly due to the negative charge of clay, is easily leached out of soil to become a major water pollutant and a source of eutrophication (Peng and Zhu, 2006). NO$_3$ removal is an expensive process so alternative strategies, including the use of nitrification inhibitors, have been followed (de Klein et al., 1996). Such measures illustrate how N fertilizer will continue to...
Fig. 7. Changes in the TCA cycle/GABA shunt in NO$_3$-fed and NH$_4$-fed tobacco leaves following inoculation with Psph. (A) Depiction of the TCA cycle linked to the GABA shunt. Metabolites were detected by GC-MS in NO$_3$-fed and NH$_4$-fed tobacco leaves following inoculation with Psph or mock inoculation with 10 mM MgCl$_2$. Results are shown for glutamate (B), GABA (C), succinate (D), malate (E), and fumarate (F). Data are displayed as the percentage of relative intensity (% RI). Different letters denote groupings within which non-significant differences were observed but which were significantly different ($P < 0.05$) from all other groups.
feature in modern agriculture, so the wide-ranging s of NO3 on plant physiology need to be fully assessed. The effects of different N forms have been investigated at the level of, for example, the response to elevated CO2 (Geiger et al., 1999) and indeed on disease development (Huber and Watson, 1974), but there has been much less work done with respect to the HR. New diseases are constantly emerging and although R gene-mediated, HR-linked defences are often ephemeral (Stuthman, 2002), they continue to be important components of crop breeding programmes. It is therefore vital to identify and characterize agricultural and horticultural practices that could compromise or increase these R gene-linked defence mechanisms. Thus, here we sought to characterize the effects of NO3 and NH4 feeding of tobacco plants on a HR elicited by Psph.

NO- and SA-mediated defence is augmented by NO3 nutrition

To assess the effects of variable N-form nutrition, we made use of hydroponically fed tobacco plants (Kaiser et al., 2004, 2005). In our experimental approach, we did not observe any effects of NH4 feeding on tobacco growth or biomass, as observed by Walch-Liu et al. (2000), which may reflect our use of cv. Gatersleben compared with cv. Samsun. The lack of any NH4 toxicity was also suggested from the lack of significant treatment-specific effects on EFl-a expression in our qRT-PCR analysis (data not shown).

Our initial assessments suggested that NO3 nutrition influenced cell death but that NH4 feeding had a greater impact on mechanisms that suppressed bacterial growth during the HR (Fig. 1). When considering how NO3 could be contributing to cell death, one of the most likely routes is via NO production (Romero-Puertas et al., 2004). Many sources of NO generation have been proposed, including the oxidation of L-arginine or polyamines by as yet poorly characterized enzymatic sources. However, one of the most well established is the NAD(P)H-linked reduction of NO3 by cytosolic NR (Rockel et al., 2002). N assimilation by NH4 rather than NO3 would therefore effectively short-circuit NO production if NR was a major source of NO during the Psph-elicited HR in tobacco. Our assessments of NO production from Nia30 plants demonstrated that this was the major source of NO during the Psph-elicited HR of tobacco (Supplementary Fig. S1). Given this, it was telling that significantly (P < 0.001) more NO was generated in NO3-fed as opposed to NH4-fed tobacco (Fig. 2A). This important observation indicated that some of the effects of reduced NO generation could be reproduced through simple nutritional effects and thus is of greater relevance to agricultural practice. Interestingly, citrulline accumulation was prominent in Psph-infected tobacco plants (Fig. 6D, which might be expected if an NO synthase (NOS)-like mechanism was contributing to NO production (NOS oxidizes arginine to produce NO and citrulline). However, this was considered to be unlikely, as citrulline accumulation was greatest in NH4-fed plants where NO production was reduced compared with NO3-fed tobacco (Fig. 2).

NO also contributes to the initiation of SA biosynthesis (Durner and Klessig, 1999), and SA potentiates the oxidative burst to augment cell death during the HR (Mur et al., 2000). Thus, the reduction in SA accumulation at 24 h.p.i. in NH4-fed tobacco (Fig. 3B) is most likely linked to lower NO production (Fig. 2). It was also notable that, in our assessments of defence genes, expression in NH4 effects seemed to be confined to the SA-regulated PRI gene. However, this need not indicate that reduced PRIa expression itself must be the cause of reduced resistance, as, although it is a well-established marker for plant defence (Hooft van Huijsduijnen et al., 1985), its actual action is poorly defined (Alexander et al., 1993; van Loon et al., 2006). Other defence genes such as proteinase inhibitors were apparently not affected by N feeding. Fritz et al. (2006b) noted that expression of phenylalanine ammonia lyase (PAL), which plays a key role in phenylpropanoid production, was influenced by NO3. Given the central role of PAL in plant defence (Pallas et al., 1996) regulating the production of, for example, defence lignin, if NH4 affects PAL expression, this could be a major source of compromised resistance. However, we did not observe any significant effect on PAL expression (Fig. 3A), suggesting that modulation of phenylpropanoid biosynthesis was not a source of loss of resistance following NH4 treatment.

NH4 nutrition shifts the host responses to favour pathogenesis

In order to characterize further the N nutritional effects on defence, we chose to concentrate on metabolomic approaches with a focus on C:N primary metabolism. It could be predicted that the most obvious effect of differential N treatment would be wide-ranging changes in the concentrations of several amino acids. In fact, other than for a few examples (discussed below), most changes proved to be difficult to link with any biological effect (Supplementary Fig. S4). Within the context of NO3-mediated resistance, metabolite profiling suggested the importance of polyamine production. Independent evidence also supports an important role for polyamines in defence (Walters, 2003). For example, elevation of spermine accumulation in transgenic lines increased resistance in tobacco against Pt and also the hemibiotrophic oomycete Phytophthora parasitica var. nicotiana (Moschou et al., 2009), whilst increases in spermine in Arabidopsis boosted defence against Pseudomonas viridiflava (Gonzalez et al., 2011). Mechanistically, polyamines could increase resistance by acting as substrates for a NO-generating complex (Yamasaki and Cohen, 2006), but are known to contribute to reactive oxygen species production and cell death (Cona et al., 2006), as well as cell-wall reinforcement via conjugation to hydroxycinnamic acid (Walters, 2003). Whatever mechanisms are employed by polyamine, it is apparent that NO3 feeding alone is insufficient to trigger the shift to polyamine synthesis but requires additional elicitation by Psph.

Coupled to NO3 effects, we examined how NH4 could compromise resistance and/or promote disease. Nia30 mutants lacking NR have much lower levels of amino acids (Fritz et al., 2006b), so we could have predicted that NH4 feeding would reduce amino acid levels. However, instead we observed that there were increases in total amino acid levels with NH4 feeding.
feeding (Fig. 4). An alternative hypothesis could be related to the effects on carbon metabolism, as this is intimately related to N effects. Thus, for example, a suppression of carbon fixation by, for example, the generation of \textit{RbcS} antisense plants reduces both carbohydrate concentrations and NO\textsubscript{3} assimilation (Matt \textit{et al}., 2002). Indeed, sugar depletion can suppress NIA expression and NR activity (Matt \textit{et al}., 2002), whilst the application of sugar can reverse this effect (Koch, 1996), as well as inducing nitrate transporter genes (Lejay \textit{et al}., 1999).

Correspondingly, glucose and sucrose concentrations are reduced in NO\textsubscript{3}-depleted tobacco (Fritz \textit{et al}., 2006a). Given this, it is significant that, in NH\textsubscript{4}+-fed plants, there were increases cellular and apoplastic hexose levels compared with NO\textsubscript{3} (Fig. 4). This would be a direct advantage to apoplastically located bacterial pathogens (Rico and Preston, 2008). Sucrose was also noted to increase in \textit{Arabidopsis} when challenged with \textit{P. syringae pv. tomato} (Ward \textit{et al}., 2010), further suggesting that this is an important feature of disease development.

Given these observations, it is worth highlighting the similarity of some events during disease development and N mobilization during senescence (Masclaux-Daubresse \textit{et al}., 2006, 2007). Senescence is characterized by the mobilization of nitrogen, carbon, and other nutrients out of the leaf to other parts of the plant or to contribute to such reproductively important processes as grain filling (Buchanan-Wollaston, 1997). Prominent senescence-linked changes include the export of hexose sugars from the cell. Similarly, the mobilization of starch and sucrose export is a feature of many disease situations (Scharte \textit{et al}., 2005; Swarbrick \textit{et al}., 2006; Essmann \textit{et al}., 2008). Indeed, a causal link between sugar export and disease symptom development has been demonstrated (Kocal \textit{et al}., 2008). Therefore, it is possible that NH\textsubscript{4}+ feeding encourages disease development by promoting a leaf senescence programme. This effect may not be due directly to NH\textsubscript{4}+ but to a reduction in NO production during a HR. NO has been suggested to act as an anti-senescent compound (Matt \textit{et al}., 2002), whilst the application of NH\textsubscript{4}+ feeding are regulated, and these are currently underway in our laboratories.

Taken together, our observations demonstrate that N nutrition can either enhance or compromise \textit{R} gene-mediated resistance. We have provided some mechanistic insight into these mechanisms by suggesting that NO\textsubscript{3} is important for resistance, mostly via NO and SA generation, as well as polyamine biosynthesis. In contrast, feeding NH\textsubscript{4}+ can compromise resistance not only through reduced NO generation but also by encouraging metabolic reprogramming of HR defence towards sugar and GABA production. Crucially, if these data are extrapolated into an agricultural context, it seems likely that the form of N applied, as well as the levels, can influence susceptibility to pathogens in crop species.

Supplementary data

Supplementary data are available at \textit{JXB} online.

Supplementary Table S1. Loading vectors for PCA models shown in Fig. 5A–C, which analyse metabolite changes occurring in NO\textsubscript{3}-fed or NH\textsubscript{4}+-fed tobacco leaves following mock infection and inoculation with \textit{Psph}.

Supplementary Fig. S1. Nitrate reductase-dependent effects on the HR elicited by \textit{Psph} in tobacco.

Supplementary Fig. S2. Multivariate analyses of metabolite profiles of NO\textsubscript{3}-fed and NH\textsubscript{4}+-fed tobacco leaves following inoculation with \textit{Psph}.

Supplementary Fig. S3. Galactose and glycolytic metabolite accumulation in NO\textsubscript{3}-fed and NH\textsubscript{4}+-fed tobacco leaves following inoculation with \textit{Psph} or 10 mM MgCl\textsubscript{2}.

Supplementary Fig. S4. Amino acid accumulation in NO\textsubscript{3}- and NH\textsubscript{4}+-fed tobacco leaves following inoculation with \textit{Psph} or 10 mM MgCl\textsubscript{2}.

Acknowledgements

We thank Lothar Willmitzer for critical reading of the manuscript and also for providing the GC-MS facilities, Eva Wirth for amino acid analysis, and Maria Lesch for technical assistance. We also thank the anonymous referees for making some important suggestions. This work was supported by DFG (SFB 567) to W.M.K. and K.J.G. and the Max Planck Society (K.J.G., Y.B., and S.S.).

References

Alexander D, Goodman RM, Gutrella M, \textit{et al}. 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein-1a. \textit{Proceedings of the National Academy of Sciences U S A} \textbf{90}, 7327–7331.
Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B. 2008. QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9, 465.

Bauwe H, Hagemann M, Fernie AR. 2010. Photorespiration: players, partners and origin. Trends in Plant Science 15, 330–336.

Bender CL, Alarcon-Chaidez F, Gross DC. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and Molecular Biology Reviews 63, 266–292.

Buchanan-Wollastor V. 1997. The molecular biology of leaf senescence. Journal of Experimental Botany 48, 181–199.

Clarke SM, Mur LA, Wood JE, Scott IM. 2004. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal 38, 432–447.

Cristescu SM, Persijn ST, te Lintel Hekkert S, Harren FJM. 2008. Laser-based systems for trace gas detection in life sciences. Applied Physics B—Lasers and Optics 92, 343–349.

Cuadros-Inostroza A, Caldana C, Redestig H, Kusano M, Lisej J, Pena-Cortes H, Willmitzer L, Hannah MA. 2009. TargetSearch—a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics 10, 428.

Dannel F, Pfeffer H, Marschner H. 1995. Isolation of apoplastic fluid from sunflower leaves and its use for studies on influence of nitrogen supply on apoplastic pH. Journal of Plant Physiology 50, 208–213.

de Klein CAM, van Logtestijn RSP, van de Meer HG, Geurink JH. 1996. Nitrogen losses due to denitrification from cattle slurry injected into grassland soil with and without a nitrification inhibitor. Plant and Soil 183, 161–170.

Delaney TP, Uknes S, Vernooij B, et al. 2004. A central role of salicylic acid in plant disease resistance. Science 306, 1247–1250.

Delledonne M, Lamb C, Xiu YJ, Dixon RA. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588.

Diaz C, Purdy S, Christ A, Morot-Gaudry JF, Winger A, Masclaux-Daubresse C. 2005. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant Physiology 138, 898–908.

Durner J, Klessig DF. 1999. Nitric oxide as a signal in plants. Current Opinion in Plant Biology 2, 369–374.

Espuny MC, De Michele R, Gomez-Cadenas A, Martinez MC. 2012. S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. Journal of Experimental Botany 63, 3219–3227.

Essmann J, Schmitz-Thom I, Schon H, Sonnewald S, Weis E, Scharte J. 2008. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiology 147, 1288–1299.

Fait A, Fromm H, Walter D, Galili G, Fernie AR. 2008. High-pressure or low-pressure: the metabolic role of the GABA shunt in plants. Trends in Plant Science 13, 14–19.

Fritz C, Mueller C, Matt P, Feil R, Stitt M. 2006a. Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant, Cell & Environment 29, 2055–2076.

Fritz C, Palacios-Rojas N, Feil R, Stitt M. 2006b. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. The Plant Journal 46, 533–548.

Fromm H, Bouche N. 2004. GABA in plants: just a metabolite? Trends in Plant Science 9, 110–115.

Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M. 1999. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell & Environment 22, 1177–1199.

Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorlí P, Blázquez MA, Carbonell J, Ruíz OA, Pieckenstain FL. 2011. Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiology 156, 2266–2277.

Green PA, Vorosmarty CJ, Meyebeck M, Galloway JN, Peterson BJ, Boyer EW. 2004. Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68, 71–105.

Gullino ML, Kuipers LM. 1994. Social and political implications of managing plant-diseases with restricted fungicides in Europe. Annual Review of Phytopathology 32, 559–579.

Gupta KJ, Fernie AR. Kaiser WM, van Dongen JT. 2011. On the origins of nitric oxide. Trends in Plant Science 16, 160–168.

Hajjar R, Hodgkin T. 2007. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13.

Huber DM, Watson RD. 1974. Nitrogen form and plant disease. Annual Review of Phytopathology 12, 139–165.

Jarvis RM, Broadhurst D, Johnson H, O’Boyle NM, Goodacre R. 2006. PYCHEM: a multivariate analysis package for python. Bioinformatics 22, 2565–2566.

Kaiser WM, Planchet E, Sonoda M. 2004. NO emission by plants, and sources for NO. Nitric Oxide—Biology and Chemistry 11, 37–37.

Kaiser WM, Planchet E, Gupta KJ, Sonoda M. 2005. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. The Plant Journal 41, 732–743.

Khokon MAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y. 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell & Environment 34, 434–443.

Kinnersley AM, Turano FJ. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences 19, 479–509.
Klessig DF, Durner J, Noad R, et al. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences U S A 97, 8849–8855.

Kocal N, Sonnewald U, Sonnewald S. 2008. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiology 148, 1523–1536.

Koch KE. 1996. Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 509–540.

Kopka J, Schauer N, Krueger S, et al. 2005. GMD®CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638.

Laing WA, Wright MA, Cooney J, Bulley SM. 2007. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanylttransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences U S A 104, 9534–9539.

Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A. 1999. Molecular and functional regulation of two NO3—uptake systems by N- and C-status of Arabidopsis plants. The Plant Journal 18, 509–519.

Libault M, Wan JR, Czechowski T, Udvardi M, Stacey G. (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Molecular Plant–Microbe Interactions 20, 900–911.

Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. 2006. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols 1, 387–396.

Mahmood T, Woitke M, Gimmler H, Kaiser WM. 2002. Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Planta 214, 887–894.

Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hirel B. 2000. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211, 510–518.

Masclaux-Daubresse C, Purdy S, Lemaitre T, Pourtau N, Taconnat L, Renou JP, Wingler A. 2007. Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. Plant Physiology 143, 434–446.

Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Suzuki A. 2006. Glutamine synthetase–glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiology 140, 444–456.

Matt P, Krapp A, Haake V, Mock HP, Stitt M. 2002. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. The Plant Journal 30, 663–677.

Mishina TE, Lamb C, Zeier J. 2007. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell & Environment 30, 39–52.

Molodo LV, Augusto O, Almeida IMG, Magalhaes JR, Salgado I. 2005. Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in responses to Pseudomonas syringae. FEBS Letters 579, 3814–3820.

Moschou PN, Sarris PF, Skandalis N, Andriopoulou AH, Paschalis KA, Panopoulos NJ, Roubelakis-Angelakis KA. 2009. Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiology 149, 1970–1981.

Mur LA, Bi YM, Darby RM, Firek S, Draper J. 1997. Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. The Plant Journal 12, 1113–1126.

Mur LA, Brown IR, Darby RM, Bestwick CS, Bi YM, Mansfield JW, Draper J. 2000. A loss of resistance to avirulent bacterial pathogens in tobacco is associated with the attenuation of a salicylic acid-potentiated oxidative burst. The Plant Journal 23, 609–621.

Mur LA, Mandon J, Cristescu SM, Harren FJ, Prats E. 2011. Methods of nitric oxide detection in plants: a commentary. Plant Science 181, 509–519.

Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E. 2008. The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany 59, 501–520.

Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C. 2006. The two senescence-related markers GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. Journal of Experimental Botany 57, 547–557.

Pallas JA, Paiva NL, Lamb C, Dixon RA. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. The Plant Journal 10, 281–293.

Peng YZ, Zhu GB. 2006. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology 73, 15–26.

Plantech E, Sonoda M, Gupta KJ, Kaiser WM. 2005. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. The Plant Journal 41, 732–743.

Plaxton WC. 1996. The organization and regulation of plant glycolysis. Annual Review of Plant Physiology and Plant Molecular Biology 47, 185–214.

Pontier D, Gan SS, Amasino RM, Roby D, Lam E. 1999. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Molecular Biology 39, 1243–1255.

Quirino BF, Normanly J, Amasino RM. 1999. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Molecular Biology 40, 267–278.

Rico A, Preston GM. 2008. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant–Microbe Interactions 21, 269–282.
Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany 53, 103–110.

Rommens CM, Kishore GM. 2000. Exploiting the full potential of disease-resistance genes for agricultural use. Current Opinion in Biotechnology 11, 120–125.

Schon H, Weis E. 2005. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell & Environment 28, 1421–1435.

Schlesinger WH. 2009. On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences U S A 106, 493–506.

Scott IM, Clarke SM, Wood JE, Mur LA. 2004. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology 135, 1040–1049.

Seifert GJ, Barber C, Wells B, Dolan L, Roberts K. 2002. Nitric oxide signalling functions in plant–pathogen interactions. Plant Physiology 129, 103–110.

Seifert GJ, Barber C, Wells B, Dolan L, Roberts K. 2002. Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-<i>α</i>-galactose into cell wall polymers. Current Biology 12, 1840–1845.

Snoeijers SS, Perez-Garcia A, Joosten MHAJ Pierre JGM, De Wit. 2000. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant Pathology 106, 493–506.

Solomon PS, Oliver RP. 2001. The nitrogen content of the tomato leaf apoplast increases during infection by <i>Cladosporium fulvum</i>. Planta 213, 241–249.

Steinfath M, Groth D, Lisej S, Selbig J. 2008. Metabolite profile analysis: from raw data to regression and classification. Physiologia Plantarum 132, 150–161.

Stuthman DD. 2002. Contribution of durable disease resistance to sustainable agriculture. Euphytica 124, 253–258.

Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG. 2010. Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science 15, 462–470.

Sun LR, Hao FS, Lu BS, Ma LY. 2010. <i>AtNOA1</i> modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signalling & Behaviour 5, 1022–1024.

Swarbrick PJ, Schulze-Lefert P, Scholes JD. 2006. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell & Environment 29, 1061–1076.

Tadeger M, Bucher M, Stahl W, Suter M, Dupuis I, Kuhlmeier C. 1998. Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. The Plant Journal 16, 661–671.

Tavernier V, Cadieu S, Pageau K, Lauge R, Reisdorf-Cren M, Langin T, Masclaux-Daubresse C. 2007. The plant nitrogen mobilization promoted by <i>Colletotrichum lindemuthianum</i> in Phaseolus leaves depends on fungus pathogenicity. Journal of Experimental Botany 58, 3351–3360.

Thibaud MC, Gineste S, Nussaume L, Robaglia C. 2004. Sucrose increases pathogenesis-related PR-2 expression in <i>Arabidopsis</i> thaliana through an SA-dependent but NPR1-independent signalling pathway. Plant Physiology and Biochemistry 42, 81–88.

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677.

Tilman D. 1999. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences U S A 96, 5996–6000.

Hooft van Huijsduijnen RAM, Cornelissen BJC, Vanloon LC, Vanboom JH, Tromp M, Bol JF. 1985. Virus-induced synthesis of messenger-RNAs for precursors of pathogenesis-related proteins in tobacco. EMBO Journal 4, 2167–2171.

van Loon LC, Rep M, Pieterse CMJ. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44, 135–162.

Walch-Liu P, Neumann G, Bangerth F, Engels C. 2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany 51, 227–237.

Walters DR. 2003. Polyamines and plant disease. Phytochemistry 64, 97–107.

Ward JL, Forcat S, Beckmann M, et al. 2010. The metabolic transition during disease following infection of <i>Arabidopsis thaliana</i> by <i>Pseudomonas syringae pv. tomato</i>. The Plant Journal 63, 443–457.

Yamasaki H, Cohen MF. 2006. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends in Plant Science 11, 522–524.

Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C. 2004. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiology 136, 2875–2886.