The Establishment of the Hydraulic Structure Optimal Size in the Conditions of Underground Kimberlite Mines

N P Ovchinnikov¹, V V Portnyagina¹
¹Department of Mining, Mining institute, North-Eastern federal university, Yakutsk, 678015, Russia

E-mail: ovchinnlar1986@mail.ru

Abstract. The article is devoted to the establishment of the hydraulic structures optimal size in underground kimberlite mines. According to the results of parametric tests, the authors obtained a mathematical formula that allows with a high degree of accuracy to calculate the optimal dimensions of the clarifying tanks and water tanks in terms of settling mine water for the needs of the underground kimberlite mines of the Russian Federation.

1. Introduction
A characteristic feature of the sectional pumps used in the systems of the main, district and auxiliary drainage of underground kimberlite mines of the Russian Federation is the low durability of their units and parts (Table 1).

Table 1. Information about the mean time between failures of sectional pumps for drainage units of underground kimberlite mines in the Russian Federation.

The location of the pumping equipment	Mean time between failures of pumping equipment (h)
Drainage units of the “Mir” underground kimberlite mine	≈ 500
Drainage units of the “Udachny” underground kimberlite mine	≈ 300
Drainage units of the underground “Internacionalny” kimberlite mine	≈ 700

Practice shows that the occurrence of frequent failures of various pumping equipment, including sectional pumps, is explained by the influence on them during the operation of a number of destabilizing factors of different kind [1-20].

These negative factors include a high concentration in pumped out mine waters of solid particles, close contact with which leads to premature failure of parts of the flow part of the pumping equipment existing at underground kimberlite mines due to their active hydroabrasive wear (Fig. 1) [1, 2, 3].
Figure 1. Consequences of a short contact of the disk of hydraulic balancing unit of a sectional pump JSH-200 of the company “Mackley Pumps” with polluted mine water.

Surveys of workers responsible for the mine drainage of the underground kimberlite mines of the Russian Federation indicate that the main reason for the high pollution of pumped mine water is their low efficiency of settling in existing clarifying tanks and water collectors. One of the obvious reasons for the low efficiency of settling of mine water in these underground hydraulic structures is their insufficiently chosen dimensions.

2. Methods and materials
As a toolkit for establishing the optimal size of the clarifying tanks and water collectors of drainage installations of underground kimberlite mines of the Russian Federation, methods of mathematical statistics were used.

3. Results and discussion
The studies conducted by the authors indicate that in the conditions of the underground kimberlite mines of the Russian Federation, the weighted average frequency of cleaning the water tanks T of various drainage installations from sludge strongly correlates with the weighted average level of filling; working depth h (Fig. 2).

Figure 2. Experimental dependence \(T = f(h) \) and its approximation by a linear trend.
Since the frequency of cleaning underground hydraulic structures from sludge and the effectiveness of settling mine water in them are interrelated processes, it can be openly said that the effectiveness of settling mine water increases when the working depth of the brightening tank or sump decreases.

Based on the foregoing, we conclude that when calculating the optimal dimensions of the lightening tanks and catchment basins, it is necessary first of all to focus on their working depth.

As is known, the following mathematical formula is used for calculating the working volume \(V \) of the brightening tanks and catchment basins [3]:

\[
V = Qt
\]
(1)

where \(Q \) – water inflow; \(t \) – time of deposition of solid particles.

Through studies of the physical properties of mine water taken from the lightening tanks of the main drainage plant at the Udachny underground kimberlite mine, a linear regression equation was derived that allows calculating the deposition time \(t \) of most of the solid particles depending on the working depth \(h \) of the underground hydraulic structure with a high degree of accuracy (Fig. 3) [3].

![Figure 3](image-url)
Figure 3. Experimental dependence \(t = f (h) \) and its approximation by a linear trend.

The derived linear regression equation is universal in terms of use, since the physical characteristics of mine water, pumped out from various underground kimberlite mines in the Russian Federation (particle size distribution of solid particles), affect the sedimentation rate of solid particles.

After combining expression (1) and the linear regression equation (see Fig. 2) together, the authors obtained a mathematical formula that allows calculating optimal sizes of clarifying reservoirs and water tanks with a high degree of confidence in terms of settling mine waters for the needs of underground kimberlite mines of the Russian Federation.

\[
V = Q \left(\frac{H}{0.2363} - 0.1147 \right)
\]
(2)

4. **Conclusion**

According to the results of the research conducted by the authors, one of the possible ways to reduce the rate of hydroabrasive wear of parts and units of sectional pumps used in the drainage units of the underground kimberlite mines of the Russian Federation was proposed and sufficiently substantiated.

5. **References**

[1] Ovchinnikov N P, Zyryanov I V 2017 Assessment of durability of sectional pumps in underground kimberlite mines of ALROSA Gornyj Zhurnal 10 41–44
[2] Ovchinnikov N P 2018 The method of fighting with the solid phase of mine waters by the beneficial use of excessive pressure pumping equipment *News of Ural state mining university* 4(52) 108–113

[3] Ovchinnikov N P, Smyslov A G 2018 Increase of the resource of sectional pumps of the main dewatering of the «Udachny» underground kimberlite mine *Bulletin of mechanical engineering* 9 48–52

[4] Ovchinnikov N P 2018 On the life of pulp pump impellers used by AK ALROSA *Ore concentration* 4 51–54

[5] Dolganov A V, Eslent’ev A O, Cherakov E O, Toropov E Yu 2014 Analysis of the efficiency of unloading devices for shaft centrifugal section pumps *News of Ural state mining university* 2(34) 31–35

[6] Dolganov A V 2015 The influence of hydro-abrasive depreciation of excretory elements on exploitation qualities of rotary pumps at copper and pyrites pits *Mining information-analytical bulletin* 8 181–186

[7] Dauletbikuly O, Bayjumanov K D 2015 Methods of increase of wear resistance and resource of operation of soil pumps *International journal of mathematics and physics* 1 4–7

[8] Khalid Y A, Sapuan S M 2007 Wear analysis of centrifugal slurry pump impellers *Industrial lubrication and tribology* 59(1) 18–28

[9] Patsera S, Protsiv V, Kosmin V 2015 Feasible ways to improve the durability of the pumps’ parts operating with hydroabrasive mixtures *Mechanics, materials science & engineering* 1 133–137

[10] Pankaj P Gohil, Saini R P 2015 Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant *Energy* 93(1) 613–624

[11] Adam A, Adam H, Mariusz L 2016 Resonance of torsional vibrations of centrifugal pump shafts due cavitation erosion of pump impellers *Engineering failure analysis* 70 56–72

[12] Ghelloudj E, Hannachi M T, Djebaili H., Sifeddine H 2017 Improvement of the abrasive wear resistance of pump shaft (AISI 316L stainless steel) by salt bath nitriding *Journal of chemistry and materials research* 6(2) 58–63

[13] Kesler R 2016 Considerations is selecting a positive displacement slurry pump *Mining world* 13(4) 34–37

[14] Aleksandrov V I, Sobota Jerzy 2016 Vibrodiagnostics of the technical state slurry pumps *Journal of mining institute* 218 242–250

[15] Brusova O M 2014 The problem of increasing soil pumps lifetime *Perm journal of petroleum and mining engineering* 13(10) 98–106

[16] Tomskii K O, Tomskii O O, Ivanova M S 2017 The use of bimetallic materials in machinery and equipment of mining enterprises *Gornyi zhurnal* 10 48–51

[17] Walker C I 2001 Slurry pump sidelinier wear: comparison of some laboratory and field results *Wear* 250(2) 81–87

[18] Wang W, Tse P W 2015 Prognostic of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method *Mechanical systems and signal processing* 56 213–229

[19] Kranzler T, Arola R 2013 Improving pump materials for harsh environments *Sulzer Technical Review* 2 10–12

[20] Arun M 2014 Cavitation modeling and characteristic study of a centrifugal pump impeller *International journal of innovative research in advanced engineering* 1(10) 268–273

Acknowledgments
The work was supported by the FSRG-2017-0017 project “Development of the theory and methodology of spatial organization of social and economic systems of the northern region”.

