ORIGINAL ARTICLE

Standardization of nasalance scores in normal Saudi speakers

RASHA M. EL-KASSABI¹,², SABAH HASSAN³,⁴, TAMER A. MESALLAM³,⁵, KHALID H. MALKI³,⁶, MOHAMED FARAHAT³,⁶ & ABDULLAH ALFARIS¹

¹Department of Otolaryngology, Head and Neck Surgery, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia, ²Otolaryngology Department, Unit of Phoniatrics, College of Medicine, Al-Mansoura University, Mansoura, Egypt, ³Department of Otolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, ⁴Otolaryngology Department, Unit of Phoniatrics, College of Medicine, Ain Shams University, Cairo, Egypt, ⁵Otolaryngology Department, College of Medicine, Al-Menoufiya University, Shebin Al-Koum, Egypt, and ⁶Research Chair of Voice, Swallowing and Communication Disorders, King Saud University, Riyadh, Kingdom of Saudi Arabia

Abstract

Objective. The aims of this study were to obtain normative nasalance scores for a normal Saudi population with different ages and genders, to develop nasometric Arabic speech materials, and to make cross-linguistic comparison.

Subjects. Participants included 219 normal Saudi native monolingual Arabic speakers of different ages. Subjects were classified into four groups according to age and gender. Subjects did not have any history of oral, nasal, or velopharyngeal abnormality.

Methods. Arabic speech samples were developed to evaluate nasalance scores, which included syllables repetition, three oral sentences, three oro-nasal sentences, and three nasal sentences. Nasalance data were obtained using Nasometer II–6400.

Results. Normative nasalance values were determined. Significant differences between the male and female children groups were noticed in many parameters. Nasalance scores were higher in adults, with significant differences between all groups.

Conclusion. Normative nasalance scores for Saudi Arabic speakers have been developed for both adults and children. The Arabic speech materials developed in this study appear to be easy to use and applicable for different age groups.

Key words: Nasality, nasometer, normative data, velopharyngeal valve

Introduction

The nasometer is a non-invasive objective tool for evaluating resonance (nasality) disorders of speech. It measures the nasal acoustic energy by a microcomputer-based apparatus. The nasometer provides a nasalance score that corresponds to the ratio of nasal acoustic energy to the sum of oral and nasal acoustic energy expressed as a percentage (1).

Nasalance may vary among different languages. According to Leeper et al. (2), within-subject significant differences in nasalance scores were found in bilingual Canadian French–American English speakers across the two languages, even when care was taken to match the phonetic content of the reading material.

It is well documented that a major prerequisite for assessing resonance in a clinical population is to compare the patient scores with normative data (3). For that reason, normative nasalance scores were originally determined for several languages such as Greek (3), English (4), Spanish (5), Puerto Rican Spanish (6), Finnish (7), Flemish (8), Hungarian (9), French (2), Dutch (10), Canadian French (11), Arabic languages (12), Danish (13), Thai (14), and Japanese (15). These previous studies considered their own language characteristics. Therefore, adaptation of their results cannot be used for Arabic speakers.

Regarding Arabic language, Abou-Elsaad et al. (12) developed normative values for the nasalance scores among Egyptian Arabic speakers. Although
speaking Arabic, the Egyptian Arabic dialect is considered unique, and there are differences between it and other dialects spoken by other Arab countries. This makes the normative nasalance scores developed for the Egyptian dialect difficult to be applied for the Saudi population and other Arabs. This concept was reported in other studies, which mentioned that the nasalance score is not only affected by the tongue language, it even depends on the presence of a particular spoken dialect. This may be attributed to the speaking style leading to cultural-linguistic differences in resonance (4,12). Moreover, Okalidou et al. (3) mentioned that nasalance is affected by subtle differences in articulatory posturing or even articulatory timing of the velopharyngeal port opening during speech.

The same conclusion was reached by a study that examined the racial difference in nasalance scores (16). In this study, white American speakers yielded higher nasalance scores for nasal sentences than their African counterparts in spite of absent differences in nasal cross-sectional area.

Saudi Arabic dialect has a lot in common with most of the dialects spoken by almost all the Arabian Gulf countries, which adds more rationale for developing normative nasalance score for a Saudi population that can be generalized for other countries in the Gulf area. In Saudi Arabia, no previous study has been published to document normative nasalance score for a Saudi population. The aims of this study were to obtain normative nasalance scores for a normal Saudi population with different ages and genders, to develop nasometric Arabic speech materials, and to make cross-linguistic comparisons.

Materials and methods

Subjects

The study was approved by the Institutional Review Board of the College of Medicine, King Saud University, Riyadh, Saudi Arabia. The study was conducted at the Communication and Swallowing Disorders Division, Prince Sultan Military Medical City and Research Chair of Voice, Swallowing, and Communication Disorders, King Abdul Aziz University Hospital, King Saud University, Riyadh, Saudi Arabia. Two hundred nineteen monolingual Saudi native Arabic subjects with normal hearing, voice, speech, and language participated in the study after giving their informed consent. In addition, subjects had no history of craniofacial anomalies, velopharyngeal impairment, or affected mental abilities. The participants were from different urban and suburban locations of Riyadh city, and originally coming from different areas of the Kingdom of Saudi Arabia. Speech was evaluated by two experienced phoniatricians and a qualified speech-language pathologist. The speech screening consisted of an oral-motor examination and 5 minutes of conversational speech, where articulation, language, fluency, and resonance were perceptually evaluated. Subjects were excluded if they reported a common cold in the last 10 days, active nasal obstruction, or history of oro-pharyngeal/nasal surgery in the last 6 months.

Subjects were divided into four groups. Group I consisted of 71 adult females (32.4%) with an age range of 17 – 55 years and a mean age of 32.08 ± 10.10 years. Group II consisted of 73 adult males (33.3%) with an age range of 18 – 54 years and a mean age of 34.37 ± 9.27 years. Group III consisted of 34 female children (15.5%) with an age range of 4 – 14 years and a mean age of 8.71 ± 3.37 years, whereas group IV consisted of 41 male children (18.7%) with an age range of 4 – 12 years and a mean age of 7.39 ± 2.56 years (Table I). The degree of matching of the ages between groups I and II and groups III and IV was statistically tested and revealed non-significant differences (P>0.05).

Development of Arabic speech material

Subjects were asked to produce the speech material at a normal rate and habitual pitch and loudness. The Arabic testing material constructed and used in this study included:

1. Syllable repetition task (17): This subtest included 14 consonant–vowel syllables of pressure-sensitive consonants (plosives and fricatives, 10 oral and 4 nasal) combined with either the low vowel /a/ or the high vowel /i/. All participants were asked to repeat syllables until the screen was full of relatively even peaks and the first couple of syllables had

Table I. Distribution of the study groups.

Group I (Adult females)	Number	Percent	Minimum age	Maximum age	Mean age	SD
Group II (Adult males)						
Group III (Female children)						
Group IV (Male children)						
Total	219	100%				
disappeared to the left. Approximately 6–10 syllables were expected to be produced during the 2-second period represented on the display screen. The syllable repetition task included repeated /ba.ba.ba…/, /ta.ta.ta…/, /ka.ka.ka…/, /sa.sa.sa…/, ja. ja. ja…/, /bi.bi.bi…/, /ti.ti.ti…/, /ki.ki.ki…/, /si.si.si…/, /ji.ji.ji…/, /mi.mi.mi…/, and /ni.ni.ni…/.

2. Sustained sounds task (17): /a/, /i/, /m/, /s/. This subtest included two sustained vowels and two sustained consonants. All subjects were asked to sustain the tested consonants and vowels until the screen was full.

3. A set of three nasal sentences containing a preponderance of nasal consonants.

4. A set of three oral sentences, which were devoid of any nasal consonants.

5. A set of three oro-nasal sentences, which contained both oral and nasal consonants in representative ratios for spoken Arabic. As a prerequisite for the development of the oro-nasal material, the natural frequencies of oral and nasal phonemes in spoken Arabic were determined. As there were no such previously published data, analysis of frequency of oral and nasal consonants in three representative samples, each sample lasting for 45 minutes, of Arabic conversation between two normal adult Saudi individuals was performed. The three samples of conversation were as follows: the first sample was between two adult females, the second sample was between two adult males, and the third sample was between an adult male and an adult female. The three samples were analyzed and revealed that the average percentage of nasal consonants was about 11.45%. This ratio was used to construct the three oro-nasal sentences.

The sentences used in items 3, 4, and 5 were understandable, readable, and easy to be repeated fluently. Rehearsal was performed before recording. Every speech sample was repeated three times, and then the average was calculated. For children who could not read, nine picture cards, which were illustrative and contained the same phonological characteristics of the needed sentences, were prepared and used: three cards for the oral sentences, three cards for the nasal sentences, and three cards for the oro-nasal sentences. IPA transcriptions of the used sentences as well as their English translations are included in Supplementary Appendix A available online at http://informahealthcare.com/doi/abs/10.3109/14015439.2014.907339.

Instrumentation

Nasalance data were obtained using Nasometer II–6400 (18). Prior to testing, the nasometer was calibrated at the beginning of every day of testing according to the instructions provided in the manufacturer’s manual. Each subject was fitted with the headset, which was adjusted by stabilizing the metal plate perpendicular to the face.

Procedures

Subjects were seated in an acoustically treated room, next to the nasometer, and facing the experimenters. They were verbally given a set of instructions and were asked to follow the examiner in repeating the different speech tasks using a natural speech flow, speaking rate, and vocal loudness. Rehearsal was performed before recording. Every speech sample was repeated three times, and then the average was calculated.

Data analysis and statistical testing

Quantitative variables were presented as mean and SD. Kolmogorov test was done to test normality and revealed that all subtest data were normally distributed. Parametric variables were compared between two groups using independent sample t test, and compared between more than two groups using one way analysis of variance (ANOVA) followed by Scheffé test as post hoc test. The statistical package SPSS (version 20) was used, and the P value of <0.05 is considered as minimal level of significance.

Results

Matching of age among adult males and females revealed insignificant differences between both groups, which indicated matched groups regarding age. Similarly, matching of age among male and female children was evaluated and revealed also matched groups regarding age (P > 0.05).

Nasalance scores for all subtests were obtained and analyzed to evaluate gender-related differences among adults and children; they revealed that adult females showed overall higher nasalance scores compared to adult males. However, these differences were insignificant apart from a few tasks (repeated /ti/, /ki/, and /shi/ syllables) (Table II).

Unlike adult females, female children did not show consistent tendency of higher nasalance in comparison to the male children group. However, differences were significant for some tasks (repeated /pa/, /ta/, /pi/, /ni/, prolonged /a/, /i/, /m/, oral sentences, and oro-nasal sentences). There were significantly higher mean nasalance values for /pa/, /ta/, /pi/, and oral sentences in the female children.
Table II. Comparison of normative nasalance score between Group I and Group II.

	Group I (n = 71)		Group II (n = 73)		
	Mean SD		Mean SD		P
pa	6.93 1.32	7.29 2.29	N.S.		
ta	8.15 3.03	8.32 3.05	N.S.		
ka	9.86 3.35	9.99 3.70	N.S.		
sa	8.15 2.86	8.70 3.47	N.S.		
ja	8.20 2.94	8.86 3.70	N.S.		
pi	14.77 6.15	13.52 5.24	N.S.		
ti	21.20 8.46	17.77 8.19	< 0.05		
ki	23.86 6.97	19.85 7.47	< 0.001		
si	19.63 8.16	17.12 7.74	N.S.		
jí	21.45 7.97	18.52 7.34	< 0.05		
ma	58.77 9.57	58.90 7.72	N.S.		
na	65.79 14.49	63.32 10.61	N.S.		
mi	77.73 11.24	76.78 10.31	N.S.		
ni	78.87 12.03	77.10 9.40	N.S.		
a	10.27 5.04	9.42 7.47	N.S.		
i	11.17 5.31	9.75 3.03	N.S.		
s	1.18 2.34	0.75 2.10	N.S.		
m	91.75 4.01	91.18 5.53	N.S.		
oral sentence	47.76 3.91	47.15 4.64	N.S.		
nasal sentence	47.76 3.91	47.15 4.64	N.S.		
oro-nasal sentence	47.76 3.91	47.15 4.64	N.S.		

N.S. = not significant; SD = standard deviation.

Table III. Comparison of the normative nasalance scores between Group III and Group IV.

	Group III (n = 34)		Group IV (n = 41)		
	Mean SD		Mean SD		P
pa	5.29 0.76	6.10 1.00	< 0.001		
ta	5.44 0.70	6.61 1.87	< 0.001		
ka	7.24 2.31	6.83 0.95	N.S.		
sa	6.24 1.76	6.27 1.48	N.S.		
ja	5.65 1.30	5.76 2.00	N.S.		
pi	8.44 2.09	11.83 1.87	< 0.001		
ti	15.21 3.78	13.85 3.12	N.S.		
ki	18.50 3.78	18.98 4.02	N.S.		
si	14.47 5.41	13.32 3.02	N.S.		
jí	16.09 4.32	14.20 5.02	N.S.		
ma	55.35 4.04	53.61 4.80	N.S.		
na	56.82 5.33	54.63 4.77	N.S.		
mi	62.97 4.85	60.93 5.32	N.S.		
ni	65.24 4.36	62.73 5.85	< 0.05		
a	7.24 3.02	10.32 3.03	< 0.001		
i	21.26 3.48	17.37 3.89	< 0.001		
s	0.88 2.16	0.44 0.90	N.S.		
m	87.21 3.13	85.46 3.62	< 0.05		
oral sentence	8.79 3.11	6.88 1.29	< 0.001		
nasal sentence	47.76 3.91	47.15 4.64	N.S.		
oro-nasal sentence	16.88 2.03	17.98 1.17	< 0.05		

N.S. = not significant; SD = standard deviation.

ANOVA revealed significant age-related differences in almost all tasks (apart from the prolonged /s/ and the nasal sentences) with overall decreased nasalance scores in children compared to adults (Table IV). Variables of significant differences between study groups were further analyzed using Scheffé test as post hoc test (Table V).

To evaluate the effect of Saudi Arabic dialect, nasalance scores of Saudi adult groups were compared to those in the Egyptian study (12). Syllable repetition tasks as well as sustained sound tasks, which are in common in both studies, were compared using unpaired t test. Also, the comparison was performed between the similar groups in both studies (Saudi adult males with Egyptian adult males and Saudi adult females with Egyptian adult females). The comparison regarding other groups was not applicable due to different study design regarding groups of patients. There were significant differences in almost all subtests of speech tasks apart from a few as shown in Table VI.

Discussion

The nasometer is a valuable instrumental method for assessment of nasality in speech, and it reaches its optimal clinical utility when used in conjunction with clinical judgments and other instrumental procedures (18,19). Nasalance measurements provide quantitative estimates of nasal resonance in speech and, thus, form an objective way for assessing resonance disorders (3,20). Nasalance data have been obtained for speakers with various resonance problems (12,21,22). However, a major prerequisite for assessing nasal resonance based on nasometric measures in a population is to compare the patient’s scores with normative data of the same language. Hence, several studies have been conducted to obtain normative values for various languages.

A major factor in language-based differences on nasalance is the frequency of nasal consonants in speech, that is, the ratio of nasal to oral consonants, contained in the speech of a particular language or language variety. However, other phonological/phonetic characteristics of a particular language may come also into play. These include syllable structure (15) and vowel nasalization (23).

Despite developing normative nasalance data for Egyptian Arabic speakers, comparison between our results and those of the Egyptian study (12) concerning the syllable repetition and sustained sound subtests (which are the only common subtests) has revealed significant differences in many subtests, which in turn points to the importance of developing normative data for various dialects in the Arabic region. This proves the results concluded by other...
Nasalance scores in Saudi speakers

Nasalance scores in Saudi speakers were studied (4,12,13), which showed that the quality of resonance is affected by minimal and subtle differences in posturing of the articulators or even articulatory timing of the velopharyngeal port opening during speech.

The Egyptian study was based on the MacKay–Kummer SNAP test (23), which was modified to be applicable to the Egyptian Arabic language. The Egyptian study was different also in the study design, where the patients groups were classified into three groups according to their ages: group I (n = 92) comprised children aged 3 years 3 months to 9 years (mean 6 years 10 months ± 2 years 2 months), group II (n = 73) comprised teenagers aged 9–18 years (mean 12 years ± 4 years 2 months), and group III (n = 132) comprised adults aged 18–54 years (mean 34 years 10 months ± 9 years).

In our study patients were classified into four groups from the start according to sex and age.

In this Saudi study, the lowest mean nasalance values were reported in the oral speech samples whether syllables, prolonged vowels, or sentences. The highest mean nasalance values were reported in the nasal speech samples whether syllable repetition, prolonged nasal sound, or sentences. This was in agreement with other studies (3–6,10,12). Moreover, the mean nasalance value for the three oro-nasal sentences was higher than the oral speech samples and lower than the nasal speech samples. These aforementioned findings provide evidence for the internal validity of nasalance measurements in this study.

There was a significant difference in nasalance scores demonstrated between children and adult groups. Nasalance scores in children were lower than in adults, which was in agreement with other studies (4,12). The difference between nasalance scores of adults and children can be attributed to change in the size of the vocal tract related to age (4).

The difference between nasalance scores of males and females in the children groups was noticed in many speech samples, while it was obvious in only very few speech samples in the two adult groups. These subtle differences between adult males and adult females were in common with other studies (5,12,24–26) and could be explained by the reported physiological and anatomical differences between males and females as shown in some studies (27–30). With respect to the velopharyngeal area, anatomical differences were represented in velum size, contact point, and nasal cross-sectional area (29). These anatomical differences have been found along with physiological differences in velar movement and height to influence the resonance in both males and females (29). Moreover, higher nasal airflow rates have been reported in females than males. Females can produce syllabic sequences with greater anticipatory

| Table IV. Analysis of variance of normative scores among the study groups. |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Group I: Adult females (n = 71) | Group II: Adult males (n = 73) | Group III: Female children (n = 34) | Group IV: Male children (n = 41) |
| Mean | SD | Mean | SD | Mean | SD | Mean | SD |
| pa | 6.93 | 1.32 | 7.29 | 2.29 | 5.29 | 0.76 | 6.10 | 1.00 | < 0.001 |
| ta | 8.15 | 3.03 | 8.32 | 3.05 | 5.44 | 0.70 | 6.61 | 1.87 | < 0.001 |
| ka | 9.86 | 3.35 | 9.99 | 3.70 | 7.24 | 2.31 | 6.83 | 0.95 | < 0.001 |
| sa | 8.15 | 2.86 | 8.70 | 3.47 | 6.24 | 1.76 | 6.27 | 1.48 | < 0.001 |
| ja | 8.20 | 2.94 | 8.86 | 3.70 | 5.65 | 1.30 | 5.76 | 2.00 | < 0.001 |
| pi | 14.77 | 6.15 | 13.52 | 5.24 | 8.44 | 2.09 | 11.83 | 1.87 | < 0.001 |
| ti | 21.20 | 8.46 | 17.77 | 8.19 | 15.21 | 3.78 | 13.85 | 3.12 | < 0.001 |
| ki | 23.86 | 6.97 | 19.85 | 7.47 | 18.50 | 3.78 | 18.98 | 4.02 | < 0.001 |
| si | 19.63 | 8.16 | 17.12 | 7.74 | 14.47 | 5.41 | 13.32 | 3.02 | < 0.001 |
| ji | 21.45 | 7.97 | 18.52 | 7.34 | 16.09 | 4.32 | 14.20 | 5.02 | < 0.001 |
| ma | 58.77 | 9.57 | 58.90 | 7.72 | 55.35 | 4.04 | 53.61 | 4.80 | < 0.001 |
| na | 65.79 | 14.49 | 63.32 | 10.61 | 56.82 | 5.33 | 54.63 | 4.77 | < 0.001 |
| mi | 77.73 | 11.24 | 76.78 | 10.31 | 62.97 | 4.85 | 60.93 | 5.32 | < 0.001 |
| ni | 78.87 | 12.03 | 77.10 | 9.40 | 65.24 | 4.36 | 62.73 | 5.85 | < 0.001 |
| a | 10.27 | 5.04 | 11.84 | 6.31 | 7.24 | 3.02 | 10.32 | 3.03 | < 0.001 |
| i | 23.55 | 10.40 | 23.88 | 12.79 | 21.26 | 3.48 | 17.37 | 3.89 | < 0.001 |
| s | 1.18 | 2.34 | 0.75 | 2.10 | 0.88 | 2.16 | 0.44 | 0.90 | N.S. |
| m | 91.75 | 4.01 | 91.18 | 5.53 | 87.21 | 3.13 | 85.46 | 3.62 | < 0.001 |
| oral sentence | 11.17 | 5.31 | 9.75 | 3.03 | 8.79 | 3.11 | 6.88 | 1.29 | < 0.001 |
| nasal sentence | 49.70 | 8.95 | 47.97 | 7.38 | 47.76 | 3.91 | 47.15 | 4.64 | N.S. |
| oro-nasal sentence | 22.06 | 6.93 | 20.92 | 5.87 | 16.88 | 2.03 | 17.98 | 1.17 | < 0.001 |

N.S. = not significant; SD = standard deviation.
Table V. Post hoc test of the significant variables in ANOVA.

Dependent variable	(I) Group	(J) Group	Mean difference (I–J)	Significance
Pa	Adult females	Female children	1.64	< 0.001
	Adult males	Female children	1.99	< 0.001
		Male children	1.19	< 0.05
Tą	Adult females	Female children	2.62	< 0.05
	Adult males	Female children	2.87	< 0.001
		Male children	1.71	< 0.05
Ka	Adult females	Female children	2.62	< 0.05
	Adult males	Female children	2.75	< 0.001
		Male children	3.16	< 0.001
Sa	Adult females	Female children	1.92	< 0.05
	Adult males	Female children	2.46	< 0.001
		Male children	2.43	< 0.001
Já	Adult females	Female children	2.55	< 0.05
	Adult males	Female children	3.22	< 0.001
		Male children	3.11	< 0.001
Pi	Adult females	Female children	6.33	< 0.001
	Adult males	Female children	5.08	< 0.001
	Female children	Male children	1.11	< 0.05
Tį	Adult females	Adult males	3.43	< 0.05
		Female children	5.99	< 0.05
	Adult males	Male children	7.34	< 0.001
Ki	Adult females	Adult males	4.01	< 0.05
		Female children	5.36	< 0.05
		Male children	4.88	< 0.05
Si	Adult females	Female children	5.16	< 0.05
		Male children	6.32	< 0.001
Jį	Adult females	Female children	5.36	< 0.05
		Male children	7.26	< 0.001
Ma	Adult females	Male children	4.33	< 0.05
Na	Adult females	Female children	8.97	< 0.05
		Male children	11.15	< 0.001
Mi	Adult females	Female children	14.76	< 0.001
		Male children	16.81	< 0.001
Nį	Adult females	Female children	13.04	< 0.001
		Male children	16.14	< 0.001
A	Adult females	Female children	3.03	< 0.001
	Adult males	Female children	4.60	< 0.001
I	Adult females	Male children	1.91	< 0.05
	Adult males	Male children	6.51	< 0.05
M	Adult females	Female children	4.54	< 0.001
	Adult males	Female children	6.28	< 0.001

(Continued)
Nasalance scores in Saudi speakers

Despite the aforementioned differences in some studies, the majority of studies have failed to find any gender-related differences among mean nasalance scores both in adults and in children (15,31,32). Few studies have indicated that females had higher nasalance scores than males, mainly in reading material containing nasals (2,8); yet, a contradicting finding was obtained by Fletcher (33). Generally, the reported gender differences on mean nasalance, wherever obtained, were small.

On comparing nasalance scores between groups regarding age, there was a consistent increase in nasalance scores in adults compared to children. This was in common with Hirschberg et al. (9), who reported that resonance grows with aging.

Cross-linguistic comparison of adults’ normal nasalance scores revealed that nasalance scores for the Saudi Arabic oral sentences were lower than those for Greek (n = 80), North American (n = 148), and French Canadian (n = 56), while they were higher than those for Flemish (n = 56) (see Supplementary Appendix B available online at http://informahealthcare.com/doi/abs/10.3109/14015439.2014.907339 for mean nasalance scores across different languages).

This can be explained by vowel nasalization that has been documented in oral and nasal contexts in some languages (34). Regarding nasal sentences, Saudi Arabic showed higher nasalance than Greek and French Canadian while showing less nasalance than Flemish and North American. Also, there was a common tendency in oro-nasal sentences to show significantly lower nasalance scores in Saudi Arabic speech compared to Greek, Flemish, Northern American, and Canadian French languages. This can be attributed mainly to context-related differences. As the ratio of oral to nasal sounds in balanced oro-nasal materials reflects the phonemic composition of lexical items for a particular

Table V. Comparing adults’ nasalance values in Saudi and Egyptian studies.

Dependent variable	(I) Group	(J) Group	Mean difference (I–J)	Significance
oral sentence	Adult females	Female children	2.37	<0.05
	Adult males	Male children	4.21	<0.001
oro-nasal sentence	Adult females	Female children	5.17	<0.001
	Adult males	Male children	4.08	<0.05

Table VI. Comparing adults’ nasalance values in Saudi and Egyptian studies.

	Saudi females (n = 71)	Egyptian females (n = 70)	P value	Saudi males (n = 73)	Egyptian males (n = 62)	P value
pa	6.93 1.32	22.0 16.0	<0.001	7.29 2.29	15.0 7.0	<0.001
ta	8.15 3.03	19.0 10.0	<0.001	8.32 3.05	14.0 7.0	<0.001
ka	9.86 3.35	26.0 17.0	<0.001	9.99 3.70	15.0 7.0	<0.001
sa	8.15 2.86	30.0 27.0	<0.001	8.70 3.47	19.0 10.0	<0.001
ja	8.20 2.94	31.0 27.0	<0.001	8.86 3.70	20.0 10.0	<0.001
pi	14.77 6.15	30.0 11.0	<0.001	13.52 5.24	29.0 19.0	<0.001
ti	21.20 8.46	42.0 20.0	<0.001	17.77 8.19	36.0 28.0	<0.001
ki	23.86 6.97	39.0 20.0	<0.001	19.85 7.47	38.0 27.0	<0.001
si	19.63 8.16	48.0 20.0	<0.001	17.12 7.74	43.0 32.0	<0.001
ji	21.45 7.97	47.0 25.0	<0.001	18.52 7.34	51.0 34.0	<0.001
ma	58.77 9.57	68.0 14.0	<0.001	58.90 7.72	70.0 18.0	<0.001
na	65.79 14.49	70.0 13.0	N.S.	63.32 10.61	68.0 19.0	N.S.
mi	77.73 11.24	81.0 17.0	N.S.	76.78 10.31	85.0 9.0	<0.001
ni	78.87 12.03	84.0 10.0	<0.01	77.10 9.40	85.0 10.0	<0.001
a	10.27 5.04	22.0 15.0	<0.001	11.84 6.31	15.0 6.0	<0.05
i	23.55 10.40	21.0 10.0	N.S.	23.88 12.79	33.0 30.0	<0.05
s	1.18 2.34	0.0 0.0	<0.001	0.75 2.10	0.0 0.0	<0.05
m	91.75 4.01	95.0 4.0	<0.001	91.18 5.53	92.0 5.0	N.S.

N.S. = not significant.
language, this may readily account for the nasalance differences observed between Arabic and other languages. The representative percentage of nasal consonants of the oro-nasal sentences in Saudi Arabic speech (11.45%) was lower than in Flemish (57%) (8), English (35%) (16), and Spanish (33.3%–60%) (35).

As many societies are becoming multicultural and multilingual, it is worth delineating the cross-linguistic differences in nasalance scores to be able to assist in the proper evaluation of velopharyngeal function in multilingual patients.

Conclusion
Cross-linguistic and cultural differences in nasalance scores do exist, not only among people who speak different languages but also among people speaking the same language with different dialects. Normative nasalance scores for Saudi Arabic speakers were obtained in this study. The authors developed an Arabic speech material that can be generalized in Arabian Gulf countries since the Saudi dialect has a lot in common with other dialects spoken by other Arabian Gulf countries. The data were generally comparable to the results obtained for other languages. The developed speech material in this study was easy to use and understandable by different ages. The use of this material will help in further research studying patients with velopharyngeal or resonance disorders including cleft palate, hearing impairment, cochlear implantation, and any other speech or neurological disorders that have any impact on speech resonance.

Declaration of interest: The authors report no conflicts of interest.

References
1. Kummer AW. Nasometry. In: Kummer AW, editor. Cleft palate and craniofacial anomalies: effects on speech and resonance. 2nd ed. Clifton Park, NY: Thomson Delmar Learning; 2008.
2. Leeper H, Rochet A, MacKay I. Characteristics of nasalance in Canadian speakers of English and French. In: Proceedings of the International Conference on Spoken Language Processing. Banff, AB, Canada; 1992. p. 49–52.
3. Okalidou A, Karathanasi A, Grigorkai E. Nasalance norms in Greek adults. Clin Lingist Phon. 2011;25:671–88.
4. Seaver EJ, Dalston RM, Leeper HA, Adams LE. A study of nasometric values for normal nasal resonance. J Speech Hear Res. 1991;34:715–21.
5. Nichols A. Nasalance statistics for two Mexican populations. Cleft Palate Craniofac J. 1999;36:57–63.
6. Anderson RT. Nasometric values for normal Spanish-speaking females: a preliminary report. Cleft Palate Craniofac J. 1996;33:333–6.
7. Haapanen ML. Nasalance scores in normal Finnish speech. Folia Phoniatr (Basel). 1991;43:197–203.
8. Van Lierde KM, Wuyts FL, De Bondt M, Van Cauwenberg P. Nasometric values for normal nasal resonance in the speech of young Flemish adults. Cleft Palate Craniofac J. 2001;38:112–18.
9. Hirschberg J, Bok S, Juhasz M, Trenovszki Z, Votisky P, Hirshberg A. Adaptation of nasometry to Hungarian language and experiences with its clinical application. Int J Pediatr Otorhinolaryngol. 2006;70:785–98.
10. Van der Heijden P, Hobbel HH, Van der Laan BF, Korsten-Meijer AG, Goorhuis-Brouwer SM. Nasometry normative data for young Dutch children. Int J Pediatr Otorhinolaryngol. 2011;75:420–4.
11. Kavanagh M, Fee E, Kalinowski J. Nasometric values for three dialectical groups within the Atlantic Provinces of Canada. J Speech Lang Path Aud. 1994;18:7–13.
12. Abou-Elsaad T, Quriba A, Baz H, Elkassaby R. Standardization of nasometry for normal Egyptian Arabic speakers. Folia Phoniatr Logop, 2013;64:271–7.
13. Van de Weijer JC, Sls IH. Nasaliteitsmeting met de Nasometer. Logopedie en Foniatrie. 1991;63:97–101.
14. Prathance B, Thanaviratnaniich S, Ponjiumakul A, Rengpatanakij K. Nasalance scores for speech in normal Thai children. Scand J Plast Reconstr Surg Hand Surg. 2003;37:351–5.
15. Tachimura T, Mori G, Hirata S, Wada T. Nasalance score variation in normal adult Japanese speakers of Mid-West Japanese dialect. Cleft Palate Craniofac J. 2000;37:463–7.
16. Mayo R, Floyd LA, Warren DW, Dalston RM, Mayo MC. Nasalance and nasal area values: cross-racial studies. Cleft Palate Craniofac J. 1996;33:143–9.
17. MacKay IRA, Kummer AW. The MacKay Kummer SNAP Test. Lincoln Park, NJ: Kay Elemetrics Corp; 1994.
18. Kay Elemetrics Corporation. Instruction manual of the Nasometer model 6200–3, IBM PC version. Lincoln Park, NJ: Kay Elemetrics; 1994.
19. Dalston RM, Neiman GS, Gonzalez-Landa G. Nasometric sensitivity and specificity: a cross-dialect and cross-culture. Cleft Palate Craniofac J. 1993;30:285–91.
20. Hogen Esch TT, Dejonckeree PH. Objectivizing nasality in healthy and velopharyngeal insufficient children with the Nasalance Acquisition System (NasalView). Defining minimal required speech tasks assessing normative values for Dutch language. Int J Pediatr Otorhinolaryngol. 2004;68:1039–46.
21. Soneghet R, Santos RP, Behlau M, Habermann W, Friedrich G, Stemberg H. Nasalance changes after functional endoscopic sinus surgery. J Voice. 2002;16:392–7.
22. Nguyen LHP, Allegro J, Low A, Parsin B, Campisi P. Effect of cochlear implantation on nasality in children. Ear Nose Throat J. 2008;87:138–43.
23. Fale I, Hub Farira I. Nasometric values for European Portuguese: preliminary results. In: Proceeding of the 2nd ISCA Workshop on Experimental Linguistics, 25–27 August. Athens, Greece; 2008. p. 85–8.
24. Litzaw LL, Dalston RM. The effect of gender upon nasalance scores among normal adult speakers. J Commun Disord. 1992;25:55–64.
25. Whitehill LT. Nasalance measures in Cantonese speaking women. Cleft Palate Craniofac J. 2001;38:119–25.
26. Vallino-Napolii LD, Montgomery AA. Examination of the standard nasalance scores in subjects with cleft palate: implications for clinical use. Cleft Palate Craniofac J. 1997;34:512–19.
27. Shprintzen R, Bardach J. Cleft palate speech management: a multidisciplinary approach. St. Louis, MO: Mosby; 1995.
Supplementary material available online

Supplementary Appendix A and B to be found online at http://informahealthcare.com/doi/abs/10.3109/14015439.2014.907339